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PREFACE

Considering that land is a limited resource on our planet and that the world’s increasing population
needs to be fed on the one hand and ecologically relevant areas should be conserved on the other, it
becomes apparent that more precise knowledge about our capacity to feed ourselves is necessary.
For this reason, an integrated sustainable land use management project — LAMA — was initiated in
2010 funded by the Bundesministerium fiir Bildung und Forschung (BMBF) in order to understand
where pressures may arise in the future. Within this project the GLUES consortium (Global
Assessment of Land Use Dynamics, Greenhouse Gas Emissions and Ecosystem Services) shall provide
guidance to regional project partners and provide a framework of mid- to long-term scenarios. One
component of GLUES is to underpin global trade models based on general / partial equilibrium
theories with a monetary value for the land resource as well as to model yields of economically
relevant crops in view of climate change and the restriction of water resources (Helmholtz Centre for
Environmental Research, 2009). For this purpose, it is not only necessary to know the caloric intake
per capita needed to ensure food security, disregarding cultural differences in diets, or to assess
maximum attainable yields on a local basis, but it is most important to gain knowledge about the
most suitable locations for crop growth.

| was therefore glad to support the team at LMU, guided by Professor Mauser, in the difficult task of
designing, implementing and validating a new methodology for the analysis of crop suitable areas on
ascale of 1 x 1 km. We worked through the following steps:

1) Set up and provide a model framework for the analysis of crop suitable areas

2) Compare global soil and climate databases and provide the most suitable set for the crop
suitability analysis today and in the future

3) Study the influence of competing land uses on the extent of crop suitable areas such as urban
or protected areas

The output of this work can be found in the present dissertation which compiles the results of three
publications. | have structured the work into four parts. First, | will give a general introduction of the
topic, highlighting the historic development of crop suitability analysis and presenting the current
global works in this field. Secondly, | will present the basic global datasets necessary for such
undertaking contrasting their qualitative differences and the reasons for our choices in the selection
of some of these. | will also discuss our implemented methodology of fuzzy logic and some
techniques that were applied in the validation process common to most of the findings. Thirdly, | will
present the major results of the findings of the publications. And lastly, | will discuss the implications
that these findings have on our knowledge base.

My dearest regards go to Prof. Dr. Mauser who had clear ideas about the implementation of the
concepts but gave me free handling in the final applications. Many thanks also go to my dear
colleague Florian Zabel who was mainly responsible for the coding of the model. Without his skills
this work would have taken much longer and would have lacked the present quality. | thank both
Prof. Mauser and Dr. Zabel for the long hours of discussions and mental debates that were very
enriching and inspiring. The best thing to do while fully clothed!



Moreover, | would like to thank my colleagues Dr. Heinzeller, Dr. Richter, Dr. Prasch and Mrs. Koch
for their helpful insights and their comments on the publications. Moreover, | would like to highlight
the work of our two student workers Mr. Ron Giinther and Mrs. Birgitta Putzenlechner in terms of
GIS work on global databases and plant parameterization of 15 crops, respectively. Further regards
go to the three students that analyzed the issue of urbanization on three continents as a fulfillment
of their Bachelor degree, namely Mr. Jonas Meier, Mrs. Veronique Nitsch and Mrs. Stella Haun, as
well as to Mrs. Ariane Hartmann for the analysis of the Global Climate Model data with measured
values.

Also, | would like to thank Wayne Elliott, my dear colleague at the World Meteorolgocial
Organization, who has helped me in enhancing my English for the publications. Short sentences that
deliver one message is key!

| would further like to thank my parents and in particular my mother for always being there when
needed, be it during my trips to meet with project partners or to listen to the newest research
findings. However, mostly, | need to thank my son Noah for allowing me to work and for being
curious about it. | thank him for his patience, for forgiving me my temporary absences and for his
understanding. It is for him and the generations to come that this research is most important.

I am confident that this work has broadened my horizon and given me tremendous insight into the
wide roam of food security in these uncertain times. | believe that this knowledge will aid me in
mastering future challenges that may arise in other work environments.



Summary

Crop growth depends fundamentally on biophysical factors such as topographic features, soil quality,
temperature and precipitation. Understanding which crop can grow optimally at which point on this
planet is crucial in our current global situation where roughly 1 billion people suffer from hunger and
malnutrition each day. Population growth and the inherent urbanization lead to changing pressures
on land uses and cause challenges in the production pathways. Shifting markets, such as the
production of crops for fueling purposes and fodder for livestock, are altering the purposes of crop
production.

In the research presented here, the intent was to show the crop suitable areas of 15 basic crops on a
global scale given only biophysical parameters. We tried to answer the question: where would we
grow which crop if we would only have the given biophysical qualities? We excluded enhanced
growing conditions through fertilizers, greenhouses and irrigation. This is an intriguing exercise as
we were actually able to show that those regions that are currently already in use for agricultural
purposes are indeed the most suitable ones. Use of advanced production systems in these regions,
further enhances yields, but suitable biophysical conditions are key.

Crop suitability analyses exist in various forms and formats, for specific crops in specific locations and
in few instances at the global scale as in the case of the Global Agroecological Zones studies, a co-
production between the United Nations Food and Agricultural Organization and the International
Institute for Applied Systems Analysis (IIASA). We decided to test a methodology of sliding scales
based on fuzzy logic methodologies. Given the complexity of global soil, topography and climate
databases and their, often, error-prone data, applying strict boundaries to the abilities for a crop to
grow under certain conditions, seemed inappropriate. Rather assigning possibilities of a crop to grow
departing from its ideal conditions seemed more adequate.

Fundamental to this work was the scrutinizing analysis of the quality of the global datasets that were
used. In particular, the soil databases showed to be of critical importance and their quality varied
significantly in some geographic areas. It was also interesting to note that crop suitability was
strongly influenced by the use of 1 or more soil component per pixel, with some pronounced regional
differences. The climate datasets were in general less different and only showed variances in high
mountain regions. For the topography a compromise between quality and geographic extent had to
be struck.

Land use is subject to diverse pressures that often conflict with agricultural production. One such
pressure is the growing urbanization of many fertile areas. We looked at the loss of crop suitable
areas due to cities and were able to show that 1% of the highly suitable crop growth areas have
already been engulfed by cities, with some regions being more affected than others. At the same
time, currently protected areas based on all International Union for Conservation of Nature
classifications cover 12 % of all crop suitable land.

Overall, this work demonstrates the importance of the quality of the underlying databases for the
results. Using the fuzzy logic approach allowed obtaining high quality results on a small spatial scale
(0.008°) despite the varying quality of the databases. This was demonstrated by comparing the
outputs with the current distribution of agricultural land from satellite images and other historic
records. More room for expansion of crops is found largely in Sub-Saharan Africa and South America



which is consistent with findings of other studies; while the importance of protected areas needs to
be further taken into account.
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Introduction

The question of distributing crop suitable areas globally arises due to the pressing need to cope with
synergistic challenges; the increase in the world’s population to ca. 8.3 billion by 2030 (UNDP 2008),
the necessity of resulting increased food production and the shift in diets to high calorie foods (Roy
et al. 2006; Foresight 2011) as well as halving the world’s population that faces hunger by 2015 as
postulated by the Millennium Development Goals
(http://www.un.org/millenniumgoals/poverty.shtml) and thereafter. At the same time, most of the

arable land (roughly 12 % of the land surface) is currently under use and room for expansion is said
to be tied down due to the lack of agriculturally suitable land on the one hand and the call for the
conservation of natural systems on the other (Navin Ramankutty, Delire, and Snyder 2006; Fischer
2002; Foresight 2011).

Enhanced yields have been reported throughout the globe in the past 50 years as a product of the
‘green revolution’ as high yielding crop varieties, fertilizers, mechanization and irrigation took hold of
the arable lands (IFPRI 2002). Nevertheless, yields have reached their maximum attainble practical
potential for a variety of crops in most developed nations (Figure 1) (Foresight 2011; Jaggard, Qi, and
Ober 2010; Evans 2003) thus putting even more pressure on improving production system in
developing nations.

At the same time, room for expansion is no longer available in the industrial parts of the world and
has almost reached saturation in Asia (Fischer 2002; Fischer 2000). Thus most expansion will take
place in South America and Africa.

World population, arable area and cereal yields from
1800 to 1999
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Figure 1: Imparity between world population increase and stagnating yields and production areas of cereals
(Evans, 2003)

Studying where the most amount of room for improvement exists, is essential in order to prevent
future food crisis and thus make concentrated economic actions possible (Evans 2003).



1.1 Historic development of land suitability classification

The basis of la
‘Framework for

nd suitability classifications was set in the 1970’s when the FAO published their
land evaluation” where land capability is the inherent capacity of land to perform at a

given level for a general use and land suitability is set as the fitness of a given land for a defined use

(FAO 1976). He

re five suitability classes can be distinguished (Table 1), with three being suitable for

agricultural production and two being non suitable (FAO 1976).

Table 1: Suitability classification according to FAO 1976

Class S1

Land having no significant limitations to sustairegblication of a given use, or only minor limitats that will not

) ) significantly reduce productivity or benefits andl wot raise inputs above an acceptable level.
Highly Suitable:
Class SZLand having limitations which in aggregate are nmatidy severe for sustained application of a giuse; the
Moderately limitations will reduce productivity or benefits dincrease required inputs to the extent that treradl advantage
Suitable: be gained from the use, although still attractwil,be appreciably inferior to that expected orasd S1 land.
3

Class_ S5 Land having limitations which in aggregate are sevier sustained application of a given use and sal reduca
Marginally ductivi benefi ) ‘red isnthat thi di ilb | h fied
Suitable: productivity or benefits, or increase required itspthat this expenditure will be only marginalbsiified.

Class N1 Currently

Land having limitations which may be surmountablé¢iine but which cannot be corrected with existnmgwledge &:

currently acceptable cost; the limitations are esxcese as to preclude successful sustained use dénld in the given

Not Suitable:

manner.
Class N2 L . - .
Permanently  No _Land hgvmg limitations which appear so severeogsréclude any possibilities Of successful susthirse of the lan
Suitable: in the given manner.

o

This framework was lately adjusted mainly to include local stakeholder participation in the process of

defining locally

suitable areas (FAO 2007). Other systems include:

B Fertility Capability Classification (FCC) a technical soil classification system that focuses
guantitatively on the physical and chemical properties of the soil that are important to

fertility

particul

relative
1986)}.

However, all of
specific crop.

1.1.1 Fu
Since the 1980

management (Sanchez, Couto, and Buol 1982)

Soil potential ratings (Beatty 1979) classes that indicate the relative quality of a soil for a

ar use compared with other soils of a given area.

Land Evaluation and Site Assessment (LESA) used to define an approach for rating the

quality of land resources based upon specific measurable features (Liang et al.

these frameworks are held in a general matter where suitability is not defined for a

zzy classification systems

’s, the possibilities of manipulating large amounts of geographical information and

remote sensing data has strongly increased. Burrough et al. with their principles of fuzzy logic for

land suitability

classification (Burrough, MacMillan, and Deursen 1992) and Rossiter et al. with their

‘Theoretical framework for land evaluation’ (Rossiter 1996), laid the foundation for a new kind of
local to regional land and crop suitability study. In short, they claim that since most soil parameters

have a large error rate per se, due to sampling and handling errors, and crops are able to grow at
various levels of these parameters, strict Boolean classification systems may be too restrictive in



growth ranges and areas, and that therefore fuzzy classification methods, where growth is defined
through membership functions and likelihoods, should be applied (Figure 2).
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Fig. 1. Boolean and Fuzzy classification models. Horizontal axis: attribute value x; vertical axis: value of the
membership function MF,. The broken lines show the envelopes of the fuzzy classes for each model; the solid
lines enclosing shaded areas indicate the equivalent Boolean sets. The main difference between the fuzzy and
Boolean systems is that in fuzzy sets an individual receives a value on the continuous scale lying between zero and
one, whereas for Boolean sets the value can only be one (‘true’) ot zero (‘false’).

Figure 2: Overview of the differences between boolean and fuzzy classification models from (Burrough et al.,
1992)

Most of these studies apply Productivity Indices, which are relative rankings of soil, terrain and
climate conditions with respect to yield (Sys et al. 1993), to characterize the growing abilities of the
used plants. They usually develop some kind of framework that allows the integration of different GIS
based inputs, i.e. spatio-statistic methods such as krigging (Braimoh, Vlek, and Stein 2004) or the
creation of indices (N. Ramankutty et al. 2008). Others underpin such information with expert
knowledge, such as ALES (Rossiter 1996), LRIS (Verdoodt and Van Ranst 2006) or MicroLEIS (De la
Rosa et al. 2004). In some cases Decision Support Systems are developed to facilitate the stakeholder
dialogue (Ceballos-Silva and Lépez-Blanco 2003; Baja, Chapman, and Dragovich 2002). In other cases,
neural networks based on fuzzy logic are implemented (Xue et al. 2007) or models are directly
implemented into GIS analyzing system such as ERDAS (Reshmidevi, Eldho, and Jana 2009), IDRISI
(Ahamed, Rao, and Murthy 2000) and ESRI ArcMAP (Chen, Yu, and Khan 2010), or the combination of
systems such as MATLAB with Surfer (Kurtener, Torbert, and Krueger 2008) or Visual Basic with
MapObjects Active X (Kalogirou 2001).

1.1.2 Productivity index used in a global suitability classification

(Navin Ramankutty et al. 2002) from SAGE (Center for Sustainability and the Global Environment at
the University of Madison, Wisconsin) used a combined index of climate and soil indicators in order
to make inferences about the distribution of crops under current and future climate. They used an
estimate of the days a plant needs to grow (also called growing degree days) under its geographically
specific climatic conditions and measures of pH and soil carbon content for the soil physiological
constraints and thus built a site specific quality index for crops in general on a 0.5 degree grid. Their
data was based on the soil parameters from Global Soils Data Task Group of the International
Geosphere-Biosphere Programme (Loveland and Belward 1998) in a 5 arc minute resolution and
climate variables by CRUO5 from the University of East Anglia with mean monthly climate conditions
from 1961-1990 on a 0.5 degree grid resolution.



Thus land suitability for cultivation, S, is given by,

S=8iox S (10)
where:
S.am = [IGDD)f5{ ), (11)
and
8.a= Bl Coa) (P H a)- (12)

They showed that crop suitable areas could be expanded by 120%, in particular in South America and

Africa, albeit in areas that are currently under forest protection (Figure 3). Future climate conditions

will most strongly affect areas that are currently already precipitation limited such as the Great Plains

of the USA and north-eastern China.

Climate limits to cultivation

Soll quality limits to cultivation
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Fig. 4 Top pancls: the climatic and soil quality limits to cultivation. The climatic limit is calculated by applying the GDD and moisturce functions
(Fig. 3] to their respective spatial data (Fig. 1). The soil quality limit is calculated by applying the soil carbon density and soil pH functions (Fig. 2)
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soil quality limits to cultivation. Bottom right pancl: the distribution of croplands in 1992, derived from Ramankutty & Foley (1998).

Figure 3: Geographically explicit limitations according to climate and/or soil constraints in comparison to the
extent of croplands in the year 1992 from (Ramankutty et al., 2002)

1.1.3 Agroecological zones

Another approach of plant classification systems are the Agro-ecological zones (AEZ), which have
been developed to visualize the plant adaptability to a certain region. This approach has been
implemented in global studies, including the latest IIASA-FAO study (International Institute for

Applied Systems Analysis), which defines areas of growth and yields for 28 crops/crop types through

Land Utilization Types LUT’s and according to the level of technology (high, intermediate and low
inputs) (Fischer 2000; Fischer 2002; Tubiello and Fischer 2007) (Figure 4). The LUT’s are defined by



three criteria (a) crop characteristics (i.e. length of growing period LGP), (b) soil, terrain and climate
constraints, (c) biomass to yield conversion.
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Figure 4: Conceptual framework of agro-ecological zones from (Fischer, 2002)

They used GTOPO data as terrain input, the Digital Soil Map of the World for soil variable input, and
the CRU data for climate variables on a 0.5 degree resolution. In their latest version they have to the
Harmonized World Soil Database (HWSD) (FAO/IIASA/ISRIC/ISSCAS/JRC 2009a).

They concluded that roughly 25 % of the Earth’s surface is suitable for rainfed cultivation, considering
a variety of assumptions such as the level of technology applied and the combination of these. Room
for expansion is mostly found in South America and Africa with up to 20% of further agricultural
extent (Fischer 2000; Fischer 2002).



Plate 25, Clonate, soil snd terrain slope constraints combmed

Lindafirad
Ho goralsainls

| - 23-Vary lew cnagirainis

20 - 40 Fuw conslearia

Al B Padl with domsirainls

BD - B0 Frequent severs tonzieinb
B0 - 85 Very freguent severs fonsirang

1 Uns stakle For sgrculiume
Waler

BEEMEEE

Sk ol

.

Figure 5: Global distribution of crop suitable areas, as in areas without constraints (green) (Giinther Fischer,
2000)

1.2 Global Data Sets

Three main datasets are crucial for the analysis of crop suitable areas:
- Terrain (Digital Elevation Models)
- Soil
- Climate

In the subsequent sections, | will shortly present the main databases that were assessed and
highlight their strength and weaknesses. The publications show the effect of the use of some of these
datasets on the amount and distribution of crop suitable areas.

1.2.1 Digital Elevation Models (DEM)

a. USGS-GTOPO30

The United States Geological Survey’s Center (USGS) has produced, in collaboration with many other
agencies, a global digital DEM in 30 arc second (roughly 1km) resolution
(http://eros.usgs.gov/#/Find Data/Products_and Data_Available/gtopo30/hydro). It is a
compilation of diverse topographic information and covers the globe from 120W to 120E and from

85N to 64S divided into continental tiles, with the exception of continental Australia. Derived
properties of topography such as slope, aspect, flow direction, flow accumulation, streams and
drainage basins have been produced under HYDRO1K (Figure 6).
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Figure 6: Derived topographical properties produced under the USGS-HYDRO1K database

Due to the fact that the DEM data is a digitized version of diverse topographic maps, in some areas,
especially in the lowlands, elevation does not increase smoothly but in steps thus building terraces
and influencing modeling quality (Figure 7).

Figure 7: Excerpt of GTOPO-DEM of the Paraguayan Chaco region (60°W, 23°S) in hillshade view visualizing
the change in height due to tiles and the digitalization process

8




b. Shuttle Radar Topography Mission - SRTM

Apart from the digitalization of maps for DEM, satellite missions have also attempted to grasp the
changes in altitude of the globes surface. One such mission was the SRTM which was on board of the
Space Shuttle Endeavour in the year 2000 and delivered topographical information in a 3 arc second
(90m) resolution from 180W to 180 E and 60N to 60S (Farr et al. 2007). Thus, it is missing spatial
information of Northern Canada, Europe and Asia (Figure 8).

Figure 8: Overview on the extent of the SRTM DEM data showing that the polar regions are missing

Although, the SRTM does show tiling issues it is to a much less extent than the GTOPO and therefore
more suitable for modeling purposes (Figure 9).

Figure 9: Excerpt of SRTM-DEM of the Paraguayan Chaco region (60°W, 23°S) in hillshade view




We therefore used the extended SRTM30 data, which merges high quality SRTM data with GTOPO
data in the northern region where SRTM does not have coverage (i.e. between 60°N and 85°N) or
where SRTM has faulty information (mountain tops, coastlines...)
(http://dds.cr.usgs.gov/srtm/version2 1/SRTM30/).

We further computed the slope from the SRTM30 DEM (Farr et al. 2007; USGS 2000) applying an
Eckhardt IV projection and bilinear resampling. The reprojected results (into WGS84) were compared
with the HYDRO1K slope dataset (USGS 1996). Differences were mainly observed in steeper areas
(mountains) and were neglectable in flat areas (Figure 10).

HYDRO1K slope - Bilinearly interpolated SRTM30 slope
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I 30,00000001 - 62,53993225

Figure 10: Difference in slope (%) between GTOPO HYDRO1k slope and bilinearly resampled projection of
SRTM30 slope showing that only some differences existed in the high altitude areas.

1.2.2 Soil

For a thorough analysis of the differences between the different global soil datasets you may wish to
read Mr. Glinther’s Bachelor Thesis which | supervised during my PhD project (Guenther 2011).

a. Digitized Soil Map of the World - DSMW

The DSMW is the digital version of the FAO-UNESCO Soil Map of the World in a 1:5 000 000 scale, a
first attempt to visualize soil classes on a global scale, and was developed in the 1970s (1971-1981)
(Figure 11). It is based on the 1974 FAO soil classification (see Annex 1: Soil classification according
to FAO 1974) which unified different soil classification system especially, between Europe and the

USA.
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Digital Scil Map of the World

Figure 11: DSMW representation from

http://www.fao.org/fileadmin/templates/nr/images/resources/images/SoilMap_hires.pdf

b. ISRIC-World Soil Information

ISRIC is a Dutch institution devoted to soil data collection especially in South America, Africa and
South East Asia (http://www.isric.org/). In their database ISRIC-WISE 3.1 they currently have more
than 10.000 soil profiles from 149 countries (N. Batjes 2008). On the basis of this database and
expert knowledge they have developed standardized taxotransfer rules (3.4.3 Taxotransfer scheme in
(Batjes, 2003)) for which fixed parameter set values are assigned to each of the 126 FAO 1974 soil
classification schemes and allocated geographically explicit according to their distribution within the
DSMW.

This methodology results in the following representation of 126 FAO 1974 soil classes (Figure 12)
grouped within 26 major soil classes:
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Global distribution of major soil classes
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Figure 12: Global distribution of major soil classes (FOA 1974) based on the ISRIC-WISE 5‘ data

The major value of the ISRIC-WISE database consists in their derivation of 19 soil class specific
chemical and physical attributes (Figure 13) relevant for crop modeling for five soil layers (0-100 cm
in 20 cm increments) on a 5 arc minute resolution (N. H. Batjes 2002; N. Batjes 2006). Each 5 arc
minute pixel can contain up to 8 different soil classes.

Structure of table WISEparameterEstimates

Name Type Description

CLAF Text FAO-Unesco (1974) Legend code

PRID Text profile ID (as documented in table DSMWComposition)

Drain Text FAO soil drainage class

Layer Text code for depth layer (from D1 to D5; e.g. D1 is from 0 to
20 cm)

TopDep Integer depth of top of layer (cm)

BotDep Integer depth of bottom of (cm)

CFRAG Integer coarse fragments (> 2mm)

SDTO Integer sand (mass %)

STPC Integer silt (mass %)

CLPC Integer clay (mass %)

PSCL Text FAO texture class

BULK Single bulk density (kg dm)

TAWC  Integer available water capacity (cm m™, -33 to -1500 kPa
conform to USDA standards)

CECs Single cation exchange capacity (cmol. kg™) for fine earth
fraction

BSAT Integer base saturation as percentage of CECsoil

CECc Single CECclay, corrected for contribution of organic matter
(cmolckg™)

PHAQ Single pH measured in water

TCEQ Single total carbonate equivalent (g C kg™)

GYPS Single gypsum content (g kg?)

ELCO Single electrical conductivity (dS m™)

TOTC Single organic carbon content (g C kg™)

TOTN Single total nitrogen (g kg*)

CNrt Single C/N ratio

ECEC Single effective CEC (cmol. kg™)

Notes:

A minus 3 indicates that no meaningful substitution was possible for the specified
soil unit and attribute using the present selection of soil profiles, -1 is used for
Oceans and inland waters, -2 for Glaciers and snow caps, -7 for rock outcrops (or
shallow subsoils) to permit visualization using GIS.

Figure 13: Parameters considered in the ISRIC-WISE 5’ global grid from (Batjes, 2006)



This results in the ability of viewing characteristic soil parameter in a geographically explicit manner
as was shown exemplary in Figure 14 for pH.

ISRIC - global distribution of pH
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Cntrs! Merigian: 9.00

Figure 14: Distribution of acidic and basic soils on a global scale produced from ISRIC-WISE 5‘ soil data

In specific cases, such as Latin America and the Caribbean, they have developed soil maps
(SOTERLAC) and according soil attributes on a 1km pixel size (Dijkshoorn 2005) where soil types are
allocated based on landscape and topographical features (Figure 15), but this is not available on a
global scale so far.

mountains
hills.

upper plain
middle plain
lower plain

SOTER unit3

[ soil component] [soil component | - [soil companent |

[soitprofie ][ soilprofie | [ salproiie |

Figure 15: Schematic representation of the designation of attributes according to landscape and topography
from (Dijkshoorn, 2005)
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Values of the WISE database have been implemented in a variety of projects (IIASA-GAEZ, Geobene
and others) and have, in some cases, been specifically adapted for the use in crop growth models as
was the case for DSSAT (Gijsman, Thornton, and Hoogenboom 2007). They have however been
criticized for their methodology and their lack of statistical power in terms of their assignment of
parameter values based on their taxotransfer rules (Gray, Humphreys, and Deckers 2009). They
further do not provide the data in our desired resolution of 30 arc second. An attempt to assign the
up to 8 soil classes of the ISRIC-WISE 5by5 dataset to the 1 km pixel within each 10 km pixel by
applying a negative correlation of the available water content to terrain slope (Figure 16) resulted in
a rather large challenge and was not pursued any further.

Soil classification

s e
= 4
B o S i
ISRIC-WISE soil classes
10km gtopo 1km DEM

Total available water content

IGGF soil classes 1km

Figure 16: Methodology for assigning the soil classes of the 10km pixel to its underlying 1 km pixels.

c. Harmonized World Soil Database - HWSD

The HWSD is a joint effort of several major institutions, namely FAO, IIASA, ISRIC, Institute of Soil
Science — Chinese Academy of Sciences (ISSCAS) and Joint Research Centre of the European
Commission (JRC), in order to come up with a consistent global soil map at a 1km resolution
integrating the most amount of spatially disaggregated information as possible while maintaining
global consistency (FAO/IIASA/ISRIC/ISSCAS/JIRC 2009a). This soil map was compiled in 2008 and
updated in 2009 and 2012 with Version 1.2 being currently the newest. In our computations we used
the 2009 version 1.1.

The HWSD contains more than 16000 soil mappings compiled from four sources: the DSMW, the
ISRIC-WISE SOTER studies and the ISRIC-WISE 2.0 database, the European soil database (ESDB) and
the Soil Map of China (Figure 17). Each 1km x 1km pixel can contain up to 9 different soil classes and
includes 16 physico-chemical parameters as well as information on phases and other properties
(Table 2) for a topsoil layer (0-30 cm) and a subsoil layer (30-100 cm). These parameters were
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estimated based on the WISE database using the FAO 1974 soil classification on the one hand and
the FAO 1990 on the other (Annex 2: Soil classification according to FAO 1990).

Table 2: Physico-chemical information of soil properties contained in HWSD from
(FAO/IIASA/ISRIC/ISSCAS/JRC 2009a)

Field Description UNITS DSMW| SOTWIS | CHINA| ESDB
T GRAVEL Topsoil Gravel Content %vol. Y Y + v
2 T SAND Topsoil Sand Fraction % Wt. V’ y \ V
‘g o | T_SILT Topsoil Silt Fraction % Wt. \ v + \
g é L CLAY Topsoil Clay Fraction % wt. \ Y + V
z| E| T Uspa TEX cLASS o name v v y y
= = = Classification
2| = | T REF BULK DENSITY | Lopsoil Reference Bulk ke/dm3 \ v Y \
I wm| T = = Density G
§ é‘ T OC Topsoil Organic Carbon % weight | V \ \
= T PH H20 Topsoil pH (H20) log) | A V \ V
T CEC _CLAY Topsoil CEC (clay) cmol/kg V \ + \
T CEC_SOIL Topsoil CEC (soil) cmol/kg w’ V + v
T BS Topsoil Base Saturation % y \ Y v
T TEB Topsoil TEB cmol/kg y Y Y v
T_CACO3 Topsoil Calcium Carbonate % weight | Y 3 v
T CASO4 Topsoil Gypsum % weight | Y y v
T ESP Topsoil Sodicity (ESP) % V + + 'l
T HCE Topsoil Salimty (Elco) dS/m y \ y \
— ol i S b it it i i i L bt ke
(<.
WIEN—
E
e HWSD i
Coverage { /3'
B esoe b '
e CHINA

[]sotwis
B osvw
-

-

Figure 17: Geographic extent of the 4 underlying databases used for the compilation of the HWSD; European
Soil Database (ESDB), Soil Map of China (CHINA), Soil and Terrain dataset (SOTWIS), Digital Soil Map of the
World (DSMW); from (FAO/IIASA/ISRIC/ISSCAS/JRC 2009a)
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1.2.3 Climate

a. Climate Research Unit - CRU

CRU is a Research Unit of the University of East Anglia which deals with Climate and Climate change
issues. It provides a 5° dataset of monthly mean temperatures and monthly cumulative precipitation
since at least 1900 based on data interpolation of roughly 3000 climate stations using HadCRUT3 and
HadCRUT3v (http://www.cru.uea.ac.uk/cru/data/) (Brohan et al. 2006; Rayner et al. 2003). It is a
widely used dataset in global crop suitability analysis such as the GAEZ or from SAGE (Fischer 2000;

Fischer 2002; Navin Ramankutty et al. 2002) however its resolution does not fit our application.

b. European Center for Medium-Range Weather Forecasting (ECMWF)

The ECMWEF is an intergovernmental organization and provides weather forecasting for its 33
supporting states (http://www.ecmwf.int/about/). They have further produced datasets of

reanalyzed past forecasts with a variety of climate and atmospheric parameters in a resolution of
2,5° for the period of 1957 to 2001 in 6 hourly-time intervals
(http://www.ecmwf.int/research/era/do/get/era-40) (Uppala et al. 2005). Their resolution thus does

also not fit our interests.

c. WorldClim

WorldClim is a joint effort between the Museum of Vertebrate Zoology of the University of
California, Berkley, the International Center for Tropical Agriculture and the Cooperative Research
Center for Tropical Rainforest Ecology and Management. The dataset consists of mean monthly
temperature, minimum monthly temperature, maximum monthly temperature, cumulative monthly
precipitation and bioclimatic variables in four different resolutions (30 arc sec, 2.5’, 5’ and 10’)
(http://www.worldclim.org/). The data was derived from interpolation between 15000 to 47000
weather stations globally in the time period from 1950 to 2000 (Hijmans et al. 2005). We decided to
use this dataset for our historic crop suitability analysis.

d. Kiel Climate Model (KCM) of the Leibniz Institute for Marine Science at
the University Kiel

The KCM is a global climate model which is used to predict climate from interannual to millennial
time scales (Park et al. 2009) with a resolution of 3,75° (atmospheric resolution T31). We were
initially thought to be provided with three datasets (1960-1990, 2030-2040, 2070-2100) in hourly
time steps for several parameters, including 2m temperature and precipitation. Future climate was
predicted under the A1B IPCC scenario (IPCC 2007). A downscaling process was performed as
described in (Marke et al. 2011). In the end, we received the climate information form ECHAM 5,
from the Max-Planck Institute in Hamburg (see (Roeckner et al. 2003) for further information on
ECHAM 5).

e. General Circulation Models (ECHAM, HadMC, etc)

General Circulation Models started being developed in the 1950’s based on general properties of the
atmosphere. Traditional Atmosphere-Ocean Models are produced by NOAA’s Geophysical Fluid
Dynamics Laboratory, the US National Center for Atmospheric Research, the Hadley Centre for
Climate Prediction and Research and the Max Planck Institute for Meteorology, among others. Based



on Numerical Weather Prediction methods the ECHAM series forms the atmospheric component of
the Earth System Model of the Institute (MPI-ESM).

1.2.4 Landcover/ Landuse

a. GlobCover

GlobCover is a European Space Agency (ESA) initiative to produce global composites of the 300 m
MERIS observation on board the ENVISAT satellite mission. The data is available since 2005 and three
sets of data can be obtained either as bimonthly Normalized Difference Vegetation Index (NDVI)
composites in tiles of 5° x 5° for the periods of November 2004-June 2006 and January 2009-
December 2009, or as yearly composites of the year 2005 and 2009, or as land cover maps for the
given vyears using the FAO LCCS (Figure 18, Annex 3: Globcover classification legend)
(http://ionial.esrin.esa.int/). A comparison between the two time sets is tempting, i.e. to see
changes in land cover, but not advisable as methodologies have been updated since the first set of
results (Bontemps et al. 2009).

GlobCover 2009 Land Cover Classification

Figure 18: GlobCover 2009 Land Cover Classification

b. Urban areas

(Schneider, Friedl, and Potere 2010) produced a dataset of the geographic extent and placement of
urban areas on a 500 m resolution based on MODIS data. They define urban areas as ‘contiguous
patches of built-up land greater than 1 km?® (Schneider, Friedl, and Potere 2009) and divided the
world into ‘urban ecoregions’ by ecological, economic and socio-historic differences (Figure 19).
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Legend: Urban Ecoregions
B 1. Temperate forest in North America
B 2. Temperate forest in Europe

3. Temperate forest in East Asia

4. Temperate grassiand in North-South America

5. Temperate grassland in Middle East, Asia
[ 6. Tropical broadieaf forest in South America

7. Tropical broadieaf forest in Africa

8. Tropical, sub-tropical forest in Asia

9. Tropical, sub-tropical savannah in S. America

10, Tropical, sub-tropical savannah in Africa:
B 11. Tropical, sub-tropical grassland
B 12 Temperate mediterranean

13, Arid, semi-arid desert, shrubland
B 14 Arid, semi-arid steppe in Central Asia

15. Boreal forest, tundra

16. Permanent ice, snow
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Figure 19: Delineation of urban ecoregions as defined by (Schneider et al., 2010)

In comparison with Landsat images of 140 cities of these ecoregions they achieved an
accuracy of 93% (Schneider et al., 2010) making this one of the most accurate urban land
maps currently available (Figure 20).

MODIS urban extent Global Global Rural-Urban Impervious

aggregated to 8 km Landsat 30 m MODIS 500 m MODIS 1 km Land Cover 2000 GlobCover 300 m Mapping Project Surface Area
- classification urban extent urban extent 1 km urban area urban area 1 km urban extent (IMPSA) 1 km

Guangzhou, China London, United Kingdom Washington DC, USA

Johannesburg, South Africa
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Figure 20: Comparison of a variety of currently available maps for some selected cities (Schneider et al.,
2010)

c. IUCN protected areas

The IUCN, the International Union for Conservation of Nature, has integrated the protected areas of
the world into a database and map system (IUCN and UNEP 2010; IUCN 2010). They distinguish
between six following categories according to the guidelines set forth in the 1994 IUCN guidelines
(Dudley 2008):
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Areas managed mainly for:

I Strict protection [la) Strict nature reserve and Ib)
Wilderness area]

I1 Ecosystem conservation and protection (i.e., National
park)

I11 Conservation of natural features (i.e., Natural
monument)

IV Conservation through active management (i.e.,

Habitat/species management area)

Vv Landscape/seascape conservation and recreation (i.c.,
Protected landscape/seascape)

VI Sustainable use of natural resources (i.c., Managed

resource p rotected a [‘t"‘d)

Extent of the areas can be accessed via (IUCN and UNEP, 2010).

d. Actual harvested areas in the year 2000

The researchers at SAGE (Center for Sustainability and the Global Environment at the University of
Madison, Wisconsin) used remote sensing data and coupled it to national or sub-national harvest
information into homogenous subsets of soil-climate-terrain areas to produce maps of actual extent
of harvested areas (N. Ramankutty et al. 2008; Monfreda, Ramankutty, and Foley 2008).

Through the integration of remote sensing data, in particular from Advanced Very High Resolution
Radiometer (AVHRR) and later based on MODIS and SPOT VEGETATION, with crop statistics -
FAOSTAT and AgroMAPS - SAGE has been able to produce global maps of land cover and crop
distributions (Figure 21) (N. Ramankutty et al. 2008; N. Ramankutty 1998). The climatic input data is
derived from the CRUOS5 climate dataset from the University of East Anglia with mean monthly
climate conditions from 1961-1990 in a 0.5° grid. The soil moisture parameters are obtained from the
Global Soils Data Task Group of the International Geosphere-Biosphere Programme (Loveland and
Belward 1998) at a 5’ resolution.

19



' Cropland 2000
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Figure 21: Distribution of croplands in the year 2000 after (Ramankutty et al., 2008)

Overview of the publications

This thesis summarizes the following three publications:

= Avellan, T., Zabel, F., & Mauser, W. (2012). The influence of input data quality in determining
areas suitable for crop growth at the global scale — a comparative analysis of two soil and
climate datasets. Soil Use and Management, 28(2), 249-265. doi:10.1111/j.1475-
2743.2012.00400.x

= Avellan, T., F. Zabel, B. Putzenlechner, and W. Mauser. 2013. “A Comparison of Using
Dominant Soil and Weighted Average of the Component Soils in Determining Global Crop
Growth Suitability.” Environment and Pollution 2 (3) (May 29). doi:10.5539/ep.v2n3p40.
http://www.ccsenet.org/journal/index.php/ep/article/view/27860.

= Avellan, T., Meier, J., & Mauser, W. (2012). Are urban areas endangering the availability of
rainfed crop  suitable land? Remote Sensing Letters, 3(7), 631-638.
doi:10.1080/01431161.2012.659353

The first paper is a comprehensive analysis of two of the previously described sets of global
databases: soil and climate. It also analyses the effect of these datasets on crop suitability. Two
Bachelor theses served as the basic analyses for the dataset comparison (see Hartmann 2011 and
Glinther 2011). We modeled the crop suitability output of the combination of two climate datasets
and two soil datasets using three spatial resolutions.

The second paper, analyses one aspect of the complexity of soil databases more in depth. Soil
databases offer a variety of parameters sampled and compiled in many ways. In our previous model
runs we had only used the dominant soil parameter value estimate of the topsoil. Here, we look at
the effect on crop suitability while using all component soils (up to 9) of the HWSD.
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The third paper builds on the most precise modeling output of the first paper and addresses the
question of urban areas in competition to crop suitable areas. Using the urban areas dataset of
Schneider et al. described above we looked at the placement of cities in respect to crop suitable
areas. Three Bachelor theses looked at the regional effect of urban areas on crop suitable areas and
served as the basis of the discussion on the effect of the expansion of cities on agricultural food
production (see Nitsch 2011, Haun 2011 and Meier 2011).

Below you can find the abstracts of each of the publications for further insight.
1.3 Overview of the publications

1.3.1 The influence of input data quality in determining areas suitable
for crop growth at the global scale - a comparative analysis of two
soil and climate datasets.

The assessment of biophysical crop suitability requires datasets on soil and climate. In this study, we
investigated the differences in topsoil properties for the dominant soil mapping units between two
global soil datasets. We compared the ISRIC World Soil Information Center’ s World Inventory of
Soil Emissions Potential 5 by 5 arc min Soil Map of the World (ISRIC-WISE 5by5 SMW) with the
Harmonized World Soil Database (HWSD) in 0.5 arc min. We also incorporated annual mean
temperature and mean precipitation from two global climate datasets that were the WorldClim
measurement-based climate dataset and the Kiel Climate Model (KCM)* modelled results of global
climate from 1960 to 1990. We then applied a fuzzy logic approach using different combinations and
resolutions of the datasets to determine the effects on the extent and distribution of suitable areas
for 15 crops. We only used the spatially dominant soil class in the mapping units in the soil databases
(resampled to the same resolution of 5 arc min), and we found that the estimates of topsoil
properties (0-20 cm in ISRIC-WISE and 0-30 cm in HWSD) of the seven analysed parameters were up
to 40% lower in most of the HWSD than in the ISRIC-WISE 5by5 SMW. Results from the KCM are 0.1
°C (1%) lower in mean global annual temperature and 20% higher in average global annual
precipitation compared with the WorldClim data. The HWSD-based runs resulted in 10% less crop-
suitable land than the ISRIC-WISE 5by5 SMW-based results. The KCM simulations predicted 1% less
crop-suitable land than the WorldClim model. Despite generalizations, our results demonstrate that
discrepancies in crop suitable areas are largely due to the differences in the soil databases rather
than to climate.

1.3.2 A comparison of using dominant soil and weighted average of the
component soils in determining global crop growth suitability

Soil parameters represent key data input for crop suitability analysis. Soil databases are complex
offering soil mapping units made up of various component soils. In the case of the Harmonized World
Soil Database there can be up to 8 component soils per unit. In roughly 1/3 of soil mapping units, the
additional component soils take up more than 50 % of the pixel share value. The soil parameter value
estimate, such as pH, salinity and organic carbon content, may differ between the value of the
dominant soil component and the weighted average of the values of all component soil.
Understanding the effect of these differences on crop model outputs may allow quantifying the

' we actually used ECHAMS5 modelling results. But at the time of the publication we were not aware of this.



error. In this study, we show the changes in crop suitability of 15 crops while using the parameter
value estimates of the dominant soils versus a weighted average of the component soils. In the case
of the latter, global crop suitability amounts to 54.5% of the earth’s land surface - 1 % more than
when using the values of just dominant soils. Intrinsic regional differences in the quality of the soil
database influence the distribution of crop suitability classes especially in areas where share values
of the dominant soil are low. The uncertainty range for the use of dominant versus component soils
on the overall global crop suitability could be considered to be 1 %, while that of each suitability class
can amount to up to 4 %.

1.3.3 Are urban areas endangering the availability of rainfed crop
suitable land?

Many concerns have been raised about urban sprawl and the subsequent disappearance of
agricultural land. Regulations have been put in place to reduce urban sprawl and protect agricultural
areas in many countries, but how much potentially crop suitable land really is endangered by urban
areas on a global scale has not been addressed so far. In this study, we compare the extent of urban
areas as produced by the Center for Sustainability and the Global Environment, Madison, WI, USA,
with a map of potential crop suitable areas produced by us. We show that, of the postulated 0.5% of
the Earth's surface currently covered by urban areas, Asia, Europe and North America take away the
largest shares and that 1% of the globally available highly crop suitable areas are currently taken up
by cities, with Japan and California being extreme examples of up to 15% of highly suitable areas
covered with cities.

Conclusions and Outlook

This thesis provided a successful attempt of undertaking an analysis of the crop suitable areas of the
15 most relevant crops at the global scale using a spatial resolution of roughly 1 km at the equator.
The methodology that was chosen relied on fuzzy logic and based itself on standard crop growth
parameters as recommended by FAO. Overall, roughly half of the globe’s land surface (excluding
Antarctica) is suitable for some sort of crop growth with the current high production sites being
generally the most suitable ones. Comparison with the datasets by Ramankutty et al., for instance,
showed that historic crop areas coincide in more than 70% of the pixel with our simulations.

The careful analysis of the underlying biophysical databases — terrain, soil and climate — showed that
inconsistencies were largest amongst the soil datasets and smallest in the climate and terrain
datasets. In depth studies of the complexity of the soil databases unveiled a variety of sources that
may influence crop growth suitability — one of them being the number of component soils used for
the computation of soil parameter value estimates.

The complexity of the interplay between underlying parameters, number and type of crops that are
being simulated, their varying abilities to grow under diverse bio-physical conditions and modeling
challenges themselves make this study highly useful. Unlike other, similar studies this thesis has tried
to estimate some of the errors and error rates that occur while simulating crop suitable areas. The
use of dominant soil parameter value estimates versus all component soils, for instance, may account
for roughly 1 % of the overall differences.



Analyzing the global distribution of crops and how they related to urban areas, protected areas and
other land uses is a worthwhile exercise. We were able to show that 1% of all crop suitable areas
have already fallen victim to urban sprawl, whilst 12% of the protected areas are suitable for crop
growth. Special care has to be taken where urban areas expand into, in order to prevent further
deterioration and laws need to be further enforced to maintain the protected areas intact in order to
prevent further land conversions.

Land conversions are most profitable in South America and Sub-Saharan Africa where potentially
crop suitable areas still prevail. One must keep in mind, however, that this study analyses purely the
biophysical conditions which presents certain limitations. Hence, areas such as the Nile Delta for
instance, that rely heavily on irrigation, do not appear suitable for crop growth in our results. Use of
fertilizer, pesticides, selected crops and use of machinery allows for an increase in production and an
expansion of cropping areas beyond the ones shown here. On the other hand, one must also keep in
mind that soil datasets are based on samples taken in the 1960’s and 1970’s. Soil composition may
have strongly changed in the mean time through erosion but also through heavy fertilization
processes.

The studies here also present severe limitations in the temporal resolution of the climate dataset.
Using the annual mean temperature and the annual cumulative rainfall over a 30 year average is
hardly representative of day to day crop necessities. Crops usually fail due to the lack of rainfall at
critical phenological stages or due to periods of excessive cold or heat. In a subsequent step to the
result presented here, the team at LMU refined the model further in order to include daily climate
inputs. This also allowed for crops to ‘select’ their best day to start their growing cycle by assigning
certain thresholds of temperature and water availability. Further refinements were also undertaken
in terms of the exclusion and inclusion of certain areas such as regions under permafrost and
irrigated areas. These methods and refinements will hopefully also be published shortly.
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The influence of input data quality in determining
areas suitable for crop growth at the global scale — a
comparative analysis of two soil and climate datasets

T . Avellan, F. Zabel& W. Mauser
Department for Geography and Remote Sensing, Ludwig-Maximilians Universitat Munich, Luisenstr 37, 80333 Munich, Germany

Abstract

The assessment of biophysical crop suitability requires datasets on soil and climate. In this study, we investigated the
differences in topsoil properties for the dominant soil mapping units between two global soil datasets. We compared the ISRIC
World Soil Information Center’'s World Inventory of Soil Emissions Potential 5 by 5 arc min Soil Map of the World (ISRIC-WISE
5by5 SMW ) with the Harmonized World Soil Database (HWSD) in 0.5 arc min. We also incorporated annual mean
temperature and mean precipitation from two global climate datasets that were the WorldClim measurement-based climate
dataset and the Kiel Climate Model (KCM) modelled results of global climate from 1960 to 1990. We then applied a fuzzy logic
approach using different combinations and resolutions of the datasets to determine the effects on the extent and distribution of
suitable areas for 15 crops. We only used the spatially dominant soil class in the mapping units in the soil databases
(resampled to the same resolution of 5 arc min), and we found that the estimates of topsoil properties (0-20 cm in ISRIC-
WISE and 0-30 cm in HWSD) of the seven analysed parameters were up to 40% lower in most of the HWSD than in the
ISRIC-WISE 5by5 SMW. Results from the KCM are 0.1 LC (1%) lower in mean global annual temperature and 20% higher in
average global annual precipitation compared with the WorldClim data. The HWSD-based runs resulted in 10% less crop-
suitable land than the ISRIC-WISE 5by5 SMW-based results. The KCM simulations predicted 1% less crop-suitable land than
the WorldClim model. Despite generalizations, our results demonstrate that discrepancies in crop suitable areas are largely
due to the differences in the soil databases rather than to climate.

Keywords: Crop suitability, HWSD, ISRIC-WISE, WorldClim, grid size resolution

Introduction 2000, 2002; Monfreda et al., 2008; Ramankutty et al.,
2008). Land capability is the inherent capacity of land to

An incrgase in fpod production i§ essential f.o.r the world’'s perform at a given level for general use (FAO, 1976). Land
population that is expected to rise to 8.3 billion k_)y 2030 suitability is fitness for a defined use. The FAO (1976)
(UNPD, 2009). The need for enhanced production has

become more acute because of the shift from basic food
crops to oil crops for biofuels and fodder for livestock
(Foresight, 2011). Data on potential yield for different areas
and crops are needed to plan for a steady and secure
production of food and industrial crops at affordable prices.
An analysis of potential crop yield is usually preceded
by the determination of crop-suitable land, and this has
been done in a few studies at a global scale (Fischer et al.,

‘Framework for land evaluation’ is based on five suitability
classes (Table 1), three being suitable for agricultural
production and two being unsuitable (FAO, 1976). Crucial
to crops are soil quality and climate. The quality of soll
determines the kind of vegetation that can optimally grow.
Climate dictates average available sunlight, overall energy
and water for plant growth (Andreae, 1983; Grigg, 1995).
Sys et al. (1993) provide detailed growing requirements for
specific crops, and these have been used in several crop
Correspondence: T. Avellan. E-mail: suitability studies (e.g. Kalogirou, 2001; Baja et al., 2002;
t.avellan@ iggf.geo.uni-muenchen.de Fischer et al., 2002). However, these requirements are the
Received August 2011; accepted after revision February 2012 result of global studies and do not
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Table 1 Suitability classification according to FAO 1976

Class S1 Highly Suitable

Land having no significant limitations to sustained application of a given use, or only minor limitations that

will not significantly reduce productivity or benefits and will not raise inputs above an acceptable level

Class S2 Moderately
Suitable

Land having limitations that in aggregate are moderately severe for sustained application of a given use; the
limitations will reduce productivity or benefits and increase required inputs to the extent that the overall

advantage to be gained from the use, although still attractive, will be appreciably inferior to that expected on

Class S1 land.
Class S3 Marginally
Suitable
justified
Class N1 Currently Not
Suitable
the given manner
Class N2 Permanently Not

Suitable land in the given manner

Land having limitations that in aggregate are severe for sustained application of a given use and will so
reduce productivity or benefits or increase required inputs that this expenditure will be only marginally

Land having limitations that may be surmountable in time but cannot be corrected with existing knowledge at
currently acceptable cost; the limitations are so severe as to preclude successful sustained use of the land in

Land having limitations that appear so severe as to preclude any possibilities of successful sustained use of the

reflect other complex issues such as site-specific cultivars
or local management practices.

Digital maps at the global scale of soil quality parameters
are few and vary in quality (Gijsman et al., 2007; Batjes,
2009; FAO, IIASA, ISRIC, ISS-CAS & JRC, 2009; Gray et
al., 2009; Nachtergaele et al., 2009). Most countries have
published soil maps, albeit often using different standards
with diverse soil classes (Batjes, 2002a; FAO, 2006) and
classification schemes (FAO, IIASA, ISRIC, ISS-CAS &
JRC, 2009). Historically unified global soil classifications

90°00" =

P
B0°00"N—

30°00"N =
S

30°0'0"S= HWSD
Caverage
B 00

60°00"S- [ ] CHINA
[_]somwis
B osvw

90°0°0 -

150“?’0”W 120"l0’0"W QU”EIJ’D”W GO”(I)’O"’W SU“Q’O’W

have been a focus for FAO in establishing standardized soll
class characteristics with revisions in 1974, 1985, 1990/92
(FAO & UNESCO, 1997; FAO, 1998; FAO, 2006). The first
integrated soil map for the world was produced in the 1970s
with the ‘Soil Map of the World,’ later digitized in the ‘Digital
Soil Map of the World’ (DSMW) (FAO, 1995; FAO &
UNESCO, 1997). To undertake ecological modelling, we
need information contained in the soil classes — namely
parameters such as pH, organic carbon and salinity (Batjes,
2002b). Two examples of projects using such properties are

0”(51’0” SU“Ul‘O”E BOFP’O”E QU“IO'D"E 120]0’0”E 150“l0"0"E 180‘;00”

Figure 1 Geographic extent of the four underlying databases used for the compilation of the harmonized world soil database (HWSD);
European Soil Database (ESDB), Soil Map of China (CHINA), Soil and Terrain dataset (SOTWIS), Digital Soil Map of the World; from (FAO,

IIASA, ISRIC, ISS-CAS & JRC, 2009).



Crops
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Cassava Topographical parameter RULES Parameters:
Slope (% S 2
oo il e pa(,a,)nm,s Fuzzy OR across all
Millet Textural class (USGS) parameters
Qil-palm Coarse fragments (vol. %) ‘ ;
Potatoes Gypsum (% CaS0d)
Rapeseed | |Base saturation (%)
Rice pH
Rye Organic carbon (%)
Sorghum | |Salinity (dS/m)
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sunflower | | Mean annual temperature (°C)|
Wheat Annual precipitation (mm) RULES Crops:
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plants
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functions
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Figure 2 Methodology of fuzzy logic determiration of cre@-suitable areas for eaeh of the 15-plants (MIN) and for the most suitable plant

(MAX).
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Figure 3 Examples of membership functions and corresponding suitability thresholds for some selected parameters for Cassava based on the
growth parameter values of Sys et al. (1993). At each selected pixel the value for each parameter is determined (fuzzy OR rules) and the
minimum likelihood of each value is assigned for this plant (defuzzification per crop). This minimum likelihood is then compared across all
crops (fuzzy AND rules) and the maximum across all crops is assigned to this pixel (defuzzification across all crops), thus identifying the most

suitable crop for that pixel and its suitability level.



4 T.Avellan et al.

(i) the ISRIC-WISE database and their Soil Map of the
World (ISRIC-WISE 5by5 SMW ) (ISRIC, 2005) and (ii) the
Harmonized World Soil Database (HWSD) (FAO, IIASA,
ISRIC, ISS-CAS & JRC, 2009). The approach of the ISRIC-
WISE 5by5 SMW is based on the harmonization of global
soil information. It relies on the extent of soil mapping units
of the DSMW coded in the FAO 1974 classification at a 5-
arc min resolution (Batjes, 2006). Taxonomy-based pedo-
transfer functions combined with expert rules were applied
to provide estimates of 19 soil parameters relevant to global
agro-ecological modelling (Batjes, 2006). The HWSD
project used a compilation of four regional soil databases of
variable quality and soil mapping unit extent (European Soll

Table 2 Overview on the combination of datasets used in the
simulation using all constraints

0.5635°
Resolution  Dataset KCM WC  0.083*WC 0.0083°WC
0.5635° HWSD X X
ISRIC X X
0.083° HWSD X
ISRIC X
0.0083° HWSD X

Database, Soil Map of China, regional SOTER datasets
and DSMW) (Figure 1) and integrated these on a 30 arc s
resolution (FAO, IIASA, ISRIC, ISS-CAS & JRC, 2009).
Similar techniques to the ISRIC-WISE datasets were
applied except that soil classes were defined by either the
FAO (1974) or the FAO (1990) systems.

Historic global maps of climatic characteristics exist
(Hijmans et al., 2005; Uppala et al., 2005), and there are a
plethora of future simulations (IPCC, 2007a,b). Several
thousand weather stations exist worldwide, but these are
prone to measurement errors and have not always provided
continuous datasets. Error rates for temperature are +/ -
0.1 °C in Europe whereas these can be up to 50% for
precipitation and 100% for snow, especially in mountainous
areas (Scho’nwiese, 2008). To our knowledge, there are
currently two global datasets that rely on historic data
(1959-1990) from weather stations, namely the CRU data
at a 0.5 arc degree resolution (CRU, 2011) and the
WorldClim dataset at 30 arc s (UC Berkley et al., 2005).
Other ways of obtaining climatic parameters include the re-
analysis of weather predictions such as the ERA data
(Uppala et al., 2005) or the use of climate models (IPCC,
2007a). Results from climatic models are expressed at
different spatial and temporal resolutions (Roeckner et al.,
2004; IPCC, 2007a; Zabel et al., 2011). However, climate
models are currently our only way of assessing future

Comparison between growth likelihood of a plant and its actual growth

[ Reclass

Resample to 10 km using a
majority filter ii.e. new

| call value will squal the
predominant class valua)

Harvested area of plant
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grid cell covered by plant)
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Subtraction image
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MNegative == more actual growth
than suitability postulated
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suitability and actual growth
Positive => less actual growth than
\ suitability postulated

Reclassified harvested

Figure 4 Methodology for comparing the extent of suitable areas and the actual harvested area (Ramankutty et al., 2008).



changes in the two key plant growth criteria — temperature
and precipitation.

Often soil and climatic parameters exhibit inherent errors
and of course crops grow across a range of conditions. The
use of strict Boolean classification systems is too restrictive
in growth ranges to define crop suitable areas at the global
scale. Burrough et al. (1992) and Rossiter (1996) use fuzzy
classification methods as a solution. Local to regional crop
suitability studies using fuzzy logic are available (Van Ranst
et al., 1996; Ahamed et al., 2000; Baja et al., 2002; Braimoh
et al.,, 2004; Kurtener et al., 2008), but not at the global
scale.

Our aim was to investigate the effect of using different
datasets in predicting the potential extent of 15 crops. We
first analysed differences between the two global soil
datasets ISRIC-WISE 5by5 SMW and HWSD as well as
between the WorldClim and Kiel Climate Model climate
datasets for 1960— 1990. Then, we analysed the extent and
distribution of crop suitability using different combinations of
the datasets.

Materials and methods

Global datasets. All analyses were carried out for the
earth’s land surface excluding Antarctica using eight soil
properties as recommended by Sys et al. (1993): textural
class (USGS), coarse fragments (volume %), gypsum (%
CaSO04), base saturation (%), pH, organic carbon (%),
salinity (dS/m) and
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sodicity (%). Two datasets were used, (i) the Harmonized
World Soil Database (HWSD) (FAO, IIASA, ISRIC, ISS-
CAS & JRC, 2009) and (ii) the ISRIC-WISE 5by5 SMW
(referred to as ISRIC) (Batjes, 2006). We used topsoil
property values as estimated for the spatially dominant soil
in each mapping unit neglecting spatial variation in soil unit
types as originally mapped (i.e. up to eight component soils
per mapping unit) (Batjes, 2006; FAO, IIASA, ISRIC, ISS-
CAS & JRC, 2009). Topsoil depths differ, ISRIC deals with
0-20 cm whilst HWSD extends to 30 cm and we did not
consider subsoil estimates. Each database based the
estimation of soil values on differing numbers of soil profiles
and on different regional samples (Nachtergaele et al.,
2009). We used annual mean temperature and annual
cumulative precipitation from two climate datasets from
1960-1990. WorldClim in 30 arc s (1 - 1 km at the equator)
integrates and interpolates climatic information from
weather stations (Hijmans et al., 2005). The Kiel Climate
Model (KCM) in 34 arc min (67 - 67 km at the equator)
(Park et al., 2009) is a global climate model and has been
used to predict climate for interannual to millennial
timescales (Park et al., 2009). The slope was computed as
per cent rise from a global digital elevation model, the
SRTM30 DEM (Farr et al., 2007) (USGS, 2000).

Comparison of datasets of the same type. Datasets were
resampled at lower resolutions as necessary using a
majority filter for classified parameters and bilinear

Table 3 Global mean signed differences in topsoil parameter estimates for the spatially dominant soil units of the corresponding mapping
units between the WISE and the HWSD, Harmonized World Soil Database (HWSD) soil databases. Results are given for the globe and for
three regional examples. Difference = HWSD values ) WISE values. % Difference = [(HWSD value ) WISE value)/WISE value] - 100

Global China
WISE HWSD Difference % Difference WISE HWSD Difference % Difference

Coarse fragments (vol. %) 11.2 8.4 -2.8 -25.1 15.8 8.9 =70 -44.1
Gypsum (%) 8.3 8.5 0.1 14 19.0 19.4 0.4 2.0
Base saturation (%) 76.2 71.7 —4.5 -5.9 90.3 23.0 =72 -2.0
pH 6.4 6.2 -0.2 -24 7.0 6.6 -0.4 6.1
Organic Carbon (%) 22 2.2 0.0 0.3 1.4 1.1 -0.3 -18.3
Salinity (dS/m) 0.6 0.3 0.2 -42.7 1.3 0.8 -0.6 -42.6
Sodicity (%) 34 2.4 -1.0 -30.5 43 25 -1.7 —40.8

Brazil USA
Coarse [ragments (vol. %) 4.8 7.0 2.1 43.5 7.0 9.0 20 29.1
Gypsum (%) 19 0.6 -1.3 -68.6 1.7 1.2 =-0.5 =27.5
Base saturation (%) 358 29.8 6.0 -16.8 76.9 78.3 1.4 1.8
pH 52 49 0.3 -5.4 6.4 6.4 0.0 0.3
Organic Carbon (%) 1.2 1.2 0.0 4.0 1.4 1.4 0.0 0.8
Salimty (dS/m) 0.1 0.0 -0.1 -91.4 0.3 0.2 -0.1 -26.9
Sodicity (%) 30 09 =2.1 —68.6 2.6 22 -0.4 -14.7
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Figure 5 Signed differences in the % divergence of base saturation (top) and organic carbon content (bottom) between the HWSD and WISE
datasets. Blue areas represent regions where HWSD show lower values than WISE; red areas show regions where HWSD values are larger
than WISE ones. (For generalizations concerning the mapped soil unit composition and soil depth, see text).

resampling for continuous data in an ESRI ArcGIS
environment. Through image subtraction, we quantified the
differences between the datasets. Inherent uncertainties as
a result of aggregation steps and the lack of consideration
of natural variability need to be considered when analyzing
the results (Batjes, 2006).

Determination of crop-suitable areas. We based our crop
suitability analysis on fuzzy logic principles (Figure 2)
(Burrough et al., 1992). Growth likelihood curves (from 0 to
1) for each crop were derived from Sys et al. (1993) (Figure
3). The growth likelihood of each crop and its corresponding
growth limiting property were determined for



each pixel. We compared the growth likelihoods for each
crop (fuzzy OR rules) and then chose the lowest growth
likelihood at a given pixel for each crop across all
parameters (aggregation via fuzzy MIN).

The crop with the greatest growth likelihood was taken as
the most suited for that location. This was determined by
comparing the minimum growth likelihoods across all crops

Influence of input data on crop suitability 7

Table 4 Overall differences between the two climate datasets for
temperature (T) and precipitation (prec) considering mean global
annual values only for the northern hemisphere (NH) or only for the
southern hemisphere (SH). Difference = KCM values)WorldClim
values. % Difference = [(KCM values ) WorldClim values) /
WorldClim value]*100

. . WorldClim  KCM Difference
(fuzzy AND rules) and then selecting the crop with the
highest growth Ilkellhoo_d (fgzzy MAX). If two or more crops «C oC " % Difference
had the same growth likelihood, a separate category was
assigned (‘more than one’). T global 8.2 8.1 -0.1 -1.2
Four growth performance categories were applied as T NH 51 4.9 -02 -39
defined by Sys et al. (1993) and (FAO, 1976): TSH 21 211 0.1 0.5
1. 0-0.4 Pixel not suitable for crop growth (N1,/N2) (none). i i o
2. >0.4-0.6 Pixel marginally suitable for crop growth (S3). Prec global 701 857 151 27
3. >0.6-0.8 Pixel suitable for crop growth (S2). Prec NH 500 773 174 20
4. >0.8-1 Pixel highly suitable for crop growth (S1). Prec SH 1119 1176 57 1
Differences in Temperaturs
KCM-WorldClim
Ja 1207W BOFYW o LI'E 13°E iBF
BN ’-ﬁﬂﬁ- pig ﬁ— .
-'i.__
(kg
EFE
1B 1207W BOFW o* BI'E 13°E 180F
Differences in Precipitation
KICM-WordClim
, i [rem]
¥ 1207W BOFW ] EI°E 12°E 180F 1 E0
s ' 5 el
BiTH F ‘?F. e S ot eon (| 400
. . % ' j ==
i‘.‘ : . ol I-m-:u
r k 3 o
& - o * Fw
] “"-!’
= 200
. a0
1-4III
ErS
| 500
|>5m
1B 1207W EOFY or EI°E 13°E i =& J

Figure 6 Signed difference between KCM and WorldClim temperatures in LC (top) and signed difference between KCM and WorldClim
precipitation in mm (bottom). Red positive values show an overestimation of the KCM values in relation to the WorldClim ones; blue negative

values represent an underestimation.
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Table 5 Crop-suitable areas for each crop according to the soil database used [Harmonized World Soil Database (HWSD) in the upper part of

the table

1 km HWSD_WC

10 km HWSD_ WC_10

&7 km HWSD_WC_&7 HWSD_EKOM_67

#in IS Crop 5 a B0 a 5 a B0 a 5 a 2C W 5 a B0 a
1 Barley F26E0E16  16.1 158805340 93 325065 140 195723 9.7 7190 162 42688 9.6 7190 162 4200 9.5
2 Cazgava HYRIES] 3.4 6546034 32 75575 3% 64058 3.2 15 35 1429 32 1546 35 1573 36
3 Cit vt 6438674 32 130212 43 64101 32 G4387 32 133 31 M0 32 133 31 1481 A3
4 % Tdnhal2 37 11958335 6 Tdndd A7 13210 @7 162 36 2497 T 1&el2 38 285 L&
5 Millat dAH35Y5E 24 d375358 22 4Tl 24 4471 22 10 24 MW 23 IR0 24 S48 21
6 Oxl palim Sl242543 198 1254034 5 9157 1938 1W1152 50 BB0E 199 2273 50 HEIE 199 1777 40
7 Poitaio T3S0 04 249705 0.1 T390 04 497 01 186 4 a4 il a6 0.4 a5 il
H s emincl LU 155538 (L] 5 L0 1804 L] LU LG LU EL |
9 Fuic 1756141 09 1152445 16 17331 09 11717 k& M3 08 2 L& I3 09 289 L&
10 L] LN LU 0 0 LU 000 LU o 00 LU X
11 Sorghum 1468687 0.7 W 13 15872 0% 43330 2.2 W3 09 966 22 3®3 09 915 22
12 Sy 5594711 2% 541560 03 53895 27 5733 0.3 11846 27 117 .3 1188 27 121 03
13 T e 9755356 44 2045419 13 93511 4.6 25649 L3 2iWY 40 5T L3 2imW9 47 6l6 1.4
14 Sunflower 39151 0402 HEEAYEL 4 L LUG I BE43 k4 a5 0 166 L4 50 13 03
15 What 2755647 1.4 13942298 6.9 26726 L3 142557 7.1 #1353 319 7.2 M}l 13 314 7.2
126 P 25953176 128 114712935 564 253084 126 1137368 5635 5513 125 24931 563 5513 125 25578 508
127 More than ome 5671127 2749 15393622 16 562528 209 15196 L5 12339 209 35333 L5 12339 N9 30N a9
Total sudlabls 177442204 §72 HEGHIS35 4346 12204 B4 HiTIH4 435 3HTHA Hih 19554 437 SH7H4 Hie IHVIY 423
1 Harley 390E4 L9 66687 3.3 56 18 1426 31 H56 1.8 9 21
2 Casgaava HE093 9 127371 62 425 J5 2547 56 425 BS 23X¥ 42
3 Cirownd it 0 0 14166 0.7 000 369 L o 00 e 07
4 % ES L a7 ikl a2 133 L3 76 D2 285 L&
5 Millat 1261 (Ll 294492 1.4 LN 541 1.3 LN 5ar 11
& Ohll palm 401704 19.5 7509 43 9171 194 1995 44 9171 194 143 32
7 Potaio 0 0 46 01 157 03 45 01 157 03 5 0l
H Bap saed. LUK 19549 L0 120 03 560 1.2 120 03 346 0B
9 Bics Y253 04 15557 (L8 25 05 315 07 225 05 355 0L®
10 HEye 0 0 1482 L1 17 0 43 17 040 1% i
11 Sorghum 13095 L& 59452 4.4 A&7 11 1EE 41 a#7 1.1 157 35
12 Soy 1950 L1 61872 i 425 08 1343 30 425 09 1444 32
13 e T T 1 i 12219 L& 172 04 3% 07 172 04 3% 0%
14 Sunflower Hoda9 43 HEZHD 43 199 42 179 40 1Y 42 1431 A1
15 Whzat 144229 L 116304 57 2950 H2 2041 58 2950 62 2268 A0
126 Pt 490E] 24 1iMled4 528 331 6 24648 54.2 31 Y6 29351 645
127 Mo than ades 1111778 539 231578 1L3 22936 485 4845 106 22956 4HS5 3728 K2
Total sudtalhs 2014947 976 SHE191 47.2 43684 924 20W6E 458 43684 924 179 379

HWSD, Harmonized World Soil Database. WISE in the lower part of the table; the applied resolution of the input variables (km estimates
roughly at the equator) and corresponding climate input used (WC for WorldClim; KCM for Kiel Climate Model). S stands for runs that
include only topsoil and topographic constraints; SC stands for runs that include topsoil topographic and climate constraints. % equals
the share of each crop in the total available land surface (suitable and non-suitable).

We performed two sets of model runs: (i) with only terrain
and topsoil constraints for either soil database at three
resolutions (coarse, medium, high) (s in the tables), and (ii)
with terrain, topsoil and climate constraints (sc in the
tables). The latter resulted in the combination of data as
shown in Table 2.

Comparison of crop-suitable areas with actual harvested
areas. We compared the results from the medium
resolution runs for all constrains with the harvested areas of

maize, rice and wheat as determined by Ramankutty et al.
(2008) for the year 2000. This allowed us to make
inferences about which soil datasets reflected most closely
the historical distribution of crops. An exact matching was
not expected as inherent uncertainties from the input
datasets, and the simplification of crop growth requirements
cannot be incorporated into our biophysical model. We
used the comparative reclassification methodology as
described in Figure 4.
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Table 6 Absolute differences in crop-suitable areas (%) between the soil databases for the medium (5 arc min) resolution using
WorldClim climate variables on a global scale as well as for the three selected countries where underlying soil input databases are of
increasing similarity (China Brazil USA). S stands for runs that include only topsoil and topographic constraints; SC stands for runs

that include topsoil topographic and climate constraints. Calculation example: world_s_barley

HWSD_WC_s_10%) = abs (1.9) 16) = 14.1

abs (WISE_WC_10_s% )

World China Brazil USA

#in GIS Crop 5 sSC 5 sC S sSC S sC
1 Barley 14.1 6.5 17.3 9.7 1.0 1.0 18.0 10.2

2 Cassava 6.1 30 4.4 20 1000 11.5 148 5.1

3 Groundnut 32 2.5 7.8 0.0 0.5 0.1 0.0 0.5
4 Maize 3.7 0.5 23 1.1 0.5 0.1 7.0 0.8
5 Millet 2.3 0.8 0.1 0.1 0.1 0.2 0.2 14
'] 0il palm 0.3 0.8 16.9 0.6 282 17.9 13.3 0.0

7 Potato 0.4 0.0 0.2 0.2 0.0 0.0 0.0 09

8 Rapeseed 0.0 0.9 0.0 09 0.0 0.0 0.0 30
9 Rice 0.4 0.2 0.3 1.8 38 i4d 1.6 4.7
10 Rye 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0
11 Sorghum 0.2 2.2 1.2 04 0.2 5.1 0.1 38
12 Soy 2.6 2.7 19 0.0 0.2 EN 2.8 [IRY]
13 Sugarcane 4.6 0.7 5.3 1.4 0.0 0.1 1.6 29
14 Sunflower 4.3 39 4.1 04 0.2 0.1 3.6 2.6
15 Wheat 5.7 1.4 1.0 28 0.8 0.1 6.0 10.2
126 MNone 10,2 3.7 0.5 0.2 424 427 3.8 2.3
127 More than one 26.0 38 437 99 10,3 8.6 20.7 44

HWSD, Harmonized World Soil Database.

Results

Comparison of soil and climate datasets

Soil dataset. Harmonized World Soil Database showed
lower parameter estimates (between 2 and 25%) than
WISE in all parameters. Exceptions were organic carbon
(0.3%) and salinity and sodicity (43% lower) (Table 3).
Country-specific deviations were lowest in the USA
(between 0 and 29%), followed by China (2-44%) and
Brazil (4-90%) (Table 3, Figure 5).

Climate dataset. The KCM underestimates global annual
temperatures (0.1 °C or 1.2%) compared with the
WorldClim values especially in the northern hemisphere
(Table 4). The KCM underestimates temperatures in
mountainous regions, in Siberia, Greenland and the
Sahara. Over-estimations occur in continental areas (Figure
6). The KCM overestimates precipitation globally (22%) and
more markedly in the northern hemisphere (Table 4).
Underestimations occur in Greenland, the Gulf Coast, the
Caribbean, northern South America and South East Asia.
Over-estimations are in mountainous areas and on the
eastern side of continents (Figure 6).

Crop-suitable areas

The effect of the soil database on crop suitability. These
results are the outcome of simulations based on soil and
terrain components only. Areas of potential crop growth
occur on ca. 87% of the earth’s land surface in HWSD-
based runs and up to 98% in the WISE-based computations
(Tables 5 and 6). The HWSD-based runs were more
suitable for barley on 14% of the total land surface (Table 6,
Figure 7). Differences between the suitable areas for each
crop were greatest in China and least in Brazil and the USA
(Table 6, Figure 8). The greatest differences between the
runs can be seen in the areas unsuitable for crop growth.
By determining the limiting parameter for the areas
unsuitable for crop growth, we see that high base saturation
values from the HWSD in the Amazon basin are
responsible for this (Figure 12). In the Kalahari, low organic
carbon makes it unsuitable.

The effect of climatic input on crop suitability. The addition
of climatic constraints reduces the amount of suitable areas
to less than half of the earth’s land surface with differences
between climate models being greatest in WISE-based runs
(Table 5, Figure 9). Areas in northern latitudes and with low
precipitation are unsuitable for crop growth. In some areas,
slight differences were observed for the south and west of
South America where less growth was found in KCM-based
runs. Regional discrepancies in  soil databases
because of differences in the underlying soil mapping
units are reduced as some
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Differences in crop suitable areas based on different soil datasets

Fuzzy crop suitability based on
WISE 5’

Fuzzy crop suitability based on
HWSD 5’

[1Barley (1.9%) [1Millet (0.1%) [ Rice (0.4%) 1 Sunflower (4.2%)

Il Cassava (9.8%) Il Oil palm (19.5%) [] Sorghum (0.6%) I Wheat (7%)

I Groundnut (0%) Il Potato (0%) [ Soy (0.1%) M None (2.4%)

[ Maize (0%) [J Rapeseed (0%) Ml Sugarcane (0%) Bl More than one (53.9%)

1 Barley (16%) [ Millet (2.4%) [ Sorghum (0.8%) [ Wheat (1.3%)
W Cassava (3.8%) I Oil palm (19.8%) @ Soy (2.7%) I None (12.6%)
M Groundnut (3.2%) Bl Potato (0.4%) [l Sugarcane (4.6%) @ More than

1 Maize (3.7%) Rice (0.9%) [ Sunflower (0.02%)  one (27.9%)

Fuzzy crop suitability based on
WISE 0.5°

oL

Fuzzy crop suitability based on
HWSD 0.5°

[ Barley (1.8%) []Millet (0.1%) Rice (0.5%) [1Sunflower (4.2%)
Il Cassava (8.5%) H Oil palm (19.4%) [] Sorghum (1.1%) mEIWheat (6.2%)
Il Groundnut (0%) Il Potato (0.3%) [ Soy (0.9%) I None (7.6%)
1 Maize (0.2%)

H Rapessed (0.3%) ™ Sugarcane (0.4%) ™ More than one (48.5%)

[] Barley (16%) 1 Millet (2%) ] Sorghum (0.9%) @@ Wheat (1.3%)

M Cassava (3%) mm Oil palm (20%) mm Soy (3%) m None (12%)

mm Groundnut (3%) g Potato (0.4%) g Sugarcane (5%) mmMore than one (28%)
] Maize (4%) Rice (0.9%) [ Sunflower (0%)

Figure 7 Geographic differences in the distribution of crops based on the ISRIC-WISE soil database (left) or the Harmonized World Soil
Database soil database (right) at the middle (5 arc min or 10 km) (top) and low (0.5 arc degrees or 67 km) (bottom) resolutions.

crop types become no longer viable, such as with oil
palmin the USA or sugarcane in Siberia (Table 5,
Figures 8 and 9).

The effect of grid size resolution on crop suitability. The
resolution of the input used variables had little to no effect
on the overall extent of crop-suitable areas or the global
share of each crop (Table 5). Nonetheless, at the highest
grid size resolution (30 arc s), choosing the optimal location
for each crop is more accurate. Distinctive landscape
features such as hills and valleys, riverbeds and plateaus
can be discerned — impossible at lower resolutions
(Figure 10). The most distinct placement also coincides

with areas of small mapping units, such as in China or
Europe (Figure 8).

Comparison of crop-suitable areas with actual
harvested areas

Potentially suitable areas using either soil dataset in
combination with WorldClim coincided with >70% of the
harvested land for 2000 for wheat, maize or rice as
determined by SAGE (Center for Sustainability and the
Global Environment at the University of Madison,
Wisconsin) (Ramankutty et al.,, 2008) (Table 7). Global
differences between soil datasets were greatest for wheat
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Differences in crop suitable areas based on different scil datasets by country
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Figure 8 Differences in crop-suitable areas according to the applied soil database (Top: WISE; Bottom: Harmonized World Soil Database) for
China, Brazil and the USA (from left to right) in the medium resolution of 5 arc min. The soil mapping units vary from similar for either soil
database in the case of the USA to highly different in the case of Brazil and China. Therefore, the resulting crop distribution patterns are
similar for the USA but highly different for China. As soil mapping units vary, the input parameter values are also different for the countries;

therefore, crop suitability is also different.

suitable areas (Figure 11). Regional differences are evident
for the wheat growing areas of the mid US where WISE
underestimates large areas whereas HWSD overestimates
them (Figure 11).

Discussion

Dataset comparisons

Comparison of the datasets for either soil or climate
revealed that global differences in the analysed parameters
can exhibit large discrepancies but can also be small.
Differences between the hemispheres can be seen for both
temperature and precipitation. The larger landmasses of the
northern hemisphere pose particular problems for modelling
(Roeckner et al., 2004). Differences in soil property
estimates are largest in areas where the underlying input
soil databases differed most, such as in China. Here, the

mapping units of the HWSD were artificially disaggregated
into individual pixels, thus disrupting natural soil patterns
(FAO, lIASA, ISRIC, ISS-CAS & JRC, 2009). Areas based
on SOTER show discrepancies in the geographic extent of
soil mapping units. Soil property estimates in areas with the
same underlying soil mapping units (DSMW areas) show
the least differences. Marginal differences still occur as
each dataset is based on different global soil profiles and
on different clustering procedures (Batjes, 2002b). Soil
parameters measured on a regular basis, such as pH and
organic carbon, exhibit less differences between datasets
than variables such as sodicity and salinity that are
measured less frequently or are calculated from other
parameters (Batjes, 2002Db).

In our comparison of soil datasets, we disregarded that
some mapping units may have up to eight further
component soils apart from the dominant one and that the
dominant soil may occupy <50% of the mapping unit.
However, dominant soils comprise >50% of the mapping
unit in >75% of all
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Differences in crop suitable areas based on different climate datasets

Fuzzy crop suitability based on
WISE & WorldClim 67 km

] Barley (3.1%) W Oil palm (4.4%) [JSorghum (4.1%) ml None (54.2%)
Ml Cassava (5.6%) Il Potato (0.1%)  [EISoy (3%) [ More than
M Groundnut (0.8%)] Rapeseed (1.2%)m Sugarcane (0.7%)  one (10.6%)
] Maize (0.3%) [ Rice (0.7%) [1Sunflower (4%)

1 Millet (1.3%) M Rye (0.1%) I Wheat (5.8%)

Fuzzy crop suitability based on
HWSD & WorldClim 67 km

[IBarley (9.6%) CIMillet (2.3%) = Rice (0.6%) [ISunflower (0.4%)
Ml Cassava (3.2%) EOil palm (5%) []Sorghum (2.2%) [EIWheat (7.2%)
M Groundnut (3.2%) [l Potato (0.1%) =1 Soy (0.3%) mNone (56.3%)

[IMaize (0.7%) [C1Rapeseed (0.6%) Il Sugarcane (1.3%) EEIMore than one (7.5%)

Fuzzy crop suitability based on
WISE & KCM 67 km

Fuzzy crop suitability based on
HWSD & KCM 67 km

1 Barley (2%) [ Millet (1.1%) m Rice (0.8%) 1 Sunflower (3%)
I Cassava (6%) m Oil palm (3%) ] Sorghum (3.3%) [ Wheat (4.8%)
I Groundnut (0.7%)ml Potato (0.1%) [ Soy (3.1%) I None (62.1%)

[ Maize (0.6%) ] Rapeseed (0.7%)M Sugarcane (0.8%)E More than one (7.2%)

[ Barley (9.5%) 1 Millet (2.1%) [ Rice (0.6%) [ISunflower (0.3%)
W Cassava (3.6%) M Oil palm (4%) []Sorghum (2.2%) [EIWheat (7.2%)
I Groundnut (3.3%) Il Potato (0.1%) [ Soy (0.3%) M None (57.7%)

] Maize (0.6%) ] Rapeseed (0.1%) Il Sugarcane (1.4%) EMore than one (6.9%)

Figure 9 Geographic differences in the distribution of crops based on the WISE soil database (left) or the Harmonized World Soil Database
soil database (right) using the WorldClim data (top) or Kiel Climate Model (bottom) input variables.

mapping units of the ISRIC-WISE dataset and in 66% of the
mapping units of the HWSD. Our crop suitability analysis
may give altered results when all component soils and their
actual share value within each soil mapping unit are
considered for the computation of parameter value
estimates for each pixel.

Effect on crop suitability

Soil datasets. Soil and terrain constraints alone do not
strongly limit crop growth as >80% of the global land
surfaces are suitable for crops using either database. The
estimates of soil properties influence the location of crop-
suitable areas, the types of crops and the ability to

distinguish between crop types. In particular, high values of
pH, base saturation and organic carbon limit crop growth.
Hence, differences in these parameters between the soll
databases can be used to define areas as suitable or
unsuitable for crops. For enhanced model performance, the
soil databases need to provide higher quality and spatially
more detailed but geographically uniform parameter value
estimates. The WISE dataset consists of geographically
uniform, but coarse quality data. The HWSD dataset
provides geographically unequally distributed data quality
with some areas being spatially more explicit than WISE.

Climate datasets. The limited difference between the
climate datasets does not have a drastic effect on crop
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Madium resolution
28430 L

Figure 10 Differences in qualitative
placement of crops with increasing spatial
resolution for an exemplary region in China,
At the low resolution, mo distinctions can be
made of landscape features but this becomes
possible for the high resolution areas.

Table 7 Matching of the crop suitability results for the runs on a
10-km resolution using WorldClim data with harvested areas of
maize rice and wheat of the year 2000 as determined by
(Ramankutty et al. 2008) using either the Harmonized World Soil
Database (HWSD) or the WISE soil database. Negative values
denote underestimations by our model, positive values
overestimations; the larger the number the greater the deviations
from the harvested areas. 0 (in bold) shows the amount of

overlap.

HWSD WISE
Count % Count %o
Maize -3 23 0.0 10 0.0
-2 535 0.0 474 0.0
-1 431908 21.8 440385 21.9
0 1405723 71.0 1425567 70.8
1 76073 3.8 89864 4.5
2 51832 2.6 48770 2.4
3 14870 0.8 9809 0.5
Rice -3 1874 0.1 1842 0.1
-2 3897 0.2 2882 0.1
-1 260600 13.2 192180 9.5
0 1642859 82.9 1664967 82.6
1 55414 2.8 119294 59
2 15165 0.8 30383 1.5
1155 0.1 3331 0.2
-3 167 0.0 193 0.0
Wheat -2 1653 0.1 2143 0.1
-1 270843 13.7 347184 17.2
0 1429538 722 1393707 69.2
1 217115 11.0 153261 7.6
2 58336 29 109810 5.4
3 3312 0.2 8581 04

suitability as the climate datasets diverge most strongly in

areas where plant growth is not possible. Inaccuracies in
the results from the KCM need to be considered for future
climate scenarios where temperatures may rise in
northern latitudes and rainfall patterns may change in mid
latitudes.

Constraints because of low temperatures account for ca.
40% of the global land surface outweighing all other
limitations. The Global Agro-ecological zones project
(Fischer et al., 2002) uses a different methodology for
assessing climate constraints (Length of Growing Period)
and determined 26% of the land surface to be limited by
temperature.

All constraints. The inclusion of all constraints in the model
subdivides the geographic extent of soil mapping units on
a pixel-by-pixel basis. In mountainous or in climatic areas
with narrow transition zones, crops will vary from pixel to
pixel instead of occupying large continuous areas such as
in lowlands. With increased grid size for input data,
landscapes become more fragmented and the
identification of areas suited to crops becomes more
accurate.

In the discussion on input parameter uncertainties, the
definition of crop growth requirements cannot be left out.
The definitions we used are based on data from more than
15 yr ago and do not take into account advances made in
crop varieties, genetic modifications and climatic
adaptation of commercial crops. The selection of crops
based on prices, accessibility to markets and other socio-
economic factors are ignored. Management strategies that
improve certain conditions such as water availability and
other soil qualities
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Discrepancies in crop growing areas for wheat
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Figure 11 Differences in crop growing areas between the harvested areas as determined by Ramankutty et al. (2008) for wheat versus the
crop-suitable area determined by the WISE soil database and the WorldClim dataset on a 5-arc min resolution (left) or the Harmonized World
Soil Database dataset (right). Blue colours show underestimations of cropping extent and intensity by the crop suitability analyses; red areas
and overestimation. Deviations are indicated by the intensity of the colour and the associated value.

are not considered. Such practices may allow other areas
currently not suitable to become suitable for crops.

Despite the constraints and uncertainties in the
methodology, the potential global distribution of crops can
be predicted with an accuracy of >70%. Some areas
currently covered by forest (e.g. parts of the Amazon basin
and Northern Boreal forests) are not suitable for crop
growth as also shown by Fischer et al. (2002). The Amazon
region has extensive areas with soils of inadequate quality,
so that conversion to agricultural land on an extensive basis
is unlikely. Northern boreal forests are constrained by their
climate although this may not be so true in the future
(Ramankutty, Foley et al. 2002).

Conclusion

We conclude that the quality of climate data is similar
between station data and model outputs whereas that of
global soil databases is very different and offers marked
regional discrepancies. Hence, the extent of crop-suitable
areas and the choice of the optimal crop differ most when

using either soil databases but are similar whilst applying
either climate dataset. Increased grid size resolution
enhances the fragmentation of the landscape to give a
more accurate location of crops.

For optimal outputs from agro-ecological models, the
input databases have to deliver uniform and high quality
data on a detailed spatial scale. Simply using smaller pixels
does not result in the latter. Rather, global soil models
should offer smaller scale geographic extents of the soil
mapping units. It is hoped that initiatives such as the Global
Soil Map project (IUSS, 2009) or an updated HWSD with
the aid of further SOTER databases will provide a better
basis for enhanced crop suitability modelling.
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and Ariane Hartmann for their work on the comparison of
the two soil and climate datasets.
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Abstract

Soil parameters represent key data input for cromlslity analysis. Soil databases are compleerirfy soil
mapping units made up of various component sailghé case of the Harmonized World Soil Databasecth
can be up to 8 component soils per unit. In roudByof soil mapping units, the additional compadrsils take
up more than 50% of the pixel share value. The Emidmeter value estimate, such as pH, salinityaagdnic
carbon content, may differ between the value ofdbminant soil component and the weighted averddbeo
values of all component soil. Understanding theafbf these differences on crop model outputs aikw
quantifying the error. In this study, we show tlaieges in crop suitability of 15 crops while usithg parameter
value estimates of the dominant soils versus aheigaverage of the component soils. In the casleedfatter,
global crop suitability amounts to 54.5% of thetlearland surface—1% more than when using the gabfigust
dominant soils. Intrinsic regional differences lire tyuality of the soil database influence the ithigtion of crop
suitability classes especially in areas where shalges of the dominant soil are low. The uncetyarange for
the use of dominant versus component soils on ¥heatl global crop suitability could be considetedbe 1%,
while that of each suitability class can amountpcto 4%.

Keywords: crop suitability, HWSD, quality control, dominardils mapping units, component soils
1. Introduction

Ensuring food security for the global populatioraiseady challenging in current times and will bere more,
when population rises up to around 8.3 billion 3@ (UNDP, 2008). Enhanced food production relieshoee
factors: increased yield, enhanced cropping intgresid the expansion of agricultural land (FAO, 200n
2009, the total amount of agricultural and permameops amounted to 2.5 billion ha which equalsuald®%
of the earth’s land surface (Bontemps, Defournyn \Bogaert, Arino, & Kalogirou, 2009). In the lagiuf
decades of the past century, 172 million ha of lhade been added in developing countries (FAO, R0D3
ensure global food security, an additional 120iomillha of converted land are projected to be necgamtil
2030 and an extra 5% will be necessary up to 2BB@irfsma, 2009). Most land is expected to be t@nséd in
South America and Sub Saharan Africa (Fischer, 000

Models based on climate and soil inputs can hedpedih the areas where crops can grow optimallgifcen
natural conditions. Fischer et al. (2002) showed tbughly 2.8 billion ha are to some degree siétédr rain-
fed agriculture and Avellan, Zabel, and Mauser @Ghowed that about a quarter of the earth’s laméace is
suitable to highly suitable for the rain-fed grovath15 major crops (Avellan, Zabel, & Mauser, 20E&5cher,
2002) . Both authors base their different modelfolf@ agro- ecological zones versus fuzzy logicpcro
suitability) on global soil and climate databagdewever, global soil databases are scarce andorelyatchy
soil sampling. Few sets exist, such as the HarnednizWorld Soil Database (HWSD)
(FAO/IIASA/ISRIC/ISSCAS/IRC, 2009) and the ISRIC-8E derived soil properties on a 5 by 5 arc minute
grid (Batjes, 2006). Global Climate Datasets areenvaried. Past climate data can be obtained friaenpolated
station data (WorldClim), reanalysed forecasts (EBrhind-casted climate models (ECHAM, HadCM).

Avellan et al. (2012) showed that the quality ofmelte inputs is quite homogenous while global dailabases
can differ widely. The choice of the database cameha strong effect on the amount and distributibrop
suitable areas, leading to a 10% difference betvileertwo most common global soil datasets (Aveéanml.,
2012). Soil databases are immensely complex anduality of the data is geographically diverse. Egample,
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the HWSD is made up of four different input datasasach covering different areas of the world, gisin
different sampling and compilation methods (FAOSIWISRIC/ISSCAS/JRC, 2009) (see Figure 1). Eaclelpix
can contain up to 8 component soils which may,uim,shave a larger share within the pixel than thmidant
soil class (see mock up example in Figure 2). Wtaking component soil classes into account, thé soi
parameter value estimate for each given pixel neagifferent than that of the dominant soil mappimi (i.e.
dominant soil value for pH is 8, but that of theigieed average of all component soils is 7.8).

In order to enhance modelling results a balancedrst the quantity and quality of the used inputipsaters has
to be maintained. While more parameters might eefire modelling results, poor quality parameterghtyiin
fact, be counterproductive. A careful analysis ofhbthe quality of the data as well as their infioe on final
results might inform the choice of parameters. relfan et al. (2012), we started our crop suit@binalysis
using only the parameter value estimates of theimm soil mapping unit of the topsoil (0-30 cm)@pixel by
pixel basis. In comparison, the Global Agro-ecatagjizones studies, used soil parameters from afipoment
soils, top- and subsoils (0-30 cm and 30 cm andvielphases as well as management practices (IIAS3/
2012). It is clear to the authors that other patamserelevant to soil databases such as subsaileders (30 cm
and below), including drainage, granularity or #@gidas well as phases and management practicefiaam
drastic effects on crop growth (Benjamin, Niels&n\Vigil, 2003; Kirchhof et al., 2000; Van den Akker
Arvidsson, & Horn, 2003).

To our knowledge, the use of parameters in crogalsility models has not been substantiated by tiadyais of
the quality of the data. The inclusion of factsdefended by referring to standard works (i.e. FA@&nuals
(FAO, 1976, 2007) or similar) without questionirtgetvalidity of the usage. It is our intent to ent@model
complexity in a step-by-step approach while showhrg error margins incurred. Analogous to the \Walthwn
uncertainty ranges of climate models we wish to alestrate a similar approach in the use of crombility
estimations. Here, we assessed the influence ddirtee-weighted average of the additional composgeifs of
the soil mapping units of the topsoil, on the ami@md distribution of crop suitable areas.

2. Materialsand M ethods
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Figure 1. Distribution of the four underlying dagasles of the Harmonized World Soil Database (HWSD);
European Soil Database (ESDB), Soil Map of ChindI{A), Soil and Terrain dataset (SOTWIS), Digitails
Map of the World; adapted from (FAO, IIASA, ISRIISS-CAS & JRC, 2009)
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2.1 Datasets
We used the following datasets and parameters at@38econds resolution (1 x 1 km at the equator):

Harmonized World Soil Database (HWSD, version 1ldgminant and component soil mapping units of the
topsoil (0-30cm) as input for eight parameter vadséimates—textural class (USGS), coarse fragmaitsne

(%), gypsum (%CaS04), base saturation (%), pH,roecgaarbon (%), salinity (dS/m) and sodicity (%).
WorldClim dataset (Hijmans, Cameron, Parra, Jogegarvis, 2005): mean annual temperature and mean
annual precipitation

SRTM30 global digital elevation model (Farr et 2D07; USGS, 2000): slope computed as percent rise.

Regions were defined for their economic relevancglobal trade as a biophysical crop model was lealip a
Global Equilibrium Model in a subsequent step (€ab).

Table 1. Coding of the regions

Region code Region name

AFR Sub-saharan Africa

BEN Belgium, Netherlands, Luxemburg
BRA Brazil

CAN Canada

CHI China

FRA France

FSU Rest of former Soviet Republic

GBR UK & Ireland
GER Germany

IND India

JPN Japan

LAM Rest of Latin America
MAI Malaysia, Indonesia

MEA Middle East, North Africa

MED Spain, Portugal, Italy, Greece, Malta, Cyprus
MRC Chile, Argentina, Uruguay, Paraguay

NAU New Zealand, Australia

PAS1 Guayanas

PAS2 Iceland

PAS3 Switzerland

PAS4 Afghanistan, Pakistan

PAS5 Mongolia

Austria, Estonia, Latvia, Lithuania, Poland, Hunga&@lovakia, Slovenia, Czech Republic,
Romania, Bulgaria

RUS1 RUS1 (west)

RUS2 RUS?2 (east)

SCA Finland, Sweden, Denmark

SEA Kambodscha, Laos, Thailand, Vietham, Myanmar, Blategd
USA United States of America

REU
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2.2 Dominant vs. Component Soil Areas and Soil Parameter Value Estimates

Dominant soil is defined as the HWSD component withh the largest share value irrespective of et that
the other component soils together may have adatggre within one pixel. Soil parameter valueraates are
the values each pixel has for a chosen parametempHl, salinity, etc. In Figure 2 we have triedstow in a

mock-up example how a pixel can be made up of aéwamponent soils and the effect the weighted aper
has on the parameter value estimate.
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Figure 2. Mock -up examples of two pixels with di#nt distributions of component soils (left); etfef using the
weighted average on the overall parameter valumat versus using that of the dominant soil (Jight

We used GIS techniques to determine the area afipemce of dominant soils and compared it in sizéhat
where component soils had higher percentages. Wd Mondrian (version 1.2), an open source stadilstic
analysis tool (University of Augsburg, 2012), tady the distribution of dominant soil units and gament soil
units. For the spatial representation of the soilsy) a FORTRAN program was designed that allowssigaing
the soil unit share to each pixel.

2.3 Determination of Crop Suitable Areas

We used the fuzzy logic approach as discussed wll#v et al. (2012). Fuzzy classification metho@giree
growth through membership functions and likeliho@8arrough, MacMillan, & Deursen, 1992). The ratdm
behind this is that most soil parameters have gelarror rate per se, due to sampling and hanelirgs, and
crops are able to grow at various levels of themarmeters (Rossiter, 1996). Thus strict Booleassdiaation
systems may be too restrictive in growth rangesapds. Fuzzy logic approaches have been usedstdected
number of crops on limited study areas by othehanst e.g. (Baja, Chapman, & Dragovich, 2002; Brdimo
Vlek, & Stein, 2004; Reshmidevi, Eldho, & Jana, 200an Ranst, Tang, Groenemam, & Sinthurahat, 1996)

Raster-based soil, terrain and climate parametieilesavere matched on a sliding scale from 0 to th wieir
respective crop growth likelihoods as determined®ys, Van Ranst, Debaveye, & Beernaert, 1993ufEiga).
Subsequently, the most optimally matching crop sedscted to be the most suitable for a given pkath
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component soil was assigned one fuzzy value (FigbjeDepending on the number of component soiksaich
soil mapping unit, up to 8 fuzzy values per pixe&revassigned. These were aggregated based onviighited
share value of the respective soil mapping unitn@enent soils with high share values end up wiglranger
influence on the final fuzzy value.

Crop growth abilities were then categorized intarfeubsets as defined by Sys et al. (1993) and (FA2®6).
Fuzzy value between:
1) 0-0.4 Pixel not suitable for crop growth (N) (nane)

2) 0.4-0.6 Pixel marginally suitable for crop grows8j.
3) 0.6-0.8 Pixel suitable for crop growth (S2).
4) 0.8-1 Pixel highly suitable for crop growth (S1).

Pixels are subsequently transformed into land saga@according to their location on the globe thioag
FORTRAN programme. The total land surface is caersid except Antarctica.

i
Topographical parameter
Stope [36}

Soil parameters

Textural ciass (USGS)
Coarse fragements [vol %)
Gypsum [% CaSod)

Plants S:sa saturation [¥]
Barlay
Ce\ss.:)n-m Qrgaric Carban (%]
Groundnut Sainity [d5/m]
Maine ! Sodicity [%)
Midten Climate parameters
Oil-patm Mean annual Temperature {"C]
Potaioes Annual Precipitation {mm]
Rapaseed
Rice
Rye Y
Sarghurn
Sa g
Su;arcane Plant fuzzy membership
Sufflower functions
Wheat
[

Loop across all parametars

Selection of minimum
likelihood of all parameters for
each plant
(limiting factor)

Loop across ail plants

Y

Selection of maximum
likelihood across all plants

likelihood > 0.4

FALSE.

TRUE

Y

suitable plants

v Y
max equal
Y ¥ Y
non- suitable most suitable equally
plants plant suitable plants
@)

49



www.ccsenet.org/ep Environment and Pollution Vol. 2, No. 3; 2013

Y
Topographical paramster (SRTM) Soil paramstsrs (HWSD)
Slope [94] Textural class (USGS)
Coerrse fragements [vol %]
Climate paramsters (MWorld Clim) Gypsum [% CaSod)
Meen annual Temperature [*C] Brse saturation [%]
Annual Precipitation [mm)] pH
Qrganic Carbon [%]
Sainity [d5/m]
Sodicity [%]
Plants L
Barley v
s Plant fuzzy rembershi Plant fuzzy membershi
Groundnut ¥ P 27y 2 P
Maize functions functions
Millet
Dilpalm
Potato
Rapeseed A
Rice ) —
Rye Selection of minimum fuzzy
Serghum value across all parameters
Soy
Sugarcane
Sunflewer —Loop across all subsolis—!
Wheat L
L Weighting of minimum fuzzy
values to subscil-shares
Selection of minimum fuzzy
value for each plant
Loop across all plants ¢
Selection of maximum fuzzy
valug across all plants
iTRUE
suitable
plants
Y s < equal >
3 i X 3
non- most equally Fuzzy Limiting Fuzzy Limiting
QUTPUT: suitahle suitable suitable value parameter value parameter
plants plant plants all plants all plants each plant each plant

(b)
Figure 3. Overview of the methodology of fuzzy logrop suitability analysis using just the paramesdue
estimates of a) the dominant soil (top) or b) dEamponent soils (bottom)

3. Results
3.1 Dominant vs. Component Soil Areas

In 64% of all pixel the dominant soil holds moranh50% of the pixel's share value. When lookingcific
major soil groups, some only exist as dominant ggiks (i.e. Is-Lithosols, Ns-Nitosols, U-Rankersl an-
Planosols). Most soils comprise only two comporsails in their soil mapping unit (i.e. dominantlgaus one
additional component soil). Few cases exist wheilexs&apping units have 6 or more component soite T
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share value of the dominant soil component is ¥égh in most of northern Asia, Greenland, the Ndktherica
and large parts of Africa. These are areas wheradtiminant soil defines the parameter value estir(grey
areas in Figure 4). In the case of China, due ¢onthly the database was produced, only one-the dotrsoil
exists. In the Middle East, Central Asia, the Raahd Australia, share values of the dominant soihponent
were very low. These are areas where the other eoem soils play a larger role in determining tlaegmeter
value estimates of the given pixel (black areas-igure 4, see also mock up example in Figure 2uttso
America exhibits mostly areas with intermediatershalues (data not shown explicitly).

Share of the dominant soil component

Legend
Jo-50%
| [>50%

Figure 4. Analysis of shares and sequences of coemioils. Grey areas represent soil mapping units
where the share value of the dominant soil compiinelds more than 50%; Black areas are regionsavher
the dominant soil component holds a share valuea& than 50%

3.2 Determination of Crop Suitable Areas

While using the parameter value estimates of thmilant soil mapping units along with climate anddm
constraints, 9% of the earth’s surface result ghlyi suitable (S1), 25% in suitable (S2) and 19%narginally
suitable (S3) areas (Figure 5). Barley (10.7%), at§6.6%), and oil palm (5.2%) are globally the trmstable
crops (Figure 6) (Percentages of overall pixel,afarea).

While considering the parameter value estimateallofomponent soils in a given pixel, the areaahlé for
crop growth amounts to 54.5% of the earth’s landfase excluding Antarctica. Roughly 4.5% can be
categorised as highly suitable (S1); 27% and 23#&beaclassified as suitable (S2) and marginalltable (S3),
respectively (Figure 5). The most prominent cropgeshe same as when using dominant soils onlyy wit
adjustments in their overall percentages (barleyl%] wheat-6.5%, oil palm-5.9%) (Figure 6).
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Figure 5 . Amount of ¢ rop suitable areas whilesidaring only dominant soil s (black bars) or aipon
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suitable; S1-highly suitable
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Most suitable crop
Component soil parameter values

o T e et
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.........
[ Barley (11.1%) [ Maize (2.0%) Bl Potato (0.3%) . Rye (0.1%) I Sugarcane (0.9%:) m none (54.5%)

N Cassava {5.8%.) [ Millet {2.6%%) | Rapeseed (0.1%) | Borghum (3.3%) ] Sunflower (0.4%%) more than one (4.1%)
B Groumdnut {1.8%) g Oil palm (5.9%2) [ Rice (0.4%) [ Soy (0.1%) ) Wheat {8.5%])

Figure 6. Distributio of the most suitable cropngsall comp nent soil parameter value e timatgs) (o
dominant soils (bottom) (% values represent thatired amount of pixel for that crop, not the relatarea)

4. Discussion

In about 1/3 of the soil mapping units the sharkiesaf the dominant soil is less than 50 % of thelp Its
parameter value estimate, i.e. pH, salinity or nigj@arbon value, may not be the same as thateoivifighted
average of all component soils. In terms of crafability this translates in a 1 % increase of cepjitable areas
of the earth’s land surface when using all soil porrents of the soil mapping unit of the topsoileTdiobal
distribution of crops itself is marginally affectethe ranking of the top 5 crops with the higreasbunt of pixels
remains equal. Changes in the distribution of thiéability classes are important. For instancethie highly
suitable areas, a reduction of 4.3 % is observednwitsing component soils whereas the marginallialsie
areas increased by 3.7 % (Figure 5).

The model results reflect the qualitative differesn®f the underlying databases. The HWSD is argiated
patchwork of diverse datasets (see Figure 1). SamthCentral America, East Africa and parts of Gdrasia
are fed with the SOTWIS data which have the laipstates of soil samples (latest version of 2006jofe and
Russia is based on the datasets of the Europeah Baiabase, a very comprehensive set
(FAO/IIASA/ISRIC/ISSCAS/IRC 2009b). North Ameridd/est Africa, and large parts of Asia and Australia
still based on the outdated Digital Soil Map of iMerld (DSMW). Data for China was produced by assig
one soil class per pixel. No changes in crop silitplrlasses occurred for those areas which areposed of
only one, the dominant, component soil, such @kéncase of China. Changes in crop suitabilitysdasvere in
general more prominent where dominant soil shaedalow 50 % such as in the Americas, Africa aedt@l
Asia (Figure 7). For instance, while 867991%were assigned to be highly suitable when usingdtminant
soils in the Mercosur region (MRC), only 301704%knere left in this category when using all compdremils
(Figure 7). Instead, 1300988 kwersus 1030206 knwere marginally suitable when using componentssoil
dominant soils only, respectively.

However, a linear relationship between data qualitpre component soils and smaller share valuethen
dominant soils cannot be postulated. Some are@srtitular in the tropics, are predominantly cosgsbof one
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dominant soil component with a share value of ntbem 50 % but are based on ‘high quality’ datagets
Amazon forest in Brazil based on SOTWIS, see grepsain Figure 4). Other areas are based on ‘|aalitgu
datasets, such as Australia on DSMW, and show largas with several component soils and dominaiht so
shares below 50 % (see black areas in Figure 4).

Regional distribution of crop suitable area classes
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Figure 7. Region specific changes in crop suitgbireas by categories using dominant soil pararvetae
estimates (d) or component soils (c). S3—margiralitable, S2—suitable, S1-highly suitable

Now, how to make a choice of which dataset to uHe® quality for all component soils is heterogendhs
effect on the extent and type of crop suitabilitinimal. The lack of consistent quality of globaltasets is a
known issue. A variety of research centres are ingrkowards enhanced soil datasets and samplitgn af
collaboration with many others such as in the GloBail Initiative launched in 2011 (The Global Soil
Partnership, 2011). In few cases of crop modeliogne authors have undertaken extensive qualityaaoftthe
underlying soil data and adapted it to their ne@lgsman, Thornton, & Hoogenboom, 2007; Romerolet a
2012). This is very cumbersome and can only beezhout when sufficient expert staff is availalie & specific
target objective. However soil datasets are usetklwiby differing disciplines. We suggest explamithe
inherent uncertainty attached to these dataset$agnopen the error margin of their use. In thigtipalar case,
on the use of all component soils versus only tiraidant soils we postulate that the error margiof isbout 1%
at a global scale.

It is clear to the authors that additional paramsetan be used from the soil databases as wellvasiety of
other parameters such as refined climate datasetsrticular at the temporal scale. Knowledge tmieity,

gender, management practices, adapted crops,tionigaise of fertilizers and of the use of techgglare all
factors that influence the suitability of an areadgricultural purposes (FAO, 2007). Obtainingatele data for
these parameters may be even more challengingdhanil databases.

5. Conclusion

In this study, we intended to show the differengesnodel results when using all component soils tfar
analysis of crop suitability. This is important bese it allows determining the level of uncertaitigt modellers
face when using current global soil databasesutliic) more parameters does not always mean betaeits.
We showed that the distribution of the number aihponent soils of the HWSD is very heterogeneous on
geographical scale but is not linked to the qualftthe underlying data subset. The error rangei$org
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either the dominant component soil versus all camepb soils could be considered to be 1%-the differdan
crop suitable area between the two datasets. Thginmaf error varies according to the region anctéases to
up to 4% when looking at the individual suitabildhasses.
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Many concerns have been raised about urban sprasvitlee subsequent disap-
pearance of agricultural land. Regulations havenha#t in place to reduce urban
sprawl and protect agricultural areas in many adesit but how much potentially
crop suitable land really is endangered by urbaasaon a global scale has not been
addressed so far. In this study, we compare thtenexf urban areas as pro-duced by
the Center for Sustainability and the Global Enviment, Madison, WI, USA, with a
map of potential crop suitable areas produced by\Messhow that, of the postulated
0.5% of the Earth’s surface currently covered yanrareas, Asia, Europe and North
America take away the largest shares and that 1%eofjlobally available highly
crop suitable areas are currently taken up byscitiéth Japan and California being
extreme examples of up to 15% of highly suitabémaarcovered with cities.

1. Introduction

Historically, urban areas mostly developed at sgigglly important points and where
the necessary resources to survive were preseithwas often in fertile and rich soil
regions of river deltas, oasis or at the edgesi#d with favourable climates. Imhadf
al. (2004) showed that in the United States approtalp@8% of the land surfade taken
up by urban land and 15% of the best agricultussdd$ of California have been
transformed into urban areas. Spilkova and Sef2@4.() pointed out that 44% of the
land dedicated to a new retail area around Pragage made up of high-quality soils
(chernozems and luvisols). In the Beijing—Tianjirelei urban conglomeration in China,
about 74% of the current urban area was convertad former agricultural land in the
decade of the 1990s (T&hal. 2005). In the surroundings of the town of Sahpuann
India, about 48% of the agricultural land was lmstirbanization in the 1990s of which
about one-third were of high quality (Fazal 200&)obally, nonetheless, approximately
12% of the Earth’s land surface excluding Antaeciie used as cropland (Ramankuty
al. 2008), whereas only about 0.5-3% is made upldruareas, depending on the study
(Schneidegt al. 2010).

Many countries see a problem in the reduction aflalle agricultural land due to its
conversion into urban areas, industrial sites, saat other impervious surfaces, which,
in most cases, is irreversible. They have thusemeinted legislative measures
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to reduce expansion. This has been the case idaheloped world as well as in the
developing countries and was even addressed biiitish during the Second World
War (Stamp 1941). Many studies focus on the effetthese measures on urban sprawl
and their impact on agricultural land, be it in NoAmerica (Schwartz and Hansen 1975,
Cocklin et al. 1983, Krushelnicki and Bell 1989, Brabec and &n#002, Irwin and
Bockstael 2004, Wu and Cho 2007, Thompson and PsoR009), Europe (Reidsne

al. 2006, Spilkova and Sefrna 2010, Ganal. 2011), China (Chen 2007, Yaping and
Min 2009) or the developing countries in generaribeyet al. 1996, Thomlinson and
Rivera 2000, Hara&t al. 2005, Braimoh and Onishi 2007, Thapa and Muraya6as,
Firman 2009). The verdict on the use of regulatbmirban sprawl is rather pessimistic
as only in few cases agricultural land was safedpéi(Luzar 1988). Positive examples
are, for instance, Japan where 30% of the landisesfare made up of urban areas, but
agricultural land conservation methods are extrgraict and have led to an effective
retention of agricultural lands (Sorensen 2000%0Ah the Nile Delta area of Egypt, only
0.4% of high-valued agricultural land has been tostirbanization in the decade of the
1980s (Lenneyt al. 1996).

All current studies focus on distinct urban aggloatiens or national regulations using
Geographic Information System (GIS) techniques satdllite image analysis in order to
track the changes in land use, but globally the @fsagricultural land due to urban areas
is rather unknown. In this study, we want to shbe global extent of urban areas and
their expansion on areas of potentially high croipability, to under-stand the dimension
of the loss of potential food production. For tpisrpose, we used a data set of urban
extent produced on the basis of remote sensingrnmbmation with a map of potential
crop suitable areas fashioned on the basis of flogig modelling.

2. Materials and methods
2.1 Maps

We used the urban area map as produced by Schreiader(2010), which is based on
500 m Moderate Resolution Imaging Spectroradiom@&DDIS) data and has shown

extremely good validation results (= 0.90) for 140 cities.

The areas of potential crop suitability were prastion the basis of a fuzzy logic
approach integrating soil, terrain and climate t@msts of 15 globally relevant food
crops (see also Avellagt al. submitted August 2011, in review September 20W8.
first assigned growth likelihood curves to eachnplor each parameter, which were
obtained from Syt al. (1993), and then determined the limiting paraméte each
plant (as the minimum likelihood across all pararefor each plant), to subse-quently
gain knowledge about the most suited plant (maxiniikelihood across all plants) for
each 5 arc-minute pixel on the Earth’s land surtaaduding Antarctica (Burrougét al.
1992). Areas that did not reach the threshold ofentban 0.4 (includ-ing) in minimum
likelihood across all parameters were said to bae-swtable areas for agriculture
following the assigned likelihood criteria deterethby Syset al. (1993); areas with
suitabilities larger than 0.4 and up to 0.6 (inahg) were marginally suit-able, areas with
suitabilities larger than 0.6 and up to 0.8 (inahg) were said to be suitable and areas
with suitabilities larger than 0.8 and up to 11ic(uding) were highly suitable (according
to FAO crop suitability classification (FAO 1976)).

We compared our crop suitability results with catrerop growth areas of wheat,
maize and rice as determined by Ramankett}. (2008) and obtained a 70% overlap
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(Avellan et al. submitted August 2011, in review September 20Alfew caveats exist

in our current map of potential agricultural areasl need to be kept in mind: (a) since
we only considered natural rainfall for this studgricultural areas that are dependent on
irrigation are not considered here; (b) we knowt tttee winter wheat area of the
Canadian wheat belt does not appear in our modmhiagal mean temperature is too low
to allow wheat growth there under our current pa@nization; and (c) the Australian
desert region is crop suitable as winter precipitst in this area increase annual
cumulative rainfall and thus make crop growth palgsi

2.2 Comparison

The urban areas map was first re-sampled to mdehgtid cell extent of the crop

suitable areas map (0.0083333 arc degrees or ry)ughdmz at the equator). After
reclassifying the crop suitable areas map, we aatsd the urban areas map from the
crop suitability map. This procedure results in aadset that shows the distinc-tion
between the relative area of crop suitable lance@y by urban areas and the relative
amount of crop suitable land not covered by theomti@ents, countries and states were
defined according to the Global Administrative Aseahich are the standard outlines as
provided by ESRI's ArcGIS, and the percentages w&teacted accordingly.
We looked at the following three aspects:

1. the distribution of crop suitable areas (highlytabie—non-suitable) per region
or continent (number of pixels per suitability qey divided by the total
number of pixels of the Earth’s land surface — editlg Antarctica);

2. the relative distribution of urban areas within #tr@p suitable areas of each
region (number of pixels in urban areas per sditgliategory divided by the
total number of pixels in urban areas); and

3. the area covered by urban areas either in reldatiothe global land surface
(number of pixels in urban areas per region divitbgdthe total number of
pixels in urban areas globally), or within eachtasility class of each region
(number of pixels in urban areas per region pembility category divided by
the total number of pixels per suitability categoggionally).

3. Results

Globally, about 44% of the Earth’'s land surfacesistable for crop growth, with,
however, only 7% highly crop suitable land (tabje Both Africa and South America
achieve more than 60% of their land surface toditalsle for crop growth with 12% and
10% of highly crop suitable areas, respectivelyiaAdlorth America and Europe only
achieve around 30% of their land mass to be cridplda with 6% or less of highly crop
suitable areas. Australia is an exception in osulte, as mentioned above, resulting in
98% crop suitable land within their territory of iwh 66%, however, is only marginally
suitable for crop growth.

Our results further show that cities are in quitewa cases built on or around fertile
areas. Although, according to the data, only 0.3%e global land surface is cov-ered
with urban areas, 80% of the cities extents faib ithe category of crop suitable land
with 19% of the cities extents covering highly csygtable areas (table 2). Asia covers
the largest amount of global land surface with arbeeas (0.16%) followed by North
America and Europe (0.10% each) (figura)L(Although urban land surfaces
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Table 1. Relative distribution of Earth’'s land sué areas per crop suitability per continent and

globally.
North South
Africa Asia Australia Europe America  America Global
Highly suitable (%) 12 6 10 3 6 10 7
Suitable (%) 22 10 21 17 11 23 15
Marginally suitable (%) 30 16 66 19 11 34 22
Sum suitable (%) 63 32 98 39 27 67 44
Non-suitable (%) 37 68 2 61 73 33 56

Table 2. Relative distribution of urban areas pepcuitability per continent and globally.

North South
Africa Asia Australia Europe America  America Global
Highly suitable (%) 14 28 7 6 22 12 19
Suitable (%) 38 29 20 43 33 42 35
Marginally suitable (%) 30 24 61 30 23 25 26
Sum suitable (%) 82 81 88 79 78 80 80
Non-suitable (%) 18 19 12 21 22 20 20

of Japan and California only roughly make up 0.01€486h of the global land surface,
they cover more than 13% of their highly suitabieaa with cities and thus even top off
Asia, Europe and North America which roughly co2@6 of their highly suitable areas
with cities (figure 1)). The city of Los Angeles is a dramatic examd@io urban area
that has covered most, if not all, of its closelgi&ble highly crop suitable areas (figure
2).

4. Discussion

Our results show that although urban areas mayahet up too much actual land of the
Earth’s land surface, they are extensively placedhe crop suitable areas of our planet.
We have so far globally lost 1% of our most suitkabteas to cities. In some extreme
situations, up to 15% of the available crop suéadnieas have been taken up by cities as
is the case in California and Japan, which are emloomparable to the literature
(Sorensen 2000, Imhoéf al. 2004).

The caveats in our crop suitable areas affect maird results of urban areas within
irrigated areas, such as Cairo which is not comeilén our case as a city within crop
suitable land. The problems with the underestinmatibcrop suitable land in Canada do
not strongly affect our results as the amount axigrgé of urban areas within the
Canadian wheat belt is rather low. Conversely,aerestimation of crop suitable land
within Australia also does not largely alter ousuiés as most of Australia is marginally
suitable and cities mainly fall into the areas oftable or highly suitable land of the
eastern Australian coast.

Assuming that both Africa and South America attaigh urbanization degrees similar
to those in Europe, we could attain global urbagaarof roughly 0.8% of the Earth’s
land surface, almost double the current amounineséid here. Globally, we would thus
further lose another 1% of highly suitable landriéd’s urban areas



Downloaded by [Bibliothek des Deutschen] at 01:31)Jane 201

Cities and crop suitable areas 63t

.
=

P p3

PV G 3
W N LI LR
\o,o%/ \ﬁi ol
e A T
\ g//o.m;y
\% (/3/)
() . . .
Africa Asia Australia
3.00 3.00 3.00
225 225 226
150 1,50 - 150
0.75 0.75 075
[0 o]o J M—| CCCOJe—e—— 0.00 ’—'  o— 0.00  co— | mo— ﬁ
HS S MS NS HS S MS NS HS ] MS NS
Europe North America South America
3.00 3.00 3.00
225 225 225
1.60 150 | 1.50
0.75 0.75 0.75
0.00 [ ] 0.00 —— 0.00 l_"—\’—|!—1
HS 5 MS NS Hs s M3 NS HS s MS NS
Japan California Global
16.00 16.00 3.00
12.00 12.00 225
8.00 8.00 150
4.00 l—‘ 4.00 075
- — | o0 ,_‘ﬁrﬁ o0 [ J—
HS 8 MS NS HS s MS NS HS s MS NS

Figure 1. Distribution of cities and crop suitatdeeas ¢) Global map showing the dis-torted
relative global land surfaces covered by urban samer continent/country/state after data by
Schneideket al. (2009) (number in continents countries denotesgmage); If) Percentage of crop
growth suitable areas covered by urban areas pb8ily category and continent/country/state.
y-Axis represents the percentage of area covereate-thaty-axis maximum is higher for Japan
and California than in all other graphsaxis from left to right: HS — highly suitable, Ssuitable,
MS — marginally suitable and NS — non-suitable area
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Legend
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Figure 2. Extent covered by Greater Los Angeles imdaoverage by the different suitability
categories, showing that large extents of theaotyer areas of high suitability.

would then make up 0.25% of all Earth’s surface @odld then cover almost 1.5% of

the continents’ crop suitable land, 11 times theent amount. South America would

triple both the proportion of the Earth’s surfae&ein up by its urban areas (to 0.17%)
and the proportion of its own crop suitable landugied by these areas (to 1.5%).

The amount of crop suitable areas remains rathige lawhen using the conservative
estimates of Schneidetal. (2009) as used here. Hence, globally, currerl2® of the
crop suitable areas are not covered by cities. kimicdies in determining urban areas
remain large, especially when looking at urbangeis, rural urban areas and urban
sprawl along the side of the roads, which is eglgcirue for the develop-ing countries
(Schneideret al. 2010). Estimates based on other data sets sutfeaSlobal Rural-
Urban Mapping Project (GRUMP), which approximatekstantially more than what we
assumed in this study, namely 3% of the Earth’§aserto be covered by urban areas,
may render different results and could be the taojefuture studies (CIESINt al.
2004). Current cropland cover only makes use oiabalf of the crop suitable areas,
mostly the highly suitable and suitable areas (oaloulations based on GlobCover 2009
extent of rainfed agriculture). Protected areasecawore than 12% of the globally
available crop suitable areas and wetlands cougghly 1.3% (own calculations based
on International Union for Conservation of Natute&)@N) protected areas map and
GlobCover 2009 extent of wetlands). Thus, the egjmmof cities will most likely not
necessarily affect the amount of agricultural ldnd will cause the reduction of other
ecosystems currently covering potentially cropahlé areas as has been occurring in the
past.

Acknowledgements

This work was developed under the framework of Boa@desministerium fuer Bildung
und Forschung (BMBF) funded GLUES project. We thdrof. Schneider from the
Center for Sustainability and the Global EnvironlAGE), Madison, WI, USA, for
furnishing us with the map of the urban areas. Wthér thank Veronique Nitsch



Downloaded by [Bibliothek des Deutschen] at 01:31J@ne 201

Cities and crop suitable areas 637

and Stella Haun for their work on the data setsSfoutheast Asia and South America in
fulfilment of their bachelor degrees.

References

Aveuan, T., ZaseL, F. and Muser, W., submitted 2011, The influence of input dataétermining
areas suitable for crop growth at the global seadecomparative analy-sis of two soil and
climate dataset$oil Use and Management, August 2011, in review September 2011.

Bragec, E. and &itH, C., 2002, Agricultural land fragmentation: theasal effects of three land
protection strategies in the eastern United Sta@giscape and Urban Planning, 58, pp.
255-268.

BraimoH, A.K. and Qushi, T., 2007, Spatial determinants of urban land cisange in Lagos,
Nigeria.Land Use Policy, 24, pp. 502-515.

BurroucH, P.A., Macmian, R.A. and Rursen W., 1992, Fuzzy classification methods for
determining land suitability from soil profile obrsations and topographyEuropean
Journal of Soil Science, 43, pp. 193-210.

Cren, J., 2007, Rapid urbanization in China: a reallehge to soil protection and food security.
Catena, 69, pp. 1-15.

Ciesi, Irpr, CiaT, 2004, Global rural-urban mapping project, versiaiGRUMPV1): urban extents
grid. Palisades, NY: Socioeconomic Data and Appitics Center (SEDAC), Columbia
University. Available online at: http://sedac.ciesblumbia.edu/ gpw (accessed 21 March
2011).

Cockun, C., Gray, E. and &it, B., 1983, Future urban growth and agriculturaldlan Ontario.
Applied Geography, 3, pp. 91-104.

FAO, 1976,A Framework for Land Evaluation. FAO Soils Bulletin No. 32 (Rome: Food and
Agricultural Organization of the United Nations).

FazaL, S., 2001, The need for preserving farmland: & cigdy from a predominantly agrarian
economy (India)Landscape and Urban Planning, 55, pp. 1-13.

Firman, T., 2009, The continuity and change in mega-udadion in Indonesia: a survey of
Jakarta-Bandung Region (JBR) developmeElabitat International, 33, pp. 327—-339.

GanT, R.L., RoBinson, G.M. and Fkzac, S., 2011, Land-use change in the ‘edgelandsicigsl and
pressures in London’s rural-urban fring@nd Use Poalicy, 28, pp. 266-279.

Hara, Y., TakeucHi, K. and Queo, S., 2005, Urbanization linked with past agrictatuan-duse
patterns in the urban fringe of a deltaic Asian aeily: a case study in Bangkok.
Landscape and Urban Planning, 73, pp. 16—28.

IMHOFF, M.L., Bounoua, L., Derries R., Lawrencg, W.T., SuTzer, D., TUCKER,

C.J. and RkeTTs, T., 2004, The consequences of urban land tramsfitwn on net primary
productivity in the United StateRemote Sensing of Environment, 89, pp. 434-443.

Irwin, E.G. and Bekstael, N.E., 2004, Land use externalities, open spaesegpvation, and urban
sprawl.Regional Science and Urban Economics, 34, pp. 705-725.

KrusHewnicki, B.W. and B, S.J., 1989, Monitoring the loss of agricultuiatd: identi-fying the
urban price shadow in the Niagara Region, Carlaatal Use Policy, 6, pp. 141-150.

Lenney, M.P., Woopcock, C.E., @Luns, J.B. and Hwvor, H., 1996, The status of agricul-tural lands
in Egypt: the use of multitemporal NDVI featuresided from landsat TM.
Remote Sensing of Environment, 56, pp. 8-20.

Luzar, E.J., 1988, Strategies for retaining land in@gture: an analysis of Virginia's agricultural
district policy.Landscape and Urban Planning, 16, pp. 319-331.

Ramankutty, N., Buan, AT., Monrrepa C. and ey, J.A., 2008, Farming the planet: 1.
Geographic distribution of global agricultural landn the year 2000.Global
Biogeochemical Cycles, 22, GB1003, d0i:10.1029007GB002952.



638 T. Avellan et al.

Reipsma, P., TEkeLENBURG, T., Van Den Berg, M. and Axemape, R., 2006, Impacts of land-use change on biodiyeran
assessment of agricultural biodiversity in the Pean UnionAgriculture, Ecosystems and Environment, 114, pp.
86-102.

ScHneDER, A., FriepL, M. and BTerg D., 2009, A new map of global urban extent fron©OBDIS data.Environmental
Research Letters, 4, 044003, doi:10.1088748-93264/4/044003.

ScHNEIDER, A., RRiept, M.A. and Prerg D., 2010, Mapping global urban areas using MOB08-m data: new methods and
datasets based on ‘urban ecoregioRemote Sensing of Environment, 114, pp. 1733-1746.

SchwarTz, S.l. and Hnsen, D.E., 1975, Two methods for preserving agricatuiand at the urban fringe: use-value
assessment and transferable development rigteculture and Environment, 2, pp. 165-180.

Sorensen A., 2000, Land readjustment and metropolitan gnown examination of subur-ban land developmedtwaban
sprawl in the Tokyo metropolitan ardrogressin Planning, 53, pp. 217—-330.

SreikovA, J. and Srrna, L., 2010, Uncoordinated new retail developmertt &g impact on land use and soils: a pilot study
on the urban fringe of Prague, Czech Republic.

Landscape and Urban Planning, 94, pp. 141-148.

Sramp, D., 1941, Agricultural land and national plannihgture, 147, pp. 647—-648.

Svs, C.O., AN Ranst, E., Desaveve, J. and Bernaert, F. (Eds.), 1993Land Evaluation: Part IIl Crop Requirements
(Bruxelles: Administration Generale de la CooperatiuDeveloppement).

Tan, M., Li, X., Xig, H. and L, C., 2005, Urban land expansion and arable lasd o China — a case study of Beijing-
Tianjin-Hebei regionLand Use Poalicy, 22, pp. 187-196.

THara, R.B. and Miravamva, Y., 2008, Land evaluation for peri-urban agrioudt using ana-lytical hierarchical process and
geographic information system techniques: a casiy sif HanoiLand Use Palicy, 25, pp. 225-239.

THomuinsoN, J.R. and Rera, L.Y., 2000, Suburban growth in Luquillo, Puert@® some consequences of development on
natural and semi-natural systerhandscape and Urban Planning, 49, pp. 15-23.

THompson A.W. and Rokory, L.S., 2009, Tracking urban sprawl: using spateth to inform farmland preservation policy.
Land Use Policy, 26, pp. 194-202.

Wu, J. and @o, S.-H., 2007, The effect of local land use redafet on urban development in the Western UnitedeSta
Regional Science and Urban Economics, 37, pp. 69-86.

Yaping, W. and Mn, Z., 2009, Urban spill over vs. local urban sprawitangling land-use regulations in the urban ¢novf
China’s megacitied.and Use Policy, 26, pp. 1031-1045.



Annex

Ge
Gc
Gd
Gm
Gh
Gp
Gx

Qc
All
If

Zo
Zm
Zt
Zg

GLEYSOLS

Eutric Gleysols
Calearic Gleysols
Dystric Gleysols
Mollic Gleysols
Humic Gleysols
Plinthic Gleysols
Gelic Gleysols

REGOSOLS
Eutric Regosols
Calecaric Regosols
Dystric Regosols
Gelic Regosols
LITHOSOLS
ARENOSOLS
Cambic Arenosols
Luvic Arenosols
Ferralic Arenosols
Albic Arenosols
RENDZINAS
RANKERS
ANDOSOLS
Ochric Andosols
Mollic Andosols
Humic Andolsols
Vitric Andosols
VERTISOLS

Pellic Vertisols
Chromic Vertisols

SOLONCHAKS

Orthic Solonchaks
Mollic Solonchaks
Takyric Solonchaks
Gleyic Solonchaks

S

So
Sm
Sg
Y
Yh
Yk
Yy

Y1
Yt

X
Xh
Xk
Xy
Xl

KHz
Koki
Kl

Ch

Cl
Cg

Hh

Hl
Hg

M

Mo
Mg

SOLONETZ

Orthic Solonetz
Mollic Solonetz
Gleyic Solonetz

YERMOSOLS

Haplic Yermosols
Calcic Yermosols
Gypsic Yermosols
Luvic Yermosols
Takyric Yermosols

XEROSOLS

Haplic Xerosols
Calcic Xerosols
Gypsic Xerosols
Luvic Xerosols

KASTANOZEMS

Haplic Kastanozems
Calcic Kastanozems
Luvic Kastanozems

CHERNOZEMS

Haplic Chernozems
Calcic Chernozems
Luvic Chernozems
Glossic Chernozems

PHAEOZEMS
Haplic Phaeozems
Calcaric Phaeozems
Luvic Phaeozems
Gleyic Phaeozems

GREYZEMS

Orthic Greyzems
Gleyic Greyzems

B

Be
Bd
Bh
Bx
Bk
Bc
Bv
Bf

Lc
Lk
Lv
Lf
La
Lap
Lag

De

Dg

Po
P1

Pf
Ph

Pp

w

We
Wwd
Wm
Wh
Ws
Wx

Annex 1: Soil classification according to FAO 1974

CAMBISOLS

Eutric Cambisols
Dystric Cambisols
Humic Cambisols
Gelic Cambisols
Calcic Cambisols
Chromic Cambisols
Vertic Cambisols
Ferralic Cambisols

LUVISOLS

Orthic Luvisols
Chromic Luvisols
Calcic Luvisols
Vertic Luvisols
Ferric Luvisols
Albic Luvisols
Plinthic Luvisols
Gleyic Luvisols

PODZOLUVISOLS

Eutric Podzoluvisols
Dystric Podzoluvisols
Gleyic Podzoluvisols

PODZOLS

Orthic Podzols
Luvic Podzols
Ferric Podzols
Humic Podzols
Placic Podzols
Gleyic Podzols

PLANOSOLS

Eutric Planosols
Dystric Planosols
Mollic Planosols
Humic Planosols
Solodic Planosols
Gelic Planosols

Fo
Fx

Fahd
Far
Fop

Oe
Od

Je
Je
Jd
Jt

ACRISOLS

Orthic Acrisols
Ferric Acrisols
Humic Acrisols
Plinthic Acrisols
Gleyic Acrisols

NITOSOLS

Eutric Nitosols
Dystric Nitosols
Humic Nitosols

FERRALSOLS

Orthic Ferralsols
Xantic Ferralsols
Rhodic Ferralsols
Humic Ferralsols
Acrid Ferralsols
Plinthic Acrisols

HISTOSOLS

Eutric Histosols
Dystric Histosols
Gelic Histosols

FLUVISOLS

Eutric Fluvisols

Calcaric Fluvisols
Dystric Fluvisols
Thionic Fluvisols
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FL

FlLe
Flc
FLd
FLm
FLu
FLt
FLs

GL

GLe
GLk
GLd
GLa
GLm
GLu
GLt
GLi

RG

RGe
RGc
RGy
RGd
RGu
RGi

LP

LPe
LPd
LPk
LPm
LPu
LPq
LPi

FLUVISOLS

Eutric Fluvisols
Calcaric Fluvisols
Dystric Fluvisols
Mollie Fluvisols
Umbric Fluvisols
Thionic Fluvisols
Salic Fluvisols

GLEYSOLS

Eutric Gleysols
Caleic Gleysols
Dystric Gleysols
Andic Gleysols
Mollic Gleysols
Umbric Gleysols
Thionic Gleysols
Gelic Gleysols

REGOSOLS

Eutric Regosols
Calcaric Regosols
Gypsic Regosols
Dystric Regosols
Umbric Regosols
Gelic Regosols

LEPTOSOLS

Eutric Leptosols
Dystric Leptosols
Rendzic Leptosols
Mollic Leptosols
Umbric Leptosols
Lithic Leptosols
Gelic Leptosols

AN

ANQ
ANm
ANu
ANz
ANg
ANi

VR

VRe
VRd
VRk
VRy

ARENOSOLS

Haplic Arenosols
Cambic Arenosols
Luvic Arenosols
Ferralic Arenosols
Albic Arenosols
Calcaric Arenosols
Gleyic Arenosols

ANDOSOLS

Haplic Andosols
Mollic Andosols
Umbric Andosols
Vitric Andosols
Gleyic Andosols
Gelic Andosols

VERTISOLS

Eutric Vertisols
Dystric Vertisols
Calcic Vertisols
Gypsic Vertisols

CM

CMe
CMd
CMu
CMec
CMx
CMv
CMo
CMg
CMi

CAMBISOLS

Eutric Cambisols
Dystric Cambisols
Humic Cambisols
Calcaric Cambisols

Chromic Cambisols

Vertic Cambisols
Ferralic Cambisols
Gleyic Cambisols
Gelic Cambisols

CL

CLh
CLI1
Clp

GY

GYh
GYk
GYI1

GYp

SN

SNh
SNm
SNk
SNy
SNj
SNg

SC

SCh
SCm
SCk
SCy
SCn
SCg
SCi

CALCISOLS

Haplic Calcisols
Luvic Calcisols
Petric Calcisols

GYPSISOLS

Haplic Gypsisols
Caleie Gypsisols
Luvic Gypsisols
Petric Gypsisols

SOLONETZ

Haplic Solonetz
Mollic Solonetz
Caleic Solonetz
Gypsic Solonetz
Stagnic Solonetz
Gleyic Solonetz

SOLONCHAKS

Haplic Solonchaks
Mollic Solonchaks
Calcic Solonchaks
Gypsic Solonchaks
Sodic Solonchaks

Gleyic Solonchaks
Gelic Solonchaks



KS

KSh
K5l

Ksk
KSy

CH
CHh

CHI
CHw
CHgz

PH

PHLh
PHc
PHI
PHj
PHg

GR

GRh
GRe

KASTANOZEMS

Haplic Kastanozems
Luvic Kastanozems

Calcic Eastanozems
Gypsic Kastanozems

CHERNOZEMS

Haplic Chernozems
Calcic Chemozems
Luvic Chernozems
Glossic Chemozems
Gleyic Chemozems

PHAFEOZEMS

Haplic Phacozems
Calcaric Phaeozems
Luvic Phaeozems
Stagnic Phaeozems
Gleyic Phacozems

GREYZEMS

Haplic Greyzems
Gleyic Greyzems

LV

LVh
LVE
LVs
LVk
LVv
LVa
LVj

Lvg

PL

PLe
PLd
PLm
PLu
PLi

PD

PDe
PDd

PDj

PDg
PDi

PZ

PZh
PZb
PZif

Pig
PZi

LUVISOLS

Haplic Luvisols
Ferric Luvisols
Chromic Luvisols
Calcic Luvisols
Vertic Luvisols
Albic Luvisols
Stagnic Luvisols
Gleyic Luvisols

PLANOSOLS

Eutric Planosols
Dystric Planosols
Mollic Planosols
Umbric Planosols
Gelic Planosols

PODZOLUVISOLS

Eutric Podzoluvisols
Drystric
Podzoluvisols
Stagnic
Podzoluvisols
Gleyic Podzoluvisols
Gelic Podzoluvisols

PODZOLS

Haplic Podzols
Cambic Podzols
Ferric Podzols
Carbic Podzols
Gleyic Podzols
Gelic Podzols

AC

ACh
ACt
ACu
ACp
ACs

NT

NTh
NTr
NTu

PT

PTe
PTd
PTu
PTa

LIXISOLS HS  HISTOSOLS
Haplic Lixisols HSl  Folic Histosols
Fermric Lixisols HSs  Ternic Histosols
Plinthic Lixisols HSf  Fibric Histosols
Albic Lixisols HS5t  Thionic Histosols
Stagnic Lixisols HSi  Gelic Histosols

Gleyic Lixisols

AT  ANTHROSOLS
ACRISOLS
Aric Anthrosols
Cumulic Anthrosols
Fimic Anthrosols
Utrbic Anthrosols

ATa
ATc
ATE
ATu

Haplic Acrisols
Femric Acrisols
Humic Acrisols
Plinthic Acrisols
Gleyic Acrisols

ALISOLS

Haplic Alisols
Ferric Alisols
Humic Alisols
Plinthic Alisols

Stagnic Alisols

Gleyic Alisols

NITISOLS

Haplic Nitisols
Rhodic Nitisols
Humic Nitisols

FERRALSOLS

Haplic Ferralsols
Xanthic Ferralsols
Ehodic Ferralsols
Humic Ferralsols
Geric Fermalsols
Plinthic Ferralsols

PLINTHOSOLS

Eutric Plinthosols
Drystric Plinthosols
Humic Plinthosols
Albic Plinthosols



Annex 3: Globcover classification legend

Value Global Globcover legend (level 1)

11 Post-flooding or wrigated croplands

14 Rainfed croplands

20 Mosaic Cropland (50-70%) / Vegetation (grassland, shrubland. forest) (20-50%)

30 Mosaic Vegetation (grassland, shrubland, forest) (50-70%) / Cropland (20-30%)

40 Closed to open (=15%) broadleaved evergreen and/or semu-deciduous forest (=5m)

50 Closed (=40%) broadleaved deciduous forest (=5m)

&0 Open (15-40%) broadleaved deciduous forest (=5m)

70 Closed (=40%) needleleaved evergreen forest (=5m)

90 Open (15-40%) needleleaved deciduous or evergreen forest (=5m)

100 | Closed to open (=15%) mixed broadleaved and needleleaved forest (=5m)

110 | Mosaic Forest/Shrubland (50-70%) / Grassland (20-50%)

120 | Mosaic Grassland (530-70%) / Forest/Shrubland (20-50%)

130 Closed to open (=15%) shrubland (=5m)

140 | Closed to open (=15%) grassland

150 | Sparse (>15%) vegetation (woody vegetation, shrubs, grassland)

160 | Closed (=40%) broadleaved forest regularly flooded - Fresh water

170 | Closed (=40%) broadleaved semi-deciduous and'or evergreen forest regularly
flooded - Saline water

180 | Closed to open (=15%) vegetation (grassland, shrubland. woody vegetation) on
regularly flooded or waterlogged soil - Fresh, brackish or saline water

190 | Artificial surfaces and associated areas (urban areas =50%)

200 | Bare areas

210 ]| Water bodies

220

Permanent snow and ice







