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Winterthurerstr. 190
CH-8057 Zürich
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Abstract

In this work, we derive the time-dependent Hartree(-Fock) equations as an effective dynamics
for fermionic many-particle systems. Our main results are the first for a quantum mechanical
mean-field dynamics for fermions; in previous works, the mean-field limit is usually either
coupled to a semiclassical limit, or the interaction is scaled down so much, that the system
behaves freely for large particle number N . We mainly consider systems with total kinetic
energy bounded by const ·N and long-range interaction potentials, e.g., Coulomb interaction.
Examples for such systems are large molecules or certain solid states. Our analysis also
applies to attractive interactions, as, e.g., in fermionic stars. The fermionic Hartree(-Fock)
equations are a standard tool to describe, e.g., excited states or chemical reactions of large
molecules (like proteins). A deeper understanding of these equations as an approximation to
the time evolution of a many body quantum system is thus highly relevant.

We consider the fermionic Hartree equations (i.e., the Hartree-Fock equations without
exchange term) in this work, since the exchange term is subleading in our setting. The main
result is that the fermionic Hartree dynamics approximates the Schrödinger dynamics well
for large N . This statement becomes exact in the thermodynamic limit N →∞. We give
explicit values for the rates of convergence. We prove two types of results. The first type
is very general and concerns arbitrary free Hamiltonians (e.g., relativistic, non-relativistic,
with external fields) and arbitrary interactions. The theorems give explicit conditions on
the solutions to the fermonic Hartree equations under which a derivation of the mean-field
dynamics succeeds. The second type of results scrutinizes situations where the conditions
are fulfilled. These results are about non-relativistic free Hamiltonians with external fields,
systems with total kinetic energy bounded by const ·N and with long-range interactions of
the form |x|−s, with 0 < s < 6

5 (sometimes, for technical reasons, with a weaker or cut off
singularity).

We prove our main results by using a new method for deriving mean-field dynamics
developed by Pickl in [Lett. Math. Phys., 97(2):151–164, 2011]. This method has been
applied successfully in quantum mechanics for deriving the bosonic Hartree and Gross-
Pitaevskii equations. Its application to fermions in this work is new. The method is based on
a functional that “counts the number of particles outside the condensate”, i.e., in the case
of fermions, it measures those parts of the Schrödinger wave function that are not in the
antisymmetric product of the Hartree states. We show that convergence of the functional
to zero (which means that the mean-field equations approximate the dynamics well) is
equivalent to convergence of the corresponding reduced one-particle density matrices in
trace norm and in Hilbert-Schmidt norm. Finally, we show how also the recently treated
semiclassical mean-field limits can be derived with this method.



iv

Zusammenfassung

In dieser Arbeit werden die zeitabhängigen Hartree(-Fock) Gleichungen als effektive Dynamik
für fermionische Vielteilchen-Systeme hergeleitet. Die Hauptresultate sind die ersten für
eine quantenmechanische Mean-Field Dynamik (

”
Mittlere-Feld Dynamik“) für Fermionen;

in vorherigen Arbeiten ist der Mean-Field Limes üblicherweise entweder mit einem semiklas-
sischen Limes gekoppelt oder die Wechselwirkung wird so stark runterskaliert, dass sich das
System für große Teilchenzahl N frei verhält. Wir betrachten hauptsächlich Systeme, deren
kinetische Energie durch konst ·N beschränkt ist, und langreichweitige Wechselwirkungen,
wie z.B. Coulomb Wechselwirkung. Beispiele für solche Systeme sind große Moleküle oder
bestimmte Festkörper. Unsere Analyse gilt auch für anziehende Wechselwirkungen, wie z.B.
in fermionischen Sternen. Die fermionischen Hartree(-Fock) Gleichungen sind ein Standard-
werkzeug um z.B. angeregte Zustände oder chemische Reaktionen in großen Molekülen (wie
Proteinen) zu beschreiben. Ein tieferes Verständnis dieser Gleichungen als Näherung der
Zeitentwicklung eines quantenmechanischen Vielteilchen-Systems ist daher äußerst relevant.

Wir betrachten in dieser Arbeit die fermionischen Hartree Gleichungen (d.h., die Hartree-
Fock Gleichungen ohne Austauschterm), da der Austauschterm in unserem Fall von niedriger
Ordnung ist. Das Hauptresultat ist, dass die fermionische Hartree Dynamik die Schrödinger
Dynamik für große N gut annähert. Diese Aussage wird im thermodynamischen Limes
N →∞ exakt. Wir geben explizite Konvergenzraten an. Es werden zwei Arten von Resultaten
bewiesen. Die erste Art ist sehr allgemein und betrifft beliebige freie Hamiltonians (z.B.
relativistisch, nicht-relativistisch, mit externen Feldern) und beliebige Wechselwirkungen.
Die Theoreme geben explizite Bedingungen an die Lösungen der fermionischen Hartree-
Gleichungen an, unter denen eine Herleitung der Mean-Field Dynamik funktioniert. In der
zweiten Art von Resultaten wird untersucht für welche Situationen diese Bedingungen erfüllt
sind. Diese Resultate sind über nicht-relativistische freie Hamiltonians mit externen Feldern,
Systeme mit kinetischer Energie beschränkt durch konst · N und mit langreichweitiger
Wechselwirkung der Form |x|−s, mit 0 < s < 6

5 (aus technischen Gründen, manchmal mit
abgeschnittener oder abgeschwächter Singularität).

Die Hauptresultate werden mit einer neuen Methode zur Herleitung von Mean-Field
Limiten bewiesen, die von Pickl in [Lett. Math. Phys., 97(2):151-164, 2011] entwickelt wurde.
Diese Methode wurde in der Quantenmechanik erfolgreich zur Herleitung der bosonischen
Hartree und Gross-Pitaevskii Gleichungen angewandt. Die Anwendung auf Fermionen in
dieser Arbeit ist neu. Die Methode basiert auf einem Funktional, das die

”
Anzahl der Teilchen

außerhalb des Kondensats zählt“, d.h. im Falle von Fermionen misst es die Anteile der
Schrödinger Wellenfunktion, die nicht im antisymmetrisierten Produkt der Hartree-Zustände
sind. Wir zeigen, dass die Konvergenz des Funktionals gegen Null (was bedeutet, dass
die Mean-Field Gleichungen die Dynamik gut annähern) äquivalent zur Konvergenz der
zugehörigen Einteilchen-Dichtematrizen in Spur-Norm und Hilbert-Schmidt-Norm ist. Wir
zeigen außerdem wie die kürzlich behandelten semiklassischen Mean-Field Limiten mit dieser
Methode hergeleitet werden können.
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Ich möchte zuallererst ganz herzlich meinem Doktorvater Peter Pickl für den Themenvor-
schlag und die wunderbare Betreuung dieser Doktorarbeit danken. Ich habe enorm viel von
ihm gelernt (nicht nur p-q Akrobatik) und es hat mich gefreut, dass ich an seinem Ideen-
reichtum und seiner Kreativität teilhaben konnte. Weiterhin bin ich Detlef Dürr überaus
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Büroatmosphäre und eine tolle USA Reise; dem

”
AK Relativity“ und

”
DSS“ für spannende

Diskussionen; Maximilian Jeblick und David Mitrouskas für die Zusammenarbeit an unserem
Testteilchen-Projekt; dem Kinderzimmer für die gute Stimmung. Besonders möchte ich
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Chapter 1

Introduction

This thesis is a contribution to the long-standing goal of statistical mechanics to derive
effective dynamics from microscopic laws of motion. By microscopic law of motion we
mean for example Newton’s equations in classical mechanics or the Schrödinger equation in
quantum mechanics. We know that in many situations nature can be described very well
by these theories. Nonetheless, very often the microscopic dynamics is not visible: air at
room temperature for example obeys the laws of thermodynamics, which are not about
the dynamics of the molecules that the gas is made of but rather about quantities like
volume, pressure and temperature. So on a different scale nature can appear very different.
On a macroscopic scale we do not see the microscopic behavior that is described by the
fundamental laws of motion, but we often see quite different behavior.

Such effective behavior arises in many different situations, usually when microscopic
details can be neglected (e.g., when a system is described on a different scale or when
forces can be replaced by their average value). Effective descriptions are much simpler, they
involve much fewer degrees of freedom than the original microscopic description. Famous
effective evolution equations are in classical mechanics the Boltzmann, Navier-Stokes or
Vlasov equations, and in quantum mechanics the Hartree, Hartree-Fock or Gross-Pitaevskii
equations. To derive an effective dynamics means to prove rigorously that the solutions to
the effective equation approximate the solutions to the microscopic equation of motion well
in certain situations. This is an ongoing project of mathematical physics. Only some cases are
known where such a derivation can be conducted rigorously. In classical mechanics, this could
for example be shown for the Vlasov equation [11]; however, for the Boltzmann equation it
has been shown only for very short times [36], and for the Navier-Stokes equation it is still
an open problem (see the book by Spohn [53] for an excellent overview and introduction to
this topic). In quantum mechanics, the derivation of effective dynamics for bosons near a
condensate is well understood by now; see the works [33, 51, 21, 26, 49, 47, 35] for the case
of the Hartree equation and [16, 17, 18, 19, 20, 46, 45, 6] for the Gross-Pitaevskii equation.
However, only very little is known about derivations of mean-field dynamics for fermions.
That is the topic of this thesis.

Thus far, only two situations have been considered in the literature: Either, the interaction
is weakened so much that the particles behave freely for large particle number N , see
[4, 5, 3, 25], or the mean-field limit is considered for wave functions with a semiclassical
structure, such that this limit also leads to the classical Vlasov equation, see [44, 52, 15, 8, 7].
(We give a more detailed discussion of the literature in Chapter 2.3.) The derivation of mean-
field dynamics for fermions in a setting that leads to fully quantum mechanical behavior
(in the sense that the dynamics is neither free nor close to a classical one) is what we are

3



4 1. Introduction

interested in.
We consider fermionic many-particle systems in quantum mechanics (mostly non-

relativistic, although some of our theorems also apply to more general, e.g., relativistic
settings). That is, the fundamental law of motion is the Schrödinger equation (we set ~ = 1)

i∂tψ
t = Hψt (1.1)

for antisymmetric complex-valued N -particle wave functions ψt ∈ L2(R3N ) (for simplicity,
we neglect spin throughout this work). Antisymmetry means that ψt(. . . , xj , . . . , xk, . . .) =
−ψt(. . . , xk, . . . , xj , . . .) ∀j 6= k. We consider Hamiltonians

H =
N∑
j=1

H0
j +

∑
i<j

v(N)(xi − xj), (1.2)

where H0
j acts only on xj and v(N)(x) = v(N)(−x) is a real-valued pair-interaction potential

(the superscript (N) denotes a possible scaling and will be explained in Chapter 2). According
to (1.1), the unitary time evolution of an initial wave function ψ0 is given by ψt = e−iHtψ0

if H is self-adjoint which we henceforth will assume. Note that for antisymmetric initial
conditions ψ0, the wave function ψt remains antisymmetric under the Schrödinger evolution
(1.1) with Hamiltonian (1.2) for all times. For the desired effective description, consider N
orthonormal one-particle wave functions (also called orbitals) ϕt1, . . . , ϕ

t
N ∈ L2(R3) which

are solutions to the fermionic Hartree equations (sometimes called reduced Hartree-Fock
equations). These are the coupled system of non-linear differential equations

i∂tϕ
t
j(x) = H0ϕtj(x) +

(
v(N) ?

N∑
k=1

|ϕtk|2
)

(x)ϕtj(x), (1.3)

for j = 1, . . . , N , where ? denotes convolution. Note that for orthonormal initial conditions
ϕ0

1, . . . , ϕ
0
N , (1.3) preserves the orthonormality for all times. The term(

v(N) ?
N∑
k=1

|ϕtk|2
)

(x) =

∫
R3

v(N)(x− y)
N∑
k=1

|ϕtk(y)|2 d3y (1.4)

is called the mean-field. It can be viewed as the average value of the interaction potential at
point x, created by particles distributed according to the density ρtN =

∑N
k=1 |ϕtk|2. Note

that closely related mean-field equations for fermions are the Hartree-Fock equations, where
an additional exchange term

−
N∑
k=1

(
v ? (ϕtk

∗
ϕtj)
)

(x)ϕtk(x) (1.5)

is present on the right-hand side of (1.3). In general, the Hartree-Fock equations are expected
to be a better approximation than the fermionic Hartree equations; however, the exchange
term is always smaller than the direct term (1.4), and in our setting it is negligibly small
(subleading compared to the direct term). Therefore, it is sufficient to consider only the
fermionic Hartree equations here (see Chapter 2.5 for more details).

Now suppose that some initial ϕ0
1, . . . , ϕ

0
N are given. Let the initial N -particle wave

function be ψ0 ≈
∧N
j=1 ϕ

0
j , where

∧N
j=1 ϕj means the antisymmetrized product of ϕ1, . . . , ϕN

(see (2.5)). Then, under the Schrödinger evolution (1.1), this initial wave function evolves to
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ψt = e−iHtψ0. We want to compare this ψt to the wave function
∧N
j=1 ϕ

t
j , where the ϕtj are

the solutions to the fermionic Hartree equations (1.3). In other words, if still

ψt ≈
N∧
j=1

ϕtj (1.6)

at some time t, then the Schrödinger dynamics is approximated well by the Hartree dynamics
and we say that we have derived the fermionic Hartree equations as an effective dynamics.
That is the goal of this thesis.

Note, that in the presence of an interaction potential v(N) it is in general never true that
e−iHt

∧N
j=1 ϕ

0
j =

∧N
j=1 ϕ

t
j , since the interaction leads to correlations between the particles. By

correlations we mean those that are not due to the antisymmetry of the wave function, i.e.,
we mean that the wave function is in a superposition of more than one antisymmetric product
state. We can therefore only expect the statement ψt ≈

∧N
j=1 ϕ

t
j to hold approximately. If

a statement of the form ψt ≈
∧N
j=1 ϕ

t
j holds, then this means that only few correlations

have developed. This can only be expected to happen in certain situations, for example, for
short times (where the particles couldn’t interact with each other long enough to produce
correlations) or for weak interactions. The question is then: What exactly does “few”, “short”
or “weak” mean? This question is dealt with in Chapter 2. There we identify interesting
physical systems where we can expect the mean-field approximation to be valid.

After that, in the mathematical part of the thesis, we have to make precise what we
mean by ≈ in ψt ≈

∧N
j=1 ϕ

t
j . This is specified by a functional α(ψt, ϕt1, . . . , ϕ

t
N ) =: α(t)

(first introduced by Pickl in [47] for deriving mean-field limits for bosons), which measures
“how much” of ψt is not in the antisymmetric product of ϕt1, . . . , ϕ

t
N . In more detail, α(t)

measures how many correlations have developed due to the interaction. Our main theorems
give bounds on this α(t). Note again that the important question is if the antisymmetric
product structure survives the time evolution. This is what the functional α(t) directly
focuses on.

Structure of the thesis. The thesis is organized into two parts. In Part I, we introduce
the subject of the thesis, give an overview of the underlying physics and present our main
results. In Part II, we give a proof of our main results.

In Chapter 2, we provide a discussion of the mean-field description for fermions from a
physical and mostly mathematically non-rigorous point of view. In Chapter 2.1, we introduce
and discuss the scaling we are later concerned with in some of our main results. This
scaling is such that it leads to interesting quantum mechanical behavior. We discuss in some
detail its meaning and possible applications of the scaled equations. In Chapter 2.2, we
give a brief overview of another interesting scaling, where the wave function naturally has
a semiclassical structure, and, in fact, approximates the solutions to the classical Vlasov
equation. We discuss the literature on the subject in more detail in Chapter 2.3. Furthermore,
in Chapter 2.4, we make a remark about the connection between the correlations that develop
due to the interaction and fluctuations around the mean-field. In Chapter 2.5, we discuss the
exchange term (1.5) that arises in the Hartree-Fock equations and argue why it is subleading
in our setting.

In Chapter 3, we present the main results of this thesis and give an outline of their
proofs. In Chapter 3.1, we first present in detail the definition of the counting functional
α(t) and discuss its properties. In Chapter 3.2, we explain how this α(t) is related to the
difference of reduced density matrices in trace norm and Hilbert-Schmidt norm. The main
result there are two lemmas showing that convergence of α(t) is equivalent to convergence
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of reduced density matrices in trace and Hilbert-Schmidt norm. The main results of this
thesis are then stated and explained in detail in Chapter 3.3. There are two kinds of
results: those in Chapter 3.3.1 are concerned with general Hamiltonians as in (1.2), and
they say that α(t) converges (i.e., the mean-field approximation is good) when certain
assumptions on the solutions to the fermionic Hartree equations are fulfilled. Afterwards, in
Chapter 3.3.2, we present results that explicitly show that these assumptions are fulfilled for
the scalings we discussed in Chapter 2.1 for many different interactions (and, in particular,
for non-relativistic Hamiltonians, possibly with external fields). In Chapter 3.4, we give
a detailed outline of the proofs of the so far presented results. In order to demonstrate
that the α-method is very versatile, we also give a proof of the convergence of α(t) for the
semiclassical scaling, which was already achieved with other methods by Benedikter, Porta
and Schlein [8]. In Chapter 3.5, we present the main idea of our alternative proof, while
we defer the full proof to Appendix A. Finally, in Chapter 3.6, we give a brief outlook on
remaining open problems related to mean-field descriptions for fermions.

Part II of this thesis contains a proof of the main results. In Chapter 4, we establish
some notation, recall inequalities we often use and discuss in more detail the properties of
certain projectors that are needed to define α(t). In Chapter 5, we prove the main results
of Chapter 3.2 about the relation between α(t) and reduced density matrices. Then, in
Chapter 6, we prove the results of Chapter 3.3.1, and in Chapter 7, we prove the results
stated in Chapter 3.3.2.



Chapter 2

The Physics: Mean-field Dynamics
of Fermions

2.1 A New Scaling for Fermionic Mean-field Limits

As we mentioned in the introduction, we can expect mean-field behavior only in certain
situations. In this chapter we identify physical systems where there is interesting mean-field
behavior. It will be convenient to consider scaled evolution equations. Here, we introduce the
scaling, discuss its origin and physical relevance, give different formulations of the problem,
and discuss applications of the presented scaled equations.

2.1.1 The Scaled Equations and the Physics

There will be two types of theorems in this work: those in Chapter 3.3.1 are about general
Hamiltonians of the form (1.2), and those in Chapter 3.3.2 concern non-relativistic Hamil-
tonians and certain long-range interactions. In order to explain what physical situations
we have in mind, it is easier to formulate our equations explicitly here for the latter case.
We first present and discuss the scaled equations and give more details on the origin of the
scaling afterwards, in Chapter 2.1.2. The following analysis is done for dimension d = 3, but
could also be conducted for other dimensions.

We consider the non-relativistic Schrödinger equation for an antisymmetric N particle
wave function ψt ∈ L2(R3N ) (we set ~ = 1 = 2m throughout this work)

i∂tψ
t(x1, . . . , xN ) =

 N∑
j=1

(
−∆xj + w(N)(xj)

)
+N−β

∑
i<j

v(xi − xj)

ψt(x1, . . . , xN ),

(2.1)
where ∆xj is the Laplace operator, acting on xj , w

(N) is an external field (that can possibly
depend on N), β ∈ R is the scaling exponent, and v(x) = v(−x) is a real-valued pair
interaction potential. The corresponding fermionic Hartree equations are

i∂tϕ
t
j(x) =

(
−∆ + w(N)(x) +N−β

(
v ? ρtN

)
(x)
)
ϕtj(x), (2.2)

for j = 1, . . . , N , where we denote the density by ρtN =
∑N

i=1 |ϕti|2.

Let us now discuss for which physical systems Equation (2.1) is applicable. For this
discussion it is useful to consider the N -dependence of the expectation values of the kinetic

7
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energy,

Ekin,ψt =
〈〈
ψt,

N∑
i=1

(−∆xi)ψ
t
〉〉
, (2.3)

and of the interaction energy,

Eint,ψt =
〈〈
ψt,
∑
i<j

v(xi − xj)ψt
〉〉

(2.4)

(note that we did not include the factor N−β in our definition of the interaction energy),
where 〈〈·, ·〉〉 denotes the scalar product in L2(R3N ). (We will often refer to the expressions
(2.3), (2.4) simply as kinetic and interaction energy, although they are only expectation
values.) The situation we want to consider is one where the total kinetic energy is bounded
from above by CN , where C is some N -independent constant. We then say that Ekin,ψt

is O(N).1 Now an interesting effect that holds only for fermions comes into play: Due
to the antisymmetry of the wave function (or the Pauli principle or Fermi pressure), the
particles have to occupy a volume that grows with N . Let us explain in more detail what this
means. First, let us compare the situation to bosons. A very simple bosonic wave function
is φ(x1, . . . , xN ) =

∏N
j=1 ϕV (xj), where supp(ϕV ) = V for some volume V ⊂ R3, and

Ekin,φ = 〈〈φ,
∑N

j=1(−∆xj )φ〉〉 = N 〈ϕV , (−∆)ϕV 〉 is O(N) (〈·, ·〉 denotes the scalar product

in L2(R3)). Here the particles occupy a constant volume V . This, in contrast, is not possible
for fermions. To illustrate this, let us give an example. Consider plane waves in a box, that
is, the free ground state in VL =

[
− L

2 ,
L
2

]3
with periodic boundary conditions. The general

form of an antisymmetric product state is

ψ(x1, . . . , xN ) =

 N∧
j=1

ϕj

 (x1, . . . , xN ) :=
1√
N !

∑
σ∈SN

(−1)σ
N∏
j=1

ϕσ(j)(xj), (2.5)

where SN is the set of all permutations of 1, . . . , N , (−1)σ is the sign of the permutation σ
and ϕ1, . . . , ϕN are orthonormal. For free particles in a box,

ϕj(x) = L−
3
2 ei

2π
L
kj ·x 1VL(x), (2.6)

where kj ∈ Z3. Since we want to consider the ground state, we choose the kj increasingly,
such that |kN | is as small as possible (while of course ki 6= kj∀i 6= j). For this wave function,
we find that

Ekin,
∧
ϕj =

N∑
i=1

〈ϕi, (−∆)ϕi〉 =
N∑
i=1

(
2π

L
ki

)2

≤ C
(

2π

L

)2 ∫ N
1
3

0
r2 r2dr

∝ N
5
3L−2. (2.7)

Thus, if the kinetic energy is proportional to N , then L ∝ N
1
3 , i.e., the volume L3 ∝ N . In

general, one can show that a similar statement holds for any fermionic wave function. The

1In the following we say that a function f(N) is of order Np, or simply O(Np), if there is a constant C
(independent of N) such that f(N) ≤ CNp. The interesting cases are usually when f(N) is also bounded
from below, i.e., when there is a constant D, such that DNp ≤ f(N).
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precise statement is Lemma 7.2. It says in particular that, if the kinetic energy is of O(N),
then the average number of particles in a volume of O(N) is of O(N).

The fact that fermionic wave functions with kinetic energy of O(N) naturally “occupy a
volume” that grows in N is now important for the interaction energy. We want to consider
long-range interactions like the Coulomb interaction, so the “size” of the system is very
important. What we want to use is that, with growing N , each particle “feels” more and
more other particles. To illustrate this, let us consider the mean-field interaction term
| · |−1 ? ρtN from the Hartree equation (without the N−β) with Coulomb interaction. For
the example of plane waves from above, its maximum value can easily be evaluated, since
ρtN = N

L31VL . Recall that L ∝ N
1
3 , i.e., the density ρ = N

L3 is constant. We find

(
| · |−1 ? ρtN

)
(x) ≤

(
| · |−1 ? ρtN

)
(0) = ρ

∫
R3

|y|−1
1VL(y) d3y ∝

∫ N
1
3

0
r−1 r2dr ∝ N

2
3 . (2.8)

Thus, the interaction energy per particle is O(N
2
3 ), due to the long range of the Coulomb

interaction; the total interaction energy is then O(N
5
3 ). If we now choose the scaling exponent

β = 2
3 , then the kinetic term and the scaled interaction term in the Schrödinger equation are

of the same order, O(N). Thus, for times of O(1), we would expect interesting mean-field

behavior for large N : heuristically speaking, each particle feels O(N
2
3 ) other particles (due

to the fact that the system size grows and the interaction has long range), but only with

strength O(N−
2
3 ). Lemma 7.5 makes this statement exact. It says that, under the condition

that Ekin is O(N), for interactions with long-range part like |x|−s, with 0 < s < 6
5 , v?ρN is of

order Nβ , with scaling exponent β = 1− s
3 . Note again that it is only the long-range behavior

of the interaction that dictates the scaling exponent β. (The interactions we consider in our
main results sometimes have the singularity weakened or cut off.)

If an external field w(N) is present, then also the total external field energy

Eext,ψt =
〈〈
ψt,

N∑
i=1

w(N)(xi)ψ
t
〉〉

(2.9)

should be of O(N). In principle, the external field could be time-dependent, as long as it
preserves the bound Ekin,ψt ≤ CN .

Let us summarize the orders in N of the terms in the Equations (2.1) and (2.2) (for ease
of notation, without external field). In the following, note that the informal notation with
the curly brackets refers to (the expectation values of) the energies associated with the terms
in the equations. We consider long-range interaction potentials v and the corresponding
appropriate β; more exactly, for interactions with long-range behavior |x|−s, 0 < s < 6

5 , the
scaling exponent is β = 1− s

3 . For the Schrödinger equation we have

i∂tψ
t(x1, . . . , xN ) = −

N∑
j=1

∆xjψ
t(x1, . . . , xN )︸ ︷︷ ︸

O(N)

+N−β
∑
i<j

v(xi − xj)ψt(x1, . . . , xN )︸ ︷︷ ︸
O(N)

, (2.10)

and for the fermionic Hartree equations

i∂tϕ
t
j(x) = −∆ϕtj(x)︸ ︷︷ ︸

O(1)

+N−β
(
v ? ρtN

)
(x)ϕtj(x)︸ ︷︷ ︸

O(1)

. (2.11)
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Heuristically, one sees that we can indeed expect the mean-field approximation to be valid
for arbitrary times t of O(1). From Equation (2.11) one can read off, that the limit of large
N leads to interesting mean-field behavior, since both the kinetic term and the interaction
term are of O(1). If, for example, the kinetic term would be of O(1) but the interaction term
were of O(N−δ) (for some δ > 0), then the interaction term would be negligibly small for
large N (for times of O(1)) and vanish in the limit N →∞. Our results in Chapter 3.3.2 are
about the above Equations (2.10) and (2.11), possibly with external fields, and sometimes
with weakened or cut off singularity of the interaction potential. The main result is, that,
if the kinetic energy stays bounded by CN for all times t, then the mean-field dynamics
(2.11) indeed approximates the Schrödinger dynamics (2.10) well.

Finally, let us briefly compare the situation to the case of bosons near a condensate
state φ(x1, . . . , xN ) =

∏N
j=1 ϕ(xj). For such a state, if the associated kinetic energy Ekin,φ =

〈〈φ,
∑N

j=1(−∆xj )φ〉〉 = N 〈ϕ, (−∆)ϕ〉 is O(N), then ϕ naturally lives in some constant, N -
independent volume. The density is therefore of O(N); each particle “feels” the interaction
of O(N) other particles, such that the total interaction energy is of O(N2). For bosons
near a condensate it is thus natural to choose the scaling exponent β = 1, so that kinetic
and interaction energy are of the same order (independent of the long-range part of the
interaction potential). The mean-field description can be expected to hold due to high
densities, and not due to the long range of the interaction. We will encounter a similar
high-density situation in Chapter 2.2, where we discuss the semiclassical scaling for fermions.

2.1.2 Origin of the Scaling

Let us explain in this section how a factor N−β in front of the interaction arises from a
rescaling of time and space coordinates.

Let us denote the “microscopic” or “physical” time and space coordinates by t̃ ∈ R and
x̃j ∈ R3, j = 1, . . . , N . We denote the wave function in these coordinates by ψ̃(t̃, x̃1, . . . , x̃N ).
We assume that it is normalized. In the following, let us consider non-relativistic fermions
with Coulomb interaction, and, for ease of the presentation, without external field. The
wave function ψ̃ is then a solution to the Schrödinger equation

i∂t̃ψ̃(t̃, x̃1, . . . , x̃N ) =

− N∑
j=1

∆x̃j +
∑
i<j

1

|x̃i − x̃j |

 ψ̃(t̃, x̃1, . . . , x̃N ), (2.12)

where we set the coupling constant in front of the Coulomb potential (4πε0)−1 = 1. As
explained in the introduction, the mean-field approximation is expected to become better
the larger the number N of particles gets. We therefore consider N -dependent scalings. The
scaling we are interested in is given by

t = N
4
3 t̃, x = N

2
3 x̃. (2.13)

What is achieved by this scaling is a “zoomed in” description for “very short” times: t and x
are very big compared to t̃ and x̃ for large N . Heuristically, one could say, that we want to
look at small length scales where interesting quantum behavior happens on fast time scales.
Let us now express the wave function ψ̃ in the new coordinates t, x. It is given by

ψ(t, x1, . . . , xN ) = N−N ψ̃(N−
4
3 t,N−

2
3x1, . . . , N

− 2
3xN ), (2.14)

where the prefactor N−N is introduced such that ψ is normalized. The dynamics of the
wave function ψ is determined by the Schrödinger equation in the scaled coordinates, that
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is, ψ is the solution to

iN
4
3∂tψ(t, x1, . . . , xN ) =

− N∑
j=1

N
4
3 ∆xj +N

2
3

∑
i<j

1

|xi − xj |

ψ(t, x1, . . . , xN ), (2.15)

which follows directly from (2.12) (by applying the chain rule). Let us simplify this equation

by dividing by N
4
3 . Then the scaled Schrödinger equation is

i∂tψ(t, x1, . . . , xN ) =

− N∑
j=1

∆xj +N−
2
3

∑
i<j

1

|xi − xj |

ψ(t, x1, . . . , xN ), (2.16)

which is exactly (2.1) for the case of Coulomb interaction. Thus, the effect of looking at the

system on the new scales (2.13) is a factor N−
2
3 in front of the interaction.

Let us take a closer look at the wave functions ψ̃ and ψ. As explained in Chapter 2.1.1,
it is natural to consider wave functions ψ with kinetic energy of O(N); then the particles
naturally “occupy a volume” that grows with N , such that also the interaction term is O(N)
in the scaled Schrödinger equation. Now suppose that ψ lives in a volume proportional to N
(say, a ball with radius N

1
3 , such that ψ(t, x1, . . . , xN ) = 0 whenever any |xj | > N

1
3 ). This

means, that the wave function ψ̃ lives in a volume proportional to N−1, as can be read
off from (2.14). Here, we see again that the effect of our coordinate rescaling is a “zoomed
in” description, in this case, for a wave function with shrinking volume in N ; this can be
relevant for attractive interactions, e.g., gravitation, where the system becomes smaller the
more particles are added.

An equation of the form (2.1), i.e., with interaction N−β
∑

i<j v(xi−xj), can be derived

from a scaling only for certain interactions, e.g., v(x) = |x|−s. In this case, one can rescale
t = N2δ t̃, x = N δx̃. This leads to an interaction N−δ(2−s)

∑
i<j |xi − xj |−s in the scaled

equation. As mentioned in Chapter 2.1.1, for β = 1 − s
3 , which corresponds to δ = s−3

3s−6 ,
both kinetic and interaction terms are of the same order. For other interactions, the scaled
equations look different; there, the effect of the scaling is that v(x̃) becomes N εv(N−δx) in
the scaled equation, for some ε ∈ R.

2.1.3 Different Formulations of the Problem

The goal of this thesis is to show that the mean-field equations for fermions approximate
the Schrödinger dynamics well in certain situations. We saw above that systems with kinetic
energy of O(N) and long-range interactions are interesting systems where one can expect
mean-field behavior on certain scales. There are now different ways of formulating what
these scales are.

(a) In Chapter 2.1.1, we saw that, if we put a factor N−β in front of the interaction, we
can expect the mean-field approximation to hold for times of O(1). Such a factor means
that the interaction is weak. One possibility is that such weak interaction has a physical
origin, e.g., it can be due to screening effects in a large molecule. There, excited states
can be very delocalized: they interact with very many other electrons, but only weakly
due to the screening from the nuclei.

(b) For certain interactions (usually of the form |x|−s), the factor N−β can also arise from
a scaling in the sense of an N -dependent coordinate transformation, as described in
Chapter 2.1.2. The scaling factor arises “out of convenience”, since one could as well
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work in the original coordinates. However, then one could not expect the mean-field
approximation to hold for times of O(1), but rather for very short times, in fact, times

of O(N−
4
3 ) (for Coulomb interaction); see also Remark 7 in Chapter 3.3.1.

(c) Alternatively, one could use no scaling at all. Then, in the situation of Chapter 2.1.1

and Coulomb interaction, the kinetic term is O(N) and the interaction term is O(N
5
3 ).

Then the mean-field approximation can only be expected to hold for short times, in fact,
times of O(N−

2
3 ); see also Remark 7 in Chapter 3.3.1. This formulation is closer to the

idea mentioned in the introduction, that times are so short that the particles could not
develop severe correlations.

(d) From a practical point of view, it would be useful to not use a scaling at all, and
instead, given a fixed physical system, to leave all the constants ~, m and coupling
constants in the original equations. If one could calculate explicit error terms for how
much the mean-field approximation deviates from the Schrödinger evolution (as we in
fact do in some of our main results), then one can directly read off for how long the
mean-field approximation can be expected to be good, depending on the constants in
the Schrödinger equation and the parameters of a given system.

When we write down the main results for the case where the kinetic energy is bounded by
CN , we simply use interaction potentials with a prefactor N−β . One could easily reformulate
the results without this prefactor as we point out in Remark 7 in Chapter 3.3.1.

2.1.4 Applications

This work is mainly a theoretical work, showing that and how in principle the Hartree(-Fock)
equations can be derived from the microscopic Schrödinger dynamics. We do not focus
on practical applications here. However, we strongly want to emphasize that the time-
dependent Hartree(-Fock) approximation has very high relevance throughout theoretical
physics and chemistry. To illustrate this, let us mention a few applications here. (Since
numerous references to the mentioned applications can easily be found, we refrain from
explicitly providing them here.)

The Hartree(-Fock) equations are widely used in theoretical chemistry to describe
chemical reactions or excited states of large molecules (e.g., large proteins). They are, for
example, often used for numerical simulations of chemical reactions. In a large molecule, it
is indeed the case that the total energy is proportional to N (and the density is O(1)), in
accordance with the scenario we discussed in Chapter 2.1.1. One has to be a bit careful here:
the equations for a real molecule do not have a scaling factor N−β in front of the interaction;
in fact, as the stability of matter program of Lieb et al. has proven rigorously [38], the
interaction energy and external field energy from the nuclei together are of O(N), which
makes the system stable. However, the scaled equation (2.1) might model screening effects
from the nuclei for very delocalized electrons, e.g., electrons in excited states or certain
molecular bonds. Other applications are in solid state physics the description of electrons in
metals (e.g., in conduction bands) or semiconductors. The time-dependent Hartree(-Fock)
equations have also been used in nuclear physics to study collisions of large nuclei. With
recent experimental advances in laser physics, it has become possible to study cold fermions
in laser traps, and thus to directly check the validity of the mean-field approximation. Finally,
the Hartree(-Fock) equations can be used to describe fermionic stars, e.g., neutron stars or
white dwarfs. In this scenario, it is indeed the case that the systems size shrinks with the
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particle number, due to the attractive gravitational interaction. In particular, the scenario
discussed in Chapter 2.1.2 can be applicable (see also the scaling discussed in Chapter 2.2).

2.2 Mean-field Limit Coupled to a Semiclassical Limit

Another situation where one can expect interesting mean-field behavior is when the mean-
field limit is coupled to a semiclassical limit. In this case, the wave function ψt(x1, . . . , xN )
is a solution to the Schrödinger equation

iN−
1
3∂tψ

t =

 N∑
j=1

(
−N−

2
3 ∆xj + w(N)(xj)

)
+N−1

∑
i<j

v(xi − xj)

ψt, (2.17)

and ϕt1, . . . , ϕ
t
N are solutions to the corresponding Hartree equations

iN−
1
3∂tϕ

t
j(x) =

(
−N−

2
3 ∆ + w(N)(x) +N−1

(
v ? ρtN

)
(x)
)
ϕtj(x), (2.18)

for j = 1, . . . , N (recall ρtN =
∑N

i=1 |ϕti|2). As in Chapter 2.1.2, for Coulomb interaction, the
scaling can arise from a coordinate transformation

t = Nt̃, x = N
1
3 x̃, (2.19)

i.e., similar to (2.13), one considers “small” time and length scales.
The physical situation one considers here is particles confined to some N -independent

volume, e.g., particles in a box with fixed size, or in a nice external trapping potential. One
then considers states close to the ground state of such a system. Then we already know from
Chapter 2.1.1, that the kinetic energy cannot be just O(N), but it has to grow faster. If we

consider the example from (2.6) again, where the ground state has Ekin ∝ N
5
3L−2, we see

that for N -independent L, the kinetic energy is O(N
5
3 ). This is an effect that holds only for

antisymmetric wave functions; for bosons, the ground state of free particles in a box (with
appropriate boundary conditions) has kinetic energy O(N). Thus, one considers a system
with very high densities of O(N). Then, naturally, the interaction energy per particle is
O(N), independent of the long-range properties of the interaction potential. One can also see
this by considering the mean-field interaction term

(
| · |−1 ? ρtN

)
from the fermionic Hartree

equation for Coulomb interaction and the example of the ground state of free particles in a
box, as in (2.8). Here, ρtN = N

L31VL , that is, the density is proportional to N . Then

(
| · |−1 ? ρtN

)
(x) ≤

∫
R3

|y|−1 N

L3
1VL(y) d3y ∝ N

∫ L

0
r−1r2dr ∝ N. (2.20)

Thus, the total interaction energy is of O(N2). Together with the prefactors N−
2
3 and N−1

from (2.17), both the kinetic term and the interaction term in the Schrödinger equation are
of O(N) (and in the Hartree equation (2.18), both terms are of O(1)). For large N , one can
expect the mean-field approximation to be good, since each particle “feels” the interaction
with O(N) other particles, but only weakly, with “strength” O(N−1).

A crucial difference to the case described in Chapter 2.1.1 is that in Equations (2.17)

and (2.18) there is an additional N−
1
3 in front of the time derivative. Heuristically, this

factor should be there because the kinetic energy is O(N
5
3 ) and thus the average velocity per

particle is O(N
1
3 ). That means, the particles are so fast that already after times of O(N−

1
3 )
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they interacted with all other particles (recall that the size of the system is N -independent).
For large N , the factor leads naturally to a semiclassical structure of the wave function.
Formally, such a wave function is characterized by “very small” ~. If one sets εN = N−

1
3 ,

then the Schrödinger equation (2.17) is

iεN∂tψ
t =

 N∑
j=1

(
−ε2

N∆xj + w(N)(xj)
)

+N−1
∑
i<j

v(xi − xj)

ψt, (2.21)

i.e., the εN appears exactly where the ~ would appear in the Schrödinger equation (in
SI units). Considering very large N means thus considering “very small” ~, hence the
semiclassical structure. According to [8], the semiclassical structure can be characterized on

the level of reduced one-particle density matrices µψ1 .2 That is, the integral kernel of µψ1 has
roughly the form

µψ1 (x; y) ≈ φ
(
N

1
3 (x− y)

)
χ(x+ y). (2.23)

This form expresses that the density profile µψ1 (x;x) ≈ χ(2x) has a structure on an N -
independent scale, thus it does not “vary too much”. Furthermore, the “velocity profile”,
here approximately given by φ, contains an extra N

1
3 , expressing that the particles move

very fast, in accordance with the kinetic energy per particle being O(N
2
3 ).

That the physics described by Equation (2.17) is, in a certain sense, close to classical
physics can best be seen from the fact that the solutions to the Schrödinger equation (2.17)
are close to solutions to the classical Vlasov equation (as first discussed in [44]). The Vlasov
equation is the classical mean-field equation

∂tρ
t(x, p) + p · ∇xρt(x, p) =

(
∇v ? ρt

)
(x) · ∇pρt(x, p), (2.24)

where ρt(x, p) is the classical phase space density, and v the classical interaction potential.
In more detail, the Wigner transform of a solution to (2.17) (which is a good quantity that
can be compared to classical phase space densities),

Wψ(x, p) = (2π)−3

∫
µψ1 (x+ εN

y

2
;x− εN

y

2
)e−ipy d3y, (2.25)

is close to a solution ρt(x, p) to the classical Vlasov equation. Still, the fermionic Hartree
equations (2.18) are a better approximation to the Schrödinger dynamics (2.17), so the
Hartree equations here describe quantum corrections to the Vlasov dynamics. (Note, in
contrast, that the solutions to the equations (2.1) are in general not close to any classical
dynamics.)

The main application of the discussed scaling and the mean-field equation (2.18) are
systems of gravitating fermions [44]. More generally, it should be applicable to certain “high
density” situations.

Finally, let us discuss the connection between the semiclassical scaling and the one from
Chapter 2.1.1. The connection can best be seen for the case of Coulomb interaction. So let

2µψ1 is defined by its integral kernel,

µψ1 (x; y) =

∫
d3x2 . . . d

3xN ψ(x, x2, . . . , xN )ψ∗(y, x2, . . . , xN ), (2.22)

for more details see Chapter 5.
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us compare the solutions ψt to (for simplicity, we do not write out external fields)

i∂tψ
t(x1, . . . , xN ) =

− N∑
j=1

∆xj +N−
2
3

∑
i<j

1

|xi − xj |

ψt(x1, . . . , xN ), (2.26)

with the solutions ψtsc to

iN−
1
3∂tψ

t
sc(x1, . . . , xN ) =

− N∑
j=1

N−
2
3 ∆xj +N−1

∑
i<j

1

|xi − xj |

ψtsc(x1, . . . , xN ). (2.27)

As discussed, we assume that ψt lives in a volume proportional to N , while ψtsc lives in an
N -independent volume. For both ψt and ψtsc one could expect mean-field behavior for times

of O(1). Let us now rescale x → N
1
3x and t → N

1
3 t, and consider the (from ψt) rescaled

wave function ψ̃t. This wave function then lives in an N -independent volume. It is a solution
to the rescaled Schrödinger equation

iN−
1
3∂tψ̃

t(x1, . . . , xN ) =

− N∑
j=1

N−
2
3 ∆xj +N−1

∑
i<j

1

|xi − xj |

 ψ̃t(x1, . . . , xN ). (2.28)

This is exactly (2.27). However, recall that we expected mean-field behavior for ψt for times

of O(1), i.e., we can expect mean-field behavior for ψ̃t only for times of O(N−
1
3 ). This is

due to the fact that ψ̃t, in contrast to ψtsc, does not naturally have a semiclassical structure.
Recall that the semiclassical structure meant that ψtsc has a density that “varies on an
N -independent scale” (see (2.23)). In contrast, it was natural to assume that the density

of ψt “varies on an N -independent scale”, i.e., the density of ψ̃t “varies on a scale N−
1
3 ”.

Therefore, we can only expect mean-field behavior for short times of O(N−
1
3 ).

Although this semiclassical scaling is not the focus of this work (it has recently been
treated in [8]), we show in Chapter 3.5 how the mean-field dynamics (2.18) can be derived
with the α-method used in this work (the full proof can be found in Appendix A).

2.3 Literature

The scaling from Chapter 2.1.1, to the author’s knowledge, has not been considered in the
literature before for a derivation of mean-field dynamics. Thus far, only the case where the
Schrödinger equation is

i∂tψ
t(x1, . . . , xN ) =

 N∑
j=1

(
−∆xj + w(N)(xj)

)
+N−1

∑
i<j

v(xi − xj)

ψt(x1, . . . , xN ),

(2.29)
has been considered, i.e., the case β = 1. For Coulomb interaction and kinetic energy of
O(N), the interaction is thus scaled down by a factor N

1
3 too much; the interaction energy

per particle is of O(N−
1
3 ), which leads to free evolution in the limit of large N . We show this

explicitly in Proposition 3.10. The case β = 1 could for example be interesting for systems
with kinetic energy of O(N), when the interaction does not go to zero at all for large |x|,
e.g., v(x) = cos(|x|). The first result for β = 1 was achieved in [4] where bounded v are
treated (see also the related works [5] and [3]). Later, in [25], the mean-field dynamics was
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derived for a class of potentials v including Coulomb interaction. Note that it was a crucial
improvement to consider Coulomb interaction; first, because it is physically very relevant,
and second, because for Coulomb interaction an equation of the type (2.29) follows from a
rescaling as discussed in Chapter 2.1.2.

Another situation which has been considered in the literature is when the mean-field
limit is coupled to a semiclassical limit, as discussed in Chapter 2.2. A mean-field description
of the dynamics (2.17) has first been considered in [44]. There, it is shown that in the limit
N →∞ and for a class of very regular interaction potentials the solutions to (2.17) converge
to solutions to the Vlasov equation (2.24) (in a suitable sense). In [52], a similar result is
shown for a more general class of interactions, with fewer regularity assumptions. Later, in
[15], the mean-field equations (2.18) are derived from (2.17) for bounded analytic potentials
and for short times (times of O(1) but smaller than a certain constant). Unlike in [44] and
[52], where only the limit N →∞ is considered, explicit error terms and a convergence rate
of N−1 are given in [15]. Recently, in [8], this result was shown for all times, with fewer
regularity assumptions on the interaction, and, depending on the exact formulation of the
result, with different convergence rates. In the work [8], a new method is used for the proof,
which uses a Gronwall-type estimate. Note that the extension of the result to all times is a
crucial improvement. In Chapter 3.5, we show how the main results of [8] can be reproduced
with the α-method used in this work; the full proof is given in Appendix A. In [7], the results
from [8] are generalized to Hamiltonians with pseudo-relativistic kinetic part. However, to
this date, a derivation of the semiclassical Hartree equations (2.18) for the important case
of Coulomb interaction is still missing.

Finally, let us remark that the fermionic Hartree and Hartree-Fock equations are also
widely used in the time-independent version, mostly to calculate ground states. The time-
independent equations were actually originally considered by Hartree [32], Fock [24] and
Slater [50] (apparently Dirac [14] first wrote down the time-dependent version). Later, several
properties of these equations were discussed and rigorously proven; e.g., in [39, 40, 42, 22, 1,
2, 28, 23], about existence, uniqueness and properties of the solutions to the Hartree-Fock
equations for atoms and molecules, and that the mean-field approximation indeed gives
asymptotically correct ground state energies for large-Z atoms and molecules.

2.4 Fluctuations

Let us come back here to the question whether the mean-field dynamics can be expected
to be a good approximation to the Schrödinger dynamics. We already mentioned in the
introduction that this can only hold if the particles develop “few” correlations due to the
interaction. Let us suppose that initially the wave function has antisymmetric product
structure, ψ0 =

∧N
j=1 ϕ

0
j , and that N is very large. Then, in a more detailed physical picture,

each particle “feels”, on the one hand, a mean interaction coming from all the other particles,
but, on the other hand, it also “feels” deviations from this mean interaction, i.e., fluctuations
around the mean-field. These fluctuations can cause deviations from the mean-field dynamics.
One can also think of this from the perspective of the law of large numbers. Suppose that
N particles X1, . . . , XN are distributed according to the density ρtN =

∑N
i=1 |ϕti|2, coming

from the solutions to the fermionic Hartree equations. Then, typically, their contribution to
the interaction at point y ∈ R3 is close to its mean value, i.e.,

N∑
k=1

v (y −Xk) ≈
∫
R3

v(y − x)ρtN (x) d3x =
(
v ? ρtN

)
(y), (2.30)
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only if fluctuations are small. If they are not small, then we can not expect mean-field
behavior. An example where the fluctuations are not small is Brownian motion. There, on
the right scales, the mean-field prediction is wrong, and one sees instead a diffusive motion,
coming from the fluctuations.

Let us now calculate the fluctuations around the mean-field, assuming an antisymmetric
product state

∧N
j=1 ϕj . First, the expectation value of the interaction potential at point

y ∈ R3 is, of course, given by

E

(
N∑
k=1

v(xk − y)

)
:=
〈〈 N∧

j=1

ϕj ,

(
N∑
k=1

v(xk − y)

)
N∧
j=1

ϕj

〉〉

=

N∑
j=1

〈ϕj , v(· − y)ϕj〉

= (v ? ρN )(y), (2.31)

i.e., the mean-field from the fermionic Hartree equations. The fluctuations around the
mean-field at y ∈ R3 are given by the variance

Var

(
N∑
k=1

v(xk − y)

)

:= E

( N∑
k=1

v(xk − y)

)2
−(E( N∑

k=1

v(xk − y)

))2

= N(N − 1)
〈〈 N∧

j=1

ϕj , v(x1 − y)v(x2 − y)

N∧
j=1

ϕj

〉〉

+N
〈〈 N∧

j=1

ϕj , v(x1 − y)2
N∧
j=1

ϕj

〉〉
−N2

〈〈 N∧
j=1

ϕj , v(x1 − y)
N∧
j=1

ϕj

〉〉2

=
N∑

i,j=1

(
〈ϕi, v(· − y)ϕi〉 〈ϕj , v(· − y)ϕj〉 − 〈ϕi, v(· − y)ϕj〉 〈ϕj , v(· − y)ϕi〉

)
+ (v2 ? ρN )(y)− (v ? ρN )2(y)

= (v2 ? ρN )(y)−
N∑

i,j=1

|〈ϕi, v(· − y)ϕj〉|2

≤ (v2 ? ρN )(y). (2.32)

Only if this variance is small enough, one can hope the mean-field approximation to hold.
(One has to be a bit cautious here, since one additionally has to consider the time-scales
on which the fluctuations happen.) We here supposed that the wave function is in an
antisymmetric product state. If this is not the case, e.g., if after some time already severe
correlations have developed, then typically even more correlations will develop, since many
particles are not in the antisymmetric product structure anymore.

The estimates we present later capture the presented physical picture very nicely. One of
our main results, Theorem 3.5, holds exactly under the assumption that (v2?ρN )(y) ≤ CN−1,
i.e., when the fluctuations are very small, of O(N−1). We come back to this point in Remark 8
in Chapter 3.3.1.
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Finally, let us see what happens in the situation of Chapter 2.1.1 where there is a factor
N−β in front of the interaction. We already saw, that one effect of this factor is that the
kinetic energy becomes of the same order as the interaction energy. If we replace v by N−βv
in (2.31), then the mean-field interaction is O(1) (which, in the setting of Chapter 2.1.1, is
the same order as the kinetic term in the fermionic Hartree equations). However, what is
crucial is that the N−β also makes the fluctuations small: from (2.32) we can read off, that
fluctuations are bounded by N−2β(v2 ? ρN )(y) (we discuss the size of this term in Remarks 5
and 6 in Chapter 3.3.1). Without the N−β, the fluctuations would in general not be small.

2.5 The Exchange Term

In this thesis we study the fermionic Hartree equations as mean-field dynamics for fermions.
Another related dynamics is given by the Hartree-Fock equations. These are the coupled
system of non-linear equations (here given without scaling)

i∂tϕ
t
j(x) =

(
−∆+w(x)

)
ϕtj(x)+

N∑
k=1

(
v?|ϕtk|2

)
(x)ϕtj(x)−

N∑
k=1

(
v?(ϕtk

∗
ϕtj)
)

(x)ϕtk(x), (2.33)

for j = 1, . . . , N . In comparison to the fermionic Hartree equations, the Hartree-Fock
equations contain an additional “exchange term”. In general, the dynamics (2.33) is expected
to be a better approximation to the Schrödinger dynamics than the Hartree dynamics.
However, for the situations considered in this work, the exchange term is of smaller order in
N than the direct term v ? ρtN . Therefore, we consider only the fermionic Hartree dynamics.
In the following, let us briefly discuss where the exchange term comes from and then argue
why it is subleading in N for the scaled equations considered in Chapter 2.1.1.

Let us start by considering the Schrödinger dynamics with Hamiltonian

H =

N∑
j=1

(
−∆xj + w(xj)

)
+
∑
i<j

v(xi − xj). (2.34)

For fermions, the most simple structure of a wave function is an antisymmetrized product
state

∧N
j=1 ϕ

t
j . Let us now suppose that it is reasonable to approximate the Schrödinger

wave function by some antisymmetrized product state
∧N
j=1 ϕ

t
j . How do we find a good

evolution equation for ϕt1, . . . , ϕ
t
N? One way is to demand that the evolution should be such,

that (the expectation value of) the total energy of the wave function
∧N
j=1 ϕ

t
j is preserved. It

turns out that this job is done by the Hartree-Fock equations (2.33). Let us explain in more
detail. The expectation value of the total energy for the wave function

∧N
j=1 ϕ

t
j is given by

〈〈
∧N
j=1 ϕ

t
j , H

∧N
j=1 ϕ

t
j〉〉. A straightforward calculation shows that

Et :=
〈〈 N∧

j=1

ϕtj , H

N∧
j=1

ϕtj

〉〉
=

N∑
j=1

∫
d3x ϕtj(x)

∗(−∆ + w(t, x)
)
ϕtj(x)

+
1

2

N∑
j,k=1

∫
d3x

∫
d3y |ϕtj(x)|2 v(x− y) |ϕtk(y)|2

− 1

2

N∑
j,k=1

∫
d3x

∫
d3y ϕtj(x)

∗
ϕtk(x) v(x− y)ϕtk(y)

∗
ϕtj(y).

(2.35)
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It is then easy to check that ∂tE
t = 0, if ϕt1, . . . , ϕ

t
N are solutions to the Hartree-Fock

equations (2.33) (see, e.g., [13]). Thus, the Hartree-Fock evolution ensures that, if the
approximation of the wave function by

∧N
j=1 ϕ

t
j is justified, then

∧N
j=1 ϕ

t
j is close to the

energy of the solution to the Schrödinger equation.
Note that the variation of the energy functional Et = E(ϕt1, . . . , ϕ

t
N ) leads to the

time-independent Hartree-Fock equations, i.e., (2.33) with i∂t replace by a constant e.
Let us now discuss why the exchange term is subleading for the scaled equations

considered in Chapter 2.1.1. Of course, the best justification that the exchange term is
subleading for the dynamics is given by the main results in Chapter 3.3, which show that
already the fermionic Hartree equations are a good approximation to the Schrödinger
dynamics. Nevertheless, let us again regard the simple example of the non-interacting ground
state in a box VL =

[
− L

2 ,
L
2

]3
from around Equation (2.6). For such a wave function

and Coulomb interaction, let us now estimate the order in N of the total exchange energy
−1

2

∑N
j,k=1

〈
ϕj ,
(
v ? (ϕk

∗ϕj)
)
ϕk
〉
, i.e., the last term on the right-hand side of (2.35). (Keep

in mind, that in the scaled equation there would be an additional N−β in front of the
exchange term.) It turns out that already for this simple example an exact calculation is
quite hard to perform for singular interaction potentials, like Coulomb interaction. Therefore,
we give here a heuristic estimate (we use the / sign to indicate that an estimate is heuristic).
In the following, recall that the Fourier transform of |x|−1 is given by const · |k|−2 (in the
sense of convolutions, see [37] for more details). Also, recall that we number the ki ∈ Z3

such that |kN | is as small as possible, actually |kN | < const ·N
1
3 . In the following, C denotes

a constant (independent of N) that can be different from line to line. We find

N∑
i,j=1

〈
ϕj ,
(
v ? (ϕi

∗ϕj)
)
ϕi

〉
= L−6

∫
VL

d3x

∫
VL

d3y
1

|x− y|

N∑
i,j=1

ei
2π
L

(ki−kj)(x−y)

/ L−6

∫
VL

d3x

∫
R3

d3y
1

|x− y|

N∑
i,j=1

ei
2π
L

(ki−kj)(x−y)

= L−6

∫
VL

d3x

∫
R3

d3z
1

|z|

N∑
i,j=1

ei
2π
L

(ki−kj)z

= L−3

∫
R3

d3z
1

|z|

N∑
i,j=1

ei
2π
L

(ki−kj)z

= L−3

∫
R3

d3z′ L3 1

L|z′|

N∑
i,j=1

ei2π(ki−kj)z′

≤ CL−1
N∑

i,j=1

1

|ki − kj |2

≈ CL−1

∫
[
0,N

1
3

]3 d
3k1

∫
[
0,N

1
3

]3 d
3k2

1

|k1 − k2|2

≤ CL−1N

∫ N
1
3

0
r2dr

1

r2

≤ CL−1N
4
3 . (2.36)

Thus, recalling that L ∝ N
1
3 , we see that the total unscaled exchange energy is O(N),
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so that the exchange term for each particle roughly gives a contribution of O(1) to the
dynamics. If we now take the scaling factor β = 2

3 into account, we see that the contribution

of the exchange term to the mean-field dynamics is O(N−
2
3 ), i.e., subleading in N . Note

that we expect this behavior not just for plane waves, but for a much larger class of wave
functions. (Concerning the exchange term the plane waves are not so special, since they
have large overlap. Note that if all the orbitals would have disjoint support with each other,
then the exchange term would vanish.) We come back to the role of the exchange term
concerning the convergence rates between the Schrödinger and the mean-field time evolution
in Remark 9, following Theorem 3.5.

Finally, note that for bounded interaction potentials v, it is easy to see on a heuristic
level that the exchange term is small. Let us suppose that the orthonormal ϕ1, . . . , ϕN are
approximately a basis of L2(R3), i.e.,

∑N
i=1 |ϕi〉〈ϕi| → 1, or

∑N
j=1 ϕj(x)∗ϕj(y) ≈ δ(x− y)

for large N . Then we have (recall that we are not mathematical precise at this point)

N∑
i,j=1

〈
ϕj ,
(
v ? (ϕi

∗ϕj)
)
ϕi

〉
=

∫
d3x

∫
d3y

N∑
j=1

ϕj(x)∗ϕj(y)
N∑
i=1

ϕi(x)∗v(x− y)ϕi(y)

≈
∫
d3x

∫
d3y δ(x− y)

N∑
i=1

ϕi(x)∗v(x− y)ϕi(y)

= v(0)

∫
d3x

N∑
i=1

ϕi(x)∗ϕi(x)

= N v(0). (2.37)

The exchange term in the unscaled Hartree-Fock equations is thus O(1), i.e., with a scaling
N−β in front of v, it is O(N−β).



Chapter 3

Mathematical Results

3.1 The Counting Functional

We first introduce the precise meaning of ≈ in ψ ≈
∧N
j=1 ϕj . This is done via the functional

αf (ψ,ϕ1, . . . , ϕN ). We want this αf to be such that αf = 0 for ψ =
∧N
j=1 ϕj , and αf = 1

for ψ =
∧N
j=1 χj , where χi is orthogonal to ϕj for all i, j. In other words, αf = 0 should

mean that the approximation of ψ by
∧N
j=1 ϕj is exact, while αf = 1 should mean that this

approximation is not valid at all. So αf is supposed to measure the closeness of ψ to the
specific antisymmetrized product of the ϕ1, . . . , ϕN . Furthermore, we want αf to measure
those parts of ψ that “do not contain” ϕ1, . . . , ϕN . Loosely speaking, it should count how
many particles are not in the antisymmetrized product structure (hence the name “counting
functional”).

We now define αf and several projectors that are needed for its definition. In the
following, we denote by 〈〈·, ·〉〉 the scalar product on L2(R3N ) while 〈·, ·〉 denotes the scalar
product on L2(R3).

Definition 3.1. Let ϕ1, . . . , ϕN ∈ L2(R3) be orthonormal.

(a) For all j,m = 1, . . . , N we define the projector

p
ϕj
m := |ϕj〉〈ϕj |m = |ϕj(xm)〉〈ϕj(xm)| = 1⊗ . . .⊗ 1︸ ︷︷ ︸

m−1 times

⊗ |ϕj〉〈ϕj | ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
N−m times

, (3.1)

i.e., its action on any ψ ∈ L2(R3N ) is given by(
p
ϕj
m ψ

)
(x1, . . . , xN ) = ϕj(xm)

∫
ϕ∗j (xm)ψ(x1, . . . , xN ) d3xm. (3.2)

We define

pm :=
N∑
j=1

p
ϕj
m , (3.3)

and
qm := 1− pm. (3.4)

(b) For any 0 ≤ k ≤ N we define

PN,k = P ϕ1,...,ϕN
N,k :=

(
k∏

m=1

qm

N∏
m=k+1

pm

)
sym

=
∑
~a∈Ak

N∏
m=1

(pm)1−am(qm)am (3.5)

21
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with the set

Ak :=

{
~a = (a1, . . . , aN ) ∈ {0, 1}N :

N∑
m=1

am = k

}
, (3.6)

i.e., PN,k is the symmetrized tensor product of q1, . . . , qk, pk+1, . . . , pN . We define PN,k =
0 for all k < 0 and k > N .

(c) We call any f : {0, . . . , N} → [0, 1] with f(0) = 0, f(N) = 1 a weight function. For any
weight function f we define the operators

f̂ = f̂ ϕ1,...,ϕN :=
N∑
k=0

f(k)PN,k. (3.7)

For any d ∈ Z, we define the shifted operators

f̂d :=

N−d∑
k=−d

f(k + d)PN,k =

N∑
k=0

f(k)PN,k−d =

N∑
k=0

f(k + d)PN,k, (3.8)

where for the last expression we defined f(k) = 0 for all k < 0 and k > N .

(d) For any normalized ψ ∈ L2(R3N ) we define

αf = αf (ψ,ϕ1, . . . , ϕN ) := 〈〈ψ, f̂ ψ〉〉 =
N∑
k=0

f(k) 〈〈ψ, PN,kψ〉〉. (3.9)

The functional αf and the projectors from Definition 3.1 have first been introduced
by Pickl [47] for bosons, that is, with pm = |ϕ〉〈ϕ|m. The functional was used in [47, 35]
for the derivation of the bosonic Hartree equation, and in [45, 46] for the derivation of the
Gross-Pitaevskii equation. Let us note here that for fermions αf with the weight function
k
N has been used before by Graf and Solovej [28] and Bach [2] to measure deviation from
the antisymmetrized product structure in the static setting; see also the remarks following
(3.17).

Let us now explain these definitions a little further. (We give more details in Chapter 4.2.)
When regarded as operators on L2(R3), p1 projects on the subspace spanned by ϕ1, . . . , ϕN ,
and q1 projects on its complement. Therefore, p1q1 = 0. Note that p1 and q1 are indeed
projectors, since the ϕ1, . . . , ϕN are assumed to be orthonormal. One can then easily check
that also the operators PN,k are projectors. Let us now consider the definition of αf from
(3.9). Heuristically, the scalar product 〈〈ψ, PN,kψ〉〉 gives a big contribution if k of the orbitals
ϕ1, . . . , ϕN are not contained in the wave function ψ. In other words, PN,k projects on those
wave functions which are missing k of the orbitals ϕ1, . . . , ϕN . Indeed, one finds for example
for a wave function φ` =

∧`
j=1 χj

∧N
j=`+1 ϕj with χi ⊥ ϕj∀i, j, that PN,kφ` = δk` φk. As we

show in Lemma 6.4, the PN,k have the property that
∑N

k=0 PN,k = 1, i.e., we can define the

decomposition ψ =
∑N

k=0 ψk, with ψk = PN,kψ. Then, loosely speaking, each ψk has (N − k)
particles in one of the orbitals ϕ1, . . . , ϕN and k particles not in the orbitals ϕ1, . . . , ϕN .

The function f(k) determines how much weight is given to the contribution coming from
each PN,kψ. By choosing f(k) we can thus fine tune what is meant by closeness of ψ to∧N
j=1 ϕj . One obvious and very simple weight is the relative number k

N . We always denote
this weight function by

n(k) =
k

N
(3.10)
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and the corresponding counting functional by αn. Loosely speaking, αn measures the relative
“number of particles” in ψ that are not in the antisymmetrized product structure of the
ϕ1, . . . , ϕN . It turns out that for this weight and due to the antisymmetry of ψ, the functional
has the simple form

αn :=

N∑
k=0

k

N
〈〈ψ, PN,kψ〉〉 = 〈〈ψ, q1ψ〉〉, (3.11)

see Lemma 6.4. Recall here that q1 projects on the complement of the subspace spanned by
ϕ1, . . . , ϕN . Another important weight is given by

m(γ)(k) =

{
k
Nγ , for k ≤ Nγ

1 , otherwise,
(3.12)

with some 0 < γ ≤ 1. The function m(γ)(k) gives a much larger weight to already very few
particles outside the antisymmetrized product structure. On the other hand, for k > Nγ , i.e.,
very many particles outside the antisymmetrized product structure, m(γ)(k) gives the same
weight 1 for all k > Nγ . These properties enable us to derive mean-field approximations for
a much wider range of physical situations.

The goal of this work is to prove bounds on αf
(
ψt, ϕt1, . . . , ϕ

t
N

)
, where ψt is a solution

to the Schrödinger equation and ϕt1, . . . , ϕ
t
N are solutions to the fermionic Hartree equations.

In more detail, we first look for a bound of the type

∂tαf
(
ψt, ϕt1, . . . , ϕ

t
N

)
≤ C(t)

(
αf
(
ψt, ϕt1, . . . , ϕ

t
N

)
+N−δ

)
, (3.13)

which then, by Gronwall’s Lemma (see Lemma 6.14), implies the bound

αf
(
ψt, ϕt1, . . . , ϕ

t
N

)
≤ e

∫ t
0 C(s)ds

(
αf
(
ψ0, ϕ0

1, . . . , ϕ
0
N

)
+N−δ

)
, (3.14)

where the function C(t) is independent of N , and δ > 0 is called the convergence rate. In
the main theorems of Chapter 3.3, the weight function f is either n from (3.10) or m(γ)

from (3.12). A bound of the form (3.14) implies that if initially (at time t = 0) αf is small,
then it stays small for times t > 0 and N large enough. In the thermodynamic limit, we
arrive at the statement that limN→∞ αf (t = 0) = 0 implies limN→∞ αf (t) = 0 for all t > 0.

Let us summarize the advantages of using the functional αf for the derivation of mean-
field dynamics compared to other approaches:

• The idea to “count the number of particles” not in the antisymmetrized product seems
very natural and has a clear physical interpretation. This is also reflected in the proof
of a statement like (3.13). As we show in Chapter 3.4, there are three contributions to
∂tαf (t), all of which have a clear physical meaning.

• It seems that proofs which use BBGKY hierarchies (e.g., [4]) are hard to formulate for
interactions with scalings weaker than N−1, due to combinatorial reasons. Therefore,
new methods like the α-method or the one developed by Schlein et al. (applied to
fermions by Benedikter, Porta and Schlein in [8]) are useful.

• The freedom in the choice of the weight function enables us to prove mean-field dy-
namics for many different setups, e.g., singular or weakly scaled interaction potentials.
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3.2 Connection to Density Matrices

It turns out that the functional αf is closely related to the trace-norm of the difference
between reduced one-particle density matrices. Let us here explain the relation and state
the exact results; we give more technical details and the proofs in Chapter 5. For any
normalized antisymmetric ψ ∈ L2(R3N ), the reduced one-particle density matrix is defined
by its integral kernel

µψ1 (x; y) =

∫
ψ(x, x2, . . . , xN )ψ∗(y, x2, . . . , xN ) d3x2 . . . d

3xN . (3.15)

For an antisymmetrized product state
∧N
j=1 ϕj we find

µ
∧
ϕj

1 =
1

N
p1. (3.16)

Let us now consider αn, i.e., the α-functional with the weight n(k) = k
N . First, let us mention

that αn = tr(µψ1 q1) = tr(µψ1 (1 − p1)), where tr(·) denotes the trace. This can be seen by
evaluating the trace in a basis that contains ϕ1, . . . , ϕN . If we denote the other basis vectors
by {ϕj}j>N , we find

tr(µψ1 q1) =
∞∑
j=1

〈
ϕj , µ

ψq1ϕj

〉
=

∞∑
j=N+1

〈
ϕj , µ

ψϕj

〉
= 〈〈ψ,

∞∑
j=N+1

|ϕj〉〈ϕj |1ψ〉〉 = 〈〈ψ, q1ψ〉〉.

(3.17)

It is the expression tr(µψ1 q1) that has been used before to measure deviation from the
antisymmetrized product structure in the static setting, see [2, 28]. Now consider the
difference of the reduced one-particle density matrices in trace norm,∣∣∣∣∣∣µ∧ϕj

1 − µψ1
∣∣∣∣∣∣

tr
. (3.18)

Using p1 + q1 = 1, let us decompose the reduced density of ψ into four contributions,

µψ1 = (p1 + q1)µψ1 (p1 + q1) = p1µ
ψ
1 p1 + p1µ

ψ
1 q1 + q1µ

ψ
1 p1 + q1µ

ψ
1 q1. (3.19)

In the proof of Lemma 3.2, recalling that αn = 〈〈ψ, q1ψ〉〉 = ||q1ψ||2, we show that∣∣∣∣∣∣µ∧ϕj
1 − p1µ

ψ
1 p1

∣∣∣∣∣∣
tr

=
∣∣∣∣∣∣q1µ

ψ
1 q1

∣∣∣∣∣∣
tr

= αn. (3.20)

Furthermore, one can show that∣∣∣∣∣∣p1µ
ψ
1 q1

∣∣∣∣∣∣
tr
≤
√
αn and

∣∣∣∣∣∣q1µ
ψ
1 p1

∣∣∣∣∣∣
tr
≤
√
αn. (3.21)

Therefore, ∣∣∣∣∣∣µ∧ϕj
1 − µψ1

∣∣∣∣∣∣
tr
≤ C
√
αn. (3.22)

On the other hand, one can show that

αn ≤ 2
∣∣∣∣∣∣µ∧ϕj

1 − µψ1
∣∣∣∣∣∣

tr
. (3.23)

As a consequence, convergence of µψ1 to µ
∧
ϕj

1 in trace norm is equivalent to convergence of αn
to zero. However, there is a difference in the convergence rates. This comes from the fact that
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controlling the density matrix difference (3.18) means to control “more” correlations than
covered by αn. This can be seen from (3.20): with αn one controls only certain “diagonal”
parts of the density matrix difference, while the “non-diagonal” parts as in (3.21) are
weighted more, with

√
αn. A similar analysis can be done for the Hilbert-Schmidt norm

instead of the trace norm. There, due to the choice of normalization of the density matrix,
an extra factor

√
N appears.

The relations between the different types of convergence are summarized in the following
lemma. Recall that αn is defined in (3.9) with the weight n(k) = k

N , µψ1 is defined in (3.15),
and note that ||·||tr and ||·||HS denote the trace and Hilbert-Schmidt norms, respectively.

Lemma 3.2. Let ψ ∈ L2(R3N ) be antisymmetric and normalized, and let ϕ1, . . . , ϕN ∈
L2(R3) be orthonormal. Then∣∣∣∣∣∣µψ1 − µ∧ϕj

1

∣∣∣∣∣∣2
tr
≤ 8αn ≤ 8

√
N
∣∣∣∣∣∣µψ1 − µ∧ϕj

1

∣∣∣∣∣∣
HS
, (3.24)

N
∣∣∣∣∣∣µψ1 − µ∧ϕj

1

∣∣∣∣∣∣2
HS
≤ 2αn ≤

∣∣∣∣∣∣µψ1 − µ∧ϕj
1

∣∣∣∣∣∣
tr
. (3.25)

This lemma is the main result of this section. Its proof is given is Chapter 5. Note that
it implies in particular that

lim
N→∞

αn = 0

⇐⇒ lim
N→∞

∣∣∣∣∣∣µψ1 − µ∧ϕj
1

∣∣∣∣∣∣
tr

= 0

⇐⇒ lim
N→∞

√
N
∣∣∣∣∣∣µψ1 − µ∧ϕj

1

∣∣∣∣∣∣
HS

= 0. (3.26)

Let us now consider more general weight functions f(k) that dominate n(k), i.e., f(k) ≥
n(k) for all k. This includes in particular the weight m(γ)(k) from (3.12) which we use later.
For those weights, the inequality αf ≥ αn holds, since

αn =

N∑
k=0

n(k)
〈〈
ψ, PN,kψ

〉〉
︸ ︷︷ ︸

≥0

≤
N∑
k=0

f(k)
〈〈
ψ, PN,kψ

〉〉
= αf . (3.27)

Thus, Lemma 3.2 directly implies the following lemma.

Lemma 3.3. Let ψ ∈ L2(R3N ) be antisymmetric and normalized, and let ϕ1, . . . , ϕN ∈
L2(R3) be orthonormal. Then, for all f with f(k) ≥ k

N ∀k = 1, . . . , N ,∣∣∣∣∣∣µψ1 − µ∧ϕj
1

∣∣∣∣∣∣2
tr
≤ 8αf , (3.28)

N
∣∣∣∣∣∣µψ1 − µ∧ϕj

1

∣∣∣∣∣∣2
HS
≤ 2αf . (3.29)

We thus have that convergence of αf to zero still implies convergence of µψ1 to µ
∧
ϕj

1 ,
but not the other way around (in general), i.e.,

lim
N→∞

αf = 0 =⇒ lim
N→∞

∣∣∣∣∣∣µψ1 − µ∧ϕj
1

∣∣∣∣∣∣
tr

= 0, (3.30)
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lim
N→∞

αf = 0 =⇒ lim
N→∞

√
N
∣∣∣∣∣∣µψ1 − µ∧ϕj

1

∣∣∣∣∣∣
HS

= 0. (3.31)

Finally, let us make a remark about convergence in operator norm. Note that ||µψ1 ||op ≤
N−1 for antisymmetric ψ, so a possible indicator of convergence would be the operator norm
times N . This is not a good type of convergence to consider, though, since the operator norm
is given by the largest eigenvalue which at most can be N−1 for fermionic density matrices.
Thus, while convergence of N times the operator norm does imply convergence of αn, the
opposite is not true. One orbital not in the antisymmetrized product of the ϕ1, . . . , ϕN is
enough to let the operator norm of N times the difference between the density matrices be
equal to one, while αn converges to zero. This is summarized in the following proposition
which we also prove in Chapter 5.

Proposition 3.4. Let ψ ∈ L2(R3N ) be antisymmetric and normalized, and let ϕ1, . . . , ϕN ∈
L2(R3) be orthonormal. Then

αn ≤ N
∣∣∣∣∣∣µψ1 − µ∧ϕj

1

∣∣∣∣∣∣
op
, (3.32)

i.e.,

lim
N→∞

N
∣∣∣∣∣∣µψ1 − µ∧ϕj

1

∣∣∣∣∣∣
op

= 0 =⇒ lim
N→∞

αn = 0. (3.33)

The converse of (3.33) is not true, i.e., αn → 0 does not imply N
∣∣∣∣∣∣µψ1 − µ∧ϕj

1

∣∣∣∣∣∣
op
→ 0.

3.3 Main Results

We now state the main results of this work. The proofs of the results in Chapters 3.3.1 and
3.3.2 are given in Chapters 6.5 and 7.3. Note that in the rest of the Chapter we give the
desired bounds only in terms of αf ; the corresponding bounds for the convergence of density
matrices can be read off from Lemmas 3.2 and 3.3.

3.3.1 Main Theorems for General v(N)

The two theorems 3.5 and 3.7 in this subsection cover very general Hamiltonians. The
theorems are of the form: Given certain properties of the solutions to the fermionic Hartree
equations, the mean-field approximation for the dynamics is good, i.e., α(t) ≤ C(t)

(
α(0) +

N−δ
)

for some δ > 0. We consider wave functions ψt ∈ L2(R3N ) that are solutions to

i∂tψ
t = HNψt =

 N∑
j=1

H0
j +

∑
1≤i<j≤N

v(N)(xi − xj)

ψt, (3.34)

where the Hamiltonian HN is a self-adjoint operator, v(N)(x) = v(N)(−x) is a (possibly
scaled) real interaction potential and H0

j acts only on the j-th particle. The most important

example for H0
j is the non-relativistic free Hamiltonian with external field, H0

j = −∆j +

w(N)(xj), but we could also replace the Laplacian by relativistic operators like
√
−∆ +m2−m

(m > 0) or |∇|. The fermionic mean-field equations for the one-particle wave functions
ϕt1, . . . , ϕ

t
N ∈ L2(R3) are

i∂tϕ
t
j(x) =

(
H0 +

(
v(N) ? ρtN

)
(x)
)
ϕtj(x), (3.35)
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for j = 1, . . . , N and where ρtN =
∑N

i=1 |ϕti|2. Recall that antisymmetric initial wave functions
stay antisymmetric under the evolution (3.34), and that orthonormal initial one-particle
wave functions stay orthonormal under the evolution (3.35).

The first theorem gives a bound on αn as defined in (3.9) and (3.10).

Theorem 3.5. Let t ∈ [0, T ) for some 0 < T ∈ R ∪ ∞. Let ψt ∈ L2(R3N ) be a solution
to the Schrödinger equation (3.34) with antisymmetric initial condition ψ0 ∈ L2(R3N ). Let
ϕt1, . . . , ϕ

t
N ∈ L2(R3) be solutions to the fermionic Hartree equations (3.35) with orthonormal

initial conditions ϕ0
1, . . . , ϕ

0
N ∈ L2(R3).

We assume that v(N) and ρtN :=
∑N

i=1 |ϕti|2 for all t ∈ [0, T ) are such that there is a
positive D(t) (independent of N), such that

sup
y∈R3

((
v(N)

)2
? ρtN

)
(y) ≤ D(t)N−1. (3.36)

Then there is a positive C(t) = 24
√
D(t), such that

αn(t) ≤ e
∫ t
0 C(s)ds αn(0) +

(
e
∫ t
0 C(s)ds − 1

)
N−1. (3.37)

Remarks.

1. From Lemma 3.2 it follows that (3.37) implies for the reduced one-particle density
matrices the bounds∣∣∣∣∣∣∣∣µψt1 − µ

∧
ϕtj

1

∣∣∣∣∣∣∣∣
tr

≤ C ′(t)

(∣∣∣∣∣∣∣∣µψ0

1 − µ
∧
ϕ0
j

1

∣∣∣∣∣∣∣∣ 1
2

tr

+N−
1
2

)
, (3.38)

and

√
N

∣∣∣∣∣∣∣∣µψt1 − µ
∧
ϕtj

1

∣∣∣∣∣∣∣∣
HS

≤ C ′(t)

((√
N

∣∣∣∣∣∣∣∣µψ0

1 − µ
∧
ϕ0
j

1

∣∣∣∣∣∣∣∣
HS

) 1
2

+N−
1
2

)
, (3.39)

with C ′(t) =
√

8 exp
(

1
2

∫ t
0 C(s)ds

)
.

2. The condition (3.36) is only a condition on the solutions to the fermionic Hartree
equations (3.35), and not on the solutions to the Schrödinger equation (3.34).

3. Note that condition (3.36) implies that (by Cauchy-Schwarz and
∫
ρtN = N)

sup
y∈R3

(∣∣v(N)
∣∣ ? ρtN)(y) ≤

√
D(t). (3.40)

For purely positive or negative v(N), this inequality means that the scaled mean-field
interaction is everywhere bounded. In particular, it means that the scaling of the
interaction is chosen correctly; e.g., when v(N) = N−βv, the scaling exponent β is
chosen correctly (or too big), as discussed in Chapter 2.

4. We show in Corollary 3.8 and Theorem 3.9 for H0
j = −∆j +w(N)(xj) more specifically

for which situations condition (3.36) holds.
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5. Let us explain the condition (3.36), for the case H0
j = −∆j +w(N)(xj). First, note that

we are interested in solutions with total kinetic energy of O(N), that is
∑N

i=1 ||∇ϕti||2 <
AN . Then, in particular, ϕtj ∈ H1(R3) ∀j = 1, . . . , N1. It turns out that for such
solutions and for interesting potentials, that is, potentials with Coulomb singularity or
less, the density ρtN is regular enough, so that the quantity on the left-hand side of (3.36)
is always finite. This is due to the convolution which can smooth out the singularity.
(For the Coulomb potential this can be seen by Hardy’s inequality.) The condition
(3.36) can be problematic for v with a strong singularity. Consider the physically most
relevant case of Coulomb interaction. There we have v(N)(x) = N−β|x|−1 with β = 2

3 .

In a scenario where
∑N

i=1 ||∇ϕti||2 < AN , we get in the most general case, by Hardy’s
inequality, only ((

N−βv
)2
? ρtN

)
(y) ≤ N−2β 4AN ≤ CN−

1
3 . (3.42)

6. Still, we expect that for Coulomb interaction for many scenarios condition (3.36)
actually holds. For

∑N
i=1 ||∇ϕti||2 < AN , the particles naturally occupy a volume

proportional to N , so the density is of O(1), as discussed in Chapter 2.1.1. Then,
heuristically,

((
N−βv

)2
?ρtN

)
(y) ≈ N−

4
3

∫
O(N)

|x−y|−2 ρtN (x)d3x / N−
4
3

∫ N
1
3

0
r−2Cr2dr ≤ CN−1.

(3.43)
Therefore, we expect that many solutions to the fermionic Hartree equations (3.58)
fulfill condition (3.36). To show this would be a matter of solution theory for the
equations (3.35). If the initial conditions ϕ0

1, . . . , ϕ
0
N are nice enough, then we expect

that condition (3.36) holds for long or all times t. Note that the properties of the
solutions can also depend on the external field w(N).

7. We could easily write down the theorem without any scaling, i.e., we could simply use
v instead of v(N). Then the theorem says that, if

sup
y∈R3

(
v2 ? ρtN

)
(y) ≤ DN

1 (t), (3.44)

then there is a positive CN (t) ∝
√
NDN

1 (t), such that

αn(t) ≤ e
∫ t
0 C

N (s)ds αn(0) +
(
e
∫ t
0 C

N (s)ds − 1
)
N−1. (3.45)

Suppose that v is Coulomb interaction,
∑N

i=1 ||∇ϕti||2 < AN , and that the solutions are
nice enough, so that (3.43) holds. Then it follows, that the mean-field approximation

is good for all times t of O(N−
2
3 ), i.e.,

αn(t) ≤ eCN
2
3 t αn(0) +

(
eCN

2
3 t − 1

)
N−1. (3.46)

1H1(R3) denotes the first Sobolev space, i.e.,

H1(R3) =
{
f ∈ L2(R3) : ||∇f || <∞

}
. (3.41)
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For longer times, the mean-field approximation can not be expected to hold anymore;
the dynamics becomes instead dominated by the fluctuations.

Let us also consider the situation from Chapter 2.1.2 before the rescaling. Suppose
that v is Coulomb interaction, and the “system volume” is proportional to N−1, such
that the density is O(N2). Suppose again that the density is nice enough, such that

(
v2 ? ρtN

)
(y) ≈ CN2

∫
O(N−1)

|x− y|−2 d3x / CN2

∫ N−
1
3

0
r−2 r2dr ≤ CN

5
3 . (3.47)

Then, it follows from (3.45), that the mean-field approximation is good for all times t

of O(N−
4
3 ), i.e.,

αn(t) ≤ eCN
4
3 t αn(0) +

(
eCN

4
3 t − 1

)
N−1. (3.48)

8. Let us recall Chapter 2.4. There we showed that the fluctuations around the mean-field
at point y ∈ R3 can be bounded by

((
v(N)

)2
? ρtN

)
(y). Thus, the condition (3.36) says

that the fluctuations have to vanish for large N , with rate N−1. Note that N−1 is
the typical size of fluctuations in the (weak) law of large numbers, for independently
identically distributed random variables. It is therefore not surprising that under this
condition the derivation of the mean-field dynamics succeeds. On the other hand, this
condition seems much too restrictive: First, the fluctuations can actually be smaller
than

((
v(N)

)2
? ρtN

)
(y), see the calculation (2.32); second, it is sufficient to make

the fluctuations vanish in the limit N → ∞ (e.g., they can be O(N−δ), for some
δ > 0), which, as explained in Section 2.4, is a necessary condition for the mean-field
description to be a good approximation. Indeed, it turns out that condition (3.36) can
be weakened. This is shown in the next Theorem 3.7.

9. Let us consider the case of scaled Coulomb interaction v(N)(x) = N−
2
3 |x|−1. We saw in

Chapter 2.5 that for the example of plane waves the scaled exchange term is O(N−
2
3 ).

Since the Hartree-Fock equations (the fermionic Hartree equations with exchange term)
are a better approximation to the Schrödinger dynamics, it might seem surprising
that for αn(t) we find the convergence rate N−1 instead of N−

2
3 . However, looking at

the proof of the theorem, we find that an exchange term of O(N−
2
3 ) gives an error

term of O(N−
4
3 ) in the αn estimate. We show this in Remark 19, following the proof

in Chapter 6.5. Only for the convergence in the sense of density matrices, see (3.38),

does the exchange term give an error term of O(N−
2
3 ), but there it is of smaller order

than the convergence rate of N−
1
2 anyway. Note that it follows that for the fermionic

Hartree equations with scaled Coulomb interaction the expected optimal convergence
rate for the density matrices is between N−

1
2 and N−

2
3 . If condition (3.36) holds,

then the error term due to fluctuations is O(N−1), see Remark 8. It would then be
interesting to see if one can improve the convergence rate for the density matrices to
N−1 by considering the Hartree-Fock equations instead of the Hartree equations.

Note that Theorem 3.5 shows that under the condition (3.36) the scaled exchange term

is at most of O(N−
1
2 ). This is not so easy to see by directly estimating the exchange

term, which is hard for singular potentials.

The condition (3.36) can be relaxed and replaced by other conditions if we use the weight
function m(γ) from (3.12). This allows to treat more singular interactions and smaller scaling
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exponents. Let us summarize the precise assumptions that we need on the scaled interaction
v(N) and the density ρtN .

Assumption 3.6. For all t ∈ [0, T ), ρtN :=
∑N

i=1 |ϕti|2 and v(N) are such that there are a
(possibly N -dependent) volume ΩN ⊂ R3, positive Di(t) (independent of N) and, for some
0 < γ ≤ 1, exponents δ2 < γ, δ3 ≥ 0, δ4 ≥ 0 such that

sup
y∈R3

(∣∣v(N)
∣∣ ? ρtN)(y) ≤ D0(t), (3.49)

sup
y∈R3

((
v(N)

)2
? ρtN

)
(y) ≤ D1(t)N−γ , (3.50)

∫ ((
v(N)

)2
? ρtN

)
(y) ρtN (y) d3y ≤ D2(t)N δ2 , (3.51)

sup
y∈R3

∫
ΩN+y

(
v(N)(y − x)

)2
ρtN (x) d3x ≤ D3(t)N−1−δ3 , (3.52)

sup
y∈R3\ΩN

∣∣v(N)(y)
∣∣ ≤ D4(t)N−

1
2
− γ

2
−δ4 . (3.53)

Under this assumption we can conclude convergence of αm(γ)(t). The following theorem
is the most general version of our main result.

Theorem 3.7. Let t ∈ [0, T ) for some 0 < T ∈ R ∪ ∞. Let ψt ∈ L2(R3N ) be a solution
to the Schrödinger equation (3.34) with antisymmetric initial condition ψ0 ∈ L2(R3N ). Let
ϕt1, . . . , ϕ

t
N ∈ L2(R3) be solutions to the fermionic Hartree equations (3.35) with orthonormal

initial conditions ϕ0
1, . . . , ϕ

0
N ∈ L2(R3).

We assume that v(N) and ρtN :=
∑N

i=1 |ϕti|2 for all t ∈ [0, T ) are such that Assumption 3.6
holds. Then there is a positive C(t), such that

αm(γ)(t) ≤ e
∫ t
0 C(s)ds αm(γ)(0) +

(
e
∫ t
0 C(s)ds − 1

)
N−δ, (3.54)

where 0 < δ = min
{
γ − δ2, γ + δ3

2 , γ + δ4

}
and

C(t) = 12 max

{
4
√
D3(t)N−

δ3
2 , 4
√

2D4(t)N−δ4 ,
√

12D0(t),
√

12
D2(t)

D0(t)
, 8
√
D1(t)

}
. (3.55)

Remarks.

10. Similar to (3.38), the bound (3.54) implies∣∣∣∣∣∣∣∣µψt1 − µ
∧
ϕtj

1

∣∣∣∣∣∣∣∣
tr

≤
√

8 e
1
2

∫ t
0 C(s)ds

(
αm(γ)(0)

) 1
2

+
(

8
(
e
∫ t
0 C(s)ds − 1

)) 1
2
N−

δ
2 (3.56)

and a similar bound for the Hilbert-Schmidt norm. However, in general it is not true

that αm(γ)(0) ≤ C
∣∣∣∣∣∣µψ0

1 − µ
∧
ϕ0
j

1

∣∣∣∣∣∣
tr

.

11. We show in Theorem 3.9 for which situations Assumption 3.6 holds.
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3.3.2 Main Results for −∆ and Interactions |x|−s

In this section we explicitly consider the non-relativistic Schrödinger equation

i∂tψ
t(x1, . . . , xN ) =

 N∑
j=1

(
−∆xj + w(N)(xj)

)
+N−β

∑
i<j

v(xi − xj)

ψt(x1, . . . , xN ),

(3.57)
and the corresponding fermionic Hartree equations

i∂tϕ
t
j(x) =

(
−∆ + w(N)(x) +N−β

(
v ? ρtN

)
(x)
)
ϕtj(x), (3.58)

for j = 1, . . . , N , where ρtN =
∑N

i=1 |ϕti|2. The results in this subsection are concerned with
potentials |x|−s with 0 < s < 6

5 , sometimes with singularity weakened or cutoff, and the
corresponding β = 1− s

3 , as discussed in Chapter 2.1. For the following results we assume
that the mean kinetic energy per particle is bounded by a constant, independent of N , i.e.,
for the total kinetic energy we have Ekin,mf(t) =

∑N
i=1 ||∇ϕti||2 ≤ AN .

First, let us state a result about the Coulomb potential that replaces condition (3.36) by
other conditions, which again depend on properties of the solutions to the fermionic Hartree
equations. (Note that ||A||∞ = supx |A(x)| for all multiplication operators A.)

Corollary 3.8. Let v(x) = ±|x|−1 and β = 2
3 . We assume that ϕt1, . . . , ϕ

t
N are such that

Ekin,mf(t) =
N∑
i=1

∣∣∣∣∇ϕti∣∣∣∣2 ≤ AN, (3.59)

∣∣∣∣∣∣∣∣ N∑
i=1

|ϕti|2
∣∣∣∣∣∣∣∣
∞
≤ D, (3.60)

for some A,D > 0 (independent of N) and all t ∈ [0, T ). Then assumption (3.36) from
Theorem 3.5 holds. Therefore, there is a positive constant C (independent of N), such that

αn(t) ≤ eCt αn(0) +
(
eCt − 1

)
N−1. (3.61)

Let us now come to the main result of this section, where we state for which inter-
actions the mean-field approximation holds under the only condition that Ekin,mf(t) =∑N

i=1

∣∣∣∣∇ϕti∣∣∣∣2 ≤ AN . Note that Ekin,mf(t) ≤ AN is basically just a condition on the initial
states ϕ0

1, . . . , ϕ
0
N and the external field. Recall that the fermionic Hartree time evolution

conserves the total Hartree energy. For repulsive interactions, it is therefore expected that,
for nice enough external fields, including, e.g., external Coulomb fields generated by nuclei
with some N -independent distances to each other, the kinetic energy at all times t is bounded
by AN , if it is initially bounded by CN . A blowup of solutions is only expected to happen
for strong attractive interactions (e.g., for gravitating fermions), see, e.g., [27, 31, 29]. There
are several works about solution theory to the Hartree(-Fock) equations [9, 13, 12, 10];
however, estimates of Sobolev norms with explicit N -dependence are rare.

We can treat interactions with weak enough singularities (|x|−s, with 0 < s < 3
5), with

singularity cut off (and long-range behavior like |x|−s, with 0 < s < 6
5), and with long-range

behavior like |x|−1 but weaker singularity.
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Theorem 3.9. Let ψt ∈ L2(R3N ) be a solution to the Schrödinger equation (3.57) with
antisymmetric initial condition ψ0 ∈ L2(R3N ). Let ϕt1, . . . , ϕ

t
N ∈ L2(R3) be solutions to the

fermionic Hartree equations (3.58) with orthonormal initial conditions ϕ0
1, . . . , ϕ

0
N ∈ L2(R3),

and with

Ekin,mf(t) =
N∑
i=1

∣∣∣∣∇ϕti∣∣∣∣2 ≤ AN (3.62)

for some A > 0 and all t > 0. Then there is a positive constant C, such that

• for interactions

v(x) = ±|x|−s,with 0 < s <
3

5
and β = 1− s

3
, (3.63)

we have
αn(t) ≤ eCt αn(0) +

(
eCt − 1

)
N−1, (3.64)

with C ∝ A
s
2 ;

• for interactions

v = ±vs,ε ∈ L∞ with 0 ≤ vs,ε(x)

{
≤ |x|−s , for |x| ≤ ε
= |x|−s , for |x| > ε,

,with ε > 0,

with 0 < s <
6

5
and β = 1− s

3
, (3.65)

we have
αm(γ)(t) ≤ eCt αm(γ)(0) +

(
eCt − 1

)
N−γ , (3.66)

for all 0 < γ ≤ 1− 2s
3 ;

• for interactions

v(x) = ±
{
|x|−s , for |x| ≤ 1
|x|−1 , for |x| > 1,

,with 0 < s <
1

3
and β =

2

3
, (3.67)

we have
αm(γ)(t) ≤ eCt αm(γ)(0) +

(
eCt − 1

)
N−γ , (3.68)

for all 0 < γ ≤ 1
3 −

4s
9−15s .

Finally, let us show that, when the Coulomb interaction is scaled with N−1, then, for
systems with initial total kinetic energy bounded by AN , the dynamics is free.

Proposition 3.10. Let ϕt1, . . . , ϕ
t
N ∈ L2(R3) be solutions to the free equations

i∂tϕ
t
j(x) = −∆ϕtj(x) (3.69)

for j = 1, . . . , N , with orthonormal initial conditions ϕ0
1, . . . , ϕ

0
N ∈ L2(R3) with

Ekin,mf(0) =

N∑
i=1

∣∣∣∣∇ϕ0
i

∣∣∣∣2 ≤ AN (3.70)

for some A > 0. Let ψt ∈ L2(R3N ) be a solution to the Schrödinger equation (3.57)
with β = 1, v(x) = ±|x|−1 and w(N)(x) = 0, and with antisymmetric initial condition
ψ0 ∈ L2(R3N ). Then, for 1

3 < γ < 1, there is a positive constant C such that for all t ≥ 0,

αm(γ)(t) ≤ αm(γ)(0) + CtN−δ, (3.71)

where 0 < δ = min
{γ

2 −
1
6 ,−

γ
2 + 1

2

}
. In particular, for γ = 2

3 we have the maximal
convergence rate δ = 1

6 .
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Remarks.

12. The proposition also holds with external field w(N)(x) that is such that it preserves
the bound

∑N
i=1 ||∇ϕti||2 ≤ AN for all times.

13. Note that for β = 1, v(x) = |x|−1 and w(N)(x) that preserve the bound
∑N

i=1 ||∇ϕti||2 ≤
AN for all times, the condition (3.36) from Theorem 3.5 holds due to Hardy’s inequality
and energy conservation. Therefore, in this case we can deduce the bound

αn(t) ≤ eCt αn(0) +
(
eCt − 1

)
N−1, (3.72)

which gives a better convergence rate than in Proposition 3.10, but exponential growth
in time. However, as explained in Remark 6, for nice initial data, one would expect
that (

v2 ? ρtN

)
(y) ≤ DN

1
3 , (3.73)

which implies the bound

αn(t) ≤ exp
(
CN−

1
3 t
) (

αn(0) +N−1
)
, (3.74)

and therefore in particular

αn(t) ≤ αn(0) + CtN−
1
3 . (3.75)

3.4 Outline of the Proof

The proofs of the main results from Chapters 3.2 and 3.3 are given in Chapters 4–7. In
Chapter 4, we establish some notation, state inequalities we often use during the proofs, and
explain in more detail properties of the projectors from Definition 3.1. In Chapter 5, the
proofs of the lemmas about the convergence of reduced density matrices are given. These
proofs were already outlined in Chapter 3.2. Then, in Chapter 6, we prove the theorems for
general free Hamiltonians H0 and interactions v(N) from Chapter 3.3.1, and in Chapter 7,
we prove the results for H0 = −∆ and interaction potentials |x|−s from Chapter 3.3.2. Let
us now outline these proofs of our main results.

The general strategy of the proof is the following. First, we calculate the time derivative
of αf (t) = αf (ψt, ϕt1, . . . , ϕ

t
N ), where ψt is a solution to the Schrödinger equation and

ϕt1, . . . , ϕ
t
N are solutions to the fermionic Hartree equations. (This is a simple, straightforward

calculation.) Second, we bound the time derivative by terms proportional to αf (t) or N−δ

for some δ > 0, i.e.,

∂tαf (t) ≤ C(t)
(
αf (t) +N−δ

)
. (3.76)

Then we use the Gronwall Lemma (which we state as Lemma 6.14) to conclude that

αf (t) ≤ e
∫ t
0 C(s)ds αf (0) +

(
e
∫ t
0 C(s)ds − 1

)
N−δ, (3.77)

which is the desired bound.
Outline for Theorem 3.5. Let us start with the most simple case where we use αn(t),

i.e., the α-functional with the weight function n(k) = k
N , as considered in Theorem 3.5. The

first step is to calculate ∂tαn(t). This is done in Chapter 6.1, for general weight functions f(k).
In the case of αn(t) this is a very simple calculation, due to the identity αn(t) = 〈〈ψt, q1ψ

t〉〉.
Recall here our loose notation: the projectors p1 and q1 are always time dependent, since they
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are build with the time dependent solutions to the fermionic Hartree equations ϕt1, . . . , ϕ
t
N . In

fact, q1 solves the Heisenberg equation of motion i∂tq1 = [Hmf
1 , q1], where Hmf

1 = H0
1 +V

(N)
1

is the “mean-field Hamiltonian”, acting on the first variable (the variable that q1 depends
on), and [a, b] = ab− ba is the commutator. The wave function ψt solves the Schrödinger

equation i∂tψ
t = Hψt with H =

∑N
j=1H

0
j +

∑
i<j v

(N)
ij . We thus find

∂tαn(t) = ∂t〈〈ψt, q1ψ
t〉〉

= 〈〈(∂tψt), q1ψ
t〉〉+ 〈〈ψt, (∂tq1)ψt〉〉+ 〈〈ψt, q1(∂tψ

t)〉〉
= i〈〈Hψt, q1ψ

t〉〉 − i〈〈ψt, [Hmf
1 , q1]ψt〉〉 − i〈〈ψt, q1Hψ

t〉〉
= i〈〈ψt,

[
H −Hmf

1 , q1

]
ψt〉〉

= i〈〈ψt,

∑
j

H0
j +

∑
i<j

v
(N)
ij −H

0
1 − V

(N)
1 , q1

ψt〉〉
= i〈〈ψt,

∑
j≥2

v
(N)
1j − V

(N)
1 , q1

ψt〉〉
= i〈〈ψt,

[
(N − 1)v

(N)
12 − V

(N)
1 , q1

]
ψt〉〉, (3.78)

where we used that [hj , q1] = 0∀j ≥ 2 for all operators hj that act only on the j-th variable,
and in the last step we used the antisymmetry of ψt. Note that the kinetic and external
field terms coming from the Schrödinger and the fermionic Hartree equations cancel. This
is the reason why Theorem 3.5 (and also 3.7) holds for any H0

j . We can simplify (3.78)
by inserting two identities 1 = p1 + q1 and 1 = p2 + q2 in front of each ψt. Due to the
commutator structure, v12 = v21 (i.e., v(x1 − x2) = v(x2 − x1)) and p1q1 = 0 = p2q2, only
three summands remain, such that we find

∂tαn(t) = 2 Im
〈〈
ψt, q1

(
(N − 1)p2v

(N)
12 p2 − V (N)

1

)
p1ψ

t
〉〉

+ 2 Im
〈〈
ψt, q1q2 (N − 1)v

(N)
12 p1p2ψ

t
〉〉

+ 2 Im
〈〈
ψt, q1q2(N − 1)v

(N)
12 p1q2ψ

t
〉〉
. (3.79)

Note that the second and third term on the right-hand side of (3.79) do not depend on the
mean-field V1 at all; it is only the first term where the mean-field makes the contribution
coming from the Schrödinger interaction small.

The three terms on the right-hand side of (3.79) have a nice intuitive explanation. Let us
call the contributions coming from any projector p “particle in the Sea” and those coming
from any projector q “particles outside the Sea”. With Sea we thus mean the antisymmetrized
product of ϕt1, . . . , ϕ

t
N , the “Fermi Sea” or “condensate”, and with “outside the Sea” we

mean those parts of ψt that do not contain ϕt1, . . . , ϕ
t
N . The v

(N)
12 summand from the first

term on the right-hand side of (3.79) gives a contribution only if two particles in the Sea
(the p1, p2 on the right side of the scalar product) transition into one particle outside the
Sea and one in the Sea (the q1, p2 on the left side of the scalar product). Furthermore, the
contribution from this term is “big” only if ψt contains many parts of ϕt1, . . . , ϕ

t
N , since

there are three p’s in the scalar product. The second term on the right-hand side of (3.79)
gives a contribution only if two particles in the Sea (the p1, p2 on the right side of the scalar
product) transition into two particles outside the Sea (the q1, q2 on the left side of the scalar
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product). The third term contributes only if one particle in the Sea and one outside the
Sea (the p1, q2 on the right side of the scalar product) transition into two particles outside
the Sea (the q1, q2 on the left side of the scalar product). Due to the three q’s, this third
term is “big” if ψt already contains many parts orthogonal to ϕt1, . . . , ϕ

t
N . Finally, note that

these three contributions are exactly what one would intuitively expect. The change in the
“number of particles in the Sea” (∂tαn(t)) can be caused by those three transitions (and
their reverse processes): two particles in the Sea interact and one gets kicked out (becomes
correlated), two particles in the Sea interact and both get kicked out, one particle in the
Sea interacts with one outside the Sea and gets kicked out.

Now let us discuss how these three terms can be bounded rigorously. At this point, if

v(N) has both negative and positive parts, we split up v(N) = v
(N)
+ − v(N)

− , with v
(N)
± ≥ 0,

and then split up each of the three terms into two contributions, coming from v
(N)
+ and

v
(N)
− . Since each contribution is estimated separately, we only deal with positive v(N) in the

following.
The qq-pq term. Let us begin with the third term on the right-hand side of (3.79),

which is the easiest to bound. Note that
∣∣∣∣q1q2ψ

t
∣∣∣∣ ≤ ∣∣∣∣q1ψ

t
∣∣∣∣ =

√
〈〈ψt, q1ψt〉〉 =

√
αn(t).

Using Cauchy-Schwarz, we find that

N
〈〈
ψt, q1q2v

(N)
12 p1q2ψ

t
〉〉
≤ N

∣∣∣∣q1q2ψ
t
∣∣∣∣ ∣∣∣∣∣∣v(N)

12 p1q2ψ
t
∣∣∣∣∣∣

≤ N
√
αn(t)

√〈〈
ψt, q2p1

(
v

(N)
12

)2
p1q2ψt

〉〉
≤ N

√
αn(t)

√
||q2ψt||2 sup

φ

〈〈
φ, p1

(
v

(N)
12

)2
p1φ
〉〉

≤ αn(t)

√
N2 sup

φ

〈〈
φ, p1

(
v

(N)
12

)2
p1φ
〉〉
, (3.80)

where the supremum is taken over all φ ∈ L2(R3N ) which are antisymmetric in all but the
second variable (because of the q2). As we show in Chapter 6.3, it turns out that〈〈

φ, p1

(
v

(N)
12

)2
p1φ
〉〉
≤ N−1 sup

y∈R3

((
v(N)

)2
? ρtN

)
(y) (3.81)

(where ρtN =
∑N

i=1 |ϕti|2), which follows from diagonalizing p1

(
v

(N)
12

)2
p1; the extra factor

N−1 comes from the antisymmetry of φ (it does not matter that φ is not antisymmetric in
the second variable). Note that the inequality (3.81) is very similar to the inequality

〈〈φ,A1φ〉〉 ≤ N−1 ||A1||tr (3.82)

for any self-adjoint A1 (that acts only on x1) and antisymmetric φ, where ||·||tr denotes
the trace norm. This inequality can be proven by diagonalizing A1 =

∑
j λj |ϕj〉〈ϕj |1 and

calculating

〈〈φ,A1φ〉〉 = 〈〈φ,
∑
j

λj |ϕj〉〈ϕj |1φ〉〉 ≤
∑
j

|λj | sup
j

∣∣〈〈φ, |ϕj〉〈ϕj |1φ〉〉∣∣. (3.83)

Since
∑

j |λj | = ||A1||tr and 〈〈φ, |ϕj〉〈ϕj |1φ〉〉 = N−1
∑N

m=1〈〈φ, |ϕj〉〈ϕj |mφ〉〉 ≤ N−1 (since∑N
m=1 |ϕj〉〈ϕj |m is a projector due to the orthonormality of the ϕj ’s), (3.82) follows. To
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summarize, the qq-pq term from the right-hand side of (3.79) is bounded by Cαn(t), under
the assumptions (3.36) of Theorem 3.5.

The qq-pp term. Let us now estimate the second term on the right-hand side of
(3.79). Here, we have again two q’s available, so the term should be proportional to αn(t).
However, both q’s are on the same side of the scalar product, so we cannot directly apply
Cauchy-Schwarz. But by a trick using the antisymmetry of ψt, we can shift the q2 to the
right side of the scalar product, on the expense of a boundary term of O(N−1). In more
detail, we estimate, using Cauchy-Schwarz again,

〈〈
ψt, q1q2(N − 1)v

(N)
12 p1p2ψ

t
〉〉

=
〈〈
ψt, q1

N∑
m=2

qmv
(N)
1m p1pmψ

t
〉〉

≤
∣∣∣∣q1ψ

t
∣∣∣∣ ∣∣∣∣∣
∣∣∣∣∣
N∑
m=2

qmv
(N)
1m p1pmψ

t

∣∣∣∣∣
∣∣∣∣∣

≤
√
αn(t)

√√√√ N∑
m,n=2

〈〈
ψt, pmp1v

(N)
1m qmqnv

(N)
1n p1pnψt

〉〉

≤
√
αn(t)

√√√√ N∑
m6=n=2

〈〈
ψt, pmp1v

(N)
1m qmqnv

(N)
1n p1pnψt

〉〉

+
√
αn(t)

√√√√ N∑
m=2

〈〈
ψt, pmp1v

(N)
1m qmv

(N)
1m p1pmψt

〉〉
≤
√
αn(t)

√
N2
〈〈
ψt, q3p2p1v

(N)
12 v

(N)
13 p1p3q2ψt

〉〉
+
√
αn(t)

√
N
〈〈
ψt, p2p1

(
v

(N)
12

)2
p1p2ψt

〉〉
≤
√
αn(t)

√(
N2αn(t) +N

)
sup
φ

〈〈
φ, p2p1

(
v

(N)
12

)2
p1p2φ

〉〉
.

(3.84)

Similar to (3.81), one can show that〈〈
φ, p2p1

(
v

(N)
12

)2
p1p2φ

〉〉
≤ N−2

∫ ((
v(N)

)2
? ρtN

)
(y)ρtN (y) d3y,

≤ N−1 sup
y∈R3

((
v(N)

)2
? ρtN

)
(y), (3.85)

which is also shown in Chapter 6.3, and where the second inequality follows from Hölder’s
inequality and

∫
ρtN = N . Thus, if condition (3.36) of Theorem 3.5 holds, we find〈〈

ψt, q1q2(N − 1)v
(N)
12 p1p2ψ

t
〉〉
≤ C

√
αn(t)

√
αn(t) +N−1

≤ C
√
αn(t)2 + 2αn(t)N−1 +N−2

= C(αn(t) +N−1). (3.86)

The qp-pp term. We now turn to the first term on the right-hand side of (3.79). This
term is the hardest to control, since here it is crucial to use the fact that the interaction from
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the Schrödinger equation and the mean-field from the fermionic Hartree equations cancel in
a certain sense. Note that we did not use any such cancellation so far. Before we outline the
estimate, let us stress that here lies the crucial difference compared to the bosonic Hartree
equation, as treated in [47, 35]. In this case there is just one orbital ϕ, so for example

p2 = |ϕ(x2)〉〈ϕ(x2)|. Furthermore, v(N)(x) = N−1v(x) and V
(N)

1 (x) =
(
v ? |ϕ|2

)
(x). Then

(recall that q2 = 1− p2)

V
(N)

1 − p2(N − 1)v
(N)
12 p2 =

(
v ? |ϕ|2

)
(x1)− (N − 1)

N
|ϕ(x2)〉〈ϕ(x2)|v12|ϕ(x2)〉〈ϕ(x2)|

=
(
v ? |ϕ|2

)
(x1)− (N − 1)

N

(
v ? |ϕ|2

)
(x1) p2

=
(
v ? |ϕ|2

)
(x1) (q2 +N−1p2), (3.87)

such that the first term can be bounded by αn(t) (due to the two available q’s) and a
term of order N−1.2 In the fermionic case we cannot use the same argument since p2 is
a sum of projectors, each projecting on one of the N orbitals. However, as we have used

before and show in Chapter 6.3, one can diagonalize the operator p2v
(N)
12 p2 in the sense that

p2v
(N)
12 p2 =

∑N
i=1 λi(x1)|χx1

i (x2)〉〈χx1
i (x2)|, where it turns out that

∑N
i=1 λi(x) = V

(N)
1 (x).

Then

V
(N)

1 − p2(N − 1)v
(N)
12 p2 =

N∑
i=1

λi(x1)− (N − 1)
N∑
i=1

λi(x1) |χx1
i (x2)〉〈χx1

i (x2)|

=

N∑
i=1

λi(x1)
(

1− (N − 1)|χx1
i (x2)〉〈χx1

i (x2)|
)
. (3.88)

Due to the antisymmetry of ψt, the term
(
1− (N − 1)|χx1

i (x2)〉〈χx1
i (x2)|

)
corresponds to a

projector called qχ
x1
i . It can be shown that this additional qχ

x1
i gives us an additional q2

on the right side of the scalar product of the first term; again at the expense of a small
boundary term of O(N−1). We do not present the full estimate here in the outline, since it
is technical and lengthy; the explicit estimate can be found in Chapter 6.4. To summarize,
also the first term can be bounded by Cαn(t). This concludes the proof of Theorem 3.5.

Note, that the qp-pp term is not only technically the hardest to control, but also the
reason why we cannot prove Theorem 3.9 for Coulomb interaction (including the singularity).
The conditions from the estimate make further properties of the solutions to the fermionic
Hartree equations necessary.

Outline for Theorem 3.7. Let us now describe what is gained by using a different
weight function than n(k). We saw that in the third term (and, as it turns out, also in the
first term) on the right-hand side of (3.79), there is only one projector p available which lead

to the condition
(
v(N)

)2
? ρtN ≤ CN−1. This condition seems to be too strong and we would

like to relax it. Let us first consider the time derivative of αf (t) for a general weight function
f(k). This is, as in the case f(k) = n(k), a straightforward, but more lengthy calculation,

2Note that in [47, 35], the term
(
v ? |ϕ|2

)
(x1) q2 is usually regarded as being part of the qq-pq term.
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which is the content of Chapter 6.1. Let us present the result here:

∂tαf (t) =2 Im
〈〈
ψt, N

(
f̂ − f̂−1

)
q1p2

(
(N − 1)v

(N)
12 − V

(N)
1

)
p1p2ψ

t
〉〉

+ Im
〈〈
ψt, N

(
f̂ − f̂−2

)
q1q2 (N − 1)v

(N)
12 p1p2ψ

t
〉〉

+ 2 Im
〈〈
ψt, N

(
f̂ − f̂−1

)
q1q2

(
(N − 1)v

(N)
12 − V

(N)
1

)
p1q2ψ

t
〉〉
. (3.89)

The terms f̂ − f̂−d can be interpreted as a “derivative”, since

f̂ − f̂−1 =
N∑
k=0

(
f(k)− f(k − 1)

)
PN,k. (3.90)

Let us now see what we gain by choosing the weight function

m(γ)(k) =

{
k
Nγ , for k ≤ Nγ

1 , otherwise
(3.91)

for some 0 < γ ≤ 1. (Note that for γ = 1 we recover the case m(1)(k) = n(k) = k
N from

above.) For the “derivative” we find

m̂(γ) − m̂(γ)−1 =
N∑
k=0

(
m(k)−m(k − 1)

)
PN,k

≈
Nγ∑
k=0

N−γ PN,k. (3.92)

Now consider the splitting φ =
∑N

k=0 PN,kφ :=
∑N

k=0 φk for some antisymmetric φ ∈
L2(R3N ). Then we find that(

m̂(γ) − m̂(γ)−1

)
φk = 0 ∀k > Nγ . (3.93)

We use this fact to improve the estimate for the third term. Heuristically, q1q2ψ
t has only

contributions coming from large k (at least in the first and second variable, which is enough
to make the argument work). But for these contributions the “derivative” is zero, which
makes the third term on the right-hand side of (3.89) very small. This can also be used for
the first term, where we gain additional projectors q due to cancellations between Schrödinger
and mean-field interactions, as explained after (3.88). The downside of using the weight
function m(γ)(k) is that we gain only a prefactor N−γ from the “derivative” (3.92), instead
of N−1 when we use n(k). However, as it turns out, this effect can be controlled, and only
leads to a worse convergence rate. This heuristic reasoning is made precise in Chapter 6.4,
where we bound ∂tαm(γ)(t) rigorously. For that, several lemmas are necessary, which we
establish in Chapter 6.2. Finally, in Chapter 6.5, we use the conditions from Theorem 3.7 to
calculate the convergence rate and to put the estimates together.

Outline for results of Section 3.3.2. Let us now discuss how to prove the results for
H0
j = −∆j + w(N)(xj) and interactions v(N)(x) = N−β|x|−s. In order to apply Theorems

3.5 and 3.7, we have to evaluate expressions like v ? ρtN and v2 ? ρtN (where ρtN =
∑N

i=1 |ϕti|2)
for interactions |x|−s with weak or cut off singularity. It turns out that naturally these
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expressions can be bounded in terms of the total kinetic energy. A key role is played by the
kinetic energy inequality due to Lieb and Thirring [41, 38],∫

R3

(
ρtN (x)

) 5
3
d3x ≤ C

N∑
i=1

∣∣∣∣∇ϕti∣∣∣∣2 . (3.94)

This inequality crucially depends on the fermionic nature of the wave function; for bosonic
wave functions, it only holds with an extra factor N

2
3 on the right-hand side (think of the

example of plane waves in a box from Chapter 2.1.1). Let us now consider the mean-field
interaction | · |−s ?ρtN . We assume that the total kinetic energy

∑N
i=1 ||∇ϕti||2 ≤ AN . We first

split the integration into two parts, over a ball with radius RN ∝ N
1
3 and its complement,

then apply Hölder’s inequality, and use (3.94) and
∫
ρtN = N :∫

R3

ρtN (x)

|x− y|s
d3x =

∫
BRN (y)

ρtN (x)

|x− y|s
d3x+

∫
BRN (y)

ρtN (x)

|x− y|s
d3x

[by Hölder] ≤

(∫
BRN (y)

ρtN (x)
5
3 d3x

) 3
5
(∫

BRN (y)
|x− y|−

5
2
s d3x

) 2
5

+

(∫
BRN (y)

ρtN (x) d3x

) sup
x∈BRN (y)

|x− y|−s


≤
(∫

R3

ρtN (x)
5
3 d3x

) 3
5

(∫
BRN (0)

|x|−
5
2
s d3x

) 2
5

+

(∫
R3

ρtN (x) d3x

) sup
x∈BRN (0)

|x|−s


[by (3.94)] ≤ CN
3
5R

6
5
−s

N +NR−sN

≤ CN1− s
3 . (3.95)

Since |x|−
5
2
s is integrable over a ball only for 0 < s < 6

5 , we restrict ourselves to those s. We
thus showed that β = 1− s

3 is the correct scaling exponent for interactions vs(x) = |x|−s.
Note that this remains so when we cut off the singularity, i.e., (3.95) can in general not be
improved.

The condition v2 ?ρtN can be evaluated by similar methods (which we do in Chapter 7.2).
However, here we have to deal with a much stronger singularity. Thus, we either need
stronger conditions on ρtN , for example ||ρtN ||∞ ≤ C as we consider in Corollary 3.8, or we
need to restrict ourselves to weaker or cut off singularities, as considered in Theorem 3.9.
Finally, Proposition 3.10 can be proven by using that for v(N)(x) = N−1|x|−1, the mean-field

interaction is only of O(N−
1
3 ), as (3.95) shows. The explicit proofs of the results are given

in Chapter 7.3.

3.5 Theorem and Sketch of Proof for Semiclassical Scaling

The proof we outlined in Chapter 3.4 was, in a sense, tailor-made for particles with average
velocities of O(1). In order to demonstrate that the α-method also works for situations
where this is not the case, we here give a derivation of the mean-field dynamics for the
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semiclassical case discussed in Chapter 2.2. There, one has to use the fact that the average
velocities are O(N

1
3 ). A derivation of the mean-field dynamics in this case has recently been

given in [8]. Here, we mostly reproduce the result obtained there; we actually use estimates
about the propagation of properties of the initial data from [8]. A slight improvement is that
our conditions on the initial data are more transparent and general. Let us state our main
theorem for the semiclassical case here, and give an outline of the proof, in particular, of what
steps are different compared to Chapter 3.4. The full proof can be found in Appendix A.

We consider, as discussed in Chapter 2.2, the non-relativistic Schrödinger equation with
semiclassical scaling (for simplicity, without external fields),

iN−
1
3∂tψ

t = −N−
2
3

N∑
j=1

∆xjψ
t +N−1

∑
1≤i<j≤N

v(xi − xj)ψt. (3.96)

The corresponding semiclassical fermionic Hartree equations are

iN−
1
3∂tϕ

t
j =

(
−N−

2
3 ∆ +N−1

(
v ? ρtN

))
ϕtj , (3.97)

and the semiclassical Hartree-Fock equations are

iN−
1
3∂tϕ

t
j =

(
−N−

2
3 ∆ +N−1

(
v ? ρtN

))
ϕtj −N−1

N∑
k=1

(
v ? (ϕt∗k ϕ

t
j)
)
ϕtk, (3.98)

for j = 1, . . . , N , and recall ρtN =
∑N

i=1 |ϕti|2. Note that here we do not have to use the
long-range behavior of the interaction, since we are interested in solutions in some constant,
N -independent volume, i.e., very high densities. For technical reasons, we consider basically
bounded interactions (the more exact conditions are stated in Theorem 3.11 below). Note
that for these interactions the exchange term is always subleading (taking the N−1 from the
scaling into account). Since the exchange term is easier to handle for bounded interactions,
we can prove the theorem for both the fermionic Hartree and Hartree(-Fock) equations.
The following theorem is analogous to [8, Thm. 2.1]. We write p1(0) =

∑N
j=1 |ϕ0

j 〉〈ϕ0
j |1 for

the projector p1 at time t = 0. Recall that we denote the trace norm by ||·||tr (see also
Chapter 5.1).

Theorem 3.11. Let ψt ∈ L2(R3N ) be a solution to the Schrödinger equation (3.96) with
antisymmetric initial condition ψ0 ∈ L2(R3N ). Let ϕt1, . . . , ϕ

t
N ∈ L2(R3) be either solutions

to the fermionic Hartree equations (3.97) or to the Hartree-Fock equations (3.98), with
orthonormal initial conditions ϕ0

1, . . . , ϕ
0
N ∈ L2(R3).

We assume that v ∈ L1(R3) and∫
d3k (1 + |k|2) |v̂(k)| <∞, (3.99)

where v̂ is the Fourier transform of v. We also assume that the initial conditions ϕ0
1, . . . , ϕ

0
N ∈

L2(R3) are such, that

sup
k∈R3

1

1 + |k|

∣∣∣∣∣∣ [p1(0), eik·x
] ∣∣∣∣∣∣

tr
≤ cN

2
3 , (3.100)

|| [p1(0),∇] ||tr ≤ cN, (3.101)

for some constant c > 0, where p1(0) =
∑N

j=1 |ϕ0
j 〉〈ϕ0

j |1.
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Then, there are positive C1, C2, such that for all t > 0,

αn(t) ≤ exp
(
C1 exp(C2 t)

)(
αn(0) +N−1

)
. (3.102)

Remarks.

14. It follows from Lemma 3.2 that (3.102) implies for density matrices the estimate∣∣∣∣∣∣∣∣µψt1 − µ
∧
ϕtj

1

∣∣∣∣∣∣∣∣
tr

≤ C̃(t)

(∣∣∣∣∣∣∣∣µψ0

1 − µ
∧
ϕ0
j

1

∣∣∣∣∣∣∣∣ 1
2

tr

+
1√
N

)
, (3.103)

for some constant C̃(t); a similar estimate holds in Hilbert-Schmidt norm.

15. The theorem also holds with external fields that are such that they preserve the bounds
(3.100) and (3.101) for all t.

Let us now outline the proof of Theorem 3.11. Recall that we are looking for a bound

∂tαn(t) ≤ C(t)
(
αn(t) +N−1

)
, (3.104)

and then use the Gronwall Lemma to deduce (3.102). It turns out that for this proof it
is sufficient to use αn(t), i.e., the weight function n(k) = k

N . For ψt a solution to the
Schrödinger equation (3.96) and ϕt1, . . . , ϕ

t
N solutions to the fermionic Hartree equations

(3.97) (or the Hartree-Fock equations (3.98)), we find (as in (3.79), using explicitly the
scaling)

∂tαn(t) = 2N−
2
3 Im

〈〈
ψt, q1

(
(N − 1)p2v12p2 − V1

)
p1ψ

t
〉〉

+ 2N−
2
3 Im

〈〈
ψt, q1q2(N − 1)v12p1p2ψ

t
〉〉

+ 2N−
2
3 Im

〈〈
ψt, q1q2(N − 1)v12p1q2ψ

t
〉〉

(3.105)

(where V1 is either the direct or direct plus exchange term). As mentioned above, we cannot

use here that we gain an additional N−
1
3 from the long-range behavior of the interaction

(as we did, e.g., in Lemma 7.5); the mean-field term V1 is of O(N), such that it seems that

∂tαn(t) is of O(N
1
3 ). However, what we use now is that the average velocity of the particles

is O(N
1
3 ) (due to the high density and the fact that we consider fermions). In Theorem 3.11

we phrased this in the form that∣∣∣∣∣∣ [p1(0), eik·x
] ∣∣∣∣∣∣

tr
≤ cN

2
3 (3.106)

(where c can depend on k). An argument why (3.106) (together with (3.101)) expresses the

fact that the average velocities are O(N
1
3 ) can be found in [8]; at this point, let us just

recall from Chapter 2.2 that a semiclassical density matrix has roughly the form

φ
(
N

1
3 (x− y)

)
χ(x+ y). (3.107)

It turns out, that (3.106) captures that there is an additional factor N
1
3 in the “velocity

profile” φ of the density matrix. One part of the proof of Theorem 3.11 is to propagate the
conditions (3.100) and (3.101) in time, i.e., to show that

sup
k∈R3

1

1 + |k|

∣∣∣∣∣∣ [p1(t), eik·x
] ∣∣∣∣∣∣

tr
≤ c(t)N

2
3 , (3.108)
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|| [p1(t),∇] ||tr ≤ c(t)N, (3.109)

where p1(t) =
∑N

j=1 |ϕtj〉〈ϕtj |1, and ϕt1, . . . , ϕ
t
N are solutions to the Hartree(-Fock) equations.

Note that (3.109) is necessary to show that (3.108) holds, but will not be used in the
estimates for ∂tαn(t). The exact statement is Lemma A.1 which has been proven in [8].
The constants c(t) are of the form c(t) = c1 exp(c2t) (which is the reason why we get the
double exponential in the estimate (3.102); the other exponential comes from the Gronwall
argument for ∂tαn(t)). Let us from now on take for granted that (3.108) holds for all times
and note that (due to p1q1 = 0)∣∣∣∣∣∣ p1e

ik·xq1

∣∣∣∣∣∣
tr

=
∣∣∣∣∣∣ [p1, e

ik·x
]
q1

∣∣∣∣∣∣
tr
≤
∣∣∣∣∣∣ [p1, e

ik·x
] ∣∣∣∣∣∣

tr
≤ CN

2
3 , (3.110)

where for ease of notation we do not write out the t-dependence of p1, q1 anymore (also
constants C can be time-dependent).

The estimate (3.110) can now be used to gain an additional factor N−
1
3 in the time

derivative of αn(t). Let us here only regard the third term from (3.105), the qq-pq term, which
is again the most simple to estimate. Using the Fourier decomposition of the interaction
potential, v(x) =

∫
d3k v̂(k)eikx, and Cauchy-Schwarz, we find

N
1
3

∣∣∣〈〈ψt, q1q2v12p1q2ψ
t
〉〉∣∣∣ = N

1
3

∣∣∣ ∫ d3k v̂(k)
〈〈
ψt, q1q2e

ik(x1−x2)p1q2ψ
t
〉〉∣∣∣

= N
1
3

∣∣∣ ∫ d3k v̂(k)
〈〈
ψt, q1e

ikx1p1q2e
−ikx2q2ψ

t
〉〉∣∣∣. (3.111)

It is now convenient to use the singular value decomposition of the (compact) operator
q1e

ikx1p1, i.e., we use q1e
ikx1p1 =

∑
` µ`|φ`〉〈φ̃`|1 for some orthonormal {φ`}`∈N and {φ̃`}`∈N

and µ` > 0, where
∑

` µ` =
∣∣∣∣q1e

ikx1p1

∣∣∣∣
tr

. Then, by Cauchy-Schwarz, (3.82) and (3.110),

N
1
3

∣∣∣〈〈ψ, q1q2v12p1q2ψ
〉〉∣∣∣ = N

1
3

∣∣∣ ∫ d3k v̂(k)
∑
`

µ`

〈〈
ψ, q2|φ`〉〈φ̃`|1e−ikx2q2ψ

〉〉∣∣∣
[by C.-S.] ≤ N

1
3

∫
d3k |v̂(k)|

∑
`

µ`

∣∣∣∣∣∣〈φ`|1q2ψ
∣∣∣∣∣∣ ∣∣∣∣∣∣〈φ̃`|1q2ψ

∣∣∣∣∣∣
[by (3.82)] ≤ N

1
3

∫
d3k |v̂(k)|

∣∣∣∣∣∣q1e
ikx1p1

∣∣∣∣∣∣
tr
N−1 ||q2ψ||2 . (3.112)

Therefore, if
∫
d3k |v̂(k)| <∞ (or, more exactly, when (3.99) holds), we find the bound

N
1
3

∣∣∣〈〈ψt, q1q2v12p1q2ψ
t
〉〉∣∣∣ ≤ Cαn(t). (3.113)

For the first and second term in (3.105), we proceed similar to Chapter 3.4, and use the
singular value decomposition of q1e

ikx1p1 again. As in Chapter 3.4, an additional boundary
term of O(N−1) arises, such that in total we find

∂tαn(t) ≤ C(t)
(
αn(t) +N−1

)
. (3.114)



3.6. Outlook 43

3.6 Outlook

In this thesis we have seen how the fermionic Hartree(-Fock) equations can be derived
from the microscopic Schrödinger dynamics in a many particle limit. An understanding of
how and why this is the case is very important with respect to the more general goal to
understand how macroscopic (or effective) behavior arises from microscopic physics. With
the results outlined in Chapter 2.3 and this work, we now have a good understanding of
how this works for mean-field descriptions for (non-relativistic) fermions. However, several
more detailed and more advanced questions are still open.

• Concerning the results in this work, it would be interesting to show that the conditions
we formulated on the solutions to the fermionic Hartree equations (in particular, in
Theorem 3.5, Theorem 3.7 or Corollary 3.8) hold for the physically very relevant case
of Coulomb interaction under suitable smoothness conditions on the initial data. It
might furthermore be interesting to investigate other physically relevant interactions.

• A derivation for the semiclassical case with Coulomb interaction is still an open
problem.

• One could try a derivation of mean-field limits for fermions for relativistic equations,
e.g., the Dirac-Fock equations (see, e.g., [30] and references therein). A first step in
this direction is [7] where a pseudo-relativistic Hamiltonian is considered.

• It would be interesting to identify relevant situations where the exchange term is not
subleading. Alternatively, one could look for scenarios where the exchange term is
subleading, but gives a larger contribution to the dynamics than the error terms in a
derivation of the fermionic Hartree equations. Then one could try to show that the
Hartree-Fock equations give a better approximation to the Schrödinger dynamics than
the Hartree equations.

• It might be possible to give technically better estimates for ∂tαf (t), which reflect even
better that correlations are caused by fluctuations, as discussed in Chapter 2.4 (see, in
particular, Equation 2.32). A first step in this direction is [34] where the fluctuations
around the mean-field are analyzed much more carefully.

• Another topic is to analyze and derive other effective evolution equations for fermions.
For example, it could be interesting to consider scalings for fermions that are similar
to Gross-Pitaevskii scalings for bosons. Another very interesting scaling is the so-called
kinetic limit for fermions (see, e.g., [43]) where the long-time behavior is investigated
and the dynamics is approximated by a quantum Boltzmann equation.
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Chapter 4

Notation and Preliminaries

4.1 Notation and Basic Inequalities

Let us first establish some notation that we use throughout the following chapters. We denote
by H a Hilbert space and we always assume it is separable. Its inner product is denoted
by 〈·, ·〉 or 〈〈·, ·〉〉 and the norm of any f ∈H by ||f || =

√
〈f, f〉. For any z ∈ Cd we write

|z|2 :=
∑d

i=1 |zi|2, where for zi ∈ C, |zi|2 = z∗i zi, with ∗ denoting complex conjugation. The
Hilbert space of complex square integrable functions on Rd is denoted by L2(Rd) = L2(Rd,C)
and H1(Rd) denotes the first Sobolev space, i.e.,

H1(Rd) =
{
f ∈ L2(Rd) : ||∇f || <∞

}
. (4.1)

For f ∈ L2(Rd) we sometimes write

||f ||2 :=

∫
Rd
|f(x)|2 ddx =

∫
|f |2. (4.2)

In order to differentiate between the scalar product on L2(R3N ) and scalar products on
another L2(Rd) (usually L2(R3)) we always write 〈〈·, ·〉〉 for the scalar product on L2(R3N ).
We denote by 〈〈·, ·〉〉a+1,...,N the scalar product only in the variables xa+1, . . . , xN , i.e., it is a
“partial trace” or “partial scalar product”, formally defined for any χ, ψ ∈ L2(R3N ) by

〈〈ψ, χ〉〉a+1,...,N (x1, . . . , xa) :=

∫
d3xa+1 . . .

∫
d3xN ψ

∗(x1, . . . , xN )χ(x1, . . . , xN ), (4.3)

which should be regarded as a vector in L1(R3a) (for χ = ψ, it is the diagonal of the
reduced a-particle density matrix, see Chapter 5.2). As mentioned in Definition 3.1, for any
ϕ ∈ L2(R3), we use the bra-ket notation

pϕm = |ϕ〉〈ϕ|m = |ϕ(xm)〉〈ϕ(xm)| (4.4)

for the projector defined by

(pϕmψ) (x1, . . . , xN ) = ϕ(xm)

∫
ϕ∗(xm)ψ(x1, . . . , xN )d3xm (4.5)

for any ψ ∈ L2(R3N ). In other words,

pϕm = 1⊗ . . .⊗ 1︸ ︷︷ ︸
m−1 times

⊗ |ϕ〉〈ϕ| ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
N−m times

. (4.6)

47
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In the same style we denote by |·〉m a vector in L2(R3) acting only on the m-th variable of
L2
(
(R3)N

)
, by 〈·|m its dual, and by 〈·, ·〉m the scalar product only in the m-th variable.

For any operator A : L2(Rd)→ L2(Rd) we denote the operator norm by

||A||op := sup
0 6=f∈L2(Rd)

||Af ||
||f ||

= sup
f∈L2(Rd),||f ||=1

||Af || . (4.7)

For self-adjoint A, the operator norm can be expressed as

||A||op = sup
f∈L2,||f ||=1

| 〈f,Af〉 | , (4.8)

see, e.g., [48]. We denote the trace norm by ||·||tr and the Hilbert-Schmidt norm by ||·||HS,
see Section 5.1 for more details. We denote the commutator of two operators A,B by

[A,B] := AB −BA. (4.9)

Given ϕ1, . . . , ϕN ∈ L2(R3) we denote the density by ρN (x) =
∑N

i=1 |ϕi(x)|2 and the
total kinetic energy by

Ekin,mf =
N∑
i=1

〈ϕi, (−∆)ϕi〉 =
N∑
i=1

||∇ϕi||2 . (4.10)

We use the notation
∏
ϕ (for any ϕ ∈ L2(R3)) as abbreviation for the simple product(

N∏
i=1

ϕ

)
(x1, . . . , xN ) =

N∏
i=1

ϕ(xi) (4.11)

and
∧
ϕj as abbreviation for the antisymmetrized product N∧

j=1

ϕj

 (x1, . . . , xN ) =
1√
N

∑
σ∈SN

(−1)σ
N∏
j=1

ϕσ(j)(xi), (4.12)

where SN is the symmetric group and (−1)σ the sign of the permutation σ.
Given a function h : Rd → R we introduce h12 : Rd × Rd → R, h12(x1, x2) = h(x1 − x2).

We use the Landau notation O(·), i.e., f(N) ∈ O(g(N)) means that limN→∞
f(N)
g(N) <∞. We

always denote by BR(x) the open ball with radius R around x, i.e.,

BR(x) =
{
y ∈ Rd : |x− y| < R

}
. (4.13)

For any set Ω ⊂ Rd we write Ω = Rd \ Ω.
Let us also list some well-known inequalities that we frequently use (for proofs, see, e.g.,

[37]). We denote by (Ω,Σ, µ) a general measure space.

• Cauchy-Schwarz inequality for CN . Let a, b ∈ CN . Then∣∣∣∣∣
N∑
k=1

akbk

∣∣∣∣∣ ≤
√√√√ N∑

k=1

|ak|2

√√√√ N∑
k=1

|bk|2. (4.14)



4.2. More about the Projectors 49

• Cauchy-Schwarz inequality for L2(Ω). Let ψ, χ ∈ L2(Ω). Then

|〈ψ, χ〉| ≤ ||ψ|| ||χ|| . (4.15)

• Hölder’s inequality. Let 1 ≤ p, q ≤ ∞ with 1
p + 1

q = 1. Let f ∈ Lp(Ω), g ∈ Lq(Ω). Then

fg ∈ L1(Ω) and
||fg||1 ≤ ||f ||p ||g||q . (4.16)

4.2 More about the Projectors

In this section we summarize some properties of the projectors from Definition 3.1 and
define more projectors that we need in the course of the proofs in the following chapters.

Definition 4.1. Let ϕ1, . . . , ϕN ∈ L2(R3) be orthonormal.

(a) We define

pϕj :=

N∑
m=1

p
ϕj
m (4.17)

and
qϕj = 1− pϕj . (4.18)

(b) For a ≤ n < N we define

P {i1,...,in}a :=

(
a∏

m=1

qim

n∏
m=a+1

pim

)
sym

. (4.19)

The operator
pϕm = |ϕ〉〈ϕ|m = |ϕ(xm)〉〈ϕ(xm)| (4.20)

is indeed a projector on L2(R3N ). For ϕi ⊥ ϕj and all m,n = 1, . . . , N we have

pϕim p
ϕj
m = 0 and

[
pϕim , p

ϕj
n

]
= 0. (4.21)

From that we conclude the following properties of the projectors pm and qm = 1− pm:

pmqm = 0, (4.22)

[pm, pn] = [pm, qn] = [qm, qn] = 0, (4.23)

for all m,n = 1, . . . , N . For antisymmetric ψas ∈ L2(R3N ), we have

pϕmp
ϕ
nψas = 0 (4.24)

for all m 6= n, since

(pϕmp
ϕ
nψas) (x1, . . . , xN ) = ϕ(xm)ϕ(xn)

∫
dxmdxnϕ(xm)∗ϕ(xn)∗ψas(. . . , xm, . . . , xn, . . .)

= −ϕ(xm)ϕ(xn)

∫
dxmdxnϕ(xm)∗ϕ(xn)∗ψas(. . . , xn, . . . , xm, . . .)

= −ϕ(xm)ϕ(xn)

∫
dxndxmϕ(xn)∗ϕ(xm)∗ψas(. . . , xm, . . . , xn, . . .).

(4.25)
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Therefore, on antisymmetric functions in L2(R3N ), the operators pϕi and qϕi = 1− pϕi are
projectors, and for any antisymmetric ψas ∈ L2(R3N ) we have

pϕiqϕiψas = 0, (4.26)

[pϕi , pϕj ]ψas = [pϕi , qϕj ]ψas = [qϕi , qϕj ]ψas = 0, (4.27)

for all i, j = 1, . . . , N .

When one considers the operator norm of the projectors pϕm it makes an important
difference if it is calculated on all L2 functions or only on antisymmetric functions in L2, as
the following lemma shows. Recall that 〈〈·, ·〉〉a+1,...,N denotes the scalar product only in the
variables xa+1, . . . , xN .

Lemma 4.2. (a) Let ψas ∈ L2(R3N ) be antisymmetric and normalized. Then, for all
m = 1, . . . , N ,

〈〈ψas, pϕmψas〉〉 ≤
1

N
. (4.28)

(b) Let ψ1,...,a
as ∈ L2(R3N ) be antisymmetric in all variables except x1, . . . , xa. Let m ∈

{a+ 1, . . . , N}. Then

〈〈ψ1,...,a
as , pϕmψ

1,...,a
as 〉〉 ≤ 1

N − a
〈〈ψ1,...,a

as , ψ1,...,a
as 〉〉. (4.29)

Furthermore, also

〈〈ψ1,...,a
as , pϕmψ

1,...,a
as 〉〉a+1,...,N (x1, . . . , xa) ≤

1

N − a
〈〈ψ1,...,a

as , ψ1,...,a
as 〉〉a+1,...,N (x1, . . . , xa),

(4.30)
for almost all x1, . . . , xa (with the definition of 〈〈·, ·〉〉a+1,...,N from (4.3)).

Proof. (a) First, note that for all antisymmetric ψas, ||pϕψas|| ≤ ||ψas||, since pϕ is a
projector on antisymmetric ψas. Using this and the antisymmetry of ψas we find

〈〈ψas, pϕmψas〉〉 =
1

N
〈〈ψas,

N∑
n=1

pϕnψas〉〉 =
1

N
〈〈ψas, pϕψas〉〉 =

1

N
||pϕψas||2 ≤

1

N
||ψas||2 .

(4.31)

(b) Now suppose that ψ1,...,a
as is antisymmetric in all variables except x1, . . . , xa and let

m ∈ {a+ 1, . . . , N}. Then
∑N

n=a+1 p
ϕ
n is still a projector on those functions, and

∣∣∣∣∣
∣∣∣∣∣

N∑
n=a+1

pϕnψ
1,...,a
as

∣∣∣∣∣
∣∣∣∣∣
2

=
〈〈 N∑

`=a+1

pϕ` ψ
1,...,a
as ,

N∑
n=a+1

pϕnψ
1,...,a
as

〉〉

=
〈〈
ψ1,...,a
as ,

N∑
n=a+1

pϕnψ
1,...,a
as

〉〉

≤

∣∣∣∣∣
∣∣∣∣∣

N∑
n=a+1

pϕnψ
1,...,a
as

∣∣∣∣∣
∣∣∣∣∣ . (4.32)
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Therefore, using Cauchy-Schwarz,

〈〈ψ1,...,a
as , pϕmψ

1,...,a
as 〉〉 =

1

N − a

〈〈
ψ1,...,a
as ,

N∑
n=a+1

pϕnψ
1,...,a
as

〉〉

≤ 1

N − a
∣∣∣∣ψ1,...,a

as

∣∣∣∣ ∣∣∣∣∣
∣∣∣∣∣

N∑
n=a+1

pϕnψ
1,...,a
as

∣∣∣∣∣
∣∣∣∣∣

≤ 1

N − a
〈〈ψ1,...,a

as , ψ1,...,a
as 〉〉. (4.33)

Both (4.32) and (4.33) remain true if the scalar products (and the corresponding norms)
are only partial, i.e., when it is integrated only in the variables xa+1, . . . , xN .

By using the example of the antisymmetrized product state
∧N
j=1 ϕj , we see that the

operator norm on antisymmetric functions ||·||op,as of pϕkm is indeed

||pϕkm ||op,as =
1√
N
, (4.34)

while in general
||pϕkm ||op = 1, (4.35)

which can be seen by using the product state
∏N
j=1 ϕk(xj). Let us make one more remark

(which is not necessary for the proofs later). One could as well define

P ′N,k :=

 k∏
j=1

qϕj
N∏

j=k+1

pϕj


sym

=
∑
~a∈Ak

N∏
j=1

(pϕj )1−aj (qϕj )aj , (4.36)

with the same notation as in Definition 3.1, and

f̂ ′ =
N∑
k=0

f(k)P ′N,k, (4.37)

i.e., one could define PN,k, f̂ and αf with the projectors pϕj instead of pm. However, on
antisymmetric functions both definitions coincide, i.e., for all antisymmetric ψas ∈ L2(R3N ),

PN,kψas = P ′N,kψas. (4.38)

This can be seen by multiplying out PN,kψas and P ′N,kψas, and using pϕim p
ϕj
m = 0 for i 6= j

and pϕmp
ϕ
nψas = 0 for n 6= m.





Chapter 5

Density Matrices

In this chapter, we prove the results from Chapter 3.2 about the relation of αf (t) to the
reduced density matrices of ψt and of the antisymmetrized product state

∧
ϕtj .

5.1 Trace Norm and Hilbert-Schmidt Norm

We first give a brief overview of the definition and some properties of trace class and
Hilbert-Schmidt operators. The following well-known statements and their proofs can be
found, for example, in [48, chapter VI].

Let H be a Hilbert space and A,B : H → H . Let {ϕi}i∈N be an orthonormal basis
of H . For any bounded positive operator A : H → H we define the trace of A as
tr(A) =

∑
i∈N 〈ϕi, Aϕi〉. It is independent of the chosen orthonormal basis and

• tr(A+B) = tr(A) + tr(B),

• tr(λA) = λ tr(A) for all λ > 0,

• tr(UAU−1) = tr(A) for any unitary operator U .

A bounded operator A is called trace class if and only if tr|A| <∞. The trace class operators
are a Banach space with norm ||·||tr = tr| · |. We have |tr(A)| ≤ ||A||tr. If A is trace class
then so is A∗, the adjoint of A. If A is trace class and B is bounded then AB and BA are
trace class. Every trace class operator is compact.

A bounded operator A is called a Hilbert-Schmidt operator if and only if tr(A∗A) <∞.
The Hilbert-Schmidt operators are a Hilbert space with the scalar product defined as
(A,B) =

∑
i∈N 〈ϕi, A∗Bϕi〉 and norm ||A||HS =

√
tr(A∗A). Every Hilbert-Schmidt operator

is compact. On L2 spaces, Hilbert-Schmidt operators have a simple form, as the following
statement shows. Let (M,µ) be a measure space. A bounded operator A on L2(M,dµ) is
Hilbert-Schmidt if and only if there is a K ∈ L2(M ×M,dµ⊗ dµ) with

(Af)(x) =

∫
K(x, y)f(y)dµ(y). (5.1)

Then

||A||2HS =

∫
|K(x, y)|2dµ(x)dµ(y). (5.2)

For a positive trace class operator A : L2(Rd)→ L2(Rd) (d ∈ N) with continuous integral
kernel K(x, y), we have that

||A||tr = tr(A) =

∫
K(x, x) ddx. (5.3)

53
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If A is trace class then it is also a Hilbert-Schmidt operator; in fact

||A||op ≤ ||A||HS ≤ ||A||tr . (5.4)

Self-adjoint trace class operators A can be diagonalized with real eigenvalues λi (i ∈ N) and
we have

||A||op = sup
i∈N
|λi|, ||A||2HS =

∑
i∈N
|λi|2, ||A||tr =

∑
i∈N
|λi|. (5.5)

Finally we collect some inequalities (which hold whenever the respective norms exist),
which we frequently use in the proofs of the lemmas in Chapter 5.2:

||AB||tr ≤ ||A||op ||B||tr , (5.6)

||AB||HS ≤ ||A||op ||B||HS , (5.7)

||AB||tr ≤ ||A||HS ||B||HS . (5.8)

5.2 Convergence of Reduced Density Matrices

For any normalized symmetric or antisymmetric ψ ∈ L2(R3N ) we define the reduced k-particle

density matrix µψk : L2(R3k)→ L2(R3k) by its integral kernel

µψk (x1, . . . , xk; y1, . . . , yk)

=

∫
ψ(x1, . . . , xk, xk+1, . . . , xN )ψ∗(y1, . . . , yk, xk+1, . . . , xN ) d3xk+1 . . . d

3xN . (5.9)

Note that µψk has an eigenfunction expansion.1 Reduced density matrices have the following
well-known properties.

Lemma 5.1. (a) µψk is non-negative, i.e.,
〈
f, µψk f

〉
≥ 0 ∀f ∈ L2(R3k),

(b)
∣∣∣∣∣∣µψk ∣∣∣∣∣∣

tr
= tr

(
µψk
)

= 1,

(c) For antisymmetric ψas,
∣∣∣∣∣∣µψas1

∣∣∣∣∣∣
op
≤ 1

N .

In order to get used to notation we provide a proof for Lemma 5.1.

1One can write

µψk (x1, . . . , xk; y1, . . . , yk) =

∞∑
i=1

µiφi(x1, . . . , xk)φ∗i (y1, . . . , yk), (5.10)

with φi ∈ L2(R3k) and µi > 0. Then, in particular, the diagonal is

µψk (x1, . . . , xk;x1, . . . , xk) =

∞∑
i=1

µi |φi(x1, . . . , xk)|2 . (5.11)
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Proof. (a) For all f ∈ L2(R3k) we find〈
f, µψk f

〉
= 〈〈ψ, |f〉〈f |ψ〉〉

=

∫
dxk+1 . . . dxN

∣∣∣∣∫ dx1 . . . dxkf
∗(x1, . . . , xk)ψ(x1, . . . , xN )

∣∣∣∣2
≥ 0. (5.12)

(b) Recall that ψ ∈ L2(R3N ) is normalized. Since µψk is non-negative,
∣∣∣∣∣∣µψk ∣∣∣∣∣∣

tr
= tr

(
µψk
)
.

Also,
tr
(
µψk
)

= 〈〈ψ,ψ〉〉 = 1. (5.13)

(c) For all f ∈ L2(R3) with ||f || = 1 and antisymmetric ψas ∈ L2(R3N ) we find〈
f, µψas1 f

〉
= 〈〈ψas, |f(x1)〉〈f(x1)|ψas〉〉

= 〈〈ψas, pf1ψas〉〉

=
1

N

〈〈
ψas,

N∑
i=1

pfi ψas

〉〉
. (5.14)

Since pf =
∑N

i=1 p
f
i is a projector on antisymmetric ψas we have

〈〈ψas, pfψas〉〉 ≤ 1. (5.15)

Since
∣∣∣∣∣∣µψ1 ∣∣∣∣∣∣

op
= supf∈L2,||f ||=1

〈
f, µψ1 f

〉
the statement follows.

Let us give some examples of one- and two-particle density matrices. For a simple product∏N
i=1 ϕ (a bosonic condensed state) we find

µ
∏
ϕ

1 = pϕ1 , (5.16)

µ
∏
ϕ

2 = pϕ1 p
ϕ
2 . (5.17)

For an antisymmetrized product state
∧N
j=1 ϕj we find

µ
∧
ϕj

1 =
1

N
p1, (5.18)

µ
∧
ϕj

2 =
1

N(N − 1)

p1p2 −
N∑

i,j=1

|ϕi〉〈ϕj |1 |ϕj〉〈ϕi|2

 (5.19)

We now give the proof of Lemma 3.2, i.e., of the relation between convergence in the αn
sense and convergence of the reduced density matrices in trace norm and Hilbert-Schmidt
norm. Recall that Lemma 3.2 concerns αn, i.e., the α-functional with the weight n(k) = k

N .

Proof of Lemma 3.2. Recall that µ
∧
ϕj

1 = 1
N p1. We first show that 1

N p1 − p1µ
ψ
1 p1 is a

non-negative operator with trace norm αn. Note that the operator p1µ
ψ
1 p1 maps the N -

dimensional subspace span(ϕ1, . . . , ϕN ) to itself. Also, p1µ
ψ
1 p1 is non-negative and self-adjoint.

We can therefore diagonalize it, i.e., there is an orthonormal basis {χ1, . . . , χN}, such that

p1µ
ψ
1 p1 =

N∑
i=1

λi |χi〉〈χi|1 =
N∑
i=1

λi p
χi
1 , (5.20)
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with λi ≥ 0 ∀i = 1, . . . , N . Note that, since span(χ1, . . . , χN ) = span(ϕ1, . . . , ϕN ),

p1 =

N∑
i=1

pϕi1 =

N∑
i=1

pχi1 . (5.21)

We also have that all λi ≤ 1
N , since

λi =
〈
χi, p1µ

ψ
1 p1χi

〉
=
〈〈
ψ, |χi〉〈χi|1ψ

〉〉
≤ 1

N

〈〈
ψ,ψ

〉〉
≤ 1

N
. (5.22)

Also note that

N∑
i=1

λi =
N∑
i=1

〈
χi, p1µ

ψ
1 p1χi

〉
=
〈〈
ψ,

N∑
i=1

|χi〉〈χi|1ψ
〉〉

=
〈〈
ψ, p1ψ

〉〉
= 1− αn, (5.23)

since 1 = p1 + q1. Since 0 ≤ λi ≤ 1
N ,

1

N
p1 − p1µ

ψ
1 p1 =

N∑
i=1

(
1

N
− λi

)
pχi1 (5.24)

is non-negative and∣∣∣∣∣∣∣∣ 1

N
p1 − p1µ

ψ
1 p1

∣∣∣∣∣∣∣∣
tr

= tr

(
1

N
p1 − p1µ

ψ
1 p1

)
= tr

(
N∑
i=1

(
1

N
− λi

)
pχi1

)

=

N∑
i=1

(
1

N
− λi

)
〈χi, χi〉

= 1−
N∑
i=1

λi

= αn. (5.25)

We now show
∣∣∣∣∣∣µψ1 − µ∧ϕj

1

∣∣∣∣∣∣
tr
≤
√

8αn. Note that the operators µψ1 , p1µ
ψ
1 p1 and q1µ

ψ
1 q1

are non-negative, and that∣∣∣∣∣∣p1µ
ψ
1 p1

∣∣∣∣∣∣
tr

=
〈〈
ψ, p1ψ

〉〉
= 1− αn and

∣∣∣∣∣∣q1µ
ψ
1 q1

∣∣∣∣∣∣
tr

=
〈〈
ψ, q1ψ

〉〉
= αn. (5.26)

By inserting two identities 1 = p1 + q1 we find, using (5.25), (5.26), the triangle inequality
(abbreviated ∆ ineq.), and ||AB||tr ≤ ||A||HS ||B||HS,∣∣∣∣∣∣µ∧ϕj

1 − µψ1
∣∣∣∣∣∣

tr
=

∣∣∣∣∣∣∣∣ 1

N
p1 − p1µ

ψ
1 p1 − p1µ

ψ
1 q1 − q1µ

ψ
1 p1 − q1µ

ψ
1 q1

∣∣∣∣∣∣∣∣
tr

[by ∆ ineq.] ≤
∣∣∣∣∣∣∣∣ 1

N
p1 − p1µ

ψ
1 p1

∣∣∣∣∣∣∣∣
tr

+
∣∣∣∣∣∣p1µ

ψ
1 q1

∣∣∣∣∣∣
tr

+
∣∣∣∣∣∣q1µ

ψ
1 p1

∣∣∣∣∣∣
tr

+
∣∣∣∣∣∣q1µ

ψ
1 q1

∣∣∣∣∣∣
tr

[by (5.25), (5.26)] ≤ αn +

∣∣∣∣∣∣∣∣p1

√
µψ1

√
µψ1 q1

∣∣∣∣∣∣∣∣
tr

+

∣∣∣∣∣∣∣∣q1

√
µψ1

√
µψ1 p1

∣∣∣∣∣∣∣∣
tr

+ αn

[by (5.8)] ≤ 2αn + 2

∣∣∣∣∣∣∣∣p1

√
µψ1

∣∣∣∣∣∣∣∣
HS

∣∣∣∣∣∣∣∣q1

√
µψ1

∣∣∣∣∣∣∣∣
HS

= 2αn + 2

√∣∣∣∣∣∣p1µ
ψ
1 p1

∣∣∣∣∣∣
tr

∣∣∣∣∣∣q1µ
ψ
1 q1

∣∣∣∣∣∣
tr

[by (5.26)] = 2αn + 2
√
αn(1− αn). (5.27)
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Since 0 ≤ αn ≤ 1, it is indeed true that

2αn + 2
√
αn(1− αn) ≤

√
8αn, (5.28)

since the continuous function f(α) =
√

8α − 2α − 2
√
α(1− α) has its only minimum at

α = 1
2 with f

(
1
2

)
= 0, and also f(0) = f(1) ≥ 0, thus f(α) ≥ 0 for all α ∈ [0, 1], showing

(5.28).

We now show 2αn ≤
∣∣∣∣∣∣µψ1 − µ∧ϕj

1

∣∣∣∣∣∣
tr

. We find, using (5.25), (5.26), tr(q1µ
ψ
1 p1) =

tr(p1µ
ψ
1 q1) = 0 and |tr(A)| ≤ ||A||tr, that

2αn = tr
(
µ
∧
ϕj

1 − p1µ
ψ
1 p1

)
+ tr

(
q1µ

ψ
1 q1

)
= tr

(
µ
∧
ϕj

1 − p1µ
ψ
1 p1 + q1µ

ψ
1 q1

)
= tr

((
µ
∧
ϕj

1 − µψ1
)

(p1 − q1)
)

≤
∣∣∣∣∣∣(µ∧ϕj

1 − µψ1
)

(p1 − q1)
∣∣∣∣∣∣

tr

[by (5.6)] ≤ ||p1 − q1||op

∣∣∣∣∣∣µ∧ϕj
1 − µψ1

∣∣∣∣∣∣
tr

=
∣∣∣∣∣∣µ∧ϕj

1 − µψ1
∣∣∣∣∣∣

tr
. (5.29)

Note that indeed ||p1 − q1||op = 1, e.g., since for all f ∈ L2(R3),

||(p1 − q1)f ||2 =
〈
f, (p1 − q1)2f

〉
= 〈f, (p1 + q1)f〉 = ||f ||2 . (5.30)

We now show
∣∣∣∣∣∣µψ1 − µ∧ϕj

1

∣∣∣∣∣∣2
HS
≤ 2

Nαn. Recall that
∣∣∣∣∣∣µψ1 ∣∣∣∣∣∣

op
= 1

N and
∣∣∣∣∣∣µψ1 ∣∣∣∣∣∣

tr
= 1. We

find, using ||AB||tr ≤ ||A||op ||B||tr,

∣∣∣∣∣∣µψ1 − µ∧ϕj
1

∣∣∣∣∣∣2
HS

= tr

((
µψ1 − µ

∧
ϕj

1

)2
)

= tr

(
1

N2
p1 −

1

N
p1µ

ψ
1 −

1

N
µψ1 p1 +

(
µψ1

)2
)

=
1

N
− 1

N

〈〈
ψ, p1ψ

〉〉
− 1

N

〈〈
ψ, p1ψ

〉〉
+ tr

((
µψ1

)2
)

[by (5.6)] ≤ 1

N

(
1−

〈〈
ψ, p1ψ

〉〉)
− 1

N

〈〈
ψ, p1ψ

〉〉
+
∣∣∣∣∣∣µψ1 ∣∣∣∣∣∣

op

∣∣∣∣∣∣µψ1 ∣∣∣∣∣∣
tr

[by Lem. 5.1] =
1

N
αn −

1

N

〈〈
ψ, p1ψ

〉〉
+

1

N

=
2

N
αn. (5.31)

We now show αn ≤
√
N
∣∣∣∣∣∣µψ1 − µ∧ϕj

1

∣∣∣∣∣∣
HS

. Using ||AB||tr ≤ ||A||HS ||B||HS, ||AB||tr ≤
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||A||op ||B||tr, ||p1||HS =
√
N , ||p1||op = 1 and (5.25) we find

∣∣∣∣∣∣µ∧ϕj
1 − µψ1

∣∣∣∣∣∣
HS
≥

∣∣∣∣∣∣(µ∧ϕj
1 − µψ1

)
p1

∣∣∣∣∣∣
tr

||p1||HS

[by (5.6)] ≥ 1√
N

∣∣∣∣∣∣p1

(
µ
∧
ϕj

1 − µψ1
)
p1

∣∣∣∣∣∣
tr

||p1||op

=
1√
N

∣∣∣∣∣∣∣∣ 1

N
p1 − p1µ

ψ
1 p1

∣∣∣∣∣∣∣∣
tr

[by (5.25)] =
1√
N
αn. (5.32)

Together, the inequalities (5.27) with (5.28), (5.29), (5.31) and (5.32) prove (3.24) and
(3.25).

Finally, let us prove Proposition 3.4 which shows that the operator norm is not useful to
measure the desired convergence.

Proof of Proposition 3.4. Starting from (5.25) from the proof of Lemma 3.2 and using
||AB||tr ≤ ||A||HS ||B||HS, ||AB||HS ≤ ||A||HS ||B||op and ||p1||2HS = N , we find

αn =

∣∣∣∣∣∣∣∣ 1

N
p1 − p1µ

ψ
1 p1

∣∣∣∣∣∣∣∣
tr

=
∣∣∣∣∣∣p1

(
µ
∧
ϕj

1 − µψ1
)
p1

∣∣∣∣∣∣
tr

[by (5.8)] ≤ ||p1||HS

∣∣∣∣∣∣(µ∧ϕj
1 − µψ1

)
p1

∣∣∣∣∣∣
HS

[by (5.7)] ≤ ||p1||2HS

∣∣∣∣∣∣µ∧ϕj
1 − µψ1

∣∣∣∣∣∣
op

= N
∣∣∣∣∣∣µ∧ϕj

1 − µψ1
∣∣∣∣∣∣

op
, (5.33)

which proves (3.32) and thus (3.33).

We now construct an example for which αn → 0, but N
∣∣∣∣∣∣µψ1 − µ∧ϕj

1

∣∣∣∣∣∣
op

= 1. Consider

the density matrix

µψ̃1 =
1

N

(
pχ1 +

N∑
i=2

pϕi1

)
with 〈χ, ϕi〉 = 0 ∀i = 1, . . . , N, (5.34)

arising from the wave function ψ̃ =
∧N
j=2 ϕj ∧ χ. We find αn = 1

N and

N
∣∣∣∣∣∣µψ̃1 − µ∧ϕj

1

∣∣∣∣∣∣
op

= N

∣∣∣∣∣∣∣∣ 1

N
(pχ1 − p

ϕ1
1 )

∣∣∣∣∣∣∣∣
op

= 1, (5.35)

thus providing the desired example.



Chapter 6

Proof of Theorems for General v(N)

6.1 The Time Derivative of αf(t)

The expression for the time derivative of αf (t) for arbitrary weight functions f(k) follows
from direct calculation. We calculate it here for the general setting where the wave function
ψt ∈ L2(R3N ) is a solution to

i∂tψ
t = HNψt =

 N∑
j=1

H0
j +

∑
1≤i<j≤N

v(N)(xi − xj)

ψt, (6.1)

where the Hamiltonian HN is a self-adjoint operator, v(N)(x) = v(N)(−x) is a (possibly
scaled) real interaction potential and H0

j acts only on the j-th variable.
The general form of the fermionic mean-field equations for the one-particle wave functions

ϕt1, . . . , ϕ
t
N ∈ L2(R3) is

i∂tϕ
t
j(x) = Hmfϕtj(x) = H0ϕtj(x) +

(
V N,j,ϕt1,...,ϕ

t
Nϕtj

)
(x), (6.2)

where V N,j,ϕt1,...,ϕ
t
N =: V (N) is the mean-field interaction. The two interesting cases are when

there is only the direct interaction,

V N,j,ϕt1,...,ϕ
t
N (x) = V dir,(N)(x) = (v(N) ? ρtN )(x), (6.3)

where ρtN =
∑N

i=1 |ϕti|2, and when there is direct and exchange interaction,

V N,j,ϕt1,...,ϕ
t
Nϕtj(x) =

(
V dir,(N) + V exch,(N)

)
ϕtj(x)

= (v(N) ? ρtN )(x)ϕtj(x)−
N∑
`=1

(
v(N) ? (ϕt∗` ϕ

t
j)
)

(x)ϕt`(x). (6.4)

In the following chapters we often add a subscript to some of the operators above to denote
the particle index on which the operator acts, for example, as an operator on L2(R3N ),

V
(N)
k = 1⊗ . . .⊗ 1︸ ︷︷ ︸

k−1 times

⊗V (N) ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
N−k times

. (6.5)

Lemma 6.1. Let ψt ∈ L2(R3N ) be an antisymmetric solution to the Schrödinger equation
(6.1) and let ϕt1, . . . , ϕ

t
N ∈ L2(R3) be orthonormal solutions to the mean-field equations

59
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(6.2). We define W12 := N(N − 1)v
(N)
12 − NV

(N)
1 − NV (N)

2 . Then, for f̂ and αf (t) from
Definition 3.1,

i∂tf̂ =

[
N∑
m=1

Hmf
m , f̂

]
, (6.6)

∂tαf (t) =
i

2

〈〈
ψt,
[
W12, f̂

]
ψt
〉〉
. (6.7)

Remarks.

16. At this point, let us emphasize again that the kinetic and external field terms coming
from the Schrödinger and the fermionic mean-field equations cancel, which is why
the main theorems hold for any H0

j . Furthermore, only W12, the difference between
Schrödinger interaction and mean-field, enters, i.e., the method focuses directly on the
relevant point.

Proof. Note that the operators pm, qm, PN,k all depend on t through the orbitals ϕt1, . . . , ϕ
t
N .

For ease of notation,we do not explicitly write out this t-dependence. In order to prove (6.6)
we first calculate the time derivatives of pm and qm, and then of PN,k. We find

i∂tpm =
N∑
j=1

i∂t

(
|ϕtj(xm)〉〈ϕtj(xm)|

)

=

N∑
j=1

((
i∂t|ϕtj(xm)〉

)
〈ϕtj(xm)|+ |ϕtj(xm)〉

(
i∂t〈ϕtj(xm)|

))
=

N∑
j=1

(
Hmf
m |ϕtj(xm)〉〈ϕtj(xm)| − |ϕtj(xm)〉〈Hmf

m ϕtj(xm)|
)

=
[
Hmf
m , pm

]
, (6.8)

and, using pm + qm = 1,

i∂tqm = −i∂tpm = −
[
Hmf
m , pm

]
=
[
Hmf
m , qm

]
. (6.9)

Now recall from Definition 3.1 that

PN,k =
∑
~a∈Ak

N∏
m=1

(pm)1−am(qm)am (6.10)

with the set

Ak =

{
~a = (a1, . . . , aN ) ∈ {0, 1}N :

N∑
m=1

am = k

}
. (6.11)

For the following calculation we abbreviateRm = (pm)1−am(qm)am . Then i∂tRm = [Hmf
m , Rm]
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holds for am = 0 and am = 1. It follows that

i∂tPN,k = i∂t
∑
~a∈Ak

N∏
`=1

R`

=
∑
~a∈Ak

N∑
m=1

(
m−1∏
`=1

R`

)
i∂tRm

(
N∏

`=m+1

R`

)

=
∑
~a∈Ak

N∑
m=1

(
m−1∏
`=1

R`

)[
Hmf
m , Rm

]( N∏
`=m+1

R`

)

=
∑
~a∈Ak

N∑
m=1

[
Hmf
m ,

N∏
`=1

R`

]

=

[
N∑
m=1

Hmf
m , PN,k

]
, (6.12)

and thus

i∂tf̂ = i∂t

N∑
k=0

f(k)PN,k =
N∑
k=0

f(k)i∂tPN,k =
N∑
k=0

f(k)

[
N∑
m=1

Hmf
m , PN,k

]
=

[
N∑
m=1

Hmf
m , f̂

]
.

(6.13)
Using this and the antisymmetry of ψt, we calculate the time derivative of αf (t). We find

∂tαf (t) = ∂t

〈〈
ψt, f̂ ψt

〉〉
=
〈〈 (

∂tψ
t
)
, f̂ ψt

〉〉
+
〈〈
ψt, f̂

(
∂tψ

t
) 〉〉

+
〈〈
ψt,
(
∂tf̂
)
ψt
〉〉

= i
〈〈
HNψt, f̂ ψt

〉〉
− i
〈〈
ψt, f̂ HNψt

〉〉
− i
〈〈
ψt,

[
N∑
m=1

Hmf
m , f̂

]
ψt
〉〉

= i
〈〈
ψt,

[
HN −

N∑
m=1

Hmf
m , f̂

]
ψt
〉〉

= i
〈〈
ψt,

 N∑
j=1

H0
j +

∑
1≤i<j≤N

v(N)(xi − xj)−
N∑
m=1

(
H0
m + V (N)

m

)
, f̂

ψt〉〉

= i
〈〈
ψt,

 ∑
1≤i<j≤N

v(N)(xi − xj)−
N∑
m=1

V (N)
m , f̂

ψt〉〉
= i
〈〈
ψt,

[
N(N − 1)

2
v(N)(x1 − x2)− N

2
V

(N)
1 − N

2
V

(N)
2 , f̂

]
ψt
〉〉

=
i

2

〈〈
ψt,
[
W12, f̂

]
ψt
〉〉
. (6.14)

In order to simplify the expression (6.7) we need the following auxiliary lemma.

Lemma 6.2. As in Definition 4.1, we abbreviate P
{1,2}
0 = p1p2, P

{1,2}
1 = p1q2 + q1p2 and

P
{1,2}
2 = q1q2. Let h12 be an operator that acts only on the first and second particle index.

Then
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(a) for all a, b = 0, 1, 2, and for all k = 1, . . . , N ,(
P {1,2}a h12P

{1,2}
b

)
PN,k = PN,k+a−b

(
P {1,2}a h12P

{1,2}
b

)
, (6.15)

PN,k

(
P {1,2}a h12P

{1,2}
b

)
=
(
P {1,2}a h12P

{1,2}
b

)
PN,k+b−a, (6.16)

(b) for all a, b = 0, 1, 2, (
P {1,2}a h12P

{1,2}
b

)
f̂ = f̂b−a

(
P {1,2}a h12P

{1,2}
b

)
, (6.17)

f̂
(
P {1,2}a h12P

{1,2}
b

)
=
(
P {1,2}a h12P

{1,2}
b

)
f̂a−b. (6.18)

Proof. (a) We first split up the PN,k,

PN,k =

2∑
d=0

P
{1,2}
d P

{3,...,N}
k−d , (6.19)

where P
{3,...,N}
k−d , as in Definition 4.1, contains k − d q’s, and acts only on the variables

3, . . . , N . Now note that Pa
{1,2}Pb

{1,2} = δabPa
{1,2}. Then we find

(
P {1,2}a h12P

{1,2}
b

)
PN,k =

(
P {1,2}a h12P

{1,2}
b

) 2∑
d=0

P
{1,2}
d P

{3,...,N}
k−d

= P {1,2}a h12P
{1,2}
b P

{3,...,N}
k−b

= P
{3,...,N}
k−b P {1,2}a h12P

{1,2}
b

=
2∑
d=0

P
{1,2}
d P

{3,...,N}
k+a−b−d

(
P {1,2}a h12P

{1,2}
b

)
= PN,k+a−b

(
P {1,2}a h12P

{1,2}
b P

{1,2}
b

)
. (6.20)

In the same way (or by just renaming k′ = k + a− b, such that k = k′ + b− a) we find
that (6.16) holds.

(b) From (6.20) it follows directly that

(
P {1,2}a h12P

{1,2}
b

)
f̂ = P {1,2}a h12P

{1,2}
b

N∑
k=0

f(k)PN,k

=
N∑
k=0

f(k)PN,k+a−bP
{1,2}
a h12P

{1,2}
b

= f̂b−a

(
P {1,2}a h12P

{1,2}
b

)
, (6.21)

and in the same way (6.18) follows directly from (6.16).

With Lemma 6.2 we can simplify the expression (6.7) for the time derivative of αf (t) by
splitting it into three parts, each of which will be estimated separately later.
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Lemma 6.3. Let ψt ∈ L2(R3N ) be an antisymmetric solution to the Schrödinger equation
(6.1) and let ϕt1, . . . , ϕ

t
N ∈ L2(R3) be orthonormal solutions to the mean-field equations (6.2).

Then

∂tαf (t) = 2 Im
〈〈
ψt, N

(
f̂ − f̂−1

)
q1

(
(N − 1)p2v

(N)
12 p2 − V (N)

1

)
p1ψ

t
〉〉

+ Im
〈〈
ψt, N

(
f̂ − f̂−2

)
q1q2(N − 1)v

(N)
12 p1p2ψ

t
〉〉

+ 2 Im
〈〈
ψt, N

(
f̂ − f̂−1

)
q1q2(N − 1)v

(N)
12 p1q2ψ

t
〉〉
. (6.22)

Remarks.

17. Note that the time derivative is formally the same as for bosons, where p1 := |ϕ〉〈ϕ|1,
see [46, 47]. Note that in [46, 47] the splitting into three summands is done slightly
differently: compared to (6.22), an additional identity 1 = p2 + q2 is added in front of

V
(N)

1 .

18. For the case f(k) = n(k) = k
N we find a simple expression for the time derivative of

αn(t) = 〈〈ψt, q1ψ
t〉〉. Note that, in view of Definition 3.1 and the identity

∑N
k=0 PN,k = 1

(which we prove later in Lemma 6.4),

n̂− n̂−1 =

N∑
k=1

(
k

N
− (k − 1)

N

)
PN,k =

1

N

N∑
k=1

PN,k =
1

N
− 1

N
PN,0, (6.23)

and

n̂− n̂−2 =
1

N
PN,1 +

N∑
k=2

(
k

N
− (k − 2)

N

)
PN,k

=
1

N
PN,1 +

2

N

N∑
k=2

PN,k

=
2

N
− 1

N
PN,1 −

2

N
PN,0. (6.24)

Then, using PN,0q1 = 0 = PN,1q1q2, the expression (6.22) simplifies to

∂tαn(t) = 2 Im
〈〈
ψt, q1

(
(N − 1)p2v

(N)
12 p2 − V (N)

1

)
p1ψ

t
〉〉

+ Im
〈〈
ψt, q1q2(N − 1)v

(N)
12 p1p2ψ

t
〉〉

+ 2 Im
〈〈
ψt, q1q2(N − 1)v

(N)
12 p1q2ψ

t
〉〉
. (6.25)

Proof of Lemma 6.3. We calculate the time derivative of αf (t) using the expression (6.7)
from Lemma 6.1. The idea of the proof is to insert two identities 1 = p1 + q1 and 1 = p2 + q2

in front of each ψt (which leads to 16 summands) and then to use Lemma 6.2 in order to
shift f̂ . It turns out that a lot of terms drop out due to the commutator structure. We

again use the notation P
{1,2}
0 = p1p2, P

{1,2}
1 = p1q2 + q1p2 and P

{1,2}
2 = q1q2. Note that∑2

a=0 P
{1,2}
a = 1, since p1p2 + p1q2 + q1p2 + q1q2 = (p1 + q1)(p2 + q2) = 1. We abbreviate

Pa = P
{1,2}
a for the following calculation. Inserting the two identities and using Lemma 6.2
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we find (a↔ b means that we interchanged the indices a, b)

∂tαf (t) =
i

2

〈〈
ψt,
[
W12, f̂

]
ψt
〉〉

=
i

2

2∑
a,b=0

〈〈
ψt, Pa

[
W12, f̂

]
Pb ψ

t
〉〉

=
i

2

∑
a

〈〈
ψt,
(
PaW12Paf̂ − f̂PaW12Pa

)
ψt
〉〉

+
i

2

∑
a>b

〈〈
ψt,
(
PaW12Pbf̂ − f̂PaW12Pb

)
ψt
〉〉

+
i

2

∑
a<b

〈〈
ψt,
(
PaW12Pbf̂ − f̂PaW12Pb

)
ψt
〉〉

[by Lem. 6.2] =
i

2

∑
a>b

〈〈
ψt,
(
PaW12Pbf̂ − f̂PaW12Pb

)
ψt
〉〉

[by a↔ b] +
i

2

∑
a>b

〈〈
ψt,
(
PbW12Paf̂ − f̂PbW12Pa

)
ψt
〉〉

[by Lem. 6.2] =
i

2

∑
a>b

〈〈
ψt,
(
f̂b−a − f̂

)
PaW12Pb ψ

t
〉〉

− i

2

∑
a>b

〈〈
ψt, PbW12Pa

(
f̂b−a − f̂

)
ψt
〉〉

= −Im
∑
a>b

〈〈
ψt,
(
f̂b−a − f̂

)
PaW12Pb ψ

t
〉〉

= −Im
〈〈
ψt,
(
f̂−1 − f̂

)
(p1q2 + q1p2)W12p1p2ψ

t
〉〉

− Im
〈〈
ψt,
(
f̂−2 − f̂

)
q1q2W12p1p2ψ

t
〉〉

− Im
〈〈
ψt,
(
f̂−1 − f̂

)
q1q2W12(p1q2 + q1p2)ψt

〉〉
[by W12 = W21] = 2 Im

〈〈
ψt,
(
f̂ − f̂−1

)
q1p2W12p1p2ψ

t
〉〉

+ Im
〈〈
ψt,
(
f̂ − f̂−2

)
q1q2W12p1p2ψ

t
〉〉

+ 2 Im
〈〈
ψt,
(
f̂ − f̂−1

)
q1q2W12p1q2ψ

t
〉〉
. (6.26)

Now recall that W12 := N(N − 1)v
(N)
12 − NV

(N)
1 − NV (N)

2 . Inserting this definition, and



6.2. General Lemmas about the Projectors, f̂ and αf (t) 65

using p1q1 = 0 = p2q2 and p2 + q2 = 1, we find

∂tαf (t) = 2 Im
〈〈
ψt,
(
f̂ − f̂−1

)
q1p2

(
N(N − 1)v

(N)
12 −NV

(N)
1 −NV (N)

2

)
p1p2ψ

t
〉〉

+ Im
〈〈
ψt,
(
f̂ − f̂−2

)
q1q2

(
N(N − 1)v

(N)
12 −NV

(N)
1 −NV (N)

2

)
p1p2ψ

t
〉〉

+ 2 Im
〈〈
ψt,
(
f̂ − f̂−1

)
q1q2

(
N(N − 1)v

(N)
12 −NV

(N)
1 −NV (N)

2

)
p1q2ψ

t
〉〉

= 2 Im
〈〈
ψt,
(
f̂ − f̂−1

)
q1p2

(
N(N − 1)v

(N)
12 −NV

(N)
1

)
p1p2ψ

t
〉〉

+ Im
〈〈
ψt,
(
f̂ − f̂−2

)
q1q2

(
N(N − 1)v

(N)
12

)
p1p2ψ

t
〉〉

+ 2 Im
〈〈
ψt,
(
f̂ − f̂−1

)
q1q2

(
N(N − 1)v

(N)
12 −NV

(N)
1

)
p1q2ψ

t
〉〉

= 2 Im
〈〈
ψt, N

(
f̂ − f̂−1

)
q1

(
(N − 1)p2v

(N)
12 p2 − V (N)

1

)
p1ψ

t
〉〉

+ Im
〈〈
ψt, N

(
f̂ − f̂−2

)
q1q2

(
(N − 1)v

(N)
12

)
p1p2ψ

t
〉〉

+ 2 Im
〈〈
ψt, N

(
f̂ − f̂−1

)
q1q2

(
(N − 1)v

(N)
12

)
p1q2ψ

t
〉〉
. (6.27)

In order to control the time derivative of αf (t), each of the three terms in (6.22) is
bounded separately. Before we estimate these terms in Chapter 6.4, we need to establish
several techniques and properties of these terms in Chapters 6.2 and 6.3.

6.2 General Lemmas about the Projectors, f̂ and αf(t)

The following lemma collects some properties of the projectors PN,k and the operator n̂
from Definition 3.1 and (3.10) that we use in subsequent lemmas.

Lemma 6.4. For the objects from Definition 3.1 and all antisymmetric ψas ∈ L2(R3N ),

PN,kPN,` = δk`PN,k ∀k, ` = 1, . . . , N, (6.28)

N∑
k=0

PN,k = 1, (6.29)

n̂ :=
N∑
k=0

k

N
PN,k =

1

N

N∑
m=1

qm, (6.30)

αn := 〈〈ψas, n̂ ψas〉〉 = 〈〈ψas, q1ψas〉〉, (6.31)

〈〈ψas, q1q2ψas〉〉 ≤
N

N − 1
〈〈ψas, (n̂)2 ψas〉〉. (6.32)

Proof. Recall from Definition 3.1 that the projectors PN,k are defined by

PN,k :=
∑
~a∈Ak

N∏
m=1

(pm)1−am(qm)am (6.33)
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with the set

Ak :=

{
~a = (a1, . . . , aN ) ∈ {0, 1}N :

N∑
m=1

am = k

}
. (6.34)

From pmqm = 0 it follows that for all k, ` = 1, . . . , N ,

PN,kPN,` =
∑
~a∈Ak

∑
~b∈A`

N∏
m=1

(pm)1−am(qm)am(pm)1−bm(qm)bm

=
∑
~a∈Ak

∑
~b∈A`

N∏
m=1

δambm(pm)1−am(qm)am

= δk`
∑
~a∈Ak

N∏
m=1

(pm)1−am(qm)am

= δk`PN,k. (6.35)

From
⋃N
k=0Ak = {0, 1}N and pm + qm = 1 it follows that

N∑
k=0

PN,k =
N∑
k=0

∑
~a∈Ak

N∏
m=1

(pm)1−am(qm)am

=
∑

~a∈{0,1}N

N∏
m=1

(pm)1−am(qm)am

=
N∏
m=1

(pm + qm)

= 1. (6.36)

Now recall that PN,k contains k q’s in each summand and therefore

(
N∑
m=1

qm

)
PN,k = k PN,k. (6.37)

Using this and (6.36) we find

n̂ =

N∑
k=0

k

N
PN,k =

N∑
k=0

1

N

(
N∑
m=1

qm

)
PN,k =

1

N

(
N∑
m=1

qm

)
N∑
k=0

PN,k =
1

N

N∑
m=1

qm. (6.38)

From the antisymmetry of ψas and (6.38) it then follows directly that

〈〈ψas, n̂ ψas〉〉 =
1

N

N∑
m=1

〈〈ψas, qmψas〉〉 =
1

N

N∑
m=1

〈〈ψas, q1ψas〉〉 = 〈〈ψas, q1ψas〉〉. (6.39)



6.2. General Lemmas about the Projectors, f̂ and αf (t) 67

Using again the antisymmetry of ψas, as well as (6.38) and (6.39), we find

〈〈ψas, q1q2ψas〉〉 =
1

N − 1

N∑
m=2

〈〈ψas, q1qmψas〉〉

=
1

N − 1

(
N∑
m=1

〈〈ψas, q1qmψas〉〉 − 〈〈ψas, q1ψas〉〉

)

=
1

N − 1

(
1

N

N∑
m=1

N∑
n=1

〈〈ψas, qmqnψas〉〉 − 〈〈ψas, q1ψas〉〉

)

=
N

N − 1

(
N∑
m=1

N∑
n=1

1

N2
〈〈ψas, qmqnψas〉〉 −

1

N
〈〈ψas, q1ψas〉〉

)

=
N

N − 1

〈〈ψas,( 1

N

N∑
m=1

qm

)2

ψas〉〉 −
1

N
〈〈ψas, q1ψas〉〉


[by (6.38)] =

N

N − 1

〈〈ψas, (n̂)2 ψas〉〉 −
1

N
〈〈ψas, q1ψas〉〉︸ ︷︷ ︸

≥0


≤ N

N − 1
〈〈ψas, (n̂)2 ψas〉〉. (6.40)

We now turn to the operators f̂ from Definition 3.1. The following lemma gives a simple
expression for powers of f̂ .

Lemma 6.5. For all 0 < s ∈ Q and f ≥ 0,(
f̂
)s

= f̂s. (6.41)

Proof. Recall that according to Lemma 6.4,

PN,kPN,` = δk`PN,k (6.42)

for all k, ` = 1, . . . , N . Let 0 6= n ∈ N. Then(
f̂
)n

=

N∑
k1=0

f(k1)PN,k1 · . . . ·
N∑

kn=0

f(kn)PN,kn

=
N∑

k1,...,kn=0

 n∏
j=1

f(kj)

 n∏
j=1

PN,kj


=

N∑
k=0

f(k)nPN,k

= f̂n. (6.43)

Recall that f ≥ 0. It follows that for all 0 6= m ∈ N,(
f̂

1
m

)m
= f̂

m
m = f̂ , (6.44)
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so (
f̂
) 1
m

= f̂
1
m . (6.45)

Together, Equations (6.43) and (6.45) prove the lemma.

For completeness, let us also show how f̂ can be inverted. (The next lemma is not
necessary for proving the rest of the statements in this thesis.)

Lemma 6.6. Let f(0) = 0 and f(k) > 0 for all 0 < k ≤ N . Then, for all 0 < s ∈ Q,

f̂ −s (1− PN,0) = f̂−s, (6.46)

with the definition f̂−s =
∑N

k=1 f(k)−sPN,k.

Proof. Recall that f(0) = 0. First, note that

f̂−1f̂ =

N∑
k=1

1

f(k)
PN,k

N∑
`=1

f(`)PN,`

=
N∑
k=1

PN,k

= 1− PN,0. (6.47)

It follows that

f̂−1 = f̂−1 (1− PN,0) . (6.48)

Therefore, for all 0 < s ∈ Q,

f̂−s = f̂−1
s

= f̂−s (1− PN,0)s . (6.49)

We now show that (1− PN,0)s = 1−PN,0. First, let 0 6= n ∈ N. By induction ((1− PN,0)1 =
1− PN,0, and now assuming (1− PN,0)n = 1− PN,0),

(1− PN,0)n+1 = (1− PN,0)n (1− PN,0)

= (1− PN,0) (1− PN,0)

= 1− PN,0 − PN,0 + PN,0

= 1− PN,0, (6.50)

so (1− PN,0)n = 1 − PN,0 for all 0 6= n ∈ N. Then also (1− PN,0)
1
m = 1 − PN,0, since

(1− PN,0)m = 1− PN,0, which proves the lemma.

In order to estimate the three terms in (6.22) of the time derivative of αf (t), we need to
use the Cauchy-Schwarz inequality on both sides of the scalar product. It turns out that we

often need a

√
f̂ − f̂−d together with a ψ, so we need to shift one

√
f̂ − f̂−d to the other

side of the scalar product. The following lemma shows how this can be done.

Lemma 6.7. Let h12 be an operator acting only on x1 and x2, a, b ∈ {0, 1, 2} and d ∈
{1, 2}. (Recall that according to Definition 4.1, P0

{1,2} = p1p2, P1
{1,2} = p1q2 + q1p2 and
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P2
{1,2} = q1q2.) Then, for all monotone increasing f and ψ ∈ L2(R3N ),〈〈

ψ,
(
f̂ − f̂−d

)
P {1,2}a h12P

{1,2}
b ψ

〉〉
=
〈〈
ψ,
(
f̂ − f̂−d

) 1
2
P {1,2}a h12P

{1,2}
b ×

×

(
f̂a−b − f̂a−b−d +

a−b∑
`=1

f(N − d+ `)PN,N−(a−b)+`

) 1
2

ψ
〉〉

=
〈〈
ψ,
(
f̂ − f̂−d

) 1
2
P {1,2}a h12P

{1,2}
b

(
f̂a−b − f̂a−b−d

) 1
2
ψ
〉〉
. (6.51)

Proof. Recall that for all k < 0 and k > N we define f(k) = 0 and PN,k = 0. Also recall the

definition of the shifted f̂ ,

f̂d =

N∑
k=0

f(k + d)PN,k. (6.52)

We find, using Lemma 6.2 and PN,kPN,` = δk`PN,k from Lemma 6.4, that〈〈
ψ,
(
f̂ − f̂−d

)
P {1,2}a h12P

{1,2}
b ψ

〉〉
=
〈〈
ψ,

N∑
k=0

(
f(k)− f(k − d)

)
PN,kP

{1,2}
a h12P

{1,2}
b ψ

〉〉
[by Lem. 6.2] =

〈〈
ψ,

N∑
k=0

(
f(k)− f(k − d)

) 1
2PN,kP

{1,2}
a h12P

{1,2}
b ×

×
(
f(k)− f(k − d)

) 1
2PN,k+b−aψ

〉〉
=
〈〈
ψ,

N∑
k=0

(
f(k)− f(k − d)

) 1
2PN,kP

{1,2}
a h12P

{1,2}
b ×

×
N+b−a∑
`=b−a

(
f(`− b+ a)− f(`− b+ a− d)

) 1
2PN,` ψ

〉〉
. (6.53)

Note that f(k)−f(k−d) ≥ 0 since f is monotone increasing. Furthermore, with Lemma 6.5,

N+b−a∑
`=b−a

(
f(`− b+ a)− f(`− b+ a− d)

) 1
2
PN,` ψ

=

(
N+b−a∑
`=b−a

(
f(`− b+ a)− f(`− b+ a− d)

)
PN,`

) 1
2

ψ

=

(
f̂a−b − f̂a−b−d +

N∑
`=N+b−a+1

f(`− b+ a− d)PN,`

) 1
2

ψ

=

(
f̂a−b − f̂a−b−d +

a−b∑
`=1

f(N − d+ `)PN,N−(a−b)+`

) 1
2

ψ. (6.54)

In order to show the second equality in (6.51) we use that in (6.53) there is a P
{1,2}
b in front

of (6.54). The operator P
{1,2}
b contains b q’s or (2− b) p’s. Therefore PN,`P

{1,2}
b = 0 for all
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N + b − a < ` ≤ N for all combinations of a, b = 0, 1, 2.1 Then, in (6.54) multiplied with

P
{1,2}
b , one can replace

∑N+b−a
`=b−a by

∑N
`=b−a, and

N+b−a∑
`=b−a

(
f(`− b+ a)− f(`− b+ a− d)

) 1
2
PN,`P

{1,2}
b ψ

=
N∑

`=b−a

(
f(`− b+ a)− f(`− b+ a− d)

) 1
2
PN,`P

{1,2}
b ψ

=

(
N∑

`=b−a
f(`− b+ a)PN,` −

N∑
`=b−a

f(`− b+ a− d)PN,`

) 1
2

P
{1,2}
b ψ

=
(
f̂a−b − f̂a−b−d

) 1
2P
{1,2}
b ψ. (6.55)

The next lemma shows how expressions involving

√
f̂ − f̂−d ψ and possibly one or two

q’s can be estimated explicitly for the weight function m(γ)(k) that we use later.

Lemma 6.8. Let m̂ := m̂(γ) =
∑N

k=0m
(γ)(k)PN,k with m(γ)(k) as in (3.12). For any

antisymmetric ψas ∈ L2(R3N ), we abbreviate

ψ̃1 := (m̂− m̂−d)
1
2 ψas, (6.56)

and

ψ̃0 :=

(
m̂d − m̂+

d∑
`=1

m(N − d+ `)PN,N−d+`

) 1
2

ψas, (6.57)

for any d = 1, 2. Then, for all c = 0, 1 and all normalized antisymmetric ψas,∣∣∣∣∣∣ψ̃c∣∣∣∣∣∣2 ≤ dN−γ , (6.58)

∣∣∣∣∣∣q1ψ̃c

∣∣∣∣∣∣2 ≤ d(d+ 1)cN−1 αm, (6.59)

∣∣∣∣∣∣q1q2ψ̃c

∣∣∣∣∣∣2 ≤ d(d+ 1)2cNγ−2 αm. (6.60)

Proof. The proof of this lemma is not hard but the many different cases and the appearance
of certain boundary terms make it a bit lengthy. Let us therefore give a short version of the

1The possible cases are:

• b − a = −1: Then ` = N and either b = 0 or b = 1. Then P
{1,2}
b contains at lest one p and since

PN,Np1 = 0, also PN,`P
{1,2}
b = 0.

• b − a = −2: Then either ` = N − 1 or ` = N and b = 0. Then P
{1,2}
b contains two p’s and since

PN,N−1p1p2 = 0 = PN,Np1p2, also PN,`P
{1,2}
b = 0.
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proof first and afterwards present more details. First, recall that according to Lemma 6.4,
for all ψas,

〈〈ψas, q1ψas〉〉 =
N∑
k=0

k

N
〈〈ψas, PN,kψas〉〉, (6.61)

and

〈〈ψas, q1q2ψas〉〉 ≤ 2
N∑
k=0

(
k

N

)2

〈〈ψas, PN,kψas〉〉. (6.62)

We denote by b·c the floor function, i.e., for any x ∈ R, bxc = max{m ∈ Z : m ≤ x}. Note
that

αm =
N∑
k=0

m(k)
〈〈
ψas, PN,kψas

〉〉
=

bNγc∑
k=1

k

Nγ

〈〈
ψas, PN,kψas

〉〉
+

N∑
k=bNγc+1

〈〈
ψas, PN,kψas

〉〉
.

(6.63)
Short version. Note that

m̂− m̂−d =
N∑
k=0

(
m(k)−m(k − d)

)
PN,k ≈ N−γ

Nγ∑
k=0

PN,k, (6.64)

and similarly for m̂d− m̂. (It is this point where we neglect boundary terms at k ≈ Nγ ; later
the “≈ . . . ” is replaced by “≤ C . . . ”.) Therefore (note that q1m̂ = m̂q1 and

∑N
k=0 PN,k = 1),

∣∣∣∣∣∣(m̂− m̂−d) 1
2 ψas

∣∣∣∣∣∣2 =
〈〈
ψas,

(
m̂− m̂−d

)
ψas

〉〉
≈ N−γ

Nγ∑
k=0

〈〈
ψas, PN,kψas

〉〉
≤ N−γ ,

(6.65)∣∣∣∣∣∣q1 (m̂− m̂−d)
1
2 ψas

∣∣∣∣∣∣2 =
〈〈
ψas, q1

(
m̂− m̂−d

)
ψas

〉〉
≈ N−γ

Nγ∑
k=0

k

N

〈〈
ψas, PN,kψas

〉〉
= N−1

Nγ∑
k=0

k

Nγ

〈〈
ψas, PN,kψas

〉〉
≤ N−1αm, (6.66)

and∣∣∣∣∣∣q1q2 (m̂− m̂−d)
1
2 ψas

∣∣∣∣∣∣2 =
〈〈
ψas, q1q2

(
m̂− m̂−d

)
ψas

〉〉
/ N−γ

Nγ∑
k=0

k2

N2

〈〈
ψas, PN,kψas

〉〉
= Nγ−2

Nγ∑
k=0

k2

N2γ

〈〈
ψas, PN,kψas

〉〉
≤ Nγ−2αm. (6.67)

What we now do in the more detailed proof is to keep track of the boundary terms at
k ≈ Nγ and therewith keep track of the exact constants that appear in the estimates.

Detailed proof. Let us first consider

ψ̃ = (m̂− m̂−d)
1
2 ψas. (6.68)

We need the following estimates:(
m(k)−m(k − d)

)
≤
{

k
Nγ − (k−d)

Nγ , k ≤ Nγ + d
0 , k > Nγ + d

}
=

{
d
Nγ , k ≤ Nγ + d
0 , k > Nγ + d

, (6.69)
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k

N

(
m(k)−m(k − d)

)
≤
{

dk
NNγ , k ≤ Nγ + d

0 , k > Nγ + d

≤


dk
NNγ , k ≤ Nγ

d(Nγ+d)
NNγ , Nγ < k ≤ Nγ + d

0 , k > Nγ + d

≤ d(d+ 1)

N


k
Nγ , k ≤ Nγ

1 , Nγ < k ≤ Nγ + d
0 , k > Nγ + d

, (6.70)

(
k

N

)2 (
m(k)−m(k − d)

)
≤
{

dk2

N2Nγ , k ≤ Nγ + d
0 , k > Nγ + d

≤


dNγk
N2Nγ , k ≤ Nγ

d(Nγ+d)2

N2Nγ , Nγ < k ≤ Nγ + d
0 , k > Nγ + d

≤ d(d+ 1)2Nγ

N2


k
Nγ , k ≤ Nγ

1 , Nγ < k ≤ Nγ + d
0 , k > Nγ + d

. (6.71)

With theses estimates we have∣∣∣∣∣∣(m̂− m̂−d) 1
2 ψas

∣∣∣∣∣∣2 =
〈〈
ψas,

(
m̂− m̂−d

)
ψas

〉〉
=

N∑
k=0

(
m(k)−m(k − d)

)
︸ ︷︷ ︸

≥0

〈〈
ψas, PN,kψas

〉〉
︸ ︷︷ ︸

≥0

≤
bNγc+d∑
k=0

d

Nγ

〈〈
ψas, PN,kψas

〉〉
≤ d

Nγ

〈〈
ψas,

N∑
k=0

PN,kψas

〉〉
=

d

Nγ
, (6.72)

and, with (6.61),∣∣∣∣∣∣q1 (m̂− m̂−d)
1
2 ψas

∣∣∣∣∣∣2
=

N∑
k=0

(
m(k)−m(k − d)

)〈〈
ψas, q1PN,kψas

〉〉
=

N∑
k=0

k

N

(
m(k)−m(k − d)

)〈〈
ψas, PN,kψas

〉〉

≤ d(d+ 1)

N

bNγc∑
k=0

k

Nγ

〈〈
ψas, PN,kψas

〉〉
+

N∑
k=bNγc+1

〈〈
ψas, PN,kψas

〉〉
≤ d(d+ 1)

N
αm, (6.73)
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and, with (6.62),∣∣∣∣∣∣q1q2 (m̂− m̂−d)
1
2 ψas

∣∣∣∣∣∣2
=

N∑
k=0

(
m(k)−m(k − d)

)〈〈
ψas, q1q2PN,kψas

〉〉
≤ 2

N∑
k=0

(
k

N

)2 (
m(k)−m(k − d)

)〈〈
ψas, PN,kψas

〉〉

≤ d(d+ 1)2Nγ

N2

bNγc∑
k=0

k

Nγ

〈〈
ψas, PN,kψas

〉〉
+

N∑
k=bNγc+1

〈〈
ψas, PN,kψas

〉〉
≤ d(d+ 1)2Nγ

N2
αm. (6.74)

We now consider

ψ̃ =

(
m̂d − m̂+

d∑
`=1

m(N − d+ `)PN,N−d+`

) 1
2

ψas. (6.75)

We need the estimates(
m(k + d)−m(k)

)
≤
{

d
Nγ , k ≤ Nγ

0 , Nγ < k ≤ N − d , (6.76)

k

N

(
m(k + d)−m(k)

)
≤ d

N

{
k
Nγ , k ≤ Nγ

0 , Nγ < k ≤ N − d , (6.77)

(
k

N

)2 (
m(k + d)−m(k)

)
≤
{

dk2

N2Nγ , k ≤ Nγ

0 , Nγ < k ≤ N − d

≤ dNγ

N2

{
k
Nγ , k ≤ Nγ

0 , Nγ < k ≤ N − d . (6.78)

With these estimates we find∣∣∣∣∣∣
∣∣∣∣∣∣
(
m̂d − m̂+

d∑
`=1

m(N − d+ `)PN,N−d+`

) 1
2

ψas

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=
〈〈
ψas,

(
m̂d − m̂+

d∑
`=1

m(N − d+ `)PN,N−d+`

)
ψas

〉〉
=

N∑
k=0

〈〈
ψas,

((
m(k + d)−m(k)

)
PN,k +

d∑
`=1

m(N − d+ `)PN,N−d+`

)
ψas

〉〉
=

N−d∑
k=0

(
m(k + d)−m(k)

)〈〈
ψas, PN,kψas

〉〉

≤
bNγc∑
k=0

d

Nγ

〈〈
ψas, PN,kψas

〉〉
≤ d

Nγ
, (6.79)
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and, with (6.61),∣∣∣∣∣∣
∣∣∣∣∣∣q1

(
m̂d − m̂+

d∑
`=1

m(N − d+ `)PN,N−d+`

) 1
2

ψas

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

N−d∑
k=0

k

N

(
m(k + d)−m(k)

)〈〈
ψas, PN,kψas

〉〉

≤ d

N

bNγc∑
k=0

k

Nγ

〈〈
ψas, PN,kψas

〉〉
+

N∑
k=bNγc+1

〈〈
ψas, PN,kψas

〉〉
≤ d

N
αm, (6.80)

and, with (6.62),∣∣∣∣∣∣
∣∣∣∣∣∣q1q2

(
m̂d − m̂+

d∑
`=1

m(N − d+ `)PN,N−d+`

) 1
2

ψas

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 2

N−d∑
k=0

(
k

N

)2 (
m(k + d)−m(k)

)〈〈
ψas, PN,kψas

〉〉

≤ dNγ

N2

bNγc∑
k=0

k

Nγ

〈〈
ψas, PN,kψas

〉〉
+

N∑
k=bNγc+1

〈〈
ψas, PN,kψas

〉〉
≤ dNγ

N2
αm. (6.81)

6.3 Diagonalization of p2h12p2 and Related Lemmas

In the time derivative of αf from equation (6.22) there appears the operator p2v12p2. Later,
when we use the Cauchy-Schwarz inequality on the terms from (6.22), we also have to
deal with related operators like p2v

2
12p2. Generally, for any function h(x) (recall that we

write h12 = h(x1 − x2)), an operator of the type p2h12p2 is a multiplication operator in x1

and a projector onto the N -dimensional subspace span(ϕ1, . . . , ϕN ) in the second variable.
Therefore one can write it as an x1 dependent (N×N)-matrix, acting on the second variable.
This matrix is self-adjoint and non-negative for h ≥ 0. Therefore, for fixed x1, one can
diagonalize it, as is shown in the following lemma. (Since we later split v = v+ − v−, with
v+, v− ≥ 0 we state the lemma only for non-negative h.) Recall that we denote by |·〉m a
vector acting on the m-th variable of L2(R3N ), and by 〈·, ·〉m the scalar product only in the
m-th variable.

Lemma 6.9. Let h(x) be a non-negative function. Let h and ϕ1, . . . , ϕN be such that

(h ? ρN )(x) <∞ (6.82)

for all x ∈ R3, where ρN (x) :=
∑N

i=1 |ϕi(x)|2. Then, for fixed x1, there are orthonormal
functions χx1

1 , . . . , χ
x1
N ∈ span(ϕ1, . . . , ϕN ) and non-negative eigenvalues λ1(x1), . . . , λN (x1),
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such that

p2h12p2 =

N∑
i=1

λi(x1) |χx1
i 〉〈χ

x1
i |2 =

N∑
i=1

λi(x1) p
χ
x1
i

2 (6.83)

with

λi(x1) = 〈χx1
i , h12 χ

x1
i 〉2 (x1) =

∫
d3x h(x1 − x) |χx1

i (x)|2 <∞ ∀ i = 1, . . . , N ∀x1 ∈ R3,

(6.84)
and, for i 6= j, 〈

χx1
i , h12 χ

x1
j

〉
2

(x1) = 0 ∀ x1 ∈ R3. (6.85)

Furthermore,
N∑
i=1

λi(x1) =
N∑
i=1

〈ϕi, h12 ϕi〉2 (x1) = (h ? ρN )(x1). (6.86)

Proof. In the following we always keep x1 fixed. First, note that

p2h12p2 =
N∑

i,j=1

|ϕi〉〈ϕi|2 h(x1 − x2) |ϕj〉〈ϕj |2

=

N∑
i,j=1

〈ϕi, h12 ϕj〉2 (x1) |ϕi〉〈ϕj |2. (6.87)

In the second variable this is a self-adjoint (N ×N)-matrix. For h ≥ 0 it is non-negative
and can therefore be diagonalized with non-negative eigenvalues. That means, there is a
unitary (N ×N)-matrix U(x1), such that, for all i = 1, . . . , N , the functions

|χx1
i 〉2 =

N∑
k=1

Uik(x1) |ϕk〉2 (6.88)

are orthonormal, and such that

p2h12p2 =

N∑
i=1

λi(x1) |χx1
i 〉〈χ

x1
i |2 =

N∑
i=1

λi(x1) p
χ
x1
i

2 . (6.89)

Note that (6.88) can be inverted, i.e.,

|ϕk〉2 =

N∑
`=1

U∗`k(x1) |χx1
` 〉2, (6.90)

where ∗ denotes complex conjugation. The projector p2 is independent of the choice of basis,
therefore

p2 =

N∑
i=1

|ϕi〉〈ϕi|2 =

N∑
i=1

|χx1
i 〉〈χ

x1
i |2. (6.91)

Then, since span(χx1
1 , . . . , χ

x1
N ) = span(ϕ1, . . . , ϕN ),

λi(x1) = 〈χx1
i , p2h12p2χ

x1
i 〉2 (x1) = 〈χx1

i , h12 χ
x1
i 〉2 (x1) (6.92)
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and, for all i 6= j, 〈
χx1
i , h12 χ

x1
j

〉
2

(x1) =
〈
χx1
i , p2h12p2 χ

x1
j

〉
2

(x1)

=
〈
χx1
i , λj(x1)χx1

j

〉
2

(x1)

= λj(x1)
〈
χx1
i , χ

x1
j

〉
2

(x1)

= 0. (6.93)

Furthermore, since U(x1) is unitary,

N∑
i=1

λi(x1) =

N∑
i=1

〈χx1
i , h12 χ

x1
i 〉2 (x1)

=

N∑
i=1

N∑
j=1

N∑
k=1

U∗ij(x1)Uik(x1) 〈ϕj , h12 ϕk〉2 (x1)

=
N∑
j=1

N∑
k=1

(
N∑
i=1

U∗ij(x1)Uik(x1)

)
〈ϕj , h12 ϕk〉2 (x1)

=
N∑
j=1

N∑
k=1

δjk 〈ϕj , h12 ϕk〉2 (x1)

=

N∑
j=1

〈ϕj , h12 ϕj〉2 (x1)

= (h ? ρN )(x1). (6.94)

Lemma 6.9 can now be used to bound scalar products involving expressions like p2h12p2

by the convolution h ? ρN . The following three lemmas treat the expressions that we need
later in order to bound the time derivative of αf (t). Recall that ρN (x) :=

∑N
i=1 |ϕi(x)|2.

Lemma 6.10. Let ϕ1, . . . , ϕN ∈ L2(R3) be orthonormal and h ≥ 0. Then, for all antisym-
metric ψas ∈ L2(R3N ),

〈〈ψas, p2 h12 p2ψas〉〉 ≤
1

N − 1

(
sup
y∈R3

(h ? ρN )(y)

)
〈〈ψas, ψas〉〉. (6.95)

This inequality remains true when ψas is antisymmetric only in the variables x2, . . . , xN . It
also remains true with 1

N−1 replaced by 1
N−2 , when ψas is antisymmetric only in the variables

x2, x4, x5, . . . , xN .

Lemma 6.11. Let ϕ1, . . . , ϕN ∈ L2(R3) be orthonormal and h ≥ 0. Then, for all antisym-
metric ψas ∈ L2(R3N ),

〈〈ψas, p1p2 h12 p1p2ψas〉〉 ≤
1

N(N − 1)

(∫
R3

(h ? ρN )(y) ρN (y) d3y

)
〈〈ψas, ψas〉〉. (6.96)

This inequality remains true with 1
N(N−1) replaced by 1

(N−1)(N−2) , when ψas is antisymmetric
only in the variables x1, x2, x4, . . . , xN .
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Lemma 6.12. Let ϕ1, . . . , ϕN ∈ L2(R3) be orthonormal and h ≥ 0. Then, for all antisym-
metric ψas ∈ L2(R3N ),

〈〈ψas, q3p1p2 h12h13 p1p3q2ψas〉〉 ≤
1

(N − 1)(N − 2)

(
sup
y∈R3

(h ? ρN )(y)

)2

〈〈ψas, q1 ψas〉〉.

(6.97)

Proof of Lemma 6.10. First, recall that we denote by 〈〈·, ·〉〉a+1,...,N (x1, . . . , xa) the scalar
product only in the variables xa+1, . . . , xN , evaluated at x1, . . . , xa, i.e.,

〈〈ψ, χ〉〉a+1,...,N (x1, . . . , xa) :=

∫
d3xa+1 . . .

∫
d3xN ψ

∗(x1, . . . , xN )χ(x1, . . . , xN ). (6.98)

For all antisymmetric ψas we find, using Lemmas 6.9 and 4.2,

〈〈ψas, p2 h12 p2ψas〉〉 =

N∑
i=1

〈〈ψas, λi(x1) p
χ
x1
i

2 ψas〉〉

=

∫
d3x1

N∑
i=1

λi(x1)︸ ︷︷ ︸
≥0

〈〈ψas, p
χ
x1
i

2 ψas〉〉2,...,N (x1)︸ ︷︷ ︸
≥0 ∀x1

[by Lem. 4.2] ≤
∫
d3x1

N∑
i=1

λi(x1)
1

N − 1
〈〈ψas, ψas〉〉2,...,N (x1)

≤ 1

N − 1

(
sup
x1

N∑
i=1

λi(x1)

)∫
d3x1〈〈ψas, ψas〉〉2,...,N (x1)

=
1

N − 1

(
sup
x1

(h ? ρN )(x1)

)
〈〈ψas, ψas〉〉. (6.99)

Note that we did not use the antisymmetry in the first variable, so (6.99) remains true when
ψas is antisymmetric only in x2, . . . , xN . For all ψ1,3

as that are antisymmetric in all variables
except x1, x3, we find, again using Lemmas 6.9 and 4.2,

〈〈ψ1,3
as , p2 h12 p2ψ

1,3
as 〉〉 =

N∑
i=1

〈〈ψ1,3
as , λi(x1) p

χ
x1
i

2 ψ1,3
as 〉〉

=

∫
d3x1

N∑
i=1

λi(x1)︸ ︷︷ ︸
≥0

∫
d3x3 〈〈ψ1,3

as , p
χ
x1
i

2 ψ1,3
as 〉〉2,4,...,N (x1, x3)︸ ︷︷ ︸
≥0 ∀x1,x3

[by Lem. 4.2] ≤
∫
d3x1

N∑
i=1

λi(x1)
1

N − 2

∫
d3x3〈〈ψ1,3

as , ψ
1,3
as 〉〉2,4,...,N (x1, x3)

≤ 1

N − 2

(
sup
x1

N∑
i=1

λi(x1)

)∫
d3x1〈〈ψ1,3

as , ψ
1,3
as 〉〉2,...,N (x1)

=
1

N − 2

(
sup
x1

(h ? ρN )(x1)

)
〈〈ψ1,3

as , ψ
1,3
as 〉〉. (6.100)
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Proof of Lemma 6.11. In the following we diagonalize p2h12p2 as in Lemma 6.9. For g ≥ 0,
we also diagonalize p1g(x1)p1 as (N ×N)-matrix in the first variable. Here the eigenvalues
are positive numbers µj and we call the eigenvectors ϕ̃j , i.e.,

p1g(x1)p1 =
N∑
j=1

µj p
ϕ̃j
1 , (6.101)

and
N∑
j=1

µj =

N∑
j=1

〈ϕj , g(x1)ϕj〉1 =

∫
R3

g(x) ρN (x) d3x. (6.102)

Using the diagonalizations and Lemma 4.2 we find〈〈
ψas, p1p2 h12 p1p2ψas

〉〉
=
〈〈
p1ψas, p2h12p2 p1ψas

〉〉
=
〈〈
p1ψas,

N∑
i=1

λi(x1)p
χ
x1
i

2 p1ψas

〉〉
=

∫
d3x1

N∑
i=1

λi(x1)︸ ︷︷ ︸
≥0

〈〈
p1ψas, p

χ
x1
i

2 p1ψas

〉〉
2,...,N

(x1)︸ ︷︷ ︸
≥0 ∀x1

[by Lem. 4.2] ≤ 1

N − 1

∫
d3x1

N∑
i=1

λi(x1)
〈〈
p1ψas, p1ψas

〉〉
2,...,N

(x1)

=
1

N − 1

〈〈
ψas, p1

N∑
i=1

λi(x1)︸ ︷︷ ︸
:=g(x1)

p1ψas

〉〉

=
1

N − 1

〈〈
ψas,

N∑
j=1

µj p
ϕ̃j
1 ψas

〉〉

=
1

N − 1

N∑
j=1

µj︸︷︷︸
≥0

〈〈
ψas, p

ϕ̃j
1 ψas

〉〉
︸ ︷︷ ︸

≥0

[by Lem. 4.2] ≤ 1

N(N − 1)

 N∑
j=1

µj

 〈〈
ψas, ψas

〉〉
=

1

N(N − 1)

(∫
g(x)ρN (x) d3x

) 〈〈
ψas, ψas

〉〉
=

1

N(N − 1)

(∫
(h ? ρN )(x) ρN (x) d3x

) 〈〈
ψas, ψas

〉〉
. (6.103)

If ψas is antisymmetric in all variables except x3, then, similarly to (6.100), one can only
extract factors 1

N−2 instead of 1
N−1 , and 1

N−1 instead of 1
N from the antisymmetry of ψas,

as can be seen from Lemma 4.2.

Proof of Lemma 6.12. We denote by φi1,...,iaas a normalized function in L2(R3N ) that is
antisymmetric in all variables except in xi1 , . . . , xia . Recall that h is positive. Then, using
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Cauchy-Schwarz and Lemma 6.10 in the end,

〈〈ψas, q3p1p2 h12h13 p1p3q2ψas〉〉

= 〈〈ψas, q3 p1

√
h13 p2

√
h12

√
h13p3

√
h12p1 q2ψas〉〉

≤ ||q3ψas||

(
sup
φ3
as

∣∣∣∣∣∣√h13p1 φ
3
as

∣∣∣∣∣∣)(sup
φ1,3
as

∣∣∣∣∣∣√h12p2 φ
1,3
as

∣∣∣∣∣∣)×
×

(
sup
φ1,2
as

∣∣∣∣∣∣√h13p3 φ
1,2
as

∣∣∣∣∣∣)(sup
φ2
as

∣∣∣∣∣∣√h12p1 φ
2
as

∣∣∣∣∣∣) ||q2ψas||

= ||q1ψas||2
(

sup
φ2
as

∣∣∣∣∣∣√h12p1 φ
2
as

∣∣∣∣∣∣2)(sup
φ1,3
as

∣∣∣∣∣∣√h12p2 φ
1,3
as

∣∣∣∣∣∣2)

= ||q1ψas||2
(

sup
φ2
as

〈〈φ2
as, p1h12p1φ

2
as〉〉

)(
sup
φ1,3
as

〈〈φ1,3
as , p2h12p2 φ

1,3
as 〉〉

)

[by Lem. 6.10] ≤ 1

(N − 1)(N − 2)

(
sup
y∈R3

(h ? ρN )(y)

)2

〈〈ψas, q1 ψas〉〉. (6.104)

6.4 Bounds on ∂tαf(t)

We now give the rigorous bounds for the three terms in the time derivative of αf (t) given
by (6.22). Here, we use the weight function m(γ)(k) from (3.12). This also contains the case
where γ = 1, thus the bounds also hold for the weight function n(k). The estimates are
collected in the following lemma, which constitutes the heart of the proof of our main results.

We state this lemma only for positive v(N). If v(N) contains both positive and negative

parts, we write v(N) = v
(N)
+ −v(N)

− , with v
(N)
+ , v

(N)
− ≥ 0, and then estimate the three terms in

(6.22) separately for v
(N)
+ and v

(N)
− . We denote the direct term by V

dir,(N)
1 =

(
v(N) ? ρN

)
(x1).

Lemma 6.13. Let ϕ1, . . . , ϕN ∈ L2(R3) be orthonormal and ψ ∈ L2(R3N ) be antisymmetric.
Let v(N) be positive and set ρN (x) =

∑N
i=1 |ϕi(x)|2. Then,

(a) for the qp-pp term,∣∣∣2N Im
〈〈
ψ,
(
m̂(γ) − m̂(γ)−1

)
q1

(
(N − 1)p2v

(N)
12 p2 − V dir,(N)

1

)
p1ψ

〉〉∣∣∣
≤ 4

(
sup
x1∈R3

∫
ΩN (x1)

v(N)(x1 − y)2ρN (y) d3y

) 1
2

N
1
2

(
αm(γ)(t) +N−γ

)
+ 4
√

2

(
sup

y∈ΩN (0)

v(N)(y)

)
N

1
2

+ γ
2

(
αm(γ)(t) +N−γ

)
, (6.105)

for any (possibly N dependent) volume ΩN , with ΩN (x1) = ΩN +x1 and ΩN := R3 \ΩN

(possibly ΩN = R3 or ΩN = ∅); also, with V
(N)

1 = V
dir,(N)

1 or V
(N)

1 = 0,∣∣∣2N Im
〈〈
ψ,
(
m̂(γ) − m̂(γ)−1

)
q1

(
(N − 1)p2v

(N)
12 p2 − V (N)

1

)
p1ψ

〉〉∣∣∣
≤ 4
√

2

(
sup
y∈R3

(v(N) ? ρN )(y)

)
N

1
2
− γ

2 , (6.106)
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(b) for the qq-pp term,∣∣∣N Im
〈〈
ψ,
(
m̂(γ) − m̂(γ)−2

)
q1q2

(
(N − 1)v

(N)
12

)
p1p2ψ

〉〉∣∣∣
≤
√

12

((
sup
y∈R3

(v(N) ? ρN )(y)

)2

α2
m(γ)

+

(∫ ((
v(N)

)2
? ρN

)
(y) ρN (y) d3y

)
αm(γ)(t)N−γ

) 1
2

, (6.107)

and also,∣∣∣N Im
〈〈
ψ,
(
m̂(γ) − m̂(γ)−2

)
q1q2

(
(N − 1)v

(N)
12

)
p1p2ψ

〉〉∣∣∣
≤
√

12

(∫ ((
v(N)

)2
? ρN

)
(y) ρN (y) d3y

) 1
2 (
αm(γ) +N−γ

)
, (6.108)

(c) for the qq-pq term,∣∣∣2N Im
〈〈
ψ,
(
m̂(γ) − m̂(γ)−1

)
q1q2

(
(N − 1)v

(N)
12

)
p1q2ψ

〉〉∣∣∣
≤ 4

(
sup
y∈R3

((
v(N)

)2
? ρN

)
(y)

) 1
2

N
γ
2 αm(γ)(t). (6.109)

Proof. For ease of notation, we often omit subscripts and superscripts N or (N) in this

proof; in particular, we abbreviate v = v(N), V dir
1 = V

dir,(N)
1 and ρ = ρN .

The qp-pp term. Using Lemma 6.7, we find that∣∣∣2N Im
〈〈
ψ,
(
m̂(γ) − m̂(γ)−1

)
q1

(
(N − 1)p2v12p2 − V dir

1

)
p1ψ

〉〉∣∣∣
=

∣∣∣∣2N Im
〈〈
ψ,
(
m̂(γ) − m̂(γ)−1

) 1
2︸ ︷︷ ︸

:=ψ̃

q1

(
(N − 1)p2v12p2 − V dir

1

)
×

× p1

(
m̂(γ)

1 − m̂(γ) +m(γ)(N)PN,N

) 1
2
ψ︸ ︷︷ ︸

:=ψ̃′

〉〉∣∣∣∣
= 2N

∣∣∣Im〈〈ψ̃, q1

(
(N − 1)p2v12p2 − V dir

1

)
p1ψ̃

′
〉〉∣∣∣ . (6.110)

In order to estimate (6.110), we diagonalize p2v12p2 according to Lemma 6.9. We call the
eigenvectors χx1

i and the eigenvalues λi(x1). Note that V dir
1 (x1) =

∑N
i=1 λi(x1). We denote

by ΩN ⊂ R3 a possibly N dependent volume. For ease of notation we omit the subscript N ,
i.e., we write Ω := ΩN for the proof. We split the eigenvalues into two parts:

λi(x1) =

∫
R3

v(x1 − y) |χx1
i (y)|2 d3y

=

∫
Ω(x1)

v(x1 − y) |χx1
i (y)|2 d3y︸ ︷︷ ︸

=:λΩ
i (x1)

+

∫
Ω(x1)

v(x1 − y) |χx1
i (y)|2 d3y︸ ︷︷ ︸

=:λΩ
i (x1)

. (6.111)
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Then, continuing from (6.110), we find

∣∣∣∣〈〈ψ̃, q1

(
(N − 1)p2v12p2 − V dir

1

)
p1ψ̃

′
〉〉∣∣∣∣

=

∣∣∣∣〈〈ψ̃, q1

(
N∑
m=2

pmv1mpm − V dir
1

)
p1ψ̃

′
〉〉∣∣∣∣

=

∣∣∣∣〈〈ψ̃, q1

(
N∑
i=1

λi(x1)
N∑
m=2

p
χ
x1
i
m︸ ︷︷ ︸

=:p
χ
x1
i
6=1

−
N∑
i=1

λi(x1)

)
p1ψ̃

′
〉〉∣∣∣∣

=

∣∣∣∣〈〈ψ̃, q1

(
N∑
i=1

λi(x1)
(
p
χ
x1
i
6=1 − 1

)
︸ ︷︷ ︸

=:−q
χ
x1
i
6=1

)
p1ψ̃

′
〉〉∣∣∣∣

≤
∣∣∣∣ N∑
i=1

〈〈
ψ̃, q1λ

Ω
i (x1)q

χ
x1
i
6=1 p1ψ̃

′
〉〉∣∣∣∣+

∣∣∣∣ N∑
i=1

〈〈
ψ̃, q1λ

Ω
i (x1)q

χ
x1
i
6=1 p1ψ̃

′
〉〉∣∣∣∣. (6.112)

Here we introduced the projectors

pϕi6=1 :=
N∑
m=2

pϕim , qϕi6=1 := 1− pϕi6=1 (6.113)

that act on all but the first variable (see also Chapter 4.2). Note that, for all ψ1
as that are

antisymmetric in all variables except x1,

〈〈
ψ1
as,

N∑
i=1

qϕi6=1ψ
1
as

〉〉
=
〈〈
ψ1
as,

(
N −

N∑
i=1

N∑
m=2

pϕim

)
ψ1
as

〉〉
=
〈〈
ψ1
as,

(
N −

N∑
m=2

pm

)
ψ1
as

〉〉
=
〈〈
ψ1
as,
(
N − (N − 1)p2

)
ψ1
as

〉〉
= (N − 1)

〈〈
ψ1
as, q2ψ

1
as

〉〉
+
〈〈
ψ1
as, ψ

1
as

〉〉
. (6.114)

This remains true if |ϕi〉m = |χx1
i 〉m (m ≥ 2). We also have that

(
q
χ
x1
i
6=1

)2

ψ1
as = q

χ
x1
i
6=1 ψ

1
as.

Using this, Cauchy-Schwarz (C.-S.), (6.114) and Lemma 6.8, we find for the first summand
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in (6.112),

∣∣∣∣ N∑
i=1

〈〈
ψ̃, q1λ

Ω
i (x1)q

χ
x1
i
6=1 p1ψ̃

′
〉〉∣∣∣∣

[by C.-S.] ≤
N∑
i=1

∣∣∣∣∣∣λΩ
i (x1)q1ψ̃

∣∣∣∣∣∣ ∣∣∣∣∣∣qχx1
i
6=1 p1ψ̃

′
∣∣∣∣∣∣

≤

(
N∑
i=1

〈〈
ψ̃, q1

(
λΩ
i (x1)

)2
q1ψ̃
〉〉) 1

2
(

N∑
i=1

〈〈
ψ̃′, p1q

χ
x1
i
6=1 p1ψ̃

′
〉〉) 1

2

[by (6.114)] ≤

(
sup
x1

N∑
i=1

(
λΩ
i (x1)

)2) 1
2 (〈〈

ψ̃, q1ψ̃
〉〉) 1

2

×

×
(

(N − 1)
〈〈
ψ̃′, p1q2ψ̃

′
〉〉

+
〈〈
ψ̃′, p1ψ̃

′
〉〉) 1

2

[by Lem. 6.8] ≤

(
sup
x1

N∑
i=1

(
λΩ
i (x1)

)2) 1
2 (

2N−1αm(γ)

) 1
2
(

2αm(γ) +N−γ
) 1

2

≤ 2

(
sup
x1

N∑
i=1

(
λΩ
i (x1)

)2) 1
2

N−
1
2

(
α2
m(γ) + 2N−γαm(γ) +N−2γ

) 1
2

= 2

(
sup
x1

N∑
i=1

(
λΩ
i (x1)

)2) 1
2

N−
1
2

(
αm(γ) +N−γ

)
. (6.115)

Furthermore, using Cauchy-Schwarz and the fact that χx1
1 , . . . , χ

x1
N are normalized, we find

λΩ
i (x1) =

∫
Ω(x1)

v(x1 − y) |χx1
i (y)|2 d3y

≤

(∫
Ω(x1)

v2(x1 − y) |χx1
i (y)|2 d3y

) 1
2
(∫

Ω(x1)
|χx1
i (y)|2 d3y

) 1
2

≤

(∫
Ω(x1)

v2(x1 − y) |χx1
i (y)|2 d3y

) 1
2

. (6.116)

Now observe that
∑N

i=1 |χ
x1
i (y)|2 =

∑N
i=1 |ϕi(y)|2, which follows directly from χx1

i (y) =∑N
k=1 Uik(x1)ϕk(y) with U(x1) unitary. Thus,

(
sup
x1

N∑
i=1

(
λΩ
i (x1)

)2) 1
2

≤

(
sup
x1

N∑
i=1

∫
Ω(x1)

v2(x1 − y) |χx1
i (y)|2 d3y

) 1
2

=

(
sup
x1

∫
Ω(x1)

v2(x1 − y)ρ(y) d3y

) 1
2

. (6.117)

Let us turn to the second summand in (6.112). First, note that due to the normalization of
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χx1
1 , . . . , χ

x1
N ,

λΩ
i (x1) =

∫
Ω(x1)

v(x1 − y) |χx1
i (y)|2 d3y

≤

(
sup

y∈Ω(x1)

v(x1 − y)

)∫
R3

|χx1
i (y)|2 d3y

= sup
y∈Ω(0)

v(y). (6.118)

Then we find, using Cauchy-Schwarz (C.-S.),
(
q
χ
x1
i
6=1

)2

ψas = q
χ
x1
i
6=1 ψas for all antisymmetric

ψas, (6.114), (6.118) and Lemma 6.8,∣∣∣ N∑
i=1

〈〈
ψ̃, q1λ

Ω
i (x1)q

χ
x1
i
6=1 p1ψ̃

′
〉〉∣∣∣

=
∣∣∣ N∑
i=1

〈〈
ψ̃, q1q

χ
x1
i
6=1 λ

Ω
i (x1)q

χ
x1
i
6=1 p1ψ̃

′
〉〉∣∣∣

[by C.-S.] ≤
N∑
i=1

∣∣∣∣∣∣∣∣√λΩ
i (x1)q

χ
x1
i
6=1 q1ψ̃

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣√λΩ
i (x1)q

χ
x1
i
6=1 p1ψ̃

′
∣∣∣∣∣∣∣∣

[by C.-S.] ≤

(
N∑
i=1

〈〈
ψ̃, q1q

χ
x1
i
6=1 λ

Ω
i (x1)q

χ
x1
i
6=1 q1ψ̃

〉〉) 1
2
(

N∑
i=1

〈〈
ψ̃′, p1q

χ
x1
i
6=1 λ

Ω
i (x1)q

χ
x1
i
6=1 p1ψ̃

′
〉〉) 1

2

≤

((
sup
i,x1

λΩ
i (x1)

)
N∑
i=1

〈〈
ψ̃, q1q

χ
x1
i
6=1 q1ψ̃

〉〉) 1
2

×

×

((
sup
i,x1

λΩ
i (x1)

)
N∑
i=1

〈〈
ψ̃′, p1q

χ
x1
i
6=1 p1ψ̃

′
〉〉) 1

2

[by (6.114)] ≤

(
sup
i,x1

λΩ
i (x1)

)(
(N − 1)

〈〈
ψ̃, q1q2ψ̃

〉〉
+
〈〈
ψ̃, q1ψ̃

〉〉) 1
2

×

×
(

(N − 1)
〈〈
ψ̃′, p1q2ψ̃

′
〉〉

+
〈〈
ψ̃′, p1ψ̃

′
〉〉) 1

2

[by Lem. 6.8] ≤

(
sup
i,x1

λΩ
i (x1)

)(
4Nγ−1αm(γ) + 2N−1αm(γ)

) 1
2
(

2αm(γ) +N−γ
) 1

2

[by (6.118)] ≤
√

8

(
sup
y∈Ω(0)

v(y)

)
N

γ
2
− 1

2 ×

×
(
α2
m(γ) +

1

2
N−γαm(γ) +

1

2
N−γα2

m(γ) +
1

4
N−2γαm(γ)

) 1
2

≤
√

8

(
sup
y∈Ω(0)

v(y)

)
N

γ
2
− 1

2

(
α2
m(γ) + 2N−γαm(γ) +N−2γ

) 1
2

=
√

8

(
sup
y∈Ω(0)

v(y)

)
N

γ
2
− 1

2

(
αm(γ) +N−γ

)
. (6.119)
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The bounds (6.115) with (6.117), and (6.119) give the bound (6.105) on (6.110).

The alternative estimate (6.106) can be obtained by starting from the second last line of
(6.110). Using Cauchy-Schwarz (C.-S.) and Lemmas 6.10 and 6.8 we find

2N
∣∣∣Im〈〈ψ̃, q1

(
(N − 1)p2v12p2 − V dir

1

)
p1ψ̃

′
〉〉∣∣∣

≤ 2N(N − 1)
∣∣∣〈〈ψ̃, q1p2v12p1p2ψ̃

′
〉〉∣∣∣+ 2N

∣∣∣〈〈ψ̃, q1V
dir

1 p1ψ̃
′
〉〉∣∣∣

[by C.-S.] ≤ 2N(N − 1)
∣∣∣∣∣∣√v12q1p2ψ̃

∣∣∣∣∣∣ ∣∣∣∣∣∣√v12p1p2ψ̃
′
∣∣∣∣∣∣ + 2N

∣∣∣∣∣∣q1ψ̃
∣∣∣∣∣∣ ∣∣∣∣∣∣V dir

1 p1ψ̃
′
∣∣∣∣∣∣

[by Lem. 6.10] ≤ 2N

(
sup
y

(v ? ρ)(y)

) 1
2
∣∣∣∣∣∣q1ψ̃

∣∣∣∣∣∣ (sup
y

(v ? ρ)(y)

) 1
2
∣∣∣∣∣∣ψ̃′∣∣∣∣∣∣

+ 2N
∣∣∣∣∣∣q1ψ̃

∣∣∣∣∣∣ (sup
y

(v ? ρ)2(y)

) 1
2
∣∣∣∣∣∣ψ̃′∣∣∣∣∣∣

[by Lem. 6.8] ≤ 4N

(
sup
y

(v ? ρ)(y)

)(
2N−1αm(γ)

) 1
2
(
N−γ

) 1
2

= 4
√

2

(
sup
y

(v ? ρ)(y)

)
N

1
2
− γ

2 , (6.120)

which of course also holds when V dir
1 = 0.

The qq-pp term. Using Lemma 6.7, the antisymmetry of ψ and Cauchy-Schwarz (C.-S.),
we find that

∣∣∣N Im
〈〈
ψ,
(
m̂(γ) − m̂(γ)−2

)
q1q2

(
(N − 1)v12

)
p1p2ψ

〉〉∣∣∣
=

∣∣∣∣N Im
〈〈
ψ,
(
m̂(γ) − m̂(γ)−2

) 1
2︸ ︷︷ ︸

:=ψ̃

q1q2

(
(N − 1)v12

)
×

× p1p2

(
m̂(γ)

2 − m̂(γ) +m(γ)(N − 1)PN,N−1 +m(γ)(N)PN,N

) 1
2
ψ︸ ︷︷ ︸

:=ψ̃′

〉〉∣∣∣∣
=
∣∣∣(N − 1)N Im

〈〈
ψ̃, q1q2 v12 p1p2ψ̃

′
〉〉∣∣∣

[by antisym.] =

∣∣∣∣N Im
〈〈
ψ̃, q1

N∑
m=2

qm v1m p1pmψ̃
′
〉〉∣∣∣∣

[by C.-S.] ≤ N
∣∣∣∣∣∣q1ψ̃

∣∣∣∣∣∣ ∣∣∣∣∣
∣∣∣∣∣
N∑
m=2

qm v1m p1pmψ̃
′

∣∣∣∣∣
∣∣∣∣∣ . (6.121)

From Lemma 6.8 we have ∣∣∣∣∣∣q1ψ̃
∣∣∣∣∣∣2 ≤ 6N−1 αm(γ) . (6.122)

The trick of shifting one q to the right-hand side of the scalar product is now done in the
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following calculation. Using Lemmas 6.12, 6.11 and 6.8 we find

∣∣∣∣∣
∣∣∣∣∣
N∑
m=2

qm v1m p1pmψ̃
′

∣∣∣∣∣
∣∣∣∣∣
2

=
N∑

m,n=2
m 6=n

〈〈
ψ̃′, p1pmv1mqmqnv1npnp1ψ̃

′
〉〉

+

N∑
m=2

〈〈
ψ̃′, p1pmv1mqmv1mpmp1ψ̃

′
〉〉

= (N − 1)(N − 2)
〈〈
ψ̃′, q3p1p2v12v13p1p3q2ψ̃

′
〉〉

+ (N − 1)
〈〈
ψ̃′, p1p2v12q2v12p1p2ψ̃

′
〉〉

[by Lem. 6.12] ≤
(

sup
y

(v ? ρ)(y)

)2 〈〈
ψ̃′, q1ψ̃

′
〉〉

[by Lem. 6.11] +N−1

∫
(v2 ? ρ)(y) ρ(y) d3y

〈〈
ψ̃′, ψ̃′

〉〉
[by Lem. 6.8] ≤

(
sup
y

(v ? ρ)(y)

)2

2N−1αm(γ) +

∫
(v2 ? ρ)(y) ρ(y) d3y 2N−1−γ

(6.123)

With (6.122) and (6.123) we can continue the estimate from (6.121):

N
∣∣∣∣∣∣q1ψ̃

∣∣∣∣∣∣ ∣∣∣∣∣
∣∣∣∣∣
N∑
m=2

qm v1m p1pmψ̃
′

∣∣∣∣∣
∣∣∣∣∣

≤ N
(
6N−1 αm(γ)

) 1
2

((
sup
y

(v ? ρ)(y)

)2

2N−1αm(γ) +

∫
(v2 ? ρ)(y) ρ(y) d3y 2N−1−γ

) 1
2

≤
√

12

((
sup
y

(v ? ρ)(y)

)2

α2
m(γ) +

∫
(v2 ? ρ)(y) ρ(y) d3y αm(γ)N−γ

) 1
2

. (6.124)

This proves (6.107). For the alternative estimate (6.108), we use Lemma 6.11 instead of
Lemma 6.12 in (6.123); that is, we bound

(N − 1)(N − 2)
〈〈
ψ̃′, q3p1p2v12v13p1p3q2ψ̃

′
〉〉

[by C.-S.] ≤ (N − 1)(N − 2)
∣∣∣∣∣∣v12p1p2q3ψ̃

′
∣∣∣∣∣∣ ∣∣∣∣∣∣v13p1p3q2ψ̃

′
∣∣∣∣∣∣

[by Lem. 6.11] ≤
∫

(v2 ? ρ)(y) ρ(y) d3y
〈〈
ψ̃′, q1ψ̃

′
〉〉
. (6.125)

Using that, we derive the bound (6.124) with supy(v?ρ)2(y) replaced by
∫

(v2?ρ)(y) ρ(y) d3y,



86 6. Proof of Theorems for General v(N)

i.e.,

N
∣∣∣∣∣∣q1ψ̃

∣∣∣∣∣∣ ∣∣∣∣∣
∣∣∣∣∣
N∑
m=2

qm v1m p1pmψ̃
′

∣∣∣∣∣
∣∣∣∣∣

≤
√

12

(∫
(v2 ? ρ)(y) ρ(y) d3y

) 1
2 (
α2
m(γ) + αm(γ)N−γ

) 1
2

≤
√

12

(∫
(v2 ? ρ)(y) ρ(y) d3y

) 1
2 (
α2
m(γ) + 2αm(γ)N−γ +N−2γ

) 1
2

=
√

12

(∫
(v2 ? ρ)(y) ρ(y) d3y

) 1
2 (
αm(γ) +N−γ

)
, (6.126)

which is the desired bound (6.108).

The qq-pq term. Using Lemma 6.7, we find that∣∣∣2N Im
〈〈
ψ,
(
m̂(γ) − m̂(γ)−1

)
q1q2

(
(N − 1)v12

)
p1q2ψ

〉〉∣∣∣
=

∣∣∣∣2N Im
〈〈
ψ,
(
m̂(γ) − m̂(γ)−1

) 1
2︸ ︷︷ ︸

:=ψ̃

q1q2

(
(N − 1)v12

)
×

× p1q2

(
m̂(γ)

1 − m̂(γ) +m(N)PN,N

) 1
2
ψ︸ ︷︷ ︸

:=ψ̃′

〉〉∣∣∣∣
=
∣∣∣2N Im

〈〈
ψ̃, q1q2

(
(N − 1)v12

)
p1q2ψ̃

′
〉〉∣∣∣ . (6.127)

Using Cauchy-Schwarz (C.-S.) and Lemmas 6.8 and 6.10 we find∣∣∣2N Im
〈〈
ψ̃, q1q2

(
(N − 1)v12

)
p1q2ψ̃

′
〉〉∣∣∣

[by C.-S.] ≤ 2N(N − 1)
∣∣∣∣∣∣q1q2ψ̃

∣∣∣∣∣∣ ∣∣∣∣∣∣v12p1q2ψ̃
′
∣∣∣∣∣∣

[by Lem. 6.8] ≤ 2N(N − 1)
(
4Nγ−2αm(γ)

) 1
2

(〈〈
ψ̃′, q2 p1v

2
12p1 q2ψ̃

′
〉〉) 1

2

[by Lem. 6.10] ≤ 2N(N − 1)
(
4Nγ−2αm(γ)

) 1
2

(
(N − 1)−1

(
sup
y

(v2 ? ρ)(y)

)〈〈
ψ̃′, q2ψ̃

′
〉〉) 1

2

[by Lem. 6.8] ≤ 2N(N − 1)
(
4Nγ−2αm(γ)

) 1
2

(
(N − 1)−1

(
sup
y

(v2 ? ρ)(y)

)
N−1 αm(γ)

) 1
2

≤ 4

(
sup
y

(v2 ? ρ)(y)

) 1
2

N
γ
2 αm(γ) . (6.128)

6.5 Proof of the Theorems

Let us first state the well-known Gronwall Lemma which we need in the proofs of the main
theorems.
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Lemma 6.14 (Gronwall). Let t ≥ 0 and let η : R → R be a differentiable function that
satisfies the estimate

∂tη(t) ≤ C(t)(η(t) + ε) (6.129)

with some real constant ε and continuous function C : R→ R. Then for all t ≥ 0,

η(t) ≤ e
∫ t
0 C(s)dsη(0) +

(
e
∫ t
0 C(s)ds − 1

)
ε. (6.130)

Since different versions of the Gronwall Lemma exist, let us here briefly prove the one
we stated above.

Proof. Let 0 ≤ t <∞. Let f : R→ R be a differentiable function that satisfies

∂tf(t) ≤ C(t)f(t) (6.131)

and let
g(t) = e

∫ t
0 C(s)ds, (6.132)

in particular, g > 0. Then

∂t

(
f

g

)
=

(∂tf)g − f(∂tg)

g2
≤ Cfg − fCg

g2
= 0. (6.133)

Since f
g (0) = f(0) it follows that f

g (t) ≤ f(0), i.e.,

f(t) ≤ g(t)f(0) = f(0)e
∫ t
0 C(s)ds. (6.134)

We now define the function ξ : R→ R as

ξ(t) = e
∫ t
0 C(s)dsη(0) +

(
e
∫ t
0 C(s)ds − 1

)
ε. (6.135)

It follows that
∂tξ(t) = C(t)(ξ(t) + ε) (6.136)

and ξ(0) = η(0). We then have

∂t(η − ξ) ≤ C(η + ε)− C(ξ + ε) = C(η − ξ) (6.137)

and with (6.134)

η(t)− ξ(t) ≤ (η(0)− ξ(0))e
∫ t
0 C(s)ds = 0, (6.138)

i.e., η(t) ≤ ξ(t).

Note that the Gronwall Lemma can indeed be applied to αf (t), since it is differentiable
due to the scalar product structure. We now prove the main theorems from Section 3.3.1.

Proof of Theorem 3.5. First, we split v(N) = v
(N)
+ − v(N)

− , with v
(N)
+ , v

(N)
− ≥ 0. Accordingly,

we have
∂tαf (t) = Term+ − Term−, (6.139)

with

Term± = 2 Im
〈〈
ψt, N

(
f̂ − f̂−1

)
q1

(
(N − 1)p2v

(N)
±,12 p2 − V (N)

±,1

)
p1ψ

t
〉〉

+ Im
〈〈
ψt, N

(
f̂ − f̂−2

)
q1q2(N − 1)v

(N)
±,12 p1p2ψ

t
〉〉

+ 2 Im
〈〈
ψt, N

(
f̂ − f̂−1

)
q1q2(N − 1)v

(N)
±,12 p1q2ψ

t
〉〉
. (6.140)
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We proceed by estimating |Term+| and |Term−| separately. We use the bounds (6.105) with
ΩN = R3, (6.108) and (6.109) from Lemma 6.13 with γ = 1, and, due to

∫
ρtN = N ,∫

(v2 ? ρtN )(y) ρtN (y) d3y ≤
(

sup
y

(v2 ? ρtN )(y)

)
N. (6.141)

We then find

|Term±| ≤ 4
√
D1(t)

(
αn(t) +N−1

)
+
√

12
√
D1(t)

(
αn(t) +N−1

)
+ 4
√
D1(t)αn(t)

≤ 1

2
C(t)

(
αn(t) +N−1

)
, (6.142)

with 0 < C(t) = 4
(
4 +
√

3
)√

D1(t) ≤ 24
√
D(t). Therefore,

∂tαn(t) ≤ |Term+|+ |Term−| ≤ C(t)
(
αn(t) +N−1

)
. (6.143)

Applying the Gronwall Lemma 6.14 gives (3.37).

Remarks.

19. Following up on Remark 9 after Theorem 3.5, let us consider the size of the error
we make by neglecting the exchange term. We suppose that the exchange term is of
O(N−

2
3 ). It then gives an additional term C(t)N−

2
3

√
αn(t) in the time derivative of

αn(t). Then (note that (a+ b)2 ≤ 2(a2 + b2))

∂tαn(t) ≤ C(t)
(
αn(t) +N−1 +N−

2
3

√
αn(t)

)
≤ C(t)

((√
αn(t) +N−

2
3

)2
+N−1

)
≤ 2C(t)

(
αn(t) +N−

4
3 +N−1

)
, (6.144)

so the error in ∂tαn(t) is only of O(N−
4
3 ).

Now we prove the most general version of our main theorems, using the counting
functional αm(γ)(t).

Proof of Theorem 3.7. Under the assumptions (3.49)-(3.53) (which hold for v
(N)
± separately),

and using the splitting from (6.139) again, Lemma 6.13 gives

1

2
∂tαm(γ)(t) ≤ 4

√
D3(t)N−

δ3
2

(
αm(γ)(t) +N−γ

)
+ 4
√

2D4(t)N−δ4
(
αm(γ)(t) +N−γ

)
+
√

12
(
D0(t)2 αm(γ)(t)2 +D2(t)αm(γ)(t)N δ2−γ

) 1
2

+ 8
√
D1(t)αm(γ)(t). (6.145)

Now note that for any α,CN ≥ 0,(
α2 + CNα

) 1
2 ≤

(
α2 + 2CNα+ C2

N

) 1
2 = α+ CN . (6.146)
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Using this we find that

∂tαm(γ)(t) ≤ C(t)
(
αm(γ)(t) +N−δ

)
, (6.147)

where 0 < δ = min
{
γ − δ2, γ + δ3

2 , γ + δ4

}
and

C(t) = 12 max

{
4
√
D3(t)N−

δ3
2 , 4
√

2D4(t)N−δ4 ,
√

12D0(t),
√

12
D2(t)

D0(t)
, 8
√
D1(t)

}
.

(6.148)
(Note that D0(t) > 0 for all t ≥ 0.) Applying the Gronwall Lemma 6.14 gives (3.54).





Chapter 7

Proof of Results for −∆ and
Interactions |x|−s

Note that in this chapter, for ease of notation, C denotes a constant which can be different
from line to line.

7.1 Kinetic Energy Inequalities

In this section, we state some well-known inequalities, which we use in Chapter 7.2 to
show that the conditions of Theorems 3.5 and 3.7 hold if Ekin,mf(t) ≤ AN . We denote the

kinetic energy of a wave function ψ by Ekin,ψ = 〈〈ψ,
∑N

j=1(−∆xj )ψ〉〉, and the diagonal of

the reduced one-particle density matrix, normalized to N , by ρψ(x). With the notation from

(5.9), ρψ(x) = Nµψ1 (x;x). Recall that H1(Rd) =
{
f ∈ L2(Rd) : ||∇f || <∞

}
.

First, we need the kinetic energy inequality due to Lieb and Thirring [41], see also [38].
(Note that we state the lemma here in a slightly less general version than in [38].)

Lemma 7.1 (Corollary 4.1 in [38]). Let ψ ∈ H1(R3N ) be antisymmetric. Then∫
R3

ρψ(x)
5
3 d3x ≤ 5

9
(2π)−

2
3 Ekin,ψ. (7.1)

We mostly need this lemma for antisymmetrized product states. Lemma 7.1 then says that
for orthonormal ϕ1, . . . , ϕN ∈ H1(R3), ρN (x) =

∑N
i=1 |ϕi(x)|2 and Ekin,mf =

∑N
i=1 ||∇ϕi||

2,
we have ∫

R3

ρN (x)
5
3 d3x ≤ 5

9
(2π)−

2
3 Ekin,mf . (7.2)

From Lemma 7.1 it immediately follows a rigorous version of the statement that any
fermionic wave function with kinetic energy ofO(N) “occupies a volume” at least proportional
to N . This is captured by the following lemma which is similar to Theorem 7.2 in [38].

Lemma 7.2. Let ψ ∈ H1(R3N ) be antisymmetric. Let Ω be a measurable subset of R3 with
volume vol(Ω) =

∫
Ω dx. Then∫

Ω
ρψ(x) d3x ≤ C (vol(Ω))

2
5 (Ekin,ψ)

3
5 . (7.3)

91
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Proof. By Hölder’s inequality and Lemma 7.1,∫
Ω
ρψ ≤

(∫
Ω

1
5
2

) 2
5
(∫

Ω

(
ρψ
) 5

3

) 3
5

≤ (vol(Ω))
2
5 (CEkin,ψ)

3
5 . (7.4)

Thus, for wave functions with Ekin,ψ ≤ CN , it follows that, e.g., for ΩN,ε =
[
0, N

(1−ε)
3

]3
,

i.e., vol(ΩN,ε) = N1−ε, ε > 0, ∫
ΩN,ε

ρψ(x) d3x ≤ CN1− 2
5
ε, (7.5)

i.e., there are still CN particles outside the volume ΩN,ε (recall
∫
ρψ = N).

For Section 7.2 we also need the Hardy-Littlewood-Sobolev inequality (see, e.g., [37,
Theorem 4.3]), here stated for three dimensions.

Lemma 7.3 (Hardy-Littlewood-Sobolev Inequality). Let p, r > 1 and 0 < λ < 3 with
1
p + λ

3 + 1
r = 2. Let f ∈ Lp(R3) and h ∈ Lr(R3). Then there is a constant C = C(λ, p), such

that ∣∣∣∣∫
R3

∫
R3

f(x)|x− y|−λh(y) d3x d3y

∣∣∣∣ ≤ C ||f ||p ||h||r . (7.6)

For later reference, we also state Hardy’s inequality (see, e.g., [38]):

Lemma 7.4 (Hardy’s inequality). Let f ∈ H1(R3). Then∫
R3

|f(x)|2

|x|2
d3x ≤ 4

∫
R3

|∇f(x)|2 d3x. (7.7)

7.2 An Estimate Using the Boundedness of Kinetic Energy

Let us now use the kinetic energy inequality from Lemma 7.1 to estimate the mean-field term
v(N) ? ρN . The lemma we prove in this section is necessary for the proofs of the results from
Chapter 3.3.2 which we present in Chapter 7.3. Recall that we want to consider situations
where Ekin,mf(t) ≤ AN and interaction potentials with a long range behavior like

vs(x) = |x|−s, for 0 < s <
6

5
. (7.8)

For ε > 0, let us define the class of interactions with singularity cut off as

vs,ε ∈ L∞ such that vs,ε(x) = |x|−s for |x| ≥ ε, 0 ≤ vs,ε(x) ≤ |x|−s ∀x ∈ R3. (7.9)

From the next lemma we can read off that the correct scaling exponents for vs and vs,ε are
β = 1− s

3 .

Lemma 7.5. Let ϕ1, . . . , ϕN ∈ L2(R3) be orthonormal. We assume that

Ekin,mf =

N∑
i=1

||∇ϕi||2 ≤ AN (7.10)

for some A > 0. Let
v(N)(x) = N−β v(x) (7.11)
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with either v = vs (see (7.8)) or v = vs,ε (see (7.9)), and with β = 1− s
3 , 0 < s < 6

5 . We set

ρN (x) =
∑N

i=1 |ϕi(x)|2. Then there is a constant 0 < C ∝ A
s
2 (independent of N , dependent

on s) such that (
v(N) ? ρN

)
(y) ≤ C ∀y ∈ R3. (7.12)

Furthermore, there is an explicit example of orbitals ϕ1, . . . , ϕN , namely plane waves with
constant density, such that also

(
v(N) ? ρN

)
(y) ≥ C ′ ∀y ∈ R3 for some C ′ > 0.

Remarks.

20. An immediate consequence of (7.12) is, that the scaled direct interaction energy of
any orbital is O(1),∫

R3

(
v(N) ? ρN

)
(y) |ϕi(y)|2 d3y ≤ C ∀ i = 1, . . . , N, (7.13)

and the total scaled direct interaction energy is O(N),∫
R3

(
v(N) ? ρN

)
(y) ρN (y) d3y ≤ CN. (7.14)

This follows directly from Hölder’s inequality, using
∣∣∣∣|ϕi|2∣∣∣∣1 = 1 and ||ρN ||1 = N .

21. The proof could easily be generalized for ϕ1, . . . , ϕN with Ekin,mf ≤ AN δ for a certain

range of δ’s. In the semiclassical case outlined in Chapter 2.2, where Ekin,mf ≤ AN
5
3 ,

we find that for all s, the right scaling exponent is β = 1, i.e.,

N−1 (vs ? ρN ) (y) ≤ C ∀y ∈ R3. (7.15)

This follows directly from choosing RN N -independent in (7.18). In fact, one can easily

show that (7.15) even holds for any interaction potential in L
5
2
loc(R

3), i.e., when the

singularities are in L
5
2 (R3).

Proof. From (7.1) with the assumption (7.10) it follows that∫
R3

ρN (x)
5
3 d3x ≤ 5

9
(2π)−

2
3AN. (7.16)

Furthermore, recall that
∫
ρN = N . In the following, we show the inequality (7.12) only for

vs. Then, since vs,ε ≤ vs, it also follows for vs,ε. Recall that BR(y) = {x ∈ R3 : |x− y| < R}
and BR(y) := R3 \BR(y). First, note that for 0 < s < 6

5 ,

(∫
BR(0)

|x|−
5
2
s d3x

) 2
5

=

(
4π

∫
BR(0)

r−
5
2
s r2dr

) 2
5

=

((
4π

3− 5
2s

)
R3− 5

2
s

) 2
5

=

(
4π

3− 5
2s

) 2
5

R
6
5
−s. (7.17)
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Then, using Hölder’s inequality, (7.16),
∫
ρN = N and (7.17), we find for any possibly

N -dependent RN > 0,∫
R3

ρN (x)

|x− y|s
d3x =

∫
BRN (y)

ρN (x)

|x− y|s
d3x+

∫
BRN (y)

ρN (x)

|x− y|s
d3x

[by Hölder] ≤

(∫
BRN (y)

ρN (x)
5
3 d3x

) 3
5
(∫

BRN (y)
|x− y|−

5
2
s d3x

) 2
5

+

(∫
BRN (y)

ρN (x) d3x

) sup
x∈BRN (y)

|x− y|−s


≤
(∫

R3

ρN (x)
5
3 d3x

) 3
5

(∫
BRN (0)

|x|−
5
2
s d3x

) 2
5

+

(∫
R3

ρN (x) d3x

) sup
x∈BRN (0)

|x|−s


[by (7.16), (7.17)] ≤ CN
3
5R

6
5
−s

N +NR−sN . (7.18)

Setting RN = N
1
3 (if we set RN = N δ and then optimize (7.18) with respect to δ we find

δ = 1
3) we find ∫

R3

ρN (x)

|x− y|s
d3x ≤ CN1− s

3 . (7.19)

Using the explicit values of the constants from (7.16) and (7.17), setting RN = rN
1
3 , with

N -independent r > 0, and minimizing the resulting expression (7.18) with respect to r gives
an explicit value for the constant of (7.19):

C =

(
6

5
− s
) s

2
−1

s−
5
6
s

(
6

5

)
2

2s
3 3−s 5

s
6 A

s
2 . (7.20)

Note that (7.19) does not follow directly from the generalized Young inequality

||f ? g||r ≤ C ||g||q,w ||f ||p (7.21)

with 1
p + 1

q = 1 + 1
r and where ||·||q,w denotes the weak Lq norm, since it only holds for

1 < p, q, r <∞.
It remains to show that when the ϕ1, . . . , ϕN are plane waves with constant kinetic

energy per particle, the inequality (7.12) holds also in the other direction. Let 1V (x) denote

the characteristic function of the set
[
−L

2 ,
L
2

]3
= V ⊂ R3 and let N = cL3 with constant c.

The orthonormal functions

ϕk(x) = L−
3
2 ei

2π
L
k·x

1V (x), (7.22)

k ∈ Z3, have the density ρ0(x) =
∑
|k|,#|k|=N |ϕk(x)|2 = N

L31V (x) = c1V (x). In the ground
state, the kinetic energy is proportional to N , since

∑
|k|,#|k|=N

〈ϕk, (−∆)ϕk〉 =
∑

|k|,#|k|=N

(
2π

L
k

)2

≤ C
(

2π

L

)2 ∫ N
1
3

0
r2 r2dr ∝ N

5
3

L2
= c

2
3N.

(7.23)
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Then (as we already know from (7.12)), we find

(vs,ε ? ρ0)(y) ≤ (vs ? ρ0)(y) =

∫
R3

ρ0(x)

|x− y|s
d3x = c

∫
[−L2 ,

L
2 ]

3
|x− y|−s d3x

≤ c
∫

[−L2 ,
L
2 ]

3
|x|−s d3x ∝

∫ N
1
3

0
r−s r2dr ∝ N1− s

3 . (7.24)

Also, for example for R ≥ |y|,∫
R3

ρ0(x)

|x− y|s
d3x = c

∫
[−L2 ,

L
2 ]

3
|x− y|−s d3x = c

∫
[−L2 ,

L
2 ]

3−y
|x|−s d3x

≥ C
∫ R+L

2

R
r−s r2dr ∝

(
R+

L

2

)3−s
−R3−s ≥

(
L

2

)3−s
∝ N1− s

3 . (7.25)

In the same way, for example for R ≥ |y|+ ε and for N big enough,∫
R3

ρ0(x)vs,ε(x) d3x ≥ C
∫ R+L

2

R
r−s r2dr ∝ N1− s

3 . (7.26)

From this, it follows directly that (7.12) holds with ≥ for the example of plane waves.

7.3 Proof of the Results

Proof of Corollary 3.8. We use Theorem 3.5. We thus have to show that for v(N)(x) =

N−
2
3 |x|−1, ((

v(N)
)2
? ρtN

)
(y) ≤ CN−1 ∀y ∈ R3, (7.27)

if Ekin,mf ≤ AN and
∣∣∣∣ρtN ∣∣∣∣∞ < D. Let us write ΩN = B

N
1
3
(0), i.e., the ball with radius N

1
3

around 0, and define ΩN (y) = ΩN + y and S = R3 \ S for any set S ⊂ R3. By splitting the
convolution into two integrals and then using Hölder’s inequality, we find (similar to the
calculation (7.18))((

v(N)
)2
? ρtN

)
(y) = N−

4
3

(∫
ΩN (y)

|x− y|−2ρtN (x) d3x+

∫
ΩN (y)

|x− y|−2ρtN (x) d3x

)

[by Hölder] ≤ N−
4
3

(∫
ΩN

|x|−2 d3x
∣∣∣∣ρtN ∣∣∣∣∞ +

(
sup
x∈ΩN

|x|−2

)∣∣∣∣ρtN ∣∣∣∣1
)

≤ CN−
4
3

(
N

1
3

∣∣∣∣ρtN ∣∣∣∣∞ +N−
2
3N
)

≤ CN−1. (7.28)

Proof of Theorem 3.9. We consider the three different interactions separately.

• Let

vs(x) = ±|x|−s,with 0 < s <
3

5
and β = 1− s

3
. (7.29)
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We use Theorem 3.5, i.e., we have to show that
((
v

(N)
s

)2
? ρtN

)
(y) ≤ CN−1 ∀y ∈ R3.

Since we consider only 0 < s < 3
5 , we can use (7.12) with s replaced by 2s (recall that

(7.12) holds for 0 < s < 6
5). When we write out the scaling explicitly, (7.12) becomes(

v2s ? ρ
t
N

)
(y) ≤ CN(1− 2s

3 ). (7.30)

Thus, ((
v(N)
s

)2
? ρtN

)
(y) = N−2(1− s

3)
(
v2
s ? ρ

t
N

)
(y)

= N−2(1− s
3)
(
v2s ? ρ

t
N

)
(y)

≤ CN−2(1− s
3)N(1− 2s

3 )

= CN−1. (7.31)

If we use that the constant in (7.12) is proportional to A
s
2 , we find that the constant

in (7.31) is proportional to As and thus the C appearing in the αn-estimate (3.64) is
proportional to A

s
2 .

• Let

vs,ε ∈ L∞ with 0 ≤ vs,ε(x)

{
≤ |x|−s , for |x| ≤ ε
= |x|−s , for |x| > ε,

,with ε > 0,

with 0 < s <
6

5
and β = 1− s

3
. (7.32)

We use Theorem 3.7 with ΩN = ∅. The assumption (3.49) is satisfied according to
Lemma 7.5. Using vs,ε ∈ L∞ and (3.49) we find((

v(N)
s,ε

)2
? ρtN

)
(y) ≤ N−(1− s

3)
(

sup
y
vs,ε(y)

)(
v(N)
s,ε ? ρtN

)
(y)

≤ CN−(1− s
3), (7.33)

i.e., (3.50) holds if γ ≤ 1− s
3 . In order to show that (3.51) holds, we use the Hardy-

Littlewood-Sobolev inequality (7.6). Note that from
∫
ρtN = N and

∫
(ρtN )

5
3 ≤ CN it

follows that
∫

(ρtN )p ≤ CN for all 1 ≤ p ≤ 5
3 . For λ = 2s we have p = (1− s

3)−1 and,
since 0 < s < 6

5 , we find 1 < p < 5
3 , so that∫ ∫

R3

∫
R3

(
vs,ε(x− y)

)2
ρtN (x)ρtN (y) d3x d3y ≤

∫
R3

∫
R3

ρtN (x)ρtN (y)

|x− y|2s
d3x d3y

≤ C
∣∣∣∣ρtN ∣∣∣∣2p = C

(∫
(ρtN )p

) 2
p

≤ CN
2
p = CN2(1− s

3), (7.34)

i.e., (3.51) is satisfied with δ2 = 0. Furthermore,

sup
y∈R3

v(N)
s,ε (y) ≤ C N−(1− s

3), (7.35)

i.e., (3.53) holds if 1
2 + γ

2 + δ4 = 1 − s
3 ; that is, since δ4 ≥ 0, γ ≤ 1 − 2s

3 . Thus,
δ = min {γ − δ2, γ + δ4} = γ. The conditions on γ are γ ≤ 1 − s

3 and γ ≤ 1 − 2s
3 ,

therefore, the theorem holds for all γ ≤ 1− 2s
3 .
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• Let

v(x) =

{
|x|−s , for |x| ≤ 1
|x|−1 , for |x| > 1,

, (7.36)

with 0 < s < 1
3 and β = 2

3 . First, note that Lemma 7.5 applies, since |v(x)| ≤ |x|−1.
Using this, we find that

sup
y∈R3

(∣∣v(N)
∣∣ ? ρtN)(y) ≤ D0, (7.37)

and, from (7.34) with s = 1,∫ ((
v(N)

)2
? ρtN

)
(y) ρtN (y) d3y ≤ D2. (7.38)

With Hardy’s inequality (7.7) we find

((
v(N)

)2
? ρtN

)
(y) ≤ N−

4
3

(
| · |−2 ? ρtN

)
(y) ≤ CN−

4
3

N∑
i=1

∣∣∣∣∇ϕti∣∣∣∣2 ≤ D1N
− 1

3 . (7.39)

Therefore, since γ ≤ 1
3 was assumed, the assumptions (3.49), (3.50) and (3.51) hold,

with δ2 = 0. Let us now turn to assumption (3.53). Let us write ΩN (y) = B
N−δ̃

(y)

for the ball with radius N−δ̃ around y, with δ̃ = 2
9−15s . Using Hölder’s inequality and

Lemma 7.1, we find∫
ΩN (y)

(
v(N)(y − x)

)2
ρtN (x) d3x = N−

4
3

∫
ΩN (y)

|x− y|−2sρtN (x) d3x

[by Hölder] ≤ N−
4
3

(∫
ΩN (0)

(
|x|−2s

) 5
2 d3x

) 2
5 (∫

R3

ρtN (x)
5
3 d3x

) 3
5

[by Lem. 7.1] ≤ C N−
4
3

(∫ N−δ̃

0
r−5s r2dr

) 2
5

N
3
5

≤ C N−
11
15

((
N−δ̃

)3−5s
) 2

5

= C N−
11
15
− 6

5
δ̃+2sδ̃. (7.40)

Inserting δ̃ = 2
9−15s , we find

sup
y∈R3

∫
ΩN (y)

(
v(N)(y − x)

)2
ρtN (x) d3x ≤ D3N

−1, (7.41)

so assumption (3.52) holds, with δ3 = 0. Then it follows that

sup
y∈R3\ΩN

∣∣v(N)(y)
∣∣ = N−

2
3 sup
y∈R3\B

N−δ̃
(0)

∣∣v(y)
∣∣ = N−

2
3

+sδ̃. (7.42)

Thus, for assumption (3.53) to hold we need that (δ4 = 0)

−2

3
+ sδ̃ ≤ −1

2
− γ

2
, (7.43)
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i.e.,

γ ≤ 1

3
− 2sδ̃ =

1

3
− 4s

9− 15s
. (7.44)

The convergence rate is δ = min
{
γ − δ2, γ + δ3

2 , γ + δ4

}
= γ.

Proof of Proposition 3.10. Note that the equations (3.69) conserve the total energy which
in this case is the total kinetic energy. Therefore (3.70) holds for all times t ≥ 0, i.e.,
Ekin,mf(t) ≤ AN . In the following, we write v(N)(x) = N−1v(x). From Lemma 7.5 we find(∣∣v(N)

∣∣ ? ρtN)(y) = N−
1
3

(
N−

2
3

(∣∣v∣∣ ? ρtN)(y)
)
≤ CN−

1
3 , (7.45)

and from the Hardy-Littlewood-Sobolev inequality, i.e., (7.34) with s = 1,∫
R3

((
v(N)

)2
? ρN

)
(y) ρN (y) d3y = N−2

∫
R3

(
v2 ? ρN

)
(y) ρN (y) d3y ≤ CN−

2
3 . (7.46)

Using Hardy’s inequality (7.7) we find((
v(N)

)2
? ρtN

)
(y) = N−2

∫
R3

ρtN (x− y)

|x|2
d3x ≤ CN−2Ekin,mf(t) ≤ CN−1. (7.47)

Now we apply Lemma 6.13 and use the alternative estimate (6.106) for the qp-pp term and
(6.108) for the qq-pp term. Then (using αm(γ)(t) ≤ 1)

∂tαm(γ)(t) ≤ CN−
1
3

+ 1
2
− γ

2 + CN−
1
3
(
1 +N−γ

)
+ CN

γ
2
− 1

2

≤ CN−δ, (7.48)

where δ = min
{γ

2 −
1
6 ,

1
3 ,−

γ
2 + 1

2

}
= min

{γ
2 −

1
6 ,−

γ
2 + 1

2

}
. For δ > 0 we need 1

3 < γ < 1.
Now (3.71) immediately follows by integrating (7.48).



Appendix A

Proof for Semiclassical Scaling

We here prove Theorem 3.11. We need some auxiliary lemmas. First, we state the result
about the propagation of the semiclassical initial data that was obtained in [8]. (Recall that
v̂ is the Fourier transform of the interaction potential v.)

Lemma A.1 (Proposition 3.4 in [8]). Let v ∈ L1(R3) be such that∫
d3k (1 + |k|2) |v̂(k)| <∞. (A.1)

Let ωN be a non-negative trace class operator on L2(R3), with tr(ωN ) = N , ||ωN ||op ≤ 1
and such that

sup
k∈R3

1

1 + |k|

∣∣∣∣∣∣[ωN , eik·x]∣∣∣∣∣∣
tr
≤ CN

2
3 , (A.2)

||[ωN ,∇]||tr ≤ CN. (A.3)

Let ωN,t be the solution to the Hartree-Fock equation (3.98) (or the Hartree equation (3.97))
with initial data ωN . Then, there exist constants c1, c2 > 0, only depending on v, such that

sup
k∈R3

1

1 + |k|

∣∣∣∣∣∣[ωN,t, eik·x]∣∣∣∣∣∣
tr
≤ c1N

2
3 exp(c2|t|), (A.4)

||[ωN,t,∇]||tr ≤ c1N exp(c2|t|), (A.5)

for all t ∈ R.

We apply this lemma to the case ωN = p1(0) and ωN,t = p1(t). What we refer to later in
the proof of Theorem 3.11 is (using p1q1 = 0)∣∣∣∣∣∣q1e

ikxp1

∣∣∣∣∣∣
tr

=
∣∣∣∣∣∣q1

[
p1, e

ikx
]∣∣∣∣∣∣

tr
≤
∣∣∣∣∣∣[p1, e

ikx
]∣∣∣∣∣∣

tr
≤ N

2
3 C(t) (1 + |k|). (A.6)

We also make use of the singular value decomposition for compact operators. We state
this decomposition for later reference in a separate lemma (for the proof, see, e.g., [48, Thm.
VI.17]).

Lemma A.2 (Singular value decomposition). Let A be a compact operator on a Hilbert
space H . Then there exist (not necessarily complete) orthonormal sets {φ`}`∈N and {φ̃`}`∈N
and positive real numbers µ` such that

A =
∑
`

µ`|φ`〉〈φ̃`|. (A.7)

The singular values µ` are the eigenvalues of |A|.
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It follows in particular that ||A||tr =
∑

` µ`. Another lemma we use in the proof of
Theorem 3.11 is the following.

Lemma A.3. Let Ai : L2(R3)→ L2(R3) be positive self-adjoint compact operators that act
only on xi. Then, for all antisymmetric ψ ∈ L2(R3N ),∣∣∣〈〈ψ,A1A2A3ψ

〉〉∣∣∣ ≤ 1

(N − 2)
||A1||tr

∣∣∣〈〈ψ,A2A3ψ
〉〉∣∣∣ . (A.8)

Proof. We use the eigenvalue decomposition A1 =
∑

j λj |φj〉〈φj |1 and Lemma 4.2 which
immediately yields

∣∣∣〈〈ψ,A1A2A3ψ
〉〉∣∣∣ =

∣∣∣∣∣∣
∑
j

λj

〈〈
ψ, |φj〉〈φj |1A2A3ψ

〉〉∣∣∣∣∣∣
[by Lem. 4.2] ≤

∑
j

λj
1

(N − 2)

∣∣∣〈〈ψ,A2A3ψ
〉〉∣∣∣

=
1

(N − 2)
||A1||tr

∣∣∣〈〈ψ,A2A3ψ
〉〉∣∣∣ . (A.9)

Proof of Theorem 3.11. The strategy of the proof is again to calculate the time derivative
of αn(t) and proving the bound

∂tαn(t) ≤ C(t)
(
αn(t) +N−1

)
. (A.10)

Then the desired bound (3.102) follows from the Gronwall Lemma 6.14.
We calculate the time derivative of αn(t) as in Lemma 6.3; in particular, we can use

(6.25), since the weight function is n(k) = k
N here. Due to the N−

1
3 in front of the time

derivatives in the Schrödinger and mean-field equations, we get an additional factor of N
1
3 .

We find, using the scaling v(N) = N−1v,

∂tαn(t) = 2N
1
3 Im

〈〈
ψt, q1

(
(N − 1)p2v

(N)
12 p2 − V (N)

1

)
p1ψ

t
〉〉

+ 2N
1
3 Im

〈〈
ψt, q1q2

(
(N − 1)v

(N)
12

)
p1p2ψ

t
〉〉

+ 2N
1
3 Im

〈〈
ψt, q1q2

(
(N − 1)v

(N)
12

)
p1q2ψ

t
〉〉

= 2N−
2
3 Im

〈〈
ψt, q1

(
(N − 1)p2v12p2 − V1

)
p1ψ

t
〉〉

+ 2N−
2
3 Im

〈〈
ψt, q1q2 (N − 1)v12 p1p2ψ

t
〉〉

+ 2N−
2
3 Im

〈〈
ψt, q1q2 (N − 1)v12 p1q2ψ

t
〉〉
, (A.11)

with V1 = V dir
1 in the case of the fermionic Hartree equations, and V1 = V dir

1 + V exch
1

in the case of the Hartree-Fock equations. We now estimate the three terms separately.
For ease of notation we omit the t-dependence in the following, i.e., we write ψt = ψ,
ϕti = ϕi and the constants C could be t-dependent. For the estimates, we decompose v
in its Fourier components, i.e., we write v(x) =

∫
d3k v̂(k)eikx. Note that the assumption∫

d3k (1 + |k|2) |v̂(k)| <∞ in particular implies that
∫
d3k |v̂(k)| <∞ and

∫
d3k |k| |v̂(k)| <

∞.
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The qp-pp term. Let us first simplify the contribution from the exchange term. We
find

V exch
1 p1 = −

N∑
j,`=1

(v12 ? (ϕ∗`ϕj)) (x1)|ϕ`〉〈ϕj |1

= −
∫
d3k v̂(k)

N∑
j,`=1

(
eik(x1−·) ? (ϕ∗`ϕj)

)
(x1)|ϕ`〉〈ϕj |1

= −
∫
d3k v̂(k)eikx1

N∑
j,`=1

〈
ϕ`, e

−ikxϕj

〉
|ϕ`〉〈ϕj |1

= −
∫
d3k v̂(k)eikx1

N∑
j,`=1

|ϕ`〉1
〈
ϕ`, e

−ikxϕj

〉
〈ϕj |1

= −
∫
d3k v̂(k)eikx1p1e

−ikx1p1. (A.12)

Thus, by Cauchy-Schwarz,

N−
2
3

∣∣∣〈〈ψ, q1V
exch

1 p1ψ
〉〉∣∣∣ = N−

2
3

∣∣∣ ∫ d3k v̂(k)
〈〈
ψ, q1e

ikx1p1e
−ikx1p1ψ

〉〉∣∣∣
≤ N−

2
3

∫
d3k |v̂(k)| ||q1ψ||

≤ CN−
2
3
√
αn. (A.13)

Here we see explicitly that the contribution from the exchange term is of lower order in
N . Now follows the main part of the proof, namely to estimate the part of the qp-pp term,
where the difference between the Schrödinger and the mean-field interaction appears. Let us
first rewrite this term using the Fourier decomposition of v. We find

N−
2
3

〈〈
ψ, q1

(
(N − 1)p2v12p2 − V dir

1

)
p1ψ

〉〉
= N−

2
3

∫
d3k v̂(k)

〈〈
ψ, q1

(
(N − 1)p2e

ik(x1−x2)p2 −
N∑
j=1

〈
ϕj , e

ik(x1−·)ϕj

〉)
p1ψ

〉〉

= N−
2
3

∫
d3k v̂(k)

〈〈
ψ,
(

(N − 1)p2e
−ikx2p2 −

N∑
j=1

〈
ϕj , e

−ikxϕj

〉)
q1e

ikx1p1ψ
〉〉
. (A.14)

To deal with this expression we would like to diagonalize the operator p2e
−ikx2p2, similar to

as we did in the proof of Lemma 6.13. However, since it is not self-adjoint, we decompose
e−ikx = cos(kx)− i sin(kx) and diagonalize the self-adjoint operators

p2 cos(kx2)p2 =
N∑
j=1

λjp
χj
2 , p2 sin(kx2)p2 =

N∑
j=1

λ̃jp
χ̃j
2 , (A.15)

where the real eigenvalues λj , λ̃j and orthonormal eigenvectors χj , χ̃j depend on k. The
eigenvalues have the property that λj = 〈χj , cos(kx)χj〉, so |λj | ≤ ||χj ||2 = 1, and further-

more
∑N

j=1 λj =
∑N

j=1 〈χj , cos(kx)χj〉 =
∑N

j=1 〈ϕj , cos(kx)ϕj〉, and analogous for λ̃j . In the

following, we use the projector q
χj
6=1 = 1 −

∑N
m=2 p

χj
m (it is a projector on antisymmetric
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functions). Let us now decompose the expression (A.14) by using e−ikx = cos(kx)− i sin(kx).
We also use the singular value decomposition q1e

ikx1p1 =
∑

` µ`|φ`〉〈φ̃`|1. Note that according
to Lemma A.2,

∑
` µ` =

∣∣∣∣q1e
ikx1p1

∣∣∣∣
tr

. For the cos-term, we find, using the diagonalization
from (A.15), Cauchy-Schwarz (C.-S.), (6.114) and Lemma 4.2,

N−
2
3

∣∣∣∣ ∫ d3k v̂(k)
〈〈
ψ,
(

(N − 1)p2 cos(kx2)p2 −
N∑
j=1

〈ϕj , cos(kx)ϕj〉
)
q1e

ikx1p1ψ
〉〉∣∣∣∣

[by (A.15)] = N−
2
3

∣∣∣∣ ∫ d3k v̂(k)

N∑
j=1

λj

〈〈
ψ,
(

(N − 1)p
χj
2 − 1

)
q1e

ikx1p1ψ
〉〉∣∣∣∣

[by antisym.] = N−
2
3

∣∣∣∣ ∫ d3k v̂(k)
N∑
j=1

λj

〈〈
ψ,

(
N∑
m=2

p
χj
m − 1

)
q1e

ikx1p1ψ
〉〉∣∣∣∣

= N−
2
3

∣∣∣∣ ∫ d3k v̂(k)

N∑
j=1

λj

〈〈
ψ, q

χj
6=1q1e

ikx1p1ψ
〉〉∣∣∣∣

= N−
2
3

∣∣∣∣ ∫ d3k v̂(k)

N∑
j=1

λj
∑
`

µ`

〈〈
ψ, q

χj
6=1|φ`〉〈φ̃`|1q

χj
6=1ψ

〉〉∣∣∣∣
[by C.-S.] ≤ N−

2
3

∫
d3k |v̂(k)|

N∑
j=1

|λj |︸︷︷︸
≤1

∑
`

µ`

∣∣∣∣∣∣〈φ`|1qχj6=1ψ
∣∣∣∣∣∣ ∣∣∣∣∣∣〈φ̃`|1qχj6=1ψ

∣∣∣∣∣∣
[by C.-S.] ≤ N−

2
3

∫
d3k |v̂(k)|

∑
`

µ`

√√√√ N∑
j=1

〈〈
ψ, q

χj
6=1|φ`〉〈φ`|1ψ

〉〉
×

×

√√√√ N∑
j=1

〈〈
ψ, q

χj
6=1|φ̃`〉〈φ̃`|1ψ

〉〉
[by (6.114)] = N−

2
3

∫
d3k |v̂(k)|

∑
`

µ`

√〈〈
ψ, |φ`〉〈φ`|1(Nq2 + p2)ψ

〉〉
×

×
√〈〈

ψ, |φ̃`〉〈φ̃`|1(Nq2 + p2)ψ
〉〉

[by Lem. 4.2] ≤ N−
2
3

∫
d3k |v̂(k)|

∣∣∣∣∣∣q1e
ikx1p1

∣∣∣∣∣∣
tr

〈〈
ψ, (q2 +N−1p2)ψ

〉〉
[by (A.6)] ≤ C

∫
d3k |v̂(k)|(1 + |k|)

(
αn +N−1

)
≤ C

(
αn +N−1

)
. (A.16)

The sin-term goes exactly analogous. Let us summarize. If we consider only the fermionic
Hartree equations (i.e., without exchange term), we find from (A.16) that

|qp-pp term| ≤ C
(
αn(t) +N−1

)
. (A.17)

If we consider the Hartree-Fock equations, we use additionally (A.13), and thus find the
same bound,

|qp-pp term| ≤ C
(
αn(t) +N−1 +

√
αn(t)N−

2
3

)
≤ C

(
αn(t) +N−1

)
. (A.18)
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The qq-pp term. Similarly to Lemma 6.13, we use the antisymmetry of ψ to shift one q
to the right-hand side of the scalar product. In the following, we use the short-hand notation
Akm := qme

ikxmpm and the decomposition Akm =
∑

` µ`|φ`〉〈φ̃`|m. Note that in particular

|Akm| =
√
Ak∗mA

k
m =

∑
` µ`|φ̃`〉〈φ̃`|m and |Ak∗m | =

∑
` µ`|φ`〉〈φ`|m. We then find∣∣∣〈〈ψ, q1q2(N − 1)v12p1p2ψ

〉〉∣∣∣
= (N − 1)

∣∣∣ ∫ d3k v̂(k)
〈〈
ψ, q1e

ikx1p1q2e
−ikx2p2ψ

〉〉∣∣∣
[by antisym.] =

∣∣∣ ∫ d3k v̂(k)
∑
`

µ`

〈〈
ψ, q1|φ`〉〈φ̃`|1

N∑
m=2

A−km ψ
〉〉∣∣∣

[by C.-S.] ≤
∫
d3k |v̂(k)|

∑
`

µ`

∣∣∣∣∣∣〈φ`|1q1ψ
∣∣∣∣∣∣ ∣∣∣∣∣
∣∣∣∣∣〈φ̃`|1

N∑
m=2

A−km ψ

∣∣∣∣∣
∣∣∣∣∣

[by C.-S.] ≤
∫
d3k |v̂(k)|

√〈〈
ψ, q1|Ak∗1 |q1ψ

〉〉
×

×
√
N2
〈〈
ψ,A−k∗2 |Ak1|A

−k
3 ψ

〉〉
+N

〈〈
ψ, |Ak1|

∣∣A−k2

∣∣2ψ〉〉. (A.19)

The appearing terms are bounded as follows. First, since
∣∣∣∣|Ak∗1 |∣∣∣∣op

≤ 1,〈〈
ψ, q1|Ak∗1 |q1ψ

〉〉
≤ ||q1ψ||2

∣∣∣∣∣∣|Ak∗1 |∣∣∣∣∣∣
op
≤ αn. (A.20)

Furthermore, using Lemma A.3 twice,
∣∣∣∣|A−k∗3 |

∣∣∣∣
op
≤ 1 and the decomposition A−km =∑

` µ̃`|χ`〉〈χ̃`|m, we find〈〈
ψ,A−k∗2 |Ak1|A−k3 ψ

〉〉
=
∑
j,`

µ̃jµ̃`

〈〈
ψ, q3

√
|Ak1||χ̃j〉〈χj |2|χ`〉〈χ̃`|3

√
|Ak1|q2ψ

〉〉
≤
〈〈
ψ, q3|Ak1| |A−k2 | |A

−k∗
3 |q3ψ

〉〉
[by Lem. A.3 twice] ≤ CN−2

∣∣∣∣∣∣Ak1∣∣∣∣∣∣
tr

∣∣∣∣∣∣A−k2

∣∣∣∣∣∣
tr
αn. (A.21)

Finally, using sup` µ` =
∣∣∣∣|Ak1|∣∣∣∣op

≤ 1, Lemma 4.2 and Lemma A.3 for the first inequality,
we find 〈〈

ψ,
∣∣Ak1∣∣∣∣A−k2

∣∣2ψ〉〉 ≤ CN−1
∣∣∣∣∣∣Ak1∣∣∣∣∣∣

tr

〈〈
ψ,
∣∣A−k2

∣∣2ψ〉〉
= CN−1

∣∣∣∣∣∣Ak1∣∣∣∣∣∣
tr

∑
`

µ2
`

〈〈
ψ, |φ̃`〉〈φ̃`|2ψ

〉〉
[by Lem. 4.2] ≤ CN−2

∣∣∣∣∣∣Ak1∣∣∣∣∣∣
tr

(
sup
`
µ`

)∑
`

µ`

≤ CN−2
∣∣∣∣∣∣Ak1∣∣∣∣∣∣

tr

∣∣∣∣∣∣A−k2

∣∣∣∣∣∣
tr
. (A.22)

Using the estimates (A.20), (A.21) and (A.22) for the terms in (A.19) and using (A.6) we
find for the qq-pp term, that

N−
2
3

∣∣∣〈〈ψ, q1q2(N − 1)v12p1p2ψ
〉〉∣∣∣ ≤ C ∫ d3k v̂(k)(1 + |k|)

√
αn
√
αn +N−1

≤ C
(
αn +N−1

)
. (A.23)
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The qq-pq term. Using the Fourier decomposition of v, the singular value decomposition
of q1e

ikx1p1, Cauchy-Schwarz, (A.6) and Lemma 4.2 we find

N
1
3

∣∣∣〈〈ψ, q1q2v12p1q2ψ
〉〉∣∣∣ = N

1
3

∣∣∣ ∫ d3k v̂(k)
〈〈
ψ, q1e

ikx1p1q2e
−ikx2q2ψ

〉〉∣∣∣
= N

1
3

∣∣∣ ∫ d3k v̂(k)
∑
`

µ`

〈〈
ψ, q2|φ`〉〈φ̃`|1e−ikx2q2ψ

〉〉∣∣∣
[by C.-S.] ≤ N

1
3

∫
d3k |v̂(k)|

∑
`

µ`

∣∣∣∣∣∣〈φ`|1q2ψ
∣∣∣∣∣∣ ∣∣∣∣∣∣〈φ̃`|1q2ψ

∣∣∣∣∣∣
[by Lem. 4.2] ≤ N

1
3

∫
d3k |v̂(k)|

∣∣∣∣∣∣q1e
ikx1p1

∣∣∣∣∣∣
tr
N−1 ||q2ψ||2

[by (A.6)] ≤ Cαn. (A.24)
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Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir selbstständig, ohne
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