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1. Einleitung

1.1 Glykokalyx

Alle  gesunden  Gefäßendothelzellen  im Körper  sind  mit  einer  Schicht  überzogen,  die  als 

endotheliale  Glykokalyx  (EG) bezeichnet  wird.  Sie  besteht  aus  verschiedenen 

transmembranösen  und  membrangebundenen  Molekülen  [Chappell  et  al.,  2007] deren 

Hauptvertreter  die  Syndekane  und  Glypikane  sind,  sowie  aus  Rezeptormolekülen, 

Adhäsionsmolekülen  und  langkettigen  Hyaluronsäuremolekülen  [Bernfield  et  al.,  1999, 

Reitsma et al., 2007].

Eine schematische Darstellung der Glykokalyx ist in Abb. 1 gezeigt [Weinbaum et al., 2007]. 

Dort  ist  auch zu  erkennen,  dass  in  vivo  verschiedene  Plasmabestandteile  miteingebunden 

werden.

1.1.1 Aufbau

Die  Glykokalyx  im  strengeren  Sinn  ist  eine  poröse  Schicht  mit  regelmäßiger 

Molekülanordnung [Gao et al., 2010, Lipowsky, 2011]. An den Transmembranproteinen (vor 

allem  Syndekan-1)  und  membrangebundenen  Glypikanen  finden  sich  als  Seitenketten 

Glukosaminoglykane (GAGs) wie Heparansulfat (HS) und Chondroitinsulfat (CS)  etwa  im 

Verhältnis HS:CS 4:1. Unterschiedlich viele der GAG-Ketten aus negativ geladenen HS und 

CS sind  kovalent an ein Proteoglykan (PG) wie Syndekan gebunden  mit unterschiedlicher 

Länge der Seitenketten.

Hyaluronsäure (HA) hat keine negative Ladung und ist nicht über eine kovalente Bindung an 

Proteine gebunden, sondern zumeist über den Rezeptor CD44 in die Glykokalyx integriert. 

HA-Moleküle  können  sich  außerdem  zu  räumlichen  Verbunden  zusammenschließen  und 

ungeordnete  Netzwerke  bilden  [Gao  et  al.,  2010,  Lipowsky,  2011].  Zusammen  mit 

gebundenen  Plasmabestandteilen  bildet  sich  so  ein  negativ  gelandenes  Netzwerk  auf  den 

Endothelzellen der Gefäße mit einer Dicke  von bis zu 1 µm [Pries et al., 2000,  Pries et al.,

2006].  Man  kann  sie  bei  entsprechender  Gewebefixierung  elektronenmikroskopisch 

visualisieren (siehe  Abb. 2) oder indirekt als  Lücke zwischen Erythrozyten und Gefäßwand 

(„exclusion zone“) im durchströmten Blutgefäß wahrnehmen [Becker et al., 2010a, Chappell

et al., 2007, Lipowsky et al., 2011].
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Das aus  der  Glykokalyx  und  den Plasmabestandteilen  gebildete  Grundgerüst  wird  als 

endotheliale  Oberflächenschicht  (ESL:  Endothelial  Surface  Layer)  bezeichnet.  Sie  trennt 

unter physiologischen Bedingungen Zellen wie Erythrozyten, Leukozyten und Thrombozyten 

von Endothel und Rezeptoren (siehe Abb. 2).

Unter physiologischen Bedingungen ist die Struktur der Glykokalyx stabil, sie unterliegt aber 

einem dynamischen Gleichgewicht von Abbau und Synthese neuer Bestandteile [Gao et al.,

2010, Lipowsky, 2011].

1.1.2 Funktion

Die Hauptfunktion der EG ist ihre Eigenschaft als Barriere für Wasser und Blutbestandteile 

zwischen  Gefäßlumen  und  Interstitium  [Gao  et  al.,  2010,  Stevens  et  al.,  2007].  Bei 

Beschädigungen der EG kommt es zu einem vermehrten Austreten von Flüssigkeit aus dem 

Lumen in das umliegende Gewebe [Chappell  et  al.,  2011,  Jacob et  al.,  2007].  Durch den 

maschenförmigen Aufbau  und die negative Ladung  werden Blutbestandteile wie Blutzellen 

oder andere negativ geladene Makromoleküle an der Glykokalyx gefiltert und verbleiben im 

Gefäßlumen  [Gao  et  al.,  2010].  Der  Aufbau  eines  onkotischen  Gradienten  über  die 

Abb. 1: Schematische Darstellung der Glykokalyx [Weinbaum et al., 2007]
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Glykokalyx hinweg wirkt der druckbedingten Extravasation von Wasser entgegen.  Auch bei 

der Adhäsion von Leukozyten an die Gefäßwand spielt die Glykokalyx eine wichtige Rolle, 

da sie ein Hindernis für den Kontakt der Blutzellen an die Endothelzellen darstellt [Gao et al.,

2010,  Rehm et  al.,  2004,  Reitsma et  al.,  2007].  Die  Rezeptoren  für  die  Leukozyten  (ca. 

10 nm) sind deutlich kleiner als die Glykokalyxdicke (200 – 500 nm) (siehe Abb. 3), was die 

Adhäsion bei intakter Glykokalyx verhindert [Chappell et al., 2011, Lipowsky, 2011, Rehm et

al., 2007,]. Bei defekter oder fehlender Glykokalyx kommt es zu einer verstärkten Adhäsion 

von Blutzellen an das Endothel [Annecke et al., 2011, Chappell et al., 2011, Silbernagel et al.,

2003].  Des  Weiteren  stellt  die  EG  eine  wichtige  physiologische  Bindungsstelle  für 

Antithrombin III,  Lipoproteinlipase,  Gefäßwachstumsfaktoren und  Gerinnungsfaktoren wie 

Thrombin oder  Plasmin dar  [Becker  et  al.,  2010a,  Gao et  al.,  2010].  Die Interaktion mit 

Plasmaproteinen, insbesondere mit Albumin, verstärkt zudem die schubspannungsabhängige 

Vasodilatation [Jacob et al., 2007].

1.1.3 Shedding

Einen Abbau der Glykokalyx bezeichnet man als „Shedding“. In Experimenten an isolierten 

Herzen konnte gezeigt werden, dass bei Ischämie mit anschließender Reperfusion der Abbau 

von  Heparansulfat  um  ein  30-faches  erhöht  war,  bei  Hyaluronan  allerdings  nur  um  ein 

3-faches  über  dem  gemessenen  Basalwert.  Die  Auswaschrate  von  Syndekan  stieg  bei 

postischämischer  Reperfusion  um  das  ca.  100-fache  an [Chappell  et  al.,  2007]. Auch 

chirurgische  Eingriffe  schädigen je  nach  Größe  des  Traumas  die  Glykokalyx  in 

unterschiedlichem Ausmaß [Chappell et al., 2008a]. In verschiedenen Studien [Chappell et al.,

2007,  Rehm et al.,  2004] wurde nachgewiesen, dass es bei einer Ischämiedauer länger als 

Abb. 2: Proportionen der EG und Adhäsionsmoleküle bei einem Kontrollherz: grüne Pfeile  
ICAM ,VCAM, Integrine etc. (max. 10 nm), Glykokalyx 200 – 2000  nm: Es ist offensichtlich,  
dass die Adhäsionsmoleküle von der EG überragt werden (Ausschnitt  aus [Becker et  al.,
2010a]).
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20 Minuten  mit  anschließender  Reperfusion  zu  einem Abbau der  Glykokalyx  kommt und 

damit  verbunden  intravasale  Flüssigkeit  verstärkt  in  das  umliegende  Gewebe  austritt 

[Annecke et al., 2010, Chappell et al., 2007, Rehm et al., 2004].

Shedding erreignet sich nicht nur bei Ischämie/Reperfusion (I/R) von Gewebe, sondern auch 

bei  Hypoxie/Reoxigenierung,  Sepsis,  Diabetes  mellitus und Entzündungen  [Becker  et  al.,

2010b, Chappell et al., 2011, Reitsma et al., 2007]. Es ist noch unbekannt, welche Proteasen 

für das Shedding verantwortlich sind, man vermutet aber, dass membrangebundene Proteasen 

über G-Proteine aktiviert werden. Des Weiteren wird vermutet, dass aktivierte Immunzellen 

oder  Makrophagen  Proteasen  ausschütten,  die  zumindest  Teile  aus  der  Glykokalyx  lösen 

können [Annecke et al., 2010, Annecke et al., 2011].

Enzyme  wie  Heparinase,  Pronase  und  Hyaluronidase  sind  dafür  bekannt 

Glykokalyxbestandteile abzulösen [Chappell et al.,  2008a,  Jacob et al.,  2007,  Rehm et al.,

2004,  Stevens  et  al.,  2007].  Heparinase  ist  ein  bakterielles  Analogon  zu  Heparanase  und 

entfernt selektiv Heparansulfat aus der EG [Chappell et al., 2008a].

1.1.4 Klinische Relevanz

Vor etwa 70 Jahren wurde eine  noch unbekannte  Schicht auf den Endothelzellen vermutet 

[Danielli, 1940], aber für viele Jahre wurde ihr keine entscheidende physiologische Funktion 

zugeschrieben.  Dies lag einerseits daran, dass diese Schicht nur als  Lücke der Erythrozyten 

zur  Gefäßwand  wahrgenommen  werden  konnte.  Andererseits  an  der  fast  kompletten 

Zerstörung dieser Schicht bei den damals verwendeten Fixierungstechniken  [Becker et al.,

2010a, Vogel et al., 2000]. 

Abb. 3: Proportionen EG und Adhäsionsmoleküle bei einem postischämischen Herzen (EG-
Shedding):  grüne Pfeile  ICAM ,VCAM, Integrine  etc.  (max.  10 nm):  Man kann deutlich  
erkennen, dass Adhäsionsmoleküle nicht mehr von der EG verdeckt werden (Ausschnitt aus  
[Becker et al., 2010a]). Eine Adhäsion von weißen Blutzellen und Thrombozyten ist möglich.
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Es hat sich jedoch mit modernen Elektronenmikroskopen und Fixierungstechniken gezeigt, 

dass  diese  Schicht  weitaus  dicker  ist  als  damals  angenommen  und  sogar  die 

Adhäsionsrezeptoren der Endothelzellmembran weit überragt [Becker et al., 2010a, Chappell

et al., 2011, Reitsma et al., 2007].

Im Laufe der letzten Jahre stellte sich heraus, dass diese Schicht eine wichtige Rolle in vielen 

physiologischen  Vorgängen  im  Körper  wie  der Entwicklung  von Gewebsödemen  spielt, 

indem sie eine Barriere für Wasser und Makromoleküle zusammen mit der darunterliegenden 

Endothelzellschicht  bildet [Broekhuizen  et  al.,  2009,  Bruegger  et  al.,  2009,  Rehm et  al.,

2004]. Die endotheliale Glykokalyx bildet auch die Schicht mit der die Blutzellen den ersten 

Kontakt zur Gefäßwand haben. Sie spielt also eine entscheidende Rolle bei Vorgängen wie der 

Blutgerinnung, Entzündungen und Adhäsion von Thrombozyten und Leukozyten [Chappell et

al., 2008a, Götte, 2003, Marshall et al., 2003]. Erst die Adhäsion schafft die Möglichkeit für 

Leukozyten, in das Gewebe zu emigrieren.

Gesteigerte  Gefäßpermeabilität  und  Gewebsödme  als  Folge  intraoperativer  Ischämie  sind 

bekannte Komplikationen und könnten durch Veränderung der Glykokalyxstruktur bedingt 

sein,  da  es  sich  in  verschiedenen  Studien  gezeigt  hat,  dass  es  zu  einer  Reduzierung  der 

Glykokalyx  nach  längerer  Ischämie  mit  Reperfusion,  Redoxstress,  bei  enzymatischen 

Prozessen  und  nach  Entzündungen  kommt  [Becker  et  al.,  2010a,  Becker  et  al.,  2010b, 

Chappell et al., 2011,  Jacob et al., 2007,  Reitsma et al., 2007]. Eine erhöhte Konzentration 

von Heparansulfat und Syndekan konnte im Blutplasma von Patienten nachgewiesen werden, 

die  sich  Operationen  mit  intraoperativem  Verschluss  der  Aorta  oder  kardiopulmonalem 

Bypass unterzogen. Die erhöhte Konzentration ließ darauf schließen, dass es aufgrund der 

zeitweisen Ischämie mit anschließender Reperfusion zu Schäden der Glykokalyx während der 

Operation gekommen sein könnte [Rehm et al., 2007]. 

1.2 Glykokalyx abbauende Enzyme (Sheddasen)

Es  konnte  nachgewiesen  werden,  dass  es  Enzyme  gibt,  z.B.  Heparinase,  Pronase  und 

Hyaluronidase,  die die Glykokalyx abbauen können [Chappell  et  al.,  2008a,  Henry et  al.,

1999,  Ihrcke et  al.,  1996,  Jacob et  al.,  2007,  Rehm et al.,  2004].  Chappell  et  al.  konnten 

zeigen,  dass Heparinase  selektiv  Heperansulfat  aus  der  Glykokalyx  entfernt,  aber  nicht 

Syndekan [Chappell et al., 2008a].

In der Literatur finden sich Hinweise, dass Metalloproteasen am Shedding der Glykokalyx 

beteiligt  sind,  vor allem bei  entzündlichen Vorgängen im Körper.  Es wurde ein indirekter 
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Nachweis  erbracht,  indem  Inhibitoren  von  Metalloproteasen  in  Versuchen  am 

kardiopulmonalen System verwendet wurden und es zu einer geringeren Konzentration von 

Glykokalyxanteilen im Koronarfluss kam [Fitzgerald et al., 2000, Lipowsky, 2011]. Auch bei 

Gabe  inflammatorischer  Mediatoren  im  Mesenterialbereich  konnte  durch  Inhibitoren  von 

Metalloproteasen ein Shedding der Glykokalyx vermindert werden. Eine direkte Rolle von 

Metalloproteasen als „Sheddasen“ wurde in den vorliegenden Studien aber nicht bewiesen 

[Gao et al., 2010]. 

Chappell et al.  konnten weiter  zeigen, dass Antithrombin III  ein Shedding der Glycokalyx 

nach  Ischämie  und  Reperfusion  sowie  nach  Gabe  von  TNFα  am  Herzen  weitgehend 

verhinderte  (Abb.2)  [Chappell et al., 2009]. Bei Antithrombin III handelt es sich um einen 

natürlichen  Inhibitor  einiger  (patho)physiologisch  bedeutsamer  Serinproteasen  wie  z.B. 

Thrombin, dessen Wirkung durch Bindung an die EG verstärkt wird. Andere Gründe sprachen 

ebenfalls dafür, Serinproteasen als mögliche Sheddasen der Glykokalyx in Betracht zu ziehen 

[Ihrcke  et  al.,  1996].  So  kommt  es  unter  anderem bei  Entzündungen zu  einem Shedding 

[Chappell et al., 2009]. Serinproteasen sind vor allem in Entzündungszellen wie Leukozyten 

und  Mastzellen  zu  finden  und  können am  Ort  des  Geschehens  freigesetzt  werden.  Dort 

dünnen sie die EG aus, um eine Adhäsion von Blutbestandteilen zu ermöglichen [Ihrcke et al.,

1996]. 

Bei  Annecke  el  al.  fand  sich  eine  erhöhte  Freisetzung  des  Enzyms  Cathepsin  B  im 

koronarvenösen  Effluat  reperfundierter  Herzen. Cathepsin  B  gehört  zu  den  sogenannten 

Cysteinproteasen  [Annecke et al.,  2010].  Man konnte eine  Erhöhung  dieser Protease  nach 

postischämischer Reperfusion im Myokard und in Endothelzellen  nachweisen  [Chappell et

al., 2007]. 

Unter Berücksichtigung der oben genannten Punkte (Beteiligung bei Entzündungsvorgängen, 

Adhäsion, Gerinnung) haben wir uns für eine Untersuchung von insgesamt 8 Proteasen und 

Glykosidasen entschieden.  Die  relevanten  Proteasen  werden  im  weiteren  Text  genauer 

beschrieben.
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1.2.1 Serinproteasen

Serinproteasen stellen eine große Gruppe von Enzymen dar, die Proteine zerteilen können und 

eine wichtige Rolle in Prozessen wie Koagulation, Apoptose und bei Entzündungsreaktionen 

übernehmen (siehe Abb. 4) [Heutinck et al., 2010].

Namensgebend  für  die  Proteasen ist  die  Anwesenheit  der  Aminosäure  Serin  im  aktiven 

Zentrum des  Enzyms.  Eine  entscheidende  Quelle  stellen  Immunzellen  (z.B.  Leukozyten, 

Mastzellen)  dar.  Diese  bilden  die  Serinproteasen  und  speichern  sie.  Als  Beispiele  sind 

insbesondere Thrombin und Tissue-type Plasminogen Activator (tPA) zu nennen, welche für 

die Gerinnungsvorgänge im Körper entscheidend sind [Reitsma et al., 2007].

1.2.1.1 Elastase, Proteinase 3

Neutrophile Granulozyten (PMN) enthalten Elastase und Proteinase 3 als Proenzyme. PMN 

sind die ersten Abwehrzellen am Ort der Entzündung und setzen dort die genannten Proteasen 

frei. Die Degranulation der Neutrophilen wird durch Entzündungsmediatoren wie TNFα (am 

Shedding  beteiligt [Chappell  et  al.,  2009]) und  C5a  getriggert.  Die erwähnten Proteasen 

können Bakterien zerstören und rufen Gewebeschäden hervor [Heutinck et al., 2010].

Abb. 4: Serinproteasen [Heutinck et al., 2010]: Serinproteasen sind in vielen  
wichtigen  physiologischen  Vorgängen  im  Körper  beteiligt:  Entzündung,  
Gerinnung, Tumormetastasierung



18 1. Einleitung

1.2.1.2 Plasmin

Plasmin, eine Serinprotease,  kann viele  Proteine im Blutplasma spalten und abbauen. Vor 

allem in  der  Hämostase  spielt  dieses  Enzym eine  wichtige  Rolle,  da  es  Fibrin  über  den 

Vorgang der Fibrinolyse deaktiviert. 

Plasmin kommt im Körper vor allem als Proenzym Plasminogen vor und wird bei Bedarf 

durch tPA oder uPA aktiviert [Silbernagel et al., 2003, Waisman, 2003].

1.2.1.3 Thrombin

Thrombin wird vor allem im Rahmen der Blutgerinnung mit hoher lokaler Aktivität gebildet. 

Es aktiviert Fibrinogen zu aktivem Fibrin  durch enzymatische Spaltung  [Silbernagel et al.,

2003].  Es  konnte  in  verschiedenen Studien  gezeigt  werden,  das  es  Syndekan  aus  der 

Glyokalyx lösen kann [Bruegger et al., 2005, Subramanian et al., 1997]. 

1.2.1.4 tPA

Tissue-type  Plasminogen  Activator  (tPA)  ist  eine  Serinprotease  und  wird  in 

Gefäßendothelzellen gebildet. Fibrin bewirkt eine Aktivierung von tPA, wodurch es zu einer 

enzymatischen  Spaltung  und  damit  Aktiverung  von  Plasminogen  zu  Plasmin  kommt 

(Fibrinolyse) [Waisman, 2003].

1.2.1.5 Tryptase

Tryptase ist in den Granula der Mastzellen als aktives Enzym zu finden [Chappell et al., 2007, 

Samoszuk  et  al.,  2003].  Die  Protease  beeinflusst  die  Vasokonstriktion,  Koagulation  und 

Entzündungsreaktion [Chappell et al., 2009]. Tryptase moduliert die Extrazellulärmatrix, die 

Ausschüttung  von  Entzündungsmediatoren  und  die  Immunzellmigration  und  Aktivierung 

[Heutinck et al., 2010].

Man  findet  Tryptase  in  myokardialen  Mastzellen,  aus  denen  es  bei  Ischämie  mit 

anschließender  Reperfusion  freigesetzt  wird  [Annecke  et  al.,  2010].  In  einer  Studie  mit 

Antithrombin III (AT III) hat sich gezeigt, dass AT III die koronare EG vor Shedding schützt 

[Chappell et al., 2008b, Chappell et al., 2009]. Bedeutung hat dies, da AT III ein Inhibitor für 

Serinproteasen darstellt [Roemisch et al., 2002]. 
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1.2.2 Cathepsin B

Cathepsin B ist eine ubiquitär vorkommende Cysteinprotease, die man zwar in allen Zelltypen 

vorfindet, aber primär in Endothelzellen von Bedeutung sind [Frlan et al., 2006, Seyfried et

al., 2001]. Sie ist in Lysosomen gespeichert und kann in Stresssituationen leicht freigesetzt 

werden  [Annecke  et  al.,  2010,  Seyfried  et  al.,  2001].  Cathepsin  B  ist  an vielen 

physiologischen Vorgängen wie Wundheilung oder Apoptose und pathologischen Prozessen 

wie  Entzündung und Malignomwachstum beteiligt. Dabei kann eine erhöhte Konzentration 

dieses Enzyms nachgewiesen werden [Frlan et al., 2006].

1.2.3 Hyaluronidase

Hyaluronidasen sind tierischen und bakteriellen Ursprungs und bewirken eine hydrolytische 

Spaltung des Makroglykosids Hyaluronsäure.  Bei dieser  Glykosidase war ein Shedding von 

Hyaluronsäure aus der Glykokalyx bereits von  Gao et al. nachgewiesen [Gao et al., 2010]. 

Hyaluronidase wurde  in dieser Dissertationsarbeit  als „Positivkontrolle“ verwendet,  d.h. als 

Enzym, bei dem ein Shedding garantiert stattfindet.

1.3 Fragestellung

Es war vor  Entstehung dieser Arbeit nicht bekannt, welche Proteasen  und Glykosidasen für 

das Shedding der Glykokalyx verantwortlich sind. Dies gilt sowohl für den physiologischen 

Umbau (latentes Shedding) als auch für den pathophysiologischen gesteigerten Abbau.

In meiner Arbeit stellt sich die Frage, ob Enzyme, die bei Entzündungsvorgängen oder bei der 

Gerinnung aktiv sind,  Bestandteile wie Heparansulfat, Hyaluronsäure und Syndekan aus der 

Glykokalyx spalten. Wir entschieden uns der Fragestellung mit den Serinproteasen Thrombin, 

Elastase, Proteinase 3 (PR3), Tryptase, Plasmin und tPA, sowie der Cysteinprotease Cathepsin 

B und, als Positivkontrolle, der Hyaluronidase nachzugehen.
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2. Material und Methoden

Die Material- und Probensammlung für diese Arbeit erfolgten zwischen April 2008 und Juni 

2009 in  den Räumlichkeiten  des  Walter-Brendl-Zentrums für  Experimentelle  Medizin  der 

Ludwig-Maximilians-Universität München in der Arbeitsgruppe  Prof. Dr. med. Dr. rer. nat. 

B.F. Becker.

2.1 Material

2.1.1 Substanzen

2.1.1.1 Enzyme

1. Thrombin, aus menschlichem Plasma, Sigma, USA

2. Tryptase, aus menschlicher Lunge, gereinigt, Sigma USA

3. Cathepsin B, aus Rindermilz, Sigma, USA

4. Elastase, aus menschlichen Leukozyten, Sigma, USA

5. Plasmin, aus menschlichem Plasma, Sigma, USA

6. Hyaluronidase, aus Rinderhoden, Sigma, USA

7. Tissue-type Plasminogen Activator,  menschlich rekombinant, Expression in CHO 

Zellen, Sigma, USA

8. Proteinase 3, aus menschlichen Neutrophilen, Biomol international, Hamburg

2.1.1.2 Gase 

9. Sauerstoff (O2), Fa. Linde, Höllriegelskreuth, Deutschland

10. Kohlendioxid (CO2), Fa. Linde, Höllriegelskreuth, Deutschland

2.1.1.3 Perfusatbestandteile

Die Krebs-Henseleit-Pufferlösung [Buenger et al., 1975] wurde jeden einzelnen Versuchstag 

aus den in  Tabelle 1 genannten Bestandteilen frisch angesetzt. Diese wurden bei 8 °C kühl 

gelagert.  Glucose,  Pyruvat  und Insulin  wurden kurz  vor  dem Versuchsbeginn der  Lösung 

zugesetzt. Das Gemisch wurde eine halbe Stunde mit 94,4% O2 und 5,6% CO2  begast, damit 

der pH-Wert der Lösung 7,35 – 7,45 betrug.
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2.1.1.4 Enzymlösungen

Ein  sinnvolles  Aktivitätsniveau  der  Enzyme  wurde  aus  Arbeiten  anderer Arbeitsgruppen 

sowie aus Vermutungen abgeleitet,  die auf eigenen Erfahrungen basieren  [Bruegger et  al.,

2005, Chappell et al., 2008a, Subramanian et al., 1997].

Für Thrombin,  Tryptase,  Elastase  und  Cathepsin  wurden je  zwei  Versuchsserien  mit 

unterschiedlichen Aktivitäten untersucht, wobei die Aktivität der zweiten Messserie um ein 

Vielfaches höher war als in der ersten Messserie, um sicher im Wirkungsbereich zu sein. 

Die  handelsüblichen  Darreichungsmengen  wurden auf  ein  sinnvolles  Aktivitätasniveau 

verdünnt.  Die  Aktivität des  Enzyms,  das  Volumen  der  Stammlösung  (in  isotoner 

Kochsalzlösung)  sowie die  pro  Herz  intrakoronar  infundierten Mengen sind  in  Tabelle  2 

aufgeführt.  Die applizierte  Volumenmenge  der Enzymverdünnungen variierte zwischen 1,0 

und  1,5  ml  pro  Versuch  und  wurde  über  einen  Zeitraum  von  10  Minuten  (Mzp  5.1) 

kontinuierlich infundiert.

Die Aktivität eines Enzyms sagt aus, wie viel Eichsubstrat in einer Minute von einem Enzym 

umgesetzt wird. Dabei spielt die Konzentration des Enzyms keine direkte Rolle. Die Einheit 

wird in Unit (U) angegeben wobei 1 Unit = 1 μmol Substrat/min entspricht.

Tabelle 1: modifizierte Krebs-Henseleit-Pufferlösung

Verbindung Summenformel Hersteller

Glukose 5,4 Merck, Darmstadt

1,2 Merck, Darmstadt

Kalziumchlorid 1,27 Merck, Darmstadt

Magnesiumsulfat 0,6 Merck, Darmstadt

Natriumchlorid NaCl 119

Natriumhydrogencarbonat 21,5 Merck, Darmstadt

Natriumpyruvat 0,3

5 [I.E./l]

C [mmol/l]

C
6
H

12
O

6

Kaliumhydrogenphosphat KH
2
PO

4

CaCl
2
 x 2 H

2
O

MgSO
4
 x 7 H

2
O

Applichem GmbH, Darmstadt

NaHCO
3

C
3
H

3
NaO

3 Sigma Aldrich, St. Louis,  MO, USA

Insulin (Rinderpankreas) C
254

H
377

N
65

O
75

S
6 Sigma Aldrich, St. Louis,  MO, USA
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2.1.1.5 ELISA - Kits

Es kamen drei verschiedene ELISA-Tests zum Einsatz  (siehe Kapitel  2.2.5). Für Syndekan 

verwendeten wir den ELISA-Kit sCD138 der Firma Diaclone, Besanon, Frankreich und für 

Heparansulfat setzten wir den ELISA-Kit der Firma Seikagaku Corporation, Tokio, Japan ein. 

Es handelte sich in beiden Fällen um einen sandwich-type ELISA. Für die Bestimmung der 

Hyaluronsäurekonzentration verwendeten wir einen kompetitiven ELISA K-1200 der Firma 

Echelon Biosciences Inc., Salt Lake City, USA.

Tabelle 2: Enzymlösungen: Aktivität pro Herz in den Versuchsgruppen

Versuchsgruppe Nr. n Verdünnung Aktivität/Herz

Thrombin 3 3 3,30 ml 3,3 U

Thrombin 10 5 250 U 5,5 ml 50 U

Tryptase 4 6 7 ml 0,002 U

Tryptase 11 5 5,5 ml 0,01 U

Cathepsin 2 7 11,7 ml 1,1 U

Cathepsin 12 5 6 ml 5,4 U

Elastase 6 3 1 U 3,30 ml 0,33 U

Elastase 12 3 2 U 3,30 ml 0,67 U

Plasmin 1 1 1,1 ml 1,5 U

Plasmin 5 3 3,30 ml 1,5 U

Hyaluronidase 9 4 4,8 ml 5400 U

tPA 7 3 3,30 ml 1667 U

Proteinase 3 8 3 5,625 ml 0,47 U

Ampulleninhalt

100 µl 
(100 U/ml)

= 10 U

1,05 µg Protein
(13,7 U/mg) 

= 0,014 U

5 µg 
(11 U/mg)
= 0,055 U

1 mg 
(11,7 U/mg) 

= 11,7 U

2,3 mg
(11,7 U/mg) 

= 27 U

0,5 mg 
(3 U/mg) 
= 1,5 U

1,5 mg 
(3 U/mg) 
= 4,5 U

27 mg 
(1000 U/mg) 

= 27000 U

10 µg
(500000 U/mg)

= 5000 U

0,025 mg
(95 U/mg)
=2,375 U
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2.2 Methoden

2.2.1 Isoliert perfundiertes Herz (Langendorff-Modell)

Oskar  Langendorff  entwickelte  1895  eine  Methode  zur  isolierten  Perfusion  von  Herzen 

außerhalb des Körpers, das sogenannte Langendorff-Modell. Dabei wird das Herz retrograd 

durch  eine  Kanüle  in  der  Aorta  mit  der  Krebs-Henseleit-Puffer-Lösung perfundiert.  Das 

Perfusat  wird  mit  Sauerstoff  und  CO2  begast,  damit  das  Herz  mit  physikalisch  gelöstem 

Sauerstoff versorgt wird und der pH-Wert der Lösung möglichst dem physiologischen Niveau 

entspricht. So kann das Herz ca. 2 – 3 h außerhalb des Körpers arbeiten. Dies war 1895 ein 

entscheidender Schritt für die Forschung am kardiovaskulären System. 

Grundsätzlich  werden  zwei  Methoden  der  Perfusion  unterschieden:  die  druckkonstante 

Methode, bei der das Herz mit einem konstanten Druck, z.B. 80 mmHg, mit Perfusat versorgt 

wird, oder die flusskonstante Methode, bei der das Perfusat mit einem konstanten Fluss durch 

das Koronarsystem fließt. 

Das Prinzip des Langendorff-Models, schematisch in Abb. 5 dargestellt, erklärt sich insoweit, 

als dass die retrograde Perfusion der Aorta beim Verschluss der Aortenklappe in der Diastole 

die Füllung der Koronargefäße bedingt. Das Herz wird weiterhin mit Sauerstoff versorgt und 

schlägt spontan weiter.  Dabei ist es wichtig zu beachten, dass der Druck des Perfusats nicht 

den physiologischen Druck im Herzen während der Systole übersteigt. Dadurch kommt es zu 

einer  geringeren Perfusion der Herzkranzgefäße während der Systole,  was der Entstehung 

eines Gewebeödems entgegenwirkt.

Das Perfusat läuft von den Koronarvenen in den rechten Vorhof (sinus coronarius) und von 

dort durch den rechten Ventrikel in die Pulmonalarterie, wo die Flüssigkeit über eine Kanüle 

nach außen geleitet wird (Effluat).

Da das Herz frei  an der Aortenkanüle hängt, kann auch das Transsudat an der Herzspitze 

gesammelt werden [Dhein et al., 2004]. Das Transsudat stellt die Nettofiltration im gesamten 

Koronarsystem dar. Als Gemisch von lymphatischer und interstitieller Flüssigkeit tritt es an 

der epikardialen Herzoberfläche aus und tropft von der Herzspitze ab. Die Quantifizierung 

erlaubt eine direkte Beurteilung des vaskulären Flüssigkeitslecks der Koronargefäße.

Bei den Versuchen in dieser Arbeit wurde der Modus der druckkonstanten Perfusion gewählt. 

Dabei  ist  zu  beachten,  dass  der  Transsudatfluss  (siehe  Abb.  5)  sehr  empfindlich  auf 
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Änderungen der hydraulischen Leitfähigkeit der Koronargefäße reagiert [Jacob et al., 2006]. 

Dies sollte nur als Folge einer Zerstörung der Glykokalyx eintreten und wurde als Parameter 

für funktionelle Zerstörung der Glykokaly gewertet.

2.2.2 Herzpräparation

Die  Versuche  inklusive Tiertötung  und  anschließender  Organentnahme  waren  von  der 

Regierung von Oberbayern genehmigt worden (AZ209.1/211-2531.3-3/99).

Es  wurden  Meerschweinchenherzen  von  männlichen  Tieren  (Gewicht  250  –  910  g) 

verwendet.

Die Tiere wurden mit einem dafür speziell konstruierten Werkzeug durch einen Schlag in den 

Nacken getötet. Die beiden Halsschlagadern wurden durchtrennt, der Thorax eröffnet und das 

Abb. 5: Retrograde Perfusion nach Langendorff im schematischen Versuchsaufbau
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Herz mit einer eiskalten, isotonischen Kochsalzlösung zum Stillstand gebracht. Dann wurde 

die Aorta kanuliert, distal durchtrennt und der Krebs-Henseleit-Puffer [Buenger et al., 1975] 

in das Herz mit einem konstanten Druck von 80 cm Wassersäule infundiert. Danach wurden 

die Pulmonalgefäße (Venen und Arterie) und die obere und untere Hohlvene durchtrennt. In 

die  Pulmonalarterie  wurde ebenfalls  eine  Kanüle eingesetzt.  Die  Venae  cava  inferior  und 

superior, pulmonales und azygos wurden ligiert.

2.2.3 Versuchsaufbau

Isolierte Meerschweinchenherzen wurden nach Langendorff perfundiert. Der Apparaturaufbau 

wird in Abb. 6 gezeigt.

Abb. 6: Versuchsaufbau nach Langendorff, druckkonstante Perfusion

1: Perfusatreservoir (80 cm H2O)
2: Aortenkanüle
3: Herzwärmer (36 °C)
4: Überlauf (80 cm H2O)
Pfeil: Flussrichtung Perfusat
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2.2.4 Versuchsprotokoll

2.2.4.1 Versuchsablauf

Es wurde eine feine Kanüle in den zuführenden Schlauch mit dem Perfusat kurz vor der Aorta 

eingebracht (siehe Abb. 7). Mit Hilfe eines Perfusors (Precidor, Infors AG Basel, Bottingen, 

Schweiz) wurde über einen Zeitraum von 10 Minuten eine vorgegebene Menge Enzymlösung 

pro Minute in das Herz infundiert.

Insgesamt wurden  acht verschiedene Enzyme (Thrombin,  Tryptase,  Cathepsin B, Elastase, 

Plasmin, Hyaluronidase, Proteinase 3, tPA) infundiert. Zusätzlich lief eine Kontrollgruppe mit 

dem gleichen Versuchsablauf ohne Applikation eines Enzyms (Zeitkontrolle).

Abb. 7: Versuchsaufbau schematisch dargestellt 
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2.2.4.2 Zeitverlauf

Abb.  8 zeigt  den  Zeitverlauf  der  Versuche  und  die  Messzeitpunkte  (Mzp)  der 

Probensammlung.

Nach der Präparation und einer Ruhephase von 15 Minuten wurden die Basalwerte (B) für 

Transsudat  (2  Minuten)  und  Effluat  (1  Minute)  gesammelt.  Dann  wurde  über  die 

Aortenkanüle mit einem Infusor das Enzym für 10 Minuten appliziert. In dieser gesamten Zeit 

wurde die Probe 5.1  (jeweils Effluat und Trassudat)  gesammelt und in mehreren Portionen 

asserviert. Darauf folgte eine insgesamt 10 minütige Auswaschphase, in der für je 5 Minuten 

eine Probe (5.2 und 5.3) gesammelt wurde.  Auch hier erfolgte die Asservierung mehrerer 

Portionen (Lagerung bei -18 °C).

2.2.4.3 Probengewinnung und Messparameter

Als  Messproben  wurden das  Effluat  und  Transsudat  herznah  gesammelt.  Das  Transsudat 

sammelte sich auf der Herzoberfläche und wurde an der Herzspitze mit einem Eppendorf- 

Gefäß  aufgefangen.  Mit  einem  weiteren  Gefäß  wurde  ebenfalls die  Flüssigkeit  aus  der 

Pulmonalarterienkanüle  (Effluat)  gesammelt.  Die  gewonnenen Proben  wurden  bei  -18 °C 

eingefroren gelagert und zur Messung aufgetaut. Im Effluat wurden die Hauptbestandteile der 

Glykokalyx,  Syndekan  als  transmembranöser  Anteil  der  Glykokalyx,  Heparansulfat  als 

Seitenkette  der  Glykokalyx  und  Hyaluronan  als  früher  Messparameter  für  Glykokalyx-

Abb. 8: Zeitverlauf und Messzeitpunkte (Mzp)
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Shedding  [Chappell  et  al.,  2007]  mittels  ELISAs bestimmt.  Das  Transsudat  diente  als 

Parameter für die Permeabilität der Gefäße und wurde gewogen.

Nach dem Ende des Versuchsablaufs wurden die Aorta und A. pulmonalis, sowie die Vorhöfe 

entfernt und das Herz gewogen (Feuchtgewicht). Die Herzen wurden getrocknet (24 h, 60 °C) 

und dann nochmals gewogen, um das Trockengewicht zu erhalten [Chappell et al., 2007].

2.2.4.4 Probenkonzentrierung

Die  gewonnenen  Effluatproben  wurden  aufgetaut  und  als  4ml  Portionen  (Vprä)  über 

sogenannte  Molekularsieb-Filter  auf  ca.  250 µl  konzentriert.  Verwendet  wurden 

Molekularsiebe  mit  Ausschlussgrenzen  von 5 kDA und 10 kDA  (Fa.  Millipore,  Eschborn, 

Germany)  [Bruegger et al., 2008,  Rehm et al., 2004]. Die gewonnenen Konzentrate wurden 

genau gewogen (Vpost) und bis zur Messung mittels ELISA (siehe  Kapitel  2.2.5) bei -18 °C 

aufbewahrt.

2.2.5 ELISA-Test-Systeme

Diese Testverfahren basieren letztlich auf einer enzymatischen Farbreaktion für den Nachweis 

von Antigenen (Ag). Nach Bindung von spezifischen Antikörpern  (AK) kommt es zu einer 

Farbreaktion proportional zur Konzentration der gesuchten Substanz (Ag).  Wir verwendeten 

zwei verschiedene Formen: Einmal den sandwich-type ELISA und einmal den kompetitiven 

ELISA. Beide Systeme werden im folgenden beschrieben.

2.2.5.1 Sandwich-type ELISA

Eine  Platte  wird  mit  spezifischen  Antikörpern  gegen  die  gesuchte  Substanz  (hier 

Heparansulfat und Syndekan) beschichtet, die Proben mit dem Antigen  werden dann in die 

einzelnen Probenlöcher auf der Platte verteilt.

Diese Lösung wird über einen definierten Zeitraum (HS 18-24 h, Syndekan 1 h) inkubiert. 

Nach der Inkubation wird die Platte gespült und ein weiterer Antikörper hinzugefügt an den 

eine  Peroxidase  (Horseradish  peroxidase,  HRP)  für  die  Farbentwicklung  mit 

Tetramethylbenzidin gebunden wird. Nach einer definierten Zeitspanne wird die Farbreaktion 

gestoppt.  Die  Farbintensität  ist  direkt  proportional  zur  Substanzkonzentration  [Diaclone

(Hrsg)].
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Anhand des Heparansulfat-ELISA-Kit wird der genaue Ablauf beispielhaft erklärt:

Der  sandwich-type  ELISA  der  Firma  Seikagaku  Corporation  ist  ein  Enzym-linked 

Immunoabsorption Assay und verwendet zwei spezifische monoklonale Antikörper. 

Die einzelnen Schritte des Messprotokols sind in Tabelle 3 aufgelistet.

Abb.  9:  Sandwich-type  ELISA  (Quelle:  Enzo  Life  Sciences,  
http://kb.enzolifesciences.com/article/immunometric-assays-127.html)

Tabelle 3: ELISA: sandwich-type für HS: Messprotokoll und Ablaufschritte

Vorbereitung

1. Schritt

2. Schritt

3. Schritt

4. Schritt

5. Schritt

Waschlösung, Standardlösung und Reaktionspuffer 5-fach verdünnen, 

Auswaschen der Substratlöcher auf der Platte mit 5*300 µl Waschlösung

Reaktionspuffer mit Standardlösung oder Substrat mischen,

die primäre Reaktion erfolgt bei 2 – 8 °C für 18 – 24 h, 

Auswaschen der Löcher mit 5*300 µl Waschlösung

HRP-konjugiertes Streptavidin mit biotinyliertem Antikörper vermischen, 

sekundäre Reaktion bei Raumtemperatur für 60 Minuten

100 µl aus Substrat des 2. Schritts entnehmen und die Farbreaktion 30 Minuten 
abwarten

Lösung hinzugeben, die die Farbreaktion anhält (Stopperlösung, H2SO4)

Messung der Absorptionsstärke und Abschätzung der HS-Konzentration bei 
450nm/630nm,

die Proteinkonzentration anhand einer Eichkurve ablesen
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2.2.5.2 Kompetitiver ELISA

Bei einem kompetitiven ELISA-Test verdrängt die gesuchte  Substanz (Ag) das Substrat für 

die  Farbentwicklung  von  seiner  Bindungsstelle  am  Antikörper  (AK),  wodurch  es  bei 

steigender Antigenkonzentration zu einer verminderten Farbentwicklung kommt. 

In  dieser  Versuchsanordnung  werden  die  zu messenden  Proben  mit  dem  Hyaluronan 

(HA) - Detektor vermischt und dann auf die ELISA-Platte aufgebracht.  Dabei entsteht eine 

kompetitive Bindung an die auf der Platte bereits aufgebrachten AK und gesuchter Substanz 

(konjugiertes Antigen). Es ergibt sich daraus eine indirekte Proportionalität von Farbintensität 

und gesuchtem Antigen. 

Aus den Standardwerten wird eine Eichkurve gebildet (bei einer  Wellenlänge von 405 nm 

gemessen), an der die Konzentrationen von HA in den analysierten Proben abgelesen werden 

[Diaclone (Hrsg)].

2.2.6 Eichkurven und Messdatenberechnung

Mit den Extinktionsergebnissen der einzelnen ELISA-Messserien zeichneten wir jeweils eine 

Eichkurve,  anhand derer  wir  die  Syndekan-,  Heparansulfat-  und Hyaluronsäuremengen in 

100 µl  bzw.  20 µl  (VML) Konzentrat  ablasen,  die  aus  4 ml  (Vprä)  der  einzelnen  Proben 

gewonnen  wurden.  Da  die  vom Photometer-Programm berechnete Eichkurve  nicht  exakt 

genug in  dem  Bereich  unserer  Messergebnisse  (niedriges Werteniveau) war,  wurde für 

Messserie 1,  Messserie 2 und  Messserie 3 jeweils eine eigene Eichkurve pro ELISA-Platte 

erstellt.

Die von der Eichgerade abgelesenen Werte wurden dann mit der folgenden Formel (Formel 1) 

verrechnet,  um die  koronarvenös  abgegebene Menge an Syndekan, HS und HA pro Minute 

und pro Herzgewicht zu ermitteln.

Abb.  10:  kompetitive  ELISA  (Quelle:  Enzo  Life  Sciences,  
http://kb.enzolifesciences.com/article/immunometric-assays-127.html)
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Die  so  erhaltenen  Werte  für  alle  Messzeitpunkte  (Mzp)  (B,  5.1,  5.2,  5.3)  pro  Herz  pro 

Versuchsgruppe  wurden  für  die  statistische  Auswertung  miteinander  verglichen.  Der 

Mittelwert der Zeitverläufe (Formel 2) aus den Versuchsgruppen war entscheidend, um einen 

globalen Vergleich zu bekommen.

2.2.6.1 Syndekanfreisetzung

Um die Eichkurve  zu erstellen,  wurden exemplarische Daten  (Standardlösungen humanen 

Syndekans und die dazugehörigen Extinktionswerte aus Duplikaten,  Tabelle 4) verwendet. 

Abb.  11 zeigt  die  daraus  erstellte  „manuelle“  Eichgerade,  die  für  die  Bestimmung  der 

Syndekanmenge in 100 µl bzw.  20 µl Konzentrat (Volumen pro Messloch, VML) der Proben 

einer Messserie verwendet wurde.

Tabelle 4: Syndekan: Eichdaten für Photometer der Serie 1 [Diaclone (Hrsg)]

St 32 0,145

St 16 0,084

St 16 0,080

St 8 0,053

St 8 0,056

Standardlösungen 
Photometer

Menge in 
Standardlösung [ng]

Extiktionswerte 
gemessen bei Eichung

3,2 ng

1,6 ng

0,8 ng

Wert5.1 [ng /min / g ]∗10 [min]+Wert5.2 [ng /min / g ]∗5 [min]+Wert5.3[ng /min/ g ]∗5[min ]

20 [min]

Formel 2:  Mittlere Auswaschrate [ng/min/g] der Zeitverläufe (Raten der Messzeitpunkte 5.1,  

5.2 und 5.3 zeitlich gewichtet)

M ML [ng ]∗V post[µl ]∗CF [ml /min]

V ML [µl ]∗V prä [ml ]∗Herzgewicht [ g ]
=Auswaschrate

Formel 1:  Berechnung der  Mengen von Syndekan,  Heparansulfat  und Hyaluronsäure im  

Effluat nach Ablesen der Mengen pro Messloch (MML) von der Eichgeraden

Vpost: Volumen nach Konzentration des Effluats

Vprä: Volumen vor Konzentration = 4 ml
CF: Koronarfluss
MML: Abgelesene Menge von Eichgerade = Menge pro Messloch

VML: Volumen pro Messloch (HS: 20 µl, Syndekan: 100 µl, HA: 100 µl)
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Es wurde die Menge in der Standardlösung (x-Achse) und die gemessenen Extinktionswerte 

(y-Achse) in ein Diagramm gezeichnet und eine Gerade durch diese Punkte gelegt.

Mit  den  gemessenen  Extinktionswerten  konnten  dann  für  jede  Probe  die  entsprechenden 

Mengen pro Messloch (MML) an der x-Achse abgelesen werden.

Über die so erhaltene Menge  pro Messloch  (MML)  wurde die  vom Herzen ausgewaschene 

Menge des Syndekans (ng) pro Minute pro Herzgewicht (g) errechnet  (Formel 1 und Abb.

11). 

Die  berechneten  Basalwerte  und  Zeitverlaufswerte  mussten  anschließend aufgrund  der  in 

Kapitel 3.2.1 näher erläuterten  Normierung nochmals mit den  für jede Messserie geltenden 

Normierungsfaktoren verrechnet werden.

2.2.6.2 Hyaluronsäurefreisetzung

Bei  Hyaluronsäure  konnten  wir  aufgrund  der  höheren  Substanzmengen  die  vom 

Photometerprogramm erstellte Eichkurve für Serie 1  verwenden. Für Serie 2 erstellten wir, 

wie bei Syndekan beschrieben (siehe Kapitel  2.2.6.1), eine Eichkurve für jede ELISA-Platte 

(siehe Abb. 12). 

Abb.  11:  Eichkurve  Syndekan  Serie  1  zum  Ablesen  der  Mengen  aus  den  
gemessenen Extinktionswerten
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Für Serie 1 nahmen wir daher die vom Photometerprogramm ermittelten Konzentrationen im 

Konzentrat  und  errechneten  in  einfacher  Weise  direkt  die  Menge  HA in 4  ml  Effluat 

(Elisakonzentration [ng/ml] * Vpost [ml]). 

Die  Mengen  für  Hyaluronsäure  in Serie  2  wurden  aus  den gezeichneten  Eichkurven 

abgelesen.

Anhand dieser Werte konnte im Anschluss die  Auswaschrate des HA (ng) pro Minute pro 

Herzgewicht (g) errechnet (Formel 1 und Abb. 12).

2.2.6.3 Heparansulfatfreisetzung

Bei  Heparansulfat  konnten wir  für  Serie  1  die  vom  Photometerprogramm vorgegebene 

Eichkurve verwenden, für Serie 2 konstruierten wir eine eigene Eichgerade.

Bei der  Serie 1 nahmen wir die vom Photometerprogramm errechneten Konzentrationen im 

Konzentrat,  errechneten  die  Menge  (MML) HS  pro  4  ml  Effluat  (Elisakonzentration 

[ng/ml] * Vpost [ml]) und daraus dann die Abgabe pro Minute pro Herzgewicht.

Für  die  Serie  2 lasen wir die  Menge  (MML) direkt aus der Eichkurve ab,  ähnlich wie für 

Syndekan beschrieben (siehe Kapitel 2.2.6.1).

Mit Hilfe dieser Werte wurde dann die  Freisetzungsrate des Heparansulfat pro Minute pro 

Herzgewicht errechnet (in Formel 1). Diese Berechnungen wurden für jedes Herz pro Enzym 

Abb. 12: Eichkurven HA Serie 2, Platten 1 und 2 



2. Material und Methoden 35

getätigt und für die weitere statistische Auswertung (in Kapitel  2.2.7) verwendet.  Zusätzlich 

wurde der mittlere Abgabewert der Zeitverläufe berechnet (siehe Formel 2) und ebenfalls für 

statistische Vergleiche herangezogen.

2.2.7 Statistik

Für die statistische Auswertung wurde das Statistikprogramm SigmaStat 3.5 (Systat Software 

Inc., San Jose, CA, USA) verwendet. 

Obwohl die  n-Zahlen  (3-12) zu  gering  waren  um  sicher  zu  sagen,  ob  es  sich  um  eine 

Normalverteilung  der  Daten  handelt,  wird  von  einem  natürlichen Vorgang  ausgegangen, 

sodass eine  Gaußverteilung  (Normalverteilung)  vorliegt.  Damit  konnten  die  gängigen 

statistischen Testverfahren wie „t-Test“ und „paired t-Test“ angewendet werden.

Den „paired t-Test“ verwendeten wir bei Vergleichen innerhalb einer Versuchsreihe mit zwei 

Gruppen z.B Basalwerte vs.  Zeitverlaufswerte, den „t-Test“ bei Vergleichen zwischen zwei 

Versuchsgruppen z.B.  Zeitverlauf Kontrolle  (Ko) verglichen mit Zeitverlauf Thrombin. Mit 

„Anova on Ranks“  wurden statistisch mehrere Gruppen untereinander  verglichen z.B. Ko-

Zeitverlauf mit  Thrombin-Zeitverlauf  im  Vergleich  mit  Elastase-Zeitverlauf  etc.  Bei  dem 

Testverfahren „Anova on Ranks“ ist die Normalverteilung keine Voraussetzung.

Wir  betrachteten  erst  die  funktionellen  Daten  wie  den  Koronarfluss  (CF)  und  die 

Transsudatbildung (T), um mit diesen Daten schon Aufschlüsse über ein eventuelles Shedding 

zu erhalten.  Dann wurden die Messdaten hinsichtlich  Abgabe von  Syndekan, HS und HA 

betrachtet, um Veränderungen im Effluat festzustellen.

Wir  verglichen  innerhalb  einer  Versuchsgruppe  die  zu  unterschiedlichen  Zeitpunkten 

gemessenen  Abgaberaten an  GAG,  z.B. Basalwerte  im  Vergleich  zu  dem Mittelwert  des 

Zeitverlaufs.  Es  wurde  außerdem  der Zeitverlaufsmittelwert  der  Kontrollgruppe  mit  den 

Zeitverlaufsmittelwerten verschiedener Versuchsgruppen verglichen: Einmal mit „Anova on 

Ranks“  und  zusätzlich  mit  einen  „t-Test“  paarweise  (Zeitverlaufsmittelwert  der 

Kontrollgruppe im Vergleich zu einer Versuchsgruppe).

Um eine höhere n-Zahl zu erhalten, wurden  in einem weiteren Schritt  die Versuchsgruppen 

mit gleichem Enzym trotz unterschiedlicher Konzentration zusammengefasst.

Als Signifikanzniveau wurde p<0,05 gewählt.
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3. Ergebnisse 

Um der Fragestellung,  ob  und  welche  der  ausgewählten  Enzyme  zu  einem  Shedding der 

Glykokalyx  befähigt  sind  nachzugehen,  wurde  die  oben  beschriebene  Versuchsanordnung 

gewählt (siehe Kapitel 2.2.3). Die Enzyme wurden in Versuchsgruppen eingeteilt, wobei jedes 

Enzym eine Versuchsgruppe bildet.  Einige  der  Enzyme wurden in  zwei unterschiedlichen 

Aktivitäten appliziert. Um die verschiedenen Enzyme und ihre Aktivitäten zu unterscheiden, 

wurden die Versuchsgruppen zusätzlich in Versuchsserien unterteilt. Pro Versuchsserie wurde 

mit mehreren Herzen  gearbeitet. Diese wurden  mit H und der Herzanzahl nummeriert,  z.B. 

erstes  Herz,  Versuchsgruppe  Thrombin  Versuchsserie  3:  H1-3.  Im  Verlauf  des  einzelnen 

Versuchs wurden zu unterschiedlichen Zeitpunkten Messproben entnommen und mit B für 

Basalwert,  5.1  für  die  Zeit  der  Enzymapplikation,  5.2  und  5.3  für  die  Zeit  nach  der 

Enzymapplikation  (Auswaschzeit)  bezeichnet,  z.B.  H1-3-5.1  (Herz  1  -  Versuchsserie  3  - 

Messzeitpunkt 5.1).  Die Messproben für ein Herz von B bis 5.3 sind eine Herzreihe,  die 

Messproben von 5.1 bis 5.3 werden als Zeitverlauf bezeichnet.

Als Beispiel: Das Enzym Thrombin wurde mit den Aktivitäten 10 U pro Herz und 50 U pro 

Herz appliziert. Die Versuchsgruppe ist Thrombin, die Versuchsserien sind „3“ für 10 U/Herz 

und „10“ für 50 U/Herz.  Die  Versuchsserie 3  wurden an drei  Herzen durchgeführt (H1, H2, 

H3) mit den jeweiligen Messpunkten Basal, 5.1, 5.2 und 5.3 (H1-3-B, H1-3-5.1, H1-3-5.2, 

H1-3-5.3 → Herzserie). Diese Nomenklatur wird in Tabelle 5 verdeutlicht.

3.1 Funktionelle Daten

3.1.1 Koronarfluss

Betrachtet wurden die Effluatmengen in den Versuchsgruppen, um eine evtl. Auswirkung des 

Sheddings  als  Erhöhung  des  CF  (Vasodilatation,  Lumendurchmesservergrößerung)  im 

Zeitverlauf zu erkennen, wobei der Basalwert mit dem Messzeitpunkt 5.3 verglichen wurde.

Tabelle 5: Nomenklatur

Versuchsgruppe Versuchsserie Herzen Basalwert Zeitverlauf

Thrombin 3 H1 B 5.1 5.2 5.3

Herzreihe
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Wir  errechneten  aus  den  gesammelten  Effluatmengen  einen  CF  in  ml/min/g 

Tockenherzgewicht (Tabelle 6).

Es  konnte  kein  signifikanter  Unterschied  innerhalb  der  Kontrollversuchsgruppe  zwischen 

Basal und  Messzeitpunkt 5.3 festgestellt werden. Man kann daher davon ausgehen, dass es 

keine Änderung des Koronarflusses am Herzen ohne Enzymapplikation gibt. Ein signifikanter 

Unterschied des CF über die Zeit zeigte sich bei der Applikation von Thrombin und Tryptase 

(Basal  zu  5.3).  Dabei  handelte  es  sich  jedoch  um eine  Verringerung  der  Flussrate.  Eine 

Erhöhung des CF kam bei keinem der getesteten Enzyme vor (Tabelle 6).

3.1.2 Koronarleck 

Ein Transsudatanstieg im Laufe des Versuchs wäre ein Hinweis auf einen vermehrten Austritt 

von  intravasaler  Flüssigkeit  ins  Gewebe.  Dies  könnte  ein  Zeichen  von  Schäden  an  der 

Glykokalyx sein, da diese als Barriere für Wasser dient [Gao et al., 2010]. Deshalb wurde das 

Transsudat im Versuchsablauf ebenso gesammelt, wie die Koronarflüssigkeit.

Wir  errechneten  aus  den gesammelten  Proben  einen  Transsudatfluss  (TF)  in  ml/min/g 

Trockenherzgewicht und verglichen die Basalwerte mit denen der Probe 5.3 innerhalb einer 

Versuchsgruppe (Tabelle 7). 

Tabelle 6: Koronarfluss [ml/min/g Trockengewicht]: Vergleich der Koronarflussrate Basal mit  

Mzp 5.3 (Mittelwerte +/- SD, gepaarter t-Teste, * p<0,05)

 Versuchsgruppe n Basal 5.3

 Kontrollen 9 38,95 +/- 17,27 36,51 +/- 19,98

 Thrombin * 8 47,86 +/- 11,55 38,75 +/- 8,77

 Tryptase * 11 36,83 +/- 8,05 34,38 +/- 7,45

 Cathepsin B 12 46,82 +/- 8,06 46,46 +/- 11,57

 Elastase 6 40,56 +/- 12,16 36,67 +/- 10,88

 Plasmin 4 30,61 +/- 3,51 31,32 +/- 4,02

 Hyaluronidase 4 58,26 +/- 17,66 55,03 +/- 17,68

 tPA 3 42,67 +/- 26,43 51,68 +/- 14,01

 Proteinase 3 3 48,78 +/- 10,11 52,89 +/- 10,34
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Dabei konnten wir nur für die Versuchgruppe Hyaluronidase einen signifikanten Anstieg der 

Transsudatmenge über die Zeit (Basal zu 5.3) nachweisen. Bei den anderen Versuchsgruppen 

ergab sich keine statistisch signifikante Veränderung über die Zeit.

Aus den Daten der  Tabelle 7 ist  allerdings  zu erkennen, dass der Transsudatfluss bei allen 

Versuchsgruppen  dazu  neigte  mit  der  Zeit  anzuwachsen.  Möglicherweise  könnte  eine 

Enzymbehandlung dieses „natürliche“ Anwachsen verstärken.

Wir  ermittelten  daher  aus  den  Transsudatwerten  eine  Differenz  von  Basal  zu  5.3  und 

verglichen  die  Differenzwerte  der  Versuchgruppen  untereinander,  d.h.  die  errechnete 

Differenz  zwischen  Basalmenge  und  5.3-Menge  der  Kontrollen  wurde  mit  den 

Differenzwerten  der  enzymbehandelten  Herzen  verglichen  (Tabelle  7). Auch  bei  dieser 

Betrachtung kam es nur bei Hyaluronidase zu einem signifikant gesteigerten Transsudatfluss. 

Aus diesen Ergebnissen kann man schließen, dass kein Enzym außer Hyaluronidase zu einem 

Koronarleck  geführt hat.  Wir werteten dies als Hinweis für ein funktionelles Shedding der 

Glykokalyx.

Tabelle  7:  Transsudatfluss  [ml/min/g  Trockengewicht]:  Vergleich  der  Transsudatflussrate  

Basal  vs.  Mzp  5.3.  Nur  Hyaluronidase  zeigt  einen  signifikanten  Anstieg.  Vergleich  der  

Differenzwerte (Mzp 5.3 – Basal) von enzymbehandelten Herzen und Kontrollgruppe: auch  

hier  findet  sich nur  bei  Hyaluronidase  ein  signifikanter  Anstieg  der  Transsudatmenge  

(Mittelwerte +/- SD, gepaarter t-Test, * p<0,05, # p<0,05).

 Versuchsgruppe n Basal Differenz

 Kontrolle 9 3,11 +/- 1,45 3,95 +/- 2,29 0,84 +/- 1,04

 Thrombin 8 3,20 +/- 1,80 4,89 +/- 2,89 1,69 +/- 3,04

 Tryptase 11 2,20 +/- 1,10 2,5 +/- 0,86 0,31 +/- 0,83

 Cathepsin B 12 2,98 +/- 3,08 3,64 +/- 1,85 0,10 +/- 2,90

 Elastase 6 1,90 +/- 1,32 3,19 +/- 2,52 1,28 +/- 1,63

 Plasmin 4 1,45 +/- 0,67 2,12 +/- 1,19 0,67 +/- 0,77

 Hyaluronidase 4 2,34 +/- 1,01 5,22* +/- 1,48 2,88# +/- 1,11

 tPA 3 2,00 +/- 1,32 2,45 +/- 1,27 0,44 +/- 0,19

 Proteinase 3 3 2,86 +/- 1,01 6,3 +/- 4,31 3,44 +/- 3,99

Mzp 5.3
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3.2 Glycocalyxbestandteile im Koronareffluat

3.2.1 Normierung von Messserien

Aus logistischen Gründen war es unmöglich, alle Proben gleichzeitig zu messen. Die ELISA-

Tests wurden z. T. innerhalb einer Versuchsgruppe als auch innerhalb einzelner Herzreihen 

pro Enzym zu unterschiedlichen Terminen mit unterschiedlichen Chargen von Kits gemessen. 

Somit  ergaben sich 3 Messserien (Serie  1,  2  und 3).  Wir  mussten feststellen,  dass  es  zu 

erheblichen Unterschieden bei den Werten der Konzentrationen von Kit zu Kit kam. Bereits 

innerhalb der  Versuchsgruppen  traten  Inhomogenitäten zwischen einzelnen Messserien auf 

und zwar sowohl für Syndekan, Heparansulfat als auch für Hyaluronsäure.

Die Proben der Serie 1 (Tabelle 8) wurden als erste gemessen, um einen ersten Überblick zu 

erhalten, ob in den Proben erhöhte Mengen von Syndekan, Heparansulfat oder Hyaluronsäure 

enthalten waren.

Tabelle 8: Messserie 1: Syndekan-1, HS und HA

Versuchsgruppe Versuchsserie Herzen

 Kontrollen 0 H2,H4-10 5.1-5.3

 Thrombin 10 H1-5 5.1-5.3

 Tryptase 11 H1-5 5.1-5.3

 Cathepsin B 12 H1-5 5.1-5.3

 Elastase 13 H1-3 5.1-5.3

Gemessene
Proben



3. Ergebnisse 41

Serie 2 (Tabelle 9) wurde im Anschluss an Serie 1 gemessen, um die Basalwerte (B) mit den 

Zeitverlaufswerten  (5.1-5.3)  vergleichen  zu  können,  da  sich  bei  Serie  1  keine  klaren 

Niveauunterschiede abzeichneten.

Ergänzend wurden  noch  Proben  von  weiteren Versuchsgruppen  gemessen,  die  zu  dem 

Zeitpunkt  zusätzlich  vorlagen.  Bei  diesen  Versuchsgruppen wurden alle  Werte,  Basal  und 

Zeitververlauf anhand einer Kit-Charge gemessen.

Wir wiederholten die Messungen einiger Kontollgruppenherzen und Elastasegruppenherzen in 

Serie 3 (Tabelle 10), da sich zwischen Serie 1 und Serie 2 ein deutlicher Unterschied des 

Werteniveaus  abzeichnete.  Daraus  ergab  sich  die  Notwendigkeit  und  Möglichkeit  einer 

Normierung von den unterschiedlichen Messserien. 

Tabelle 10: Messserie 3: nur Syndekan- und Hyaluronsäurebestimmung

Tabelle 9: Messserie 2: Syndecan-1, HS und HA

Versuchsgruppe Versuchsserie Herzen

Kontrollen 0 H2-10 B

Thrombin 10 H1-5 B

Tryptase 11 H1-5 B

Cathepsin B 12 H1-5 B

Elastase 13 H1-3 B

Versuchsgruppe Versuchsserie Herzen

Thrombin 3 H1-3 B, 5.1-5.3

Tryptase 4 H1-6 B, 5.1-5.3

Cathepsin B 2 H1-7 B, 5.1-5.3

Elastase 6 H1-3 B, 5.1-5.3

Plasmin 1 & 5 H1, H1-3 B, 5.1-5.3

Hyaluronidase 9 H1-4 B, 5.1-5.3

tPA 7 H1-3 B, 5.1-5.3

Proteinase 3 8 H1-3 B, 5.1-5.3

gemessene
Proben

gemessene
Proben

Versuchsgruppe Versuchsserie Herzen

Kontrollen 0 H2-6 B, 5.1-5.3

Elastase 13 H1-3 B, 5.1-5.3

gemessene
Proben
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3.2.1.1 Normierung für Hyaluronsäure und Syndekan

Bei Syndekan und Hyaluronsäure konnten wir die Serien 1 und 2 auf Serie 3 normieren, da 

wir aus der Versuchsgruppe Kontrollen (0,  H2-H6) und Elastase (13, H1-H3) die Werte für 

Syndekan und Hyaluronsäure doppelt gemessen hatten. Somit ergab sich aus dem direkten 

Vergleich jeweils ein Multiplikationsfaktor für Serie 1 und Serie 2 bei Hyaluronsäure (Tabelle

11)  und  Syndekan  (Tabelle  12).  Die  Werte  der  Versuchsgruppen  in  den  verschiedenen 

Messserien (siehe Tabelle 8 und Tabelle 9) wurden dann mit den entsprechenden Faktoren (F) 

multipliziert (Formel 3, Formel 4), um das gleiche „Niveau“ zu bekommen.

Formel 3: Normierung S1 auf S3

Tabelle  11:  Hyaluronsäureauswasch [ng/min/g]:  Faktorenberechnung für  Normierung von  

Messserie 1 und Messserie 2 mit Hilfe von Messserie 3; Faktor F1 ist 0,23, Faktor F2 ist 1,77  

(Mittelwert +/- SD)

Formel 4: Normierung S2 auf S3

Versuchsgruppe Faktor F2 (B)

S3/S1 S3/S2

Kontrolle 0,25 +/- 0,13 1,37 +/- 0,54

Elastase 13 0,19 +/- 0,08 2,42 +/- 2,39

0,23 +/- 0,11 1,77 +/- 1,61

Faktor F1 (Zv) 

 Wert S2 x F2

Tabelle  12:  Syndekanauswasch [ng/min/g]:  Faktorenberechnung  für  Normierung  von  

Messserie 1 und Messserie 2 mit Hilfe von Messserie 3; Faktor F1 ist 34,65, Faktor für F2 ist  

0,95 (Mittelwert +/- SD).

Versuchsgruppe Faktor F2 (B)

S3/S1 S3/S2

Kontrolle 14,39 +/- 5,37 0,9 +/- 0,17

Elastase 13 61,66 +/- 49,4 1,03 +/- 0,3

34,65 +/- 40,12 0,95 +/- 0,24

Faktor F1 (Zv) 

 Wert S1 x F1
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3.2.1.2 Normierung für Heparansulfat

Bei HS lagen keine Daten aus Serie  3  vor.  Somit  war keine Normierung der  Messserien 

durchführbar,  zudem wies  HS ein  zeitabhängiges Auswaschverhalten  auf (siehe  3.2.2.2.c). 

Wir beschränkten uns daher auf den Vergleich von Enzymeffekten innerhalb  jeweils  einer 

Messserie (siehe 3.2.2.3.c)

3.2.2 Statistische Auswertung

3.2.2.1 Einleitung

Um die Ergebnisse bei Enzymapplikation auszuwerten, haben wir, getrennt für Syndekan, HA 

und HS, verschiedene Vergleiche erstellt und statistisch bewertet.

Zunächst wurde das Auswaschverhalten der GAG über die Zeit betrachtet (siehe 3.2.2.2). Als 

nächstes wurden innerhalb einer Versuchsgruppe der Basalwert mit dem Messzeitpunkt (Mzp) 

5.3 (längste Enzymeinwirkungszeit auf die Glykokalyx) verglichen (siehe 3.2.2.3). Im dritten 

und letzten Schritt betrachteten wir die Mittelwerte  der Zeitverläufe  (siehe  Abb. 11).  Wir 

verglichen  dabei  die  Enzymgruppen  mit  der  Kontrollgruppe,  um zu  sehen,  ob  sich  eine 

Erhöhung der GAG-Werte im Effluat  mit Enzymapplikation ergibt.  Wir verglichen auch die 

Enzymwerte  untereinander,  um  mögliche  Unterschiede  in  den  abgegebenen  Mengen  zu 

erkennen.

Mit Hilfe dieser Vergleiche sollte gezeigt werden, ob ein oder mehrere verwendete Enzyme 

prinzpiell ein Shedding der EG herbeiführen können.

3.2.2.2 Auswaschverhalten bei Kontrollherzen

3.2.2.2.a Syndekan

Für  Syndekan  zeigt  sich keine signifikante  Änderung  des  Auswasch  über  die  Zeit  bei 

unbehandelten Kontrollherzen (siehe Tabelle 13).

Eine  Normierung  der  Serien  war somit  möglich  geworden,  da  die  Zeitverlaufwerte  und 

Basalwerte eines Herzens auf dem gleichen Niveau verharren.
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3.2.2.2.b Hyaluronsäure

Bei HA kann ebenfalls keine statistisch signifikante Änderung des Auswasch über die Zeit bei 

unbehandelten Kontrollherzen festgestellt werden (siehe Tabelle 14).

Auch hier gilt, dass durch die Konstanz des Auswasches eine Normierung der Serien möglich 

ist.  Allerdings  zeigt  der  Auswaschverlauf  eine  Tendenz  zur  Abnahme  mit  der  Zeit  der 

Perfusion, anders als im Fall von Syndekan.

3.2.2.2.c Heparansulfat

Bei HS kann man eine signifikante Veränderung der Mengen im Efflutat von unbehandelten 

Kontrollherzen  selbst  von  Mzp  5.1  zu  Mzp  5.3  erkennen  (siehe  Tabelle  15).  Allerdings 

handelt es sich dabei um eine deutliche Reduzierung der Auswaschrate. 

Aus diesen Daten lässt sich sehen, dass HS in den ersten Phasen des Versuchsablaufes – also 

auch  in  5.1  – spontan  stark  aus  der  EG  gelöst  wird,  ein  Prozess  der in  den späteren 

Auswaschphasen (5.2 und 5.3) rasch an Bedeutung verliert.

Tabelle 14: Hyaluronsäure: Auswaschverhalten [ng/min/g] in der Kontrollgruppe der Serie  

3 (n=5, Mittelwert +/- SD, keine signifikanten Unterschiede)

Tabelle  13: Syndekan: Auswaschverhalten [ng/min/g] der Kontrollgruppe der Messserie 3  

(n=5, Mittelwert +/- SD, keine signifikanten Unterschiede)

B 5.1 5.2 5.3

21,75 +/- 18,25 12,19 +/- 6,22 8,36 +/- 4,24 8,09 +/- 6,2

Mzp

B 5.1 5.2 5.3

2,89 +/- 0,79 2,92 +/- 0,58 3,58 +/- 1,1 3,33 +/- 1,38

Mzp
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Zusammenfassend  kann  man  sagen,  dass  HS  als  einziger  gemessener  EG-Bestandteil  zu 

einem  spontan  abnehmenden Auswaschverhalten  neigt,  obwohl  HA mit  seiner  eigentlich 

lockeren Bindung zur EG der warscheinlichere Kandidat gewesen wäre. Bei Syndekan kann 

man  anhand seiner transmembranösen  Verankerung  in  der  Endothelzellmembran  gut 

verstehen, warum es keine spontane Änderung der Auswaschrate zeigt.

3.2.2.3 Basalwert verglichen mit Messzeitpunkt 5.3

3.2.2.3.a Syndekan

In keiner Versuchsgruppe wird eine signifikante Veränderung der Syndekanmenge im Effluat 

bei dem Vergleich von Basalwert mit dem Mzp 5.3 sichtbar (siehe Tabelle 16).

Dieses  Resultat  deckt  sich  mit  dem  Mangel  an  Veränderung  beim  spontanen 

Auswaschverhalten (siehe  Kapitel  3.2.2.2.a),  bedeutet  aber,  dass  keines  der  getesteten 

Enzyme in der Lage war, ein signifikantes Shedding von Syndecan-1 hervorzurufen.

Tabelle  15: Heparansulfat [ng/min/g]: Auswaschverhalten der Kontrollgruppe in Messserie  

1: es kann eine signifikante Abnahme der Auswaschrate von Mzp 5.1 auf Mzp 5.3  erkannt 

werden (n=8, Mittelwerte +/- SD, * p<0,05).

5.1 5.2 5.3 *

1057,77 +/- 409,63 420,69 +/- 494,58 81,44 +/- 43,29

Mzp

Tabelle  16: Syndekan [ng/min/g]: Vergleich der Basalwerte mit Mzp 5.3  jeweils  innerhalb 

einer  Versuchsgruppe.  Es  sind keine  signifikanten  Veränderungen  nachweisbar  

(normierte Werte aus S1, S2 und S3, Mittelwert +/- SD, gepaarter t-Test) .

Versuchsgruppe n B 5.3

Kontrollen 9 4,00 +/- 2,01 6,47 +/- 6,33

Thrombin 8 4,29 +/- 1,33 8,98 +/- 8,85

Tryptase 11 2,75 +/- 1,53 3,25 +/- 3,85

Cathepsin B 12 3,45 +/- 1,43 3,03 +/- 2,11

Elastase 6 2,75 +/- 1,52 3,48 +/- 7,13

Plasmin 4 2,64 +/- 1,39 1,77 +/- 1,45

Hyaluronidase 4 2,77 +/- 1,47 2,71 +/- 1,89

tPA 3 1,27 +/- 0,69 1,43 +/- 0,95

PR3 3 1,98 +/- 1,37 2,19 +/- 1,28
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3.2.2.3.b Hyaluronsäure

Eine  signifikante  Änderung  der  Hyaluronsäureauswaschrate zwischen  Proben  B  und  5.3 

konnte bei den Versuchsgruppen Cathepsin B, Tryptase, Thrombin, Hyaluronidase und der 

Kontrollgruppe aufgezeigt werden (siehe Tabelle 17). Bei der Veränderung handelt es sich bei 

allen Gruppen außer  Hyaluronidase um eine Reduzierung der  Menge im Effluat.  Nur bei 

Hyaluronidase konnte eine signifikante Erhöhung verzeichnet werden, sogar um ein 10 faches 

der Norm.

Die Reduzierung der Auswaschrate von HA bei Cathepsin B, Tryptase, Thrombin und bei der 

Kontrollgruppe  spiegelt wohl ein spontanes Auswaschverhalten  (siehe  Tabelle 14) von nur 

locker  gebundenen  Molekülen  wider.  Dafür  spricht,  dass  sich  die  Kontrollgruppe  ebenso 

verhält  wie  die  drei  oben  genannten  Enzyme.  Da  sich  Elastase  nicht  wie  Cathepsin  B, 

Thrombin  und  Tryptase  verhält  (alle  Daten  stammen aus  Messserie  1),  kann  man  davon 

ausgehen,  dass nicht  die  Normierung der  Messserien 1,  2 und 3 dieses Phänomen  per  se 

bedingt.

Sicher kann man sagen, dass kein Enzym außer Hyaluronidase ein Shedding bewirkt, das über 

die akute Applikationsphase 5.1 bis in die Auswaschphase 5.3 hinein wirkt.

Tabelle  17:  Hyaluronsäure  [ng/min/g]:  Vergleich  der  Basalwerte  mit  Mzp  5.3  jeweils  

innerhalb einer Versuchsgruppe. Nur bei dem Enzym Hyaluronidase kann ein signifikanter  

Anstieg  der  HA-Menge  im Effluat  gezeigt  werden.  Bei  den  anderen signifikanten  Werten  

handelt  es  sich  um  eine  Reduzierung  der  HA-Menge  im  Effluat  

(Mittelwerte +/- SD, gepaarter t-Test, * p<0,05,).

Versuchsgruppe n B 5.3

Kontrollen * 9 27,71 +/- 22,68 5,36 +/- 6,30

Thrombin * 8 48,00 +/- 30,35 11,31 +/- 7,05

Tryptase * 11 33,73 +/- 9,51 20,44 +/- 14,94

Cathepsin B * 12 57,54 +/- 45,52 19,92 +/- 16,79

Elastase 6 72,67 +/- 7,13 37,64 +/- 34,57

Plasmin 4 24,45 +/- 5,83 22,21 +/- 6,29

Hyaluronidase * 4 37,57 +/- 21,47 457,13 +/- 207,51

tPA 3 13,70 +/- 9,15 12,46 +/- 8,59

Proteinase 3 3 23,44 +/- 17,15 26,51 +/- 16,01
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3.2.2.3.c Heparansulfat

Der Vergleich zwischen Basalwert und Mzp 5.3 kann nur eingeschränkt bei Heparansulfat 

angewandt  werden,  da eine  Normierung  von  Serie  1  und  Serie  2  auf  Grund  des 

Auswaschverhaltens nicht möglich ist (siehe Tabelle 15).

Da  die  meisten  Messwerte  aus  Serie  2  stammen,  kann  mit  diesen  Werten  eine 

Nebeneinanderstellung  der  Enzymgruppen  durchgeführt  werden,  wobei  die  Versuchsserien 

Cathepsin  B  12,  Thrombin  10,  Tryptase  11,  Elastase  13  und  die  Kontrollgruppe  nicht 

miteinbezogen werden können (Werte aus Serie 1).

In keiner der Versuchsgruppen und Versuchsserien kann man eine signifikante Zunahme der 

HS-Menge im Effluat  erkennen.  Dieser  Befund entspricht  der  Erwartung,  denn Proteasen 

können  keine  Abspaltung  von  HS-Ketten  direkt  bewirken,  da  diese  über  glykosidische 

Verknüpfungen  von  Zuckermolekülen  an  Syndekan  gebunden  sind.  Eine  Tendenz  zur 

Absenkung der HS-Menge im Effluat ist jedoch bei fast allen Enzymgruppen zu beobachten, 

was  durch  das  bei  den  Kontrollen  festgestellte Auswaschphänomen erklärt  werden  kann 

(3.2.2.2.c).

3.2.2.4 Vergleich der Zeitverlaufswerte der Kontrollgruppe mit den Enzymgruppen

3.2.2.4.a Syndekan

Im  Vergleich  zwischen  dem  Mittelwert  (Mw)  der  Zeitverläufe  (Zv=5.1,  5.2,  5.3) der 

Enzymgruppen  mit  der  Kontrollgruppe  kann  bei  vielen Enzymgruppen  eine  signifikante 

Tabelle  18:  Heparansulfat  [ng/min/g]:  Vergleich  B  mit Mzp  5.3  innerhalb  der  einzelnen 

Versuchsgruppen in Messserie 2; es konnte keine signifikante Veränderung gezeigt werden  

(Mittelwerte +/- SD, gepaarter t-Test).

Versuchsgruppe n B 5.3

Thrombin 3 101,45 +/- 98,14 25,14 +/- 16,27

Tryptase 6 35,28 +/- 16,52 28,52 +/- 25,01

Cathepsin B 7 128,95 +/- 67,2 53,77 +/- 30,19

Elastase 3 96,72 +/- 63,39 23,07 +/- 15,31

Plasmin 4 51,53 +/- 35,92 87,42 +/- 66,25

Hyaluronidase 4 41,67 +/- 40,06 16,99 +/- 16,70

tPA 3 17,39 +/- 8,51 12,12 +/- 9,60

Proteinase 3 3 25,28 +/- 7,09 39,02 +/- 12,92
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Veränderung aufgezeigt werden (Tabelle 19). Allerdings handelt es sich bei allen Gruppen um 

eine Verminderung der Syndekanmenge im Effluat.

Man kann  also  davon ausgehen,  dass  es  in  Gegenwart  der  hier  untersuchten  Enzyme  zu 

keinem  Syndekanshedding  kommt.  Dieses  Resultat deckt  sich  mit  dem anderen  oben 

beschriebenen Vergleich von B vs. Mzp 5.3 (3.2.2.2.a).

Syndekan lässt sich  folglich  durch keines der verwendeten Enzyme aus der  EG entfernen. 

Diese Ergebnisse widersprechen anderen Studien, die ein Shedding von Syndekan-1 durch 

Thrombin, Elastase und Plasmin beobachten konnten [Fitzgerald et al., 2000].

3.2.2.4.b Hyaluronsäure

Eine signifikante Zunahme der HA-Menge im Effluat lässt sich durch Cathepsin B, Elastase, 

Thrombin,  Proteinase  3  und  Hyaluronidase  hervorrufen,  wobei  die  Erhöhung  durch 

Hyaluronidase am deutlichsten ist (ca. 160 fach). Bei den anderen Enzymen kann man eine 

Erhöhung um das 2 – 7-fache erkennen (Tabelle 20).

Dieses  Resultat deutet  an,  dass  sich HA leicht  aus der  EG lösen lässt.  Das unspezifische 

Enzymmuster entspricht der eher lockeren Einbindung von HA in die EG.

Tabelle  19:  Syndekanauswasch [ng/min/g]:  Vergleich  Zeitverlauf Kontrollen vs.  

Enzymmittelwerte  (Mittelwerte +/- SD,  ungepaarter t-Test, * p<0,05 ). Beim signifikanten  

Unterschied der Enzyme handelt es sich stets um eine Reduzierung der Syndekanmenge im 

Effluat.

Versuchsgruppe n Zeitverlauf

Kontrollen 9 11,66 +/- 7,10

Thrombin 8 5,21 +/- 4,33

Tryptase* 11 4,15 +/- 3,25

Cathepsin B* 12 4,27 +/- 2,59

Elastase* 6 2,61 +/- 2,81

Plasmin* 4 2,53 +/- 1,26

Hyaluronidase 4 2,44 +/- 1,54

tPA 3 1,73 +/- 0,93

PR3 3 2,79 +/- 2,20
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3.2.2.4.c Heparansulfat

Die  Normierung  von  S1  und  S2  ist  bei  HS  nicht  möglich,  da  ein  zeitabhängiges 

Auswaschverhalten von HS aus der  Glykokalyx zu erkennen ist  (siehe Kapitel  3.2.2.2.c). 

Allerdings  konnte  mit  Werten  der  Serie  1  ein  Vergleich  einiger  Zeitverlaufsmittelwerte 

durchgeführt werden. Dabei handelt es sich um die Versuchsserien Thrombin 10, Tryptase 11, 

Cathepsin B 12, Elastase 13 und die Kontrollgruppe. In den genannten Versuchsserien  mit 

Enzymen handelt es sich jeweils um die Serie mit der höheren Aktivität (siehe Tabelle 2).

Die Daten in Tabelle 21 lassen erkennen, dass sich bei Cathepsin und Elastase eine deutliche 

Zunahme (etwa 2-fach) von HS im Effluat gegenüber der Kontrolle ergibt. Bei Thrombin und 

Tabelle  21:  Heparansulfatauswasch  [ng/min/g]:  Vergleich  Zeitverlaufsmittelwerte  

Kontrollen vs. Enzymmittelwerte in S1 (Mittelwerte +/- SD, ungepaarter t-Test, * p<0,05)

Tabelle  20:  Hyaluronsäureauswasch  [ng/min/g]:  Vergleich  Zeitverlauf  Kontrollen vs.  

Enzymmittelwerte (Mittelwerte +/- SD, ungepaarter t-Test, *p<0,05). Bei fast allen Enzymen  

ist eine Erhöhung der HA-Menge im Effluat zu sehen, allerdings beträgt die Erhöhung bei  

Hyaluronidase 160-fach während bei den anderen Enzymen die maximale Erhöhung 7-fach 

ist.

Versuchsgruppe n Zeitverlauf

Kontrollen 0 8 654 +/- 254

Thrombin 10 5 1022 +/- 627

Tryptase 11 5 804 +/- 327

Cathepsin B 12 * 5 1556 +/- 666

Elastase 13 * 3 1413 +/- 70

Versuchsgruppe n Zeitverlauf

Kontrollen 9 7,4 +/- 6,7

Thrombin* 8 27,92 +/- 32,02

Tryptase 11 19,04 +/- 13,87

Cathepsin B* 12 30,43 +/- 19,27

Elastase* 6 55,62 +/- 39,28

Plasmin* 4 40,07 +/- 16,48

Hyaluronidase* 4 1197 +/- 524,72

tPA 3 14,96 +/- 10,33

PR3* 3 27,1 +/- 17,08
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Tryptase zeigt sich dieser Effekt nicht. Somit kann man davon ausgehen, dass Cathepsin B 

und Elastase HS aus der Glykokalyx lösen. 
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4. Diskussion

Ziel  dieser  Arbeit  war  die  Suche  nach  einer  Sheddase  aus  dem  Kreis  der  Serin-  und 

Cysteinproteasen,  da viele Enzyme aus diesen beiden Gruppen an entzündlichen Vorgängen 

im Körper und an der Hämostase beteiligt sind. Diese Vorgänge erfordern einen Zugang von 

Zellen  des  Blutes an  die  Gefäßwand  bzw.  eine  Rezeptorenbindung  an  der  endothelialen 

Oberfläche.  Daher  ist  ein  Shedding  der  Glykokalyx  Voraussetzung,  damit  Leukozyten, 

Erythrozyten und Thrombozyten Kontakt zur Gefäßwand bekommen [Chappell et al., 2008b] 

(siehe Abb. 2).

4.1 Auswahl der Enzyme

Ein  Shedding  der  EG  als  Antwort  auf  einen  entzündlichen  Prozess,  bei  Hyperglykämie, 

septischen Schock und bei Ischämie mit Reperfusion ist bereits bekannt [Becker et al., 2010a, 

Becker et al., 2010b,  Chappell et al., 2008b]. Bei diesen Vorgängen  im  Körper kann es zu 

einer Aktivierung von Immunzellen kommen, die als Reaktion Proteasen aktivieren, die für 

das Shedding verantwortlich sein könnten.  Wir untersuchten 7 verschiedene Proteasen und 

eine Glykosidase (Hyaluronidase).

Folgende Forschungsergebnisse wurden der Auswahl zugrunde gelegt:

• Chappell et al. [Chappell et al., 2009] konnten zeigen, dass sowohl Antithrombin III 

als auch Hydrokortison ein Shedding der EG reduzieren kann. Antithrombin III ist ein 

Inhibitor  von  Serinproteasen  wie  Thrombin,  Elastase,  Plasmin  und  Proteinase  3. 

Hydrokortison verhindert u.a. die Degranulation von Mastzellen. Mastzellen werden 

wiederum durch  TNFα  und  Ischämie aktiviert,  wobei  die  Serinprotease Tryptase 

freigesetzt wird [Annecke et al., 2010].

• Aus  Entzündungszellen  wie  neutrophilen  Granulozyten  werden  Elastase  und 

Proteinase 3 am Ort der Entzündung freigesetzt [Chappell et al., 2009, Heutinck et al.,

2010].

• Cathepsin  B  findet  man  in  Endothelzellen  im  ganzen  Körper,  also  auch  in  den 

Koronargefäßen. Annecke et al.  [Annecke et al., 2010] und Chappell et al. [Chappell

et al., 2008b] konnten zeigen, dass  die Aktivität von Cathepsin B im Koronareffluat 

nach längerer Ischämie am Herzen erhöht war, weshalb wir diese Cysteinprotease mit 

in die Enzymliste aufnahmen.
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• Fitzgerald et al. [Fitzgerald et al., 2000] und Subramanian et al. [Subramanian et al.,

1997] konnten bereits ein Shedding von Syndekan-1 durch Thrombin und Plasmin in 

vivo zeigen. Das Enzym spielt vor allem in der Gerinnung eine wichtige Rolle.  Ein 

weiteres Enzym aus dem  Bereich der Hämostase ist tPA. Es wirkt einer Gerinnung 

durch indirekte Aktivierung der Fibrinolyse entgegen. 

• Gao et al. wiesen eine Ausdünnung der Glykokalyx in vivo durch Hyaluronidase nach 

[Gao et al., 2010].

• Hyaluronidase  macht  bekannterweise  ein  Shedding  von  HA  [Henry  et  al.,  1999, 

Stevens et al., 2007], weshalb wir es als Positivkontrolle verwendeten. Anhand der mit 

Hyaluronidase gewonnenen Daten wurde deutlich, dass bei einem Shedding eines der 

drei Hauptbestandteile der EG tatsächlich ein enormer Anstieg der Werte zu erkennen 

ist (siehe Tabelle 17). Somit bestätigte Hyaluronidase sowohl unseren Versuchsansatz 

als auch die durchgeführte Normierung der Messwerte. 

4.2 Auswertung der ELISA-Messergebnisse

Es ergaben sich grundsätzliche Einsichten, wie mit den Rohdaten aus den ELISA-Messungen 

zu  verfahren  war.  Beabsichtigt  war  ein  Vergleich  der  Auswaschraten  von  Syndekan, 

Heparansulfat und Hyaluronsäure unter dem Einfluss der verschiedenen Enzyme jeweils mit 

den Auswaschraten  von Kontrollherzen.  Die Messungen erfolgten in 3 Messserien.  Da es 

Probleme bei dem Vergleich der Messserien gab, mussten wir Messserie 1 und Messserie 2 

mit Hilfe von Messserie 3 normieren (siehe  Kapitel 3.2.1). Dies  wurde dadurch  ermöglicht, 

dass wir  einige Proben sowohl  aus  Messserie 1  und aus Messserie 2 in Messserie 3 quasi 

doppelt  gemessen  hatten  (siehe  Tabellen  8,  9 und  10)  und  es  über  die  Zeit  zu  keinem 

signifikanten Auswasch bei HA und Syndekan kam (siehe Tabellen 13 und 14). 

Bei HS zeigte sich ein Auswaschverhalten über die Zeit (Tabelle 15), es gab allerdings keine 

Daten aus der Messserie 3, um einen Normierungsfaktor zu berechnen. Hier wurden daher nur 

die Daten innerhalb einer Messserien verglichen ohne vorherige Normierung. Bei Messserie 1 

(HS) hatten wir Daten aus der Kontrollgruppe und den Enzymgruppen Thrombin,  Tryptase, 

Cathepsin B und Elastase. In Messserie 2 (HS) wurden keine Kontrollwerte gemessen, so dass 

ein Vergleich zwischen den Enzymgruppen gewählt wurde.
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Einige  der  Enzyme  wurden  von  uns  in  einer  niedrigeren  und  einer  höheren  Aktivität 

appliziert,  woraus zwei  Versuchsserien  mit  ein  und dem selben  Enzym (Versuchsgruppe) 

resultierten.  Für die statistische Evaluierung wurden die zwei Versuchsserien in der Regel 

zusammengelegt.  Durch die  höhere  n-Zahl  bei  Zusammenlegung  hofften wir,  eine höhere 

Aussagekraft zu erhalten.

4.3 Zeitliches Auswaschverhalten

Die  Bestandteile  der  EG  sind  über  die  Dicke  der  EG  unterschiedlich  verteilt.  An  der 

Oberfläche der Endothelzellen ist die EG besonders dicht, da dort die Synthese hoch ist. HS 

ist am stärksten an der luminalen Seite der EG vertreten, wodurch sich das Auswaschen im 

koronaren Effluat  gut erklären lässt [Gao et al., 2010].  Syndekan ist als transmembranöses 

Molekül  an  der  apikalen  Endotheloberfläche  gut  verankert.  HA  ist  nur  über  die 

Adhäsionsmoleküle/Rezeptoren CD 44 an die Zelloberfläche gebunden. In Richtung Lumen 

kommt es durch den ständigen Blutfluss zu einem Herauslösen von HA aus der EG.

Das Auswaschverhalten von Syndekan und HA über die Zeit bei Kontrollherzen wurde  mit 

der  Messserie  3  ausgewertet,  da  hier  die  Daten  mit  jeweils  einem Kit  derselben  Charge 

bestimmt waren und keine Normierung innerhalb der Herzreihe notwendig war. 

4.3.1 Syndekan

Syndekan zeigte ein zeitlich konstantes „basales“ Auswaschverhalten auf niedrigem Niveau, 

was sich durch die feste Bindung mit dem transmembranen Teil von Syndekan erklären lässt. 

Syndekan ist  somit von der Endothelzellmembran  nur schwer lösbar.  Bei normotoner  und 

normoxischer Perfusion der Herzen erfolgte offensichtlich keine nennenswerte Aktivierung 

endogener  Sheddasen.  Diese  Aussage  wird  auch  durch  den  Vergleich  der  Basalwerte vs. 

Messzeitpunkt 5.3  bestätigt,  bei  dem  keine  signifikante  Änderung  vor  und  nach  dem 

Auswasch  der  getesteten  Enzyme zu sehen  war (siehe  Tabelle  16).  Dieses  Ergebnis  wird 

durch die Studie von Chappell  et  al.  [Chappell  et  al.,  2008a] gestützt,  die keinen  zeitlich 

veränderten  Auswasch  von  Syndekan  selbst  bei  Behandlung  der  Herzen  mit  Heparinase 

fanden.

4.3.2 Hyaluronsäure

Bei  unseren  Daten  zeigte  sich  kein  statistisch  signifikanter Auswasch über  die  Zeit,  was 

durchaus verwunderlich ist, da HA nicht über PG an die Zellmembran gebunden ist, sondern 
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zum Teil nur locker in die EG eingewebt ist (Abb. 1). Daraus kann man schließen, dass es 

auch bei HA zu einem pathologischen Vorgang im Körper wie z.B.  Entzündung kommen 

muss, bevor HA aus der EG gelöst wird. Allerdings lässt sich die HA verhältnismäßig leicht 

aus der EG lösen,  da wir bei  Gabe mehrerer Enzyme eine erhöhte Menge im Effluat zeigen 

konnten (Cathepsin B, Elastase, Thrombin, Proteinase 3 und Hyaluronidase). Der mit Abstand 

deutlichste Anstieg ließ sich mit Hyaluronidase hervorrufen. Hier konnten Werte bis zum 160-

fachen des Basalwertes gemessen werden, während bei den anderen Enzymen eine maximale 

Erhöhung um das 7-fache zu sehen war (siehe Tabelle 20). 

4.3.3 Heparansulfat

Bei HS war ein Vorgehen wie bei Syndekan und HA nicht möglich. Stattdessen zogen wir die 

Zeitverlaufswerte  (5.1-5.3)  aus  Messserie  1  heran  und  konnten  aus  diesen  ein 

Auswaschverhalten ableiten (siehe Tabelle 15). 

Heparansulfat  ist  als  Seitenkette  an  Syndekan  und andere Oberflächenmoleküle gebunden 

[Pahakis et al., 2007,  Reitsma et al., 2007].  Der Vorgang der Isolierung der Versuchsherzen 

kann  zu  einem  partiellen  transienten  Sheddding  führen.  Die  Organentnahme  und  die 

Präparation ist  mit  einer kurzen Ischämie und Stase des koronaren Blutflusses verbunden. 

Beides kann zur Aktivierung von  Mastzellen führen [Fitzgerald et  al.,  2000,  Gilles et  al.,

2003].  Diese enthalten nachweislich die Lyase Heparanase, die imstande ist, HS spezifisch 

abzulösen [Becker et al., 2010b].

4.4 Shedding 

4.4.1 Syndekan

Für  Syndekan  konnte  weder  ein  Auswasch  noch  ein  signifikantes  Shedding  mit  den 

verwendeten  Enzymen  gezeigt werden.  Es  kam  zwar  zu  geringfügig unterschiedlichen 

Syndekanmengen, aber nicht zu einem eindeutigen Anstieg wie bei HA unter dem Einfluss 

von Hyaluronidase. Für die Enzyme Thrombin, Plasmin und Elastase berichteten Fitzgerald et 

al.  über  ein Shedding von Syndekan [Fitzgerald et al., 2000]. Dieses Ergebnis  ließ sich in 

unserer  Studie  nicht  verifizieren,  jedenfalls  nicht  bei  den  verwendeten  Enzymaktivitäten. 

Sollte ein Shedding von Syndekan durch Thrombin, Plasmin und Elastase passieren, dürfte 
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dieses  Shedding  nur  eine  untergeordnete  Rolle  spielen und  diese  Enzyme  keine 

Hauptsheddasen für Syndekan darstellen.

Ein  dynamisches  Gleichgewicht  aus  Abbau und Synthese  von EG Bestandteilen  führt  zu 

einem basalen Syndekanspiegel im Blut unter physiologischen Bedingungen [Annecke et al.,

2010,  Chappell  et  al.,  2008b,  Reitsma  et  al.,  2007].  Dies  bewirkt physiologische 

Schwankungen  der  Syndekanmengen  im Effluat  und  erklärt auch  die  Ergebnisse  unserer 

Studie. 

4.4.2 Hyaluronsäure

Im  Vergleich  zwischen  Basalwert  und  Messzeitpunkt  5.3  konnte  man  bei  der 

Hyaluronidaseinfusion einen eindeutigen Anstieg von HA im Effluat erkennen (siehe Tabelle

17), wohingegen bei der Kontrollgruppe die Veränderung insignifikant blieb. 

Hyaluronidase wurde in dieser Arbeit als Positivkontrolle verwendet, da ein Shedding von HA 

durch  Hyaluronidase  bereits  nachgewiesen  wurde  [Gao et  al.,  2010,  Henry et  al.,  1999]. 

Außerdem konnte durch das signifikante Ergebnis gezeigt werden, dass der Versuchsansatz 

und die Datenauswertung mit Konzentrierung  der Proben und Normierung  der Messserien 

eindeutige Veränderungen durch Shedding sehr wohl erfasst.

Ein direkter Angriff von Proteasen auf das polyglykosidische Molekül HA ist ausgeschlossen. 

HA ist jedoch nicht wie Syndekan und HS direkt bzw. indirekt durch einen transmembranen 

Anker mit der Zelloberfläche verbunden, sondern an ein endotheliales Rezeptorprotein CD44 

gebunden  (Abb.  1).  Theoretisch  könnten  Proteasen  durch  Zerstörung  von  CD44  eine 

Ablösung von HA bewirken. Tatsächlich wird HA durch mehrere der hier getesteten Enzyme 

(Cathepsin B,  Elastase,  Thrombin,  Proteinase  3 und Hyaluronidase)  verstärkt  aus  der  EG 

gelöst  (Tabelle 20). Damit wird das luminale Netz der EG ausgedünnt und Makromoleküle 

können  tiefer  in  die  EG  eindringen  [Henry  et  al.,  1999].  Eine  Adhäsion  von  Blutzellen 

(Thrombozyten, Leukozyten, Erythrozyten) ist leichter möglich. Da die Adhäsion von Zellen 

eine wichtige Rolle bei  Entzündungsprozessen und Koagulation spielt, macht es Sinn, diese 

physiologischen Vorgänge im Körper so zu ermöglichen, ohne dabei die komplette EG zu 

entfernen. Dies könnte auch eine Art der Reaktionsmodulation sein,  bei der nur eine kleine 

Anzahl an Rezeptoren für die Adhäsion freigelegt werden.
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4.4.3 Heparansulfat

Die über glykosidische Bindung an Syndekan gekoppelten Heparansulfatketten können nicht 

direkt  von  Proteasen  abgespalten  werden.  Denkbar  wäre  ein  „piecemeal“  Abbau  von 

Syndekanprotein oder eine indirekte Aktivierung von endogenen Heparanasen im Myokard.

Im  Fall  von  Heparansulfat  waren  die  Vergleiche  Basalwert  mit  Mzp  5.3  innerhalb  einer 

Versuchsgruppe in Messserie 2 ausführbar, obwohl ein Vergleich mit der Kontrollgruppe nicht 

möglich  war.  Interessanterweise  zeigten  die  meisten  Versuchsgruppen  in  Messserie  2 

(Thrombin, Tryptase, Cathepsin B, Hyaluronidase, tPA, Elastase) eine ähnliche Tendenz zur 

Absenkung der HS-Menge im Effluat. Man muss also davon ausgehen, dass es keine potenten 

Sheddasen für HS bei den Proteasen gibt mit einer Wirkung, die 5 – 10 Minuten nach Ende 

der Applikation anhält (siehe Tabelle 18). Da die Werte im Effluat nach Applikation bei sechs 

von acht Enzymen eher absanken, spricht dies auch für einen  spontanen  Auswasch von HS 

über die Zeit, dessen Geschwindigkeit gleich nach der Herzpräperation wohl am höchsten sein 

dürfte.  Die  Werte  aus  der  Messserie  1  erlaubten  den  Vergleich  zwischen  einigen 

Versuchsgruppen  mit  der  Kontrollgruppe  hinsichtlich  der Zeitverlaufsmittelwerte  (siehe 

Tabelle 21). Es zeigten sich für Cathepsin B und Elastase signifikant erhöhte Werte für HS im 

Effluat.  Elastase  als  Serinprotease  aus  neutrophilen  Granulozyten  und  Cathepsin  B  als 

Cysteinprotease ubiquitär vorkommend in allen Körperzellen, spielen beide bei entzündlichen 

Vorgängen im Körper eine Rolle. Ein Shedding führt zur Adhäsion von Entzündungszellen, 

wodurch eine Migration dieser in das Gewebe ermöglicht wird und die Entzündungsreaktion 

ihren Lauf  nimmt  [Becker  et  al.,  2010a,  Chappell  et  al.,  2010,  Jacob et  al.,  2009].  Auch 

wirken abgetrennte HS-Teile chemotaktisch für weitere Entzündungsmediatoren, die dann den 

Entzündungsprozess verstärken [Chappell et al., 2008b,  Götte, 2003, Parish, 2006]. So macht 

es durchaus Sinn, bei Elastase und Cathepsin B ein Shedding zu beobachten. Festzuhalten ist 

allerdings, dass das Ausmaß des induzierten Shedding gering war im Vergleich zur Wirkung 

des Enzyms Heparinase  [Chappell et al., 2008a]. Ungeklärt bleibt, genau wie Elastase und 

Cathepsin B eine Abspaltung von Heparansulfat aus der Glykokalyx bewerkstelligen. Möglich 

wäre eine Zerstückelung der Syndekan-Proteinkette (piecemeal degradation), die als Träger 

der  Heparansulfate  fungiert  oder  die  Aktivierung/Degranulation  von  Mastzellen,  die  im 

Herzen der  natürliche Speicher  von Heparanase sind  [Wang et  al.,  2011].  Diesbezügliche 

Untersuchungen stehen noch aus. 
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4.5 Transsudat und Koronarfluss

Transsudatveränderungen  sind ein  Hinweis für  die  Veränderung  der  hydraulischen 

Leitfähigkeit und Permeabilität der EG. Ist die EG intakt, dann tritt wenig Flüssigkeit aus dem 

Lumen in das Gewebe, in unserem Fall an die Herzoberfläche. Ist die EG in ihrer Intigrität 

gestört, dann kommt es zu einem verstärkten Austritt der intraluminalen Flüssigkeit an die 

Herzoberfläche. Wir konnten zeigen, dass es bei allen Versuchsgruppen im Laufe der Zeit zu 

einem Transsudatanstieg kam. Zu einem signifikanten Anstieg kam es allerdings nur bei der 

Positivkontrolle  Hyaluronidase  (siehe  Tabelle  7).  Dieses  Ergebnis  passt  zu  den 

Auswaschbefunden,  da  wir  keine  wirkliche  Sheddase  (außer  Hyaluronidase)  unter  den 

verwendeten Enzymen fanden (siehe Kapitel 3.2.2).

Die EG bildete mit Plasmabestandteilen,  v.a.  mit  Albumin die ESL,  welche eine wichtige 

Rolle bei der Barrierefunktion der EG spielt  [Jacob et al., 2007,  Reitsma et al., 2007]. Die 

verwendete Krebs-Henseleit-Pufferlösung beinhaltet aber keine Plasmabestandteile und auch 

kein  Albumin  (Tabelle  1).  Die  Barriere  ist  also  in  unseren  Versuchen nur  durch  die  EG, 

restliche  Plasmaproteine und  Endothelzellen  bedingt. Ein  steter  Verlust  an 

Plasmabestandteilen und der geringfügige aber messbare Auswasch von EG-Komponenten 

kann zum  Anstieg  der  Transsudatmenge  mit  der  Zeit  führen  und  stellt  eine  mögliche 

Erklärung für unsere diesbezüglichen Ergebnisse dar. 

Die Hyaluronsäure vernetzt  die  GAG-PG Elemente der  EG miteinander  und bildet so ein 

stabiles  Netz  an  der  luminalen  Seite  [Reitsma  et  al.,  2007],  das  für  Makromoleküle 

undurchlässig  ist.  Wird  HA  entfernt,  kommt  es  zu  einem  tieferen  Eindringen  von 

Makromolekülen in  die  EG, da sich  das  Netzwerk  an GAG-PG auflockert  [Henry et  al.,

1999]. Zusätzlich steigt die hydraulische Leitfähigkeit.

Betrachtete man den CF, konnte man sehen, dass keines der Enzyme den CF beeinflusste. 

Dies ist kein trivialer Befund, denn Konstanz des Flusses und des Perfusionsdrucks in den 

Herzpräparaten bedeutet,  dass Transsudatbildung  ausschließlich von den Eigenschaften der 

vaskulären Wandbarriere abhängt.

4.6 ELISA-Tests

Eine  der  Hauptherausforderungen  der  Arbeit  stellten  die  divergierenden  Ergebnisse  der 

Messserien dar. Obwohl alle  Proben mit dem gleichen Verfahren konzentriert und dann mit 

den gleichen Kits gemessen wurden, waren die Abweichungen der unterschiedlichen Chargen 
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so bedeutend, dass eine Normierung der Werteniveaus notwendig wurde, ohne die qualitative 

Aussage der Messungen zu verändern.

Andere Arbeitsgruppen [Chappell et al., 2008a, Chappell et al., 2009, Chappell et al., 2011] 

verwendeten die ELISA-Kits der gleichen Hersteller, ohne diese Probleme  anzugeben.  Eine 

Erklärung dafür könnte das mehrmalige Einfrieren und Auftauen der Proben sein, zu dem wir 

aufgrund  des  Arbeitsablaufes  genötigt  waren. Eine  damit  verbundene  Veränderung  der 

Proteinstruktur (Denaturierung) könnte zu den verschiedenen Ergebnisniveaus in den ELISA-

Tests führen.

Ein wesentlicher Grund für die hier beobachteten Chargenunterschiede dürfte aber darin zu 

suchen sein, dass wir stets gezwungen waren, am untersten Ende der ELISA-Empfindlichkeit 

zu  messen.  Bei  hohen  Substratkonzentrationen  würden  diese  Abweichungen  gar  nicht 

auffallen.  Zu bedenken ist auch, dass die ELISA-Antikörper  der Kits alle gegen humanes 

Antigen entwickelt sind und nicht gegen Antigene des Meerschweins.

4.7 Schlussfolgerungen

Es  zeigte sich  letztendlich,  dass  ein  eindeutiges  Ergebnis  mit  deutlichem  Shedding  von 

Glykokalyx nur bei der Positivkontrolle Hyaluronidase für HA zu sehen war. Bei den anderen 

Enzymen bewirkt die Applikation keine wesentlich messbare Veränderung der Konzentration 

von EG-Bestandteilen im Effluat. Dennoch waren geringe Spiegel stets vorhanden. Es handelt 

sich vermutlich dabei um eine physiologische Ab- und Aufbaudynamik der EG, weshalb die 

Ergebnisse  teilweise  unterschiedlich  waren.  Das  Ausmaß  der  Schwankung  war  aber  um 

Größenordnungen kleiner als das durch das Enzym Hyaluronidase verursachte Shedding von 

HA.

Dass das  Shedding der  EG ein multifaktorielles  Geschehen in vivo ist,  wird auch in  der 

Literatur schon erwähnt und durch diese Arbeit bestätigt [Fitzgerald et al., 2000, Subramanian

et al., 1997].  Allein die Tatsache, dass es sowohl bei I/R, Diabetes und Arteriosklerose,  die 

alle sehr unterschiedliche Pathologien aufweisen,  wohl durch  eine strukturelle quantitative 

Veränderung der EG-Struktur zu den bekannten Krankheitsverläufen kommt, zeigt, dass es 

mehrere Möglichkeiten für den Abbau der EG geben muss [Grundmann et al., 2009].

Von den Serinproteasen und Cathepsin B versprachen wir uns viel als Sheddasen, haben aber 

nicht die eindeutigen Ergebnisse geliefert, die wir erwartet hatten. Es stellt sich also nach wie 
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vor die Frage, welche Proteasen das Shedding von Glykokalyxbestandteilen wie Syndekane 

bewirken.  Dabei  kann  an  Metalloproteinasen  (MP) aus  der  Familie  der  zinkabhängigen 

Endopeptidasen gedacht werden [Fitzgerald et al., 2000, Hayashida et al., 2009, Lipowsky et

al., 2011]. Manche Typen von MP sind in Vesikeln in Endothelzellen gespeichert und können 

dadurch lokal schnell freigesetzt werden [Fitzgerald et al., 2000, Lipowsky, 2011, Lipowsky

et  al.,  2011].  Eine verminderte  Leukozytenadhäsion  bei  Gabe  von 

Metalloproteinaseinhibitoren  könnte  als ein  indirekter  Hinweis für  die  Beteiligung  von 

Metalloproteinasen am Shedding erachtet werden [Lipowsky et al., 2011], da bei intakter EG 

keine Adhäsion möglich wäre [Jacob et al., 2009]. Die genaue zelluläre Signalkaskade, die zur 

Aktivierung der MP führt, ist noch nicht bekannt [Lipowsky et al., 2011].

Endo et al. [Endo et al., 2003] konnten zeigen, dass Matrix-Metalloproteinase-1 am Shedding 

von  Syndekan-1  beteiligt  ist und  das  ein  Shedding  von  Syndekan-1  zu  einer  erhöhten 

Zellmigration führt (z.B. bei Tumorprogression). 

Syndekan  lässt  sich  nicht  einfach  aus  der  Glykokalyx  lösen,  sondern  es  bedarf  eines 

spezifischen Reizes, z.B. Entzündungsvorgängen, um diesen Teil der EG zu entfernen. In der 

Literatur  gibt  es  Hinweise,  dass Syndekan  am Core-Protein  auf  der  luminalen  Seite  der 

Zellmembran abgespalten werden kann, vor allem durch Metalloproteinasen [Bernfield et al.,

1999, Endo et al., 2003, Fitzgerald et al., 2000, Park et al., 1999]. Auch konnte durch Bell et 

al. [Bell et al., 2013] gezeigt werden, dass MP-Inhibitoren wie Doxycyclin oder Tetracyclin 

eine kardioprotektive Wirkung haben. Nach einer Ischämiezeit, z.B. nach einen Herzinfarkt 

mit anschließender Reperfusion, war das Infarktareal nach Gabe von MP-Inhibitoren deutlich 

kleiner.  Die Aktivität von MP war vor allem in den ersten Minuten der Reperfusion erhöht 

und eine Inhibition von MP durch Doxycyclin führte zu einem reduzierten Infarktareal und 

damit zu einer besseren Prognose für den Patienten [Bell et al., 2013].  Diese benifiziellen 

Effekte könnten sehr wohl auf einem Erhalt der EG beruhen.

4.8 Ausblick

Gerade  in  Bereichen  der  Herzchirurgie  oder  nach  Myokardinfarkt  (MI)  mit  längeren 

Ischämiezeiten  und  Reperfusion  könnte  der  Erhalt  der  Glykokalyx  bei  der  Therapie  und 

Prävention  eine  wichtige  Rolle  einnehmen  und  den  postoperativen  Erfolg  der Patienten 

verbessern.  Bei Gabe von Doxycylin nach MI zeigte  sich eine verbesserte Prognose infolge 

verringerter Infarktareale.  Doxycylin  ist  ein  Tetracyclinantibiotikum,  das  eine  hemmende 

Wirkung auf MP hat. Außerdem ist es im klinischen Alltag leicht verfügbar und könnte durch 
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seine nachgewiesene Wirkung als Inhibitor von aktiven Sheddasen der EG [Lipowsky et al.,

2011] eine wichtige Rolle in der zukünftigen Therapie von I/R-Verletzungen spielen.

Der  Schutz  der  EG  durch  Gabe  von  z.B.  Proteinaseinhibitoren könnte  das  Risiko  für 

postoperative Komplikationen reduzieren. Auch bei Erkrankungen wie Diabetis mellitus und 

Arteriosklerose, bei denen die Zerstörung der EG als Pathogenese diskutiert wird, könnte ein 

Erhalt  dieser  Schicht  durch  Proteinaseinhibitoren ein  wichtiger  therapeutischer  Ansatz 

werden. Dennoch braucht es noch weitere Arbeiten um den Vorgang des Shedding verstehen 

zu können, damit weiterführende therapeutische Ansätze entwickelt werden können.
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5. Zusammenfassung

Die  endotheliale  Glykokalyx  findet  man  auf  allen  Gefäßendothelzellen,  so  auch  im 

Koronarsystem  des Herzens.  Ihre  Hauptbestandteile  sind  Syndekan,  Heparansulfat  und 

Hyaluronsäure.  Aufgrund  ihrer  scheinbar  nur  geringen  Dicke  wurde  ihr  lange  Zeit  keine 

Bedeutung zugeteilt, aber seit ca. 30 Jahren ist sie in den Fokus der Wissenschaft gerückt. 

Die EG spielt in vielen physiologischen und pathopysiologischen Abläufen im Körper eine 

modulierende Rolle. Sie verhindert die Extravasion von Wasser (Ödembildung), reguliert die 

Permeabilität von Makromolekülen und beteiligt sich an den Prozessen der  Hämostase und 

Inflammation.  Bei  Krankheiten  wie  Diabetes  mellitus  und Arteriosklerose  scheint  die  EG 

ebenfalls eine Rolle in der Pathogenese zu spielen.

Störungen  der  Glykokalyxfunktion  gehen  stets  mit  einem  enzymatischen  Abbau  der 

Bestandteile einher, ein Vorgang der als Shedding bezeichnet wird.

Um mögliche  „Sheddasen“  zu  identifizieren  verwendeten  wir Meerschweinchenherzen  in 

einem Langendorff-Versuchsaufbau und kontrollierter Perfusion mit Krebs-Henseleit-Puffer. 

Dabei  infundierten  wir  acht  unterschiedliche Enzyme  (Cathepsin  B,  Elastase,  Tryptase, 

Thrombin, tPA, PR3, Hyaluronidase und Plamin) über 10 Minuten direkt in die Aorta. Sowohl 

das  koronarvenöse Effluat  als  auch  das Transsudat  wurden  zu  bestimmten  Zeitpunkten 

gesammelt (Basalwert vor Enzymapplikation, 10 min während Enzymapplikation, 5 min nach 

Applikationsende  und  10  min  nach  Applikationsende).  Transsudat  bildet  sich  an  der 

epikardialen Herzoberfläche und stellt ein direktes Maß für die Nettoflüssigkeitsfiltration im 

Koronarsystem dar. Das Transsudat wurde gewogen und auf ml/min/Herzgewicht berechnet. 

Das Effluat wurde bis zur Bestimmung der Auswaschraten von Syndekan, Heparansulfat und 

Hyaluronsäure  mit  Hilfe  von  ELISA-Tests zu  einem  späteren  Zeitpunkt  eingefroren.  Die 

Auswaschraten (ng/min/Herzgewicht)  bei Enzymgabe  wurden dann  zu  Zeitkontrollen oder 

untereinander  in  Verhältnis  gesetzt,  um  eventuelle  Veränderungen  der  Auswaschraten 

bestimmen zu können.

Koronarfluss  und  Transsudatbildung  wurden  als  funktionelle  Parameter  betrachtet.  Der 

Koronarfluss  wurde  beobachtet,  um  Auswirkungen  (Vasodilatation, 

Lumendurchmesservergrößerung) eines  eventuellen Sheddings  durch  die  Enzyme  in Form 

von  Erhöhung  des  Koronarflusses zu  sehen.  Dabei wurde  der  Basalwert  mit  dem 

Messzeitpunkt 5.3 verglichen.
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Es konnte gezeigt werden, dass in der Kontrollgruppe und bei sechs von acht Enzymen kein 

signifikanter Koronarflussanstieg passierte. Bei Tryptase und Thrombin kam es sogar zu einer 

signifikanten Senkung der Koronarflussmenge pro Minute pro Herzgewicht um ca. 7% bzw. 

20%.

Ein  Anstieg  der  Transsudatmenge  im  Laufe  des  Versuchs  hätte  ein  Hinweis  für  ein 

Koronarleck darstellen können (Barrieredysfunktion der Gefäßwand). Auch hier wurde der 

Basalwert  mit  dem  Messzeitpunkt  5.3  verglichen.  Wir  konnten beobachten,  dass  nur 

Hyaluronidase (Positivkontrolle) zu einem Anstieg des Koronarlecks führte. 

Das  zeitabhängige  Auswaschverhalten  der  Glykokalyxhauptbestandteile  Syndekan, 

Hyaluronsäure und Heparansulfat wurde in der Kontrollgruppe untersucht. Es fand sich eine 

basale  Abgabe  aller  drei  Komponenten  im  Koronareffluat  (Syndekan  2,89  ng/min/g, 

Hyaluronsäure 21,75 ng/min/g , Heparansulfat 1057 ng/min/g). Syndekan und Hyaluronsäure 

zeigten kein Auswaschverhalten zusätzlich zum physiologischen Auswasch über die Zeit. Bei 

Heparansulfat war der Auswasch nach Präparation der Herzen hoch und nahm mit der Zeit 

deutlich ab.

Der Vergleich Basalwert mit den Messzeitpunkten 5 – 10 Minuten nach Enzymgabe wurde für 

die drei Glykokalyxbestandteile durchgeführt. Syndekan und Heparansulfat zeigten weder für 

die  Kontrollherzen  noch  für  die  enzymbehandelten Herzen  eine  signifikante 

Auswaschratenveränderung über die Zeit des Versuchablaufs.  Bei Hyaluronsäure führte nur 

die  Hyaluronidase  zu  einer  signifikanten  12-fachen Erhöhung.  Daraus  schlossen  wir  zum 

einen, dass  Hyaluronidase  als  „Positivkontrolle“  die  Eignung  unseres  Versuchsansatzes 

bestätigte  und zum anderen,  dass unter  den  sonstigen  getesteten Enzymen keine  potenten 

Sheddasen waren.

Um dies genauer zu  untersuchen, erfolgte ein Vergleich der Zeitverlaufsmittelwerte mit den 

Kontrollen und Enzymgruppen, wobei die Kontrollgruppe als Referenz galt. Für Syndekan 

konnte keines der verwendeten Enzyme ein Shedding bewirken, bei Hyaluronsäure war die 

Hyaluronidase  die  deutlichste  Sheddase  (160-fache  Steigerung),  wobei  auch Cathepsin  B, 

Elastase, Thrombin und Proteinase 3 zu einem weniger deutlichen Shedding (ca. 4 – 7-fach) 

führten.  Bei  HS  führten  Cathepsin  B  und  Elastase  überraschenderweise  zu  einem 

signifikanten (2-fach) Anstieg der Auswaschrate.
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Als Fazit gilt, dass keines der getesteten Enzyme außer der Positivkontrolle  Hyaluronidase 

sich als effektive Sheddase für die Bestandteile der EG herausgestellt  hat.  Möglicherweise 

sind  aber  die  Serinproteasen  und  die  Cysteinprotease  Cathepsin  B  in  der  Lage,  bei 

konzentrierter  Aktion  und  in  höheren  Aktivitäten  als  von  uns  getestet  als  unspezifische 

Sheddasen zu wirken. Die Ergebnisse dieser Studie unterstützen indirekt die in der Literatur 

vermutete  Beteiligung  von  Metalloproteinasen  an  der  Zerstörung  der  Glykokalyx  unter 

pathologischen Bedingungen.
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