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Abstract 

Excitatory glutamate signaling has received growing attention with respect to the 

emergence of mood disorders such as depression. To understand the involvement of this 

system in psychopathology, it is important to elucidate the molecular mechanisms that 

mediate potentially detrimental effects. In the current thesis, I investigated the role of 

Homer1, a postsynaptic scaffolding protein that links group I metabotropic glutamate 

receptors to intracellular target effectors, in stress-associated psychiatric disorders. I 

employed a model of social stress in mice that induces lasting and reproducible 

alterations on the behavioral and neuroendocrine level. I could show that Homer1 is 

dynamically regulated by acute and chronic social defeat stress and provided evidence 

that these regulations are directly connected to detrimental behavioral effects induced by 

stress. Activity of the hypothalamic-pituitary-adrenal axis, one of the major physiological 

systems involved in the stress response, was also modulated by Homer1, thereby further 

indicating the importance of Homer1-mediated signaling pathways during stressful 

challenges. In addition, I could show that Homer1 is critically involved in reward 

associated learning and behavior, especially with respect to the role of hippocampal 

Homer1, which has not been shown previously. I could also demonstrate the efficacy of 

novel metabotropic glutamate receptor 5 antagonists with respect to their antidepressant 

properties and their ability to reverse stress-induced behavioral alterations, both in acute 

and chronic treatment setups. The findings presented in this thesis provide a strong basis 

for further research investigating the mechanistic action of novel, glutamate-transmission 

based compounds that possess antidepressant-like properties.  
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Zusammenfassung 

In den letzten Jahren wurde eine Reihe von Studien veröffentlicht, die den Einfluss des 

stimulierenden Neurotransmitters Glutamat auf die Entstehung von psychiatrischen 

Erkrankungen beschreiben. In diesem Kontext ist es außerordentlich wichtig, dass die 

molekularen Grundlagen dieses Signalsystems aufgeklärt werden. In der vorliegenden 

Arbeit untersuche ich die Rolle von Homer1, einem postsynaptischen Gerüstprotein, 

welches metabotrope Glutamat-Rezeptoren mit intrazellulären Signalkaskaden verknüpft, 

im Kontext von Stress-induzierten Veränderungen im Verhalten und auf neuroendokriner 

Ebene. Dazu habe ich ein Modell für sozialen Stress in Mäusen genutzt, welches wichtige 

phänotypische Aspekte von psychiatrischen Erkrankungen gut widerspiegelt. Ich konnte 

zeigen, dass Homer1 dynamisch von Stress reguliert wird und dass diese Änderungen in 

der Transkription direkt mit negativen Änderungen auf der Verhaltensebene verknüpft 

sind, die durch Stress hervorgerufen werden. Die Regulation der Hypothalamus-

Hypophysen-Nebennieren-Achse kann ebenfalls von Homer1 moduliert werden, was die 

Bedeutung dieses Signalweges während Stress zusätzlich unterstreicht. Weiterhin konnte 

ich zeigen, dass Homer1 eine wichtige Rolle bei Verhaltensformen spielt, die mit 

Belohnungs-Lernen assoziiert sind. Hierbei konnte ich besonders die Beteiligung des 

Hippocampus in diesen Prozessen weiter hervorheben. Ebenfalls konnte in dieser Arbeit 

nachgewiesen werden, dass Substanzen die die Funktion des metabotropen Glutamat-

Rezeptors 5 unterbinden, auf präklinischer Ebene ähnlich wie Antidepressiva wirken. Die 

vorliegende Arbeit bietet daher eine exzellente Basis für weitere Forschungsarbeiten, die 

sich mit der Rolle von Glutamat in psychiatrischen Erkrankungen beschäftigen. 
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1. General introduction 

1.1. Conceptual and molecular basis of stress 

The concept of stress 

Modern language use is readily referring to the term stress when describing for example 

social and economic challenges, which are affecting individuals. Many people have 

established a rather clear picture of what it feels like to be stressed, and consequently aim 

for stress-relieving activities to counterbalance their perceived daily hassles. Interestingly, 

the concept of stress had not been used in physiological contexts until the 1930s, when 

the Canadian-Hungarian endocrinologist Hans Selye (1907 - 1982) formulated the 

hypothesis of the general adaptation syndrome (Selye, 1936). Selye was initially inspired 

by the work of the American physiologist Walter Cannon, who defined the term 

homeostasis as a balanced state of the body’s physiological parameters, such as pH and 

glucose levels, that are essential for survival (Cannon, 1932). A disturbance in these 

parameters by exterior influences consequently leads to the general adaptation 

syndrome that is initiated by an alarm reaction in which the organism tries to restore 

homeostasis and is followed by a resistance stage, where adaptation to the challenge is 

optimally sustained. Selye also identified a third stage of exhaustion, where the organism 

is no longer able to respond adequately to its environment which ultimately leads to 

illness. Further developing his concept, he later defined the term stress as “the state 

manifested by a specific syndrome, which consists of all the nonspecifically induced 

changes within a biologic system.”(Selye, 1956), thereby marking the beginning of the 

modern stress theory. In light of the scientific advancements on the field of stress 

research over the last decades, it became apparent that stress itself is not necessarily 

detrimental, but enables the individual to readily adapt to environmental challenges and 

prepare for future exposures (McEwen, 1998; McEwen, 2003). Successive work by Bruce 

McEwen further developed this concept of adaptation to physiological or behavioral 

challenges by the term allostasis which is defined as “the adaptive processes that 

maintain homeostasis through the production of mediators such as adrenalin, cortisol and 

other chemical messengers.” (McEwen, 2005). 
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Molecular pathways of the stress response 

There are two major systems involved in the stress response. On the one hand, the 

sympathetic arm of the autonomic nervous system is triggered within seconds following a 

stress exposure and results in increased energy mobilization, accelerated heart rate and 

elevated blood pressure (Koolhaas et al., 1999; Ulrich-Lai and Herman, 2009). This “fight 

or flight” response is mediated by the release of adrenaline and noradrenaline and 

enables the organism to quickly react to a threat. However, these alterations are of short 

duration due to the concomitant parasympathetic activation, which counteracts the 

sympathetic effects (Goldstein, 1987). 

 

 

Figure 1.1: Signaling pathway of the hypothalamic-pituitary-adrenal axis in the mouse. Upon stress 

exposure, a signaling cascade originating from the paraventricular nucleus of the hypothalamus (PVN) 

(Blue arrows) results in the peripheral release of corticosterone (Green arrows). At the same time, cort 

inhibits the continuous release of stress hormones by a negative feedback loop, which targets the 

pituitary and several sites in the central nervous system, including the hippocampus and the amygdala 

(Red arrows). These brain regions, together with the prefrontal cortex, have been shown to exert 

modulatory effects on the PVN via neuronal connections, which are both direct and indirect via other 

nuclei (Yellow arrows). PFC, prefrontal cortex; CA1, CA1 region of the hippocampus; CA2, CA2 region of 

the hippocampus; CA3, CA3 region of the hippocampus; DG, dentate gyrus; Amy, Amygdala; CRH, 

corticotropin-releasing hormone; AVP, arginine vasopressin; PPi, posterior lobe of the pituitary; ImPi, 

Intermediate lobe of the pituitary; AnPi, anterior lobe of the pituitary; AdCx, adrenal cortex; AdM, 

adrenal medulla; Cort, corticosterone. See text for further details.  
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On the other hand, the hypothalamic-pituitary-adrenal (HPA) axis provides a more long-

term reaction to a stressor, but the complex signaling cascades involved in the activation 

take some time to exert their effects on the individual (De Kloet et al., 1998) (Figure 1.1). 

Upon stress exposure, corticotropin-releasing hormone (CRH) and arginine vasopressin 

(AVP) are released from parvocellular neurons of the paraventricular nucleus of the 

hypothalamus (PVN) into the hypophyseal portal system and subsequently act on the 

anterior pituitary, where the synthesis of pro-opiomelanocortin (POMC) is stimulated 

(Sapolsky et al., 2000). POMC, in turn, is processed to adrenocorticotropic hormone 

(ACTH), which is then secreted from the anterior lobe of the pituitary and stimulates the 

release of glucocorticoids (GCs) from adrenal cortex cells of the adrenal glands. GCs, 

predominantly cortisol in humans and corticosterone in most rodents, then exert multiple 

effects on the individual, including cardiovascular activation as well as suppression of 

immune and digestive functions (Strehl et al., 2011). Furthermore, they are mainly 

responsible for the effective shutdown of the HPA axis activation in response to a stressor 

by acting in a negative feedback loop. In the PVN and the anterior pituitary, but also in 

other brain regions directly or indirectly connected to the PVN, GCs bind to their 

respective steroid receptors and thereby inhibit the secretion of the aforementioned 

hormones (De Kloet et al., 1998). 

The mineralocorticoid receptor (MR) is mainly expressed in limbic regions such as the 

hippocampus, the septum and the amygdala (Kolber et al., 2008) and has a high affinity 

for GCs, which suggests its prominent role in the regulation of basal HPA axis activity (De 

Kloet et al., 1993; Joëls and De Kloet, 1994; ter Horst et al., 2012). The glucocorticoid 

receptor (GR) is widely expressed throughout the brain and its binding affinity for GCs is 

10-fold less than MR, which results in increased GR occupancy when GC levels rise in 

response to HPA axis activity. Besides their role as mediators of the negative feedback on 

the HPA axis activity on the level of the PVN and the pituitary, GRs have also been shown 

to modulate the stress response in other brains regions such as the hippocampus and the 

amygdala (Joëls and Baram, 2009). Both receptors function as transcriptional regulators 

but also have recently been shown to modulate fast GC-dependent effects of the cell 

membrane. 
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Pathological impact of stress 

It is a well-established concept that an inappropriate or overextended stress response 

comes with energetic costs referred to as allostatic load, which in turn produces wear and 

tear on the regulatory systems of the body (McEwen, 2003; de Kloet et al., 2005). Such 

perturbations of the HPA axis have been strongly linked to the emergence of psychiatric 

disorders and render them a severe risk factor for pathology (Ising et al., 2007; El Hage et 

al., 2009). Since chronic exposure to stress is constantly activating the stress system of 

the organism, it comes as no surprise that individuals that are exposed to stress suffer 

from a higher risk to develop depression (Brown et al., 2004; Monroe and Reid, 2008). In 

this context, it has also been demonstrated that normalization of disturbed HPA axis 

activity is crucial for symptom improvement in depression (Ising and Holsboer, 2006). 

Starting already in early life, traumatic events have been associated with an increased risk 

for depression, depending on the number and intensity of the stressor (Heim and 

Nemeroff, 2001; Heim et al., 2008; Klengel et al., 2013). Similarly, chronic stress exposure 

in adulthood can shift the individual’s response from adaptive to detrimental and may 

subsequently lead to psychiatric pathologies, such as post-traumatic stress disorder or 

depression (Mehta and Binder, 2012). In this context, the genetic makeup of the 

individual has also been demonstrated to play an important role in the emergence of such 

diseases, with strong evidence for interactions between the genotype and the 

environment that is experienced (Dunn et al., 2011; Heim and Binder, 2012). Further 

reviewing this line of argumentation, recent evidence also proposes that individuals adapt 

their physiology to the perceived environment, and thus a mismatch between early life 

and adult environment increases disease risk (Schmidt, 2011; Nederhof and Schmidt, 

2012). Nonetheless, the underlying molecular mechanisms of stress in the emergence of 

depression, both detrimental and beneficial, have remained largely elusive and constitute 

a major obstacle in the development of novel pharmaceutical treatment options. 
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1.2. Depression and the current state of treatment 

The lifetime prevalence of depression in the United States has been estimated at 20%, a 

number that emphasizes the impact that mood disorders, with depression leading the 

way, exert on western societies (Kessler et al., 2012). Next to the personal consequences 

for the individual concerned, depression also has major implications on the economic 

level, with e.g. long-term disability or suicide attempts causing costs in the range of 

billions (Wittchen et al., 2011). 

Based on these observations, the improvement of treatment options for mood disorders 

has become one of the most important scientific research avenues. Current widespread 

therapies apply psychotherapy as well as pharmacotherapy. Nevertheless, 

pharmacological treatment options suffer from severe side effects, mediocre response 

rates and unsatisfactory relapse rates (Rush et al., 2006; Thase, 2006; Trivedi et al., 2006). 

Pharmacological intervention to-date has mainly focused on the monoamine hypothesis 

of depression, which emphasizes a deficiency of monoaminergic neurotransmitters such 

as serotonin and noradrenaline as a major molecular point of origin for the development 

of depression (Hirschfeld, 2000). Indeed, chemical compounds such as monoamine 

oxidase inhibitors, tricyclic antidepressants or selective serotonin reuptake inhibitors 

(SSRIs) have been shown to positively affect mood in depressed patients (Hirschfeld, 

2012). Further research led to the development of various compounds based on the same 

molecular approach, such as Serotonin-norepinephrine reuptake inhibitors (SNRIs), 

Norepinephrine-dopamine reuptake inhibitors (NDRIs) or Serotonin antagonist and 

reuptake inhibitors (SARIs), which incorporated increased efficacy with reduced side 

effects. The main mechanistic effect of these drugs is to increase the amount of available 

monoamines in the synaptic cleft and these molecular actions take place within hours 

after application of the drug. However, a mood-alleviating effect is usually not detected 

until several weeks of treatment (Hyman and Nestler, 1996). Extensive research in this 

field led to the hypothesis that several neuroplastic mechanisms, including changes in 

gene expression, synaptic transmission and neurogenesis, are induced by 

pharmacotherapy and, over time, produce the beneficial effects that were previously 

ascribed to increased monoamine availability (Racagni and Popoli, 2008). These findings 

illustrate that modulation of monoaminergic signaling alone is not sufficient to explain 

the complex pathology of depression. Consequently, recent investigations have 
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concentrated on targeting other neurotransmitter systems, with glutamatergic signaling 

becoming one of the most promising candidates in depression research (Sanacora et al., 

2012). 

  



1.3  General introduction 

 

 
7 

1.3. The glutamate system 

Organization of the glutamate synapse 

It is estimated that glutamatergic synapses make up more than 70% of all synapses, 

indicating that this neurotransmitter system is by far the most prevalent in the brain 

(Orrego and Villanueva, 1993; Douglas and Martin, 2007). Initially, glutamate is 

synthesized from α-ketoglutarate and then packaged in vesicles in the presynapse, one 

part of the tripartite glutamatergic synapse, which furthermore consists of the 

postsynaptic density (PSD) as well as glia (Machado-Vieira et al., 2009; Machado-Vieira et 

al., 2012). Since overexposure to high glutamate levels has toxic effects on the synapse, 

glutamate signaling is tightly regulated on different levels. In response to a presynaptic 

stimulus, glutamate is released from presynaptic vesicles into the synaptic cleft, where it 

binds to and activates both postsynaptic iono- and metabotropic receptors. The 

neurotransmitter is then taken up by astrocytes, converted to glutamine and transported 

back to the presynaptic compartment (Sanacora et al., 2008). 

The two major ionotropic receptors of the glutamate synapse are N-methyl-D-aspartate 

(NMDA) receptors and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid 

(AMPA) receptors. Kainate receptors are also expressed at glutamate synapses, but are 

less frequent in the brain and therefore supposed to exert only minor effects on synaptic 

signaling and plasticity compared to AMPA receptors (Huettner, 2003). Furthermore, 

there are eight G-protein coupled receptors that have been identified in glutamate 

signaling, which are subdivided into three functional subgroups (Table 1.1). All 

metabotropic glutamate receptors (mGluRs) consist of seven transmembrane spanning 

domains and a large N-terminus extracellular domain, which includes a ligand-recognition 

site as well as an intracellular carboxy terminal region that mediates postsynaptic 

signaling (Witkin et al., 2007). Group I mGluRs positively modulate phospholipase C 

activity, thereby increasing phosphoinositide turnover while group II and III mGluRs 

negatively regulate adenylyl cyclase activity, thereby inhibiting cyclic AMP formation 

(Cartmell and Schoepp, 2000). These effects, in conjunction with their localization on all 

three parts of the synapse, make mGluRs important, predominantly indirect modulators 

of glutamatergic signaling. In addition to receptors, glutamate transporters such as 

excitatory amino acid transporters (EAATs) and vesicular glutamate transporters (VGLUTs) 
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directly impact excitatory neurotransmission by regulating the availability of glutamate in 

the synaptic cleft and may therefore also represent potential therapeutic targets 

(Sanacora et al., 2008; Machado-Vieira et al., 2012).  

 

 

Table 1.1: Overview of different metabotropic receptor subtypes. CNS, central nervous system. Adapted 

from Niswender and Conn, 2010 

 

Glutamate signaling and mood disorders 

Dysfunction of glutamate signaling has been described in the context of various disorders, 

including Alzheimer’s disease, epilepsy, schizophrenia as well as anxiety and mood 

disorders (Parsons et al., 1998; Francis, 2003; Cortese and Phan, 2005). In individuals 

suffering from mood disorders, abnormal levels of glutamate have been shown to be 

present in the plasma, serum and the brain (Francis et al., 1989; Mauri et al., 1998), 

strongly suggesting that disturbed glutamate signaling may be a key mechanism in these 

disorders. Furthermore, a number of studies provide evidence that altered NMDA 

receptor levels and binding properties are associated with the emergence of mood 

disorders (Choudary et al., 2005; Beneyto and Meador-Woodruff, 2008). This is 
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accompanied by genetic studies that identified single nucleotide polymorphisms in NMDA 

receptor subunits, which are linked to psychopathology (Mundo et al., 2003; Martucci et 

al., 2006).  

A multitude of NMDA receptor modulating agents have been tested in both clinical and 

preclinical setups for their mood-alleviating efficacy (Sanacora et al., 2008; Fricker et al., 

2009; Burgdorf et al., 2013). The most prominent potential treatment option emerging 

from these studies is ketamine, a non-competitive NMDA receptor antagonist. Ketamine 

has been demonstrated to exert strong antidepressant and anxiolytic effects in animal 

models (Garcia et al., 2008a; Garcia et al., 2008b), which are also dependent on AMPA 

receptor activation (Maeng et al., 2008). In clinical trials, ketamine demonstrated rapid 

antidepressant effects in patients with treatment resistant major depression (Zarate, Jr. 

et al., 2006) and was also able to reduce suicidality (Price et al., 2009). However, the 

severe side effects after repeated exposure, including cognitive deficits and 

psychotomimetic effects, render ketamine largely unsuitable for chronic treatments (Tsai, 

2007). According to studies that elucidated the molecular mechanism of ketamine’s 

antidepressant effect, a blockade of NMDA receptors subsequently leads to increased 

AMPA signaling relative to NMDA-mediated throughput (Maeng et al., 2008). Positive 

AMPA receptor modulators have therefore also been proposed to act as antidepressant 

treatment, and animal studies support this hypothesis (Li et al., 2001; Bai et al., 2003; 

Black, 2005). Interestingly, AMPA receptor function potentiators have also been 

demonstrated to prevent chronic stress-induced cognitive deficits (Schmidt et al., 2010). 

Although clinical studies implicate an association between decreased AMPA receptor 

levels and mood disorders (Meador-Woodruff et al., 2001; Beneyto and Meador-

Woodruff, 2006), well-controlled clinical trials have only recently begun testing 

therapeutic agents for their possible antidepressant potential (Nations et al., 2012a; 

Nations et al., 2012b).  

Although the molecular mechanics of mGluRs are relatively well understood, their role in 

the pathology of mood disorders has not been as clearly demonstrated as the previously 

described ionotropic receptors. There are only few reports that correlate differences in 

mGluR expression with psychopathology, therefore evidence for their involvement has 

been demonstrated largely preclinical, as various mGluR ligands show a certain level of 

efficacy in animal models of mood disorders (Palucha and Pilc, 2007; Krystal et al., 2010). 
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Group II mGluRs are mostly located at the presynapse, and have a regulatory influence on 

glutamate release, thereby making them ideal targets for potential antidepressant 

treatments. Indeed, mGlUR2/3 ligands have been demonstrated to exert both 

antidepressant and anxiolytic effects, which are hypothesized to be mediated by AMPA 

signaling (Karasawa et al., 2005).  

By contrast, mGluR1 and mGluR5 are mostly expressed at the postsynapse and have been 

shown to strongly modulate postsynaptic excitability by interacting with NMDA receptors 

(Pilc et al., 2008). In particular mGluR1/5 antagonists such as 2-Methyl-6-(phenylethynyl)-

pyridine (MPEP) and 3-((2-Methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP) have been 

tested in preclinical settings and exhibited strong anxiolytic effects as well as potential 

antidepressant-like properties (Marino and Conn, 2006). Fenobam, another mGluR5 

antagonist, has also been tested in a clinical study, where it proved to have anxiolytic 

effects as well (Porter et al., 2005). However, the antidepressant-like effects of these 

drugs have mostly been derived from results obtained in the forced swim test (FST). 

Although this test is one of the most popular screenings for antidepressant-like properties 

in animal models, further lines of investigation are needed to support these findings (Li et 

al., 2006; Molina-Hernández et al., 2008). As a mode of action, the modulation of NMDA 

receptor signaling by mGluR5 via postsynaptic scaffolding proteins has been proposed, 

but the precise molecular mechanisms of these behavioral effects are yet to be revealed 

(Krystal et al., 2010).  

The protein complex in the PSD that links the intracellular part of mGluRs to NMDA and 

AMPA receptors is an intricate aggregate of several proteins, including PSD-95, guanylate 

kinase-associated protein (GKAP), Shank and Homer (Tu et al., 1999; Naisbitt et al., 1999). 

Several additional regulatory factors that modulate the function of this complex have 

been identified and further increase the complexity of this signaling pathway (Hu et al., 

2012; Gao et al., 2013). Understanding the molecular underpinnings of this postsynaptic 

machinery may tremendously increase our knowledge on the genesis of psychiatric 

disorders such as depression as well as contribute to the development of novel treatment 

strategies. 
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1.4. The postsynaptic scaffold Homer1 

Structure and function of Homer family proteins  

One of the major scaffolds in the glutamatergic PSD belongs to the Homer protein family. 

There are three major members (Homer1, Homer2, and Homer3) and each of them are 

expressed as a different isoform that originates from alternative splicing. Interestingly, 

although their protein structure is similar, their respective genes are located on different 

chromosomes, indicating a certain independence from one another.  

 

 

Figure 1.2: Schematic primary structure of different Homer proteins. All Homers consist of an 

enabled/vasodilator-stimulated phosphoprotein homology 1 (EVH1) like domain (Blue), which is highly 

conserved. Homer1 isoforms also show a P-motif (Yellow). Homer1a misses a coiled-coil domain with two 

leucine zipper (LzipA/B) sites (Red), which is present in all long-form Homer proteins, yet their sequence 

similarity is only 30% (Green, purple, pink). The total number of amino-acids is depicted to the right. For 

additional transcription variants, also refer to Shiraishi et al., 2007. 

 

All members of the Homer protein family share two main structural features (Figure 1.2): 

The amino-terminal domain is highly conserved and shows 80% sequence similarity 

between isoforms (Xiao et al., 1998; Kato et al., 1998). The carboxy-terminal domain 

contains a coiled-coil structure and two leucine zipper motifs that have been shown to 

mediate multimerization (Hayashi et al., 2006), but its structure only shows 30% similarity 

across the protein family (Sun et al., 1998; Tadokoro et al., 1999). The ligand-binding 

amino-terminal domain is highly similar to the enabled/vasodilator-stimulated 

phosphoprotein homology 1 (EVH1) domain and interacts with amino-acid sequences of 

the form Pro-Pro-x-x-Phe (Brakeman et al., 1997; Tu et al., 1999), which enables Homer to 

bind to a number of proteins, including mGluR5, Shank and inositol-triphosphate (IP3) 

receptor types 1 and 3 (Tu et al., 1998; Tu et al., 1999). Homer proteins are widely 

expressed both in the brain and the periphery (Shiraishi-Yamaguchi and Furuichi, 2007). 

Studies in mice have also shown that Homers play an important role in the postnatal 
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development of mice, where distinct expression patterns in different brain regions occur 

(Shiraishi et al., 2004). The major isoforms of Homer proteins, consisting of both an EVH1-

like and carboxy-terminal domain, are constitutively expressed in several brain regions. 

However, there is also an isoform of Homer1 labeled Homer1a that is missing the coiled-

coil structure required for multimerization, which is induced upon environmental 

manipulations (Brakeman et al., 1997; Kato et al., 1997). Homer1a can therefore compete 

for EVH1-like binding sites with long-form Homer1 isoforms like Homer1b and Homer1c, 

which are usually detected concurrently (Shiraishi-Yamaguchi and Furuichi, 2007).  

The specific isoforms of Homer1 have been demonstrated to be involved in a number of 

molecular processes in the glutamatergic PSD. Most prominently, Homer1b/c links 

mGluR5 to intracellular IP3 receptors, thereby modulating intracellular Ca2+ currents in 

response to excitatory signaling (Tu et al., 1998; Yuan et al., 2003). Additionally, long-form 

Homer1b/c mediates kinase activity (Park et al., 2008) and NMDA receptor excitability 

through a protein complex containing Shank, GKAP and PSD-95 (Tu et al., 1999; Hayashi 

et al., 2009; Bertaso et al., 2010). Cell surface expression and clustering of type I mGluRs 

has been shown to be dynamically regulated by both Homer1b/c (Inhibition) and 

Homer1a (Facilitation) (Roche et al., 1999; Ango et al., 2002). Furthermore, Homer1 has 

also been demonstrated to affect synapse formation and maturation by modulating PSD 

complex integrity and Ca2+ signaling (Ango et al., 2000; Gasperini et al., 2009; Grabrucker 

et al., 2011).  

 

Behavioral implications of Homer1 

Given the importance of Homer1 on the molecular level, it is not surprising that a 

manipulation of Homer1 in animal models profoundly impacts behavior. Most strikingly, 

both short and long Homer1 isoforms are crucially involved in addiction behavior 

(Szumlinski et al., 2006; Szumlinski et al., 2008). A great number of studies also showed 

the involvement of Homer1 in memory processes. In Homer1 knockout animals, memory 

impairments were detected that could be rescued by reinstating functional Homer1b/c 

(Klugmann et al., 2005; Gerstein et al., 2012). By contrast, overexpression of Homer1a 

exerts detrimental effects on memory formation in spatial recognition tasks (Celikel et al., 

2007), but has been shown to be crucial for functional fear memory formation (Mahan et 

al., 2012). Another study from Tronson and colleagues implicated an intricate interplay 
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between Homer1b/c and Homer1a in stress-enhanced fear memory, where select 

overexpression of Homer1a mimicked the effects of an acute stressor on fear 

conditioning (Tronson et al., 2010). Given these findings, it is likely that Homer1 mediated 

pathways play a major role in stress coping mechanisms, both on the molecular and 

behavioral level. Interestingly, except for the aforementioned publication, no studies 

have yet reported on the role for Homer1 in the context of acute and chronic stress.  
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1.5. Modeling mood disorders in rodents 

The apparent complexity of a mood disorder such as depression on the physiological, 

psychological and molecular level poses a significant challenge for animal models that are 

developed to mimic the situation in humans. Following a scientific rationale, a model 

organism should be as closely related to the human as possible (i.e. non-human 

primates), while ethical reasons speak in favor of organisms with less developed nervous 

systems. As a compromise, small rodents are widely used to model psychiatric diseases. 

Nonetheless, it remains unknown whether rats or mice can actually develop a depression-

like disease, as most core features of this pathology, which are verbally communicated by 

patients, cannot be measured at all or only as crude approximations in rodents. Willner 

and colleagues have therefore devised a framework of criteria, which should be fulfilled 

by a potential animal model (Willner, 1984) (Figure 1.3). The most obvious criterion is 

face validity, which describes the similarity of disease symptoms in humans and rodents. 

In the case of depression, these include for example impaired cognitive function, HPA axis 

dysregulation or anhedonic behavior (Willner and Mitchell, 2002; Müller and Holsboer, 

2006; Kalueff and Murphy, 2007). Another important criterion is the construct validity of 

the animal model, which aims to mimic the underlying factors that are present in the 

disease, such as environmental or genetic risk factors. The third validity criterion assesses 

the predictive power of an animal model, meaning that treatments, which have been 

shown to be effective in humans should also effectively reverse the disease-related 

parameters in the given animal model (Broekkamp, 1997). To fulfill these criteria, 

different manipulations can be applied to the animals. Popular approaches include 

genetic manipulations that, over the last two decades, developed from initial total 

knockouts of single genes to short hairpin RNA mediated knockdown of specific target 

genes or optogenetically mediated silencing or activation of distinct cell populations in 

specific brain regions (Glaser et al., 2005; Fenno et al., 2011). Another important line of 

research focuses on the application of environmental factors, such as enriched 

environment (Freund et al., 2013) or stress situations (Schmidt, 2011). By combining the 

aforementioned factors, animal models aim to mimic the complex gene by environment 

interactions that are present in the human situation. 
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Figure 1.3: Illustration of the three main validity criteria of animal models for depression and some 

examples of important aspects. GxE, gene by environment; ExE, environment by environment; GxExE, 

gene by environment by environment 

 

Chronic stress models 

Animal models that employ acute and chronic stressors have been extensively studied on 

their ability to match the aforementioned validity criteria. Chronic stress can be exerted 

in various ways, with chronic unpredictable mild stress (CUMS) and chronic social defeat 

stress (CSDS) being amongst the most popular paradigms (Willner, 1997; Krishnan and 

Nestler, 2008). Unpredictability of the stressor is an important feature of these models, as 

attenuation and habituation is quickly established in recurring stress episodes (Harris et 

al., 2004; Girotti et al., 2006). In CUMS models, this is achieved by alternating the time 

and length of the exposure to a highly variable set of different stressors, such as cold, 

water, loud noises, as well as restraint or inversion of the light-dark circle (Hollis et al., 

2012). Models that apply CSDS can rely on the naturally occurring variance of social 

defeat intensity to attain unpredictability. Additionally, the number and length of defeat 

sessions has been shown to critically influence the lasting effects of CSDS. Experimental 
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protocols can vary from subthreshold defeat sessions, which prime the animals for a 

vulnerable phenotype (Chaudhury et al., 2013), to extended chronic defeat designs that 

include 10 to 28 daily defeat bouts (Nestler and Hyman, 2010; Wagner et al., 2011; Chen 

et al., 2012). Such chronic applications produce long-lasting changes on the behavioral 

level, such as social avoidance, anhedonia and increased anxiety (Berton et al., 2006; 

Krishnan and Nestler, 2008). These findings have been complemented with extensive 

research on the molecular level, where various brain regions, such as the nucleus 

accumbens, the ventral tegmental area or the hippocampus, have been shown to be 

crucially involved in the mediation of the behavioral effects (Cao et al., 2010; LaPlant et 

al., 2010; Lagace et al., 2010). Other popular stress paradigms target different plastic 

phases of development such as early life (Schmidt et al., 2011b) or adolescence (Schmidt 

et al., 2007), which also invoke lasting changes on the behavioral and molecular level that 

ultimately cause the development of phenotypes that are associated with aspects of 

depression. Taken together, animal models of chronic stress have been demonstrated to 

be valuable tools to investigate stress-induced pathophysiology and are widely used in 

preclinical research to elucidate the molecular mechanism of mood disorders. 
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1.6. Aim of the thesis 

The current thesis aims to unravel the role of the glutamate system, with a special focus 

on Homer1, in stress-induced psychopathology. To achieve this, we first introduce and 

validate a chronic social stress model, which provides good face, construct and predictive 

validity (Chapter 1). Next, we investigate the transcriptional regulation of Homer1 in 

response to chronic (Chapter 2) and acute stress (Chapter 3). In addition, we elucidate the 

behavioral relevance of Homer1 transcription changes with respect to spatial memory 

(Chapter 3) and reward associated learning (Chapter 4). Finally, we investigate the 

behavioral and neuroendocrine effects of chronic stress with regards to genetic and 

pharmacological intervention targeting the mGluR5/Homer1 pathway (Chapter 5). Taken 

together, this thesis will provide comprehensive evidence for the involvement of Homer1 

in stress-related mood disorders and will serve as a basis for future work aiming to 

develop novel treatment strategies based on interventions in glutamate signaling 

pathways. 
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Abstract 

Various clinical studies have identified FK506-binding protein 51 (FKBP51) as a target gene 

involved in the development of psychiatric disorders such as depression. Furthermore, 

FKBP51 has been shown to affect glucocorticoid receptor signaling by sensitivity 

modulation and it is implicated in stress reactivity as well as in molecular mechanisms of 

stress vulnerability and resilience. We investigated the physiological, behavioral, and 

neuroendocrine parameters in an established chronic stress model both directly after 

stress and after a recovery period of 3 weeks and also studied the efficacy of paroxetine 

in this model. We then examined FKBP51 mRNA levels in the dorsal and ventral part of 

the hippocampus and correlated the expression to behavioral and endocrine parameters. 

We show robust chronic stress effects in physiological, behavioral, and neuroendocrine 

parameters, which were only slightly affected by paroxetine treatment. On the contrary, 

paroxetine led to a disruption of the neuroendocrine system. FKBP51 expression was 

significantly increased directly after the stress period and correlated with behavioral and 

neuroendocrine parameters. Taken together, we were able to further elucidate the role 

of FKBP51 in the mechanisms of stress resilience and vulnerability, especially with respect 

to behavioral and neuroendocrine parameters. These findings strongly support the 

concept of FKBP51 as a marker for glucocorticoid receptor sensitivity and its involvement 

in the development of psychiatric disorders. 
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Introduction 

Chronic social stress is widely regarded as a risk factor for the development of psychiatric 

pathologies such as depression and anxiety disorders (McEwen, 2004; Chrousos, 2009). 

Social stress and economic pressure are most common in western societies and largely 

increase the risk of psychopathologies (Tennant, 2001). Animal models of social stress, 

including chronic social defeat stress (CSDS), are widely used to model this situation in 

rodents and are accepted models for key clinical symptoms of depression (Savignac et al., 

2011). 

Current treatment strategies for depressed patients focus mostly on the increase of 

monoamines in the synaptic cleft, for example, via the use of selective serotonin reuptake 

inhibitors (SSRIs). However, these approaches suffer from the late onset of therapeutic 

effects, relatively poor response, and high relapse rates (Rush et al., 2006). Treatment 

efficacy can be increased by combinations of different drugs, but convincing success rates 

are yet to be reached (Thase, 2006). These data highlight the need to continue the search 

for novel targets in depression research that may lead to more potent yet well-tolerated 

drugs for the treatment of affective disorders (Berton and Nestler, 2006). 

A malfunction of the hypothalamic-pituitary-adrenal (HPA) axis has been strongly implied 

in the development of mood disorders (de Kloet et al., 2005). Chronic HPA axis activation 

may lead to a disruption of the feedback process, which results in an overshooting stress 

response and promotes the risk for developing psychiatric diseases. The glucocorticoid 

receptor (GR) plays a crucial role in these feedback circuits and therefore in the 

termination of the stress response (Ulrich-Lai and Herman, 2009). In line with these 

findings, many depressed patients show altered GR signaling (Pariante and Miller, 2001). 

A chaperone-receptor heterocomplex consisting of heat shock protein 90 and, among 

others, FK506-binding protein 51 (FKBP51) regulates GR signaling by modulating the 

activation and trafficking of the receptor as well as its gene transcription properties (Pratt 

et al., 2006). It has been shown that FKBP51 alters ligand binding sensitivity of the GR, 

reducing nuclear translocation of the GR-complex, and therefore modulating HPA axis 

feedback sensitivity (Wochnik et al., 2005; Binder, 2009). In a study conducted by Binder 

et al. (2004), significant associations between FKBP51 polymorphisms and depressive 

episodes as well as antidepressant responses were shown. In recent years, a growing 

body of evidence suggests an important role of genetic variants of FKBP51 in stress 
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susceptibility and occurrence of major depression (Ising et al., 2008; Zimmermann et al., 

2011). Other studies could show the involvement of FKBP51 in suicide events (Roy et al., 

2012) and post-traumatic stress disorder (Sarapas et al., 2011). 

Further support for an involvement of FKBP51 in stress system regulation comes from 

animal models. FKBP51 mRNA was upregulated in stress-related brain regions such as the 

hippocampus in response to acute stressors or a glucocorticoid challenge (Scharf et al., 

2011). Additionally, FKBP51 knockout mice were reported to show increased active stress 

coping behavior in the forced swim test (Touma et al., 2011) and a resilient phenotype in 

response to CSDS (Hartmann et al., 2012), suggesting a prominent role of FKBP51 in stress 

coping behavior. 

In our study, we aimed to investigate the interaction between FKBP51 and antidepressant 

treatment in modulating depression-related parameters in male mice. We therefore 

applied an established chronic stress model and studied its direct and long-term effects 

on physiology and behavior, neuroendocrine parameters, as well as GR-sensitivity related 

mRNA and protein levels. Additionally, we investigated the interactions of a commonly 

prescribed antidepressant, paroxetine, with chronic stress and FKBP51 regulation, 

hypothesizing that FKBP51 regulation may support stress resilience. 
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Materials and Methods 

Animals and animal housing 

For all experiments, male C57Bl/6N mice (Charles River Laboratories, Maastricht, The 

Netherlands) were used. At the beginning of the experiment, the age of all animals was 

12 weeks. The mice were held under standard conditions (12L:12D light cycle, lights on at 

08:00 AM, temperature 23 ± 2 °C), were single housed, and were acclimated to the room 

for 2 weeks before the beginning of the experiments. Food (Altromin 1314, Altromin 

GmbH, Germany) and tap water were available ad libitum. Male CD1 mice (16 - 18 weeks 

of age) served as resident mice, which were held under the conditions described above. 

They were allowed to habituate to the social defeat cage for 2 weeks before the 

experiment. All experiments were carried out in the animal facilities of the Max Planck 

Institute of Psychiatry in Munich, Germany. The experiments were carried out in 

accordance with the European Communities’ Council Directive 86/609/EEC. All efforts 

were made to minimize animal suffering during the experiments. The protocols were 

approved by the committee for the Care and Use of Laboratory Animals of the 

Government of Upper Bavaria, Germany. 

 

Experimental design 

Experiment 1 

In the first experiment, the direct effects of CSDS on various parameters were 

investigated. A total of 48 mice were randomly split into 2 × 2 groups (Control vehicle 

(n = 13), control paroxetine (n = 13), chronic stress vehicle (n = 11), and chronic stress 

paroxetine (n = 11)) and subjected to the chronic stress procedure described below. The 

paroxetine treatment commenced at the first day of the stress procedure and lasted until 

the day of killing (Figure 1A). All behavioral tests were performed during the third week of 

the stress procedure. 

 

Experiment 2 

In the second experiment, the same parameters that were investigated in experiment 1 

were studied after a 3-week period of recovery following the chronic stress exposure 

(Figure 3A). A total of 64 mice were divided into two groups (Control and chronic stress) 
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and they underwent the chronic stress paradigm described below. After cessation of the 

stressor, both groups were subdivided into vehicle-treated and paroxetine-treated 

animals (n = 16 each). The treatment phase lasted for 3 weeks and all animals 

independent of condition were handled twice per week. All behavioral tests of 

experiment 2 took place during the last week of the paroxetine treatment. 

 

Chronic stress procedure and physiological parameters 

The CSDS paradigm lasted for 21 days and was conducted as described previously 

(Wagner et al., 2011). Briefly, the experimental mice were introduced into the home cage 

(45 cm × 25 cm) of a dominant resident mouse and defeated shortly after. When the 

defeat was achieved, the animals were separated by a wire mesh, preventing physical but 

allowing sensory contact for 24 h. Each day, stressed animals were defeated by another 

unfamiliar, dominant resident mouse in order to exclude a repeated encounter 

throughout the experiment. The daily defeat was performed between 11:00 AM and 

04:00 PM; varying starting times reduced the predictability of the stressor and therefore 

minimized a potential habituation effect. Experimental mice were always defeated by 

resident males during the entire stress period. Control mice were housed in their home 

cages during the course of experiment. Both stress and control animals were handled 

daily during the stress procedure; body weight was assessed at the beginning of the 

experiment as well as before killing. In experiment 2, body weight for all mice was 

assessed at the beginning of the experiment, after the cessation of the stress period, and 

on the day of killing. Animals that underwent the stress procedure were subsequently 

single housed in standard cages. 

 

Paroxetine treatment 

Paroxetine was obtained from GlaxoSmithKline (Munich, Germany) as a solution and was 

diluted in tap water to a final concentration of 0.16 mg/ml. With average water 

consumption of 5 ml/mouse/day, the daily dose of paroxetine was ≈ 20 mg/kg body 

weight. Fluid intake was monitored daily and the variation of fluid intake was found to be 

< 10% over the course of the experiment. The chosen dosage has been reported to be 

effective in chronic stress models (Schmidt et al., 2007) and we confirmed this in a control 

sample, where paroxetine levels in basal blood plasma were measured (Data not shown). 
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In experiment 1, a simultaneous condition × treatment setup was chosen to provide 

insights into paroxetine × stress interactions. In experiment 2, paroxetine was 

administered after the CSDS period to further elucidate the possibly improved recovery 

from stress. 

 

Behavioral analysis 

The behavioral tests were carried out between 08:30 AM and 12:30 PM in the same room 

in which the mice were housed. The testing order was as follows: Open-field (OF), social 

avoidance (SA), elevated plus-maze (EPM), female urine sniffing test (FUST), forced swim 

test (FST), and acute stress response. All tests were analyzed using an automated video-

tracking system (Anymaze 4.20, Stoelting, Wood Dale, IL). A detailed description of the 

testing procedures can be found in the supplementary information. All animals 

underwent the same testing battery in the same order of tests. To minimize possible 

carryover effects of the different behavioral tests, the sequence of tests was arranged 

from the least stressful to the most stressful (McIlwain et al., 2001). 

 

Sampling procedure 

All animals were killed by decapitation following quick anesthesia by isoflurane at the end 

of the experiment. Basal trunk blood samples were processed as described above. Brains 

were removed, snap-frozen in isopentane at -40 °C, and stored at -80 °C for in situ 

hybridization. Adrenal and thymus glands were removed, dissected from fat, and 

weighed. 

 

In situ hybridization 

Frozen brains were sectioned at -20 °C in a cryostat microtome at 18 µm, thaw mounted 

on Super Frost Plus slides, dried and stored at -80 °C. In situ hybridization using 35S UTP 

labeled ribonucleotide probes (FKBP51, Metallothionein-1) was performed as described 

previously (Schmidt et al., 2007). A detailed protocol can be found in the supplemental 

materials section. 
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Western blot 

An additional cohort of animals (Control vehicle vs. CSDS vehicle, n = 8 each) underwent 

the same CSDS paradigm as in experiment 1 except for the behavioral tests. At 24 h after 

the last defeat session, animals were deeply anesthetized and quickly decapitated. 

Hippocampal tissue was extracted and subcellular fractions (Cytosol, nucleus) were 

purified using a commercially available kit (Calbiochem ProteoExtract, Merck Millipore). 

Western blots were then performed as previously described (Wang et al., 2011a). A 

detailed description of the protocol is found in the supplemental material. 

 

Statistical analysis 

The data presented are shown as means ± standard error of the mean (SEM), analyzed by 

the commercially available software SPSS 16.0. Student’s t-test was employed for 

comparison of two independent groups. Two factorial (Condition and treatment) ANOVA 

was employed for all other parameters. Correlations between behavioral parameters and 

mRNA expression were analyzed with the Pearson product moment test. A nominal level 

of significance P < 0.05 was accepted and adjusted according to Bonferroni correction by 

all posteriori tests (Univariate F-tests, test of simple effects, or contrasts). 
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Results 

Experiment 1 

In the first experiment, we investigated the immediate effects of CSDS and paroxetine by 

killing the animals 24 h after the last defeat session (Figure 1A). 

 

Physiology  

At the beginning of the experiment, no differences in body weight were apparent. Also, 

there was no effect in body weight gain at the end of the experiment between either 

groups (Control vehicle: 2.17 ± 0.26 g, control paroxetine: 2.78 ± 0.25 g, CSDS vehicle: 

2.07 ± 0.35 g, CSDS paroxetine: 2.43 ± 0.26 g). Adrenal glands size was increased and 

thymus glands size decreased after CSDS, independent of treatment (Figure 1B, C).  

 

Neuroendocrinology 

Three weeks of chronic defeat stress increased circulating corticosterone under basal 

conditions independent of treatment (Figure 1D). In response to a novel stressor, 

defeated animals showed a significantly increased response to an acute stressor 

compared to control animals (Figure 1E). Also, paroxetine treatment resulted in an 

increased corticosterone response compared to vehicle treatment. At 90 min after onset 

of the acute stressor, defeated animals showed a significantly diminished ability to 

recover from the acute stressor (Figure 1F). This effect was largely increased in 

paroxetine-treated animals. 

 

Behavior 

Chronic defeat stress markedly altered the animals’ behavior in various tests. Reduced 

locomotion in the OF and increased anxiety-related behavior in the EPM, depicted by 

reduced open arm time, were induced by CSDS (Figure 1G and H). Paroxetine did not have 

any alleviating effect in these tests. In the SA test, a treatment effect was revealed, 

showing a significant increase in the interaction ratio of paroxetine-treated animals 

compared with vehicle-treated animals (Figure 1I). A stress-related effect could not be 

found in this test. Defeated animals showed increased anhedonic behavior, as depicted 

by reduced sniffing time in the FUST urine trial but not in the water trial (Figure 1J). In the 

FST, defeated mice that received paroxetine displayed a significantly decreased time in 
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immobile posture compared with both vehicle-treated stress animals and paroxetine-

treated control animals (Figure 1K), indicating a more active stress coping behavior.  

 

 

Figure 1: Chronic social defeat stress (CSDS) strongly affects the physiology, behavior and neuroendocrine 

profile of mice. (A) Time course of experiment 1: Treatment with paroxetine and the chronic stress 

procedure are performed simultaneously. The behavioral testing is carried out in the last week of the 

treatment and stress phase. (B,C) ANOVA showed a condition effect in adrenal gland weight 

(F1,47 = 129.185, p < 0.001) as well as in thymus weight (F1,47 = 53.734, p < 0.001) with chronic stress 

increasing adrenal gland size and reducing thymus weight, independent of the treatment. (D) Basal 
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corticosterone levels were increased by exposure to CSDS as shown by an ANOVA condition effect 

(F1,44 = 11.248, p < 0.01). (E) ANOVA revealed both a condition (F1,47 = 19.921, p < 0.001) and a treatment 

effect (F1,47 = 5.055, p < 0.05) in circulating corticosterone 30 min after an acute stressor. Paroxetine 

increased hypothalamic-pituitary-adrenal axis (HPA axis) activity already under control conditions. (F) 

Corticosterone recovery was disrupted in stressed animals, an effect that appears to be increased in mice 

treated with paroxetine (ANOVA condition (F1,47 = 24.573, p < 0.001), treatment effect (F1,47 = 5.082, 

p < 0.05)). In both the OF (G) and the EPM (H), ANOVA revealed a condition effect, with a reduced 

locomotion in the OF (F1,47 = 7.814, p < 0.01) and a reduced time on the open arms in the EPM 

(F1,43 = 7.534, p < 0.01). (I) Paroxetine increased social interaction in the social avoidance test with no 

significant effect of CSDS (ANOVA treatment: F1,41 = 8.647, p < 0.01). (J) Anhedonic behavior was 

increased in stressed mice (Urine: ANOVA condition: F1,41 = 8.859, p < 0.01; Water: ANOVA condition: 

F1,41 = 2.114, p = 0.154) and was not ameliorated by antidepressant treatment. (K) In the FST, ANOVA 

reported both a treatment effect (F1,47 = 5.229, p < 0.05) as well as a condition × treatment interaction 

(F1,47 = 4.208, p < 0.05). Here, paroxetine only exhibited antidepressant effects in the forced swim test 

when combined with CSDS. * Significantly different from control condition of the same treatment group, 

p < 0.05; # Significantly different from vehicle treatment of the same condition group, p < 0.05; 

+ Significant condition effect, p < 0.05; § Significant treatment effect, p < 0.05. 

 

Gene expression analysis 

Investigation of FKBP51 mRNA expression revealed a significant increase in the CA1 and 

the DG of the dorsal hippocampus in defeated animals compared with controls 

independent of treatment (Figure 2A - C). In the ventral hippocampus, we found FKBP51 

mRNA expression to be upregulated in the CA1 and the DG. Animals treated with 

paroxetine also showed a slight increase in FKBP51 mRNA levels compared with vehicle-

treated animals in the CA1. Levels of MT-1 mRNA, a known GR-responsive gene, were not 

regulated by CSDS or paroxetine treatment in the investigated hippocampal regions CA1 

and DG (Supplementary figure S1). 

 

Experiment 2 

In the second experiment, we investigated the effects of 3 weeks of recovery from CSDS 

combined with paroxetine treatment (Figure 3A).  
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Figure 2: FK506-binding protein 51 (FKBP51) mRNA expression is significantly increased in the 

hippocampus of stressed animals. (A,B) Both in the CA1 (ANOVA condition: F1,46 = 15.309, p < 0.001) and 

the dentate gyrus (DG) (ANOVA condition: F1,46 = 24.272, p < 0.001) of the dorsal hippocampus, CSDS 

increased FKBP51 levels independent of treatment. (C) Representative autoradiographs of FKBP51 mRNA 

in the dorsal hippocampus. (D,E) Similar to the dorsal hippocampus, FKBP51 expression was increased in 

the ventral hippocampus of stressed animals (CA1 ANOVA condition: F1,47 = 9,888, p < 0.01; DG ANOVA 

condition: F1,47 = 6.515, p < 0.05), an effect that is slightly more pronounced in animals treated with 

paroxetine (CA1 ANOVA treatment: F1,47 = 6.524, p < 0.05). (F) Representative autoradiographs of FKBP51 

mRNA in the ventral hippocampus. * Significantly different from control condition of the same treatment 

group, p < 0.05; # Significantly different from vehicle treatment of the same condition group, p < 0.05; 

+ Significant condition effect, p < 0.05; § Significant treatment effect, p < 0.05; Other abbreviations as in 

figure 1. 

 

Physiology 

Although the initial body weight was not different between control and defeated animals, 

after 3 weeks, chronically stressed animals showed a significantly increased body weight 

gain (T62 = -3.096, p < 0.01, control: 1.80 ± 0.20 g, CSDS: 2.58 ± 0.24 g). On the day of 

killing, ANOVA revealed a treatment effect (F1,63 = 19.222, p < 0.001) as well as a 

condition × treatment interaction (F1,63 = 8.227, p < 0.01), with paroxetine-treated mice 

showing increased body weight gain and vehicle-treated mice that underwent the stress 

paradigm being heavier than their control littermates (Control vehicle: 2.42 ± 0.27 g, 
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control paroxetine: 4.63 ± 0.42 g, CSDS vehicle: 3.88 ± 0.21 g, CSDS paroxetine: 

4.34 ± 0.28 g). Stressed animals still showed increased adrenal gland size, with 

paroxetine-treated animals having a reduced overall adrenal gland weight (Figure 3B). 

The size of the thymus glands was not significantly altered at the end of the experiment 

(Figure 3C).  

 

Neuroendocrinology 

Basal corticosterone levels were significantly increased directly after the cessation of the 

stressor on day 22 (Figure 3D). At day 43, paroxetine increased circulating corticosterone 

levels when mice were previously exposed to the chronic defeat paradigm (Figure 3E). In 

response to a novel acute stressor, paroxetine also largely increased the corticosterone 

response (Figure 3F), independent of the condition. At 90 min after the acute stressor, 

defeated animals recovered worse from the acute challenge, depicted in prolonged 

increased corticosterone levels (Figure 3G). Also, paroxetine-treated animals showed 

higher corticosterone levels than their vehicle-treated littermates. 

 

Behavior 

In the third week of the treatment phase, stressed animals showed increased locomotion 

in the OF test, with paroxetine animals being less active than their vehicle-treated 

littermates (Figure 3H). In the EPM, neither a condition nor a treatment effect could be 

detected (Figure 3I), whereas a preceding CSDS significantly decreased social interaction 

in the SA test (Figure 3J). Although mice showed increased interest in the urine-dipped 

cotton swab compared with the water-dipped swab in the FUST, no condition or 

treatment effect could be revealed in the urine trial (Figure 3K). In the FST, paroxetine-

treated mice floated less when previously exposed to the chronic stress paradigm (Figure 

3L).  

 

Fkbp51 gene expression 

In both the dorsal and the ventral hippocampus, FKBP51 mRNA expression was not 

influenced by chronic defeat (Supplementary figure S2). 
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Figure 3: Physiological and neuroendocrine effects of CSDS were still present after a recovery period of 3 

weeks but behavioral alterations are mostly restored. (A) Time course of experiment 2: Treatment with 

paroxetine commences after the stress procedure. The behavioral testing is performed in the last week of 

the treatment phase. (B) Investigation of the adrenal glands’ weight revealed a condition (F1,63 = 18.999, 

p < 0.001) and a treatment effect (F1,63 = 7.000, p < 0.01). Adrenal glands were enlarged in stressed 

animals, but paroxetine diminished the stress effect. (C) Thymus weight was equal throughout all 

experimental groups. (D,E) Basal corticosterone levels directly after stress were increased (T62 = -2.488, 

p < 0.05) and subsequent paroxetine treatment disrupted HPA axis recovery to normal levels (ANOVA 

condition × treatment interaction (F1,62 = 7.261, p < 0.01)). (F) After challenging the animals with a novel 

acute stressor, paroxetine treated mice showed an increased corticosterone response independent of 

condition in the response (ANOVA treatment: F1,63 = 69.884, p < 0.001). (G) 2 weeks after cessation, CSDS 

led to an impaired ability to recover from an acute stressor, an effect that was strongly enhanced by 

paroxetine (ANOVA condition (F1,63 = 17.708, p < 0.001) and treatment effect (F1,63 = 12.243, p < 0.001)). 
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(H) Stressed animals showed a hyperactive phenotype in the open field (ANOVA condition: F1,63 = 17.028, 

p < 0.001), while paroxetine treatment resulted in less activity (ANOVA treatment: F1,63 = 4.543, p < 0.05). 

(I,J) While there was no effect on anxiety-related behavior, social interaction was still disrupted in mice 

that underwent the CSDS paradigm (ANOVA condition: F1,59 = 5.186, p < 0.05). (K) In the female urine 

sniffing test, no significant anhedonic effect could be found after recovery from the CSDS. (L) As in 

experiment 1, paroxetine exerted its antidepressant effects only in conjunction with CSDS as shown in 

reduced floating time in the forced swim test (ANOVA condition × treatment interaction: F1,63 = 4.568, 

p < 0.05). * Significantly different from control condition of the same treatment group, p < 0.05; 

# Significantly different from vehicle treatment of the same condition group, p < 0.05; + Significant 

condition effect, p < 0.05; § Significant treatment effect, p < 0.05; Abbreviations as in figure 1. 

 

FKBP51 correlation analyses 

Correlation analyses were performed in both experiments and significant effects could be 

found between FKBP51 expression and behavioral and neuroendocrine parameters in the 

vehicle-treated stress animals of experiment 1 (Figure 4). FKBP51 mRNA expression in the 

CA1 region of the dorsal hippocampus correlated both with the time struggling in the FST 

(Figure 4A) and the total distance traveled in the OF directly after cessation of the CSDS 

(Figure 4C). In the same experimental subgroup, FKBP51 expression in the CA1 of the 

dorsal hippocampus also correlated with corticosterone values of the acute stress 

response test (Figure 4E and G). In the DG, FKBP51 mRNA also correlated with the 

corticosterone values as well as with the locomotive behavior in the OF (Supplementary 

figure S2). These effects were not present after 3 weeks of recovery (Figure 4, right 

panels). In paroxetine-treated animals, no significant correlations could be shown. 

 

GR sensitivity 

To test whether varying FKBP51 levels would result in an altered GR sensitivity, we also 

measured the expression of a known GR target gene, MT-1 (Wang et al., 2004). MT-1 

mRNA expression in the CA1 of the hippocampus was correlated to both FKBP51 levels in 

the same region (Figure 5A) and struggling time in the FST (Figure 5B). Again, in all other 

experimental subgroups of experiment 1, no significant correlations could be shown. To 

further investigate GR sensitivity in response to CSDS, we measured the relative protein 

levels of GR in the cytosolic and nucleic fraction of hippocampal tissue. Here, GR levels 

were shifted to the nuclear fraction when subjected to CSDS, compared with GR levels in 

control animals (Figure 5C and D). Overall levels of GR protein were not significantly 

different from control animals. 
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Figure 4: FKBP51 mRNA expression correlates with behavioral and neuroendocrine parameters in 

stressed animals. (A,B) The stronger the FKBP51 expression levels in the dorsal hippocampus, the lower 

the time spent with active stress coping in the forced swim test (r = -0.948, p < 0.001). This effect is only 

visible in a system activated by CSDS, as there is no significant correlation after the recovery period. (C,D) 

While CSDS reduced locomotion in the open field, an enhanced FKBP51 expression counteracts this 

behavioral phenotype (r = 0.715, p < 0.05) that is also exclusively visible in an activated system. (E,F,G,H) 

Circulating corticosterone is directly correlated to the increased FKBP51 levels at both the response to an 

acute stressor and the recovery from it (Response: r = -0.771, p < 0.01; recovery: r = -0.742, p < 0.05). 

* Significant correlation, p < 0.05; Abbreviations as in figures 1 & 2. 
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Figure 5: GR sensitivity is increased depending on FKBP51 levels. (A) Metallothionein-1 (MT-1) mRNA 

levels correlate significantly with FKBP51 levels in the CA1 region of the hippocampus, when animals 

underwent the CSDS paradigm (r = 0.827, p < 0.01). Since MT-1 is a downstream target of glucocorticoid 

receptors (GRs), this suggests increased GR sensitivity in response to FKBP51 activation. (B) MT-1 mRNA 

also correlates to struggling behavior in the FST (r = -0.782, p < 0.01). (C) Animals that underwent the 

CSDS paradigm, have an increased rate of GR translocation to the nucleus compared to control mice 

(T14 = -3.113, p < 0.01). (D) Protein bands of GR (94 kDa) and Actin (42 kDa) in the cytosolic and nucleic 

fraction of hippocampal tissue. * Significant from control, p < 0.05. Abbreviations as in figures 1 & 2. 
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Discussion 

In this study, we show an association between FKBP51 and the behavioral and 

neuroendocrine response to chronic stress. Our CSDS model generated robust changes in 

physiology, neuroendocrinology, and behavior, both directly after the stress and after a 

recovery period of 3 weeks. These effects included increased anxiety-related behavior, a 

disturbed HPA axis function, as well as increased adrenal gland size. Treatment with the 

commonly used SSRI paroxetine had only small effects in ameliorating the stress-induced 

phenotype with regard to behavioral changes and deteriorated the neuroendocrine 

system independent of the time point of the treatment. FKBP51 mRNA expression was 

increased by CSDS and the level of induction is significantly correlated to both behavioral 

and neuroendocrine parameters, suggesting an important role of FKBP51 during HPA axis 

activity and GR sensitivity in a challenging environment. This is further supported by an 

increased GR translocation to the nucleus in stressed animals as well as FKBP51-

correlated expression levels of a downstream target of GR. 

The complex immediate phenotype induced by the CSDS model applied in experiment 1 

of this study reproduced previous findings to a large extent (Wagner et al., 2011; Wang et 

al., 2011a; Hartmann et al., 2012). An increase in adrenal gland weight is consistently 

regarded as a reliable marker for a successful chronic stress paradigm (Schmidt et al., 

2007), whereas body weight alterations in mice seem to underlie more intricate 

mechanisms, including type and intensity of the stressor as well as stress duration and 

social status of the animals involved (Bartolomucci et al., 2005). However, a tendency to 

increased body weight after CSDS is in line with previous observations made with this 

paradigm. Also, HPA axis function was severely disrupted in experiment 1, with an 

increase in corticosterone release and diminished feedback recovery after an acute 

stressor (Bartolomucci et al., 2005; Schmidt et al., 2010). We were able to replicate 

several behavioral phenotypes that have been frequently described, such as disturbed 

exploratory and social behavior as well as increased anxiety-related and anhedonic 

behavior (Choleris et al., 2001; Berton et al., 2006; Malkesman et al., 2010; Hartmann et 

al., 2012). 

Regarding the long-lasting effects of our CSDS model, which were investigated in 

experiment 2, most assessed parameters returned to basal levels. We were not able to 

show an anxiety-related or anhedonic phenotype, and locomotion was, contrary to the 
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immediate effects of CSDS, slightly increased. This increased explorative behavior after 

recovery from CSDS may possibly resemble psychomotor agitation (Gupta, 2009). 

Additionally, a strong social avoidance was still visible in experiment 2, a finding that is in 

line with previous reports in which the applied CSDS reliably led to a strong aversion 

toward social targets (Berton et al., 2006; Tsankova et al., 2006). In these studies, 

important roles of various brain regions in stress resilience, including the nucleus 

accumbens and the ventral tegmental area, are highlighted, which are likely to play a role 

in the recovery mechanisms observed in our study (Krishnan and Nestler, 2008). 

Additionally, although corticosterone levels did not show differences under both basal 

and challenging conditions, the recovery from an acute stressor was still impaired, 

suggesting lasting changes in GR feedback mechanisms, possibly in the paraventricular 

nucleus of the hypothalamus and the prefrontal cortex (Mizoguchi et al., 2003). Taken 

together, the strong immediate effects of CSDS on physiology, neuroendocrinology, and 

behavior can mostly be restored by sufficient recovery time, in this case, 21 days. 

However, some alterations, such as increased social avoidance and diminished HPA axis 

feedback, are still present and promote the role of CSDS as a risk factor for the 

development of psychiatric diseases. 

Chronic treatment with the SSRI paroxetine was only partly able to ameliorate the various 

phenotypes evoked by CSDS. Notably, paroxetine treatment led to elevated HPA axis 

activity and responsiveness as well as to reduced feedback ability independent of the 

condition. This is surprising as previous studies reported HPA axis normalization after 

chronic stress exposure when treated with antidepressants (Reul et al., 1993). Chronic 

paroxetine treatment had a positive effect on social and anhedonic behavior, but did not 

influence the anxiety-like phenotype observed in the EPM or reduced locomotion in the 

OF. Previous studies provide inconsistent results concerning the behavioral effects of 

SSRIs, with some reporting reduced anxiety (Burghardt et al., 2004) whereas others 

showing unchanged or even increased anxiety depending on the duration of treatment 

(Kurt et al., 2000; Norcross et al., 2008). A recent study by Thoeringer et al. (2010) could 

report anxiolytic action of paroxetine only after acute but not chronic administration. In 

the current study, paroxetine also led to a significant decrease of floating time in the FST 

when combined with CSDS and increased social behavior, thereby showing positive 

chronic treatment effects (Sillaber et al., 2008). We therefore conclude that paroxetine 
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treatment in mice, although showing therapeutic efficacy in some parameters, was not 

able to fully restore the CSDS-induced phenotype. In line with our findings, it has recently 

been suggested that the behavioral effects of CSDS models are largely independent of the 

serotonergic system (Venzala et al., 2012). Regarding our study, it can be speculated that 

these effects might rather be driven by HPA axis activation and sensitivity. 

In recent years, it has been shown that FKBP51 plays a major role in stress reactivity and 

GR-mediated feedback processes that are crucial for a functional HPA axis. We further 

contribute to these understandings by reporting a distinct increase in FKBP51 expression 

in response to chronic stress. Additionally, the level of FKBP51 induction in the 

hippocampus is significantly correlated to the neuroendocrine and behavioral phenotype 

in a complex manner. In FKBP51 KO mice, Touma et al. (2011) reported an increased 

active stress coping in the FST, which was only present after a strong stressor. In line with 

these findings, we here show that higher FKBP51 levels in response to a challenge, in this 

case CSDS, were correlated to a reduction in active stress coping. These findings can be 

attributed to a higher GR sensitivity in the presence of low FKBP51 levels. Interestingly, 

higher FKBP51 levels following CSDS also correlated with higher locomotion in a novel 

environment. Accordingly, FKBP51 KO mice that underwent the same CSDS paradigm 

showed a strong reduction in locomotion that even exceeded the stress-induced effect 

seen in wild type animals (Hartmann et al., 2012). 

A modulation in GR signaling and sensitivity has been found in both in vitro and in vivo 

studies and is suggested to be an important cofactor for the development of depression 

(Pariante and Miller, 2001). In line with these findings, increased FKBP51 induction 

correlated with reduced corticosterone response and recovery values. It has been 

proposed that the magnitude of FKBP51 induction is a marker of GR sensitivity. Indeed, 

this has recently been shown for FKBP51 mRNA induction in peripheral blood in humans 

(Menke et al., 2012). In this study, Menke et al. (2012) could show that a dexamethasone 

challenge is rapidly increasing FKBP51 mRNA levels in peripheral blood, suggesting a 

prominent role of FKBP51 in the intracellular short feedback loop to immediately reduce 

GR sensitivity in response to a stressor (Vermeer et al., 2003). Our findings support this 

hypothesis by showing that FKBP51 mRNA upregulation is connected to neuroendocrine 

parameters that resemble increased GR sensitivity (Wulsin et al., 2010). We could also 

show an increased GR translocation to the nucleus in stressed animals compared with 
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control littermates, which indicates increased GR signaling processes. An increase in 

expression of the GR-sensitive gene MT-1 has been shown to be induced by GR activity 

(Wang et al., 2004) and was also directly correlated to FKBP51 mRNA levels in the CA1 

region of the hippocampus and to struggling time in the FST. However, during in vivo 

processes it is difficult to disentangle the effects of a strong FKBP51 induction, which 

would indicate a high GR sensitivity and a consequently high FKBP51 expression that 

would again decrease GR sensitivity. The dynamics of this ultrashort feedback loop are 

likely also brain region dependent and may explain why FKBP51 expression can correlate 

with the endocrine and behavioral phenotype in apparently opposite directions. Also, 

although FKBP51 and MT-1 mRNA strongly correlate with coping styles in the FST, there 

was no main effect of CSDS in this test. This may suggest that individuals challenged by 

CSDS resort to different molecular coping mechanisms than animals under basal 

conditions. 

In paroxetine-treated animals, FKBP51 expression and the parameters mentioned above 

were not correlated. At first glance, this is surprising as FKBP51 mRNA induction was 

equally present in both treatment groups, but significant effects of antidepressants on GR 

activity and synthesis have been described (Pariante et al., 2004; Carvalho and Pariante, 

2008). It is therefore likely that extensive paroxetine treatment manipulates the native 

feedback system to a large extent, which is overruling any regulative effect that FKBP51 

may have on GR signaling. This is also reflected in increased plasma corticosterone 

responses in paroxetine-treated animals, irrespective of the condition (Linthorst and Reul, 

2008). 

This study also revealed some findings that are not fully in line with previous literature 

reports. Most prominent, paroxetine treatment was not able to induce more active 

coping behavior in the FST in control animals: a treatment effect was only detected in 

mice that previously underwent CSDS. The low efficacy of paroxetine concerning this 

parameter may be attributed to the application method, the dosage, or the fact that 

chronic treatment, when compared with an acute treatment with SSRIs, has been 

reported to elicit reduced behavioral effects (Thoeringer et al., 2010). It has also been 

suggested that C57Bl/6 mice, in contrast to other strains such as CD1 mice, are not as 

responsive to SSRI treatment in the FST (Petit-Demouliere et al., 2005). Another possible 

confounding factor may be the extensive testing battery that all animals underwent 



Research articles  2.1 Discussion 

 

 
42 

(Blokland et al., 2012). Although the order of the tests was chosen to reduce carryover 

effects to a minimum (McIlwain et al., 2001), it cannot be excluded that there is a 

test × condition interaction. However, it has also been shown that a combination of 

stressors and different behavioral tests do not necessarily lead to confounding 

interactions (Chourbaji et al., 2008). Furthermore, it has to be pointed out that the 

measurements of the behavioral and neuroendocrine phenotypes and the mRNA 

sampling are temporally separated, and hence it cannot be ruled out that the FKBP51 

expression levels observed at the time of killing are not the same as at the time of the 

test. However, it is likely that the inductive effects of CSDS on FKBP51 mRNA levels have 

reached a steady state by the time the behavioral testing occurs, and thus the levels at 

the time point of killing can give a meaningful insight into the mechanisms of the 

individual’s stress response. 

In summary, we could provide evidence that FKBP51 expression is strongly involved in 

adaption to chronic stress on both behavioral and neuroendocrine levels. When the stress 

system is chronically activated due to external challenges, higher FKBP51 levels are 

closely correlated to a more passive stress coping strategy, possibly because of rapid 

changes in the short feedback of GR sensitivity. This is indicated by increased GR 

translocation in stressed animals as well as a correlational increase in a GR-activated 

downstream target. In conjunction with previous studies, these findings highlight the 

important role of FKPB51 in the development of stress-associated psychiatric disorders 

and especially emphasize FKBP51 as a biomarker for GR sensitivity in response to stressful 

challenges, thus making it a potential target for future treatment options. 
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Supplemental Material 

 

Behavioral tests performed: 

 

Open-field test 

The open-field test was performed to investigate locomotion differences. Testing was 

carried out in an empty open-field arena (50 cm × 50 cm × 50 cm) made of gray polyvinyl 

chloride (PVC), which was evenly illuminated with 15 lux. The low illumination of the open 

field arena was chosen to specifically investigate locomotion behavior and not create an 

aversive center region that may induce anxiety-related behavior. Testing time was 15 min 

and main parameter of interest was the total distance traveled.  

 

Social avoidance test 

The social avoidance test was performed as described previously (Golden et al., 2011). 

Briefly, animals were allowed to explore the open field arena for 2.5 min with an empty 

wire mesh cage placed at one side of the apparatus. In a second stage, the animals were 

confronted with an unfamiliar CD1 resident mouse in the wire mesh cage for another 

2.5 min. The ratio between the time in the interaction zone of the no-target trial and the 

time in the interaction zone of the target trial serves as a marker for disturbed social 

behavior associated with depressive disorders. Animals that did not explore the 

interaction zone at all were excluded from the analysis. 

 

Elevated plus-maze 

The elevated plus-maze was conducted to display changes in anxiety-related behavior. 

The device consisted of a plus-shaped platform with two opposing open arms 

(30 cm × 5 cm × 0.5 cm) and two opposing enclosed arms (30 cm × 5 cm × 15 cm), made 

of gray PVC, which were connected by a central area (5 cm × 5 cm). The whole device was 

elevated 50 cm above the floor. The illumination was 25 lux in the open arms and less 

than 10 lux in the closed arms. Testing duration was 10 min and mice were placed into 

the center zone facing one of the enclosed arms at the start of the test. The time spent in 

the open arms compared to the total arm time as well as the number of open arm entries 
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were analyzed. Animals that fell off the open arm of the apparatus were excluded from 

the analysis. 

 

Female urine sniffing test 

The female urine sniffing test has been described by Malkesman and colleagues as a 

measurement of anhedonia in male mice (Malkesman et al., 2010). Briefly, 1 h before the 

test mice were habituated to a sterile cotton swab inserted into their home cage. In the 

first stage of the test, mice were exposed to a cotton swab dipped in water for 3 min and 

sniffing time was scored. After an intertribal interval of 45 min, mice were exposed to a 

cotton swab dipped in urine from estrous females of the same mouse strain. Again, total 

sniffing time was scored. The test was performed in a dark environment (<3 lux). Animals 

that escaped from the apparatus in any trial were excluded from the analysis. 

 

Forced swim test 

In the forced swim test, each mouse was put into the a 2 liter glass beaker (Diameter: 13 

cm, height: 24 cm) filled with tap water (21 ± 1 °C) to a height of 15 cm, so that the mouse 

could not touch the bottom with its hind paws or tail. Testing duration was 5 min. Time 

spent immobile (Floating) and time spent struggling was scored by an experienced 

observer, blind to treatment or condition of the animals. 

 

Acute stress response 

The FST also served as an acute stressor in order to determine the stress response by 

measuring corticosterone plasma concentrations. After the FST, all mice were towel-dried 

and placed into their home cage to recover from the acute stressor. Blood samples were 

taken by tail cut (Fluttert et al., 2000) 30 min (Stress response) and 90 min (Stress 

recovery) after the onset of the FST. Samples were collected in 1.5 ml EDTA-coated 

microcentrifuge tubes (Kabe Labortechnik, Germany). All blood samples were kept on ice 

and later centrifuged at 8000 rpm at 4 °C for 15 min. Plasma was transferred to new, 

labeled tubes and stored at -20 °C until determination of corticosterone by 

radioimmunoassay (MP Biomedicals Inc; sensitivity 12.5 ng/ml). 
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In situ hybridization 

For in situ hybridization, prepared sections were fixed in 4% paraformaldehyde and 

acetylated in 0.25% acetic anhydride in 0.1 M triethanolamine/HCl. Subsequently, brain 

sections were dehydrated in increasing concentrations of ethanol. The antisense cRNA 

riboprobes of FKBP51 (Forward primer: 5’-CTTGGACCACGCTATGGTTT; reverse primer: 5’-

GGATTGACTGCCAACACCTT) and Metallothionein-1 (Forward primer: 

CACGACTTCAACGTCCTGAG; reverse primer: CGGTAGAAAACGGGGGTTTA) were 

transcribed from a linearized plasmid. Tissue sections were saturated with 100 μl of 

hybridization buffer containing approximately 3 - 5 × 106 cpm 35S labeled riboprobe. Brain 

sections were coverslipped and incubated overnight at 55 °C. The following day, the 

sections were rinsed in 4 × SSC (Standard saline citrate), treated with RNAse A (20 mg/l) 

and washed in increasingly stringent SSC solutions at room temperature. Finally, sections 

were washed in 0.1 × SSC for 1 h at 65 °C and dehydrated through increasing 

concentrations of ethanol. The slides were exposed to Kodak Biomax MR films (Eastman 

Kodak Co., Rochester, NY) and developed. Autoradiographs were digitized, and 

expression was determined by optical densitometry utilizing the freely available NIH 

ImageJ software. The mean of two measurements of two different brain slices was 

calculated for each animal. The data were analyzed blindly, always subtracting the 

background signal of a nearby structure not expressing the gene of interest from the 

measurements.  

 

Western blot 

Samples containing 30 μg of protein were resolved by 10% sodium dodecyl sulphate–

polyacrylamide gels, and transferred onto nitrocellulose membranes (Invitrogen). 

Membranes were labeled with primary antibodies overnight at 4 °C. The primary 

antibodies used were rabbit anti-GR (1:1000, Santa Cruz Biotechnology), and goat anti-

actin (1:2000, Santa Cruz Biotechnology). Following incubation with horseradish 

peroxidase-conjugated secondary antibodies (1:2000, DAKO) for 3 h, bands were 

visualized using an enhanced chemiluminescence system (Amersham Biosciences) and 

quantified by densitometry (Quantity One 4.2, Bio-Rad). GR protein levels were 

normalized to the corresponding actin levels in the subcellular fraction. 
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Figure S1: Metallothionein-1 mRNA levels are not influenced by chronic defeat stress or paroxetine 

treatment in (A) the CA1 region of the dorsal hippocampus and (B) the dentate gyrus (DG) of the dorsal 

hippocampus 

 

 

 

Figure S2: FKBP51 mRNA levels have returned to normal levels three weeks after the chronic defeat 

stress. (A,B) In the dorsal hippocampus, no effect of condition or treatment could be shown. (C,D) No 

significant effects of either stress or paroxetine were visible in the ventral hippocampus. 
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Figure S3: FKBP51 mRNA expression in dentate gyrus (DG) correlates with behavioral and neuroendocrine 

parameters in stressed animals. (A,B) In the forced swim test, struggling time × FKBP51 expression 

correlation failed to reach significant levels. (C,D) In the open field, an enhanced FKBP51 expression is 

strongly correlated to FKBP51 expression levels in the DG directly after stress, but not after a recovery 

phase of 3 weeks. (E,F,G,H) Circulating corticosterone is also directly correlated to FKBP51 expression 

levels at both the response to an acute stressor and the recovery from it. Again, after a recovery phase of 

3 weeks, no correlation could be found. * Significant correlation, p < 0.05; 
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Abstract 

Chronic stress has prominent detrimental effects on the individual’s well-being, which 

renders it a relevant risk factor for the pathology of psychiatric diseases. The glutamate 

system has been clearly implicated in mediating the (patho-)physiological effects of 

chronic stress, yet the involved molecular mechanisms are still poorly understood. In the 

current study we aimed to discover new candidate genes and biomarkers that are 

regulated by chronic stress, with a specific focus on the glutamate system. We employed 

the chronic social defeat stress (CSDS) model in mice and screened for altered mRNA 

expression in the hippocampus. Candidate genes identified by microarray analysis were 

technically validated by quantitative reverse transcriptase PCR and subsequently 

confirmed by in situ hybridization in an independent sample. After elimination of all non-

validated candidates, we could identify Homer1, a postsynaptic scaffolding protein in 

glutamate neurons, as stress-regulated gene in the CA1 and CA3 region of the 

hippocampus. Additionally, a more in-depth analysis of the protein turnover of Homer1 

by applying a 14N/15N labeled diet during CSDS revealed that approximately 30% of 

hippocampal Homer1 protein is metabolized and renewed in 7 days with no effect of 

CSDS on the turnover rate. Taken together, our results suggest Homer1 as a novel 

candidate gene, which may be involved in mediating detrimental effects of chronic stress 

in glutamate signaling pathways, thereby ultimately contributing to the emergence of 

psychiatric disorders. 
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Introduction 

Mood disorders such as major depression are a considerable burden for modern societies 

and are predicted to become the second leading cause of disability worldwide by 2020 

(Murray and Lopez, 1996). One major risk factor that is significantly contributing to the 

development of psychiatric disorders is chronic stress (Lupien et al., 2009). A prolonged 

overactivation of the stress systems, most prominently the hypothalamic-pituitary-

adrenal (HPA) axis, results in an increased allostatic load that may ultimately lead to 

detrimental consequences to the individual’s health (McEwen, 2004; de Kloet et al., 

2005). These effects are accompanied by molecular changes in the brain that range from 

altered neurogenesis (Petrik et al., 2012) to dysfunctional neurotransmission (Joëls and 

Baram, 2009), yet the exact molecular mechanisms that turn chronic stress into a risk 

factor for psychopathology are still poorly understood. 

Animal models of chronic stress have proven to be powerful tools to investigate the 

molecular underpinnings and behavioral consequences of stress-related disorders (Cryan 

and Holmes, 2005; Savignac et al., 2011). While monoaminergic neurotransmitter systems 

were studied in great detail (Keeney et al., 2006; Linthorst and Reul, 2008; Krishnan and 

Nestler, 2008), it was not until recently that the glutamate system has received growing 

attention in its role in psychopathology (Popoli et al., 2012; Sanacora et al., 2012). 

Glutamate is the major excitatory neurotransmitter in the nervous system (Orrego and 

Villanueva, 1993) and has been linked with both cognitive (Citri and Malenka, 2007; 

Neves et al., 2008) and emotional processes (Phillips et al., 2003a; Phillips et al., 2003b). 

Postsynaptic signaling of glutamate is mediated via ionotropic (NMDA, AMPA, kainate) 

and metabotropic (mGluR1 - mGluR8) receptors. Various scaffold proteins in the 

postsynaptic density (PSD) bind different channel subunits to change receptor signaling 

properties by altering surface expression (Bhattacharyya et al., 2009), synthesis, 

degradation (Park et al., 2004) or recycling (Wang et al., 2008) of receptors. Additionally, 

mGluRs have been shown to modulate ionotropic signaling by scaffold interactions in the 

PSD with proteins as Shank and Homer1 (Tu et al., 1999; Hayashi et al., 2009; Bertaso et 

al., 2010). The latter is constitutively expressed in its long isoform, Homer1b/c, which 

consists of a proline rich binding site for mGluR5 and a coiled coil structure that allows for 

multimerization and subsequent downstream signaling (Brakeman et al., 1997; Tu et al., 

1998). The shorter splice variant Homer1a, an immediate early gene that is not able to 
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multimerize, is induced by synaptic activity and can act as a dominant negative to 

Homer1b/c (Xiao et al., 1998). Recent studies suggested a crucial role of Homer1 in 

cognition (Ronesi and Huber, 2008; Tronson et al., 2010), and its involvement in the 

pathology of psychiatric disorders (Szumlinski et al., 2006; Rietschel et al., 2010), 

therefore providing further evidence for the importance of glutamate signaling in 

psychopathology. 

In the current study, we aimed to identify and validate novel target genes that are 

modulated by chronic stress exposure, with a main focus on neurotransmission of the 

glutamatergic system to further dissociate the molecular components of stress coping 

mechanisms. We therefore utilized an established chronic social defeat stress paradigm 

and screened hippocampal mRNA transcripts via microarray. Potential candidate genes 

were then validated using quantitative reverse transcriptase PCR and in situ hybridization. 

Finally, we investigated the protein turnover rate of Homer1, a validated candidate gene 

for the development of psychiatric disorders. 
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Materials and Methods 

Animals 

For all experiments, male C57Bl/6N mice (Charles River Laboratories, Maastricht, the 

Netherlands) were used if not noted otherwise. At the beginning of the experiment, the 

age of all animals was 12 weeks. The mice were held under standard conditions (12L:12D 

light cycle, lights on at 08:00 AM, temperature 23 ± 2 °C), were single housed and 

acclimated to the room for two weeks before the beginning of the experiments. Food 

(Altromin 1314, Altromin GmbH, Germany) and tap water were available ad libitum 

unless otherwise specified. Male CD1 mice (16 - 18 weeks of age) served as resident mice, 

which were held under the conditions described above. They were allowed to habituate 

to the social defeat cage for two weeks prior to the experiment. All experiments were 

carried out in the animal facilities of the Max Planck Institute of Psychiatry in Munich, 

Germany. The experiments were carried out in accordance with the European 

Communities' Council Directive 86/609/EEC. All efforts were made to minimize animal 

suffering during the experiments. The protocols were approved by the committee for the 

Care and Use of Laboratory animals of the Government of Upper Bavaria, Germany. 

 

Experimental design 

Experiment 1 

In the first experiment, we subjected 16 mice (n = 8/group) to the chronic social defeat 

stress (CSDS) paradigm described below. After the stress period, animals were sacrificed 

and hippocampal RNA was extracted for microarray and quantitative reverse 

transcription (q)-PCR analysis. 

 

Experiment 2 

To independently validate the results obtained from experiment 1, we performed in situ 

hybridization in brain slides of an independent batch of animals that were exposed to the 

CSDS paradigm (n = 9 - 11/group). The physiological and behavioral parameters of these 

animals have been reported before (Wang et al., 2011a). 
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Experiment 3 

In the third experiment, we investigated the protein turnover of candidate genes by 

applying 14N/15N labeling as described below. A total of 48 mice were randomly split into 

2x2 groups (Control standard diet (n = 12), control 14N/15N diet (n = 12), CSDS standard 

diet (n = 12), CSDS 14N/15N diet (n = 12)) and subjected to the chronic stress procedure 

described below. The animals received 14N labeled diet based on Ralstonia eutropha (U-

14N-SILAM-Mouse, Silantes GmbH, Munich, Germany) 1 week prior to the start of the 

CSDS for a total of 21 days. In the last week of the defeat, these animals switched to 15N 

labeled diet (U-15N-SILAM-Mouse, Silantes GmbH, Munich, Germany) with the same 

composition as the corresponding 14N-labeled diet for a total of 7 days until sacrifice. A 

detailed schematic of the experimental time course is depicted in figure 1. Hippocampal 

tissue samples were extracted for turnover analysis. 

 

 

Figure 1: Experimental time course. Experiments 1 and 2 only contained standard diet groups, while in 

experiment 3 all four depicted groups were included. Here, the 
14

N diet was administrated 1 week prior 

to the start of the chronic defeat paradigm. In the last week of the stress, the diet was switched to 
15

N 

labeled food, while animals that received standard diet were kept under the same feeding condition over 

the course of the whole experiment. 

 

Social defeat stress procedure 

The CSDS paradigm lasted for 21 days and was conducted as described previously 

(Wagner et al., 2011). Briefly, the experimental mice were introduced into the home cage 

(45 cm × 25 cm) of a dominant resident mouse and defeated shortly after. When the 

defeat was achieved, the animals were separated by a wire mesh, preventing physical but 

allowing sensory contact for 24 h. Each day, stressed animals were defeated by another 
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unfamiliar, dominant resident mouse, in order to exclude a repeated encounter 

throughout the experiment. The daily defeat was performed between 11:00 AM and 

04:00 PM; varying starting times reduced the predictability of the stressor and therefore 

minimized a potential habituation effect. Experimental mice were always defeated by 

resident males during the entire stress period. Control mice were housed in their home 

cages during the course of experiment. Both stress and control animals were handled 

daily during the stress procedure; body weight and fur state were assessed at the 

beginning of the experiment as well as before the sacrifice. The evaluation of the fur state 

was carried out as described previously (Mineur et al., 2003). Briefly, furs were rated on a 

scale from one to four by an experienced investigator, where 1 represents a perfect, clean 

fur, while 4 stands for a dishevelled, scruffy fur, often including wounds and scurf. Ratings 

of 2 and 3 represent intermediate fur states, respectively. 

 

Sampling procedure 

All animals were sacrificed by decapitation following quick anesthesia by isoflurane at the 

end of the experiment. Basal trunk blood samples were collected in 1.5 ml EDTA-coated 

microcentrifuge tubes (Kabe Labortechnik, Germany). All blood samples were kept on ice 

and later centrifuged at 8000 rpm at 4 °C for 15 min. Plasma was transferred to new, 

labeled tubes and stored at -20 °C until determination of corticosterone by 

radioimmunoassay (MP Biomedicals Inc; sensitivity 12.5 ng/ml). Brains were removed and 

processed as described below. Adrenal glands were removed, dissected from fat and 

weighed. 

 

RNA processing 

RNA from the whole hippocampi (Experiment 1) was isolated using the TRIZOL reagent 

(Invitrogen) as described previously (Schmidt et al., 2010). The quality of the RNA was 

assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). The 

concentration and purity of total RNA was also assessed by 260 nm UV absorption and by 

260/280 ratios, respectively (Nanophotometer, Implen, Munich, Germany). All samples 

had a RNA integrity number greater than or equal to 7 (7.0 - 8.9, mean 8.0 ± SD 0.4). 
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Processing of microarrays 

RNA samples were processed for microarray as described previously (Schmidt et al., 2010; 

Menke et al., 2012). Briefly, sample labeling was performed using the Illumina TotalPrep 

RNA Amplification Kit (Ambion, TX, USA, catalog number AMIL1791). Biotin-labeled cRNA 

(1.5 μg) was hybridized to Illumina mouse BeadChips (n = 6 per chip, equally distributed 

between control and defeat condition) (Illumina, San Diego, CA, USA). Gene expression 

was analyzed using the Illumina BeadStudio software (Version 1.5.1.3). 

 

Quantitative reverse transcriptase PCR 

RNA samples from experiment 1 were transcribed into cDNA applying a High-Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems) following the manufacturer’s 

protocol. qPCR of 100ng cDNA per sample was performed using the Quantifast SYBR 

Green PCR Kit (Quiagen) and the Lightcycler 2.0 (Roche) according to the standard 

protocols given in the manufacturer’s manuals. The primers used for analysis of the target 

genes are depicted in Table 1. All samples were normalized to the housekeeping gene 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH).  

      

Symbol Forward Primer Reverse Primer 

Rimbp2 GCAGGCTCAGGTTGAAGCTA ACACGGCATTTCTCTTCCAG 

Nell2 GGGAATAATGCAGGATGTGC AAGTCGTTGCATGTTGGACA 

Homer1 TGGACTGGGATTCTCCTCTG TCCATCTTCTCCTGCGACTT 

Ipmk CGGCATGAGGGTTTATCATC TTCCTTCAGGGTCTCTTTCG 

mGluR1 GGAGGTCTGGTTCGATGAGA TCATAGCGATTAGCCTCTGTGT 

Rap1gap GAAAAGATGCAGGGAAGCAG CCCAAAACCTCATGGACACT 

Slc6a1 GGGGTCCCTGATTGCTCT AGTTGATGCAGCAAACGATG 

Acvr1b CTGGGAGATTGCACGAAGAT CGGAGGGCACTAAGTCGTAA 

Dlgap1 GTCACCACCGAGGATAGGAA CCATTTTCTCCGGCTCTTC 

Mrvi1 CTCAGCTCTGGGGCTTCTC GACTGAGGGCCACTGCATA 

Nnat TCATCATCGGCTGGTACATC CTGTGTCCCTGGAGGATTTC 

Slc6a13 CTCCCCTGTCATCGAGTTCT AGGAGGCACAGGACCAGTT

 

Table 1: Primers used for quantitative reverse transcriptase PCR. The left column indicates the transcript 

abbreviation commonly used in public databases. The middle and right column show the sequences of 

the forward and reverse primers in 5´ to 3´direction. 
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In situ hybridization 

Frozen brains from experiment 2 were sectioned at -20 °C in a cryostat microtome at 

18 µm, thaw mounted on Super Frost Plus slides, dried and stored at -80 °C. In situ 

hybridization using a 35S UTP labeled ribonucleotide probe for Homer1b/c (Forward 

primer: AACACTGGGAGGCTGAGCTA; Reverse primer: TACTGCGGAAAGCCTCTTGT; 

transcript size: 531 nucleotides) and Homer1a (Forward primer: 

TGGTTGCTCAAGTTGACTGAA; Reverse primer: CCAGTAATGCCACGGTACG; transcript size: 

400 nucleotides) was performed as described previously (Schmidt et al., 2007). Briefly, 

prepared sections were fixed in 4% paraformaldehyde and acetylated in 0.25% acetic 

anhydride in 0.1 M triethanolamine/HCl. Subsequently, brain sections were dehydrated in 

increasing concentrations of ethanol. The antisense cRNA riboprobes of Homer1b/c and 

Homer1a were transcribed from a linearized plasmid. Tissue sections were saturated with 

100 μl of hybridization buffer containing approximately 3 - 5 × 106 cpm 35S labeled 

riboprobe. Brain sections were coverslipped and incubated overnight at 55 °C. The 

following day, the sections were rinsed in 4 × SSC (Standard saline citrate), treated with 

RNAse A (20 mg/l) and washed in increasingly stringent SSC solutions at room 

temperature. Finally, sections were washed in 0.1 × SSC for 1 h at 65 °C and dehydrated 

through increasing concentrations of ethanol. The slides were exposed to Kodak Biomax 

MR films (Eastman Kodak Co., Rochester, NY) and developed. Autoradiographs were 

digitized, and expression was determined by optical densitometry utilizing the freely 

available NIH ImageJ software. The mean of two measurements of two different brain 

slices was calculated for each animal. The data were analyzed blindly, always subtracting 

the background signal of a nearby structure not expressing the gene of interest from the 

measurements. 

 

Quantitative in vivo protein turnover analysis 

In vivo protein turnover was analyzed as described previously (Zhang et al., 2011). Briefly, 

after adaptation to the bacterial diet (Silantes GmbH, Munich, Germany) for 7 days, mice 

received 14N bacterial diet for three weeks and were then switched to 15N bacterial diet 

for 7 days in order to 15N label newly synthesized protein. Synaptosomal protein fractions 

of hippocampal tissue were enriched as described previously (Filiou et al., 2010; Filiou et 

al., 2011) and 100 µg of this protein fraction was resolved by SDS gel electrophoresis. In 
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gel digestion, peptide extraction, liquid chromatography–mass spectrometry (LC-

MS)/mass spectrometry (MS) analysis and peptide and protein identification was 

performed as described previously (Webhofer et al., 2013). MS data acquisition was 

performed in Selected Ion Monitoring mode for increased S/N levels and improved data 

quality of selected peptides of interest. The labeled peptide fraction, a measure of protein 

turnover, was calculated using the Protunyzer software (Zhang et al., 2011). 

 

Statistical analysis 

The data presented are shown as means ± SEM, analyzed by the commercially available 

software SPSS 18.0. Two-tailed student’s t-test was employed for comparison of two 

independent groups (Control and CSDS). Two-factorial (Condition and diet) ANOVA was 

employed in experiment 3 when appropriate. For fur state analysis, the Wilcoxon signed-

rank-test was applied for within group comparison, the Mann-Whitney-U-test was utilized 

for between-group analysis. A nominal level of significance P < 0.05 was accepted and 

adjusted according to Bonferroni correction by all posteriori tests (Univariate F-tests, test 

of simple effects or contrasts). 
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Results 

Experiment 1 

In the first experiment, we aimed to identify genes that are regulated by our CSDS 

procedure. Three weeks of chronic stress did not significantly change basal circulating 

corticosterone levels at the timepoint of the sacrifice (Figure 2A). However, we could 

identify a significant increase in adrenal gland weight in mice that underwent CSDS 

compared to control animals (T14 = -7.031, p < 0.001) (Figure 2B). A difference in body 

weight gain over the course of the experiment was not apparent (Figure 2C). The fur state 

was not significantly different at the start of the experiment, but mice of the CSDS group 

showed decreased fur quality over time (Z = -2.449, p < 0.05) (Figure 2D).  

 

 

Figure 2: Neuroendocrine and physiological parameters from experiment 1. (A) Chronic social defeat 

stress (CSDS) did not alter basal corticosterone levels in the blood. (B) Adrenal glands were increased in 

animals that underwent CSDS compared to their control littermates, indicating enhanced hypothalamic-

pituitary-adrenal (HPA) axis activation. (C) No effect of CSDS on the animals body weight gain was 

apparent at the time point of sacrifice. (D) At the beginning of the experiment, the fur state of all animals 

was in excellent condition. This was significantly changed by CSDS, as animals that were stressed showed 

an increased fur state index at day 22 of the experiment, compared to control animals (Condition effect) 

as well as compared to experimental day 1 (Time effect). * Significant from control; $ Significant from day 

1 (Within-subjects time effect); § Significant from control of same time point (Between-subjects condition 

effect); p < 0.05. 
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Symbol Accession Gene name Fold 
change t-value p-value 

Rimbp2  
NM_001081388.1 RIMS-binding protein 2 1.15 -2.643 0.019 

Nell2  NM_016743.2 Protein kinase C-binding protein 
NELL2 1.15 -3.058 0.009 

Homer1  NM_152134.2 Homer protein homolog 1 1.07 -3.244 0.006 

Ipmk  NM_027184.1 Inositol polyphosphate 
multikinase 0.90 2.589 0.021 

mGluR1  NM_016976.3 Metabotropic glutamate receptor 
1 0.90 2.628 0.020 

Rap1gap  
NM_001081155.2 

Rap1 GTPase-activating protein 
1 0.90 2.976 0.010 

Slc6a1  NM_178703.4 Sodium- and chloride-dependent 
GABA transporter 1 0.90 2.704 0.017 

Acvr1b  NM_007395.3 Activin A receptor, type 1B 0.89 2.250 0.041 

Dlgap1  NM_027712.3 Discs, large (Drosophila) 
homolog-associated protein 1 0.88 3.377 0.005 

Mrvi1  NM_194464.2 Protein MRVI1 0.85 2.275 0.039 

Nnat  NM_010923.2 Neuronatin 0.82 3.171 0.007 

Slc6a13  NM_144512.2 Sodium- and chloride-dependent 
GABA transporter 2 0.81 2.184 0.046 

 

Table 2: Selected candidate transcripts from the microarray. First and second column indicate the 

transcript abbreviation as well as the accession code used to identify the transcript in the ncbi database 

(http://www.ncbi.nlm.nih.gov). The third column describes the full name of the transcribed protein as 

given in the aforementioned database. In the next columns, the fold change of CSDS animals compared to 

control animals is listed, followed by the statistical t-value for the comparison as well as the respective p-

value. Abbreviations as in figure 2. 

 

At the day of sacrifice, stressed animals also showed a significantly increased fur state 

index compared to control animals (Z = -3.000, p < 0.01). 

Analysis of hippocampal mRNA levels on the Illumina microarray revealed a total of 898 

regulated genes (p < 0.05), however no gene withstood correction for multiple testing 

(q > 0.05). In a next step, we excluded all genes that showed a fold ratio of 0.90 to 1.05 

(n = 388) as well as all signals that did not significantly exceed the microarray background 

range (n = 210). We furthermore eliminated all duplicate (n = 28) and not yet clearly 
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identified sequences such as predicted gene products (n = 157). From the remaining 115 

sequences, we picked all genes that were reported to be associated with traits that are 

linked to psychiatric pathology such as neurogenesis, neurotransmission, and intracellular 

signaling for further analysis and validation.  

 

 

Figure 3: Validation of candidate genes from the microarray. (A) From 12 candidates, only the mRNA 

transcripts of 3 genes were significantly regulated in the hippocampus when analyzed by quantitative 

reverse transcriptase PCR, with Rimbp2 showing a regulation in the opposite direction compared to the 

microarray. Homer1 was significantly up- and Nnat downregulated, which is in line with the microarray 

results. (B) Validation of the constitutively expressed Homer1b/c in the dorsal hippocampus by in situ 

hybridization revealed an upregulation in the CA1 and CA3, but not in the dentate gyrus (DG). (C) 

Representative autoradiograph of Homer1b/c mRNA in the dorsal hippocampus. (D) Homer1a was not 

upregulated in response to chronic stress. (E) Representative autoradiograph of Homer1a mRNA in the 

dorsal hippocampus. * Significant from control; p < 0.05. 
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A total of 14 Illumina chip sequences were then double-checked with the basic local 

alignment tool (http://blast.ncbi.nlm.nih.gov), which eliminated 2 more candidates that 

were not specific for the specified gene. The 12 remaining candidates are depicted in 

Table 2. 

To validate the chosen candidates from the microarray results, we performed qPCR as a 

technical control replicate using the RNA samples obtained from experiment 1. All 12 

candidates were detected and normalized against GAPDH. From all candidates, only 

Rimbp2 (T14 = 2.260, p < 0.05), Homer1 (T14 = -2.519, p < 0.05), and Nnat (T14 = 2.260, 

p < 0.05) were significantly regulated in the qPCR analysis (Figure 3A). However, Rimbp2 

was negatively regulated in the qPCR analysis, while the microarray results showed an 

upregulation. 

 

Experiment 2 

To independently replicate the mRNA differences seen in the hippocampus of stressed 

animals, as well as gain subregion-specific information about these alterations, we 

performed in situ hybridization with riboprobes against the two isoforms of Homer1, 

Homer1a and Homer1b/c, in a different set of animals (Wang et al., 2011a). Here we 

could detect significant differences in Homer1b/C mRNA levels in the CA1 (T18 = -3.275, 

p < 0.01) and CA3 (T18 = -4.556, p < 0.001) but not the dentate gyrus (DG) (T18 = -1.791, 

p = 0.090) region of the dorsal hippocampus (Figure 3B). On the other hand, Homer1a 

was not significantly regulated in any of the investigated regions of the hippocampus 

(Figure 3C). 

 

Experiment 3 

In a follow-up experiment, we investigated the turn-over rate of the protein Homer1b/c 

by measuring differences in 14N/15N labeled protein samples. To validate the efficiency of 

the CSDS paradigm, basal circulating corticosterone levels were measured at the day of 

sacrifice. Here, two-factorial ANOVA revealed a significant effect of the 14N/15N diet 

compared to standard diet (F1,43 = 4.077, p < 0.05), indicating that the bacterial diet 

increases basal corticosterone levels independently of the stressor (Figure 4A). Regarding 

the physiological effects of the CSDS paradigm on the animals, we detected a significant 

increase in adrenal gland weight due to CSDS (F1,43 = 27.505, p < 0.001) but no changes in 
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body weight gain (Figure 4B, C). Also, the bacterial diet did not significantly alter both 

investigated parameters. The fur state did not differ between the groups at the beginning 

of the experiment (Figure 4D). Over the course of the CSDS procedure, stressed animals 

showed a significant reduction in fur quality compared to both the beginning of the 

experiment (Standard diet: Z = -3.500, p < 0.001; 14N/15N diet: Z = - 3.176, p < 0.001) and 

to their respective control group (Standard diet: Z = -4.804, p < 0.001; 14N/15N diet: Z = -

4.550, p < 0.001). The diet did not influence fur state quality. In a subset of these 

experimental mice (n = 3/group, 14N/15N diet), we investigated the turnover rate of 

Homer1b/c in the synaptosomal fraction of the hippocampus during the last week of the 

CSDS paradigm, but did not find a significant change (Figure 4D). 

 

 

Figure 4: Results from experiment 3. (A) While CSDS did not affect basal corticosterone levels, the 
14

N/
15

N 

diet significantly increased circulating levels in the blood. (B) Adrenal glands were enlarged in the CSDS 

group with no effect of the diet. (C) Also, neither CSDS nor the applied diet significantly influenced the 

animals’ body weight gain over the course of the experiment. (D) The fur state index was increased after 

the CSDS procedure in both diet groups, both with respect to the initial fur state index at day 1 of the 

respective subgroup (Time effect) and to the respective control group at day 22 (Condition effect). The 

diet itself did not affect the quality of the fur. (E) Protein turnover was not altered by CSDS, since both 

groups showed the same amount of 
15

N labeled Homer1 protein in the synaptic fraction of the 

hippocampus. * Significant condition effect; # Significant diet effect; $ Significant from day 1 (Within-

subjects time effect); § Significant from control of same time point (Between-subjects condition effect); 

p < 0.05. Abbreviations as in figure 2. 
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Discussion 

In the present study, we aimed to identify novel target genes that are involved in 

neurotransmission and are regulated by chronic stress exposure. We therefore analyzed 

alterations in hippocampal RNA levels following an established chronic stress paradigm by 

microarray. We then aimed to validate potential candidates by both qPCR and in situ 

hybridization in independent samples. Following validation, we identified Homer1 as a 

potential gene that is regulated by chronic stress in the hippocampus. To further 

investigate the nature of this regulation, we also investigated the turnover rate of 

Homer1 protein in animals that were exposed to stress but did not find a difference. In 

summary, we were able to identify and validate a novel candidate gene in the glutamate 

system that may be involved in stress-induced molecular and behavioral alterations, 

which may ultimately lead to psychopathology.  

Chronic stress has considerable consequences for the animals’ physiology, which is 

displayed in increased basal circulating corticosterone and a concomitant increase in size 

of the adrenal glands (Keeney et al., 2006; Schmidt et al., 2007; Hartmann et al., 2012). 

These changes indicate a chronic overactivation of the HPA axis, which has been shown to 

be one of the main causes for the development of stress-related disorders (de Kloet et al., 

2005). In the current study however, basal corticosterone levels were not significantly 

changed. It is important to note that basal blood samples were collected at one 

timepoint, which does not allow correcting for the ultradian rhythm that underlies 

corticosterone secretion (Lightman et al., 2008; Lightman and Conway-Campbell, 2010). 

This may explain why the measured corticosterone levels were not different between 

stressed and control animals. Yet, we were able to detect a robust increase in adrenal 

gland size in all experiments, which is a reliable indicator of HPA axis hyperactivity over 

the course of the chronic stress period, thereby indicating a successful chronic stress 

induction (Karst and Joëls, 2003; Schmidt et al., 2007). This is further supported by a 

reduction in fur state quality, which has previously been reported as a result of chronic 

stress exposure (Denmark et al., 2010; Wagner et al., 2011). While changes in body 

weight are frequently observed in the context of stress (Bartolomucci et al., 2009), we did 

not find a significant change in body weight gain in stressed animals. Indeed, results from 

previous studies applying this CSDS paradigm are inconsistent with respect to body 

weight data, reporting both increased body weight gain (Wagner et al., 2011; Wang et al., 
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2011a; Hartmann et al., 2012) or no change (Wagner et al., 2012). The underlying 

molecular mechanisms of body weight alterations in response to chronic stress are still 

poorly understood, therefore further studies are warranted regarding this issue, but are 

not the main focus of the present study. 

Next to physiological effects, chronic stress is reported to have major effects on the 

central nervous system, that range from macroscopic changes like hippocampal atrophy 

(Lupien et al., 1998) and neurogenesis (Schoenfeld and Gould, 2012) to alterations on 

subsynaptic levels such as the composition of the PSD (Donohue et al., 2006; Cohen et al., 

2011). Structural and molecular changes are often accompanied by regulations on the 

mRNA level of various genes, which in turn translate into altered protein levels. We 

therefore performed a microarray analysis to identify genes that are regulated by our 

CSDS paradigm. Of initially 23273 sequences that were tested on the microarray, we 

chose 12 significantly regulated genes that have previously been implicated in 

neurotransmission or neurogenesis, but were only successful in validating two of them 

(Homer1, Nnat) in a technical replication, with an upregulation of Homer1 also being 

replicated in an independent sample.  

Interestingly, in a study by Berton and colleagues, Homer1 was also reported to be 

upregulated by chronic defeat stress in the nucleus accumbens (Berton et al., 2006). 

Furthermore, microarray data from another study in our lab indicated Homer1 to be 

differentially regulated between stress resilient and vulnerable animals (Schmidt et al., 

2010), which was also technically replicated by in situ hybridization (Personal 

communication). This is in line with our findings, showing the constitutively expressed 

isoform Homer1b/c to be regulated in the hippocampus of stressed mice in an 

independent experiment. Homer1b/c and its membrane interaction partner has recently 

been suggested to be critically involved in various neurological disorders, such as fragile X 

syndrome (Michalon et al., 2012), schizophrenia (Szumlinski et al., 2005; Jaaro-Peled et 

al., 2010; Spellmann et al., 2011) and depression (Rietschel et al., 2010). In the context of 

learning impairments, a phenotype typically observed in psychiatric disorders, Homer1b/c 

has also been shown to be involved (Szumlinski et al., 2004; Gerstein et al., 2012). To our 

knowledge, this is also the first study to report a protein turnover rate of Homer1b/c. 

While CSDS did not affect the turnover rate, we could show that after 7 days of treatment 
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with 15N diet, around 30% of the present Homer1b/c protein was labeled with the heavy 

isotope. 

To further specify the observed regulatory effects, we also investigated the short isoform 

Homer1a, which was not significantly regulated after three weeks of stress. Previous 

studies reported the immediate early gene Homer1a to be induced by e.g. a maximal 

electroconvulsive seizure, which is also a severe acute stressor (Brakeman et al., 1997; Hu 

et al., 2010). Acute induction of Homer1a by stress in turn exerts major effects on 

memory formation, also involving interactions with Homer1b/c, strengthening the 

evidence for an important role of this signaling pathway in learning behavior (Inoue et al., 

2009; Tronson et al., 2010). Yet, no studies have been published that investigate the 

involvement of Homer1a in the context of chronic stress.  

There are some limitations to this study that make the interpretation of the results more 

difficult. First, all gene regulations found on the microarray are only significant after a 

single t-test and do not withstand correction for multiple testing. However, it is unlikely 

that CSDS does not alter hippocampal gene expression, since this paradigm and other 

similar paradigms have been shown to strongly affect mice in various aspects (Berton et 

al., 2006; Tsankova et al., 2006; Wagner et al., 2011; Wang et al., 2011a; Hartmann et al., 

2012; Wagner et al., 2012). Compared to e.g. tumor biology, effect sizes due to chronic 

stress are of lower magnitude, which may in turn cause sensitivity problems with current 

microarray technology (Shippy et al., 2006). This is in line with previous observations, also 

failing to show significant differences follow chronic stress after correction multiple 

testing (Datson et al., 2012). Novel strategies and techniques, such as next generation 

sequencing, should therefore be considered for future studies applying screening 

approaches (Shendure and Ji, 2008; Mehta et al., 2010; Shendure and Lieberman Aiden, 

2012). Inferior microarray resolution may also be the cause for the poor replication rate 

obtained by qPCR that eliminated most of the chosen candidates. An increase in group 

size (i.e. from 8 to 12/group) may also resolve some of the problems mentioned above 

since this would greatly reduce the variance within the experimental groups. With regard 

to the upregulation of Homer1, further studies will need to clarify whether the increased 

mRNA levels also translate into elevated protein levels, which may in turn lead to 

alterations in the synaptic composition of glutamate neurons.  
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Summarizing, our results implicate Homer1 as a potential novel target for development 

and treatment of stress-related psychiatric disorders. This is evidenced by a distinct 

elevation of Homer1 mRNA levels in the hippocampus, which can subsequently alter 

mGluR5-mediated signaling pathways that ultimately lead to changes in glutamatergic 

neurotransmission. Given the evidence presented in this study, we suggest performing 

future studies that further dissect the molecular and behavioral consequences of 

modulating Homer1 in the context of stress and psychopathology. 
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Abstract 

In recent years, the glutamatergic system has been implicated in the development and 

treatment of psychiatric disorders. Glutamate signaling is processed by different 

receptors, including metabotropic glutamate receptors (mGluRs), which in turn interact 

with the scaffolding protein Homer1 to modulate downstream Ca2+ signaling. Stress is a 

major risk factor for the incidence of psychiatric diseases, yet acute stress episodes may 

have diverging effects on individuals. Cognitive impairments have often been shown to 

occur after episodes of stress, however the specific role of mGluR5/Homer1 signaling in 

the interaction of stress and cognition has not yet been elucidated. In this study we show 

that a single episode of social defeat stress is sufficient to specifically induce cognitive 

impairments in mice 8 h after the stressor without affecting the animals’ locomotion or 

anxiety levels. We also demonstrate that Homer1b/c levels as well as mGluR5/Homer1b/c 

interactions in the dorsal hippocampus are reduced up to 8 h after stress. Blockade of 

mGluR5 during the occurrence of social stress was able to rescue the cognitive 

impairments. In addition, a specific overexpression of Homer1b/c in the dorsal 

hippocampus also reversed the behavioral phenotype, indicating that both mGluR5 and 

Homer1b/c play a crucial role in the mediation of the stress effects. In summary, we could 

demonstrate that stress induces a cognitive deficit that is likely mediated by 

mGluR5/Homer1 signaling in the hippocampus. These findings help to reveal the 

underlying effects of cognitive impairments in patients suffering from stress-related 

psychiatric disorders. 

 

  



2.3 Introduction  Research articles 

 

 
71 

Introduction 

Stressful life events are commonly accepted as risk factors for the development of 

psychiatric disorders (de Kloet et al., 2005). Social and work stress in particular are 

prevalent in western societies and psychopathologies emanating from such stressors 

result in high economic losses (Tennant, 2001). Stress paradigms in animal models 

produce a variety of behavioral, physiological and neuroendocrine changes that are 

related to clinical symptoms of psychiatric disorders (Nestler and Hyman, 2010). One 

major indication of these disorders is cognitive impairment, and numerous studies have 

investigated the interactions of stress and cognitive dysfunction at different stages in life 

in both animal models and humans (Lupien et al., 2009). Early life stress, chronic stress 

and chronically elevated circulating glucocorticoids (GCs) have been shown to induce 

cognitive impairments (Landfield et al., 1981; Borcel et al., 2008; Wang et al., 2011a; 

Wang et al., 2011b). In contrast, acute effects of stress and GCs critically depend on the 

timing and magnitude of the stressor or GC exposure and the stage of memory formation, 

consolidation or retrieval (Sandi, 2011). In this context, glutamatergic pathways and their 

role in memory formation have received growing attention in the last years, with a 

particular focus on glutamate receptor signaling (Popoli et al., 2012).  

Homer1 is a scaffolding protein located in the postsynaptic density (PSD) and interacts 

with various binding partners, most prominently group I metabotropic glutamate 

receptors (mGluRs) and inositol trisphosphate receptors (Brakeman et al., 1997; Tu et al., 

1998). The best described Homer1 isoforms are on the one hand Homer1b/c, consisting 

of a conserved amino-terminal target-binding domain and a coiled-coil structure that 

allows for multimerization (Xiao et al., 1998). On the other hand, Homer1a, a short form 

which is missing the coiled-coil structure, has been shown to act as a dominant negative 

for long Homer1 isoforms at the mGluR and IP3 binding sites. The constitutively expressed 

Homer1b/c has been shown to mediate ligand-dependent signaling of mGluRs that may 

lead to downstream translational activation of protein kinase pathways (Ronesi and 

Huber, 2008; Ronesi et al., 2012) but is also involved in cell surface expression of mGluRs 

(Ango et al., 2002). In contrast, Homer1a induces ligand-independent activation of 

mGluRs, thus interfering with intracellular Ca2+ release (Ango et al., 2001). In humans, a 

role of Homer1 has been suggested in the emergence of major depressive disorders 
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(Rietschel et al., 2010), and was also found to be implicated in memory formation and 

cognition (Szumlinski et al., 2005; Lominac et al., 2005).  

In the current study, we hypothesized that mGluR5/Homer1 signaling plays a crucial role 

in mediating effects of stressful life events. To test this, we first devised an experimental 

setup that specifically produces a learning impairment in response to an acute stress 

exposure. Next, we investigated both mRNA and protein levels of Homer1 in response to 

the stressor. Additionally, we tested whether pharmacological modulation of the 

glucocorticoid receptor (GR) or mGluR5/Homer1 signaling or Homer1 overexpression can 

attenuate the stress-induced cognitive deficits. 
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Materials and Methods 

Animals 

For all experiments, male C57Bl/6N mice (Charles River Laboratories, Maastricht, the 

Netherlands) at the age of 12 weeks were used. The mice were held under standard 

conditions (12L:12D light cycle, lights on at 08:00 AM, temperature 23 ± 2 °C) and were 

single housed and acclimated to the room for 2 weeks before the beginning of the 

experiments. Food (Altromin 1324, Altromin GmbH, Germany) and tap water were 

available ad libitum. Male CD1 mice (16 - 18 weeks of age) served as resident mice, which 

were held under the conditions described above. They were allowed to habituate to the 

social defeat cage for two weeks prior to the experiment. All experiments were carried 

out in the animal facilities of the Max Planck Institute of Psychiatry in Munich, Germany. 

The experiments were carried out in accordance with the European Communities' Council 

Directive 2010/63/EU. All efforts were made to minimize animal suffering during the 

experiments. The protocols were approved by the committee for the Care and Use of 

Laboratory animals of the Government of Upper Bavaria, Germany. 

 

Experimental design 

For all experiments, a separate batch of animals was used (n = 8 - 12 mice per group). The 

defeat procedure was performed between 08:00 AM and 12:00 PM. Sampling and testing 

was performed after the stated amount of time. For in situ hybridization and western 

blot, brains were removed, frozen in isopentane at −40 °C, and stored at −80 °C until 

further processing. For immunohistochemistry, animals were deeply anesthetized with 

ketamine/rompun and perfused intracardially with 4% paraformaldehyde. Brains were 

removed, postfixed overnight in 4% paraformaldehyde following overnight incubation in 

30% sucrose solution at 4 °C, and then stored at −80 °C. Blood samples were kept on ice 

and later centrifuged at 8000 rpm at 4 °C for 15 min. Plasma was transferred to new, 

labeled tubes and stored at -20 °C until determination of corticosterone by 

radioimmunoassay (MP Biomedicals Inc; sensitivity 12.5 ng/ml). 

 



Research articles  2.3 Materials and Methods 

 

 
74 

Social defeat stress procedure 

Animals were exposed to an aggressive CD1 resident mouse with short attack latency for 

5 min, and then returned to their homecage until testing or sacrifice. During the defeat 

procedure, fighting was not interfered with unless a severe injury occurred. In this case, 

the defeat was stopped and the experimental animal was excluded from further analysis. 

Control animals were allowed to explore an empty novel cage similar to the resident cage 

for 5 min as well.  

 

In situ hybridization and immunohistochemistry 

For in situ hybridization, frozen brains were coronally sectioned in a cryostat microtome 

at 18 μm and kept at −80 °C. In situ hybridization using a 35S UTP-labeled ribonucleotide 

probe for Homer1b/c (Forward primer: AACACTGGGAGGCTGAGCTA; Reverse primer: 

TACTGCGGAAAGCCTCTTGT) and Homer1a (Forward primer: TGGTTGCTCAAGTTGACTGAA; 

Reverse primer: CCAGTAATGCCACGGTACG) was performed as described previously 

(Schmidt et al., 2007). For fluorescence immunohistochemistry, serial coronal sections 

were cut at 30 μm thickness. Double-labeling immunofluorescence (Rabbit anti-Homer1, 

1:1000, Synaptic Systems; goat anti-GFP, 1:500, Abcam) was performed on free-floating 

sections (n = 3 per mouse) as described previously (Wang et al., 2011a).  

 

Coimmunoprecipitation 

For coimmunoprecipitation (CoIP), a separate batch of experimental animals was killed 

8 h after the defeat procedure and the dorsal hippocampus was dissected. Membrane 

fractions were isolated using the Calbiochem ProteoExtract Kit (EMD Biosciences) as 

described previously (Wagner et al., 2012). The protein concentration was determined, 

and 1.2 mg of lysate was incubated with 2.5 µg mGluR5 antibody (Millipore) overnight at 

4 °C. Twenty microliters of BSA-blocked Protein G Dynabeads (Invitrogen, catalog no. 100-

03D) were added to the lysate-antibody mix followed by 3 h incubation at 4 °C. The beads 

were washed three times with PBS, and protein-antibody complexes were eluted with 

100 µg/ml mGluR5-peptide solution (Millipore) in CoIP buffer for 30 min at 4 °C. Fifteen 

micrograms of the cell lysates and 10 µl of the immunoprecipitates were further 

processed by western blot analysis. 

 



2.3 Materials and Methods  Research articles 

 

 
75 

Western blot 

Purification of synaptosomal fraction of hippocampal tissue (Filiou et al., 2010) and 

western blot analysis (Wang et al., 2011a) was performed as described before. Antibodies 

used were rabbit anti-Homer1 (1:1000, Synaptic Systems), rabbit-anti mGluR5 (1:1000, 

Millipore) and goat anti-actin (1:2000, Santa Cruz Biotechnology) for primary as well as 

horseradish peroxidase-conjugated secondary antibodies (1:2000, DAKO).  

 

Behavioral testing 

All behavioral tests were recorded using a video-tracking system (Anymaze 4.20; 

Stoelting, Wood Dale, IL, USA). The following behavioral tests were performed: Spatial 

object recognition (sOR), Y-Maze, elevated plus maze (EPM) and female urine sniffing test 

(FUST). The testing procedures were performed as described below. 

 

Spatial object recognition  

The spatial object recognition task was performed in an open field apparatus 

(50 × 50 × 50 cm) under low illumination (15 lux) as described previously (Schmidt et al., 

2011a). Prominent spatial cues were provided. Mice were habituated to the testing 

environment for 10 min on two consecutive days before testing. During the acquisition 

trials, mice were presented with two identical aluminum cubes (5 × 5 × 5 cm) and allowed 

to freely explore the objects two times for 10 min separated by a 15 min intertrial interval 

(ITI). During the 5 min retrieval trial, 30 min following the last acquisition trial, mice were 

presented with a nondisplaced object and a relocated one. The percentage of time 

exploring the displaced and the non-displaced objects was calculated, with a higher 

preference for the novel object being rated as intact spatial recognition memory. Animals 

that did not explore any of the two objects during the retrieval phase were excluded from 

the analysis. 

 

Y-Maze 

The Y-maze was performed as described previously (Schmidt et al., 2011a). Briefly, the 

apparatus is made of gray polyvinyl chloride (PVC) and consisted of three evenly 

illuminated arms (30 × 10 × 15 cm, 15 lux) with an angle of 120° between each arm. The 

apparatus was surrounded by various spatial cues. To ensure that the mice had sufficient 
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spatial cues available without having to stretch up and look outside of the maze, we also 

introduced intramaze cues (Triangles, bars, and plus signs) that served the same purpose 

as the external cues. The Y-maze test comprises two trials separated by an ITI to assess 

spatial recognition memory. During the first trial (Acquisition phase), the mouse was 

allowed to explore only two of the three arms for 10 min while the third arm was blocked. 

After 30 min ITI, the second trial (Retrieval phase) was conducted during which all three 

arms were accessible for 5 min. The percentage of distance traveled in the novel arm 

compared with the known arms was scored with a significantly higher percentage than 

chance level (33.3%) rated as successful spatial memory. 

 

Elevated plus maze 

The EPM was conducted to display changes in anxiety-related behavior. The device 

consisted of a plus-shaped platform with two opposing open arms 

(30 cm × 5 cm × 0.5 cm) and two opposing enclosed arms (30 cm × 5 cm × 15 cm), made 

of gray PVC, which were connected by a central area (5 cm × 5 cm). The whole device was 

elevated 50 cm above the floor. The illumination was 20 lux in the open arms and < 10 lux 

in the closed arms. Testing duration was 5 min and mice were placed into the center zone 

facing one of the enclosed arms at the start of the test. The time spent in the open arms 

compared to the total arm time was analyzed. 

 

Female urine sniffing test 

The FUST was performed as described previously (Malkesman et al., 2010; Wagner et al., 

2012). Briefly, 1 h before the test mice were habituated to a sterile cotton swab inserted 

into their home cage. In the first stage of the test, mice were exposed to a cotton swab 

dipped in water for 3 min and sniffing time was scored. After an ITI of 45 min, mice were 

exposed to a cotton swab dipped in urine from estrous females of the same mouse strain. 

Again, total sniffing time was scored. The test was performed in a dark environment 

(< 3 lux). Animals that escaped from the apparatus in any trial were excluded from the 

analysis. 
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Drugs 

The selective GR agonist dexamethasone (DEX) (Ratiopharm) or vehicle (0.9% NaCl) was 

administered subcutaneously (10 mg/kg body weight). Animals were then placed back in 

their homecage until sacrifice or behavioral testing. 

For blockade of GR signaling, the specific GR antagonist RU486 (Sigma) was administered 

5 min before the defeat procedure. Animals received a subcutaneous injection of either 

RU486 (100 mg/kg body weight) or vehicle (Polyethylene glycol).  

For blockade of mGluR5 signaling, the specific mGluR5 antagonist MTEP (Tocris 

Bioscience) was solubilized in 0.9% NaCl (Anderson et al., 2003; Busse et al., 2004). 

Animals received a subcutaneous injection of either vehicle or MTEP (15 mg/kg body 

weight) 5 min before the defeat procedure. 

Drug dosage was chosen according to previous reports (Anderson et al., 2003; Schmidt et 

al., 2011a). 

 

Viral overexpression of Homer1 

Viral overexpression was performed as described previously (Schmidt et al., 2011a). We 

used an adeno-associated bicistronic AAV1/2 vector (GeneDetect) containing the CAG-

Homer1-IRES-EGFP-WPRE-BGH-polyA expression cassette (Containing coding sequence of 

Homer1 NCBI CCDS ID CCDS36745). For the control group, we used the same vector 

construct expressing only EGFP. Virus production, amplification, and purification were 

performed by GeneDetect. Mice were anesthetized with isoflurane, and 0.5 μl of either 

AAV-Homer1 or AAV-EGFP (Titres: 1.2 × 1012 genomic particles/ml) were bilaterally 

injected in the dorsal hippocampus at 0.06 μl/min by glass capillaries with tip resistance 

of 2 - 4 MΩ in a stereotactic apparatus. The following coordinates were used: 1.9 mm 

posterior to bregma, 1.3 mm lateral from midline, and 1.3/1.8 mm below the surface of 

the skull, targeting the CA1 and dentate gyrus (DG) region of the dorsal hippocampus. 

After surgery, mice were treated for 5 days with Metacam via drinking water. Behavioral 

testing started 4 weeks after virus injection. Successful overexpression of Homer1 was 

verified by immunofluorescence. Animals that were not infected bilaterally in both the 

CA1 and DG region were excluded from the analysis (n = 4). Quantification of the 

overexpression was achieved by in situ hybridization using the riboprobe described 

above. 
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Statistical analysis 

The data presented are shown as means ± SEM and were analyzed by the commercially 

available software SPSS 16.0. Student’s t-test was employed for comparison of means. 

Two-way analysis of variance was used to investigate effects of locomotion and object 

interaction in experiments including two conditions (Control/defeat and vehicle/drug 

treatment). A nominal level of significance P < 0.05 was accepted.  
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Results 

A single social defeat induces specific spatial memory impairments after an 

intermediate period of recovery 

We subjected mice to a single defeat session and investigated the corticosterone 

response as a measure of hypothalamic-pituitary-adrenal axis activity after four distinct 

time points (Figure 1A). Circulating corticosterone was significantly increased 1 h 

(T9.614 = -8.623, p < 0.001), 4 h (T9.898 = -3.273, p < 0.01), and 8 h (T18 = 3.753, p < 0.01), but 

not 24 h after the defeat session. As the defeat stress showed a significant 

neuroendocrine impact 8 h after the stress, we tested whether stressed animals show a 

behavioral phenotype. Indeed, 8 h after a defeat session, experimental mice were not 

able to distinguish a displaced object in the sOR test (Control: T22 = 7.721, p < 0.001; 

defeat: T22 = -0.234, p = 0.817) (Figure 1B). We also replicated this cognitive impairment 

in the Y-maze test, where stressed animals did not discern between a novel and known 

arms (Figure 1C). To investigate for potential biases, we also investigated the total 

distance traveled in the apparatus in both tests, but did not find a difference (sOR: 

control: 8.70 ± 1.26 m; defeat: 7.21 ± 1.19 m, p = 0.398; Y-maze: control: 12.01 ± 0.85 m; 

defeat: 12.75 ± 2.04 m, p = 0.724). Additionally, the total interaction time with both 

objects in the sOR test did not differ between control and defeated animals (Control: 3.79 

± 0.61 s; defeat: 3.19 ± 0.75 s, p = 0.542). These memory deficits were not visible in either 

test when animals were tested 24 h after the defeat session (Control: displaced object: 

78.61% ± 2.62; nondisplaced object: 21.39% ± 2.62; T18 = 15.419, p < 0.001; defeat: 

displaced object: 76.72% ± 3.42; nondisplaced object: 23.27% ± 3.42; T18 = 11.032, 

p < 0.001). To further narrow down the behavioral phenotype, we also performed an EPM 

test (Figure 1D) as well as a FUST (Figure 1E) 8 h after the defeat but did not find any 

difference between control and defeated mice (EPM, time on the open arm: T22 = 0.830, 

p = 0.415; FUST, urine sniffing time: T22 = 0.284, p < 0.779), indicating that there is no 

underlying locomotion phenotype, anxiety phenotype, or anhedonic phenotype in these 

animals. 
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Figure 1: Neuroendocrine and behavioral effects of a single defeat session. (A) Defeated mice show 

significantly increased corticosterone levels up to 8 h after onset of the stressor. (B) In the spatial object 

recognition test, animals did not discriminate between the displaced and the nondisplaced object when 

stressed 8 h before. (C) In the Y-maze, we found the same memory impairment as when animals were 

defeated 8 h before. (D) Both control and defeated mice spent equal time sniffing in the female urine 

sniffing test 8 h after the defeat, indicating that there is no anhedonic behavior induced by a single defeat 

session. (E) In the elevated plus maze, defeated animals show the same anxiety-related phenotype as 

their control littermates when tested 8 h after the stress. * p < 0.05; data are expressed as mean ± SEM 
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A single defeat immediately reduces Homer1b/c levels in the dorsal hippocampus 

and decreases mGluR5/Homer1b/c coupling 

Brains from the same animals that were killed to investigate corticosterone levels were 

prepared for in situ hybridization, and Homer1 mRNA levels were investigated in the 

dorsal and ventral hippocampi. We detected a reduction in Homer1b/c mRNA 4 h 

(T18 = 3.734, p < 0.01) and 8 h (T18 = 2.317, p < 0.05) after the stressor in the CA1 (Figure 

2A, B) and DG region of the dorsal hippocampus (DG: 4 h: control 22.20 ± 1.39, defeat 

16.98 ± 1.03, T18 = 3.019, p < 0.01; 8 h: control 17.47 ± 0.55, defeat 15.47 ± 0.72, 

T17 = 2.214, p < 0.05). 

 

 

Figure 2: Homer1 mRNA level alterations in response to stress. (A) After 4 and 8 h, Homer1b/c mRNA 

levels in the CA1 region are reduced. This reduction normalizes after 24 h. (B) Representative 

autoradiographs of Homer1b/c mRNA levels in the hippocampus. (C) Homer1a levels are not significantly 

altered in response to a single social defeat. One hour after onset of the stressor, an increase in Homer1a 

mRNA failed to reach significance (p = 0.077). (D) Representative autoradiographs of Homer1a mRNA 

levels in the hippocampus. (E) Interactions of mGluR5 and Homer1b/c are decreased 8 h after defeat 

stress. (F) Representative western blot of the mGluR5/Homer1 immunoprecipitation. For the technical 

control, a pooled lysate was incubated without primary antibodies. * p < 0.05, data are expressed as 

mean ± SEM. 
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After 24 h, no significant effect was visible. Also, we did not find a change in mRNA levels 

in the ventral hippocampus, indicating a high specificity of this regulation. Additionally, 

we investigated short-form Homer1a mRNA levels in the CA1 region of the dorsal 

hippocampus after the same time points but did not see a significant regulation (Figure 

2C, D). In a separate cohort of animals that were defeated and killed 8 h after the 

stressor, we extracted the highly enriched synaptosomal fraction of dorsal hippocampus 

tissue and measured Homer1b/c levels by western blot. Here, we found a significant 

decrease of Homer1 protein levels in the synapse when animals were defeated previously 

(T13 = 2.436, p < 0.05). Another cohort of animals was defeated, killed 8 h after the 

stressor, and dorsohippocampal membrane fractions were processed for CoIP. While 

total protein levels remained unchanged in response to stress, coupling of 

mGluR5/Homer1b/c was significantly reduced (T21 = 2.867, p < 0.01) (Figure 2E, F). 

 

GR signaling is not sufficient to elicit memory impairments, while blockade of 

mGluR5 signaling reverses stress effects 

To investigate whether activation of the GR in the hippocampus is already sufficient to 

induce changes in Homer1b/c levels that subsequently lead to memory impairments, we 

injected a batch of experimental animals with the GR agonist DEX to mimic the 

corticosterone response to a severe stressor. Next, we analyzed the expression profile of 

Homer1b/c in response to the DEX injection but did not find a regulation in any of the 

investigated time points (Figure 3A). Furthermore, a DEX injection was not able to induce 

spatial memory deficits 8 h after the administration (Figure 3B). In the Y-maze test, both 

vehicle- and DEX-injected animals were able to discriminate between the new and the 

known arms (Vehicle: T20 = -10.266, p < 0.001; DEX: T20 = -5.178, p < 0.001). Total 

locomotion was not affected by DEX treatment. We then investigated whether GR or 

mGluR5/Homer1 signaling during the sensation of the defeat stress is necessary to induce 

the memory deficits that are occurring 8 h after the stress. We injected either RU486, a 

specific GR antagonist, or the specific mGluR5 inverse agonist before the defeat and 

tested the learning behavior in a subsequent sOR test 8 h after the onset of the stressor. 

Blockade of GR signaling by RU486 was not able to prevent the stress-induced memory 

impairments in the sOR task (Figure 3C). Here, both unstressed control groups 

discriminated between the two objects (Vehicle: T16 = 8.747, p < 0.001; 
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RU486: T16 = 2.796, p < 0.05), while the defeated animals did not learn the novel position 

of the object regardless of treatment (Vehicle: T14 = -0.067, p = 0.948; RU486: T14 = -0.699, 

p = 0.495). Total locomotion and total interaction time with both objects did not differ 

between the experimental groups.  

 

 

Figure 3: Manipulation of mGluR5/Homer1 but not glucocorticoid receptor signaling rescues cognitive 

impairments. (A) A single injection of DEX (Dexamethasone) that mimics a corticosterone response to a 

stressor was not able to induce changes in Homer1b/c mRNA levels. (B) Eight hours after a single 

injection of DEX, experimental mice are not impaired in the Y-maze memory performance task. (C) Mice 

that received a RU486 injection before the stressor are still affected by the defeat stress and cannot 

discriminate between the displaced and the nondisplaced object. (D) Mice that received a MTEP injection 

before the stressor show functional learning behavior independent of the condition. * p < 0.05, data are 

expressed as mean ± SEM. 

 

When animals were administered with MTEP treatment before the defeat, their learning 

behavior normalized in a subsequent test 8 h after the onset of the stressor (Figure 3D). 

In the sOR, both control groups showed normal learning behavior with a significant 

preference for the displaced object (Vehicle: T16 = 8.367, p < 0.001; MTEP: T16 = 6.065, 

p < 0.001). In the defeated group, only the MTEP-treated animals showed a learning 

phenotype (Vehicle: T16 = 0.479, p = 0.638; MTEP: T16 = 6.600, p < 0.001). We also 

replicated this pharmacologically induced rescue of the behavioral phenotype in the Y-

maze test (Control vehicle: novel arm 40.90% ± 3.95, known arms 29.55% ± 1.97, 

T22 = 2.570, p < 0.05; control MTEP: novel arm 39.75% ± 2.44, known arms 30.12% ± 1.22, 
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T22 = 3.519, p < 0.01; defeat vehicle: novel arm 37.59% ± 4.39, known arms 31.21% ± 2.19, 

T22 = 1.298, p = 0.208; defeat MTEP: novel arm 42.86% ± 4.51, known arms 28.57% ± 2.26, 

T22 = 2.832, p < 0.01). In both experiments we did not find significant differences in 

locomotion or total object interaction time between any of the groups. 

 

Overexpression of Homer1b/c rescues spatial memory impairments induced by 

defeat stress 

We examined whether we could rescue the stress-induced cognitive decline, which 

correlated with reduced Homer1 levels in the dorsal hippocampus, by overexpressing 

Homer1b/c in the dorsal hippocampus by AAV injection. We achieved a stable 

overexpression in the CA1 and DG regions of the dorsal hippocampus that was quantified 

by in situ hybridization (Figure 4A, B). Viral infection spread (Figure 4C) and verification of 

the infection sites were additionally controlled by immunofluorescence (Figure 4D). 

Animals were tested in the sOR test, and while defeated animals infected with a control 

virus showed cognitive impairments (T18 = 0.802, p = 0.433), animals that were 

overexpressing Homer1b/c were able to discriminate the objects’ locations (T18 = -4.215, 

p < 0.001) (Figure 4E). Both control groups were able to discriminate between the 

displaced and nondisplaced objects (Empty: T18 = -5.381, p < 0.001; Homer1 

overexpression: T18 = -5.411, p < 0.001). Again, no locomotion or total object interaction 

differences were present when comparing the experimental groups. 
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Figure 4: Overexpression of Homer1b/c in the dorsal hippocampus rescues memory impairments induced 

by defeat stress. (A) Homer1b/c mRNA levels in the dorsal hippocampus. Infection with the viral 

construct induced a robust increase. (B) Representative autoradiographs of Homer1b/c mRNA levels in 

the dorsal and ventral hippocampus of control and Homer1 OE animals. (C) Schematic representation of 

the extent of viral infection in the hippocampus from -1.44 to -2.72 mm posterior to bregma (Dark green: 

Strongest overexpression; light green: weaker overexpression). (D) Visualization of Homer1b/c 

expression in the hippocampal DG region 5 weeks after injection of control (Top panels) or Homer1b/c-

expressing virus (Bottom panels) (Scale, 200 µm). (E) Overexpression of Homer1b/c in the dorsal 

hippocampus prevents learning deficits induced by acute defeat stress. * p < 0.05, data are expressed as 

mean ± SEM. 
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Discussion 

In our study, we show that a single social defeat leads to temporally specific cognitive 

impairment after a recovery of 8 h. In parallel, hippocampal Homer1b/c levels mRNA and 

protein levels, as well as mGluR5/Homer1b/c interaction, are decreased in response to 

the stressor. To further investigate the relationship between the behavioral and 

molecular phenotype, we first blocked mGluR5 signaling by applying MTEP, a specific 

inverse agonist of mGluR5, before the defeat stress and could thereby rescue the stress-

induced phenotype. Furthermore, a specific Homer1b/c overexpression in the dorsal 

hippocampus by viral transfection was also able to reverse the stress-induced effects on 

cognition. These results give substantial evidence that postsynaptic signaling via mGluR5 

and Homer1b/c is strongly involved in mediating cognitive deficits induced by acute 

stress. 

The impact of stress on cognition and memory formation is well described but strongly 

dependent on the chosen experimental setup (Schwabe et al., 2010). An acute stress 

session has been reported to interfere with the induction of long-term potentiation (LTP), 

but it facilitates long-term depression (LTD) (Joëls and Krugers, 2007). In animal models, 

acute stressors disrupt the performance in memory tasks when the test is immediately 

after the sensation of stress (Howland and Cazakoff, 2010), most likely due to elevated 

GCs during memory encoding (Sandi, 2011). An acute stress session can also induce long-

term effects such as an increase in anxiety-related behavior that develops 7 days after the 

stress session (Kinn Rød et al., 2012). In this study, we were able to induce a specific 

cognitive deficit by social defeat after an intermediate time of recovery (8 h) without 

interfering with other behavioral traits such as anxiety or locomotion. A possible 

confounding factor in this behavioral setup is neophobia, which can be induced by stress 

as well (Bats et al., 2001). However, all parameters that we measured for control, such as 

the locomotion in the behavioral tests as well the interaction times with the objects to 

observe, do not indicate a possible corruption of the data. Furthermore, both the FUST 

and the EPM test did not show significant effects in anxiety-related behavior and 

interaction with novel stimuli. 

In our molecular analysis, we show that Homer1b/c levels are reduced in response to 

stress in a time window that coincides with the observed memory deficits. Various studies 

have identified Homer1 to be involved in memory processes in the prefrontal cortex 
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(Lominac et al., 2005; Jaubert et al., 2007). Furthermore, Homer1 has recently been 

associated with stress-induced behavioral changes in the context of fear conditioning 

(Tronson et al., 2010). There, the intrinsic activity of mGluR5 and its subsequent signaling 

via Homer1 multimers in the hippocampus have been shown to mediate the enhancing 

effects of stress on contextual fear. We now confirm that acute stress has a profound 

effect on metabotropic glutamate signaling pathways in the hippocampus. This is 

demonstrated by a significant reduction in both Homer1b/c mRNA levels as well as in 

decreased Homer1b/c protein levels in the PSD and Homer1/mGluR5 interactions 8 h 

after the defeat stress. 

We did not observe a significant induction of Homer1a, an immediate early gene 

triggered by synaptic activity (Bottai et al., 2002), which is in contrast to previous studies 

that report increased Homer1a mRNA in response to various stimuli (Sala et al., 2003; Hu 

et al., 2010; Mahan et al., 2012). Possibly, the induction of Homer1a due to the defeat 

stress is already diminishing at the 1 h time point, and early time points of investigation 

might have shown a significant increase in Homer1a mRNA levels. Previous studies have 

already reported a significant role of Homer1 in memory processes, such as memory 

impairments of Homer1 knockout mice (Jaubert et al., 2007) that could be rescued by 

Homer1c overexpression in the hippocampus of these animals (Gerstein et al., 2012). 

Homer1a, in turn, has been shown to be essentially involved in the processing of fear 

(Brouillette et al., 2007) and working memory (Celikel et al., 2007). Our findings are 

contributing further to understanding the role of Homer1 in memory formation, 

suggesting that Homer1b/c signaling is immediately altered by stress and subsequently 

changes hippocampal memory processing. 

Interestingly, the observed behavioral and molecular effects do not seem to be 

dependent on GR signaling. This is on the one hand shown by the absence of memory 

impairments as well as changes in Homer1b/c mRNA levels when the synthetic GR agonist 

DEX is administered to the animals instead of exposing them to a defeat stress. On the 

other hand, antagonizing GR by RU486 before stress was not able to recover the memory 

deficits. Corticosterone has frequently been shown to both positively and negatively alter 

memory formation, depending on the timing of corticosterone release and learning 

(Sandi, 2011; Popoli et al., 2012). A very recent study elucidated on the role of GR 

signaling in the dorsal and ventral hippocampi in memory retrieval, showing that stress 
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impairs hippocampus-dependent memory up to 105 min after the stressor (Dorey et al., 

2012). The present results further complement these findings, suggesting that it is not GR 

signaling but mGluR5/Homer1-mediated processes that impair memory formation in a 

more intermediate time window. 

Inverse agonists of mGluR5 such as MPEP and MTEP have received growing attention for 

their potential in the treatment of neurologic disorders and were extensively tested in 

various behavioral parameters (Simonyi et al., 2010). With regard to learning paradigms, 

an immediate treatment before the test predominantly led to cognitive impairments 

(Steckler et al., 2005). When MTEP was applied before the stressor, we could show that 

stress-induced learning deficits were abolished. Anderson et al. (2003) could convincingly 

show that MTEP is rapidly metabolized in mice, suggesting that 8 h postadministration, 

mGluR5 blockade by residual MTEP is unlikely and therefore does not interfere with the 

behavioral tests performed. Given the anxiolytic and antidepressant-like properties that 

have been reported for mGluR5 antagonists (Palucha and Pilc, 2007), one can speculate 

that blockade of the mGluR5 during and directly after the sensation of stress severely 

alters the perception and processing of the stressor and therefore its long-term 

consequences. The concept that environmental stimuli can trigger changes in the ability 

of synapses to express plasticity via intra-cellular signaling cascades has been coined 

“metaplasticity” (Abraham, 2008). It has previously been shown that prior activation of 

group I mGluRs can induce metaplasticity, thereby altering the ability of neurons in the 

CA1 or DG region of the hippocampus to express LTP or LTD (Rush et al., 2002; Gisabella 

et al., 2003). Our current data provide further evidence for this concept, showing that 

stress perception and subsequent molecular signaling pathways, in this case driven by 

mGluR5/Homer1 interactions, are critical for the future capacity of an individual to retain 

novel spatial information. This is particularly intriguing, since acute stress has been 

convincingly shown to enhance fear memory via mGluR5 signaling, with Homer1a having 

been shown to be necessary for the augmenting effects of stress on fear memory (Inoue 

et al., 2009; Tronson et al., 2010). Previous evidence also suggests that stress impairs 

spatial memory, which is in line with the results presented here (Sandi, 2011). The 

reduction of Homer1b/c in response to acute defeat stress, accompanied by increased 

dissociation from mGluR5, indicates that this pathway exerts detrimental effects on 
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spatial memory performance, possibly shifting the hippocampal memory formation 

system towards a more sensitive fear response in an intermediate time frame. 

Taken together, our study introduces the mGluR5/Homer1b/c signaling pathway as a 

major mediator of stress-induced spatial memory deficits. We also provide evidence that 

mGluR5 signaling plays a critical role during the perception of stress and most likely 

induces metaplasticity changes that lead to an altered Homer1b/c signaling. These 

findings underline the importance of glutamatergic pathways in the development of 

psychopathologies that are related to stress. 



 

 
90 

 



2.4 Cover page  Research articles 

 

 
91 

 

 

 

2.4. Hippocampal Homer1 levels influence motivational 

behavior in an operant conditioning task 

Klaus V. Wagner1, Alexander S. Häusl1, Max L. Pöhlmann1, Jakob Hartmann1, Christiana 

Labermaier1, Marianne B. Müller1 and Mathias V. Schmidt1 

 

1 Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany 

 

 

 

Manuscript submitted 



Research articles  2.4 Abstract 

 

 
92 

Abstract 

Loss of motivation and learning impairments are commonly accepted core symptoms of 

psychiatric disorders such as depression and schizophrenia. Reward-motivated learning is 

dependent on the hippocampal formation but the molecular mechanisms that lead to 

functional incentive motivation in this brain region are still largely unknown. Recent 

evidence implicates neurotransmission via metabotropic glutamate receptors and 

Homer1, their interaction partner in the postsynaptic density, in drug addiction and 

motivational learning. As previous reports mainly focused on the prefrontal cortex and 

the nucleus accumbens, we now investigated the role of hippocampal Homer1 in operant 

reward learning in the present study. We therefore tested either Homer1 knockout mice 

or mice that overexpress Homer1 in the hippocampus in an operant conditioning 

paradigm. Our results show that deletion of Homer1 leads to a diverging phenotype that 

either displays apparent inability to perform the task or outstanding hyperactivity in both 

learning and motivational sessions. On the other hand, overexpression of hippocampal 

Homer1 led to reduced motivation in a progressive ratio task. This phenotype is possibly 

based on a decreased learning performance that was apparent during the training stage 

of the testing paradigm. Our results highlight the importance of Homer1-mediated 

signaling in the hippocampus in motivation-based learning tasks and encourage further 

investigations regarding the specific molecular underpinnings of the phenotype observed 

in this study that may ultimately lead to improved treatment options for patients 

suffering from psychiatric disorders. 
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Introduction 

Memory deficits and motivational impairments are frequently reported to be associated 

with the emergence of psychiatric pathologies such as depression (Burt et al., 1995; 

Fairhall et al., 2010) and schizophrenia (Lieberman et al., 2001). Motivational behavior 

has mainly been associated with amygdaloid structures (Lang and Bradley, 2010), as well 

as the medial prefrontal cortex (Murray and Wise, 2010) and the nucleus accumbens 

(Ishikawa et al., 2008). On the other hand, compelling evidence implicates the 

hippocampus as a major structure of memory disturbances (Squire, 1992; Morgado-

Bernal, 2011) and reward-motivated learning (Adcock et al., 2006; Delgado and 

Dickerson, 2012). As the hippocampal formation is structurally and functionally connected 

with the amygdala, the prefrontal cortex, and the nucleus accumbens, it can serve as an 

integrating structure for motivational and memory processes. 

In this structural framework, glutamatergic neurotransmission has been shown to be 

centrally involved in memory formation (Popoli et al., 2012) and reward-seeking behavior, 

including drug addiction (Vanderschuren and Kalivas, 2000; Baker et al., 2003; McFarland 

et al., 2003). Specifically group I metabotropic glutamate receptors (mGluRs) have been 

shown to interact with scaffolding proteins from the Homer family, which are expressed 

in the postsynaptic density of glutamatergic neurons. Homer1 has been demonstrated to 

link group I mGluRs to downstream targets such as inositol triphosphate receptors 

(Brakeman et al., 1997; Tu et al., 1998), TRP cation channels (Yuan et al., 2003), and 

ryanodine receptors (Feng et al., 2002). Constitutively expressed Homer1b/c multimers 

have been shown to mediate ligand-dependent signaling (Ronesi and Huber, 2008), while 

the shorter splice variant Homer1a, an immediate early gene (IEG) that is induced by 

neuronal activation (Xiao et al., 1998), can induce ligand-independent signaling and is 

thought to act as a dominant negative to the constitutively expressed isoform (Ango et 

al., 2001).  

A number of clinical and preclinical reports have implicated Homer1 in the 

pathophysiology of depression (Rietschel et al., 2010), schizophrenia (Norton et al., 2003; 

Szumlinski et al., 2005) and addiction (Szumlinski et al., 2004; Uys and LaLumiere, 2008). 

In rodent studies, the Homer1/mGluR5 signaling pathway has previously been shown to 

be involved in memory formation and cognition in the prefrontal cortex (Lominac et al., 

2005) and the hippocampus (Jaubert et al., 2007; Gerstein et al., 2012). Furthermore, 
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mGluR5/Homer1 interactions have been shown to mediate stress-induced alterations in 

memory formation of both fear conditioning (Tronson et al., 2010) and spatial 

information (Wagner et al., 2013) in mice. However, the role of hippocampal 

Homer1/mGluR5 in operant reward learning and motivation, which are central aspects 

for mood disorders, is still largely unclear. 

In the current study, we therefore aimed to further elucidate the role of hippocampal 

Homer1 in operant reward learning by testing Homer1 knockout mice as well as mice that 

overexpress the constitutively expressed Homer1b/c isoform in the hippocampus in an 

operant conditioning paradigm. We hypothesized that a deletion of Homer1 leads to a 

reduction of incentive motivation, while overexpression of Homer1b/c in the 

hippocampus should improve memory formation and thereby may help to improve the 

performance in the operant conditioning task. 
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Materials and Methods 

Animals 

Conventional Homer1KO mice were bred from heterozygous breeding pairs on a 

C57BL/6N background in the animal facilities of the Max Planck Institute of Psychiatry in 

Munich, Germany. Generation and genotyping of Homer1KO mice was reported 

previously (Yuan et al., 2003). Homer1 knockout resulted in complete loss of protein 

expression and was verified by PCR. For the Homer1b/c overexpression experiment, male 

C57BL/6N mice (Charles River Laboratories, Maastricht, the Netherlands) at the age of 10 

weeks were used. All mice were held under standard conditions (12L:12D light cycle, 

lights on at 08:00 AM, temperature 23 ± 2 °C) and were single housed and acclimated to 

the experimental room for 2 weeks before the beginning of the experiments. Tap water 

was available ad libitum during the whole experiment. Food (Altromin 1324, Altromin 

GmbH, Germany) was available ad libitum until start of the food restriction period. All 

experiments were performed in the animal facilities of the Max Planck Institute of 

Psychiatry in Munich, Germany. The experiments were carried out in accordance with the 

European Communities' Council Directive 2010/63/EU. All efforts were made to minimize 

animal suffering during the experiments. The protocols were approved by the committee 

for the Care and Use of Laboratory animals of the Government of Upper Bavaria, 

Germany. 

 

Experimental design 

Experiment 1 

Adult male Homer1 knockout (KO) mice or wild type (WT) littermate controls (12 - 14 

weeks of age, n = 9 - 10 per group) were tested in the operant conditioning paradigm. 

 

Experiment 2 

Adult male C57Bl/6N mice received intra-hippocampal injections of a Homer1b/c 

overexpression vector (n = 10) or an empty control virus (n = 10) and were tested in the 

operant conditioning paradigm 4 weeks later. 
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Operant conditioning 

Average daily food intake was measured for 5 days and food was subsequently restricted 

to 75% of this daily intake to promote incentive motivation in the operant conditioning 

task (Szumlinski et al., 2005). This mild caloric restriction has been shown to have no 

negative consequences for the physiological wellbeing of the animals. After one week of 

food restriction, animals were introduced to the operant conditioning chamber (Bioseb, 

France) for 5 days. In each 30 min trial, mice received a sucrose reward (Bio-serv, NJ, USA) 

every 45 s, which was always paired with a 3 s light and sound (5000 Hz) stimulus. Reward 

delivery and stimuli were operated with commercially available software (Packwin 

V2.0.01; Panlab, Spain). 

The training stage consisted of a fixed ratio/variable ratio (FR/VR) protocol, in which the 

experimental animals received a reward after a single lever press for the first ten presses 

(FR1) followed by 1 - 3 lever presses to receive a reward (VR1-3). The 30 min training trial 

was performed in bouts of 5 consecutive daily trials per week, until 75% of mice in the 

respective control group (WT or Empty) received at least 10 rewards. In the first 

experiment, this was the case after 15 training trials. Here, 2 WT and 5 KO animals did not 

pass the cut-off criterion and were not tested in the progressive ratio task. In the second 

experiment, 10 training trials were performed. 2 Empty and 4 Homer1b/c OE animals did 

not pass the cut-off criterion and were excluded from subsequent testing.  

Mice that passed the training stage were tested in a progressive ratio (PR) task for 

120 min to test the animals for motivation in the previously acquired operant 

conditioning task. The reward progression for the PR task is outlined in supplemental 

table 1.  

The whole time course of the experiment, including surgery and recovery is shown in 

supplemental figure 1. All operant conditioning trials were performed between 08:00 AM 

and 12:00 PM. After experiment 2, all animals were deeply anesthetized with 

ketamine/rompun and perfused intracardially with 4% paraformaldehyde. Brains were 

removed, postfixed overnight in 4% paraformaldehyde following overnight incubation in 

30% sucrose solution at 4 °C, and then stored at −80 °C until further processing for 

immunohistochemistry as described below. 
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Viral overexpression of Homer1 

Viral overexpression of Homer1b/c was performed as described previously (Schmidt et al., 

2011a). We used an adeno-associated bicistronic AAV1/2 vector (GeneDetect, New 

Zealand) containing the CAG-Homer1-IRES-EGFP-WPRE-BGH-polyA expression cassette 

(containing coding sequence of Homer1 NCBI CCDS ID CCDS36745). For the control group, 

we used the same vector construct expressing only EGFP. Virus production, amplification, 

and purification were performed by Genedetect. Mice were anesthetized with isoflurane, 

and 0.5 μl of either AAV-Homer1 or AAV-EGFP (Titres: 1.2 × 1012 genomic particles/ml) 

were bilaterally injected in the dorsal hippocampus at 0.06 μl/min by glass capillaries with 

tip resistance of 2 - 4 MΩ in a stereotactic apparatus. The following coordinates were 

used: 1.9 mm posterior to bregma, 1.3 mm lateral from midline, and 1.3/1.8 mm below 

the surface of the skull, targeting the CA1 and dentate gyrus (DG) region of the dorsal 

hippocampus. After surgery, mice were treated for 5 days with Metacam via drinking 

water. The habituation phase of the operant conditioning paradigm started 4 weeks after 

virus injection. Quantification and verification of Homer1b/c overexpression were 

confirmed by in situ hybridization and immunofluorescence as described previously 

(Wagner et al., 2013). Animals that were not infected bilaterally in both the CA1 and DG 

region were excluded from the analysis (n = 1). One mouse (Empty group) died in the 

recovery phase after the surgery, before the experiment started.  

 

In Situ hybridization and immunohistochemistry 

For in situ hybridization, frozen brains were coronally sectioned in a cryostat microtome 

at 18 μm and kept at −80 °C. In situ hybridization using a 35S UTP-labeled ribonucleotide 

probe for Homer1b/c (Forward primer: AACACTGGGAGGCTGAGCTA; Reverse primer: 

TACTGCGGAAAGCCTCTTGT) was performed as described previously (Schmidt et al., 2007). 

For fluorescence immunohistochemistry, serial coronal sections were cut at 30 μm 

thickness. Double-labeling immunofluorescence (Rabbit anti-Homer1, 1:1000, Synaptic 

Systems; goat anti-GFP, 1:500, Abcam) was performed on free-floating sections (n = 3 per 

mouse) as described previously (Wang et al., 2011a).  
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Statistical analysis 

The data presented are shown as means ± standard error of the mean, analyzed by the 

commercially available software SPSS 16.0. Repeated measures ANOVA with time as 

within-subjects factor and genotype/AAV type as between-subjects factor or Chi Square 

analysis were used for body weight, habituation and training stage analysis. For the 

progressive ratio session, data were analyzed with student’s t-test for normally 

distributed data. If the data was not normally distributed according to Shapiro-Wilk-test, 

the nonparametric Mann-Whitney-U (MWU) test was applied. Correlations between lever 

presses and locomotion were analyzed with the Pearson product-moment test. A nominal 

level of significance P < 0.05 was accepted. 
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Results 

Experiment 1 

Homer1KO mice displayed a significantly reduced body weight already at the beginning of 

the experiment (WT: 27.76 ± 0.62 g, KO: 23.55 ± 0.85 g; p < 0.001). Over the course of the 

operant conditioning paradigm, food restriction resulted in a body weight loss in both 

groups, independent of the genotype of the animals (Time effect: F2.072 = 11.365, 

p < 0.001) (Supplemental table 2). Also, the reduced body weight of Homer1KO mice 

compared to their WT littermates was present during the whole experimental period 

(F1,10 = 21.312; p < 0.001). 

In the habituation phase, repeated measures ANOVA revealed a time effect 

(F2.591 = 3.190; p < 0.05) but no time × genotype interaction in the number of consumed 

rewards, indicating that all animals showed increased interest in the sucrose pellets over 

time (Figure 1A). Yet, it has to be noted that 6 out of 9 Homer1KO mice did not consume 

any reward in the fifth habituation trial. The same animals did not express interest in the 

reward in previous habituation trials, while WT mice displayed a normally distributed 

interest in the reward. This genotype difference becomes significant over several trials 

when analyzed by a Chi Square test (Trial 1: p = 0.667, Trial 2: p = 0.055, Trials 3 to 5: 

p < 0.05). 

Over the course of the FR/VR training period, WT animals displayed a normal learning 

behavior with a stable lever press response after 15 training trials (Figure 1B). The mean 

of Homer1KO mice lever press responses also increased steadily, which is reflected in a 

significant repeated measures ANOVA main time effect (F2.175 = 5.340; p < 0.01) without 

significant time × genotype interaction. A more detailed analysis of the Homer1KO 

dataset revealed that 5 of 9 subjects pressed the lever less than 5 times and did not 

consume any presented reward in the majority of the training trials. On the other hand, 

those animals that already showed high interest in the reward during habituation also 

performed above average in the training stages, thereby largely increasing the variance in 

the Homer1KO group. After training trial 15, 8 of 10 WT mice passed the cut-off criterion 

of 10 lever presses, while only 4 of 9 KO animals received more than 10 rewards (Figure 

1C). After exclusion of all non-performing mice, Homer1KO animals performed 

significantly better than their WT littermates (MWU: Z = -2.378; p < 0.05). 
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Figure 1: Training performance of Homer1KO mice. (A) In 5 habituation trials, all wild type (WT) mice 

show growing interest in the presented reward. Most of the Homer1KO mice, however, do not consume 

the sucrose pellets. (B) The learning curve in the fixed ratio/variable ratio (FR/VR) stage is slightly, but 

not significantly higher in Homer1KO mice compared to WT animals. This is due to the above-average 

performance of a subset of Homer1KO mice that already showed a response to the reward in the 

habituation phase, while the greater part of the Homer1KO animals show a below-average performance, 

thereby largely increasing the variance of the sample. (C) FR/VR results of training trial 15. Mice that 

were excluded from subsequent progressive ratio testing are indicated as dotted datapoints and were 

not taken into account for the analysis of significance in this graph. The performing Homer1KO animals 

press the lever more often than their WT littermates, indicating higher motivation to receive food 

rewards. * Significant from WT, p < 0.05. 

 

In the PR task, the remaining Homer1KO animals showed a significantly increased lever 

press activity compared to the WT group (MWU: Z = -2.378; p < 0.05) (Figure 2A) without 

significantly affecting total locomotion during the task (Figure 2B). Additionally, 

locomotion was not correlated to the lever presses (WT: p = 0.540; KO: p = 0.369). The 

individual difference of the high-performing animals becomes apparent when taking a 
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closer look on the lever press profile over the course of the 120 min PR session (Figure 

2C). Here, WT animals show a reduced motivation to press the lever once rewards are 

more difficult to obtain. Homer1KO animals, in contrast, keep active until the end of the 

testing period, thereby receiving more rewards than their WT littermates. 

 

 

Figure 2: Progressive ratio (PR) performance of Homer1KO mice. (A) Homer1KO mice that passed the 

pretesting cut-off criterion show a significant increase in motivational behavior displayed by higher lever 

press numbers. The arrows indicate the datapoints that are plotted in panel c. (B) Locomotion in the PR 

task. There was no significant effect of total distance traveled between the two groups. (C) 

Representative cumulative distribution of PR lever presses. Dispensed rewards are marked as triangles. 

The Homer1KO mouse (Black line) shows high performance over the course of 120 min, thereby receiving 

constant rewards. In contrast, the wild type mouse (Gray line) shows less operant responses once 

rewards are obtained more and more slowly. * Significant from WT, p < 0.05. 

 

Experiment 2 

Successful targeting (Figure 3A) and overexpression of Homer1b/c was validated by 

immunohistochemistry (Figure 3B) and quantified by means of in situ hybridization 

(Figure 3C). Both in the dorsal (dHC) and the ventral hippocampus (vHC), we detected a 

significant increase in Homer1b/c mRNA levels in CA1 (dHC: T16 = -22.728, p < 0.001; vHC: 

T16 = -48.992, p < 0.001) and DG regions (dHC: T16 = -25.885, p < 0.001; vHC: 

T16 = -101.802, p < 0.001). Viral spread was analogous to our previous study with this viral 

construct (Wagner et al., 2013). 

While overexpression of Homer1b/c did not lead to a significant change in body weight 

during the experiment, food restriction led to a body weight reduction in both groups 

over time (Time effect: F1.326 = 21.312; p < 0.001) (Supplemental table 3). 
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Figure 3: Confirmation and quantification of viral overexpression. (A) Schematic of the injection site of 

the virus in the CA1 and the dentate gyrus (DG) of the dorsal hippocampus. The dotted square indicates 

the approximate area of visualization in Panel b. (B) Visualization of Homer1b/c expression in the 

hippocampal DG region 8 weeks after injection of control (Left panels) or Homer1b/c-expressing virus 

(Right panels) (Scale: 100 μm). (C) Homer1b/c mRNA levels in the hippocampus. Infection with the viral 

construct induced a robust increase in both CA1 and DG mRNA levels in the dorsal (dHC) and ventral 

(vHC) part of the hippocampus. Pictures show representative autoradiographs of Homer1b/c mRNA levels 

in the dorsal hippocampus of Empty and Homer1 OE animals. * Significant from Empty virus, p < 0.05. 
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Figure 4: Training performance of Homer1 OE mice. (A) During habituation, both groups quickly 

recognized and consumed the presented rewards. No differences between the treatments were 

detected. (B) During the training stage, both Empty and Homer1 OE animals learned to associate lever 

presses with the reception of a reward. Although Homer1 OE mice appear to show less motivational 

behavior, repeated measures ANOVA did not reveal a significant time × AAV interaction. (C) Fixed 

ratio/variable ratio results of training trial 10. Mice that were excluded from subsequent progressive 

ratio testing are indicated as dotted datapoints and were not taken into account for the analysis of 

significance in this graph. Yet, no difference in lever press activity was evident between the experimental 

groups. 

 

Both Empty and Homer1b/c OE animals showed increasing interest in the presented 

reward over the course of the habituation phase (Time effect: F1.584 = 9.170; p < 0.01) 

with no time × AAV effect (F1.584 = 0.166; p = 0.798) or Chi Square significance between 

the AAV types (Figure 4A). Overexpression of Homer1b/c did not have an effect on the 

consumed reward number. Note that during this stage, a maximum of 37 rewards could 

be consumed. This limit was reached by three Empty animals in both the 4th and the 5th 

habituation trial. 
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Figure 5: Progressive ratio (PR) performance of Homer1 OE mice. (A) Homer1 OE mice display significantly 

less lever presses compared to Empty animals in the PR task. The arrows indicate the datapoints that are 

plotted in panel c. (B) Locomotion in the PR task. Overexpression of Homer1b/c does not lead to a 

general increase in locomotion. (C) Representative cumulative distribution of PR lever presses. Dispensed 

rewards are marked as triangles. The mouse infected with Empty virus (Black line) shows high activity up 

to 60 min into the PR stage, followed by a decreased lever press frequency. This activity decrease appears 

earlier in the Homer1OE animal (Gray line), which translates into a reduced overall activity over the 

course of 120 min. * Significant from WT, p < 0.05. 

 

During the training trials, both experimental groups showed a time-dependent increase in 

lever presses to receive rewards (Time effect: F2.977 = 4.087; p < 0.05), without a 

significant effect of Homer1b/c overexpression or interaction effects (Figure 4B). After 

training trial 10, 7 out of 9 Empty animals received more than 10 rewards, thereby 

passing the cut-off criterion. In the Homer1 OE group, only 5 out of 9 animals exceeded 

the amount of lever presses to pass the criterion. After exclusion of all non-performing 

mice, no effect of Homer1b/c overexpression was apparent (Figure 4C). 

In the PR task, Homer1 OE mice showed a significantly reduced motivation to earn 

rewards by lever pressing (T10 = 2.699; p < 0.05) compared to animals injected with Empty 

virus (Figure 5A). An underlying general locomotion effect could not be detected, as 

displayed in the total distance traveled in the PR task (Figure 5B). Interestingly, Empty 

animals appeared to be motivated to earn rewards for about 60 min, then subsequently 

decreasing the number of lever presses, while overexpression of Homer1b/c reduced this 

time to about 25 min (Figure 5C). 
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Discussion 

In the current study, we provide evidence that hippocampal Homer1 is involved in 

operant reward learning. In an extensive operant conditioning paradigm, we tested both 

Homer1KO and Homer1 OE mice with respect to their learning and motivational behavior. 

In the Homer1KO animals, two distinct subgroups emerged: mice that displayed high 

motivation and activity and animals that did not perform at all in the operant conditioning 

task. Overexpression of Homer1b/c in the hippocampus did not affect the basic interest in 

sucrose rewards, but led to a reduced activity in the PR task. These results extend the 

current knowledge that Homer1 signaling plays a crucial role in functional incentive 

motivation specifically in the hippocampus, and further suggests that Homer1 may be a 

relevant target for the treatment of psychiatric disorders such as depression or 

schizophrenia. 

The complex behavioral phenotype of Homer1KO mice has previously been associated 

with learning and memory deficits and motivational impairments (Szumlinski et al., 2005). 

Szumlinski and colleagues could show that Homer1KO animals display less motivation to 

obtain a sucrose reward. Pronounced hyperactivity indicated by increased locomotion in 

a novel environment (Szumlinski et al., 2005) and enhanced activity in the rest cycle 

(Jaubert et al., 2007), has also been reported in these mice, which was confirmed by 

observations made in our group (Unpublished data). In our study, we observed that most 

of the Homer1KO animals did not express any interest in the presented reward, while 

others displayed an abnormally high activity, reflected by excessive retrieval and 

consummation of the rewards, yet a locomotion effect failed to reach significance. This 

bimodal distribution is apparent over the course of the various tasks and makes data 

interpretation difficult, since the results may not necessarily represent learning as much 

as distinct hyperactivity of a subset of KO animals. Although learning deficits have 

frequently been reported in the context of Homer1 deletion (Szumlinski et al., 2004; 

Lominac et al., 2005), it is likely that these impairments play a secondary role to the 

observed inactive phenotype. Since the animals were not required to learn a task before 

acquiring a reward in the habituation phase, we suggest that the majority of Homer1KO 

mice initially showed indifference or even a degree of aversion towards the reward. 

Subsequently these mice also lacked the motivation to comply with the reward-stimulus 

paradigm presented in the following weeks. Such findings indicate that deletion of 
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Homer1 can have opposing effects on individuals in the same task, most likely depending 

on environmental factors that have yet to be elucidated. The food restriction used here 

may be one such factor leading to individual differences in the measured behaviors. 

Indeed, food-sated Homer1KO mice have been reported to show altered performance in 

reward-seeking tasks when compared to food deprived animals (Szumlinski et al., 2005). 

In our study, Homer1KO animals presented significantly lower body weight from the 

onset of the experiment, a phenotype that has not been previously reported (Szumlinski 

et al., 2004; Jaubert et al., 2007). A reduced absolute weight may alter the severity of the 

food restriction and therefore confound the motivational alterations in comparison to the 

WT control group. This is especially intriguing since Homer1 is also deleted in cortical 

regions, which may interfere with appetite and hunger perception. 

To specifically address the question of whether hippocampal Homer1 expression has an 

impact on operant reward learning, we overexpressed Homer1b/c by viral transfection 

and exposed these animals to the same operant conditioning paradigm. We did not 

observe a significant basal difference in the motivation for sucrose reward during the 

habituation phase. However a large subgroup of Homer1 OE mice did not reach the cut-

off criterion in the training stage, suggesting problems with operant conditioning memory 

processes in these animals. This is in sharp contrast to various studies that link 

Homer1b/c to improved memory processing (Lominac et al., 2005; Ronesi and Huber, 

2008; Gerstein et al., 2012). Nevertheless Homer1b/c overexpression also led to a 

reduction in activity to obtain a reward during the PR task, which suggests that the 

previous performance in the FR/VR stages as well as in the habituation may be 

confounded by underlying motivational deficits. Confounding effects of general activity 

are less likely, since these animals did not show altered locomotion in the behavioral 

setup. Additionally, previous phenotyping of animals that overexpress Homer1 in the 

hippocampus did not reveal basal effects on behavioral core parameters (Wagner et al., 

2013). A possible underlying mechanism for these effects may be caused by the 

imbalance between overexpressed Homer1b/c and the IEG Homer1a, which has been 

shown to be critically involved in memory formation (Inoue et al., 2009). A recent study 

has shown that Homer1a is required for fear conditioning and furthermore that fear 

conditioning induces the upregulation of this gene (Mahan et al., 2012). Hernandez and 

colleagues reported an increase in Homer1a mRNA levels in rats after an instrumental 
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learning task, further supporting the importance of this IEG in operant conditioning tasks 

(Hernandez et al., 2006). The elevated levels of Homer1b/c in the hippocampus of 

Homer1 OE mice may be causal for the induction of Homer1a not being sufficient to 

trigger the downstream pathways that in turn stimulate motivational behavior. 

Interestingly, both KO and OE mice showed problems in reaching the cut-off criterion, 

suggesting that general modulation or dysbalance of the Homer1 signaling system may be 

detrimental to learning. However, further studies are needed to provide evidence for 

hippocampal Homer1a/Homer1b/c interplay that may promote operant conditioning 

learning and motivational behavior. 

A major limitation of this study emerges from the relatively small number of animals in 

each experimental group. In particular, the bimodal distribution of the Homer1KO mice 

complicates the data interpretation. Future studies should consider larger group 

compositions to further investigate possible underlying mechanisms of this diverging 

phenotype. Concerning the Homer1 OE animals, follow-up studies need to address the 

question as to whether loss of reward motivation is indeed linked to the reduced ability 

to learn the operant conditioning task. Also, the overexpression of Homer 1b/c exclusively 

was limited to the hippocampus. Conversely, the KO mice suffered from complete loss of 

all Homer1 subtypes across all brain regions. Furthermore, the performances of the 

control groups in both experiments differ, yet this may be attributed to the different 

origin and of the animals used. However, this has to be kept in mind when directly 

comparing the different phenotypes of both experiments. A more detailed molecular 

analysis of hippocampal Homer1 interaction partners, especially in Homer1KO mice, may 

lead to further insight in this respect.  

Taken together, we provide first evidence that hippocampal Homer1 is involved in the 

acquisition of an operant conditioning paradigm, with a profound decrease of 

motivational behavior in mice that overexpress Homer1b/c in the hippocampus. 

Additionally we detected hyperactive behavior in a subpopulation of Homer1KO mice that 

has not been previously described and that could be of specific importance in relation to 

schizophrenia, suggesting the need to further investigate this mouse model, on both a 

behavioral and molecular level. The results presented in this study provide further 

evidence that alterations in signaling pathways, specifically Homer1, may contribute to 

the emergence of motivational and learning deficits.  
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Supplemental Material 

Reward 
No. 

Lever 
presses 
for next 
reward 

Total 
lever 

presses 
  Reward 

No. 

Lever 
presses 
for next 
reward 

Total 
lever 

presses 
  Reward 

No. 

Lever 
presses 
for next 
reward 

Total 
lever 

presses 
  Reward 

No. 

Lever 
presses 
for next 
reward 

Total 
lever 

presses 

1 1 1  14 49 295  27 132 1486  40 239 3927 

2 2 3  15 54 349  28 139 1625  41 248 4175 

3 4 7  16 60 409  29 147 1772  42 257 4432 

4 7 14  17 66 475  30 155 1927  43 266 4698 

5 10 24  18 72 547  31 163 2090  44 275 4973 

6 13 37  19 78 625  32 171 2261  45 284 5257 

7 17 54  20 84 709  33 179 2440  46 294 5551 

8 21 75  21 90 799  34 187 2627  47 304 5855 

9 25 100  22 97 896  35 195 2822  48 314 6169 

10 29 129  23 104 1000  36 203 3025  49 324 6493 

11 34 163  24 111 1111  37 212 3237  50 334 6827 

12 39 202  25 118 1229  38 221 3458  51 344 7171 

13 44 246  26 125 1354  39 230 3688  52 354 7525 
 

Supplemental table 1: Progressive ratio reward overview. The middle column shows the required amount 

of lever presses to achieve the next reward. The right column shows the cumulated total lever presses 

required to receive the respective number of rewards given in the left column. 

 

 

Supplemental figure 1: Experimental design overview. (A) In experiment 1, Homer1KO mice were trained 

in the FR/VR protocol for 3 weeks until the PR test session was performed. (B) In experiment 2, Homer1 

OE animals were allowed to recover for 3 weeks until food restriction commenced. FR/VR training lasted 

for 2 weeks. FR/VR: Fixed ratio/Variable ratio; PR: Progressive ratio. 
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Genotype Food intake 
measurement 

Food 
restriction Habituation FR/VR 

training 1 
FR/VR 

training 2 
FR/VR 

training 3 PR test 

WT 27.76 
± 0.62 

26.42 
± 0.67 

25.53 
± 0.55 

25.32 
± 0.59 

25.74 
± 0.56 

25.72 
± 0.56 

25.14 
± 0.65 

KO 23.55 
± 0.85 

21.41 
± 0.92 

21.63 
± 0.71 

21.02 
± 0.75 

21.62 
± 0.71 

21.39 
± 0.74 

21.06 
± 0.72 

 

Supplemental table 2: body weight progression in experiment 1. Repeated measures ANOVA revealed an 

effect of time (F5,6 = 25.091; p < 0.001) and a significant between subject genotype effect (F1,10 = 21.312; 

p < 0.001). Homer1KO animals were significantly lighter over the course of the experiment than their WT 

littermates, while both groups were affected by the food restriction (Colored in gray). All values in g. 
 

 

AAV type Food intake 
measurement 

Food 
restriction Habituation FR/VR 

training 1 
FR/VR 

training 2  PR test 

Empty 30.46 
± 1.04 

27.81 
± 0.95 

27.71 
± 0.78 

28.44 
± 0.71 

26.34 
± 0.60  

26.77 
± 0.62 

Homer1 
OE 

31.62 
± 0.80 

29.13 
± 0.65 

29.23 
± 0.62 

29.62 
± 0.45 

27.28 
± 0.21  

27.06 
± 0.14 

 

Supplemental table 3: body weight progression in experiment 2. Repeated measures ANOVA revealed an 

effect of time (F5,6 = 30.964; p < 0.001) but no effect of the virus on body weight progression. Both groups 

lost weight in response to the food restriction (Colored in gray). All values in g. 
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Abstract 

Psychiatric disorders such as depression have recently been closely linked to changes in 

glutamate transmission in the central nervous system. Glutamate signaling is processed 

by different receptors, including metabotropic glutamate receptors (mGluRs) and Homer1 

is a scaffold protein that mainly interacts with mGluRs and subsequently modulates Ca2+ 

signaling pathways. Two major isoforms of Homer1 have been described: Homer1b/c, 

consisting of a conserved amino-terminal target-binding domain and a coiled-coil 

structure including two leucine zipper motifs, is predominantly expressed in the nervous 

system. Homer1a, a short form, which is missing the coiled-coil structure, has been shown 

to act as a dominant negative for long Homer1 isoforms at the mGluR binding site. Our 

study aims to unravel the role of Homer1 in the mediation of responses to chronic social 

stress as well as its function in promoting a stress resiliency or vulnerability. We therefore 

performed a thorough profiling of Homer1KO mice under the effects of chronic defeat 

stress and found a marked hyperactivity in behavioral parameters as well as a 

dysregulated hypothalamic-pituitary-adrenal axis activity after acute stressors. 

Overexpression of Homer1a in the hippocampus, in turn, led to an increased vulnerability 

to chronic stress, reflected in an increased physiological response to stress as well as 

enhanced behavioral despair. Chronic administration of the selective, orally bioavailable 

mGluR5 antagonist CTEP was able to recover behavioral alterations induced by chronic 

stress, thereby further suggesting a prominent role of the mGluR5/Homer1 pathway in 

the stress system. In summary, our results present strong evidence for the involvement of 

the glutamatergic system in the emergence of psychiatric disorders and implicate the 

mGluR5/Homer1 signaling pathway as a major target for the development of novel 

antidepressant agents. 
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Introduction 

Individuals are frequently challenged by stressful events and the organism can readily 

respond to such challenges by activating hormonal pathways such as the hypothalamic-

pituitary-adrenal (HPA) axis (Chrousos, 2009). Yet, prolonged activation of these systems 

by chronic stress leads to chronically elevated cortisol levels which in turn can lead to 

maladaptive consequences in the organism and may ultimately contribute to the 

development of psychiatric disorders such as depression (McEwen, 2004; de Kloet et al., 

2005). By modeling certain aspects of depressive disorders, animal models of chronic 

stress exposure have been a valuable tool to understand the molecular underpinnings of 

stress-induced psychopathology (Cryan and Holmes, 2005; Joëls and Baram, 2009; 

Savignac et al., 2011) as well as to introduce and validate current and novel treatment 

strategies for depression (Wagner et al., 2012; Mutlu et al., 2012; Scharf et al., 2013). 

Most present treatment options are based on the monoamine hypothesis of depression 

and aim to increase the amount of monoamines, such as serotonin, in the synaptic cleft 

(Rush et al., 2006; Prins et al., 2011). Yet, the late onset of therapeutic effects as well as 

unsatisfactory relapse rates and side effects illustrate the need to develop new drugs that 

also target different transmitter systems (Thase, 2006).  

The main excitatory neurotransmitter is glutamate and glutamate-releasing neurons are 

present across the brain. Recent studies have provided convincing evidence that 

dysregulation of glutamate signaling, mainly via its different postsynaptic receptors such 

as AMPA, NMDA or metabotropic glutamate receptors (mGluRs) contributes to the 

emergence of psychiatric disorders (Kendell et al., 2005; Sanacora et al., 2012; Mathews 

et al., 2012). Drugs that modulate glutamate receptor function have been proposed as 

promising targets for psychiatric drug development (Popoli et al., 2012). Especially 

positive and negative modulators of mGluR5, such as MTEP, have been implicated as 

novel agents for the treatment of depression (Palucha et al., 2005; Pilc et al., 2008; Krystal 

et al., 2010), but the exact molecular mechanisms that mediate these effects are yet to be 

fully understood. 

In this context, Homer1, a postsynaptic scaffolding protein that links mGluR5 to 

downstream targets such as inositol triphosphate receptors (Tu et al., 1998), but also acts 

as moderator for NMDA/mGluR5 interactions (Tu et al., 1999; Bertaso et al., 2010), 

emerged as a potential target protein in psychopathology. Clinical studies provided first 
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evidence that Homer1 is involved in the development of major depressive disorders 

(Rietschel et al., 2010), while preclinical studies describe its importance in memory 

formation (Lominac et al., 2005) and reward-related behaviors (Szumlinski et al., 2004; 

Jaubert et al., 2007). Furthermore, Homer1a, a splice-variant that is induced by synaptic 

activity (Brakeman et al., 1997), has been identified as an immediate early gene product, 

which is crucially involved in behavioral alterations that are related to depression (Celikel 

et al., 2007; Mahan et al., 2012). However, the impact of Homer1 and its modulatory 

effects on glutamate signaling via the mGluR5 in chronic stress situations is largely 

unknown.  

In the current study, we therefore aimed to investigate the role of mGluR5/Homer1 in the 

context of chronic social defeat stress, which has been shown to adequately model 

certain endophenotypes of depression by us and others (Berton et al., 2006; Nestler and 

Hyman, 2010; Wang et al., 2011a; Hartmann et al., 2012). We modulated this signaling 

pathway by using total Homer1 knockout mice, as well as mice that selectively 

overexpressed Homer1a in the hippocampus and analyzed neuroendocrine, central gene 

expression, and behavioral alterations. We also investigated the efficacy of CTEP 

(Lindemann et al., 2011), a novel mGluR5 antagonist, with respect to its anti-depressant 

properties on HPA axis function and behavior in this model. 
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Materials and Methods 

Animals 

For experiment 1, conventional Homer1-/- and wild type littermates were bred from 

heterozygous breeding pairs on a C57BL/6N background in the animal facilities of the Max 

Planck Institute of Psychiatry in Munich, Germany. Generation and genotyping of 

Homer1-/- mice was reported previously (Yuan et al., 2003) and Homer1 knockout was 

verified by PCR. Male C57BL/6N mice (Charles River Laboratories, Maastricht, the 

Netherlands) at the age of 10 weeks were used in experiment 2 and experiment 3. All 

mice were held under standard conditions (12L:12D light cycle, lights on at 08:00 AM, 

temperature 23 ± 2 °C) and were single housed and acclimated to the experimental room 

for 2 weeks before the beginning of the experiments. Male CD1 mice (16 - 18 weeks of 

age) served as resident mice, which were held under the conditions described above. Tap 

water and food (Altromin 1324, Altromin GmbH, Germany) was available ad libitum 

during the whole experiment. All experiments were performed in the animal facilities of 

the Max Planck Institute of Psychiatry in Munich, Germany. The experiments were carried 

out in accordance with the European Communities' Council Directive 2010/63/EU. All 

efforts were made to minimize animal suffering during the experiments. The protocols 

were approved by the committee for the Care and Use of Laboratory animals of the 

Government of Upper Bavaria, Germany. 

 

Experimental design 

Experiment 1 

In the first experiment, we aimed to identify the consequences of a deletion of Homer1 in 

the context of chronic stress (Figure 1A). We therefore exposed 22 Homer1-/- (KO) and 26 

wild type (WT) mice (Aged 12 - 15 weeks) to the chronic social defeat stress (CSDS) 

paradigm as described below. Half of each group (KO: n = 11; WT: n = 13) was randomly 

assigned to either control or stress condition. During the last 7 days of the CSDS 

paradigm, all behavioral tests were performed.  
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Experiment 2 

In the second experiment, we used 48 C57BL/6N mice to assess the effects of Homer1a 

overexpression in the CA1 and dentate gyrus (DG) region of the hippocampus in the 

context of chronic stress (Figure 1B). We infected 24 mice with an empty viral construct 

and 24 mice with a viral construct carrying the Homer1a coding sequence as described 

below. After a recovery period of 3 weeks, the 2 groups were randomly split into control 

and stress conditions (n = 12/group respectively) and the CSDS paradigm was performed 

as described below. Behavioral tests were performed as in experiment 1. 

 

 

Figure 1: Overview of the experimental time courses. (A) Homer1KO (KO) or Wild Type (WT) mice from 

heterozygous breeding pairs were randomly distributed in control and chronic social defeat stress (CSDS) 

groups. CSDS lasted for 21 days, behavioral tests were performed in the third week of the experiment. All 

animals were sacrificed 24 h after the last defeat took place. (B) Animals underwent surgery at the age of 

11 weeks and were subsequently allowed to recover from the viral infection for 3 weeks. After the 

recovery period, CSDS and behavioral testing was performed as described in experiment 1. (C) 7 days 

prior to the start of the CSDS period, all animals from experiment 3 were treated with either vehicle or 

CTEP per os. Treatment took place every 48 h immediately before the defeat or handling procedure. CSDS 

and behavioral testing was performed as described in experiment 1. 
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Experiment 3 

In the third experiment, we investigated the effects of an inverse agonist to mGluR5 on 

chronic social stress (Figure 1C). Here, a total of 48 C57BL/6N mice were randomly divided 

into 2 × 2 groups (Control vehicle, control CTEP, CSDS vehicle, CSDS CTEP; n = 12/group) 

and subjected to the chronic stress procedure described below. Oral administration of the 

inverse mGluR5 agonist CTEP (F. Hoffmann-La Roche, Basel, Switzerland) commenced 7 

days prior to the start of the CSDS paradigm to establish stable baseline receptor 

occupancy and blockade. Treatment by CTEP was performed as described previously 

(Lindemann et al., 2011; Michalon et al., 2012). Briefly, CTEP was formulated as a 

microsuspension in vehicle (0.9% NaCl, 0.3% Tween-80). Chronic treatment consisted in 

once per 48 h dosing at 2 mg/kg per os in a volume of 10 ml/kg. Gavaging took place 

immediately before the daily defeat or handling procedure to minimize confounding 

effects of oral drug administration. Behavioral tests were performed as in experiment 1. 

 

Social defeat stress procedure 

The CSDS paradigm lasted for 21 days and was conducted as described previously 

(Wagner et al., 2011). Briefly, the experimental mice were introduced into the home cage 

(45 cm × 25 cm) of a dominant resident mouse and defeated shortly after. When the 

defeat was achieved, the animals were separated by a wire mesh, preventing physical but 

allowing sensory contact for 24 h. Each day, stressed animals were defeated by another 

unfamiliar, dominant resident mouse, in order to exclude a repeated encounter 

throughout the experiment. The daily defeat was performed between 11:00 AM and 

04:00 PM; varying starting times reduced the predictability of the stressor and therefore 

minimized a potential habituation effect. Experimental mice were always defeated by 

resident males during the entire stress period. Control mice were housed in their home 

cages during the course of experiment. Both stress and control animals were handled 

daily during the stress procedure; body weight was assessed at the beginning of the 

experiment as well as before the sacrifice. 

 

Sampling procedure 

Animals from experiment 1 and 3 were sacrificed by decapitation following quick 

anesthesia by isoflurane 24 h after the last defeat. Basal trunk blood samples were 
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collected in 1.5 ml EDTA-coated microcentrifuge tubes (Kabe Labortechnik, Germany). 

Blood samples were kept on ice and later centrifuged at 8000 rpm at 4 °C for 15 min. 

Plasma was transferred to new, labeled tubes and stored at -20 °C until determination of 

corticosterone by radioimmunoassay (MP Biomedicals Inc; sensitivity 12.5 ng/ml). Brains 

were removed and flash frozen in methyl butane and stored at -80 °C until processing for 

in situ hybridization. Adrenal glands were removed, dissected from fat and weighed. 

For experiment 2, basal blood samples from all animals were collected by tail cut 24 h 

after the last defeat (Fluttert et al., 2000). Samples were gathered in 1.5 ml EDTA-coated 

microcentrifuge tubes (Kabe Labortechnik, Germany) and processed as described above. 

The animals then were deeply anesthetized with ketamine/Rompun and perfused 

intracardially with 4% paraformaldehyde. Brains were removed, postfixed overnight in 4% 

paraformaldehyde following overnight incubation in 30% sucrose solution at 4 °C, and 

then stored at -80 °C until processing for in situ hybridization. Adrenal glands were 

removed, dissected from fat and weighed. 

 

Behavioral testing 

Behavioral tests were performed between 08:00 AM and 12:00 PM in the same room 

where the animals were housed. All tests were described and validated previously 

(Wagner et al., 2011; Wagner et al., 2012; Wagner et al., 2013). Tests were recorded and 

analyzed using the video tracking software AnyMaze (Anymaze 4.20, Stoelting, IL, USA). 

 

Open field test 

The Open field (OF) test was performed on day 15 of the stress procedure. Testing was 

performed in an open field arena made of gray polyvinyl chloride (50 cm × 50 cm × 50 cm) 

that was evenly illuminated during testing (15 lux). The total test time was 15 min, and 

parameter of interest was the total distance traveled. 

 

Social avoidance test 

The social avoidance test is described in detail elsewhere (Golden et al., 2011). Briefly, 

animals were allowed to explore the open field arena for 2.5 min with an empty wire 

mesh cage placed at one side of the apparatus. In a second stage, the animals were 

confronted with an unfamiliar CD1 resident mouse in the wire mesh cage for another 
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2.5 min. The ratio between the time in the interaction zone of the no-target trial and the 

time in the interaction zone of the target trial serves as a marker for disturbed social 

behavior associated with depressive disorders. Animals that did not explore the 

interaction zone at all were excluded from the analysis. 

 

Elevated plus maze 

The elevated plus-maze (EPM) was conducted to display changes in anxiety-related 

behavior. The device consisted of a plus-shaped platform with two opposing open arms 

(30 cm × 5 cm × 0.5 cm) and two opposing enclosed arms (30 cm × 5 cm × 15 cm), made 

of gray PVC, which were connected by a central area (5 cm × 5 cm). The whole device was 

elevated 50 cm above the floor. The illumination was 25 lux in the open arms and less 

than 10 lux in the closed arms. Testing duration was 10 min and mice were placed into 

the center zone facing one of the enclosed arms at the start of the test. The time spent in 

the open arms compared to the total arm time were analyzed. Animals that fell off the 

open arm of the apparatus were excluded from the analysis. 

 

Female urine sniffing test 

In this test, the mice were habituated to a sterile cotton swab inserted into their home 

cage 1 h before the start of the first stage. In the first stage, mice were exposed to a 

cotton swab dipped in water for 3 min and sniffing time was scored. After an inter trial 

interval of 45 min, mice were exposed to a cotton swab dipped in urine from estrous 

females of the same mouse strain. Again, total sniffing time was scored. The test was 

performed in a dark environment (<3 lux). Animals that escaped from the apparatus in 

any trial were excluded from the analysis. 

 

Forced swim test 

In the forced swim test (FST), each mouse was put into a 2 liter glass beaker (diameter: 13 

cm, height: 24 cm) filled with tap water (21 ± 1 °C) to a height of 15 cm, so that the mouse 

could not touch the bottom with its hind paws or tail. Testing duration was 5 min. Time 

spent immobile (Floating) was scored by an experienced observer, blind to treatment or 

condition of the animals. 
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Acute stress response 

The FST also served as an acute stressor in order to determine the stress response by 

measuring corticosterone plasma concentrations. After the FST, all mice were towel-dried 

and placed into their home cage to recover from the acute stressor. Blood samples were 

taken by tail cut 30 min (Stress response) and 90 min (Stress recovery) after the onset of 

the FST. Samples were processed as described above and stored at -20 °C until 

determination of corticosterone by radioimmunoassay (MP Biomedicals Inc; sensitivity 

12.5 ng/ml). 

 

In situ hybridization 

Frozen brains were sectioned at -20 °C in a cryostat microtome at 18 µm 

(Experiment 1 & 3) or 20 µm (Experiment 2), thaw mounted on Super Frost Plus slides, 

dried and stored at -80 °C. In situ hybridization using a 35S UTP labeled ribonucleotide 

probes (Homer1a, Homer1b/c, corticotropin-releasing hormone (CRH), Glucocorticoid 

receptor (GR), mineralocorticoid receptor (MR)) was performed as described previously 

(Schmidt et al., 2007, Wagner et al. 2011, Wagner et al., 2013). Briefly, prepared sections 

were fixed in 4% paraformaldehyde and acetylated in 0.25% acetic anhydride in 0.1 M 

triethanolamine/HCl. Subsequently, brain sections were dehydrated in increasing 

concentrations of ethanol. The antisense cRNA riboprobes were transcribed from a 

linearized plasmid. Tissue sections were saturated with 100 μl of hybridization buffer 

containing approximately 3 - 5 × 106 cpm 35S labeled riboprobe. Brain sections were 

coverslipped and incubated overnight at 55 °C. The following day, the sections were 

rinsed in 4 × SSC (Standard saline citrate), treated with RNAse A (20 mg/l) and washed in 

increasingly stringent SSC solutions at room temperature. Finally, sections were washed 

in 0.1 × SSC for 1 h at 65 °C and dehydrated through increasing concentrations of ethanol. 

The slides were exposed to Kodak Biomax MR films (Eastman Kodak Co., Rochester, NY) 

and developed. Autoradiographs were digitized, and expression was determined by 

optical densitometry utilizing the freely available NIH ImageJ software. The mean of two 

measurements of two different brain slices was calculated for each animal. The data were 

analyzed blindly, always subtracting the background signal of a nearby structure not 

expressing the gene of interest from the measurements. 
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Viral overexpression of Homer1a 

Viral overexpression was performed as described previously (Wagner et al., 2013). We 

used an adeno-associated bicistronic AAV1/2 vector (GeneDetect) containing the CAG-

Homer1a-IRES-EGFP-WPRE-BGH-polyA expression cassette (Containing coding sequence 

of Homer1a NCBI CCDS ID CCDS26687). For the control group, we used the same vector 

construct expressing only EGFP. Virus production, amplification, and purification were 

performed by GeneDetect. Mice were anesthetized with isoflurane, and 0.5 µl of either 

AAVHomer1a or AAV-EGFP (Titers: 1.2 × 1012 genomic particles/ml) were bilaterally 

injected in the dorsal hippocampus at 0.06 µl/min by glass capillaries with tip resistance 

of 2 - 4 MΩ in a stereotactic apparatus. The following coordinates were used: 1.9 mm 

posterior to bregma, 1.3 mm lateral from midline, and 1.3/1.8 mm below the surface of 

the skull, targeting the CA1 and DG region of the dorsal hippocampus. After surgery, mice 

were treated for 5 days with Metacam via drinking water. Behavioral testing started 4 

weeks after virus injection. Successful targeting and quantification of Homer1a 

overexpression was achieved by in situ hybridization using the riboprobe described 

above. Animals that were not infected bilaterally in both the CA1 and DG region were 

excluded from the analysis (n = 4).  

 

Statistical analysis 

The data presented are shown as means ± SEM, analyzed by the commercially available 

software SPSS 18.0. For all experiments, two-way ANOVAs were applied to the data as 

appropriate. Significant main effects and/or interactions were followed by Fisher’s LSD 

post hoc analysis when appropriate. In case the data was not normally distributed, an ln-

transformation was applied to the dataset (Social avoidance test). A nominal level of 

significance P < 0.05 was accepted. 
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Results 

Experiment 1 

We investigated HPA axis activation in KO and WT animals that were exposed to chronic 

stress by measuring circulating corticosterone both under basal conditions and after an 

acute challenge. ANOVA revealed a significant main condition effect in basal 

corticosterone levels (F1,44 = 6.472, p < 0.05), independent of the animals’ genotype 

(Figure 2A). In response to an acute stressor, both a condition (F1,44 = 43.232, p < 0.001) 

and a genotype (F1,44 = 15.796, p < 0.001) main effect was detected (Figure 2B). Post hoc 

comparison revealed that CSDS increased the HPA axis response to a novel stressor both 

in WT (p < 0.01) and KO (p < 0.05) animals. Furthermore, KO mice showed a significantly 

increased corticosterone response irrespective of the condition (Control: p < 0.001; CSDS: 

p < 0.001). At 90 min after the onset of the stressor, ANOVA revealed a main condition 

effect (F1,44 = 6.883, p < 0.05) as well as a significant genotype × condition interaction 

(F1,44 = 14.829, p < 0.001) (Figure 2C). Further post hoc comparison showed that under 

control conditions, KO animals display lower corticosterone values compared to their WT 

littermates (p < 0.05). KOs that underwent the CSDS procedure recover significantly less 

from the acute stressor than both the stressed WT group (p < 0.05) and the respective 

control KO group (p < 0.001). These alterations in circulating corticosterone are 

accompanied by a marked increase in adrenal gland size in KO animals (F1,45 = 81.040, 

p < 0.001) both under control (p < 0.001) and stress (p < 0.001) conditions (Figure 2D). 

Additionally, CSDS also significantly increased adrenal size in both genotypes (Main 

condition effect: F1,45 = 82.163, p < 0.001; WT: p < 0.001, KO: p < 0.001). 

Analysis of the gene expression of main HPA axis modulators in the hippocampus and the 

paraventricular nucleus of the hypothalamus (PVN) such as GR, MR and CRH revealed that 

CSDS induced an increase in CRH mRNA in the PVN irrespective of the genotype 

(Condition effect: F1,43 = 11.264, p < 0.01; WT: p < 0.05, KO: p < 0.05) (Figure 2E). 

Concurrently, KO animals show significantly reduced CRH mRNA levels compared to their 

WT littermates under basal conditions (Main genotype effect: F1,43 = 10.744, p < 0.01; 

control: p < 0.01) but not after CSDS exposure (p = 0.075). ANOVA analysis of mRNA 

expression levels of GR in the CA1 region of the ventral hippocampus revealed a 

condition × genotype interaction (F1,44 = 7.379, p < 0.01) as well as a condition 

(F1,44 = 12.908, p < 0.001) and a genotype effect (F1,44 = 12.290, p < 0.001) (Figure 2F). Post 
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hoc analysis showed that stressed KO mice show significantly reduced GR levels 

compared to both unstressed KO animals (p < 0.01) and to stressed WT mice (p < 0.001). 

The complete results of the gene expression data are listed in supplemental table 1. 

 

 

Figure 2: Activity of the hypothalamic-pituitary-adrenal (HPA) axis is severely deteriorated in KO mice. (A) 

Both WT and KO animals showed elevated corticosterone levels in response to CSDS. (B) The 

corticosterone response to a novel acute stressor was increased in mice that were exposed to CSDS. At 

the same time, KO mice showed a strongly enhanced response to the stressor irrespective of the 

condition. (C) Under basal conditions, KO animals displayed an improved recovery from the stressor. 

However, when challenged by CSDS, KO mice showed significantly increased corticosterone levels, 

indicating a disrupted HPA axis regulation in stressed KO animals. (D) Analogous to the corticosterone 

response, CSDS induced an increase in adrenal glands weight in both genotypes. However, KO mice 

already possessed enlarged adrenal glands under basal condition and this effect was also present in the 

stressed group. (E) In the paraventricular nucleus of the hypothalamus (PVN), corticotropin-releasing 

hormone (CRH) expression was increased in response to CSDS. At the same time, KO animals showed 

significantly lower CRH levels under basal conditions. This effect is not significant in the stressed groups. 

(F) mRNA levels of glucocorticoid receptor (GR) in the CA1 region of the ventral hippocampus were 

reduced in KO mice in response to CSDS. * Significant from control, p < 0.05, # Significant from WT, 

p < 0.05. Other abbreviations as in figure 1. 
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Figure 3: Behavioral profile of KO mice during CSDS. (A) While CSDS resulted in a reduction of locomotion 

in both groups, a marked hyperactivity was detected in KO mice under basal conditions which was 

severely affected by CSDS. (B) In the social avoidance (SA) test, CSDS resulted in a reduction of interaction 

in WT but not in KO mice, which showed a significantly increased interaction ratio compared to their 

stressed WT littermates. (C) In the elevated plus maze (EPM) WT mice displayed an increased anxiety-

related behavior, which was not present in KO mice. (D) In the water trial of the female urine sniffing test 

(FUST), animals with a Homer1 deletion showed a reduced interest in the presented cotton tip. This 

effect was significant under basal but not under CSDS conditions. In the urine trial, CSDS had a strong 

effect on sniffing time, which was highly significant in KO mice. (E) Independent of CSDS, KO mice 

exhibited their hyperactive phenotype in the forced swim test (FST) as indicated by reduced floating 

times. * Significant from control, p < 0.05, # Significant from WT, p < 0.05. Other abbreviations as in 

figure 1. 

 

Deletion of Homer1 resulted in considerable changes in the animals’ behavior. In the OF 

test, CSDS reduced total locomotion in both genotypes (ANOVA main condition effect: 

F1,43 = 13.129, p < 0.01; WT: p < 0.05, KO: p < 0.05), while KO animals displayed a strong 

increase in locomotion (Genotype effect: F1,43 = 12.630, p < 0.01) under basal (p < 0.01) 

but not under CSDS conditions (p = 0.071) (Figure 3A). In the SA test, ANOVA revealed 

both a genotype (F1,37 = 5.337, p < 0.05) and a significant interaction effect (F1,37 = 4.644, 

p < 0.05) (Figure 3B). 
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Further post hoc analysis indicated that WT animals displayed a reduced social interaction 

ratio when under the effects of CSDS (p < 0.05) while interaction ratios of stressed KO 

mice were not significantly reduced compared to control conditions (p = 0.256). This is 

supported by the comparison of stressed WT and KO mice, where deletion of Homer1 led 

to a significantly increased interaction ratio (p < 0.05). With respect to anxiety-related 

behavior, ANOVA revealed a significant interaction between genotype and condition 

(F1,37 = 5.205, p < 0.05) (Figure 3C). In WT animals, CSDS reduced the time on the open 

arm (p < 0.05) while KO animals were not affected. A strong genotype difference was also 

apparent in the FUST, where KO mice spent significantly less time with the presented 

cotton tip in the water trial (F1,45 = 9.269, p < 0.01) (Figure 3D). This effect was significant 

under basal conditions (p < 0.05) but not after CSDS exposure (p = 0.053). In the urine 

trial, ANOVA revealed a condition effect (F1,45 = 9.185, p < 0.01). Here, we measured a 

reduction in sniffing time of stressed mice compared to their non-stressed littermates, 

which was significant in KO (p < 0.05) but not in WT animals (p = 0.059). The 

aforementioned hyperactive phenotype was also apparent in the FST, where KO mice 

spent significantly less time floating, thereby exhibiting a more active stress coping 

strategy (ANOVA genotype effect: F1,45 = 32.662, p < 0.001; control: p < 0.01; CSDS: 

p < 0.01) (Figure 3E). There was no effect of the stress exposure on the stress coping 

behavior of either genotype. 

 

Experiment 2 

The injection site as well as qualitative and quantitative analysis of the viral 

overexpression can be found in supplemental figure 1. Overexpression of Homer1a in the 

hippocampus did not change basal levels of circulating corticosterone, while ANOVA 

revealed a significant effect of CSDS on basal corticosterone (F1,43 = 9.273, p < 0.01) 

(Figure 4A). This effect reached post hoc significance in Homer1a OE mice (p < 0.05) but 

not in Empty mice (p = 0.066). For the stress response (Figure 4B), ANOVA revealed both a 

condition (F1,44 = 61.134, p < 0.001) and a condition × AAV interaction (F1,44 = 4.845, 

p < 0.05): Empty animals show a significantly increased corticosterone response when 

under the effects of CSDS (p < 0.001), while Homer1a OE animals already show an 

increased response under basal conditions compared to Empty animals (p < 0.05). CSDS 

was not able to further increase the corticosterone response, possibly due to a ceiling 
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effect. After 90 min of recovery, both Homer1a OE and Empty animals showed a 

disturbed HPA axis recovery indicated by significantly increased corticosterone levels in 

the CSDS groups (ANOVA condition effect: F1,44 = 14.285, p < 0.01; Empty: p < 0.01, 

Homer1a OE: p < 0.05) (Figure 4C).  

 

 

Figure 4: Overexpression of Homer1a in the hippocampus leads to HPA axis dysregulation. (A) Basal levels 

of circulating corticosterone were increased in response to CSDS, with a significant post hoc effect in 

Homer1a OE mice. (B) Under control conditions, Homer1a OE led to a hyperactivation of the HPA axis 

compared to Empty animals. This effect was not apparent in mice that underwent CSDS, possibly due to a 

ceiling effect, since CSDS strongly enhanced the corticosterone response to a novel stressor. (C) Recovery 

from a novel stressor was deteriorated due to the exposure to chronic stress, independent of Homer1a. 

(D) Under control conditions, overexpression of Homer1a did not affect adrenal gland size. However, the 

increase in size in response to CSDS was strongly enhanced in Homer1a OE animals compared to Empty 

littermates. (E) mRNA levels of CRH were not altered in this experiment. (F) CSDS resulted in a reduction 

of GR mRNA in the CA1 region of the ventral hippocampus. This effect reached post hoc significance in 

Homer1 OE mice but not in Empty animals. * Significant from control, p < 0.05, # Significant from Empty, 

p < 0.05. Other abbreviations as in figures 1 & 2. 

 

Interestingly, Homer1a OE mice had significantly bigger adrenal glands when exposed to 

CSDS compared to Empty mice that were stressed (Figure 4D). Here, ANOVA revealed a 

condition (F1,44 = 61.134, p < 0.001) as well as an AAV (F1,44 = 5.365, p < 0.05) and a 
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condition × AAV interaction (F1,44 = 4.845, p < 0.05). Further post hoc testing confirmed 

that CSDS increased adrenal gland sizes in both AAV groups (Empty: p < 0.001; Homer1a 

OE: p < 0.001), but in stressed Homer1a OE animals, this increase was significantly bigger 

compared to stress Empty animals (p < 0.05). These HPA axis alterations were not 

accompanied by gene expression differences of CRH in the PVN, where ANOVA did not 

find a significant effect of either condition or AAV treatment (Figure 4E). Concerning GR 

expression in the ventral hippocampus, we found a significant reduction of GR mRNA in 

the CA1 region (ANOVA condition effect: F1,44 = 5.100, p < 0.05), which was significant in 

Homer1a OE (p < 0.05) but not in Empty mice (Figure 4F). A comprehensive overview of 

expression levels in HPA axis related genes can be found in supplemental table 2. 

While being exposed to CSDS, mice overexpressing Homer1a in the hippocampus show a 

significant reduction in locomotion in the OF test (Figure 5A). Here, ANOVA revealed a 

condition effect (F1,44 = 6.722, p < 0.05) with post hocs showing that this reduction was 

significant in Homer1a OE mice (p < 0.05) but not in Empty animals (p = 0.527). Similar 

results were obtained in the SA test, where CSDS led to a reduced interaction ratio 

(ANOVA condition: F1,44 = 5.171, p < 0.05) which reached significance in Homer1a OE mice 

(p < 0.05) (Figure 5B). We could not detect an anxiety-related phenotype in the EPM that 

was connected to either CSDS or AAV treatment in this experiment (Figure 5C). The FUST 

revealed a significant stress effect in both the water (F1,45 = 5.863, p < 0.05) and the urine 

trial (F1,44 = 27.368, p < 0.001) (Figure 5D). In the water trial, post hoc test failed to reach 

significance, but both AAV groups showed a significant reduction in urine sniffing time 

when exposed to CSDS compared to the respective control groups (Empty: p < 0.001; 

Homer1a OE: p < 0.01). There was no difference between the AAV treatments. While 

under the effects of CSDS, overexpression of Homer1a in the hippocampus led to an 

increased behavioral despair and less active stress coping behavior as depicted by 

increased floating time in the FST (Figure 5E). Here, ANOVA revealed a condition 

(F1,43 = 7.045, p < 0.05) , an AAV (F1,43 = 6.185, p < 0.05) and a condition × AAV interaction 

effect (F1,43 = 5.496, p < 0.05). Following post hoc analysis, Homer1a OE mice showed 

significantly increased floating time compared to both their respective control (p < 0.001) 

as well as to stressed Empty mice (p < 0.05). 
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Figure 5: Homer1a OE mice exhibit increased behavioral vulnerability to CSDS. (A) While CSDS did not 

lead to a reduction in locomotion in Empty animals, overexpression of Homer1a affected the animals’ 

behavior, indication a more pronounced susceptibility to CSDS in this parameter. (B) This effect was also 

apparent in the SA test, where only Homer1a OE mice showed a reduction in social interaction when 

stressed, but not Empty mice. (C) There was no significant anxiety-related effect visible in the EPM in 

either AAV group. (D) During the water trial of the FUST, all subgroups showed a comparable interest in 

the presented cotton tip. In the urine trial, however, CSDS led to a significant reduction in sniffing time in 

both AAV groups. (E) While under the effects of CSDS, Homer1a OE mice elicited less active stress coping 

behavior in the FST, further indicating a susceptibility to CSDS which leads to behavioral despair. 

* Significant from control, p < 0.05, # Significant from Empty, p < 0.05. Other abbreviations as in 

figures 1 & 3. 

 

Experiment 3 

Chronic treatment with CTEP did not alter the HPA axis response to CSDS in any of the 

examined parameters. We could detect robust CSDS effects both at basal circulating 

corticosterone (F1,42 = 13.520, p < 0.01; Vehicle: p < 0.05, CTEP: p < 0.05) and the 

corticosterone response to a novel stressor (F1,44 = 30.317, p < 0.001; Vehicle: p < 0.001, 

CTEP: p < 0.01) (Figure 6A, B). Treatment with CTEP did not affect these parameters both 

under basal and stress conditions. Recovery from the novel stressor was also disturbed in 
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animals that underwent CSDS, but was not influenced by CTEP treatment as indicated by 

an ANOVA condition effect (F1,44 = 5.997, p < 0.05) (Figure 6C). This effect could not be 

attributed to a specific treatment group as the condition effect did not result in significant 

post hoc tests. On the physiological level, CSDS resulted in increased adrenal glands 

(ANOVA condition effect: F1,44 = 140.316, p < 0.001; Vehicle: p < 0.001, CTEP: p < 0.001) 

with no effect of CTEP treatment (Figure 6D). Gene expression analysis in the PVN 

revealed that CRH mRNA levels were elevated in response to CSDS (ANOVA condition 

effect: F1,44 = 8.894, p < 0.01) (Figure 6E), with post hoc tests showing that this effect was 

significant in vehicle treated animals (p < 0.05) but failed to reach significance in the CTEP 

treatment group (p = 0.053). Interestingly, CTEP treatment induced an increase in GR 

mRNA levels in the CA1 region of ventral hippocampus, which was significant in stressed 

animals (ANOVA treatment effect: F1,44 = 8.372, p < 0.01; Control: p = 0.063, CSDS: 

p < 0.05) (Figure 6F). Also, CSDS resulted in a reduction of GR mRNA (ANOVA condition 

effect: (F1,44 = 5.498, p < 0.05), yet did not reach significance after post hoc analysis. 

ANOVA analysis of Homer1b/c expression levels in the CA1 region of the dorsal 

hippocampus revealed both a condition effect (F1,44 = 6.610, p < 0.05) and a 

condition × treatment interaction (F1,44 = 4.404, p < 0.05) (Figure 6G). Further post hoc 

analysis showed that in vehicle treated animals, Homer1b/c levels were increased 

(p < 0.05), whereas CTEP was able to abolish this effect, with significantly reduced mRNA 

levels compared to vehicle treated mice that underwent CSDS (p < 0.01). Expression data 

of all investigated HPA axis related genes and Homer1 isoforms in the hippocampus and 

PVN can be found in supplemental table 3. 
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Figure 6: Treatment with CTEP does not alter HPA axis function. (A) Both treatment groups showed 

increased basal corticosterone levels when under the effects of CTEP. (B) Also, CSDS resulted in a stronger 

activation of the HPA axis in response to a novel stressor. Yet, CTEP did not affect this phenotype. (C) 

Recovery from the novel stressor was impaired in stressed animals. Again, there was no significant 

treatment effect. (D) Analogous the previous experiments, CSDS induced an increase in adrenal size that 

was also not affected by CTEP treatment. (E) In stressed vehicle treated animals, CRH mRNA levels in the 

PVN were elevated compared to their respective control group. CTEP treated animals did not show a 

significant alteration in CRH levels, possibly due to slightly increased basal levels of CRH. (F) Expression of 

GR in the CA1 region of the ventral hippocampus was reduced in stressed animals, but CTEP increased 

overall expression independent of the condition. (G) Increased mRNA levels of Homer1b/c in the CA1 

region of the dorsal hippocampus in response to CSDS were rescued by CTEP treatment. * Significant 

from control, p < 0.05, # Significant from vehicle, p < 0.05. Other abbreviations as in figures 1, 2 & 3. 
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Figure 7: Treatment with CTEP can reverse stress-induced behavioral impairments. (A) While vehicle 

treated animals displayed a strong decrease in locomotion when being stressed, CTEP treatment was able 

to counteract this phenotype and significantly enhanced locomotion in the CSDS group. (B) There was no 

effect of CSDS or CTEP in the SA test. (C) Also, we could not detect an anxiety-like phenotype in this 

experiment as depicted by the results from the EPM. (D) In the FUST, the water trial did not reveal any 

differences between treatment and condition groups. However, CTEP treated animals expressed less 

interest in the urine dipped cotton tip under control conditions. In contrast, CSDS did not affect the 

anhedonic phenotype of CTEP animals, rendering them resilient to the stress-induced reduction in 

sniffing time that was present in the vehicle treated group. (E) While CSDS led to a decrease in active 

stress coping behavior in the FST, CTEP did not influence this behavioral parameter. * Significant from 

control, p < 0.05, # Significant from vehicle, p < 0.05. Other abbreviations as in figures 1 & 3. 

 

A stress-induced reduction of locomotion in the OF test was reversed by chronic CTEP 

treatment (Figure 7A). Here, ANOVA revealed a condition effect (F1,43 = 32.861, p < 0.001) 

as well as a treatment effect (F1,43 = 4.981, p < 0.05) and a condition × treatment 

interaction (F1,43 = 5.971, p < 0.05). Post hoc testing confirmed that on the one hand, CSDS 

reduced locomotion in the vehicle treated group compared to control conditions 

(p < 0.001), while treatment with CTEP did not have an effect under basal conditions, but 

reversed the stress-induced effect to a large extend (p < 0.01). Yet, locomotion was still 

reduced due to CSDS in CTEP treated animals compared to their control littermates 



Research articles  2.5 Results 

 

 
132 

(p < 0.05). Both in the SA test (Figure 7B) and the EPM (Figure 7C), we could not detect a 

significant stress or treatment effect. However, regarding anhedonic behavior, CTEP 

treatment had differential effects on the animals. While there was no difference between 

either subgroups in the water trial of the FUST, ANOVA revealed both a condition 

(F1,43 = 8.349, p < 0.01) and a condition × treatment interaction effect (F1,43 = 17.281, 

p < 0.001) in the urine trial (Figure 7D). Further post hoc tests indicated that CTEP reduces 

the interest in female urine under basal conditions (p < 0.01). Yet, while vehicle treated 

mice that underwent CSDS showed a strong reduction in sniffing time (p < 0.001), this 

effect was reversed by the CTEP treatment in the same condition group (p < 0.05). 

Regarding active stress coping behavior, we could detect a robust effect of CSDS 

(F1,44 = 14.109, p < 0.01; Vehicle: p < 0.05, CTEP: p < 0.05) with no influence of CTEP on 

this parameter.  
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Discussion 

In the current study, we provide strong evidence for the involvement of Homer1/mGluR5 

signaling in the regulation of HPA axis activity and show that manipulation of this 

signaling pathway can profoundly alter the neuroendocrine and behavioral consequences 

of chronic stress. First, we could show that a total knockout of Homer1 leads to 

considerable consequences on various levels, which are related to, but rather 

independent from chronic stress exposure. Furthermore, we demonstrate that an 

imbalance of the aforementioned signaling pathway in the hippocampus by means of 

overexpressing Homer1a increases the vulnerability to chronic stress on the physiological, 

neuroendocrine and behavioral level. On the other hand, we were also able to rescue 

some stress-induced behavioral alterations by chronic administration of the novel, orally 

bioavailable mGluR5 antagonist CTEP without interfering with HPA axis function. These 

findings propose the mGluR5/Homer1 signaling pathway as a prominent target for 

development of novel treatment strategies, especially with respect to stress-induced 

pathologies such as depression. 

In this study, we are the first to show a major disturbance of HPA axis activity in mice that 

are deficient in Homer1. This is evidenced on the one hand on the physiological level, 

where Homer1KO mice show enlarged adrenal glands, which is in line with previous 

reports (Grinevich et al., 2011). On the other hand, we could also show that 

corticosterone release in response to stress is severely altered in these animals. A 

hyperactive corticosterone response induced by CSDS is frequently observed in this 

paradigm (Wagner et al., 2011; Wang et al., 2011a; Hartmann et al., 2012) and deletion of 

Homer1 further increased this effect, indicating a prominent regulatory role of this 

glutamatergic pathway in the feedback regulation of the HPA axis. In contrast to previous 

reports, we could also detect various alterations in central gene expression patterns 

related to HPA axis feedback regulation (Grinevich et al., 2012). Grinevich and colleagues 

suggest that deletion of Homer1 results in altered steroidogenesis on the level of the 

adrenal cortex, where stimulation by ACTH lead to an increased corticosterone response, 

while central HPA axis regulation was not affected (Grinevich et al., 2011). In our study, 

CRH mRNA levels in the PVN were reduced in Homer1KO mice, while GR levels in the 

hippocampus were exclusively reduced in response to CSDS, a phenotype which may 
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readily contribute to the reduced feedback ability of these mice when chronically 

stressed.  

We also observed a strong hyperactive phenotype due to Homer1 deletion, which has 

also been indicated in previous studies that employed this mouse model (Szumlinski et 

al., 2005; Jaubert et al., 2007). More precisely, these hyperactive behaviors in general led 

to a reversal of the CSDS induced phenotype, which was mostly visible in locomotive and 

social behavior. However, we also detected a reduced interest in interacting with novel 

stimuli in KO animals, such as in the FUST. These behavioral patterns may be ascribed to 

an attention deficit hyperactivity disorder (ADHD)-like phenotype (Sagvolden et al., 2005), 

which has previously been linked to altered Homer1 expression profiles in the prefrontal 

cortex and the hippocampus (Hong et al., 2009; Hong et al., 2011). It is important to note 

that based on the present data, we are not able to discern immediate effects of Homer1 

deletion from developmental effects that originate in earlier stages of the animal’s life. 

Indeed, Homer1 has been shown to be strongly expressed in developing tissues (Shiraishi-

Yamaguchi and Furuichi, 2007) and a total knockout is therefore likely to exert major 

effects on these animals before the CSDS procedure started. Nonetheless, these findings 

indicate the importance of Homer1-mediated signaling in the response to CSDS, and we 

therefore continued to investigate its role by selectively overexpressing the immediate 

early form Homer1a specifically in the hippocampus. 

A specific overexpression of Homer1a in the hippocampus and the subsequent alterations 

of mGluR5/Homer1b/c mediated signaling led to changes in HPA axis activity both under 

basal and under CSDS conditions, thereby indicating an increase in vulnerability to both 

acute and chronic stress. This phenotype is not only present on the neuroendocrine and 

physiological level but also reflected in different behavioral parameters. Here, Homer1a 

overexpression predominantly increased the effect of CSDS on the animals, further 

supporting the hypothesis of detrimental gene by environment interactions involving 

Homer1 that may ultimately contribute to the emergence of depression (Rietschel et al., 

2010). Activation of Homer1a gene transcription is a rapid and plastic process in response 

to synaptic activity (Brakeman et al., 1997; Kato et al., 1997; de Bartolomeis and Iasevoli, 

2003). We therefore hypothesize that repeated transcriptional activation of this 

immediate early gene in response to the daily defeat sessions induces counterregulatory 

changes in the central stress systems, including the upregulation of Homer1b/c (See 
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Chapter 2, but also Berton et al., 2006) as well as alterations in GR and MR expression 

levels. These disturbances, in turn, may contribute to the vulnerable behavioral and 

neuroendocrine phenotypes that we observed under the influence of CSDS. Prolonged 

ligand-independent activation of mGluR5 via abundant Homer1a protein levels also 

severely affects IP3 receptor activation and subsequent downstream signaling (Ango et 

al., 2001, Kammermeier, 2008). The continuous presence of Homer1a may therefore 

profoundly change neuronal signaling pathways that may in turn render the organism 

more vulnerable to chronic stress. In addition, it has previously been shown that 

interactions between NMDA and mGluR5 are mediated by the PSD95/Shank/Homer1 

complex (Hayashi et al., 2009; Bertaso et al., 2010), and Homer1a was demonstrated to 

be a key modulator of mGluR5 coupling to effector targets that produce excitatory 

postsynaptic currents (Kammermeier and Worley, 2007). Given the increasing body of 

evidence that imply NMDA receptor targeting agents as potential novel, rapid-acting 

antidepressant treatment option (Kavalali and Monteggia, 2012; Krystal et al., 2013), a 

Homer1a mediated overactivation of this signaling pathway may profoundly affect 

antidepressant treatment efficacy. The development of new drugs that target this system, 

mainly the mGluR5, may therefore be of great value and importance (Krystal et al., 2010; 

Sanacora et al., 2012). 

Consequently, we administered the novel, bioavailable mGluR5 antagonist CTEP 

(Lindemann et al., 2011) to mice that were subjected to chronic stress. Under basal 

conditions, CTEP did not have any detrimental effects on the physiological or 

neuroendocrine level. Also, blockade of mGluR5 signaling over the course of the stress 

exposure did not affect HPA axis function or modulation, since both treatment groups 

showed similar corticosterone profiles under all measured conditions. These findings 

indicate that while modulation of Homer1 function can prime HPA axis activity towards a 

more sensitive phenotype, this cannot be counteracted by blockade of mGluR5 signaling, 

thereby suggesting alternative signaling pathways in the PSD that lead to the observed 

functional changes in HPA axis function. However, CTEP did have beneficial effects on the 

behavioral phenotype of stressed animals. Here, we could demonstrate that stress-

induced anhedonia and reduced locomotion was rescued in animals that received CTEP. 

Thus, while CTEP did not reverse all stress-induced phenotypes, it showed therapeutic 

value in some behavioral parameters. These results strengthen the idea of combining 
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different antidepressant treatments to maximize therapeutic efficacy (Palaniyappan et al., 

2009; Connolly and Thase, 2011). Indeed, CTEP may serve as a basis for future 

antidepressants that specifically target the glutamate system, since its pharmacokinetic 

properties are significantly improved from previous mGluR5 antagonists such as MPEP 

and MTEP (Anderson et al., 2003; Busse et al., 2004; Lindemann et al., 2011).  

It should be kept in mind that comparing the behavioral and molecular results across 

experiments can only be done with reservations. Although the actual stress paradigms 

were performed analogous, there are some differences, which may impact certain 

parameters. In experiment 1, we used a knockout mouse line that was bred in house 

for >5 generations, which can already lead to a certain genetic drift that differentiates this 

animal batch from other C57BL/6 mice ordered from outside companies. In experiment 2, 

all animals underwent a stressful surgery and one week of treatment with an analgesic, 

and although the mice were allowed to recover for 3 weeks, we cannot rule out that this 

intervention also produces long-term consequences. In experiment 3, all animals were 

gavaged while undergoing the CSDS paradigm, which acts as a stressor in itself and may 

particularly influence the performance of the control groups but also enhance the effects 

of CSDS. For example, we detected different performances in some behavioral tests, such 

as the FST, where a strong effect of CSDS was apparent in the third but not in the other 

experiments. Also, this effect on floating behavior has not been reported before in 

context of this stress paradigm (Wagner et al., 2011; Wang et al., 2011a). Nonetheless, 

within one experiment, the results presented are consistent and of high technical quality 

and should therefore allow for valid interpretation. 

In summary, our study provides compelling evidence for the involvement of the 

Homer1/mGluR5 signaling pathway in the emergence and regulation of stress-induced 

behavioral and neuroendocrine phenotypes. We could show that HPA axis function is 

strongly disturbed in animals that either carry a total knockout of Homer1 or overexpress 

Homer1a in the hippocampus. We could also demonstrate that increased levels of 

Homer1a lead to a stress-vulnerable behavioral phenotype, with blockade of mGluR5 by 

CTEP being able to recover the stress-induced behavioral alterations. These findings 

strongly support the glutamate hypothesis of depression (Sanacora et al., 2012) and 

further illustrate the importance of searching for novel antidepressant treatment 

strategies. With the present data indicating a major involvement of the Homer1/mGluR5 
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pathway in stress-related psychiatric disorder, further research to elucidate the 

contributing molecular mechanisms is highly warranted. 
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Supplemental Material 

 

Supplemental figure 1: Injection site and quantification of Homer1a overexpression in the hippocampus. 

(A) The viral construct was injected in the CA1 and dentate gyrus (DG) region of the dorsal hippocampus. 

Virus spread after 6 weeks is depicted in green. (B) After 6 weeks, Homer1a mRNA was robustly increased 

in both injected subregions of the dorsal hippocampus (dHC) compared to control mice. (C) The ventral 

hippocampus (vHC) was also infected and showed a strong upregulation of Homer1a mRNA in both 

measured subregions. # Significant from Empty, p < 0.05 
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Supplemental table 1: Overview of gene expression analysis in experiment 1. Values are depicted in 

means ± SEM. MR: Mineralocorticoid receptor; GR: Glucocorticoid receptor; CRH: Corticotropin-releasing 

hormone; dHC: Dorsal hippocampus; vHC: Ventral hippocampus; n.s.: not significant; WT: Wild type; KO: 

Knockout; CSDS: Chronic social defeat stress. * Significant from control of same genotype, # Significant 

from Wild type of same condition. 

 

 

 

Supplemental table 2: Overview of gene expression analysis in experiment 2. Values are depicted in 

means ± SEM. AAV: Adeno-associated virus; H1a OE: Homer1a overexpression; Other abbreviations as in 

supplemental table 1. * Significant from control of same AAV, # Significant from Empty of same 

condition. 
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Supplemental table 3: Overview of gene expression analysis in experiment 3. Values are depicted in 

means ± SEM. Abbreviations as in supplemental table 1. * Significant from control of same treatment. 
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3. General discussion 

Besides the monoaminergic systems, other signaling circuits have received growing 

attention with respect to mood disorders in recent years. In particular, the main 

excitatory neurotransmitter glutamate plays a decisive role in superordinate systems that, 

if malfunctioning, may contribute to the development of depression (Mathews et al., 

2012; Sanacora et al., 2012). Since chronic stress is a commonly accepted risk factor for 

mood disorders such as depression, it is of particular importance to understand the 

molecular mechanisms that are induced by stress and promote psychopathology. 

However, to date, the impact of stress, especially chronic stress, on glutamatergic 

neurotransmission is still not well understood (Popoli et al., 2012). 

The current thesis now provides a large body of evidence that Homer1, a postsynaptic 

scaffold protein, which mainly links group I mGluRs to intracellular targets that modulate 

Ca2+ release, is crucially involved in mediating the behavioral and neuroendocrine 

consequences of stress in the central nervous system. At first, we further validated the 

well-established chronic social defeat stress paradigm with respect to both immediate 

and long-term consequences. Concurrently, we tested whether currently prescribed 

antidepressant treatment can alleviate the stress-induced symptoms (Chapter 1). We 

then extensively investigated the role of different Homer1 isoforms with respect to 

behavior, endocrinology and central gene expression profiles under both acute (Chapter 

3) and chronic social stress conditions (Chapters 2, 5) and also elucidated its function in 

reward behavior (Chapter 4). By including both pharmacological and virally mediated 

gene expression modulation, we could demonstrate the functional relevance of Homer1 

for stress-induced memory impairments, HPA axis dysregulation and behavioral 

alterations such as anhedonia. In a clinical context, these symptoms are important 

markers for major depression (Ising and Holsboer, 2006; Fairhall et al., 2010; Der-Avakian 

and Markou, 2012), which leads to the conclusion that Homer1 and its interaction 

partners, including group I mGluRs, may be critically involved in the development of such 

mood disorders. 
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3.1. Social defeat stress 

In this thesis, we applied social defeat stress as the main stressor for all experiments. In 

support of the existing literature, we could convincingly demonstrate that defeat stress 

exerts a major impact on the individual. Single defeat events lead to a strong activation of 

the HPA axis and a subsequent increase in circulating corticosterone. However, the 

behavioral consequences of this acute stressor are highly specific with respect to memory 

processes and can only be observed in a limited time window (Chapter 3). In contrast, 

chronic application of social defeat has a multitude of consequences on different levels, 

including physiology, behavior and neuroendocrinology (Chapters 1, 2 & 5). Further 

strengthening the viability of this stressor model, the effects observed in this thesis are 

highly reproducible across experiments, both on the acute and chronic level and also 

confirm effects that have previously been published (Wagner et al., 2011; Wang et al., 

2011a; Hartmann et al., 2012). 

In contrast to more artificial stressors typically used in e.g. CUMS models, this type of 

social stressor is also of high etiological value, since social conflict is commonly 

encountered in natural settings. Additionally, the severity of the stressor and its 

perception is unpredictable and highly variable for the affected experimental animal, 

because it is largely based on the interaction of the conspecifics, which also reduces a 

potential bias caused by the investigator. Nonetheless, when comparing this paradigm 

with other social defeat models, it becomes clear that there is certain variability especially 

in the behavioral consequences that are most likely due to the different length and 

intensity of the applied defeat (Venzala et al., 2012). More precisely, we applied 21 

relatively short bouts of physical defeat that usually lasted less than 1 min, followed by 

24 h of sensory exposure to the dominant resident. In our experience, this protocol 

significantly reduces the confounding effects of physical injuries, which are more likely to 

occur during prolonged defeat sessions. In contrast, Nestler and colleagues usually apply 

ten defeat sessions of 5 to 10 min length, followed by sensory contact similar to the 

paradigm used in this thesis (Krishnan and Nestler, 2008; Golden et al., 2011). As a main 

readout, social avoidance towards an unfamiliar conspecific is measured. This behavioral 

phenotype is readily inducible after ten days of social defeat, long-lasting and reversible 

by antidepressant treatment, thereby providing good face and predictive validity (Berton 

et al., 2006; Covington, III et al., 2011). Based on the social avoidance behavior, the 
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chronic social defeat model has been extensively used to investigate basic molecular 

principles of stress vulnerability, to identify important brain structures involved in these 

processes, as well as to evaluate the efficacy of novel potential antidepressant 

compounds (Nestler and Hyman, 2010). However, social avoidance alone may not 

sufficiently reflect the complex disease phenotype of depression. Consequently, more 

elaborate tests are needed to appropriately model the human situation (Dzirasa and 

Covington, III, 2012). In this thesis, we reinforce the validity of the 21-day social defeat 

paradigm by providing additional endophenotypes that are related to psychiatric 

disorders, such as disturbed HPA axis function and central gene expression alterations, 

which resemble the situation in patients suffering from depression (Holsboer, 2000; Ising 

et al., 2007). We also induce lasting changes on the behavioral level that not only include 

social avoidance but also encompass locomotion, anhedonia, and anxiety-related 

behavior, thereby providing good face and construct validity. 

Nevertheless, given the immense complexity of depression pathology and the lack of 

understanding of the neurophysiological underpinnings of this disease, social defeat is 

only able to model certain aspects of depression in rodents. It is therefore of utmost 

importance that these models are constantly reviewed and refined in light of new findings 

in the field of psychiatric research. For example, functional magnetic resonance imaging 

has been used to identify abnormalities of neural structures in patients and thereby 

provides new connecting factors that need to be taken into account for the improvement 

of animal models (Sheline et al., 2010; Hasler and Northoff, 2011). As shown in this thesis, 

our social defeat stress model provides an excellent framework for the incorporation of 

such novel therapeutic, pharmacologic, and genetic approaches to investigate the 

neurophysiological basics of mood disorders. 
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3.2. Homer1 is involved in the stress response 

The postsynaptic scaffold Homer1 has been thoroughly investigated with respect to its 

molecular function (Brakeman et al., 1997; Xiao et al., 2000). Also, a prominent role in 

neuroplasticity, in particular synaptic remodeling has been proposed (Ango et al., 2000; 

Foa et al., 2001). The consequences of Homer1 manipulation with respect to behavioral 

alterations have already been implicated in drug addiction and, to a lesser extent, animal 

models of schizophrenia (Szumlinski et al., 2004; Szumlinski et al., 2005; Szumlinski et al., 

2006). Yet, the role of Homer1 in the response to acute and chronic stress and its 

relevance for stress-related disorders such as depression has not been extensively 

addressed so far. The current thesis now provides multiple lines of evidence that Homer1 

plays a crucial role in the mediation of the stress response, thereby substantially 

expanding the current knowledge about the involvement of the glutamatergic system in 

stress-related psychopathology (Popoli et al., 2012).  

Previous reports made mention of an upregulation of Homer1 after chronic stress in two 

microarray studies but did not further investigate this signaling pathway (Berton et al., 

2006; Schmidt et al., 2010). We now thoroughly replicated the reported regulation of 

hippocampal Homer1 in response to chronic social defeat stress in several independent 

samples using different technical approaches such as qPCR, microarray and in situ 

hybridization (Chapter 2). In addition, a more in-depth analysis of the different Homer1 

isoforms was performed and revealed that a single defeat session induces transcription of 

the IEG Homer1a and a subsequent downregulation of the constitutively expressed long 

isoforms Homer1b/c (Chapter 3). Together with the results from the chronic stress 

experiments, where Homer1a was not significantly regulated at the end of the CSDS 

period, while Homer1b/c expression was increased, it becomes apparent that different 

Homer1 isoforms are dynamically regulated by social stress.  

Based on these results, it is likely that a repeated activation of this transcriptional cascade 

induced by an acute stressor, as apparent during the CSDS paradigm, leads to a 

counterregulatory upregulation of Homer1b/c that on the one hand neutralizes the acute 

stress-induced downregulation, but on the other hand causes a severe imbalance of this 

signaling pathway under basal conditions (Figure 3.1). This hypothesis is further 

supported by data from our lab (Chapter 3) and others (Tronson et al., 2010), showing 

that Homer1b/c coupling to the mGluR5 is reduced in response to stress. It is therefore 



3.2  General discussion 

 

 
147 

likely that, in the long term, this deficit is compensated by increased overall levels of long 

Homer1 isoforms. 

 

 

Figure 3.1: Schematic hypothesis of transcriptional Homer1 regulation in response to stress. (A) Homer1a 
transcription is rapidly induced by stress, but quickly returns to basal levels (Dotted black line). (B) 
Homer1b/c levels decrease in response to stress after a slight delay, possibly in a direct reaction to 
increased Homer1a levels. As adaptational process, Homer1b/c transcription levels are steadily increased 
after several stress exposures, which consequently leads to increased basal Homer1b/c levels (Dotted 
green line). These, in turn, may have maladaptive consequences under specific conditions. 

 

Interestingly, the regulatory effects described above do not appear to be driven by GR 

signaling or corticosterone, but may rather be an intrinsic effect of augmented mGluR5 

activation, most likely due to ligand-independent signaling induced by Homer1a (Ango et 

al., 2001). This is supported by the fact that GR activation alone did not induce a 

modulation of Homer1b/c transcription, nor did blockade of the GR during the defeat 

reverse the memory deficits induced by stress (Chapter 3). In contrast, blockade of 

mGluR5 activity during the stress period was able to rescue the acute stress-induced 

behavioral effects (Chapter 3) as well as the upregulation of Homer1b/c after CSDS 

(Chapter 5). Furthermore, antagonizing mGluR5 positively modified the behavioral 

phenotype of chronically stressed mice, supporting a possible potential of this drug class 

as a treatment option for psychiatric disorders (Palucha and Pilc, 2007; Pilc et al., 2008; 

Piers et al., 2012). 

A popular concept regarding the IEG Homer1a is the idea that it acts as a dominant 

negative to long Homer1 isoforms (Brakeman et al., 1997). This hypothesis would suggest 
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that overexpression of Homer1a on the one hand should exert similar effects as a 

blockade of mGluR5, and on the other hand have opposite consequences compared to an 

overexpression of Homer1b/c. Our current data now indicates that the simple concept of 

Homer1a acting in a completely contrary direction to Homer1b/c cannot be fully 

sustained. Indeed, the complex behavioral and neuroendocrine alterations, which arise 

from the manipulation of the mGluR5/Homer1 pathway, are likely to be embedded in a 

bigger framework of interactions that include both main Homer1 isoforms as well as 

other postsynaptic scaffolds and effectors such as Shank or Preso1 (Hayashi et al., 2009; 

Hu et al., 2012). 

The HPA axis is a major regulatory system of the stress response and its dysfunction is 

one of the most prominent neurobiological findings in depression (Holsboer, 2000). In 

addition, recent studies have suggested an important role of the HPA axis in the etiology 

of treatment resistance (Zobel et al., 1999; Bauer et al., 2003; Juruena et al., 2009). In this 

thesis, we now provide evidence that Homer1 plays an important role in the feedback 

regulation of the HPA axis. Previous reports have demonstrated that a total knockout of 

Homer1 leads to an increased adrenal cortex size, and to an elevated corticosterone 

response to ACTH stimulation (Grinevich et al., 2011). Indeed, we replicated and further 

expanded these findings by showing that Homer1KO mice exhibit increased HPA axis 

responsiveness to a stressful challenge (Chapter 5). Furthermore, we could sensitize HPA 

axis activation by overexpressing Homer1a in the hippocampus, indicating an important 

role of glutamate signaling in HPA axis regulation. However, blockade of mGluR5 did not 

affect this endocrine phenotype, which suggests an alternative molecular pathway 

leading to HPA axis feedback disturbances that involves Homer1, but not mGluR5. In line 

with this hypothesize, deletion of Homer1 also led to alterations in the GR expression 

profile in the hippocampus, further suggesting that a modulation of this pathway may 

have profound effects on HPA axis feedback regulation (Chapter 5). 
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3.3. Implications for novel treatment options 

Glutamate signaling has been strongly implicated in the emergence of mood disorders in 

several studies (Sanacora et al., 2012; Krystal et al., 2013). In this context, the Homer1 

knockout mouse line was suggested as model for schizophrenia (Szumlinski et al., 2005). 

However, the complex phenotype of this mouse line has not been completely 

disentangled so far, thereby only providing limited insight into the origin of the observed 

alterations. Since Homer1 is critically involved in early development, these effects may 

likely arise during early life and, due to their severity, may not be counterregulated during 

later stages of life (Shiraishi et al., 2004). To-date, animal studies have mainly focused on 

the role of Homer1 in memory processes such as fear memory or reward associated 

learning (Szumlinski et al., 2004; Inoue et al., 2009; Tronson et al., 2010), utilizing 

conditional Homer1a knockout animals or pharmacological methods to interfere with 

Homer1 function. In particular, studies that examine reward associated behaviors have 

mainly focused on the prefrontal cortex as the target region for their manipulations 

(Kalivas, 2004; Murray and Wise, 2010). We have now added new evidence that 

hippocampal glutamate signaling via Homer1 is also involved in incentive motivational 

behavior (Chapter 4). Together with the extensive dissection of hippocampal Homer1 in 

spatial memory processes (Chapter 3), and its involvement in chronic stress-mediated 

anhedonia and locomotion impairments (Chapter 5), we conclude that Homer1 and its 

signaling pathway are profoundly involved in stress-related mood disorders.  

Based on findings that ketamine, a potent NMDA receptor antagonist, provide rapid 

antidepressant effects both in clinical trials (Zarate, Jr. et al., 2006; Price et al., 2009) and 

animal studies (Garcia et al., 2008a; Garcia et al., 2008b), research has aimed to discover 

mechanisms and compounds that provide comparable efficacy without the negative side 

effects associated with ketamine treatment (Tsai, 2007). Most advancements in this field 

are based upon direct manipulation of the NMDA receptor, for example by antagonizing 

specific subunits that consequently prevent natural signaling (Burgdorf et al., 2013). 

Interestingly, potentiation of NMDA receptor function has also been ascribed to 

antidepressant effects (Huang et al., 2013), indicating that there is a complex molecular 

context that goes beyond mere (ant)agonistic actions. It has, for example, been 

demonstrated that intracellular signaling cascades can change the synapses’ ability to 

express plasticity and thereby profoundly alter the neuronal characteristics of affected 
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regions (Abraham, 2008). This concept of metaplasticity has already been implicated in 

mGluR mediated long-term potentiation (LTP) and long-term depression (LTD) in the 

hippocampus (Rush et al., 2002; Gisabella et al., 2003), and it can be hypothesized that it 

also applies to NMDA receptor mediated signaling pathways. In this regard, a molecular 

link between group I mGluRs, Homer1, and NMDA receptor signaling has been 

established in various studies (Naisbitt et al., 1999; Pilc et al., 2008; Hu et al., 2012) and 

within this pathway, Homer1 may indeed be a crucial mediator of behavioral 

metaplasticity in response to environmental stimuli such as stress or pharmacological 

intervention (Schmidt et al., 2013). In fact, it has been shown that Homer1 plays a critical 

role in formation and composition of the PSD complex as well as in group I mGluR 

membrane expression (Ango et al., 2000; Ango et al., 2002; Feng et al., 2002; de 

Bartolomeis and Iasevoli, 2003). In addition, the IEG Homer1a is induced upon external 

stimuli and may significantly alter the connectivity between mGluRs and NMDA receptors 

(Kammermeier and Worley, 2007; Bertaso et al., 2010). This highly dynamic system in the 

glutamatergic PSD, with Homer1 as a scaffolding protein that is centrally involved in these 

mechanisms, therefore represents a valuable target for further research focusing on 

glutamate signaling as well as a novel treatment method for mood disorders. 
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3.4. Summary and future perspectives 

The current thesis constitutes a compelling basis for the implication of Homer1 in stress-

related disorders. We thoroughly explored the function of Homer1 and mGluR5 in the 

context of environmental challenges, and could provide strong evidence that Homer1 is 

involved in both the behavioral and neuroendocrine response to acute and chronic stress 

and also further elucidated the efficacy of mGluR5 antagonists as potential 

antidepressant treatment option. The complex molecular mechanisms in the PSD of 

glutamatergic synapses, where Homer1 exerts its actions, are however not completely 

understood (Popoli et al., 2012), since novel interaction partners of postsynaptic 

receptors and scaffolds are constantly being discovered and add further complexity to the 

intricate framework that provides functional excitatory signaling (Hu et al., 2012). An 

important path that would be worthwhile pursuing in the context of mood disorders, such 

as depression, includes the interaction between Homer1 isoforms and ionotropic 

glutamate receptors. Especially the molecular mechanisms of NMDA receptor mediated 

signaling that lead to the antidepressant action of compounds targeting this receptor 

need to be explored in more detail (Kavalali and Monteggia, 2012). The molecular action 

of potential novel compounds that are considered suitable to enter clinical trials need to 

be clarified to minimize the negative side effects observed when manipulating NMDA 

receptor function (Hashimoto et al., 2013; Lakhan et al., 2013). Furthermore, given the 

growing body of evidence presented in this thesis and elsewhere (Kendell et al., 2005; 

Sanacora et al., 2008; Krystal et al., 2010; Krystal et al., 2013), the combination of 

compounds that simultaneously modulate group I mGluRs and NMDA receptors may 

represent a novel, fast acting option to treat depression. In this regard, Homer1, as the 

main scaffold that postsynaptically links these receptors, may play a crucial role in the 

mediation of these effects (de Bartolomeis et al., 2013). 
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