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Zweitgutachter: PD Dr. Ralph Blumenhagen

Datum der mündlichen Prüfung: 30.06.2014



Zusammenfassung

Diese Arbeit befasst sich mit dem Studium von vier und sechs dimensionalen Niederenergie, effekti-

ven Wirkungen, die im Rahmen von F-Theorie Kompaktifizierungen entstehen. Motiviert durch den

Versuch der Beschreibung eines Stapels M5-Branen im Limes großer Wellenlängen, bilden sechs dimen-

sionale, super symmetrische Quantenfeldtheorien, welche selbst-duale Tensorfelder in ihrem Spektrum

beinhalten, den zweiten Focus. Beide Themen sind Beispiele für intrinsisch nicht pertubative physikali-

sche Systeme. Im Kontext von F-Theorie entspringt der nicht pertubative Charakter der geometrischen

Formulierung dieser Klasse von String Vacua, in welcher die komplexifizierte String Kopplungskonstan-

te im Raum variieren kann. Das infrarot Verhalten Infrarotverhalten von einem Stapel von mehreren

M5-Branen andrerseits, wird durch die noch nicht vollkommen verstandenen, sogenannten
”
(2,0) Theo-

rie“ beschrieben, für welche vermutlich kein schwach gekoppelter, pertubativer Sektor existiert. Es sei

angemerkt, dass es in der Literatur keine Beschreibung dieser Theorien in Form von Lagrange-Dichten

gibt.

Die überstehende Strategie, die hier angewendet wird, um dieser beiden Probleme Herr zu werden,

ist eine analoge trans-dimensionale Behandlung dieser Systeme. Hierbei werden Informationen über d

dimensionale Theorien aus dem Studium von d − 1 dimensionalen Theorien gewonnen. Im Falle von

F-Theorie Kompaktifizierungen gelingt dies durch die Dualität von M-Theorie zu F-Theorie. Durch die

Wahl von elliptisch fibrierten Calabi-Yau Dreimannigfaltigkeiten als internen Raum ist es uns möglich

sechs-dimensionale F-Theorie Vacua zu analysieren. Unsere neuartige F-Theorie Konstruktion, welche

Spin(7) Holonomie Mannigfaltigkeit benutzt, bietet uns einen Zugang zu vier dimensionalen effektiven

Theorien. Die sechs-dimensionalen (2,0) Theorien studieren wir indirekt durch die Analyse von fünf

dimensionalen Theorien. Diese trans-dimensionale Herangehensweise ermöglicht uns eine Lagrange-

Dichte in fünf Dimensionen zu konstruieren, die potentiell Aussagen über die sechs dimensionalen

Wechselwirkungen der (2,0) Theorien zulässt. Diese Untersuchungen erweiterten unser Verständnis

des Zusammenhangs zwischen fünf und sechs dimensionaler Physik, insbesondere fanden wir ein allge-

meines Resultat für die ein
”
Loop“ Korrekturen der Chern-Simons Kopplungen in fünf Dimensionen.





Abstract

In this thesis we study the low-energy effective dynamics emerging from a class of F-theory compactifi-

cations in four and six dimensions. We also investigate six-dimensional supersymmetric quantum field

theories with self-dual tensors, motivated by the problem of describing the long-wavelength regime

of a stack of M5-branes in M-theory. These setups share interesting common features. They both

constitute examples of intrinsically non-perturbative physics. On the one hand, in the context of

F-theory the non-perturbative character is encoded in the geometric formulation of this class of string

vacua, which allows the complexified string coupling to vary in space. On the other hand, the dy-

namics of a stack of multiple M5-branes flows in the infrared to a novel kind of superconformal field

theories in six dimensions—commonly referred to as (2,0) theories—that are expected to possess no

perturbative weakly coupled regime and have resisted a complete understanding so far. In particular,

no Lagrangian description is known for these models. The strategy we employ to address these two

problems is also analogous. A recurring Leitmotif of our work is a transdimensional treatment of

the system under examination: in order to extract information about dynamics in d dimensions we

consider a (d − 1)-dimensional setup. As far as F-theory compactifications are concerned, this is a

consequence of the duality between M-theory and F-theory, which constitutes our main tool in the

derivation of the effective action of F-theory compactifications. We apply it to six-dimensional F-

theory vacua, obtained by taking the internal space to be an elliptically fibered Calabi-Yau threefold,

but we also employ it to explore a novel kind of F-theory constructions in four dimensions based on

manifolds with Spin(7) holonomy. With reference to six-dimensional (2,0) theories, the transdimen-

sional character of our approach relies in the idea of studying these theories in five dimensions. Indeed,

we propose a Lagrangian that is formulated in five dimensions but has the potential to capture the

six-dimensional interactions of (2,0) theories. This investigation leads us to explore in closer detail

the relation between physics in five and in six dimensions. One of the outcomes of our exploration is

a general result for one-loop corrections to Chern-Simons couplings in five dimensions.
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CHAPTER 1

Introduction

This first chapter is devoted to a presentation of the main ideas underlying our work. After motivating

string theory from a theoretical perspective we highlight some general features of theories of strings

as opposed to point particles. We also recall the importance of the effective field theory approach, we

briefly comment on some features of supersymmetric theories, and we give a quick presentation of the

setups analyzed in the following chapters. We conclude with the outline of the rest of the thesis.

1.1 The quest for a fundamental theory

The long sequence of successes of theoretical physics from its origins to the turn of the 21st century

represents an extraordinary intellectual achievement. Current physical theories provide a powerful

framework that allows us to explain and predict a wide range of phenomena on length scales spanning

over forty orders of magnitude, from the deep subatomic distances probed at the LHC (∼ 10−19 m) to

the size of the observable universe (∼ 1027 m). Such a remarkable quantitative understanding relies on

the possibility to identify the dominant aspects of the dynamics of a physical system at some energy

or length scale, neglecting subdominant effects. By this token we can, for instance, study particle

scattering processes ignoring gravitational forces, or analyze the large scale structure of the universe

approximating its content by a uniform, isotropic fluid.

From this perspective, a description of the world based on several, coexisting models applying to

different phenomena within different validity regimes is perfectly viable, as long as no experimental

evidence is found against it. In the history of physics, however, an antithetic pattern seems to emerge.

Indeed, a decisive element in the progress of this science has been the quest for a simple and unified

description of seemingly different aspects of Nature. Galilei and Newton demolished the distinction

between terrestrial and celestial mechanics, and Maxwell provided a unified framework for electric and
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6 Chapter 1. Introduction

magnetic phenomena, to mention some well-known examples from classical physics. Note that every

step in the direction towards unification not only has proven aesthetically appealing, but has also been

accompanied by a dramatic deepening of our understanding of the world.

During the 20th century yet another paradigm beside unification acquired primary importance

in the development of theoretical physics: symmetry. Einstein’s special relativity originated from

the analysis of the symmetry transformations of Maxwell’s equations, and was later extended to

general relativity following the symmetry principle of general covariance. Conservations laws, one

of the pillars of theoretical physics, were related to symmetries by Noether’s theorem. In quantum

mechanics, symmetries provide the quantum numbers that classify states in the system. They were

instrumental, for instance, to unveil hidden patterns in the zoo of ‘elementary’ particles discovered in

the 1960s. As a final example in this incomplete list, the role of symmetries and their spontaneous

breaking in the context of quantum field theory cannot be overestimated.

The holy grail of theoretical physics, according to this paradigm, would be a ‘theory of everything,’

i.e. a unified and coherent framework that allows a consistent description of all known interactions.

Ideally, such a theory would originate from a limited number of postulates combined with symme-

try arguments. All known physical theories could then be recovered, at least in principle, taking

appropriate limits of this underlying theory.

Modern-day theoretical physics is still far from the dream of a ‘theory of everything’ but embodies

the principles of unification and symmetry to a great extent. It is remarkable that three out of

the known fundamental interactions among the constituents of visible matter—the electromagnetic

force and the weak and strong nuclear forces—can all be understood within the same framework

of quantum field theories based on gauge symmetry. Even further, the electromagnetic and weak

interactions have already been unified in the Standard Model of particle physics. Its experimental

successes are compelling and even the most elusive of its ingredients, the Higgs boson, is likely to have

been recently detected at the LHC [1]. Unfortunately, the theoretical tools that have been so successful

in describing interactions at the subatomic scale are not directly applicable to the gravitational force.

Einstein’s general relativity, however, provides a beautiful theory of gravitation at the classical level,

in which dynamics is geometrized in an elegant fashion. Besides its aesthetic appeal, general relativity

has passed all direct tests at solar system scales [2, 3] and constitutes one of the main pillars of the

concordance model of cosmology (or ΛCDM model), which provides a coherent framework for the

history of the Universe from Big Bang nucleosynthesis up to the present day.

This optimistic account should not lead to the conclusion that our understanding of the funda-

mental principles of Nature is almost complete. Indeed, even though the current framework based on

the Standard Model (supplemented by neutrino masses) and the concordance model of cosmology has

not been falsified experimentally so far, it is unsatisfactory in many respects.

To begin with, there is evidence that some crucial physics is being missed by known theories. In

fact, cosmological data indicate that known particles account for only about 5% of the total energy

content of the Universe. The remaining part consists of so-called dark matter (27%) and dark energy

(68%) [2], whose properties can be effectively parametrized to explain observations on macroscopic
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scales, but whose microscopic interpretation is obscure. Many particles have been proposed as dark

matter candidates, but no conclusive answer has been found yet. Even more dramatic is the situation

for dark energy. It is usually identified with the effect of a non-vanishing cosmological constant

in Einstein’s equations and interpreted microscopically as the energy associated to the vacuum. The

theoretical prediction for this quantity in the Standard Model, however, differs from the observed value

by 120 orders of magnitude. Better results can be obtained, for instance, considering supersymmetric

extensions of the Standard Model, but the cosmological constant problem remains a pressing open

question in physics, see e.g. [4].

A second reason to be dissatisfied with the present framework is related to the free parameters

that enter known models. These constants cannot be predicted theoretically and have to be fixed by

means of experimental or observational input. On the one hand, we need quite a large number of

such free parameters: they are about 20 in the Standard Model (the precise number depending on the

details of neutrino mass mechanism) and six in the concordance model of cosmology. On the other

hand, some parameters require a high amount of fine-tuning that, although not inconsistent, appears

to be extremely unnatural. The hierarchy problem and the strong CP problem in the Standard Model,

along with the flatness problem in the hot Big Bang scenario, might be seen as examples of this issue.1

Finally, from a purely formal point of view the theoretical frameworks of quantum field theory and

general relativity suffer from serious limitations that prevent us from viewing them as fundamental

theories.

According to the modern effective field theory point of view, quantum field theories are most

appropriately considered as effective descriptions valid only up to some definite energy scale. Beyond

that scale new physics becomes relevant that is not captured by the theory. Under some circumstances,

the formal properties of a quantum field theory allow us to extrapolate it to arbitrary high energies

while retaining consistency and predictive power. This happens, for instance, for renormalizable

asymptotically free gauge theories. In this case, the theory can be formulated without any reference

to a possible UV completion. It is noteworthy that the electromagnetic, weak, and strong interactions

can be described precisely in terms of renormalizable gauge theories.2

Any attempt to describe gravity along the same lines, though, is doomed to fail, due to the non-

renormalizability of the perturbative expansion resulting from the Einstein-Hilbert action. Strictly

speaking, this is not enough to rule out the possibility that gravity is described by a quantum field

theory at the fundamental level, as the theory may sit at a non-perturbative non-trivial UV fixed point.

In what follows, however, we will interpret the lack of renormalizability as a signal that the theory is

only an effective description that has to be modified at high energies. The natural expectation for the

scale at which quantum gravity effects are important is given by the Planck mass MPl ' 1019 GeV.

1The hierarchy problem can be addressed, for instance, by means of low-energy supersymmetry, see e.g. [5]. The
strong CP problem can be cured by introducing an axion according to the Peccei-Quinn mechanism, as reviewed for
instance in [6]. The flatness problem is solved by inflation, see e.g. [7].

2Note, however, that the U(1) hypercharge factor of the Standard Model gauge group is not asymptotically free and
can therefore suffer from pathologies in the UV (Landau pole). This problem can be cured within the framework of
quantum field theory. For instance, in GUT models the hypercharge U(1) factor is embedded in a simple gauge group
that leads to an asymptotically free gauge theory.
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We are thus left with the problem of finding a suitable candidate for a UV completion for energies

E &MPl.

Besides the difficulties of finding a microscopic theory of quantum gravity, general relativity seems

to determine its own limitations already at the (semi)classical level. Singularity theorems [8] show

that systems with well-behaved initial conditions—representing for example a realistic astrophysical

object—can undergo spontaneous gravitational collapse until a singularity in spacetime is formed, at

which the notions of geometry and general relativity break down. In the majority of cases (actually, in

any case, if one accepts the cosmic censorship conjecture [9]) the singularity produced by gravitational

collapse of physically sensible initial conditions is hidden behind the event horizon of a black hole. From

the classical point of view this is enough to guarantee that no inconsistency arises, as the singularity in

the interior of the black hole is causally disconnected to any external observer. If semiclassical effects

such as Hawking radiation are taken into account, however, severe difficulties emerge, as the so-called

information paradox. Discussion about this point is still ongoing and has been recently renewed with

the introduction of the firewall proposal suggested in [10].

In view of the observations made above, it would be desirable to have a new framework that

is able to overcome the difficulties of known theories and, ideally, provide the long-sought ‘theory of

everything.’ In the next section we introduce the best known candidate of such a theory: string theory.

It can be seen as the epitome of the implementation of unification and symmetry in theoretical physics.

In fact, in string theory all different particles and interactions originate from a single kind of object,

the string. Furthermore, the dynamics of strings is so highly constrained by symmetry and consistency

that—as it will be clarified in section 3—there is essentially a unique string theory. It is the opinion

of the author that these elements are enough to justify a thorough study of the subject. Such an

investigation has already provided powerful insights about formal aspects of theoretical physics and

intriguing connections to mathematics. It is worth pursuing the analysis further since string theory

might have the potential to provide a solution to some of the main open problems in physics.

1.2 From particles to strings

Let us start with some general observations about string theory. The underlying fundamental idea is

remarkably simple: replace point particles with extended, one-dimensional objects. More precisely,

we are interested in a relativistic quantum theory of interacting strings. Such a theory automatically

comes with a fundamental scale of mass, or equivalently, length. It is set by the string tension, or

energy per unit length. For historical reasons this scale is usually encoded in the so-called Regge slope

α′, with dimensions of length squared. It is related to the string tension T by

T =
1

2πα′
. (1.1)

Eventually, we would like to interpret string theory as a theory of quantum gravity. This suggests a

relation of the form (α′)−1/2 'MPl. In some scenarios, however, this naive expectation is not met, and

the string scale (α′)−1/2 can be as low as the TeV scale, opening up the possibility of string detection

in colliders, see e.g. [11, 12].
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time

space

time

space

Figure 1.1: Pictorial comparison between the world-lines swept by interacting particles and the world-
sheets swept by interacting strings. In the particle case interactions take place at a definite event in
spacetime, but there is no Lorentz-invariant way of defining joining and splitting of relativistic strings.

Considering extended objects rather than point particles presents some advantages. First of all, a

single fundamental string can account for a variety of particles. This can be intuitively seen by noting

that the motion of a string can be decomposed into two parts: a translational displacement of its

center of mass, and a tower of discrete oscillatory modes around the center of mass. If a propagating

string is probed with energies E � (α′)−1/2, its extended nature will not be detected. One will rather

observe a point particle with mass and quantum numbers determined by the oscillatory motion of the

string.

Secondly, replacing particles with strings can improve the UV properties of the theory, as can be

argued heuristically by comparing interactions between point particles and strings (see figure 1.1). In

a local theory of point particles, interactions take place at definite spacetime events. Effectively, this

implies that spacetime is probed to arbitrarily high resolution when virtual states are considered in

the path integral that defines the quantized theory. This can be considered to be the origin of the

familiar UV divergences of quantum field theory. When particles are replaced by strings with typical

length scale (α′)1/2 interactions are effectively smeared out. Stated differently, spacetime cannot be

probed to distances smaller than (α′)1/2 due to the extended nature of the string. One can thus

hope that interacting theories of strings free of UV divergences can be formulated. In the context of

superstring perturbation theory, consistency and finiteness of the terms in the expansion have been

proven up to two loops [13] and partial results such as [14] support the conjecture that the same holds

for higher-loop terms.3 Further observations can be found in the review [16].

An extended one-dimensional object can have two distinct topologies, since it can be homeomorphic

to a circle or to an interval. In simpler terms, we can have closed strings, without endpoints, or open

strings, with two endpoints. It is a generic feature of string theory that one of the oscillation modes

3Note, however, that it has been proven that the perturbative expansion of bosonic string theory is not Borel re-
summable [15], and the same is believed to be true for superstrings. This means that perturbative data are not sufficient
to define the theory completely and that suitable non-perturbative input, related e.g. to instantons, is needed.
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of a closed string is associated to a massless, spin-two particle, while for an open string one finds a

massless, spin-one particle. These are interpreted as the graviton and as a gauge boson, respectively.4

Gravitational and gauge interactions are thus beautifully unified thanks to the two different topologies

of the string. This picture can provide further insight. For instance, the universal character of gravity

can be seen from the fact that open strings can always join to form closed strings. As a result, closed

strings, and therefore gravity, must be always included in a sensible string theory. Moreover, it turns

out that the space of states of a closed string is, roughly speaking, the tensor product of two copies of

the space of states of an open string. This observation leads to a new look on gravity, which can be

seen as the ‘square’ of a Yang-Mills interaction. Remarkably, this heuristic picture has found concrete

realizations in explicit computations of open and closed string amplitudes starting from the work of

Kawai, Lewellen, and Tye [17].

Finally, the quantum theory of a relativistic string is much more constrained than its point particle

counterpart, to the extent that symmetries determine the dynamics of strings completely. As we will

see, perturbative string theory has no free parameters (except for the fundamental scale α′) and

mild consistency conditions—as the absence of quantum anomalies and stability of the vacuum—

are powerful enough to single out five fundamental (super)string theories. When non-perturbative

arguments are taken into account, however, these five theories are seen to be limits of a single, unifying

theory, the so-called M-theory. This leads to the picture of the ‘M-theory star’ depicted in figure 1.2.

This extreme degree of uniqueness should be contrasted to the situation in quantum field theory, in

which no argument can be used to single out a priori some specific model from the set of anomaly-free,

renormalizable, asymptotically free theories.

1.3 The effective action paradigm

Any candidate ‘theory of everything’ providing a unification of all known interactions is likely to

contain new degrees of freedom at high energies subject to some intricate microscopic dynamics. This

is the case of string theory, understood in a broad sense to include M-theory. In order to understand

the low-energy behavior of these theories, however, most of the detailed structure underlying their

microscopic fundamental degrees of freedom is probably unnecessary. We can indeed appeal to the

Wilsonian approach to the formulation of effective field theories and argue that, if we are only interested

in the dynamics of long-wavelength excitations around the vacuum, we should integrate out all states

associated to short-distance physics. The resulting effective theory is formulated in terms of light

degrees of freedom and the information about high-energy dynamics is encoded inside the couplings

among light modes. The validity of the effective action is clearly limited to processes at energies

much lower than the typical scale of the heavy degrees of freedom that have been integrated out. Its

predictive power is therefore restricted and if we want to probe dynamics beyond that scale we have

to resort to the original theory, which is referred to as the UV-completion of the effective theory.

4The situation is different in heterotic superstring theory, where both gravity and gauge interactions originate from
closed strings. String dualities, however, relate the heterotic string to different string theories in which the association
closed-gravity, open-gauge holds.
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M-theory

Type IIA

Type IIBSO(32) Heterotic

E8 ⇥ E8 Heterotic

Type I

11d supergravity

Figure 1.2: An impressionistic sketch of the moduli space of M-theory, showing that the five known
consistent superstring theories and eleven-dimensional supergravity can be considered as special ‘cor-
ners’ in the ‘M-theory star.’

The effective field theory program is best understood in those situations in which the original

microscopic theory in the UV is a consistent, renormalizable quantum field theory. If we let the theory

follow its renormalization group flow to the deep IR we find an effective theory for its long-wavelength

dynamics. This is a quantum field theory whose properties and degrees of freedom might differ

substantially from the ones of the UV theory. For example renormalizability can be lost. Probably

the most familiar example of this phenomenon is furnished by the Standard Model of electroweak

interactions. Because of spontaneous symmetry breaking the W and Z bosons get massive and are

integrated out at sufficiently low energies. The resulting effective action is a non-renormalizable four-

Fermi theory. In some situations even the relation between UV and IR degrees of freedom is highly

non-trivial. Arguably the prototypical example is given by confining gauge theories, such as QCD: if

in the UV we have an asymptotically-free theory of quarks and gluons, in the IR the correct variables

for the description of the dynamics are mesons and baryons.

We can also reverse the logic of the last example and conclude that, given a low-energy effective

theory, its UV-completion can be formulated in terms of completely different entities and might not

be a quantum field theory. This is indeed the case in string theory, which is not a theory of relativistic

particles but contains extended objects.

On general grounds the existence of a UV-completion serves as a proof of principle of the full

quantum consistency of the effective action under examination. In this respect, effective theories that

are known to admit a UV-completion are singled out from the set of all effective theories that are

apparently consistent at low energies. From this perspective string theory, which is expected to be

a fully consistent UV-complete theory valid at all energy scales, is especially fruitful in at least two
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different ways. On the one hand, we can use string theory as a guiding principle in the search for

a consistent effective theory for some new physics. Instead of exploring the full set of apparently

consistent effective theories we can exploit string theory to single out a preferred subset for us, hoping

that this exploration will lead to phenomenologically viable models. On the other hand, we can also

consider the problem from a more formal point of view and regard string theory as a tool to learn more

about what conditions a low-energy effective field theory must meet in order to be a fully consistent

theory coupled to quantum gravity. This approach has led to the introduction of the concept of

‘swampland’ [18]: this is the set of low-energy theories that pass all known consistency checks at low

energies (for instance, absence of anomalies) but are nonetheless inconsistent if coupled to quantum

gravity. A study of the swampland might lead to the discovery of novel kinds of low-energy consistency

conditions that would restrict the set of allowed effective theories and would teach us something about

matter-coupled quantum gravity.

Let us point out that in some situations the relevance of the existence of a UV-completion goes

beyond formal considerations and can directly affect the physics. For example, in inflationary models

of cosmology the so-called eta-problem is extremely sensitive to some details of the UV-completion

[19, 20, 21]. In these cases string theory can be even more useful, since it actually furnishes a UV-

completion from which—at least in principle—low-energy data can be reliably computed.

1.4 The power of supersymmetry

In quantum mechanics “everything not forbidden is compulsory,” in the words of Murray Gell-Mann

[22]. From this perspective the role of symmetries is instrumental since they are usually the underlying

motivation for some physical process to be forbidden or some quantum correction to be absent. The

prototypical example is furnished by the connection established by Noether’s theorem between global

continuous symmetries and conserved charges in Lagrangian field theory. As another example we can

consider the photon in QED: gauge symmetry ensures that it remains exactly massless even when all

quantum corrections are taken into account.5

Supersymmetry is one of the most powerful symmetries that can be enjoyed by a quantum field

theory and it emerges naturally from string theory. Its crucial feature is to take bosonic states

into fermionic states and vice versa. Since it will often play a very important role in our following

considerations, we would like to draw the attention of the reader to a few general facts concerning

supersymmetry. Some textbooks on the subject are for instance [23, 24, 25, 26].

From a purely theoretical perspective supersymmetry is arguably the most appealing extension of

the familiar Poincaré symmetry of relativistic quantum field theory. A series of theorems, culminating

in the celebrated Coleman-Mandula theorem [27], have classified all possible symmetries of a non-

trivial relativistic field theory. Under mild assumptions about the spectrum of the model and its

5Gauge symmetries are actually best understood as redundancies of our description of the theory, rather than as
actual local symmetries enjoyed by the system under examination. For the sake of exposition, however, we will adopt
the common parlance and consider global/rigid and local/gauge symmetries in parallel.
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S-matrix, it has been proven that the most general symmetry algebra must be the direct sum of the

Poincaré algebra and of an internal algebra, i.e. an algebra acting on the internal quantum numbers

of fields (for instance, flavor). Thus in particular there cannot be conserved charges carrying Lorentz

indices different from the Poincaré generators.6

Supersymmetry represents the natural way to avoid these theorems and uncover new possible

symmetries of interacting field theories. The crucial element that distinguishes supersymmetry al-

gebras from ordinary symmetry algebras is the inclusion of both bosonic and fermionic generators.

Correspondingly, the structure of a supersymmetry algebra is encoded by commutators and well as

by anticommutators, according to the schematic pattern

[B,B] = B , [B,F ] = F , {F, F} = B , (1.2)

where B and F stand for boson and fermion, [·, ·] is a commutator, and {·, ·} is an anticommutator. A

series of results, such as the Haag- Lopuszański-Sohnius theorem [29] or the classification performed in

[30], have explored the features of supersymmetry algebras that are relevant in quantum field theory.

The fermionic generators of these superalgebras are called supercharges and turn out to carry spinor

indices, in accord with the correspondence between spin and statistic. From the theorist point of view

it is useful to consider not only supersymmetry in four dimensions, but also its generalizations to lower

and higher dimensions. These emerge naturally in string theory.

Since supercharges transform non-trivially under the Lorentz group, they connect states with

different spins and in particular mix bosonic and fermionic states. Indeed, in the representations of the

supersymmetry algebra on particle states we find an equal number of bosonic and fermionic degrees

of freedom, forming a so-called supermultiplet. If supersymmetry were an unbroken symmetry of

Nature, all members of the same supermultiplets would have the same mass in a Minkowski vacuum.

This would imply that every known particle of the Standard Model should be accompanied by a

particle of opposite statistic and same mass. Since this is clearly false, supersymmetry must be broken

in order to be compatible with experimental data. The phenomenology of supersymmetric theories

is a vast and rich subject that lies beyond the scope of our work. Let us mention that low-energy

supersymmetry can be used to solve the hierarchy problem of the Standard Model, improves gauge

coupling unification, and can provide dark matter candidates, just to name a few examples. The

interested reader is referred for instance to the review [5].

For the purposes of our work we will be mainly focused on unbroken supersymmetry, with the

exception of chapter 8 in which we will consider setups that break four-dimensional supersymmetry in

6Non-trivial interactions are an essential ingredient for these theorems. In free field theories it is not hard to construct
counterexamples. For instance, in the free theory of a real scalar field φ of mass m in d dimensions one can build the
tensorial current

Xµν = φ∂µ∂νφ− ∂µφ∂νφ .
It is conserved on-shell, since ∂µXµν = 0 for ∂µ∂µφ = m2φ. Therefore it gives rise to the conserved charge

Xµ =

∫
dd−1xX0µ ,

which transforms as a vector under the Lorentz group. By the same token one can actually construct conserved charges
Xµ1...µn for any n ≥ 1. Let us mention that an O(N) generalization of this construction in three dimensions proves to
be relevant in the study of the CFT dual to higher-spin theories in AdS4 [28].
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a specific way. As a result, we can exploit a series of remarkable properties implied by supersymmetry.

For example, we can specify only the bosonic part of the spectrum, since the fermionic part is fixed

by supersymmetry: this is what we will systematically do in the next chapters. Furthermore, super-

symmetry imposes powerful restrictions on the couplings of the theory. Thus, if we specify the purely

bosonic part of the effective action all fermionic terms are implied and need not be spelled out explic-

itly. Let us also point out that, on general grounds, supersymmetry offers protection against various

kinds of perturbative and non-perturbative quantum corrections and improves considerably the UV

properties of the theory. An example is furnished by a supersymmetric extension of four-dimensional

gauge theories known as maximally supersymmetric Yang-Mills, which is a non-trivial interacting field

theory free of UV divergences.

Supersymmetry has the peculiar feature that, if it is promoted from a global symmetry to a gauge

symmetry, it necessarily requires the inclusion of gravity and yields so-called supergravity theories.

This can already be seen by the fundamental anticommutator of the supersymmetry algebra, which

in crude approximation takes the form

{Q,Q} ∼ P + . . . , (1.3)

where Q are the supercharges, P are the components of momentum, i.e. the generators of transla-

tions, and we are neglecting possible other generators commonly referred to as central charges of

the supersymmetry algebra. If supersymmetry is made local, the same has to hold for translations.

But, intuitively speaking, a gauge theory of translations amounts to a theory with diffeomorphism

invariance, and thus gravity. This argument can be made precise, in the sense that it is possible to

construct supergravity theories by a suitable gauging of global supersymmetry algebras, see e.g. [26].

Supergravity provides a beautiful framework for the study of low-energy effective actions propagating

particles of all spin from zero to two and thus potentially accommodating all known interactions in a

unified fashion. The massless fields of spin 3/2 are referred to as gravitini and always belong to the

same supermultiplet as the graviton in interacting theories.

As a final remark, we would like to mention some general results about the connection between

massless particles of spin 1, 2, 3/2 and symmetries. In theories with a Lagrangian description it is

customary to postulate a symmetry principle such as gauge invariance, general covariance, or local

supersymmetry and deduce the properties of massless particles and their interactions. It is interesting

to recall that this logic can also be reversed to a certain extent. More precisely, a theorem by Weinberg

[31] states that if a massless particle of spin one has non-vanishing couplings at zero momentum, then it

necessarily couples to a conserved current. The theorem does not rely on perturbation theory: its only

assumptions are exact masslessness of the spin one particle, Lorentz invariance, and the pole structure

of the S-matrix. In the same paper Weinberg proves also the spin two version of the theorem: if a

massless spin two particle has couplings at zero momentum, then it couples universally to all particles

with a strength proportional (in the non-relativistic limit) to their inertial mass.

It is amusing that a similar result holds for spin-3/2 particles. As proven in [32], if a massless

spin-3/2 particle interacts at zero momentum, then it is coupled to a supersymmetry current and

consistency of the theory also requires the presence of massless spin-two particles with interactions at
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zero momentum. Loosely speaking, interacting massless gravitini require supersymmetry and gravity.

1.5 Non-perturbative effective actions in string and M-theory

This work is devoted to the study of low-energy effective actions arising in string theory and M-

theory is various contexts. In particular, we will be focusing our attention on two setups: F-theory

compactifications on manifolds with special holonomy and conformal theories in six-dimensions with

sixteen supercharges, commonly referred to as (2,0) theories.

Despite what the name might suggest, F-theory is not a fundamental theory but rather a refor-

mulation of a class of superstring vacua. This reformulation makes extensive use of the language of

topology and geometry to encode as much physical information as possible. More precisely, alongside

with the ten spacetime dimensions predicted by superstring theory in F-theory one considers two ad-

ditional auxiliary dimensions. The resulting twelve-dimensional space is a powerful mathematical tool

to describe in a compact and elegant fashion interesting string dynamics. In particular, the formalism

of F-theory is able to describe setups in which the parameter that governs the strength of string in-

teractions is not merely a constant, but varies in spacetime. This remarkable feature makes F-theory

intrinsically non-perturbative.

The interest in the study of F-theory compactifications can be motivated from different points of

view. To begin with, four-dimensional vacua constructed using F-theory possess various phenomeno-

logically appealing features. In fact, F-theory is able to combine the virtues of different corners of the

‘M-theory star’ (see figure 1.2) thanks to its non-perturbative nature. On the one hand, it is able to

reproduce some of the features of the gauge and charged matter sector that can be constructed in het-

erotic string theories, which are particularly promising for the building of models of grand unification

(i.e. unification of electroweak and strong interactions). On the other hand, F-theory inherits from

Type IIB superstring theory some useful theoretical tools that improve our control on the gravitational

sector of the setup and on so-called moduli. The latter are scalar fields that are not charged under

the gauge group of the visible sector and that have to be made sufficiently massive in order not to

interfere with bounds on fifth force experiments and with the concordance model of cosmology.

From a more formal point of view, F-theory compactifications provide a rich class of string theoretic

constructions of consistent effective field theories. This makes F-theory an excellent playground for the

analysis of general questions regarding the consistency of low-energy actions and the possible existence

of a swampland of apparently consistent theories that are actually inconsistent, as mentioned in section

1.3. This analysis is most easily performed for F-theory compactifications to dimensions higher than

four. For instance, six-dimensional F-theory vacua provide a good balance between computational

feasibility and non-trivial structure. One can thus hope that six dimensions might teach us valuable

lessons that we will be eventually able to apply to the search for a realistic model of new physics in

four dimensions.

The approach to F-theory followed in this work is more closely related to this second, formal
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point of view. In particular, we will consider F-theory in six dimensions and we will see how this

more controlled setup allows us to have a better theoretical control over the compactification and to

gain valuable insights that can be also generalized to four-dimensional vacua. In a similar spirit, our

exploration of compactifications of four-dimensional F-theory vacua on so-called Spin(7) manifolds is

motivated by the curiosity to test to which extent the established theoretical framework of F-theory can

be pushed to probe new directions in the space of string vacua. As a consequence, we do not claim that

the four-dimensional effective theories we will be considering have any immediate phenomenological

value. Nonetheless the investigation of new F-theory constructions has the potential to provide new

tools that might be useful in the formulation of realistic theories.

The other main objects of interest of this work, six-dimensional (2,0) theories, share with F-theory

an inherently non-perturbative character. In fact they constitute an example of strongly coupled

quantum field theories that are expected to admit no perturbative expansion. The existence of these

theories is inferred from the study of suitable string theory and M-theory setups, in which they

emerge as the infrared conformal fixed points obtained by renormalization group flow and decoupling

of gravitational interactions. The study of (2,0) theories constitutes a theoretical challenge. They are

believed to be a novel kind of field theories possessing a peculiar sort of ‘gauge invariance’ that is far

from being understood. No direct Lagrangian description for these theories is known, and there are

arguments that suggest that it might not even exist. Nonetheless it would be extremely beneficial to

have a better comprehension of six-dimensional (2,0) theories since they are directly related to so-called

S-duality in four-dimensional gauge theories. An S-duality is a map connecting two seemingly distinct

quantum field theories in such a way that the weak-coupling regime of one theory is mapped to the

strongly-coupled regime of the other, and vice versa. By means of an S-duality transformation we can

thus explore strongly coupled quantum field theories by analyzing the weakly coupled dual description.

S-duality is best understood for theories with a too high degree of symmetry to be realistic, but it is

conceivable that this kind of duality might be usefully exploited to learn more about the universality

class of phenomenologically relevant quantum field theories such a QCD.

Given the non-perturbative nature of F-theory and (2,0) theories, how can we access their dynam-

ics? Since we cannot rely on perturbative techniques we have to resort to indirect approaches. It

is amusing that both for F-theory and for (2,0) theory a possible approach involves what might be

defined a transdimensional treatment. Let us comment further on this point.

Suppose we want to study an F-theory setup in d dimensions, for instance d = 4. Our goal is

the formulation of a low-energy effective theory that incorporates features such as Poincaré invariance

and non-Abelian gauge interactions. Unfortunately, there is no direct way to access the effective

action in this regime. What can be done instead is to appeal to a duality between F-theory and M-

theory to get information about a deformed setup. More precisely, d-dimensional Poincaré invariance

is broken by choosing a special direction in space and compactifying it on a circle of small radius.

This yields a (d− 1)-dimensional theory. Concurrently, non-Abelian gauge symmetry is broken to its

maximal Abelian subgroup. The duality between F-theory and M-theory then dictates a well-defined

prescription to recover the sought-for d-dimensional ‘unbroken phase’ from this (d − 1)-dimensional

‘broken phase.’
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In this work we advocate a similar transdimensional approach to the study of (2,0) theories in

six dimensions. As we will argue in chapter 11 if a six-dimensional (2,0) theory is compactified on

a circle it yields a five-dimensional theory that is more tractable in several respects. In particular,

a Lagrangian description in five dimensions appears to be more feasible than in six dimensions. We

are indeed able to write down a supersymmetric Lagrangian that encodes the expected spectrum of

a (2,0) theory and incorporates non-Abelian gauge interactions. Our approach is inspired by the

considerations of [33, 34] and is similar to other strategies formulated in the literature [35, 36, 37, 38].

Clearly, once a five-dimensional description of the ‘broken phase’ is achieved one has to find a suitable

recipe to extract information about the six-dimensional ‘unbroken phase.’ In the context of the F-

theory setups we will analyze in our work this step is under reasonable control, but for (2,0) theories

is necessarily much more conjectural given our limited understanding of the dynamics of these elusive

theories. Nonetheless we will argue that some robust features of (2,0) theories that do not depend on

the fine details of the interactions might be captured by our five-dimensional approach. The prominent

example of such a feature is given by anomalies, which play a pivotal role throughout our work.

A quantum anomaly occurs when a symmetry of a classical theory is lost upon quantization. There

are several kinds of anomalies, but we will be only concerned with so-called perturbative anomalies.

The interested reader is referred to e.g. [39, 40] for a review on the subject. Perturbative anomalies are

based on a subtle interplay between IR degrees of freedom and UV divergences. More precisely, they

are computed through the examination of UV divergent one-loop diagrams, but they only depend on

the massless spectrum of the theory. Let us stress that anomalies are a quantum effect that can be

reliably computed perturbatively even in non-renormalizable theories and that they provide a window

on matter-coupled quantum gravity. A close inspection of anomalies in six-dimensional F-theory setups

will be the key for the correct understanding of some features of the duality between F-theory and

M-theory. Recall that, according to this duality, a d-dimensional F-theory setup is studied in a (d−1)-

dimensional ‘broken phase.’ In the case of six dimensions we are thus led to consider five-dimensional

theories. We will find an intriguing correspondence between six-dimensional anomalies and a specific

kind of one-loop corrections in five-dimensions. More precisely, these corrections involve topological

Chern-Simons couplings and can be though of as a parity anomaly. The same logic supports our claim

about the possibility of studying (2,0) theories using a five-dimensional action: loop corrections in five

dimensions can encode anomalies in six dimensions.

1.6 Outline of the thesis

The remaining part of this thesis is articulated in three parts. In part I we present an overview of some

preliminary material that will be useful in the rest of this work. In particular, we start in chapter

2 with a brief review of some basic aspects of string theory in general and Type II superstring in

particular and we then move in chapter 3 to a quick discussion of three ingredients that will prove

crucial in our following considerations: T-duality, S-duality, M-theory and its connections to Type II

superstring theory. Chapter 4 is devoted to a presentation of the idea of compactification focussing on

the cases in which the internal space is a circle or a Ricci-flat manifold with special holonomy. In the
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last two chapters of part I we address more specific topics. In chapter 5 we introduce F-theory with

particular emphasis on its duality with M-theory. Finally, chapter 6 contains a brief overview about

six-dimensional superconformal (2,0) theories.

In part II we perform a detailed analysis of two F-theory compactification setups. The subject of

chapter 7 is the study of the low-energy effective action of F-theory compactified to six dimensions on

an elliptically fibered Calabi-Yau threefold. A match between the data of the six-dimensional effective

action and the geometry of the threefold is presented and the importance of quantum effects generated

by massive Kaluza-Klein states is stressed. In chapter 8 we consider instead four-dimensional F-

theory setups obtained by compactification on a suitable class of manifolds with Spin(7) holonomy, or

Spin(7) manifolds for short. Our constructions represents a first concrete implementation of F-theory

on Spin(7) manifolds and exhibits interesting features. In particular, for the manifolds we consider

the resulting four-dimensional theory is formulated on a spacetime with codimension-one boundaries.

We argue that, while the bulk dynamics is supersymmetric in four dimensions, the dynamics of the

boundaries only respects half of this amount of supersymmetry. For those F-theory configurations that

admit a weakly coupled Type IIB interpretation we identify explicitly the objects that are localized

on the boundaries and we check the amount of supersymmetry that they preserve.

Part III is devoted to a study of six-dimensional self-dual tensors from a five-dimensional perspec-

tive. In chapter 9 we present some general results about one-loop corrections to gauge and mixed

gauge-gravitational Chern-Simons terms in five dimensions. More precisely, we extend known results

in the literature by computing the contribution of massive gravitini and of massive tensors to the

quantum corrections to the aforementioned couplings. These results are applied to the study of six-

dimensional tensors in chapter 10, in which we also discuss the possibility of exploring the space of

five-dimensional supergravity theories using one-loop corrected Chern-Simons terms. Finally, chapter

11 is dedicated to a proposal for a five-dimensional Lagrangian for six-dimensional (2,0) theories. In

particular we construct a five-dimensional action that contains an infinite number of massive fields, in

such a way to account for all the degrees of freedom of a six-dimensional (2,0) theory on a circle. We

argue that the couplings in our five-dimensional action are natural and have the potential to capture

robust features of (2,0) theories, such as anomalies.

We collect some conclusive remarks in chapter 12. A series of appendices presents our notation

and conventions together with some useful technical results.
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Preliminary material
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CHAPTER 2

Basic notions about Type II superstring theory

This chapter is devoted to a brief introduction to some fundamental aspects of Type II superstring

theory. This is such a rich and vast field that we do not aim at a complete overview. We would rather

like to guide the reader through a quick survey of the logical steps connecting the first principles upon

which string theory is formulated to the aspects that will be relevant for our discussion in the next

chapters. The interested reader is referred to textbooks such as [41, 42, 43, 44, 45, 46] for a more

in-depth introduction and for a discussion of all the fascinating features of string theory that we are

not able to cover here.

2.1 World-sheet perspective and massless spectra

The natural starting point for our introduction to string theory is a lightning review of the fundamental

aspects of its world-sheet formulation. After some preliminary remarks about bosonic string theory, we

move on to discuss Type II superstring theories with particular emphasis on their massless spectrum.

2.1.1 World-sheet action for the bosonic string

A covariant description of the string motion is furnished by the embedding of its world-sheet Σ in

spacetime. The latter is usually referred to as target space and for our present discussion it is taken

to be d-dimensional Minkowski spacetime, with d left arbitrary. In a flat coordinate system xµ,

µ = 0, . . . , d−1, the world-sheet embedding is described by a set of functions Xµ(τ, σ), where τ , σ are

the time and space coordinate on Σ, respectively. We also use the notation σα, α = 0, 1, with σ0 = τ

and σ1 = σ.

We would like to use an action principle to determine the dynamics of Xµ(τ, σ). A suitable action

21
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is the Polyakov action

SP = − 1

4πα′

∫
Σ
d2σ
√
−hhαβ ηµν ∂αXµ ∂βX

ν , (2.1)

where α′ is the Regge slope already introduced in (1.1), ηµν is Minkowski metric with mostly plus

signature, hαβ is a Lorentzian metric on the world-sheet Σ and h = dethαβ. Note that hαβ enters

the action only algebraically. At the classical level it can be thus removed by means of its equation of

motion. If this is done, the Polyakov action (2.1) becomes proportional to the area of the world-sheet

computed with the pull-back of the Minkowski metric. This is a natural generalization of the action

for a point particle, which is proportional to the proper time of its world-line. The introduction of

the auxiliary metric hαβ renders (2.1) quadratic in Xµ and is instrumental to the formulation of more

general string theories, as we will see shortly.

The Polyakov action (2.1) is manifestly invariant under world-sheet diffeomorphisms. Crucially it

enjoys another local symmetry: it in invariant under Weyl rescalings of the world-sheet metric,

hαβ → e2ω hαβ , (2.2)

where ω is any locally defined function on the world-sheet. Even though (2.1) is straightforwardly

generalized to higher-dimensional membranes, Weyl invariance is specific to two-dimensional extended

objects. This is one of the reasons why strings are singled out among extended objects.

A two-dimensional metric has three independent components. This is the same number of gauge

parameters of the theory: two parameters from world-sheet diffeomorphisms and one from Weyl

rescalings. As a result, any world-sheet metric hαβ can be locally gauge-fixed to the flat metric ηαβ.

Since we are considering the free propagation of a string, the world-sheet Σ is a cylinder for a closed

string and a strip for an open string. In these simple cases the gauge-fixing of hαβ to ηαβ can be

performed globally. The Polyakov action (2.1) then yields

Sm = − 1

4πα′

∫
Σ
d2σ ∂αX

µ∂αXµ =
1

πα′

∫
Σ
d2σ ∂+X

µ∂−Xµ , (2.3)

where world-sheet indices are contracted with ηαβ, and spacetime indices with ηµν . In the second

equality we have introduced coordinates σ± = σ0±σ1 on Σ. The subscript ‘m’ stands for ‘matter’, as

we can regard the embedding functions Xµ as scalar fields on the world-sheet carrying an additional

‘flavor’ index µ. The corresponding ‘flavor’ global symmetry is nothing but Poincaré symmetry in the

target space.

The gauge-fixed action (2.3) is still invariant under suitable combinations of diffeomorphisms and

Weyl transformations. More precisely, if a diffeomorphism σα → σ′α(σ) is such that

η′αβ(σ′) = e2Λ(σ) ηαβ(σ) , (2.4)

we can act with a compensating Weyl transformation to reabsorb the prefactor and restore the gauge

condition hαβ = ηαβ. Diffeomorphisms satisfying (2.4) are called conformal transformations. At the

infinitesimal level, they are generated by conformal Killing vector fields ξα, satisfying

∂αξβ + ∂βξα = ∂γξ
γ ηαβ . (2.5)
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This equation takes a particularly simple form if we use coordinates σ± = σ0±σ1 on the world-sheet,

since we find

∂−ξ
+ = 0 , ∂+ξ

− = 0 . (2.6)

We can immediately see that in two dimensions the space of solutions to (2.5) is infinite-dimensional:

the action (2.3) thus admits an infinite number of conserved charges. This remarkable property allows

one to use the powerful methods of conformal field theory (CFT). Since we will not make use of CFT

techniques in what follows, we refer the reader to e.g. [47, 48] for introductions to the subject and its

applications to string theory.

Our starting point has been the geometric picture of the world-sheet embedding in spacetime.

From a more abstract point of view, a string theory is defined by the CFT living on its world-

sheet. The string theory based on (2.3) is called bosonic string theory. It turns out that this theory is

unable to describe spacetime fermions and furthermore its perturbative vacuum suffers from tachyonic

instabilities. These difficulties can be overcome by introducing additional matter fields on the world-

sheet.

2.1.2 World-sheet action for Type II superstrings

In Type II superstring theories in the Ramond-Neveu-Schwarz formulation one supplements the world-

sheet scalars Xµ with a pair of opposite-chirality Majorana-Weyl world-sheet spinors ψµ+, ψµ−. The

resulting world-sheet theory is supersymmetric.

More precisely, recall that in the Polyakov action (2.1) the scalarsXµ are coupled to two-dimensional

gravity in a diffeomorphism and Weyl invariant way. In a similar fashion, one can couple Xµ, ψµ+, ψµ−
to two-dimensional superconformal gravity: a generalization of (2.1) can be found that is invariant un-

der diffeomorphisms, local world-sheet Lorentz transformations, local supersymmetry transformations,

together with Weyl transformations and their supersymmetric partners, super-Weyl transformations.

This huge amount of local symmetries can be reduced by a suitable gauge-fixing procedure, as in the

previous bosonic discussion. The outcome is a generalization of (2.3) that in coordinates σ± = σ0±σ1

reads

Ssm =
1

2π

∫
Σ
d2σ

{
2

α′
∂+X

µ ∂−Xµ + i ψµ+ ∂−ψ+µ + i ψµ− ∂+ψ−µ

}
. (2.7)

The label ‘sm’ in (2.7) stands for supersymmetric matter. Indeed, (2.7) is invariant under supersym-

metry transformations generated by the analog of conformal Killing vectors, the so-called conformal

Killing spinors. Explicitly, the transformations read

δXµ =

√
α′

2
i(ε+ψµ+ + ε−ψµ−) , δψµ+ = −

√
2

α′
ε+∂+X

µ , δψµ− = −
√

2

α′
ε−∂−X

µ , (2.8)

where the real anticommuting parameters ε± satisfy the fermionic analog of (2.6), which is

∂−ε
+ = 0 , ∂+ε

− = 0 . (2.9)

In total analogy to the purely bosonic case, we see that the two-dimensional conformal Killing spinor

equation (2.9) admits infinite solutions. As a result (2.7) is invariant under an infinite-dimensional

superconformal algebra, and is therefore a superconformal field theory (sCFT).
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One easily verifies that the generic solutions to the classical equations of motion associated to (2.7)

have the form

Xµ(τ, σ) = Xµ
L(σ+) +Xµ

R(σ−) , ψµ+(τ, σ) = ψµ+(σ+) , ψµ−(τ, σ) = ψµ−(σ−) . (2.10)

This is an important point: the dynamics of the string can be analyzed in terms of left-moving and

right-moving modes that have no local interactions. Indeed, the left-moving and right-moving sectors

are related only via considerations about the global topology of the world-sheet, to be discussed below.

This observation is the starting point for the construction of heterotic superstrings: the left-moving

sector of the bosonic string is combined with the right-moving sector of a superstring. We refrain

from a more detailed account of heterotic string theories and we refer the reader to the textbooks

[41, 42, 43, 44, 45, 46].

2.1.3 Constraints and Weyl anomaly

The matter action (2.3) and its supersymmetric extension (2.7) describe two-dimensional free-field

theories that can be straightforwardly quantized. In deriving (2.3) or (2.7), however, one performs a

gauge-fixing and this requires special care in the quantization procedure.

First of all, note that the bosonic gauge-fixed action (2.3) does not contain the information encoded

in the hαβ equation of motion of the original Polyakov action (2.1), which imposes the vanishing of the

world-sheet energy-momentum tensor Tαβ. Similarly, in the supersymmetric extension of the Polyakov

action one finds a two-dimensional gravitino, whose equation of motion imposes the vanishing of the

supercurrent (TF )α, which is a two-dimensional vector-spinor. At the classical level Tαβ = 0 and

(TF )α = 0 can be imposed by hand on the space of solutions. In the quantum theory we rather have

to impose

〈ψ1|Tαβ |ψ2〉 = 0 , 〈ψ1|(TF )α |ψ2〉 = 0 , for any ψ1, ψ2 ∈ Hphys , (2.11)

where Hphys denotes the physical Hilbert space of the theory. There are various equivalent ways to

construct Hphys and thus determine the spectrum of the physical oscillations of the string. We are not

going to discuss this procedure, but we will rather state the results in what follows. The interested

reader is referred to the textbooks for a thorough derivation. Before that, however, a crucial issue has

to be addressed.

As we have seen in the previous section, Weyl invariance of the Polyakov action (2.1) is fundamental

to have enough gauge parameters to gauge-fix all local degrees of freedom of the world-sheet metric

hαβ. Nonetheless, nothing prevents this classical symmetry to suffer from quantum anomalies. Indeed,

this is to be expected: Weyl transformations are closely related to scale transformations, and the latter

are commonly violated in QFT due to a non-trivial RG flow of the couplings. In the supersymmetric

case a similar discussion applies. The Weyl anomaly can be analyzed with different techniques, but all

give the same results. For the bosonic string, if the target space is Minkowski the anomaly vanishes

if and only if d = 26; for the superstring, if and only if d = 10. By means of self-consistency, string

theory is thus able to predict the dimensionality of spacetime.



2.1. World-sheet perspective and massless spectra 25

2.1.4 Closed string sectors

For a closed string the world-sheet is a cylinder and therefore we require the scalars Xµ to be periodic

along the spatial direction on the world-sheet,

Xµ(τ, σ + 2π) = Xµ(τ, σ) , σ ∼ σ + 2π . (2.12)

Since any physical observable is quadratic in fermions, for ψµ+, ψµ− we can either choose periodic or

antiperiodic boundary conditions, which are referred to as Ramond and Neveu-Schwarz, respectively:

Ramond: ψµ(τ, σ + 2π) = +ψµ(τ, σ) ,

Neveu-Schwarz: ψµ(τ, σ + 2π) = −ψµ(τ, σ) , (2.13)

where ψµ stands for ψµ+ or ψµ−. If we want to preserve spacetime Lorentz invariance we have to choose

the same periodicity for all values of µ, but we are still free to choose different periodicity for left- and

right-movers. As a result, the superstring contains four sectors, which can be denoted (R,R), (R,NS),

(NS,R), (NS,NS).

As noted after (2.10), left- and the right-moving classical solutions decouple. One can show that

a similar decoupling is valid at the level of the quantum constraints (2.11). The physical states of the

closed superstring are thus formed by combining the quantum states of left-moving and right-moving

oscillators, which can be analyzed separately. This is reflected in the mass formula for closed string

excitations. It is given by the sum of the contributions of left-moving and right-moving modes, which

have to be equal:

m2 = m2
L +m2

R , m2
L = m2

R . (2.14)

The latter equation expresses the level-matching condition and is the only constraint relating left-

movers and right-movers. It originates from the requirement of invariance under σ-translations on the

world-sheet, which is motivated by the fact that no point should be preferred on a closed string.

Let us examine in more details the quantum states in the left-moving sector; similar considerations

apply to the right-movers. One can show that both for Ramond and Neveu-Schwarz periodicities a

well-defined Z2-grading on the space of states is given by the world-sheet left-moving fermion number

operator FL. This grading induces a refinement of the R and NS sectors into subsectors with definite

eigenvalues for (−1)FL , which we denote R+, R−, NS+, NS+. In table 2.1 we collect the lightest states

for each of these subsectors. The entries of the table denote the representations of the corresponding

states with respect to the relevant little group in the critical dimension d = 10: this is SO(8) for

massless states and SO(9) for all other mass levels. We use the standard notation for distinguishing

the three eight-dimensional representations of SO(8): 8v is the fundamental, or vector, representation,

while 8c and 8s denote the two opposite-chirality Majorana-Weyl spinor representations. Note the

presence of a scalar with negative mass squared in the NS− sector, the tachyon. Let us also point

out that all states in the NS+ and NS− sectors belong to representations with integer weights and

are associated to spacetime bosonic statistic, while all states in the R+ and R− sectors transform in

representations with half-integer weights and correspond to spacetime fermionic statistic.
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α′m2
L NS+ NS− R+ R−

−1 1

0 8v 8s 8c

1 36

2 44 + 84 128 128
...

...
...

...
...

Table 2.1: Lightest states in the left-moving sector of a closed superstring.

Type IIA

(NS+,NS+) 8v × 8v = 1 + 28 + 35v Φ, B2, gµν

(NS+,R−) 8v × 8c = 8c + 56c λ, Ψµ

(R+,NS+) 8s × 8v = 8s + 56s λ̃, Ψ̃µ

(R+,R−) 8s × 8c = 8v + 56v C1, C3

Type IIB

(NS+,NS+) 8v × 8v = 1 + 28 + 35v Φ, B2, gµν

(NS+,R+) 8v × 8s = 8c + 56c λ, Ψµ

(R+,NS+) 8s × 8v = 8c + 56c λ, Ψµ

(R+,R+) 8s × 8s = 1 + 28 + 35s C0, C2, C4

Table 2.2: Sectors, massless representations, and associated ten-dimensional fields in Type IIA and
Type IIB superstring theories.

2.1.5 GSO projection and spacetime supersymmetry

Thanks to the Z2-grading induced by FL and FR on the left-moving and right-moving sectors, re-

spectively, one can construct tachyon-free superstring theories. More precisely, it is possible to consis-

tently restrict the theory to four out of 16 possible refined sectors (R±,R±), (R±,NS±), (NS±,R±),

(NS±,NS±). This procedure is known as GSO projection and can be shown to be compatible with

non-trivial string interactions. Furthermore, a GSO projection is also needed to ensure modular in-

variance of the one-loop string partition function. There exists two inequivalent GSO projections that

yield a tachyon-free spectrum. They correspond to Type IIA and Type IIB superstring theories. For

each of them table 2.2 summarizes the sectors that survive the GSO projection and the associated

massless states, labelled by their SO(8) representations.

As we can see, the (NS,NS) sector is the same for both theories. The corresponding massless states

are interpreted as fluctuations of ten-dimensional fields, as follows. The singlet 1 is associated to a

real scalar field, the dilaton Φ; the representation 28 is the antisymmetric rank-two representation and

corresponds to the degrees of freedom of a two-form, the Kalb-Ramond field Bµν ; the notation 35v

denotes the symmetric traceless rank-two representation and is associated with the graviton, i.e. the
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fluctuation of the metric gµν . Let us stress that the identification of the representations 35v and 28

with the metric and the Kalb-Ramond two-form is consistent with the local symmetries enjoyed by

these two fields. For the metric, the local symmetry is furnished by diffeomorphisms, which ensure

that only the transverse traceless polarizations of the graviton are physical. For the Kalb-Ramond

field the local symmetry is a generalization of gauge symmetry of a U(1) vector. In differential form

notation it reads

B′2 = B2 + dΛ1 , (2.15)

where Λ1 is an arbitrary one-form. The gauge invariant field strength is H3 = dB2. Similarly to what

happens in Maxwell theory, this local symmetry renders timelike and longitudinal polarizations of the

Kalb-Ramond field unphysical.

The (R,R) sectors of both Type II theories contain massless states that are associated to p-form

potentials Cp that enjoy an Abelian gauge symmetry completely analogous to (2.15). More precisely,

we have

Type IIA: C1, C3 , Type IIB: C0, C2, C4 . (2.16)

The four-form C4 is associated to the representation 35s. This implies that its five-form field strength

satisfies a self-duality constraint in ten dimensions, which will be given in (2.26).

Finally, the (NS,R) and (R,NS) massless states comprise the degrees of freedom of fermionic fields.

They are Majorana-Weyl spin-3/2 fermions, the gravitini Ψµ, Ψ̃µ associated to the representations

56c, 56s, and two Majorana-Weyl spin-1/2 fermions, the dilatini λ, λ̃ corresponding to 8c, 8s. In

Type IIA the two spin-3/2 fermions have opposite chiralities, while in Type IIB their chiralities are

the same. Recall from section 1.4 that if a massless spin-3/2 fermion has zero-momentum couplings

it interacts with a conserved supercurrent. Therefore, the presence of spin-3/2 massless fermions

hints towards the presence of spacetime supersymmetry. Indeed, one can show that for both Type II

theories the number of bosonic and fermionic degrees of freedom are equal at all mass levels. Further

evidence for spacetime supersymmetry comes from the vanishing of the one-loop partition function,

resulting from a cancellation between bosonic and fermionic degrees of freedom, and from the study

of the low-energy effective action for massless modes, discussed in section 2.2.

2.1.6 Open strings and D-branes

For a freely propagating open string the world-sheet Σ has the topology of a strip and suitable boundary

conditions have to be imposed to ensure the vanishing of the surface terms in the variation of (2.7).

Since the equation of motion for Xµ is second-order, two kinds of boundary conditions are possible,

Neumann: ∂σX
µ|σ=σ∗ = 0 ,

Dirichlet: Xµ|σ=σ∗ = const ,
(2.17)

where σ∗ stands for the σ-coordinate of one of the string endpoints. For both choices, at the endpoints

right-moving modes are reflected into left-moving modes, and vice versa.
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i j k

(ii)

(ji) (jk)

Figure 2.1: Schematic representation of a collection of parallel Dp-branes displaced along their common
transverse directions. Each brane is labelled by a Chan-Paton index, while strings are labelled by an
ordered pair of indices. String with labels (ij) with i 6= j yield extra massless states when branes i
and j come on top of each other.

Note that the conditions (2.17) can be imposed independently at each endpoint and along different

directions in spacetime. If for an endpoint we choose Neumann boundary conditions for p+1 directions

and Dirichlet boundary conditions for the orthogonal d− p− 1 directions, that endpoint is bound to

lie on a (p+1)-dimensional subspace of the target space. Such a subspace is referred to as a Dp-brane.

Note that we can also set p = d − 1 in such a way that the D-brane becomes spacetime-filling: this

just corresponds to Neumann boundary conditions. In summary, the two endpoints of an open string

always end on (possibly different) D-branes.

For a closed string and for spacetime-filling D-branes Poincaré symmetry is unbroken and the

momentum and angular momentum of the string are thus conserved. In presence of a Dp-brane with

p < d−1, however, boundary conditions break Poincaré symmetry and conservation laws are violated.

The fact that Dp-branes can absorb and release momentum suggests that they should be considered

as dynamical objects of the theory. This is indeed the correct viewpoint, as we will see in section 2.2.

The world-sheet fermions ψµ+, ψµ− always satisfy a boundary condition of the form

ψµ+|σ=σ∗ = ±ψµ−|σ=σ∗ , (2.18)

where a priori the sign on the right hand side can be chosen independently at each endpoint and along

each spacetime direction µ. Note also that any condition of the form (2.18) preserves only half of the

world-sheet supersymmetry transformations (2.8), and that different sign choices can correspond to

different preserved supercharges. For any given choice of Neumann or Dirichlet boundary conditions

for Xµ, however, the signs in (2.18) can be chosen in such a way that the same half of world-sheet

supersymmetry is preserved by the whole system of boundary conditions. Actually, this choice can be

made in two inequivalent ways, corresponding to the Ramond and the Neveu-Schwarz sectors of the

open string.

We refrain from a detailed discussion of open strings and rather illustrate their main features. The
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spectrum of the open string contains states from both the Neveu-Schwarz and the Ramond sectors.

The details depend on the specific choice of boundary conditions, but the qualitative features are

similar to those of table 2.1, so that in particular tachyonic states can emerge in the NS sector. Once

again, however, a well-defined Z2 grading based on the world-sheet fermion number can be defined.

Thus there is the hope that the GSO projection will be able to eliminate the tachyon and leave a

massless spectrum invariant under spacetime supersymmetry. This expectation is indeed confirmed.

It can be shown that as a consequence of the GSO projections that define Type IIA and Type IIB

stable supersymmetric Dp-branes are found for p even in Type IIA and for p odd in Type IIB. By

supersymmetric brane we mean an object that preserves half of the spacetime supersymmetries.

Let us consider in more detail the illustrative example of an open string with both ends attached

to the same Dp-brane in the corresponding Type II theory. At the massless level, string states are

interpreted as the quantum fluctuations of (p+1)-dimensional fields confined along the world-volume of

the Dp-brane. The fact that D-branes carry localized degrees of freedom is an essential feature of string

theory. More precisely, on the world-volume of a Dp-brane we find a U(1) gauge field Aa (a = 0, . . . , p),

a collection of scalars ϕI , (I = 1, . . . , 9 − p) and their fermionic superpartners. The scalars can be

interpreted as Goldstone bosons associated to the breaking of ten-dimensional translations induced

by the Dp-brane. Note that for any p the p− 1 transverse polarizations of Aa combine with the 9− p
scalars to give the eight bosonic degrees of freedom in the massless 8v of the NS sector of the open

string, see table 2.1.

It is also interesting to consider the case of N parallel Dp-branes, displaced arbitrarily along the

transversal 8 − p directions orthogonal to their world-volumes, see figure 2.1. It can be shown that

they all preserve the same half of spacetime supersymmetry. If we assign a label i = 1, . . . , N to each

Dp-brane, open string sectors are labeled by an ordered pair (ij), denoting a string starting on brane

i and ending on brane j. These labels are called Chan-Paton factors. The case i = j has just been

discussed and yields a U(1) gauge field. If i 6= j, the mass spectrum is shifted by an amount which is

interpreted as the energy required to stretch a string between brane i and brane j. Thus, these sectors

are not associated to massless vectors, but rather to massive ones. Nonetheless, we can consider

the limit in which all Dp-branes become coincident and get a total of N2 massless vectors. This

suggests an enhancement of the gauge group living on their world-volume from U(1)N to U(N). This

expectation is confirmed by the study of open string scattering amplitudes. We have thus encountered

another fundamental feature of string theory: a stack of coincident D-branes carries a non-Abelian

gauge theory on its world-volume.

2.1.7 String coupling to background fields

The Polyakov action (2.1) describes the propagation of a string in flat spacetime with metric ηµν . The

closed string spectrum, however, contains a massless spin-two excitation that is identified with the

graviton. This suggests to consider the propagation of a string on a curved spacetime with metric gµν ,

which can be interpreted as a coherent superposition of graviton states. By the same token, one is also

led to include a non-trivial background for the Kalb-Ramond two-form and the dilaton. The resulting
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generalization of (2.1) takes the form of a non-linear sigma model on the world-sheet. Focusing on

bosonic NSNS fields only, its action reads

Snlσ = − 1

4πα′

∫
Σ
d2σ
√
−h
[
(hαβgµν + εαβBµν) ∂αX

µ ∂βX
ν + α′ΦR

]
, (2.19)

where εαβ denotes the world-sheet Levi-Civita tensor and R is the world-sheet Ricci scalar. Let us

point out that in the Ramond-Neveu-Schwarz formulation of the superstring, which we have followed in

our review, there is no straightforward way to couple the world-sheet theory to background RR forms.

In alternative formulations, however, this can be achieved in such a way that all massless bosonic

fields of the closed superstring spectrum can appear as backgrounds for the string propagation.

As stressed in section 2.1.1, Weyl invariance of the quantum world-sheet action is necessary to

ensure that the world-sheet metric does not contribute any physical degree of freedom to the propa-

gation of the string. The non-linear sigma model action (2.19) is not Weyl invariant at the classical

level, because of the dilaton term. At the quantum level, however, this classical non-invariance can

be cancelled by anomalous variations of the first two terms involving gµν and Bµν . If the background

fields are slowly varying in spacetime with respect to the string length scale (α′)1/2, the conditions

for quantum Weyl invariance can be written as differential constraints on gµν , Bµν , Φ in the form

of a derivative expansion, with higher-derivative terms suppressed by higher powers of α′. These

constraints are referred to as (super)string equations of motion for the background fields. They can

be alternatively derived from a spacetime effective action for massless modes, as discussed below in

section 2.2.

A trivial example of a string background that solves the superstring equations of motion exactly

in α′ is furnished by flat space in ten dimensions,

gµν = ηµν , Bµν = 0 , Φ = Φ0 , (2.20)

with constant Φ0. In this case the first two terms in the non-linear sigma model action (2.19) reproduce

the Polyakov action (2.1), while the dilaton term becomes the integral of a total world-sheet derivative.

This is most conveniently treated by analytic continuation to Euclidean signature on the world-sheet.

We then get the term

Sχ =
1

4π
Φ0

∫
Σ
d2σ
√
hR = Φ0 χ , (2.21)

where in the second step we have used the fact that the integral reproduces the Euler number of the

world-sheet, which is a topological invariant. For example, the Euler number of a Riemann surface is

given by χ = 2− 2g, where g is the genus of the surface, i.e. the number of ‘handles.’ The topological

term Sχ in (2.21) has no effect on the string spectrum but it plays a crucial role in the study of string

interactions. Indeed, in the sum over topologically non-trivial world-sheets, each contribution comes

weighted by a factor e−Sχ = e−Φ0 χ. This implies that if eΦ0 � 1 string amplitudes can be computed

as a perturbative expansion organized by the Euler number. We are thus led to identify eΦ0 with

the string coupling constant. This conclusion is confirmed by the study of the effective actions for

massless modes, discussed below. As promised, string theory has no dimensionless tunable parameter:

the strength of string interactions is not a property of the theory itself, but rather of the background

or vacuum under consideration.
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2.2 Low-energy dynamics of massless modes

Consider a closed string scattering process in Type IIA or Type IIB with typical energy scale E �
(α′)−1/2. Since the mass of the first excited level in the string spectrum is α′m2 = 4 only the massless

states summarized in table 2.2 will play a relevant role in the string dynamics. Effectively, we are thus

looking at strings in the so-called point particle limit α′ → 0. As a result, the information about the

interactions among these light states can be encoded in an effective action, according to the general

paradigm of section 1.3. In what follows, we record the effective actions for ten-dimensional fields and

for fields living on D-branes, without any derivation. The interested reader is referred to the textbooks

for more details.

2.2.1 Effective actions

The low-energy limit of Type IIA and Type IIB superstring theories at leading order in α′ yields

Type IIA and Type IIB supergravities, which are the two inequivalent theories with maximal local

supersymmetry in ten dimensions (32 supercharges). The corresponding actions up to two derivatives

are uniquely determined up to field redefinitions. In what follows, we will give only the bosonic part

of the effective actions, since fermionic terms are fixed by supersymmetry.

The effective action for the massless fields in the NSNS sector is the same for both Type IIA and

Type IIB. In differential form notation, it is given by

SNSNS =
1

2κ2
10

∫
M10

e−2Φ

[
R ∗ 1− 1

2
H3 ∧ ∗H3 + 4 dΦ ∧ ∗dΦ

]
, (2.22)

whereM10 denotes ten-dimensional spacetime, R is the Ricci scalar of the spacetime metric gµν , and

H3 = dB2 is the field strength of the Kalb-Ramond field. The constant κ10 is not fixed at the moment

and will be related to physical observables below. The effective action (2.22) is said to be written in

the string frame, because the metric gµν is the metric that enters the world-sheet non-linear sigma

model (2.19). In section 3.2 we will encounter a formulation of Type IIB in a different frame, the

Einstein frame. Note also that the dilaton prefactor e−2Φ signals that this effective action is obtained

at tree-level in closed string perturbation theory. Indeed, the relevant closed string topology is a

sphere, with Euler number χ = 2.

The actions for the RR sectors of Type IIA and Type IIB are different, but are both given by the

sum of kinetic terms and Chern-Simons terms. More precisely,

SIIA
RR =

1

2κ2
10

∫
M10

[
−1

2
F2 ∧ ∗F2 −

1

2
F4 ∧ ∗F4 −

1

2
B2 ∧ dC3 ∧ dC3

]
, (2.23)

SIIB
RR =

1

2κ2
10

∫
M10

[
−1

2
F1 ∧ ∗F1 −

1

2
F3 ∧ ∗F3 −

1

4
F5 ∧ ∗F5 −

1

2
C4 ∧H3 ∧ F3

]
, (2.24)
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where the field strengths are given by

F2 = dC1 , F4 = dC3 − dB2 ∧ C1 ,

F1 = dC0 , F3 = dC2 − C0 dB2 , F5 = dC4 −
1

2
C2 ∧ dB2 +

1

2
B2 ∧ dC2 , (2.25)

where B2 is the Kalb-Ramond two-form. The specific form of these field strengths is dictated by

invariance under the full set of RR gauge transformation—which we do not write down explicitly—

and implies that all of them, except F2 and F1, satisfy non-trivial Bianchi identities, dFp+1 6= 0. Let us

remark that the RR actions also correspond to tree-level closed string amplitudes. One could extract

an overall factor e−2Φ by a suitable dilaton-dependent redefinition of the RR potentials. This is not

convenient, however, since it would render the RR gauge transformation and Bianchi identities dilaton

dependent.

The Type IIB action for RR fields (2.24) offers the opportunity to introduce the concept of pseu-

doaction, which will play a crucial role in chapters 7 and 10. Recall that a suitable self-duality

condition has to be imposed on the field strength of C4 in order to have the correct number of degrees

of freedom. More precisely, the self-duality constraint reads

∗ F5 = F5 . (2.26)

If this relation holds, however, the kinetic term F5 ∧ ∗F5 vanishes identically. Indeed, there is no

simple covariant action that can yield the first-order differential constraint (2.26) upon variation of

the four-form potential C4. Taking the exterior derivative of (2.26) yields

d ∗ F5 = H3 ∧ F3 , (2.27)

which precisely corresponds to the equation of motion that is derived from (2.24) if it is varied with

respect to C4 ignoring any constraint. In summary, the action (2.24) is a pseudoaction in the sense

that its equations of motion are compatible with the self-duality constraint (2.26), which however has

to be implemented by hand after taking variations of (2.24).

The RR actions (2.23) and (2.24) are written in terms of the form potentials of lowest degree. One

can, however, encode the degrees of freedom of a (p+1)-form Cp+1 into its magnetic dual C7−p, defined

by a relation of the form Fp+2 = ± ∗ F8−p, where the F ’s are the gauge invariant field strengths. The

full RR form content of Type IIA is indeed given by C1, C3, C5, C7, C9, where (C1, C7), (C3, C5) are

dual pairs and C9 carries no propagating degrees of freedom. In a similar fashion, in Type IIB we have

C0, C2, C4, C6, C8, C10, with the dual pairs (C0, C8), (C2, C6), C4 self-dual, and C10 non dynamical.

Let us mention that there exists a so-called democratic formulation of Type II supergravities [49]

in which the effective action contains also the higher degree RR forms and which is useful in the

discussion of couplings to Dp-branes and in the study of string flux compactifications.

Let us now discuss the effective action for the massless fields living on the world-volume Wp+1 of

a Dp-brane. Recall that a Dp-brane respects half of the supersymmetry of the corresponding Type II

bulk action. Therefore, the action for the fermionic degrees of freedom living on Wp+1 is completely

determined by the action for the bosonic fields. The latter are conveniently described in terms of
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a U(1) gauge field Aa (a = 0, . . . , p) and the embedding functions Xµ(ξ) (µ = 0, . . . , 9), where ξa

are coordinates on Wp+1. Intuitively speaking, out of the 10 directions in Xµ, the 9 − p transversal

directions provide the degrees of freedom of the scalars living on the brane, while the other p + 1

directions are pure gauge. The Dp-brane effective action is given by the sum of the Dirac-Born-Infeld

action, describing the coupling of the world-volume degrees of freedom to the bulk NSNS fields, and

of the Chern-Simons action, which describes the coupling to the bulk RR forms.

The Dirac-Born-Infeld action reads

SDBI = −Tp
∫
Wp+1

dp+1ξ e−Φ
√
−det (gab +Bab + 2πα′Fab) , (2.28)

where Fab = 2∂[aAb], Φ is the dilaton restricted to the brane, gab and Bab are the pull-back of the

metric and Kalb-Ramond field,

gab =
∂Xµ

∂ξa
∂Xν

∂ξb
gµν , Bab =

∂Xµ

∂ξa
∂Xν

∂ξb
Bµν . (2.29)

The parameter Tp is related to the tension of the brane and will be discussed below in more detail.

The dilaton prefactor e−Φ is once again a signal that the action encodes string amplitudes at tree-level:

for an open string the relevant topology is a disk, with Euler number χ = 1.

The action (2.28) can be seen as a non-linear generalization of the Maxwell action, to which it

reduces to lowest order in the field strength Fab,

SDBI = −Tp
∫
Wp+1

dp+1ξ e−Φ
√
−det gab

{
1 +

1

4
(2πα′)2 F abFab + . . .

}
, (2.30)

where the dots represent higher order terms and contributions from the B-field and the 9− p massless

scalars. For a stack of D-branes with non-Abelian gauge group, the full non-linear analog of (2.28) is

not completely known, but the lowest order action is given by the natural non-Abelian generalization

of (2.30), obtained with the replacements

Fab = 2∂[aAb] → Fab = 2∂[aAb] + 1
2 [Aa, Ab] , F abFab → tr(F abFab) , (2.31)

where tr denotes the trace in the fundamental representation of U(N). Taking into account that a

stack of Dp-branes preserves 16 out of the 32 supercharges of the corresponding bulk theory, we then

find maximally supersymmetric U(N) gauge theory living on Wp+1.

The full form of the Chern-Simons action for a Dp-brane is quite involved and will not be displayed.

We rather consider only the case of a stack consisting of a single Dp-brane and focus on the simple

coupling

SCS ⊃ µp
∫
Wp+1

Cp+1 , (2.32)

which is the straightforward generalization of the coupling of a charged particle to a vector, which can

be written covariantly as q
∫
γ A, where γ is the world-line of the particle and q its charge. The physical

interpretation is the following: a Dp-brane has a minimal electric coupling to the RR bulk form Cp+1;

equivalently, it is magnetically charged under the dual form C7−p. This makes sense thanks to the

consistency of the even/odd grading of RR form degrees and D-brane dimensionalities in Type IIA

and Type IIB.
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2.2.2 The string coupling constant

Let us make some remarks on the coupling constants that enter the effective actions we have considered.

To begin with, note that all the bulk and brane effective actions and the functional form of the RR

field strengths (2.25) are left invariant by a simultaneous redefinition of the dilaton Φ, the RR fields

Cp, Fp, the parameters κ10, Tp, and µp,

Φ′ = Φ + a , C ′p = Cp e
−a , F ′p = Fp e

−a ,

κ′10 = κ10 e
−a , T ′p = Tp e

a , µ′p = µp e
a , (2.33)

where a is an arbitrary constant. This ambiguity, however, does not affect measurable couplings.

Indeed, the physical gravitational coupling, Dp-brane tension, and Dp-brane electric coupling to Cp+1

are given respectively by

κ = κ10 e
〈Φ〉 , τp = Tp e

−〈Φ〉 , ep =
√

2µp κ10 , (2.34)

where 〈Φ〉 denotes the VEV of the dilaton. These quantities can be seen as the interaction vertices that

can be read off from the effective actions of the previous section after imposing canonical normalization

on the kinetic terms for metric and RR field fluctuations.

By comparing string amplitudes and tree-level effective field theory computations one can show

that the couplings (2.34) are not independent, but rather satisfy

2κ2τ2
p = e2

p = 2π `2(3−p)
s , `s = 2π

√
α′ , (2.35)

where the normalization of `s is chosen in order to absorb all the dependence on p in the unit of

measurement. The first equality in (2.35) can also be written in the form

Tp = |µp| (2.36)

and shows that the forces between two parallel Dp-branes due to the exchange of NSNS and RR fields

have the same magnitude. In fact, they cancel exactly, leaving no net force between the branes. This

is common for BPS objects in theories with extended supersymmetry.

Because of the relations (2.35) there is only one independent physical coupling. Moreover, (2.34)

shows it is not a tunable parameter of the theory, but a property of the vacuum. As promised, there

are no free dimensionless parameters is string theory. The ambiguity related to the field redefinitions

(2.33) can be removed by choosing a conventional normalization. A standard choice is

1

2κ2
10

= 2π `−8
s , Tp = µp = 2π `−(p+1)

s , (2.37)

because in this way the VEV of the dilaton is related in a simple fashion to the ratio between the

fundamental string tension and the D1-brane tension, which is usually taken as the definition of the

string coupling constant gs:

e〈Φ〉 =
Tstring

τ1
= gs . (2.38)
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The low-energy effective actions discussed in this section can be checked against string perturbation

theory only if gs is small. Thanks to the protection ensured by supersymmetry, however, their validity

can be extrapolated to low-energy but strongly coupled regimes. This observation will be crucial in

introducing F-theory in chapter 5.

Let us close this section with a remark about another kind of extended object in Type II string

theory, the NS5-brane. The non-linear sigma model action (2.19) contains the coupling

Snlσ ⊃
1

2πα′

∫
Σ
B2 , (2.39)

which can be seen as an electric coupling of the string to the NSNS two-form. We thus expect the

existence of a magnetic dual to the fundamental string, i.e. an extended objects with five spatial

directions coupling to the dual potential given locally by dB6 = ∗dB2. Such an object is called NS5-

brane and can be constructed as a solitonic solutions of the source-free equations of motion derived

from the action (2.22). More precisely, the NS5-brane is a field configuration that admits a finite total

energy per unit area in the six longitudinal spacetime directions, i.e. a finite tension,

τNS5 =
2π`−6

s

g2
s

. (2.40)

The string coupling dependence 1/g2
s differs from the 1/gs factor for D-branes. This is consistent with

the interpretation of the NS5-brane as a closed string soliton. It is topologically stable against decay

thanks to a non-vanishing magnetic flux on the sphere S3 in the four-dimensional transverse space,

`−2
s

∫
S3

H3 = N , (2.41)

where we have recored the expression for the general case of a stack of N coincident NS5-branes.

Finally, one can show that NS5-branes are BPS objects preserving half of the 32 supercharges of the

Type II bulk. In Type IIB, the 16 preserved supercharges have opposite chirality and the resulting

world-volume supersymmetry algebra is (1, 1). Fluctuations around the NS5-brane solution can then

be described in terms of an effective action for (1, 1) vector multiplets in six dimensions. In Type

IIA we find instead the chiral world-volume supersymmetry algebra (2, 0). Correspondingly, massless

fluctuations are described in terms of (2, 0) tensor multiplets. They will be described in detail in

chapter 11.

2.3 Orientifold projections

In this section we present some foundational material on orientifolds in Type II theories that will be

useful in chapter 8. The crucial ingredient of an orientifold projection is the world-sheet operator

Ωp which implements a parity transformation on world-sheet coordinates. For a closed string with

σ ∼ σ + 2π one has

ΩpX
µ(τ, σ) Ω−1

p = Xµ(τ, 2π − σ) . (2.42)

A similar relation holds for the world-sheet fermions ψµ± in such a way to have compatibility with

world-sheet supersymmetry (2.8). Since world-sheet parity reverses left-moving and right-moving
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oscillations it is a symmetry of Type IIB string theory, but not of Type IIA string theory, since in the

latter different GSO projections are performed on the left-movers and on the right-movers.

We can, however, generalize the action of the world-sheet parity Ωp by combining it with a geo-

metric action on spacetime coordinates. Let us consider the simple case in which the geometric action

is a reflection R(n) of n spatial directions, say x9, x8, . . . , x10−n:

[ΩpR(n)]X
µ(τ, σ) [ΩpR(n)]

−1 = +Xµ(τ, 2π − σ) for µ = 0, 1, . . . , 9− n ,
[ΩpR(n)]X

µ(τ, σ) [ΩpR(n)]
−1 = −Xµ(τ, 2π − σ) for µ = 10− n, . . . , 9 . (2.43)

For n = 2k, R(n) can be seen as the composition of k rotations with angle π in k different two-planes.

This is a Pin-even transformation, i.e. R(n) acts on ten-dimensional spinors preserving their chirality.

For n = 2k+1, in contrast, R(n) is the composition of k π-rotations and a reflection, and this amounts

to a Pin-odd transformation that flips chirality. Recall also that a rotation of an angle π squares to

minus the identity on spacetime fermions. In summary, we have

R(2k) : Pin-even , R2
(2k) = (−1)k(FL+FR) ,

R(2k+1) : Pin-odd , R2
(2k+1) = (−1)k(FL+FR) , (2.44)

where FL,R denote the spacetime left- and right-moving fermion numbers, which are defined mod 2.

For instance (−1)FL is +1 on the (NS,R) sector and −1 on the (R,NS) sector. Please note that FL,R

should not be confused with the world-sheet fermions numbers FL,R discussed in section 2.1.4. Let

us remind the reader that the GSO projection in the Ramond sector amounts to selecting a definite

chirality for the ground state, which can be 8c or 8s, as can be seen from table (2.1). Taking into

account (2.44) we thus find the following symmetry operators for Type IIA and Type IIB:

Type IIA: O(2k+1) = ΩpR(2k+1) (−1)kFL ,

Type IIB: O(2k) = ΩpR(2k) (−1)kFL , (2.45)

in which the factors of (−1)kFL are inserted to ensure O2
(n) = I for all n. As a result, we can restrict

the theory to the subspace invariant under the action of O(n).

In the resulting theories the spacetime points related by the geometric action R(n) are identified.

The geometry of the quotient space, in the simple non-compact example (2.43), is given by R1,9−n ×
(Rn/Z2); the origin in of Rn/Z2 corresponds to the (10− n)-dimensional subspace of R1,9 fixed under

R(n). Moreover, after the O(n) projection we have theories of non-oriented strings, in which non-

orientable world-sheet topologies have to be included in the path integral that defines the string

partition function. The effect of these new geometries on the low-energy physics of the system can

be attributed to a new kind of extended object, the O-planes. More precisely, for (2.43) an Op-plane

with p = 9− n is located on top of the fixed space of R(n).

We refrain from giving the full form of the effective action for an Op-plane. Let us mention,

however, that it couples to the NSNS sector via a non-vanishing tension TOp and to the RR form Cp+1

via a non-vanishing charge µOp. The values of TOp and µOp depend upon the specific action of Ωp on

string states. All Op-planes that we consider have negative tension and negative charge, given by

TOp = −2p−4 Tp , µOp = −2p−4 µp , (2.46)
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Ωp = +1 Φ, gµν , C1, C2

Ωp = −1 Bµν , C0, C3, C4

Table 2.3: Intrinsic parities of NSNS and RR bulk fields under the action of the world-sheet parity
operator Ωp.

where Tp, µp are the tension and charge of a Dp-brane.

The previous discussion can be generalized from the reflection R(n) in Minkowski spacetime to a

geometric action σ acting on a more general background M with σ2 = idM. For example, we will

encounter orientifolds of Calabi-Yau compactifications in section 5.4. The qualitative features of the

setup are the same as in the simplified case (2.43). If the geometric action admits a (p+1)-dimensional

subspace of ten-dimensional spacetime, an Op-plane is located there, with tensions and charges given

by (2.46).

In setups with compact directions the presence of RR charged objects can lead to inconsistencies,

since, intuitively speaking, on a compact space the flux lines generated by a source can only end on

sources with opposite charge and cannot ‘escape to infinity.’ In many situations is then necessary to

add D-branes to the construction to counterbalance the negative tension of the O-planes and cancel

all RR tadpoles. Note that the D-brane configuration included in the setup has to be compatible with

the geometric action σ in order to take the orientifold projection consistently. On way to achieve this

is to put a stack of N = 2p−4 Dp-branes on top of an Op-plane, for p = 5, . . . , 9. In this case the

spectrum of open strings starting and ending on the stack of Dp-branes is modified by the orientifold

projection. For O-planes with tension and charges given by (2.46) the gauge group is reduced from

U(N) to SO(N). The prototypical example of this kind of constructions is furnished by the orientifold

projection of Type IIB with respect to O(0) = Ωp. To balance the negative charge and tension of the

corresponding spacetime-filling O9-plane a stack of 32 D9-branes is introduced. The resulting theory

is a theory of closed and open unoriented strings with SO(32) gauge group known as Type I string

theory. It has minimal supersymmetry in ten dimensions, corresponding to 16 supercharges.

From the point of view of the low-energy effective action, the orientifold projection induces an

intrinsic Ωp-parity on all bulk fields. This parity is determined by equation (2.42) and can be combined

with parities induced by the geometric action σ to determine the fields that have total positive parity

and then survive the orientifold projection. The Ωp-parity of NSNS and RR bosons are collected in

table 2.3. On top of this, the contribution of localized sources such as O-planes and D-branes has to

be added to compute the total effective action. This program has been carried out for Calabi-Yau

compactifications in [50, 51, 52, 53].
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CHAPTER 3

T-duality, S-duality, M-theory

As recalled in the introduction in section 1.2, all known string theories and their compactifications to

lower dimensions are related by an intricate web of dualities, some of which are strong/weak dualities

and thus shed light on the dynamics of strings beyond perturbation theory. In what follows we refrain

from an account of the vast and fascinating subject of string dualities, and rather focus on those

elements that will be instrumental for our discussion of F-theory in chapter 5. Let us mention, however,

that the resulting picture sees all consistent, perturbative ten-dimensional string theories unified by a

new eleven-dimensional theory, called M-theory. More precisely, the five known superstring theories

can be though of as special limits in the moduli space of M-theory, see figure 1.2. For our purposes

we need to review in some detail important aspects of T-duality and S-duality in the contest of Type

II string theory. We also discuss briefly the low-energy limit of M-theory and elucidate its relation to

Type IIA and Type IIB.

3.1 T-duality of Type II superstring theories

T-duality is a perturbative duality relating string compactifications on spaces that admit continuous

isometries. One of the simplest examples of this situation is furnished by ten-dimensional Type IIA

or Type IIB compactified on a circle of radius R. The geometry of the circle is most conveniently

described in terms of the quotient R/(2πRZ): explicitly, one of the coordinates, say x9, is periodically

identified,

x9 ∼ x9 + 2πR . (3.1)

Crucially, this identification allows for a generalization of the closed string bosonic periodicity (2.12)

which reads

X9(τ, σ + 2π) = X9(τ, σ) + 2πw9R , (3.2)

39
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where the integer w9 is referred to as winding number, since it counts the number of times that the

closed string winds around the compact direction x9. Note also that the momentum of the string

along the x9 direction must be quantized,

p9 =
n9

R
, (3.3)

in such a way that the spacetime translation operator eip
9x9

respects the circle identification (3.1). The

integer n9 is the Kaluza-Klein level of the circle compactification. In summary, closed string sectors

are labelled by two integers (n9, w9). Fermionic periodicity conditions (2.13) are unaffected and still

yield a Ramond and a Neveu-Schwarz sector for each value of (n9, w9).

We are now in a position to state T-duality in this simple example: Type IIA compactified on a

circle of radius R is equivalent to Type IIB compactified on a circle of radius

R̃ =
α′

R
. (3.4)

More precisely, let X̃9(τ, σ) denote the coordinate in the dual Type IIB setup with radius R̃, so that

we can introduce the dual winding numbers w̃9 and momentum units ñ9 by

X̃9(τ, σ + 2π) = X̃9(τ, σ) + 2πw̃9R̃ , p̃9 =
ñ9

R̃
. (3.5)

Then T-duality amounts to the statement the dual coordinate X̃9 and its fermionic partners ψ̃9
± are

given in terms of X9, ψ9
± by

X̃9
L(τ, σ) = X9

L(σ+)−X9
R(σ−) , ψ̃9

+(σ+) = ψ9
+(σ+) , ψ̃9

−(σ−) = −ψ9
−(σ−) , (3.6)

where we have made use of the decomposition (2.10) into left- and right-moving parts. We can thus

see that T-duality is a reflection x9 → −x9 acting on the right-moving sector only. One can show that

this transformation is such that the physics encoded in the world-sheet CFT for the fields X̃9, ψ̃9
± is

the same as the physics of the CFT of X9, ψ9
±. This makes T-duality an exact perturbative symmetry

of Type II.

In order to make the spacetime implications of (3.6) more manifest, let us consider how the four

sectors of Type IIA are mapped to Type IIB: one can show that

(NS+,NS+;n9, w9) → (NS+,NS+; ñ9, w̃9) ,

(NS+,R−;n9, w9) → (NS+,R+; ñ9, w̃9) ,

(R+,NS+;n9, w9) → (R+,NS+; ñ9, w̃9) ,

(R+,R−;n9, w9) → (R+,R+; ñ9, w̃9) ,

(3.7)

where we have used the notation of section 2.1.4 and where

(ñ9, w̃9) = (w9, n9) . (3.8)

The change from Type IIA to Type IIB is due to the change in chirality of the right-moving Ramond

ground state. As in section 2.3, this is caused by the fact that x9 → −x9 is a Pin-odd transformation.
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Equation (3.8) states that Kaluza-Klein modes and winding modes are exchanged. This can also be

checked from inspection of the mass formula for closed string states, which reads schematically

m2 =

(
n9

R

)2

+

(
w9R

α′

)2

+ osc , (3.9)

where the first term is the Kaluza-Klein mass, the second is the mass due to winding, and osc denotes

the contribution from the oscillation modes of the string around its center of mass. As we can see,

the combined replacements (3.4) and (3.8) leave the Kaluza-Klein and winding contributions to m2

invariant.

For our discussion of the relation between M-theory and Type IIB string theory in section 3.4 it

will be useful to know the explicit form of the T-duality map on massless bosonic fields. This map is

furnished by so-called Buscher rules, see e.g. [54, 55, 56, 57] for a review. Let us consider them in a

somewhat non-standard notation that is inspired by the interpretation of T-duality as a dimensional

oxidation ambiguity from nine to ten dimensions [58] and that is best suited for our purposes. Let y

be a compact dimensionless coordinate of period 1 along the T-duality circle. We adopt the following

parametrization of the Type IIA string frame metric, dilaton, NSNS two-form, and RR p-forms,

ds2
IIA = ds2

9 + L2(dy + `−1
s V )2 , ΦIIA = ϕ+

1

2
log

L

`s
, BIIA

2 = B2 +B1 ∧ `s dy ,

CIIA
p = Cp + Cp−1 ∧ `s dy , p = 1, 3 , (3.10)

where V is a vector. In a similar fashion, the massless bosonic fields of Type IIB are parametrized as

ds2
IIB = ds̃2

9 + L̃2(dy + `−1
s Ṽ )2 , ΦIIB = ϕ̃+

1

2
log

L̃

`s
, BIIB

2 = B̃2 + B̃1 ∧ `s dy ,

CIIB
p = C̃p + C̃p−1 ∧ `s dy , p = 0, 2, 4 , (3.11)

with the understanding C̃−1 ≡ 0. The Buscher rules can then be written in the following form,

ds̃2
9 = ds2

9 , L̃ =
`2s
L
, Ṽ = −B1 , ϕ̃ = ϕ ,

B̃1 = −V , B̃2 = B2 −B1 ∧A ,

C̃0 = C0 , C̃1 = C1 − C0 V , C̃2 = C2 +B1 ∧ (C1 − C0 V ) ,

C̃3 = C3 −
1

2
C2 ∧ V −

1

2
B2 ∧ (C1 − C0 V ) . (3.12)

They can be easily inverted to obtain the map from Type IIB to Type IIA. Note that the period

of the compact coordinate y is unaffected, and the information about the length of the T-duality

circumference is encoded in the metric functions L, L̃. They are indeed related in such a way that

their vacuum expectation values 2πR, 2πR̃ satisfy (3.4). Let us point out that no rule was given for C̃4

as it is not independent, because of the self-duality constraint (2.26). From the vacuum expectation

value of the relation ϕ̃ = ϕ we can immediately read off the transformation rule for the string coupling

constant under T-duality,

gIIB
s = gIIA

s

`s
2πR

. (3.13)
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T-duality is a perturbative duality in the sense that taking the limit gs → 0 on one side corresponds

to taking the same limit on the dual side. The change in the string coupling constant ensures that the

nine-dimensional gravitational coupling is the same in both dual descriptions.

So far we have discussed the action of T-duality on closed strings. As far as open strings are con-

cerned, we can see that the left/right asymmetric reflection (3.6) interchanges Neumann and Dirichlet

boundary conditions (2.17). As a result, a Dp-brane extending along the x9 direction is turned into

a D(p − 1)-brane localized at a point along the T-dual coordinate x̃9, and vice versa. Note that this

is consistent with the action on RR forms in (3.12). The same result holds for a stack of N coinci-

dent Dp-branes. In this case the information about the relative location of the dual D(p − 1)-branes

along the x̃9 direction is encoded, in the original Dp-brane picture, in a Wilson line. The latter is

a topologically non-trivial constant VEV of the component A9 of the non-Abelian gauge field living

on the brane. More precisely, the i-th brane on the Dp-brane stack (i = 1, . . . , N) is mapped to a

D(p− 1)-brane located at

x̃9
i = −2πα′(A9)ii , A9 = − 1

2πR
diag(θ1, . . . , θN ) , (3.14)

where no sum over i is performed, the real parameters θi are defined modulo 2π, and an arbitrary

additive constant has been set to zero. It is also possible to consider more complicated setups with

magnetized branes and branes at angles, but we will not need to develop such generalizations.

3.2 S-duality of Type IIB superstring theory

Type IIB string theory is invariant under a Z2 transformation that inverts the string coupling constant

and thus maps a weakly coupled vacuum to a strongly coupled vacuum. This duality is called S-duality

and is actually a subgroup of a larger invariance under the action of the group SL(2,Z). A first hint

towards this duality is furnished by a judicious reformulation of the Type IIB effective action, given

by the sum of (2.22) and (2.24). Let us perform the metric redefinition

g(E)
µν = e−Φ/2 gµν (3.15)

and introduce the complex combinations

τ = C0 + ie−Φ , G3 = F3 − ie−ΦH3 = dC2 − τ dB2 . (3.16)

The complex scalar τ is referred to as the axio-dilaton. With this notation the Type IIB effective

action takes the form

SIIB =
1

2κ2
10

∫
M10

[
R ∗ 1− 1

2

dτ ∧ ∗dτ
(Imτ)2

− 1

2

G3 ∧ ∗G3

Imτ
− 1

4
F5 ∧ ∗F5 −

i

4 Imτ
C4 ∧G3 ∧G3

]
, (3.17)

in which the Ricci scalar and the Hodge star are computed with the new metric g
(E)
µν , but we drop

the superscript (E). This form of the action is referred to as action in the Einstein frame because

the new metric has a canonical Einstein-Hilbert term. Note, however, that the prefactor contains the
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parameter κ10 and not the ten-dimensional physical gravitational constant κ given in (2.34), because

the full dilaton field, background and fluctuations, is reabsorbed in the metric redefinition (3.15). Let

us also point out that the self-duality constraint (2.26) is always understood. It takes the same form

when written in string frame or Einstein frame metric.

The form (3.17) is useful as it makes more transparent the invariance of the Type IIB classical

action under the action of SL(2,R). More precisely, let us consider an SL(2,R) matrix(
a b
c d

)
, ad− bc = 1 . (3.18)

It acts non-trivially on the axio-dilaton τ and on the two-forms C2, B2 as

τ ′ =
a τ + b

c τ + d
,

(
C ′2
B′2

)
=

(
a b
c d

) (
C2

B2

)
, (3.19)

while the Einstein frame metric and the RR four-form are inert.

Semiclassical arguments suggest that only the discrete subgroup SL(2,Z) of the classical invariance

group SL(2,R) can be realized in the quantum theory. For example, a rotation of the two-form

potentials with real coefficients as in (3.19) can be in conflict with semi-classical quantization of

fluxes. This can be seen as follows. The non-linear sigma model action (2.19) contains the coupling

SF1 ⊃
1

2πα′

∫
Σ
B2 , (3.20)

where F1 stands for fundamental string and Σ denotes the world-sheet. In order for the path integral

weight eiS to be invariant under large gauge transformations one has to impose the flux quantization

condition
1

4π2α′

∫
X3

dB2 = `−2
s

∫
X3

dB2 ∈ Z , (3.21)

where X3 is an arbitrary three-cycle in spacetime. By a similar token, the D1-brane action contains

the coupling

SD1 ⊃ µ1

∫
W2

C2 , (3.22)

and therefore we have to require

µ1

2π

∫
X3

dC2 = `−2
s

∫
X3

dC2 ∈ Z , (3.23)

where we have adopted the conventions (2.37) to express µ1 in terms of `s. As we can see, if we use

(2.37) and measure lengths in units of `s both B2 and C2 are integrally quantized. This property

is preserved by the action of SL(2,Z) but not by the action of SL(2,R). The same conclusion is

confirmed by the study of D-instantons, that break the classical shift symmetry C0 → C0 + b from

b ∈ R to b ∈ Z.

The group SL(2,Z) is generated by the transformations

T =

(
1 1
0 1

)
, S =

(
0 1
−1 0

)
, (3.24)
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which act on τ as

τ ′ = τ + 1 , τ ′ = −1

τ
, (3.25)

respectively. The first transformation amounts to a shift in C0 and does not alter the string coupling.

The second transformation, however, acts non-trivially on the dilaton. Indeed, in a simple background

with C0 = 0 the second equation in (3.25) implies

g′s =
1

gs
. (3.26)

Clearly, this is a weak/strong duality and cannot be checked within perturbation theory. Nonetheless,

the full group SL(2,Z), including the generator S, is believed to be an exact symmetry group of Type

IIB superstring theory.

Evidence in favor of this claim comes, for instance, from the study of the tension of a fundamental

string and a D1-brane in the Einstein frame. As noted above, the Einstein metric g
(E)
µν depends on both

the VEV and the fluctuations of the dilaton. When the latter are neglected, we have schematically

(length)(E) = g−1/4
s (length) , (3.27)

where the length on the right hand side is computed with the original string frame metric. Using

(3.27) together with (2.37) we then find by dimensional analysis

T
(E)
F1 = 2π `−2

s g1/2
s , τ

(E)
D1 = 2π `−2

s g−1/2
s , (3.28)

which are indeed exchanged under (3.26). This result is significant since both the fundamental string

and the D1-brane are BPS objects of the theory, so that their tension is related to their charge and is

therefore protected against quantum corrections. We can then safely extrapolate the weak-coupling

expressions for their tensions to strong coupling. A similar analysis can be carried out for all extended

BPS objects of Type IIB. For instance, a D5-brane is S-dual to an NS5-brane; their Einstein frame

tensions are consistent,

τ
(E)
D5 = 2π `−6

s g1/2
s , τ

(E)
NS5 = 2π `−6

s g−1/2
s , (3.29)

where we recalled the string frame NS5-brane tension (2.40). The D3-brane is expected to be self-

dual, since it couples to C4 which is a singlet under SL(2,Z). Indeed, its Einstein frame tension is

independent of gs,

τ
(E)
D3 = 2π `−4

s . (3.30)

The behavior of D7-branes under SL(2,Z) will be discussed in detail in section 5.1.2.

In the weak coupling limit D-branes do not participate to the dynamics as they acquire infinite

tension. For finite or large coupling, however, we can consider dynamical BPS objects that can be

thought of as bound states of F1 and D1 strings. They are called (p, q) strings and couple electrically

to B2 with charge p and to C2 with charge q. Thus a (1, 0) string is a fundamental string, and a (0, 1)

string is a D1-brane. The expressions for the tensions of an F1 and a D1 in the Einstein frame (3.28)

can be generalized to an SL(2,Z) invariant expression

τ
(E)
(p,q) =

|p+ τq|
τ

1/2
2

2π`2s . (3.31)
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More precisely, this is invariant under a combined SL(2,Z) action on τ as in (3.19) and on the charges

(p, q). The transformation of the latter is given by

(
q′ p′

)
=
(
q p

)(a b
c d

)−1

, (3.32)

and is such that the bilinear p
∫
B2 +q

∫
C2 is invariant. Using (3.31) one can show that a (p, q)-string

is stable against decay provided that p and q are relatively prime.

Since a fundamental string can end on a D1-brane one expects to find (p, q) strings configurations

with several prongs. They are referred to as string junctions. Charge conservation demands that∑
p =

∑
q = 0, where the sum extends over all prongs of the string junction. We will comment

briefly on the role of string junctions in F-theory in section 5.2.3.

Suppose we start from a weakly coupled setup with fundamental strings and ordinary D-branes. We

can perform an SL(2,Z) transformation (3.32) that turns the fundamental string into a (p, q) string.

What happens to D-branes under this transformation? By electric-magnetic duality, D5-branes are

mixed with NS5-branes into (p, q)-five-branes. On the contrary, since D3-branes are self-dual under

SL(2,Z) they are unaffected. A D7-brane couples magnetically to C0 = Re τ , which transforms non-

trivially under SL(2,Z), see (3.19). We then expect to find (p, q) seven-branes, but their analysis is

more complicated and relies on the study of their backreaction on the geometry, which will be addressed

in section 5.1. We also expect that a (p, q) string can end on a (p, q) five-brane or seven-brane with

the same p, q, but on any D3-brane.

3.3 M-theory and Type IIA superstring theory

Inspection of (2.34) reveals that the physical tension τp of a Dp-brane is inversely proportional to the

string coupling constant. As a result, if we start from the perturbative regime gs � 1 and we increase

the coupling, Dp-brane states become lighter and lighter and their dynamics starts to intertwine with

that of fundamental strings. As we have seen in the previous section, in Type IIB S-duality gives us a

way to describe the dynamics of D-branes at strong coupling. The situation is different in Type IIA:

its strongly coupled dynamics is captured by a new eleven-dimensional theory, called M-theory.

The emergence of an eleventh dimension can be seen from the spectrum of D0-branes of Type IIA.

Being the D-branes with the lowest dimensionality in Type IIA, they are the lightest ones. Working

in the string frame and using (2.37), the D0-brane tension—or rather mass—is given by

τD0 =
2π

`s gs
. (3.33)

Compatibly with their BPS nature, D0-branes can form bound states whose energy is just the sum

of the energy of the constituents, since gravitational and RR interactions balance against each other.

A bound state of n D0-branes has therefore mass n τD0. In summary, we have a tower of equally

spaced massive states that become light as the string coupling constant increases. As we will review in

section 4.2, this can be interpreted as a Kaluza-Klein spectrum of a circle compactification and thus
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constitutes a first hint of a hidden direction of spacetime. Below we will review further evidence in

support of M-theory.

A full formulation of M-theory at the quantum level is not known. Arguably, the best proposal

for a microscopic description of its fundamental degrees of freedom is based on the matrix theory

that describes a stack of D0-branes in a suitable kinematic limit [59, 60, 61]. Whatever the correct

description of M-theory at the fundamental level may be, its low-energy dynamics must be captured

by the unique eleven-dimensional supergravity theory. Its field content consists of the metric ĝµ̂ν̂ , a

three-form potential Ĉ3, and a Majorana gravitino Ψ̂µ̂. A hat is used to denote eleven-dimensional

quantities and spacetime indices. The bosonic part of the action of eleven-dimensional supergravity

reads

SM =
1

2κ2
11

∫
M11

[
R̂ ∗̂ 1− 1

2
Ĝ4 ∧ ∗̂Ĝ4 −

1

6
Ĉ3 ∧ Ĝ4 ∧ Ĝ4

]
, (3.34)

where Ĝ4 = dĈ3 is the field strength of the three-form potential and κ11 is the eleven-dimensional

gravitational constant. It is useful to introduce the associated fundamental length scale by the relation

1

2κ2
11

=
2π

`9M
, (3.35)

where the normalization is chosen for later convenience.

The interpretation of D0-brane bound states in terms of Kaluza-Klein modes suggests that M-

theory compactified on a small circle should reproduce weakly coupled Type IIA string theory. Indeed,

the eleven-dimensional low-energy effective action (3.34) reproduces the Type IIA supergravity action

upon dimensional reduction on a circle. Let us review in some detail the relation between eleven-

dimensional and ten-dimensional quantities. As our starting point we take the following Ansatz for

the eleven-dimensional metric and three-form potential,

dŝ2 = λ
2
3 e−

2
3

Φ ds2 + µ2 λ−
4
3 e

4
3

Φ(`M dx+ µ−1 λC1)2 , x ∼ x+ 1 ,

Ĉ3 = λC3 + µB2 ∧ `M dx , (3.36)

where the adimensional coordinate x parametrizes the circle direction and λ, µ > 0 are dimensionless

constants. The scalar Φ, the ten-dimensional metric ds2, the forms C1, C3, B2 do not depend on x

and are identified with the Type IIA dilaton, string frame metric, RR forms and NSNS two-form,

respectively. The form of the Ansatz (3.36) is engineered is such a way to exactly reproduce the sum

of the NSNS effective action (2.22) and the RR effective action (2.23). In particular, the parameters

λ, µ enter the dimensionally reduced action only in the overall prefactor, which reads

1

2κ2
10

=
2π

`8M
λ2 µ . (3.37)

In order to reproduce the correct normalization for the dilaton, in such a way that (2.38) holds, this

prefactor must be matched with (2.37). As a result, we obtain a first relation between `s, `M and the

parameters λ, µ,

`s = `M λ−
1
4µ−

1
8 . (3.38)
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Another relation can be extracted by comparing the Kaluza-Klein mass and the D0-tension. The

former can be read off from the vacuum expectation value of the eleven-dimensional metric in (3.36),

〈dŝ2〉 = λ
2
3 g
− 2

3
s

{
〈ds2〉+ (λ−1 µ gs `M)2dx2

}
, (3.39)

where we made use of e〈Φ〉 = gs. From (3.39) one can conclude that the Kaluza-Klein masses measured

in the string frame metric are an integer multiple of

mKK =
2π

λ−1 µ gs `M
. (3.40)

Kaluza-Klein masses will de discussed in more detail in section 4.2. Comparison with (3.33) yields

`s = `M λ−1 µ and therefore consistency with (3.38) imposes

µ = λ
2
3 . (3.41)

We are thus left with one free parameter only, identified with the ratio between the string length and

eleven-dimensional fundamental length,

`s = `M λ−
1
3 . (3.42)

Note, however, that this parameter drops out from the expression of the circumference LM of the circle

measured by the background eleven-dimensional metric (3.39),

LM = `M g
2
3
s . (3.43)

This relation shows that the string coupling constant is unambiguously determined by the compacti-

fication geometry. As a final comment on the match between eleven-dimensional and ten-dimensional

bulk effective actions let us point out that the Ansatz (3.36) takes a transparent form if we trade the

parameter λ for the ratio `s/`M. In fact, we obtain

`−2
M dŝ2 = e−

2
3

Φ `−2
s ds2 + e

4
3

Φ(dx+ `−1
s C1)2 , x ∼ x+ 1 ,

`−3
M Ĉ3 = `−3

s C3 + `−2
s B2 ∧ dx . (3.44)

This shows that eleven-dimensional and ten-dimensional quantities are matched naturally if the former

are measured in units of `M and the latter in units of `s. By the same token, if the eleven-dimensional

flux Ĝ4 is quantized in units of `M—or rather half-integrally quantized [62]—then Type IIA fluxes are

quantized in units of `s.

The eleven-dimensional supergravity action (3.34) admits half-BPS solutions that describe a mem-

brane and a five-brane, see for instance the review [63]. The membrane acts as an electric source for

the three-form potential Ĉ3, while the five-brane is a soliton with non-trivial magnetic flux Ĝ4. In view

of the interpretation of eleven-dimensional supergravity as the low-energy limit of M-theory, we are

led to conclude that two kind of extended objects exist in M-theory, called M2-brane and M5-brane.

Our current understanding of M-theory is not sufficient to determine if M2-branes of M5-branes are

better understood as fundamental objects or as emergent excitations of some different microscopic
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constituent. Nonetheless, we can elucidate the role played by M-theory branes in the duality with

Type IIA string theory.

We have already argued that Type IIA D0-branes should be identified with excited Kaluza-Klein

modes of the eleven-dimensional graviton. The fundamental string F1 and the D2-brane are instead

uplifted to an M2-brane. More precisely, an M2-brane wrapping the circle yields an F1, while an

unwrapped M2-brane corresponds to a D2-brane. This picture is confirmed by the analysis of the

tension of these objects. The complete action for the embedding of a supermembrane in eleven-

dimensional spacetime is known [64] but for our purposes it suffices to consider the schematic action

SM2 = −TM2

∫
W3

d3ξ
√
−γ̂3 , (3.45)

where γ̂ denotes the pullback of the eleven-dimensional metric to the world-volume W3 of the M2-

brane, parametrized by coordinates ξ, and TM2 is the M2-brane tension. If the action (3.45) is reduced

with one or no legs along the circle according to the Ansatz (3.44), it should reproduce the action for

the embedding of an F1 or D2-brane in ten dimensions. Indeed, one finds

Swrapped
M2 = −TM2 `

3
M `−2

s

∫
Σ2

d2ξ
√−γ2 ,

Sunwrapped
M2 = −TM2 `

3
M `−3

s

∫
W3

d3ξ e−Φ√−γ3 , (3.46)

where γ2, γ3 denote the appropriate pull-back of the string frame metric. We can see that the Nambu-

Goto action for F1 and the DBI action for D2-brane are correctly reproduced. The prefactors should

be matched with the string and brane tensions read off from (2.34), (2.37),

TF1 = 2π`−2
s

!
= TM2 `

3
M `−2

s , τD2 = 2π`−3
s g−1

s
!

= TM2 `
3
M `−3

s e−〈Φ〉 , (3.47)

and indeed both these conditions can be simultaneously met if

TM2 = 2π`−3
M . (3.48)

Note that this holds irrespectively of the value of the ratio `s/`M, or equivalently of the parameter

λ. In a completely analogous way the NS5-brane and the D4-brane are uplifted to the M5-brane. To

crude approximation, the embedding of a super five-brane is described by the action

SM5 = −TM5

∫
W6

d6ξ
√
−γ̂6 , (3.49)

and its schematic dimensional reduction yields

Swrapped
M5 = −TM5 `

6
M `−5

s

∫
W5

d5ξ e−Φ√−γ5 ,

Sunwrapped
M5 = −TM5 `

6
M `−6

s

∫
W6

d6ξ e−2Φ√−γ6 . (3.50)

These results must be compatible with the D4-brane and NS5-brane tensions given in (2.34), (2.37),

(2.40). This is indeed the case, since both conditions

τD4 = 2π `−5
s g−1

s
!

= TM5 `
6
M `−5

s e−〈Φ〉 , τNS5 = 2π `−6
s g−2

s
!

= TM5 `
6
M `−6

s e−2〈Φ〉 (3.51)
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hold provided that the M5-brane tension is furnished by

TM5 = 2π `−6
M . (3.52)

The M-theory uplift of the Type IIA D6-brane does not involve M2-branes or M5-branes. This

can be expected by noting that a D6-brane couples magnetically to C1, which is identified with the

Kaluza-Klein vector of the circle compactification. In fact the D6-brane is uplifted to a Kaluza-Klein

monopole, i.e. a regular solitonic solution of vacuum Einstein’s equations in eleven dimensions in

which the circle that connects M-theory and Type IIA is non-trivially fibered over ten-dimensional

spacetime. More precisely, the Kaluza-Klein monopole metric takes the form

ds2
KK-mon = ηijdx

i
‖ dx

j
‖ + ds2

Taub-NUT , (3.53)

where xi‖, i = 0, . . . , 6 are coordinates along the flat, seven-dimensional world-volume of the D6-brane

and the four transverse directions are described by the Taub-NUT metric ds2
Taub-NUT. The latter is a

four-dimensional U(1) fibration over R3 given by

ds2
Taub-NUT = V (~x) d~x · d~x+ V (~x)−1(dxM + ~A · ~x)2 . (3.54)

In this expression ~x are flat coordinates in R3 with standard inner product and xM is the compact

coordinate that parametrizes the M-theory circle. A metric of the form (3.54) solves Einstein’s vacuum

equations provided that the scalar function V (~x) and the U(1) vector potential ~A = ~A(~x) are chosen

in such a way that
~∇× ~A = −~∇V , (3.55)

so that V is harmonic on R3. A single D6-brane is lifted to a single-center Taub-NUT metric,

V (~x) = 1 +
R

2|~x| , (3.56)

but it is also possible to lift a stack of parallel D6-branes arbitrarily displaced along the transverse

direction by means of a multi-center Taub-NUT metric,

V (~x) = 1 +
R

2

∑
a

1

|~x− ~x(a)|
, (3.57)

with the index a labeling branes. For the choices (3.56) or (3.57) for V , the vector potential ~A describes

one or more magnetic monopoles and it cannot globally defined on R3. This signals the non-triviality

of the U(1) fibration. Let us point out that the length scale R in the previous equations is related to

the radius of the M-theory circle. In fact, regularity of the metric imposes that xM has period 2πR if

V is given by (3.56) or (3.57). Note, however, that the actual radius of the M-theory circle measured

by the Taub-NUT metric is V −1/2R: it approaches the asymptotic value R as |~x| → ∞ and it goes to

zero at the locations ~x(a) of the branes, see figure 3.1.

An interesting configuration is furnished by a periodic array of centers along some fixed direction

in R3. Let us write ~x = (x1, x2, x3) and consider the x3 direction for definiteness. An infinite array of

D6-branes along x3 can be equivalently interpreted as a single D6-brane localized at a point along a
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R3~x(1) ~x(2) ~x(3)R3
~0

Figure 3.1: Schematic representation of a single-center and of a multi-center Taub-NUT geometry.
The radius of the S1 fiber varying over the base space R3 asymptotes to a fixed value for |~x| → ∞ and
goes to zero at the location of the centers of the Taub-NUT space. Note the presence of non-trivial
two-cycles in the case of a multi-center geometry.

circle extending in the x3 direction. This picture will be useful in clarifying the M-theory interpretation

of Type IIB D7-branes in section 5.3.

Let us close this section with a remark about the free parameter λ. In order to fix its value

and therefore determine the string length in terms of the fundamental length of M-theory we need

a prescription for the relation between lengths in ten dimensions and in eleven dimensions. In the

present context of M-theory on a circle a natural prescription consists in the requirement that dis-

tances measured by the background eleven-dimensional metric coincide with distances measured by

the background string frame metric. Equivalently, the prefactor in (3.39) should be equal to one. This

gives λ = gs, so that

`s = `M g
− 1

3
s . (3.58)

In the next section we will find it convenient to adopt a different prescription to relate `s and `M.

3.4 M-theory and Type IIB superstring theory

We know from the previous section that M-theory on a circle gives ten-dimensional Type IIA string

theory. If we compactify on a further circle we obtain a nine-dimensional theory that can be equiva-

lently though of as Type IIB on the dual circle, by means of T-duality, see section 3.1. We thus get that

M-theory on a torus is dual to Type IIB on a circle. This duality furnishes a geometric interpretation

of the SL(2,Z) invariance of Type IIB string theory in terms of the invariance of M-theory under large

diffeomorphisms of the compactification torus. Let us explore in more detail how this works.

An appropriate Ansatz for dimensional reduction of M-theory on a two-torus is

dŝ2 = ds2
9(M) +

A`2M
Im τM

∣∣dx+ `−1
M V(x) + τM (dy + `−1

M V(y))
∣∣2 ,

Ĉ3 = C
(M)
3 + C

(x)
2 ∧ `M dx+ C

(y)
2 ∧ `M dy + C

(xy)
1 ∧ `M dx ∧ `M dy , (3.59)
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where x, y are dimensionless coordinates with period 1, τM is the complex structure parameter of the

torus, A is its area in units of `M. We have decomposed the M-theory three-form in its components

with zero, one, or two legs along the torus and we have also included the Kaluza-Klein vectors V(x),

V(y) associated to the x- and y-cycles of the torus. Let us consider the coordinate transformation

(
y′ x′

)
=
(
y x

)(a b
c d

)−1

, a, b, c, d ∈ Z , ad− bc = 1 , (3.60)

in which we have adopted a standard matrix notation. The integrality of coefficients is required to

ensure compatibility with the integral periods of y, x and the unimodular condition guarantees that

the volume form dy ∧ dx is preserved. If the SL(2,Z) matrix determined by the coefficients a, b, c,

d is non-trivial, this transformation describes a large diffeomorphism of the torus, since it cannot be

continuously deformed to the identity map. The reduction Ansatz (3.59) can be made invariant under

(3.60) provided that the nine-dimensional fields on the right hand side transform as

τ ′M =
a τM + b

c τM + d
,
(
V ′(y) V ′(x)

)
=
(
V(y) V(x)

)(a b
c d

)−1

,

(
C

(y)′
2

C
(x)′
2

)
=

(
a b
c d

)(
C

(y)
2

C
(x)
2

)
. (3.61)

Note that C
(xy)
1 does not transform thanks to the unimodular condition.

On the other side of the duality we have Type IIB compactified on a circle. Recall from section

3.2 that the S-duality properties of Type IIB are most conveniently studied in terms of the Einstein

frame metric (3.15). Therefore, we compactify Type IIB on a circle with Ansatz

ds2
E = ds2

9(B) + L2
(B) (dxB + `−1

s V(B))
2 ,

B2 = B
(B)
2 +B

(B)
1 ∧ `s dxB ,

C2 = C
(B)
2 + C

(B)
1 ∧ `s dxB , C4 = C

(B)
4 + C

(B)
3 ∧ `s dxB , (3.62)

where ds2
E is the Einstein frame metric in ten dimensions. In these expressions xB is a dimensionless

coordinate with period 1 that parametrizes the circle upon which Type IIB is compactified and V(B)

denotes the corresponding Kaluza-Klein vector. Let us stress that the components C
(B)
4 and C

(B)
3 of

the RR four-form are not independent because of the self-duality constraint (2.26). In what follows,

we will focus on C
(B)
3 only. Finally, the Type IIB dilaton ΦIIB and axion C0 behave trivially under

circle compactification.

The x-cycle in the M-theory Ansatz (3.59) is identified with the circle that connects M-theory to

Type IIA. Correspondingly, the y-cycle is identified with the circle upon which Type IIA is further

compactified and T-dualized to Type IIB, so that we have xB = y. Combining the results of the

previous section with the transformations of Type IIA fields into Type IIB fields under T-duality

(3.12) we can establish the precise map between the quantities that appear on the right hand sides of

(3.59) and those that enter the right hand sides of (3.62). First of all, we obtain

C0 = Re τM , eΦIIB =
1

Im τM
, (3.63)
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which shows that the complex structure parameter of the M-theory torus is identified with the Type

IIB axio-dilaton defined in (3.16). Correspondingly, the SL(2,Z) transformation (3.19) is identified

with the geometric action (3.61) on τM. Secondly, the Type IIB Einstein frame metric components

are determined by

ds2
9(B) =

`2s A
1
2

`2M
ds2

9(M) , L(B) = `sA
− 3

4 , `−1
s V(B) = `−1

M C
(xy)
1 . (3.64)

These expression are SL(2,Z) invariant provided that the string length `s is related to the M-theory

length `M by means of an SL(2,Z) invariant prescription. The relation (3.58) used in the previous

section is not suitable in the present context, since it would imply

`s
?
= `M 〈A〉−

1
4 (Im〈τ〉) 1

4 , (3.65)

where as usual 〈...〉 denotes the vacuum expectation value. Equation (3.64) suggests a natural alter-

native,

`s = `M 〈A〉−
1
4 . (3.66)

This condition ensures that distances measured by the background value of the Type IIB Einstein frame

metric coincide with distances measured by the background metric in eleven dimensions. Finally, let

us record the match between Type IIB forms and M-theory forms,

`−1
s

(
C

(B)
1

B
(B)
1

)
= `−1

M

(
V(x)

−V(y)

)
, `−2

s

(
C

(B)
2

B
(B)
2

)
= `−2

M

(
C

(y)
2

C
(x)
2

)
+ `−2

M

(
V(x)

−V(y)

)
∧ C(xy)

1 ,

`−3
s C

(B)
3 = `−3

M C
(M)
3 − 1

2
`−3
M

(
V(y) V(x)

)(C(y)
2

C
(x)
2

)
. (3.67)

The same matrix notation used before has been adopted here in order to make the connection between

S-duality transformations in Type IIB (3.19) and large diffeomorphisms in M-theory (3.61) transpar-

ent. Note, in fact, that the column vector (V(x) − V(y))
T transforms in the same way as (C

(y)
2 C

(x)
2 )T,

as can be easily checked from (3.61).

3.5 Low-energy dynamics of M-theory branes

No complete microscopic description of the M2-brane or the M5-brane is available at the quantum

level. Nonetheless, one can address the problem of the determination of the low-energy dynamics of the

massless fields localized along their world-volumes. In the case of D-branes in string theory, massless

fields on the branes can be read off from the open string spectrum. For M2-branes and M5-branes

we have to rely on a different, indirect approach: massless fields on their world-volumes are identified

as Goldstone bosons of spontaneously broken large diffeomorphisms and gauge transformations of the

membrane and five-brane supergravity solutions [65]. For a single M2-brane we find eight scalar fields,

corresponding to the eight transverse directions to the brane, together with their fermionic partners

in a multiplet of three-dimensional N = 8 supersymmetry (16 supercharges). For a single M5-brane,
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the five scalars associated with the transverse directions are accompanied by a self-dual two-form and

fermionic partners into a tensor multiplet of (2,0) supersymmetry (16 supercharges).

For a stack consisting of one brane only the effective action is uninteresting, since it describes the

free dynamics of the scalars that encode the position of the center of mass of the brane and their

superpartners. If several branes are on top of each other, however, non-trivial interactions take place

and the resulting theory is believed to be strongly coupled, since we can regard M2-branes and M5-

branes as the strong-coupling limit of D2-branes and D4-branes is Type IIA, respectively. Information

about the degrees of freedom of these interacting theories can be extracted indirectly, for instance by

analyzing the thermal properties of brane solutions in supergravity, the cross section for absorption

of a graviton, or anomaly cancellation in the case of the M5-brane. See e.g. [66] for a review. These

computations show that the number of degrees of freedom of a stack of N coincident branes grows

like N3/2 for M2-branes and N3 for M5-branes. For ordinary D-branes the scaling is N2 and is readily

explained in terms of the dimension of the U(N) gauge group on their world-volume.

It is interesting to consider the limit in which gravity is decoupled from the stack of M2-branes or

M5-branes. One then gets a three- or six-dimensional quantum field theory that flows in the IR to a

non-trivial superconformal fixed point with 16 supersymmetries. Effective actions are available that

capture the low-energy dynamics of a stack of M2-branes. It can be described by the ABJM model [67],

a matter-coupled three-dimensional Chern-Simons theory. The matter fields include the scalars that

parametrize the directions orthogonal to the world-volume of the brane, while the gauge vectors are

non-dynamical. The theory has one free coupling constant, the Chern-Simons level k, and is weakly

coupled for large k. From an M-theory perspective, k is not a parameter of the world-volume theory

of the M2-branes, but of the eleven-dimensional background in which they live. Indeed, the theory at

level k describes a stack of M2-branes on top of an orbifold singularity C4/Zk in the eight-dimensional

transverse space. Therefore, the case of M2-branes in flat spacetime corresponds to the strongly

coupled regime k = 1. Let us also recall that in the case of a stack consisting of two M2-branes the

ABJM model has additional symmetries and is equivalent to the Bagger-Lambert-Gustavsson theory

[68, 69, 70, 71, 72]. The latter is based on a non-standard gauge symmetry formulated in terms of

three-algebras rather than Lie algebras.

The superconformal theory living on the world-volume of a stack of M5-branes remains largely mys-

terious. It will be considered in more detail in chapter 6 as it constitutes one of the main motivations

for the study of tensor theories in six and five dimensions.
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CHAPTER 4

Compactifications and effective actions

In this chapter we review some useful notions about compactification of higher-dimensional super-

gravity theories and the resulting lower-dimensional effective action. We focus in particular on the

cases of compactification on a circle and on Ricci-flat manifolds with special holonomy. The latter are

motivated by supersymmetry considerations. After some general results, we present an overview of the

classes of Ricci-flat manifolds we will be studying in more detail in the following chapters: Calabi-Yau

manifolds and manifolds with Spin(7) holonomy.

4.1 The compactification paradigm

As we learn from general relativity, in any theory that captures gravitational degrees of freedom the

geometry of spacetime is not fixed a priori but is rather determined dynamically. This allows for

the possibility that a D-dimensional theory admits vacua whose low-energy physics is effectively d-

dimensional, with d < D. One of the simplest ways to achieve this is to consider a spontaneous

compactification scenario: the full D-dimensional theory has a solution that describes the product of

a non-compact d-dimensional spacetime and a compact k-dimensional space, with D = d+ k. We will

refer to the former as external space and the latter as internal space. In such a scenario the dynamics

of field fluctuations around the vacuum comes associated with an energy scale given by the inverse of

the typical length scale of the internal space `int. Physical processes with energies much lower than `−1
int

cannot excite fluctuations in the internal space and are therefore not able to probe all D dimensions

of spacetime, but rather only the d non-compact directions.

This observation is particularly relevant in the context of string theory and M-theory, since com-

pactification appears as a natural way to extract lower-dimensional physics from ten or eleven dimen-

sions. On the one hand, this is clearly necessary in order to discuss phenomenological implications

55
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of string theory. On the other hand, it can also provide powerful insights on more formal aspects of

quantum field theory. For instance, Type IIB compactifications to six dimensions shed some light on

the nature of interacting superconformal (2, 0) theories.

In the upcoming sections we examine in detail two compactification scenarios that play a crucial

role in the following chapters: circle compactifications and compactifications on Ricci-flat manifolds

with special holonomy. Let us stress that we address the compactification problem from a purely field-

theoretical perspective: effects due to the extended nature of strings or membranes will be neglected

and our starting point consists of the low-energy supergravity actions discussed in sections 2.2, 3.3.

This approximation is self-consistent provided that a hierarchy of scales exists

E � `−1
int � `−1

s or E � `−1
int � `−1

M (4.1)

among the typical energy scale E under consideration, the characteristic size of the internal space `int,

and the string length `s or the M-theory fundamental length `M.

4.2 Circle compactification

The simplest example of compactification is obtained by choosing a one-dimensional internal space

with the topology of a circle. This setup was originally considered by Klein [73] in relation to Kaluza’s

proposal [74] of unifying gravity and electromagnetism in four dimensions by means of pure gravity in

five dimensions. For our discussion it is convenient to keep the dimensionality of the external space

arbitrary. We then start with a theory in D = d+ 1 dimensions and we consider it on a background

Md+1 =Md × S1 where Md is d-dimensional Minkowski spacetime. The background metric reads

〈ĝµ̂ν̂(x̂)〉dx̂µ̂dx̂ν̂ = ηµν dx
µdxν +R2 dy2 , y ∼ y + 2π , (4.2)

where x̂µ̂, µ̂ = 0, . . . , d, are (d+1)-dimensional coordinates that split into the d-dimensional coordinates

xµ, µ = 0, . . . d− 1, and the coordinate y parametrizing the circle. The constant R has dimensions of

length: 2πR is the circumference of the compactification circle measured by the (d + 1)-dimensional

metric.

4.2.1 Mode expansions and dimensional reduction of gravity

In the original (d+ 1)-dimensional theory fields depend on both the external coordinates xµ and the

internal coordinate y. If we consider bosonic fields, consistency with the background (4.2) requires

periodicity in y with period 2π.1 As a result, (d + 1)-dimensional fields can be written in a Fourier

expansion with x-dependent coefficients. This is most clearly exemplified by the simple case of a real

scalar φ̂ in d+ 1 dimensions,

φ̂(x, y) =
∑
n∈Z

φ(n)(x) einy . (4.3)

1For fermions antiperiodicity is a viable option. More generally, the periodicity conditions can be twisted by the action
of a generator of a global symmetry in the original (d+ 1)-dimensional theory, yielding generalized circle reductions à la
Scherk-Schwarz [75, 76, 77]. Our discussion is restricted to compactifications without any twist.
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The Fourier coefficients are interpreted as d-dimensional scalar fields and are referred to as Kaluza-

Klein modes of φ̂. They satisfy the reality condition φ̄(n) ≡ (φ(n))∗ = φ(−n). If we suppose that

the dynamics of φ̂ in d + 1 dimensions is governed by the massless Klein-Gordon equation in the

background (4.2)

〈ĝµ̂ν̂〉∂µ̂∂ν̂ φ̂ = 0 , (4.4)

the d-dimensional dynamics of Kaluza-Klein modes is diagonal in the level n and is described by

ηµν∂µ∂νφ
(n) − n2

R2
φ(n) = 0 . (4.5)

We can then see that the zeromode φ(0) is a free massless scalar in d dimensions, while excited modes

are massive with mass mn = n/R. Note that the functions {einy}n∈Z constitute a complete set of

eigenfunctions of the internal Laplacian,

gyy∂y∂y e
iny = − n

2

R2
einy , (4.6)

and that the mass term in (4.5) precisely corresponds to the eigenvalue of this operator. This is a

general feature of compactifications which is valid also for more complicated internal spaces: higher-

dimensional fields are expanded onto eigenfunctions of suitable differential operators in the internal

space and modes associated to non-vanishing eigenvalues are massive, with a mass inversely propor-

tional to the typical length scale of the internal geometry. This observation singles out zeromodes as

they are the only fields that can participate directly to the low-energy dynamics in any compactification

scenario.

The most general (d+ 1)-dimensional metric on a space with topology Md+1 =Md × S1 can be

written in the form

ĝµ̂ν̂ dx̂
µ̂dx̂ν̂ = gµν dx

µdxν + r2(dy +Aµdx
µ)2 , y ∼ y + 2π , (4.7)

provided that the metric functions gµν , r, Aµ are allowed to depend both on x and on y. In view of

the discussion of the previous paragraph, however, we are led to consider the restricted case in which

gµν , r, Aµ are functions of x only, since this corresponds to retaining zeromodes and discarding excited

modes. Under this assumption the relation (4.7) is known as Kaluza-Klein Ansatz. The d-dimensional

fields gµν , r, Aµ are interpreted as the d-dimensional metric, a scalar usually called dilaton, and a

vector commonly referred to as the Kaluza-Klein vector. Note that the background metric (4.2) can

be recovered from (4.7) by setting

〈gµν〉 = ηµν , 〈r〉 = R , 〈Aµ〉 = 0 . (4.8)

Let us suppose for simplicity that the dynamics of gravity in d+ 1 dimensions is governed by the

standard Einstein-Hilbert action

SEH =
1

2κ2
d+1

∫
Md+1

R̂ ∗̂ 1 , (4.9)

where R̂ is the Ricci scalar built from ĝµ̂ν̂ . If we plug the expression (4.7) for ĝµ̂ν̂ into the Einstein-

Hilbert action (4.9) we obtain the action for the d-dimensional fields gµν , r, Aµ,

SEH =
1

2κ2
d

∫
Md

[
r R ∗ 1− 1

2
r3F ∧ ∗F

]
. (4.10)



58 Chapter 4. Compactifications and effective actions

In this expression R and ∗ denote the Ricci scalar and the Hodge star operator associated to the

metric gµν , κ2
d = κ2

d+1/(2π), and F = dA. Note that all terms involving gradients of r organize into a

total derivative that has been discarded. Nonetheless a kinetic term for r is generated as soon as the

first term in (4.10) is brought into standard Einstein-Hilbert form by means of the Weyl rescaling

gnew
µν = r

2
d−2 gµν . (4.11)

Indeed, in terms of the new metric (but dropping the superscript ‘new’) we obtain

SEH =
1

2κ2
d

∫
Md

[
R ∗ 1− d− 1

d− 2
d log r ∧ ∗d log r − 1

2
r

2(d−1)
d−2 F ∧ ∗F

]
. (4.12)

The reduction of the Einstein-Hilbert term we have just considered is the prototype of the circle

reductions discussed in greater detail in chapters 7 and 8 in the context of F-theory compactifications.

The reduced action (4.12) is manifestly invariant under the expected gauge transformation of the

Kaluza-Klein vector, δA = dλ. This transformation can be given a geometrical interpretation in terms

of (d+ 1)-dimensional diffeomorphisms. In fact, the functional form of the Kaluza-Klein Ansatz (4.7)

and the range of the periodic coordinate y are invariant under diffeomorphisms of the form

x′µ = xµ , y′ = y − λ(x) , (4.13)

with arbitrary function λ. These diffeomorphisms act trivially on gµν and r and precisely reproduce

the expected finite U(1) gauge transformation on the Kaluza-Klein vector,

g′µν = gµν , r′ = r , A′ = A+ dλ . (4.14)

Inspection of (4.13) reveals that excited modes transform non-trivially under this U(1) gauge trans-

formation.

4.2.2 Circle compactification of p-forms

It is instructive to consider the Kaluza-Klein expansion of an Abelian p-form in d + 1 dimensions.

The study of this system provides also preliminary material for the discussion of self-dual p-forms in

chapter 10.

Let Ĉp be a (d+ 1)-dimensional Abelian p-form with free action

Sform = −1

2

∫
Md+1

F̂p+1 ∧ ∗̂F̂p+1 , F̂p+1 = dĈp , (4.15)

which is invariant under the (d+ 1)-dimensional gauge symmetry

δĈp = dΛ̂p−1 , (4.16)

with arbitrary (p − 1)-form parameter Λ̂p−1. Let us Fourier expand both the p-form and the gauge

parameter as

Ĉp =
∑
n∈Z

[
C(n)
p + C

(n)
p−1 ∧ (dy +A)

]
einy , Λ̂p−1 =

∑
n∈Z

[
Λ

(n)
p−1 + Λ

(n)
p−2 ∧ (dy +A)

]
einy . (4.17)
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In these expressions all fields on the right hand side of the equations depend on x only. Note also the

appearance of the combination dy +A, which is invariant under the combined transformations (4.13)

and (4.14). Using dy + A to expand (d + 1)-dimensional fields ensures simple U(1) transformation

laws, for instance

C(n)′
p = einλC(n)

p , C
(n)′
p−1 = einλC

(n)
p−1 , (4.18)

and similarly for modes in the expansion of the gauge parameter Λ̂p−1. This leads us to the introduction

of a U(1) covariant derivative D which acts on modes at level n as

D = d− inA . (4.19)

The p-form action (4.15) written in terms of Kaluza-Klein modes takes the form

Sform =

∫
Md

2πr

[
−1

2
F

(0)
p+1 ∧ ∗F

(0)
p+1 −

1

2
r−2F (0)

p ∧ ∗F (0)
p

]
+
∞∑
n=1

∫
Md

2πr
[
−F̄ (n)

p+1 ∧ ∗F
(n)
p+1 − r−2F̄ (n)

p ∧ ∗F (n)
p

]
, (4.20)

where we have not performed the Weyl rescaling (4.11) and we have introduced the d-dimensional

field strengths

F
(n)
p+1 = DC(n)

p + (−)p−1C
(n)
p−1 ∧ F , F (n)

p = DC(n)
p−1 + (−)p inC(n)

p , (4.21)

with n ∈ Z. They are invariant under the d-dimensional gauge transformations induced by (4.16)

δC(n)
p = DΛ

(n)
p−1 + (−)p−2 Λ

(n)
p−2 ∧ F , δC

(n)
p−1 = DΛ

(n)
p−2 + (−)p−1inΛ

(n)
p−1 , (4.22)

which are again valid for any n ∈ Z. Let us clarify the physical implications of (4.20) and (4.22).

The zeromodes C
(0)
p , C

(0)
p−1 describe a massless p-form and a massless (p−1)-form, respectively. Note

that, while C
(0)
p−1 has standard gauge transformations and Bianchi identity, the gauge transformation

of C
(0)
p implies a non-standard Bianchi identity

dF
(0)
p+1 = (−)p−1F (0)

p ∧ F . (4.23)

This mechanism, for instance, is the source of the non-standard Bianchi identity for the Type IIA

four-form field strength (2.25) if it is interpreted as the circle reduction of the four-form field strength

of eleven-dimensional supergravity. It will also play an important role in the discussion of self-dual

p-forms on a circle in chapter 10.

Let us now turn to excited modes. For n 6= 0 the (p− 1)-form C
(n)
p−1 enjoys a shift symmetry with

parameter Λ
(n)
p−1 that makes it possible to completely gauge it away. The gauge-fixed action contains

the field C
(n)
p only, has no residual local symmetries at level n, and its relevant terms read

Sform ⊃
∞∑
n=1

∫
Md

2πr

[
−dC̄(n)

p ∧ ∗dC(n)
p − n2

r2
C̄(n)
p ∧ ∗C(n)

p

]
, (4.24)

From this expression we see that the gauge-fixed forms C
(n)
p describe massive fields withmn = n〈r〉−1 =

n/R. Note that what we have described is a p-form generalization of the Stückelberg mechanism, which

corresponds to the case p = 1: C
(n)
0 is the Stückelberg scalar with shift symmetry gauged by the vector

C
(n)
1 .
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4.2.3 Some remarks

Let us conclude this section with some additional remarks about excited modes in circle compactifica-

tions. In the previous example of the Abelian p-form on a circle the original action in d+1 dimensions

describes a free field and as a result in d dimensions Kaluza-Klein modes associated to different levels

are decoupled. This makes it easy to retain them all in our discussion. As soon as interactions in

d+ 1 dimensions are considered, however, non-trivial mixing among Kaluza-Klein levels occurs in the

lower-dimensional theory.

This would be the case, for instance, if we allowed for a non-trivial y dependence of gµν , r, Aµ in

the Kaluza-Klein Ansatz, given the non-linear nature of gravity. Some preliminary information about

the associated massive spectrum can be extracted from the study of linearized Einstein’s equations

on the background (4.2). This analysis confirms the known fact that the massless states associated

to the y-independent part of gµν , r, Aµ are accompanied by a tower of massive spin-two2 particles of

mass mn = n/R, see for instance [78] for a discussion in d = 10.

By neglecting any y-dependence in the Kaluza-Klein Ansatz (4.7) we have effectively frozen to

zero all these massive modes. In chapters 7 and 8 we will consider circle reductions with both gravity

and matter fields and we will similarly switch off all excited modes. Can this procedure be justified?

This question can be addressed from two points of view.

According to the effective action paradigm, at low-energies the dynamics of the system is governed

by zeromodes only. Excited modes should then be integrated out and their presence affects the effective

action only indirectly, via corrections to the couplings among zeromodes. For the vast majority

of couplings all effects due to massive modes are suppressed by the Kaluza-Klein scale R−1 and

are therefore negligible for energies E � R−1. Instead of properly integrating out massive modes

we can then simply set them to zero in this approximation. In chapter 9 we will study a notable

exception to this prescription: topological couplings among zeromodes in five-dimensions can receive

loop corrections from excited Kaluza-Klein modes that are independent of the scale R−1. Some

implications of this peculiar effect will be explored in chapter 10.

From a purely classical perspective, the truncation of the full theory to zeromodes only is consistent

provided that any solution of the d-dimensional equations of motion for zeromodes can be uplifted to a

solution of the full (d+1)-dimensional theory. From this perspective, an Ansatz like (4.7) is interpreted

as a recipe to construct (d + 1)-dimensional solutions starting from d-dimensional solutions. In the

case of circle compactification, the truncation to zeromodes can be shown to be always consistent in

this sense [79, 80]. This can be understood recalling that all excited modes are charged under the

U(1) symmetry associated to the Kaluza-Klein vector. As a result, in the equation of motion for a

mode at level n all terms must have charge n and this forbids any term that is a function of zeromodes

only. This implies that if all excited modes are set to zero, all their equations of motion are satisfied

automatically.

2The spin of a massive particle in d dimensions is defined as the maximum absolute value of the eigenvalues of the
Cartan generators of the massive little group SO(d − 1). Massive Kaluza-Klein modes of the graviton fall into the
symmetric traceless representation of SO(d− 1).
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4.3 More general compactification on Ricci-flat manifolds

In the typical compactification scenario in string theory or M-theory one is interested in the reduction

of a D-dimensional theory on a k-dimensional compact space Xk down to d dimensions. It is customary

to require that the external spacetime be a maximally symmetric space, i.e. Minkowski, de Sitter, or

anti-de Sitter. Under this assumption, the most general background value of the D-dimensional metric

that is compatible with all symmetries of external spacetime takes the form of a warped product,

〈ĝµ̂ν̂(x̂)〉dx̂µ̂dx̂ν̂ = e2w(y) gµν(x) dxµdxν + gmn(y) dymdyn . (4.25)

In this expression x̂µ̂, µ̂ = 0, . . . D − 1 are coordinates in D dimensions, while xµ, µ = 0, . . . d − 1

are coordinates in the external spacetime and ym, m = 1, . . . , k are coordinates in the internal space.

Moreover, gµν is the Minkowski, de Sitter, or anti-de Sitter metric, and gmn is the metric of the internal

space. Finally, w is a scalar function referred to as the warp factor.

In what follows we restrict our analysis to the simplest situation in which the warp factor is

constant (and can be set to zero with no loss of generality), external spacetime is Minkowski, and the

internal metric is Ricci-flat,

〈ĝµ̂ν̂(x̂)〉dx̂µ̂dx̂ν̂ = ηµν dx
µdxν + gmn(y) dymdyn , Rmn = 0 . (4.26)

This metric is a solution to D-dimensional vacuum Einstein’s equation. Note that if we consider the

Type II or M-theory effective actions at two-derivative level (2.22), (2.23), (2.24), (3.34) and we set

all matter fields to zero in the vacuum, the D = 10 or D = 11 equations of motion reduce precisely

to vacuum Einstein’s equation. Let us stress, however, that we are ignoring several complications

related to higher-derivative corrections [81, 82] and the possibility of quantum anomalies that impose

a half-integral quantization of fluxes, which prohibits to just set them to zero in the background [62].

Some of these crucial issues will be addressed in section 5.5 in the context of F-theory vacua, but will

be neglected for the time being.

According to the lesson learned in the study of circle compactification, D-dimensional fields have

to be expanded in eigenfunctions of some suitable operator in the internal space. Zeromodes of these

operators will then yield massless fields in d dimensions. In order to identify the relevant operators

we do not need to consider the full non-linear theory and we can rather analyze small perturbations

around the background (4.26),

ĝµ̂ν̂ = 〈ĝµ̂ν̂〉+ ĥµ̂ν̂ . (4.27)

One finds that metric fluctuations should be expanded in eigenfunctions of the operators

∆0Y = ∇p∇pY , (∆1Y )m = ∇p∇pYm , (∆2Y )mn = ∇p∇pYmn + 2R p q
m n Ypq . (4.28)

In these expression and henceforth indices and raised and lowered with the background internal metric

gmn in (4.26), which is also used to build the covariant derivative ∇m. The operator ∆0 is the connec-

tion Laplacian acting on scalar functions, while ∆1 is the connection Laplacian acting on covectors.
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The latter actually coincides up to a sign with the Laplace-de Rham operator acting on one-forms in

a Ricci-flat manifold, by virtue of the identity

(∆dRY )m = (d d†Y + d†dY )m = −∇p∇pYm +RmpY
p . (4.29)

Finally, ∆2 acts on symmetric tensors and is known as the Lichnerowicz operator. Note also that we

restrict the action of ∆1 and ∆2 to functions Ym, Ymn that obey the transversality and tracelessness

requirements

∇mYm = 0 , ∇mYmn = 0 , gmnYmn = 0 . (4.30)

It is possible to prove that on a compact space ∆0, ∆1, and ∆2 admit a finite number of zeromodes

and an infinite tower of excited modes with strictly negative eigenvalues. As a result we find a spectrum

with the same qualitative features as the Kaluza-Klein spectrum of a circle compactification: a finite

number of massless fields is accompanied by an infinite tower of massive fields. In what follows we

focus on zeromodes only. It is interesting to note that, in analogy to the case of a p-form on a circle

in section 4.2, the masses of excited modes are generated via a Stückelberg-like mechanism.

Let us start our analysis of zeromodes by recalling that a zeromode of the scalar Laplacian ∆0 on

a compact manifold is constant. As a result, there is only one independent zeromode, which will be

denoted Y 0. Secondly, the identification between −∆1 and ∆dR allows us to exploit Hodge theory of

harmonic forms and conclude that zeromodes of ∆1 are labelled by the first Betti number b1 of the

internal manifold: we thus have the zeromodes Y β
m(y) with β = 1, . . . b1. In order to specify further the

zeromodes of the Lichnerowicz operator one needs additional information about the compact Ricci-

flat manifold. In the following sections we will explore in more detail zeromodes of ∆2 on Calabi-Yau

manifolds and Spin(7) manifolds, and in both cases they will be related to appropriate harmonic forms.

For the time being, it suffices to recall that ∆2 admits a finite number N2 of zeromodes, that will be

denoted Y γ
mn(y), with γ = 1, . . . , N2.

The expansion of the components of the metric fluctuation with respect to zeromodes of ∆0, ∆1,

∆2 reads

ĥµν = γ0
µνY

0 , ĥµm =

b1∑
β=1

AβµY
β
m , ĥmn =

N2∑
γ=1

MγY γ
mn + Φ0Y 0gmn , (4.31)

where we have introduced a d-dimensional symmetric tensor γ0
µν identified with the graviton, a col-

lection of vectors Aβµ and a collection of scalars Mγ , Φ0. Note that, thanks to (4.30), the scalar

fluctuations Mγ leave the volume of the internal space invariant. One can show that the same holds

for excited modes. As a result, the variation of the internal volume is entirely encoded in Φ0. It is

possible to check that plugging the metric perturbations (4.31) into the linearized Einstein’s equation

in D dimensions the expected massless equations of motion for γ0
µν , Aβµ and Mγ , Φ0 are recovered.

Let us just mention that one finds a mixing between the graviton γ0
µν and the scalar Φ0: it is the

manifestation at linearized level of the Weyl rescaling discussed below.

It is known that for compact Ricci-flat manifolds the first Betti number b1 receives contributions

from torus factors only, i.e. it is non-vanishing only if the space can be written as a product Zk−` ×
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T `, with ` > 1. Equivalently, the only Killing vectors on a compact Ricci-flat manifold are those

associated to such torus factors [46]. In chapters 7 and 8 we will consider internal Ricci-flat manifolds

whose definition forbids torus factors. As a result, no massless vector appears in the spectrum of the

dimensionally reduced theory.

The scalars Φ0 and Mγ are commonly referred to as metric moduli. Their masslessness reflects the

fact that they correspond to deformations of the internal manifold that respect Ricci-flatness and thus

they parametrize a vacuum degeneracy. In this respect they are analogous to Goldstone bosons. Note

that our discussion has considered only infinitesimal deformations. In many cases of interest, including

Calabi-Yau and Spin(7) manifolds introduced below, it is possible to prove that these deformations are

unobstructed and can be promoted to finite transformations. We therefore have a well-defined notion

of moduli space. It is a manifold with dimension N2 + 1 and can be parametrized by coordinates XM,

M = 1, . . . , N2 +1. From this perspective the background internal metric gmn in (4.26) is though of as

some point in moduli space, and the scalar fluctuations Φ0 and Mγ are best understood as orthogonal

vectors in the tangent space to moduli space at that point.

The dynamics of moduli can be extracted from the dynamics of pure gravity in the higher-

dimensional theory. In fact, we will now discuss how the dimensional reduction of the D-dimensional

Einstein-Hilbert action

S =
1

2

∫
MD

R̂ ∗̂ 1 (4.32)

yields a non-linear sigma model for the moduli XM coupled to d-dimensional gravity. For notational

simplicity we have set the D-dimensional gravitational constant to one, κD = 1. The starting point

of the dimensional reduction is the metric Ansatz

ĝµ̂ν̂(x̂)dx̂µdx̂ν̂ = gµν(x)dxµdxν + gmn(y;X(x))dymdyn , (4.33)

where the notation gmn(y;X(x)) indicates that the internal metric depends parametrically on the

coordinates XM on moduli space, which are in turn allowed to vary with the external coordinates

xµ. Note that we have included no d-dimensional vector in (4.33). This is because we are interested

in Ricci-flat manifolds with b1 = 0 for which the expansion of the internal metric yields no massless

vector, as we have seen above.

The dimensional reduction of (4.32) is performed in detail in appendix A.3. Let us stress that the

external metric has to be Weyl rescaled according to

gold
µν = V− 2

d−2 gnew
µν (4.34)

in order to achieve canonical normalization for the d-dimensional Einstein-Hilbert term. In terms of

the new external metric, but dropping the superscript ‘new,’ one finds

S =

∫
Md

[
1

2
R ∗ 1− d− 1

2(d− 2)
d logV ∧ ∗d logV − 1

2
GMN dXM ∧ ∗dXN

]
, (4.35)

where V denotes the volume of the internal space and sigma-model metric GMN is given by an integral

over the internal space,

GMN =
1

4V

∫
Mk

dky
√
g

[
gmpgnq

∂gmn
∂XM

∂gpq
∂XN

− gmn ∂gmn
∂XM

gpq
∂gpq
∂XM

]
. (4.36)
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The partial derivatives ∂gmn/∂X
M encode the variations of the internal metric components with

respect to the moduli, thought of as parameters. Equivalently, under an infinitesimal variation δXM

of the moduli the metric varies according to

δgmn =
∂gmn
∂XM

δXM . (4.37)

When a specific class of internal manifolds is considered there is usually a natural choice for the

coordinates XM in moduli space. Furthermore the geometry of the internal manifold allows one to

derive relations of the form (4.37), from which one can read off the quantities ∂gmn/∂X
M and compute

GMN using (4.36). We will see how this works explicitly for the case of the moduli space of Calabi-Yau

manifolds and Spin(7) manifolds.

So far we have discussed the compactification of D-dimensional gravity. Another essential ingre-

dient for our discussion in chapters 7 and 8 is furnished by the reduction of p-form fields. In this

case the appropriate differential operator in the internal manifold is the Laplace-deRham operator.

This can be seen by noting that the linearized equation of motion for a p-form Ĉp supplemented by

the Lorenz-like gauge condition d ∗ Ĉp = 0 reads simply ∆̂dRĈp = 0. In the factorized background

metric (4.26) the Laplace-deRham operator of the total space splits into the sum of the corresponding

operators for external spacetime and for the internal manifold. As a result, zeromodes are obtained

by expanding onto a basis of harmonic forms of the compact space. Therefore we can make use of an

Ansatz of the schematic form

Ĉp(x̂) =
∑
r+s=p

bs∑
I=1

CIr (x) ∧ΨI
s(y;X(x)) , (4.38)

where CIr are r-forms in external spacetime, ΨI
s is a basis of harmonic s-form in the internal space,

with bs being the s-th Betti number. We have stressed that it is possible for the harmonic forms Ψs

to depend parametrically on the moduli XM, just like the internal metric does in (4.33).

We would like to stress a crucial difference between (4.33) or (4.38) and the Kaluza-Klein Ansatz

on a circle (4.7). Contrary to (4.7), in fact, (4.33) and (4.38) do not generically define a consistent

truncation, i.e. it is not true that any solution to the d-dimensional equations of motion for gµν , XM,

CIr can be lifted to a solution of the D-dimensional equations of motion via (4.33) and (4.38). As a

result, our approximation of retaining zeromodes only is strictly speaking inconsistent at the level of

the classical equations of motion. We can still make sense of expressions like (4.33) and (4.38) within

the framework of the low-energy effective action paradigm. From this perspective, these relations are

convenient tools in the derivation of the effective action for massless fields in d-dimensions.

As mentioned above, in order to flesh out the content of formal expressions like (4.36) more

information is necessary about the structure of the moduli space of the theory. For our purposes, we

are interested in some features of the moduli spaces of Calabi-Yau manifolds and of Spin(7) manifolds.

Before discussing them, however, let us briefly motivate the emergence of these special geometries and

clarify the origin of their relevance for string and M-theory compactifications.
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4.4 Supersymmetry and special holonomy

As noted above, the background metric (4.26) solves vacuum Einstein’s equation in D dimensions and

is therefore a viable vacuum if we consider a two-derivative action and we switch off all matter fields. In

most cases of interest in string theory and M-theory the higher-dimensional action is supersymmetric

and one in interested in backgrounds that not only do solve the equations of motion, but also preserve

a fraction of the supersymmetry.

For definiteness let us consider supersymmetric compactifications of eleven-dimensional super-

gravity, whose two-derivative bosonic action was given in (3.34). We now need the expression for the

supersymmetry variations to lowest order in the gravitino: they read [45]

δêâ µ̂ = ε̂ Γ̂â ψ̂µ̂ , δĈµ̂ν̂ρ̂ = −3ε̂ Γ̂[µ̂ν̂ ψ̂ρ̂] ,

δψ̂µ̂ = ∇̂µ̂ε̂+
1

12

(
1

4!
Ĝν̂1ν̂2ν̂3ν̂4 Γ̂µ̂ Γ̂ν̂1ν̂2ν̂3ν̂4 − 1

2
Ĝµ̂ν̂1ν̂2ν̂3 Γ̂ν̂1ν̂2ν̂3

)
ε̂ . (4.39)

In these expressions µ̂, ν̂, . . . are curved eleven-dimensional indices, â is a flat eleven-dimensional

index, and êâ µ̂ denotes the elfbein. The Majorana spinor ε̂ is the anticommuting supersymmetry

parameter and the Majorana vector-spinor ψ̂µ̂ is the gravitino. The symbol ∇̂µ̂ represents the Levi-

Civita connection acting on spinors. The quantity Γ̂µ̂1...µ̂p denotes the antisymmetrized product of p

gamma matrices in eleven dimensions. Finally, recall that Ĝ4 = dĈ3.

As noted above, our discussion is restricted to vacua in which all matter fields are set to zero. In

the context of eleven-dimensional supergravity we then have

〈Ĉ3〉 = 0 , 〈ψ̂µ̂〉 = 0 . (4.40)

As a result, the supersymmetry variations of the elfbein êâ µ̂ and of the three-form Ĉ3 are automatically

zero if evaluated in the vacuum and the gravitino variation takes the simple form δψ̂µ̂ = ∇̂µ̂ε̂. This

implies that a fraction of supersymmetry is preserved if and only if a non-trivial solution to the Killing

spinor equation

∇̂µ̂ε̂ = 0 (4.41)

can be found. Since this is a linear equation, its solutions constitute a linear space whose dimension

determines the number of supercharges preserved by the compactification.

In order to search for solutions to the Killing spinor equation (4.41) on the background (4.26) we

need to decompose the eleven-dimensional spinor ε̂ into a d-dimensional spinor and a k-dimensional

spinor. The details of this decomposition depend on the specific dimensionalities involved. However,

these complications can be avoided if we ignore temporarily the Majorana condition on ε̂ and we treat

it as a Dirac spinor. We then search for solutions to (4.41) of the factorized form

ε̂(x, y) = ε(x)⊗ η(y) , (4.42)

where ε(x) is a Grassmann-odd Dirac spinor in external spacetime and η(y) is a Grassmann-even Dirac

spinor in internal spacetime. The external component of the Killing spinor equation in Minkowski
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spacetime is simply solved by any constant ε, while the internal component gives the Killing spinor

equation on the internal manifold,

∇mη = 0 , (4.43)

where now ∇m denotes the spinor covariant derivative built with the internal metric gmn in (4.26).

This equation implies the integrability condition

0 = [∇n,∇m]η =
1

4
RmnpqΓ

pqη , (4.44)

where Γpq is the antisymmetric product of two internal gamma matrices, which in turn implies

Rmn = 0 , (4.45)

provided that η 6= 0 and making use of the Euclidean signature of the internal space. Ricci-flatness

of the internal space was already demanded on grounds of the D-dimensional equations of motion,

but we now see that it stems automatically from the requirement of unbroken supersymmetry in an

unwarped background of the form (4.26).

In order for the decomposition (4.42) to give a well-defined spinor in eleven dimensions we have

to demand that η be globally defined on the internal manifold. Since it is covariantly constant (4.43),

it must be in particular nowhere vanishing. This generically imposes topological conditions on the

internal manifold, such as a reduction of the structure group to a proper subgroup of SO(k). This

observation remains valid if the Killing spinor equation (4.43) is generalized, allowing for deformations

of the Levi-Civita connection acting on the spinor η. Pursuing further these ideas would lead us to

the discussion of G-structures in the context of string and M-theory compactifications, which however

lies beyond the scope of this work. We refer the reader to e.g. [83] for an introduction to the subject.

On top of topological considerations, the Killing spinor equation (4.43) restricts the holonomy

group of the Levi-Civita connection on the internal manifold. Since it plays a crucial role in our

discussion, it is useful to recall a few facts about the notion of holonomy. Let E be a vector bundle on

a Riemannian manifold. We are currently interested in the case in which E is an appropriate spinor

bundle, such as the bundle of Dirac or Weyl spinors. Let p be a point on the Riemannian manifold

and let γ be a piecewise smooth loop based at p. The Levi-Civita connection induces a well-defined

notion of parallel transport in the vector bundle E. We can then take an element η in the fiber Ep

and parallel transport it along γ all the way back to p. The outcome of this procedure will generically

be a different η′ ∈ Ep, related to η by a linear transformation S ∈ GL(Ep). The holonomy group

based at p, denoted Holp, is then defined as the subgroup of GL(Ep) consisting of all transformations

S that can be obtained in this way. For a spinor bundle in a k-dimensional Riemannian manifold

Holp is generically contained in a (possibly reducible) spinor representation of SO(k). It can be shown

that the holonomy groups Holp, Holp′ based at points p, p′ are isomorphic on a connected manifold.

Therefore in what follows we will simply refer to the holonomy group as Hol. Let us point out that

Hol is a Lie group and that its identity component Hol0, known as the restricted holonomy group, is

generated by considering parallel transport along contractible loops only. The Lie algebra of Hol0 is

related to the curvature two-form of the connection by the Ambrose-Singer theorem [84]: intuitively

speaking, curvature encodes the rotation induced by parallel transport along an infinitesimal loop.
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For simplicity we will restrict to simply connected manifolds, for which it is possible to show that

Hol = Hol0. Let us now illustrate the relation between the Killing spinor equation and holonomy

using some examples that will be relevant to the F-theory compactifications discussed in chapters 7

and 8.

Let us consider the case in which the dimension of the internal manifold is k = 6. Minimal spinors

of SO(6) ∼= SU(4) can be represented as Weyl spinors in the complex irreducible representations 4

and 4 of SU(4), with complex conjugation interchanging chiralities. Let η be a globally defined spinor

in the 4 representation satisfying the Killing spinor equation (4.43). Its complex conjugate η∗ then

furnishes a covariantly constant spinor in the 4 representation. Clearly, both η and η∗ are invariant

under the action of the holonomy group since they behave trivially under parallel transport. If the

holonomy group Hol of the manifold were all of SU(4), it would act irreducibly on η and η∗, and

the only possible invariant spinors would be η = η∗ = 0. In order to have non-vanishing Killing

spinors Hol must be a proper subgroup of SU(4), Hol ( SU(4), such that in the decomposition of the

representations 4 and 4 under SU(4)→ Hol a singlet of Hol is found. It is possible to show that the

existence of a pair of non-vanishing Killing spinors η, η∗ forces Hol ⊆ SU(3). Indeed, we have

SU(4) → SU(3)

4 → 3 + 1 , (4.46)

and similarly for 4. By the same token, if we require the existence of two pairs of non-vanishing, linearly

independent Killing spinors η1, η
∗
1 and η2, η

∗
2 the holonomy group is further reduced to Hol ⊆ SU(2),

consistently with the fact that

SU(4) → SU(2)

4 → 2 + 1 + 1 . (4.47)

It turns out that the existence of three pairs of independent non-vanishing Killing spinors forces the

holonomy group to be trivial, so that the space is a flat six-torus that actually admits four pairs of

such spinors, in accordance with the trivial decomposition

SU(4) → 1

4 → 1 + 1 + 1 + 1 . (4.48)

The internal spinors η, η∗ can be used to build an eleven-dimensional Majorana spinor according to

ε̂ =
N∑
i=1

(εi ⊗ ηi + ε∗i ⊗ η∗i ) , N = 0, 1, 2, 4 for Hol = SU(4), SU(3), SU(2), 1 , (4.49)

where εi are constant Dirac spinors of SO(1, 4). This shows that for holonomies SU(4), SU(3), SU(2), 1

we have N = 0, 1, 2, 4 supersymmetry in five dimensions, respectively, corresponding to 0, 8, 16, 32 real

supercharges.

One can analyze in a similar fashion the amount of supersymmetry preserved by compactification

on 8-dimensional manifolds depending on their holonomy. We refrain from a complete account and
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we just discuss the two cases that will be relevant for F-theory compactifications. Recall that the

minimal spinors of SO(8) are Majorana-Weyl spinors. If we impose the existence of one non-vanishing

Majorana-Weyl Killing spinor of positive chirality η+ the holonomy group must satisfy Hol ⊆ Spin(7).

Indeed, it is possible to show that the two inequivalent Majorana-Weyl representations 8c and 8s of

SO(8) decompose as

SO(8) → Spin(7)

8c → 7 + 1 ,

8s → 8 , (4.50)

yielding only one singlet. (Chirality assignments are convention dependent.) This implies that if the

internal manifold has Spin(7) holonomy the eleven-dimensional Majorana supersymmetry parameter

can be written as

ε̂ = ε⊗ η+ , (4.51)

where ε is a Majorana spinor of SO(1, 2). The resulting three-dimensional theory has minimal N = 1

supersymmetry, corresponding to two real supercharges.

Next, we consider the case in which we have two non-vanishing Majorana-Weyl Killing spinors

of positive chirality η1+, η2+, which can also be combined into a single complex Weyl spinor η+ =

η1+ + i η2+. In this case the holonomy group must satisfy Hol ⊆ SU(4) and the relevant group-

theoretical decomposition is

SO(8) → SU(4)

8c → 6 + 1 + 1 ,

8s → 8 . (4.52)

In this case the have

ε̂ = ε1 ⊗ η1+ + ε2 ⊗ η2+ , (4.53)

where ε1,2 are once again Majorana spinors of SO(1, 2), so that three-dimensional theory has N = 2

supersymmetry, or four real supercharges.

We have encountered a few examples of manifolds with special holonomy. A complete classification

of these spaces is due to Berger [85]. More precisely, his classification applies to simply connected

Riemannian manifolds that are irreducible and not locally symmetric spaces. On the one hand,

irreducibility refers here to the requirement that the holonomy group act irreducibly on the tangent

bundle. On the other hand, a local symmetric space is a Riemannian manifold in which for every point

p is it possible to define an isometry in a neighborhood of p that fixes p and reverses geodesics through

p. It can be proven that a Riemannian manifold is locally symmetric if and only if its Riemann tensor

is covariantly constant, and that any locally symmetric space is locally isomorphic to a coset space

G/H. These space are not relevant for the present discussion. Taking into account these preliminary

remarks, Berger’s classification is shown in table 4.1.

Since it is instrumental for our discussion, let us state explicitly the definition of Calabi-Yau

manifold that we will be using henceforth: a Calabi-Yau n-fold is a compact Kähler manifold with
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holonomy dimension class remarks

SO(n) n Riemannian manifold
U(n) 2n Kähler manifold
SU(n) 2n Calabi-Yau manifold Ricci-flat, Kähler

Sp(n)× Sp(1) 4n Quaternionic Kähler manifold non-flat Einstein, non-Kähler
Sp(n) 4n Hyper-Kähler manifold Ricci-flat, Kähler
G2 7 G2 manifold Ricci-flat

Spin(7) 8 Spin(7)-manifold Ricci-flat

Table 4.1: Berger’s classification of the holonomy groups of simply connected, irreducible, non locally
symmetric Riemannian manifolds.

strict SU(n) holonomy (and not a proper subgroup of SU(n)). For example, with this definition

the complex torus T 2n with n > 1 is not a Calabi-Yau manifold. By the same token, by Spin(7)

manifold we will always mean a manifold of strict Spin(7) holonomy. The next sections are devoted to

a lightning account of some properties of Calabi-Yau threefolds and fourfolds and Spin(7) manifolds

that are relevant in the context of string theory and M-theory compactifications.

4.5 A brief overview of Calabi-Yau manifolds

This section is devoted to a brief account about the main geometrical and topological properties of

Calabi-Yau manifolds, together with a short summary of the distinctive features of their moduli spaces.

We would like to warn the reader that we will not attempt to make our review self-contained and that

some degree of familiarity with Kähler manifolds and (co)homology groups will be assumed. Books

and reviews such as [86, 87, 88, 89] are good references for background material as well as for the

properties of Calabi-Yau manifolds we are about to address.

4.5.1 Geometry and topology of Calabi-Yau manifolds

Consider a Kähler n-fold X, i.e. a complex manifold with dimCX = n endowed with a Hermitian

metric whose Kähler form J is closed. The Kähler condition ensures that the Levi-Civita connection

is compatible with the decomposition of the tangent bundle into holomorphic and antiholomorphic

parts, TX = TX1,0 ⊕ TX0,1. As a result, the restricted holonomy group of X is contained in U(n) =

SU(n)× U(1). The U(1) factor is associated to the trace of the curvature two-form,

Rk` = Rk`ī dz
i ∧ dz̄ ̄ , trR = Rkkī dz

i ∧ dz̄ ̄ , (4.54)

where zi, i = 1, . . . , n are local complex coordinates on Xn and Rk`ī are the components of the

Riemann tensor. On a Kähler manifold they enjoy the symmetry property Rīk ¯̀ = Rk̄i¯̀, so that the

components of trR are proportional to the components of the Ricci tensor Rī = Rkik̄. One can then

conclude that the restricted holonomy group of a Kähler manifold is contained in SU(n) if and only

if the Kähler metric is Ricci-flat.
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The trace of the curvature two-form also enters the expression of the first Chern class of X,

c1(X) ≡ c1(TX1,0) =
i

2π
trR . (4.55)

Therefore Ricci-flatness of the Kähler metric immediately implies c1(Xn) = 0. The converse for

compact Kähler n-fold was conjectured by Calabi and proved by Yau. More precisely, Yau’s theorem

states that if Xn is a compact Kähler n-fold with Kähler form J and c1(Xn) = 0, then there exists a

unique Ricci-flat metric in the same Kähler class as J . In what follows, we will always assume that

Xn is endowed with this unique Ricci-flat representative of its Kähler class. As noted above, we will

use the terminology Calabi-Yau n-fold to denote a compact Kähler n-fold whose restricted holonomy

is exactly SU(n) and not a proper subgroup. In what follows we will elucidate the consequences of

this restriction.

Recall that the canonical line bundle KX of a Kähler n-fold X is the n-th exterior power of

the holomorphic cotangent bundle, or equivalently the bundle of (n, 0)-forms. It can be shown that

c1(KX) = −c1(X), so that the first Chern class of X vanishes if and only if its canonical line bundle is

trivial. The latter condition is in turn equivalent to the existence of a global nowhere vanishing section

of KX , i.e. a globally defined, nowhere vanishing (n, 0)-form, commonly denoted Ω. If X is endowed

with its Ricci-flat metric, Ω transforms as a singlet under the restricted holonomy group SU(n), and

is therefore covariantly constant. By virtue of the Kähler condition and Ricci-flatness this implies that

Ω is harmonic and holomorphic,

∆dRΩ = 0 , ∂Ω = 0 , (4.56)

where ∆dR = d d† + d†d is the Laplace-de Rham operator and ∂ = ∂
∂z̄ı̄dz̄

ı̄. Two holomorphic (n, 0)-

forms can only differ by multiplication by a scalar holomorphic function, which must be constant on a

compact manifold. Therefore Ω is unique up to normalization. The (n, n)-form Ω ∧Ω is proportional

to the volume form of the Calabi-Yau n-fold. More precisely, one can show that3

1

n!
Jn = in(−)

n(n−1)
2

Ω ∧ Ω

‖Ω‖2 , (4.57)

where

‖Ω‖2 =
1

n!
Ωi1...inΩ

i1...in . (4.58)

Let us also recall the identity

Ωi1...irj1...jn−r Ω
i1...irk1...kn−r = r!(n− r)! ‖Ω‖2 δ[k1

[j1
. . . δ

kn−r]
jn−r]

, (4.59)

which is valid for 0 ≤ r ≤ n.

The Kähler form J and the holomorphic (n, 0)-form Ω can be constructed as spinor bilinears using

the covariantly constant spinors introduced in section 4.4. More precisely, for a Calabi-Yau threefold

3An algebraic identity like (4.57) is most easily derived in a convention-independent fashion by exploiting the fact
both the left hand side and the right hand side are covariantly constant so that if the relation holds at some specific
point p, it holds everywhere. We are then free to choose complex coordinates in a neighborhood of p in such a way that

ds2|p = Aδī dz
idz̄̄ , J |p = iA δī dz

i ∧ dz̄̄ , Ω|p = B dz1 ∧ · · · ∧ dzn ,

with A,B constants that are eventually reabsorbed in ‖Ω‖2.
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we have a pair of conjugate Weyl spinors of opposite chiralities η, η∗. Supposing η has positive chirality

for definiteness, we write η+ = η and η− = η∗. It is then possible to check that the spinor bilinears

J = −i η†+ γī η+ dz
i ∧ dz̄ ̄ , Ω =

1

3!
η†− γijk η+ dz

i ∧ dzj ∧ dzk (4.60)

satisfy all the expected properties of the Kähler form and of the holomorphic (3,0)-form. In particular,

they are covariantly constant since the spinors η± are, and algebraic relations such as J2 = −I or (4.57)

can be derived by means of Fierz rearrangements. A similar construction holds for a Calabi-Yau

fourfold, which admits a complex Weyl spinor of positive chirality η+,

J = −i η†+ γī η+ dz
i ∧ dz̄ ̄ , Ω =

1

4!
η†+ γijk` η+ dz

i ∧ dzj ∧ dzk ∧ dz` . (4.61)

Let us stress that the fact that η+ is complex is crucial in order to build the Kähler form J : if η+ were a

Majorana-Weyl spinor the bilinear η†+γmnη+ = ηT+Cγµνη+ would vanish by virtue of the antisymmetry

of Cγµν in its spinor indices (which we do not write explicitly) and the commuting character of η+.

Let us now discuss some topological properties of Calabi-Yau n-folds. Recall that the Hodge num-

bers hp,q of a complex manifold X are defined as the complex dimension of the Dolbeault cohomology

group Hp,q

∂̄
(X,C) and that on any compact Kähler n-fold they satisfy

hp,q = hq,p , hp,q = hn−q,n−p , hp,p > 0 , (4.62)

where the first relation is a consequence of complex conjugation, the second is derived using Hodge

duality, and the third observation stems from the fact that Jp is a closed but not exact (p, p)-form. We

will also always assume that X is connected, so that h0,0 = 1. As we have seen a Calabi-Yau n-fold

is endowed with a nowhere vanishing holomorphic (n, 0)-form Ω which is unique up to normalization.

As a result we have immediately

hn,0 = h0,n = 1 , (4.63)

but also

hp,0 = h0,n−p , (4.64)

since the map αi1...ip 7→ β̄1...̄n−p = Ω̄1...̄n−p
i1...ipαi1...ip is a one-to-one map from (p, 0)-forms to

(0, n− p)-forms that preserves the harmonicity property. The equations we have written so far apply

to any compact Kähler n-fold with restricted holonomy contained in SU(n). As anticipated above,

we insist that the holonomy group be exactly SU(n) for a Calabi-Yau n-fold. As a consequence

hp,0 = 0 for p 6= 0, n . (4.65)

This can be seen as follows. On the one hand, the restricted holonomy group SU(n) acts on any (p, 0)-

form in the representation
∧p�, where � denotes the fundamental representation of SU(n). On the

other hand, on a Ricci-flat Kähler manifold a (p, 0)-form α is harmonic if and only if ∇m∇mαi1...ip = 0,

which in turn is equivalent to ∇mαi1...ip = 0 if the manifold is compact. The (p, 0)-form α, being

parallel, should then transform as a singlet of SU(n), but the representation
∧p� contains no such

singlet unless p = 0, n. Let us stress that the fact that h1,0 = h0,1 = 0 implies that the first Betti

number of X vanishes, b1 = 0. As a result, X cannot have any continuous isometries, since on a

compact Ricci-flat manifold any solution to the Killing equation determines a harmonic one-form.
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The observations made above imply that the Hodge diamond of a Calabi-Yau threefold is given by

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

=

1
0 0

0 h1,1 0
1 h1,2 h1,2 1

0 h1,1 0
0 0

1

, (4.66)

and contains only two independent Hodge numbers h1,1 and h1,2. The Euler characteristic is given in

terms of these Hodge numbers by

χ = 2(h1,1 − h1,2) . (4.67)

In a similar fashion the Hodge number of a Calabi-Yau fourfold reads

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h4,0 h3,1 h2,2 h1,3 h0,4

h4,1 h3,2 h2,3 h1,3

h4,2 h3,3 h2,4

h4,3 h3,4

h4,4

=

1
0 0

0 h1,1 0
0 h1,2 h1,2 0

1 h1,3 h2,2 h1,3 1
0 h1,2 h1,2 0

0 h1,1 0
0 0

1

,

(4.68)

but there are only three independent Hodge numbers, because of the relation4

h2,2 = 2(22 + 2h1,1 − h1,2 + 2h1,3) . (4.69)

The Euler characteristic of a Calabi-Yau fourfold in terms of the independent Hodge numbers h1,1,

h1,2, and h1,3 reads

χ = 6(8 + h1,1 − h1,2 + h1,3) . (4.70)

Let us close this section by noting that Hodge diamonds are symmetric under reflection with respect to

their vertical and horizontal axes by means of (4.62). According to mirror symmetry [91] there exists

an additional reflection symmetry with respect to the main diagonal of the Hodge diamond. More

precisely, given any Calabi-Yau n-fold X, there exists a mirror Calabi-Yau X̃ whose Hodge diamond

is the same as that of X up to reflection with respect to the main diagonal. For Calabi-Yau threefolds

mirror symmetry exchanges h1,1 and h1,2; for Calabi-Yau fourfolds it exchanges h1,1 and h1,3.

4This constraint can be derived by expressing the arithmetic genera χq =
∑n
p=0(−)php,q in terms of the Chern classes

of X using the Hirzebruch-Riemann-Roch theorem [90]. Recalling c1 = 0 for a Calabi-Yau fourfold, one gets

χ0 =
1

720

∫
X

−c4 + c22 , χ1 =
1

180

∫
X

−31c4 + 3c22 , χ2 =
1

120

∫
X

79c4 + 3c22 .

The first two equalities allow us to express
∫
X
c4 and

∫
X
c22 in terms of h1,1, h1,2, h1,3. Plugging these quantities back

into the equation for χ2 yields the desired expression for h2,2.
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4.5.2 Moduli space of Calabi-Yau manifolds

In what follows we discuss some general features of the moduli space of Calabi-Yau n-folds with

n = 3, 4. The cases n = 1, 2 are special and require a separate treatment. Some of the results quoted

below are valid also for n > 4, but the physical relevance of Calabi-Yau manifolds beyond complex

dimension four is not clear.

The tangent space to the moduli space of a Calabi-Yau n-fold X can be thought of as the space of

infinitesimal deformations of the metric on X that respect the Ricci-flatness condition. Recall from

section 4.3 that such deformations are determined by zeromodes Ymn of the Lichnerowicz operator

∆2 defined in (4.28). The transversality condition ∇mYmn imposed in (4.30) ensures in the present

context that Ymn encodes a deformation that is not generated by a diffeomorphism. The tracelessness

requirement gmnYmn that we assumed in (4.30) will be henceforth relaxed, since in the discussion

of the moduli space of Calabi-Yau manifolds it is not convenient to single out the overall volume

fluctuation from volume-preserving deformations.

On a Kähler manifold the Lichnerowicz operator does not mix holomorphic and antiholomorphic

components, which can be therefore analyzed separately. Let Ymn be a symmetric tensor. The

components with mixed indices Yī can be used to define a (1, 1)-form

λY = Yī dz
i ∧ dz̄ ̄ , (4.71)

while the components with two antiholomorphic indices can be used to build a (0, 1)-form with values

in the holomorphic tangent bundle TX1,0,

αiY = gī Ȳk̄ dz̄
k̄ . (4.72)

The components Yij determine the components of the complex conjugate form ᾱı̄Y . A direct compu-

tation shows then that

(∆2Y )ī = 0 ⇔ ∆dRλY = 0 ,

(∆2Y )ı̄̄ = 0 ⇔ ∆∂̄α
i
Y = 0 ,

where ∆dR = d d†+d†d is the Laplace-de Rham operator and ∆∂̄ = ∂̄ ∂̄†+∂̄†∂̄ is the Laplace-Dolbeault

operator acting on (0, p)-forms with values in TX1,0. Using the holomorphic (n, 0)-form Ω we can

encode all the information of the components of the vector-valued (0, 1)-form αiY in a conventional

(n− 1, 1)-form βY defined by

βY i1...in−1 ̄ = Ωi1...in−1kα
k
Y ̄ . (4.73)

One can check that ∆∂̄α
i
Y = 0 if and only if ∆dRβY = 0. In summary, on a Calabi-Yau n-fold metric

variations with mixed components are in one-to-one correspondence with harmonic (1, 1)-forms, while

metric variations with two antiholomorphic indices are in one-to-one correspondence with harmonic

(n − 1, 1)-forms. The former are referred to as Kähler deformations, since they can be interpreted

as arising from a variation of the Kähler form with complex structure kept fixed. The latter are

complex structure deformations, since they are induced by a variation of the complex structure of the

Calabi-Yau n-fold, as it will be discussed below in more detail.
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It has been proven [92, 93] that the infinitesimal metric deformations discussed above are unob-

structed and can be integrated to yield finite deformations. This ensures the existence of an actual

moduli space for Calabi-Yau manifolds. The decoupling of mixed and purely antiholomorphic defor-

mations Yī, Yı̄̄ signals that the moduli space of a Calabi-Yau n-fold with n > 2 can be written locally

as a product

M =MKähler ×Mcstr , (4.74)

where the factor MKähler is referred to as Kähler moduli space, and Mcstr denotes the complex

structure moduli space. These are discussed in turn in what follows.

Suppose X is endowed with a fixed complex structure. Since c1(X) = 0, Yau’s theorem ensures

that X admits exactly one Ricci-flat metric in each Kähler class. As a result, the Kähler moduli space

can be identified with the space of inequivalent Kähler classes that can be considered on X for a given

complex structure. A Kähler class is an element of J ∈ H1,1(X,R) that satisfies suitable positivity

requirements. More precisely, we have to demand that the volume of all holomorphic non-trivial

2k-cycles Ck inside X, k = 0, . . . , n, be positive,∫
C2k

Jk > 0 . (4.75)

Note that if J satisfies (4.75), so does λJ for any λ > 0, so that the Kähler moduli space has a natural

cone structure. At the boundaries of the cone some cycles collapse to zero volume and the Calabi-Yau

manifold can develop singularities.

Since we are considering Calabi-Yau n-folds with n > 2, h2,0 = 0. This ensures that any harmonic

two-form on X is automatically of (1, 1)-type. The Kähler class J can thus be expanded onto a basis

of the integral cohomology H2(X,Z) with real coefficients. More precisely, let ωΛ with Λ = 1, . . . , b2 =

1, . . . , h1,1 be a fixed basis in H2(X,Z). We write

J = vΛ ωΛ , (4.76)

and we refer to vΛ as (real) Kähler moduli of the Calabi-Yau manifold. The harmonic representative

of the class J is a (1, 1)-form whose components are given by the components of the Hermitian metric,

J = i gī dz
i ∧ dz̄ ̄. From (4.76) we can then conclude that the metric variation induced by a variation

of the Kähler moduli reads simply

δgī = −i ωΛ ī δv
Λ or

∂gī
∂vΛ

= −i ωΛ ī . (4.77)

The Kähler moduli space is equipped with a natural metric determined by a positive-definite

pairing between two real (1, 1) forms. More explicitly,

GKähler
ΛΣ =

1

2V

∫
X
d2ny
√
g gi

¯̀
gk̄

∂gī
∂vΛ

∂gk ¯̀

∂vΣ
=

1

2V

∫
X
ωΛ ∧ ∗ωΣ , (4.78)

where

V =
1

n!

∫
X
Jn =

∫
d2ny

√
g (4.79)
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is the volume of the Calabi-Yau n-fold.5 It is convenient to define the intersection numbers

VΛ1...Λn =

∫
X
ωΛ1 ∧ · · · ∧ ωΛn , (4.80)

which are integral because ωΛ ∈ H2(X,Z). The volume of the n-fold can thus be written as

V =
1

n!
VΛ1...Λn v

Λ1 . . . vΛn . (4.81)

The derivatives of the volume with respect to the real Kähler moduli vΛ can be expressed in terms of

the harmonic forms ωΛ as

∂

∂vΛ
V =

1

(n− 1)!

∫
X
ωΛ ∧ Jn−1 = −i(gīωΛ ī)V ,

∂

∂vΛ

∂

∂vΣ
V =

1

(n− 2)!

∫
X
ωΛ ∧ ωΣ ∧ Jn−2 = −(gīωΛ ī)(g

k ¯̀
ωΣ k ¯̀)V −

∫
X
ωΛ ∧ ∗ωΣ . (4.82)

Note that in deriving these expressions we have exploited the fact that, for any harmonic (1, 1)-form

ω on a compact Ricci-flat Kähler manifold, gīωī is covariantly constant. Thanks to the identities

(4.82) we can write the metric (4.78) as the second derivative of a scalar function,

GKähler
ΛΣ = −1

2

∂

∂vΛ

∂

∂vΣ
logV . (4.83)

So far we have discussed pure geometry. In string theory and M-theory compactifications the real

Kähler moduli vΛ usually combine with further real scalars into complexified Kähler moduli. The

resulting moduli space is itself a Kähler manifold. Furthermore, care has to be taken in comparing

the abstract metric GKähler
ΛΣ and the physical metric GΛΣ that enters the non-linear sigma-model after

Weyl rescaling, given in (4.36) for general dimensional reduction on a Ricci-flat manifold. In many

circumstances the coordinates vΛ have to be replaced by new coordinates in Kähler moduli space to

make the supersymmetry properties of the lower-dimensional action manifest. Since the details of

the computation depend on the compactification scenario, we refrain from a general discussion. In

chapter 7 we will study M-theory compactified on a Calabi-Yau threefold, while chapter 8 contains

some remarks on M-theory on a Calabi-Yau fourfold.

Let us now discuss the complex structure moduli space. We already know that the tangent space

to the complex structure moduli space is spanned by deformations associated to harmonic (n− 1, 1)-

forms. A convenient basis for such forms is introduced as follows. Let Zκ, κ = 1, . . . , hn−1,1 be local

complex coordinates on the complex structure moduli space (we anticipate that this space is naturally

a complex manifold). Under an infinitesimal change of the complex structure parametrized by δZκ

the complex coordinates zi of the Calabi-Yau n-fold vary according to

δzi = M i
κ(z, z̄) δZκ , (4.84)

where the non-holomorphic functions M i
κ are only locally defined. As a result, the holomorphic

differential dzi and the holomorphic tangent vector ∂i ≡ ∂
∂zi

undergo the variations

δzi = δZκ ∂jM
i
κ dz

j + δZκ ∂̄ ̄M
i
κ dz̄

̄ , δ∂i = −δZκ ∂iM j
κ ∂j − δZ̄ κ̄ ∂iM̄ ̄

κ̄ ∂̄ ̄ . (4.85)

5We adopt conventions such that dz1∧dz̄1̄∧· · ·∧dzn∧dz̄n̄ = (−i)ndy1∧· · ·∧dy2n ≡ (−i)nd2ny. As a result Jī = i gī
implies the identity Jn = n!

√
g d2ny.
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As a consequence of the first equation we infer that a (p, q)-form is generically deformed into the sum

of a (p− 1, q + 1)-form, a (p, q)-form, and a (p+ 1, q − 1)-form.

At any point in complex structure moduli space we have

g(∂̄ ı̄, ∂̄ ̄) = gı̄̄ = 0 , Ω(∂i1 , . . . , ∂in−1 , ∂̄ ̄) = Ωi1...in−1 ̄ = 0 . (4.86)

Under an infinitesimal change δZκ of the complex structure moduli the variations of g and Ω must

balance the variation of the (anti)holomorphic tangent vector ∂i, ∂̄ ı̄, in such a way that (4.86) still

holds after the deformation. One thus finds

(δg)(∂̄ ı̄, ∂̄ ̄) = δgı̄̄ = 2δZκ g(ı̄|` ∂̄ ̄)M
`
κ ,

(δΩ)(∂i1 , . . . , ∂in−1 , ∂̄ ̄) = δΩi1...in−1 ̄ = δZκ Ωi1...in−1` ∂̄ ̄M
`
κ . (4.87)

Crucially, symmetrization in indices ı̄, ̄ on the right hand side of the first equation can be dropped. In

fact, g[̄ı|` ∂̄ ̄]M
`
κ would be the components of a closed but not exact (0, 2)-form, which must vanish since

we are considering Calabi-Yau n-fold with n > 2 and h0,2 = 0. We thus have δZκ ∂̄ ̄M
i
κ = 1

2 g
i¯̀δg ¯̀̄ı,

and since δgı̄̄ is a zeromode of the Lichnerowicz operator we infer from the discussion at the beginning

of this section that the (n− 1, 1)-forms

χκ i1...in−1 ̄ = Ωi1...in−1` ∂̄ ̄M
`
κ (4.88)

are harmonic. In fact, the set {χκ} provides the anticipated basis of Hn−1,1(X,C).

As a consequence of the remark below (4.85) the holomorphic (n, 0)-form Ω varies under a change

in complex structure in the sum of a (n, 0)-form a (n− 1, 1)-form, δΩ = δΩ|n,0 + δΩ|n−1,1. Equation

(4.5.2) tells us that δΩ|n−1,1 = δZκχκ, which is a harmonic and hence closed form. Since the complex

structure variation δ commutes with the exterior differential d, we have dδΩ = 0. As a result dδΩ|n,0 =

∂̄δΩ|n,0 = 0, i.e. δΩ|n,0 is holomorphic. It must therefore be a multiple of Ω. Furthermore, one can

check that δZ̄ κ̄ does not enter the variation of Ω. In summary, we can write

∂

∂Zκ
Ω = kκ Ω + χκ ,

∂

∂Z̄ κ̄
Ω = 0 , (4.89)

where kκ is a scalar that does not depend on the Calabi-Yau coordinates but generically depends on

the complex structure moduli Zκ.

The metric variation encoded in (4.5.2) can be equivalently formulated in terms of the harmonic

forms χκ as

δgı̄̄ =
2

(n− 1)!‖Ω‖2χκ `1...`n−1 ı̄ Ω
`1...`n−1

̄ δZ
κ . (4.90)

Even though it is not manifest, the right hand side is symmetric in ı̄, ̄ by virtue of the absence of

harmonic (0, 2)-forms, as outlined above. The complex structure moduli space is naturally equipped

with the metric

Gcstr
κ1κ̄2

=
1

2V

∫
X
d2ny
√
g gkı̄ g`̄

∂gı̄̄
∂Zκ1

∂gk`
∂Z̄ κ̄2

=
2

(n− 1)!V‖Ω‖2
∫
X
χκ1 ∧ ∗χ̄κ̄2 . (4.91)
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This expression can be further manipulated recalling (4.57) and making use of the identity

∗ χκ = (−)
n(n+1)

2 in−2 χκ , (4.92)

which can be derived using the fact that χκ is a primitive (n − 1, 1)-form, see for instance [46]. We

are thus left with

Gcstr
κ1κ̄2

= − 2

(n− 1)!

∫
X
χκ1 ∧ χ̄κ̄2∫
X

Ω ∧ Ω

, (4.93)

This form of the metric is manifestly independent of the volume of the Calabi-Yau n-fold and of any

Kähler modulus. Furthermore, it is useful to prove that the complex structure moduli space is itself

a Kähler manifold. Indeed, one can easily check that (4.89) implies

∂

∂Zκ

∫
X

Ω ∧ Ω = kκ

∫
X

Ω ∧ Ω ,
∂

∂Zκ1

∂

∂Z̄ κ̄2

∫
X

Ω ∧ Ω = kκ1 k̄κ̄2

∫
X

Ω ∧ Ω +

∫
X
χκ1 ∧ χ̄κ̄2 . (4.94)

As a result, we have

Gcstr
κ1κ̄2

=
∂

∂Zκ1

∂

∂Z̄ κ̄2
Kcstr , (4.95)

where the Kähler potential Kcstr is given by

Kcstr = − 2

(n− 1)!
log

[
in(−)

n(n−1)
2

∫
X

Ω ∧ Ω

]
. (4.96)

Note that the argument of the logarithm is a positive real number, because (4.57) shows that it equals

V‖Ω‖2.

The geometry of Calabi-Yau moduli space exhibits even richer structures than those we have

reviewed. For instance, both the complexified Kähler moduli space and the complex structure moduli

space in Calabi-Yau threefold compactification of Type II superstring constitute examples of so-called

special geometries. One of the key properties of these spaces is the fact that their Kähler potential can

be written in terms of a holomorphic prepotential. Since we will not need to develop this interesting

subject we refer the reader to e.g. [94, 95, 96, 97] for an account. We also refrain from a review of the

global structure of the complex structure moduli space, which is essential for explicit computations of

the Kähler potential Kcstr, see for instance [98].

4.6 A brief overview of Spin(7) manifolds

4.6.1 Geometry and topology of Spin(7) manifolds

Recall that by Spin(7) manifold we mean an eight-dimensional Riemannian manifold with restricted

holonomy group given by Spin(7), and not a proper subgroup thereof. The Spin(7) group is defined

as the universal cover of the rotation group SO(7), but it can be equivalently characterized as follows.
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Let ym, m = 1, . . . , 8 be Cartesian coordinates in R8, and let dymnpq = dym ∧ dyn ∧ dyp ∧ dyq. Next,

define the self-dual four-form Φ0 by setting

−Φ0 = dy1234 + dy1256 + dy1278 + dy1357 − dy1368 − dy1458 − dy1467

+ dy5678 + dy3478 + dy3456 + dy2468 − dy2457 − dy2367 − dy2358 . (4.97)

The right hand side is the mathematicians’ standard form of the Spin(7) structure in R8. The minus

sign is introduced to agree with the physics literature, see e.g. [99]. The subgroup of SO(8) that

preserves Φ0 is isomorphic to Spin(7). This is related to the fact that the structure group of an

eight-dimensional Riemannian manifold X can be reduced from SO(8) to Spin(7) if and only if there

exists a self-dual four-form Φ such that, for any p ∈ X, there exists an isomorphism from TpX onto

R8 such that Φ|p is mapped to Φ0. In particular Φ is globally defined and nowhere vanishing. If it is

additionally covariantly constant with respect to the Levi-Civita connection, the restricted holonomy

group of X is contained in Spin(7). The converse is also true: if the restricted holonomy is contained

in Spin(7), there exists a four-form Φ with the expected properties. The four-form Φ is commonly

referred to as Cayley calibration.

Let us mention a minor point: we do not fix the normalization of the Cayley form, but we fix its

‘sign.’ This can be made precise as follows. An orthonormal frame eam induces at any p ∈ X a map

ep : TpX → R8 given by vm 7→ eamv
m. We then fix an orientation on X and we demand the existence

of a positively oriented frame eam such that Φ|p = λ e∗pΦ0 at any p ∈ X for some λ > 0. If we choose

the opposite ‘sign’ small modifications have to be performed in some of the equations recorded below.

For instance, the second term on the right hand side of (4.100) would change sign.

An alternative characterization of a manifold with restricted holonomy contained in Spin(7) is

furnished by the existence of a Majorana-Weyl covariantly constant spinor of positive chirality η+, as

anticipated in section 4.4. The Cayley calibration can be constructed as a real Majorana bilinear as

Φ =
1

4!
ηT+C γmnpq η+ dy

m ∧ dyn ∧ dyp ∧ dyq . (4.98)

Actually this bilinear, together with the norm of the spinor ηT+C η+, is the only bilinear that is not

trivially zero by virtue of the chirality and Majorana flip property of the commuting spinor η+. In

particular, as already noted below (4.61), it is not possible to build any two-form bilinear with a

single Majorana-Weyl spinor. This is consistent with the fact that manifolds with restricted holonomy

contained in Spin(7) do not generically admit any complex structure.

An immediate consequence of self-duality of Φ is the relation

Φ ∧ Φ = ‖Φ‖2 ∗ 1 , ‖Φ‖2 =
1

4!
ΦmnpqΦ

mnpq . (4.99)

A Fierz rearrangement can be used to prove the more involved algebraic identity

Φm1m2m3pΦn1n2n3p =
3

7
‖Φ‖2δ[m1

[n1
δ
m2

n2
δ
m3]
n3] −

9√
14
‖Φ‖δ[m1

[n1
Φ

m1m2]
n2n3] . (4.100)

Alternatively, (4.100) can be derived considering a fixed but arbitrary point p and choosing coordinates

in such a way that Φ|p = λΦ0 (λ > 0) and ds2|p = δmndy
mdyn.
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The Cayley calibration induces a split of the cohomology groups of X according to the reduction

of the structure group from SO(8) to Spin(7). One can show that

H0(X,R) = R ,

H1(X,R) = 0 ,

H2(X,R) = H2
21(X,R) ,

H3(X,R) = H3
48(X,R) ,

H4(X,R) = H4
1S(X,R) +H4

27S(X,R) +H4
35A(X,R) , (4.101)

and similar relations hold for the cohomology group Hp(X,R) with p = 5, . . . , 8 by virtue of Hodge

duality. The boldface subscripts denote the relevant Spin(7) representation, while S and A denote

self-dual and antiself-dual four-forms, respectively. Note that the Spin(7) singlet cohomology group

H4
1S(X,R) is precisely generated by the Cayley calibration. Let us also remark that H1(X,R) = 0 is a

consequence of strict Spin(7) holonomy: as noted in section 4.3, the first Betti number of a Ricci-flat

manifolds receives contributions from torus factors only, and those are not allowed for a manifold

with strict Spin(7) holonomy. This also means that Spin(7) manifold cannot have any continuous

isometry. Let us close this section by recalling that a Spin(7) manifold has only three independent

Betti numbers, by virtue of the constraint

b2 − b3 − b4S + 2b4A + 25 = 0 , (4.102)

where bp = dimRH
p(X,R), b4S = dimRH

4
S(X,R), and b4A = dimRH

4
A(X,R).

4.6.2 Moduli space of Spin(7) manifolds

Global properties of the moduli space of Spin(7) manifolds are under considerably less control than

the corresponding properties for Calabi-Yau manifolds. Nonetheless, for the purpose of discussing

the effective action of M-theory compactified on a Spin(7) manifolds some local considerations on

infinitesimal deformations of the metric and Cayley calibration will suffice.

Let us begin by a simple class of metric deformations, given by an overall infinitesimal rescaling

of the metric, δgmn = gmnY . It is easily checked that this deformation satisfies the Lichnerowicz

equation if and only if Y is a zeromode of the scalar Laplacian. As already noted in section 4.3, it is

therefore a constant on the internal manifold, and can be related to the variation of the volume. A

simple computation shows

δgmn =
1

4
gmnδ logV or

∂gmn
∂V =

1

4V gmn , (4.103)

where in the second equation we interpret the volume V as one of the coordinates of the Spin(7) moduli

space. To identify the remaining coordinates we need to consider metric deformations δgmn = Ymn

with Ymn transverse and traceless. It can be shown that such solutions of the Lichnerowicz equation

are in one-to-one correspondence with harmonic antiself-dual forms. We can then write

δgmn =
7

6‖Φ‖2 ξAmp1p2p3Φn
p1p2p3 δϕA or

∂gmn
∂ϕA

=
7

6‖Φ‖2 ξAmp1p2p3Φn
p1p2p3 , (4.104)
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where ξA is a basis of H4
A(X,R) and ϕA are local real coordinates on the Spin(7) moduli space

orthogonal to V. Although it is not manifest, the right hand side of (4.104) is symmetric and traceless

in indices m,n as a result of the fact that χA transforms in the 35 representation of Spin(7). We refer

the reader to [100, 99, 101] for a proof of this claim and for a thorough discussion of various useful

identities involving the Cayley calibration. The same antiself-dual four-forms ξA enter the variation

of the Cayley calibration, which reads

δΦ = KVΦ δV + (KAΦ + ξA) δϕA , (4.105)

where KV , KA are constant on the Spin(7) manifold but generically depend on the moduli V and

ϕA. Note that the numerical factor in (4.104) is indeed chosen to ensure mutual compatibility among

(4.104), (4.105), and the identity (4.100).

The tracelessness of the metric variation in (4.104) ensures the absence of off-diagonal dVdϕA
terms in the metric of the Spin(7) moduli space. Let us focus on the metric components associated to

the moduli ϕA. We have

G
Spin(7)
AB =

1

4V

∫
X
d8y
√
ggmpgnq

∂gmn
∂ϕA

∂gpq
∂ϕB

= − 7

48

∫
X
ξA ∧ ξB∫

X
Φ ∧ Φ

, (4.106)

where in the second step we have made use of (4.104), (4.99), (4.100), together with the antiself-duality

of ξB and the identity

ξAp1p2[mnΦp1p2

rs] = 0 , (4.107)

which is proven e.g. in [99]. This concludes our general analysis of the local structure of Spin(7) moduli

space. In chapter 8 we discuss the full reduction of M-theory on a Spin(7) manifold, including the

dVdV component of the moduli space metric, which is not discussed here as it depends on the specific

compactification scenario.



CHAPTER 5

An introduction to F-theory from the M-theory perspective

F-theory constitutes a geometric formulation of a class of Type IIB string theory vacua in which the

SL(2,Z) symmetry of the theory is interpreted as the modular group of an auxiliary two-torus varying

over spacetime. The aim of this chapter is to clarify this statement and to elucidate the connection

between F-theory, the S-duality properties of Type IIB discussed in section 3.2, and the reduction of

M-theory on a two-torus introduced in section 3.4. Such an analysis will constitute the basis for the

duality between F-theory and M-theory and will provide a justification to the prescription to compute

the effective action of an F-theory compactification by means of the dual M-theory setup.

As we will see, the duality between F-theory and M-theory takes a simpler form when restricted to

the gravity and moduli sector of the compactification, while it is more subtle in the gauge and matter

sector. For instance, properties of charged matter will not be directly visible in the effective actions we

discuss in part II, and indirect arguments are need to extract them from the M-theory setup. For this

reason our exposition will only cover general aspects of the gauge and matter sectors of F-theory. In

particular we will not develop the technology necessary to engineer specific non-Abelian gauge groups

and therefore we will not be able to do justice to the vast and interesting subject of F-theory model-

building. By the same token, many intriguing features of F-theory will not be covered, such as the

duality with heterotic string theory, the geometry of singular genus-one fibrations, the development

of local GUT-modes and their connection to the global properties of the compactification, and the

rich physics of U(1) gauge fields in F-theory, to name a few. The reader is referred for example

to the lecture notes [102, 103] and the reviews [104, 105] for an account of the aspects of F-theory

compactifications that we do not address in what follows.

81
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5.1 Seven-brane backreaction

Most conservatively, F-theory can be thought of as a geometrized framework to incorporate seven-

branes in a Type IIB compactification in a fully consistent, backreacted, and non-perturbative way.

Achieving this goal is desirable from several points of view. The rich interplay between bulk and brane

physics in Type II string theory is the key to many interesting directions for string phenomenology,

such as intersecting D6-brane models in Calabi-Yau orientifolds of Type IIA or magnetized D7/D3-

brane models in Calabi-Yau orientifolds of Type IIB, see e.g. for review [106]. In these compactification

scenarios D-branes are usually treated in a suitable probe approximation, neglecting their backreaction

in the large volume limit. As we will argue below this requires special care for D7-branes, and more

generically seven-branes. The framework of F-theory exploits in a clever fashion the SL(2,Z) duality

of Type IIB in order to address this problem in an elegant and powerful way. At the same time,

F-theory allows us to go beyond the scope of perturbative Type II superstring theory. As a result, for

example, exceptional gauge groups can be realized on the world-volume of seven-brane stacks, paving

the way to interesting GUT model building scenarios.

5.1.1 Problems with codimension-two branes

Localized objects with d⊥ ≥ 3 transverse spatial direction, such as Dp-branes with p < 7 in Type

II string theory, behave in a way that is qualitatively the same as point charges in ordinary three-

dimensional electrostatics. In the transverse directions to their world-volume these lower-dimensional

branes act as point-like sources for the bulk fields they couple to. Their effects are negligible far away

from the brane: if they are electrically charged with respect to a (p + 1)-form, the associated field

strength decays according to a power law r−(d⊥−1) with the distance r from the source; the dilaton

approaches an asymptotic value that can be tuned to be small; the metric in a neighborhood of infinity

is simply the standard flat Euclidean metric.

The situation for codimension-two objects, like D7-branes and more generally seven-branes in Type

IIB, is qualitatively different. This can be anticipated from the fact that the Green’s function of the

Laplace operator in two dimensions is proportional to log r. Recall that a D7-brane couples electrically

to C8 and magnetically to C0. As a result, it acts as a source term in the equation of motion for C8,

or equivalently in the Bianchi identity for C0. Schematically we have

d ∗ F9 = dF1 = δD7 , (5.1)

where F1, F9 are the field strengths associated to C0, C8 respectively and δD7 = δ(x) δ(y) dx ∧ dy is a

two-form with legs along the transverse space to the D7-brane stack with coordinates x, y that has a

δ-function-like support on the world-volume of the D7-brane stack, which is located at the origin of

the (x, y)-plane.1

The presence of a source term in the Bianchi identity for F1 implies that F1 = dC0 can only hold

1Objects such as δD7 can be though of as a generalization of distributions to p-forms and are most properly understood
in the framework of the theory of currents, see e.g. [107].
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locally or alternatively that C0 cannot be single-valued. This is readily seen integrating (5.1) over a

small disk in the transverse space to the D7-brane centered at the origin,∮
γ
C0 = 1 , (5.2)

where γ is the boundary of the disk with counterclockwise orientation. We thus learn that the axion

C0 undergoes the monodromy

C0 → C0 + 1 (5.3)

as we encircle once the location of a D7-brane. This implies that the D7-brane induces a non-trivial

profile for the axio-dilaton τ = C0 + ie−Φ in the transverse space.

The latter is most conveniently analyzed introducing the complex coordinate u = x+ iy. In fact, it

is possible to show that supersymmetry arguments and the Type IIB bulk equations of motion impose

that τ is a holomorphic function of u. The monodromy (5.3) suggests therefore the following behavior

of the axio-dilaton near the location of the brane,

τ
u→0∼ 1

2πi
log

u

λ
, (5.4)

where λ is a complex constant. This equation implies

e−Φ u→0∼ − 1

2π
log
|u|
|λ| , (5.5)

from which we see that the string coupling constant approaches zero near the location of a D7-brane.

In the region |u| � |λ| string perturbation theory is therefore valid. It is clear, though, that this

expression has to be modified for |u| & |λ|, as it would yield negative values for e−Φ.

Extreme care is required in constructing complete solutions of the Type IIB bulk equations of

motion that reproduce the desired behavior (5.4) near the location of a D7-brane. First of all, since τ

is multi-valued in the u-plane it is convenient to describe the u-dependence of the axio-dilaton using

the Klein invariant j-function j(τ). It is worth to recall a few properties of this special function. This

is a meromorphic function defined on the upper half plane that provides a bijection of the fundamental

domain of τ onto the Riemann sphere. The cusp τ = i∞ is mapped to the point at infinity j = ∞;

more precisely, j admits a Laurent expansion in q = e2πiτ of the form

j(q) =
1

q
+ 744 +O(q) , (5.6)

which exhibits a simple pole at the cusp q = 0. Besides τ = i∞ the fundamental domain has two other

special points, which are fixed under the action of some element of the modular group PSL(2,Z): the

point τ = i is fixed under the action of S, while τ = e2πi/3 ≡ ρ is fixed under ST . The action of

generators T and S of the modular group on τ was given in (3.25). In a neighborhood of the special

points τ = i, ρ we have

j(τ)
z→i∼ 1728 + k1(τ − i)2 +O((τ − i)3) ,

j(τ)
z→ρ∼ 0 + k2(τ − ρ)3 +O((τ − ρ)4) . (5.7)
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The inverse map w 7→ τ = j−1(w) develops non-trivial monodromies around w = 1728 and w = 0,

j−1(w) = τ → −1

τ
around w = 1728 ,

j−1(w) = τ → −1− 1

τ
around w = 0 . (5.8)

After these mathematical preliminaries we can go back to the problem of finding a solution matching

the asymptotic behavior (5.4). The simplest possibility is

j(τ(u)) =
λ

u
. (5.9)

Indeed, as u → 0 the right hand side develops a simple pole, implying τ(u) → i∞. The Laurent

expansion (5.6) then reproduces (5.4). As we increase |u| we move away from the region of small

coupling, until we reach the point u = 1728/λ. There τ = i (thus gs = 1) and there is a non-trivial

monodromy τ → −1/τ . This special point breaks rotational invariance in the u-plane because of the

phase of the complex number λ. As we increase |u| further, up to a neighborhood of u =∞, rotational

invariance is approximately restored and τ → ρ, with a non-trivial monodromy τ → −1 − 1/τ as we

encircle the point at infinity u = ∞. We have gone through a detailed analysis of this example in

order to highlight the subtleties that are typically encountered in studying the τ -profile generated by

a configuration of D7-branes at finite and large distances from the branes. In particular note that in

this example the asymptotic value of the string coupling constant at large distances from the brane

is fixed to the non-perturbative value gs = 2/
√

3 ≈ 1.15. Obviously this effect cannot be neglected

appealing to the usual large volume argument.

Additional complications arise as soon as gravity is considered. Our problem is effectively (2 + 1)-

dimensional. In three dimensions the Riemann tensor is proportional to the Ricci tensor at every point

in spacetime. As a result, Einstein’s equation dictates that spacetime is everywhere locally flat, except

at the precise location of the sources of the energy-momentum tensor. Localized sources, however,

induce a deficit angle in the flat geometry that surrounds them: for instance, a point particle of mass

m induces a deficit angle δ = mκ2, where κ is the effective gravitational constant in three dimensions.

The case of D7-brane is somewhat peculiar. The Einstein-frame DBI action of the D7-brane contains

the coupling

SDBI ⊃
2π

`8s

∫
W8

d8ξ eΦ√−g , (5.10)

where ξ are coordinates of the D7-brane world-volume W8 and g is the pullback of the Einstein

metric of the Type IIB bulk. Note the positive power of the dilaton prefactor. Since gs → 0 as we

approach the location of the brane, the DBI action vanishes and the D7-brane behaves effectively as

a zero-tension object, leading to no deficit angle in the limit u → 0. The τ -profile generated by the

brane, however, does carry energy-momentum and generates a deficit angle in the asymptotic region

far away from the brane. Its effects can be dramatic: for example, a deficit angle δ = 4π turns the

transverse space from a plane to a compact sphere. The precise value of this angle depends on the

brane configurations and on the monodromy that are imposed on the functions that determine the

metric. For instance, in the case of a single D7-brane the classic analysis in [108, 109] predicts δ = π/6,

but this setup was revisited in [110] yielding δ = 2π/3. We do not need to discuss this interesting
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problem in detail. It has been mentioned to exemplify how subtle and difficult can be an explicit

construction of Type IIB solution with backreacted D7-branes in eight dimensions. As soon as we

consider lower-dimensional vacua the problem becomes soon intractable. Luckily, F-theory provides

an alternative route to the description of backreacted setup with D7-branes. Indeed, it also captures

naturally seven-branes beyond perturbative Type IIB.

5.1.2 Seven-brane monodromies

The only feature of (p, q)-seven-branes that we need to consider in detail is the monodromy they

induce in the τ -profile as we move along a small loop around their location. To begin with, we can

rewrite (5.3) in terms of the SL(2,Z) monodromy matrix

MD7 =

(
1 1
0 1

)
. (5.11)

The monodromy of a more general (p, q)-brane is then computed recalling that a (p, q)-string can be

obtained from a fundamental string using a transformation of the form (3.32),(
q p

)
=
(
0 1

)(r s
q p

)
, (5.12)

where the integers r, s are such that pr−qs = 1 but otherwise arbitrary. If follows that the monodromy

matrix associated to a (p, q)-seven-brane reads

M(p,q) =

(
r s
q p

)−1(
1 1
0 1

)(
r s
q p

)
=

(
1 + pq p2

−q2 1− pq

)
, (5.13)

and indeed only depends on p, q. This monodromy matrix acts on the charges q̃, p̃ of a (p̃, q̃)-string as(
q̃ p̃

)
→
(
q̃′ p̃′

)
=
(
q̃ p̃

)
M(p,q) . (5.14)

Stated differently, if a (p̃, q̃)-string is carried once around the location of a (p, q)-seven-brane, it

reemerges as a (p̃′, q̃′)-string. If p̃′ = p̃, q̃′ = q̃ the string and the seven-brane are said to be mu-

tually local. As a sanity check note that a (p, q)-string is mutually local with a (p, q)-seven-brane,

so that is can actually end on such a brane. The monodromy matrix (5.14) of seven-branes is a dis-

tinctive feature that can be used to detect their presence: if the τ -profile is known, an analysis of its

monodromies around some point reveals which kind of seven-brane configurations are located at the

that point.

For our following considerations we need also to consider the monodromy matrix associated to an

O7-plane. More precisely, the O7-plane sits at the fixed locus of the orientifold projection σhol Ωp(−)FL ,

where σhol : u 7→ −u reflects two real directions and thus requires the introduction of the (−)FL factor,

see (2.45). The monodromy matrix reads

MO7 = −M−4
D7 =

(
−1 4
0 −1

)
. (5.15)

This can be justified as follows. Recall from (2.46) that an O7-plane carries eight units of D7-brane

tension and charge in the ‘upstairs’ picture, i.e. in the space which is acted upon by the involution σhol.
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We would thus need four D7-branes and their images to cancel the tension and charge of the O7-plane.

This explains the power −4 in M−4
D7 , since monodromies take place in the quotient space and thus

count the number of brane/image brane pairs. The factor −1 in front of M−4
D7 comes from the intrinsic

parities of Type IIB fields under the action of Ωp(−)FL . This is most easily seen looking at the

monodromy of a system of one O7-plane and four pairs of D7-branes and images,

MO7/D7 =

(
−1 0
0 −1

)
. (5.16)

This monodromy acts trivially on τ , as it should be since the combined O7/D7 system is neutral with

respect to C0. Nonetheless, (3.19) shows that both B2 and C2 change sign under the action of MO7/D7.

This matches with the results of table (2.3) about Ωp-parities and the fact that (−)FL(B2, C2) =

(B2,−C2). Finally, let us mention that the deficit angle close to an O7/D7 system is δ = π, consistently

with the Z2 action of σhol on the transverse space.

5.2 Elliptic fibrations and seven-branes

In section 3.4 we have established the nine-dimensional duality between M-theory compactified on

a torus and Type IIB string theory compactified on a circle. One of the main outcomes of this

duality is the reinterpretation of the SL(2,Z) S-duality group of Type IIB as large diffeomorphism

of a torus, or equivalently modular transformations of its complex structure parameter. In essence,

the program of F-theory is to generalize this situation to lower-dimensional setups in which some of

the nine dimensions are compactified. The duality between M-theory on a torus and Type IIB on a

circle then becomes the duality between M-theory and F-theory, which we analyze in greater detail in

section 5.3.

For the time being we can simply make the observation that the reinterpretation of the SL(2,Z)

symmetry of Type IIB in terms of the modular parameter of a torus can be extremely convenient to

address the problem of Type IIB setups with seven-branes. Let us make this remark more precise.

Suppose we are interested in a Type IIB setup with 2n real dimensions compactified on a Kähler n-fold

Bn and 10− 2n non-compact directions spanning Minkowski spacetime. We also allow for spacetime-

filling seven-branes wrapping divisors in Bn, i.e. holomorphic cycles of complex codimension one. Our

task would be to solve the equations of motion for the metric and the axio-dilaton with a non-trivial

dependence on the coordinates of Bn and allowing for a multi-valued τ in order to account for the

monodromies induced by the seven-brane backreaction. Note that we do not expect Bn to be Ricci-flat,

since its curvature is counterbalanced by the non-trivial axio-dilaton profile.

An alternative strategy is to consider an auxiliary two-torus T 2 fibered over Bn, in such a way that

at any point p on Bn the value of the axio-dilaton is identified with the complex structure parameter

of the torus fiber at p. In this way we have an intrinsic description of the axio-dilaton profile and

the problem is translated into the determination of the geometry of the total space Xn+1 of the torus

fibration over Bn. As we will see in section 5.3 supersymmetry demands that Xn+1 be a Calabi-Yau

(n+ 1)-fold and the fiber depend holomorphically on the space Bn, referred to as the base. We thus
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have to study Calabi-Yau spaces that admit a holomorphic genus-one fibration. In what follows we will

also make the assumption that the genus-one fibration comes with a global holomorphic section. The

fiber is thus a torus with a marked zero-point, and has therefore the structure of an elliptic curve. In

summary, we are left with the study of elliptically fibered Calabi-Yau (n+ 1)-folds. Even though this

might seem as intractable as our original task, a lot of information about the geometry of Xn+1 can

be extracted using powerful techniques from algebraic geometry. This gives a handle on the dynamics

of seven-branes and automatically takes into account their backreaction. We can make the previous

discussion more concrete. To this end we need to recall a few facts about elliptic curves and elliptic

fibrations.

5.2.1 Weierstrass form of an elliptic curve

An elliptic curve can be realized as the vanishing locus of a homogeneous polynomial in the weighted

projective space P2,3,1. The latter is defined as C3 \ {(0, 0, 0)} modded out by the C∗-action

(x, y, z) ∼ (λ2x, λ3y, λz) , λ ∈ C∗ , (5.17)

where x, y, z are coordinates in C3. The equivalence class of (x, y, z) will be denoted [x : y : z] and

determines a point in P2,3,1. The coordinates x, y, z are referred to as homogeneous coordinates on

P2,3,1. The equation that defines the elliptic curve reads

E : y2 = x3 + f x z4 + g z6 , (5.18)

and is known as Weierstrass form. The quantities f and g are complex parameters. Note that (5.18) is

compatible with (5.17) as all monomials have total weight 6 under the C∗-action. In a patch of P2,3,1

where z 6= 0 we can make use of the C∗-action to set z = 1. The remaining coordinates x, y are then

referred to as affine coordinates in the patch z 6= 0. The original equation (5.18) gives an equation in

x, y that describes a two-sheeted covering of the complex x-plane branched over the roots of the cubic

polynomial in x that enters the right hand side of (5.18). This space (including the points at infinity)

has the topology of a torus, with two non-trivial one-cycles, see figure 5.1.

It is possible to endow the elliptic curve E with an Abelian group structure giving a well-defined

prescription for determining the sum P +Q of two points P , Q on E. The point [x : y : z] = [1 : 1 : 0]

in P2,3,1, which by (5.18) lies on E for any value of f , g, can be shown to be the neutral element of

this Abelian group action. Intuitively speaking an elliptic curve is thus a torus with a marked, special

point.

The complex structure parameter τ of the elliptic curve E defined by (5.18) is encoded in the

parameters f, g. More precisely, let us define the discriminant

∆ = 27 g2 + 4 f3 . (5.19)

This quantity is engineered in such a way as to vanish whenever two roots of the cubic polynomial in

x on the right-hand side of (5.18) in the patch z 6= 0 coincide. In fact, one has

x3 + f x+ g =

3∏
i=1

(x− xi) , ∆ = −(x1 − x2)2(x2 − x3)2(x3 − x1)2 . (5.20)
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x1 x2 x3

A B

Figure 5.1: Schematic representation of the two-sheeted covering of the complex x-plane with the
three roots x1, x2, and x3 of the cubic polynomial on the right hand side of (5.18). Black solid lines
denote branch cuts: one connects x1 and x2 while the other connects x3 to the point at infinity. We
also depict a basis for the independent, non-trivial one-cycles of the torus described by (5.18). A
dashed line and a solid line are used to distinguish the two sheets of the covering of the x-plane.

It is then possible to prove that the complex structure parameter of the elliptic curve is given by

j(τ) =
4(24f)3

∆
, (5.21)

where the j-invariant function has the same normalization as in (5.6).

Let us stress that the Weierstrass form is not the unique way of presenting an elliptic curve, even

though any alternative representation is birationally equivalent to the Weierstrass form. Roughly

speaking, birational equivalence is isomorphism up to lower-dimensional algebraic subsets. In what

follows we will only make use of the Weierstrass form and will not consider different representations.

Let us mention, however, that they can be extremely useful for the study of U(1) symmetries in

F-theory, see e.g. [111, 112, 113, 114, 115, 116, 117].

5.2.2 Weierstrass form of an elliptic fibration

An elliptic fibration Xn+1 over a Kähler base Bn can be described by the same Weierstrass equation

(5.18) provided we promote the constants f , g to objects depending of the base space Bn. More

precisely, one can first construct an ambient space An+2 by fibering P2,3,1 appropriately over Bn.

The Weierstrass equation (5.18) then cuts out a hypersurface in An+2 that yields the desired elliptic

fibration Xn+1. In order to substantiate this program we would need to develop some technical tools

from algebraic geometry. Since they will not be needed in our discussion of F-theory effective actions,

we rather proceed with a heuristic account on elliptic fibrations.

We have seen that the patch z 6= 0 in P2,3,1 can be covered with two affine coordinates x, y. By the

same token an appropriate patch of the base space Bn can be parametrized by n affine coordinates

u1, . . . , un. In this local picture, the Weierstrass equation that defines Xn+1 has the form

Xn+1 : y2 = x3 + f(u1, . . . , un)x+ g(u1, . . . , un) , (5.22)
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f and g are polynomials in u1, . . . , un. Let us stress that it can be proven that the marked point

[1 : 1 : 0] on the elliptic curve E is promoted in the present context to a global holomorphic section of

the total fibration Xn+1. Intuitively speaking, as the torus fiber is varied on the base Bn its marked

point swaps a copy of Bn inside Xn+1.

Since f and g now vary over the base Bn, the same happens to the complex structure parameter τ ,

which is still given by (5.19) and (5.21). A special locus on the base Bn is determined by the vanishing

of the discriminant,

∆ = 0 . (5.23)

These equation generically determines a hypersurface inside Bn, possibly made of more than one

irreducible component. Over this locus a one-cycle on the torus pinches. This can be seen from

figure 5.1: if two of the roots x1, x2, x3 of the cubic in the Weierstrass equation coincide, one of the

non-trivial cycles of the torus is shrunk to a point. The pinching of the torus signals the presence

of spacetime-filling seven-branes at the locus ∆ = 0. This can be argued as follows. Let A, B be a

basis of the one-cycles of the torus fiber. One-cycles are equipped with a skew-symmetric, bilinear

intersection pairing that satisfies

A ·A = 0 , B ·B = 0 , A ·B = 1 , B ·A = −1 . (5.24)

Suppose at some point along the ∆ = 0 locus on the base Bn the cycle

α = pA+ qB (5.25)

is pinched, with p, q integer and coprime. According to the Picard-Lefschetz theorem, as we move

around the point where α collapses an arbitrary cycle β = nA + mB with n,m ∈ Z undergoes a

monodromy

β → β − (β · α)α . (5.26)

It is easily checked using (5.24) that this is equivalent to(
m n

)
→
(
m n

)(1− pq p2

−q2 1 + pq

)
, (5.27)

but the matrix on the right hand side coincides precisely with the monodromy matrix M(p,q) of a

(p, q)-seven-brane given in (5.14). In summary, at the vanishing locus of the discriminant of the

elliptic fibration the torus fiber pinches and a spacetime-filling seven-brane is located.

Suppose ∆ has a simple zero at a point p on Bn and that f is non-vanishing at p. From (5.21) we

see that the j-invariant function develops a simple pole. This is reminiscent of (5.9) considered in the

previous section. If we had only one seven-brane in our setup we could safely argue using (5.6) that

τ → i∞ and gs → 0 near the location of the brane, which would then be identified with a D7-brane.

Since generically we have several seven-branes (as it is also required by tadpole cancellation, addressed

below) it is not possible to choose globally an SL(2,Z) frame in which all of them look like D7-branes.

In this case the solution to j(τ) = ∞ is no longer τ = i∞ but rather one of its SL(2,Z) images.

Incidentally, note that if we write τ = τ1 + iτ2, the SL(2,Z) action (3.19) implies

τ ′2 =
τ2

(c τ1 + d)2 + c2 τ2
2

. (5.28)
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If c = 0 the SL(2,Z) image of τ = i∞ still has τ2 =∞ and thus gs = 0. But the subgroup of SL(2,Z)

with c = 0 is generated by T ,{(
a b
c d

)
∈ SL(2,Z) : c = 0

}
=

{
±
(

1 n
0 1

)
, n ∈ Z

}
, (5.29)

and encodes the perturbative monodromies of D7-branes around each other. As soon as we act with

the generator S and we introduce non mutually local branes we have c 6= 0 and the image of τ = i∞
has τ2 = 0, corresponding to gs = ∞. Thus the string coupling constant defined with respect to

a reference D7-brane diverges near the location of a seven-brane that is not mutually local to that

reference D7-brane.

Let conclude this section with a discussion of the Calabi-Yau condition for the total space Xn+1,

which will be physically motivated in section 5.3. To enforce this requirement we need to express the

first Chern class of the total space Xn+1 in terms of topological data of the base space and of the

fibration. It was proven by Kodaira that2

12 c1(Xn+1) = π∗ (12c1(Bn)− PD([∆])) , (5.30)

where π∗ denotes the pullback induced by the projection map π : Xn+1 → Bn, c1(Bn) is the first Chern

class of the base, and PD[∆] ∈ H2(Bn,Z) is the Poincaré dual to the divisor class of the vanishing

locus of the discriminant.

Let us give a brief and heuristic account on the terminology used in the previous sentence. Without

entering mathematical details, we can intuitively think of a divisor D in a complex variety Z as a

submanifold of complex codimension one that is locally described by an equation of the form h = 0,

with h holomorphic. It is possible to construct formal integral linear combinations of divisors, such

as n1D1 + n2D2, n1, n2 ∈ Z. If F is a globally defined meromorphic function on Z, it can be locally

written as F = F0/F∞, where F0, F∞ are holomorphic and have no common factors. We can then

define the so-called principal divisor associated to F as

(F ) = {F0 = 0} − {F∞ = 0} . (5.31)

Two divisors D, D′ are then called linearly equivalent if D − D′ = (F ) for some globally defined

meromorphic function F on Z. The equivalence class of D with respect to linear equivalence is

denoted [D]. The Poincaré dual PD([D]) of [D] is a cohomology class of two-forms defined by the

property ∫
Z

PD([D]) ∧ α =

∫
D
α , (5.32)

where α is (the cohomology class of) an arbitrary 2(dimCZ−1)-form. The concept of Poincaré duality

can be extended to higher-codimensions: if a subvariety is defined locally by f1 = · · · = fp = 0, its

Poincaré dual is the class of the 2p-form that satisfies the analog of (5.32) where now α is (the

cohomology class of) an arbitrary 2(dimCZ − p)-form.

2Strictly speaking this equation holds for n = 1, i.e. for elliptically fibered K3 surfaces. For n > 1 one has to take into
account degenerations of the fibration that occur at higher codimension. Nonetheless, these additional contributions do
not affect our argument [118, 119, 120].
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After this detour, we can come back to (5.30) and enforce that Xn+1 be a Calabi-Yau (n+ 1)-fold,

12 c1(Bn) = PD([∆]) . (5.33)

In many explicit constructions of elliptically fibered Calabi-Yau manifolds this equation has a simple

interpretation: the polynomials f , g entering (5.22) have to have a definite degree in the affine coor-

dinates u1, . . . , un on Bn. More precisely, (5.33) fixes x, y, z, f , g in the Weierstrass equation to be

sections of appropriate line bundles over Bn, but we will not develop this terminology any further.

Note that for non-trivial fibrations the right hand side of (5.33) does not vanish so that Bn is not

Ricci-flat. This confirms the physical intuition that the curvature of the base space has to balance the

non-trivial axio-dilaton profile described by the elliptic fibration.

5.2.3 Non-Abelian gauge groups and matter from singularities

As stressed above, at the vanishing locus of the discriminant the elliptic fiber degenerates, since one

of the one-cycles of the torus collapses. Given a point p ∈ Bn such that ∆(p) = 0, depending on the

vanishing orders of ∆, f , and g the total space may or may not be singular at p. The presence of a

singularity of the total space does not imply a breakdown of the setup we are considering: F-theory,

just like perturbative Type IIB, probes a geometry different from that of point-particles and can be

well-defined even on some classes of singular spaces. For many purposes, however, and most notably

in the framework of F-theory/M-theory duality discussed below, it is desirable to replace the singular

space Xn+1 with a smooth space X̃n+1 in a well-defined fashion, in such a way that the singular space

is recovered as a suitable limit of X̃n+1. Furthermore we would like the smooth space to respect the

Calabi-Yau condition. Algebraic geometry offers various tools to address this task, but in what follows

we will only consider resolution of singular Calabi-Yau spaces. Other options, such as deformation,

are also useful in F-theory, see e.g. [121, 122] for recent progress.

Roughly speaking, a resolution of a singular Calabi-Yau space Xn+1 is a smooth Calabi-Yau space

X̃n+1 together with a map ϕ : X̃n+1 → Xn+1, called the blow-down map. The preimage under the

blow-down map of the singular loci of Xn+1 are cycles in X̃n+1 such that, when they are collapsed to

zero volume, the smooth space X̃n+1 reproduces the singular space Xn+1. In other words, the singular

Calabi-Yau is recovered as a limit point in the Kähler moduli space of the smooth Calabi-Yau sitting

on the boundary of the Kähler cone.

The possible singularities that can occur at codimension one in the elliptically fibered Calabi-Yau

Xn+1 described by the Weierstrass model (5.22) have been classified by Kodaira [123, 124]. The type

of singularity is determined by the vanishing orders of ∆, f , g. For all these singularities a resolution

ϕ : X̃n+1 → Xn+1 exists, such that the preimages of the singular loci under the blow-down map ϕ are

divisors in X̃n+1. They are commonly referred to as exceptional divisors of the resolved space. It is

possible to provide a very pictorial description of exceptional divisors. Let p be a point on the base

space Bn such that in the original fibration Xn+1 the fiber over p is singular. After resolution, the

fiber over p turns out to be a reducible variety consisting of a collection of P1’s intersecting at various

points, see figure 5.2. One of these P1’s is identified with the original fiber, though of as a pinched
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Figure 5.2: Pictorial representation of a smooth elliptic fiber and of a degenerate elliptic fiber. In the
latter situation we have depicted the resolved geometry, characterized by a collection of P1’s with a
specific intersection pattern. The case depicted in the figure corresponds to the affine Dynkin diagram
of a singularity of the A series.

torus. The other P1’s are resolution cycles that are collapsed to zero volume when we recover Xn+1

from the smooth space X̃n+1. Exceptional divisors are then realized by fibering these resolution P1’s

over the locus on the base where the fibration is singular.

The intersection pattern of the resolution P1’s in the fiber translates into the intersection pattern

of exceptional divisors. Remarkably, for the singularities in Kodaira’s classification this pattern re-

produces exactly the affine Dynkin diagram of Lie algebras from the A, D, E series. Since we know

that singularities of the elliptic fibration encode the location of seven-branes, we are naturally led to

conclude that the Dynkin diagram determined by exceptional divisors should be identified with the

Dynkin diagram of the gauge group G living on the seven-brane. In particular exceptional divisors

are in one-to-one correspondence with the generators of the Cartan subalgebra of G, so that we can

denote them as

Di , i = 1, . . . , rankG , (5.34)

where rankG denotes the rank of the gauge group G. The duality between F-theory and M-theory

will clarify the physical origin of these Cartan degrees of freedom as well as of the degrees of freedom

associated to the roots of G.

In perturbative Type IIB with D7-branes and O7-branes it is only possible to engineer the gauge

groups U(N), SO(N), or Sp(N). Kodaira’s classifications shows that, thanks to its non-perturbative

character, F-theory allows for more general groups, and in particular for the exceptional groups E6,

E7, and E8. These are particularly interesting for GUT phenomenology and have been extensively

exploited in heterotic string theory setups. F-theory is thus able to combine favorable features of

heterotic string theory for particle physics phenomenology with other properties inherited from Type

IIB and M-theory, such as a better control over moduli stabilization. The latter perspective on F-

theory is emphasized e.g. in the review [102].

Let us mention that it is possible to understand the emergence of exceptional gauge groups in

F-theory from BPS networks of string junctions [125, 126, 127]. The latter were briefly introduced

in section 3.2. In particular the fact that string junctions are multi-pronged objects—as opposed to

fundamental strings, which only have two ends—is instrumental for the realization of a larger class of

gauge symmetries than those of perturbative Type IIB. String junctions play also a crucial role in the

systematics of deformations of singularity in the recent works [121, 122].
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So far we have been discussing only singularities that can occur at codimension-one loci. If we

consider higher codimensions richer singularity structures are possible. For instance, at the intersection

of the location of two seven-brane stacks the elliptic fibration undergoes an additional degeneration

that corresponds to a codimension-two enhancement of the gauge groups associated to the stacks. The

degrees of freedom responsible for this enhancement are interpreted as charged matter under the gauge

groups living on the world-volume of the seven-branes. This is in complete analogy to the picture of

charged massless fermions emerging at the intersection of D7-branes in perturbative Type IIB. Let

us also remark that codimension-two singularities can sometimes trigger non-trivial monodromies on

the world-volume of a seven-brane stack. As a result, the associated gauge theory is modified and

non-simply laced gauge groups of the B and C series can be engineered, in addition to the A, D, E

groups found in Kodaira’s classification.

Finally, additional singularities are found at the codimension-three loci associated to the intersec-

tion of three seven-branes stacks. These are not present in F-theory compactification to six dimensions

(the base B2 is complex two-dimensional) but play a fundamental role in F-theory compactifications

to four dimensions, where codimension-three loci on the base B3 are just points. Indeed, these points

of triple intersection are associated to the trilinear Yukawa couplings that enter the four-dimensional

effective action. Once again, this constitutes a non-perturbative generalization of the corresponding

situation in perturbative Type IIB with intersecting D7-brane stacks, see e.g. [106] for a pedagogical

account.

5.3 Duality between F-theory and M-theory

In section 3.4 we have studied in detail the nine-dimensional duality between M-theory on R1,8 × T 2

and Type IIB on R1,8 × S1. The duality between M-theory and F-theory emerges as we replace the

direct product R1,8 × T 2 on the M-theory side with a non-trivial fibration of the torus over a base

manifold. More precisely, we consider M-theory on the space

ds2
M = ηµνdx

µdxν + ds2
Bn +

A`2M
Im τM

|dx+ τM dy|2 , (5.35)

where µ, ν = 0, . . . , d − 1 with d = 9 − 2n, ds2
Bn

denotes the metric on the base space, x, y are

adimensional, period-one coordinates on the torus fiber, and the complex structure parameter of the

torus τM is now allowed to vary over Bn. We can therefore regard (5.35) as a generalization of (3.59),

where for simplicity we have suppressed the Kaluza-Klein vectors V(x), V(y). It is not hard, though,

to follow them in the duality from M-theory to F-theory applying the results of section 3.2 to the

present setup. Let us remind the reader that the x-cycle in (5.35) is interpreted as the M-theory circle

connecting M-theory to Type IIA, while the y-cycle is the T-duality circle that connects Type IIA to

Type IIB.

The validity of the extension of the duality between M-theory on a torus and Type IIB on a circle

to the case of non-trivial torus fibrations can be argued appealing to the so-called adiabatic argument

[128]: if the torus fiber varies adiabatically over the base space, the system under examination looks
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locally like an open patch of the simple product space R1,8 × T 2. We can thus apply the duality

fiberwise.

The identification (3.63) between the complex structure parameter of the torus on the M-theory

side and the axio-dilaton of Type IIB remains valid. The duality thus predicts that a non-trivial

torus fibration corresponds to a non-trivial axio-dilaton profile on the Type IIB side. Of course this is

not unexpected, and it has actually been the observation that motivated the introduction of elliptic

fibrations in the section 5.2. The crucial difference between the M-theory and the Type IIB/F-theory

perspective is that in Type IIB/F-theory the torus is merely a mathematical artifact to describe the

axio-dilaton profile, while in M-theory it is part of physical eleven-dimensional spacetime. As a result

the amount of supersymmetry preserved by the setup under examination can be determined according

to the paradigm outlined in section 4.4. In particular, we already know that if we consider an unwarped

compactification to Minkowski spacetime (4.26) the compactification space has to be Ricci-flat. This

justifies the imposition of the Calabi-Yau condition (5.33) on the elliptic fibration. In section 5.5 we

will actually see that in compactifications to four dimensions a warp factor has to be included, but we

will argue that the Calabi-Yau condition is preserved in a suitable sense.

The area of the torus has a very different status compared to its complex structure parameter.

In an elliptically fibered Calabi-Yau manifold it must be constant over the base space, even for non-

trivial fibrations. This follows from the fact that the fiber can be realized as a holomorphic complex

one-dimensional submanifold in the Calabi-Yau, so that its area is given by
∫
J , which cannot vary

over the base by virtue of dJ = 0. We known from (3.64), however, that the area A of the torus is

mapped to the circumference L(B) of the circle on the Type IIB side of the duality. Since A does

not vary over the base, we infer that the on the Type IIB side the circle fibration is trivial.3 This

observation is crucial. Using (3.64) and (3.66) it implies that the metric on the Type IIB/F-theory

side of the duality reads

ds2
F = ηµνdx

µdxν + `2sA
−3/2dy2 + ds2

Bn , (5.36)

where the prefactor of dy2 is a constant. We can thus take the limit A → 0 and decompactify one

direction on the Type IIB/F-theory side of the duality, in such a way that Lorentz invariance is

restored. This procedure is commonly referred to as the F-theory limit.

This program presents a clear difficulty. Since we do not know yet how to quantize M-theory, we

have to rely on its approximation by means of eleven-dimensional supergravity coupled to membranes

and five-branes. This approximation, however, makes only sense if M-theory is compactified on a

smooth space and if all volumes are large compared to the eleven-dimensional Planck length `M. Since

A is precisely the volume of the torus fiber measured in units of `M, it is clear that taking the F-theory

limit forces us to go beyond the regime of validity of the supergravity approximation. By the same

token we have seen in section 5.2.3 that interesting F-theory setups with non-Abelian gauge groups

require singular elliptic fibrations Xn+1. In summary, if we want to achieve Lorentz invariance and

non-Abelian gauge symmetries on the F-theory side of the duality we must consider M-theory on a

singular space with some small or vanishing volumes.

3In general this does not hold for the intermediate Type IIA step connecting M-theory and Type IIB.
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In order to overcome this difficulty we have to refine our understanding of M-theory/F-theory

duality. Suppose we start with M-theory on the resolved elliptic fibration X̃n+1 where the volumes of

the torus fiber and of the resolution P1’s are large in units of `M. We can then reliably compute the

effective action of the resulting d-dimensional theory (d = 9 − 2n) using the effective action (3.34),

supplemented by suitable higher-derivative corrections addressed below. The light degrees of freedom

of the d-dimensional theory thus originate from the Kaluza-Klein zeromodes in the expansion of the

eleven-dimensional metric and three-form. In particular the expansion of the three-form along the

two-forms ωi = PD([Di]) Poincaré dual to the classes of the exceptional divisors yields a collection of

rankG massless U(1) vectors,

Ĉ3 ⊃ Ai ∧ ωi . (5.37)

These are interpreted as the Cartan vectors of the non-Abelian gauge group on the F-theory side.

The d-dimensional M-theory compactification on X̃n+1 also features massive BPS states originating

from M2-branes wrapping two-cycles of the geometry. More precisely, we can wrap an M2-brane along

the torus fiber or along the resolution P1’s, yielding massive particle states in d dimensions. Those are

automatically integrated out in the low-energy effective action in d dimensions obtained from Kaluza-

Klein reduction of eleven-dimensional supergravity. Let us follow these states through the duality to

the F-theory side.

An M2-brane wrapping the torus fiber becomes a winding string in Type IIA, which in turn after

T-duality becomes a string state carrying non-vanishing Kaluza-Klein momentum along the y-cycle.

As the torus fiber shirks on the M-theory side of the duality, the y-cycle grows large on the F-theory

side, and excited Kaluza-Klein states become light. We thus see that M2-branes wrapping the fiber

encode the degrees of freedom of the massive Kaluza-Klein states in the circle reduction of the (d+1)-

dimensional F-theory effective action down to d dimensions.

To clarify the role of M2-branes wrapping the resolution P1’s we proceed as follows. A stack of

D7-branes in Type IIB that fills the xµ directions and wraps the y-cycle becomes, upon T-duality along

y, a collection of D6-branes extended along xµ and located at points along on the y-circle, see section

3.1. Such a D6-brane configuration is uplifted to M-theory to a multi-center Taub-NUT geometry, as

reviewed in section 3.3. This geometry possesses two-cycles obtained by fibering the M-theory circle

between the location of two centers of the Taub-NUT space, see figure 3.1. These two-cycles are

identified with the resolution P1’s of the F-theory geometry. As a result, M2-branes states wrapping

these P1’s are interpreted as Type IIA strings stretching between parallel D6-branes. As we recover

the singular fibration from the resolved space these D6-branes become coincident and gauge symmetry

is enhanced to a non-Abelian gauge group. Strings stretching between different branes provide the

degrees of freedom associated to the roots of the group, or equivalently to its ‘W-bosons.’ Even

though we have used the language of perturbative Type II and D-branes, this conclusion holds for

more general seven-branes configurations in F-theory. In summary, we have identified the M-theory

origin of all gauge bosons living on the world-volume of a seven-brane stack: the Cartan U(1)s come

from the M-theory three-form Ĉ3 expanded along exceptional divisors (5.37), while W-bosons come

from M2-branes wrapping the resolution P1’s. In the resolved elliptic fibrations the latter have finite

volume and W-bosons are massive: the associated gauge theory is pushed to its Coulomb branch and
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vol T 2 ! 0

vol P1
i ! 0

integrate in
M2-brane states

(d + 1)-dim. e↵. action
with Lorentz invariance and
non-Abelian gauge symmetry

integrate out
massive KK modes

and W-bosons

d-dim. e↵. action for
CY-zeromodes of ĝ, Ĉ3

d-dim. e↵. action for
S1-zeromodes and Cartan U(1)s

reduce on S1

and push to the
Coulomb branch

F-theory on Xn+1M-theory on Xn+1

F-theory on Xn+1 ⇥ S1M-theory on resolved Xn+1

at large volumes

Figure 5.3: Schematic representation of M-theory/F-theory duality and of the resulting prescription
for the computation of the (d + 1)-dimensional effective action of F-theory on an elliptically fibered
Calabi-Yau (n + 1)-fold Xn+1, where d = 9 − 2n. On the M-theory side, T 2 denotes the fiber, while
P1
i denote the resolution P1’s.

the gauge group G is spontaneously broken to U(1)rankG. If we go back to the singular fibration, full

non-Abelian symmetry is restored.

Similar considerations apply to the codimension-two singularity enhancements in the elliptic fibra-

tion associated to charged matter. In order to have a smooth space on the M-theory side a suitable

resolution procedure has to be performed, which introduces additional resolution two-cycles in the ge-

ometry. Charged matter states originate from wrapped M2-branes that become massless in the limit in

which these resolution two-cycles are shrunk to zero size. In the Coulomb phase of the d-dimensional

gauge theory, however, these charged matter states are not directly accessible as they acquire a mass

from spontaneous gauge symmetry breaking and are automatically integrated out from the M-theory

effective action.

We are finally in a position to use the duality between M-theory and F-theory to determine a

prescription for the computation of the F-theory effective action in d+ 1 dimensions. Figure 5.3 gives

a schematic overview of the setup under examination.

The sought-for F-theory effective action is a Lorentz-invariant theory with a non-Abelian gauge

group and some amount of supersymmetry, depending of the dimension d+1. This can be parametrized

in terms of some characteristic data, which can either be discrete (e.g. anomaly coefficients) or contin-

uous (e.g. coupling functions). If we compactify this theory on a circle and we push it to the Coulomb
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branch we obtain a setup with both massless states, given by Kaluza-Klein zeromodes and Cartan vec-

tors, and massive states, given by all excited Kaluza-Klein states and/or states that become massive

upon gauge symmetry breaking.

In the vast majority of cases the effects of these massive states on the low-energy d-dimensional

dynamics of massless states are suppressed by the inverse of the compactification radius and are

thus negligible. Instead of properly integrating out these states we can simply truncate them away.

Some d-dimensional couplings, however, are sensitive to the presence of massive states via quantum

corrections that are independent of the radius of the circle. We will analyze in detail an example of

such a coupling in chapter 9. In this case more care is needed in order to obtain the correct effective

action for d-dimensional massless states.

Performing the circle compactification on the F-theory side corresponds to inverting the blow-down

process that connects M-theory on the resolved fibration X̃n+1 to M-theory on the singular fibration

Xn+1 with vanishing fiber volume. As noted above, the d-dimensional effective action of M-theory on

X̃n+1 can computed in the supergravity approximation and the process of resolution automatically

integrates out all massive M2-branes states at the classical level. We thus have to compare the quantum

circle reduction of the sought-for F-theory effective action to the classical Calabi-Yau reduction of

eleven-dimensional supergravity. This comparison gives us the necessary information to fix all the

characteristic data that enter the parametrization of the F-theory effective action.

In chapter 7 this program will be carried out in detail in the case of F-theory compactified on

an elliptically fibered Calabi-Yau threefold. A suitable generalization of this prescription will also

be the starting point of our discussion of four-dimensional compactifications of F-theory on Spin(7)

manifolds.

As a final remark, let us stress that the relations (3.67) between the p-forms resulting from expan-

sion of the M-theory three-form and the p-forms of Type IIB on a circle can still be applied to the

present context. We are therefore able to follow all light bosonic degrees of freedom through the du-

ality between M-theory and F-theory. A similar analysis could be performed for fermions, but we will

not need to consider them explicitly and we can rely on supersymmetry for determining all fermionic

terms of the relevant effective actions in terms of their bosonic terms. The situation is more subtle in

the context of F-theory compactified on a Spin(7) manifold: a discussion of this topic is postponed to

chapter 8.

5.4 Sen’s weak-coupling limit

The power of F-theory resides in its ability to encode the physics of the gauge fields and charged

matter associated to seven-branes into the geometry of the elliptically fibered Calabi-Yau (n+ 1)-fold.

Note in particular that from the perspective of the M-theory/F-theory duality seven-branes can be

seen as solitonic excitations of the bulk fields of M-theory. This is ultimately related to the fact that

Type IIA D6-branes are lifted to pure geometry in M-theory, as recalled in section 3.3.
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There exists, however, a suitable limit in the complex structure moduli space of the elliptically

fibered Calabi-Yau (n + 1)-fold in which the F-theory setup can be described with the language of

perturbative Type IIB superstring theory. This limit is due to Sen [129] and stems from the observation

that the most general f , g entering the Weierstrass equation (5.22) can be conveniently parametrized

as

f = C η − 3h2 , g = h(C η − 2h2) + C2 χ , (5.38)

where η, h, χ are locally given by polynomials in the affine coordinates u1, . . . , un on the base Bn of

the fibration, while C is a complex constant. The parametrization (5.38) is engineered in such a way

that the series expansion of the discriminant ∆ given in (5.19) as C → 0 has no O(C0) and O(C1)

terms,

∆ = −9h2(η2 + 12χh)C2 +O(C3) . (5.39)

The Klein j-invariant of the elliptic fibration (5.21) has a Laurent expansion in C that starts with a

second order pole,

j(τ) =
12 · 243 h4

η2 + 12χh

1

C2
+O

(
1

C

)
. (5.40)

This expression shows that, away from the special loci h = 0 and η2 + 12χh = 0, the string coupling

can be made arbitrarily small by taking the limit C → 0. In order to have control over the setup we

have to show that the special loci can be described in terms of objects of perturbative Type IIB.

From (5.39) we see that the dominant term in the discriminant expansion has a factorized form. It

thus described two distinct codimension-one loci on the base Bn. In order to identify the nature of the

objects sitting at these loci one has to study the monodromies around them, as outlined schematically

in section 5.1.2. We do not perform here this analysis, and rather state the result. The monodromy

around the component h = 0 is encoded in the matrix (5.15), signaling the presence of an O7-plane.

The locus η2 + 12χh = 0 can be thought of in terms of its components η = ±√−12χh; each of them

can be shown to have monodromy given in (5.11) corresponding to a D7-brane. In summary,

O7 : h = 0 , D7 : η2 + 12χh = 0 . (5.41)

The presence of an O7-plane suggests that the base of the fibration Bn should be though of as the

quotient of a suitable space Xn under the action of an involution whose fixed points lie at h = 0. This

expectation is indeed confirmed: the space Xn can be described introducing an additional variable ξ

together with an additional equation

Xn : ξ2 = h . (5.42)

Actually, the Calabi-Yau condition (5.33) for the elliptic fibration Xn+1 implies that Xn is a Calabi-

Yau n-fold. From (5.42) we see that Xn is a double cover of the base space Bn branched over the

locus h = 0. The geometric involution acting on Xn is

σh : ξ 7→ −ξ , (5.43)

and yields the full orientifold action

O1 = Ωp σh (−1)FL , (5.44)

where Ωp is the world-sheet parity operator and (−1)FL is the spacetime left-moving fermion number.

The need for the inclusion of the latter was motivated in section 2.3.
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5.5 Remarks on G4-flux in four-dimensional F-theory setups

In F-theory compactifications to six dimensions with minimal supersymmetry both the bulk physics

and the localized gauge and matter sectors can be understood purely in terms of the geometry of the

underlying elliptically fibered threefold. The situation is qualitatively different for four-dimensional F-

theory compactifications: the geometric data of the fourfold have to be supplemented by the inclusion

of a suitable G4-flux, i.e. a background value for the field strength of the M-theory three-form. A

thorough analysis of the problem lies beyond the scope of this work, so we refer the reader to the

review [102] and references therein for an introduction.

Our discussion of compactification of eleven-dimensional supergravity on an unwarped product

background of the form (4.26) is valid only at the two-derivative level and is modified by the introduc-

tion of higher-curvature corrections. Some of them are known [81, 82] and can have a sizable effect

also in the large volume limit, i.e. in the limit in which all length scales of the internal manifold are

large compared to the eleven-dimensional fundamental length `M. When such effects are taken into

account the correct Ansatz for the dimensional reduction must include a non-trivial warp factor, like

in (4.25). A convenient parametrization for the problem at hand is

〈ĝµ̂ν̂(x̂)〉dx̂µ̂dx̂ν̂ = e−A(y) gµν(x) dxµdxν + eA(y)/2 gmn(y) dymdyn . (5.45)

Collecting a prefactor eA(y)/2 in the internal part of the metric is useful because the requirement of

N = 2 supersymmetry in the three external dimensions (four real supercharges) implies that gmn is

still a Ricci-flat Calabi-Yau metric even for non-trivial warp factor A(y). Moreover, supersymmetry

requirements and three-dimensional Poincaré symmetry demand that the background G4-flux be of

the form

Ĝ4 = − 1

3!
εµνρ∂me

−3A/2 dxµ ∧ dxν ∧ dxρ ∧ dym +G4 , (5.46)

where G4 has all four legs along the internal space. This internal flux has to satisfy the celebrated

tadpole cancellation condition
1

2`6M

∫
X4

G4 ∧G4 +NM2 =
χ

24
, (5.47)

where χ is the Euler characteristic of the Calabi-Yau fourfold X4 and NM2 is the number of spacetime-

filling M2-branes included in the compactification setup. (Since their world-volume fills external

spacetime they are compatible with three-dimensional Poincaré symmetry and there is no a priori

argument to exclude their presence.) As a consequence of (5.47) if the fourfold has χ > 0 we have

to turn on a non-vanishing G4-flux and/or to include some spacetime-filling M2-branes in order to

have a consistent vacuum. If χ < 0 no supersymmetric vacua can be found, since the left hand side

to (5.47) can be shown to be non-negative. Finally, if χ = 0 it is consistent to turn off the flux and

to introduce no spacetime-filling M2-branes. This special case has been recently revisited in [130],

were it was found to have enhanced off-shell supersymmetry. The terminology ‘tadpole cancellation

condition’ comes from the observation that (5.47) constitutes the M-theory/F-theory generalization

of the Type IIB D3-brane tadpole cancellation condition reviewed e.g. in [131], which in turn can

actually be interpreted as a condition for the absence of tadpoles in string diagrams.
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The previous argument for the necessity of a non-trivial G4-flux along some four-cycle of the

Calabi-Yau fourfold X4 is based on the physics of bulk fields and holds in M-theory irrespectively of

the duality with F-theory. In the latter context, however, a non-zero flux is also needed in order to

allow for massless fermions in chiral representations of the gauge group living on the world-volume

of seven-branes. This can already be seen in perturbative Type IIB. The generic intersection of

two spacetime-filling D7-brane stacks wrapping divisors on the base B3 is six-dimensional and carries

charged chiral fermions. In order for these six-dimensional chiral spinors to reduce to four-dimensional

chiral spinors it is necessary to introduce a non-vanishing magnetic flux along the world-volume of

the D7-branes. The same argument generalizes to seven-brane stacks in F-theory. The flux along the

world-volume of seven-branes is uplifted to suitable components of the M-theory G4-flux. The latter

are related to chiral matter via the index formula [132, 133, 134, 135, 136, 137, 138, 139]

χ(R) =
1

`3M

∫
SR

G4 . (5.48)

Let us comment this equation. Suppose we have a codimension-two locus on the base B3 of the

elliptic fibration, i.e. a curve CR ⊂ B3, where two seven-branes stacks intersect yielding a singularity

enhancement that is associated to the representation R of the gauge group of the F-theory setup.

The quantity on the left hand side of (5.48) is the chiral index of the representation R, defined as the

net number of chiral massless four-dimensional fermions transforming in the representation R. The

resolution of the codimension-two singularity along CR introduces new resolution P1’s in the geometry

of the smooth fourfold X̃4. By fibering these P1’s over CR we obtain a surface SR ⊂ X̃4, which is

commonly referred to as matter surface and which is the four-cycle over which the G4-flux is integrated

in the right hand side of (5.48).

As pointed out in section 5.3, charged matter is massive on the Coulomb branch of the three-

dimensional gauge theory on the M-theory side of the duality. It is therefore not possible to access

chiral fermions directly at the level of the effective action derived by means of F-theory/M-theory

duality. Nonetheless the identification between massive M2-brane states in M-theory and massive

Kaluza-Klein modes and W-bosons in F-theory allows one to make contact to (5.48) in the context of

F-theory/M-theory duality by taking into account quantum corrections of three-dimensional Chern-

Simons terms induced at one-loop by massive Kaluza-Klein modes and W-bosons, see e.g. [140]. This

three-dimensional mechanism is the direct analog of the five-dimensional mechanism that we will study

in greater detail in chapter 9.



CHAPTER 6

The puzzle of (2,0) theories

This chapter is devoted to a brief overview about some known results in the study of six-dimensional

theories with (2,0) supersymmetry. We first recall the string theory and M-theory arguments in

favor of the existence of non-trivial interacting field theories with this amount of supersymmetry.

Next, we consider some general features that can be inferred without any detailed knowledge of the

structure of interactions. Finally, we review in particular the connection between (2,0) theories and

five-dimensional maximally supersymmetric Yang-Mills. This is connected to the proposal for a five-

dimensional description of (2,0) theories formulated in chapter 11.

6.1 Non-trivial infrared dynamics from string theory and M-theory

One of the most interesting insights provided by the so-called second superstring revolution has been

the discovery of a novel kind of interacting quantum field theory in six dimensions. Such theories

emerge as a non-trivial infrared fixed point in the RG flow of the dynamics of Type IIB compactified

on a singular K3 surface [141] or of a stack of coincident M5-branes in M-theory [142, 143]. Let us

briefly review the evidence in favor of the existence of these new theories.

Compactification of Type IIB superstring theory on a smooth K3 surface yields a six-dimensional

low-energy effective theory with (2,0) supersymmetry, i.e. with 16 real supercharges organized into

two complex Weyl spinors of the same chirality. It is useful to recall that in supergravity theories with

(2,0) supersymmetry there exist only two kinds of supermultiplets with spins lower than or equal to

two:

• supergravity multiplet, consisting of the graviton, five self-dual tensors, and two positive-chirality

complex Weyl gravitini;
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• tensor multiplet, consisting of one antiself-dual tensor, five real scalars, and two negative-chirality

complex Weyl spinors, referred to as tensorini.

In particular (2,0) supersymmetry forbids the presence of massless vectors in the low-energy spectrum

of the theory. In the case of Type IIB on a smooth K3 surface, the resulting six-dimensional theory

consists of the supergravity multiplet together with 21 tensor multiplets. Indeed, a smooth K3 surface

has three self-dual harmonic two-forms and 19 antiself-dual harmonic two-forms. Expansion of the self-

dual four-form C4 of Type IIB onto harmonic two-forms of K3 yields therefore three self-dual tensors

and 19 antiself-dual tensors. Furthermore, the Type IIB two-forms B2 and C2 provide additional two

self-dual tensors and two antiself-dual tensors. In total we thus find the five self-dual tensors of the

gravity multiplet and the 21 antiself-dual tensors of the tensor multiplets. Let us mention that this

is the precise number of tensor multiplets needed for anomaly cancellation in six-dimensional (2,0)

theories, as we will see in section 10.2.1.

At special loci in its moduli space a K3 surface can develop orbifold singularities. Those have a

specific structure and can be classified in terms of ADE Dynkin diagrams. Intuitively speaking, these

singularities can be resolved by introducing a collection of resolution P1’s whose intersection pattern

contains the same information as the corresponding ADE Dynkin diagram. We have encountered a

very similar situation in chapter 5 when we discussed singularities of the elliptic fibration in the context

of F-theory. There we argued that M2-brane states wrapping the resolution P1’s can provide particle-

like states in external spacetime that become light as the P1’s are shrunk to zero size. In the case of

Type IIB on a singular K3, one finds that D3-branes can wrap the resolution P1’s, yielding states in

the six-dimensional theory that become light as the P1’s collapse to a point. Crucially, however, these

are now string states in six-dimensions, rather than particle states.

These strings are commonly referred to as non-critical strings. Indeed they do not coincide with

the fundamental Type IIB superstring and their tension—proportional to the area of the resolution

P1’s—can be made arbitrarily small in units of the fundamental string tension. Furthermore, their

world-volume does not carry a propagating graviton, i.e. a massless spin-two state. Another crucial

property of these non-critical strings is the fact that they coincide with their own magnetic duals.

This property is inherited by the same property of D3-branes in Type IIB. As a result, these strings

couple naturally to (anti)self-dual tensors in six-dimensions, compatibly with (2,0) supersymmetry.

Another consequence of self-duality of these strings is the fact that their interactions are governed by

an order-one coupling, so that these objects are intrinsically non-perturbative.

As noted above, by tuning the volume of resolution P1’s it is possible to make the non-critical

strings arbitrarily light. Their influence on the background spacetime can therefore be neglected

and one expects that the dynamics of the system in the deep infrared can be studied decoupling

the gravitational degrees of freedom. We are thus left with an interacting six-dimensional quantum

field theory with (2,0) rigid supersymmetry. Since K3 singularities can be labelled by ADE Dynkin

diagrams, the same holds for (2,0) theories: we thus have theories of type An, Dn, E6, E7, E8. Loosely

speaking we can then have ‘gauge groups’ SU(n + 1), SO(2n), E6, E7, E8, but clearly this is not a

precise statement since there are no massless vectors in the spectrum and therefore we are dealing
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with a novel kind of theories.

Let us also stress that, since the theory does not have any mass scale, it is scale invariant and,

by virtue of general arguments found e.g. in [144], it is expected to be conformally invariant. It

is interesting to note that in Nahm’s classification of rigid superconformal algebras [30], the six-

dimensional (2,0) superconformal algebra is special, in the sense that it is the superconformal algebra

with the highest possible dimension of spacetime.

An alternative realization of non-trivial (2,0) theories is furnished by the study of coincident M5-

branes in M-theory. First of all, note that an M2-brane can end on an M5-brane. One can check

that such a configuration is compatible with all charges possessed by these extended objects. This

can also be expected by noting that, upon a suitable circle reduction, an M2-brane stretching between

two M5-branes becomes a fundamental string of Type IIA stretching between two D4-branes, which

is undoubtedly an allowed configuration. The world-volume theory of a single M5-brane has (2,0)

supersymmetry. As a result, the only matter multiplet that can live on an M5-brane is a tensor

multiplet, with one antiself-dual tensor. The boundary of an M2-brane ending on a M5-brane defines

a string on the world-volume of the latter. It is natural to think that this string couples to the antiself-

dual tensor on the world-volume of the M5-brane. Let us also point out that the five real scalars in

the tensor multiplet have a clear interpretation in terms of the M5-branes: these scalars encode the

fluctuations of the brane in the five spatial directions transverse to its world-volume.

Let us now consider a collection of N parallel M5-branes separated in the transverse five directions.

The light degrees of freedom of the system are those of the eleven-dimensional supergravity multiplet

and of the tensor multiplets on the world-volumes of the M5-brane. We can imagine to flow to the

deep infrared and decouple gravity: we are thus left with a non-interacting theory of tensor multiplets

of (2,0) supersymmetry. If we now put the N M5-branes on top of each other the states coming from

M2-branes stretching between them become massless. By analogy to the D-brane picture one is led

to conclude that these additional massless states are responsible for some sort of ‘gauge symmetry

enhancement’ that yields a non-trivial interacting theory. Indeed, if we reduce on a circle we get a

stack of N D4-branes in Type IIB with gauge group U(N) = SU(N) × U(1). The U(1) factor is

associated to the center-of-mass motion of the D-brane system and is thus uninteresting. We are led

to conclude that a stack of N M5-branes gives rise, upon decoupling gravity and the center-of-mass

degrees of freedom, to an interacting (2,0) theory of type AN−1.

6.2 Some general features of (2,0) theories

Some properties of interacting (2,0) theories can be derived from general field theory arguments

without any detailed knowledge of the interactions of the system. Let us briefly review some of these

considerations, largely following [144] and [145].

As explained above, (2,0) theories emerge in the deep infrared dynamics of some Type IIB and

M-theory setups, so that they are non-trivial IR fixed points of the RG flow. As a result, they cannot
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possess any dimensionful parameter. They are also expected, however, to be isolated fixed points,

so that they do not have any dimensionless parameter either. This can be contrasted, for instance,

with four-dimensional N = 4 super Yang-Mills, which is a superconformal theory with vanishing

beta-function whose coupling can be tuned at will.

Supersymmetry forces the moduli space of vacua of a (2,0) theory to be locally flat. Away from

possible singularities in moduli space we have a free theory of r tensor multiplets. In the M5-brane

picture they can be thought of as the ‘Cartan’ tensor multiplets living on the world-volume of M5-

branes which are separated in the transverse directions (modulo the center-of-mass degree of freedom).

More precisely the moduli space is

M =
R5r

W , (6.1)

where W is a discrete group. It is identified with the Weyl group of a Lie group G whose Lie algebra

g is determined by the ADE type of the given (2,0) theory.1 By abuse of terminology we will refer to

G as the gauge group of the (2,0) theory.

Let Bα, α = 1, . . . , r be the antiself-dual tensors in the free theory at a generic point in moduli

space. They have naturally mass dimension two, so that their integral
∫
C2 B

α on a two-cycle C2 is

dimensionless. In order for the ‘Wilson surface’ operator exp
(
i
∫
C2 B

α
)

to be invariant under large

gauge transformations of Bα, the field strengths Hα = dBα must satisfy the quantization condition∫
C3
Hα ∈ 2π Z , (6.2)

where C3 is an arbitrary three-cycle in six-dimensional spacetime. The possible H-fluxes define there-

fore an r-dimensional lattice Γ known as the charge lattice of the (2,0) theory. It has been shown that

it has to be a self-dual lattice [147]. Moreover, it is identified with the weight lattice of the gauge

group G of the theory.

No six-dimensional Lagrangian description is known for the interacting theories at the singular

points in moduli space, and it is not even known if a Lagrangian can exist at all. This is due to the

fact that, since the theory is superconformal, the coupling does not run and is therefore always fixed

at some non-perturbative value. Nonetheless, it is possible to define the partition function of a (2,0)

theory without reference to any action, as shown in [148]. The analysis there also reveals that, in order

to define a (2,0) theory, a choice has to be made of suitable discrete topological data of six-dimensional

spacetime, which can be intuitively thought of as the tensor analog of the spin structure required for

defining fermions.

Different strategies can be applied to circumvent the absence of an action formulation for (2,0)

theories. For instance, (2,0) theories of type An admit a formulation in terms of matrix models

[149, 150, 151] that describes part of their dynamics. Gauge/gravity duality can also be used to infer

some general properties of the local operators of the full interacting quantum theory, see e.g. [152].

Anomalies provide another robust window on some aspects of (2,0) that do not depend on the details

1Note that there can be different groups G with the same algebra g. A discussion of this subtle point is beyond our
scope, and we refer the reader to [146, 145] for further explanations.
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of the interactions. In particular the analysis of [153] reproduces the N3 scaling of degrees of freedom

of a (2,0) theory, already mentioned in section 3.5. The same scaling behavior has been deduced

with different approaches in [154, 155, 156]. Anomalies are also related to proposals about certain

topological couplings that the full interacting theory should possess [157, 158].

Finally, let us mention that, even if we do not have full control over the dynamics of interacting

(2,0) theories, they have been successfully exploited to generate a rich class of four-dimensional N = 2

gauge theories. Arguably the most known example is furnished by the theories defined in [159] by

compactifying the A1 (2,0) theory of a punctured Riemann surface. This construction prompted many

further developments, most notably the AGT correspondence of [160].

6.3 (2,0) theories and five-dimensional super Yang-Mills

Let us consider the circle reduction of a (2,0) theory at a generic point in its moduli space, where we

have the non-interacting tensors Bα, α = 1, . . . , r. As we will discuss in greater detail in section 10.1, a

(anti)self-dual tensor on a circle yields one massless vector and a Kaluza-Klein tower of massive tensors.

At sufficiently low energies these massive states can be neglected and we are left with a collection of

vectors Aα with gauge group U(1)r. Suppose we move to a singular point in the moduli space (6.1) of

the (2,0) theory. It is possible to argue that, from a five-dimensional perspective, additional vectors

become massless, which enhance U(1)r to a non-Abelian gauge group. If we start from a (2,0) theory

of type AN−1, so that r = N − 1, the discussion of the previous section indicates that this group

is SU(N). In summary, we obtain maximally supersymmetric Yang-Mills theory (MSYM) in five

dimensions with gauge group SU(N).

The gauge coupling of MSYM is given by [144]

g2
YM = 4π2R , (6.3)

where R is the radius of the compactification circle. This is consistent with the fact that gYM has mass

dimension −1/2 in five dimensions and that there are no dimensionful nor dimensionless parameters

in the (2,0) theory. In (6.3) we have adopted the normalization of e.g. [161] and [34], which is natural

in the discussion of Kaluza-Klein momentum and instanton number developed below.

From the Type IIB and M-theory analysis of section 6.1 we know that (2,0) theories possess six-

dimensional string excitations. These are BPS states and become tensionless at the point of the moduli

space (6.1) where the theory is non-trivial. Let us follow these string states in the circle reduction of

the (2,0) theory.

If a six-dimensional string wraps the compactification circle it yields a particle state in five di-

mensions. We will always consider strings with winding number one along the circle. In the simplest

possible case the string lies in its ground state and carries no Kaluza-Klein momentum along the circle.

We identify such a state with a W-boson of five-dimensional MSYM. If instead the string has some

Kaluza-Klein momentum,

m =
n

R
, n 6= 0 , (6.4)
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the associated particle state in five dimensions is a soliton of MSYM, which is conveniently thought

of as the uplift of a four-dimensional instanton. These solitons can therefore carry a non-vanishing

instanton number

n =

∫
Σ4

p1(E) = −1

2

1

(2π)2

∫
Σ4

tr(F ∧ F ) , (6.5)

where Σ4 is a spatial slice of five-dimensional spacetime, E denotes the non-Abelian gauge bundle,

p1(E) is its first Pontryagin class, F is the non-Abelian field strength, and tr is the trace in the

fundamental representation of SU(N). The integers n in (6.4) and (6.5) are actually identified: excited

Kaluza-Klein modes of a wrapped string are the same as Yang-Mills instantons with non-vanishing

instanton number [162]. In [34] these correspondence has been extended including states that carry

electric charge under the five-dimensional gauge group.

If a six-dimensional string does not wrap the compactification circle it yields a string in five

dimensions. These states can be realized in MSYM as an uplift of four-dimensional ’t Hooft-Polyakov

monopoles. As shown in [34] one can find BPS string-like states that have a non-vanishing instanton

number and magnetic charge: they can be identified with the modes of a six-dimensional string that

does not wrap the compactification circle, but has some Kaluza-Klein momentum along that direction.

Given the presence of BPS strings in six-dimensional (2,0) theories, it is not obvious a priori if

these theories are better understood as quantum field theories satisfying the usual locality axioms,

or rather as theories of strings, i.e. extended, non-local objects. The connection to five-dimensional

MSYM suggests that the former interpretation is the correct one [144]. In fact, we have seen that a

wrapped string with no Kaluza-Klein momentum is interpreted as a W-boson, which is an elementary

field of MSYM. Wrapped strings with Kaluza-Klein momentum, or unwrapped strings, are identified

with solitonic excitations of MSYM, which are intuitively speaking made out of W-bosons, and thus

do not represent new independent elementary objects. If we were to regard the six-dimensional string

as an elementary object we would overcount elementary degrees of freedom of MSYM.

It is important to recall that five-dimensional MSYM theory is power-counting non-renormalizable.

Thus it is not clear if its classical Lagrangian suffices to describe physics at high energies, or if it has

to be supplemented by additional information related to UV degrees of freedom. Note also that

(2,0) theories are expected to be finite quantum field theories: they would then provide a possible

UV completion for five-dimensional MSYM. In [33] it has been conjectured that this relation can

be reversed: five-dimensional MSYM theory in the infinite-coupling limit (with all non-perturbative

effects taken into account) is equivalent to the (2,0) theory, without the need of any new degree of

freedom. The fact that Kaluza-Klein excited modes are already present in the form of five-dimensional

solitons is consistent with this picture. If this conjecture is true it has deep implications on the structure

of perturbative divergences of five-dimensional MSYM [33], which has been proven to suffer from UV

divergences starting at six loops [163].

Other pieces of evidence in favor of a strong connection between (2,0) theories and five-dimensional

MSYM comes from the computation of suitable conformal indices of the latter theory on manifolds

such as S5 or CP2 × S1, see for instance [164, 165, 166] and references therein. These computations

show that a path integral based on the classical action for the massless fields of the Yang-Mills theory
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is able to reproduce the N3 scaling of the degrees of freedom of a six-dimensional (2,0) theory. As

a final remark we would like to draw the attention of the reader to [167], where the proposal of the

equivalence between (2,0) theories and MSYM is contrasted with deconstructing techniques, and [168],

where the relation between (2,0) theories and MSYM involves the emergence of a timelike, as opposed

to spacelike, direction.



108 Chapter 6. The puzzle of (2,0) theories



PART II

F-theory effective actions
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CHAPTER 7

Effective action for six-dimensional F-theory
compactifications

This chapter is devoted to the analysis of the six-dimensional effective action of F-theory compacti-

fications on elliptically fibered Calabi-Yau threefolds. We will thus substantiate the duality between

F-theory and M-theory described in section 5.3 by implementing explicitly the prescription for the

extraction of the desired six-dimensional action from the dynamics of M-theory on the resolved Calabi-

Yau threefold. In particular we will match the anomaly coefficients in six dimensions with topological

data of the elliptic fibration. A careful analysis of the five-dimensional Chern-Simons terms on both

sides of the duality reveals the importance of quantum corrections induced by massive Kaluza-Klein

states.

7.1 F-theory and the space of six-dimensional (1,0) supergravities

The study of effective theories arising in string compactifications is clearly of crucial importance both

from a conceptual as well as phenomenological point of view. It is now believed that there is a vast

landscape of four-dimensional effective theories with minimal or no supersymmetry arising in string

theory, but it is an open problem to systematically characterize these theories [169, 131, 102]. A

systematic study becomes more tractable in compactifications to higher dimensions and with more

supersymmetry. Highly supersymmetric compactifications have a more constrained effective theory,

and arise from restricted classes of candidate string constructions. In the maximally supersymmetric

case the theory and compactification geometry are in fact almost unique.

An intermediate scenario is provided by six-dimensional (1, 0) supergravity theories [170]. While

there are strong constraints both from supersymmetry and anomalies in this dimension, the moduli

111
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space of these theories still permits a rich structure and is not fixed by the symmetries. In particular

the effective action can feature various non-Abelian gauge groups and non-trivial matter representa-

tions. The (1, 0) multiplets in the spectrum are the gravity multiplet, a number of tensor and vector

multiplets, as well as hypermultiplets. The latter can be either neutral, i.e. transform as singlets

under the gauge group, or be charged, i.e. transform in non-trivial representations. We will refer to

the second class of hypermultiplets as matter hypermultiplets.

In the last years a systematic study of six-dimensional (1, 0) supergravity theories has been under-

taken to study the consistency conditions imposed by quantum gravity [170]. In six dimensions there

are gravitational, gauge, and mixed gauge-gravitational anomalies. These impose constraints on the

number of multiplets, and link the matter spectrum to the anomaly coefficients; see e.g. [171, 172, 173].

A fruitful starting point has been to ask for a realization of these supergravity theories as a compacti-

fication of F-theory on Calabi-Yau threefolds [174, 175, 176, 177, 178, 179, 180, 181, 182, 183]. Indeed,

F-theory constructions cover a large part of the space of six-dimensional (1,0) theories that can be

obtained from string theory. Furthermore the elliptic fibration structure of the Calabi-Yau threefolds

entering the compactification makes it possible to undertake a classification of vacua based on the

classifications of the possible Kähler two-folds that can be chosen as a basis of the fibration [184].

Topological transitions among the various bases translate into extremal tensionless string transitions

from the point of view of the low-energy effective theory in six dimensions [185, 186].

These considerations constitute one of the main motivations for a detailed analysis of the duality

between F-theory and M-theory in six dimensions. In particular this framework provides an excellent

playground to get a better understanding of the correspondence between massive M2-brane states

on the M-theory side and massive Kaluza-Klein and W-bosons in the circle compactification of the

F-theory effective action. Indeed, we will be able to match the classical Chern-Simons terms of M-

theory on the resolved Calabi-Yau threefold with the quantum-corrected Chern-Simons terms of the

circle compactification. Our analysis applies to the case in which the gauge group is semi-simple,

with no Abelian factor. In [187] it has been extended it to include U(1) gauge bosons. The study

of the low-energy F-theory effective action performed there confirms some results previously found

in [182, 183] about the relation between geometry and anomalies in the presence of U(1) factors.

It also reveals interesting patterns in the quantum corrections to Chern-Simons levels induced by

Kaluza-Klein modes and W-bosons.

Another motivation for the study of six-dimensional F-theory models comes from the observation

that they can provide useful insights that can be successfully adapted to more complicated four-

dimensional F-theory setups. For example, the relevance of quantum corrections to Chern-Simons

couplings in the context of F-theory/M-theory duality can already be appreciated in six dimensions.

The analysis of anomaly cancellation and Green-Schwarz mechanism for F-theory compactifications on

Calabi-Yau fourfolds performed in [140] can be seen as an interesting generalization to four dimensions.
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7.2 Elliptically fibered Calabi-Yau threefolds

The general features of an elliptically fibered Calabi-Yau space presented in Weierstrass form have

already been described in section 5.2.2. In order to derive the effective action of a (1,0) F-theory setup

in six dimensions, however, we need more information about the topology and geometry of elliptically

fibered Calabi-Yau threefolds.

Let π : X3 → B2 be a possibly singular elliptically fibered Calabi-Yau threefold described by the

Weierstrass equation (5.22). Recall from section 5.2.2 that the vanishing locus of the discriminant ∆

defined in (5.19) correspond to degenerations of the elliptic fiber. These may or may not correspond

to singularities of the total space X3. We are thus led to represent the divisor class [∆] as

[∆] =
∑
A

νA[SA] + [∆′] , (7.1)

where [SA] are the classes of the irreducible, effective divisors SA on which the Calabi-Yau threefold

develops a singularity, while [∆′] is the residual class associated to singularities of the fibration which

leave the total space smooth. Singularities of the Calabi-Yau threefold along SA correspond to stacks

of seven-branes on SA which admit a non-Abelian gauge theory on their world-volume. As already

mentioned in section 5.2.3, possible gauge groups can be classified looking at the possible singularities

which occur in X3 [175, 188, 189, 190]. The constants νA are related to group-theoretical invariants.

The divisor ∆′ is wrapped by a single seven-brane with no massless gauge bosons on its world-volume.

Furthermore, if [∆′] and some of the [SA]’s have non-vanishing intersection, singularity enhancements

take place, which give rise to charged matter in the Type IIB picture. As explained in section 5.3 it

is useful to resolve the singularities of X3 to obtain a smooth Calabi-Yau threefold X̃3. The canonical

way of doing that, both if the singularity locus is a point and if it is a smooth curve, is discussed in

[175, 188, 191]. For our purposes we do not need to perform the resolution explicitly, but we rather

need only some general patterns of the topology of the resulting smooth space X̃3.

Let us collect some results about divisors and intersection numbers of an elliptically fibered Calabi-

Yau threefold. Recall that strict SU(3) holonomy is always understood in our terminology. It is simpler

to start with the case of a smooth threefold X3. On such a space there is a natural set of divisors

which span H4(X3,R). Firstly, one has the section of the fibration which is homologous to the base

B2. Secondly, there is the set of vertical divisors Dα which are obtained as Dα = π−1(Db
α), where

Db
α is a divisor of B2 and π is the projection to the base π : X3 → B2. For these smooth elliptic

fibrations one has h1,1(B2) = h1,1(X3) − 1 such divisors. Let ω0, ωα be the two-form cohomology

classes Poincaré dual to the divisor classes [B2], [Dα]. It is useful to record some facts concerning

intersections of divisors for smooth elliptic fibrations. Due to the fibration structure one has

Dα ∩Dβ ∩Dγ = 0 . (7.2)

We also introduce the matrix ηαβ by defining

ηαβ = Db
α ∩Db

β = B2 ∩Dα ∩Dβ . (7.3)
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Note that ηαβ is a non-degenerate symmetric matrix of signature (+,−, . . . ,−) with h1,1(B2)−1 minus

signs. Finally, let us recall the cohomological identity1

ω0 ∧ ω0 + c1(B2) ∧ ω0 = 0 . (7.4)

We also introduce the vector Kα by expanding the first Chern class of the base B2 onto a basis

two-forms dual to vertical divisors as

− c1(B2) = Kαωα . (7.5)

Some basic formulas for the base B2 of X3 will be useful later. The Euler number χ(B2) and the

integral of c2
1(B2) can be generally evaluated as

χ(B2) =

∫
B2

c2(B2) = 2 + h1,1(B2) ,

∫
B2

c2
1(B2) = KαKβηαβ = 10− h1,1(B2) , (7.6)

where we have used (7.5) and the fact that h1,0(B2) = h2,0(B2) = 0 for a base of a Calabi-Yau

manifold.

Let us now take into account a singular Calabi-Yau threefold X3 and its resolution X̃3. For the

sake of simplicity, we will restrict ourselves to the case of a single seven-brane stack, thus omitting the

sum over index A in (7.1). We thus have a simple gauge group G and we can write [∆] = ν[S] + [∆′].

Let Di be the exceptional divisors of the resolved threefold X̃3. They were introduced in general

terms in section 5.2.3, where it was argued that the index i runs from 1 to rankG. Recall also that

the cohomology class Poincaré dual to [Di] is denoted ωi. Furthermore, let us expand the divisor S

wrapped by the stack of branes in a basis two-forms dual to vertical divisors as

PD([S]) = Cαωα . (7.7)

Note that, after resolution, this is replaced by

PD([Ŝ]) = Cαωα + aiωi , (7.8)

where ai are the Dynkin numbers characterizing the Dynkin diagram of G.2 Exceptional divisors enjoy

the following properties

B2 ∩Di = 0 ,

Dα ∩Di ∩Dj = −Cij B2 ∩Dα ∩ S ,

Dα ∩Dβ ∩Di = 0 , (7.9)

where Cij is the Cartan matrix of the group G.

We are now in a position to summarize all intersection numbers on the resolved Calabi-Yau three-

fold X̃3. We have found a cohomology basis {ω0, ωα, ωi} which can be denoted collectively as {ωΛ}.
As in section 4.5.2 intersection numbers are defined as

VΛΣΘ =

∫
X̃3

ωΛ ∧ ωΣ ∧ ωΘ . (7.10)

1We will be slightly sloppy with the notation in the following, since we do not explicitly indicate that certain quantities,
e.g. the first Chern class c1(B2), have to be pulled back from B2 to the Calabi-Yau threefold.

2Note that after singularity resolution also (7.5) is modified by the addition of non-trivial ωi terms. Nonetheless,
these terms do not affect the following discussion on intersection numbers, thanks to identities (7.9)
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Identities and properties listed above imply that intersection numbers must satisfy

V000 = ηαβK
αKβ , V0iΛ = 0 , (7.11)

V00α = ηαβK
β , Vαij = −CijηαβCβ ,

V0αβ = ηαβ , Vαβi = 0 ,

Vαβγ = 0 ,

where Λ = 0, α, j. As far as Vijk is concerned, in general it is non-vanishing, but otherwise un-

constrained by our discussion so far. These intersection numbers arise from intersecting exceptional

divisors. In fact, as we will discuss below, they will be linked to group-theoretical factors depending

on the charged matter content of the gauge theory.

7.3 Generalities on six-dimensional (1,0) supergravity

In this section we review some basic facts about the spectrum and the dynamics of a generic six-

dimensional supergravity model with (1, 0) supersymmetry, corresponding to 8 real supercharges.

7.3.1 Field content

Massless states in six dimensions are classified by representations of the little group SO(4) ∼= SU(2)×
SU(2) and are therefore labelled by a couple of integer or half-integer spins, (jL, jR). Four differ-

ent kinds of supersymmetric multiplets can be constructed, restricting to spin less or equal to two

[173]. We list them following the chirality conventions which are more common in the six-dimensional

supergravity literature, see e.g. [192]:

• gravity multiplet: (1, 1)⊕ 2(1, 1
2)⊕ (1, 0), i.e. the graviton, one Weyl3 left-handed gravitino, one

self-dual two-form;

• vector multiplet: (1
2 ,

1
2)⊕ 2(1

2 , 0), i.e. one vector and one Weyl left-handed gaugino;

• tensor multiplet: (0, 1)⊕ 2(0, 1
2)⊕ (0, 0), i.e. one antiself-dual two-form, one Weyl right-handed

tensorino, one real scalar;

• hypermultiplet: 2(0, 1
2)⊕ 4(0, 0), i.e. one Weyl right-handed hyperino and two complex scalars.

A general model features one gravity multiplet, nV vector multiplets, nH hypermultiplets, nT tensor

multiplets. The (anti)self-duality condition is incompatible with a naive Lagrangian formulation,

because the usual kinetic term for two-forms vanishes identically once it is taken into account. This is

a six-dimensional analog of the problem one faces in writing the Ramond-Ramond effective action for

3An equivalent formulation makes use of a SU(2) doublet of Weyl left-handed gravitini (SU(2) is the automorphism
group of the supersymmetry algebra), supplemented by a symplectic Majorana condition. Similar remarks apply to all
other fermions. This explains why this model is sometimes referred to as N = 2 in the literature.
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C4 in Type IIB supergravity, see section 2.2. In six dimensions in the special case nT = 1 the antiself-

dual two-form from the gravity multiplet and the self-dual two-form from the tensor multiplet can be

combined into a two-form without any self-duality property, and the standard Lagrangian formulation

applies. Nonetheless, a set of consistent, supersymmetric, two-derivative, classical equations of motion

is known for arbitrary nT [192]. We can still derive them from variation of a suitable pseudoaction,

imposing the self-duality condition after computation of functional derivatives, as usual.

We will always restrict ourselves to the bosonic content of the model, and adopt notations described

below. First of all, we denote all six-dimensional two-forms collectively as B̂α, where α = 1, ...nT +1.4

The scalars coming from the nT tensor multiplets parameterize the quotient

SO(1, nT )/SO(nT ) . (7.12)

It is customary to describe this coset scalar manifold by means of a vielbein formalism. We refer the

reader to e.g. [192] for a detailed account. For our present discussion we need only to recall that a

constant SO(1, nT ) metric Ωαβ is introduced, along with a set of nT + 1 scalar fields jα. The metric

Ωαβ has mostly minus Lorentzian signature (1, nT ), and the scalars jα are subject to the constraint

Ωαβj
αjβ = 1 . (7.13)

Moreover, the scalar manifold is endowed with another non-constant, positive definite metric gαβ,

which is given in terms of Ωαβ, j
α by

gαβ = 2jαjβ − Ωαβ , (7.14)

where jα = Ωαβj
β. This metric is needed to write down the (anti)-self-duality condition for B̂α in a

SO(1, nT ) covariant way, as we will see in equation (7.42).

As far as vectors are concerned, in this section we consider a supergravity model with semi-simple

gauge group G =
∏
iGi. For each simple factor Gi let gi be the corresponding Lie algebra. We denote

the gi-valued gauge one-form by Âi, and matrix multiplication will always be understood. Moreover,

we use anti-Hermitian generators so that the expression for the non-Abelian field strength two-form

reads

F̂i = dÂi + Âi ∧ Âi = dÂi + 1
2 [Âi, Âi] , (7.15)

where here and in what follows no sum over i is understood. The field strength transforms covariantly

under the gauge transformation

δÂi = dλ̂i + [Âi, λ̂i] , (7.16)

where the gauge parameter λ̂i is a gi-valued zero-form. Let us recall the definition of the Chern-Simons

three-form

ω̂CS
i = tr

(
Âi ∧ dÂi + 2

3Âi ∧ Âi ∧ Âi
)
, (7.17)

4Later on we will identify nT + 1 = h1,1(B2) in the duality to M-theory. This provides the match of the indices of
the present section with the ones of section 7.2.
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where the trace is taken in a suitable representation of gi. More details about our normalization for

gauge traces will be given below when we review anomalies in six dimensions. It is also useful to recall

two key properties of the Chern-Simons three-form,

δω̂CS
i = tr dλ̂i ∧ dÂi , dω̂CS

i = tr F̂i ∧ F̂i . (7.18)

Next, let us make some remarks about the hyper sector. Each hypermultiplet contains four real

scalars and therefore we use the notation qU (U = 1, ..., 4nH). These scalar fields can be considered as

real coordinates for a quaternionic manifold, whose metric we write as hUV . The geometric structures

of quaternionic manifolds have been studied intensively, see e.g. [193, 194]. Since our main focus will

be on the tensor and vector multiplet structure, we will refrain from giving a detailed account of

these results here. However, in the following we will need to consider some aspects of charged hyper-

multiplets. The only piece of information relevant to our discussion is the six-dimensional covariant

derivative, which reads schematically

D̂qU = dqU + ÂI(TR
I q)

U , (7.19)

where the index I runs over all generators of the gauge group G, and TR
I are the group generators

acting on the scalars qU in the representation R. Several examples of gauged six-dimensional (1, 0)

supergravities are known. We refer the reader to [195, 196, 197, 198] and references therein for a

detailed account on the subject.

Finally, gravitational degrees of freedom are described by means of the vielbein formalism. The

analogue of the one-form gauge connection Â is provided by the so(1, 5)-valued spin connection one-

form ω̂, determined by the vielbein through the usual torsionless condition

dê+ ω̂ ∧ ê = 0 , (7.20)

where matrix multiplication is understood. If ˆ̀ is a so(1, 5)-valued zero-form which we interpret as

infinitesimal parameter of a local Lorentz transformation, we have

δω̂ = dˆ̀+ [ω̂, ˆ̀] . (7.21)

The correct covariant field strength is the curvature two-form R̂, which is constructed out of the spin

connection according to

R̂ = dω̂ + ω̂ ∧ ω̂ , (7.22)

and is related to the components of the six-dimensional Riemann tensor R̂λ̂ τ̂ µ̂ν̂ by

R̂â
b̂

= 1
2 ê
â
λ̂
êτ̂
b̂
R̂λ̂ τ̂ µ̂ν̂ dx̂

µ̂ ∧ dx̂ν̂ , â, b̂,= 0, ..., 5 . (7.23)

We also define a gravitational Chern-Simons three-form

ω̂CS
grav = tr

(
ω̂ ∧ dω̂ + 2

3 ω̂ ∧ ω̂ ∧ ω̂
)
, (7.24)

which satisfies

δω̂CS
grav = tr dˆ̀∧ dω̂ , dω̂CS

grav = tr R̂ ∧ R̂ . (7.25)
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Note that the right hand side of the last equation is proportional to a characteristic class build from the

curvature two-form. In general, the proportionality constant is fixed by the requirement that suitable

integrals of such classes take integer values. This standard normalization is achieved by inserting a

factor of (2π)−1 for each occurrence of the curvature two-form R̂ specified by (7.23). In order to

improve readability, we will never write down these factors of (2π)−1 in the following. Similar remarks

apply to the five-dimensional curvature two-form introduced in section 7.4.1.

7.3.2 Anomaly cancellation

As we have seen above, the spectrum of a general six-dimensional (1,0) supergravity model contains

chiral fermions and (anti)self-dual two-forms. As a result, gauge, gravitational, and mixed anoma-

lies may appear once one-loop effects are taken into account. Nonetheless, a generalization of the

ten-dimensional Green-Schwarz mechanism [171], due to Sagnotti [172, 177], can be implemented to

generate consistent, anomaly-free theories. Let us review it in the case at hand of a semi-simple gauge

group G =
∏
iGi with no Abelian factor, using the notation of [170].

At the heart of the Green-Schwarz-Sagnotti mechanism lies the observation that tree-level exchange

of quanta of the tensor fields B̂α can counterbalance one-loop anomalous diagrams. For this to be

possible, the total anomaly polynomial must be of the form

Î8 = 1
2ΩαβX̂

α
4 ∧ X̂β

4 , (7.26)

where we introduced the four-forms

X̂α
4 = 1

2a
αtr R̂ ∧ R̂+

∑
i

2bαi λ
−1
i trf F̂i ∧ F̂i . (7.27)

In these expressions aα, bαi are known as anomaly coefficients and transform as vectors in the space

R1,T with symmetric inner product Ωαβ. More precisely, aα, bαi can be shown to be vectors in a lattice,

commonly referred to as the anomaly lattice of the theory [180]. Furthermore, trf denotes the trace

in the fundamental representation, and λi are normalization constants depending on the type of each

simple group factor, as described in [178, 179, 180, 181].

If condition (7.26) is met, the theory can be made anomaly-free by introducing the generalized

Green-Schwarz term

ŜGS = −1

2

∫
M6

ΩαβB̂
α ∧ X̂β

4 . (7.28)

where M6 denotes six-dimensional spacetime. By computation of the anomaly polynomial Î8 in

terms of the chiral matter content [199] and comparison with the factorized form (7.26), the following
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necessary conditions for anomaly cancellation are found:

nH − nV = 273− 29nT (7.29)

0 = Bi
adj −

∑
R

xiRB
i
R (7.30)

Ωαβa
αaβ = 9− nT (7.31)

−Ωαβa
αbβi =

1

6
λi

(∑
R

xiRA
i
R −Aiadj

)
(7.32)

Ωαβb
α
i b
β
i =

1

3
λ2
i

(∑
R

xiRC
i
R − Ciadj

)
(no sum over i) (7.33)

Ωαβb
α
i b
β
j = λiλj

∑
RS

xijRSA
i
RA

j
S (i 6= j). (7.34)

Recall that nH , nV , nT are the numbers of hyper-, vector and tensor multiplets in the model. The

constants AiR, B
i
R, C

i
R are group theory coefficients defined through

tr RF̂
2
i = AiRtrf F̂

2
i (7.35)

tr RF̂
4
i = Bi

Rtrf F̂
4
i + CiR(trf F̂

2
i )2 . (7.36)

Finally, xiR, xijRS denote the number of matter fields that transform in the irreducible representation

R of gauge group factor Gi, and (R,S) of Gi ×Gj , respectively. Note that for groups such as SU(2)

and SU(3), which lack a fourth order invariant, Bi
R = 0 and there is no condition 7.30. In order to

simplify the notation, in the rest of this chapter we absorb the group-theoretical prefactor λi into the

definition of the trace,

tr = λ−1
i trf . (7.37)

In equations (7.17) and (7.18) the symbol tr should be interpreted in this fashion.

The Green-Schwarz term (7.28) contributes to the anomaly polynomial because the tensor fields

transform inhomogeneously under gauge transformations and local Lorentz transformations. More

precisely, we have

δB̂α = dΛ̂α − 1
2a

α tr ˆ̀dω̂ − 2
∑
i

bαi tr λ̂i dÂi . (7.38)

In this equation Λ̂α is a collection of one-forms which are the parameters of the usual Abelian gauge

invariance of two-form potentials. The correct, gauge-invariant field strength three-form for B̂α turns

out to be

Ĝα = dB̂α + 1
2a

αω̂CS
grav + 2

∑
i

bαi ω̂
CS
i , (7.39)

and satisfies a non-standard Bianchi identity,

dĜα = X̂α
4 . (7.40)
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7.3.3 Effective action

For the sake of notational simplicity in the rest of this chapter we will consider the simpler case in

which the gauge group G consists of a single simple factor. It is straightforward to reintroduce several

simple factors labelled by the index i.

The bosonic terms of the pseudoaction for six-dimensional (1, 0) supergravity with simple gauge

group G is given by

Ŝ(6) =

∫
M6

+ 1
2R̂∗̂1− hUV D̂qU ∧ ∗D̂qV − 1

4gαβĜ
α ∧ ∗̂Ĝβ − 1

2gαβdj
α ∧ ∗̂djβ

− 2Ωαβj
αbβtr F̂ ∧ ∗̂F̂ − 1

2ΩαβB̂
α ∧ X̂β

4 − V̂ ∗̂1 . (7.41)

The non-constant, positive-definite metric gαβ has been introduced in (7.14). In the second line, V̂ is

a potential generated by gauging the hypermultiplet scalars qU . Its explicit form can be found e.g. in

[198], but will not be crucial for our discussion. Let us stress that we have included some higher-

derivative terms connected with the Green-Schwarz mechanism described in the previous subsection.

In particular, note that some higher-derivative terms are implicitly contained in the definition of the

gauge and local Lorentz invariant field strength Ĝα (7.39). Let us remind the reader that (7.41) has

to be supplemented by the self-duality constraint of for the tensors B̂α. It is written in terms of the

three-form field strengths as

gαβ ∗̂Ĝα = ΩαβĜ
β , (7.42)

where gαβ is the positive-definite, non-constant metric introduced in (7.14).

The classical action (7.41) might fail to be gauge and local Lorentz invariant because of the Green-

Schwarz term. Indeed,

δŜ(6) = 1
2

∫
M6

Ωαβ

(
1
2a

αtr ˆ̀dω̂ + 2bαtr λ̂dÂ
)
∧ X̂β

4 , (7.43)

which in general is not just a surface contribution. Of course this is precisely the reason why the

Green-Schwarz mechanism can work. Nonetheless, let us point out that there is a special case where

the action is already classically gauge invariant. It is enforced by the conditions

Ωαβa
αaβ = 0 , Ωαβa

αbβ = 0 , Ωαβb
αbβ = 0 . (7.44)

These conditions on aα, bα can be related to the spectrum of fields, in particular the charge matter

content, through the anomaly cancellation conditions (7.29)-(7.34) As we argue in section 7.6, the

match between the F-theory set-up and the M-theory compactification is simpler in this special case.

7.4 Circle compactification from six to five dimensions

In this section we discuss the circle reduction of a general six-dimensional (1, 0) supergravity theory.

This gives us the first opportunity to discuss the circle reduction of a six-dimensional pseudoaction for
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two-forms. In this chapter we retain only massless Kaluza-Klein modes. This topic will be revisited

in chapter 10, where both zeromodes and excited modes will be kept.

The reduction from six to five dimensions yields a non-Abelian gauge theory that is further pushed

to the Coulomb branch according to the paradigm explained in section 5.3. The five-dimensional action

is brought into canonical N = 2 form in subsection 7.4.3. We point out an intriguing generalization of

the N = 2 formalism which captures the full reduced action. Finally, in subsection 7.4.4 we perform

the reduction of a specific higher-order curvature correction that carries crucial information about

gravitational six-dimensional anomalies.

7.4.1 Kaluza-Klein reduction on the circle at two-derivative level

Let us now study the supergravity model outlined above on a background with one compact spatial

dimension, i.e. with topology R5 × S1. As anticipated above, we restrict ourselves to zeromodes only.

Some general features of circle reductions have been already discussed in section 4.2.

Ansätze for the reduction

The metric Ansatz reads

dŝ2
(6) = g̃µνdx

µdxν + r2Dy2 , Dy = dy −A0 , y ∼ y + 2π (7.45)

where A0 = A0
µdx

µ is the Kaluza-Klein vector and all five-dimensional field are independent of the

coordinate y along S1. A twiddle on the five-dimensional metric is used to stress that a Weyl rescaling

will be necessary to cast the five-dimensional Einstein-Hilbert term into canonical form, as already

anticipated in section 4.2 for a general circle compactification. Note that (7.45) is a rewriting of (4.7)

in a slightly different notation which is better suited for the problem at hand. With the current

notation the U(1) symmetry coming from circle diffeomorphisms y → y + χ acts on the Kaluza-Klein

vector as A0 → A0 + dχ, in such a way that the one-form Dy is invariant. The field strength of A0

reads

F 0 = dA0 . (7.46)

It is useful to write down the Kaluza-Klein Ansatz for the metric in the vielbein formalism, too. Up

to local Lorentz transformations, we can take

êa = ẽaµdx
µ , ê5 = r Dy , (7.47)

where Dy is given in (7.45), and ẽaµ, a = 0, . . . , 4 is the five-dimensional vielbein (independent of y)

before Weyl rescaling.

Let us now turn to the one-forms and two-forms, and take into account zeromodes only. As already

pointed out for general circle compactifications in section 4.2, in order to get lower-dimensional massless

fields that are uncharged under the aforementioned U(1) symmetry we have to expand all fields on

Dy defined in (7.45). To begin with, we set

Â = A+ ζ Dy , (7.48)



122 Chapter 7. Effective action for six-dimensional F-theory compactifications

where ζ is a g-valued five-dimensional zero-form. The gravitational analogue of this relation consists

of the expression for the spin connection components, which can be computed from (7.47):

ω̂ab = ω̃ab + ã
(0)
ab Dy , ω̂a5 = b̃(1)

a + c̃(0)
a Dy , (7.49)

where ω̃ab is the five-dimensional spin connection determined by ẽaµ. The zero-forms ã
(0)
ab , c̃

(0)
a , and the

one-form b̃
(1)
a are given by

ã
(0)
ab = 1

2r
2ẽµa ẽ

ν
bF

0
µν , b̃(1)

a = 1
2rẽ

λ
aF

0
λµ dx

µ , c̃(0)
a = −ẽλa∇̃λr , (7.50)

where ∇̃λ is the five-dimensional Levi-Civita connection before Weyl rescaling.

We are now in a position to write down the Kaluza-Klein Ansatz for the two-forms B̂α. Care has

to be taken because the six-dimensional transformation rule (7.38) entangles the degrees of freedom

encoded in B̂α with those of vectors and gravity. Thus, we set

B̂α = Bα −
[
Aα − 1

2a
α tr (ã(0)ω̃)− 2bα tr (ζA)

]
∧Dy . (7.51)

In this way Aα, Bα have the simplest possible gauge transformations,

δAα = dµα (7.52)

δBα = dΛα + µαF 0 − 1
2a

α tr (`dω̃)− 2bα tr (λdA) , (7.53)

where the infinitesimal parameters are a g-valued five-dimensional zero-form λ, a so(1, 4)-valued five-

dimensional zero-form `, five-dimensional zero-, one-forms µα,Λα. The first relation implies that Aα

has a standard, Abelian field strength

Fα = dAα . (7.54)

However, the naive field strength dBα is not gauge invariant, and must be improved by setting

Gα = dBα −Aα ∧ F 0 + 1
2a

αω̃CS
grav + 2bαωCS , (7.55)

where

ω̃CS
grav = tr

(
ω̃ ∧ dω̃ + 2

3 ω̃ ∧ ω̃ ∧ ω̃
)
, (7.56)

ωCS = tr
(
A ∧ dA+ 2

3A ∧A ∧A
)
. (7.57)

The corresponding non-standard Bianchi identity reads

dGα = −Fα ∧ F 0 + 1
2a

αtr R̃ ∧ R̃+ 2bαtrF ∧ F . (7.58)

Dimensional reduction of the two-derivative Lagrangian

In the rest of this subsection we will only focus on the two-derivative part of the total pseudoaction

(7.41). As a consequence, we drop higher curvature terms from the six-dimensional pseudoaction, and

we also neglect gravitational contribution to the gauge transformation of Bα and to the field strength

Gα. A discussion of the higher curvature corrections is postponed to subsection 7.4.4.
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Let us stress that, even if we start with a pseudoaction in six dimensions, the resulting five-

dimensional action is a proper action: it captures the dynamics of zeromodes without any need for

auxiliary conditions to be imposed at the level of the equations of motion. This is possible because the

six-dimensional two-forms B̂α dimensionally reduce to two-forms Bα and vectors Aα as seen in (7.51).

At the same time, we also have to dimensionally reduce the self-duality constraint (7.42). Explicitly

we find

r gαβ ∗̃Gβ = −ΩαβFβ , (7.59)

where we have introduced the shorthand notation

Fα = Fα − 4bαtr (ζF ) + 2bαtr (ζζ)F 0 . (7.60)

The key point is that the five-dimensional duality condition (7.59) now relates two-forms and vectors.

Since it does not involve a self-duality, it can be imposed on the level of the action itself. Hence, in

computing the five-dimensional action we proceed in the two steps:

1. We perform a straightforward reduction of the pseudoaction (7.41) ignoring momentarily the

self-duality constraint. The resulting five-dimensional pseudoaction, denoted S
(5)F
pseudo, should be

written in a form such that Bα only appears through its field strength Gα. Moreover, Gα can

be treated as an independent variable which enters the action only algebraically.

2. The five-dimensional pseudoaction S
(5)F
pseudo is modified by adding a term ∆S(5)F with the following

properties. If ∆S(5)F is regarded as a functional of Aα, Bα it is a total derivative. If it is regraded

as a functional of Aα, Gα it is engineered in such a way that variation of S
(5)F
pseudo + ∆S(5)F with

respect to Gα reproduces both the self-duality constraint and the Bianchi identity for Gα.

If we succeed in performing these two steps we can integrate out the five-dimensional three-forms Gα

by means of their classical equation of motion and thus obtains a proper action S(5)F for the vectors

Aα. In the remaining part of this subsection we provide a detailed derivation of S(5)F at two-derivative

level. Crucially, however, the two steps described above can be performed even if we reintroduce the

gravitational part of the generalized Green-Schwarz term, and all gravitational contributions to Gα,

as discussed in section 7.4.4.

To begin with, let us record the expression for the functional S
(5)F
pseudo obtained by naive dimensional

reduction of the two-derivative part of (7.41) according to the metric, vector, and two-form Ansätze

(7.45), (7.48), (7.51). One finds

S
(5)F
pseudo =

∫
M5

+ 1
2rR̃ ∗̃1− 1

4r
3F 0 ∧ ∗̃F 0 − 1

2rgαβdj
α ∧ ∗̃djβ − rhUVDqU ∧ ∗̃DqV

− 2rΩαβj
αbβtr (F − ζF 0) ∧ ∗̃(F − ζF 0)− 2r−1Ωαβj

αbβtrDζ ∧ ∗̃Dζ
− 1

4rgαβG
α ∧ ∗̃Gβ − 1

4r
−1gαβFα ∧ ∗̃Fβ

− 1
2ΩαβG

α ∧ (Fβ − F β) + Ωαβb
αAβ ∧ trF ∧ F

− 2Ωαβb
αbβωCS ∧

(
2tr ζF − tr ζζF 0

)
− 2Ωαβb

αbβtr ζA ∧
(
trF ∧ F − 2tr ζF ∧ F 0 + tr ζζF 0 ∧ F 0

)
−
[
rV̂ + r−1hUV ζ

IζJ(TR
I q)

U (TR
J q)

V
]
∗̃1 . (7.61)
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In this expression, Dζ = dζ + [A, ζ] is the gauge covariant derivative for the adjoint scalars ζ, while

DqU = dqU +AI(TR
I q)

U are the five-dimensional gauge covariant derivatives for the scalars qU in the

hypermultiplets. The shorthand notation Fα has been introduced in (7.60). Note that, by virtue of

some integrations by parts, (7.61) has been cast in a form in which Bα only enters S
(5)F
pseudo via Gα.

Next, we have to identify the suitable term ∆S(5)F for the implementation of the second step of

the program outlined above. The correct form of ∆S(5)F reads

∆S(5)F =

∫
M5

−1
2ΩαβdB

α ∧ F β

=

∫
M5

−1
2ΩαβG

α ∧ F β + 1
2Ωαβ(−AαF 0 + 2bαωCS) ∧ F β . (7.62)

From the first line it is apparent that ∆S(5)F is a total derivative if it is regarded as a functional of

Aα, Bα. Let us also stress that the Chern-Simons terms originating from the difference between dBα

and Gα in the second line of (7.62) are essential for our following discussion.

If we now consider S
(5)F
pseudo + ∆S(5)F as a functional of Gα and Aα, the equations of motion ensure

both the self-duality condition (7.59) and the non-standard Bianchi identity (7.58). Moreover, Gα

enters S
(5)F
pseudo + ∆S(5)F only quadratically, and is therefore readily integrated out. We thus obtain the

desired five-dimensional proper action,

S(5)F =

∫
M5

+ 1
2rR̃ ∗̃1− 1

4r
3F 0 ∧ ∗̃F 0 − 1

2rgαβdj
α ∧ ∗̃djβ − rhUVDqU ∧ ∗̃DqV

− 2rΩαβj
αbβtr (F − ζF 0) ∧ ∗̃(F − ζF 0)− 2r−1Ωαβj

αbβtrDζ ∧ ∗̃Dζ
− 1

2r
−1gαβFα ∧ ∗̃Fβ − 1

2ΩαβA
0 ∧ Fα ∧ F β + 2Ωαβb

αAβ ∧ trF ∧ F
− 2Ωαβb

αbβωCS ∧
(
2tr ζF − tr ζζF 0

)
− 2Ωαβb

αbβtr ζA ∧
(
trF ∧ F − 2tr ζF ∧ F 0 + tr ζζF 0 ∧ F 0

)
−
[
rV̂ + r−1hUV ζ

IζJ(TR
I q)

U (TR
J q)

V
]
∗̃1 . (7.63)

It is worth pointing out that −1
4rgαβG

α∧∗̃Gβ− 1
4r
−1gαβFα∧∗̃Fβ vanishes identically after elimination

of Gα, and that the kinetic term for vectors −1
2r
−1gαβFα ∧ ∗̃Fβ comes from the Chern-Simons term

−1
2ΩαβG

α ∧ Fβ. Moreover, the term +2Ωαβb
αAα ∧ trF ∧ F has a different prefactor because two

different contributions must be taken into account: one was already present in (7.61), the other one

is found in ∆S(5)F.

The last step of the dimensional reduction consists of the Weyl rescaling

g̃µν = r−2/3gµν , (7.64)

which is simply a special case of (4.11) written in a slightly different notation. The final form of the
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action is therefore

S(5)F =

∫
M5

+ 1
2R ∗1− 2

3r
−2dr ∧ ∗dr − 1

2gαβdj
α ∧ ∗djβ

− 2r−2Ωαβj
αbβtrDζ ∧ ∗Dζ − hUVDqU ∧ ∗DqV

− 1
4r

8/3F 0 ∧ ∗F 0 − 1
2r
−4/3gαβFα ∧ ∗Fβ

− 2r2/3Ωαβj
αbβtr (F − ζF 0) ∧ ∗(F − ζF 0)

− 1
2ΩαβA

0 ∧ Fα ∧ F β + 2Ωαβb
αAβ ∧ trF ∧ F

− 2Ωαβb
αbβωCS ∧

(
2tr ζF − tr ζζF 0

)
− 2Ωαβb

αbβtr ζA ∧
(
trF ∧ F − 2tr ζF ∧ F 0 + tr ζζF 0 ∧ F 0

)
−
[
r−1V̂ + r−8/3hUV ζ

IζJ(TR
I q)

U (TR
J q)

V
]
∗ 1 . (7.65)

7.4.2 Moving to the Coulomb branch

In the following sections, we will explore the dynamics of F-theory in six dimensions by means of the

duality with M-theory on a Calabi-Yau threefold, as introduced in section 5.3. In this framework,

we can access directly only the Coulomb branch of our non-Abelian gauge sector. The full gauge

group G is spontaneously broken down to U(1)rank(G), which is spanned by the Cartan generators Ti,

i = 1, ..., rank(G). We take them to be normalized in such a way that

tr (TiTj) = Cij (7.66)

where Cij is the Cartan matrix of G.

The spontaneous break down of gauge symmetry is triggered by non-vanishing VEVs of some

adjoint scalars ζ in the vector multiplets. In particular, inspection of the terms

− 2r2/3Ωαβj
αbβtrF ∧ ∗F − 2r−2Ωαβj

αbβtrDζ ∧ ∗Dζ (7.67)

in the non-Abelian five-dimensional action (7.65) shows that the usual Higgs mechanism originates a

mass term for the vectors lying outside of the Cartan subalgebra. As usual, we refer to these massive

vectors as W-bosons. Their scalar partners acquire a mass, as well. From an effective field theory

perspective, we are thus left only with the massless fields Ai, ζi associated to the Cartan subalgebra

of the full gauge algebra. As a result, replacements such as

tr (F ∧ ∗F )→ CijF
i ∧ ∗F j , tr (Dζ ∧ ∗Dζ)→ Cijdζ

i ∧ ∗dζj

ωCS → CijA
i ∧ F j (7.68)

have to be made in (7.65) to get the relevant five-dimensional action.

In a similar fashion, charged hypermultiplets acquire a mass through the five-dimensional scalar

potential

V = r−1V̂ + r−8/3hUV ζ
IζJ(TR

I q)
U (TR

J q)
V (7.69)
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given in the last line of (7.65). Note that the second term originates directly from dimensional reduc-

tion of the six-dimensional kinetic term hUV D̂qU ∧ ∗̂D̂qV . It is quadratic in the scalars of the charged

hypermultiplets and is the source for their masses once gauge symmetry is spontaneously broken.

Following the effective field theory paradigm, one should integrate out the massive hypermultiplets

and only keep neutral hypermultiplets in the five-dimensional action in the Coulomb branch. We use

lower-case indices u, v = 1, ..., 4nneutral
H to enumerate them. Hence, we have the replacement rule

hUVDqU ∧ ∗DqV → huvdq
u ∧ ∗dqv , (7.70)

where huv is a quantum corrected hypermultiplet metric. Determining huv after integrating out the

massive states is in general a complicated task, but we will later give the M-theory expression for huv

where certain corrections have been taken into account implicitly via the geometry. In accord with

supersymmetry we also drop the scalar potential from the effective action for the massless modes.

The explicit form of the five-dimensional action pushed to the Coulomb branch according to the

prescriptions above reads

S(5)F =

∫
M5

+ 1
2R ∗1− 2

3r
−2dr ∧ ∗dr − 1

2gαβdj
α ∧ ∗djβ

− 2r−2Ωαβj
αbβCijdζ

i ∧ ∗dζj − huvdqu ∧ ∗dqv

− 1
4r

8/3F 0 ∧ ∗F 0 − 1
2r
−4/3gαβFα ∧ ∗Fβ

− 2r2/3ΩαβCijj
αbβ(F i − ζiF 0) ∧ ∗(F j − ζjF 0)

− 1
2ΩαβA

0 ∧ Fα ∧ F β + 2ΩαβCijb
αAβ ∧ F i ∧ F j

− 2(Ωαβb
αbβ)(Cklζ

kζ l)Cijζ
iAj ∧ F 0 ∧ F 0

+ 2(Ωαβb
αbβ)(CijCklζ

kζ l + 2CikCjlζ
kζ l)Ai ∧ F j ∧ F 0

− 6(Ωαβb
αbβ)C(ijCk)lζ

lAi ∧ F j ∧ F k . (7.71)

In order to implement the F-theory lift discussed in section 7.6, however, it is essential to recast this

result in a more transparent form. The aim of the following section is precisely the reformulation

of the five-dimensional action in terms of new variables, in such a way to exploit the underlying

supersymmetric structure. Hence, we begin our analysis with a concise review of five-dimensional

N = 2 supergravity.

7.4.3 The five-dimensional effective action and its canonical form

Let us briefly recall the field content of five-dimensional N = 2 (8 real supercharges) supersymmetry

multiplets [200]:

• gravity multiplet: the graviton, one vector (referred to as ‘graviphoton’), one Dirac5 gravitino;

• vector multiplet: one vector, one scalar, one Dirac gaugino;

5It is customary to replace one Dirac fermion by a SU(2) doublet of Dirac fermions satisfying a symplectic Majorana
condition. This explains the notation N = 2.
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• hypermultiplet: 2 complex scalars, one Dirac hyperino.

Let the spectrum consist of the gravity multiplet, n
(5)
V vector multiplets, n

(5)
H hypermultiplets, and

let us focus on the bosonic sector. We are not going to study gauged supergravity models, and therefore

the framework outlined in [201] is general enough for our purposes.6 As usual, each hypermultiplet

contributes four real scalars to the spectrum, and we will use notation qu with u = 1, ..., 4n
(5)
H . The

hypersector is entirely specified once a quaternionic structure with metric huv is given. Since the

graviphoton and the vectors from the vector multiplets are naturally entangled by the dynamics of

the theory, let us denote them collectively as AI where I = 0, ..., n
(5)
V . The scalars coming from the

vector multiplets parameterize a n
(5)
V manifold which is most conveniently described in terms of so-

called very special coordinates MI . These are n
(5)
V + 1 real coordinates which describe an auxiliary

(n
(5)
V + 1)-dimensional manifold in which the actual scalar manifold is embedded as an hypersurface,

as explained below.

The dynamics of gravity-vector sector at two-derivative level is entirely specified once the cubic

potential

N = 1
3!CIJKM

IMJMK (7.72)

is given in terms of very special coordinates and of a constant symmetric tensor CIJK. First of all,

the scalar manifold is identified with the hypersurface described by the so-called very special geometry

constraint

N = 1 . (7.73)

Second of all, the gauge coupling function and the metric on the scalar manifold coincide and are

constructed out of second derivatives of the cubic potential,

GIJ =
[
−1

2∂MI∂MJ logN
]
N=1

=
[
−1

2NIJ + 1
2NINJ

]
N=1

. (7.74)

In this expression, and in the following, downstairs indices I,J denote partial derivative with respect

to coordinates NI ,MJ . Finally, the constant tensor CIJK itself appears in the action as Chern-Simons

coupling. Indeed, the action is given by

S(5)can =

∫
M5

+ 1
2R ∗ 1− 1

2GIJ dM
I ∧ ∗dMJ − huvdqu ∧ ∗dqv

− 1
2GIJF

I ∧ ∗FJ − 1
12CIJKA

I ∧ FJ ∧ FK . (7.75)

Let us now discuss the relation between the spectrum of a six-dimensional supergravity model and

the spectrum of its Kaluza-Klein reduction on a circle. Suppose the numbers of six-dimensional tensor,

vector and hypermultiplets are nT , nV , nH respectively. To begin with, we note that the bosonic part

6In order to compare formulae below with the reference, the reader should be aware that we have changed notation,
should recall our conventions on Riemann tensor contractions (cf. appendix A), and should also note that

Cthere
IJK =

√
6

8
Chere
IJK .
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of a hypermultiplet behaves trivially under dimensional reduction on S1. Hence, we can conclude that

the number n
(5)
H of five-dimensional hypermultiplets is given simply by

n
(5)
H = nneutral

H , (7.76)

where the label ‘neutral’ has been added to remind the reader that charged six-dimensional hyper-

multiplets are integrated out and do not appear in the five-dimensional effective theory.

As far as five-dimensional vectors are concerned, they are generated by three different mechanisms.

First of all, one vector A0 is introduced by the off-diagonal component of the Kaluza-Klein Ansatz for

the six-dimensional metric. Second of all, nT + 1 vectors Aα come from the (anti)-self-dual two-forms

in six-dimensions. Finally, reduction of six-dimensional vectors gives us nV additional Ai. We thus

have a total of 1 + (nT + 1) + nV vectors, which we denote collectively as AI = (A0, Aα, Ai). They fit

into

n
(5)
V = nV + nT + 1 (7.77)

five-dimensional vector multiplets, because one linear combination of {A0, Aα} has to be identified

with the graviphoton and sits in the gravity multiplet.7 The corresponding scalar degrees of freedom

are provided by jα, ζi, r for a total of (nT + 1) + nV + 1 variables. However, they are subject to one

constraint, which in six-dimensional language is given by (7.13). This counting is consistent with the

existence of very special coordinates MI = (M0,Mα,M i) satisfying (7.73).

In the remaining part of this section we discuss in which way, and to which extent, the results of

the dimensional reduction performed in 7.4.1 can be expressed in canonical form (7.75). The first step

towards this direction is provided by the correct identification of the very special coordinates MI on

the vector multiplet scalar manifold. It turns out that these new coordinates are defined in terms of

the old coordinates (r, jα, ζi) by

M0 = r−4/3 ,

Mα = r2/3
(
jα + 2bαr−2Cijζ

iζj
)
,

M i = r−4/3ζi . (7.78)

Next, let us define

NF = ΩαβM
0MαMβ − 4Ωαβb

αCijM
βM iM j + 4Ωαβb

αbβCijCkl
M iM jMkM l

M0
. (7.79)

Expressions (7.78) and (7.79) are engineered in such a way that

NF = Ωαβj
αjβ = 1 (7.80)

holds identically. In particular, note that this identity depends on the non-trivial interplay of the non-

linear bα-shifted redefinition of the coordinates Mα (7.78) and the fact that there is a non-polynomial

term in the definition (7.79) of NF, including an inverse power of M0. This non-polynomial term in

7We include Aα because we cannot exclude a contribution from the six-dimensional antiself-dual two-form in the
gravity multiplet.
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N is a significant deviation from the canonical case, in which N is a cubic polynomial, and will be

discussed further in the following. However, note that NF is still a homogeneous function of degree

three in the coordinates MI .

Once the new coordinates MI are introduced, the five-dimensional effective action takes the form

S(5)F =

∫
M5

+ 1
2R ∗ 1− huvdqu ∧ ∗dqv − 1

2GIJ dM
I ∧ ∗dMJ

− 1
2GIJF

I ∧ ∗FJ − 1
12XIJKA

I ∧ FJ ∧ FK . (7.81)

where the metric GIJ and the coefficients XIJK = XI(JK) are functions of the scalar fields MI .

Note that the gauge coupling function and the metric in the kinetic term for scalars MI coincide,

as expected for a five-dimensional N = 2 theory. Moreover, both GIJ and XIJK are completely

determined by the function NF introduced above, as explained in the following.

As far as the metric GIJ is concerned, it is given precisely by (7.74). It is interesting to point out

that the non-polynomial term in the definition of NF is crucial for (7.74) to hold for the Kaluza-Klein

reduced action.

The Chern-Simons term in (7.81),

S
(5)F
CS = − 1

12

∫
M5

XIJKA
I ∧ FJ ∧ FK , (7.82)

deserves more discussion. Its variation under an Abelian gauge transformation δAI = dλI can be

written as a boundary term, plus

δS
(5)F
CS = − 1

12

∫
M5

λIdXIJK ∧ FJ ∧ FK . (7.83)

For each value of indices I,J ,K, two possibilities may occur:

1. XIJK is constant: the corresponding contribution to the Chern-Simons term is gauge invariant

in five dimensions;

2. XIJK depends non-trivially on the scalars MI : the corresponding contribution to the Chern-

Simons term breaks five-dimensional gauge invariance explicitly.

Usually, only the first case is encountered in supergravity models. As a consequence, only the totally

symmetric part of XIJK effectively enters the action, because we are allowed to integrate by parts

and permute indices on the vector and the field strengths in (7.82). This symmetry argument breaks

down if some components of XIJK are non-constant. In fact, the first slot of this tensor plays a

distinguished role: exactly those gauge symmetries are broken, whose gauge vector has index I such

that not all components {XIJK}J ,K are constant, as can be see from (7.83).

As already mentioned, all data needed to construct (7.82) can be extracted from the function NF

introduced above. To this end, it is useful to note that NF naturally splits in a polynomial part NF
p
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and a non-polynomial part NF
np,

NF
p = ΩαβM

0MαMβ − 4Ωαβb
αCijM

βM iM j

NF
np = 4Ωαβb

αbβCijCkl
M iM jMkM l

M0
. (7.84)

On the one hand, since NF
p is a homogeneous polynomial of degree three, its third derivatives with

respect to coordinates MI are constants. In fact, they turn out to be simply related to the coefficients

of the gauge invariant part of (7.82). On the other hand, third derivatives of NF
np are non-constant,

and indeed they are proportional to the coefficient functions appearing in the gauge-anomalous con-

tributions to (7.82). More precisely, we have

S
(5)F
CS = − 1

12

∫
M5

(NF
p )IJKA

I ∧ FJ ∧ FK − 1
16

∫
M5

(NF
np)iJKA

i ∧ FJ ∧ FK . (7.85)

Two remarks are due at this point. Firstly, observe that the first term fits into the canonical form

discussed above, since for a cubic polynomial as (7.72) one has precisely NIJK = CIJK. Secondly,

note that in the second term the first index never takes values 0, α. This means that the U(1) gauge

symmetries associated to vectors A0, Aα are unbroken, while those associated to vectors Ai are broken.

It may be considered questionable, if not inconsistent, to construct a five-dimensional effective

action which fails to be gauge invariant. However, this should not come as a surprise. Our starting

point in six dimensions (7.41) is not gauge invariant as well, because of the introduction of the Green-

Schwarz terms. As discussed in section 7.3, these terms are needed in order to implement the anomaly

cancellation mechanism: they introduce tree-level gauge violations which counterbalance one-loop

anomalous diagrams generated by the chiral matter content of the theory. As a result, the sum of the

tree-level and one-loop contributions to the six-dimensional effective action is gauge invariant, while

the two summands are not invariant separately. This suggests that a gauge invariant five-dimensional

effective action could be obtained supplementing the computation of this section with the reduction

of the one-loop six-dimensional effective action. However, we do not need to address this ambitious

task, since we will show that all relevant data about the effective action of F-theory in six dimensions

can already be extracted from the reduction of the tree-level action only.

It is worth mentioning a crucial distinction between anomalous terms in six and five dimensions.

It is well known that five-dimensional theories do not develop quantum anomalies. Indeed, possible

non-gauge invariant terms can always be cancelled by adding suitable local counter-terms to the tree

level action, in such a way that the full effective action at one-loop is gauge-invariant. This kind of

anomalies is referred to as ‘irrelevant’. The aforementioned counterterms in five-dimensional take the

form
∫
A ∧ ∗J , where A is one of the vectors whose gauge invariance is anomalous, and J is a gauge

invariant five-dimensional current, such that ∗J ∝ F ∧ F . It is precisely the gauge invariance of this

current which makes the anomaly irrelevant. If we were to implement a similar mechanism to treat

six-dimensional anomalies, we would have ∗J ∝ A ∧ F ∧ F , which is manifestly non gauge invariant.

From this point of view, the non-gauge invariant Chern-Simons term which appears in (7.85) has

the same form as the counterterms discussed above. More precisely, the corresponding gauge invariant
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current reads

∗ Ji = − 1
16(NF

np)iJKF
I ∧ FK . (7.86)

Note that all scalar fields in (NF
np)iJK are neutral under the gauge group U(1)rank(G) after spontaneous

symmetry breaking to the Coulomb branch.

In summary, we are able to cast the Kaluza-Klein reduced action in canonical form, even though

some subtle points have to be stressed:

• N has to be promoted from a cubic polynomial to a homogeneous function NF of degree three;

the very special geometry constraint NF = 1 and the metric GIJ are formulated in terms of

this non-polynomial NF;

• the Chern-Simons term coming from Kaluza-Klein reduction and the Chern-Simons term ob-

tained through the canonical prescription CIJK = (NF)IJK share the same gauge-invariant

part, and differ only for non gauge-invariant terms; these can be interpreted as local countert-

erms which make five-dimensional anomalies irrelevant.

Since counterterms are completely specified by the classical data of the model, all information about

the effective five-dimensional action is encoded in the polynomial part of NF and the corresponding

gauge-invariant Chern-Simons terms.

7.4.4 Higher order curvature corrections

As we have seen in subsection 7.3, anomaly cancellation requires the introduction of a higher curvature

term in the six-dimensional action,

Ŝ
(6)
R2 = −1

4

∫
M6

Ωαβa
αB̂β ∧ tr R̂ ∧ R̂ . (7.87)

Furthermore, local Lorentz transformations act non-trivially on the two-forms B̂α, in such a way that

the corresponding field strength Ĝα receives a gravitational contribution, as can be seen from (7.39)

specialized to the simpler case of a single simple factor in the gauge group. Even if we are not going

to perform the dimensional reduction of the complete, higher-derivative action, we can make general

remarks about some interesting feature of the resulting five-dimensional action.

First of all, as stated in subsection 7.4.1, inclusion of gravitational contributions does not interfere

with the possibility to get rid of five-dimensional two-forms Bα in favor of vectors Aα. Indeed,

gravitational terms modify the action in such a way that F β in

∆S(5)F = −1
2

∫
M5

ΩαβdB
α ∧ F β (7.88)

is replaced by a more complicated expression, which is nonetheless exact. ∆S(5)F is still a total

derivative, and the elimination of Bα can proceed along the same line as in the two-derivative case.
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Secondly, it can be verified that all possible non-gauge invariant terms in the final five-dimensional

action are proportional to

Ωαβa
αaβ or Ωαβa

αbβ or Ωαβb
αbβ . (7.89)

This observation will be relevant for the discussion of F-theory lift, in section 7.6.

Finally, let us present one particular higher-curvature contribution to the five-dimensional action,

which will play a prominent role in the matching with M-theory on a Calabi-Yau threefold. It is

the ARR term coming from dimensional reduction of the B̂R̂R̂ six-dimensional term written above.

In order to extract this term from the total five-dimensional action, we can effectively set A0 to

zero and treat r as a constant. Note that the Weyl rescaling (7.64) has no effect on the leading,

moduli-independent terms we are interested in. We thus obtain simply

R̂ab = Rab + . . . , R̂a5 = 0 + . . . , (7.90)

where a, b,= 0, . . . , 4 are five-dimensional flat spacetime indices, and ‘5’ refers to the compact direction.

As a consequence, we have

tr R̂ ∧ R̂ = trR∧R+ . . . . (7.91)

A first contribution to the term we are looking for is then given by

1
4

∫
M5

Ωαβa
αAβ ∧ trR∧R , (7.92)

in which the change of sign comes from the Ansatz (7.51). Note however that an addition contribution

arises when ∆S(5)F is added in order to eliminate tensors from the five-dimensional action, as can be

seen recalling the definition of Gα (7.55):

− 1
2

∫
M5

ΩαβdB
α ∧ F β ⊃ +1

4

∫
M5

Ωαβa
αωgrav

CS ∧ F β = 1
4

∫
M5

Ωαβa
αAβ ∧ trR∧R . (7.93)

In summary, we find the five-dimensional higher curvature term

S
(5)F
ARR = 1

2

∫
M5

Ωαβa
αAβ ∧ trR∧R . (7.94)

We conclude this subsection describing the effect of higher curvature terms on the canonical form of

five-dimensional supergravity. As done in [202], superconformal techniques can be used to construct the

five-dimensional supersymmetric completion of the ARR term. In this formalism, the supersymmetry

algebra closes off-shell, at the expense of introducing auxiliary fields in the gravity multiplet, vector

multiplets, and hypermultiplets. The scalar manifold associated to vector multiplets is still described

by constrained coordinates MI . However, the constraint is no longer

1
3!CIJKM

IMJMK = 1 , (7.95)

but gets corrected by terms proportional to the constants c2I appearing in front of AI ∧ trR ∧R in

the higher derivative Lagrangian [203]. More precisely,

1
3!CIJKM

IMJMK = 1− 1
72c2I

(
DMI + vµνF Iµν

)
, (7.96)

where D, vµν are the auxiliary bosonic fields in the gravity multiplet. It is possible to integrate them

out iteratively in a small c2I expansion; the result reads schematically CM3 = 1 + cF 2.
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7.5 M-theory on an elliptically fibered Calabi-Yau threefold

In order to implement the duality between M-theory and F-theory we need to compute the effective

action of M-theory on an elliptically fibered Calabi-Yau threefold. To begin with, we present the

reduction on a general Calabi-Yau threefold at two-derivative level. Next, we specialize to the case

of an elliptic fibration using the results collected before in section 7.2. Finally, we perform a partial

dimensional reduction of a suitable higher-derivative correction in order to extract the terms that will

be relevant for the matching with the F-theory side of duality.

7.5.1 Two-derivative effective action of M-theory on a Calabi-Yau threefold

This section is devoted to a review of the two-derivative five-dimensional effective action resulting

from compactification of eleven-dimensional supergravity on a smooth Calabi-Yau threefold X3, see

for instance [204]. We will then specialize these results to the case of a resolved elliptic fibration in

section 7.5.2.

Outcome of the dimensional reduction

Our starting point is the two-derivative action (3.34) of eleven-dimensional supergravity, which we

record here again for ease of reference,

Ŝ(11) =

∫
M11

1
2R̂∗̂1− 1

4Ĝ4 ∧ ∗̂Ĝ4 − 1
12 Ĉ3 ∧ Ĝ4 ∧ Ĝ4 . (7.97)

The eleven-dimensional gravitational constant has been suppressed for convenience. Let us also fix

our notation for the metric and the three-form Ansätze. The former reads

ds2
11 = g̃µν(x)dxµdxν + 2gı̄j(z)dz̄

ı̄dzj (7.98)

where zi (i = 1, 2, 3) are complex coordinates on the threefold and the twiddle on the external metric

is again a reminder of the necessity to perform a Weyl rescaling after reduction. As explained in

detail in section 4.5.2, deformations of the internal metric gī give rise to Kähler moduli and complex

structure moduli. Let us remind the reader that the former are obtained by expanding the Kähler

form of the threefold onto a basis {ωΛ} of H2(X3,Z), with Λ = 1, . . . , h1,1(X3),

J = vΛ ωΛ . (7.99)

The complex structure moduli Zκ are instead associated to H1,2(X3), so that κ = 1, . . . , h1,2(X3).

The Ansatz for the three-form reads

Ĉ3 = ξKαK − ξ̃KβK +AΛ ∧ ωΛ + C3 . (7.100)

In this equation αK , βK are elements of an integral basis of the middle cohomology H3(X3) of the

threefold, K = 1, . . . , h1,2(X3)+1. Some of their properties will be discussed below. The fields ξK , ξ̃K
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are scalars in the external five-dimensional spacetime, while the fields AΛ are external five-dimensional

vectors. Finally, C3 is a five-dimensional three-form that will be later dualized into a real scalar Φ.

To begin with it is useful to discuss how the five-dimensional fields in (7.98), (7.100) fit into five-

dimensional N = 2 supersymmetry multiplets. The gravity multiplet consists of g̃µν and of one (linear

combination) of the AΛ vectors. The remaining vectors fit into

n
(5)
V = h1,1(X3)− 1 (7.101)

vector multiplets, along with the Kähler moduli vΛ. It seems like there is a mismatch of degrees of

freedom, since we have h1,1(X3) scalars. This seeming difficulty is overcome by the observation that

volume V of the threefold sits in a hypermultiplet. Recall from section 4.5.2 that V can be written as

V =
1

3!

∫
X3

J ∧ J ∧ J =
1

3!
VΛΣΘv

ΛvΣvΘ , (7.102)

where VΛΣΘ are the intersection numbers

VΛΣΘ =

∫
X3

ωΛ ∧ ωΣ ∧ ωΘ . (7.103)

We thus see that one of the degrees of freedom carried by the scalars vΛ has to be subtracted from

the counting of scalars in vector multiplets, in accord with (7.101).

To discuss hypermultiplets we need to recall the decomposition of the third cohomology into

complex cohomologies,

H3(X3) =
[
H1,2(X3)⊕H2,1(X3)

]
⊕
[
H0,3(X3)⊕H3,0(X3)

]
. (7.104)

Real scalars ξK , ξ̃K provide h1,2(X3) + 1 complex degrees of freedom: h1,2(X3) of these correspond

to the H1,2(X3) ⊕ H2,1(X3) component and combine with the complex structure moduli Zκ to give

h1,2(X3) hypermultiplets; the remaining complex degree of freedom lives in H0,3(X3)⊕H3,0(X3) and

combines with V,Φ in the so-called universal hypermultiplet. In conclusion, we have found

n
(5)
H = h1,2(X3) + 1 (7.105)

hypermultiplets, which will be collectively denoted by qu.

We can finally record the result of the dimensional reduction of (7.97) according to the Ansätze

(7.98), (7.100). Since the overall volume sits in the universal hypermultiplet it is natural to define

scalar fields

LΛ = V−
1
3 vΛ , (7.106)

which are the real scalars in the vector multiplets. They only parameterize h1,1(X3) − 1 degrees of

freedom, since due to their definition they are subject to the constraint

1
3!VΛΣΘL

ΛLΣLΘ = 1 . (7.107)

We are naturally led to interpret LΛ as five-dimensional very special coordinates, in term of which the

cubic potential reads

N = 1
3!VΛΣΘL

ΛLΣLΘ . (7.108)
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The reduced bosonic action is then given by

S(5)M =

∫
M5

+ 1
2R ∗ 1− 1

2GΛΣdL
Λ ∧ ∗dLΣ − huvdqu ∧ ∗dqv (7.109)

− 1
2GΛΣF

Λ ∧ ∗FΣ − 1
12VΛΣΘA

Λ ∧ FΣ ∧ FΘ ,

where, as expected from section 7.4.3,

GΛΣ =
[
−1

2∂LΛ∂LΣ logN
]
N=1

, (7.110)

and where the hypermultiplet moduli metric reads

huvdq
u ∧ ∗dqv = + dD ∧ ∗dD + gκ1κ̄2dZ

κ1 ∧ ∗dZ̄ κ̄2 (7.111)

+ 1
4e

4D
[
dΦ + (ξKdξ̃K − ξ̃KdξK)

]2

− 1
2e

2D(dξ̃K −MKMdξ
M )(ImM)−1KL(dξ̃L −MLNdξ

N ) .

In this expression

D = −1
2 logV , (7.112)

and we have made use of a complex matrix M that encodes the relevant data about the middle

cohomology of the threefold, to which we now turn.

Intermezzo: a few facts on the middle cohomology

As promised, let us take a short detour and discuss briefly some features of the middle cohomology of

a Calabi-Yau threefold. The elements {αK , βK} (K = 1, . . . , h1,2(X3) + 1) are chosen in such a way

as to form an integral symplectic basis of the middle cohomology H3(X3) of the threefold. The only

non-vanishing independent wedge product among basis elements is∫
X3

αK ∧ βL = δKL . (7.113)

In order to discuss the metric on the moduli space of neutral hypermultiplets, we need to introduce

matrices A L
K , BKL, C

KL, such that

∗ αK = A L
K αL +BKLβ

L , ∗βK = CKLαL −A K
L βL , (7.114)

where ∗ represents the Hodge star in X3. These matrices can be conveniently expressed in terms of a

symmetric, complex matrix M,

A L
K = (ReM)KH(ImM)−1HL ,

BKL = −(ImM)KL − (ReM)KH(ImM)−1HM (ReM)ML ,

CKL = (ImM)−1KL . (7.115)

Of course, this matrix M is the same that enters the hypermultiplet moduli metric (7.111).



136 Chapter 7. Effective action for six-dimensional F-theory compactifications

Derivation of the reduced action

We now discuss in detail the derivation of (7.109). The reader who is not interested in this computation

can safely skip the rest of this section.

We do not need to discuss at length the reduction of the Einstein-Hilbert term, which has been

discussed for general Ricci-flat manifolds in section 4.3 and appendix A.3. We only need to specialize

those results to the case of a Calabi-Yau threefold, making use of the facts about Calabi-Yau moduli

spaces collected in section 4.5.2. We also know already that after reduction we have to perform the

Weyl rescaling

g̃µν = V−2/3gµν , (7.116)

which is the specialization of (4.34) to d = 5, written in a slightly different notation. The result of

the dimensional reduction of the Einstein-Hilbert term followed by the Weyl rescaling is∫
M11

1
2R̂∗̂1 =

∫
M5

1
2R ∗ 1− 1

2HΛΣ(v)dvΛ ∧ ∗dvΣ − gκ1κ̄2dZ
κ1 ∧ ∗dZ̄ κ̄2 . (7.117)

The metric gκ1κ̄2 on the space of the complex structure moduli Zκ was derived in section 4.5.2 and is

recorded here again for ease of reference,

gκ1κ̄2(Z, Z̄) = ∂Zκ1∂Z̄κ̄2Kcs(Z, Z̄) , Kcs(Z, Z̄) = log

[
i

∫
X3

Ω ∧ Ω

]
. (7.118)

The metric on Kähler moduli space requires more care. The quantity HΛΣ(v) in (7.117) is defined by

HΛΣ(v) = −GΛΣ(v)− V−1VΛΣ , (7.119)

where GΛΣ(v) is the natural metric on the Kähler moduli space of the threefold, derived in section

4.5.2,

GΛΣ(v) = −1
2∂vΛ∂vΣ logV(v) = −1

2V(v)−1VΛΣΘv
Θ + 1

8V(v)−2VΛΩΘVΣΨΞv
ΩvΘvΨvΞ . (7.120)

As anticipated above, the natural variables in the Kähler moduli space are LΛ defined in (7.106).

Trading the scalars vΛ for LΛ we find

− 1
2HΛΣ(v)dvΛ ∧ ∗dvΣ = −1

2GΛΣ(L)dLΛ ∧ ∗dLΣ − dD ∧ ∗dD , (7.121)

where D was defined in (7.112). The symbol GΛΣ(L) denotes the metric obtained by replacing vΛ by

LΛ everywhere in (7.120). It is easily checked that it coincides precisely with (7.110).

Next, let us consider the reduction of the other terms in the eleven-dimensional action (7.97). As

far as the three-form kinetic term is concerned, a straightforward computation shows that∫
M11

−1
4Ĝ4 ∧ ∗̂Ĝ4 =

∫
M5

+ 1
4(dξ̃K −MKMdξ

M )(ImM)−1KL ∧ ∗̃(dξ̃L −MLNdξ
N )

− 1
2VGΛΣ(v)FΛ ∧ ∗̃FΣ − 1

4VG4 ∧ ∗̃G4 , (7.122)
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where FΛ = dAΛ, G4 = dC3, and the matrixM is defined implicitly by the relations (7.115). For the

Chern-Simons term, we find∫
M11

− 1
12 Ĉ3 ∧ Ĝ4 ∧ Ĝ4 =

∫
M5

− 1
12VΛΣΘA

Λ ∧ FΣ ∧ FΘ + 1
4(ξKdξ̃K − ξ̃KdξK) ∧G4 . (7.123)

As anticipated above, we can dualize the three-form C3 into a real scalar Φ. To this end we add to

the five-dimensional action the term

∆S(5)M =

∫
M5

1
4dΦ ∧G4 (7.124)

which implements Bianchi identity dG4 = 0 if we consider G4 rather than C3 as independent variable.

After elimination of G4 via its equation of motion, we get

S(5)M
non-grav =

∫
M5

+ 1
4(dξ̃K −MKMdξ

M )(ImM)−1KL ∧ ∗̃(dξ̃L −MLNdξ
N ) (7.125)

− 1
2VGΛΣ(v)FΛ ∧ ∗̃FΣ − 1

12VΛΣΘA
Λ ∧ FΣ ∧ FΘ

− 1
16V

[
ξKdξ̃K − ξ̃KdξK + dΦ

]
∧ ∗̃
[
ξKdξ̃K − ξ̃KdξK + dΦ

]
.

Let us stress that we still have to take into account the Weyl rescaling of the metric g̃µν . It is interesting

to note that it is crucial to get the equality between the inverse gauge coupling function and the metric

of the moduli space of scalars LΛ, since

− 1
2VGΛΣ(v)FΛ ∧ ∗̃FΣ = −1

2V
2
3GΛΣ(v)FΛ ∧ ∗FΣ = −1

2GΛΣ(L)FΛ ∧ ∗FΣ , (7.126)

where GΛΣ(L) is the same as in (7.110). This concludes our derivation. Indeed, it is straightforward

to check that the hypermultiplet moduli metric (7.111) collects the kinetic terms of all scalars different

from the LΛ’s after Weyl rescaling.

7.5.2 The case of an elliptic fibration

Let us now specify this result to the elliptically fibered geometry introduced in subsection 7.2. We

first split the index Λ into (0, α, i) and write

LΛ = (R,Lα, ξi) , AΛ = (A0, Aα, Ai) . (7.127)

Combining this notation with the intersection numbers (7.11) of an elliptic fibration we get

N =1
2ηαβRL

αLβ + 1
2ηαβK

αR2Lβ + 1
6ηαβK

αKβR3

− 1
2ηαβC

αCijL
βξiξj + 1

6Vijkξiξjξk . (7.128)

As we will discuss in section 7.6 couplings of the form R2Lα in (7.128) are not compatible with

the uplift from five to six dimensions. However, there is as simple field redefinition which allows us to

get rid of these R2Lα terms. More precisely, one introduces the shifted fields8

Ľα = Lα + 1
2K

αR , Ǎα = Aα + 1
2K

αA0 , (7.129)

8This field redefinition is also crucial in the analogous treatment of F-theory on Calabi-Yau fourfolds as discussed in
[205, 206].



138 Chapter 7. Effective action for six-dimensional F-theory compactifications

where the shift of the vectors is required by supersymmetry. Clearly, the new Ľα and new vectors can

be obtained by expanding J and C3 in a new basis of two-forms

ω̌0 = ω0 − 1
2K

αωα , ω̌α = ωα , ω̌i = ωi . (7.130)

In fact, this new basis is better suited to identify the vectors Ǎα as dualizable into five-dimensional

tensors. The cubic potential in the new coordinates given by

NM =1
2ηαβRĽ

αĽβ + 1
24ηαβK

αKβR3

− 1
2ηαβC

αCijĽ
βξiξj + 1

4ηαβC
αCijK

βRξiξj + 1
6Vijkξiξjξk . (7.131)

Using this expression of N the Chern-Simons term takes the form

S
(5)M
CS =

∫
M5

− 1
4ηαβA

0 ∧ F̌α ∧ F̌ β + 1
4ηαβC

αCijǍ
α ∧ F i ∧ F j

− 1
48ηαβK

αKβA0 ∧ F 0 ∧ F 0 − 1
8ηαβC

αCijK
βA0 ∧ F i ∧ F j

− 1
12VijkAi ∧ F j ∧ F k , (7.132)

where F̌α is the usual field strength of the vectors Ǎα introduced in (7.129).

7.5.3 Higher order curvature corrections

Several higher-derivative corrections to the 11d M-theory action (7.97) are known [81, 82]. In the

following, we will focus on the mixed gauge-gravitational topological correction9

Ŝ
(11)
CR4 = 1

96

∫
M11

Ĉ3 ∧
[
tr R̂4 − 1

4(tr R̂2)2
]
. (7.133)

Rather than performing a complete dimensional reduction of (7.133), we will extract the relevant terms

and we will systematically neglect all contributions which involve gradients of the Kähler and complex

structure moduli. This means that we can effectively neglect fluctuations and compute curvature

invariants on the background, which is the product space M11 = M5 × X3. As a result, we have

simply 10

R̂ = R+RX3 , (7.134)

where RX3 is the curvature two-form on the Calabi-Yau threefold, and R is the five-dimensional

curvature two-form. A straightforward computation gives then

(tr R̂2)2 = 2trR2 ∧ trR2
X3

+ . . . , tr R̂4 = 0 + . . . ; , (7.135)

where the dots are a reminder of the moduli-dependent, neglected terms. It is useful to recall the

definition of the first Pontryagin class of the Calabi-Yau threefold X3,

p1(X3) = −1
2trR2

X3
, (7.136)

9As discussed in section 7.3, factors of (2π)−1 are understood in R̂. Moreover, the relative normalization of this
higher-derivative term and the two-derivative action (7.97) depends on the value of the eleven-dimensional gravitational
constant. It is suppressed everywhere, adopting a convention which is best suited to make contact with the six-dimensional
Green-Schwarz term, in which the six-dimensional gravitational constant has been equally suppressed.

10Just like in the reduction from six to five dimensions, performing the Weyl rescaling on the five-dimensional metric
does not affect the moduli-independent terms in the expression of the curvature two-form.
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and its relation with the second Chern class,

p1(X3) = −2c2(X3) . (7.137)

Combining these equations with the three-form expansion (7.100), we can deduce that the 11d cor-

rection (7.133) yields, among other terms, the following five-dimensional correction [207]

S
(5)M
ARR = 1

48 čΛ

∫
M5

ǍΛ ∧ trR2 , (7.138)

where we have defined

čΛ =

∫
X3

ω̌Λ ∧ c2(X3) . (7.139)

To make further progress it is crucial to specialize to the case of an elliptically fibered Calabi-Yau

threefold X3. Let us discuss a smooth fibration first. The second Chern class of the total space can

then be expressed in term of Chern classes on the base space B2, by means of [208]

c2(X3) = c2(B2) + 11c2
1(B2) + 12ω0 ∧ c1(B2) . (7.140)

Making use of (7.4) we get∫
X3

ω0 ∧ c2(X3) =

∫
X3

ω0 ∧ [c2(B2)− c2
1(B2)] =

∫
B2

c2(B2)− c2
1(B2) . (7.141)

This equation can be evaluated further by using the explicit expressions of the integrals of c2 and c2
1

on B2 given in (7.6) as ∫
X3

ω0 ∧ c2(X3) = 2h1,1(B2)− 8 . (7.142)

Furthermore, we can also evaluate the second Chern class on the basis ωα as∫
X3

ωα ∧ c2(X3) =

∫
X3

ωα ∧ [c2(B2) + 11c2
1(B2) + 12ω0 ∧ c1(B2)] . (7.143)

Since the first two terms have all their indices on the base, only the last term provides a non-vanishing

contribution. Using c1(B2) = −Kαωα, as introduced in subsection 7.2, we compute

čα =

∫
X3

ω̌α ∧ c2(X3) = −12ηαβK
β , (7.144)

where we have used ω̌α = ωα. In order to obtain č0 from (7.142), (7.143) we have to recall the definition

(7.130) of ω̌0, and find

č0 = 52− 4h1,1(B2) . (7.145)

So far we have worked on a smooth elliptic fibration. We now include the effects of singularities

and their resolution. Clearly, the presence of resolved singularities induces new couplings

či =

∫
X̃3

ω̌i ∧ c2(X3) . (7.146)
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One expects that this expression evaluated for a given gauge group has a group theoretic interpretation.

Giving its precise form is beyond the scope of this work. However, let us note that also the other

couplings č0 and čα could be corrected by the inclusion of blow-up divisors. Indeed, a general shift of

c2(X̃3) with the blow-up divisors induces∫
X̃3

ω0 ∧∆c2(X̃3) = 0 ,

∫
X̃3

ωα ∧∆c2(X̃3) = Cij
∫
X̃3

ωα ∧ ωi ∧ ωj , (7.147)

where we have used the vanishing of the intersections (7.11) with only one ωi and two ωα, and

ωi ∧ ω0 = 0. Note that a shift in č0 could still be induced due to the basis change (7.130) inducing a

term proportional to čα. We claim that also čα is uncorrected, and thus č0 and čα remain unchanged.

Despite that we do not have a general proof, we have checked for many examples that (7.144) and

(7.145) are still true:

čα = −12ηαβK
β , č0 = 52− 4h1,1(B2) . (7.148)

As we will show later, the fact that čα is not changed is consistent with the F-theory lift. The fact

that č0 does not change in this case follows from (7.147).

7.6 F-theory lift and one-loop corrections

In this section we compare the result of the circle reduction of the general six-dimensional (1, 0)

supergravity theory with the M-theory reduction on an elliptically fibered Calabi-Yau threefold. We

identify terms which appear at classical level on both sides and can be immediately matched as

discussed in subsection 7.6.1. We also comment on the matching of certain higher derivative terms.

It is crucial insight that both reductions contain additional terms which have no immediate analogue

in the dual reduction. We suggest in subsection 7.6.2 that these terms arise at the quantum level and

encode the same information about the underlying fully quantized theory. In particular, we argue

that certain intersections on the M-theory side correspond in the reduction from six to five dimensions

on a circle to one-loop corrections with charged matter fermions and Kaluza-Klein modes of all six-

dimensional chiral fields running in the loop. In conclusion this allows us to extract all data from

M-theory required to specify the six-dimensional action including the complete information about

six-dimensional anomalies. In chapter 9 the loop computation will be explicitly performed and will

corroborate our present analysis.

7.6.1 Classical action in the F-theory lift

In order to extract information about F-theory in six dimensions, we have to compare the five-

dimensional action coming from Kaluza-Klein reduction from six dimensions with the five-dimensional

action of M-theory on an elliptically fibered Calabi-Yau threefold. Our strategy will be similar to the

treatment of F-theory on Calabi-Yau fourfolds presented in [206].

As a first step, we present the match of the number of multiplets in five dimensions in order

to give the number of six-dimensional multiplets in terms of the topological data of the F-theory
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compactification manifold X3. This was already implicit in our choice of indices in sections 7.4 and

7.5. More precisely, for the α-index we find that the number of six-dimensional tensors is given by

nT + 1 = h1,1(B2) , (7.149)

where we recall that there are nT six-dimensional tensor multiplets and one tensor in the gravity

multiplet. In the F-theory reduction the tensors arise from the reduction of the Type IIB RR four-form

into a base of H2(B2). Since Ai parameterize the Coulomb branch of the circle-reduced six-dimensional

gauge theory, one finds

rank(G) = h1,1(X̃3)− h1,1(B2)− 1 , (7.150)

which counts the number of independent blow-up divisors induced to resolve the singular elliptic

fibration to obtain X̃3. Note that for ADE gauge groups G the number of six-dimensional vector

multiplets is then given by

nV = (cG + 1)rank(G) , (7.151)

where cG is the dual Coxeter number of G. In F-theory these vectors arise from the seven-brane

gauge potentials. Finally, one can match the number of hypermultiplets, simply by noting that a six-

dimensional hypermultiplet becomes a five-dimensional hypermultiplet in the circle reduction. This

leads to the following number of neutral six-dimensional multiplets

nneutral
H = h2,1(X̃3) + 1 . (7.152)

In F-theory on X3 these neutral hypermultiplets contain the complex deformations of the seven-branes

and their Wilson line moduli.11 The universal hypermultiplet in the F-theory reduction contains as

one complex scalar the volume of the base together with the scalar of the Type IIB RR four-form

expanded in the volume form of B2. The remaining two real scalar degrees of freedom in the universal

hypermultiplet arise in the expansion of the Type IIB RR and NSNS two-forms into the universal

two-form mode present for any B2. The proof of the match (7.149)-(7.152) follows from the match of

the effective theories presented in the following.

In order to systematically approach the match of the effective action, we would first like to identify

the terms which are classical on both sides. This is not hard for the circle reduction from six to five

dimensions. More complicated is the distinction of the various terms in the M-theory potential. We

will address the two sides in turn.

In the reduction of the six-dimensional action on a circle performed in section 7.4 we found that

there is a potential NF given in (7.79) which encodes the kinetic terms of the gauge coupling functions

and the Chern-Simons terms in the five-dimensional reduced action. It is crucial to recall the natural

decomposition of NF in (7.79) into a polynomial and a non-polynomial part:

NF
p = ΩαβM

0MαMβ − 4Ωαβb
αCijM

βM iM j ,

NF
np = 4Ωαβb

αbβCijCkl
M iM jMkM l

M0
. (7.153)

11See ref. [209], for a detailed matching with the orientifold picture with D7-branes.
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The terms in NF
p are cubic and hence encode a standard N = 2 five-dimensional action. In contrast

NF
np is only homogeneous of degree three, but non-polynomial. As argued in section 7.4.3 it can be

interpreted as a counterterm of the five-dimensional one-loop effective action. Its six-dimensional

origin is related to the classical lack of gauge invariance of the six-dimensional action. In fact, it

vanishes precisely when

Ωαβb
αbβ = 0 . (7.154)

This corresponds to the case where the six-dimensional action is gauge invariant as inferred from

(7.44), and is consistent with the absence of six-dimensional anomalies, see section 7.3.2.

Let us now turn to the M-theory reduction. Here the identification of the classical terms is more

subtle. We have worked on the resolved space with finite size elliptic fiber. Recall from section 5.3

that the F-theory limit corresponds to both shrinking the blow-up divisors as well as the size of the

elliptic fiber. One expects that this selects classical terms in the potential NM of equation (7.131). It

turns out to be useful to introduce an ε-scaling to distinguish various terms in NM. For the volumes

v0, vα, vi appearing in the Kähler form J = vΛωΛ, we make the formal replacements

v0 7→ εv0 , vα 7→ ε−1/2vα , vi 7→ ε1/4vi . (7.155)

Note that these scalings satisfy some important consistency checks. Firstly, the size of the elliptic

fiber v0 and the blow-up fibers vi vanish for ε→ 0. Secondly, the total volume V of X3 is finite, which

is required by the fact that V sits in a five-dimensional hypermultiplet. Translated into the variables

R,Lα, ξi one finds the replacements

R 7→ εR , Lα 7→ ε−1/2Lα , ξi 7→ ε1/4ξi . (7.156)

Since the redefined scalars Ľα contain Lα linearly, they obey the same rescaling as Lα. In the limit

ε→ 0 two terms in (7.131) survive which we collect in NM
class. We thus divide the terms in (7.131) into

NM
class = 1

2ηαβRĽ
αĽβ − 1

2ηαβC
αCijĽ

βξiξj , (7.157)

NM
loop = 1

24ηαβK
αKβR3 + 1

4ηαβC
αCijK

βRξiξj + 1
6Vijkξiξjξk .

It is now straightforward to match NM
class with NF

p given in (7.153). Note that the second term NM
loop

in (7.157) will be later reinterpreted as a loop correction, which gives another justification of the split

induced by the F-theory limit (7.156).

Let us first start by matching the fields on the F-theory side and the M-theory side. In order to do

that we have to fix the normalization of the fields, which cannot be uniquely extracted by comparing

(7.153) and (7.157). Supersymmetry relates the normalization of the real scalars and vectors in the

vector multiplets. Hence, given a fixed normalization of the vectors the complete match of the scalar

components can be inferred. On the one hand, in the circle compactification from six dimension the

vectors are normalized by the Green-Schwarz term (7.28), and the fixed definition of the anomaly

coefficients bα, aα. On the other hand, in M-theory the normalization of the vectors is fixed by a

choice of integral basis in the expansion (7.100) of Ĉ3. Appropriately rescaling the six-dimensional

vectors to also adopt to an integral basis, one can infer the map

M0 = 2R , Mα = 1
2 Ľ

α , M i = 1
2ξ
i , (7.158)
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while the constants are identified as

Ωαβ = ηαβ , bα = Cα . (7.159)

Note that our result are consistent with the findings of [177, 178, 179, 180, 181].

So far we have only discussed the vector and gravity sectors of the M-theory to F-theory matching.

Clearly, both the 6d/5d reduction as well as the M-theory reduction contain a hypermultiplet sector.

As discussed in section 7.4.2, we found that in the dimensional reduction from six to five dimensions

the charged hypermultiplets are massive in the Coulomb branch. Therefore, they are not visible in

the effective action of the massless modes of M-theory. We will include them in the study of loop

corrections in the next subsections. However, the neutral hypermultiplets are massless and their

moduli space could be matched straightforwardly also leading to (7.152).

Let us close this subsection by also comparing the classical parts of the higher curvature terms

dimensionally reduced in sections 7.4.4 and 7.5.3. We have focussed on the terms involving the five-

dimensional vectors and two five-dimensional curvature forms R. In (7.92) and (7.138) we found that

such couplings are given by

S
(5)F
ARR = −1

2 Ωαβa
β

∫
M5

Aα ∧ trR2 , S
(5)M
ARR = 1

48 čΛ

∫
M5

ǍΛ ∧ trR2 . (7.160)

Recall that the coefficients čΛ have been determined in (7.148), and (7.146). Since in the circle

reduction only the Aα appears, one suspects that, similar to the F-theory limit discussed above, that

these are the only classical terms in the reduction. Using čα = −12ηαβK
β, as given in (7.148), we can

apply the identification (7.159) to infer

aα = Kα . (7.161)

Note that this is precisely the identification dictated by anomaly cancellation conditions as found in

[177, 178, 179, 180, 181]. On the M-theory side we also found the non-vanishing couplings involving

či, č0. Similar to the split found for NM we believe that these couplings are induced by one-loop

corrections on the F-theory side. The remainder of this chapter is devoted to the discussion of such

one-loop quantum corrections.

7.6.2 Completing the duality using one-loop corrections

As we have seen in the previous subsection, only some terms of the five-dimensional cubic potential

NM of M-theory compactified on a Calabi-Yau threefold admit a straightforward dual in the potential

NF arising from circle compactification of six-dimensional supergravity. In this subsection, we will

provide a framework for the interpretation of the remaining terms in NM, which we record here again

for the ease of the reader,

NM
loop = 1

24ηαβK
αKβR3 + 1

4ηαβC
αCijK

βRξiξj + 1
6Vijkξiξjξk . (7.162)

Recall that five-dimensional N = 2 supersymmetry ensures that exactly the same amount of informa-

tion is contained in the cubic potential N and in the Chern-Simons couplings of vectors. The following
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discussion is conveniently formulated in terms of the latter. As already anticipated, we relate these

couplings to one-loop effects in the reduction from six to five dimensions.

In order to clarify the precise meaning of this statement, let us analyze in more detail the origin

of Chern-Simons couplings in the effective five-dimensional theory arising from six-dimensional super-

gravity on a circle. A possible source of this kind of interactions is of course provided by dimensional

reduction of the Green-Schwarz term in the classical six-dimensional action. These interactions are

precisely the ones which we have considered in the previous subsection. However, additional contri-

butions arise, which are understood in the framework of effective quantum field theory. In fact, from

a quantum perspective, the five-dimensional effective action resulting from compactification on a cir-

cle of six-dimensional supergravity encodes all information about the low-energy dynamics, including

interactions induced by massive fields which have to be integrated out when we restrict our attention

to the lightest states of the theory.

In the case under examination, we identify two different families of massive fields which can alter

five-dimensional effective couplings:

• Kaluza-Klein modes. As we know from section 4.2, all six-dimensional fields can be schematically

expanded into Kaluza-Klein modes as

ϕ̂(x, y) =
∑
n∈Z

ϕ(n)(x)einy . (7.163)

The modes ϕ(n) with non-zero n appear in the five-dimensional theory as massive fields, with

mass inversely proportional to the radius r of the compactification circle, m(n) ∼ |n|/r.12 Ze-

romodes only are sufficient to fix all data needed to specify the six-dimensional model we are

compactifying, and this is why we have systematically neglected excited modes so far. Nonethe-

less, Kaluza-Klein modes can run in five-dimensional loop diagrams.

• Fields which are given a mass by gauge symmetry breaking. Recall that F-/M-theory duality

can be applied in a geometric regime only if the five-dimensional gauge symmetry is sponta-

neously broken down to the Coulomb phase and the compactification threefold is resolved. This

amounts to giving non-vanishing VEVs to some scalars in the vector multiplets. As described in

subsection 7.4.2, these VEVs provide mass terms for the W-bosons and the scalars in charged

hypermultiplets. Supersymmetry implies that their fermionic partners, gaugini and hyperini,

get massive as well. We claim that these fields can run in five-dimensional loops in such a way

as to induce effective Chern-Simons couplings.

In chapter 9 we will demonstrate that five-dimensional massive spin-1/2 and spin-3/2 fermions,

as well as five-dimensional massive tensors, generate a shift of gauge and mixed gauge-gravitational

Chern-Simons terms. In order for this mechanism to work, these massive fields have to be minimally

coupled electrically to a massless five-dimensional vector. In the next subsection we will identify such

couplings and thus justify our claim about the one-loop origin of the terms in (7.162). A precise match

of one-loop Chern-Simons terms will be presented in section 10.2.

12This holds before possible Weyl rescalings are taken into account.
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7.6.3 Identifying relevant couplings involving massive fields

We start discussing fermionic Kaluza-Klein modes. Let ψ̂(±) denote a general six-dimensional spinor

of given chirality. It is an 8-component spinor with complex entries, but the number of degrees

of freedom is halved by restriction to definite chirality. This counting agrees with the number of

degrees of freedom of the (off-shell) five-dimensional reduced spinor ψ, which can be represented as a

4-component vector with complex entries.

We can be more explicit. A representation of six-dimensional gamma matrices Γ̂â, {Γ̂â, Γ̂b̂} = 2η̂âb̂,

â, b̂ = 0, 1, ..., 5 can be found, such that

Γ̂a = σ1 ⊗ Γa , Γ̂5 = σ2 ⊗ I4 . (7.164)

In these equations, σi are the usual Pauli matrices, while Γa, {Γa,Γb} = 2ηab, a, b = 0, 1, ..., 4 are

five-dimensional gamma matrices, satisfying

iΓ0Γ1Γ2Γ3Γ4 = I4 . (7.165)

As a result, the six-dimensional chirality matrix is simply given by

Γ̂ = Γ̂0Γ̂1Γ̂2Γ̂3Γ̂4Γ̂5 = σ3 ⊗ I4 . (7.166)

We can thus write ψ̂(±) in the factorized form

ψ̂(±) = ι(±) ⊗ ψ , (7.167)

where ι(±) is a unit vector in C2, such that σ3ι(±) = ±ι(±), and ψ is a five-dimensional spinor.

Using these conventions, dimensional reduction of the six-dimensional standard kinetic term for

ψ̂(±) yields13∫
d6x̂ ˆ̄ψ(±)Γ̂

µ̂∂̂µ̂ψ̂(±) ⊃ 2π
∑
n∈Z

∫
d5x r

{
ψ̄(n)Γµ∂µψ

(n) ∓ n
r ψ̄

(n)ψ(n) + inA0
µψ̄

(n)Γµψ(n)
}
. (7.168)

On the left hand side, a hat denotes six-dimensional gamma matrices, indices, and coordinates. The

modes ψ(n) of the fermion ψ are defined as in (7.163). On the right hand side, we find a result

consistent with the general features of Kaluza-Klein models on a circle. In fact, the n-th excited

Kaluza-Klein mode has a mass proportional to n and is electrically charged with respect to the vector

A0. The charge is proportional to n as well. Note that additional non-minimal Pauli-like couplings

of the form F 0
µν ψ̄

(n)Γµνψ(n) are generated in the reduction. They are not relevant for our current

purposes since, as we will show in chapter 9, the desired Chern-Simons one-loop correction is only

sensitive to minimal couplings.

A very similar computation shows that dimensional reduction of the Rarita-Schwinger term for six-

dimensional gravitini yields, among other terms, a mass term for the excited Kaluza-Klein modes ψ
(n)
µ

13In order to keep the argument simple, we work in a flat background and we do not Weyl rescale the five-dimensional
metric.
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and a minimal coupling to the Kaluza-Klein vector A0 with charge proportional to the Kaluza-Klein

level n.

We can now turn to fermions in the vector multiplets. Let λ̂ be a six-dimensional spinor in the

adjoint representation of the simple gauge group G. Its gauge-covariant derivative is given by

D̂λ̂ = dλ̂+ [Â, λ̂] , (7.169)

where Â are the non-Abelian six-dimensional vectors introduced in section 7.3. In order to keep the

discussion as simple as possible, we restrict our attention to Kaluza-Klein zeromodes only in this

paragraph. As a consequence, dimensional reduction of the six-dimensional kinetic term for λ̂ is of

the form ∫
d6x̂tr

(ˆ̄λΓ̂µ̂D̂µ̂λ̂
)

= 2π

∫
d5x r

{
tr
(
λ̄ΓµDµλ

)
+ i

r tr
(
λ̄[ζ, λ]

)}
. (7.170)

On the right hand side, Dλ = dλ+ [A, λ] is the five-dimensional gauge-covariant derivative, while ζ is

the adjoint scalar introduced in the Ansatz (7.48). Note that the sign of the last term is determined by

the requirement of left-handedness for the gaugini, and that no A0-coupling emerges for the Kaluza-

Klein zeromodes precisely thanks to the shift of five-dimensional vectors described by (7.48). When

the gauge symmetry is spontaneously broken to the Coulomb branch, the scalars ζ acquire a non-

vanishing VEV orthogonal to the Cartan subalgebra. Furthermore, commutators [A, λ], [ζ, λ] vanish

for the components of λ lying in this subalgebra. However, they are non-trivial for the components

orthogonal to it. These components receive a mass from the second term in (7.170), while the first term

in the same equation provides electric coupling to the Abelian vectors Ai associated to the generators

of the Cartan subalgebra. We can thus see that Higgsed gaugini have the correct coupling to generate

the effective Chern-Simons interaction under examination.

A similar argument can be used to conclude that charged hyperini can run in the loop and furnish

a non-vanishing contribution. More precisely, dimensional reduction of their kinetic term gives∫
d6x̂tr

[
hUV

ˆ̄ψU Γ̂µ̂(D̂µ̂ψ̂)V
]

= 2π

∫
d5x r

{
hUV ψ̄

U
Γµ(Dµ̂ψ)V − i

rhUV ψ̄
UζI(TR

I ψ)V
}
.

In this expression, the six-dimensional covariant derivative of the hyperino is defined as

(D̂µ̂ψ̂)U = ∇̂µ̂ψ̂U + ÂIµ̂(TR
I ψ̂)U , (7.171)

and an analogous expression is understood for the five-dimensional covariant derivative on the right

hand side. Note that the sign of the last term has changed with respect to the gaugino reduction,

because hyperini are right-handed. Upon spontaneous gauge symmetry breaking to the Coulomb

branch, this term provides a mass for charged hyperini, while neutral hyperini are unaffected and

remain in the massless five-dimensional spectrum.

The reader might wonder whether there are massive fermions which are electrically coupled to

vectors Aα. Our analysis suggests that this is not the case. A thorough explanation would require

dimensional reduction of the full six-dimensional pseudoaction, including fermionic terms. Such a

pseudoaction can be found e.g. in [210]. However, it is crucial to recall that five-dimensional vectors
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Aα are obtained by dimensional reduction of six-dimensional two-forms B̂α. Such two-forms enter the

six-dimensional action in a qualitatively different way as six-dimensional vectors. Geometrically, they

are not connection forms, and cannot be used to build six-dimensional covariant derivatives. There-

fore, the reduced five-dimensional action lacks electric couplings of vectors Aα to fermions. Nonethe-

less, different couplings are possible, which can be referred to as magnetic. They read schematically

mαψ̄ΓµνFαµνψ where ψ stands for a five-dimensional fermion. Even though these interactions may play

a role in the full one-loop five-dimensional effective action, in the absence of electric vertices they are

not able to generate contributions to the Chern-Simons couplings.

It is interesting to point out the connection between this argument and the shift of vectors per-

formed in (7.129). As explained in section 7.5.1, this shift is crucial to identify properly five-dimensional

vectors coming from six-dimensional two-forms. As we can see by comparing (7.128) and (7.131), the

field redefinition (7.129) is such that in the cubic potential NM the term R2Lα gets replaced by the

term Rξiξj . As argued in the previous paragraph, it would be impossible to generate the former term

using five-dimensional fermion loops, while in the following we will show how the latter term can

emerge from such Feynman diagrams.

After these general remarks about massive fermions in the five-dimensional theory, let us discuss in

more detail each term in (7.162). The first term corresponds to a Chern-Simons coupling of the form

A0 ∧ F 0 ∧ F 0. As we argued above, Kaluza-Klein modes are the fields which are electrically charged

under A0. We therefore claim that this five-dimensional interaction is generated by diagrams in which

Kaluza-Klein excited modes coming from reduction of all chiral six-dimensional fields can run in the

loops. This claim will be verified in section 10.2.

The next term in (7.162) corresponds to a Chern-Simons vertex of the form A0 ∧ F i ∧ F j . In

order to reproduce this effective coupling using five-dimensional one-loop diagrams, we need fermions

which are electrically coupled both to the Kaluza-Klein vector A0 and to the Abelian vectors Ai in

the Coulomb branch. Our discussion above singles out Kaluza-Klein modes of Higgsed gaugini and

charged hyperini as natural candidates to run in the loop.

Finally, we focus our attention on the last term in (7.162), which gives rise to a Chern-Simons term

Ai ∧F j ∧F k. We identify the source of this coupling in the Higgsed gaugini and the massive charged

hyperini. The one-loop effect due to these fermions has been computed [211] for a five-dimensional

N = 2 supersymmetric gauge theory decoupled from gravity. The full result for the purely gauge part

of the five-dimensional cubic potential N , including quantum corrections, reads

N gauge = 1
2m0Cijξ

iξj + 1
6cclassdijkξ

iξjξk + 1
12

(∑
R

|R · ξ|3 −
∑
f

∑
w∈Wf

|w · ξ +mf |3
)
. (7.172)

In this equation ξ is a vector whose component are the scalar fields ξi associated to vectors Ai. In ξ ·R
it is contracted with a root of the simple gauge group G, while in ξ ·w it contracts with a weight of a

the representation in which the charged fermions transform. The first sum in (7.172) runs over all the

roots of G, and arises from integrating out the Higgsed gaugini, i.e. the fermionic partners of massive

W-bosons. The second sum in (7.172) runs over all massive charged fermions f and all weights in Wf ,

i.e. all elements of the set of weights of the representation in which the fermion f transforms. mf is
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the classical mass of the fermion f . Finally, the group theoretical invariants Cij and dijk are given by

Cij = trTiTj , dijk = 1
2trTi(TjTk + TkTj) . (7.173)

To apply the formula (7.172) to our circle compactification from six to five dimensions we recall

the classical expression (7.153) for NF. This leads to the identification

m0 = −8MαbβΩαβ , cclass = 0 , (7.174)

where we have used the fact that upon decoupling gravity the Mα are simply parameters. Following

the discussion of section 7.6.1 this matches the classical M-theory result. A careful comparison of

the loop terms in (7.172) and the intersection numbers Vijk of the resolved Calabi-Yau threefold X̃3

would require the introduction of new technical tools and lies out of the main line of development

of this section. However, let us stress that the reader can find a detailed discussion of this point in

[137], appendix A: as explained there, the match can be performed successfully in many examples of

Calabi-Yau threefolds with SU(N) singularities. The classical mass mf is zero in this case.

In summary, we are confident that all terms in the M-theory expression (7.162) arise from one-

loop quantum corrections in the 6d/5d dual picture. Moreover, this analysis can be extended to

some higher-derivative couplings which appear naturally in the M-theory reduction on a Calabi-Yau

threefold, but seem to be absent in the reduction of six-dimensional supergravity on a circle. In

section 7.5.3 we have seen that M-theory higher-curvature correction induce a term (7.138) which has

a non-vanishing contribution involving the Kaluza-Klein vector A0. It is proportional to the shifted

component č0 of the second Chern class of the Calabi-Yau threefold c2(X3) and reads schematically

A0 ∧ trR∧R , (7.175)

and corresponds to an amplitude with one Kaluza-Klein vector A0 and two five-dimensional gravitons.

It is impossible to extract such a coupling from the higher-curvature Green-Schwarz term (7.28) in

the six-dimensional pseudoaction. Hence, we are led to the conclusion that on the F-theory side this

interaction emerges as quantum effect, in a similar fashion as the A0∧F 0∧F 0 coupling analyzed above.

This claim will be substantiated in section 10.2, where a perfect match between one-loop effects and

classical threefold geometry will be presented.



CHAPTER 8

F-theory on Spin(7) manifolds

In this chapter we explore the possibility to compactify F-theory down to four dimensions on an

eight-dimensional Riemannian manifolds with Spin(7) holonomy. As explained in section 8.1 this idea

goes back to the early days of F-theory but has resisted a complete understanding so far. In order

to make some progress we are going to consider a special class of Spin(7) manifolds that are related

to Calabi-Yau elliptically fibered fourfolds. This will allows us to get some insight on F-theory on

these spaces. In particular we will be able to identify the Type IIB weak-coupling limit of a class

of Spin(7) geometries. They exhibit an intriguing interplay between supersymmetry breaking and

Lorentz symmetry breaking in four dimensions.

8.1 A long-standing challenge and a proposed duality

Over the last decades four-dimensional supersymmetric effective theories arising in string compactifi-

cations have been studied intensively. Minimally supersymmetric theories are considered as providing

interesting physics beyond the Standard Model. Therefore it has been a crucial long-standing task to

embed supersymmetric extensions of the Standard Model or Grand Unified Theories into string theory

as reviewed, for example, in [212, 131, 213, 103, 105]. As we have seen in section 4.4, the established ap-

proach is to consider compactifications of string theory on manifolds with special holonomy, such that

some of the underlying ten/eleven-dimensional supersymmetries are preserved in four dimensions and

allow a supersymmetric effective theory to be determined. Precisely these supersymmetry-preserving

geometries are also mathematically best studied and many powerful tools have been developed exploit-

ing the interplay of geometry and low-energy physics. It is therefore natural to ask whether one can

find a rich set of string compactifications with non-supersymmetric four-dimensional effective theories,

and possibly interesting phenomenological properties, while still allowing the virtues of the remarkable

mathematical tools developed for special holonomy manifolds to be used.

149
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In section 5.3 we have reviewed the standard M-theory/F-theory duality, in which the four-

dimensional theory is minimally supersymmetric (four real supercharges). This is achieved by choosing

the torus-fibered geometry relevant to F-theory to be a Calabi-Yau fourfold, i.e. to have SU(4) holon-

omy. On eight-dimensional manifolds, however, the classification by Berger reported in table 4.1 shows

that SU(4) is not the maximal possible special holonomy group within the local Lorentz group SO(8).

This maximal special holonomy group is instead given by Spin(7). For these geometries one therefore

is led to ask:

(1) Is there a controlled construction of Spin(7) manifolds that can serve as backgrounds for F-

theory?

(2) What are the characteristics of the four-dimensional effective theories arising from F-theory

compactifications on such Spin(7) manifolds?

(3) What is the weak coupling Type IIB string interpretation of these theories?

In this chapter we will address these questions. This problem is particularly interesting because

reduction of M-theory on a Spin(7) manifold yields a three-dimensional theory with half of the su-

persymmetries with respect to a Calabi-Yau compactification. One might therefore hope that in the

F-theory limit a four-dimensional theory emerges with no supersymmetry. It should be noted these

considerations were already mentioned in the original paper by Vafa [174], in connection with the

proposals of Witten [214, 215]. However, this link has not been concretized. In particular, it is hard

to characterize the most general Spin(7) geometry that allows for a four-dimensional theory to emerge

in the appropriate F-theory limit.

In fact, before entering any analysis of the effective action, we have to answer the question of

whether or not there are suitable Spin(7) manifolds that can be used for F-theory. In particular, it

will be crucial to single out geometries that have an appropriate torus fibration structure to identify

the F-theory compactification as a Type IIB string background. In building these manifolds we will

be motivated by the constructions described by Joyce [216]. These constructions begin by considering

a Calabi-Yau fourfold which is then quotiented in such a way that a Spin(7) manifold is generated.

We will then proceed with an analysis of F-theory on this class of Spin(7) manifolds. Clearly, one

expects that there exist many more examples of Spin(7) geometries that are not based on any Calabi-

Yau fourfold. Definite statements about these more general cases turn out to be hard to extract,

nevertheless various results of our analysis may well extend beyond the context that we consider.

Importantly, these constructions based upon Calabi-Yau quotients give us control over the setup and

allow our intuition about Calabi-Yau fourfold compactifications of F-theory to be used. Other explicit

constructions of Spin(7) geometries appeared in [217, 218].

In section 5.3 we have outlined the program based on M-theory/F-theory duality to compute the

effective action for F-theory on an elliptically fibered Calabi-Yau manifold. In the previous chapter

this program has been successfully carried out for a Calabi-Yau threefold. The analogous discussion

of the effective action for a Calabi-Yau fourfold has been studied in [206]. In this chapter we aim at

a generalization of this program to the class of Spin(7) geometries mentioned above.
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interval
Spin(7)
manifold

11d M-theory
e↵ective action

3d N = 1
e↵ective action

3d N = 1
e↵ective action

comparison

4d F-theory
e↵ective action

Figure 8.1: Summary of the effective actions considered in this chapter. The left column corresponds
to the M-theory side of the duality (8.1), while the right column corresponds to the F-theory side.
The comparison between the three-dimensional N = 1 theories is performed in the case in which the
Spin(7) manifold arises as an antiholomorphic quotient of an elliptically fibered Calabi-Yau fourfold.
We consider a fibration structure that yields a simple non-Abelian gauge group. The match of
three-dimensional actions is carried out in the Coulomb branch at the level of zero modes.

Our starting point must be the compactification of M-theory on a smooth Spin(7) manifold. This

yields a three-dimensional effective theory with minimal supersymmetry, i.e. two supercharges [219].

In section 8.3.1 we describe the three-dimensional effective action of M-theory on a general Spin(7)

manifold with probe fluxes extending and applying earlier works [220, 221, 222, 223, 224, 225] and

determine the couplings in terms of the geometric data of the Spin(7) geometry.

According to the standard paradigm, the duality between M-theory and F-theory is based on a

circle uplift of the M-theory effective action. To take the F-theory limit for the Spin(7) geometries

under consideration we need a different prescription. More precisely, we propose the following duality:

M-theory on Spin(7) manifold ∼= F-theory on

{
Spin(7) manifold

(with vanishing fiber)
× Interval

}
. (8.1)

In the context of this work we can only make this claim in cases where the Spin(7) manifold is

constructed from a Calabi-Yau fourfold as described in the previous paragraph. The extension of this

to more general geometries remains an interesting open problem.

The essential new feature of the proposed duality is the replacement of the circle with an interval.

This can be argued from different perspectives. First of all, the interval is crucial as the boundary

conditions that are imposed project out half of the zero mode degrees of freedom that would arise in

the circle reduction of a four-dimensional fermion. This observation will make it possible to obtain

minimal supersymmetry in three dimensions by reduction of a four-dimensional theory. In contrast,

it is impossible oxidize a minimally supersymmetric theory in three dimensions on a circle. Second of

all, the appearance of an interval is also natural from the construction of Spin(7) manifolds that we

have mentioned above for which the quotient of the fourfold may be associated with the quotient of

the circle that gives rise to the interval. It is crucial in (8.1) that the core features of the theory in

four dimensions and the boundary conditions for the interval are fixed by the Spin(7) geometry.

The presence of an interval presents some drawbacks, as well. In particular, we will find some

ambiguities in the uplift of the effective action from three dimensions to four dimensions. These



152 Chapter 8. F-theory on Spin(7) manifolds

cannot be resolved within the framework of supergravity, and other arguments have to be invoked.

Uplift ambiguities are essential, since they encode the fate of supersymmetry in the infinite interval

limit. To cast light on this subtle issue we will examine in greater detail a special class of Spin(7)

quotients that admit a clear Type IIB weak coupling limit. For these setups we will be able to establish

the following points:

• the topology of four-dimensional spacetime is R1,2× I, where the size of the interval I is macro-

scopic and goes to infinity in the F-theory limit;

• localized objects sit at the boundaries of the interval, while wrapping suitable submanifolds in

the internal space;

• bulk physics is invariant under four real supercharges, while localized sources preserve only two

real supercharges;

• in the strict limit of infinite interval the endpoints of the interval effectively disappear from the

setup, four-dimensional Lorentz invariance is restored, and supersymmetry under four super-

charges is achieved.

It is still an open problem to determine if these features are common for all compactifications of F-

theory on Spin(7) manifolds that are obtained as quotients of Calabi-Yau fourfolds. It is therefore not

possible to rule out the existence of Spin(7) manifolds that are able to yield a Lorentz invariant but

non-supersymmetric four-dimensional theory.

8.2 Geometries with Spin(7) holonomy for F-theory

To set the stage for the discussions that follow we describe the construction of Spin(7) manifolds as

antiholomorphic quotients of Calabi-Yau fourfolds. This construction is applied to elliptically fibered

Calabi-Yau fourfolds in subsection 8.2.2. We discuss the fiber structures which arise and comment on

seven-brane configurations that can appear.

8.2.1 Constructing Spin(7) manifolds from Calabi-Yau fourfolds

The key features of the topology and geometry of Spin(7) manifolds have been reviewed in section 4.6.1.

We will now recall the basic ideas underlying the construction of Spin(7) manifolds from Calabi-Yau

fourfolds performed in the work of Joyce [216]. Let Y4 be a Calabi-Yau fourfold and let σ : Y4 → Y4

be a antiholomorphic and isometric involution. In other terms, σ is required to satisfy

σ2 = 1l ,

{
isometric σ∗(g) = g ,

antiholomorphic σ∗(I) = −I ,
(8.2)
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where g and I are the metric and complex structure on Y4, respectively. These conditions translate

to the Kähler form J and on the holomorphic four-form Ω as

σ∗J = −J , σ∗Ω = e2iθΩ̄ , (8.3)

where θ is some constant phase factor. It is then shown in [216] that the quotient space

Z8 =
Y4

σ
(8.4)

can be equipped with a natural Spin(7) structure. In particular, the Cayley calibration Φ of Z8 can

be expressed in terms of the Kähler form J and the holomorphic four-form Ω of Y4 as

Φ =
1

V2

[
1

||Ω||Re(e−iθΩ) +
1

8
J ∧ J

]
. (8.5)

In this equation V and ‖Ω‖ denote the volume of the Calabi-Yau fourfold and the norm of the holo-

morphic four-form, which we record again for ease of reference,

V =
1

4!

∫
Y4

J4 , ‖Ω‖2 =
1

4!
Ωi1i2i3i4 Ω

i1i2i3i4 . (8.6)

The derivation of the precise prefactors in front of Re(e−iθΩ) and J ∧ J will be presented in section

8.3.2. The four-form Φ is invariant under the involution σ and an associated Spin(7) manifold may

then be constructed by quotienting Y4 by σ and resolving the singularities in a Spin(7) compatible

way [216]. In this way Y4 represents the double cover of Z8 which relates the volumes as V = 2V̂.

In preparation for the application to F-theory let us comment further on the geometries involved.

We note that when considering F-theory on a Calabi-Yau space Y s
4 , the space can be chosen to be

singular. The singularities arise, for example, when the four-dimensional theory has to have a non-

Abelian gauge group. These non-Abelian singularities can be resolved in a way that is compatible with

the Calabi-Yau condition to yield a manifold Y4. We denote the antiholomorphic involution on the

singular space Y s
4 by σs and on the resolved space by σ. The respective quotient spaces are denoted

by Zs8 = Y s
4 /σ

s and Z8 = Y4/σ. The Spin(7) resolution of Z8 will be denoted by Ẑ8. By analogy

with the standard M-theory/F-theory duality we thus expect that the duality (8.1) relates F-theory

compactified on Zs8 with M-theory compactified on Ẑ8. It should be stressed that finding a resolution

of Z8 admitting a Spin(7) structure is a hard task and involves constructing local real Spin(7) ALE

geometries that can be used to resolve possible orbifold singularities [216]. The Betti numbers of the

resolved space can be computed as described in [216]. A stringy computation of the Betti numbers

on the quotient geometry Z8 can be found in [226]. In this work we will not be concerned with

this real resolution Ẑ8, and mostly work with Z8 neglecting possible singularities. We will refer to

the Spin(7) manifold Z8 constructed in this way as a quotient torus fibration. Our goal is, however,

to formulate the results in a general Spin(7) language such that they can be equally applied to the

resolved geometries Ẑ8. We summarize the relevant geometries in figure 8.2.

The construction that is carried out in [216] assumes certain additional properties of the orbifold

singularities that are required for the Spin(7) ALE resolutions which are considered there to be applied.
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Y s
4 Y4

Zs8 Z8

Ẑ8

CY res.

σs σ

Spin(7) res.

Figure 8.2: Construction of Spin(7) manifolds by using Calabi-Yau fourfolds with
antiholomorphic involutions.

One such condition is that the singularities introduced by quotienting with respect to σ must be isolated

points in Z8 which lie at points that are already holomorphic orbifold singularities of Y4. However it

is anticipated that these resolution methods are by no means the only possibility. Therefore, in what

follows, we will not limit ourselves to considering only the sorts of singularities which are required in

[216], but will bear in mind these additional constraints. The analysis of the more general resolutions

that would then be required but the physics associated with their structure will not be discussed in

this work.

8.2.2 Spin(7) manifolds from elliptically fibered Calabi-Yau fourfolds

In order that the Spin(7) manifold Z8 can be used as a background of F-theory we require that the

Calabi-Yau fourfold Y4 is an elliptic fibration with Kähler base B3. The general remarks of section

5.2.2 on Calabi-Yau with elliptic fibration structure apply to the present case of Y4. In particular, we

suppose that Y4 is presented in Weierstrass form (5.22). We refer the reader to (5.19) for the expression

of the discriminant locus encoding the positions of seven-branes and to (5.21) for the complex structure

parameter of the elliptic fiber.

The involutive symmetry σ on the elliptic fibration is demanded to have a definite action on B3,

i.e. σ should be compatible with the fibration and induce a well-defined action on the base that we

denote σB. Diagrammatically we have

Y4 Y4

B3 B3

σ

π

σB

π

where π : Y3 → B3 is the canonical projection onto the base of the fibration. The preimage of a point

p on B3 under π, i.e. the fiber over p, will be denoted Cp.
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Let us denote by L̂σ the fixed-point space of σ in Y4. Its projection to B3 is denoted by LBσ = π(L̂σ)

and can equally be obtained as the fixed-point space of σB. On general grounds the space LBσ can be

composed of several components that can be one- or three-dimensional. To see this we can perform

the following local analysis. Let U be a given local patch U on B3 containing a fixed point p of σB.

We introduce local complex coordinates (z1, z2, z3) in such a way that that the coordinates of p are

(0, 0, 0). A first possibility for the action of σB, referred to as case (a) in what follows, is given by

(a) (z1, z2, z3)→ (z̄1, z̄2, z̄3) , ⇒ LBσ (U) is three-dimensional. (8.7)

This is the simplest case, since the geometry of the base B3 around the fixed locus is smooth. A

possible alternative that we refer to as case (b) is when LBσ is one-dimensional. In this situation B3

cannot be smooth and instead is replaced by an orbifold with singularities associated with a discrete

group G that contains Z2. For simplicity we will focus here on the case where G = Z2 but the

extension to more general orbifold singularities may be easily performed. A patch U of B3 near such

a singularity takes locally the form C3/Z2 and may be described locally by the complex coordinates

(z1, z2, z3) identified by ρU : (z1, z2, z3) → (−z1,−z2, z3). The action of σB on these coordinates is

given by

(b) (z1, z2, z3)→ (z̄2,−z̄1, z̄3) , ⇒ LBσ (U) is one-dimensional, (8.8)

which is an involution on the patch U as σB squares to the identification ρU . Let us point out two

special occurrences of case (b). Firstly, one could start with a non-singular threefold admitting a

global Z2 and quotient by this symmetry to find the base B3. In fact, this sort of situation naturally

arises in toroidal orbifolds. Secondly, one may consider the case that B3 is described as a hypersurface

or complete intersection in a higher-dimensional ambient space exhibiting orbifold singularities as a

result of scaling identifications. This allows σB to act as an involution on B3 if it is induced by a

symmetry of the ambient space that squares to the identity upon using the scalings. Both types of

constructions appear in [216]. Finally, we would like to furnish an explicit example of freely acting

antiholomorphic involution σB,

(c) (z1, z2, z3)→
( z̄2

z̄3
,− z̄1

z̄3
,− 1

z̄3

)
, ⇒ LBσ (U) is empty , (8.9)

even though we will not analyze this case (c) in detail in the upcoming sections.

The fixed space L̂σ of Y4 can have components that are either two- or four-dimensional, or σ can

be freely acting. To investigate the action of σ on Y4 further we must analyze several cases which are

distinguished by the location of the point p on B3:

(1) p /∈ LBσ : For each point p on B3 that is not a fixed point of σB the corresponding elliptic curve

Cp is mapped onto another elliptic curve CσB(p) over the image point σB(p). However, since σ

is antiholomorphic the orientations of CσB(p) and σ(Cp) will differ. In this case σ will be freely

acting on all points of Y4 that project to p or σB(p), see figure 8.3.

(2) p ∈ LBσ and ∆(p) 6= 0: If a point p on B3 is a fixed point of σB the elliptic curve over this

point will be mapped to itself. In particular, this implies that if p is not on a seven-brane that
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Figure 8.3: Generic torus fibers exchanged by the antiholomorphic involution.

Cp CσB(p)

p σB(p)

a smooth two-torus is mapped onto itself. Recall that the fixed point set of an antiholomorphic

involution on a smooth complex two-torus either consists of up to two real lines or is empty.

(2.1) If the torus is fixed point free this implies that each point on Y4 that projects to p is actually

not fixed by σ and hence does not give rise to a singularity of Z8. This means that σ will

be freely acting on all points of Y4 that project to p. If LBσ is one-dimensional then the

additional singularities associated with the σ2 identification can be resolved using standard

tools in algebraic geometry. Interestingly, if σ is fixed point free on the torus but not on

the base then the quotient fiber at such p is a Klein bottle, see figure 8.4.

Figure 8.4: Fiber modded by antiholomor-
phic involution to Klein bottle fibers.

Cp Cp/σ
p

Figure 8.5: Nodal fiber at fixed
point p. Involution fixes pinch-
point.

Cp

p

(2.2) If the torus has a fixed line on it then the dimension of L̂σ may be up to one greater than

the dimension of LBσ , depending on the dimension of the subspace of LBσ over which the

fixed space on the torus is a line. Since L̂σ must then have even dimensions greater than

one, it must have dimension of either 2 or 4. The quotient of the elliptic curve by σ then

gives rise to a cylinder.1

(3) p ∈ LBσ and ∆(p) = 0: The most interesting case is if a point p on B3 is both a fixed point

of σB and lies on a seven-brane. In this case Cp is actually a singular curve. There are vari-

ous possibilities for such singular curves and a systematic study should investigate all possible

antiholomorphic involutions and their fixed points. Here, let us only consider the simplest case

1We note that in certain cases an antiholomorphic involution of a smooth torus with a one-dimensional fixed space
can also yield a Möbius band.
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where Cp is a nodal curve (I1 type), as schematically depicted in figure 8.5. In this case there

can exist an involution σ that has one fixed point exactly at the node of the elliptic curve. One

can think of this nodal point as arising by shrinking the real one-dimensional fixed point set of

an antiholomorphic involution on a smooth elliptic curve. In this case the dimension of L̂σ may

be an even integer less than the dimension of LBσ , so it can be either zero or two.

From this we see that if the action of σ on Y4 is to be fixed point free then it can have only points

for which situations (1) or (2.1) apply. Alternatively if we restrict the fixed space to consist only of

isolated fixed points, which is imposed in [216], then we find that situation (3) must apply in which

the torus is pinched at these points. In addition to this if we also wish to consider fixed points which

are already holomorphic orbifold singularities of Y4, as is also imposed in [216], then we find that

LBσ must be one-dimensional. An example of a space which has singularities of this sort is shown in

appendix C in section C.2.

Let us now analyze the action of the antiholomorphic involution σ on the elliptic fiber. To this

end, we consider the case in which the elliptic fiber is presented in Weierstrass form (5.18) without

specializing to the patch z 6= 0. We can then let the antiholomorphic involution σ act antilinearly on

the projective coordinates of P2
2,3,1. Any σ action of this type may then be brought into the form

σ : (x, y, z)→ (x̄, ȳ, z̄) (8.10)

by an appropriate coordinate redefinition. Comparison between (5.18) and (8.10) reveals that, in order

for the antiholomorphic involution to be well-defined on the Calabi-Yau fourfold Y4, the sections f

and g have to satisfy

fσB(p) = fp , gσB(p) = gp , (8.11)

for every p on the base B3. Recalling (5.21), we conclude that for any point p on the base B3

j(τσB(p)) = j(τp) = j(− τp) . (8.12)

In the last step we have made use of the fact that all coefficients entering the Laurent series (5.6) are

integers and therefore real. In summary, we can infer that

τσB(p) = − τp up to SL(2,Z) transformations. (8.13)

Note that this condition is perfectly compatible with a non-trivial holomorphic dependence of the

modular parameter on the base coordinates. In particular, it can be satisfied for τ profiles with non-

trivial monodromies associated to the presence of seven-branes. Only in the special case in which τ

is constant over the base, as in the weak coupling limit away from orientifold planes, (8.13) enforces

a reality condition on τ , which has to be purely imaginary.

8.3 M-theory on Spin(7) spaces and Calabi-Yau quotients

Having discussed the geometry of the Spin(7) holonomy manifolds that we wish to consider, we will now

describe the effective theories which arise in the reduction of M-theory on these spaces. In subsection
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8.3.1 we will begin this analysis by considering the reduction on general Spin(7) manifolds. Then in

subsection 8.3.2 we will analyze how this may be related to the quotient of the effective theories that

arise from compactification on Calabi-Yau fourfolds. In subsection 8.3.3 we will then restrict to the

case where these Calabi-Yau manifolds are elliptically fibered and study the redefinitions that must

be made in order to move into a frame that can be lifted to the four-dimensional F-theory dual.

8.3.1 Effective action of M-theory on Spin(7) manifolds

The compactification of M-theory on a Spin(7) manifold Ẑ8 yields a three-dimensional effective theory

with minimal N = 1 supersymmetry. The action, to quadratic order in the fermions, for a general

three-dimensional theory with N = 1 supersymmetry can always be written in the form [227, 228]

S
(3)
N=1 =

∫
d3x e

[
1

2
R− 1

4
ΘIJε

µνρAIµ(∂νA
J
ρ +

1

3
fKL

JAKν A
L
ρ )− 1

2
gΛΣDµφΛDµφΣ − V (φ)

− 1

2
ψ̄µγ

µνρDνψr −
1

2
gΣΛχ̄

ΣγµDµχΛ +
1

2
gΣΛχ̄

ΣγµγνψµDνφΛ

− 1

2
Fψ̄µγ

µνψν + ∂ΛFψ̄µγ
µχΛ +

1

2
(gΣΛF − 2DΣ∂ΛF + 2XI

ΣX
J
ΛΘIJ)χ̄ΣχΛ

]
, (8.14)

with covariant derivatives and scalar potential given by

DµφΛ = ∂µφ
Λ + ΘIJX

IΛAIµ , V (φ) = 2gΛΣ∂ΛF∂ΣF − 4F 2 . (8.15)

Here XIΛ is the Killing vector of the target space symmetry that is gauged via (8.15). The action (8.14)

contains the φΛ-dependent metric gΛΣ(φ) that is non-degenerate and positive definite. The coefficient

ΘIJ of the Chern-Simons term is symmetric in I, J , and constant which ensures the gauge invariance

of the action. This represents the embedding tensor for the three-dimensional gauged supergravity

theory. The real function F (φ) depends on the scalars φΛ and is required to satisfy ΘIJX
IΛ∂ΛF = 0

for gauge invariance.

For smooth Spin(7) geometries Ẑ8 theN = 1 vacua where studied in [219, 220, 229, 101]. The three-

dimensional effective theory can be derived by reducing the action for eleven-dimensional supergravity,

which we record here again,

S(11) =

∫
1
2R ∗ 1− 1

4G4 ∧ ∗G4 − 1
12C3 ∧G4 ∧G4 . (8.16)

This reduction is discussed in [220, 221, 223, 225]. In the full reduction one must also take into

account the higher derivative terms along with the Spin(7) analog of the Calabi-Yau fourfold tadpole

cancellation condition (5.47). Since we do not consider spacetime-filling M2-branes, this constraint

reads

χ(Ẑ8)

24
=

1

2

∫
Ẑ8

G4 ∧G4 . (8.17)

We will describe this reduction in the following and reconsider some aspects of the derivation presented

in [225]. We stress that this reduction is actually a warped compactification, and we will neglect this

backreaction in the following leading order analysis.
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We carry out the reduction by decomposing the metric and three-form of eleven-dimensional su-

pergravity as

ds2 = gµνdx
µdxν + gmndy

mdyn , C3 = AI ∧ ωI , (8.18)

where gmn is the metric on Ẑ8 and ωI form a basis for H2(Ẑ8,R) with I = 1, . . . , b2(Ẑ8). We will

restrict to the case of b3(Ẑ8) = 0 for simplicity. The three-dimensional theory will then admit U(1)

gauge symmetries associated with the vectors AI .

In performing the Kaluza-Klein reduction one has to allow the metric of the internal geometry

Ẑ8 to vary without leaving the class of Spin(7) geometries. The analysis of such deformations was

performed in section 4.6.2. Let us remind the reader that zeromodes of the internal metric are in

one-to-one correspondence with the set of antiself-dual four-forms ξA, A = 1, . . . , b4A(Ẑ8), along with

one additional zero mode that corresponds to a rescaling of the overall volume. This implies that there

will be b4A(Ẑ8)+1 real scalar fields ϕA and V̂ parameterizing the deformations of the Spin(7) structure.

We refer the reader to (4.103) and (4.104) for the expressions of the variations of the Spin(7) metric

in terms of scalars ϕA, V̂. The analogous expression for the Cayley calibration was given in (4.105)

but is repeated here for convenience,

δΦ = KV̂Φ δV̂ + (KAΦ + ξA) δϕA . (8.19)

Upon performing the dimensional reduction, followed by a Weyl rescaling of the three-dimensional

metric to move into the Einstein frame, the bosonic part of the effective action is given by

S
(3)

Ẑ8
=

∫
1
2R∗1− 1

2hIJF
I∧∗F J− 1

4ΘIJA
I∧F J− 1

2gV̂V̂dV̂ ∧∗dV̂ − 1
2gABdϕ

A∧∗dϕB−V (ϕ)∗1 , (8.20)

where

gV̂V̂ = 9
8 V̂−2 , gAB = −7

2

∫
Ẑ8
ξA ∧ ξB∫

Ẑ8
Φ ∧ Φ

, hIJ =
1

2V̂

∫
Ẑ8

ωI ∧ ∗ωJ , (8.21)

and the scalar potential V (ϕ) is of the form (8.15). We do not discuss the details of the dimensional

reduction since they are conceptually similar to the Calabi-Yau threefold reduction of the previous

chapter. In particular, the reduction of the Einstein-Hilbert term can be performed by combining

the general results of section 4.3 with the observations about the Spin(7) moduli metric collected in

section 4.6.2

Let us point out that the action (8.21) is less general then (8.14). Firstly, we have only included

Abelian vectors. More importantly, we did not dualize all dynamical vector degrees of freedom into

scalar degrees of freedom as it is always possible in three dimensions. Therefore the kinetic terms

of the vectors with ϕA-dependent metric hIJ still appears in (8.20). Dualizing all vector degrees of

freedom yields new scalars ζI with metric hIJ , the inverse of hIJ . The presence of a Chern-Simons

term in (8.20) implies that the ζI are in general gauged with covariant derivative

DζI = dζI + ΘIJA
J . (8.22)
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Hence, the action (8.20) allows us to determine all couplings in (8.14): φΛ = (V̂, ϕA, ζI), gΛΣ =

( 9
8V̂2

, gAB, h
IJ), and XI

J = δIJ , X
IA = 0.

So far we have not discussed the scalar potential V and the Chern-Simons coupling ΘIJ . In fact,

in a compactification without fluxes both vanish identically. They are, however, induced if one allows

for a non-trivial flux background of the field strength dC3. Let us denote the background flux on

Ẑ8 by G4. A direct reduction of eleven-dimensional supergravity then implies that a flux-induced

Chern-Simons term takes the form

ΘIJ =

∫
Ẑ8

G4 ∧ ωI ∧ ωJ . (8.23)

More involved is the derivation of the flux-induced scalar potential from a real function F . After

dimensional reduction of the full action including the higher curvature term, one uses the tadpole

cancellation condition (8.17) to show that the scalar potential takes the form

V =
1

4V̂3

(∫
Ẑ8

G4 ∧ ∗G4 −
∫
Ẑ8

G4 ∧G4

)
= − 1

2V̂3

∫
Ẑ8

GA4 ∧GA4 , (8.24)

where GA4 is the antiself-dual part of the background flux G4. To generally derive F let us first note

that it was argued in [225] that F should be proportional to
∫
Ẑ8
G4 ∧ Φ. The factor in front of this

flux integral can, however, be field-dependent. In fact the correct form of F is given by

F =

√
7

4
√

2||Φ||V̂2

∫
Ẑ8

G4 ∧ Φ . (8.25)

In this expression we have made use of the quantity

‖Φ‖ =
1

4!
ΦmnpqΦ

mnpq , (8.26)

which has been already introduced in section 4.6.1. The derivatives of F satisfy

∂F

∂ϕA
=

√
7

4
√

2||Φ||V̂2

∫
Ẑ8

G4 ∧ ξA ,
∂F

∂V̂
= − 3

2V̂
F . (8.27)

Note that the derivation of these results does not depend on the precise form of moduli-dependent

coefficients KV̂ and KA entering the variation of the Cayley calibration (4.105) as these cancel when

taking the derivative.2 Inserting (8.27), (8.25) and the inverse metrics gAB, gV̂V̂ obtained from (8.21)

into the general form of the N = 1 scalar potential (8.15) one readily shows match with (8.24).

We conclude this section by performing a rearrangement of the Spin(7) moduli that will be useful

in the comparison to the Calabi-Yau reduction of section 8.3.2. To begin with, we divide the Spin(7)

moduli ϕA into two subsets, ϕA = (ϕK, ϕĨ−). This notation is chosen to make contact to section 8.3.2.

2One can also show that given a general Cayley calibration Φ, which varies as (4.105), it is possible to define an
alternatively normalized self-dual four-form Φ̂ which is also a singlet of Spin(7) and satisfies

Φ̂ =
1

||Φ||V̂2
Φ , K̂V̂ = − 3

2
V̂−1 , K̂A = 0 . (8.28)

This corresponds to the normalization for Φ chosen in (8.5).
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Note that this partition of the Spin(7) moduli is supposed to be such that the associated antiself-dual

four-forms satisfy the orthogonality condition∫
Ẑ8

ξK ∧ ξĨ− = 0 . (8.29)

Next we extend the range of the index Ĩ− by defining a new index I− that includes one additional

entry and define φI− = (φ̂, φ̂ϕĨ−). This definition is such that that the variation of Φ in (4.105) is now

given by

δΦ = KV̂Φ δV̂ + (KI−Φ + ηI−)δφI− + (KKΦ + ξK)δϕK , (8.30)

where

KI− =

(
−
ϕJ̃−KJ̃−

φ̂
,
KĨ−

φ̂

)
, ηI− =

(
−
ϕJ̃−ξJ̃−

φ̂
,
ξĨ−

φ̂

)
. (8.31)

These definitions then imply the constraints

φI−KI− = 0 , φI− ηI− = 0 , (8.32)

which means that the action (8.20) develops a new local symmetry under under which

φI− → λφI− , Φ→ λΦ . (8.33)

As anticipated above, this constrained formulation will be helpful in section 8.3.2. It might also be

useful, however, in finding generalizations of the F-theory construction to Spin(7) manifolds that are

not obtained as Calabi-Yau quotients.

8.3.2 Effective action of M-theory on Spin(7) manifolds from Calabi-Yau quotients

In the following we would like to introduce Spin(7) geometries whose effective theories can be uplifted

to four dimensions via the M-theory to F-theory limit. It is an outstanding question to characterize

such geometries generally. In order to approach this problem we therefore restrict our analysis to

Spin(7) geometries arising from elliptically fibered Calabi-Yau fourfolds as introduced in Section 8.2.2.

Our aim is to first show, that the three-dimensional N = 2 theories arising in Calabi-Yau fourfold

compactifications of M-theory are truncated to N = 1 when performing the antiholomorphic quotient

Y4/σ, with an involution σ as in (8.3). We note that the following steps bear many similarities to

the construction of four-dimensional Type IIA Calabi-Yau orientifold actions [51]. However, here we

are truncating three-dimensional N = 2 supersymmetry to N = 1 supersymmetry.3 Truncations of

N = 2 Chern-Simons theories to N = 1 induced by an antiholomorphic involution have been also

considered in [231].

Let us first recall the general form of a three-dimensional N = 2 action. The bosonic part of this

can always be brought to the form

S
(3)
N=2 =

∫
1
2R ∗ 1− 1

4ΘIJA
I ∧ (dAJ + 2

3fKL
JAK ∧AL)− gAB̄DMA ∧ ∗DM̄B − Ṽ ∗ 1 , (8.34)

3A systematic study of spontaneous N = 2 to N = 1 breaking in three dimensions can be found in [230].
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where gAB̄ = ∂A∂B̄K is a Kähler metric and Ṽ (M, M̄) is the scalar potential. This scalar potential is

generally of the form

Ṽ = eK
(
KAB̄DAWDBW − 4|W |2

)
+
(
KAB̄∂AT ∂BT − T 2

)
, (8.35)

where W (M) is a holomorphic superpotential and T is a real potential. One may also note that in

the N = 2 case the presence of a non-vanishing T is linked to the gaugings DMA.

The three-dimensional N = 2 effective action for a Calabi-Yau fourfold compactification of eleven-

dimensional supergravity was derived in [232, 233]. For the case b3(Y4) = 0 it takes a particularly

simple form. From our general discussion of the moduli space of Calabi-Yau n-folds with n > 2 in

section 4.5.2 we know that fluctuations of the internal metric yield both complex structure moduli and

Kähler moduli. The former are denoted zK in this chapter and are labelled by K = 1, . . . , h3,1(Y4).

Real Kähler deformations vI are indexed by I = 1, . . . , h1,1(Y3) and arise, as usual, from the expansion

of the Kähler form, J = vIωI .

The expansion of the M-theory three-form C3 = AI ∧ ωI yields h1,1(Y4) three-dimensional vectors

AI . The vectors AI together with vI form the bosonic components of three-dimensional N = 2 vector

multiplets. In contrast to the five-dimensional reduction of the previous chapter, the vectors AI and

dualized into scalars ζI that provide the degrees of freedom necessary for the complexification of the

real Kähler moduli vI . More precisely, the natural coordinates in the complexified Kähler moduli

space are

TI = 1
3!

∫
Y4

ωI ∧ J3 + iζI . (8.36)

They can be interpreted as the classical action of a Euclidean M5-brane wrapping the divisor class [DI ]

Poincaré dual to ωI . After dualization the kinetic terms of the three-dimensional N = 2 supergravity

theory are encoded by a Kähler potential

K(z, T ) = − log

∫
Y4

Ω ∧ Ω̄− 3 logV , (8.37)

which is evaluated as a function of the h3,1(Y4) + h1,1(Y4) complex coordinates zK and TI .

In the presence of background fluxes G4 a non-trivial Chern-Simons term with ΘIJ exactly as in

(8.23) is induced. As above in (8.22) this also implies the presence of gaugings DTI = dTI + iΘIJA
J .

Furthermore, a scalar potential arises from the functions

T =
1

4V2

∫
Y4

G4 ∧ J2 , W =

∫
Y4

G4 ∧ Ω , (8.38)

where T is in accord with the gauged shift symmetries.

In order to implement the N = 1 truncation we first note that the relevant forms have to transform

under σ∗ as

σ∗J = −J , σ∗(CΩ) = CΩ , σ∗C3 = C3 , (8.39)
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where the first two conditions already appeared in (8.3) when inserting the definition

C = e−iθeK/2 , (8.40)

with K as defined in (8.37). To perform the reduction one thus has to split the cohomology of Y4 into

parity-even and parity-odd eigenspaces as

Hn(Y4,R) = Hn
+(Y4,R)⊕Hn

−(Y4,R) . (8.41)

The surviving vectors in the expansion of C3 only arise from elements of H2
+(Y4), while the surviving

Kähler structure scalars arise from elements of H2
−(Y4). Thus, one has

C3 = AI+ ∧ ωI+ , I+ = 1, . . . , h1,1
+ (Y4) , J = vI−ωI− , I− = 1, . . . , h1,1

− (Y4) . (8.42)

Applying this to the dual complex scalars TI introduced in (8.36) one finds the split

TI = (TI+ , TI−) = (−iImTI+ ,ReTI−) , ImTI− = ReTI+ = 0 . (8.43)

In other words, out of the h1,1(Y4) complex coordinates TI only h1,1(Y4) real coordinates survive in the

quotient theory. Similarly, the h3,1(Y4) complex fields zK encoding complex structure deformations are

reduced to h3,1(Y4) real complex structure deformations ϕK. This can be inferred by considering all

complex structure deformations of Ω preserving the condition (8.39). One can chose local coordinates

such that ϕK = Re zK. In summary, the involution truncates the N = 2 Kähler manifold spanned by

TI and zK to a real Lagrangian submanifold Lσ parametrized by ζI+ , ReTI− and ϕK.

To compare these degrees of freedom which survive the quotient with those described in the Spin(7)

reduction of subsection 8.3.1 it is necessary to redefine the fields. The vectors AI+ and the volume V
are simply identified with the vectors AI and the volume V in (8.20), while the b4A(Z8) scalar fields

ϕA in (8.20) parametrize the independent degrees of freedom of the constrained fields

φÂ = (ϕK, φI−) , where Â = 1, . . . , 1 + b4A(Z8) , φI− = V−
1
4 vI− . (8.44)

They satisfy the constraint

N ≡ 1
4!KI−J−K−L−φI−φJ−φK−φL− = 1 , (8.45)

as a result of the definition (8.44). This condition can be viewed as a gauge fixing of the additional

symmetry introduced in (8.33). In terms of these fields the bosonic part of the effective theory

describing the projected Calabi-Yau reduction is given by

S
(3)
Y4/σ

=

∫
1
2R ∗ 1− 1

2hI+J+F
I+ ∧ ∗F J+ − 1

4ΘI+J+A
I+ ∧ dAJ+ − 1

2gVVdV ∧ ∗dV

− 1
2 g̃I−J−dφ

I− ∧ ∗dφJ− − 1
2 g̃KIdϕ

K ∧ ∗dϕI − V ∗ 1 , (8.46)

where the scalar metrics may be written as

gVV = 9
8V−2 , hI+J+ =

1

2V

∫
Y4

ωI+ ∧ ∗ωJ+ ,

g̃I−J− = −4V3

∫
Y4

ηI− ∧ ηJ− , g̃KL = −4V3

∫
Y4

ξK ∧ ξL , (8.47)
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and where

ηI− = 1
4V−

3
2PI−

J−ωJ− ∧ Jφ , PI−
J− = δI−

J− − 1

4!
KI−K−L−M−φK−φL−φM−φJ− ,

ξK = Re(CχK) , KI−J−K−L− =

∫
Y4

ωI− ∧ ωJ− ∧ ωK− ∧ ωL− . (8.48)

We have used the definition Jφ = φI−ωI− . Note that the constraint (8.45) is responsible for the

projection matrices PI−
J− that appear in the definition of the scalar metric. The Chern-Simons terms

in (8.46) are induced by G4 fluxes as in (8.23) and read

ΘI+J+ =
1

2

∫
Y4

ωI+ ∧ ωJ+ ∧G4 . (8.49)

By considering the potential of the truncated theory and matching this with (8.15) we see that

F = eK/2ReW + 1
2T =

∫
Y4

G4 ∧
(
Re(CΩ) + 1

8V−2J ∧ J
)
. (8.50)

By comparing this with (8.25) we may then read off Φ =
(
Re(CΩ) + 1

8V−2J ∧ J
)

up to a choice of

normalization. This is the expression for Φ that we already quoted in (8.5). In the remainder of this

subsection we discuss the structure of the resulting Spin(7) field space in more detail.

To investigate the metric on the Spin(7) field space we need to determine its variations with respect

to the coordinates introduced in (8.44). This again requires the constraint (8.45) to be consistently

implemented. One way to achieve this is to first express Φ in terms of V and N before taking derivatives

and later impose (8.45). Concretely, one has

Φ =
1

V3/2

 Re(e−iθΩ)( ∫
Y4

Ω ∧ Ω̄
)1/2 +

1

8

Jφ ∧ Jφ
N1/2

 . (8.51)

Then taking the variations of this with respect to V, φI− , and ϕK we find

δΦ|N=1 = −3
2V−1 Φ δV + ηI− δφ

I− + ξK δϕ
K , (8.52)

and in addition find that the normalization of Φ is such that∫
Ẑ8

Φ ∧ Φ = 7
16V−3 . (8.53)

Then by comparing the variation (8.52) with (8.19) we may identify the forms ξK and ηI− with the

Spin(7) forms ξA. More precisely, note that the constraint (8.45) implies φI− ηI− = 0. We thus identify

the coordinates φI− and forms ηI− with the quantities constructed after (8.29). Moreover, we find

that the projected Y4 moduli metric (8.47) matches the Spin(7) moduli metric (8.21). As expected

from the general Spin(7) analysis, ηI− and ξK also form a basis for the complete set of antiself-dual

four-forms of Y4 which are invariant under σ .4

4In fact the set formed by ηI− and ξK is complete but also degenerate as a result of the projection matrix PI−
J−

which appears in the definition of ηI− .
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8.3.3 Effective action of M-theory on Spin(7) quotients of elliptically fibered
Calabi-Yau fourfolds

In order to derive the four-dimensional effective action of F-theory on a Spin(7) manifold, we must

now restrict our M-theory reduction of section 8.3.2 to be based on elliptically fibered Calabi-Yau

fourfolds. In doing this we will denote the base of the elliptically fibered Calabi-Yau Y4 by B3. Recall

that the Calabi-Yau condition for an elliptic fibration is (5.33), which can be written more precisely

as

12c1(B3) = PDB3([∆]) , (8.54)

where we have stressed that Poincaré duality is performed with respect to the base B3. We note that

both c1(B3) and PDB3([∆]) have to transform with a negative sign under the antiholomorphic and

isometric involution σ. This requirement also ensures that ∆ has a finite volume, i.e.
∫

∆ J ∧ J does

not vanish.

The two-form associated to the zero section of the elliptic fibration is denoted by ω0. In this work

we will be only dealing with Calabi-Yau fourfold geometries with holomorphic zero sections. Note

that ω0 must transform with a negative sign under σ∗. In fact, as we discussed in section 8.2.2 the

homology class of the torus fiber is negative under σ, since σ reverses the orientation of the two-torus.

This property can also be seen by noting that the base intersects the fiber exactly once. As we will

discuss later, this allows us to perform the uplift by sending the coefficient φ0 in the expansion of J

to zero.

As the involution σ also descends to the base to σB, the cohomologies of B3 may be decomposed

under the action of σB as Hp(B3) = Hp
+(B3)⊕Hp

−(B3). This means that one can write

(ωα) = (ωα+ , ωα−) , α± = 1, . . . , h1,1
± (B3) , (8.55)

where ωα± are obtained by pulling back elements of H2
±(B3) to H2

±(Y4).

We will also allow for resolved singularities of the elliptic fibration of Y4 that correspond to simple

non-Abelian gauge groups G in the dual F-theory compactification on Y4. The location of these non-

Abelian singularities defines a divisor S in B3. In the simple analysis that follows we will assume

that there is only one stack of seven-branes on B3 that describe a non-Abelian gauge group and so S

has only one connected component. This significant simplification by no means represents the most

general setup which we will not address here. As a result the actions that follow will not represent

the most general possibilities.

The Poincaré dual two form PDB3([S]) lifted to Y4, admits the expansion b
α−
S ωα− defining constant

coefficients b
α−
S . As noted above, PDB3([∆]) and hence PDB3([S]) have negative parity under σ so

only the ωα− appear in the expansion. The non-Abelian singularities are resolved by introducing

new two-forms ωi, i = 1, . . . , rank(G). Assuming the absence of Abelian gauge factors one has

rank(G) = h1,1(Y4) − h1,1(B3) − 1. Let us note that all rank(G) forms ωi are in fact negative under

σ∗. To infer this we stress that each exceptional divisor is a P1-fibration over the seven-brane locus

in the base B3. Within B3 the seven-brane divisor S and its volume form are positive under σ by
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Poincaré duality.5 Since the antiholomorphic σ reverses the sign of the volume form of the P1-fiber,

we conclude that the exceptional divisors and their Poincaré dual two-forms ωi are negative under σ.

In summary, we find that the two-forms representing H2(Y4) are split according to

(ωI+) = (ωα+) , (ωI−) = (ω0, ωα− , ωi) . (8.56)

This implies that the truncated spectrum of the three-dimensional N = 1 theory is given by h1,1
+ (B3)

vectors Aα+ , and h1,1(Y4)− h1,1
+ (B3) + h3,1(Y4) scalars vI− = (v0, vα− , vi) and ϕK.

One can now systematically study all intersection numbers that are not forbidden by the σ-parity.

The intersection numbers of the fourfold will be denoted

KIJKL =

∫
Y4

ωI ∧ ωJ ∧ ωK ∧ ωL . (8.57)

Since the volume form on Y4 is positive under σ∗ some of them vanish automatically,

KI+J+K+L− = 0 , KI+J−K−L− = 0 . (8.58)

Combined with the intersection structure on elliptic fibrations one thus finds that for the potential

K̂ = K|Lσ the relevant non-vanishing intersections are

K0α−β−γ− ≡ κα−β−γ− , K0α−β+γ+ ≡ κα−β+γ+ , (8.59)

Kijα−β− = −Cijbγ−S κγ−α−β− , Kijα+β+ = −Cijbγ−S κγ−α+β+ ,

where κα−β−γ− and κα−β+γ+ are the triple intersections on B3. The matrix Cij is the Cartan matrix of

the non-Abelian gauge group G. Let us stress that there are numerous other intersection numbers that

are in general non-zero on Y4/σ. In particular, intersection numbers involving (ω0)n, n > 0 will play a

crucial role when matching the F-theory and M-theory reduction at the one-loop level [137, 140, 114].6

Crucially, this requires a redefinition of the coordinates

φ̂α− = φα− +
1

2
Kα−φ0, (8.60)

where the coefficients Kα− enter the expansion of c1(B3) onto the basis {ωα−},

c1(B3) = −Kα− ωα− . (8.61)

Clearly no coefficients Kα+ are found because c1(B2) is negative under the involution. The shift (8.60)

is analogous to the one in (7.129) in the previous chapter and to the shift found in [205].

The splitting of the vI− coordinates then induces a splitting of the constrained Spin(7) moduli φI−
defined in (8.44). After performing the redefinition (8.60) we may then move into a set of redefined

coordinates that are appropriate for performing the F-theory lift. Firstly, φ0 is mapped the length of

the interval and we set

1

r2
= φ0V− 3

4 , (8.62)

5Recall that formally σ(B3) = −B3, since σ reverses the orientation of B3.
6They can be reduced by repeatedly using (ω0)2 = −c1(B3) ∧ ω0, see (7.4).
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where r is the circumference of the circle in S1/Z2. Hence, φ0 captures degrees of freedom of the

four-dimensional metric. The φ̂α− become four-dimensional scalars, while the φi are the scalar part

of four-dimensional vectors with index along the interval φib = Ai3. It is convenient to set

φ
α−
b = (φ0)

1
3 φ̂α− − 1

2(φ0)−
2
3 bαCijφ

iφj , Vb = (φ0)
1
2V 9

8 , φib = (φ0)−1φi . (8.63)

These redefinitions can be motivated by the fact that, when taking the F-theory limit with large r, the

constraint (8.45) only depends on φ
α−
b , while r and φib are unconstrained. In addition, following [206]

the vectors Aα+ will become four-dimensional scalars with a real shift symmetry. We will consider the

lift more explicitly in section 8.4.2.

Let us finally also consider the flux-induced Chern-Simons couplings ΘI+J+ and potential F , given

in (8.49) and (8.50). From the split (8.56) we infer that the Chern-Simons coupling Θα+β+ only

involves vectors that become four-dimensional scalars and therefore, by the considerations of [205],

have to be absent

Θα+β+ = 0 . (8.64)

The real potential F can be expressed in terms of ΘI−IJ as

F =

∫
Y4

G4 ∧ Re(CΩ) + 1
8V−1ΘI−J−φ

I−φJ− . (8.65)

Again using (8.56) and following [205] one has to additionally impose

Θ00 = 0 , Θ0α− = 0 , Θ0i = 0 , Θα−β− = 0 , Θiβ− = 0 . (8.66)

This choice of fluxes allows that a four-dimensional theory might exist, no fluxes are included in

reduction from four to three dimensions, and the gauge group G is unbroken in four dimensions.7

The resulting potential F will contain a term that is classical on the F-theory side and a one-loop

contribution as we will discuss at the end of the next section.

8.4 F-theory on Spin(7) manifolds

In the previous section we studied M-theory on Spin(7) manifolds and later focused on examples

constructed as quotients of elliptically fibered Calabi-Yau fourfolds by an antiholomorphic involution.

As a next step we discuss in subsection 8.4.1 the dual interval reduction of a four-dimensional theory.

Concretely, we will identify the boundary conditions on various four-dimensional fields on an interval

that have to be imposed in order to make a duality of the form (8.1) possible. Aspects of the non-

supersymmetric four-dimensional effective theories are discussed in subsection 8.4.2. We particularly

focus on the couplings of the uncharged scalar fields that are real both in three and four dimensions

and satisfy Neumann boundary conditions at the ends of the interval.

7These conditions will be modified in the presence of U(1) gauge factors [137, 140, 114].
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8.4.1 Dimensional reduction of the four-dimensional theory on an interval

One of the crucial ingredients of the new kind of M-theory/F-theory duality claimed in (8.1) is the use

of an interval in the dimensional reduction from four to three dimensions on the F-theory side of the

duality. In this subsection we discuss some general features of dimensional reduction on an interval

and consider candidate four-dimensional parent actions.

Due to the presence of an interval I = S1/Z2 in (8.1) the uplift of a three-dimensional theory on

M3 to a four-dimensional theory onM4 =M3 × I is further complicated, since boundary conditions

have to be given for each field. These have to be appropriately specified in order that the duality

suggested in (8.1) holds. In the following we will discuss vectors, fermions, and scalars in turn.

Let us first consider a four-dimensional Abelian vector Am. Since its components satisfy a second-

order equation of motion we can choose Dirichlet or Neumann conditions. This choice, however, has

to be such that each component of the field strength Fmn has a definite parity under the Z2 action.

In particular, inspection of the the mixed component

Fµ3 = ∂µA3 − ∂3Aµ (8.67)

reveals that if Aµ satisfies Dirichlet boundary conditions A3 has to satisfy Neumann boundary condi-

tions, and vice versa. This gives the two choices

(A) D : Aµ |∂M4
= 0 and N : ∂3A3 |∂M4

= 0 , (8.68)

(B) D : A3 |∂M4
= 0 and N : ∂3Aµ |∂M4

= 0 ,

that may be made without over constraining the equation of motion. When carrying out the interval

reduction the Dirichlet boundary conditions will remove the would-be zero mode of the corresponding

four-dimensional field. So fields with Dirichlet boundary conditions will not be seen in the three-

dimensional effective theory. This implies that reduction of Am can yield either one massless scalar or

one massless vector in the three-dimensional effective action, but not both. This fact can be extended

to non-Abelian gauge fields for a four-dimensional gauge group G. To do this let us denote the

generators of the algebra of G by (Ti, TI), with Ti labeling the Cartan generators. Then for each

vector Aim, A
I
m one can choose different boundary conditions.

To conform with the theory arising in the Spin(7) reduction it turns out that one needs to chose

option (A) in (8.68) for the Cartan vectors to keep three-dimensional scalars φib = Ai3 and option (B)

for the non-Cartan vectors in order to keep three-dimensional vectors AIµ.8 In this case one notes that

the non-Cartan three-dimensional vectors AIµ acquire a mass term for which the mass is determined

by the vacuum expectation value of the three-dimensional massless scalars φib. This mass term arises

in the effective theory from the reduction of the gauge kinetic term. This analysis is consistent with

the fact that the three-dimensional theory arising in the reduction described in section 8.3.3 is a

Wilsonian effective action with no non-Cartan vectors and only the scalars φi, i = 1, . . . , rank(G). Let

8These boundary conditions imply that the gauge coupling constant should be effectively assigned odd parity under
the Z2 action.
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us stress, however, that we are still able to extract the classical couplings using the Spin(7) reduction

by uplifting the couplings of the scalars φib. The Lorentz transformations and gauge transformations

of the four-dimensional vector mix all components of Aim, A
I
m and thus allow to recover the couplings

of the four-dimensional vectors from the couplings of φib, for a large interval on which these symmetries

are restored.

Let us next consider a four-dimensional fermion given by a Majorana spinor χ. Since its equations

of motion are first-order, we can only impose a Dirichlet boundary condition of the form

1
2(1± γ3)χ

∣∣
∂M4

= 0 (8.69)

without over constraining the dynamics. The sign is related to the intrinsic parity of the spinor under

the Z2 action on the interval. For both choices, reduction of χ furnishes a massless Majorana spinor

in the three-dimensional effective action. This implies that when focusing on zero modes, the degrees

of freedom of the fermions are halved. However, there is no ambiguity when uplifting a fermion from

three to four dimensions. Four-dimensional Lorentz invariance implies that the three-dimensional

dynamics of the spinor encodes its four-dimensional couplings. A similar argument applies to the

gravitino.

The comparison can, however, be more involved if the four-dimensional fermion is charged under

the gauge group G. In an interval reduction the Coulomb branch scalars can give dimensionally

reduced fermions a mass proportional to φib if the coupling to φib is non-vanishing. This implies that

these fermions are not part of the low-energy effective theory and have to be integrated out. As with

the vectors we find that the Cartan fermions remain dynamical in the three-dimensional low-energy

effective theory. These then comprise the three-dimensional, N = 1 supersymmetric partners of φib
moduli.

Finally, we turn to the reduction of a four-dimensional scalar field φ with standard two-derivative

action yielding a second-order equation of motion. As a result, we can impose Dirichlet or Neumann

boundary conditions

φ |∂M4
= 0 or ∂3 φ |∂M4

= 0 (8.70)

without over constraining the equation of motion. As a result the degree of freedom of a four-

dimensional scalar might be entirely lost (for Dirichlet b.c.) or kept (for Neumann b.c.) when consid-

ering only the zero mode in the three-dimensional effective theory. This is in contrast to the vectors

and fermions discussed above. In other words, one can add an arbitrary number of Dirichlet scalars

to a candidate four-dimensional action without changing the three-dimensional effective theory on a

small interval.

These features of interval reductions lead us to first specify a minimal four-dimensional Lorentz

invariant Ansatz for the four-dimensional action containing only those couplings that can be uniquely

fixed by comparison with the three-dimensional N = 1 zero mode action. This non-supersymmetric
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theory is given to quadratic order in the fermions by

S
(4)
min =

∫
d4x e

[
− 1

2R− 1
2 GAB ∂mϕA∂mϕB − 1

4f Tr(FmnF
mn)− V (4)

− 1
2 ψ̄mγ

mnrDnψr − 1
2GABχ̄AγmDmχ

B − 1
2f Tr(λ̄γmDmλ) + 1

4f ψ̄mγ
rsγmTr(λFrs)

+ 1
2
√

2
GABψ̄mγnγmχADnϕ

B + 1
2A

1ψ̄mγ
mnψn + 1√

2
A2
Aψ̄mγ

mχA

− 1
2A

3
ABχ̄

AχB + 1
4
√

2
A4
ATr(Fmnλ̄)γmnχA − 1

2GABA4
AA

2
BTr(λ̄λ)

]
, (8.71)

where the covariant derivatives of the Majorana fermions are given by

Dmψn = ∂mψn + 1
4ωmrsγ

rsψn , Dmλ = ∂mλ+ 1
4ωmrsγ

rsλ+ [Am, λ] ,

Dmχ
A = ∂mχ

A + 1
4ωmrsγ

rsχA +Dmφ
BΓBC

AχC . (8.72)

In this action GAB is a real metric for the scalar target space and V (4), f are real functions of the

scalars ϕA. In addition to this A1, A2
A, A3

AB and A4
A are further functions of ϕA that will later be

determined by comparing the reduction of this action with the three-dimensional result. As this action

is not supersymmetric we could in principle have made a much more general proposal for the couplings

that appear. However, it will turn out that (8.71) is sufficiently general to allow for a matching with

the three-dimensional theory to be performed. For convenience we note here that performing this

calculation one finds that the potential is given in terms of a real function F by

V (4) = 2GAB∂AF∂BF − 3F2 , (8.73)

and that the A functions are given in terms of F and f by

A1 = F , A2
A = ∂AF , A3

AB = DA∂BF − 1
2GABF . A4

A = ∂Af . (8.74)

The action S
(4)
min given in (8.71) should be used with caution. It was constructed as the minimal

functional consistent with four-dimensional Lorentz invariance that yields the three-dimensional action

upon interval reduction. Note that this construction does not ensure conservation of the currents

coupling to gravitini and gauge fields. Recall from section 1.4 that this is needed in a consistent

theory of massless spin one or two particles in the purely bosonic case [31] and also spin 3/2 particles

in the supersymmetric case [32]. Furthermore, we point out that the interpretation of (8.71) as a

Wilsonian effective action is questionable, since it might not capture the dynamics of all light degrees

of freedom. All scalars satisfying Dirichlet boundary conditions have only massive excitations for a

finite interval length and do not enter the action (8.71). If they are actually present in the four-

dimensional spectrum, however, they become arbitrarily light as the interval grows large.

This puzzle can be solved in the cases in which the Spin(7) quotients admit a weak-coupling limit

of the kind discussed below in section 8.5. The outcome of our analysis suggests the following picture.

A possible four-dimensional Wilsonian effective action S
(4)
W completing S

(4)
Min on a large interval could

be given by a N = 1 Lagrangian L(4)
N=1 for F-theory on the original Calabi-Yau space Y4 supplemented

by the boundary conditions or a boundary action L(3). Hence, it takes the form

S
(4)
W =

∫
M4

L(4)
N=1 +

∫
∂M4

L(3) . (8.75)
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The restoration of the Calabi-Yau moduli space from the moduli space of the Spin(7) manifold in

the large interval limit is very non-trivial. We have strong evidence to support this claim in the

weakly-coupled setups of section 8.5 but we are not able prove that this is a general feature of Spin(7)

manifolds obtained from quotients of Calabi-Yau fourfolds.

Let us stress that the action (8.71) neglects the couplings of charged matter that will be present

in a general F-theory compactification. Furthermore, we have not displayed the terms of higher

order in the fermions. These can be added by making an Ansatz for these couplings and reducing

them to three dimensions with the boundary conditions described above. The coefficients are then

determined by comparing the zero mode result to a general three-dimensional N = 1 theory in which

the higher fermionic couplings are known in terms of the three-dimensional N = 1 characteristic

functions determined by the reduction of the terms in (8.71).

Let us conclude this section by noting that the inclusion of Dirichlet scalar is not the only ambiguity

in the uplift from three to four dimensions. One has also to analyze carefully the uplift of three-

dimensional scalars, since they can come both from a scalar or a vector in four dimensions. This

issue, however, is not specific to the Spin(7) setup and indeed already appears in the more familiar

case of F-theory on a Calabi-Yau fourfold. As we will see in the next section, we can solve all such

ambiguities in the setup under consideration appealing to the Calabi-Yau geometry that underlies the

Spin(7) quotients we study.

8.4.2 Effective action of F-theory on Spin(7) manifolds

Having described the three-dimensional effective theory obtained for the quotient torus fibered Spin(7)

geometry in subsections 8.3.2 and 8.3.3 and the details on the interval reduction in subsection 8.4.1 we

are now in the position to perform the reduction and read off the couplings of the four-dimensional the-

ory (8.71). Clearly, proposing that the coupling functions take the same form in the four-dimensional

theory is a speculative part of the analysis. It amounts on the one hand to sending the size of the

interval I to infinity, and on the other hand shrinking the fiber volume. This means that one has to

be performing the M-theory to F-theory limit. In supersymmetric F-theory compactifications it has

become clear over the last years [206, 137, 234] that many couplings in the three-dimensional theory

obtained from M-theory appear to also have an F-theory interpretation. Motivated by these advances

we perform a similar oxidation for the Spin(7) compactification. However, it should be stressed that

we will only talk about zero modes in the following and many of the subtleties are, in fact, hidden in

the treatment of massive modes.

The first step is to implement the F-theory limit explicitly. Note that not all couplings arising in

the M-theory reduction are classical from the F-theory perspective on a small compact space. Various

couplings can be induced at loop level when integrating out massive Coulomb branch and Kaluza-

Klein modes. To extract the classical terms only, we proceed as in section 7.6.1 and we assign suitable

scalings to three-dimensional fields. In analogy with (7.155) the correct scalings are

v0 → εv0 , vα− → ε−1/2vα− , vi → ε1/4vi , r → ε−3/4r . (8.76)
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They ensure precisely that the couplings with intersection numbers (8.59), i.e. K0α−β−,γ− ,K0α−β+,γ+

and Kijα−β− ,Kijα+β+ are surviving the ε → 0 limit. Translated into the coordinates φI− one thus

finds

φ0 → ε9/8φ0 , φα− → ε−3/8φα− , φi → ε3/8φi , V → ε−1/2V . (8.77)

Combining these scalings with the coordinate redefinitions (8.63) one extracts the leading terms of all

fields. We first introduce the φ
α−
b defined as the leading term in (8.63). In the limit the normalization

constraint (8.45) translates to the condition

Nb ≡ 1
3!κα−β−γ−φ

α−
b φ

β−
b φ

γ−
b = 1 . (8.78)

This implies that only h1,1
− (B3)− 1 coordinates φ

α−
b are independent. The missing degree of freedom

is encoded by the base volume Vb arising as leading term in the definition (8.63). After the ε → 0

limit the resulting three-dimensional action can be matched with a the reduction of a four-dimensional

theory reduced on an interval of length r with boundary conditions introduced in subsection 8.4.1.

This allows us to read off the data of the four-dimensional theory from the three-dimensional action.

We first note that all couplings containing three-dimensional vectors or fermions are formally lifted

from three-dimensional to four-dimensional in a Lorentz compatible way. For example, the kinetic

terms in (8.14) for the three-dimensional fermions χα− , which are in the same three-dimensional,

N = 1 multiplets as the scalars φ
α−
b , are given by

1
2 g̃α−β−χ̄

α− /Dχβ− . (8.79)

These are lifted by completing the χα− into four-dimensional fermions and matching g̃α−β− with the

reduction of the equivalent four-dimensional terms after performing the reduction and Weyl rescaling

as well as implementing the ε→ 0 limit with (8.77). In this way we can read off

Gα−β− = (g̃α−β−)ε=0 = 4V3
b

∫
B3

ξb
α− ∧ ∗ξb

β− , (8.80)

where the four-forms ξb
α− are given by

ξb
α− = 1

4V
− 4

3
b Pα−

γ−ωγ− ∧ ωβ−φ
β−
b , Pα−

β− = δα−
β− − 1

3!κα−γ−δ−φ
γ−
b φ

δ−
b φ

β−
b . (8.81)

The other components of the four-dimensional scalar metric GAB appearing in (8.71) may then be

deduced in a similar way by expanding ϕA = (Vb, φα− , ϕK, ζα+) and making the comparison with

(8.14) and (8.46). This gives GVbVb = 4
6V−2

b and

GKL = (g̃KL)ε=0 = 4V3
b

∫
B3

ξb
K ∧ ∗ξb

L , Gα+β+ = (hα+β+)−1
ε=0 =

[
1

2Vb

∫
B3

ωα+ ∧ ∗ωβ+

]−1

, (8.82)

Next we can consider the comparison of the kinetic terms for the scalars φi with the reduction of

the four-dimensional vector kinetic terms. In this way we find that the coupling function f is given

by

fCij = (r2gij)ε=0 = V2/3
b Cijb

α−
S κα−β−γ−φ

β−
b φ

γ−
b . (8.83)
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Similarly the reduction of the potential for the four-dimensional theory may be compared with the

general three-dimensional N = 1 result (8.15) from which we find (8.73) where the function F is

related to the function F , which determines the potential of the quotiented Calabi-Yau reduction, by

F = (rF )ε=0 =
(
eK

F/2

∫
Y4

Re(Ω) ∧G4

)
Lσ

. (8.84)

where KF = −2 logVb − log
∫
Y4

Ω ∧ Ω̄. Finally we note that by comparing the fermionic couplings in

the reduction of (8.71) with (8.14) we find (8.74).

In the preceding analysis we did not include charged matter. Clearly, in a general F-theory

compactification with fluxes chiral matter will be part of the four-dimensional massless spectrum.

This matter can become massive when dimensionally reduced on an interval if the scalars φib get a

vacuum expectation value. This implies that these have to be integrated out in the three-dimensional

low-energy effective theory. We have already seen this mechanism at work in six dimensions in the

previous chapter. It is also present in the context of F-theory on elliptically fibered Calabi-Yau

fourfold. In this case chiral matter generates one-loop corrections to the Chern-Simons terms of the

three-dimensional N = 2 action [137, 140, 114], in very much the same spirit as what happens in five

dimensions, see chapter 9.

Since we are now considering a three-dimensional N = 1 action the appearance of quantum effects

due to massive states will be different. In particular we expect that part of the three-dimensional

potential F will admit a one-loop term

F ⊃ F class + F 1−loop . (8.85)

This classical term will lift to the four-dimensional superpotential (8.84) in our simple configurations

with only one unbroken non-Abelian gauge group. The one-loop term can be obtained by considering

the general Spin(7) potential F with (8.50), imposing that up-lift conditions (8.66), and keeping the

term that vanish in the limit ε→ 0. This leads to the identification

F 1−loop ?
= 1

8V−2

∫
Z4

J ∧ J ∧G4 = 1
8V−1Θijφ

iφj . (8.86)

It would be very interesting to check this match for an explicit example by computing both the general

one-loop contribution in field theory and the flux intersection Θij of the form (8.23).

8.5 Quotients in the weak-coupling limit

In this section we discuss the realization of Spin(7) geometries as quotients of elliptically fibered

fourfolds in the Sen’s weak-coupling limit introduced in section 5.4. In particular we analyze the

impact of the holomorphic quotient associated to Sen’s limit on the Spin(7) geometry. We will be thus

able to establish an explicit connection between the Type IIB orientifold action and a Z2 symmetry

acting on the M-theory geometry. This information will allow us to address the problem of Dirichlet

scalars in the interval uplift raised in section 8.4.1.
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8.5.1 Sen’s limit and the antiholomorphic quotient

Sen’s limit has been introduced for a general elliptically fibered Calabi-Yau (n + 1)-fold in section

5.4: all results quoted there can be applied to the present situation. For our present purposes it is

convenient to manipulate the Weierstrass equation in the patch z 6= 0, given in (5.22), as follows. In

the limit C → 0 equation (5.22) is conveniently rewritten in terms of the new coordinates

x = hx̃ , y = h
3
2 ỹ , (8.87)

where h is the polynomial on the base that encodes the position of the O7-plane in Sen’s limit, see

(5.38) and (5.41). Indeed, (5.22) reformulated in terms of x̃, ỹ reads

ỹ2 = x̃3 − 3x̃− 2 , (8.88)

which is manifestly independent of the base coordinates.

The harmonic one form of the torus Ω1 = dx
y is given in terms of these rescaled coordinates

by Ω1 = h−
1
2
dx̃
ỹ . The O7-action may then be seen by moving once around h = 0 and noting that

Ω1 → −Ω1. The Calabi-Yau threefold Y3 which is present in the weak-coupling limit is then the double

cover of the base B3 such that Ω1 becomes single valued. This can be made more explicit as follows.

Recall from section 5.4 that the Calabi-Yau threefold Y3 is described by introducing a new coordinate

ξ and a new equation (5.42), which we record here again for convenience,

Y3 : ξ2 = h . (8.89)

Recall also that the holomorphic orientifold involution is given by

σh : Y3 → Y3 , ξ → −ξ , (8.90)

and has O7-planes at the fixed points given by h = 0. Formally lifting Ω1 from the base to its double

cover Y3 we may then write Ω1 = dx̃
ξỹ and see the consistency of the O7-monodromy action Ω1 → −Ω1

with the map ξ → −ξ.

Next we observe that we can write Ω1 as Ω1 = dz where z is the complex coordinate of the

torus. If the two independent one-cycles of the torus are denoted A and B with corresponding real

coordinates xA and xB, then the complex coordinate z reads z = xA + τxB, with τ the complex

structure parameter of the torus. This shows that the action of the holomorphic involution (8.90)

induces a reflection RAB of the coordinates of the A and B cycles given by (xA, xB) → (−xA,−xB).

This formal geometric action on the the torus coordinates encodes the intrinsic parities of the Type

IIB fields under the orientifold involution.

As a further step we study these effects in a setups in which the Calabi-Yau fourfold is also

quotiented by an antiholomorphic involution σ. By considering the action of the different involutions

on the ambient space of the fiber and demanding the invariance of the polynomial which defines the

Calabi-Yau fourfold we can deduce the action of σ on the Weierstrass coefficients and the functions
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which appear in the weak-coupling limit. We have already formulated suitable conditions on f and g

in (8.11). When Sen’s limit is considered these are supplemented with

hσB(p) = hp , ησB(p) = ηp , χσB(p) = χp , (8.91)

where p is an arbitrary point on the base B3. Note that we do not have a rigorous proof that (8.11)

and (8.91) must always be satisfied in order to ensure compatibility between the fibration structure

and the antiholomorphic involution. Nonetheless, we have found this to be the case in all examples

we have constructed using simple involutions on hyper-surfaces in toric ambient spaces.

We now introduce an antiholomorphic involution

σah : Y3 → Y3 , (8.92)

induced by σ. However, we must note that the action of σB on h does not uniquely determine the

action of σah on ξ which can either be ξ → ξ̄ or ξ → −ξ̄. Both choices are related by σh given in (8.90)

and without loss of generality we can choose σah to act as ξ → ξ̄. As a consequence the action of σah

on the uplift of Ω1 is given by Ω1 → Ω̄1. Writing Ω1 in terms of xA and xB and combining the action

of the two involutions σh and σah on Ω1 and τ we find the corresponding actions RAB, RA, and RB

on the coordinates (xA, xB) of the A and B cycles. The set of combined quotients in the weak limit

may then be summarized by

σh : (ui, ξ)→ (ui,−ξ) , RAB : (xA, xB)→ (−xA,−xB),

σah : (ui, ξ)→ (σB(ui), ξ̄) , RB : (xA, xB)→ (xA,−xB),

σhσah : (ui, ξ)→ (σB(ui),−ξ̄) , RA : (xA, xB)→ (−xA, xB), (8.93)

where ui denote collectively the coordinates on the base space B3 and each line lists the action on

Y3 along with the formally induced reflection on an auxiliary T 2. By considering the form of these

quotients we see that σh and σah always commute on bosons and that the dimension of the fixed space

of σah in Y3 is always the same as the dimension of the fixed space of the product σhσah. We note

that in the case (b), in which σB has a one-dimensional fixed space, the orbifold singularities of B3

must also be up-lifted to the double cover Y3. One can analyze these singularities in local patches

analogously to the description given in section 8.2.2.

8.5.2 Intrinsic parities of Type IIB fields from M-theory

Let us now investigate how the geometric reflections RA, RB, and RAB in (8.93) can be translated

into intrinsic parities of Type IIB fields associated to the corresponding geometric actions σh, σah, and

σhσah. Recall that M-theory/F-theory duality predicts that the B-cycle is identified, after T-duality

to Type IIB, with the fourth direction of spacetime that grows large in the F-theory limit, which

will be denoted x3. Furthermore, we need the results (3.63), (3.64), and (3.67) derived in section 3.4

studying the duality between M-theory on a torus and Type IIB on a circle. By means of the usual

adiabatic argument we can extend the validity of those relations to a non-trivial fibration of the torus

over the base space B3.
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Type IIB Ωp (−1)FL R3 (−1)FL R3 Ωp M-theory RAB RB RA

Φ + + + gAA + + +

gµν + + + gµν + + +

gµ3 + − − CµAB + − −
g33 + + + gBB + + +

Bµν − + − CµνA − + −
Bµ3 − − + gµB − − +

C0 + − − gAB + − −
Cµν − − + CµνB − − +

Cµ3 − + − gµA − + −
Cµνρ3 + + + Cµνρ + + +

Table 8.1: Summary of all components of bosonic fields of Type IIB with parities under the transfor-
mations Ωp (−)FL , R3 (−)FL , and R3 Ωp. For each component the M-theory origin is provided together
with its parities under the transformations RAB, RB, and RA. By slight abuse of notation indices µ,
ν, ρ refer both to the three external non-compact directions of spacetime and to the internal directions
along the base space B3. On the Type IIB side the index 3 refers to the direction that grows large
in the F-theory limit. On the M-theory side the labels A, B denote components along the A- and
B-cycle of the torus, respectively. The former is the M-theory circle, the latter is the T-duality circle.
The components Cµνρσ of C4 in Type IIB are not listed in the table as their are not independent by
virtue of the ten-dimensional self-duality constraint (2.26).

Let R3 be the reflection of the x3 direction on the Type IIB side of the duality. We then have the

following correspondence:
M-theory Type IIB

RAB ↔ Ωp (−1)FL

RB ↔ R3 (−1)FL

RA ↔ R3 Ωp

(8.94)

To prove this correspondence we record in table 8.1 all components of Type IIB bosonic fields together

with their M-theory origins, inferred from (3.63), (3.64), and (3.67). As we can see, computing the

parity of all the Type IIB components using the Type IIB actions Ωp (−)FL , R3 (−)FL , R3 Ωp gives

exactly the same result as computing the parity of the associated M-theory fields under the reflections

RAB, RB, RA. This observation will be the starting point of our detailed analysis of Type IIB setups

originating from the weak-coupling limit of quotient Spin(7) manifolds.

8.5.3 Remarks on the geometry of fixed loci in M-theory

It is interesting to comment on the M-theory background that corresponds to the weak-coupling limit

we have described. Clearly one could compactify M-theory on Z8 directly and should recover the

above weak-coupling setup as a specific limit in the geometric moduli space. However one may instead

follow the prescription above by first going to the Sen limit of Y4 and then considering the additional
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quotient by σ. Having done this we will then take a further limit in which the M-theory circle becomes

small and may then consider the set of effective quotients in Type IIA. The local geometry near the

fixed points of the various involutions can then be analyzed separately.

The holomorphic involution σh has a four-dimensional fixed space on Y3. Cutting out a patch of

the two-dimensional space normal to this fixed locus and considering the T 2 fibers over it we obtain

a four-dimensional space that is locally of the form

(S1
A × S1

B × R2)/Z2 , (8.95)

where R2 represents the normal space on Y3 and S1
A, S1

B are independent cycles of the elliptic fiber

such that S1
A is the M-theory circle and S1

B is the circle along which one applies T-duality to go

to F-theory. Let us recall that the geometry of the normal space of a lifted O6-plane in M-theory

is asymptotically given by (S1
A × R3)/Z2, where Z2 inverts all coordinates simultaneously. We may

then infer that (8.95) signals the presence of an O6-plane localized at a point along the circle S1
B.

This result is well known and is consistent with the fact that in Type IIB the holomorphic action is

associated with the presence of O7-planes in the geometry.

Similarly we can consider the fixed-point sets of the antiholomorphic involution. In doing this

we will focus on case (a) where the fixed space of σB is three-dimensional. It is then convenient to

combine the actions σah and σhσah with the induced reflections RB and RA to form the products

σahRA and σhσahRB. The normal space to the fixed-point sets of these total actions is locally given

by

(S1
B × R3)/Z2 and (S1

A × R3)/Z2 , (8.96)

respectively. The corresponding Type IIA objects are then given by a six-dimensional orbifold plane

Orb5 and a O6-plane that wraps the S1
B cycle. We will comment on this setup in more detail in the

next section. One can also perform this analysis for the case in which σB has a one-dimensional fixed

space. The objects that arise in this situation will be discussed in section 8.6.3.

8.5.4 More on Dirichlet scalars

In section 8.4.1 we have pointed out the ambiguity in the interval uplift related to the possibility of

adding four-dimensional scalars with Dirichlet boundary conditions without affecting the low-energy

theory for three-dimensional zeromodes. We can now revisit this issue from the perspective of the

antiholomorphic quotient σah of the Type IIB weakly coupled setup.

To begin with, note that the interval is realized by taking the coordinate x3 of the circle that grows

large in the F-theory limit and acting with the Z2-action R3 : x3 7→ −x3. Its fixed points are mapped

to the endpoints of the interval. When the interval is realized as S1/Z2 in this way, a scalar with

Dirichlet boundary conditions is equivalent to a scalar that has an intrinsic negative parity under the

action of R3, or an R3-odd scalar for short. The use the terminology R3-even scalar for scalars that

have intrinsic positive parity.
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After this preliminary remark we can analyze the uplift of the three-dimensional action for Kähler

and complex structure moduli in turn. This will establish a match of the three-dimensional Spin(7)

moduli with the R3-even scalars of the four-dimensional theory. Let us start with the Kähler moduli.

In Type IIB language these are given by

Tα = 1
2!

∫
Y3

ωα ∧ J2
b + i

∫
Y3

ωα ∧ C4 . (8.97)

This expression is the analog of (8.36) but now ωα and Jb are understood as (1, 1)-forms on the double

cover Y3 of the base B3. Recall the split introduced before (8.55) of H2(B3) that translates into a split

of H2(Y3) into positive and negative subspaces under the action of the antiholomorphic involution σah.

As a result of the formal relation σ∗B(B3) = −B3, which can be uplifted to σ∗ah(Y3) = −Y3, an

expression of the form
∫
Y3
λ6 survives the σah-projection only if λ6 is negative under σ∗ah. As far as

ReTα is concerned, we can use the results of section 8.3.3—uplifted to the double cover Y3—to infer

that

σ∗ah(ωα+ ∧ J2
b) = +ωα+ ∧ J2

b , σ∗ah(ωα− ∧ J2
b) = −ωα+ ∧ J2

b . (8.98)

In order to analyze ImTα geometric data must be supplemented by the intrinsic parity of the Type

IIB four-form C4 under σah. From the results of sections 8.5.1 and 8.5.2 we know that the geometric

action of σah on Y3 must be accompanied by the reflection RB in the auxiliary T 2. The latter reflection

is in turn equivalent to R3(−1)FL in Type IIB language. The intrinsic parity we need is determined

by the (−1)FL factor, so it is negative for C4. As a result we have effectively

σ∗ah(ωα+ ∧ C4) = −ωα+ ∧ C4 , σ∗ah(ωα− ∧ C4) = +ωα− ∧ C4 . (8.99)

In summary, we find

R3-even : ReTα− , ImTα+ , R3-odd : ReTα+ , ImTα− . (8.100)

As anticipated above, the R3-even scalars match exactly with the three-dimensional moduli that

survive the σ quotient on the Calabi-Yau fourfold Y4 on the M-theory side.

Let us now turn to complex structure moduli. From a Type IIB perspective they correspond to

complex structure moduli of the threefold Y3, D7-brane moduli, and the axio-dilaton. The action of

the antiholomorphic involution σah on Y3 is such that

σ∗ahΩ3,0 = e2iθ Ω3,0 . (8.101)

This is completely analogous to the corresponding σ-action on the fourfold Y4. Imposing (8.101)

one infers that the R3-even complex structure moduli span a real subspace of the four-dimensional

N = 1 moduli space. With similar arguments it is possible to check the correspondence between

three-dimensional Spin(7) moduli and four-dimensional R3-even moduli related to D7-branes and the

axio-dilaton.

It is important to highlight the generic presence of R3-odd scalars. Such scalar degrees of freedom

cannot have a constant non-vanishing profile along the x3 direction, and therefore do not correspond
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to moduli in the four-dimensional theory. From a four-dimensional perspective on a finite interval

such scalars arise only as massive excitations. In conclusion, we can state that the weakly coupled

Type IIB picture suggests that the four-dimensional moduli, which are R3-even, are in one-to-one

correspondence with the Spin(7) moduli in the three-dimensional action (8.46). The interpretation of

the R3-odd scalars is instead related to M2-brane states. We will comment further on this issue in

section 8.6.4.

8.6 Weak-coupling setups

In this section we introduce Type IIB and Type IIA string theory setups that can arise in the weak-

coupling limit of the geometries introduced in section 8.2.2. In subsection 8.6.1 we first discuss the

case in which the fixed-point locus of σB is three-dimensional, i.e. the case (a) in (8.7). We find that

the Type IIB setup contains O5-planes and exotic orbifold five-planes. The case of a one-dimensional

fixed-point set of σB, case (b) in (8.8), is discussed in section 8.6.2. This yields exotic orientifold three-

planes and orbifold three-planes that we describe in detail on a torus background. In both setups our

strategy is to start with a proposed Type IIB setting and then stepwise translate the objects which

appear into the T-dual Type IIA setting and finally to the geometry of a Spin(7) manifold. That the

unusual objects that we have identified preserve mutual supersymmetry in both setups can be checked

explicitly in torus examples as shown in section 8.6.3. Collecting these insights we then comment on

the supersymmetry restoration in the large interval limit in section 8.6.4.

8.6.1 Weak-coupling setup with five-planes

The first setting under consideration is obtained by examining Type IIB on the background

MIIB
10 = (R1,2 × S1 × Y3)/G , (8.102)

where R1,2 is three-dimensional Minkowski space, Y3 is a Calabi-Yau threefold, and the symmetry

group G is generated by the transformations9

O1 = Ωp σh (−1)FL , O2 = R3 σah (−1)FL . (8.103)

Let us remind the reader that Ωp and FL are the world-sheet parity and the left-moving spacetime

fermion number and that R3 denotes the reflection of the coordinate x3 along the S1 in (8.102).

This action turns the circle S1 into the interval I = S1/Z2. The geometric maps σh and σah are a

holomorphic and an antiholomorphic involution of the Calabi-Yau threefold Y3, respectively. Both are

demanded to be isometries and required to commute on bosons, as we discuss in more detail below.

Of course, this specific choice of Type IIB setup is motivated by the considerations of the previous

sections. In particular, the geometric actions σh and σah will be identified with the actions introduced

in (8.90) and (8.92), while the stringy factors Ωp, (−1)FL are introduced according to our findings in

sections 8.5.1 and 8.5.2.
9We follow the conventions of [46].
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Since σh is holomorphic its fixed-point set Hσh
is holomorphically embedded in Y3. In order to

connect to an F-theory setup we will demand in the following that Hσh
is complex two-dimensional.

This ensures that the fixed points of O1 are O7-planes extending along R1,2×I and wrapping Hσh
. To

cancel the tadpoles induced by these negative tension objects the setup should also contain D7-branes

filling R1,2 × I. The setting obtained by O1 is known to arise as the weak-coupling limit of F-theory

compactified on a Calabi-Yau fourfold [235, 129], as we already recalled in section 8.5.

The action of O2 is more unusual as it represents a geometric orbifold action combined with a

(−1)FL action. These sorts of exotic orbifolds have been studied in [236, 237, 238, 239, 240, 241]. Let us

note also that the presence of the reflection R3 is necessary in the O2 action, since an antiholomorphic

involution σah alone is a Pin-odd transformation and hence would not be a symmetry of the chiral Type

IIB string theory. In the following we demand that σah has a real three-dimensional fixed-point set

Lσah
. The space Lσah

is a special Lagrangian submanifold due to the properties of σah. This implies

that the fixed-point set of O2 is real six-dimensional including the non-compact three-dimensional

spacetime R1,2. The fixed points of O2 are located at the ends of the interval I. We call the resulting

fixed planes X5-planes and will describe their properties in more detail below.

The geometric actions σh and σah are required to satisfy the properties

σhR3 = R3 σh , σahR3 = (−1)FL+FR R3 σah , σhσah = (−1)FL+FR σahσh , (8.104)

where the factor (−1)FL+FR signals commutation on bosons and anticommutation on ten-dimensional

fermions. Under these assumptions one easily computes the algebra of operators O1, O2 to be

O2
1 = O2

2 = 1l , O1O2 = O2O1 . (8.105)

Consistently quotienting out by O1 and O2 implies that one has to also consider the fixed points of

the combined action

O3 ≡ O1O2 = ΩpR3 σh σah . (8.106)

The fixed-point loci of this action O3 are O5-planes that fill R1,2 and wrap the three-dimensional

special Lagrangian fixed-point set Lσhσah
of σh σah in Y3. As with the O7-planes, these O5-planes also

induce a non-trivial tadpole that has to be cancelled. This requires us to include D5-branes into the

setup that fill R1,2, localize on I, and wrap a three-cycle in Y3 homologous to Lσhσah
. In the following,

we will consider only D5-branes directly wrapping Lσhσah
. A summary of the objects that occur in

this setup can be found in table 8.2.

This implies that the Type IIB weak-coupling limit contains the familiar orientifold planes as well as

X5-planes. The latter planes have been studied in detail in the literature [236, 237, 238, 239, 240, 241]

within a different context and given their prominent role it is worthwhile to recall their main features.

The X5-planes can be seen to be the S-dual of an O5-plane with a single D5-brane on top of it. Indeed,

since S-duality maps (−1)FL ↔ Ωp in Type IIB we see that the orbifold action maps to that of an

O5-plane. The presence of the D5-brane on top of it can be inferred from tadpole cancellation and the

presence of a U(1) symmetry supported on the X5-plane which is the S-dual of the gauge symmetry

on the D5-brane. The U(1) is part of the twisted sector, which is most easily identified in the Type
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symmetry fixed object location tadpoles

O1 O7 R1,2 × I ×Hσh
add D7

O2 X5 R1,2 × Lσah
no tadpole

O3 O5 R1,2 × Lσhσah
add D5

Table 8.2: Summary of the symmetry transformations acting on the Type IIB setup (8.102), together
with the objects appearing at the associated fixed-point loci, and their location.

IIA dual that is just a simple orbifold as we discuss in more detail below. In fact the local orbifold

singularity was studied in a global compact setting which is the orbifold limit of a K3 (which is in

turn dual to heterotic on T 4). In this global completion, the U(1) is one of the 16 U(1)s arising from

the twisted sector of the K3 orbifold limit, or in the geometric regime from dimensionally reducing C3

on one of the blow-up cycles and sits in a six-dimensional vector multiplet.

Having identified the weak-coupling objects in table 8.2 we now note that they can preserve three-

dimensional N = 1 supersymmetry along R1,2. Indeed, compactification on the setup (8.102) before

performing the quotient with respect to G yields a theory with eight supercharges. This is reduced to

two supercharges by the presence of O7-planes, D7-branes, and X5-planes. The O7-D7 system does not

break supersymmetry completely because, in the simple case in which the D7-branes sit on top of the

O7-planes, all these object wrap the holomorphic cycle Hσh
in Y3. In a similar fashion, the X5-plane

and the O5-D5 system do not break supersymmetry completely because they wrap special Lagrangian

sub-manifolds Lσah
, Lσhσah

. Finally, mutual supersymmetry among these objects can be inferred by

noting that the calibration of the special Lagrangian sub-manifolds is adapted by construction to the

complex structure with respect to which Hσh
is holomorphic. We will check mutual supersymmetry

explicitly in the case of toroidal models in section 8.6.3.

Let us now follow the various objects to Type IIA string theory and lift them to a geometric

Spin(7) setup of F-theory. Firstly, we T-dualize along the x3 direction, i.e. the direction associated to

the interval I = S1/Z2. The resulting Type IIA background is

MIIA
10 = (R1,2 × S̃1 × Y3)/G̃ , (8.107)

where S̃1 is the T-dual circle and the symmetry group G̃ is generated by the T-duals of O1 and O2,

given by

Õ1 = ΩpR3 σh(−1)FL , Õ2 = R3 σah , (8.108)

respectively. We also record the T-dual of the combined action O3

Õ3 = Ωp σh σah (−1)FL . (8.109)

These expressions for the T-dual actions will be tested in the explicit toroidal model discussed below.

We realize that both Õ1 and Õ3 are Type IIA orientifold involutions that admit O6-planes along

their fixed-point loci. On the one hand, the O6-planes associated to Õ1 span R1,2 and wrap the four-

cycle Hσh in Y3. On the other hand, the O6-planes arising from Õ3 span R1,2× Ĩ, where Ĩ = S̃1/Z2 is
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the T-dual interval, and wrap the three-cycle Lσhσah
. In contrast Õ2 is simply an orbifold action on

the compact part of (8.107). Its fixed loci are six-dimensional orbifold planes denoted by Orb5. The

fixed-point objects which appear in Type IIA are summarized in table 8.3.

symmetry fixed object location tadpoles

Õ1 O6 R1,2 ×Hσh
add D6

Õ2 Orb5 R1,2 × Lσah
no tadpole

Õ3 O6 R1,2 × Ĩ × Lσhσah
add D6

Table 8.3: Summary of the symmetry transformations acting on the T-dual Type IIA setup (8.107),
together with the objects appearing at the associated fixed-point loci, and their location.

In order to lift these quotients to M-theory we can make use of the correspondence

M-theory Type IIA

R11 ↔ Ωp (−1)FL

C ↔ Ωp

(8.110)

where, on the M-theory side, R11 is the reflection of the eleventh direction of spacetime and where

C is an involution that acts trivially on spacetime and reverses the sign of the three-form C3. This

correspondence can be checked by testing the action on the M-theory side and on the Type IIA side

on all bosonic fields, in a similar spirit as what we have done explicitly in table 8.1 to test (8.94). As

a consequence we discover that the quotients (8.108) are descended from M-theory quotients which

act as

ÕM1 = R3R11 σh , ÕM2 = R3 σah , ÕM3 = R11 σhσah . (8.111)

Identifying the 11 and 3 directions with the A and B cycles of the elliptic fiber respectively, these

quotients can then be matched to the quotients appearing in (8.93).

For many applications, such as checking the supersymmetry properties of the setup in section 8.6.3,

it turns out to be convenient to introduce the configurations on a six-torus T 6 instead of Y3. Real

coordinates on the ten-dimensional background R1,2×S1×T 6 are denoted by xm, m = 0, . . . , 9. In the

internal space T 6 they combine into complex coordinates zi, i = 1, 2, 3 as z1 = x4 + ix5, z2 = x6 + ix7,

z3 = x8 + ix9. We implement the holomorphic involution σh and the antiholomorphic involution σah

as

σh : (z1, z2, z3)→ (z1, z2,−z3) , σah : (z1, z2, z3)→ (z̄1, z̄2, z̄3) . (8.112)

Hence the actions (8.103) take the form

O1 = ΩpR89 (−1)FL , O2 = R3579 (−1)FL , O3 = ΩpR3578 , (8.113)

where Rm denotes the reflection of the real coordinate xm, and Rm1...mN = Rm1 . . . RmN . This implies

that the extended fixed-point objects of O1, O2, and O3 = O1O2 are extended along the xm-directions

as listed in table 8.4.
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symmetry fixed object x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

O1 O7 × × × × × × × ×

O2 X5 × × × × × ×

O3 = O1O2 O5 × × × × × ×

Table 8.4: The location of the fixed-point sets of the Type IIB involutions (8.113) are displayed in
coordinates xm for the toroidal model on R1,2×S1× T 6. The symbol × indicates that the object fills
this dimension. In all other directions the objects are at fixed points.

We can now study the dual Type IIA picture obtained by T-duality along x3. The background is

M2,1 × S̃1 × T 6, and the actions on this background read

Õ1 = ΩpR389 (−1)FL , Õ2 = R3579 , Õ3 = ΩpR578 (−1)FL . (8.114)

In this toroidal model one can evaluate explicitly Õi = T3OiT−1
3 , with T3 being the operator that

implements T-duality along the x3 coordinate, using the rules collected in section 8.6.5. The fixed-

point loci of Õ1, Õ2, and Õ3 extend along the real coordinates x0, x1, x2, x̃3, x4, . . . , x9 as shown in

table 8.5.

symmetry fixed object x0 x1 x2 x̃3 x4 x5 x6 x7 x8 x9

Õ1 O6 × × × × × × ×

Õ2 Orb5 × × × × × ×

Õ3 = Õ1 Õ2 O6 × × × × × × ×

Table 8.5: The location of the fixed-point sets of the Type IIA involutions (8.114) are displayed in
coordinates xm for the toroidal model on R1,2×S1× T 6. The symbol × indicates that the object fills
this dimension. In all other directions the objects are at fixed points.

The M-theory lift of this toroidal Type IIA background is completely analogous to the general case

discussed in (8.111). For the convenience of the reader we summarize the quotients and objects that

lie at the fixed spaces in table 8.6.

Type IIB quotient Type IIA quotient M-theory quotient

O1 = ΩpR89(−1)FL (O7) Õ1 = ΩpR389(−1)FL (O6) σhRAB = R38911

O2 = R3579(−1)FL (X5) Õ2 = R3579 (Orb5) σahRB = R3579

O1O2 = ΩpR3578 (O5) Õ1 Õ2 = ΩpR578(−1)FL (O6) σhσahRA = R57811

Table 8.6: Summary of the symmetry transformations modded out in Type IIB, Type IIA and M-
theory in the case that σB has a three-dimensional fixed space. The individual geometric actions have
been introduced in section 8.5.
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8.6.2 Weak-coupling setups with three-planes

This section is devoted to the situation in which the fixed-point locus of the antiholomorphic involution

on the base manifold is one-dimensional. This is described by case (b) as shown in (8.8). In this case

the fixed locus of σah sits on top of a Z2 orbifold singularity of Y3. In the following we refrain from a

description of such setups for a general Calabi-Yau threefold, and rather discuss directly the toroidal

model. This allows us to identify the localized objects that appear in the weak-coupling limit and to

study in section 8.6.3 their mutual supersymmetry properties in a controlled way.

The Type IIB background we analyze is obtained starting from R1,2 × S1 × T 6/Z2 and taking the

quotient with respect to the symmetry group generated by the transformation O1 defined in (8.113)

and by the new transformation Ô2, where

O1 = ΩpR89 (−1)FL , Ô2 = R3579H (−1)FL , (8.115)

and where H denotes the holomorphic action

H : (z1, z2, z3)→ (z2,−z1, z3) . (8.116)

In this toroidal model the patch U described in (8.8) is extended to cover the whole of the internal space

so that the (z1, z2, z3) coordinates that we describe are identified by ρ : (z1, z2, z3)→ (−z1,−z2, z3).

The presence of the factor R3 inside Ô2 gives rise to the interval I = S1/Z2 exactly as in the

previous sections. However in this case the action of Ô2 is not directly an involution on the (z1, z2, z3)

coordinates. Rather the algebra satisfied by O1, Ô2 is given by

O2
1 = 1l , Ô4

2 = 1l , O1 Ô2 = Ô2O1 , (8.117)

where the operation Ô2
2 reproduces the identification ρ = R4567.

The full symmetry group acting on the (z1, z2, z3) coordinates of the covering T 6 then consists of

the set of transformations {
1l, O1, Ô2, Ô2

2, Ô3
2, O1 Ô2, O1 Ô2

2, O1 Ô3
2

}
(8.118)

with actions summarized in table 8.8. To each non-trivial element we can associate a localized object,

as follows.

• O1: this involution is associated to O7-planes exactly as discussed in the previous section.

• Ô2: this transformation contains the factor (−1)FL and admits a fixed-point locus that is real

four-dimensional, fills R1,2, and is localized at the endpoints of the interval. We call the associated

objects X3-planes.

• Ô2
2: as mentioned above, this is a standard Z2 orbifold action. Its fixed-point locus is six-

dimensional, fills R1,2 and the interval, and will be denoted by Orb5.
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• Ô3
2: this transformation gives another X3-plane that lies on top of the X3-plane associated to

Ô2. These two X3-planes are identified under ρ.

• O1 Ô2: this action contains a factor Ωp but its geometric part squares to the identity only up

to the Z2 orbifold action. The associated fixed-point locus is four-dimensional, fills R1,2, and is

localized at the endpoints of the interval. We refer to the associated objects as XO3-planes.

• O1 Ô2
2: in this case we have a factor Ωp (−1)FL and the geometric action squares to one without

invoking the Z2 orbifold. We thus find standard O3-planes.

• O1 Ô3
2: this action gives another XO3-plane that is located on to of the XO3-plane at the fixed

points of O1Ô2. These two XO3-planes are identified under ρ.

The fixed spaces of these quotients and the objects that lie at them are summarized in table 8.7.

symmetry fixed object x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

O1 O7 × × × × × × × ×

O1 Ô2
2 O3 × × × ×

Ô2
2 Orb5 × × × × × ×

Ô2 & Ô3
2 X3 × × × ×

O1 Ô2 & O1 Ô3
2 XO3 × × × ×

Table 8.7: Localized objects in the Type IIB setup with involutions O1 and Ô2 are displayed in
coordinates xm for the toroidal model on R1,2×S1× T 6. The symbol × indicates that the object fills
this dimension. In all other directions the objects are at fixed points.

Let us note that the X3-planes encountered here are the analogs of the X5-planes of section

8.6.1, since they arise from an orbifold action dressed with an additional (−1)FL factor. However,

the X3-planes can only exist if they are confined to lie within the Orb5 locus of the Ô2
2 action. A

natural conjecture for the S-dual of an X3-plane appears to be a system of XO3-planes, as introduced

above, with suitable localized three-branes to cancel the tadpole. It would be desirable to study these

configurations in more detail.

Having described the Type IIB setup we can apply the rules of section 8.6.5 to determine the T-

duals of all actions listed above. The M-theory uplifts are then inferred by using (8.110). The resulting

Type IIA actions and the objects that lie at their fixed points together with M-theory symmetries are

summarized in table 8.8. One can then make contact with the discussion of section 8.5 by matching

the A and B cycles with the 11 and 3 directions, respectively.
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Type IIB quotient Type IIA quotient M-theory quotient

O1 = ΩpR89(−1)FL (O7) Õ1 = ΩpR389(−1)FL (O6) σhRAB = R38911

Ô2
2 = R4567 (Orb5) ̂̃O2

2 = R4567 (Orb5) ρ = R4567

O1 Ô2
2 = ΩpR456789(−1)FL (O3) Õ1

̂̃O2
2 = ΩpR3456789(−1)FL (O2) σhρRAB = R345678911

Ô2 = R3579H(−1)FL (X3) ̂̃O2 = R3579H (Orb3) σahRB = R3579H

Ô3
2 = R3469H(−1)FL (X3) ̂̃O3

2 = R3469H (Orb3) σahρRB = R3469H

O1 Ô2 = ΩpR3578H (XO3) Õ1
̂̃O2 = ΩpR578H(−1)FL (XO4) σhσahRA = R57811H

O1 Ô3
2 = ΩpR3468H (XO3) Õ1

̂̃O3
2 = ΩpR468H(−1)FL (XO4) σhσahρRA = R46811H

Table 8.8: Summary of the symmetry transformations modded out in Type IIB, Type IIA and M-
theory in the case that σB has a one-dimensional fixed space. The individual geometric actions have
been introduced in section 8.5.

8.6.3 Mutual supersymmetry in toroidal setups

This section is devoted to the study of the mutual supersymmetry properties of the localized objects

introduced in the above sections 8.6.1 and 8.6.2. Our analysis will be simplified by considering the

torus setups of table 8.4 and table 8.7. As a result, we do not perform any additional orbifold

quotient and we rather let Y3 be a simple six-torus, even though this implies a bulk sector with 32 real

supercharges. These arguments therefore do not prove the supersymmetry of the setups with more

complicated geometries. However, they do demonstrate that the unusual objects that we describe do

not automatically break supersymmetry completely either on their own or when combined with the

other sorts of fixed objects we consider.

Let us first study the setup of section 8.6.1 with weak-coupling objects listed in table 8.4. We

also expect that these localized objects do not break supersymmetry completely, since the for any

pair of them the number of different Dirichlet/Neumann directions is a multiple of four. This is a

general observation for localized objects intersecting at right angles proven for instance in [46]. As

a warm-up for the more involved case of section 8.6.2, we discuss a more explicit way to infer that

this setup preserves a finite amount of supersymmetry. To this end, it is useful to combine the two

ten-dimensional supersymmetry parameters into an R-symmetry doublet ε = (εL, εR)T, where the

subscripts L, R refer to their world-sheet origin. Operators Oi are represented as elements of the

tensor product of the R-symmetry group with Spin(1,9). One has

O1 = iσ2 ⊗ Λ(R89) , O2 = −σ3 ⊗ Λ(R3579) , O3 = iσ2 ⊗ Λ(R3578) , (8.119)

where the σ’s are Pauli matrices, and Λ(M) denotes the Spin(1,9) element associated to M ∈ SO(1, 9).

Note that Ωp is realized as σ1, while (−1)FL corresponds to −σ3. Supersymmetry is preserved if a

non-vanishing solution ε is found to the equations

O1 ε = ε , O2 ε = ε . (8.120)



8.6. Weak-coupling setups 187

The analogous condition with O3 is not independent. These equations can be studied explicitly

recalling that Λ(Rm) = iΓΓm in the light-cone formalism. One indeed finds that the operator

λ1(O1 − 1l) + λ2(O2 − 1l) (8.121)

has a non-trivial kernel of relative dimension 1/4 for λ1, λ2 ∈ C. Taking into account that εL, εR

are Majorana spinors, we have proved that the toroidal setup under examination preserves 8 real

supercharges. This may then be further broken if the torus is replaced by a Calabi-Yau threefold. Note

also that the representation (8.119) can be used to check explicitly the algebra (8.105) on fermionic

fields.

With this preparation we can now also analyze the setup introduced in section 8.6.2. The mutual

supersymmetry properties of the localized objects listed in table 8.7 can be studied explicitly by

representing the actions of O1 and Ô2 on the ten-dimensional supersymmetry parameters. We do not

need to consider all other symmetries since they are generated by O1 and Ô2. The action of O1 was

given in (8.119). The action of Ô2 reads

Ô2 = −σ3 ⊗ Λ(R3579) Λ(H) , (8.122)

where

Λ(R3579) = Γ3579 , Λ(H) =
1

2
(1l− Γ46)(1l− Γ57) . (8.123)

We can thus study the operator

λ1(O1 − 1l) + λ2(Ô2 − 1l) (8.124)

and show straightforwardly that, for λ1, λ2 ∈ C, it has non-trivial kernel of relative dimension 1/8,

thus proving that our toroidal setup preserves four real supercharges. Note that in this setup the

Dirichlet/Neumann direction rule is not applicable, since we have an orbifold action and the geometric

transformations under examination do not just consist of reflections. Let us stress again that the

amount of preserved supersymmetry will decrease further when replacing the torus by a Calabi-Yau

manifold. It would be interesting to investigate the rules for this breaking in this more general

situation.

8.6.4 Large-interval limit and supersymmetry restoration

In this section we discuss some properties of the Type IIB setup described above in the limit in which

the size of the interval I is sent to infinity. More precisely, we focus on the resulting four-dimensional

low-energy effective action and we argue that, for any observer in the bulk of I, such a theory is

indistinguishable from the four-dimensional N = 1 effective theory obtained by quotienting Type IIB

with respect to O1 only.

In order to simplify the discussion we suppose that the quotient under the action of G generated

by O1 and O2 is performed in two steps. In particular, we consider first the quotient under O2 and

later implement O1, since the latter does not affect the following arguments. We are interested in
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the dynamics of excitations with wavelength much larger than the typical size of the internal space

parametrized by coordinates x4, . . . , x9. This size, in turn, is supposed to be large compared to the

string scale. As a result, the only states that become light as the interval I decompactifies are states

with no winding and with non-vanishing Kaluza-Klein mode along x3 only.

Such states are conveniently packaged into four-dimensional fields depending on x0, . . . , x3 and

satisfying Dirichlet or Neumann boundary conditions at the endpoints of the interval. More precisely,

invariance under O2 implies that expansion of the massless fields of Type IIB supergravity onto

positive and negative cohomologies of Y3 under σah yields four-dimensional fields with definite parity

under reflection of x3. As already noted in section 8.5.4, fields with negative parity satisfy Dirichlet

boundary conditions at the endpoints of the interval and for finite interval size cannot be accessed in

the low-energy theory, because they always carry at least one unit of Kaluza-Klein momentum along

the direction of x3.

When the size of the interval becomes much larger than the typical wavelength of the excitations

we want to study, however, the states associated to four-dimensional fields with Dirichlet boundary

conditions become accessible again to the low-energy dynamics. This implies that we can excite

fluctuations of all four-dimensional fields, irrespectively of their parity under reflection of x3.10 We

are thus led to argue that in the limit of infinite interval I the low-energy four-dimensional effective

action is the same as the one that would be obtained without performing the quotient with respect

to O2. Thus, in this limit the group G effectively reduces to O1 only, and we have a Calabi-Yau

orientifold that yields a four-dimensional N = 1 effective action.

We conclude this section with a short remark about the Type IIA interpretation. The Kaluza-

Klein states that become light in the limit on the Type IIB side correspond to winding states on the

Type IIA side. Kaluza-Klein states of a four-dimensional field with Neumann or Dirichlet boundary

conditions at the endpoint of the interval have the schematic form

|ψ, n3 = N,w3 = 0〉 ± |ψ, n3 = −N,w3 = 0〉 , (8.125)

respectively. In this expression n3, w3 are the Kaluza-Klein level and winding in the x3 direction,

N ∈ Z, and ψ is a shorthand notation for the oscillator structure of the state. T-duality along x3

maps such a state to

|ψ, ñ3 = 0, w̃3 = N〉 ± |ψ, ñ3 = 0, w̃3 = −N〉 , (8.126)

where ñ3, w̃3 denote Kaluza-Klein level and winding along the T-dual coordinate x̃3.

In the uplift to M-theory it is natural to presume that one finds a linear superposition of M2-

brane states with opposite winding on the two-torus spanned by x̃3 and the M-theory circle x11. The

presence of such M2-brane states might help to explain how the moduli space of the Spin(7) manifold

with vanishing fiber can be enhanced to the moduli space of the Calabi-Yau fourfold with vanishing

fiber. In particular, this requires a complexification of the real Spin(7) moduli space to form a Kähler

manifold.
10 Strictly speaking, only Neumann fields can have a constant VEV. For a Dirichlet field the allowed profile with the

minimum energy is of the form sin(x3/r), where πr is the length of the interval, and can be considered approximately
as a constant VEV in a sufficiently small region in the bulk of the interval.
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8.6.5 Some reference formulae

In the previous sections we have described several quotients which are built from a set of fundamental

symmetry actions. Let us now collect some reference formulae that are useful for checking many of

the results quoted before. The basic building blocks of all symmetry actions we have analyzed in the

toroidal setups of sections 8.6.1 and 8.6.2 are Ωp, (−1)FL , and Rm1...mn = Rm1 . . . Rmn , where Rm

describes the parity inversion xm → −xm. These satisfy the algebra

Ω2
p = 1 , R2

m = 1 , ((−1)FL)2 = 1 ,

Ωp(−1)FL = (−1)FRΩp , ΩpRm = RmΩp , Rm(−1)FL = (−1)FLRm ,

RmRn = (−1)FL+FRRnRm if n 6= m , (8.127)

where FR is the right-moving spacetime fermion number. Let us mention a subtle point. Defining Rm

as a parity inversion implies a definition of the action of Rm on fermions that is only unique up to a

phase. Here we have made a choice to discuss R2
m = 1. This convention is appropriate for the way we

describe Op-planes and is consistent with the conventions of [46].11

It is also useful to collect the transformation properties of these actions under T-duality,

Tm(−1)FLT−1
m = (−1)FL , TmΩpT

−1
m = ΩpRm ,

TmRmT
−1
m = Rm , TmRnT

−1
m = Rn(−1)FL if n 6= m , (8.128)

where Tm represents T-duality in the m direction. Finally, let us record the uplift of these actions

from Type IIA to M-theory,

Rm → Rm , (−1)FL → R11C , Ω→ C . (8.129)

Recall that R11 is the inversion of the M-theory circle and C acts by reversing the sign of the M-theory

three-form C3.

8.6.6 Comments on charged matter

The effective action derived in section 8.4.2 does not furnish an explicit description of the charged

matter spectrum of F-theory on the class of Spin(7) manifolds under consideration. This is related to

the general difficulty, already pointed out in section 5.3, that charged matter becomes massive after

the gauge group is broken to the Coulomb branch and is thus automatically integrated out on the

M-theory side of the M-theory/F-theory duality.

To get information about charged matter we can alternatively start looking at the weak coupling

limit of our F-theory setup. One can engineer charged matter by means of intersecting D7-branes

that wrap holomorphic cycles in the threefold Y3 and have (1, 1)-type world-volume flux to ensure

the presence of four-dimensional chiral fermions. We refer the reader to e.g. [106] for a review. As

11Other conventions can lead to R2
m = (−1)FL+FR .
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we have seen, the crucial new ingredient is the antiholomorphic involution σh combined with the

transformation R3 to have a symmetry of Type IIB.

We can specialize further and consider a point in moduli space in which the Calabi-Yau threefold

Y3 is realized as a toroidal orbifold. In this toroidal setups the embedding of D7-branes is described

by one linear holomorphic equation for the flat complex coordinates of the torus. Information about

the charged matter spectrum can be obtained by first principles, by quantizing open strings stretching

between D7-branes. We can make some general remarks on the interplay between holomorphically

embedded D7-branes and the antiholomorphic involution. First of all, the image branes are also

holomorphically embedded, if the antiholomorphic action is linear in the flat coordinates of the torus.

Second of all, the world-volume flux of an image brane is still of (1, 1)-type, but its sign is reversed

compared to the original brane. These considerations imply that if we start with a supersymmetric

setup that contains only holomorphic branes with (1, 1) fluxes, these features are not spoiled by the

introduction of image branes under the antiholomorphic involution. Any intersection of any two branes

or image branes possesses at least one complex massless scalar. Of course, one has to take into account

the projection onto invariant states to determine if supersymmetry is actually present, or if different

number of bosonic and fermionic massless states is projected out.

It is possible to argue that the robust features of the charged matter spectrum are insensitive

to the details of the full compactification setup, and only depend on the local geometry around the

intersection of the two D7-branes. This can be effectively described by looking at a non-compact

model with flat D7-branes in R1,3×C3. It captures the neighborhood of a fixed locus on the base B3.

Therefore the antiholomorphic action σ in local coordinates can be taken to correspond for instance

to case (a) or case (b) discussed in section 8.2.2. If σh does not square to the identity, its square is

included as an additional holomorphic orbifold action, in such a way that σ2
h = 1l in the quotient space.

It is possible to perform explicitly the projection onto invariant states for the two linear actions of

cases (a) and (b). One can then compare the result with the purely orientifold projection without the

antiholomorphic involution σh and without R3. We refrain from a detailed account of the computation,

and rather state our findings. For both case (a) and case (b) the same number of bosonic and fermionic

degrees of freedom survives the projection. This signals that the charged matter spectrum is N = 1

supersymmetric also after the antiholomorphic orbifold action is taken into account.

It can be checked that, irrespectively of the position of the D7-branes and their images under

the action of σh, no open string state can be invariant under the action of σhR3, but rather that

open string states are always swapped in pairs. This seems to prevent an undemocratic truncation

of the spectrum in such a way that the same number of bosonic and fermionic degrees of freedom is

obtained. This general feature can be related to a mismatch between holomorphic embedding and

antiholomorphic involution. On the one hand, charged matter is localized at the intersection of two

D7-branes, which is a complex one-dimensional holomorphic subspace of the internal six-torus. On the

other hand, the fixed locus of the antiholomorphic involution is either a real one-dimensional subspace

(see case (b) in section 8.2.2), or a real three-dimensional subspace incompatible with the holomorphic

structure (see case (a)). It is therefore impossible to have the intersection inside the fixed locus of the

antiholomorphic involution.
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In light of the supersymmetry restoration in the bulk sector argued in section 8.6.4 these findings

about localized charged matter are not surprising. In the decompactification limit we therefore expect

the full four-dimensional action—bulk fields and charged matter—to be N = 1 supersymmetric. Let

us point out that there are many other interesting open questions that can be addressed in toroidal

models. For instance, it might be possible to relate closed string twisted sectors of the antiholomorphic

orbifold action to resolution modes of the Spin(7) geometry. This might shed some light on geometries

for which no resolution can be found in the mathematical literature.
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PART III

Tensor towers and Chern-Simons theories
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CHAPTER 9

Five-dimensional Chern-Simons terms at one loop

This chapter is devoted to a purely field-theoretical problem: the determination of the one-loop

corrections to Chern-Simons levels in five-dimensions. Our findings extend known results in the

literature [242, 211] by considering not only the corrections due to massive spin-1/2 fermions, but

also to massive spin-3/2 fermions and so-called massive self-dual tensors. The latter are defined in

section 9.2 and their importance for the study of tensor theories in six dimensions will be discussed

at length in chapter 10. The results of this chapter can find applications both in five-dimensional and

in six-dimensional contexts. Some examples are provided in chapter 10.

9.1 An exception to the decoupling paradigm

As we have briefly recalled in the introductory section 1.3, the derivation of a Wilsonian low-energy

effective action amounts to integrating out all excitations beyond a chosen cutoff energy scale and

obtaining a theory with modified couplings for the remaining degrees of freedom. The corrections to

the low energy effective action obtained by integrating out massive fields are organized in an expansion

in the inverse mass scale. In the limit of large cutoff scale corrections are typically strongly suppressed

and can be neglected. In this case all modes with masses above the cutoff scale become effectively

non-dynamical and can be decoupled from the theory. This is the subject of well known results in

quantum field theory, such as the Appelquist-Carazzone-Symanzik decoupling theorem [243].

This reasoning, however, breaks down for certain types of couplings. Four-dimensional examples

are furnished by Goldstone-Wilczek currents [244] and Wess-Zumino terms [245] generated by inte-

grating out a fermion that becomes massive via Yukawa coupling to a scalar that gets a non-vanishing

VEV. They are independent of the fermion mass and have to be included in the low-energy effective ac-

tion even in the limit in which it is taken to infinity. The couplings we will study in this chapter—gauge

195
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and gravitational Chern-Simons couplings in five-dimensional theories—exhibit similar features.

The five-dimensional quantum field theories under consideration will propagate both massless

and massive degrees of freedom. As mentioned above, we will study the effects of massive spin-1/2

fermions, spin-3/2 fermions, and self-dual tensors. The underlying common feature of these fields is

parity violation: their Lagrangians, discussed in section 9.3.1, are not invariant under parity.1 In

particular, fermions induce parity violation through their mass terms, while tensors violate parity via

their kinetic term. Let us stress that the latter is of a non-standard form and is different from the

kinetic term for massless tensors in five dimensions, which are dual to massless vectors.

The massive fields are minimally coupled to a massless U(1) gauge field A with field strength F .

We aim to derive the corrections to the gauge Chern-Simons term A ∧ F ∧ F and the gravitational

Chern-Simons term A ∧ tr (R ∧ R), where R is the five-dimensional curvature two-form, induced by

integrating out all massive fields. As we will demonstrate, after appropriate overall normalization each

of the massive fields yields an integer contribution to the quantum-corrected Chern-Simons couplings.

This is consistent with the topological nature of the Chern-Simons couplings that implies that their

prefactors are quantized and turn out to be independent of the mass scale of the fields that are

integrated out.

The effect we are interested in is one-loop exact, as argued in section 9.2. Indeed, it can be

interpreted as a parity anomaly matching in five dimensions, as follows. The original theory, containing

both massless and massive fields of the kind listed above, is parity-violating because of the latter.

The Wilsonian effective action for massless modes is parity-violating by virtue of a one-loop effect

generated integrated out massive fields. The connection between Chern-Simons terms and anomalies

is actually richer: in chapter 10 we will explore how five-dimensional Chern-Simons term can encode

six-dimensional anomalies. We will also test our one-loop results against the geometric predictions

inferred by means of the duality between F-theory and M-theory in chapter 7. Let us point out that

these results have also been shown to agree with the genus-one corrections to Chern-Simons terms

predicted in heterotic string theory. We refrain from giving here an account of the computation and

we rather refer the reader to [246] for more details.

9.2 Summary of the results

Let us start by summarizing the results of this chapter, which will be derived in the next sections.

The object of our investigation are five-dimensional theories in which some massive fields are coupled

to a U(1) gauge field Aµ and to the metric gµν . In particular, we study how quantum corrections due

to massive fields can generate the Chern-Simons couplings

SAFF = kAFF

∫
A ∧ F ∧ F , SARR = kARR

∫
A ∧ tr (R∧R) (9.1)

1Note that in five dimensions the reflection of all four spatial coordinates is a transformation belonging to the identity
component of the Lorentz group. By parity in five dimensions we mean the reflection of one or three spatial directions.
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in the low energy effective action. In these expressions F = dA is the field strength of the U(1)

gauge field and R denotes the curvature two-form built from the metric gµν . More precisely, R is a

so(1, 4)-valued two-form with components

Rab = 1
2 e

a
ρ eb

σ Rρσµν dx
µ ∧ dxν , (9.2)

where eaµ is the five-dimensional vielbein and Rρσµν is the Riemann tensor.

We show that three classes of massive fields are capable of generating the Chern-Simons terms

(9.1) in the quantum effective action: massive spin-1/2 fermions ψ, massive self-dual tensors Bµν , and

massive spin-3/2 fermions ψµ. By massive self-dual tensor we mean a complex two-form Bµν that

admits a non-standard first order kinetic term B̄ ∧ dB together with a mass term mB̄ ∧ ∗B. Its free

equation of motion thus reads schematically

∗dB ∝ mB . (9.3)

These tensor fields and their coupling to a U(1) gauge field has been analyzed in [247] and will be

re-considered from a six-dimensional perspective in chapter 10. Further details about massive self-dual

tensors are given in section 9.3.1. We refer to these fields as self-dual because they can be thought of

as the excited Kaluza-Klein modes of a six-dimensional self-dual tensor compactified on a circle.

Spin-1/2 fermions, self-dual tensors, and spin-3/2 fermions can be characterized in terms of as-

sociated representations of the massive little group in five dimensions, SO(4) ∼= SU(2) × SU(2).

Such representations are labelled by a pair of half-integer spins (j1, j2). The correspondence between

massive fields and SO(4) representations is summarized in table 9.1.

field free EOM SO(4) rep.

spin-1/2 fermion ψ (/∂ − c1/2m)ψ = 0
(

1
2 , 0
)

or
(
0, 1

2

)
self-dual tensor Bµν (∗d− icBm)B = 0 (1, 0) or (0, 1)

spin-3/2 fermion ψµ (γρµν∂µ + c3/2mγ
ρν)ψν = 0

(
1
2 , 1
)

or
(
1, 1

2

)
Table 9.1: Summary of massive representations considered in this chapter.

We have included the equation of motion that puts each field on-shell in the absence of interactions.

The coefficients c1/2, cB, c3/2 can take the values ±1 and determine which SO(4) representation is

realized. Note that here and in the following m denotes the mass of the physical one-particle states

and is thus taken to be positive. The pairs of representations (j1, j2) and (j2, j1) are interchanged

under parity. Correspondingly, these classes of fields break parity at tree level. From this point of

view, let us stress again that the fact that couplings of the form (9.1) are generated in the effective

action can be interpreted as a parity anomaly: quantum effects compensate for the parity violation

originally induced by these families of massive fields, after they are integrated out.

The following table summarizes our findings for the coefficients kAFF , kARR of the induced Chern-

Simons couplings in (9.1). Coefficients c1/2, cB, c3/2 correspond to those in table 9.1. The symbol
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q denotes the U(1) charge of the massive fields. It is a dimensionless quantity and its normalization

spin-1/2 fermion ψ self-dual tensor Bµν spin-3/2 fermion ψµ

kAFF = − 1

48π2
q3 · c1/2 − 1

48π2
q3 · (−4 cB) − 1

48π2
q3 · (5 c3/2)

kARR = − 1

384π2
q · c1/2 − 1

384π2
q · (8 cB) − 1

384π2
q · (−19 c3/2)

Table 9.2: Summary of the one-loop contributions for various fields.

is fixed by the minimal coupling prescription ∂µ → ∂µ − iqAµ. The derivation of these results is

the subject of the upcoming sections. Nonetheless, let us stress here two crucial aspects of the

computation. Firstly, kAFF and kARR are quantum corrected at one-loop only. This is expected

by arguments involving locality of the effective action and quantization of the Chern-Simons couplings

[242] and is consistent with the interpretation in terms of parity anomalies in five dimensions.

Secondly, our results are derived using a simple quadratic action for the massive fields, which

only includes minimal coupling to the gauge field Aµ and the metric gµν . We argue that kAFF and

kARR are indeed insensitive to any fine detail of the interactions. For the kAFF coupling, the effect

of some non-minimal interactions is analyzed explicitly in section 9.3.4. It is shown there that such

non-minimal couplings do not affect the renormalized value of kAFF . These features are expected for

topological couplings such as (9.1) that can be interpreted as parity anomalies.

Note that we refrain from a discussion about the possibility to write down fully consistent inter-

acting theories for the three classes of massive fields under examination. For instance, it is expected

that an interacting theory of massive spin-3/2 fermions is only possible in presence of (possibly spon-

taneously broken) supersymmetry, even though our findings are independent of the precise way it

is realized in the five-dimensional action. From this point of view, we do not consider other parity-

violating representations of SO(4), such as (3
2 , 0) or (2, 0), because no example is known of consistent

interacting theories for the corresponding massive fields.

9.3 Feynman diagram computation

In this section we compute the coefficients of the Chern-Simons couplings (9.1) in perturbative quan-

tum field theory. We start by reviewing the actions for the massive spin-1/2 fermion, self-dual tensor,

and spin-3/2 fermions minimally coupled to the U(1) gauge field and the metric. We then describe the

main points of the Feynman diagram calculations for the gauge and the gravitational Chern-Simons

terms. We conclude the section by studying the effect of some non-minimal couplings on the gauge

Chern-Simons term.
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9.3.1 Minimally coupled massive actions

The Chern-Simons couplings (9.1) can be captured by one-loop computations in a theory where the

massive fields considered above are minimally coupled to the U(1) gauge field Aµ and the metric gµν .

In this section we briefly review the corresponding actions.

A spin-1/2 fermion is described by a five-dimensional Dirac spinor ψ. In order to couple it to the

metric gµν we have to use the vielbein eaµ. The action for ψ minimally coupled to the U(1) gauge

field Aµ and the vielbein eaµ is taken to be

S1/2 =

∫
d5x e

[
−ψ̄γµDµψ + c1/2mψ̄ψ

]
, c1/2 = ±1 , (9.4)

where e = det eaµ, γµ = γaea
µ, and where we have introduced the full spacetime and U(1) covariant

derivative

Dµψ = ∂µψ + 1
4ωµabγ

abψ − iqAµψ . (9.5)

On the right hand side, ωµab is the Levi-Civita spin connection constructed from the vielbein, and q is

the U(1) charge of the fermion ψ. More details about our spacetime and gamma-matrix conventions

can be found in appendix A and in particular in section A.2. As stated in section 9.2, m is the positive

physical mass and c1/2 labels two inequivalent spinor representations of the massive little group SO(4)

in five dimensions. Under a parity transformation, the sign of c1/2 is reversed.

Let us now turn to massive self-dual tensors in five-dimensions. Their action, including the coupling

to a U(1) gauge field, can be written as

SB =

∫
d5x
√−g

[
−1

4 icB ε
µνρστ B̄µνDρBστ − 1

2 mB̄µνB
µν
]
, cB = ±1 . (9.6)

The relevant part of the spacetime and U(1) covariant derivative reads

D[ρBµν] = ∂[ρBµν] − iqA[ρBµν] . (9.7)

Note that g = det gµν and that εµνρστ denotes the five-dimensional Levi-Civita tensor. In our con-

ventions, it satisfies ε01234 = −1/
√−g if 0, . . . , 4 are curved indices. Note that in this case parity

violation is not due to the mass term, but to the kinetic term. The form (9.6) of the action can be

argued from purely five-dimensional considerations, but it is most easily derived by means of circle

compactification from six dimensions. This reduction will be performed in chapter 10.

Finally, a spin-3/2 fermion is described by a Dirac vector-spinor ψµ with action

S3/2 =

∫
d5x e

[
−ψ̄ργρµνDµψν − c3/2mψ̄µγ

µνψν
]
, c3/2 = ±1 , (9.8)

where the antisymmetric part of the spacetime and U(1) covariant derivative is given by

D[µψν] = ∂[µψν] + 1
4ω[µ|abγ

abψν] − iqA[µψν] . (9.9)

In analogy with the spin-1/2 case, the two inequivalent representations of SO(4) differ by the sign of

the mass term.
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A(p3, e3)A(p2, e2)

A(p1, e1)

k

Figure 9.1: One-loop Feynman diagram involved in the computation of the Chern-Simons coefficient
kAFF . The external lines are three vectors A with incoming momenta p1, p2, p3 and polarization
vectors e1, e2, e3. The internal lines can represent a massive spin-1/2 fermion, a massive self-dual
tensor, or a massive spin-3/2 fermion. The loop momentum k flows in the direction of the arrow.

9.3.2 Computation of the A ∧ F ∧ F coupling

The U(1) Chern-Simons coupling A∧F ∧F does not involve the gravitational field. As a consequence,

throughout this section we can ignore the coupling of massive fields to gravity and take gµν = ηµν . No

distinction between flat and curved indices is made. The coupling to Aµ can be treated perturbatively

in the framework of quantum field theory on flat spacetime.

The coefficient of the A ∧ F ∧ F term in the quantum effective action can be extracted from the

three-point function of the gauge field Aµ. More precisely, we work in momentum space and we denote

by ΓAAA the sum of 1PI Feynman diagrams with three external vectors with incoming momenta p1,

p2, p3 and polarization vectors e1, e2, e3. The Chern-Simons term

kAFF

∫
A ∧ F ∧ F = −kAFF

∫
d5x εµνρστAµ∂νAρ∂σAσ (9.10)

in the effective action corresponds to a contribution to ΓAAA of the form

ΓAAA ⊃ i3!× (−kAFF ) ελτµ1µ2µ3 p
λ
1 p

τ
2 e

µ1
1 eµ2

2 eµ3
3 , (9.11)

where we have included a factor of i from the Feynman rules and the combinatorial factor 3! to take

into account symmetry under permutations of the three vectors. Contributions to ΓAAA different

from (9.11) will be ignored. They correspond to higher-derivative and non-local terms in the effective

action. As already mentioned, we expect that the right hand side of (9.11) is corrected at one loop

only. As shown in section 10.2 our one-loop results pass non-trivial tests in the framework of F-theory.

We can derive Feynman rules using the actions (9.4), (9.8) and (9.6) evaluated in flat spacetime

and extract the propagators for massive fields, together with the interaction tri-vertex among two

massive fields and one gauge field Aµ. These propagators and vertices are listed in appendix B.2.

At the one-loop level, only one class of diagrams can be built using the interaction vertices at

hand. A representative diagram is depicted in figure 9.1. Wiggly lines represent the external vectors,
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while solid lines represent massive fields. Each class of massive fields contributes separately to the

amplitude. To get the full answer, it has to be summed with the analog diagram where the orientation

of the loop is reversed. This is equivalent to swapping the labels 1 and 2 on the external legs. Since

the relevant structure in (9.11) is invariant under this relabeling, the loop-reversed diagram simply

gives an overall additional factor 2.

The denominator of the diagram (which is determined through its propagator factors) is the same

for all fields running in the loop. If the labeling of figure 9.1 is adopted, it is given by

D =
1

k2 +m2

1

(k − p2)2 +m2

1

(k + p1) +m2
, (9.12)

which is to be completed by a suitable numerator factor N which particularly encodes information

about the vertices and is strongly dependent on the fields running in the loop. In (9.12), the usual

Feynman iε prescription is understood. We make use of Schwinger parametrization to unify denomi-

nators, and write

D =
1

m6

∫ ∞
0

dα

∫ ∞
0

dβ

∫ ∞
0

dγ e−(α+β+γ)(`2+∆)/m2
. (9.13)

In this expression, α, β, γ are dimensionless parameters, and we have made use of the shorthand

notations

` = k − yp2 + zp1 , ∆ = m2 + 2yzp1 · p2 + y(1− y)p2
1 + z(1− z)p2

2 , (9.14)

where y = β/(α+ β + γ) and z = γ/(α+ β + γ). The full diagram is then given by

I = D · N =
1

m6

∫ ∞
0

dα

∫ ∞
0

dβ

∫ ∞
0

dγ

∫
d5`

(2π)5
e−(α+β+γ)(`2+∆)/m2

N , (9.15)

where, of course, the numerator is different for different species of massive fields running in the loop.

We also note that the sum of the diagram in figure 9.1 with the diagram with the opposite orientation

has a distinct symmetry with respect to exchanging the external points. On general grounds, one

can show that this symmetries restrict the parity violating part of the integrand in (9.15) at the

bilinear level in the external momenta to only depend on the Schwinger parameters in the combination

(α+ β + γ). This is a useful consistency check we have applied throughout the computations.

By naive power-counting arguments, we do not expect any infrared divergence in this one-loop

diagram, but we cannot exclude the possibility of ultraviolet divergences. If Schwinger parametriza-

tion is used, the integral over the loop momentum ` contains an exponential factor and (after Wick

rotation) is convergent as long as α+ β + γ is strictly positive. Ultraviolet divergences are translated

into divergences in the α, β, γ integration, coming from the region where these three parameters are

simultaneously small. We regularize the amplitude by cutting out this portion of the α, β, γ integration

domain with a step-function: in (9.15) we make the replacement∫ ∞
0

dα

∫ ∞
0

dβ

∫ ∞
0

dγ →
∫ ∞

0
dα

∫ ∞
0

dβ

∫ ∞
0

dγ θ(α+ β + γ − ε) , (9.16)

where ε > 0 is the regulator.
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Recall from (9.11) that we are only interested in the coefficient of a term with two powers of

external momenta contracted with an ε-symbol. This allows us to simplify the computation of the

diagram.

First of all, only the terms that contain an ε-symbol have to be kept in the numerator. If a self-dual

tensor runs in the loop, the ε-symbol is introduced directly at the level of Feynman rules both in the

propagator and in the vertex. When a spinor runs in the loop, the ε-symbol is generated by traces of

gamma matrices. This follows from the identities

tr 1 = 4 , tr γµ1µ2µ3µ4µ5 = 4i εµ1µ2µ3µ4µ5 , tr γµ1...µp = 0 for p = 1, 2, 3, 4. (9.17)

We see that only those terms need to be retained that contain an odd number of gamma matrices

greater than or equal to five.

Second of all, we can perform a formal power series expansion of (9.15) in p1, p2 and we can

neglect all terms that are not bilinear in p1 and p2. In particular, this implies that we can use the

approximation ∆ ≈ m2, since all other terms in the exact expression (9.14) for ∆ would generate

additional powers of external momenta of the form p2
1, p2

2, or p1 · p2.

Finally, by symmetry arguments (not spoiled by our choice of regulator), we can make the following

replacements in the numerator under the
∫
d5` integral:

`µ1 . . . `µr → 0 if r is odd ,

`µ`ν → 1
5 `

2 ηµν , `µ1`µ2`µ3`µ4 → 1
35 (`2)2(ηµ1µ2ηµ3µ4 + ηµ1µ3ηµ2µ4) , . . . (9.18)

All tensor integrals in the loop momentum are thus reduced to scalar integrals.

The calculation of the diagram is now straightforward but tedious.2 After the numerator algebra

is performed and the replacements (9.18) are made, the integrals over the loop momentum and the

Schwinger parameters are computed using the formulae∫
d5`

(2π)5
e−(α+β+γ)`2/m2

(`2)n =
im2n+5

24π3

Γ(n+ 5/2)

(α+ β + γ)n+5/2
, (9.19)∫ ∞

0
dα

∫ ∞
0

dβ

∫ ∞
0

dγ θ(α+ β + γ − ε) e−(α+β+γ)

(α+ β + γ)a
αn1βn2γn3 =

=
Γ(1 + n1)Γ(1 + n2)Γ(1 + n3)

Γ(3 + n1 + n2 + n3)
Γ(3 + n1 + n2 + n3 − a; ε) . (9.20)

We have performed the usual Wick rotation `0 → i`0 in the first integral and have introduced the

incomplete gamma function

Γ(x; ε) =

∫ ∞
ε

dττx−1e−x (9.21)

in the second integral.

Let us consider the diagram where the spin-1/2 fermion ψ runs in the loop. By power-counting

we expect a quadratic divergence, since the numerator has up to three powers of the loop momentum.

2We made use of the Mathematica packages xTensor of the bundle xAct [248] and GAMMA [249].
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The parity-violating part of the numerator, however, turns out to be of zero-th order in the loop

momentum, thus giving a finite result without the need of any regulator.

This does not hold for the diagrams where Bµν and ψµ run in the loop. In fact, even though the

parity-violating part of the numerator has a better UV behavior than the full diagram, it still contains

terms proportional to `2 or (`2)2. This implies that both diagrams have a divergent piece. In our

regularization scheme such divergences appear as coefficients of negative powers of the regulator ε in

a formal expansion of the diagram.

We can then give the ε-expansion for all the three species under consideration: spin-1/2 fermions

ψ, tensors Bµν , and spin-3/2 fermions ψµ,

(diagram)1/2 =
i

64π2
c1/2 q

3

[
+ 4 +O(ε1/2)

]
, (9.22)

(diagram)B =
i

64π2
cB q3

[
+

15√
π
ε−1/2 − 16 +O(ε1/2)

]
, (9.23)

(diagram)3/2 =
i

64π2
c1/2 q

3

[
− 105

4
√
π
ε−3/2 +

15

4
√
π
ε−1/2 + 20 +O(ε1/2)

]
. (9.24)

Note that the factor (−1) for a fermionic loop has been taken into account, but we have not inserted

the overall factor 2 due to the diagram with the reversed loop orientation.

In order to extract the physical observable kAFF from these expressions we adopt a minimal

subtraction prescription: negative powers of ε in the expansion are discarded. This gives the results

of table 9.2. In section 9.3.4 we discuss the effect of non-minimal couplings and show how they can

be used to cancel divergences.

9.3.3 Computation of the A ∧ tr (R∧R) coupling

Let us now turn to the discussion of the mixed U(1)-gravitational Chern-Simons term A∧ tr (R∧R).

To compute its coefficient we treat the coupling of massive fields to gravity perturbatively. The metric

is written as

gµν = ηµν + hµν , (9.25)

and computations are performed order by order in a formal power series in hµν around flat spacetime.

Indices µ, ν, . . . are thus raised and lowered with ηµν and its inverse and no distinction is made between

flat and curved indices. Further details about the expansion in hµν are collected in appendix B.1.

When A∧ tr (R∧R) is expanded according to (9.25) terms with arbitrarily high powers of hµν are

generated, because of the non-linear dependence of the Riemann tensor on the metric. Nonetheless,

in order to read off the Chern-Simons coupling we can restrict to the lowest order term,

kARR

∫
A ∧ tr (R∧R) = (9.26)

= −1
2kARR

∫
d5x εµ1µ2µ3µ4µ5Aµ1∂λ∂µ2hτµ3

[
∂τ∂µ4h

λ
µ5 − ∂λ∂µ4h

τ
µ5

]
+O(h3) .
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As a consequence, the constant kARR can be extracted from the sum of 1PI Feynman diagrams with

one vector and two gravitons, denoted ΓAhh. More precisely, the sought-for Chern-Simons coupling

corresponds to the contribution

ΓAhh ⊃ i2!× 1
2kARR εµ0µ1µ2λτ p

λ
1p
τ
2 (p1 ν2p2 ν1 − ην1ν2p1 · p2) eµ0

0 eµ1ν1
1 eµ2ν2

2 , (9.27)

where p1, p2 are the incoming momenta of the gravitons, e0 is the polarization tensor of the vector,

and e1, e2 are the symmetric polarization tensors of the gravitons. The prefactor i2! comes from the

standard Feynman rule prescriptions. Any term that does not match the structure of the right hand

side of (9.27) will be neglected, since it would correspond to higher-derivative and non-local terms in

the effective action.

It is interesting to note that the tensor structure in (9.27) is transverse with respect to both the

vector and the graviton polarization tensors, i.e. it vanishes if any of the replacements

eµ0 → pµ0 = −pµ1 − pµ2 , eµν1 → a(µp1
ν) , eµν2 → a(µp2

ν) (9.28)

is made, for arbitrary aµ. It can be shown that this tensor structure is the only structure with an

ε-symbol and four powers of external momenta that has this transversality property and is symmetric

in the exchange of labels 1 and 2. Its appearance is a consequence of gauge invariance. Transversality

with respect to e0 reflects invariance of (9.26) under U(1) transformations. Transversality with respect

to e1, e2 derives from invariance of (9.26) under diffeomorphisms. Recall that under an infinitesimal

diffeomorphism with parameter ξµ we have

δhµν = 2∂(µξν) +O(h) . (9.29)

Gauge invariance can be used as a self-consistency check of the Feynman diagram computation. Indeed,

we find that the desired contributions to ΓAhh organize into the structure (9.27) after all relevant

diagrams are summed.

The Feynman rules needed in the diagrammatic computation of ΓAhh are deduced by expanding

the actions (9.4), (9.8), (9.6) for the massive fields according to (9.25). This gives interaction vertices

of arbitrarily high powers in hµν but we only need an expansion up to second order in hµν . More

precisely, four kinds of vertices are relevant for the calculation of ΓAhh. If we denote any of the

massive fields ψ, Bµν , ψµ as Φ, we need: the gauge tri-vertex Φ̄ΦA, already considered in the previous

section; the gravitational tri-vertex Φ̄Φh; the purely gravitational quadri-vertex Φ̄Φhh; the mixed

gauge-gravitational quadri-vertex Φ̄ΦAh. All such vertices are collected in appendix B.2.

The presence of quadri-vertices enlarges the family of one-loop Feynman diagrams that can be

built. In particular, we have three different topologies, depicted in figure 9.2. The total amplitude is

given by the sum

2(a) + (b) + 2(c) , (9.30)

where diagram (a) is counted twice because of the two possible orientations of the loop, and diagram

(c) is counted twice according to which graviton is connected to the mixed quadri-vertex.
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h(p2, e2)h(p1, e1)

A(p0, e0)

(a)

h(p2, e2)h(p1, e1)

A(p0, e0)

(b)

h(p2, e2)h(p1, e1)

A(p0, e0)

(c)

Figure 9.2: One-loop Feynman diagrams involved in the computation of the Chern-Simons coefficient
kARR. The external line on top represents a vector A with incoming momentum p0 and polarization
vector e0. The other external lines are gravitons h with incoming momenta p1, p2 and symmetric
polarization tensors e1, e2. The internal lines can represent a massive spin-1/2 fermion, a massive
self-dual tensor, or a massive spin-3/2 fermion.
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For each diagram, denominators can be unified by means of Schwinger parameters. In diagram

(a) three parameters are needed, as in the previous section, while diagrams (b) and (c) require only

two parameters. Up to minor changes, the methods described in the previous section can be applied

straightforwardly to the diagrams at hand. In particular, UV divergences in diagrams (b) and (c) are

regulated by means of the replacement∫ ∞
0

dα

∫ ∞
0

dβ →
∫ ∞

0
dα

∫ ∞
0

dβ θ(α+ β − ε) , (9.31)

where α, β are the Schwinger parameters and ε is the regulator. For the sake of completeness, we

record the two-parameter analog of the identity (9.20),∫ ∞
0

dα

∫ ∞
0

dβ θ(α+ β − ε) e
−(α+β)

(α+ β)a
αn1βn2 = (9.32)

=
Γ(1 + n1)Γ(1 + n2)

Γ(2 + n1 + n2)
Γ(2− a+ n1 + n2; ε) . (9.33)

Let us stress an important difference between the present computation and the one discussed in

the previous section. In the case of the gauge Chern-Simons couplings, the relevant tensor structure

(9.11) does not contain any product of external momenta. This allowed us to use the approximation

∆ ≈ m2 in the computation of the diagram in (9.15). In the present case, one of the two parts of the

gauge invariant tensor structure (9.27) is proportional to p1 · p2. This implies that we have to keep

the p1 · p2 term inside ∆ and expand e(α+β+γ)`2/m2
(or e(α+β)`2/m2

) in a power series in the external

momenta. This is indeed crucial to obtain the gauge invariant structure (9.27) after all the three

diagrams are combined according to (9.30).

As in the case of the gauge Chern-Simons term, the parity violating part of the diagrams has a

better UV behavior than expected from naive power-counting. Nevertheless, the diagrams in which

the self-dual tensor and the spin-3/2 fermion run in the loop have some divergent parts. After all

diagrams are summed according to (9.30) and the total expression is organized in powers of ε, the ε0

coefficient is proportional to the gauge-invariant combination (9.27), while negative-power coefficients

are not gauge-invariant. This leads us to apply a minimal subtraction prescription and simply drop

the unphysical divergent pieces. In this way the results of table 9.2 are obtained.

Let us conclude this section with a side remark. Recall from section 9.3.2 that the relative weight

between the diagram for spin-1/2 and spin-3/2 fermion contributions to kAFF is five. This result can

be derived straightforwardly from an alternative form of the massive action for a spin-3/2 ψµ,

S′3/2 =

∫
d5x e

[
−ψ̄ργµDµψρ + c3/2mψ̄ρψ

ρ
]
, c3/2 = ±1 . (9.34)

Indeed, when this action is evaluated on a flat background, it gives exactly the same propagator and

vertex as the spin-1/2 action (9.4), up to a factor of the metric ηµν .

Remarkably, the alternative action (9.34) gives also the correct relative weight −19 between the

spin-1/2 and the spin-3/2 contributions to kARR. This claim has been checked against an explicit

Feynman diagram computation. To get the correct result is crucial to take into account the corrections
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to the vertices coming from the Christoffel symbols inside the covariant derivative Dµψρ. Indeed, the

vertices generated by the Christoffel symbol contribute a relative factor of −24 that combines with

five times the spin-1/2 result to give −19.

This finding resembles a similar result about gravitational anomalies in six dimensions [199]. In

order to compute the contribution of a massless chiral spin-3/2 field ψµ to gravitational anomalies in

six dimensions, one can use two different Lagrangians, proportional to

ψ̄ργ
ρµν∇µψν or ψ̄ργ

µ∇µψρ , (9.35)

where ∇ denotes the six-dimensional Levi-Civita covariant derivative. It is shown that the difference

between these Lagrangians cannot affect the anomalous part of the four-graviton one-loop diagram.

Note that if we compactify the six-dimensional Lagrangians (9.35) on a circle, the resulting actions for

the massive Kaluza-Klein modes have kinetic and mass terms as given in (9.8) and (9.34), respectively.

We are thus led to conjecture that corrections to the five-dimensional Chern-Simons terms (9.1) are

insensitive to the precise form of the differential operator in the kinetic term and the corresponding

form of the mass term.

9.3.4 Non-minimal couplings and renormalization

The aim of this section is to describe the effect of non-minimal couplings on the Chern-Simons term

A ∧ F ∧ F . Gravity is decoupled and the metric is taken to be ηµν . As far as fermions are concerned,

we consider Pauli couplings built by contracting a spinor bilinear with the U(1) field strength F = dA.

In particular, we have analyzed the couplings

Lnm
1/2 = 1

2 iq̃1/2 Fµν ψ̄γ
µνψ , Lnm

3/2 = 1
2 iq̃3/2 Fµν ψ̄ργ

µνρσψσ + 1
2 iq̃
′
3/2 Fµν ψ̄

µψν . (9.36)

For massive self-dual tensors we have studied instead

Lnm
B = q̃B B̄µνF

νρBρ
µ + q̃′B B̄µνF

νρBρσF
σµ . (9.37)

The computation of section 9.3.2 can be repeated including these additional vertices. The cor-

responding Feynman rules can be obtained straightforwardly with the standard prescriptions. Note,

however, that the coupling q̃′B induces a quadri-vertex and therefore diagrams with a topology as

diagram (b) or (c) in figure 9.2 have to be included.

We refrain from a detailed account on the computation. Nonetheless, its outcome is remarkable:

all non-minimal couplings q̃1/2 to q̃′B drop from the ε0 coefficient of the combination of all diagrams

and enter only the coefficients of negative powers in ε.

This implies that they can be used to cancel divergences in the spin-3/2 and tensor diagrams.

Recall from (9.24) that the triangle diagram with a spin-3/2 fermion running in the loop has two

non-vanishing negative powers of ε if only the minimal coupling q is switched on. Our computations

reveal that turning q̃3/2, q̃′3/2 on does not introduce higher negative powers, i.e. higher divergences, and
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does not affect the coefficient of the ε0 power. We can thus tune q̃3/2 and q̃′3/2 and cancel divergences

without altering the finite part of the diagram.

The same strategy can be applied to tensors. The reader might wonder why we take into account

two non-minimal couplings for tensors, if the corresponding diagram has only one divergent part, as

can be seen from (9.23). This is necessary since it can be checked that inclusion of the coupling q̃B

introduces higher divergences that require the introduction of q̃′B to be cancelled.

Our findings suggest the interpretation of non-minimal couplings (9.36) and (9.37) as counterterms.

Dimensional analysis reinforces this claim, since it shows that non-minimal couplings q̃1/2 to q̃′B have

negative mass dimension. In the limit in which the masses of ψ, Bµν , and ψµ tend to infinity and these

fields are integrated out, non-minimal couplings are suppressed. A similar counterterm analysis for the

gravitational Chern-Simons term is a formidable task and is not addressed in this work. Nevertheless,

it is plausible that a similar mechanism can be implemented to cancel all divergences without changing

the results of table 9.2.



CHAPTER 10

Abelian tensor towers and five-dimensional supergravities

In this chapter we will discuss several applications of the one-loop corrections to Chern-Simons terms

in five dimensions computed in the previous chapter. To begin with, we discuss in detail how a self-

dual tensor in six dimensions can be conveniently described in terms of a tower of massive tensors in

five dimensions. This observation constitutes the bridge that connects five-dimensional Chern-Simons

couplings and six-dimensional physics. We exploit this connection to complete our discussion about

the role of one-loop effects in the duality between M-theory and F-theory on a Calabi-Yau threefold,

started in chapter 7. Furthermore, we show how quantum-corrected Chern-Simons couplings can

provide a useful tool in the exploration of apparently consistent supergravities in five-dimensions.

10.1 A lower-dimensional action for chiral p-forms

Even though we are mainly interested in the dynamics of self-dual tensors in six dimensions, the

construction of this section applies straightforwardly to chiral p-forms in D = 2p + 2 dimensions,

i.e. p-forms with self-dual or antiself-dual field strength. We will therefore develop the formalism for

general p. Let us note that, since we consider Lorentz signature, p has to be even.

We have already seen in sections 2.2 and 3.5 two important example of the key role played by

chiral p-forms in string theory and M-theory. On the one hand, the massless spectrum of Type IIB

superstring theory contains a chiral four-form. On the other hand, the world-volume theory of an

M5-brane includes a chiral two-form, i.e. a self-dual tensor. From a field-theoretic point of view,

quantization of such fields is a non-trivial task, since it is notoriously hard to impose the duality

constraint at the level of the action [250]. Different solutions to this problem have been proposed,

based on breaking of manifest Lorentz invariance, introduction of auxiliary fields, or a holographic

approach [251, 252, 253, 254, 255].

209
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Our approach circumvents a direct description of chiral p-forms in D = 2p + 2 dimensions. We

perform a circle compactification that leads us to a (D − 1)-dimensional action which can be used to

study the dynamics of these p-forms. This approach is inspired by observations coming from the study

of string and M-theory effective actions. Firstly, six-dimensional (2,0) superconformal field theories

for a stack of M5-branes have been conjectured to be equivalent to five-dimensional super Yang-Mills

theories [33]. This conjecture has been reviewed briefly chapter 6. Secondly, six-dimensional effective

actions of F-theory compactifications with an arbitrary number of chiral tensors can been derived by

using the dual five-dimensional M-theory setups, as we have seen in chapter 7. In both frameworks

excited Kaluza-Klein modes are essential for the correspondence between the six- and five-dimensional

physics.

Our starting point is a D-dimensional pseudoaction, which has to be supplemented by the self-

duality constraint at the level of the equations of motion, as usual. One spatial direction is compactified

on a circle, and chiral p-forms are expanded onto a Kaluza-Klein tower of (D− 1)-dimensional p- and

(p− 1)-forms. Both zeromodes and excited modes are retained, and are subject to duality constraints

coming from self-duality in D dimensions. These constraints can be implemented in a proper (D−1)-

dimensional action, which is given explicitly in (10.14) below. The derivation of the next section can

be seen, on the one hand, as a generalization of the reduction performed in section 7.4.1 to include

all Kaluza-Klein modes, and, on the other hand, as a variant of the compactification of non-chiral

p-forms discussed in section 4.2.

Let us conclude this section by pointing out that this formalism can be also useful in the study

of systems other than six-dimensional tensors. For instance, it may be applied to the democratic for-

mulation of Type II supergravities [49] or to four-dimensional Maxwell actions with manifest electric-

magnetic duality, see e.g. [256].

10.1.1 Derivation of the action

A free chiral p-form B̂ in D = 2p+ 2 dimensions (with p even) is subject to the self-duality condition

∗̂ Ĥ = cB Ĥ , (10.1)

where cB = ±1 and Ĥ = dB̂. This constraint is first-order, and is not easily derived from an action.

However, differentiation of (10.1) gives a second-order equation which is readily obtained from the

pseudoaction

Ŝ =

∫
−1

4Ĥ ∧ ∗̂ Ĥ . (10.2)

The prefactor is chosen to have canonical normalization in the following discussion. Note that the

pseudoaction formalism can be also applied to setups including several p-forms and their couplings to

other fields.

Let us now put the pseudoaction (10.2) on a circle, by means of the standard Kaluza-Klein Ansatz

for the metric. We write it as

dŝ2(x, y) = ds2(x) + r2(x)[dy −A0(x)]2 , (10.3)
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where x are the non-compact D − 1 coordinates, y ∼ y + 2π is the coordinate along the circle, r is

the compactification radius, and A0 is the Kaluza-Klein vector, with field strength F 0 = dA0. We

do not consider the dynamics of gravity in D dimensions, so that the five-dimensional metric, the

scalar r, and the vector A0 are best understood as non-dynamical background fields. It is nonetheless

useful and by no means more difficult to keep track of these fields in the computation we are about

to perform.

We expand the D-dimensional p-form B̂ in Kaluza-Klein modes according to

B̂ =
∑
n∈Z

einy
[
Bn +An ∧ (dy −A0)

]
, (10.4)

where Bn, An are (D − 1)-dimensional p-forms and (p − 1)-forms, respectively, and only depend on

the non-compact coordinates x. Our formalism requires p > 0, and hence is not applicable to chiral

scalars in two dimensions. Note that Kaluza-Klein modes are subject to a reality condition, e.g. B̄n ≡
(Bn)∗ = B−n.

Dimensional reduction of the higher-dimensional field strength Ĥ is conveniently described in terms

of the lower-dimensional field strengths

Hn = DBn +An ∧ F 0 , Fn = DAn + inBn , (10.5)

where we have introduced the covariant exterior derivative D = d + inA0 acting on the nth mode.

These field strengths are invariant under the gauge transformations

δBn = DΛn − λn ∧ F 0 , δAn = Dλn − inΛn , (10.6)

where Λn is a p-form and λn is a (p − 1)-form. Let us point out that (10.5) and (10.6) are a special

case of (4.21) and (4.22).1 This has to be expected since we have not implemented the self-duality

constraint yet. A straightforward computation shows that the pseudoaction (10.2) is reduced to the

sum
∑

n S̃n, where

S̃n =

∫
−1

4r H̄n ∧ ∗Hn − 1
4r
−1F̄n ∧ ∗Fn . (10.7)

Note that we have omitted and inconsequential prefactor 2π coming from the range of the compact

coordinate y. If necessary, it can be straightforwardly reinstated in all following expressions in (D−1)

dimensions. Finally, the self-duality constraint (10.1) yields a constraint for each Kaluza-Klein level,

r ∗ Hn = cB Fn , (10.8)

In the following, we implement these constraints at the level of the lower-dimensional action. To this

end, zeromodes and excited modes are treated differently.

For the sake of simplicity, we will henceforth drop the Kaluza-Klein subscript on zeromodes,

B ≡ B0, A ≡ A0. As we can see from (10.6), the shift symmetry of the theory with parameters

Λn acts trivially on the zeromode A. Because of the self-duality constraint, B and A thus furnish a

1To compare these expression, note that the Kaluza-Klein vector has now a minus sign relative to section 4.2 motivated
by our F-theory analysis if chapter 7. Note also that we are considering only the case in which p is even.
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redundant description of the same degrees of freedom, and no gauge-fixing condition can eliminate this

redundancy. Therefore, either A or B has to be eliminated by hand from the action. In the following,

we choose to remove B and construct an action in terms of A only.

To achieve this goal, we modify S̃0 given in (10.7) adding

∆S̃0 =

∫
1
2cBH ∧ F − 1

2cB A
0 ∧ F ∧ F . (10.9)

This term is a total derivative as a functional of A,B,A0, and is such that the sum S̃0 + ∆S̃0 can be

written as a functional of A,H, A0. Moreover, (10.9) is engineered to get the duality constraint (10.8)

for zeromodes upon variation with respect to H, which appears only algebraically. We are thus able

to integrate out H to get a proper (D − 1)-dimensional action depending on A,A0 only. It reads

S0 =

∫
−1

2r
−1F ∧ ∗F − 1

2cB A
0 ∧ F ∧ F . (10.10)

Note that (10.5) implies F = dA for n = 0. This action is a p-form generalization of the action in

section 7.4.1 for the zeromodes of a self-dual tensor.

Let us now turn to the discussion of the self-duality condition for the nth excited modes Bn, An.

For n 6= 0, the shift symmetry with parameter Λn in (10.6) acts non-trivially on An. As a result, the

redundancy of the formalism is simply a manifestation of gauge invariance. Both Bn and An are thus

allowed to enter the action in the gauge-invariant combination Fn given in (10.5). The distinctive

feature of the n 6= 0 case is the identity

DFn = inHn , (10.11)

which is immediately derived from (10.5). It allows us to modify S̃n in (10.7) by adding

∆S̃n =

∫
1
4cB H̄n ∧ Fn + i

4ncB F̄n ∧ DFn + c.c. (10.12)

Indeed, this quantity is a total derivative as a functional of An, Bn, A
0. However, the total action

S̃n + ∆S̃n can be seen as a functional of Fn,Hn, A0, in which Hn enters only algebraically. As in the

discussion of the zeromodes, the duality constraint (10.8) is implemented through integrating out Hn.

We are thus left with the proper action

Sn =

∫
−1

2r
−1F̄n ∧ ∗Fn + i

2ncB F̄n ∧ DFn , (10.13)

where An, Bn only appear through Fn.

We are now in a position to write down the total action in D − 1 dimensions. It reads

S =

∫
−1

2r
−1F ∧ ∗F − 1

2cB A
0 ∧ F ∧ F +

∞∑
n=1

∫
−r−1F̄n ∧ ∗Fn + i

ncB F̄n ∧ DFn . (10.14)

Note that we sum (10.13) over positive n only, thanks to the reality conditions on An, Bn. The action

(10.14) should be contrasted with the action (4.20) for a non-chiral p-form on a circle. At the level of
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zeromodes, we do not have any kinetic term for the p-form B, but we find a Chern-Simons coupling

to the Kaluza-Klein vector, which will be important later. As far as excited modes are concerned,

we do not find the expected term −rH̄n ∧ ∗Hn, but rather a non-standard kinetic term for Bn: it is

first-order in derivatives and it violates five-dimensional parity. In analogy with (4.20), however, it is

worth pointing out that the physical degrees of freedom of excited modes can be described in terms

of a massive p-form Bn only. In fact, the gauge symmetry (10.6) can be fixed imposing the condition

An = 0, thus setting Fn = inBn. As a result, the second integral in (10.14) becomes

∞∑
n=1

∫
−n2r−1B̄n ∧ ∗Bn + icB n B̄n ∧ DBn . (10.15)

The classical mass parameter is mn = (n2r−1)(cB n)−1 = cB n r
−1. This action for p = 2 reproduces

the action (9.6) that has been used as starting point for our discussion of one-loop corrections induced

by massive tensors in five dimensions.

Note that (10.15) is invariant under local U(1) transformations of the complex p-form Bn gauged

by A0. In [247] this gauging is absent, and therefore it is possible to integrate out the real or imaginary

part of Bn consistently. The resulting action is the standard massive Proca action for p-forms and

has no explicitly parity-violating terms. By contrast, the gauging in (10.15) introduces parity-odd

interactions that are essential for our analysis.

The action (10.15) is expected to be supersymmetrizable in many cases of interest, since our

findings are reminiscent of tensor hierarchies in supergravity. For N = 2 models in five dimensions,

we refer the reader to e.g. [257]. Note also that (10.15) has strong analogies with the Lagrangian of

Kaluza-Klein modes χn of a higher-dimensional spin-1/2 fermion on the circle,

Lferm
n = −χ̄nγµDµχn +mnχ̄nχn + Lsupp

n . (10.16)

First of all, Dµ = ∂µ + inA0
µ contains minimal coupling to A0 with charge n. Second of all, the

lower-dimensional mass parameter mn = c1/2nr
−1 depends on the higher-dimensional chirality c1/2.

Finally, in Lsupp
n couplings are collected which are suppressed by the mass scale r−1. They are of the

same form as the non-minimal Pauli-like couplings discussed in section 9.3.4.

10.2 One-loop Chern-Simons terms and M-theory/F-theory duality

In this section we apply the results of chapter 9 to the context of M-theory/F-theory duality in six

dimensions. This has been analyzed in chapter 7, where we noticed that Chern-Simons terms in the

five-dimensional action of M-theory reduced on an elliptically fibered threefold fall into two distinct

categories, see (7.157). On the one hand, some terms can be straightforwardly reproduced on the

F-theory side by means of the classical circle reduction of a suitable six-dimensional pseudoaction. On

the other hand, some terms can never be obtained in this way, and in section 7.6.3 we have argued

that they are generated at one loop once massive Kaluza-Klein modes and W-bosons of the circle

reduction are integrated out. We are now in a position to substantiate this claim.
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(1, 0) theory (2, 0) theory

gravity multiplet (gµν , B
+
µν , 2ψ+

µ ) gravity multiplet (gµν , 5B+
µν , 4ψ+

µ )

tensor multiplet (B−µν , φ, 2ψ−) tensor multiplet (B−µν , 5φ, 4ψ−)

vector multiplet (Aµ, 2ψ+)

hypermultiplet (4φ, 2ψ−)

Table 10.1: Schematic form of supersymmetric spectra of (1, 0) and (2, 0) theories. The symbols gµν ,
Bµν , ψ, φ represent the metric, a tensor, a Majorana-Weyl spinor, a real scalar field respectively. The
prefactor counts the number of fields of a given species within each multiplet. The superscript ±
denotes (anti)self-duality for the tensors B or chirality for the fermions ψ.

More precisely, our focus will be on the gauge and gravitational Chern-Simons actions in five-

dimensional low energy effective supergravity theories with eight or sixteen supercharges. The latter

case is not directly related to our discussion of F-theory in six dimensions, but it is interesting since

it allows us to study the one-loop structure of the circle reduction of an Abelian (2,0) theory in six

dimensions. This constitutes a useful preliminary study for possible generalizations to non-Abelian

(2,0) theories, which will be addressed in chapter 11.

10.2.1 Field theory prediction

Let us apply the results of the one-loop computation of chapter 9 to the framework of (1, 0) and Abelian

(2, 0) six-dimensional theories compactified on a circle. The field content of their supersymmetry

multiplets is summarized in table 10.1 and features chiral fermions and (anti)self-dual tensors.

The requirement of anomaly cancellation imposes some constraints on the spectrum of these theo-

ries. For a review of anomaly cancellation in (1,0) theories, see section 7.3.2. The case of (2,0) theories

is simpler. We only have to consider purely gravitational anomalies and the anomaly polynomial takes

the form [199]

I
(2,0)
8 =

T − 21

(2π)4

[
− 1

192
trR4 +

1

768
(trR2)2

]
, (10.17)

where T is the number of (2,0) tensor multiplets. From (10.17) we see that as soon as the coefficient of

the irreducible term trR4 vanishes, the entire polynomial vanishes as well. In summary, the absence

of gravitational anomalies requires

(1, 0) : H − V = 273− 29T , (10.18)

(2, 0) : T = 21 , (10.19)

where T , V , H are the numbers of tensor multiplets, vector multiplets, and hypermultiplets, respec-

tively.

Upon compactification on a circle, the massive Kaluza-Klein modes of chiral fields are precisely

given by the three families of massive fields summarized in table 9.1. More precisely, the excited
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modes of a symplectic Majorana-Weyl spinor are Dirac spinors and the modes of a (anti)self-dual

tensor are massive complex self-dual tensors. We adopt conventions such that a positive chirality

in six-dimensions correspond to a positive coefficient c1/2, cB, or c3/2 in the mass term for excited

Kaluza-Klein modes.

Recall that the Ansatz for the metric reads

ds2
6 = ds2 + r2(dy −A0)2 , (10.20)

where r is the circle radius and A0 is the Kaluza-Klein vector. This choice of the sign of A0 in the

metric Ansatz implies that an excited mode with dependence einy on the internal coordinate couples

minimally to A0 with U(1) covariant derivative ∂µ+inA0
µ. This has to be contrasted with the minimal

coupling prescription ∂µ − iqAµ used in the loop computation of chapter 9. If we identify A0 and A,

we infer that the electric charge q of chapter 9 is given by q = −n for the n-th Kaluza-Klein mode of

any six-dimensional field.

In order to compute kAFF and kARR defined in (9.1) we just have to sum the contributions of table

9.2 according to the spectra listed in 10.1. For a (1, 0) theory, we have

k
(1,0)
AFF = − 1

48π2

∞∑
n=1

(−n)3

[
2(V −H − T ) + 2 · 5 + (1− T )(−4)

]
= − 9− T

24(2π)2
, (10.21)

k
(1,0)
ARR = − 1

384π2

∞∑
n=1

(−n)

[
2(V −H − T ) + 2 · (−19) + (1− T )(+8)

]
=

12− T
24(2π)2

,

where we made use of the anomaly cancellation condition (10.18) and we employed zeta-function

regularizations
∑
n3 → ζ(−3) = 1/120 and

∑
n → ζ(−1) = −1/12 for the divergent sum over

Kaluza-Klein levels. In a similar fashion, for a (2, 0) theory we find

k
(2,0)
AFF = − 1

48π2

∞∑
n=1

(−n)3

[
4(−T ) + 4 · 5 + (5− T )(−4)

]
= 0 , (10.22)

k
(2,0)
ARR = − 1

384π2

∞∑
n=1

(−n)

[
4(−T ) + 4 · (−19) + (5− T )(+8)

]
=

T + 3

96(2π)2
=

1

4(2π)2
,

where we recalled T = 21 from (10.19).

Let us point out that the connection between six-dimensional anomalies and five-dimensional loop

corrections to Chern-Simons coupling can also be seen by means of the following heuristic argument.

Recall that six-dimensional anomalies emerge in one-loop diagram with four external massless states.

Consider an anomalous four-graviton one-loop amplitude and choose the polarization tensors in the ex-

ternal legs in such a way to extract the component 〈ĝyy ĝµy ĝνy ĝρy〉, where ĝ denotes the six-dimensional

graviton and y is the compact coordinate. As can be seen from (10.3), this four-point function in six-

dimensions is related to r〈A0
µA

0
νA

0
ρ〉 in five dimensions, once the metric component ĝyy is replaced by

its background value r. In six dimensions, the anomalous part of the amplitude is generated by mass-

less chiral fields running in the loop. In five dimensions, we are thus led to compute the contribution

to 〈A0
µA

0
νA

0
ρ〉 coming from all Kaluza-Klein modes of these chiral fields. Similar arguments apply to

other one-loop corrected Chern-Simons terms in five dimensions.
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10.2.2 F-theory check

We have discussed at length the F-theory realization of (1,0) supergravities in chapter 7. Let us now

briefly review how (2,0) theories can fit in a similar context. In the standard F-theory paradigm the

fibration is non-trivial and the base space is not Ricci-flat. It is of course possible, however, to follow

the same chain of dualities from M-theory to F-theory on a six-dimensional internal space that is a

direct product of a torus with a Calabi-Yau two-fold, i.e. a K3 surface. The resulting Type IIB setup

is precisely a (2,0) theory with 21 tensor multiplets, in accord with the anomaly cancellation condition

(10.19). When this theory is reduced on a circle, it should reproduce the five-dimensional effective

action of M-theory on K3× T 2.

Since we are focussing on Chern-Simons coupling, we only need to consider the topological part

of the eleven-dimensional M-theory effective action. This contains both the familiar two-derivative

Chern-Simons term in (3.34) and the higher-derivative correction considered in section 7.133. Both

terms are conveniently written as

S
(11)
top =

∫ [
− 1

6

1

(2π)2
C3G4G4 −

1

192

1

(2π)4
C3

(
trR4 − 1

4
(trR2)2

)]
, (10.23)

where we have suppressed wedge products for brevity. This form of the action is written in a slightly

unusual normalization that is best suited to investigate the integrality properties of Chern-Simons

couplings. In particular the M-theory three-form C3 has mass dimension three. Furthermore, this form

of the action is consistent with the fact that
∫
G4/(2π) is half-integrally quantized and that exp iS gives

a well-defined functional in the path integral, once all terms of the effective action and the gravitino

functional measure are taken into account [62]. This is crucial to match one-loop computations in

field-theory, since the standard Feynman rules are derived by an expansion of exp iSint, fixing the

absolute normalization of one-loop induced Chern-Simons terms.

Let X6 denote the internal space, for us Y3 or K3× T 2. The M-theory three-form is expanded on

a basis {ωA} of harmonic two-forms on X6 as

C3 ⊃ AA ∧ ωA , (10.24)

where AA are five-dimensional vectors. They have mass dimension one and their field strengths

FA = dAA are such that
∫
FA/(2π) is integrally quantized. Dimensional reduction of the action

(10.23) yields the five-dimensional topological terms [204, 207, 234]

SCS =
1

(2π)2

∫ [
− 1

6
KABCAAFBFC +

1

96
cAA

AtrR2

]
, (10.25)

where we have introduced

KABC =

∫
X6

ωA ∧ ωB ∧ ωC , cA =

∫
X6

ωA ∧ c2(X6) . (10.26)

Recall from section 7.5.2 that, if X6 = Y3, it is essential to perform the shift (7.129), so that the

Kaluza-Klein vector on the F-theory side is matched with the linear combination of vectors AA along
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the direction of the two-form

ω0 = PD([B2]) +
1

2
c1(B2) , (10.27)

where PD([B2]) is the Poincaré dual two form of the divisor class of the base B2 of the elliptic fibration,

and c1(B) is its first Chern class.2 The geometry of elliptically fibered Calabi-Yau threefolds ensures

K000 =
1

4

∫
B2

c1(B2)2 =
1

4
(10− h1,1(B2)) ,

c0 =

∫
B2

[
c2(B2) + 5c1(B2)2

]
= 4(13− h1,1(B2)) . (10.28)

This in turn implies that the Chern-Simons sector of M-theory on Y3 contains the terms

SCS ⊃ 1

(2π)2

∫ [
− 10− h1,1(B2)

24
A0F 0F 0 +

13− h1,1(B2)

24
A0trR2

]
. (10.29)

We just have to recall that the number of tensor multiplets of the (1, 0) theory is related to the

geometry of Y3 by

h1,1(B2) = T + 1 , (10.30)

see section 7.6.1, to recognize a perfect match with the field theory prediction of the previous section.

In the case of compactification of M-theory on X6 = K3×T 2, the Kaluza-Klein vector is identified

with the vector along the only two-form on the torus, which we denote ω0. As a result,

K000 = 0 , c0 =

∫
K3×T 2

ω0 × c2(K3× T 2) =

∫
K3

c2(K3) = 24 . (10.31)

This implies that the gauge Chern-Simons term is absent, while the gravitational Chern-Simons is

given by

SCS ⊃ 1

(2π)2

∫
1

4
A0trR2 , (10.32)

in agreement with the field theory computation.

So far we have focused on Chern-Simons coupling involving only the Kaluza-Klein vectors. There

are additional terms in the reduction of M-theory on Y3 that are interpreted as one-loop effects on the

F-theory side. They are of the form

k0ij

∫
A0F iF j + kijk

∫
AiF jF k , (10.33)

where Ai are the five-dimensional vectors that are lifted to six-dimensional vectors. The index i labels

the Cartan generators of the gauge group, since the duality between M-theory and F-theory only works

in the Coulomb phase. The coefficients k0ij , kijk can be computed geometrically and are related to

the charged spectrum of the theory, see for instance [211, 137].

To compute the coefficient of these couplings in field theory we need to consider diagrams where

all massive fields charged under A0 and/or Ai run. Those are the Kaluza-Klein zeromodes and excited

modes of the fields that acquire a mass after the gauge group is broken by giving a non-vanishing VEV

2Strictly speaking one has to pull back c1(B) to Y3, but we will suppress the pullback in the following.
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to the scalars in the five-dimensional vector multiplets. We do not perform here a similar analysis, but

the techniques developed so far can be applied to attack this problem. It has indeed been shown in

[211] that the Chern-Simons coefficient kijk receives one-loop corrections by massive gauge degrees of

freedom. Furthermore, [187] contains an analysis of Chern-Simons couplings k0ij in the more general

context of a possibly rational—as opposed to holomorphic—zero-section of the elliptically fibered

Calabi-Yau threefold.

Let us close this section with a comment about a special case that recently attracted interest [130].

Namely, let us consider an M-theory compactification with χ(Y3) = 0. When Y3 is elliptically fibered

one can lift the theory to a six-dimensional (1, 0) model. For simplicity, we assume that Y3 has no gauge

group singularities and hence the (1, 0) theory has no vector multiplets, V = 0. In this case the Euler

number is simply given by χ = −60
∫
B2
c1(B)2 = −60(9 − T ) and we see that χ = 0 implies T = 9.

The anomaly cancellation condition (10.18) requires then H = 12. Can this model be interpreted as

a spontaneously broken (2, 0) theory? Suppose we are given a possibly non-Abelian (2, 0) theory with

21 tensor multiplets, in accord with absence of gravitational anomalies. They correspond to 21 tensor

multiplets and 21 hypermultiplets in (1, 0) language, as can be seen from table 10.1. Let us further

imagine that the original theory undergoes a spontaneous supersymmetry breaking in such a way that

only T tensor multiplets out of 21 and and only H hypermultiplets out of 21 remain massless. In order

for the resulting (1, 0) theory to be free of gravitational anomalies, we must have H = 273 − 29T .

The requirement 0 ≤ H ≤ 21 together with the integrality of T determines T = 9, H = 12 as the

only possible breaking pattern. This agrees with the geometric setup with χ = 0. Furthermore, for

T = 9 we have k
(1,0)
AFF = 0, see (10.21), and the term A0 ∧ F 0 ∧ F 0, which is incompatible with 16

supersymmetries, does not enter the circle reduction of the (1, 0) theory. These might be considered

as hints in favor of the spontaneous symmetry breaking scenario. If such breaking is actually possible,

and how it may be realized, remains to be investigated.

10.3 Exploring the landscape of five-dimensional supergravities

As another application of the results of chapter 9 we would like to address the following question.

Suppose we are given a five-dimensional supergravity theory, in terms of its massless spectrum and

couplings in the effective action. Is it possible to determine if this theory can be understood as the

effective low-energy description of an anomaly-free six-dimensional supergravity theory on a circle?

This investigation can be motivated by the following considerations. On general grounds, it is an

interesting problem to study the constraints that gravity places on low-energy quantum field theories.

For instance, even-dimensional chiral theories are subject to the requirement of cancellation of gravi-

tational anomalies. In the spirit of [18, 258, 178, 170], one can maybe look for analogue constraints in

odd-dimensional theories by exploring classes of models that cannot be seen as a circle reduction of

an anomaly-free even-dimensional theory. More specifically, five-dimensional quantum field theories

with coupling to gravity and their relations to six-dimensional theories play an important role in many

proposals for the low-energy description of the world-volume theory of a stack of M5-branes. This
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topic is the subject of chapter 11.

It would be desirable to classify those five-dimensional theories which are consistent at the quantum

level. This is a formidable task and therefore it is advantageous to first try to understand a subset

of these theories, namely those that come from a circle reduction from six dimensions (see figure 1).

Of course, not all consistent five-dimensional theories arise in such a circle compactification. Well-

known examples include Calabi-Yau threefold reductions of M-theory that in general do not admit a

six-dimensional lift if the threefold is not elliptically fibered, see [204, 176] and chapter 7.

apparently consistent 
five-dimensional theories

five-dimensional theories
arising from six dimensions

five-dimensional theories arising
from known anomaly-free 
six-dimensional theories

Figure 10.1: Five dimensional effective low-energy theories coupled to gravity which arise through
compactification of anomaly-free six-dimensional theories form a subset of all apparently quantum-
consistent theories.

Deciding upon this question is generically a highly non-trivial task, for various reasons. On the one

hand, in order to extract the low-energy effective action of a six-dimensional theory on a circle one needs

not only to perform a classical dimensional reduction, but also to integrate out massive excitations

such as Kaluza-Klein modes. Five-dimensional quantum effects due to these massive excitations can

make a direct comparison to a possible higher-dimensional action prohibitively difficult. On the other

hand, the structure of six-dimensional supergravities is quite rich and is not completely under control.

The study of non-Abelian interactions among self-dual tensors, in particular, remains an open problem

in the context of (2, 0) theories and has been investigated in (1, 0) models in the regime where gravity

is decoupled [259].

Even if we do not have control over the full class of six-dimensional supergravities, we can still

formulate non-trivial conditions for a given five-dimensional theory to be lifted to a specific subset of

six-dimensional models. Moreover, there are objects at the quantum level of the theory that are robust

under dimensional reduction. Anomalies, and in particular gravitational ones, are examples of such

objects, since they are mostly sensitive to more general features of the theory rather than intricate

details of the action [199]. In this note, we discuss the possibility to study them using classical and

one-loop gauge and gravitational Chern-Simons terms in the theory obtained by compactification on

a circle. Reversing the logic, we try to argue that a careful study of Chern-Simons terms in a generic

five-dimensional gauge theory allows to obtain non-trivial information about the spectrum (and thus

also about the quantum-consistency) of a potential six-dimensional parent theory.
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The two setups that we investigate admit eight and sixteen supercharges, respectively. Firstly, we

suppose we are given a five-dimensional Abelian action with eight supercharges and we explore the

possibility to lift it to a (1, 0) theory with simple gauge group. We find that non-trivial necessary

conditions can be formulated in terms of the Chern-Simons sector only. Secondly, we take an Abelian

theory with sixteen supercharges and we search for a possible lift to an Abelian (2, 0) theory. As

before, a necessary condition on the Chern-Simons couplings, accompanied by suitable kinetic terms

to fix the normalization of the fields, is found.

10.4 Six-dimensional origin of five-dimensional theories

In this section we provide two examples to show that it is possible to quantitatively address the

problem of possible six-dimensional origins of a given five-dimensional theory. In particular, one can

find explicit constraints on the spectrum and supersymmetry content of the parent six-dimensional

theory in terms of the five-dimensional Chern-Simons couplings. Of course our findings based on

Chern-Simons terms alone cannot be viewed as a classification of all five-dimensional theories that

can arise in a circle compactification in the spirit of figure 10.1. We believe, however, that the content

of this section can be seen as a first step towards a systematic analysis of consistency conditions for

five-dimensional quantum field theories in the presence of gravity.

10.4.1 N = 2 supersymmetric theories

Let us remind the reader that in our notation N = 2 supersymmetry corresponds to minimal super-

symmetry in five dimensions, i.e. eight real supercharges. We consider minimal supergravity coupled

to n Abelian vector multiplets and a number of massless neutral hypermultiplets. The supersymmetric

action of such a theory contains the topological couplings

S
(5)
CS =

1

(2π)2

∫ [
kABC A

A ∧ FB ∧ FC + κAA
A ∧ tr (R∧R)

]
, (10.34)

where AA, A = 1, . . . , n + 1 denotes collectively the graviphoton and the vectors from the vector

multiplets, FA = dAA are the corresponding Abelian field strengths, and R is the curvature two-form.

Supersymmetrizations of the second term are discussed in [202, 260].

If an N = 2 theory can be seen as the circle reduction of a six-dimensional theory, it has to come

from a (1, 0) theory. On the one hand, if the six-dimensional theory had more supersymmetry, we

would find more than eight supercharges in five dimensions.3 On the other hand, it seems impossible

to lift the five-dimensional gravitino of an N = 2 theory to a consistent, interacting six-dimensional

theory with no supersymmetry. Note that a five-dimensional theory with massless U(1) gauge fields

can arise as low energy effective action of a possibly non-Abelian six-dimensional theory on a circle.

This is what happens when the gauge group is broken to the five-dimensional Coulomb branch by

3Here we consider only simple compactifications on a circle. In particular, we do not discuss any compactification
mechanism which (partially) breaks supersymmetry.
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giving a VEV to the scalars in the five-dimensional vector multiplets. For simplicity, in the following

we study the possibility to lift the five-dimensional theory to a non-Abelian (1, 0) with simple gauge

group G. The generalization to semi-simple G is straightforward. The inclusion of U(1) factors is also

possible, but would make the analysis of the six-dimensional action and anomalies more involved.

The first step in the search for a parent six-dimensional theory is to determine if the five-dimensional

spectrum can be lifted to six dimensions. Five-dimensional hypermultiplets directly lift to six-

dimensional hypermultiplets, which are allowed in the (1, 0) theory. To understand the possible lift of

the vector sector to six dimensions one has to divide the n+ 1 five-dimensional vector fields AB into

three sets:

• the vector A0 that lifts to the Kaluza-Klein vector in the reduction of the six-dimensional metric

on a circle;

• the vectors Aα, α = 1, . . . , T + 1 that lift to components of T six-dimensional tensor multiplets

and a single tensor in the supergravity multiplet;

• the vectors Ai, i = 1, . . . , rank(G) that lift to Cartan elements of six-dimensional gauge group G.

Furthermore, to allow for a consistent six-dimensional parent theory, the constants kABC and κA in

(10.34) have to split in such a way to accommodate the following Chern-Simons terms for the above

mentioned classes of vector fields

S
(5)
CS =

1

(2π)2

∫ [
− 1

2
ΩαβA

0FαF β +
1

2
bαΩαβCij A

βF iF j − 1

8
aαΩαβA

βtrR2

]
(10.35)

+
1

(2π)2

∫ [
k0A

0F 0F 0 + kij A
0F iF j + kijk A

iF jF k + κ0A
0trR2

]
,

where we suppressed wedge products for brevity. As discussed in chapter 7 and for example in [170],

only the Chern-Simons terms in the first line can be lifted to a classical six-dimensional action, while the

terms in the second line cannot be obtained by classical reduction on a circle. We know from sections

10.2.1 and 10.2.2, however, that they do come from a six-dimensional action as soon as quantum effects

are included in the dimensional reduction. It is precisely the interplay between these two subsets of

Chern-Simons terms that allows us to formulate necessary conditions for the five-dimensional theory

to come from an anomaly-free (1, 0) theory.

It is useful to recall from section 7.3 that the constant symmetric matrix Ωαβ has signature (1, T )

and is identified with the SO(1, T ) invariant metric associated to the moduli space SO(1, T )/SO(T )

of the scalars in the tensor multiplets in six-dimensions. The matrix Cij is identified with the Cartan

matrix of the gauge group G. The constant vectors bα and aα are the coefficients of the Green-Schwarz

terms that cancel factorizable anomalies, see section 7.3.2. Note also that the vector bα determines

the kinetic term of six-dimensional vectors, as can be seen from (7.41).

As mentioned above, the requirement of anomaly cancellation in the parent (1, 0) theory allows

us to formulate necessary conditions on the Chern-Simons terms for the lift to six-dimensions to be
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possible. In the following, we focus on six-dimensional gravitational anomalies, since they do not

depend on many details of the charged hypermultiplet spectrum in six dimensions. The conditions for

the absence of purely gravitational a anomalies in (1,0) theories have been give in section 7.3.2, but

we record them here again for convenience,

H − V = 273− 29T , aαΩαβa
β = 9− T , (10.36)

where as usual T , V , H are the number of six-dimensional tensor multiplets, vector multiplets, and

hypermultiplets, respectively. To check the first condition in (10.36) directly we would need to know

the number of hypermultiplets H in six dimensions. This number, however, is in general different from

the number of neutral massless hypermultiplets in five dimensions, since some charged hypermultiplets

become massive after breaking of the gauge group, and therefore do not appear in the five-dimensional

effective action.

This problem can be circumvented by studying the Chern-Simons terms in (10.35). In particular,

the couplings k0 and κ0 encode information about the gravitational anomaly cancellation conditions

(10.36). To see this, let us first recall from section 10.2.1 that k0 and κ0 can be computed explicitly

by summing the contributions of all Kaluza-Klein modes of chiral fields in six-dimensions, with result

k0 =
1

24
(T − 9) , κ0 =

1

24
(12− T ) . (10.37)

These expressions hold under the assumption that the first condition in (10.36) is satisfied, but they

only involve the number T of tensor multiplets of the theory, which can be read off from range of

the α indices in (10.35). Combining (10.37) with the second condition in (10.36) we get the following

necessary conditions for the Chern-Simons terms (10.35) to be lifted to six-dimensional theory free of

gravitational anomalies:

24 k0 = −aαΩαβa
β = T − 9 , 24κ0 = aαΩαβa

β + 3 = 12− T . (10.38)

These equations encode three independent requirements and cannot be trivially satisfied by rescaling

A0 and Aα.

One can formulate similar tests on the Chern-Simons coefficients in (10.35) to check if the candi-

date parent theory is free of purely gauge anomalies. Such conditions involve a comparison between

bαΩαβb
β and the coupling kijk, which contains crucial information about the six-dimensional charged

hypermultiplet spectrum [211, 137]. While it was only shown for specific examples [137], and not

yet in general, that the knowledge of the Chern-Simons coefficients allows to check cancellation of

six-dimensional gauge anomalies, we believe that such a statement should hold in general. In a similar

way, we suspect that conditions involving aαΩαβb
β and the Chern-Simons coupling kij can be used to

test if the six-dimensional theory is free of mixed gauge-gravitational anomalies.

10.4.2 N = 4 supersymmetric theories

We can apply the strategy outlined so far also to five-dimensional theories with sixteen supercharges,

denoted N = 4. We restrict to the theory of n Abelian vector multiplets coupled to supergravity.
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Recall that the N = 4 supergravity multiplet contains six vectors. Five of them form the 5 repre-

sentation of the SO(5)R R-symmetry group, while the sixth one is a singlet.4 The singlet will be

denoted A0, and the remaining ones together with the n gauge fields from the vector multiplets are

denoted AA, A = 1, . . . , n+5. The collective index A is a fundamental SO(5, n) index. The associated

constant metric is denoted ηAB. With this notation the topological sector of the action reads

S
(5)
CS =

1

(2π)2

∫ [
− 1

2
ηAB A

0 ∧ FB ∧ FC + κ0A
0 ∧ tr (R ∧R)

]
. (10.39)

To the best of our knowledge it has not been shown that the gravitational Chern-Simons coupling can

be supersymmetrized. We will see, however, that in some circumstances it can be generated at the

quantum level from a six-dimensional theory with sixteen supercharges on a circle. We thus expect it

to be an admissible coupling in the five-dimensional N = 4 action.

In contrast to the N = 2 case, the Chern-Simons sector of an N = 4 theory is too simple to provide

any test that cannot be trivially satisfied by means of rescaling of A0, AA. Therefore, we also need

to record some kinetic terms in order to fix this ambiguity. This requires some additional notation.

Each vector multiplet contributes five scalars to the spectrum. These 5n scalars parametrize the coset

space SO(5, n)/SO(5)× SO(n). This is conveniently described in terms of matrices LA
i, LA

I , where

i, I are fundamental indices of SO(5), SO(n) respectively. These matrices satisfy

ηAB = δijLA
iLB

j − δIJLAILBJ , GAB = δijLA
iLB

j + δIJLA
ILB

J , (10.40)

where GAB is a non-constant, positive-definite matrix that enters the gauge coupling function. The

needed kinetic terms are

S
(5)
kin =

1

(2π)2

∫ [
R ∗ 1− 1

2
dσ ∧ ∗dσ − 1

2
e2σ/

√
6GABF

A ∧ ∗FB − 1

2
e−4σ/

√
6F 0 ∧ ∗F 0

]
, (10.41)

in which σ is the scalar in the gravity multiplet. The sum S
(5)
CS + S

(5)
kin can be supersymmetrized since

it coincides with part of the standard form of the five-dimensional N = 4 action as found e.g. in [261],

up to field redefinitions.5

The five-dimensional N = 4 theory under examination can come from circle reduction of a (2, 0) or

(1, 1) theory. Since (1, 1) theories are non-chiral, we cannot use anomalies as a check of the quantum

consistency of the candidate parent theory. For this reason, in the rest of this section we formulate

necessary conditions for the lift of the five-dimensional theory to a (2, 0) theory, and we do not give

conditions for the lift to a (1, 1) theory. Furthermore, since a six-dimensional action for non-Abelian

(2, 0) is not known, we explore the possibility to lift the five-dimensional theory to an Abelian (2, 0)

theory.

Recall that in such a theory the only matter multiplets are tensor multiplets. As we have seen

in section 10.2.1, cancellation of gravitational anomalies requires a number T = 21 of them. This

4This structure is fixed by identifying the five-dimensional gravity multiplet.
5More precisely, we have performed an overall rescaling of the action, together with the redefinitions σthere = σhere/

√
2,

A0
there = A0

here/
√

2, AAthere = AAhere/
√

2. Our form of the action is best suited for comparison between tree-level and one-

loop terms. It is such that the action and the vectors both have period 2π. It has been inferred by deriving S
(5)
CS from

M-theory on K3× T 2 making use of the effective action discussed in [62].
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implies that the five-dimensional theory must have exactly 26 vectors in addition to the singlet A0.

This provides a first elementary check on (10.39). A far less trivial check comes from the gravitational

Chern-Simons coupling κ0. It cannot be generated by reduction of the classical Abelian (2, 0) action

on a circle, and it is rather generated by one-loop diagrams in which massive Kaluza-Klein modes run

in the loop. We can read off the value of this coupling from the results of section 10.2.1,

κ0 =
1

4
. (10.42)

If in S
(5)
CS +S

(5)
kin a different value of κ0 appears, the theory cannot be lifted to an Abelian (2, 0) theory.



CHAPTER 11

Non-Abelian tensor towers and (2,0) theories

In this chapter we present a proposal for a five-dimensional action designed to capture some features

of interacting six-dimensional (2,0) theories. A five-dimensional approach allows us to elude some

of the immediate difficulties in formulating a Lagrangian for self-dual tensors. It is inspired by the

M-theory/F-theory duality for F-theory vacua in six dimensions, see section 5.3, but it can be also

related to the proposal of [33, 34] about (2,0) theories and five-dimensional maximally supersymmetric

Yang-Mills theory.

11.1 The search for a five-dimensional Lagrangian description

As we have seen in chapter 6, among the most interesting implications of M-theory and string theory

is the existence of interacting superconformal quantum field theories in six dimensions with (2,0)

supersymmetry. They are labelled by ADE Dynkin diagrams and reduce to maximally supersymmetric

Yang-Mills in five dimensions. Therefore, they are expected to possess some sort of gauge symmetry,

even though they do not have any massless vector in their spectrum. Crucially, they have instead

massless antiself-dual tensors.

There are some immediate complications that have to be addressed in the search for a Lagrangian

description of (2, 0) theories. Two separate problems are particularly prominent. Firstly, the naive

Lorentz covariant kinetic term for tensors vanishes identically upon imposing the (anti)self-duality

constraint. Different solutions to this problem have been proposed, based on breaking of manifest

Lorentz invariance, introduction of auxiliary fields, or a holographic approach [251, 247, 262]. Secondly,

the ‘gauge group’ structure of the theory is particularly elusive, as the absence of vectors prevents

any naive attempt to write down non-Abelian gauge covariant derivatives. Indeed, (2,0) theories are

believed to be connected to the formalism of gerbes, rather than vector bundles. Recent discussions

225
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free (2,0) theory interacting (2,0) theory

N = 4 Abelian Yang-Mills
coupled to KK towers

of massive tensors

N = 2 non-Abelian Yang-Mills
coupled to KK towers

of massive tensors

compactify on S1

keeping all KK modes

deformation

?

Figure 11.1: Schematic representation of the five-dimensional approach to interacting (2,0) theories
followed in this chapter. A free (2,0) theory can be described by a pseudoaction which can be com-
pactified on a circle keeping all Kaluza-Klein modes. This has been done for (anti)self-dual tensors in
section 10.1. The resulting five-dimensional theory is maximally supersymmetric Abelian Yang-Mills
theory coupled to infinite towers of matter fields, including massive tensors. In this chapter we study
a deformation of this theory that preserves all degrees of freedom and switches on a non-Abelian
gauging. This deformed theory has manifest N = 2 supersymmetry. It can be the starting point for
an indirect exploration of interacting (2,0) theories.

about the various complications in formulating (2, 0) theories can be found in [263, 35, 264, 265, 37,

266, 267].

In this chapter we approach (2, 0) theories by studying a five-dimensional action for an infinite

tower of modes that can be interpreted as Kaluza-Klein states. We propose that using this perspective

one can address both the self-duality as well as the non-Abelian gaugings at the level of an action.

Our program is summarized in figure 11.1. The dynamics of an Abelian (2,0) theory is trivial and

can be captured by a simple quadratic pseudoaction. As we have seen in section 10.1 this can be

reduced on a circle keeping all excited Kaluza-Klein modes so that the resulting five-dimensional

theory has an infinite number of massive tensor fields, together with massless vectors. The latter are

crucial, because they allow us to study deformations of the five-dimensional theory that include some

non-Abelian gauge group. The resulting deformed action is hopefully able to capture a subset of the

couplings of the sought-for (2,0) theory, or some robust feature thereof.

More precisely, we will write a five-dimensional superconformal action with N = 2 supersymmetry,

i.e. with eight supercharges, whose spectrum contains all the expected degrees of freedom of the six-

dimensional (2, 0) tensor multiplets compactified on a circle. The theory also features an additional

N = 2 vector multiplet containing the circle radius and the Kaluza-Klein vector of the six-dimensional

metric. The total gauge group is of the form G×U(1), where G is a simple simply-laced non-Abelian

group that is interpreted as the ‘gauge group’ of the (2,0) theory, while the U(1) factor is associated

to the Kaluza-Klein vector. The gauge bosons of G and their supersymmetry partners are contained

in N = 2 vector multiplets and hypermultiplets that are neutral under the Kaluza-Klein U(1), and

are thus interpreted as zeromodes. The remaining infinite collection of N = 2 tensor multiplets and
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hypermultiplets are labelled by an integer that also corresponds to their charge under the Kaluza-

Klein U(1). They are therefore regarded as excited modes. Our action fits in the general N = 2

superconformal framework of [268, 269] that extends and applies [270, 201, 271, 200, 257].1 It is

crucial, however, that all couplings in our theory are only given in terms of group theoretical constants

associated to G and the Kaluza-Klein levels.

The five-dimensional superconformal invariance of the N = 2 action is implemented in a way

compatible with a subgroup of the six-dimensional superconformal group. This implies that the

additional vector multiplet, containing the circle radius and the Kaluza-Klein vector, has to transform

in accord with the six-dimensional line element. However, in order to more directly interpret the

N = 2 superconformal action as a Kaluza-Klein theory, one has to fix superconformal invariance.

We consider a restriction of the action that preserves N = 2 Poincaré supersymmetry by giving a

vacuum expectation value to the entire multiplet containing the circle radius and the Kaluza-Klein

vector. After this gauge-fixing the infinite tower of tensor multiplets and hypermultiplets will gain

a mass proportional to the Kaluza-Klein scale set by the circle radius. The non-Abelian gaugings

and the realization of only half the maximal supersymmetry, however, prevent us from lifting the

five-dimensional theory directly to six dimensions.

In two special cases, however, our action has a clear six-dimensional interpretation, thus furnishing

a first simple sanity check of our formalism. Firstly, considering zero modes alone the restricted N = 2

action reduces to only maximally supersymmetric Yang-Mills theory with gauge group G. The zero

mode sector is automatically invariant under sixteen supercharges and is thus N = 4 supersymmetric.

Secondly, if non-Abelian gaugings are switched off the five-dimensional action including all excited

modes is again automatically invariant under N = 4 supersymmetry and coincides with the circle

compactification of the (2,0) pseudoaction for Abelian tensor multiplets.

The connection between six-dimensional anomalies and five-dimensional one-loop Chern-Simons

terms encountered in sections 10.2 and 10.4 hints to the fact that our action can be used to probe

anomalies of (2,0) theories. For instance, one can couple the five-dimensional theory to a background

vector gauging R-symmetry and use the quantum-corrected Chern-Simons terms for this vector as

window on the R-symmetry anomalies of the (2,0) theories. This is related to their conformal anomaly,

which has received a lot of attention recently [273, 153, 158, 274, 275, 276]. We refer the reader to [277]

for a first step in this application of the action proposed in this chapter, as well as for a discussion of

harmonic superspace inspired techniques to achieve R-symmetry and supersymmetry enhancement.

11.2 Supersymmetric spectrum and non-Abelian gauging

This section is devoted to the discussion of the supersymmetric spectrum of the five-dimensional

theories of non-Abelian tensors which will be constructed in the following sections. Our starting point

consists of a number of tensor multiplets of six-dimensional rigid (2, 0) superconformal symmetry. This

spectrum is dimensionally reduced on a circle and the resulting N = 4 supermultiplets are described.

1Recent progress on the construction of (1, 0) superconformal theories in six dimensions can be found in [259, 272].
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Moreover, a mechanism for a non-Abelian gauging of tensors is implemented. The decomposition of

the N = 4 spectrum into N = 2 multiplets and the discussion of conformal invariance is relegated to

section 11.3.

11.2.1 (2,0) tensor multiplets

Let T I be a collection of (2, 0) tensor multiplets in six dimensions. The index I plays here the role

of a degeneracy index, but will be identified with an adjoint index of a non-Abelian gauge group in

subsection 11.2.4. Boldface symbols will be used throughout to denote six-dimensional quantities.

The field content of T I is given by

T I = (BI
µν ,σ

I ij ,λI i) , (11.1)

where BI
µν is a tensor (two-form), σI ij are scalars, λI i are spin-1/2 fermions. In our conventions, the

supersymmetry parameter is a left-handed Weyl spinor, the tensors have negative chirality, i.e. their

field strength HI = dBI obey the antiself-duality constraint ∗HI = −HI , and the fermions λI i are

right-handed Weyl spinors. Indices i, j = 1, . . . 4 are indices of the 4 representation of USp(4)R, the

R-symmetry group of the (2, 0) supersymmetry algebra. The tensors BI
µν are singlets of USp(4)R, the

fermions λI i transform in the 4 representation, while the scalars σI ij belong to the 5 representation,

i.e. they are antisymmetric and traceless

σI ij = −σI ji , Ωijσ
I ij = 0 . (11.2)

In the last equation Ωij is the primitive antisymmetric invariant of USp(4)R. We refer the reader to

section A.2 in appendix A for our conventions. Tensor multiplets are pseudoreal, i.e. they satisfy

(T I)∗ = T I :


B̄I

µν ≡ (BI
µν)∗ = BI

µν ,

σ̄Iij ≡ (σI ij)∗ = ΩikΩjlσ
I kl ,

λ̄I i ≡ (λIi )
†γ0 = Ωij(λIj )

TC .

(11.3)

The last line encodes the usual symplectic-Majorana condition. The quantities γ0,C are the timelike

gamma matrix and the charge conjugation matrix in six dimensions, respectively.

The (2, 0) Poincaré superalgebra can be enlarged to the superconformal algebra OSp(8∗|4) [278, 30].

This requires the introduction of new generators for dilatations, conformal boosts, special supersym-

metry transformations, and R-symmetry transformations. The action of these generators on physical

fields can be found in [279, 280]. A more detailed discussion the rigid superconformal theory will be

given in sections 11.3 and 11.4.1 in the context of N = 2 supersymmetry in five dimensions. In this

section we just focus on the Weyl weights, which are the charges under dilatations. For the fields in

the tensor multiplets T I they are collected in Table 11.1.

Let us now discuss the Poincaré supersymmetry transformations and the pseudoaction of a collec-
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multiplet fields type comments USp(4)R Weyl weight

BI
µν antiself-dual tensor pseudoreal 1 0

T I

massless tensor
multiplet

σI ij scalar pseudoreal 5 2

λI i right-handed spinor pseudoreal 4 5/2

Table 11.1: Field content of an on-shell tensor multiplet T of rigid (2, 0) superconformal symmetry
in six dimensions. The precise formulation of the reality properties of the fields is found in (11.3).

tion of non-interacting tensor multiplets T I . The (2, 0) supersymmetry transformations read [280]2

δ(ε)BI
µν = −ε̄iγµνλ

I
i ,

δ(ε)λI i = 1
6H

I
µνργ

µνρεi + 2γµ∂µσ
I ijεj ,

δ(ε)σI ij = −4
(
ε̄[iλI j] + 1

4Ωij ε̄kλIk

)
. (11.4)

Recall that the tensor field strength is defined as HI
µνρ = 3∂[µB

I
νρ]. Note that contraction with

γµνρεi automatically selects the antiself-dual part of the field strength, because εi is a left-handed

Weyl spinor in our conventions. The supersymmetry algebra closes only up to the free-field equations

of motion for BI
µν ,λ

I i,σI ij . They can be derived from the following supersymmetric pseudoaction:

S(6) =

∫
d6x dIJ

{
− 1

12 H
I µνρHJ

µνρ − 1
2 ∂

µσI ij∂µσ
J
ij − 1

4 λ̄
I iγµ∂µλ

J
i

}
. (11.5)

We stress that this is not a proper action, since the self-duality constraint on the field strengths of

tensors cannot be derived from it, and has to be imposed at the level of the equations of motion.

In order to write down kinetic terms, the symmetric, positive-definite, constant matrix dIJ has been

introduced.

Finding a non-Abelian deformation of the six-dimensional pseudoaction (11.5) is a formidable task.

In particular, there are no vectors in the spectrum which could be used as gauge connections. Indeed,

(2, 0) gauge theories of tensors are conjectured to be a non-Abelian generalization of gerbes, with

two-form connections [281, 282, 267] (see also [283]). As mentioned in section 11.1, our strategy is to

avoid these difficulties by performing the gauging in the reduced five-dimensional theory.

11.2.2 Compactification on a circle and five-dimensional N = 4 spectrum

We compactify one spatial dimension on a circle using the standard Kaluza-Klein Ansatz for the

metric,

gµνdx
µdxν = gµνdx

µdxν + r2(dy −A0
µdx

µ)2 . (11.6)

On the right hand side gµν is the five-dimensional metric, r is the radius of the circle, y ∼ y + 2π

is the compact coordinate along the circle, and A0
µ is the Kaluza-Klein vector with Abelian field

2 Compared to reference [280], the fields and the supersymmetry parameter have been rescaled by suitable factors to
achieve canonical normalization in the pseudoaction below.
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strength F 0 = dA0. In the rigid limit, gµν is the flat Minkowski metric, r is constant and A0 vanishes.

Later on, we will promote these quantities to fields, however, since they will play a crucial role in the

superconformal theories of section 11.4.

Upon compactification on a circle, the scalars σI ij and the spinors λI i give rise to a Kaluza-Klein

tower of five-dimensional scalars σI ijn and spinors λI in , where n ∈ Z. More precisely we write

σI ij = r−1
∑
n∈Z

einyσI ijn , λI i = r−1
∑
n∈Z

einyλI in ⊗ η , (11.7)

where η is a constant two-component spinor. Note that we have included a factor of r−1 in the

Kaluza-Klein Ansatz, in order to have five-dimensional fields σI ij , λI i of canonical dimensions 1 and

3/2, respectively. These fields are also the natural variables compatible with the lower-dimensional

supersymmetry. As far as the tensors are concerned, reduction of BI
µν furnishes both a tower of

tensors BI
nµν and of vectors AInµ in five dimensions, see section 10.1. We can write

BI =
∑
n∈Z

einy
[
BI
n +AIn ∧ (dy −A0)

]
. (11.8)

As a consequence of the six-dimensional antiself-duality constraint, BI
nµν and AInµ do not contain

independent degrees of freedom. On the one hand, the antiself-duality constraint can be used to

eliminate the tensor zero modes BI
0µν from the spectrum of the five-dimensional theory, keeping the

vector zero modes AIµ ≡ AI0µ only. On the other hand, excited modes BI
nµν , A

I
nµ are related by a

Stückelberg-like symmetry in the invariant derivative F In = dAIn+inBI
n, as in [247] and in section 10.1.

In this way BI
nµν can ‘eat’ AInµ and become a massive tensor field in five dimensions. In conclusion,

reduction of BI
µν yields a massless vector AIµ and a tower of complex massive tensors BI

nµν . A purely

bosonic Lagrangian for AIµ, B
I
nµν coupled to the Kaluza-Klein vector A0

µ has been given in (10.14) and

(10.15). For our present purposes it is conveniently written as

Ltens = dIJ

[
− 1

4r
−1F IµνF

J µν − 1
8ε
µνλρσA0

µ F
I
νλ F

J
ρσ

]
(11.9)

+
∞∑
n=1

dIJ

[
− 1

2r
−1F̄ InµνF

J µν
n + i

4nε
µνλρσF̄ Inµν DKK

λ F Jn ρσ

]
.

On the right hand side we have introduced the Abelian field strength F I = dAI and we have used the

Stückelberg gauge-fixed expression for the tensors

F Inµν = inBI
nµν . (11.10)

It will be convenient to use this rescaled F Inµν to represent the tensors in the remainder of this work.

Indices I, J are contracted with a constant metric dIJ . In section 11.2.4 it will be related to group-

theoretical invariants after the degeneracy index I is promoted to a gauge index. We have also made

use of the shorthand notation DKK
µ Xn = ∂µXn + inA0

µXn for generic Kaluza-Klein modes Xn. More

information about this covariant derivative will be given in section 11.2.3.

The main purpose of our work is to provide a supersymmetric non-Abelian generalization of the

action (11.9). As a first step, we discuss how five-dimensional fields are organized in N = 4 multiplets.



11.2. Supersymmetric spectrum and non-Abelian gauging 231

The R-symmetry group is again USp(4)R, and the transformation properties of the fields under R-

symmetry are unaffected by dimensional reduction. The vector zero mode AI combines with the zero

modes σI ij ≡ σI ij0 and λI i ≡ λI i0 into a single vector multiplet which we will denote as

VI = (AIµ, σ
I ij , λI i) . (11.11)

Each massive tensor F In combines with the corresponding excited modes σI ijn , λI in into a massive tensor

multiplet

T In = (F Inµν , σ
I ij
n , λI in ) , n ∈ Z∗ . (11.12)

As a consequence of the reality conditions (11.3) in six dimensions, the vector multiplet is pseudoreal,

(VI)∗ = VI :


ĀIµ ≡ (AIµ)∗ = AIµ ,

σ̄Iij ≡ (σI ij)∗ = ΩikΩjlσ
I kl

λ̄I i ≡ (λIi )
†γ0 = Ωij(λIj )

TC ,

(11.13)

and the tensor multiplets satisfy

(T In )∗ = T I−n :


F̄ Inµν ≡ (F Inµν)∗ = F I−nµν ,

σ̄In ij ≡ (σIijn )∗ = ΩikΩjlσ
Ikl
−n ,

λ̄I in ≡ (λIn i)
†γ0 = Ωij(λI−n j)

TC .

(11.14)

We can thus restrict our attention to positive n only, to avoid a redundant description of the same

degrees of freedom. Note that now γ0, C refer to spinors in five dimensions. Our conventions about

five-dimensional spinors are collected in an appendix in section A.2 along with some useful identities.

It is interesting to contrast the reality condition for spinors on zero modes and on excited modes:

the former is the usual symplectic-Majorana condition, but the latter relates two different symplectic

multiplets, λin and λi−n, and imposes no constraint on either of them separately. In this respect λin
is referred to as ‘complex.’ As discussed in section A.2, every complex symplectic spinor as λI in is

equivalent to a doublet of symplectic-Majorana spinors.

Since there is no known extension of the five-dimensional N = 4 Poincaré superalgebra to a super-

conformal algebra [278, 30], there is no well-defined notion of Weyl weight for N = 4 supermultiplets.

Six-dimensional superconformal (2, 0) symmetry, however, implies a (classical) scaling symmetry of

the five-dimensional N = 4 theory. From the metric Ansatz (11.6) we infer that the compactification

radius r has scaling weight −1, as will be further discussed in section 11.3.2. The scaling weights

of all fields in vector and tensor multiplets can be extracted by comparing the six-dimensional Weyl

weights listed in Table 11.1 with the Kaluza-Klein Ansätze (11.7), (11.8). They are found in Table

11.2, together with a summary of USp(4)R representations.

11.2.3 Mass scale and Kaluza-Klein gauging

Let us analyze in more detail the role played by the compactification radius r and the Kaluza-Klein

vector A0. The (2, 0) theory we started from has no mass scale. (Recall that we consider the deep IR
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multiplet fields type comments USp(4)R scaling weight

AIµ ≡ AI0µ vector pseudoreal 1 0
VI

massless vector
multiplet

σI ij ≡ σI ij0 scalar pseudoreal 5 1

λI i ≡ λI i0 spinor pseudoreal 4 3/2

F Inµν tensor complex 1 0
T In

massive tensor
multiplet

σI ijn scalar complex 5 1

λI in spinor complex 4 3/2

Table 11.2: Field content of N = 4 vector multiplets VI and tensor multiplets T In in five dimensions.
The precise formulation of the pseudoreality properties of the fields in VI is found in (11.13). The last
column collects the weights with respect to the five-dimensional scaling symmetry inherited from full
six-dimensional conformal invariance.

dynamics where gravity is decoupled.) In contrast, the dimensionally reduced theory has a mass scale

set by the inverse of the compactification radius r. In particular, the nth excited modes Fnµν , σ
ij
n , λin

have masses proportional to

mn = nr−1 , (11.15)

as can be seen by comparing the mass and kinetic terms for the respective fields as given below.

In order to infer this, we recall that Bnµν is related with Fnµν by the rescaling (11.10). It is worth

recalling the role of r in the conjectured equivalence between (2, 0) theories and five-dimensional super-

Yang-Mills theories [263, 33]. Even if a complete formulation of (2, 0) theories in the non-Abelian case

is not available, upon compactification on a circle they have to yield super-Yang-Mills in the massless

sector, corresponding to the multiplets VI in our notation. The Yang-Mills coupling constant in five

dimensions has mass dimension [g] = −1/2, and is identified with the compactification radius,

g2 = r , (11.16)

consistently with the fact that (2, 0) theories have no tunable parameter and compactification is the

only source of a mass scale.

The Kaluza-Klein field can be interpreted as a five-dimensional gauge connection which is needed

when a global U(1) symmetry is promoted to a local symmetry. This U(1) symmetry will be denoted

U(1)KK. Since it will play a key role in our formulation of the non-Abelian five-dimensional action,

let us discuss this symmetry in more detail and introduce some useful notation. U(1)KK originates

from constant shifts of the compact coordinate y′ = y − Λ. These can be undone by redefining the

nth Kaluza-Klein mode of a field X as X ′n = einΛXn, as can be seen from (11.8), Thus, the nth

Kaluza-Klein mode of any field has electric charge n under U(1)KK. The associated infinitesimal

transformation reads

δKK(λ)Xn = inλXn . (11.17)

If we demand

δKK(λ)A0
µ = −∂µλ , (11.18)
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we can gauge U(1)KK by introducing the covariant derivative

DKK
µ Xn = ∂µXn + inA0

µXn . (11.19)

From a six-dimensional perspective, A0 is identified with fluctuations of the off-diagonal components

of the metric, as can be seen from (11.6). Its gauge transformation (11.18) is just a special case of a

six-dimensional diffeomorphism along the circle, and the minimal coupling to Xn (11.19) is required

by six-dimensional covariance.

In section 11.4 it will prove useful to rewrite the U(1)KK gauging in terms of real fields. To this

end, we exploit the isomorphism U(1)KK
∼= SO(2)KK and for any complex field Xn of charge n we

introduce the SO(2)KK doublet Xα
n , α = 1, 2 via

Xn = 1√
2

(
Xα=1
n + iXα=2

n

)
. (11.20)

Since the action of U(1)KK on Xn is given by X ′n = einΛXn, the corresponding action of SO(2)KK on

Xα
n reads

X ′αn = Mα
βX

β
n , Mα

β =

(
cosnΛ − sinnΛ
sinnΛ cosnΛ

)
= δαγ

(
δγβ − nΛεγβ +O(Λ2)

)
. (11.21)

The Kaluza-Klein covariant derivative of the doublet Xα
n is therefore

DKK
µ Xα

n = ∂µX
α
n + nεβγδ

γαA0
µX

β
n , (11.22)

where we have chosen the representation

εαβ =

(
0 1
−1 0

)
(11.23)

for the antisymmetric invariant of SO(2)KK. In the last equations we have implicitly assumed that Xn

is a boson. As explained in the appendix section A.2, the same formalism can be applied to symplectic

spinors.

As a first application we present the reformulation of the bosonic action (11.9) with SO(2)KK

doublets instead of complex fields. Inserting (11.20) for the tensors F In into (11.9) we find

Ltens = dIJ

[
− 1

4r
−1F IµνF

J µν − 1
8ε
µνλρσA0

µ F
I
νλ F

J
ρσ

]
(11.24)

+
∞∑
n=1

dIJ

[
− 1

4r
−1δαβF

Iα
nµνF

Jβ µν
n − 1

8nεαβε
µνλρσF Iαnµν DKK

λ F Jβn ρσ

]
,

where we have used the identities (A.28). These terms together with the Kaluza-Klein gauging, and

the non-Abelian gaugings that we introduce next, turn out to be sufficient to determine the key

characteristic data of the complete supersymmetric theory discussed in section 11.4.

11.2.4 Non-Abelian gauge transformation and covariant derivative

In our discussion of the five-dimensional spectrum zero modes and excited modes are treated on a

very different footing, at the expense of manifest six-dimensional Lorentz symmetry. However, this
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enables us to implement a non-Abelian gauging, since we can use massless vectors in five dimensions

as gauge connections, and treat all other fields as charged matter. This implementation is the only

straightforward gauging compatible with the Kaluza-Klein charges under the assumption that the

gauge parameter is neutral under U(1)KK. The same strategy has been proposed in the literature

in a similar context, see e.g. [35, 267]. Identifying a possible six-dimensional interpretation for this

non-democratic gauging is a non-trivial task that will not be addressed in this work.

To define a non-Abelian gauging we first identify the degeneracy index I with the adjoint index

of some non-Abelian group G. More precisely, we let I enumerate the elements tI of a basis of anti-

Hermitian generators of the associated Lie algebra, so that I = 1, . . . |G| ≡ dim(G). We introduce the

structure constants and the Cartan-Killing metric by

[tI , tJ ] = −f K
IJ tK , dIJ = Tr(tItJ) . (11.25)

Both f K
IJ and dIJ are real. We assume dIJ is non-singular and positive definite, and we use it together

with its inverse dIJ to raise and lower adjoint indices. For example, fIJK = dILfJK
L. Furthermore,

we take fIJK to be completely antisymmetric. The groups under consideration are taken to be of

A-D-E type.

In order to realize a non-Abelian gauging of the spectrum (11.11), (11.12), we interpret AI as a

gauge connection, while all other fields will be seen as adjoint matter. More precisely, we postulate

the following infinitesimal transformation rules under the action of the non-Abelian gauge group G,

δG(α)AIµ = ∂µα
I + f I

JK AJµα
K , δG(α)XI = −f I

JK αJXK , (11.26)

where α is the scalar gauge parameter and XI is any field among σI ij , λI i, σI ijn , λI in , F
I
nµν (n > 0).

Recalling (11.19), we see that the full G × U(1)KK covariant derivative of any adjoint field XI
n with

Kaluza-Klein charge n is given by3

DµXI
n = ∂µX

I
n + inA0

µX
I
n + f I

JK AJµX
K
n . (11.27)

We note here that DµXI
n has the same charge under U(1)KK as XI

n itself. The non-Abelian field-

strength of AI reads

F Iµν = 2∂[µA
I
ν] + f I

JK AJµA
K
ν , (11.28)

transforms in the adjoint representation, satisfies the Bianchi identity D[µF
I
νρ] = 0, and enters the

commutator of covariant derivatives as specified by

[Dµ,Dν ]XI
n = inF 0

µνX
I
n + f I

JK F JµνX
K
n . (11.29)

The algebra of gauge transformations closes on all fields, according to

[δG(α1), δG(α2)] = δG(α3) , αI3 = f I
JK αJ1α

K
2 . (11.30)

3Since we work in flat space, we do not have to introduce a spacetime connection and covariant derivative.



11.3. Spectrum in terms of N = 2 superconformal multiplets 235

11.3 Spectrum in terms of N = 2 superconformal multiplets

Since non-Abelian gaugings of tensor multiplets are not consistent with standard N = 4 actions

determined in [284, 285, 261, 286], we first consider an N = 2 formulation. Upon reduction, we

get N = 2 vector, tensor and hypermultiplets, and we can exploit the N = 2 rigid superconformal

formalism of [268, 269].

11.3.1 Splitting of N = 4 multiplets

To rewrite the N = 4 spectrum in terms of N = 2 supermultiplets, we consider the splitting of the

original R-symmetry group USp(4)R according to

USp(4)R → SU(2)R × SU(2) , (11.31)

where the first factor is the R-symmetry group of the N = 2 algebra, and the second factor is an extra

global symmetry of the theory. We use indices a, b = 1, 2 for the 2 representation of SU(2)R, while

indices ȧ, ḃ = 1, 2 refer to the 2 representation of SU(2). Under (11.31) the branching rules for the

relevant representations of USp(4)R read

5 → (1,1) + (2,2) , 4 → (2,1) + (1,2) , (11.32)

σI ijn → φIn , qI aḃn , λI in → χI an , ζI ḃn ,

where the entries in the brackets correspond to the two SU(2)’s, and we have introduced the bosonic

fields φIn, qI aḃn , and the fermionic fields χI an , ζI ḃn which will be discussed in more detail in the following.

Let us summarize the complete multiplets of rigid N = 2 supersymmetry originating from the

N = 4 spectrum of section 11.2.2. Firstly, we find the vector multiplets

V̂I = (AIµ, φ
I , χI a, Y I

ab) ≡ (AI0µ, φ
I
0, χ

I a
0 , Y I

0 ab) . (11.33)

The vector AIµ is still identified with the gauge connection. The real scalar φI is a singlet (1,1)

under SU(2)R × SU(2) and originates from σI ij . The spinor χI a belongs to the (2,1) representation

and comes from the decomposition of λI i. The scalars Y I
ab = Y I

ba are auxiliary fields of the N = 2

superconformal formalism and transform in the (3,1) representation. They would arise from the

decomposition of auxiliary fields in the (linearized) off-shell N = 4 vector multiplet (see e.g. [287])

that transform in higher irreducible representations of USp (4)R. The multiplets V̂I are pseudoreal,

(V̂I)∗ = V̂I :



ĀIµ ≡ (AIµ)∗ = AIµ ,

φ̄I ≡ (φI)∗ = φI ,

χ̄I a ≡ (χIa)
†γ0 = εab(χIb)

TC ,

Ȳ I ab ≡ (Y I
ab)
∗ = εacεbdY I

cd ,

(11.34)

where εab is the primitive antisymmetric invariant of SU(2)R.
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Secondly, in a completely analogous fashion we have the tensor multiplets

T̂ In = (F Inµν , φ
I
n, χ

I a
n , Y I

n ab) , n > 0 , (11.35)

with the scalars φIn in the (1,1) representation, the spinors χI a in the (2,1) representation, and the

auxiliary fields Y I
n ab in the (3,1) representation. In contrast to their counterparts in V̂I , all fields in

T̂n are complex and will become massive after breaking of conformal invariance, as discussed in more

detail below.

Finally, we find the hypermultiplets

ĤI0 ≡ ĤI = (qI aḃ, ζI ḃ) ≡ (qI aḃ0 , ζI ḃ0 ) , ĤIn = (qI aḃn , ζI ḃn ) , n > 0 . (11.36)

They consist of scalars qI aḃn that are the (2,2) component of σI ijn under the branching (11.32), and

of spinors ζI ḃn that belong to the (1,2) branch in the reduction of λI in . For n > 0 the hypermultiplet

is complex and massive (in the broken phase of conformal symmetry). For n = 0 it is massless and

pseudoreal,

(ĤI)∗ = ĤI :

{
q̄Iaȧ ≡ (qI aȧ)∗ = εabεȧḃq

I bḃ ,

ζ̄I ȧ ≡ (ζIȧ)†γ0 = εȧḃζI T
ḃ
C ,

(11.37)

where we have made use of the primitive antisymmetric invariants εab, εȧḃ of SU(2)R and SU(2).

The Weyl weights of all the fields introduced in this section are collected in Table 11.3, along with a

summary of SU(2)R × SU(2) representations. The matching of the Weyl weights of N = 4 fields and

N = 2 fields will be discussed in the next subsection.

11.3.2 Restoration of five-dimensional conformal symmetry

It is important to clarify the role of conformal symmetry in our discussion. Our goal is a five-

dimensional action that is able to capture some crucial ingredients of a non-Abelian (2, 0) model. This

six-dimensional theory is invariant under rigid conformal transformations [279, 280], i.e. transforma-

tions that leave the six-dimensional line-element invariant up to a factor. We refrain from a complete

account on the transformation properties of the six-dimensional fields. In our discussion we restrict

our attention mostly to the Weyl weights of the fields as listed in Table 11.1.

If we compactify the six-dimensional theory on a circle using (11.6), we expect some generators of

the six-dimensional conformal symmetry to be spontaneously broken. The remaining generators are

those which act only on the five-dimensional line element. In particular, the Weyl invariance discussed

above will be broken, unless we also allow for a rescaling of the compactification radius, i.e. unless we

would consider transformations of the form

gµνdx
µdxν = ds2 7→ Ω−2ds2 , r 7→ Ω−1r . (11.38)

Another way to see that Weyl invariance is compromised in the dimensionally reduced theory is to

notice that the multiplets T̂n, Ĥn have become massive with masses mn given in (11.15). Since Weyl

invariance is incompatible with massive fields, the Kaluza-Klein masses mn break conformal invariance



11.3. Spectrum in terms of N = 2 superconformal multiplets 237

multiplet fields type comments SU(2)R × SU(2) Weyl weight

V̂I
massless vector

multiplet

AIµ ≡ AI0µ vector pseudoreal (1,1) 0

φI ≡ φI0 scalar pseudoreal (1,1) 1

χI a ≡ χI a0 spinor pseudoreal (2,1) 3/2

Y I
ab ≡ Y I

0 ab scalar auxiliary (3,1) 2

ĤI ≡ ĤI0
massless hyperm.

qI aḃ ≡ qI aḃ0 scalar pseudoreal (2,2) 3/2

ζI ȧ ≡ ζI ȧ0 spinor pseudoreal (1,2) 2

T̂ In
massive tensor

multiplet

F Inµν tensor complex (1,1) 0

φIn scalar complex (1,1) 1

χI an spinor complex (2,1) 3/2

Y I
n ab scalar auxiliary (3,1) 2

ĤIn
massive hyperm.

qI aḃn scalar complex (2,2) 3/2

ζI ȧn spinor complex (1,2) 2

V̂0

massless vector
multiplet

A0
µ vector pseudoreal (1,1) 0

φ0 scalar pseudoreal (1,1) 1

χ0 a spinor pseudoreal (2,1) 3/2

Y 0
ab scalar auxiliary (3,1) 2

Table 11.3: Field content of N = 2 vector multiplet V̂, tensor multiplets T̂n and hypermultiplets
Ĥ, Ĥn in five dimensions. The additional multiplet V̂0 is included. The precise formulation of the
pseudoreality properties of the fields in V̂I , ĤI is found in (11.34) and (11.37), respectively. The
specification ‘massless’ or ‘massive’ applies to the broken phase of conformal symmetry.
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explicitly. This can be remedied by allowing them to transform as mn 7→ Ω mn as can be inferred

from (11.38).

Note that the N = 2 Poincaré supersymmetry algebra does admit a superconformal extension,

given by the exceptional superalgebra F 2(4) [278, 30]. This is in contrast with the N = 4 case consid-

ered before. In practice, five-dimensional rigid superconformal invariance is restored by introducing

additional five-dimensional degrees of freedom. Indeed, we can promote the radius r to the scalar

component of a full N = 2 vector multiplet

V̂0 = (A0
µ, φ

0, χ0 a, Y 0
ab) , (11.39)

where A0
µ can be identified with the Kaluza-Klein vector introduced in (11.6). We can combine this

vector multiplet with the physical vector multiplets introduced in the last section and denote them

collectively as

V̂ Î = (V̂0, V̂I) , Î = 0, 1 . . . , |G| . (11.40)

Using the multiplet V̂0 we can make the N = 4 to N = 2 split of the spectrum more explicit. We

follow the split (11.32) and we match the scaling weights of Table 11.2 with the Weyl weights of Table

11.3 to infer that the proper map from N = 4 to N = 2 multiplets is of the form

σI ijn 7→
(

1√
2
εab φIn (φ0)−1/2qI aḃn

−(φ0)−1/2qI bȧn − 1√
2
εȧḃ φIn

)
, λI in 7→

(
χI an√

2(φ0)−1/2ζI ȧn

)
, n ≥ 0 . (11.41)

Prefactors are chosen for later convenience. Note that the split (11.31) is not unique.

In the action of section 11.4.1 the additional multiplet V̂0 will couple to all other multiplets making

the action superconformally invariant. To give a direct link with the Kaluza-Klein reduction it will be

convenient to return to the broken phase of the superconformal symmetry by setting the additional

fields to a fixed value. This requires to set

〈φ0〉 =
1

r
=

1

g2
, 〈χ0 a〉 = 〈Y 0

ab〉 = 〈A0
µ〉 = 0 , (11.42)

where g is the gauge coupling of the five-dimensional Yang-Mills theory. It is important to stress

that imposing the condition (11.42) corresponds to a restriction of the theory. Indeed not all values

of χ0 a, Y 0
ab and A0

µ can be mapped by a superconformal transformation to zero. Nevertheless we will

show below that a Poincaré supersymmetric theory arises after imposing (11.42). Moreover, the Weyl

rescaling (11.38) of r, as dictated by the six-dimensional conformal symmetry, is precisely compatible

with the Weyl weight of φ0 in the identification (11.42). In fact, we will show that the five-dimensional

action still retains a scaling symmetry if the radius is rescaled as in (11.38).

In the broken phase of conformal symmetry determined by (11.42) the hypermultiplets fields

qI aḃn , ζI ȧn are not convenient variables, since their mass dimensions are not canonical. As a consequence,

we define the rescaled fields

hI aḃn = g qI aḃn , ψI ȧn = g ζI dan , n ≥ 0 , (11.43)

in such a way that all scalars have mass dimension and scaling weight 1, and all fermions have mass

dimension and scaling weight 3/2.
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11.4 Supersymmetric actions and conformal invariance

In this section we introduce a five-dimensional non-Abelian N = 2 supersymmetric action for the

Kaluza-Klein spectrum obtained in section 11.3. Our theory will include couplings which are only

specified in terms of group theoretical constants and the Kaluza-Klein levels. An N = 2 superconfor-

mal action is presented in section 11.4.1, while the Kaluza-Klein sums are made explicit in a restricted

action in section 11.4.2. We propose to interpret this theory as an N = 2 subsector of a dimensionally

reduced (2, 0) theory.

11.4.1 An N = 2 superconformal action for the Kaluza-Klein spectrum

In the following we introduce an N = 2 superconformal action for the spectrum discussed in section

11.3. Superconformal invariance is retained since we will include the additional vector multiplet V̂0,

defined in (11.39), containing the radius and the Kaluza-Klein vector. It will be necessary to introduce

some additional notation in order to make contact with the general N = 2 superconformal actions

introduced in [269]. The fields identified with the Kaluza-Klein zero modes are denoted as in Table

11.3:

vector multiplets: (A0
µ, φ

0, χ0 a), (AIµ, φ
I , χI a) hypermultiplets: (qIaḃ, ζIḃ) . (11.44)

For the fields identified with excited Kaluza-Klein modes it will be convenient to use the notation

(11.20) for complex fields introducing the SO(2)KK index α. This leads us to the following excited

spectrum:

tensor multiplets:
(
F {Iαn}µν , φ{Iαn}, χ{Iαn}a

)
≡
(
F Iαnµν , φ

Iα
n , χ

Iα a
n

)
hypermultiplets:

(
q{Iαn}aḃ, ζ{Iαn}ḃ

)
≡
(
qIα aḃn , ζJα ḃn

)
. (11.45)

The main complication in the notation arises from the multi-index {Iαn} which labels simultaneously

the non-Abelian components I, J = 1, . . . , |G|, the SO(2)KK labels α, β = 1, 2, and the Kaluza-Klein

levels n,m ≥ 1. To avoid cluttering of indices in the following expressions we will denote this multi-

index by

M = {Iαn} , N = {Jβm} . (11.46)

A summation over M,N then always amounts to summing over all indices including the infinite tower

of Kaluza-Klein modes. We will present the superconformal action as function of the four types of

multiplets in (11.44) and (11.45). To do that in an efficient way it is useful to introduce the following

index combinations

Î ≡ (0, I) Λ ≡ (0, I,M) , I = (I,M) (11.47)

This means that Î , Ĵ , ... label all vector multiplets and run over |G|+1 values, Λ,Σ, ... run over all tensor

and vector multiplets including the Kaluza-Klein tower. The indices I,J , ... label all hypermultiplets,

or vectors and tensor multiplets without V0. Finally, we also define

FΛ
µν ≡ (F Îµν , F

M
µν ) ≡ (F Îµν , nεβγδ

γαBIβ
nµν) . (11.48)



240 Chapter 11. Non-Abelian tensor towers and (2,0) theories

where we have recalled the definition of FMµν = F Iαnµν as given in (11.10). It is crucial to stress that the

Kaluza-Klein interpretation dictates this non-trivial identification of FMµν with BIα
nµν . The important

point is that while the FMµν admit a rescaling with the Kaluza-Klein level compared to BIα
nµν , the

scalars and fermions in the same multiplet are trivially matched with the N = 2 formalism of [269].4

The non-trivial rescaling of BIα
nµν turns out to be consistent with the dimensional reduction of the

supersymmetry variations as can be checked for the Abelian six-dimensional theory recorded in section

11.2.1.

We are now in the position to discuss the Lagrangian in detail. The vector-tensor sector of an

N = 2 superconformal theory can be specified by introducing a constant symmetric object CΛΣΘ, a

constant antisymmetric matrix ΩMN , and the gauge parameters t
K̂Λ

Σ [269]. The gauge parameters

appear in the covariant derivatives

DµφΣ = ∂µφ
Σ + t

K̂Λ
Σ AK̂µ φΛ ,

DµχaΣ = ∂µχ
aΣ + t

K̂Λ
Σ AK̂µ χaΛ,

DµFNνρ = ∂µF
N
νρ + t

K̂M
N AK̂µ FMνρ . (11.49)

Note that strictly speaking only C
ÎĴK̂

encodes extra information in addition to ΩMN , tK̂Λ
Σ. This is

due to the fact that CMΛΣ are given by

CMΛΣ = t(ΛΣ)
NΩNM , (11.50)

where one symmetrizes in the indices Λ,Σ including the usual factor 1/2. Here we have extended the

range of indices on generators tΛΣ
Θ with the constraints

t(ΛΣ)
Î = 0 , tMΣ

Θ = 0 , (11.51)

implying the absence of gaugings with a tensor index M .

Since we will later propose to use the N = 2 superconformal theory to describe the dimensional

reduced (2, 0) action we aim to use only couplings which are of group theoretic origin. We like to

identify a subsector of the theory as N = 4 super-Yang-Mills theory. This implies that components of

C
ÎĴ L̂

have to encode the trace dIJ = C0IJ . The coupling C000 = kc will determine the kinetic term of

the auxiliary vector multiplet V̂0, and will be left undetermined at the moment. We choose C00I = 0.

More interesting are the couplings of the tensor multiplets. Here we are guided by (11.50). To

determine the gaugings we first note that the fields in V̂0 cannot be gauged, such that t
Î 0

Λ = t
ÎΛ

0 = 0.

Comparing the gaugings (11.22), (11.27) with (11.49), we consider the following identification:

tKI
J =

(
tKI

J 0
0 tKM

N

)
=

(
tKI

J 0

0 tK{Iαn}
{Jβm}

)
=

(
fKI

J 0

0 fKI
Jδβαδmn

)
, (11.52)

and

t0I
J =

(
0 0
0 t0M

N

)
=

(
0 0

0 t0{Iαn}
{Jβm}

)
=

(
0 0
0 n δJI εαγδ

γβδmn

)
, (11.53)

4This implies that compared to [269] one has to adjust the notation, since there FMµν and BMµν are trivially identified.
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where SO(2)KK indices have been raised and lowered using δαβ. Here tKI
J , tIM

N parametrize the

non-Abelian gaugings with the vector zero modes and are thus given by the structure constants of G.

The matrix t0I
J encodes the gauging of the massive tensor multiplets with A0, which is interpreted

as charge under the Kaluza-Klein vector. In addition the antisymmetric matrix ΩMN can be read off

from the Chern-Simons type kinetic terms of the tensors FM in (11.24), and is given by

ΩMN = Ω{Iαn}{Jβm} = − 2

n
dIJεαβδnm , (11.54)

where n,m ≥ 1 as in the range of the multi-indices (11.46). As we can see, U(1)KK ∼ SO(2)KK plays

a key role in the construction of this object. While the trace dIJ is symmetric, one can use the indices

α, β and the antisymmetric εαβ, corresponding to the complex number i, to introduce ΩMN . Using

(11.50) this will also allow us to introduce the symmetric tensor CMΛΣ in terms of the antisymmetric

structure constants fIJK = dILf
L
JK . To display the result, we introduce the matrix

CIJ =

(
CIJ 0

0 CMN

)
=

(
CIJ 0

0 C{Iαn}{Jβm}

)
=

(
dIJ 0
0 dIJδαβδnm

)
. (11.55)

In summary, taking into account the total symmetry in all three indices, all components of CΛΣΘ are

determined by

C0IJ = CIJ , C000 = kc , CMNK = C{Iαn}{Jβm}K = − 1

n
fIJK εαβδnm ,

C00I = CIJK = CMNP = 0 . (11.56)

In evaluating these expressions we have used that εαγδ
γδεδβ = −δαβ.

Let us now include the hypermultiplets into the discussion. In a general N = 2 superconformal

theory the hypermultiplets span a hypercomplex manifold. We choose the geometry of the hypercom-

plex manifold appearing in the reduction to be locally flat space. Since the dimension of this manifold

is related to the dimension of the gauge group G, it posses sufficiently many isometries to implement

a gauging compatible with (11.49). In coordinates qaȧI the metric is given by CIJ εabεȧḃ, with CIJ

as defined in (11.55).5 The kinetic term of the fermionic partners ζ ȧI is simply given by CIJ εȧḃ. The

gauging of the hyperscalars and fermions is

DµqaḃJ = ∂µq
aḃJ + t

K̂I
J AK̂µ q

aḃI , Dµζ ȧJ = ∂µζ
ȧJ + t

K̂I
J AK̂µ ζ

ȧI , (11.57)

with constant t
K̂I
J given in (11.52) and (11.53).6

Using these definitions we can now display the complete non-Abelian N = 2 superconformal

5The three complex structures on this hypercomplex manifold are encoded in the SU(2) triplet JcċIdḋJ (ab), where

JcċIdḋJ
a
b = δIJ δ

ċ
ḋ
(2δadδ

c
b − δcdδab ).

6The moment maps generating these gaugings are given by PK̂ab = 1
2
CIJ tK̂L

J εc(a q
I
b)ċ q

cċL.



242 Chapter 11. Non-Abelian tensor towers and (2,0) theories

Lagrangian,

L = φΘCΘΛΣ

(
−1

4F
Λ
µνF

Σµν − 1
2 χ̄

Λ a /DχΣ
a − 1

2DµφΛDµφΣ + Y Λ
abY

Σ ab
)

+ 1
16ε

µνλρσΩMNF
M
µνDλFNρσ − 1

24ε
µνλρσC

ÎĴK̂
AÎµF

Ĵ
νλF

K̂
ρσ

− i
8CΛΣΘ

(
χ̄Λ aγµνFΣ

µνχ
Θ
a + 4χ̄Λ aχbΣY Θ

ab

)
+ i

4 φ
ΘCΘΛΣ

(
t[ΥΩ]

Λχ̄Υ aχΩ
a φ

Σ − 4t(ΥΩ)
Λχ̄Υ aχΣ

a φ
Ω
)

− 1
2φ

K̂C
K̂MN

t
ÎP

M t
ĴQ

NφÎφĴφPφQ

+ CIJ

(
− 1

2DµqI aḃDµqJaḃ − ζ̄
I ḃ /DζJ

ḃ

)
+ CIJ

(
2it

K̂L
IqL aḃχ̄K̂a ζ

J
ḃ

+ iφK̂t
K̂L
I ζ̄J ȧζLȧ

)
+ CIJ

(
t
K̂L
J qL aċ qI bċY

K̂
ab − 1

2 tÎK
It
ĴL
J φÎφĴqKaḃqL

aḃ

)
. (11.58)

This Lagrangian transforms with weight 5 under Weyl rescalings of the fields with weights listed in

Table 11.3. Since the line element has Weyl weight −2 as in (11.38) this implies invariance of the

five-dimensional action. Furthermore, the Lagrangian (11.58) is invariant under the supersymmetry

transformations parametrized by εa and the special supersymmetry transformations parametrized by

ηa given by7

δφΛ = i
2 ε̄

aχΛ
a ,

δAÎµ = 1
2 ε̄

aγµχ
Î
a ,

δFΛ
µν = −ε̄aγ[µDν]χ

Λ
a + it(ΣΘ)

ΛφΣ ε̄aγµνχ
Θ
a + iη̄aγµνχ

Λ
a ,

δχΛ a = −1
4γ

µνFΛ
µνε

a − i
2
/DφΛεa − Y Λ abεb + 1

2 t(ΣΘ)
ΛφΣφΘεa + φΛηa ,

δY Λ ab = −1
2 ε̄

(a| /DχΛ|b) − i
2

(
t[ΣΘ]

Λ − 3t(ΣΘ)
Λ
)
φΣ ε̄(a|χΘ|b) + i

2 η̄
(aχΛ|b) ,

δqI aḃ = −iε̄aζI ḃ ,

δζI ḃ = i
2
/DqI aḃεa − 1

2φ
K̂t

K̂J
IqJ aḃεa − 3

2q
I aḃηa . (11.59)

These transformation rules are consistent with Weyl rescalings of Table 11.3, if one assigns Weyl

weight −1/2 to the parameter εa, and the weight +1/2 to ηa. Note that the gamma-matrices with

lower indices γµ1...µk scale with weight −k.

This completes the specification of the five-dimensional superconformal action in terms of the

group theory invariants dIJ , fIJK , and the tensors δαβ, εαβ for complex fields parameterizing the full

Kaluza-Klein tower. The crucial insight is that it is possible to combine the symmetric dIJ and the

7The expression for δFΛ
µν with Λ = Î is not independent from the expression for δAÎµ. To check their compatibility,

note that the second term in δF Îµν vanishes thanks to t(ΛΣ)
Î = 0. In order to get the third term in δF Îµν , one has to

promote δAÎµ to its full x-dependent form before taking the covariant derivative. As explained in [269], this is done by

means of the prescription εa 7→ εa + ixργρη
a. The covariant derivative can thus act on an x-linear term in δAÎµ and

produce the η-term in δF Îµν .
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antisymmetric εαβ to define the antisymmetric ΩMN as in (11.54) for the massive Kaluza-Klein modes

which naturally are complex fields. This also permits us to combine the totally antisymmetric fIJK and

the antisymmetric εαβ to define components of the totally symmetric CΛΣΘ. This implies that the non-

Abelian version of the Kaluza-Klein theory fits naturally in the framework of N = 2 supersymmetry.

Furthermore, superconformal invariance can be implemented by introducing the vector multiplet V̂0

defined in (11.39).

To close this section let us comment on the role of the additional multiplet V̂0 in more detail. We

have found that its kinetic term is determined by the constant kc. Identifying φ0 with the radius r as

in (11.42), one can derive the kinetic term of r after dimensional reduction of a six-dimensional gravity

theory. This is complicated by the fact that the proper supersymmetric fields in five dimensions involve

rescalings with r as described in detail in [262]. However, the choice

kc = 0 (11.60)

is natural from the point of view of N = 4 supersymmetry, since a Chern-Simons term kcA
0∧F 0∧F 0

is absent in this case. Moreover, kc = 0 is consistent with non-dynamical gravity in six dimensions.

In the following discussion we work in the phase with (11.42) implying that kc drops from the action.

11.4.2 Supersymmetric Kaluza-Klein Lagrangian in the broken phase

We are now in the position to present theN = 2 action including all Kaluza-Klein levels. This amounts

to restoring the Kaluza-Klein indices for the fields and summing up an infinite tower of multiplets

(BIα
nµν , φ

Iα
n , χ

Iα a
n ) and (qIα aḃn , ζIα ḃn ) in (11.58). The resulting action is straightforwardly obtained but

rather lengthy due to the fact that both CΛΣΘ and ΩMN appear in copies labeled by Kaluza-Klein

indices. The result simplifies, however, if we set V̂0 to the values (11.42), thus moving to the broken

phase of conformal invariance. Discussing the resulting action will be the task of this section.

As discussed already in section 11.3, the Abelian vector multiplet V̂0 plays a special role in the

N = 2 spectrum. In a Kaluza-Klein theory V̂0 has to be interpreted as part of the gravity multiplet

with A0 being the graviphoton under which all excited Kaluza-Klein modes are charged. We decouple

gravity completely by imposing the condition (11.42). As we will argue below, ordinary N = 2

supersymmetry is preserved despite the breaking of superconformal invariance. Furthermore, we

make use of the rescaled hypermultiplet fields hI aḃn , ψI ȧn defined in (11.43).

The resulting Lagrangian including all Kaluza-Klein modes listed in Table 11.3 takes the form

L = L0 +

∞∑
n=1

ReLn , (11.61)

where L0 only involves massless multiplets, while Ln collects all terms constructed with the nth excited

modes. We discuss L0 and Ln in turn.
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To begin with, let us display the zero mode Lagrangian

g2L0 = dIJ

[
− 1

4F
I µνF Jµν − 1

2DµφIDµφJ − 1
2DµhI aḃDµhJaḃ −

1
2 χ̄

I a /DχJa − ψ̄I ȧ /DψJȧ + Y I abY J
ab

]
+ fIJK

[
+ i

2φ
I χ̄J aχKa − iφI ψ̄J ȧψKȧ − 2ihI aḃχ̄Jaψ

K
ḃ

+ hI aċhJ bċY
K
ab

]
− 1

2fIJ
HfHKLφ

IφKhJ aḃhL
aḃ
. (11.62)

We recognize that the terms contracted with the trace dIJ are the kinetic terms of the massless

vectors, scalars and fermions, as well as the quadratic term for the auxiliary field. The terms involving

the structure constants fIJK are Yukawa-type couplings and a scalar potential quartic in the fields

φI , hI aḃ. We stress that for the massless fields such quartic coupling are only possible if they also

include scalars hI aḃ due to the asymmetry of fIJK . In section 11.5 we will discuss the properties of

(11.62) in more detail and relate it to N = 4 supersymmetric Yang-Mills theory.

Let us now turn to the discussion of the Lagrangians Ln in (11.61) for the Kaluza-Klein tower.

We insert (11.52)-(11.56) into the action (11.58), impose the condition (11.42), and extract the terms

for the Kaluza-Klein level n to find

g2Ln = dIJ

[
− 1

2
F̄ I µνn F Jnµν +

i

4mn
εµνρλσF̄ InµνDρF Jnλσ

−Dµφ̄InDµφJn −Dµh̄I aḃn DµhJn aḃ − χ̄
I a
n /DχJn a − 2ψ̄I ȧn /DψJn ȧ

−m2
nφ̄

I
nφ

J
n −m2

nh̄
I aḃ
n hJ

n aḃ
−mnχ̄

I a
n χJn a − 2mnψ̄

I ȧ
n ψJn ȧ + 2Ȳ I ab

n Y J
n ab

]
+

1

mn
fIJK

[
− i

2
φK F̄ I µνn F Jnµν + iφ̄Kn F

I µνF Jnµν − iφKDµφ̄InDµφJn + 2iφ̄Kn DµφIDµφJn

− iφK χ̄I an /DχJn a + 2iφ̄Kn χ̄
I a /DχJn a + 2iφK Ȳ I ab

n Y J
n ab − 4iφ̄Kn Y

I abY J
n ab

+
1

4
F Iµνχ̄

J a
n γµνχKna −

1

2
F̄ Inµνχ̄

J aγµνχKna + Y I abχ̄Jn aχ
K
nb − 2Ȳ I ab

n χ̄Jaχ
K
nb

− 2imnφ
K χ̄I an χJn a + 3imnφ̄

K
n χ̄

I aχJn a − 4imnh̄
I aḃ
n χ̄Jaψ

K
n ḃ
− 2imnφ

I ψ̄J ȧn ψKn ȧ

+ 2mnh̄
I aċ
n hJ bn ċY

K
ab − 3im2

nφ
I φ̄Jnφ

K
n − 2im2

nφ
I h̄J aḃn hK

naḃ

]
+

1

mn
fIJ

HfHKL

[
− 3mnφ

IφK φ̄Jnφ
L
n −mnφ

IφK h̄J aḃn hL
naḃ
− φIφK χ̄J an χLna

+ φ̄Inφ
J χ̄K aχLna + 2φ̄Inφ

K χ̄J aχLna − φ̄InφKn χ̄J aχLa − 1
2 φ̄

I
nφ

J
nχ̄

K aχLa

]
− i

mn
f I1
IH f I2

JL fKI1I2φ
IφJφK φ̄Hn φ

L
n . (11.63)

The terms contracted with the trace dIJ are kinetic terms and mass terms for all Kaluza-Klein excited

modes. We note that the tensors BI
nµν = − i

nF
I
nµν have Chern-Simons kinetic terms and a mass

term proportional to n2. Consistent with a Kaluza-Klein reduction all complex scalars φIn, h
I aḃ
n with

n > 0 have mass terms proportional to n2, and all fermions χI an , ψI ḃn with n > 0 have mass terms

proportional to n. More interestingly, this Lagrangian contains various terms at the non-Abelian level

containing fIJK . These include new kinetic terms for all singlets under the second SU(2) in (11.31),

Pauli terms coupling the tensors and gauge fields to the fermions, Yukawa type couplings, and a
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complicated scalar potential. The full scalar potential and four Fermi terms can only be determined

after eliminating the auxiliary fields Y I ab
n . We will discuss this elimination process in section 11.5.

It is important to stress that the action (11.63) preserves N = 2 supersymmetry but breaks

the special supersymmetries parametrized by ηa in (11.59). This can be seen straightforwardly by

inspecting the superconformal variations of the fermion in V̂0:

δχ0 a = −1
4γ

µνF 0
µνε

a − i
2
/Dφ0εa − Y 0 abεb + φ0ηa . (11.64)

Using the condition (11.42) we realize that the supersymmetry parameter εa drops from (11.64) which

implies that the restricted action is still N = 2 supersymmetric. In contrast ηa appears after imposing

(11.42) in the transformation δχ0 a = g−2ηa, which implies that χ0 a is needed to ensure invariance of

the action under special supersymmetry transformations. In other words, the condition (11.42) will

break the special supersymmetry transformations parametrized by ηa. The ordinary supersymmetry

transformations in the restricted phase are given by

δAIµ = 1
2 ε̄

aγµχ
I
a ,

δφIn = i
2 ε̄

aχIn a ,

δF Inµν = −ε̄aγ[µDν]χ
I
n a − i

2fJK
IφJn ε̄

aγµνχ
K
a + i

2fJK
IφJ ε̄aγµνχ

K
na − 1

2mn ε̄
aγµνχ

I
n a ,

δχI an = −1
4γ

µνF Inµνε
a − i

2
/DφInεa − Y I ab

n εb + 1
2fJK

IφJφKn ε
a + i

2mnφ
I
nε
a ,

δY I ab
n = −1

2 ε̄
(a| /DχI|b)n − ifJKIφJn ε̄(a|χK|b) + i

2fJK
IφJ ε̄(a|χK|b)n − 1

2mn ε̄
(a|χK|b)n ,

δhI aḃn = −i ε̄aψI ḃn ,

δψI ḃn = i
2
/DhI aḃn εa − 1

2fJK
IφJhK aḃ

n εa − i
2mnh

I aḃ
n εa , (11.65)

where n ≥ 0 labels both zero and excited modes. We close this subsection by pointing out that

the Lagrangian (11.61) possesses a scaling symmetry when using the Weyl weights of Table 11.3 and

additionally assigning scaling weight −1/2 to the gauge coupling constant g, in such a way that mn

has weight +1 for any n > 0. This can be interpreted as a remnant of the full six-dimensional (2, 0)

conformal symmetry as discussed in section 11.3.2.

This concludes our discussion of the general N = 2 action for the Kaluza-Klein tower. Our ap-

proach can be summarized as follows. While an action for full six-dimensional non-Abelian (2, 0)

theories is unknown the Abelian free six-dimensional (2, 0) theory admits a six-dimensional pseudoac-

tion. It can be compactified on a circle with arbitrary radius yielding a five-dimensional action with

N = 4 supersymmetry. We proposed a gauged version of this theory preserving only half, namely

N = 2, supersymmetry, by interpreting the zero mode vectors AI as gauge potentials for the whole

Kaluza-Klein tower. In order to argue for a six-dimensional origin of this theory all higher-dimensional

symmetries need to be realized or appear in a gauge-fixed phase. Our five-dimensional actions (11.58)

and (11.61), however, clearly only realize part of the six-dimensional superconformal (2, 0) symme-

tries manifestly. In particular, we have singled out the zero modes for gauging which seems naively

incompatible with six-dimensional Poincaré invariance.
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It is precisely the non-Abelian gauging that prevents us to write down an N = 4 action. Nev-

ertheless, we regard our Lagrangians as the starting point to give a lower-dimensional Lagrangian

formulation for (2, 0) theories. In the next subsection 11.5 we concentrate on two special cases in

which partial symmetry restoration is achieved.

11.5 Two special cases

We have just proposed a Lagrangian for all Kaluza-Klein modes in an N = 2 supersymmetric frame-

work. In particular we made use of complete N = 2 vector and tensor multiplets including auxiliary

fields Y I ab
n . These fields appear only algebraically in the Lagrangian and can be eliminated consistently

by using their equations of motion. While the action (11.61) is a sum of terms Ln only involving fields

at the Kaluza-Klein level n and zero modes, the elimination of auxiliary fields will induce a non-trivial

mixing among excited modes. Despite the fact that it is interesting to investigate this structure in

more detail, we will focus here on only two special cases where the computation is straightforward

and the lift to N = 4 can be performed explicitly.

As a first special case we study the zero mode Lagrangian L0 given in (11.62), and drop all massive

modes. This is motivated physically with the dimensional reduction argument for small radius r where

massive Kaluza-Klein modes are dropped, or rather integrated out, that are above a certain energy

scale. The equation of motion for the auxiliary fields then simply reads

Y I ab = −1
2f

I
JKh

J aȧhK b
ȧ . (11.66)

Inserting (11.66) into (11.62) a quartic potential in h is generated, and the zero mode Lagrangian L0

takes the form

g2LYM = dIJ

[
− 1

4F
I µνF Jµν − 1

2DµφIDµφJ − 1
2DµhI aḃDµhJaḃ −

1
2 χ̄

I a /DχJa − ψI ȧ /DψJȧ
]

+ fIJK

[
+ i

2φ
I χ̄J aχKa − iφI ψ̄J ȧψKȧ − 2ihI aḃχ̄Jaψ

K
ḃ

]
+ fIJ

HfHKL

[
− 1

4h
I aȧhJ bȧh

K ḃ
a h

L
bḃ − 1

2φ
IφKhJ aḃhL

aḃ

]
. (11.67)

This Lagrangian is a simple rewriting of N = 4 super Yang-Mills theory in terms of N = 2 multiplets.

In order to prove this claim we record the Lagrangian for N = 4 super Yang-Mills theory,

g2LSYM
N=4 =dIJ

[
− 1

4F
I µνF Jµν − 1

4DµσI ijDµσJ ij − 1
2 λ̄

I i /DλJi
]

− i√
2
fIJKσ

I ij λ̄Jiλ
K
j − 1

16fIJKLσ
I ijσKijσ

J klσLkl . (11.68)

It is invariant under the following N = 4 supersymmetry transformations:

δAIµ = 1
2 ε̄
iγµλ

I
i ,

δσI ij = −i
√

2
(
ε̄[i|λJ |j] + 1

4Ωij ε̄kλIk

)
δλI i = −1

4F
I
µνγ

µνεi − i√
2
/DσI ijεj + 1

2f
I
JKσ

J ijλKjkε
k . (11.69)
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In order to check that that (11.68) reproduces (11.67) one has to make use of (11.41), (11.42) and

(A.20).

As a second special case we consider the Abelian truncation of the full Lagrangian (11.61). This

is achieved by dropping all terms constructed with the structure constants fIJK . The equations of

motions for the auxiliary fields read simply Y I ab
n = 0, such that they can be trivially dropped from

the Lagrangian. The resulting theory is free and given by

g2Lfree = dIJ

[
− 1

4F
I µνF Jµν − 1

2∂
µφI∂µφ

J − 1
2∂

µhI aḃ∂µh
J
aḃ
− 1

2 χ̄
I a/∂χJa − ψI ȧ/∂ψJȧ

]
+
∞∑
n=1

dIJ

[
− 1

2 F̄
I µν
n F Jnµν + i

4mn
εµνρλσF̄ Inµν∂ρF

J
nλσ

− ∂µφ̄In∂µφJn − ∂µhI aḃn ∂µh
J
n aḃ
− χ̄I an /∂χJn a − 2ψ̄I ȧn /∂ψJn ȧ

−m2
n

(
φ̄Inφ

J
n + h̄I aḃn hJ

n aḃ

)
−mn

(
χ̄I an χJn a + 2ψ̄I ȧn ψJn ȧ

) ]
. (11.70)

This Lagrangian is the N = 2 supersymmetric extension of the purely bosonic Lagrangian (11.9) in the

gauge (11.42). In fact, this theory is actually N = 4 supersymmetric. This can be seen by comparison

to the Lagrangian

g2Lfree
N=4 = dIJ

[
− 1

4F
I µνF Jµν − 1

4∂
µσI ij∂µσ

J
ij − 1

2 λ̄
I i/∂λJi

]
+

∞∑
n=1

dIJ

[
− 1

2 F̄
I µν
n F Jnµν + i

4mn
εµνρλσF̄ Inµν∂ρF

J
nλσ

− 1
2∂

µσ̄I ijn ∂µσ
J
n ij − λ̄I in /∂λJn i − 1

2m
2
nσ̄

I ij
n σJn ij −mnλ̄

I i
n λ

J
n i

]
. (11.71)

Furthermore, (11.70) or equivalently (11.71) can be obtained by a compactification of the full (2, 0)

Abelian pseudoaction (11.5) on a circle and therefore admits non-manifest six-dimensional Poincaré

invariance. Five-dimensional Kaluza-Klein actions arising from such a compactification have been

considered before in [288]. We stress that it is hard to interpret the action (11.70) with the full

Kaluza-Klein tower as an effective action for the Coulomb branch of the five-dimensional theory. This

is due to the fact that it contains modes of arbitrary high mass mn that rather should be integrated

out above the cutoff scale.

11.6 A possible window on (2,0) conformal anomalies

In this section we would like to point out a possible application of the non-Abelian N = 2 action

in the broken phase of conformal symmetry given in (11.63). It is based on considerations about

anomaly matching for a system of N M5-branes when one brane is moved away from the stack [158].

In what follows we aim at conveying the basic idea that this anomaly matching might be accessible

via five-dimensional loop. For a refined discussion and a first computational step in this direction we

refer the reader to [277].
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Let us consider a single M5-brane in M-theory. The eleven-dimensional Lorentz group SO(1, 10)

is spontaneously broken to SO(1, 5) × SO(5), with the first factor being the Lorentz on the six-

dimensional world-volume of the M5-brane and the second factor being identified with the R-symmetry

of the theory. Both the six-dimensional Lorentz group SO(1, 5) and the R-symmetry group SO(5) are

anomalous as a result of the chiral fields living on the world-volume of the M5-brane. The full eleven-

dimensional setup is nonetheless consistent thanks to a subtle anomaly inflow mechanism explained

for instance in [148, 289]. In [153] this inflow mechanism was used to consider the case of a stack of

N M5-branes. In this case the Lorentz and R-symmetry anomalies cannot be computed directly since

we do not have an effective action for the six-dimensional world-volume theory, but can nonetheless

be inferred from the bulk contribution. The result is encoded in the anomaly polynomial

I8 =
N

48

[
p2(FN)− p2(R) +

1

4
(p1(R)− p1(FR))2

]
+
N3 −N

24
p2(FR) , (11.72)

where p1,2(R) are Pontryagin classes build from the six-dimensional curvature of the spin connection,

while p1,2(FR) are Pontryagin built from the curvature FR of the R-symmetry connection. Let us point

out that this connection is not a dynamical field of the theory, but rather a classical background, so

that no contradiction arises with the absence of vectors in the massless spectrum of (2,0) theories.

From an eleven-dimensional perspective the R-symmetry connection encodes topological data about

the normal bundle to the world-volume of the M5-brane stack. From a field theoretic perspective we

interpret (11.72) as the gravitational and R-symmetry anomalies of a (2,0) theory with ‘gauge group’

G = U(N), so that rank(G) = N . This theory is obtained combining a (2,0) theory of type AN−1 with

an Abelian (2,0) theory, which is associated to the center-of-mass motion in the M5-brane picture.

The second term in (11.72) is generated by non-trivial interaction, so that it has to correspond to the

AN−1 (or equivalently SU(N)) part of the ‘gauge group.’

Suppose we move one of the M5-branes away from the stack, breaking the ‘gauge group’ from G to

H×U(1) with H = U(N −1). At the same time R-symmetry is broken from SO(5) to SO(4). At low

energies the H factor and the U(1) factor in H ×U(1) decouple, and we thus expect a free theory for

the latter. If this were the case, however, the anomaly polynomials before and after moving the brane

would not match. More precisely, the first in (11.72) does not change because the total rank of the

group is unaffected. The second term, however, changes: only the factor SU(N − 1) inside H × U(1)

contributes to this term, which is therefore given by the same expression in (11.72) with N replaced

by N − 1. In summary, the difference of the anomaly polynomials reads

I8|G − I8|H×U(1) =
N2 −N

8
p2(FR) . (11.73)

This mismatch in anomalies suggests that the effective theory for the U(1) factor in H×U(1) contains

a Wess-Zumino term that has an anomalous variation under R-symmetry transformations in such a

way to reproduce the right hand side of (11.73). For an explicit expression of this term see [158].

Upon circle reduction the six-dimensional Wess-Zumino term should yield topological couplings

in five dimensions. By analogy with the lesson we have learnt studying M-theory/F-theory duality

we expect that these topological couplings are generated in five dimensions by one-loop diagrams

in which all relevant massive fields run in the loop. For the case at hand, those would be both
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excited Kaluza-Klein modes and the tensor analog of W-bosons. This suggests the possibility that,

by a suitable coupling of our action (11.63) to a background R-symmetry connection, the anomaly

mismatch (11.73) could be extracted (at least to leading order in N) by computing one-loop corrections

to five-dimensional couplings. If this program can be substantiated it would show that our action

(11.63) correctly encodes the N3 scaling behavior of (2,0) theories, since the latter is equivalent to the

N2 scaling of the anomaly mismatch (11.73). The interested reader is referred to [277] for some first

steps in this direction. A thorough analysis of this subject is a possible interesting direction for future

work.
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CHAPTER 12

Closing remarks

In this last chapter we offer a retrospective look at the setups discussed in this thesis and we provide

some outlook for future developments.

12.1 A quick overview

In this work we have investigated various aspects of non-perturbative low-energy physics in the frame-

work of string theory and M-theory. Thanks to the power of the duality between M-theory and

F-theory we have been able to determine the effective action of a class of six-dimensional and four-

dimensional string compactifications in which the string coupling constant is geometrized and allowed

to vary in the internal space in a non-perturbative fashion. This has been possible by means of an

indirect approach based on a transdimensional treatment of the physical system under examination.

In order to study compactifications to six dimensions we have thus focussed on five-dimensional se-

tups, while three-dimensional models have been the starting point for our exploration of F-theory

compactified to four dimensions on a Spin(7) manifold.

This strategy has been inspirational and has been applied to explore the dynamics of six-dimensional

theories with self-dual tensors. Our interest in these models comes from the puzzle raised by the low-

energy dynamics of a stack of M5-branes in M-theory, which, as we have seen, gives rise to a super-

conformal (2,0) theory whose dynamics has resisted an explicit description so far. Compactifying one

spatial direction on a circle the problem of determining the effective action for a theory with massless

self-dual tensors is mapped to the study of massive towers of tensors coupled to five-dimensional mass-

less gauge fields. This approach has also led us to explore in greater detail the dynamics of massive

field at the quantum level and to discover an interesting extension of the known results about parity

anomaly in five dimensions.

253
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On general grounds an indirect, transdimensional approach to a d-dimensional problem has the

obvious drawback of obscuring Lorentz invariance in d dimensions. In some situations, however,

this might be a blessing in disguise, as it might open up the possibility to capture symmetries or

dynamics that cannot be realized manifestly at the same time as Lorentz symmetry. This would be

in the same spirit, for example, of exceptional symmetries in eleven-dimensional supergravity, which

are most conveniently analyzed by sacrificing manifest eleven-dimensional Lorentz invariance, see for

instance [290] and references therein. From this perspective the setups studied in this work can be

considered as examples of a more general program aiming at capturing non-perturbative systems that

elude conventional techniques by applying a transdimensional approach.

In our work we have considered the simplest possible situations in which the d-dimensional problem

one wants to address is mapped to a (d− 1)-dimensional problem by means of compactification on a

circle or on an interval. In principle, more complicated variants of this strategy are conceivable, relating

the d-dimensional setup under examination to a (d− k)-dimensional problem by compactification on

a k-dimensional space. For example, one might consider a six-dimensional tensor theory compactified

to four dimensions on a two-torus. In this case we would be left with the task of coupling a double

tower of massive tensors to four-dimensional vectors. Even though this construction is clearly more

involved than the circle case it might unveil interesting connections with S-duality in four dimensions,

as already pointed out and exploited in [33]. Furthermore, a transdimensional treatment can offer

the possibility to explore the effect of non-locality in d dimensions in a controlled way by tuning the

couplings of massive Kaluza-Klein modes to the massless field in the lower-dimensional setup.

Before considering these fascinating possibilities, however, there are many open interesting direc-

tions that are more directly related to the topics examined in this thesis. These are discussed in the

following two sections.

12.2 Exploring F-theory vacua

The compactifications we have considered in part II exemplify in two different ways the fascinating

aspects of the duality between F-theory and M-theory. In the case of six-dimensional (1,0) effective ac-

tions the constraints coming from supersymmetry and anomaly cancellation offer an enhanced control

with respect to four-dimensional F-theory setups. It allows us to appreciate explicitly the subtle inter-

play between perturbative and non-perturbative physics, quantum corrections and classical geometry.

Our analysis relies crucially on the fact that in the five-dimensionalN = 2 theory all information about

the couplings in the vector-tensor sector is encoded in the Chern-Simons coefficients for the vectors.

By the same token, in the six-dimensional action the topological Green-Schwarz term can be used to

read off the anomaly coefficients aα, bα that also govern the kinetic terms for tensor multiplet fields.

In summary, topological terms in six and five dimensions are enough to reconstruct the dynamics of

vector and tensor multiplets. This is a powerful simplification, since quantum corrections to such

topological couplings are restricted and subject to non-renormalization arguments. As a result, they

can be computed perturbatively at one-loop without the need to address other difficulties related to
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higher orders in perturbation theory and the non-renormalizability of the models under examination.

We are confident that in principle also in the hypermultiplet sector of the theory the same match

between quantum corrections induced by massive Kaluza-Klein modes on the F-theory side and clas-

sical geometry on the M-theory side can be performed. It is nonetheless a hard task to verify this

explicitly since we have much less control over five-dimensional quantum corrections in this sector,

especially regarding the hypermultiplet moduli space metric. One is led to infer that classical ge-

ometry on the M-theory side contains more information about the quantum properties of the UV

completion of the five-dimensional theory than can be extracted from a field-theoretical analysis with

straightforward techniques.

Incidentally it is interesting to notice that similar considerations prevent us from a straightforward

generalization of the landscape analysis of section 10.3 from five to three dimensions. Note in fact that

in the three-dimensional theory Chern-Simons terms are also generated at one loop. It was shown in

[137, 140] that they capture information about the four-dimensional chiral spectrum and its anomalies.

Focussing as in five dimensions on the Coulomb branch, the Chern-Simons terms are specified by a

constant matrix ΘAB for the coupling
∫

ΘAB A
A ∧ FB. These encode both the four-dimensional

gaugings of axions, as well as the one-loop contributions from integrated out massive matter. As in

five dimensions this matter includes modes that become massive in the Coulomb branch and fields

that are Kaluza-Klein modes. However, in contrast to five dimensions one cannot infer all relevant

information for the four-dimensional Green-Schwarz mechanism from the Chern-Simons terms alone

[291, 140]. The four-dimensional analogs of aα, bα introduced in (10.35) do not appear in Chern-Simons

terms and one needs to extend the analysis to other non-topological couplings of the effective action.

Including these couplings one could proceed in a similar manner as in the five-dimensional case and

check if a given three-dimensional theory can effectively arise from a four-dimensional anomaly-free

theory.

For the sake of simplicity we have restricted our analysis of six-dimensional (1,0) F-theory vacua

to the case of a semi-simple non-Abelian gauge group. The inclusion of Abelian factors makes the

anomaly pattern of the theory richer and opens up the possibility to extend the dictionary between

anomalies and geometry. We refer the reader to [183] for a detailed discussion. At the level of the

effective action obtained via M-theory/F-theory duality the effect of Abelian factors in the gauge group

has been analyzed in [187], where the generalization to a rational—as opposed to holomorphic—zero

section of the fibration has been discussed too. The one-loop results of chapter 9 have been used

to argue that, in the case of a rational zero section, a finite shift in the Chern-Simons terms can be

induced by a non-standard mass hierarchy between Kaluza-Klein excited modes and modes that get

massive upon gauge symmetry breaking.

F-theory vacua could also be useful in the study of interacting tensor theories in six dimensions.

In this work we have advanced a proposal for the study of non-Abelian tensor theories in relation

to (2,0) theories. It is nonetheless expected that non-Abelian tensor dynamics can be found also in

theories with (1,0) supersymmetry. The superconformal theories of [259, 292] provide an example

of (1,0) theories in which tensors are gauged under a non-Abelian group. It would be interesting to
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realize these model in F-theory and study their M-theory dual in five dimensions. This program is

closely related to the recent progress in engineering (1,0) theories with non-Abelian tensor in F-theory:

we refer to reader to [293] and references therein. In order to address these setups from the point

of view of the M-theory/F-theory duality it would be probably beneficial to generalize the one-loop

computations of chapter 9 to the case in which the external vectors are associated to a non-Abelian

gauge group. In particular, one might study the one-loop effects induced by minimal coupling to non-

Abelian tensors and possibly test them against a geometric prediction. This program has the potential

to cast some light on five-dimensional interactions coming from circle reduction of non-Abelian tensor

theories.

The other F-theory setup we have studied in this work, four-dimensional compactifications on

Spin(7) manifolds, also presents many interesting open problems. Arguably, one of the most pressing

issues that deserves a better understanding is the study of Spin(7) resolutions for the geometries we

have considered in chapter 8. Let us remind the reader that the constructions of Spin(7) manifolds

originally proposed in [216] also included isolated orbifold points coinciding with the fixed points of

the antiholomorphic involution. Showing that these can be resolved in a Spin(7)-compatible fashion

was a crucial task in [216]. We have not included a study of these modes in this work, but it would be

very interesting to understand how they modify the four-dimensional effective theory. In particular,

we found that if the antiholomorphic involution has only isolated fixed points on the Calabi-Yau

fourfold the torus must be pinched over these points. This suggests an interesting link between the

gauge theory dynamics and the singularities that need to be resolved in a Spin(7)-compatible way

to obtain a smooth geometry. As for ordinary non-Abelian gauge theory singularities of elliptically

fibered Calabi-Yau fourfolds, F-theory might be well-defined on the singular Spin(7) geometry if one

can identify the new light states arising near the singularities.

The emergence of an interval in the duality between F-theory and M-theory for Spin(7) manifolds

that are quotients of Calabi-Yau fourfolds is one of the main insights of chapter 8. It is most clearly

understood in the situations in which the torus fiber is quotiented to a cylinder over the fixed loci

of the restriction of the antiholomorphic involution to the base of the elliptic fibration. As discussed

in section 8.2.2, however, other geometric setups are possible. The appearance of a Klein bottle as a

possible quotient of the torus is a particularly intriguing possibility. It might be possible to exploit,

for instance, some of the results of [294] to look for a physical interpretation of this case. Let us point

out that maybe compactification on an interval has to be replaced with another prescription such that

an N = 1 theory can be obtained in three dimensions. It would be interesting to explore different

possibilities, for instance circle Scherk-Schwarz reductions.

Some further insights about F-theory on Spin(7) manifolds can come from the study of the corre-

sponding weakly coupled Type IIB setups, when they exist. Indeed, in chapter 8 we have been able

to identify the objects wrapping the singular loci of the antiholomorphic involution. As we have seen,

in some cases they have a simple interpretation in Type IIA language as O6-planes. It is known that

a Type IIA O6-plane lifts to a smooth geometry in M-theory described by the Atiyah-Hitchin metric.

It is thus conceivable that the information obtained from the analysis of weakly coupled setups might

provide valuable hints in the search for a Spin(7)-compatible resolution of singularities.
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From a more phenomenological perspective the fact that our Spin(7) constructions are based on

compactifications that, at a general point in moduli space, preserve only two supercharges means

they potentially could be useful for understanding vacua with high-scale supersymmetry breaking in

string theory. Although we argued that supersymmetry is restored in the simplest cases we cannot

exclude that more complicated constructions can be found where the four-dimensional limit preserves

no supersymmetry. Indeed if supersymmetry were completely broken on the boundary of the interval

on the M-theory side, for example by fractional branes, it could lead to a scenario where the size

of the interval on the F-theory side would interpolate between N = 0 and N = 1 four-dimensional

supersymmetry. The non-supersymmetric non-compact limit could be phenomenologically appealing.

It is also intriguing that some of the weakly coupled Spin(7) setups discussed in chapter 8 incor-

porate objects such as X5-planes. An interesting aspects of the latter is that they support non-BPS

but stable states [238, 239, 240]. Recall that the stability of the state is guaranteed as it is the lightest

state charged under the U(1) arising from the twisted sector of the X5-plane. It is a particle in Type

IIB, similar to a D0-brane in Type IIA, which is confined to lie on the X5-plane. Such a state can

be thought of as the S-dual to an open string stretching between the D5-brane and its orientifold

image across the O5-plane. The ground state of this string is projected out once the D5-brane sits

on top of the O5-plane, and so the lightest state is an excited oscillator. It is interesting that such a

stable non-supersymmetric state arises naturally in such setups. In our setups these non-BPS states

are localized at the boundaries of the interval, and therefore their phenomenological impact is diluted

by the interval length. However, it is conceivable that in alternative constructions one finds these

non-BPS states in the bulk such that this dilution does not occur.

In summary, we believe that F-theory, alongside with its numerous and powerful applications to

particle physics model building within the framework of the MSSM, is potentially interesting to address

different questions ranging from the exploration of the general structure of vacua in string theory to

the realization of unconventional setups that might be useful in extending the MSSM paradigm in

string phenomenology.

12.3 Uncovering tensor theories

The duality between M-theory and F-theory incorporates naturally a transdimensional treatment of

the dynamics. This has been inspirational for our proposal of studying six-dimensional theories with

tensors by means of five-dimensional constructions. The main idea underlying our strategy is the

consideration of the possibility that, for non-Abelian tensor theories in six-dimensions, a Lagrangian

formulation of the dynamics could be incompatible with a manifest realization of all spacetime sym-

metries.

Ideally, this approach would yield a five dimensional action that in a suitable limit is able to encode

correctly the dynamics of tensors and to realize in a non-manifest way all the expected symmetries.

A possible way to restore the symmetries that are not manifestly realized in the five dimensional

action has been suggested in [277]. Upon circle compactification, a subset of the generators of the
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six-dimensional superconformal group is spontaneously broken, leaving only a subalgebra of manifestly

realized symmetries in the five dimensional action. In order to restore all symmetries one might ‘aver-

age’ over the five-dimensional setups obtained by breaking the superconformal algebra in all possible

inequivalent ways. Clearly, it is not straightforward to make precise this notion of ‘average’ over five-

dimensional theories. In [277], however, a first concrete step has been made. By exploiting techniques

inspired from harmonic superspace, the R-symmetry group SU(2)R of the five-dimensional action has

been enhanced to the expected R-symmetry group USp(4)R. This can be done by integrating over the

coordinates of an auxiliary four-sphere that can be intuitively though of as the space of all possible

breakings USp(4)R → SU(2)R. It was also argued that supersymmetry might be restored resorting

to this framework.

The restoration of Lorentz symmetry seems to be much more challenging. In particular, the un-

democratic treatment of zeromodes as gauge connections is an essential ingredient in our construction

but seems to be in apparent contrast with six-dimensional Lorentz symmetry. Nonetheless the idea

of ‘averaging’ might be applied to this task as well. Recall that, from a purely five-dimensional per-

spective, all the dynamics about the vector-tensor sector of the theory is encoded in some invariant

tensors. Their components are labelled by collective indices that also contain Kaluza-Klein levels. It is

thus conceivable that a suitable integration over the space of such invariant tensors might be a way to

restore full six-dimensional Lorentz invariance. Ideally, the same strategy could be used to achieve the

full expected superconformal group. Unfortunately we do not have a concrete proposal to implement

this strategy, but it can represent an interesting direction for future investigation.

The problem of symmetry restoration is also linked to the role of gravity in this kind of construc-

tions. Even though the usual definition of (2,0) theories implies a decoupling of gravitational degrees

of freedom, it might be beneficial to study five-dimensional approaches to matter-coupled (2,0) super-

gravity theories. This might shed light on the ultimate relevance of the compensating multiplets that

are needed to restore five-dimensional superconformal invariance. For instance, we have noticed in

section 11.3.2 that the Kaluza-Klein vector fits naturally into a compensating vector multiplet together

with the radius of the compactification. It can be interesting to explore what is the relation between

this compensator and the gravity multiplet. A five-dimensional approach to six-dimensional (2,0)

supergravities is likely to require control over massive gravitons and gravitini. The latter can also play

a role in supersymmetry restoration. For instance, it was argued in [130] in a different context that a

better understanding of massive spin-3/2 supermultiplets is needed to study off-shell supersymmetry

enhancement on Calabi-Yau threefolds with vanishing Euler number.

Another point that deserves a better comprehension is the relation between the Kaluza-Klein in-

spired approach followed in this work and instantons in maximally supersymmetric Yang-Mills theory,

or MSYM for short. As we know from [33, 34] among the non-perturbative states of MSYM there ex-

ists a tower of states whose masses have the form mn = 4π2n/g2 and are identified with Kaluza-Klein

modes of the reduction on a circle with radius R = g2/(4π2). According to the instanton interpreta-

tion, these massive degrees of freedom have a very different status compared to the massless degrees

of freedom of the Yang-Mills multiplet, since loosely speaking an instanton can be thought of as a

composite object made out of quanta of the gauge field and their superpartners. Our proposal treats
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zeromodes and excited modes undemocratically at the level of interactions but considers all of them

as fundamental fields in the Lagrangian formulation. This perspective might have the advantage of

making the study of interactions between massless and massive states easier.

It is a natural question whether the simultaneous inclusion of zeromodes and excited modes in

a five-dimensional Lagrangian yields to an overcounting of the massive states of a (2,0) theory on

a circle. In order to address this problem we need information over the non-perturbative states of

non-Abelian gauge fields coupled to an infinite tower of massive tensors, which lies beyond the scope

of this work but might be seen as an interesting future direction. As a preliminary step it could

be useful to study in closer detail some non-perturbative aspects of supersymmetric gauge theories

coupled to a finite number of massive self-dual tensors. For instance, it might be possible to formulate

these theories on suitable curved spaces (e.g. a five-sphere) while keeping a fraction of supersymmetry

and exploit localization techniques to compute five-dimensional indices. This sort of calculation might

shed light on the ‘building blocks’ associated to the degrees of freedom of massive tensors coupled to

a non-Abelian gauge group.

Since their discovery via string theory and M-theory, superconformal (2,0) theories have proven

to be a remarkable theoretical challenge. Nothing seems to be trivial about these theories and one

has to face several puzzles in the search for an explicit formulation of their dynamics. It is plausible

that all these difficulties will have to be overcome at once to get the desired answer. We can therefore

presume that, if we were able to achieve this goal, we would obtain deep insights about interacting

quantum field theories. It seems that string theory still has many valuable lessons to teach us.
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APPENDIX A

Notation, conventions, and useful identities

This appendix collects our notation and conventions concerning (pseudo)Riemannian geometry, dif-

ferential forms, five-dimensional spinors. We also present a detailed derivation of the dimensional

reduction of the Einstein-Hilbert term on a Ricci-flat compact manifold.

A.1 General conventions for metric, curvature, differential forms

In any number of dimensions we always adopt the mostly plus signature for the spacetime metric.

The Christoffel symbols Γρµν , the Riemann tensor Rρσµν , the Ricci tensor Rµν , and the Ricci scalar

R are defined in terms of the metric gµν by

Γρµν = 1
2g
ρσ (∂µgσν + ∂νgσµ − ∂σgµν) ,

Rρσµν = ∂µΓρσν − ∂νΓρσµ + Γρλµ Γλσν − Γρλν Γλσµ ,

Rµν = Rρµρν , R = gµν Rµν , (A.1)

respectively. Unless otherwise stated, the symbol εµ1...µN always refers to the Levi-Civita tensor in N

dimensions. In any local coordinate system x0, . . . , xN−1 it satisfies

ε01...(N−1) = +
√−g , (A.2)

where g denotes the determinant of the matrix gµν of the metric components in the chosen local

coordinates. A useful identity obeyed by the Levi-Civita tensor is

εµ1...µn1ρ1...ρn2 εµ1...µn1σ1...σn2
= −n1!n2! δ

[ρ1

[σ1
. . . δ

ρn2 ]

σn2 ] , (A.3)

where indices are raised and lowered with the metric and its inverse and n1, n2 are any non-negative

integers such that n1 + n2 = N . Let us stress that we always symmetrize and antisymmetrize indices

with weight one, for instance X[µν] = 1
2(Xµν −Xνµ).
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A differential p-form λ is expanded onto a basis of coordinate differentials according to

λ = 1
p! λµ1...µp dx

µ1 ∧ · · · ∧ dxµp . (A.4)

The wedge product of differential forms is given in components by

(λ ∧ λ′)µ1...µp+p′ = (p+p′)!
p! p′! λ[µ1...µp λ

′
µp+1...µp+p′ ]

, (A.5)

where λ is a p-form and λ′ is a p′-form. The exterior differential of a p-form λ satisfies

(dλ)µ0µ1...µp = (p+ 1)! ∂[µ0
λµ1...µp] . (A.6)

We adopt the following definition of the Hodge star operator

(∗λ)ν1...νq =
1

p!
λµ1...µp εµ1...µpν1...νq , (A.7)

where λ is a p-form and q = N − p. As a result, given two p-forms λ and ω, we have

λ ∧ ∗ω = 1
p! λ

µ1...µp ωµ1...µp ∗ 1 , ∗1 =
√−g dx0 ∧ · · · ∧ dxN−1 . (A.8)

The vielbein eaµ (where a is a flat tangent index) is related to the metric by the familiar relation

gµν = ηab e
a
µ e

b
ν , (A.9)

where ηab is the flat metric diag(−,+, . . . ,+). The torsionless spin connection one-form ωab = ωabµdx
µ

satisfies ωab = ω[ab] and is determined by the vielbein through

dea + ωab ∧ eb = 0 . (A.10)

The curvature two-form Rab satisfies

Rab = dωab + ωac ∧ ωcb = 1
2 e

a
ρ eb

σ Rρσµν dx
µ ∧ dxν , (A.11)

where in the last expression Rρσµν is the Riemann tensor and eb
σ is the inverse vielbein determined

by eb
σ eaσ = δab .

A.2 Spinors in five dimensions

Five-dimensional gamma matrices γa (a = 0, . . . , 4) are constant, complex-valued 4 × 4 matrices

satisfying the anticommutation relation

{γα, γb} = 2ηab I . (A.12)

We use the shorthand notation γa1...ap = γ[a1 . . . γap], and we choose a representation of gamma

matrices such that

γabcde = i εabcde I . (A.13)
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We further assume the hermiticity property

γ0γa(γ0)−1 = −(γa)† . (A.14)

The charge conjugation matrix C in five dimensions acts on gamma matrices according to

CγaC−1 = +(γa)T . (A.15)

We use a representation such that C is real and satisfies

CT = −C = C−1 . (A.16)

In our work we encounter three different kinds of symplectic indices. First of all, we have indices

i, j = 1, . . . , 4 of the 4 representation of USp(4)R. Secondly we find two different copies of the 2

representation of SU(2)R, labeled by indices a, b = 1, 2 and ȧ, ḃ = 1, 2. Each symplectic group is

endowed with a primitive antisymmetric invariant: Ωij for USp(4)R and εab, εȧḃ for the two copies of

SU(2).

For all symplectic groups we adopt the same conventions regarding the inverse of the antisymmetric

invariant, the raising and lowering of indices, and the reality properties. For definiteness, we write

down the conventions for USp(4)R. The inverse Ωij of Ωij is defined by the relation

ΩikΩ
jk = δji . (A.17)

Given any object T i with (at least) one symplectic index, raising and lowering of i are performed

according to the NW-SE convention:

T i = ΩijTj , Ti = T jΩji . (A.18)

Complex conjugation interchanges upper and lower symplectic indices. The antisymmetric invariant

satisfies the reality property

(Ωij)
∗ = Ωij . (A.19)

An explicit realization of the invariants Ωij , εab with all required properties is furnished by

Ωij =


0 1
−1 0

0 1
−1 0

 = Ωij , εab =

(
0 1
−1 0

)
= εab . (A.20)

The second expression can also be applied to εȧḃ, ε
ȧḃ.

Let us now discuss in more detail symplectic spinors, i.e. spinors carrying one of the three kinds

of symplectic indices listed above. For definiteness, we write down equations with i, j indices, but the

same conventions apply to a, b and ȧ, ḃ indices. The Dirac bar of a symplectic spinor λi is defined

according to

λ̄i = (λi)
†γ0 . (A.21)
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If symplectic indices are omitted in a spinor bilinear, a NW-SE contraction is understood,

λ̄χ = λ̄iχi . (A.22)

The Fierz rearrangement formula for anticommuting spinors in five dimensions reads

(ψ̄1ψ2)(ψ̄3ψ4) = −1
4(ψ̄1ψ4)(ψ̄3ψ2)− 1

4(ψ̄1γ
aψ4)(ψ̄3γaψ2) + 1

8(ψ̄1γ
abψ4)(ψ̄3γabψ2) , (A.23)

where spinors ψ1, ψ2, ψ3, ψ4 can carry arbitrary indices and/or labels (e.g. Kaluza-Klein levels). In our

conventions, complex conjugation acting on the product of anticommuting variables does not change

their order. Therefore, the reality of bilinears is determined by the basic relation 1

(λ̄iχj)
∗ = χ̄jλi . (A.24)

The Majorana condition for a symplectic spinor λi reads

λ̄i = Ωij(λj)
TC . (A.25)

As a result, if λi, χj are Majorana, we have the flip property

λ̄iγµ1...µpχj = χ̄jγµp...µ1λi . (A.26)

Note that an extra minus sign is needed if the USp(4)R indices i, j are contracted on both sides

according to the NW-SE convention. This implies that λ̄iχi is purely imaginary for real λi, χi. Any

symplectic spinor λi can be decomposed in a SO(2) doublet of Majorana symplectic spinors λi α,

α = 1, 2:

λi = 1√
2

(
λi α=1 + iλi α=2

)
, λ̄i α = Ωij(λαj )TC . (A.27)

Multiplication of λi by a U(1) phase is equivalent to an SO(2) rotation of the doublet λi α. With this

understanding, equations (11.21), (11.22) hold also if X is a symplectic spinor.

Let us conclude this section with some identities that are useful in chapter 11. With the definitions

(11.20) and (11.23) one infers the following identities to match the SO(2) and the complex notations.

They are written with SU(2)R indices for definiteness, but they hold for arbitrary symplectic indices.

One has

δαβx
αyβ = 2Re(x̄y) , εαβx

αyβ = 2Im(x̄y) ,

δαβχ̄
aαλβa = 2iIm(χ̄aλa) , εαβχ̄

aαλβa = −2iRe(χ̄aλa) ,

δαβψ̄
axαλβa = 2iIm(ψ̄ax̄λa) , εαβψ̄

axαλβa = −2iRe(ψ̄ax̄λa) , (A.28)

where x, y are complex bosonic fields, χ, λ are complex spinors, ψ is a Majorana spinor. The same

identities hold when SU(2)R indices are contracted with a tensor that satisfies a pseudoreality condition

(e.g. Y I ab).

1Care has to be taken in raising/lowering indices with Ω in equations involving complex conjugation. For example,
moving the index j in (A.24) gives (λ̄iχj)∗ = −χ̄jλi.
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A.3 More details about the reduction of the Einstein-Hilbert term

This section is devoted to a detailed account on the dimensional reduction of the D-dimensional

Einstein-Hilbert action to d dimensions on a k-dimensional compact Ricci-flat manifold. For ease of

reference we record the Einstein-Hilbert action

S =
1

2

∫
MD

R̂ ∗̂ 1 , (A.29)

together with the metric Ansatz

dŝ2 = gµν(x)dxµdxν + gmn(y;X(x))dymdyn , (A.30)

where xµ (µ = 0, . . . , d− 1) are coordinates in external spacetime, ym (m = 1, . . . , k) are coordinates

on the internal space, and XM are local coordinates on the moduli space of the internal metric. The

notation gmn(y;X(x)) signals that the internal metric depends parametrically on the coordinates XM,

which are in turn allowed to have a non-trivial dependence on external spacetime. The indexM runs

over all massless metric moduli of the compactification.

It is convenient to introduce the shorthand notation

HMN = gmpgnq
∂gmn
∂XM

∂gpq
∂XN

, HM = gmn
∂gmn
∂XM

. (A.31)

Making only use of the chain rule,

∂µgmn =
∂gmn
∂XM

∂µX
M , (A.32)

and of the expression of the Ricci scalar in terms of derivative of the metric one can prove the identity

R̂ = R+
3

4
HMN ∂µXM∂µXN −

1

4
HMHN ∂µXM∂µXN − gmngµν∇µ

(
∂gmn
∂XM

∂νX
M
)
. (A.33)

In this expression and in the following R denotes the Ricci scalar of the external metric. The internal

Ricci scalar is dropped since it vanishes by assumption. Let us remark that all terms involving ∂µgνρ

and ∂mgnp in the intermediate steps of the computation are rearranged into the external Ricci scalar,

the (vanishing) internal Ricci scalar, and the external covariant derivative ∇µ.

The last term in (A.33) can be manipulated to give

− gmngµν∇µ
(
∂gmn
∂XM

∂νX
M
)

= −gmn ∂2gmn
∂XM∂XN

∂µX
M∂µXN −HM∇µ∂µXM . (A.34)

In order to treat the last term we need an integration by parts with respect to integration over external

spacetime. We must take into account the fact that the D-dimensional Ricci scalar is multiplied by

volume form of the total space, and that the internal volume form depends on external coordinates,∫
Md

ddx
√−g

∫
Mk

dky
√
gHM∇µ∂µXM = −

∫
Md

ddx
√−g

∫
Mk

dky∇µ(
√
gHM)∂µX

M . (A.35)
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One can then compute

∇µ(
√
gHM) =

∂

∂XN
(
√
gHM)∇µXN

=
√
g

(
1

2
HMHN −HMN + gmn

∂2gmn
∂XM∂XN

)
∇µXN , (A.36)

and therefore infer that integration by parts justifies the replacement

−HM∇µ∂µXM →
(

1

2
HMHN −HMN + gmn

∂2gmn
∂XM∂XN

)
∂µX

M∂µXN . (A.37)

Remarkably, the term containing the second derivative of the internal metric with respect to the

moduli drops out, and we are left with the simple result

R̂ = R− 1

4
(HMN −HMHN ) ∂µX

M∂µXN . (A.38)

Integrating this quantity against the D-dimensional volume form gives the action

S =
1

2

∫
Md

ddx
√−gL (A.39)

with a Lagrangian

L = V R− 1

4
∂µX

M∂µXN
∫
Mk

dky
√
g(HMN −HMHN ) , (A.40)

where V is the volume of the internal space, V =
∫
Mk

dky
√
g.

The next step is a Weyl rescaling of the external metric that casts the Einstein-Hilbert term for

d-dimensional gravity in canonical form. For the sake of completeness, we record the transformation

rules for the Riemann tensor, the Ricci tensor, and the Ricci scalar under the Weyl rescaling

gold
µν = e2ωgnew

µν . (A.41)

One finds, with obvious notation,[
R ρ

σµν

]old
=
{
Rρ σµν − 2gσ[µ

(
∇ρω∇ν]ω −∇ρ∇ν]ω

)
+ 2δρ[µ

(
∇ν]ω∇σω −∇ν]∇σω

)
− 2δρ[µgν]σ∇λω∇λω

}new
,

Rold
µν =

{
− gµν

[
(d− 2)∇λω∇λω +∇λ∇λω

]
+ (d− 2) (∇µω∇νω −∇µ∇νω)

}new
,

Rold = e−2ω
{
R− (d− 1)(d− 2)∇λω∇λω − 2(d− 1)∇λ∇λω

}new
. (A.42)

The Lagrangian (A.40) in terms of the new metric reads

L = eω(d−2)V
[
R− (d− 1)(d− 2)∂µω∂

µω − 2(d− 1)∇µ∂µω
]

− 1

4
eω(d−2)∂µX

M∂µXN
∫
Mk

dky
√
g(HMN −HMHN ) . (A.43)
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As we can see, in order to achieve the canonical Einstein-Hilbert term we have to set

ω = − 1

d− 2
logV . (A.44)

With this assignment the term ∇µ∂µω in (A.43) can be neglected because it is a total derivative. In

conclusion, we find

L = R− d− 1

d− 2
∂µ logV ∂µ logV − 1

4V ∂µX
M∂µXN

∫
dky
√
g(HMN −HMHN ) , (A.45)

which corresponds to the result (4.35) given in the main text.
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APPENDIX B

Material for the one-loop computation of chapter 9

This appendix collects results that have been useful in the computation of the one-loop corrections to

five-dimensional Chern-Simons couplings in chapter 9. As a result we always work in five dimensions

in this appendix.

B.1 Gravitational perturbative expansion

In this section we record some useful identities about the gravitational perturbative expansion around

flat spacetime. More precisely, we assume a metric of the form

gµν = ηµν + hµν , (B.1)

and compute some geometrical quantities derived from the metric in a formal power series in hµν . On

the right hand side of the following identities, indices are raised and lowered with the flat metric ηµν

and its inverse. For instance, hµν = hλτη
λµητν .

The total inverse metric and volume form are given by

gµν = ηµν − hµν + hµλhλ
ν +O(h3) ,

√−g = 1 + 1
2h

µ
µ + 1

8(hµµh
ν
ν − 2hµνhµν) +O(h3) . (B.2)

The Christoffel symbols and the Riemann tensor are expanded as

Γρµν = 1
2(ηρσ − hρσ)(∂µhνσ + ∂νhµσ − ∂σhµν) +O(h3) ,

gρτR
τ
σµν =

[
− 1

2∂ρ∂µhσν − 1
8∂λhµρ∂

λhνσ + 1
8∂µhσλ∂νhρ

λ − 1
4∂ρhµλ∂νhσ

λ + 1
8∂ρhνλ∂σhµ

λ

+ 1
4∂µhρλ∂

λhνσ − 1
4∂ρhνλ∂

λhµσ − (µ↔ ν)
]
− (ρ↔ σ) +O(h3) . (B.3)
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In order to couple spinors to gravity we need to introduce a vielbein eaµ. It is determined by

the metric only up to local Lorentz transformations. We fix this ambiguity by imposing the gauge

condition

ηabδ
b
[λe

a
µ] = 0 , (B.4)

where the Kronecker delta plays the role of the vielbein for the flat metric ηµν . We thus find the

following expansions of the vielbein and its inverse,

eaµ = ηabδb
λ
[
ηλµ + 1

2hλµ − 1
8hλτhµ

τ +O(h3)
]
,

ea
µ = ηabδ

b
λ

[
ηλµ − 1

2h
λµ + 3

8h
λτhµτ +O(h3)

]
. (B.5)

Finally, let us record the expansion of the flat components of the spin connection, which enter the

fermion covariant derivatives:

ec
τωτab = δc

ρδa
µδb

ν
[
− 1

2∂µhνρ − 1
2hντ∂

τhµρ + 1
2hρτ∂µhν

τ

+ 1
2hντ∂µhρ

τ + 1
4hντ∂ρhµ

τ − (µ↔ ν) +O(h3)
]
. (B.6)
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B.2 Feynman rules

In this section we collect the Feynman rules that can be extracted from the massive actions (9.4), (9.8),

(9.6). The propagators are read from the free actions where Aµ = 0 and gµν = ηµν . The interaction

vertices are obtained by expanding (9.4), (9.8), (9.6) up to second order in the metric perturbation

hµν , introduced in (9.25).

In all Feynman rules symmetrization with weight one on graviton polarization indices is understood.

Moreover, the momenta of vectors and gravitons are always taken to be entering the vertex, while the

momenta of massive fields flow in the same direction as specified by the charge arrow.

B.2.1 Spin-1/2 fermion

p =
−/p+ ic1/2m

p2 +m2

λ

p

k
= −qγλ

µν

p

k
= 1

2

(
ic1/2m+ 1

2
/P
)
ηµν − 1

4γµPν , P ≡ 2p+ k

µ2ν2 p

p1

p2

µ1ν1

= 1
4

(
ic1/2m+ 1

2
/P
)

(ηµ1ν1ηµ2ν2 − 2ηµ1µ2ην1ν2)

+
[

1
16γµ1µ2λp

λ
1 − 1

8γµ1Pν1ηµ2ν2 + 3
16γµ1Pµ2ην1ν2 + (1↔ 2)

]
,

P ≡ 2p+ p1 + p2

µ0 p

p1

p0

µ1ν1

= −1
2qηµ1ν1γµ0 + 1

2qηµ0µ1γν1
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B.2.2 Massive self-dual tensor

In the following expression antisymmetrization with weight one on tensor polarization indices is un-

derstood.

ρρ′ σσ′
p =

1

p2 +m2

{
−icBερρ′σσ′λpλ − 2imηρσηρ′σ′ − 4im−1ηρσpρ′pσ′

}

λ

p

ρρ′

σσ′

k
= −1

4 icBqερρ′σσ′λ

µν

p

ρρ′

σσ′

k
= −1

4 imηµνηρσηρ′σ′ + imηµρηνσηρ′σ′

µ2ν2 p

ρρ′

σσ′

p1

p2

µ1ν1

= −1
8 im(ηµ1ν1ηµ2ν2 − 2ηµ1µ2ην1ν2)ηρσηρ′σ′ − imηµ1ρην1σηµ2ρ′ην2σ′

+
[

1
2 imηµ1ν1ηµ2ρην2σηρ′σ′ − imηµ1µ2ην1ρην2σηρ′σ′ + (1↔ 2)

]

µ0 p

ρρ′

σσ′

p1

p0

µ1ν1

= 0
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B.2.3 Spin-3/2 fermion

ρ σ
p =

1

p2 +m2

{(
ηρσ +

pρpσ
m2

)
(−/p+ ic3/2m)

+
1

4

(
γρ +

ipρ
c3/2m

)
(−/p− ic3/2m)

(
γσ +

ipσ
c3/2m

)}

λ

p

ρ

σ

k
= −qγρλσ

µν

p

ρ

σ

k
= 1

2

(
1
2γρλσP

λ − ic3/2mγρσ

)
ηµν + 1

4γρσµPν

− 1
4ηµνγρkσ + 1

4ηµνγσkρ + 1
4ηµργνkσ − 1

4ηµσγνkρ − 1
4ηµργσkν + 1

4ηµσγρkν

+ 1
2

(
1
2γσλµP

λ − ic3/2mγσµ

)
ηνρ − 1

2

(
1
2γρλµP

λ − ic3/2mγρµ

)
ηνσ ,

P ≡ 2p+ k

µ2ν2 p

ρ

σ

p1

p2

µ1ν1

= 1
4

(
1
2γρλσP

λ − ic3/2mγρσ

)
(ηµ1ν1ηµ2ν2 − 2ηµ1µ2ην1ν2)

+
[
− 1

8γρ(p1 + p2)σ (ηµ1ν1ηµ2ν2 − 2ηµ1µ2ην1ν2)

+ 3
8 ic3/2mγσµ1 ηµ2ρ ην1ν2 + 1

4 ic3/2mγµ1µ2 ην1σ ην2ρ

− 1
8γσµ1µ2 Pν1 ην2ρ + 1

8γσµ1µ2 Pν2 ην1ρ + 1
8γµ1µ2λ P

λ ην1ρ ην2σ − (ρ↔ σ)
]

+
[
− 1

16γρσµ1µ2λ p
λ
1 ην1ν2 + 1

8γρσµ1 Pν1 ηµ2ν2 − 3
16γρσµ1 Pµ2 ην1ν2 + (1↔ 2)

]
+
[
− 1

8γσ p1µ1 ην1ρ ηµ2ν2 − 1
16/p1

ηµ1µ2 ην1σην2ρ + 3
16γσ p1µ2 ηµ1ρ ην1ν2

+ 5
16γσp1µ1 ηµ2ρ ην1ν2 − 1

8γµ2p1µ1 ην1σ ην2ρ − 1
4γσp1µ2 ην2ρ ηµ1ν1

+ 1
4γµ1p1µ2 ην2ρ ην1σ + 1

8γµ2p1 ρ ηµ1σ ην1ν2 − 1
8γµ1p1 ρ ην1σ ηµ2ν2

− 1
8γµ2p1 ρ ηµ2σ ηµ1ν1 + 1

4γµ1p1 ρ ηµ2σ ην1ν2 − 1
4 ic3/2mγσµ1 ην1ρ ηµ2ν2

+ 3
16γσµ2λ P

λ ηµ1ρ ην1ν2 − 1
8γσµ1λ P

λ ην1ρ ηµ2ν2 − (ρ↔ σ) + (1↔ 2)
]
,

P ≡ 2p+ p1 + p2

µ0 p

ρ

σ

p1

p0

µ1ν1

= −1
2qηµ0µ1γν1ρσ + 1

2qηµ1ν1γµ0ρσ − 1
2qηµ1ργµ0ν1σ + 1

2qηµ1σγµ0ν1ρ
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APPENDIX C

Examples of Spin(7) manifolds for F-theory

This appendix collects two explicit examples of elliptically fibered fourfolds endowed with an antiholo-

morphic involution which is well suited for the Spin(7) construction outlined in section 8.2.1.

C.1 A hypersurface in a P2,3,1 fibration of P1,1,1,1

Let us consider a simple example of the construction described in Section 8.2 in which the Calabi-Yau

fourfold Y4 is described by a polynomial in a toric ambient space constructed by fibering the weighted

projective space P2,3,1 over P1,1,1,1. In the language of toric geometry this is described by a reflexive

polyhedron with the set of rays given in Table C.1.

vertices coords. Q1 Q2

ν1 = ( 1, 0, 0, 0, 0 ) x 8 2
ν2 = ( 0, 1, 0, 0, 0 ) y 12 3
ν3 = (−2, −3, 0, 0, 0 ) z 0 1
ν4 = (−2, −3, −1, −1, −1 ) u1 1 0
ν5 = (−2, −3, 1, 0, 0 ) u2 1 0
ν6 = (−2, −3, 0, 1, 0 ) u3 1 0
ν7 = (−2, −3, 0, 0, 1 ) u4 1 0

Table C.1: Toric data for a reflexive polyhedron describing a P2,3,1 fibration of P1,1,1,1.

This gives a smooth ambient space in which the Calabi-Yau fourfold will be defined by a homoge-

neous degree (24, 6) polynomial in the (Q1, Q2) identifications. This polynomial may be brought into

Weierstrass form where now the coefficients f and g are degree 16 and 24, homogeneous polynomials

of the base coordinates u1, . . . , u4, respectively. A sufficiently general set of coefficients for these poly-
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nomials will then give a smooth Calabi-Yau fourfold. Next we impose a symmetry of this space under

the action of the antiholomorphic involution σ where

σ(u1, u2, u3, u4, x, y, z) = (ū2,−ū1, ū4,−ū3, x̄, ȳ, z̄) . (C.1)

This restricts the coefficients of the polynomial. However these coefficients remain general enough

that a generic polynomial is still non-singular. The identification σ has no fixed space on the base, as

the would-be fixed space u1 = u2 = u3 = u4 = 0 is removed by the Stanley-Reisner ideal. Every point

of the base then represents an example of situation (1) as described in section 8.2 and so the Spin(7)

holonomy manifold1 produced upon quotienting by σ is non-singular. This means that no additional

resolutions need to be performed.

C.2 A complete intersection in a P1,1,1,1 fibration of P1,1,2,2

Next let us consider a second construction in which the ambient space is formed by fibering P1,1,1,1 over

P1,1,2,2. In this case the Calabi-Yau is given by a complete intersection of two polynomials described

the following nef-partition in Table C.2.

nef-part. vertices coords. Q1 Q2

∇1 ν1 = (−1, −1, 0, −1, −2, −2 ) y1 1 0
ν2 = ( 0, 0, 0, 1, 0, 0 ) y2 1 0
ν3 = ( 1, 0, 0, 0, 0, 0 ) x1 1 1
ν4 = ( 0, 1, 0, 0, 0, 0 ) x2 1 1

∇2 ν5 = ( 0, 0, 0, 0, 1, 0 ) v1 2 0

ν6 = ( 0, 0, 0, 0, 0, 1 ) v2 2 0
ν7 = (−1, −1, −1, 0, 0, 0 ) z1 0 1
ν8 = ( 0, 0, 1, 0, 0, 0 ) z2 0 1

Table C.2: Toric data for a nef-partition describing a complete intersection in a P1,1,1,1 fibration of
P1,1,2,2.

The two polynomials P1 and P2 are then associated with the partitions ∇1 and ∇2 respectively.

These are both degree (4,2) under identifications (Q1, Q2).

In this case the base P1,1,2,2 has a complex one-dimensional holomorphic orbifold singularity at

y1 = y2 = 0 before considering any antiholomorphic quotient. This lifts to two separate complex

two-dimensional singular spaces in the total ambient space. One, which is associated with the Q1

identification, lies at y1 = y2 = x1 = x2 = 0 and the other, which is associated with the Q1 − Q2

identification, lies at y1 = y2 = z1 = z2 = 0.

Let us first consider the singular space which lies at y1 = y2 = x1 = x2 = 0. At this locus the

1Note that strictly speaking the quotient manifold is expected to have SU(4)× Z2 holonomy.
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polynomials can be written as

P1 = a1z
2
1 + b1z1z2 + c1z

2
2 P2 = a2z

2
1 + b2z1z2 + c2z

2
2 (C.2)

where a1,2 b1,2 and c1,2 are homogeneous quadratics in v1 and v2. The singularities of the ambient

space will then intersect both polynomials at the places where one of the roots of P1 sits on top of one

of the roots of P2. At these points the resultant of the pair of polynomials, given by

−a2b1b2c1 + a1b
2
2c1 + a2

2c
2
1 + a2b

2
1c2 − a1b1b2c2 − 2a1a2c1c2 + a2

1c
2
2 , (C.3)

will vanish. This resultant is a homogeneous octic in v1,2 so gives eight Z2 singular points on the

Calabi-Yau fourfold at which the pair of the polynomials hit the two-dimensional space of singularities

in the ambient space.

Next let us consider the singular space which lies at y1 = y2 = z1 = z2 = 0. As before both poly-

nomials will intersect the singularity of the ambient space when the resultant vanishes. This second

resultant is a homogeneous quartic in v1,2 so gives four Z2 singular points.

The Calabi-Yau fourfold may have extra singularities associated with the pinching of the torus. To

find out where this happens we may make use of the singularity classification described in [295]. This

shows that for a generic set of polynomial coefficients the torus pinches with a Type I1 singularity

over the intersection of a homogeneous degree (72, 0) polynomial in the (Q1, Q2) identification, with

the two polynomials that define the Calabi-Yau. Furthermore we find that this space intersects each

of the Z2 singular points described above.

We now impose a symmetry under the action of the antiholomorphic involution σ defined by,

σ(y1, y2, v1, v2, x1, x2, z1, z2) = (ȳ2,−ȳ1, v̄2, v̄1, x̄2,−x̄1, z̄2, z̄1) . (C.4)

As before this constrains the coefficients of the polynomials but does not alter the singularity structure

of the Calabi-Yau. We note also that in this case σ is not an involution on its own but that the

identification Q1 must be used to make σ2 = 1l.

The action of σ on the base gives a real one-dimensional fixed line which sits inside the holomorphic

orbifold singularity of P1,1,2,2. At most places over this fixed line the torus is unpinched and has no

fixed space. It represents an example of situation (2.1) described in Section 8.2. However when the

torus pinches over the fixed line of the base the pinched point on the torus becomes fixed under the

action of σ and so represents an example of situation (3). In additional, these fixed pinched points

on the torus also lie at the eight Z2 singular points at y1 = y2 = x1 = x2 = 0. By comparison the four

Z2 singular points, which lie at y1 = y2 = z1 = z2 = 0 are not fixed under σ but instead are mapped

pairwise into each other.

The quotient of this Calabi-Yau by σ then gives a singular Spin(7) manifold. The presence of

these singularities is not a problem in F-theory as this is defined on singular spaces. However in order

to use the M-theory duality we have described to find the effective action these singularities must be

resolved in an appropriate fashion. It is unclear how one would carry out this resolution or even if

such a resolution can be performed at all for this particular Spin(7) manifold. For this reason it would

be extremely important to investigate these resolutions further.
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[212] R. Blumenhagen, M. Cvetič, P. Langacker, and G. Shiu, “Toward realistic intersecting D-brane

models,” Ann.Rev.Nucl.Part.Sci. 55 (2005) 71–139, arXiv:hep-th/0502005 [hep-th].

[213] H. P. Nilles, S. Ramos-Sanchez, M. Ratz, and P. K. Vaudrevange, “From strings to the

MSSM,” Eur.Phys.J. C59 (2009) 249–267, arXiv:0806.3905 [hep-th].

[214] E. Witten, “Is supersymmetry really broken?,” Int.J.Mod.Phys. A10 (1995) 1247–1248,

arXiv:hep-th/9409111 [hep-th].

[215] E. Witten, “Strong coupling and the cosmological constant,” Mod.Phys.Lett. A10 (1995)

2153–2156, arXiv:hep-th/9506101 [hep-th].

[216] D. Joyce, “A New construction of compact 8 manifolds with holonomy spin(7),” J.Diff.Geom.

53 (1999) 89–130, arXiv:math/9910002 [math-dg].
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