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Abstract 

 

The use of selectively bred mouse models of enhanced fear and/or anxiety-related 

behavior provides a unique opportunity to identify genetic targets that contribute to 

pathological anxiety. However, dealing with animal models needs accurate 

information about their phenotypes. Accordingly, high (HAB), normal (NAB) and low 

(LAB) anxiety-related behavior mice – a validated model of anxiety disorders - were 

repeatedly tested in a variety of behavioral paradigms. Whereas most tests to assess 

anxiety traits are based on fear of novel and open spaces, we took advantage of the 

inborn fear and associated avoidance of the predator odor (trimethylthiazoline (TMT)) 

as a measure of anxiety-related behavior. We were able to show that avoidance of 

TMT reflects the high anxiety phenotype of HAB mice, indicated by the decreased 

time animals spent in the chamber with TMT compared to NAB and LAB mice. 

Importantly, this result is not confounded by any deficit of the olfactory system, since 

mice responded to both the pleasant odor of female urine and the repugnant odor of 

butyric acid. 

To take the influence of environmental stimuli on inborn anxiety further, we next 

studied the impact of environmental manipulations on the genetically driven 

phenotype of LAB mice. Therefore, animals were exposed to a series of chronic 

unpredictable mild stressors (CMS). CMS-treated mice displayed increased anxiety 

in the TMT-avoidance test, elevated plus-maze (EPM) and light-dark box (LDB). 

Moreover, these animals were characterized by increased depression-like behavior 

and a blunted neuroendocrine regulation. Furthermore, TMT-exposure promoted a 

higher activation of immediate early gene expression, e.g. c-fos, in the amygdala, 

especially in the basolateral nuclei (BLA). c-Fos expression pattern correlated with 

anxiety-related behavior after CMS. Importantly, our electrophysiological studies also 

indicated a higher activation of amygdala in LAB mice after CMS treatment. 

Since corticotropin releasing hormone (CRH) is one of the most important mediators 

of amygdala activity and is largely involved in the regulation of the anxiety-related 

behavior, we hypothesized that environmental influences are translated via an 

altered CRH system. Previous experiments had shown that enriched environment 

(EE) induced a down-regulation of Crhr1. Here, we report that CMS induced higher 

expression of Crhr1 in the BLA of LAB mice, in contrast to EE. Thus, these data 
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indicate, that Crhr1 expression might be plastic in response to both, beneficial and 

detrimental, environmental factors.  

Thereafter, we studied the role of DNA methylation as a probable mechanism behind 

the different gene expression. Using pyrosequencing of the bisulfite-converted DNA, 

one specific CpG site (CpG1) of Crhr1 was found to be higher methylated after both 

treatments. In order to evaluate functional importance of this modification, we tested 

the impact of CpG1 methylation on promoter activity using the luciferase assay and 

observed that the presence of methylation reduced promoter activity. Moreover, 

elevated methylation decreased the binding efficiency of the transcription factor Yin 

Yang 1 (YY1) as indicated by electrophoretic mobility shift assay (EMSA). 

Furthermore, we analyzed whether a higher expression of YY1 in the BLA of LAB 

mice, observed after CMS, contributed to the elevation of Crhr1. Indeed, 

overexpression of YY1 in the neuronal cell culture enhanced both Crhr1 expression 

and Crhr1 promoter activity. Finally, we estimated the effects of combininig CpG1 

site-specific methylation with YY1 overexpression on Crhr1 promoter activity and 

tested whether in vitro overexpression of YY1 induced methylation of CpG1. 

Altogether, our data suggest that even a rigid genetic predisposition to low anxiety-

related behavior could be rescued by environmental modification and provide 

evidence that the epigenetic regulation of Crhr1 expression in the BLA is a possible 

underlying mechanism behind.  
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1 INTRODUCTION 

 

1.1 What is an anxiety disorder?  

Emotions are central states of the brain. Among a variety of them, fear and anxiety 

are basic and fundamental, with deep roots in the phylogenetic past (Belzung and 

Philippot, 2007). They are evoked as response to danger or threat and facilitate 

actions to maintain safety. Whereas anxiety and fear are protective in many settings, 

in pathological conditions they become excessive and uncontrollable. For instance, 

during public speaking anxious behavior is typical for almost everyone. However, 

healthy people could decrease these unpleasant feelings by training their speech in 

the lecture room before the actual performance, whereas, in case of pathologically 

highly anxious people “will have a severe and debilitating autonomic, cognitive, and 

somatic reaction to even the suggestion of giving a public presentation“(Rosen and 

Schulkin, 1998). Moreover, the subsequent state can be physically destructive, 

resulting in cardiovascular (Carney et al., 2005; Rozanski et al., 2005), 

gastrointestinal (Blanchard et al., 2004; Walker et al., 1995), pulmonary (Goodwin et 

al., 2003; Katon et al., 2007) and other comorbid pathologies (for review see Roy-

Byrne et al., 2005). Thus, revealing the fundamentals of anxiety- and fear-related 

disorders is extremely important not only due to the high prevalence of these 

diseases within the population and their considerable impact on the quality of life 

(Alonso et al., 2011; Kessler and Wang, 2008), but also because these unpleasant 

states could be a risk factor for other common pathologies. 

Although excess fear and anxiety are both under the umbrella category of anxiety 

disorders (American Psychiatric Association, in Sylvers et al., 2011), they differ 

crucially in the aetiology and articulate various systems of the body (for review see 

Sylvers et al., 2011). Classically, anxiety is considered to be a generalized response 

to an unknown threat, whereas fear is focused on a known external danger (Steimer, 

2002). Thus, fear-evoked emotions have a clearly identified stressor and are usually 

based on an innate emotional program (Belzung and Philippot, 2007; Ekman, 1992). 

In contrast, anxiety lacks this stressor determinism and, therefore, requires more 

cognitive capacities than fear (Belzung and Philippot, 2007). Another more complex 
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classification also distinguishes “state anxiety”, occurring at a particular time and 

place, and “trait anxiety”, characterized as a permanent state of an organism 

(Clement et al., 2007; Sylvers et al., 2011). However, despite these differences, 

excessive fear is the sine qua non of most of anxiety pathologies (Rosen and 

Schulkin, 1998), and both fear and anxiety are usually integral and inalienable parts 

of other conditions. 

Pathological anxiety is manifested in various symptoms of anxiety states classified 

into six major disorders: generalized anxiety disorder, social and simple phobia, 

panic disorder, post-traumatic stress disorder and obsessive-compulsive disorder 

(Gross and Hen, 2004). But what turns normal anxiety into a pathological condition?  

There are three groups of factors that may contribute to the development of 

unpleasant states: genetic factors, experience during critical stages in the 

development, and physical or psychological trauma at any age (Rosen and Schulkin, 

1998). Since the first group has an innate origin and an exert regulation on the level 

of gene expression, the second and the third groups have environmental causality 

and depend on surrounding conditions. Recent literature corroborates that the 

combination of both genetic and environmental factors is crucial for the development 

of psychiatric disorders. Thus, the consequences of this gene-environment interplay 

are detrimental in the genesis of anxiety psychopathology.   

1.2 Gene-environment interplay in relation to anxiety disorders 

1.2.1  Concepts of gene-environment interplay 

It is obvious now that successful attempts to constructively leverage advances of the 

recent years in understanding the nature of anxiety disorders depend upon our ability 

to merge genetic and environmental influences in the development of mental 

diseases (Meaney,2010). The increasing amount of literature (Fig. 1A) suggests two 

principal mechanisms of gene-environment co-action: gene-environment interaction 

(GxE) and gene-environment correlation (rGE) (Jaffee and Price, 2012; Rutter and 

Silberg, 2002). Conceptually, GxE proposes genetically-driven individual sensitivity to 

a specific environmental event (Kendler and Eaves, 1986), whereas rGE refers to 

genetic effects in individual differences in liability to exposure to particular 

environmental circumstances (Jaffee and Price, 2012; Rutter and Silberg, 2002). 

Practically, it means that rGE strictly differentiates personal genetic background (e.g. 

presence or absence of risk allele), that in one case leads to the development of a  
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pathological state (when carrying allele A) and in another case does not (when 

carrying allele B) during exposure to a novel environment. On the contrary, GxE 

implies the individual response as a continuum (Fig. 1B), where the genetic 

background determines the extent of an effect (allele A ensures more aversive 

effects compared to allele B). Nevertheless, implication of GxE and rGE in dynamic 

mechanisms of the regulation of behavior involves both, genetic and environmental 

risks.  

1.2.2   Gene-environment interplay from the perspective of genetic background  

Genetic factors might account for over 30% of the variability for anxiety-related traits 

(Gustavsson et al., 1996; Kendler et al., 1995). First-degree relatives have an 

approximately four- to six-fold increased risk of proband’s disorder (Hettema, 2005), 

whereas global heritability is estimated at the level of 30-50% (Flint, 1999; Parmigiani 

Fig.1. Frequency of publications using 

the words “environment interaction” or 

“environmental interactions” and 

dealing with gene-environment 

interactions (Clement et al., 2007) (A). 

Conceptual model of gene-environment 

interaction proposed by Nugent et al. 

(2011) (B). High environmental stress 

degrades functioning (solid line). 

Genetic differences does not effect 

functioning under low stress conditions, 

but impaired when facing intense stress 

(curved line). Genetically determined 

resilience (grey dashed line) or 

impairment (black dashed line) are 

reflected by normal or impaired 

functioning, respectively (Nugent et al, 

2011). 
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et al., 1999). Twin-studies, being even more informative due to a considerably high 

genetic similarity of participants, have also regarded heritability of anxiety-related 

disorders in the range of 20-40% (Hattema at al., 2005; Scherrer et al., 2000). 

However, the genetic nature of the disease is not completely understood. 

Polymorphisms in the nucleotide sequence of “anxiety” genes have been considered 

as probable cause of malfunction in most studies. They can be presented as a single 

nucleotide polymorphism (SNP) - variation of a single nucleotide - or  an insertion-

deletion polymorphism - a short repeated sequence (usually two to four nucleotides) 

that occur in stretches of a variable length (“microsatellites”). Many tested candidate 

genes encode neurotransmitter systems (e.g. serotoninergic, dopaminergic, 

glutamatergic etc.) and neuropeptides (e.g. corticotrophin releasing hormone (CRH), 

brain-derived neurotrophic factor (BDNF)).  

The best described example analyzes polymorphisms in the promoter of the gene 

that encodes the serotonin transporter protein (5-HTT), SLC6A4. Serotonin (5-HT) is 

known for its mood and behavior modulating effects and has been implicated in the 

pathology of anxiety and depression disorders. It was found that SLC6A4 contains a 

functional insertion-deletion polymorphism (Capsi et al., 2003; Lesch et al., 1996). 

These results in the presence of a short allele (consisting of 14 repeats) with a 

frequency of approximately 45% among European-American ancestry (Gelernter et 

al., 1998) and a long allele (consisting of 16 repeats). Experiments indicate that the 

long allele is associated with higher transcription of 5-HTT and increased 5-HT 

reuptake from the synapse, compared to the short allele (Kenna et al., 2012; Lesch 

et al., 1996). Moreover, several SNPs have been found in the promoter of the long 

allele, which, potentially, could decrease its activity to the level of the short allele (Hu 

et al., 2005; Lipsky et al., 2009). Although these studies support strong genetic 

influences, gene-environment interaction was found to comprise additional variance.  

Thus, the presence of the short allele was found to be a risk factor for psychiatric 

illnesses only for those individuals who experienced a childhood trauma and/or major 

life stressors (Capsi et al., 2003). In monkeys, as in humans, the short allele is also 

associated with increased emotional reactivity (Champoux et al., 2002), but 

decreased 5-HT metabolism is found only in nursery-reared individuals and not in 

mother-reared ones (Bennett et al., 2002).  Thus, environmental influences, 

especially in early life, can be crucial for upraising of genetic predisposition into 

pathology.   
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1.2.3  Gene-environment interplay from the perspective of environmental 

influences  

Twin studies indicate that for trait anxiety, environmental influences account for a 

substantial proportion (in some cases more than half) of the population variability 

(Plomin, 2008). Some of the most common human environmental risk factors that 

could mediate on-set of anxiety disorders are negative family relationships (Emery, 

1982), poor social support (e.g. friendship quality) (Kessler et al., 1992) and stressful 

life events (Kendler et al., 1995). The sensitivity to negative events in early life, such 

as childhood maltreatment (e.g. sexual/physical abuse, severe neglect) or adverse 

family environment (e.g. maternal depression, paternal loss, divorce) (Nugent et al., 

2011), is especially high, and they significantly increase the risk of development of 

both “internalizing disorders“ (such as depression and anxiety) (Bhatia and Bhatia, 

2007; Mathews et al., 2008) and “externalizing disorders” (like drug and alcohol 

abuse) (Kaufman et al., 2007; Widom et al., 2007) in adult life. However, the precise 

investigation of environmental influences in humans has substantial difficulties due to 

impracticability to control all the variety of possible surroundings and the huge 

genetic diversity of mankind. Therefore, attempts have been made to model these 

conditions in animal studies (refer to section 1.4).  

One of the most successful approaches refers to the model of early life stress (ELS), 

that comprises three hours of daily maternal separation during the first days of life (in 

most studies a period of two weeks after birth). This model tries to mimic (with 

considerable assumptions) childhood maltreatment and induces strong perturbations 

in anxiety-related behavior (Kalinichev et al., 2002; McIntoch et al., 1999). In 

alternative models, animals are exposed to other types of stressors like social defeat 

(Huhman, 2006; Rygula et al., 2005), chronic restraint stress (Chiba et al., 2012; Zhai 

et al., 2013) or a combination of different stressors (Bondi et al., 2008; Charkravarty 

et al., 2013). Moreover, from the perspective of gene-environment interplay, the 

stress-diathesis theory is of considerable importance. The central point of this theory 

is the idea that some individuals are disproportionately affected by environmental 

stressors due to their “vulnerability”. Thus, “diathesis”, in this regard, refers to a 

genetic predisposition and, therefore, links consequences of a stressful event with 

genetic risk factors.   
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However, most studies consider environmental impacts only from the negative end of 

the spectrum and restricting behavioral outcomes only as negative, whereas the 

absence of adversity is considered to be the “good” end of the environmental 

exposure. Thus, such studies fail to measure all the positive environmental impacts 

and, therefore, largely restrict a range of psychological and behavioral outcomes. In 

contrast, Kaufman and colleagues (2004) showed that the absence of social support 

increases the risk of depression in children carrying a short allele of SLC6A4 

(detailed information on polymorphism nature is described in the previous section), 

whereas positive social support minimizes possible risks. Animal studies also 

modelled and analyzed influences of beneficial environmental conditions, termed 

“enriched environment” (EE), on behavioral and emotional parameters. Thus, EE is 

able to reverse negative consequences of ELS (Cui et al., 2006; Francis et al., 2002) 

and induce anxiolytic effects in “normal” anxiety animals (Brenes Saenz et al., 2006; 

Chapillon et al., 1999; Sztainberg et al., 2010).  

Assuming bidirectional influences of environmental factors, Belsky and colleagues 

have reconsidered the stress-diathesis theory (Belsky and Pluess, 2009) and 

proposed “that the very same individuals who may be most adversely affected by 

many kinds of stressors may simultaneously reap the most benefit from 

environmental support and enrichment”. He suggested “plasticity genes” instead of 

“vulnerability genes”, that are amenable to respond to both beneficial and detrimental 

environmental influences and accordingly shape the individual phenotype (Belsky et 

al., 2009). 

Altogether, gene-environment interplay constitutes a complex mechanism with a so 

far unknown precise contribution of genetic and environmental factors in the 

pathogenesis of specific anxiety disorder. Interestingly, Hicks and colleagues (2009) 

conducted a comprehensive analysis examining multiple environmental risks and 

concluded “that in the absence of environmental stressors inherited characteristics 

will play a greater role in the emergence of internalizing disorders symptoms” and 

“while environmental stressors have a general effect of increasing the mean-levels 

and variance of psychopathology, the mechanisms of their influence will differ 

depending on the nature of the psychopathological condition”.  
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1.3 Epigenetic mechanism behind gene-environment interplay  

As discussed above, gene-environment co-actions play a crucial role in the onset of 

anxiety disorders, however, merely assuming, that a phenotype is a consequence of 

this interaction, is oversimplified. Since it is not possible to change an individual’s 

genetic background, more attention is paid to studying environmental influences. 

Thus, there is a need to have a systemic description of molecular consequences of 

that interaction in order to predict the outcome in each particular case.   

The phenotypic characteristics depend on the expression of genes; however, 

environments cannot alter gene sequences. This non-DNA sequence-based 

mechanism of regulation of transcriptional activity is called “epigenetic regulation”. 

Nowadays, a wide use of this term has strayed “epigenetic” from its original rigorous  

   

 

Fig. 2: Epigenetic mechanism of gene regulation. Epigenetic regulation comprise three highly 

interrelated  mechanism: (1) DNA methylation, (2) Posttranslational modifications of the 

histone amino terminal tails and (3) RNA-based mechanisms. Cartoon adapted from Matouk 

and Marsden (2008).  
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use and has brought some confusion in its conceptualization; therefore, here it is 

restricted only to the regulation of gene transcription without altering underlying 

sequence. Epigenetic modifications are of great interest because these changes are 

a possible way to explain how life events can lead to psychiatric disorders. Recent 

literature assumes three major types of epigenetic regulation: DNA methylation, 

histone modification and regulation by non-coding RNA.   

Almost 65 years have passed since the discovery of DNA methylation, and it took 

about 30 years to understand the role it plays. DNA methylation is an evolutionary 

ancient mechanism of regulation of the transcriptional activity, however, it is highly 

dependant on phylogeny and many non-mammalian species lack it (yeast, fruit fly, 

most of worms) (for review see Yi, 2012). DNA methylation refers to the structural 

modification of DNA by the addition of a methyl group to cytosine linked with an 

adjacent guanine through a phosphodiester bond (CpG). The overall amount of 

CpGs is relatively low, however, their distribution is non-random and there are DNA 

regions with a particularly high concentration of CpGs, defined as CpG islands 

(CpGi) (Takai and Jones, 2003). Most CpGs are methylated, whereas only CpGs of 

the transcriptionally active genes are less or non-methylated (Jabbarry and Bernardi, 

2004). The level of methylation is higher in the brain (0.98 mol percent of methylated 

CpG) compared to other organs for both humans (Ehrlich et al., 1982) and mice 

(Tawa et al., 1990). The methylation pattern is established by a class of enzymes 

called DNA methyltransferases (DNMT). DNMT3a and DNMT3b are responsible for 

de novo methylation, whereas the maintenance of methylation pattern is catalyzed by 

DNMT1. Remarkably, it was found that postmitotic neurons accumulate exclusively 

high amount of DNMT1 (Inano, 2000) and expression of DNMT1 was increased in 

cortical • -aminobutiric acid (GABA) interneurons of psychotic patients suffering from 

schizophrenia and bipolar disorder (Veldic, 2004; 2005). Numerous studies indicate 

that methylation of the promoter is associated with sustained decrease in gene 

expression, hence, it was suggested that CpG methylation exerts a regulatory role on 

transcriptional activity. Later it was found that methylated CpGs within promoters are 

targeted by methyl-CpG-binding domain-containing proteins like methyl CpG binding 

protein 2 (MeCP2). MeCP2 is also expressed more abundantly in the brain than in 

any other tissue (Aber, et al., 2003). Stress-induced regulation of arginine-

vasopressin (AVP) expression could serve as an example of such epigenetic 

translation of environmental influences on the molecular level. ELS in mice 
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decreases methylation of the Avp promoter in the PVN that mediates loss of MeCP2 

binding. This results in constantly higher expression on Avp mRNA, along with the 

increased basal level of corticosterone (CORT) and stable pro-depressive phenotype 

(Murgatroyd et al., 2009).  

Binding of the MeCP2 complex initiates a cascade of molecular events that promotes 

transcriptional silencing (e.g. modification of histones). Histones - are proteins that 

package DNA into a structural unit. Eight histone proteins – two of each H2A, H2B, 

H3 and H4 – form an octamer, called nucleosome. Approximately 147 nucleotide 

base pairs (bp) are wrapped around one nucleosome. There are many types of 

known covalent modifications of histones: methylation, acetylation, phosphorylation, 

ubiquitination, and others. Modifications are associated with an “open” or “closed” 

chromatin state and are termed “histone code”. For example, an open chromatin 

state can be the caused by methylation of lysine in position 4 of H3 histone (H3K4) or 

of acetylation of lysine in position 9 or 27 of the histone H3 (H3K9 and H3K27 

accordingly) (Benevolenskaya, 2007; Koch et al., 2007). Setting epigenetic “marks” 

allows to regulate DNA accessibility in a very sensitive way. For instance, 

monomethylation of H3K9 or H3K27 is associated with transcriptional activation, 

whereas di- or tri-methylation induces transcriptional repression (Barski et al., 2007; 

Rosenfeld et al., 2009). These dynamic modifications in chromatin structure 

(occurring within minutes) are carried out by specific enzymes. For example, histone 

acetylation is mediated by histone acetyltransferases (HACs) that transfer an acetyl 

group (cleaved from acetyl-coenzyme A) to the lysine residue (Felsenfeld and 

Groudine, 2003). Reomval of the same is achieved by histone deacetylases 

(HDACs), enzymes that remove acetyl groups. Interestingly, valproic acid, a widely 

used drug in psychiatry (mood-stabilizer), was found to be an HDAC inhibitor (Jeong 

et al., 2003; Laeng, et al., 2004). This suggests a potential role of histone 

modification in the development of psychopathology. For instance, Hunter et al. 

(2009) have found that chronic restraint stress significantly decreased the level of 

H3K9 tri-methylation in the dentate gyrus, whereas the treatment with fluoxetine 

reversed the decrease.  

Recent studies suggest that DNA methylation and histone modifications are 

occurring coincidently. It was found, that membrane depolarization induced 

demethylation of BDNF promoter and simultaneously shifted from H3K9 di-

methylation to H3K4 acetylation that resulted in increased gene expression 
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(Martinovich et al., 2003). Weaver et al. (2004) have demonstrated that rat pups, that 

received more licking and grooming from their mothers, had lower DNA methylation 

and higher H3K9 acetylation along a key regulatory site of the glucocorticoid receptor 

(GR) promoter in the hippocampus. Remarkably, these effects could be reversed by 

cross-fostering.  

Apart from DNA methylation and histone modification, there are other epigenetic 

mechanism such as DNA hydroxymethylation, nucleosome sliding and repositioning, 

replacement of histones with other proteins, regulation by non-coding RNA. All of 

them exert control over gene transcription and, therefore, potentially could play an 

important role in the development of psychopathology.   

1.4 The role of the CRH system in anxiety-related behavior  

1.4.1  CRH: discovery and relation to anxiety  

The list of candidate genes involved in the development of psychiatric disorders is 

constantly increasing. These genes are usually part of complex systems like the 

serotoninergic, dopaminergic, glutamatergic, glucocorticoid, etc. Stress exposure 

activates the CRH system, which is an ancient and well-studied stress-response 

system of the body. Its peptides have participated in the regulation of stress-coping 

behavior for over 550 million years (Chang and Hsu, 2004); however, detailed 

mechanisms of action are still unknown. Thus, uncovering intrinsic molecular 

cascades of the CRH system could help to tie together the chain of events 

constituting the stress response.     

In the 1950s, Guillemin and Rosenberg as well as Saffran and Schally independently 

observed the presence of a factor in hypothalamic extracts (called corticotropin-

realising factor (CRF or CRH here)), that stimulated the release of 

adrenocorticotropic hormone (ACTH). This factor was purified and a 41-aminoacid 

sequence was identified (Spiess et al., 1981; Vale et al., 1981). Originally, the role of 

CRH was limited to the regulation of the hypothalamic-pituitary-adrenal (HPA) axis as 

the mediator of the neuroendocrine response to environmental perturbations 

(Peterson and Guillemin, 1974; Saffran and Schally, 1974). Produced in the 

paraventricular nucleus (PVN) of the hypothalamus, CRH is secreted from the 

median eminence from where it travels into the pituitary to release ACTH, which in 

turn promotes the release of glucocorticosteroids. However, besides the 
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hypothalamus, CRH is widely expressed in extrahypothalamic circuits (Swanson et 

al., 1983), where it acts as neuromodulator.  

As such, CRH plays an important role in developing, integrating and coordinating the 

work of various components of the stress response system (Dunn and Swiergiel, 

1999; Koob and Heinrichs, 1999). Accordingly, exposure to acute stress leads to a 

significant increase of CRH in the brain and to a higher expression of anxiety in 

rodents and nonhuman primates (Bakshi and Kalin, 2000), which could be blocked 

by administration of CRH antagonists (Kalin, 1985; Koob and Heinrichs, 1999). 

Moreover, overexpression (e.g., transgenic mice) or exogenous administration of the 

peptide, also induces an increase in anxiety and a decrease in locomotion, 

explorative activity and cognitive functions (Heinrichs et  al., 1996; Stanzel-Poore et 

al., 1994). These results stimulated clinical research to use CRH as a potential 

biomarker of stress-related disorders. Indeed, several publications reported 

increased CRH in the cerebrospinal fluid (CSF) of patients suffering from depression 

(Nemeroff et al., 1984), posttraumatic stress disorder (Baker et al., 1999; Bremner et 

al., 1997), bipolar and anxiety disorders (Fossey et al., 1996).   

1.4.2   CRH receptor 1: implication to anxiety disorders and pharmacological 

interventions   

The action of CRH is mediated by two G-protein coupled receptors thought to have 

evolved early in chordate evolution: receptor type 1 (CRHR1) and type 2 (CRHR2) 

(Chang and Hsu, 2004). Both receptors exhibit a different affinity to biological ligands 

and are distributed unequally throughout the brain (Bashi and Kalin, 2000).  Although 

the role of CRHR2 is still illusive, the effects of CRHR1 on anxiety-related and 

depression-like behaviors are well studied and repeatedly replicated. Thus, Crhr1-

knockout mice exhibit decreased anxiety-related behavior compared to wild-type 

mice in different behavioral paradigms (Contarino et al., 1999; Smith et al., 1998; 

Timpl et al., 1998). Injection of CRHR1 antagonists in different brain structures 

results in anxiolytic effects (Heim and Nemeroff, 1999; Kirby et al., 2000). Based on 

these data, a lot of efforts have been put into the development of CRHR1 antagonist 

to treat stress-related psychiatric disorders in clinical practice. Although most of the 

preliminary trials corroborate the efficiency of the tested antagonists (Holsboer and 

Ising, 2008; Zobel et al., 2000), none of the drugs have passed Phase III (Zorrilla et 

al., 2013). For instance, promising (from preclinical studies) antagonists ONO-
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2333Ms and CP-316311 for treatment of major depression and GSK561679 and 

GW876008 for treatment of anxiety disorders were discontinued due to a missing 

proof of concept in double-blind, placebo-controlled trials (Binneman et al., 2008; 

Zorrilla et al., 2013).        

The controversial results of CRHR1 antagonist studies enforced neuroscientists to 

rethink the complexity of the CRH system in order of more elaborate organization 

and to consider genetic influences on drug response. Accordingly, one study 

correlates functional polymorphisms in Crhr1 with the risk to develop 

psychopathology following childhood trauma (Bradley et al., 2008; Polanzcyk et al., 

2009) and with differential response to antidepressant treatment (Liu, 2007; Licinio, 

2004). A recently published study by Refojo et al. (2011) showed two distinct ways of 

CRHR1 signal transduction, thereby possibly giving one reason why antagonist 

treatment lacks proof of concept in clinical studies so far. It was found that signal 

transduction through CRHR1 present in glutamatergic neurons induced anxiogenic 

effects, whereas activation of CRHR1 in dopaminergic neurons induced anxiolytic 

effects. Thus, an imbalance in CRHR1-controlled glutamatergic and dopaminergic 

neuronal pathways could mediate the development of psychiatric disorders and 

explain poor efficiency of antagonist treatment.   

1.4.3  CRH receptor 1 role in the amygdala 

The aforementioned results are in line with studies that have investiged the different 

roles of the CRH system in isolated brain regions (Bashi and Kalin, 2000). In this 

Fig.3. Amygdala-centered anatomy related 

to anxiety disorders (Stahl and Dana, 

2008). The hippocampus is shown as a 

transparent outline for clarity. acc = 

anterior cingulate cortex; h = 

hypothalamus; p = periaqueductal grey; b = 

parabrachial nucleus; ofc = orbitofrontal 

cortex. Adopted from Stahl and Wise 

(2008). 
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context, the amygdala is of particular interest since it is a major extra-hypothalamic 

source of CRH-containing neurons and it expresses both receptor types, Crhr1 and 

Crhr2 (Reul and Holsboer, 2002). Human studies indicate that amygdala activation is 

positively correlated with the degree of trait anxiety (Carlson et al., 2011). Moreover, 

amygdala activation is increased in patients suffering from posttraumatic stress 

disorder (PTSD) (Armony et al., 2005), whereas reduced anxiety after antidepressant 

treatment or cognitive behavioral therapy is associated with reduced activity 

(Furmark et al., 2002). Animal studies also suggest that changes in amygdala activity 

can alter state anxiety (Avrabos et al., 2013; Engin and Treit, 2008). Amygdala sends 

numerous projections to other brain regions like the thalamus, hypothalamus, locus 

coeruleus and cortex (Fig. 2); therefore, its activation during environmental 

perturbations could have triggering role in the generalization of the brain response. 

Animal studies found that the concentration of neurotransmitters significantly 

increased in the amygdala after restraint stress, footshock or during expression of 

conditioned fear (Dunn, 1988; Morilak et al., 2005; Yokoyama et al., 2005).   

CRH - is one of the most important mediators of amygdalar monoaminergic activity in 

response to anxiogenic stimuli (Forster, book; Mo et al., 2008). Physiological stress 

induces Crh expression (Makino et al., 1999) and increases the amount of CRH as 

measured by in vivo microdialysis in the amygdala (Mountney et al., 2011). On the 

other hand, intra-amygdala injection of CRH increased anxiety-related behavior 

(Heim and Nemeroff, 1999). Results of Refojo et al. (2011) indicate that in the 

amygdala Crhr1 is mainly expressed in glutamatergic neurons (Fig. 3) and were 

found to be associated with the transmission of anxiogenic stimuli. Therefore, the 

 

Fig.4. Schematic cross-section 

of a mouse brain showing the 

distribution of CRHR1 gene 

activity and thea ssociated 

neurotransmitter specificity 

(Deussing JM, MPI of 

Psychiatry, Munich, Germany). 
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above mentioned effects of CRH, could be ascribed to transmission through this 

receptor. Indeed, intra-amygdala injection of Crhr1 antisense nucleotides or CRHR1 

antagonists prevent CRH- and stress-induced anxiety-related behaviors (Heinrichs et 

al., 1997; Liebsch et al., 1995; 1999). The local amygdalar CRH receptor activation is 

postulated to be responsible for the propagation of stressed-induced alterations 

(Dunn and Berridge, 1990; Sajdyk, et al., 1999). Not only detrimental, but also 

favourable conditions affect the functioning of the CRH system in the amygdala. 

Thus, chronic treatment with benzodiazepines (alprazolam), current first-line 

prescription for treatment of anxiety disorders, reduces expression of Crhr1 in the 

basolateral amygdala (BLA) (Skelton, 2000). Sztainberg and colleagues (2010) have 

shown that anxiolytic effects of EE are mediated by the decrease of Crhr1 expression 

in the BLA. This was confirmed by lentiviral deletion of the receptor in the BLA that 

also induced decreased anxiety-related behavior. Yet, drivers of chronic pathological 

alterations in this system are still unknown, though extensive studies have been 

performed in the last decades. For instance, Chen et. al (2012) have found that 

maternal separation is associated with Crh promoter demethylation. This epigenetic 

regulation seems to be tissue specific since the decrease in methylation was found in 

the PVN, but not in the central amygdala (CeA). Demethylation resulted in higher Crh 

expression in the PVN and consequently altered HPA axis regulation. Another study 

(Haramati et al., 2011) reported an increased amount of microRNA34c (miRNA34c) 

after acute and chronic stress, whereas lentiviral overexpression of this miRNA in the 

CeA had anxiolytic effects. One of the targets of the miRNA34 is Crhr1. Binding of 

the miRNA to 5’-untranslated region of Crhr1 induced gene silencing, therefore, 

observed anxiolytic effects of the miRNA34c overexpression could be ascribed to 

down-regulation of the Crhr1 in the amygdala. Nonetheless, knowledge about the 

role of DNA methylation in the regulation of Crhr1 is still scarce. This is the reason 

why our study put the central focus thereupon.  

1.5 Modeling anxiety disorders in mice 

1.5.1  Testing validity of anxiety models 

In the beginning of the 20th century, Emil Kraepelin established the classification of 

numerous psychiatric diseases, based on common patterns of symptoms over time. 

Later, the American Psychiatric Association introduced the “Diagnostic and Statistical 

Manual of mental disorders” (DSM), which categorized anxiety as a separate Axis I 
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clinical syndrome (American Psychiatric Association, 1994). Such taxonomy, as 

originally outlined by Kraepelin’s criteria, implies that anxiety had distinct etiological 

origins, symptoms expression, pathophysiological substrates and treatment 

outcomes (Sufka et al., 2006). Given the large prevalence of anxiety disorders, a lot 

of efforts have been put on the creation of appropriate animal models in order to 

study the biological underpinnings of this psychopathology. Thus, animal models 

must resemble aforementioned description of the disease and thus require to meet 

three types of validity: face validity, construct validity and predictive validity. Face 

validity entails that an observed response in humans and an animal model is 

similar/identical with respect to the behavioral and physiological response. In other 

words, a model has face validity, if it “looks like” it is going to measure what it is 

supposed to measure. Predictive validity implies that clinically effective compounds 

(anxiogenic and anxiolyitic) exert a similar impact on the model, whereas anxiogenic 

agents, on the contrary, elicited opposite effects, whereas drugs that have no effect 

in humans should still have no effect on the model. Construct validity means that 

both animal model and human behavior share similar theoretical rationale.  

But how can we model anxiety disorders? The conundrum scientists are facing is that 

without knowledge of the exact disease mechanism in humans, it is hard to develop a 

proper model, but without an appropriate model, it is difficult to uncover the 

mechanism of human diseases (Gerlai, 2006). In an attempt to pursue this question, 

a wide range of behavioral testing paradigms have been developed to access 

anxiety-related behavior in animals. Examples include inter alia the open field test 

(OF), the elevated plus maze (EPM), the light dark box (LDB) and the holeboard test. 

These behavioral paradigms are considered as “models”, although they test an acute 

emotional response (what is described in 1.1 as “state” anxiety) and do not evoke 

pathology (“trait” anxiety) (Kalueff et al., 2007; Bourin et al., 2007). Most of the 

Fig. 5. Behavioral tests for evaluation of anxiety-related behavior: open field (A), elevated 

plus maze (B) and light-dark box (C). 
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utilized tests are based on the conflict between exploration and avoidance of open, 

brightly lit spaces. 

The OF (Fig. 4A), originally introduced by Calvin S. Hall (1934), consists in placing 

animals in the unknown arena, surrounded by walls. The Observer counts the time 

an animal has spent in the periphery (relatively safe environment) and the central 

zone (unsafe environment), the number of rearing, levels of defecation and urination. 

Animals with higher anxiety-related behavior are characterized by less time spent in 

the central zone. Pharmacological treatments with benzodiazepine receptor full 

antagonist or 5-HT1A receptor antagonist elicit anxiolytic-like effects in this procedure 

(Prut and Belzung, 2003). However, since different overall activities can mask or 

generate false positive results, strong locomotor component is the main criticism 

against this model.  

 The EPM and LDB tests (Fig. 4B,C), in contrast to the OF, are less dependent on 

animal’s locomotor activity and therefore provide a more sophisticated approach to 

the evaluation of anxiety-related behavior. The EPM was developed by Pellow and 

colleagues (1985) to test anxiety-like traits in rats, later it was adopted for mice 

(Lister, 1987). The EPM is constructed in shape of a “plus” with two opened and two 

closed arms (enclosed by walls) opposite to each other. Arms are crossed in the 

middle zone, called the central square (or neutral zone). It is considered, that the 

more entries an animal does to open arms and the more time it spends there, the 

less anxious phenotype it has. The rank order preference profile is “closed 

arms>central square>open arms”, meaning that the majority of time subjects spend 

in a more safe compartment of the closed arms. This tendency is suppressed by both 

anxiogenic and anxiolytic drugs. Thus, benzodiazepines (Menard and Treit, 1999), 

GABA- and glutamate-related compounds (Carobrez, 2003) increase the time 

animals spend in the open arms; on the other hand, benzodiazepine receptor agonist 

FG 7142 and CGS 8216 decreases this parameter (Pellow and File, 1986). 

Interestingly, however, treatment with drugs regulating the serotoninergic system 

provided inconsistent results using this test (Menard and Treit, 1999). Similar to the 

EPM, the LDB validity has been proven pharmacologically: treatment with 

benzodiazepines reduced anxiety-related behavior in this paradigm (Costall et al., 

1989). The apparatus consists of two inter-connected compartments of different 

sizes, black (dark) and white (light). A white compartment is usually bigger in size 

and more brightly illuminated. The main criteria for the estimation of anxiety-related 
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behavior are the number of entries and the time spent in the light compartment. In 

contrast to EPM, anxiolytic properties of drugs regulating the serotoninergic system 

could be evaluated using this test (Costall et al., 1989).  

Apart from these paradigms, primarily based on fear of brightly lit, novel and open 

spaces, many scientists try to develop testing conditions, which would reflect a more 

natural situation and would provide higher sensitivity.  Rodents have a keen sense of 

smell and operate in a novel environment using olfactory cues. Thus, recently 

designed testing paradigms involve application of predator odors, like 

trimethylthiazoline (TMT). TMT is a component of fox faeces and it provides painless, 

controllable and measurable stimuli. Testing conditions vary from lab to lab, but, 

generally, an observer estimates approaches or time an individual spent in contact 

with the odor (Sotnikov et al., 2011; Takahashi et al., 2005). Importantly, treatment 

with benzodiazepines or serotonin specific reuptake inhibitors (SSRI) increased 

approach and decreased defensiveness towards predator odor (Dielenberg and 

McGregor, 2001; McGregor et al., 2002).    

1.5.2  The HAB/LAB mouse model 

The approaches described above allow to evaluate anxiety-related behavior from 

different points accurately, but they are restricted by available mouse/rat strains. 

Although anxiety risk factors are presented in the normal population of rodents it is 

difficult to separate beneficial from detrimental factors, due to the high genetic 

heterogeneity. A potentially fruitful approach to resolve this challenge is to apply 

selective inbreeding to accumulate specific risk factors at a higher penetrance 

(Sartori et al., 2011).  

Thus, several mouse lines with altered anxiety-related behavior were developed 

using this approach. For instance, Szego and colleagues (2010) have recently 

established an AX/NAX mouse model on the basis of anticipatory anxiety behavior 

during the handling procedure. AX mice never volunteered handling and displayed 

increased anxiety-related behavior in the OF, EPM and LDB. Using two-dimensional 

gel electrophoresis 82 proteins were found to be differentially regulated between AX 

and NAX lines, 34 of them were previously identified in other studies of anxiety and 

depression disorders.  

However, the best studied and validated model of anxiety pathology is the HAB/LAB 

model, established in the Max Planck Institute of Psychiatry in Munich. The key 
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parameter for breeding is percent time spent on the open arms of the EPM. Originally 

it was validated for rats, later for mice. Since current work was performed using 

HAB/LAB mice, only the mouse model is discussed. The high and low anxiety-related 

behavior (HAB and LAB accordingly) mice were bred for >50 generations from a 

genetically heterogeneous CD-1 population. This breeding rose two divergent lines, 

with HAB mice spending <10% and LAB spending >60% of testing time on the open 

arms of the EPM. This model meets validity criteria mentioned above.  

Face validity is confirmed by showing constant and predictive behavioral outcomes in 

a variety of tests. Thus, HAB/LAB mice exhibit different anxiety-related behavior not 

only measured in the EPM but also in the OF, LDB (Krömer et al., 2005; Muigg et al., 

2009), elevated platform (unpublished results), predator odor avoidance (Sotnikov et 

al., 2011) and number of ultrasonic vocalizations (Krömer et al., 2005). Clinical 

studies indicate high comorbidity of anxiety and depression disorders (Hettema et al., 

2003; Mineka et al., 1998). Indeed, in HAB/LAB mice this comorbidity is also reported 

(Krömer et al., 2005). Furthermore, HAB mice display enhanced fear learning in a 

classical cued paradigm suggesting that trait anxiety is associated with stronger fear 

memory (Sartori et al., 2011). The same association is observed in patients suffering  

 

 

Fig.6: Breeding course if high (HAB), “normal” (NAB) and low (LAB) anxiety-related 

behavior mice with percent time spent on open arms of the EPM as a key breeding criteria.   
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from anxiety disorders (Lissek et al., 2005). Importantly, the robustness of the 

phenotype was evaluated in different laboratories (Sartori et al., 2011). Predictive 

validity of the model is also successfully confirmed by a variety of pharmacological 

treatments. Thus, treatment with neurokinin-1-receptor-antagonist (NK1R-A) L-

822,429 or selective serotonin reuptake enhancer Tianeptine (both are used in clinics 

to treat depression and anxiety) decreased anxiety-related behavior of HABs (Sah et 

al., 2012). Enhanced fear response of HABs is attenuated by treatment with NK1R-A 

(L-822,429) or selective benzodiazepine agonist L-838,417 (Sartori et al., 2011). 

Chronic administration of selective serotonin reuptake inhibitor (SSRI) Fluoxetine 

(prescribed mainly for patients suffering from depression) normalized high 

depression-like behavior of HABs (Sah et al., 2012).  

Genome-wide case-control association analysis in patients with panic disorders 

revealed TMEM132D as a promising candidate gene of this psychiatric pathology 

(2011). This gene is also higher expressed in the frontal cortex of individuals, who 

carry a risk phenotype for panic disorder.  Remarkably, in HAB/LAB mice Tmem132d 

mRNA is also upregulated in the cingulate cortex, confirming construct validity of the 

model. Another example is a glyoxalase-1. Patients suffering from mood disorders 

are characterized by higher expression of glyoxalase-1 mRNA, whereas no 

difference is reported in the remissive state (Fujimoto et al., 2008).  Meanwhile, in 

HAB/LAB mice the amount of methylglyoxal – a substrate for glyoxalase-1 - is higher 

in LAB mice compared to HAB, indicating that similar molecular pathways are altered 

in humans and mice (Krömer et al., 2005; Landgraf et al., 2007; Hambsch et al., 

2010). Moreover, recently Yen et al. (2013) showed calming effects of treatment with 

lithium (mood stabilizer to prevent manic episodes in bipolar disorder) and 

amphetamine (used to treat attention deficit hyperactivity disorder (ADHD)) on 

locomotor activity of LABs, suggesting that these mice display similar 

pharmacological response patterns as ADHD patients.   

Altogether, these results indicate that HAB/LAB mice are indeed a promising model 

of anxiety disorders meeting all criteria of validity; therefore, this model can be used 

to elucidate the genesis of anxiety psychopathologies in humans.  
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2 Aims of the thesis 

 

The present thesis focuses on the further characterization of anxiety-related behavior 

in the HAB/LAB mouse model using a novel sensitive testing approach. Therefore, a 

behavioral test based on predator odor avoidance was established and evaluated. 

We further aimed to investigate the impact of early life treatment on the inborn 

anxiety phenotype. Ultimately, the goal was to gain insight into the molecular 

mechanisms of the gene-environment interplay using both beneficial and detrimental 

environmental and genetic risk factors. Our previous studies (Markt, 2012; Bauer, 

2013) have shown the impact of EE on anxiety-related behavior and expression of 

Crhr1 in HAB mice. Here we investigated opposite effects of chronic mild stress 

(CMS) on behavior and Crhr1 expression in LAB mice. Finally, our aim was to 

uncover epigenetic mechanisms behind different Crhr1 expression patterns after EE 

and CMS in the basolateral amygdala.   

 

Specific aims:   

1. To characterize the anxiety-related behavior of HAB/NAB/LAB based on 

avoidance of TMT.  

2. To study effects of CMS exposure on behavioral and endocrine parameters of 

LAB mice.  

3. To verify the role of the amygdala in increased anxiety-related behavior after 

CMS using immediate early gene expression.  

4. To investigate the influences of CMS on the expression and methylation of 

CpGi of Crhr1 in the BLA.  

5. To evaluate the impact of CpG1 methylation on promoter activity of Crhr1.  

6. To examine the role of transcription factor YY1 in the regulation of Crhr1 

expression and its possible contribution to stress-related effects.  

7. To test the interaction between Crhr1 CpG1 methylation and YY1 binding. 
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3 Material and methods 

 

3.1 Animals and housing conditions   

High (HAB), normal (NAB) or low (LAB) anxiety-related behavior mice used for 

experiments were selectively (in)bred from a CD1 outbred population for >45 

generations in the animal facility of the Max Planck Institute of Psychiatry in Munich. 

The key criterion for the breeding was percent time spent on open arms of the EPM 

(HAB <15%, NAB 35-45%, LAB >60%). One week prior to experiments, mice were 

transferred from their respective breeding facility to a room adjacent to the testing 

room to accomodate to the novel environment. CD1 mice were purchased from 

Charles River (Sulzfeld, Germany) and were kept also separate from the testing 

room. All mice were single housed and conditions were adjusted to standard with a 

room temperature of 23 ± 2°C, relative air humidity of 60 ± 5% and 12/12-hour light-

dark cycle with beginning of the light phase at 8 a.m. Mice received food (Altromin 

1314 TPF; protein 22.5%, fat 5%, fibre 4.5%, ash 6%) and tap water ad libitum.  

All animal experiments were approved by the Government of Upper Bavaria and 

conducted in accordance with the Guidelines for the Care and Use of Laboratory 

Animals of the Government of Upper Bavaria and the European Communities 

Council Directive of 24 November 1986 (86/609/EEC). All tests were conducted 

between 9 a.m. and 1 p.m. Only male mice were used for experiments.  

3.2 Behavioral phenotyping 

3.2.1  TMT-avoidance test 

The three-chambered apparatus for TMT-avoidance test is a box consisting of white 

PVC and divided into three equally sized chambers (30cm each) by two dividers with 

rectangular gates (Fig. 7). The left and right compartments were used to place a 

neutral and an odor stimulus. The box was placed inside a fume hood to ensure fast 

volatilization of the odor after every tested animal. The illumination was adjusted to 

45-50lux. When different odors were used in the fume hood, 30min additional interval 

was added to allow complete elimination of the odor before the next animal was 

tested. The apparatus was cleaned with water containing a detergent and dried 

before each trial. All experiments were videotaped and analyzed by Any-maze 

(Version 4.60, Stoelting Co., Wood Dale, USA). 
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Fig. 7: Three-chambered apparatus used for TMT-avoidance test.  

 

3.2.1.1 Avoidance behavior of CD1 mice 

24 male CD1 mice were used for this experiment. TMT-avoidance test took 15min 

every day. During the first nine days of testing, animals were allowed to habituate 

inside the apparatus, without a Petri dish or odorant, to measure their initial 

preference for each chamber. On day 10, animals were divided into three groups, 

according to the odor they were exposed to: cat odor (n = 8), butyric acid (n = 8) and 

TMT (n = 8). 35µl of TMT (undiluted, Phero Tech, Delta, British Columbia, Canada) 

or butyric acid (Sigma-Aldrich, Germany) were pipetted on a filter paper placed in the 

right chamber, which the mice had preferred most throughout the first nine days. 

Instead of filter paper, a clean terry cloth 25 cm × 25cm with cat fur odor was placed 

in the same compartment as TMT and butyric acid. It had been prepared by placing it 

on the cat's bed overnight and rubbing the cloth on the cat's body before using it for 

testing the next day, whereas a fresh similar cloth was used in the neutral 

compartment. To avoid the effect of initial predilection during testing, on days 13 to 

14, the odorant was placed in the neutral chamber, leaving the previous odor 

compartment free of odor. 

3.2.1.2  Avoidance behavior of HAB/NAB/LAB mice 

In this experiment, only four days of habituation were used to measure the initial 

preference for one of the outer chambers. After habituation, on day 5, 35µl of TMT 

was applied in the same compartment as in case of CD1 mice. On days 6 and 7 

animals were tested in the three-chambered apparatus without any odor to check 

that the odor was completely volatilized and had no effects on rodents’ behavior 

anymore. On day 8, 35 µl of female mice urine collected from six to eight females of 
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the respective line was applied the same way as TMT. Afterwards, during days 9-11, 

animals were tested without the presence of any odor, similar to days 6 and 7. 

Finally, on day 12 mice were exposed to 35µl of butyric acid, the same way as it was 

done for TMT or female urine. Both female urine and butyric acid were used to test 

for the functionality of the olfactory system in HAB/NAB/LAB mice. 

CMS treated and control LAB mice were exposed to TMT the same way. Only 

habituation time was decreased to one day for better evaluation of stress-induced 

effects.  

3.2.2 Elevated plus-maze test (EPM) 

The plus-shaped EPM was made out of dark gray PVC and consisted of two 

opposing open (30 x 5cm, with light intensity changing gradually from 300lux to 

50lux) and two opposing closed arms (30 x 5 x 15cm, with light intensity 10lux) 

connected by a central platform (5 x 5cm). The EPM was located 40cm above the 

floor. At the beginning of each 5min trial, the mouse was placed on the central 

platform facing a closed arm. The apparatus was cleaned with water containing a 

detergent before each test session and behavior was monitored by a video camera 

fixed above the EPM. All experiments were analyzed using Any-maze. Entries, 

latency to first entry in and percent time spent on open arms were recorded as 

anxiety-related indices. 

3.2.3  Light-dark box (LDB) 

The LDB comprised a dark (16 x 27 x 27cm) and a light compartment (32 x 27 x 

27cm) illuminated with 400lux and <20lux, respectively. During 5min of testing, 

percent time in the light compartment, entries and latency to enter the light 

compartment were evaluated as indicators of anxiety-related behavior. Mice with 

higher levels of anxiety will enter the light compartment with higher latency, less often 

and spent less time in it. 

3.2.4  Home cage activity (HCA) 

Since locomotor and exploration activity during behavioral test are strongly affected 

by stress-related factors like fear of novelty, we measured the animals’ activity in the 

familiar environment, i.e. home cage. The quantification was performed via an 

automated system (Inframot; TSE, Bad Homburg, Germany). Animals were housed 

in type 3 Makrolon cages (265 x 150 x420mm) covered with an iron lid with a photo 
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beam sensor on top. Activity was counted, when the mouse passed the sensor. Eight 

animals were tracked simultaneously over a period of 96 hours, thus, three dark and 

light cycles were completely analyzed.  

3.2.5  Tail suspension test (TST) 

In the TST, the mouse was suspended from a metal frame by fixing the last 2cm of 

their tail with adhesive tape. After fixation, animals were recorded with a video 

camera for 6min and videos were later analyzed using a custom Eventlog program. 

Since antidepressant administration was shown to affect time spent immobile in the 

TST (Porsolt et al., 1987; Steru et al., 1985), this parameter was used as an indicator 

of depression-like behavior. Immobility was considered when animals stopped any 

body movements, except slight head swingings. Moreover, we additionally analyzed 

latency to the first immobility episode and total number of immobile episodes to get 

more detailed information about the behavioral readouts. However, the term 

“depression-like” should be considered with caution, since recent literature suggest 

“immobility” as a measure reflecting coping strategy in a stressful situation, rather 

then an emotional state.  

3.2.6  Forced swimming test (FST) 

FST, similar to TST, exploits stress-induced behavior to characterize depression-like 

traits. In this test, mice are placed in a 2l glass cylinder (diameter of 135mm and 

height of 280mm) filled with room temperature water (22.5±1°C) for 6min. Before 

putting the animal back into its home cage, it was dried with a towel. Behavior was 

recorded on video tape and analyzed later using Eventlog program. Time spent 

floating, latency to first floating episode and total number of floating episodes were 

counted. Floating was considered when animal did not show any movements, except 

slight balancing movements. In line with previous discussion, there is no 

concordance in the scientific community whether immobility indeed reflects 

“depression-like”• behavior or “coping strategy”. Therefore, additionally we performed 

a stress-independent test to characterize depression-like behavior, the sucrose 

preference test.  

3.2.7   Sucrose preference test 

The sucrose consumption test – is a pharmacologically validated paradigm for 

measuring anhedonic-like behavior, a core symptom of depression (Forbes et al., 

1996; Monleon et al., 1995). However, since this work was performed on adolescent 
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animals, several modifications had to be introduced in order to adapt the model to 

specific experimental conditions. Liquids consumption from two identical bottles 

placed on the left and right sides of the cage was analyzed during 10 days. Bottles 

with water/sucrose were weighed every morning at 8 a.m. to evaluate the amount of 

consumed liquid and then filled with fresh content. Since body weight could affect the 

total amount of drunk liquid, the final volume was divided by body weight to measure 

a relative consumption value. During days 1-4 both bottles only contained a water 

solution, so that any basal preference of a position/bottle could be evaluated. 

Similarly, during days 5-6 both bottles were filled with 4% sucrose solution (Sigma-

Aldrich) to get animals familiar with a sweet content and to measure the basal 

position/bottle preference. Finally, during days 7-10, bottles were filled either with 

water or sucrose solution. The preference was evaluated by dividing the relative 

consumption of the sweet solution by the relative consumption of water. Unlike other 

protocols, food and water deprivation were excluded due to ethical reasons.        

3.3 Analysis of neuroendocrinological parameters 

3.3.1  HPA axis regulation 

We analyzed HPA axis regulation via measuring basal and reactive CORT release. 

Our earlier experiments indicated, that the highest difference in CORT levels 

between HAB/LAB mice could be found in the afternoon (Sotnikov et al., 

unpublished). Therefore, we collected blood samples from animals between 3 p.m. 

and 6 p.m. Blood was taken from the ventral tail vessel in less than two minutes and 

collected in Microvette® CB300 coated with potassium-EDTA tubes (code: 16444, 

Sarstedt, Nümbrecht, Germany). Plasma was separated from cellular constituents via 

centrifugation for 10min at 4000rpm and frozen at -20°C until further analysis. by 

HPA axis reactivity and feedback regulation was tested via exposure to 6min forced 

swimming. Blood samples were collected in three time points: directly after stress, 

30min and 60min later.  

3.3.2  Radioimmunoassay (RIA) 

Plasma samples taken at basal state and 60 min after FST were diluted 1:13.5, 

whereas samples collected directly or 30 min after stress were diluted 1:100. 10µl of 

plasma was used to determine the concentration of CORT using RIA kit (MP 

Biomedicals, Solon, Ohio, USA) according to the manufacturer’s instructions. All 
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samples were measured in duplicates, intra- and inter-assay coefficients were below 

10%. 

3.3.3  Body and organs weight 

Animals were weighed on PND15 and were separated in treatment groups randomly, 

so that no a priori difference could be found between experimental groups. On PND 

44 animals were weighed again to estimate treatment effects on individual body 

weight parameters. After animals were sacrified on day 52, both right and left 

adrenals and thymus were accurately removed with a scalpel and weighed using an 

analytical scale. Finally, the weight of the structure (or combined in case of adrenals) 

was divided by the individual body weight to obtain the relative weight of the 

structure.    

3.4 Chronic mild stress paradigm (CMS) 

CMS was applied from PND 15 to PND 44 and comprised array of alternating mild 

stressors to elicit an anxiogenic and pro-depressive phenotype including maternal 

separation (PND 15-28), wet bedding, cage tilt, overcrowding, mild footshock, 

overnight illumination, white noise (adopted from Willner et al., 1987). A detailed 

description of the stress procedure is presented in Table 1. Food and water 

deprivation were excluded due to ethical reasons. Unstressed control mice were 

housed under normal conditions without any manipulations.  

3.5 Killing of animals and brain harvesting   

Animals were deeply anesthetized with Forene (ABBOTT GmbH, Wiesbaden, 

Germany) and quickly decapitated. Brains were accurately removed, quick-frozen in 

2-methylbutan (CarlRoth, Karlsruhe, Germany) and stored at -80°C until further 

analysis.  

3.6 c-Fos in situ hybridization  

The frozen brains were cut into 20µm slices and mounted to Superfrost microscope 

slides (Menzel, Braunschweig, Germany) in a cryostat (Microm MH50, Microm, 

Walldorf, Germany), shortly dried and stored at -80°C until further analysis.  

c-Fos expression was measured in 5 brain regions: medial prefrontal cortex (mPFC), 

amygdala (Amy), hippocampus (Hipp), PVN and locus coeruleus (LC). Subdivisions 

of the amygdala – basolateral (BLA), central (CeA), lateral (LA) and medial (MeA) - 

and the hippocampus - CA1, CA2, CA3 and the dentate gyrus - were analyzed  
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Table 1: Comprehensive protocol of the chronic mild stress paradigm.  
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separately. The mPCF included sections of prelimbic, infralimbic and cingulate 

cortices.A ribonucleotide probe for c-fos was designed to cover the sequence of the 

murine c-fos gene nucleotides 258-738 of the GenBank accession no NM_010234. 

ISH with 35S-UTP-labelled riboprobe for c-fos was performed as described before 

(Refojo et al., 2011; Schmidt et al., 2007). cRNA were synthesized from PCR 

products by in vitro transcription with 35S-UTP (PerkinElmer, Rodgau, Germany) 

using T7 or SP6 RNA Polymerase (Roche). The probes were treated with DNAase I 

(Roche) and purified (Rneasy Kit, Qiagen). The brain sections were fixed in 4% 

paraformaldehyde, washed and acetylated in 0.25% acetic anhydride. The slides 

were dehydrated in ascending concentrations of ethanol, degreased with chloroform 

and air dried. After adding 100µl of hybridization buffer per slide, containing 3-

7x106cpm of 35S-UTP-labelled riboprobe, the slides were coverslipped and incubated 

overnight at 55-57°C. The next day, coverslips were removed, the slides were 

washed and incubated in RNase A solution. Finally, the sections were desalted and 

dehydrated. 

The sections were exposed to radiation-sensitive films (Kodak Biomax MR films, 

Eastman KodakCo., Rochester, NY, USA) for 5 days. The films were scanned, c-fos 

signal intensity (optical density) was assessed by Image J software (version 1.44p, 

National Institutes of Health, Bethesda, USA). For each animal, bilateral structures of 

one slice were calculated, subtracting the background from the value. The 

background signal was measured in structures not expressing c-fos.  

3.7 RNA extraction, cDNA preparation and quantitative real-time PCR  

The brain areas of interest were identified using the 2nd edition of the Mouse Brain 

Atlas (Paxinos, 2001). 200µm brain slices were collected on Superfrost microscope 

slides (Menzel, Braunschweig, Germany) and CG, BLA and LC were punched out 

using micropunchers (Fig. 8) (Fine Science Tools, Heidelberg, Germany) RNA 

isolation was performed using the standard protocol for Trizol-chloroform-based RNA 

precipitation. 200µl of TRI-Reagent (Sigma-Aldrich, Hamburg, Germany) was added 

to a PCR tube containing brain punches from one region. Punches were solved in the 

TRI-reagent by pipeting up and down for 2min. When all punches were completely 

dissolved, 100µl of TRI-Reagent and 30µl of autoclaved bidistilled water were added. 

 



  38 

 

Fig. 8: Dissection of the cingulate cortex (A), basolateral amygdala (B) and locus coeruleus 

(C) from frozen brain slices by micropunching. Coloured zones highlight the location of the 

structures, dashed circles illustrate punched out fragments.    

To disrupt the secondary structure of RNA, 1µl of linear acrylamide (Ambion, 

Huntingdon, UK) was used. After addition of 60µl chloroform (Sigma-Aldirch, 

Hamburg, Germany), samples were vortexed (Vortexer VF2, IKA (R) Labortechnik, 

Staufen, Germany) for 30s and centrifuged (Centrifuge type Z216MK, Hermle 

Labortechnik GmbH, Wehingen, Germany) at 13000rpm, 18°C for 5min in order to 

separate the organic and inorganic phases. The upper aqueous phase, containing 

the RNA, was transferred to a new 1.5ml Eppendorf tube, while the inter- and the 

organic phases, containing DNA and proteins, respectively, were discarded. 180µl of 

isopropanol (Roth, Karlsruhe, Germany) were added to the RNA fraction and briefly 

mixed. The tubes were stored at -20°C for an O/N precipitation step. 

On the next day, samples were centrifuged at 4°C, 13000rpm for 30min. The 

supernatant was discarded and remaining pellet was washed twice with 500µl ice-

cooled 70% ethanol. After each washing, samples were centrifuged for 10min at 

13000rpm and the supernatant was discarded both times. The remaining ethanol 

was removed using a 200µl pipette after a short centrifugation-step at full speed. The 

RNA was dried at 45°C on a microtube thermo-shaker (PHMT, Grant-bio) until the 

rest of ethanol got completely evaporated. Precipitated RNA was dissolved in 13µl 

RNase free water (Qiagen, Hilden, Germany). 

RNA concentration, purity and quality were measured on a nanophotometer (Implen, 

Munich, Germany). Results were considered satisfactory when RNA quantity (A260 

>0.1 and <1.0) and quality (A260/A280 >1.7 and <2.0) were in a secure range to 

ensure a proper measurement and reliable values. 
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After the adjustment of the concentration to 20ng/µl, 10µl of RNA was used for 

reverse transcription polymerase chain reaction (RT-PCR). RT-PCR was performed 

using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) and setup 

included at least one negative control, containing 10µl of RNase free water instead of 

a RNA sample. The reaction was performed in a thermal cycler (primus96 advanced, 

Peqlab, Erlangen, Germany), with the following reaction protocol: initial enzyme 

activation (10min at 25°C) followed by reverse transcription step (2h at 37°C) and 

termination (5min at 85°C). Finally, obtained cDNA was diluted 1:5 and was stored at 

-20°C until further analysis. 

cDNA was used to measure gene expression via quantitative real-time PCR (qPCR). 

A master-mix included 5µl of QuantiFast SYBR Green PCR Master Mix (Qiagen, 

Hilden, Germany), 1µl of autoclaved water and 1µl of each specific forward and 

reverse primers for the candidate or the housekeeping gene. 8µl of a master mix was 

pipetted into a LightCycler® Capillary (Roche, Mannheim, Germany). To achieve a 

total volume of 10µl/reaction, 2µl of cDNA was used. In addition to the samples, 

which were prepared in duplicates, each run included a qPCR negative control, a RT 

negative control, as well as a 1:5 and a 1:25 dilution of one of the samples (for 

standard curve calculations). The qPCR was performed in the LightCycler® 2.0 Real-

Time PCR System (Roche), programmed to fit the recommendations of the used 

QuantiFast SYBR Green PCR Kit (Qiagen): hot start to activate polymerase at 95°C 

for 5min, amplification with 40 cycles (denaturation at 95°C for 10sec, combined 

annealing and extension at 60°C for 30sec), melting curve (95°C, 50°C for 10sec and 

95°C) and then cooling (42°C for 30 sec). Relative transcript concentrations were 

calculated using 2(-• • Ct) method (Livak and Schmittgen, 2001). 

RNA for analysis of miRNA expression was extracted from the BLA the same way as 

described above. Reverse transcription was carried out using miScript II RT PCR kit 

(Qiagen, Hilden, Germany). Master mix was prepared according to manufacturer’s 

instructions and 10µl of extracted RNA and 2µl of RNAase free water were added for 

a final 20µl reaction mixture. The reverse transcription was performed with the 

following PCR conditions: reverse transcription (1h at 60°C) and termination (5min at 

95°C). The obtained cDNA was diluted 1:20 and was stored at -20°C until further 

analysis. qPCR was performed using miScript SYBR Green PCR Kit (Qiagen) at 

following PCR conditions: initial activation step (95°C for 15min) followed by 40 

cycles of denaturation (94°C for 15sec), annealing (55°c for 30sec) and extension 
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(70°C for 30sec). Amount of U6 small non-coding RNA (snRNA) was used as 

between-samples expression control. Data analysis was performed using 2(-• • Ct) 

method.  

Table 2: List of primers used for mRNA expression of target genes.  

Gene  Orientation Primer sequence (5'• 3')  

Crh forward GCA GTG CGG GCT CAC CTA CC 

Crh reverse GGC AGG CAG GAC GAC AGA GC 

Crhr1  forward GCC CCA TGA TCC TGG TCC TGC 

Crhr1  reverse CCA TCG CCG CCA CCT CTT CC 

Tmem132d forward CAT CCC TTC TTC AGC CAG AG 

Tmem132d reverse AGT GAG AAC CGC TGA ATG CT 

TNF• r1 forward TGC CAG CCC CCA CCT CTG TT 

TNF• r1 reverse TCG TGC TCG CTC AGC CCC AT 

IL-10r1 forward CCC AGG CCC ACG ATA ACC CC 

IL-10r1 reverse CGG GAT TCC AAG CGG GGC AG 

Glo1 forward CTC TGC CCC AGA GAA CAG TC 

Glo1 reverse TGA TAG AGG CCA CAC AGC AG 

Dbh forward AGA GAG CCC CTT CCC CTA CCA CAT C 

Dbh reverse TTT CCG GTC ACT CCA GGC ATC 

Npsr1 forward CTC TTC ACT GAG GTG GGC TC 

Npsr1 reverse CCA GTC CTT CAG TGA ACG TC 

YY1 forward ACC TGG CAT TGA CCT CTC 

YY1 reverse TTA TCC CTG AAC ATC TTT GT 

Dicer forward CAC GCC TCC TAC CAC TAC AAC A 

Dicer reverse CCT GGA GAA TGC TGC CGT GGG T 

Dnmt1 forward CCT AGT TCC GTG GCT ACG AGG AGA A 

Dnmt1 reverse TCT CTC TCC TCT GCA GCC GAC TCA 

Dnmt3a forward CCG CCT CTT CTT TGA GTT C 

Dnmt3a reverse AGG AAG GTT ACC CCA GAA GTA 

Dnmt3b forward TTC AGT GAC CAG TCC TCA GAC ACGAA 

Dnmt3b reverse TCA GAA GGC TGG AGA CCT CCC TCT T 

MeCP2 forward TCT GCT GGA AAG TAT GAT 

MeCP2 reverse AAT CAA TTC TAC TTT AGA GC 
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Table 3: List of primers used for mRNA expression of housekeeping genes.  

Gene  Orientation Primer sequence (5'• 3')  

Rpfl13a forward CAC TCT GGA GGA GAA ACG GAA GG 

Rpfl13a reverse GCA GGC ATG AGG CAA ACA GTC 

B2mg forward CTA TAT CCT GGC TCA CAC TG 

B2mg reverse CAT CAT GAT GCT TGA TCA CA 

Polr2b forward CAA GAC AAG GAT CAT ATC TGA TGG 

Polr2b reverse AGA GTT TAG ACG ACG CAG GTG 

 

Table 4: List of primers used for miRNA expression studies. 

Gene  Application Primer sequence (5'• 3')  

miRNA-34a target TGG CAG TGT CTT AGC TGG TTG T 

miRNA-34b target AGG CAG TGT AAT TAG CTGA TTG T 

miRNA-34c target AGG CAG TGT AGT TAG CTG ATT GC 

U6 snRNA control GAT GAC ACG CAA ATT CGT GAA 

 

3.8 DNA extraction, bisulfite conversion and pyrosequencing 

DNA isolation from tissue punches or cell culture was performed using the 

NucleoSpin® Tissue DNA-isolation Kit (Macherey-Nagel, Düren, Germany) according 

to the manufacturer’s instructions. DNA quantity (A260) and purity (A260/A280) were 

measured on a nanophotometer (Implen, Munich, Germany) and final concentration 

was adjusted to 100ng/µl.   

DNA samples were bisulfite converted before sequencing using the EpiTect Bisulfite 

Kit (Qiagen, Hilden, Germany) according to manufacturer’s protocol. Treatment of 

DNA with bisulphite converts cytosine residues to uracil, but leaves 5-methylcytosine 

residues unaffected. The following PCR reaction further converts uracil into adenine, 

whereas 5-methylcytosine is recognized as usual cytosine. Thus, after bisulphite 

conversion, the final mixture consists of DNA fragments differ in amount of adenine 

and cytosine bound with guanin. The quantity of each fragment reflects degree of 

methylation and could be evaluated by pyrosequencing. 

Pyrosequencing (Fig. 9) was performed by Varionostic GmbH (Ulm, Germany) using  

the Q24 system (Qiagen, Hilden, Germany). The pyrosequencing method is based 
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on detecting the activity of DNA polymerase with another chemiluminescent enzyme. 

A reaction for pyrosequencing includes a balanced mixture of four enzymes: the 

Klenow fragment of the DNA polymerase I, an ATP sulfurylase, the luciferase and an 

apyrase. The template DNA is immobilized in the pyrosequencing mixture, and 

unmodified nucleotides (A,C,G or T) are sequentially added to the reaction. When a 

complementary nucleotide is incorporated into DNA strand, it is quantitatively 

converted into a bioluminometric signal via releasing of pyrophosphate (PPi). The PPi 

is converted into ATP by the ATP sulfurylase using adenosine 5• phosphosulfate as a 

substrate. The energy, released during reaction, is used by luciferase to oxidize D-

luciferin. The product oxyluciferin is produced in an excited state, detected and 

measured by a charge-coupled device camera. Apyrase degrades unincorporated 

nucleotides before adding the next nucleotide. This method allows sequencing of a 

single-stranded DNA and evaluation of polymorphisms in DNA sequence.   

 

 

 

Fig. 9: DNA methylation analysis by pyrosequencing. Adopted from Ronaqhi (2001). 
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3.9 Construction of promoter-luciferase reporters 

To study Crhr1 promoter properties, several deletion constructs were cloned into the 

CpG-free luciferase vector (kindly provided by M. Rehli, University Hospital 

Regensburg, Germany). To this end, genomic DNA of LAB mice was extracted as 

described above and respective PCR products were generated using Phusion DNA 

polymerase (New England Biolabs, Frankfurt, Germany). The master-mix consisted 

of: 10µl of 5X Phusion HF buffer, 1µl of 10mM dNTP mix, 1µl of 5% DMSO, 1µl each 

respective 2µM forward and reverse primers, 1µl DNA and 0.5µl of Phusion DNA 

polymerase (2U/µl) and nuclease-free water up to 50µl. PCR reactions were 

performed at following conditions: polymerase activation (95°C for 5min) followed by 

35 cycles of denaturation (95°C for 30sec), annealing (56°c for 60sec) and extension 

(72°C for 60sec) and final extension period (72°C for 10min). Products were 

analyzed using gel-electrophoresis and respective bands were cut out and gel-

extracted using QIAquick Gel Extraction Kit (Qiagen).  

Table 5: List of primers used for construction of Crhr1 promoter-luciferase reporters. 

Primer sequence (5'• 3')  Orientation Product  

ATC ACT AGT GAG CAG AGG CGA GAG GCA G forward 290 bp 

ATC ACT AGT CCG AGC CCC ACA AGT ACC C forward 650 bp 

ATC ACT AGT GTT CCC GCC GCA GAG CA forward 880 bp 

ATC ACT AGT TGA AGG TGG CGA GAG CTG G forward 1230 bp 

ATC ACT AGT GTA GTG TCC AGA GTT GCC AAG CT forward 1460 bp 

CAG GAC TTT GCT TCA CTG AAC TGT forward 1790 bp 

CAG AAG CTT CCT CGG GCT CGC TCT GTC reverse universal  

 

The purified products and the CpG-free luciferase vector were digested with SpeI 

and HindIII restriction enzymes (New England Biolabs GmbH, Frankfurt, Germany) 

and ligated by T4 DNA ligase according to manufacturer’s instruction. The final 

products were transformed into chemically competent DH5•  bacteria using heat-

shock. For this, the ligation mixture was incubated for 10min along with bacteria on 

ice and then placed on a heating block at 42°C for 45sec and later cooled down. 

After addition of 500µl of LB medium (20g/l) (Serva electrophoresis GmbH, 
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Heidelberg, Germany), cells were incubated for 60min at 37% and plated on LB agar 

(1%) plates.  

24 hours afterwards, separate colonies were picked, plasmids were isolated and 

sequenced. For this, separate colonies were transferred into 10 ml of LB medium and 

incubated overnight. Plasmid isolation was performed using alkaline lysis with SDS 

according to the following protocol: 

• Bacteria pellet precipitation by centrifugation at 4000rpm with 4°C for 10min. 

• Resuspension of the pellet in 200µl of ice-cold Alkaline lysis solution I (50mM 

glucose, 25mM Tris-Cl (pH 8.0), 10mM EDTA (pH 8.0). 

• Addition of 400µl of Alkaline lysis solution II (0.2N NaOH, 1% (w/v) SDS) and 

mixing. 

• Addition of 300µl ice-cold Alkaline lysis solution III (5M potassium acetate, 

glacial acetic acid and distilled water up to 100 ml) and mixing.  

• Separation from cellular content via centrifugation for 5min at 13000rpm. 

• Genomic material extraction by mixing 600µl of supernatant with 600µl 

chloroform:phenol and vigorous vortexing. 

• Separation of organic and inorganic phases by centrifugation for 2min at 

13000rpm. 

• Nucleic acid precipitation with 600µl of isopropanol for 2min at room 

temperature. 

• Nucleic acid precipitation by centrifugation for 5min at 13000rpm. 

• Washing of plasmid’s pellet with 70% ethanol and consequent centrifugation 

for 2min at 13000rpm. 

• Removal of ethanol beads by heating at 60°C for 5min. 

Dried pellets were dissolved in water to a final concentration of 100ng/µl. BigDye 

Terminator kit v3.1 (Applied Biosystems, California, USA) was used for the 

sequencing reaction: 2µl sequencing buffer (5X), 0.4µl BigDye reagent, 1µl 

corresponding forward or reverse primer (2µM) and 2.4µl of plasmid’s solution were 

mixed. Following PCR was carried out: initial denaturation (96°C for 1min) followed 

by 35 cycles of denaturation (96°C for 10sec), annealing (50°C for 5sec) and 
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extension (60°C for 4min). The reaction mixture was loaded onto Montage Seq 96 

plate (Millipore GmbH, Schwalbach, Germany) and washed twice with 20µl Montage 

injection solution (Millipore GmbH, Schwalbach, Germany). PCR products were 

dissolved in 20µl of injection solution and analyzed using capillary electrophoresis on 

a ABI 3730 DNA analyzer (Life technologies, Darmstadt, Germany) at the Helmholtz 

Zentrum Institute of Human Genetics (Neuherberg, Germany).  

Table 6: List of primers used to verify sequences of Crhr1 luciferase constructs. 

Primer sequence (5'• 3')  Orientation Product 

GCC CAC TCT ATC TTG ATG AT forward 
485 bp 

CCT CCT TCC TAA TTC CCA AC reverse 

CTT CAG GAC TTT GCT TCA CTG forward 
596 bp 

TTC TAA TTC CAC TTC CAG CC reverse 

CCT GAG AGG TGA AGA TGT TTC forward 
558 bp 

CAA TTT AGT GGG GAG GGG AG reverse 

CCG CTG TCA CCA CTT ATC TT forward 
691 bp 

TCG TGT CCC CTC CTC TTT CT reverse 

TTT TCC CTA GCT GCG GTG GC forward 
572 bp 

GTC CTC TCT TAC CTT CAC GA reverse 

 

However, since the alkaline lysis with SDS does not remove completely LPS and 

other endotoxins, for cells culture experiments plasmids were isolated using Plasmid 

Maxi Prep Kit (Qiagen) according to the manufacturer’s protocol. Plasmid sequences 

were verified by capillary electrophoresis of PCR-amplified products on a ABI 3730 

DNA analyzer (Life Technologies, Darmstadt, Germany) at the Max Planck institute 

of Biochemistry (Martinsried, Munich, Germany). 

A plasmid carrying YY1 cDNA was purchased from the DNA Resource CORE (Clone 

ID: MmCD00311470). The sequence was analyzed using Platinum Service (DNA 

Resource CORE) and by capillary electrophoresis of PCR amplified products of the 

plasmid using ABI 3730 DNA analyzer. The empty plasmid (SPORT6) was obtained 

by removing the YY1 cDNA sequence using the restriction enzyme MluI (New 

England Biolabs GmbH, Frankfurt, Germany), subsequent gel purification (QIAquick 

Gel Extraction Kit, Qiagen) and self-ligation of the empty product. 
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3.10 In vitro methylation of DNA and bisulphite sequencing 

Site-specific methylation (SSM) of the Crhr1 promoter was performed according to 

Martinowich et al. (2003) (Fig. 10). Modified oligonucleotides, carrying either a 

methylated or unmethylated CpG dinucleotide at the site of interest (CpG1) were 

synthesized by Sigma Aldrich: 5’-CTC AAG ATG GAG ACC C*GG ACC TGA GAG 

GTG AA-3’ and 3’-TTC ACC TCT CAG GTC C*GG GTC TCC ATC TTG AG-5’ (star 

indicates methylated cytosine). For PCR reaction, each primer was diluted to the  

 

Fig. 10: Schematic overview of the generation of Crhr1 promoter luciferase reporter construct 

containing site-specific methylation at CpG1 (adopted from Martinowich et al. (2003)). 

concentration of 125ng/µl. The PCR master-mix consisted of: 10µl of 5X Phusion HF 

buffer, 0.5µl of 25mM dNTP mix, 1µl of each forward and reverse primers, 300ng of 

plasmid DNA, 1µl of Phusion DNA polymerase (2U/µl) and nuclease-free water up to 

50µl. 5µl of PCR product was loaded on agarose gel and respective product size was 

verified via ethidium bromide staining. The remainig 45µl were incubated with DpnI 

(New England Biolabs GmbH, Frankfurt, Germany) at 37°C overnight. Next day, 

1/10th volume of 3M sodium acetate (Sigma Aldrich), 1µl glycogen (10mg/ml) (Carl 

Roth Gmbh) and 2.5 volumes of 95% ethanol were added to the digested PCR 

products. The mixture was centrifuged at 13000rpm for 30min at 4°C and the 

supernatant was decanted afterwards. The pellet was washed additionally twice with 

70% ice-cooled ethanol followed by 5min centrifugation at 13000rpm at 4°C. Finally, 

the pellet was dried at 60° for 5min and resuspended in the ultra pure water. 
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To assess the impact of a completely methylated Crhr1 promoter, the construct was 

incubated overnight with SssI methylase (New England Biolabs GmbH, Frankfurt, 

Germany) according to the following protocol: 5µl of 10X NE buffer, 1µl of 640µM S-

adenosylmethionine, 4µl of SssI methylase, plasmid DNA 4µg and water up to 50µl. 

A mock-methylated plasmid was treated in the absence of S-adenosylmethionine. 

Products were purified using sodium acetate precipitation as decribed above.  

 

Fig. 11: Schematic illustration of difference between SSM and complete methylation of the 

Crhr1 promoter luciferase reporter construct using SssI enzyme after bisulphite sequencing.  

To check the efficiency of SSM and complete methylation purified products were 

sequenced. For this, they were treated with sodium bisulphite (EpiTech Bisulfite Kit, 

Qiagen) and incubated using the following conditions: 5min at 95°C, 25min at 60°C, 

5min at 95°C, 85min at 60°C, 5min at 95°C and 175min at 60°C. Then, samples were 

purified according to the manufacturer’s protocol (EpiTech Bisulfite Kit, Qiagen) and 

sequenced at the Max Planck Institute of Biochemistry (Martinsried, Munich, 

Germany) using following forward 5’-TGT GGA TTT TGT TTA GTG TGT T-3’ and 

reverse 5’-TAA CTT TCT AAT TCC ACT TCC AA-3’ primers (Fig. 11). 

3.11 Cell culture, transfection and reporter gene assay 

Mouse-neuro-2a cells were cultured in DMEM containing 10% FBS, 1% sodium 

pyruvate and 1% antibiotic-antimycotic (Life Technologies GmbH, Darmstadt, 

Germany) under standard conditions (5% CO2, 37°C). Cells were plated in 96 well 

plates with a density of 10000 cells per well. The day after seeding, when the cells 

reached a density of 50 to 70%, they were transfected either with 300ng of a 

methylated or unmethylated Crhr1 promoter-reporter construct and with 10ng of 

pCMV-Gaussia vector as internal control by using Turbofect Transfection reagent 

(Thermoscientific, Braunschweig, Germany). SV40- pGL3 vector was used as a 

positive control. The plate was centrifuged for 5min at 280g at room temperature to 

improve transfection efficiency. The valproic acid (VPA) stimulation was performed 

28 hours after transfection by complete exchange of growing medium with a fresh 

one containing 10nM, 50nM, 100nM, 500nM, 1000nM or 2000nM of VPA (Sigma 
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Aldrich) or water as a control. To check if YY1 exhibits a regulatory role on Crhr1 

promoter activity, an empty vector (SPORT6) or a vector expressing YY1 cDNA were 

co-transfected with plasmids carrying the Crhr1 promoter-reporter construct and 

pCMV-Gaussia in a ratio of 14:26:1. The same approach was used to overexpress 

YY1, when methylated Crhr1 promoter constructs were transfected. Cells were lysed 

40h after transfection to measure firefly and gaussia luciferase activity as described 

by Schulke et al. (2010). Briefly, supernatant was removed by aspiration and 50µl of 

passive lysis buffer (100mM KPO4 buffer pH 7.8, 0.2% Triton X-100) was added in 

each well. Cells were incubated at 37°C for 30min at 800rpm. 20µl of lysate was 

used for detection of luciferase signal from Firefly and Gaussia using TriStar LB 941 

multimode microplate reader (Berthold technologies, Bad Wildbad, Germany). For 

this, a luminometer injected 50µl of firefly substrate solution (2.5mM MgCl2, 2mM 

ATP (Sigma Aldrich), 100µl D-Luciferin (P.J.K. Gmbh, Kleinblittersdorf, Germany)) 

and then 50µl of Gaussia substrate solution (2.2M NaCl, 4.4mM Na2EDTA, 0.22M 

KPO4 buffer pH 5.1, 0.88mg/ml BSA and 6µg/ml Coelenterazin (P.J.K. Gmbh, 

Kleinblittersdorf, Germany)). Each signal was measured over the period of 10s. 

Three biological replicates per sample were used. Normalized luciferase activity was 

obtained by dividing the respective firefly by Renilla activity. The final normalized 

value represents an average of at least three individual measurements.  

3.12 Western blotting 

The total YY1 protein was analyzed in pooled amygdala punches from HAB, LAB and 

stressed LAB mice. For this, whole amygdala was punched from 3 mice and 

collected in one Eppendorf tube. Total protein fraction was extracted by 

homogenization of punches in 150µl of homogenization buffer containing freshly 

prepared protease inhibitor cocktail (Complete ULTRA tablets, Roche Diagnostics 

Gmbh, Mannheim, Germany). When punches were completely dissolved, 50µl 

extraction buffer was added. Samples were incubated 15min on ice and then 

centrifuged 60min at 13000rpm at 4°C. The supernatant containing the protein 

fraction was stored at -20°C until further analysis.  

Protein extraction by fractions was performed to verify that the transfection of a 

plasmid carrying YY1 cDNA, indeed, induced a higher amount of YY1 protein in the 

cytosolic and nuclear fractions. For this, cells were washed several times with PBS 

and then harvested in 1.5ml Eppendorf tubes. They were lysed in hypotonic buffer 
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containing a protease inhibitor cocktail (Complete ULTRA tablets, Roche Diagnostics 

Gmbh, Mannheim, Germany). Cytosolic and nuclear fractions were separated by 

centrifugation at 6500rpm for 30s. The supernatant containing cytosolic proteins was 

transferred into a separate tube and stored at -20°C. The nuclear pellet was 

dissolved in NETN containing a protease inhibitor cocktail (Complete mini, Roche). 

After centrifugation at 13000rpm for 10min, supernatants with nuclear proteins were 

saved and stored at -20°C.  

Analysis of protein concentration was performed using bicinchoninic acid (BCA) 

assay (Pierce™ BCA Protein Assay Kit, Thermo Scientific). For higher reliability, 

samples were analyzed in triplicates. 200µl of reagent A and 4µl of reagent B were 

mixed to get a working solution. 10µl of sample and 200µl of working solution were 

pipetted together and incubated for 30min at 37°C. Samples, as well BSA standards, 

were measured at 562nm in an enzyme-linked immunosorbent assay plate reader 

(Dynatech MR7000).  

Table 7: Protein extraction buffers.  

Buffer Substance Concentration 

Homogenization buffer 

Tris-HCl, pH 7.5 50mM 

NaCl 150mM 

EDTA 3.33mM 

Extraction buffer 

Tris-HCl, pH 7.5 50mM 

NaCl 150mM 

NP40 2% 

Deoxycolate 2% 

Hypotonic buffer 

Tris-HCl, pH 7.9 10mM 

KCl 10mM 

EDTA 0.5mM 

NP40 0.1% 

glycerol 10% 

NETN buffer 

NaCl 100mM 

EDTA 1mM 

NP40 0.5% 
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After dilution to the same protein concentration, samples were boiled in loading buffer 

(160mM Tris-HCl (pH 6.8), 5% SDS, 5% • -mercaptoethanol, 40% glycerol, 0.0025% 

bromophenol blue) for 7min at 95°C. 35µg of proteins was loaded in 10% SDS-

polyacrylamide gel and run for 90min at 4°C in electrophoresis buffer (25mM Tris, 

192mM glycine). The protein ladder, Page Ruler (Fermentas, Leon-Rot, Germany), 

was used to control separation efficiency (Fig. 12).  

Afterwards, when a good separation was achieved, proteins were transferred onto a 

nitrocellulose membrane (Protran, Whatman, Dassel, Germany) via side-by-side 

electrophoresis at 400mA for 60min at 4°C. Next, the membrane was incubated in 

blocking solution (5% milk in Tris-buffered saline) and cut into pieces. A piece 

containing proteins of 55-75kDa weight was incubated with anti-YY antibody (sc-

1703, Santa Cruz Biotechnology) (diluted 1:500), a piece with 35-55kDa proteins was 

incubated with anti-• -actin antibody (sc-47778, Santa Cruz Biotechnology) (diluted 

1:1000), whereas a piece containing 5-35kDa proteins was incubated with an anti-

acetyl-H4 antibody (Millipore) (diluted 1:2000).  

 

 

Fig. 12: Schematic illustration of the main steps during Western blot analysis (adopted from 

http://www.virology.ws/2010/07/07/virology-toolbox-the-western-blot). 



  51 

After overnight incubation, membranes with proteins were washed several times in 

washing solution (Tris-buffered saline with 0.1% Tween) and then incubated for two 

hours with a secondary HRP-conjugated anti-rabbit antibody (New England Biolabs, 

Frankfurt, Germany). Afterwards, membranes were washed again several times in 

washing solution to remove unbound antibodies. To visualize bands, membranes 

were incubated for 2min in chemiluminescence (ECL) solution. ECL was prepared 

just before analysis by mixing 10ml of solution A (0.1M Tris, 50mg luminol per liter), 

1ml of solution B (DMSO, 0.11% para-hydroxycoumarin acid) and 3µl of hydrogen 

peroxide. Blots were evaluated with the ChemiDoc Imaging System (Bio-Rad). 

3.13 Immunofluorescent assays 

To visualize an increase of YY1 protein in the transfected neuro-2a cells, YY1 cDNA 

was co-transfected with 100ng of GFP-expressing plasmid. Cells were mounted on 

cover slips (Heinz Herenz, Hamburg, Germany) and 40 hours after transfection were 

briefly washed in PBS and then incubated in the fixative solution (4% 

paraformaldehyde in PBS) for 10min at room temperature. Fixative solution was 

step-wise diluted with PBST to prevent drying-out of cellular membrane. After this, 

cells were incubated 3min in the permeabilization buffer (0.2% TritonX-100 in PBS), 

then briefly washed and blocked for 10min in 2% BSA. Incubation with primarily anti-

YY1 antibody (sc-1703, Santa Cruz Biotechnology) (diluted 1:100) was performed 

overnight. On the next day, cover slips were washed 3 times in PBST for 10min and 

incubated 2h with an anti-rabbit secondary antibody (ALEXA Fluor® 594) (diluted 

1:300). Finally, samples were stained 10min in DAPI solution (sc-3598, Santa Cruz 

Biotechnology) (diluted 1:10000). Cover slides were fixed on Superfrost microscope 

slides (Menzel, Braunschweig, Germany) in the immuno-mount medium (Shandon, 

Cheshire, UK) and analyzed by fluorescent microscopy. Images were acquired 

simultaneously with two acquisition channels using Axio Vision 4.5.   

3.14 Electrophoretic mobility shift assay (EMSA) 

EMSA probes were prepared by annealing complementary oligonucleotides listed in 

table 7. The oligos were diluted to 20µg/ml in annealing buffer (10mM MgCl2, 50mM 

NaCl, 20mM Tris) and 10µl of each, forward and reverse, were mixed together. The 

mixture was heated to 85°C for 10min and then slowly cooled down to 30°C. 

Annealed oligos were phosphorylated by incubation at 37°C for 30min with T4 
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polynucleotide kinase (New England Biolabs, Frankfurt, Germany) according to the 

manufacturer’s protocol.  

 

Table 8: List of primers used to analyze YY1 binding to the DNA in EMSA. 

Primer sequence (5'• 3')  Orientation 
Binding 
position  

(from TSS) 

CTA GTT GAA CCT CCT GGA TGG CTG CAG GGC 
GGG AA CCA forward 

755-760 bp 
AGC TTG GTT CCC GCC CTG CAG CCA TCC AGG 
AGG TTC AA reverse 

CTA GTC TGT GTA CTC AAG ATG GAG ACC CGG 
ACC TGA GA forward 

1353-1358 bp 
AGC TTC TCA GGT CCG GGT CTC CAT CTT GAG 
TAC ACA GA reverse 

CTA GTC AGA GTT GCC AAG CTC TGC TAC ATT 
TTA AAA TAA forward 

1529-1534 bp 
AGC TTT ATT TTA AAA TGT AGC AGA GCT TGG 
CAA CTC TGA reverse 

CTA GTC CCA CCC ACC TGG GCG CCA TCT TTA 
ATG AAA GA forward 

Positive control          
(Kim et al., 2009) AGC TTC TTT CAT TAA AGA TGG CGC CCA GGT 

GGG TGG GA reverse 

 

Annealed oligonucleotides and phosphorylated oligonucleotides were cloned in a 

pCpG-free vector between a SpeI and HindIII sites as described earlier and 

subsequently amplified in DH5•  E. Coli bacteria. The plasmid was digested with SpeI 

and HindIII, the cloned fragment was purified by polyacrylamide gel electrophoresis. 

For this, the ligation mixture was loaded to a 10% polyacrylamide gel and run at 80V 

for 2h. After separation, ligated products were visualized by ethidium bromide 

staining and cut out under UV-light. Gels were smashed in small pieces and 

incubated in elution buffer (0.5M ammonium acetate, 1mM EDTA pH 8.0) for 14 

hours at 37°C. Then, products were purified using sodium acetated precipitation, as 

described earlier.  

Purified double-stranded probes for EMSA were end-labelled with ³²P-dCTP 

(PerkinElmer) using a Klenow fragment (New England Biolabs, Frankfurt, Germany). 
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For this, 4µl of oligos were incubated with 2µl of 10X Klenow buffer, 1µl Klenow 

polymerase, 4µl of 5mM dATP and 5µl of 10µCi/µl ³²P-dCTP. After 30min, 4µl of 

5mM dCTP was added and the mixture was incubated additionally for 5min.  

 

Fig. 13: Working principle of EMSA (adopted from Thermo Scientific 

http://www.piercenet.com/method/gel-shift-assays-emsa). 

Excess radioactivity was removed by purification using bio-spin columns (Bio-Rad 

Laboratories). Radioactivity of the labelled fragments was measured via liquid 

scintillation counting. For this, 1µl of labelled oligo was added to 2ml of a liquid 

scintillation mixture (PPO 100g/l and POPOP 1.25g/l in toluene) and scintillation was 

analyzed by a liquid scintillation counter. All prepared fragments were diluted to 

20000cpm with water.  

For the EMSA reaction, nuclear extracts from N2a cells were incubated for 5min in 

5X binding buffer (5mM MgCl2, 2.5mM EDTA, 250mM NaCl, 50mM Tris-HCl (pH 

7.5), 20% glycerol, 1mM DTT, 2µg poly(dI:dC)/poly(dI:dC ) in the final volume of 19µl. 

1µl of labelled oligos was added to the EMSA mixture and incubated for an additional 

25min at room temperature. The samples were electrophoresed on a 6% non-

denaturing polyacrylamide gel in 0.5 TBE buffer (89mM Tris pH 7.6, 89mM boric 

acid, 2mM EDTA) for 90min at 4°C. Antibodies used in the shift assay (YY1 (sc-
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1703X, Santa Cruz Biotechnology), GR (sc-1004X, Santa Cruz Biotechnology) and 

competitors (excess of unlabelled  oligonucleotides) were added to binding buffer 

containing the nuclear extract 30min before ³²P–labelled oligonucleotides. To 

evaluate the impact of CpG1 methylation on YY1 binding affinity, a plasmid with an 

incorporated promoter construct for EMSA was incubated with SssI methylase (New 

England Biolabs, Frankfurt, Germany) overnight, whereas a mock-methylated 

plasmid was treated in the absence of S-adenosylmethionine. To circumvent the 

presence of non-methylated CpG1, the methylated probe was digested with the 

methylation-sensitive HpaII restriction enzyme (New England Biolabs, Frankfurt, 

Germany). Gels were finally transferred to the gel drying films (Gel Drying Kit, 

Promega) that were soaked in drying mixture (40% methanol, 10% glycerol and 7.5% 

acetic acid) for 5min, and left overnight until complete drying up. Dried gels were 

exposed to radiation-sensitive films (Kodak Biomax MR films, Eastman KodakCo., 

Rochester, NY, USA) for 2 days. Films were scanned and optical density was 

assessed using Image J software (version 1.44p, National Institute of Health, USA). 

3.15 Chronic valproic acid (VPA) treatment 

To check if VPA induces any changes in behavior of LAB mice, animals were treated 

during 4 weeks with VPA through drinking water. VPA (Sigma Aldrich, Hamburg, 

Germany) was dissolved in a 1% ethanol solution to a final concentration 500µg/ml. 

Starting from PND28, animals were single housed and arranged in vehicle and VPA 

treated groups. Bottles were weighed and liquids were exchanged with a fresh 

solution every second day. Liquid consumption per gram of body was assessed via 

comparison of difference between initial weight and the weight two days later, divided 

by body weight. Body weight was analyzed every fourth day. From PND58, mice 

were consequently tested in the EPM, LDB, TST and FST. Two days after the last 

behavioral test, animals were killed and brains were harvested.  

3.16 Statistical analysis 

Statistical analysis was performed using PASW Statistics 18. Comparison of 

behavioral results with normal distribution, evaluated by Shapiro-Wilcoxon test, was 

performed using one, two or three way analysis of variance (ANOVA). For multiple 

comparisons, Tukey post-hoc was applied. Non-normally distributed data were 

processed by Mann-Whitney-U test with Kruskal-Wallis ANOVA for multiple 

comparisons. 
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To identify avoidance behavior in the TMT-avoidance experiments with CD1 mice 

(section 3.2.1.1.), the mean time an individual mouse spent in the chamber with odor 

was compared with the average time spent in the respective compartment during the 

habituation period, i.e. the values of days 10–12 were compared with those of days 

1–9 in the same chamber, and the values from the opposite chamber during days 1–

9 were used as a basal reference to test for significance during days 13–14. ANOVA 

with the within-subject factors (time spent in the odor chamber × day) and between-

subject factors (groups: TMT, cat odor, butyric acid) was followed by Tukey post-hoc 

test. To present behavioral response to odor exposure of HAB/NAB/LAB mice 

(section 3.2.1.2.), –• T index was introduced. -• T reflects changes in the time spent 

in the chamber during odor exposure in comparison to the time spent in the chamber 

during habituation with zero indicating an absence of any effect and positive values 

reflecting the extent of odor avoidance.  

Expression data of c-fos in brain structures and qPCRs were analyzed using the 

Mann-Whitney-U test. All reporter gene assays were performed in triplicates 

(technical replicates) and were replicated independently at least three times 

(biological replicates). Results are presented as means + S.E.M. Differences were 

considered statistically significant when p<0.05. Comparative illustration data were 

created using GraphPad Prism 6.  
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4 RESULTS 

 

4.1 Evaluation of anxiety-related behavior using the TMT-avoidance test 

4.1.1  Effects of TMT, cat fur and butyric acid on avoidance behavior of CD1 

mice 

TMT induced strongest avoidance behavior and highest HPA axis activation 

during the first presentation and lowest habituation during repeated exposures 

in the three-chambered test. 

We took advantage of the three-chambered test to evaluate avoidance behavior of 

mice by using predator odor exposure. During the habituation period, we observed 

no significant difference between treated groups in time spent in the odor chamber 

(cat odor F(8,63) = 1.61, p = 0.14, butyric acid F(8,63) = 1.22, p = 0.30, TMT 

F(8,63) = 0.93, p = 0.50) (Fig. 14).  

 

Fig. 14: Behavioral response of CD-1 mice to different odors. Mice avoided TMT, cat odor 

and butyric acid when exposed for the first time. However, different habituation was observed 

during repeated exposures the next 4 days. Bars represent means + SEM, n (TMT) = 8, n (cat 

odor) = 8, n (butyric acid) = 8,  p<0.05,  p<0.01,  p<0.001 compared to 

habituation period (days 1–9). 
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When behavior during the habituation period (average days 1-9) was compared with 

behavior during exposure days (10-14), ANOVA indicated a significant within-group 

effect of time spent in the chamber for TMT (F(5,42) = 6.66, p < 0.001), cat fur 

(F(5,42) = 3.96, p < 0.01) and butyric acid (F(5,42) = 3.95, p < 0.01) (Fig. 14). No 

significant difference was found between treated groups on the first day of odor 

exposure, i.e. day 10 (F(2,21) = 0.95, p = 0.40). A Tukey post-hoc test indicated a 

significant reduction for time spent in the odor chamber compared to the habituation 

period, with the highest reduction in the TMT treated group (p < 0.001) and the 

lowest in the butyric acid group (p < 0.05), cat odor exposed mice exhibited 

intermediate avoidance (p < 0.01). Exposures during the next days revealed a 

gradual increase in time spent in the odor compartment that was observed for all 

groups. This habituation was strongest in the cat fur group (Fig. 14). 

Analysis of blood CORT level after odor exposure indicated a significant increase for 

TMT treated mice (F(1,14) = 42.9, p < 0.001), whereas no difference was observed in 

the two other groups (cat fur F(1,14) = 2.94, p = 0.11 and butyric acid F(1,14) = 0.18, 

p = 0.75) (Fig.15). 

 

 

Fig. 15:  The plasma corticosterone (CORT) levels in CD-1 mice after exposure to TMT, cat 

odor or butyric acid. Significant increase in CORT was observed only in the TMT exposed 

group, whereas no impact of other odors on HPA axis reactivity was detected. Bars represent 

means + SEM, n (TMT) = 8, n (cat odor) = 8, n (butyric acid) = 8,   p<0.001 relative to 

basal level. 
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4.1.2  TMT-avoidance in HAB/NAB/LAB mice 

TMT induced high avoidance behavior in HAB mice, but not in LAB. The 

absence of an olfactory deficit is corroborated by the fact that LABs 

recognized the pleasant odor of female urine and the unpleasant smell of 

butyric acid. 

Similar to CD1 mice, no difference in behavior during the habituation period (days 1-

4) was observed by ANOVA within (LAB F(3,28) = 0.71, p = 0.55, NAB 

F(3,28) = 0.36, p = 0.80, HAB F(3,28) = 1.88, p = 0.15) or between (F(2,21) = 1.80, 

p = 0.19) the HAB/NAB/LAB groups. When exposed to TMT on day 5, HAB and NAB 

significantly reduced the time spent in the chamber with the odor, as indicated by 

higher −• T (F(1,14) = 41.1, p < 0.001 and F(1,14) = 18.4, p < 0.01, respectively), 

whereas we observed no significant effect on LAB mice (F(1,14) = 1.91, p = 0.19) 

(Fig. 16).  Moreover, a Tukey post-hoc test revealed a significant difference in 

            

 

Fig. 16: Behavioral response of HAB/LAB/NAB mice to different odors. HAB and NAB 

mice, but not LAB, significantly avoided TMT. Female urine attracted LAB and NAB mice, 

but not HAB. All animals avoided butyric acid significantly. Bars represent means + SEM, n 

(LAB) = 8, n (NAB) = 8, n (HAB) = 8,  p<0.05,  p<0.01,  p<0.001 relative to 

basal level.  
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Fig. 17: HPA axis response on TMT exposure. TMT induced similar increase of CORT in all 

three lines. Bars represent means + SEM, n (LAB) = 8, n (NAB) = 8, n (HAB) = 8,  p<0.05, 

 p<0.01 relative to basal level.  

avoidance behavior between HAB vs. LAB mice (p < 0.001) and HAB vs. NAB mice 

(p < 0.05). 

When exposed to female urine on day 8, NAB and LAB mice exhibited a significant 

preference for this chamber (F(1,14) = 18.7, p < 0.01 and F(1,14) = 17.0, p < 0.01, 

respectively). However, no effect was observed for HAB mice (F(1,14) = 2.30, 

p = 0.15) (Fig. 11). Furthermore, exposure to butyric acid on day 12 was followed by 

avoidance behavior throughout all groups, as reflected by positive −• T values (higher 

avoidance) (LAB F(1,14) = 17.4, p < 0.01, NAB F(1,14) = 16.6, p < 0.01, HAB 

F(3,28) = 8.07, p < 0.05) (Fig. 11). Importantly, no difference was found when 

behavior was assessed between TMT and female urine exposures (days 6-7 LAB 

F(2,21) = 0.18, p = 0.82, NAB F(2,21) = 0.10, p = 0.90, HAB F(2,21) = 2.60, p = 0.10) 

as well as female urine and butyric acid exposures (days 9-11 LAB F(3,28) = 1.80, 

p = 0.17, NAB F(3,28) = 1.57, p = 0.22, HAB F(3,28) = 1.10, p = 0.37). Finally, 

ANOVA revealed a similar impact of TMT-exposure on CORT levels of all three lines 

(LAB F(1,14) = 11.2, p < 0.01, NAB F(1,14) = 11.0, p = 0.01, HAB F(1,14) = 6.60, 

p < 0.05) (Fig. 17). 
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4.2 Effects of CMS on phenotypic characteristics of LAB mice 

4.2.1  Changes in anxiety-related behavior  

A significant increase of anxiety-related behavior was observed in CMS-treated 

mice as evaluated by EPM, LDB and the TMT-avoidance test. Home cage 

activity assessed locomotion to be independent of anxiety-related behavior 

and showed no significant difference between experimental groups.  

EPM, LDB and the TMT-avoidance test were performed to evaluate the effects of 

CMS on different aspects of inborn anxiety-related behavior of LAB mice. All results 

originate from multiple experiments with at least 7 animals per treatment group. The 

most significant outcomes are illustrated and include the respective values of HAB 

mice to indicate the direction and effect size. 

o   

Fig. 18: Effect of CMS on anxiety-related behavior in the EPM. CMS induced an increase in 

anxiety-related behavior in the EPM, indicated by lower “time spent on the open arms” (A) 

and higher ‘latency to first entry in the open arm’ (B). Bars represent means + SEM, n (LAB) 

= 13, n (LAB CMS) = 12,  p<0.01.   

Stressed mice exhibited significantly higher anxiety-related behavior in the EPM as 

indicated by less time spent on the open arms (F(1,24)=10.0, p<0.01), higher latency 

to first open arm entry (F(1,24)=15.0, p<0.01) and less open arm entries 

(F(1,24)=4.13, p<0.05) (Fig. 18).   

No difference was found in the number of entries to the closed arms (F(1,24)=1.14, 

p>0.05) and in the total distance travelled (F(1,24)=2.24, p>0.05), indicative of an 

absence of changes in locomotor activity. However, multiple testing of stressed mice 

suggest a possible impact of CMS on locomotor activity (data not shown) as a 
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consequence of increased immobility time. This suggests a higher neophobia in the 

CMS-treated LAB mice. Detailed results of the EPM test are summarized in Table 9.  

Table 9: Detailed results of CMS effects on the anxiety-related behavior in the EPM. 

Parameter measured  LAB LAB CMS p-value 

time spent on open arms [%] 74.3 ± 3.7 57.7 ± 3.6 0.004 

latency to entre open arm [s] 17.9 ± 2.0 42.7 ± 5.6 0.001 

open arms entries [n] 7.0 ± 1.4 4.3 ± 0.3 0.049 

closed arms entries [n] 7.1 ± 0.9 6.1 ± 1.0 0.245 

total distance travelled [m] 10.7±1.0 9.2 ± 0.5 0.148 

time spent immobile [s] 61.0 ± 5.5 67.0 ± 4.4 0.437 

 

Results of the LDB corroborate changes observed in the EPM, an anxiogenic effect 

of CMS. Stressed LAB mice spent less time in the light compartment (F(1,24)=10.4, 

p<0.01), had higher latency time to enter the light compartment (F(1,24)=4.75, 

p<0.05) and entered less frequently into the light compartment (F(1,24)=4.52, 

p<0.05) (Fig. 19).  

  
Fig. 19: Chronic stress exposure effects on anxiety-related behavior in the LDB. CMS 

induced a decrease in time spent in the light compartment (A) and an increase in latency time 

to first enter the light compartement (B) indicating an anxiogenic effect of CMS. Bars 

represent means + SEM, n (LAB) = 13, n (LAB CMS) = 12,  p<0.05,  p<0.01.   

Rearing frequency is indicative of exploratory activity in the LDB (Bourin and 

Hascoet, 2003). Fewer rearings were observed for the CMS-exposed group 

compared to control (F(1,24)=4.61, p<0.05), which indicates that stressed mice 

interprete the novel environment of the LDB as more unsafe. Similarly to the EPM, no 

difference in locomotor activity (F(1,24)=0.78, p>0.05) and time spent immobile 
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(F(1,24)=2.31, p>0.05) should be consider with care, since these parameters can 

vary due to unknown reasons. Detailed results of the LDB test are summarized in 

Table 10. 

Table 10: Detailed results of CMS effects on anxiety-related behavior in the LDB.  

Parameter measured  LAB LAB CMS p-value 

time spent in light compartment [%] 41.6 ± 2.6 24.6 ± 4.3 0.005 

latency to enter light compartment [s] 21.5 ± 7.0 46.0 ± 8.7 0.045 

entries in light compartment [n] 8.6 ± 1.5 5.5 ± 0.9 0.048 

total rearings [n] 24.6 ± 4.6 14.8 ± 2.5 0.048 

total distance travelled [m] 14.5 ± 0.9 13.6 ± 1.0 0.148 

time spent immobile [s] 22.6 ± 4.2 30.2 ± 3.0 0.437 

 

The anxiogenic effects of CMS that we have observed in the EPM and LDB are 

further corroborated by a higher avoidance of the predator odor in the three-

chambered test and a higher CORT release 15min after odor exposure. -• T index 

was significantly higher for stressed mice (F(1,13)=4.75, p<0.05), which indicates a 

higher avoidance of the chamber harboring the predator odor (Fig 20).  

 

Fig. 20: Effects of CMS on behavior of LAB mice in the TMT-avoidance test. CMS increased 

TMT avoidance (A) and CORT release after odor exposure (B). Bars represent means + SEM, 

n (LAB) = 7, n (LAB CMS) = 7,  p<0.05. 

The CMS group also showed less entries to the chamber with TMT (F(1,13)=20.2, 

p<0.001) and had a higher latency to enter the chamber with odor (F(1,13)=10.8, 

p<0.01). Although locomotor activity differed significantly (F(1,13)=14.5, p<0.01), this 
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change is likely to be caused by higher immobility of stressed mice (F(1,13)=10.8, 

p<0.01) possibly  indicating increased neophobia.  

Table 11: Detailed results of the TMT-avoidance test. 

Parameter measured  LAB LAB CMS p-value 

−∆ T index [%] 10.9 ± 7.5 32.8 ± 7.1 0.048 

plasma corticosterone [ng/ml] 75.6 ± 3.7 156.5 ± 27.1 0.016 

entries in TMT compartment [n] 26.5 ± 2.0 14.5 ± 1.8 0.000 

latency to enter TMT compartment [s] 9.4 ± 3.5 36.0 ± 10.0 0.005 

total distance travelled [m] 105.0 ± 8.8 68.0 ± 4.0 0.002 

time spent immobile [s] 51.1 ± 10.8 106.1 ± 12.8 0.005 

 

Moreover, TMT exposure induced a higher release of CORT in the CMS-treated mice 

(F(1,13)=7.60, p<0.05), indicating either increased stress-reactivity or a more 

aversive interpretation of the presented cue (Fig. 20). Detailed results of the TMT-

avoidance test are summarized in Table 11. 

 

Fig. 21: Effects of CMS on home cage activity. Chronic stress exposure had almost no impact 

on locomotor activity in the home cage. n (LAB) = 6, n (LAB CMS) = 6,  p<0.05. 

As discussed earlier, CMS can affect locomotor activity in behavioral tests (e.g. TMT-

avoidance test) and thus, interfere or mask precise estimation of anxiety-related 

behavior. Therefore, we evaluated locomotor activity of stressed and unstressed LAB 
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mice in a more natural-like situation, i.e. home cage activity by using a computer-

based system. No overall difference was found by a repeated measures ANOVA 

(F(1,11)=0.00, p=0.989) indicating that an observed difference in locomotion during 

behavioral testings can be ascribed to the increased neophobia of stressed mice and 

as such further corroborating anxiogenic effects of the CMS (Fig. 21).  

4.2.2  Changes in depression-like behavior  

CMS treatment increased depression-like behavior in the TST and FST. 

Moreover, chronic stress induced anhedonic behavior in the sucrose 

preference test.  

Both, TST and FST, found pro-depressive effects of the CMS. Thus, stressed LAB 

mice spent more time immobile in the TST (F(1,22)=6.94, p<0.05) and floated 

significantly more in the FST (F(1,22)=4.63, p<0.05) (Fig. 22).   

Moreover, latency to first immobility and floating episode were decreased in the CMS 

treated group (F(1,22)=6.52, p<0.05 and F(1,22)=10.9, p<0.01, respectevely), 

contrary to the number of floating episodes, which was increased (F(1,22)=7.60, 

p<0.05). Detailed results of the TST and FST are summarized in Table 12. 

 

 

Fig. 22: Effects of CMS on depression-like behavior. CMS increased immobility in the TST 

(A) and floating time in the FST (B). Bars represent means + SEM, n (LAB) = 11, n (LAB 

CMS) = 12,  p<0.05.   
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Table 12: Detailed parameters measured in the TST and FST to highlight changes in 

depression-like behavior after CMS exposure.  

          Parameter measured  LAB LAB CMS p-value 

TST 

immobility [s] 9.0 ± 3.7 23.9 ± 4.3 0.011 

latency to first immobility [s] 262.5 ± 21.9 177.9 ± 24.8 0.014 

number of immobile episodes [n] 4.8 ± 1.2 6.7 ± 1.0 0.269 

FST 

floating time [s] 9.5 ± 4.8 43.4 ± 12.7 0.048 

latency to first floating [s] 273.0 ± 41.0 133.4 ± 21.0 0.005 

number of floating episodes [n] 4.3 ± 2.0 12.3 ± 2.0 0.015 

 

To characterize depression-like behavior using a stress-independent approach, we 

performed a sucrose preference test. Analysis of bottle preference found, that 

animals preferred to drink from a particular bottle (left or right), though both bottles 

contained identical solutions (either water or sucrose in both bottles) (F(1,31)=9.12, 

p<0.01 for water and F(1,31)=8.20, p<0.01 for sucrose) (Fig. 23).  

 

Fig. 23: Results of sucrose preference test. Mice preferred particular bottle position (#1 or #2) 

when two identical solutions (w (water) or s (sucrose)) were presented. Consumption of the 

sweet solution was much higher and independent of position. Bars represent means + SEM, n 

(#1) = 9, n (#2) = 9,   p<0.01,  p<0.001. 
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Fig. 24: Results of sucrose preference test. CMS treated animals exhibited higher anhedonic 

behavior, indicated by less preference of sucrose solution (B). Bars represent mean + SEM, n 

(LAB) = 9, n (LAB CMS) = 9,  p<0.05,  p<0.01. 

To grant a more sensitive discrimination of preference-avoidance between water and 

sucrose, the less prefered position was used for placing the sucrose solution, since it 

was expected that mice would consume the sweet solution more likely. Indeed, 

despite of initial bottle aversion, mice consumed mainly sucrose solution 

(F(1,31)=146, p<0.001), with control mice preferring sucrose solution more than 

CMS-treated (MANOVA, Tukey post-hoc test, (F(1,13)=6.16, p<0.05 for day 8; 

(F(1,13)= 12.6, p<0.01 for day 9; (F(1,13)=5.85, p<0.05 for day 10) (Fig. 24). These 

results point towards a higher anhedonic behavior of stressed mice compared to 

controls.   

4.2.3  Changes in neuroendocrine parameters  

CMS induced delayed HPA axis reactivity and a stronger negative feedback. 

Systemic effects of stress were indicated by a profound loss of body weight 

and hypertrophy of adrenals.   

Neuroendocrinological parameters provide the most unbiased approach for the 

evaluation of stress-induced effects on different systems of a body. Alterations in 
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CORT secretion during stress exposure is a validated parameter of a dysregulated 

HPA axis.  

 

Fig. 25: Effects of stress on body weight. CMS induced loss of body weight in LAB mice 

Bars represent means + SEM, n (LAB) = 11, n (LAB CMS) = 9,  p<0.05. 

 

Fig. 26: Effects of stress on HPA axis regulation. Significantly higher basal CORT, delayed 

HPA reactivity and stronger feedback regulation were observed in stressed animals (B). Bars 

represent means + SEM, n (LAB) = 7-11, n (LAB CMS) = 7-9,  p<0.05,  p<0.01, 

 p<0.001.  
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We found that stressed mice had decreased body weight F(1,28)=6.80, p<0.05) (Fig. 

25), possibly as a result of chronically elevated plasma corticosterone in CMS-

exposed LAB mice (F(1,28)=16.9, p<0.001) (Fig. 26). In order to evaluet HPA axis 

reactivity, we measured stress-induced increase in blood CORT. We observed lower 

CORT realease in stressed animals directly after exposure to forced swimming 

(F(1,14)=5.41, p<0.001), however, 30min later, the level of CORT was significantly 

higher in the CMS group compared to controls (F(1,14)=18.6, p<0.01) (Fig. 26). 

Moreover, not only reactivity, but also feedback regulation was found to be altered. 

Thus, one hour after forced swimming, we observed significantly higher suppression 

of the HPA axis in CMS-treated mice indicated by lower plasma CORT 

(F(1,14)=4.65, p<0.05) (Fig. 26). 

Numerous reports suggested that chronic stress induces adrenal hypertrophy and 

thymus dysplasia. We also found that CMS-exposed mice had a higher mass of 

adrenals per gram of body weight (F(1,26)=5.41, p<0.05) (Fig. 27A). Although we 

have not observed difference in the mass of thymus per gram of body weight 

(F(1,26)=0.32, p>0.05) (Fig. 27B), this can be due to the rather small size of this 

structure in mice.  

 

  

 

Fig.  27: Effects of CMS on relative weight of the adrenals and thymus. Chronic stress 

resulted in hypertrophy of adrenals (A), but did not affect weight of thymus (B). Bars 

represent means + SEM, n (LAB) = 14, n (LAB CMS) = 13,  p<0.05. 
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4.3 Effect of CMS on c-fos expression after TMT exposure 

CMS treatment induced higher activation of c-fos expression in the PVN, CeA 

and BLA after exposure to TMT.  

The TMT-avoidance test provided reliable estimation of changes of anxiety-related 

behavior after CMS. Exposure to TMT induced a significant activation of immediate 

early gene expression, which could be used to map brain activity. This approach 

allowed us to identify brain regions involved in the observed avoidance behavior and 

to analyze how their activity is modulated by chronic stress exposure. We found 

higher c-fos expression in the mPFC, PVN, Amy, and LC (for all, p<0.01) and lower 

in the CA1 region of the Hipp (p<0.01) of HAB mice compared to LAB mice (Table 

13). Stressed animals increased c-fos expression after TMT exposure only in the 

Amy and in the PVN (p<0.05 both) (Fig. 28).  

 

Fig. 28: c-Fos expression in the Amy and PVN of LAB, CMS-exposed LAB and HAB mice. 
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Higher activity of PVN in stressed LAB and HAB mice might be explained by a higher 

HPA axis activation in these animals (see section 4.2.3.), thus we studied the 

amygdalar expression of c-fos in more detail. We observed an insignificant increase 

in early gene expression in the lateral and medial parts (p>0.05), whereas the 

expression in the basolateral and central nuclei of Amy was significantly higher (for 

both p<0.05) (Table 13). 

Table 13: c-Fos expression in different brain region of LAB, CMS-exposed LAB and HAB 

mice. Values depicted as means ± SEM. n (LAB) = 7, n (LAB CMS) = 7, n (HAB) = 7,         

* p<0.05 and **  p<0.01 for LAB vs. HAB, # p<0.05 for LAB vs. LAB CMS. 

Brain region     LAB        CMS LAB HAB 

mPFC 32.1 ± 3.8 25.8 ± 1.8 51.6 ± 2.7 ** 

PVN 16.0 ± 1.4 32.0 ± 4.5 #  48.0 ± 4.7 ** 

Amygdala    

     Basolateral 5.4 ± 0.7 8.2 ± 0.7 #  11.4 ± 1.3 * 

     Lateral 4.6 ± 1.1 6.5 ± 1.0 4.6 ± 1.3 

     Central 1.1 ± 0.8 4.0 ± 0.4 # 5.8 ± 0.8 * 

     Medial 14.3 ± 1.3 15.9 ± 1.1 18.9 ± 2.6 

Hippocampus    

     CA1 26.5 ± 1.9 25.2 ± 2.7 20.2 ± 1.2 ** 

     CA2 23.3 ± 2.5 18.9 ± 2.4 21.9 ± 1.5 

     CA3 15.4 ± 0.7 12.0 ± 0.8 13.0 ± 0.6 

Dentate gyrus 10.9 ± 1.5 11.0 ± 2.1 9.9 ± 1.3 

Locus coeruleus 23.2 ± 2.1 20.5 ± 3.6 27.6 ± 1.6 ** 

 

4.4 Effect of CMS on gene expression in the BLA 

Several genes were found to be differently expressed after CMS treatment. 

However, only Crhr1 expression met the criteria of a “plasticity gene”.  

Based on literature data and earlier studies (Czibere, 2008; Markt, 2012), we 

analyzed expression of several candidate genes in three different brain regions 

known to be associated with anxiety-related behavior (Table 14). This work was 

performed in close collaboration with Dr. Patrick Oliver Markt (2012). Using qPCR we 
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identified significant differences in the expression of several genes after chronic 

stress exposure, results are summarized in Table 15.  

Table 14: Following genes were analyzed in three brain regions of LAB and LAB-CMS mice. 

Gene name Gene symbol Brain region 

transmembrane protein 132d Tmem132d CG 

glyoxalase-1  Glo1 CG 

corticotropin realising hormone Crh BLA 

corticotropin realising hormone receptor 1 Crhr1 BLA 

Interleukin-10 receptor 1 IL-10r1 BLA 

tumor necrosis factor alpha receptor 1 TNF• r1 BLA 

dopamine beta hydroxylase Dbh LC 

neuropeptide S receptor 1 Npsr1 LC 

 

Table 15: Differences in mRNA expression. Expression of eight candidate genes after CMS 

was evaluated using qPCR. Transcriptional activity of three of them was changed after 

chronic stress exposure. Arrows indicates increase (• ), decrease (• ) or no changes (• ) in 

gene expression after CMS exposure. n (LAB) = 7, n (LAB CMS) = 7. 

Gene symbol CMS effects p-value 

Tmem132d •  0.035 

Glo1 •  1.000 

Crh •  0.110 

Crhr1 •  0.025 

IL-10r1 •  0.406 

TNF• r1 •  1.000 

Dbh •  0.873 

Npsr1 •  0.035 

 

Out of three genes, which were affected by CMS treatment, we selected Crhr1 for 

further analysis, since only this gene met our criteria of a “plasticity gene of anxiety- 

related behavior“: (i) expression differences between HAB and LAB mice, (ii) CMS-

induced change in gene expression reflecting a shift in anxiety-related behavior, (iii)  

vulnerability to epigenetic regulation.   
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Here we found that Tmem132d, Npsr1 and Crhr1 were differently expressed after 

CMS exposure (Table 7), moreover these genes were differently expressed between 

HAB and LAB mice (Erhardt, 2011; Markt, 2012; Naik, 2013) and, therefore, meet the 

above mentioned criteria.  

  
Fig. 29: Expression of Crh and Crhr1 after CMS exposure. Whereas significant differences 

were observed in Crhr1 expression, no changes were found in the amount of mRNA of its 

ligand, CRH. Bars represent mean + SEM, n (LAB) = 7, n (LAB CMS) = 7,  p<0.05. 

However, higher Tmem132d expression in the CG was found to be associated with 

higher anxiety-related behavior of HAB mice (Erhardt, 2011), whereas we observed 

that higher anxiety-related behavior of stressed animals was associated with lower 

expression of Tmem132d. This disrepancy between behavior and gene expression 

changes excludes Tmem132d from this list of "candidate genes". Furthermore, an 

independent study found Npsr1 gene to be non-plastic (Naik, 2013). Thus, only Crhr1 

met all criteria described above and, therefore, epigenetic mechanisms behind its 

different expression were studied in further experiments. Importantly, no changes 

were observed in the expression of Crh (p>0.1) (Fig. 29), thereby minimizing possible 

masking effects of the ligand.   

4.5 Effect of CMS on Crhr1 DNA methylation in the BLA 

Chronic stress exposure increased CpG1 methylation. Methylation has a 

regulatory role on the Crhr1 promoter activity, estimated using Crhr1 promoter-

reporter constructs with site-specific methylation.  

We performed in silico analysis (CpG island searcher, Version 10/29/04) and found a 

CpG island (CpGi) in the Crhr1 gene (Fig. 30), making this gene susceptible for DNA 
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methylation. Moreover, we analyzed the expression of enzymes responsible for DNA 

methylation and proteins involved in silencing complex formation with  

 

Fig. 30: In silico prediction of the 2796 bp CpG island in the Crhr1 gene.  

Table 16: Expression of enzymes responsible for DNA methylation and MeCP2, a protein 

recognising methylated cytosines of CpGs.  

Gene name Gene symbol CMS effects p-value 

DNA methyltransferase 1  Dnmt1 •  0.022 

DNA methyltransferase 3a Dnmt3a •  0.025 

DNA methyltransferase 3b Dnmt3b •  0.886 

methyl CpG binding protein 2 MeCP2 •  0.198 

 

  
 

Fig 31: Effect of chronic stress exposure on the expression of DNMT1 and DNMT3a. CMS 

induced the expression of enzymes involved in DNA methylation Dnmt1 (A) and Dnmt3a 

(B). Bars represent means + SEM, n (LAB) = 7, n (LAB CMS) = 7,  p<0.05. 
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methylated DNA.  Thus, expression of enzymes responsible for the maintenance of 

methylation, Dnmt1, and for de novo methylation, Dnmt3a, were significantly 

increased in stressed mice (p<0.05 for both) (Fig. 31), whereas no difference was 

found in the expression of Dnmt3b and MeCP2 (p>0.1 both) (Table 16). Altogether, 

these data suggest that CMS could induce changes in methylation of Crhr1 CpGi that 

could drive different Crhr1 expression. Thus, using pyrosequencing of bisulfite- 

converted DNA, we analyzed the methylation of all 186 single CpG sites of the CpGi. 

No significant difference was found in total methylation between LAB, LAB-CMS and 

HAB mice using a Kruskal-Wallis ANOVA (H(2, N=542) = 1.61, p=0.43) (Fig. 32A).  

 

 

Fig 32: Crhr1 CpGi methylation. No difference was found in total methylation of Crhr1 

between LAB, LAB-CMS and HAB mice (A). Stress induced a significant increase in 

methylation of CpG1 (B). Bars represent means + SEM, n (LAB) = 5, n (LAB CMS) = 5,  

p<0.05. 

The average methylation did not differ significantly (p>0.05) and was at the level of 

2.48% for LAB, 2.56% for LAB CMS and 2.54% for HAB mice. Such overall low 

levels of methylation (<5%) indicate active transcription of the gene. The only 

significant difference found was the methylation of the first CpG site of the CpGi 

(CpG1). A higher level of methylation (p<0.05) was observed in chronically stressed 

mice compared to control animals (Fig. 32B).  

We next tested the functional impact of CpG1 methylation on Crhr1 promoter activity. 

To this end, the LAB promoter was cloned in the CpG-free luciferase-expressing 

vector. We observed a significant reduction of the luciferase signal in both cases  
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Fig 33: Impact of methylation on the Crhr1 promoter activity. Significant reduction of Crhr1 

promoter activity was observed for complete and site-specific (CpG1) methylation, estimated 

using a reporter gene assay. Bars represent mean + SEM, n (biological replicates) = 4,  

p<0.05. 

when all CpG dinucleotides were methylated (p<0.01) and also when only CpG1 was 

site-specifically methylated (p<0.05) (Fig. 33). This indicates the importance of CpG1 

methylation for the control of Crhr1 expression. Moreover we performed in silico 

analysis based on the available database (Ensemble genome browser) on whole 

genome bisulfite sequencing of embryonic stem cells (ES) and nasopharyngeal 

carcinoma cells (NPC) and found CpG1 to be one of the differently methylated CpGs, 

thereby corroborating the importance of the CpG1 for epigenetic control.  

However, the impact of the CpG1 methylation on the promoter activity and CMS-

induced increase of CpG1 methylation were in contrast to observed changes in Crhr1 

gene expression. Therefore, we analyzed other possible mechanism that, together 

with CpG1 methylation, can regulate Crhr1 expression. We performed computational 

prediction of transcription binding sites using Transcription Element Search System 

(TESS: TRANSFAC 7.0 Public (2005) Database and JASPAR Database) around 

CpG1 and identified a recognition sequence for the binding of transcription factor 

YY1 (Fig. 34). Further experiments elucidated the role of YY1 in methylation-

sensitive regulation of the Crhr1 promoter activity.  
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Fig 34: Illustration of differences in Crhr1 CpGi methylation status between mouse 

embryonic stems cells (ES), nasopharyngeal carcinoma cells (NPC) and pyrosequencing data 

of Crhr1 from BLA of LAB mice. Transcription factor YY1 was predicted to bind close to 

the CpG1.    

4.6 Role of YY1 in the methylation-sensitive regulation of Crhr1 

4.6.1  YY1 expression after CMS and its role in the regulation of the Crhr1 

promoter 

Higher YY1 expression was found in the BLA of stressed LAB mice. In vitro 

assays indicated that higher YY1 expression could induce Crhr1 expression via 

enhancement of the promoter activity.  

First of all, we studied the effects of chronic stress exposure on the expression of 

YY1 in the BLA of LAB mice. We found that CMS-exposure led to increased amounts 

of YY1 mRNA (p<0.05), however no difference was found in YY1 between HAB and 

LAB mice (p>0.05) (Fig. 35A). On the protein level, we observed an insignificant 
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Fig 35: Effects of stress on YY1 expression and protein. CMS induced an increase in YY1 

expression in the BLA (A), however no difference was observed in the amount of YY1 

analysed in pooled whole amygdala extracts (B). Bars represent means + SEM, n (LAB) = 7, 

n (LAB CMS) = 7, n (HAB) = 7 for A and n (LAB) = 3, n (LAB CMS) = 4, n (HAB) = 4 for 

B,   p<0.05. 

increase (p>0.05) in the amount of YY1 after stress (Fig. 35B). However, since 

proteins were extracted from pooled whole amygdala punches, this result should be 

considered with caution. 

Literature data suggests that YY1 can act as both, a transcriptional activator and a 

silencer. TESS predicted three binding positions for YY1 in the Crhr1 promoter:         

-755bp to -760bp, -1353bp to -1358bp and -1529bp to -1534bp upstream of the 

translation starting site (TSS). To get an overall impression about possible impacts of 

of transcription factor binding on Crhr1 promoter activity, we generated deletion 

constructs and analyzed them in reporter gene assays. We observed that the longer 

size of the promoter always induced higher luciferase activity, thus predicting YY1 as 

an enhancer of the Crhr1 promoter (Fig. 36).   
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Fig 36: Crhr1 promoter deletion constructs expressed different activity in the reporter gene 

assay depending on their size: bigger size induced stronger luciferase signal.  Bars represent 

means + SEM, n (biological replicates) = 3.  

Based on this finding, we were interested to know if YY1, indeed, induced an 

increase in Crhr1 promoter activity. To this end, we purchased a plasmid carrying 

YY1 cDNA under the control of the CMV-promoter and, first of all, analysed if 

transfection of N2a cells with this plasmid induced accumulation of YY1. Our Western 

blot analysis (Fig. 37A), indeed, revealed a significant increase of YY1 compared to 

ubiquitous expression in both cytosolic (Fig. 37B) and nuclear fractions (p<0.001) 

(Fig. 37C). Moreover, to further visualize that difference, we compared the amount of 

YY1 in cells transfected with YY1 cDNA or mock transfected. For this, we performed 

immunohistochemistry staining using anti-YY1 antibody and a fluorescent secondary 

antibody. Similar to the Western blot, a significantly higher amount of YY1 was found 

in cDNA transfected cells (p<0.001) (Fig. 38), indicating functionality of the selected 

approach.  
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Fig 37: Amount of YY1 in the N2a cells after transfection with YY1 cDNA. Western blot 

result (A) showed that YY1 cDNA transfection in comparison to mock transfection (SPORT6) 

induced a significant increase in YY1 in the cytosolic (B) and nuclear (C) fractions of N2a 

cells. Bars represent means + SEM, n (SPORT6) = 6, n (YY1) = 6,  p<0.05,  

p<0.001. 

To study the interaction between YY1 and Crhr1, we measured the activity of the 

Crhr1 promoter during YY1 overexpression. Therefore, a 1790bp construct 

containing all three predicted sites was co-transfected with YY1 cDNA plasmid or 

with empty plasmid (SPORT6) as negative control. Luciferase activity measured 

three days later was almost 2.5-times higher in cells overexpressing YY1 (p>0.01), 

therefore, confirming an enhancing role of YY1 for Crhr1 promoter activity (Fig. 39A).  
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Fig 38: Immunofluorescent staining of cells transfected with YY1 cDNA. Only YY1 cDNA 

transfected cells (GFP marker) increased amount of nuclear (DAPI staining) YY1 (anti-YY1 

staining) compared to ubiquitous expression. Arrows indicate the observed effect.    

To show that YY1 induced enhanced Crhr1 expression not only at promoter level, but 

also at the level of mRNA, we measured Crhr1 expression in YY1 overexpressing 

and mock-transfected cells. Indeed, YY1 induced an almost 2-fold increase in Crhr1 

mRNA (p<0.05) (Fig. 39B). 

 

 

 

Fig 39: Effects of YY1 overexpression on Crhr1 expression. YY1 overexpression enhanced 

Crhr1 promoter activity in the luciferase assay (A) and induced higher Crhr1 mRNA 

expression in the N2a cells (B). Bars represent means + SEM,    n (SPORT6) = 7, n (YY1) = 

7,  p<0.05,  p<0.01.  
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4.6.2   Selective binding of YY1 to the recognition sequence close to CpG1 

EMSA revealed that YY1 binds specifically to the recognition sequence close to 

CpG1.  

We showed that YY1 exerted a regulatory role on the Crhr1 promoter, however, it 

was not clear if the observed increase in Crhr1 promoter activity was a direct effect of 

YY1 binding to the predicted recognition sequences or a result of indirect regulation 

through other transcription factors interacting with YY1. Moreover, we did not know if 

CpG1 or the other two predicted sequences act as the regulatory binding site for 

YY1.  

 

 

Fig 40: EMSA. YY1 bound preferably to the recognition site close to CpG1 (1353-1358), 

whereas binding to other positions (1529-1534 and 755-760) was not observed under basal 

conditions. Positive control corroborated correct identification of binding position.  
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To answer these questions, we performed EMSA, which showed that under basal 

conditions only the binding site close to CpG1 could interact with YY1, whereas the 

other two binding sites exhibited only very weak binding affinity, when YY1 was 

artificially overexpressed (Fig.40). 

The intensity of YY1 binding was comparable to literature data, observed for binding 

of YY1 to the Peg3 promoter (positive control was cloned based on Kim et al., 2003). 

Furthermore, we verified the specificity of binding to the predicted position: (i) 

increased amount of input proteins induced a higher band intensity, (ii) incubation 

with specific YY1-antibody, but not with unspecific antibody, prevented band 

formation, (iii) addition of unlabled probe in excess (competitor) 

 

 

Fig 41: EMSA. YY1 bound specifically to the recognition site: increased band intensity was 

observed when higher amount of proteins was loaded (input protein); incubation with anti-

YY1 specific antibodies (AB YY1) prevented band formation, whereas non-specific antibody 

had no effect (AB NS); addition of unlabeled probe in excess (competitor) altered band 

formation.  
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abolished band formation. Therefore, our experiments support the hypothesis that 

direct binding of YY1 to the recognition site close to CpG1 causes the observed 

effects of YY1 on Crhr1 promoter activity (Fig. 41). 

4.6.3  YY1 binds to Crhr1 in a methylation-sensitive manner, but does not 

induce increase in methylation of CpG1  

The methylation of CpG1 affected binding affinity of YY1 to DNA. Methylation-

sensitive binding altered the increase of Crhr1 promoter activity caused by YY1 

overexpression.  

To get an idea about the interaction between the CpG1 methylation and binding of 

the transcription factor YY1, we performed additionial EMSA. First of all, we tested 

binding of YY1 to the P³²-labled oligonucleotide probes with either methylated or 

mock methylated CpG1 during EMSA. We did not observe a complete prevention of 

binding of YY1 (Fig. 42A), but affinity of the transcription factor to DNA was reduced 

significantly (p<0.05) (Fig. 42B).  

 

  
Fig 42: Methylation sensitive binding of YY1. Lower binding affinity of YY1 to the probe 

with methylated CpG1 (mCpG1) (A), band intensity was evaluated to quantify the difference 

(B). Bars represent means + SEM, n (biological replicates) = 3,  p<0.05.  
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We evaluated the role of CpG1 methylation on promoter activity by using a luciferase 

assay after YY1 overexpression. YY1 induced significantly lower activation of Crhr1 

promoter when CpG1 was methylated in comparison to a non-methylated state. 

However, activity of the promoter after YY1 overexpression - even in the presence of 

methylated CpG1 - was still higher compared to samples transfected with an empty 

vector (p<0.05) (Fig. 43). Moreover, methylation of all CpGs of the Crhr1 promoter 

using SssI enzyme induced a similar reduction (p<0.05) as methylation of merely 

CpG1 site (Fig. 43), thereby corroborating the critical role of CpG1 in the YY1 

methylation-sensitive induction of promoter activity.   

 

 

Fig 43: Methylation-sensitive regulation of the Crhr1 promoter activity by YY1. YY1 

induced significantly lower activation of the Crhr1 promoter when the CpG1 site was 

methylated (mCpG1), however complete methylation induced a similar reduction in YY1-

mediated promoter activation. Bars represent means + SEM, n (biological replicates) = 3-6,  

p<0.05. 

Although we showed the importance of CpG1 methylation for the regulation of Crhr1, 

the origin of setting this epigenetic mark is unknown. Thus, a study from Kim et al. 

(2009) suggested that YY1 can participate in de novo methylation. Therefore, we 
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analyzed CpG1 methylation after YY1 overexpression in N2a cells and have not 

found any difference between mock and YY1 cDNA transfected cells (p>0.05) (Fig. 

44).  

 

 

Fig 44: Role of YY1 in CpG1 methylation. YY1 overexpression had no impact on CpG1 

methylation. Bars represent means + SEM, n (SPORT6) = 6, n (YY1 cDNA) = 6. 

4.7 Possible epigenetic mechanisms contributing to different basal Crhr1 

expression in the BLA of HAB/LAB mice 

4.7.1   Absence of genetic variability in Crhr1 gene between HAB and LAB mice 

No SNPs and CNVs were found in the Crhr1 gene, thereby minimizing the 

contribution of genetic factors in regulation of Crhr1.  

Above, we presented possible mechanisms contributing to altered Crhr1 expression 

after chronic stress exposure; however, the driving force behind the different basal 

expression of Crhr1 between HAB and LAB mice is still unknown. Sequencing of the 

Crhr1 promoter did not reveal any SNPs that could contribute to different Crhr1 

regulation (Markt, 2012).  We also analyzed possible differences in CNV of the Crhr1 

gene between HAB and LAB mice and did not find any variation (p>0.05) (Fig. 45) in 

this locus. By doing so, we minimized the contribution of genetic factors and studied 

further epigenetic mechanisms behind the differential Crhr1 regulation.  
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Fig 45: No difference was observed in CNV of Crhr1 between HAB/LAB mice. Bars 

represent means + SEM, n (LAB) = 7, n (HAB) = 7. 

 

4.7.2   Possible role of miRNA34 family  

miRNA34 were reported to regulate Crhr1 expression. We observed increased 

amount of miRNA34a in the BLA of LAB mice that could drive lower Crhr1 

expression.  

Literature data suggests (Chen et al., 2011; Haramati et al., 2011) a critical role of 

the miRNA34 family in the regulation of Crhr1 and YY1 expression. We analyzed the 

expression of three miRNAs of this family between HAB and LAB mice: miR34a, 

miR34b, miR34c. Significantly higher expression was found in the expression of 

miRNA34a in the BLA of LAB compared to HAB mice (p<0.05), however, no 

difference was observed in the amount of miRNA34b and miRNA34c (p>0.05 both) 

(Fig. 46). Moreover, we analyzed expression of Dicer, an enzyme important for 

miRNAs maturation and formation of the silencing complex. In contrast to miR34a, 

we found significantly lower amounts of Dicer mRNA in LAB mice (Fig. 46). Thus, our 

data suggest that basal Crhr1 expression difference between HAB and LAB mice 

might be strongly affected by different amount of miRNA34a.   
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Fig 46: Expression of members of the miRNA34 family. Significantly higher expression of 

miRNA34a was found in the BLA of LAB compared to HAB mice (A), whereas no difference 

was found in expression of  miRNA34b and miRNA34b (B,C). Amount of Dicer mRNA was 

lower in LAB mice compared to HAB (D). Bars represent means + SEM, n (LAB) = 7, n 

(HAB) = 7,  p<0.05. 

4.7.3   Possible role of histone modifications 

HDACi valproic acid increased Crhr1 promoter activity and Crhr1 mRNA 

expression in vitro, but did not have any impact on anxiety-related and 

depression-like behavior.  

We did not observe any differences in the methylation of Crhr1 at basal level. 

Therefore, we studied another non-sequence based epigenetic regulation – histone 

modifications. We tested if Crhr1 promoter activity is changed upon treatment with  



  88 

 

Fig 47:  Effects of VPA on Crhr1 promoter activity. VPA treatment induced a significant 

increase in Crhr1 promoter activity when used at concentrations above 500nM (A). Bars 

represent means + SEM, n (vehicle) = 6, n (VPA) = 6,  p<0.05,  p<0.01. 

 

Fig 48:  Effects of VPA on Crhr1 expression in vitro. 24 hour incubation in the DMEM 

medium with 1000nM VPA induced higher Crhr1 in N2a cells. Bars represent means + SEM, 

n (vehicle) = 6, n (VPA) = 6,  p<0.05. 

 

HDACi valproic acid. Indeed, we observed a significant increase in luciferase activity 

when transfected cells were treated with 500nM or higher concentrations of VPA (for 
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all p<0.05) (Fig. 47). Furthermore, an increase in promoter activity after VPA 

treatment was also followed by an increase in Crhr1 mRNA (p<0.05) (Fig. 48), 

corroborating a strong impact of HDACi on Crhr1 expression.    

 

Fig 49:  Liquid consumption. No difference was found in liquid consumption between VPA 

and vehicle treated groups, indicating no aversity to VPA solution consumption. Points 

represent means ± SEM, n (vehicle) = 6, n (VPA) = 10. 

 

Fig 50: Body weight. VPA treatment significantly decreased body weight of animals. Points 

represent means ± SEM, n (vehicle) = 6, n (VPA) = 10,  p<0.05,  p<0.01. 
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To evaluate the in vivo impact of HDACi, we treated LAB mice chronically with VPA 

via drinking water. Kruskal-Wallis ANOVA revealed no significant differences 

between VPA and vehicle treated groups (p>0.05 for all analyzed data) (Fig. 49), 

however, VPA administration induced a significant reduction of body weight (day 5 

p<0.05, day 9 p<0.05, day 13 p<0.01, day 17 p<0.01) (Fig. 50).   

We analized anxiety-related and depression-like behavior of mice from vehicle and 

VPA treatment groups using EPM, LDB, TST and FST. One-way ANOVA revealed 

no impact of treatment on any of measured paramenters. Results are summarized in 

Table 17.  

Table 17: Detailed results of VPA treatment on anxiety-related and depression-like behavior. 

No difference was found in any measured parameters in the EPM, LDB, TST and FST.  

Parameter measured  LAB vehicle LAB VPA p-value 

EPM 

time spent on open arms [%] 72.9 ± 3.8 73.3 ± 4.4 0.948 

latency to enter open arm [s] 8.7 ± 1.6 8.6 ± 1.9 0.992 

open arms entries [n] 8.5 ± 1.0 8.0 ± 1.4 0.761 

total distance travelled [m] 14.6 ± 1.4 13.4 ± 0.7 0.488 

LDB 

time spent in light compartment [%] 43.1 ± 2.9 50.0 ± 5.0 0.079 

latency to enter light compartment [s] 49.3 ± 15.5 31.5 ± 3.9 0.346 

entries in light compartment [n] 8.4 ± 0.7 8.1 ± 1.0 0.782 

total distance travelled [m] 17.0 ± 1.3 15.4 ± 1.6 0.148 

TST 

immobility time [s] 19.5 ± 7.1 22.1 ± 8.0 0.965 

latency to first immobility [s] 271.3 ± 15.8 285.7 ± 15.0 0.457 

number of immobile episodes [n] 4.3 ± 1.5 5.7 ± 1.2 0.459 

FST 

floating time [s] 14.7 ± 6.3 8.9 ± 3.9 0.539 

latency to first floating [s] 206.9 ± 43.4 235.9 ± 45.0 0.719 

number of floating episodes [n] 4.8 ± 1.5 3.6 ± 0.9 0.844 
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5 DISCUSSION 

 

5.1 TMT avoidance as a novel approach to evaluate anxiety-related behavior   

Animal models of psychiatric disorders are a valuable and, so far, irreplaceable tool 

to investigate molecular mechanisms underlying psychopathology. However, it is 

illusory to create a certain behavioral phenotype that would precisely reflect a human 

disorder. Whereas a complex clinical picture can hardly be proven to exist in animals, 

certain endophenotypes could be successfully modelled in mice. Multiple tests were 

developed to assess anxiety-related behavior in rodents. Most of them are primarily 

based on an approach/avoidance conflict to novel, open, brightly lit spaces and their 

innate exploratory drive. However, mice are living in an olfactory determined world 

and, therefore, here we established a predator odor avoidance test to measure 

anxiety-related behavior in the HAB/LAB model.  

First experiments on CD1 mice indicated that TMT, but not cat odor or butyric acid, 

elicited consistent avoidance behavior and provoked a dramatic activation of the HPA 

axis. TMT - a volatile component of fox feces - warns mice about a potentially 

dangerous area in natural environments. Therefore, TMT avoidance is an emotional 

anticipation of an aversive situation (predator encounter) and as such is close to trait 

anxiety (Landgraf, 2003). Moreover, only TMT induced a significant neuroendocrine 

response, corroborating aversive interpretation of the presented cue.  

When HAB, NAB and LAB mice were exposed to TMT, a significant difference in 

odor avoidance was observed. HAB mice avoided to visit the chamber with the 

predator odor significantly more often than LAB mice, with NAB showing intermediate 

avoidance behavior. This is in line with our previous results, indicating stronger 

emotional anticipation of HAB mice of a variety of stimuli like air puff and light 

(Landgraf, 2007; Muigg, 2009). Importantly, the difference in response to TMT was 

not due to a deficit of the olfactory system, as LAB and NAB mice did not or only 

moderately avoid TMT, all lines still responded to both the pleasant odor of female 

urine and the repugnant odor of butyric acid. Interestingly, TMT exposure altered 

HPA axis to the same level in all three lines. Potentially, an application of a lower 

dose of TMT could reveal individual neuroendocrine reactivity in the respective lines.  
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Thus, here we extended differences reported earlier regarding anxiety-related 

behavior of HAB/LAB mice already evaluated by traditional behavioral paradigms 

(OF, EPM, LDB) by including another and more natural sensory modality - olfaction. 

Moreover, TMT provided the most accurate evaluation of change of anxiety-related 

behavior in LAB mice after chronic mild stress exposure, described in the next 

section.  

5.2 Chronic mild stress increased anxiety-related and depression-like 

behaviors in LAB mice  

Major life stressors are a main risk factor for the development of anxiety and 

depression in humans. Therefore, a CMS paradigm was introduced by Paul Willner in 

the late 1980s to model similar environmental influences in rodents. In essence, CMS 

consists of repeated exposure to an array of variable and unpredictable, mild 

stressors over a sustained period of time. The duration of the stress procedure differs 

from laboratory to laboratory, but usually is in the range of two to eight weeks. 

Although, considerable difficulties with the establishment of the relevant CMS model 

were reported (Willner, 1997; Porsolt and Papp, 1998), recent literature corroborates 

CMS effects on anxiety-related (D’Aquila et al., 1994; Griebel et al., 2002; Rössler et 

al., 2000) and depression-like (Griebel et al., 2002; Strekalova et al., 2004; 

Tannebaum et al., 2002) behavior, body weight (Isingrini et al., 2010; Sterennburh et 

al., 2011), cognitive functions (Cuadrado-Tejedor et al., 2011; Parihar et al., 2011), 

sleep (Cheeta et al., 1997; Henningsen et al., 2009; Li et al., 2008; Moreau et al., 

1995;), locomotor activity (D’Aquila et al., 2000; Gorka et al., 1996; Katz, 1982) and 

sexual behavior (Brotto et al., 2001; D’Aquila et al., 1994; Gronli et al., 2005). The 

validity of the model is supported by the fact that chronic treatment with clinically-

effective antidepressants reversed stress-induced effects (Willner, 1987; 2005). A 

number of studies indicated considerable differences in sensitivity to CMS between 

different strains of mice (Ducottet and Belzung, 2004; Griffiths et al., 1992; Pothion et 

al., 2004). The basis of this difference might lie in a genetic susceptibility to stressful 

events. However, it is not known to what extent genetic factors contribute to 

individual stress-reactivity. Thererfore, we tested here if CMS exposure can alter the 

genetically determined low anxiety-related behavior of LAB mice.  

Indeed, we showed that 4 weeks of stress induced profound effects on behavioral 

and neuroendocrine characteristics of LAB animals. CMS-exposed mice exhibited 
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higher anxiety-related behavior in a variety of paradigms: stressed LAB mice spent 

less time on the open arms of the EPM, in the light compartment of the LDB and in 

the chamber harboring TMT odor. Interestingly, although all these tests revealed a 

significant increase in anxiety-related behavior after CMS, EPM estimated a 

treatment effect on the level of 21% (reduction in time spent on the open arms), 

whereas for LDB it was 41% (reduction in time spent in the light zone) and for TMT-

avoidance 67% (reduction in time spent in the chamber with TMT). The higher 

efficiency of the TMT-avoidance test, underlining the necessity of the first part of this 

thesis, might be explained by the nature of a stressor, since a predator odor is a 

naturally occurring encounter involving the most sensitive sense of mice, olfaction, 

and thus, yield the most accurate representation of stress responses. On the other 

hand, a smaller treatment effect in the EPM might be due to increased robustness of 

this trait, as it was used for selective breeding. Moreover, Ducottet and Belzung 

(2004) reported that anxiety-related behavior in the EPM could only explain 31% of 

the CMS-induced effects.  

Considering a complex comorbidity between anxiety and depression disorders (Stein 

and Heimberg, 2004; Yerevanian et al., 2001) and a pivotal role of stress factors in 

the genesis of depression (Paykel, 1994; Kessler, 1997), we also evaluated the effect 

of CMS on depression-like behavior of LAB mice. In both, the forced swimming and 

tail suspension tests, stressed mice exhibited higher depression-like traits, indicated 

by 62.5% and 78% increase in time spent immobile compared to controls, 

respectively. Moreover, we performed a stress-independent evaluation of 

depression-like behavior using a sucrose preference test. The lower preference of a 

bottle with sweet solution found in CMS exposed mice indicated higher anhedonic 

behavior in the stressed animals, one of the core symptoms of depression. Thus, our 

data suggest that CMS had a strong impact on depression-like behavior, which is in 

line with other studies that showed profound effects of CMS on parameters reflecting 

depression-like behavior, inter alia increase in anhedonic behavior (Willner et al., 

1987; 1992; Katz, 1982), higher alcohol preference (D’Aquila et al., 1994; Smith et 

al., 1996), decreased sexual behavior (Brotto et al., 2001; D’Aquila et al., 1994; 

Gronli et al., 2005), decreased aggression (Gambarana et al., 2001; Ossowska et al., 

2004; Pardon et al., 2000) and grooming (D’Aquila, et al., 2000; Santarelli et al., 

2003).  
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Stress can alter homeostasis of certain body systems, whereas prolonged and 

maladaptive stressful conditions can change the functional tone of these systems 

and lead to dysregulation. Stress activates the sympatho-adrenomedulary (SAM) and 

HPA systems, therefore primary disturbance could be found in the components of 

these systems. Clinical data corroborate, that patients suffering from depression are 

characterized by elevated serum glucocorticoids (Holsboer, 2001; Krishnan and 

Nestler, 2008; Steckler et al., 1999), whereas some anxiety psychopathologies, like 

posttraumatic stress disorder (PTSD), are characterized by a hypersensitive 

feedback regulation of the HPA axis and, subsequently, a lower level of blood 

glucocorticoids (Bremner et al., 2007; Meewisse et al., 2007; Yehuda, 2009). 

Moreover, structural changes in the adrenal gland - one of the most important stress-

responsive organs activated by both SAM and HPA systems - were reported in 

depressed (Amsterdam et al., 1987; Carroll et al., 1976; Nemeroff et al., 1992) and 

suicide (Dorovini-Zis and Zis, 1987; Dumser et al., 1998; Szigethy et al., 1994) 

patients. As a consequence of chronic stress exposure, an altered neuroendocrine 

regulation and eating behavior can lead to changes in the body weight. Thus, clinical 

studies indicate possible consequences of stress-related disorders on gain 

(Anderson et al., 2006; Pagoto et al., 2012; Petry et al., 2008; Pagoto et al., 2012) or 

loss (Andreasson et al., 2007; Bulik et al., 2007; Ohseik and Williams, 2011) of body 

weight. Consequently, the described features were analyzed in LAB mice exposed to 

CMS. Stressed animals exhibited elevated basal CORT levels, whereas in response 

to stress a remarkable shift from normal HPA axis reactivity was observed.  More 

precisely, forced swimming induced higher CORT secretion 30 min after the test, 

however, stressed animals were characterized by stronger feedback regulation as 

indicated by a lower blood CORT level 60 min after swimming. Moreover, a 

significant body weight loss of CMS exposed mice was observed, whereas adrenal 

gland weight was increased, once again indicating systemic effects of stress  

exposure on the body.  

Altogether, these data corroborate that the utilized CMS model induced changes on 

both behavioral and neuroendocrine levels, thereby recapitulating some key 

endophenotypes of anxious patients. 
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5.3 TMT exposure reveals a critical role of the basolateral amygdala for the 

anxiety shift after CMS  

c-Fos expression is a widely used marker for mapping brain activity in response to 

external stimuli (Hughes and Dragunow, 1995; Sagar et al., 1988). Thus, earlier 

Muigg and colleagues (2009) found that HAB/NAB/LAB mice showed different 

patterns of c-fos expression after unavoidable exposure to the open arms of the 

EPM. Here, we used c-fos expression to identify brain regions that are primarily 

involved in changes of anxiety traits of LAB mice after CMS. Since TMT avoidance 

provided the most reliable estimation of anxiety-related behavior after CMS, we 

analyzed c-fos expression after odor exposure. We also compared the outcome with 

similar of HAB mice after TMT exposure, as an indicator of extremely high anxiety 

response.  

Our data supports and extends earlier findings (Muigg et al., 2009), which indicate 

that stress induces stronger c-fos activation in most of the brain regions of HAB 

compared to LAB mice. Higher gene expression was found in the mPFC, PVN and 

Amy of HAB mice compared to LAB after odor exposure, whereas no difference was 

observed in the LC or DG. Lower expression of c-fos in HAB mice was found only in 

the CA1 region of the Hipp. When stressed LAB mice were exposed to TMT, 

increased c-fos compared to non-stressed animals was observed in the PVN and 

Amy, but not in the mPFC or any other brain region. These results indicate that 

changes in PVN and Amy activitied after CMS exposure reflect a shift in anxiety-

related behavior along the anxiety continuum from LAB towards HAB. However, the 

PVN is known to participate in HPA axis activation and, therefore, could be primarily 

involved in the endocrine response to the odor rather than in the modulation of 

anxiety-related behavior. Indeed, a significant difference in blood corticosterone was 

found between the groups. TMT exposure induced a higher HPA axis response in 

HAB and stressed LAB mice compared to control LAB mice. Thus, higher c-fos 

expression in the PVN of HAB and stressed LAB mice could be addressed to higher 

HPA axis response after TMT exposure. Moreover, the finding that Amy activity 

reflects changes in anxiety after CMS was further supported by a recent 

electrophysiological study. Avrabos and colleagues (2013) used voltage-sensitive 

dye imaging to observe a lower signal propagation through the amygdala of LAB 

mice compared to HAB, whereas chronic stress exposure increased this measure in 

LAB. 
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Furthermore, since the Amy has a complex, but well defined structure with specific 

features of each nucleus, we analyzed which part(s) of the Amy contributed to the 

observed differences. We found that after TMT exposure LA and MeA exhibited 

insignificant increases in c-fos expression between control and CMS treated LAB 

mice, whereas significantly higher expression was observed in the CeA and BLA of 

stressed animals. This is in line with clinical studies indicating that patients suffering 

from generalized anxiety disorder may have abnormal activity generated in CeA and 

BLA (Etkin et al., 2009). Moreover, recently Tye and colleagues (2011) showed that 

an activation of BLA-CeA circuit is causally involved in controlling unconditioned 

anxiety-related behavior. Interestingly, HAB mice housed in EE showed opposite 

effects to CMS: decreased anxiety-related behavior after EE was followed by 

decreased c-fos expression in the BLA after TMT exposure (Sotnikov et al., 

submitted). These data are also in line with Nikolaev et al. (2002) reporting 

decreased c-Fos in the amygdala of EE rats after aversive conditioning. Moreover, 

other studies also found an important role of the BLA in response to predator odor 

(Day et al., 2004; Dielenberg et al., 2001; Vazdarjanova, 2001), whereas lesion of 

this nucleus prevented TMT induced avoidance (Müller and Fendt, 2006).  The 

central role of the BLA in response to stressful stimuli is not surprising, since it is 

known that this structure has a broad modulatory role and, via sending projections to 

other brain regions, regulates specific behavioral responses (Campeau and Davis, 

1995; LeDoux, 1993; Müller et al., 2003; Tye et al., 2011). Hence, it was proposed 

that the BLA is a major integrator and relay center for incoming and outgoing 

information and, thus, necessary for an adequate anxiety response and phenotypic 

plasticity. However, the molecular mechanisms behind this phenomenon are largely 

unknown.  

CRH is the main mediator of amygdala activity, therefore, we hypothesized that a 

dysregulation of the amygdalar CRH system could be an underling mechanism of 

changes in the anxiety-related behavior and amygdala activity after CMS. 

5.4 CMS increased expression of Crhr1 and site-specific methylation of its 

promoter in the BLA  

It was postulated that during stress exposure, CRH is released within the amygdala, 

and further activation of CRH receptors is a substrate for stress-induced alterations 

of affective behavior. Within the amygdala, the BLA and CeA have long been known 
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to regulate affective behavior (Davis, 1992; Hilton and Zbrozina, 1963; Sanders and 

Shekhar, 1991). However, components of the CRH system are not equally distributed 

between these structures. Thus, CRH-positive cell bodies were found in the CeA, but 

not in the BLA (Swanson et al., 1983; Van Pett et al., 2000), in contrast, the Crhr1 

receptor is almost not expressed in the CeA, whereas, in the BLA it is abundantly 

presented (Kühne et al., 2012; Van Pett et al., 2000). Therefore, it seems that CeA is 

a likely source of endogenous CRH, activating CRHR1 in the BLA, although both, 

BLA and CeA, also receive and send CRH projections to the bed nucleus of stria 

terminalis (BNST) (Shekhar et al., 2005; Swanson et al., 1983; Van Pett et al., 2000). 

Acute stress increases the amount of CRH in the CeA (Roozendaal et al., 2002) that 

later invades the BLA (Mountney et al., 2011; Roozendaal et al., 2002). The 

activation of CRHR1 in the BLA increases the excitability of neurons (Rainnie et al., 

1992) and, therefore, it was suggested that an increase in neuronal activity in the 

BLA may contribute to stress-induced increase in the anxiety state (Rainnie et al., 

2004). CRHR1 was found to be important for memory consolidation, since the 

injection of CRHR1 antagonists in the BLA reduced freezing after contextual fear 

conditioning (Hubbard et al., 2007). Moreover, chronic stress exposure induced a 

sustained increase of CRH in the amygdala (Cratty et al., 1995). Consequently, a 

repeated activation of CRHR1 in the BLA resulted in higher sensitivity of the neurons 

(Sanders et al., 1995; Saidyk et al., 1999; Saidyk and Gehlert, 2000), potentially via 

NMDA receptor-mediated calcium flux and activation of the calcium-calmoduling 

protein kinase II (CaMKII) cascade. Repeated intra-BLA injections of urocortin, a 

CRH receptors ligand, induced long-lasting changes in anxiety-related behavior that 

persisted for weeks (Rainnie et al., 2004). Furthermore, repeated stress exposure 

induced an increase of Crhr1 in the amygdala, whereas injection of a CRHR1 

antagonist prevented stress-induced behavioral changes (Gehlert et al., 2005). 

Finally, Roger et al. (2013) has recently reported about a strong association between 

anxiety-related behavior, amygdala activity and Crhr1 in nonhuman primates.  

Our c-fos (Sotnikov et al., submitted) and electrophysiological (Avrabos et al., 2013) 

data indicate a higher amygdala activity in CMS-treated compared to control LAB 

mice, especially in the CeA and BLA nuclei. Whereas most of the CRH effects are 

transmitted through CRHR1 in the amygdala, we hypothesized that different Crhr1 

expression in the BLA could be the underling mechanism causing changes in 

anxiety-related behavior and amygdala activity after CMS. We analyzed the amount 
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of Crhr1 mRNA in the BLA of stressed and control LAB mice and indeed observed a 

higher expression of Crhr1 in the CMS treated group. Earlier, Markt (2012) showed 

that there is a higher expression of Crhr1 in the BLA of HAB compared to LAB mice, 

whereas the injection of a CRHR1 antagonist into the BLA of HAB animals induced 

anxiolytic effects. Moreover, decreased Crhr1 expression and anxiety-related 

behavior were observed in HAB mice housed in EE. This is in line with Sztainberg et 

al. (2011) who also found that a decrease in anxiety-related behavior is mediated via 

lower Crhr1 expression in the BLA of “normal” anxiety mice after EE or after lentiviral 

knockdown of Crhr1 in the BLA. Altogether, our study (Sotnikov, Markt et al., 

submitted) extends all previous findings on Crhr1 by showing that this gene exhibits 

bidirectional plasticity and can be shifted to the better or worse manner depending on 

the type of environmental manipulation. To our knowledge, this is the first example of 

such plasticity at molecular level.  

We next studied the epigenetic mechanism behind this gene-environment interplay of 

Crhr1 and CMS. Our in silico analysis identified a 2796bp long CpG island in the 

Crhr1 gene, covering 1387bp of the promoter region, exon 1 and parts of intron 1. 

The presence of a CpG island grants gene regulation via DNA methylation. 

Moreover, we found, that expression of enzymes involved in maintenance (DNMT1) 

and de novo (DNMT3a) methylation were elevated after CMS exposure. This is in 

line with Matriscianno and collegues (2013), who reported that prenatal stress 

induced a long-lasting elevation of DNMT1 and DNMT3a in the frontal cortex and 

hippocampus. 

Using pyrosequencing of bisulfite-treated DNA we were able to identify a differently 

methylated CpG site in the promoter of Crhr1. We found that stress induced an 

increase in methylation of CpG1 (-1348bp from transcription start site), whereas no 

difference in methylation was observed in any other CpG. Interestingly and 

unexpectedly, the same position was also found to be higher methylated in HAB mice 

housed in EE compared to control HAB and LAB mice (Markt, 2012). Moreover, we 

used an available data base (Ensemble Genome Browser) of a whole genome 

bisulfite sequencing to compare methylation of Crhr1 CpGs of embryonic stem cells 

(ES) and a nasopharyngeal carcinoma cell line (NPC) and found that CpG1 is one of 

the differently methylated regions (DMR) between the cells, highlighting the 

importance of this site in epigenetic control. We further evaluated the functional 

importance of methylation at this position on promoter activity. We cloned a part of 
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the promoter carrying CpG1 in the CpG-free luciferase expressing vector and 

subjected it to either a complete or a site-specific methylation. Both assays confirmed 

a profound role of methylation on promoter activity, remarkably site-specific 

methylation (SSM) of CpG1 alone was enough to reduce the reporter gene 

expression. These data indicate that methylation of CpG1 provides a highly-sensitive 

biological approach to the regulation of Crhr1 gene expression. 

Whereas recent literature supports that both adding (McGowan et al., 2009) and 

removing (Murgatroyd et al., 2009) methyl groups are active and reversible 

processes (Ito et al., 2011) directly involved in the regulation of anxiety-related 

behavior, there is no consensus whether a complete or a SSM is more important for 

gene regulation. Recent studies reported that environmental treatments induced 

gross changes in methylation of stress-related genes, inter alia GR (Weather et al., 

2004), BDNF (Roth et al., 2009), Crh (Elliot et al., 2010), AVP (Murgatroyd et al., 

2009), whereas later studies, on the contrary, reported the importance of site-specific 

methylation of GR (McGowan et al., 2009), BDNF (Martinowich et al., 2003), Crh 

(Chen et al., 2012) and Oxytocin (Mamrut et al., 2013). However, dramatic changes 

in methylation of promoters usually occur under pathological conditions like cancer 

(Bergman and Cedar, 2013; Johnson et al., 2012), whereas SSM, from a biological 

perspective, provides an elegant and low-cost energy way to adjust gene expression 

to present needs. Thus, SSM of the GR promoter influences binding of the 

transcription factor NGFI-A (McGowan et al., 2009), methylation of the Crh occurs at 

CpGs around a cAMP responsive element (CRE) and effects binding of the phospho-

cAMP responsive element-binding protein (pCREB) (Chen et al., 2012), SSM of 

CpGs of the BDNF regulates the activity of calcium-responsive element 1 (CaRE 1), 

CRE and upstream stimulatory factor-binding site (E-box) (Martinowich et al., 2003). 

Based on these data, we performed in silico analysis and found a recognition 

sequence for binding of transcription factor YY1 close to the CpG1. Therefore, we 

tested the interaction between CpG1 methylation and YY1 binding.  

5.5 Binding of the transcription factor YY1 enhanced Crhr1 promoter activity 

in a methylation-sensetive manner 

The transcription factor YY1 is a multifunctional protein that has a fundamental role in 

cell proliferation, differentiation and apoptosis (Sui et al., 2004; Vega et al., 2005). 

YY1 is highly expressed in the brain tissue and plays an important function in 
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neuronal development (Donohoe et al., 1999; Morgan et al., 2004), differentiation 

(Affar et al., 2006; Seo et al., 1996; Yang et al., 1998) and myelination (Berndt et al., 

2001; He et al., 2007). There is also evidence on a possible role of YY1 in the 

development of Alzheimer disease (Rossner et al., 2006; Zambrano et al., 1997) and 

autism (Benayed et al., 2005; Brune et al., 2008). To date, no information is available 

about a possible involvement of the transcription factor in the psychopathology of 

anxiety and/or depression. Here, we measured YY1 expression and found almost 

two times higher amounts of this transcription factor in the BLA of CMS treated LAB 

mice compared to controls, highlighting a possible role of YY1 in stress-related 

disorders.  

YY1 regulates a large number of genes, approximately 10% of the total mammalian 

gene set (Gordon et al., 2006; Schug et al., 2005). However, what distinguishes this 

transcription factor from others is its ability not only to initiate, but also to regulate 

transcriptional activity (Gordon et al., 2006). Moreover, YY1 can simultaneously 

serve as a transcriptional activator and a silencer. This dual role is well illustrated in 

the example of autoregulation of expression through its own promoter binding. Thus, 

when the level of protein is normal, YY1 induces the activation of its own promoter; 

however, high levels of the protein inverse the mechanism and YY1 becomes a 

repressor of its own promoter (Kim et al., 2009). Our experiments supported the 

activatory role of YY1 on Crhr1 promoter activity. The transfection of N2a cells 

(neuronal cell culture) with a plasmid carrying YY1 cDNA induced a significant 

accumulation of YY1 within the cell nuclei. The increase of transcription factor 

stimulated a higher Crhr1 promoter activity and, consequently, a higher Crhr1 mRNA 

expression. Current literature suggests three mechanisms driving YY1-induced 

transcriptional activation: (i) a direct activation via the association with TATA-binding 

proteins (Nguyen et al., 2004), (ii) an interaction with cellular factors unmasking YY1 

activation domain (Thomas and Seto, 1999), (iii) a recruitment of other activating 

transcription factors (Lee et al., 1995; 1998; Thomas and Seto, 1999). On the other 

hand, there are also three models explaining YY1-induced transcriptional silencing: 

(i) presence of overlapping binding sites of other transcription factors that compete 

with YY1 for occupancy (TF-DNA competition) (Shi et al., 1991), (ii) interference with 

other transcription factors independent of physical interactions with DNA (TF-TF 

interaction) (Guo et al., 1995; Galvin and Shi, 1997), (iii) recruitment of corepressors 

that directly act to facilitate transcriptional repression (TF-corepressor interaction) 
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(Thomas and Seto, 1999; Weill et al., 2003). Thus, we were interested in knowing if 

the observed effect of YY1 on promoter activity is indeed a result of YY1 binding to 

the recognition sequence close to CpG1 (direct activation) or if it is a product of 

interaction with other transcription factors regulating Crh1 expression (indirect 

activation). Our results clearly indicated the direct binding of YY1 to the Crhr1 

promoter via EMSA. Moreover, binding of YY1 to other in silico predicted position 

was not observed under basal conditions, highlighting the importance of the 

recognition site at CpG1 in the YY1-mediated effects.   

Although many studies indicate the involvement of YY1 in epigenetic regulation of 

transcriptional activity, there is a considerable controversy concerning the 

methylation-sensitive binding of YY1. Thus, one of the earliest studies, investigating  

 

Fig. 51: Hypothesized cascade of events caused by chronic stress exposure. CMS induces an 

increase in YY1 expression and CpG1 methylation. This leads to the increase in Crhr1 

expression in the BLA and, consequently, higher activation of the structure during stress 

exposure. Through the projections of the BLA to other brain structures, increased anxiety-

related behavior is the consequence.   
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methylation-sensitive binding of YY1, reported that, although methylation plays an 

important role in gene silencing, it does not exert any impact on the binding ability of 

YY1 (Gaston and Fried, 1995a; 1995b). 

However, later studies provided contadicting examples like methylation-sensitive, 

binding of YY1 (Kim et al., 2003; Sekimata et al., 2011). Our experiments found that 

methylation of CpG1 did not completely abolish the binding of YY1, but significantly 

reduced the affinity of the transcription factor to the DNA. On the functional level, 

YY1 overexpression induced an increase in promoter activity in both conditions, with 

methylated CpG1 and without, however, a significantly higher induction was 

observed in the absence of methylation. Importantly, this was a specific feature of the 

CpG1 methylation, since a complete methylation of the promoter did not induce a 

stronger reduction of YY-induced promoter activation. Furthermore, Kim et al. (2008, 

2009) studied the role of YY1 in controlling of imprinting domains of several genes. 

They found that a high incidence of lethality among conditional YY1-knockout mice 

could be explained by a higher expression of several imprinted genes during oocyte 

and blastocyst stages. These changes in expression were a result of loss of DNA 

methylation at the imprinting control regions. Thus, the authors speculated that YY1 

could have an important role in de novo DNA methylation. The same effects were 

observed using N2a cells, where YY1-knockdown resulted in methylation changes of 

several imprinted genes (Kim et al., 2007). Therefore, since YY1 reduction leads to 

the loss of methylation, we hypothesized that higher YY1 expression after CMS could 

induce CpG1 methylation of the Crhr1 promoter. Thus, we overexpressed YY1 in the 

N2a cells and analyzed methylation of CpG1. No effect of elevated transcription 

factor on CpG1 methylation was observed, suggesting another mechanism of 

regulation of this epigenetic mark in response to external environmental influences. 

Altogether, we showed that a higher expression of YY1 after CMS can lead to 

increased Crhr1 expression, whereas the exact role of methylation of CpG1 is 

obscure; however, it could play an important role in fine-tuning YY1-induced effects. 

Our results might provide a possible mechanism of environmentally driven Crhr1 

regulation. However, the final cause of different expression of Crhr1 between HAB 

and LAB mice is still unknown. Based on the observed role of epigenetic factors in 

the regulation of Crhr1, the next section addresses alternative mechanisms that 

could contribute to Crhr1 expression.  
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5.6 Other possible epigenetic mechanisms contributing to Crhr1 expression 

The impact of SNPs (Czibere, 2008) and CNV (Brenndörfer, 2013) on different gene 

expressions between HAB and LAB mice was extensively studied during the last 

decade. However, we have not found any SNPs in the promoter region, nor different 

CNV between HAB/LAB in this genomic locus, which could regulate Crhr1 

expression. Therefore, based on available literature data, we analyzed possible non-

sequence based mechanisms likely contributing to Crhr1 expression. 

A recent study by Haramati et al. (2011) found that acute and chronic stress induced 

increased miRNA34c (miR34a) - a member of miRNA34 (miR34) family - in the CeA. 

Lentiviral-mediated overexpression of miRNA within the CeA decreased anxiety-

related behavior. Authors suggested that one of the primary targets of miRNAs of this 

family is Crhr1.  

 

Fig. 52: Evolutionary conserved binding site for miRNA34 family on Crhr1-3’UTR and YY1-

3’UTR found using TargetScan (http://targetscan.org).  

 

 

http://targetscan.org/�
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Luciferase assays proved that binding of miR34 to the evolutionary conserved 

seeding site on the 3’UTR of Crhr1, indeed, exerted a regulatory role on gene 

expression and CRH signal transduction. Furthermore, a separate study by Chen 

and colleagues (2011), using systematic proteome analysis, demonstrated that the 

expression of YY1 and its downstream proteins is reduced by miR34a. miRNA 

directly targets YY1 through miR34a-binding site within the 3’UTR region. Altogether, 

these data indicate that miR-34a could be an important player regulating both, Crhr1 

and YY1. We analyzed the expression of miR34 family members within the BLA of 

HAB and LAB mice and found a significant up-regulation of miR34a, whereas no 

difference was found in expression of miR34b and miR34c. Thus, a higher 

expression of miR34a could directly regulate Crhr1 expression in the BLA, explaining 

a different gene expression. Although, we have not found differences in YY1 

expression in the BLA and the amount of YY1 protein in the complete amygdala 

between HAB/LAB mice, it is not known how this miRNA is regulated after CMS and 

what role it plays in stress-induced YY1 expression. Moreover, the expression of 

Dicer, an enzyme involved in miRNA maturation and miRNA-induced silencing 

complex (RISC) formation, was down-regulated in LAB compared to HAB, what is 

opposing the proposed action suggested by Haramati and colleagues (2011), namely 

anxiogenic effects of Dicer ablation. 

As it was discussed earlier, binding of YY1 attracts other co-factors, which regulate 

the coupling of the transcription machinery with DNA together. The HDAC2/1 

complex was identified as one of these co-factors (Yang et al., 1996; 1997). 

Furthermore, some studies suggested that YY1 is critical in regulating histone genes 

(Eliassen et al., 1998; Last et al., 1999). Thus, using available ChIP-seq data 

(Ensemble Genome Browser) performed on embryonic stem cells (ES) and 

nasopharyngeal carcinoma cells (NPC), we analyzed a possible impact of histone 

modification on Crhr1 regulation. The comparison of two cell lines revealed that (i) 

the “histone code” of Crhr1 differs significantly between the cells, (ii) 2kb (above 

TSS) of the promoter is the most vulnerable region for histone modification. Thus, we 

tested the impact of HDACi on promoter activity and Crhr1 expression. We showed 

here that treatment with valproic acid (VPA), a well studied HDACi, induced a 

significant increase in both Crhr1 promoter activity and mRNA. Interestingly, clinical 

studies found that VPA can be used as a mood-stabilizer. Our earlier study (Markt, 

2012) showed that six injections of valproic acid within two weeks increased anxiety-
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related behavior in HAB mice. Therefore, we tested here the effect of VPA on 

behavior of LAB mice. However, literature data suggest considerable uncertainty 

regarding the way of administration of VPA due to its pharmacological properties. 

Based on literature data (Löscher and Nau, 1982) treatment with 500µg/ml solution 

should consistently maintain brain VPA concentration at 140ng/ml (almost 2 times 

higher minimal effective dose in the cell culture). In line with a similar study (Löscher  

 

Fig. 53: ChIP-seq data (Ensemble Genome Browser) on embryonic stem cells (ES) and 

nasopharyngeal carcinoma cells (NPC) suggest 2kb promoter region to be vulnerable for 

regulation via histone modifications.  



  106 

and Nau, 1982), chronic treatment with VPA reduced body weight of LAB mice, 

however, it did not effect liquid consumption per gram of body weight. Behavioral 

testings after 4 week of administration revealed no impact of treatment on any 

measured anxiety-related and depression-like parameter. The negative result can be 

explained by common action of VPA on expression of Crhr1 as well as other genes in 

different brain regions, which ablate amygdala-mediated Crhr1 effects. New studies 

investigating intra-amygdala injection of VPA could shed light on this question. 

Moreover, anxiogenic effects of VPA in HAB mice together with the absence of any 

effect in LAB suggest that VPA has a specific action (if any) only for a particular 

anxiety disorder, whereas other pathological conditions could be insensitive to such 

treatment. In any case, our study suggests the need of identification and strict 

classification of psychopathologies, which could be treated using VPA.  

5.7 Summary and perspectives 

This study investigated the anxiety-related phenotype of HAB vs. LAB mice, its 

possible environmental plasticity and molecular events underlying these behavioral 

changes of anxiety. First of all, for better characterization of anxiety-related behavior, 

we established a reliable and sensitive behavioral model based on predator odor 

avoidance providing the phenotypic basis for subsequent studies. Second, we 

showed that exposure of LAB mice to an unpleasant environment (CMS) induced 

changes in behavior, neuroendocrine regulation and pattern of c-fos expression in 

the brain. Crhr1 was the first identified gene critically involved in the phenotype 

plasticity of anxiety in HAB and LAB mice. Differential expression of Crhr1 in the BLA 

after stress could be mediated via changes in epigenetic regulation of its promoter. 

Thus, higher methylation of CpG1 in stressed LAB mice might decrease binding of 

the transcription factor YY1 to the Crhr1 promoter in vitro. This cascade of molecular 

events is suggested to be behind the environmentally driven changes in Crhr1 

expression. Whereas no changes in the methylation of Crhr1 CpGi were found 

between HAB and LAB mice, we tested here a possible contribution of miRNA34 

family and histone modifications in the regulation of differential basal expression of 

Crhr1.  

Future experiments should focus on studying YY1 binding to the Crhr1 promoter in 

vivo using chromatin immunoprecipitation (ChIP). Furthermore, a close relationship 

between CRH and glucocorticoids systems during the stress response suggests a 
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possible common biological target. Our preliminary data corroborate a regulatory 

effect of glucocorticoids on Crhr1 expression and promoter activity, therefore future 

experiments will be addressed to in vivo studies of this system. Particularly, we are 

interested in investigating the role of GR and Crhr1 in controlling HPA regulation. 

These experiments could shed some light on the origin of altered HPA axis of our 

HAB/LAB mice and in several psychiatric diseases including PTSD and depression.  
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