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Zusammenfassung

Die Untersuchung der Moduli Réumen von N = (2,2) Superkonformen Feldtheorien
und der allgemeineren N = (2,2) Supersymmetrischen Quanten Feldtheorien ist ein
langjahriges und vielseitiges Forschungsgebiet. Diese Dissertation konzentriert sich auf
gewisse allgemeine Aspekte des erwdhnten Studiums, und stellt Entwicklungen von all-
gemeinen Methoden im Rahmen der Topologischen String Theorie dar. Die vorliegende
Arbeit besteht aus zwei Teilen.

Der erste Teil befasst sich mit Aspekten der geschlossenen Topologischen String Theorie
und kulminiert in den Inhalt von [52], wo die geometrische Struktur der Topologischen anti-
Topologischen Moduli Rdumen von N = (2,2) Superkonformen Feldtheorien mit Zentral
Ladung ¢ = 9, angesichts eines allgemeinen Quantisierung-Rahmens [31, [32] wiederent-
deckt wird. Aus dieser Sichtweise erhalt man, als Spezialfall, eine klare Einsicht der “holo-
morphic anomaly equation” von [6]. Diese Arbeit konnte als eine natiirliche Erweiterung
von fritheren Untersuchungen in dhnlicher Richtung betrachtet werden, insbesondere vom
grundlegenden Artikel [104].

Der zweite Teil befasst sich mit Aspekten der Untersuchung der Offenen und Geschlossenen
Moduli Rdumen von Topologischen Konformen Feldtheorien auf Genus Null. Insbesondere,
ist hier eine Exposition von [I3] enthalten, wo allgemeine Resultate iiber die Klassifizierung
und Berechnung von “bulk-induced” Deformationen von Offenen Topologischen Konformen
Feldtheorien erhalten wurden. Letzteres wurde durch eine kohérente algebraische Meth-
ode erreicht was sich auf den definierenden L., und A, beteiligten Strukturen bezieht.
Teilweise ist die letztere Untersuchung auf beliebige Affine B-twisted Landau Ginzburg
Modelle beschrankt. Nachfolgend wird weitere originelle Arbeit dargestellt was die Topol-
ogische String-Feld-Theoretische Struktur von B-twisted Landau Ginzburg Modellen vol-
lendet. Insbesondere wird eine “off-shell” Erweiterung der Kapustin-Li Formel von [41], 49
gegeben. Diese “off-shell” Formel bezeichnet einen konsolidierenden Baustein der alge-
braischen Herangehensweise zur Berechnung des Effektiven Superpotentials von B-twisted
Affine Landau Ginzburg Modellen, und kann damit als eine natiirliche Entwicklung von
der grundlegenden Arbeit [12] betrachtet werden.
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Abstract

The study of moduli spaces of N = (2,2) superconformal field theories and more generally
of N = (2,2) supersymmetric quantum field theories, has been a longstanding, multifaceted
area of research. In this thesis we focus on certain selected general aspects of this study
and develop general techniques within the framework of topological string theory. This
work is naturally divided into two parts.

The first is concerned with aspects of closed topological string theory, and culminates
with the content of [52], where the geometrical structure of the topological anti-topological
moduli spaces of N = (2,2) superconformal field theories with central charge ¢ = 9 is
rediscovered in the light of quantization, within a general framework (|31, 32]). From this
point of view, one thus obtains, as a special case, a clear understanding of the holomorphic
anomaly equation of [6]. This work can be viewed as a natural continuation of earlier
studies in the same direction, most notably the seminal paper [104].

The second part is concerned with aspects of the study of the open and closed moduli
space of topological conformal field theories at genus zero. In particular, it contains an
exposition of [13], where general results on the classification and computation of bulk-
induced deformations of open topological conformal field theories were obtained from a
coherent algebraic approach, drawing from the defining L., and A, structures involved.
In part, the latter investigation is restricted to arbitrary affine B-twisted Landau Ginzburg
models. Subsequently, further original work is presented that completes the topological
string field theory structure of B-twisted Landau Ginzburg models, providing in particular
an off-shell extension of the Kapustin-Li pairing of [41}[49]. This off-shell pairing constitutes
a consolidating building block in the algebraic approach to the computation of the effective
superpotential of B-twisted affine Landau Ginzburg models pioneered in [12].
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Chapter 1

Introduction

1.1 A rough map of the general context

The present work is concerned with the study of selected aspects of topological string
theory. This theory has its conceptual origin in the more general string theory, although it
is very interesting in its own right. In particular, from its inception [100], it has provided
a rich and convenient tool for the investigation and intuitive understanding of Kahler and
especially Calabi-Yau geometry of a priori arbitrary dimension. In the context of string
theory, topological string theory naturally arises in critical type II theories with total
conformal field theory restricted to a class of the type:

CFT;got = CFT]RI,ZS ® CFT%nternala

where CFTgis is given by the left-right supersymmetric sigma-model into RY3, while
CFTinternar 1 an arbitrary N = (2,2) superconformal field theory with central charge
c=09.

The most intuitive such models are again sigma-models into a manifold of dimension
6. The requirement of N = (2,2) supersymmetry is that the manifold be Kéahler, and that
of conformal invariance that it be Calabi-Yau. The latter is a Kéhler manifold (M, w, J)
with ¢;(M) = 0. In particular it admits a nowhere vanishing holomorphic top form €.

Part of the aim of string theory in the restricted setting of is to have a complete
classification of such internal CFTs defined on the sphere S2. The space of such CFTs
should be viewed as the stringy generalization of the space of solutions to N = 2 su-
persymmetric Einstein’s equations in the vacuum for a euclidean 6 dimensional manifold.
Indeed, in the case of Calabi-Yau manifolds, Yau’s theorem [I05] ensures that for given
Kahler class [w] € HY'(M,R), there is a unique representative thereof whose associated
Kahler metric is Ricci-flat.

The space of internal CFT's is usually studied perturbatively. One starts by considering
a particular point in this space and looks to deform the CFT to a neighboring one satisfying
the same aforementioned requirements. Such deformations are special kinds of exactly
marginal deformations. These are in correspondence with a restricted subset of fields in
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the original CFT. In fact contrary to the infinite dimensional Hilbert-space of all the states
in the CFT, the latter is finite dimensional.

Such a reduction of degrees of freedom calls for a procedure that allows to restrict
attention to a “small” subset of the Hilbertspace that contains the exactly marginal defor-
mations of interest. Indeed this procedure exists in the context of N = (2,2) CFTs and
goes by the name of topological twisting [100]. In particular, the latter allows the CFT
to descend to a TQFT (topological quantum field theory) and families of CFTs can be
safely replaced as families of TQFTs. In fact, to be more precise, these families of TQFTs
account only for roughly half of the deformation space. In the case of Calabi-Yau mani-
folds, the full deformation space is locally a product of complex structure and complexified
Kéhler structure deformations, and one can construct families of TQFTs corresponding
to either factor [102]. The one corresponding to the former is the B-model, while the one
corresponding to the latter the A-model. Note in particular that the A-model is sensitive
to complexified Kéhler structures, that is in the context of CFT, the definition of Kéahler
manifold is naturally extended to incorporate B-fields in H'!'(M,R/Z). Non-linear sigma
models and their topological twists can be generalized to incorporate a holomorphic super-
potential W becoming what are known as general Landau-Ginzburg models, as opposed to
the simpler affine Landau Ginzburg models where M is affine space. In the present work
we will often resort to general Landau Ginzburg models as illustrative examples for two
dimensional TQFT’s. In particular we will only consider the B-twist.

The ultimate aim of topological string theory is naturally manifold. Starting from the
top, it is the classification of TQFTs arising from topological twisting. Although a priori
addressing only partially the classification question of internal CFT’s, the latter is in fact
widely believed to provide a full answer. This is thanks to mirror symmetry. In strict
terms, the latter is an outer automorphism of the N = (2,2) superconformal algebra,
and it allows to interpret a given N = (2,2) CFT as arising from two seemingly different
models. In particular, in the case of Calabi-Yau sigma models, the CFT that corresponds
to M is conjectured to be the same as the one corresponding to a so called mirror M whose
A- and B-models are identified with the B- and A-models attached to M respectively.

Moreover, within the class of B-twisted TQFT’s, there is a further identification be-
tween pairs of models. This time it is between Calabi-Yau sigma models on projective
hypersurfaces defined by a polynomial equation W = 0 on say P", and an orbifolded affine
Landau Ginzburg model ([63, 94} 05]) on C"*!, (more precisely A1), with superpotential
W. This correspondence was given an elegant interpretation in [103] where the respective
models were extracted as phases of a more general Gauged Linear sigma model.

Dualities as the ones just described allow, in particular, to study the same moduli space
from different perspectives, and simple aspects of one realization aid to the understanding
of the more difficult counterparts in the dual models.

The study of moduli spaces, as we tacitly assumed in the above, concerns conformal field
theory on the sphere. In string theory one is also interested in quantum surfaces, that is
ones of higher genus. Moreover, the study of closed strings is extended to incorporate open
strings, which in type II theories can be viewed as giving rise to perturbative excitations
of the non-perturbative D-branes.
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In order to understand the physical implications of such generalizations, it is worthwhile
to adopt an effective field theory viewpoint. Compactifying the effective type II theory
down to four dimensions, one obtains an N = 2 supergravity theory, and the internal CF'T
moduli become scalars in vector and hyper multiplets. In particular the TQFT moduli
correspond to vector multiplets and the genus zero data one extracts from the TQFT are
three point functions, which in the effective four dimensional theory are Yukawa couplings,
namely couplings between a scalar boson and two fermions in the same vector-multiplet.
From the TQFT perspective, the bosons correspond to certain Neveu-Schwarz highest
weight states of the underlying N=(2,2) CFT, while the fermions to the spectral flowed
Ramond states. In order to ensure the effective N = 2 supersymmetry one should impose
certain charge integrality conditions in the microscopic CFT. However we will neglect this
in the following. By suitably choosing the internal CFT one can obtain in particular
N = 2 Yang-Mills theories, for example those of A, D and E type. This is the topic
of geometric engineering. Introducing D-branes in more general backgrounds, one can
instead obtain more general N = 1 Yang-Mills theories. These theories in particular admit
a superpotential W, which depends both on the open and closed moduli and is the
manifestation of the generic obstructions in the deformations of open and closed CFT’s.
Finally, incorporating higher genus surfaces and restricting attention to closed strings, the
higher genus TQFT correlation functions, in fact suitable holomorphic cut-offs thereof, are
interpreted as the terms in the coupling of scalars in the vectormultiplet to the gravi-photon
field-strength.

From the microscopic internal CF'T point view, including open strings, or in other words
D-branes, at genus zero (on the disk), implies erecting at each point of the closed TQFT
moduli space, a category whose objects are the topological D-branes in the “background”
defined by the closed strings, and whose morphisms are the topological open strings. That
is, roughly speaking, the moduli space is replaced by a sheaf of categories thereupon.
These categories come endowed with extra structure. In particular they are Calabi-Yau
A-categories [19]. Suffice it to say at this point, that this structure alone suffices to
tackle the classification of open and closed deformations of objects in the fiber category. In
particular the structure of the open-closed moduli space in the immediate vicinity of one
such object, or D-brane, is encoded in the effective superpotential W,y s, which from this
microscopic viewpoint is the moduli dependent open three-point function, or equivalently
the generating function of the open-closed TCFT, which in addition to the TQFT data
incorporates the deforming integrated descendants of the TQFT observables.

Having provided a rough sketch of the general context we can now sharpen the scope
and illustrate the aims of the present work

1.2 Aims of the present work

This thesis divides into two parts. The first part comprises chapters 2 and [3| while chapters
and [5| constitute the second part.
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Chapters [2| and [] introduce the essential background for the endeavors of chapters
and [5] respectively.

In chapter [2| we start in section [2.1] with the definition and characterization of closed two
dimensional topological quantum field theories. Sections and introduce respec-
tively the basic ingredients needed of N=(2,2) CFTs for the construction of the smaller
TQFTs, and the general Landau-Ginzburg model as a candidate example for furnishing
such N=(2,2) CFTs. Section explains the topological twist procedure. In particular we
restrict attention to the B-twist, while in section [2.5] we sketch how to obtain the data of
the B-twisted general Landau Ginzburg models.

In section [2.6| we introduce the notion of spaces of TQFTs arising as B-twisted CFTs
and describe the data controlling the deformation problem. In this way we conclude the
sketch of genus zero B-twisted TQFTs. The remaining sections extend to higher genus
surfaces. In particular the first of these, section 2.7, reviews the essentials of topological
anti-topological fusion which is still genus zero data, but is however crucial to the under-
standing of twisted theories only at genus higher than zero. In particular, in this section
we sketch the logical steps required to come to the conclusion that the moduli space of
TQFT’s arising from N=(2,2) CFTs of central charge ¢ = 9, combined with their CPT
conjugates, is a projective special Kahler manifold, though we defer the precise definition
to chapter |3 where we study its origin and structure in detail. Finally, in section [2.8
we explain how to couple twisted CFTs to topological gravity to obtain TST (topological
string theory), thus paving the way for the definition of the central all encompassing object
of closed T'ST, namely the generating function at all genera of T'ST scattering amplitudes
among marginal deformations. This is an object of the form:

Z(u,p),

where p is a point on the topological anti-topological moduli space, describing the TQFT
within which marginal fields labelled by the parameters u scatter. The properties of this
generating function were first investigated in the seminal paper [6]. In particular Z was
shown to satisfy a master equation named the “holomorphic anomaly” equation, as it
indicates that as one departs from genus zero surfaces, Z acquires dependence on the
anti-holomorphic parameters describing the anti-topological theory. Section [2.8.4] is thus
dedicated to explain how such a master equation arises in the context of TST.

Finally we pass to the aim of chapter |3 the content of which is [52]. In that paper
we showed how the structure possessed by the topological anti-topological moduli space
of N=(2,2) CFT’s of central charge 9, arises in the context of the quantization of clas-
sical phase-spaces. More precisely we study both affine and projective special Kéahler
manifolds [14], I5]. The former were first discovered as vector-multiplet moduli spaces of
rigid N=2 four dimensional gauge theory [34] 88] leading up to [85] 86] where transparent
understanding of this structure was revealed. Projective special Kahler manifolds were
discovered analogously in the more general N=2 gauged supergravity [21], 22] 89]. Sub-
sequently they were both given precise mathematical characterization both extrinsically
[4, 18] and intrinsically [33]. In chapter [3| we rediscover both affine and projective special
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Kéhler manifolds in the context of Fedosov quantization [31], 32]. In this context Z(u,p)
arises naturally as a wave function (representation) of the coherent state corresponding to
the point p and as such it will satisfy a master equation which is shown to coincide with
the holomorphic anomaly equation of [6]. That Z(u,p) should arise from the quantization
of the genus zero moduli space is a natural and expected. Indeed such a verification is
essential to understand the precise relation between the genus expansion and quantization,
which is at the heart of the string theory proposal for the quantization of gravity. A first
derivation of a holomorphic anomaly type equation from a direct quantization procedure,
was obtained long ago in [104]. This point of view was revived and improved upon notably
in [1} B9, 96]. In chapter We give a first principles derivation of the holomorphic anomaly
equation in a much more general context, allowing in particular to extend the results to a
general class of quantizable manifolds. Sections [3.1] and provide the necessary back-
ground. In the former we review the definition of quantization and review the simplest
case to set conventions for the future sections. In section [3.2 instead we review the quan-
tization procedure of [31], 32]. In section we discover affine special Kahler manifolds in
this context and quantize them finding the analogue of the holomorphic anomaly equation
and subsequently provide its general solution. In section we specialize to conic affine
special Kéahler manifolds. From these one defines projective special Kahler manifolds as
certain holomorphic quotients. In particular the projective special Kahler manifolds of
interest are quotients of Lorentzian conic special Kéahler manifolds. Therefore we explain
how to extend the definition of quantization to accommodate “indefinite Hilbertspaces”.
Of particular curiosity is the discussion of section where we attempt a guess for the
quantum origin of the conic property. Subsequently in section we finally turn to
the quantization of projective special Kahler manifolds and rediscover the holomorphic
anomaly equation of [6] having provided its general solution. In this way we conclude the
first part of the thesis.

Part two is dedicated to a study of deformations, both open and closed, of open TQFT’s of
B-twisted models. After extending the discussion of section to open and closed TQFT
in section [.1, we immediately pass in section to the review of the definition of the
open sector, that is D-branes, of B-type in the general untwisted and B-twisted Landau-
Ginzburg models. In section we provide the bare essentials of the formalism involved
in TQFT’s arising from N = (2,2) CFT’s while in section we turn to the properties
of open and closed (bulk and boundary) deformations of open TCFT’s on the disk. In
this way we conclude the introductory chapter |4, with the necessary ingredients to tackle
deformations proper. We start chapter 5| by formalizing section 4.4, We thus introduce the
relevant properties of A, and L., structures, which govern the deformation problem.
Section [5.2| contains the results of [13]. There we studied bulk-induced deformations of
open topological string theory on the disk. That is we considered an object of the D-brane
category fibered over a closed string background, together with its given neighborhood
non-commutative geometry (A, structure) and deformed it along the base, closed string
moduli space. In other words, bulk-induced deformations are lifts of closed deformations to
the fibered D-brane categories. In particularly we restrict attention to finitely many objects
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and use the language of A.-algebras rather than categories. Section consists of two
parts. The first is restricted to arbitrary affine Landau Ginzburg models while the second
can be applied to any model. In the former we work off-shell and give the precise map that
lifts closed deformations to the open sector. The relevant notion is that of L., morphism.
The result of that section can be viewed as a generalization of Kontsevich’s deformation
quantization [55] to the more general non-commutative affine Landau-Ginzburg setting.
In the second part we transport the bulk-induced deformations on-shell. The notion of
on- and off-shell is explained in section Roughly the former is to the latter what
string field theory is to string theory. Having classified the bulk-induced deformations of
arbitrary affine Landau-Ginzburg models, albeit neglecting the cyclic structure, we turn to
the problem of computing purely open deformations of arbitrary affine Landau-Ginzburg
models. In particular we build upon the non-commutative geometric strategy developed in
[12] and provide an explicit formula for the off-shell, string field theory, pairing for arbitrary
affine Landau Ginzburg models. This pairing correctly reduces to the Kapustin-Li pairing
[41), 149] on-shell and can be viewed as completing the string field theory data of affine
Landau Ginzburg models. In particular having the pairing is tantamount to having the
off-shell effective superpotential WY ]Jf Jf which generalizes the abstract Chern-Simons action

of f

of open string field theory. Transporting W,;; can then be efficiently achieved using the

method of [12]. ’



Chapter 2

Essentials of closed topological string
theory

2.1 Closed TQFT basics

In this section we will provide a glimpse of closed 2d TQFT (two dimensional topological
quantum field theory), at its simplest, that is without decorating it with e.g. spin structure.
The emphasis is on showing how from a seemingly general starting point one is instead lead
to a very rigid structure. We refer to the original papers [3, [60] [72]. A closed topological
quantum field theory is a functor:

Z : Cob — Vecty,.

An object O in the category Cob is a disjoint union of oriented circles S, while morphisms,
called bordisms, are boundary-preserving diffeomorphism classes [£](Oy, O2) of smooth
surfaces X(01, 0y) whose boundary is the oriented disjoint union of the initial and final
object:

0%(01,04) = O, U Oy,

where by O, we have denoted O, with opposite orientation. Composition of morphisms:
[24][O1, O2] X [25][O2, Os] = [25][O1, O3]

is given by gluing two representatives along the common boundary. The category Vect
instead, is the category whose objects are vectorspaces over the field k E] and whose mor-
phisms are linear maps with the obvious composition. The functor Z preserves coproducts,
sending:

U +— &.

Now, in order to determine a given TQFT, we need to specify the action on objects and
morphisms. Given that Z preserves coproducts, for the former we only need to specify the

TFor us k = C.
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action of Z on the two circles St and S1. We will see that Z(S1) is in fact determined by
Z(S}). We set:
Z(S1) =V

and denote Z(S') = V. In order for V to be determined by V, we need to adjoin the
object ) to Cob and accordingly maps to and from it. Clearly @) is the unique unit w.r.t.
L, therefore Z must send it to the unique unit w.r.t. ®, namely k itself:

Z(0) = k.

Adjoining () also clarifies the choice of naming the functor “Z”, as its action on a closed
bordism yields a number, namely the partition function associated to that bordism. Now
we concentrate on morphisms with boundary the disjoint union of two circles. The simplest
such morphism is the cylinder C' := S} x [0,1]. Viewed as a map in Mor(S},S}) it is
clearly the identity map, and hence also Z(C'). However one can also view C' as an element
of Mor(S1 U St,0), thus defining the so called evaluation map:

ev: Vv —k

and lastly C' can be viewed as a morphism in Mor((, S} U S1) thus yielding the so called
coevaluation map: B
coev: k —V V.

Since C' is the identity map:
V=eu(V,:) C VV,

and likewise replacing S with ST and V with V. Therefore:
VeV e (VY)Y
Since the dual is taken in the strictly algebraic sense, V' is finite dimensional and:
Z(sh)y=v".

There is a further morphism in C'ob from the circle to the circle, which is independent of
the previous ones, namely the cylinder in Mor(S%, S1), which can also be viewed as a map
in Mor(S} U S:,0). The action of Z yields a map:

n:Veov-—k

called the topological metric. It is easy to show that this is non-degenerate. For example
by appropriately composing it with its dual it yields the identity map. So far all of these
properties apply invariably to any topological field theory of any dimension including d = 1.
The peculiarity of d = 2 and higher, is the existence of connected morphisms in Cob
whose boundaries have more than two disconnected (non-empty) objects. The beauty of
two dimensions is the possibility of expressing any such morphism from the previously
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constructed ones and the “pair of pants”. The latter is a morphism in Mor(SL U ST, S1).
It defines a multiplication:
VeV —V

that is associative, because the bordisms in the associativity equation are equivalent. Fur-
thermore m is commutative. This is explained by swapping the incoming circles past
each-other and turning the neck close to the outcoming circle to undo the twist and obtain
the initial pair of pants. Finally the commutative and associative algebra p has a unit,
namely the disk, viewed as a map:

e:k—V

since composing my with e yields the identity cylinder. The last ingredient to completely
specify a 2d TQFT is the dual to the unit, called the trace:

0:V — k.

It is clear that it makes the separate definition of 1 redundant, since:

n=~0op.

Consequently 6 is non-degenerate. To summarize, a closed 2d TQFT is equivalent to a
finite-dimensional commutative, associative algebra with a non-degenerate trace, that is
a commutative Frobenius algebra. We remark that, had we allowed for Z, graded vec-
torspaces, we would have obtained a Z, graded-commutative Frobenius algebra.

2.2 TQFT essentials of N=(2,2) CFT’s

In this section we review the basic ingredients of N' = (2,2) superconformal field theories
that we need, to formulate topological conformal field theories (we follow [63]). We assume
basic knowledge of conformal field theory ([23]) and thus define an N = (2,2) superconfor-
mal field theory as a euclidean two dimensional conformal field theory whose Hilbertspace
‘H carries a unitary representation of the N = (2,2) super-Virasoro algebra of which we
write the holomorphic part:

[Lm7 Ln] = (m - n)Lm+n + i(Tng - m)5m+n,0

12
(L, Jn] = —ndmin,
L GE] = (5 =) G
[Ty, Jo] = gm(smw,
[T, GF) = G
(G G = 2L,y + (1 — ) Jrgs + g <7’2 — i) Or 45,0

GF, G =G, GT=0
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where [-, ] denotes the graded commutator. The generators of the above Lie algebra are
the modes of the fields:

T(z) =Y Loz "% GHa)= Y GEm2 Jz) =) Ja "t

nez reZ+a neL

where a € {0,1/2} distinguishes the Ramond from the Neveau-Schwarz sectors. The first
current is the holomorphic part of the energy-momentum tensor, the second are the super
currents of spin 3/2 and the third is the generator of an affine u(1) symmetry. Its global
part is called R-symmetry and rotates the supercharges clockwise or anti-clockwise. By
bosonization, the u(1) current can be viewed as:

J = z'\/gang (2.2.1)

where ¢ is a free scalar field. Bosonization in this context is the property that, given a CFT
whose symmetry algebra contains affine u(1), allows one to split it as the quotient by the
u(1) CFT obtained via the Sugawara construction, plus the u(1) CFT. The latter is unique,
because there is a unique unitary irreducible representation of the affine u(1) algebra and
it is equal to the free boson. This free boson induces a continuous one-parameter group of
inner automorphisms of the NV = 2 algebra and contains a subgroup whose generator:

exchanges the Ramond and Neveau-Schwarz algebras, thus allowing us in particular to
recover the representation theory of one from the other. We now consider the unitary
highest weight representations of the N.S algebra. The starting point for the classification
of these is to isolate a minimal set of generators of the NS algebra as a Lie algebra. It is
easy to see that one such set is:

{J—la th/y Gil/z, JOa L07 Gl_/27 GT/Q? Jl}

where the Cartan elements Jy, Ly separate the creation operators on the left from the
annihilation operators on the right. A highest weight state |¢) is then an eigenstate of
(Lo, Jo) with eigenvalues (h, ¢), that is annihilated by {G1—/2> GT/Q, J1}. The simplest such
state is the sl(2, C) invariant vacuum |0) g [} which consequently must also be annihilated
by Gi’l /2 and G, ,. Between a general highest weight state and the vacuum we see however
that there are two special choices, a chiral highest weight state:

Gt1/2|¢>c =0
and an anti-chiral highest weight state:
G:1/2|¢>a = 0.

2We add the superfluous label indicating that it is in the V.S sector, to distinguish it from the state |0)
that we will define later on.
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Accordingly, there are chiral and antichiral primary fields ¢. and ¢,. From the point of view
of the Ramond sector they both correspond to the so called massless BPS representations,
the difference being that from the chiral ring one flows with U,/ and from the antichiral
with U_; 5. We will restrict our attention throughout to the chiral representations. These
in particular satisfy:

h=3. (2.2.3)

We will see shortly that, from this condition and unitarity, it follows that the set of chiral
primary fields closes in a graded-commutative ring. Unitarity, in particular, imposes that
for a general eigenstate of (Lo, qo), h > ¢/2, thus distinguishing the chiral highest weight
states as the ones saturating the bound. Then the product of two chiral primaries

GG w) = D (e — W) HIy(e)

has only regular terms on the right hand side and the only surviving term in the limit
z — w is again a chiral primary. Hence we obtain the so called chiral ring. The second
constraint on chiral primary fields is:

h <

[=2] ¢

This constraint together with the assumption of a non-degenerate vacuum ensures that the
chiral ring is finite dimensional. We have thus found within any left (right) N = 2 sector
of an N = (2,2) CFT, a candidate for the definition of a closed topological field theory.
We are still missing a very important ingredient however, namely a non-degenerate trace.
Including the right-moving sector we then have four candidate rings: the left-chiral and
right-chiral ring denoted (¢, c) as well as the the (a,c), (¢,a) and (a,a) ring. Clearly, the
(¢,c) and (a, a) rings as well as the (¢, a) and (a, ¢) rings are CPT conjugates of each-other,
while the remaining pairs of rings are related by mirror symmetry, which we will not discuss
in this work.

2.3 The general Landau Ginzburg model

In this subsection we review the basics of the general Landau Ginzburg model (see [46]
for an extensive review). We will analyze the minimal constraints for this to flow to an
N = (2,2) CFT. This class of models will serve as our working example throughout. In
particular we will often specialize on non-linear sigma models and affine Landau Ginzburg
models. For our purposes, the former will serve as physical/geometric motivation for the
latter on which we will concentrate in chapter [5

We introduce holomorphic coordinates (z,07,07), on N = (2,2) Minkowski space
M2 These provide charts for a super-Riemann surface 3(>?). Then the models we
consider are built from a vector ® of spinless chiral superfields:

D ol =D o =0,
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where DT, D' are respectively left-moving and right-moving left-invariant vectorfields
w.r.t. translations in % and §+, dual to the corresponding right-invariant vectorfields,
namely the supercharges Q1 and @+. In the models of interest, the component fields of ®
are interpreted as maps from X to a Riemannian manifold M and their super-partners:
X e O™, M)
Y eT(S, X TMY ® S
Y e, X TMYY ® S
XX TM" ® S (2.3.1)
XET®, X' TM" @ S
Fel(L, X'TMY ® S®S)

)
)
)
)

where S and S are the left and right Weyl spinor bundles. The two models of interest arise
as special cases of the general Landau Ginzburg model:

S:SD+SF:/

2(2,2)

d*zd'0K (P, @) + / d*z (d*0-W (@) + d*0T W (®))
»(2,2)

where ® is the anti-chiral, hermitian conjugate to ®, W and K for now are arbitrary

functions and, in particular, K is viewed as a Kéhler potential due to the symmetry of the

theory under transformations K (®, ®) — K (®, ®)+ f(®)+ f(®) thus defining the manifold

M locally as a Kahler manifold. The nonlinear sigma model is recovered by setting W = 0,

while the affine Landau Ginzburg model by setting M to affine space.

We will continue with the analysis of the general Landau Ginzburg model. So far,
by construction we have a rigid N = (2,2) SUSY theory. In fact, it is supersymmetric
provided X is flat, otherwise supersymmetry is spoiled by the absence of a covariantly
constant spinor. For compact Riemann surfaces this requires genus g = 1. Furthermore,
a necessary condition for superconformal invariance is the global R- symmetry, which in a
fully fledged SCFT would correspond to the currents J and J. We distinguish between the
vector U(1)y and axial U(1),4 R-symmetries generated by J + J and J — J respectively.
One adds this ingredient by assigning charges 1 to #* w.r.t. the left-moving R-symmetry,
and similarly for the barred coordinates, and assigning some a priori arbitrary vector and
axial R-charges ¢!, and ¢4 to ®'. Clearly U(1)4 and U(1)y are both symmetries of Sp,
namely Sp has zero R—Chargesﬂ As for Sg one can realize U(1) 4 by assigning zero charges
to the chiral superfields, while for the U(1)y symmetry we see that e.g. d?0~ has charge
—2. Hence W must have charge 2, namely it must be a quasi-homogeneous function of ¢
of degree 2: 4

WAV ®Y) = N2 W (D).
For the R-symmetry to be preserved also at the quantum level, the path-integral measure
has to be invariant. Thus we resort to the field content (2.3.1). Clearly the U(1)y sym-
metry is preserved, while the U(1)4 symmetry is generically anomalous due to a generical

3 In fact there is a subtlety concerning the four-Fermi term, which is viewed as a an additional pertur-
bation away from the large volume limit.
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discrepancy in the number of left-Weyl and right-Weyl zero-modes. This discrepancy is
the index of the Dirac operator and is determined via the Atiyah-Singer index theorem to
be:

k= dimc(M)(2g — 2) + 2/ e (TEOM). (2.3.2)

X(%)

Thus we observe that this discrepancy depends on the topology of M, of X and of X,
and that for these fixed, the U(1)4 symmetry is broken to Z;. Having analyzed the R-
symmetry, we will say a few words about scaling symmetry, which together with rotational
invariance, is often sufficient to ensure full conformal invariance in two dimensions (see
e.g. [23]). What is rescaled is the intrinsic metric on the Riemann surface h — A\?h. For

the action to remain a scalar under this transformation, z — Az and 6% — VA 6% and
similarly for the complex conjugates. If we restrict attention to the D-term, and calculate
the beta function (g) for the Kéhler metric at one-loop, in other words in the large-volume
limit, we will find 5(g) = 0, hence scale invariance, if the Ricci tensor R, vanishes. In
fact, one can obtain an exact result to all orders that for genus g =1 is

Cl(M) = 0.

This reveals an intimate relationship between axial R-symmetry and scaling symmetry that
can be understood as a consequence of supersymmetry [[] If, instead, we restrict attention
to the F-term, we see that the measure scales like A while W is a priori unchanged. This fact
indicates that in the renormalization group flow of the Landau Ginzburg theory each field
should acquire a scaling dimension. This in turn would affect the D-term. At this point
one uses the F-term non-renormalization theorem, that says that the F-term does not get
renormalized up to wave-function renormalization, and in particular, any renormalization
of the D-term does not affect the F-term [38] [84]. In conclusion, Landau Ginzburg models
are not by themselves potential conformal field theories, but it is believed that the IR-
fixed point of such a theory under RG flow is one (here we only give the earlier references
[47, 511, 168, 95]).

Now, let us analyze what specific properties W should have in order to absorb the
factor of X\ in the measure after having given weights to the chiral fields. Again we obtain
quasi-homogeneity:

AV (DY) = W(A2iD,).

This can be achieved, as we saw earlier, by setting the total left-right dimension (possible
conformal weight) of the chiral primary fields to half of their U(1)y charge. What this
relation tells us, is that given , the ®"’s are good candidate generators for the (c, ¢)
ring, while the same argument shows that ® is related to the (a,a) ring. In the next
section we will explain how to reduce the general Landau-Ginzburg theory to a TQFT
whose space of states V' (as we denoted it in is the space of (¢, ¢) highest weight states
of the hypothetical IR fixed point of the Landau Ginzburg theory. This procedure goes by
the name of B-type topological twist.

4A proper understanding of this fact requires analysis of the A-model, which we will not pursue (see
e.g. [46]).
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2.4 B-type topological twist

The aim is twofold: given a N = (2,2) conformal field theory with Hilbert-space H, to
express the space of (¢, ¢) primary states as the cohomology of an operator @) on H, and
to construct a topological field theory such that

Z(St) =V = Hy(H).

We restrict attention to the left-moving sector. We observed that |¢). is annihilated by
two nilpotent operators Gfl /2 and G1—/27 that are adjoints of each other. Therefore H has

a Hodge decomposition:
H=Harm® Gfl/zH &G H.

The space of chiral highest weight states is identified with Harm, that is the space of
Harmonic states with laplacian A = [GJ_F1 /2,G1’/2] = 2Ly — Jy. We can view these as

representatives of the cohomology of @ = G¥, Jo- Then, including the right-moving

sector, we obtain that the space of (c,c) states is isomorphic to the cohomology Hg(H),
where:

Q=0Qr+Qr

and Qr = @J_rl /2- To build a topological field theory out of this data, one requires that the
energy-momentum tensor thereof be ()-exact, so that correlation functions in that theory
are independent of the two-dimensional metric. The obvious choice is T', with left-moving
modes: . ( D

~ -~ n -+

Ln:§[Q,G1/2+n]:Ln— 5
The modes of the new energy-momentum tensor form a Virasoro algebra with vanishing
central charge. The spin of () (and conformal weight) vanishes also, i.e. it becomes a scalar
making it a well defined symmetry generator also on curved Riemann surfaces. Given a
Riemann surface ¥ one chooses an arbitrary generator v € H;(2), then:

In.

Q- f(dzcﬁ +asah.

It is straightforward to check, by differentiating w.r.t. the world sheet metric, that the
map L, — L, induces the following map on correlation functions:

(Vs ={ exp (_% /E AN (Jdz — 7d2))>z,cFT (24.1)

where A is the spin connection. These define the twisted theory.

It is important to stress that the exponential in together with a possible insertion
are path ordered, so as to correspond to the simple introduction of the local classical
coupling of spin to the spin connection in the path-integral formulation. In order to
understand the relationship between the physical and topological correlation functions,
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we shall consider ¥ = S, use bosonization (2.2.1)) and integrate by parts. We obtain that
the inserted operator equals:

1 Jc
—=4/= s ¢pdz Ndz ) .
exp( 2\/;/92Rzz¢ z A z)

Now we can use the fact that the topological correlation functions are independent of the
world sheet metric and judiciously choose a one-parameter family, with parameter ¢, of
metrics that give S? the shape of a cylinder capped off by two hemispheres, so that in the
limit ¢ — oo the Ricci tensor peaks at the two ends to two delta functions while vanishing
elsewhere. Let us consider inserting a chiral primary field ¢, in the center of the left
hemisphere at ey, a second one ¢; on the cylinder at p and a third ¢; at eg. Then their
topological correlator is given by:

lim <¢i<eR>exp (—5 §<¢>D1z_1)ethwj(p)eiH(”“exp <—§ E<¢>Df_1)¢k<%>> 7

t 3 g2
(2.4.2)
where by (¢), we mean the average value of ¢ on the vanishing disk on the left and
similarly for the disk on the right. We find the spectral flow operator acting on
incoming and outcoming chiral primary states, thus transforming them to Ramond ground
states |i) and |j). This is no surprise, since as it was true for the super-charge @, the map

Lo — Lg transforms NS boundary conditions to R boundary conditions. In more compact
notation, therefore, we have that the topological three point function is given by:

(Prddi) sz = (k|@;li) sz =: Cijn

and is obviously independent of the points of insertion. This can either be viewed in the
CFT context as a consequence of the SL(2,C) invariance of the vacuum, or more simply
due to topological invariance of the twisted theory. In order to see that the twisted theory
is indeed a topological field theory as defined in section [2.1, we must assume that the
topological metric:
mij := (jli)s2
is non-degenerate. Then we have all the other ingredients. For example, the unit is given
by:
e:Co>1+ |0> = U1/2|0>N,5'
the trace is given by:
0:V > |i) — (0]i)s2

and the multiplication is given by:

pVavslie|j) — CEk),

J

where C’fj are the structure constants of the (c,c) ring. In order to assert that the above
data defines a 2d closed TQFT, we only need to check that 7 = 6 o . Indeed:

nij = (¢;0i) = Cfi{0]k) s>
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With the same effort we obtain:

CZ = T]krcm'j.
The above however does not suffice to assert that the topological correlation functions on
higher genus Riemann-surfaces can be obtained from the genus zero ones via the TQFT

prescription. Showing this is tantamount to showing that the correlation functions of the

twisted theory enjoy a certain factorization property. It can be shown in particular that
(see e.g. [24])

(0i9)s, = (@ilr)s,n"*(s|d5)=,

for every genus g > 1. The way one does this is by choosing a metric on ¥, that makes the
tube linking ¥; and 3, infinitely long so that the time-evolution operator along the tube
becomes the projector onto the Ramond ground states. Lastly, the correlation functions
on the torus satisfy:

<¢i¢j>T2 = (_1)‘l|(|k|+|2|+|j|)nlk<k|¢l|T>SQ77TS<S|¢]|l>52
= (_1)\l|(|k|+|i|+|j|)cfrcj7jl'

This is again obtained by making two strands of the torus infinitely long.

2.5 TQFT data of the B-type models

We now go back to the LG-model and we ask under what conditions we can B-twist it. The
previous discussion regarded the twisting of N = 2 conformal field theories. In this case
we don’t have a conformal field theory, but we notice that in order to define the twisting,
in the end (2.4.1), we only needed Jdz — JdZ, that is, the Noether current of U(1)4. That
is we need U(1)4 to be a symmetry of the theory on flat world-sheets. Therefore, while M
has to have ¢;(M) = 0, in principle W is not required to be quasi-homogeneous, as that
is required by U(1)y invariance. This doesn’t mean however that the resulting theory will
be topological anyway, in particular the resulting space V' could be infinite-dimensional.

The spin content with respect to Ly — Ly of the twisted LG theory, defined by (2.3.1)), is
now changed compared to the untwisted theory. Comparing with (2.3.1]), now:

X eC™(X,M)
Y e I(Z, X" TMY @ (TH%)Y)
e T(8, X TM @ (T™'%)Y) (2.5.1)
x € I'(3, X*TM"™)
X € I(3, X*TM*h).
Therefore twisting in this respect really just amounts to twisting the bundles by appro-

priate spin-bundles. We can however still view them as sections of the previous bundles
introducing the coupling to the spin connection in the correlator. If we do that we see
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that we inherit the U(1)4 anomaly for curved Riemann surfaces, as the additional piece
in the action is symmetrical. We shall now sketch how to obtain the closed topological
field theory associated to the Landau Ginzburg model. First of all we observe that we can
choose representatives of chiral primary fields that depend only on the spinless fields X, 9
and x. The other fields give Q-exact contributions, because on them the action of [Ly, -]
is invertible. Therefore, since Ly is [@, -] exact, then so will be the space of non spinless
fields. It is convenient to express ¥ and Y in terms of

" =xX+X,  6i=gaX' —=X)
Therefore a chiral primary field is of the form:
Op = b (X)'r]gl . ~ngm9i1 b
The action of the B-supercharge defined by § = €[@, -] is given by:
§5X'=0, dX'=en, 60, =—eW,
S0 = 20X, S = —2iedX".
By fermionic localization, the path-integral localizes on the fixed points of 9. One localizes

in two steps (the original reference is [94], however we follow [41]). First one concentrates

on the equation: '
dX'=0

whose solutions are constant maps. At this level we can draw a one to one correspon-
dence between the operators O, and geometrical objects on M. We have the following
identification: B B

n' < dX',  6; < 0.

Therefore, after the first localization we have the following complex computing V':
(T(M, A THOM @ A(TODM)Y), 0+ [W,]), (2.5.2)

where [-,:] is the extension of the Schouten-Nijenhius bracket to polyvectorfield-valued
differential forms. Given two polyvectorfields of the form ¢ = €' A -~ AE™ and ¢ =
Cl /\ e /\ Cn:

6,0 =D (-1)™E I A AEAAETAC A AT A A

While for two polyvectorfield-valued differential forms v, (3:

€, ¢B) = (=)l (T . (2.5.3)

The bracket satisfies the graded Jacobi-identity, therefore it endows the complex ([2.5.2))
with the structure of a graded Lie-algebra. In fact, including the differential, the complex
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becomes a differential graded Lie-algebra, which simply means that the differential satisfies
the Jacobi-identity w.r.t. [-,:]. We will describe the importance of this structure in the
following section when we consider spaces of topological field theories. For our immediate
purposes however we notice that we can already extract the candidate (c,c) ring from
. Namely, it is the cup product A descended to cohomology.

Now we proceed to the second step of localization. In particular we will describe how the
path-integral localizes on the sphere, allowing us to extract the desired TQFT data. After
the first step, the path-integral already reduced the following integral over zero-modes:

Y R —
(O4)g2 = N/dand@ exp <—Z(5(g”8;-W9i)> Oa,

where A is the surface area of S? and N is an irrelevant normalization factol’l As de-
sired, the integral does not depend on the world sheet metric thanks to the exactness of
the exponent. The integration of the fermonic fields just extracts the highest degree in
polyvectorfields and differential forms and in more geometrical notation one obtains:

(o) g2 :N/ QA (Q\/exp (—%5(9”@- A@;W) Aa) :
M

where €2 is a holomorphic top-form. At this point we distinguish in particular the case
W = 0. For this, clearly localization on the zero-modes suffices.

In the case W # 0 it is assumed that W has isolated critical points and that the offshell-
complex (2.5.2)) simplifies. In particular the cohomology w.r.t. @ vanishes. Then the above
integral is evaluated in the IR-limit A — oco. The exponent is made of two terms: one
proportional to the Hessian H;; = D;0;W of W (where D denotes the Levi-Civita covariant
derivative) and one proportional to |0W | which, as predicted by fermionic localization,
localizes the path integral and fields onto the critical locus of W. At this point one assumes
that W has non-degenerate critical points, an assumption we will later be able to discard.
One can then use steepest descent: expand |OW]? up to second order around the critical
locus and evaluate the gaussian integral. One thus expects a sum over the critical locus
with an integral inversely proportional to the determinant of H;; or more precisely to
the product of the holomorphic and anti-holomorphic hessian arising in the expansion of
|OW|%. In fact, the denominator will be proportional to a power of A and one picks the
highest power in the hessian coming from the first term in the exponent to cancel the A
dependence. This leads to the fact that the only non-vanishing correlator is for a = f a
function on M and:

flseoc Y |detH T (2.5.4)
peCritW i
The above is well defined thanks to the assumption that W has non-degenerate critical
points. To relax this assumption one writes in the more invariant form:
f Q
WK/QWA N O

®Notice the absence of 1) and 1. This is due to the fact that on S? there are no such zero-modes other
than zero.
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where I is a contour encircling the critical points. Now it is possible to relax the assumption
of non-degeneracy by viewing a potential with degenerate critical points as a deformation
of a potential with non-degenerate ones such that the asymptotic behavior is unperturbed
so that integrating over a large enough contour leaves the result unchanged.

We will restrict attention to the case of isolated critical points. Such is the case for a
quasi-homogeneous W. We refer to [37] for the non-degeneracy of the above trace on the
cohomology of (2.5.2)). It is worth remarking that the residue formula, indicates that the
LG model with isolated critical point only “sees” the geometry of the Calabi-Yau in the
immediate neighborhood of the critical point. This can be viewed as a consequence of the
F-term non-renormalization theorem.

Coming back to the case W = 0, the trace is non-degenerate if ¢;(M) = 0, that is if
M is a Calabi-Yau manifold. This follows from the fact that for Calabi-Yau manifolds the
trace comes from the analogue of Poincaré duality on Dolbeaux cohomology, that is Serre
duality, which asserts that there is a non-degenerate pairing:

HY(E)® Hy "(EY @ Ky) — C

for a holomorphic bundle E and Kj; denotes the canonical bundle. In our case F =
A*TEOIM and we would like EY ® Ky to be replaced with E. Indeed ¢ (M) = 0 iff
Kj; = C, which implies the existence of a nowhere vanishing holomorphic top form. Con-
tracting with it, in turn, gives an isomorphism between H?(E) and HP(EY). Indeed via
this procedure one recovers the TQFT pairing from the Serre pairing.

We now concentrate on the special case of affine LG models with W having an isolated
critical point. The vanishing of Dolbeaux cohomology allows to reduce the complex of zero
modes to a smaller one. More precisely the cohomology of d is all concentrated in degree
zero, yielding holomorphic polyvectorfields. Given that, one views as a double
complex and begins computing its cohomology via the spectral sequence whose first page
is Hz. One finds that, because of the collapse of Hz just explained, the spectral sequence
degenerate at the second page. Therefore is reduced to the simpler complex:

(DX, AT X), (W, ]) . (2.5.5)

The fact that W has an isolated singularity is equivalent ([37]) to the condition that
oW, ..., 0,W form a reqular sequence. In general given a commutative ring R, a sequence
of elements rq,...,7, € R is regular if r; is a non-zero divisor in R/(ry,---,7;-1). In
our case the ordering of the sequence doesn’t matter. The intuitive way of understanding
this definition is that the spaces defined by 0,/ = 0 cut each other transversally, thus
minimizing the dimension of their intersection down to an isolated point.

As a consequence of this property, in fact equivalently, the cohomology of is
concentrated in degree zero, and is thus given by the Jacobian ring:

Clzt, ..., 2"
@, oW’

We now discuss how to build moduli spaces of TQFT’s arising from N =2 CFT’s.

Jac(W) :=
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2.6 Spaces of TQFT’s

Here we are interested in investigating the general structure of spaces of TQFT’s arising
from twisted N = (2,2) CFT’s. One constructs these spaces by starting from one point on
them, that is a TQFT, and deforming away from it in all possible directions. In order to
understand what this should mean, we recall that TQFT’s are the same as commutative
Frobenius algebras, and in this context V' = Hg(#H). In particular @) is a scalar, and
for example, for B-twisted theories it has U(1) charges (1,1). Deforming such theories
should involve somehow deforming H, () and the Frobenius structure such that along the
deformation we still obtain TQFTs. In practice, one keeps H fixed. We can understand
this as keeping the field content of a family of TQFT’s fixed at the starting point while
the action is perturbed. Moreover, if the U(1) charges are quantized, then the deformed
() must also have, say, charges (1,1) w.r.t. the starting theory. Therefore, in particular
in B-twisted theories, we look a priori for all possible scalar fields ® of charges (1, 1) such
that the following Maurer Cartan equation is fulfilled:

[Q+2,Q+ 2] =0 (2.6.1)

however we mod-out by trivial deformations that arise by a change of basis in H. That
is we mod out by Aut(#H). This is simply the finite as opposed to infinitesimal version, of
taking cohomology. We see however that in order to define (2.6.1) we have resorted to the
Lie-algebra structure on the space of vertex operators, which together with [@Q, -] becomes a
DGLA (differential-graded Lie algebra). In practice however one looks for a smaller DGLA
that has an isomorphic deformation problem. There is a precise perturbative notion of this,
and it leads to the concept of L., quasi-isomorphism. We will introduce and study this
structure in chapter [ In the case of LG-models one such smaller DGLA is (2.5.2). In
particular, in the B-model (W = 0), the chiral fields have zero U(1)y charge, therefore
del(X,TYX @ (TOVX)V) and (2.6.1)) becomes:

[dZ' A 05, @] + %[@, ®] = 0. (2.6.2)

In the case of the affine LG model, generically U(1)y invariance is lost, thus one de-
forms with, a priori, arbitrary elements of . If, however W is a quasi-homogeneous
polynomial, the chiral fields are assigned quantized charges, and one deforms again with
appropriate ones. In practice one solves perturbatively. The assumption is that the
family of TQFT’s connected to a given starting point is smooth, and as such the tangent
space at the starting point has the same dimension as the space of TQFT’s itself. This
notion of dimension of the moduli space is called virtual dimension. This assumption is in
fact valid for closed TQFT’s, in fact as we will sketch later, defining deformations from a
CFT point of view, one obtains a smooth moduli space. Then every deformation is a lift
of an infinitesimal deformation. If we have a one-parameter family of such deformations
®(t), its derivative at ¢ = 0 is a non-trivial element in Hg(#) with appropriate charges. In
the case of an affine LG model with isolated critical point, first order deformations trivially
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lift to all orders, because the Schouten-Nijenhius bracket of two functions trivially vanishes
(more on this in section . For the B-model, the lack of obstructions was proved in
[92, 93], see also [5].

From the C'F'T point of view, from a deformation ¢, one constructs an F-term deformation
by integrating the chiral primary field AW (¢) with ¢ as lowest component field. Explicitly
the other components of the superfield are given by the descendants ¢V and ¢, which
in the B-twisted case are:

o0 = (G2, dldz, ¢V =[G, ¢ldz
¢(2) = ¢(1,1) = [G:la [6:17 ¢]]dz A df (263)

Then:
/ B*2d*0~ AW (¢;) = / d?z2¢?
5'2

The fact that ¢ is @Q-closed then ensures that the integral above is ()-closed, or in other
words, that A® is indeed a chiral primary field. If one includes the descendant fields in the
space of observables, then one passes from TQFT to TCFT. One can thus view a single
TCFT as describing a space of TQFT’s.

The F-term perturbs the correlation functions of the TQFT as:

()= (- exp (ti/szdQH‘AW(CI>i) —l—c.c.)) = (- exp <ti/d22d29‘AW((I>i)>).

One can consider more general deformations by arbitrary chiral primaries. Then the modul:
t* correspond to a basis of the (c,c) ring and the complex conjugate (a,a) deformations
vanish, because they are (-exact. Notice that just as the corresponding chiral primaries,
the moduli are graded-commutative. However the ones corresponding to exactly marginal
deformations are commutative. One can now define the ¢-dependent three point functions
Cijk(t) out of which the t-dependent TQFT can be extracted. Using the invariance of
the Ramond vacuum (i.e. the Ward identities) under G_1, Gy, G; and their right-moving
counterparts, one arrives [24] at the following differential equations:

0iCir1 = 0,Cjk (2.6.4)
0iCoxr = Oimr = 0, (2.6.5)

where we have restricted ourselves to commutative moduli. Equation (2.6.4) implies the
existence of a function F(¢) such that:

Cijk(t) = 0:0;0,F (1),

while is the statement that the topological metric is flat in these so called special
coordinates t*. The above equations define the notion of a Frobenius Manifold, i.e. a flat
family of Frobenius algebras (see [28]). Clearly, the CF'T' definition of deformation is more
refined than that through the Maurer Cartan equation . While the latter is only
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concerned with deformations of (), the former also takes into account the deformation of
the remaining TQFT structure, namely the trace 8, and the multiplication p. However
given a deformation of ), we can immediately read off a deformation of . We will obtain
in particular the metric  written in non-flat coordinates. Similarly, the partial derivatives
will be replaced as:

where V; is the flat Levi-Civita connection of 1. Hence the problem of solving for flat
coordinates becomes the one of mapping to Riemann-normal coordinates. This procedure
is particularly simple for affine Landau Ginzburg models with an isolated singularity. As

discussed previously, there one can choose a one parameter family of potentials W (z,t) of
the form:

W(x, 1) = W(z)+ Z ()

where ¢; is an arbitrary basis of Jac(WW). In the next section we review the structure
of topological anti-topological fusion as a preliminary to chapter |3| where in particular
we will show how this structure restricted to the exactly marginal sector emerges from
quantization.

2.7 Topological anti-topological fusion

As we described in the previous section, the geometry of the moduli space of TQFT’s
arising from N = (2,2) CFT’s is that of a Frobenius manifold. Crucial to our investigation
in chapter 3] is the geometry of the combined (¢, c) and (a,a) moduli-spaces. We shall
thus briefly review the results of [I5] on the more general combined deformation space
that includes all chiral primary fields as opposed to only the marginal ones. In the end,
however, we will restrict attention only to the latter. As we discussed in section[2.2] given a
N = (2,2) CFT, Ramond ground states can be viewed as either chiral primary states flowed
by Uiz or as antichiral primary states flowed by U_;/,. We also observed however in the
case of the B-type twist, that the topological twist has the same effect as spectral flow at
the topological level, but its implementation can be generalized to non conformal theories,
as long as an appropriate global R-symmetry is present. Following the computation in
(2.4.2), we observe that in general, the analogue of Ramond ground states is obtained by
inserting a chiral primary field at the tip of a hemisphere of the infinitely stretched sphere
and by including the coupling of the (in the case of the B-twist) axial current to the spin
connection. In this way one can obtain a basis of ground state, say, |i). One could also
insert (a,a) fields instead, and couple to the axial current with the opposite sign. In this
way one obtains a basis that we shall denote by [i), where ¢; and ¢, are intended as CPT
conjugates of each other. These two bases are then related by a CPT matrix. Using the
convention of [I5]

Gl = Gilpe.
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CPT is an involution and, since it acts on (j| by the complex conjugate M*:
MM* =1.
As a consequence, one obtains a hermitian metric:
<}|Z> =95 = Th'kM%-

At this point one is interested in the dependence of 7, g and C' and their complex conjugates
on (c,c) and (a,a) parameters ' and ' respectively, i.e. one perturbs by inserting the F
term deformation and its conjugate introduced in the previous section. To study this,
one introduces a connection A subject to the requirement that its associated covariant
derivative D maps states |i) to states orthogonal to all ground states, in the same way
as one proceeds in standard quantum mechanics perturbation theory. The path-integral
computation on the infinitely extended hemispheres shows that A is in fact in the gauge:

Ai=g 09, A;=0.

The vanishing of the term on the right is a consequence of the fact that topological (i.e.
purely (c,c)) correlators are independent of . The result of [I5] is that these structures
are related by the so called tt*-equations, which can be understood as the requirement that
the following two connections:

@a =D+ aC

~

Vo:=D+a'C

are flat for arbitrary value of the parameter «. These equations extend the flatness of the
purely topological sector, for which note that the combined equations (2.6.4] are
equivalent to the flatness of:

Vo=V +al

for arbitrary a. The connection V, is called the Gauss-Manin connection, and, just as V
(or V,), allows to define parallel transported ground states and thus in principle solves
the deformation problem. At this point, from this very general construction for arbitrary
N = 2 theories, one can restrict oneself to the case of TCFT’s and in particular to the
marginal sector, expecting to recover a metric on half (since we B-twisted, deformation
by the remaining twisted F-terms are trivial) of the moduli space of N = (2,2) CFT’s.
Thus one expects agreement with the general definition of a metric on spaces of 2d QFT’s
of [L06]. We will be solely interested in the case of N = (2,2) CFT’s with central charge
¢ =9, which in the case of sigma models corresponds to Calabi-Yau’s of complex dimension
3. In that case, the axial anomaly in the trace 6 is —6 (see (2.3.2)). Therefore, while the
three point function of three marginal chiral primaries with charges (1, 1) precisely cancels
the anomaly and is thus non-zero, restricted to 7, 7 marginal:

Coij = nij = 0.
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Thus the only geometrical objects remaining on the sub-bundle of marginal chiral and
anti-chiral primaries are:

95, Clji-

Again for reasons of axial R-symmetry selection rules:
9oi = 0.

Using the above equations and the fact that multiplying with marginal chirals raises charge
by one unit, one shows that the restricted tt*-equations are equivalent to the statement
that the data: g

7
GU = g—ojﬁ, Cijk
and their conjugates define a projective special Kdahler manifold and indeed Gﬁ coincides
with the metric in [I06]. We defer the precise definition of projective special Kéhler mani-
fold to later sections, as we are going to rediscover it within the structure of quantization.
In the next section we will briefly recall the content of the holomorphic anomaly equation
generalizing the tt*-equations to higher genus (quantum) Riemann surfaces.

2.8 Quantum preliminaries and Holomorphic anomaly

First of all, from the string theoretical perspective, g and Cjj; are classical objects, as
they describe correlators on genus zero surfaces, and spaces of CF'T’s on genus zero surfaces
in string theory replace the notion of moduli spaces of solutions to Einstein’s equations,
which in turn describe classical gravity. The recipe for quantum gravity in string theory
is then to do string theory on higher genus surfaces. This recipe generalizes the concept
that in perturbative quantization a (formal) expansion over Planck’s constant is a (formal)
expansion over the number of loops in the Feynman diagrams arising in path-integral
quantization. The application of this method to the manifold of marginal chiral primaries
culminates with the Holomorphic anomaly equation of [6] of which we will describe some
salient features in a moment.

First it is worth mentioning the simplest property of special Kahler manifolds which
indicates their “predisposition” to be quantized in the non-stringy sense. The simplest
property of projective special Kahler manifolds is:

Gy = —9;0;10g(0]0).

In other words:
@O) —e K

where K is the Kéhler potential of G. That is the metric is a representative of the the
first Chern class of a hermitian line-bundle with hermitian form (0]0). This bundle is by
definition, the vacuum bundle £. In other words the manifold is a Hodge manifold, and
by the Kodaira embedding theorem, if compact, can be viewed as a projective variety.
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Compactness is not important for our purposes, while as we will see in the future section,
quantization itself can be viewed as the study of maps into a direct limit of projective
spaces. Moreover, the way we will understand the above structure is as the first order
in the expansion of the quantization map into infinite projective space. We shall shortly
recall the main steps for the holomorphic anomaly equation. We start with explaining how
to couple a topological conformal field theory to gravity. For this we will need to know the
dimension of the complex structure moduli space of Riemann surfaces of arbitrary genus.

2.8.1 Preliminaries on M,

Just as for the case of Calabi-Yau manifolds discussed above, also here deformations of
complex structures are solutions to @ and the tangent space to M, at a given point,
that is a Riemann surface ¥, is H3(3y, T 0%,) with dimension denoted as h!(%,, T10%,).
The latter is then the dimension of the tangent space at X, of the moduli space of complex
structures M. This virtual dimension of M, can be computed via the Riemann-Roch
theorem. More precisely this gives the Euler characteristic of TH%,:

(2, THE,) — hY(2,, THO%,) = 3¢ — 3.

The second term on the left-hand side is the space of global sections of T'%,. Thus
holomorphic vector-fields in h°(X,, TH°%,) are precisely the infinitesimal generators of
continuous automorphisms of ¥,. Only ¥, and X; have continuous automorphisms. The
former are the Mobius transformations forming a three dimensional Lie-group, while the
latter is composed of one generator describing holomorphic translations along the (abelian)
elliptic curve.

An object with a continuous family of automorphisms is termed unstable. In this case
the unstable surfaces are therefore the ones with genus 0 and 1. Stabilizing these surfaces
means “freezing” the continuous automorphisms. In the case of the sphere, this requires the
introduction of three marked points, while in the case of the elliptic curve, the introduction
of one. One then has well defined moduli spaces M, ,, of genus g Riemann surfaces with
n marked points, where n > 0 for ¢ > 2 whilen > 1 for g =1 and n > 3 for g = 0.

2.8.2 Coupling to gravity

At fixed topological surface ¥, passing from conformal field theory to string theory means
integrating over two dimensional metrics while gauging the group Dif f x Weyl of diffeo-
morphisms times Weyl rescalings of the metric. At first sight, if we start from a topological
conformal field theory already, rather than from a general CFT, it seems almost superflu-
ous to integrate over metrics to then gauge away diffeomorphisms etc.. However even in
the simplest case of the “sigma model with target a point”, one obtains a very interest-
ing result, namely two dimensional gravity itself, which has as action only the topological
Gauss-Bonnet term. The complexity in that case all resides in the non-trivial topology
of the moduli-space of metrics (by Diff x Weyl). In particular the observables in that
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theory are cohomology classes of that space (see e.g. [25] 54 101]). Now, in formulating
the coupling to gravity of a general conformal field theory, one can use the BRST tech-
nique, whereby one first fixes a gauge for the metric w.r.t. Dif f, leaving the integral over
the moduli space and residual gauge freedom corresponding to conformal transformations
combined with Weyl rescalings. At least on the sphere, one can completely fix the metric
by diffeomorphisms up to a positive scalar function which can be viewed as the exponential
of a so called Liouwille field. Whether or not one can gauge away Weyl rescalings depends
on whether one can gauge the residual conformal transformations and this happens if the
central charge of the matter theory is 26. In that case, if we denote by g the Virasoro
algebra with generators X; and structure constants Z’; (for ease of notation) of the matter
theory, the BRST charge:
Qprsr = ¢ X; + flic'dby,

squares to zero, where {c¢',b;} = 5} are the Ghost fields who form a conformal field theory
with energy-momentum tensor twice the second term on the right-hand side above, that
has indeed central charge —26. All of the above to say, that this procedure is not good in
our case of a topological conformal field theory, because there the central charge vanishes.
On the other hand this is what made it topological in the first place thus suggesting an
easier way. This easier way adopted in e.g. [25] indeed exists and is motivated by the fact
that in the case of the “CFT of a point”, one could have used a different complex than the
BRST complex to obtain the same result. This is because, since in that case the theory is
topological, one expects the observables to encode only topological information of the space
one is integrating over, and thus one could use the complex computing the cohomology of
that space. Since the space is the quotient by a group, it should be a complex computing
equivariant cohomology. Thus instead of the BRST complex, ultimately we should use a
complex that computes the equivariant cohomology of the matter TCFT Hilbertspace H
by the Virasoro algebra. There are many such complexes as the Weil-complex or Cartan-
complex etc..., however as pointed out in [I7] under further suggestion, one such complex
is given by the BRST complex again, but of the supersymmetrized version of g:

0@ gll],

where [1] denotes parity shift. Therefore, to the b, ¢ system one adds the ;v system.
Together these form a TCFT, and in particular the total central charge is zero. Therefore
one can trivially gauge away the Liouville field, and in addition to the bosonic moduli of
2-d metrics, one also has the supersymmetric partners. Thus the path integral over a genus
g > 2 surface, in particular, takes the form:

39—3 39—3

J = / H dmzdmj H dmldﬁj <eXp(_Smatter+Ghosts(ma m))>2

i=1 =1

The integral over fermonic moduli is the highest derivative with respect to them, and in
particular, in the same way as:

0

om?

S = <T7 Mi)



2.8 Quantum preliminaries and Holomorphic anomaly 27

where T' is the holomorphic part of the energy momentum tensor,

0

om’

where G is again a spin 2 super partner of 7', namely the one for which 7' = 1/2[Q, G| and

depends on the chosen twist. In the case of the B-twist the latter is G~ and G for the
complex conjugates. The objects u; we have introduced above denote basis elements of
H%(E,T(LO)E) commonly called Beltrami differentials and ( -, - ) is the obvious pairing.
Differentiating 6g — 6 times one gets the desired formula. However, one should notice
that GG is not a supercurrent of the matter TCF'T alone, but the sum of that and the one
from the b, ¢, 3, system. However, in the special case of ¢ quer = 9, the axial anomaly
in ( - )y is precisely cancelled by the measure over fermionic moduli and thus one can
safely consider the part of Z that depends only on the matter degrees of freedom. This is
also the only case we will really be interested in, in the coming sections, as only in that
case is the combined (c,c), (a,a) moduli space a special Kéhler manifold. Apart from
chapter [3| where we discuss their quantization, the later sections will only be concerned
with genus-zero amplitudes even though coupled with open-strings. However we will sketch
the reduction in the general case. The coming section could be skipped at this point as it
only serves as reference for part two.

2.8.3 Sl-equivariant cohomology: the closed string origin of
cyclic cohomology/homology

If not only for the sake of completeness, we add this part because it makes contact with
investigations in section [5.3.7, which in particular lead to the definition and construction of
the “cyclic” residue formula. This section serves to explain how this formula corresponds
to the topological string theory extension of the TQFT trace #. We suggest to first read
part two and return to this section when referenced.

Let us review how the “matter + ghost” system collapses to a much simpler “matter
+ 1 parameter”. For this we go back to the BRST complex of g @ g[l]. We have not
yet specified what the complex is. BRST can mean various things especially in infinite
dimensions. Let us call the total BRST charge of the TCFT “matter + ghost” Qnr =
Qmatter + Qghost = Q + Qgrost- On the other hand @y is exactly Qprsr for g @ g[1]. This
settled, however, the BRST complex turns out not to be the cohomology of H ® Hgnosts,
but of ((H ® Hghosts)basic; Which is the restriction of the former on elements annihilated by
(Giot — Gior)o and Lo — Ly. The reason for this extra piece of complexity is discussed in [77]
and arises in analyzing the obstruction to defining a globally well-defined measure on the
moduli space of punctured surfaces. As explained in [77] and again with renewed clarity
in [27] (see also [107] for string field theory perspective), in defining this measure, one first
considers the insertion of a state ¢ on a Riemann surface ¥. To define this, one takes a
limit in time ¢ — oo. At finite ¢ the state is placed on a circle enclosing a disk of finite size
on Y, that has been removed. There one defines a local coordinate system (zp) around the
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center P of the removed disk, with corresponding (local) Virasoro algebra. One thus has
a bundle:
Pyn — My,

where M, ,, is the moduli space of Riemann surfaces of genus g with n-marked points,
while P, ,, is a refinement thereof taking into account all possible coordinate systems in the
vicinity of each separate insertion and then modded out by automorphisms of the Riemann
surface with boundary. To define a measure  on M,,,, one first defines a measure Q on
Py Taking the limit in ¢ should induce 2 as:

0= s5Q

where s is a section of the bundle just described. However such a measure is only well
defined provided the fields inserted at the punctures satisfy certain properties. Indeed the
desired s by itelf does not exist. Such an s corresponds to a continuously varying coordinate
system on Y, meaning that ¥ is parallelizable which is only true if ¢ = 1. Instead one has
to allow for the coordinate system, that is the section s, to be well defined up to a phase.
A phase of rotation of the deleted circles. In other words s is well defined if the phase
arbitrariness is absorbed by the field insertions. That is the fields should be rotational
invariant. More precisely one finds that they should be annihilated by Lo — Lo and also
Gy — Gy. Note that Ly — Ly is the generator of rotations, playing the role of Ly, the Lie
derivative w.r.t. the generator of rotations X, while Gy — G plays the role of tx and Q of
d. After a lengthy discussion, by analogy, we have thus recovered (H ® H)pasic- In [35] it
is shown that:

H((H & thosts)basica Q) = H(H(O)[Q]7 Q + Q(GO - 60))

where H(0) is the subspace of H annihilated by Ly — Ly, while  is a variable of degree
2. This degree arises because d is of tensor degree 2 higher than tx. That is, the right
hand side above, is the Cartan-model for S*-equivariant cohomology of H. The Q"’s are
represented by: .
Q" 27(70 — %) c1(Lp)

where Lp is the pull-back of the tangent space at the marked point P to M,,. So, to
summarize our rough sketch, in arbitrary dimension, coupling to topological gravity adds
to the (¢, ¢) ring say, also the above contact terms, which are the observables of topological
gravity alone. Moreover we also see that apart from the case ¢ = 9, in the more general
case topological string theory is ineluctably intertwined with the contact terms because of
axial anomaly selection rules.

2.8.4 Holomorphic anomaly

We come back to the case of ¢ = 9 TCFT’s and consider the stringy prescription for
the quantization of the combined (c¢,c¢) and (a,a) TCFT moduli space. We will only
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illustrate the most important steps, as part of the goal of this work is precisely to give a
complete derivation of the same result from the point of view of a non-stringy and more
non-perturbative quantization approach.

The equation describing the quantum nature of 7'ST on higher genus surfaces, is the
holomorphic anomaly equation of [6]. This expresses the dependence of topological string
theory amplitudes, say of (¢, ¢) fields, on (a,a) moduli for genus g > 1 surfaces. We start
with genus g > 2 and compute in the B-twisted case. Let

39—3 39—3

F,(t,t) = /M I dm’am ([ [ (G~ u:)(G™, ) exp (= S(t, T, m,m)))

9 =1 =1

be the generating function of genus g > 2 connected amplitudes among marginal fields.
Then:

39—3 39—3

0 i i 7 = L (AR 707 72 =
it = [, amam ([16 @ 7 104107 F = exp (-85, mm))

Now one uses the fact that the vacuum is annihilated by @* and Qf and therefore when
moving e.g. Q@ next to G~ we can replace their product with their commutator and likewise
for Q% and G, so we obtain that alternatively, a pair (G~ u;), (G ,%;) is replaced by
2(T, 1), 2(T, Hi;) respectively up to a sign. The insertion of the latter two operators in
turn corresponds to differentiating with respect to m' and m’. In the end one obtains an
equation of the form:

In order to qualitatively understand the composition of the boundary of moduli space OM,,
recall that the 6 independent real moduli corresponding to the introduction of a tube on the
surface consist of two moduli for the position of the insertion of each boundary of the tube,
as well as two moduli for the twist and length of the tube. There is no boundary arising
from the positions of the boundary circles, as ¥ is boundary less, and two circles coincide
on a co-dimension two subspace of M. If we denote by 7 the complex modulus of the
tube, then the surviving derivative in the integrand is the derivative w.r.t. Im(7), which
is the length of the tube. At the boundary Im7 — oco. In particular time-evolution along
the cylinder becomes the projector onto Ramond ground states. The point of insertion of
Ea is integrated over . The insertions outside of the tube don’t contribute, as in the limit
7 — oo the action of 1/2(0 — 9) vanishes on the time-evolution operator. While when the
insertion is on the tube, then the contribution of the tube prior to differentiation by Im(7)
diverges as:
lim [ d®2 07[i) (j|¢a(z, 2) ) (I,

T—00 C
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Now one decomposes the integral over the cylinder C) into an integral over time and
one over the space circle, inserting the latter in the three-point correlator. Then upon
differentiation by Im(7) and change of basis for the ground states, one obtains:

18)Cang™ 977 (3],

Notice that we can restrict to marginal (greek) indices due to axial R-symmetry selection
rules, albeit only for ¢ = 9 theories. What is left to do is identify the degenerating
cylinders. There are two types of such cylinders, ones connecting a genus g — r to a genus
r > 1 surface, and one that degenerating transforms X, into a genus g — 1 surface. In the
end one obtains:

0 1 N
=y = e (2 (DsFD,Fy ) + DﬁD,ng1> . (2.8.1)
r=1

The operators Dy are covariant derivatives introducing marginal chiral fields ¢z. As these
are introduced they couple to spare moduli in the measure describing their position on the
component Y of ¥ they belong to. In this way:

bg — /E ¢§32)

The connections Dy differ from simple partial derivatives in the corresponding moduli #,
because the marginal field does not commute with the action, instead a contact term is
produced upon contraction with the coupling of U(1) 4 R-symmetry to the spin connection
producing in turn a term proportional to the Euler Characteristic of ¥’. This phenomenon
indicates that F} is a section of £27% — M. Where £ is the Vacuum bundle. This fact
indicates that Fj is not exactly a generating function for correlation functions of marginal
fields, in fact introducing more marginal fields one obtains contact terms between them that
are proportional to I'; the Levi-Civita connection on the special Kéhler manifold (M, G).
Hence D is the Levi-Civita covariant derivative twisted by appropriate powers of £. One
thus introduces a generating function proper for the correlation functions:
cY =Dy, - Dy, F,

Al,...,0n

with counting parameters u*. One can view these correlation functions as expressing a

kind of functorial relation:
Mg, SPTYOM @ £2729,

Without going into the details, the functor is nothing but the path-integral and its proper-
ties are extracted from the holomorphic anomaly equation, which describes how decompo-
sition of moduli spaces of Riemann surfaces is mapped to the decomposition of correlation
functions.

In the end one packages all the data of correlation functions of marginal fields on arbi-
trary Riemann surfaces, including ¢ = 0 and ¢ = 1, in a theory (¢, ¢) dependent generating
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function. Denoting by p the point on M with coordinates (¢, ), one has introduced the
object which we shall denote as:

Zred(ua b, )‘)

where the notation red will be explained in [3.4.5] while A counts the genus of the surface
where marginal fields are scattered undoing the twist of £2729. It is precisely Z,.q which
we will rediscover from the mathematics of the quantization of M and we thus defer the
complete analysis of its properties to chapter

It should be noted at this point that we have avoided the discussion of genus g = 0 and
g = 1 surfaces. The holomorphic anomaly equation in this case is one on the moduli space
of their stable counterparts, namely M3 and M ;. The equation for the former is part
of the tt*-equations:

05(0,030,Fy) =0

while for the latter:
tr(—1)F

1 _

While genus zero surfaces define the geometry of M via the tt*-equations, the above
equation for genus g = 1 surfaces ensures the integrability of the extension of
to Z(u,p,\). We won’t go into further detail, because we will again rediscover these prop-
erties in chapter [3] and also because, as we will learn, these properties are more naturally
attributed to more general objects describing a larger moduli space M. This moduli-space
is the total space of L — M. Vice-versa, M is recovered as the holomorphic quotient
of M by the structure group of £ (more on this in section [3.4.5). It turns out, (see e.g.
[33]), that M is a so called Lorentzian affine special Kihler manifold. In the following
we shall in-fact rediscover projective special Kahler manifolds in steps. First we shall dis-
cover affine Riemannian special Kahler manifolds, then extend to the quantization of affine
special Kahler manifolds of arbitrary signature, in particular Lorentzian. And finally we
shall explain how to extract the quantization of their holomorphic quotients, rederiving the
defining holomorphic equation for Z,.4 in section We start by reviewing the basics
of quantization of classical phase spaces.
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Chapter 3

The Quantization of Special Kahler
Manifolds

3.1 Quantization review

In this section we will review the general principles underlying quantization of classical
phase spaces. The basic ingredients are a classical phase space, which we will assume to be
a smooth manifold M, a space of quantum states, which by definition is complex projective
space P" of a priori arbitrary dimension n, and a quantization map. This is a map

¢ M —P"

identifying the classical state space (or a portion thereof) as a subset of the space of
quantum statesﬂ. The image of this map, ¢(M), is known as the space of coherent states.
Part of the problem of quantization is the classification of such triples. Complementary to
that, is the task of transporting the basic invariants of P via ¢ to M. The basic algebraic
invariant of interest is the maximal compact subgroup G of Aut(P"). This can also be
viewed as the group of automorphisms of P” endowed with the pairing:

(z,y) = (2, )]

Ml Il

where (-, -) denotes a sesquilinear product on C"*1. Tt is the result of Wigner’s Theorem,
that G is composed exactly of the unitary and antiunitary transformations of (C**1 (- -)).
The space of quantum observables is the Lie algebra g = Lie(G), while what is known as
the algebra of quantum observables is its universal enveloping algebra U(g).

The algebra of classical observables is recovered as follows. Let F' € U(g), then its classical
counterpart is a complex valued function f : M — C given by:

f(p) = (¢(p), Fo(p))-

I As classical mechanics should in principle be recovered from quantum mechanics, ¢ should be in some
sense faithful, e.g. an immersion or even embedding.
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The universal enveloping algebra is represented by the so-called star-product %, which by
definition must satisfy:

(fx9)(p) == (o(p), I - G g(p))-

In the following we will suppress one degree of arbitrariness in the choice of the quantization
triple, namely the dimension of projective space. In fact, without loss of generality, we are
allowed to consider the direct limit:
P> := lim P".
n—oo
This in turn can be viewed as H/C*, where H is an infinite dimensional separable Hilbert-
space. It is important to remark, as it will be crucial in what follows, that any two such

Hilbert-spaces are isomorphic. Before venturing into the more general case, it will be useful
to recall the very well known quantization of R??.

3.1.1 The simplest case: M = R*

Given the definition of quantization above, a priori there are a multitude of quantization
maps ¢ of R?%. However its canonical quantization presupposes a much more rigid structure
than that of a smooth manifold. Indeed R?? is identified with its group of translations I,
or more precisely with an orbit, e.g. I'-e, where e denotes the identity element e = 0 € R??,
Then the quantization maps reduce to the projective representations:

p: ' — Aut(P>).

As is well known these are in one-to-one correspondence with the family of linear repre-
sentations:

p:T — Aut(H)

labeled by a central extension I of I'. These in turn are fully specified by the choice of a
skew-symmetric bilinear form w=' € A*(Lie(I'))*. Passing to the Lie algebra description

A

altogether, Lie(T") is then specified by the following commutation relations:
(2", 27] = dw (2", 27).

By a slight abuse of notation, we have multiplied the generators by i = v/—1, so that these
will be represented as self-adjoint operators. We will restrict attention to the case where
w™! is non-degenerate. Although this is no real loss of generality in the present case, it
will be in the following sections, where the space (R?,w™!) is generalized to a Poisson
manifold, while we will be solely interested in the symplectic caseE]. In the non-degenerate

case, I' is known as a Heisenberg group, and these are in fact all equivalent. This simply

2Roughly speaking the requirement that the phase-space be symplectic replaces the notion that the
quantization map ¢ should be “ faithful”.
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follows from the fact that any non degenerate skew-symmetric matrix can be brought to
canonical form e by an invertible matrix A, as

ATWA = e.

It will be useful in the following to introduce further canonical objects: 7, the standard
euclidean metric, and the complex structure I given by:

n = le.

Part of the Stone-von-Neumann-Mackey Theorem states that I has a unique, up to isom-
etry, unitary irreducible and infinite dimensional representation on a separable Hilbert-
space. In fact, since infinite dimensional separable Hilbert-spaces are all equivalent, we
can view each such H as furnishing such an irreducible representation. Indeed this is real-

ized as follows. First, presupposing canonical form, split Liec(I") into raising and lowering
subalgebra spanned by the operators:

&' (n + i€);; and #(n — i€)i

respectively. The former are commonly known as annihilation while the latter as creation
operators. Then choose an orthonormal basis {|n)} of H enumerated by n € N&. Declare
|0) to be the highest weight vector and let the action of &'(n — i€);; be specified by:

&' (n —i€)i|n) ~ [n + ¢;),

where e; denotes the unit vector in the jth direction and ~ indicates equal up to a suitable
unique proportionality factor. At this point we can turn to the representation p:

5(p) = expliwya'’),
where p = (z,...,2%).
quantization map:

Given this representation, it is straightforward to obtain the

o(p) = p(p)|¥), (3.1.1)

where [¢)) is an arbitrary, nonzero, state in H. This choice is irrelevant, it can be removed
by an automophism of P". If we choose |¢)) = |0), we recover the canonical notion of
coherent state:

|2) = exp(iwi;z'27)|0). (3.1.2)

This in particular satisfies:
namely, it is an eigenstate of the annihilation operators.

For the sake of completeness we will sketch how to extract the star-product in the particular
case M = R?P| While the above notation is convenient as a reference for future sections, we

3The more general case M = R?? is then obtained in a straightforward fashion.
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will, solely for this independent appendix to this review section, use the common notation
with annihilation operator a and creation operator af, which up to a factor are equivalent
to the ones defined above. Then the canonical coherent states are usually denoted as |«),
where o = (1/v/2)(y* + 3?) and (y',y?) =  are the coordinates of a point p € R?. Then,
from the defining property:

ale) = ala),

one can recover the state |«a) as

o >.— oxp (~la?) > ).

where we have normalized |«) to 1. Moreover, in the usual notation:

p(p) = Ula) = exp(omzT + aa).
Then
(f*g)(p) = (Q!F'G\OO
=> (0|U(- (@) [n)(n| U(=a)GU()|0)

n>0

= 3 U (~0) FU(a) (al)"[0) (0]a" U(~0)GU ()|0)

n>0

_Z (0ad” 4 [U (=) FU()]|0)(Olad, [U(~a) FU(a)]|0)

n>0

=S (ot ) >(§;g) )

_ (f xp (3&, (7 +ie™) €>) g) »).

In order to appreciate the significance of the star product in physics, one should introduce
Planck’s constant 7, which we have implicitly set to 1. The latter is reintroduced precisely
by the following change of coordinates: (y1,42) — (Vhy1, vVhys). Then the star product
reads:

Fra)o) = (Fow (5007 i) 9 ) 9) @)

Using the above one can now, in particular, recover Hamilton’s equations of classical me-
chanics as the classical limit (A — 0) of Heisenberg’s equations.

3.2 A more general case: quantization of symplectic
manifolds

We are now faced with the problem of generalizing this beautiful yet very special con-
struction for R?? to the general case of a symplectic manifold M of dimension 2d. For
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this, we follow Fedosov’s method [31], B2]. Accordingly we construct quantization maps
as follows. First we choose a point p € M and declare that this be mapped to the point
o(p) =: |p) € P>. Next, we declare that any other point p’ in the vicinity (to be explained
later) of p be mapped to the point:

P = o) =UW,p)p),

for some U(p',p) € Aut(P*). In particular it must be continuously connected to the
identity, therefore U(p', p) is unitary. In fact, thanks to the QR decomposition of matrices,
this is no loss of generality. Let’s now erect a (at this point arbitrary) coordinate system
{2*} in a neighborhood V}, of p. And let’s define the object

—A(p) = %U(p’,p) da®.
p'=p
We can interpret A as a flat connection on a P*-bundle over M. For computational
purposes however, it is more convenient to work on the corresponding H-bundle where, by
a slight abuse of notation, the connection A is allowed to have holonomies in the centre of
Aut(P>) namely C*. That is, A satisfies the Maurer-Cartan equation:

dA+ANA€Q*(M,C).

In other words, A is projectively flat as a connection on the H-bundle. Without loss of
generality we can however assume that, as a connection on the H-bundle, A is flat, namely:

dA+ANA=0. (3.2.1)

For this we simply have to twist the H-bundle by a hermitian line-bundle with a connection
whose curvature precisely cancels that of A. We shall hitherto refer to the state |p) parallel
transported by A, viewed as an element in H, as |p)4. Clearly U(p/,p) can be written in

the form:
U(p',p) = Pexp (—/A) ,
¥

where P stands for path-ordered, v : [0,1] — M is a path with endpoints 7(0) = p,
(1) = p/, and since A is flat the result of the integration only depends on the homotopy
class [y]. In particular, if we restrict attention to a simply connected, or even better,
contractible neighborhood of p, then the result of integration is completely independent of
the chosen path and in that case we are allowed to refer to the integral as [ pp ", One could
also do this globally if one replaces M with its universal cover altogether.

So far the discussion was very general, in that we have not required any special properties of
M other than it be smooth and we have traded the notion of quantization map for that of a
flat connection on an H-bundle. The interesting step is now to find a good classification of
the solutions to . We will assume at this point that M is symplectic, and we choose
V, to be a Darboux patch, namely a coordinate neighborhood where the symplectic form w
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is flat. Attached to this flat symplectic form we have a corresponding Heisenberg algebra
with generators ' and # is the corresponding irreducible representation. The intuition
behind this is to envisage the tangent space 1), M at each point p € M as a copy of Lie(I").
In a suitable sense every self-adjoint operator of H is an element of U(Lie(I")). In informal
terms, this follows from the following decomposition of the projector on the highest weight

state |0): - T
)01 = 3 -0 = S ()),

keNd keNd

In the above we have used multi-index notation. This decomposition allows us to expand
A as follows:

Alp) =Y Y (o aw(p)E™ -+ & + hoc)da®, (3.2.2)
1=0 i1 <<y
Equation (3.2.1) thus decomposes into an infinite number of equations. More precisely
(3.2.2)) is well defined in the topology defined by the seminorms:

[(i1| - |tbe)| with oy € Sa, b € H,

where by S; C H we denote the space of states whose coefficients ¢, in the expansion
Y1 = >, caln) tend to zero as ||n|| — oo, faster than any polynomial of n € Ng E| Thus
the notation S, is suggestive for Schwarz-space, although this should not be taken literally.
At this point we remark that the canonical, Poissonian coherent states of M = R?? are
elements of S;. What this restriction on the topology implies, is that for the perturbative
ansatz to be well-defined, we should represent the state |p)4 as a wavefunction
whose corresponding complete sequence of linear functionals has as corresponding sequence
of states, elements of S;. We will define such wavefunctions in section [3.3.3|

Returning to the infinite sequence of equations encoded in (3.2.1)), we will see in the follow-
ing that each equation specifies a certain geometrical structure on M. The philosophical
perspective one could take about the above expansion is that, as we increase the order in
perturbation theory we are chiseling step by step, through equation , the geometry
of a Darboux patch of M. In particular we assume that at each step in perturbation theory
the Darboux patch be smooth, however this does not impose that the limiting structure
be. In other words, our initial assumption that M be smooth could in principle be omitted
for the limiting geometries. As a check, and for matters of convention, let’s recover the
simplest case M = R?? in this formalism. There the perturbation expansion stops at first
order:
A =iy + wyd?)da".

Thus, solving (3.2.1)) yields the following two equations:

1
dao = —-w
2
4This space is also known as the space of rapidly decreasing sequences, which can be equipped with a
Fréchet topology.
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O (wyd?)da® A dx' = 0.

The second equation is automatically satisfied. Thus, apart from an irrelevant phase:

p/
U(p',p) = Pexp <_2/ <—%W'L’kxi + Wikj:i) dl‘k> )
P

3.3 Somewhere in between: special geometries

In this section we shall investigate the geometry of phase-spaces whose associated connec-
tion A stops at second order in the perturbative expansion . We will show in section
that these spaces are actually equivalent to the ones whose connection stops at first
order. As will become clear in the following sections this class includes affine (Riemannian)
special Kahler manifolds.

First we will investigate equation ({3.2.1) to second order. Furthermore we will assume
that, to first order, A reduces to the flat case. The connection A then takes the form:

A = i(ay + wid" + Dijpid'a?)da®, (3.3.1)

where, given that A is hermitian, and without loss of generality, D, € R and D;ji, = Djp.

Equation (3.2.1)) becomes:

do = ——w
2
Dy — Dy, =0 (3.3.2)
OkDiji — 01 Diji, — 2(Disk Dyji + Djsi Dy )w* = 0. (3.3.3)

We now introduce the following object:

G?@z = 2Dilkw”.
The symmetry of D;j;;, in its first two indices translates to:
that is:

Grw + ng =0.
In other words, Gy, is a symplectic matrix. In terms of Gy, equations (3.3.2)) and ([3.3.3)
read:

?k -G =0

We will learn in section that GG is a connection on the tangent bundle of M. Then
the first equation is the statement that G is torsion-free, while the second means that G is

flat. So to summarize, the second order quantizations correspond to symplectic manifolds
with a flat symplectic connection ﬂ

SRecall that a connection that is both compatible with the symplectic form and torsion free is known
as a symplectic connection, while if it is not torsion free it is called quasi-symplectic.
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3.3.1 Kahler manifolds: holomorphic connections

We now sharpen our analysis to the case where the phase-space M is a complex symplectic
manifold, that is, a Kahler manifold, when endowed with the appropriate compatible metric
g = Jw, where J € I'(M, End(T'M)) denotes its complex structure. We then ask when it is
that the above constructed quantization map is compatible with JJ. We define compatibility
as follows.

Definition 3.3.1. A quantization map ¢ : M — P> defined by a projectively flat unitary
connection A, is compatible with the complex structure of M, if A admits the following

decomposition:

A= %(B - BT)?

where B is a holomorphic, projectively flat connection. That is, ¢ induces a holomorphic
map to P*°.

It is straightforward to check that the above decomposition for A is unique with B given
by:
B = A.(6, 4 iJ})da".

We will now check, at first order, what conditions on the geometry of M must be imposed
in order for the compatibility condition of definition to be fulfilled. The holomorphic
connection is given by:

B =i (o, + wyd") (6], +iJ})dz"
=i ((0) +iJ])a — (w +ig)wd’) dz”.

Let 2 denote the curvature of B, then the projective flatness condition reads:

1 . A
(i@k(al + ZJZTO./T) - 5[(9 + iu})kifﬁz, (g + iW)ljfi‘]]) dlL'k AN dl’l =0 (334)
8k(u} — Zg)zl — 8l (w — @g)zk = O

The second equation reduces to
Okgir — O1gir = 0.

That is, there are Darboux coordinates where:
gi = 01 fi = 0ifi = 0,0, K,

where f; and K are real valued functions on M. In fact it is straightforward to observe that
K is a Kéahler potential for M. Moreover, while an arbitrary Kahler potential is defined
up to holomorphic functions, K is defined only up to linear ones.

To end the above analysis we shall return to equation ({3.3.4]), which now reduces to:

Q= —%w - J[’@r&kd:vk A dxt,



3.3 Somewhere in between: special geometries 41

which, in the gauge:
1
a=-—3 1O, K da* (3.3.5)

becomes:

We shall denote this gauge for « as canonical. We now assume that a second order quanti-
zable manifold admits a gauge in which B is of the particular form just considered. This is
the case exactly when, in the above Darboux coordinates the flat symplectic connection G
vanishes. That is the Darboux coordinates are (d+ G)-flat. Then, in arbitrary coordinates
the constraint on the metric reads:

dd+Gz] - O

We thus obtain exactly the definition of affine special Kéhler manifold (see e.g. [33]). In the
following section we shall finally show the equivalence of first and second order quantizable
spaces. To conclude this section we shall formalize our findings with the following

Theorem 3.3.2. A Kahler manifold with quantization map ¢ : M — P> whose corre-
sponding flat connection A is first-order in a suitable coordinate system, and is compatible
with the complex structure of M, is precisely an affine special Kahler manifold.

3.3.2 Symplectomorphisms as gauge transformations

Here we will show how symplectomorphisms act on the coherent state |p), thus allowing
us in particular to transform the flat connection A from special to arbitrary Darboux
coordinates. In particular we will show that every second order connection A of the form
can be brought to first order, under a suitable symplectic change of coordinates.
From now on, we shall denote by A, the first order connection A in special Darboux
coordinates. Let o0 : M — M denote a local symplectomorphism on M, and let ¥ : T'M —
T'M denote its differential. Then ¢ acts on H via the unitary map:

S = exp(—if — % (log(Z)w),,; #47), (3.3.6)
where f is an arbitrary real function and the second term is antihermitian if and only if o
is a symplectomorphism. The function f can be included as o should only act projectively
on H. To verify that o acts via S we simply need to use the fact that H is an irreducible
representation of the Heisenberg algebra, thus reducing the problem to the following single
check:

SikS™t = uF il

For this we shall consider the one parameter family of symplectomorphisms defined by
¥, = exp(tlog(X)) and will show that it is in correspondence with S; = exp(—t(if +
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L (log(D)w); ;; #'27)). To this aim we only need to verify that the two families agree in the
immediate neighborhood of ¢ = 0:

d . ! VR
T (S:2*S;7") = 0::‘—§Uog(2)w)wﬂﬁﬂﬁaxﬂ
= —%(log(Z)w)ij(iw’kxj + iw* 3"
1
= i(log(E)T —w tog(Y)w)i
= log(%);'#',

where, in the last step, we have used the fact that X is a symplectomorphism. On the
flat connection A, S acts as a gauge transformation. Let’s take A = A,, then, under a
coordinate transformation:

(As)e = 25 (S(A) S~ 4+ 89,571) . (3.3.7)

In order to compute S9,S~! we resort once again to the flows ¥, and S; and compare the
time derivatives at arbitrary time ¢:

%&@&1:&%(ﬁ+i@g@whﬁﬁ)&l
2&f+(%@%(»)M&ﬂ@%ff
= i0kf + 5 (E Oy (log(2))wX ) s 7°
=10cf + 5 (Etf)k(log( ) W)t 2

:%(ztakf NG s )w)mi"%s).

Therefore:
(A — iS(Eay + wyXli’)S~! + %z;alf - %zg(z(alz—l)w)ija:%j
) 1 o
=i (Eﬁc(al + O f) + wpd’ — Ezg(z(alz—l)w)ija:«w) : (3.3.8)

We thus recovered the general form and verified that indeed G is a connection on
the tangent bundle to M. Moreover, in (3.3.8]) we also observe that ¢ should be viewed
as a connection on a line-bundle over M. More precisely, the transformation properties
of o under the gauge transformation exp(—if) show that this line bundle is precisely the
pullback of the unitary tautological bundle H — P*>°, or Hopf-fibration, via the quantization
map. Henceforth we shall denote the operator S corresponding to the differential 3 as Sy.
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3.3.3 The “coherent” tangent bundle

In this section we will give an explicit realization of the state |[p)s as a wavefunction
Za(u,p). The following discussion in fact applies to any Kéhler manifold. We wish the
wavefunction to correspond to a covariant tensor on M thus allowing us to speak of the
state |p) 4 as a coordinate independent object. We thus define the wavefunction as follows:

ZA(U,p) = p,A<u|p>A7

where |u), 4 € H is a state that corresponds to a point u‘d; € T,M. As discussed in section
, the correct choice for |u), 4 € H that reflects the vector-space structure of T,M, is
that of a coherent-state . In order to make this state covariant with respect to the
choice of the flat connection A, we define it through the property:

27 (g + iw)|uhpa = u" (g + iw) )4, (3.3.9)

that is |u), 4 is the eigenstate of the annihilation operators #*(g + iw);; defined according
to the Kahler structure and coordinate system induced by the flat connection A. Clearly,
this state is an element of Sd, hence in the above defined wavefunction realization, our
perturbation expansion is completely well defined.

It is worth remarking here, that under the involution J — —J, ¢ -+ —¢g, w — w or the
involution J — J, g =+ —g, w — —w we would map a positive normed state to a “negative
normed state”, which is therefore non-existent as an element of a (positive) Hilbert-space.
We shall forget this remark until we encounter Lorentzian conic special Kahler manifolds
in section [3.4, Here, and until otherwise stated, we will restrict ourselves to Riemannian
Kéhler manifolds.

The fundamental property of |u), 4, is that under a symplectomorphism with differential
> and corresponding unitary operator Sy, it transforms as follows:

), 4 ~ Sul¥Tu)p 4, (3.3.10)

where by ~ we mean equal up to a phase and where A is the gauge transformed connection

(3-3:7). Equation (3.3.10) follows immediately from the fact that both the left- and right-
hand side satisfy the deﬁnmg equation (3.3.9) with g+iw replaced by §+i@. This property
translates to the following property for the wavefunction:

Zi(u,p) =, ilulp) 1
<U|SE 1|p>
= A<UISz\p>
_ A<
(

ST ulp) a
~ ZaA(S u, p), (3.3.11)

that is, Z4(u, p) should be viewed as a section of the line-bundle 7*(L & L") — T M where
m:TM — M is the canonical projection of the tangent-bundle, £ is the pullback, under
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the quantization map, of the tautological line-bundle on P>, and £’ is a, at this point
unspecified, unitary line bundle whose introduction is due to the fact that is an
“equation up to a phase”. Equivalently, property says that the object Z4(-,p) is
an element of T'(M, (L ® £'Y) ® S*T'M), which is what we set out to achieve. By S* we
have denoted symmetric tensors.

Now we shall give an explicit expression for |u), ;. To this aim we use the fact that for
a Kahler manifold, if w is in canonical form, the map transforming Darboux to Riemann
normal coordinates erected at a point p € M is a symplectomorphism at p. Let’s denote
the differential from Riemann normal coordinates at p by A and corresponding gauge
transformation by Sy, then:

W) p.a ~ SAIATUY frar, (3.3.12)

where by |u) fiat, we denote the canonical, Poissonian coherent state (3.1.2)).

For the following we will need to know how the Heisenberg algebra acts on |u), 4 and
also how |u), 4 depends on p. Armed with the standard result in the flat case, under the
assumption that the state is normalized to 1, we obtain:

1 1 -1
Flu)pa = (5(1 — i)+ 5(g—1 —iw NV, + Z<1 + iJ)Tu) U)pa- (3.3.13)

It will be convenient in later sections to introduce the following notation:

1
vi= §(1 —iJ)u
D, = (1—1iJ)V,.

Thus equation ((3.3.13]) takes the form:

. 1 _ 1_
Tluypa = (U + 59 'D, + 5@) [Uu)p.A-

We will also be needing the following simple identities. First of all:

1
p.A0|U)p A4 = exp <—ZHUH§(p)>

and for any state |¢), (¢|u), 4 is of the form:

(bl = exp (= Il ) 2001 = )7,

where fy, is an arbitrary, appropriately norrnalizableﬂ7 analytic function. Moreover, if we
assume that:

»a(0[Y) # 0,

6We will discuss normalization conditions shortly.
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then we can write fy as the exponential of a power series in w.

Next we turn to the dependence of |u), 4 on p. We shall thus analyse the action of the
coordinate vectorfields at p on |u), 4

0

0 4
@’@p,fx = phase (@ - Zﬁkz) SA|ATu>flat

. _ : B 0
- (—zﬁk + (8kSA)SA1 + (OpN)iu" (A 1);:%8) |U)p.a

: i — S8 T T — s 9
= (—Zﬁk + §(A(8kA 1>w)ijx 7 —u (A(@k/\ 1))Tau8> ’U/>p,A'
In the above we have introduced a connection i3 = if,dz"* with 8, € R on £'. Now we use
the fact that A is related to the Levi-Civita connection through:

[ = —A9A".

Of course the above is valid only at p, moreover, because of that, the connection S, should
not be expected to be flat. Finally we obtain:

0
<— +i5k —u"

1 ind
Dk + §(ka)ijx x7> lu), =0 (3.3.14)

S —
kr ous
More explicitly we have:

1

d . s
(_+Zﬁk—UFkT%+§

1 1_., 1 1.
Ok (FkW)ij(U + —g_lDU + —U)Z(U + —g_le + —5)3) |u)p = 0.

2 2 2 2

At this point it is important to notice that as we chose the map A to Riemann normal
coordinates we could have also chosen a vielbeinll The difference reflects itself in the
choice of connection 3. More generally, the states |u), are parallel transported along M
(up to a phase) by the lift to the Hilbert bundle of any metric compatible and (quasi-
)symplectic connection on T'M. Choosing the vielbein instead of the map to Riemann
normal coordinates corresponds to the Weitzenbock connection [99], which while not torsion
free as the Levi-Civita connection, is flat. To see this we resort to the defining equation
(3.3.9). Let B denote a connection on T'M. Choose a path 7 : [0,1] — M. The statement
that |u), is parallel transported (up to a phase) by the lift of B along 7 is:

o ([ 75)]

The above is equivalent to:

~ P exp (—5/ (v*Bw) x]) \u>v(0)'
0

(1)

(0 0) - )y Pesp (5 [0 Bi's)

TOf course this is valid only locally, however for parallelizable manifolds (e.g. Lie groups) this can hold
globally.
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= (g(v(t)) — iw)s <[7’ exp (/Ot W*B)}TU>

which infinitesimally reads:

J

i [t o
Pex (5 [ (0B85 ) lubo
0

0= X" (Orgij (&7 — ) — (g — iw)ij (Bi)] (&' — ")) [u)o
= X" ((Orgij — (Br)igi; — ga(Br)5) + i((Br)iwi; + wa(Br)})) (27 — u?)|u)o.

We thus obtain that whatever the choice of X and thus 7, the above is fulfilled provided
B is compatible with both metric and symplectic form.

To end this section we shall discuss the normalization condition on Z4(u,p). By this we
mean the property that if |pg)4 is normalized to 1 for a given point py € M so will |p) 4
for any other p € M due to the fact that the flat connection A induces a unitary parallel
transport. In order to express this property in terms of Z4(u,p), recall that in ordinary
quantum mechanics, that is the quantum mechanics of M = R??, the identity operator is
expressed in terms of the coherent states as follows:

1

ld= (2m)d

/ ) (u| du' A - A du®. (3.3.15)
R2n

Thus, resorting to (3.3.12)), in our case we obtain:

1
= s [ VARG [l palol dat Ao A, (33.16)
T,M
and therefore:
1
1= W/ Vv det(ga(p)) |Z,4(u,p)|2 dur A -+ A du®?. (3.3.17)
T,M

In the above we have denoted the metric by g4 to emphasize that it is expressed in the
coordinate system corresponding to A.

3.3.4 Master equation

At this point we have all the ingredients to formulate the master equation. By this we
mean the statement that |p)4 is parallel transported by the flat connection A, expressed
as a differential equation for the wavefunction Z4(u,p). Using (3.3.14) we obtain:

0

0= W@ + Aglp)a

0
= —ZA(U,p) - @ (p,A<U|) |p>A + p7A<u‘Ak|p>A

p,A
0
ok
a . rs 8 i IXEY]
(@ —ifk —u F;W%> Za(u,p) + paul — §(ka)ij93 2!+ Aglp)a
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0 0 1 o
= (% —ifk —u’ E%) Za(u,p) +ipalulay + wipd" — 5((Fk: — Gi)w) 23 |p) a-
Resorting to (3.3.13) we thus obtain:

0 0 I = 1
(— — U5, — +ilay — ) — iwki(T+ =g ' Dy, + =v)’

Dk " Ous 2 2
i1, 1.1 _,— 1.
+§Ckij(v +359 D, + 5”) v+ 39 D, + Qv)j Za(u,p) =0, (3.3.18)

where the tensor C'is given by:
Crij = (T = Gr)w)ij-

Equation (3.3.18)) should be viewed as a version of the holomorphic anomaly equation of
[6], which is the master equation for the generating function of topological closed-string
amplitudes. However at this point this statement is not completely transparent. Indeed in
our case the phase space is an affine special Kahler manifold, while what should play the
role of a classical phase space in topological string theory is the vector-multiplet moduli
space of N' = (2,2) conformal field theories. This has the structure of a projective special
Kahler manifold. We shall tackle this geometry in section |3.4.5] The crucial point is that
projective special Kéhler manifolds can be recovered as quotients of affine conic (however
Lorentzian) special Kédhler manifolds.

A further remark, that we will clarify in later sections, is that so far Planck’s constant A
has not manifestly appeared in our quantization scheme. At this point, its introduction
would be merely as an arbitrary rescaling of the symplectic form. We will instead see in
section how the notion of Planck’s constant arises naturally in the passage from affine
to projective geometry.

Before delving into these matters we will analyze the solution to the master equation. We
shall denote by |p)® the coherent state of p € M and |u); the coherent state of u € T,M
in special Darboux coordinates gauge. Then, the master equation reduces to:

a rTS a . . — 1 7
<% — U Fkr% -+ Z(Oék — ﬁk) — zwki(v + 511) +
1

F5 Tt + £ Tulle™ D+ 007D+ 0 ) Zufup) =0

where we have used wy;(g~'D,)" = i(D); and the fact that I'yw splits into holomorphic
and anti-holomorphic components. This is immediately verified using the explicit formula:

1

Since C' is a tensor, it will split in holomorphic and anti-holomorphic components in any
coordinate system. Thus the equation above is valid in general with (I'yw);; replaced by
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Chij- It will be convenient in the following to split the master equation into its holomor-
phic and anti-holomorphic parts. In the following we shall compute in special Darboux
coordinates. The anti-holomorphic part is then given by:

0o 1 , ‘ .
(1 + ZJ) <a % QETFZT(DU% + Z(Oék — /Bk) — %wkiv’

1 — 7 .
+§(Dv)k + ECkijWW) Zs(u,p) =0,

while the holomorphic part reads:
(1= in)f (2 = ST Do) + il — Bi) — i
1 axk 21) kr v)s (O k WiV
+5Cila™ D+ 0) (6D, + o)) Ziusp) 0.
We shall now assume:

p.a(0lp)a # 0. (3.3.19)

This is no loss of generality as long as one restricts attention to a small enough neighbor-

hood of p. Then as discussed in section [3.3.3 we are allowed to write the following ansatz
for Zy(u,p):

1 n —1 —in
Zs(uﬂp) = exp (Z Ecil,...7inv LUt — _Hu||g(p ) )

n>0i1,..min
where the C™’s are symmetric tensors. For the following we shall need a few identities:

(E )kvl =0

Do)t = (1+ i),

|UH§ = 20" g;;.

First we analyze the equation arising from the anti-holomorphic part of the flat connection:

0=> > ——kakcm 77777 LT T

n>091,...,in

1_,w :
een e sam
’ r=1
1 On —11 —in
+ (n — 1)' il,.‘.,inv v

— [P
+ 0" (e, — By) + §Ckijvkv v,
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Now we use the fact that in a Kahler manifold, the complex structure is parallel transported
by the Levi-Civita connection. In components this reads:

OpJl + JITy, — JITh, = 0.

We substitute for dJi in (3.3.20). The part of the expression involving the Levi-Civita

connection thus becomes:

! ENCcn ot I+ T T e
r=1

Q_n!_
—krzr—sz . v‘ T
=0.
We thus obtain the following recursive formula:

n+1 _11 Lokl ok n i1 . 75in
CZ17 7'Ln+1 v - akclh in U v

for all n > 3, while the lower terms yield:

Cillﬁil = —5kak00 — iﬂk(ak - ﬂk)
2 4 —k 1—i
C’Zlﬂzv“vz“’ = —0"0,C; 0"
C’im 131)“1}’26’3 = —_kﬁkC’i mv“v”’ — 1Cj,0 Tk
At this point it is convenient to introduce complex coordinates (z!,...,2%) with d =
dim(M)/2 that we shall label with greek letters. We shall further denote by VU the
anti-holomorphic part of the Levi-Civita covariant derivative. We now introduce the co-
variant tensors C" defined by:

—1)" C NG i1 j
e =S iy e e

— ﬁ/ _ Ml “ .. run
C/'le--wundz dz ’

where by “”7 we denote the symmetrized tensor product. The above equations then take
the form:

C' =3C° +i(ag — Ba)d" (3.3.21)

C* = VONC? 10y 5 dzd2F2dzs (3.3.22)

ctl =vOber wp > 1, n#2. (3.3.23)

Notice, in particular, that the solution to the master equation is completely determined by
a single object, C°. Clearly the latter is given by:

»(0[p) = exp(C°(p)) =: c(p).
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Notice, that thanks to property , this quantity is independent of A. Indeed the
above is a section of £L ® LY — M which (by assumption ({3.3.19))) is non-vanishing over
the open set under consideration. This section is, in turn, determined by the holomorphic
part of the master equation. For its analysis, it is convenient to replace the wavefunction

by the inhomogeneous tensor:
C= exp < TC .

n>0

In terms of this, the anti-holomorhic part of the master equation reads:
<WMLH@m—@M%+ﬁm%+%qwﬁM?&Oc=0 (3.3.24)
The holomorphic part instead becomes:
(6 - %dz“Cuypg””gppL%Laﬁ +i(a, — B,)dz" — %w) C=0. (3.3.25)

The above can be seen as yielding an infinite number of differential equations for the section
c.

Now we shall analyse the integrability of the master equation. As we will see, and as is
to be expected, this precisely specifies the line-bundle £’. The result of this computation
are the following three equations, namely the (0,2), (1,1) and (2,0) components of the
underlying Maurer-Cartan equation respectively:

Olaz — B7) — Ox(am — Bz) =0
1 _
ia,u(av - 57) - Z'(%/<Oé/t - ﬁu) = 5 (Cupagppgaacm + 29u§)
au(au - Bu) - 8u<au - ﬂu) = 0.

In particular, choosing « in canonical form ((3.3.5]), we have:

Ous — 0o = 0
1 {

§RW = 5Puv

- . 1 p OO0
Za,uﬁﬁ - Z&Vﬁu = __Oupagppg CW = - D)

2
a,uﬁy - auﬁ,u = 07

where R, and p,» denote the components of the Ricci tensor and Ricci form respectively.
See appendix for the identity used in the second equation. Thus, since smooth line-
bundles are completely specified by their first Chern-class we obtain that £’ is isomorphic,
as a smooth bundle, to the square-root of the canonical bundle. Moreover [ is in canonical
form:

B=1i(0—0)x
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and up to holomorphic gauge transformations, we can choose:

1
X = 1 log \/detg.

We can trivially twist the line-bundle £ ® £V to an anti-holomorphic line-bundle by mul-
tiplying C by an appropriate factor. We thus define:

S = (det g)% e C.

Finally, in terms of S, the master equation acquires the form of a “(anti-)
holomorphic-anomaly equation”:

— 1= _ j I
(v@vl) — OK — S0log /det g + dz"1, + %def“d?’d?”> S=0 (3.3.26)
<8 + %dzucwpguﬁgpﬁbagbaﬁ — %w) S=0. (3.3.27)

Now, we shall consider the section of the holomorphic line-bundle (£ ® L") apor:
s(p) = exp(8").

The first order component of the holomorphic part of the master equation reads:

i v _pp ( 1(0,1) 19(0,1
8#32—50/“,[,9 g’ (D( ) D! )S)Tp, (3.3.28)
where D1 denotes the anti-holomorphic part of the Levi-Civita connection twisted by
the Chern connection on (£ ® L'Y)ane1, which is naturally a hermitian line-bundle with
hermititan form:

h = (det g)_ie_K.

In fact, the integrability of the master equation ensures that a solution s to lifts,
through the recursion relations (3.3.2143.3.23)), to a solution of the full master equation.
Of course, a priori, there are, if any, more than one solution to the above equation. indeed
in the simplest case, i.e. M = R?? there are infinitely many solutions. This follows
immediately from the fact that, in that particular case, the tensor C' vanishes and thus any
anti-holomorphic section s solves the problem. Recall that this arbitrariness corresponds to
the freedom of choosing the image of a particular marked point on M via the quantization
map. The canonical quantization of R?? has as solution s = 1. In the next subsection we
will construct the general solution for any affine special Kéhler manifold.

3.3.5 Constructing the solution I: the role of special coordinates

In this section we will give an explicit expression for the Green’s function of the holomorphic
anomaly equation, thereby providing its general solution. We start by choosing an arbitrary
point py € M and declare that:

?
Po = [Po)a = |Y)po.A-
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Now we ask where a point p, in its Darboux neighborhood, is mapped to. For this we shall
consider the action of the annihilation operators on |p)

(g + iw)po,alp) 4 = (g 4 iw)py AU (D, 0)|Y) po.a
= Ua(p,po) (Ua(po, p)2" Ua(p.p0)) (9 + iw)po,a|Y)po.a-

The p dependent operator 27 is found by computing its infinitesimal variation:

0

ok (UA<p7 p/)‘%lUA(p/a p)

—[A. 7!
ox A, 2]

p'=p
N ning Al

= iwi ' — D't 7'

= —wikwll — 2Dijkwjli'z

=0 — GLa.
Bringing the last term to the left hand side we thus obtain:

(ak + Gk) (UA(pap/)iUA(p/7p)‘p/:p = 5]27

therefore:
Us(po, p)2Us(p, po) = T + b,

where 27 ' is the coordinate vector of p in special Darboux coordinates around po. Therefore:

(g 4 iw)p,sIP)s = (@0 + 1) (g + iw)po|P)s,

hence:

P)s ~ 25, + Yo,
From the point of view of topological string theory, what the above equation means is that
the topological conformal field theory corresponding to the point p is related to the one
at po by a deformation whose modulus corresponds to the special coordinate vector of p
relative to py.

Now we shall fix the phase ambiguity. We will need the following identity:

(@0t 50— ihyut ) ul, =0

and for simplicity, until otherwise stated we shall denote 28 simply by z. Then

0 . NP,
0= (@ + il — ) — iwgid ) [+ Y)po.a,

0 . . L L_;
= (w + (o, — k) — dwgi(v + §9pole + 5”) ) %+ Y)po, A
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. 1 ;
=i(ag — Yk — §wkj(37 +9)) |2 4 Y) po,Ass

where iy, = 0xf and 6 is the phase discrepancy. Also, in the present case, v = (1/2)(1 —
iJ)x. Thus, since we have chosen « in canonical form:

1 .
Ve = Qf — §wkj($ +y)!

1 1 .
= —§J,lﬁlK — Ewkj(x + y)J

So we have: .
VA .
. =exp (5 [ CHOK a4 5dat) o+ )

Po
Now we are left to compute the kernel:

K(u,p;z +y,po) = pa,{ulp)y. (3.3.29)
Given the above, the general solution to the master equation over a special Darboux patch
is given by:

Z(u,p)f = / Vdet gs(po) dy' A -+ A dy? K(u,p,zs +y,po) (3.3.30)
Tpo M

1
exp —;lHy

where f is any analytic gaussian-integrable function. The final step is thus to obtain an
expression for the states |u), s that is valid over an entire Darboux patch, rather than just
at a point as we previously defined them in (3.3.12)).

f;s(po)) f(L+1ido)y), (3.3.31)

3.3.6 Constructing the solution II: revisiting the coherent tan-
gent bundle

In this section we will give a patchwise description of the coherent states |u),, ;. The simplest
way to find |u), is through the defining differential equations (3.3.9} [3.3.13] [3.3.14)). It is
convenient to express |u), s as the wavefunction ¥, (q, J) = (q|u), s, where J is the complex
structure matrix at the point p and |¢) is the eigenstate of ¢ with vector of eigenvalues
q. Here the vector of operators ¢ is the upper half of the vector z in special Darboux
coordinates, that is the position coordinates, rather than the momentum coordinates, which
we will not label to avoid confusion with the label p that stands for the point on the manifold
on which these wavefunctions are erected. Accordingly we will need to split metric and
symplectic form in d x d blocks:

[ R R, (0 -1
9=\ RT R, )"\ 1 0 )
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Then (3.3.9) becomes:

Ry Ry +1 q— Uy _
( Rg_z R4 ) < _ivq_up ¢U(Q7 J) - Y
which is equivalent to:
Vo u = (i(q — ug) + iup)thy,

where

r=RYi—R))=—(Ry+49) 'R,

(3.3.32)

is a symmetric matrix called the complex modulus and encodes one-to-one the complex
structure J(p). In particular 7 is an element of the Siegel upper-half space [73], which we

shall denote as Hy. A consequence of which is that:
det Im7 > 0.

The solution to (3.3.32)) is then:

l

0. 7) = ) exp (60 = ), 70 = ) +

where NV (7,u) is yet to be determined. The latter is however constrained by three condi-
tions. The first is the normalization condition on |u), ; while the second and third are the

defining equations (3.3.13] |3.3.14}). The first implies:
N(r.u) = [N (7, ) )

where:

N = ( [ talexo (Gt = oo = ) + i
= %% (det Im7)"/* |

Equation (3.3.13]) then reduces to:

_ 1 _
(Vu, +7V, )0 = —é(up + Tug).
Solving for the real and imaginary parts separately we obtain:
1
0 = _§<uq>up> + (7).

Thus we arrive at the following solution:

{ l

N

y

Yu(q, 7) = m (det Im'r)l/4 exXp <i7(7> - §<uq>up> + 5(((] —Uy), T(q — ug)) + iuy Q> )
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where the only undetermined quantity is the phase (7). The phase is fixed (always up to
an irrelevant constant), by equation (3.3.14)) and the choice of the connection 5 on £'. In

particular equation (3.3.14)) yields:
1
5’k’y = _5k — §tr ([(FkCU)pp]ImT) .

Here we remark the similarity of 1, (q, 7) with the wavefunctions discussed in [26]. At this
point we have all the ingredients to compute the kernel of the master equation.
We start with the computation of the overlap between a coherent state at py, where the
complex modulus is 77, and one at p with complex modulus 75:

7'2<u2‘u1>7'1 = /ddqw(q7u277—2>w(QJul7Tl) -

det Im7, ) /4 (det Tmr,) '/
(det(r; — 72))1/2

(Qi)d/2(

oxp <—%<uq,1, 2) + %<uq,2,32> _ %((21 _ %), (=) (o — zz)>)

o (i [ (54 (),

where we have introduced the complex coordinates z = u, — Tu,. We shall now denote
by z; the coordinates corresponding to u; = x + y and by 2, the ones corresponding to wu,
then the kernel is given by:
4/2 (det Tmy )14 (det Imry ) /4

(det(ry — 72))1/2

oo ([ (19~ S e o)

K(u,p;x+y,po) = (2i)

exp (_}luuug(p) — g, ) + (2 Rap)Z) — (51— %), (1~ 7o) (o1 z2>>) -

We thus conclude the study of affine Riemannian special Kahler manifolds having provided
the general solution ([3.3.31) to the master equation (|3.3.18]).

3.4 Conic special Kahler manifolds

First of all we shall recover the structure of a projective special Kahler manifold in a
way best suited for our quantization technique. Before that we shall recall the standard
definitions (see e.g. [64] for a comprehensive review).

Definition 3.4.1. (Projective special Kahler manifold - 1) A projective special
Kéhler manifold is a holomorphic quotient of an affine conic special Kahler manifold by its
defining holomorphic C* action.
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Definition 3.4.2. (Conic special Kdhler manifold - 1) An affine conic special Kéhler
manifold is an affine special Kahler manifold equipped with a free holomorphic C* action
whose generating holomorphic vectorfield H is a homothetic Killing vectorfield for the flat
symplectic connection:

(d+G)H =710 .= %(1 —iJ)kdr* ® 0. (3.4.1)

Recall, that by definition of affine special Kahler: dg,om™® = 0. This ensures the
existence of a vectorfield that satisfies the equation above. The restriction here, is that
this vectorfield is required to be holomorphic.

We shall now analyse equation ([3.4.1)) in special Darboux coordinates. We shall introduce
the vectorfield X through:

H=700(—iX) = —%(1 —iJ)X.

Without loss of generality, we can choose X real. Then equation (3.4.1)) becomes:

o(—JX) =/ (3.4.2)
X7 =J.. (3.4.3)
Thus, up to an irrelevant constant vectorfield, from the second equation we obtain:
X7 =wo, K,
which can be recast in the form
dK = 1xw,

that is, X is the Hamiltonian vectorfield with Hamiltonian the special Kéhler potential.
From the first equation we obtain:

0= (9;J})X*

= (aigkr)wTij

= w7 (X Orgij)

= —w"((Lxg)ji + 9([X, 9)], i) + 9(0;, [X, 3]))
= —w"((Lxg)ji +wji + wij)

= _WjT(LXg)ji-

Therefore equation is equivalent to:
Lxg=0. (3.4.4)

Since X determines g, the above is a differential equation for K and defines a particular
class of special Kahler metrics, namely the conical ones. Another way to read equation

(3.4.4) is as follows:
0= wklakKalgij
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= QQRSQkKC’sU
From this it follows:
CiinH" = 0.
We thus arrive at our best suited definition for conic special Kéhler manifolds:

Definition 3.4.3. (Conic special Kéhler manifold - 2) A conic special Kdhler manifold
is an affine special Kahler manifold whose symplectic vectorfield X, defined locally through
dK = 1xw is simultaneously a Killing vectorfield for the Kéhler metric g.

The existence of the vectorfield X implies that the function K can be extended from a
special Darboux patch to any simply connected patch containing it, in particular to a patch
which is dense in M.

Now we shall shortly digress to recover the above geometric structure from the point of
view of quantization. For this we will have to find yet two other ways to write identity
(3.4.4]):

0= wklﬁkKﬁlgij
= w’“lé)kKE)lai@jK
= 0;(w" g1;0LK) — W™ i1,

which becomes:

and because of the non-degeneracy of w this is equivalent to:
8i(gjk8kK) = (SZJ,

which integrates to:
ngng = xl,

from which:

KK = g’

Therefore, up to an irrelevant constant that can be absorbed in the definition of K:
2K = 9;Kz' = ;K¢ 0;K = || X]||,

meaning in particular that K describes a conic special Kahler manifold if and only if it is
homogeneous of degree 2 in special Darboux coordinates.
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3.4.1 Digression: a guess for the quantum origin of the conic
property

In this section we shall attempt a guess for the quantum origin of the conic property for
a special Kahler manifold. It seems as though it comes from the requirement that the
special Kahler potential K be the classical counterpart of a quantum Hamiltonian K that
preserves the space of coherent states. More precisely, K should preserve the space of
coherent states as a subspace of H, thus with no phase ambiguities, provided « is set to:

1 .
oy = —éwikxz. (3.4.5)

Thus we have the property: R
K(p) =s(p|Kp)s

and the statement that K preserves the space of coherent states with no phase ambiguities,
is:

exp(iKt)|p)s = [x:(p))s. (3.4.6)

where by x; we denote the canonical flow of K. Infinitesimally the above reads:

= —i X" (o, + wipd")|p)s. (3.4.7)

Applying ¢(p| to the above equation we obtain the desired result:
| i ~i k
K = §X Wik T _s<p|$ |p>swik‘X
1 4 y
= —§8iK:UZ + 0, K (p|Z'|p)s
1 )
- —@K z.
5 x
In the last step we used the fact that ,(p|2’|p)s = z’. This follows from:

9;(s(p|2'p)s) = s(P|[A;(p), 2']|p) s
= iwi[2", 2]

=0l

Now we shall ask under what changes of gauge for «, equation (3.4.7) remains unalteredﬂ
Clearly the gauge transformations are reduced to:

Ip)s — exp(if(p))|p)s with f € C®°(M) such that X - f = 0.

8Notice that for a conic special Kihler manifold, the gauge (3.4.5) is the same as canonical gauge
B33).
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Now, the structure of a conic special Kahler manifold is necessary for to be fulfilled,
but it is by no means sufficient. Indeed, in the simplest case of R?? one can check that the
admissible K’s are reduced to quadratic ones. What distinguishes the case M = R?? is not
the connection A, but rather an initial choice |pg)s for a definite marked point py € M.
Thus turning the argument around, once K is fixed, equation (3.4.6)) puts constraints on
this choice. Let

A(pa, p1) :==s(p2|p1)s,

then, one such natural constraint is:

A(pz,p1) = Alxe(p2), xe(p1))-

Infinitesimally, the above becomes the following equation:

0K (pr) = O (1)) o A 1) = 50K () = ) A ).
As stated before, for fixed K this can be viewed as a differential equation for A while,
for fixed A it can be viewed as a constraint on the choice of K. There is in fact an
even more elementary constraint on K if we allow M to contain the point at the origin
of the coordinate system. Then, indeed, the only homogeneous degree 2 functions are the
quadratic ones. Therefore, in the more general case we need to assume that 0 ¢ M. This
condition however is but a consequence of the further requirement entailed in definition
that the action of X be free as 0 would clearly be a fixed point. In fact it is the
unique fixed point and there the metric is singular.

3.4.2 Coping with negative signature

In this section we shall investigate how the definition of quantization should be modified
in the case of a non-Riemannian Ké&hler manifold. This is of interest since precisely moduli
spaces of N = (2,2) 2-d super conformal field theories are of this type. Recall that in the
discussion of the coherent tangent bundle it was crucial that M be Riemannian, otherwise
the definition of coherent state would have implied the existence of negative normed states
in the Hilbertspace. Let’s start with the simplest case, namely again M = R2, this time
however we shall change the Kéhler structure as follows: w - —w, J — J and g — —g.
Under this change, the Heisenberg algebra is changed to:

[%,p] =—1

and in terms of the annihilation operator a = (1/v/2)(& + ip) and creation operator b =
(1/v/2)(& — ip):
[a,b] = —1.

We shall now define the highest weight state vy as before through:

avy = 0.
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Then a basis for the highest weight representation is furnished by:

n
Up = —=Vg, N € No.

e

At this point we realize the impossibility of finding, in this representation, a positive definite
sesquilinear bilinear form with respect to which z and p are self-adjoint. Indeed given such
a bilinear form B, we would have:

0 < B(bvg, bvg) = B(vg, abug) = B(vy, |a, blvg) = —B(vg, vo),

which is clearly contradictory. Instead, what we can require is the existence of two bilinear
forms B, and B_. We shall require the former to be positive definite and sesquilinear,
thus introducing a Hilbertspace topology on the representation. However B, will have the
property that  and p are anti-self-adjoint with respect to it. On the other hand B_ is
non-degenerate sesquilinear such that z and p are self-adjoint, but it will be indefinite.
Under the normalization B (vg,vg) = B_(vg,v9) = 1 we thus obtain:

B+(Um7 vn) - 5m,n B—(Umyvn) = (_1)n5m,n

Thus {v, }nen, form an orthonormal basis of the Hilbertspace H. We can define B_ in
terms of B, as:

B_(+,+)=Bs(,(=1)").
A suggestive way of interpreting (—1)% is as (—1)F where F is a “fermion-number” oper-
ator. For this we need to introduce the following decomposition of H:

H = Heven S¥ Hodd7

where Hcyen is the subspace spanned by v, with n even and H,q4q is defined analogously.
Then we define fermion fields v); and v by:

Y109, =0 1/11U2n+1 = V2n
PoUop = Vapt1 Wovonr1 = 0 Vn € Ny.

Then 1, and 1), satisty the following properties:
{1,902} =1

and
B (1) = B, 9.
Finally we can define F' by:
F =1yt

On H we can furthermore define the differential:

Q = Y1(ba — F).
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This allows us to single out vy, which is the unique invariant state under the U(1) action:
R(0) :=

as the unique representative of Q)-cohomology H, g(H)

Now let’s turn to coherent states. These are now given by:

@) = exp(—ab + @a)vy = exp (@) e,

Clearly the translation operator is not unitary any more, that is, it is not an isometry with
respect to B, but it is an isometry with respect to B_. It is in fact unbounded, but clearly
its domain includes the coherent states. Now we shall generalize the above discussion to
understand the structure of the coherent tangent bundle for an arbitrary Lorentzian Kahler
manifold.

3.4.3 The coherent tangent bundle in the Lorentzian case

In this section we will construct the coherent tangent bundle in the case of a general
Lorentzian Kahler manifold. An important result will be that contrary to the Riemannian
case, in the present case the Hilbert-bundle is not necessarily trivial, in particular it cannot
in general be trivialized on an entire Darboux patch. The caveat stems from the fact that
in the Lorenztian case one needs to make a choice of two “negative” directions, and this
choice depends non trivially, not only on the symplectic form, but also on the metric, which
contrary to the symplectic form, cannot be flat on an entire patch unless the Riemann
curvature vanishes. In this section we will show however that if one makes a choice of
negative directions at a given point py € M, this choice can be extended to an open
neighborhood V., containing py. Ultimately the detailed choice at py will be irrelevant.

We start by considering a point py € M and erect a Darboux coordinate system in the
neighborhood of py such that at py the metric is the standard Lorentzian metricﬂ The
coherent tangent bundle at py will then be the collection of states defined by:

B (0 +ie)|up, = u” () +ie) u)p,-

In particular there will be a state |0),,. The representation of the Heisenberg algebra thus
obtained with highest weight |0),,, as we have observed in the above section, is naturally
not a Hilbert space, but rather a vector space equipped with the pairing B_, with respect
to which #’ are hermitian, which is defined precisely as in section with a and b
corresponding to the first coordinates ' and z9*!. We also observed in the previous
section that we can however endow this vectorspace with the structure of a Hilbert space
H with scalar product B, with respect to which #' and 2%*! are anti-hermitian while the

rest are hermitian.

9This can obviously also be achieved for special Darboux patches in special Kihler manifolds.
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Now we ask how large the Darboux neighborhood V. of p, is allowed to be for the coherent
states |u), for p € V to belong to the same Hilbert space H. We shall denote by Sp® the
symplectic group with symplectic form €, then the previous question is clearly equivalent
to determining the subset:

Sps = {A € Sp° | |0)* € 3,
where |0)* is defined through the condition:
(AT2)T(n + ie)|0)* = 0. (3.4.8)
Then, denoting by V™% the maximal Darboux patch containing py:
Vet = {p e V™ |3A € SpS s.t. g(p) = AnAT}

As we have seen explicitly in section in the Riemannian case, Sp, = Sp and there-
fore V"* = V™ This is but a consequence of the Stone von Neumann theorem that
asserts, in particular, the uniqueness of unitary irreducible representations of the Heisen-
berg algebra. The Lorentzian case, however, corresponds to non-unitary representations,
and indeed, as we will show, Spi C Sp°. We will show however that SpS contains an open
neighborhood of the identity, a requirement to, at least locally, quantize M. As a concrete
representation for H we choose the usual L?(R?) where # acts as:

N q
(%)
~ E 0
B (1 1)

{ 0
E = :
(0 1(d—1><d—1))

Then, resorting to the notation in section equation ([3.4.8) becomes:

Rl R2 + iEQ ~ q .
( R%“ —iE? R4 ) E ( _ivq 100((];/\) - 07

with (g, A) the wavefunction corresponding to |0)*. The above is equally well written
as:

where:

and:

Vb =i7qy,
where:

Fi=—E YRy +iE*) 'R\E=-E 'R (R} —iE*)E,

thus:
Y(q) = N exp(i{q, 7q))
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and ¢ € L*(R?) provided:
Im7 > 0. (3.4.9)

Since the above is an open set, by local continuity of A(p), g(A) and 7(g), V"** contains an
open neighborhood of pg. One can easily check by way of counterexample that condition
(3.4.9) is non trivial and in particular SpS. C Sp°.

Consider now the complex modulus:
7= EFfE

Clearly 7 is in the Siegel upper half space. From this we deduce the complete characteri-
zation of Sp<:
SpS = {A € Sp° |Im(E~'7(A)E) > 0}.

At this point we shall study the states |u)*, which we shall rename |u),. Following the
analogous steps for |0)* we obtain that the corresponding wavefunction 1, (7, q) is of the
form:

l

Yo (7,q) = N (7, u) exp (2

(g = E-'ug) 7lq — E'uy) + i(E "y, q>) |

Just as the normalization constant in section here NV (7, u) is fixed by three analogous
conditions. The first is a normalization condition with respect to B_ instead of B, :

1= (ul(=1)F [u), = /

5 dq ¥, (1, Q)u(1, E%q).

Solving for [N yields:
N (7, u)] = 7= ¥*(det Tm 7) /4.

The second condition on ,(7,¢q) is equation (3.3.13) which remains unchanged in the
Lorentzian case. As in section [3.3.6, let # be defined through:

N () = [N ()],
Then (3.3.13) is equivalent to:

1 1
Vb0 + E*TE’V, 0 = —§E2?uq - §E2up,

the solution to which is:
1 2
O(T, ug, up) = —§<up, E*ug) 4+ (7).
Therefore in the Lorentzian case, the wavefunction of the coherent state |u), is given by:

Uu(T,q) = ﬂ*d/‘l(det Im 7')1/4 exp(iy(7))-
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exp (g«q — BNug), 70— B ) + i ) — ¢ E>) -

Using (]3.3.14)) we can again fix the phase. For M affine special Kéhler, on a special Darboux
patch we obtain:

8k’y = —ﬁk — %tr([(f‘kw)pp] Im 7 E2)

At this point we can compute the overlap ,(us|(—1)|uy),,, which, as in the Riemannian
case, essentially corresponds to the propagator of the master equation:

oo (2| (=1)" s ), :=/ Vuy (T2, @) 0w, (11, E2q)
det Im; )Y/ (det Immy) /4
(det(ﬁ — 7'_2))1/2

exp (—é(EQuq,l, 21) + §<E2uq,2,22> - §(E2(z1 — %), (1 = T2) (21 — 52)>) :

exp (z /P (ﬁ + %tr((ka)ppImT EQ)dxk)) ,

where, as in the Riemannian case, we have introduced the complex coordinates z = u,—7u,.
Thus the expression is identical to the one in the Riemannian case with the only difference
that the bilinear form on configuration space is now the standard Minkowski bilinear form
(E?-, ) instead of the standard scalar product. Anlogously to the case of Riemannian
affine special Kéhler manifolds where the propagator is given by (3.3.29), we shall see in
the next section that in the Lorentzian case the propagator is given by:

_ (22->d/2(

K (u,p,z +y,po) = p.a, (ul(=1)"|p)!
_ (20)? (det Im7,)*/*(det Imm,) '/
B (det(ry —72))"/?

exp (_@- / ((a — ) = g+ e = Sur((T)pliny EQW» |

1
exp (—Z||U| |§(p)> :

exp (—%(E2uq,1,z1> X i@% Ry(p)7s) — %(Ez(zl — %), (11 — T2) Mz —52») ;

where we have used the same notation as in section [3.3.6l

3.4.4 Remarks on the quantization of Lorentzian conic special
Kahler manifolds

In this section we shall first discuss how the quantization of Riemannian affine special
Kéhler manifolds translates to the Lorentzian case, show how to project to positive normed
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states, and then discuss normalization conditions of the wavefunction Z(u, p) thus present-
ing the form of the general solution to the master equation. We shall develop the first
point in the form of a series of remarks:

e To quantize an appropriate Darboux neighborhood (V) of py € M, one chooses the
Darboux coordinates such that g(pg) = 7.

e Locally quantization involves a triple (V.,¢,P*>), but contrary to the Riemannian
case, now P> is endowed with the pairing

B (v, w)|
(B-(v,0) B (w,w))""?

(v, w)- =

and the group of automorphisms of P> is defined accordingly.

e The flat connection A does thus no longer induce a unitary parallel transport, but
rather a parallel transport that is an isometry w.r.t. B_.

e One must choose generators of the Heisenberg algebra ¢, such that 2! and 29+!

anti-hermitian w.r.t. By, while the rest are hermitian.

are

e The form of the operator Sy introduced as S in (3.3.6) is left unchanged, and it is

now an isometry w.r.t. B_.

e As a consequence in order for the tensorial property (3.3.11)) of Z(u,p) to hold, the
definition of the wavefunction must be replaced by:

Z(u,p) = p.alul(=1)"Ip)a.

With the above modifications the quantization procedure of affine Lorentzian special Kahler
manifolds proceeds without change as the one for Riemannian affine special Kahler mani-
folds until the end of section with the only exception of the normalization conditions
(3.3.15, [3.3.16 3.3.17)). One last remark regards section where, in the Lorentzian
case, all matrix elements of the form (ps|O|p;) must be replaced with (ps|(=1)1'O|p,).

Projecting onto “positive normed” states: the coherent horizontal bundle

Let M be a conic special Kahler manifold of dimension 2d, we shall distinguish between
three regions of M:

M, = {p € M|K(p) > 0},

Mo = {p € M|K(p) = 0},
M_:={pe M|K(p) < 0}.
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As discussed earlier My is singular with a conic singularity approaching x = 0. Now we
shall concentrate on M_. There, an orthonormal basis of negative or “timelike directions”
in the tangent bundle T'M_ is given by the hamiltonian vectorfield X and JX. Indeed:

9(X,X) =g(JX,JX)=2K < 0.

Therefore, on the orthogonal complement with respect to g of X and JX, g is positive
definite. We thus define the horizontal bundle as:

HM :={V e TM_| g(V,X) = g(V, JX) = 0}

In particular HM is the image of a section P € I'(M_,End(T'M_)) of projections P(p),
which in special coordinates is given by:

. ] ) 1 iy
Pl =6 - 50k log |K|g" 0K + §J,§a, log | K|w" 9, K. (3.4.10)

Corresponding to HM there is a quantum counterpart that we shall name coherent hori-
zontal bundle, defined as the sub-bundle of the trivial Hilbert-bundle, given by the image
of the section of projection operators P € I'(M_, End(#)), where P(p, A) is an orthogonal
projection at every point p. This projection is the obvious generalization of the projector
onto vy of section [3.4.2]. Thus, the action of P(p, As) on the basis |u),, is given by:

Pl Adlubye 1= exp (=310 = POl ) PG

1 2
- (—Wm(mp),un ) P(p)ulye

It is an easy exercise to check that P is self-adjoint w.r.t B_.

Normalization conditions and the general solution

Now we shall pass to normalization conditions. In the Lorentzian case, equations (|3.3.16

3.3.17) are modified to:
1
(-1)F = / du' A -+ A du*®y/det g-
(2m)n T,M_
1
——|g(H 2)|Pu—(1-P .
exp (e 9HG) 0 ) [Pu = (1= Pyt

And the normalization is with respect to B_ rather than B, , therefore:

ey L, Vs e (o). 0F )

Za(Pu— (1 — P)u,p)Za(u,p) du* A --- A du?.

1=
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It follows that the general solution to the master equation is then given by:

Z(u,p)f = /T Maly1 A -+ Ady*®y/det go(po) exp (%\g([ﬂpo), y)|2> .

1 .
K-upa ) exp (<410l ) S0+ i), (341)

where f is an arbitrary normalizable function w.r.t. B_.

3.4.5 The quantization of projective special Kahler manifolds

In this section we will construct the wavefunction Z,.4(u,p) for an arbitrary projective
special Kahler manifold M of dimension 2d that arises as a holomorphic quotient of a
Lorentzian conic special Kahler manifold M of dimension 2d+2. First of all, it is convenient
at this point to introduce complex coordinates and express H in terms of these. We
shall stay in the special Darboux coordinate system, and erect corresponding holomorphic
coordinates (2°, ..., z%). Then becomes:

0.H" = 4.

Therefore:
H = 2"0,,

where the vector of complex special coordinates is related to the vector of Darboux coor-
dinates x = (x4, z,) via:
2=, — TX,.

The quotient of M by H clearly has as holomorphic functions the ones defined on M of
homogeneous degree 0, therefore M can be covered by affine patches as My with coordinates
(v',...,y?) given by:

(202 2D = (L M),
with A # 0. In this new coordinate system (\, 4!, ..., y9):

0
H=\—.
o\
From now on we shall label the coordinates y and z with («, 8,7) and (u, v, p, o) respec-
tively. Analogously we will label the corresponding real coordinates with non-capital and
capital latin letters respectively. At this point we can express the projection P introduced

in (3.4.10]) in complex coordinates:

v v 1 vp 1 o vp
P =6~ Eau log |K|g"?0;K + §JM80 log | K |w"P 05K

1 -
=0, — 53“ log |K|(g"" — iw"?) 05K
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=0y — 0, log | K|g"P0; K
=0, — 2"0,log |K|

Pﬁi:
=0
Py =0, — 270z log | K|

Therefore, in particular, in special coordinates we have the following holomorphic frame
for the horizontal bundle:

V, = ZLPYD,

oz, y
- ﬁ_yaw“ — 20, log | K|)0,
0 0
-2 log | K| ) 2
0 0 0
-2 _ log | K| ) A2
s~ (g os151) A5

where ¥# = dz*/dy*. We can now define the wavefunction reduced to the projective
special Kahler manifold:

Definition 3.4.4. The quantization of the holomorphic quotient M is given by the reduced
wavefunction:

Zred,A(uu p) ::;),A<2Tu|7)Jr (pa A) (_1>F|p>A

Therefore:
. 1 T, 112 1 N i
Zred,A(uap) = exp (_ZHP(p)E u”g(p) - 2K(p) |g(H(p)7 by u)| Cred(u 81)7
where
Crea = " (C o P), (3.4.12)

and by ¢ we have denoted the inclusion of the level set A in M. In particular we have

_1)
Cred = €Xp (Z ( n') fed) )

n>0

with, in special coordinates:

" " gz _ 0 oz 0
Cotdnee = G, (s — g o K1) -+ (G = om0 tog 1)

Dy Dyin Dyin
and:
02° 0 0 0
— — 22— log|K| = - A—1log |K
o~ g oa K] = <A log K]
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0 50

o
log| K| =\ 6% —y°——log |K]| ).
e~ o g K] ( o og| |)

We shall extend the y coordinate system to incorporate y° := 1, and define h through:
K(Za E) = _l)‘|2h(yay)a

then:

—n o — 0 = — 0
n _ n 14 :u‘n n
( Ted)al ~~~~~ Qan A Cﬁl ..... s (5ai - yul 8yal 1Og h) e (5an - y# ayan lOg h) :

At this stage we can determine the master equation satisfied by C,.q. We shall proceed
analogously to the affine case. Thus we start by collecting the following computational
building blocks. The first crucial building block is the Kéhler structure on the projective
manifold M:

Gu5 = SE PG, PISE = A1 PLg
1 _
— (gW - ?@K(%K) 57
1
_ 2
= —|Al (aaagh — Eéhh(%h)
= K0,05logh. (3.4.13)

The form obtained in the last step shows that g is indeed a Kéhler metric, not on the
holomorphic quotient of M by the action of H, but rather on the symplectic quotient
of M by the action of X where K is constant. Indeed the above precisely defines the
Marsden-Weinstein quotient. We thus define the normalized Kéhler metric:

Jo5 = —0a0zlog h.
We shortly digress to observe that formula (3.4.13) means that the value of K on the
corresponding symplectic quotient is related to Planck’s constant via:

1
K=-—-.
h

In other words, Planck’s constant precisely labels the choice of symplectic quotient:
My ~ K~ (—=n~1)/S"
Here ~ means homeomorphic.

Now we shall consider the dependence of P(p, A)|X"u), 4 on p. We shall do this in steps.
First we shall consider the dependence on p of the canonical coherent state |AT PXTu),
where we have used the same notation as in section [3.3.3 We obtain:

Ox| AT PYTu) = (0 (AT PY)u, AV pyr,, ) AT PYTw)
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=u" (SP'Tk + 0k (EP")) Vpgr, AT PE ). (3.4.14)

We now introduce the differential ¥ from y to z coordinates. In particular:

S aya -1 « a0
N::ﬁ:)\ (5u—y(5u)
Then we have: )
PTyxpT = P

Therefore: .
Vpsry = PTYV, + (1 = PT)Vpgr,.

Substituting in (3.4.14)) we obtain:
Ox| AT PYTy) =
ol (vau + (BPTTx + 0k (SPT)) (1 — PT)VPETU> AT PYTy).

In the above we have defined the connection:
Tk = SPIT PTY 4 0 (ZPT)PTY. (3.4.15)

As we show in appendix , the connection I splits into purely holomorphic and anti-
holomorphic components with F;B = (I")g)" and can be expressed in terms of the Levi-

Civita connection I of g as follows:

75 =175+ 0 log | K|5)
T _ )1
L35 =A"10],

where we have denoted by 0 the coordinate A. In particular I is compatible with the metric

g.

Now we turn to the dependence on p of the coherent state P(p, A)|X"u), 4 proper. In fact,
to tackle the reduced tensor C,.q directly we compute:

1
o (0 (F1POIST ) 1PET ) =

. l AT rT8 9 r S—a
(‘@61( — 5 Ckw)isd'd? + T, 5o u” (SPTxc + 0x(SPT)) (1 P1)), a(PzTu)S) |

1
exp (ZHP(p)ZTqu(p)) |PYXTu), 4.

In the above we have used the metric compatibility of T'. At this point we need to com-
pute the action of & on the coherent state. However only the components of z along the
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horizontal bundle act naturally as differential operators. We shall now focus our attention
on those:

o 1
57pi (exn (JIPWIE ) ) P70 )

1o 1< - 1
— <§ZTP(1 — i)' PY w4 EZTP(g’l - ml)PTzvu> exp (ZHP(p)ETuH?](p)) |PYXTu), 4

1 CNT Lo . 1 2 T
= <§(I—ZJ) u—ﬁ(g — W )Vu> exp <_ZKHqu(p) |PYX" u)p a,

Now we shall present the explicit form of the master equation:
SPT A (STuPi(p, A)(=1)F(d + A)|p)a = 0.

Using (3.3.13)), we arrive at the master equation for C.eq(u'0;):
. 0
((EPTVz)k - uT(Fk)i% +i(XPT(a — B))
ik (20— i L -
1K@y, 5 iJ) u 5K i
59.) (et - i)
w " 5K g w u

J

i 1
—Chi | — (7' =
*3 ’”<2K(g

Lon (R — i) (Lo =iy
+§C’kw<2(1 iJ) u) (2(1 iJ) u)

—u"(ZPT)F ((BP Tk + 0 (ZPT)) (1 — PT))S 0 S) Crea(u'd;) = 0. (3.4.16)

r J(PETu)

Before expressing the master equation in holomorphic and anti-holomorphic parts, we shall
decompose the last term of (3.4.16]) in holomorphic and anti-holomoprhic parts. Since C,.q
has only anti-holomorphic legs, in complex coordinates the holomorphic part is given by:

— (SPT)5dy*SE(0,PY) (1 — P)o1y,Crea
= (ZPT)gdyaaa&alog |K|ZﬁLaﬁCred
- dyagﬁazﬁh%creda
while the anti-holomorphic part reads:
— (RP")5dy " SL(PITy + 05PY)(1 — P)015,Crea
=0.

The above is a result of the following identity:

(PIT2. + 05P7)(1 — P)y,

v
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(TG PO -PY
— (" Or g+ 0o PL)(1 — P)L
1 _ _ _ _
= 05" )7 — (%0 log | K| + 700 log | K]}y og | K|

Os0xK _,  OsOkK
K K

= 0.
In the first step above we have used the fact that in special coordinates:
2T5 =g '2P0,9 = 0. (3.4.17)

We are thus left to compute -
2P Lapcred.

For this we need to resort to (3.3.24)) using (3.4.17). We obtain:
zﬁLaﬁCTed = (L* (zpaaﬁC) o P)
= (" ((=270; —i(a — B)(H)) C) o P)

—0 _ —0
= —A—_ da —1 - A—_ CTe-
(s + oo, — ita =) (32) ) Cu

In order to isolate the dependence of Cq on A and X, we use the fact that in y coordinates
Capy is holomorphic homogeneous of degree 2 in A. Thus, we define the normalized C
tensor through:

Ca,B'y(/\a y) - >‘2éa67(y)'

At this point we have all the ingredients to express the master equation (3.4.16|) in holo-
morphic and anti-holomoprhic parts. The anti-holomorphic part reads:

(Vg)’l) — (Oglog h)X% +i(a — B)z — i(Ozlog h)(a — B) (X%)
~2
+ Log + %éaﬁvdyﬁdy’y) Cred = 07 (3418)

while the holomorphic part reads:

(aa — (9a log h)A% Fila— B)a — i(8alog h)(a — B) (A(%)

- y; _ iy,
9.5 [ A=+ dyTto. —i(a — B) [ A=
+ ygaﬁ( o T i(a 6)( m))

s 7 0N o 5
- szadeﬁ + mCa,gvgﬁﬁgWagL%> Crea = 0.
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There are of course two further equations left, inherited from the master equation of the
conic affine special Kahler manifold M. We have already made full use of the anti-
holomorphic part to express the last term in (3.4.16|) as a differential operator on C,.4.
From the holomorphic part we obtain instead:

<88)\ tila—p) <§j)) Crea(u'd;) =0, (3.4.19)

which in components reads:

(55 +ita=5(55)) =

red(>\ >‘ 'Yy y) red(>\ Y, y) vn > L.
With (3.4.19) the holomorphic part of the master equation simplifies to:
(&l—i—i(a—ﬁ)a—l—dyﬁg ( )\g—i-dy L&> — dy® ( (a—p) (Xi) —K)
U\ TN of OX
iN2
+ @Camg g”eg,LLgL) Creqa = 0. (3.4.20)

As a last step we will choose for o and  the gauge adopted in section and we
will express the master equation (3.4.18] (3.4.19| |3.4.20) as an equation for S,.q, which
analogously to S in section [3.3.4) is defined as:

Sred = (det g)% egcred-

Noticing that in this gauge:

B(H)=p(H) =0,
we obtain that (3.4.18] |3.4.20)):
0 = _
(V( — (Ozlog h))\a — 2ifB5 + Lo + —C’aﬂvdyﬁdﬁ) Srea =0, (3.4.21)
O+ g (X2t dy X6 g7 Srea =0 3.4.22
ot Ay Gop | ~A ozt Ay | + o 02075 10,16 ) Srea = 0, (3.4.22)
while (3.4.19) becomes:
0
— =0. 4.2
a)\Sred 0 (3 3)

We have finally arrived at the precise generalization (3.4.21} 3.4.22] |3.4.23)) of the holomor-
phic anomaly equation of [6] while at the same time having provided its general solution
(3.4.11} [3.4.12]).
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3.5 Concluding remarks

In the present paper we have shown how special Kahler manifolds arise from the structure
of quantization, and constructed their quantum counterpart. Crucial to our constructions
was the central idea developed in [104] and the formalism of [32]. We have shown how a
general version of the holomorphic anomaly equation of [6] arises in our construction while
at the same time providing its general solution.

The present work needs however to be further developed to understand better the physical,
string theoretic, meaning of these solutions. In particular it is still to be understood, from
a quantization perspective, how to isolate the analogue of the generating function of closed
topological strings in a given D-brane configuration [75] . In this regard, it seems as though
a starting point for these developments within this work could be the discussion at the end

of section 3.4.11



Chapter 4

Essentials of open-closed topological
conformal field theory

4.1 Open-closed TQFT basics

Here we continue the discussion of section to include open strings. We again refer to
[60), [72]. An open-closed TQFT is a functor:

2% Cob” — Vecty,.

The category C'ob*® is an extension of Cob that includes as objects also intervals I, with
positive and negative orientations and arbitrary disjoint unions among themselves and with
disjoint unions of circles S1. Accordingly the spaces of morphisms are extended to include
bordisms with the corresponding more general boundaries. We will in fact add one more
degree of complexity by labeling the boundaries of the intervals with elements (a, b, ¢, etc.)
of a set or more generally of a class B of boundary conditions, or branes. We will refer
to such intervals as e.g. ]f’. Accordingly, composition of morphisms must be compatible
with boundary conditions. In order to specify Z°¢ completely, just as in the closed case,
we only need to define its action on a finite number of objects and morphisms. First, let
us concentrate on the strips in Mor(1$°, 19%). We set

Z(I%) = veb,
Then using the same reasoning as for the cylinder in the closed case, we obtain:
Z(1%) = (V)Y

and maps ev® and coev®. Moreover, just as in the closed case, we obtain non-degenerate
topological metrics which we will collectively call 7, (where o stands for open) with non-

vanishing components:
N : VP @V — k
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We now investigate disks, with three boundary components, in M or(Iib U, I frb) These
define maps that we will collectively call u, with non-vanishing components:

fio : VP @V — Ve,

One can easily check that p, is associative, but it is in general not commutative since we
do not have the freedom of “twisting the neck” of the outcoming string. Finally, in order
to specify the action of Z°¢ on disks with boundary an arbitrary disjoint union of intervals,
we need units and traces:

el ik — Ve 0% = (e,) : V — k.

o

We will refer to 6¢ also collectively as #,. Again we have the property:

Mo = goo,u/m

where the identity is understood as valid whenever composition is compatible with the
boundary conditions. Thus, we have described the restriction Z° of Z°¢ on the proper
subcategory Cob® C Cob® of purely open strings with only disks as bordisms, and have
found that it is equivalent to what is called a Calabi-Yau category O (“o” for open),
with class of objects B and morphism spaces V. In later sections we will often consider
finite subcategories of O, that is with finitely many objects, and view them as single non-
commutative Frobenius algebras. In order to specify Z°¢ completely, we need to consider a
finite set of bordisms with boundary containing both open and closed strings. In particular
we consider the cylinder C% in Mor(1*, S1) that describes an open string joining its
endpoints and yields a map:

bobu : V** — V.

where bobu stands for “boundary to bulk”. Similarly we can go the other way with the
map:

bubo : V. — V.

In fact, it can be shown that the data collected so far specifies Z°¢ completely. However
this data is subject to constraints, which describe different decompositions of the same
surface. The simplest such constraints come from the decomposition of the disk with one
interval as boundary:

0, = 0.0 bobu
and the dual:

e, = bubo o e,.

Then we have the two decompositions of the cylinder in Mor(I9* U S%,0) yielding the
constraint:
Ne(bobu @ 1) = n,(1 ® bubo), (4.1.1)

which expresses the fact that bobu and bubo are adjoints of each-other. One can show that
there is in fact only one last constraint, namely the Cardy condition. This comes from
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two different decompositions of the cylinder viewed as a map in Mor(/{* U Iib, 0). One
decomposition of such a map is given by first joining the ends of each string and then
mapping to k with the cylinder in Mor(S} U S}, 0). Applying Z° then yields the map:

ne(bobu @ bobu).

There is however a way of decomposing this map in the purely open channel. This is given
by considering the disk in Mor(I¢* U 15U T _I’Fb, I%*) and then glueing the incoming ]_‘f with
the outcoming %" using first coevaluation and then evaluation. Applying Z° we obtain:

V(e @1 R U @N(1RT ®1)(1 ®1® coev)

where T is a brading, namely an isomorphism that swaps the tensor factors. For Zo-
graded vectorspaces (as we discussed earlier for the purely closed case) the swapping is
accompanied by a sign. Composing the above maps we obtain:

P @Y Yy " sign(i, o)et (u(y, ples, v™)))
where {e;} is a basis in V% and {e'} is its corresponding dual basis. So, to summarize:

> sign(i, ") (u(v™, ples, ) = ne(bobu(yp™), bobu(i™)). (4.1.2)
The above condition should be viewed as yielding a generalization of the Hirzebruch-
Riemann-Roch theorem (see [I1]). In fact the immediate generalization is given by setting
1% and " to the idempotents (units in fact) e® and e’. Indeed in that case the Cardy

condition reduces to:
tryee ((—1)F) = n.(bobu(e®), bobu(e?)),

where we have denoted by (—1)f the operator implementing the brading. In the following
sections we will first discuss how some of the structures arise and are generalized in the
context of open and closed topological conformal field theories. In particular we will see
how, when considering spaces of TC'F'T’s as opposed to isolated points thereof, the category
O becomes a minimal, Calabi-Yau A, category, which apart from associative composition
of morphisms has higher composition maps. Crucial for our investigations will be the lift
of these on-shell categories to off-shell differential graded categories. In particular our
analysis will culminate with explicit generalizations of bubo which allows us to transport
bulk deformations to the boundary sector and finally we will give an explicit formula for
the off-shell differential graded version of 7, for Landau-Ginzburg models, completing the
string field theory data of open Landau-Ginzburg models.

4.2 Physical and topological B-type branes

Here we turn to the definition of the open sector in topological conformal field theories.
As for the purely closed case, we will use the general B-twisted Landau-Ginzburg model
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as our illustrative example. In particular in our future investigations we will often restrict
ourselves to affine Landau Ginzburg models.

Introducing the open sector in a CFT is tantamount to extending the definition of
the CFT to Riemann surfaces with boundaries. The counterpart of the sphere, is now the
sphere with a disk removed, that is the disk itself. In a functorial definition of CFT (see [82])
the complex disk with a boundary condition inserted on the boundary, defines a state in the
closed string sector called boundary state. More precisely, the boundary state is inserted
at the origin of the disk, where the in-state Hilbertspace resides, and is propagated to the
boundary of the disk. Passing to the topological sector of the theory, e.g. by B-twisting, the
boundary state should reduce to bobu(e?). Similarly the TFT disk in Mor(I,1%) should
arise from the infinitely extended strip with left and right boundary conditions inserted.
The boundary conditions we are interested in are in particular conformal. From the point
of view of the strip where time runs along the infinitely extended direction, conformal
means that there is no energy flow across either boundary:

T-T,,,=0 (4.2.1)

If, as in our case of N = (2,2) superconformal symmetry, the Virasoro algebra is extended
to an algebra A & A, then, the energy reflecting condition is generalized to an arbitrary
current W (z) as: o

W — Q<W>‘bdry =0

where ) is an automorphism of A preserving, in particular, the Virasoro generators. In
our case, to the current 7" we supplement J, G* and G~. The basic automorphisms €
of interest could act on the supercharges by multiplication by +1 and could exchange
their R-charges. The latter operation corresponds to the Mirror-automorphism and would
implement A-type boundary conditions. We are interested in B-type boundary conditions,
and we set the arbitrary multiplicative sign to +. Then (4.2.1]) is supplemented by:

J—TJ =0, ot-G"

bdry — =0.

bdry

Therefore, the surviving diagonal N = 2 algebra is generated by T+7T, J+J and G* —{—@i.
In particular, the theory with boundary has the B-type supersymmetry (). The conditions
at the boundary just discussed are sufficient at the classical level. At the quantum level,
one must take into account the so called GSO projection which we could neglect all along
in the purely closed case, and simply comes from the fact that in the path-integral one
also sums over spin structure, thus giving rise to a Z,-Haar integral which projects on Zs-
invariants. We already leave the abstract discussion of boundary conditions in N = (2,2)
CFT’s and jump to the investigation of boundary conditions in general LG-models. We
will primarily sketch the approach of [40), 41l 45| [61] and we also refer to seminal work [7]
regarding boundaries in affine Landau-Ginzburg models. In that approach one uses string-
theory intuition to guess the most general form for boundary interactions. In particular
we will use terminology which will become clear within our framework only a posteriori,
as the concept of anti-brane.
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To start, first of all one concentrates on the D-term and views it as a special case of
a N = (1,1) theory. In that more general case one can extend the theory to the infinite
strip without imposing boundary conditions, but by adding a certain standard boundary
term. In order to add boundary interactions to such a theory, one uses the intuition gained
in the study of the type II A/B open string spectrum on flat space-time with Neumann-
Neumann boundary conditions. In that case one is particularly interested in the lowest
energy states which are viewed as providing infinitesimal deformations of the underlying
theory. In particular, as one is interested in deformations of the vacuum, one analyzes the
lowest energy states in the V.S sector and finds a space-time massless vector boson A and a
tachyonic scalar T'. At this point the GSO projection will play a prominent role. Depending
on how we interpret A and T, the GSO projection will gauge away one of the two. The
result is that if we view the Neumann-Neumann boundary conditions as describing open
strings stretched from a space-filling brane to itself, then A survives, while if we interpret
the open strings as stretching from the space-filling brane to a space-filling anti-brane,
then T survives. The physical property of anti-brane that one uses to understand this
phenomenon is one we haven’t yet described within our framework, suffice it to say, that
if the space filling brane comes with multiplicity /V, that is with an N-dimensional Chan-
Paton space Xy, then to the anti-brane one associates X; with reversed parity. That is
one considers the composite Chan-Paton space:

E:Xo@Xl

and A and T also come with appropriate multiplicity, that is they are generalized to:

(0 J (A 0
r=(z o) A=(04)

Extending this construction from flat space-time to a general D-term, E is generalized to
a super-vectorbundle, in particular, locally it is still to be viewed as a multiplicity space,
that is it is a locally free module over the coordinate ring, or more precisely the sheaf
of functions of the underlying Kahler manifold M. Instead T" and A combine to form a
superconnection B =T+ A on Xy ® X1, where A has degree one because it is a gauge field,
so in particular of form degree 1, while T' is of degree 1, because that is the difference in
degrees between X; and Xj. It is important to stress that if the theory described by M is
a CFT, the A can in principle generate marginal deformations, while T generates relevant
deformations. That is the theory ceases to be a CF'T but in principle flows to a new CFT
where the tachyon has condensed [87] to form a new configuration of boundary conditions,
in particular more general Dirichlet branes of lower dimension. The Tachyon is therefore
fundamental if we add a super potential W, because the latter will force the brane to be
localized at its critical points.

At this point one looks for a coupling of the super connection B to the boundary of
the surface, in our case the an infinitely extended strip S. Up to supersymmetrization, this
coupling should simply introduce a Wilson line in the Path-integral for each of the two
boundaries of S. Imposing a diagonal N = 1 supersymmetry one finds( see e.g. [40]) the
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following improved connection over either boundary:

Ay =i Ap(z) — %F]J(ZB)QZ)I@/)J + %¢1D[T(x) + %T(m)Q, (4.2.2)

where, in the particular case of a Kahler target, I runs over holomorphic and anti-
holomorphic coordinates i and 7, while v is the linear combination of the corresponding left
and right fermions surviving the supersymmetric integration over dS. For B-type N = 1
supersymmetry ¢’ = (%, ) where ' = (' + ') and 7 = (x’ + x'). The first and third
term are the starting points and the remaining terms one finds by requiring supersym-
metryE]. A supersymmetric A; means that the corresponding bulk field, in other words
the “would be” boundary state, is supersymmetric. The latter is given by considering the
boundary of the circle rather than the boundary of the strip. Thus the bulk field is the
Wilson loop, or holonomy:

onn(A) st (Pesp (= [ aea))

where the supertrace is the canonical one on the fibers of Xo® X;. In fact under the N =1
supersymmetry variation ¢, A; transforms as:

61.A4; = Di(—e (T — ' Ap)) (4.2.3)

thus leaving a boundary contribution to the supersymmetry variation if the boundary circle
is replaced by an interval. Imposing B-type N = 2 supersymmetry constrains the boundary
data as follows:

F02) — p20) _ ( )
T =i, — Z.QZ (4.2.5)
D;Qy = DiQZ =0. ( )
(4.2.7)

Moreover there is a further constraint on () that depends on the superpotential, namely:
Q; = WId +c. (4.2.8)

We shall explain, given the prior constraints, how the latter arises. Beforehand we should
interpret the first three constraints. Equation (4.2.4)) can be rewritten as:

@+ A%)? =0,

That is, the supervectorbundle £ = Xy & X; is holomorphic with holomorphic structure
given by A%!. Equation (4.2.5) says that the tachyon splits into the tachyons arising from

In fact in [40] a more general connection was constructed, but we will not need it in the remaining
discussion
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the two separate N = 1 supersymmetries of the B-type N = 2 supersymmetry, namely
Q and QT respectively. Equation stating the holomorphicity of @), could in fact
be generalized. As it stands it will ensure that, given the fourth constraint, the total
bulk/boundary supercharge Q. is a differential. The appearance of W in the constraint is
due to the so called Warner term [97]. As we mentioned earlier, in the case of W = 0 one
can add a canonical boundary term so that the D-term preserves N = 1 supersymmetry
without resorting to extra, Chan-Paton, degrees of freedom. The same is true if we add a
non trivial super potential. However, while in the former case the boundary term continues
to be B-type N = 2 supersymmetric, in the latter case this is no longer true. Instead,
denoting 0y = 7€() one obtains:

68 = — / dten'o,W,
oS

which is precisely cancelled by a term arising in the Wilson line whose variation is:

/ thfrf&QQ
s
provided indeed (4.2.8)) is fulfilled. In fact the cancellation of the Warner term ensures

cancellation of further terms involving the commutator [Q?, Q'], provided however that
the integration constant ¢ commute with Qf. In the end, the extra constant is usually
omitted, as it is in our case, for example by assuming that W be quasi-homogeneous. The
data given so far describes B-type conditions in the still untwisted theory on the infinite
strip. However we could also interpret it with no change as B-twisted boundary conditions
by modifying the bulk field content to the twisted version (2.5.1). We will work in this
topological setting unless otherwise stated.

At this point we introduce boundary topological fields. We do this through the defini-
tion of bulk fields. The picture we should have in mind is that defining the bulk topological
metric , namely two stretched hemispheres with at each tip the insertion of a bulk
field, except that now the left, say, hemisphere is replaced completely by its boundary
circle with boundary conditions on it as well as boundary field insertions interpolating
between them. From this point of view, the CFT picture of the infinitely extended strip
becomes the TQFT picture of a disk with two points removed from the boundary circle.
From a path-integral perspective, the boundary circle with boundary fields corresponds to
the insertion of a term of the form:

Str(OQ(to)Uo(tO, t1)01<t1)U1(t1, t2>02(t2) cee On(tn)Un<tn, to)), (429)

where Uy (ty, tyr1) = Pexp(— ﬁi’““ dtAF) is the parallel transport operator with respect to
the boundary condition A¥, and the O;’s are a priori off-shell boundary fields inserted at
the point ¢; and are defined as local operators of the bulk fields valued in End(FEy, Exy1). It
is clear therefore, that from the point of view of the boundary observables, the improved su-
perconnection is a Hamiltonian. Now we want to understand the space of on-shell boundary
fields, that is the fields the path-integral localizes onto. Therefore we consider the action
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of 6o on the above insertion. For this, notice that from (4.2.3]) and the discussion of the
Warner term:

Tht1 )
0Ui(tr, tr1) = (/ dt?ﬁz@‘W) Ug(t, tes1)

123

— €(iQy — ' AL) (t) Uty trsr) + Uk(te, tisn JE(GQF — 0 A¥) (tp).

Hence, applying d¢ to (4.2.9) we obtain multiplication by the negative Warner term plus
a sum of terms each summand of which is equal, up to a sign, to (4.2.9) except for the
alternate replacement of one boundary field by:

0501 = 0qOx + ((iQf — 1 AF)Oy + O (iQ5 ™ — 1 A1),

If we restrict attention to a finite number of boundary conditions, we can take their direct
sum, which consists of the direct sum of the superbundles and corresponding connections.
Then the above reduces to the more transparent equation:

5b0k = 5Q0k + E[i@b — niAZT, Ok]

We observe that dg-cohomology translates to d,-cohomology for the boundary fields. In
particular, the path-integral localizes onto boundary observable in d,-cohomology. To com-
pletely characterize the boundary fields we have to introduce an ingredient in the theory
with boundaries that we have chosen to omit so far. The ingredient is locality. That is
the equation of motion for bulk fields must be local. More importantly a topological the-
ory where equations of motion are trivial, since the hamiltonian is zero, must be local by
definition as this is the ingredient that allows decomposition of topological surfaces to be
paralleled by decomposition of correlation functions. Locality is an issue in the present con-
text, because the boundary interaction term is manifestly non-local. One ensures locality
by introducing a projector Pgc in the path integral that constrains variations of the bulk
action, with respect to bulk fields, to be cancelled by variations of the boundary interaction
term, so that the Euler Lagrange equations of motion are given solely by considering the
local bulk term. This projection therefore defines boundary conditions, and in the case
of a vanishing tachyon one obtains Neumann-Neumann boundary conditions motivating
the initial construction involving vector massless gauge fields and scalar tachyons. These
boundary conditions, in particular, “halve” the number of degrees of freedom of off-shell
boundary fields. The relevant boundary condition arising from variation by 7’ leads to the
identification: -

0; ~ —10;Qp — (Zsz + Gﬁ)T}J, (4.2.10)

namely 6; is expressible in terms of ﬁ{

Localization of the path-integral proceeds analogously to the purely bulk case (see
section . One can first localize on zero-modes and consequently onto the critical points
of W. Upon localization onto zero-modes, the bulk degrees of freedom of off-shell boundary
observables are then reduced from arbitrary polyvectorfield-valued differential forms to
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differential forms. More precisely, after localizing onto zero-modes we obtain the following
complex of off-shell boundary observables:

Vol =ehell — (D(X, End(E) © A*(T*VX)"), DOV + Q. ]). (4.2.12)

Notice that the term in the bulk differential involving W has disappeared, because its action
is trivial on degree zero polyvectorfields. Is important to notice for further discussion, that
the above complex is naturally a bi-complex with differentials D" and [Q;, -].

So far we have characterized off-shell and on-shell boundary observables, that is in
particular the TQFT datum V° and we notice that it is naturally a unital non-commutative
associative algebra where the product is the cup product, which is the composition of A
and the product of matrices in End(FE). To complete the TQFT data we still need maps
bobu, bubo and 6,. We distinguish between the cases W = 0 and W # 0. In the former
case, localizing onto zero-modes leaves an exact boundary interaction term which therefore
can be set to zero. One obtains:

0,(04) x / QA str(a).
X
Thanks to the non-degeneracy of 6,, we can read off bobu:
bobu(a) = str(Il A ),
while bubo can be read off by imposing property (4.1.1). One obtains:

bubo(w) = Ppc(wldg) = / do; -+ - do, 11 N wldg,
7,0 X[1]

where IT € T'(X, End(E) ® A*TH9 X @ A*(TOY X)Y) implements the boundary conditions
(4.2.10) upon integration over the parity reversed holomorphic tangent bundle 709 X1]:
L= (01 +i01Qy + (iFy5 + Gp)d2 ) A A (B + i0,Qp + (iF,5 + G )dz").

].jl NJin

We now proceed to the case W # 0 and as in the bulk case, restrict attention to W
having an isolated singularity and assume that the cohomology of D) is trivial, that is
concentrated in tensor degree zero, so that the cohomology of the total complex (4.2.11]
reduces to the second page of the spectral sequence:

Vo = Hig,(Hpon (V7)) = (D(X, End(E)), (@b, ).

After localizing onto zero-modes, the surviving terms in the bulk and boundary terms are
both exact in dg and 0 respectively. The latter is set (flown) to zero while the former is
computed in the infrared limit as in the bulk case. Crucial are the boundary conditions
that introduce in particular a term proportional 9Q), in the bulk action. This term
is the only one to survive localization onto the critical point of W and one obtains

Qstr(adQp -+ - 0,Qp)
o o i/x W -0, W
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where &+ is a relative sign that we will fix later on in section [5.3.8] The above is called the
Kapustin-Li trace after the first who gave a physical derivation thereof, while the boundary
topological metric 7, is referred to as the Kapustin-Li pairing. The remaining TQF'T data
are:

bobu(a) = £ str(ad1Qy - - - 0,Qp)

and
bubo(f) = fldg.

The non-degeneracy of follows from Serre duality and the Calabi-Yau condition as
explained in section [2.5 while the non-degeneracy of the Kapustin-Li pairing was proved
in [74]. The only non-trivial constraint to be checked for the above data to constitute a
TQFT is the Cardy condition (4.1.2]). This was proven for the B-model in [I1]. For the
affine Landau Ginzburg model with isolated singularity it was proven in [79] and the result
was extended within a more general framework to include the case of orbifolded affine
Landau Ginzburg models in [§].

So far we have sketched how to extract the open-closed TQFT data from twisted N =
(2,2) QFT’s by examples and in our case of B-twisted models we were not forced to impose
U(1)y R-symmetry. Although of great importance especially for the Landau Ginzburg/
Calabi-Yau correspondence and thus for an understanding of N = (2,2) CFT’s slightly
beyond the purely topological sector, we omit this topic as later we will be interested in
the general non R-symmetric case. In particular W need not be quasi-homogeneous for
our constructions in chapter [5

4.3 Formalizing TQFT data of B-twisted models

In this section we formalize the structure of TQFT arising from the B-twisted models. We
discuss the B-model and the affine Landau Ginzburg models separately (comprehensive
reviews for the former are contained in e.g. [2,[40]). To have a proper understanding of the
B-model we should introduce the U(1)y R-symmetry. We resort back to and we see
that if we assign the standard R-charge —1 to n’, @ must have R-charge 1. To implement
this we need a representation:

R:C* — Aut(E).

It is customary to use C* rather than U(1). This means, that F is not only Zy graded but
Z graded. The two gradings are compatible because () has degree 1 w.r.t. both. In the
B-model Q% = 0, therefore E should be viewed as an arbitrary, bounded for dimensional
reasons, complex of holomorphic vector-bundles:

(F,Q)

The same holds for:
(HOHI(Ea, Eb)7 Qab)-
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The space of onshell open strings is the cohomology V,, if V.*//=sh¢ll defined in . In
the context of the TQFT framework outlined in section we want to understand this
as a morphism space in an additive category. In fact this space turns out to be the space
of morphisms:

HOHIDb(X)(ga, 5{,[2])

in the bounded derived category of coherent sheaves D°(X). We have denoted by £ the
sheaf of sections of F while [i] denotes a shift by ¢ units of the complex &,. The notion of
derived category is very general and the starting point is an abelian category A, namely
an additive category which closes under taking kernels and cokernels. In our case the
candidate category would be the category of holomorphic vectorbundles, however this is
not abelian. In particular taking the cokernel of two finite rank holomorphic vectorbundles,
one obtains a more general object called a coherent sheaf. This is precisely a sheaf that
locally is the cokernel of two free sheaves. The category of coherent sheaves is abelian, so
one considers this. The next step is to consider a category of complexes C'(A) of A. In the
case of D’(X) one considers complexes with bounded cohomology. The derived category
D(A), has as objects those of C(A). The morphisms instead can be specified as follows.
One takes at first morphisms in C'(A) and identifies homotopic pairs. Recall that given
two complexes C7 = (My,d;) and Cy = (M, ds), two maps f,g : C; — Cs are said to be
homotopic if there is a homotopy h : C7 — Cy[—1]:

hdy, +dsh = f —g.

In particular if the complexes admit a map homotopic to zero, they have the same co-
homology. Then one localizes onto quasi-isomorphisms. A quasi-isomorphism is defined
as a map of complexes that reduces to an isomorphism on cohomology. Localizing on
quasi-isomorphisms proceeds in two steps. First one adjoins formal inverses ¢~* of quasi-
isomorphisms ¢. Finally one defines a general morphism between two complexes C', Cy to
be an arbitrary sequence of homotopy classes of morphisms in C'(A) supplemented by the
previously described inverses, modulo composition of intermediate morphisms. Under this
equivalence relation each morphism can be presented in one of the following two ways:

oS cBo, oo o,

If we assume for a moment that ) = 0, therefore if we restrict ourselves to mere vector-
bundles, then:

V, = H} o) (X, Hom(E,, Ey)) = H* (X, Hom(E,,&)) = H* (X, Hom(E,, &)
=: Ext*(&,, &)

The second equality is the Cech-Dolbeaux isomorphism which holds provided the base
manifold X is Kéhler. The third equality is the statement that Cech cohomology is the
sheaf cohomology of Hom(&,, &,). The name Ext is motivated by the fact that Ext'(&,, &)
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is the space of i-fold extensions of & by &,. In particular, in the case i = 1, Ext'(&,, &) is
the space of non-trivial short exact sequences of sheaves:

0=&—=>F—=&—0

induced by the short exact sequence of vectorbundles E, <% E, @ E, 2% E,. More generally,
in the case of a single coherent sheaf, that is of a single object in A one can include it as
an object in D(.A) as the degree zero component of a complex which is zero in every other
degree. Then one has:

EXti<€a, Sb) = Home(X) (ga, gb[l])

In this categorical language, the existence of a non-degenerate pairing in the open TQFT,
which follows from Serre duality and the Calabi-Yau condition, translates to the property
that D°(X) has a trivial Serre functor S : D*(X) — D(X). A Serre functor of a derived
category, if it exists, is defined by the property:

HomD(A)(Oa, Ob)v = HomD(A) (Ob, S(Oa)).

A Serre functor is called trivial if S = (-)[i] for some i. Precisely in the case of a Calabi-
Yau manifold, Serre duality (see section says that this is the case and the shift is given
by the degree of the holomorphic top form, that is the dimension of X.

Now we turn to the affine Landau Ginzburg model. Recall that in this case

O(X)=Cl[z", - ,2"] = R.

Therefore, the sheaves of sections of the super-vectorbundles reduce to free R-modules
My @& M. In this context we will use throughout the notation:

Qy=2D

and D is called a matriz factorization of W. From now on we will be interested solely in
the case of W having an isolated singularity at 0.
The off-shell open string space of zero-modes reduces to:

(Hom((My @ M,)a, (Mo ® My)y), Da(+) £ (-)Dy). (4.3.1)

Obviously, contrary to the B-model case, (Mo @ M, D) is not a complex. One can however
view it again as a complex so as to make contact with the formalism described previously
for the B-model. Before we do that however, we notice that in this case, defining a category
whose set of morphisms is precisely the cohomology of is straightforward. One starts
with an off-shell category

known as the category of matrixz facotrizations, whose objects are matrix factorizations
(Mo @ M, D) and whose set of morphisms is Hom((My @® M), (Mo @® M;),). Then the de-
sired category is simply obtained by replacing the sets of morphisms with their cohomology.
One thus obtains the homotopy category of matriz factorizations

[IME(W)).
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We now briefly sketch the initial basic steps required to make contact with the formalism
of the B-model. We notice that we can fit My and M; into a short exact sequence:

0 — M; - M, — coker(F) — 0

o~ (51)

To show that it is exact one first has to observe that dim(My) = dim(M;). Indeed
tr(Wldyg,) = tr(FG) = tr(GF) = tr(Wldy, ). Thus we see that this condition requires
only W # 0. Now supposing there is a non-zero element in v € Ker(F'), then Wov = 0,
therefore v = 0. The above sequence can be turned into an exact sequence of free modules
over S = R/W. In that way Q* = 0 € S as in the B-model case and requiring the modules
to be free we also recover a local notion of complexes of vectorbundles as for the B-model.
As a sequence of S modules the above sequence is clearly not exact anymore. On the
contrary Ker(F') = Im(G). Therefore to the left of M; we can adjoin Im(G), this however
is clearly no longer free, therefore we can adjoin M, instead and continue this procedure
indefinitely alternating the roles of F' and G to obtain:

where:

S B, S M, My — coker(F) — 0,

where we have overlined modules and maps to indicate that they are defined over S. That
is we obtained what is called a 2-periodic resolution of coker(F). A theorem by Eisenbud
(see [30] and [29] for a concise review of the topic) states that in fact any S module (of
finite rank) admits a free resolution which becomes 2-periodic after a finite number of steps.
One can then start with the abelian category of S-modules. Out of this one can construct
two categories of complexes. One which consists of complexes with bounded cohomology
and one which consists of perfect complexes, namely complexes that are quasi-isomorphic
to bounded complexes of free-modules. One can then pass to the derived categories to
obtain D*(S) and D}, .(S) respectively. Intuitively we see that a matrix factorization only
sees the tail of complexes of free S-modules, infact, it was shown in [9] that [MF(WW)]
is equivalent to D°(S)/Db,.;(S). The equivalence and the quotient are intended in the
setting of triangulated cateogories. This is a notion that formalizes the structure of the
derived category, we refer to e.g. [2] for a light introduction to the topic. It was shown
in [76] that the notion of category of matrix factorizations can be globalized, by replacing
D*(S) with D*(X) where X is possibly singula and likewise D, ;(S) is replaced with
Dfmf(X ) which consists of complexes of coherent sheaves which are quasi-isomorphic to
bounded complexes of holomorphic vectorbundles. The crucial observation is that if X is
smooth, D*(X) = D7, ;(X), therefore the quotient exactly detects the singularities of X
and is thus called the derived category of singularities of X.

We will now focus on general algebraic structures involved in the study of deformations

of open-closed TQFT’s arising from general twisted N = (2,2) QFT’s. In particular

2We omit the exact restrictions on X and refer to [76].
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we will be solely interested in the classical genus zero setting, that is on the disk with
both boundary and bulk insertions paralleling the discussion in 2.6, The mathematical
structures required to tackle deformations are much richer than those provided by the
derived category, indeed the derived category only describes first-order deformations.

4.4 Spaces of open-closed TQFT’s on the disk

This section is primarily based on [42], however we also refer to [43] 44] for earlier develop-
ments. The aim of this section is to provide a synthetic description of the general algebraic
structure of spaces of open and closed TQFT’s on the disk arising from twisted N = (2,2)
CFT’s. The global conformal/holomorphic automorphisms of the N = (2,2) super-disk,
are constituted by the global part of a diagonal N = 2 algebra as discussed at the beginning
of the previous section. Therefore, as in the twisted theory we are in the Ramond sector,
the vacuum state of the super-disk must be invariant under the global N = 2 group. We
relax invariance on the global R-symmetry, and concentrate on the generators:

Qa G*h GOa él?

where ~ indicates a diagonal left- right- generator. In the case of the B-twist G = G +G".
The boundary chiral primary fields of the untwisted theory are now identified with [@), -]
cohomology, while boundary deformations of the theory are defined analogously to the bulk
case. They are implemented by adding to the bulk-boundary action, an F-term which is the
integral of the boundary chiral field whose lowest component is a chiral primary. Denoting
the physical fields in )-cohomology by 1),, then the boundary interaction between ¢, and
tx1 is deformed by the insertion of:

Pexp (W AF(1,)) = Pexp (u / e, wa]) . (4.4.1)

tg

For the boundary descendant one uses the notation:

YW = dt[G 1, ]

analogous to that for the bulk descendants (2.6.3). The parameters u® are the boundary
moduli. As we shall see in a moment these should not be assumed to be commuting
variables. The boundary deformed TQFT is defined on the same space V,, while the
deformed non-commutative Frobenius structure is encoded in:

No(Vags thu(Vay @ Vay)) = (Yaq (to)ha, (1) P exp (u / ” wé”) Vay (t2)) disk- (4.4.2)

The points ty, t; and t, are chosen at will thanks to the global conformal SL(2, R) invariance
of the disk, i.e. of the vacuum. In particular 7, is manifestly flat. We observe that due
to the non-commutativity of the boundary algebra, the deformed product pu, cannot be
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associative and neither will it be compatible with 7,. Thus boundary deformations do
not strictly describe a family of open TQFT’s. One can however cure this problem by
choosing the moduli u® to be graded commutative and by replacing v,, by u*),,. In this
way however one loses all of the non-commutative structure of open amplitudes. We will
instead be interested in honest boundary amplitudes. Declaring u® to be the generators of
a free algebra:

Clu", =@,

one can encode the amplitudes as the coefficients in the Taylor expansion in u® of (4.4.2)).
Compatibility of the product with the metric is replaced by the more sophisticated Ward
identity describing the invariance of the vacuum under G_;, Gy and Gj:

P [0l [0 w0,
= caprestns P [ [l [0 b, 0,)

where we have introduced the tilde degree @ = |a| + 1. Now one can use the cyclicity
property of the topological metric:

wab 7= olthat) = (=) (y15) = (=1,

which simply reflects the closure of the circle, to obtain:

WP [0l [0 0,)

:( 1)am a1+-+am—2)+|am|(Go+am— 1) w wao /wal /waz /w((liz 2wam )

The above identity is also referred to as ciclicity of TCFT amplitudes.
Associativity of the boundary deformed product is instead replaced by the more subtle
Ward identity describing the invariance of the vacuum under Q:

<[Qawao¢alp/w¢%) o /lﬂ(gg_llbam]) =0

The adjoint action of () alternatively produces terms of the form:

0

[Q> [é—l,%i“ = %

Va, -

These terms are part of a product in a nested integral, that is an integral over a simplex.
In rewriting the sum of terms given by the action of [@, ] in terms of the TCFT ampli-
tudes, one obtains various contributions from the boundary of the simplex, in fact also the
higher boundaries, that is the boundaries of the faces of the simplex down to vertices, be-
cause of singular contact terms corresponding to operator products of descendants. These
boundaries correspond to configurations where two or more open string vertices coincide.
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The singular, contact, terms imply that as these points meet they “bubble” off to form a
new disk giving rise to a lower order amplitude. A careful analysis of this bubbling was
carried out in [42]. To describe the resulting Ward identity we shall introduce the Taylor
coefficients of the deformed product fu,:

?n(wm Q- ® ¢an) _ (_1)&1+...+&nwab<wb¢alp/wc(é) .. '/¢éi)_1¢an>wa-

The choice of complicating the notation of the higher products by supplementing them
with a ~ was made to be consistent with the formalism of [13]. The Ward identities of @
then read:

Z Z (—1)&1+"'+ak’1Tn—m+1(¢a1 R R rm(wak KR--® wakerfl) R ® wan)

m<n k<n+1—m
(4.4.3)
=0. 444

The above identity means that the higher products r, define an A, -algebra, more precisely
a minimal A.-algebra, namely one where the first non vanishing product is r,. This is
a special case of a strong A, -algebra where the first non-vanishing product is 1, which
distinguishes itself from a weak A, -algebra that has a non-vanishing ro. If we consider an
indefinite number of branes, we must speak in terms of A, -categories.

In terms of the the higher products, the cyclicity condition reads:

w(wam Tn(¢a1 - ® wan)) = <_1)an(d0+m&n71)w(¢an7 Tn(d%u - ® 77Uan71))' (445)

In the terminology of [19], a cyclic minimal A..-algebra is called a Calabi- Yau Ay -algebra.
The Calabi-Yau property is mimicked by the non-degeneracy of w. In the language of A.-
categories, the existence of a non-degenerate pairing implies an extension to the A..-level
of the trivial Serre functor in the simpler derived category.

Finally we shall consider including bulk deformations of the open theory thus com-
pleting the structure of open-closed TCFT on the disk. The picture that should come to
mind is that of a space of closed TQFT"s fibered by categories of purely open TQFT’s. In
including bulk deformations, one notices in particular that amplitudes of the form

<wao ¢2>

are allowed as they completely fix SL(2,R) invariance, therefore a general bulk perturba-
tion, perturbs the purely open amplitude by the addition of:

O Ky R (ti /D ¢>§”)>.

Accordingly one has deformed higher products . The Ward identities for G_1, Gy, Gy and
() are now tantamount to the property that the deformed products constitute a, possibly,
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weak cyclic A, structure. The full bulk-buondary TCFT on the disk is then encoded in
the bulk-boundary superpotential:

1

(U T @ @

Weff(“? t) = Z

n

The label ef f indicates that in an effective field theory description of string theory, W,y
serves as an effective superpotential in a four dimensional N = 1 gauge theory. From
the stringy perspective, the adjective superpotential is motivated by the fact that branes
preserving the scalar () supercharge precisely correspond to the critical locus of Wy;.
We will describe this in the following section and in later sections we will gain a better
mathematical understanding of this object.

We remark, that the amplitudes corresponding to r:

(at™ ds, exp (ti /D ¢§2>)> = (s (4.4.6)

are tadpoles and are cancelled in string theory by including unoriented surfaces. The pres-
ence of tadpoles implies that, in particular, open three-point functions in the bulk-deformed
vacuum, are position dependent. Thus tadpoles signal the breaking of global conformal
invariance of the vacuum. Within this framework, tadpoles can be cancelled by solving a
Maurer Cartan equation via a weak-A.-isomorphism (see section . Regardless of the
presence of tadpoles, the crucial fact we learnt in this section is that bulk deformations of
open TCFT’s are to be viewed as deformations of the corresponding cyclic A, -structure.
It was proved in [19], that the converse to this statement is also true, namely that the
first-order deformations of the minimal A..-structure (without the cyclicity requirement)
associated to an open TCFT build a closed TCFT. The latter closed TCFT is the universal
closed sector of the open TCFT. We will understand this concretely in the case of affine
Landau Ginzburg models in section [5.2
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Chapter 5

Investigations on open-closed
topological conformal field theory

5.1 Formalizing deformations of TQFT’s on the disk

The aim of this section is twofold. Apart from giving a workable mathematical framework
for the concepts introduced in the previous section, we will start conveying the link be-
tween the off-shell and on-shell descriptions of the deformation theory of open and closed
TCFT’s. While in the former approach the deformation theory is governed by a minimal
Aso-structure, in the latter it is governed by a simpler differential graded associative struc-
ture. These are both special cases of (weak) A, structures (see the seminal work of [90, O]
and [53] for a concise review). After having defined these properly we will show how to
obtain the on-shell structure from the off-shell structure. The central result is the minimal
model theorem [70] for which we will present a concise proof. Subsequently we will turn to
the formal description of deformations of A, structures themselves. By combining the two
we will have thus provided all the necessary ingredients to tackle the problem of classifying
and computing open and closed deformations on the disk.

5.1.1 A,- and L.-algebras

A weak As-algebra is a (Z- or Zs-) graded vector spacd] A = @, A; together with a
codifferential 0 of degree +1 on the tensor coalgebra

Ta=EP AL

n=0

The vectorspace A is a space of open strings. Later on we will keep this notation for the
space of off-shell zero modes V,//=shell,

"'We always work over the field C.
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A tensor coalgebra is dual to the tensor algebra. Instead of an associative product, it
is defined by an associative coproduct

n

Aa®...Qa)=) (m®..00) 1 (a1 ®...0a).

J=0

A codifferential is a special case of a coderivation. The latter is an element ® € End(Ty)
that satisfies the co-Leibnitz rule w.r.t. A:

Ao® = (®®idy, +idy, ® ) o A. (5.1.1)

We denote the space of coderivations Coder(T'A[1]). A codifferential J is a coderivation

that squares to zero:
0*=0. (5.1.2)

To see that the definition of A.-algebra given here is equivalent with the one given in
(4.4.4), we decompose the codifferential as

0= Y o where 0 € Hom(A[1]®", A[1]*").

m,n=0

The property that 0 is a coderivation implies that all the homogeneous maps 9, are
determined by the smaller set:

r =00 s A[LP" — A[L].

Indeed applying the co-Leibnitz rule (5.1.1) one finds:

n—1
o =Y idY @0, ., @idy . (5.1.3)

J=0

Thus the A, structure encoded in 0 is equivalently described by the maps r,,, for which
the condition ([5.1.2)) translates into the bilinear constraints

> rajo <1d§f1] 7 ® idﬁfﬁ‘i‘”) =0 (5.1.4)

1,720, 1+j<n

for all n > 0. We thus recover . We write 0, for the codifferential determined solely
by r,,, and we have the decomposition 9 = _;On.

A weak A-algebra (A, 0) is unital if there exists an element e € Ay such that ry(e®a) =
—a, ro(a ® e) = (—1)% for all homogeneous a € A[1], and all other products r, vanish if
applied to a tensor product involving e.

Recall (see that the off-shell open string space V.>//=*"ll is naturally endowed
with an associative product “-” and it is also a complex whose differential d is compatible
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with the algebra structure. In the framework of A, algebras, this is the special case of a
strong A..-algebra whose only non-vanishing higher maps r,, are r; and r:

d=ry, a-b=(=1)"ry(a®D)
Indeed the A, constraints reduce to:
d(a-b) =d(a)-b+ (=D -d®), (a-b)-c=a-(b-c).

In studying the deformations of DGA’s we will encounter tadpoles just as in the on-shell
case (4.4.6), deforming DGA’s to weak DGA’s, that in addition have a map ro : C — A[l].
Denoting C' := ry(1), this is subject to the A, constraints:

dC =0
and deforms d to a curved differential:
d* = ['7 C]

unless C' is in the center of A.

From the point of view of DGA’s, an arbitrary A,-algebra is a “DGA up to homotopy”.
In particular r, is in general not associative, but it is only up to a homotopy w.r.t. r; defined
by r3. In the case of a minimal A, algebra, ry is associative on the nose as r; = 0.

We now would like to understand how, given an (off-shell) DGA, we can construct an
on-shell minimal A..-algebra. The latter will be called a minimal model for the DGA. For
this we need the notion of a map between (weak) A, algebras. One refers to such a map
as an A,,-morphism.

Given two weak A.-algebras (A, 0) and (A, '), a (weak) An-morphism between them
is a morphism F' € Hom(T'4, Ta:) of degree 0 between the associated codifferential coalge-
bras, i.e.

AoF=(FF)oA, Fod=9doF. (5.1.5)

If we decompose

F= )Y Fp where F=1, F}¢cHom(A[1]*" A'[1]°")

m,n=>0

then the first equation in (5.1.5)) implies that

n 1 1
Fr= Y F®..0F,

Jit.tin=m

can be expressed in terms of the maps F}. We call F' a weak A,-isomorphism if F} is an
isomorphism of vector spaces. A weak A.-morphism F' between strong A..-algebras (A, 7,)
and (A’,r!) is called an A, -quasi-isomorphism if F} induces a vector space isomorphism
between the cohomologies of r; and |, and it is called a (strong) A..-morphism if F! =0

whenever n > m.
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We can now tackle the problem of transporting the off-shell DGA on-shell. In fact
we will give a proof of the more general minimal model theorem that answers the more
general question of transporting a strong A..-algebra (A, 9) to a quasi-isomorphic minimal
A-algebra (H,d) on a apace of harmonic representatives H of the cohomology H,, (A).

For this we need a vectorspace decomposition:

A=Ho®BoL

where B = Im(r;) and L is a complement of Ker(r;) specified by a choice of propagator
G € End(A) satistying g = G where mg projects onto B. Then G specifies L through
7w, = Gry and lastly H is specified, by exclusion, by the homotopy identity:

T‘lG + G’I“l = ldA[l} — TH.
Finally we can state the minimal model theorem.

Proposition 5.1.1. Let (A, 0) be a strong A..-algebra with r;-cohomology H. There
is a unique coalgebra morphism F' € Hom(7Ty,T4) and a unique minimal A.-structure
0 € Coder(Ty) that satisfy the equations

OF = FO, (5.1.6)

=0,

Fl =y : H[1] — A1], (5.1.7)

Fy=-GY 0F}. (5.1.8)
k=2

Proof. First we will show that the condition that F' be an A,-morphism follows from the
conditions above, then we show that 9 is indeed a codifferential. Since F' is a coalgebra

morphism, ([5.1.6) reduces to

n n—1
Oy +> O FL =Y FloF
k=1

=2

for all n > 1. We rewrite the above set of equations by splitting them into three parts:

"N -
wH(lz:;a}Fn> =9, (5.1.9)

- (a}Fg + Za;Fg) —0, (5.1.10)
=2
n n—1 "
WL<Z@}F7§—ZF,§85) ~0. (5.1.11)
=2 k=1
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The first immediate observation is that @ is uniquely determined by (5.1.9). Equa-

tion ([5.1.10]) follows by employing (5.1.8) and (5.1.7]), and to show (5.1.11)) we compute

n—1 k

WL<zn:8}Fl ZF o) = WL(ZalF’ LGy N o)
=2 k=2 r=2
n—1 k

—m(Z@ Fl+GY S 0lpFr) =0,

k=2 r=2

In the first step we used (5.1.8)), the second step is the induction step which allows us to

commute 0 through F', and in the last step we used 9% = 0.
To show that 9* = 0 we note that

n k n

S8 = > (S 01FIG) - ZWH<i8}8,l€Ff> 0.
k=1

k=1 1=2 k=1 1=2
O

The minimal model thus constructed is called a Merkulov-type minimal model after [70].
When (A, 0) is a DGA, we see that the minimal model is built out of the basic building
blocks Gry, namely trilinear vertices. When A is supplemented by an off-shell pairing
(-, )os : A® A — C, the higher products of the minimal models can be understood as
the trees in the Feynman expansion of the classical limit of a formal Chern-Simons theory
with action:

1 1 of f—she
S oc +§<\If,xp-\p>oszwef;” hell.

where U is known as the string field, namely it is an element in Afu| with the formal
expansion:

U, dW),,

U = quu”,

where the u’ are the open deformation moduli dual to a;. The off-shell pairing needs
to be non-degenerate on d-cohomology and cyclic describing off-shell amplitudes on the
disk. Moreover it has to restrict to the on-shell pairing. Then G is chosen accordingly,
giving rise to a cyclic minimal model. In the case of the B-model the on-shell paring 7,
lifts trivially off-shell, while in affine Landau Ginzburg models it does not. In some way,
while Landau Ginzburg models have a much simpler structure than B-models regarding the
algebra of open observables, their complexity is hidden all in the structure of the off-shell
pairing which instead is trivial in B-models. In the last section we will provide a formula
for the off-shell pairing in arbitrary affine Landau Ginzburg models thus completing their
string-field theory description. The correct setting is that of non-commutative geometry
where the notion of an off-shell pairing as described above is replaced by that of a flat
homologically symplectic form. In Landau Ginzburg models, we still have a homologically
symplectic form which however is not flat. This means that the string field theory action
is not of the simple Chern-Simons type, but has higher order terms.
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After this short aside, we stress in particular, that the fulfillment of cyclicity of the
minimal model all resides in the particular choice of G. Finally The Merkulov type minimal
model for a DGA clarifies the role of the A, algebra in the deformation theory of branes.
If one were to study this directly in analogy to the discussion of for closed strings, the
equation one would like to solve is:

1
(ri +a)* =ra+ 5{04, ay =0, (5.1.12)

where « must have the same degree as ry. Contrary to the case of closed strings which
are perturbatively unobstructed, deformations of open strings are generically obstructed.
That is, for an arbitrary deformation o

Tr{a, a}

will not necessarily vanish, making (5.1.12]) inconsistent. Perturbatively, (5.1.12]) is pre-
cisely solved by a Merkulov type minimal model. One considers a general first-order
deformation a(!) = a,g )u , where now u* are graded symmetric moduli and clearly a,g)

furnish a basis of representatlves H,,(A). Then one observes that:
o = Fl (o))

yields a solution, provided the obstructions vanish. The obstruction is precisely
Z 81 (1) ®n

We thus observe that restricting to graded commutative moduli was not an assumption, as
the deformation problem is only sensitive to those. More importantly we see, as mentioned
in the previous section, that the obstructions are precisely

OuiWerr,

where W,y is the generating function of connected on-shell open string amplitudes on the
disk, or alternatively, the generating function of connected string field theory Feynman
diagrams. We remark that the same argument applies to the deformation related to more
general strong A..-algebras. However it is worth mentioning that a constructive result of
[62] ensures that any strong A..-algebra is quasi-isomorphic to a DGA, thus reversing the
minimal model theorem. Hence such a DGA is called an anti-minimal model. This means,
in particular, that given any open TCFT there is always an off-shell model described by
a DGA putting on firm ground our explanations by example in section [£.2] There is an
analogous result ensuring the same for closed TCFT’s. There the A, structure is replaced
by a L. structure.

A (weak) L -algebra is to a Lie algebra what a (weak) A.-algebra is to an associative
algebra (hence the names). Thus, given a (Z, or Z) graded vectorspace V' one replaces the
tensor algebra by a graded symmetric tensor algebra Sy :

Sy =Ty/(u@v— (—=1)"y @)
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for homogeneous v and v, and the product of n homogeneous elements becomes:

vIA . A, — Z Z EG:v1,eUn (Ug(l) VANPIRAN Ua(j)) ® (Ua(j—i-l) VANPIRIAN Ug(n)),
Jj=0 o€Sh(j,n)

where Sh(j,n) is the set of permutations o of n elements that satisfy o(1) < ... < a(j)
and o(j +1) < ... < o(n), and the sign €4y, 0, is defined via vyq) A ... A Vo) =
Eoivt,eon V1 N oo AN Uy

With this preparation a weak L..-algebra is a graded vector space V together with a
codifferential ? of degree +1 on Sy. Again, the fact that 9 is a coderivation allows us to
equivalently consider a family of maps ¢, : V[1]* — V[1] with constraints coming from
the condition 9% = 0. For more details we refer e. g. to [56, 57].

In particular the analogous case to a DGA is a DGLA (differential graded Lie algebra)
where the maps ¢y and ¢,, for n > 3 all vanish:

n

d=10y, [u,v] = (=1)%(uAv) (5.1.13)
and the L., constraints read:

[w, 0] = (=) [o,u], d([u,v]) = [d(w), o] + (=1)"[u, d(v)],
(=), o, w]] + (=)Mo, fw, u]] + (=), [u, o] = 0.

We observe that as the off-shell space of open string zero-modes is naturally a DGA, the
off-shell space of closed string zero modes is a DGLA with bracket the Schouten-Nijenhuis
bracket . Similarly to the open sector, the on-shell closed TCFT carries a minimal
L, structure. Contrary to the case of the open sector where the A, structure could not
simply be deduced from a deformation theoretic approach (due to non-commutativity),
in the closed TCFT case, we don’t need to analyze the Ward identities to understand
the presence of an L.-structure. Indeed, if we adopt the definition of a TCFT as one
arising from a (twisted) N = (2,2) CFT, then the associated TQFT observables are by
definition @)-cohomology classes of a larger space of vertex operators, which, once endowed
with ), constitute a DGLA. Moreover, H is a unitary representation of the Virasoro
algebra, therefore one has a canonical choice for the propagator of (), which coincidentally
in that framework is precisely called G/Lg, where G in that context is the conjugate
supercharge. Hence Hjg (End(#)) is automatically endowed with the obvious Merkulov-
type Lo algebra which is defined in the completely analogous way as its A, cousin.

Finally we can now remark, that in the purely open-deformation theory, the surviving
part of the minimal A, structure is precisely the L..-algebra that is induced by the pro-
jection Ty — S4. The interesting fact is that not all L..-algebras arise in this way. This
is in particular valid for a general closed sector.

Our next task is to understand closed string deformations of open TCFT’s. In the
previous section, we understood that these are deformations of the minimal A..-algebra O
to a, a priori, weak one:

d+9,
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where now we understand that § € Coder(T}) of degree 1 and satisfies the Maurer Cartan
equation:

@+57 =105+ 5.5 =0. (5.1.14)

Notice that Coder(Ty) is indeed a Lie algebra, but it is not an associative algebra. Studying
bulk deformations of open TCFT’s means mapping the DGLA of the off-shell bulk sector
or its minimal model, to the DGLA

(Coder(Ty), [57 1[5 D)-

Intuitively one might think that the correct notion of map is a map between DGLA’s,
however this turns out to be too restrictive. Again one has to work in the larger L, setting,
and the right notion is that of L,.-morphism, the definition of which can be deduced from
that of its A, cousin. The central very simple result that we will prove momentarily,
is that given two arbitrary L.-algebras, an L.,-morphism between them maps solutions
of the associated Maurer Cartan equation of the first to solutions of the Maurer Cartan
equation of the second. In particular, if the map is a quasi-isomorphism, then it maps the
deformations faithfully up to gauge transformations. In detail, for an arbitrary L..-algebra
(V, £,) its Maurer-Cartan equation reads

1 An
}:mamS):o
n=>1

and we denote by MC(V,{,,) its space of formal power series solutions 6 € V] modulo the
action of the group generated by gauge transformations

5~+5+§: (¢ A 3MD)

for all ¢ € V4. The promised important result of [55, [71] is the following.

Proposition 5.1.2. Let F': (V. {,) — (V',£)) be an Lo,-morphism. Then

§—> j{: E, (6" (5.1.15)

n>1

maps elements in MC(V, ¢,,) to elements in MC(V’, ¢). Furthermore, if F' is an L.-quasi-
isomorphism, then (5.1.15)) is an isomorphism.

Proof. Denote by 0 the coderivation determined by the higher maps ¢,,. Consider a weak
coalgebra morphism M € End(Sy) with the properties My = 6 and M| = idyyy, where §
is a solution to the Maurer-Cartan equation for 9. Then we have M{ = L6 and the
Maurer-Cartan equation for 9 can be rewritten as

(0M)y=0.
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Now let 0" denote the coderivation corresponding to the products ¢/,. We have

M) = (FoM)} = 3 Fi@M); =0

k>1

where the last equation follows from the fact that (0M)f is uniquely determined by (0M){.
We have thus shown that &' = (FM)] solves the Maurer-Cartan equation for ?’. In
expanded form this reads

=D BMi=) ! —F,(5™).

n>1 n>1

If ' is a quasi-isomorphism, then it is an isomorphism between the spaces of first
order deformations, and as it admits homotopy inverses, this isomorphism extends to all
orders. 0

We observe that solving ((5.1.14)) up to gauge transformations only to first order is the
same as computing the cohomology

HH*(H,0) = Hy . (Coder(Ty))

of the Hochschild cochain complex (Coder(Ty), [3 -1), known as the Hochschild cohomol-
ogy. In this sense Hochschild cohomology HH®(H, 8) classifies deformations of (H, 8)

There is an important subtlety in the definition of the Hochschild cochain complex on an
A algebra (A, 0). As we saw in our discussion of equation (|5.1.3)), coderivations of T4 are
isomorphic to collections of multilinear maps. However, one may either consider infinitely
or finitely many multilinear maps, so there are actually Hochschild cochain complexes of
the first kind and of the second kind respectively[]

Coder(Ty)" = H Hom(A[1]®", A[1]),

n=0
Coder(Ta)" 2 @5 Hom(A[1]*", A[1]) .
n=0
Both complexes are endowed with the same differential [0, -], but they have different

invariance properties: Hochschild cohomology of the first kind is invariant under (strong)
Ao-quasi-isomorphisms [58], while Hochschild cohomology of the second kind is invariant
under weak A..-isomorphisms [78].

In the following we will give a formula for the general solution to . The first
part of our strategy is pertinent only to arbitrary affine Landau Ginzburg models, while
the latter part is applicable to any open-closed TCFT. We stress that, at first order, of the
two cohomologies, it is Hochschild cohomology of the second kind we will be computing.

2There is a much deeper origin of the two different kinds of Hochschild complexes, see [78, [80]
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5.2 Bulk-deformed Landau-Ginzburg models

In an affine Landau Ginzburg model with potential W, the notion of bulk-induced defor-
mations of the on-shell boundary space (H,0) relies on the existence of an L.-morphism

L : (Tpoty, [=W, -Jsns [+ - Jsw) — (Codex(Ti), [0, -1, [+ -]) (5.2.1)

from the DG Lie algebra of off-shell bulk fields to the DG Lie algebra of coderivations on
the boundary side. A bulk-induced deformation is then defined as the image under L of a
deformation of the pure bulk theory. In this section we give an explicit construction of L.

The map splits naturally as the composition of two L..-morphisms that we
discuss in subsections [5.2.1] and [5.2.2] respectively. The first is an L.-quasi-isomorphism

(Tooty, [=W, “Jsns [+ - Jsn) — (Coder(T4), [0, -1,[-, -]) (5.2.2)

and thus identifies the two deformation problems. It can be viewed as a “weak” version
of Kontsevich’s construction for (local) deformation quantisation, or rather its complex
cousin. The second L,.-morphism

(Coder(T4), [0, -1,[-, -]) — (Coder(Ty),[d, -1,[-, -]) (5.2.3)

transports off-shell deformations on-shell and can be viewed as the L.-formulation and
enhancement of the homological perturbation lemma.f]

5.2.1 Weak deformation quantisation

The bulk data of the affine Landau Ginzburg model is the ring R = Clz!,--- 29, a
potential W € R with an isolated critical point (see the discussion in section . The
boundary data (see section is a matrix factorization D € Mat(R, 2r x 2r).

As follows from our earlier discussion, bulk deformations of B-twisted Landau-Ginzburg
models are solutions v € T}, of the Maurer-Cartan equation

1[7,7]31\1 =0, (5.2.4)

[_W7 fY]SN + 2

where the Schouten-Nijenhuis bracket on 7}, is given by

[GA - AGn & A NG SN—ZZ 171G, €]

i=1 j=1
OACANGANGA A A NG A NG ANE A NG

3As we are concerned with the Hochschild cochain complex of the second kind, the map is a
quasi-isomorphism, while the map is generically not. However, if we used the Hochschild cochain
complex of the first kind, would always be a quasi-isomorphism, but generically not . See
also remark on Hochschild cohomologies of first and second kind in
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and
m

A A G Flsn =D (1'GAG A AGa NG A Al
i=1
for ¢;,&; € T(X, TMOX) and f € T'(X, Ox).

We restrict our attention to formal power series in a set of parameters t, i.e. v =
> i1 t'4@ . This assumption allows to solve perturbatively. At first order the
equation reads

[~W,7Wgn =0, (5.2.5)
and hence we have, up to gauge transformations, y(!) € J ac(W), the on-shell bulk space.
As already mentioned in [2.6] one simplicity of affine Landau-Ginzburg models lies in the
fact that the solutions of are automatically solutions of the full Maurer-Cartan
equation, because the Schouten-Nijenhuis bracket of two functions vanishes. Having thus
fully solved the deformation problem in the bulk sector, the problem of computing bulk-
induced deformations reduces to that of transporting bulk deformations appropriately to
the boundary sector. The first main result in accomplishing this task is the following,
which at its core is a weak version of deformation quantisation.

Theorem 5.2.1. There is an L.-quasi-isomorphism from (o1, [=W, - ]sn, [+, - ]sn) to

(COder(TA)J [87 ’ ]7 [ ) " ])
To understand this result a crucial role is played by the curved associative algebra
(A,00+ 02) with 9y =—-W -e,

where e denotes the identity matrix of the same size as D. In the following we will write
0 as 01 + 0y to distinguish it from Jy + 0d,. We proceed to give a constructive proof of the
above theorem. For the purpose of clarity we shall split it into the following three parts.
Notice that we proceed in backward steps.

Lemma 5.2.2. There is an L.,-quasi-isomorphism
(Coder(Ta),[0o + 02, -], [+, -]) — (Coder(Tx),[01 + 02, -], [+, - ])-

Proof. We define a weak coalgebra isomorphism T (for off-shell “tadpole-cancellation”,
i.e. T is a weak A,.-isomorphism to a non-curved A..-algebra) via its fundamental maps
Ty = —D and Ty = id 4p3), and we compute

[(81+ 82) o T)g = [D,—D] + D(—=D) = =W - e = [T 0 (9 + D)1y,

(014 85) o T} = [D, -] — 93(D ®@idapy + idapyy ® D) = 0= [T o (0p + )] ,
(O +3o) o T)y =05 = [T o (dy+ D)3

Hence we have (0) + 02) o T = T o (0y + Oz), i.e. T is a weak Ay -isomorphism from
(A, 00 + 02) to (A, 01 + 02). The L-morphism is then given by the inverse adjoint action
of T'. That it is a quasi-isomorphism follows from the fact that Hochschild cohomology of
the second kind is invariant under weak DG isomorphisms [78§]. O
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The next step in the proof of theorem is an L..-version of Morita equivalence:

Lemma 5.2.3. There is an L,.-quasi-isomorphism
(Coder(Tx). [0 + 0z, -1, [+, -]) — (Coder(T), (8o + 0, -] [+, -]).

where 50 + 52 is the codifferential on Tx induced from 9y + 9s.

Proof. First we construct the cotrace map C{ = cotr : Coder(Tg) — Coder(T4), then
we show that the coalgebra morphism C defined by C' = C} is the desired L.,-quasi-
isomorphism. The cotrace map is a slightly modified version of the case for ungraded
algebras, see e.g. [65]: for ® € Coder(Tg) we define cotr(®) € Coder(T4) via cotr(®)} =
®} - e and

(cotr (@), (a1 ® ... ® m)),, = Z @), (0" ar)k, @ ... @ (0am)i,,_11)

i1 yeenyim—1=1

where ¢ is the unique matrix that for homogenous elements a € A satisfies ca = (—1)!%ao,
and 2r is the size of D. It is then straightforward to show that

[cotr(Py), cotr(Pq)] = cotr([Py, Pa]), (5.2.6)

i.e. cotr is a map of Lie algebras. In order to show that C' is an L.,-morphism it then
suffices to check that cotr is a map of complexes. This however follows immediately from

(5.2.6) by noting that

80 + 82 = COtI‘(é\O + 52) .

That C{ is indeed a quasi-isomorphism follows from a spectral sequence argument and will
be shown together with the next proposition. [

Now we arrive at the last and hardest step in the proof of theorem |5.2.1]

Proposition 5.2.4. There is an L, quasi-isomorphism from (Tpo1y, [-W, - ]sn, [+, - ]sn) to
(Coder(TR), [0y + D2, -1, [+, - ])-

Fortunately we can build on Kontsevich’s result on deformation quantisation [? |, which
says that the above is true for the case W = 0. More precisely, Kontsevich’s result concerns
polyvector fields on R?, but as we are dealing with affine space, his result extends trivially.

Before delving into the proof of proposition [5.2.4] let us briefly recall the aim and
method of deformation quantisation. One is interested in quantising a classical system
described by a phase space M (a real smooth manifold, for simplicity consider M = R?) or
alternatively rather by its commutative, associative algebra of observables (C*°(M, R), -).
Quantising in this context amounts to deforming the multiplication “-” to an associative,
but not necessarily commutative product “+”, in order to pass to the algebra of quantum
observables (C*°(M,R)[h],*) while postponing the task of representing it on a Hilbert
space. Below we will drop formal parameters like A from our notation.
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To rephrase the problem in a more compact notation, we denote “-” by 03 so that
the deformation problem becomes that of solving the Maurer-Cartan equation of the DG
Lie algebra (Coder(Tes(am,w)), [02, -], [+, -]). Kontsevich’s solution is to construct an Le-
quasi-isomorphism

K (F(Mv/\TM)v['v ']SN) (COder(TC‘X’ M]R) [827 ']7['7 ])

Thus by proposition [5.1.2] every perturbatively deformed product “x” originates from a
Poisson structure on M, i.e. a degree 2 polyvector field o which satisfies the Maurer-
Cartan equation [a, alsy = 0.

As already observed, we can view our theorem [5.2.1] as a generalisation of deforma-
tion quantisation: endowed with a non-trivial differential [—W, -], the DG Lie algebra of
polyvector fields now governs deformations of a DG algebra, and not just a commutative
associative one.

The proof of proposition splits into two parts. First we show that the L..-
morphism K can be extended to the case W # 0, then we show that it is still a quasi-
isomorphism.

Proof. We start by recalling Kontsevich’s construction. The L.-morphism K is given by

(K}l("yl VANV "}/n))}n = Z wr Up

where G(n, m) denotes the set of certain directed graphs I' to which in turn we will associate
certain weights wr € R and multilinear maps Ur on R[1]. To describe these, consider the
unit disc D in the complex plane. Choose m marked points ¢, . . ., g5 (which we associate
with functions fi, ..., fm) on the boundary 0D and n marked points py, ..., p, (which we
associate with polyvector fields v1,...,7,) in the interior. These m + n marked points
coincide with the vertices of the graph I' € G(n, m).

The possible edges between vertices are constrained by the following rules: (i) for every
polyvector field 7, there are precisely 75 edges ey, .. 71“ starting at pp and ending on
distinct marked points different from py, (ii) each marked point on the boundary has
zero outgoing edges and at least one incoming edge, (iii) the total number of edges is
dim(C™™) = 2n +m — 2 > 0, where we denote by C™™ the moduli space of the above
described marked points on the unit disc with a choice of orientation. Here we run clockwise
around the circle and the orientation is well-defined by omitting the point i € dD. This
special point is to be viewed as representing the “out-state”.

To construct the map Ur € Hom(R[1]®™, R[1]) for fixed polyvector fields 71,...,Vn,
one views the edges ending on a vertex as the action of the coordinate vector fields on the
function associated to the vertex and then takes the product over all such actions. More
precisely, if we write

v = ,yji,y..ji,% aji,l VANAN 82%
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and denote by I'y_,; the set of edges ending on vertex k, then we have

Ur(fi® ... fn) = Z[H( IT on)ni I)I%)HH( [T o)1)

i=1 e€lq_; ecle 3

where the sum is over all maps I : I'y — {1,...,d}.

The weights wr are certain integrals over the moduli space C™™. In order to understand
these, consider for every edge e}, the angle map . : D x D — (0,27] measuring the
(clockw1se) angle between the edge e and the line connecting pj, to the out-state at 1E] If
we denote by ¢ : C™"™ — D*™ x 0D*™ the canonical embedding of the moduli space, then
the weights are given by

1 n
Wr = ————— d A...ANd . 5.2.7
T (27T)2n+m—2 /L(Cn’m)k/:\l< Spe’f (Pe%k) ( )
We are now in a position to start with the proof proper. Let 5% = [50 + 52, -] and

define 01 via dL(®y A Bs) = (—1)1[®;, By]. We want to show that K continues to be an
L.-quasi-isomorphism also in the curved case, i.e.

KN4+ KL =9lK) 0K,

where we denote the DG Lie algebra structure on T}, by the maps [;,,. If we define the
coderivation ¢ given by ¢! = ¢l = {0y, - }, then by Kontsevich’s result the above reduces
to

Kll =cK

which in expanded form reads

n

STEDES T E A AW A AL @ f)

k=0

=S EDEA A A (i ® @ i@ (W)@ @ f). (5.28)

=0

We will now analyse the right-hand side to find that it is the same as the left-hand
side; see figure for a visualisation. Fix a graph I' € G(n,m + 1) and consider the first
summand on the right-hand side of . Pick an edge e} ending on —W and carry the
corresponding differential form d¢e; to the very left of the integral . This results
in picking up a sign g = (—1)2:=1 7% (—1)"~1. Now consider the [-th term in . This
differs from the first term by a sign (—1)" which corresponds to the determinant of the
Jacobian of the map transforming (qi,...,¢n+1) = (¢2,-- -, @, q1, - - -, @ms1) contributing

4More precisely the angle is measured with respect to the hyperbolic metric, and the edges are the
associated geodesics. This however does not influence our discussion.
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Figure 5.2.1: A graph contributing to K3 (y1 A... A7) (i @ (=) ® fo ® f3s @ f4) (from
[13]).

to the weight. This sign cancels the sign present in the sum, therefore performing the sum
over [ yields an integral of the angle ¢.r over (0,27] which decouples from the rest and
yields 2. This is then absorbed by a 27 in the denominator of the prefactor of .
We are then left with an integral over C'" . The sign p is the product of the sign present
on the left-hand side of the equation times the sign coming from the Schouten-Nijenhuis
bracket, and we see that indeed holds true.

We will now prove that K7 is a quasi-isomorphism. Consider v € T}y of degree 7 = n.
By construction (K{(7))'(fi ® ... ® f,) is non-zero only for m = n and is given by

(LA © - ® fu) = o0 3 sian(o)y o ] 0, i
’ k=1

gESy

By the Hochschild-Kostant-Rosenberg theorem K7 is a quasi-isomorphism from (Tpe1y, 0)
to (Coder(Tg), [52, 1.

To show that K is also a quasi-isomorphism in our case W # 0, the strategy is to view
(Coder(Tg), [50 + 52, -]) as a bicomplex after choosing appropriate linear combinations of
tensor and tilde degrees. We then choose to compute the associated spectral sequence
whose first page is [0s, - |-cohomology. The spectral sequence degenerates at the second
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page yielding L
H[50+527.}(Coder(TR)) = HH.(R, 80 + 82) = Jac(W) s

see appendix for details. As explained also in [10, [78], the chosen spectral sequence
computes Hochschild cohomology of the second kind. This concludes the proof of propo-
sition £.2.4]

Essentially the same argument is used if we replace Coder(7Tx) with Coder(7T4) in the
setting of lemma [5.2.3] The first page then is classical Morita equivalence whose proof is
the same in the Zj-graded case. [

5.2.2 Transporting bulk deformations on-shell

After having found the solutions to the Maurer-Cartan equation describing bulk-induced
deformations of the off-shell open string algebra, we are now faced with the task of trans-
porting them on-shell. We shall do so by constructing an L.,-morphism

(Coder(Ta),[0, -1,[-, -]) — (Coder(Ty), 0, -1,[-, -]) - (5.2.9)

A crucial observation is that (Ty,d) is a deformation retract of (T, d). We will start
with a general discussion of this notion on the level of complexes and of the natural L..-
morphism that it gives rise to. Then we will specialise to our case of open string algebras,
explicitly construct the associated deformation retract data, and thus arrive at the L..-
morphism to transport the off-shell deformation 6 from the previous subsection to

the on-shell algebra (H,d). While we will apply it to the case of Landau-Ginzburg models,
we note that our construction of the map (5.2.9)) works for arbitrary A..-algebras (A, )
and their minimal models (H, 9).

Deformation retractions

A deformation retraction
(02,d2)<$>(01,d1)0h (5.2.10)

consists of the following data: two complexes (C1,d;) and (Cy, ds), two maps of complexes
i:(Cqydy) — (C1,dy) and p : (C,dy) — (Cy,ds), and a homotopy h € End(Cy). These
data are subject to the relations

pt =ide,, 1ide —ip = dih + hdy , (5.2.11)

and we refer to (Cy, ds) as the deformation retract of (C4,d;). The homotopy h is said to
be in standard form if it satisfies

hh=hi=ph=0.
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Given the data (5.2.10)), we can construct maps M.} : End(C})[1]"" — End(C5)[1] via

Mrll (a1 VANPIRIAN an) = Z €oia1,....anPAo (1) hag(g) - haa(n)i
O’GSn

for all homogeneous ay,...,a, € End(C}), where €,.4,. 4, denotes the Koszul sign in-
troduced in subsection We will denote by M the coalgebra morphism Sgnaic;) —
SEnd(c,) uniquely defined from the maps M!. This morphism is the central ingredient of
our version of the homological perturbation lemma:
Proposition 5.2.5. M : (End(Ch),[dy, -],[-, -]) = (End(Ch),[ds, -],[-, -]) is an Le-
quasi-isomorphism.
Proof. Tt is convenient to define also the collection of maps S} : End(C1)[1]®" — End(Cy)[1]
by
SHa1 ® ... ®a,) = parhas . .. hayi .

In fact we are going to prove that the corresponding coalgebra morphism S is an A.,-quasi-
isomorphism and hence M will be the L,-morphism induced by S on the commutator
algebra.

First we prove that S is an A,-morphism, i.e.

S+ S bt = blS 4+ bl S? (5.2.12)

where by and by are defined by bi(a) = [dy,a] and bj(a; ® az) = (=1)™ayaz and similarly
b} and b3. For n = 1 the condition (5.2.12)) is easily checked,

015} (a) = [do, pai] = p[dy, ali = Sibl(a)

where we have only used that ¢ and p are maps of complexes.
To prove ([5.2.12) for all n > 1 we first compute

b5 a1 ® ... @ ap) = pldi, arhas . . . hay)i

n—1
=p (Z(—nzﬁfaialh. dv,agh] .. hay + (1) =5 %a hay . hldy, an]> i

k=1
n—1
= Sébg(al ®...Q Cln (Z zl 1 ‘”al k[dla h]akﬂ . han> 1
k=1

where we have only used that S} is a map of complexes. Now we only have to insert the
identity [dy, h] = idg, — ip in the above equation to obtain the desired result.

In order to conclude the proof we still need to show that M| is a quasi-isomorphism.
We already know that M is a map of complexes and since (Cy, dy) is a deformation retract
of (C1,dy), we are left to verify that if @ € End(C}) represents a non-trivial element in
bi-cohomology, then pai # 0. Suppose however pai = 0, then

0 = ipaip = (ide, — [d1, h])a(ide, — [di, h]) (5.2.13)
and hence a = bi([h, a] — haldy, h]). This contradicts the assumption on a. O
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Deformation retractions from A,-algebras

The Lo,-morphism M allows us to transport deformations of (C},d;) to deformations

of (Cy,dy). In our case of interest these two complexes are given by (74,0) and (T4, 0),
respectively, and we ask for the additional property that the deformation of 9 must continue
to be an A.-structure. Hence we will now explain under which circumstances this is

guaranteed to be the case, i.e. when ([5.2.9)) maps coderivations to coderivations.

Proposition 5.2.6. Assume that

(T, 0s) <+ (TAU@l)Qh (5.2.14)

is a deformation retraction where (A, 0;) and (Asg, 05) are A-algebras, and h is in standard
form. Then for ay,...,a, € Coder(Ty4,), we have M!(a; A ... Aa,) € Coder(Ty,) for all
n=>=1.

Proof. Let us introduce some convenient notation: We write A = End(74,), and for
an element f € End(Ty,), let Ly and Ry denote the left and right multiplication by f,
respectively. Define the left and right ideals I, = Ker(R;) N Ker(R;,) and Ir = Ker(L,) N
Ker(Ly). Since h is in standard form, we have h € I = I, N Ig. Finally we define 7 = ip,
J=1I;,+1Ig and B = linC<idTAl — 7).

Now we will show that in fact S!(a; ® ... ® a,) is a coderivation. Denote A, =

aihas . . . ha, and assume without loss of generality that aq,...,a, are homogeneous. The
crucial observation is that AA, admits the decomposition (proved in appendix |B.2))
AN, = ((idr,, +B) @Ay + A, @ (idp,, +B) +J@ A+ AR J)A, (5.2.15)

where we use a short-hand notation where e.g. “J ® A” means “some element in J ® A”.
It then follows that S!(a; ® ... ® a,) = pA,i satisfies

ApAyi = (pAyi ® idr,, +idr,, ® pAyi) A,
which says that S!(a; ® ... ® a,) is a coderivation. O

We have thus proved that M continues to be an L.,-morphism when restricted to
coderivations. However, it will then generically no longer be a quasi-isomorphism (as we

discuss in appendix [B.3)).

On-shell bulk-induced deformations

Proposition enables us, given a deformation retraction of A, -algebras (5.2.14)), to
transport deformations of 0; to deformations of 0. To accomplish our aim to construct
bulk-deformed open topological string theories for Landau-Ginzburg models, we are now
left to specify the deformation retract data

(T, ) # (T,8) v (5.2.16)



5.2 Bulk-deformed Landau-Ginzburg models 111

paying attention to the condition that the homotopy U be in standard form. In writ-
ing we have already revealed that in the case at hand the inclusion map is given
by the minimal model morphism F : (H, 5) — (A, ) of proposition . It remains
to find its homotopy inverse F' and the homotopy U itself. This is achieved by the next

proposition which constructs F and U explicitly.

Proposition 5.2.7. For any A,.-algebra (A, d), there exist a unique colagebra morphism F'
and a map U that make (5.2.16]) a deformation retraction and satisfy the conditions

1 _ _
AU = (U ® (idr, + FF) + (idr, + FF) @ U)A, (5.2.17)
Ul =@,

Ul = ~Go,U? forn > 2, (5.2.18)
Fll =TH,

Ey = —my([0,U0)) = —mrdyU? . (5.2.19)

Moreover, these conditions allow for an explicit construction of F',U, and U is in standard
form.

Proof. Here we will prove proposition . That F must be of the form (5.2.19) follows
by applying 7y to B
idy, — FF =1[0,U]. (5.2.20)

F is then automatically an A.-morphism by
F(OF — Fd) = [0, FF) = —[0,0U + Ud] = 0
and the injectivity of F. Next we show that is compatible with :
A(idy, — FF) = AU + U0)

1 _ _
= 5(0®id, +idr, ®9)(U @ (idr, + FF) + (idy, + FF) © V)

1 _ _
+ 5(U ® (idr, + FF)+ (idr, + FF) @ U)(0 ® idr, +idr, ® 0)

1 _ _ 1 _ -
:§(idTA—FF)@(idTA+FF)+§(idTA+FF)®(idTA—FF)

+ [8,(idTA +FF)] QU —-U ® [8,(idTA +FF)]
= (idy, — FF® FF)A = A(idy, — FF)

where in the penultimate step we made use of the fact that [0, FF] = 0 and in the last
step we used the fact that F'F is a coalgebra morphism. This calculation shows that if we
chose U} appropriately, condition ensures that U is a solution of .

Inspection of reveals that U] must be a homotopy for 9}, and we can therefore
choose U] = G. For n > 2 we observe that U} of the form satisfies

m(0U + U9), =0, (5.2.21)
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and moreover

7L (U + U9)), = —m(FF)} (5.2.22)

holds for n = 2. In order to show that this is also true for n > 2 we proceed by induction.

We start by substituting ((5.2.18)) into the left-hand side of (5.2.22]) to obtain
—GOy(3U2 + U2_ 0" + U20") = —G05(0U + UD)2 = GOy(FF)? = —n(FF)}

where in the first equality we used the associativity of 9, i.e. 9302 = 0. The second equality
is the induction step that is well-defined due to , while in the third equality we used
[0, FF] = 0 and the definition of F' from [5.1.1]

We are thus left to verify that F is a left inverse of F' and that U is in standard form.
First we give the explicit recursive formulas

n—1

1 . _ . _

U, = =560 (Z(Uzl ® (idp, + FF),_; + (dp, + FF),; ® Uﬁ) :
=1

n—1

_ 1 _ _
F, = —§7TH521 (Z(Ull ® (idp, + FF),_; + (idp, + FF),; ® Ul1> : (5.2.23)

=1

The maps Uy" for m > 1 are then completely determined by repeated application of the
coproduct A. Now we show that F'F' = idy,. Since F'F' is a coalgebra morphism, we only
need to consider the subset of equations

(FF)! = (idp, )L . (5.2.24)

Clearly the above is satisfied for n = 1. For n > 1, FFF} vanishes at k = 1 due to
Im(F!) c L C Ker(ry). While for k¥ > 1 it vanishes because from we see that
each summand in F! has at least one factor proportional to G. However each tensor factor
of each summand is in Im(F}}) C H & L = Ker(G).

That U is in standard form, i.e. FU = 0, UF = 0 and UU = 0, follows from an
argument in direct analogy to the above proof for F.

The above proof is easily extended to the case where (A, d) is an arbitrary A..-algebra
by replacing the formula for U} with U} = —G (>;_, OtUF) from which it follows that
Fl =~ (S OLUY). 0

Now we have arrived at the point to put together all the results obtained in this section.
We apply the L,-morphism M of proposition [5.2.5|in conjunction with the deformation
retraction of proposition [5.2.7, Recall that in the previous subsection we found that for
Landau-Ginzburg models off-shell deformations § € Coder(7T4) are precisely the bulk-
induced coderivations determined by
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where {¢;} is a basis of the bulk space Jac(W), and ¢; are the associated moduli. By
proposition we can use M to map ¢ to deformations § of the on-shell open string
algebra (H, 8) and proposition ensures that 0 + ¢ indeed encodes an Aso-structure.
Thus our final result is the followmg.

Theorem 5.2.8. The bulk-induced deformations of the on-shell Landau-Ginzburg open
string algebra (H, Q) are given by
N 1 n n
b= M (0" =Y " F(0U)"0F = F(idy, — 6U)'0F . (5.2.26)
n>1 n=1
By substituting (5.2.25)) together with the concrete formulas for F, F and U into (5.2.26)),
one obtains explicit expressions for bulk-deformed A..-products on H.

To make sure that the bulk moduli dependent A, -structure encoded in d + & imme-
diately describes all amplitudes of bulk-deformed open topological string theory, it has to
be shown that also the deformed A..-products are cyclic with respect to the Kapustin-Li
pairing.

Let us for the moment restrict to those bulk fields that “are seen by the open TFT of
the brane D7 i.e. those ¢ € Jac(WW) that are not mapped to zero by the bulk-boundary
map. We denote an off-shell deformation that arises from such a bulk field by dz. Then
the on-shell deformation 0, takes a particularly simple form in our approach:

5Z = (ldTA — 5zU) 15zF F(SzF = (52,

where we have used the fact that the image of F' only consists of tensor powers of elements
in H and the complement of Ker([D, -]) (see (5.1.7, [5.1.8)), and that U acts as G on
one tensor factor of each summand Then it is straightforward to see that the deformed
A-algebra is cyclic with respect to the Kapustin-Li pairing.

The rigidity of the methods used in transporting bulk deformations on-shell may suggest
the cyclicity of d + ¢ also in the general case when the off-shell bulk deformation is not
of the form ¢,. However, then the abstract manipulation of S in is more difficult,

and at this point we have no proof that d+0 is cyclic.

5.2.3 Concluding remarks

In conclusion, we have provided a general formula for the bulk induced deformations of
arbitrary affine Landau Ginzburg open TCFT’s. This was achieved completely from first
principles and results from a more general construction identifying the off-shell bulk sector
as seen from the boundary sector. While half of the methods developed are completely
general and can be applied to arbitrary TCFT’s there are also shortcomings of the approach
as it stands. In particular by construction, we were only concerned with the A, structure
while not taking into account cyclicity. This problem can in principle be cured by starting
from a more refined deformation theory approach. One where the off-shell closed string



114 5. Investigations on open-closed topological conformal field theory

complexes are replaced by S'-equivariant versions computing cyclic Hochschild cohomology
instead of Hochschild cohomology. The former is the latter supplemented with the cyclicity
constraint . At this point we can at least intuitively understand from , that
the modified complex is the one computing topological string theory observables rather
than TQFT observables. We won’t pursue a direct explanation here, instead we pass to
the complementary problem of computing purely open TCFT’s in arbitrary affine Landau
Ginzburg models. We will see that in that investigation we will also uncover some steps in
this direction.

5.3 The off-shell w for affine LG models

Here we will give a formula for the off-shell paring of arbitrary affine Landau Ginzburg
models whose construction was anticipated in [13]. This completes their string field theory
data. It will be interesting to note that a small byproduct of our analysis will be a
formula for the S'-equivariant, or topological string theory generalization, of the TQFT
trace for arbitrary affine LG models. We will remark that this formula can be immediately
generalized for heterotic LG models. For these constructions it is convenient to express
cyclic As-algebras in terms of non-commutative geometry.

5.3.1 Non-commutative geometry preliminaries

In this section, the aim is to understand cyclic A, algebras in the language of non-
commutative geometry. In particular w, in this context, is a symplectic or homologically
symplectic form. We follow primarily [12] 56].

Let (A, Q) denote an A,.-algebra, then define B := AY and the corresponding tensor
algebra:

O(Xy4) = | [ Bl*"
n>0

with product ®. We can view X4 suggestively as the non-commutative space whose ring
of functions is formal power series in B[1]. The A structure 0 acts on O(X4) via its dual.
Let s* denote a basis for B[1] dual to {ax}, then Q is defined through:

QM @ @) (e @ ®a;,) = (" @ @870 @ @ a, )
and it is completely defined by the components:
y = sk(a(all ® U ® ai'm))

1.0
We will denote:
Qk — Skal'
In particular, since (@) is a coderivation of T4, ) is a derivation of O(Xy), @ € Der(O(X4)),

which in geometric language translates to a vectorfield on X 4. Moreover since 0 squares
to zero, so does Q.
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It is now natural to consider differential forms on X 4. In commutative geometry, these
can be viewed as a ring of functions of the tangent bundle T'X 4 with a symmetric product
over the base and with the anti-symmetric (wedge) product over the fibers. We thus
introduce a further Z, grading with parity reversal II. Then the function just described
are elements of O(IITX4). We can apply this definition with no change to the non-
commutative case:

O(T[1]X4) == [[(BI1] @ IB[1))®" =: [ 2"(Xa4)

n>0 m>0

In order to distinguish coordinate one-forms from variables in B[1] we introduce the degree
1 differential d € Der(O(IIT'X 4)) uniquely defined by the requirement that it act on B[1]
as the parity reversal isomorphism. We will be interested in the space of cyclic differential
forms. These are defined as:

00, (T X ) := O(IT X 1) /[O(NTX 1), OMIT X )] = [ ] QX )

m>0

cycl (

where the commutator respects the Zy X Zs grading, in particular:
s8] =s' @& — (—1)%%s) @ s
[s",ds’] = s' @ ds?’ — (—1)%%ds’ @ s’
[ds',ds’] = ds' @ ds’ + (—1)%%ds’ @ ds'
The complex:
<H QZLJCZ<XA)7 d)
m>0

is known as the Karoubi complexr and is to be viewed as the non-commutative version of
the de Rahm complex (we refer to section 11.3 of [36] for an explanation of this statement).
On Q° and QF,, alike, one can act with vectorfields £ € Der(O(Xa)) via the contraction
defined via:

LgdSk =¢*
and therefore also via the Lie derivative:
L¢ = due + 1ed

If ¢ is of Zy degree zero, we can view it dually to degree zero coderivations, as generating
the dual to an A,, morphism, which in this setting is the pull-back ¢* by an automorphism
¢ of X 4. More generally, given two A.-algebras (A;,0;) and (Ag, 02), an A-morphism
in Hom(7T4,, T4,) translates to the pullback by a map ¢ : X4, — X4, such that

tQy Pr =" LQs-

Now we turn to the geometric description of the on-shell w. Thus we consider the A~
algebra (H,0). Then:
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Proposition 5.3.1 ([12, 56]). the Ao structure 0 is cyclic w.r.t. w iff:

Léw:O

where by a slight abuse of notation, w € Q. (Xp) is defined as:
w = wkl(dskdsl)c
Proof.

Léw = db@w
= wd(QFds' — (—1)™*ds"Q"),
= (wy — (=)™, )d(Q ds"),

= 2wyd(QFds'),
= Z 2wkléflln Z(Sil cee dsir s Sindsl)c
n r=1
therefore Léw =0 iff:
Wkléi‘i...in = (—1)%(al+"'+ai"‘1)wmn@ﬁ‘l...in,l

[

If we change coordinates with an automorphism ¢, w will no longer be flat, instead
the coordinate independent notion of cyclicity is that w is a symplectic form with ) a
symplectic vectorfield. The equivalence of the two definitions of cyclicity is granted by the
Darboux theorem:

Theorem 5.3.2. (Darboux) given a symplectic form w € Q2 ,(X4), there is an automor-

phism ¢p : X4 — X4 such that ¢j,w = wy where wy is the flat part of w.

Proof. The automorphism is constructed perturbatively. One grades w by polynomial
degree w =) ., w,. As a first step one constructs an automorphism that eliminates w.
Thanks to the Poincaré lemma provided below, w; = day for some 1-form ayq. Thanks to
the non-degeneracy of wy, there is a unique vectorfield &; such that:

= Lg,Wo-

Then we can define a first order approximation (¢p)i to ¢}, as the algebra morphism that
acts as (1 — &) on B[l]. Indeed ¢jw = wy + ws + --- and one can continue with this
procedure replacing w; with wi and so on. O

Proposition 5.3.3 (Poincaré Lemma). H75(X4) =0 for n > 1 and HI4(X4) = C.
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Proof. This follows exactly as in the commutative case, due to the fact that on formal
power series, one can define an Euler vectorfield E, that is defined by:

Lp dst = sF.

Then if we grade Q,; = [],,50 28,a(m) by the sum of tensor and polynomial degree, we
have that on Q¢ ,(m) the following identity holds for m > 1:

cycl
1 1
d (—LE) + —LEd =1
m m

therefore the identity for m > 1 is homotopic to zero and the Poincaré lemma follows. [

In the following, we will denote the homotopy induced by the Euler vectorfield by
hg.

In [12] a very general method for computing open TCFT’s was developed. The idea is
always that of working off-shell where the A..-algebra reduces to a DGA and then to
transport structures computed there on-shell. The aforementioned approach consists of
three steps. The first consists of an algorithmic procedure that computes the space of
cyclic DGA structures off-shell. Up to coordinate transformations, these are elements of:

W] € Hi, (d,q(Xa))

cycl
however w is not required to be symplectic, instead one has to require that it be symplectic
on-shell, that is when restricted to ()1-cohomology. In other words it must be homologically
symplectic. The next two steps in the computation of minimal cyclic A,-structures are
then straightforward. First one constructs an arbitrary, e.g. Merkulov type minimal model
(H,0") with minimal model morphism F”(see section. Thirdly one applies a Darboux
automorphism, as the one constructed in the proof of the Darboux theorem. In the end
one obtains () through:
(G0p0h = Bidiia
Or more directly, we can apply ¢},¢3 to the off-shell effective superpotential. In this

context, it is now clear that Wesy € Q4 ,(X4) is the Hamiltonian of Q wrt. &:

dWeff == L@@

therefore:
Wers = hpdpdi(1qw) = 0hop (hpiqw) = dpopWef

The only criticism to this procedure, is that the first step in the computation of W,yy,
that is the computation of the off-shell w, is by far the rate determining one. Moreover
it is desirable to have a more conceptual way of computing the off-shell homologically
symplectic form. In the next sections we will obtain an explicit analytic formula for the
off-shell w for arbitrary affine Landau Ginzburg models. In other words we will provide a
formula for the string-field theory action Wgﬁ ~shell " Tn this sense w completes the string
field theory data of affine LG models. The next section will serve as a map for later
sections, outlining the general strategy, and also contains some preliminaries that will be
crucial in the following.
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Strategy for off-shell w in LG models

Let (A,0) denote the DGA of an affine Landau Ginzburg model and let 0¥ =: Q. The
formula for the off-shell homologically symplectic form is achieved in steps that can be
succinctly summarized in the following sequence:

(dQL (X a), Loy)™ ~ (20,4(X4)/C, La,,)* — (CMA), bis) -5 (Tot(CCus), dior)
£> (B., b12 + UB) i) (E., b12 + UE)

L5 (Ba,bop + uB) L5 (BL  bos + uB) (5.3.1)
o (DX, ATV X) @ C((w))/(u), —dW A +ud)
I (c,0)

The subscript 12 on @) and b indicates that they describe DGA’s. The first squiggly
line indicates that the map is not a map of complexes, rather it is an isomorphism at the
level of cohomology. The maps f; through fs are all quasi-isomorphisms. The maps f;
through f3 are independent of the choice of TCFT, and describe quasi-isomorphic com-
plexes computing cyclic Hochschild homology of DGA’s. They are all DG generalizations
of the ones constructed in [50] for associative algebras. In that context, f, and its quasi-
inverse had already been constructed in [67]. Extending these results to the DG case turns
out to be quite straightforward. The map f; is to be understood as the dual of the weak
Aso-isomorphism of lemma [5.2.2] while f5 and fg are dual to the cotrace and Hochschild
Kostant Rosenberg maps of lemma and proposition [5.2.4] The last map f; we have
termed the cyclic residue, and should be understood as the S'-equivariant, topological
string theory trace as opposed to the TQFT trace (see the discussion in section .

Lastly we give here, for future reference, the prevailing tool for the future computations.
This is again the HPL (homological perturbation lemma) (see section [5.2.2). However
this time it is only applied in the context of complexes and in addition to the deformed
differential on the homotopy retract, we need the full deformed HDR (homotopy retraction
data). The full HPL reads:

Theorem 5.3.4. (see e.g. [20]) Given an HDR of complexes:

(Ca,dy) <+ (Ch, d1)Q h,

deforming d; — d; + ¢ one obtains an HDR
(Caydy + 0o) == (Crody + 8) L ) e
where:
Ooo =p0 > (h0)", ise =Y (hO)"i, e =Y (6h)", hoo=h> (6h)"
n>0 n>0 n>0 n>0

We reserve separate sections for different portions of the above sequence and the nomen-
clature fq,--- fr will not be used in the following. We start from the top.
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5.3.2 From zero-forms to closed two-forms

There is an isomorphism ¥ at the level of Lg-cohomology, between the space of closed

cyclic two-forms Q%(X4) = dQ},,(Xa) and the space of cyclic zero-forms € ,(X4). This

is given by the composition of the following two isomorphisms:

cycl (

wH
Hy o (Q20,4(Xa)/k) Kii Hi,([0(X4),0(Xa)]) == Hp,(Q2(X4)).
The latter descends from a map 5 at the chain level. We start by specifying 1)o:
2/)2 : [bl, bg] —> (dbldbz)c

Clearly 15 is well defined, as the sign in the commutator and in the cyclization is the same,
namely:

(-1
Moreover it is also clear that 1 is an isomorphism onto its image since Ker(d) = C C

Ker([O(X4),]). Furthermore, its image is the whole of Q2 (X 4) by Poincare’s Lemma. We
are thus left to show that 1, commutes with Lg:

UaLo([br, ba]) = s([Lq(br), bo] + (= 1) [b1, L (b))
= (dLg(by)dbs). + (— 1)b 1(c1ll)1ciLQ(172))C
= (Lo(dby)dbz). + (— ) (dby Lo(dbs)).
= Lq(dbidbs). = Loib2([b1, bs])

We now pass to ¢, This is the connecting homomorphism in cohomology that arises from
the natural short exact sequence:

0 — ([0(X4), O(Xa)], L) = (O(Xa)/k, Lg) =+ (O(Xa)/F)/[0(X4), O(X4)], L) — 0

Since O(X4)/k is acyclic (follows simply from unitality of A see next section), the con-
necting homomorphism on the associated long exact sequence of Lg-cohomology groups is
an isomorphism and is given by:

@D{I = i_lLQp_la

where as usual i~! and p~! are arbitrary right-inverses of i and p respectively. For p~—!
we can use the canonical inclusion, while for i~! we can use (1 — ¢¥)/2 where tV is the
generator of cyclic permutations. Finally:

1 1

VE{ () = a1 — 1) La(f)

In particular, decomposing f in tensor degree as f = ). fi, given that () defines a DGA,
the only terms contributing to the flat part w,,(ds®ds®). of the cyclic two-form are f; and

o
wap(ds*ds")e = (fa, Qup + (Q5 farp + (—1) faa, @5")) (dsds")
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It is important to keep the above formula in mind, as it is precisely the component of w
one has to analyze in order to verify whether or not w is homologically symplectic, that is,
symplectic when reduced to HY = (H,,(A))". In particular, for this purpose we only need
to analyze:

wab(d:s“clsb)c|HV = falQZ},(ds“dsb)c’Hv (5.3.2)

At the end of our construction of w we will indeed see that it is homologically symplectic
and that its flat part coincides with the Kapustin-Li pairing [41], 49] when restricted to
HY. The construction of w is achieved via the chain of quasi-isomorphisms (5.3.1). In
particular we view an element in Zp, (€2, ,(X4)/C) as a quasi-isomorphism:

(20, ,(X4)/C)Y, L)) —L—(C,0)

cycl

Indeed:
LQf:fLé =0f=0.

We will henceforth use the more direct notation

((QO (XA)/C)V7LZ2) = (C.)\,b),

cycl

which we characterise in the following section.

5.3.3 Cyclic homology of unital DGA’s

In this section we will study various incarnations of complexes computing the same co-
homology as (C2,b). Unless more precisely specified, we will refer to them all as cyclic
complexes. These will constitute crucial building blocks “interpolating” from (CJ,b) to
(C,0). The study of cyclic homology was introduced in [I6]. Here and in the following
sections, we adopt the notation:

X, = A[1] ® A[1]®"

We introduce the following operations on X,:

t=(t")"
b1 = 81
b, = 0 (5.3.3)

by := 0y + (05 @ Id)t
Nl|y = Ztk
k=0

In terms of these
(C2,b) = (Xo/(1 —t),by + by). (5.3.4)
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For the following we will need to resort to the basic interrelations among the operators
(5.3.3):

bi(l—t)=(1—t)b

blN - Nb1
by(1 — 1) = (1 — )b,
V,N = Nb,

Crucial for the construction of f is a bigger cyclic complex out of which (CJ,b) and
other cyclic complexes can be recovered as homotopy retracts. In the case of an arbitrary
(Zo-graded) associative algebra A over an arbitrary field k, but with zero differential by,
this large complex is defined as the following double complex C'C,e [67].

0 Xyl X e N X,
by —b) bo

0 Xo ol X e N X,
by —b) by

0 Xy L X X
by —b) bo

0 X, 1—t X, N X, 1—t

0 0 0

We now want to extend this to the DG level. We define the following graded module:

X, = @ Xpym "

m>0

where y is a degree —1 variable. Then we see that b := by + yb; and b’ := b, + yb; are
degree —1. In order to make contact with (5.3.4) we will tacitly set

y=1,

but we will keep the dependence on y explicit to keep track of gradings. We now replace
Xo by X, in the cyclic complex, paying attention to the fact that the new complex is not
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first quadrant anymore. We thus obtain:

b - b

” 1t < N o 1-t
0 X3 X3 X3

b - b

oy 1-t ¥ N o 1-t
0 Xo Xo Xo

b —b b

> 1-t o N o 1-t
0 Xy X1 X1

b - b

o’ 1-t < N o 1-t
0 Xo Xo Xo

b —b b

> 1-t N o 1-t
0 X*l X,l X*l —

b —b b

Just as in the purely associative case, we can compute the cohomology of this double (ac-
tually triple) complex via a spectral sequence even though it is not first quadrant anymore,
provided however, the first page is the cohomology of the horizontal differential. If the field
k is of characteristic zero (for us k = C), the latter is all concentrated in degree 0 since
then Ker(1 —¢) = Im(N). Thus denoting the horizontal differential by 0, we see that:

Hy(CCh) = (Xo/(1 —1),b)

hence:

H(Tot(CCLW)) = H(X,/(1 —t),b) = H(Cb).

In particular the total complex of the above double complex and (C*,b) are equivalent
in the derived category, in fact we will construct explicit quasi-isomorphisms to and fro.
Before we do that, we introduce a further complex which is equivalent to the preceding
ones in the derived category for which we will subsequently also construct explicit quasi-
isomorphisms. This further complex can be defined if A is unital. In that case, the even
columns of CC,, are acyclic, i.e. homotopic to zerd’] We are thus looking for a degree 1
map S:
S Xn — Xn+17

such that:
s(=b)+ (=V)s=1.

5Note that this fact is the one that ensures the well posedness of the Bar resolution.




5.3 The off-shell w for affine LG models 123

It is clear that:
s =e-

is such a homotopy, where e is the unit in A[1] with, recall, € = 1. We can thus define a
new differential B of degrees (—2,1) on CC,:

B Xn — Xn+1
as the composition of the following maps:

~ 1—¢t =~
XnJrl ¢ XnJrl

In short:
B:=(1—1t)sN.

We hence obtain a quasi-isomorphic double complex B,,:

b b b

0 Xy X, 2 X, &
b b b

0 X, B X B X P
b b b

0 X 2 Xg X 2
b b b

0 Xoe2-X_ 12X , 5
b b b

0 X2 X e B X 38
b b b

Analogously to the Hochschild complex, we can package the above in the corresponding
total complex Tot(Bee) =: B., by introducing a variable u with the appropriate degree,
such that the differential on the total complex is given by:

b+ uB
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From the above we find the degree of u requiring that b + uB have total degree —1. Since
B has degrees (|right|, |up|) = (0,1) and total degree is given by [tot| = |right| + |up]|, u
must have degree (—2,0), thus correctly recovering the degrees of B on C'C,,. We place the
left-most column in degree 0 w.r.t. u, and as a consequence the columns right to it have
to be of negative degree in u. Moreover we can extend uB to act as zero on the left-most
column, which therefore must be annihilated by u altogether, since B # 0 on X,. This
means that the underlying module of the total complex is:

Xe@k((w™)/(u)
where k((u)) stands for Laurent series in u. Finally, the total complex is given by:
Bn = @angkuik.
k>0
In the work of Kassel [50], explicit quasi-isomorphisms

C2 = Tot(CC,,) = B,

were constructed for the analogous and simpler case of purely associative algebras. The
quasi-isomorphism B, — Tot(C'C,,) had previously been constructed in [67]. In the next
section we will show, by direct application of the method of [50], that the result can be
straightforwardly extended to the differential graded case. This will enable us to close the

chain of quasi-isomorphisms ([5.3.1]).

5.3.4 Relating various realizations of the cyclic complex

The key ingredient will be once again the HPL (homological perturbation lemma) (see
section [5.2.5)). We start with the quasi-isomorphisms:

C = Tot(CCha)

Our first aim is that of expressing the collapse of the first page of the spectral sequence
Hy(CC,,) to degree zero as a homotopy retraction:

(Ka/(1=1),0) === (CCu, )1

Once this is done, we will deform the complex on the right by a differential § that cor-
responds to b on even and —b' on odd columns. The HPL then provides the homotopy
retraction data:

(Xo/(1—1),6.) # (Tot(CCua), & + 6) % ) hee
The desired result is then obtained realizing that in this case d,, = pdi, making the
deformed complex on the left precisely C*.
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Before we start the construction it is convenient to package also C'C,, as a total complex,
by introducing a variable g of degree —1 to grade the columns. The underlying module of
the total complex is then:

Xe® k((q)/(q)

and the total complex is given by:

Co = @ Xo—lq_l

>0

with total differential 0 + § defined by:

9 - X.q—2n D X.q—2n—1 N X.q—2n+1 D X.q—2n
> (gN) & (¢(1 —1)) =
5 X.q—Qn D X.Q—Qn—l N X.q—Qn D X.q—Qn—l

z— (b)® (=) z

We now start the construction of ¢, p and h. We set i to be the canonical inclusion, allowed
by the identification Ker(1 —¢) = Im(/V). We choose p as the canonical projection, that is:

p: X, = X,
N
xm *rm
m—+1

p:Xng " —0Vn>1

To find a possible homotopy h we proceed in steps. On X,,q° we have the identity:

Oodaho =1 —ip
N
1—t)hy=1— ——
al Jho m—+1
A simple solution is given by:
g ! dN
0= — -
m+1 dt
We set:
heven = h0~

Then on X,,q "2 we have:

aoddheven + hoddaeven =1
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N
1——+hogaN =1
m+1 + lodd
the simplest choice is then:
~1
q

Poda =

W+ 1

Finally we have to check that the choices made above are consistent with the homotopy
identity on X,,¢°%. Indeed, since h and O are polynomials in ¢ with coefficients in &, they
all commute with each other, therefore:

ae'uenhodd + hevenaodd = aoddhe'uen + hoddaeven
=1

It remains to be checked that do, = pdi. Indeed:
0oo =p0 Y _(ho)¥i
k>0

= pdi + podoh_10 Y _(hd)¥i

k>0

= pdi.

Having constructed the homotopy retraction data, the ingredient we will be particularly
interested in, is the quasi-isomorphism:

iso = Y _(h6)Fi: (C*,b) — (Tot(CCls), 0 + 6)

k>0

We now turn to the construction of the quasi-isomorphisms:
B, = Tot(CCl,).

This time we construct the following homotopy retraction data:

i/

(Ba,b) ———(C4,8) 7 )

/

P
We set:
i Xt = X _opqg ™2k
Tpopt ™" > Tp_opq "
and

P Xnong O Xy = X gpu"

~ —2k ~ —k
Ln—2kq = Tp_okU
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~ —2k—1
Tn—2k+14 — 0.

This simply means, that we view the columns of B,, as the even columns of C,,. The
homotopy A, then, has to satisfy the following identities:

OoddMoga + Mogadoda = 1
5evenh, + hé@en(seven =0

even

Therefore we can set:
h —=0.

even

Now we see that the homotopy identity on the odd columns is simply:
(=) g + hoaa(—0") = 1.

Hence, we can set:
bdd = S-
At this point we deform:
d—d0+0

and via the HPL we obtain:

s = PO (WO
k>0
= p/evenaOdd Z(h;ddaﬂlen)ki/@ven
k>0
= p/even aOddh/oddaeveni/even
= p/evenq2(1 - t) SNiizven
=u(l —t)sN
=ubB.

which is the desired result. That is, via the HPL we have obtained the desired quasi-
isomorphisms:

-/
ZOO

(Be,b+uB) ———— (C,,0 + )
Plo
The quasi-isomorphism we are particularly interested in is p._, which is given by:
pho =1 > (0"
k>0
- p/even + p/evenaOddh’i)dd
=p'(1+q(1—1)s)

Finally the composition

Pico 1 (C*,0) — (Ba, b+ uB)
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reads: o
Ploivo = Z(l + (1 — t)shd)(hé)* u",

k>0

where h = gh. There is one last complex computing cyclic homology we need to analyze,
through which the map defining the homological symplectic form in (5.3.1]) factorizes. This
is the reduced cyclic complex

(Ba,b+uB) :=1(Bs, b+ uB),
where 7 is the canonical projection:

Al @ A[LP — Al1] @ (A/K)[1]2"
)R a1 X+ Ray — ayVay Q-+ Q ay.

In particular € = 0. One can easily check that b commutes with 7, while to find B we
impose that r is a map of complexes:

rBlag®a; ® -+ ®a,) =rsN(ag®@a; Q@ -+ ay)
=e@N(@Ra @ Qay)
=rsNr(ao® a1 ® - @ ay).

Therefore:

B =rsN
That r is a quasi-isomorphism follows from the fact that B, /E. is acyclic which in turn
follows from a spectral sequence argument. We refer to [65] for details. In particular we
obtain:

TP e = Z (1 + shd)(hé)* u~*

k>0

It is worth noticing at this point, that as we passed from B to B we can also proceed the
other way round by adjoining a unit to the non-unital algebra A/k. In so doing one defines
cyclic homology and three incarnations of the corresponding cyclic complex for arbitrary
non-unital DGA’s over k of characteristic zero.

5.3.5 Tadpole cancellation on the cyclic complex

In this section we start specializing to the case of affine Landau-Ginzburg models, where
A = Mat(2d,C[z',...,z"]). What we shall describe here is the dual to the tadpole can-
cellation map on Hochschild cohomology (see lemma independently studied in [83]
and we will extend it to the reduced cyclic complex. We want to find a quasi-isomorphism
TV between the following complexes:

(Xay by + yby) ——— (Xo, by + 42ho)
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where bl = [D,] and by = 1 ® 9y where 9} = —W. We thus resort to the tadpole
cancellation map T defined in lemma and propose:

™V =19T

where T} = yT} = —yD and 1 is the identity on A[1]. We will refer to the identity on T A[1]
as Id. We only have to check that it is a map of complexes. That it is a quasi-isomorphism
is then obvious, because it is an isomorphism. Using lemma [5.2.2] we obtain:

(by +y*bo) T = T" (ba + yby) =
Oy @T)(1+1t) — (O3 @11+ )(1T) + (0 @ Id) (1R T) =
Tyl -1TH)T+0i@T =0.

Clearly TV commutes with the reduction r, so in order to show that it extends to the
reduced cyclic complex we only need to verify that it commutes with B. Indeed:

B, TV]=[rsN,1@T)]=r(e@NA®T)) -1 T)r(e® N)=0
which follows from the beautiful property:
NA®T)=TN
Therefore TV extends to the following quasi-isomorphism:
(Ba, by + by + uB) ———— (Ba, by + y%by + uB)

We remark that the only subtlety one should be aware of, in order to ensure that 7' is
indeed a quasi-isomorphism is that the cyclic complex was defined as a direct product
rather than a direct sum. That is, contrary to the sum case, in our case an element of the
complex can have infinitely many non-vanishing components. Therefore, in direct analogy
with the dual case of Hochschild cohomology of the second kind, where the direct product
was replaced with the direct sum, an isomorphism is not required to respect the natural
filtration. This fact allows for isomorphisms such as T. Notice furthermore that, contrary
to the dual case, we didn’t have to impose this infiniteness condition. It arose naturally
from defining the cyclic complex as the dual of cyclic zero-forms.

5.3.6 The supertrace and HKR

Here we give a formula for the supertrace “str”, the dual of the (Z, graded) cotrace
map “cotr” introduced in lemma [5.2.3] and show that it is a map of complexes between
the reduced cyclic complex of the algebra A and that of the commutative algebra R =
Clzt,...,2"] = Z(A). We will name the second complex ?,Z, where Z stands for center,
and it is endowed (by a slight abuse of notation) with the differential by + y2by + uB.
We shall require of the supertrace that it preserve tensor degree and commutes with b,
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separately. Then, from the commutativity of R and the fact that it enters the complex
shifted in degree by 1:

0 = by str(ap ® a;) = (—1)®str([a, b))

where [a,b] = a-b—(—1)@+D@+Dp. ¢ is the graded commutator. Then, up to an irrelevant
constant:
str(ag) = tr(oag)

where o was defined in lemma [5.2.3] In order to define the action of str on higher tensor
powers we shall require that it satisfies the following identity:

(05 @ Id)str = str(0; @ Id).

The above fixes the formula for str completely by repeated application thereof down to
tensor degree 1 to obtain:

n k ~
Str(ao ® e ® an) — (—1)Zk:0 Zi:O(az+1) Z (aao)kolﬂ ® e ® (&n)knko

It then follows easily that str is a map of complexes:

(B,, bg + y2b0 + UE) L) (B.Z, bQ + y2b0 + UE)

That it is also a quasi-isomorphism follows in the same way as in the dual case: by a spectral
sequence argument using classical Morita equivalence where the differential is equal to bs,
and the dual of the Hochschild Kostant Rosenberg theorem. At this point we apply the
dual ¢ of the Hochschild Kostant Rosenberg quasi-isomorphism of proposition m (see
[98]), which maps reduced cyclic chains of R to differential forms. More precisely

(B2 by + by + uB) — 2 (DX, A" TVX) @ C((u))/(u), —dW A + ud).

The latter is given by:
1
¢(T‘0®7"1®-“®rn) = Erodrl/\'--/\drn

It is then immediate that ¢ is a map of complexes. In particular:

¢y = 0
dbo = —dW A ¢
¢B = do.

We have almost completed the chain of quasi-isomorphisms ([5.3.1]) needed to define the
homological symplectic form w on the off-shell open string space. The last ingredient is
what we shall call the cyclic residue, which we introduce and construct in the following
section.
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5.3.7 The cyclic residue

In this section we will obtain a formula for a residue defined on cyclic homology. This can
be viewed as an S'-equivariant version of the usual residue of Landau-Ginzburg models,
which is defined for W having an isolated singularity. We will show that the method can
be extended with no change to an arbitrary regular sequence. This generalization, in turn,
corresponds to an equivariant extension of the local residue formula of [37] and can be
employed in the case of heterotic N = (2,0) Landau-Ginzburg models generalizing [69].
We start with the construction of the following quasi-isomorphism:

(Jac(W)Q @ C((u))/(u),0) — (T(X, A TVX) @ C((uw)/(u), —dW A + ud)
where 0 = dz'A- - -Adz", under the assumption that {0, W, ..., 9,W} is a regular sequence.
The HPL will lead us to the solution also this time, but we won’t construct all of the
required HRD data. In fact this would be an arduous task. We will instead pretend we
have constructed one. We will then find what properties our desired map p should have
and these will suffice to determine it completely. We start assuming we have the following

HRD:

(Jac(W)Q @ C((u))/(u), 0) === (F(X, A" T"X) ® C((w))/(w), =AW A)
We will require of h, that it decrease form degree by 1 and that it preserve u degree. We will
denote the component of h acting on form degree k by hj. Furthermore, p is concentrated
in top degree, that is p = p,. We now deform the differential of the complex on the right
by ud. Then:
Joo = Pn(ud) Zuk(hd)kb = 0.

k>0
This follows from d¢ = 0. While:
P = Do = pZuk(dh)k

k>0

= DPn Z Uk(dhn)k

k>0

So we notice that we only need to know how h acts on top degree forms in order to solve
for p. Notice, that without loss of generality, hy is of the form:

hk = —LaiH]z

where Hi € End(I'(X, A*TVX)). Thus, in top degree n, H: corresponds to a map H' €
End(C[z!,...,z"]). Let ay, = fda! A -+ A dz", then the homotopy identity in top degree
is:

—dW A hy(ay) = (1 —ip)a,.
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In terms of f, the above reads:
Y H(HOW = (1-m)f
i=1

where m projects onto Jac(WW). At this point the only computation left is to resort to an
arbitrary division algorithm that will define for us H' and 7. We will spell out one such
algorithm in a moment. It is worth remarking first, that the above construction can be
immediately generalized for (0,W,...,0,W) replaced by an arbitrary regular sequence of
arbitrary length (< n). The assumption that it be regular ensures that the Koszul complex
is a resolution, namely, cohomology is concentrated in top degree. Finally we shall describe
a basic division algorithm. First we need to define an ordering on C[z?, ..., z"], for example
we may choose the following:

ozl >...> "

e for two monomials m; = (z})¥ ... (z")k my = (V.. (@) my > my if ky +
bk St

o if ky+---4+k, =10+ -+ 1, we shall set m; > my if, for the smallest 7 for which

Furthermore we have to choose an ordering of the sequence of polynomials 9;W. This
ordering is not the ordering defined above, we will denote it as >, and we shall choose
OW = --- = 0,W. Then one proceeds analogously to the Euclidean algorithm for the
single variable case. To divide the function f one sets as initial conditions H(f) = 0 and
7(f) = 0 then starts comparing the top degree monomial of f with the top monomials
of 9;W. If the former is divisible by one of the latter ones, one chooses the smallest such
i = imin, adds the quotient to Hmi(f) and redefines f by subtracting to it this quotient
multiplied by 0;,, W. Or else, one redefines 7(f) and f by adding the top degree of f
to the former and subtracting it to the latter. One then continues until the updated f is
equal to zero. Notice that the ordering of the sequence 9;WW was implicit in the choice of
Imin- L he decomposition generally depends upon this ordering. It doesn’t if and only if the
sequence O;W is a so called Grobner basis for the ideal it generates. This latter property
however is not required in our case. We refer to [R1] for a particularly simple and concise
introduction to the topic of multivariate division. Finally we shall reexpress p for future

reference:
P = pz uk(LaiHrlz)k'
k>0
At this point we can compose p with the residue:

(Jac(W)2 @ C((u))/(u), 0) —=— (C((w))/(u),0)

to obtain the cyclic residue:

1 v [ (Lo ) e
(a)e = G ;“ /Falw---anw
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where we view 2’ as holomorphic coordinates in C* and I' is a sufficiently small n-cycle
encircling the singularity of W.

5.3.8 Collecting formulas: the off-shell pairing

Having succeeded in completing the chain of quasi-isomorphisms (5.3.1)) we can now com-
pose them paying attention to keeping only the term constant in u. Then, the composition
f of quasi-isomorphisms defined in section reads:

1 (Lo, HiY*p o str(TY r (1 + shd) (hd)2* (1))
/= (2mi)n Z/F W - 0,W

k>0

Happily, the thus constructed w reduces to the Kapustin-Li paring when restricted to H".

Indeed (j5.3.2)):

wab(dsadsb)C}Hv

(ds“ds®),

1 (Lo, H! )5 ¢ o str(TY r (1 4 shd) (hd)2F i (a @ b))
(2mi)" 2 /F HW - 9, W

k>0 HY

Vv Al
_ 1. ¢ ostr(TV 03(a®Db)) (dsadsb)c
(2mi)™ Jr ow.--.0,W v

(ds®ds®),

(—1)@ sign(a,b) / tr(ca-b & D---0,D)dx* A -+ A dz"
(2miy JIME | W - 0, W

HY

where:
sign(a,b) = —(—1)mFDla+b)+a,
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Appendix A

A few identities of Special Geometry

A.1 The Ricci tensor

Here we shall just give the form of the Ricci tensor for an affine special Kéhler manifold, as
it is needed in section|3.3.4} For the sake of coherence we will compute it in special Darboux
coordinates. We shall need the expression for the Christoffel symbols, that reduces to

1
FZ = §gk’”8r8231[(

and in particular the following identity:

JjarﬁkalK — _(akJiT)grl

= - (ak(giswsr)) gri
= O,0;0s K J; .

Equivalently the tensor C, which in special Darboux coordinates reads
1
Cijk - ijfarajak[( y

is symmetric. Moreover the fact that 0,0;0,K is symmetric implies that C splits into
holomorphic and anti-holomorphic parts. From the above, in particular, it follows:

1
I = §gkrar8k8,-K

1
= —§wksJ§8T3k&K

1
= — 5w 0,00,

=0,
hence:

Ri; = akrfj - ajrii + Filré'i - F?lrim'
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=0}, — ThIY,
The first term can be rewritten as follows:
1 1,

1
= Egkrﬁk@ajarK

1
= —50:9" 00,0, K
1
_ Ewksaiasale”akaj&K

= 2gkscislngijr .

The second term in the expression for the Ricci tensor can instead be rewritten as:
k1l 1 kr ls
=I5 = —19 0,0,0,K¢"°0,0,0; K

1
= Z—LngJTtJtuauajalKglsasak@[(

1
= ngrjﬁatajauKJlungasakazK
1
- _Z_lgkrJﬁatajaqulqusasakaiK
= _gkrcrjugluolki .

Thus, finally:
Rij = gkscislglrckjr-

A.2 The connection on the horizontal bundle

Here we analyze the connection T defined in (3.4.15) and express it in terms of the Levi-
Civita connection I' of g.

First we will show that T is compatible with the metric g. We thus compute:
(aK - quKvu) ul 2
= uT 0 (BPTgPST) u — 2u” ((EPTFKPTS + aK(EPT)PTi)EPTgP2T> u
=u' 0k (SPTgPE")u —2u" (SP'TPTgS" + 0k (SPT)PTgPY") u

=u' Ok (SPTgPY" ) u — 2u" (SP'TgS" + Ox(SPT)gPE" ) u
=0.
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Now we shall express I in terms of I'. We start by expressing the latter using the fact that
g is Kahler:

R - - 1 v
I, = (KZTPg_lPTZaa (—EPTQPZT)>
K B
- (iTPg‘lTDTi (aa<ﬁ7’) gPST + TP 9,gP5T + WTgaa(PZT)»

v

B
— Jalog | K0}

—STPg 1P 5% <8Q?TgP2T) + 17, — Dulog |K|5)
:1:‘26 — On log | K05

The remaining components of T are given by:

~ ~\ 7
P, = (%(ZPT)PTE>B
= SL0xP AT (6) — y76y)
= Z’E@aﬁu log |[K A7 (87 — 4762)

= 0.
Similarly:
Iy, =0,
while
£, - (5(=P)P'E)
B
= D0 — 20y log | KI) A5~ 8))
= /\_16?3.
Finally:
ZE = (flﬁ>*
Fgg = (fgﬁ)*
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Appendix B

Details of some proofs

B.1 A spectral sequence

Here we present the spectral sequence computation used in the proof of proposition b.2.4]
First we note that (Coder(Tg), [0y + 02, -]) is a mixed complex: [Jp, -] decreases tensor
degree by 1 and increases tilde degree by 1, while [0y, -] increases tensor degree by 1 and
increases tilde degree by 1. In order to construct a bicomplex, we organise tensor and tilde
degrees as follows

dz d2 d2 d2
—do 3 —do 2 —do 1 —do 0 —do
’ CO+s ClJrs C'OJrs ClJrs
d2 dg d2 d2
do 9 do 1 do 0 do do
Clys Cops — Ol 0
d2 d2 d2 d2
—do 1 —do  ~0 —do —do —do
' Cos Clis 0 0
dg d2 d2 d2
do do do d() do
o, 0 0 0

where s € {0,1} and C” denotes the subspace of Coder(Tg) of tilde degree m and tensor
degree n, and we write dy = [50, -] and dy = [52, -]

We choose the first page of the spectral sequence computing [50 + 52, -]-cohomology of
Coder(Tg) to be the cohomology of ds, which is given by replacing C? above with the image
of K} of appropriate degrees. Since K1lj = ¢{ K7, for s = 1 the second page vanishes, while
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for s =01t is

da do da d2
g0 00— =% 0% Jac(W) =2
do do da da
o 0P 00— Jac(W) —% gD
da do da d2
00— Jac(W) —L 50— 0,9~
do do do da
B Jae (W) —2 0— 20— 0%

Here for degree reasons the spectral sequence degenerates, yielding the desired result.
We mention that instead of computing the Hochschild cohomology of (R, (90 + 02) we
could also compute that of iA, 01 + 0;) which by the existence of the weak isomorphism 7'

in the proof of lemma is isomorphic to HH®*(R, d, + 52) The analogous spectral
sequence in the case of (A,0; + 02) is more involved and degenerates only at the third

page.

B.2 Homological perturbation for coalgebras

We continue the proof of proposition We will establish (5.2.15)) by induction. For
this it is convenient to consider a sequence {a;}ien C Coder(T},). Then we have

ANn 1 = AN hap

= ((idz,, +B) @ Ay + A, @ (idg,, +B)+J @A+ A® J)
1 . . . .
'3 (h ® (1dTA1 +7) + (1dTA1 +7)® h) (Api1 ® idr, +idg, ® ani1)A.
The computation naturally splits into two steps, one involving the summand (idz, +B)®

A, +A,® (idTA1 + B) and the other involving the term J ® A+ A ® J in the first factor
on the right-hand side above. For the first piece we have

((dr,, +B) @ A, + A, @ (idr,, + B))
1
(h® (idz,, +7) + 5(idz, +m) ® h) (@ns ®idTA +idg,, ®an+1>

= <(idTA1 + B) X An + An X (idTA1 + B)) (han+1 X = (ldTA + 7T)

'Recall the invariance of Hochschild cohomology of the second kind under weak A..-isomorphisms.



B.3 More on the L -morphism M 141

1. =1
+h® §(ldTA1 + 71')anJrl + (_1> 7LJrli(ldTAl + W)anJrl ® h

1.
+ 5(1d;rA1 +7) ®han+1>
=IR@A+TI@A+A® I+ (idr, + B) ® Ayhayi
+Anhan+l®(idTAl +B)+ A+ AR+ AR IR,

where in the last step we have used that L,B C I;. This is true because h(idTA1 —7) = hoh.
We have thus proved that the first piece in the computation is of the desired form. For the
second piece we have

1 1
(JRA+A®J) (han+1 ® 5(idry, +7) +h ® 5 (idr,, +m)ans

= 1 1.
+ (=1)n+ 5(1dTA1 + T)ap11 @ h + §(mlTA1 +7)® hanH)
=IrRA+TRQA+ARQIL+ QA+ AQI+ QA+ ART+ AR IR

which is again of the desired form.

B.3 More on the L,,-morphism M

This appendix supplements subsection We give a brief explanation of why M| :
Coder(T4,) — Coder(T4,) is generically not a quasi-isomorphism. For simplicity we denote
Ca, = Coder(Ty,) for i € {1,2} and define g = M{ = p(-)i. Consider the short exact
sequence

g

f
0 —— Ker(g) Ca, Ca,—0 (B.3.1)

7 S

where f denotes inclusion. As a sequence of modules, is split exact with left and
right inverses r and s respectively given by r(¢). = (¢ — w¢m)L and s(v)) = (iyp)} for
¢ € Cy, and Y € Cy,. If we view Ker(g), Cy, and C4, as complexes with the appropriate
Hochschild differentials, fand g are promoted to maps of complexes and one can study
the cohomology of Cj,, i.e. the Hochschild cohomology of (As, 05), by analysing the long

exact sequence of cohomology groups
... —— H(Ker(g)) —— H(C4,) — H(Ca,) —— H(Ker(g)) — . .. (B.3.2)

where the coboundary map 4§ is given by §(v) = r([01, s(¢)]) for 1h € Ca,.

If r, s were maps of complexes, would be promoted to a split exact sequence
of complexes, and in that case would reduce to a short exact sequence. It is
readily seen however that r and s are not necessarily maps of complexes, and the following

modification must be made. In general we can truncate (B.3.2)) as

0—— H(Ker(g))/Im(0) —— H(Ca,) —— H(Ca)) ——Im(0) ——0.  (B.3.3)
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By the split property of (B.3.1)) we observe that
Im(6) = (Im([0y, -]) N Ker(g))/Im([01, - ])|Ker(q) »
and hence (B.3.3]) becomes
0—— H(Cy,) NKer(g) —— H(Ca,) — H(Cy,) —— Im(6) —— 0

Generically this does not simplify, in contrast to the case of the complexes of endomor-
phisms End(TYy,). Here the corresponding inverse maps r and s are maps of complexes and
the long exact sequence reduces to

0—— H(End(7T4,)) NKer(g) —— H(End(7T4,)) — H(End(74,)) — 0.

The computation in (5.2.13)) then shows that H(End(T4,)) N Ker(g) = 0 and we recover
H(End(Ty,)) = H(End(Ty,)), i.e. M} : End(T4,) — End(T4,) is a quasi-isomorphism.
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