
Recent Methods from Statistics and
Machine Learning for Credit Scoring

Anne Kraus

München 2014

Recent Methods from Statistics and
Machine Learning for Credit Scoring

Anne Kraus

Dissertation

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Anne Kraus

aus Schweinfurt

München, den 10. März 2014

Erstgutachter: Prof. Dr. Helmut Küchenhoff

Zweitgutachter: Prof. Dr. Martin Missong

Tag der Disputation: 22. Mai 2014

Mein besonderer Dank gilt

• Prof. Dr. Helmut Küchenhoff, für die Möglichkeit bei ihm zu promovieren, die
Begeisterung für das Thema und die hervorragende Betreuung in den letzten Jahren

• Prof. Stefan Mittnik, Ph.D., für die Zweitbetreuung im Rahmen des
Promotionsprogramms

• Prof. Dr. Martin Missong, für die Bereitschaft, das Zweitgutachten zu übernehmen

• allen Doktoranden und Mitarbeitern am Institut für Statistik, für die freundliche
Aufnahme und Unterstützung, ganz besonders Monia Mahling

• meinem Arbeitgeber, für die Möglichkeit der Freistellung

• meinen Kollegen, für ihr Interesse und viele gemeinsame Mittagspausen

• meinen Freunden, für viel Verständnis und Motivation, allen voran Karin Schröter

• meinen Geschwistern Eva Schmitt und Wolfgang Kraus samt Familien, für
Aufmunterung und Ablenkung

• meinen Eltern, für ihre grenzenlose Unterstützung in jeglicher Hinsicht

• Martin Tusch, für unendlichen Rückhalt

Abstract

Credit scoring models are the basis for financial institutions like retail and consumer credit
banks. The purpose of the models is to evaluate the likelihood of credit applicants defaulting
in order to decide whether to grant them credit. The area under the receiver operating
characteristic (ROC) curve (AUC) is one of the most commonly used measures to evaluate
predictive performance in credit scoring. The aim of this thesis is to benchmark different
methods for building scoring models in order to maximize the AUC. While this measure is
used to evaluate the predictive accuracy of the presented algorithms, the AUC is especially
introduced as direct optimization criterion.

The logistic regression model is the most widely used method for creating credit
scorecards and classifying applicants into risk classes. Since this development process, based
on the logit model, is standard in the retail banking practice, the predictive accuracy of
this proceeding is used for benchmark reasons throughout this thesis.

The AUC approach is a main task introduced within this work. Instead of using the
maximum likelihood estimation, the AUC is considered as objective function to optimize it
directly. The coefficients are estimated by calculating the AUC measure with Wilcoxon–
Mann–Whitney and by using the Nelder–Mead algorithm for the optimization. The AUC
optimization denotes a distribution-free approach, which is analyzed within a simulation
study for investigating the theoretical considerations. It can be shown that the approach
still works even if the underlying distribution is not logistic.

In addition to the AUC approach and classical well-known methods like generalized
additive models, new methods from statistics and machine learning are evaluated for the
credit scoring case. Conditional inference trees, model-based recursive partitioning methods
and random forests are presented as recursive partitioning algorithms. Boosting algorithms
are also explored by additionally using the AUC as a loss function.

The empirical evaluation is based on data from a German bank. From the application
scoring, 26 attributes are included in the analysis. Besides the AUC, different performance
measures are used for evaluating the predictive performance of scoring models. While
classification trees cannot improve predictive accuracy for the current credit scoring case,
the AUC approach and special boosting methods provide outperforming results compared
to the robust classical scoring models regarding the predictive performance with the AUC
measure.

Zusammenfassung

Scoringmodelle dienen Finanzinstituten als Grundlage dafür, die Ausfallwahrscheinlichkeit
von Kreditantragstellern zu berechnen und zu entscheiden ob ein Kredit gewährt wird
oder nicht. Das AUC (area under the receiver operating characteristic curve) ist eines der
am häufigsten verwendeten Maße, um die Vorhersagekraft im Kreditscoring zu bewerten.
Demzufolge besteht das Ziel dieser Arbeit darin, verschiedene Methoden zur Scoremodell-
Bildung hinsichtlich eines optimierten AUC Maßes zu

”
benchmarken“. Während das

genannte Maß dazu dient die vorgestellten Algorithmen hinsichtlich ihrer Trennschärfe zu
bewerten, wird das AUC insbesondere als direktes Optimierungskriterium eingeführt.

Die logistische Regression ist das am häufigsten verwendete Verfahren zur Entwicklung
von Scorekarten und die Einteilung der Antragsteller in Risikoklassen. Da der Entwick-
lungsprozess mittels logistischer Regression im Retail-Bankenbereich stark etabliert ist, wird
die Trennschärfe dieses Verfahrens in der vorliegenden Arbeit als Benchmark verwendet.

Der AUC Ansatz wird als entscheidender Teil dieser Arbeit vorgestellt. Anstatt die
Maximum Likelihood Schätzung zu verwenden, wird das AUC als direkte Zielfunktion zur
Optimierung verwendet. Die Koeffizienten werden geschätzt, indem für die Berechnung
des AUC die Wilcoxon Statistik und für die Optimierung der Nelder-Mead Algorithmus
verwendet wird. Die AUC Optimierung stellt einen verteilungsfreien Ansatz dar, der im
Rahmen einer Simulationsstudie untersucht wird, um die theoretischen Überlegungen zu
analysieren. Es kann gezeigt werden, dass der Ansatz auch dann funktioniert, wenn in den
Daten kein logistischer Zusammenhang vorliegt.

Zusätzlich zum AUC Ansatz und bekannten Methoden wie Generalisierten Additiven
Modellen, werden neue Methoden aus der Statistik und dem Machine Learning für das
Kreditscoring evaluiert. Klassifikationsbäume, Modell-basierte Recursive Partitioning
Methoden und Random Forests werden als Recursive Paritioning Methoden vorgestellt.
Darüberhinaus werden Boosting Algorithmen untersucht, die auch das AUC Maß als
Verlustfunktion verwenden.

Die empirische Analyse basiert auf Daten einer deutschen Kreditbank. 26 Variablen
werden im Rahmen der Analyse untersucht. Neben dem AUC Maß werden verschieden Per-
formancemaße verwendet, um die Trennschärfe von Scoringmodellen zu bewerten. Während
Klassifikationsbäume im vorliegenden Kreditscoring Fall keine Verbesserungen erzielen,
weisen der AUC Ansatz und einige Boosting Verfahren gute Ergebnisse im Vergleich zum
robusten klassischen Scoringmodell hinsichtlich des AUC Maßes auf.

Contents

Abstract vi

Zusammenfassung viii

1 Introduction 1
1.1 Credit Scoring . 1
1.2 Scope of the Work . 3

2 Measures of Performance and Data Description 5
2.1 Receiver Operating Characteristic and Area under the Curve 5
2.2 Data Description . 9

3 Logistic Regression 11
3.1 A Short Introduction to Logistic Regression 11
3.2 The Development of Scorecards . 12
3.3 Discussion of the Logistic Regression Model in Credit Scoring 16

4 Optimization AUC 19
4.1 A New Approach for AUC Optimization 19
4.2 Optimality Properties of the AUC Approach 21

4.2.1 Theoretical Considerations . 21
4.2.2 Simulation Study . 23

4.3 The AUC Approach in Credit Scoring . 32
4.4 Discussion of the AUC Approach in Credit Scoring 35

5 Generalized Additive Model 37
5.1 A Short Overview of Generalized Additive Model 37
5.2 Generalized Additive Model for Credit Scoring 38
5.3 Discussion of a Generalized Additive Model in Credit Scoring 42

6 Recursive Partitioning 45
6.1 Classification and Regression Trees . 45

6.1.1 CART Algorithm . 46
6.1.2 Conditional Inference Trees . 49

xii Contents

6.2 Model-Based Recursive Partitioning . 52
6.3 Random Forests . 56

6.3.1 Random Forest Algorithm . 56
6.3.2 Importance Measures . 57

6.4 Recursive Partitioning Methods for Credit Scoring 60
6.4.1 Classification Trees for Credit Scoring 60
6.4.2 Model-Based Recursive Partitioning in Credit Scoring 69
6.4.3 Random Forests in Credit Scoring 74

6.5 Discussion of Recursive Partitioning Methods for Credit Scoring 85

7 Boosting 87
7.1 Boosting Algorithms . 87

7.1.1 Rationale of Gradient Boosting . 87
7.1.2 Component-Wise Gradient Boosting 88
7.1.3 Base Learners . 90

7.2 Boosting for Credit Scoring . 91
7.2.1 Discrete, Real and Gentle AdaBoost 91
7.2.2 Boosting Logistic Regression . 94
7.2.3 Boosting Generalized Additive Model 97

7.3 Boosting and the Optimization concerning AUC 101
7.3.1 AUC as a Loss Function in Boosting Algorithms 101
7.3.2 Boosting AUC in Credit Scoring . 102

7.4 Discussion of Boosting Methods in Credit Scoring 107

8 Summary and Outlook 109

A Supplementary Material 115
A.1 Optimization AUC - Chapter 4 . 115
A.2 Generalized Additive Model - Chapter 5 118
A.3 Recursive Partitioning - Chapter 6 . 119
A.4 Boosting - Chapter 7 . 122

B Computational Aspects 129
B.1 Statistical Software . 129
B.2 Selected R-Code . 130

Bibliography 143

List of Figures

2.1 Example for ROC curves . 7

3.1 Monthly univariate AUC values of variable 1 13
3.2 Ranking order of the covariates regarding the univariate AUC values . . . 14

4.1 Response functions for the logit, probit and complementary log log model . 24
4.2 Two adjusted link functions for the simulation study 25
4.3 Comparison of the coefficients for the AUC approach and the logit model . 26
4.4 Comparison of AUC measures of the logit model and the AUC approach . 29
4.5 Visualization of the AUC optimization for the β-coefficients 34

5.1 ROC curves for the logit model and the additive logistic regression 40
5.2 Estimated functions of the covariates in the generalized additive model . . 41

6.1 Example of a classification tree with binary splits 46
6.2 Illustration of a classification tree on credit scoring data 47
6.3 Example of a conditional inference tree on credit scoring data 50
6.4 Example of a logistic-regression-based tree on credit scoring data 54
6.5 ROC curves for the logit model and the conditional inference tree 66
6.6 ROC curves for the logit model and the logistic regression based tree . . . 71
6.7 Illustration of AUC values for random forests with different mtry-values . . 75
6.8 ROC curves for the logit model and the random forest 77
6.9 Variable importance measures for random forests 78
6.10 Variable importance comparison for random forests 83
6.11 Variable importance measures for classified predictor variables 85

7.1 ROC curves for the Gentle AdaBoost and the logit model 92
7.2 Cross validation for boosting logistic regression 95
7.3 Illustration of boosting logistic regression with increasing iterations 96
7.4 K-fold cross validation for boosting generalized additive models 98
7.5 Partial effects of three variables in a boosted GAM 100
7.6 Cross validation for boosting with AUC loss 103

8.1 Overview of the presented methods in this thesis 110

xiv List of Figures

A.1 Simulation study results for AUC measures with simulated logit link 115
A.2 Simulation study results with simulated complementary log log link 116
A.3 Simulation study results for AUC measures with simulated link1 116
A.4 Simulation study results for AUC measures with simulated link2 117
A.5 Variable importance measures for the 26 covariates 120
A.6 Results for random forests based on conditional inference trees 121
A.7 Cross validation with bootstrapping for boosting logistic regression 123
A.8 Validation results of boosting logistic regression with increasing iterations . 124
A.9 Results of boosting logistic regression with classified variables 125
A.10 Validation results of boosting logistic regression and classified variables . . 125
A.11 Cross validation for boosting generalized additive models 126
A.12 Cross validation for boosting linear effects with AUC loss 127
A.13 Cross validation for boosting smooth effects with AUC loss 127

List of Tables

2.1 Training, test and validation credit scoring data sets 10
2.2 Training data sets with created high default rates 10

3.1 Logistic regression results for different performance measures 15

4.1 Analogy of the Neyman–Pearson lemma and the credit scoring problem . . 22
4.2 Comparison of coefficients for the AUC approach and the logit model . . . 27
4.3 Simulation study results for five different link functions 28
4.4 Simulation study results for five different link functions and covariance . . 30
4.5 AUC optimization for the credit scoring data 32
4.6 Different measures for the results of the AUC optimization 33
4.7 AUC optimization for the credit scoring data with coarse classification . . 34

5.1 Prediction accuracy of the additive logistic regression models 39
5.2 Validation results for the generalized additive models 39

6.1 Prediction accuracy for CART classification trees 61
6.2 Best results of CART classification trees 62
6.3 Validation results of the best CART classification trees 63
6.4 Best results of CART classification trees with laplace smoothing 63
6.5 Validation results of the best CART trees with laplace smoothing 64
6.6 Best results of conditional inference trees 65
6.7 Different measures for the conditional inference tree results 67
6.8 Best results of conditional inference trees with classified variables 67
6.9 Different performance measures for conditional inference trees 68
6.10 Results for the model-based trees on the credit scoring data 70
6.11 Different measures for model-based recursive partitioning 72
6.12 Best results for model-based trees with categorized variables 72
6.13 Random forest results with CART-like trees 75
6.14 Results for random forests . 76
6.15 Different measures for the random forest results 76
6.16 Different measures for the random forest results with coarse classification . 79
6.17 Random forest results with conditional inference trees 81
6.18 Validation of random forests with conditional inference trees 81

xvi List of Tables

6.19 Random forest results for categorized variables 84

7.1 Stochastic Gradient Boosting Algorithm 88
7.2 Results for the Gentle AdaBoost . 92
7.3 Different measures for Gentle AdaBoost results 93
7.4 Different measures for Gentle AdaBoost results with coarse classification . 93
7.5 Prediction accuracy of boosting logistic regression 94
7.6 Different measures for boosting the logit model 95
7.7 Results for boosting the logit model with classified variables 97
7.8 Results for boosting generalized additive models 98
7.9 Different measures for boosting the additive logit model 99
7.10 Boosting AUC loss with tree-based base learner 102
7.11 Different measures for the AUCBoost results 103
7.12 Boosting linear base learners with AUC loss 104
7.13 Measures for the AUCBoost results with linear base learners 105
7.14 Boosting generalized additive models with AUC loss 106
7.15 Measures for the AUCBoost results with smooth effects 107

8.1 Comparison of different presented methods 111

A.1 Comparison of the GAM results and the logit model 118
A.2 Results of CART-like trees with information index as split criterion 119
A.3 Results of CART classification trees with prior probabilities 119
A.4 Best results of classification trees with m-estimate smoothing 119
A.5 Validation results of classification trees with m-estimate smoothing 119
A.6 Results of the Real AdaBoost with tree base learner 122
A.7 Different measures for the Real AdaBoost results 122
A.8 Prediction accuracy for Discrete AdaBoost with tree base learner 122
A.9 Different measures for the Discrete AdaBoost results 123
A.10 Boosting logistic regression with classified covariates 124
A.11 Boosting generalized additive models with eight potential variables 126
A.12 Boosting results for AUC loss and different sigma values 128

Chapter 1

Introduction

1.1 Credit Scoring

Customers apply for consumer credit loans for many reasons, including flat-panel tvs,
long-distance trips, luxury cars, relocation and family needs. The amount of consumer
credits is lower than for real estate financing and involves several thousand euros, normally
less than a hundred thousand. In this kind of credit business, personal information of the
applicants are the main basis for the assessment of risk. This is in contrast to real estate
financing, where higher credit amounts, lower interest rates and equity capital are the
characteristics.

Since customer demand for personal loans has increased in the last decades, the consumer
credit market evolved to become an important sector in the financial field and today
represents a high-volume business. The UK and Germany are the countries with the largest
total amount of consumer credits in Europe (Thomas, 2009). The German retail bank, from
which the data is used in this thesis, receives about a million applications per year. These
developments in the retail credit market requires automatic, fast and consistent decisions
and processes to handle the huge amount of applications. The use of credit scoring models
is now a key component in retail banking.

The development of so-called scorecards therefore represents the core competence of a
retail bank’s risk management when assessing the creditworthiness of an individual. The
credit scorecards are embedded in the whole decision process, where other parts like budget
account, the examination of the revenue and expenditure accounts and policy rules, are
also relevant. These rules lead directly to the rejection of an applicant. Logistic regression
is the main method applied in the banking sector to develop the scoring models. The
performance of these models is essential, and improvements in the predictive accuracy can
lead to significant future savings for the retail bank. The analysis of different models and
algorithms to develop scorecards is therefore substantial for credit banks.

Since the market is changing rapidly, new statistical and mathematical methods are
required for optimizing the scoring problem to decide on the question of whom to lend credit
to. In recent years, many quantitative techniques have been used to examine predictive

2 1. Introduction

power in credit scoring. Discriminant analysis, linear regression, logistic regression, neural
networks, K-nearest neighbors, support vector machines and classification trees cover the
range of different surveys (Thomas et al., 2005). An overview of publications is given in
Thomas (2000) and Crook et al. (2007). For instance, Baesens et al. (2003) compare different
classification techniques for credit scoring data where neural networks and least-squares
support vector machines yield good results, but the classical logistic regression model still
performs very well for credit scoring. In the meantime, new developments in statistics and
machine learning raise the question of wether or not newer algorithms would perform better
in credit scoring than the standard logistic regression model.

The area under the curve (AUC), based on the receiver operating characteristic (ROC)
curve, is the most widely applied performance measure in practice for evaluating scoring
models. However, classification algorithms are not necessarily optimal with respect to
the AUC measure. This is the initial point for the idea to introduce the AUC as direct
optimization criterion in this thesis. Since the AUC is a sum of step functions, the Nelder–
Mead algorithm (Nelder and Mead, 1965) is used for the optimization, which represents
a derivative-free and direct search method for unconstrained optimization of non-smooth
functions. Moreover, the Wilcoxon statistic (Wilcoxon, 1945) is used for calculating the
AUC measure. This novel approach is presented for the retail credit scoring case, and the
properties of the algorithm are analyzed within a simulation study.

Recursive partitioning methods are very popular in many scientific fields, like bioinfor-
matics or genetics, and represent a non-parametric approach for classification and regression
problems. Since classification trees show rather poor results for prediction, random forests
are especially prominent representatives of recursive partitioning algorithms leading to high
predictive accuracy. Random forests belong to the ensemble methods, that overcome the
instability of single classifiers by combining a whole set of single trees. Since the main task
of this thesis is to improve the predictive accuracy of scoring models, standard recursive
partitioning methods, and especially recent methodological improvements of the algorithms,
are evaluated for the credit scoring problem. The new extensions overcome the problems
of biased variable selection and overfitting in classification trees and random forests. In
addition, an interesting approach is to combine classification trees with the classical logit
model. This model-based recursive partitioning approach is also evaluated for the retail
credit data with respect to the AUC performance.

The idea of boosting methods is to combine many weak classifiers in order to achieve
a high classification performance with a strong classifier. Boosting algorithms are repre-
sentatives of the machine learning area and offer a huge amount of different approaches.
Apart from the classical AdaBoost with classification trees as so-called weak learners, it is
possible to estimate a logit model by using linear base learners and the negative binomial
log-likelihood loss within the component-wise gradient boosting. This boosting framework
comes along with variable selection within the algorithm and more interpretability for the
results. Since boosting methods are applied to different problems in other scientific fields,
the aim here is to analyze these new developments in the retail credit sector for improving
scoring models.

1.2 Scope of the Work 3

For the evaluation of recent methods from statistics and machine learning for the credit
scoring case, the investigations in this thesis are based on data from a German bank. I am
grateful to this bank for providing this data. Many surveys in this scientific field investigate
well-known and often used public data sets for their empirical evaluation. A German credit
data set with a 1,000 observations or a Japanese retail credit risk portfolio are prominent
examples.1

As outlined above, the main focus of this thesis is the improvement of scoring models in
the retail banking sector. It is a statistical point of view on credit scoring with concentration
on recent methodological developments. The presented credit scoring data is evaluated with
many different statistical methods rather than focusing on one specific model. The AUC
is highlighted as performance measure and direct objective function. Moreover, different
performance measures are presented for the analysis. In addition to the evaluation and the
performance comparison of the presented algorithms, another aim is to stress the pros and
cons of the proposed methods and to discuss them in the credit scoring context.

1.2 Scope of the Work

The scope of this work is to benchmark recent methods from statistics and machine learning
for creating scoring models in order to maximize the AUC measure. To analyze the topic,
this thesis is structured as follows:

Chapter 2 starts with the description of the AUC as a measure of performance in credit
scoring, gives a short overview of further performance measures and continues with an
overview of the credit scoring data used for the evaluation.

Chapter 3 presents a short introduction to the classical logit model, followed by a short
summary of the classical scorecard development process in the retail banking practice.

Chapter 4 introduces a novel approach that uses the AUC as direct optimization criterion,
and also includes some theoretical considerations and a simulation study for analyzing the
properties of the proposed procedure.

Chapter 5 applies the generalized additive model for the credit scoring case as advancement
of the classical logit model and representative of the well-known classical methods.

In Chapter 6 and 7, new methods from machine learning are investigated for the credit
scoring case. In Chapter 6, classification trees, random forests and model-based recursive
partitioning algorithms are presented and evaluated in the credit scoring context.

1Both available at http://archive.ics.uci.edu/ml/ of the University of California-Irvine (UCI)
Repository.

http://archive.ics.uci.edu/ml/

4 1. Introduction

In Chapter 7, the evaluation continues with various boosting methods where different loss
functions and base learners are investigated. The AUC is especially used as a loss function
within the boosting framework and analyzed for the credit scoring case.

Finally, the most important results are highlighted in the Chapter 8 summary. Concluding
remarks and recommendations are given in the final chapter by additionally outlining issues
for further research.

Computational aspects are given in the Appendix B where statistical software details are
presented (B.1), and exemplary R-Codes are provided for the AUC approach and the
simulation study in Chapter 4 (B.2). Additional graphics and result tables are included in
the Appendix A.

Parts of Chapters 2 to 4 and 7 are published in an article in the Journal of Risk Model
Validation (Kraus and Küchenhoff, 2014).

Chapter 2

Measures of Performance and Data
Description

2.1 Receiver Operating Characteristic and Area un-

der the Curve

A great variety of performance measures exists in credit scoring. Kullback divergence,
Kolmogorov–Smirnov statistic (KS) and information value denote some of the measures
used in this area (Anderson, 2007). The H measure (Hand, 2009) or the error rate are
other performance measures used to evaluate scoring models. In this thesis, the focus is
on the Receiver Operating Characteristic (ROC) and the related area under the curve
(AUC) as the most widely applied performance measures in credit scoring practice. By far,
these measures, including the Gini coefficient respectively, are the most important criteria
in the retail banking sector. Further measures for discrimination, probability prediction,
and categorical forecasts are also presented. The AUC is used as a measure of predictive
accuracy for evaluating the different methods and algorithms in the credit scoring context.
It is especially introduced as direct optimization criterion.

Primarily, ROC graphs have a long history of describing the tradeoff between hit
rates and false alarm rates in signal detection theory (Swets, 1996; Swets et al., 2000).
Thereafter, ROC graphs have been mainly used in medical decision making. Pepe (2003)
considers, for example, the accuracy of a diagnostic test for the binary variable of the
disease status (disease and non-disease). In recent years, the ROC analysis and the AUC
have been increasingly used in the evaluation of machine learning algorithms (Bradley,
1997). According to Provost and Fawcett (1997), simple classification accuracy is often
a poor metric for measuring performance so the ROC analysis gained more impact. For
instance, one-dimensional summary measures, like the overall misclassification rate or odds
ratio, can lead to misleading results and are rarely used in practice (Pepe et al., 2006).
Since the consequences of false-negative and false-positive errors are hard to quantify, it is

6 2. Measures of Performance and Data Description

common to draw both dimensions (tp rate and fp rate) into account (Pepe et al., 2006).

The survey of the credit scoring case denotes a binary problem regarding whether the
customers default in a specific time period or the applicants pay regularly (cf. Section 2.2).
The following two classes are examined:

• default, i.e., a customer fails to pay installments and gets the third past due notice
during the period of 18 months after taking out the loan

• non-default, i.e., a customer pays regular installments during the period of 18 months
after taking out the loan.

Due to this two class problem, two classes are used for the description of the ROC graph.
For the multi-class ROC graphs, I reference the explanation of Hand and Till (2001). The
following descriptions are based on Pepe (2003) and Fawcett (2006).
For classification models with a discrete outcome for prediction, different cases arise. If
a default is correctly classified and predicted as a default, it is a true positive; while a
non-default wrongly predicted as a default is counted as a false positive. Accordingly, the
following parameters are computed:

tp rate =
defaults correctly classified (tp)

total defaults (p)
(2.1)

fp rate =
non defaults incorrectly classified (fp)

total non defaults (n)
(2.2)

Plotting the fraction of the correctly classified defaults (tp rate - TPR) versus the
incorrectly classified non-defaults (fp rate - FPR) gives rise to the ROC graph. Figure
2.1 shows an example of ROC curves for three different default criteria. The diagonal
describes a model with no predictive information, while the perfect model would imply a
curve directly tending to the point (0, 1). The perfect model would imply that there exists
a score where all defaults have scores below this value, and the non-defaults above this
value, respectively.

In the analysis, the main interest is on classifiers that do not produce a discrete good or
bad decision, but a probability of default. Thresholds are used to create the ROC graph
for these scoring classifiers. The threshold denotes a binary classifier for each special score,
so for each threshold value one point in the ROC space can be evaluated. An important
advantage of ROC curves is that they are insensitive to changes in the proportion of defaults
to non-defaults (Fawcett, 2006).

Supplementary to the curves, numerical indices for the ROC graphs are often used. An
important measure is the area under the ROC curve (AUC), which ranges between 0 and
1. As the name indicates this denotes the area under the curve presented in Figure 2.1.
A perfect model has an AUC value of 1, while an uninformative scoring classifier has a
value of 0.5, respectively. Normally scoring systems in practice have a value in-between.

2.1 Receiver Operating Characteristic and Area under the Curve 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Tr
u

e
 p

o
si

ti
ve

 r
at

e

False positive rate

crit1 crit2 crit3 diagonal

Figure 2.1: Example for ROC curves with three different criterions of default (crit1, crit2, crit3) by
plotting the true positive rate versus the false positive rate.

An equivalent transformation to the AUC denotes the Gini coefficient with the definition
Gini = 2 · AUC − 1.

Since the AUC measure is used as well as direct optimization criterion, it is important
to highlight the relationship to the well-studied Wilcoxon statistic (Hanley and McNeil,
1982). Assuming two samples of non-defaults nnd and defaults nd , all possible comparisons
of the scores from each sample correspond to the following rule:

S(xnd, xd) =


1 if xnd > xd

0.5 if xnd = xd

0 if xnd < xd

(2.3)

where xnd and xd are the scores from the non-defaults and defaults, respectively. By
averaging over the comparisons, the AUC can be written as follows:

AUC =
1

nnd · nd

nnd∑
1

nd∑
1

S(xnd, xd) (2.4)

This definition of the AUC value will be used for the AUC approach proposed in
Chapter 4. Further explanations, especially concerning the confidence intervals, can be
found in Hanley and McNeil (1982). Frunza (2013) covers the Gini coefficient in the context
of credit risk model validation. For the analysis of areas under the ROC curves, DeLong et al.

8 2. Measures of Performance and Data Description

(1988) propose a nonparametric approach by using the theory of generalized U-statistics to
test whether the difference is significant.

The main objectives for a bank when lending consumer credits are to maximize the
profit and reduce losses if a customer can not repay a loan. The cut-off defines the threshold
denoting which customers are accepted and rejected, respectively. The ROC curve can also
be used to display the influence of changes in the cut-off levels on various business measures
of the loan portfolio like profit or loss (Thomas, 2009). But the business perspective goes
beyond the scope of this thesis, since the focus lies on the statistical methods and the
statistical model estimation with new algorithms. For that reason, I reference Thomas
(2009) for further readings in the business aspects of the ROC curve.

In spite of its popularity, critical aspects remain for the AUC measure, such as the fact
that it ignores the probability values and only considers the order of the scores (Ferri et al.,
2005). Therefore, further performance measures are evaluated for the current credit scoring
case.

Hand (2009) discusses some weaknesses of the AUC, such as the incoherency in terms
of misclassification costs, and proposes the H measure as an alternative. He derives a linear
relationship between AUC and expected minimum loss, where the expectation is taken
over a distribution of the misclassification cost parameter that depends on the model under
consideration (Flach et al., 2011). The H measure is derived by replacing this distribution
with a Beta(2, 2) distribution.

The KS curve charts the empirical cumulative distribution function percentages for
defaults and non-defaults against the score. The KS statistic is defined by the maximum
absolute difference between the two curves (Anderson, 2007). The above mentioned measures
investigate the discrimination of the scoring models.

The minimum error rate (MER) is used to measure categorical forecasts. The per-
formance metrics on comparing the classifier’s predicted classes and their true labels are
described previously in the context of the ROC-curve. A widely used summary of the
so-called misclassification counts is the error rate (ER), which defines the total misclassi-
fication count (the sum of the false negatives FN and false positives FP) divided by the
number of observations, i.e., ER = FN+FP

n
. The error rate depends on a special threshold t

to produce class labels since most of the classifiers produce a probability prediction. The
minimum error rate (MER) corresponds to the value of t that achieves the minimum ER(t)
over the test dataset (Anagnostopoulos et al., 2012).

To consider the probability prediction of a scorecard, the Brier score (Brier, 1950) is
analyzed. The original definition of Brier (1950) is

BS =
1

n

r∑
j=1

n∑
i=1

(pij − Yij)2 (2.5)

where pij denotes the forecast probabilities, Yij takes the value 0 or 1 according to whether
the event occured in class j or not and r defines the possible classes (r = 2 for default and
non-default). The Brier score defines, therefore, the expected squared difference of the

2.2 Data Description 9

predicted probability and the response variable. The lower the Brier score of a model, the
better is the predictive performance. However, the use of the Brier score is critical since it
depends on direct probability predictions.

2.2 Data Description

The data used in this thesis was provided by a German retail bank that specializes in
lending consumer credits. The application process of this bank is fully automated, thus
offering a very large database with a wide range of information and a long data history. For
the analysis, I concentrate on a part of the overall portfolio that guarantees representative
results and also protects the bank’s business and financial confidentiality.

The focus lies in the application scoring data because the decision of whether to grant
credit to an applicant is the key issue in retail banking. If the promise of a loan is given and
the money is paid out to a customer, the credit becomes part of the bank portfolio. As a
result, the bank cannot cancel the decision. Behavioral scoring is important for forecasting
the portfolio risk and is, therefore, relevant for the capital resources demanded by Basel II.
Since the information is derived from a real application process, the data quality is very
good. Because the customers are interested in taking out a loan, they are willing to divulge
their personal information. The verification process inside the bank, where bank employees
review the information, guarantees the accuracy of the data. Customers who provided
wrong specifications do not receive credit unless the information is corrected. Missing data,
therefore, poses a minor problem for the presented credit scoring case.

On the one hand, the most important variables are personal data from the customers,
including income, marital status, age and debt position. Information from credit agencies
completes the data set while applicants contractually permit the bank to obtain this data.

On the other hand, the payment history of consumers is essential for credit scoring,
because this information enables the estimation of credit scoring models. Twenty six
attributes are considered regarding process-related limitations for this specific bank. While
variables like contract period or the amount of credit are good attributes to help predict a
credit default, the decision of whether to grant credit has to be finalized before the customer
decides about these variables. I note that these limitations present realistic empirical
conditions for this bank. In other business models, for instance, loans are granted after the
length of the loan is determined by the customer.

From the 26 attributes, four variables are categorical, while the other 22 covariates are
of numerical order. For building credit scoring models, it is quite common to categorize the
variables by building classes. Some explanations are given in Section 3.2 by describing the
scorecard development process. If in the following variables are denoted as ’classified’ or
’categorized’, this always refers to the 22 numerical covariates. The remaining four variables
are originally categorical and do not need further classification.

For model estimation, there are various options to define the outcome variable. A
withdrawal of the credit can be denoted via a default as well as a past due notice. Moreover,
it is essential to return to past events for observing the default. This time span can vary

10 2. Measures of Performance and Data Description

considerably, for example, from 12 to 30 months.
The selected time span is always a tradeoff between actuality and the rate of defaults. For
the analysis, the event of sending a third past due notice is assessed as the definition of
default and a time span of 18 months is chosen (cf. Section 2.1).

Loans that are past due for more than 90 days can be classified as default as per the
Basel II definition (Basel Committee on Banking Supervision, 2004). Since a time span of 12
months is often used for modeling predictive power, the choice of the time span depends on
the portfolio structure. For differing customers who fail at the beginning and those failing
after several months, survival analysis approaches are used for building scoring models.
Banasik et al. (1999) and Stepanova and Thomas (2002) cover these topics in detail.

Due to confidentiality reasons, the descriptive analyses for the variables are not presented.
For the evaluation, three different samples for training, test, and validation are used (shown
in Table 2.1).

Data All Defaults Defaults in %

trainORG 65818 1697 2.58
test 138189 3634 2.63
validation 72251 1878 2.60

Table 2.1: Data sets for training, test, and validation analyses, where the test and validation data
represent out-of-time samples.

The default rates vary around 2.6%, a level that is characteristically low for the credit
scoring market. As mentioned above, this quantity is an important reason for choosing
a horizon of 18 months and the event of sending the third past due notice. As all three
samples are drawn from different time intervals, the investigations on the test and validation
samples are out of time.

For test purposes, additionally two samples are generated with randomly created default
rates, as shown in Table 2.2. In practice, this procedure is common. The non-defaults are
reduced to receive the specified default rate of 20 and 50%. These samples are generated
from the original training sample (trainORG) of 65,818 applications.

Training data sets All Defaults in %

train020 8485 20
train050 3394 50

Table 2.2: Training data sets with simulated default rates of 20% and 50% drawn from the original
training sample (trainORG) by randomly reducing the non-defaults.

The new methods of machine learning presented in this thesis are trained on a training
sample, while the different tuning parameters are tuned according to the outcomes on the
test sample. The validation sample is finally used for validating the results.

Chapter 3

Logistic Regression

3.1 A Short Introduction to Logistic Regression

In retail banking, logistic regression is the most widely used method for classifying applicants
into risk classes. Good interpretability of the results and simple explanation are the most
important merits of this procedure (Hand and Kelly, 2002). Another advantage results
from directly modeling probabilities and the fact that logistic regression is less sensitive
against outliers (Henking et al., 2006). For these reasons, the logistic regression method is
presented as basis for the classical way of credit scorecard development.
The logit model represents a generalized linear model where the probit model or the
complementary log–log model are also representatives (Fahrmeir et al., 2013). The aim of
the regression analysis for the binary outcome variable Yi (default and non-default) is the
analysis of the probability πi = P (Yi = 1 |xi) = G(x′iβ) with xi as a vector of explanatory
variables and x′iβ = β0 + β1x1 + . . .+ βpxp as linear predictor. The logistic regression model
supposes a linear relationship between the log-odds ln πi

1−πi and the covariates. The logit
model arises by choosing the following response function:

G(t) = (1 + exp(−t))−1 (3.1)

The maximum likelihood estimation is usually used as a method to estimate the β-
coefficients. The rationale of this method describes the maximization of the likelihood L(β)
with the definition:

L(β) =
n∏
i=1

G(x′iβ)Yi(1−G(x′iβ))1−Yi (3.2)

The maximum likelihood estimator β̂ML results from maximizing the likelihood L(β) and
the log-likelihood l(β) = log(L(β)), respectively.
The theory of the maximum likelihood estimation denotes the following properties: for
n→∞ the ML-estimator asymptotically exists, is consistent and asymptotically normal
distributed.

12 3. Logistic Regression

This implies for a sufficiently large sample size n, the approximately normal distribution
for β̂

β̂ML → N(β, F−1(β)) (3.3)

The asymptotic variance matrix equals the inverse Fisher information and the variance
matrix of the weighted regression with V ar(Y) = D(β) = diag(G(x′iβ)(1−G(x′iβ))). For
further explanations, I refer to Fahrmeir et al. (2009) and Hosmer and Lemeshow (2000).
For testing the significance of the coefficients in the logit model, the Wald test and the
likelihood quotient test are normally presented.
However, testing the significance is not the only criterion for selecting explanatory variables.
Finding the best covariates for the final model is an important aspect but the topic of
variable selection goes beyond the scope of this thesis. Scheipl et al. (2012) and Fahrmeir
et al. (2013) are referenced for further reading.

3.2 The Development of Scorecards

The logit model is the most commonly applied method in practice to create scoring models
within the scorecard development process. Therefore, the empirical results from the logistic
regression are presented and used as a benchmark for the new methods from statistics and
machine learning. For the credit scoring procedure, various steps and analyses are needed
for selecting and estimating the final model. In this section, the main issues are highlighted
for developing a credit scoring model (cf. for instance Anderson (2007)).

The data and the definition of the criterion of default are described in Section 2.2.
The univariate analysis is one of the most important parts of the scorecard development
process. All potential covariates are considered within these investigations. This includes,
among other surveys, the analysis of the distribution and discriminative power for each
attribute, the plausibility and relevance of the variables and the consideration of missing
values and outliers. The latter aspects are negligible in the analysis because of the excellent
data quality. Missing values are, therefore, no problem in the presented credit scoring case.
Moreover, the few identified outliers do not change the results. This is also verified in the
multivariate context described later.

One example of the univariate analysis, Figure 3.1, shows the monthly univariate AUC
values of variable 1. Three different criteria of default are displayed in the figure. The aim
is to test the stability of the variables over time. The displayed variable shows a stable
distribution for the three definitions of a default since the jumps arise due to small amounts
of observations in a month. If the distribution would imply instability, the reasons have to
be investigated to decide whether the corresponding covariate should be included in the
scoring model or not.

Only variables with stable risk development and distribution in the past are used in
order to create a robust model for the future decision process of the retail bank.
Another aspect within the univariate analysis is the classification of continuous variables in
order to use them with categorized classes. Typically, in retail credit scoring, numerical

3.2 The Development of Scorecards 13

50,0

52,0

54,0

56,0

58,0

60,0

62,0

64,0
A

U
C

crit1 crit2 crit3

Figure 3.1: Monthly univariate AUC values of variable 1 for three different criterions of default (crit1
to crit3) to test the stability of the variable over time.

covariates are grouped into intervals. An advantage is that all variables are of the same
kind. Another advantage is the interpretability (Hand, 2001). Different groups can easily
be characterized as more or less risky compared to other groups. In the current case,
the variables are categorized regarding the default rate in an interval, the amount of
observations and the amount of defaults in a class. The univariate predictive performance
of the covariate is measured by the AUC. Hand and Adams (2000) discuss the properties
of variable classification. Simple explanation and the use of the same variable types are
already mentioned as attractive properties. Another advantage is the modeling of nonlinear
relationships between the raw score and the weights, and therefore between the raw scores
and the outcome variable (Hand and Adams, 2000). A main weakness, however, is the
loss of information by transforming a variable and treating neighboring values identically
in a scoring model. Additionally, the jumps in weights might be unrealistic by crossing a
threshold.

The classification of covariates is not necessary for many statistical predictive models.
In this thesis, categorized variables and continuous covariates are considered depending
on the applied models. As described in Section 2.2, four of the variables are categorical.
Whether the covariates are classified or not always refers to the 22 numerical explanatory
variables.

Finally, the univariate analysis results in a so-called short list. This contains the selected
attributes as basis for the multivariate analysis and a ranking order of the importance of
predictive performance as measured by the AUC.

14 3. Logistic Regression

Figure 3.2 displays the 26 potential covariates and shows the ranking order concerning
the univariate AUC measure. Due to confidentiality reasons, the covariates can not be
published in detail. But regarding further analyses with new statistical methods, I highlight
the importance of variables 3 and 4. These are the best covariates concerning the presented
criterion of default and the univariate predictive performance. Variables 10 and 20 are of
minor importance. Note that variables 5, 6, 8 and 9 are original categorical variables, while
the other 22 variables are classified.

50,0

52,0

54,0

56,0

58,0

60,0

62,0

64,0

66,0

68,0

va
r0
4

va
r0
3

va
r0
7

va
r1
1

va
r0
1

va
r2
6

va
r2
1

va
r2
3

va
r0
8

va
r0
9

va
r0
6

va
r2
2

va
r0
5

va
r1
4

va
r2
4

va
r1
5

va
r1
7

va
r0
2

va
r1
2

va
r2
5

va
r1
6

va
r1
8

va
r1
9

va
r1
3

va
r1
0

va
r2
0

A
U

C

Figure 3.2: Ranking order of the 26 classified potential covariates according to the univariate AUC
values analyzed within the classical scorecard development process.

The aim of the multivariate analysis is to find the optimal combination of scoring
variables for the final scoring model. Hundreds of different models are tested regarding
correlations, significance, plausibility and the AUC as a measure of performance. The
coefficients are estimated with the maximum likelihood method and tested for significance.
As previously mentioned in Section 3.1, variable selection is not the main focus in this
thesis. The final and optimal model with respect to AUC includes 8 explanatory variables.
In addition to the AUC, another criterion is considered for the variable selection in order to
determine if this would lead to different results. Considering the model selection with the
Akaike information criterion (AIC) of Akaike (1981), the results for the presented credit
scoring case are similar and lead to the same final scoring model. For the final results,
different performance measures were evaluated.

For the final model with 8 variables, backtesting analyses were conducted to prove the
stability and robustness of the multivariate model. Time series for the predictive power,
plots of the distribution of good and bad credits, or a graphical illustration for the default
rate over the scores are possible investigations.

3.2 The Development of Scorecards 15

In Table 3.1, the results for the final credit scoring model are shown that were estimated
by logistic regression with coarse classification.

AUC Gini H measure KS MER Brier score

trainORG train 0.7558 0.5118 0.1943 0.3881 0.0258 0.0255
test 0.7204 0.4408 0.1429 0.3232 0.0262 0.0262

validation 0.7263 0.4527 0.1468 0.3310 0.0260 0.0260

train020 train 0.7610 0.5219 0.2226 0.3973 0.1929 0.1378
test 0.7211 0.4423 0.1421 0.3255 0.0263 0.0637

validation 0.7282 0.4564 0.1476 0.3314 0.0260 0.0658

train050 train 0.7570 0.5140 0.2324 0.3860 0.3070 0.2019
test 0.7211 0.4423 0.1421 0.3255 0.0263 0.2121

validation 0.7275 0.4550 0.1473 0.3364 0.0260 0.2217

Table 3.1: Logistic regression results for the original training sample, training samples with higher
default rates, and application to the test and validation samples with classified variables.

For the training samples, the AUC values are, as expected, quite high, with values
of 0.7560 for the original training sample. The corresponding Gini coefficients for the
estimated model vary around 51% for the training samples, while the values for the test
sample with the applied model, are closely spaced with an AUC measure around 72% and
Gini coefficients around 44%. The H measure, KS, MER and the Brier score are also shown
in Table 3.1. For instance, the H measure on the validation data denotes 0.1468, 0.1476
and 0.1473 (trained on trainORG, train020 and train050).

For the variable selection, the original training sample is used with the default rate
of 2.6%. For the estimation of the simulated training samples with default rates of 20%
and 50%, the selection of the explanatory variables is maintained and the coefficients are
estimated on the new samples. The predictive accuracy for the samples with different
default rates differs only slightly. The results for the different training samples are quite
robust.

The presented outcomes for the classical scorecard, estimated with the logistic regression
model in Table 3.1, result from models with classified covariates. The models with continuous
explanatory variables yield lower prediction accuracies than the models with categorized
variables. The results of the logit model with continuous covariates are also denoted in this
thesis for comparison reasons. For the analyses, it is always mentioned if coarse classification
is used or continuous variables are employed.

For the models with continuous covariates, the models are also analyzed with variables
where the values above the 95% quantile and under the 1% quantile are set to the quantile
value. This was done to analyze the influence of outliers. The results for these models are
approximately the same as the results for the former models. This confirms the findings of
the univariate analysis that there are no severe outliers in this credit scoring data.

In credit scoring, the estimation of the multivariate model is typically transformed to
so-called score values. The estimations are therefore converted to a specific scale. An
example would be a range of 1 - 1000, where the probability estimates of each customer are

16 3. Logistic Regression

multiplied with 1000 and rounded out (Henking et al., 2006). These scores are the basis for
the calibration of the scoring model. The calibration implies the mapping of the score values
to rating classes. Score ranges are built on the basis of rating classes with pre-specified
default rates. Therefore, a lot of different secondary conditions have to be satisfied for the
calibration. These rating classes can then be used for the definition of the cut-off to define,
which customers should be accepted and rejected, respectively. Furthermore, the rating
classes can be used for the default risk forecasts (Thomas, 2009).

Another difficult aspect for building application scorecards is that no default information
exists about rejected applicants. Various techniques are proposed for the so-called reject
inference (Thomas, 2009): Reclassification and reweighting are two of the methods used
for handling reject cases. The first method considers applications as defaults when they
have negative characteristics leading always to a reject application. Reweighting implies
the fact that the defaults and non-defaults in a special range are weighted with the part
of the rejected cases in that range. Further details and more reject inference methods are
described in Thomas (2009). In the literature, an active discussion arose on methods to
include rejected cases in the design sample. Compare to the research on reject inference
for example Hand and Henley (1993), Hand and Henley (1997), Crook and Banasik (2004)
and Banasik and Crook (2005). In the meantime, most surveys conclude that there is no
better performance by using reject inference methods. A reasonable strategy would be to
randomly select and accept applicants who would normally be rejected and get information
about their default behavior. In the banking area, this strategy is seldom applied because
it is costly.

Since the application of reject inference methods is critical, all data samples, that are
selected from the whole portfolio and presented in this thesis, are based on accepted credit
customers, where the default information could be observed.

3.3 Discussion of the Logistic Regression Model in

Credit Scoring

Good interpretability, simple explanation and robust models are three of the reasons for
the popularity of the logistic regression models in credit scoring. Another aspect is the well
established theoretical background of the regression framework. Generalized linear models
are implemented in every standard statistical software package. The computation time of
the models is efficient even for very large data sets. This makes it possible to estimate
hundreds of different models in an acceptable time period.

The logistic regression model, however, assumes a logistic relationship. It is limited
to the additive form of the model and assumes linearity in the covariates. In this thesis,
different methods are proposed to overcome these aspects in the credit scoring context. For
instance, the AUC approach in Chapter 4 overcomes the underlying distribution assumption
of the logit model, while the generalized additive models in Chapter 5 include nonlinearities.
The machine learning algorithms offer non-parametric approaches.

3.3 Discussion of the Logistic Regression Model in Credit Scoring 17

The reason to use the classical logistic regression model as benchmark for the further
presented evaluation is that the logit model is still the most commonly applied method for
the scorecard development process in the banking sector. Other algorithms are normally not
implemented and used for estimating credit scorecards. Therefore, the comparison is always
drawn to the logit model and highlight the advantages and disadvantages to the mentioned
one. Additionally, some insights and comparisons are given of the different methods among
each other. The focus in this thesis is not on the variable selection of the covariates.

In the context of the scorecard development with logistic regression, even if the inter-
pretability and the implementation of the method is feasible, the whole development process
from the data preparation to the final model, needs a lot of time for investigations.

In general, it is worth evaluating newer algorithms to improve the model building since
the optimization of the selling process of the bank and the optimization of the risk prediction
offers great opportunity for economization.

18 3. Logistic Regression

Chapter 4

Optimization AUC

4.1 A New Approach for AUC Optimization

The performance measure AUC and the Gini coefficient are popular indicators for evaluating
predictive accuracy in credit scoring. Classification algorithms, however, are not necessarily
optimal with respect to these measures. The aim is to use the AUC not only as a tool
for comparing the results, but also to introduce it as an objective function and apply the
approach to the data from the consumer credit market.

In the scientific field of biostatistics, Pepe et al. (2006) propose the AUC as an objective
function with application to protein biomarkers. They use the Mann–Whitney statistic for
the nonparametric AUC estimation. Pepe et al. (2006) receive superior results with the
AUC-based linear combination compared to the logistic regression model, particularly when
the model assumption failed. However, the authors remark that additional work needs to
be done before widely applying this approach. Among other reasons, only two markers are
used for the application (Pepe et al., 2006). Ma and Huang (2005) extend the approach
with the sigmoid approximation for the AUC for high-dimensional data. Using the ROC
technique for microarray data, they present a gradient descent technique for their analyses.
For the credit scoring context, gradient descent methods are considered within the boosting
framework in Section 7. Eguchi and Copas (2002) also cover the topic of AUC optimization
within linear scores by dealing with a complex calculating method for the AUC. Moreover,
they only present an example of limited breast cancer data to show the improvements over
the logit model.

Miura et al. (2010) propose a sigmoid-approximated AUC maximization method and
attempt credit scoring for companies from the Tokyo Stock Exchange. For the calculation
of the AUC, they follow the definition of Mann–Whitney and an approximation with a
sigmoid function. They obtain good results regarding predictive power, especially while
considering outliers. However, they employ a small sample of 75 companies and use three
explanatory variables.

The emphasis is to introduce the AUC as the objective function for β-estimation,
calculate the measure with the well-known Wilcoxon–Mann–Whitney statistic (Wilcoxon,

20 4. Optimization AUC

1945; Mann and Whitney, 1947), use the Nelder–Mead algorithm for optimizing the
coefficients, and apply the approach to the retail credit scoring data. Extending the
definition of equation 2.4, βt is introduced as a vector of coefficients, while xd and xnd
denote the scores as vectors of explanatory variables:

AUC(β) =
1

nd · nnd

nd∑
1

nnd∑
1

S(βt(xd − xnd)) (4.1)

The aim is to optimize the β-coefficients by maximizing AUC(β):

β̂AUC = arg max
β

AUC(β) (4.2)

= arg max
β

1

nd · nnd

nd∑
1

nnd∑
1

S(βt(xd − xnd)) (4.3)

AUC(β) is a sum of step functions, and therefore, it is not continuous and not differen-
tiable in terms of β. The proposed method is an unconstrained optimization problem. The
difference of the scores is estimated using β1v1d−β1v1nd+β2v2d−β2v2nd+. . .+βtvtd−βtvtnd,
with t and v as the number of variables and the explanatory variables, respectively.

For optimizing the coefficients, the derivative-free method of Nelder and Mead (1965) is
used here. The algorithm is a direct search method and one of the best known algorithms for
unconstrained optimization of nonsmooth functions. Let f : Rn → R be a nondifferentiable
function without information about the Gradient ∇f(x) and the Hessian matrix ∇2f(x).
The rationale to find the minimum of f is to generate a sequence of simplices that should
realize a closer diameter at each iteration, so as to finally determine the minimum (Geiger
and Kanzow, 1999). The algorithm that is used here describes a simplex method, which
differs from the more famous simplex algorithm for linear programming. For a detailed
description of the procedure and more references, see Lagarias et al. (1998).

While linear programming can also be used for developing scoring models, it denotes,
in contrast to the presented AUC approach, a minimization problem with constraints.
A description for the credit scoring case is given in Thomas (2000), which denotes the
minimization of the sum of misclassification errors. Furthermore, Thomas (2009) proposes
an approach for maximizing divergence, which is also used in the credit scoring area. The
divergence was introduced by Kullback and Leibler (1951) measuring the difference between
two probability distributions. The aim of the method for building a scorecard with coarse
classified attributes is to find an additive score, which maximizes divergence. This approach
represents a nonlinear maximization problem, where iterative procedures are used to improve
the divergence from one iteration to the next (Thomas, 2009). The AUC approach is also
compared to the divergence approach for variables with coarse classification.

4.2 Optimality Properties of the AUC Approach 21

4.2 Optimality Properties of the AUC Approach

4.2.1 Theoretical Considerations

Theoretical considerations are given in the following for the proposed AUC approach
explained in Section 4.1. The theoretical properties of the AUC optimization can be
considered as in Pepe et al. (2006). They explore the linear scores of the form Lβ(xi) =
x1 + β2x2 + . . . + βPxP without intercept and 1 for the coefficient of x1. Rules based
on Lβ(xi) > c, with c as a threshold c ∈ (−∞,∞), are optimal in accordance with the
Neyman–Pearson lemma (Neyman and Pearson, 1933) if the score is a monotone increasing
function of Lβ(xi)

P [Yi = 1 | xi] = g(x1 + β2x2 + . . .+ βPxP) = g(Lβ(xi)) (4.4)

This implies that there is no other classification rule based on xi lying above the ROC
curve for Lβ(xi). Pepe et al. (2006) explain that if the false positive rate (FPR) is fixed,
there is no true positive rate (TPR) for any other classification with the same FPR higher
than the TPR for the rule Lβ(xi) > c. Conversely, if the TPR is fixed, there is no rule based
on xi lower than the rule Lβ(xi). As a consequence of the optimality of the ROC curve for
Lβ(xi), Pepe (2003) shows that the overall misclassification rate for rules with Lβ(xi) > c
is minimized, and the cost of false-negative and false-positive errors is minimized.

Pepe et al. (2006) point out that Lβ(xi) has the best ROC curve for all linear predictors
Lb(xi) = x1 + b2x2 + . . .+ bPxP , assuming that Lβ(xi) has the best ROC curve among all
rules based on xi. The aim is to find coefficients for (b2, . . . , bP) with the best empirical
ROC curve. Since the optimal ROC curve has the maximum AUC value, this measure can
be used as an objective function to estimate β.

While the Neyman–Pearson lemma (Neyman and Pearson, 1933) was developed for
statistical hypothesis testing, it also applies to any decision problem. While Pepe (2003)
considers the analogy between statistical hypothesis testing and medical diagnostic testing,
it applies equally well to the credit scoring problem. Table 4.1 illustrates the analogy.

The possible states in statistical hypothesis testing H0 and H1 are the events of default
and non-default in the credit scoring case. The false positive fraction represents the signifi-
cance level in hypothesis testing, while the true positive fraction describes the statistical
power. Considering the likelihood ratio function LR(W), the Neyman–Pearson lemma can
be described for statistical hypothesis testing as follows (Pepe, 2003). The form of the
decision rule maximizing the statistical power among all other decision rules based on W
with the significance level α, has the form LR(W) > c. The threshold c is chosen in the
way that α = P [LR(W) > c | H0]. The LR function is assumed to be monotone increasing
according X. For the credit scoring problem, the Neyman–Pearson lemma is previously
stated for the linear scores Lβ(xi) and the ROC curve with the assumption that the score
is a monotone increasing function of Lβ(xi).

To cover the convergence properties for the best empirical ROC curve and the β-
estimation with the AUC as an objective function, it is important to consider the relationship

22 4. Optimization AUC

Statistical hypothesis testing Credit scoring problem

Possible states H0 versus H1 Y = 0 versus Y = 1

Information Data for n subjects denoted
by W

Test result for a subject denoted
by X

Rule Classify as H0 or H1 using W Classify as Y = 0 or 1 using X

Type 1 error Significance level
α = P [reject H0 |H0]

False positive fraction
FPF = P [classify Y = 1 |Y = 0]

Type 2 error Power
1− β = P [reject H0 |H1]

True positive fraction
TPF = P [classify Y = 1 |Y = 1]

LR function LR(W) = P [W |H1]/P [W |H0] LR(X) = P [X |Y = 1]/P [X |Y = 0]

Table 4.1: Analogy of the Neyman–Pearson lemma between statistical hypothesis testing and the
credit scoring problem.

to the maximum rank correlation (MRC) estimator of β from Han (1987) (Pepe et al., 2006).
The relation to the Mann–Whitney statistic is already mentioned in Section 2.1 and 4.1.

Han (1987) considers the generalized model

yi = D · F (x′iβ0, ui) (4.5)

with i = 1, . . . , N , ui as an iid error term, the assumption for D · F that D : R → R is
non-degenerate monotonic and F : R2 → R is strictly monotonic. The binary choice model
is a special case with yi = D · F (x′iβ0, ui) = D(x′iβ0 + ui) for

D(ξ) = 1 if ξ ≥ 0 (4.6)

= 0 otherwise (4.7)

Maximizing the rank correlation between the yi and the x′iβ with respect to β is the
idea of the maximum rank correlation estimator. The rationale is that given an inequality
x′iβ0 > x′jβ0 for a pair of samples, it is likely that yi > yj . This implies a positive correlation
between the ranking of the yi and the ranking of the x′iβ0. Consider the following

SN(β) =

[
N

2

]−1∑
ρ

[
l(yi > yj)l(x

′
iβ > x′jβ) + l(yi < yj)l(x

′
iβ < x′jβ)

]
(4.8)

with l(·) as indicator function, l(·) = 0 if (·) is true, l(·) = 1 otherwise and
∑

ρ as summation

over
(
N
2

)
combination of two distinct elements (i, j). SN(β) denotes the rank correlation

between yi and the x′iβ considering only their rankings (Han, 1987). The definition of the
estimator β̂ of the parameters β0 results by maximizing SN(β)

SN(β̂) = max
β

SN(β) (4.9)

4.2 Optimality Properties of the AUC Approach 23

The maximum rank correlation (MRC) estimator β̂ shows scale invariance in the
estimation of β0 following SN(β) = SN(γβ) for any constant γ > 0. The proof that
the MRC estimator is

√
n-consistent and asymptotically normal is given in Sherman

(1993). The proof is based on a general method for determining the limiting distribution
of a maximization estimator which requires neither differentiability nor continuity of the
criterion function. Moreover, the proof is based on a uniform bound for degenerate U -
processes (Sherman, 1993). Since at least one component of x′i is continuous, the estimator
is consistent and asymptotically normal under the generalized linear model 4.4 (Sherman,
1993). Sherman (1993) is referenced for further details.

4.2.2 Simulation Study

To compare the AUC approach and the logistic regression model, a simulation study is
conducted. The AUC approach is a distribution free approach that does not rely on a
special link function. Compared to the logit model, the AUC approach should be quite
robust even if the link function is not logistic. While the logit model assumes a logistic link
function, the AUC approach only requires a monotone function.

For the simulation study, the logit model and the AUC approach are compared by
simulating data with the logit, probit and complementary log–log link function. Three
normal distributed explanatory variables are created with µ = 0 and σ2 = 1. The binary
response variable is generated from a Bernoulli distribution Y ∼ Ber(π), where π is
determined using the specific link function.

The response function for the logistic model is already stated in equation 3.1 (Section
3.1) for analysing the probability πi = P (Yi = 1 |xi) = G(x′iβ), where xi denotes a vector
of explanatory variables and x′iβ = β0 + β1x1 + . . . + βpxp describes the linear predictor.
For simulating the probit case, the distribution function Φ from the standard normal
distribution is used as follows

G(t) = Φ(t) = Φ(x′iβ) (4.10)

with the related link function Φ−1(πi) = x′iβ = t.
To simulate the complementary log–log link in the data, the link function log(− log(1−πi)) =
x′iβ = t is used from the complementary log–log model with the extreme value distribution
and the following response function:

G(t) = 1− exp(− exp(t)) (4.11)

Figure 4.1 shows the logit (3.1), probit (4.10) and complementary log–log (4.11) response
functions. Since the latter function is asymmetrical, the response functions of the logit and
probit model are both symmetrically around zero. Considering the linear predictor towards
infinity, the response function of the probit model tends faster to 0 and 1 respectively
compared to the logistic distribution function. For x′iβ →∞, the response function of the
complementary log–log model tends faster to 1 than the two other distributions.

24 4. Optimization AUC

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

linear predictor

pr
ob

ab
ili

ty

logit
probit
complementary log log

Figure 4.1: Response functions for the logit, probit and complementary log log model.

Results for statistical analysis with the logit and probit model are quite similar concerning
the estimated probabilities. In Fahrmeir et al. (2009), it is stated that the estimated
coefficients of a logit model differ approximately with the factor σ = π/

√
3 ≈ 1.814 from

the coefficients of a probit model (with σ2 = 1), while the estimated probabilities are quite
similar. Compared to the logit model, the extreme value distribution of the complementary
log–log model with the variance σ2 = π2/6 and an expected value of −0.5772 has to be
adjusted to a response function with the variance σ2 = π2/3 and an expected value of
0 (Fahrmeir et al., 2009). This implies that the results for statistical analysis with the
complementary log-log model differ more explicitly from the logit and probit model.

To analyze link functions, which differ from the abovementioned functions, the logit
link and the complementary log–log link are adjusted. Based on the logit link, a function
(link1) was created, which represents the logit link for t ≤ 0 and tends faster to 1 for t > 0

H(t) =

{
G(t) for t ≤ 0

G(8 ∗ t) for t > 0
(4.12)

with G(t) = (1 + exp(−t))−1 as the logit link. Figure 4.2(a) shows the function compared
to the logistic response function. Figure 4.2(b) shows another simulated function based
on the complementary log–log model. Since the curve tends slower to zero for x′iβ → −∞,
the function tends much faster to 1 than the complementary log–log and the logit response

4.2 Optimality Properties of the AUC Approach 25

functions. For comparison reasons, the logit link is also contained in Figure 4.2(b). The
following equation represents the link function (link2)

Q(t) =

{
G(0.2 ∗ t) for t ≤ 0

G(5 ∗ t) for t > 0
(4.13)

with G(t) = 1− exp(− exp(t)) as complementary log–log link function.

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

linear predictor

pr
ob

ab
ili

ty

logit
link1

(a) Modified link function based on the logit link

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

linear predictor

pr
ob

ab
ili

ty

logit
complementary log log
link2

(b) Link function based on the compl. log log link

Figure 4.2: Two adjusted link functions for the simulation study to analyze the properties of the AUC
approach and the logit model.

The two simulated functions differing from the logit, probit and complementary log–log
link, should also illustrate the properties of the AUC approach and the logistic regression.
For the data generating process, the coefficients that were used to produce the three
explanatory variables, are

β = (1, 0.5, 0.3)

Thus, the simulated data contain a binary response and three independent normally
distributed variables produced with the coefficients and a specified link function. 1000
observations are produced for each data set (n = 1000) and 100 simulations are run in
each step. In addition to the simulated training data, validation data are simulated to
validate the outcomes. The simulation procedure can be described as follows; simulating
training data as described above, estimating the coefficients with the logit model and the
AUC approach, calculating the AUC measure for the two approaches on the training data,
simulating validation data, applying the estimated coefficients of the two different estimation

26 4. Optimization AUC

procedures to the validation data, calculating the AUC values for both approaches on the
validation data and finally running the procedure 100 times.

Note that the coefficients estimated with the maximum likelihood method are used as
starting values for the AUC optimization. In the simulation study, both starting values
for the coefficients of x2 and x3 are divided by the coefficient of x1. The first coefficient
parameter is fixed to 1 because of normalization reasons.

The results for the estimated coefficients of the variables x2 and x3 are presented first.
Figure 4.3 contains the estimated coefficients for the two variables and compares the values
for the logistic regression and the AUC approach assuming specific link functions. In
addition, Table 4.2 shows the mean values and the standard deviations for the estimated
coefficients on the training data for both methods.

●

●

betaML2 betaAUC2

0.3

0.4

0.5

0.6

0.7

●

●

betaML2 betaAUC2

0.3

0.4

0.5

0.6

0.7

betaML3 betaAUC3

0.1

0.2

0.3

0.4

0.5

betaML3 betaAUC3

0.1

0.2

0.3

0.4

0.5

(a) simulated logit link

●

●●

●

betaML2 betaAUC2

0.4

0.6

0.8

1.0

●

●●

●

betaML2 betaAUC2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●

●

●

betaML3 betaAUC3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

●

●

●

●

●

●

●

●

●

betaML3 betaAUC3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) simulated probit link

betaML2 betaAUC2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

betaML2 betaAUC2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

betaML3 betaAUC3

0.2

0.3

0.4

0.5

0.6

betaML3 betaAUC3

0.2

0.3

0.4

0.5

0.6

(c) simulated compl. log log link

betaML2 betaAUC2

0.4

0.6

0.8

1.0

1.2

betaML2 betaAUC2

0.4

0.6

0.8

1.0

1.2

●

●

betaML3 betaAUC3

0.2

0.4

0.6

0.8

●

●

betaML3 betaAUC3

0.2

0.4

0.6

0.8

(d) simulated link1

●

●

betaML2 betaAUC2

0.4

0.5

0.6

0.7

0.8

●

●

betaML2 betaAUC2

0.4

0.5

0.6

0.7

0.8

betaML3 betaAUC3

0.1

0.2

0.3

0.4

0.5

betaML3 betaAUC3

0.1

0.2

0.3

0.4

0.5

(e) simulated link2

Figure 4.3: Comparison of the estimated coefficients for variable x2 (left) and x3 (right) for the
maximum likelihood estimation (white) and the AUC approach (grey) on the simulated training data
with five different link functions.

4.2 Optimality Properties of the AUC Approach 27

As described in Section 4.2.1, β̂ML and β̂AUC are both consistent estimates of β, and
both approaches yield the optimal linear combination.
Regarding the coefficient β̂2 and β̂3 for the simulated logit link, it is indicated that the
estimates of the maximum likelihood estimation are more efficient than the estimates of the
AUC approach. The standard deviations denote smaller values for β̂ML2 and β̂ML3 than for
β̂AUC2 and β̂AUC3 . For all other simulated link functions, the standard deviations for the
AUC estimates are smaller than the ones for the maximum likelihood estimates. Moreover,
the mean values for the AUC estimates are close to the values of 0.5 and 0.3 for β2 and β3,
respectively. The box plots in Figure 4.3 show this effect. Figure 4.3(a) denotes similar
mean values of the maximum likelihood estimates and the AUC estimates for the simulated
logit link. The other boxplots in Figure 4.3(b) to Figure 4.3(e) show for the means of the
coefficients of both variables, that the AUC estimates are closer to the simulated values
in contrast to the maximum likelihood estimates. A visualization of the coefficients of
two explanatory variables and the corresponding AUC measures is shown in Figure 4.5 in
Section 4.3.

β̂ML2 β̂AUC2 β̂ML3 β̂AUC3

mean sd mean sd mean sd mean sd

logit 0.508787 0.085478 0.510491 0.100341 0.302441 0.074741 0.305843 0.079996
probit 0.839319 0.104409 0.485139 0.057669 0.517261 0.088749 0.299602 0.058298

comp log log 0.783629 0.093954 0.500100 0.069781 0.456872 0.078068 0.292255 0.055788
link1 1.090074 0.102941 0.509633 0.044181 0.654038 0.102251 0.308601 0.046670
link2 0.589547 0.082155 0.509457 0.069216 0.343642 0.091897 0.294575 0.069156

Table 4.2: Means and standard deviations for the coefficients of variables x2 and x3 for the
simulated training data with various link functions, estimated with the logit model (β̂ML) and
the AUC approach (β̂AUC).

Besides considering the estimated coefficients, Table 4.3 contains the results of the
classification accuracy for 100 simulations. The mean values and standard deviations of
the AUC measure and other measures are presented for the simulated data and specific
link functions. On the training data, the predictive accuracy of the AUC approach always
outperforms the accuracy of the logistic regression, regardless of the simulated link function
in the data. The models trained on the training data are applied to the validation data.
These outcomes are of great importance. Assuming the logit link in the data, the mean value
of the AUC for the AUC approach on the validation data is slightly below the predictive
accuracy of the logit model. However, the results show only a tendency since the AUC
values are quite close to each other. For the probit link as well as for the complementary
log–log link in the simulated data, the predictive accuracy of the AUC approach and the
logit model equals on the validation data. The mean value of the data with probit link
have an AUC value of 0.8589 for both methods.

Two link functions are created, which explicitly differ from the formerly mentioned
functions. Simulating the link1 function in the data, the predictive accuracy for the AUC
approach is the same as the corresponding AUC value for the logit model. The main

28 4. Optimization AUC

difference between the two approaches is demonstrated with the link function that differs
mostly from the logit one. The mean AUC for the simulated validation data with link2 is
0.8202 compared to 0.8209 for the AUC approach (cf. Table 4.3). The Brier score for link2
on the validation data indicates that the predictive performance of the logit model is better
than that of the AUC approach. The other performance measures, however, indicate the
same tendency as the AUC. In the table, cases are indicated with (1) and (2) where the
AUC approach outperforms, or is equivalent to the logit model, and where the logit model
provides better results, respectively.

training validation

logReg AUC approach logReg AUC approach
mean sd mean sd mean sd mean sd

logit AUC 0.7676 0.0153 0.7679(1) 0.0153 0.7643(2) 0.0146 0.7642 0.0144

H 0.2613 0.0251 0.2620(1) 0.0256 0.2557(2) 0.0240 0.2553 0.0238

KS 0.4101 0.0269 0.4111(1) 0.0271 0.4062 0.0270 0.4062(1) 0.0266

MER 0.2942 0.0134 0.2936(1) 0.0137 0.2964 0.0134 0.2964(1) 0.0132

Brier 0.1965(2) 0.0061 0.1969 0.0061 0.1986 0.0058 0.1985(1) 0.0059

probit AUC 0.8597 0.0116 0.8599(1) 0.0116 0.8589 0.0104 0.8589(1) 0.0104

H 0.4340 0.0259 0.4347(1) 0.0261 0.4328(2) 0.0231 0.4325 0.0230

KS 0.5598 0.0281 0.5605(1) 0.0281 0.5612(2) 0.0225 0.5609 0.0224

MER 0.2197 0.0141 0.2195(1) 0.0142 0.2192 0.0112 0.2191(1) 0.0112

Brier 0.1532(2) 0.0063 0.1611 0.0050 0.1543(2) 0.0060 0.1613 0.0044

comp log log AUC 0.8501 0.0126 0.8504(1) 0.0126 0.8480 0.0116 0.8480(1) 0.0116

H 0.4018 0.0276 0.4023(1) 0.0274 0.3958(2) 0.0250 0.3953 0.0246

KS 0.5503 0.0249 0.5517(1) 0.0242 0.5438(2) 0.0245 0.5433 0.0243

MER 0.2233 0.0137 0.2232(1) 0.0131 0.2258 0.0134 0.2258(1) 0.0131

Brier 0.1547(2) 0.0068 0.1718 0.0055 0.1562(2) 0.0067 0.1727 0.0050

link1 AUC 0.9027 0.0096 0.9029(1) 0.0095 0.9009 0.0101 0.9009(1) 0.0101

H 0.5467 0.0277 0.5475(1) 0.0276 0.5421 0.0262 0.5425(1) 0.0263

KS 0.6932 0.0231 0.6940(1) 0.0226 0.6896 0.0188 0.6901(1) 0.0192

MER 0.1740 0.0124 0.1736(1) 0.0123 0.1757 0.0119 0.1755(1) 0.0118

Brier 0.1274(2) 0.0065 0.1542 0.0050 0.1294(2) 0.0070 0.1549 0.0050

link2 AUC 0.8215 0.0125 0.8222(1) 0.0124 0.8202 0.0117 0.8209(1) 0.0116

H 0.3070 0.0228 0.3101(1) 0.0225 0.3052 0.0196 0.3083(1) 0.0189

KS 0.5772 0.0218 0.5831(1) 0.0204 0.5731 0.0194 0.5775(1) 0.0186

MER 0.2189(2) 0.0135 0.2193 0.0133 0.2213 0.0127 0.2212(1) 0.0129

Brier 0.1455(2) 0.0065 0.2138 0.0067 0.1474(2) 0.0070 0.2132 0.0065

Table 4.3: Means and standard deviations of different performance measures for the logit model and
the AUC approach estimated for the simulated training samples and applied to simulated validation
data with different link functions. (1) denotes cases where the AUC approach outperforms or is
equivalent to the logit model. (2) denotes cases where the logit model provides better results.

While the different performance measures are indicated in Table 4.3, Figure 4.4 demon-
strates the predictive accuracy measured with the AUC on the simulated data with probit
link for the training and the validation data. Confidence intervals are included in the figure.
The box plots for the results with the other link functions are included in the Appendix
(Figures A.1 to A.4). As previously described above, the ranges and medians of the AUC
measures are quite similar for the two approaches for the probit link. Only a few outliers
are indicated by the box plots.

Since the true distribution in the data is not known, most of the statistical models imply
special model assumptions. The aim of the simulation study is to analyze different link
functions in the data to compare the AUC approach with the logit model. While the AUC

4.2 Optimality Properties of the AUC Approach 29

●

●

●

●

●

●

lowCI log Reg upCI lowCI AUC Opt upCI

0.80

0.82

0.84

0.86

0.88

0.90

training

A
U

C

●

● ●

lowCI log Reg upCI lowCI AUC Opt upCI

0.80

0.82

0.84

0.86

0.88

0.90

validation

A
U

C

Figure 4.4: AUC comparison out of 100 simulations for the logit model (white) and the AUC approach
(grey) with 95% confidence intervals on the simulated training data (left) and applied to the validation
data (right) with a simulated probit link.

approach does not need an assumption for a special link function, the logistic regression
model assumes the logistic function in the data. According to the simulation results, the
AUC outperforms the logit model if the logistic relationship in the data is not true. In cases
where the logistic model assumptions fail but still a monotone increasing function exists,
the AUC approach performs better or at least equal to the logit model. The more the true
link function in the data deviates from the logistic one, the greater is the improvement of
the AUC approach. An important advantage of the AUC approach is that the optimality
properties still are true even if there is no logistic link function.

Pepe et al. (2006) indicate similar conclusions in their paper regarding different model
assumptions where they compare an AUC-based method with the logistic regression. The
focus in their simulation, however, is on small data samples to demonstrate the differences
in the methods.

30 4. Optimization AUC

The former simulations are based on independent normally distributed explanatory
variables. In order to prove the findings and deal with realistic assumptions for real-world
data, a multivariate normal distribution for the explanatory variables is analyzed to simulate
correlation in the data. I follow the same simulation procedure as described previously with
a bivariate response variable and three covariates, and concentrate on the AUC measure.
The following covariance matrix Σ is used for generating the variables in the data

Σ =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 (4.14)

The five link functions are used to create the training and validation data. The results
for the 100 simulations for the training and validation data are shown in Table 4.4. In
general, the same conclusions can be drawn as from the former simulations. Regarding
the training data, the AUC approach outperforms the logit model in all cases, regardless
of the underlying link function. Regarding the validation data for link2, the mean value
of the AUC, for the AUC based method with 0.8353, definitely exceeds the mean value
of 0.8353 for the predictive accuracy of the logit model. The AUC means equal for both
methods with an AUC value of 0.9006, assuming the probit link in the data. For the logit
link and the complementary log–log link, the validation outcomes are slightly better for the
logit model while for link1, the AUC mean of the AUC approach lies above the predictive
accuracy of the logistic regression.

training validation

logReg AUC approach logReg AUC approach
mean sd mean sd mean sd mean sd

logit 0.8148 0.0140 0.8150 0.0140 0.8107 0.0143 0.8106 0.0144
probit 0.9030 0.0089 0.9032 0.0089 0.9006 0.0088 0.9006 0.0087

comp log log 0.8902 0.0105 0.8903 0.0105 0.8867 0.0112 0.8866 0.0112
link1 0.9238 0.0085 0.9240 0.0085 0.9219 0.0081 0.9220 0.0081
link2 0.8345 0.0125 0.8350 0.0123 0.8353 0.0123 0.8356 0.0121

Table 4.4: AUC means and standard deviations out of 100 simulations for the logit model and the
AUC approach estimated on the simulated training samples and applied to the simulated validation
data for five different link functions and the covariance matrix Σ.

The simulation results approve the theoretical considerations of the previous section.
The results for the independent covariates and the variables with adjusted covariance matrix
are comparable. If the logistic model holds true, both methods offer optimal estimates,
and according to the simulation study, the predictive accuracy of the logit model is a little
higher or on the same level than for the AUC approach. If the logistic link function is
not true but a monotone increasing function exists, the optimality properties for the AUC
approach still hold in contrast to the logit model. The simulation results demonstrate
superiority for the AUC approach in cases where the logistic model assumption fails and
the link functions intensively deviate from the logistic one.

4.2 Optimality Properties of the AUC Approach 31

The simulation results also indicate that the logistic regression results are quite robust,
even if there is no logistic link function. In cases where the link function only slightly differs
from the logistic one, the simulation results demonstrate similar predictive accuracy for
both approaches. Li and Duan (1989) also show robustness of the logistic regression under
link violation. However, the fact that the AUC approach works without definition of a
specific link function definitely qualifies the method as an alternative to the logit model.

32 4. Optimization AUC

4.3 The AUC Approach in Credit Scoring

In the following, the approach of direct AUC optimization is analyzed for the credit scoring
case. Instead of using the maximum likelihood estimation, the coefficients are directly
optimized with the AUC measure by employing the Wilcoxon–Mann–Whitney procedure as
method of calculation for AUC and the Nelder–Mead method as the optimization algorithm.
The outcomes are compared using different performance measures, and DeLong’s test is
used to analyze the significance of the differences of the AUC measures.

The basis for the analysis is the credit scoring model with 8 variables selected with the
logit model. First, continuous explanatory variables were used. Next, I needed to remove
data sets with encoded meaning. Retirees, for example, were excluded from the training
sample while they are coded in the variable duration of employment and do not represent a
numerical order. It is started with two variables and proceeded by adding a variable at
each step.

By reason of normalization, one parameter is fixed to 1 for optimizing the others in
relation to the given parameter. For the anchor parameter, the most important variable
of the model was used even though the choice of the fixed variable is not important. In
addition, the estimated parameters from the logit model are used as starting values for the
optimization algorithm divided by the coefficient of the fixed variable. Table 4.5 shows the
AUC measures for the AUC approach compared to the logistic regression results.

train test validation

LogReg AUC Opt LogReg AUC Opt LogReg AUC Opt p-value

2 variables 0.7025 0.7034 0.6650 0.6660 0.6800 0.6804 0.6401

3 variables 0.7082 0.7098 0.6753 0.6751 0.6951 0.6943 0.4466

4 variables 0.7104 0.7141 0.6793 0.6801 0.6939 0.6969 0.0335

5 variables 0.7140 0.7174 0.6835 0.6830 0.6985 0.7002 0.3171

6 variables 0.7150 0.7183 0.6841 0.6838 0.6993 0.7007 0.3020

7 variables 0.7344 0.7357 0.7051 0.7048 0.7125 0.7141 0.0248

Table 4.5: AUC optimization by calculation with the Wilcoxon–Mann–Whitney and Nelder–Mead
algorithms for the 50% training sample, applied to the test and validation samples with continuous
explanatory variables. The p-values result from DeLong’s test.

For the training sample, logit model outcomes can be outperformed by directly optimizing
the AUC even though the improvement is slight. While the optimization results and the
logit model outcomes for the test sample are at the same level, the validation results show
a little improvement for the AUC approach. Most of the results on the validation data are ,
however, not significant in terms of DeLong’s test.

Table 4.6 shows the results for different performance measures. In most cases, the AUC
approach outperforms the logit model even if the differences are small. The Brier score
indicates lower predictive performance on the 50% training sample, but denotes higher
performance on the test and validation samples. These empirical results are similar to the
outcomes of the simulation study (Table 4.3).

4.3 The AUC Approach in Credit Scoring 33

train test validation
LogReg AUC Opt LogReg AUC Opt LogReg AUC Opt

2 variables AUC 0.7025 0.7034(1) 0.6650 0.6660(1) 0.6800 0.6804(1)

H 0.1515 0.1519(1) 0.0828 0.0856(1) 0.0953 0.0965(1)

KS 0.3091 0.3110(1) 0.2531 0.2544(1) 0.2799 0.2770(1)

MER 0.3452 0.3442(1) 0.0275 0.0275(1) 0.0272 0.0271(1)

Brier 0.2239(2) 0.2658 0.2495 0.1011(1) 0.2540 0.1017(1)

3 variables AUC 0.7082 0.7098(1) 0.6753(2) 0.6751 0.6951 0.6943(1)

H 0.1613 0.1623(1) 0.0865 0.0891(1) 0.1086 0.1097(1)

KS 0.3176 0.3185(1) 0.2720(2) 0.2662 0.3050 0.3051(1)

MER 0.3398 0.3376(1) 0.0275 0.0275(1) 0.0272 0.0271(1)

Brier 0.2197(2) 0.2796 0.2501 0.0854(1) 0.2579 0.0872(1)

4 variables AUC 0.7104 0.7141(1) 0.6793 0.6801(1) 0.6939 0.6969(1)

H 0.1629 0.1654(1) 0.0927 0.0974(1) 0.1049 0.1124(1)

KS 0.3161 0.3292(1) 0.2666 0.2716(1) 0.2896 0.3062(1)

MER 0.3385 0.3350(1) 0.0275 0.0275(1) 0.0272 0.0272(1)

Brier 0.2181(2) 0.2911 0.2457 0.0754(1) 0.2534 0.0766(1)

5 variables AUC 0.7140 0.7174(1) 0.6835(1) 0.6830 0.6985 0.7002(1)

H 0.1688 0.1716(1) 0.0954 0.1009(1) 0.1107 0.1175(1)

KS 0.3300 0.3374(1) 0.2746(1) 0.2744 0.2952 0.3084(1)

MER 0.3331 0.3315(1) 0.0275 0.0275(1) 0.0272 0.0272(1)

Brier 0.2169(2) 0.2945 0.2461 0.0720(1) 0.2549 0.0734(1)

6 variables AUC 0.7150 0.7183(1) 0.6841(1) 0.6838 0.6993 0.7007(1)

H 0.1701 0.1733(1) 0.0970 0.1022(1) 0.1122 0.1186(1)

KS 0.3263 0.3370(1) 0.2734 0.2735(1) 0.2966 0.3091(1)

MER 0.3347 0.3325(1) 0.0275 0.0275(1) 0.0272 0.0272(1)

Brier 0.2165(2) 0.3050 0.2455 0.0640(1) 0.2544 0.0653(1)

7 variables AUC 0.7344 0.7357(1) 0.7051(1) 0.7048 0.7125 0.7141(1)

H 0.1986 0.2009(1) 0.1211 0.1219(1) 0.1276 0.1302(1)

KS 0.3662 0.3686(1) 0.3065(1) 0.3053 0.3142 0.3177(1)

MER 0.3140(2) 0.3144 0.0275 0.0274(1) 0.0272 0.0272(1)

Brier 0.2099(2) 0.3857 0.2380 0.0332(1) 0.2494 0.0337(1)

Table 4.6: Different measures for the AUC optimization using the Wilcoxon–Mann–Whitney and
Nelder–Mead algorithms for the 50% training sample, applied to the test and validation samples
with continuous explanatory variables. (1) denotes cases where the AUC approach outperforms or
is equivalent. (2) denotes cases where the logit model presents better results compared to the AUC
approach.

The estimation with 7 variables shows validation results with an AUC value of 0.7125
for the logit model compared to 0.7141 for the AUC approach (Table 4.6). The H measure
denotes values of 0.1276 and 0.1302 while the KS indicates better performance for the AUC
approach with a value of 0.3177 (compared to 0.3142 for the logit model).

The analysis of the AUC approach was started with two parameters, the coefficient
of the duration of employment was fixed to 1, and an income variable together with
a variable of indebtedness were optimized. While the β-coefficients for the logit model
β̂ML = (1.270784,−0.005108, −0.000408,−0.000518) result in an AUC value of 70.25%, the
estimated β-coefficients of the AUC approach β̂AUC = (−1,−0.042633,−0.074214) yield a
performance measure of 70.34%. Note that the calculation method requires no constant, and
the first parameter is fixed. The best improvements appear by 5 to 7 optimized variables.
Because of computational reasons, it is concentrated on the training sample with 50%
default rate and applied it to the test and validation samples.

34 4. Optimization AUC

The visualization of the optimization can be seen in Figure 4.5, which contains two β-
coefficients for the 50% sample. The plot shows β1 and β2 for the x- and y-axis respectively,
while the z-axis shows values of the belonging AUC(β).

−4

−2

0

2

4

−4
−2

0
2

4

0.4

0.5

0.6

beta1

beta2

AUC

Figure 4.5: Optimization of the β-coefficients with the Wilcoxon statistic and the Nelder–Mead
algorithm. Visualization of the coefficients from two explanatory variables (x-axis and y-axis) and the
AUC(β) values (z-axis).

In addition, the AUC approach is also tested for categorical variables. The procedure is
the same as described above. The 50% training sample is used, one parameter is fixed, and
it is applied to the test and validation samples. The results are shown in Table 4.7.

train test validation

LogReg AUCOpt MaxDiv LogReg AUCOpt MaxDiv LogReg AUCOpt MaxDiv

AUC 0.7089 0.7099 0.6892 0.6661 0.6669 0.6506 0.6770 0.6787 0.6659
p-value 0.0104 0.0000

H measure 0.1585 0.1585 0.1375 0.0860 0.0869 0.0682 0.0934 0.0954 0.0790
KS 0.3200 0.31200 0.2988 0.2578 0.2584 0.2481 0.2686 0.2689 0.2644

MER 0.3400 0.3400 0.3506 0.0263 0.0263 0.0263 0.0260 0.0260 0.0260
Divergence 0.6116 0.6328 0.7071 0.3634 0.4028 0.3158 0.4195 0.4434 0.4445

Table 4.7: AUC optimization using the Wilcoxon–Mann–Whitney and Nelder–Mead algorithms for the
50% training sample, applied to the test and validation samples with 3 classified explanatory variables
in comparison to the logit model and the maximization of the divergence. The p-values result from
DeLong’s test and investigate the AUC differences compared to the AUC approach.

An important aspect of using categorical variables is the creation of dummy variables
for each particular class. Except for one reference class, one 1/0-variable is created for
each class of a variable. This is similar to the procedure for logistic regression. The test is

4.4 Discussion of the AUC Approach in Credit Scoring 35

limited to three variables with five, four and four categories and, therefore, the estimation
of 10 parameters. In addition, the AUC approach is compared to the approach of Thomas
(2009) for maximizing divergence. Table 4.7 shows the comparisons of the three methods.

The coefficient values of the logistic regression are used as starting values for the AUC
optimization as well as for the divergence approach. For the three categorical variables, 10
parameters are estimated. Regarding the AUC values in Table 4.7, while the AUC approach
is slightly better than the logit model, it definitely outperforms the divergence approach.
The p-values result from DeLong’s test and denote the test in comparison to the AUC
approach. According to this test, both differences are significant on the validation data.
Considering divergence as a performance measure, the divergence approach outperforms
for both the training sample and the validation sample, but shows lower performance on
the test data. Concerning the H measure, the KS and the MER, the AUC approach shows
superior results compared to the divergence approach, mostly providing outperforming
outcomes compared to the logit model.

4.4 Discussion of the AUC Approach in Credit Scor-

ing

Since the AUC is a prominent performance measure in the credit scoring area, an approach
is introduced to optimize this measure directly. The relationship to the well-known Wilcoxon
statistic is used, as well as the Nelder–Mead algorithm as optimization algorithm. The
theoretical considerations are pointed out and also the relationship to the maximum
rank correlation estimator. Besides this, a simulation study is conducted to examine the
properties showing slight superiority for the AUC approach if the model assumption fails
for the logistic model but a monotone increasing function denotes the data.

The proposed AUC approach seems to be a reasonable procedure for estimating the
parameters indicating slight improvements for the credit scoring case compared to the
classical logit model. A main advantage of the proposed method is that it does not imply a
special link function. Since the logit model assumption fails for the logistic regression, there
are no optimality properties, while the AUC approach still has the optimal ROC curve
among all other linear combinations. Therefore, the theoretical considerations hold even if
the link function is not logistic but a monotone increasing function.

However, the method is actually computationally intensive and constrains the analysis
to a limited number of data sets. Since there are large data sets in credit scoring, extending
the approach for application on big data is a point for further research.

Note that the considerations of the AUC approach do not hold for non linear functions
or complex interactions. For covering these topics, random forests and boosting algorithms
are presented in this thesis.

36 4. Optimization AUC

Chapter 5

Generalized Additive Model

5.1 A Short Overview of Generalized Additive Model

For building scorecards in credit scoring, the logistic regression model is the most widely
used method. This approach presented in Chapter 3 belongs to the group of generalized
linear models (GLMs). Since classical linear models assume a continuous, and at least
approximately normal distributed response, GLMs are extended to non-normal response
variables. For binary outcomes, the logit model is a prominent example of generalized linear
models to analyze the probability πi = P (Yi = 1 | xi) = G(x′iβ) for the binary response
Yi (default and non-default). The effect of the covariates to the response is covered with
a linear predictor. The relationship between the mean of the binary response and the
predictor variables is defined with the following logit link function:

log

(
πi

1− πi

)
= β0 + β1x1 + . . .+ βpxp (5.1)

An extension to the GLMs are the so-called generalized additive models (GAMs) for
capturing nonlinear regression effects (Hastie and Tibshirani, 1990). The relationship
between the response and the explanatory variables can also be defined through an arbitrary
link function like, for instance, logit or probit. Therefore, the additive logistic regression
model follows the form

log

(
πi

1− πi

)
= β0 + f1(x1) + . . .+ fp(xp) (5.2)

where the fj’s denote unspecified smooth functions. The additivity of the model allows
the interpretability in a similar way as before and the nonparametric form of the functions
fj adds more flexibility to the model (Hastie et al., 2009). By using an algorithm based
on a scatterplot smoother, the estimation of the functions fj is flexible. An advantage is
that linear and nonlinear effects can be mixed in the model what is relevant if categorical
covariates are included in the regression. A semiparametric model results by modelling
linear predictors in combination with qualitative variables and nonparametrically predictors.

38 5. Generalized Additive Model

The estimation in generalized additive models replaces the weighted linear regression by
a weighted backfitting algorithm (Hastie et al., 2009). This is the so-called local scoring
algorithm. It represents an iterative algorithm by iteratively smoothing partial residuals.
For the logistic regression case, the Newton-Raphson algorithm used for maximizing log-
likelihoods for generalized linear models is altered as an iteratively reweighted least squares
(IRLS) algorithm. In the linear case, a weighted linear regression of a working outcome
variable on the covariates is fitted (Hastie et al., 2009). Since in each iteration new parameter
estimates are received, it results in new working responses, computed weights, and further
iteration of the process. As mentioned above, the weighted linear regression is replaced
by using a weighted backfitting algorithm for estimating smoothing components. Details
for the backfitting algorithm for additive models and the local scoring algorithm for the
additive logistic regression model can be found in Hastie and Tibshirani (1990) and Hastie
et al. (2009).

For the presented credit scoring case, GAMs are used within the presented framework
of backfitting with local scoring. Another approach is considered by Wood (2006) using
penalized regression splines estimated by penalized regression methods.

5.2 Generalized Additive Model for Credit Scoring

For the binary problem in credit scoring, an additive logistic regression is applied to the
consumer credit data. Since the emphasis of this thesis lies in the new statistical methods,
the generalized additive model is analyzed based on the logistic regression presented in
Section 3.2. Without variable selection, it is tried to improve the logit model by analyzing
smoothing effects for the covariates.

The generalized additive model was fit, keeping one explanatory variable as factor,
while using smoothing splines for the other seven covariates. Hastie et al. (2009) propose a
nominal four degrees of freedom as a convenient way for the specification of the amount of
smoothing of the predictor variables. This implies that the smoothing-spline parameter λj
is chosen so that the smoothing spline operator matrix Sj(λ) follows trace[Sj(λj)]− 1 = 4.

The additive logistic regression model is estimated on each of the three training samples
and applied the results to the test and validation sample. Note that observations with
encoded meaning are eliminated in the data sets since continuous covariates are used. On
all three training data sets, the smoothing predictors are significant in the additive model.
Table 5.1 shows the predictive performance of the estimated additive models on the different
data samples. Furthermore, the AUC values for the logit models with continuous covariates
are displayed to compare the prediction accuracy.

As expected, the highest predictive accuracy is realized for the training samples. For
instance, on the 20% training sample, the AUC measure denotes a value of 0.7606. On
the test and validation sample, the models estimated on different training samples yield
a higher predictive accuracy for the additive logistic regression model than for the linear
logit model. The outcomes on the validation sample for the models estimated on the 50%
training sample are 0.7263 for the additive model compared to 0.7125 for linear logit model.

5.2 Generalized Additive Model for Credit Scoring 39

AUC lowCI95% upCI95% LogReg p-value

trainORG 0.7561 0.7466 0.7656 0.7371 trainORG
0.7210 0.7112 0.7308 0.7045 test
0.7250 0.7115 0.7386 0.7118 0.1068 validation

train020 0.7606 0.7491 0.7721 0.7405 train020
0.7205 0.7107 0.7303 0.7054 test
0.7250 0.7115 0.7385 0.7129 0.1365 validation

train050 0.7562 0.7393 0.7731 0.7344 train050
0.7207 0.7109 0.7305 0.7051 test
0.7263 0.7128 0.7399 0.7125 0.0879 validation

Table 5.1: Prediction accuracy of the additive logistic regression models estimated on the training
samples and applied to the test and validation sample measured with the AUC and continuous covariates.
The p-values result from DeLong’s test.

Similar conclusions can be drawn from the validation results for the models estimated
on the 20% training sample and the original training sample. The AUC values of 0.7250
(train020) and 0.7250 (trainORG) for the additive logistic regression are higher than the
predictive accuracy for the logit model with 0.7129 (train020) and 0.7118 (trainORG).
The results for the logit models are realized by using continuous variables as covariates.
According to DeLong’s test, however, the differences between the AUC measures on the
validation data are not significant.

Table 5.2 shows different performance measures for the validation results. The generalized
additive models are estimated on the training sample and applied to the validation data.
All measures indicate the same conclusions as for the AUC results. The H measures and KS
values are higher for the generalized additive model than for the logit model. The minimum
error rates are on the same level, and the Brier scores are lower for the GAM except the
results trained on the original training sample.

AUC Gini H measure KS MER Brier score

trainORG GAM 0.7250 0.4501 0.1404 0.3338 0.0272 0.0270
LogReg 0.7118 0.4237 0.1283 0.3101 0.0272 0.0270

train020 GAM 0.7250 0.4500 0.1403 0.3313 0.0271 0.0703
LogReg 0.7129 0.4257 0.1286 0.3143 0.0272 0.0719

train050 GAM 0.7263 0.4527 0.1414 0.3314 0.0272 0.2353
LogReg 0.7125 0.4249 0.1276 0.3142 0.0272 0.2494

Table 5.2: Further measures for the GAM results compared to the logistic regression results with
continuous variables for the validation data.

For the validation results trained on the 20% training sample, the H measure denotes
0.1403 for the generalized additive model compared to 0.1286 for the logit model. The KS
denotes 0.3313 and 0.3143 for the GAM and the logit model, respectively. The Brier score

40 5. Generalized Additive Model

for the validation data trained on the 20% training data is lower and, therefore, better for
the GAM (0.0703 to 0.0719 for the logit model).

The additive logistic regression model improves the predictive performance of the linear
logit model. The flexibility of the model and the inclusion of smoothing functions results in
higher AUC measures of the additive model, which can be illustrated for the corresponding
ROC curves. Figure 5.1 shows the ROC graphs for the logit model and the additive model
on the validation data. As shown in the figure, the dashed ROC curve of the logit model
with continuous variables lies beneath the curve of the additive logistic regression.

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Additive logistic regression
Logit model
Diagonal

Figure 5.1: ROC graphs for the additive logistic regression (AUC 0.7250) and the logit model with
continuous covariates (AUC 0.7118) estimated on the original training sample applied to the validation
data.

The flexibility of the GAMs and the inclusion of nonlinearities in the additive model has
an additional effect on the predictive performance for the credit scoring data. Figure 5.2
shows the significant predictors in the additive logistic model estimated on the 50% train-
ing sample. Seven variables display smoothing effects while one explanatory variable is
included as factor. Due to confidentiality reasons, the distributions of the variables can
not be interpreted in detail. The estimated functions shown in Figure 5.2 clearly indicate
nonlinearities. Note that the rug plot along the bottom of each illustration indicates the
observed values of the corresponding predictor. Variable 7, for example, shows nonlinearity
for only a few observations at the top end of the predictor, while variable 25 seems to be
rather linear distributed for the area where most of the observations are represented.

5.2 Generalized Additive Model for Credit Scoring 41

0 100 200 300 400 500

−
1.

5
−

0.
5

0.
5

var04

s(
va

r0
4)

2000 4000 6000 8000

−
2

−
1

0
1

2
3

var07

s(
va

r0
7)

0 500 1000 2000

−
1

0
1

2

var22

s(
va

r2
2)

0 2 4 6 8 10

0
1

2
3

4
5

6

var14

s(
va

r1
4)

200 400 600 800

−
1.

0
0.

0
0.

5
1.

0

var03

s(
va

r0
3)

0 500 1000 1500

0
1

2
3

var25

s(
va

r2
5)

−
0.

8
−

0.
4

0.
0

fa
ct

or
(v

ar
09

)

var09

1 2

0 200 400 600

−
1.

0
0.

0
0.

5

var26

s(
va

r2
6)

Figure 5.2: Estimated functions of seven continuous predictor variables and one factor variable of the
additive logistic regression model estimated on the original training sample. The observations of the
corresponding predictors are displayed on the bottom of the x-axis. The dashed lines present the upper
and lower pointwise twice-standard-error curves. Nonlinearities are indicated for most of the predictors.

42 5. Generalized Additive Model

The additive logistic regression model also outperforms the classical logit model with
classified explanatory variables. The predictive accuracy for the validation data yields an
AUC value of 0.7224 for the logit model with categorized explanatory variables estimated
on the 50% training data. The corresponding AUC measure for the additive model denotes
a higher predictive performance with 0.7263. This is the same for the validation results
for the model estimation on the 20% training data and the original training sample (GAM
0.7250 to LogReg 0.7237; GAM 0.7250 to LogReg 0.7219).

Some of the performance measures, however, indicate poorer results for the generalized
additive model compared to the logit model with coarse classification. The H measure for
the generalized additive model trained on the 20% training sample denotes 0.1403 for the
validation data compared to 0.1428 for the logit model with classified variables. The other
performance measures, including KS and Brier score, indicate better performance for the
generalized additive model. The comparison of the GAM results to the logit model results
with classified covariates is drawn in Figure A.1 in the Appendix.

5.3 Discussion of a Generalized Additive Model in

Credit Scoring

The evaluation of the additive logistic regression model for the presented credit scoring case
shows outperforming outcomes compared to the classical logit model. The flexibility of the
model and the inclusion of nonlinearities in the method add performance to the predictive
accuracy measured by the AUC and different performance measures.

A main advantage of the additive logistic regression model is that it provides information
about the relationship between the response and each predictor variable not revealed by the
use of standard modeling techniques. The additive form of the approach still offers familiar
tools for modeling and inference comparable to the linear models. Compared to other
nonparametric algorithms, the generalized additive model allows analysis and interpretation
of the influence of each single predictor variable.

The presented results imply promising improvements for the predictive performance. By
including all potential variables and more smoothing effects, the performance can probably
be improved. A procedure for variable selection would then be needed. However, the additive
model and the consideration of smoothing splines in the model adds more complexity to
the model. Even if the additivity of the model and the underlying backfitting algorithm
comes along with good interpretability compared to other nonparametric approaches, the
extension of the linear model represents a more complicated model than the linear version.
Simple explanation is still a very important aspect in credit scoring practice.

GAM procedures are implemented in many standard statistical software packages.
Therefore, it is easy for financial institutions to implement and analyze GAMs for the
credit scoring case. The algorithm can handle great data sets with a huge amount of
observations about what is also relevant for credit scoring. The additive logistic model
represents a good alternative for analyzing the predictive accuracy in credit scoring. And

5.3 Discussion of a Generalized Additive Model in Credit Scoring 43

even if it does not replace the classical scorecard development with the logistic regression,
it represents a useful instrument for detecting nonlinearities and relationships between the
default probability and the explanatory variables. These investigations could then lead to
variable transformations, which can be finally included in the classical logit model.

44 5. Generalized Additive Model

Chapter 6

Recursive Partitioning

6.1 Classification and Regression Trees

In recent years, recursive partitioning algorithms have become very popular in scientific
fields like biostatistics and medicine. The aim is to analyze these newer methods in the
credit scoring context in order to maximize the predictive accuracy with regard to the AUC
measure.

The Classification and regression tree algorithm (CART) of Breiman et al. (1984) and
the C4.5 algorithm of Quinlan (1986, 1993) are the most well-known splitting methods. For
the general descriptions, it is concentrated on the CART method. The recursive partitioning
algorithm presents a nonparametric approach without an assumption of a special distribution
(Strobl et al., 2009). In contrast to classical regression models, the partition in classification
trees allows nonlinear and nonmonotone association rules without advance specification.
The method is binary and recursive; i.e., every root node is divided into two groups, and
the arising end nodes are divided again. Figure 6.1 represents an exemplary illustration for
credit scoring data with a binary response (default and non-default) and predictor variables
xi, xj and xk.

First, the whole data set is split into two regions while the variable and the best split-
point are chosen according to the best fit. In the example, input variable xi is split at
xi < ci and xi ≥ ci. One or both arising regions are divided further into two more regions.
This procedure is repeated until a stopping criterion is reached. While observations for
xi < ci are not divided further, observations which follow the rule xi ≥ ci are split with the
predictor variable xj at the split-point cj. Observations satisfying the condition xj < cj
are divided following the variable xk for the split xk < ck and xk ≥ ck. The main idea for
finding a split is to choose the binary partition in the way that the arising child nodes
are purer and more homogeneous than the parent nodes. In the example, the terminal
nodes are labeled with good credit and bad credit in order to show the majority of either
non-defaults or defaults in the node. Each of these nodes contains a number of non-defaults
and defaults, respectively.

46 6. Recursive Partitioning

root node

bad credit

good credit

bad credit good credit

Figure 6.1: Example of a classification tree with binary splits.

Another exemplary illustration for a binary classification tree with four splits is shown in
Table 6.2 with the input variables var03 and var20 from the credit scoring data. Observations
with values for the variable var03, which exceed or equal 326, are split into the left child
node. They are divided further with the split point 448. The others are split in the right
node representing a terminal node. Since there are only two potential variables for splitting
the tree, both variables are used more often. The tree is exemplarily grown for 1000
observations and the number of defaults and non-defaults in the nodes are also displayed.
The root node contains 500 defaults and 500 non-defaults. Split into two child nodes,
the left one includes 431 non-defaults and 330 defaults. The right branch indicates 69
non-defaults and 170 defaults for the terminal node.

Since the full partition of the feature space can be described with a single tree, the
interpretability denotes an advantage of recursive binary trees (Hastie et al., 2009). The
graphical illustration for a lot of input variables and complex trees is difficult, but the basic
principle remains the same.

6.1.1 CART Algorithm

The aim of a classification algorithm is to decide about the splitting variables and split
points. The following descriptions for the CART-algorithm are based on the work of
Breiman et al. (1984) and the explanations of Hastie et al. (2009).

Depending on the outcome variable, different splitting rules are proposed. In the regres-
sion case with continuous response, the splitting criterion is determined by minimization
of the residual sum of squares. For a binary response, the Gini index is mainly used as a
measure of node impurity. In the two class case, the Gini index is defined as

2p(1− p) (6.1)

6.1 Classification and Regression Trees 47

var03 >= 326

var03 >= 448

var20 < 2335

var03 < 732

 < 326

 < 448

 >= 2335

 >= 732

500 500

431 330

320 206

165 63 155 143

138 113 17 30

111 124

69 170

0

0

0

0 0

0 1

1

1

Figure 6.2: Illustration of a classification tree on credit scoring data with two explanatory variables.
0 and 1 denote non-defaults and defaults, respectively. The values under each node represent the
non-defaults and defaults in a node. The number of observations in the example is 1000 with a 50%
default rate.

with p as proportion in the second class. For the credit scoring case, this would imply the
proportion of defaults in a node. The Gini index specifies the probability that an object in
a node is falsely classified. The impurity measure receives values between 0 and 0.5 where 0
represents nodes with only one response class and therefore totally pure nodes. A value of
1/2 denotes maximal impurity in a node since both response classes are equally represented
in the node. The chosen splitting rule follows the approach of impurity reduction in the way
that the daughter nodes are purer than the parent nodes. The best split of all possibilities
is found according to the impurity reduction. For measuring the impurity reduction, the
difference between the impurity in the parent node and the average impurity in the two
daughter nodes is used (Strobl et al., 2009).

Other measures of node impurity are the misclassification error and the cross-entropy,
which are defined for the two class case as 1−max(p, 1−p) and −p log p− (1−p) log(1−p),
respectively. Compared to the misclassification error, the Gini index and the cross-entropy
are differentiable and more sensitive against changes in the node probabilities. Since both
measures should be prefered in contrast to the misclassification error, it is concentrated on
the Gini index for the credit scoring analysis.

The process of recursively splitting the variables and finding the optimal cutpoint is
repeated until a special stopping criterion is reached. The question arises when to stop
growing the tree. Different criteria are proposed; a given threshold for the impurity measure

48 6. Recursive Partitioning

that is not exceeded by any split, total purity for terminal nodes, and a minimum number
of observations in a node for splitting it further. The first criterion is simple, yet critical,
since it is difficult to define a threshold for all splits, and since a poor split can have a
good split afterwards. The prefered strategy is to grow large trees and use cost-complexity
pruning to find the optimal tree size and to prevent overfitting (Hastie et al., 2009). A
subtree T ⊂ T0 is received by pruning the tree T0. Since m denotes the index for terminal
nodes, Nm the number of observations and |T | the number of terminal nodes in T , the
definition for the cost complexity criterion follows:

Cα(T) =

|T |∑
m=1

NmQm(T) + α|T | (6.2)

For the cost complexity pruning in classification, the misclassification error is typically
used as impurity measure Qm(T). The aim is to find the subtree Tα ⊆ T0 which minimizes
Cα(T). Since the emphasis for the credit scoring evaluation is to find the best predictive
accuray regarding the AUC measure, the AUC is used in the analysis to find the optimal
tree size.

A value of α = 0 grows a full tree, while large values of α lead to smaller trees. The
tuning parameter α is therefore relevant for the tradeoff between the tree size and the fitting
to the data. It can be shown that there is a unique smallest subtree Tα which minimizes
Cα(T) for each α. Details can be found in Breiman et al. (1984) and Hastie et al. (2009).
The estimation of α is yielded with cross-validation.

Another tuning parameter for the classification algorithm represents the loss matrix. In
many classification problems, the misclassification of an observation in one class is more
serious than in the other. In credit scoring, for instance, it is worse for a bank to classify
a customer as a non-default when the credit amount can not be paid back, than vice
versa. The loss parameter denotes a factor to weight the misclassification in one class more
serious than in the other. This is defined with a loss matrix L where Lkk′ represents the
loss for incorrectly classifying a class k observation as class k′. In the two class case, the
observations in class k are weighted with Lkk′ (Hastie et al., 2009). To alter the prior
probability on the classes is the effect of this observation weighting.

For prediction, the final response class is either calculated by the most frequent response
class or by the relative frequencies of each class in the terminal nodes (Strobl et al., 2009).
Several works, however, indicate that classification trees provide poor probability estimates.
Provost and Domingos (2003), for instance, propose the common Laplace correction for
improving the accuracy and the growing of larger trees in order to achieve better probability
estimates. Ferri et al. (2003) propose different smoothing approaches and split criteria
including the AUC. The latter results show no improvements by changing the split criterion.
An AUC based classification algorithm is shown in Zhang and Su (2006) comparing different
classification tree algorithms with each other.

6.1 Classification and Regression Trees 49

For the credit scoring case, I investigate the following two smoothing techniques regarding
the best AUC measure (Ferri et al., 2003):

Laplace smoothing pi =
nnd + 1

n+ c
(6.3)

m-estimate smoothing pi =
nnd +m · p
n+m

(6.4)

where nnd denotes the number of non-defaults in a terminal node, n the observations in
a terminal node and c the number of classes. In the presented case, it is a two class
problem with c = 2. Therefore, the Laplace smoothing is a special case of the m-estimate
smoothing with m = 2 and p = 0.5. In the m-estimate smoothing, a number of m additional
observations is added, while p denotes the expected probability of a non-default.

Breiman et al. (1984) already noted that variables with many categories and continuous
variables are favored during the partition process. This is the same in other classification
methods like C4.5 (Quinlan, 1993) which can lead to overfitting. As a result, several
algorithms with unbiased variable selection have been proposed (cf. Dobra and Gehrke
(2001), Strobl et al. (2007), Hothorn et al. (2006)).

A main disadvantage of binary classification trees is the instability to small changes in
the learning data. The structure of the tree algorithm determines this effect. A chosen
variable and a chosen split point for splitting a node determine the partition in the next
nodes. This indicates that an error in a top node is brought forward to the splits in the
further nodes. But the exact splitting rule depends mainly on the data that is used to
train the algorithm. Therefore, a small change in the learning data can lead to a different
splitting variable or a different cutpoint, which in turn changes the whole tree structure.
To overcome this instability, an alternative is to average a variety of trees leading to
ensemble methods like random forests. This topic is covered in Section 6.3.

6.1.2 Conditional Inference Trees

Former tree classification algorithms, like CART or C4.5, denote two major weaknesses;
overfitting (which can be solved with pruning), and the favor of variables with many
potential cut-points and missing values. To overcome these problems, Hothorn et al. (2006)
propose conditional inference trees with unbiased variable selection.

The approach of conditional inference trees consists of two main steps. The first step
is concerned with the relation between the covariates and the response. The global null
hypothesis of independence is tested between any of the input variables and the response.
The fact that the hypothesis cannot be rejected at a specified nominal level α is used
as stopping criterion. Otherwise the variable with the strongest relation to the response
is chosen. This association is measured with the p-value of the test for the partial null
hypothesis of a single covariate and the outcome variable. In the second step, the cutpoint
for the selected variable from step 1 is chosen. The first and the second step are then
recursively repeated.

50 6. Recursive Partitioning

Since the approach introduces p-values for the variable selection and for stopping
the algorithm, pruning is not required in contrast to the early classification algorithms.
Additionally, the separation of the variable selection and the determination of the splitting
points into two steps prevent favoring variables with many potential splitting possibilities.

var03
p < 0.001

1

≤ 325 > 325

Node 2 (n = 239)

1
0

0

0.2

0.4

0.6

0.8

1
Node 3 (n = 761)

1
0

0

0.2

0.4

0.6

0.8

1

Figure 6.3: Example of a conditional inference tree on credit scoring data with two terminal nodes.
0 and 1 denote non-defaults and defaults, respectively.

Figure 6.3 shows a conditional inference tree for the credit scoring example with 1000
observations. The tree contains two terminal nodes that are produced by splitting the
root node into two branches with values var03 ≤ 325 and var03 > 325. The dark and
light shaded areas in the terminal nodes display the relative frequencies of the defaults and
non-defaults, respectively. In the left node, 70% of the 239 observations are defaults. The
p-values of the permutation tests for the splits are also given in the graphical illustration.

A short overview of the generic algorithm in the conditional inference framework
proposed in Hothorn et al. (2006) is given below. Detailed explanations can be found in
the mentioned paper. The work of Hothorn et al. (2006) is based on the permutation tests
and the permutation test framework developed by Strasser and Weber (1999).

As already stated above, the binary split procedure contains two steps. First, the relation
between the response Y and any of the covariates Xj, j = 1, . . . ,m is considered where the
m-dimensional vector X = (X1, . . . , Xm) results from a sample space X = X1 × · · · × Xm.
The association is investigated with the m partial hypotheses Hj

0 : D(Y |Xj) = D(Y). The
stop criterion is based on multiplicity adjusted p-values (e.g. Bonferroni adjustment). Since
the criterion is maximized, the 1 - p-value is considered. In order to implement a split,
the p-value must therefore be undercut. The form of the linear statistics for the relation
between the response Y and the covariates Xj, j = 1, . . . ,m follows:

6.1 Classification and Regression Trees 51

Tj(Ln,w) = vec

(
n∑
i=1

wigj(Xji)h(Yi, (Y1, . . . , Yn))>

)
∈ Rpjq (6.5)

where gj : Xj → Rpj represents a non-random transformation of the covariate Xj. Ln =
{(Yi, X1i, . . . , Xmi); i = 1, . . . , n} denotes the learning sample and w = (w1, . . . , wn) are
case weights, which represent the correspondence of the observations to the nodes. Each
tree node is indicated by a vector of case weights. The weights have non-zero positive integer
values when the related observations are elements of the node and they are zero otherwise.
In a permutation symmetric way, the influence function h : Y × Yn → Rq depends on the
responses (Y1, . . . , Yn). By column-wise combination, a pj × q matrix is converted into a
pjq column vector.

The distribution of Tj(Ln,w) is depending on the joint distribution of Y and Xj.
Under the null hypothesis Hj

0 , by fixing the covariates and by conditioning on all possible
permutations σ ∈ S(Ln,w) of the responses, the conditional expectation µj ∈ Rpjq and
the covariance Σj ∈ Rpjq×pjq arise as developed by Strasser and Weber (1999). With the
conditional expectation µ and the covariance Σ two standardized test statistics are proposed
of the form

cmax(t, µ,Σ) = max
k=1,...,pq

∣∣∣∣∣(t− µ)k√
(Σ)kk

∣∣∣∣∣ (6.6)

or

cquad(t, µ,Σ) = (t− µ)Σ+(t− µ)> (6.7)

mapping an observed multivariate linear statistic t ∈ Rpq into the real line. Since the test
statistic cmax is asymptotically normal distributed, the quadratic form cquad follows an
asymptotic χ2 distribution with degrees of freedom given by the rank of Σ. Σ+ denotes the
Moore-Penrose inverse of Σ. The p-value of the conditional test for Hj

0 is then defined as:

Pj = PHj
0
(c(Tj(Ln,w), µj,Σj) ≥ c(tj, µj,Σj) |S(Ln,w)) (6.8)

The covariate Xj∗ with the minimum p-value is then chosen.
The second step, denoting the binary split for this selected variable, is also implemented

in the permutation test framework. The linear statistic for all possible subsets A of the
sample space Xj∗ is defined as follows:

TA
j∗(Ln,w) = vec

(
n∑
i=1

wiI(Xj∗i ∈ A)h(Yi, (Y1, . . . , Yn))>

)
∈ Rq (6.9)

The best split A∗ which maximizes a test statistic over all possible subsets A is then
chosen:

A∗ = arg max
A

c(tAj∗ , µ
A
j∗ ,Σ

A
j∗) (6.10)

52 6. Recursive Partitioning

For the classification case, the influence functions are defined with h(Yi, (Y1, . . . , Yn)) =
eJ(Yi) for the levels 1, . . . , J . The conditional class probabilities for y = 1, . . . , J are
estimated with:

P̂(Y = y | X = x) =

(
n∑
i=1

wi(x)

)−1 n∑
i=1

wi(x)I(Yi = y) (6.11)

Since in this credit scoring case missing values are not critical, Hothorn et al. (2006) is
referenced for the handling of missing values.

6.2 Model-Based Recursive Partitioning

The so-called model-based recursive partitioning is another variant of recursive partitioning
algorithms. The following descriptions for this method are based on the approach of Zeileis
et al. (2008).

Basis for the description denotes a parametric model M(Y, θ) with observations Y ∈ Y
and a vector of parameters θ ∈ Θ. For fitting the model and receiving a parameter estimate
θ̂, the objective function Ψ(Y, θ) should be minimized

θ̂ = arg min
θ∈Θ

n∑
i=1

Ψ(Yi, θ) (6.12)

If Ψ represents the negative log-likelihood, this leads to the well-known maximum
likelihood estimator described in Section 3.1.

In the recursive partitioning case, the idea is not to estimate a single global model for all
observations, but partition the observations according to some covariates and fit models in
each cell of the partition. The aim is to grow a tree in which each node is associated with a
model of the typeM. By evaluating a fluctuation test for parameter instability, it is tested
as to whether a node should be divided further. Therefore, a node is split, if significant
instability arise concerning any of the partitioning variables. The procedure is repeated
until no significant instabilities are found any more and results in a tree with models of the
type M(Y, θ) in the terminal nodes. The algorithm can be described in four steps:

1. By the minimization of the objective function Ψ and the estimation of θ̂, the model
is fitted once to all observations in the current node.

2. The stability of the parameter estimates is assessed with respect to every partitioning
variable Z1, . . . , Zl. If this is stable, the procedure is stopped. Otherwise, if there
is some overall instability, the variable Zj is chosen with the highest parameter
instability.

3. The split point(s) are computed that locally optimize the objective function Ψ.

4. The node is split into daughter nodes and the procedure is repeated.

6.2 Model-Based Recursive Partitioning 53

The first step is common practice. It can be shown that θ̂ is received by solving the
first order conditions with

n∑
i=1

ψ(Yi, θ̂) = 0 (6.13)

where ψ(Y, θ) = ∂Ψ(Y,θ)
∂θ

is the score function concerning Ψ(Y, θ). For a great variety

of models, fitting algorithms are available for estimating θ̂; for instance, the maximum
likelihood estimation with iterative weighted least squares.

In the second step, the aim is to analyze the stability of the parameter estimations
concerning each of the partitioning variables Zj and where required, to improve the fit by
splitting the sample and capturing the instabilities. The tests used in this context result
from the framework of generalized M-fluctuation tests presented in Zeileis and Hornik
(2007).

The score function evaluated at the estimated parameters ψ̂i = (Yi, θ̂) is used for testing
the instability. This is analyzed with the scores ψ̂i assessing whether they fluctuate randomly
around their mean 0 or showing systematic deviations from the mean 0. These deviations
can be analyzed with the following empirical fluctuation process

Wj(t) = Ĵ−1/2n−1/2

bntc∑
i=1

ψ̂σ(Zij) (0 ≤ t ≤ 1) (6.14)

where σ(Zij) is the ordering permutation defining the antirank of the observations Zij
in the vector Zj = (Z1j, . . . , Znj)

> and Ĵ denotes an estimate of the covariance matrix

cov(ψ(Y, θ̂)). Wj(t) represents therefore the partial sum process of the scores ordered by
the variable Zj and scaled by the number of observations n.

As a test statistic for numerical partitioning variables Zj, the supLM statistic is used

λsupLM(Wj) = max
i=i,...,i

(
i

n
· n− i

n

)−1 ∣∣∣∣∣∣∣∣Wj

(
i

n

)∣∣∣∣∣∣∣∣2
2

(6.15)

which denotes the maximum over all single split LM statistics with a minimal segment size
i and i = n− i. The corresponding p-value pj can be computed from the supremum of a

squared, k-dimensional tied-down Bessel process supt(t(1− t))−1 ||W 0(t)||22 (Hansen, 1997).
To analyze the instability for categorical variables Zj with the categories C, the following
test statistic is given

λχ2(Wj) =
C∑
c=1

|Ic|−1

n

∣∣∣∣∣∣∣∣∆IcWj

(
i

n

)∣∣∣∣∣∣∣∣2
2

(6.16)

which is insensitive to the ordering of the category levels. ∆IcWj denotes the sum of the
scores in category c represented as the increment of the empirical fluctuation process over
the observations in category c = 1, . . . , C (with the indexes Ic). The test statistic is χ2

distributed and the related p-values pj can be computed with k · (C − 1) degrees of freedom

54 6. Recursive Partitioning

(Hjort and Koning, 2002). The statistic denotes the weighted sum of the squared L2 norm
of the increments.

To test for overall instability, it has to be assessed if the minimal p-value pj∗ =
minj=1,...,l pj falls below a specified significance level α. The Bonferroni adjustment can be
used to adjust for multiple testing. If significant instability arise, the variable Zj∗ with the
minimal p-value is selected to divide the node further.

In the third step, the chosen variable Zj∗ is used to split the observations in the node in
B child nodes. For each potential split point, the objective functions Ψ can be determined
for the fitted models in the different B segments. In an exhaustive search, the split point
with the minimal value of the objective function is chosen. In the credit scoring case, it is
concentrated on binary splits with B = 2.

This ends one iteration of the algorithm, and then the procedure is repeated in the arising
child nodes until no more significant instability is measured. Figure 6.4 shows a logistic-
regression-based tree for the exemplary credit scoring data set with 1000 observations.

var20
p < 0.001

1

≤ 2333 > 2333

var20
p < 0.001

2

≤ 405 > 405

Node 3 (n = 360)

229 330 457 900

1
0

0

0.2

0.4

0.6

0.8

1

●

●

●

●

Node 4 (n = 135)

229 330 457574.5

1
0

0

0.2

0.4

0.6

0.8

1

●

●

●

●

Node 5 (n = 505)

229330 457 574.5 900

1
0

0

0.2

0.4

0.6

0.8

1

● ●
●

●

Figure 6.4: Example of a logistic-regression-based tree on credit scoring data for 1000 observations
with var20 as partitioning variable, var03 as regressor and the binary dependent variable including
non-defaults (0) and defaults (1). The default rate denotes 50%.

In the first iteration, instability existed leading to the split point with the value 2333 of
variable 20. The right node then results in a logistic regression model with 505 observations,
while the left node is divided further. The tests for instability described above lead to
two further child nodes. The arising left node contains 360 observations having smaller
values or equal 405 for the variable 20. The right node includes 135 observations greater
than 405, resulting in a logistic regression model. For exemplary reasons, the model is
created with one regressor (var03) and one potential partitioning variable with the covariate

6.2 Model-Based Recursive Partitioning 55

var20. Therefore, a spinogram visualizes the models in the terminal nodes by plotting the
dependent binary variable against the numerical regressor var03. The binary outcome still
denotes 0 for non-defaults and 1 for defaults. The breaks in the spinograms are defined by
the five-point summary, while the fitted lines denote the mean predicted probabilities in
each group. The grey shaded areas represent the relative frequencies of non-defaults and
defaults in the groups. In general, the model tree in this exemplary credit scoring case
determines three different groups.

56 6. Recursive Partitioning

6.3 Random Forests

Random Forests belong to the ensemble learning methods, which combine a whole set of
single classification and regression trees. A main disadvantage of single trees is the instability
to small changes in the learning data. The splitting decisions made at the beginning of the
algorithm determine the splitting rules in the arising child nodes and depend mainly on the
learning sample. Predictions of single trees can therefore show high variability. To overcome
these problems, ensemble methods use the average over an ensemble of trees for prediction.
The performance can then be improved due to a variance reduction of the predictions.

Breiman (1996) propose bagging (bootstrap aggregating) as advancement to the tree
methodology. Later on Breiman (2001a) proposes random forests, which add an additional
effect of randomness to bagging. In both algorithms, bootstrap samples or subsamples are
drawn randomly from the learning sample and an individual tree is grown on each sample.
Unpruned trees are used for the methods, i.e., the trees are grown very large without any
stopping (Strobl et al., 2009). Random forests are one of the most popular machine learning
algorithms, especially in scientific fields like genetics and bioinformatics. In other scientific
fields as well, a huge variety of publications arose in the last few years. The applications,
evaluations and developments in the financial field regarding the predictive accuracy are,
however, rather rare.

6.3.1 Random Forest Algorithm

The random forest algorithm can be described following the descriptions of Liaw and Wiener
(2002):

Random Forest Algorithm

1. Draw ntree bootstrap samples from the learning sample. ntree is the parameter
of the random forest algorithms describing the number of trees.

2. For each of this generated bootstrap samples, grow a classification (or regression)
tree regarding the following: in each node not all predictor variables are used
to choose the best split but a special number of randomly selected predictors.
The parameter mtry describes this number of randomly preselected splitting
variables in the random forest algorithm. As well as trees in bagging, random
forests grow unpruned trees though they are grown very large without any
stopping (Strobl et al., 2009). When mtry equals the number of predictors,
bagging can be thought of as the special case of random forests.

3. For predicting new data the aggregation of the predictions from the ntree trees
is needed, i.e. majority votes for classification, average for regression.

6.3 Random Forests 57

Random forests produce a very diverse set of trees due to the specification of the
potential covariates included in the algorithm. Bagging represents a special case in random
forests when the number of randomly preselected splitting variables equals the overall
number of covariates. In Breiman (2001a) it is stated that reducing the correlation between
the single trees can improve the performance by a low upper bound for the generalization
error. Hard decision boundaries are smoothed out with random forests. Additionally, due
to the algorithm procedure, less important covariates can be included in the ensemble when
stronger variables are not randomly selected in an iteration (Strobl et al., 2009). Therefore,
interactions can be covered, which would not have been detected without including these
covariates.

Different views exist about the number of trees that should be growing in random
forests. Breiman (2001a) states in his work that random forests do not overfit and improve
predictive accuracy with a low value of the generalization error. On the contrary, Lin and
Jeon (2006) show, for example, that growing unpruned and therefore very large trees do
not inevitably produce the best result. According to them, it depends on the situation. In
cases with small sample sizes and high-dimensional data, growing large trees would be the
best strategy. In other situations, it is preferable to tune the tree size for optimal results.

To construct random forests following the original approach of Breiman, the tree
algorithm described in Section 6.1.1 can be used. In addition, the conditional inference
framework described in Section 6.1.2 can also be used to create random forests by maintaining
the rationale of Breimans approach. In combination with subsampling without replacement
instead of bootstrap sampling, the latter offers unbiased variable selection and variable
importance measures (Strobl et al., 2007). The tree algorithms are binary and recursive
and represent a non-parametric approach without assuming a special distribution.

6.3.2 Importance Measures

Random forests are not only relevant for improving the predictive accuracy, but also present
techniques for analyzing the variable importance to show the relevance of the different
covariates.

A simple measure is to count the variables used in the forest. This is an easy approach
to see the number of times a covariate is used for the splitting process. However, it is
not considered in which position the variable is used for the split within the tree and the
discriminatory power is not regarded.

In the original algorithm, Breiman (2002) describes different measures for evaluating the
importance of the variables in the classification. Here, two popular importance measures
are presented :

1. Mean decrease in node impurity: This measure implies the reduction of the
node impurity measure calculated by the Gini index for classification. In the case of
regression, it is measured by the residual sum of squares. The total decrease in node
impurities from splitting on the variable is averaged over all trees.

58 6. Recursive Partitioning

2. Mean decrease in accuracy: This measure uses the so-called out-of-bag data
(OOB) for computing. The idea is to randomly permute the predictor variable to
cut the association with the response variable (Strobl et al., 2009). While drawing
the bootstrap samples during the algorithm, two-thirds of the data are used. The
remaining observations represent the out-of-bag data. The prediction error is recorded
on this data before and after permuting the predictor variable. The difference between
the two is averaged over all trees and normalized by the standard deviation of the
differences.

Since the interpretation of random forests is more complicated and hard to visualize
compared to single classification trees, both measures are reasonable indicators for analyzing
the structure and the importance of variables within a forest. Nevertheless, in the original
framework both measures are biased in the way that the variable selection favors covariates
with many categories (Hothorn et al., 2006). Therefore, the permutation accuracy impor-
tance, as the most advanced variable importance measure, is embedded in the conditional
inference framework. For a comparison and simulation studies to the bias in random forest
variable importance measures, see the explanations of Strobl et al. (2007).

As described above, the rationale of the permutation accuracy importance is that the
association between the variable and the response should be broken by randomly permuting
the values of a covariate (Strobl et al., 2009). The difference of the predictive accuracy
before and after permuting the variable averaged over all trees, can then be used as variable
importance measure.

For the following explanations compare Strobl et al. (2008) and Strobl and Zeileis (2008).
The importance of variable Xj in tree t is formally defined as

V I(t)(Xj) =

∑
i∈B(t) I

(
yi = ŷ

(t)
i

)
∣∣∣B(t)

∣∣∣ −

∑
i∈B(t) I

(
yi = ŷ

(t)
i,ψj

)
∣∣∣B(t)

∣∣∣ (6.17)

where B
(t)

denotes the out-of-bag sample for a tree t with t ∈ {1, . . . , ntree}. ŷ(t)
i = f (t)(xi)

defines the predicted class for observation i before permuting its value of variable Xj while

ŷ
(t)
i,ψj

= f (t)(xi,ψj
) is the predicted class for observation i after permuting. If a variable Xj is

not included in a tree t, the variable importance is defined as V I(t)(Xj) = 0. Then, the
average importance over all trees denotes the raw importance score for each covariate

V I(Xj) =

∑ntree
t=1 V I(t)(Xj)

ntree
(6.18)

By dividing the raw importance measure with the standard error, the scaled version of
the importance measure, the so-called z-Score

z(Xj) =
V I(Xj)

σ̂√
ntree

(6.19)

6.3 Random Forests 59

By using subsampling without replacement for building the forest, combined with
conditional inference trees, the permutation importance is unbiased and reliable, even if
the covariates do not have the same scale. A strong association between the covariate and
the response is indicated with a large value of the permutation importance, while values
around zero or even negative values represent weak relation (Strobl et al., 2009). The fact
that the importance measure considers the influence of a variable individually, as well as in
interaction with other covariates, represents the main advantage of the measure.

The corresponding null hypothesis of independence for the original permutation impor-
tance shows, that the importance measure not only covers the relation between the response
Y and the variable Xj, but also reflects, due to the structure of a tree, the remaining
variables Z = X1, . . . , Xj−1, Xj+1, . . . , Xp. Therefore, the null hypothesis for permuting Xj

against the outcome Y results in

H0 : Xj⊥Y, Z or equivalently Xj⊥Y ∧Xj⊥Z (6.20)

Obviously, this implies that high importance measures can result from the relation
between Xj to Y , and also from the relation to Z. For that reason, Strobl et al. (2008)
propose a conditional permutation scheme, which takes the correlation structure between
Xj and the other covariates into account. The corresponding null hypothesis

H0 : (Xj⊥Y) | Z (6.21)

reflects the permutation of Xj in dependence of Z. In the case where Xj and Z are
independent, both measures have the same result.

Which permutation scheme should be used depends on the specific research question.
The conditional importance measure is computational very intensive and can therefore
not be computed for the presented credit scoring case. Therefore, I concentrate on the
unconditional version and another variant of the variable importance measure that is based
on the AUC measure. Janitza et al. (2013) propose a novel AUC-based permutation variable
importance measure for random forests that is more robust in cases with unbalanced data,
i.e., where one response class is more represented than the other one. The rationale of
this approach is very similar to the standard accuracy variable importance measure, but
differs in the predictive accuracy measure. Instead of using the error rate, the AUC is
implemented as measure before and after permuting a covariate. The definition of the
AUC-based variable importance for variable j follows

V I
(AUC)
j =

1

ntree∗

ntree∗∑
t=1

(
AUCtj − AUCtj̃

)
(6.22)

where ntree∗ indicates the number of trees in the forest where both classes are represented
in the OOB data. While AUCtj denotes the AUC measure in tree t computed on the OOB
data before randomly permuting variable j, AUCtj̃ is the AUC measure after permuting
covariate j.

The various variable importance measures for random forests are evaluated and compared
for the credit scoring case in Section 6.4.3.

60 6. Recursive Partitioning

6.4 Recursive Partitioning Methods for Credit Scor-

ing

Before beginning the evaluation of the recursive partitioning methods for the presented
credit scoring case, some related work in the academic literature is emphasized for retail
scoring models. Besides the classical scoring models like logistic regression or discriminant
analysis, most studies in previous years evaluate methods like neural networks and support
vector machines. Crook et al. (2007) or Lessmann et al. (2013) give an overview of recent
surveys. Most analyses conclude in terms of classification trees lower performance compared
to other classifiers in the credit scoring context. However, there also exist surveys that
indicate higher predictive accuracy for classification trees. Single studies outline the good
performance of random forests for credit scoring models.

In the evaluation of Baesens et al. (2003), C4.5 rules perform poorer statistically than
other classifiers like neural networks or logistic regression. Brown and Mues (2012) analyze
different classifiers with an evaluation on five different credit scoring data sets. The applied
C4.5 decision trees show inferior results compared to the other algorithms, while random
forests and gradient boosting indicate the best results within this survey. The authors,
however, note that the classical logistic regression is still competitive for their presented
evaluation. In Lee et al. (2006) and Xiao et al. (2006), superior outcomes are shown for
CART algorithms and multivariate adaptive regression splines (MARS) (cf. Friedman
(1991)) compared to logistic regression, neural networks and support vector machines. Since
the former study is based on credit card data from Taiwan, the latter analysis relies on
public German and Australian credit data sets. In Lessmann et al. (2013) and Kruppa
et al. (2013), random forests are indicated as best classifiers in the evaluation.

Note that different measures, like the misclassification rate, are used for comparison
reasons in the presented studies and many surveys are based on often-used public data sets.
Moreover, CART and C4.5 are presented as classification trees and the classical random
forest algorithm as representative for this method. In the evaluation, conditional inference
trees are additionally presented that overcome some weaknesses of the classical algorithms.
Furthermore, random forests based on the classical CART and conditional inference trees
are analyzed. In Section 6.4.2 a combination of recursive partitioning and logistic regression
is investigated for the credit scoring data.

6.4.1 Classification Trees for Credit Scoring

CART-like trees. To begin the evaluation of classification trees in credit scoring, the
approach of Breiman’s CART algorithm is analyzed that is explained in Section 6.1.1. The
main tuning parameters are

• minsplit - denotes the minimal number of observations in a node to divide this node
further

• cp - denotes the cost complexity parameter α described in Section 6.1.1

6.4 Recursive Partitioning Methods for Credit Scoring 61

The procedure for training the data with classification trees and tuning the parameters
is described for the 50%-training sample. Instead of using the missclassification error, the
AUC measure is used for choosing the parameters. The Gini index is used as split criterion
for the example, and the results are presented in Table 6.1. First of all, for a fixed minsplit
value, a variety of different cost complexity values is measured by cross-validation (cf. for
details Therneau and Atkinson (1997)). Since the predictive accuracy is examined for each
subtree, the tree with the best AUC value is chosen. The first square in Table 6.1, therefore,
shows the tree with the best AUC value for a special minsplit value of a sequence of trees
with different cp-values. The cost-complexity value is relevant for pruning the tree to avoid
overfitting. A value of 0 for α creates full trees, while large values of α lead to smaller trees.
The number of splits is contained in the table and indicates the tree size.

AUC lowCI95% upCI95% minsplit cp-value number of splits

0.6686 0.6585 0.6787 10 0.00395778 10
0.6698 0.6597 0.6799 50 0.00329815 22
0.6749 0.6648 0.6849 100 0.00065963 20
0.6754 0.6654 0.6855 150 0.00329815 12
0.6476 0.6374 0.6577 200 0.00527705 7
0.6476 0.6374 0.6577 250 0.00527705 7
.

0.6452 0.6350 0.6553 1000 0.01418206 1

0.6698 0.6597 0.6799 50 0.00329815 22
0.6713 0.6612 0.6814 60 0.00109938 45
.

0.6750 0.6650 0.6851 110 0.00039578 23
0.6761 0.6660 0.6861 120 0.00065963 19
0.6754 0.6654 0.6855 130 0.00329815 12
0.6754 0.6654 0.6855 140 0.00329815 12
0.6754 0.6654 0.6855 150 0.00329815 12

0.6750 0.6650 0.6851 110 0.00039578 23
0.6750 0.6650 0.6851 111 0.00039578 23
.

0.6745 0.6645 0.6846 115 0.00039578 20
0.6767 0.6666 0.6867 116 0.00039578 22
.

0.6754 0.6654 0.6855 130 0.00329815 12

Table 6.1: Prediction accuracy for CART classification trees with different complexity parameters
(cp-values) and minsplit values, trained on the 50%-training sample and applied to the test sample
with the Gini index as split criterion and continuous covariates. The number of splits indicates the tree
size.

Because there are too many combinations to examine for different tuning parameters,
the minsplit values are increased in steps of 50 (except the first value of 10). It is analyzed
which interval yields the best predictive performance. In the example shown in Table 6.1,
this is the interval of 50 to 150. In a next step, the same procedure with a variety of

62 6. Recursive Partitioning

cp-values is applied to different minsplit values with intervals of 10. The results are shown
in the middle square of Table 6.1.

This procedure continues with the minsplit values between 110 and 130 shown in the
bottom square of Table 6.1. For the presented case, the results are similar for small changes
in the minsplit value. The algorithm is trained on the training sample, while the tuning
parameters are optimized according to the outcomes on the test sample. The validation
sample is used to prove the findings.

The best result for training the 50%-training data yields an AUC value of 0.6767 on the
test sample with a minsplit value of 116. This implies that the predictive accuracy for the
classification tree lies below the AUC measure of the logit model with 0.7051.

The procedure described above is applied on the three different training samples. The
minsplit value and the cp-value are tested with the Gini index as split criterion and tuned
on the test sample. Table 6.2 shows the best results of the huge amount of different
combinations according to the AUC measure. The predictive accuracy for the logit model
is included to compare the results, and the number of splits shows the size of the trees.

AUC minsplit cp-value number of splits split criterion AUC LogReg

trainORG 0.6573 15 0.00012270 169 gini 0.7045
train020 0.6544 35 0.00122699 75 gini 0.7054
train050 0.6767 116 0.00039578 22 gini 0.7051

Table 6.2: Prediction accuracy for the best CART classification trees trained on the three different
training samples with continuous covariates, applied to the test sample with the tuning parameters
minsplit, cp-value and the Gini index as split criterion.

Even if these are the best results out of the whole procedure of tuning the different
parameters and testing a lot of different combinations, the predictive accuracy of the
classification trees is below the AUC values of the logit model. For the original training
sample, the tree is relatively large with 169 splits and a small cost complexity parameter
of 0.00012270. The corresponding AUC for the classification tree underachieves with
0.6573 compared to 0.7045 of the logit model. This tree includes 20 covariates for the
tree construction. As already described above, the tuning parameter α covers the tradeoff
between the tree size and the goodness of fit to the data. For the 20%-training sample,
the complexity parameter indicates a higher value and presents a smaller tree size with 75
splits. The model for this training sample uses 19 variables for the tree construction. The
classification tree trained on the 50%-training sample yields an AUC value of 0.6767 on the
test data with 11 covariates used for building the tree and a relatively small tree size of 22
splits. The outcomes of all three samples show that the classification tree algorithm cannot
outperform the classical logistic regression model.

The results on the validation sample approve the findings. Table 6.3 shows the results
with the optimized tuning parameters applied to the validation sample. For the presented
credit scoring case, the classification trees based on the CART algorithm indicate low
performance compared to the logit model on different performance measures. The AUC

6.4 Recursive Partitioning Methods for Credit Scoring 63

differences on the validation data are significant according to DeLong’s test. Since the
MER values are on the same level, all other measures show better performance for the
logistic regression results.

AUC p-value H measure KS MER Brier score

trainORG CART 0.6504 0.0840 0.2346 0.0272 0.0301
LogReg 0.7118 0.0000 0.1283 0.3101 0.0272 0.0270

train020 CART 0.6624 0.0883 0.2863 0.0272 0.0783
LogReg 0.7129 0.0000 0.1286 0.3143 0.0272 0.0719

train050 CART 0.6814 0.0906 0.2827 0.0272 0.2577
LogReg 0.7125 0.0002 0.1276 0.3142 0.0272 0.2494

Table 6.3: Validation results for the best CART classification trees trained on the different training
samples and applied to the validation sample measured with the AUC. The related minsplit, cp-values
and number of splits are shown in Table 6.2. The p-values result from DeLong’s test.

As an impurity measure, it is concentrated on the Gini index explained in Section 6.1.1.
However, the Information index, measuring the entropy also explained in Section 6.1.1, is
tested for the 50% training sample. The best results of the evaluation procedure concerning
the AUC are contained in Table A.2 in the Appendix. The AUC measures slightly
underachieve the results produced with the Gini index as impurity measure. Therefore, the
Gini index is used for further evaluation of the classification trees based on CART.

For the original training sample with a low default rate, altering the prior probabilities
was also tested. But the AUC measure on this credit scoring data can not be improved
by using different priors (cf. Table A.3 in the Appendix). Note that altered priors only
affect the choice of split, while the original priors are used to compute the risk of the node
(Therneau and Atkinson, 1997). In addition, the two additional training samples with high
default rates of 20% and 50% are evaluated.

As described in Section 6.1.1, it is common to improve the probability estimates in
classification trees with smoothing techniques in order to improve the predictive accuracy.
The Laplace smoothing as well as the m-estimate smoothing is applied for the presented
credit scoring case. For the former case, the procedure described above was applied to
find the best pruned tree with the best minsplit values. For the Laplace smoothing, the
parameters are m = 2 and p = 0.5. Table 6.4 shows the best results from the entire process
of evaluating different minsplit and cp-values.

AUC minsplit cp-value number of splits AUC LogReg

trainORG 0.6764 20 0.00010225 134 0.7045
train020 0.6642 23 0.00046012 165 0.7054
train050 0.6761 116 0.00065963 19 0.7051

Table 6.4: Prediction accuracy for the best CART classification trees with Laplace smoothing and the
gini split criterion, trained on the different training samples and applied to the test sample.

64 6. Recursive Partitioning

The outcomes are trained on the different training samples and applied to the test
sample for optimizing the parameters regarding the AUC. Compared to the AUC values in
Table 6.2 estimated with relative frequencies, the predictive accuracy can be improved with
Laplace smoothing. Two samples show higher AUC values for the classification trees with
Laplace smoothing. However, the comparison to the logit model still indicates poor results
for the classification trees. For instance, an AUC value of 0.7045 for the logit model on
the test sample, trained on the original training sample denotes higher predictive accuracy
than the corresponding AUC measure of 0.6764 for the classification tree with Laplace
smoothing.

The same conclusions can be drawn from the validation sample in Table 6.5. The results
with Laplace smoothing outperform the classification trees with relative frequencies, but
still yield poor results compared to the classical logistic regression model. The different
performance measures approve the previous findings on the validation data and show higher
performance for the logit model.

AUC p-value H measure KS MER Brier score

trainORG CART 0.6731 0.0927 0.2670 0.0272 0.0290
LogReg 0.7118 0.0000 0.1283 0.3101 0.0272 0.0270

train020 CART 0.6639 0.0814 0.2681 0.0272 0.0915
LogReg 0.7129 0.0000 0.1286 0.3143 0.0272 0.0719

train050 CART 0.6845 0.0944 0.2717 0.0272 0.2461
LogReg 0.7125 0.0009 0.1276 0.3142 0.0272 0.2494

Table 6.5: Validation results for the best CART classification trees with Laplace smoothing and the
gini split criterion, trained on the different training samples and applied to the validation sample. The
related minsplit, cp-values and number of splits are shown in Table 6.4. The p-values result from
DeLong’s test.

The m-estimate smoothing is also applied for the credit scoring case explained in
Section 6.1.1. In addition to find the optimal minsplit and cp-values regarding the AUC
measure, the optimal parameters for m are included in the optimization procedure. The
probability parameter p are set to 0.974, which denotes the overall probability of a non-
default. For the parameter m, values of 5, 10, 20, 50, 100, 500, 1000 are tested. In order to
reduce the huge amount of different combinations, I limited the minsplit values to groups
of ten. The results are trained on all three training samples, while the parameters were
optimized on the test sample. Table A.4 in the Appendix shows the best results from a
large variety of different outcomes. The validation results are included in Table A.5 in the
Appendix.

Since the Laplace smoothing could improve the predictive accuracy for the classification
trees compared to the classical CART method, the m-estimate smoothing also improves
the results with relative frequencies. Compared to the Laplace smoothing, the AUC values
for the classification trees are better in some cases, while in other cases the m-estimate

6.4 Recursive Partitioning Methods for Credit Scoring 65

smoothing outperforms. Both probability smoothing techniques for classification trees yield
AUC measures below the logit model predictive accuracy.

Conditional inference trees. The evaluation of the credit scoring data is continued
with the conditional inference trees described in Section 6.1.2. The former tree algorithms
are biased in favor of continuous covariates and variables with many potential cutpoints.
Conditional inference trees overcome this problem by ensuring unbiased variable selection
(cf. the descriptions in Section 6.1.2). Additionally, the statistical approach of the algorithm
indicates that no form of pruning or cross-validation is needed.

Therefore, the parameter minsplit is tuned on the training and test data following the
procedure described for the CART-like trees. Multiplicity Bonferroni-adjusted p-values are
used for the stopping criterion. The criterion is maximized meaning that the 1− p-value is
used. A node is split if the value of the so-called mincriterion is exceeded. For the presented
case, the mincriterion is set to 0.95, i.e., the p-value must be smaller than 0.05 for splitting
the node further.
Additionally, two variables had to be adjusted in the way that a few negative values were
set to zero. This results from a technical effect in the application process, that the variables
slightly changed over time what the presented algorithm could not handle. The effect
is rather small but guarantees the inclusion of all 26 variables in the evaluation process.
Moreover, data sets with encoded meaning were excluded from the samples in order to use
continous variables.

Table 6.6 shows the best outcomes of the optimization concerning the AUC measure.
Continuous covariates were used for this analysis. The results on the test sample as well as
on the validation sample are contained.

AUC lowCI95% upCI95% minsplit AUC LogReg p-value

trainORG 0.6897 0.6797 0.6997 488 0.7045 test
train020 0.6843 0.6743 0.6943 324 0.7054 test
train050 0.6683 0.6582 0.6784 10 0.7051 test

trainORG 0.6866 0.6728 0.7005 488 0.7118 0.0029 validation
train020 0.6837 0.6699 0.6976 324 0.7129 0.0006 validation
train050 0.6756 0.6617 0.6895 10 0.7125 0.0000 validation

Table 6.6: Prediction accuracy for the best conditional inference trees trained on the different training
samples with continuous covariates and applied to the test and validation samples. The p-values result
from DeLong’s test.

Obviously, even if the classification algorithm is optimized regarding the unbiased
variable selection, the predictive accuracy lies definitely below the AUC values of the logit
model for all three training data sets on the test sample. For instance, the results for the
original training sample applied to the test sample with a minsplit value of 488, yields an
AUC of 0.6897 for the conditional inference trees, compared to 0.7045 for the logit model.
This conditional inference tree has 33 terminal nodes and includes 12 covariates for the tree
building. The model trained on the 20% training sample yields an AUC value of 0.6843
on the test data and includes 13 variables within the tree with 23 terminal nodes. For the

66 6. Recursive Partitioning

50% training data, the best result is yielded with a minsplit value of 10 and an AUC value
of 0.6683 compared to 0.7051 of the logit model. The conditional inference tree trained
on this data denotes 14 terminal nodes with 7 variables used for the tree. The covariates
used for the conditional inference trees include the most important variables from the logit
model. For instance, variable 3 and 4 are included in the estimated classification trees.

The outcomes on the validation data confirm the findings for all three samples. The
differences of the AUC values between the conditional inference trees and the logit models
on the validation are significant according to DeLong’s test. While the conditional inference
tree trained on the original training sample yields 0.6866 on the validation data, the logit
model shows an AUC value of 0.7118.

This difference is apparent in the ROC-graphs displayed for the validation data trained
on the original training sample. Figure 6.5 includes the two graphs, which show that the
curve for the conditional inference tree is definitely below the one of the logistic regression
model (dashed line).

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Conditional inference tree
Logit model
Diagonal

Figure 6.5: ROC graphs for the conditional inference tree (AUC 0.6866) and the logit model (AUC
0.7118) trained on original training sample applied to the validation data.

Different performance measures for the validation results are shown in Table 6.7. The
MER values indicate similar performance for the conditional inference trees and the logit
models. The Brier scores are better for the validation results trained on the 20% and 50%
training samples. But the H measures and the KS values show higher performance for
the logit model. The H measure for the conditional inference tree, trained on the original

6.4 Recursive Partitioning Methods for Credit Scoring 67

training sample, is 0.0994 compared to 0.1283 for the corresponding logit model. Similar
results are indicated for the results trained on the other both training samples. The KS
value denotes 0.2702 for the conditional inference tree trained on the original training
sample and applied to the validation data. The corresponding value of the logit model is
0.3101.

AUC Gini H measure KS MER Brier score

trainORG Tree 0.6866 0.3732 0.0994 0.2702 0.0272 0.0270
LogReg 0.7118 0.4237 0.1283 0.3101 0.0272 0.0270

train020 Tree 0.6837 0.3675 0.0998 0.2879 0.0272 0.0676
LogReg 0.7129 0.4257 0.1286 0.3143 0.0272 0.0719

train050 Tree 0.6756 0.3512 0.0826 0.2632 0.0272 0.2328
LogReg 0.7125 0.4249 0.1276 0.3142 0.0272 0.2494

Table 6.7: Further measures for the conditional inference tree results with continuous variables
compared to the logistic regression results for the validation data.

The results for the conditional inference trees with classified variables are presented in
the following. Four of the covariates are original categorical, while the other 22 variables are
included as categorized effects. The same procedure is applied as described above for the
conditional inference trees. Since no form of pruning or cross-validation is needed for the
presented approach, Table 6.8 shows the AUC values for the trees and the corresponding
logit model as well as the minsplit values. The results are the best outcomes of a huge
variety of different minsplit values. The AUC values are better than the results of the
conditional inference trees with continuous covariates. But the predictive accuracy is still
below the AUC measure of the logistic regression model. For instance, on the original
training sample, the AUC value for the test data denotes 0.6954 compared to 0.7204 of
the logit model. This model presents 23 terminal nodes. On the validation data, the same
results are shown with an AUC value of 0.6945 for the tree compared to 0.7263 for the logit
model. The differences of the AUC measures between the trees and the logit models are
significant on the validation data according to DeLong’s test.

AUC lowCI95% upCI95% minsplit AUC LogReg p-value

trainORG 0.6954 0.6858 0.7051 615 0.7204 test
train020 0.6898 0.6801 0.6995 322 0.7211 test
train050 0.6860 0.6763 0.6957 53 0.7211 test

trainORG 0.6945 0.6810 0.7079 615 0.7263 0.0000 validation
train020 0.6823 0.6688 0.6958 322 0.7282 0.0000 validation
train050 0.6861 0.6726 0.6996 53 0.7275 0.0000 validation

Table 6.8: Prediction accuracy for the best conditional inference trees with classified covariates, trained
on the different training samples and applied to the test and validation samples. The p-values result
from DeLong’s test.

68 6. Recursive Partitioning

Table 6.9 shows different performance measures for the validation results with coarse
classification. The MER values are equivalent for the conditional inference trees and the
logit models. The Brier score shows better performance for the trees trained on the 20% and
50% training sample. All other performance measures indicate definitely better performance
for the logit model. For instance, the H measure on the validation data, trained on the
original training sample, denotes 0.1071 for the conditional inference tree compared to
0.1468 for the logit model.

AUC Gini H measure KS MER Brier score

trainORG Tree 0.6945 0.3890 0.1071 0.2779 0.0260 0.0260
LogReg 0.7263 0.4527 0.1468 0.3310 0.0260 0.0260

train020 Tree 0.6823 0.3645 0.0967 0.2547 0.0260 0.0574
LogReg 0.7282 0.4564 0.1476 0.3314 0.0260 0.0658

train050 Tree 0.6861 0.3721 0.0971 0.2797 0.0260 0.2063
LogReg 0.7275 0.4550 0.1473 0.3364 0.0260 0.2217

Table 6.9: Further measures for the conditional inference tree results with classified variables compared
to the logistic regression results for the validation data.

The results for the evaluation with classified variables are similar to the results with
continuous covariates. The same conclusions can be drawn.

In general, the various results for classification trees do not outperform the classical way
of scorecard development for the presented credit scoring case. The advanced conditional
inference trees have the advantage that no pruning in any form is needed and that the
variable selection is unbiased. The results outperform the traditional CART-algorithm for
the original training sample and the 20% training data applied to the test data. However,
both algorithms show relatively poor results compared to the logit model. The good
interpretability of classification trees due to their binary structure indicates an advantage
of the classification approach.

6.4 Recursive Partitioning Methods for Credit Scoring 69

6.4.2 Model-Based Recursive Partitioning in Credit Scoring

Another variant of recursive partitioning algorithms is the model-based recursive partitioning.
The method is explained in Section 6.2 and is in the following evaluated for the credit
scoring case.

The approach combines recursive partitioning with classical parametric model fitting.
The model type is not restricted and can be specifically defined. Since the logit model is
the basis and the benchmark in the current case, the focus lies on a logistic-regression based
tree for the credit scoring data. A visualized example is given in Section 6.2 and displayed
in Figure 6.4.

For analyzing the data, the instability is assessed using a Bonferroni-corrected significance
level of α = 0.05. The minimal segment size is used as tuning parameter. The basis for the
evaluation are the 26 covariates. Since a large variety of combinations arise to analyze the
variables as regression variables and partitioning variables, the procedure for analyzing the
data is described in the following.

In Chapter 3, the classical way of scorecard development with logistic regression is
described, resulting in a model with 8 explanatory variables. This model is used as basis
for the presented approach of logistic-regression-based trees. First, each of these 8 most
important variables is separately used as single covariate for the logit model. The remaining
25 variables are tested as partitioning variables. In a next step, the whole model with the
8 variables is used, while the remaining 18 covariates are tested as partitioning variables.
According to these outcomes, special variable combinations are analyzed. For instance, the
two most important covariates concerning the AUC are tested in the logistic model, while
all other 24 variables are tested as partitioning variables. The AUC is used as a measure of
performance for selecting the best models and for selecting the best value of the tuning
parameter. For each variable combination, the minimal number of observations in a node is
optimized concerning the AUC. The tuning parameter was set to 10, 100, 200, . . . , 1000, in
a first step. Regarding the results, the values for the tuning parameter are refined in steps
of 50 and finally in smaller steps of 10 and 1. Note that at least a few hundred observations
should be included in the nodes to estimate the logit model. A minsplit value of 10 and
100 is therefore only analyzed for test reasons, and a minimal number of 200 observations
in a node is used for comparing the results.

As already stated for the conditional inference trees, two variables had to be adjusted
to enable the inclusion of all 26 variables. The adjustments are negligible and result from
process related transformations. Furthermore, by using continuous explanatory variables,
observations with encoded meaning had to be omitted (compare Section 4.3). The 50%
training sample is used for training the model-based trees, the tuning parameter is optimized
on the test data and the validation data are used to validate the outcomes.

I began the evaluation for the 50% training sample by including the 26 variables as
continuous covariates. This means that the 22 numerical variables are not aggregated to
classes. The four categorical effects, as explained in Section 2.2, remain categorical.

Table 6.10 shows the best results of the optimization process for the variables and the
tuning parameter described above. The minimal number of observations in a node is set to

70 6. Recursive Partitioning

variable for the model AUC lowCI95% upCI95% minsplit

var14 0.5517 0.5417 0.5618 200 test
var22 0.5542 0.5441 0.5643 200 test
var25 0.5701 0.5599 0.5802 200 test
var09 0.5906 0.5805 0.6008 200 test
var26 0.5993 0.5892 0.6095 200 test
var07 0.6189 0.6087 0.6290 467 test
var03 0.6411 0.6309 0.6512 394 test
var04 0.6619 0.6518 0.6720 400 test

var03 and var04 0.6710 0.6610 0.6811 370 test
8 variables 0.7098 0.6999 0.7197 400 test

var14 0.5412 0.5274 0.5551 200 validation
var22 0.5427 0.5288 0.5566 200 validation
var25 0.5747 0.5607 0.5887 200 validation
var09 0.5720 0.5580 0.5861 200 validation
var26 0.5938 0.5797 0.6078 200 validation
var07 0.6140 0.5999 0.6281 467 validation
var03 0.6309 0.6169 0.6450 394 validation
var04 0.6677 0.6538 0.6817 400 validation

var03 and var04 0.6733 0.6594 0.6873 370 validation
8 variables 0.7134 0.6998 0.7271 400 validation

Table 6.10: Results for the best logistic regression based trees trained on the 50% training samples,
applied to the test and validation samples.

200 and the results showed that the algorithm, as expected, does not converge for small
minsplit values. Moreover, the AUC values often equals for small changes in the minsplit
value. For instance, if a minsplit value of 250 and 251 shows the same AUC measure, the
smallest minsplit value is chosen.

Table 6.10 contains the results for the test sample on which the tuning parameter was
optimized, and furthermore, contains the outcomes for the validation data. The indicated
variables in the left column present the covariates for the logistic regression model. The
first rows show therefore the results where only one potential covariate is included in the
model and the remaining variables are tested as partitioning variables. All 8 variables of
the logit model in Section 3.2 are analyzed as a single variable. Additionally, two, three and
more variables are evaluated regarding the predictive accuracy. For instance, the results
for variable 3 and variable 4 are shown in Table 6.10. This means that both variables are
included in the logistic regression model whereby the stability of the parameter estimates is
assessed with respect to all remaining 24 partitioning variables.

The best predictive accuracy of all tested variable combinations and optimized tuning
parameters yields the logistic regression based tree with all 8 variables in the logit model.
Since the AUC measure on the test data denotes, for example, 0.5517 for the model with
variable 14 as model covariate, the logistic regression based tree with 8 variables yields
0.7098. In the latter algorithm, variable 15 is identified as variable with the smallest p-value
among all other tested partitioning variables. The data is classified twice according to the

6.4 Recursive Partitioning Methods for Credit Scoring 71

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logistic regression based tree
Logit model
Diagonal

Figure 6.6: ROC graphs for the logistic regression based tree (AUC 0.7134) and the logit model (AUC
0.7125) trained on the 50% training sample applied to the validation data.

best split in variable 15 and results, therefore, in three regression models in the terminal
nodes. The outcomes indicate that the improvement in the predictive accuracy is higher
with more variables in the logit model than using them as partitioning variables. The
analyses for the single classification trees in the former section already indicate that the
predictive accuracy underachieves compared to the logit model. The combination of both
methods, however, improves the performance.

The best result for the logistic regression based tree yields an AUC value of 0.7098 on
the test data, while the corresponding AUC value on the same data for the logit model with
unclassified covariates denotes 0.7051. On the validation data, the predictive accuracy for
the recursive partitioning method is 0.7134 compared to 0.7125 for the logit model. Since
there is only a slight improvement, the ROC-curves illustrated for the validation data in
Figure 6.6, show almost the same trend. To highlight the difference, the dashed line for
the logit model is red, indicating that it lies slightly beneath the ROC curve of the model
based tree.

For the best model-based recursive partitioning tree with 8 variables and continuous
covariates, different performance measures are shown in Table 6.11. The minsplit value for
this model is 400. The comparison on the test data indicates better performance for the
model-based tree for all different measures. But on the validation data, the H measure and

72 6. Recursive Partitioning

the KS value denote slightly higher values for the logit model. The AUC difference is not
significant according to DeLong’s test.

AUC p-value H measure KS MER Brier score

test model based tree 0.7098 0.1258 0.3159 0.0275 0.2373
LogReg 0.7051 0.1211 0.3065 0.0275 0.2380

validation model based tree 0.7134 0.1268 0.3139 0.0272 0.2473
LogReg 0.7125 0.9080 0.1276 0.3142 0.0272 0.2494

Table 6.11: Different performance measures for the best logistic regression based tree with continuous
variables and a minsplit value of 400 compared to the logistic regression results for the test and
validation samples. 8 variables are used for the model. The p-value results from DeLong’s test.

Additionally, the model-based recursive partitioning algorithm is tested for classified
variables on the 50% training data. Four of the 26 explanatory variables are still categorical,
and the other 22 variables are now included as categorical effects with different classes. The
procedure is the same as described above and analyzed for the continuous variables. An
extract of the results is given in Table 6.12.

The table shows four selected results, with one, two, three and eight variables in the
logit model, while the remaining variables are used as partitioning variables. The best result
is also yielded with the logit model including 8 variables and testing the stability of the
parameter estimates with the other variables. The predictive accuracy is 0.7211 on the test
data, compared to 0.7211 for the logit model. On the validation data, the results also equal
an AUC value of 0.7275. For the model with 8 variables, the partitioning algorithm can not
improve the predictive accuracy. The performance for the classified variables is, therefore,
for both methods on the same level. For this reason, the different performance measures are
not presented for this case. The tuning parameter minsplit was optimized concerning the
AUC measure. The values in Table 6.12 show the best results of the optimization process.

variable for the model AUC lowCI95% upCI95% minsplit

var04 0.6911 0.6814 0.7007 243 test
var04 and var03 0.6939 0.6843 0.7036 200 test

var04, var03 and var26 0.7018 0.6922 0.7114 200 test
8 variables 0.7211 0.7116 0.7306 389 test

var04 0.6979 0.6845 0.7113 243 validation
var04 and var03 0.6975 0.6841 0.7109 200 validation

var04, var03 and var26 0.7039 0.6905 0.7173 200 validation
8 variables 0.7275 0.7143 0.7406 389 validation

Table 6.12: Prediction accuracy for the best logistic regression based trees trained on the 50% training
samples, applied to the test and validation samples with categorized covariates.

The model-based recursive partitioning algorithm improves the performance of the
relatively poor performing single classification trees shown in Section 6.4.1. The combination

6.4 Recursive Partitioning Methods for Credit Scoring 73

of classification with classical parametric models is a reasonable approach that shows good
performance for the credit scoring case. But the best results are still achieved with more
variables in the logit model than using them as partitioning variables. Another disadvantage
of logistic regression based trees is the computational intensity. Therefore, the evaluation
is concentrated on the 50% training sample. The model-based classification can support
the variable selection by testing the stability of the parameter estimates. An interesting
way is to analyze the partitioning variables selected according to the smallest p-value for
classification, not only as partitioning variables, but testing them in the logit model to
compare the results.

74 6. Recursive Partitioning

6.4.3 Random Forests in Credit Scoring

Another recursive partitioning approach to overcome the instability of single classification
trees are random forests, which combine a whole set of classification trees. The random
forest algorithm is explained in Section 6.3.

Random forests with CART-like trees. The evaluation of random forests in credit scoring
is started with the classical approach of Breiman (2001a) with CART-like trees. The
variables are analyzed with the ’classical’ importance measures ’mean decrease in node
impurity’ and ’mean decrease in accuracy’. The most important tuning parameters are the
following:

• ntree - describes the number of individual trees that are grown during the process

• mtry - describes the number of randomly selected variables at each node

The training samples are used to train the random forests on the credit scoring data
while the tuning parameters are tuned on the test sample. The results are validated on
the validation sample to prove the findings. The AUC measure is used for analyzing and
comparing the predictive accuracy of the models and is used specifically for tuning the
parameters. The selection of the tuning parameters ntree and mtry follows, therefore, the
level of the AUC measure. While using continuous covariates, data sets with encoded
meaning were excluded from the data samples. Different performance measures are evaluated
and compared for the final results.

The procedure for training the data and tuning the parameters can be described as
follows. First of all, a specified number of trees is fixed to evaluate the best value for
selecting the variables. According to the highest predictive accuracy, the best mtry-value is
defined. Secondly, with this value for the mtry parameter, the number of trees is varied.
For the unpruned trees within the random forest algorithm, the number of trees is then
chosen regarding the AUC measure.

I began the evaluation for the original training sample with a default rate of 2.6% and
26 covariates with 22 numerical and 4 categorical ones. By running 200 trees, the mtry
value is changed and stepwise increased from 1 to 26 variables. Figure 6.7 shows the AUC
values for the different mtry numbers trained on the original training sample and applied
to the test sample. Note that for reasons of clarity, every fifth value is given for mtry 10 to
25. As shown in Figure 6.7, the highest predictive accuracy for 200 trees for the presented
data can be achieved with the mtry value 6; i.e., that 6 variables are randomly selected for
finding the best split.

In the next step, for tuning the parameters, the calculated mtry value of 6 is used
to increase successively the number of trees. An extract of the results with the original
training sample and the test sample is shown in Table 6.13. The best outcome is reached
with 1000 trees and resulted in an AUC value of 0.6984.

As seen in Table 6.13, the prediction performance can still be improved by increasing
the number of trees. However, the AUC value of the logit model with 0.7045 indicates that
even with a high number of trees and optimized tuning parameters, the random forests

6.4 Recursive Partitioning Methods for Credit Scoring 75

0.5

0.55

0.6

0.65

0.7

0.75

1 2 3 4 5 6 7 8 9 10 15 20 25 26

A
U

C

mtry

AUC_ges lowKIAUC upKIAUC

Figure 6.7: Illustration of the prediction accuracy for random forests trained on the original training
sample with 2.6% default rate and applied to the test sample by varying the mtry-values for a fixed
number of 200 trees.

underachieve compared to the logistic regression model on the original training sample. The
validation data show that the predictive accuracy of the random forest algorithm trained
on the original training data lies with 0.6964 under the AUC value of 0.7118 for the logit
model (cf. Table 6.14). This outcome for the credit scoring data is surprising since random
forests reach excellent results in other scientific fields and some credit scoring studies.

AUC lowCI95% upCI95% ntree mtry

0.5815 0.5714 0.5917 10 6
0.6477 0.6375 0.6578 50 6
0.6763 0.6662 0.6863 100 6
0.6873 0.6773 0.6973 200 6
0.6906 0.6806 0.7006 300 6
0.6941 0.6841 0.7041 400 6
0.6946 0.6846 0.7045 500 6
0.6984 0.6884 0.7083 1000 6

Table 6.13: Prediction accuracy of random forests with CART-like trees trained on the original training
sample with continuous covariates and applied to the test sample with an mtry value of 6 and varying
numbers of trees (ntree).

For further evaluation, the presented procedure for analyzing random forests and tuning
the parameters is applied to the training samples with different default rates. Table 6.14
contains the final results for the test and validation samples by training on the original
training data, as shown above, and also includes the results for the test sample trained on
the training data with 20% default rate and 50% default rate.

76 6. Recursive Partitioning

AUC lowCI95% upCI95% ntree mtry LogReg p-value

trainORG test 0.6984 0.6884 0.7083 1000 6 0.7045
validation 0.6964 0.6826 0.7102 1000 6 0.7118 0.0671

train020 test 0.7202 0.7104 0.7299 2000 3 0.7054
validation 0.7184 0.7048 0.7320 2000 3 0.7129 0.4971

train050 test 0.7130 0.7031 0.7229 2000 2 0.7051
validation 0.7163 0.7027 0.7299 2000 2 0.7125 0.6373

Table 6.14: Random forest results with continuous variables trained on three different training samples,
tuned on the test sample and applied to the validation sample in comparison to the logistic regression
results. The p-values result from DeLong’s test.

Among all mtry values from 1 to 26, the best mtry value of 3 was identified for the 20%
training sample applied to the test sample. By fixing the mtry value to 3, the number of
trees was varied for the mentioned training sample. The best outcome is reached for 2000
trees with an AUC value of 0.7202. Therefore, on the training sample with 20% default rate,
the random forests outperform the logit model with an AUC value of 0.7054. To prevent
overfitting and to validate the results, the outcomes are applied to the validation data also
presented in Table 6.14. For the validation data, the tuning parameters are maintained.
For the training on the 20% training sample the validation shows AUC values of 0.7184
for the random forest algorithm compared to 0.7129 for the logit model. In contrast to
the results for the original training sample, the results on the 20% training sample show
slightly better results for the random forest algorithm.

On the training data with 50% default rate and the test sample, the searching procedure
for the optimal mtry value resulted in a value of 2. The best predictive accuracy is
indicated with 2000 trees. The performance of the random forests for this credit scoring
data lies above the performance of the logistic regression for the same data. The same
result is demonstrated on the validation data (cf. Table 6.14). The AUC differences are not
significant according to DeLong’s test.

Different performance measures are included in Table 6.15 for the best random forest
results with continuous covariates compared to the corresponding logit model results on
the validation data.

AUC Gini H measure KS MER Brier score

trainORG random forest 0.6964 0.3928 0.1089 0.2987 0.0272 0.0275
LogReg 0.7118 0.4237 0.1283 0.3101 0.0272 0.0270

train020 random forest 0.7184 0.4369 0.1344 0.3232 0.0272 0.0682
LogReg 0.7129 0.4257 0.1286 0.3143 0.0272 0.0719

train050 random forest 0.7163 0.4326 0.1290 0.3195 0.0272 0.2439
LogReg 0.7125 0.4249 0.1276 0.3142 0.0272 0.2494

Table 6.15: Further measures for the random forest results with continuous variables compared to the
logistic regression results for the validation data.

6.4 Recursive Partitioning Methods for Credit Scoring 77

The different performance measures approve the previous findings. Since the logit model
definitely outperforms the random forest for the validation of the original training sample,
the random forest results are slightly better than the logit models for the validation of the
20% and 50% training samples. The H measure for the random forest trained on the 50%
training sample and applied to the validation data is 0.1290 compared to 0.1276 for the
logit model. The KS value also indicates a higher value. The MER is on the same level
and the Brier score denotes better performance for the random forest algorithm.

The result for the original training sample is graphically demonstrated with the ROC-
curve in Figure 6.8. The graph shows the false positive rate versus the true positive rate in
order to create the ROC-curve for the validation data. This is done by using the original
training data on which the algorithm was trained. Obviously, the black line for the random
forest lies under the curve of the logistic regression (dashed line). This confirms the result
for the original training data that the random forests can not improve the predictive
performance here.

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Random forest
Logit model
Diagonal

Figure 6.8: ROC graphs for the random forest (AUC 0.6964) and the logit model (AUC 0.7118)
trained on the original training sample applied to the validation data.

An interesting aspect of choosing the tuning parameters is that relatively small values
for mtry are selected. This is in line with the statements of Liaw and Wiener (2002) noting
that even mtry values of 1 can give good performance for some data. While the performance
decreases for higher mtry values, the predictive accuracy increases with higher ntree values.
This certainly implies that the covariates more frequently have the chance to be chosen

78 6. Recursive Partitioning

in the algorithm. By training the data with the three different training samples, all 26
variables are used within the random forest algorithm. By analyzing the frequencies of
how often variables are used in the forest, it is shown that for all samples the covariates
were used a hundred and even a thousand times within the forest. However, counting the
variable frequencies in a forest does not take the discriminative power and the split position
within a tree into account.

For this reason, the variable importance for the forests was examined with the importance
measures mean decrease in node impurity and the mean decrease in accuracy. The former
measures the reduction of node impurity by the Gini index, while the latter measures
the prediction error on the out-of-bag data by permuting the predictor variable. Both
importance measures are described in Section 6.3.2. Figure 6.9 contains two graphics for
the random forest on the 20% training sample with the mean decrease gini in the upper
one and the mean decrease accuracy in the lower one. Since all variables are used within
the forest for the 20% sample, all covariates are shown in the figure. The higher the values
of the measures are, the more important are the variables. High values of the importance
measures consequently denote good predictor variables. The order of the covariates follows
the height of the mean decrease gini values.

0

50

100

150

200

250

300

va
r0
4

va
r0
3

va
r2
6

va
r1
1

va
r0
1

va
r0
7

va
r2
3

va
r2
1

va
r2
4

va
r2
5

va
r2
0

va
r1
6

va
r1
7

va
r2
2

va
r1
5

va
r0
8

va
r1
0

va
r0
9

va
r1
4

va
r1
8

va
r1
3

va
r0
2

va
r1
9

va
r0
5

va
r0
6

va
r1
2

m
e

an
 d

ec
re

as
e

 g
in

i

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

va
r0
4

va
r0
3

va
r2
6

va
r1
1

va
r0
1

va
r0
7

va
r2
3

va
r2
1

va
r2
4

va
r2
5

va
r2
0

va
r1
6

va
r1
7

va
r2
2

va
r1
5

va
r0
8

va
r1
0

va
r0
9

va
r1
4

va
r1
8

va
r1
3

va
r0
2

va
r1
9

va
r0
5

va
r0
6

va
r1
2

m
e

an
 d

ec
re

as
e

ac
cu

ra
cy

Figure 6.9: Mean decrease in node impurity and mean decrease in accuracy on the 20% training
sample for the 26 covariates.

6.4 Recursive Partitioning Methods for Credit Scoring 79

For the sample presented in Figure 6.9, both measures differ in several covariates from
each other. But the most important variables are similar in both cases as well as the less
important variables. The tendency for the importance of the covariates is equal for both
measures. By comparing the mean decrease gini for the three different training samples,
the variables show also similar importances. Since the samples with 20% and 50% default
rate present a nearly identical variable order, the importance measure differs slightly on
the original training sample. Figure A.5, with the three charts, is included in the Appendix.
The first six variables are the most predictive ones even if the order differentiates for the
original sample. The variables var05, var06 and var12 indicate low performance in all three
cases.

In general, this information about the variables confirms the univariate findings from
the logistic regression procedure described in Section 3.2. Figure 3.2 shows the univariate
AUC values for the covariates. Variable var03 and var04 are the best univariate variables.
Variable var05 and var06 are in the middle of the order even though these were the poorest
in the variable importance measures. But note that this comparison only gives weak
indications since the importance measures result from a multivariate process and the AUC
values are univariate. Therefore, this comparison has to be seen with prudence.

As described in Section 6.1, the classical CART-algorithm favors numerical variables
with many potential categories. The four categorical variables with only a few levels (var05,
var06, var08, var09) indeed show lower importance in the random forest algorithms.

Before random forests are in the following tested in the framework of conditional
inference trees, the best outcomes for the random forest results with coarse classification
are presented in Table 6.16.

The best ntree values are 1000, 1000 and 1500 (trainORG, train020, train050) and the
values for the tuning parameter mtry are 8, 3 and 3, respectively. Most of the performance
measures show superior results for the logit model. The AUC differences are significant
according to DeLong’s test. For the 20% training sample, the validation results indicate
a lower Brier score for the random forest algorithm. But all other measures show better
performance for the logistic regression results.

AUC p-value Gini H measure KS MER Brier score

trainORG random forest 0.6075 0.2150 0.0408 0.1792 0.0259 0.0273
LogReg 0.7263 0.0000 0.4527 0.1468 0.3310 0.0260 0.0260

train020 random forest 0.6994 0.3989 0.1156 0.2895 0.0260 0.0548
LogReg 0.7282 0.0004 0.4564 0.1476 0.3314 0.0260 0.0658

train050 random forest 0.7093 0.4187 0.1210 0.3098 0.0260 0.2330
LogReg 0.7275 0.0224 0.4550 0.1473 0.3364 0.0260 0.2217

Table 6.16: Different performance measures for the random forest results with classified variables
compared to the logistic regression results for the validation data. The p-values result from DeLong’s
test.

80 6. Recursive Partitioning

The validation results for the 50% training sample also show superior results for the
logit model. All different performance measures indicate better performance for the logistic
regression. The presented random forest results, therefore, do not outperform the classical
logit model. Only in a few cases, the random forest results indicate better performance
compared to the logit model.

Random forests with conditional inference trees. The evaluation of random forests in
credit scoring is continued with the conditional inference trees as basis for the random
forest algorithm. Hereby, unbiased variable selection is guaranteed (cf. Section 6.1). The
variable importances are examined with the permutation accuracy importance measure and
the AUC-based importance measure.

The procedure for analyzing these random forests is similar to the procedure for random
forests with CART-like trees. First, the tuning parameter mtry is chosen by running a fixed
number of trees according to the highest AUC value. In a second step, the chosen mtry
value is used by increasing the number of trees. The AUC measure is used as criterion
for tuning the tuning parameters. Other performance measures are evaluated for the final
results.

Computational reasons restrict the analysis to the 50%-training sample with 3.394
observations. Moreover, in one variable a few values had to be transformed in order to
enable the prediction. This transformation has a negligible effect on the variable and training
the data, but guarantees the inclusion of all 26 variables for the analysis. 22 covariates are
numerical, while 4 are categorical. Data sets with encoded meaning were excluded from
the samples in order to use continuous covariates. The algorithm is trained on the training
sample, the tuning parameters are optimized concerning the AUC on the test sample, and
the validation is examined on the validation sample.

The analysis is started by training the 50%-training sample for 200 trees, varying the
mtry values from 1 to 26 and regarding the predictive accuracy on the test sample. The
highest AUC value is reached with an mtry value of 7. For higher mtry values, the AUC
measure is nearly on the same level and decreases for values greater than 16. Figure A.6 in
the Appendix shows the curve with the different AUC values.

In the next step, the tuning parameter mtry is fixed to 7 while the number of trees was
increased. Because of computational reasons, the ntree tuning parameter were computed
with intervals of 50. The results trained on the 50%-training sample applied to the test
sample are shown in Table 6.17.

The predictive accuracy increases slightly until 950 trees. The best random forest result
with conditional inference trees is therefore 0.7197 on the test sample, trained on the
50%-training sample with 950 trees and a mtry value of 7. This predictive accuracy is
higher than the original random forest algorithm, with an AUC value of 0.7130 on the test
sample (cf. Table 6.14). The result is also higher than the logistic regression model with
0.7051 and continuous covariates. The corresponding AUC value of the logit model with
coarse classification, however, denotes 0.7207.

In the presented credit scoring data there are covariates with different scales; i.e.,
numerical and categorical variables. The classical random forest algorithm favors numerical

6.4 Recursive Partitioning Methods for Credit Scoring 81

AUC lowCI95% upCI95% ntree

0.7042 0.6943 0.7141 10
0.7155 0.7057 0.7254 50
0.7174 0.7075 0.7272 100
0.7171 0.7072 0.7269 150
0.7181 0.7082 0.7279 200
0.7184 0.7086 0.7283 250
0.7189 0.7090 0.7287 300
0.7189 0.7090 0.7287 350
0.7187 0.7089 0.7285 400
0.7189 0.7091 0.7288 450
0.7192 0.7094 0.7290 500
0.7194 0.7095 0.7292 550
0.7195 0.7097 0.7293 600
0.7196 0.7097 0.7294 650
0.7195 0.7097 0.7293 700
0.7196 0.7098 0.7294 750
0.7195 0.7097 0.7293 800
0.7195 0.7097 0.7293 850
0.7195 0.7097 0.7294 900
0.7197 0.7098 0.7295 950
0.7197 0.7098 0.7295 1000

Table 6.17: Prediction accuracy of random forests with conditional inference trees trained on the 50%
training sample with continuous covariates and applied to the test sample with a fixed mtry value of 7
and varying numbers of trees.

variables und covariates with many categories. The random forest algorithm with conditional
inference trees, combined with subsampling, guarantees unbiased variable selection. However,
even if the predictive accuracy on the credit scoring data can be improved with the advanced
random forest algorithm being compared to the classical method, both random forest
algorithms do not outperform the logit model with classified variables.

The results on the validation sample, shown in Table 6.18, confirm the previous findings.

AUC p-value H measure KS MER Brier score

test random forest 0.7197 0.1389 0.3190 0.0275 0.2269
LogReg 0.7051 0.1211 0.3065 0.0275 0.2380

validation random forest 0.7241 0.1408 0.3264 0.0272 0.2317
LogReg 0.7125 0.1528 0.1276 0.3142 0.0272 0.2494

Table 6.18: Prediction accuracy of random forests based on conditional inference trees trained on the
50% training sample with continuous covariates, tuned the parameters on the test sample and applied
to the validation sample. The mtry value is 7, the ntree value denotes 950. The p-value results from
DeLong’s test.

82 6. Recursive Partitioning

The random forest based on conditional inference trees outperforms the original random
forest with an AUC value of 0.7241 compared to 0.7163 (cf. Table 6.14). The result is also
better than the logit model with an AUC value of 0.7125. The corresponding AUC value
for the logit model with classified variables denotes 0.7224. For this case, the random forest
algorithm outperforms the classical logit model.

An important aspect within random forest algorithms is the importance of the variables
to show the relevance of the different covariates. The classical mean decrease in node
impurity and the mean decrease in accuracy for the original random forest algorithm are
already presented. Within the unbiased random forest algorithm, the permutation accuracy
measure is analyzed in comparison to the original measure. The AUC-based variable
importance measure described in Section 6.3.2 is also examined.

By analyzing the variable importance measures, it is important to check whether there
are the same results for different random seeds before interpreting the ranking order (Strobl
et al., 2009). If there are large differences in the tendency, the number of trees should be
increased.

Figure 6.10 shows the three importance measures for all 26 variables for the 50% training
sample. The figure at the top contains the permutation accuracy measure based on the
random forest algorithm with unbiased variable selection, trained with 950 trees and a mtry
value of 7. The figure in the middle indicates the AUC-based importance measure where
the error rate is replaced by the AUC measure before and after permuting a covariate. For
comparison reasons, the figure in the bottom shows the mean decrease accuracy from the
original random forest algorithm. It is based on training the 50% training sample with
2000 trees and a value of 2 for the tuning parameter mtry. The order follows the ranking of
the permutation accuracy measure. The results for different random seeds showed similar
results and similar ranking orders.

The first two measures indicate similar results for the 26 predictor variables. Variables
3, 9 and 4 are indicated as the most relevant variables, while variables 12, 19 and 10 are
least important. Only a few variables show a different ranking order, var07 and var25 for
example, comparing these two measures. The general tendency is equivalent. Even if these
results are quite similar, the AUC-based measure should be taken into account especially
for unbalanced data (Janitza et al., 2013). In this analysis, the default rate denotes 50%,
but the normal default rate in credit scoring is quite low as shown in the original training
sample with 2.6%. For the credit scoring case presented here, random forests for the original
data are computationally too intensive, but the AUC-based measure is an approach that
should be generally considered by analyzing random forests for credit scoring.

The classical mean decrease in accuracy is also compared to the other variable importance
measures and is shown in the bottom of Figure 6.10. Even if the most relevant variables
(var03 and var04) and the variables with low relevance (var12, var19, var10) are ordered
analogously, there are more differences in the ranking order. For instance, variable 9 is
indicated as less important than in the other both measures. This can be explained with the
unbiased variable selection of the newer random forest method because variable 9 denotes a
categorical predictor variable. The other three categorical variables are variable 5, 6 and 8
and also show different ranking orders in the classical importance measure.

6.4 Recursive Partitioning Methods for Credit Scoring 83

0,00

0,01

0,01

0,02

0,02

0,03

va
r0
3

va
r0
9

va
r0
4

va
r2
6

va
r0
7

va
r2
5

va
r0
1

va
r2
2

va
r1
1

va
r2
1

va
r0
6

va
r2
0

va
r2
3

va
r1
7

va
r2
4

va
r0
8

va
r1
4

va
r0
5

va
r1
5

va
r1
3

va
r1
6

va
r0
2

va
r1
8

va
r1
2

va
r1
9

va
r1
0

p
er

m
u

ta
ti

o
n

 a
cc

u
ra

cy
 im

p
o

rt
an

ce

0,00

0,01

0,01

0,02

0,02

0,03

0,03

0,04

va
r0
3

va
r0
9

va
r0
4

va
r2
6

va
r0
7

va
r2
5

va
r0
1

va
r2
2

va
r1
1

va
r2
1

va
r0
6

va
r2
0

va
r2
3

va
r1
7

va
r2
4

va
r0
8

va
r1
4

va
r0
5

va
r1
5

va
r1
3

va
r1
6

va
r0
2

va
r1
8

va
r1
2

va
r1
9

va
r1
0

A
U

C
-b

as
e

d
 im

p
o

rt
an

ce
 m

e
as

u
re

0,00

0,20

0,40

0,60

0,80

1,00

1,20

va
r0
3

va
r0
9

va
r0
4

va
r2
6

va
r0
7

va
r2
5

va
r0
1

va
r2
2

va
r1
1

va
r2
1

va
r0
6

va
r2
0

va
r2
3

va
r1
7

va
r2
4

va
r0
8

va
r1
4

va
r0
5

va
r1
5

va
r1
3

va
r1
6

va
r0
2

va
r1
8

va
r1
2

va
r1
9

va
r1
0

m
e

an
 d

ec
re

as
e

in
 a

cc
u

ra
cy

Figure 6.10: Variable importance measures on the 50% training sample: permutation accuracy
importance (top), AUC-based variable importance (middle), and mean decrease in accuracy (bottom).

For confidentiality reasons, a more detailed analysis of the predictor variables concerning
the contents is not possible. However, the differences imply to examine the various variable
importance measures in random forest algorithms. Moreover, the conditional version of
the importance measure described in Section 6.3.2 should be considered in a next step
since there are correlated predictors in the credit scoring case. Actually, the amount of
26 variables and more than 3000 observations are computationally too intensive for the
permutation scheme.

The evaluation of the random forests in credit scoring is completed by testing the
algorithm with classified variables. The categories for the predictor variables are adopted
from the classes of the logit model. The random forest with unbiased variable selection

84 6. Recursive Partitioning

are used for the analysis. The same procedure is applied, as was previously done, for the
before mentioned evaluations of random forests. While the three data sets (50% training,
test and validation) are used for the examination, the AUC measure is used for choosing
the tuning parameters.

The final results for the test and validation sample trained on the 50%-training sample
are shown in Table 6.19 including different performance measures. The best value for the
tuning parameter mtry is yielded with 6 randomly selected variables in each node. The
number of trees is increased in steps of 50, due to computational reasons, and reached the
best result with 700 trees.

AUC p-value Gini H measure KS MER Brier score

test random forest 0.7149 0.4297 0.1335 0.3061 0.0263 0.2169
LogReg 0.7211 0.4423 0.1421 0.3255 0.0263 0.2121

validation random forest 0.7193 0.4387 0.1346 0.3232 0.0260 0.2204
LogReg 0.7275 0.3004 0.4550 0.1473 0.3364 0.0260 0.2217

Table 6.19: Best results of random forests based on conditional inference trees trained on the 50%
training sample with categorized variables, tuned the parameters on the test sample and applied to the
validation sample. The mtry value is 6, the ntree value denotes 700. The results are compared to the
logistic regression outcomes. The p-value results from DeLong’s test.

Compared to the logistic regression results, the predictive accuracy of the random forest
on the test sample underachieves, with 0.7149 versus 0.7211. On the validation sample, the
logit model yields a performance measured with the AUC of 0.7275 compared to 0.7193
of the random forest algorithm. This leads to the finding that in this evaluation scenario,
the random forests can not outperform the predictive performance of the logit model. The
AUC difference on the validation data is not significant according to DeLong’s test.
The different performance measures approve the findings that the logit model outperforms
the random forest in this case. Only the Brier score on the validation data indicates slightly
better performance for the random forest algorithm, but all other measures definitely show
better performance for the logit model.

For analyzing the relevance of the variables of the classified predictor variables, the
permutation accuracy measure and the AUC-based importance measure are presented for
the 26 classified predictor variables in Figure 6.11. It is interesting that variable 4 dominates
the other covariates and shows the highest importance. Variable 4 was also very relevant in
the former random forest algorithms, but variable 3 was often more important. The latter
variable indicates less relevance in the classified version.

In general, it is remarkable that a lot of covariates display very low relevance, and the
two measures show different ranking orders for the classified variables. This would imply to
analyze the various variables with regard to their contents. However, this is not possible
for the presented credit scoring case due to confidentiality reasons.

6.5 Discussion of Recursive Partitioning Methods for Credit Scoring 85

(a) Permutation accuracy importance for the 26 clas-
sified variables

(b) AUC-based variable importance for the 26 classi-
fied variables

Figure 6.11: Variable importance measures on the 50%-training sample with classified predictor
variables.

In summary, it can be stated that the random forest algorithms obviously improve the
predictive accuracy compared to single classification trees, and overcome the instability due
to the aggregation of many trees. This improvement comes along with less interpretability
of the models since single classification trees offer good interpretable rules. Also, for the
presented credit scoring case, random forests can outperform the predictive performance
of the logit model in some but not in all cases. The variable importance measures show
interesting results for the predictor variables, and can therefore certainly make a contribution
to understand, analyze and interpret the variables.

6.5 Discussion of Recursive Partitioning Methods for

Credit Scoring

In this section new recursive partitioning algorithms are evaluated for the credit scoring
case. The performance of the classification trees is rather poor compared to the predictive
accuracy of the classical scorecard with logistic regression. The conditional inference trees
presented here overcome the problem of unbiased variable selection and overfitting of the
classical CART approach. Numerical covariates and variables with many potential cutpoints
are not favored any more, and no form of pruning is needed for the new classification
algorithm. However, the results still underachieve in the credit scoring case compared to
the logit model. An advantage of classification trees is their binary structure and the good
interpretability, which is still an important aspect in credit scoring. Since classification trees
do not produce competitive results for the presented credit scoring case, from this point of
view, they can not be recommended as an alternative to the classical scoring model.

The model-based recursive partitioning algorithm is an interesting approach for combin-
ing the classical logit model with the classification trees. The performance of the classical
logit model can not be outperformed by the new model based approach, but the results
are quite competitive. The stability of the variable coefficients is tested regarding the

86 6. Recursive Partitioning

potential partitioning variables. This gives interesting insights in the variables and can help
improving the logistic regression model even if the logistic regression based tree is not used
for the final scoring model.

The presented random forest algorithms overcome the instability of single classification
trees. In the current credit scoring evaluation, random forests perform better than single
classification trees. In comparison with the benchmark results of the logit models, random
forests outperform in some cases with respect to the AUC measure and other performance
measures. But in some cases presented here, the logit model still yields better results
compared to random forests. The random forests with conditional inference trees show
better performance compared to the logit model. However, the results are different from the
good performance of random forests in other scientific fields. And even other applications
in the credit scoring area present higher predictive accuracies compared to the logit model
(cf. for instance Lessmann et al. (2013)). Moreover, random forests are ’black box’ models
and hard to interpret by combining lots of single trees. Random forest algorithms present
variable importance measures, which allow interesting investigations for analyzing the
variables. These measures can provide added value to the univariate analysis in the classical
scorecard development process.

The new methods are computationally very intensive and restrict the analysis in some
parts to the 50%-training sample with around 3000 observations. Since large data sets are
common for building scoring models in retail credit scoring, extensions for applying big
data would be an important point for further developments.

Recursive partitioning algorithms are not yet implemented in many standard statistical
software packages and therefore not easily applied in retail banks. But the development
is going further with the implementation of not only classification trees but also other
recursive partitioning techniques. This is an important step to develop these techniques in
the credit scoring area and to benefit from the new capabilities.

Chapter 7

Boosting

7.1 Boosting Algorithms

Boosting methods are presented here as newer classification algorithms from machine
learning. The basic idea for boosting is the aggregation of many weak classifiers in order to
improve classification performance. AdaBoost (also commonly known as Discrete AdaBoost),
introduced by Freund and Schapire (1996), is one of the most well-known algorithms. It
aims to find the optimal classifier given the current distribution of weights in each step
(Culp et al., 2006). Incorrectly classified observations with the current distribution of
weights are weighted higher in the next iteration, while correctly classified observations
are weighted lower. The final model outperforms with high probability any individual
classifier concerning the misclassification error rate. Further important works on boosting
follow with Breiman (1998) and Breiman (1999) demonstrating that the AdaBoost can
be seen as an optimization algorithm and a gradient descent procedure in function space.
The interpretation of boosting as additive stage-wise modeling from Friedman et al. (2000)
describes another milestone for boosting in the statistical field. “Additive” in this context
does not imply additivity in the covariates, but means boosting is an additive combination
of weak learners (Bühlmann and Hothorn, 2007).

7.1.1 Rationale of Gradient Boosting

Friedman et al. (2000) propose different varieties of the AdaBoost algorithm like Real, Logit
and Gentle AdaBoost. For illustrating the general algorithm, I followed the description of
Culp et al. (2006) based on Friedman (2001) in Table 7.1. The aim is to find a classification
rule F (x) for prediction accuracy. Boosting should find the optimal classifier by minimizing
an underlying loss function using a gradient descent search to define the weights and the
learner in each step.

The general algorithm presents an iterative method for optimizing an arbitrary loss
function. Culp et al. (2006) propose the exponential (L(y, f) = e−yf) and logistic (L(y, f) =
log(1 + e−yf)) loss functions. The regularization parameter ν denotes the learning rate. The
special functions of η define the type of boosting algorithm: η(x) = sign(x) for Discrete

88 7. Boosting

Initialize F (x) := 0

for m = 1 to M do

Set wi = −∂L(y,g)
∂g |g=F (x)

Fit y = η(hm(x)) as the base weighted classifier using |wi|, with training sample
πm

Compute line search step α = arg minα
∑

i∈πm L(yi, F (x) + αη(hm(xi)))

Update F (x) = F (x) + ναmη(hm(x))

end for

Table 7.1: Stochastic Gradient Boosting Algorithm.

AdaBoost, η(x) = 0.5log(x
1−x) for Real AdaBoost and η(x) = x for Gentle AdaBoost. The

definition for predicting the probability class estimates for the different boosting algorithms
is P̂ (Y = 1 | x) = e2F (x)

1+e2F (x) .

7.1.2 Component-Wise Gradient Boosting

Based on the former boosting algorithms, Bühlmann and Yu (2003) present the component-
wise gradient boosting in their paper. The fact that the covariates are fitted separately
against the gradient is the main advancement compared to existing algorithms. Another
advantage of the method is it allows variable selection during the fitting process.

The basic idea is still to model the outcome variable y given a set of covariates xi and
finding the optimal prediction. In the component-wise gradient boosting, this is realized
by minimizing a loss function ρ(y, f) ∈ R over the prediction f . The descriptions follow
Bühlmann and Hothorn (2007) and Hofner et al. (2014). The aim is to estimate the
“optimal” prediction function f ∗ defined as

f ∗ := arg min
f

EY,X [ρ(Y, f(X))] (7.1)

where the loss function ρ(Y, f) is assumed to be differentiable with respect to f . Since in
practice the theoretical mean given in 7.1 is usually unknown, boosting algorithms minimize
the empirical risk R :=

∑n
i=1 ρ(yi, f(xi)) over f . The empirical risk R is minimized over f

in the following way:

1. Initialize an n-dimensional vector f̂ [0] with offset values.

2. Specify the base-learners for the covariates. Set m = 0.

7.1 Boosting Algorithms 89

3. Increase m by 1. Compute the negative gradient − ∂ρ
∂f

of the loss function. Evaluate

the negative gradient at the estimate of the previous iteration f̂ [m−1](xi), i = 1, . . . , n.
This yields the negative gradient vector

u[m] =
(
u

[m]
i

)
i=1,...,n

:=

(
− ∂

∂f
ρ
(
yi, f̂

[m−1](xi)
))

(7.2)

4. Fit the negative gradient vector u[m] separately to each of the P covariates using the
base-learners defined in step 2. This results in P vectors of predicted values, where
each vector denotes an estimate of the negative gradient vector u[m].

5. Regarding the residual sum of square (RSS) criterion, select the base-learner with the
best fitting of u[m]. Set û[m] equal to the fitted values of the best base-learner.

6. Update f̂ [m] = f̂ [m−1] + ν û[m], with 0 < ν < 1 as a step length factor.

7. Iterate steps 3 to 6 until m = mstop for a given stopping iteration mstop.

Further explanations to the base-learners and the tuning parameters step length ν and
iterations mstop follow below. The above algorithm shows the descending along the gradient
of the empirical risk R. In each iteration, an estimate of the true negative gradient of
R is added to the estimate of f and a structural relationship between y and the selected
covariates is established (Hofner et al., 2014). Since only one base-learner is used for the
update of f̂ [m], step 5 and 6 denote the variable selection of the algorithm. This variable
choice implies that a base-learner can be chosen several times and that the estimates also
can be equal to zero, when the base-learner might not have been selected. In the former
case, the function estimate is defined by the sum of the individual estimates ν · û[m−1] from
the iterations where the base-learner was chosen.

By specifying the appropriate loss function ρ(·, ·), a huge variety of different boosting
algorithms arise. An extensive overview of loss functions and boosting algorithms is given
in Bühlmann and Hothorn (2007). Based on the credit scoring context, the focus is on
binary classification with a response variable Y ∈ {0, 1} and P[Y = 1 | x] = π(f). The
exponential loss, leading to the famous AdaBoost algorithm, is previously mentioned in
Section 7.1.1. In addition, the negative binomial log-likelihood (Bühlmann and Hothorn,
2007) is considered

ρ(y, f) = − [y log(π(f)) + (1− y) log(1− π(f))] (7.3)

= log(1 + exp(−2ỹf)) (7.4)

where ỹ = 2y − 1. The transformation of the binary response with ỹ ∈ {−1, 1} results due
to computational efficiency (Hofner et al., 2014). The presented loss function, offers the
opportunity to fit a logistic regression model via gradient boosting. In addition, the AUC

90 7. Boosting

measure can be used as loss function to optimize the area under the ROC curve. This topic
is covered in detail in Section 7.3.

The stopping iteration mstop is the most important tuning parameter in boosting
algorithms. At the beginning, a debate existed as to whether boosting algorithms are
resistant against overfitting. In the meantime, Bühlmann and Hothorn (2007) state that
an early stopping (before running to convergence) is necessary and refer to Jiang (2004)
and Bartlett and Traskin (2007). Therefore, in component-wise gradient boosting, cross-
validation techniques and AIC-based techniques are proposed to choose the optimal stopping
iteration (Bühlmann, 2006). Since the AIC-based procedure tends to exceed the optimal
iteration number (Mayr et al., 2012), it is recommended to use cross-validated estimates of
the empirical risk to determine an optimal number of boosting iterations. Note, however,
that the AdaBoost is quite resistant against overfitting by increasing the iteration number
and shows a slow overfitting behaviour (Bühlmann and Hothorn, 2007).

The step length factor ν is a less important tuning parameter for the performance of the
boosting algorithm (Bühlmann and Hothorn, 2007). According to Bühlmann and Hothorn
(2007), it is only required to choose a small value for ν (e.g. ν = 0.1). With a smaller value
of ν an increasing number of iterations is required for the boosting algorithm, while the
influence on the predictive accuracy is rather low.

7.1.3 Base Learners

For the different types of boosting and the structural assumption of the model, the
specification of base-learners is required. Bühlmann and Hothorn (2007) give an overview of
different base procedures. Linear and categorical effects can be fitted in the sense of ordinary
least squares. By using the negative binomial log-likelihood as loss function combined with
linear least squares base-learner, the fit of a linear logistic regression model via gradient
boosting arise (Bühlmann and Hothorn, 2007). For adding more flexibility to the linear
structure of generalized linear models, smooth effects can be specified using P-splines (cf.
Schmid and Hothorn, 2008). Hereby, a logistic additive model fit is obtained by using
component-wise smoothing splines with negative binomial log-likelihood loss. Additionally,
tree-based base learners are quite popular in the machine learning community. This base
procedure is not fitted in the sense of penalized least squares (Hofner et al., 2014). Section
6.1 is referenced for detailed descriptions on classification and regression trees. Further
explanations on base procedures, like bivariate P-Splines or random effects, can be found
in Bühlmann and Hothorn (2007) and Hofner et al. (2014). By the combination of loss
functions and base procedures, an extensive amount of possibilities for various boosting
algorithms arise. In alignment with this thesis and the classification problem in credit
scoring, the focus is on the base procedures in boosting algorithms on tree-based base
learner, logistic regression and generalized additive models.

7.2 Boosting for Credit Scoring 91

7.2 Boosting for Credit Scoring

Newer machine learning algorithms like boosting, especially component-wise gradient
boosting, are less examined in the credit scoring literature. Remarks and references are
already given in Section 6.4 with emphasis on recursive partitioning. At this point, some
related work to boosting in credit scoring is outlined. For instance, the paper of Brown and
Mues (2012) is mentioned where superior results for gradient boosting are indicated for the
credit scoring case compared to other classifiers. Wang et al. (2011) propose a performance
comparison for bagging and boosting with exceeding results compared to standard models.
Finlay (2011) propose an error trimmed boosting algorithm which “successively removes
well classified cases from the training set”. In their study, which is based on an application
and a behavioral data set, the results of this boosting algorithm outperform other classifiers
including the AdaBoost.

In the credit scoring evaluation, the classical gradient boosting based on Friedman
(2001) is analyzed. Moreover, it is concentrated on the boosting of logistic regression and
generalized additive models within the component-wise gradient framework. Boosting with
the AUC as a loss function is covered in Section 7.3.1.

7.2.1 Discrete, Real and Gentle AdaBoost

To begin the evaluation of the boosting algorithms in credit scoring, the Discrete, Real
and Gentle AdaBoost were examined with tree base learners. In addition to the number
of iterations, two tuning parameters are varied. The maxdepth parameter defines the
forefathers one node can have. A maxdepth value of 1 is a so-called stump and implies that
the node is only divided once. An increasing maxdepth value represents more complicated
trees. The minsplit parameter describes the minimal number of observations required in a
node to continue dividing that particular node further.

For training the data, the established training samples are used with the various default
rates. Optimizing the tuning parameters required the test sample, while the validation
that followed is conducted with the validation sample. The iterations are increased from
10 to 150, the maxdepth values from 1 to 30, and the minsplit values are tested with 0,
10 and 100. The same procedure is applied for Discrete, Real, and Gentle AdaBoost with
exponential loss generating plenty of combinations. The results shown here represent the
summary of the best outcomes concerning the AUC measure.

Table 7.2 shows the AUC values for the test and validation samples with the best tuning
parameters in comparison to the logit model. Continuous variables are used for these results
and the p-values are calculated using DeLong’s test.

Trained on the original sample with 2.6% of defaults, 150 iterations, a maxdepth value
of 30, and a minsplit value of 0, an AUC of 0.7256 is calculated for the test sample. The
corresponding value from the logit model (0.7045) is significantly different. The analyses
on the other samples show superior results on the test and validation samples, even though
DeLong’s test shows that the differences are not significant.

92 7. Boosting

AUC iterations maxdepth minsplit AUC LogReg p-value

trainORG test 0.7256 150 30 0 0.7045
validation 0.7258 150 30 0 0.7118 0.0899

train020 test 0.7240 150 4 0 0.7054
validation 0.7273 150 4 0 0.7129 0.0781

train050 test 0.7263 150 5 0 0.7051
validation 0.7249 150 5 0 0.7125 0.1257

Table 7.2: Gentle AdaBoost results with continuous variables trained on three different training
samples and applied to the test and validation samples in comparison to the logistic regression results.
The p-values result from DeLong’s test.

Figure 7.1 shows the ROC graphs for the validation sample trained on the 20% training
sample with continuous covariates. Although the distance in the graph is slight, the ROC
generated by the logit model lies below that of the Gentle AdaBoost model.

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gentle AdaBoost
Logit model
Diagonal

Figure 7.1: ROC graphs for the Gentle AdaBoost (AUC 0.7273) and the logit model (AUC 0.7129)
trained on the 20% training sample applied to the validation data with continuous covariates.

Table 7.3 contains different performance measures comparing the Gentle AdaBoost with
the logit model using the validation data and continuous variables. While the H measure
and the KS indicate superior results for the boosting method over all samples, the MER
is at the same level, and the Brier score shows better prediction performance for the 50%
training sample.

7.2 Boosting for Credit Scoring 93

AUC Gini H measure KS MER Brier score

trainORG Gentle 0.7258 0.4515 0.1433 0.3372 0.0272 0.0270
LogReg 0.7118 0.4237 0.1283 0.3101 0.0272 0.0270

train020 Gentle 0.7273 0.4546 0.1473 0.3381 0.0272 0.0715
LogReg 0.7129 0.4257 0.1286 0.3143 0.0272 0.0719

train050 Gentle 0.7249 0.4498 0.1402 0.3330 0.0271 0.3322
LogReg 0.7125 0.4249 0.1276 0.3142 0.0272 0.2494

Table 7.3: Further measures for the Gentle AdaBoost results with continuous variables compared to
the logistic regression results for the validation data.

Similar conclusions can be shown for the comparison of the Gentle AdaBoost and
the logistic regression with classified variables. Table 7.4 contains the outcomes for the
validation data and different performance measures. The differences of the AUC measures
are not significant according to DeLong’s test, but the tendency of the other measures also
indicates superior results for the boosting method. However, the Brier score only indicates
better predictive performance for the 50% training sample.

AUC Gini H measure KS MER Brier score

trainORG Gentle 0.7266 0.4532 0.1451 0.3377 0.0260 0.0259
LogReg 0.7263 0.4527 0.1468 0.3310 0.0260 0.0260

train020 Gentle 0.7296 0.4593 0.1495 0.3373 0.0259 0.0557
LogReg 0.7282 0.4564 0.1476 0.3314 0.0260 0.0658

train050 Gentle 0.7315 0.4630 0.1470 0.3417 0.0260 0.3081
LogReg 0.7275 0.4550 0.1473 0.3364 0.0260 0.2217

Table 7.4: Further measures for the Gentle AdaBoost results with classified variables compared to the
logistic regression results for the validation data.

The results for the Real and Discrete AdaBoost with continuous covariates are summa-
rized in the Appendix (Tables A.6 to A.9). Since the AUC values and the other performance
measures show superiority for the Real AdaBoost, the Brier score indicates better results
for the logit model. The Discrete AdaBoost results outperform the corresponding logit
model outcomes in terms of all performance measures. Not all AUC differences, however,
are significant concerning DeLong’s test.

94 7. Boosting

7.2.2 Boosting Logistic Regression

Within the scope of boosting methods, the logistic regression models are estimated via
gradient boosting. The negative binomial log-likelihood loss is used as a loss function. Due
to computational reasons, the 50% training sample is used and the results are applied
to the test and validation sample. The evaluation was started by using 26 explanatory
variables (22 continuous, 4 categorical) and excluding data sets with encoded meanings. The
comparable AUC values for the logit model are for the test sample 0.7051 with continuous
and 0.7207 with classified variables. For the validation sample, the predictive power with
continuous variables is 0.7125 and 0.7224 with classified variables.

Table 7.5 contains the results for the test and validation sample for different iteration
numbers. This shows that the boosting results exceed the classical logistic regression model
with continuous variables, but not the predictive performance of the models with classified
covariates. The test and validation samples indicate the same conclusion. This finding is
still true with a high number of iterations of 1000 or 1500 iterations. Moreover, the number
of iterations is the most important tuning parameter in this case.

test validation

AUC lowCI95% upCI95% AUC lowCI95% upCI95% iterations

0.6779 0.6678 0.6879 0.6841 0.6703 0.6980 10
0.6995 0.6895 0.7094 0.7052 0.6915 0.7189 50
0.7052 0.6953 0.7151 0.7112 0.6975 0.7248 100
0.7078 0.6979 0.7177 0.7140 0.7003 0.7276 150
0.7103 0.7004 0.7202 0.7172 0.7036 0.7308 270
0.7110 0.7011 0.7208 0.7182 0.7046 0.7318 331
0.7113 0.7014 0.7212 0.7187 0.7051 0.7323 379
0.7118 0.7019 0.7217 0.7194 0.7058 0.7330 500
0.7127 0.7028 0.7225 0.7207 0.7071 0.7343 1000
0.7127 0.7028 0.7225 0.7206 0.7071 0.7342 1500

Table 7.5: Prediction accuracy for boosting logistic regression trained on the 50% training sample,
applied to the test and validation samples with continuous covariates.

To prevent overfitting, it is important to determine the number of boosting iterations.
As mentioned above (Section 7.1.2), the AIC is not recommended to find the optimal model.
Therefore, cross-validated estimates of the empirical risk are used to extract the iteration
number. The k-fold cross validation is estimated with 5 and 10 replicates.

Figure 7.2 shows two graphics with the number of iterations on the x-axis and the
negative binomial likelihood on the y-axis. The appropriate number of boosting iterations
is in the first case 379, and in the latter 331. The exact results with the AUC values are
also contained in Table 7.5. In addition, the predictive risk for the 25 bootstrap samples is
displayed and a number of 270 iterations is received (cf. Figure A.7 in the Appendix). As
shown in Table 7.5, the improvements for the results with a higher number of iterations are
slight.

7.2 Boosting for Credit Scoring 95

5−fold kfold

Number of boosting iterations

N
eg

at
iv

e
B

in
om

ia
l L

ik
el

ih
oo

d

0.
58

0.
60

0.
62

0.
64

0.
66

0.
68

0 200 400 600 800 1000

(a) 5-fold cross validation - appropriate number of
boosting iterations 379

10−fold kfold

Number of boosting iterations

N
eg

at
iv

e
B

in
om

ia
l L

ik
el

ih
oo

d

0.
56

0.
58

0.
60

0.
62

0.
64

0.
66

0.
68

0 200 400 600 800 1000

(b) 10-fold cross validation - appropriate number of
boosting iterations 331

Figure 7.2: Results of the k-fold cross validation to extract the appropriate number of boosting
iterations for boosting logistic regression.

Different performance measures are shown in Table 7.6 for the boosted logit model with
331 iterations and continuous covariates. For the validation data, the difference of the AUC
measures is not significant according to DeLong’s test. The other performance measures,
however, indicate higher predictive performance for the boosted logit model. The MER is
on the same level. These results confirm the previous findings regarding the AUC measure.

AUC p-value H measure KS MER

test Boost LogReg 0.7110 0.1295 0.3078 0.0275
LogReg 0.7051 0.1211 0.3065 0.0275

validation Boost LogReg 0.7182 0.1359 0.3193 0.0272
LogReg 0.7125 0.4884 0.1276 0.3142 0.0272

Table 7.6: Different performance measures for boosting logistic regression with 331 iterations and
continuous variables compared to the logistic regression results for the test and validation samples.
The p-value results from DeLong’s test.

A very important aspect for the early stopping is the complexity of the model. The
model built with 1000 iterations includes 24 of the 26 available predictors. While the models
with 270, 331 and 379 iterations contain 18 explanatory variables, these are the same for all
three iteration numbers. The variables selected for the logistic model are included in the 18

96 7. Boosting

predictors. The number of iteration reduces the complexity of the model and chooses more
influential variables.

Even though, models are tested with the 8 variables from the logit model. This leads to
the same AUC values as for the classical logistic regression (0.7051 on the test sample and
0.7125 on the validation sample with 1000 iterations).

In addition to the cross validation, Figure 7.3 displays the AUC values and the confidence
intervals for the boosting iterations from 1 to 1000 for the test sample. The analogue
graphic for the validation sample is in the Appendix (Figure A.8). Even if the charts
show values up to 1000 iterations, the improvement of the predictive power is low after a
few hundreds of iterations. After approximately 400 iterations, the curve stagnates. This
corresponds with the appropriate iterations from cross validation.

0,6

0,62

0,64

0,66

0,68

0,7

0,72

0,74

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951

A
U

C

iterations

AUC test

lowCI AUC

upCI AUC

Figure 7.3: AUC values with confidence intervals for boosting logistic regression on the test sample
for iterations 1 to 1000 with 26 potential continuous covariates.

While analysing boosting logistic regression models, categorical variables are also tested
as used in the classical logistic model. I used the categories evaluated from the classical
scorecard development. The proceeding is analogous to the previous description for boosting
logistic regression, with the difference to use the 26 predictors as categorical effects. The
results are shown in Table A.10 in the Appendix. Two charts with the outcomes of the
iterations 1 to 1000 are also included in the Appendix (Figure A.9 for the test sample
and Figure A.10 for the validation sample). The 50% training sample was used without
excluding data sets. The appropriate number of iterations determined with cross validation
(5- and 10- fold kfold, 25-fold bootstrap) rose high iteration numbers with 1499, 1498 and
1447. For boosting the model with 1500 iterations, the AUC value is 0.7273 (LogReg 0.7210)
for the test sample and 0.7335 (LogReg 0.7225) for the validation sample. The values in

7.2 Boosting for Credit Scoring 97

brackets indicate the results for the classical logistic regression models. The high number
of iterations implies quite complex models.

Table 7.7 contains the AUC measures for the boosted logit model with 1500 iterations and
coarse classification compared to the classical logit model. Further performance measures
are also included in the table.

AUC p-value H measure KS MER

test Boost LogReg 0.7273 0.1489 0.3297 0.0263
LogReg 0.7210 0.1408 0.3257 0.0275

validation Boost LogReg 0.7335 0.1537 0.3441 0.0260
LogReg 0.7225 0.1645 0.1411 0.3305 0.0272

Table 7.7: Different performance measures for boosting logistic regression with 1500 iterations and
classified variables compared to the logistic regression results for the test and validation samples. The
p-value results from DeLong’s test.

The H measure, KS and MER show better performance for the boosted logit model
compared to the classical logistic regression. DeLong’s test, however, indicates that the
difference of the AUC measures on the validation data is not significant. Since boosting
yields better results for 1500 iterations, complex models are evaluated in this case.

7.2.3 Boosting Generalized Additive Model

To add more flexibility to the linear structure in generalized linear models, logistic additive
models are estimated via component-wise gradient boosting. P-Spline base-learners for
smooth effects are used for 22 explanatory variables, while 4 variables are included as
categorical effects. Equal to boosting logistic regression, the negative binomial log-likelihood
loss is used to estimate the empirical risk. Data sets with encoded meaning are excluded
from the 50% training sample that is used to train the boosting algorithm. The default
(ν = 0.1) is used for the step length factor. The results are applied to the test and validation
sample. As previously mentioned above (Section 7.2.2), the predictive performance from
the logit model on the test sample is 0.7207 with classified variables (0.7051 with continuous
covariates) and on the validation sample 0.7224 (0.7125). Since iterations from 1 to 1000
were run, an extract of the outcomes is given in Table 7.8.

The results for the test sample, as well as for the validation sample, increase with
the number of boosting iterations. Since the iteration number is the most important
tuning parameter within component-wise gradient boosting, cross-validated estimates of
the empirical risk are used to determine the appropriate number of boosting iterations.
Figure 7.4 shows the estimated k-fold cross validation with 5 and 10 replicates. The plots
display the empirical risk on the cross validation samples for iterations from 1 to 1000. The
optimal number of boosting iterations results in the first case in 243, and in the latter case
in 206 boosting iterations. The result for the 25-fold bootstrap samples is contained in the

98 7. Boosting

test validation

AUC lowCI95% upCI95% AUC lowCI95% upCI95% iterations

0.6766 0.6666 0.6867 0.6839 0.6700 0.6978 10
0.7108 0.7009 0.7207 0.7178 0.7042 0.7314 50
0.7179 0.7081 0.7278 0.7247 0.7112 0.7383 100
0.7211 0.7118 0.7314 0.7265 0.7151 0.7422 150
0.7212 0.7114 0.7310 0.7266 0.7131 0.7402 203
0.7212 0.7114 0.7310 0.7266 0.7131 0.7402 206
0.7217 0.7119 0.7315 0.7267 0.7131 0.7402 243
0.7273 0.7176 0.7371 0.7325 0.7190 0.7459 500
0.7282 0.7184 0.7379 0.7314 0.7179 0.7449 1000

Table 7.8: Boosting generalized additive models with P-spline base-learners and the negative binomial
log-likelihood loss trained on the 50% training sample, applied to the test and validation samples.

Appendix (Figure A.11). The optimal stopping iteration of 203 minimizes the average risk
over all 25 samples.

The AUC values for the predictive performance of the models at the optimal stopping
iterations are also presented in Table 7.8. As demonstrated in this table, the boosted
logistic additive models outperform the results from the classical logit model.

5−fold kfold

Number of boosting iterations

N
eg

at
iv

e
B

in
om

ia
l L

ik
el

ih
oo

d

0.
58

0.
60

0.
62

0.
64

0.
66

0.
68

0 200 400 600 800 1000

(a) 5-fold cross validation - appropriate number of
boosting iterations 243

10−fold kfold

Number of boosting iterations

N
eg

at
iv

e
B

in
om

ia
l L

ik
el

ih
oo

d

0.
54

0.
56

0.
58

0.
60

0.
62

0.
64

0.
66

0.
68

0 200 400 600 800 1000

(b) 10-fold cross validation - appropriate number of
boosting iterations 206

Figure 7.4: k-fold cross validation to extract the appropriate number of boosting iterations for boosting
generalized additive models.

7.2 Boosting for Credit Scoring 99

On the test sample, the boosted model with 243 iterations indicates an AUC value of
0.7217 compared to the predictive accuracy of 0.7207 from the logit model with classified
variables (0.7051 with continuous covariates). The performance comparison on the validation
sample indicates the same conclusion. AUC values around 0.7266 exceed the predictive
performance of 0.7224 from the logistic regression with coarse classification (0.7125 with
continuous variables).

Table 7.9 shows different performance measures for the results of the boosted additive
model compared to the classical logistic regression. The boosted model was evaluated with
243 iterations. The H measures and the KS values indicate better performance for the
boosted model. The results for the MER are on the same level. The presented measures in
this table approve the previous findings.

AUC p-value H measure KS MER

test Boost GAM 0.7217 0.1413 0.3288 0.0275
LogReg 0.7051 0.1211 0.3065 0.0275

validation Boost GAM 0.7267 0.1438 0.3352 0.0272
LogReg 0.7125 0.0815 0.1276 0.3142 0.0272

Table 7.9: Different performance measures for boosting the logistic additive model with 243 iterations
compared to the logistic regression results with continuous variables for the test and validation samples.
The p-value results from DeLong’s test.

As described in Section 7.1.2, the component-wise gradient boosting includes variable
selection during the optimization process. Therefore, the stopping iteration number also
influences the complexity of the model. The model with 243 iterations involves 22 variables,
while the model with 100 iterations includes 16 covariates.

This relatively high number of included base-learners follows to the test, where only
the eight explanatory variables from the logit model are used as potential covariates. The
procedure is the same as described with 26 variables. The training was on the 50%-sample,
the application was to the test and validation sample and the choice of the optimal stopping
iteration was defined via cross validation. An excerpt of all iteration numbers from 1 to
1000 is shown in Table A.11 in the Appendix. For the optimal iteration number of 261, all
eight variables are included in the model with an AUC value on the test sample of 0.7219
(0.7207 logit model). The related validation results are 0.7266 to 0.7224 for the logit model.
This result indicates that estimating the generalized additive model via gradient boosting
still slightly outperforms the classical logistic regression, when only eight variables are used
as potential covariates.

In Chapter 5, the additive logistic regression model is explained and evaluated for the
credit scoring case. The models also include the eight explanatory variables of the classical
logit model. Therefore, the results for the boosted GAM models with 8 variables are
compared to the additive logistic models from Section 5.2. The related AUC values are
taken from Table 5.1 from the mentioned chapter. On the test data, the classical GAM
yields an AUC value of 0.7207. The corresponding AUC value of the boosted GAM denotes

100 7. Boosting

0.7219. The predictive accuracy for the validation sample is 0.7263 for the additive logit
model, compared to 0.7266 for the boosted additive logistic model. This implies that the
boosting algorithm slightly outperforms the classical additive logit model. The flexibility
of the model and the inclusion of nonlinearities in combination with boosting the model,
shows good performance compared to the classical models.

The improvement in predictive accuracy is obviously obtained from the smoothness
of the base-learners. Figure 7.5 displays the partial effects of three explanatory variables
estimated as P-spline base-learners in the boosted generalized additive model with 243
iterations.

●

●
●●●●●
●●●●
●●●●●●●
●●

●●

200 300 400 500 600 700 800

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

variable03

f p
ar

tia
l

●
●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●●
●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●
●●●●●
●●●
●●●●●●
●●
●●●●●
●●●

●●
●●

●●●
●
●

●●

0 100 200 300 400 500

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

variable04

f p
ar

tia
l

●●●
●●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●● ● ●●●●●●●●● ● ●●

0 10000 30000 50000

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

variable20

f p
ar

tia
l

Figure 7.5: Partial effects for three explanatory variables estimated as P-spline base-learners in a
boosted generalized additive model with 243 iterations.

As shown in Figure 7.5, variable03 and variable04 obviously have a non-linear relationship
to the default information in the data. Variable20 seems to have a relationship relatively
close to a linear function where most of the observations lie. However, especially with the
higher values of the predictor, the relationship seems to be non-linear.

7.3 Boosting and the Optimization concerning AUC 101

7.3 Boosting and the Optimization concerning AUC

In the research literature, different approaches are proposed for optimizing the AUC in the
machine learning community and related areas. A short overview is given in the following.

Yan et al. (2003) consider an approximation of the Wilcoxon statistic to optimize the
AUC directly with gradient based methods. They apply their algorithm to two data sets for
customer behavior prediction. Cortes and Mohri (2003) discuss the relationship between
the AUC and the error rate and state that algorithms with the aim to minimize the error
rate “may not lead to the best possible AUC values”. They indicate the connection between
RankBoost (Freund et al., 2004) and the AUC optimization measured with the Wilcoxon
statistic and present superior results in comparison to the former mentioned algorithm
of Yan et al. (2003). However, they state that comparing RankBoost to AdaBoost shows
similar results, which is a task for further analysis. Herschtal and Raskutti (2004) propose
a direct optimization of the AUC within a gradient descent search as a linear binary
classifier. Their empirical study is based on eight data sets from different fields. They show
outperforming outcomes of the AUC optimization compared to other classifiers like linear
regression and support vector machines. The work of Ma and Huang (2005) for biomarker
selection with microarray data is previously mentioned in Chapter 4. Long and Servedio
(2007) show the effects of boosting the AUC based on AdaBoost with the analysis of the
presence of independent missclassification noise, but no empirical results are given. In
another paper, Calders and Jaroszewicz (2007) focus on the efficiency of optimizing the
AUC within gradient descent methods using a polynomial approximation of the AUC. The
running time is comparable to linear discriminant analysis, which is below the computation
time of the mentioned support vector machines. The AdaBoost algorithm is also extended
by Sheng and Tada (2011) who introduce a weighted AUC formula and yield good results
with their proposed AUCBoost method compared to AdaBoost with C4.5 classification
trees as base learner. Another boosting method for maximizing an approximated smooth
function of the AUC for low-dimensional data is proposed by Komori (2011). Komori and
Eguchi (2010) extend the former work to high-dimensional settings by maximizing the
pAUC. In addition, Wang (2011) propose the so-called HingeBoost for optimizing the hinge
loss to maximize the AUC approximately.

The applications mainly concentrate on scientific fields like biostatistics, bioinformatics
or medicine. Most of the studies compare the empirical results to other AUC based methods,
rather than to the logistic regression model. The evaluation in the financial field, and
especially in the consumer credit scoring area, is remarkably rare.

7.3.1 AUC as a Loss Function in Boosting Algorithms

The idea to use the AUC as direct optimization criterion is introduced in the boosting
framework for the presented credit scoring case.

For the analysis, to compare predictive accuracy in the consumer credit market, the
AUC is used as a loss function within the component-wise gradient boosting proposed by
Bühlmann and Hothorn (2007). Instead of calculating with logistic or exponential loss, the

102 7. Boosting

AUC measure is introduced as a loss function, which is implemented as 1−AUC(y, f) with
the definition (Hothorn et al., 2012)

AUC = (n−1n1)−1
∑

i:yi=1

∑
j:yj=−1

I(fi > fj) (7.5)

As mentioned in Chapter 4, this is not differentiable. In this case, the distribution
function of the triangular distribution on [−1, 1] with mean 0 is used as an approximation
of the jump function I((fi − fj) > 0) (Hothorn et al., 2012).

The mentioned implementation of the AUC contains a division by the standard deviation
sd(f). This standardization in each step leads to different values for ν with different variances.
Moreover, there is no σ implemented in the function to control the approximation to the
jump function. For that reason,the PAUC function proposed by Schmid et al. (2012) is
additionally used. Schmid et al. (2012) use the partial area under the receiver operating
characteristic (PAUC) for disease classification and biomarker selection as a loss function.
The step-function is approximated with a sigmoid function K(u) = 1/(1 + exp(−u/σ)),
where the σ is a tuning parameter for the smoothness of the approximation. Since the AUC is
a special case of the proposed function, this offers the opportunity to vary the approximation
with σ. Schmid et al. (2012) propose σ = min {n0, n1}−1/4 (with n0 non-defaults and n1

defaults) as reasonable to set σ.

7.3.2 Boosting AUC in Credit Scoring

Tree-based base learner. The evaluation for the AUC loss in boosting algorithms for
credit scoring is begun with tree-based base learners. The tuning parameters maxdepth,
minsplit, and the number of iterations are varied equivalent to the boosting algorithms in
Section 7.2.1 to examine different combinations. Computational reasons restrict the survey
to the training sample with 50% default rate. The algorithm is trained on the training
sample and applied to the test and validation samples. Various combinations of tuning
parameters are investigated to find the optimal values.

Table 7.10 shows an extract of the results of the analysis of the variables with coarse
classification.

AUC lowCI95% upCI95% iterations maxdepth minsplit

0.6955 0.6859 0.7052 10 1 0
0.7014 0.6917 0.7110 10 2 0
0.7088 0.6992 0.7184 10 3 0
0.7058 0.6962 0.7154 10 4 0
0.7088 0.6992 0.7184 150 3 10
0.7058 0.6962 0.7154 150 4 10

Table 7.10: Boosting results with the AUC as a loss function trained on the 50% training sample and
the test data with classified variables.

The first rows are investigated with 10 iterations and an increasing maxdepth value,
indicating an advancement in discriminative power for the first 3 maxdepth values. In-

7.3 Boosting and the Optimization concerning AUC 103

terestingly, the influence of the number of iterations appears quite low for this algorithm.
With a maxdepth value of 4, the outcome could not be improved with a high number of
iterations. The AUC measure indicates the same value (0.7058) for 10 and 150 iterations.
This phenomenon was first documented for the HingeBoost by Wang (2011).
Since the iteration number is the most important tuning parameter (compare Section 7.1.2),
10-fold cross-validated estimates of the empirical risk was used to determine the stopping
iteration. Figure 7.6 shows the number of iterations on the x-axis, while the y-axis displays
the (1−AUC)-loss.

10−fold kfold

Number of boosting iterations

(1
 −

 A
U

C
)−

Lo
ss

0.
00

14
5

0.
00

15
0

0.
00

15
5

0.
00

16
0

0.
00

16
5

0.
00

17
0

0 500 1000 1500

Figure 7.6: 10-fold cross validation to extract the appropriate number of boosting iterations for
boosting with tree base learner and the AUC as a loss function. The optimal iteration number is 6.

The appropriate number of 6 iterations (maxdepth 4, minsplit 10) approves the previous
findings that an increasing number of iterations does not go along with an increase in
predictive accuracy. As seen in Figure 7.6, the empirical risk remains constant after a
few iterations. The appropriate stopping iteration number determined with the 25-fold
bootstrap method is 9.

Table 7.11 contains the results for the best tuning parameters for the classified variables.

AUC p-value H measure KS MER

test AUCBoost 0.7088 0.1305 0.3031 0.0263
LogReg 0.7211 0.1421 0.3255 0.0263

validation AUCBoost 0.7126 0.1283 0.3100 0.0260
LogReg 0.7275 0.0618 0.1473 0.3364 0.0260

Table 7.11: Further measures for the AUCBoost trained on the 50% training sample and applied to
the test and validation samples with 10 iterations, a maxdepth value of 3, and a minsplit value of 0 for
classified variables. The p-value result from DeLong’s test on the AUC measures.

104 7. Boosting

All the performance measures prove the superiority of the logit model compared to
the component-wise gradient boosting with AUC as a loss function. For instance, the
H measure on the test data indicates a value of 0.1305 for the AUCBoost, and 0.1421 for
the logit model. Note that the estimated coefficients have no probabilistic interpretation
(Hothorn et al., 2012). Therefore, the Brier score is not considered in this context. The
outcomes on the validation data approve the findings.

To reassess the results, the variables are tested separately to assure that the outcomes
are not biased by a single variable. A high number of iterations like 500 or 1000 did not
improve the results. Different step sizes of ν (for example 0.2) did not even improve the
predictive performance. This coincides with the minor importance of the tuning parameter
ν stated in Bühlmann and Hothorn (2007).

The analysis with the AUC as a loss function is attempted for continuous variables
and results in similar conclusions. The outcomes of the AUCBoost with tree base learner
are definitely below those of the logit model. Therefore, these results are not presented in
detail. As described above, the PAUC function (Schmid et al., 2012) is used to vary the
approximation to the jump function. A small value of σ represents a close approximation.
On the test and training data, the parameter indicates only a slight influence for the results
with continuous covariates. The results still achieve AUC values around 70% (compare
Table A.12). In general, it follows that the idea to improve the performance of the scoring
models with the AUC as a loss function in boosting methods cannot be approved for the
presented credit scoring data.

Linear base learners. Within the component-wise gradient boosting, the AUC loss is
also presented in combination with component-wise linear least squares as base procedures.
Instead of using the negative binomial log-likelihood for boosting a linear logistic regression,
the AUC loss is used for the optimization. 22 continuous and 4 categorical variables are
used with the 50% training sample and data sets with encoded meaning were reduced. For
the step length factor ν = 0.1 is used. Table 7.12 displays the results for different iteration
numbers.

test validation

AUC lowCI95% upCI95% AUC lowCI95% upCI95% iterations

0.6896 0.6796 0.6996 0.6978 0.6840 0.7116 10
0.7035 0.6936 0.7134 0.7123 0.6987 0.7260 50
0.7072 0.6973 0.7171 0.7155 0.7019 0.7291 100
0.7080 0.6981 0.7179 0.7160 0.7023 0.7296 150
0.7078 0.6979 0.7177 0.7158 0.7021 0.7294 200
0.7079 0.6980 0.7178 0.7156 0.7019 0.7292 500
0.7079 0.6980 0.7178 0.7155 0.7019 0.7292 1000

Table 7.12: Boosting linear base learners with AUC loss trained on the 50% training sample, applied
to the test and validation samples.

7.3 Boosting and the Optimization concerning AUC 105

Compared to the predictive performance of 0.7207 for the logit model with classified
variables on the test data, the boosting results underachieve. The AUC values are slightly
better than the logit model with continuous variables (0.7051). The same conclusion can
be drawn from the validation data. The presented boosting outcomes are below the results
for the logit model with 0.7224 for the validation (classified covariates). The corresponding
AUC value for the logit model with continuous covariates is 0.7125.

Table 7.13 shows different performance measures for boosting the AUC with linear
base learners with 148 iterations. This optimal iteration number was evaluated with
cross-validation. The test results indicate different conclusions. The AUC, KS and MER
show better performance for the logit model with continuous covariates compared to the
AUCBoost. The H measures indicate better performance for the AUCBoost. Regarding
the different measures on the validation data, the performance is better for the AUCBoost.
The difference of the AUC measures, however, is not significant according to DeLong’s test.

AUC p-value H measure KS MER

test AUCBoost 0.7078 0.1298 0.3063 0.0275
LogReg 0.7051 0.1211 0.3065 0.0274

validation AUCBoost 0.7157 0.1361 0.3179 0.0272
LogReg 0.7125 0.6938 0.1276 0.3142 0.0272

Table 7.13: Different measures for the AUCBoost with linear base learners trained on the 50% training
sample with 148 iterations and applied to the test and validation samples compared to the logit model
with continuous covariates. The p-value results from DeLong’s test on the AUC measures.

Compared to the logit model results with classified variables, the previous findings for
the AUC measure are approved for the different performance measures. The H measure
denotes 0.1411 on the validation data compared to 0.1361 for the AUCBoost. The KS
denotes 0.3305 for the logit model with coarse classification in comparison to 0.3179 for the
AUCBoost. Therefore, the AUCBoost with linear base learners is not definitely better than
the classical logit model.

In Section 7.2.2, AUC values of 0.7113 for the test sample and 0.7187 for the validation
sample (iteration number 379), were achieved for the boosted linear logistic regression
model. This implies that the results with AUC loss do not improve the predictive accuracy
compared to mentioned boosting algorithm.

The appropriate iteration number determined with cross-validation (25-fold bootstrap
compare Table A.12) is 148 with AUC values of 0.7078 (test sample) and 0.7157 (validation
sample). The model contains 16 covariates and outperforms neither the logit model nor the
boosted logistic regression model.

106 7. Boosting

Base learners with smooth effects. To add more flexibility to the model and in analogy
with boosting a generalized additive model, the AUC loss is estimated with P-spline
base procedures. 22 covariates are tested as smoothed effects, while 4 variables remain
categorical effects. Still the 50% training sample is used to train the algorithm, followed
by the application to the test and validation samples. Data with encoded meaning in the
same variable were excluded (e.g. retirees). The step length factor remains 0.1. The results
for different iteration numbers are shown in Table 7.14.

test validation

AUC lowCI95% upCI95% AUC lowCI95% upCI95% iterations

0.6900 0.6800 0.7000 0.6976 0.6838 0.7114 10
0.7139 0.7040 0.7237 0.7217 0.7081 0.7353 50
0.7216 0.7118 0.7314 0.7289 0.7154 0.7424 100
0.7244 0.7147 0.7342 0.7308 0.7173 0.7442 150
0.7259 0.7161 0.7356 0.7314 0.7179 0.7449 200
0.7275 0.7178 0.7373 0.7306 0.7171 0.7441 500
0.7277 0.7179 0.7374 0.7297 0.7162 0.7432 1000

Table 7.14: Boosting P-spline base learners with AUC loss trained on the 50% training sample, applied
to the test and validation samples.

As shown in Table 7.14, the AUC values exceed the predictive performance of the logit
model with coarse classification (0.7207 for the test sample and 0.7224 for the validation
sample) with a high number of iterations. With the k-fold cross-validation that has 10
replicates, the optimal stopping iteration is determined to be 384. Compared to the tree-
based base learner with AUC loss, this denotes a relatively high iteration number, and
implies in contrast to the former mentioned algorithm, that the predictive accuracy increases
with an increasing number of iterations. The improvement with higher iteration numbers
however is slight, and the AUC value for 10 iterations is quite high as well. Moreover,
the model with 384 iterations includes 25 base-learners and, therefore, a high number of
covariates. The AUC values are 0.7273 (test sample) and 0.7310 (validation sample). The
optimal stopping iteration with the 25-fold bootstrap method also is determined to 58
(Figure A.13). The predictive accuracy with 0.7154 and 0.7234 (test and validation sample)
does not exceed the performance of the logit model. 16 base-learners are included in the
model with 58 iterations.

In comparison to the boosted generalized additive model (compare Section 7.2.3), the
predictive performance with AUC loss exceeds on the test sample (0.7273 to 0.7245), but
remains on the same level on the validation sample (0.7310 to 0.7311) for 384 iterations. In
contrast, the predictive accuracy for the model with 58 iterations underachieve the results
for the boosted generalized additive model (test sample 0.7154 to 0.7245 and validation
sample 0.7234 to 0.7311). As a result, a definite improvement to the boosted generalized
additive model can not be concluded.

Regarding different performance measures, the same conclusions can be drawn. Ta-
ble 7.15 contains the comparison of the AUCBoost with smooth effects for 58 and 384

7.4 Discussion of Boosting Methods in Credit Scoring 107

iterations to the logit model with continuous covariates. Both boosting results with different
iteration numbers outperform the logit model. The AUC difference on the validation data is
significant for the AUCBoost with 384 iterations and the logit model according to DeLong’s
test.

iteration AUC p-value H measure KS MER

test AUCBoost 58 0.7154 0.1372 0.3181 0.0275
AUCBoost 384 0.7273 0.1470 0.3318 0.0275
LogReg 0.7051 0.1211 0.3065 0.0275

validation AUCBoost 58 0.7234 0.1824 0.1404 0.3264 0.0272
AUCBoost 384 0.7310 0.0226 0.1497 0.3405 0.0272
LogReg 0.7125 0.1276 0.3142 0.0272

Table 7.15: Different measures for the AUCBoost with smooth effects trained on the 50% training
sample with 58 and 384 iterations and applied to the test and validation samples in comparison to the
logit model with continuous covariates. The p-values result from DeLong’s test on the AUC measures.

The comparison with different performance measures of the AUCBoost and the logit
model with coarse classification indicates, however, that only a high iteration number shows
better performance for the AUCBoost. The H measure of 0.1411 for the logit model with
classified covariates (validation) can be outperformed with 384 iterations (0.1497) but not
with 58 iterations (0.1404).

For the credit scoring case, the predictive accuracy can not be improved with the
optimization concerning AUC. While the AUC loss outperforms in some cases the logit
model, no advancements exist compared to the former estimated boosting algorithms
presented in Section 7.2. Additionally, it seems for the analysis here that the influence of
the loss function is of minor importance rather than the choice of the base-learners.

7.4 Discussion of Boosting Methods in Credit Scoring

Boosting methods are evaluated in this section for the credit scoring data. The boosting
framework offers a great variety of different algorithms and shows competitive results for
the scoring models compared to the classical models estimated with logistic regression.

The original AdaBoost is first applied with the Discrete, Real and Gentle AdaBoost
in combination with classification trees as base learners. Most of the results outperform
the classical logit model in terms of predictive accuracy measured with the AUC. A main
disadvantage of this approach is the lack of interpretability. As previously discussed in the
chapter on random forests, black box models are difficult to establish in the retail banking
area.

The presented component-wise gradient boosting provides a huge framework of different
base learners and loss functions, leading to an exhaustive amount of possible analyses. The
fact that each variable is fitted separately against the gradient denotes variable selection

108 7. Boosting

within the algorithm, which indicates the main advantage of this method. However, the
boosting methods have some weaknesses, like the lack in inference (cf. Robinzonov (2013)
for further problems). The results of boosting logistic regression show good predictive
performance regarding the AUC measure, even if models with many covariates arise.
Promising results can be shown for boosting generalized additive models where smoothing
effects are included in the models. The outcomes shown for this method, outperform the
classical logit model as well as the classical additive logit model. In addition to the good
performance, the component-wise gradient boosting offers the possibility to interpret the
model in the final iteration. Of course, this depends on the base learner. Moreover, partial
effects can be visualized for the algorithm.

Since the AUC is the most commonly used measure in credit scoring, it is used in the
boosting framework as a loss function. Different base learners are combined with the AUC
loss. The performance of the boosting algorithms with AUC loss and tree base learner
indicates low predictive accuracy. The best predictive performance regarding the AUC
measure is yielded with smoothing effects. This implies that the adequate choice of the base
learner is more important for the credit scoring data than the selection of the loss function.

A critical aspect for the presented boosting algorithms is that the methods are very
intensive computationally and restrict some of the investigations to the smallest training
sample. Improvements in the efficiency of the algorithms are important for the implementa-
tion in the credit scoring area and the application to huge data sets. Another point for
using boosted scoring models in the retail banking sector is business rule engines must be
able to convert and implement the rules of the models.

As previously mentioned for recursive partitioning algorithms, boosting methods are
also not implemented in many standard statistical software used in the banking sector. This
makes it difficult to analyze and test methods easily in real-life practice. Nevertheless, the
presented credit scoring results evaluated with different boosting algorithms give promising
results for further research and effort to implement and apply boosting algorithms in scoring
models.

Chapter 8

Summary and Outlook

Improving credit scoring models in terms of predictive accuracy is the main focus of this
thesis. Recent methods from statistics and machine learning are benchmarked regarding
the AUC measure. Figure 8.1 gives an overview of the algorithms evaluated for the credit
scoring data and Table 8.1 shows a comparison of the methods for the 50% training sample
and continuous covariates. The thesis covers classical models like logistic regression and
generalized additive models, an AUC approach, recursive partitioning methods, and finally,
boosting algorithms from machine learning.

As a starting point, the AUC measure is explained in Chapter 2 and further performance
measures, used in credit scoring, are presented. A description of the German retail credit
data is given as a basis for the presented evaluation.

The classical scorecard development process is briefly presented in Chapter 3 to give
some insights in the scoring models estimated and used in practice. Besides the obligatory
data preparation, the standard procedure covers the univariate and multivariate analyses,
where the variables are investigated separately regarding their predictive performance and
in combination in the logistic regression model. The estimates resulting from the final
model are normally converted to so-called scores. This is just a scaling to a specific range
1 to 1000, for example, which does not change the ranking order of the observations, but
provides easily interpretable models that are suitable for straightforward implementation in
the business rule engine.

Chapter 4 is concerned with the AUC approach, where the widely applied AUC measure
is introduced as direct optimization criterion. The relationship of the AUC to the Wilcoxon
statistic is outlined and the Nelder–Mead algorithm is used as derivative-free optimization
procedure, because the AUC is as a sum of step functions not differentiable. The properties
of this approach are analyzed within a simulation study where five different link functions
are simulated in the data to compare the AUC approach and the logit model. The results
indicate the tendency that the AUC approach yields better predictive accuracy if the link
function is not logistic. This implies that the AUC approach outperforms in cases where the
distribution assumption of the logit model fails. In these cases, the optimality properties
of the AUC approach still hold for monotone increasing functions. In the AUC approach,
the coefficients of the classical logit model are used as starting values for the optimization.

110 8. Summary and Outlook

The evaluation of the credit scoring data shows slight improvements for the AUC approach
compared to the logit model.

The credit scoring problem in this thesis is also evaluated with a Generalized Additive
Model (Chapter 5). By including nonlinearities in the algorithm, the logistic additive model
indicates higher predictive accuracy compared to the classical logit model. This approach
offers interesting insights in the relationship of the dependent variable and the covariates
and should at least be considered as supplementary method for analyzing credit defaults.

Boosting Methods (Chapter 7)

• Discrete, Real and Gentle AdaBoost

 Classification tree base learner

• Boosting Logistic Regression

• Boosting Generalized Additive Model

• Boosting AUC as a loss function
 Classification trees, linear effects and

 smoothing effects as base learner

AUC

Classical Methods (Chapters 3 and 5)

• Logistic Regression

• Generalized Additive Model

Recursive Partitioning (Chapter 6)

• Classification Trees

 CART and Conditional Inference Trees (CIT)

• Model-based Recursive Partitioning

 Classification tree with logistic regression

• Random Forests

 Based on CART and CIT

AUC Approach (Chapter 4)

• AUC as direct optimization criterion

 Wilcoxon statistic

 Nelder-Mead algorithm

Credit

Scoring

Figure 8.1: Overview of the presented methods in this thesis for the credit scoring evaluation.

A main part of this thesis is concerned with the evaluation of recursive partitioning
algorithms in credit scoring (Chapter 6). The presented conditional inference trees overcome
the variable selection bias of the original CART algorithm, but both approaches lead to
very poor predictive performance for the credit scoring data even if the binary structure
and the clarity of the classification rules would imply an advantage.
An interesting approach that shows competitive results compared to the logit model for
the credit scoring data, is the model-based recursive partitioning. Testing the stability of
the coefficients is an interesting approach and can help improving scoring models. The
complexity of the models should be taken into account.
The performance concerning the AUC measure is different for both proposed random
forest algorithms. Random forests overcome the instability of single classification trees
and outperform them in terms of the AUC measure, but they are difficult to interpret
due to their structure. The results for the random forests with conditional inference trees

111

are better than those based on CART like trees. Even if random forests indicate high
predictive accuracy for the validation data and the 50% training sample shown in Table 8.1,
random forest algorithms in the presented analysis outperform in some but not in all cases
shown in Chapter 6. In other scientific fields, and even in some other credit scoring studies,
good performances are confirmed for random forest algorithms. The variable importance
measures are useful tools for supporting the classical scorecard development process.

Different methods AUC measure

Discrete AdaBoost 0.7275 Chapter 7/ Table A.8
Boosting GAM 0.7267 Chapter 7/ Table 7.9
GAM 0.7263 Chapter 5/ Table 5.1
Gentle AdaBoost 0.7249 Chapter 7/ Table 7.2
Random forest CIT 0.7241 Chapter 6/ Table 6.18
Real AdaBoost 0.7236 Chapter 7/ Table A.6
AUCBoost smooth effects 0.7234 Chapter 7/ Table 7.15
Boosting LogReg 0.7182 Chapter 7/ Table 7.6
Random forest CART 0.7163 Chapter 6/ Table 6.14
AUCBoost linear base learner 0.7157 Chapter 7/ Table 7.13
AUC Approach 0.7141 Chapter 4/ Table 4.5
Model based tree 0.7134 Chapter 6/ Table 6.11
Logistic regression 0.7125 Chapter 3/ Table 5.1
AUCBoost tree base learner 0.6993 Chapter 7/ Table A.12
CART 0.6814 Chapter 6/ Table 6.3
Conditional inference tree 0.6756 Chapter 6/ Table 6.6

Table 8.1: Comparison of the presented methods in this thesis for the validation data, trained on the
50% training sample with continuous covariates. The corresponding AUC measure for the logit model
with classified variables denotes 0.7224.

Another principal part of this thesis is Chapter 7 that includes the evaluation of boosting
methods from machine learning for credit scoring. Good results and competitive perfor-
mance can be stated for the predictive accuracy of some boosting algorithms compared
to the classical scoring model. The Gentle AdaBoost, with classification trees as base
learner, represents outperforming outcomes, compared to the logit model with respect to
the AUC measure. This approach represents a kind of black box model, and is, therefore,
critical for the application in credit scoring. For the comparison in Table 8.1, the best AUC
measure is shown for Discrete AdaBoost. The boosting of generalized additive models shows
improvements in performance compared to the classical logit model, as well as compared to
the additive logistic regression. Since this approach belongs to the component-wise gradient
boosting, variable selection is included in the algorithm and more views into the results are
possible.
While other presented boosting methods, like boosting logistic regression, provide competi-
tive results with respect to the logit model, the boosting algorithms with the AUC as a loss
function yield AUC values below the corresponding classical scoring models with tree base
learners. By using the AUC as a loss function in combination with smooth effects or linear
base learners, the predictive performance is quite competitive compared to the logit model.

112 8. Summary and Outlook

This indicates that the choice of the base learner is more important in this case than using
the AUC as a loss function.

To summarize, the main conclusions of my thesis are as follows. The classical scoring
model, based on logistic regression, still provides robust and interpretable results with
good predictive performance. Using the AUC as direct objective function is a competitive
alternative, since the AUC measure still dominates in credit scoring in terms of measuring
predictive accuracy. Specific boosting algorithms improve the performance of classical
scoring models regarding the AUC measure. Recursive partitioning methods can support
the development of scoring models with interesting analytical tools. As shown in the
comparison of the methods for the 50% training sample in Table 8.1, the newer presented
methods indicate competitive predicitive performance compared to the classical logit model.

Relevant issues in retail credit scoring are outlined with some remarks for further
research:

Interpretability. As mentioned in this thesis, the interpretability of the scoring models
and the ease of explanation are main features in the credit scoring context. The acceptance
of methods in the retail banking practice depends on the complexity of the algorithms.
This is, in fact, a tradeoff between the desire for the highest achievable peformance and
the complexity of the models. The presented boosting methods offer better predictive
performance than the classical scoring models but represent more complex algorithms.
There is, however, an ongoing process for developing and enhancing these algorithms that
could lead to more application in the banking sector.

Feasibility and Implementation. For the application of new statistical methods in credit
scoring practice, the first step is the availability of the methods in the standard statistical
software packages used in practice. Vice versa, the use of the R Software in the banking
area would be a possibility to open the methodological view of scoring models on a broad
base. Another task deals with the implementation of the new methods in business rule
engines. An important point not covered in this thesis is converting the methods into rules
feasible for implementation.

Developments in Banking. This point deals with a commercial point of view, rather
than a statistical one. New regulations in the banking sector, for example, resulting from
Basel II (Basel Committee on Banking Supervision, 2004) have a permanent influence
on scoring models. The definition of default is a case of how requirements can affect
the development process. This is especially relevant for behavioral scoring, which is not
evaluated in this thesis since the focus is on the application scoring. Whether the recent
algorithms presented in this work could improve the performance of the behavioural scoring
models, is an interesting question for further analyses.
Another point in this context are data protection regulations, which can influence the
utilization of the variables apart from statistical performance analyses. Additionally,
legislation can affect the use of specific covariates. This is already the case in the insurance

113

business, where gender can not be used anymore for the risk assessment, and unisex rates
are required.

Statistical Developments. Some of the newer presented methods are very intensive
computationally and restrict the analyses in some parts to the smallest training sample.
New developments regarding efficiency of the algorithms could lead to more popularity
in credit scoring. The application to big data is an important aspect even in many other
scientific fields. Increasing computational processors combined with developed software offer
new possibilities to implement new classification rules in the credit scoring environment.
Moreover, the newer methods still indicate problems like a lack in inference for boosting
algorithms. Further research for more insights and interpretability would also be promising
for the application in the retail banking sector.
High accuracy in scoring models will always be a key issue for retail credit banks. Conse-
quently, the method comparison of statistical state-of-the-art algorithms continues to be an
essential question in credit risk assessment. Breiman (2001b, p.199) states that for solving
problems with real world data “...We need to move away from exclusive dependence on
data models and adopt a more diverse set of tools”.

114 8. Summary and Outlook

Appendix A

Supplementary Material

A.1 Optimization AUC - Chapter 4

The following Figures (A.1 to A.4) result from the simulation study in Chapter 4 and denote
boxplots to compare the AUC approach and the logit model. 100 simulations were run for
the simulation and different link functions were simulated in the data. The procedure is
described in Section 4.2.2.

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

lowCI log Reg upCI lowCI AUC Opt upCI

0.70

0.72

0.74

0.76

0.78

0.80

0.82

training

A
U

C

●
●

●
●

●
●

●
●

●
●

●
●

lowCI log Reg upCI lowCI AUC Opt upCI

0.70

0.72

0.74

0.76

0.78

0.80

0.82

validation

A
U

C

Figure A.1: AUC comparison for the logit model (white) and the AUC approach (grey) with confidence
intervals on the simulated training data and applied to validation data with logit link.

116 A. Supplementary Material

●

●

●

●

●

●

lowCI log Reg upCI lowCI AUC Opt upCI

0.80

0.82

0.84

0.86

0.88

0.90

training

A
U

C

●

●

●

●

●

lowCI log Reg upCI lowCI AUC Opt upCI

0.80

0.82

0.84

0.86

0.88

validation

A
U

C

Figure A.2: AUC comparison for the logit model (white) and the AUC approach (grey) with confidence
intervals on the simulated training data and applied to validation data with complementary log log link.

●

●

●

●

●

●

lowCI log Reg upCI lowCI AUC Opt upCI

0.86

0.88

0.90

0.92

0.94

training

A
U

C

●

●

●

lowCI log Reg upCI lowCI AUC Opt upCI

0.86

0.88

0.90

0.92

0.94

validation

A
U

C

Figure A.3: AUC comparison for the logit model (white) and the AUC approach (grey) with confidence
intervals on the simulated training data and applied to validation data with link1.

A.1 Optimization AUC - Chapter 4 117

●

●

●

●

●

●

lowCI log Reg upCI lowCI AUC Opt upCI

0.78

0.80

0.82

0.84

0.86

0.88

training

A
U

C

lowCI log Reg upCI lowCI AUC Opt upCI

0.76

0.78

0.80

0.82

0.84

0.86

validation

A
U

C

Figure A.4: AUC comparison for the logit model (white) and the AUC approach (grey) with confidence
intervals on the simulated training data and applied to validation data with link2.

118 A. Supplementary Material

A.2 Generalized Additive Model - Chapter 5

The following table shows the comparison of the generalized additive models to the logit
model with classified covariates.

AUC Gini H measure KS MER Brier score

trainORG GAM 0.7250 0.4501 0.1404 0.3338 0.0272 0.0270
LogReg 0.7219 0.4437 0.1415 0.3247 0.0272 0.0271

train020 GAM 0.7250 0.4500 0.1403 0.3313 0.0271 0.0703
LogReg 0.7237 0.4474 0.1428 0.3285 0.0272 0.0703

train050 GAM 0.7263 0.4527 0.1414 0.3314 0.0272 0.2353
LogReg 0.7224 0.4448 0.1411 0.3305 0.0272 0.2351

Table A.1: Further measures for the GAM results compared to the logistic regression results with
classified variables for the validation data.

A.3 Recursive Partitioning - Chapter 6 119

A.3 Recursive Partitioning - Chapter 6

The following tables show results of classification trees based on the CART algorithm
referenced in Section 6.4.1. Table A.2 includes the information split criterion, Table A.3
shows outcomes for different prior probabilities and the Tables A.4 and A.5 contain results
of trees with m-estimate smoothing.

train050 AUC minsplit cp-value number of splits split criterion AUC LogReg

test 0.6707 10 0.00395778 16 info 0.7051
validation 0.6771 10 0.00395778 16 info 0.7125

Table A.2: Prediction accuracy for the CART classification trees trained on the 50%-training sample,
applied to the test and validation samples for the information index as split criterion.

test validation

AUC lowCI95% upCI95% AUC lowCI95% upCI95% priors

0.6679 0.6578 0.6780 0.6627 0.6487 0.6767 without
0.6340 0.6238 0.6442 0.6320 0.6179 0.6461 0.95/0.05
0.5560 0.5459 0.5661 0.5381 0.5242 0.5520 0.9/0.1

Table A.3: Prediction accuracy for CART classification trees trained on the original training sample,
applied to the test and validation samples with the gini split criterion and different prior probabilities.
The minsplit value is fixed to a value of 20, while the cp-value is fixed to 0.0001.

AUC minsplit m p cp-value number of splits AUC LogReg

trainORG 0.6800 10 5 0.974 0.00024540 332 0.7045
train020 0.6772 20 20 0.974 0.00085890 144 0.7054
train050 0.6734 100 5 0.974 0.00043975 28 0.7051

Table A.4: Prediction accuracy for the best CART classification trees with m-estimate smoothing and
gini index as split criterion, trained on the different training samples and applied to the test sample.

AUC minsplit m p cp-value number of splits AUC LogReg

trainORG 0.6731 10 5 0.974 0.00024540 332 0.7118
train020 0.6793 20 20 0.974 0.00085890 144 0.7129
train050 0.6827 100 5 0.974 0.00043975 28 0.7125

Table A.5: Validation results for the best CART classification trees with m-estimate smoothing and
gini index as split criterion, trained on the different training samples, applied to the validation sample.

120 A. Supplementary Material

Figure A.5 is referenced in Section 6.4.3 where random forests are analysed for the credit
scoring case. The variable importance measure ’mean decrease in node impurity’ is shown
for all three training samples.

0

50

100

150

200

250

300

va
r0
4

va
r0
3

va
r2
6

va
r1
1

va
r0
1

va
r0
7

va
r2
3

va
r2
1

va
r2
4

va
r2
5

va
r2
0

va
r1
6

va
r1
7

va
r2
2

va
r1
5

va
r0
8

va
r1
0

va
r0
9

va
r1
4

va
r1
8

va
r1
3

va
r0
2

va
r1
9

va
r0
5

va
r0
6

va
r1
2

m
e

an
 d

ec
re

as
e

 g
in

i

0

20

40

60

80

100

120

140

160

va
r0
4

va
r0
3

va
r2
6

va
r1
1

va
r0
1

va
r0
7

va
r2
3

va
r2
1

va
r2
4

va
r2
5

va
r2
0

va
r1
6

va
r1
7

va
r2
2

va
r1
5

va
r0
8

va
r1
0

va
r0
9

va
r1
4

va
r1
8

va
r1
3

va
r0
2

va
r1
9

va
r0
5

va
r0
6

va
r1
2

m
e

an
 d

ec
re

as
e

 g
in

i

0

50

100

150

200

250

300

350

va
r0
4

va
r0
3

va
r2
6

va
r1
1

va
r0
1

va
r0
7

va
r2
3

va
r2
1

va
r2
4

va
r2
5

va
r2
0

va
r1
6

va
r1
7

va
r2
2

va
r1
5

va
r0
8

va
r1
0

va
r0
9

va
r1
4

va
r1
8

va
r1
3

va
r0
2

va
r1
9

va
r0
5

va
r0
6

va
r1
2

m
e

an
 d

ec
re

as
e

gi
n

i

Figure A.5: Mean decrease in node impurity for the 26 covariates on the 20% training sample (top),
for the 50% training sample (middle) and the original training sample (bottom).

A.3 Recursive Partitioning - Chapter 6 121

Figure A.6 shows AUC measures for random forest results based on conditional inference
trees. The number of trees is fixed to 200, while the mtry value is changed. The figure
presents results with continuous covariates.

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A
U

C

mtry

AUC_ges lowKIAUC upKIAUC

Figure A.6: Prediction accuracy for random forests based on conditional inference trees trained on
the 50% training sample and applied to the test sample by varying the mtry-values for 200 trees.

122 A. Supplementary Material

A.4 Boosting - Chapter 7

The following Tables (A.6 to A.9) present results referenced in Section 7.2.1 where boosting
methods are evaluated for the credit scoring data. Classification trees are used as base
learners for the Discrete AdaBoost and the RealAdaBoost and continuous covariates are
employed.

AUC iterations maxdepth minsplit AUC LogReg p-value

trainORG test 0.7156 150 8 0 0.7045
validation 0.7198 150 8 0 0.7118 0.3340

train020 test 0.7170 150 30 0 0.7054
validation 0.7206 150 30 0 0.7129 0.3430

train050 test 0.7177 150 15 10 0.7051
validation 0.7236 150 15 10 0.7125 0.1726

Table A.6: Real AdaBoost results with continuous variables trained on three different training samples
and applied to the test and validation samples in comparison to the logit model. The p-values result
from DeLong’s test.

AUC Gini H measure KS MER Brier score

trainORG Real 0.7198 0.4396 0.1363 0.3239 0.0272 0.0786
LogReg 0.7118 0.4237 0.1283 0.3101 0.0272 0.0270

train020 Real 0.7206 0.4412 0.1349 0.3241 0.0272 0.1116
LogReg 0.7129 0.4257 0.1286 0.3143 0.0272 0.0719

train050 Real 0.7236 0.4473 0.1418 0.3259 0.0271 0.2282
LogReg 0.7125 0.4249 0.1276 0.3142 0.0272 0.2494

Table A.7: Further measures for the Real AdaBoost results with continuous variables compared to the
logistic regression results for the validation data.

AUC iterations maxdepth minsplit AUC LogReg p-value

trainORG test 0.7230 150 4 0 0.7045
validation 0.7277 150 4 0 0.7118 0.0526

train020 test 0.7226 150 5 0 0.7054
validation 0.7269 150 5 0 0.7129 0.0861

train050 test 0.7244 150 5 0 0.7051
validation 0.7275 150 5 0 0.7125 0.0664

Table A.8: Discrete AdaBoost results with continuous variables trained on three different training
samples and applied to the test and validation samples in comparison to the logit model. The p-values
result from DeLong’s test.

A.4 Boosting - Chapter 7 123

AUC Gini H measure KS MER Brier score

trainORG Discrete 0.7277 0.4554 0.1450 0.3316 0.0272 0.0270
LogReg 0.7118 0.4237 0.1283 0.3101 0.0272 0.0270

train020 Discrete 0.7269 0.4538 0.1465 0.3279 0.0271 0.0648
LogReg 0.7129 0.4257 0.1286 0.3143 0.0272 0.0719

train050 Discrete 0.7275 0.4550 0.1487 0.3383 0.0272 0.2276
LogReg 0.7125 0.4249 0.1276 0.3142 0.0272 0.2494

Table A.9: Further measures for the Discrete AdaBoost results with continuous variables compared to
the logistic regression results for the validation data.

The following four Figures (A.7 to A.10) and Table A.10 result from evaluating the
credit scoring data with boosting the logistic regression model in Section 7.2.2.
Figure A.7 contains cross-validation results and Figure A.8 shows the AUC values for
the iterations from 1 to 1000. Table A.10 and the Figures A.9 and A.10 provide the test
and validation results for boosting logistic regression with categorical effects and iteration
numbers from 1 to 1500.

25−fold bootstrap

Number of boosting iterations

N
eg

at
iv

e
B

in
om

ia
l L

ik
el

ih
oo

d

0.
60

0.
62

0.
64

0.
66

0.
68

0 200 400 600 800 1000

Figure A.7: Boosting logistic regression - cross validation with 25-fold bootstrapping to extract an
appropriate iteration number (270).

124 A. Supplementary Material

0,6

0,62

0,64

0,66

0,68

0,7

0,72

0,74

0,76

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951

A
U

C

iterations

AUC validation

lowCI AUC

upCI AUC

Figure A.8: AUC values with confidence intervals for boosting logistic regression on the validation
sample for iterations 1 to 1000 with 26 potential continuous variables.

test validation

AUC lowCI95% upCI95% AUC lowCI95% upCI95% iterations

0.6510 0.6412 0.6608 0.6632 0.6496 0.6768 10
0.6940 0.6843 0.7036 0.7047 0.6913 0.7180 50
0.7069 0.6973 0.7165 0.7179 0.7047 0.7312 100
0.7118 0.7022 0.7214 0.7218 0.7086 0.7351 150
0.7236 0.7141 0.7331 0.7313 0.7182 0.7444 500
0.7266 0.7171 0.7360 0.7334 0.7203 0.7165 1000
0.7269 0.7175 0.7364 0.7335 0.7204 0.7466 1200
0.7273 0.7178 0.7368 0.7335 0.7204 0.7466 1500

Table A.10: Boosting logistic regression trained on the 50% training sample, applied to the test and
validation samples with categorical variables.

A.4 Boosting - Chapter 7 125

0,55

0,57

0,59

0,61

0,63

0,65

0,67

0,69

0,71

0,73

0,75

A
U

C

iterations

AUC train

lowCI AUC

upCI AUC

Figure A.9: AUC values with confidence intervals for boosting logistic regression on the test sample
for iterations 1 to 1500 with 26 potential categorical variables.

0,55

0,60

0,65

0,70

0,75

A
U

C

iterations

AUC validation

lowCI AUC

upCI AUC

Figure A.10: AUC values with confidence intervals for boosting logistic regression on the validation
sample for iterations 1 to 1000 with 26 potential categorical variables.

126 A. Supplementary Material

Figure A.11 and Table A.11 are referenced in Section 7.2.3. The outcomes result from
boosting a generalized additive model for the credit scoring data. While Figure A.11
contains cross validation results, Table A.11 shows the prediction accuracy for boosting
GAMs with 8 potential variables.

25−fold bootstrap

Number of boosting iterations

N
eg

at
iv

e
B

in
om

ia
l L

ik
el

ih
oo

d

0.
58

0.
60

0.
62

0.
64

0.
66

0.
68

0 200 400 600 800 1000

Figure A.11: Boosting generalized additive models - cross validation with 25-fold bootstrapping to
extract an appropriate iteration number (203).

test validation

AUC lowCI95% upCI95% AUC lowCI95% upCI95% iterations

0.6769 0.6668 0.6869 0.6845 0.6706 0.6984 10
0.7098 0.6999 0.7197 0.7171 0.7035 0.7308 50
0.7175 0.7077 0.7273 0.7245 0.7109 0.7380 100
0.7200 0.7102 0.7298 0.7261 0.7126 0.7397 150
0.7213 0.7115 0.7311 0.7267 0.7131 0.7402 211
0.7215 0.7117 0.7313 0.7266 0.7131 0.7402 233
0.7219 0.7121 0.7317 0.7266 0.7131 0.7402 261
0.7226 0.7128 0.7324 0.7258 0.7123 0.7393 500
0.7223 0.7125 0.7321 0.7242 0.7107 0.7378 1000

Table A.11: Boosting generalized additive models with P-spline base-learners and the negative binomial
log-likelihood loss trained on the 50% training sample, applied to the test and validation samples with
8 potential variables.

A.4 Boosting - Chapter 7 127

In Section 7.3.2, the credit scoring data are evaluated with boosting algorithms and the
AUC as a loss function. Figure A.12 and Figure A.13 are referenced there, and show results
for the cross-validation to find the optimal iteration number.

25−fold bootstrap

Number of boosting iterations

(1
 −

 A
U

C
)−

Lo
ss

0.
00

04
2

0.
00

04
3

0.
00

04
4

0.
00

04
5

0 200 400 600 800 1000

Figure A.12: Boosting linear effects with AUC loss function - cross validation with 25-fold bootstrapping
to extract an appropriate iteration number (148).

25−fold bootstrap

Number of boosting iterations

(1
 −

 A
U

C
)−

Lo
ss

0.
00

04
2

0.
00

04
3

0.
00

04
4

0.
00

04
5

0 200 400 600 800 1000

Figure A.13: Boosting smooth effects with AUC loss function - cross validation with 25-fold boot-
strapping to extract an appropriate iteration number (58).

128 A. Supplementary Material

Table A.12 is referenced in section 7.3.2 and contains AUC measures for the boosting
method applied to the credit scoring data with the AUC as a loss function.

test validation

AUC lowCI95% upCI95% AUC lowCI95% upCI95% iterations maxdepth minsplit sigma

0.6854 0.6757 0.6951 0.6870 0.6735 0.7005 100 4 0 0.05
0.6949 0.6852 0.7046 0.6993 0.6859 0.7127 100 4 0 0.1
0.6993 0.6897 0.7090 0.7033 0.6900 0.7167 100 4 0 0.16
0.7045 0.6949 0.7141 0.7083 0.6950 0.7216 100 4 0 0.2
0.7096 0.7001 0.7192 0.7092 0.6959 0.7226 100 4 0 0.3
0.7054 0.6958 0.7150 0.7041 0.6908 0.7175 100 4 0 0.5
0.6866 0.6769 0.6963 0.6839 0.6703 0.6974 100 4 0 0.8

Table A.12: Boosting results with AUC as a loss function for the test and validation sample trained
on the 50% training sample with different values for sigma as approximation to the jump function.
The smaller the σ the closer the approximation to the jump function.

Appendix B

Computational Aspects

B.1 Statistical Software

The R system (R Development Core Team, 2012) for statistical computation and the
statistical analysis software SAS were the basis for all analyses presented in this thesis.
In the following, add-on R packages are highlighted, which were mainly used in the in-
vestigations. For standard procedures like GLMs or the creation of figures, I refer to the
standard manuals of the R language.

The R package optimx (Nash and Varadhan, 2012) contains an implementation of
the Nelder–Mead method, which was used in Chapter 4 for the AUC optimization. An
example of the R-Code for the AUC approach and the corresponding simulation study is
also presented in the following Section B.2.

The analyses for the Generalized Additive Models in Chapter 5 were performed with the
R package gam (Hastie, 2011). The GAM framework of Wood (2006), which is referenced
for an outlook, can be investigated with the R package mgcv (Wood, 2013).

The classification trees based on CART in Chapter 6 were performed with the R package
rpart (Therneau and Atkinson, 2010). The R package party (Hothorn et al., 2013) was
used for the investigations of conditional inference trees. The traditional random forests
are implemented in the R package randomForest of Liaw and Wiener (2009), while the
random forests based on conditional inference trees are included in the R package party

(Hothorn et al., 2013). The results for the model-based recursive partitioning algorithms in
Chapter 6 were also produced with the R package party.

In Chapter 7, the R packages mboost (Hothorn et al., 2012) and ada (Culp et al., 2007)
were used as implementations for the different boosting techniques. Moreover, the R-Code
provided by Schmid et al. (2012) for the PAUC function was used in the boosting chapter.

130 B. Computational Aspects

B.2 Selected R-Code

In addition to the statistical software details in the former section (Appendix B.1), examples
for the AUC approach and the simulation study of Chapter 4 are presented here.

The following R-Code gives an example of the AUC approach for three explanatory
variables and a binary outcome variable to illustrate the procedure.

AUC approach - example 3 variables

optimization beta coeff with AUC und Nelder Mead

AK, 30.03.2012

#load the required packages

library(optimx)

library(reshape)

##step 1: function to create data for AUC with Wilcoxon

data: data sample

id: unique id

gs: binary outcome variable

var1 to var3: explanatory variables

dataufbereiten3var <- function(data, id, gs, var1, var2, var3) {

data1 <- data[,c(id,gs,var1,var2,var3)] #take these vars

Gute <- subset(data1, data1[,c(gs)]==0) #take non-defaults

Schlechte <- subset(data1, data1[,c(gs)]==1) #take defaults

#rename variables for non-defaults

Gute <- rename.vars(Gute,c(id,gs,var1,var2,var3),c(paste(id,"G",sep="_"),

paste(gs,"G",sep="_"),paste(var1,"G",sep="_"),paste(var2,"G",sep="_"),

paste(var3,"G",sep="_")))

#rename variables for defaults

Schlechte <- rename.vars(Schlechte, c(id,gs,var1,var2,var3),

c(paste(id,"S",sep="_"),paste(gs,"S",sep="_"),paste(var1,"S",sep="_"),

paste(var2,"S",sep="_"),paste(var3,"S",sep="_")))

#build all combinations with the id’s and rename id’s

neu <- expand.grid(Gute[,c(paste(id,"G",sep="_"))],

Schlechte[,c(paste(id,"S",sep="_"))])

neu <- rename.vars(neu, c("Var1","Var2"), c(paste(id,"G",sep="_"),

paste(id,"S",sep="_")))

#add variables for non-defaults and defaults

newdata <- merge(neu, Gute, by=paste(id,"G",sep="_"))

B.2 Selected R-Code 131

newdata2_3var <- merge(newdata, Schlechte, by=paste(id,"S",sep="_"))

#return(newdata2_3var)

save("newdata2_3var", file="...")

}

##step 2: function to calculate AUC with Wilcoxon

beta: start values --> fix one value

data: data created with former function

var1 to var3: explanatory variables

wilkAUC_bs50 <- function (beta, data, var1,var2,var3) {

#build the difference

diffq <- (1)*data[,paste(var1,"S",sep="_")]-(1)*

data[,paste(var1,"G",sep="_")]+beta[1]*data[,paste(var2,"S",sep="_")]-

beta[1]*data[,paste(var2,"G",sep="_")]+beta[2]*

data[,paste(var3,"S",sep="_")]-beta[2]*data[,paste(var3,"G",sep="_")]

#Wilcoxon

neux <- ifelse(diffq < 0, c(0), (ifelse(diffq == 0, c(0.5), c(1))))

anz2 <- nrow(data)

summe2 <- sum(neux)

AUC2 <- summe2/anz2 #AUC value

return(-AUC2)

}

##step 3: optimization betas with AUC and Nelder Mead

par: start values from logistic regression - fix one value (normalization)

fn: wilkAUC_bs50 from step 2

data: data sample from step 1

var1 to var3: explanatory variables

alternative to optimx --> optim

optimx(c(betaLR2/betaLR1,betaLR3/betaLR1), wilkAUC_bs50,data=newdata2_3var,

method=c("Nelder-Mead"),

var1="name1", var2="name2",var3="name3")

The R-Code for the simulation study used in Chapter 4 is presented in the following
with the example for simulating the logistic relationship in the data. The former functions
for the AUC approach are used within the following R-Code.

#load required packages

library(reshape)

library(optimx)

library(mvtnorm)

132 B. Computational Aspects

list_fin_mult<-list()

for (k in 1:100){

#step1a) Simulate data for the model estimation with logit function

n=1000

coefs=c(1,0.5,0.3)

sigma=diag(length(coefs))

dat<-rmvnorm(n, sigma=sigma)

x.beta=dat %*% coefs

dat<-as.data.frame(dat)

names(dat)<-c("x1","x2","x3")

dat$y<-as.numeric(rbinom(n, 1, exp(x.beta)/(1+exp(x.beta))))

head(dat)

schlecht_anz<-sum(dat$y)

#step1b) Simulate data for validation with logit function

nv=1000

coefsv=c(1,0.5,0.3)

sigmav=diag(length(coefsv))

datv<-rmvnorm(nv, sigma=sigmav)

x.betav=datv %*% coefsv

datv<-as.data.frame(datv)

names(datv)<-c("x1","x2","x3")

datv$y<-as.numeric(rbinom(nv, 1, exp(x.betav)/(1+exp(x.betav))))

head(datv)

schlecht_anz_v<-sum(datv$y)

#step2) Estimate coefficients with glm

modlog<-glm(y ~ x1+x2+x3,data=dat, family=binomial(link="logit"))

summary(modlog)

#AUC measure with confidence intervals for training data

predScore<-predict(modlog, newdata=dat, type="response")

predl<-cbind(dat[,c("y")],predScore)

predl<-as.data.frame(predl)

names(predl)[1]<-"gs_m3ki_18"

names(predl)[2]<-"Score"

Gini_ges<-Ginifunc(predl,"gs_m3ki_18","Score")

AUC_ges<- 1/2*Gini_ges+0.5

q1<-AUC_ges/(2-AUC_ges)

q2<-(2*AUC_ges^2)/(1+AUC_ges)

anz<-nrow(dat)

schlecht<-sum(dat[,c("y")])

gut<-anz-schlecht

se.auc<-sqrt((AUC_ges*(1-AUC_ges)+(schlecht-1)*(q1-AUC_ges^2)+(gut-1)*

B.2 Selected R-Code 133

(q2-AUC_ges^2))/(gut*schlecht))

lowCIAUC<-max(0,AUC_ges-qnorm(0.975)*se.auc)

upCIAUC<-min(1,AUC_ges+qnorm(0.975)*se.auc)

#step3) Apply model on validation data and calculate AUC measure

#with confidence intervals

predScoreV<-predict(modlog, newdata=datv, type="response")

predlV<-cbind(datv[,c("y")],predScoreV)

predlV<-as.data.frame(predlV)

names(predlV)[1]<-"gs_m3ki_18"

names(predlV)[2]<-"Score"

Gini_ges_v<-Ginifunc(predlV,"gs_m3ki_18","Score")

AUC_ges_v<- 1/2*Gini_ges_v+0.5

...

lowCIAUC_v<-max(0,AUC_ges_v-qnorm(0.975)*se.auc)

upCIAUC_v<-min(1,AUC_ges_v+qnorm(0.975)*se.auc)

#coefficients of the logit model

coefx1<-coef(modlog)["x1"]

coefx2<-coef(modlog)["x2"]

coefx3<-coef(modlog)["x3"]

#result list 1

list<-cbind(Gini_ges,AUC_ges,lowCIAUC,upCIAUC,schlecht_anz,coefx1,coefx2,

coefx3,Gini_ges_v,AUC_ges_v,lowCIAUC_v,upCIAUC_v,schlecht_anz_v)

#step4) AUC optimization with coefficients of the logit model as starting values

counter <- row.names(dat) #unique ID

dat<-cbind(dat,counter)

#use former function for data preparation

dataufbereiten3var(dat, "counter", "y", "x1", "x2","x3")

load("...")

#AUC optimization with Nelder-Mead

testb<-optimx(c(coef(modlog)["x2"]/coef(modlog)["x1"],

coef(modlog)["x3"]/coef(modlog)["x1"]), wilkAUC_bs50Sim,

data=newdata2_3var, method=c("Nelder-Mead"),var1="x1", var2="x2",var3="x3")

coeffsauc<-unlist(testb[1])

coeffx2auc<-coeffsauc[1]

coeffx3auc<-coeffsauc[2]

AUCopt<-testb[2]

AUCopt<-as.numeric(AUCopt$fvalues)

AUCopt<-AUCopt*(-1)

...

134 B. Computational Aspects

lowCIAUCopt<-max(0,AUCopt-qnorm(0.975)*se.auc)

upCIAUCopt<-min(1,AUCopt+qnorm(0.975)*se.auc)

#result list 2

list2<-cbind(test_AUC,coeffx2auc,coeffx3auc,AUCopt,lowCIAUCopt,upCIAUCopt)

#step5) Apply AUC optimized values for validation data and calculate AUC

#for logit model and AUC approach

ScoreTest<- 1/(1+exp(-(coef(modlog)["(Intercept)"])-

((coef(modlog)["x1"])*datv$x1)-((coef(modlog)["x2"])*datv$x2)-

((coef(modlog)["x3"])*datv$x3)))

ScoreAUC<- 1/(1+exp(-(1*datv$x1)-(coeffx2auc*datv$x2)-

(coeffx3auc*datv$x3)))

datv<-cbind(datv,ScoreTest,ScoreAUC)

datv<- rename.vars(datv,c("y"), c("gs_m3ki_18"))

Gini_gestest_v<- Ginifunc(datv,"gs_m3ki_18","ScoreTest")

AUC_gestest_v<- (1/2*Gini_gestest_v)+0.5

Gini_gesAUCopt_v<- Ginifunc(datv,"gs_m3ki_18","ScoreAUC")

AUC_gesAUCopt_v<- (1/2*Gini_gesAUCopt_v)+0.5

...

lowCIAUCopt_v<-max(0,AUC_gesAUCopt_v-qnorm(0.975)*se.auc)

upCIAUCopt_v<-min(1,AUC_gesAUCopt_v+qnorm(0.975)*se.auc)

#result list 3

list3<-cbind(Gini_gestest_v,AUC_gestest_v,Gini_gesAUCopt_v,

AUC_gesAUCopt_v,lowCIAUCopt_v,upCIAUCopt_v)

#combine result lists

testlist<-cbind(list,list2,list3)

list_fin_mult[[k]]<-testlist

save(list_fin_mult, file="...")

}

Bibliography

Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Economet-
rics 16 (1), 3–14.

Anagnostopoulos, C., D. J. Hand, and N. M. Adams (2012). Measuring classification
performance: The hmeasure package. Available online at http://cran.r-project.org/
web/packages/hmeasure/vignettes/hmeasure.pdf.

Anderson, R. (2007). The credit scoring toolkit: Theory and practice for retail credit risk
management and decision automation. Oxford: Oxford University Press.

Baesens, B., T. V. Gestel, S. Viaene, M. Stepanova, J. Suykens, and J. Vanthienen (2003).
Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the
Operational Research Society 54 (6), 627–635.

Banasik, J. and J. Crook (2005). Credit scoring, augmentation and lean models. Journal of
the Operational Research Society 56 (9), 1072–1081.

Banasik, J., J. N. Crook, and L. C. Thomas (1999). Not if but when will borrowers default.
The Journal of the Operational Research Society 50 (12), 1185–1190.

Bartlett, P. L. and M. Traskin (2007). AdaBoost is consistent. Journal of Machine Learning
Research 8 (10), 2347–2368.

Basel Committee on Banking Supervision (2004). International convergence of capital
measurement and capital standards: A revised framework. Available online at http:

//www.bis.org/publ/bcbs107.pdf.

Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recognition 30 (7), 1145–1159.

Breiman, L. (1996). Bagging predictors. Machine Learning 24 (2), 123–140.

Breiman, L. (1998). Arcing classifiers. The Annals of Statistics 26 (3), 801–824.

Breiman, L. (1999). Prediction games and arcing algorithms. Neural Computation 11 (7),
1493–1517.

http://cran.r-project.org/web/packages/hmeasure/vignettes/hmeasure.pdf
http://cran.r-project.org/web/packages/hmeasure/vignettes/hmeasure.pdf
http://www.bis.org/publ/bcbs107.pdf
http://www.bis.org/publ/bcbs107.pdf

136 BIBLIOGRAPHY

Breiman, L. (2001a). Random forests. Machine Learning 45 (1), 5–32.

Breiman, L. (2001b). Statistical modeling: The two cultures. Statistical Science 16 (3),
199–215.

Breiman, L. (2002). Manual on setting up, using, and understanding random forests
v3.1. Available online at http://oz.berkeley.edu/users/breiman/Using_random_

forests_V3.1.pdf.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984). Classification and
regression trees. Belmont, California: Wadsworth International Group.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly
Weather Review 78 (1), 1–3.

Brown, I. and C. Mues (2012). An experimental comparison of classification algorithms for
imbalanced credit scoring data sets. Expert Systems with Applications 39 (3), 3446–3453.

Bühlmann, P. (2006). Boosting for high-dimensional linear models. The Annals of Statis-
tics 34 (2), 559–583.

Bühlmann, P. and T. Hothorn (2007). Boosting algorithms: Regularization, prediction and
model fitting. Statistical Science 22 (4), 477–505.

Bühlmann, P. and B. Yu (2003). Boosting with the L2 loss: Regression and classification.
Journal of the American Statistical Association 98 (462), 324–339.

Calders, T. and S. Jaroszewicz (2007). Efficient AUC optimization for classification. In
J. Kok, J. Koronacki, R. d. Lopez Mantaras, S. Matwin, D. Mladenič, and A. Skowron
(Eds.), Knowledge Discovery in Databases: PKDD 2007, Volume 4702, pp. 42–53. Berlin
and Heidelberg: Springer.

Cortes, C. and M. Mohri (2003). AUC optimization vs. error rate minimization. In S. Thrun,
L. Saul, and B. Schölkopf (Eds.), Advances in Neural Information Processing Systems
16: Proceedings of the 2003 Conference. Cambridge: MIT Press.

Crook, J. and J. Banasik (2004). Does reject inference really improve the performance of
application scoring models? Journal of Banking & Finance 28 (4), 857–874.

Crook, J. N., D. B. Edelman, and L. C. Thomas (2007). Recent developments in consumer
credit risk assessment. European Journal of Operational Research 183 (3), 1447–1465.

Culp, M., K. Johnson, and G. Michailidis (2006). ada: An R package for stochastic boosting.
Journal of Statistical Software 17 (2), 1–27.

Culp, M., K. Johnson, and G. Michailidis (2007). ada. An R package for stochastic boosting:
R package version 2.0-3. Available online at http://CRAN.R-project.org/package=ada.

http://oz.berkeley.edu/users/breiman/Using_random_forests_V3.1.pdf
http://oz.berkeley.edu/users/breiman/Using_random_forests_V3.1.pdf
http://CRAN.R-project.org/package=ada

BIBLIOGRAPHY 137

DeLong, E. R., D. M. DeLong, and D. L. Clarke-Pearson (1988). Comparing the areas
under two or more correlated receiver operating characteristic curves: A nonparametric
approach. Biometrics 44 (3), 837–845.

Dobra, A. and J. Gehrke (2001). Bias correction in classification tree construction. In
Proceedings of the Eighteenth International Conference on Machine Learning, pp. 90–97.
Morgan Kaufmann Publishers Inc.

Eguchi, S. and J. Copas (2002). A class of logistic–type discriminant functions.
Biometrika 89 (1), 1–22.

Fahrmeir, L., T. Kneib, and S. Lang (2009). Regression: Modelle, Methoden und Anwen-
dungen. Heidelberg: Springer.

Fahrmeir, L., T. Kneib, S. Lang, and B. Marx (2013). Regression: Models, Methods and
Applications. Springer.

Fawcett, T. (2006). An introduction to ROC analysis: ROC analysis in pattern recognition.
Pattern Recognition Letters 27 (8), 861–874.

Ferri, C., P. Flach, and J. Hernández-Orallo (2003). Improving the AUC of probabilistic
estimation trees. In N. Lavrač, D. Gamberger, H. Blockeel, and L. Todorovski (Eds.),
Machine Learning: ECML 2003, Volume 2837, pp. 121–132. Berlin and Heidelberg:
Springer.

Ferri, C., P. Flach, J. Hernández-Orallo, and A. Senad (2005). Modifying ROC curves
to incorporate predicted probabilities. In C. Ferri, N. Lachiche, S. Macskassy, and
A. Rakotomamonjy (Eds.), Proceedings of the 2nd workshop on ROC analysis in machine
learning. Available online at http://users.dsic.upv.es/~flip/ROCML2005/papers/

ferriCRC.pdf.

Finlay, S. (2011). Multiple classifier architectures and their application to credit risk
assessment. European Journal of Operational Research 210 (2), 368–378.

Flach, P., J. Hernández-Orallo, and C. Ferri (2011). A coherent interpretation of AUC as a
measure of aggregated classification performance. In The 28th International Conference on
Machine Learning. Available online at http://machinelearning.wustl.edu/mlpapers/
paper_files/ICML2011Flach_385.pdf.

Freund, Y., R. Iyer, R. E. Schapire, Y. Singer, and T. G. Dietterich (2004). An efficient
boosting algorithm for combining preferences. Journal of Machine Learning Research 4 (6),
933–969.

Freund, Y. and R. E. Schapire (1996). Experiments with a new boosting algorithm.
In Proceedings of the Thirteenth International Conference on Machine Learning. San
Francisco: Morgan Kaufmann.

http://users.dsic.upv.es/~flip/ROCML2005/papers/ferriCRC.pdf
http://users.dsic.upv.es/~flip/ROCML2005/papers/ferriCRC.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Flach_385.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Flach_385.pdf

138 BIBLIOGRAPHY

Friedman, J., T. Hastie, and R. Tibshirani (2000). Additive logistic regression: A statistical
view of boosting. The Annals of Statistics 28 (2), 337–374.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statis-
tics 19 (1), 1–67.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The
Annals of Statistics 29 (5), 1189–1232.

Frunza, M.-C. (2013). Computing a standard error for the gini coefficient: An application
to credit risk model validation. Journal of Risk Model Validation 7 (1), 61–82.

Geiger, C. and C. Kanzow (1999). Numerische Verfahren zur Lösung unrestringierter
Optimierungsaufgaben. Berlin: Springer.

Han, A. K. (1987). Non-parametric analysis of a generalized regression model: The
maximum rank correlation estimator. Journal of Econometrics 35 (2–3), 303–316.

Hand, D. J. (2001). Modelling consumer credit risk. IMA Journal of Management Mathe-
matics 12 (2), 139–155.

Hand, D. J. (2009). Measuring classifier performance: A coherent alternative to the area
under the ROC curve. Machine Learning 77 (1), 103–123.

Hand, D. J. and N. M. Adams (2000). Defining attributes for scorecard construction in
credit scoring. Journal of Applied Statistics 27 (5), 527–540.

Hand, D. J. and W. E. Henley (1993). Can reject inference ever work? IMA Journal of
Management Mathematics 5 (1), 45–55.

Hand, D. J. and W. E. Henley (1997). Statistical classification methods in consumer credit
scoring: A review. Journal of the Royal Statistical Society. Series A 160 (3), 523–541.

Hand, D. J. and M. G. Kelly (2002). Superscorecards. IMA Journal of Management
Mathematics 13 (4), 273–281.

Hand, D. J. and R. J. Till (2001). A simple generalisation of the area under the ROC curve
for multiple class classification problems. Machine Learning 45 (2), 171–186.

Hanley, J. A. and B. J. McNeil (1982). The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology 143 (1), 29–36.

Hansen, B. E. (1997). Approximate asymptotic p values for structural-change tests. Journal
of Business & Economic Statistics 15 (1), 60–67.

Hastie, T. (2011). Generalized additive models: R package version 1.06.2. Available online
at http://CRAN.R-project.org/package=gam.

http://CRAN.R-project.org/package=gam

BIBLIOGRAPHY 139

Hastie, T., R. Tibshirani, and J. H. Friedman (2009). The elements of statistical learning:
Data mining, inference, and prediction (2nd ed.). New York: Springer.

Hastie, T. J. and R. J. Tibshirani (1990). Generalized additive models. London: Chapman
& Hall/CRC.

Henking, A., C. Bluhm, and L. Fahrmeir (2006). Kreditrisikomessung: Statistische Grund-
lagen, Methoden und Modellierung. Berlin: Springer.

Herschtal, A. and B. Raskutti (2004). Optimising area under the ROC curve using gradient
descent. In Proceedings of the twenty-first international conference on Machine learning,
New York, USA, pp. 49–56. ACM.

Hjort, N. L. and A. Koning (2002). Tests for constancy of model parameters over time.
Journal of Nonparametric Statistics 14 (1-2), 113–132.

Hofner, B., A. Mayr, N. Robinzonov, and M. Schmid (2014). Model-based boosting in R: a
hands-on tutorial using the R package mboost. Computational Statistics 29 (1-2), 3–35.

Hosmer, D. W. and S. Lemeshow (2000). Applied logistic regression (2nd ed.). New York:
Wiley.

Hothorn, T., P. Bühlmann, T. Kneib, M. Schmid, and B. Hofner (2012). mboost. Model-
based boosting: R package version 2.1-3. Available online at http://CRAN.R-project.
org/package=mboost.

Hothorn, T., K. Hornik, C. Strobl, and A. Zeileis (2013). party. A laboratory for recursive
partytioning: R package version 1.0-7. Available online at http://CRAN.R-project.

org/package=party.

Hothorn, T., K. Hornik, and A. Zeileis (2006). Unbiased recursive partitioning: A conditional
inference framework. Journal of Computational & Graphical Statistics 15 (3), 651–674.

Janitza, S., C. Strobl, and A.-L. Boulesteix (2013). An AUC-based permutation variable
importance measure for random forests. BMC Bioinformatics 14 (119).

Jiang, W. (2004). Process consistency for adaboost. The Annals of Statistics 32 (1), 13–29.

Komori, O. (2011). A boosting method for maximization of the area under the ROC curve.
Annals of the Institute of Statistical Mathematics 63 (5), 961–979.

Komori, O. and S. Eguchi (2010). A boosting method for maximizing the partial area under
the ROC curve. BMC Bioinformatics 11 (314).

Kraus, A. and H. Küchenhoff (2014). Credit scoring optimization using the area under the
curve. Journal of Risk Model Validation 8 (1), 31–67.

http://CRAN.R-project.org/package=mboost
http://CRAN.R-project.org/package=mboost
http://CRAN.R-project.org/package=party
http://CRAN.R-project.org/package=party

140 BIBLIOGRAPHY

Kruppa, J., A. Schwarz, G. Arminger, and A. Ziegler (2013). Consumer credit risk: Individ-
ual probability estimates using machine learning. Expert Systems with Applications 40 (13),
5125–5131.

Kullback, S. and R. A. Leibler (1951). On information and sufficiency. The Annals of
Mathematical Statistics 22 (1), 79–86.

Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright (1998). Convergence properties
of the Nelder-Mead simplex method in low dimensions. SIAM Journal of Optimization 9,
112–147.

Lee, T.-S., C.-C. Chiu, Y.-C. Chou, and C.-J. Lu (2006). Mining the customer credit
using classification and regression tree and multivariate adaptive regression splines.
Computational Statistics & Data Analysis 50 (4), 1113–1130.

Lessmann, S., H.-V. Seow, B. Baesens, and L. C. Thomas (2013). Benchmarking state-
of-the-art classification algorithms for credit scoring: A ten-year update. In J. Crook
(Ed.), Proceedings of the Credit Scoring and Credit Control XIII. Available online at
http://www.business-school.ed.ac.uk/waf/crc_archive/2013/42.pdf.

Li, K.-C. and N. Duan (1989). Regression analysis under link violation. The Annals of
Statistics 17 (3), 1009–1052.

Liaw, A. and M. Wiener (2002). Classification and regression by random forest. R News 2 (3),
18–22.

Liaw, A. and M. Wiener (2009). randomForest. Breiman and Cutler’s random forests
for classification and regression: R package version 4.5-34. Available online at http:

//CRAN.R-project.org/package=randomForest.

Lin, Y. and Y. Jeon (2006). Random forests and adaptive nearest neighbors. Journal of
the American Statistical Association 101 (474), 578–590.

Long, P. M. and R. A. Servedio (2007). Boosting the area under the ROC curve. In
21st Annual Conference on Neural Information Processing Systems. Available online at
http://www.cs.columbia.edu/~rocco/Public/nips07rocboost.pdf.

Ma, S. and J. Huang (2005). Regularized ROC method for disease classification and
biomarker selection with microarray data. Bioinformatics 21 (24), 4356–4362.

Mann, H. B. and D. R. Whitney (1947). On a test of whether one of two random variables
is stochastically larger than the other. The Annals of Mathematical Statistics 18 (1),
50–60.

Mayr, A., B. Hofner, and M. Schmid (2012). The importance of knowing when to stop. a
sequential stopping rule for component-wise gradient boosting. Methods Of Information
In Medicine 51 (2), 178–186.

http://www.business-school.ed.ac.uk/waf/crc_archive/2013/42.pdf
http://CRAN.R-project.org/package=randomForest
http://CRAN.R-project.org/package=randomForest
http://www.cs.columbia.edu/~rocco/Public/nips07rocboost.pdf

BIBLIOGRAPHY 141

Miura, K., S. Yamashita, and S. Eguchi (2010). Area under the curve maximization method
in credit scoring. Journal of Risk Model Validation 4 (2), 3–25.

Nash, J. C. and R. Varadhan (2012). optimx. A replacement and extension of the optim()
function: R package version 2011-8.2. Available online at http://CRAN.R-project.org/
package=optimx.

Nelder, J. A. and R. Mead (1965). A simplex method for function minimization. The
Computer Journal 7 (4), 308–313.

Neyman, J. and E. S. Pearson (1933). On the problems of the most efficient tests of
statistical hypotheses. Philosophical Transactions of the Royal Society of London 231,
289–338.

Pepe, M. S. (2003). The statistical evaluation of medical tests for classification and prediction.
Oxford: Oxford University Press.

Pepe, M. S., T. Cai, and G. Longton (2006). Combining predictors for classification using
the area under the receiver operating characteristic curve. Biometrics 62 (1), 221–229.

Provost, F. and P. Domingos (2003). Tree induction for probability-based ranking. Machine
Learning 52 (3), 199–215.

Provost, F. and T. Fawcett (1997). Analysis and visualization of classifier performance:
Comparison under imprecise class and cost distributions. In Proceedings of the Third
International Conference on Knowledge Discovery and Data Mining, pp. 43–48. AAAI
Press.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning 1 (1), 81–106.

Quinlan, J. R. (1993). C4.5 - programs for machine learning. The Morgan Kaufmann series
in machine learning. San Mateo and California: Kaufmann.

R Development Core Team (2012). R: A Language and Environment for Statistical Com-
puting. Vienna and Austria: R Foundation for Statistical Computing. Available online
at http://www.R-project.org.

Robinzonov, N. (2013). Advances in boosting of temporal and spatial models. Thesis. Ludwig-
Maximilians-Universität München. Available online at http://edoc.ub.uni-muenchen.
de/15338/1/Robinzonov_Nikolay.pdf.

Scheipl, F., L. Fahrmeir, and T. Kneib (2012). Spike-and-slab priors for function se-
lection in structured additive regression models. Journal of the American Statistical
Association 107 (500), 1518–1532.

Schmid, M. and T. Hothorn (2008). Boosting additive models using component-wise
P-splines. Computational Statistics & Data Analysis 53 (2), 298–311.

http://CRAN.R-project.org/package=optimx
http://CRAN.R-project.org/package=optimx
http://www.R-project.org
http://edoc.ub.uni-muenchen.de/15338/1/Robinzonov_Nikolay.pdf
http://edoc.ub.uni-muenchen.de/15338/1/Robinzonov_Nikolay.pdf

142 BIBLIOGRAPHY

Schmid, M., T. Hothorn, F. Krause, and C. Rabe (2012). A PAUC-based estimation
technique for disease classification and biomarker selection. Statistical Applications In
Genetics And Molecular Biology 11 (5).

Sheng, V. S. and R. Tada (2011). Boosting inspired process for improving AUC. In P. Perner
(Ed.), Machine Learning and Data Mining in Pattern Recognition, Volume 6871, pp.
199–209. Berlin and Heidelberg: Springer.

Sherman, R. P. (1993). The limiting distribution of the maximum rank correlation estimator.
Econometrica 61 (1), 123–137.

Stepanova, M. and L. Thomas (2002). Survival analysis methods for personal loan data.
Operations Research 50 (2), 277–289.

Strasser, H. and C. Weber (1999). On the asymptotic theory of permutation statistics.
Mathematical Methods of Statistics 2.

Strobl, C., A.-L. Boulesteix, and T. Augustin (2007). Unbiased split selection for classifi-
cation trees based on the gini index. Computational Statistics & Data Analysis 52 (1),
483–501.

Strobl, C., A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis (2008). Conditional
variable importance for random forests. BMC Bioinformatics 9 (307).

Strobl, C., A. L. Boulesteix, A. Zeileis, and T. Hothorn (2007). Bias in random forest variable
importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8 (25).

Strobl, C., T. Hothorn, and A. Zeileis (2009). Party on! The R Journal (1/2), 14–17.

Strobl, C., J. Malley, and G. Tutz (2009). An introduction to recursive partitioning:
Rationale, application, and characteristics of classification and regression trees, bagging,
and random forests. Psychological Methods 14 (4), 323–348.

Strobl, C. and A. Zeileis (2008). Danger: High power! Exploring the statistical properties
of a test for random forest variable importance. Proceedings of the 18th International
Conference on Computational Statistics, Porto, Portugal .

Swets, J. A. (1996). Signal detection theory and ROC analysis in psychology and diagnostics:
Collected papers. Mahwah and New Jersey: Erlbaum.

Swets, J. A., R. M. Dawes, and J. Monahan (2000). Better decisions through science.
Scientific American 283 (4), 82–87.

Therneau, T. M. and B. Atkinson (1997). An introduction to recursive partitioning using
the rpart routines. Technical Report 61, Section of Biostatistics. Available online at
http://www.mayo.edu/hsr/techrpt/61.pdf.

http://www.mayo.edu/hsr/techrpt/61.pdf

BIBLIOGRAPHY 143

Therneau, T. M. and B. Atkinson (2010). rpart. Recursive partitioning and regression trees:
R package version 3.1-46. Available online at http://CRAN.R-project.org/package=

rpart.

Thomas, L. C. (2000). A survey of credit and behavioural scoring: Forecasting financial
risk of lending to consumers. International Journal of Forecasting 16 (2), 149–172.

Thomas, L. C. (2009). Consumer Credit Models: Pricing, Profit and Portfolios. Oxford:
Oxford University Press.

Thomas, L. C., R. W. Oliver, and D. J. Hand (2005). A survey of the issues in consumer
credit modelling research. Journal of the Operational Research Society 56 (9), 1006–1015.

Wang, G., J. Hao, J. Ma, and H. Jiang (2011). A comparative assessment of ensemble
learning for credit scoring. Expert Systems with Applications 38 (1), 223–230.

Wang, Z. (2011). Hingeboost: ROC-based boost for classification and variable selection.
The International Journal of Biostatistics 7 (13), 1–30.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin 1 (6),
80–83.

Wood, S. (2013). mgcv. Mixed GAM computation vehicle with GCV/AIC/REML smooth-
ness estimation: R package version 1.7-22. Available online at http://CRAN.R-project.
org/package=mgcv.

Wood, S. N. (2006). Generalized additive models: An introduction with R. Boca Raton, FL:
Chapman & Hall/CRC.

Xiao, W., Q. Zhao, and Q. Fei (2006). A comparative study of data mining methods in
consumer loans credit scoring management. Journal of Systems Science and Systems
Engineering 15 (4), 419–435.

Yan, L., R. Dodier, M. C. Mozer, and R. Wolniewicz (2003). Optimizing classifier perfor-
mance via the Wilcoxon-Mann-Whitney statistic. In T. Fawcett and N. Mishra (Eds.),
Proceedings of the 20th international conference on machine learning, Menlo Park, pp.
848–855. AAAI Press.

Zeileis, A. and K. Hornik (2007). Generalized M-fluctuation tests for parameter instability.
Statistica Neerlandica 61 (4), 488–508.

Zeileis, A., T. Hothorn, and K. Hornik (2008). Model-based recursive partitioning. Journal
of Computational & Graphical Statistics 17 (2), 492–514.

Zhang, H. and J. Su (2006). Learning probabilistic decision trees for AUC. ROC Analysis
in Pattern Recognition 27 (8), 892–899.

http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=mgcv
http://CRAN.R-project.org/package=mgcv

144

Eidesstattliche Versicherung

Hiermit erkläre ich an Eides statt, dass die Dissertation von mir selbstständig, ohne
unerlaubte Beihilfe angefertigt ist.

München, den 10.03.2014 Anne Kraus

	Abstract
	Zusammenfassung
	Introduction
	Credit Scoring
	Scope of the Work

	Measures of Performance and Data Description
	Receiver Operating Characteristic and Area under the Curve
	Data Description

	Logistic Regression
	A Short Introduction to Logistic Regression
	The Development of Scorecards
	Discussion of the Logistic Regression Model in Credit Scoring

	Optimization AUC
	A New Approach for AUC Optimization
	Optimality Properties of the AUC Approach
	Theoretical Considerations
	Simulation Study

	The AUC Approach in Credit Scoring
	Discussion of the AUC Approach in Credit Scoring

	Generalized Additive Model
	A Short Overview of Generalized Additive Model
	Generalized Additive Model for Credit Scoring
	Discussion of a Generalized Additive Model in Credit Scoring

	Recursive Partitioning
	Classification and Regression Trees
	CART Algorithm
	Conditional Inference Trees

	Model-Based Recursive Partitioning
	Random Forests
	Random Forest Algorithm
	Importance Measures

	Recursive Partitioning Methods for Credit Scoring
	Classification Trees for Credit Scoring
	Model-Based Recursive Partitioning in Credit Scoring
	Random Forests in Credit Scoring

	Discussion of Recursive Partitioning Methods for Credit Scoring

	Boosting
	Boosting Algorithms
	Rationale of Gradient Boosting
	Component-Wise Gradient Boosting
	Base Learners

	Boosting for Credit Scoring
	Discrete, Real and Gentle AdaBoost
	Boosting Logistic Regression
	Boosting Generalized Additive Model

	Boosting and the Optimization concerning AUC
	AUC as a Loss Function in Boosting Algorithms
	Boosting AUC in Credit Scoring

	Discussion of Boosting Methods in Credit Scoring

	Summary and Outlook
	Supplementary Material
	Optimization AUC - Chapter 4
	Generalized Additive Model - Chapter 5
	Recursive Partitioning - Chapter 6
	Boosting - Chapter 7

	Computational Aspects
	Statistical Software
	Selected R-Code

	Bibliography

