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Abstract

Germanium detectors are a choice technology in fundamentalresearch. They are suitable for the
search for rare events due to their high sensitivity and excellent energy resolution. As an ex-
ample, the GERDA (GERmanium Detector Array) experiment searching for neutrinoless double
beta decay is described. The observation of this decay wouldresolve the fundamental question
whether the neutrino is its own antiparticle. Especially adapted detector technologies and low
background rates needed to detect very rare events such as neutrinoless double beta decays are
discussed.

The identification of backgrounds originating from the interaction of radiation, especiallyα-
particles, is a focus of this thesis. Low background experiments face problems fromα-particles
due to unavoidable surface contaminations of the germaniumdetectors. The segmentation of
detectors is used to obtain information about the special characteristics of selected events.

The high precision test stand GALATEA was especially designed for surface scans of germa-
nium detectors. As part of this work, GALATEA was completed and commissioned. The final
commissioning required major upgrades of the original design which are described in detail. Col-
limator studies with two commercial germanium detectors are presented. Different collimation
levels for aβ -source were investigated and crystal axis effects were examined.

The first scan with anα-source of the passivated end-plate of a special 19-fold segmented pro-
totype detector mounted in GALATEA is described. Theα-induced surface events were studied
and characterized. Crosstalk and mirror pulses seen in the segments of the germanium detector
were analyzed.

The detector studies presented in this thesis will help to further improve the design of germanium
detectors for low background experiments.
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Zusammenfassung

Germaniumdetektoren eignen sich für die Suche nach sehr seltenen Ereignissen, da sie aufgrund
ihrer hohen Sensitivität und hervorragenden Energieauflösung geringe Mengen von Radioak-
tivit ät nachweisen k̈onnen. Germaniumdetektoren finden daher zum Beispiel Anwendung beim
GERDA (GERmanium Detector Array) Experiment, welches sich mit der Suche nach dem neu-
trinolosen doppelten Betazerfall beschäftigt. Die Beobachtung dieses Zerfalls würde die funda-
mentale Frage beantworten, ob das Neutrino sein eigenes Antiteilchen ist. Die experimentelle
Voraussetzung zum Nachweis von sehr seltenen Ereignissen wie dem neutrinolosen doppelten
Betazerfall sind niedrige Untergrundraten und speziell angepasste Detektortechnologien. Das
GERDA Experiment sowie Methoden zur Untergrundminimierungwerden vorgestellt.

Unvermeidbare Oberfl̈achenkontaminationen von Germaniumdetektoren erzeugen einen zus̈atz-
lichen intrinsischen Untergrund. Im Besonderen werden Oberflächenereignisse, die durch die
Wechselwirkung vonα-Teilchen, entstehen im Rahmen dieser Arbeit diskutiert. Eine spezielle
Segmentierung der Detektoren liefert zusätzliche Informationen zur Unterscheidung von Signal-
und Untergrundereignissen.

Ein eigens zur Untersuchung von Oberflächenereignissen entwickelter Hochpräzisionsteststand,
GALATEA, wurde im Rahmen dieser Arbeit vollständig in Betrieb genommen. Die Inbetrieb-
nahme der Apparatur erforderte umfangreiche Umbaumaßnahmen und die Implementierung zu-
sätzlicher Komponenten. In der Vorbereitung wurden auch Kollimatorstudien an zwei kom-
merziellen Germaniumdetektoren durchgeführt. Das Kollimationsverhalten sowie Kristallach-
seneffekte wurden untersucht.

Die Oberfl̈ache eines speziell 19-fach segmentierten Prototyp-Detektors wurde erstmalig in GA-
LATEA mit einer α-Quelle abgetastet. Oberflächennahe Ereignisse wurden untersucht und
charakterisiert.

Die hier vorgestellten Detektorstudien dienen der Untersuchung und Charakterisierung von Ger-
maniumdetektoren. Die daraus gewonnenen Resultate können n̈utzlich für die Identifizierung
von Untergrundereignissen im GERDA Experiment sein oder generell Anwendung in Experi-
menten finden, die Germaniumdetektoren verwenden.
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Introduction

Neutrinos play a fundamental role in the understanding of our universe. Neutrinos are electri-
cally neutral, weakly interacting fermions with a small mass, appearing in three generations in
the Standard Model. They are created in radioactive decays or fusion processes. Neutrinos are
the only particles in the Standard Model that could be so called Majorana particles. A Majorana
fermion is a particle which is its own antiparticle. The observation of neutrinoless double beta
decay, 0νββ , would prove that the neutrino is its own antiparticle.

Double beta decay is a rare process in which two neutrons decay inside a nucleus into two pro-
tons, two electrons and two anti-electron neutrinos. The decay occurs if ordinaryβ -decay is
energetically forbidden or suppressed. If the neutrino is aMajorana particle, a neutrino could be
exchanged and only the two electrons would be emitted. This is called neutrinoless double beta
decay.

Low background rates and especially adapted detector technologies are needed to detect very rare
events such as neutrinoless double beta decays. The isotopeof relevance in this thesis is76Ge. It
decays into76Se with a half-life of≈ 1.8 · 1021 years via double beta decay.76Ge can be used as
the source of the decay of interest and as the detector. Germanium detectors are suitable for the
search for rare events due to their high sensitivity and excellent energy resolution. Germanium
detectors are also used to search for dark matter. In this case, the dark matter particle is supposed
to create a nuclear recoil and thus a small energy deposition. While 0νββ has a spectral line
signature at the Q-value, Q≈ 2 MeV for 76Ge, dark matter recoils are expected in the keV range.

The characterisation of detectors is essential for the search for rare events. A good understand-
ing is necessary to identify background events. The segmentation of detectors is used to ob-
tain additional information about event topologies. External background is created by radiation
from natural radioactivity in the material around the detector. Intrinsic background is created
by unavoidable surface contaminations, especially byα-emitters. The short penetration depth
of α-particles in germanium results in energy depositions close to the detector surface. These
events can misleadingly be interpreted as signal events, ifpart of the energy is lost due to charge
collection inefficiencies close to the surface.

The GALATEA test facility was especially designed to study surface effects in germanium de-
tectors. In GALATEA, the detector and the radioactive sources are housed inside a vacuum tank.
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The detector is surrounded by movable stages to scan the detector surface with the sources in
three dimensions.

The first goal of the work presented in this thesis was to complete and commission GALATEA.
The second goal was the characterisation of surface events originating from the interaction of
radiation, especiallyα-particles. The technical implementation of detector surface scans using
the test facility GALATEA is presented in detail. First scans with anα-source of the passivated
end-plate of a special 19-fold high-purity germanium detector are discussed. Additional colli-
mator studies with two commercial germanium detectors are presented, in which the collimation
level was studied with aβ -source. Furthermore, studies of crystal axis effects witha γ-source
are shown.

The thesis is structured as follows. In chapter 1, a basic overview of neutrino physics and re-
search results are given. The GERDA experiment is discussed in chapter 2 as an example for the
search for 0νββ -decay in76Ge. A brief summary of particle interactions with matter is given
in chapter 3. Chapter 4 summarizes the properties of germanium detectors; surface effects are
especially addressed. The technical properties of the coaxial detectors subject of this thesis are
presented in chapter 5. The simulation of electric fields in germanium detectors and methods of
pulse shape simulation and analysis are summarized in chapter 6. Chapter 7 describes the colli-
mation studies done with two commercial germanium detectors. Different collimation levels and
the spectra from a90Sr source are discussed. A pulse shape analysis on events induced by90Sr
was performed and is presented in chapter 8. Furthermore, the results of a study on crystal axis
effects with aγ-source are shown in chapter 9. The technical implementation and upgrade of the
test facility GALATEA is described in chapter 10. Chapter 11,12 and 13 present the results of a
first detector surface scan withα-particles. The thesis ends with a summary and outlook chapter.



Chapter 1

Neutrinophysics

In the following chapter, the properties of neutrinos, including results from recent research are
briefly summarized and discussed.

1.1 Neutrinos in the Standard Model

The Standard Model, SM, describes the elementary particlesand their interactions with each
other. Six Standard Model leptons (e, νe, µ, νµ , τ, ντ ) together with six quarks (down, up,
strange, charm, bottom and top) plus their antiparticles are the fundamental components of mat-
ter. The forces are mediated by gauge bosons (strong force: gluons, g; electromagnetic force:
photon,γ; weak force:W±, Z0). The fourth fundamental interaction is the gravitationalforce,
mediated by hypothetical gravitons.

The three neutrinos are electrically neutral and only interact weakly; in the original SM, they
were assigned a zero mass. SM neutrinos only appear as left-handed particles. Three neu-
trino flavours exist: the electron-neutrinoνe(νe), the muon-neutrinoνµ(νµ) and the tau-neutrino
ντ(ντ).

Neutrinos were postulated in 1930 by Wolfgang Pauli as particles produced in beta-,β -, decay
to ensure the conservation of energy, angular momentum and spin. In this reaction, a neutron
decays into a proton by emitting an electron and an anti-electron neutrino:

n → p + e− + νe . (1.1)

In 1956, 26 years later, Frederick Reines, together with ClydeCowan [1], directly observed
neutrinos and thus was able to confirm experimentally the theory of Pauli. The neutrinos were
detected in the inverseβ -decay (see eq. 1.2), in which an anti-electron neutrino reacts with a
proton to form a neutron and a positron. The anti-electron neutrinos originated fromβ -decays in
one of the first nuclear reactors. Nuclear reactors emit a high rate of anti-electron neutrinos and
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are therefore used as neutrino sources.

νe + p → n + e+ . (1.2)

However, neutrino oscillation-experiments have shown that the concept of SM neutrinos must be
extended.

1.2 Majorana or Dirac Neutrinos

Since the neutrino has no electric charge, the neutrino and antineutrino states could be identical.
Therefore, it could be a Dirac or Majorana particle, [2].

This was first investigated with reactor neutrinos. If the neutrino is its own antiparticle, and has
a mass allowing a helicity flip, the reaction:

νe + n → p + e− , (1.3)

should be observable for reactor neutrinos. This reaction was searched for but never observed.
Reactor neutrinos have only been observed through the reaction from eq. 1.2. The currently
pursued approach to investigate the possible Majorana nature of the neutrino is the study of neu-
trinoless doubleβ -decay, 0νββ .

1.3 0νββ -Decay

Neutrino accompanied doubleβ -decay, 2νββ , is the combination of twoβ -decays, i.e. two neu-
trons decay into two protons with the emission of two electrons and two anti-electron neutrinos,
see Fig. 1.1 (left). The electrons in the neutrino accompanied doubleβ -decay yield a broad
energy spectrum, see Fig. 1.2. The two neutrinos carry away the rest of the energy.

In 0νββ , the two neutrons decay into two protons and two electrons without emitting neutrinos,
see Fig. 1.1 (right). At vertex 1, an antineutrino is emitted, while at vertex 2, a neutrino is ab-
sorbed, i.e. a virtual neutrino is exchanged [3]. This is only possible if the neutrino has mass and
is its own antiparticle. In a pure V-A-theory (field-theoretical model of the weak interaction), in
which parity is maximally violated, neutrinos are masslesswith a fixed helicity (H = -1 and H =
+1 for ν andν , respectively) and 0νββ decay does not occur. A more comprehensive discussion
can be found in [3]. In 0νββ , the lepton number is violated.
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Figure 1.1: Left: Feynman diagrams of normal doubleβ -decay; right: Feynman diagram of
0νββ -decay with helicity flip; +1 and -1 denote the helicity, H, ofthe neutrinos.

Doubleβ -decay is a second order process and will only occur in nuclides with even numbers
of neutrons and protons, where the simpleβ -decay is energetically forbidden or strongly sup-
pressed. Figure 1.2 shows the combined spectrum of the two electrons for the neutrino accom-
panied and neutrinoless doubleβ -decay. For neutrinoless doubleβ -decay, a line spectrum at the
Q value of the decay is expected.

EnergyQ

Figure 1.2: Combined spectrum of the two electrons for neutrino accompanied doubleβ -decay
(dashed line) and 0νββ -decay (vertical line at Q).

The 0νββ process has not been observed so far. Chapter 2 will focus on 0νββ -decay and how
it can be investigated experimentally.
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1.4 Mass and Flavour Eigenstates

Neutrinos must have masses, because they oscillate. The neutrino flavour eigenstates|να〉,
α = e,µ,ν , are not eigenstates of the mass operator. They are linear combinations of the mass
eigenstates|νi〉 with masses mi. The flavour eigenstates are connected to the mass eigenstates by
a unitary transformation matrix, the PMNS (Pontecorvo-Maki-Nakagawa-Sakata), U, matrix [3]:

|να〉= ∑
i

Uα i|νi〉 . (1.4)

The PMNS matrix specifies the probability to find a neutrino ofa given flavour in a mass eigen-
statei. U is usually written as:

U =





1 0 0
0 c23 s23

0 −s23 c23









c13 0 s13e−iδCP

0 1 0
−s13e−iδCP 0 c13









c12 s12 0
−s12 c12 0

0 0 1









eiα1/2 0 0
0 eiα2/2 0
0 0 1



 , (1.5)

where ci j are defined as ci j = cosθi j and si j = sinθi j andθi j are the mixing angles. The phase
δCP is different from zero for CP-violating neutrino oscillations. In the Majorana description,
two more phases,α1 andα2, are added. The Majorana phases would influence the rate of neutri-
noless doubleβ -decay.

1.5 Neutrino Mass Scale

The mass ofν1 is essential for the rate of 0νββ . The neutrino masses can be investigated in
cosmology and directly in weak decays or indirectly in neutrino oscillations.

(A) Mass Constraint from Cosmology:

Neutrinos were created shortly after the big bang and are themost abundant particles. The fact,
that the universe has not collapsed yet, requires the sum of the neutrino masses to be less than 10
eV [4]. Model dependent calculations considering the structure formation in the universe yield
lower bounds of≈ 1 eV [4].
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(B) Flavour Masses from Weak Decays:

• Mass of the electron neutrinoνe, mνe

The mass of the electron neutrino is experimentally constrained by studying theβ -decay
of tritium. The mass constraints are derived from the endpoint of the electron energy spec-
trum. Electron capture reactions could also be used to determinemνe . However, the best
limits come from tritium decay. The upper limit according tothe Mainz neutrino mass
experiment is mνe < 2.8 eV 95% C.L. [5]. A new limit is expected to be provided by the
Karlsruhe Tritium Neutrino experiment (KATRIN) [6].

• Mass of the muon neutrinoνµ , mνµ
The mass of the muon neutrino is experimentally constrainedby studying pion decays
(π+ → µ+νµ ). The masses of the muons and pions are known [4] and mνµ is constrained.
Using the energy-momentum conservation of the reaction, mνµ is limited to mνµ < 0.19
MeV [7].

• Mass of the tau neutrinoντ , mντ
The mass of the tau neutrino is constrained from measurements of the missing mass in
semihadronicτ decays. The current best limit is mντ < 18.2 MeV [7].

Table 1.1 summarizes the upper limits formνe,µ,τ =
√

∑i |Ue,µ ,τi|2m2
i .

ν Mass Mass limit C.L.%

electron based < 2.8 eV 95
muon based < 0.19 MeV 90
tau based < 18.2 MeV 95

Table 1.1: Neutrino mass limits [5, 7].

(C) Mass Differences from Oscillations:

In neutrino oscillation, neutrinos change their flavour. The individual lepton number is vio-
lated and neutrinos must have mass. The observations of theνe deficit in the solar neutrino flux
(Homestake experiment [8]) and theνµ deficit of the neutrinos produced by cosmic rays in the
atmosphere (Kamiokande experiment [9]) were explained by neutrino oscillations. A part of
the νe produced in the sun are converted into muon-neutrinos on their way to earth (νe → νµ ).
The muon-neutrinos produced in the atmosphere by cosmic rays are converted into tau neutrinos
(νµ → ντ ).
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Considering the neutrino mass-eigenstate as a plane wave, the eigenstates evolve over time ac-
cording to Schroedingers equation [3]:

|νi〉(t) = e−iEit |νi〉 , (1.6)

with the energy [3]:

Ei =
√

p2+m2
i ≈ p+

m2
i

2p
≈ E +

m2
i

2E
. (1.7)

E is defined as the neutrino energy. A pure neutrino state,|να〉 at time t = 0 evolves in time into
the following state [3]:

|ν(t)〉= ∑
i

Uα ie
−iEit |νi〉= ∑

i,β
Uα iU

⋆
β ie

−iEit |νβ 〉 . (1.8)

The transition amplitude can be written as [3]:

A(α → β ; t) = ∑
i

Uα iU
⋆
β ie

−i
m2

i
2 · L

E = A(α → β ;L) . (1.9)

The transition probability is given by [3]:

P(α → β , t) = ∑
i
|Uα iU

⋆
β i|

2+2Re ∑
j>i

Uα iU
⋆
α jU

⋆
β iUβ je

−iδi j . (1.10)

The first term describes the mean transition probability while the second term specifies the neu-
trino oscillation. The phase difference,δi j, includes the mass difference of the two neutrino
states, the distance L between the neutrino source and the detector and the energy of the neu-
trino, E [3]:

δi j =
∆m2

i j

2
L
E

. (1.11)

The mass difference enters as∆m2
i j = m2

i −m2
j . For anti-neutrinos, the transition probability is

calculated the same way, with U replaced by its complex conjugate. Equation 1.10 shows that the
Majorana phases do not affect neutrino oscillations. Therefore, neutrino-oscillation experiments
will not obtain information about the Majorana or Dirac nature of the neutrino.
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Three neutrino mass eigenstates result in three mass splittings∆m2
21, ∆m2

32 and∆m2
31. They are

determined experimentally from oscillations.

The mass splitting∆m2
32 = ∆m2

atm is identified with the oscillation of atmospheric neutrinos, the
mass splitting∆m2

21 with the evolution of solar neutrinos.

Table 1.2 summarizes the latest experimentally obtained neutrino-oscillation parameters [4]:

Parameter Value
sin2(2θ12) 0.857± 0.024
∆m2

21 (7.50± 0.02) x 10−5 eV2

sin2(2θ23) > 0.95
∆m2

32 (2.32+0.12
−0.08) x 10−3 eV2

sin2(2θ13) 0.098± 0.013

Table 1.2: Neutrino mixing values [4].

1.6 Neutrino Mass Hierarchy

From solar neutrinos, it is known that∆m2
21 is positive. The oscillations happen inside the sun

and are described by the Michejew-Smirnow-Wolfenstein-effect, MSW-effect [10]. The sign of
∆m2

23 is so far unknown. Hence, the following neutrino mass scenarios are possible:

• Normal Hierarchy:m1 < m2 < m3 ;

• Inverted Hierarchy:m3 < m1 < m2 ;

• Degenerated Masses: 0<< m1 ≈ m2 ≈ m3 .

Figure 1.3 illustrates the normal and the inverted hierarchy. As ∆m2
21 << ∆m2

32, ∆m2
32 ≈ ∆m2

31
holds. The absolute mass scale is not known and cannot be deduced from oscilattions. The rate
of 0νββ would provide some information on the mass scale.
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Figure 1.3:Normal and inverted hierarchy of the neutrino masses.

1.7 Neutrino Sources and Experiments

Sources are either natural or artificial. First, natural sources are discussed. Solar neutrinos are
produced in the sun by nuclear fusion processes. Atmospheric neutrinos are produced by cosmic
radiation and arise from secondary decays of charged pions,kaons and muons. Atmospheric
neutrinos have higher energies than solar neutrinos. Even more energetic neutrinos come from
outside the solar system. Another source of neutrinos are radioactive decays in the earth; these
neutrinos are called geoneutrinos. Relic neutrinos from thebig bang are not directly observable.

Nuclear reactors are one of the artificial sources of neutrinos. The neutrinos are produced in large
quantities inβ -decays, i.e. from decaying neutrons produced in nuclear fission reactions. Thus
a flux of exclusively anti-electron neutrinos leaving the reactor in all directions is created. Other
artificial sources are neutrino beams where pion and kaon decays are exploited or radioactive
elements are stored in a beam line.

Experiments working in beam lines or with reactor neutrinosoften have one detector close to the
source and one far away. That is a good scenario to observe oscillations.

Experiments looking for solar or atmospheric neutrinos arelocated deeply underground to shield
them from cosmic radiation. They can be built into mines and tunnels or even deep underwater
or ice.

Neutrino experiments like Super-Kamiokande [11], Borexino[12], SNO [13], Daya Bay [14],
Double Chooz [15] and future neutrino experiments have the goal to extract more information
about the nature of the neutrinos, like measuringθ13 more precisely, the sign of∆m2

23 or the
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absolute neutrino mass. One of the most important questionsis, whether the neutrino is its own
anti-particle, which might help to explain the asymmetry between matter and antimatter created
in the early universe. This issue is addressed through the search for 0νββ by experiments like
GERDA at LNGS, which will be briefly described in the next chapter.
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Chapter 2

The GERDA Experiment

The high-purity germanium detectors presented in this thesis can be used for rare-event searches.
In a low background environment, special detector-designshelp to distinguish between signal
and background events on an event by event basis. GERDA (GERmaniumDetectorArray), a low
background experiment searching for neutrinoless double beta decay, was part of the motivation
for this thesis. The physics goal, the design concept of the experiment and a short overview of
the phase I results are presented.

2.1 Physics Goal

The aim of the GERDA experiment is to search for 0νββ decay in the germanium isotope76Ge
with a sensitivity ofT1/2 > 2 ·1026 years at a 90% confidence level. The observation of 0νββ
events would provide information on the absolute mass scaleof neutrinos and indicate that the
neutrino is its own antiparticle. The observation of 0νββ decay would point to new physics
beyond the Standard Model.

2.2 Design Concept

2.2.1 Germanium as Source and Detector

To identify the rare 0νββ events in the observed energy spectrum, the good energy resolution of
germanium detectors is ideal. GERDA [16, 17] is using germanium detectors made of material
enriched in76Ge in order to enhance the signal to background ratio; the background is propor-
tional to the total mass and the signal to the mass of76Ge. Germanium has the advantage that it is
the source of the decays and the detector material at the sametime. This ensures good efficiency.
A maximum of one 0νββ event is expected to be seen in≈1 kg of germanium76Ge per year.
Thus, even for 100 kg, only very few events are expected and extremely low background levels
are needed. The goal for phase II of the GERDA experiment is a background rate of 1· 10−3

cts/(keV· kg · yr).
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2.2.2 Background

It requires big efforts concerning the design of the experiment and its components to reach the
background level needed. There are different background contributions which are minimized by
using different suppression techniques.

(A) External Background and Location:

The experiment needs good shielding from cosmic rays. Muon-induced neutrons from cosmic
radiation are a potential background source. Therefore, the GERDA experiment is located un-
derneath the Gran Sasso massif at a depth of 3400 meter water equivalent (m.w.e.).

Neutrons and photons originating from radioactive decays in the surrounding mountain can also
contribute to the external background. Against that, a combination of water and liquid argon is
used as a shield.

(B) Detector and Material close to the Detector:

In order to minimize the background originating from the detector material itself, it is stored
underground before and after crystal and detector production. Surface transport is kept to a min-
imum. The unavoidable transatlantic transports were accomplished deep in the bow of a ship to
minimize cosmogenic activation [18].

The usage of low background materials and the reduction of material close to the detectors is
essential. The detectors used in GERDA are mounted in specially designed holders made of only
a small amount of copper, silicone and PTFE (Teflon).

Especially designed detectors, like segmented germanium detectors, could help to reduce back-
grounds by a factor of up to 10 [19]. However, they are not usedin GERDA.

(C) Detector Surface:

During the manufacturing process, germanium detectors getexposed to air and they undergo dif-
ferent chemical and mechanical treatments. This unavoidably contaminates the detectors to some
level. The resulting decays of radioactive isotopes contribute to the total background.210Pb, dis-
tributed on the surface and inside the partially inactive surface layer of a germanium detector,
depositsα-particles while it is decaying. Anα-particle looses≈ 2.4 MeV when passing≈ 10
µm of germanium [20]. If the inactive or “dead“ layer has the “right“ thickness (≈ 10 - 15µm),
the energy observed in the active detector is reduced from≈ 5.4 MeV to 2 MeV, [20]. This could
fake a neutrinoless double beta event. Therefore, the studyof surface events with dedicated de-
tector designs is essential. This is done with the high precision test facility GALATEA, presented
in this thesis, see chapters 10, 11, 12 and 13.
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2.2.3 Location and Setup

The GERDA experiment is located in Hall A of the Laboratori Nazionali del Gran Sasso, LNGS,
in Italy, see Fig. 2.1 . LNGS is currently the biggest underground lab worldwide. It is run by the
italian national institute for nuclear physics, INFN (Instituto Nazionale di Fisica Nucleare).

Gerda Experiment

Gran Sasso

Hall A

Hall B

Hall C

Figure 2.1: Location of the GERDA experiment in the underground lab LNGS, adapted from
[21].

The experiment is located 1400 m below the Gran Sasso massif,which acts as a natural shield
against cosmic rays. The rock reduces the muon flux by about 5 orders of magnitude with respect
to the surface.

Fig. 2.2 shows an artist’s view of the GERDA setup. The GERDA setup consists of a liquid
argon tank surrounded by a water tank with a clean room, class10000 (ISO 1464-1), on top.
The detectors are placed inside the liquid argon and they aremounted via a lock system on the
top. A muon veto made out of scintillator panels is provided on top of the clean room. The
stainless steel water tank with a diameter of d = 10 m and a height of h = 9 m is filled with 580
m3 ultrapure water. The water is used as a shield against neutrons and photons originating from
radioactive decays in the surrounding rock. The water also acts as a muon veto. Highly relativis-
tic muons from cosmic radiation passing the water produceČherenkov light, which is detected
by photomultipliers mounted inside the water tank.



16 2. The GERDA Experiment

Figure 2.2: Artistic view of the GERDA Experiment, adapted from [21].

The inner stainless steel tank (d = 4 m, h = 6 m) is filled with 64 m3 high-purity liquid argon. Liq-
uid argon shields the detectors and also cools them. The inner shell of this steel tank is covered
with sheets of ultra-pure copper to reduce the amount of gamma rays coming from the stainless
steel.

The detector holders are lowered down in strings. They are held by stainless steel chains and
placed in the middle of the argon tank. The strings support the detectors and provide housings
for the read-out cables. The strings are accessible througha lock system via a glove box inside
the clean room.

The calibration of the detectors is done regularly using a228Th source. The calibration source is
placed at different levels to illuminate in turn all detectors.

2.3 GERDA Phases and First Results

2.3.1 Phase I

The GERDA experiment was designed to run in two phases; it was proposed in 2004 [22]. The
construction work for Phase I was completed in 2010. In May 2010, the commissioning phase
began and in November 2010, GERDA started with data taking.

Phase I had a 3-string assembly (see Fig. 2.3) and used 8 refurbished enriched germanium
detectors from the old Heidelberg-Moscow experiment [23, 24] and the IGEX (International
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GermaniumEXperiment) [25, 26]. In addition, a natural germanium detector was in use. All
Phase I detectors were standard p-type closed-end coaxial germanium detectors. The total active
mass of the detectors was about 14 kg. An energy resolution of4.5 keV at theQββ value of76Ge
was achieved [27].

Figure 2.3:GERDA strings with Phase I detectors (on the left) [27] and a mini-shroud (on the right) with
a 60µm Cu foil jacket for shielding [28].

The background level achieved in Phase I was(2.0+0.6
−0.4) ·10−2 cts/(keV· kg · yr) [27]. This was

evaluated in the energy region around theQββ value± 100 keV, where the small energy band
between 2019 keV and 2059 keV was excluded from the evaluation. This background level is an
improvement of one order of magnitude compared to the Heidelberg-Moscow and IGEX experi-
ments.

Fig. 2.4 shows the first energy spectra taken with the Phase I detectors. The plot shows the
spectrum taken with enriched (red) and non-enriched (blue)detectors. The spectrum from the
detectors with natural material was normalized “to match the exposure“ of the enriched detec-
tors, [27]. GERDA has recently published their first limit on 0νββ of T 0ν

1/2 > 2.1 ·1025 yr (90%

C.L.) [29]. This is the best limit on 0νββ in 76Ge so far achieved. It excludes previous claims
made by a part of the Heidelberg-Moscow collaboration [30].
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Figure 2.4: First energy spectra taken with enriched detectors (red) and non-enriched detectors
(blue). The green band marks the interval 2012-2059 keV, i.e. the region of interest for 0νββ
search [27].

2.3.2 Phase II

New detectors made of enriched material were built for PhaseII. The goal is to reach a back-
ground level of 10-3 cts/(kg·keV·yr) with an exposure of 100 kg·yr. The new detectors are so
called ”Broad Energy Germanium Detectors” (BEGe) with a pointcontact design. Several de-
tector types were under discussion for GERDA Phase II. One detector type was the segmented
n-type detector developed at the Max-Planck-Institut für Physik [31, 32]. However, the produc-
tion of n-type crystals from enriched germanium was technically not feasible.

It is intended to have detectors with a total mass of≈ 35 kg of76Ge for Phase II. The detectors
were produced and tested in 2013. Data taking for Phase II is expected to start in 2014.



Chapter 3

Interaction of Particles with Matter

In order to understand the events in a germanium detector, itis essential to understand the in-
teractions of the different kinds of radiation with germanium very well. Particles interact with
matter due to different processes, depending on the material properties of the absorber material
and the characteristics of the incoming particle. The following chapter gives a short overview of
the various interaction processes of particles with matter, especially germanium, relevant for this
thesis.

3.1 Interaction of Charged Particles

If charged particles travel through matter, they electromagnetically interact with the shell elec-
trons of the atoms and lose their energy mainly through ionization. The particles can also interact
with an atomic nucleus, but only if their kinetic energy is small enough. Since the energy transfer
to an electron per interaction is only a few eV, a large numberof scattering processes are needed
to fully transfer the energy [33]. The energy-loss per unit length for all particles but electrons is
quantum mechanically fully described by the Bethe-Bloch-formula [33]:

−dE
dx

= 2πNAr2
emec2ρ

Z
A

q2

β 2

[

ln

(

2meγ2v2Tmax

I2

)

−2β 2−δ −2
C
Z

]

, (3.1)

where:

NA = Avogadro Constant (≈ 6.022·1023 mol−1) ,
re = classical electron radius (≈ 2.81·10−15 m) ,
me = electron rest mass (≈ 0.51 MeV) ,
ρ = density of matter ,
Z = atomic number ,
A = mass number ,
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q = charge of incoming particle ,
β = v/c, v = velocity of incident particle ,
γ = 1√

1−β 2
,

Tmax = maximum energy transfer in a single collision ,
I = mean excitation energy ,
δ = density correction ,
C = atomic shell correction .

The energy loss in matter described by the Bethe-Bloch formuladoes not depend on the mass
of the particle. However, it depends on the square of the charge of the incoming particle. Thus,
particles withq ≥ 2 lose their energy much quicker than singly charged particles. The quantum
mechanicalansatz underlying the Bethe-Bloch formalism cannot be used to describe the ioniza-
tion caused by electrons because it does not work for identical incoming and target particles.

3.1.1 Electrons

Electrons (β -particles) and positrons interact with matter due to ionization and bremsstrahlung.
If their kinetic energy is not too high, they are constantly changing their direction as they are
scattered within the material. The “free“ electrons produced by ionization can further ionize
other atoms (secondary ionization). In semiconductors, socalled electron-hole pairs are created.

Ionization is the dominating process at low energies, whereas bremsstrahlung effects are more
important at higher energies. For materials withZ > 13, the critical energy, Ecrit , at which
ionization and bremsstrahlungs effects contribute equally, is [34]:

Ecrit =
550 MeV

Z
, EGe

crit ≈ 17.2 MeV . (3.2)

For an electron energy, Ee, of a couple of MeV, the realm of this thesis, ionization dominates. An
electron with Ee ≈ 1 MeV typically deposits its energy in a sphere with a radius of less than one
millimeter inside germanium.

3.1.2 Alpha-Particles

Of particular interest here, areα-particles,q = 2. As they ionize very strongly due to theq2-
dependence in eq. 3.1, they have little penetration power. In air,α-particles are already stopped
after≈ 10 cm. In germanium, the average penetration depth ofα-particles with an energy of
5-10 MeV is only some tenth ofµm.
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3.2 Interaction of Photons with Matter

Gamma energy spectra taken with germanium detectors show sharp photon peaks at specific
energies and a continuous Compton spectrum. These features are due to different processes
according to which incoming photons interact with the detector material.

• Photoeffect
A photon transfers its energy completely to a shell electronof a semiconductor or any
metal and thus separates the electron from its atomic nucleus. The ejected electron has the
energy, Ee− , equal to that of the photon, Eγ , reduced by the electron binding energy, EB:

Ee− = Eγ − EB . (3.3)

If Eγ is too low, the electron is not ejected from the atom but excited. For Eγ ≤ 100 keV
and high nuclear charge-numbers, Z, of the material, the photoeffect is the dominating
process.

• Compton Scattering
If the photon is not absorbed, it can be scattered off the electron and the energy is only par-
tially transferred. At a scattering angle,θc, of θc = 180◦, i.e. the photon is back-scattered,
the maximum energy transfer occurs. For a given Eγ , a sharp edge in the spectrum, the
so called Compton edge, is observed. At lower energies, the Compton continuum forms a
plateau, corresponding to 0◦ < θc < 180◦. Compton scattering dominates for energies of
100 keV. Eγ . 1 MeV. The scattered particles carry modified energies, E′

γ and E′e− , and
momenta,~p′γ and~p′e−. Energy and momentum conservation demand:

Eγ + Ee− = E′
γ + E′

e− , (3.4)

~pγ + ~pe− = ~p′γ + ~p′e− . (3.5)

The wavelength of the incoming photon,λ , is

λ =
hc
Eγ

. (3.6)

From eq. 3.4 and 3.5, the wavelength of the scattered photon,λ ′, can be calculated as:

λ ′ = λ +
h

mec
(1−cosθc) . (3.7)
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• Pair Production
At higher energies, Eγ > 2 me, the pair production process sets in. It occurs in interactions
of photons with the strong electric field of an atomic nucleus. The electron and positron
lose their kinetic energy through ionization. The positronannihilates with an electron in
the material, once it is stopped.



Chapter 4

Germanium Detectors

Semiconductor detectors are used for radiation and particle detection. Due to their excellent
energy resolution and high sensitivity, they are used in a variety of physics applications. Semi-
conductor detectors already have a long history but their development is still ongoing. The
precise characterization of the detectors is essential forresearch applications and further detector
development.

Although silicon detectors are nowadays used in a wide rangeof applications, germanium detec-
tors are needed in applications like low background experiments, high frequency technologies
and nuclear medicine, because of their better energy resolution and larger volume. Silicon detec-
tors are often used to detect short range particles, likeα-particles and low energy photons. For
the detection of photons in the MeV realm, detectors with larger crystal volumes are needed.

In the following chapter, general characteristics of semiconductors are introduced and fundamen-
tal properties of germanium detectors as well as their technical application are briefly discussed.
In particular, the working principle and main properties ofcoaxial and especially segmented ger-
manium detectors are discussed.

4.1 Semiconductors in General

Due to their intrinsic conductivity, semiconductors can beseen as conductors and insulators at
the same time. Their conductivity is temperature dependentand increases with temperature.

4.1.1 Crystal Structure

Semiconductors can have different crystal structures. Silicon and germanium both crystalize into
the diamond-cube crystal structure, which only contains covalent bonds. The crystal structure
has a face-centered cubic Bravais lattice which can be described as an assembly of two face-
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centered cubic lattices, which are interleaved and shiftedby 1/4 of the space-diagonal against
each other. The crystal axes are defined in the following way [35]:

• <100> crystal axes: 2 atoms per unit cell;

• <110> crystal axes: 4 atoms per unit cell; the atoms have the largest distance to each
other;

• <111> crystal axes: 2 atoms per unit cell; the atoms are placed the closest. In this direc-
tion, the crystal grows the slowest [35].

4.1.2 Band Structure

The properties of semiconductors can be explained with the energy-band model: this model
explains quantum-mechanically the behaviour of the energystates of electrons inside an ideal
mono-crystal.

Electrons in a solid-state body have a long interaction range. Energy levels which are created by
the superposition of orbitals of neighbouring atoms are very close and can be seen as a contin-
uum, the so called valence band. This is by definition the highest energy level which is occupied
permanently. The next higher energy level is defined as the conduction band. The difference in
energy between the valence band and the conducting band is called band-gap. Depending on the
crystal, the bands of the energy levels overlap (conductors) or are separated (insulators).

Compared to insulators, semiconductors have a smaller band-gap which decreases with increas-
ing temperature. Germanium has a band gap of about 0.73 eV at 80 K.

4.1.3 Impurities

The actual conductivity is determined by impurities in the semiconductor. Depending on the im-
purities inserted into the material, semiconductors are classified as n- or p-type. Germanium, as
well as silicon, has four valence electrons. Impurities with three valence electrons, like boron, act
as acceptors as they can receive an electron from the bulk material; they create p-type material.
Impurities like arsenic or phosphorus, can release an electron and therefore work like donors,
creating n-type material. However, the impurities have to be integrated into the crystal lattice;
the integration process is sometimes called activation.

4.1.4 The p-n Junction

By bringing together n- and p-type material, a boundary layeris formed, through which electrons
and holes diffuse as long as the emerging field created between the donators and acceptors coun-
teracts this current. In this boundary layer, the charge carriers disappear and the area is called
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depleted. At the p-n junction, an electric field is generated. The electrons from the n region
diffuse to the p-side. Current can flow in the p-n direction butis forbidden in n-p direction.

The depletion zone can be enlarged by applying a voltage to the detector which creates a high
electric field. A high field strength is also needed to extractelectrons and holes before they can
recombine. By extracting the charge carriers the junction becomes a detector.

4.2 Detector Configurations

Germanium detectors can be produced in different configurations, like planar, closed-end and
true-coaxial geometries, see Fig. 4.1.

Planar Closed-end

coaxial

True-coaxial

Figure 4.1: Different configurations for germanium detectors.

For a planar detector, the contacts are placed on the top and the bottom of the crystal. For a
point-contact configuration, see Fig. 4.2, one small contact is placed on one side.

Figure 4.2: Point-contact configuration.

4.2.1 Coaxial Detectors

Coaxial detector configurations are more suitable to detect high energy (MeV) photons, because
they have larger volumes and thus better contain the interactions. A 2 MeV photon, for instance,
has a mean free path of several centimeters in germanium, andthe maximum depletion depth of
a planar detector is only around 1-2 cm. Therefore, the coaxial configuration is needed to fully
contain these photons. Coaxial detectors are designed such that one electrode is formed by the
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mantle of the detector and the other electrode is the core.

For the n-type coaxial detector configuration, the electrons are drifting to the core electrode (n+-
contact) and the holes are moving to the mantle (p+-contact). Both, the electrons and holes, are
collected at the electrodes. The opposite situation occursin p-type detectors, where the electrons
are drifting to the mantle and the holes to the core. In both configurations, the core is used for
biasing, see Fig. 4.3.

h

p+ contact

p+ contact n+ contact

n+ contact
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e
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e
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Figure 4.3: Working Principle of n-type (left) and p-type (right) coaxial detectors, adapted from
[36].

The bore hole can either penetrate the whole detector volume(true-coaxial detectors) or cross
the crystal only partially (closed-end coaxial detectors). The bore hole is drilled into the crystal
after it is grown.

Commercially produced detectors are produced as n-type and p-type detectors. The p-type de-
tector has a thick dead layer on the outside which means that it cannot detect very low energy
photons so well, see section 4.7. An n-type detector has a thinner p+-contact on the outside,
because it is implanted, and therefore it is more sensitive to low energy photons.

4.2.2 Segmented Germanium Detectors

The mantle of a coaxial germanium detector can be segmented.Segmentation can be used to
discriminate signal from background events, for example inlow background experiments like
0νββ searches.

If low-energy electrons (1 MeV) deposit their energy insidea germanium detector, they deposit
90% of their energy inside a sphere with a radius of about 1 mm.Background events originat-
ing from Compton scattering cause multiple hits inside the crystal (see Fig. 4.4). Hence, if all
segments are read out, the segmentation can give information about event position and event
topology. A background event is most likely seen as a multi-site event, detected by several seg-
ments at the same time. Events, induced by an electron from 0νββ , would only be seen in one
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segment. This is why signal and background events can be identified with segmented germanium
detectors.

Top View

Figure 4.4: Principle how single-site and multi-site events can be distinguished using segmented
germanium detectors.

The segmentation is done by masked implantation. The gaps between segments are passivated.
Also passivated are the endplates of the detectors. In chapter 5, the detector Supersiegfried is
introduced, which is an 18+1-fold segmented germanium detector.

4.3 Depletion and Operating Voltage

Detectors can only be stably operated when they are fully depleted. The depletion depth is given
as [37]:

d=

(

2εV
e N

) 1
2

, (4.1)

where V is the bias voltage applied,ε is defined as the dielectric constant, e is the electron charge
and N is the net impurity.

Semiconductor detectors are reversely biased diodes. The external potential, V, is chosen such
that the depletion zone fills the detector and electron-hole-pairs created in interactions can be
separated. The coaxial detectors used here have full depletion voltages of 2 to 5 kV. Only a
couple of hundred volts would be needed to ensure the terminal velocity of charge carriers and
to compensate for possible inhomogenities of impurity densities; this is thus always ensured by
the bias voltage needed.

The bias voltage should be increased slowly to avoid detector damages. The operation voltage
should be slightly larger than the depletion voltage. This does not effect the depletion of the
sensitive volume but it increases and stabilizes the electrical field.
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For an n-type coaxial detector, the positive voltage is applied on the n+-contact. By slowly in-
creasing the voltage, it starts depleting from the p+-side extending deeper into the n-region until
the detector is fully depleted. Thus, if the n+-contact is on the inside, the detector gets depleted
from the outside to the inside, see Fig. 4.5.

p-n junction

depleted

region

Figure 4.5: Growing of the depleted region from the outside to the inside for an n-type coaxial
detector by applying high voltage, adapted from [36].

4.4 Temperature, Leakage Current and Noise

Germanium detectors cannot be operated at room temperaturedue to their small band gap. Ther-
mally excited electrons would fill the conduction band and the properties of a semiconductor
were lost. The detectors are operated at around 100 K. As the diode of a detector is not perfect, a
certain amount of current is observed. This leakage currentis in general temperature dependent.
If amplifying electronics is DC coupled to the detector, theleakage current contributes to the
noise created in the electronics.

In general, germanium detectors are cooled down by placing them in a vacuum cryostat, with
a direct thermal contact to a dewar filled with liquid nitrogen, LN2. The detector is placed in
a holder that is connected to a cooling finger which is submerged in LN2. Additional isolation
surrounding the detector can help to keep it at the temperature needed. These main operating
requirements are implemented in the test facility GALATEA,see chapter 10.

4.5 Energy Resolution

Germanium detectors have a very good intrinsic energy resolution, i.e. about 2∼ 3 keV at 2
MeV. This allows the separation of basically all relevant gamma lines. The energy resolution is
dependent on the charge collection efficiency, WX, the electronic noise, WE, and the statistical
fluctuations of the creation of electron-hole pairs, WD. The total energy resolution, WT is [37]:

W2
T = W2

X + W2
E + W2

D . (4.2)
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W2
D is calculated as follows [37]:

W2
D = (2.35)2 F E−1

e,h E , (4.3)

where E is the true energy under investigation and Ee,h is the energy needed to create an electron-
hole pair. F is the Fano factor, which is used as an “adjustment factor to relate the observed
variance to the poisson predicted variance” [37]. It is defined as follows [37]:

F :=
observed statistical variance

E
· E

Ee,h
. (4.4)

The smaller the Fano factor, the better the energy resolution.

Assuming ideal electronics, WX is the limiting factor for energies below 100 keV while for
higher energies WD dominates. The size of a detector is also a critical parameter for its energy
resolution, as WX is smaller for smaller detectors. However, events have to becontained. As
large crystal volumes are not needed to contain low energy photons, small detectors are used in
this realm.

4.6 Signal Development and Read Out

4.6.1 Electron-Hole Pair Creation

If energy is deposited inside a detector, electron-hole pairs are created. The band gap of ger-
manium is about 0.73 eV, but the energy needed to create an electron-hole pair in germanium is
about Ee,h = 2.95 eV at 80 K. The energy difference is absorbed through the creation of phonons
inside the crystal [34].

4.6.2 Electric Field and Weighting Potential

The electric field inside the detector can be calculated by solving Poisson’s equation [37]:

▽−→
E =

ρ
ε
, (4.5)

whereρ is defined as the density of the active bulk-impurity. The boundary condition

E(r2)− E (r1) = V , (4.6)
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is applied for true-coaxial detectors, where V is the bias voltage, and r1 and r2 are the inner
radius and outer radius, respectively. Using this boundarycondition, solving Poisson’s equation
in cylindrical coordinates yields the electric field for a true-coaxial detector [37]:

−E(r) =− ρ
2ε

r+
V +( ρ

4ε )(r
2
2− r2

1)

r ln( r2
r1
)

. (4.7)

The value of the full depletion voltage can be calculated by setting E(r1) = 0. For the calculation
of the weighting potentials, the electrode collecting the charge is kept at fixed potential and all
others at zero (Dirichlet condition).

4.6.3 Charge-Transport

The created charges are moved by the electric field until theyare collected on the electrodes.
Transport processes of charge carriers in a semiconductor are divided into drift processes and
diffusion processes.

(A) Drift:
Charge carriers in the conduction band have a thermal velocity,~vth. The drift velocity,~vde,h of

the charge carriers is controlled by the bias field,~E. For~vd <~vth [38]:

~vde,h = µe,h~E . (4.8)

The tensorsµe,h describe the mobility of electrons and holes inside the crystal. Their absolute
values are mainly determined by scattering processes with phonons. This results in a temperature
dependence of the mobility. The reciprocal value of the mobility is a measure for the occurrence
of collisions coming from scattering processes. The hole mobility is smaller than that of the
electrons because holes have a larger effective mass. In germanium, the difference is small. The
mobility is a tensor due to crystal axes effects.

(B) Diffusion:
Diffusion processes occur from local differences of the charge carrier concentration inside the
semiconductor which causes the cloud of charge carriers to widen.

The Einstein-equation links the diffusion coefficient, D, to µe,h:

D = µe,h kB T , (4.9)

with kB being the Boltzmann’s constant and T the absolute temperature. For germanium detec-
tors, D is smaller than 1µm and can be neglected.
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4.6.4 Signal Read Out on Electrodes

The drifting charge carriers induce charges in the electrodes and the resulting charge pulses are
amplified in charge sensitive devices. The induced charge onthe electrodes can be calculated
using Shockley-Ramo’s Theorem [39, 40]. The amplified pulsesare digitized and sampled at a
given frequency.

4.7 Dead Layers and Endplates of Coaxial Detectors

Coaxial germanium detectors have a large surface and their dead layers and endplates are very
critical for their operation.

4.7.1 Dead Layers

Germanium detectors have so called dead layers. Inside the conducting electrodes, the electron-
hole pairs created by any energy deposit recombine. In addition, the field is weak underneath the
endplates. That also can create charge collection inefficiencies. However, it should be noted that
all these dead layers are not 100% dead. Some charge might be collected. The layer underneath
the endplate especially might have several sublayers. In addition, it might not be stable in time.

4.7.2 Surface Contamination

Besides different mechanical and chemical treatments during the manufacturing process, the
detector is also exposed to air at certain times. If it is exposed to Radon, the Radon decay-
product210Pb will contaminate the surface.210Pb is produced by the decay of222Rn, which
emerges from the earth’s crust as a part of the238U and232Th decay chains. If210Pb atoms decay
on the detector surface,α-particles deposit their energy close to the surface of the detector. If
just the “right“ amount of energy is lost in a dead layer, the resulting event might mimic a 0νββ
signal event. This is most likely the case close to the endplates. Therefore, it is crucial to study
the endplates and to characterize these events.

4.7.3 Surface Channel Effects

So called “surface channel effects“ are a standard model forthe development of dead zones un-
derneath the endplates. The passivation layer itself or material just underneath can accumulate
positive space charges. This happens through states in the band gap of the bulk material. These
positive space charges have to be compensated by an equal number of negative states provided
by the bulk material. This results in a small, non-conducting region, the so called surface channel
below the passivation layer.
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If an electric field is applied, the detector gets depleted except in the surface channel region.
There, the electric field gets distorted and the field strength in some regions is reduced, see Fig.
4.6.
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Figure 4.6: Profile of a germanium detector with the core as n+-contact on the left and the
mantle as p+-contact on the right. The figures show the charge accumulation pattern below the
passivation layer with (left) not and (right) applied electric field (adapted from [34]).

If an electron-hole pair is created close to the surface, thedrifting electrons and holes are affected
by the surface channel. If electrons and holes are created close to the n+-contact, the electrons
have a short way to travel to the n+-contact where they are collected. If they are created close
to the p+-contact, the electrons have a long path to get to the n+-contact (see Fig. 4.7). On their
way to the n+-contact the electrons are drifting through the undepletedregion, very close to the
crystal surface, where the electrical field is at least reduced and it could happen that they are
trapped before they can reach the electrode. The signal amplitude seen on the n+-contact is then
reduced. The hole drift shows the same effect on the oppositeelectrode as holes are collected
on the p+-contact. If the charge carriers make it at all, the pulses are longer than normal as their
drift is slower than in the rest of the bulk.
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Figure 4.7: Schematic view of the n-type surface channel effect. If an electron-hole-pair is
created (left) close to the n+-contact and (right) far from the n+-contact (adapted from [34]).
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The description through surface channel effects is only crude. It is very important to experi-
mentally investigate this effect further as it influences the performance of a germanium detector
significantly.

4.8 Detector Fabrication

4.8.1 Crystal Pulling

A widely used method to produce large mono-crystals is the socalled Czochralski-method. In
the process, the desired material is melted in a crucible. A small seed crystal, hanging on a metal
rod is then dipped into the melt and its surface melts. The crystal orientation of the seed crystal
with respect to the pulling direction is very important as itdefines the orientation of the crystal
produced. The rod is rotated and slowly lifted. The molten material solidifies in thin layers. The
solidified material slowly grows and builds a mono-crystal.The doping of the crystal is done
during crystal pulling, but also pre-doped material can be used as melted mass.

4.8.2 Diode Production

A crystal becomes a diode by creating a junction. For this, surface layers are overdoped. For cre-
ating n-type layers, lithium is drifted into the material. To create p-type, boron is implanted into
the germanium crystals. The electrodes of a diode are usually created with aluminium contacts.
The other surfaces are usually protected by a passivation layer of several micrometer thickness.
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Chapter 5

REGe, XtRa and Supersiegfried Detector

In this chapter, the technical properties of the High PurityGermanium detectors, HPGe detectors,
used for this thesis and their setups are briefly introduced.Two commercially produced closed-
end detectors and an especially designed custom-built true-coaxial germanium detector were
used. These detectors have different characteristics and were selected for each measurement
according to the different requirements.

5.1 Closed-End Coaxial Germanium Detectors

The two closed-end detectors were used for collimator tests(see chapters 7, 8 and 9) with a90Sr
and a152Eu source and the evaluation of the influence of crystal axes.

• REGe:
TheReverseElectrode CoaxialGermanium Detector, REGe, is an n-type cylindrical diode
with an n+- contact on the inside and a boron implanted p+-contact on the mantle [41]. In
many commonly used closed-end germanium detectors, the twoelectrodes are located vice
versa. This is why the REGe detector is called a “reversed“ detector. The very thin p+-
contact (0.3µm [41]) together with the beryllium entrance window allow photon detection
down to energies of 3 keV [41].

• XtRa:
The more modern detector is XtRa, an ExtendedRange Coaxial Germanium Detector. It
is also a cylindrical seminconductor diode. XtRa is a p-type detector with an n+-contact
on its mantle and a p+-contact on the inside. The detector can measure in the largeenergy
range of 3 keV up to 10 MeV [42]. The low threshhold is made possible by a thinning of
the n+ layer and a special entrance window. The entrance window is made of carbon with
a thickness of 0.6 mm [42].

Figure 5.1 shows the principal setup of the XtRa detector. Thecontacting scheme of REGe is the
opposite. Also shown is how the crystal is mounted inside itsaluminium housing and how it sits
on the detector holder. At the top, the entrance window is visible.
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Figure 5.1: Schematic view of the closed-end germanium detector, XtRa [42].

Table 5.1 summarizes the main properties of the two detectors [41, 42]. More details on the
dimensions of the XtRa detector are given in chapter 9.

Type Core Mantle Window Energy Range Bias Voltage, U [V]

REGe n-type n+ p+ Be 3 keV - 10 MeV 4500

XtRa p-type p+ n+ C 3 keV - 10 MeV 3000

Table 5.1: Main properties of the REGe and XtRa detectors [41, 42].

The REGe and XtRa detectors are mounted inside especially designed holders inside vacuum
cryostats. Fig. 5.2 shows the REGe cryostat, XtRa has a similarsetup. The aluminium housing
protects the detector and ensures an appropriate vacuum. The front side of the housing consists
of a thin entrance window.
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Figure 5.2: Canberra dewar with the REGe detector, mounted inside the aluminium housing.

The REGe and XtRa detector holders are connected to cooling fingers. These cooling fingers
dip into 30 l liquid nitrogen dewars. Both detector dewars arerefilled automatically. They are
connected separately to automatic refilling systems, whichfill the dewars at regular intervals and
thus guarantee a constant cooling of the detectors. The operating temperatures of REGe and
XtRa are slightly above 77 K. If the temperature exceeds a certain limit an electrical inhibit en-
sures an automatic ramp-down of the high voltage in order to avoid detector damages. In both
setups, the temperature is kept constant for about 3 to 5 dayswithout a refill of the dewar.

5.2 The True-Coaxial High Purity Germanium Detector Su-
persiegfried

In order to study surface effects in germanium detectors, a special high-purity germanium de-
tector was designed. Supersiegfried is a cylindrical true-coaxial 19-fold segmented HPGe ger-
manium detector, produced by Canberra France. Figure 5.3 shows the schematic view of the
detector. In Fig. 5.3, the bore hole is blue colored, the segments are indicated in green. All edges
of the detector are rounded. Sharp edges could result in highelectric fields and could cause local
break-downs of the diode.

• Type:
Supersiegfried is an n-type HPGe detector. The bore is lithium drifted and acts as the
n+-contact. The mantle of Supersiegfried is produced by boronimplants and forms the
p+-contact.



38 5. REGe, XtRa and Supersiegfried Detector

Figure 5.3: Schematic view of the Supersiegfried detector.The bore hole is colored in blue, the
mantle in green and the 19th segment is colored in red. The numbers indicate segment labels.

• Segmentation:
The main part of the mantle of Supersiegfried is segmented three-fold in the vertical direc-
tion, 3 x z, and six-fold in the azimuth, 6 xφ . An extra 19th segment (red colored in Fig.
5.3), was created on one end, which defines the top of the detector. The 19th segment is
not further segmented and was especially designed to study surface effects. The detector
surface is not covered by aluminum contacts. It is protectedby a passivation layer. Figure
5.4 shows the segmentation scheme of the unfolded detector.The segments in the bottom
layer are labeled 1, 2, 3 and 16, 17, 18. The segments of the middle layer are labeled with
4, 5, 6, 13, 14, 15 and the segments in the top layer are labled with 7, 8, 9, 10, 11 and 12.
The numbering scheme reflects the traces of the Kapton cable.

Figure 5.4: Supersiegfried segment numbering schema [34].
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• Dimensions:
The detector has a height of 70 mm. The bore hole has a diameterof 10.1 mm, the outer
diameter of the whole detector is 75 mm. The bottom and middlelayer have a height of
23.3 mm each. The extra 19th segment has a height of 5 mm. In order to accommodate
the 19th segment, the third segmented layer was reduced in height to 18.3 mm. The mass
of the detector is about 1.6 kg [34].

• Metallization:
The 18 segments have circular shaped metallization dots, with a diameter of about 1.2 cm
each [19]. Supersiegfried was originally also designed to study options for the GERDA
experiment. Therefore, the metallization on the segments was kept very small, in order
to test a possible reduction of aluminum which is consideredas a source of background.
However, it was realized that this reduced metallization causes problems for the detector
performance [34, 43]. The size of the metallization was chosen to match the so called
”snap-contacts” of the read-out cable [19]. The 19th segment only has a small metallized
sector with a thin shielded cable soldered on.

• Impurity Density and Operating Voltage:
According to the manufacturer, the impurity density at the bottom of the detector is about
ρ = 0.44 · 1010 cm-3; at the top of the detector it isρ = 1.30 · 1010 cm-3. The operating
voltage is U = +3000 V, which ensures full depletion over the complete detector.
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Chapter 6

Fields and Pulses

Pulse shape analysis, PSA, is a useful tool to classify eventtypes, such as single- and multi-site
events and surface or bulk events, in segmented or non-segmented germanium detectors. PSA
can also be used for position reconstruction inside a germanium crystal.

In order to develop reliable PSA, pulses are also simulated [44]. Not only the physics inside the
detector is simulated but also additional parameters such as electronic noise and bandwidth are
included.

This chapter covers the following topics:

• General simulation procedure

– Overall concept

– Brief overview of calculation of electric field and weightingpotential

– Electric field calculations for closed-end detectors

– Charge-pulse calculation

– Simulation parameters including read-out chain properties

• Pulse shape extraction with two methods

1. Minimum/Maximum method

2. Pulse fitting method.

Some topics presented here were already introduced in chapter 4, i.e. the field calculation. The
focus in this chapter lies however on how they are implemented in the simulation.

6.1 Simulation Procedure

In the following section, a brief overview of the simulationprocedure [44] is given. Some com-
parisons between simulated and measured pulses are presented.
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6.1.1 Monte Carlo Framework

The simulation of the interactions inside the germanium detectors is performed by using the soft-
ware tool MaGe. MaGe is a GEANT4 based Monte Carlo framework used for low-background
experiments and was originally developed by the GERDA and MAJORANA collaborations.

6.1.2 Outline of the Pulse Simulation Procedure

• Before the event by event simulation starts, the electric field and weighting potentials are
calculated;

• For each event, hit information is extracted from MaGe/GEANT4 and the number of
electron-hole-pairs, the charge carriers, are determined;

• the charge carriers are tracked through the detector volume;

• the development of the induced pulse is recorded;

• the pulse can be modified by adding the parameters of the read-out chain.

The created pulse reflects reality as much as possible. Simulated test pulses are also used to
evaluate measured pulses. This is explained in section 6.3.

6.1.3 Calculation of the Electric Field and Weighting Potential

The calculation of the electric field and weighting potential is done numerically on a three-
dimensional grid [34, 43].

The so called ”Successive Over-Relaxation” method [34] is used. The calculation is done on a
fixed grid covering the entire detector volume. The electricfield and weighting potentials are
calculated for every grid point. For the electric field calculation, the impurity density and the
operating voltage of the detector have to be given as input parameters.

Figure 6.1 shows the result for the electric field calculation of the cylindrical closed-end germa-
nium detector XtRa. The field distribution in x and y (left) is shown at a height of z = 31 mm,
which is a position close to the top of the detector. Only one half of the electric field in z and r is
displayed (right), since the electric field is symmetric inφ . The electric field was calculated for
a bias voltage of U = 3000 V and a homogeneous impurity densityof ρimp = 8·109 cm−3.
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Figure 6.1: Electric Field of a cylindrical coaxial closed-end detector (ρimp = 8·109 cm−3): left:
in x and y at z = 31 mm; right: electric field in r and z. The field inV/mm is color coded.

The magnitude of the electric field, Emag, was calculated for every grid point over the whole
detector volume. It has the components:

Emag=
√

Er
2+Ez

2+Eφ
2 , (6.1)

the component of Eφ is zero by construction. The electric field can be decomposedas:

Emag = EV + Eρ , (6.2)

with EV defined as the component due to the bias voltage and Eρ representing the component
due to the impurities. Figure 6.2 illustrates these two components by setting (a) Eρ = 0, showing
the contribution from the potential. Figure 6.2 (b) shows the result for Eρ . Both components are
added up and the total electric field is shown in figure 6.2 (c).In Fig. 6.2 (b), a small non depleted
volume can be seen at z> 25 mm and r≈ 17 mm, where the electric field is zero (white).
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Figure 6.2: Components of the electric field: potential, EV (a), impurity, Eρ (b) and the total
electric field, Emag (c). The field in V/mm is color coded.

The impurity level in the simulation was varied in order to beable to compare simulated and real
pulses and possibly deduce the ”effective” impurity level of XtRa. This can only be an ”effec-
tive” level, because in reality crystals never have a homogeneousρimp.

Pulses were simulated for different field conditions. The results will be shown in section 6.3.
Following the electric field simulations and further pulse shape analysis, the impurity density for
REGe and XtRa was set to 8·109 cm−3.

6.1.4 Weighting Potential of a Detector with a Floating Top

The n+-electrode of XtRa covers the whole mantle, see Fig. 6.3. It isthinned to reduce the dead
zone at the end plate. An obvious question is whether a detector with no n+-electrode on the end
plate could work. This was investigated.

n+ contact

p+ contact

Figure 6.3: Left: normal n+ contacting scheme of XtRa; right: simulated alternative design.

The electric fields and weighting potentials were calculated for different values ofρimp. The
results are shown in Fig. 6.4. In all cases, some areas of the detector have extremely low electric
fields. An effective transport of charge carriers is not possible in these areas.
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Figure 6.4: Electric Field with an impurity of (a)ρimp = 2 ·109cm−3 , (b) ρimp = 8 ·109cm−3

and (c)ρimp = 2·1010cm−3.

Figure 6.5 and Fig. 6.6 show the electric field strengths, depending on r for different impurity
densities for the real detector configuration and the top floating configuration for 3 kV bias volt-
age.

The spreading of the electric field lines over the whole detector volume is visible. The electric
field lines areφ symmetric. They end at the edge of the bore hole of the detector. The elec-
tric field values forρimp = 2 ·1010cm−3 in Fig. 6.5 between≈ -12 mm and 12 mm, i.e. inside
the ring where the electric field drops to zero, are unphysical. The same applies for all electric
fields in Fig. 6.6. The electric field values drop to zero for all impurity densities except for
ρimp = 2·109cm−3. This is an unrealistically low impurity level.

The electric field calculations close to the edge of the bore is problematic, also for the realistic
detector. A simulated charge, created close to the edge, canget an extra kick which marginally
changes its direction, resulting in longer pulses. This is mostly because in the simulation the bore
hole is simulated with sharp edges. In reality the edges of the bore holes are rounded.
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Figure 6.5: Electric Field depending on r for different impurity levels, top contacted. Atρimp =
2·1010cm−3, the detector cannot be operated with the assumed bias voltage of 3 kV.
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Figure 6.6: Electric Field depending on r for different impurity levels, top floating. A reasonable
field is only possible for the extremely low impurity ofρimp = 2·109cm−3.



6.2 Calculation of Charges and Drift Velocity 47

6.2 Calculation of Charges and Drift Velocity

The electric field is used to determine the electron and hole drift. The Shockley-Ramo theorem
makes it possible to calculate the electric charge induced on an electrode by a moving charge,
q. The charges are moving with an immediate velocity, v. They induce the charge Q on the
electrode, creating an output signal. Relevant here is the immediate change of the electrostatic
flux lines. The induced charge is defined as:

Q = −q φ(~x0) , (6.3)

whereφ(~x0) is the weighting potential at position,~x0.

6.2.1 Drift Velocity and Charge Mobility

As explained in detail in chapter 4, charges created inside agermanium crystal, namely electrons
and holes, are drifting inside the crystal according to the electric field and the mobility of the
charges. Taking the temperature behavior and scattering effects into account, the mobility be-
comes a complex tensor which is implemented in the simulation. For the simulation performed
here, the parameters for the electron and hole mobilities according to [45] were used. The crystal
structure was taken into account as the drift velocity is different for different crystal axes. Dif-
fusion of drifting charges was not considered in the simulation as they do not significantly effect
the drift, see chapter 4.

More details on drift calculation and its implementation can be found in [34, 43].

6.2.2 Pulse Creation, Hit Extraction and Clustering

For this thesis, two different ways to study data pulses using simulated pulses were used:

• An external radioactive source was simulated, which generates hits inside the active vol-
ume of a detector. Electron-hole-pairs were created and drifted to the electrodes. Hits
within a sphere of 1 mm were clustered. The barycenter of the hits was taken as the start
of the trajectory for a combined hit.

• A single hit was simulated at a given position. One pulse wascreated from this hit. This
reference pulse was then used for further data analysis, e.g. pulse fitting.

6.2.3 Simulation Parameters

For the simulation of a reference pulse the following initial parameters were set to calculate the
fields and drifts.
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(A) General Parameters:

• Detector type;

• Segmentation;

• Number of time steps: 3000;

• Pair production energy Ee,h = 2.95 eV.

• Bias voltage

(B) Geometry Input Parameters of the Detector :

• Inner radius, Rinner;

• Outer radius, Router;

• Height;

• Hole depth.

(C) Read-Out Chain Input Parameters:

• Sampling frequency, f = 1 GHz;

• Pretrigger time, tPT = 100 ns;

• Decay time, tDT = 50000 ns;

• Bandwidth according to measurements (6.3 MHz).

6.2.4 Example Events

Figure 6.7 shows an example event, created inside an XtRa-like germanium detector. The trajec-
tories of the drifting charges (red = electrons, blue = holes) towards the electrodes are shown for
the contacted and top floating configuration. The simulated hit was created very close to the de-
tector end plate. For the contacted detector configuration,Fig. 6.7 (left), the electron is collected
by the front endplate. In Fig. 6.7 (right), the electron is moving to the mantle electrode. Such a
drift along a floating surface is not realistic. The detectorwould not work.
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Figure 6.7: Example hit, created inside a coaxial germaniumdetector with particle trajectories
(red = electrons, blue = holes) for a contacted (left) and a floating (right) detector configuration
for ρimp = 8·109cm−3 and a bias voltage of 3 kV.

The reference pulses for the location depicted in Fig. 6.7 (left) within the XtRa configuration
are shown in Fig. 6.8 for different impurity densities. No massive change of the pulse shape is
visible for different impurity densities. However, higherimpurity densities result in a steeper rise
in the first part of the pulse.
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Figure 6.8: Simulated pulses for different impurity densities (ρimp = 2 ·109cm−3 to ρimp = 1 ·
1010cm−3) for the event depicted in Fig. 6.7 (left).
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6.3 Methods of Pulse Shape Extraction

Two different methods were applied to extract the length of ameasured pulse. They are briefly
introduced.

6.3.1 Minimum/Maximum Method

A possibility to calculate the pulse lengths is the minimum/maximum method. The minimum
and maximum value of the data is taken and the times at which 10% and 90% of the charge
difference are reached are used to calculated the rise time,t10−90, see Fig. 6.9
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Figure 6.9: Example pulse with indicated minimum and maximum line used to calculate the rise
time, t10−90.

For the minimum/maximum method, all data points are taken into account, including noise.
Thus, noise influences the minimum and maximum values. The average rise times will be over-
estimated according to the noise level. To avoid this problem, a pulse fitting method is used.
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6.3.2 Pulse Fitting Method

The second method to calculate drift times is fitting a data pulse with a simulated reference pulse.
The method is a standard tool, developed and used by the GeDetgroup. It will only be briefly
summarized, for more details see [46]. In the following, thefit procedure is described:

1. Subtracting Baseline:

For each data pulse the baseline is subtracted. It is calculated as the average of all samples
recorded in the first 200 ns [46].

2. Noise Level:

For each data set, the noise level,σ , is calculated from the first 30 samples of all pulses.
A typical distribution is shown in Fig. 6.10. A Gaussian fit yieldsσ . This is used as an
statistical uncertainty of each data point in the fit.
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Figure 6.10: Example of a noise level distribution.

3. Pulse Fitting:

The reference pulse, Csimu, is fitted to each data pulse, Cdata. According to [46], the data
pulse is fitted as follows:

Cdata = A · Csimu(tscale + toffset) , (6.4)

with the amplitude, A, the time scaling factor, tscale, defined as:

tscale=
RiseTimesimu

RiseTimefit
, (6.5)
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and the time offset, toffset defined as:

toffset=
tData
offset+ tSimu

offset

tscale
. (6.6)

The output of the fit are three parameters: the time scaling factor, the amplitude and the
offset. The fitted amplitudes and offsets are irrelevant forthe pulse-length determination.
Fig. 6.11 shows an example.
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Figure 6.11: Example fit to a data pulse. The pulse was recorded with the XtRa detector. The
detector was exposed to an152Eu source (see chapter 7 and 8).

The distributions of tscale, toffset, A andχ2/ndf are shown in Fig. 6.12 for a typical data set.
The spread in amplitude reflects the energy window selected for the data. The offset shows
some random spread in timing and extra events coming very early. The time scale shows
a Gaussian spread plus events with unusually large tscale. Such large tscalevalues indicate
very short pulses. This could be related to events not originating from the Eu source and/or
to problems with the offset calculation. Theχ2/ndf distribution looks quite good.
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Figure 6.12: Distributions of the fitting parameters: time scale factor, offset, amplitude and
χ2/ndf.

4. Extracting Drift Time:

The average rise time for a given data sample is calculated asthe mean value of the tscale
distribution using a gaussian fit multiplied with the inverse value of the simulated risetime,
tsimu.

5. Event Selection (χ2 Cut):

The χ2 distribution of each data set was used to select events. A typical distribution is
shown in Fig. 6.13. Only 68% of events with the bestχ2 are kept. This rejects background
events not originating from the Eu source and events with badoffset determination.
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Figure 6.13:χ2/ndf distribution for a typical data set. The blue line indicates the cut keeping
68% of the events.

6.4 Adjusting the Impurity Density

As mentioned before, the impurity density is unknown for commercially produced germanium
detectors. Europium data was used to determine the impuritydensity,ρimp, for which the simu-
lation fits best. Theχ2/ndf distribution was calculated for reference pulses obtained for different
ρimp. All reference pulses were simulated at an energy of 121 keV starting on the surface. The
drift time of the simulated pulses and the meanχ2/ndf for each reference pulse are listed in table
6.1.

Impurity ρimp [cm−3] Drift Time, tsimu [ns] χ2/ndf
ρimp = 2·109 314 1.49
ρimp = 4·109 311 1.37
ρimp = 6·109 311 1.29
ρimp = 8·109 312 1.22
ρimp = 9·109 367 2.0
ρimp = 1·1010 400 2.59
ρimp = 2·1010 783 4.2

Table 6.1: χ2

ndf for different impurities at one fixed position.

The best fit was achieved with a meanχ2/ndf = 1.22 for an impurity density ofρimp = 8 ·
109cm−3, see Fig. 6.14. A similar investigation for the REGe detectoryielded the same result.
This value was used for all simulations used in the analysis presented in chapter 7, 8 and 9.
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Figure 6.14: Meanχ2/ndf for reference pulses simulated for different impurity densities. The
121 keV line of152Eu on the XtRa data was used.

6.5 Adjusting the Bandwidth

The shape of the recorded pulses depends on the bandwidth of the readout electronics, especially
the final turn before saturation. Pulses simulated for different bandwidths were used to measure
the bandwidth in the data. Fig. 6.15 shows the same data pulsefitted with reference pulses for
which all input parameters but the bandwidth were identical.
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Figure 6.15: One measured data pulse, fitted with a simulatedreference pulse forρimp = 8 ·
109 cm−3 . A bandwidth of (left) 20 ns and (right) 160 ns was applied.
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A value of 160 ns, i.e. 6.3 MHz, was found to provide the best fits for both setups and was used
for analyses.



Chapter 7

Collimator Studies

Collimators are needed for surface scans of germanium detectors with radioactive sources. A
small beam spot with a well defined geometry has to be achieved. The segment boundaries to
be investigated have a width of the order of 0.5 mm. Hence, thebeam spot should be small
enough to scan these boundaries and surrounding regions. The required length and configuration
of collimators were investigated.

The collimator studies presented in this chapter provide information about the appropriate colli-
mator configurations for the GALATEA test facility (see chapter 10). The studies are based on
test measurements with the commercial HPGe detector REGe using the GALATEA collimator.
The following topics are covered in this chapter:

• Experimental method of the collimator studies;

• Experimental setup and radioactive source parameters;

• Beam spot parameters;

• β -spectrum: study of collimator material and source position within the collimator.

7.1 Experimental Method

For the study of collimator parameters, a reverse electrodecoaxial germanium detector, REGe
B, was used.

Tungsten and copper collimators were available. They allowto place the source at different po-
sitions within a collimator. Different collimation levelsare thus achieved, and result in different
beam-spot sizes on the detector. The optimal position of a90Sr source within the collimator was
investigated. The source is to provide electrons for surface scans.

Scattering effects were also studied. Interactions withinthe collimator create secondary radia-
tion, mostly photons, which can create background events. Such secondary photons were also
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recorded with a second detector REGe A, positioned next to REGeB.

7.2 Collimator System

Figure 7.1 shows the GALATEA collimator setup.

5
1

Figure 7.1: Setup of the collimator system with 5 collimatorsegments (not to scale). The source
can be placed within any segment (position 1-5) or behind segment 1 as depicted here.

The collimator consists of the following components:

(1) Outer steel container;
(2) Inner aluminium container;
(3) Source holder;
(4) Steel slider support;
(5) Murtfeldt slider.

The technical drawings of the collimator components are shown in Figure 7.2 and 7.3. In to-
tal, five collimator segments with a length of 10 mm each and anouter diameter of douter = 40
mm were mounted inside the inner aluminum holder (see Fig. 7.2 (2)). The aluminum holder
was mounted on the source holder (see Fig. 7.2(3)). The source can be screwed into the screw
thread of the source holder. However, the source was operated inside the collimator. It was po-
sitioned within a given collimator segment and fixed on both sides with Kapton tape, see Fig. 7.1.

Tungsten collimator segments are available with three different inner bore hole diameters, dinner:
1 mm, 2 mm, 3 mm and 3.2 mm to house the source. In addition, copper collimator segments
were used with dinner = 3.2 mm.
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The inner aluminum holder is screwed into the slider support(see Fig. 7.3(5)), which has a
bore hole of d = 2 mm. The slider support is covered with a Murtfeldt slider (see Fig. 7.3(4))
with an inner bore hole of d = 3 mm. The Murtfeldt slider has no technical relevance for these
studies. However, it is needed for the measurements with GALATEA. A detailed description can
be found in chapter 10. The inner aluminum holder is plugged into a stainless steel holder (see
Fig. 7.2(1)) which has a rail welded to it. It is used to mount the collimator holder to the stage
system in the test facility GALATEA.

(1) (2) (3)

Figure 7.2: Technical drawings of the components of the collimator holder:(1) outer steel con-
tainer,(2) inner aluminum container and(3) source holder .
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(4) (5)

Figure 7.3: Technical drawings of the components of the collimator holder :(4) Murtfeldt slider
and(5) slider support.

7.3 90Sr Source

Table 7.1 summarizes the properties of the90Sr source.

Nucl. Radiation Half-life [y] Encaps. Activity (2011)

90Sr β 28.6 capsule,∅ 2 mm x 10 mm 1.6 MBq

Table 7.1: Properties of the90Sr source.

The90Sr source was encapsulated in a cylindrical plastic tube with a diameter of d = 3 mm and a
length of l≈ 10 mm. The open end of the source cylinder can be identified as it is a flat surface
while the closed-end is convex, see Fig. 7.4.
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Figure 7.4:90Sr source encapsulated in a test-tube like capsule with a flatopening and convex
end.

90Sr is aβ -emitter and decays into90Y. 90Y itself decays with 99.98% probability directly to the
ground state of90Zr via β -emission. With a probability of 0.02% theβ -decay goes to an excited
state of90Zr which falls to the ground state emitting a photon:

90
38Sr

546 keV−−−−→ 90
39Y + e− + νe (100%)

90
39Y

2274 keV−−−−−→ 90
40Zr + e− + νe (99.98%)

90
39Y

513 keV−−−−→ 90
40Zr + e− + νe + γ (0.02%) .

(7.1)

Figure 7.5 shows the decay scheme of90Sr.

(0.51 MeV)

(0.55 MeV)

(2.28 MeV)
(1.7 MeV)

(100 %)

(99.98 %)

(0.02 %)

Figure 7.5: Decay scheme of90Sr with indicated decay products and decay probabilities.

Bremsstrahlung ofβ -particles in the material of the collimator system produces secondary pho-
tons.
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7.4 Test Setup

Figure 7.6 shows the test setup with the two reverse electrode coaxial germanium detectors,
REGe’s. The technical details and working principle of the REGe detectors were described in
chapter 5.

As shown in Figure 7.6, the two REGe detectors, named REGe A and REGe B, were placed in
parallel next to each other with a distance of 216 mm. Both detectors were looking in the same
direction.

Figure 7.6: Setup of the REGe measurements (not to scale). Thedetectors are named REGe A
and REGe B. The source was placed in front of REGe B.

The collimator was placed in front of REGe B at a distance of 49±1 mm, see Fig. 7.6. The inner
aluminum container carried four collimator segments with an inner bore hole of 3 mm and one
collimator segment with a bore of 3.2 mm. The90Sr radiation was measured with both REGe
detectors.
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7.5 Beam Spot

The beam-spot size was calculated for the different source positions. Figure 7.7 illustrates the
geometry. The distance d1 varies for the different source positions. The distance between the
detector end-cap and the tungsten segment is defined as d2 and varies accordingly.

Figure 7.7: Geometry of the beam spot.

Table 7.2 lists the parameters, d1, d2. It also provides the calculated radius, rBS, and area, ABS,
of the beam spot, the solid angle,Ω, and the count rate per second, cps. The size of the beam
spot shrinks for source positions deeper inside the collimator (position 1 to 2). In position 5,
ABS is very large. The beam-spot size at this position is restricted by the penning diameter of the
Murtfeldt slider. The increase of the beam spot coincides with larger angular acceptance,Ω and
larger count rate.

90Sr Position d1 [mm] d2 [mm] rBS [mm] ABS [mm2] Ω [sr] cps

1 48 97 6.1 115 0.01 1.3· 103

2 38 87 6.9 148 0.02 2.6· 103

3 28 77 8.3 213 0.04 5.1· 103

4 18 67 11.2 391 0.09 11.5· 103

5 8 57 21.4 1436 0.44 56.1· 103

Table 7.2: Beam spot size and count rate for different source positions.

For detector surface scans in GALATEA, a small beam spot sizeis necessary. However, a suffi-
cient event rate is also needed. Considering these factors, source position 2 is the recommenda-
tion choice for first measurements with the collimator in GALATEA (α-scans, chapter 13). For
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segment boundary scans, collimators with smaller diameters would be necessary.

7.6 90Sr Spectrum

Spectra with the REGe detectors were taken for all 5 source positions. The measurements were
carried out for 10 minutes each with an energy threshold of 10keV. For background measure-
ments, 20 minutes of data taking was sufficient. The MCA energyinformation as well as the
pulse shapes were recorded. The energy spectra shown in Fig.7.8 and Fig. 7.9 are background
subtracted.

Figure 7.8 shows the energy spectra of REGe A and REGe B for 5 source positions. The Kα -
peaks at 59 and 64 keV are clearly visible in the REGe spectra. The bump extending to 400 keV
originates fromβ -particles of90Sr decays. The bump extending to energies up to 1.7 MeV are
primaryβ ’s from 90Y. Secondary photons with energies up to 500 keV are overlaid. The REGe
A spectra, in Fig. 7.8 top is due to secondary radiation. Onlyin position 5, a significant amount
of radiation escapes. There is only a minimal shift in the spectra in REGe A for varying positions
of the source.
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Figure 7.8: Energy spectra of the90Sr source taken for different source positions with tungsten
collimator segments; top: REGe A, bottom: REGe B. The distributions are normalized to the
lifetimes of the runs.

Figure 7.9 shows the energy spectra, taken with copper collimator segments for REGe A and
B. The spectra are quite similar for copper and tungsten. However, copper has no low energy
gamma lines like tungsten. Secondary photons observed in REGe A are better suppressed by
tungsten than by copper. The contribution of secondary photons in REGe B is also larger.
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Figure 7.9: Energy spectra of the90Sr source taken for different source positions with copper
collimator segments; top: REGe A, bottom: REGe B. The distributions are normalized to the
lifetimes of the runs.

Figure 7.10 shows the count rates for REGe B for all 5 source positions. The count rate increases
for both collimator materials. The lower density of copper results in less suppression of the sec-
ondary radiation.

Figure 7.11 shows the count rates for REGe A for all 5 source positions. The effect of the differ-
ent collimator materials is quite pronounced. About twice as many secondary photons are seen
in REGe A if the source is mounted in the copper collimator segments one to four. Tungsten col-
limators are clearly superior. And the Kα lines provide a good reference for energy calibration.
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Figure 7.10: Count rate for REGe B with Cu and W collimator segments.
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Figure 7.11: Count rate for REGe A with Cu and W collimator segments.
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Chapter 8

Characterization of Electron Interactions
using Pulse Shape Analysis

The goal was to find characteristics which identify a given event as an electron interaction. The
first effort using the data obtained with the collimated90Sr source on the REGe detectors (see
chapter 5) is presented. The tool used is pulse shape analysis, PSA. The measurement setup and
the source properties were described in chapter 7. As a crosscheck, pulse shapes recorded with
the XtRa detector were analysed.

8.1 90Sr Data

The two REGe detectors were used. As shown in detail in Figure 7.6, the two detectors were
positioned in parallel next to each other. The collimator was placed in front of REGe B, centered
with respect to the crystal. The90Sr source was mounted inside the tungsten collimator segment
with the segment aperture of 3.2 mm. This segment was placed in the 5 possible positions (see
chapter 7).

Events were recorded independently by REGe A and B. The data from REGe A act as a control
data set, as no electrons can hit this detector. The photons hitting REGe A are photons produced
in the collimator by electron interactions and Bremsstrahlung.

8.2 Rise-time Distribution

The lifetime of the data taking and number of events at each position are summarized in Table
8.1. The data for REGe A and B were triggered independently, but the same DAQ was used.
Therefore, the lifetime for REGe A went down together with theone for REGe B, even though
only the event rate in REGe B was high.
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Pos. LT REGe A [s] LT REGe B [s] Total Nr. Events REGe A Total Nr. of Events REGe B

1 528 528 33624 305465
2 332 332 20789 357466
3 173 173 10962 372156
4 90 90 6234 377651
5 22 22 4392 357957

Table 8.1: Lifetime, LT, and number of events for different source positions (REGe A & B). The
real time was about 20 minutes for each data set.

Figure 8.1 shows the rise-time distribution for the different 90Sr source positions, recorded with
REGe A. All events above a threshold of 10 keV were used. The distributions were normalized
to 1. The rise times of all pulses were calculated using the minimum/maximum method, see
chapter 6.
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Figure 8.1: Rise time (10%-90%) distribution (all energies)for 5 source positions, recorded by
REGe A.

In Table 8.2, the mean rise times, MRT, and the root mean square values, r.m.s, of the rise-time
distributions for the different source positions are summarized.

The rise times change for different source positions. The MRT decreases for positions where the
source is mounted deeper inside the collimator. The largestMRT was calculated for position 4.
Larger rise times indicate that REGe A was hit by photons of lower energy.
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Source Position MRT [ns] r.m.s

1 104.8 17.8
2 133.8 16.1
3 132.2 21.31
4 150.3 23.1
5 144.7 9.9

Table 8.2: Mean risetime, MRT, and r.m.s for 5 source positions in REGe A.

Figure 8.2 shows the rise-time distribution for the different source positions for events recorded
with REGe B. The MRT and r.m.s were calculated and the values aresummarized in Table 8.3.
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Figure 8.2: Rise time (10%-90%) distribution (all energies)for 5 source positions, recorded by
REGe B.

The MRT is different for different source positions, see Table 8.3. It is small for positions 3 and
4, compared to positions 1 and 2. The smallest MRT was calculated for position 3 with≈ 101
ns. For position 5, the collimation is minimal, as no tungsten collimator segment is positioned in
front of the source and the MRT increases again.
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Source Position MRT [ns] r.m.s

1 117.3 5.9
2 131.8 17.7
3 100.6 18.8
4 102.1 20.4
5 110.9 17.9

Table 8.3: Mean-risetime, MRT and r.m.s for 5 source positions in REGe B.

Two kinds of events are expected. Primary electrons which should have long rise times and sec-
ondary photons with a spread in rise times. In position 5, thelatter component is small. The
electron beam spot, however, covers basically the whole entrance window. Due to the geometry
of the detector longer drift paths are unavoidable. Thus therise-time distribution gets widened.
As the source is moved deeper inside the collimator, the electron beam spot shrinks (see chap-
ter 7) and the rise-time distribution gets narrower. At these positions the low energy secondary
photons start to contribute significantly. They reach energies of up to several hundred keV and
penetrate deeper, thus creating pulses with shorter rise times. In position 1 and 2, most of the
photons reaching the detector have already lost part of their energy in the tungsten and thus have
lower energies and create events with a longer rise time.

8.3 Pile-Up

Source positions with minimal collimation created a large number of pile-up events. Pile-up
events reduced the lifetime of the detector, which can be seen in Table 8.1. Figure 8.3 shows
a typical pile-up event, recorded with the XtRa detector. Thepulse was fitted with a reference
pulse as described in chapter 6.

The duration of all runs was approximately 20 minutes. The lifetime, however dropped dramati-
cally for position 5. The DAQ suppresses pile-up events, where two interactions happen too short
after each other to record undisturbed pulses. In addition,a pile-up rejection was implemented
offline. About 1h of the events were affected in position 5. In the following, offline pile-up
rejection was applied.
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Figure 8.3: Example pile-up event.

8.4 Energy Window

Table 8.4 and 8.5 show the number of events recorded by REGe A and B after rejecting pile-up
events for different energy windows, respectively.
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Pos. (10≤ E≤ 500) keV (500≤ E≤ 1000) keV (1000≤ E≤ 1500) keV (1500≤ E≤ 2300) keV

1 29170 2898 1047 364
2 17963 1856 641 220
3 9417 1010 364 113
4 5420 555 177 49
5 4118 209 47 14

Table 8.4: Number of events for different energy windows and5 source positions (REGe A).

Pos. (10≤ E≤ 500) keV (500≤ E≤ 1000) keV (1000≤ E≤ 1500) keV (1500≤ E≤ 2300) keV

1 170986 86752 43181 4450
2 197712 104781 49990 4916
3 212920 106958 47858 4420
4 242082 92142 39726 3701
5 209356 99113 44931 4510

Table 8.5: Number of events for different energy windows and5 source positions (REGe B).
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Figure 8.4 to 8.8 show the rise-time distributions for source positions 1 to 5, recorded by REGe
A and B. The rise times were calculated for different energy windows: 10 - 500 keV, 500 - 1000
keV, 1000 - 1500 keV and 1500 - 2300 keV. The histograms were normalized to 1.
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Figure 8.4:Mean rise time for REGe A (left) and REGe B (right) for different energy windows (source
position 1): red: 10 keV< E < 500 keV, blue: 500 keV< E < 1000 keV, green: 1000 keV< E < 1500
keV, magenta: 1500 keV< E< 2300 keV.
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Figure 8.5:Mean rise time for REGe A (left) and REGe B (right) for different energy windows (source
position 2): red: 10 keV< E < 500 keV, blue: 500 keV< E < 1000 keV, green: 1000 keV< E < 1500
keV, magenta: 1500 keV< E< 2300 keV.
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Figure 8.6:Mean rise time for REGe A (left) and REGe B (right) for different energy windows (source
position 3): red: 10 keV< E < 500 keV, blue: 500 keV< E < 1000 keV, green: 1000 keV< E < 1500
keV, magenta: 1500 keV< E< 2300 keV.

Rise Time (10%-90%) [ns]
0 100 200 300 400 500

N
or

m
al

is
ed

 E
nt

rie
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10 keV < E < 500 keV

500 keV < E < 1000 keV

1000 keV < E < 1500 keV

1500 keV < E < 2300 keV

Source in Position 4

Rise Time (10%-90%) [ns]
0 100 200 300 400 500

N
or

m
al

is
ed

 E
nt

rie
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10 keV < E < 500 keV

500 keV < E < 1000 keV

1000 keV < E < 1500 keV

1500 keV < E < 2300 keV

Source in Position 4

Figure 8.7:Mean rise time for REGe A (left) and REGe B (right) for different energy windows (source
position 4): red: 10 keV< E < 500 keV, blue: 500 keV< E < 1000 keV, green: 1000 keV< E < 1500
keV, magenta: 1500 keV< E< 2300 keV.
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Figure 8.8:Mean rise time for REGe A (left) and REGe B (right) for different energy windows (source
position 5): red: 10 keV< E < 500 keV, blue: 500 keV< E < 1000 keV, green: 1000 keV< E < 1500
keV, magenta: 1500 keV< E< 2300 keV.
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In the highest energy window, basically only electrons should be observed in REGe B. The hope
was to identify such events through their rise time. However, this seems impossible. Also REGe
A has events in this energy window. This indicates a significant background in REGe B. How-
ever, that can only partially explain the distributions observed in REGe B. A large amount of
Bremsstrahlung is created due to the high density of the tungsten collimator segments. A less
dense collimator material would decrease this background contribution. Tungsten is not ideal for
β collimation.

In positions 1 to 4, there are clear peaks in the rise time bin around 90 ns. This is probably
the rise time for electrons focused to the beam spot. In position 5, the electrons are not really
collimated and most of them do not hit the center of the detector where the smallest rise times
occur. Thus, the distribution is shifted upwards. The background rate in the highest energy bin
increases for positions 1 and 2. These events happen anywhere in the detector and even though
these are photons, the locations far away from the center of the detector create longer rise times.
The double peak in position 1 is, however, difficult to explain.

The change in the distributions of REGe A and in the lower energy windows of REGe B are hard
to decipher. A detailed Monte Carlo study would be necessary.However, it is clear that it is
impossible to identify electron interactions from the risetime in this kind of detector.

8.5 Tungsten Line at EW = 59 keV

In order to examine the rise-time distribution in a small energy window, events were studied at
E = (59± 2) keV (tungsten Kα -line). These events were only recorded by REGe B. The tung-
sten peak at E = (59± 2) keV was fitted with a gaussian and first order polynomial function to
calculate the signal to background ratio. Figure 8.9 shows the fitted peak at E = (59± 2) keV
(position 3).
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Figure 8.9: Fit of the W59keV peak.

Figure 8.10 shows the rise-time distributions for source positions 1 to 4.
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Figure 8.10: Risetime distribution (10%-90%) for the tungsten line at EW = 59 keV. Tungsten
segments were used for collimation.

Table 8.6 summarizes the signal to background ratio for positions 1 to 4 together with the corre-
sponding MRT and r.m.s values. For position 5, the fit to the tungsten peak was not reliable.

The rise time increases for positions in which the source is mounted deeper in the collimator.
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Source Position Signal to BG Ratio BG to Signal Ratio Mean Risetime [ns] r.m.s

1 0.4± 0.2 2.4± 0.3 156.9 28.3
2 0.5± 0.2 2.1± 0.5 116.8 18.1
3 0.7± 0.3 1.4± 0.1 96.5 33.9
4 0.9± 0.4 1.2± 0.5 101.2 17.5

Table 8.6: Signal to background and background to signal ratio and mean rise time for source
position 1 to 4, calculated for the tungsten peak at 59 keV.

The smallest value with≈ 97 ns was calculated for position 3. The MRT increases again for
source position 4. In position 1 and 2 Bremsstrahlung seems todominate. In position 3 the beam
is less collimated but the amount of tungsten between sourceand detector is reduced.

The smallest value for the background to signal ratio was calculated for position 4, which is≈
1.2. A linear dependence of the MRT on the background to signal-ratio is visible in Fig. 8.11.
Assuming the background to be non-surface events, the extrapolation of the linear fit to zero
background should yield a value representative for the 57 keV Kα photon. The result is≈ 27 ns.
This is, however, not a realistic rise time value for surfaceevents. Also the background events to
the 57 keV peak seem to be predominantly at the surface and thus the linear fit does not provide
the rise time value for the tungsten Kα line. The background events come out of the collimator
and are not Compton scatters inside the detector. A linear fit to the points in Fig. 8.11 is thus
inappropriate. As all events come from the surface and Fig. 8.10 shows rise times below 100
ns for position 1, it seems as this is the rise time for surfaceevents in the center of the detector
endplate, right underneath the collimator. Such events were also observed in higher energy win-
dows, Figs. 8.4 to 8.8, they are most likely associated with electrons.
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Figure 8.11: The MRT vs. the background to signal ratio of thetungsten peak for 4 different
source positions (REGe B).

8.6 Copper Collimator Segments

Copper has a lower density than tungsten and therefore photons are not stopped as effectively.
Hence, it is interesting to compare the rise-time distributions for copper with those for tungsten.
Figure 8.12 shows the rise-time distributions for REGe A (source positions 1 to 5). These distri-
butions are quite similar to those observed for the tungstencollimator.

Figure 8.13 shows the rise-time distribution for all energies, seen by REGe B. The rise-time dis-
tributions are shifted to lower rise times compared to the distributions for tungsten. This could
be due to photons penetrating deeper and creating smaller rise times. However, there could also
be small shifts due to a slightly different positioning of the copper collimator.
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Figure 8.12: Rise-time distributions for all energies and source positions 1 to 5 (REGe A). The
source was mounted inside copper collimator segments.
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Figure 8.13: Risetime distributions for all energies and source positions 1 to 5 (REGe B). The
source was mounted inside copper collimator segments.
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8.7 Crosscheck with the XtRa Detector

As a crosscheck, events recorded with the XtRa detector were investigated. The90Sr source was
mounted in the GALATEA collimator at position 3. The setup toscan the detector is illustrated
in Fig. 8.14. The collimator was mounted inside an especially designed holder system, carried
by a Teflon ring. The Teflon support was mounted to a movable table, see 8.14. The collimator
penning was directed to the XtRa entrance window. The detector setup was placed inside a cop-
per shield which was surrounded by a lead castle to minimize background. The data of relevance
was taken at one specific spot on the detector. The complete setup was established to facilitate
further detector scans.

Xtra 

Detector

Entrance

Window

Horizontal Movement
x-direction

Horizontal Movement
y-direction

"Galatea"

Tungsten Collimator Holder

- Side Slider

Source inside

Tungsten Collimator

Support

Copper Box

Lead Castle

Vertical Movement
z-direction

Figure 8.14: Copper shield inside the lead castle which houses the front part of the XtRa de-
tector and the collimator inside its support system. The support system can be moved in three
dimensions, see labels.

Figure 8.15 shows the calibrated90Sr Spectrum observed in the XtRa detector for source posi-
tion 3. The spectrum was normalised to the lifetime. The spectrum shows a wide bump with the
endpoint at≈ 2.0 MeV. For90Y the endpoint is expected at 2.3 MeV. The material between the
source and the detector shifted the endpoint to smaller energies. The inlet shows a zoom on the
two tungsten lines at 59 keV and 67 keV. These Kα lines are created by primary90Sr electrons



8.7 Crosscheck with the XtRa Detector 83

hitting the tungsten.
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Figure 8.15: Calibrated90Sr Spectrum with tungsten lines at 59 keV and 67 keV (inlet). No
background subtraction was performed.

Figures 8.16 and 8.17 show example pulses of events, recorded with the XtRa detector. The
pulses have different amplitudes and lengths. The pulse with the lower amplitude in Fig. 8.16
(right) shows the noise, which was very low. In both Figures,the pulses on the left begin with a
slow rise. Different pulse shapes are expected for different interaction points.
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Figure 8.16: Example data pulses, recorded with the XtRa detector.
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Figure 8.17: Example data pulses, recorded with the XtRa detector.

The pulses of the data sets were fitted with a simulated reference pulse. The fitting method was
described in detail in chapter 6. The reference pulse was simulated for the surface right under-
neath the collimator (penetration depth 10 mm) with a bandwidth of B = 140 ns and an impurity
density ofρimp = 8 ·109 cm−3. Figure 8.18 shows the fit of this reference pulse to a90Sr data
pulse.
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Figure 8.18: Example fit of a90Sr data pulse with one reference pulse.

The amplitude, offset and tscaledistributions were extracted for different energy ranges.Figures
8.19 and 8.20 show the amplitude distribution for differentenergy ranges. Figures 8.21 and 8.22
show the offset distribution for different energy windows for the same data set. An offset of
about 600 ns is expected from the simulation.

In the low energy regime up to 500 keV, a wide-spread distribution with larger amplitudes be-
tween≈ 0.1 to 0.3 in Fig. 8.19 (left) is seen. The same is seen for the offset distribution in Fig.
8.21 (left). Two bumps are seen. One with offsets between≈ -600 - 200. A second bump around
0 is visible. This could be due to pile-up events. After performing a 68%χ2/ndf cut (see chapter
6) these events were excluded, see Fig. 8.23.
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Figure 8.19: Amplitude distribution for different energy windows: left: 0 keV≤ E≤ 500 keV;
right: 500 keV≤ E≤ 1000 keV.
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Figure 8.20: Amplitude distribution for different energy windows: left: 1000 keV≤ E≤ 1500
keV; right: 1500 keV≤ E≤ 2300 keV.
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Figure 8.21: Offset distribution for different energy windows: left: 0 keV≤ E≤ 500 keV; right:
500 keV≤ E≤ 1000 keV.
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Figure 8.22: Offset distribution for different energy windows: left: 1000 keV≤ E≤ 1500 keV;
right: 1500 keV≤ E≤ 2300 keV.



86 8. Characterization of Electron Interactions using PulseShape Analysis

Amplitude
0 0.05 0.1 0.15 0.2 0.25 0.3

E
nt

rie
s

0

200

400

600

800

1000

Figure 8.23: Amplitude distribution for the energy range 10keV ≤ E≤ 500 keV after applying
the 68%χ2/ndf cut.

At higher energies pile-up events hardly appear. The distributions become narrower with increas-
ing energy. Electrons from90Sr and90Y are expected in the high energy regime up to 2300 keV.

The same effect can be seen in the offset distributions, in Fig. 8.21 and 8.22. In the low energy
region, a huge amount of pile-up events are recorded and seenas a second bump in the spectrum
with an offset between -200 and 200. With increasing energy,the offset distribution of the pulses
becomes narrower. The mean offset is at≈ -700. It gets slightly shifted to smaller values.

Figure 8.24 shows the overlay of the time-scale distributions for different energy windows. A
68% χ2 cut was performed. In the energy range 0≤ E≤ 500 keV and 1500≤ E≤ 2300 keV
less events are seen then in the other two regimes. This was expected. The distributions become
narrower for higher energies up to 1500 keV. The time scalingfactor is shifted to smaller values,
indicating that events with larger rise times were recorded. In the highest energy regime up to
2300 keV only90Y electrons are expected with longer rise times.
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Figure 8.24: Time scale distribution for different energy windows.

Figure 8.25 shows the scatter plot of tscale in dependence of the energy for events with good
χ2/ndf. The cut depleted the low energy part of the spectrum, i.e. pile-up and secondary photons.
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Figure 8.25:Scatter plot of the time scale factor, tscale, in dependence of the energy for the90Sr (XtRa
detector).

Most of the events are located in a narrow band around tscale≈ 0.85 (red color). Primary elec-
trons from90Sr have energies below 500 keV and the energy deposition occurs on the detector
surface, long rise times are expected. Electrons from90Y have energies above≈ 500 keV but
also deposit their energy close to the surface. A tscale= 0.85 indicates that the simulated surface
pulse is a bit longer than the pulses observed. That was also observed in previous tests [44].

Events with tscale larger than 0.9 are visible for very low energies and in the energy regime of
≈ 500 keV≤ E≤ 1000 keV. These events can be seen in the turquoise ”cloud” above 500 keV.
These events with very long rise times originate from surface events and particles which hit the
detector close to the mantle. Due to geometrical effects these pulses have longer rise times. Re-
maining photon induced events cover mostly the whole energyspectrum and appear at different
energies with different tscale.



Chapter 9

Study of Crystal Axes Effects in the XtRa
Detector

In the following chapter, an investigation of the crystal properties of the XtRa detector is pre-
sented. The detector was scanned with an152Eu source in vertical, horizontal and circular direc-
tion. Due to the crystal axes, a change of the rise time depending on different source positions is
expected.

9.1 152Eu Source

The decay scheme of152Eu is rather complex. Figure 9.1 shows a highly simplified scheme for
152Eu, indicated are two prominent decays to excited states with following γ-emission.

(344 keV)(122 keV)

Figure 9.1: Decay scheme of152Eu with indicated decay products.

152Eu decays with 72% probability to152Gd emitting an electron and an anti-electron neutrino.
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The second strong decay (27%) is theβ+-decay into152Sm in which a positron and an electron-
neutrino are emitted:

152
63 Eu

344 keV−−−−→ 152
64 Gd + e− + νe (72.1%)

152
63 Eu

122 keV−−−−→ 152
62 Sm + e+ + νe (27.9%) .

(9.1)

Table 9.1 summarizes the properties of the152Eu source, which was used for these measurements.

Nucl. Radiation Half-life [y] Encapsulation Activity (2011)

152Eu β ,γ 13.5 cylind.,∅ 6.4 mm, M4 screw 36.4 kBq

Table 9.1: Properties of the152Eu source, which was used for the XtRa detector scan.

9.2 Measurement Setup

The 152Eu source was mounted on top of a cylindrical plastic holder with an outer diameter of
50 mm and an inner diameter of 40 mm. The source was fixed with tape to the holder. Fig. 9.2
shows the collimator setup.

The collimator holder was tilted by an angle ofΘ = 2.38◦ to the horizontal. Hence, the scanning
positions were shifted vertically by∆y = 2.5 mm with respect to the source position. The geom-
etry and the dimension of the setup are illustrated in Fig. 9.2.
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Figure 9.2: Design and dimensions of the collimator holder.Due to the design of the collimator,
the collimated beam had an inclination with respect to the x-axis. The inclination angle wasΘ =
2.38◦. The measured positions were corrected by∆y = 2.5 mm.

The penning of the source was directed towards the detector.The holder contained three tung-
sten collimator segments with an outer diameter of 40 mm and an inner bore hole of 3 mm. The
source holder including the tungsten segments and the source, see Fig. 9.3, were placed in front
of the detector at a fixed distance of 25 mm. Including the tungsten segment length of 10 mm,
the distance between the source and the detector, d3, was 55 mm.

Table

Figure 9.3: Side view of the XtRa setup. The collimator was placed in front of the XtRa detector.

The height of the source, hsource, was varied by changing the support platform. The source height
was measured between the table and the middle of the152Eu source container. The whole setup
was placed inside the copper shield, surrounded by a lead castle, see Fig. 8.14 (chapter 8).
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Figure 9.4 shows a schematic of the front of the XtRa detector.The crystal had a diameter of
69 mm. The alumium end-cap had an outer diameter of 88.9 mm. The active detector area was
scanned in vertical and horizontal direction by varying theparameter d1 (horizontal direction)
and hsource(vertical direction).

Figure 9.4: Front view of the XtRa setup. The detector and end-cap size are shown. The param-
eter d1 indicates the left distance of the source to the copper shield.
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9.3 XtRa Detector Scan

Figure 9.5 illustrates the scan positions. The vertical positions are labled with black numbers
from 1 to 9, the horizontal positions from 10 to 14. The blue numbers indicate the 12 circular
scanning positions. For each position, a background spectrum was taken. The beam spot had a
size of about 5.5 mm.
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Figure 9.5: Scanning positions of the XtRa detector. The frontside of the detector is shown. The
blue numbers indicate the circual scanning positions. The black numbers label the vertical and
horizontal scanning positions.

Fig. 9.6 shows the collimated and background subtracted152Eu spectrum at position 4 (vertical
scan) in Fig. 9.5. The labled peaks represent theγ-lines of152Eu. The FWHM of theγ-peak at
1457 MeV is≈ 2.4 keV. This demonstrates the excellent energy resolutionof the XtRa detector.
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Figure 9.6: Collimated and background substracted152Eu Spectrum. The prominent lines are
labled. The spectrum was normalised to the lifetime.

Data pulses were selected from the152Eu peak at≈ 122 keV with aσ ± 2 keV. Figure 9.7 shows
the fitted152Eu peak at≈ 122 keV.
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Figure 9.7: Fitted 122 keV peak of the152Eu energy spectrum.

The pulses of the152Eu data were fitted with a simulated reference pulse (penetration depth of
0.5 cm) according to the procedure explained in chapter 6. For each position, tscale (see chap-
ter 6) was calculated. A 68%χ2 was applied to exclude background and pile-up events. As a
crosscheck, the rise time of the pulses, recorded for the vertical and horizontal scans, were also
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calculated with the minimum/maximum method.

9.3.1 Vertical Scan

Figure 9.8 shows the mean rise-time of the pulses recorded inthe vertical scan (positions 1 to
9) in dependence of the distance to the detector center, dorigin. The mean rise-times, calculated
with the minimum/maximum method are indicated in blue. The mean rise-times were calculated
as the mean values of the gaussian fits to the entire rise-timedistributions. The red triangles
illustrate the mean rise times extracted with the pulse fitting method. Applying the pulse fitting
method, events are excluded with the 68%χ2 cut.
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Figure 9.8: Mean rise-times [ns] for different distances from the detector center, dorigin, plotted
for the vertical scan with the152Eu source.

The systematically larger values for the rise times calculated with the minimum/maximum method
were expected. The offset is≈ 6 ns.

The dependence of the rise time on the position is the same forboth methods. The mean rise-
time decreases for positions close to the detectors center.At position 7, see Fig. 9.5, the mean
rise-time was about 300 ns. At the detector edge (dorgin = 26 mm) a mean rise-time of≈ 343 ns
was observed.
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Charge carriers created on the edge of the germanium crystal have longer drifts before they are
collected by the core electrode. The event path is illustrated as (A) in Fig. 9.9. Longer drifts
result in longer rise times. Charge carriers which are created close to the detector center ((B) in
Fig. 9.9), have shorter drifts and shorter pulse lengths areexpected.

A
B

Figure 9.9: Illustration of the charge carrier paths for an event detected on the detector edge (A)
and close to the detector origin (B).

The increase of rise time with increasing distance to the center is not symmetric for the vertical
scan. This can be due to slight misalignments and/or crystalaxes effects.

9.3.2 Horizontal Scan

The detector was scanned in the horizontal direction at six positions. Figure 9.10 shows the mean
rise-time of the pulses for source positions 10 to 14 (see Fig. 9.5). The differences between the
mean rise times are very small.

All positions are close to the detector edge. The small differences observed can be caused by
axis effects. The maximum rise time difference is≈ 8 ns.
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Figure 9.10: Mean rise times vs. scanning positions, plotted for the horizontal scan (152Eu
source)

9.3.3 Circular Scan

The circular scan of the XtRa detector was done to investigatethe crystal axis effects. The de-
tector was scanned circular on its periphery, according to the scheme, shown in Fig. 9.5. The
source positions were chosen such, that the detector is scanned every 30◦. The recorded pulses
were fitted with the same reference pulse (see section 9.3.1 and 9.3.2) and the average rise times
were calculated. The mean rise times are plotted as a function of the source-position angle [rad],
see Fig. 9.11.

The pulse formation of events close to the surface is dominated by hole drift. The drift velocity
of the holes is influenced by the axis orientation. The lowestdrift time is expected to be along
<100> and the fastest along the<110> axis [44], see chapter 4. Therefore, a modulation of
the rise time with a 90◦ phase is expected. In Fig. 9.11 an indication of the rise timechange is
visible, but the maximum rise time difference is only≈ 6 ns. A sine function is shown to guide
the eye. No fit was attempted.
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Figure 9.11: Mean rise time of the pulses, recorded for the circular scan. The detector was
scanned every 30◦. A sine function is overlayed.



Chapter 10

The Test Facility GALATEA

The characterisation of HPGe detectors is important for lowbackground experiments using them.
Unavoidable background events can be identified through event recognition based on the char-
acterisation. The characterisation is also essential for further detector studies on charge trapping
and surface effects and thus for detector development.

To study surface effects of a germanium detector, non penetrating radioactive sources are needed.
Particles likeα or β do not penetrate deep into the crystal and deposit their energy mainly close
to its surface. A 1 MeV electron for example, has a penetration depth ofδelectron≈ 1 mm in
germanium. Anα-particle loses an energy of about 0.2 MeV in≈ 1 µm of germanium [20].
Scans of the surface of a detector withα- or β -particles give information about effective inac-
tive layers. A special high precision test stand called GALATEA was designed to facilitate such
scans. The working principle, setup and technical implementation of the test stand are explained
in this chapter.

The following topics are covered in this chapter:

• GALATEA Phase I and II

• Technical Requirements

• Exterior and Interior Setup

• Vacuum, Cooling and Heating Systems

• Electronics

• Detector Installation and Alignment

• Conditioning of Surfaces for UHV

• Pressure and Temperature Monitoring
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10.1 GALATEA Phase I and II

A first phase of GALATEA, completed in 2011, had several technical problems [49]. In par-
ticular, the quality of the vacuum was not sufficiant and the grounding scheme did not provide
sufficant decoupling from the exterior. After this phase, denoted as GALATEA phase I, and a
complete assessment, a major upgrade was performed before the current GALATEA phase II
started. In the following, some of the improvements are described in detail.

10.2 Technical Requirements

To scan the surface of a germanium detector, radioactive sources providingα-particles and elec-
trons are ideal. They have to be mounted close to the detectorinside the vacuum to avoid any
material between the source and the detector. Figure 10.1 shows the principle on how a germa-
nium detector can be scanned. The sources are movable and canreach all points on the detector
mantle and top plate.

Germ�����

Detector

Collimator (top)

Collimator (side)

Source

Source

Figure 10.1: Principle of a detector scan with movable radioactive sources.

The main technical requirements for a test stand, which allows complete detector scans can be
summarized as follows:

• Vacuum
The radioactive sources have to be placed inside the same vacuum volume as the detector
with no material in between. The vacuum is also needed to operate the germanium de-
tector stably at low temperatures (≤ 100 K ). An excellent vacuum is of vital importance
and should be stable below 10−5 mbar for long term measurements. Due to microphonic
effects, the vacuum pump has to be shut off during detector operation and hence the whole
system has to hold the required vacuum without external pumping over several hours/days
to guarantee adequate measurement times.



10.2 Technical Requirements 101

• LN2

To cool the detector to its working temperature of≤ 100 K, it is thermally connected to a
cooling finger cooled by liquid nitrogen, LN2. The LN2 is provided by an automatically
controlled system to allow long measurement periods.

• Adjustable sources
Radioactive sources for scanning the detector have to be placed in collimators to ensure
well defined beam spots on the detector. It is necessary to mount the collimators onto the
stage system. The sources can be moved vertically, horizontally and around in order to
allow a full three dimensional scan of the detector. The whole stage system, including
three motors for the axes, has to be suitable for high vacuum conditions, i.e. about 10−3 to
10−9 mbar and low temperatures (≤ 100 K ).

• Electronics
The read-out electronics including the preamplifiers should be kept as close as possible to
the detector in order to reduce the noise level. It is placed inside the vacuum tank.
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10.3 Exterior

Figure 10.2 shows the complete setup of the test stand GALATEA. The lables in the picture are
identified below.

(1)

(2)

(3)

���
���

�	�

(7){(8)

(9)

(10)

(11)

(12)

(13)

(15)

(16)

(17)

(14)

(18)

(20)

(19)

(22)

(23)

(24)

(25)
(26)

LN2 Inlet

LN2 Outlet

gaseous nitrogen
inlet

(21)

CF 40 Port

Figure 10.2: The GALATEA test facility.

(1) Main vacuum chamber (16) Low voltage power supply
(2) Modular chamber (17) Laser
(3) Lid with DN 40 CF ports ((4),(5),(6),(7)) (18) Power supply for laser
(8) Heating jacket (19) DAQ
(9) Instrument cross Nr. 1 (20) HV power supply
(10) Instrument cross Nr. 2 (21) Pulse generator
(11) Shutter (22) Power supply for stage
(12) Pump Stand (23) Lakeshore (T monitoring)
(13) Prepump (24) Pressure read out controller
(14) Turbo Pump (25) LN2 dewar with controller
(15) LCR meter (26) LN2 in- and outlet
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10.3.1 Vacuum Chamber

The main vacuum chamber with an inner diameter of 600 mm and a height of h = 550 mm has a
wall thickness of 5 mm. Figure 10.3 shows the technical drawing of the main vacuum chamber
in its original design without the modular chamber and the weld-on nozzle on the lid which were
added later to increase the volume and add diagnostics possibilities.

Figure 10.3: Technical drawing of the main vacuum chamber, including the lid. The drawing
does not contain the modular chamber and the additional porton the lid.

On top of the tank an additional ring (modular chamber) was welded for GALATEA phase II. It
has four DN 40 CF ports placed every 90◦ along the ring. This additional modular chamber was
needed to provide flanges for pressure gauges, gas inlets anda port for a mass spectrometer. It
allows measurements of the pressure and the contaminationsin the main volume.

The main vacuum chamber is closed with a lid. The lid has an additional port with another DN
40 CF flange welded in the middle of the lid. This is used as a supplementary port for pressure
gauges.
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10.3.2 Modular Chamber

The additional modular chamber, welded on top of the main vacuum chamber, was added to
increase the volume of the chamber and the number of measurement ports. Figure 10.4 shows
the technical drawing of the chamber including the port configuration explained below.

(4)

(5)

(6)

(7)

Figure 10.4: Technical drawing of the modular chamber including the port configuration. Each
port features a DN 40 CF flange.

Port (4) and Port (6) are used for pressure measurements. Two different pressuregauges
are mounted. A compact full range single gauge sensor (“PKR 251, DN 40 CF-F, Active Pi-
rani/Kaltkathode Transmitter“) is mounted on port 4. It is able to measure the pressure in the
range of≈ 10-9 mbar to 1 bar. The gauge is working based on a combined pirani and cold cath-
ode measurement.Port (6) is used for a “BARION“ sensor (Bayard-Alpert-Type). The pressure
sensor is a passive hot-cathode ionization sensor with a measuring range of≈ 10-11 to 10-2 mbar.
Having two pressure gauges with different ranges at different positions on the modular chamber
guarantees an excellent monitoring of the vacuum conditions.

Port (5) is used to mount a quadrupole mass spectrometer which measures the residual gas com-
position inside the vacuum chamber. The measurement test probe of the mass spectrometer can
be easily mounted or unmounted whenever the chamber is flooded.

On port (7), an inlet vent is mounted via swagelok. It is used to purge thevacuum tank with
gaseous nitrogen. This vent is also connected to the turbo pump to purge the pump while shutting
it down. The gaseous nitrogen has a purity of≈ 99.99% (4 N). It is provided by boil off from
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a big nitrogen reservoir outside of the laboratory. Inside the laboratory, the gaseous nitrogen is
transferred via a plastic hose without any intermediate vents to preserve its purity.

10.3.3 Instrument Crosses

A large DN 160 ISO-K stainless steel cross with six DN 160 ISO-K disposals (labled (9) in Fig.
10.2) is mounted to the main vacuum chamber via its DN 160 ISO-K flange. An overview of the
cross and its connections is given in Fig. 10.5.
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Figure 10.5: Instrument crosses of the GALATEA test stand including connections (not to scale).

The turbo pump is horizontally connected to one of the DN 160 ISO-K flanges. Another DN 160
ISO-K flange is mounted at 90◦ on the left with 25 BNC feed throughs for the detector read out
cables (1x core, 19x segments), for the high voltage (1x) andfor temperature monitoring sensors
(4x). At 90◦ on the right, the in- and outlet tubes for the LN2 are mounted via a DN 160 ISO-K
flange.
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A small DN 160 ISO-K instrument cross (labled (10) in Fig. 10.2), with three symmetrically
orientated DN 63 CF outlets is also mounted on the large cross.It is used for electronic feed-
throughs (see also Fig. 10.5):

1. DN 63 CF: 4 BNC feedthroughs used for:

• 2x low voltage inputs (electronics board);

• 1x for a test pulser;

• 1x spare BNC;

2. DN 63 CF: 15 pin sub-D, used for temperature-sensor cables read out by a Lakeshore
controller;

3. DN 63 CF output is connected to a DN 63 CF T-piece, housing one 25 pin sub-D feedthrough
for the stage motors; the second connection is blind flanged
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10.4 Interior

10.4.1 Overview

Figure 10.6 shows an artistic view of the interior of the GALATEA test stand. The different
components are labled in the picture and identified below. The picture shows the main vacuum
chamber(1) with the DN 160 ISO-K weld-on nozzle in the front(2). The modular chamber and
the lid are not included; they were shown in Fig. 10.4.
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Figure 10.6: Artistic view of the interior of the GALATEA test stand.

(1) Main vacuum chamber (10) Detector holder
(2) DN 160 ISO-K weld-on nozzle (11) Tungsten collimator with source (vertical)
(3) LN2 in- and outlet weld-on nozzle (12) Infrared shield
(4) Cooling finger (13) Detector
(5) Cryogenic tank (14) Vertical collimator slider
(6) Electronics board (15) Horizontal collimator slider (horizontal)
(7) Teflon base (16) Tungsten collimators with source
(8) Ceramic flange (17) Stage motors
(9) Stage
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10.4.2 Main Parts

Detector Holder and Detector:
The center of the interior of GALATEA is the detector placed inside its especially designed
holder, sitting on a copper cooling finger. The ground for thedetector has to be controlled.
Therefore, the holder has to be electrically decoupled fromthe exterior.

Infrared Shield:
The detector is surrounded by an infrared, IR, shield, also called ”hat”, which is made of copper.
It has an inner diameter of 110 mm and a height of 109 mm. It shields the detector from the
thermal load of the outer tank and of the rest of the components inside the tank, especially from
the stage and the electronics. This is necessary, because heat increases the leakage current of the
detector and thus the noise.

The IR shield has one slit on the side and one on the top. The collimator holders slide along
the slits. The slits are open to the source such that the detector is irradiated directly. This slit
design allows the collimator slider to move the source either into a position where it irradiates
the detector or it is blinded. For a detector scan withα-particles or electrons, this technique is
required. The vertical slider can cover a height of≈ 76 mm vertically, starting from the bottom
of the shield. The horizontal slider on top covers radii up to≈ 43 mm. The dimensions including
the exact position of the slits can be found in the technical drawing in Appendix A. The IR shield
is rotated around the detector to provide full angular coverage.

Before installation, the copper shield was electropolishedand silver coated to minimize oxidation
of the surface and achieve good reflection for IR radiation. The IR shield sits on four supporting
needles, mounted on the stage. These needles are covered with Teflon tubes on their bottom end
to thermically and electrically isolate the hat from the stage. This is necessary because the lower
edge of the hat sits on the cooled upper plate of the detector holder (see Fig. 10.7), and thus
should not be electrically connected to the ”outside world”through the stage. The IR shield is
pressed slighlty to the detector holder by using Teflon screws which are screwed in on top of the
Teflon tubes. This is done to guarantee a good thermal contact, which is needed to cool the IR
shield.
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Figure 10.7: Drawing of the detector sitting inside the IR shield, surrounded by the collimators
mounted on the stages.

Cooling Finger and Cryogenic Tank:
The copper cooling finger is mounted to the cryogenic tank with a ceramic flange sitting on bolts
on top of the cryogenic tank, see Fig. 10.8. The ceramic flangeis used in GALATEA phase II
to electrically decouple the detector holder sitting on thecooling finger from the cryogenic tank
and thus from the exterior. The steel flange used in GALATEA phase I was one of the main prob-
lems because it spoiled the reference ground for the detector. The cooling finger extends into the
liquid nitrogen in the tank. As the detector holder sits on top of the copper rod, the detector itself
is cooled. Technical details and the working principle of the cooling system are summarized in
section 10.7.

Figure 10.8: Top of the cryogenic tank (grey). The Teflon base(white) surrounds the ceramic
flange of the cooling finger. On the right side, an aluminum structure houses the preamplifier
mainboard.

Teflon Base:
On top of the cryogenic tank, a Teflon support base (27 cm x 27 cm) is mounted on four stainless
steel bolts. Its height was increased from 30 mm to 45 mm when the ceramic flange, which is
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longer than the original steel flange, for the cooling finger was introduced. The Teflon plate sup-
ports the stage system and the preamplifier mainboard. The location of the Teflon base is fixed by
bolts which help to align the stage relative to the cooling finger, sitting centered on the cryogenic
tank. The Teflon also acts as a thermal insulator to decouple the stage from the cryogenic tank.

Electronics Board:
The electronics board is mounted on the Teflon base with an aluminum support frame, see Fig.
10.8. The 20 preamplifiers on the board point towards the detector. A detailed technical descrip-
tion of the electronics board and the complete read out chainis given in section 10.9.

UHV Cryo Stage System:
The stage was designed for ultrahigh vacuum (UHV) and cryogenic temperatures. The stages
have a precision of 1µm for the linear and 0.02◦ for the rotational movement. Three stages are
integrated in the system: two for linear movements (2x PLS-85 UHV CRYO, ”PImiCos”) and
one for the rotational movement (DT-120 UHV CRYO, ”PImiCos”).The rotation stage forms
the base of the system, on which the other two stages are mounted. The motors and the stages
are designed for operation around 80 to 100 K. Friction causes damages at higher temperatures.
Therefore, at room temperature, the stages are only moved for unavoidable test runs and only
briefly with minimum speed.1 The power supply and control cables are made out of Kapton.
They have to be kept clean.2

The entire stage system, including cables and motors was completely reworked for GALATEA
phase II. All components were cleaned for UHV operation. Before installation, the reassembled
stage system was tested diligently to guarantee the good performance needed in GALATEA.

Collimators:
There are two collimators mounted on the stage system, one ismoved vertically on the side and
one horizontally on the top. Each collimator consists of fivetungsten segments with central bore
holes (available with a diameter from 1 to 3 mm). Each collimator is mounted on an aluminum
frame fixed to the vertical and horizontal stage, respectively. The collimator sliders are pressed
onto the IR shield. The material used for the actual contact is Murtfeldt, a plastic allowing move-
ments with little friction.

The radioactive sources are mounted in especially designedsource holders which are plugged
into the collimator holders. For all sources, the position behind the middle segment is a good
starting point (position 2, see chapter 7). In this configuration, two of the tungsten segments are
behind, working as a mechanical support, three of them are infront, providing the actual colli-
mation. Each tungsten segment has a length of 1 cm. Thus, taken the whole collimator setup

1During the tests for GALATEA phase I, the stage was operated for too long at room temperature and needed to
be fully serviced by the manufacturer, PImiCos. For this, the stage was completely disassembled and mechanically
reworked. Internal components like motor spindles were exchanged.

2In GALATEA phase I, the cables got contaminated in an incident with smoking electronics. The resulting
contaminations could not be removed and the cables had to be replaced.
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into account, the distance between the source, mounted inside the vertical collimator (side) in
position 2, and the detector is (58.5± 2) mm. The distance of the source, mounted inside the
horizontal collimator (top) in position 2 and the detector is (68± 2) mm.

A detailed technical description of the collimators and further studies on source placement were
presented in chapter 7.

10.5 Vacuum System and Pump Stand

The GALATEA pump stand consists of a turbo pump and a prepump.The turbo pump (TMH
521 P, “Pfeiffer Vacuum”) is horizontally mounted on the large cross ((9) in Fig. 10.2). No mesh
was placed between the pump and the vacuum chamber to achievethe best pump performance.
Mounting the pump vertically would require a mesh to protectthe pump from objects which
could fall into the pump.3

The nominal rotation speed of the TMH 521 P is 50000 /min (833 Hz) with a N2 volume flow
rate of 300 - 500 l/s. The pump has an inlet available which is connected to the valve allowing
the flooding of the main vacuum chamber with gaseous nitrogen. This is used to shut the pump
down. At≈ 70% rotation speed the pump gets decelerated by flushing withgaseous nitrogen.

The turbo pump itself is connected to a prepump (dry vacuum pump “NeoDry30C“, “Kashiyama
ind.,ltd.“). The prepump is equipped with an exhaust emission. The whole pump stand is driven
by the control device of the turbo pump (DCU 300 Control Unit, “Pfeiffer Vacuum”).

10.5.1 Shutter

Due to microphonic effects, useful detector operation is not possible while the turbo pump is
running. Therefore, the pump has to be switched off and the system has to be kept under vacuum
without continous pumping. The shutter (VAT Gate valve, DN 160 ISO-K) is used to disconnect
the vacuum system from the pump. It can be opened and closed via a crank handle. The shutter
itself has an elastomer seal. It can be moved if the pressure difference is less then 40∼ 50 mbar.

10.5.2 Seals

(a) Metallic Seals:
Aside from the lid, all seals used in the test stand are metallic. The DN 160 ISO-K flanges are
closed with aluminum seals. All CF flanges are equipped with copper seals. Metal seals are
standard in low and high temperature applications as well asin ultra high vacuum systems.

3GALATEA phase I was operated in such a configuration. The reduced pump performance contributed to the
vacuum problems encountered in GALATEA phase I.
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(b) Elastomer Seal:
The lid of the vacuum chamber is sealed with a viton o-ring as it has to be opened and closed
many times.

Originally, before the introduction of the modular chamber(see section 10.3.2) the seal was
placed between the lid and the big vacuum chamber. In GALATEAphase I, its grooves was on
the lid itself. In this configuration, the seal fell off when the lid was moved. In GALATEA phase
II, the groove was removed from the bottom of the lid and the bottom surface was smoothed. A
trapezoidal groove was cut to the top of the modular chamber and a viton gasket (FPM/VITON
80 Shore, 615 mm x 5.7 mm) was placed inside. The groove diameter has to be such that the
gasket just fits in. The groove depth has to be such that the gasket not completely disappears.
The upper part of the gasket has to stand out just a few mm to getsqueezed from the lid while
closing. Otherwise, the tightness of the vacuum chamber is not guaranteed. The bottom surface
of the lid is not allowed to have any kind of contaminations orscratches. They would cause
irreparable damages to the gasket when the tank is closed.

10.6 Heating System

The GALATEA test stand is completely covered by a custom madeheating system. It has two
main purposes:

• Conditioning of the surfaces of the test stand (bake-out);

• Warm-up of the test stand after cold operation.

The GALATEA heating system was newly developed for phase II to ensure an adequate con-
ditioning of all parts of the vacuum chamber and the attachedparts, including all components
mounted inside. Heating jackets were especially made to cover the whole vacuum chamber.
They are controlled by an automatic control unit. An appropriate temperature can be set to reach
a target temperature inside the vacuum chamber.

The heating components for the vacuum chamber are the following:

1. Heating jacket around the main vacuum chamber with cut-outs for the DN 160 ISO-K
weld-on nozzle and tank feet (dimensions according to technical drawing, see Fig. 10.3);

2. Heating jacket around the modular chamber with cut-outs for the 4 DN 40 CF weld-on
nozzles (dimensions according to technical drawing, see Fig. 10.4);

3. Insulating hat, slotted with cut-outs for the DN 40 CF weld-on nozzle on top (dimensions:
ID = 608 mm, H = 560 mm). Commercial heating bands are placed underneath the insu-
lating hat to heat out the lid;

4. Silicon heating mat for tank bottom (dimensions: 594 x 420mm).
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The two heating jackets for the main vacuum chamber and the modular chamber as well as the
insulating hat are made out of the following materials:

• Heat conductor: glass yarn (isolated);

• Filling material: fibre glass (aluminum covered);

• Inlet material: fibre glass.

The heating jackets are directly attached to the stainless steel tank and fixed with a hook-and-
loop tape on each side. The maximum temperature of the heat conductor isθ = 350 ◦C. Each
heating component has a separate temperature sensor (Pt100) mounted inside the fibre glass shell.

The silicon heating mat with a thickness of≈ 3 mm is centered underneath the vacuum tank on
top of a plexy glass plate. To assure that the tank is not squeezing the heating mat, two plexy
glass bars were additionally fixed on top of the glass plate tosupport the tank. As a result, the
distance between the tank and the mat is about 0.5 cm. The temperature sensor (Pt100) of the
heating mat is located in a sensor pocket mounted on top of themat. The maximum heat con-
ductor temperature isθ = 200◦C.

The instrument crosses also needed to be baked out. Therefore, they were wrapped with com-
mercial heating bands and covered with two layers of aluminum foil. The standard bake-out
temperature, depending on the position of the heating unit is aboutθ ≈ 140◦C. Guidelines for
the operation can be found in Appendix B.1.

The heating system is also used to warm up the test stand for maintenance when the tank is to be
opened, see Appendix B.2. If a detector is mounted, the temperature is kept moderate in order to
minimize the risk of damage to the detector. Withθ = 50 ◦C on the main vacuum tank andθ =
30 ◦C on the cross, room temperature is reached after about 20 hours.

10.7 Cooling System

Operating a germanium detector requires a stable temperature of about 100 K. Therefore, a stable
cooling system, independent from human intervention, is necessary.

10.7.1 Main Principle

The cooling system of the GALATEA test stand consists essentially of a 150 l nitrogen storage
dewar connected via a flexible hose to a cryogenic tank located directly inside the main vacuum
chamber. A level controller (LEVEL CONTROL LN2-2, “Isotherm“) regulates the electromag-
netic valve of the LN2 dewar. It is triggered by a minimum and a maximum sensor whichare
connected via 3.5 mm phone jackets to the level controller.
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If the LN2 level is below the position of the minimum sensor the electromagnetic valve of the
LN2 dewar opens and LN2 gets filled into the cryogenic tank. Due to evaporation of LN2 inside
the dewar, the LN2 is pushed into the cyogenic tank with a pressure of≈ 0.5 bar. The moment
the LN2 level reaches the maximum sensor, the controller closes themagnetic valve of the dewar.
The whole cooling system is completely automated. Data taking during filling is not possible due
to microphonics.

10.7.2 Cryogenic Tank

Figure 10.9 shows the cryogenic tank mounted inside the mainvacuum chamber.

Figure 10.9: Cryogenic tank with attached Teflon base, mounted inside the main vacuum cham-
ber.

On top of the cryogenic tank, the Teflon base is mounted with four screws to the cryogenic tank
bolts. The ceramic flange housing the cooling finger is mounted in the middle of the cryogenic
tank. The four eye-lids on the top of the cryogenic tank are used to lift the tank with the crane
servicing GALATEA.

The cryogenic tank itself has three support bolts, symmetrically mounted on the bottom of the
tank (see technical drawing in Fig. 10.10). Each bolt has a contact area of≈ 7 mm2. Thus, in
total, the cryogenic tank stands on an area of≈ 21 mm2. This minimizes the thermal coupling
between the cryogenic tank and the outside wall. The remaining thermal load on the cryogenic
tank is so small, that the radiative load, which can be reduced with reflective foil, dominates.

In Figure 10.10, the technical drawing of the cryogenic tankis shown. The dimensions of the
cryogenic tank are given. Also shown is the capacitor systemmeasuring the fill level of the tank
(see next section).
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Figure 10.10: Technical drawing of the cryogenic tank including cooling finger, positions of
temperature sensors and holder of the capacitor inside the tank (colored supplements are not to
scale).

The copper cooling-finger (cooling-finger length, l = 290 mm)is submerged in the center of the
cryogenic tank. It is mounted in a ceramic flange on top. The finger reaches up to the detector
holder. The distance between the cooling finger and the bottom of the cryogenic tank is≈ 6 mm.
The cooling finger has a diameter of 16 mm.

Two flexible hoses are mounted on DN 25 CF flanges on the side of the tank (in Fig. 10.10 on
the right). The lower hose is used as the LN2 inlet, the upper hose is the LN2 outlet. Three
temperature sensors (Pt100) are mounted, two of them insidethe cryogenic tank and one outside
at the very end of the pipe connected to the outlet. The sensors inside the cryogenic tank are
mounted on a stainless steel tube (cylindrical capacitor) (see Fig. 10.10).

The minimum sensor is located just above the LN2 inlet flange. The inner maximum sensor is
placed close to the bottom of the outlet flange as indicated inFig. 10.10. This sensor is only
used as a backup. The maximum sensor mounted outside is used in standard operations, because
more LN2 is filled into the cryogenic tank before the system shuts off.This larger amount of LN2
inside the cryogenic tank lengthens the refilling cycles. Longer refilling cycles allows longer
measurement periods. The refilling itself creates massive vibrations during which measurements
have to be interupted.

10.7.3 LN2 Level Monitoring

The measurement of the capacitance of a vertically mounted steel double-cylinder inside the
cryogenic tank allows permanent monitoring of the LN2 fill level. Fig. 10.10 shows the location
of the assembly; Fig. 10.11 depicts the details.
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Figure 10.11: Left: shematics of the setup to measure the capacitance. Right: photograph of the
steel cylinder and its Murtfeldt holders.

The stainless-steel double-cylinder capacitor has an outer diameter of D1 = 8 mm. Its inner
cylinder has a diameter of D2 = 4 mm. The wall thickness is 2 mm and thereby the slit between
the two is 1 mm. The assembly has a length of l = 130 mm. The cylinder is mounted on two
Murtfeldt holders, one at the bottom and one on the top.

The capacitance, C, of a cylindrical capacitor is:

C = 2π ε0 εr
l

lnD1
D2

. (10.1)

The dielectric between the two cylinders is LN2 (εr(LN2) = 1.43) [47] or gaseous N2 (εr(N2) ≈
1) [47]. The resulting capacitance thus changes linearly with the fill level. It is measured with an
LCR meter in a quadrupole measurement.

Figure 10.12 shows the capacitance measured over a time period of about 200 hours after the
begin of operation. It covers several filling cycles.

The change in the capacitance corresponding to the LN2 fill level is clearly visible; the values
range from≈ 18.5 pF to≈ 24 pF. The low value of 18.5 pF corresponds to an empty tank before
the first filling. The initial filling of the cryogenic tank with LN2 took about 20 minutes. The
first refilling happened after≈ 8 hours. The next cycles took longer as the system cooled down
completely and less LN2 evaporated. After two to three filling cycles, the whole system reached
an equilibrium and the cycles reproducibly covered≈ 30 hours, see Fig. 10.13. Such long filling
cycles allow pleasently long measurement times.

Figure 10.13 shows a longterm capacitance measurement. After the initial cooldown, the length
of the cooling cycles is approximately constant over 30 daysof operation. The small dots seen
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at 19 pF over the whole period, originate from LN2 boiling.
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Figure 10.12: Capacitance over six filling cylces.
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Figure 10.13: Capacitance monitoring the fill level, observed over 30 days.
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10.8 Thermal Insulation

In GALATEA phase I, the whole inner surface of the main vacuumchamber was directly covered
with insulation foil, ”COOLCAT 2”. COOLCAT 2 is a multi-layer cryogenic foil, consisting of
three different layers. Each of these three layers consistsof 10 sub-layers (spot welded) made out
of “double side aluminized 6µm polyester-film (perforated), interleaved with 10 layers polyester
knit-woven spacer” [48], produced by the company RUAG. The foil was specifically developed
for cryogenic systems and is also suitable for vacuum.

Mounting the foil directly on the tank had the disadvantage that the foil was easily damaged
during installation work within the tank. In addition, it was more difficult to control outgasing
as the taping of the foil to the tank wall caused air entrapments between layers of the foil. This
increased the time needed to pump down.

To improve the setup, a special steel mesh holding the COOLCAT 2was designed. The mesh
size is about 1 cm. Three layers of insulation foil are mounted on the inside of the mesh (see Fig.
10.14). The resulting assembly acts as a heat shield betweenthe main vacuum chamber and the
IR shield surrounding the detector, see Fig. 10.14. The assembly consists of the following parts:

• Cylindrical body covering the inner surface of the main vacuum chamber;

• flat lid, for the top of the cylinder.

The assembly can easily be placed inside the tank. For installation works it is taken out.

The height of the assembly corresponds to approximately theheight of the main vacuum cham-
ber including the modular chamber. It has a diameter of 560 mm. Therefore, there is a gap of
about 40 to 50 mm between the foil and the wall. On one side, at the bottom of the assembly,
a cut of the size of the DN 160 ISO-K flange (see Fig. 10.14) accomodates incoming cables
serving the temperature sensors, electronics board and detector. Four additional holes the size of
DN 40 CF flanges were cut out to match the four CF flanges of the modular chamber.

The foil was mounted to the grid using only thin wires to avoidadhesive materials inside the
tank. This greatly reduced the outgasing rate.

The bottom of the tank is covered with four layers of foil. Thus, the whole interior setup is
surrounded by multi-layer cryogenic insulation foil whichimmensely helps to maintain the nec-
essary temperature inside the tank. The cryogenic tank wallis also covered with three layers of
insulation foil, excluding the top surface.
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Figure 10.14: Left: cylindrical mesh with COOLCAT foil. Right:lid.

10.9 Electronics

Figure 10.15 shows the electronics concept of the GALATEA test stand.
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Figure 10.15: Electronics Concept of the GALATEA test facility.

Segments 1-18 Signal Output:
Each detector segment has a separate read-out chain. However, a single Kapton cable provides
contacts for all segments and its traces take the signals to the lower end of the detector. Short
single-wire Teflon cables of equal length are soldered to theend of the capton cables. They are
attached to an 18-pin plug (”18-Pin Lemo S-Series”). The counterpart of the plug is connected
to 18 Teflon cables going to the input ports of the charge sensitive preamplifiers, which act also



120 10. The Test Facility GALATEA

as a virtual ground.

19th Segment Signal Output:
The 19th segment read-out cable goes directly from the detector contact to the preamplifier.
There is no connection to the Kapton cable serving the other segments.

Core Signal Output:
The core output is connected to a cold FET circuit. Its outputs are connected to the electronics
board. Contrary to the segments, for which the FETs are sitting on the preamplifier boards, the
core FET is placed close to the detector. This reduces the length of the cable in front of the core
FET and thus the input capacitance for the FET. The board, holding the cold FET is integrated
in the detector holder. The bias network, including a capacitor and a 1 GΩ resistor, which is
placed between the high voltage input (HV input) and the coldFET circuit, is used to push the
high frequency output signals into the cold FET circuit and keep low frequency noise out. The
read-out cables from the core emerge underneath the detector holder and are guided through the
gap in the Teflon base.

HV Input:
High voltage, HV, is provided by a standard module (NHQ206L). This module is operated man-
ually. A standard HV cable (specification: “Teledyne Reynolds 167-2896-9“) takes the HV
to the DN 160 ISO-K flange where a feed-through brings the HV into the vacuum and to the
electronics board. From the electronics board, it is taken to the detector. A 10 MΩ resistor is
placed in the line between the electronics board and the detector. The high voltage is ramped up
in small steps until the detector operating voltage is reached (U = + 3000 V for ”Supersiegfried”).

Preamplifiers and Electronics Board:
Each channel (19 segments, core) has a charge sensitive preamplifier PSC-823V working with a
RC-Feedback circuit. All preamplifiers are mounted on one electronics board (see Fig. 10.16).

Figure 10.16: Electronics board mounted inside the main vacuum chamber.
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The 20 preamplifiers are mounted in two rows. The input ports and pin assignments of the pream-
plifiers can be seen in Fig. 10.17.
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Figure 10.17: Left: Preamplifier in- and ouput ports. Right: picture of a preamplifier (front
view).

The board is mounted in an aluminum frame attached to the Teflon base. For all channels, the
distance between the detector segment and the preamplifier input is about 50 cm. The cable is
kept as short as possible, because each cm of cable adds 1 pF tothe input capacitance and thus
increases the noise. Compared to phase I, the preamplifier board is now rotated by 90◦ towards
the detector to minimize the cable length and to arrange the input cables to the preamplifier such
that the cables are spaced equidistantly and that cables do not cross. This is very important to
minimize crosstalk.

Grounding:
A 1 cm massive copper band is clamped firmly to the top of the cooling finger with a stainless
steel cable clamp. It provides the ground for the detector holder. The copper band gets the ground
from the preamplifier board.

Read Out Cables and DAQ:
On the electronics board, the preamplified signals are provided on a Sub-D plug. A correspond-
ing cable takes them to the DN 160 ISO-K flange. There the cables are directly soldered to the
feedthroughs of the flange. On the outside, the read-out cables are connected via BNC to SMA
connectors to the SMA plugs of the DAQ.

The preamplified signals are digitized using a digital multichannel data acquisition, DAQ (type:
XIA PXI Compact PCI, model PXI-18). The DAQ is operated with thestandard control software
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(type: Igor Pro 6.32A). It has a sampling rate of 75 MHz, whichcorresponds to a bandwidth
of 13.2 ns. Energy and time information (MCA) as well as pulse shape information can be
recorded. The energy measurement relies on a flat top software filter. Different run modes
including different settings like energy and trigger thresholds can be selected.

10.10 Detector Installation and Alignment

The detector is mounted together with its especially designed holder on top of the cooling finger.
The holder is fixed to the copper finger with two screws. The surface area of the cooling finger
is ≈ 201 mm2. If the detector is properly centered in the holder, it is aligned radially to the
cooling finger. The remaining alignment task is to position the stage such that the cooling finger
is exactly in the center.

For this, special tools and a special procedure were developed. Fig. 10.18 shows the relevant
part of the technical drawing. Three alignment tools are used during the installation.

1

2

3

Figure 10.18: Technical drawing showing the detector alignment tools: Tool 1: rounded bail,
tool 2: cylinder, tool 3: board.

The stage is screwed to the Teflon base. The Teflon base is screwed to the cryogenic tank through
long holes. For the alignment, the screws fixing the Teflon base are loosened, so that the base
and thus the stage position can be adjusted. Tool 1, the bail,is placed around the cooling finger
(see Fig. 10.19, left). The hole diameter of tool 1 is such that the bail sits very tight. The rounded
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end fits to a groove in the stage. Rotating the bail by 360◦, it has to slide smoothly along the
stage groove. The Teflon base is moved to make that possible. After alignment, the Teflon-base
screws have to be tightened again.

After aligning the stage position, the vertical frame holding the lower collimator has to be ad-
justed such that the collimator is at 90◦ to the vertical axis of the detector. To do this, tool 2 is
placed on top of the cooling finger. It is a cylinder with a borehole fitting to the cooling finger,
it is basically a detector dummy.

Tool 3 is a plate sitting on top of tool 2. The vertical frame isaligned if it touches the plate. The
screws holding the frame have to be adjusted accordingly.

Figure 10.19:Left: tool 1: rounded bail; middle: tool 2: cylinder; right: tool 3: plate usedfor the
detector alignment within the stage.

10.11 Conditioning of the System

The GALATEA test facility was designed to study germanium detectors. Therefore, a stable
vacuum and limited temperature variations have to be guaranteed. The specific technical re-
quirements were already summarized in section 10.2.

The vacuum tank needs to be conditioned in order to achieve the required vacuum. Most impor-
tant for establishing a good and stable vacuum are:

• Cleaning of surfaces;

• Baking-out under vacuum;

• Purging with dry nitrogen between bake-out cycles.
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10.11.1 Cleaning of Surfaces

Table 10.1 summarizes the main components mounted inside the GALATEA tank and the re-
spective cleaning procedures. Details on the cleaning procedure can be found in Appendix C.
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Component # Cleaning Procedure (Appendix) Remark
Cryotank 1 Microblasted, Micro-90 (brush) leak tested

Blindflanges Cryotank DN 16 CF 3 TickoPur R 30 (C.1) for testing purpose
LN2 Minimum Sensor + Cable 1 TickoPur R 30 (C.1)

Flexible Hose Cryotank 2 TickoPur R 30 (C.1)
Ceramic Flange 1 Isopropanol leak tested

Flange with Cooling Finger 1 TickoPur R 30 (C.1)
Teflon Basis 1 TickoPur R 30 (C.1)

Stage 1 no extra cleaning necessary cleaned & revised (“PImiCos“)
Power Supply Cables Stage “1“ no extra cleaning necessary cleaned & revised (”PImiCos”)

Coolcat Tank Wall no cleaning necessary
Coolcat Cryotank no cleaning necessary

Coolcat Lid no cleaning necessary
Coolcat Grid 1 TickoPur R 30 (C.1)

Coolcat Wall Holders 3 TickoPur R 30 (C.1)
Collimator Holder (vertical) 1 TickoPur R 30 (C.1)

Collimator Holder (horizontal) 1 TickoPur R 30 (C.1)
Collimator Tappet (aluminum) 1 TickoPur R 30 (C.1)

Cover Guidance (Murtfeldt S) (vertical) 1 Isopropanol
Cover Guidance (Murtfeldt S) (horizontal) 1 Isopropanol

Source Holder Socket (aluminum) 2 TickoPur R 30 (C.1)
Source Holder Socket Spacer (POM) 1 Isopropanol

Source Holder (aluminum) (horizontal) 1 TickoPur R 30 (C.1)
Tungsten Collimators 10 TickoPur R 30, Isoprop., Oven
Electronic Mainboard 1 Isopropanol

Preamp. (1 cable to 18-pin plug) 18 Ispropanol, Hera B (C.2 - electronics)
Preamp. (1 single cable to single pin) 1 Ispropanol, Hera B (C.2 - electronics)

Core Preamp. (3 single cables to single pin)1 Ispropanol, Hera B (C.2 - electronics)
Cables from Preamp. to Detector 1 Ispropanol, Hera B (C.2 - electronics)
Mainboard Holder (aluminum) 2 TickoPur R 30 (C.1)

Crystal Holder Basis 1 TickoPur R 30
Crystal Holder Structure 1 TickoPur R 30
silvercoated IR Shield 1 Isopropanol

Table 10.1: Main components mounted inside the GALATEA tankand the respective cleaning procedures.
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10.11.2 Evacuation and Bake-Out

The vacuum has to be stable over at least hours, at pressures of p ≤ 10−5 mbar, without pump-
ing. This is only possible if UHV vacua of≈ 10−6 mbar are achievable for a warm tank with
a running pump, which reduces to 10−8 mbar to 10−9 mbar when the liquid nitrogen cooling is
on. It is difficult to maintain the vacuum when the pump is off because of outgasing which can
only be reduced by long term (order of weeks) bake-out with the pump on. Providing a vacuum
alone is not enough to desorb the gases on the surfaces. It is also necessary to heat the vacuum
chamber to actively bake-out the surfaces.

The bake-out over a long period of time at a specified temperature is of great importance as it
removes unwanted contaminations on surfaces inside the vacuum tank. The desorption of water,
mainly from the stainless steel vacuum tank is the dominant process. The outgasing of seals,
electrical components and cables inside the tank is also significant.

Figure 10.20 and 10.21 show the composition of the residual gas as measured with the mass
spectrometer attached to the main vacuum chamber. They showthe partial pressure in depen-
dence of the mass, m, for different chemical compounds before and after a heating cycle. The
prominent lines, which are seen inside the vacuum, are indicated.
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Figure 10.20: Residual gas spectrum of the GALATEA vacuum chamber before bake-out.

Water (m = 18) and hydroxyl OH (m = 17), originating from water, are found to be dominant
in the vacuum chamber before bake-out, see Fig. 10.20. Also oil remnants which are visible as
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CH2 groups in the spectrum (chemical compounds with 14 amu difference) are observed. The
CH2 groups are split off from chain-like carbohydrates.

The hydrogen (m = 2) observed originated from the steel tank,because it was not baked out
after pressure tests done with water.4 Therefore, hydrogen was not released before installation
of GALATEA.

The electronics board and preamplifiers were also a main source of outgasing. The preampli-
fiers were baked out in a different vacuum tank (Hera B, see Table 10.1) before mounting. After
the complete GALATEA system was baked out at a temperature of≈ 140◦C for several hours
while pumping, the amount of water and hydroxyl was reduced by approximately one order of
magnitude (see Fig. 10.21). N2 and CO were the dominant components. With a partial pressure
of about 3.6·10−9 mbar of N2 and CO before bake-out, the pressure was reduced to≈ 1.8·10−9

mbar after bake-out. So N2 and CO were reduced by a factor of two.5

14 amu 14 amu

groups
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m
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mass [amu]

Figure 10.21: Residual gas spectrum of the GALATEA vacuum chamber after the first bake-out.

The longer the whole vacuum system was baked out, the cleanerthe chamber got. The GALATEA
bake-out was performed in cycles of 2 to 3 days. Shorter cycles did not result in significant im-
provement. After each cycle, the tank was purged with clean nitrogen. In total, 10 cycles were

4A bake-out at temperatures above 600◦C is standard, but was omitted by the manufacturer.
5The scale of the diagrams seen in Fig. 10.20 and Fig. 10.21 aredifferent because they were automatically

plotted by the manufacturers software.
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necessary.

The bake-out procedure including settings for the temperature limits of the heating units are
given in Appendix B.

10.11.3 Purging

Whenever the tank has to be flooded, pure nitrogen has to be usedto avoid contaminations inside
the vacuum chamber. Especially the amount of water vapour onthe interior components, has to
be minimized. Water, especially on big surfaces like the stainless steel chamber, would not get
fully desorbed during the next evacuation. Thus a new bake-out cycle would become necessary.

10.12 Pressure and Temperature Monitoring

10.12.1 Pressure

The pressure is permanently measured at two positions in themodular chamber, see section
10.3.2. Figure 10.22 shows the pressure for the time period of roughly 5 weeks after the initial
pump-down. During these five weeks, the pump was turned off four times, see “shutter cycles“
for details. The pressure rose each time and stabilized at decreasing values reaching 10−5 mbar
at the end. During this test, GALATEA was fully equipped and the electronics was powered up.
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Figure 10.22: Long term development of the pressure with onefull-range gauge and one Barion
sensor. The Barion sensor is more accurate for pressure below10−4 mbar.

Shutter Cycles:
Several shutter cycles are included in Fig. 10.22. As mentioned before, detector operation with
a running turbo pump is not possible. Therefore, the vacuum system was closed via the VAT
gate valve and the pump system was shut down. Closing this valve resulted in an increase of the
pressure by two orders of mangnitude within a couple of minutes, see Fig. 10.23. The pressure
saturated at≈ 3.0·10−5 mbar after about 3 hours for the first cycle, which is displayed here. The
saturation value improves over time, see Fig. 10.22.

Initial Pump and Cool Down:
Figure 10.24 shows the first part of Fig. 10.22, i.e. the details of the pressure during the initial
pump down. Also the first shutter shutter cycle of about two days is shown.

The pressure goes down from atmospheric pressure to p= 10-4 mbar in only about 10-15 min.
Without cooling, it takes about a week to reach a level of p= 10-7 mbar. In this pump down, the
cooling was turned on after about 70 hours when a level of p= 10-6 was reached. The pressure
decreased by almost two orders of magnitude to p= 10-8 mbar in 30 hours.

The rising pressure after shutter closure can be explained with outgasing inside the vacuum
chamber. Although all components were cleaned and conditioned, some parts like electronic
cables still outgased significantly.
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Figure 10.23: Development of the pressure after shutter closure.
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Figure 10.24: Initial pump and cool down and first closure of the shutter. Cooling was turned on
after 70 hours.

Figure 10.22 demonstrates that the pressure was stable for periods longer than 60 hours in the
test; stable pressures for up to to one week were observed subsequently. A stable pressure and
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temperature is needed for detector operation.

10.12.2 Temperature

The temperature is permanently monitored. Temperature sensors, Pt100, are installed inside the
main vacuum chamber and outside on the tank mantle. The following subsection summarizes
the temperature measurements and provides sensor positions in- and outside of the vacuum tank.
The procedure on how the sensors were attached to the components can be found in Appendix D
6.

(A) Inside the Main Vacuum Chamber
In total, six temperature sensors are mounted inside the vauum chamber. Three of them are con-
nected to the DN 160 ISO-K flange and read out by the cryogenic temperature controller, called
“LakeShore“. The remaining three are connected to the electronics board and read out by a “Lab-
Jack“ controller. This ”Multi-I/O-Measurement Device” isUSB and ethernet compatible and can
provide analog or digital in- and outputs. The sensors are placed at the following positions:

• UHV Stage

• Cryo Tank (top)

• Mesh (top side)

• Cooling Finger (side at top end)

• Detector Holder

• IR Shield (top)

The development of the temperature inside the vacuum chamber at different positions for the
period of the pressure test presented in the previous section is displayed in Fig. 10.25.

6The mounting procedure is very important as sensors losing contact to the surface, provide a false temperature
measurement.
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Figure 10.25: Long term temperature development inside thevacuum chamber.

During this period, the whole system was running, includingthe electronics board, and the HV
for the detector was on. The electronics board is the main heat load of the system. The automatic
cooling system was running. The plot nicely shows the temperature stability of the components
inside the vacuum tank over this long time period. Individual cooling cycles are seen as wiggles
around the operating temperature of O(100 K). The black and red dots (cryogenic tank and stage)
at 300 h are due to a read-out problem of the preamplifier mainboard. Figure 10.25 covers the
same period as Fig. 10.22.

The shutter cylces do not influence the temperatures inside the tank. This is an important obser-
vation as it confirms the expectation that pressures of the order of 10−5 mbar do not change the
thermal conditions of the system. Zooming into the beginning of the cool-down procedure (see
Fig. 10.26), one can see how fast the temperature drops as soon as the cooling system is turned
on.

Figure 10.27 covers a period when stable conditions were established. The detector needs about
32 hours to cool down to its working temperature between 100 and 110 K. This temperature is
measured on the detector holder, not on the crystal itself. This detector-temperature range is the
minimum reachable with this setup.

A thicker cooling finger would decrease the temperature. However, the detector should not be
the coldest part inside the vacuum tank, as it would act as a cold trap and contaminations would
be attracted to its surface.
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Figure 10.26: Temperature development of selected components inside the vacuum chamber at
the beginning of pumping and cooling.

The coldest part inside the vacuum tank is the cryogenic tankwith a temperature of≈ 95 K (red
line in Fig. 10.27), followed by the cooling finger (yellow line). The IR shield has a temperature
of about 110 K, almost the same temperature as the detector itself. This proves that the external
heat load is indeed taken by this shield, which sits directlyon the detector holder.

The temperatures of the mesh (blue line) and the stage (blackline) are much higher. This is ex-
pected as they are not actively cooled. Together with the electronics board, they are the radiative
load for the infrared shield.

The periodic slight changes of the temperatures, clearly seen in Fig. 10.27, are due to the refilling
cycles of the cryogenic tank. It varies by≈ 4 K over a full cycle and follows the fill level of LN2
inside the cryogenic tank. The variations are quite reproducible.
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Figure 10.27: Cooling cycles measured over a time period of 400 hours.

However, the running of the stage motors also increases the temperature of the detector by≈ 4 K.

(B) Outside of the Main Vacuum Chamber
The temperature sensors monitoring the temperature on the outside of the tank wall are placed
underneath the heating jacket. They are read out by the ”LakeShore” controller. These sensors
are again PT100 sensors. However, they are encapsulated in heat resistant metal tubes. The
sensors are placed at the following positions:

• Lid (top);

• Modular Chamber (Tank Ring) (side);

• Main Vacuum Chamber (Middle Tank) (side);

• Main Vacuum Chamber Bottom (Bottom Tank) (underneath, central).

The development of the ambient temperature over the time period covered in Fig. 10.25, is
displayed in Fig. 10.28. The outside temperature was not stable during this time. The high
temperatures seen in Fig. 10.28 were due to a failure of the air conitioning. However, these slight
changes of the temperature in the lab had no significant influence on the relevant temperatures
inside GALATEA.
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Figure 10.28: Longterm temperature development of the heating units outside of the GALATEA
tank.
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Chapter 11

Performance of Supersiegfried in
GALATEA Phase II

The true-coaxial HPGe detector Supersiegfried, see chapter 5, was mounted inside the now fully
operational test facility GALATEA (phase II). Calibration spectra, taken with a60Co and a228Th
source are shown and the effect of crosstalk on a segmented germanium detector is discussed.

11.1 Configuration

Uncollimated60Co and228Th sources were placed individually on top of the lid of the GALATEA
vacuum tank to obtain calibration spectra, see Fig. 11.1. The distance between the detector and
the sources was about 20 cm.

The horizontal and vertical collimators inside the vacuum tank were both installed. Tungsten
collimator segments with 3 mm hole diameter were used for both collimators. The vertical col-
limator on the side carried a152Eu source. The source was mounted at collimator position 2, for
more details see chapter 7. The horizontal collimator on tophoused a241Am source, which was
also mounted in position 2. The vertical collimator was moved to its lowest position, where the
radiation of the152Eu was not directly emitted onto the detector. The horizontal collimator was
placed right above the bore hole where the copper shield closes the collimator penning. Hence,
the detector is completely shielded fromα-particles. Figure 11.1 shows the source positions.

Before detector operation, the vacuum tank was pumped for several days and the detector was
cooled. The operating temperature was about 110 K.
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Figure 11.1: Parking positions of sources inside the GALATEA vacuum tank and calibration
positions on top of the tank lid (not to scale).

11.2 Calibration Spectra

Figure 11.2 shows the calibrated and crosstalk corrected228Th energy spectra for the core (blue),
segments 1 to 18 (green) and the 19th segment (red). For calibration, the60Co and208Tl lines
were used. A detailed description of the crosstalk correction procedure can be found in section
11.5. The prominent gamma lines are clearly visible in the core spectrum and in the overlay seg-
ment spectrum 1 to 18. For the 19th segment, indications for gamma lines at 1408 keV and 1457
keV can be seen. These two strong lines from152Eu are clearly visible in the overlay spectrum
of segments 1 to 18 and the core in Fig. 11.2. This demonstrates, that although the152Eu source
is in its parking position, these gammas reach the detector.At 2615 keV the208Tl peak arises;
208Tl is a decay product of228Th with little background underneath the peak. The single escape
peak, SEP, from208Tl can be seen at 2103 keV. The double escape peak, DEP, of208Tl is visible
at an energy of 1592 keV. The shoulder in the spectra down to about 1400 keV is created by
Compton scattering of 2615 keV gammas.

Figure 11.3 shows a zoom of the228Th spectrum in the range of 900 to 1500 keV. Seven gamma
lines are visible. Two of them, at 1408 keV and 1457 keV, are clearly visible in the 19th seg-
ment. The peaks of the accumulated segment spectrum are narrower by about 2 keV than the
core peaks. The energy resolution for the segments and the core are listed in section 11.3.
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Figure 11.2: Calibrated and crosstalk corrected228Th spectra for the core (blue), the spectra-
overlay of segments 1 to 18 (green) and the 19th segment (red).
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Figure 11.3: Zoom of the spectrum from Fig. 11.2 in the energyrange of 900 to 1500 keV.
Different line width in the core (blue) and segment overlay (green) are observed.
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Figure 11.4 shows the calibrated and crosstalk corrected energy spectra, taken with a60Co source
for the core, segments 1 to 18 (overlay) and the 19th segment.The two prominent60Co peaks
at 1173 keV and 1332 keV can be seen. Prominent gamma peaks from natural radioactivity, like
the 1460 keV peak of40K, the 214Bi peak at 1765 keV and the208Tl peak at 2615 keV are also
visible. The two strong152Eu peaks at 1408 keV and 1457 keV are also present.

Energy [keV]
0 500 1000 1500 2000 2500 3000

C
ou

nt
s

1

10

210

Core
Segments 1 to 18
Segment 19

Figure 11.4: Calibrated and crosstalk corrected60Co spectra for the core (blue), segments 1 to
18 (green) and the 19th segment (red).

11.3 Energy Resolution

The energy resolution, FWHM, was calculated for prominent gamma peaks of the calibrated
228Th spectrum. Figure 11.5 shows the two core gamma peaks at 1408 keV and 2615 keV. The
peaks are fitted with a gaussian and first order polynomial function in order to extract the standard
deviation,σ . The FWHM is:

FWHM = 2
√

2 ln 2 σ ≈ 2.35 σ .

Fig. 11.6 presents two fitted gamma lines at 511 keV (annihilation gammas) and 1460 keV (40K
originating from natural radioactivity).
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Figure 11.5: Peaks at 1408 keV (left) and 2615 keV (right) of the core spectrum. The fits to the
1408 keV and 2615 peak are indicated in red.
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Figure 11.6: Peaks at 511 keV (left) and 1460 keV (right) of the segment spectra (overlay of
segment 1 to 18). The fits to the 511 keV and 1460 keV peak are indicated in red.

The FWHM energy resolutions at different energies of the coreand the segments are listed
in table 11.1. Compared to the energy resolution achieved with Supersiegfried operated in
GALATEA phase I [49], the energy resolution both in the core and for the segments has greatly
improved.

The energy resolution of the core of (5.92± 0.04) keV at 2.6 MeV (208Tl) was improved by
10-15 keV compared to the energy resolution achieved in phase 1 [49]. The energy resolution of
the segments improved by about 1-2 keV. The new electronics and grounding concept of phase
II (see chapter 10) was mainly responsible for the improved performance. Ground loops and
antenna effects were not anymore significant.
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Energy [keV] FWHM [keV]

Core 511 5.05± 0.17
728 4.19± 0.32
1408 5.44± 0.02
1460 5.71± 0.05
2204 5.52± 0.25
2614 5.92± 0.04

Segments 511 3.14± 0.14
728 2.63± 0.21
1408 3.34± 0.02
1460 3.10± 0.05
2204 4.23± 0.32
2614 3.52± 0.05

Table 11.1: Energy resolution for different gamma peaks (standard configuration).

Nevertheless, environmental sensors still influence the energy resolution. Test runs with different
sensor configurations were made in order to see how much the energy resolution is affected.
The smallest FWHM for the208Tl peak of the228Th core spectrum of (3.9± 0.03) keV was
achieved when the pressure sensors and pump controllers were switched off. The largest noise
contribution originated from the pressure sensors. With operating pressure sensors and all other
sensors (pump controllers, LN2 level controller, temperature sensor Lake Shore, LCR meter and
labjack, see chapter 10 for details) switched off, an energyresolution of (6.5± 0.07) keV was
observed. This was compatible with the result obtained in the standard configuration.

11.4 Single- and Multisite-Events

Figures 11.7 and 11.8 show the228Th and60Co spectra for different segment multiplicities, n.
For n≥ 1 (blue line), all events are seen. For n = 1 (green line), onlysingle segment events are
plotted, i.e. only one segment shows an energy deposit. The event rate decreases with increasing
n. Only a small fraction of events is seen with a segment multiplicity of n ≥ 4. The strong
gamma lines above 1 MeV remain visible. The low energy part ofthe spectrum is suppressed for
increasing n, because the probability for Compton scattering decreases with energy.
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Figure 11.7: Single- and multisite-events in the228Th spectrum seen by Supersiegfried.
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Figure 11.8: Single- and multisite-events of the60Co spectrum seen by Supersiegfried.
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11.5 Crosstalk

Crosstalk is an electronics phenomenon which occurs if a signal is transmitted in a circuit and
creates fake signals in other channels. The “talking“ between channels is mainly produced by
capacitive coupling between neighbouring cables and amplifiers. Crosstalk depends predomi-
nantly on the setup and not on the detector itself. A detailedcrosstalk study for Supersiegfried,
operated in the GeDet test facility ”K1” was carried out previously [34]. There, the crosstalk was
limited to the percent level. However, the GALATEA environment proved to be less favourable.

Analysing two dimensional, 2d, histograms of MCA counts in one channel against MCA counts
in a different channel yields information on the crosstalk.Figure 11.9 shows the 2d histogram of
raw MCA counts of segment 1, MCA1, vs. the MCA counts of the core, MCA0. The plot shows
the influence of the core on segment 1.
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Figure 11.9: 2d histogram of raw MCA counts of segment 1 against the core.

Figure 11.9 demonstrates the situation for moderate crosstalk:

1. The upper line indicates single segment events; the same energy is seen in the core and the
segment; the green oval indicates this in Fig. 11.9;

2. The line at 0◦, expected for events with no energy deposition in the segment, is slightly
tilted;
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3. The vertical lines represent gamma lines with part of the energy deposited in the segment.
The208Tl line is indicated in Fig. 11.9 as an example.

The crosstalk from the core into the segments is dominant. The core signal is already amplified
close to the detector and all signal cables are close to each other on the way to the electronics
board. Thus, this was not unexpected. Fig. 11.10 shows the 2dhistogram of MCA counts of seg-
ment 1 against segment 2. The tilt of the 0◦ line is like in Fig. 11.9, indicating that all crosstalk
comes through core; this is not due to crosstalk.
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Figure 11.10: 2d histogram of raw MCA counts of segment 1 against segment 2.

The situation for segment 19 is more complicated. Figure 11.11 shows a large crosstalk from the
core into segment 19. In addition, there is a class of events where the energy in segment 19 is
larger than in the core.
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Figure 11.11: 2d histogram of raw MCA counts of segment 19 and the core.

11.5.1 Crosstalk Correction

In order to get correct values of the energy from the MCA values, the calibration constants ob-
tained from the known peaks have to include crosstalk corrections. At this stage, only a first order
correction for crosstalk from the core to the segments was done. The segment calibration factors
including crosstalk corrections were obtained using single segment events. In the following, the
procedure to correct crosstalk is presented in some detail.

STEP 1:
The core is calibrated with known gamma lines from152Eu using all events. The peak energies
are plotted against the extracted mean MCA values of the gammalines. The resulting points are
fitted with a first order polynomial function. The offset, a0, and the slope, b0, are calculated from
the fit. The core energy, E0, is evaluated as follows:

E0 = a0 + b0 · MCA0 . (11.1)
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STEP 2:
The crosstalk factors, c0i, were calculated for each segment using the tilted 0◦ line:

MCA i + c0i · MCA0
!
= 0 , (11.2)

with the raw MCA values, MCAi, of the segments. The factors c0i define the crosstalk from the
core into segment i.

STEP 3:
The lines indicating single segment events were used to calibrate the segment energies:

E0 − (ai + bi( MCA i + c0i · MCA0)) = 0 . (11.3)

RESULT:
The corrected energy of segment i, Ei, is calculated with the extracted parameters ai and bi
according to:

Ei = ai + bi( c0i · MCA i) . (11.4)

Figure 11.12 shows the 2d histogram of raw MCA values of segment 1 to the core (left) and the
crosstalk corrected and calibrated 2d histogram of segment1 to the core (right). The expected 0◦

line, which was tilted for the uncorrected plot, is moved to zero in the corrected plot. However,
an offset in E1 is observed; E1 is overcorrected for low E0.

The crosstalks for segments 1 to 18 vary from 0.3% to 17.8%. The crosstalk from the core to
segment 1 is comparatively small, with only about 2%. Another segment with moderate crosstalk
is segment 8, for which the situtation is depicted in 11.13.

A larger crosstalk, of roughly 15% is observed for segments 10 and 17, see figures 11.14 and
11.15.
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Figure 11.12:2d histograms of the raw MCA counts(left) and the calibrated and corrected energy(right)
of the core vs. segment 1.
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Figure 11.13:2d historgams of the raw MCA counts(left) and the calibrated and corrected energy(right)
of the core vs. segment 8.

MCA0

0 5000 10000 15000 20000 25000 30000 35000 40000

1
0

M
C

A

0

10000

20000

30000

40000

50000

60000

1

10

210

310

410

[keV]E0

0 500 1000 1500 2000 2500 3000

[k
e
V

]
1

0
E

0

500

1000

1500

2000

2500

3000

1

10

210

310

Figure 11.14: 2d histogram of the raw MCA counts(left) and the calibrated and corrected energy
(right) of the core vs. segment 10.

The biggest crosstalk of 51%, was observed in segment 19. Figure 11.16 shows the 2d histograms
of the raw MCA values (left) and corrected 2d histogram (right) of segment 19 to the core. After
correction, the line of full containment sits properly at 45◦ while the line for no energy in segment
19 is aligned with the x-axis. However, a huge amount of events above the 45◦ is present in the
corrected plot. They are associated to surface events and will be discussed in chapter 12.
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Figure 11.15: 2d histogram of the raw MCA counts(left) and the calibrated and corrected energy
(right) of the core vs. segment 17.

0MCA
0 5000 10000 15000 20000 25000 30000 35000 40000

19
M

C
A

0

10000

20000

30000

40000

50000

60000

1

10

210

310

410

[keV]E0

0 500 1000 1500 2000 2500 3000

[k
e
V

]
1

9
E

0

500

1000

1500

2000

2500

3000

1

10

210

310

Figure 11.16: 2d histogram of the MCA counts(left) and the calibrated and corrected energy
(right) of the core vs. segment 19.
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Table 11.2 summarizes the crosstalk of the core to the segments (1 to 19).

Segment Crosstalk, c0i

1 2.5 %
2 5.5 %
3 0.9 %
4 10.9 %
5 4.0 %
6 2.8 %
7 7.8 %
8 0.3 %
9 1.7 %
10 15.1 %
11 1.3 %
12 1.1 %
13 1.2 %
14 2.1 %
15 3.8 %
16 10.6 %
17 15.4 %
18 17.8 %
19 51.6 %

Table 11.2: Calculated crosstalk of the core to the segments (1-19).

As the stages inside the GALATEA tank move, cables can shift.Therefore, crosstalk corrections
have to be obtained for each data set.



Chapter 12

First Observation of Surface Events in
GALATEA

The thin 19th segment of Supersiegfried was designed to observe surface events. In chapter 11,
Figures 11.11 and 11.16, events are seen for which the energyobserved in segment 19 is sub-
stantially larger than the energy observed in the core. Thisis a priori unphysical. A detailed
investigation is possible using the pulse shapes of the events. Pulse shapes were recorded with
the DAQ at a sampling frequency of 75 Hz. Figures 12.1, 12.2 and 12.3 show event displays
for segments 1 to 19 and the core. Each plot is labeled with thecorresponding segment number
according to the numbering scheme introduced in chapter 5. Each Figure represents one event
from the228Th data. The pulses shown here are not crosstalk corrected and not calibrated.

Figure 12.1:
In Figure 12.1, the core and segment 19 show a clear pulse. However, the core pulse is reduced,
i.e. the core does not collect the full charge. The 19th segment collects charge over a much
longer time; see top right in Figure 12.1 (time scales are notidentical). This indicates a long drift
of the holes which is not observed by the core. In a surface event, electrons can be trapped and a
reduced signal in the core is the consequence.

Mirror pulses are expected in the top layer of the detector, located right underneath the 19th seg-
ment. Segments 7, 9 and 12 show positive mirror pulses as expected to be induced by hole drift.
In segment 7, the baseline does not go back to zero, clearly seen in the inlet zoom. However, if
this was due to charge trapping, it should also be observed insegments 9 and 12. More likely,
crosstalk from the core into segment 7 is the reason. Table 11.2 (chapter 11) predicts such a
crosstalk. Seeing positive mirror pulses means, that the event did not occur close to the mantle
of the detector, as such pulses are created by holes moving from the inner part of the detector out
to the mantle. The holes are collected by the mantle electrode. The electrons are collected by the
core electrode and during their drift they create negative mirror pulses.

Segment 8 shows a negative mirror pulse which is truncated. It indicates the trapping of electrons
which explains the massive reduction of the core pulse. Thisis supported by the shape of the
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core pulse (see Fig. 12.1 top right) which has a strong kink, after which only a minimal increase
of the pulse due to the hole drift far away is seen. The length of the pulse indicates a slow drift,
also of the electrons. Segment 8 is unaffected by crosstalk.Thus the time structure indicates a
complicated overlay of a negative and a positive mirror pulse.

Segment 10, 16, 17 and 18 show crosstalk as expected from table 11.2.

Figure 12.2:
In comparison to the surface event depicted in Fig. 12.1, Fig. 12.2 shows a “normal“ event. A
large pulse is observed in the core and smaller pulses in segments 19 and 6. The pulse in segment
19 is not longer than the pulses in the core and segment 6. Segment 8 has a clean undisturbed
negative mirror pulse; this segment has only 0.3 % crosstalk. Negative mirror pulses are created
by electrons moving towards the core electrode. The baseline goes back to zero, therefore, no
charge trapping is indicated. The negative mirror pulse in segment 8 indicates an energy deposi-
tion in segment 19 close to segment 8, where the field conditions were good.

Segment 9 shows a mirror pulse induced by hole (positive) andelectron (negative) drift. At this
position, the holes and electrons create mirror pulses of different amplitudes inside the crystal.
Bipolar mirror pulses like in segment 9 indicate an energy deposition at moderate radii. Also
here, we see that the baseline drops back to zero. So it seems,it does in segment 5. However,
segment 5 is also affected by crosstalk. From the shape of thepulse, this looks more like a
crosstalk induced pulse with a negative mirror pulse overlayed. This applies also to the pulse in
segment 6. All other segments show pulses, which are compatible with crosstalk only.

Figure 12.3:
Figure 12.3 shows another surface event, clearly indicatedby the long pulse length in segment 19
and the reduced signal in the core. Both pulses look very noisy. Such behaviour is expected for
intermittent trapping. The small core pulse reduces the influence of crosstalk. The long positive
mirror pulses in segment 7, 9 and 12 correspond to the long hole drift. The negative mirror pulse
in segment 8 is truncated. This indicates electron trappingcorresponding to the reduced core
pulse.
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Chapter 13

First Measurements with α-Particles

The first physics goal targeted with GALATEA was to understand surface interactions ofα-
particles on the passivated endplates of germanium detectors. The first data from a 19th segment
surface scan with an241Am source are presented together with a first interpretation.

13.1 Configuration

The horizontal and vertical collimators were installed inside the vacuum tank as explained in
chapter 10. The60Co and228Th sources were removed from the lid of the vacuum tank. The
152Eu source was placed in the parking position.

As depicted in Fig. 11.1, the241Am source was mounted inside the horizontal tungsten collimator
(position 2, see chapter 7) on top of the detector. The 19th segment was scanned in the radial, r,
and theφ -direction. Figure 13.1 shows the scanning positions. The randφ values of the scanning
positions are summarized in Table 13.1. An approximately 2 cm long metallization strip covers
the mantle of the 19th segment at 49.4◦, see Fig. 13.1. The segment is contacted there. Above
the detector, three aluminium bars, which are part of the detector holder, are located at 80◦, 200◦

and 320◦. They are also shown in Fig. 13.1.
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Figure 13.1: View from the top onto Supersiegfried (19th segment). The positions of the metal-
lization and the detector holder are indicated. The scanning positions, xi, are labeled.

Position x1 x2 x3 x4 x5 x6

r [mm] 26 26 26 26 30 39

φ [◦] 305 0 80 200 80 180

Table 13.1: Scanning positions x1, x2, x3, x4, x5 and x6.

The vacuum tank was pumped for several days (pressure≈ 3 · 10−5 mbar) and the detector was
cooled before detector operation. The operating temperature was about 110 K.

13.2 241Am Spectra

For position x2, the core spectrum and the segment spectra are shown in Fig. 13.2. All spectra
are calibrated and the segment spectra are crosstalk corrected. The core and the 19th segment
clearly showα-“peaks“ above 1.5 MeV. There are noα-peaks visible in the other segments.
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Figure 13.3 shows the calibrated and crosstalk corrected energy spectra of the core (blue) and
the 19th segment (red) together. A wide energy bump, spreading from 2200 keV to 3200 keV
is visible in the core spectrum. A similar bump is seen in the 19th segment between 1600 keV
and 2800 keV. These bumps orginate fromα-particles penetrating the top surface of the detector.
This is the first observation of collimatedα-particles on the passivated surface of a HPGe detec-
tor, operated in GALATEA. It will be discussed in some detail.
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Figure 13.3: Energy spectra of the core (blue) and the 19th segment (red), taken with a241Am
source at position x2.

The core energy spectrum also shows the prominent gamma peaks, e.g. the Europium lines at
1408 keV and 1461 keV and the208Tl peak at 2.6 MeV. In addition, a peak at (59.15± 0.046)
keV with aσ = (4.57± 0.07) keV is visible for the core. This is the gamma line originating from
241Am decaying into237Np (≈ 36%). However, the peak is superimposed by the Kα -tungsten
peak, which occurs at the same energy. Due to the threshold ofabout 20 keV, the prominent
241Am gamma line at≈ 14 keV (≈ 42 %) is not visible.

The broad spectral features in Fig. 13.3 associated with theinteraction ofα-particles are striking.
Also striking is, that the energy observed in the core is larger than the one observed in segment
19. This is expected for hole trapping.

For 241Am decaying into237Np, α ’s are emitted at 5.48 MeV (≈ 85 %) and at 5.44 MeV (≈ 13
%). However, theα-particles have to penetrate the passivation layer and the so called dead layer
of the detector. They lose energy and enter the active volumewith a reduced energy.
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13.3 Dead layers for Electrons and Holes

An α-particle looses about 0.2 MeV perµm of germanium [20]. The shift in energy thus mea-
sures the thickness of the dead layer. In Fig. 13.4 the dead layer of a true-coaxial germanium
detector is illustrated. The thickness of the dead layer increases close to the mantle and the core
of the detector. The average thickness of the effective deadlayer of Supersiegfried was previ-
ously studied with gammas and found to be less than 100µm at middle radii and up to several
mm close to the core [34].

Figure 13.4: Expected position and shape of the dead layer ofa true-coaxial germanium detector
(not to scale).

The calibrated and crosstalk corrected energy spectra of the core and the 19th segment for posi-
tions x1, x2 and x6 are shown in Figs. 13.5 and 13.6. Theα-peaks are shifted for different source
positions.

The mean energies of theα-peaks for the six scanning positions, Emean, as well as theσ of the
gaussian fits and the number of events in theα-peaks are summarized in Table 13.2. For posi-
tions x1, x2 and x6, α-particles were detected. At the source positions x3, x4 and x5, noα-peaks
were detected, because at aφ position of 80◦, 200◦ and 320◦ the detector is covered with the
holder, see Fig. 13.1.

The numbers of events in theα-peak are different for the core and segment 19. This indicates that
in the core,α- interactions are observed which cannot be detected through the segment read-out.
For events, in which the segment provides a pulse, the observed energy is reduced. This makes a
direct interpretation as a dead layer thickness difficult. It seems, as if there are different layers, in
which electron and hole drift are affected differently. Thefeatures observed at position x2 points
to hole trapping. Alpha events are at the extreme edge of the active volume and systematic hole
trapping is not unlikely in this region.

The different values for the different positions indicate variable conditions close to the surface.
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Figure 13.5: Energy of the core for the scanning positions x1, x2 and x6.
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Figure 13.6: Energy of the 19th segment for the scanning positions x1, x2 and x6.
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Position x1 x2 x3 x4 x5 x6

r [mm] 26 26 26 26 30 39

φ [◦] 305 0 80 200 80 180
Segment 19

Emean± ∆Emean(α-peak) [keV] 2748± 0.01 2098± 0.2 no α-peak no α-peak no α-peak 2698± 0.1

σ ± ∆σ (α-peak) [keV] 182± 1 233± 2 no α-peak no α-peak no α-peak 166± 1

Counts (α-peak) 93124 10227 no α-peak no α-peak no α-peak 15530
Core

Emean± ∆Emean(α-peak) [keV] 3002± 0.03 2598± 0.1 no α-peak no α-peak no α-peak 2202± 0.1

σ ± ∆σ (α-peak) [keV] 300± 1 197± 2 no α-peak no α-peak no α-peak 241± 1

Counts (α-peak) 141535 10789 no α-peak no α-peak no α-peak 18473

Table 13.2: Emean, σ and counts of theα-peaks for scanning positions x1, x2, x3, x4, x5 and x6, taken with the241Am source.
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The mean peak energies in Table 13.2 translate into dead layers for electron- and hole-drift as
listed in Table 13.3. With the energy of theα ’s, Eα , and the mean energy,∆Emean, of theα ’s
seen by the detector for segment 19 (holes) and the core (electrons), see Table 13.2, the dead
layer thickness, d, is calculated as follows:

d =
Eα − ∆Emean

0.2 MeV
, (13.1)

Position x1 x2 x6

Dead layer (electrons)12µm 15µm 17µm
Dead layer (holes) 14µm 17µm 14µm

Table 13.3: Dead layers for electrons and holes.

At position x6, the dead layer for electron drift is thicker than for hole drift. Due to the source
position at x6, events could also be created by particles entering the detector from the side.

The structure revealed by these measurements is quite complex. The conditions seem to change
dramatically within a couple of microns.

13.4 Pulses forα-events and charge trapping

Figure 13.7 shows the pulses of a typical event recorded withthe 241Am source at position x2
for all 19 segments and the core. The core recorded a higher signal pulse then the 19th segment.
The typical crosstalk pattern, see Table 11.2, is seen. In segments 11 and 12, truncated positive
mirror pulses are visible. This confirms the trapping of holes that was deduced from the reduced
energy seen in segment 19.

Figure 13.8 shows the pulses of a typical event for position x6 right at the edge of the detector
(Fig. 13.1). The pulse in segment 19 is slightly larger than in the core. The energy for this
pulse is correctly determined by the DAQ, even if it is longer. The usual crosstalk pattern ap-
plies. Some small short positive mirror pulses are visible in the top layer. In segments 8 and 9,
also mirror pulses with positive and negative amplitudes are visible. They are truncated, i.e. the
pulses do not return to the baseline. This indicates electron trapping as was observed for gamma
interactions as described in chapter 11.
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13.5 Energy Balance

The sum of the crosstalk corrected segment energies,∑i Ei (i = 1,...,19), plotted against the core
energy, E0, is shown in Fig. 13.9 for position x2. Events in the 45◦ band seem to be seen correctly
in the segments and the core. Events located above the 45◦ band have more energy recorded in
the segments than in the core, i.e.∑i Ei > E0. These are surface events, in which electrons were
trapped by a surface channel; these electrons were not collected by the core electrode. For events
below the 45◦ band, the situation is reversed and holes could not be collected by the segment
electrodes. However, for most events, also in the energy range ofα- interactions, the energy is
balanced. This is astonishing considering the findings of section 13.3 concerning the 19th seg-
ment.
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Figure 13.9: The sum of the energies for all 19 segments,∑i Ei against the core energy, E0.

Figure 13.10 shows the energy of the 19th segment against thecore energy for position x2 of
theα-scan. Here, only a small number of events are seen on the diagonal i.e. the E0 = E19. In
the core-energy range from 2.1 to 3.4 MeV, a pronounced cloudof events associated withα-
interactions is visible below the diagonal. Especially above the208Tl line at 2615 keV, basically
all events are induced byα-particles. The vast majority of these events show incomplete charge
collection in segment 19.
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It is physically impossible thatα-particles reach the segments below segment 19. Thus, it is
amazing that the energy balance is restored after segment summation as was demonstrated in
Fig. 13.9.
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Figure 13.10: The energy in the 19th segment in dependence ofthe core energy for position x2.
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Figure 13.11 shows the energy sum, E7 + E8 + E9 + E19 (left) and E11 + E12 + E13 + E19 (right)
against E0. Obviously, the energy in the segment sum gets restored withthe energy measured in
the segments underneath the beam spot in segment 19.
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Figure 13.11: The sum of E7+E8+E9+E19 (left) and E11+E12+E13+E19 (right) as a function
of E0 for position x2.

The individual distributions for the segments 10, 11 and 12 shown in Figs. 13.12, 13.13 and
13.14 clearly demonstrate that energy is measured in segments 11 and 12. Clouds of events with
small energies in the segments are seen at energies in the core associated withα-interactions.
Those events are not seen by segment 10.

The energy values used here were computed online by the data aquisition system, DAQ. The
DAQ makes assumptions about the shape of pulses. Mirror pulses result in an energy zero.
Crosstalk creates pulses for which energies are calculated which were corrected for, according
to chapter 11. However, truncated mirror pulses, as observed in α-events at position x2 (see Fig.
13.7) are not forseen by the DAQ. They have a different shape than normal pulses, so that a pri-
ori it is not clear what the DAQ will compute. For negative truncated pulses, the DAQ computes
zero. For positive truncated pulses, a positive value is expected. The size of a mirror pulse is
proportional to the size of the drifting charge and the strength of the weighting potential. For po-
sition x2 the configuration is such that the truncated mirror pulses almost perfectly compensate
the charge loss. This is quite amazing.
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Figure 13.12: Energy in segment 10 as a function of the core energy for position x2.
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Figure 13.13: Energy in segment 11 as a function of the core energy for position x2.
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Figure 13.14: Energy in segment 12 as a function of the core energy for position x2.
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Figure 13.15 shows the distributions of the segment energy sums of the top layer plus segment
19, taken at position x6. The241Am source is not located directly above the detector. Due to the
diameter of the beam spot of≈ 14 mm, see chapter 7, the edge of the detector is exposed to the
beam. Contrary to the situation at x2, a cloud of events is seen above the E0 = E19 line. This
points to the trapping of electrons as seen for gamma interactions and as suggested by the event
depicted in Fig. 13.8.
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Figure 13.15: The sum of E7 + E8 + E9 + E19 (left) and E10 + E11 + E12 + E19 (right) as a function
of the core energy for position x6.

In addition, possibly truncated positive mirror charges cause the DAQ to calculate positive ener-
gies that enter the segment sums. The negative truncated mirror pulses in segment 8 and 9 result
in a value of zero energy for these segments. Further investigations will be needed to analyse
such pulses and determine whether the energy lost by the corecan be recouperated. The prelimi-
nary analysis of the thickness of the effective dead layer will have to be refined too. Using always
the core pulse will overestimate the thickness of the dead layer for large radii and underestimate
the effect for small radii.

13.6 Identification of α-Events

Dangerous for 0νββ searches areα-events, in which theα has lost just the ”right” amount of
energy in the surface layer to create an observed energy deposition of 2 MeV. The first mea-
surements with anα-source indicate that such events can easily be identified, if the core and the
mantle is read out. A difference in the recorded energies is aclear indication. If the mantle is not
read out, the length of the pulse can help to identify such events.
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Summary and Conclusion

The first goal to complete and commission the GALATEA test facility was reached. Technical
problems were encountered, some of them unexpected. The solutions were described in chapter
10. GALATEA phase II required major upgrades of the originaldesign. The vacuum chamber
was completely reworked and additional components were added. A new heating system was im-
plemented; the cooling system was upgraded. The required vacuum and temperature conditions
for a stable detector operation were achieved, long term measurements were thus made possi-
ble. A pressure of p≤ 10−5 mbar was achieved and kept constant over several weeks without
pumping. The operating temperature of the detector is kept constant at≈ 110 K. Moreover, the
electronics was revised and a new grounding scheme was implemented.

During the work on GALATEA itself, many preparative studieswere performed. They were de-
scribed in chapter 6, 7, 8 and 9. Collimation and analysis techniques were discussed. The results
were used to define the first measurements done with GALATEA.

The performance of the 19-fold segmented germanium detector Supersiegfried, mounted in
GALATEA phase II was studied. The results were presented in chapter 11. Calibration spectra
with an uncollimated228Th and60Co source, placed on top of the GALATEA vacuum tank were
shown. The energy resolution of the core improved by 10-15 keV, compared to GALATEA phase
I. The energy resolution of the segments improved by 1-2 keV.

Crosstalk in the segmented detector Supersiegfried was discussed. The crosstalk from the core
channel into the segment channels was dominant. For the228Th data the crosstalk varied from
≈ 0.3% to 18% for segments 1 to 18. The 19th segment had a crosstalk of ≈ 52%. A first-order
crosstalk correction of the data was presented. The appliedmodel was used for a first data anal-
ysis and is planned to be extended.

The second goal to observe surface events was reached. Events induced by bothα- and γ-
radiation were identified (chapter 12 and 13). In chapter 12,the pulses from three events recorded
with Supersiegfried were discussed in detail. Surface effects in the germanium detector Super-
siegfried are seen in these surface pulses. Electron trapping was observed, seen from long pulses
in the 19th segment and a reduced signal in the core and truncated mirror pulses in the neighbor-
ing segments.
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The identification of backgrounds originating from the interaction of radiation, especiallyα-
particles was the focus of this thesis. First scans of the passivated top surface of Supersiegfried
with an α-source (241Am) were presented in chapter 13. This is the first timeα-events were
recorded by a germanium detector operated in GALATEA. Long core pulses and truncated mir-
ror pulses in the top segments were observed. This observation points to hole trapping. The
incomplete charge collection was demonstrated by plots of the energy balance. A preliminary
analysis of the effective dead layer of the detector points to different dead layer thicknesses for
electron and hole transport. The dead layers varied from 12µm to 17µm.

The work with GALATEA has just started. Many studies using the system are expected. The
work presented here targets germanium detectors designed for the search for 0νββ . However,
the studies of their characteristics are universally useful to design detectors for all kinds of appli-
cation.
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Figure A.1: Technical Drawing of the IR shield.



Appendix B

Heating Procedures for the Test Facility
GALATEA

B.1 Conditioning of the GALATEA Vacuum Chamber

In order to condition the GALATEA vacuum chamber, the vacuumtank was baked-out. The
bake-out of the GALATEA vacuum chamber was automated and controlled by a heating con-
troller with a remote control. Each channel of the heating controler provided power to the at-
tached heating unit according to the readings from the associated temperature sensors.

Table B.1 provides the channel mapping of the heating units. Channel 3 and 6 correspond to
the two heating jackets, one for the main vacuum chamber (channel 3) and one for the modular
chamber (channel 6). Three additional heating bands were mounted. One was placed on top of
the lid (channel 5) and two were mounted on the crosses (channel 1 and 2). Channel 4 uses the
temperature sensor of the heating mat, placed underneath the vacuum tank.

The whole system was baked-out over serveral days while pumping. The temperature settings,
θ , of the channels, see table B.1, were given as an input parameter for the heating controllers.
Onceθ was reached, the controller kept the temperature by turningthe heater off an on.

Channel Position θ [◦C]

1 Upper Cross (Big Cross) 105
2 Lower Cross (Small Cross) 110
3 Lower Jacket (Main Vaccum Chamber) 130
4 Tank Bottom (Heating Mat) 130
5 Lid 105
6 Upper Jacket (Modular Chamber) 135

Table B.1: Temperatur sensor channel mapping and temperature settings of the heating units.
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The whole system was baked-out over serveral days while pumping. The temperature settings,
θ , of the channels, see table B.1, were given as an input parameter for the heating controllers.
Onceθ was reached, the controller kept the temperature by turningthe heater off an on.

For conditioning the electronics board, the board was powered up. An additional Pt100 sensor
was attached to the board to monitor its temperature and to avoid over heating.

B.2 Warm-up of the GALATEA Vacuum Chamber

In order to open the GALATEA vacuum chamber, the tank has to bewarmed-up, using the same
heating units. In the following the warm-up procedure is summarized:

1. Manually turn off the LN2 filling;

2. Flush the cryogenic tank with dry N2 to completely empty it from LN2;

3. Close the VAT gate valve between the turbo pump and the vacuum tank;

4. Shut down the turbo pump;

5. Turn on the heating units; the following temperature settings are recommended:

• θ = 30◦ (Channel 1, 2)

• θ = 50◦ (Channel 3, 4, 5, 6)

6. Flood the vacuum tank with dry N2 to atmospheric pressure;

7. As soon as the cooling finger and hat reach room temperature(after≈ 20 hours), switch
off the heating system to avoid over-heating of the detector.
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Cleaning Procedures

Taking the various material properties and installation steps into account ultransonic cleaning
was chosen for several GALATEA parts. The two procedures used are described in the follow-
ing. Aluminium, copper and stainless steel parts of the GALATEA infrastructure were ultrasonic
cleaned. Porous materials, like ceramics were cleaned thisway because surface-particles of these
materials detach and contaminate the baths. The ceramics parts were cleaned with Isopropanol
using cleanroom tissues.

Severe parts had to be pre-cleaned before ultransonic cleaning was possible. Severe pollutions
were often visible on the material as dark layers, originating from fat or oil residues. These
strong contaminations were first cleaned mechanically withsuitable sandpaper for smooth sur-
faces. Inaccessible areas, like the blind holes of screws, were mechanically cleaned with a screw
tap. The mechanically cleaning was only done for very dirty parts; other parts with reasonable
surface contaminations were placed directly into the ultrasonic baths.

After cleaning, all parts were stored in plastic bags or wrapped into aluminum foil to avoid new
contaminations.

C.1 Ultrasonic Cleaning Procedure I

Ultrasonic cleaning was carried out in three steps, see Fig.C.1.

Bath 1
Tickopur

VE-Water

Bath 2
Supply

Water

Bath 3
VE-Water

Figure C.1: Procedure of ultrasonic cleaning with 3 baths.
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• Bath 1:

– 300 ml Tickopur R30 + 13 l VE-water

– 1st cycle: 0.5 hθ ≈ 70◦C

– 2nd cycle: 0.5 hθ ≈ 50◦C

300 ml of Tickopur R30 was added to 13 l VE-water into the ultrasonic cleaner ”Bandelin“.
The bath was filled up to about 2/3. A smaller fill level would overheat the ultrasonic bath.

Tickopur is an ultransonic cleaner concentrate used to remove dirt and debris from a vari-
ety of materials. Tickopur R30 has a pH of 7, so it is a neutral cleaner and used to gently
remove light grinding, polishing and lapping residues as well as oil and grease [50]. More
information about this product can be found in [50].

The parts were placed into a metallic sieve inside the ultrasonic bath. The bath was heated
up to≈ 70◦C in the beginning. The whole cleaning cylcle lasts≈ 1 hour. After 30 minutes
the temperaure was reduced to≈ 50◦C. With up and down movements of the sieve, more
residues from inaccessible areas were removed. After one hour of cleaning, the compo-
nents were rinsed with VE-water and placed into bath 2.

• Bath 2:

– Supply Water

– 1st cycle:≈ 15 min

– 2nd cycle:≈ 15 min

Bath 2 was filled with supply water at room temperature. The parts were cleaned in two
cycles, 15 minutes each. When a cycle was finished the water wasexchanged. Aluminium
and copper parts should not be kept longer in the bath becauseof corrosion. The compo-
nents were subsequently rinsed with water and placed into bath 3.

• Bath 3:

– VE-water

– 1st cycle:≈ 15 min

The components were finally placed for≈ 15 min into bath 3. Bath 3 contained VE-water.

After the components were cleaned in the ultrasonic baths, they were dried with dry nitrogen.
Then, they were baked-out in an oven for several hours. The stainless steel components were
heated out for≈ 1.5 hours at 150◦C. For aluminium and copper, lower temperatures were needed
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and these parts were baked out at 60◦C. Instead of outbaking, aluminium and copper can be
cleaned with isopropanol and subsequently dried with dry nitrogen. This limits oxidation.

C.2 Ultrasonic Cleaning Procedure II

A second procedure was later applied and some GALATEA parts,which were mounted in a final
step were cleaned this way.

The components were placed inside a glass vessel, filled withisopropanol. The glass vessel was
placed into the first ultrasonic bath, which contained VE-water. The cleaning in this bath took
15 minutes at a frequency of 40 kHz.

Afterwards the isopropanol was exchanged by fresh isopropanol and the vessel was dipped into
the second bath which again was filled with VE-water. The components were exposed to the
ultrasonic cleaning for another 15 minutes.

In the last step, the isopropanol in the glass vessel was changed to pure VE-water. The glass
vessel was placed for 15 minutes into the third bath. Finally, the parts were dried in an oven as
explained before. Some parts were only dried under the flow box.

Electronics:
The electronics parts were only cleaned in bath 3 for about 15minutes. Afterwards, they were
rinsed with isopropanol and dried with dry nitrogen. The preamplifier boards were placed into a
vacuum tank (Hera B) and with selfheating, they were baked out.
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Mounting of Temperature Sensors

The temperature sensors (PT100) were mounted at different positions inside the GALATEA
vacuum tank. They were fixed to the surfaces according to the following procedure:

1. The relevant surface was first cleaned with isopropanol.

2. The PT100 was glued with a small amount of the silicone adhesive “NEE-001“ from “Dr.
Neumann Peltier Technik“ [51] to the surface. This adhesivehas a sufficient mechanical
strength and holds over the required temperature range. Additionally, it is suitable for ultra
high vacuum.

3. The PT100 wires were isolated with Kapton tape.

4. The PT100 was additionally fixed with Kapton tape to the surface.

5. Additional aluminium tape was used to fix the PT100 assembly to the surface.

Figure D.1 shows the layers of tape and glue, which were used to fix the PT100 sensors to a
surface.

Kapton Tape

PT 100

NEE-001

Aluminium Tape

Surface

Kapton Tape

Figure D.1: The layered components used to mount PT100 sensors (not to scale).
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