
 

 

 

Characterization of the ubiquitin-like protein Hub1  

and its role in pre-mRNA splicing in human cells 

 

Dissertation der Fakultät für Biologie 

der Ludwig-Maximilians-Universität München 

 

 

vorgelegt von 

Diplom Biologe 

Tim Ammon 

 

 

September 2013 



Erklärung 

 2 

Eidesstattliche Erklärung 

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertation selbständig 

und ohne unerlaubte Hilfe angefertigt habe. Ich habe weder anderweitig versucht, 

eine Dissertation einzureichen oder eine Doktorprüfung durchzuführen, noch habe 

ich diese Dissertation oder Teile derselben einer anderen Prüfungskommission 

vorgelegt. 

 

München, den 30.09.2013 

(Unterschrift)   

 

 

 
Die vorliegende Arbeit wurde zwischen Oktober 2005 und September 2013 unter 

Anleitung von Prof. Dr. Stefan Jentsch am Max-Planck-Institut für Biochemie in 

Martinsried durchgeführt. 

 

 

 

Aus Teilen dieser Arbeit sind die folgenden Publikationen hervorgegangen: 

 

Mishra, S.K., Ammon, T., Popowicz, G.M., Krajewski, M., Nagel, R.J., Ares, M., 

Holak, T.A., and Jentsch, S. (2011). Role of the ubiquitin-like protein Hub1 in splice-

site usage and alternative splicing. Nature 474, 173–178. 

 

Bergink, S., Ammon, T., Kern, M., Schermelleh, L., Leonhardt, H., and Jentsch, S. 

(2013). Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 

interaction. Nat Cell Biol 15, 526–532. 

 

Ammon, T., Mishra, S.K., Kowalska, K., Popowicz, G.M., Holak, T.A., and Jentsch, 

S. (2013). The conserved ubiquitin-like protein Hub1 plays a critical role in splicing in 

human cells. Submitted 

 

 

 

Promotionsgesuch eingereicht am: 30.09.2013 

Datum der mündlichen Prüfung: 04.12.2013 

Erster Gutachter: Prof. Dr. Stefan Jentsch 

Zweiter Gutachter: Prof. Dr. Angelika Böttger 

 



Table of contents 

 3 

Table of contents 

Eidesstattliche Erklärung _____________________________________________________ 2

Table of contents ___________________________________________________________ 3

1 Summary ______________________________________________________________ 5

2 Introduction ____________________________________________________________ 6

2.1 Transcription and pre-mRNA processing ___________________________________________ 6

2.2 Introducing pre-mRNA splicing ___________________________________________________ 9

2.3 Biochemistry of the splicing reaction ______________________________________________ 10

2.4 Constituents of the spliceosomal machinery ________________________________________ 11

2.5 The splicing cycle ____________________________________________________________ 14

2.6 Alternative splicing ____________________________________________________________ 16

2.7 Posttranslational modification by ubiquitin __________________________________________ 19

2.8 Ubiquitin and ubiquitin-like proteins _______________________________________________ 20

2.9 The ubiquitin-like protein Hub1 __________________________________________________ 23

3 Aim of this study _______________________________________________________ 26

4 Results ______________________________________________________________ 27

4.1 Identification of human Hub1 interactors by yeast two-hybrid screening __________________ 27

4.2 Hub1 binds the spliceosomal protein hSnu66 in vivo _________________________________ 28

4.3 A conserved motif in hSnu66 mediates Hub1 interaction ______________________________ 29

4.4 Mutations in the HIND abolish Hub1-hSnu66 interaction ______________________________ 32

4.5 Hub1 localizes to splicing-associated nuclear domains _______________________________ 34

4.6 hSnu66 actively recruits Hub1 to splicing speckles ___________________________________ 37

4.7 Characterization of hSnu66’s functional domains ____________________________________ 39

4.8 Distinct and conserved protein properties of Hub1 ___________________________________ 43

4.9 Molecular tools for the characterization of Hub1 in human cells _________________________ 45

4.10 In vivo depletion of Hub1 causes cell cycle defects and apoptotic cell death _______________ 46

4.11 Hub1 RNAi entails DNA damage, mitotic catastrophe, and apoptotic cell death ____________ 51

4.12 The functional C-terminal surface is crucial to mediate the vital activity of Hub1 ____________ 55

4.13 Altered distribution of splicing factors and retention of mRNA upon Hub1 depletion in vivo ____ 59

4.14 Identification of splicing defects upon Hub1 knockdown using splicing reporter systems _____ 63

4.15 The splicing factor Hub1 is crucial for efficient and faithful pre-mRNA splicing in human cells _ 65

4.16 Identification of Hub1-dependent alternatively spliced transcripts by exon-specific microarray 

analysis ________________________________________________________________________ 71

4.17 Antagonistic interactions between the transcription inhibitor actinomycin D and Hub1 RNAi ___ 74

5 Discussion ____________________________________________________________ 78

5.1 Identification of binding factors by yeast two-hybrid link Hub1 to splicing-associated complexes 78

5.2 Hub1 binding is mediated via a conserved Hub1 interaction domain in hSnu66 _____________ 80

5.3 Hub1 and hSnu66 reside in nuclear splicing speckles ________________________________ 86

5.4 Conserved and evolved protein features of Hub1 ____________________________________ 92

5.5 Different surfaces on Hub1 facilitate distinct interactions ______________________________ 94

5.6 In vivo depletion of Hub1 causes cell cycle defects and apoptotic cell death _______________ 96

5.7 Hub1 RNAi leads to aberrant splicing and mRNA retention ____________________________ 97

5.8 Human Hub1 is crucial for specific splicing events ___________________________________ 98

5.9 Hub1 knockdown desensitizes cells to actinomycin D _______________________________ 101

5.10 The Hub1-dependent splicing model ____________________________________________ 103



Table of contents 

 4 

6 Material and Methods __________________________________________________ 107

6.1 Cell biology ________________________________________________________________ 107

6.1.1 Human cell lines and transfections __________________________________________________ 107

6.1.2 Mammalian expression plasmids and siRNA ___________________________________________ 107

6.1.3 Flow cytometry __________________________________________________________________ 108

6.1.4 Immunofluorescence, FISH and live cell microscopy _____________________________________ 108

6.1.5 Cell lysis and immunoprecipitation ___________________________________________________ 109

6.1.6 Antibodies _____________________________________________________________________ 110

6.1.7 Exon-specific alternative splicing microarray ___________________________________________ 110

6.1.8 Yeast strains and plasmids ________________________________________________________ 111

6.2 Molecular biology ____________________________________________________________ 112

6.2.1 Preparation and transformation of chemically competent E. coli ____________________________ 112

6.2.2 Isolation of plasmid DNA __________________________________________________________ 113

6.2.3 Polymerase chain reaction and site directed mutagenesis ________________________________ 113

6.2.4 DNA restriction, ligation and cloning _________________________________________________ 113

6.2.5 RNA-purification, RT-PCR and splicing gels ___________________________________________ 114

6.2.6 Gel electrophoresis of DNA and purification from agarose gels _____________________________ 114

6.2.7 DNA sequencing ________________________________________________________________ 114

6.2.8 Plasmids for recombinant protein expression in E. coli ___________________________________ 114

6.2.9 Purification of recombinant proteins from E. coli ________________________________________ 114

6.2.10 Determination of protein concentrations ______________________________________________ 116

6.2.11 CNBr coupling _________________________________________________________________ 116

6.2.12 Antibody purification _____________________________________________________________ 116

6.2.13 Polyacrylamide gel electrophoresis and immunoblotting _________________________________ 117

6.2.14 Structure determination of the human Hub1-HIND complex ______________________________ 117

6.2.15 Software ______________________________________________________________________ 118

7 Figure Index _________________________________________________________ 120

8 References __________________________________________________________ 121

9 Abbreviations ________________________________________________________ 142

10 Acknowledgement ____________________________________________________ 143

11 Curriculum Vitae _____________________________________________________ 144

12 Appendix ___________________________________________________________ 145

12.1 Affymetrix Human Exon 1.0 ST microarray data ____________________________________ 145

12.2 Microarray mRNA expression analysis ___________________________________________ 146

12.3 Data collection and refinement statistics __________________________________________ 147

 

 



Summary 

 5

1 Summary 

For faithful gene expression eukaryotic transcripts are subjected to a series of 

processing steps in which the precursor messenger RNA (pre-mRNA) is maturated 

and subsequently exported to the cytoplasm for translation and protein synthesis. 

Therefore, the excision of intervening, non-coding sequences from nascent pre-

mRNAs is essential, which is catalyzed by a complex macromolecular machine, the 

spliceosome. In a highly regulated and dynamic process the spliceosomal subunits 

assemble in a stepwise manner and are subjected to major structural and 

compositional rearrangements in their RNA and protein interaction network in order 

to form the catalytically active spliceosome. The accurate recognition of splice sites 

and the coordinated assembly of spliceosomes are vital processes to ensure high 

splicing fidelity and efficiency in order to prevent aberrantly spliced transcripts that 

encode misfolded, non-functional, or toxic proteins in cells.  

This study comprises the detailed characterization of the small, ubiquitin-like 

protein Hub1 in mammalian cells and reveals its crucial role in pre-mRNA splicing. In 

vivo depletion of Hub1 from human tissue culture cells leads to cell cycle arrest, 

mitotic defects and subsequent apoptotic cell death. Biochemical and cell biological 

analyses elucidated that Hub1 is essential for faithful pre-mRNA splicing of distinct 

introns and proper alternative splicing in human cells. Importantly, Hub1 does not 

influence general splicing, but facilitates processing of certain splicing events in 

particular pre-mRNAs. Moreover, the study demonstrates that knockdown of Hub1 

causes an altered nuclear distribution of splicing factors and nuclear retention of 

mRNA species, further indicating defective mRNA splicing in vivo. In this study Hub1 

was identified as a component of nuclear splicing speckles where it interacts with the 

conserved spliceosomal tri-snRNP protein hSnu66. Mapping and binding studies led 

to the characterization of the Hub1 interaction motif in hSnu66, which is sufficient and 

necessary to mediate binding of Hub1. The underlying molecular mechanism of this 

interaction between the non-canonical ubiquitin-like protein Hub1 and the splicing 

protein hSnu66 was resolved by determining the crystal structure of the complex. 

Additionally, mutational analysis elucidated that, although binding to hSnu66 

facilitates the recruitment of Hub1 to nuclear speckles, the interaction is neither 

essential for viability nor Hub1’s crucial function in pre-mRNA splicing. In contrast, it 

became apparent that another surface on Hub1 opposing the Hub1-hSnu66 interface 

conveys the pivotal activity of Hub1 in mRNA splicing. 

Finally, the experimental data and derived conclusions are integrated into a 

revised pre-mRNA splicing model proposing a central function for Hub1 during 

spliceosomal complex formation. In summary, this study represents the first compre-

hensive characterization of the ubiquitin-like protein Hub1 in human cells and reveals 

the essential role of Hub1 as a non-covalent “modifier” of the splicing machinery.  
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2 Introduction 

2.1 Transcription and pre-mRNA processing  

Eukaryotic gene expression is a highly coordinated and dynamic process 

accomplished by an intricate network of macromolecular protein complexes, RNA-

containing ribonucleoparticles (RNPs) and their regulatory circuits. During RNA 

synthesis by RNA polymerase II (RNA pol II), precursor messenger RNA (pre-mRNA) 

has to undergo several processing steps, namely 5’-capping, splicing and 

polyadenylation to give rise to the stable, mature gene product, which can be 

exported from the nucleus to the cytoplasm for later translation into proteins.  

Upon transcription initiation TATA-box binding protein (TBP) and several 

associated factors (TAF) are recruited to the core promoter sequences, where 

general transcription factors TFIIA and TFIIB facilitate loading and engaging of the 

RNA pol II machinery onto DNA. This pre-initiation complex (PIC) is finally completed 

by the joining of multimeric mediator, TFIIH, and TFIIE complexes. In order to allow 

productive transcription, the densely packed chromatin has to be accessible and 

opened up by chromatin remodeling enzymes (Ho and Crabtree, 2010). Among this 

group of enzymes, acetyl- or methytransferases are crucial to posttranslationally 

modify nucleosomal histones for subsequent reorganization of the chromatin 

structure. Upon histone acetylation (histone 3 at K9 and K14, histone 4 at K16) as 

well as methylation (histone 3 at K4), RNA pol II is released from its promoter to start 

productive mRNA synthesis.  

The sequential steps of initiation, elongation, and termination during 

transcription are accompanied by different posttranslational modifications of a distinct 

C-terminal domain of the RNA pol II, the CTD. In humans the CTD, comprised of 52 

heptad repeats of Y1-S2-P3-T4-S5-P6-S7 residues, serves as a regulatory interaction 

platform for the various mRNA processing factors and thus directly couples 

transcription to subsequent mRNA maturation. Manipulation of the CTD by using 

mutant allels or deletions directly impinges on splicing, capping and polyadenylation, 

respectively (McCracken et al., 1997). Site-specific phosphorylation of serines within 

the CTD controls and promotes distinct phases of RNA polymerase action, 

resembling the so-called serine code (Fong and Bentley, 2001). While RNA pol II is 

mainly phosphorylated at serine S5 during transcription initiation, the serine S2 

phosphorylation serves as the predominant modification in the elongation phase and 

serine S7 is found in paused or terminating RNA pol II complexes. This code is 

established by CTD-associated kinases like P-TEFb (positive transcription elongation 

factor) with Cyclin-dependent kinase CDK9 and TFIIH/CDK7, respectively, and 

subsequently read by RNA processing factors and elongation supporting co-factors 

(Dahmus, 1996). For productive transcription initiation the TFIIH/CDK7 complex acts 
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as the major S5 kinase, while the P-TEFb/Cdk9 subunit inactivates the inhibitory DSIF 

and NELF complexes to stimulate RNA polymerase activity (Missra and Gilmour, 

2010). Upon RNA synthesis the nascent chain and the CTD S5 phosphorylation mark 

are recognized by the 5’-capping enzyme complex (CEC) to transfer a 7-

methylguanosine (m7G) cap to the emerging 5’ end of the mRNA. As the first mRNA 

processing step, 5’-capping is crucial for nuclear export, translation and stability as it 

prevents premature degradation by exonucleases (Anderson and Parker, 1998).  

Introduction Figure I: Co-transcriptional mRNA processing 

During distinct phases of the transcription cycle RNA polymerase II is phosphorylated at specific sites 
(yellow) in the C-terminal domain (CTD). The CTD serves as a platform to recruit specific mRNA 
processing complexes to the nascent pre-mRNA (red) in order to orchestrate 5’ mRNA capping by the 
capping enzyme complex (CEC, dark red), pre-mRNA splicing with excision of introns (black) by the 
spliceosome (SF= splicing factors, green) and finally 3’ cleavage with polyadenylation by cleavage 
stimulatory factor (CSF), polyadenylation specificity factor (CPSF) and the polyadenylate polymerase 
(PAP). (See text for more detail) 
 

After co-transcriptional 5’-capping the RNA pol II machinery undergoes the 

transition to elongation phase with concomitant S2 phosphorylation. As the majority of 

eukaryotic genes contain intervening non-coding sequences (so called introns) in 

their open reading frames (ORFs), these RNA segments have to be removed in a 

complex process called pre-mRNA splicing (Ruskin et al., 1984). The excision of 

intronic fragments with the concurrent ligation of coding sequences (exons) is 

catalyzed by an intricate macromolecular machinery of ribonucleoparticles, the 

spliceosome (detailed in chapter 2.3). The serine S2 phosphorylated RNA pol II CTD 

serves as a platform to recruit auxiliary splicing factors like ASF/SF2 or SC35, which 

facilitate the recognition of exon-intron boundaries and cis-acting regulatory elements 

to promote the accurate and dynamic spliceosomal assembly on nascent mRNA 

(Millhouse and Manley, 2005; Morris and Greenleaf, 2000; Lin et al., 2008). Once a 

splice site is defined, subunits of the spliceosome, so called snRNPs (small nuclear 

ribonucleoproteins), bind specifically to crucial RNA sequences to assemble the 
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catalytically active spliceosome in a highly coordinated manner. The 

transesterification reaction, which excises the intron and ligates coding exons, 

involves global rearrangements of RNA-RNA, RNA-protein and protein-protein 

interaction networks mediated by powerful enzymes like GTPases and RNA-

dependent helicases (Chang et al., 2013). After introns are removed and splicing 

reactions are completed, bound spliceosomes disassemble and the nascent mRNA 

undergoes its final co-transcriptional processing step, the polyadenylation. 

Downstream of the protein coding sequence most mRNAs contain a poly (A) signal 

sequence (5’AAUAAA-3’) together with a GU-rich stretch at the 3’ region, which is 

recognized by the polyadenylation machinery (Proudfoot, 2011). Again, RNA pol II 

CTD mediates the recruitment of RNA processing complexes and acts as a scaffold 

for the cleavage and polyadenylation specificity factor (CPSF) and the cleavage 

stimulatory factor (CSF). The emerging poly (A) signal sequence and the CTD S2 

phosphorylation recruit CPSF and CSF complexes, which induce polymerase 

pausing and cleavage of the transcript. After the mRNA is cleaved polyadenylate 

polymerase (PAP) supported by polyadenylated binding factor (PAB2) extends the 

free 3’ end with a polyadenosine tail (250-300 adenines in human cells, 70-80 in 

yeast (Elkon et al., 2013)). As final step of co-transcriptional mRNA processing the 

attachment of a poly (A) tail is a prerequisite for efficient nuclear export, mRNA 

stability and productive translation.  
 

 
Introduction Figure II: Interplay of the gene expression network  
In order to ensure accurate gene expression mRNA maturation is highly regulated at several layers. The 
coordination of cellular processes including transcription, RNA processing, mRNA export and 
surveillance is accomplished by a complex interwoven network of direct physical and functional 
interactions between RNA-directed molecular machineries (indicated by black arrows). (Adapted from 
Maniatis, T., and Reed, R. (2002))  
 
 Taken together, the tight connection between transcription and RNA 

processing highlights the importance of the different pre-mRNA maturation steps as 
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regulatory elements of eukaryotic gene expression. Distinct RNA binding complexes 

like spliceosomal subunits are recruited to the nascent transcript and catalyze 

reactions in a highly coordinated and dynamic manner. Although the molecular 

capping, splicing and adenylation machineries perform discrete functions during pre-

mRNA processing in vivo, their actions are interwoven and interdependent in an 

extensive RNA maturation network (Introduction Figure II) (Maniatis and Reed, 

2002). Accurate and faithful mRNA processing is essential to ensure proper gene 

expression and synthesis of functional proteins. Defects in pre-mRNA maturation, like 

truncated polyadenylation or defective splicing, entail mRNA degradation, impaired 

nuclear export and aberrant transcripts that encode misfolded or non-functional 

proteins. Dysregulation of mRNA processing and particularly splicing has a strong 

implication in tumorigenesis as it substantially alters cellular homeostasis and 

biochemical pathways which affect proliferation, cell differentiation and cell viability 

resembling hallmarks of human cancer (Venables, 2004; Liu and Cheng, 2013). 

 

2.2 Introducing pre-mRNA splicing 

Based on early studies in prokaryotes, mRNA was considered as a complementary 

template copy of genomic information. In 1977 gene expression studies on 

adenoviral mRNAs revealed intriguing differences between the viral genome 

sequences and its transcripts at late stages of infection (Berk and Sharp, 1977; Chow 

et al., 1977). The discovery of those sequence arrangements in RNA:DNA 

hybridization assays together with subsequent advances in mRNA biology 

revolutionized the view on gene structure, transcription and mRNA maturation 

(Witkowski, 1988).  

Most eukaryotic genes contain intervening non-coding sequences, so-called 

introns, which have to be removed after transcription by a process termed pre-mRNA 

splicing in order to obtain the mature and functional mRNA. Therefore, all eukaryotes 

evolved a highly conserved and sophisticated network of pre-mRNA splicing factors 

and enzymes to conduct this essential processing step (Ast, 2004).  

In the human genome splicing is crucial for over 92-94% of transcripts, as they 

contain exons separated by at least one intron. The average human transcript 

comprises 8.8 relatively short exons (ca. 120 nt), while introns with an average size 

of >5400 nt are rather long (Sakharkar et al., 2004). In contrast, in Saccharomyces 

cerevisiae only three percent of the genes carry introns (ca. 253) with only six 

transcripts containing two introns (Barrass and Beggs, 2003). Although the fission 

yeast Schizosaccharomyces pombe represents the intermediate genomic state with 

43% of intron-containing genes, both yeasts exhibit rather short introns with an 

average size of 40-75 nt (Ast, 2004). Despite the differences in splicing prevalence 

between lower eukaryotes like S. cerevisiae and mammals, which led to formulation 

of the exon- and intron-definition model (Robberson et al., 1990), the basic 
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biochemistry of pre-mRNA splicing is highly conserved. In a stepwise process the 

macromolecular spliceosome assembles on the pre-mRNA and recognizes crucial 

sequences within the pre-mRNA that determine the intron boundaries. The 

spliceosome machinery consists of an intricate network of distinct ribonucleoproteins 

(RNP) in complex with small nuclear RNA (snRNA), which guide and facilitate the 

transesterification reaction. Upon spliceosome activation in a cascade of major 

rearrangements, RNA-RNA, RNA-protein and protein-protein interactions are 

disrupted and re-assembled as novel intermediates to catalyze the intron excision 

with concomitant exon ligation. Based on the orchestrated activities of over 300 

proteins including kinases, helicases and ATPases, intertwined with pre-mRNA 

bound ribonucleoprotein particles, the human spliceosome is considered to be 

among the most complex macromolecular machines in the cell (Nilsen, 2003). 

 

2.3 Biochemistry of the splicing reaction 

After transcription the splicing machinery assembles on the nascent pre-mRNA and 

recognizes crucial sequences within the pre-mRNA that define the exon-intron 

boundaries as 5’ splice site (5’ss) and 3’ splice site (3’ss). In addition, the intronic 

sequence harbors the crucial adenosine residue embedded in the branch point 

sequence (BPS), which serves as the acceptor site during the splicing reaction. In 

metazoans an additional element with 10-12 pyrimidine bases, the polypyrimidine 

track (PPT), is located in between the BPS and the 3’ss. In contrast, a minor fraction 

of introns (ca. 1% of all human introns) that are spliced via the minor U12-dependent 

spliceosome lack the polypyrimidine track, while PPTs are generally absent in S. 

cerevisiae (Burge et al., 1998; Will and Lührmann, 2005).  

Introduction Figure III The pre-mRNA splicing reaction 

a) Schematic representation of conserved sequence elements in metazoan and budding yeast pre-
mRNAs, respectively. Consensus sequences of 5’ splice sites (5’ss), 3’ splice sites (3’ss), branch point 
sequences (BPS) and polypyrimidine track (PPT) are indicated. Bases abbreviations Y = pyrimidine, R = 
purine. b) The two transesterification steps of the splicing reaction. The branch point adenosine attacks 
the phosphodiester bond (p) at the 5’ss guanosine generating the lariat intermediate. Subsequently the 
liberated 3’ hydroxyl group of the 5’ exon reacts with the phosphodiester bond on the 3’ss resulting in 
the ligation of the two exons. (Adapted from Patel and Steitz (2003)).  
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The intron is excised in a two-step manner with two consecutive 

transesterification reactions (see Introduction Figure III). First, the 2’ hydroxyl group 

of the branch point adenosine performs a nucleophilic attack on the phosphodiester 

bond at the guanosine of the 5’ss. This liberates a 3’ hydroxyl group at the 5’ exon, 

while the 5’ end of the intron forms a lariat intermediate with the branch point. In the 

second step, the free 3’ hydroxyl group of the 5’ exon reacts with the phosphodiester 

bond on the 3’ss resulting in the ligation of the two exons, excision of the intron-lariat 

and completion of the splicing reaction.  

 

2.4 Constituents of the spliceosomal machinery 

The enzymatic excision of non-coding introns from pre-mRNA is performed by the 

multi-subunit ribozyme complex, the spliceosome (Collins and Guthrie, 2000). The 

subunits can be categorized into snRNP and associated non-snRNP protein 

complexes.  

The snRNPs are the major building blocks of the spliceosome and are 

characterized by the five uridine-rich small nuclear RNAs (U1, U2, U4, U5, U6) and 

their respective ribonucleoproteins. While each U1, U2 and U5 snRNA form distinct, 

solitary snRNPs, U4 and U6 snRNA share extensive base-paring forming the dimeric 

U4/U6 snRNP complex (Bringmann et al., 1984; Nilsen, 1994). All non-U6 snRNAs 

are transcribed by RNA pol II and exported by the PHAX/CBC (phosphorylated 

adaptor of export protein / cap binding complex) to the cytoplasm. During cytoplasmic 

maturation snRNAs undergo modifications like 3’ end processing and the addition of 

the characteristic 2,2,7-trimethylguanosine cap (3mG) at the 5’ end. Each snRNA 

contains a conserved sequence motif, the Sm site, which is recognized and 

encompassed by the Sm proteins (SmE, SmG, SmD3, SmB, SmD1, SmD2, SmF) 

that form a heteroheptameric ring around the snRNA during biogenesis (Seraphin, 

1995; Urlaub et al., 2001). Both the Sm ring assembly and 3mG capping are crucial 

for nuclear re-import and incorporation into functional snRNP in Cajal bodies (Will 

and Lührmann, 2001; Fischer et al., 2011). In contrast, U6 snRNA derives from RNA 

pol III transcription and matures entirely within the nucleus. Although the U6 snRNA 

lacks a canonical Sm-binding motif, Sm-like (Lsm2-8) proteins analogous to the Sm 

proteins are recruited to an uridine-rich sequence at the 3’ end instead. Beside the 

Lsm ring the U6 snRNA carries an unique γ-monomethyl guanosine 5’-cap and 

undergoes extensive RNA modifications like 3’ pseudouridylation and 2’-O-

methylation (Karijolich and Yu, 2010). These maturation steps orchestrate the 

recruitment of snRNA-specific proteins, determine subnuclear localization to the 

nucleolus or Cajal bodies and mediate U6 snRNP recycling by SART3/p110 

(Mroczek and Dziembowski, 2013). 

During spliceosome assembly the 5’ss is recognized by the U1 snRNP which 

contains a rather small number of U1 specific proteins, namely U1-70K, U1-A and 
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U1-C in addition to the Sm ring. The auxiliary factors SF1/BBP in cooperation with 

U2AF65 and U2AF35 recruit the U2 snRNP to the branch point upstream of the 3’ss. 

The stable association to the BPS is supported by more than twelve U2 snRNP 

proteins including A’, B’’, as well as the SF3a and SF3b complexes. In particular, 

SF3b155 together with SF3b14/p14 play crucial roles as they physically interact with 

the BPS and ensure proper formation of the prespliceosomal complex A (see chapter 

2.5).  

 The U5 snRNP comprises eight U5 proteins including pivotal enzymes like 

the DEAD box helicase hPrp28, the GTPase Snu114, the DExD/H-box protein 

hBRR2 and the multidomain protein hPRP8.  

Introduction Figure IV: The human spliceosomal snRNPs 

Composition of the major snRNP complexes depicting the uridine-rich snRNAs with respective 
secondary structures and the associated snRNP specific proteins. (Adapted from Will and Lührmann 
(2011)). 
 

In contrast to the singular U1 and U2 snRNPs, complementary domains 

within the U4 and U6 snRNA allow RNA base-paring which creates the platform for 

the dimeric U4/U6 snRNP complex associated with Sm, LSm, as well as snRNP 

specific proteins hPrp3, hPrp4, hPrp31, CypH and 15.5K (Schneider et al., 2002). 

The catalytic core subunit of the spliceosome is formed when the preassembled U5 

snRNP joins the U4/U6 snRNP and thereby generates the U4/U6.U5 tri-snRNP 

complex. The tri-snRNP formation is accompanied by the recruitment of three 

additional complex-specific proteins 27K, hSad1 and hSnu66, while the U5 factor 

52K dissociates during this transition (Gottschalk et al., 1999). 

In addition to the different U1, U2, and U4/U6.U5 tri-snRNP complexes the 

spliceosomal activity is supported by a large number of non-snRNA containing RNPs. 
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The major non-snRNP complex which associates with the spliceosome during the 

formation of the precatalytic complex B is the PRP19/CDC5L or nineteen complex 

(NTC) in S. cerevisiae (Tarn and Steitz, 1994; Ajuh et al., 2000). The PRP19/CDC5L 

complex consists of at least seven proteins; while the central proteins hPRP19 

(Prp19), CDC5L (Cef1), PRL1 (Prp46) and SPF27 (Snt309) are conserved, the 

subunits human AD002, CTNNBL1 (β-catenin-like 1) and HSP73 are not found in 

yeast. PRP19/CDC5L is crucial for pre-mRNA splicing in human cells and 

immunodepletion of this complex interferes with the first catalytic step in HeLa 

nuclear extracts (Makarova et al., 2004). After the U4/U5.U6 tri-snRNP joins the 

prespliceosomal complex A, PRP19/CDC5L mediates the dissociation of the U4 

snRNP, which in turn allows the stable association of the U5 and U6 snRNPs with 

the spliceosome on the pre-mRNA during catalysis (Chan et al., 2003). Interestingly, 

the central Prp19 protein resembles an active ubiquitin E3 ligase comprising WD40 

and U-box domains (Ohi et al., 2003; Vander Kooi et al., 2010), which mediates the 

ubiquitylation of hPrp3 and its association with hPrp8 to further stabilize the 

U4/U6.U5 tri-snRNP (Song et al., 2010). After precatalytic complex B formation, 

PRP19/CDC5L stays with the spliceosome until the splicing reaction is completed 

and the mRNA-bound post-spliceosomal complex disassembles with the release of 

the lariat intermediate. 

In addition to the large PRP19/CDC5L complex, a large number of splicing 

factors associate only transiently with the spliceosome to precisely mediate 

rearrangements or support different steps during the transesterification reaction 

(Wahl et al., 2009). During spliceosomal activation RNA-RNA and RNA-protein 

interaction networks undergo extensive rearrangements that are facilitated by the 

coordinated action of various enzymes. The tri-snRNP itself contains the GTPase 

hSnu114, DExD/H-box helicases hBrr2 and hPrp28, and multi-domain protein hPrp8, 

which are considered to act as the “molecular motor” (Häcker et al., 2008) during 

U4/U6 unwinding for spliceosome activation. However, beside the activity of the tri-

snRNP components, additional ATP-dependent helicases hPrp2, hPrp5, 

Sub2/UAP56, hPrp16, hPrp22, hPrp43 are crucial for individual steps during the 

splicing cycle (see Introduction Figure V). For example, the non-snRNP helicase, 

hPrp2, supports the U4/U6 unwinding activity of hBrr2 and, moreover, converts the 

precatalytic complex B to an activated spliceosome which then catalyzes the first 

splicing reaction step. On the other hand, other DExD/H-box proteins hPrp5 and 

Sub2/UAP56 mediate the stable association of the U2 snRNP at the BPS (Chang et 

al., 2013).  

Another group of non-snRNP proteins, the serine/arginine (SR)-rich proteins 

and hnRNP (heterogeneous nuclear ribonucleoproteins), are RNA binding factors 

with regulatory functions. They are characterized by one to two RNA binding 

modules, RNA recognition motifs (RRMs) or hnRNP K-homology (KH) domains, 
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accompanied by their respective functional domains (Manley and Tacke, 1996; 

Krecic and Swanson, 1999); in case of SR proteins the RS-domain and in hnRNPs 

the more divergent RGG boxes, glycine-, acidic- or proline rich domains. Proteins of 

these two families are crucial regulators of alternative splicing, as they influence 

splice site recognition and usage by fostering the recruitment of the splicing 

machinery to the respective splice site or repress assembly, respectively (see 

chapter 2.6). 

 

2.5 The splicing cycle 

Due to the intricate and highly dynamic nature of the splicing cycle, the splicing 

machinery follows basic principles to allow profound structural and compositional 

rearrangements for accurate pre-mRNA processing. Firstly, in order to allow high 

flexibility of the snRNP complexes, the majority of interactions within the spliceosome 

network show rather low binding affinity, which is compensated by a strong avidity 

formed by the combination of multiple interaction surfaces. Secondly, the correct 

timing during the coordinated assembly and dissociation of spliceosomal complexes 

ensures high fidelity. Each crucial step during splicing activation is under the control 

of ATP-dependent DExD/H-box helicases like hPrp2 or hBrr2 to avoid pre-mature 

unwinding of snRNAs, misaligned base pairing or defective splicing reactions. 

Thirdly, the spliceosome ensures correct recognition of the reactive sites within the 

pre-mRNA like the BPS, and 5’ss and 3’ss at multiple check points. This is important, 

due to the highly divergent recognition sequences at the 5’ss in metazoan introns, 

while in yeast splice sites are almost invariant. Therefore, in addition to auxiliary 

splice site recognition factors like the SR protein family, the 5’ss is contacted by the 

U1 snRNA as well as the U6 and the U5 snRNP to ensure faithful and precise pre-

mRNA splicing. However, the underlying biochemical principles of the splicing 

reaction are highly conserved from yeast to human and summarized in the following 

section (see Introduction Figure V). 

In the initial step of the splicing cycle the U1 snRNP interacts with the 5’ 

splice site forming the commitment complex (complex E) supported by RNA-binding 

serine-arginine-rich proteins. Here, short motifs in the U1 snRNA base pair with the 

splice donor site at the exon-intron boundary. Next, the branch point sequence is 

bound and marked by SF1/BBP accompanied by U2AF35 and U2AF65, which 

recognize the polypyrimidine track (PPT) and the AG motif of the 3’ss. The 

commitment complex is converted to prespliceosomal complex A by loading of the 

U2 snRNP. The DExD/H-box helicases UAP56 and hPrp5 mediate the stable 

interaction and snRNA-mRNA base pairing of the U2 snRNP with the BPS. 

Therefore, the SF1/BBP is replaced from the branch point adenosine by the p14 

subunit of the SF3b complex. The following recruitment and incorporation of the 

U4/U6.U5 tri-snRNP gives rise to the pre-catalytic spliceosome (complex B). The U5 
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DExD/H-box helicase hPrp28 facilitates the displacement of the U1 snRNP allowing 

the later hybridization of the U6 snRNA with the intronic 5’ss. During this catalytic 

activation the activated spliceosome (complex Bact) undergoes profound 

conformational changes, in which the global RNA-RNA network is rearranged and 

protein interactions are disrupted and newly established. This conversion is triggered 

by hPrp8 and the DExD/H-box helicase hBrr2, which unwinds the tightly 

interconnected U4/U6 snRNA dimer.  
 

 
Introduction Figure V: The stepwise assembly of the spliceosome during splicing cycles 

The snRNPs (colored circles) recognize crucial sequences within the intron-containing pre-mRNA and 
mediate the assembly of the catalytically active spliceosome on in a stepwise fashion. During 
spliceosome formation and activation major rearrangements of the RNA and protein interaction network 
are catalyzed by GTPases, DExD/H-box helicases and ATPases as indicated at different transition 
steps. For intelligibility, transient and auxiliary non-snRNP proteins like the Prp19 complex are not 
included. See text for more details. (Adapted from Will and Lührmann (2011)). 
 
 The free U6 snRNA is then able to form extensive base pairing with the U2 

snRNA and the pre-mRNA’s 5’ss at the same time, which arranges the BPS 

adenosine into close proximity with the splice site. The GTPase hSnu114 further 

supports the dissociation of the U1 snRNP and U4 snRNA from the spliceosome 

together with several tri-snRNP-associated proteins like hSnu66 and hPrp38. Another 

ATP-dependent DExD/H-box helicase hPrp2 (DHX16) is crucial for further activation 



Introduction 

 16 

and transition from the Bact to the catalytically activated spliceosome (B* complex) by 

a jet unknown mechanism. Stabilized by the interplay of U6, U2, and U5 snRNAs, the 

catalytically activated spliceosome catalyzes the first transesterification reaction, in 

which the BPS adenosine attacks the 5’ss and forms the lariat intermediate. In the 

subsequent second reaction step the exon ligation and excision on the lariat by the 

catalytic complex C is fostered by complementary action of the hPrp16 and hPrp22 

helicases. Finally, the spliced mRNA is released and the post-spliceosomal complex 

disassembles with the help of hPrp43 to allow recycling of the remaining U5, U6 and 

U2 snRNPs for another splicing cycle, while the intron-lariat is degraded. 

The human transcriptome comprises many pre-mRNAs that are characterized 

by multiple long introns (with more than several hundreds of nt) separating rather 

short exons with 100-150 nt. As these distances challenge the coordinated 

spliceosomal assembly, mammalian cells have evolved an alternative process in 

addition to the linear 5’ to 3’ assembly (Robberson et al., 1990). During the so-called 

exon-definition, the early complex (ED-E complex) is formed by recruiting the U1 

snRNP, which in turn facilitates the association of the U2 auxiliary factors U2AF with 

SF1/BBP to the 5’ end of the same exon. In contrast to intron-definition here, the 3’ss 

U2AF/SF1 and the later U2 snRNP (ED-A complex), respectively, resemble a 

functional unit with the cross-exon downstream 5’ss U1 snRNP instead of the 

upstream cross-intron 5’ss (Schellenberg et al., 2008). The U4/U6.U5 tri-snRNP 

associates with the ED-A complex which then can convert into a B-like spliceosomal 

complex (Schneider et al., 2010). Thus, splicing via exon-definition uncouples the 

early spliceosome assembly from protracted intron transcription and allows shuffling 

of exons by mutual exclusion or inclusion in a process called alternative splicing 

(Bonnal et al., 2008; Sharma et al., 2005).  

 

2.6 Alternative splicing 

The initial recognition of the 5’ss and the BPS / 3’ss by the recruitment of the U1 and 

U2 snRNPs to form a pre-spliceosomal complex determines the efficiency of pre-

mRNA splicing. In metazoans an additional layer of post-transcriptional expression 

regulation utilizes differential splice site recognition to extend the repertoire of the 

human genome by generating multiple mRNA isoforms from a single gene in a 

process called alternative splicing (AS). While alternative splicing is a rare event in 

lower eukaryotes like S. cerevisiae (three known AS genes), in humans over 95% of 

intron-containing transcripts undergo alternative splicing, giving rise to multiple 

mRNA isoforms (Pan et al., 2008). The prevalence of AS correlates with the high 

degree of degenerated splice site sequences found in metazoan genomes (Ast, 

2004). Exons containing strong splice sites, which resemble the consensus 

sequence, stably base pair with the corresponding snRNA and are efficiently 

recognized by U1 snRNP and U2AF complexes. In contrast, divergent non-canonical 
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splice site sequences weaken exon recognition and subsequent spliceosomal 

assembly. In addition to the intrinsic splice site strength, metazoan pre-mRNAs 

contain cis-regulatory sequences, which can negatively or positively affect splice site 

recognition and usage. Dependent on their localization, these elements are termed 

exonic or intronic splicing enhancers and silencers, respectively.  
 

Introduction Figure VI: Different types of alternative splicing 

Basic types of alternative splicing can generate various mRNA isoforms including the sequential 
incorporation of constitutive exons, skipping or retention of individual exon cassettes (exon exclusion or 
inclusion), retention of distinct introns or usage of alternative 5’ or 3’ splice sites. 
 
 They serve as specific recognition motifs for RNA binding factors that either 

facilitate recruitment of snRNP subunits or repress spliceosomal assembly. Splicing 

enhancers attract positive regulators of the serine/arginine (SR)-rich protein family 

(SR protein) like SC35, ASF/SF2 or SRp20 (Shepard and Hertel, 2009). In the current 

model, the RS-domain mediates the direct physical interaction with spliceosomal 

subunits and binds other RS-domain containing factors (like U2AF35/U2AF65) to 

support splice site usage (Zhou and Fu, 2013). In contrast, the antagonistic group of 

heterogeneous nuclear ribonucleoproteins (hnRNP) associates with pre-mRNA via 

splicing silencer motifs where they interfere with the spliceosomal assembly at the 

respective splice site (Krecic and Swanson, 1999). Several members of this 

multifaceted family of RNA binding proteins including hnRNP A1 or PTBP1 (hnRNP1) 

can repress the engagement or progression of early prespliceosomal assemblies at 

respective exons and thereby avoid splice site usage.  

Another layer of alternative splicing regulation modulates the activity of SR 

proteins and hnRNPs in human cells. Regulatory splicing factors are under tight 

control of SR-kinases, e.g. CLK1-4, SRPK1-2, AKT and counteracting phosphatases 

(PP1), which affect subnuclear distribution and recruitment to active splice sites (Ngo 

et al., 2005). Furthermore, many SR and hnRNP proteins are expressed in a tissue-

specific manner (Ellis et al., 2012; Grosso et al., 2008) or upon certain stimuli 

(Paronetto et al., 2011; Li et al., 2006) and thereby switch between mRNA splice 

variants that express protein isoforms tailored to the individual needs of differentiated 

cell types. In the cellular context, alternative splicing regulation is an even more 

complex process. Considering the tight association between the transcription 



Introduction 

 18 

machinery and pre-mRNA splicing, global alternative splicing patterns are 

significantly affected by parameters like promoter strength, RNA polymerase 

processivity and pausing as well as posttranslational histone modifications (Kornblihtt 

et al., 2013; Luco et al., 2011). In summary, alternative splicing is a complex and 

highly regulated process, in which the interplay between stimulatory splicing 

enhancers and negative silencers, spliceosomal activity and fidelity together with the 

intrinsic splice site strength determine the prevalent fate of each individual splicing 

event.   
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2.7 Posttranslational modification by ubiquitin  

Posttranslational modifications serve as regulatory switches to alter the activity, 

stability, localization or function of proteins and constitute crucial control mechanisms 

in virtually all biochemical and cellular pathways. In addition to the attachment of 

small chemical substituents, e.g. during phosphorylation, acetylation, methylation or 

glycosylation, proteins can be modified by the covalent conjugation to another 

polypeptide.  

Initially, a small, highly conserved protein called ubiquitin was identified serving 

as a molecular tag to target protein substrates for degradation via the 26S 

proteasome (Ciechanover et al., 1984; Hough et al., 1986; Wilkinson et al., 1980; 

Goldstein et al., 1975). Later, additional functions of ubiquitin were elucidated, 

showing that it is implicated in various cellular pathways including endocytosis, cell 

signaling, DNA replication, and repair (Strous et al., 1996; Hoege et al., 2002; 

Jentsch et al., 1987; Kölling and Hollenberg, 1994; Ea et al., 2006; Chen and Sun, 

2009). The covalent attachment requires an enzymatic cascade to activate, transfer 

and conjugate ubiquitin specifically to a lysine residue of its substrate (Jentsch, 

1992). Synthesized as an inactive precursor, ubiquitin has to be processed by 

ubiquitin C-terminal hydrolases (UCH) to liberate the free monomeric form (Pickart 

and Rose, 1985). In an ATP-dependent step, the E1 ubiquitin activating enzyme 

adenylates the C-terminus of ubiquitin in order to form a highly reactive E1~ubiquitin 

thioester bond in a subsequent reaction (Ciechanover et al., 1982). In the next step of 

the cascade, ubiquitin is transferred to a cysteine in the active center of the E2 

conjugating enzyme. The loaded E2 enzyme associates and cooperates with E3 

ubiquitin ligases, which convey substrate specificity. While RING E3 ligases mediate 

the direct ubiquitin transfer by spatially arranging the acceptor substrate in close 

proximity to the E2 enzyme, ligases of the HECT-family form an active intermediate 

complex in which the ubiquitin moiety is transiently forwarded to a reactive cysteine 

within the HECT domain before it is finally conjugated to the targeted protein 

(Hershko et al., 1983; Huibregtse et al., 1995). Here, the C-terminal carboxyl group at 

the double glycine motif of ubiquitin forms an isopeptide bond with an ε-amino group 

of a lysine residue on the substrate (Hershko et al., 1986). Through this enzymatic 

reaction, targeted proteins can be modified by a single ubiquitin moiety 

(monoubiquitylation) or via multiple separate ubiquitylation steps at different lysine 

positions (poly-monoubiquitylation). Furthermore, the conjugated ubiquitin molecule 

itself can serve as a platform for ubiquitylation forming an ubiquitin chain 

(polyubiquitylation). As ubiquitin contains several accessible lysine residues, they can 

be utilized by the conjugation machinery to attach multiple ubiquitin moieties via their 

respective C-terminal carboxyl group (Welchman et al., 2005). Dependent on the 

lysine position on the acceptor ubiquitin several types of linkages were identified and 

classified as K48, K63, K11, K33, K6, K27 and K29 polyubiquitylation chains while 
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mixed-chains were described in vivo as well (Nakasone et al., 2013; Xu and Peng, 

2006; Crosas et al., 2006). Upon ubiquitin attachment to the targeted protein the 

ubiquitylation code is read by ubiquitin binding factors, which harbor ubiquitin binding 

domains (UBD) and recognize the unique chain topology, binding affinity or avidity in 

order to determine the fate of the substrate. In contrast to proteins decorated with 

K48-linked chains that are subjected to rapid protein degradation via the ubiquitin 

proteasome system (UPS), monoubiquitylation or K63-linked ubiquitin chains are 

implicated in regulatory functions during protein sorting, cell cycle control, 

endocytosis, signaling transduction, transcription, replication and DNA repair 

(Komander and Rape, 2012). The UBDs can be grouped according to their structural 

binding properties and come in different flavors, e.g. UBA (ubiquitin associated 

domain), ubiquitin interaction motifs (UIM), or Cue domains (named after Cue2). The 

vast majority of UBDs associate with ubiquitin via the hydrophobic area around I44 

supported by L8 and V70 on sheets β3β4 (Dikic et al., 2009). In addition to canonical 

UBDs, other variously shaped domains have evolved like the Jab/MPN domain found 

in the U5 snRNP protein hPrp8 (Husnjak and Dikic, 2012). Thus, the ubiquitin system 

represents a versatile regulatory machinery that controls protein activity at various 

stages and, with its reversibility due to the action of de-ubiquitylating enzymes (DUB) 

(Clague et al., 2012), it enables cells to adapt to various stimuli, stresses and to 

maintain cellular homeostasis. 

 

2.8 Ubiquitin and ubiquitin-like proteins 

Ubiquitin is a small globular protein of 76 AA that is highly conserved from yeast to 

human. In recent years, additional so called ubiquitin-like proteins (UBL) were 

identified, which share the characteristic β-grasp fold, but show only low amino acid 

identity with ubiquitin (see Introduction Table). Most members of this UBL family 

contain a C-terminal double glycine motif and utilize an analogous conjugation 

machinery to covalently attach to their respective substrates like ubiquitin (Jentsch 

and Pyrowolakis, 2000). Similar to the ubiquitylation system, the small ubiquitin 

related modifier SUMO (Smt3 in S. cerevisiae) is conjugated to targeted lysines via 

an enzymatic cascade consisting of the SUMO E1 SAE1/SAE2 (AOS1/Uba2) and the 

E2 Ubc9 supported by various SUMO E3 ligases like PIAS or RanBP2 (Flotho and 

Melchior, 2013). SUMOylation can be reverted by the action of SUMO-specific 

proteases (SENP1-7 in humans, Ulp1-2 in yeast) that cleave SUMO moieties from 

the substrate (Mukhopadhyay and Dasso, 2007). Posttranslational modification with 

SUMO has been implicated in various cellular pathways including transcription, 

chromatin remodeling, DNA repair, nucleo-cytoplasmic transport, mitosis, and stress 

response (Müller et al., 2001). Similar to the non-covalent interaction between 

ubiquitin and UBDs, conjugated SUMO can mediate physical interactions by binding 

to linear SUMO interaction motifs (SIM) (Hay, 2013). Interestingly, beside the direct 
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competition for critical lysines on a substrate to modulate its activity, like in the case 

of PCNA (K164) (Hoege et al., 2002), ubiquitylation and SUMOylation can also act 

synergistically (Bergink and Jentsch, 2009). SUMO-targeted ubiquitin ligases 

(STUbLs) like the Ubiquitin E3 ligase RNF4 (Slx5/Slx8 in yeast) harbor several SIMs, 

which are essential for the recognition and subsequent ubiquitylation and degradation 

of SUMOylated substrates, e.g. PML or PARP-1 (Tatham et al., 2008). Thus, the 

SUMOylation and ubiquitylation systems do not represent two separate branches, 

but rather a tightly interconnected network for protein regulation with large functional 

overlaps (Denuc and Marfany, 2010).  

 
Ubiquitin-like protein Identity to 

ubiquitin (%) Substrate(s) Attributed functions H. sapiens S. cerevisiae 

UBL5 / mHub1 Hub1 22 Unknown Pre-mRNA splicing

SUMO1 Smt3 18
Many (e.g. PCNA, STAF65γ, 

TFII-I, PML, XRCC1, hSnu66)

DNA damage repair, 
transcriptional regulation, 
protein targeting, stress 

response 

SUMO2/3 # - 16
Many (e.g. Aurora-B, PML, 

Topoisomerase II, C/EBPβ1)

Mitosis, protein targeting, 
transcriptional regulation,  

stress response

URM1 URM1 12 Ahp1, tRNA
Oxidative stress response, 

tRNA modification
NEDD8 Rub1 58 Cullins, p53, MDM2 Regulation of Cullin-E3s

ISG15 / UCRP * - 29 / 37
JAK1, STAT1, ERK1/2, 

PLCγ1, serpin 2a
Immune response,  
signal transduction

FAT10 * - 29 / 36 p62/SQSTM1, p53
Immune response, cell 

cycle, protein degradation
FUB1 - 37 Bcl-G, TCR-α-like protein T-cell activation

LC3 Atg8 10
Membrane lipids 

(Phosphatidylethanolamine)
Autophagy

ATG12 Atg12 17 Atg5 Autophagy

Introduction Table: Ubiquitin-like proteins 

* ISG15 and FAT10 comprise two interconnected ubiquitin-like domains. # SUMO 2 and SUMO 3 share 
95% identity. (Modified from Welchman et al., (2005)). 
 

Another ubiquitin-like protein, Rub1 (NEDD8 in metazoans, Neural precursor 

cell expressed, developmentally down-regulated 8), shows the highest sequence 

similarity with ubiquitin and neddylation requires the action of specific E1, E2 and E3 

enzymes (Liakopoulos et al., 1998). After C-terminal processing of the NEDD8 

precursor by NEDP1 or UCHL3 its activation is catalyzed by the heterodimeric E1 

enzyme APPBP1 (NAE1) / UBA3. The E2 conjugating enzyme Ubc12 and Ube2F in 

concert with several E3 ligases like Rbx1 / Dcn1, Mdm2 or c-Cbl then transfer 

NEDD8 moieties to lysine residues of specific substrates (Rabut and Peter, 2008). 

The covalent conjugation can be reversed by NEDD8 isopeptidases in a process 

termed deneddylation, which is catalyzed by the CSN5 subunit of the COP9 

signalosome (CSN) (Cope and Deshaies, 2003). In contrast to ubiquitin and SUMO 

the diversity of NEDD8 substrates is rather limited. Rub1 / NEDD8 was shown to 

have regulatory functions by modifying the different cullin subunits of Skp1/Cullin/F-

box (SCF) E3 ligases (Liakopoulos et al., 1998). Repetitive cycles of neddylation and 
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deneddylation are crucial for the stability and activity of cullin-based ubiquitin ligases 

(Bosu and Kipreos, 2008).  

Ubiquitin-like proteins of the ATG family, Atg8 (alias MAP1LC3A-C in 

humans) and Atg12, play pivotal roles in the autophagy pathway. During this 

catabolic process, eukaryotic cells induce the formation of autophagosomal vesicles, 

which engulf proteins, aggregates or damaged organelles, and subject them to 

lysosomal degradation (Eskelinen, 2005). Interestingly, Atg8 and Atg12 share the 

same E1 activating enzyme Atg7, but in subsequent reactions Atg12 is conjugated to 

Atg5 via the E2 Atg10 in order to be incorporated in the multimeric Atg12-Atg5-Atg16 

complex that is crucial for autophagosomal membrane formation (Geng and Klionsky, 

2008). The other autophagy-related UBL, Atg8, undergoes a particularly interesting 

conjugation pathway, as it is covalently attached to the autophagosomal membrane 

lipid phosphatidylethanolamine, catalyzed by the E2 Atg3 and Atg12-Atg5-Atg16 

serving as the Atg8 E3 ligase (Shpilka et al., 2011). Lipidated Atg8 plays a dual role 

in autophagy; firstly, it stimulates autophagosomal membrane formation and 

expansion and secondly, Atg8 attracts and tethers adaptor proteins like 

p62/SQSTM1 or NBR1 with their respective cargo to the inner leaflet of the 

autophagosomal vesicle for subsequent degradation (Waters et al., 2009; Pankiv et 

al., 2007). While there is only a single Atg8 variant in S. cerevisiae, the human 

genome encodes seven Atg8 paralogs including ubiquitin-like proteins of the LC3 

group (microtubule-associated protein 1 light chain 3, MAP1LC3A-C), the GABARAP 

and GABARAPL1 proteins (γ-amino- butyric acid receptor-associated proteins) and 

GATE-16 (Golgi-associated ATPase enhancer of 16 kDa or GABARAPL2). Due to 

structural similarities, members of the human Atg8 family share multiple interaction 

partners with overlapping functions and thus are functionally closely interconnected 

within the autophagy network (Behrends et al., 2010).  

In contrast to the abovementioned UBLs, the molecular conjugation 

machinery and cellular function of other ubiquitin-like proteins remains poorly 

understood. Although the enzymatic cascade for ISG15 (Interferon stimulated gene 

15) with UbeL1 (E1), UbcH8 (E2), and Herc5 or EFP as E3 ligases is identified, the 

exact molecular mechanism of its action is still unclear (Sgorbissa and Brancolini, 

2012). Upon immunostimulatory endotoxins or interferons, ISG15 is highly induced in 

human cells, which triggers antiviral signaling events like JAK-STAT activation and 

ISGylation of viral and host cell proteins (Malakhov et al., 2003; Durfee et al., 2010). 

Among the ISG15 substrates, several enzymes of the ubiquitin conjugation 

machinery like Ubc13, EFP and UbcH6 were identified for which ISGylation is 

thought to negatively regulate their activity in order to modulate ubiquitin-dependent 

pathways during infection (Zhang and Zhang, 2011).  

Like ISG15 another UBL, FAT10, consists of two ubiquitin-like domains with a 

short linker region and is involved in the human immune defense system as well (Dye 
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and Schulman, 2007). Cells treated with interferon γ or tumor necrosis factor α 

activate FAT10 expression and its conjugation machinery with the E1 enzyme Uba6 

and the E2 USE1. During the immune response FAT10 has been implicated in 

transcriptional regulation via p53, NFκB signaling and the degradation of viral 

substrates serving as an alternative molecular tag for proteasomal degradation 

(Aichem et al., 2012). 

Based on in silico analysis, structural and sequencing data elucidated a close 

relationship between the prokaryotic sulfur transfer system and the eukaryotic 

ubiquitin/ubiquitin-like conjugation machinery. In bacteria, MoaD and ThiS proteins 

are crucial factors for the thiamine and molybdopterin synthesis (Chowdhury et al., 

2012) and share the characteristic ubiquitin-like β-grasp fold and C-terminal 

activation step (Pedrioli et al., 2008). Here, the ubiquitin related modifier 1 (Urm1) 

might represent the evolutionary link between the sulfur carrier function and ubiquitin-

like protein modification (Petroski et al., 2011). In eukaryotes Urm1 is adenylated by 

its E1 enzyme Uba4, which subsequently catalyzes the sulfur transfer to Urm1’s C-

terminus via its rhodanese-like domain with Nfs1 serving as a sulfur donor (Petroski 

et al., 2011). After the formation of this thiocarboxylate linkage with Uba4, Urm1 

plays a crucial role in the thiolation of several tRNAs at the wobble position U34 

(Leidel et al., 2009). In addition to its function in tRNA modification, Urm1 can utilize 

an alternative conjugation pathway in order to be conjugated to proteins (Furukawa et 

al., 2000; Wang et al., 2011). Oxidative cellular stress up-regulates the Urm1 

conjugation machinery including peroxiredoxin Ahp1, MOCS3 (Uba4 in yeast), the 

thiouridylases CTU1 and CTU2 (Ncs6 and Ncs2 in S. cerevisiae) and specifically 

induces additional urmylation substrates like the DUBs USP15, USP47, and the 

nucleo-cytoplasmic shuttling factor CAS (van der Veen et al., 2011). As oxidative 

stress affects both thiolation of tRNAs and protein urmylation, further investigation 

will be necessary to elucidate the interplay of Urm1-dependent pathways and the 

cellular function of the Urm1 modification. 

 

2.9 The ubiquitin-like protein Hub1 

Among the ubiquitin-like protein family Hub1 (homologous to ubiquitin 1, alias UBL5 

or Beacon in metazoans) represents a special member, as it shares common 

features of UBLs, but it is not conjugated like canonical modifiers. Covalent 

conjugation of an UBL to a substrate’s target residue is ATP-dependent, involves an 

enzyme cascade, and usually requires a free di-glycine motif at the C-terminus. Hub1 

shares only 22% sequence identity with ubiquitin, but is highly conserved from yeast 

to human (64.4%, 80.8% from C. elegans to H. sapiens) (Friedmann et al., 2001). 

Although structurally very similar to ubiquitin (Ramelot et al., 2003; McNally et al., 

2003), Hub1 does not function as a covalent modifier as it lacks the protruding C-

terminal tail as well as the characteristic double glycine motif (Jentsch and 
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Pyrowolakis, 2000). Comprehensive studies affirmed that Hub1 is not conjugated, but 

binds proteins only non-covalently, and independently of ATP or the double tyrosine 

motif (Luders et al., 2003; Yashiroda and Tanaka, 2004).  

Introduction Figure VII: Human Hub1 among other ubiquitin-like proteins 

Structural ribbon representations of Hub1 (this study, (McNally et al., 2003)), human ubiquitin (1UBQ), 
SUMO1 (2ASQ) and NEDD8 (2KO3) (upper panel, respective PDB codes in brackets). Protein 
sequence alignment of HUB1 with ubiquitin, SUMO1 (AA21-97) and NEDD8 from H. sapiens. The 
scissors symbol indicates the processing site after the di-glycine motif in ubiquitin, NEDD8 and SUMO1. 
Hub1 shares the compact ubiquitin-like fold, but lacks the typical C-terminal extension and the di-glycine 
motif of conventional ubiquitin-like proteins. 
 

Recently, yeast Hub1 was shown to interact with the spliceosomal protein 

Snu66, a protein of the U4/U6.U5 tri-snRNP complex (Mishra et al., 2011; Wilkinson 

et al., 2004). In S. cerevisiae, Hub1 is not essential for viability and is apparently also 

not required for general splicing as judged by splicing-sensitive microarray assays 

(Mishra et al., 2011). Intriguingly, Hub1 affects splicing directly through non-covalent 

interactions and hub1Δ cells fail to promote alternative splicing of SRC1, which is one 

of the rare cases of S. cerevisiae genes for which alternative splicing has been 

reported (Mishra et al., 2011). Abolishing Hub1-Snu66 interaction by mutation affects 

SRC1 alternative splicing as well, suggesting that binding of Hub1 to Snu66 is critical 

for Hub1 function in S. cerevisiae. Since SRC1 is also not essential for viability, it 

seems possible that the function of Hub1 in S. cerevisiae is restricted to SRC1. By 

contrast, in S. pombe, in which splicing is much more prevalent than in S. cerevisiae, 

Hub1 affects splicing of several pre-mRNAs and is essential for viability. 

In spite of these detailed findings, much less is known about Hub1 from higher 

eukaryotes. Human Hub1 appears to be exported from the nucleus upon hypo-osmic 

shock (Hatanaka et al., 2006), and is known to bind certain protein kinases (Kantham 

et al., 2003). Genetic analyses have correlated HUB1 gene expression and single 

nucleotide polymorphisms with predisposition to obesity, diabetes and other factors 

of the metabolic syndrome (Bozaoglu et al., 2006; Jowett et al., 2004). Other studies 

postulate a regulatory role in the hypothalamus and in the secretion of corticosterone 

and cortisol from cultured zona fasciculata/reticularis cells, respectively (Ziolkowska 

et al., 2004; Brailoiu et al., 2003). In proteomic approaches using high-throughput 

mass spectrometry, Hub1 has been detected in purified, in vitro assembled human 

spliceosomes (Deckert et al., 2006) and reported to meet Cajal bodies as well (Švéda 
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et al., 2013), but Hub1’s function remained unexplored. In the nematode C. elegans, 

Hub1 was identified in a genetic screen for genes implicated in the unfolded protein 

response in mitochondria (UPRmt) (Benedetti et al., 2006). Moreover, co-

immunoprecipitation experiments from cell extracts suggested that C. elegans and 

mammalian Hub1 associate with the DVE-1 transcription factor responsible for the 

UPRmt pathway (Haynes et al., 2007). However, neither of these studies have 

addressed the molecular function of Hub1 directly, thus its implication in cellular 

pathways or the relevance of Hub1 for human cells remained obscure.  
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3 Aim of this study 

Ubiquitin and ubiquitin-like proteins play pivotal roles in a multitude of cellular 

pathways, including signal transduction, protein sorting, DNA repair, and cell cycle 

regulation. Canonical members of this protein family are enzymatically conjugated to 

other proteins, thereby functioning as covalent protein modifiers affecting the stability, 

localization or function of their substrates.  

Although the highly conserved protein Hub1 shares the characteristic 

ubiquitin-like fold, it does not function as a covalent modifier but binds proteins only 

non-covalently. Thus far, little is known about the molecular function as well as the 

cellular pathways in which the ubiquitin-like protein Hub1 is implicated particularly in 

mammalian cells.  

The aim of this study was to investigate the function of human Hub1 in 

mammalian tissue culture cells. The unique feature of Hub1 lacking a C-terminal 

extension and thus solely resembling the ubiquitin-like fold raised the question of how 

Hub1 associates with other proteins. Therefore, various protein interaction assays 

were conducted in order to identify potential binding partners and to characterize the 

minimal Hub1 interaction domain. Additionally, Hub1 localization was studied in 

human cell lines by microscopy to shed light onto the cellular pathways and the 

functional context Hub1 is implicated in. Moreover, RNA interference techniques 

were applied to deplete Hub1 from human cells providing further insights into the 

relevance and function of the ubiquitin-like protein in vivo. Phenotypical 

characterization of Hub1-depleted cells by microscopy and flow cytometry was 

combined with a comprehensive biochemical analysis to identify Hub1-dependent 

pathways. Subsequently, the cellular responses to Hub1 inactivation were described 

and the detailed examination of altered biochemical processes elucidated the 

underlying molecular basis. Furthermore, complementation assays, in which mutant 

variants of Hub1 were reintroduced into Hub1-depleted cells, were conducted in 

order to functionally characterize crucial sites on the ubiquitin-like protein.  
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4 Results 

4.1 Identification of human Hub1 interactors by yeast two-hybrid 
screening 

As little was known about Hub1 and its cellular function, an unbiased approach to 

identify novel interaction partners of Hub1 was conducted. The yeast two-hybrid 

(Y2H) technique allows screening of protein-protein interactions based on human 

cDNA libraries from different tissues. A previous report indicated that Hub1, though 

ubiquitously expressed in human tissue, is highly up-regulated in brain, heart, 

skeletal muscle, kidney, and liver (Friedmann et al., 2001). Thus, libraries of fetal 

brain tissue and HeLa cell cDNAs with high transcript coverage were expressed as 

AD-fusions, whereas the Hub1 BD-fusion protein served as bait for screening. After 

optimization of transformation efficiency to ensure maximum cDNA library coverage, 

332 positive candidate clones were obtained from the initial screening step.  

Figure 1: Identification of Hub1 interactors by mammalian yeast two-hybrid screen 

a) Schematic overview of the yeast two-hybrid screen for human Hub1 interactors. BD-Hub1 was used 
as bait for screening mammalian cDNA libraries from human fetal brain and HeLa cells. b) Confirmation 
and identification of high confidence candidates. AD-Plasmids of candidate cDNAs fulfilling stringent 
criteria were isolated, sequenced and co-transformed with BD-Hub1 for re-confirmation. c) Yeast two- 
hybrid interaction studies of identified AD-candidates with different HUB1 orthologs. BD-fusions of Hub1 
from S. cerevisiae (S.c.), S. pombe (S.p.) and H. sapiens (H.s.) were co-transformed with AD-constructs 
identified in the cDNA library screen expressing hSnu66, Clk3, PIM2, USPL1, AP2β, Golgin a 5, or HIV-
EBP, respectively. Serial dilutions of cells were spotted on control or selective plates. 
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High confidence candidates which fulfilled the stringent criteria including 3-AT 

resistance (at 3 mM, 5 mM or 10 mM), β-galactosidase activity or growth on adenine-

lacking (-Ade) plates were revalidated and tested for auto-activation after FOA-

shuffle (Figure 1a). Subsequent DNA sequencing of the AD constructs revealed the 

identity of Hub1’s Y2H interactors, namely spliceosomal tri-snRNP protein hSnu66, 

Cdc2/Cdc28-like dual specificity protein kinase Clk3, proto-oncogenic 

serine/threonine-protein kinase PIM-2, SUMO/ubiquitin-specific peptidase-like 1 

USPL1, endocytosis receptor adapter protein complex AP-2 β subunit 1 α (AP-2β1α), 

actin-binding cytoskeleton protein tropomyosin 2 β (TPM2β) ,  Golgi-associated 

protein Golgin a 5, and human zinc-finger transcription factor HIV-EP1 (Figure 1b).  

 Further interaction studies, in which the newly identified candidates were 

tested with HUB1 orthologs from S. cerevisiae, S. pombe and H. sapiens, showed 

that the spliceosomal protein hSnu66 is the only common binding partner of all Hub1 

variants despite Hub1’s high conservation from yeast to human (Figure 1c). This 

finding indicates an important and conserved link between Snu66 is of Hub1 with a 

strong implication in pre-mRNA splicing.  

 

4.2 Hub1 binds the spliceosomal protein hSnu66 in vivo 

In order to validate the interaction between Hub1 and hSnu66 in vivo, co-

immunoprecipitation experiments with tissue culture cells were conducted. For this, 

mammalian expression constructs encoding tagged Hub1 and hSnu66 proteins were 

transfected into human cells. 

Figure 2: Hub1 and the tri-snRNP protein hSnu66 interact in vivo 

a) hSnu66 co-precipitates with Hub1. HEK 293T cells were co-transfected with GFP-tagged Hub1 or 
free GFP and FLAG-tagged hSnu66 or FLAGluciferase. Cells were harvested, lysed and proteins were 
immunoprecipitated using anti-FLAG M2 IgGs coupled to agarose. Inputs and FLAG-precipitates were 
analyzed by immunoblotting using anti-GFP and anti-FLAG antibodies. b) Hub1 co-precipitates with 
hSnu66. HEK 293T cells were co-transfected with Myc-tagged Snu66 and FLAG-tagged Hub1 or 
FLAGluciferase. Cells were harvested, lysed and proteins were immunoprecipitated using anti-FLAG IgGs 
coupled to agarose. Inputs and FLAG-precipitates were analyzed by immunoblotting using anti-Myc and 
anti-FLAG antibodies. Actin served as a loading control. 
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24-48 h post transfection cells were harvested, lysed and the epitope tagged proteins 

were purified with tag-specific antibodies immobilized on beads. The 

immunoprecipitation of FLAGhSnu66 co-purified GFP-labeled Hub1, whereas the 

control using FLAGluciferase or free GFP remained negative (Figure 2a). Vice versa, 
FLAGHub1 immunoprecipitated Myc-tagged hSnu66 and verified the binding, while 

luciferase served as negative control (Figure 2b). Consistent with the identification of 

Hub1-hSnu66 interaction in unbiased yeast two-hybrid screens these co-purification 

experiments indicate a tight association between the ubiquitin-like protein and the 

spliceosome-associated factor. 

 

4.3 A conserved motif in hSnu66 mediates Hub1 interaction 

After the initial findings of Hub1’s conserved interaction with hSnu66 in vivo, the 

question of how the Hub1-hSnu66 interaction is mediated arose. Bioinformatics 

analyses indicated that hSnu66 is an intrinsically unstructured protein with low 

complexity regions, which has been proposed to be characteristic for a large fraction 

of spliceosome-associated factors, as this allows structural flexibility and different 

conformational stages (Korneta and Bujnicki, 2012). However, a previous report 

described a putative leucine zipper domain, which might mediate direct binding of 

Snu66 to DNA (Makarova et al., 2001). Moreover, protein sequence alignments of 

Snu66 from different species elucidated two highly conserved domains located at the 

amino- and carboxy-terminus, with no obvious homology to known protein domains. 

Compared to yeast, the human homolog hSnu66 gained additional domains (Figure 

3a) like its amino-terminal arginine-serine rich domain (RS-domain, AA41-108) 

(Makarova et al., 2001), which can serve as a protein-protein interaction motif (Kohtz 

et al., 1994; Wu and Maniatis, 1993) or mediate binding to mRNA directly e.g. at 

regulatory exonic enhancer sequences (Shen and Green, 2006; Shen et al., 2004; 

Rudner et al., 1998). Besides the leucine zipper and nuclear localization signals, 

hSnu66 encodes another DNA directed domain, namely a putative transcription 

factor engrailed homology domain 1 (EH1). Interestingly, although Snu66 in yeast 

lacks the RS-domain, a short stretch of 18 AA within the N-terminal domain is highly 

conserved among species. 
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Figure 3: Mapping of the Hub1 interaction domain in hSnu66 

a) The Hub1 Interaction Domain (HIND) is conserved from yeast to human. Schematic representation of 
ScSnu66 and hSnu66 and their putative domains. HIND: Hub1-interaction domain, LZ: leucine zipper, 
CTD: Carboxy-terminal domain, RS: arginine-serine rich domain, EH1: engrailed homology domain 1, 
NLS: nuclear localization signal, YxxF: AP-dependent endocytosis motif. Below: Alignment of putative 
HIND sequences in Snu66 orthologs as indicated aside. Amino acids which are identical with human 
HIND are shaded in black to highlight conservation. b) Binding of Hub1 is mediated via a N-terminal 
domain in hSnu66. Mapping of the Hub1 interaction domain in hSnu66 using FLAG-immunoprecipitation 
of 3xFLAGHsHub1 after co-expression of GFP-tagged hSnu66 truncations (as indicated) or GFP as control 
in HEK 293T cells. Immunoprecipitates were immunoblotted with anti-FLAG and anti-GFP antibody. c) A 
short conserved N-terminal motif in hSnu66 (HIND) is sufficient for direct interaction with Hub1. GST 
pull-down assay with recombinant GST-HIND fusion protein and 6xHis-tagged Hub1. Free GST served 
as a control. Two different buffer conditions (Prep A: Tris-based B: HEPES based) were used. 
Comassie blue staining is shown. 
 

In order to identify the domain or motif mediating Hub1-hSnu66 direct 

interaction, several truncations of hSnu66 were generated comprising the N-terminus 

(AA1-185) with its arginine-serine rich domain (RS-domain) and the highly conserved 

stretch of 18 AA (AA111-139), the central region (AA 186-430, encoding for a 

putative leucine zipper (LZ) and nuclear localization sequences (NLS)) or C-terminal 

fragments, which overlap with the LZ and NLS (AA 325-800) or cover domains from 

AA439 to the end of the protein (AA439-800). These GFP-tagged truncations were 

co-expressed with 3xFLAGHub1 to map down the binding motif by FLAG-
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immunoprecipitation. The hSnu66 N-terminal fragment (AA1-185) was able to bind 

and co-purify with Hub1, but, notably, the short highly conserved stretch within 

hSnu66’s N-terminus (AA111-139) was already sufficient for the interaction with 

Hub1 (Figure 3b). Like the negative control, free GFP, neither the central region of 

hSnu66 nor C-terminal fragments were able to co-purify with Hub1.  

Importantly, the interaction between Hub1 and the short highly conserved 

stretch, which was termed HIND (for Hub1 interaction domain), was verified with 

purified recombinant proteins to exclude any bridging factor, thereby proving direct 

binding. After 6xHis-tagged Hub1, GST-HIND and free GST were isolated from E. 

coli by affinity-chromatography, Hub1 was incubated with either GST-HIND or GST 

as control and pull-down assays were conducted. Indeed, the isolated HIND was 

proficient in direct Hub1 binding and clearly precipitated Hub1 in GST-pull-down 

studies (Figure 3c). 

 This data indicated an intriguing mode of non-covalent interaction between a 

ubiquitin-like protein (Hub1) and a spliceosomal core component (Snu66). In order to 

obtain molecular insights, the crystal structure of human Hub1 in complex with 

hSnu66’s HIND was solved. For this, HIND peptides, comprising AA 117-135 of 

hSnu66, were chemically synthesized (by MPIBC core facility) and incubated with 

recombinant 6xHis-tagged Hub1 for crystallization. In close collaboration with the 

NMR department at the MPIBC the crystallization and structure determination was 

conducted by K. Kowalska. 

 

Figure 4: The crystal structure of the Hub1-HIND complex  

a) Crystal structure of the human Hub1 in complex with the hSnu66 HIND peptide at 2 Å resolution 
shown as a ribbon plot. The human HIND - Hub1 interaction is mediated by a salt bridge between R11 
of HIND (R127 in hSnu66) and D22 of HsHub1 accompanied by several hydrophobic contacts formed 
by aliphatic residues of HIND and Hub1. b) Overlay of crystal structures comparing human Hub1-HIND 
(blue, purple) interaction superimposed with yeast ScHub1-ScHIND II (yellow, cyan) complex shows 
high conservation on molecular level. NMR data was obtained in collaboration with K. Kowalska. 
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 As described previously (McNally et al., 2003), Hub1 shares the β-grasp fold 

of ubiquitin and ubiquitin-like proteins with their typical ββαβαβ secondary structure 

pattern (Figure 4a). This new structure with a resolution of 2 Å clearly explains the 

nature of the human HIND - Hub1 interaction that is mediated via a salt bridge 

between R11 of HIND (R127 in hSnu66) and D22 of Hub1 accompanied by several 

hydrophobic contacts formed by aliphatic residues of the HIND (L2, I4, T7, L10, R11 

(Cβ and Cγ), L14, L16, L19) and Hub1 (M1, V16, K17 (Cβ, Cγ, Cδ), C18, N19 (Cβ, 

Cγ), K29 (Cβ, Cγ, Cδ), V30, L33). Upon HIND binding the main-chain fold of Hub1 

does not change significantly, but several side chains change their orientation 

representing an induced-fit conformation. 

The direct comparison of human and yeast Hub1-HIND complexes (HsHub1-

HsHIND (blue, purple), ScHub1-ScHIND II (yellow, cyan, PDB: 3PLV (Mishra et al., 

2011)) emphasizes the similarity of the two structures with a root mean squared 

deviation of 0.716 Å for the main chain heavy atoms (Figure 4b). The interaction 

interface, formed by the salt bridge (R127-D22) among hydrophobic contacts 

between hSnu66 and Hub1, is almost identical and illustrates the high conservation 

of this interaction module at molecular level. Despite the high conservation and 

structural similarities between yeast and human Hub1, a unique patch appears to be 

particularly interesting. The loop formed by α2-β3 in human Hub1 contains two 

hydrophobic residues, W47 and Y48, which are strikingly exposed to the solvent. 

Moreover, although this unusual aromatic patch is highly conserved in all metazoan 

orthologs, it is not present in S. cerevisiae Hub1.  

 

4.4 Mutations in the HIND abolish Hub1-hSnu66 interaction 

The structural data gives detailed information about crucial amino acid residues that 

are important for the interaction surface between Hub1 and hSnu66. Beside the 

contributing hydrophobic contacts formed by aliphatic residues, the central interaction 

bond is created via the salt bridge between R127 of HIND in hSnu66 and D22 of 

Hub1. In order to validate this finding, co-immunoprecipitation experiments were 

performed, in which mutant alleles of hSnu66 and Hub1 leading to interaction-

deficient variants were ectopically expressed. For this, human tissue culture cells 

were transfected with either FLAGhSnu66 WT or R127A mutant form together with 

GFP-labeled Hub1 WT or D22A point mutant (Figure 5a). When both wild type 

proteins were expressed and FLAG-immunoprecipitation was performed, binding of 

Hub1 to hSnu66 was evident. However, mutant alleles with point mutations at 

interaction surface residues abrogated binding of Hub1 WT in FLAGhSnu66 R127A 

immunoprecipitations. Vice versa, the interaction with hSnu66 WT was also disrupted 

when the crucial residue in Hub1 was mutated (D22A).  
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Figure 5: Single point mutations in the HIND interface disrupt Hub1 - hSnu66 interaction 

a) Single point mutations in Hub1 (D22A) or hSnu66 (R127A) abolish interaction in vivo. GFP-tagged 
WT or D22A mutant Hub1 was co-transfected with FLAG-tagged hSnu66 WT or R127A mutant into HEK 
293T cells. Cells were harvested, lysed and proteins were immunoprecipitated using anti-FLAG M2 
IgGs. Inputs and FLAG-precipitates were analyzed by immunoblotting using anti-GFP and anti-FLAG 
antibodies. b) Hub1 interacts with endogenous hSnu66 in vivo depending on the D22 surface. U2OS WT 
or cells stably expressing N-terminally GFP-tagged Hub1 WT, Hub1 D22A, C-terminally GFP-tagged 
Hub1 or a GFP-control were harvested, lysed and proteins were immunoprecipitated using anti-GFP 
antibodies. Inputs and GFP-precipitates were analyzed by immunoblotting using anti-GFP and anti-
hSnu66 antibodies. Untreated U2OS and anti-U2AF65 served as controls. c) Point mutations in the 
HIND disrupt yeast two-hybrid interaction. Cells expressing human Hub1 (N-terminal BD-fusion) with 
either hSnu66 WT or mutant hSnu66 R127A or ΔHIND as an AD-fusion. Whereas all strains grew on 
control plates, growth was restricted to cells co-expressing BD-Hub1 and AD-hSnu66 WT confirming the 
HIND-dependent interaction between Hub1 and hSnu66. d) Yeast two-hybrid interaction studies with 
Hub1 mutants and candidates from the mammalian cDNA library screen. BD-Hub1 WT, D22A or R9A 
were co-transformed with AD-constructs expressing hSnu66, Clk3, USPL1 or AP2β, respectively. Cells 
were spotted on control plates or selective plates. 
 

Considering the fact that conventional transient transfection techniques lead 

to high protein expression due to strong promoters and high copy numbers, it was 

important to characterize the interaction in vivo under more physiological conditions. 

In order to address this point, several U2OS cell lines stably expressing GFP-Hub1 

WT, the binding-deficient mutant GFP-Hub1 D22A, C-terminally tagged Hub1-GFP 

and GFP-control, respectively, were generated. After testing the moderate 

expression of the GFP-fusion proteins, these cell lines were used for further 

interaction studies. Indeed, wild type Hub1 clearly co-purified with endogenous 

hSnu66 in GFP-immunoprecipitation assays, whereas the D22A mutation in Hub1 

abolished the interaction. Notably, either of the amino- or carboxy-terminally GFP-

tagged versions of Hub1 were able to precipitate hSnu66 under physiological 

conditions, indicating that both versions are properly folded proteins and their GFP-

tag does not abrogate hSnu66 binding via the Hub1-HIND interaction surface.  
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As the initial findings had been obtained from the mammalian Y2H screen, another 

line of evidence came from yeast two-hybrid interactions studies. For this experiment, 

BD-Hub1 was co-transformed with AD-constructs encoding for hSnu66 WT, hSnu66 

R127A mutant or a variant in which the whole HIND is deleted (hSnu66ΔHIND), 

respectively. Yeast spottings on selective plates confirmed previous results, as only 

wild type Hub1 and hSnu66 showed an interaction, whereas both mutations in 

hSnu66 (R127A and ΔHIND) were negative (Figure 5c). Interestingly, interfering with 

the HIND interaction surface on Hub1 by mutating D22 to alanine disrupted hSnu66 

binding specifically. Other candidates identified in the two-hybrid screen like Clk3, 

USPL1 or AP2β, did not show any alterations in Hub1 binding when Hub1 WT and 

Hub1 D22A were compared. Furthermore, all two-hybrid interactions were 

reconfirmed in a snu66Δ yeast strain to rule out any bridging effects of endogenous 

Snu66 (data not shown). In contrast, introducing an alanine substitution of R9 into 

Hub1 (Hub1 R9A) did not negatively affect hSnu66 binding, but the interaction with 

Clk3 and AP2β was absent (Figure 5d). These data suggest that, besides the HIND-

associated surfaces other motifs on Hub1 serve as additional interaction domains to 

mediate binding to alternative protein complexes. 

 

4.5 Hub1 localizes to splicing-associated nuclear domains 

The physical interaction of Hub1 with spliceosomal components like hSnu66 and SR 

protein kinase Clk3 (present study and Kantham et al., 2003) links Hub1 to the pre-

mRNA splicing machinery, which is mainly located in the nucleus. Exploiting the 

stable U2OS cell lines, which stably express GFP-Hub1, the localization of Hub1 in 

human cells was determined. When standard immunofluorescence protocols were 

applied, GFP-tagged Hub1 showed a plain cellular distribution in the cytoplasm as 

well as in the nucleus without a distinct localization, which resembles the pattern of 

free GFP (Figure 7b). Nevertheless, introducing a pre-extraction step before fixation, 

the newly established immunofluorescence staining revealed a distinct, speckle-like 

localization of Hub1 within the nucleus. Immunofluorescence co-stainings elucidated 

that Hub1 is found in so-called nuclear speckles (also named SC35-domains or 

interchromatin granule clusters). Here, it co-localizes with nuclear speckle marker SR 

protein SC35 (Spector, 2003; Spector and Lamond, 2011), small nuclear 

ribonucleoparticle (snRNP) component U1A (Saitoh et al., 2004) or Sm proteins of 

snRNPs, which are recognized by Smith-antigen antibody Y12 (Boerbooms et al., 

1985) (Figure 6a), but not with other nuclear domains like PML bodies or the 

nucleolus using PML, fibrillarin or UBF (data not shown). Nuclear speckles are highly 

dynamic structures from where splicing factors shuttle to active site of transcription 

(and concomitantly pre-mRNA splicing) (Spector et al., 1991; Ferreira et al., 1994; 

Wei et al., 1999). This nuclear compartment is thought to be important for splicing 



Results 

 35 

factor maturation and modification as well as formation and storage of sub-

complexes.  

Figure 6: Co-localization of Hub1 and hSnu66 with nuclear speckle proteins 

a) Hub1 localization in U2OS cells stably expressing GFP-Hub1 (green). Cells were pre-extracted, fixed 
and stained for splicing proteins (red) using antibodies against nuclear speckle marker phospho-SC35, 
snRNP protein U1A and SR proteins using Y12, respectively. Scale bar represents 10 μM. b) Co-
localization studies with U2OS cells stably expressing hSnu66-GFP (green). Cells were pre-extracted, 
fixed and stained for splicing proteins (red) using anti-phospho-SC35, anti-U1A and anti-PRPF4 
antibodies, respectively. Images show z-stack projections of seven optical sections and are merged with 
DAPI as nuclear counterstain. Scale bar represents 10 μM. 
 

In addition, another U2OS cell line stably expressing C-terminally GFP-

tagged hSnu66 was generated and used for localization studies. In these cells 

hSnu66 is efficiently imported into the nucleus where it is recruited to the same 

nuclear speckle compartment as observed in previous experiments with Hub1. 

Immunofluorescence studies with antibodies recognizing SR protein SC35, U1 

snRNP factor U1A or tri-snRNP protein PRPF4 revealed co-localization with hSnu66-

GFP (Figure 6b). In addition, hSnu66 is also found in the nucleolus, which was 

confirmed by co-stainings with nucleolar protein fibrillarin and upstream-binding 

factor 1 (UBF1) (data not shown). Hence, the co-localization data further support a 

close link of Hub1 and hSnu66 to pre-mRNA processing and splicing.  

To further address Hub1 function and the interplay between Hub1 and 

hSnu66 in living cells, stable U2OS cell lines expressing the hSnu66-binding mutant 

GFP-Hub1 D22A or C-terminally GFP-tagged Hub1 (Hub1-GFP) were examined 

(Figure 7a). As shown before, GFP-Hub1 WT localization resembles the nuclear 

speckle pattern and co-localizes with the marker protein SC35. Interestingly, when 

the hSnu66-binding mutant was tested in immunofluorescence co-stainings, it 

became evident that GFP-Hub1 D22A still localizes to splicing speckles and overlaps 

with SC35-positive domains and thereby does not show significant differences to 

Hub1 WT. On the contrary, C-terminally GFP tagged Hub1 WT (Hub1-GFP), which 

was fully functional in hSnu66 binding (see Figure 5b), was not retained in nuclear 

substructures (Figure 7a). Thus, without proper incorporation into structural protein 
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complexes Hub1-GFP (like GFP serving as control) was washed out from the 

nucleus and staining was negative, while SC35 immunostaining was not altered and 

identical to previous samples. 
 

 
Figure 7: Hub1 recruitment to nuclear speckles depends on C-terminal surface 

a) Co-localization studies in U2OS cells stably expressing GFP-Hub1, GFP-Hub1 D22A, Hub1-GFP or 
free GFP (all green). Cells were pre-extracted, fixed and stained for nuclear speckle marker phospho-
SC35 (red). Note that Hub1-GFP and free GFP are washed out, whereas GFP-Hub1 and GFP-D22A are 
retained in nuclear speckles. DAPI (blue) was used as nuclear counterstain. Scale bar represents 10 
μM. b) Co-localization studies with stable cell lines similar to a). Cells were permeabilized after fixation 
(no pre-extraction) and stained for Sm-proteins using Y12 antibody (red). DAPI (blue) was used as 
nuclear counterstain. Scale bar represents 10 μM. c) Protein expression levels of GFP-fusion proteins 
(GFP-Hub1, GFP-Hub1 D22A, Hub1-GFP or free GFP) stably expressed in U2OS cells (as shown in a 
and b) were analyzed by immunoblotting using anti-GFP antibodies. Actin served as loading control. 
 

Moreover, besides the nuclear fraction a significant pool of Hub1 is found in 

the cytoplasm as well, as shown by immunofluorescence staining following the 

conventional fixation method with membrane permeabilisation after fixation and no 

pre-extraction. Despite the differences in nuclear localization after pre-extraction, 

here the different Hub1 fusion proteins show a similar diffuse distribution throughout 

the cell with no particular localization (Figure 7b). The protein levels of all fusion 

proteins were measured to ensure similar expression (Figure 7c).   
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4.6 hSnu66 actively recruits Hub1 to splicing speckles  

After the detailed molecular characterization of the Hub1-hSnu66 interaction and the 

observation that both Hub1 and hSnu66 are found in nuclear splicing speckles, co-

localization studies were conducted to determine the interdependency of the 

ubiquitin-like protein Hub1 and the splicing factor hSnu66 in vivo. Thus, after 

transient co-expression of tagged Hub1 WT or the binding mutant Hub1 D22A 

together with either hSnu66 WT or hSnu66ΔHIND fused to GFP cells were analyzed 

by immunofluorescence. Interestingly, although a minor fraction of Hub1 WT was 

detected in the cytoplasm, the majority was recruited to nuclear splicing speckles 

where it co-localized with hSnu66 WT (Figure 8a, upper panel).  

Figure 8: hSnu66 actively recruits Hub1 to nuclear speckles in a HIND-dependent manner 

a) hSnu66 attracts Hub1 to co-localize in nuclear splicing speckles and recruitment is HIND-dependent. 
Immunofluorescence of U2OS transiently co-expressing 3xFLAGHub1 WT or D22A mutant (red) with GFP-
tagged hSnu66 WT or hSnu66ΔHIND (green). Cells were fixed, permeabilized and stained with FLAG 
M2 antibody and DAPI as nuclear counterstain. Scale bar represents 10 μM. b) hSnu66-GFP interacts 
with 3xFlagHub1 in vivo shown by immunofluorescence and precipitations. Constructs used for 
immunofluorescence (as in a) are also functional in binding assays. HEK 293T cells were co-transfected 
with constructs expressing either GFP-tagged hSnu66 WT or hSnu66 R127A in combination with 
3xFLAGHub1 WT or D22A mutant. Cells were harvested, lysed and proteins were immunoprecipitated 
using anti-FLAG M2 antibodies. Inputs and precipitates were analyzed by immunoblotting using 
antibodies against GFP and FLAG.  
 

In contrast, in cells expressing the binding-deficient mutant alleles Hub1 

D22A or hSnu66ΔHIND, where Hub1-hSnu66 interaction is disrupted, the 

accumulation of Hub1 in nuclear speckles was largely diminished, whereas hSnu66 

localization in splicing speckles was unaltered (Figure 8a, lower two panels). 

Immunofluorescence co-stainings of Hub1 D22A with hSnu66 WT showed that while 

hSnu66 was found in nuclear speckles, Hub1 D22A was widely and equally 

distributed throughout the cytoplasm and nucleus with no distinct accumulation in 

nuclear subcompartments like splicing speckles. In line with these data, co-
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expression of Hub1-binding deficient hSnu66ΔHIND with Hub1 WT showed similar 

results. hSnu66ΔHIND efficiently localized to nuclear speckles, while Hub1 WT was 

not specifically enriched in SC35 domains, when compared to cells which co-

expressed WT hSnu66. These data indicate that hSnu66 is targeted to the nuclear 

speckles in a Hub1-independent manner. Furthermore, hSnu66 itself can actively 

recruit Hub1 to nuclear speckles via its Hub1-interaction domain, as this 

accumulation of Hub1 in nuclear speckles depends on the HIND interface. 

The finding that Hub1-binding is not crucial for hSnu66’s nuclear localization 

raised the question, if Hub1 might modulate the protein interaction network of 

hSnu66. To address this point, co-immunoprecipitation studies with GFP-tagged 

hSnu66 WT or the Hub1 binding-deficient mutant version (hSnu66ΔHIND) were 

conducted and compared by immunoblotting and mass spectrometry (Figure 9).  

Figure 9: hSnu66 is incorporated into the tri-snRNP complex in a Hub1-independent manner 

a) Interaction with tri-snRNP or nucleolar proteins is not altered in the Hub1 binding-deficient mutant 
hSnu66ΔHIND. HEK 293T cells were co-transfected with constructs expressing either GFP-tagged 
hSnu66 WT or hSnu66ΔHIND in combination with 3xFLAGHub1 WT or D22A mutant. Cells were 
harvested, lysed and proteins were immunoprecipitated using anti-GFP antibodies. Inputs and GFP-
precipitates were analyzed by SDS-PAGE and subsequent immunoblotting using antibodies against 
GFP, FLAG, PRPF6 and fibrillarin. b) FLAG-tagged variants of hSnu66 (WT, R127A, ΔRS (deletion of 
AA1-78) or ΔHIND) or FLAGluciferase as control were expressed in HeLa cells. After harvesting cells 
were lysed and FLAG M2 immunoprecipitation was performed. Inputs and immunoprecipitates were 
analyzed by immunoblotting using antibodies against spliceosomal tri-snRNP proteins PRPF8, PRPF6 
and PRPF3. Actin served as loading control. Asterisk indicates antibody heavy chain. c) Qualitative 
analysis of hSnu66 or hSnu66ΔHIND immunoprecipitates via mass spectrometry. GFP-tagged hSnu66, 
hSnu66ΔHIND or free GFP were immunoprecipitated from transfected HeLa lysates using GFP-trap 
affinity matrix. GFP-precipitates were analyzed by mass-spectrometry and hSnu66 WT interacting 
proteins were compared to hSnu66ΔHIND after normalization and filtering of unspecific binding factors 
(free GFP sample) were subtracted. Identified RNA processing associated proteins co-purifying with 
hSnu66 and hSnu66ΔHIND and their signal intensities are plotted.  
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It became evident that the interaction with Hub1 is neither essential for 

hSnu66 binding to tri-snRNP components, nor for the association with nucleolar 

factors (Figure 9a), as both hSnu66 WT and hSnu66ΔHIND were able to efficiently 

co-purify factors like PRPF6 and fibrillarin. 

Additional experiments confirmed that incorporation of hSnu66 into the tri-

snRNP complex is independent of Hub1-binding. The association of hSnu66 with 

core spliceosomal proteins of the tri-snRNP complex was tested by co-purification of 

different hSnu66 variants (WT, R127A, ΔRS (N-terminal ΔAA1-78) or ΔHIND) with U4 

snRNP protein PRPF3 and the U5 snRNP proteins PRPF6, and PRPF8, respectively 

(Figure 9b). Other than the slight decrease of PRPF8 in hSnu66ΔRS samples, no 

significant alteration in tri-snRNP binding could be identified. Furthermore, in an 

unbiased proteomic approach hSnu66 or hSnu66ΔHIND immunoprecipitates were 

analyzed qualitatively via mass spectrometry. Indeed, this data set affirmed only 

marginal alterations between WT or Hub1-binding deficient hSnu66, when co-

purifying factors were compared (Figure 9c). These findings suggest other domains 

within hSnu66 being important for proper incorporation into the tri-snRNP, while Hub1 

binding might mediate another, yet unknown, regulatory mechanism. 

 

4.7 Characterization of hSnu66’s functional domains 

In order to gain further insights into the function of the Hub1 interaction partner 

hSnu66, which is a spliceosomal protein with many low complexity regions and 

poorly characterized domain structure, several truncated hSnu66 GFP-fusion 

proteins were generated bearing the different putative motifs (Figure 10c). In line with 

the abovementioned data, microscopic analysis highlighted the dual localization of 

hSnu66 WT or hSnu66ΔHIND in nucleoli and nuclear speckles, which was confirmed 

by co-staining with SC35 in HeLa cells (Figure 10a). Even the direct linear fusion of 

Hub1 to the hSnu66’ N-terminus (Hub1~hSnu66) did not alter the localization and 

resembled hSnu66 WT nuclear staining. Interestingly, the N-terminus of hSnu66 

alone (AA1-139), comprising the RS-domain and the Hub1-binding domain HIND, is 

sufficient to be efficiently recruited to nuclear speckles and nucleoli (Figure 10a). 

Besides the nuclear import signals encoded by the N-terminus, an additional 

domain in hSnu66’s central part is responsible for incorporation into nuclear 

speckles. N-terminal truncations lacking the first 325 amino acids (AA325-800) led to 

a slightly less efficient nuclear import, but still allowed recruitment to splicing 

speckles (Figure 10b). Further deletions within the central domain (AA375-800) 

destroying the leucine zipper (AA365-386) interfered with proper localization to 

splicing foci and resulted in a pan-nuclear and cytoplasmic staining (Figure 10b). 

Constructs expressing C-terminal hSnu66 fragments did not show an association 

with any particular nuclear nor cytoplasmic subcompartment and exhibit a diffuse 

cellular distribution similar to free GFP (Figure 10b: AA439-800, AA678-800, GFP). In 
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addition to immunofluorescence localization studies, the GFP-tagged hSnu66 

truncations were utilized in co-immunoprecipitation assays to identify novel 

interaction domains within hSnu66. Indeed, a central domain in hSnu66 (AA325-439) 

comprising the LZ and NLS is crucial to associate and to co-purify with tri-snRNP 

proteins like PRPF6 (Figure 10d).  
 

Figure 10: Mapping and characterization of hSnu66 domains  

a-b) The N-terminus and the central leucine zipper in hSnu66 mediate recruitment to nuclear speckles. 
HeLa cells were transfected with constructs expressing hSnu66 truncations tagged with GFP (green). 
Cells were fixed, permeabilized and stained for nuclear speckle marker phospho-SC35 (red) and DAPI 
(blue). Scale bar represents 10 μM. c) Schematic representation of GFP-tagged hSnu66 truncations and 
their putative domain structure used previous experiments. d) The central domain in hSnu66 (AA325-
439) is crucial for binding to tri-snRNP protein PRPF6. HEK 293T cells were transfected with different 
hSnu66 truncations tagged with GFP as indicated (see c). Cells were harvested, lysed and proteins 
were immunoprecipitated using the GFPtrap matrix. Inputs and GFP-precipitates were analyzed by 
immunoblotting using antibodies against GFP and PRPF6. 
 
Notably, although hSnu66’s N-terminus (AA1-185) containing the RS- and HIND 

motifs is sufficient for recruitment to nuclear speckles, it does not co-precipitate with 

PRPF6. This data supports the model of hSnu66 acting as a platform with at least 
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two independent interaction modules; while its N-terminus binds Hub1 and contains 

the RS-domain, the central module mediates association with spliceosomal 

complexes like the tri-snRNP protein PRPF6.  

As the abovementioned N-terminal fragments contain functional HINDs and 

are thereby potential Hub1 binders, a more detailed characterization was performed 

to determine whether Hub1-binding alters their nuclear import or localization (Figure 

11a). 

 

Figure 11: Hub1 binding retains N-terminus of hSnu66 in nuclear compartment 

a) The N-terminal RS-domain of hSnu66 is sufficient to localize to nuclear speckles. HeLa cells were 
transfected with constructs expressing hSnu66 RS-domain (AA1-78), N-terminus containing the HIND 
(AA1-139) or the isolated HIND (AA111-139) as GFP-fusion proteins (green). Cells were fixed, 
permeabilized and nuclei were stained with DAPI (blue). Scale bar represents 10 μM. b) Hub1 binding 
facilitates nuclear retention of hSnu66 N-terminus. DsRed-Hub1 (red) expressing HeLa cells were co-
transfected with constructs encoding GFP-tagged hSnu66 N-termini (AA1-139) (green) with either WT 
HIND or bearing the Hub1-binding mutation R127A (R127A=RA). Cyto-nuclear shuttling of hSnu66 
fragments was enforced by linear fusion with a nuclear export signal (NES) of export receptor CRM1 to 
GFP tagged hSnu66 constructs. Cells were fixed, permeabilized and nuclei were stained with DAPI 
(blue). Scale bar represents 10 μM. c) The HIND-containing N-terminus of Snu66 binds endogenous 
Hub1. GFP-tagged hSnu66 truncations (AA1-139 or AA1-185) were expressed as WT or Hub1 binding- 
deficient mutant version (RA) in HeLa cells. After transfection, cells were harvested, lysed and GFP-
fusion proteins were immunoprecipitated using the GFPtrap matrix. Inputs and GFP-precipitates were 
analyzed by immunoblotting using antibodies against GFP and Hub1. Tubulin served as a loading 
control.  
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Further segmentation of hSnu66’s N-terminus into RS-domain and HIND 

revealed that the RS-domain alone (AA1-78) is a potent nuclear import domain, 

which is efficiently recruited to nuclear speckles and nucleoli, similar to the extended 

fragment (AA1-139) comprising RS-domain and HIND. The HIND alone does not 

facilitate nuclear import by itself, as shown by the diffuse localization throughout the 

cyto- and nucleoplasm of the cell similar to free GFP. 

Although Hub1 binding is not crucial for hSnu66 interaction with the tri-

snRNP, full-length hSnu66 actively recruits Hub1 to nuclear speckles (Figure 8a and 

10d). Furthermore, the HIND containing N-terminus is efficiently imported and 

associated with SC35 domains, but it remained unclear if Hub1 travels along. To 

address this point, hSnu66-GFP truncations were co-expressed with DsRed-tagged 

Hub1 and analyzed by microscopy (Figure 11b).  

In line with the abovementioned data, full-length hSnu66 recruited and 

accumulated DsRed-Hub1 in nuclear speckles leading to almost cytoplasmic 

depletion of free Hub1 in HeLa cells. Co-expression of the hSnu66 N-terminal 

fragment clearly showed a similar effect by binding and importing Hub1 into the 

nucleus and speckles. When the Hub1-interaction domain was mutated (changing 

salt bridge residue R127 to alanine (RA)) abolishing Hub1 binding, the N-terminal 

fragment still localized to nuclear speckles and nucleoli, but DsRed-Hub1 was not 

recruited nor enriched in speckles (Figure 11b, upper and middle panel). In order to 

counterbalance the strong nuclear import of hSnu66 N-terminal fragment by the RS-

domain the nuclear export sequence (NES) of the export receptor CRM1 (Engelsma 

et al., 2004) was linearly fused to hSnu66 truncations as GFP tagged protein. When 

the WT N-terminal fragment of hSnu66 with NES (N-term WT NES) was co-

expressed with Hub1, it still localized to SC35 domains where it co-localizes with 

Hub1. As expected, due to the NES the cytoplasmic fraction also increased, but the 

major fraction resided in the nucleus. In contrast, when the Hub1-binding deficient N-

terminus with NES (N-term RA NES) was examined, the equilibrium of nucleo-

cytoplasm shuttling was shifted toward the cytoplasm and nuclear depletion of the 

fusion protein. Instead of splicing speckles the cytoplasm and nuclear rim were now 

stained, whereas the nucleoplasm was depleted of the hSnu66 N-terminal RA NES 

fragment. This had no effect on DsRed-Hub1 localization as it still remained nuclear 

and cytoplasmic.  

Taken together, these data indicate that Hub1 supports the incorporation and 

retention of hSnu66 in nuclear speckles additionally to its RS-domain. While the RS-

motif helps targeting hSnu66 to SC35 domains, the HIND creates an additional 

interaction surface with Hub1 that might contribute to a proper complex formation 

with other splicing-associated factors. 
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4.8 Distinct and conserved protein properties of Hub1 

Recent work on Hub1 has focused on lower eukaryotes using model organisms like 

S. cerevisiae and S. pombe since its identification in the year 2000 (Jentsch and 

Pyrowolakis, 2000). Whereas knockout of HUB1 in S. cerevisiae (hub1Δ) shows only 

minor phenotypes and cells are viable, its gene deletion in S. pombe is lethal (Luders 

et al., 2003; Yashiroda and Tanaka, 2004). Interestingly, rescue assays in which 

hub1Δ S. pombe strains were supplemented with constructs expressing HUB1 

orthologs from S. cerevisiae (S.c.), S. pombe (S.p.) and H. sapiens (H.s.), revealed 

significant differences between yeasts and human Hub1 in survival assays (Figure 

12a). After FOA shuffling out the URA4-bearing plasmid, encoding the “back-up” 

copy of SpHUB1, the HUB1 orthologs were the only remaining source of Hub1 in 

hub1Δ S. pombe cells.  

 

 
Figure 12: Functional complementarity of yeast and human HUB1 orthologs  

a) Rescue of hub1Δ in S. pombe by complementation with HUB1 orthologs from S. cerevisiae, S. pombe 
and H. sapiens. Serial dilutions of hub1Δ cells expressing HUB1 orthologs grown on control or FOA 
plates (hub1Δ with one copy of spHUB1 encoded on an URA4-bearing plasmid for shuffle out). Protein 
expression of HUB1 orthologs is shown in the right panel using anti-Hub1 antibodies. b) Rescue of 
synthetic sickness of hub1Δprp8* in S. cerevisiae by expressing HUB1 orthologs in cell growth assays 
at indicated temperatures. Protein expression of Hub1 orthologs is shown in the right panel using anti-
Hub1 antibodies. c) Complementation of altered alternative splicing of SRC1 in hub1Δprp8* cells by 
HUB1 orthologs (according to b). Protein expression of TAP-tagged Src1-L and Src1-S isoforms as well 
as Hub1 versions were monitored by western blotting using anti-TAP and anti-Hub1 antibodies. 
Complementation experiments with S. pombe and S. cerevisiae hub1Δ cells were performed in 
collaboration with S.K. Mishra. 
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 As shown previously (Yashiroda and Tanaka, 2004), the shuffle out resulted 

in Hub1 depletion and caused the lethal phenotype, when cells were supplemented 

with the empty vector control and no ectopically expressed Hub1 was present. 

Complementation with either S. pombe or H. sapiens HUB1 fully rescued lethality 

and restored cell growth in spotting assays. In contrast, constructs expressing S. 

cerevisiae HUB1 were not able to fully complement S. pombe hub1Δ, leading to 

growth defects at indicated temperatures. This effect was not attributable to reduced 

protein levels, as expression of the different HUB1 orthologs was monitored by 

immunoblotting (Figure 12a, right panel). 

Recent data described a strong genetic interaction between hub1Δ  and a 

mutant allele of the tri-snRNP protein PRP8 (point mutation P1384L called prp8*) in 

S. cerevisiae (Dahlmann, 2008; Mishra et al., 2011). Based on the hub1Δprp8* 

genetic background, HUB1 complementation experiments were conducted similar to 

previous assays in S. pombe hub1Δ. For this, hub1Δ  prp8* cells were transformed 

with constructs expressing yeast and human HUB1 orthologs, and corresponding 

spottings were incubated at indicated temperatures (Figure 12b). While the empty 

vector control could not support growth of the hub1Δ  prp8* strain, ScHUB1 and 

SpHUB1 fully rescued the growth defect at restrictive temperatures. HsHUB1, on the 

other hand, partially complemented at lower temperatures (25°C and 30°C), but was 

not able to support growth at 37°C. Again, all HUB1 orthologs were expressed at 

similar protein levels (Figure 12b, right panel).  

In addition to survival assays, an additional complementation read-out was 

used in S. cerevisiae. Recent data elucidated an important role of Hub1 in splice site 

usage and alternative splicing in yeast (Mishra et al., 2011). In S. cerevisiae the 

SRC1 gene gives rise to two mRNA isoforms due to alternatively splicing, termed 

SRC1-L (long isoform, larger protein) and SRC1-S (short isoform, smaller protein). 

The SRC1 transcript contains crucial sequences directly at the two overlapping 5’ 

splice sites, whose usage determines which isoform will be generated. It has been 

shown that Hub1 is important for proper splicing of certain 5’ splice sites and thereby 

pivotal for alternative splicing e.g. of SRC1 pre-mRNA (Mishra et al., 2011). WT cells 

generate both SRC1-L and SRC1-S isoforms and this equilibrium is not altered when 

different HUB1 orthologs are expressed ectopically (Figure 12c). According to Hub1’s 

role in 5’ splice site usage, hub1Δ cells are defective in alternative splicing of SRC1 

and only the distal splice site is used which produces the SRC1-L isoform (Figure 

12c). This splicing defect can be completely complemented by the ectopic expression 

of ScHUB1. Introducing the HUB1 ortholog from S. pombe largely rescues the 

altered alternative splicing pattern and both isoforms are detectable as well. In line 

with the genetic interaction in hub1Δ  prp8* cells, the human HsHUB1 was only able 

to partially complement the splicing defect, although its protein expression was 

similar to all other Hub1 orthologs tested (Figure 11c).  
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Based on the complementation data from S. cerevisiae and S. pombe it 

appears that, despite Hub1’s high conservation, human and fission yeast Hub1 own 

a distinct protein property, which is absent in Hub1 of S. cerevisiae. This activity 

might have developed later in evolution, when Hub1 gained additional or more 

prevalent functions in eukaryotic cells.  

 

4.9 Molecular tools for the characterization of Hub1 in human cells 

Due to the recent research on Hub1, no molecular tools for further characterization of 

Hub1 were yet commercially available. To address the cellular function of Hub1 in 

human tissue culture cells it was necessary to establish a Hub1 depletion system by 

RNA-interference (RNAi) using short interfering RNAs. Furthermore, the knockdown 

efficiency and specificity needed to be validated by immunoblotting with Hub1-

specific antibodies. In collaboration with the immunization service of the MPIBC, 

rabbits were injected with recombinant 6xHis-tagged human Hub1 and boosted twice 

to induce anti-Hub1 specific antibody synthesis. The isolated serum was incubated 

with a Hub1 matrix, where recombinant 6xHis-Hub1 was covalently tethered to 

activated CNBr-sepharose beads. After specific antibodies were isolated using the 

Hub1 affinity matrix, they were eluted and tested by immunoblotting. In a second 

purification step, the first round antibody eluate was incubated with another Hub1 

matrix, where recombinant GST-Hub1 was covalently attached to a HiTrap NHS HP 

column. Like before, bound antibodies were eluted and Hub1-specificity tested 

(Figure 13a). 

 
Figure 13: Generation of Hub1-specific antibodies and verification of Hub1 RNAi specificity. 

a) Schematic overview of Hub1 antibody purification. b) Verification and specificity of the purified Hub1 
antibody. For Hub1 detection, whole-cell extracts of WT or Hub1-RNAi treated HeLa cells as well as 
ectopically expressed 3xFLAG-tagged Hub1 in lysate and after FLAG-immunoprecipitation were 
analyzed by immunoblotting. c) Validation of Hub1 knockdown efficiency after RNAi using different 
siRNA oligonucleotides. 48 h after HeLa cells were transfected with siRNA, cells were harvested and 
lysed in denaturating RIPA buffer. Whole-cell lysates were analyzed by SDS-PAGE and immunoblotting 
using anti-Hub1 antibody. Tubulin served as a loading control.  
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Immunoblotting using the doubly affinity-purified anti-Hub1 antibody detected a 

specific band with a molecular weight of ca. 8 kDa, which corresponded to the size of 

endogenous Hub1 in whole-cell extracts (Figure 13b, first lane). Moreover, epitope-

tagged and immunopurified 3xFLAGHub1 from transfected HeLa cells was detected as 

a supershifted protein band in immunoblotting as well (Figure 13b). 

This newly generated antibody was used to validate and affirm in vivo 

depletion of Hub1 by RNAi. Several small interfering RNA oligonucleotides (siRNA 

oligos) were designed according to previously described criteria (Birmingham et al., 

2007; Reynolds et al., 2004). Cells transfected with Hub1-targeting siRNA or control 

oligo were analyzed by immunoblotting. Five different RNAi sequences were tested 

for successful knockdown in various cell types and endogenous Hub1 protein levels 

were significantly decreased when siRNA oligo iHub1.1 and iHub1.3 were 

transfected (Figure 13c). Furthermore, whole-cell extracts of Hub1 RNAi treated cells 

were subjected to immunoblotting and served as ideal control for Hub1-antibody 

specificity. Extracts from HeLa cells co-transfected with Hub1 siRNA and constructs 

expressing RNAi-resistant 3xFLAG-tagged Hub1 clearly showed efficient depletion of 

endogenous Hub1, while ectopically expressed 3xFLAGHub1 was detectable (Figure 

13b, third lane).  
 

4.10 In vivo depletion of Hub1 causes cell cycle defects and apoptotic 

cell death  

The aforementioned data indicate a special role of the ubiquitin-like protein Hub1 in 

human cells. Unlike other UBLs it is not conjugated to proteins but binds hSnu66 via 

a distinct unconventional interaction domain. In addition, Hub1 associates with 

nuclear speckles and splicing-related factors suggesting a role in pre-mRNA splicing 

in mammalian cells. After establishing the Hub1-targeted RNAi the key question of 

what might be the effect of Hub1-depletion in human cell lines was addressed. 

Initially, Hub1 knockdown cells were phenotypically characterized. For this, 

HeLa cells stably expressing GFP-tagged histone 2B (H2B-GFP) were transfected 

with siRNAs against either Hub1 or non-targeting control and monitored using live 

cell fluorescence microscopy. Intriguingly, 48 h post transfection Hub1 knockdown 

cells started to exhibit delays in cell cycle progression with subsequent mitotic 

defects, whereas in knockdown control cells no alterations were detectable (Figure 

14a). For example, while several control RNAi treated cells underwent cell divisions 

successfully in the depicted time-window of six hours, the Hub1-RNAi treated cells 

rarely divided, and, if they did, showed abnormal mitosis e.g. defects in metaphase 

plate formation or chromosome missegregation (Figure 14a). Live cell fluorescence 

microscopy with HeLa H2B-GFP demonstrated misaligned chromosomes during the 

arrangement of condensed chromosomes in metaphase and aberrant chromosome 

segregation during anaphase after Hub1 depletion.   
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 This phenotype was affirmed when cell cycle progression was quantified by 

measuring the time from nuclear envelope breakdown until successful telophase 

(Figure 14b). Control H2B-GFP HeLa cells completed mitosis faithfully after 

approximately 1.6 hours (mean: 105.6 min), whereas it took Hub1-depleted cells 

around 4.3 hours (mean: 283.6 min) to undergo mitosis. Frequently, transfected cells, 

which exhibit a significant delay in cell cycle, induced and underwent apoptosis at 

later time points (in particular when associated with mitosis) after prolonged 

incubation of Hub1 RNAi (Figure 14c).  
 

Figure 14: Knockdown of Hub1 causes cell cycle defects and mitotic catastrophe 

a) Live cell microscopy of H2B-GFP HeLa cells after RNAi either against Hub1 or non-targeting control. 
The images represent stills of time-lapse video microscopy at representative time points. Scale bar 
represents 10 μM. b) Quantification of cell cycle progression after Hub1 knockdown. Time in mitosis 
measured by live cell microscopy of H2B-GFP HeLa cells. Data represent mean and s.d. for control 
RNAi: mean 105.6 min (n=29) and Hub1 RNAi mean: 283.6 min (n=55). c) Quantification of cells 
undergoing apoptosis associated with mitosis. Counting of events during live cell imaging experiments 
with control of Hub1 RNAi H2B-GFP HeLa cells (n= 112). 
 

A more precise way to characterize defects in cell cycle progression is to use 

cell cycle synchronization and release methods. Here, RNAi-transfected HeLa cells 

were arrested in S-phase by two cycles of thymidine blocks and subsequently 
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released to undergo cell cycle synchronously. At the indicated time points, cells were 

harvested, fixed and stained for flow cytometry analysis (Figure 15a). While cells 

treated with control RNAi exhibited a typical wild type cell cycle distribution in the 

asynchronous sample with a major fraction in G1 phase (2n DNA content) and minor 

S-phase and G2/M phase (>2n and 4n DNA content), respectively, thymidine treated 

cells showed a clear S-phase arrest indicated by an accumulation of cell counts at 

the corresponding DNA content (>2n S-phase <4n). During the following release, 

cells progressed through cell cycle after completing S-phase, entering G2 and mitotic 

phase after five hours. After nine hours, a large fraction of cells had successfully 

undergone mitosis and cytokinesis, thus a prominent population of cells in G1 phase 

became apparent.  

Figure 15: In vivo depletion of Hub1 causes G2/M arrest  

a) Hub1 depletion leads to defects in cell cycle progression. HeLa cells were transfected with siRNA 
against Hub1 or control oligo and their cell cycles were synchronized by double thymidine block. After a 
second round of synchronization cells were released, harvested at indicated time-points, fixed and DNA 
content was stained for flow cytometry using propidium iodid. The overlay shows a time course of 
synchronized cell cycle progression after Hub1 or control knockdown. b) Cell cycle synchronization 
indicates deregulation of cell cycle proteins in Hub1 RNAi treated cells. After release from 
synchronization (as in (a)) HeLa cells were harvested and whole-cell lysates were analyzed by 
immunoblotting. Hub1 as well as cell cycle proteins Cyclin B1 and CDK1 as markers for G2 and M 
phase were detected by immunoblotting with their respective antibodies.  
 

Although Hub1 knockdown cells were successfully synchronized in S-phase, 

their release showed significant differences when cells reached G2/M phase, 

compared to control siRNA treated cells. Even after nine hours of release Hub1 RNAi 

cells were largely restricted to G2/M and only a marginal G1 population was 

detectable (Figure 15a). This cell cycle arrest was verified when asynchronous Hub1-

depleted HeLa cells were analyzed and a clear accumulation of cells in G2/M phase 

was detectable, confirming the cell cycle arrest observed in live cell microscopy 

(Figure 14).  

The eukaryotic cell cycle is highly regulated by a complex network of protein 

kinases, phosphatases and proteolysis factors like the APC/C (Pesin and Orr-

Weaver, 2008; Fisher et al., 2012). Cyclins and cyclin-dependent kinases (CDKs) are 

key players that coordinate temporal progression to ensure faithful DNA replication, 

segregation and cell division. As cyclin expression and CDK activity oscillate during 

the cell cycle (Hochegger et al., 2008), they are used as marker proteins to monitor 
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different cell cycle stages. Parallel to the flow cytometry assays, RNAi treated and 

synchronized cells were harvested at various time points and their extracts were 

analyzed by immunoblotting. Cyclin B1 protein levels started to rise in late S-phase 

and peaked in late G2 to early M phase, where CDK1 activity was highest as well, 

whereas both factors were expressed low in asynchronous and G1 cells (Porter, 

2008), as reflected in control RNAi transfected cells (Figure 15b). Hub1 knockdown 

cells exhibited an altered protein expression profile of Cyclin B1 and CDK1 in 

synchronized cell extracts. Here, Cyclin B1 and CDK1 did not accumulate over time 

during S to G2/M transition and no climax was detectable. Apparently, these Hub1 

depleted cells lacked the coordinated expression of cell cycle proteins, which is in 

line with the observed abnormal cell cycle progression after Hub1 RNAi. 

 For a more quantitative time-course, cells transfected with RNAi against Hub1 

or non-targeting control oligo were analyzed by flow cytometry after 48 hours and 72 

hours. The cell cycle profile of control cells remained unchanged over time and 

resembled the wild type profile with a large G1 fraction (> 40%) and minor mitotic 

populations in G2/M (around 15%). After 48 hours, Hub1-depleted cells displayed 

alterations in cell cycle progression and the G2/M arrest manifested with an increase 

of the G2/M population to over 35% (Figure 16a).  

Figure 16: Rescue of Hub1 knockdown-mediated cell cycle defects affirm RNAi specificity 

a) Time-course analysis of cell cycle distribution and induction of apoptosis after Hub1 depletion. 48 h 
and 72 h after Hub1 or control siRNA transfection HeLa cells were harvested, fixed, stained with 
propidium iodide and analyzed by flow cytometry. Cell cycle phases and apoptotic sub G1 fractions 
were quantified and are indicated next to the corresponding flow cytometry profile. b) Severe cell cycle 
phenotypes and apoptosis after RNAi are Hub1 knockdown specific. Complementation assays of Hub1 
RNAi by either expression of siRNA-resistant human Hub1 cDNA encoding for WT or HUB1 orthologs 
from S. cerevisiae (ScHUB1) or S. pombe (SpHUB1) were conducted. 24 h after transfection with siRNA 
targeting Hub1 or control, cells were co-transfected with respective constructs and incubated for 40 h. 
Cells were harvested, fixed and DNA content was stained for flow cytometry analysis.  
 

Interestingly, after 60-72 h an additional fraction among Hub1 knockdown 

cells became more prominent. In contrast to cycling cells, this population contains 

damaged or aberrant cells, which have underwent apoptotic cell death (Lecoeur, 
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2002). Among others, one particular hallmark of this cellular process is the nuclear 

fragmentation and DNA cleavage executed by specific DNases like Caspase-

activated DNase, CAD (Nagata, 2000). Apoptotic cells are detectable by flow 

cytometry as a population with DNA content size below that of intact G1 cells and are 

therefore termed “sub G1” fraction.  

Whereas the sub G1 fraction was marginal in control cells, in Hub1 RNAi 

samples this cell population increased drastically (≤ 4% in WT, > 12% in Hub1 RNAi). 

Notably, the subpopulation of G2/M arrested cells after 48 hours (around 35%) 

corresponded to the now apoptotic sub G1 fraction (ca. 13%) and the remaining 

G2/M population (ca. 20%) at the 72 hours time point. This further indicates that cells 

facing defects after Hub1 depletion arrest in the mitotic phase and cannot faithfully 

progress through the cell cycle. As the Hub1 deficiency persists and defects are not 

corrected, arrested cells are subjected to cell death via apoptosis. 

RNA interference is accomplished by the formation of a double-stranded RNA 

duplex between the transfected siRNA and the targeted mRNA, which is then 

recognized and degraded by the RNA-induced silencing complex (RISC) to achieve 

post-transcriptional gene silencing (Fire et al., 1998). To rule out any off-target effect 

of the designed siRNA oligo, complementation assays with expression constructs 

encoding siRNA-resistant cDNAs of Hub1 were conducted. Here, the complementary 

sequence within the Hub1 cDNA is changed by silent mutations, which makes it 

insusceptible to siRNA-mediated RISC-dependent, degradation while the 

endogenous Hub1 transcript is still efficiently knocked down.  

First, a co-transfection protocol had to be established to achieve high 

knockdown efficiency with, at the same time, sufficient plasmid transfection 

coverage. In the following experiments, cells were co-transfected with control or 

Hub1 targeting siRNAs and expression constructs encoding siRNA-resistant Hub1 or 

empty vectors. The flow cytometry analysis highlighted that control knockdown with 

concomitant Hub1 overexpression did not alter the cell cycle profile (as depicted in 

Figure 16b, first panel). As expected, Hub1 depletion (with co-expression of a control 

vector) caused severe cell cycle defects and an increase of cell death, which was 

reflected by the strong induction of apoptosis (see sub G1 fraction) and collapsed G1 

and G2 population peaks. Notably, this strong phenotype was rescued by 

complementation when siRNA-resistant human Hub1 had been co-transfected with 

Hub1 RNAi (Figure 16b). Here, the ectopically expressed Hub1 compensated the 

knockdown of endogenous Hub1 and the cell cycle profile was restored resembling 

cells with no G2 arrest nor major apoptosis events like control cells (protein levels of 

knockdown and ectopic expression shown in Figure 17c). The complementation of 

Hub1 RNAi by siRNA-resistant Hub1 cDNA confirmed the specificity of the siRNA 

oligo and proved that the observed cellular phenotypes were, indeed, related to the 

Hub1 depletion. Another interesting observation during the complementation 
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experiments was the rescuing capacity of different HUB1 orthologs (Figure 16b, 

fourth and fifth panel). Instead of co-transfecting siRNA resistant human Hub1 cDNA, 

Hub1-RNAi was now combined with mammalian expression constructs encoding for 

HUB1 from S. cerevisiae (ScHub1) or S. pombe (SpHub1). Interestingly, ScHub1 

was not capable of complementing Hub1 knockdown, which led to severe cellular 

defects and induction of apoptosis as monitored by a drastic increase in the sub G1 

fraction and reduced G1 and G2/M peaks. In contrast, S. pombe Hub1 efficiently 

rescued endogenous Hub1 depletion and fully restores cell cycle progression and 

Hub1-dependent activities. In line with the yeast complementation data, the RNAi 

rescue experiments underscore the finding that ScHub1 significantly differs from 

human and SpHub1 that own crucial protein properties that are essential for the vital 

functionality of Hub1 in higher eukaryotes. 

 

4.11 Hub1 RNAi entails DNA damage, mitotic catastrophe, and 

apoptotic cell death  

The morphological description by live cell imaging and flow cytometry analysis 

allowed the phenotypical characterization of cellular defects after Hub1 depletion by 

RNAi. An additional approach to identify Hub1 function and its pivotal role for cell 

viability is the molecular investigation of signaling cascades, which appear to be 

altered upon Hub1 knockdown. Thus, whole-cell extracts of RNAi treated cells were 

subjected to immunoblotting in order to monitor changes in key regulators levels and 

their activation.  

A profound cell cycle arrest is a hallmark of the Hub1 depletion phenotype, 

therefore DNA surveillance and cell cycle checkpoint pathways were tested. Here, 

the tumor suppressor p53 plays a central role, as it is activated upon DNA damage, 

DNA replication stress or various cellular stresses, e.g. hypoxia (Reinhardt and 

Schumacher, 2012). The p53 protein is not only transcriptionally regulated, but also 

under tight control by the ubiquitin-proteasome system, which constantly degrades 

inactive p53 via the ubiquitin E3 ligase HMD2 (Mdm2 in mouse). After its activation, 

p53 is stabilized and acts as a transcriptional regulator for a whole network of genes 

including either “repair and survival” factors like negative regulators of cell cycle 

progression (e.g. 14-3-3σ, p21WAF and Growth Arrest and DNA Damage gene 

GADD45a) or “cell death execution” factors of the Bcl-2 antagonist family like BAX, 

BAK and p53 up-regulated modulator of apoptosis (PUMA) (Vogelstein et al., 2000). 

It has been shown that p53 does not only control G1 or S-phase progression (Bartek 

and Lukas, 2001; Agarwal et al., 1998), but can also induce and maintain G2/M 

arrests, senescence and apoptosis (Bunz, 1998; Taylor and Stark, 2001). 

Proliferating, cycling U2OS cells transfected with non-targeting RNAi control 

do not face cellular stresses and thus exhibit low p53 and p21 protein levels, 

indicating inactive checkpoints (Figure 17).  
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In order to stimulate p53 activation, control cells were incubated with the 

transcriptional inhibitor actinomycin D (ActD), which binds DNA directly and 

abrogates transcription by blocking elongation of the emerging RNA strand during 

synthesis by RNA polymerase II (Bacchetti and Whitmore, 1969; Sobell, 1985). This 

triggers an increase in p53 stability and protein levels (Renton et al., 2003), but 

uncouples the transcriptional response targets like p21WAF (Ljungman et al., 1999; 

Zhu et al., 2007). Indeed, control knockdown cells showed high levels of p53, but only 

moderate levels of p21 after ActD treatment (Figure 17a). In contrast, Hub1 depletion 

in U2OS cells alone already led to p53 stabilization and an increase of p21 levels, 

when compared to control cells. Furthermore, the transcriptional inhibition with 

actinomycin D in combination with Hub1 knockdown again reduced p21 expression, 

while p53 remained up-regulated (Figure 17a).  

It appears that Hub1 is a crucial factor to ensure genome stability as indicated 

by microscopy and p53 data, thus, additional factors involved in DNA maintenance 

and repair were investigated. Beside exogenous factors like DNA attacking 

chemicals or UV- and gamma irradiation, defects in the DNA synthesis machinery, 

DNA replication stress or reactive oxygen species are intrinsic sources of DNA 

damage (Yi and He, 2013). After recognition of these damages by chromatin-

associated enzymes, signaling cascades initiate the activation of repair processes in 

order to excise and replace defective nucleotides or repair even severe DNA double-

strand breaks (DSBs) (Branzei and Foiani, 2008). The DSBs repair signal is 

transduced by the PI3 kinases DNA-dependent protein kinase (DNAPK), ataxia 

telangiectasia mutated (ATM) and its relative, ATR, which phosphorylate the histone 

variant H2AX at S139 (then termed γH2AX) and thereby generate a platform for 

subsequent recruitment of the DNA repair machinery (Lavin, 2008). Another branch 

of DNA repair deals with base lesions after cyclobutane pyrimidine dimer (CPD) or 

pyrimidine-pyrimidone photoadduct (6-4PP) formation as well as chemically modified 

nucleotides e.g. after alkylation and intrastrand crosslinks (Naegeli and Sugasawa, 

2011). Moreover, these genomic insults constitute severe obstacles that can block 

the transcription machinery and lead to stalling of RNA polymerases on the DNA. 

Proteins of the xeroderma-pigmentosum-related gene family (XP) have been shown 

to be crucial for the detection and subsequent repair of abovementioned DNA 

damages (transcription-coupled nucleotide excision repair, TC-NER (Mellon, 2005; 

Nouspikel, 2009)). While XPE (or DDB2) and DDB1 recognize lesions (Wittschieben 

et al., 2005), XPC in concert with hRad23B (Masutani et al., 1994) initiates local DNA 

unwinding by TFIIH (Sugasawa et al., 2009) and excision via XPF-ERCC1 with XPG 

(Bessho et al., 1997; O'Donovan et al., 1994).  

As depicted in Figure 17b, whole-cell extracts of RNAi treated cells were 

tested for changes in γH2AX and XPC levels. Intriguingly, Hub1 depletion alone led 

to an activation of DNA damage signaling, as a strong induction of γH2AX was 
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detectable, while control cells were unaffected and exhibited only low levels of the 

modified histone variant. The extent of H2AX phosphorylation in cells lacking Hub1 

was similar to that of actinomycin D treated control cells, but additional Hub1 

knockdown did not stimulate further phosphorylation of H2AX levels.  

Figure 17: Nuclear disintegration and DNA damage are characteristics of Hub1 knockdown and 

entail apoptosis 

a) Cell cycle regulator p53 is stabilized in Hub1-depleted cells. U2OS cells were transfected with RNAi 
targeting Hub1 or control and incubated for 60 h. After treatment with 5 μM actinomycin D (ActD) or 
DMSO (vehicle) for 6 h cells were harvested and whole-cell lysates were analyzed by immunoblotting 
using antibodies against p53, p21 or Hub1. b) Hub1 knockdown induces DNA damage mark γH2AX and 
abates nucleotide excision repair factor XPC. HeLa cells were transfected with Hub1 or control RNAi 
and incubated for 50 h. After treatment with 5 μM ActD or DMSO for 6 h cells were harvested and 
whole-cell lysates were analyzed by immunoblotting using antibodies against γH2AX, XPC or Hub1. 
Actin served as loading control. c) Hub1 RNAi induced DNA damage is rescued by siRNA-resistant 
Hub1 co-transfection. After RNAi targeting Hub1 or control HeLa cells were either co-transfected with 
siRNA-resistant 3xFLAGHub1 or treated with ActD (5 μM) for 6 h. Cells were harvested and whole-cell 
lysates were analyzed by immunoblotting using antibodies against γH2AX, Hub1, hSnu66 or PRPF8. d) 
Representative image of the abnormal (fragmented) nuclear morphology in human cells resulting from 
Hub1 depletion. 72 h after RNAi transfection HeLa cells were fixed and stained with α-Tubulin 
antibodies and DAPI. Scale bar represents 10 μM. e) Activation of the apoptotic cascade monitored by 
caspase 7 cleavage after RNAi. HeLa cells were transfected with RNAi targeting Hub1, hSnu66 or 
control and co-transfected with a plasmid expressing hSnu66-GFP, respectively. Cells treated with 
kinase-inhibitor staurosporine (STS, 2μM for 6 h) served as positive control. Immunoblots using 
antibodies against caspase 7 (detecting pro-caspase 7 and its activated (cleaved) form, Hub1, hSnu66 
and loading control PRPF8 are shown (similar results were obtained when assayed for caspase 3). 
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In addition, the nucleotide excision repair factor XPC, which facilitates 

recognition and repair of DNA lesions, was specifically down-regulated upon Hub1 

RNAi, even when cells were challenged with the drug Act D (Figure 17b and c). The 

complementation of Hub1 knockdown by the co-expression of siRNA-resistant Hub1 

cDNA prevented ATM/ATR activation and γH2AX induction, again confirming the 

specificity of the knockdown and the cellular alterations caused by Hub1 depletion 

(Figure 17c).  

The aforementioned role of Hub1 as crucial factor for genome stability 

became prominent after prolonged cultivation of Hub1-depleted cells (in U2OS cells 

>72 h, HeLa > 60 h). Although, initially arrested in G2/M phase, human cells depleted 

for Hub1 were able to overcome the cell cycle checkpoint and to exit from this 

blockage in cell cycle progression, which has been described as mitotic slippage (Di 

Leonardo et al., 1997; Riffell et al., 2009). Because of this unlicensed release with 

unsatisfied checkpoints these cells underwent aberrant mitosis, resulting in 

abnormal, fragmented nuclei and subsequent induction of apoptosis, as appreciated 

in live cell imaging as well as immunofluorescence staining (Figure 17d). In contrast 

to wild type or control RNAi cells, where nuclei were integer and regular in shape with 

a typical outspread α-tubulin network, Hub1 RNAi treated cells exhibited deformed 

and disintegrated nuclei, segmented and strangulated into multiple micronuclei, that 

were radially arranged around central dense α-tubulin material (Figure 17d, upper 

panel). The antibody staining of clustered α-tubulin emphasized structural 

abnormalities and nuclear rearrangements in Hub1-depleted cells.  

Shortly after aberrant mitosis, Hub1-depleted cells are not able to recover and 

undergo apoptotic cell death concomitant with caspase cascade activation. Upon 

profound cellular damage (here: genomic instability upon Hub1 inactivation) the 

intrinsic pathway of apoptosis is triggered and “initiator caspases” (caspase 2, -8, -9 

and -10) transduce the signal to “effector caspases” (caspase 3, -6 and -7) and 

activate them by proteolytic cleavage. These processed effector caspases act as 

highly active proteases that degrade the intracellular proteome and execute the cell 

death program (Riedl and Shi, 2004).  

To address this point, HeLa cells were transfected with RNAi targeting Hub1 or 

hSnu66 and co-transfected with hSnu66-GFP expression constructs, respectively. 

60-72 h post transfection, cells were harvested and lysed gently to avoid disruption of 

mitochondria (according to Deveraux et al., 1999) for caspase activation analysis. In 

cell lysates from control siRNA treated samples exclusively the uncleaved isoform of 

caspase 7, inactive pro-casp 7, was appreciated (Figure 17e). As a positive control, 

HeLa cells were treated with staurosporine (STS), which is a ATP-competitive kinase 

inhibitor and potent inducer of apoptosis (Okazaki et al., 1988). Indeed, STS 

treatment caused a massive activation of caspase 7 and thereby the appearance of 

the shorter isoform referring to proteolytically cleaved caspase 7. When Hub1 was 
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knocked-down, a similar activation was observed and pro-caspase was cleaved, 

indicating induction of apoptosis in these cells. Interestingly, hSnu66 knockdown also 

entailed severed defects in cell cycle progression and subsequent mitosis, leading to 

caspase-dependent apoptosis. Furthermore, neither Hub1 co-depletion with hSnu66 

by RNAi nor overexpression of the tri-snRNP protein could suppress the Hub1 

knockdown-dependent cell cycle defects and apoptosis (Figure 17e). Similar results 

were obtained when extracts were assayed for caspase 3 (data not shown) and in 

luminescence-coupled enzymatic cleavage experiments (see Figure 26c). 

 

4.12 The functional C-terminal surface is crucial to mediate the vital 

activity of Hub1 

After the phenotypical and molecular characterization of Hub1 knockdown it became 

evident that the Hub1-dependent activity is essential for human cells. Depletion of 

Hub1 leads to genomic instability and causes severe cell cycle defects, aberrant 

mitosis with subsequent nuclear segmentation and disintegration that finally entails 

apoptotic cell death. 

Taking advantage of the established complementation assay, where siRNA-

resistant Hub1 expression constructs were reintroduced into Hub1 knockdown cells, 

it was now possible to screen for loss-of-function mutations in Hub1, in order to 

address the question which surface on the protein is crucial to mediate its vital 

activity. Therefore, protein alignments of Hub1 orthologs were combined with the 

structural data obtained from the Hub1-HIND interaction studies. Residues D22 and 

K17 were particularly interesting, as they are involved in salt-bridge and interface 

formation between Hub1 and hSnu66 (Figure 18a). Moreover, the protruding R9 

residue located in the turn between β-sheet β1-2 was of interest, as it is important for 

yeast two-hybrid interaction with Clk3 (see Figure 5d). Besides the highly conserved 

residues (R9, K17 and D22) (see Figure 18b for alignment), another surface appears 

particularly interesting. On the opposing side of the Hub1-HIND interface, human 

Hub1 exposes three hydrophobic residues (W47, Y48, and F51) as a WYxxF motif 

on the “shoulder” formed by a loop between α2 and β3 to aqueous solvent (Figure 4a 

and 18a). As hydrophobic residues are usually buried inside the protein for 

stabilization or involved in the formation of hydrophobic interaction interfaces, this 

exposure of aromatic amino acids is thermodynamically unfavoured and unusual. 

While a motif, similar to the human WYxxF, is found in lower eukaryotes like S. 

pombe (comprising WHxxF) already, S. cerevisiae Hub1 does not contain the 

aromatic patch, but contains two glycines and leucine instead at these positions 

(S.c.: GGxxL).  

Various amino acid substitutions were introduced into the Hub1 coding 

sequence by site-directed mutagenesis and multiple mammalian expression 

constructs were generated for Hub1 RNAi complementation studies. In order to 
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ensure proper folding and expression of the different Hub1 mutant variants, protein 

levels were examined (Figure 18c). After RNAi treatment, cells were co-transfected 

with tagged (3xFLAG or GFP) Hub1 WT or mutant versions (D22A, R9A, W47G 

Y48G (WY-GG), W47G Y48G F51L (WYF-GGL) or combinations R9A D22A (RD), 

D22A W47G Y48G (D22A WY-GG), R9A W47G Y48G (R9A WY-GG), D22A W47G 

Y48G F51L (D22A WYF-GGL) and C-terminally tagged Hub1 (Hub1-GFP), 

respectively (Figure 18c).  

 

 
Figure 18: Characterization of crucial residues in Hub1 by mutational analysis 

a) Position of crucial amino acid residues within the human Hub1-HIND complex. Three different 
perspectives of the Hub1-HIND crystal structure highlighting special amino acid side chains. Amino 
acids of HIND are labeled in italics. Three classes of residues are grouped: crucial for Hub1-HIND 
interaction (D22A, K17, R127A, S117), C-terminal surface (R9 and C-terminal tags), and hydrophobic 
patch (W47, Y48 and F51). b) Protein sequence alignment of Hub1 orthologs from yeast to human. 
Amino acids identical with human Hub1 are shaded in light grey. Residues mentioned in a) and c) are 
highlighted in dark grey and labeled above. Further mutational analysis was performed on residues 
depicted below in light grey, data not shown. c) Expression of Hub1 point mutants in RNAi 
complementation assays. HeLa cells were co-transfected with either Hub1 or control RNAi and 
constructs encoding siRNA-resistant Hub1 WT, point mutants (single or combined) or GFP vector 
control. All mutants were experimental tested as N-terminally 3xFLAG- and GFP-tagged versions of 
Hub1. 60 h post-transfection cells were harvested and whole-cell lysates were analyzed by 
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immunoblotting using anti-GFP, anti-FLAG M2 and anti-Hub1 antibodies. hSnu66 and actin served as 
loading controls. 
 

In summary, none of the amino acid substitutions affected Hub1 protein 

stability negatively and mutant versions were expressed to similar extent, although, 

interestingly, alterations in the aromatic WY patch increased Hub1 protein levels. 

Beside the abovementioned mutations in Hub1, additional particularly interesting 

residues in putative motifs were tested (see Figure 18b, labeled grey below 

alignment), but will need further investigation (data not shown). For example, another 

central patch containing amino acids T35, G36, R38 and W39 play a potential role in 

human Hub1 oligomerization in vitro, whereas residues flanking T23 (DDTI) resemble 

an ideal polo-like kinase 1 (Plk1) phosphorylation consensus motif (D/E-x-S/T-

φ, with φ being a  hydrophobic residue) (Nakajima et al., 2003) implicated in cell cycle 

regulation and pro-apoptotic pathways.  

In the following experiments, Hub1 mutant versions were screened for their 

complementation capacities in RNAi treated cells. Initially, the focus was set on 

mutant alleles which interfere with the interaction between the ubiquitin-like protein 

Hub1 and the tri-snRNP protein hSnu66 via a conserved domain termed HIND, which 

is mediated via a salt bridge formed by D22 of Hub1 and R127 of hSnu66 (Figure 4). 

Mutating these residues abrogates the physical interaction between Hub1 and 

hSnu66 (Figure 5), the hSnu66-dependent recruitment of Hub1 to nuclear speckles 

(Figure 8) and Hub1-dependent nuclear retention of the N-terminal RS-domain 

(Figure 11). Reintroducing Hub1 WT into RNAi treated cells was able to fully rescue 

the Hub1-depletion phenotype, restore cell cycle progression and suppress the 

induction of apoptosis (Figure 19a, first three panels). Notably, performing the same 

experiment with the Hub1 D22A mutant largely complemented cell cycle defects and 

cell death. However, the rescue efficiency is significantly lower than that of WT Hub1, 

as indicated by the reproducibly restrained flow cytometry profile and underscored by 

quantification (see graph in Figure 19a). In further experiments, 3xFlag-tagged Hub1 

variants with additional single and double mutations (R9A, RDAA, D22AWYGG or 

D22AWYFGGL) were tested. None of the candidate Hub1 variants failed to rescue, 

but rather showed similar or even higher complementation capacity compared to the 

D22A single mutant (Figure 19b).  

To rule out any tag-specific effects on the Hub1 fusion protein, the same 

experiments and read-out were performed with GFP-tagged Hub1 and corresponding 

mutations (Figure 19c). Again, similar results were obtained and tagged Hub1 

mutants (D22AWYGG, D22AWYFGGL, R9AWYGG, R9AD22AWYFGGL) were able 

to complement to some extent. In fact, the complex triple-surface mutation 

R9AD22AWYFGGL, which interferes with the Clk3 association, hSnu66 binding and 

alters the hydrophobic patch, exhibited a more constricted flow cytometry profile than 
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single or double mutations, without affecting protein stability negatively (Figure 19c 

and 18c.  

Interestingly, the most striking phenotype was observed when Hub1’s C-

terminus was decorated with bulky (GFP) or highly charged (FLAG) tags. Although 

these versions of Hub1 were expressed and folded properly (as shown by hSnu66 

binding, Figure 5b) they were not capable of rescuing the Hub1 RNAi-mediated 

defects and subsequent apoptosis. In contrast to control transfected cells with few 

apoptotic cells (sub G1 fraction: 1.9%), cell death and apoptotic sub G1 fraction 

increased upon Hub1 knockdown (sub G1: 16.2%).  

Figure 19: Complementation of Hub1 RNAi cytotoxicity by co-expression of Hub1-point mutants 

a) hSnu66-binding mutant Hub1 (D22A) partially rescues Hub1 RNAi-mediated cell death. Complemen-
tation of Hub1 RNAi by either expression of siRNA-resistant human Hub1 cDNA encoding for WT or 
D22A mutant. 24 h after transfection with siRNA targeting Hub1 or control, cells were co-transfected 
with respective constructs and incubated for 40 h. Cells were harvested, fixed and DNA content was 
stained for flow cytometry analysis. Right panel: Quantification of apoptotic sub G1 fraction in Hub1 
complementation assays. Mean and s.d. of at least three independent experiments are shown. b) Single 
or combined point mutations in Hub1 slightly reduce complementation capacity. HeLa cells were co-
transfected with either Hub1 or control RNAi and constructs encoding siRNA-resistant Hub1 WT or point 
mutants (single or combined) or GFP vector control. 60 h post transfection cells were harvested, fixed 
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and DNA content was analyzed by flow cytometry. Three groups of Hub1 mutations: Hub1-HIND 
interaction (D22A), C-terminal surface (R9) and hydrophobic patch (W47, Y48 and F51) and their 
combinations are shown. Protein expression levels were tested as shown in Figure 18 c). d) The C-
terminal surface is essential for Hub1 function. After Hub1 or control RNAi HeLa cells were transfected 
with siRNA-resistant Hub1 N- or C-terminally tagged with either FLAG or GFP, they were harvested, 
fixed and prepared for flow cytometry analysis. (vice versa experiments with exchanged tags e.g. using 
C-terminal FLAG resulted in the same deficiency). e) Quantification of apoptotic sub G1 fractions after 
RNAi in complementation assays with Hub1 mutants. Mean and SD of at least three independent 
experiments are shown. 
 

While N-terminally tagged Hub1 was able to efficiently compensate the 

deleterious depletion of endogenous Hub1 (sub G1 dropped to 3.1%), the C-terminal 

fusion (here Hub1-GFP) failed to reconstitute the Hub1-dependent, vital activity (sub 

G1: 21.8%) (Figure 19d).  

The same deficiencies in RNAi complementation were detected when Hub1 

was C-terminally FLAG-tagged (data not shown). Importantly, overexpression of C-

terminally tagged Hub1 (Hub1-GFP or Hub1FLAG) in human cells alone (without RNAi 

pre-treatment) did not show a dominant negative phenotype in any assay tested (flow 

cytometry, apoptosis induction, morphological changes, immunofluorescence). 

Altogether, those data indicate that hSnu66 binding via HIND and D22 contributes to 

Hub1’s activity, but its C-terminus appears to mediate the vital function of Hub1.  

 

4.13 Altered distribution of splicing factors and retention of mRNA 

upon Hub1 depletion in vivo  

In human cells Hub1 localizes to nuclear speckles and is tightly linked to central 

splicing-associated factors like tri-snRNP protein hSnu66 and SR-kinase Clk3. As 

shown by abovementioned RNAi experiments, depletion of Hub1 alters the 

intracellular homeostasis and thereby generates severe defects in cells, which lead 

to cellular responses like cell cycle arrest and subsequent cell death. As pre-mRNA 

processing and splicing are essential pathways in all eukaryotic cells, the fate of pre-

mRNA maturation in Hub1 knockdown cells was investigated. For this, 

immunofluorescence staining of nuclear speckle marker protein SC35 was combined 

with the RNA fluorescence in situ hybridization (RNA FISH) technique targeting the 

poly (A) tail of mRNA after polyadenylation using fluorescently labeled oligo-dT 

probes (Tokunaga and Tani, 2008). 

Already during RNA synthesis and co-transcriptional processing like capping, 

splicing and subsequent poly-adenylation, pre-mRNA is handed over to the nuclear 

export machinery and the mature transcript is released to the cytoplasm for 

translation into proteins where it is finally degraded (Maniatis and Reed, 2002). Thus, 

besides the cytoplasm and nucleoplasm polyadenylated mRNA has been found to 

pass nuclear speckles as well, as it was shown to co-localize with SC35-domains 

(Dias et al., 2010; Tokunaga et al., 2006).  

In line with previous reports, normal SC35 domains with many small foci 

distributed within the interchromatin space were visualized in control RNAi cells 
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(Figure 6 and 20a). Furthermore, RNA FISH visualized the exported cytoplasmic pool 

of polyadenylated mRNA as well as its nuclear fraction partially co-localizing with 

SC35 (Figure 20a, left panel). In contrast, when Hub1 knockdown cells were 

examined, an aberrant SC35 pattern was apparent with high enrichment in nuclear 

speckles and small distinct foci collapsed into enlarged assemblies (Figure 20a). 

Additionally, not only SR proteins like SC35 were affected, but also polyadenylated 

mRNAs as shown by FISH. Hub1 RNAi caused strong nuclear retention of RNA 

species, while the cytoplasmic signal concomitantly decreased. Interestingly, 

polyadenylated mRNA accumulated in enlarged nuclear speckles as shown by co-

localization in SC35 immunostaining (Figure 20a). 

Figure 20: In vivo depletion of Hub1 causes an altered distribution of splicing factors and 

nuclear retention of polyadenylated mRNA 

a) SR protein SC35 and mRNA exhibit an aberrant accumulation in nuclear speckles after Hub1 
knockdown. After transfection of Hub1 siRNA or control oligos, cells were fixed, permeabilized and 
immunostained with phospho-SC35 antibodies (red) combined with poly-dT FISH targeting 
polyadenylated mRNA (green). b) Several splicing-associated factors show an altered nuclear 
distribution after Hub1 knockdown. RNAi treated cells were fixed, permeabilized and immunostained for 
2,2,7-trimethylguanosine (3mG cap) of snRNAs, U1 snRNP protein U1A, or heterogeneous ribonucleo-
protein particle hnRNP1 (all red). Nuclei were counterstained with DAPI (blue). Scale bars represent 10 
μM.  
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 After focusing on splicing speckle marker proteins and to further prove that 

this nuclear retention and aberrant localization after Hub1 depletion is not restricted 

to SC35 or polyadenylated mRNA, additional factors of the splicing machinery were 

examined. As depicted in Figure 20b, several spliceosomal factors showed 

prominent changes in their localization and distribution. Immunostainings with 3mG-

specific antibodies recognizing the hypermethylated cap of non-U6 snRNAs (U1, U2, 

U4, U5, see chapter 2.4), elucidated major rearrangements and altered nuclear 

distribution after Hub1 RNAi compared to control knockdown cells (Figure 20b, upper 

panel). Similar defects and altered nuclear localization were observed for the U1A 

protein, which binds to the U1 snRNA stem loop and thereby acts as a marker for U1 

snRNPs localizing to Cajal bodies, nuclear speckles, and the nucleoplasm as well as 

for PTBP1 (alias pyrimidine track binding protein 1 or hnRNP1) that belongs to the 

hnRNP family of negative regulators for splice site selection.  

Based on data showing that pre-mRNA splicing and nuclear export are tightly 

interconnected (Reed and Hurt, 2002) and unprocessed or improperly spliced 

transcripts are retained in nuclear speckles (Kaida et al., 2007; Dias et al., 2010) the 

hypothesis that Hub1 is a crucial factor for faithful splicing and mRNA processing in 

human cells was supported by the finding that Hub1 depletion causes an altered 

distribution of various splicing factors like SC35 and nuclear retention of 

polyadenylated mRNA in enlarged nuclear speckles.  

As RNAi complementation experiments highlighted different functional 

surfaces on Hub1, stable cell lines expressing the corresponding, mutated versions 

of Hub1 were tested in SC35 localization assays. Therefore, U2OS cells stably 

expressing siRNA-resistant GFP-Hub1 WT, GFP-Hub1 D22A, Hub1-GFP or free 

GFP were transfected with control or Hub1 targeting RNAi. After incubation cells 

were pre-extracted, fixed and stained for nuclear speckle marker phospho-SC35 to 

examine its nuclear distribution. In control RNAi cells as well as Hub1 WT cells SC35 

and GFP-Hub1 localization was not altered and small splicing foci were equally 

distributed throughout the interchromatin space (Figure 21a). Moreover, in 

complementation assays GFP-Hub1 D22A also co-localizes with SC35 like Hub1 WT 

in small discrete nuclear speckles (like in Figure 7a, without RNAi treatment). 

However, after Hub1 knockdown in GFP control cells or in U2OS expressing the 

functionally inactive version of Hub1 (Hub1-GFP), SC35 accumulates in enlarged 

splicing speckles and displays an aberrant nuclear distribution. Moreover, in contrast 

to GFP-Hub1 WT and D22A, C-terminally GFP-tagged Hub1 was washed out during 

the pre-extraction step thus nuclear staining was negative, indicating that Hub1-GFP 

was not incorporated into protein complexes within nuclear substructures similar to 

free GFP. Altogether, Hub1 conveys an important activity to maintain proper 

dynamics of SR protein shuttling and pre-mRNA processing.  
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 Additionally, the impact of Hub1 on general mRNA export was compared to 

central components of the conserved TREX (TRanscription-EXport) complex and 

mRNA export machinery. In RNAi experiments two closely related major RNA 

helicases UAP56 and URH49 with redundant activities (Kapadia et al., 2006; 

Strasser et al., 2002) were co-depleted in vivo and polyadenylated mRNA was 

stained by poly-dT FISH (Figure 21b). 

Figure 21: Hub1 RNAi complementation restores aberrant nuclear localization of splicing factors 

with Hub1 functioning upstream of mRNA export  

a) Altered SC35 distribution is rescued in RNAi complementation assay. Hub1 or control RNAi 
transfected into U2OS cells stably expressing siRNA-resistant GFP-Hub1, GFP-Hub1 D22A, Hub1-GFP, 
or free GFP (all green). Cells were pre-extracted, fixed and stained for nuclear speckle marker phospho-
SC35 (red). DAPI (blue) was used as nuclear counterstain. b) Nuclear mRNA retention after Hub1 RNAi 
is less profound than in mRNA export knockdown cells. Cells were transfected with RNAi against Hub1, 
mRNA export helicases UAP56/URH49 or control. Fixed, permeabilized and polyadenylated mRNA was 
stained by poly-dT FISH (red) and nuclear counterstain (DAPI, blue). Scale bars represent 10 μM. 
 
Control RNAi cells presented the normal cellular distribution of polyadenylated mRNA 

in the nucleus (found in nuclear speckles and the nucleoplasm) and diffusely in the 

cytoplasm. Simultaneous knockdown of UAP56/URH49 efficiently blocked mRNA 

export and led to a strong accumulation of polyadenylated mRNA in the nucleus and 

nuclear speckles, while the cytoplasmic fraction was virtually absent (Yamazaki et al., 
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2010). In comparison cells depleted of Hub1 showed an intermediate phenotype with 

less profound mRNA export defect as polyadenylated mRNA was retained in the 

nucleus and accumulated in nuclear speckles, but reduced amounts of cytoplasmic 

transcripts were detectable.  

 In summary, although polyadenylated mRNA is retained in the nuclear 

compartments after Hub1 knockdown, Hub1 does not play a central role in mRNA 

transport, like the general mRNA export factors helicases UAP56/URH49, but its 

action appears to be important for crucial steps further upstream to ensure proper 

splicing and pre-mRNA processing. 

 

4.14 Identification of splicing defects upon Hub1 knockdown using 

splicing reporter systems 

The cell biological characterization of Hub1 depletion in human cells elucidated 

various alterations of cellular pathways involved in pre-mRNA processing. RNAi 

experiments showed that Hub1 is necessary for the proper localization of splicing 

factors and nuclear export of mRNA. If the pre-mRNA splicing machinery is impaired 

and aberrant transcripts accumulate, this interferes with downstream RNA 

processing and can lead to similar phenotypes (Girard et al., 2012; Kaida et al., 

2007). In order to address the function of Hub1 in pre-mRNA splicing, an artificial 

minigene splicing reporter was used. Minigenes are helpful and commonly used tools 

to characterize various aspects of pre-mRNA splicing, for example recognition and 

usage of different 5’ss, 3’ss, or pyrimidine tract sequences (Singh and Cooper, 2006; 

Stoss et al., 1999; Shapiro and Senapathy, 1987). In addition, minigenes allow the 

characterization of cis-regulatory elements like splice site enhancers or silencers in 

alternatively spliced transcripts and identification of trans-acting splicing factors e.g. 

hnRNP and SR proteins (Wang and Burge, 2008; Lopez, 1998).  

Here, the vector based fluorescent pGint / pRint reporter system was used 

(Bonano et al., 2007), in which the protein coding sequence for enhanced GFP 

(EGFP) was divided into two exons by a constitutively spliced intron (in the case of 

pGint). The same intron insertion was introduced into the open reading frame of RFP, 

generating the pRint constructs. The expression constructs carry an adenoviral intron 

of 125 nt in pGint and 122 nt in pRint, respectively, comprising consensus splice 

sites, strong branch point and polypyrimidine tract (Figure 22a). Based on the pGint 

reporter, various variants with different 5’ splice sites were generated by site-directed 

mutagenesis in order to modulate splice site strength (see table in Figure 22a), while 

pRint’s intron sequence remained unchanged, thereby serving as an internal control 

when co-transfected.  

For mRNA splicing assays cells were treated with RNAi targeted against 

Hub1 or control, and abovementioned reporters, pGint or its 5’ splice site variants, 

were co-transfected with pRint. After isolation of total RNA and cDNA synthesis via 



Results 

 64 

reverse transcription, splicing reporter specific primers (located in flanking 5’ and 3’ 

exon of GFP and RFP, respectively) spanning the intron were used to detect spliced 

and unspliced transcripts. As expected, in RNA samples from control RNAi treated 

cells only the mature and properly spliced transcripts with a size of 320 nt for pGint 

and 375 nt for pRint were detectable (Figure 22b, upper right panel). In contrast, 

when pGint transcripts from Hub1 knockdown cells were analyzed, an additional RT-

PCR product was detectable beside the mature transcript. This product with a total 

fragment length of ca. 445 nt comprised additional 120 nt, resembling the size of an 

unspliced transcript with retained intron (Figure 22b, upper left panel). This 

accumulation of an unspliced transcript product was also detected in pRint control 

samples albeit to a lesser extent. Notably, minor variations at the 5’ splice site (pGint: 

GTGAGTA) generating strong, previously well characterized sequences (Burset et 

al., 2001; Roca et al., 2005), namely canonical human GTAAGTA, constitutive 

human GTATGTA or canonical S. cerevisiae GTATGTT, did not significantly affect 

splicing efficiency in this read-out (Figure 22). 
 

Figure 22: Splicing reporters indicate Hub1’s crucial role for efficient pre-mRNA splicing 

a) Schematic representation of splicing reporters (pGint/pRint) depicting exon-intron structure and 5’ 
splice site (5’ss) variations tested. Intron-containing GFP-encoding reporter pGint with alternative 5’ss 
sequences for strong splice sites (upper part of table) or mutated weak splice sites (lower table, 
percentage shows splice site usage in human transcripts (Burset et al., 2001)) was co-transfected with 
RFP-expression construct pRint serving as constant internal control. Sizes of mRNA products are given 
below: unspliced (US) or spliced (MS, mature spliced transcript). b) Hub1 is important for proper splicing 
of reporter pre-mRNAs. Splicing reporter constructs pGint or its 5’ss variants were co-transfected with 
pRint into Hub1 RNAi treated cells and total RNA was isolated for RT-PCR analysis. Specific primers 
spanning the intron for detection of spliced and splicing-defective mRNAs.  
 

Additional pGint constructs with mutated, weaker 5’ splice sites (Table in 

Figure 22a (Buratti et al., 2007; Burset et al., 2001) were tested, in order to determine 
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whether these substitutions would sensitize and further alter pre-mRNA splicing after 

Hub1 knockdown in human cells. While control RNAi treated cells did not show any 

alterations in splicing of these pGint variants, Hub1-depleted cells were not able to 

properly splice pGint transcripts, thus an additional, enlarged RT-PCR product was 

detectable besides the maturely spliced mRNA. However, weakening 5’ splice sites 

by introducing changes at the exon-intron boundary artificially did not lead to a further 

increase of unspliced mRNA after Hub1 RNAi. These splicing reporter assays 

underscore Hub1’s implication in the splicing machinery and further support its role 

as a crucial factor ensuring faithful pre-mRNA splicing in human cells.  

 

4.15 The splicing factor Hub1 is crucial for efficient and faithful pre-

mRNA splicing in human cells 

Although minigenes are commonly used for the characterization of splice sites and 

exon usage in constitutive and alternative splicing (Cooper, 1999; Singh and Cooper, 

2006; Cooper, 2005), endogenous transcripts are controlled by additional layers of 

regulation for example by histone modifications in the chromatin context or RNA 

Polymerase II CTD phosphorylation, transcription elongation speed and pausing (see 

(Cramer et al., 1999; la Mata et al., 2003; Luco et al., 2011; Moore and Proudfoot, 

2009). Based on the splicing reporter data, further experiments were carried out to 

characterize Hub1’s impact on pre-mRNA splicing of endogenous transcripts.  

First, transcripts were analyzed that are known to be under tight control of the 

splicing machinery, as they can be alternatively spliced upon stimuli or under certain 

cell growth conditions (developmental stages or metastasis) (Li et al., 2006; Lopez, 

1998; Shkreta et al., 2011). For this, total RNA was isolated after cells had been 

transfected with control RNAi or siRNA-oligos targeted against Hub1, hSnu66 or the 

SR protein ASF/SF2 (alternative splicing factor/splicing factor 2; alias: SFRS1). After 

cDNA synthesis via reverse transcription gene-specific primers targeting flanking 

exons in Mcl-1 (myeloid cell leukemia sequence 1 (BCL2-related), exon 1-2), Casp2 

(caspase 2, exon 6-7), ATG4 (autophagy related 4B, cysteine peptidase (exon 12a-

13, UV treatment to induce alternative splicing) and beta-actin (exon 3-4) were used 

to detect alternatively spliced and unspliced transcripts (Figure 23a).  

When control cells were analyzed by RT-PCR using transcripts specific 

primers, only one prominent band corresponding to the maturely spliced mRNA was 

apparent. Interestingly, in Hub1 RNAi samples, additional RT-PCR products of Mcl-1, 

Casp2 and ATG4 were detectable. The molecular sizes of these enlarged PCR 

bands were compared with intronic and exonic sequences of the targeted genes 

showing that the higher migrating band resembled the unspliced pre-mRNA of 

candidate transcripts. Another interesting finding based on the comparison of Hub1 

RNAi-dependent splicing defects with RT-PCR results from hSnu66 or ASF/SF2 

knockdown cells. Although the tri-snRNP protein hSnu66 interacts with Hub1 and 
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they co-localize in nuclear speckles, the impact on accurate pre-mRNA splicing 

diverges in splicing assays. While both, Hub1 and hSnu66 knockdown, affect Mcl-1 

splicing and unspliced intermediates accumulate, defects in Hub1 samples appear 

more severe for Casp2 or ATG4 transcripts than in hSnu66 knockdown cells. Similar 

results were obtained for ASF/SF2, as similar mis-splicing was detected for ATG4 in 

Hub1 and ASF/SF2 samples, but not for Casp2 or Mcl-1. In addition to the splicing 

reporter data, this experiments support Hub1’s role as a crucial factor for proper 

splicing of various endogenous transcripts.  

 
Figure 23: Depletion of Hub1 leads to aberrantly spliced mRNAs and altered splicing patterns  

a) Depletion of Hub1 causes aberrant splicing of endogenous transcripts. After knock down of Hub1, 
hSnu66 or ASF/SF2 cells were harvested and total RNA was isolated. mRNAs of Mcl-1, Casp2 and 
ATG4 were subjected to intron-spanning RT-PCR. b) Detection of aberrant splicing of endogenous 
transcripts with putative weak 5’ splice site after Hub1 knockdown. mRNAs of v-akt murine thymoma 
viral oncogene homolog 1 (Akt), RAD23 homolog A (Rad23A) and Aurora kinase A (AurkA) were 
subjected to intron-spanning RT-PCR (targeted exons indicated on the side). c) Hub1 knockdown 
influences alternative splicing of fibronectin mRNA and efficient splicing in minigene-assays. Genomic 
fragments containing alternatively spliced exons of fibronectin 1 (FN1, exon 31-34 incl. EDA), 
tropomyosin 1 α (TPM, exon 4-7) or Myeloid cell leukemia sequence 1 (BCL2-related) (Mcl-1, exon 1-2) 
expressed as minigenes in U2OS cells after Hub1 or control RNAi. After isolation of total RNA and 
reverse transcription, minigene-specific primers were used for PCR to detect altered splicing patterns 
(schematic exon-intron structure of minigenes depicted alongside). 
 

Co-transcriptional recruitment of splicing factors to regulatory sequence 

elements within the nascent transcript and emerging exon-intron boundaries (splice 

sites) orchestrate the stepwise assembly of the spliceosome. Weak splice sites are 

considered to be recognized poorly by the splicing machinery and thereby require 

auxiliary factors (like SR proteins) to ensure proper and efficient splicing of intronic 

sequences. Thus, endogenous pre-mRNA transcripts with weak splice sites (Ahn et 

al., 2011) were investigated further in Hub1 knockdown experiments. Here, total RNA 

from Hub1 RNAi treated cells was tested for aberrant splicing of transcripts of v-akt 

murine thymoma viral oncogene homolog 1 (Akt), RAD23 homolog A (Rad23A) and 
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Aurora kinase A (AurkA) by intron-spanning RT-PCR (Figure 23b). Indeed, cells 

lacking Hub1 exhibited defective splicing and aberrantly spliced mRNA with retained 

introns accumulated. However, in control RNAi samples exclusively mature 

transcripts of Akt, Rad23A and AurkA were detectable in RT-PCR analysis.  

In parallel to experiments focusing on endogenous transcripts, sophisticated 

minigene assays were established. Instead of artificial transcripts like the intron-

containing GFP ORF in pGint, genomic fragments containing alternatively spliced 

exons of fibronectin 1 (FN1, exon 31-34 incl. EDA alias EIIIA), tropomyosin 1 α 

(TPM, exon 4-7, incl. NM and SK exons) or myeloid cell leukemia sequence 1 (BCL2-

related) (Mcl-1, exon 1-2) were expressed as minigenes as described previously 

(Stoss et al., 1999; White and Muro, 2011; Gooding and Smith, 2008; Bae et al., 

2000). These transcripts have been widely studied to address molecular processes 

like splice site usage, cis-acting regulatory elements and alternative splicing. After 

these genomic fragments were introduced into Hub1 or control RNAi treated U2OS 

cells as minigenes, total RNA was isolated, reversely transcribed and analyzed with 

PCR using minigene-specific primers to detect altered splicing patterns.  

Gene products of fibronectin 1 (FN1) are well characterized and have been 

shown to give rise to various mRNA isoforms due to three alternatively spliced 

regions, namely extra domain A (EDA), extra domain B (EDB) and type III connecting 

segment (V region) (White and Muro, 2011). Alternative splicing of EDA, EDB or V 

region by exon retention or exclusion generates over 20 different isoforms of the 

extracellular matrix protein during developmental stages, tissue injuries or malignant 

transformation of human cells (Magnuson et al., 1991; Muro et al., 1998). Strikingly, 

when exons 31-34 of fibronectin 1 were examined, analysis of the splicing pattern 

elucidated that Hub1 depletion led to skipping of exon EDA and alternative splicing of 

FN1 (Figure 23c). In control cells the FN1 minigene expresses three isoforms to 

almost equal amounts including transcripts containing the EDA exon. The latter 

isoform is largely diminished in Hub1 knockdown cells while the smaller EDA 

negative transcripts appear more abundant, suggesting that Hub1 is necessary for 

correct exon usage and EDA exon retention during alternative splicing of fibronectin.  

 Similar defects could be identified in transcripts encoding for the actin filament 

binding protein tropomyosin 1 α. Here, alternative splicing is utilized to generate 

tissue-specific mRNA isoforms by preferentially retaining the NM (non-muscle) exon 

in non-muscle cells like fibroblasts, while the SK (skeletal) exon is preferred in 

skeletal muscle instead (Lin and Tarn, 2005; Xing and Lee, 2006). Analysis of 

tropomyosin transcripts in Hub1 knockdown cells revealed an aberrant splicing 

pattern compared to control cells (Figure 23c). From total RNA of control cells two 

transcripts were detected in RT-PCR assays, one corresponding to the long isoform, 

which comprises exons 4-5-NM-SK-7 and the other short isoform lacking the NM 

exon, which results in mRNAs containing exon 4-5-SK-7. Hub1-depleted cells 
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showed defective splicing of TPM, with reduced inclusion of the NM exon and 

retention of the intron between exon 5 and the NM exon.  

Another gene tested for Hub1-dependent alternative splicing illustrates how 

switching between different transcript isoforms regulates cellular pathways and 

determines the fate of cells. The human Mcl-1 gene can give rise to three mRNAs 

termed Mcl-1L, Mcl-1S and Mcl-1ES (additional Mcl-1V variant in mouse) (Kim et al., 

2009; Kojima et al., 2010), which are translate into protein isoforms with opposing 

functions. While the large transcript Mcl-1L encodes the anti-apoptotic variant 

comprising the transmembrane and all BCL2-homology (BH) domains 1-4, the 

shorter mRNA isoform Mcl-1S formed by alternative splicing of exon 2 produces the 

pro-apoptotic Mcl-1S protein variant lacking the crucial BH1, BH2 and TM domains. 

The other pro-apoptotic variant, Mcl-1ES, in which alternative splicing of exon 1 

excludes the PEST sequence, encodes a hyperstable protein isoform and acts, like 

Mcl-1S, as a negative regulator of Mcl-1L to induce mitochondrial cell death (Bae et 

al., 2000; Bingle et al., 2000). The Mcl-1 minigene with genomic fragments containing 

alternatively spliced exons 1 and 2 was analyzed by RT-PCR after RNAi treatment. 

Upon Hub1 depletion, cells were defective in faithful splicing of the Mcl-1 transcript 

and mRNAs with retained intron 1-2 accumulated, in contrast to control cells, which 

showed proper splicing of Mcl-1 (Figure 23c). 

In summary, the findings above consolidate and support Hub1 functioning in 

pre-mRNA splicing, as its depletion leads to altered splicing patterns and 

accumulation of aberrantly spliced transcripts from minigenes as well as on 

endogenous expression levels. 

In order to further characterize Hub1-dependent splicing of Akt and AurkA 

mRNAs, the corresponding genomic sequences were introduced into minigene 

constructs and tested in RT-PCR assays after Hub1 knockdown (Figure 24a). The 

examination of critical exon-intron boundaries in Akt (exon 11-12) and AurkA (exon 9-

10) transcripts from minigenes verified the aforementioned splicing defects with 

intron retention in Hub1-depleted cells, which was absent in control cells (Figure 24a, 

upper and middle panel). An additional gene was identified in an exon-specific 

microarray (see chapter 4.16) and characterized in analogous minigene assays: 

Laminin 5 alpha (Lama5). The transmembrane protein laminin 5 contacts integrins 

and components of the extracellular matrix, where it mediates attachment, migration, 

differentiation and organization of cells into tissues (Nguyen and Senior, 2006; 

Spenlé et al., 2013). In genome databases, more than 15 transcript isoforms for the 

Lama5 gene are documented, including an alternatively spliced variant of 5’ exon 63 

and exon 64 (mapped sequence Ensembl ID: AK074307).  
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Figure 24: Hub1 is crucial for accurate splicing of specific splice events in vivo  

a) Aberrant splicing of Akt, AurkA and Lama5 after Hub1 knockdown in RT-PCR based minigene 
assays. Minigenes were co-transfected with Hub1 or control RNAi and splicing patterns were analyzed 
by RT-PCR after total RNA extraction. b) Comparison of splicing specificities dependent on Hub1 and 
splicing factors hSnu66 and Son. Splicing of Hub1-dependent introns and flanking exons in Akt, Mcl-1 
and AurkA mRNAs was analyzed by gene-specific RT-PCR after RNAi against Hub1, hSnu66 or Son in 
U2OS. Primer sets indicate Hub1-sensitive introns in the respective transcripts tested in RNAi 
experiments (red arrow heads), whereas mapping studies with PCR primers located in flanking 
sequences (black arrow head) detected no splicing alterations in neighboring exons/introns. c) Splicing 
proficiency in Hub1 RNAi complementation assays. Stable U2OS cells were transfected with Hub1 or 
control siRNA for subsequent isolation of total RNA. AurkA, Mcl-1, Akt and Tubulin as control were 
subjected to intron-spanning RT-PCR. 
 
After minigene expression of Lama5 gene fragments (containing alternatively spliced 

exons 63 to 65), three transcripts were detectable, corresponding to constitutively 

spliced exons 63-64-65 (448 nt, all three exons), alternatively spliced exons 63+65 

(310 nt, skipping exon 64) and an isoform with retained intron between exon 63-64 

(620 nt, 63-intron-64-65, Figure 24a, lower panel). Lama5 pre-mRNA is spliced in a 

Hub1-dependent manner, as RNAi experiments demonstrated the accumulation of 

transcripts with intron retention when Hub1 was depleted. While the small 

alternatively spliced transcript variant with exons 63+65 was slightly reduced and 
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mRNAs with constitutively spliced exons 63-64-65 were equally expressed, one 

additional intron-containing mRNA became evident. Beside the intron-containing 

mRNA consisting of exon 63-intron-64-65, the unspliced transcript with exon 63-

intron-64-intron-65 and both retained introns accumulated (Figure 24a). 

Aberrant splicing upon Hub1 RNAi affects various transcripts and leads to 

alternatively spliced mRNA isoforms, proposing two possible models for Hub1 

function. Hub1 could act as a constitutive spliceosomal factor, whose depletion could 

interfere unspecifically with general splicing of pre-mRNA. If this was the case, the 

catalytic activity of the spliceosomal machinery should be significantly reduced and 

any intron would be spliced with low efficiency in a sequence-independent manner. 

Alternatively, Hub1 could have a specific function by supporting spliceosomal activity 

and robustness at problematic splicing events to ensure accurate progression 

through the splicing cycle. Then, Hub1 would be crucial for splicing of a number of 

certain particularly sensitive pre-mRNAs or introns and functions in human cells. 

Thus, the previously identified Hub1-dependent transcripts were re-examined 

and tested for intron-retention or mis-splicing, now including exon-intron boundaries 

of the flanking sequences. Several primer pairs were used in various combinations 

covering neighboring exons within the Akt, AurkA and Mcl-1 genes, respectively 

(Figure 24b, primer positions indicated as arrowheads in schematic representation of 

transcripts). If Hub1 depletion would lead to general splicing defects and insufficient 

removal of intronic sequences unspecifically, RT-PCR analysis would detect larger 

transcripts constantly, as additionally retained introns increase PCR product size. 

While in control samples exclusively maturely spliced products were detectable, in all 

cases Hub1 knockdown-induced altered splicing patterns were reproducibly intron-

specific. With PCR primers located in neighboring exons spanning additional flanking 

exons and introns, no further size shift of mRNAs was identified in RT-PCR assays. 

For example, analysis of Akt transcripts confirmed the intron-retention between exon 

11-12 upon Hub1 RNAi and a enlarged PCR product corresponding to the size of 

exon 11-intron-12 was detected. However, when primers were positioned in flanking 

exons like exon 10 and exon 13 spanning the critical exon-intron boundaries, 

transcripts show the same enlargement with no additional sequence elements 

retained in the transcript. This specificity for individual splice events was shown for 

AurkA (exon 9-10) and Mcl-1 (exon 1S-2) pre-mRNAs as well.  

In subsequent RNAi experiments, the specificity of Hub1 for particular splicing 

events was compared to important splicing factors like the tri-snRNP hSnu66 or the 

SR protein Son (Figure 24b, upper left panel immunoblot for knockdown efficiency). 

Son has been reported to bind pre-mRNA directly via its RS- and RB (RNA binding) 

domains, but furthermore facilitates association of other SR proteins with weak splice 

sites (Ahn et al., 2011; Sharma et al., 2011). Interestingly, the aberrant splicing 

pattern in Hub1-depleted cells was not identical to that of hSnu66 or Son. On the one 
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hand, both knockdown of Hub1 and hSnu66 negatively affected splicing of particular 

introns in AurkA and Mcl-1 transcripts, which were not altered upon Son RNAi. On 

the other hand, hSnu66 RNAi affected Akt splicing marginally, while splicing defects 

were prominent after Son and Hub1 knockdown. 

Moreover, characterization of several exons revealed a novel alternatively spliced 

isoform of AurkA, as exon 5 is excluded in the upstream 5’ region when Hub1 is 

depleted, but not in hSnu66 or Son RNA samples (Figure 24b).  

Finally, after the identification of aberrantly spliced transcripts and 

characterization of Hub1-specific splicing events, the question remained, which 

functional surface is necessary on Hub1 to mediate the crucial splicing activity. Thus, 

RNAi complementation in U2OS cells stably expressing siRNA-resistant GFP-Hub1, 

GFP-Hub1 D22A, Hub1-GFP or free GFP was combined with splicing assays, where 

AurkA, Mcl-1 and Akt mRNAs were subjected to intron-spanning RT-PCR (Figure 

24c). When Hub1 was depleted by RNAi in GFP control cells, transcripts of AurkA, 

Mcl-1 and Akt with intron-retention and altered splicing patterns were detected. This 

splicing defect was fully rescued when GFP-Hub1 was expressed and pre-mRNAs 

were efficiently and faithfully processed. In addition, the hSnu66-binding mutant GFP-

Hub1 D22A was also able to restore splicing activity, indicating that physical 

interaction of Hub1 with the tri-snRNP component might contribute, but is not 

essential for this process. In contrast, C-terminally tagged Hub1-GFP failed to 

complement the splicing defects and mis-spliced transcripts accumulated, 

comparable to Hub1 knockdown cells (GFP only).  

 

4.16 Identification of Hub1-dependent alternatively spliced transcripts 

by exon-specific microarray analysis 

During developmental stages and upon certain stimuli like growth factors or cellular 

stress human cells can react by various response pathways. In addition to 

transcriptional regulation, the mRNA repertoire is extended by alternative splicing in 

order to generate different isoforms from the same pre-mRNA. A widely used, 

sophisticated method to identify alternative splicing events is based on exon-specific 

microarray platforms (Cuperlovic-Culf et al., 2006). The Affymetrix Human Exon 1.0 

ST Array combines validated cDNA-based sequences from various mRNA and EST 

databases with predicted gene structures from bioinformatics analyses in genome 

projects like Ensembl, Vega or GENSCAN, allowing the identification of previously 

unknown splice variants. In contrast to 3’ expression analysis, here, probe sets target 

all exons along the entire length of the transcript with at least four probes per exon, 

probing more than one million exons (Gardina et al., 2006).  

This microarray was utilized to unbiasedly characterize global changes in 

alternative splicing in human cells upon Hub1 depletion. Therefore, in three 

independent experiments total RNA was isolated from Hub1 or control RNAi treated 
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U2OS cells 60 h post transfection, when Hub1 depletion was accomplished, but cells 

did not exhibit any signs of cellular stress, nuclear degeneration or apoptosis as 

confirmed by microscopy and flow cytometry. After satisfying the quality control 

criteria, the isolated total RNA was reversely transcribed to synthesize cDNAs, which 

were then fragmented into hybridization-compatible samples and fluorescently 

labeled for hybridization with the microarray. Subsequently, exon-specific probes on 

the microarray chip specifically bound to complementary sequences within the cDNA 

samples and the fluorescent signal was detected and quantified. Sophisticated 

bioinformatics analysis based on the ARH entropy function (Rasche and Herwig, 

2010) compared the individual exon expression levels and quantified the alternative 

splicing patterns in RNA samples from control RNAi treated cells versus Hub1 

knockdown cells. RNA quality control, labeling, microarray hybridization and initial 

microarray analysis was conducted by Atlas Biolabs GmbH (Berlin).  

In Figure 25a representative graphs of three candidate transcripts (Lama5, 

DPP10 and TCEA2) with high confidence hits for splicing alterations upon Hub1 

depletion are depicted. The relative exon expression of each transcript-specific exon 

probe was calculated for control (red line) and Hub1 (“treatment”, blue line) RNAi 

treated samples. The amplitude of difference between each exonic probe of control 

and Hub1 knockdown samples is represented as the splice index. Among the first 

100 high confidence transcripts with altered exon expression the majority of 

transcripts (68%) showed a decrease of exon probe signal in Hub1 samples. In 25% 

of the cases exon probes detected increased levels of targeted RNA sequences in 

Hub1 knockdown cells in comparison to control cells. 3% of the probe set showed 

strong fluctuations or alterations in both directions (4%) within the same transcript. As 

shown previously in minigene assays, the laminin 5 alpha transcript is alternatively 

spliced upon Hub1 knockdown (see Figure 24a). In line with this finding, exon probes 

targeting Lama5 transcripts (probe ID: 987232-9872324; position in exon 63-65) 

reported a strong difference in relative exon expression resulting in high splice index 

values (SI ≥ 8) due to low signals in Hub1 RNAi samples. Similar changes in relative 

exon expression patterns upon Hub1 depletion are exemplified for DPP10 and 

TCEA2 gene products (Figure 25a).  

Based on bioinformatics analysis, genes listed in Figure 25b resemble the top 

50 candidate transcripts exhibiting splicing alterations upon Hub1 depletion in U2OS 

cells, ranked according to their splice index and high confidence score. Interestingly, 

these Hub1-dependent genes appear to be not functionally linked, but rather 

implicated in diverse cellular pathways like G-protein signaling (RGS3), DNA damage 

repair (BRCA1), transcription elongation (TCEA2), cytoskeletal architecture (Lama5, 

Col3A1, EML1) and uncharacterized functions (DPP10, HPS1, HYSL1) (see 

appendix 12.1 for comprehensive microarray data). 
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 In addition to the advanced, in-depth bioinformatics analysis mentioned 

above, the genome-wide exon expression and splice index analysis identified more 

than 3000 altered splice events in total after Hub1 RNAi (Figure 25c). This data 

further corroborated the global impact of Hub1 function on a broad spectrum of 

distinct splicing events and its pivotal role in pre-mRNA processing and alternative 

splicing in human cells. 

Figure 25: Exon-specific microarray revealed global alterations in alternative splicing and mRNA 

expression upon Hub1 depletion 

a) Splice index profile of three candidate transcripts with high confidence hits for splicing alterations 
upon Hub1 depletion (Lama5, DPP10 and TCEA2). Exon-specific probe IDs and their relative positions 
on the targeted transcript are given on the X-axis. The relative exon expression for control samples (red 
line) and Hub1 RNAi samples (“treatment”, blue line) are plotted on the Y-axis (log). The amplitude of 
difference between each exonic probe of control and Hub1 knockdown samples is represented as the 
splice index graph (black line). b) Ranking of top 50 high confidence hits with significant splicing 
alterations upon Hub1 depletion. GeneID and splicing index values of affected transcripts are shown.  
c) Global exon expression and splice index analysis of the exon ST microarray (core) datasets using 
AltAnalyzer software. Basic exon expression profiling and signal processing of control and Hub1 RNAi 
sample datasets from three biological replicates using MiDAS and DABG detection parameters revealed 
over 3226 altered splice events in Hub1-knockdown cells (filtered for DABG and MiDAS p> 0.05 each). 
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d) Alteration in mRNA expression after depletion of Hub1. mRNA expression profiles of Hub1 and 
control RNAi U2OS cells were analyzed by exon-microarray. The heat map shows a two-dimensional 
clustering of top 100 genes with changes in mRNA expression represented by high (red) and low 
(green) intensities, where black indicate no changes in intensities, for 337 transcripts with increased 
levels (≥ 2 fold) and 1172 different mRNAs down-regulated (≤ -2 fold).   
 
 In addition to its primary quantification of probe-specific relative exon 

expression, the microarray yielded further information about global transcriptional 

alterations. When the abundance of gene products expressed in Hub1 knockdown 

cells were compared to control cells, 337 transcripts with increased levels (≥ 2 fold) 

were identified, whereas the majority of transcripts (1172 different mRNAs) was 

down-regulated (≤ -2 fold). Figure 25d summarizes the mRNA expression analysis 

graphically as a heat map showing the quantification of the 100 strongest induced 

and repressed genes, respectively.  

The combination of splicing-specific microarray data and gene expression 

analysis strongly indicates global changes in mature mRNA synthesis upon in vivo 

depletion of Hub1. The decrease in mRNA levels and aberrant splicing of Hub1-

dependent transcripts argue for a crucial role of Hub1 in faithful pre-mRNA 

processing. 

 

4.17 Antagonistic interactions between the transcription inhibitor 

actinomycin D and Hub1 RNAi 

Based on the molecular and cell biological characterization of Hub1 and its impact on 

cell viability in RNAi experiments, it was of interest to identify a chemical compound 

or regulatory proteins that modulate the Hub1-dependent cellular activity or pathway 

and can suppress the Hub1-depletion phenotypes. Two approaches were used to 

address this point: on the one hand, co-depletion of regulatory splicing-associated 

factors by RNAi, and, on the other hand, established inhibitory drugs targeting 

different cellular pathways were tested in Hub1 RNAi experiments. Among others, 

transcription inhibitors (actinomycin D, α-amanitin or DRB (5,6-dichloro-1-beta-D-

ribofuranosylbenzimidazole), caspase inhibitors (Z-VAD-FMK), kinase inhibitors (Clk-

inhibitor TG003, roscovitine, staurosporine, CHK2 inhibitor II) or cell cycle restrictive 

substances (thymdine, hydroxyurea, nocodazole, aphidicolin) were applied. From this 

list, two compounds gave particularly interesting results, the anti-apoptotic pan-

caspase inhibitor Z-VAD-FMK and the transcription inhibitor actinomycin D.  

Blocking the apoptotic cascade by the inhibition of caspases 1, 3, 6, 7, 8 and 

9 (Wood and Shillitoe, 2011; Yang et al., 2003) using the tri-peptide Z-VAD-FMK (N-

benzyloxy-carbonyl-Val-Ala-Asp-fluoromethylketone) suppressed the induction of cell 

death in Hub1 knockdown cells in caspase cleavage assays as well as microscopy 

and flow-cytometry analyses (data not shown). This further supports the model that 

at late stages of Hub1 knockdown, cells facing profound cellular and mitotic defects 

undergo caspase-dependent cell death (Castedo et al., 2004). Accordingly, when 
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untreated and Z-VAD-FMK-treated Hub1 RNAi cells were examined under the 

microscope, in both samples cells with segmented and disintegrated nuclei were 

detected (as described in section 4.11). However, after caspase inhibition a high 

number of cells exhibiting this fatal loss of genome integrity accumulated in Hub1 

knockdown samples, as the terminal consequence with the induction of apoptotic cell 

death was suppressed by the pan-caspase inhibitor, although the cause of the 

cellular defects upon Hub1 depletion persisted. Thus, Hub1 depleted cells survived, 

despite their severe damage and genomic instability and were not eliminated from 

the population by apoptosis.  

 In contrast to Z-VAD-FMK, which acts on signaling events at late stages of 

Hub1 RNAi-mediated cellular defects, actinomycin D treatment alleviated those Hub1 

depletion phenotypes at earlier stages. Actinomycin D has been described to bind 

DNA directly and thereby inhibit RNA-polymerase II-dependent RNA synthesis by 

blocking transcription elongation (Sobell, 1985; Hollstein, 1974). In the initial 

screening after 48 h of Hub1 knockdown cells were treated with ActD or the vehicle 

DMSO and their cell cycle profile as well as the apoptotic fraction were analyzed by 

flow cytometry (Figure 26a). While both control cell sample profiles with DMSO or 

ActD remained largely unaffected, the DMSO treated Hub1 RNAi sample reproduced 

the characteristic cell cycle arrest at G2/M phase. Surprisingly, the G2/M arrest was 

not triggered in Hub1 knockdown cells, when cells were treated with actinomycin D, 

resulting in a normal inconspicuous cell cycle profile with high G1 and low G2 

populations in spite of Hub1 depletion (for quantification see graph in Figure 26a).  

To further investigate this rescuing effect, later RNAi time points were 

examined after incubation with increasing concentrations of the drug. After prolonged 

incubation the inhibitory activity of actinomycin D showed cytotoxic effects in various 

mammalian cell lines (Bacchetti and Whitmore, 1969; Cassé et al., 1999), thus, a 

dose-dependent increase of the apoptotic sub G1 fraction was emerging in control 

RNAi cells, which was virtually absent in DMSO control samples (Figure 26b and 

quantification in lower panel). 

In vivo depletion of Hub1 alone was sufficient to induce the apoptotic cascade 

after cellular defects and cell cycle arrest, thus the corresponding sub G1 fraction 

was evident after 60 h of Hub1 RNAi and DMSO treatment. Surprisingly, in contrast 

to control cells, where increasing concentrations of ActD were accompanied by an 

increase in apoptotic cell fraction, actinomycin D treatment resulted in a partial 

rescue of the cytotoxicity in Hub1 knockdown cells. Here, incubation with higher 

concentrations of the transcription inhibitor resulted in a decline of the apoptotic sub 

G1 fraction and improvement of G1 and G2 populations (Figure 26b). The 

quantification of the flow cytometry data (Figure 26b, lower panel) illustrates the 

opposing sensitivities of control and Hub1 RNAi cells to actinomycin D treatment 
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Figure 26: The transcription inhibitor actinomycin D alleviates fatal Hub1 depletion phenotypes 

Cell cycle analysis of Hub1 knockdown cells after inhibition of transcription by actinomycin D. a) 48 h 
after Hub1 or control RNAi transfection HeLa cells were incubated with actinomycin D (ActD) or DMSO 
control for 6 h, then fixed and stained for FACS analysis. Cell cycle profiles and corresponding 
quantification graph (below) are shown. b) HeLa cells were transfected with Hub1 or control (lamin A/C) 
siRNA. After 60 h cells were incubated with DMSO, 1.25 μM, 2.5 μM, 5 μM or 10 μM actinomycin D 
(ActD) and 6.25 μg/ml, 12.5 μg/ml, 25 μg/ml μM or 50 μg/ml α-amanitin, respectively, for 6 h, fixed and 
stained for flow cytometry analysis. Cell cycle profiles and corresponding quantifications are shown. c) 
Caspase activation after Hub1 RNAi and drug treatment. Control and Hub1 knockdown cells were 
treated (like in b) and subjected to luminescent reporter assays monitoring caspase cleavage activity. 
 
 Moreover, this rescuing property is specific for ActD in Hub1-knockdown cells 

and not a general feature to transcription inhibitors. In analogous experiments 

conducted with alternative compounds like α-Amanitin (Figure 26b, right panel), 

which interferes with RNA Pol II translocation during RNA synthesis (Bushnell et al., 

2002; Gong et al., 2004) or DRB (data not shown), an inhibitor of the transcription 

associated kinases CDK9 and CDK7 (Yankulov et al., 1995; Zandomeni et al., 1982), 

neither of these drugs showed similar properties and even aggravated the Hub1 

phenotype. 

Using an alternative method to quantify the antagonistic effect of actinomycin 

D treatment, the caspase activity was measured in Hub1 knockdown or control cells 

after drug treatment. In a luminescent assay the proteolytic cleavage of a reporter 

substrate by activated caspases (effector caspase 3 and 7) was measured to monitor 
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the induction of the apoptotic cascade (Figure 26c). In DMSO treated control cells 

caspase cleavage was low, but ActD treatment strongly induced caspase activity, 

hence, apoptosis was induced upon transcription inhibition. Here, the Hub1 RNAi 

treated cells showed the contrary behavior. In line with aforementioned data, Hub1 

depletion alone (DMSO treated sample) already caused a significant induction of 

caspase cleavage and apoptosis. Consistent with the flow cytometry data, 

actinomycin D treatment suppressed caspase activation in Hub1 knockdown cells 

and vice versa. The application of the alternative transcription inhibitor α-Amanitin, 

however, affected both control and Hub1 RNAi cells equally and gave similar results 

in caspase activation assays. 

This data reveals that treatment with the drug actinomycin D can partially antagonize 

Hub1 depletion-mediated cell cycle and apoptosis phenotypes. At the same time, 

Hub1-depleted cells appear to be slightly desensitized to actinomycin D’s cytotoxicity, 

as observed in flow cytometry and caspase cleavage assays. 
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5 Discussion 

Previous work on the ubiquitin-like protein Hub1 has mainly focused on lower 

eukaryotes using model organisms like S. cerevisiae and S. pombe (Luders et al., 

2003; Wilkinson et al., 2004; Yashiroda and Tanaka, 2004; Mishra et al., 2011). Now, 

over 10 years after its discovery, still little is known about Hub1, especially regarding 

higher eukaryotes and mammalian cells. Although Hub1 has been implicated in the 

signal transduction during mitochondrial unfolded protein response, metabolic 

regulatory circuits and lipid metabolism, the cellular and molecular functions of the 

unconventional ubiquitin-like protein Hub1 has remained obscure. This work presents 

the first direct and detailed characterization of Hub1 in human cell lines addressing 

various aspects of interaction studies, functional analysis and in vivo depletion 

experiments.  

 

5.1 Identification of binding factors by yeast two-hybrid link Hub1 to 

splicing-associated complexes 

An unbiased and comprehensive approach to identify protein interaction partners of 

Hub1 was based on the powerful yeast two-hybrid (Y2H) system combined with 

human cDNA libraries. After over 300 clones encoding potential interaction partners 

were isolated from the initial screen, stringent criteria and tests like auto-activation 

after FOA-shuffle, 3-AT resistance, or growth on adenine-lacking (-Ade) media were 

applied to define high confidence hits. Interestingly, the identified candidates 

resembled a heterogeneous group of proteins functioning in endocytosis (adapter 

protein complex AP-2 β subunit 1 α (AP-2β1α), as actin-binding cytoskeleton proteins 

(tropomyosin 2 β (TPM2β), SUMO/ubiquitin-specific peptidases (USPL1), 

serine/threonine-protein kinases (PIM-2), Golgi-associated proteins (Golgin a 5) and 

zinc-finger transcription factors (HIV-EP1) (Figure 1b). Despite extensive in silico 

analysis, a potential canonical Hub1 interaction motif common to all candidate 

proteins could not be recognized by sequence similarity or protein domain structure 

comparison. 

Among these Hub1 binding factors, two splicing-associated factors, namely 

the spliceosomal tri-snRNP protein hSnu66 and the Cdc2/Cdc28-like dual specificity 

protein kinase Clk3, were of particular interest. On the one hand both factors have 

been implicated in pre-mRNA splicing in human cells (Makarova et al., 2001; Duncan 

et al., 1997), on the other hand, these factors have been reported to interact with 

human Hub1 in yeast two-hybrid previously (Wilkinson et al., 2004; Kantham et al., 

2003), and thereby served as an internal positive control affirming validity of the 

screening results. Surprisingly, neither the mode of interaction nor the in vivo 
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relevance of binding to the ubiquitin-like protein was further investigated to elucidate 

the cellular function of Hub1 in these studies. 

Due to the nature of Y2H cDNA libraries that base upon reverse transcription 

of tissue specific mRNAs, the spectrum of expressed transcripts is naturally limited to 

the selected cell types and thereby cannot comprise the whole human proteome. In 

consideration of this fact and the stringent screening criteria applied, it is likely that 

there are more Hub1 interaction partners remaining to be characterized by alternative 

techniques.  

Although the yeast two-hybrid system has its disadvantages, as heterologous 

overexpression of human proteins in yeast does not ensure proper folding and 

functionality of all prey AD fusion proteins and auxiliary factors like required 

chaperones or posttranslational modifications can be missing, this unbiased 

approach provided an first important hint for the identification of interaction partners.  

Despite Hub1’s high conservation from yeast to human, when the identified 

candidates were tested with HUB1 orthologs from S. cerevisiae, S. pombe and H. 

sapiens in Y2H interaction studies, the spliceosomal tri-snRNP protein hSnu66 

appeared to be the only common binding partner of all Hub1 variants (Figure 1c). 

This finding suggests that the association of Snu66 with Hub1 evolved early in 

eukaryotic evolution. Thus, Snu66 might be a primordial binding partner of Hub1 with 

strong implications in pre-mRNA processing.  

In contrast, bioinformatics analysis could not clearly identify homologous 

proteins of the other novel Y2H binders in S. cerevisiae, which might explain why 

neither ScHub1 nor SpHub1 have acquired protein properties necessary for these 

interactions. However, in S. pombe pre-mRNA splicing is facilitated by auxiliary 

splicing factors like hnRNP-like proteins (Stutz et al., 2000), SR proteins (Srp2p 

(Webb et al., 2005)) and their respective kinases, Cdc2/Cdc28-like protein kinase 

Kic1 and SR protein kinase 1 homolog Dsk1 (Tang et al., 2003; 1998). Kic1 shows 

high similarity to the conserved class of LAMMER kinases Clk1-Clk4 of which human 

Clk3 was isolated as a Hub1 interactor in the Y2H screen. Despite the fact that 

fission yeast has developed regulatory RNA sequence elements for trans-acting 

factors like SR proteins that have not been identified in S. cerevisiae, both HUB1 

orthologs ScHub1 and, in particular, SpHub1 failed to bind the human Clk3 in yeast 

two-hybrid.  

Like transcription, pre-mRNA splicing is an essential cellular process to 

ensure faithful processing, maturation and proper translation of the transcript to give 

rise to functional proteins. On the other side the ubiquitin-proteasome-system 

facilitates the efficient removal of abnormal, defective or undesired proteins by 

targeting doomed substrates for proteolysis. The covalent attachment of ubiquitin to 

proteins by an enzymatic cascade specifically marks proteins for degradation by the 

proteasome (Ciechanover, 2005; Peters, 1994). Besides serving as degradation 
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signals for proteolysis, ubiquitin and ubiquitin-like proteins were shown to play pivotal 

roles in virtually all cellular processes e.g. endosomal trafficking, autophagy, signal 

transduction, DNA replication and repair, transcription, cell cycle and cytokinesis 

(Grillari et al., 2010; van der Veen and Ploegh, 2012). Surprisingly, pre-mRNA 

splicing accomplished by its macromolecular machine, the spliceosome, has been 

widely excluded from this list.  

Here, initial results demonstrating an interaction of the ubiquitin-like protein 

Hub1 with a core-spliceosomal protein hSnu66, raised several important questions. 

Firstly, does Hub1 bind hSnu66 directly and what is the molecular mode of 

interaction? Secondly, which cellular pathways is Hub1 implicated in and does this 

association with a spliceosomal factor accord with a potential function of Hub1 in 

human pre-mRNA splicing? And thirdly, the fundamental question, that had to be 

addressed, does Hub1 fulfill an essential role in human cells and how do cells 

respond to the inactivation of Hub1? 

 

5.2 Hub1 binding is mediated via a conserved Hub1 interaction 

domain in hSnu66 

Translating the findings from the heterologous yeast two-hybrid to the mammalian 

system, co-immunoprecipitation experiments with transiently transfected human cells 

validated the association of Hub1 with hSnu66 in vivo. The immunoprecipitation of 

epitope-tagged hSnu66 co-purified with Hub1 and vice versa (Figure 2).  

In initial studies the Hub1 binding factor hSnu66 was characterized as a 

crucial constituent of the spliceosomal tri-snRNP complex (Makarova et al., 2001). 

Immunodepletion of hSnu66 from human nuclear extracts inhibited subsequent 

mRNA splicing reactions, and this activity could be re-established by supplementing 

the depleted extract with recombinant hSnu66 protein, which underscores its 

essential function in pre-mRNA splicing in vitro. Moreover, hSnu66 plays a 

particularly interesting role, as it is not part of pre-existing U5 or U4/U6 snRNP sub-

complexes, but rather associates late during tri-snRNP assembly. These findings are 

supported by interaction and mapping studies analyzing the U4/U6.U5 tri-snRNP 

framework (Liu et al., 2006). Here, hSnu66 was shown to bind to the core 

components like the U4/U6 protein PRPF3, the U4/U6 and U5 bridging factor PRPF6, 

and central DExH/D-box helicase hBrr2, but not U5 key protein PRPF8. However, the 

important questions, how binding to these factors is mediated and which domains 

within hSnu66 are crucial for these interactions were not addressed. When 

biochemical analysis and purification of spliceosomal complexes at distinct stages of 

splicing catalysis were combined with sophisticated mass spectrometry approaches, 

hSnu66 was shown to be incorporated into the tri-snRNP, in pre-catalytic B 

complexes and activated spliceosomes (Bact complex) of human nuclear splicing 

extracts (Makarov et al., 2002; Bessonov et al., 2010; Agafonov et al., 2011). hSnu66 
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is thought to be an important factor mediating protein-protein interactions for the 

recruitment of the tri-snRNP to join the pre-spliceosomal complex A, when U1 and U2 

snRNPs are already loaded on pre-mRNA, to stably form the pre-catalytic complex B. 

In addition to its splicing-associated function, hSnu66 has been discussed to act as a 

transcription activator of hypoxia-responsive genes, namely erythropoietin (EPO) and 

vascular endothelial growth factor (VEGF) (Gupta et al., 2000). In fact, hSnu66 might 

also function as a regulatory switch between hypoxia-induced factors (HIF1α and 

HIF2α) upon hypoxia (Koh et al., 2008; 2011), but the molecular mechanism of this 

regulatory circuit and if these effects are linked to mRNA splicing remains unclear. 

Notably, among other tri-snRNP factors like PRPF3, PRPF8 or PRPF31 hSnu66 is 

considered as a disease-relevant gene during hypoxia-induced retinal degeneration 

in autosomal dominant retinitis pigmentosa patients (Schmidt-Kastner et al., 2008). 

Furthermore, hSnu66 (alias SNRNP110 or SART1 (squamous cell carcinoma antigen 

recognized by T cells)) is implicated in various aspects of tumorigenesis as it is 

significantly up-regulated in various cancer tissues (Takaishi et al., 2008; Matsumoto 

et al., 1998; Kawamoto et al., 1999) and has been identified as an autoimmune 

epitope which is recognized by tumor-specific cytotoxic T lymphocytes (Kikuchi et al., 

1999; Yoshida and Tanaka, 2004).  

Structure prediction and bioinformatics analysis have elucidated that hSnu66 

is an intrinsically unstructured protein with low complexity regions and belongs to the 

group of highly disordered proteins in the spliceosomal proteome (Korneta and 

Bujnicki, 2012). In fact, compared to other ribonucleoprotein-based “molecular 

machines” the spliceosomal complex is comprised of more intrinsically unstructured 

and disordered proteins than for example the ribosome. Due to complex RNA-RNA, 

protein-RNA and protein-protein interaction networks and major rearrangements 

during the transesterification steps, structural flexibility of spliceosomal factors for 

different conformational stages is necessary. Thus, SR-related proteins like hSnu66 

involved in mRNA recognition, intron/exon definition and spliceosomal assembly tend 

to be more disordered than splicing factors that carry out the splicing catalysis 

(Korneta et al., 2012). Furthermore, the formation of intricate protein-RNA complexes 

like snRNPs is facilitated and coordinated by molecular chaperones to prevent 

premature assembly or aggregation. For example, the specialized chaperone plCln 

orchestrates the Sm ring formation on snRNA, while other auxiliary factors like Aar2 

support correct incorporation of large multidomain proteins including PRPF8 into 

functional U5 and tri-snRNPs, respectively (Chari et al., 2008; Weber et al., 2011; 

Sahi et al., 2010). 

However, hSnu66 contains several short motifs, which underscore its nucleic 

acid-directed function, as the putative leucine zipper, the engrailed homology domain 

1 and the nuclear localization signal can mediate direct contact with DNA, whereas 

its N-terminal RS-domain is involved in RNA related processes. Both, LZ and EH1 
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domains, have been identified and characterized as DNA binding domains in 

transcriptional regulators where they can act alone or in concert with co-activators or 

repressors like the mammalian Groucho to control gene expression (Kutay and 

Güttinger, 2005; Struhl, 1989; Goldstein et al., 2005; Copley, 2005; Makarova et al., 

2001). With respect to its aforementioned putative role in transcription of e.g. 

hypoxia-induced genes, an additional role for hSnu66 in transcriptional regulation 

cannot be ruled out, but both aspects require further investigation.  

The N-terminus of hSnu66 reveals another interesting domain, the arginine-

serine rich domain. In contrast to yeast ScSnu66, the human ortholog hSnu66 gained 

this additional domain that is widely distributed among splicing factors. The over 240 

RS-domain-containing proteins are interwoven with diverse functions during mRNA 

processing like splicing, mRNA export, regulating kinase and phosphatase activity, 

translation, transcription, and RNA Polymerase CTD binding (Tarn and Steitz, 1994; 

Huang et al., 2004; Stojdl and Bell, 1999; Sanford et al., 2004; McCracken et al., 

1997). Notably, arginine-serine rich domains can stimulate direct binding to mRNA, 

e.g. at regulatory exonic enhancer sequences (Hertel and Graveley, 2005; Shen et 

al., 2004), but can serve as platforms for protein-protein interactions as well 

(Graveley, 2004; Kohtz et al., 1994; Wu and Maniatis, 1993). Interestingly, several 

RS-domains do not only anchor the SR protein to certain RNA sequences or binding 

partners, they also appear to have intrinsic splicing-stimulatory activities. Isolated 

RS-domains are sufficient to activate splicing in HeLa cell nuclear extracts if they are 

artificially tethered to pre-mRNAs that contain splicing enhancer sequences (Shen 

and Green, 2006; Philipps et al., 2003). In fact, RS-domain proteins play important 

roles during early steps of spliceosome assembly and orchestrate the communication 

between 5’ and 3’ splice site during early spliceosome assembly (Fu, 1995; Ram and 

Ast, 2007). Although the snRNA of the U1 snRNP is able to base-pair with 5’ splice 

sites of pre-mRNA exons, a stable association is only established by protein-protein 

and protein-RNA contacts between RS proteins like ASF/SF2 and the SR-related 

factor U1-70k (Kohtz et al., 1994). Furthermore, the inactivation of nuclear splicing 

extracts by depleting the U1 snRNP can be complemented by the addition of purified 

SR proteins that restore splicing activity (Stark et al., 1998; Crispino et al., 1994; Tarn 

and Steitz, 1994).  

Surprisingly, although hSnu66 associates with central tri-snRNP proteins and 

is implicated in central steps of mRNA splicing, little is known about the molecular 

mechanism of hSnu66 and its function is poorly understood. The interaction with the 

ubiquitin-like protein Hub1 is an intriguing feature of hSnu66. In order to identify 

which domain or motif is crucial for Hub1-hSnu66 interaction, mapping studies with 

several hSnu66 truncations were performed. Surprisingly, not the central LZ or EH1 

domains but the hSnu66 N-terminal fragment (AA1-185) comprising the RS-domain 

and the highly conserved stretch of 18 AA (AA111-139) was able to bind and co-
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purify with Hub1. Although RS-domains are well-known protein interaction module, 

further dissection of the N-terminus revealed that a short, highly conserved stretch 

within hSnu66 was already sufficient and necessary for the interaction with Hub1 

(Figure 3b). Despite the clean and precise mapping of this interaction interface, co-

immunoprecipitations of overexpressed fusion proteins can be bridged by co-

purifying factors or chaperones. Therefore, direct binding was further confirmed by 

GST pull down assays with recombinant Hub1 and the isolated binding motif, HIND, 

as a GST fusion (Figure 3c).  

Interestingly, this HIND domain is highly conserved among hSnu66 orthologs 

from yeast to humans. In Snu66 of S. cerevisiae and some other Saccharomycotina, 

two HINDs are positioned in tandem at the very N-terminus, but they lack the RS-

domain, which is a common domain among all vertebrate Snu66 orthologs (Mishra et 

al., 2011). The Hub1 interaction domain is an intriguing module; while 

Saccharomycotina have evolved the tandem HIND, higher eukaryotes up to 

vertebrates express single HIND versions of Snu66. However, plants like Arabidopsis 

thaliana lack the Hub1 interaction domain in AtSnu66, but this is compensated by the 

translocation of the HIND to another tri-snRNP protein, PRP38. Surprisingly, in the 

protozoan parasite Plasmodium falciparum, both tri-snRNP proteins Snu66 and 

PRP38 contain HIND sequences, which bind Hub1 (Mishra et al., 2011). This 

phenomenon might be due to the complex evolutionary origin of apicomplexa with 

characteristics of protists and features of photosynthetic algae (Gould, 2012).  

The functionality of these “unusual” HINDs in AtPRP38, PfPrp38 and PfSnu66 

was verified by GST pull down assays and yeast two-hybrid interaction studies (data 

not shown, (Mishra et al., 2011)). Even when Hub1 activity was constrained by 

linearly fusing it to various tri-snRNP proteins like PRP38, Snu66 or PRP8, artificial 

tethering of Hub1 to the now fully “Hub1-modified” spliceosome was able to 

complement the SRC1 alternative splicing defect in S. cerevisiae hub1Δ strains. This 

phenomenon suggests that Hub1 binding is not crucial for its respective direct 

binding partner, but rather for the functional complex within the spliceosome.  

Due to the unique features of Hub1 as an unusual ubiquitin-like protein 

implicated in interactions with spliceosomal core components, the crystal structure of 

human Hub1 in complex with the hSnu66 HIND was solved in order to obtain 

molecular insights into this mode of binding. During this project, the human Hub1-

HIND complex structure was resolved in parallel with its yeast homolog (Mishra et al., 

2011), which allowed a direct comparison of conserved but also unique features of 

this interaction interface. The obtained structure with a resolution of 2 Å highlights 

human Hub1 sharing the characteristic β-grasp fold similar to ubiquitin and ubiquitin-

like proteins with their typical ββαβαβ secondary structure pattern, as described 

previously (McNally et al., 2003) (Figure 4a).  
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In addition, the HIND itself exhibits an interesting feature, as the short 18 AA 

peptide has the intrinsic ability to form an α-helical secondary structure in solution 

(Mishra et al., 2011). The interaction interface between the human HIND and Hub1 is 

mediated via a salt bridge between R127 of hSnu66 HIND and D22 of Hub1 

accompanied by several hydrophobic contacts formed by aliphatic residues. This 

structure clearly reveals the nature of the non-covalent mode of binding and 

elucidates crucial residues responsible for a stable interaction between human Hub1 

and Snu66. In both Snu66-Hub1 interfaces the binding is strengthened by the central 

salt bridge and supported by accompanying hydrophobic contacts. The structural 

comparison of human and yeast Hub1-HIND complexes emphasizes the similarity of 

the two superimposable structures indicating the high evolutionary conservation of 

the complex at molecular level (Figure 4b).  

Compared to non-covalent binding interfaces of ubiquitin and ubiquitin-like 

proteins, the Hub1-HIND structure highlights an unique mode of interaction and a 

novel binding paradigm. Several ubiquitin binding domains (UBDs) have been 

identified and crystalized in complex with the ubiquitin protein (Dikic et al., 2009). The 

UBDs can be grouped according to their structural binding properties and come in 

different flavors; domains like the UBA (ubiquitin associated domain), Cue (named 

after Cue2) and various types of ubiquitin interaction motifs (UIMs like double sided 

UIM (DUIM) or inverted UIM ubiquitin interaction motifs MIU) utilize single or multiple 

α-helices to generate an interaction platform for ubiquitin binding. Another module for 

interaction is formed by zinc finger domains like the nuclear protein localization 4 zink 

finger (NZF) or zinc finger ubiquitin binding protein A20 (ZnF A20). Furthermore, the 

pleckstrin-homology fold is a common feature of GLUE (GRAM-like ubiquitin binding) 

and PRU (pleckstrin-like receptor for ubiquitin) UBDs that are found in EAP45 and 

RPN13, respectively. Two other domains (UBC and UEV) mimic the ubiquitin 

interaction interface of E2 conjugating enzymes to mediate binding by but lacking 

catalytic activity of the respective enzymes. Finally, beside these classical UBDs 

further variously shaped ubiquitin-interaction modules like the Jab/MPN domain in 

PRPF8 were identified (Husnjak and Dikic, 2012). The vast majority of UBDs 

associate with ubiquitin via the hydrophobic area around I44 supported by L8 and 

V70 on sheets β3β4 (Dikic et al., 2009). In contrast, the Hub1-HIND interaction 

surface is located on the opposing side to the canonical UBD patch formed by helix 

α1 and sheets β1β2 (Mishra et al., 2011). Both ubiquitin and Hub1 adapt their 

conformation and undergo an induced fit upon interaction with their respective 

interaction domains, but their main-chain fold remains unchanged (Lange et al., 

2008; Wlodarski and Zagrovic, 2009). Moreover, the Hub1-HIND complex also clearly 

differs from the non-covalent interaction of other ubiquitin-like modifiers like SUMO 

with its SIM (SUMO interaction motif) (Song et al., 2005; Hecker et al., 2006) and the 

Atg8 homolog LC3 with its interaction region (LIR) (Noda et al., 2010).  
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Despite the detailed information obtained in binding studies and the crystal 

determination, the structure only includes the isolated HIND peptide while flexible 

flanking regions of hSnu66 are missing. Therefore, it remains unclear how Hub1 is 

imbedded into lager complexes e.g. with Snu66 in the spliceosomal context. 

Heteronuclear single quantum coherence (HSQC) data of recombinant yeast 

ScSnu66 affirmed the largely unstructured nature of the full-length protein. 

Remarkably, upon addition of its binding partner Hub1, the spectrum of the N-

terminal region containing the two HINDs changes drastically, showing that Hub1 

binding induces folding of the otherwise unstructured protein (Mishra et al., 2011). 

During the different steps of splicing the spliceosome undergoes extensive 

rearrangements, in which RNA and protein networks are disrupted, while new 

physical interactions are established leading to different conformations of the 

spliceosome. Considering the Hub1-HIND structure and folding experiments in vitro, 

it is likely that in distinct spliceosomal complexes Snu66 is engaged in different 

conformations converting between the Hub1-bound and -unbound state. It would be 

interesting to investigate at which stage and in which complex Hub1 interacts with 

Snu66 and if this binding might act as a molecular switch between two 

conformations. 

Besides the highly conserved properties, human Hub1 exhibits an additional 

particularly interesting surface formed by the loop on α2-β3 with two unusually 

exposed hydrophobic residues, W47 and Y48. Although this aromatic patch is highly 

conserved in all metazoan orthologs, it is not present in yeast ScHub1. This particular 

patch is not common among ubiquitin or other ubiquitin-like proteins as judged from 

structure and sequence comparisons. Due to Hub1’s unique properties as shown for 

Snu66 binding, this aromatic patch might be involved in the formation of an additional 

interaction interface with an hitherto unidentified factor, thereby underscoring the 

special position of Hub1 among ubiquitin-like proteins.  

The data obtained from structural and interaction studies allowed molecular 

insights into the mode of interaction between Hub1 and hSnu66. After crucial amino 

acid residues important for the binding were identified, they were characterized by 

mutational analysis in further experiments. 

As the salt bridge between R11 of HIND (R127 in hSnu66) and D22 of Hub1 

strengthens and stabilizes the interaction, point mutations were inserted at these 

particular residues to abrogate the interaction. Indeed, single alanine substitutions in 

Hub1 or hSnu66 that interfered with the formation of the salt bridge abolished the 

formation of a stable Hub1-HIND complex as demonstrated in different co-

immunoprecipitation and protein interaction experiments under various conditions. 

Furthermore, these point mutations including the hSnu66 mutant with deleted HIND 

(ΔHIND) were also tested in yeast two-hybrid studies as the initial findings had been 

obtained from the mammalian Y2H screen. Here, exclusively Hub1 WT and hSnu66 
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WT showed physical interaction, whereas both mutations in hSnu66 (R127A and 

ΔHIND) and Hub1 (D22A) abrogated binding, confirming the abovementioned results 

(Figure 5c). Given the fact that the Hub1-hSnu66 interaction is highly conserved and 

orthologs of different species cross-interact, endogenous ScSnu66, which is present 

in the Y2H parental strain, could have bridged interactions from the screen. To rule 

out this possibility the corresponding Y2H constructs were introduced into Δsnu66 

knock-out strains and interaction studies were repeated. Also, in this Δsnu66 strain 

background all interactions of identified Y2H candidates with Hub1 were confirmed 

and supported the data. However, in addition to the D22 surface on Hub1 mediating 

the interaction with hSnu66, another region on Hub1, namely the C-terminal surface 

around R9, functions as a crucial interface for binding to the SR protein kinase Clk3 

and endocytosis adapter AP2β (Figure 5d). Interestingly, both residues (D22 and R9) 

are not critical for the Y2H interaction with USPL1 (SUMO/ubiquitin-specific 

peptidase-like 1), a factor which can bind and cleave SUMO species (SUMO1 and 

SUMO2/3) in human cells, but for its essential function the catalytic activity is 

dispensable (Schulz et al., 2012). The molecular function of USPL1 is yet unknown, 

but it is likely that it rather recognizes the compact ubiquitin-like fold of Hub1 than 

single specific residues in the heterologous system. Considering the aromatic patch 

formed by W47 and Y48, the HIND surface D22, and the exposed residue R9, Hub1 

utilizes at least three different crucial surfaces located on opposing sides of the 

protein. This allows Hub1 to act as a multifaceted binding module with fundamentally 

different interaction properties, reflecting an intriguing feature of the small ubiquitin-

like protein. Further investigation will be necessary to fully characterize potential 

interaction interfaces and their respective binding domains. 

 

5.3 Hub1 and hSnu66 reside in nuclear splicing speckles  

In order to allow metabolic and catabolic processes, expression and replication of 

genetic information, and complex biochemical reactions, eukaryotic cells are 

compartmentalized into specialized organelles and membrane-bound compartments. 

In particular, the nucleus is highly organized into chromosome territories, several 

nuclear bodies and subnuclear domains, which coordinate gene expression, RNA 

processing and export, signaling cascades and various cellular functions (Lanctôt et 

al., 2007). In addition to the genetic information densely packed as chromatin, the 

nuclear space is subdivided into so-called nuclear bodies like the nucleolus, 

promyelocytic leukemia nuclear bodies (PML bodies), Cajal bodies (or coiled bodies, 

nuclear splicing speckles (or interchromatin granule clusters or SC35 domains) and 

several other poorly characterized domains like perinucleolar caps, paraspeckles and 

clastosomes (Lamond and Earnshaw, 1998). Nuclear bodies can vary in shape and 

number depending on cell type, cell cycle stage and stimuli, as they fulfill diverse 

functions in the cell. For example, beside rDNA transcription, rRNA processing as 
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well as pre-assembly of ribosomal subunits the nucleolus plays an important role in 

cell cycle regulation by the sequestration of crucial key players like the Cdc14 

phosphatase (Visintin and Amon, 2000). PML bodies respond to various stimuli 

including oxidative stress, viral infection and DNA damage and are implicated in 

transcriptional regulation and cell cycle control (Ruggero et al., 2000). Protein 

complexes containing small nuclear RNAs (snRNA) or small nucleolar RNAs 

(snoRNAs), are modified and assembled into snRNPs and snoRNPs, respectively, in 

Cajal bodies. After their maturation, snRNPs cycle from Cajal bodies to nuclear 

splicing speckles, where they are engaged in splicing-competent complexes and 

return after participating in splicing catalysis for reassembly into functional complexes 

(Fischer et al., 1997; Cioce and Lamond, 2005). Nuclear splicing speckles are 

believed to be important for pre-mRNA splicing factor maturation and modification, as 

well as for complex formation and storage (Lamond and Spector, 2003). They are 

highly dynamic structures from which snRNPs and splicing factors like SR proteins 

shuttle to active sites of splicing (Wei et al., 1999; Misteli et al., 1997). In the current 

model this shuttling of splicing proteins is orchestrated by kinases and phosphatases 

that regulate the phosphorylation status of their substrates. In particular, members of 

the SR protein family and their regulatory counterparts, hnRNPs, change their 

nuclear distribution and activity upon phosphorylation by Cdc2/Cdc28-like protein 

kinases CLK1-4, SR protein kinases SRPK1/SRPK2 and AKT kinase, respectively 

(Colwill et al., 1996; Stojdl and Bell, 1999; Blaustein et al., 2005). Splicing factors like 

ASF/SF2 (SRSF1) and SC35 (SRSF2) are established constituents of nuclear 

speckles, but also inactive RNA Pol II, poly-adenylated mRNA and long non-coding 

RNAs like MALAT1 have been identified in these structures (Tripathi et al., 2012; 

2010; Caceres et al., 1998; Xie et al., 2006).  

The physical interaction of Hub1 with spliceosomal components like hSnu66 

and SR protein kinase Clk3 strongly indicated a conserved role of Hub1 in pre-mRNA 

splicing. Considering this link of Hub1 to pre-mRNA processing localization studies 

were performed to underscore its functional relationship to splicing-associated 

nuclear domains like Cajal bodies or nuclear speckles. Indeed, immunofluorescence 

staining elucidated a distinct speckle-like distribution of Hub1 within the nucleus 

(Figure 6). Here, it co-localizes with splicing factors SC35, U1A and Y12, which serve 

as well-established marker proteins for nuclear splicing speckles affirming Hub1’s 

functional and spatial association with the splicing machinery. Furthermore, Hub1 

has been recently described to associate with coilin in Cajal bodies, where 

spliceosomal subcomplexes assemble and mature into functional tri-snRNPs (Švéda 

et al., 2013). Importantly, Hub1’s interaction partner hSnu66 is found in nuclear 

speckles as well, co-localizing with SC35 and other tri-snRNP factors like PRPF4, 

which supports the physical interaction data and indicates the functional link to pre-

mRNA splicing (Figure 6b).  
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In co-expression experiments, hSnu66 actively recruited Hub1 to nuclear 

splicing speckles in an HIND dependent manner, which led to an accumulation of 

hSnu66 and Hub1 in these subnuclear domains (Figure 8a). While interfering with the 

Hub1-hSnu66 interaction by using Hub1 D22A or hSnu66ΔHIND mutants had no 

negative impact on the nuclear distribution of the tri-snRNP protein, the accumulation 

of Hub1 in splicing speckles was diminished. Beside the Hub1 interaction domain, 

mapping studies with hSnu66 revealed additional domains involved in tri-snRNP 

binding, nuclear localization and nuclear speckle targeting (Figure 10). The central 

domain comprises the interaction interface for the association with PRPF6 and 

nuclear localization signals (Figure 10b-d). Notably, the N-terminus of hSnu66 

containing the RS-domain and the HIND harbors an additional targeting signal and is 

proficient for nuclear speckle localization. This fragment efficiently binds Hub1 in vivo 

(Figure 11c) and is sufficient to recruit Hub1 to splicing speckles in a RS-domain-

dependent manner (Figure 11a). RS-domains are widely common features of 

splicing-associated factors often combined with RNA recognition motifs to mediate 

protein–RNA and protein–protein interactions (Shen et al., 2004; Manley and Tacke, 

1996; Graveley, 2004; Hertel and Graveley, 2005). Furthermore, nuclear import and 

targeting to nuclear splicing speckles can be enforced by RS-domains as they are 

recognized by specific nuclear import factors, so called SR transportins, in a 

phosphorylation-dependent manner (Allemand et al., 2001; Kataoka et al., 1999). 

Further experiments dissected the effect of Hub1 binding and the contribution of the 

RS-domain to the localization of the N-terminal fragment of hSnu66. While full-length 

hSnu66 and the isolated N-terminus are efficiently recruited to splicing speckles 

together with Hub1 (Figure 11b), the RS-domain is sufficient for targeting to nuclear 

speckles, as shown in experiments with the Hub1 binding-deficient mutant (N-

terminal RA). Interestingly, the crucial role of Hub1 in nuclear retention of the hSnu66 

fragment became evident, when the nuclear/cytoplasmic shuttling was enforced by 

the attachment of a nuclear export signal from the export receptor CRM1 (Figure 

11b). Hub1 binding allows hSnu66’s N-terminus to be incorporated into nuclear 

speckles and spliceosomal subcomplexes, while the NES-HIND RA mutant fragment 

lacking this Hub1-dependent integration is efficiently exported and depleted from the 

nuclear compartment. In summary, the data revealed an interesting interplay 

between Hub1 and hSnu66; hSnu66 actively recruits Hub1 to nuclear speckles, as it 

is efficiently imported into the nucleus via its RS-domain and NLS. As the central 

region in hSnu66 mediates the association with tri-snRNP factors, while the RS-

domain likely serves as an additional interaction platform, the Hub1 interaction 

domain directly binds and directs Hub1 to splicing complexes piggy-back.  

Interestingly, the interaction with hSnu66 contributes to Hub1 targeting to 

nuclear speckles, but is not essential as the binding mutant Hub1 D22A still localizes 

to splicing speckles and overlaps with SC35 pattern exhibiting no significant 
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difference to Hub1 WT (Figure 7a). Although both Hub1 WT and Hub1 D22A show a 

similar nuclear localization in fixed, pre-extracted immunofluorescence staining, the 

kinetics of targeting and shuttling between these structures might be significantly 

different for the two proteins. In order to address this point FRAP (fluorescence 

recovery after photobleaching) experiments would be an excellent method to gain 

further insights into Hub1 dynamics (Ishikawa-Ankerhold et al., 2012). Here, the GFP 

moiety of the respective Hub1 fusion protein is bleached in vivo by laser pulses 

around distinct nuclear speckle areas and the time for fluorescence recovery 

correlates with the mobility and dynamics of the Hub1 protein. In a similar approach, 

shuttling of WT hSnu66 and the Hub1 binding-deficient mutant hSnu66ΔHIND 

between active sites and nuclear speckles could be compared to further examine the 

contribution of the Hub1–HIND interaction in vivo.  

Another important issue deals with the interplay between Hub1 and its binding 

partner hSnu66. As ubiquitin-like proteins are known to modulate the activity, 

localization or physical interactions of their substrates, co-purification studies with 

hSnu66 WT and hSnu66ΔHIND were conducted to determine Hub1-dependent 

changes in protein complex composition upon Hub1 binding (Figure 9). As a 

constituent of the tri-snRNP complex the association of hSnu66 with central 

components of the U4/U6 (PRPF3, PRPF4) and the U5 (PRPF8, PRPF6) was 

monitored. Hub1 binding is not essential for the incorporation of hSnu66 into the tri-

snRNP, as no significant changes in co-purification experiments were observed for 

Hub1-deficent mutants (hSnu66ΔHIND or hSnu66 R127A). In addition to the directed 

tri-snRNP complex analysis, mass spectrometry was used as a proteomic approach 

to identify alterations in co-purifying protein complexes with WT and Hub1-binding 

deficient hSnu66 (Figure 9). A broad spectrum of splicing factors as well as proteins 

involved in mRNA processing and export were detected specifically in samples with 

immunoprecipitated hSnu66 and hSnu66ΔHIND. In addition to the already 

characterized hSnu66-associated tri-snRNP factors PRPF6 and PRPF8, 

spliceosomal proteins like CDC5L and PRP19 of the NTC (PRP19 complex), DEAD 

box helicases (DDX) and SR proteins like ASF/SF2, SFRS3 and SRSF5 as well as 

their respective kinases SRPK1 and GSK3 were significantly enriched in co-

immunoprecipitation experiments. Moreover, as a substantial fraction of hSnu66 

localizes to both nuclear speckles and the nucleolus (Figure 6b), nucleolar proteins 

including NPM3, UBF1 and NOP52 were identified in hSnu66 purifications. This dual 

localization has been reported for other splicing factors as well, e.g. the DEAH box 

ATPase Prp43 (Leeds et al., 2005; Van Koningsbruggen et al., 2004) and could 

reflect additional functions of RNA binding factors like hSnu66 in rRNA metabolism, 

as suggested previously (Li et al., 2009). Furthermore, it was shown that snRNPs 

and Sm proteins pass the nucleolus and Cajal bodies before reaching their 

destination, the nuclear speckles (Sleeman et al., 2001; Sleeman and Lamond, 
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1999). Thus, the dual localization might represent to snapshots during hSnu66 

nuclear speckle targeting and incorporation into functional snRNP complexes. 

The qualitative comparison of co-immunoprecipitation experiments with WT 

and Hub1 binding-deficient hSnu66 by mass spectrometry revealed only mild 

differences in the abundance of multiple co-purified and interacting proteins. This 

finding is in line with recent data in which the interactomes of yeast ScSnu66 in WT 

and HUB1-deletion stains (hub1Δ) were analyzed and compared by quantitative 

mass spectrometry (Mishra et al., 2011). Here, the composition of ScSnu66 

interactors was largely unaltered, but components of the U2 snRNP and the SF3 

complex were overrepresented in the absence of Hub1. As human hSnu66 provides 

multiple interaction interfaces (RS-domain, HIND and central PRPF6 association 

domain) it is possible that loss of Hub1 binding can be compensated via alternative 

modes of recruitment and binding modules (Figure 8,10,11). However, for 

quantitative analysis a more sophisticated approach like SILAC (stable isotope 

labeling by amino acids in cell culture) would be necessary, which would give a 

detailed and robust readout with high resolution and sensitivity compared to 

conventional mass spectrometry.  

Although the data presented here allows a detailed characterization and 

molecular insights into a unique non-covalent mode of interaction between an 

ubiquitin-like protein and an important tri-snRNP splicing factor, the spatial and 

temporal framework for Hub1-HIND complex formation requires further investigation. 

Additional layers of regulation like posttranslational modification might influence the 

interaction network of Hub1 and hSnu66, as phosphorylation is the main regulatory 

element within the splicing machinery. While SR-kinases control the recruitment of 

RNA binding factors to pre-mRNA, phosphorylation is also essential for splicing 

catalysis itself, as PRP28 needs to be modified in order to allow the incorporation of 

the tri-snRNP and the formation of the pre-catalytic spliceosome (C complex) 

(Mathew et al., 2008). Recently, additional posttranslational modifications like 

acetylation and notably, ubiquitylation have come into focus (Kuhn et al., 2009; 

Bellare et al., 2006). The spliceosome core component PRPF8 was shown to be 

modified by ubiquitin, which is important for the regulation of the helicase activity of 

Brr2 unwinding the U4/U6 snRNAs in vitro (Bellare et al., 2008). Interestingly, when 

hSnu66 was tested for posttranslational modifications by denaturing 

immunoprecipitations and mass spectrometry, over 16 phosphorylation sites on 

serine and threonine residues in hSnu66 were identified (data not shown). Two of 

them are in close proximity of the Hub1 interaction domain at position S111 and S117 

(HIND: AA 116-135). Furthermore, directed assays elucidated that hSnu66 is also 

multiply modified by the ubiquitin-like protein SUMO. This data was supported by 

large scale quantitative mass spectrometry analyses in which K94, K141, K709 were 

identified as SUMOylated lysines in hSnu66 (Vertegaal et al., 2006). Thus, the short 
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stretch in hSnu66 (AA 111-141) might constitute a regulatory hotspot that is modified 

by SUMO, phosphorylated and embeds the HIND for Hub1 binding. To address this 

point amino acid substitutions that mimic or abrogate posttranslational modifications 

of the targeted residues can be introduced in hSnu66 and the effect on Hub1-binding 

kinetics and affinities can be measured.  

Considering phosphorylation and SUMOylation as quick and reversible 

posttranslational modifications involved in multifaceted regulatory cellular processes, 

covalent attachment of SUMO and phosphate moieties to crucial residues in flanking 

sequences of the HIND might modulate Hub1 binding to hSnu66. These data suggest 

a model, in which posttranslational modifications serve as a cellular control 

mechanism to prevent undesired Hub1-binding to hSnu66 in order to spatially or 

temporally restrict this interaction to a particular process. A plausible explanation 

would be that this regulation is necessary to ensure correct tri-snRNP formation and 

licensing as hSnu66 is recruited late during assembly. To avoid premature 

association of Hub1, hSnu66 is kept in a HIND inactive state by phosphorylation or 

SUMOylation and Hub1-binding is blocked until the U4/U6.U5 tri-snRNP is properly 

assembled. Only when hSnu66 is incorporated into a functional tri-snRNP complex, 

the HIND becomes accessible and Hub1 binding is permitted to facilitate progression 

in the splicing cycle. 

In line with the immunofluorescence data showing that Hub1 and hSnu66 co-

localize in nuclear speckles in the context of pre-mRNA splicing complexes, several 

proteomic studies dissecting the composition of spliceosomal subcomplexes at 

different steps during the splicing cycle independently identified hSnu66 and Hub1. 

While Hub1 was found in human B and Bact complexes, hSnu66 was detected in the 

isolated tri-snRNP as well as in B, Bact and C spliceosomal complexes (Herold et al., 

2009; Bessonov et al., 2010; 2008; Deckert et al., 2006; Agafonov et al., 2011; Jurica 

et al., 2002).  

Taking advantage of the different variants of Hub1 and hSnu66 characterized 

in this work, further experiments with in vitro splicing assays and interaction studies 

might elucidate the functional role of Hub1 and hSnu66 in splicing. For example, as 

the splicing reaction can be reconstituted in vitro the different functional spliceosomal 

complexes can be arrested at particular steps of the transesterification reaction. It 

would be interesting to isolate Hub1 or hSnu66 from spliceosomes at various stages, 

deplete these factors from splicing extracts and to perform complementation assays 

with the recombinant proteins and their mutant variants. Due to the multifaceted 

nature of protein-protein, RNA-protein and RNA-RNA interactions within splicing 

complexes, crosslinking and co-immunoprecipitation experiments with splicing 

extracts would be feasible approaches to further characterize the molecular function 

of Hub1.  
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While hSnu66 is efficiently imported into the nucleus and exclusively recruited 

to nuclear subdomains, additional functions of Hub1 outside the nuclear envelope 

can not be excluded as live cell imaging and cellular sub-fractionation experiments 

detected notable cytoplasmic pools of Hub1 (Figure 7b, 11b). In contrast to the 

hSnu66 binding-deficient mutant Hub1 D22A the C-terminally tagged variant of Hub1 

(Hub1-GFP or Hub1FLAG) was not retained in nuclear substructures after pre-

extraction (Figure 7a), even though it was properly folded and functional in hSnu66 

interaction (see Figure 5b). Thus, the C-terminal surface, which is compromised of 

bulky or charged extensions, appears to be a crucial interface on Hub1 important for 

proper recruitment and incorporation into splicing-associated protein complexes 

within nuclear speckles. 

 

5.4 Conserved and evolved protein features of Hub1  

Although Hub1 is highly conserved from yeast to human, little was known about its 

molecular function. Initial work in lower eukaryotes S. cerevisiae and S. pombe 

addressed the ubiquitin-like nature of Hub1 and its impact on cell growth. 

Interestingly, while S. cerevisiae cells with a deletion of HUB1 (hub1Δ) are viable and 

exhibit no discernable growth defects (Mishra et al., 2011; Luders et al., 2003), 

hub1Δ in S. pombe is lethal (Yashiroda and Tanaka, 2004; Wilkinson et al., 2004). 

However, in S. cerevisiae hub1Δ shows negative genetic interactions with mutant 

alleles of several splicing factors like prp17Δ, snu17Δ and prp8*, which expresses a 

partially defective variant of the core-spliceosomal protein Prp8 (Mishra et al., 2011). 

This provides further evidence for Hub1 functioning in pre-mRNA splicing. With these 

two strain backgrounds, S. cerevisiae and S. pombe hub1Δ,  different variants of 

Hub1 were tested for functionality in complementation cell growth assays. 

Importantly, although each Hub1 variant could complement the growth defects in the 

respective yeast strain under normal conditions, rescue assays revealed significant 

differences between yeast and human Hub1 at restrictive temperatures (Figure 12). 

When hub1Δ S. pombe cells were supplemented with constructs expressing HUB1 

orthologs from S. cerevisiae, S. pombe and H. sapiens, only the human and fission 

yeast HUB1 fully complemented the lethality at higher temperature, while S. 

cerevisiae Hub1 exhibited clear growth defects. Vice versa, the human Hub1-

encoding gene could not fully rescue the synthetic lethality of the double mutant 

hub1Δ prp8* in S. cerevisiae, while ScHUB1 and SpHUB1 facilitated growth at 

restrictive temperatures.  

Based on recent data elucidating an important role of Hub1 in splice-site 

usage and alternative splicing in yeast (Mishra et al., 2011), an alternative 

complementation readout highlights the functional differences between the different 

HUB1 orthologs. Alternative splicing of the SRC1 gene product in S. cerevisiae 

depends on Hub1 for proper splicing of the overlapping non-canonical 5’ splice sites 



Discussion 

 93 

giving rise to two mRNA isoforms, SRC1-L (long isoform) and SRC1-S (short 

isoform). While both yeast variants of Hub1 were able to rescue the splicing defect in 

hub1Δ strains, human Hub1 failed to fully restore alternative splicing of SRC1.  

These distinct activities of Hub1 in complementation assays might be 

explained by the fundamental differences of pre-mRNA splicing in various species. 

Only three percent of the genes in the S. cerevisiae genome carry introns with only 

six ORFs containing two introns (Barrass and Beggs, 2003). In contrast, splicing of 

pre-mRNA with multiple introns is much more prevalent in fission yeast with 43 % of 

its genes comprising intronic sequences (Wood et al., 2002). These differences in 

splicing prevalence and regulation in splice site recognition and selection (as 

discussed in 5.1) might reflect the impact of HUB1-deletions in the respective yeast 

species and correlate with the implication of Hub1 in pre-mRNA splicing.  

In S. cerevisiae Hub1 enables the spliceosome to process transcripts with 

non-canonical splice sites to ensure proper and faithful splicing even at suboptimal 

sequences like the overlapping splice sites in SRC1. As the number of critical Hub1-

dependent splice sites is limited, deletion of the ubiquitin-like protein (hub1Δ) does 

not challenge cells under normal growth conditions, because difficult splice sites in 

non-essential transcripts might still be processed by the spliceosome even in the 

absence of Hub1, albeit with very low efficiency. If the spliceosome is compromised 

in activity (for example by mutations in core-splicing factors like Prp8) non-canonical 

splice sites constitute serious obstacles for the dynamic splicing machinery. Here, 

Hub1 might mediate conformational rearrangements, which allow higher flexibility of 

the spliceosome to tolerate and to process critical splice sites in order to ensure 

efficient and faithful pre-mRNA splicing. The accurate transition between the different 

spliceosomal complexes is under tight control of DExH/D-box helicase like hPrp28 

and hBrr2. Moreover, as non-canonical splice sites are recognized poorly and 

challenge spliceosomal assembly, Hub1 might serve in spliceosomal quality control 

to facilitate the correct incorporation and activation of spliceosomal subcomplexes by 

DExH/D-box helicases. 

Due to the low complexity of pre-mRNA splicing in S. cerevisiae, this model for 

the molecular function of Hub1 in the spliceosome might reflect the original activity of 

the ubiquitin-like protein in the spliceosome very early in evolution. In higher 

eukaryotes, where alternative splicing is utilized to expand the cellular repertoire of 

gene products, several additional surveillance mechanisms were established to 

facilitate correct pre-mRNA processing and high fidelity by the spliceosome. In order 

to cope with a higher complexity on sequence level and splice variants due to 

variations at splice sites, auxiliary RNA binding factors (SR proteins and hnRNPs) are 

recruited to cis-regulatory elements on pre-mRNAs to mediate loading of the splicing 

machinery at the correct splice site for efficient exon recognition and proper splicing. 

Although initial steps like splice site recognition and recruitment of the 
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prespliceosomal complex A with U1 and U2 snRNPs are more sophisticated in higher 

eukaryotes, the spliceosomal core machinery catalyzing the transesterification 

splicing reaction is largely identical from yeast to man. Thus, the function of Hub1 

might have become particularly important at the interface between the “evolved” 

splice site recognition with prespliceosomal complex assembly and processing of 

suboptimal splice sites by the conserved core spliceosome. Despite the high 

conservation, in higher eukaryotes Hub1 might have gained an additional or more 

prevalent function in pre-mRNA splicing, which is conveyed by a distinct, intrinsic 

feature of the ubiquitin-like protein, but is absent in S. cerevisiae.  

 

5.5 Different surfaces on Hub1 facilitate distinct interactions 

Even though Hub1 is structurally very similar to ubiquitin, the mode of interaction is 

very different. Encompassing solely the ubiquitin-fold and lacking any N- or C-

terminal extensions, Hub1 is only able to function through non-covalent interactions 

with other proteins.  

Based on the structural data and hSnu66 interaction studies, the question of 

which surface on Hub1 is crucial for its essential activity, was addressed. For this 

approach, various Hub1 point mutations, changing conspicuous residues in different 

patches on the Hub1 protein were generated and tested in RNAi complementation 

and immunoprecipitation assays.  

Firstly, the siRNA-resistant cDNA expressing a Hub1 variant deficient in 

Snu66 interaction (D22A) rescued viability only partially, indicating that specific 

binding of Hub1 to the spliceosomal protein hSnu66 contributes, but is not essential 

in humans cells under standard growth conditions. These data were further 

supported by analogous complementation experiments in S. pombe, where Hub1 

D22A restored viability in hub1Δ stains (Mishra et al., 2011). Notably, further analysis 

of mutations interfering with hSnu66 binding (Hub1 D22A) or Clk3 kinase interaction 

(Hub1 R9A) individually or in combination (Hub1 RDAA) did not further attenuate the 

rescue capacity. Thus, the interplay of Hub1 with tri-snRNP protein hSnu66 or SR-

kinase Clk3 might contribute to the Hub1 mediated activity in pre-mRNA processing, 

but additional factors utilize alternative surfaces on Hub1 to execute its essential 

function.  

Intriguingly, RNAi complementation experiments revealed the importance of 

Hub1’s C-terminus as variants carrying C-terminal extensions, like charged or bulky 

epitope tags, were not able to rescue the lethal depletion phenotype. These 

extensions did not negatively affect Hub1 hSnu66 interaction, protein stability or 

folding, but rather interfered with physical interactions, which might be mediated via 

this surface. Notably, introducing mutations into very C-terminal residues of Hub1 or 

truncating the terminal amino acids (ΔYYQ/YYL), did not significantly alter the activity 

of Hub1 (Luders et al., 2003; Mishra et al., 2011). In addition to the characterization 
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in RNAi complementation experiments, the relevance of this C-terminal interface 

became more evident in localization studies in human cells (Figure 21). While Hub1 

WT and the Snu66 binding deficient mutant Hub1 D22A resided in nuclear speckles, 

the C-terminally tagged Hub1-GFP failed to be incorporated into respective nuclear 

substructures and was washed out of the nucleus. Due to the compact ubiquitin-fold 

of Hub1 with the typical protruding C-terminus of UBLs missing, this site might have 

gained particular importance for Hub1 as a non-conventional ubiquitin-like protein.  

Analogous to the complementation experiments performed in yeast, RNAi 

rescue assays reintroducing different Hub1 orthologs into human tissue culture cells 

were conducted (Figure 16b). Here, human and fission yeast Hub1 were able to 

restore viability after Hub1 knockdown, while S. cerevisiae Hub1 failed to 

complement the lethal RNAi phenotype despite equal protein expression levels. This 

supports the model that Hub1 from mammals and S. pombe owns crucial protein 

properties that are missing in the ScHub1 variant. 

This finding drew the attention to particular surfaces, which are conserved 

from fission yeast to mammalian Hub1, but differ from S. cerevisiae Hub1. The most 

significant structural difference was identified in the loop on α2-β3 in human Hub1, 

with exposed hydrophobic residues W47, Y48 and F51, which are conserved in all 

metazoan orthologs.  

Due to the unusually exposed orientation of the tryptophan and tyrosine, 

these residues might create an additional binding site opposing the HIND surface. 

Initial experiments showed that single mutations in Hub1 (WYFGGL) did not 

significantly affect the rescue capacity, but in combination with mutations in the Clk3 

of hSnu66 binding sites (Hub1 R9AWYGG and RDAAWYFGGL), these Hub1 

variants were less potent in restoring viability after RNAi, despite similar expression 

levels.  

Most hydrophobic amino acids are buried within the protein tertiary structure during 

protein folding for stabilization, while hydrophilic residues are oriented to the solvent 

(Dyson et al., 2006). Alternatively, exposed hydrophobic amino acids like tryptophan 

and tyrosine were reported to be crucial for the formation of various interaction 

interfaces for multimerization or ligand binding (Moreira et al., 2007). For example, 

RNA binding proteins harboring RNA recognition motifs (RRM) utilize tryptophan, 

phenylalanine and tyrosine residues in their four β-sheets to recruit and coordinate 

binding to RNA species (Cléry et al., 2008).  

Hub1 exhibits remarkable features, as it utilizes several residues and surfaces 

for various interactions. Beside the Hub1-HIND surface mediated via D22 and the 

Clk3 interaction via R9, the C-terminal surface and the hydrophobic patch with W47, 

Y48 and F51 resemble binding sites, which might act synergistically to accomplish 

Hub1’s essential function in human cells. 
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5.6 In vivo depletion of Hub1 causes cell cycle defects and apoptotic 

cell death  

Human cells arrest in distinct cell cycle phases upon checkpoint activation as a 

cellular response to stress or toxic insults e.g. accumulation of aberrant synthesis 

products or DNA damage. After the transfection with Hub1 RNAi all tissue culture cell 

lines tested (U2OS, HCT116, HeLa) exhibited strong cell cycle progression delays, 

accompanied by defects in mitotic cell division, including aberrant metaphase plate 

formation and chromosome missegregation. Further cell cycle synchronization and 

release assays elucidated that Hub1 RNAi cells, but not cells treated with a control 

siRNA, exhibited G2/M cell cycle progression defects after S-phase release. Flow 

cytometry analysis revealed that Hub1 siRNA treatment initially (after 48 hours) 

caused defects in G2/M cell cycle progression, and later (72 hours) culminated in a 

rise of sub G1 fractions, indicative of cells undergoing apoptosis (Figure 14-16).  

Cell lines with compromised checkpoints, for example HeLa, with inactive p53 

pathway (Hoppe-Seyler and Butz, 1993) are prone to overcome G2/M arrests, a 

process called mitotic slippage, frequently observed in DNA replication checkpoint 

mutants (Di Leonardo et al., 1997; Riffell et al., 2009). Due to the checkpoint 

override, cells face unfaithful chromosome segregation and undergo aberrant mitosis, 

resulting in abnormally fragmented nuclei and subsequent induction of apoptosis 

reflecting hallmarks of mitotic catastrophe (Castedo et al., 2004), as observed in 

Hub1 RNAi treated cells. As the accumulation of aberrantly spliced transcripts 

causes multifaceted cellular stresses and misregulation of various cellular pathways 

(Venables, 2004), Hub1 appears to be a pivotal factor to facilitate efficient and faithful 

splicing which is crucial for maintaining cellular homeostasis.  

In line with the obtained Hub1 RNAi data, recent high throughput siRNA 

screenings (Neumann et al., 2006) underscored the importance of core splicing 

components like tri-snRNP proteins PRPF8, hBrr2, PRPF6 and associated non-

snRNP proteins like components of the PRP19 complex (NTC) for proper cell cycle 

progression and faithful mitosis. Interestingly, only one fifth of the 150 core 

spliceosomal factors analyzed exhibited mitotic defects in this RNAi based approach 

(Neumann et al., 2010; Hofmann et al., 2010), while Hub1 appears to be an 

additional potent candidate for this list.  

Similar to Hub1, inactivation of important splicing factors like SR proteins 

SC35 and ASF/SF2 causes genome instability and cell cycle defects, which entail 

proto-oncogenic potential in vertebrate cells (Karni et al., 2007; Li and Manley, 2005; 

Xiao et al., 2007). Furthermore, it was shown that efficient splicing of pre-mRNA and 

its incorporation into mRNP complexes is important to maintain genome stability (Li 

and Manley, 2006). In eukaryotes, co-transcriptional processing couples mRNA 

synthesis directly to splicing and mRNA export. If mRNA processing is impaired 

during transcription by chemical inhibition (Gan et al., 2011), depletion of crucial 
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splicing factors by RNAi (Li et al., 2007; Li and Manley, 2005; Stirling et al., 2012) or 

mutant alleles of genes involved in mRNA export (THO/THREX (Huertas and 

Aguilera, 2003)), the nascent transcript stalls and accumulates at DNA. Similarly 

stalled RNA polymerase that faces obstacles blocking transcription elongation like 

DNA damage, replication forks or hypernegative supercoiled DNA can lead to free 

nascent pre-mRNA. As a result, the naked RNA strand emerging from RNA 

polymerase, which is not incorporated into functional mRNP, can form undesired 

RNA:DNA hybrid structures, so called R-loops (Aguilera and García-Muse, 2012). If 

the hybridizes stretches are not resolved by RNase H-like enzymes, these structures 

can cause substantial DNA damage and give rise to mutations, recombination or 

chromosomal rearrangements. 

In addition to the cell cycle arrests and mitotic defects, in vivo depletion of 

Hub1 triggers the DNA damage response pathway and the activation of several key 

effector proteins (Figure 17). Hub1 knockdown leads to stabilization and activation of 

p53, transcriptional up-regulation of p21 and phosphorylation of histone 2A at S139 

(γH2AX). Interestingly, cells treated with Hub1 siRNA exhibit reduced proteins levels 

of the nucleotide excision repair factor xeroderma pigmentosum group C (XPC), 

whose activity is regulated via ubiquitylation and degradation upon UV-irradiation to 

facilitate efficient DNA repair in concert with hRad23B (Wang, 2005; Sugasawa et al., 

2005). However, at the moment it is unclear what the cause and type of DNA 

damage is that accumulates in Hub1-depleted cells and how Hub1 might affect DNA 

damage signaling and stability of crucial factors. Whether Hub1 functions like RNA 

processing factors that play crucial roles during DNA damage repair directly, e.g. 

hnRNPU-like proteins (hnRNPUL1/2) which contribute to DNA-end resection (Polo et 

al., 2012; Beli et al., 2012; Pont et al., 2012) will require further research. 

Altogether, this data clearly indicates that the ubiquitin-like protein Hub1 is a crucial 

factor to ensure genome integrity.  

 

5.7 Hub1 RNAi leads to aberrant splicing and mRNA retention 

Active splicing is a highly dynamic process in which spliceosomal subcomplexes are 

constantly recruited to regulatory sequences within the nascent pre-mRNA emerging 

from the RNA polymerase to perform the splice cycle (chapter 2.5). Furthermore, co-

transcriptional recruitment of the splicing machinery and active splicing are required 

for efficient mRNA export (Riedl and Shi, 2004; Reed and Hurt, 2002). The phospho-

protein SC35 is a well-established nuclear speckle marker that illustrates the shuttling 

of splicing factors between splicing foci and sites of active transcription. SC35 was 

shown to associate with pre-mRNA sequences as well as to directly contact RNA Pol 

II’s CTD (Riffell et al., 2009; Lin et al., 2008; Di Leonardo et al., 1997).  

To address the effect of Hub1 knockdown on pre-mRNA splicing, central 

splicing and RNA processing factors were investigated in a time window, in which 
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Hub1 protein levels were already significantly reduced, but cells did not show any 

signs of severe stress nor degeneration like nuclear disintegration. Whereas control 

cells showed normal distinct SC35 domains with many small foci distributed within 

the interchromatin space, Hub1 knockdown cells exhibited an aberrant SC35 pattern 

with high enrichment in enlarged nuclear speckles, while small foci diminished. 

These changes in nuclear distribution were not restricted to SC35, as this effect of 

Hub1 depletion was also observed for various other splicing-associated factors like 

U1A, hnRNP1 or trimethylguanosine-capped snRNPs (Figure 20). 

Direct evidence of Hub1 RNAi-dependent defects in pre-mRNA processing 

was obtained when endogenous poly-adenylated mRNA was visualized by FISH. In 

line with aberrant splicing factor distribution, depletion of Hub1 caused nuclear 

retention of polyadenylated mRNA in enlarged speckles, while the cytoplasmic 

fraction was significantly reduced, indicating impaired processing and nuclear 

shuttling as described previously (Kaida et al., 2007; Dias et al., 2010). The observed 

RNA accumulation was weaker compared to cells in which crucial mRNA export 

factors had been depleted (Yamazaki et al., 2010), indicating that Hub1 activity is 

crucial for early mRNA processing steps rather than facilitating mRNA export further 

downstream.  

However, the characterized Hub1 knockdown phenotypes were highly similar 

to those observed in cells in which splicing was repressed by the splicing inhibitor 

Spliceostatin A, repressing oligonucleotides, or RNAi (Kaida et al., 2007; O'Keefe et 

al., 1994; Tanackovic and Krämer, 2005). These data further underscore that Hub1 is 

a crucial factor for pre-mRNA splicing and processing in vivo.  

 

5.8 Human Hub1 is crucial for specific splicing events 

The strong phenotypes associated with Hub1 depletion in human cells suggest that 

human Hub1 plays a much more fundamental cellular role than its S. cerevisiae 

counterpart. Reasonable models are that Hub1 is crucial in human cells either for 

general splicing, or for splicing of a number of certain, particularly sensitive pre-

mRNAs or introns.  

To address splicing competence of Hub1-depleted human cells, firstly splicing 

of artificial splicing reporters was analyzed. Minigenes are frequently used tools to 

characterize and manipulate various aspects of pre-mRNA splicing e.g. strength of 

particular splice sites, branch point or pyrimidine tract sequences (Gaildrat et al., 

2010; Cooper, 2005; Stoss et al., 1999; Singh and Cooper, 2006). Furthermore, 

transcript specific cis- and trans- active regulatory elements like splice site enhancer 

or silencer sequences and their respective RNA binding proteins can be examined in 

detail (Wang and Burge, 2008; Lopez, 1998). Notably, specifically in Hub1 siRNA 

treated cells, splicing of the GFP minigene pre-mRNA was defective and unspliced 

transcripts accumulated, proving that Hub1 indeed is crucial for pre-mRNA splicing in 
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human cells (Figure 22). However, in this setup variations at the 5’ splice sites did not 

significantly affect Hub1-dependent splicing defects even when highly divergent 

sequences were introduced into the respective gene products. This might be 

explained by the fact that the artificial pGint / pRint minigene transcripts are 

constitutively highly expressed and comprised of a single, relatively short intron 

lacking cis-regulatory elements. Thus, to address the physiological role of Hub1 in 

pre-mRNA splicing, endogenous transcripts and alternative splicing model substrates 

were examined.  

Several layers of regulation have been identified to affect splicing efficiency 

and alternative splicing in human cells. Chromatin structure, histone modification and 

promoter strength modulate recruitment of splicing factors and RNA pol II associated 

factors which can then lead to significant changes in splice site recognition and 

usage (Luco et al., 2010; Cramer et al., 1999; Luco et al., 2011). By transplanting 

genomic fragments containing alternatively spliced exons into mammalian expression 

plasmids, some of these regulatory effects can be omitted to address Hub1’s splicing 

specificity. For this, gene products were examined that are known to be regulated by 

alternative splicing at different developmental stages, tissue-specific programs or 

upon exogenous stimuli. Fibronection 1 (FN1, (Muro et al., 1998)), tropomyosin 1α 

(TPM, (Graham et al., 1992)) or myeloid cell leukemia sequence 1 (MCL1, (Bae et 

al., 2000)) served as model transcripts in U2OS cells after RNAi treatment (Figure 

23c). The RT-PCR analyses elucidated that Hub1 is crucial for correct splice site 

usage and faithful pre-mRNA splicing of distinct splice sites as Hub1 depletion 

resulted in different forms of alternative and constitutive splicing defects in various 

transcripts. In case of FN1, Hub1 knockdown caused exon (ED-A) skipping, whereas 

intron retention coupled to moderately lower steady-state mRNA levels was observed 

for TPM and Mcl-1. Furthermore, these data demonstrate that individual sequences 

like ED-A, TPM intron 4-5 and Mcl-1 intron 1-2 are particularly sensitive to Hub1 

depletion, while other flanking sequences within the same transcript show no 

alterations, indicating that Hub1 is not a general splicing factor, but promotes specific 

splice events.  

The model that Hub1 enables the spliceosome to process certain unprivileged 

transcripts to ensure efficient and faithful splicing was further strengthened, when 

endogenous Hub1-dependent transcripts were identified. Splicing of various 

endogenous pre-mRNAs (Mcl-1, Akt, Casp2, AurkA etc.) was affected in Hub1-

depleted cells, as shown in a candidate-based RT-PCR screen. Apparently, Hub1 

activity owns sequence specificity, as splicing defects were restricted to distinct 

splice sites in certain transcripts, while other gene-products tested simultaneously 

were processed normally, arguing that Hub1 is not essential for splicing per se, but 

needed for efficient splicing events via specific splice sites. 
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In addition to direct candidate approaches comprehensive exon-specific RNA 

microarray profiling was performed to detect global changes in alternative splicing in 

human cells upon Hub1 depletion (Figure 25). The unbiased microarray analysis 

elucidated broad alterations in mRNA exon patterns for multiple transcripts with a 

majority (ca. 68%) exhibiting exon exclusion specifically in Hub1 knockdown cells. 

Furthermore, the splicing array data clearly demonstrates, with single exon 

resolution, that Hub1 depletion affects alternative splicing of individual exons, while 

flanking sequences within the same transcript show no alterations. This might be 

explained by splice site usage defects in cells with spliceosomes lacking Hub1. Here, 

the Hub1-deprived splicing machinery fails to efficiently recognize and define the 

exon boundaries, which hinders spliceosomal assembly. As co-transcriptional 

splicing is a highly dynamic process, neighboring flanking exons with strong splice 

sites and/or splicing enhancer sequences could be favored over Hub1 sensitive 

exons, which are subsequently excluded from the transcript. Splice site usage and 

thus alternative splicing is determined by the interplay of multiple factors including 

SR, hnRNP and other spliceosomal proteins as well as RNA pol II activity and 

histone modifications (Mabon and Misteli, 2005; la Mata et al., 2003). However, this 

data demonstrates that Hub1 is an additional determining factor for alternative pre-

mRNA splicing in human cells. 

Although these data further extend the view on transcripts, which are spliced 

in a Hub1-dependent manner, the growing list of Hub1 substrates is most likely not 

complete due to several technical challenges. Although the Affymetrix human exon 

array comprises specific probes for validated cDNA-based sequences as well as 

predicted and previously unknown splice variants, alternative splicing events like 

intron-retention and proximal cryptic splice site recognition cannot be resolved by this 

technique. To address this question, comparative RNA sequencing would be a 

powerful method and might give in depth insights into Hub1-dependent splicing 

reactions. Additionally, in Hub1 knockdown cells a certain fraction of aberrantly and 

alternatively spliced transcripts are subjected to rapid mRNA decay, as Hub1-

dependent splicing defects most likely interfere with mRNA maturation and give rise 

to pre-mature stop codons, the bona fide nonsense-mediated decay (NMD) 

substrates (Kervestin and Jacobson, 2012). This is supported by the observed 

substantial down regulation of mRNAs upon Hub1 knockdown on transcription level 

detected in microarray expression data sets.  

Interestingly, a considerable number of Hub1-dependent splice substrates 

were previously characterized as transcripts containing weak splice sites (Akt, 

FANCG, Rad23) (Ahn et al., 2011). While strong splice sites are efficiently 

recognized and spliced by the spliceosome, proper splicing of pre-mRNAs with weak 

splice sites challenge the spliceosomal assembly and require auxiliary factors like the 

RS-domain protein Son. Son was reported to facilitate recruitment and stable 
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association of U1-70K, U2AF65 and SC35 at weak splice sites and is thereby crucial 

for accurate and efficient splicing of certain pre-mRNAs (Ahn et al., 2011; Sharma et 

al., 2011). To further dissect if Hub1 affects splicing of weak splice sites similar to 

Son or the spliceosomal core with hSnu66, Hub1 RNAi induced aberrant splicing was 

compared to splicing defects in cells in which the tri-snRNP protein hSnu66 or the SR 

protein Son were knocked down. Whereas Hub1 and Son are important factors for 

efficient Akt pre-mRNA splicing, Hub1 and hSnu66 (but apparently not Son) 

facilitated splicing of Mcl-1 and AurkA. These data suggest that Hub1 might act at the 

crossroads between the early steps during spliceosome assembly and spliceosomal 

core, as Hub1 knockdown phenotypes combine characteristics of both crucial 

branches for splicing activity. In line with the hSnu66-independent activities of Hub1 

identified in knockdown complementation assays, RNAi rescue experiments showed 

that the hSnu66 binding-deficient Hub1 D22A variant was able to complemented the 

splicing defects, while the C-terminally extended version of Hub1 failed to support 

splicing. This finding reinforces the model in which direct binding of Hub1 to hSnu66 

via the HIND element is not essential for Hub1-dependent splicing, even though, the 

additional surface opposing the Hub-HIND interface on Hub1 mediates its crucial 

activity in human cells.  

Since the splice sites of the investigated introns that are sensitive to Hub1 

show no obvious sequence similarity, Hub1 may act as a splicing qualifying factor for 

splicing events that are unprivileged for different reasons. Further studies will be 

necessary to characterize, which crucial sequence features mediate Hub1-dependent 

splicing e.g. pre-mRNA folding constrains (secondary structures), cis-acting splicing 

enhancers or silencers, or presence of RNA binding proteins (Matlin et al., 2005; 

Wang and Burge, 2008; Hiller et al., 2007). However, in striking contrast to canonical 

regulators of alternative splicing that directly target pre-mRNAs by binding to 

regulatory sites using their sequence-specific RNA recognition motifs, Hub1 appears 

to stimulate unprivileged splicing events through modifying the splicing machinery 

rather than targeting specific RNA substrates. 

 

5.9 Hub1 knockdown desensitizes cells to actinomycin D 

Aberrant mRNA splicing is a common characteristic of many cancers (Fackenthal 

and Godley, 2008; Venables, 2004), as it causes cellular stresses and mis-regulation 

of various cellular pathways underlining that efficient and faithful splicing is crucial for 

cellular homeostasis. In eukaryotic cells, Hub1 plays a central role to ensure efficient 

and faithful splicing of suboptimal splice substrates, as its inactivation leads to 

extensive splicing defects entailing abnormal mitosis and, finally, apoptosis. Several 

RNAis and chemical compounds were tested to identify growth conditions under 

which the Hub1-dependent cellular activity becomes particularly important or to find 

drugs that modulate cellular pathways to suppress the Hub1 depletion phenotypes. 
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To this end, transcription inhibitors like actinomycin D (ActD), α amanitin and 5,6-

dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), were included in this study, 

which affect RNA polymerase activity and reduce mRNA synthesis by different 

modes of action (Bensaude, 2011).  

Intriguingly, actinomycin D was able to partially rescue the Hub1 RNAi 

phenotype (Figure 26). At early time points after siRNA transfection, ActD treatment 

affected control RNAi cells only marginally, while the observed G2/M arrest in Hub1 

knockdown cells was already significantly decreased after incubation with ActD. At 

later stages of knockdown, when control cells were treated with increasing drug 

concentrations, the fraction of apoptotic cells increased accordingly due to the 

cytotoxic effect of transcription inhibition by ActD. Notably, although Hub1 knockdown 

is fatal for human cells, after incubation with actinomycin D HeLa cells did not show a 

synergistic effect at increasing drug concentrations, but rather exhibited an improved 

cell cycle distribution ratio for G1 and G2/M populations, while the apoptotic fraction 

decreased.  

As alternative transcription inhibitors like α amanitin or DRB, did not show 

similar antagonistic effects with Hub1 knockdown, this effect was specific for Hub1-

depletion combined with ActD. This might be explained by the different modes of 

action of these drugs on RNA Pol II during RNA synthesis. 

Actinomycin D belongs to the family of natural polypeptide antibiotics 

produced by Actinobacteria of the genus Streptomyces. It binds ssDNA with high 

affinity and intercalates preferentially into GC rich regions (Hollstein, 1974; Sobell, 

1985). Thereby, ActD specifically inhibits transcription elongation by RNA pol II (but 

also RNA Pol I and III) and most significantly affects synthesis of long mRNAs and 

rRNAs (Perry and Kelley, 1970). At high cellular concentrations actinomycin D can 

interfere with DNA synthesis and cause DNA doubles strand breaks (Mischo et al., 

2005). 

In contrast, the cyclic peptide mushroom toxin,  α-Amanitin, specifically binds 

to the catalytic center of RNA pol II where it blocks the incorporation of NTPs and 

RNA synthesis as an irreversible inhibitor (Bushnell et al., 2002; Lindell et al., 1970). 

The nucleoside analog DRB interferes with RNA pol II elongation by inhibiting its 

transcription promoting kinase complexes CDK9 / cyclin T of pTEFb and CDK7 of 

TFIIH (Yankulov et al., 1995; Zandomeni et al., 1982; Marshall et al., 1996). The 

CDK9/7 activities are crucial to overcome repression of transcription by negative 

transcription elongation factors (N-TEFs) in order to allow the transition to productive 

mRNA synthesis (Price, 2000).  

While transcriptional inhibition by ActD in combination with Hub1 knockdown 

mitigated Hub1 depletion-dependent apoptosis and, in turn, drug-dependent toxicity, 

neither α-Amanitin nor DRB treatment exhibited similar properties, but rather 

aggravated the Hub1 phenotype. Considering the crucial role of Hub1 in pre-mRNA 
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splicing, reducing the transcription rate and thereby splicing dynamics by actinomycin 

D could be beneficial for human cells when the splicing machinery lacks Hub1 as in 

RNAi experiments. In addition to the inhibition of transcription, actinomycin D affects 

pre-mRNA processing and increases mRNA stability (Clement et al., 1999). 

Furthermore, actinomycin D treatment has been shown to alter alternative splicing 

patterns for example of Mdm2 (Lents et al., 2008).  

While under standard growth conditions with high transcription rates and 

spliceosomal dynamics Hub1 depletion results in extensive splicing defects, nuclear 

RNA retention and aberrant gene-products, additive actinomycin D treatment might 

positively affect RNA metabolism. As long transcripts are particularly sensitive to 

ActD and might contain multiple Hub1-dependent splice events, slowed down 

transcription elongation rates might allow the spliceosome to process and splice 

nascent pre-mRNA correctly even under Hub1-deprived conditions upon actinomycin 

D treatment. Although additional functions of Hub1 that affect transcription directly 

cannot be ruled out at the moment, this phenomenon might be valuable to gain 

further insights into the close link between chromatin, transcription and mRNA 

splicing and their regulatory feedback loops. 

 

5.10 The Hub1-dependent splicing model  

The efficient and correct splicing of nascent transcripts is an essential regulatory 

element of posttranscriptional eukaryotic gene expression. This intricate process is 

accomplished by the coordinated assembly and orchestrated transition of multifarious 

RNA-protein complexes, which constitute the catalytically active spliceosome. Based 

on the characterization of human Hub1 presented in this thesis and considering 

respective work in yeast, a comprehensive model for the molecular function of the 

ubiquitin-like protein Hub1 in pre-mRNA splicing is proposed (Figure 27). 

The splicing pathway includes several control mechanisms to verify 

spliceosomal complex formation at distinct transition steps to either promote correctly 

assembled spliceosomes or reject aberrantly composed complexes from further 

progression (Koodathingal and Staley, 2013). In order to guarantee the low error rate 

in pre-mRNA splicing (Fox-Walsh and Hertel, 2009), a group of DEXD/ H-box 

ATPases including Prp5, Prp16, Prp22, and Prp43 serve as proofreading enzymes, 

which discard splicing intermediates after spliceosomal stalling as a result of aberrant 

spliceosome assembly and suboptimal splice substrates, respectively (Egecioglu and 

Chanfreau, 2011). At early stages the correct engagement of the U2 snRNP at the 

branch point sequence is inspected by Prp5 (Xu and Query, 2007). In later steps, 

after the formation of the catalytically active B* complex, suboptimal splice substrates 

are detected and rejected by the DEXD/H-box ATPase Prp16 before 5’ss cleavage 

(Mayas et al., 2006). The second transesterification step is monitored by Prp22, 

which certifies the proper complex formation at the 3’ss for correct exon ligation 
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(Koodathingal et al., 2010). While proofreading enzymes promote the splice cycle 

progression of accurate splicing intermediates, defective spliceosomes and 

suboptimal splice substrates are finally discarded and disassembled by DEAH-box 

proteins like Prp43 (Mayas et al., 2010).  

Importantly, the fundamental concept of spliceosomal quality control is based 

on the highly dynamic nature of global RNA/protein network rearrangement during 

spliceosomal complex assembly and is manifested in the “kinetic proofreading 

model” (Hopfield, 1974). In this model, two antagonistic activities or pathways 

compete for directionality, in which the equilibrium shifts depending on biochemical 

reaction kinetics (Semlow and Staley, 2012). In the case of pre-mRNA splicing and 

its quality control mechanisms, these antagonistic activities are reflected by the 

anterograde reactions during splice cycle progression with complex assembly, 

snRNA unwinding, and snRNP rearrangements, while retrograde directionality is 

represented by the disassembly kinetics of DEXD/H-box ATPases, which enforce the 

rejection of spliceosomal transitions and complex conversions.  

Ideally, optimal splice substrates are continuously processed, as the accurate 

spliceosomal assembly and immediate complex conversions support highly dynamic 

splicing kinetics promoting productive splice cycle progression. In contrast to the 

ideal splicing cycle, spliceosomes are challenged at suboptimal splice substrates, 

e.g. by poor recognition of weak splice sites, pre-mRNA folding constrains, or 

presence of faulty RNA binding proteins, which compromise splicing dynamics. Here, 

due to impaired transition between different spliceosomal conformations and slow 

conversion reaction kinetics the equilibrium shifts towards the retrograde rejection 

pathway, which entails the disengagement and discarding of the splice substrate 

mediated via the proofreading DEXD/H-box ATPase enzymes.   

In this context, the ubiquitin-like protein Hub1 might constitute an additional 

layer of quality control at an early stage of the splicing pathway. For this, Hub1 

appears to associate with the spliceosome in order to facilitate the correct assembly 

and proper engagement of spliceosomal subcomplexes on suboptimal splice 

substrates. Extending the kinetic proofreading model presented earlier, Hub1 could 

mediate two non-mutually exclusive activities.  

On the one hand, Hub1 might induce conformational changes and thereby 

convey spliceosomal flexibility and robustness to tolerate minor deficiencies in 

suboptimal substrates. In this case, inhibition of Hub1 activity by in vivo depletion or 

mutation would not affect constitutive splicing of ideal splice substrates, but defective 

splicing factors or aberrant RNA would cause spontaneous stalling of active 

spliceosomes. As Hub1 binding might induce global conformational changes in 

spliceosomal proteins, as shown for Snu66, it is likely that Hub1-deprived 

spliceosomes are structurally restricted.  
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Figure 27: Proposed model for Hub1’s crucial role in pre-mRNA splicing 

Optimal splice substrates (left panel) are efficiently recognized by the spliceosomal snRNPs (colored 
circles), as crucial RNA sequences within the intron-containing transcript (grey boxes) mediate the 
accurate assembly by snRNA/mRNA base paring. The initial step of exon definition and splice site 
recognition is regulated by auxiliary SR proteins (green) and repressive hnRNP factors (red). After 
U4/U6.U5 tri-snRNP incorporation the spliceosome formation and activation is scrutinized by 
proofreading enzymes. After satisfying the quality control, RNA helicases and ATPases promote the 
spliceosome activation and splicing reaction with subsequent dissociation of the spliced mRNA and late 
snRNP complexes. In contrast, suboptimal splice substrates (serrated lines) interfere with proper 
spliceosomal complex formation and efficient recognition by the snRNPs (dotted line), thus requiring the 
qualifying factor Hub1 (middle panel). Hub1 facilitates the correct assembly and enables compromised 
spliceosomes to process suboptimal splice substrates by conveying structural flexibility (e.g. by binding 
to tri-snRNP protein Snu66 (red)) and modulating the enzymatic activities of promoting enzymes, 
respectively. Thus, the ubiquitin-like protein Hub1 is a crucial factor for faithful pre-mRNA splicing of 
distinct splice sites. Accordingly, inactivation of Hub1 (by RNAi or mutant alleles of Hub1) leads to 
stalling of spliceosomal complexes on suboptimal splice substrates as the Hub1-assisted assembly is 
abrogated (right panel). Hub1-deficient spliceosomes fail to properly engage in the correct conformation 
in order to initiate global RNA/protein rearrangements for the splice cycle progression and transition to 
spliceosomal activation. Defective and stalled splicing intermediates are detected by proofreading 
DExD/H-box ATPases and subjected to spliceosomal disengagement and release of the misspliced 
mRNA. Hence, Hub1 inactivation causes continuous splicing defects and the accumulation of aberrantly 
spliced transcripts leading to cellular stress, cell cycle defects and subsequent apoptosis.  
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This rigidness would impinge on the splicing processivity of suboptimal substrates 

and thereby entail the rejection of splicing intermediates by the proofreading 

surveillance enzymes.  

On the other hand, Hub1 could act directly on the quality control factors for 

pre-mRNA splicing by modulating the activity and stringency of the proofreading 

enzymes in order to adjust the accuracy and tolerance by which spliceosomal 

intermediates are scrutinized. Here, Hub1 inactivation and subsequent alterations in 

proofreading factors would result in the premature disengagement of suboptimal 

complexes or random stalling of defective spliceosomes. 

Several lines of evidence support a crucial role of Hub1 at the crossroads 

between the early steps of spliceosome assembly and the formation of the activated 

complex Bact. After the early spliceosomal subunits U1 and U2 snRNP have defined 

the exon-intron boundaries, the U4/U6.U5 tri-snRNP and the PRP19/NTC are 

recruited to form the pre-catalytic spliceosomal complex B. For further activation the 

RNA/protein networks has to undergo major rearrangements including snRNA 

unwinding and re-establishing of new base paring. In the proposed model Hub1 

facilitates the correct spliceosomal assembly and engagement of snRNAs on 

suboptimal splice substrates during this complex conversion. This is accomplished by 

the interaction of Hub1 with the tri-snRNP factor hSnu66, which presumably initiates 

conformational changes and structural rearrangements. In addition to the Hub1-

Snu66 interaction via the HIND, the opposing surface on Hub1 is recognized by a 

pivotal, yet unidentified, component of the spliceosome to further promote processing 

of suboptimal splice substrates. Here, the association with Hub1 could stimulate the 

enzymatic activity of an ATP-driven helicase to catalyze splice cycle progression.  

Intriguingly, the ubiquitin-like fold might serve as a general binding module in 

the spliceosomal protein network. Recent structural bioinformatics analyses have 

identified several ubiquitin-like domains in different spliceosomal proteins including 

SF3A120, SAP18 and XAP-5, which function at late stages of the splicing cycle, 

where proofreading surveillance is most prevalent (Korneta et al., 2012). This 

indicates that the transient association with ubiquitin-like domain proteins represents 

a fundamental principle during spliceosomal complex formation and conversion. 

Here, the ubiquitin-like protein Hub1 appears to play a unique role as it facilitates the 

correct assembly and engagement of spliceosomal subcomplexes and ensures 

proper proofreading at early stages of the splicing process.  

Taken together, the splicing data, the tight association with central splicing 

components, and the detrimental phenotypes of Hub1 depletion in eukaryotic cells 

suggest a conserved, pivotal function of Hub1 in the context of pre-mRNA splicing 

quality control to ensure high fidelity and faithful splice cycle progression on 

suboptimal splice substrates.  
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6 Material and Methods 

Basic molecular biological and biochemical methods were performed according to 

standard techniques (Maniatis et al., 1989; Ausubel et al., 1988) or based on the 

manufacturers' instructions. Newly established and modified techniques are 

described below in more detail. Unless otherwise mentioned, chemicals and reagents 

were purchased from Amersham-Pharmacia, Applied Biosystems, Biomol, Biorad, 

Fluka, Invitrogen, Jackson and Jackson, Kodak, Merck, New England Biolabs, 

Promega, Roth, Roche, Serva or Sigma Aldrich. 

 

6.1 Cell biology 

6.1.1 Human cell lines and transfections  

The established human cell lines HeLa, U2OS and HEK293T were cultured at 37°C, 

6% CO2 in Dulbecco's Modified Eagle Medium (DMEM) high glucose with GlutaMAX 

(Invitrogen), supplemented with 10% fetal calf serum (Biochrom). HEK 293T and 

HeLa cells were transfected using the calcium phosphate precipitation technique with 

HBS buffer and BES buffer, respectively, as described previously (Bartke et al., 

2004). Lipofectamine 2000 (Invitrogen) or Fugene HD (Roche) was used to transfect 

U2OS and HeLa cells. For RNAi experiments, cells were transfected with siRNA 

duplexes by RNAiMax (Invitrogen) or via electroporation with the Amaxa Nucelofector 

II system (Lonza) according to the manufacturer’s protocol. U2OS cells stably 

expressing GFP-Hub1 WT, GFP-Hub1 D22A, hSnu66 WT-GFP, hSnu66ΔHIND-GFP 

and free GFP were generated by selecting cells under 750 -1000 μg/ml G418 (Sigma 

Aldrich) after lipofection for 3-4 weeks. Single G418-resistant colonies were isolated 

using cloning discs and expanded for later analysis. To further enrich and purify 

GFP-positive cells fluorescence-activated cell sorting was performed using the 

FACSAria cell sorter system (Becton Dickinson).  

In experiments with RNA Polymerase inhibition, cells were treated with 

actinomycin D (5 μM), α-Amanitin (25 μg/ml) or 5,6-dichloro-1-beta-D-ribofuranosyl-

benzimidazole (DRB, 25 μg/ml) (all Sigma-Aldrich) for indicated time intervals.  

 

6.1.2 Mammalian expression plasmids and siRNA 

Standard cloning techniques were used to generate mammalian expression 

constructs with vectors of the pCMV-Tag2/3/4 (Stratagene), pcDNA3.1 and pUB6 

(both Invitrogen) series as well as pCI/pCI-Neo (Promega), pEGFP and pDsRed 

(Clontech) and p3xFlag-CMV-10 (Sigma-Aldrich) vectors. Plasmids with point 

mutations were constructed by site-directed mutagenesis using target specific 

primers in PCR reactions. Genomic fragments of fibronection 1 (FN1), tropomyosin 1 



Material and Methods 

 108

a (TPM), myeloid cell leukemia sequence 1 (MCL1), v-akt murine thymoma viral 

oncogene homolog 1 (AKT) and aurora kinase A (AURKA) for minigene constructs 

were amplified from genomic human DNA (U2OS) by PCR and subcloned into 

modified pUB6/V5 vectors (Invitrogen). For RNAi siRNA sequences were designed 

as 19- or 21-mer duplexes with 3’ TT-overhangs according to stringent criteria 

previously described (Jagla et al., 2005) and purchased from MWG. siRNA duplexes 

targeting Hub1 in human cells were iHub1_1 GGA AGA AGG UCC GCG UUAA, 

iHub1_2 CAA GAU UGU CCU GAA GAA G, iHub1_3 AUA GAU GAG AAU CCU 

CAUC, iHub1_4 UGC AAC ACG GAU GAU ACCA, iHub1_5 GGG AAG AAG GUC 

CGC GUUA. For knockdown of hSnu66 siRNA sihSnu66_1 CUA ACA AAC UCC 

GGG CAAA or sihSnu66_3 GUA UGA CGA AGA GCU UGA ATT, for ASF/SF2 

siSRSF1_5 GGA CUG CCU CCA AGU GGA ATT or siSRSF1_6 GGC AGG AUU 

UAA AGG AUC ATT for URH49 AAA GGC CUA GCC AUC ACU UUU and for 

UAP56 AAG GGC UUG GCU AUC ACA UUU (both described in Kapadia et al., 

2006) were used. The GL2 siRNA targeting luciferase (Elbashir et al., 2001) CGU 

ACG CGG AAU ACU UCGA was used as knockdown control. RNAi of Son was 

performed with Silencer pre-designed siRNA (ID# 143161) from Applied Biosystems / 

Ambion.  

 

6.1.3 Flow cytometry 

DNA histograms were obtained by flow cytometry of propidium iodide (PI)-stained 

ethanol-fixed cells using standard protocols. Briefly, cells were harvested by 

trypsinization and washed with ice-cold PBS. For fixation, cells were resuspended in 

300 μl PBS and 700 μl cold EtOH (-20°C) and incubated on ice. Afterwards fixed 

cells were washed twice with PBS and subsequently stained in PI-buffer (PBS, 100 

μg/ml propidium iodide (Sigma Aldrich), 200 μg/ml RNase A (Roche)) for one hour. 

Data was acquired on a FACSCalibur system with CELLQuest software (Becton 

Dickinson) and further analyzed with FlowJo software (Tree Star). HeLa cells were 

synchronized following standard double-thymidine block protocols using 2 mM 

thymidine. 

 

6.1.4 Immunofluorescence, FISH and live cell microscopy 

For standard immunofluorescence microscopy, cells were seeded and transfected on 

glass coverslips (Roth). Cells were washed twice with PBS and fixed in 3.7% fresh 

paraformaldehyde (PFA) / PBS for 18 min at room temperature. After fixation, 

residual formaldehyde was inactivated by quenching with PBS-glycine (30 mM) and 

cells were washed three times in PBS. Permeabilisation of cells was performed using 

PBS-Triton X-100 0.4% (6 min), followed by three PBS-Tween (Tween 0.05%; PBS-

T) washing steps and blocking in PBS-T with 2% BSA for 1 h at room temperature. 
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Coverslips were incubated with primary antibody for 3 h (appropriate dilutions in 

blocking buffer) and then washed three times in PBS-T. After incubation with 

secondary antibody, cover slips were mounted using DAPI-containing mounting 

medium (Vectashield, Vector Labs). For pre-extraction experiments cells were 

permeabilized in CSK buffer (100 mM NaCl, 300 mM sucrose, 10 mM PIPES pH 6.8) 

supplemented with 0.4% Triton X-100 and complete protease inhibitors (Roche) for 8 

min at 4°C. After two gentle wash-out steps with detergent free CSK buffer, cells 

were fixed with 3.7% formaldehyde. The subsequent antibody staining was 

performed according to the abovementioned standard protocol.  

The RNA FISH method to visualize poly-adenylated mRNA using 

fluorescently labeled poly-(dT)70-TRITC probes was adapted from previous protocols 

(Tokunaga and Tani, 2008). HeLa or U2OS cells grown on glass slides were fixed in 

3.7% fresh paraformaldehyde / PBS for 15 min at room temperature. After PFA 

quenching and permeabilisation with 0.5% PBS-Triton X-100 (5 min at 4°C) cells 

were washed with 2xSSC (300 mM NaCl  , 30 mM Na3Citrate·2H2O pH 7.0). Poly-

adenylated mRNA was stained with the hybridization solution (2xSSC, 20 % 

formamide, 1 mg/ml tRNA, 10 % dextran sulfate and 2 μg TRITC labeled poly-(dT)70 

probe) in a sealed humid chamber at 37°C overnight. After three 2xSSC washing 

steps with DAPI as nuclear counterstain slides were mounted and sealed for 

microscopy analysis.  

Images were acquired on a Zeiss AxioImager Z1 microscope equipped with 

an AxioCam MRm Rev.3 camera. Image acquisition was carried out using AxioVision 

Rel. 4.7 software (Zeiss).  

For fluorescence time-lapse microscopy, HeLa H2B-GFP cells were seeded 

into 4 well μ-dishes (ibidi) after RNAi transfection and transferred into the live cell 

imaging system, BioStation IM (Nikon). Images were acquired every 8 min over a 

time frame of 24–48 h with BioStation IM software and further processed by ImageJ 

and Photoshop (Adobe). 

 

6.1.5 Cell lysis and immunoprecipitation 

For immunoprecipitation, cells were harvested, washed in ice-cold PBS and cell 

pellets were lysed in 5x pellet volumes of immunoprecipitation buffer (50 mM HEPES 

pH 7.2, 150 mM NaCl, 2 mM EDTA, 0.5% Triton X-100, 1 mM PMSF, and complete 

protease inhibitors (Roche)) at 4°C for 30 min with several passages through a 25 

gauge needle attached to a syringe. After removal of cell debris by centrifugation (10 

min, 16000xg, 4°C), cleared lysates were incubated with anti-FLAG M2 affinity gel 

(Sigma-Aldrich), anti-c-Myc-agarose (Sigma-Aldrich) or GFP trap (Chromotek) for 2 h 

at 4°C. The affinity matrix was washed four times with immunoprecipitation buffer and 

eluted in Laemmli SDS buffer for later analysis by SDS-PAGE and immunoblotting.  
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For caspase activation assay, cytosolic extracts were prepared as described 

previously (Deveraux et al., 1999). In immunoprecipitation experiments with hSnu66 

WT or ΔHIND co-purifying protein interactors were identified by mass spectrometry 

using LTQ-Orbitrap mass spectrometers as a service of the MPI core facility.  

 

6.1.6 Antibodies 

Antibodies used in this study were anti-α-tubulin (DM1A, Sigma Aldrich), anti-

caspase-7 (C7, Cell Signaling), anti-caspase-3 (8G10, Cell Signaling), anti-GFP 

(clone B-2, Santa Cruz and ab1218, Abcam), hnRNP I (Z-22, Santa Cruz), anti-lamin 

A/C (clone 636, Santa Cruz), anti-c-Myc (clone 9E10, Sigma Aldrich), anti-p21 (clone 

187, Santa Cruz), anti-p53 (clone DO-1, Santa Cruz), anti-PRPF8 (ab87433, Abcam), 

anti-TAP/PAP (Sigma Aldrich), anti-hSnu66 (A301-423A, Bethyl), anti-SC35 

(ab11826, Abcam), anti-Son (HPA023535, Sigma Aldrich), anti-2,2,7-

trimethylguanosine (K121, Calbiochem), anti-U1A (ab55751, Abcam), anti-U2AF65 

(ab37483, Abcam), anti-Sm antigen Y12 (ab3138, Abcam).  

For immunofluorescence, Alexa Fluor 488- and Alexa Fluor 555-labeled 

secondary goat anti-mouse and donkey anti-rabbit / anti-mouse antibodies from 

Invitrogen were applied. Hub1-specific antibodies against recombinant S. cerevisiae 

Hub1 and human Hub1, respectively, were affinity-purified from serum of immunized 

rabbits (see chapter 6.2.12). For standard applications antibodies were diluted 

1:1000 to 1:5000 for immunoblot analysis and 1:200 to 1:2000 for 

immunofluorescence detection. 

 

6.1.7 Exon-specific alternative splicing microarray 

For genome-wide analysis of altered splicing patterns in Hub1-depleted U2OS cells, 

total RNA was isolated from Hub1 or control RNAi treated cells (see section 6.2.4) 

50-60 h after transfection. Experiments were performed in biological triplicates with 

each sample tested for cell viability and fitness to avoid indirect effects by cell 

degeneration or apoptosis as observed at late stages of Hub1 knockdown. Further 

processing of the RNA samples including quality control of total RNA, reduction of 

ribosomal RNA, cDNA synthesis and purification, fragmentation and labeling were 

conducted by Atlas Biolabs GmbH (Berlin). Finally, the labeled cDNA probes were 

hybridized against an Affymetrix GeneChip Human Exon 1.0 ST, which utilizes 1.4 

million probe sets to target over 1 million exon for genome-wide exon-level 

expression profiling. The microarray is designed to provide a comprehensive 

coverage of the transcriptome comprising of validated, annotated sequences from 

various transcript and EST databases as well as predicted mRNA sequences based 

on bioinformatics analyses of genome projects allowing the identification of 

previously unidentified splice variants. The exon-specific microarray combines mRNA 
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expression profiling with quantitative exon-specific probes and allows quantification 

of alternatively splices transcripts and the identification of newly generated isoforms 

as multiple probes per exon are targeted to sequences along the entire length of the 

respective transcript (≥ 4 probes per probe selection region e.g. individual exons). 

The following computational analysis includes data normalization, quality control 

measures and algorithms for alternative splicing detection. Here, the entropy-based 

ARH prediction method was applied to identify probe sets which exhibit significant 

alterations in individual exonic sequences (relative exon expression) without changes 

in overall transcript expression levels (Rasche and Herwig, 2010). After this process, 

high confidence hits are translated into the splicing index (SI), statistically tested and 

ranked. The final data set gives strong indications which transcripts undergo 

alternative splicing and changes in splicing patterns upon a certain stimulus or 

treatment, here, after Hub1 depletion.  

 

6.1.8 Yeast strains and plasmids 

Complementation assays with S. cerevisiae and S. pombe strains, western blot 

analysis and SRC1 alternative splicing assays used in this study were described in 

detail previously (Mishra et al., 2011). p415 ADH plasmid harboring coding 

sequences of S. cerevisiae, S. pombe and human HUB1 were used for 

complementation of S. cerevisiae hub1Δ mutants. pREP81 plasmid harboring coding 

sequences for HUB1 orthologs were used for complementation of the S. pombe 

mutant. Complementation experiments with S. pombe and S. cerevisiae hub1Δ cells 

were performed in collaboration with S.K. Mishra. 

For yeast two-hybrid screening of whole cDNA libraries, potential binding 

factors were expressed as Gal4 activation domain fusion proteins (AD-fusion), 

whereas the bait protein carries the Gal4 DNA binding domain. In case of physical 

interaction between the two fusion proteins reporter gene expression (HIS3 and 

ADE2) was induced which allows growth on selective media of the otherwise 

auxotrophic cells (SC-Ura-Trp-His: 3.5 % bacto-yeast nitrogen base, 2 % glucose, 

0.2 % amino acid mix). Here, Hub1 served as the BD-fusion bait protein for screening 

of human cDNA libraries from different tissues with high transcript coverage (average 

insert size ≥ 2.1 kb). Based on data showing that Hub1 is ubiquitously expressed in 

human cells, but particularly up-regulated in brain tissue (Friedmann et al., 2001), 

libraries of fetal brain tissue and HeLa cells cDNAs were selected (Invitrogen). After 

the optimization of transformation efficiency the two-hybrid yeast strain PJ69-7A 

harboring the Hub1-pGBDU construct was used to screen the human cDNA libraries. 

Intriguingly, human BD-Hub1 exhibited auto-activation activity of the HIS3 reporter 

gene, thus the addition of 3-amino-1,2,4-triazole (3-AT) to the growth media (2 - 5 

mM) was required to ensure restrictive screening conditions. After the candidates 

were tested for auto-activation after FOA-shuffle, the -Ura-Trp-His positive clones 
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were subjected to further interaction validation using standard assays like X-Gal 

overlay or growth on -Ade plates.  

 

6.2 Molecular biology  

6.2.1 Preparation and transformation of chemically competent E. coli  

E. coli strains used for cloning or protein expression: 

XL1-Blue MR  Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 

supE44 thi-1 recA1 gyrA96 relA1 lac 

BL21 Codon Plus (DE3)-RIL  B F- ompT hsdS(rB- mB-) dcm+ Tetr gal λ(DE3) 

endA Hte [argU ileY leuW Camr] 

BL21 Rosetta 2 Φ DE3 F- ompT hsdSB(rB
- mB

-) gal dcm pRARE2 CamR 

 

When culturing E. coli strains under standard conditions, e.g. for plasmid DNA 

preparation, LB media (1 % bacto-tryptone, 0.5 % yeast extract, 1 % NaCl) or LB 1.5 

% agarose plates were used. Plasmid-containing bacteria were selected by their 

antibiotic resistance under 50 μg/ml Ampicillin or 30 μg/ml Kanamycin at 37 °C. The 

absorption of liquid cultures was measured with a standard spectrophotometer at a 

wavelength of 600 nm to determine optical density (OD600nm). 

To obtain highly competent E. coli cells were prepared according to the Inoue 

protocol (Inoue et al., 1990). Briefly, the pre-culture grown 4-5 h at 37 °C in SOB (2 

% bacto-tryptone, 0.5 % yeast extract, 10 mM NaCl, 2.5 mM KCl, pH 7.0 NaOH) 

served as inoculant for the main culture (≥ 500 ml) which was incubated at lower 

temperature (18 °C) overnight. Next day, when the cell suspension had reached 

OD600nm 0.5 - 0.6, the main cultures were cooled down in flasks for 10 min in an ice 

bath. After centrifugation, cells were resuspended and washed in pre-chilled Inoue 

transformation buffer (55 mM MnCl2, 250 mM KCl, 15 mM CaCl2, 10 mM PIPES pH 

6.7). Cells were collected by centrifugation and resuspended again in Inoue buffer. 

DMSO was added slowly to the cell suspension to a final concentration of 7.5 % and 

further incubated in an ice bath for 10 min. Finally, competent cells were aliqouted, 

snap frozen in liquid nitrogen and stored in PCR tubes at -80 °C until use. 

For transformation, competent cells were thawed on ice and incubated with 1-

4 μl of plasmid DNA suspension in TE. After 10 - 30 min E. coli cells were heat-

shocked for 1 min at 42 °C in a water bath and immediately chilled on ice for 

recovery. Next, growth media was added to the suspension for further cell 

proliferation and incubated at 37 °C on a shaking device. Finally, cells were streaked 

on LB plates containing the appropriate selection antibiotics and grown overnight at 

37 °C. To enforce high transformation efficiency, 0.2 % β-mercaptoethanol was 

added to E. coli cells prior the addition of DNA. 
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6.2.2 Isolation of plasmid DNA 

Small-scale (mini) preparations of plasmid DNA were performed using kits from 

Qiagen or Bioneer according to the manufacturers’ protocols. For mammalian cell 

culture large quantities of highly pure DNA were necessary in order to prevent 

cytotoxic effects during transfection caused by residual endotoxins. For this, Qiagen 

or Sigma-Aldrich maxi kits with optimized protocol were used for plasmid DNA 

purification after alkaline lysis from E. coli overnight cultures (250 - 400 ml). The 

isolated DNA was further concentrated by an isopropanol precipitation step mixing 

eluate TE buffer with isopropanol and 3 M Na-Acetate pH 5.2 in a ratio of 10:7:1. 

After centrifugation at 5000xg for 30-60 min at 4°C the resulting DNA pellet was 

washed with 70 % EtOH and finally resuspended in TE buffer. DNA concentration 

and purity was measured using the Nanodrop (Thermo Scientific). 

 

6.2.3 Polymerase chain reaction and site directed mutagenesis 

Polymerase chain reaction was conducted according to the manufacturer’s protocols. 

For DNA amplification, DNA polymerases Phusion (NEB) and Pfu Turbo (Aligent) 

were used with dNTPs solution mix (NEB) and the respective buffers. Point mutants 

were introduced by site-directed mutagenesis using primers carrying the modified 

sequence flanked by 10-15 nt overhangs for correct targeting to the designated DNA 

site. PCR products were subsequently digested with DpnI restriction enzyme (NEB) 

for 1-2 h, heat inactivated and transformed into E. coli. 

 

6.2.4 DNA restriction, ligation and cloning  

In order to introduce specific PCR fragments into expression vectors, 1-5 μg of DNA 

were incubated with 5-10 U of appropriate DNA restriction enzymes (NEB) in the 

corresponding buffer systems following standard cloning techniques. While plasmids 

and plasmid-derived inserts were digested by endonucleases for 1 - 2 h, PCR 

products were digested overnight. Cut vectors were subjected to calf intestinal 

phosphatase (CIP, NEB) treatment for 1 h to avoid re-ligation of linear DNA. After 

restriction, digested DNA fragments were analyzed by agarose gel electrophoresis 

and subsequently re-isolated using gel extraction kits (see chapter 6.2.6). Finally, 

DNA fragments (in 3-5 fold excess) were ligated into vectors via complementary 

cohesive ends using standard T4 ligase or the derived Quick T4 ligase (both NEB) in 

their respective buffers. The Quick T4 ligation reaction was performed for 5-30 min at 

RT while standard T4 reactions were incubated at 16°C overnight until transformation 

into chemically competent bacteria. 
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6.2.5 RNA-purification, RT-PCR and splicing gels 

Total RNA was isolated from control or Hub1 RNAi-transfected cells using the 

RNeasy kit (Qiagen) or the High Pure RNA Isolation kit (Roche) according to the 

manufacturer protocols. Reverse transcription was performed using the Transcriptor 

First Strand cDNA Synthesis Kit (Roche) with random hexamer or poly-(dT) primers. 

Transcript specific PCR was performed using PfuTurbo polymerase (Aligent) and 

subsequently analyzed on 2-2.5% ethidium bromide containing TBE agarose gels. 

 

6.2.6 Gel electrophoresis of DNA and purification from agarose gels 

For the separation of PCR fragments, cloning intermediates or RT-PCR products, 

DNA samples were loaded with orange G sample dye (5 % glycerol, 0.05 % SDS, 5 

mM EDTA pH 8.0) on 1-2 % TBE (90 mM Tris-borate, 2 mM EDTA pH 8.0) agarose 

gels containing 0.005% ethidium bromide. Depending on DNA fragment size and 

agarose concentration gel electrophoresis was performed in Tris-borate buffered 

chambers for 30-90 min at 10-15 V/cm and analyzed in GenoSmart UV 

transillumination documentation system. For subsequent cloning steps, PCR or 

restriction DNA fragments were isolated following gel electrophoresis. The 

corresponding bands were excised from the gel on an UV transilluminator screen, 

DNA was solubilized and subsequently purified using standard DNA gel extraction 

kits (Bioneer, Macherey&Nagel). 

 

6.2.7 DNA sequencing  

DNA sequencing of cloning constructs and PCR products was performed by the core 

facility service of the MPIBC using the Sanger dideoxy terminator cycle sequencing 

chemistry with the ABI BigDye kit on an ABI 3730 48-capillary sequencer and 36 cm 

capillaries. 

 

6.2.8 Plasmids for recombinant protein expression in E. coli 

For recombinant protein expression in E. coli following plasmids were used: pET 

(pET24b(+) and pET28a/b/c(+) (Novagen) for 6xHis-tagged proteins and GST-tagged 

proteins were expressed using the pGEX vector series (pGEX4T1/2/3 and pGEX5X1) 

(Amersham). 

 

6.2.9 Purification of recombinant proteins from E. coli 

E. coli BL21(DE3)/RIL and BL21 Rosetta cell pre-cultures were inoculated in 50 ml 

antibiotic-containing LB or TB (Terrific Broth, 1.2 % bacto-tryptone, 2.4 % yeast 

extract, 0.4 % glycerol NaCl, 10 % TB salt (170 mM KH2PO4, 720 mM K2HPO4 in 
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H2O) media and cultured at 25°C overnight. For recombinant protein expression 

these cultures served as inoculants for larger volumina starting OD600 nm at 0.2. Then 

E. coli were shifted to 37°C until OD600 nm of 0.4-0.7 was reached, and protein 

expression was induced by the addition of 1 mM IPTG for 2-5 h at RT.  

In the case of GST-fusion proteins, after cells were pelleted (6000xg, 10 min, 

4°C) and resuspended in lysis buffer (10 mM Na2HPO4, 1.8 mM KH2PO4, 400 mM 

NaCl, 2.7 mM KCl, pH of 7.4, 1 mM DTT), enzymatic cell wall digestion by lysozyme 

on ice for 30 min preceded mechanical lysis with EmulsiFlex-C3 cell disruptor 

(Avestin). After 3-5 shearing cycles, lysates were supplemented with 2 mM PMSF 

and detergent (0.5 % Triton-X-100 or NP40) and transferred to polypropylene tubes 

for removal of remaining intact cells and debris by centrifugation (30 min, 20000xg, 

4°C). For affinity-purification of the recombinant GST-fusion protein the cleared 

supernatants were loaded onto ethanol-free Glutathione Sepharose 4Fast Flow 

columns (GE healthcare) and incubated for 2 h at 4°C on a rotation wheel. 

Subsequently, columns were extensively washed with ca. 300 column volumes GST 

washing buffer (10 mM Na2HPO4, 1.8 mM KH2PO4, 400 mM NaCl, 2.7 mM KCl, pH of 

7.4, 1 mM DTT, 2 mM PMSF, 0.5 % Triton-X-100). Finally, affinity matrix bound 

proteins were eluted with 6 column volumes GST elution buffer (PBS, 50 mM 

glutathione, pH 7.5) in several aliquots, which were analyzed by protein 

concentration measurements and SDS PAGE, to ensure successful and efficient 

purification. The eluate was dialyzed against glycerol-containing buffers of choice 

prior to freezing in liquid nitrogen. 

Similarly, 6xHis-tagged fusion proteins were purified from E. coli lysates after 

induction, expression and harvest. Here, cell pellets were resuspended in Ni-NTA 

buffer (50 mM NaH2PO4 pH 8.0, 300 mM NaCl, 20 mM imidazole) before lysis via 

lysozyme digestion and mechanical cell disruption (see above). After centrifugation 

cleared lysates were applied onto Ni-NTA agarose columns (Qiagen) and incubated 

for 2 h at 4°C in order to couple 6xHis-tagged proteins to the affinity matrix. Extensive 

washing removed unspecific protein binding factors, followed by elution with Ni-NTA 

elution buffer (50 mM NaH2PO4 pH 8.0, 150 mM NaCl, 250 mM imidazole). The 

eluates were analyzed by protein concentration measurements and SDS PAGE and 

dialyzed against glycerol-containing buffers of choice prior to freezing in liquid 

nitrogen. 

To obtain highly pure recombinant proteins, e.g. for crystal structure 

determination additional biophysical methods like gel filtration were applied in 

collaboration with groups of the NMR department and the MPIBC core facility using 

Äkta avant systems (GE). 
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6.2.10 Determination of protein concentrations  

Protein concentrations of lysates and purified proteins were measured using a 

modified Bradford method, the Bio-Rad Protein assay, combined with standard 

spectrophotometers (Eppendorf) or alternatively, with NanoDrop (Thermo). 

 

6.2.11 CNBr coupling 

For antibody purification from serum the epitope containing peptide or its respective 

recombinant full-length protein was covalently coupled to a CNBr sepharose matrix. 

For this, the pre-activated CNBr sepharose 4 fast flow (GE Healthcare) was first 

resuspended in 1 mM HCl for 30 min and then transferred to a Buchner funnel where 

the matrix was washed with 15 gel volumes of cold 1 mM HCl and subsequently with 

coupling buffer (0.5 M NaCl, 0.1 M NaHCO3 pH 8.3). The coupling was performed by 

incubating the unloaded matrix with the protein or peptide of interest overnight at 4°C 

or for 3-4 h at RT. Coupling efficiency was tested by taking samples before and after 

coupling and during washing steps. In order to avoid precipitation, the protein was 

dialyzed against the coupling buffer prior to coupling. After covalent attachment of the 

protein to the matrix, the remaining supernatant was removed, the column was 

washed before uncoupled sites were blocked by ethanolamine (1 M at pH 9.0) for 2 h 

at RT. Finally, free ethanolamine was removed by several washing steps with PBS 

and the affinity matrix was used for antibody purification. The columns were stored in 

PBS / 0.1 % azide at 4°C. 

 

6.2.12 Antibody purification 

For generation of Hub1 specific antibodies rabbits were immunized with recombinant 

Hub1 supported by TiterMax Gold adjuvant (Sigma). The immunization injection, 

boosting and bleeding was conducted by the animal facilities of the MPIBC. A crude 

serum was obtained after the final bleed had been incubated for initial agglutination 

at 37 °C for 30-60 min. After removal of clogged material an additional incubation at 

4°C overnight allowed contraction of residual material. The serum was recovered as 

the supernatant of the blood sample after centrifugation (10000xg, 10 min, 4°C) and 

stored in aliquots at -20°C.  

In an additional step, the Hub1 specific antibodies were further purified and 

enriched. Therefore, the CNBr coupled Hub1 column served as an affinity matrix and 

was incubated with a fraction of the crude serum at 4°C using a circulation pump. 

The matrix was washed several times with PBS to remove unspecific serum proteins 

and bound Hub1-specific antibodies were subsequently eluted by pH shift (100 mM 

glycine, 100 mM NaCl pH 2.5). The eluate’s pH was immediately neutralized by the 

addition of 100 mM Tris (pH 9.0) buffer. Finally, the antibody concentration of the 
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collected fractions was measured with the NanoDrop spectrometer (Thermo) and 

fractions were stored at -20°C after the addition of glycerol.  

 

6.2.13 Polyacrylamide gel electrophoresis and immunoblotting  

Protein samples were denatured in Laemmli sample buffer and separated by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis using 4-12% NuPAGE Bis-Tris 

gradient gels in combination with MES and MOPS buffer (Invitrogen). This system 

provides a wide range of molecular weight separation that allows high resolution of 

small sized proteins like Hub1 (< 10 kDa) as well as large proteins like PRPF8 (220 

kDa) in the same gel. After SDS PAGE proteins were transferred to methanol-

activated PVDF membranes (Millipore) using a semi-dry blotting device (MPI 

engineering) for 90 min with a constant current of 0.8 mA/cm2. The transfer was 

supported by NuPAGE transfer buffer (25 mM Bicine, 25 mM Bis-Tris, 1 % EDTA and 

20% methanol). Subsequently, PVDF membranes were blocked using 5% w/v skim 

milk powder in PBS-T and incubated with primary antibody (5% w/v skim milk powder 

in PBS-T) for 1-3 h or overnight at 4°C. After extensive washing with PBS-T the 

membranes were incubated with species-specific secondary antibodies coupled to 

HRP for chemiluminiscence detection (ECL – Western blot Detection Kit, Amersham) 

on conventional films (Kodak) or CCD cameras (Fuji).  

 

6.2.14 Structure determination of the human Hub1-HIND complex 

The crystal structure of human Hub1 in complex with hSnu66’s HIND was solved in 

close collaboration with Kaja Kowalska of the NMR department at the MPIBC 

(Kowalska, 2012).  

For crystallization 6xHis-tagged human Hub1 was expressed in BL21-

CodonPlus (DE3)-RIL cells (Stratagene) and the recombinant protein was purified via 

Ni-NTA agarose beads, followed by gel filtration on Superdex 75 (GE Healthcare) in 

PBS buffer. Proper folding of the protein was analyzed by 1D NMR spectrum 

recorded by a 600-MHz Bruker NMR spectrometer. The hSnu66 HIND peptide, 

comprising residues 117 - 135 of hSnu66, containing the sequence 

SLSIEETNKLRAKLGLKPL, was chemically synthesized in the core facility of the 

MPIBC.  

For crystallization, purified Hub1 was mixed with the HIND peptide at a molar 

ratio of 1:3 and the complex was separated by gel filtration on Superdex 75 (GE 

Healthcare) in 10 mM Tris/HCl pH 8.0, 100 mM NaCl, and 5 mM β-mercaptoethanol. 

The complex was concentrated to 10-13 mg/mL and crystallized at 20 °C, using the 

sitting drop vapor diffusion method. The 2 - 3 μl drops consisted of a 1:1 (vol/vol) 

mixture of protein solution and well solution. Crystals appeared after 3 days and grew 

to final size after 2 weeks of incubation. The best diffracting crystals of the human 
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Hub1/HIND complex grew in 0.1 M Tris/HCl pH 9.0, 0.15 M sodium acetate, 20% 

(w/v) PEG 4000. Crystals were soaked in cryoprotection solution containing mother 

liquor supplemented with 30% glycerol and were snap frozen in liquid nitrogen.  

 For data collection and structure determination a high quality X-ray dataset up 

to 2.0 Å was collected at the Swiss Light Source beamline PXII at Paul Scherrer 

Institute (Villigen, Switzerland). The collected data was integrated, scaled and 

merged by XDS and XSCALE programs (Kabsch, 1993) in space group P21212. The 

structure was determined by molecular replacement using the Molrep program from 

the CCP4 suite ccp (Collaborative Computational Project, Number 4, 1994) and the 

structure of the ScHub1/HINDII complex as a search model (PDB entry 3PLV). 

Refinement and model building were carried out with the REFMAC5 (Collaborative 

Computational Project, Number 4, 1994) and XtalViev/Xfit (McRee, 1999). The 

Arp/Warp program (Lamzin and Wilson, 1993) was used to add water molecules. 

Certain solvent-exposed side-chains without clear electron density were removed 

from the model. Detailed data collection and refinement statistics are shown in the 

appendix 12.3. Residues W47 and Y48 of human Hub1 were found to lie in 

prohibited regions of the Ramachandran plot. These disallowed conformations are 

forced by crystal contacts with symmetry related molecules. The Ramachandran plot 

distribution for residues in the structure was 95.4% in most favored regions, 3.4% in 

allowed regions, 1.2% in disallowed regions. All structural-model figures were 

generated by Pymol. 

 

6.2.15 Software 

For bioinformatics analysis, DNA and protein sequences were obtained from 

resources of the National Center for Biotechnology Information (NCBI) and the 

Ensembl project (http://www.ensembl.org/). Sequence characterization, alignments 

and processing was carried out using Lasergene software Vers .9 (DNA Star) 

combined with Basic Local Alignment Search Tools (BLAST). Data mining was 

conducted using various data-base platforms including Universal Protein Resource 

(UniProt), Simple Modular Architecture Research Tool (SMART), Eukaryotic linear 

motif resource (ELM), Saccharomyces Genome Database (SGD), 

Schizosaccharomyces pombe Database (PomBase). Protein structures were 

visualized with Pymol and Swiss-PDB viewer (SIB) and external NMR structures 

were obtained from the protein data bank (PDB) and Research Collaboratory for 

Structural Bioinformatics (RCSB). Flow cytometry data was analyzed using FlowJo 

(TreeStar) and CellQuestPro (BD). 

The exon-specific microarray datasets as well as EST and sequencing data on 

alternative splicing and mRNA isoforms were retrieved from Ensembl and the 

Alternative Splicing Database project (ASD) and analyzed using AltAnalyze (version 

2.0.8), Affymetrix Power Tools software together with the Integrated Genome 



Material and Methods 

 119

Browser (IGB; version 7.0.1). Texts, graphs and tables were prepared using Excel, 

Word (both Microsoft) and Prism (GraphPad), images were prepared using 

Powerpoint (Microsoft), Photoshop and Illustrator (both Adobe).  

 

 



Figure Index 

 120

7 Figure Index 

Introduction Figure I: Co-transcriptional mRNA processing .............................................................. 7

Introduction Figure II: Interplay of the gene expression network ..................................................... 8

Introduction Figure III The pre-mRNA splicing reaction ................................................................... 10

Introduction Figure IV: The human spliceosomal snRNPs ............................................................... 12

Introduction Figure V: The stepwise assembly of the spliceosome during splicing cycles ......... 15

Introduction Figure VI: Different types of alternative splicing ......................................................... 17

Introduction Table: Ubiquitin-like proteins ........................................................................................ 21

Introduction Figure VII: Human Hub1 among other ubiquitin-like proteins .................................... 24

Figure 1: Identification of Hub1 interactors by mammalian yeast two-hybrid screen ................... 27

Figure 2: Hub1 and the tri-snRNP protein hSnu66 interact in vivo .................................................. 28

Figure 3: Mapping of the Hub1 interaction domain in hSnu66 ......................................................... 30

Figure 4: The crystal structure of the Hub1-HIND complex .............................................................. 31

Figure 5: Single point mutations in the HIND interface disrupt Hub1 - hSnu66 interaction .......... 33

Figure 6: Co-localization of Hub1 and hSnu66 with nuclear speckle proteins ............................... 35

Figure 7: Hub1 recruitment to nuclear speckles depends on C-terminal surface ......................... 36

Figure 8: hSnu66 actively recruits Hub1 to nuclear speckles in a HIND-dependent manner ....... 37

Figure 9: hSnu66 is incorporated into the tri-snRNP complex in a Hub1-independent manner ... 38

Figure 10: Mapping and characterization of hSnu66 domains ......................................................... 40

Figure 11: Hub1 binding retains N-terminus of hSnu66 in nuclear compartment .......................... 41

Figure 12: Functional complementarity of yeast and human HUB1 orthologs ............................... 43

Figure 13: Generation of Hub1-specific antibodies and verification of Hub1 RNAi specificity. ... 45

Figure 14: Knockdown of Hub1 causes cell cycle defects and mitotic catastrophe ..................... 47

Figure 15: In vivo depletion of Hub1 causes G2/M arrest ................................................................. 48

Figure 16: Rescue of Hub1 knockdown-mediated cell cycle defects affirm RNAi specificity ...... 49

Figure 17: Nuclear disintegration and DNA damage are characteristics of Hub1 knockdown and 

entail apoptosis ..................................................................................................................................... 53

Figure 18: Characterization of crucial residues in Hub1 by mutational analysis ........................... 56

Figure 19: Complementation of Hub1 RNAi cytotoxicity by co-expression of Hub1-point mutants

 ................................................................................................................................................................ 58

Figure 20: In vivo depletion of Hub1 causes an altered distribution of splicing factors and 

nuclear retention of polyadenylated mRNA ....................................................................................... 60

Figure 21: Hub1 RNAi complementation restores aberrant nuclear localization of splicing factors 

with Hub1 functioning upstream of mRNA export ............................................................................. 62

Figure 22: Splicing reporters indicate Hub1’s crucial role for efficient pre-mRNA splicing ......... 64

Figure 23: Depletion of Hub1 leads to aberrantly spliced mRNAs and altered splicing patterns 66

Figure 24: Hub1 is crucial for accurate splicing of specific splice events in vivo ......................... 69

Figure 25: Exon-specific microarray revealed global alterations in alternative splicing and mRNA 

expression upon Hub1 depletion ........................................................................................................ 73

Figure 26: The transcription inhibitor actinomycin D alleviates fatal Hub1 depletion phenotypes

 ................................................................................................................................................................ 76

Figure 27: Proposed model for Hub1’s crucial role in pre-mRNA splicing ................................... 105

 

 



References 

 121

8 References 

Agafonov, D. E., Deckert, J., Wolf, E., Odenwaelder, P., Bessonov, S., Will, C. L., Urlaub, H., and 
Luehrmann, R. (2011). Semiquantitative Proteomic Analysis of the Human Spliceosome via a 
Novel Two-Dimensional Gel Electrophoresis Method. Molecular and Cellular Biology 31, 2667–
2682. 

Agarwal, M. L., Agarwal, A., Taylor, W. R., Chernova, O., Sharma, Y., and Stark, G. R. (1998). A p53-
dependent S-phase checkpoint helps to protect cells from DNA damage in response to starvation 
for pyrimidine nucleotides. Proc. Natl. Acad. Sci. U.S.A. 95, 14775–14780. 

Aguilera, A., and García-Muse, T. (2012). R loops: from transcription byproducts to threats to genome 
stability. Molecular Cell 46, 115–124. 

Ahn, E.-Y., DeKelver, R. C., Lo, M.-C., Nguyen, T. A., Matsuura, S., Boyapati, A., Pandit, S., Fu, X.-D., 
and Zhang, D.-E. (2011). SON Controls Cell-Cycle Progression by Coordinated Regulation of RNA 
Splicing. Molecular Cell 42, 185–198. 

Aichem, A., Kalveram, B., Spinnenhirn, V., Kluge, K., Catone, N., Johansen, T., and Groettrup, M. 
(2012). The proteomic analysis of endogenous FAT10 substrates identifies p62/SQSTM1 as a 
substrate of FAT10ylation. Journal of Cell Science 125, 4576–4585. 

Ajuh, P., Kuster, B., Panov, K., Zomerdijk, J. C., Mann, M., and Lamond, A. I. (2000). Functional 
analysis of the human CDC5L complex and identification of its components by mass spectrometry. 
EMBO J. 19, 6569–6581. 

Allemand, E., Gattoni, R., Bourbon, H. M., Stevenin, J., Caceres, J. F., Soret, J., and Tazi, J. (2001). 
Distinctive features of Drosophila alternative splicing factor RS domain: implication for specific 
phosphorylation, shuttling, and splicing activation. Molecular and Cellular Biology 21, 1345–1359. 

Anderson, J. S., and Parker, R. P. (1998). The 3' to 5' degradation of yeast mRNAs is a general 
mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3“ to 5” exonucleases 
of the exosome complex. EMBO J. 17, 1497–1506. 

Ast, G. (2004). How did alternative splicing evolve? Nat. Rev. Genet. 5, 773–782. 

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., and Struhl, K. (1988). Current 
Protocols in Molecular Biology. Current Protocols. 

Bacchetti, S., and Whitmore, G. F. (1969). Actinomycin D: effects on mouse L-cells. Biophys. J. 9, 
1427–1445. 

Bae, J., Leo, C. P., Hsu, S. Y., and Hsueh, A. J. (2000). MCL-1S, a splicing variant of the antiapoptotic 
BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J. 
Biol. Chem. 275, 25255–25261. 

Barrass, J., and Beggs, J. (2003). Splicing goes global. Trends Genet. 19, 295–298. 

Bartek, J., and Lukas, J. (2001). Mammalian G1- and S-phase checkpoints in response to DNA 
damage. Curr. Opin. Cell Biol. 13, 738–747. 

Bartke, T., Pohl, C., Pyrowolakis, G., and Jentsch, S. (2004). Dual role of BRUCE as an antiapoptotic 
IAP and a chimeric E2/E3 ubiquitin ligase. Molecular Cell 14, 801–811. 

Behrends, C., Sowa, M. E., Gygi, S. P., and Harper, J. W. (2010). Network organization of the human 
autophagy system. Nature, 1–10. 

Beli, P., Lukashchuk, N., Wagner, S. A., Weinert, B. T., Olsen, J. V., Baskcomb, L., Mann, M., Jackson, 
S. P., and Choudhary, C. (2012). Proteomic Investigations Reveal a Role for RNA Processing 
Factor THRAP3 in the DNA Damage Response. Molecular Cell 46, 212–225. 



References 

 122

Bellare, P., Kutach, A. K., Rines, A. K., Guthrie, C., and Sontheimer, E. J. (2006). Ubiquitin binding by a 
variant Jab1/MPN domain in the essential pre-mRNA splicing factor Prp8p. RNA 12, 292–302. 

Bellare, P., Small, E. C., Huang, X., Wohlschlegel, J. A., Staley, J. P., and Sontheimer, E. J. (2008). A 
role for ubiquitin in the spliceosome assembly pathway. Nat Struct Mol Biol 15, 444–451. 

Benedetti, C., Haynes, C. M., Yang, Y., Harding, H. P., and Ron, D. (2006). Ubiquitin-Like Protein 5 
Positively Regulates Chaperone Gene Expression in the Mitochondrial Unfolded Protein Response. 
Genetics 174, 229–239. 

Bensaude, O. (2011). Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate 
its activity? Transcription 2, 103–108. 

Bergink, S., and Jentsch, S. (2009). Principles of ubiquitin and SUMO modifications in DNA repair. 
Nature 458, 461–467. 

Berk, A. J., and Sharp, P. A. (1977). Sizing and mapping of early adenovirus mRNAs by gel 
electrophoresis of S1 endonuclease-digested hybrids. Cell 12, 721–732. 

Bessho, T., Sancar, A., Thompson, L. H., and Thelen, M. P. (1997). Reconstitution of human excision 
nuclease with recombinant XPF-ERCC1 complex. J. Biol. Chem. 272, 3833–3837. 

Bessonov, S., Anokhina, M., Krasauskas, A., Golas, M. M., Sander, B., Will, C. L., Urlaub, H., Stark, H., 
and Lührmann, R. (2010). Characterization of purified human Bact spliceosomal complexes reveals 
compositional and morphological changes during spliceosome activation and first step catalysis. 
RNA 16, 2384–2403. 

Bessonov, S., Anokhina, M., Will, C. L., Urlaub, H., and Lührmann, R. (2008). Isolation of an active step 
I spliceosome and composition of its RNP core. Nature 452, 846–850. 

Bingle, C. D., Craig, R. W., Swales, B. M., Singleton, V., Zhou, P., and Whyte, M. K. (2000). Exon 
skipping in Mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death. 
J. Biol. Chem. 275, 22136–22146. 

Birmingham, A., Anderson, E., Sullivan, K., Reynolds, A., Boese, Q., Leake, D., Karpilow, J., and 
Khvorova, A. (2007). A protocol for designing siRNAs with high functionality and specificity. Nature 
Protocols 2, 2068–2078. 

Blaustein, M., Pelisch, F., Tanos, T., MuNoz, M. J., Wengier, D., Quadrana, L., Sanford, J. R., 
Muschietti, J. P., Kornblihtt, A. R., Caceres, J. F., et al. (2005). Concerted regulation of nuclear and 
cytoplasmic activities of SR proteins by AKT. Nat Struct Mol Biol 12, 1037–1044. 

Boerbooms, A., Mattioli, M., Reichlin, M., and Smith, P. R. (1985). Characterization of the Sm antigen by 
using monoclonal antibodies. Biochem. Soc. Trans. 

Bonano, V. I., Oltean, S., and Garcia-Blanco, M. A. (2007). A protocol for imaging alternative splicing 
regulation in vivo using fluorescence reporters in transgenic mice. Nature Protocols 2, 2166–2181. 

Bonnal, S., Martínez, C., Förch, P., Bachi, A., Wilm, M., and Valcárcel, J. (2008). RBM5/Luca-15/H37 
regulates Fas alternative splice site pairing after exon definition. Molecular Cell 32, 81–95. 

Bosu, D. R., and Kipreos, E. T. (2008). Cullin-RING ubiquitin ligases: global regulation and activation 
cycles. Cell Div 3, 7. 

Bozaoglu, K., Curran, J. E., Elliott, K. S., Walder, K. R., Dyer, T. D., Rainwater, D. L., Vandeberg, J. L., 
Comuzzie, A. G., Collier, G. R., Zimmet, P., et al. (2006). Association of genetic variation within 
UBL5 with phenotypes of metabolic syndrome. Hum Biol 78, 147–159. 

Brailoiu, G. C., Dun, S. L., Chi, M., Ohsawa, M., Chang, J. K., Yang, J., and Dun, N. J. (2003). 
Beacon/ubiquitin-like 5-immunoreactivity in the hypothalamus and pituitary of the mouse. Brain 
Res. 984, 215–223. 



References 

 123

Branzei, D., and Foiani, M. (2008). Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. 
Cell Biol. 9, 297–308. 

Bringmann, P., Appel, B., Rinke, J., Reuter, R., Theissen, H., and Lührmann, R. (1984). Evidence for the 
existence of snRNAs U4 and U6 in a single ribonucleoprotein complex and for their association by 
intermolecular base pairing. EMBO J. 3, 1357–1363. 

Bunz, F. (1998). Requirement for p53 and p21 to Sustain G2 Arrest After DNA Damage. Science 282, 
1497–1501. 

Buratti, E., Chivers, M., Kralovicova, J., Romano, M., Baralle, M., Krainer, A. R., and Vorechovsky, I. 
(2007). Aberrant 5' splice sites in human disease genes: mutation pattern, nucleotide structure and 
comparison of computational tools that predict their utilization. Nucleic Acids Research 35, 4250–
4263. 

Burge, C. B., Padgett, R. A., and Sharp, P. A. (1998). Evolutionary fates and origins of U12-type introns. 
Molecular Cell 2, 773–785. 

Burset, M., Seledtsov, I., and Solovyev, V. (2001). SpliceDB: database of canonical and non-canonical 
mammalian splice sites. Nucleic Acids Research 29, 255–259. 

Bushnell, D. A., Cramer, P., and Kornberg, R. D. (2002). Structural basis of transcription: α-Amanitin–
RNA polymerase II cocrystal at 2.8 Å resolution. Proc. Natl. Acad. Sci. U.S.A. 99, 1218–1222. 

Caceres, J. F., Screaton, G. R., and Krainer, A. R. (1998). A specific subset of SR proteins shuttles 
continuously between the nucleus and the cytoplasm. Genes & Development 12, 55–66. 

Cassé, C., Giannoni, F., Nguyen, V. T., Dubois, M. F., and Bensaude, O. (1999). The transcriptional 
inhibitors, actinomycin D and alpha-amanitin, activate the HIV-1 promoter and favor 
phosphorylation of the RNA polymerase II C-terminal domain. J. Biol. Chem. 274, 16097–16106. 

Castedo, M., Perfettini, J.-L., Roumier, T., Andreau, K., Medema, R., and Kroemer, G. (2004). Cell death 
by mitotic catastrophe: a molecular definition. Oncogene 23, 2825–2837. 

Chan, S.-P., Kao, D.-I., Tsai, W.-Y., and Cheng, S.-C. (2003). The Prp19p-associated complex in 
spliceosome activation. Science 302, 279–282. 

Chang, T.-H., Tung, L., Yeh, F.-L., Chen, J.-H., and Chang, S.-L. (2013). Functions of the DExD/H-box 
proteins in nuclear pre-mRNA splicing. Biochim. Biophys. Acta 1829, 764–774. 

Chari, A., Golas, M. M., Klingenhäger, M., Neuenkirchen, N., Sander, B., Englbrecht, C., Sickmann, A., 
Stark, H., and Fischer, U. (2008). An assembly chaperone collaborates with the SMN complex to 
generate spliceosomal SnRNPs. Cell 135, 497–509. 

Chen, Z. J., and Sun, L. J. (2009). Nonproteolytic Functions of Ubiquitin in Cell Signaling. Molecular Cell 
33, 275–286. 

Chow, L. T., Gelinas, R. E., Broker, T. R., and Roberts, R. J. (1977). An amazing sequence 
arrangement at the 5' ends of adenovirus 2 messenger RNA. Cell 12, 1–8. 

Chowdhury, M. M., Dosche, C., Lohmannsroben, H.-G., and Leimkuhler, S. (2012). Dual role of the 
molybdenum cofactor biosynthesis protein MOCS3 in tRNA thiolation and molybdenum cofactor 
biosynthesis in humans. J. Biol. Chem. 287, 17297–17307. 

Ciechanover, A. (2005). Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. 
Cell Biol. 6, 79–87. 

Ciechanover, A., Elias, S., Heller, H., and Hershko, A. (1982). “Covalent affinity” purification of ubiquitin-
activating enzyme. Journal of Biological Chemistry 257, 2537–2542. 

Ciechanover, A., Finley, D., and Varshavsky, A. (1984). Ubiquitin dependence of selective protein 
degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37, 57–66. 



References 

 124

Cioce, M., and Lamond, A. I. (2005). CAJAL BODIES: A Long History of Discovery. Annu. Rev. Cell 
Dev. Biol. 21, 105–131. 

Clague, M. J., Coulson, J. M., and Urbe, S. (2012). Cellular functions of the DUBs. Journal of Cell 
Science 125, 277–286. 

Clement, J. Q., Qian, L., Kaplinsky, N., and Wilkinson, M. F. (1999). The stability and fate of a spliced 
intron from vertebrate cells. RNA 5, 206–220. 

Cléry, A., Blatter, M., and Allain, F. H. T. (2008). RNA recognition motifs: boring? Not quite. Curr Opin 
Struct Biol 18, 290–298. 

Collaborative Computational Project, Number 4 (1994). The CCP4 suite: programs for protein 
crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763. 

Collins, C. A., and Guthrie, C. (2000). The question remains: is the spliceosome a ribozyme? Nat Struct 
Biol 7, 850–854. 

Colwill, K., Feng, L., Yeakley, J., Gish, G., Caceres, J., Pawson, T., and Fu, X. (1996). SRPK1 and 
Clk/Sty protein kinases show distinct substrate specificities for serine/arginine-rich splicing factors. 
J. Biol. Chem. 271, 24569–24575. 

Cooper, T. A. (1999). Defining pre-mRNA cis elements that regulate cell-specific splicing. Methods Mol. 
Biol. 118, 391–403. 

Cooper, T. A. (2005). Use of minigene systems to dissect alternative splicing elements. Methods 37, 
331–340. 

Cope, G. A., and Deshaies, R. J. (2003). COP9 signalosome: a multifunctional regulator of SCF and 
other cullin-based ubiquitin ligases. Cell 114, 663–671. 

Copley, R. R. (2005). The EH1 motif in metazoan transcription factors. BMC Genomics 6, 169. 

Cramer, P., Caceres, J. F., Cazalla, D., Kadener, S., Muro, A. F., Baralle, F. E., and Kornblihtt, A. R. 
(1999). Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF 
and 9G8 effects on an exonic splicing enhancer. Molecular Cell 4, 251–258. 

Crispino, J. D., Blencowe, B. J., and Sharp, P. A. (1994). Complementation by SR proteins of pre-mRNA 
splicing reactions depleted of U1 snRNP. Science 265, 1866–1869. 

Crosas, B., Hanna, J., Kirkpatrick, D. S., Zhang, D. P., Tone, Y., Hathaway, N. A., Buecker, C., Leggett, 
D. S., Schmidt, M., King, R. W., et al. (2006). Ubiquitin chains are remodeled at the proteasome by 
opposing ubiquitin ligase and deubiquitinating activities. Cell 127, 1401–1413. 

Cuperlovic-Culf, M., Belacel, N., Culf, A. S., and Ouellette, R. J. (2006). Microarray analysis of 
alternative splicing. Omics 10, 344–357. 

Dahlmann, M. (2008). Die Funktion des Ubiquitin-ähnlichen Proteins Hub1 in S. cerevisiae. 

Dahmus, M. E. (1996). Reversible phosphorylation of the C-terminal domain of RNA polymerase II. 
Journal of Biological Chemistry 271, 19009–19012. 

Deckert, J., Hartmuth, K., Boehringer, D., Behzadnia, N., Will, C. L., Kastner, B., Stark, H., Urlaub, H., 
and Lührmann, R. (2006). Protein Composition and Electron Microscopy Structure of Affinity-
Purified Human Spliceosomal B Complexes Isolated under Physiological Conditions. Molecular and 
Cellular Biology 26, 5528–5543. 

Denuc, A., and Marfany, G. (2010). SUMO and ubiquitin paths converge. Biochem. Soc. Trans 38, 34–
39. 

 



References 

 125

Deveraux, Q. L., Leo, E., Stennicke, H. R., Welsh, K., Salvesen, G. S., and Reed, J. C. (1999). 
Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities 
for caspases. EMBO J. 18, 5242–5251. 

Di Leonardo, A., Khan, S. H., Linke, S. P., Greco, V., Seidita, G., and Wahl, G. M. (1997). DNA 
rereplication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking 
either p53 or pRb function. Cancer Research 57, 1013–1019. 

Dias, A. P., Dufu, K., Lei, H., and Reed, R. (2010). A role for TREX components in the release of spliced 
mRNA from nuclear speckle domains. Nature Communications 1, 1–10. 

Dikic, I., Wakatsuki, S., and Walters, K. J. (2009). Ubiquitin-binding domains - from structures to 
functions. Nat. Rev. Mol. Cell Biol. 10, 659–671. 

Duncan, P. I., Stojdl, D. F., Marius, R. M., and Bell, J. C. (1997). In vivo regulation of alternative pre-
mRNA splicing by the Clk1 protein kinase. Molecular and Cellular Biology 17, 5996–6001. 

Durfee, L. A., Lyon, N., Seo, K., and Huibregtse, J. M. (2010). The ISG15 conjugation system broadly 
targets newly synthesized proteins: implications for the antiviral function of ISG15. Molecular Cell 
38, 722–732. 

Dye, B. T., and Schulman, B. A. (2007). Structural Mechanisms Underlying Posttranslational 
Modification by Ubiquitin-Like Proteins. Annu. Rev. Biophys. Biomol. Struct. 36, 131–150. 

Dyson, H. J., Wright, P. E., and Scheraga, H. A. (2006). The role of hydrophobic interactions in initiation 
and propagation of protein folding. Proc. Natl. Acad. Sci. U.S.A. 103, 13057–13061. 

Ea, C.-K., Deng, L., Xia, Z.-P., Pineda, G., and Chen, Z. J. (2006). Activation of IKK by TNFalpha 
requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Molecular Cell 22, 
245–257. 

Egecioglu, D. E., and Chanfreau, G. (2011). Proofreading and spellchecking: A two-tier strategy for pre-
mRNA splicing quality control. RNA 17, 383–389. 

Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001). Duplexes of 
21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498. 

Elkon, R., Ugalde, A. P., and Agami, R. (2013). Alternative cleavage and polyadenylation: extent, 
regulation and function. Nat. Rev. Genet. 14, 496–506. 

Ellis, J. D., Barrios-Rodiles, M., Çolak, R., Irimia, M., Kim, T., Calarco, J. A., Wang, X., Pan, Q., 
O'Hanlon, D., Kim, P. M., et al. (2012). Tissue-Specific Alternative Splicing Remodels Protein-
Protein Interaction Networks. Molecular Cell 46, 884–892. 

Engelsma, D., Bernad, R., Calafat, J., and Fornerod, M. (2004). Supraphysiological nuclear export 
signals bind CRM1 independently of RanGTP and arrest at Nup358. EMBO J. 23, 3643–3652. 

Eskelinen, E.-L. (2005). Maturation of autophagic vacuoles in Mammalian cells. autophagy 1, 1–10. 

Fackenthal, J. D., and Godley, L. A. (2008). Aberrant RNA splicing and its functional consequences in 
cancer cells. Dis Model Mech 1, 37–42. 

Ferreira, J. A., Carmo-Fonseca, M., and Lamond, A. I. (1994). Differential interaction of splicing snRNPs 
with coiled bodies and interchromatin granules during mitosis and assembly of daughter cell nuclei. 
J Cell Biol 126, 11–23. 

Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998). Potent and 
specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–
811. 

Fischer, U. U., Liu, Q. Q., and Dreyfuss, G. G. (1997). The SMN-SIP1 Complex Has an Essential Role in 
Spliceosomal snRNP Biogenesis. Cell 90, 7–7. 



References 

 126

Fischer, U., Englbrecht, C., and Chari, A. (2011). Biogenesis of spliceosomal small nuclear 
ribonucleoproteins. WIREs RNA 2, 718–731. 

Fisher, D., Krasinska, L., Coudreuse, D., and Novák, B. (2012). Phosphorylation network dynamics in 
the control of cell cycle transitions. Journal of Cell Science 125, 4703–4711. 

Flotho, A., and Melchior, F. (2013). Sumoylation: a regulatory protein modification in health and disease. 
Annu. Rev. Biochem. 82, 357–385. 

Fong, N., and Bentley, D. L. (2001). Capping, splicing, and 3' processing are independently stimulated 
by RNA polymerase II: different functions for different segments of the CTD. Genes & Development 
15, 1783–1795. 

Fox-Walsh, K. L., and Hertel, K. J. (2009). Splice-site pairing is an intrinsically high fidelity process. 
PNAS 106, 1766–1771. 

Friedmann, J., Koop, B., Raymond, V., and Walter, M. (2001). Isolation of a ubiquitin-like (UBL5) gene 
from a screen identifying highly expressed and conserved iris genes. Genomics 71, 252–255. 

Fu, X. D. (1995). The superfamily of arginine/serine-rich splicing factors. RNA 1, 663. 

Furukawa, K., Mizushima, N., Noda, T., and Ohsumi, Y. (2000). A protein conjugation system in yeast 
with homology to biosynthetic enzyme reaction of prokaryotes. J. Biol. Chem. 275, 7462–7465. 

Gaildrat, P., Killian, A., Martins, A., Tournier, I., Frébourg, T., and Tosi, M. (2010). Use of splicing 
reporter minigene assay to evaluate the effect on splicing of unclassified genetic variants. Methods 
Mol. Biol. 653, 249–257. 

Gan, W., Guan, Z., Liu, J., Gui, T., Shen, K., Manley, J. L., and Li, X. (2011). R-loop-mediated genomic 
instability is caused by impairment of replication fork progression. Genes & Development 25, 
2041–2056. 

Gardina, P. J., Clark, T. A., Shimada, B., Staples, M. K., Yang, Q., Veitch, J., Schweitzer, A., Awad, T., 
Sugnet, C., Dee, S., et al. (2006). Alternative splicing and differential gene expression in colon 
cancer detected by a whole genome exon array. BMC Genomics 7, 325. 

Geng, J., and Klionsky, D. J. (2008). The Atg8 and Atg12 ubiquitin-like conjugation systems in 
macroautophagy. “Protein modifications: beyond the usual suspects” review series. EMBO reports 
9, 859–864. 

Girard, C., Will, C. L., Peng, J., Makarov, E. M., Kastner, B., Lemm, I., Urlaub, H., Hartmuth, K., and 
Lührmann, R. (2012). Post-transcriptional spliceosomes are retained in nuclear speckles until 
splicing completion. Nature Communications 3, 994. 

Goldstein, G., Scheid, M., Hammerling, U., Schlesinger, D. H., Niall, H. D., and Boyse, E. A. (1975). 
Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably 
represented universally in living cells. Proc. Natl. Acad. Sci. U.S.A. 72, 11–15. 

Goldstein, R. E., Cook, O., Dinur, T., Pisanté, A., Karandikar, U. C., Bidwai, A., and Paroush, Z. (2005). 
An eh1-like motif in odd-skipped mediates recruitment of Groucho and repression in vivo. 
Molecular and Cellular Biology 25, 10711–10720. 

Gong, X. Q., Nedialkov, Y. A., and Burton, Z. F. (2004). Alpha-amanitin blocks translocation by human 
RNA polymerase II. J. Biol. Chem. 279, 27422–27427. 

Gooding, C., and Smith, C. W. J. (2008). Tropomyosin exons as models for alternative splicing. Adv. 
Exp. Med. Biol. 644, 27–42. 

Gottschalk, A., Neubauer, G., Banroques, J., Mann, M., Lührmann, R., and Fabrizio, P. (1999). 
Identification by mass spectrometry and functional analysis of novel proteins of the yeast 
[U4/U6.U5] tri-snRNP. EMBO J. 18, 4535–4548. 



References 

 127

Gould, S. B. (2012). Evolutionary genomics: Algae's complex origins. Nature 492, 46–48. 

Graham, I. R., Hamshere, M., and Eperon, I. C. (1992). Alternative splicing of a human alpha-
tropomyosin muscle-specific exon: identification of determining sequences. Molecular and Cellular 
Biology 12, 3872–3882. 

Graveley, B. R. (2004). A protein interaction domain contacts RNA in the prespliceosome. Molecular 
Cell 13, 302–304. 

Grillari, J., Grillari-Voglauer, R., and Jansen-Duerr, P. (2010). Post-Translational Modification of Cellular 
Proteins by Ubiquitin and Ubiquitin-Like Molecules: Role in Cellular Senescence and Aging. Adv. 
Exp. Med. Biol. 694, 172–196. 

Grosso, A. R., Gomes, A. Q., Barbosa-Morais, N. L., Caldeira, S., Thorne, N. P., Grech, G., Lindern, 
von, M., and Carmo-Fonseca, M. (2008). Tissue-specific splicing factor gene expression 
signatures. Nucleic Acids Research 36, 4823–4832. 

Gupta, M., Mungai, P. T., and Goldwasser, E. (2000). A new transacting factor that modulates hypoxia-
induced expression of the erythropoietin gene. Blood 96, 491–497. 

Hatanaka, K., Ikegami, K., Takagi, H., and Setou, M. (2006). Hypo-osmotic shock induces nuclear 
export and proteasome-dependent decrease of UBL5. Biochemical and Biophysical Research 
Communications 350, 610–615. 

Hay, R. T. R. (2013). Decoding the SUMO signal. Biochem. Soc. Trans 41, 463–473. 

Haynes, C. M. C., Petrova, K. K., Benedetti, C. C., Yang, Y. Y., and Ron, D. D. (2007). ClpP mediates 
activation of a mitochondrial unfolded protein response in C. elegans. Developmental Cell 13, 467–
480. 

Häcker, I., Sander, B., Golas, M. M., Wolf, E., Karagöz, E., Kastner, B., Stark, H., Fabrizio, P., and 
Lührmann, R. (2008). Localization of Prp8, Brr2, Snu114 and U4/U6 proteins in the yeast tri-snRNP 
by electron microscopy. Nat Struct Mol Biol 15, 1206–1212. 

Hecker, C.-M., Rabiller, M., Haglund, K., Bayer, P., and Dikic, I. (2006). Specification of SUMO1- and 
SUMO2-interacting motifs. J. Biol. Chem. 281, 16117–16127. 

Herold, N., Will, C. L., Wolf, E., Kastner, B., Urlaub, H., and Lührmann, R. (2009). Conservation of the 
protein composition and electron microscopy structure of Drosophila melanogaster and human 
spliceosomal complexes. Molecular and Cellular Biology 29, 281–301. 

Hershko, A., Heller, H., Elias, S., and Ciechanover, A. (1983). Components of Ubiquitin-Protein Ligase 
System - Resolution, Affinity Purification, and Role in Protein Breakdown. J. Biol. Chem. 258, 
8206–8214. 

Hershko, A., Heller, H., Eytan, E., and Reiss, Y. (1986). The protein substrate binding site of the 
ubiquitin-protein ligase system. J. Biol. Chem. 261, 11992–11999. 

Hertel, K. J., and Graveley, B. R. (2005). RS domains contact the pre-mRNA throughout spliceosome 
assembly. Trends in Biochemical Sciences 30, 115–118. 

Hiller, M., Zhang, Z., Backofen, R., and Stamm, S. (2007). Pre-mRNA secondary structures influence 
exon recognition. PLoS Genet 3, 2147–2155. 

Ho, L., and Crabtree, G. R. (2010). Chromatin remodelling during development. Nature 463, 474–484. 

Hochegger, H., Takeda, S., and Hunt, T. (2008). Cyclin-dependent kinases and cell-cycle transitions: 
does one fit all? Nat. Rev. Mol. Cell Biol. 9, 910–916. 

Hoege, C., Pfander, B., Moldovan, G.-L., Pyrowolakis, G., and Jentsch, S. (2002). RAD6-dependent 
DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141. 



References 

 128

Hofmann, J. C., Husedzinovic, A., and Gruss, O. J. (2010). The function of spliceosome components in 
open mitosis. Nucleus 1, 447–459. 

Hollstein, U. (1974). Actinomycin - Chemistry and Mechanism of Action. Chem. Rev. 74, 625–652. 

Hopfield, J. J. (1974). Kinetic proofreading: a new mechanism for reducing errors in biosynthetic 
processes requiring high specificity. Proc. Natl. Acad. Sci. U.S.A. 71, 4135–4139. 

Hoppe-Seyler, F., and Butz, K. (1993). Repression of endogenous p53 transactivation function in HeLa 
cervical carcinoma cells by human papillomavirus type 16 E6, human mdm-2, and mutant p53. J 
Virol 67, 3111–3117. 

Hough, R., Pratt, G., and Rechsteiner, M. (1986). Ubiquitin-lysozyme conjugates. Identification and 
characterization of an ATP-dependent protease from rabbit reticulocyte lysates. Journal of 
Biological Chemistry 261, 2400–2408. 

Huang, Y., Yario, T. A., and Steitz, J. A. (2004). A molecular link between SR protein dephosphorylation 
and mRNA export. Proc. Natl. Acad. Sci. U.S.A. 101, 9666–9670. 

Huertas, P., and Aguilera, A. (2003). Cotranscriptionally formed DNA : RNA hybrids mediate 
transcription elongation impairment and transcription-associated recombination. Molecular Cell 12, 
711–721. 

Huibregtse, J. M., Scheffner, M., Beaudenon, S., and Howley, P. M. (1995). A Family of Proteins 
Structurally and Functionally Related to the E6-Ap Ubiquitin Protein Ligase. Proc. Natl. Acad. Sci. 
U.S.A. 92, 2563–2567. 

Husnjak, K., and Dikic, I. (2012). Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular 
functions. Annu. Rev. Biochem. 81, 291–322. 

Inoue, H., Nojima, H., and Okayama, H. (1990). High efficiency transformation of Escherichia coli with 
plasmids. Gene 96, 23–28. 

Ishikawa-Ankerhold, H. C., Ankerhold, R., and Drummen, G. P. C. (2012). Advanced fluorescence 
microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17, 4047–4132. 

Jagla, B., Aulner, N., Kelly, P. D., Song, D., Volchuk, A., Zatorski, A., Shum, D., Mayer, T., De Angelis, 
D. A., Ouerfelli, O., et al. (2005). Sequence characteristics of functional siRNAs. RNA 11, 864–872. 

Jentsch, S. (1992). Ubiquitin-dependent protein degradation: a cellular perspective. Trends in Cell 
Biology 2, 98–103. 

Jentsch, S., and Pyrowolakis, G. (2000). Ubiquitin and its kin: how close are the family ties? Trends in 
Cell Biology 10, 335–342. 

Jentsch, S., McGrath, J. P., and Varshavsky, A. (1987). The yeast DNA repair gene RAD6 encodes a 
ubiquitin-conjugating enzyme. Nature 329, 131–134. 

Jowett, J., Elliott, K., Curran, J., Hunt, N., Walder, K., Collier, G., Zimmet, P., and Blangero, J. (2004). 
Genetic variation in BEACON influences quantitative variation in metabolic syndrome-related 
phenotypes. Diabetes 53, 2467–2472. 

Jurica, M. S., Licklider, L. J., Gygi, S. R., Grigorieff, N., and Moore, M. J. (2002). Purification and 
characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8, 
426–439. 

Kabsch, W. (1993). Automatic processing of rotation diffraction data from crystals of initially unknown 
symmetry and cell constants. J Appl Crystallogr 26, 795–800. 

Kaida, D., Motoyoshi, H., Tashiro, E., Nojima, T., Hagiwara, M., Ishigami, K., Watanabe, H., Kitahara, 
T., Yoshida, T., Nakajima, H., et al. (2007). Spliceostatin A targets SF3b and inhibits both splicing 
and nuclear retention of pre-mRNA. Nature Chemical Biology 3, 576–583. 



References 

 129

Kantham, L., Kerr-Bayles, L., Godde, N., Quick, M., Webb, R., Sunderland, T., Bond, J., Walder, K., 
Augert, G., and Collier, G. (2003). Beacon interacts with cdc2/cdc28-like kinases. Biochemical and 
Biophysical Research Communications 304, 125–129. 

Kapadia, F., Pryor, A., Chang, T.-H., and Johnson, L. F. (2006). Nuclear localization of poly(A)+ mRNA 
following siRNA reduction of expression of the mammalian RNA helicases UAP56 and URH49. 
Gene 384, 37–44. 

Karijolich, J., and Yu, Y.-T. (2010). Spliceosomal snRNA modifications and their function. RNA Biol 7, 
192–204. 

Karni, R., de Stanchina, E., Lowe, S. W., Sinha, R., Mu, D., and Krainer, A. R. (2007). The gene 
encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 14, 185–193. 

Kataoka, N., Bachorik, J. L., and Dreyfuss, G. (1999). Transportin-SR, a nuclear import receptor for SR 
proteins. J Cell Biol 145, 1145–1152. 

Kawamoto, M., Shichijo, S., Imai, Y., Imaizumi, T., Koga, T., Yanaga, H., and Itoh, K. (1999). Expression 
of the SART-1 tumor rejection antigen in breast cancer. Int. J. Cancer 80, 64–67. 

Kervestin, S., and Jacobson, A. (2012). NMD: a multifaceted response to premature translational 
termination. Nat. Rev. Mol. Cell Biol. 13, 700–712. 

Kikuchi, M., Nakao, M., Inoue, Y., Matsunaga, K., Shichijo, S., Yamana, H., and Itoh, K. (1999). 
Identification of a SART-1-derived peptide capable of inducing HLA-A24-restricted and tumor-
specific cytotoxic T lymphocytes. Int. J. Cancer 81, 459–466. 

Kim, J.-H., Sim, S.-H., Ha, H.-J., Ko, J.-J., Lee, K., and Bae, J. (2009). MCL-1ES, a novel variant of 
MCL-1, associates with MCL-1L and induces mitochondrial cell death. FEBS Lett. 583, 2758–2764. 

Koh, M. Y., Darnay, B. G., and Powis, G. (2008). Hypoxia-Associated Factor, a Novel E3-Ubiquitin 
Ligase, Binds and Ubiquitinates Hypoxia-Inducible Factor 1 , Leading to Its Oxygen-Independent 
Degradation. Molecular and Cellular Biology 28, 7081–7095. 

Koh, M. Y., Lemos, R., Liu, X., and Powis, G. (2011). The hypoxia-associated factor switches cells from 
HIF-1α- to HIF-2α-dependent signaling promoting stem cell characteristics, aggressive tumor 
growth and invasion. Cancer Research 71, 4015–4027. 

Kohtz, J. D., Jamison, S. F., Will, C. L., Zuo, P., Lührmann, R., Garcia-Blanco, M. A., and Manley, J. L. 
(1994). Protein-protein interactions and 5'-splice-site recognition in mammalian mRNA precursors. 
Nature 368, 119–124. 

Kojima, S., Hyakutake, A., Koshikawa, N., Nakagawara, A., and Takenaga, K. (2010). MCL-1V, a novel 
mouse antiapoptotic MCL-1 variant, generated by RNA splicing at a non-canonical splicing pair. 
Biochemical and Biophysical Research Communications 391, 492–497. 

Komander, D., and Rape, M. (2012). The Ubiquitin Code. Annu. Rev. Biochem. 81, 203–229. 

Koodathingal, P., and Staley, J. P. (2013). Splicing fidelity: DEAD/H-box ATPases as molecular clocks. 
RNA Biol 10. 

Koodathingal, P., Novak, T., Piccirilli, J. A., and Staley, J. P. (2010). The DEAH box ATPases Prp16 and 
Prp43 cooperate to proofread 5' splice site cleavage during pre-mRNA splicing. Molecular Cell 39, 
385–395. 

Kornblihtt, A. R., Schor, I. E., Allo, M., Dujardin, G., Petrillo, E., and MuNoz, M. J. (2013). Alternative 
splicing: a pivotal step between eukaryotic transcription and translation. Nat. Rev. Mol. Cell Biol. 
14, 153–165. 

Korneta, I., and Bujnicki, J. M. (2012). Intrinsic Disorder in the Human Spliceosomal Proteome. PLoS 
Comp Biol 8. 



References 

 130

Korneta, I., Magnus, M., and Bujnicki, J. M. (2012). Structural bioinformatics of the human spliceosomal 
proteome. Nucleic Acids Research 40, 7046–7065. 

Kowalska, K. M. (2012). Biochemical and biophysical characterization of CD44 and its binding partner, 
hyaluronic acid and structural investigations of the ubiquitin-like protein 5. 

Kölling, R., and Hollenberg, C. P. (1994). The ABC-transporter Ste6 accumulates in the plasma 
membrane in a ubiquitinated form in endocytosis mutants. EMBO J. 13, 3261–3271. 

Krecic, A., and Swanson, M. (1999). hnRNP complexes: composition, structure, and function. Curr. 
Opin. Cell Biol. 11, 363–371. 

Kuhn, A. N., van Santen, M. A., Schwienhorst, A., Urlaub, H., and Lührmann, R. (2009). Stalling of 
spliceosome assembly at distinct stages by small-molecule inhibitors of protein acetylation and 
deacetylation. RNA 15, 153–175. 

Kutay, U., and Güttinger, S. (2005). Leucine-rich nuclear-export signals: born to be weak. Trends in Cell 
Biology 15, 121–124. 

la Mata, de, M., Alonso, C. R., Kadener, S., Fededa, J. P., Blaustein, M., Pelisch, F., Cramer, P., 
Bentley, D., and Kornblihtt, A. R. (2003). A Slow RNA Polymerase II Affects Alternative Splicing In 
Vivo. Molecular Cell 12, 525–532. 

Lamond, A. I., and Earnshaw, W. C. (1998). Structure and function in the nucleus. Science 280, 547–
553. 

Lamond, A. I., and Spector, D. L. (2003). Nuclear speckles: a model for nuclear organelles. Nat. Rev. 
Mol. Cell Biol. 4, 605–612. 

Lamzin, V. S., and Wilson, K. S. (1993). Automated refinement of protein models. Acta Crystallogr. D 
Biol. Crystallogr. 49, 129–147. 

Lanctôt, C., Cheutin, T., Cremer, M., Cavalli, G., and Cremer, T. (2007). Dynamic genome architecture 
in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8, 104–
115. 

Lange, O. F., Lakomek, N.-A., Farès, C., Schröder, G. F., Walter, K. F. A., Becker, S., Meiler, J., 
Grubmüller, H., Griesinger, C., and de Groot, B. L. (2008). Recognition dynamics up to 
microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320, 1471–
1475. 

Lavin, M. F. (2008). Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and 
cancer. Nat. Rev. Mol. Cell Biol. 9, 759–769. 

Lecoeur, H. (2002). Nuclear Apoptosis Detection by Flow Cytometry: Influence of Endogenous 
Endonucleases. Experimental Cell Research 277, 1–14. 

Leeds, N. B., Small, E. C., Hiley, S. L., Hughes, T. R., and Staley, J. P. (2005). The Splicing Factor 
Prp43p, a DEAH Box ATPase, Functions in Ribosome Biogenesis. Molecular and Cellular Biology 
26, 513–522. 

Leidel, S., Pedrioli, P. G. A., Bucher, T., Brost, R., Costanzo, M., Schmidt, A., Aebersold, R., Boone, C., 
Hofmann, K., and Peter, M. (2009). Ubiquitin-related modifier Urm1 acts as a sulphur carrier in 
thiolation of eukaryotic transfer RNA. Nature 458, 228–232. 

Lents, N. H., Wheeler, L. W., Baldassare, J. J., and Dynlacht, B. D. (2008). Identification and 
characterization of a novel Mdm2 splice variant acutely induced by the chemotherapeutic agents 
adriamycin and actinomycin D. Cell Cycle 7, 1580–1586. 

Li, C., Kato, M., Shiue, L., Shively, J. E., Ares, M., and Lin, R.-J. (2006). Cell type and culture condition-
dependent alternative splicing in human breast cancer cells revealed by splicing-sensitive 
microarrays. Cancer Research 66, 1990–1999. 



References 

 131

Li, X., and Manley, J. L. (2006). Cotranscriptional processes and their influence on genome stability. 
Genes & Development 20, 1838–1847. 

Li, X., and Manley, J. L. (2005). Inactivation of the SR Protein Splicing Factor ASF/SF2 Results in 
Genomic Instability. Cell 122, 365–378. 

Li, X., Niu, T., and Manley, J. L. (2007). The RNA binding protein RNPS1 alleviates ASF/SF2 depletion-
induced genomic instability. RNA 13, 2108–2115. 

Li, Z., Lee, I., Moradi, E., Hung, N.-J., Johnson, A. W., and Marcotte, E. M. (2009). Rational extension of 
the ribosome biogenesis pathway using network-guided genetics. Plos Biol 7, e1000213. 

Liakopoulos, D., Doenges, G., Matuschewski, K., and Jentsch, S. (1998). A novel protein modification 
pathway related to the ubiquitin system. EMBO J. 17, 2208–2214. 

Lin, J.-C., and Tarn, W.-Y. (2005). Exon selection in alpha-tropomyosin mRNA is regulated by the 
antagonistic action of RBM4 and PTB. Molecular and Cellular Biology 25, 10111–10121. 

Lin, S., Coutinho-Mansfield, G., Wang, D., Pandit, S., and Fu, X.-D. (2008). The splicing factor SC35 
has an active role in transcriptional elongation. Nat Struct Mol Biol 15, 819–826. 

Lindell, T. J., WEINBERG, F., Morris, P. W., Roeder, R. G., and Rutter, W. J. (1970). Specific inhibition 
of nuclear RNA polymerase II by alpha-amanitin. Science 170, 447–449. 

Liu, S., and Cheng, C. (2013). Alternative RNA splicing and cancer. WIREs RNA 4, 547–566. 

Liu, S., Rauhut, R., Vornlocher, H.-P., and Lührmann, R. (2006). The network of protein-protein 
interactions within the human U4/U6.U5 tri-snRNP. RNA 12, 1418–1430. 

Ljungman, M., Zhang, F., Chen, F., Rainbow, A. J., and McKay, B. C. (1999). Inhibition of RNA 
polymerase II as a trigger for the p53 response. Oncogene 18, 583–592. 

Lopez, A. J. (1998). Alternative splicing of pre-mRNA: developmental consequences and mechanisms 
of regulation. Annu. Rev. Genet. 32, 279–305. 

Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R., and Misteli, T. (2011). Epigenetics in Alternative Pre-
mRNA Splicing. Cell 144, 16–26. 

Luco, R. F., Pan, Q., Tominaga, K., Blencowe, B. J., Pereira-Smith, O. M., and Misteli, T. (2010). 
Regulation of alternative splicing by histone modifications. Science 327, 996–1000. 

Luders, J., Pyrowolakis, G., and Jentsch, S. (2003). The ubiquitin-like protein HUB1 forms SDS-resistant 
complexes with cellular proteins in the absence of ATP. EMBO reports 4, 1169–1174. 

Mabon, S. A., and Misteli, T. (2005). Differential recruitment of pre-mRNA splicing factors to alternatively 
spliced transcripts in vivo. Plos Biol 3, e374. 

Magnuson, V. L., Young, M., Schattenberg, D. G., Mancini, M. A., Chen, D. L., Steffensen, B., and 
Klebe, R. J. (1991). The alternative splicing of fibronectin pre-mRNA is altered during aging and in 
response to growth factors. J. Biol. Chem. 266, 14654–14662. 

Makarov, E. M., Makarova, O. V., Urlaub, H., Gentzel, M., Will, C. L., Wilm, M., and Lührmann, R. 
(2002). Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. 
Science 298, 2205–2208. 

Makarova, O. V., Makarov, E. M., and Lührmann, R. (2001). The 65 and 110 kDa SR-related proteins of 
the U4/U6.U5 tri-snRNP are essential for the assembly of mature spliceosomes. EMBO J. 20, 
2553–2563. 

Makarova, O. V., Makarov, E. M., Urlaub, H., Will, C. L., Gentzel, M., Wilm, M., and Lührmann, R. 
(2004). A subset of human 35S U5 proteins, including Prp19, function prior to catalytic step 1 of 
splicing. EMBO J. 23, 2381–2391. 



References 

 132

Malakhov, M. P., Kim, K. I., Malakhova, O. A., Jacobs, B. S., Borden, E. C., and Zhang, D.-E. (2003). 
High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal 
transduction. Journal of Biological Chemistry 278, 16608–16613. 

Maniatis, T., and Reed, R. (2002). An extensive network of coupling among gene expression machines. 
Nature 416, 499–506. 

Maniatis, T., Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular cloning : a laboratory 
manual. 

Manley, J. L., and Tacke, R. (1996). SR proteins and splicing control. Genes & Development 10, 1569–
1579. 

Marshall, N. F., Peng, J., Xie, Z., and Price, D. H. (1996). Control of RNA polymerase II elongation 
potential by a novel carboxyl-terminal domain kinase. J. Biol. Chem. 271, 27176–27183. 

Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., 
van der Spek, P. J., and Bootsma, D. (1994). Purification and cloning of a nucleotide excision 
repair complex involving the xeroderma pigmentosum group C protein and a human homologue of 
yeast RAD23. EMBO J. 13, 1831–1843. 

Mathew, R., Hartmuth, K., Möhlmann, S., Urlaub, H., Ficner, R., and Lührmann, R. (2008). 
Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6-U5 tri-snRNP 
into the spliceosome. Nat Struct Mol Biol 15, 435–443. 

Matlin, A. J. A., Clark, F. F., and Smith, C. W. J. C. (2005). Understanding alternative splicing: towards a 
cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398. 

Matsumoto, H., Shichijo, S., Kawano, K., Nishida, T., Sakamoto, M., and Itoh, K. (1998). Expression of 
the SART-1 Antigens in Uterine Cancers. Cancer Science 89, 1292–1295. 

Mayas, R. M., Maita, H., and Staley, J. P. (2006). Exon ligation is proofread by the DExD/H-box ATPase 
Prp22p. Nat Struct Mol Biol 13, 482–490. 

Mayas, R. M., Maita, H., Semlow, D. R., and Staley, J. P. (2010). Spliceosome discards intermediates 
via the DEAH box ATPase Prp43p. PNAS 107, 10020–10025. 

McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, S. D., 
Wickens, M., and Bentley, D. L. (1997). The C-terminal domain of RNA polymerase II couples 
mRNA processing to transcription. Nature 385, 357–361. 

McNally, T., Huang, Q., Janis, R., Liu, Z., Olejniczak, E., and Reilly, R. (2003). Structural analysis of 
UBL5, a novel ubiquitin-like modifier. Protein Sci. 12, 1562–1566. 

McRee, D. E. (1999). XtalView/Xfit--A versatile program for manipulating atomic coordinates and 
electron density. Journal of Structural Biology 125, 156–165. 

Mellon, I. (2005). Transcription-coupled repair: a complex affair. Mutat. Res. 577, 155–161. 

Millhouse, S., and Manley, J. L. (2005). The C-Terminal Domain of RNA Polymerase II Functions as a 
Phosphorylation-Dependent Splicing Activator in a Heterologous Protein. Molecular and Cellular 
Biology 25, 533–544. 

Mischo, H. E., Hemmerich, P., Grosse, F., and Zhang, S. (2005). Actinomycin D induces histone 
gamma-H2AX foci and complex formation of gamma-H2AX with Ku70 and nuclear DNA helicase II. 
J. Biol. Chem. 280, 9586–9594. 

Mishra, S. K., Ammon, T., Popowicz, G. M., Krajewski, M., Nagel, R. J., Ares, M., Holak, T. A., and 
Jentsch, S. (2011). Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative 
splicing. Nature 474, 173–178. 

 



References 

 133

Missra, A., and Gilmour, D. S. (2010). Interactions between DSIF (DRB sensitivity inducing factor), 
NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation 
complex. PNAS 107, 11301–11306. 

Misteli, T., Caceres, J. F., and Spector, D. L. (1997). The dynamics of a pre-mRNA splicing factor in 
living cells. Nature 387, 523–527. 

Moore, M. J., and Proudfoot, N. J. (2009). Pre-mRNA processing reaches back to transcription and 
ahead to translation. Cell 136, 688–700. 

Moreira, I. S., Fernandes, P. A., and Ramos, M. J. (2007). Hot spots-A review of the protein-protein 
interface determinant amino-acid residues. Proteins 68, 803–812. 

Morris, D. P., and Greenleaf, A. L. (2000). The splicing factor, Prp40, binds the phosphorylated 
carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 275, 39935–39943. 

Mroczek, S., and Dziembowski, A. (2013). U6 RNA biogenesis and disease association. WIREs RNA 4, 
581–592. 

Mukhopadhyay, D., and Dasso, M. (2007). Modification in reverse: the SUMO proteases. Trends in 
Biochemical Sciences 32, 286–295. 

Muro, A., Iaconcig, A., and Baralle, F. (1998). Regulation of the fibronectin EDA exon alternative 
splicing. Cooperative role of the exonic enhancer element and the 5 ' splicing site. FEBS Lett. 437, 
137–141. 

Müller, S., Hoege, C., Pyrowolakis, G., and Jentsch, S. (2001). SUMO, ubiquitin's mysterious cousin. 
Nat. Rev. Mol. Cell Biol. 2, 202–210. 

Naegeli, H., and Sugasawa, K. (2011). The xeroderma pigmentosum pathway: Decision tree analysis of 
DNA quality. DNA Repair 10, 673–683. 

Nagata, S. (2000). Apoptotic DNA fragmentation. Experimental Cell Research 256, 12–18. 

Nakajima, H., Toyoshima-Morimoto, F., Taniguchi, E., and Nishida, E. (2003). Identification of a 
consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate. J. 
Biol. Chem. 278, 25277–25280. 

Nakasone, M. A., Livnat-Levanon, N., Glickman, M. H., Cohen, R. E., and Fushman, D. (2013). Mixed-
Linkage Ubiquitin Chains Send Mixed Messages. Structure/Folding and Design 21, 727–740. 

Neumann, B., Held, M., Liebel, U., Erfle, H., Rogers, P., Pepperkok, R., and Ellenberg, J. (2006). High-
throughput RNAi screening by time-lapse imaging of live human cells. Nat. Methods 3, 385–390. 

Neumann, B., Walter, T., Hériché, J.-K., Bulkescher, J., Erfle, H., Conrad, C., Rogers, P., Poser, I., Held, 
M., Liebel, U., et al. (2010). Phenotypic profiling of the human genome by time-lapse microscopy 
reveals cell division genes. Nature 464, 721–727. 

Ngo, J. C. K., Chakrabarti, S., Ding, J.-H., Velazquez-Dones, A., Nolen, B., Aubol, B. E., Adams, J. A., 
Fu, X.-D., and Ghosh, G. (2005). Interplay between SRPK and Clk/Sty kinases in phosphorylation 
of the splicing factor ASF/SF2 is regulated by a docking motif in ASF/SF2. Molecular Cell 20, 77–
89. 

Nguyen, N. M., and Senior, R. M. (2006). Laminin isoforms and lung development: all isoforms are not 
equal. Developmental Biology 294, 271–279. 

Nilsen, T. W. (1994). RNA-RNA interactions in the spliceosome: unraveling the ties that bind. Cell 78, 1–
4. 

Nilsen, T. W. (2003). The spliceosome: the most complex macromolecular machine in the cell? 
Bioessays 25, 1147–1149. 



References 

 134

Noda, N. N., Ohsumi, Y., and Inagaki, F. (2010). Atg8-family interacting motif crucial for selective 
autophagy. FEBS Lett. 584, 1379–1385. 

Nouspikel, T. (2009). DNA repair in mammalian cells : Nucleotide excision repair: variations on 
versatility. Cell. Mol. Life Sci. 66, 994–1009. 

O'Donovan, A., Davies, A. A., Moggs, J. G., West, S. C., and Wood, R. D. (1994). XPG endonuclease 
makes the 3' incision in human DNA nucleotide excision repair. Nature 371, 432–435. 

O'Keefe, R. T., Mayeda, A., Sadowski, C. L., Krainer, A. R., and Spector, D. L. (1994). Disruption of pre-
mRNA splicing in vivo results in reorganization of splicing factors. J Cell Biol 124, 249–260. 

Ohi, M. D., Vander Kooi, C. W., Rosenberg, J. A., Chazin, W. J., and Gould, K. L. (2003). Structural 
insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Biol 10, 250–255. 

Okazaki, T., Kato, Y., Mochizuki, T., Tashima, M., Sawada, H., and Uchino, H. (1988). Staurosporine, a 
novel protein kinase inhibitor, enhances HL-60-cell differentiation induced by various compounds. 
Exp. Hematol. 16, 42–48. 

Pan, Q., Shai, O., Lee, L. J., Frey, B. J., and Blencowe, B. J. (2008). Deep surveying of alternative 
splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 
1413–1415. 

Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J.-A., Outzen, H., Overvatn, A., Bjorkoy, G., 
and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of 
ubiquitinated protein aggregates by autophagy. Journal of Biological Chemistry 282, 24131–24145. 

Paronetto, M. P., Miñana, B., and Valcárcel, J. (2011). The Ewing Sarcoma Protein Regulates DNA 
Damage-Induced Alternative Splicing. Molecular Cell 43, 353–368. 

Pedrioli, P. G. A., Leidel, S., and Hofmann, K. (2008). Urm1 at the crossroad of modifications. “Protein 
Modifications: Beyond the Usual Suspects” Review Series. EMBO reports 9, 1196–1202. 

Perry, R. P., and Kelley, D. E. (1970). Inhibition of RNA synthesis by actinomycin D: Characteristic 
dose-response of different RNA species. J. Cell. Physiol. 76, 127–139. 

Pesin, J. A., and Orr-Weaver, T. L. (2008). Regulation of APC/C activators in mitosis and meiosis. Annu. 
Rev. Cell Dev. Biol. 24, 475–499. 

Peters, J. M. (1994). Proteasomes: protein degradation machines of the cell. Trends in Biochemical 
Sciences 19, 377–382. 

Petroski, M. D., Salvesen, G. S., and Wolf, D. A. (2011). Urm1 couples sulfur transfer to ubiquitin-like 
protein function in oxidative stress. PNAS 108, 1749–1750. 

Philipps, D., Celotto, A. M., Wang, Q. Q., Tarng, R. S., and Graveley, B. R. (2003). Arginine/serine 
repeats are sufficient to constitute a splicing activation domain. Nucleic Acids Research 31, 6502–
6508. 

Pickart, C. M., and Rose, I. A. (1985). Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-
terminal amides. J. Biol. Chem. 260, 7903–7910. 

Polo, S. E., Blackford, A. N., Chapman, J. R., Baskcomb, L., Gravel, S., Rusch, A., Thomas, A., 
Blundred, R., Smith, P., Kzhyshkowska, J., et al. (2012). Regulation of DNA-End Resection by 
hnRNPU-like Proteins Promotes DNA Double-Strand Break Signaling and Repair. Molecular Cell 
45, 505–516. 

Pont, A. R., Sadri, N., Hsiao, S. J., Smith, S., and Schneider, R. J. (2012). mRNA Decay Factor AUF1 
Maintains Normal Aging, Telomere Maintenance, and Suppression of Senescence by Activation of 
Telomerase Transcription. Molecular Cell. 

Porter, A. C. (2008). Preventing DNA over-replication: a Cdk perspective. Cell Div 3, 3. 



References 

 135

Price, D. H. (2000). P-TEFb, a Cyclin-Dependent Kinase Controlling Elongation by RNA Polymerase II. 
Molecular and Cellular Biology 20, 2629–2634. 

Proudfoot, N. J. (2011). Ending the message: poly(A) signals then and now. Genes & Development 25, 
1770–1782. 

Rabut, G., and Peter, M. (2008). Function and regulation of protein neddylation. “Protein modifications: 
beyond the usual suspects” review series. EMBO reports 9, 969–976. 

Ram, O., and Ast, G. (2007). SR proteins: a foot on the exon before the transition from intron to exon 
definition. Trends Genet. 23, 5–7. 

Ramelot, T. A., Cort, J. R., Yee, A. A., Semesi, A., Edwards, A. M., Arrowsmith, C. H., and Kennedy, M. 
A. (2003). Solution structure of the yeast ubiquitin-like modifier protein Hub1. J. Struct. Funct. 
Genomics 4, 25–30. 

Rasche, A., and Herwig, R. (2010). ARH: predicting splice variants from genome-wide data with 
modified entropy. Bioinformatics 26, 84–90. 

Reed, R., and Hurt, E. (2002). A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 
108, 523–531. 

Reinhardt, H. C., and Schumacher, B. (2012). The p53 network: cellular and systemic DNA damage 
responses in aging and cancer. Trends Genet. 28, 128–136. 

Renton, A., Llanos, S., and Lu, X. (2003). Hypoxia induces p53 through a pathway distinct from most 
DNA-damaging and stress-inducing agents. Carcinogenesis 24, 1177–1182. 

Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S., and Khvorova, A. (2004). Rational 
siRNA design for RNA interference. Nat Biotechnol 22, 326–330. 

Riedl, S. J., and Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nat. 
Rev. Mol. Cell Biol. 5, 897–907. 

Riffell, J. L., Zimmerman, C., Khong, A., McHardy, L. M., and Roberge, M. (2009). Effects of chemical 
manipulation of mitotic arrest and slippage on cancer cell survival and proliferation. Cell Cycle 8, 
3025–3038. 

Robberson, B. L., Cote, G. J., and Berget, S. M. (1990). Exon definition may facilitate splice site 
selection in RNAs with multiple exons. Molecular and Cellular Biology 10, 84–94. 

Roca, X., Sachidanandam, R., and Krainer, A. R. (2005). Determinants of the inherent strength of 
human 5' splice sites. RNA 11, 683–698. 

Rudner, D. Z., Breger, K. S., Kanaar, R., Adams, M. D., and Rio, D. C. (1998). RNA binding activity of 
heterodimeric splicing factor U2AF: at least one RS domain is required for high-affinity binding. 
Molecular and Cellular Biology 18, 4004–4011. 

Ruggero, D. D., Wang, Z. G. Z., and Pandolfi, P. P. P. (2000). The puzzling multiple lives of PML and its 
role in the genesis of cancer. Bioessays 22, 827–835. 

Ruskin, B., Krainer, A. R., Maniatis, T., and Green, M. R. (1984). Excision of an intact intron as a novel 
lariat structure during pre-mRNA splicing in vitro. Cell 38, 317–331. 

Sahi, C., Lee, T., Inada, M., Pleiss, J. A., and Craig, E. A. (2010). Cwc23, an essential J protein critical 
for pre-mRNA splicing with a dispensable J domain. Molecular and Cellular Biology 30, 33–42. 

Saitoh, N., Spahr, C. S., Patterson, S. D., Bubulya, P., Neuwald, A. F., and Spector, D. L. (2004). 
Proteomic analysis of interchromatin granule clusters. Mol. Biol. Cell 15, 3876–3890. 

Sakharkar, M. K., Chow, V. T. K., and Kangueane, P. (2004). Distributions of exons and introns in the 
human genome. In Silico Biol 4, 387–393. 



References 

 136

Sanford, J., Gray, N., Beckmann, K., and Caceres, J. (2004). A novel role for shuttling SR proteins in 
mRNA translation. Genes & Development 18, 755–768. 

Schellenberg, M. J., Ritchie, D. B., and MacMillan, A. M. (2008). Pre-mRNA splicing: a complex picture 
in higher definition. Trends in Biochemical Sciences 33, 243–246. 

Schmidt-Kastner, R., Yamamoto, H., Hamasaki, D., Yamamoto, H., Parel, J.-M., Schmitz, C., Dorey, C. 
K., Blanks, J. C., and Preising, M. N. (2008). Hypoxia-regulated components of the U4/U6.U5 tri-
small nuclear riboprotein complex: possible role in autosomal dominant retinitis pigmentosa. Mol. 
Vis. 14, 125–135. 

Schneider, C., Will, C. L., Makarova, O. V., Makarov, E. M., and Lührmann, R. (2002). Human U4/U6.U5 
and U4atac/U6atac.U5 tri-snRNPs exhibit similar protein compositions. Molecular and Cellular 
Biology 22, 3219–3229. 

Schneider, M., Will, C. L., Anokhina, M., Tazi, J., Urlaub, H., and Lührmann, R. (2010). Exon Definition 
Complexes Contain the Tri-snRNP and Can Be Directly Converted into B-like Precatalytic Splicing 
Complexes. Molecular Cell 38, 223–235. 

Schulz, S., Chachami, G., Kozaczkiewicz, L., Winter, U., Stankovic-Valentin, N., Haas, P., Hofmann, K., 
Urlaub, H., Ovaa, H., Wittbrodt, J., et al. (2012). Ubiquitin-specific protease-like 1 (USPL1) is a 
SUMO isopeptidase with essential, non-catalytic functions. EMBO reports 13, 930–938. 

Semlow, D. R., and Staley, J. P. (2012). Staying on message: ensuring fidelity in pre-mRNA splicing. 
Trends in Biochemical Sciences 37, 263–273. 

Seraphin, B. (1995). Sm and Sm-like proteins belong to a large family: identification of proteins of the U6 
as well as the U1, U2, U4 and U5 snRNPs. EMBO J. 14, 2089–2098. 

Sgorbissa, A., and Brancolini, C. (2012). Cytokine & Growth Factor Reviews. Cytokine and Growth 
Factor Reviews 23, 307–314. 

Shapiro, M. B., and Senapathy, P. (1987). RNA splice junctions of different classes of eukaryotes: 
sequence statistics and functional implications in gene expression. Nucleic Acids Research 15, 
7155–7174. 

Sharma, A., Markey, M., Torres-Muñoz, K., Varia, S., Kadakia, M., Bubulya, A., and Bubulya, P. A. 
(2011). Son maintains accurate splicing for a subset of human pre-mRNAs. Journal of Cell Science 
124, 4286–4298. 

Sharma, S., Falick, A. M., and Black, D. L. (2005). Polypyrimidine tract binding protein blocks the 5' 
splice site-dependent assembly of U2AF and the prespliceosomal E complex. Molecular Cell 19, 
485–496. 

Shen, H., and Green, M. R. (2006). RS domains contact splicing signals and promote splicing by a 
common mechanism in yeast through humans. Genes & Development 20, 1755–1765. 

Shen, H., Kan, J. L. C., and Green, M. R. (2004). Arginine-serine-rich domains bound at splicing 
enhancers contact the branchpoint to promote prespliceosome assembly. Molecular Cell 13, 367–
376.  

Shepard, P. J., and Hertel, K. J. (2009). The SR protein family. Genome Biol. 10, 242. 

Shkreta, L., Michelle, L., Toutant, J., Tremblay, M. L., and Chabot, B. (2011). The DNA damage 
response pathway regulates the alternative splicing of the apoptotic mediator Bcl-x. J. Biol. Chem. 
286, 331–340. 

Shpilka, T., Weidberg, H., Pietrokovski, S., and Elazar, Z. (2011). Atg8: an autophagy-related ubiquitin-
like protein family. Genome Biol. 12, 226. 

Singh, G., and Cooper, T. (2006). Minigene reporter for identification and analysis of cis elements and 
trans factors affecting pre-mRNA splicing. Biotech. 41, 177–181. 



References 

 137

Sleeman, J. E., and Lamond, A. I. (1999). Newly assembled snRNPs associate with coiled bodies 
before speckles, suggesting a nuclear snRNP maturation pathway. Curr. Biol. 9, 1065–1074. 

Sleeman, J., Ajuh, P., and Lamond, A. (2001). snRNP protein expression enhances the formation of 
Cajal bodies containing p80-coilin and SMN. Journal of Cell Science 114, 4407–4419. 

Sobell, H. M. (1985). Actinomycin and DNA transcription. Proc. Natl. Acad. Sci. U.S.A. 82, 5328–5331. 

Song, E. J., Werner, S. L., Neubauer, J., Stegmeier, F., Aspden, J., Rio, D., Harper, J. W., Elledge, S. J., 
Kirschner, M. W., and Rape, M. (2010). The Prp19 complex and the Usp4Sart3 deubiquitinating 
enzyme control reversible ubiquitination at the spliceosome. Genes & Development 24, 1434–
1447. 

Song, J., Zhang, Z. M., Hu, W. D., and Chen, Y. (2005). Small ubiquitin-like modifier (SUMO) recognition 
of a SUMO binding motif - A reversal of the bound orientation. J. Biol. Chem. 280, 40122–40129. 

Spector, D. L. (2003). The dynamics of chromosome organization and gene regulation. Annu. Rev. 
Biochem. 72, 573–608. 

Spector, D. L., and Lamond, A. I. (2011). Nuclear Speckles. Cold Spring Harbor Perspectives in Biology 
3, a000646–a000646. 

Spector, D. L., Fu, X. D., and Maniatis, T. (1991). Associations between distinct pre-mRNA splicing 
components and the cell nucleus. EMBO J. 10, 3467–3481. 

Spenlé, C., Simon-Assmann, P., Orend, G., and Miner, J. H. (2013). Laminin α5 guides tissue patterning 
and organogenesis. Cell Adh Migr 7, 90–100. 

Stark, J., Bazett-Joness, D., Herfort, M., and Roth, M. (1998). SR proteins are sufficient for exon 
bridging across an intron. Proc. Natl. Acad. Sci. U.S.A. 95, 2163–2168. 

Stirling, P. C., Chan, Y. A., Minaker, S. W., Aristizabal, M. J., Barrett, I., Sipahimalani, P., Kobor, M. S., 
and Hieter, P. (2012). R-loop-mediated genome instability in mRNA cleavage and polyadenylation 
mutants. Genes & Development 26, 163–175. 

Stojdl, D. F., and Bell, J. C. (1999). SR protein kinases: the splice of life. Biochem. Cell Biol. 77, 293–
298. 

Stoss, O., Stoilov, P., Hartmann, A. M., Nayler, O., and Stamm, S. (1999). The in vivo minigene 
approach to analyze tissue-specific splicing. Brain Res. Brain Res. Protoc. 4, 383–394. 

Strasser, K., Masuda, S., Mason, P., Pfannstiel, J., Oppizzi, M., Rodriguez-Navarro, S., Rondon, A., 
Aguilera, A., Struhl, K., Reed, R., et al. (2002). TREX is a conserved complex coupling transcription 
with messenger RNA export. Nature 417, 304–308. 

Strous, G. J., van Kerkhof, P., Govers, R., Ciechanover, A., and Schwartz, A. L. (1996). The ubiquitin 
conjugation system is required for ligand-induced endocytosis and degradation of the growth 
hormone receptor. EMBO J. 15, 3806–3812. 

Struhl, K. (1989). Helix-turn-helix, zinc-finger, and leucine-zipper motifs for eukaryotic transcriptional 
regulatory proteins. Trends in Biochemical Sciences 14, 137–140. 

Stutz, F., Bachi, A., Doerks, T., Braun, I. C., Seraphin, B., Wilm, M., Bork, P., and Izaurralde, E. (2000). 
REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and 
participates in mRNA nuclear export. RNA 6, 638–650. 

Sugasawa, K., Akagi, J.-I., Nishi, R., Iwai, S., and Hanaoka, F. (2009). Two-Step Recognition of DNA 
Damage for Mammalian Nucleotide Excision Repair: Directional Binding of the XPC Complex and 
DNA Strand Scanning. Molecular Cell 36, 642–653. 

 



References 

 138

Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G., Mori, T., Iwai, S., Tanaka, K., 
Tanaka, K., et al. (2005). UV-Induced Ubiquitylation of XPC Protein Mediated by UV-DDB-Ubiquitin 
Ligase Complex. Cell 121, 387–400. 

Švéda, M., Častorálová, M., Lipov, J., Ruml, T., and Knejzlík, Z. (2013). Human UBL5 protein interacts 
with coilin and meets the Cajal bodies. Biochemical and Biophysical Research Communications 
436, 240–245. 

Takaishi, Y. Y., Yoshida, Y. Y., Orima, H. H., 6 (2008). Expression of SART-1 mRNA in canine 
squamous cell carcinomas. J Vet Med Sci 70, 1333–1335. 

Tanackovic, G., and Krämer, A. (2005). Human splicing factor SF3a, but not SF1, is essential for pre-
mRNA splicing in vivo. Mol. Biol. Cell 16, 1366–1377. 

Tang, Z., Mandel, L., Yean, S., Lin, C., Chen, T., Yanagida, M., and Lin, R. (2003). The Kic1 kinase of 
Schizosaccharomyces pombe is a CLK/STY orthologue that regulates cell-cell separation. 
Experimental Cell Research 283, 101–115. 

Tang, Z., Yanagida, M., and Lin, R. J. (1998). Fission yeast mitotic regulator Dsk1 is an SR protein-
specific kinase. J. Biol. Chem. 273, 5963–5969. 

Tarn, W. Y., and Steitz, J. A. (1994). SR proteins can compensate for the loss of U1 snRNP functions in 
vitro. Genes & Development 8, 2704–2717. 

Tatham, M. H. M., Geoffroy, M.-C. M., Shen, L. L., Plechanovova, A. A., Hattersley, N. N., Jaffray, E. G. 
E., Palvimo, J. J. J., and Hay, R. T. R. (2008). RNF4 is a poly-SUMO-specific E3 ubiquitin ligase 
required for arsenic-induced PML degradation. Nat Cell Biol 10, 538–546. 

Taylor, W. R., and Stark, G. R. (2001). Regulation of the G2/M transition by p53. Oncogene 20, 1803–
1815. 

Tokunaga, K., and Tani, T. (2008). Monitoring mRNA export. Curr Protoc Cell Biol Chapter 22, Unit 
22.13. 

Tokunaga, K., Shibuya, T., Ishihama, Y., Tadakuma, H., Ide, M., Yoshida, M., Funatsu, T., Ohshima, Y., 
and Tani, T. (2006). Nucleocytoplasmic transport of fluorescent mRNA in living mammalian cells: 
nuclear mRNA export is coupled to ongoing gene transcription. Genes Cells 11, 305–317. 

Tripathi, V., Ellis, J. D., Shen, Z., Song, D. Y., Pan, Q., Watt, A. T., Freier, S. M., Bennett, C. F., Sharma, 
A., Bubulya, P. A., et al. (2010). The Nuclear-Retained Noncoding RNA MALAT1 Regulates 
Alternative Splicing by Modulating SR Splicing Factor Phosphorylation. Molecular Cell 39, 925–
938. 

Tripathi, V., Song, D. Y., Zong, X., Shevtsov, S. P., Hearn, S., Fu, X.-D., Dundr, M., and Prasanth, K. V. 
(2012). SRSF1 regulates the assembly of pre-mRNA processing factors in nuclear speckles. Mol. 
Biol. Cell 23, 3694–3706. 

Urlaub, H., Raker, V. A., Kostka, S., and Lührmann, R. (2001). Sm protein-Sm site RNA interactions 
within the inner ring of the spliceosomal snRNP core structure. EMBO J. 20, 187–196. 

van der Veen, A. G., and Ploegh, H. L. (2012). Ubiquitin-like proteins. Annu. Rev. Biochem. 81, 323–
357. 

van der Veen, A. G., Schorpp, K., Schlieker, C., Buti, L., Damon, J. R., Spooner, E., Ploegh, H. L., and 
Jentsch, S. (2011). Role of the ubiquitin-like protein Urm1 as a noncanonical lysine-directed protein 
modifier. PNAS 108, 1763–1770. 

Van Koningsbruggen, S., Dirks, R. W., Mommaas, A. M., Onderwater, J. J., Deidda, G., Padberg, G. W., 
Frants, R. R., and van der Maarel, S. M. (2004). FRG1P is localised in the nucleolus, Cajal bodies, 
and speckles. Journal of medical genetics 41, e46–e46. 

 



References 

 139

Vander Kooi, C. W., Ren, L., Xu, P., Ohi, M. D., Gould, K. L., and Chazin, W. J. (2010). The Prp19 
WD40 Domain Contains a Conserved Protein Interaction Region Essential for Its Function. 
Structure 18, 584–593. 

Venables, J. P. (2004). Aberrant and alternative splicing in cancer. Cancer Research 64, 7647–7654. 

Vertegaal, A. C. O., Andersen, J. S., Ogg, S. C., Hay, R. T., Mann, M., and Lamond, A. I. (2006). 
Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative 
proteomics. Mol. Cell Proteomics 5, 2298–2310. 

Visintin, R., and Amon, A. (2000). The nucleolus: the magician's hat for cell cycle tricks. Curr. Opin. Cell 
Biol. 12, 372–377. 

Vogelstein, B., Lane, D., and Levine, A. J. (2000). Surfing the p53 network. Nature 408, 307–310. 

Wahl, M. C., Will, C. L., and Lührmann, R. (2009). The Spliceosome: Design Principles of a Dynamic 
RNP Machine. Cell 136, 701–718. 

Wang, F., Liu, M., Qiu, R., and Ji, C. (2011). The dual role of ubiquitin-like protein Urm1 as a protein 
modifier and sulfur carrier. Protein Cell 2, 612–619. 

Wang, Q. E. (2005). DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV 
irradiation. Nucleic Acids Research 33, 4023–4034. 

Wang, Z., and Burge, C. B. (2008). Splicing regulation: from a parts list of regulatory elements to an 
integrated splicing code. RNA 14, 802–813. 

Waters, S., Marchbank, K., Solomon, E., Whitehouse, C., and Gautel, M. (2009). Interactions with LC3 
and polyubiquitin chains link nbr1 to autophagic protein turnover. FEBS Lett. 583, 1846–1852. 

Webb, C. J., Romfo, C. M., van Heeckeren, W. J., and Wise, J. A. (2005). Exonic splicing enhancers in 
fission yeast: functional conservation demonstrates an early evolutionary origin. Genes & 
Development 19, 242–254. 

Weber, G., Cristão, V. F., de L Alves, F., Santos, K. F., Holton, N., Rappsilber, J., Beggs, J. D., and 
Wahl, M. C. (2011). Mechanism for Aar2p function as a U5 snRNP assembly factor. Genes & 
Development 25, 1601–1612. 

Wei, X., Somanathan, S., Samarabandu, J., and Berezney, R. (1999). Three-dimensional visualization 
of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol 146, 
543–558. 

Welchman, R. L., Gordon, C., and Mayer, R. J. (2005). Ubiquitin and ubiquitin-like proteins as 
multifunctional signals. Nat. Rev. Mol. Cell Biol. 6, 599–609. 

White, E. S., and Muro, A. F. (2011). Fibronectin splice variants: understanding their multiple roles in 
health and disease using engineered mouse models. IUBMB Life (International Union of 
Biochemistry and Molecular Biology: Life) 63, 538–546. 

Wilkinson, C., Dittmar, G., Ohi, M., Uetz, P., Jones, N., and Finley, D. (2004). Ubiquitin-like protein hub1 
is required for pre-mRNA splicing and localization of an essential splicing factor in fission yeast. 
Curr. Biol. 14, 2283–2288. 

Wilkinson, K. D., Urban, M. K., and Haas, A. L. (1980). Ubiquitin is the ATP-dependent proteolysis factor 
I of rabbit reticulocytes. Journal of Biological Chemistry 255, 7529–7532. 

Will, C. L., and Lührmann, R. (2001). Spliceosomal UsnRNP biogenesis, structure and function. Curr. 
Opin. Cell Biol. 13, 290–301. 

Will, C. L., and Lührmann, R. (2005). Splicing of a rare class of introns by the U12-dependent 
spliceosome. Biological Chemistry 386, 713–724. 



References 

 140

Witkowski, J. A. (1988). The discovery of “split” genes: a scientific revolution. Trends in Biochemical 
Sciences 13, 110–113. 

Wittschieben, B. Ø., Iwai, S., and Wood, R. D. (2005). DDB1-DDB2 (xeroderma pigmentosum group E) 
protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic 
sites, and compound lesions in DNA. J. Biol. Chem. 280, 39982–39989. 

Wlodarski, T., and Zagrovic, B. (2009). Conformational selection and induced fit mechanism underlie 
specificity in noncovalent interactions with ubiquitin. Proceedings of the National Academy of 
Sciences 106, 19346–19351. 

Wood, L. W., and Shillitoe, E. J. (2011). Effect of a caspase inhibitor, zVADfmk, on the inhibition of 
breast cancer cells by herpes simplex virus type 1. Cancer Gene Ther. 18, 685–694. 

Wood, V. V., Gwilliam, R. R., Rajandream, M.-A. M., Lyne, M. M., Lyne, R. R., Stewart, A. A., Sgouros, 
J. J., Peat, N. N., Hayles, J. J., Baker, S. S., et al. (2002). The genome sequence of 
Schizosaccharomyces pombe. Nature 415, 871–880. 

Wu, J. Y., and Maniatis, T. (1993). Specific interactions between proteins implicated in splice site 
selection and regulated alternative splicing. Cell 75, 1061–1070. 

Xiao, R., Sun, Y., Ding, J.-H., Lin, S., Rose, D. W., Rosenfeld, M. G., Fu, X.-D., and Li, X. (2007). 
Splicing regulator SC35 is essential for genomic stability and cell proliferation during mammalian 
organogenesis. Molecular and Cellular Biology 27, 5393–5402. 

Xie, S. Q., Martin, S., Guillot, P. V., Bentley, D. L., and Pombo, A. (2006). Splicing speckles are not 
reservoirs of RNA polymerase II, but contain an inactive form, phosphorylated on serine2 residues 
of the C-terminal domain. Mol. Biol. Cell 17, 1723–1733. 

Xing, Y., and Lee, C. (2006). Alternative splicing and RNA selection pressure--evolutionary 
consequences for eukaryotic genomes. Nat. Rev. Genet. 7, 499–509. 

Xu, P., and Peng, J. (2006). Dissecting the ubiquitin pathway by mass spectrometry. Biochim. Biophys. 
Acta 1764, 1940–1947. 

Xu, Y.-Z., and Query, C. C. (2007). Competition between the ATPase Prp5 and branch region-U2 
snRNA pairing modulates the fidelity of spliceosome assembly. Molecular Cell 28, 838–849. 

Yamazaki, T., Fujiwara, N., Yukinaga, H., Ebisuya, M., Shiki, T., Kurihara, T., Kioka, N., Kambe, T., 
Nagao, M., Nishida, E., et al. (2010). The closely related RNA helicases, UAP56 and URH49, 
preferentially form distinct mRNA export machineries and coordinately regulate mitotic progression. 
Mol. Biol. Cell 21, 2953–2965. 

Yang, W., Guastella, J., Huang, J.-C., Wang, Y., Zhang, L., Xue, D., Tran, M., Woodward, R., 
Kasibhatla, S., Tseng, B., et al. (2003). MX1013, a dipeptide caspase inhibitor with potent in vivo 
antiapoptotic activity. Br. J. Pharmacol. 140, 402–412. 

Yankulov, K., Yamashita, K., Roy, R., Egly, J. M., and Bentley, D. L. (1995). The transcriptional 
elongation inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits transcription factor 
IIH-associated protein kinase. J. Biol. Chem. 270, 23922–23925. 

Yashiroda, H., and Tanaka, K. (2004). Hub1 is an essential ubiquitin-like protein without functioning as a 
typical modifier in fission yeast. Genes Cells 9, 1189–1197. 

Yi, C., and He, C. (2013). DNA repair by reversal of DNA damage. Cold Spring Harbor Perspectives in 
Biology 5, a012575. 

Yoshida, S., and Tanaka, R. (2004). Generation of a human leukocyte antigen-A24 restricted antitumor 
cell with the use of SART-1 peptide and dendritic cells in patients with malignant brain tumors. 
Journal of Laboratory and Clinical Medicine 144, 201–207. 

 



References 

 141

Zandomeni, R., Mittleman, B., Bunick, D., Ackerman, S., and Weinmann, R. (1982). Mechanism of 
action of dichloro-beta-D-ribofuranosylbenzimidazole: effect on in vitro transcription. Proc. Natl. 
Acad. Sci. U.S.A. 79, 3167–3170. 

Zhang, D., and Zhang, D.-E. (2011). Interferon-Stimulated Gene 15 and the Protein ISGylation System. 
Journal of Interferon & Cytokine Research 31, 119–130. 

Zhou, Z., and Fu, X.-D. (2013). Regulation of splicing by SR proteins and SR protein-specific kinases. 
Chromosoma 122, 191–207. 

Zhu, Q., Wani, G., Yao, J., Patnaik, S., Wang, Q. E., El-Mahdy, M. A., Praetorius-Ibba, M., and Wani, A. 
A. (2007). The ubiquitin-proteasome system regulates p53-mediated transcription at p21waf1 
promoter. Oncogene 26, 4199–4208. 

Ziolkowska, A., Carraro, G., Rebuffat, P., Spinazzi, R., Nussdorfer, G. G., Rucinski, M., and 
Malendowicz, L. K. (2004). Beacon[47-73] inhibits glucocorticoid secretion and growth of cultured 
rat and human adrenocortical cells. Int. J. Mol. Med. 14, 457–461. 

 



Abbreviations 

 142

9 Abbreviations 

APS ammonium peroxodisulphate 
ATP adenosine triphosphate 
BES N,N-Bis(2-hydroxyethyl)-2-

aminoethansulfonate 
bp base pairs 
BSA bovine serum albumin 
BPS branch point sequence 
C- carboxy- 
Cdc cell division cycle 
CDK cell cycle dependent kinase 
cDNA complementary DNA 
Cy3 carbocyanin 3 
Da Dalton 
DAPI 4',6-diamidino-2-phenylindole 
DExD/H RNA helicase consensus motif 
DMEM Dulbecco modified Eagle's minimal 

essential medium  
DMSO dimethylsulfoxide 
DNA deoxyribonucleic acid 
DNase deoxyribonuclease 
dNTPs deoxyribonucleotides 
ds double-stranded 
DTT dithiothreitol 
ECL enhanced chemiluminescence 
EDTA ethylenediamintetraacetat 
EGFP enhanced GFP  
FACS fluorescence activated cell sorter 
FCS fetal calf serum 
FITC fluorescein isothiocyanate 
FPLC fast protein liquid chromato-graphy 
GFP green fluorescent protein 
GST glutathione S-transferase 
GTP guanosine triphosphate 
h hour 
H histone 
HBS HEPES buffered saline 
HEPES N-(2-hydroxyethyl)-piperazin-N’-(2-

ethansulfonate) 
Hn heterogenous nuclear 
IAP inhibitor of apoptosis protein 
IgG immunoglobulin G 
IκB inhibitor of nuclear factor κB  
IP immunoprecipitation 
IPTG isopropyl-ß-D-thiogalacto-

pyranoside 
kb kilobases 
kDa kilo Dalton 
M molar 
mAb monoclonal antibody 
min minute 
MOPS 3-(N-morpholino)-propane 

sulfonate 
mRNA messenger RNA 
MT microtubule 

3mG 2,2,7-trimethylguanosine 
N- amino- 
NFκB nuclear factor κB   
Ni-NTA nickel-nitrilo triacetate 
NLS nuclear-localization sequence 
NP-40 Nonidet P-40 
nt nucleotides 
NTP nucleoside triphosphate 
OD optical density 
Oligo oligonucleotide 
ORF  open reading frame 
pAb  polyclonal antibody 
PAGE  Polyacrylamide gel  
  electrophoresis 
PBS  phospate buffered saline 
PCR  polymerase chain reaction 
PEG  polyethylene glycol 
PIPES piperazin-N,N’-bis(2-

ethansulfonsäure) 
Plk  Polo-like kinase 
PMSF  phenylmethyl-sulphonylfluoride 
PPT  polypyrimidine track 
PRP  pre-mRNA processing 
R  Purine base 
RNA  ribonucleic acid 
RNase  ribonuclease 
RNAi  RNA-Interference 
RRM  RNA recognition motif 
RT  room temperature  
RT-PCR reverse transcription PCR 
shRNA  short hairpin RNA 
s.d.  standard deviation 
SDS  sodium dodecylsulfate 
siRNA  small interfering RNA 
SR  serine-arginine rich 
ss  splice site 
TBS  Tris-buffered saline 
TCA  trichloroactetic acid 
TE  Tris-EDTA buffer 
Tris Tris-(hydroxymethyl)-

aminomethan 
TRITC tetramethylrhodamine 

isothiocyanate 
U snRNA uridine-rich small nuclear RNA 
U snRNP uridine-rich small nuclear 

ribonucleoprotein 
V  Volts 
W  Watts 
WB  Western blot/Immunoblot 
WT  wild type 
W/v  weight per volume 
Y Pyrimidine base 
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12 Appendix 

12.1 Affymetrix Human Exon 1.0 ST microarray data 

Summary of exon-specific microarray data after CEL expression profile analysis via Affymetrix 
Powertools. Relative and absolute expression profiles of individual probes after Hub1 or control 
knockdown in U2OS cells were processed using the ARH method (Rasche and Herwig, 2010), resulting 
in metascores based on Splice index (SI), p-value (P, log10) and arh-value (arh, > 0.03 significant). The 
metascores are ranked according to unfiltered (0), filtered for cross-hybridization and expression 
constrains (1) and intensity > mean intensity filter (2).   
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12.2 Microarray mRNA expression analysis  

The table summarizes the 100 most strongly affected transcripts upon Hub1 knockdown in U2OS cells 
compared to control RNAi treated cells (performed in biological triplicates). The absolute fold change of 
gene expression is shown for 31 up (green) and 69 down-regulated mRNAs. 
  

Probe Id p-Value log (fold_change) fold_change

2502842 0.0327 -1.7533 -3.3714

3375999 0.0097 -1.7567 -3.3792

3571667 0.0020 -1.7633 -3.3948

3126368 0.0039 -1.7633 -3.3948

2333136 0.0185 -1.7667 -3.4027

3758928 0.0032 -1.7767 -3.4263

2604998 0.0087 -1.7767 -3.4263

3629103 0.0015 -1.7867 -3.4502

3749528 0.0010 -1.7900 -3.4581

3573933 0.0011 -1.7933 -3.4661

3900091 0.0154 -1.7933 -3.4661

3376556 0.0035 -1.8000 -3.4822

2360700 0.0070 -1.8033 -3.4903

3703112 0.0111 -1.8033 -3.4903

3281703 0.0156 -1.8100 -3.5064

3933923 0.0232 -1.8133 -3.5145
2409069 0.0000 -1.8167 -3.5227

Probe Id p-Value log (fold_change) fold_change 2413153 0.0019 -1.8200 -3.5308

2731332 0.0163 3.4167 10.6787 3995392 0.0009 -1.8300 -3.5554

3143112 0.0029 2.9533 7.7454 3175971 0.0137 -1.8367 -3.5718

2582124 0.0089 2.8400 7.1602 4022370 0.0052 -1.8367 -3.5718

2530713 0.0060 2.7533 6.7427 3649811 0.0131 -1.8400 -3.5801

2844293 0.0497 2.5000 5.6569 3861786 0.0154 -1.8400 -3.5801

3740628 0.0223 2.4700 5.5404 3959613 0.0161 -1.8400 -3.5801

3959688 0.0033 2.3900 5.2416 3445123 0.0007 -1.8433 -3.5884

2565349 0.0234 2.3267 5.0164 3551728 0.0088 -1.8433 -3.5884

3740574 0.0072 2.2367 4.7131 2796066 0.0198 -1.8533 -3.6133

3470340 0.0115 2.2167 4.6482 3936913 0.0007 -1.8567 -3.6217

3959700 0.0261 2.1700 4.5002 3607510 0.0467 -1.8700 -3.6553

3740610 0.0021 2.1567 4.4588 3706219 0.0281 -1.8700 -3.6553
3959684 0.0099 2.1333 4.3873 2474240 0.0081 -1.8733 -3.6638

3958389 0.0084 2.1267 4.3671 3850660 0.0025 -1.8800 -3.6808

3551788 0.0389 2.0900 4.2575 3873115 0.0272 -1.8933 -3.7149

3740576 0.0174 2.0700 4.1989 2790486 0.0169 -1.8933 -3.7149

3740548 0.0124 2.0467 4.1315 3601955 0.0011 -1.9000 -3.7321

3958393 0.0008 1.9967 3.9908 2427007 0.0026 -1.9267 -3.8018

3275506 0.0097 1.9700 3.9177 3947227 0.0171 -1.9300 -3.8106

7385547 0.0080 1.9467 3.8548 3331903 0.0160 -1.9300 -3.8106

2406293 0.0026 1.9400 3.8371 2536303 0.0008 -1.9367 -3.8282

3181976 0.0123 1.9067 3.7494 3619945 0.0004 -1.9400 -3.8371

2565203 0.0289 1.8467 3.5967 2776088 0.0100 -1.9400 -3.8371

3740550 0.0142 1.8333 3.5636 2939232 0.0163 -1.9400 -3.8371

2700365 0.0324 1.8167 3.5227 3435362 0.0224 -1.9467 -3.8548

2949093 0.0387 1.8100 3.5064 3944922 0.0004 -1.9567 -3.8816

3740580 0.0181 1.8067 3.4983 2884623 0.0106 -1.9667 -3.9086

3275504 0.0290 1.8000 3.4822 3108526 0.0002 -1.9967 -3.9908

3212366 0.0007 1.7867 3.4502 2873785 0.0322 -2.0400 -4.1125

2844309 0.0453 1.7767 3.4263 3719210 0.0003 -2.0433 -4.1220
3095313 0.0117 1.7700 3.4105 3798829 0.0048 -2.0633 -4.1795

2485636 0.0108 -2.0700 -4.1989

3407849 0.0036 -2.0733 -4.2086

3439178 0.0392 -2.0933 -4.2673

3984655 0.0385 -2.0967 -4.2772

3708245 0.0214 -2.1033 -4.2970

3886223 0.0149 -2.1567 -4.4588

2659560 0.0285 -2.1667 -4.4898

2900051 0.0076 -2.1733 -4.5106

2876608 0.0117 -2.1867 -4.5525

2564520 0.0293 -2.1900 -4.5631

3349293 0.0000 -2.1900 -4.5631

3351841 0.0274 -2.2267 -4.6805

3591365 0.0040 -2.2367 -4.7131

2469252 0.0090 -2.2467 -4.7459

2352804 0.0233 -2.2600 -4.7899

3279058 0.0090 -2.2667 -4.8121

2947063 0.0120 -2.2733 -4.8344

3445028 0.0199 -2.3200 -4.9933

3772158 0.0466 -2.3467 -5.0865
3852565 0.0055 -2.3700 -5.1694
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12.3 Data collection and refinement statistics 

 

Data collection and refinement statistics for the human Hub1-HIND complex. 

Space group 

Cell dimensions 

a, b, c (Å) 

α, β, γ (°) 

Resolution (Å) 

Completeness (%) 

Rmerge 

I/σ(I) 

Redundancy 

P 21212 

 

87.51, 103.63, 67 

90, 90, 90 

50 - 2.0 (2.1 - 2.0)* 

99.7 (99.8) 

6.4 (34.8) 

21.9 (4.48) 

7.32 (7.2) 

Refinement 

No. of reflections 

Resolution (Å) 

Rwork /  Rfree (%) 

No. atoms 

Protein 

Water 

Overall B (Å2) 

r. m. s. deviations 

Bond length (Å) 

Bond angles (o) 

35644 

20 - 2.0 

21.5 / 26.6 

 

5376 

206 

30.6 

 

0.01 

1.43 

*Values in parentheses are for highest-resolution shell. 


