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Abstract

In this work, we derive the time-dependent Hartree(-Fock) equations as an effective dynamics
for fermionic many-particle systems. Our main results are the first for a quantum mechanical
mean-field dynamics for fermions; in previous works, the mean-field limit is usually either
coupled to a semiclassical limit, or the interaction is scaled down so much, that the system
behaves freely for large particle number N. We mainly consider systems with total kinetic
energy bounded by const- N and long-range interaction potentials, e.g., Coulomb interaction.
Examples for such systems are large molecules or certain solid states. Our analysis also
applies to attractive interactions, as, e.g., in fermionic stars. The fermionic Hartree(-Fock)
equations are a standard tool to describe, e.g., excited states or chemical reactions of large
molecules (like proteins). A deeper understanding of these equations as an approximation to
the time evolution of a many body quantum system is thus highly relevant.

We consider the fermionic Hartree equations (i.e., the Hartree-Fock equations without
exchange term) in this work, since the exchange term is subleading in our setting. The main
result is that the fermionic Hartree dynamics approximates the Schrodinger dynamics well
for large N. This statement becomes exact in the thermodynamic limit N — oo. We give
explicit values for the rates of convergence. We prove two types of results. The first type
is very general and concerns arbitrary free Hamiltonians (e.g., relativistic, non-relativistic,
with external fields) and arbitrary interactions. The theorems give explicit conditions on
the solutions to the fermonic Hartree equations under which a derivation of the mean-field
dynamics succeeds. The second type of results scrutinizes situations where the conditions
are fulfilled. These results are about non-relativistic free Hamiltonians with external fields,
systems with total kinetic energy bounded by const - N and with long-range interactions of
the form |z|7%, with 0 < s < g (sometimes, for technical reasons, with a weaker or cut off
singularity).

We prove our main results by using a new method for deriving mean-field dynamics
developed by Pickl in [Lett. Math. Phys., 97(2):151-164, 2011]. This method has been
applied successfully in quantum mechanics for deriving the bosonic Hartree and Gross-
Pitaevskii equations. Its application to fermions in this work is new. The method is based on
a functional that “counts the number of particles outside the condensate”, i.e., in the case
of fermions, it measures those parts of the Schrodinger wave function that are not in the
antisymmetric product of the Hartree states. We show that convergence of the functional
to zero (which means that the mean-field equations approximate the dynamics well) is
equivalent to convergence of the corresponding reduced one-particle density matrices in
trace norm and in Hilbert-Schmidt norm. Finally, we show how also the recently treated
semiclassical mean-field limits can be derived with this method.
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Zusammenfassung

In dieser Arbeit werden die zeitabhéngigen Hartree(-Fock) Gleichungen als effektive Dynamik
fiir fermionische Vielteilchen-Systeme hergeleitet. Die Hauptresultate sind die ersten fiir
eine quantenmechanische Mean-Field Dynamik (,,Mittlere-Feld Dynamik®) fiir Fermionen;
in vorherigen Arbeiten ist der Mean-Field Limes iiblicherweise entweder mit einem semiklas-
sischen Limes gekoppelt oder die Wechselwirkung wird so stark runterskaliert, dass sich das
System fiir groe Teilchenzahl N frei verhilt. Wir betrachten hauptséchlich Systeme, deren
kinetische Energie durch konst - N beschrédnkt ist, und langreichweitige Wechselwirkungen,
wie z.B. Coulomb Wechselwirkung. Beispiele fiir solche Systeme sind grofie Molekiile oder
bestimmte Festkorper. Unsere Analyse gilt auch fiir anziehende Wechselwirkungen, wie z.B.
in fermionischen Sternen. Die fermionischen Hartree(-Fock) Gleichungen sind ein Standard-
werkzeug um z.B. angeregte Zusténde oder chemische Reaktionen in grofien Molekiilen (wie
Proteinen) zu beschreiben. Ein tieferes Verstédndnis dieser Gleichungen als Ndherung der
Zeitentwicklung eines quantenmechanischen Vielteilchen-Systems ist daher duflerst relevant.

Wir betrachten in dieser Arbeit die fermionischen Hartree Gleichungen (d.h., die Hartree-
Fock Gleichungen ohne Austauschterm), da der Austauschterm in unserem Fall von niedriger
Ordnung ist. Das Hauptresultat ist, dass die fermionische Hartree Dynamik die Schrédinger
Dynamik fiir groe N gut anndhert. Diese Aussage wird im thermodynamischen Limes
N — oo exakt. Wir geben explizite Konvergenzraten an. Es werden zwei Arten von Resultaten
bewiesen. Die erste Art ist sehr allgemein und betrifft beliebige freie Hamiltonians (z.B.
relativistisch, nicht-relativistisch, mit externen Feldern) und beliebige Wechselwirkungen.
Die Theoreme geben explizite Bedingungen an die Losungen der fermionischen Hartree-
Gleichungen an, unter denen eine Herleitung der Mean-Field Dynamik funktioniert. In der
zweiten Art von Resultaten wird untersucht fiir welche Situationen diese Bedingungen erfiillt
sind. Diese Resultate sind iiber nicht-relativistische freie Hamiltonians mit externen Feldern,
Systeme mit kinetischer Energie beschréinkt durch konst - N und mit langreichweitiger
Wechselwirkung der Form |z|™%, mit 0 < s < g (aus technischen Griinden, manchmal mit
abgeschnittener oder abgeschwichter Singularitét).

Die Hauptresultate werden mit einer neuen Methode zur Herleitung von Mean-Field
Limiten bewiesen, die von Pickl in [Lett. Math. Phys., 97(2):151-164, 2011] entwickelt wurde.
Diese Methode wurde in der Quantenmechanik erfolgreich zur Herleitung der bosonischen
Hartree und Gross-Pitaevskii Gleichungen angewandt. Die Anwendung auf Fermionen in
dieser Arbeit ist neu. Die Methode basiert auf einem Funktional, das die ,, Anzahl der Teilchen
auflerhalb des Kondensats zahlt“, d.h. im Falle von Fermionen misst es die Anteile der
Schrodinger Wellenfunktion, die nicht im antisymmetrisierten Produkt der Hartree-Zusténde
sind. Wir zeigen, dass die Konvergenz des Funktionals gegen Null (was bedeutet, dass
die Mean-Field Gleichungen die Dynamik gut annihern) dquivalent zur Konvergenz der
zugehorigen Einteilchen-Dichtematrizen in Spur-Norm und Hilbert-Schmidt-Norm ist. Wir
zeigen auflerdem wie die kiirzlich behandelten semiklassischen Mean-Field Limiten mit dieser
Methode hergeleitet werden kénnen.
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Chapter 1

Introduction

This thesis is a contribution to the long-standing goal of statistical mechanics to derive
effective dynamics from microscopic laws of motion. By microscopic law of motion we
mean for example Newton’s equations in classical mechanics or the Schrédinger equation in
quantum mechanics. We know that in many situations nature can be described very well
by these theories. Nonetheless, very often the microscopic dynamics is not visible: air at
room temperature for example obeys the laws of thermodynamics, which are not about
the dynamics of the molecules that the gas is made of but rather about quantities like
volume, pressure and temperature. So on a different scale nature can appear very different.
On a macroscopic scale we do not see the microscopic behavior that is described by the
fundamental laws of motion, but we often see quite different behavior.

Such effective behavior arises in many different situations, usually when microscopic
details can be neglected (e.g., when a system is described on a different scale or when
forces can be replaced by their average value). Effective descriptions are much simpler, they
involve much fewer degrees of freedom than the original microscopic description. Famous
effective evolution equations are in classical mechanics the Boltzmann, Navier-Stokes or
Vlasov equations, and in quantum mechanics the Hartree, Hartree-Fock or Gross-Pitaevskii
equations. To derive an effective dynamics means to prove rigorously that the solutions to
the effective equation approximate the solutions to the microscopic equation of motion well
in certain situations. This is an ongoing project of mathematical physics. Only some cases are
known where such a derivation can be conducted rigorously. In classical mechanics, this could
for example be shown for the Vlasov equation [I1]; however, for the Boltzmann equation it
has been shown only for very short times [36], and for the Navier-Stokes equation it is still
an open problem (see the book by Spohn [53] for an excellent overview and introduction to
this topic). In quantum mechanics, the derivation of effective dynamics for bosons near a
condensate is well understood by now; see the works [33] [51], 21], 26] [49, [47, [35] for the case
of the Hartree equation and [16], 17, (I8, 19} 20} 46} 45, [6] for the Gross-Pitaevskii equation.
However, only very little is known about derivations of mean-field dynamics for fermions.
That is the topic of this thesis.

Thus far, only two situations have been considered in the literature: Either, the interaction
is weakened so much that the particles behave freely for large particle number N, see
[4, B 3, 25], or the mean-field limit is considered for wave functions with a semiclassical
structure, such that this limit also leads to the classical Vlasov equation, see [44] [52] [15, 8] [7].
(We give a more detailed discussion of the literature in Chapter [2.3]) The derivation of mean-
field dynamics for fermions in a setting that leads to fully quantum mechanical behavior
(in the sense that the dynamics is neither free nor close to a classical one) is what we are

3



4 1. Introduction

interested in.

We consider fermionic many-particle systems in quantum mechanics (mostly non-
relativistic, although some of our theorems also apply to more general, e.g., relativistic
settings). That is, the fundamental law of motion is the Schrédinger equation (we set A = 1)

i0upt = Hy)t (1.1)

for antisymmetric complex-valued N-particle wave functions ¢ € L?(R3N) (for simplicity,
we neglect spin throughout this work). Antisymmetry means that ¢!(...,z;,..., 2, ...) =
—t(. ., xhy ..., @, .. .) Vi # k. We consider Hamiltonians

N

H = ZH°+ZUN) (1.2)

1<J

where H 9 acts only on x; and vV (z) = (V) (—2) is a real-valued pair-interaction potential
(the superscrlpt (N) denotes a possible scaling and will be explained in Chapter ' According
to , the unitary time evolution of an initial wave function ¥* is given by 1t = e7#ty))0
if H is self-adjoint which we henceforth will assume. Note that for antisymmetric initial
conditions ¢°, the wave function ! remains antisymmetric under the Schrédinger evolution
with Hamiltonian for all times. For the desired effective description, consider N
orthonormal one-particle wave functions (also called orbitals) ¢f,..., ¢4 € L*(R3) which
are solutions to the fermionic Hartree equations (sometimes called reduced Hartree-Fock
equations). These are the coupled system of non-linear differential equations

N
i) = BG40+ (o)« 3 1A ) (@) o) (1.3
k=1
for j =1,..., N, where x denotes convolution. Note that for orthonormal initial conditions

Y, ..., 9%, (1.3) preserves the orthonormality for all times. The term

N N
(o0 DY ) @) = [ o 03 IAWP (1.4

is called the mean-field. It can be viewed as the average value of the interaction potential at
point z, created by particles distributed according to the density p’, = ZkN:1 ¢t |2, Note
that closely related mean-field equations for fermions are the Hartree-Fock equations, where
an additional exchange term

ZN: (v* h @l )( ) ¢i(@) (1.5)

k=1

is present on the right-hand side of . In general, the Hartree-Fock equations are expected
to be a better approximation than the fermionic Hartree equations; however, the exchange
term is always smaller than the direct term , and in our setting it is negligibly small
(subleading compared to the direct term). Therefore, it is sufficient to consider only the
fermionic Hartree equations here (see Chapter for more details).

Now suppose that some initial gol, e 08 ~ are given. Let the initial N-particle wave
function be 9° ~ /\ A <p where /\ j—1; means the antlsymmetrlzed product of ¢1,..., 0N
(see ) Then, under the Schrodinger evolution (1.1)), this initial wave function evolves to



Pt = e M0 We want to compare this ¢! to the wave function /\jV: 1 g0§-, where the gpﬁ- are
the solutions to the fermionic Hartree equations (1.3]). In other words, if still

N
Pt~ /\ o (1.6)
j=1

at some time ¢, then the Schrédinger dynamics is approximated well by the Hartree dynamics
and we say that we have derived the fermionic Hartree equations as an effective dynamics.
That is the goal of this thesis.

Note, that in the presence of an interaction potential v(¥) it is in general never true that
e tH1 /\j\[:l go? = /\;V:1 <p§~, since the interaction leads to correlations between the particles. By
correlations we mean those that are not due to the antisymmetry of the wave function, i.e.,
we mean that the wave function is in a superposition of more than one antisymmetric product
state. We can therefore only expect the statement ¢! ~ /\;V: 1 g0§~ to hold approximately. If

a statement of the form ¥’ ~ /\;\[:1 <,0§. holds, then this means that only few correlations
have developed. This can only be expected to happen in certain situations, for example, for
short times (where the particles couldn’t interact with each other long enough to produce
correlations) or for weak interactions. The question is then: What exactly does “few”, “short”
or “weak” mean? This question is dealt with in Chapter [2] There we identify interesting
physical systems where we can expect the mean-field approximation to be valid.

After that, in the mathematical part of the thesis, we have to make precise what we
mean by ~ in ¢! ~ /\j\fz1 . This is specified by a functional a (¥’ ¢f,...,¢l) = a(t)
(first introduced by Pickl in [47] for deriving mean-field limits for bosons), which measures
“how much” of ¢’ is not in the antisymmetric product of ¢, ..., ¢4 . In more detail, a(t)
measures how many correlations have developed due to the interaction. Our main theorems
give bounds on this «a(t). Note again that the important question is if the antisymmetric
product structure survives the time evolution. This is what the functional «(t) directly
focuses on.

Structure of the thesis. The thesis is organized into two parts. In Part[I} we introduce
the subject of the thesis, give an overview of the underlying physics and present our main
results. In Part [[I, we give a proof of our main results.

In Chapter [2| we provide a discussion of the mean-field description for fermions from a
physical and mostly mathematically non-rigorous point of view. In Chapter we introduce
and discuss the scaling we are later concerned with in some of our main results. This
scaling is such that it leads to interesting quantum mechanical behavior. We discuss in some
detail its meaning and possible applications of the scaled equations. In Chapter [2.2] we
give a brief overview of another interesting scaling, where the wave function naturally has
a semiclassical structure, and, in fact, approximates the solutions to the classical Vlasov
equation. We discuss the literature on the subject in more detail in Chapter [2.3] Furthermore,
in Chapter [2.4] we make a remark about the connection between the correlations that develop
due to the interaction and fluctuations around the mean-field. In Chapter [2.5] we discuss the
exchange term that arises in the Hartree-Fock equations and argue why it is subleading
in our setting.

In Chapter [3] we present the main results of this thesis and give an outline of their
proofs. In Chapter we first present in detail the definition of the counting functional
a(t) and discuss its properties. In Chapter we explain how this «(¢) is related to the
difference of reduced density matrices in trace norm and Hilbert-Schmidt norm. The main
result there are two lemmas showing that convergence of «(t) is equivalent to convergence
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of reduced density matrices in trace and Hilbert-Schmidt norm. The main results of this
thesis are then stated and explained in detail in Chapter There are two kinds of
results: those in Chapter are concerned with general Hamiltonians as in , and
they say that «(t) converges (i.e., the mean-field approximation is good) when certain
assumptions on the solutions to the fermionic Hartree equations are fulfilled. Afterwards, in
Chapter [3.3.2] we present results that explicitly show that these assumptions are fulfilled for
the scalings we discussed in Chapter for many different interactions (and, in particular,
for non-relativistic Hamiltonians, possibly with external fields). In Chapter we give
a detailed outline of the proofs of the so far presented results. In order to demonstrate
that the a-method is very versatile, we also give a proof of the convergence of a(t) for the
semiclassical scaling, which was already achieved with other methods by Benedikter, Porta
and Schlein [§]. In Chapter we present the main idea of our alternative proof, while
we defer the full proof to Appendix [A] Finally, in Chapter we give a brief outlook on
remaining open problems related to mean-field descriptions for fermions.

Part [[T] of this thesis contains a proof of the main results. In Chapter [, we establish
some notation, recall inequalities we often use and discuss in more detail the properties of
certain projectors that are needed to define a(t). In Chapter |5 we prove the main results
of Chapter about the relation between «(t) and reduced density matrices. Then, in
Chapter [6] we prove the results of Chapter and in Chapter [7, we prove the results
stated in Chapter [3.3.2



Chapter 2

The Physics: Mean-field Dynamics
of Fermions

2.1 A New Scaling for Fermionic Mean-field Limits

As we mentioned in the introduction, we can expect mean-field behavior only in certain
situations. In this chapter we identify physical systems where there is interesting mean-field
behavior. It will be convenient to consider scaled evolution equations. Here, we introduce the
scaling, discuss its origin and physical relevance, give different formulations of the problem,
and discuss applications of the presented scaled equations.

2.1.1 The Scaled Equations and the Physics

There will be two types of theorems in this work: those in Chapter [3.3.1] are about general
Hamiltonians of the form , and those in Chapter concern non-relativistic Hamil-
tonians and certain long-range interactions. In order to explain what physical situations
we have in mind, it is easier to formulate our equations explicitly here for the latter case.
We first present and discuss the scaled equations and give more details on the origin of the
scaling afterwards, in Chapter The following analysis is done for dimension d = 3, but
could also be conducted for other dimensions.

We consider the non-relativistic Schrodinger equation for an antisymmetric N particle
wave function ¢ € L?(R3V) (we set i = 1 = 2m throughout this work)

N
10t (21, ..., oN) = Z (—ij + w(N)(xj)> + NP Zv(ml — ;) | Vi (21, .., 2N),
j=1 1<j
(2.1)
where A, is the Laplace operator, acting on x;, w™) is an external field (that can possibly
depend on N), g € R is the scaling exponent, and v(z) = v(—=z) is a real-valued pair
interaction potential. The corresponding fermionic Hartree equations are

i@tgoz-(a:) = (—A + ™) (x) + N—F (v * p'}v) (x)) ¢§(x), (2.2)

for j =1,..., N, where we denote the density by pl, = Zfil |t |2
Let us now discuss for which physical systems Equation (2.1]) is applicable. For this
discussion it is useful to consider the N-dependence of the expectation values of the kinetic

7



8 2. The Physics: Mean-field Dynamics of Fermions

energy,
N

Exin gt = <<¢t7 Z(—Am)wt»a (2.3)
i=1

and of the interaction energy,

B = (4,3 vl — ;)0 ) (2.4)

1<j

(note that we did not include the factor N=7 in our definition of the interaction energy),
where ((-,-)) denotes the scalar product in L?(R3*"). (We will often refer to the expressions
, simply as kinetic and interaction energy, although they are only expectation
values.) The situation we want to consider is one where the total kinetic energy is bounded
from above by C'N, where C' is some N-independent constant. We then say that Ei, ¢
is O(N E| Now an interesting effect that holds only for fermions comes into play: Due
to the antisymmetry of the wave function (or the Pauli principle or Fermi pressure), the
particles have to occupy a volume that grows with V. Let us explain in more detail what this
means. First, let us compare the situation to bosons. A very simple bosonic wave function
is ¢(x1,...,xN) = vazl ov(z;), where supp(¢v) = V for some volume V C R3, and

Exin,g = (¢, Z;VZI(—A%.)QZ)}} = N{py,(=A)py) is O(N) ({-,-) denotes the scalar product
in L2(R3)). Here the particles occupy a constant volume V. This, in contrast, is not possible
for fermions. To illustrate this, let us give an example. Consider plane waves in a box, that
is, the free ground state in Vi = [ — %, %]3 with periodic boundary conditions. The general

form of an antisymmetric product state is

N N
Y(x1,...,TN) = /\ o; | (x1,...,2Nn) == Z UH(p(,(j)(xj), (2.5)
j=1 UGSN 7j=1
where Sy is the set of all permutations of 1,..., N, (—1)7 is the sign of the permutation o
and ¢1,...,¢n are orthonormal. For free particles in a box,

pj(@) = L2 TR 1y, (), (2.6)

where k; € Z3. Since we want to consider the ground state, we choose the k; increasingly,
such that |ky| is as small as possible (while of course k; # k;Vi # j). For this wave function,
we find that

N N 2T 2
Ekin,/\ w; — Z <90i7 (_A)(pz> = Z <Lk1>

i=1 i=1
1
2 2 N3
<C ( W) / r? r2dr
L 0
x N5L2, (2.7)

Thus, if the kinetic energy is proportional to N, then L o N%, i.e., the volume L? « N. In
general, one can show that a similar statement holds for any fermionic wave function. The

'In the following we say that a function f(N) is of order N?, or simply O(N?), if there is a constant C'
(independent of N) such that f(N) < CNP. The interesting cases are usually when f(INV) is also bounded
from below, i.e., when there is a constant D, such that DN? < f(N).
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precise statement is Lemma It says in particular that, if the kinetic energy is of O(N),
then the average number of particles in a volume of O(N) is of O(N).

The fact that fermionic wave functions with kinetic energy of O(N) naturally “occupy a
volume” that grows in N is now important for the interaction energy. We want to consider
long-range interactions like the Coulomb interaction, so the “size” of the system is very
important. What we want to use is that, with growing N, each particle “feels” more and
more other particles. To illustrate this, let us consider the mean-field interaction term
|- |71 x ply from the Hartree equation (without the N~7) with Coulomb interaction. For
the example of plane waves from above, its maximum value can easily be evaluated, since
ply = 73 ILVL Recall that L o NS i.e., the density p = 3 is constant. We find

1
N3
— — _ — 2
(-7 o) (@) < (1| 1*P§v)(0)=p/R3 ] 1Ile(y)d?’yM/o rtrfdr oc N3 (2.8)

Thus, the interaction energy per particle is O(N %), due to the long range of the Coulomb
interaction; the total interaction energy is then O(N %) If we now choose the scaling exponent
b= %, then the kinetic term and the scaled interaction term in the Schréodinger equation are
of the same order, O(N). Thus, for times of O(1), we would expect interesting mean-field
behavior for large N: heuristically speaking, each particle feels O(N %) other particles (due
to the fact that the system size grows and the interaction has long range), but only with
strength O(N —%) Lemma makes this statement exact. It says that, under the condition
that Eyy, is O(IN), for interactions with long-range part like [z| =%, with 0 < s < &, vxpy is of
order N?, with scaling exponent = 1 — 5. Note again that it is only the long-range behavior
of the interaction that dictates the scaling exponent . (The interactions we consider in our
main results sometimes have the singularity weakened or cut off.)
If an external field w"Y) is present, then also the total external field energy

Eotp = (0, Zw (20" ) (2.9)

should be of O(N). In principle, the external field could be time-dependent, as long as it
preserves the bound FEy, ¢« < CN.

Let us summarize the orders in N of the terms in the Equations (2.1)) and (2.2 . (for ease
of notation, without external field). In the following, note that the 1nformal notation with
the curly brackets refers to (the expectation values of) the energies associated with the terms
in the equations. We consider long-range interaction potentials v and the corresponding
appropriate 3; more exactly, for interactions with long-range behavior |z|7%, 0 < s < g, the
scaling exponent is § = 1 — 5. For the Schrédinger equation we have

N
i@twt(ml,...,x]\;):—ZAzjwt(xl,..., )+ N~ BZ x; — zj)PH (21, ..., xN), (2.10)

1<J

O(N) O(N)

and for the fermionic Hartree equations

0 () = —Agh(z) + N8 (v ply) () (2) (2.11)
o(1) o(1)
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Heuristically, one sees that we can indeed expect the mean-field approximation to be valid
for arbitrary times ¢ of O(1). From Equation one can read off, that the limit of large
N leads to interesting mean-field behavior, since both the kinetic term and the interaction
term are of O(1). If, for example, the kinetic term would be of O(1) but the interaction term
were of O(N~%) (for some 6 > 0), then the interaction term would be negligibly small for
large N (for times of O(1)) and vanish in the limit N — oco. Our results in Chapter are
about the above Equations (2.10) and (2.11)), possibly with external fields, and sometimes
with weakened or cut off singularity of the interaction potential. The main result is, that,
if the kinetic energy stays bounded by C'N for all times ¢, then the mean-field dynamics
(2.11)) indeed approximates the Schrodinger dynamics well.

Finally, let us briefly compare the situation to the case of bosons near a condensate
state ¢(z1,...,xN) = Hévzl @(xj). For such a state, if the associated kinetic energy Eyi, 4 =

(o, Zj\f:l(—Azj)@) = N (¢, (—A)p) is O(N), then ¢ naturally lives in some constant, N-
independent volume. The density is therefore of O(N); each particle “feels” the interaction
of O(N) other particles, such that the total interaction energy is of O(N?). For bosons
near a condensate it is thus natural to choose the scaling exponent 5 = 1, so that kinetic
and interaction energy are of the same order (independent of the long-range part of the
interaction potential). The mean-field description can be expected to hold due to high
densities, and not due to the long range of the interaction. We will encounter a similar
high-density situation in Chapter where we discuss the semiclassical scaling for fermions.

2.1.2 Origin of the Scaling

Let us explain in this section how a factor N=7 in front of the interaction arises from a
rescaling of time and space coordinates.

Let us denote the “microscopic” or “physical” time and space coordinates by t € R and
Z; €R3 j=1,...,N. We denote the wave function in these coordinates by @Z(f, 1y, TN).
We assume that it is normalized. In the following, let us consider non-relativistic fermions
with Coulomb interaction, and, for ease of the presentation, without external field. The
wave function 1/; is then a solution to the Schrodinger equation

N
i0pb(E, a1, EN) = | =) Az + Y O(E, 1, .. EN), (2.12)
j=1

1
= 1B — 7]
where we set the coupling constant in front of the Coulomb potential (4mgp) ™! = 1. As
explained in the introduction, the mean-field approximation is expected to become better
the larger the number N of particles gets. We therefore consider N-dependent scalings. The

scaling we are interested in is given by
4~ 2
t=N3t, z=N3Z7. (2.13)

What is achieved by this scaling is a “zoomed in” description for “very short” times: ¢t and z
are very big compared to t and Z for large N. Heuristically, one could say, that we want to
look at small length scales where interesting quantum behavior happens on fast time scales.
Let us now express the wave function ¢ in the new coordinates ¢, z. It is given by

bt a1,...,an) = N"NG(N“3¢, N"3xq,..., N szy), (2.14)

where the prefactor N~ is introduced such that 9 is normalized. The dynamics of the
wave function 1 is determined by the Schrédinger equation in the scaled coordinates, that
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is, ¢ is the solution to

N
iN%atw(t,xl,...,l'N): _ZN%A%'—FNEZ’Ai ¢<t,x1,...,$N), (215)

j=1 i<j

which follows directly from (2.12)) (by applying the chain rule). Let us simplify this equation
by dividing by N 5. Then the scaled Schrédinger equation is

iﬁtw(t,xl,..., ZAI] +N_7 Z |x - ‘ ¢<t,x1,...,$N), (216)
i T

1<j

which is exactly (2.1)) for the case of Coulomb interaction. Thus, the effect of looking at the

system on the new scales is a factor N™3 in front of the interaction.

Let us take a closer look at the wave functions ¢ and 1. As explained in Chapter m
it is natural to consider wave functions ¢ with kinetic energy of O(NN); then the particles
naturally “occupy a volume” that grows with N, such that also the interaction term is O(NV)
in the scaled Schrédinger equatlon Now suppose that ¢ lives in a volume proportlonal to N
(say, a ball with radius N3, such that Y(t,x1,...,on) = 0 whenever any |z;| > Ns) This
means, that the wave functlon w lives in a Volume proportional to N~!, as can be read
off from . Here, we see again that the effect of our coordinate rescaling is a “zoomed
in” description, in this case, for a wave function with shrinking volume in N; this can be
relevant for attractive interactions, e.g., gravitation, where the system becomes smaller the
more particles are added.

An equation of the form (2.1), i.e., with interaction N=7 3", ;5 u(®s
from a scaling only for certain mteractlons, e.g., v(z) = |z|~%. In this case, one can rescale
t = N?%t, x = N°%. This leads to an interaction N‘5(2_5) >icj|zi — ;7% in the scaled
equation. As mentioned in Chapter for B =1 — £, which corresponds to § = 3‘95:36,
both kinetic and interaction terms are of the same order For other interactions, the scaled
equations look different; there, the effect of the scaling is that v(Z) becomes Nev(N~°z) in
the scaled equation, for some ¢ € R.

—x), can be derived

2.1.3 Different Formulations of the Problem

The goal of this thesis is to show that the mean-field equations for fermions approximate
the Schrodinger dynamics well in certain situations. We saw above that systems with kinetic
energy of O(N) and long-range interactions are interesting systems where one can expect
mean-field behavior on certain scales. There are now different ways of formulating what
these scales are.

(a) In Chapter we saw that, if we put a factor N7 in front of the interaction, we
can expect the mean-field approximation to hold for times of O(1). Such a factor means
that the interaction is weak. One possibility is that such weak interaction has a physical
origin, e.g., it can be due to screening effects in a large molecule. There, excited states
can be very delocalized: they interact with very many other electrons, but only weakly
due to the screening from the nuclei.

(b) For certain interactions (usually of the form |x|~*), the factor N =% can also arise from
a scaling in the sense of an N-dependent coordinate transformation, as described in
Chapter [2.1.2] The scaling factor arises “out of convenience”, since one could as well
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work in the original coordinates. However, then one could not expect the mean-field
approximation to hold for times of O(1), but rather for very short times, in fact, times
of O(N _%) (for Coulomb interaction); see also Remark [7|in Chapter m

(c) Alternatively, one could use no scaling at all. Then, in the situation of Chapter
and Coulomb interaction, the kinetic term is O(NN) and the interaction term is O(N'3).
Then the mean-field approximation can only be expected to hold for short times, in fact,
times of O(N —%); see also Remark [7| in Chapter This formulation is closer to the
idea mentioned in the introduction, that times are so short that the particles could not

develop severe correlations.

(d) From a practical point of view, it would be useful to not use a scaling at all, and
instead, given a fixed physical system, to leave all the constants i, m and coupling
constants in the original equations. If one could calculate explicit error terms for how
much the mean-field approximation deviates from the Schrodinger evolution (as we in
fact do in some of our main results), then one can directly read off for how long the
mean-field approximation can be expected to be good, depending on the constants in
the Schrodinger equation and the parameters of a given system.

When we write down the main results for the case where the kinetic energy is bounded by
CN, we simply use interaction potentials with a prefactor N~7. One could easily reformulate
the results without this prefactor as we point out in Remark [7] in Chapter

2.1.4 Applications

This work is mainly a theoretical work, showing that and how in principle the Hartree(-Fock)
equations can be derived from the microscopic Schrodinger dynamics. We do not focus
on practical applications here. However, we strongly want to emphasize that the time-
dependent Hartree(-Fock) approximation has very high relevance throughout theoretical
physics and chemistry. To illustrate this, let us mention a few applications here. (Since
numerous references to the mentioned applications can easily be found, we refrain from
explicitly providing them here.)

The Hartree(-Fock) equations are widely used in theoretical chemistry to describe
chemical reactions or excited states of large molecules (e.g., large proteins). They are, for
example, often used for numerical simulations of chemical reactions. In a large molecule, it
is indeed the case that the total energy is proportional to N (and the density is O(1)), in
accordance with the scenario we discussed in Chapter One has to be a bit careful here:
the equations for a real molecule do not have a scaling factor N—7 in front of the interaction;
in fact, as the stability of matter program of Lieb et al. has proven rigorously [38], the
interaction energy and external field energy from the nuclei together are of O(NN), which
makes the system stable. However, the scaled equation (2.1)) might model screening effects
from the nuclei for very delocalized electrons, e.g., electrons in excited states or certain
molecular bonds. Other applications are in solid state physics the description of electrons in
metals (e.g., in conduction bands) or semiconductors. The time-dependent Hartree(-Fock)
equations have also been used in nuclear physics to study collisions of large nuclei. With
recent experimental advances in laser physics, it has become possible to study cold fermions
in laser traps, and thus to directly check the validity of the mean-field approximation. Finally,
the Hartree(-Fock) equations can be used to describe fermionic stars, e.g., neutron stars or
white dwarfs. In this scenario, it is indeed the case that the systems size shrinks with the
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particle number, due to the attractive gravitational interaction. In particular, the scenario
discussed in Chapter can be applicable (see also the scaling discussed in Chapter [2.2]).

2.2 Mean-field Limit Coupled to a Semiclassical Limit

Another situation where one can expect interesting mean-field behavior is when the mean-
field limit is coupled to a semiclassical limit. In this case, the wave function !(z1,...,zN)
is a solution to the Schrodinger equation

N

iNT Ot = (S0 (_N*%ij + w<N>(xj)) + NS o - ay) | ¥, (2.17)
j=1 1<j
and ¢}, ..., Y are solutions to the corresponding Hartree equations
| _2 -
iN“30pp () = (—N sA+w™M(z)+ N7 (v*ply) (:c)) @i (), (2.18)

for j =1,..., N (recall pi = SN |©f?). As in Chapter for Coulomb interaction, the

scaling can arise from a coordinate transformation

ol

t=Nt, x = N3%, (2.19)

i.e., similar to , one considers “small” time and length scales.

The physical situation one considers here is particles confined to some N-independent
volume, e.g., particles in a box with fixed size, or in a nice external trapping potential. One
then considers states close to the ground state of such a system. Then we already know from
Chapter that the kinetic energy cannot be just O(N), but it has to grow faster. If we
consider the example from again, where the ground state has Ey;, o< N %L*Z, we see
that for N-independent L, the kinetic energy is O(N %) This is an effect that holds only for
antisymmetric wave functions; for bosons, the ground state of free particles in a box (with
appropriate boundary conditions) has kinetic energy O(N). Thus, one considers a system
with very high densities of O(N). Then, naturally, the interaction energy per particle is
O(N), independent of the long-range properties of the interaction potential. One can also see
this by considering the mean-field interaction term ( R pf\,) from the fermionic Hartree
equation for Coulomb interaction and the example of the ground state of free particles in a
box, as in (2.8]). Here, p’}v = %JIVL, that is, the density is proportional to N. Then

_ N Lo
(- ) @< [ iy [Crita sy, @)

Thus, the total interaction energy is of O(N?). Together with the prefactors N ~3 and N~
from , both the kinetic term and the interaction term in the Schrédinger equation are
of O(N) (and in the Hartree equation (2.18), both terms are of O(1)). For large N, one can
expect the mean-field approximation to be good, since each particle “feels” the interaction
with O(NV) other particles, but only weakly, with “strength” O(N~1).

A crucial difference to the case described in Chapter is that in Equations
and there is an additional N~5 in front of the time derivative. Heuristically, this
factor should be there because the kinetic energy is O(N %) and thus the average velocity per
particle is O(N %) That means, the particles are so fast that already after times of O(N _%)
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they interacted with all other particles (recall that the size of the system is N-independent).
For large N, the factor leads naturally to a semiclassical structure of the wave functio?.

Formally, such a wave function is characterized by “very small” h. If one sets ey = N3,
then the Schrédinger equation (2.17)) is

N

ieNOp)t = Z (—E?VA%. + w(N)(a:j)> + N1 Zv(xl — ;) | ¥ (2.21)

j=1 1<j

i.e., the ey appears exactly where the i would appear in the Schrédinger equation (in
ST units). Considering very large N means thus considering “very small” A, hence the
semiclassical structure. According to [8], the semiclassical structure can be characterized on
the level of reduced one-particle density matrices /ﬂf That is, the integral kernel of /ff has
roughly the form

i (@iy) ~ 6 (N3 (@ — 1)) x(@ +). (2:23)

This form expresses that the density profile Mf(x; x) = x(2x) has a structure on an N-
independent scale, thus it does not “vary too much”l. Furthermore, the “velocity profile”,
here approximately given by ¢, contains an extra N3, expressing that the particles move
very fast, in accordance with the kinetic energy per particle being O(N %)

That the physics described by Equation is, in a certain sense, close to classical
physics can best be seen from the fact that the solutions to the Schrodinger equation
are close to solutions to the classical Vlasov equation (as first discussed in [44]). The Vlasov
equation is the classical mean-field equation

4

Oupt (w,p) + b Vap (w,0) = (Vox p ) (&) - V! (), (2.24)

where p'(z,p) is the classical phase space density, and v the classical interaction potential.
In more detail, the Wigner transform of a solution to (2.17) (which is a good quantity that
can be compared to classical phase space densities),

Wy(x,p) = (277)_3/p1f(x + EN%; x — SN%)e_ipy dy, (2.25)

is close to a solution p’(z,p) to the classical Vlasov equation. Still, the fermionic Hartree
equations are a better approximation to the Schrodinger dynamics , so the
Hartree equations here describe quantum corrections to the Vlasov dynamics. (Note, in
contrast, that the solutions to the equations are in general not close to any classical
dynamics.)

The main application of the discussed scaling and the mean-field equation are
systems of gravitating fermions [44]. More generally, it should be applicable to certain “high
density” situations.

Finally, let us discuss the connection between the semiclassical scaling and the one from
Chapter The connection can best be seen for the case of Coulomb interaction. So let

z;ff is defined by its integral kernel,

p? () :/dsxz...d3sc1vw(x,x2,...,a:N)w*(y,mg,...,wN), (2.22)

for more details see Chapter
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us compare the solutions ! to (for simplicity, we do not write out external fields)

N
Z'atwt(xl,...,flf]\[): _ZAZ‘J +N Z |.’E . ‘ wt(xlw"a )7 (226>
1 i j

i<j

with the solutions !, to

1
iNT30t (21, ..., aN ZN SAy, +N™ P |m o Yl(xr,. .. zn). (2.27)
( J

1<J

As discussed, we assume that 9! lives in a volume proportional to N, while ¢¢. lives in an
N-independent volume. For both 1’ and v, one could expect mean-field behavior for times
of O(1). Let us now rescale v — N 5z and t — N3t, and consider the (from ?) rescaled
wave function !. This wave function then lives in an N-independent volume. It is a solution
to the rescaled Schrodinger equation

car— L - _2
iNT30 (z1,. .. TN ZN SA,, +N- 1Z|x 1 Py, .. xn). (2.28)
? J

1<)

This is exactly . However, recall that we expected mean-field behavior for 4 for times
of O(1), i.e., we can expect mean-field behavior for ¢t only for times of O(N 71) This is
due to the fact that @t, in contrast to ., does not naturally have a semiclassical structure.
Recall that the semiclassical structure meant that ¢, has a density that “varies on an
N-independent scale” (see ) In contrast, it was natural to assume that the density
of 1t “varies on an N-independent scale”, i.e., the density of )t “varies on a scale N —57,
Therefore, we can only expect mean-field behavior for short times of O(N _%)

Although this semiclassical scaling is not the focus of this work (it has recently been
treated in [§]), we show in Chapter how the mean-field dynamics can be derived
with the a-method used in this work (the full proof can be found in Appendix [A).

2.3 Literature

The scaling from Chapter to the author’s knowledge, has not been considered in the
literature before for a derivation of mean-field dynamics. Thus far, only the case where the
Schrodinger equation is

N
i@twt(ml,..., Z( ij—i—w )m]>—|—N IZ T — Tj) t(zl,...,mN),
j=1 1<j
(2.29)
has been considered, i.e., the case g = 1. For Coulomb interaction and kinetic energy of
O(N), the interaction is thus scaled down by a factor N5 too much; the interaction energy
per particle is of O(NV -3 3), which leads to free evolution in the limit of large N. We show this
explicitly in Proposition The case f =1 could for example be interesting for systems
with kinetic energy of O(NN), when the interaction does not go to zero at all for large |z|,
e.g., v(x) = cos(|z|). The first result for § = 1 was achieved in [4] where bounded v are
treated (see also the related works [5] and [3]). Later, in [25], the mean-field dynamics was
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derived for a class of potentials v including Coulomb interaction. Note that it was a crucial
improvement to consider Coulomb interaction; first, because it is physically very relevant,
and second, because for Coulomb interaction an equation of the type follows from a
rescaling as discussed in Chapter [2.1.2

Another situation which has been considered in the literature is when the mean-field
limit is coupled to a semiclassical limit, as discussed in Chapter A mean-field description
of the dynamics has first been considered in [44]. There, it is shown that in the limit
N — oo and for a class of very regular interaction potentials the solutions to (2.17)) converge
to solutions to the Vlasov equation (2.24) (in a suitable sense). In [52], a similar result is
shown for a more general class of interactions, with fewer regularity assumptions. Later, in
[15], the mean-field equations are derived from for bounded analytic potentials
and for short times (times of O(1) but smaller than a certain constant). Unlike in [44] and
[52], where only the limit N — oo is considered, explicit error terms and a convergence rate
of N=! are given in [I5]. Recently, in [8], this result was shown for all times, with fewer
regularity assumptions on the interaction, and, depending on the exact formulation of the
result, with different convergence rates. In the work [8], a new method is used for the proof,
which uses a Gronwall-type estimate. Note that the extension of the result to all times is a
crucial improvement. In Chapter we show how the main results of [8] can be reproduced
with the a-method used in this work; the full proof is given in Appendix [A] In [7], the results
from [§] are generalized to Hamiltonians with pseudo-relativistic kinetic part. However, to
this date, a derivation of the semiclassical Hartree equations for the important case
of Coulomb interaction is still missing.

Finally, let us remark that the fermionic Hartree and Hartree-Fock equations are also
widely used in the time-independent version, mostly to calculate ground states. The time-
independent equations were actually originally considered by Hartree [32], Fock [24] and
Slater [50] (apparently Dirac [14] first wrote down the time-dependent version). Later, several
properties of these equations were discussed and rigorously proven; e.g., in [39] 40, 42] 22] 1]
2, 28, 23], about existence, uniqueness and properties of the solutions to the Hartree-Fock
equations for atoms and molecules, and that the mean-field approximation indeed gives
asymptotically correct ground state energies for large-Z atoms and molecules.

2.4 Fluctuations

Let us come back here to the question whether the mean-field dynamics can be expected
to be a good approximation to the Schrodinger dynamics. We already mentioned in the
introduction that this can only hold if the particles develop “few” correlations due to the
interaction. Let us suppose that initially the wave function has antisymmetric product
structure, 0 = /\;VZ 1 cp?, and that NV is very large. Then, in a more detailed physical picture,
each particle “feels”, on the one hand, a mean interaction coming from all the other particles,
but, on the other hand, it also “feels” deviations from this mean interaction, i.e., fluctuations
around the mean-field. These fluctuations can cause deviations from the mean-field dynamics.
One can also think of this from the perspective of the law of large numbers. Suppose that
N particles X1, ..., Xy are distributed according to the density p’, = Zfi L 1¢t?, coming
from the solutions to the fermionic Hartree equations. Then, typically, their contribution to
the interaction at point y € R3 is close to its mean value, i.e.,

N

oy — Xp) ~ / oy — 2)ply (@) Bz = (vx ply) (1), (2.30)
=1 R3
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only if fluctuations are small. If they are not small, then we can not expect mean-field
behavior. An example where the fluctuations are not small is Brownian motion. There, on
the right scales, the mean-field prediction is wrong, and one sees instead a diffusive motion,
coming from the fluctuations.

Let us now calculate the fluctuations around the mean-field, assuming an antisymmetric
product state /\j\[:1 ;. First, the expectation value of the interaction potential at point
y € R3 is, of course, given by

N N N
(St ) = Ao (S -0) A
1 j=1 k=1
N
= Z <@])U( )90]>
j=1
= (o)), (2.31)

i.e., the mean-field from the fermionic Hartree equations. The fluctuations around the
mean-field at y € R? are given by the variance

N
Var <Z v(xg — y))

k=1

B R )

N N
= N(N - 1)<< /\ @i, v(@1 — y)v(z2 —y) /\ S0j>>

J=1 J=

N N 1]\7 N
+N<</\s0j,v(w1fy)2/\soj>>*N2<</\ (@1 —y) /\<p3>>
j=1 j=1 j=1 j=1
N
= 5 (sl = e los ot~ D) = ol =) (30l — )9 )

ij=1
+ (V% pn)(y) — (v * pn) ()

N
= (v? % pn)( Z i, U ‘PJ>|

< (0% pn) (). (2.32)

Only if this variance is small enough, one can hope the mean-field approximation to hold.
(One has to be a bit cautious here, since one additionally has to consider the time-scales
on which the fluctuations happen.) We here supposed that the wave function is in an
antisymmetric product state. If this is not the case, e.g., if after some time already severe
correlations have developed, then typically even more correlations will develop, since many
particles are not in the antisymmetric product structure anymore.

The estimates we present later capture the presented physical picture very nicely. One of
our main results, Theorem holds exactly under the assumption that (v2xpx)(y) < CN—L,
i.e., when the fluctuations are very small, of O(N ~!). We come back to this point in Remark
in Chapter [3.3.1
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Finally, let us see what happens in the situation of Chapter [2.1.1] where there is a factor
N8 in front of the interaction. We already saw, that one effect of this factor is that the
kinetic energy becomes of the same order as the interaction energy. If we replace v by N Av
in ([2.31)), then the mean-field interaction is O(1) (which, in the setting of Chapter is
the same order as the kinetic term in the fermionic Hartree equations). However, what is
crucial is that the N=7 also makes the fluctuations small: from (2.32)) we can read off, that
fluctuations are bounded by N=28(v2 % pn)(y) (we discuss the size of this term in Remarks
and |§| in Chapter . Without the N=7, the fluctuations would in general not be small.

2.5 The Exchange Term

In this thesis we study the fermionic Hartree equations as mean-field dynamics for fermions.
Another related dynamics is given by the Hartree-Fock equations. These are the coupled
system of non-linear equations (here given without scaling)

i () = (—A+w(@) ) o +§j(v*|sok|) ol () fj(v*«oz*so;))(x)soﬂx), (2.33)

for 7 = 1,...,N. In comparison to the fermionic Hartree equations, the Hartree-Fock
equations contain an additional “exchange term”. In general, the dynamics is expected
to be a better approximation to the Schrodinger dynamics than the Hartree dynamics.
However, for the situations considered in this work, the exchange term is of smaller order in
N than the direct term v * p;. Therefore, we consider only the fermionic Hartree dynamics.
In the following, let us briefly discuss where the exchange term comes from and then argue
why it is subleading in N for the scaled equations considered in Chapter [2.1.1
Let us start by considering the Schrédinger dynamics with Hamiltonian

H:iv:( ijﬂ—wxj)ﬂ—z T — xj). (2.34)
j=1

1<J

For fermions, the most simple structure of a wave function is an antisymmetrized product
state /\j\[:1 (pz-. Let us now suppose that it is reasonable to approximate the Schrodinger
wave function by some antisymmetrized product state /\;V 1 903 How do we find a good
evolution equation for ¢!, ..., p%? One way is to demand that the evolution should be such,
that (the expectation value of) the total energy of the wave functlon /\ 1 <p is preserved. It
turns out that this job is done by the Hartree-Fock equations ([2.33] Let us explam in more
detail. The expectation value of the total energy for the wave functlon /\ =1 g0] is given by

( /\;V Ll H AY =17 LY. A straightforward calculation shows that

N N N
E' = << /\ goz-,H /\ g0§>> = Z/d3x cpz( )*( - A+ w(t,z)) cpz(a:)
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It is then easy to check that O,E' = 0, if ¢, .. .,goﬁv are solutions to the Hartree-Fock
equations (see, e.g., [13]). Thus, the Hartree-Fock evolution ensures that, if the
approximation of the wave function by /\j\f:1 cp§~ is justified, then /\;\;1 4,03 is close to the
energy of the solution to the Schrédinger equation.

Note that the variation of the energy functional E' = E(¢},..., ¢l ) leads to the
time-independent Hartree-Fock equations, i.e., with i0; replace by a constant e.

Let us now discuss why the exchange term is subleading for the scaled equations
considered in Chapter Of course, the best justification that the exchange term is
subleading for the dynamics is given by the main results in Chapter [3.3] which show that
already the fermionic Hartree equations are a good approximation to the Schrodinger
dynamics. Nevertheless, let us again regard the simple example of the non-interacting ground
state in a box Vi = [ — %, %]3 from around Equation . For such a wave function
and Coulomb interaction, let us now estimate the order in N of the total exchange energy

-3 Z;\’[k:l {pj, (v* (pr*¢;)) @k), i-e., the last term on the right-hand side of (2.35). (Keep
in mind, that in the scaled equation there would be an additional N~# in front of the
exchange term.) It turns out that already for this simple example an exact calculation is
quite hard to perform for singular interaction potentials, like Coulomb interaction. Therefore,
we give here a heuristic estimate (we use the  sign to indicate that an estimate is heuristic).
In the following, recall that the Fourier transform of |x|~! is given by const - |k|~2 (in the
sense of convolutions, see [37] for more details). Also, recall that we number the k; € Z3
such that |kx| is as small as possible, actually |ky| < const- N 3. In the following, C' denotes
a constant (independent of N') that can be different from line to line. We find

N
A T (ki—kj)(z—y)
i;I <90]7 (’U*((Pz 90] / d3 /VL d3 |$_y| Z e Y
d3 / d3 (z—y)
/VL R3 \55 - ?/’ Z

L_6/ A3z A3z = e V3 (ki—ky)z
Vi R3 ]

_ (ki—k;)
L / ‘z’ZeL

22/\

3,j=1
1 N
— L—3 dS /L3 i27r(k‘i—k‘j)z/
/Rs =P
i,j=1
N 1
<CcL™! _—
- Z ’kz - k‘j‘Q
i,j=1

zC’Ll/ .d3k/ Bly — -
[O,N%r ! [O,N%r % k1 — kof?

N3 1
< CLlN/ r2dr —
0

r2

<CL'Ns. (2.36)

Thus, recalling that L o« N %, we see that the total unscaled exchange energy is O(N),
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so that the exchange term for each particle roughly gives a contribution of O(1) to the
dynamics. If we now take the scaling factor g = % into account, we see that the contribution

of the exchange term to the mean-field dynamics is O(N _%), i.e., subleading in N. Note
that we expect this behavior not just for plane waves, but for a much larger class of wave
functions. (Concerning the exchange term the plane waves are not so special, since they
have large overlap. Note that if all the orbitals would have disjoint support with each other,
then the exchange term would vanish.) We come back to the role of the exchange term
concerning the convergence rates between the Schrodinger and the mean-field time evolution
in Remark 9] following Theorem

Finally, note that for bounded interaction potentials v, it is easy to see on a heuristic
level that the exchange term is small. Let us suppose that the orthonormal ¢1,..., N are
approximately a basis of L2(R3), i.e., YN | i) (@] — 1, or Z;VZI 0i(z)* ¢i(y) = o(z —y)
for large N. Then we have (recall that we are not mathematical precise at this point)

N N N
> (o (o teren) ey = [ @ [ @y Y o) o,m Y eilo)ve - v
j=1 i=1

ij=1

N
z/ﬁ%l/fy&m—wijw@fwx—w%@)

N
=0(0) [ 2 Y e eila)
i=1
= Nv(0). (2.37)

The exchange term in the unscaled Hartree-Fock equations is thus O(1), i.e., with a scaling
N8 in front of v, it is O(N~5).



Chapter 3

Mathematical Results

3.1 The Counting Functional

We first introduce the precise meaning of ~ in ¢ ~ /\;V: 1 ¢;- This is done via the functional
ap(y,e1,...,¢n). We want this ay to be such that ay = 0 for ¢ = /\j\]:1 @j, and ay =1
for ¢ = /\j\[:1 X;j, where x; is orthogonal to ¢; for all 7, j. In other words, a;y = 0 should
mean that the approximation of ¢ by /\;V: 1 ; is exact, while ay = 1 should mean that this
approximation is not valid at all. So oy is supposed to measure the closeness of 1) to the
specific antisymmetrized product of the ¢1,..., on. Furthermore, we want oy to measure
those parts of ¥ that “do not contain” 1, ..., pnN. Loosely speaking, it should count how
many particles are not in the antisymmetrized product structure (hence the name “counting
functional”).

We now define oy and several projectors that are needed for its definition. In the
following, we denote by ((-,-)) the scalar product on L?(R3Y) while (-, -) denotes the scalar
product on L?(R3).

Definition 3.1. Let ¢1,...,¢n € L%(R3) be orthonormal.

(a) For all j,m =1,..., N we define the projector

P = o) (@jlm = l@j(@m))(pi(em) =18 ... @ L |p){pjl ®1®...0 1, (3.1)

m—1 times N—m times

i.e., its action on any 1 € L?(R3N) is given by

(P) (21, ox) = o (m) / & am)e(an, ... an) dam. (3:2)
We define
N
=3 P, (3:3)
j=1
and
=1y (3.4)

(b) For any 0 < k < N we define

k N N
Py = Pl % o (qu 1 pm) Y Lo ) (35)
m=1 sym

=1 m=k+1 dc Ay m=1

21
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with the set N
A = {@':(al,_..,aN)G{O,l}N:Zamzk}a (3.6)
m=1

i.e., Py is the symmetrized tensor product of q1, ..., gk, pp+1, - .., pn. We define Py j, =
0 forall k <0Oand k> N.

(¢) We call any f:{0,...,N} — [0,1] with f(0) =0, f(N) =1 a weight function. For any
weight function f we define the operators

N
f=feretn =3 f (k) Prg. (3.7)
k=0
For any d € Z, we define the shifted operators
R N—d N N
for=Y_ flk+d)Pyr=>_ f(k)Pyr_a= Y f(k+d)Pyp, (3.8)
k=—d k=0 k=0

where for the last expression we defined f(k) =0 for all £k <0 and k > N.

(d) For any normalized 1) € L?(R3") we define

M) =

ap=ap(,¢1,...,on) = (0, fo) = F(k) (&, Py ). (3.9)

e
i

0

The functional oy and the projectors from Definition have first been introduced
by Pickl [47] for bosons, that is, with p,, = |¢){®|m. The functional was used in [47, 35]
for the derivation of the bosonic Hartree equation, and in [45] 46] for the derivation of the
Gross-Pitaevskii equation. Let us note here that for fermions oy with the weight function
£ has been used before by Graf and Solovej [28] and Bach [2] to measure deviation from
the antisymmetrized product structure in the static setting; see also the remarks following
(13.17)).

Let us now explain these definitions a little further. (We give more details in Chapter [4.2])
When regarded as operators on L?(R?), p; projects on the subspace spanned by 1, ..., ¢N,
and ¢ projects on its complement. Therefore, piq; = 0. Note that p; and ¢; are indeed
projectors, since the 1, ..., N are assumed to be orthonormal. One can then easily check
that also the operators Py are projectors. Let us now consider the definition of oy from
(3.9). Heuristically, the scalar product (1, Py ) gives a big contribution if £ of the orbitals
©1,...,pnN are not contained in the wave function 1. In other words, Py j projects on those
wave functions which are missing k of the orbitals ¢1,...,©x. Indeed, one finds for example
for a wave function ¢y = /\§:1 X /\jy:z_u @; with x; L @;Vi, j, that Py p¢¢ = 0o ¢ As we
show in Lemma the Py, have the property that Zg:o Py =1, ie., we can define the
decomposition ¢ = Z]kvzo Yy, with ¢, = Py 1. Then, loosely speaking, each 1)y, has (N — k)
particles in one of the orbitals ¢1,...,on and k particles not in the orbitals ¢1,..., pxN.

The function f(k) determines how much weight is given to the contribution coming from
each Py ;1. By choosing f(k) we can thus fine tune what is meant by closeness of ¢ to
/\j-\[:1 ¢j. One obvious and very simple weight is the relative number % We always denote
this weight function by

(3.10)
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and the corresponding counting functional by «,,. Loosely speaking, «,, measures the relative
“number of particles” in ¥ that are not in the antisymmetrized product structure of the
©1,...,pN. It turns out that for this weight and due to the antisymmetry of 1, the functional
has the simple form

N
on = 3, Prcs) = (), (311)
k=0

see Lemma [6.4] Recall here that ¢; projects on the complement of the subspace spanned by
©1,---,pN. Another important weight is given by

,for kK < N7
, otherwise,

k
m (k) = { N (3.12)

with some 0 < v < 1. The function mm(k) gives a much larger weight to already very few
particles outside the antisymmetrized product structure. On the other hand, for £ > N7, i.e.,
very many particles outside the antisymmetrized product structure, m(V)(k) gives the same
weight 1 for all £ > N7. These properties enable us to derive mean-field approximations for
a much wider range of physical situations.

The goal of this work is to prove bounds on ay (wt, o, go}fv), where 9! is a solution
to the Schrédinger equation and ¢!, . . ., gofv are solutions to the fermionic Hartree equations.
In more detail, we first look for a bound of the type

8taf(wtvcp§7 e 750?]5\/') < C(t) (af(¢t790§7 s 7‘)05\[) + N_6> ) (313)

which then, by Gronwall’s Lemma (see Lemma [6.14]), implies the bound

t
af (W, nga s 7805\7) < efo Cle)ds (Oéf (¢0> 90?7 s 790(])\7) + N_5> ) (314)

where the function C(t) is independent of N, and 6 > 0 is called the convergence rate. In
the main theorems of Chapter the weight function f is either n from or m(
from (3.12)). A bound of the form implies that if initially (at time ¢ = 0) oy is small,
then it stays small for times ¢ > 0 and N large enough. In the thermodynamic limit, we
arrive at the statement that limy_,o af(t = 0) = 0 implies limy o a¢(t) = 0 for all ¢ > 0.

Let us summarize the advantages of using the functional o for the derivation of mean-
field dynamics compared to other approaches:

e The idea to “count the number of particles” not in the antisymmetrized product seems
very natural and has a clear physical interpretation. This is also reflected in the proof
of a statement like . As we show in Chapter there are three contributions to
Opap(t), all of which have a clear physical meaning.

e It seems that proofs which use BBGKY hierarchies (e.g., [4]) are hard to formulate for
interactions with scalings weaker than N~!, due to combinatorial reasons. Therefore,
new methods like the a-method or the one developed by Schlein et al. (applied to
fermions by Benedikter, Porta and Schlein in [§]) are useful.

e The freedom in the choice of the weight function enables us to prove mean-field dy-
namics for many different setups, e.g., singular or weakly scaled interaction potentials.
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3.2 Connection to Density Matrices

It turns out that the functional ay is closely related to the trace-norm of the difference
between reduced one-particle density matrices. Let us here explain the relation and state
the exact results; we give more technical details and the proofs in Chapter 5| For any
normalized antisymmetric 1) € L2(R3Y), the reduced one-particle density matrix is defined
by its integral kernel

,uqf(x;y) = /w(x,xg, oz (Y, T, aN) APy L APy (3.15)
For an antisymmetrized product state /\j\[:1 @; we find

poi o L 3.16
I NP (3.16)
Let us now consider ay,, i.e., the a-functional with the weight n(k) = % First, let us mention

that a, = tr(/ffql) = tr(/ff(l — p1)), where tr(-) denotes the trace. This can be seen by
evaluating the trace in a basis that contains 1, ..., pxN. If we denote the other basis vectors

by {<)0]}J>N? we find

wafa) = (ennbaes) = D (panter) = (0, 3 leaeil) = (b, ae).
j=1 j=N+1 J=N+1

(3.17)
It is the expression tr(/ffql) that has been used before to measure deviation from the
antisymmetrized product structure in the static setting, see [2, 28]. Now consider the
difference of the reduced one-particle density matrices in trace norm,

(3.18)

HIU’ALPJ _Mllﬂ

tr '
Using p1 + ¢1 = 1, let us decompose the reduced density of ¥ into four contributions,

qup = (p1 + Q1)/~011/}(P1 +q1) = pluipp1 + pl,ulf(h + ql/flpm + Q1/~511pQI- (3.19)

In the proof of Lemma recalling that a,, = (¥, 1%)) = ||q19|]?, we show that

Hu/\w’ pmi”letr = quipql L= an (3.20)
Furthermore, one can show that
leuifﬂh . <+Va, and quzflet < Va. (3.21)
I T
Therefore,
Hu/\% - /fth < Cy/ay,. (3.22)
On the other hand, one can show that
an <2 || 7 - ]| - (3.23)
tr

As a consequence, convergence of Y to /\ 7 in trace norm is equivalent to convergence of a,
1
to zero. However, there is a difference in the convergence rates. This comes from the fact that
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controlling the density matrix difference means to control “more” correlations than
covered by ay,. This can be seen from : with «a;, one controls only certain “diagonal”
parts of the density matrix difference, while the *“non-diagonal” parts as in are
weighted more, with /a,,. A similar analysis can be done for the Hilbert-Schmidt norm
instead of the trace norm. There, due to the choice of normalization of the density matrix,
an extra factor vV N appears.

The relations between the different types of convergence are summarized in the following
lemma. Recall that a, is defined in with the weight n(k) = £, ;ff is defined in (3.15),
and note that [|-||,, and ||-||ygq denote the trace and Hilbert-Schmidt norms, respectively.

Lemma 3.2. Let ¢ € L*(R3N) be antisymmetric and normalized, and let o1, ..., pn €
L?(R3) be orthonormal. Then

PSS : (3.24)

HS

it - < s o i

NHM /\%

(3.25)

<2an§Hu1 /\% o
T

This lemma is the main result of this section. Its proof is given is Chapter [5| Note that
it implies in particular that

lim a, =0

N—o0
= hm H,ul /\% =0
tr
~— lim WHMI— Aeill . (3.26)
N—oo HS

Let us now consider more general weight functions f(k) that dominate n(k), i.e., f(k) >
n(k) for all k. This includes in particular the weight m () (k) from (3.12)) which we use later.
For those weights, the inequality oy > «,, holds, since

n(k) (¥, Pt ) < > 9 (v, Py = ay. (3.27)
k=0

0 S——
>0

£
I
M=

B
Il

Thus, Lemma [3.2] directly implies the following lemma.

Lemma 3.3. Let ¢ € L2(R3*N) be antisymmetric and normalized, and let ¢1,...,pn €
L2(R®) be orthonormal. Then, for all f with f(k) > & Vk=1,...,N,

112
Huip — L S8ap, (3.28)
N Nej < 2
w—u?|° <2y (329

We thus have that convergence of oy to zero still implies convergence of /h to u/\ o

but not the other way around (in general), i

li _ li H _ Nej
Ngnooaf 0 = NE)noo i 1

=0, (3.30)

tr
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lim af =0 == lim \/>Hu1 /\%

N—o0 N—oo

s 0. (3.31)

Finally, let us make a remark about convergence in operator norm. Note that || ;ﬁfHop <
N~ for antisymmetric 1, so a possible indicator of convergence would be the operator norm
times V. This is not a good type of convergence to consider, though, since the operator norm
is given by the largest eigenvalue which at most can be N~! for fermionic density matrices.
Thus, while convergence of N times the operator norm does imply convergence of «,,, the
opposite is not true. One orbital not in the antisymmetrized product of the ¢1,...,oN is
enough to let the operator norm of N times the difference between the density matrices be
equal to one, while oy, converges to zero. This is summarized in the following proposition
which we also prove in Chapter [5

Proposition 3.4. Let ¢ € L?(R3N) be antisymmetric and normalized, and let @1, ..., pn €
L?(R?) be orthonormal. Then

an <N H“l MASII (3.32)
op
i.€.,
1im NHM1 /\% =0 = lim «,=0. (3.33)
op N—o0
The converse of (3.33) is not true, i.e., a, — 0 does not imply N H,ul /\% — 0.
op

3.3 Main Results

We now state the main results of this work. The proofs of the results in Chapters [3.3.1] and
are given in Chapters and Note that in the rest of the Chapter we give the
desired bounds only in terms of a¢; the corresponding bounds for the convergence of density
matrices can be read off from Lemmas [3.2] and 3.3

3.3.1 Main Theorems for General v?)

The two theorems and in this subsection cover very general Hamiltonians. The
theorems are of the form: Given certain properties of the solutions to the fermionic Hartree
equations, the mean-field approximation for the dynamics is good, i.e., a(t) < C(t) (a(O) +
N _5) for some § > 0. We consider wave functions ¢* € L2(R3") that are solutions to

ot = HNyt = ZH0+ > vy —ay) | W, (3.34)

1<i<j<N

where the Hamiltonian H" is a self-adjoint operator, v(™)(z) = v(¥)(—z) is a (possibly
scaled) real interaction potential and HJQ acts only on the j-th particle. The most important
example for HJQ is the non-relativistic free Hamiltonian with external field, H;-) = —-Aj +
w®) (z;), but we could also replace the Laplacian by relativistic operators like vV —A + m2—m
(m > 0) or |V|. The fermionic mean-field equations for the one-particle wave functions
.ol € L2(R?) are

idhl(x) = (H+ () 5 py) (@) 1 (2), (3.35)
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for j =1,..., N and where pl, = Zf\il !, Recall that antisymmetric initial wave functions
stay antisymmetric under the evolution , and that orthonormal initial one-particle
wave functions stay orthonormal under the evolution

The first theorem gives a bound on «,, as defined in and -

Theorem 3.5. Let t € [0,T) for some 0 < T € RUoco. Let ¢t € L2(R?*N) be a solution
to the Schrodinger equation with antisymmetric initial condition y° € L?(R3N). Let
ol ... ,cp§V € L%(R3) be solutions to the fermionic Hartree equations with orthonormal
initial conditions @Y, ..., 0% € L?(R3).

We assume that v'N) and pl, = Zfil |t for all t € [0,T) are such that there is a
positive D(t) (independent of N ), such that

sup ((0)% iy ) () < DN, (3.36)
y€ER3

Then there is a positive C(t) = 241/ D(t), such that
an(t) < elo €8s o (0) + (eftf Cl)ds _ 1) N7L (3.37)

Remarks.

1. From Lemma it follows that (3.37)) implies for the reduced one-particle density
matrices the bounds

1
t 0|2
‘ w =N <o <’ " — +N—%> , (3.38)
tr tr
and
3
_ M{W” <t << _ M{\% ) + N-%) 7 (3.39)
HS HS
with C'(t) = V8 exp (5 fo )ds).

2. The condition (3.36) is only a condition on the solutions to the fermionic Hartree
equations (3.35)), and not on the solutions to the Schrodinger equation ((3.34)).

3. Note that condition (3.36]) implies that (by Cauchy-Schwarz and [ p%, = N)

sup (‘v ‘*p’}v) (y) < /D(t). (3.40)
yeR3

For purely positive or negative v(N)| this inequality means that the scaled mean-field
interaction is everywhere bounded. In particular, it means that the scaling of the
interaction is chosen correctly; e.g., when v(Y) = N=Py, the scaling exponent 3 is
chosen correctly (or too big), as discussed in Chapter

4. We show in Corollary [3.8{ and Theorem |3.9| for HJQ = —A; +w®)(z;) more specifically
for which situations condition (3.36]) holds.
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5. Let us explain the condition (3.36]), for the case H]Q = —A; +w™ (z;). First, note that

we are interested in solutions with total kinetic energy of O(NV), that is Zf\il [[Vt|? <
AN'. Then, in particular, gp?- c HR Vj =1,... ,Nﬂ It turns out that for such
solutions and for interesting potentials, that is, potentials with Coulomb singularity or
less, the density p is regular enough, so that the quantity on the left-hand side of (3.36)
is always finite. This is due to the convolution which can smooth out the singularity.
(For the Coulomb potential this can be seen by Hardy’s inequality.) The condition
(3.36]) can be problematic for v with a strong singularity. Consider the physically most
relevant case of Coulomb interaction. There we have vV)(z) = N=8|z|~! with g = 2.
12

In a scenario where ZZ]\L LIV [? < AN, we get in the most general case, by Hardy’s

inequality, only

((N—%)2 X pfv) (y) < N"2P4AN < ON75. (3.42)

6. Still, we expect that for Coulomb interaction for many scenarios condition ([3.36))
actually holds. For Zf\il [Vt < AN, the particles naturally occupy a volume

proportional to N, so the density is of O(1), as discussed in Chapter Then,
heuristically,

1

N3
3 / lz—y| 2 ply (z)d>x = N3 / r2Cr%dr < CN7!.

O(N) 0
(3.43)
Therefore, we expect that many solutions to the fermionic Hartree equations
fulfill condition . To show this would be a matter of solution theory for the
equations . If the initial conditions cp(l), e go?v are nice enough, then we expect
that condition holds for long or all times ¢. Note that the properties of the
solutions can also depend on the external field w®).

((N50) 24l ) () ~ N~

7. We could easily write down the theorem without any scaling, i.e., we could simply use
v instead of v(™). Then the theorem says that, if

sup (v? % ply ) (y) < DI (1), (3.44)
yeR3

then there is a positive CV () o /ND{ (t), such that

an(t) < edo NG o (0) + (ef5 CN(s)ds _ 1) N1 (3.45)
Suppose that v is Coulomb interaction, 3-% | ||[V¢!|[> < AN, and that the solutions are
nice enough, so that (3.43)) holds. Then it follows, that the mean-field approximation

is good for all times t of O(N_g), ie.,

2 2
an(t) < e“N3a,(0) + (eCN“ - 1) N7L (3.46)

'H'(R?) denotes the first Sobolev space, i.e.,

H'(®®) = {f € L*(®®) : [V f]] < o} (3.41)
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For longer times, the mean-field approximation can not be expected to hold anymore;
the dynamics becomes instead dominated by the fluctuations.

Let us also consider the situation from Chapter before the rescaling. Suppose
that v is Coulomb interaction, and the “system volume” is proportional to N~!, such
that the density is O(N?). Suppose again that the density is nice enough, such that

1
NT3
(1)2 *p%) (y) = CNQ/ |z —y| 2 d®z CNZ/O r~2r2dr < N3, (3.47)

O(N—1)
Then, it follows from (3.45)), that the mean-field approximation is good for all times ¢
of O(N73), ie.,

4 4
an(t) < e“N3a,(0) + <eCN” — 1) NTL (3.48)

8. Let us recall Chapter 2.4] There we showed that the fluctuations around the mean-field
at point y € R? can be bounded by ((U(N))2 *p}f\,)(y). Thus, the condition says
that the fluctuations have to vanish for large N, with rate N~!. Note that N ! is
the typical size of fluctuations in the (weak) law of large numbers, for independently
identically distributed random variables. It is therefore not surprising that under this
condition the derivation of the mean-field dynamics succeeds. On the other hand, this
condition seems much too restrictive: First, the fluctuations can actually be smaller
than ((’U(N ))2 * p’}v)(y), see the calculation ; second, it is sufficient to make
the fluctuations vanish in the limit N — oo (e.g., they can be O(N~%), for some
0 > 0), which, as explained in Section is a necessary condition for the mean-field
description to be a good approximation. Indeed, it turns out that condition can
be weakened. This is shown in the next Theorem

9. Let us consider the case of scaled Coulomb interaction v™) (z) = N -3 |z| . We saw in
Chapter that for the example of plane waves the scaled exchange term is O(N _%)
Since the Hartree-Fock equations (the fermionic Hartree equations with exchange term)
are a better approximation to the Schrodinger dynamics, it might seem surprising
that for a,(t) we find the convergence rate N~! instead of N -3. However, looking at
the proof of the theorem, we find that an exchange term of O(/N —%) gives an error
term of O(N —%) in the oy, estimate. We show this in Remark |19} following the proof
in Chapter . Only for the convergence in the sense of density matrices, see ,
does the exchange term give an error term of O(N _%), but there it is of smaller order
than the convergence rate of N -3 anyway. Note that it follows that for the fermionic
Hartree equations with scaled Coulomb interacltion the egpected optimal convergence
rate for the density matrices is between N~ 2 and N 3. If condition holds,
then the error term due to fluctuations is O(N 1), see Remark (8 It would then be
interesting to see if one can improve the convergence rate for the density matrices to
N~! by considering the Hartree-Fock equations instead of the Hartree equations.

Note that Theorem [3.5/shows that under the condition (3.36)) the scaled exchange term

is at most of O(N~2). This is not so easy to see by directly estimating the exchange
term, which is hard for singular potentials.

The condition (3.36)) can be relaxed and replaced by other conditions if we use the weight
function m") from (3.12)). This allows to treat more singular interactions and smaller scaling
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exponents. Let us summarize the precise assumptions that we need on the scaled interaction
v™) and the density pl.

Assumption 3.6. For allt € [0,T), p'y := Efil 1©!? and v™N) are such that there are a
(possibly N-dependent) volume Qn C R3, positive D;(t) (independent of N ) and, for some
0 <~ <1, exponents do <, 63 > 0, 64 > 0 such that

sup ([0™)] phy ) (y) < Do(), (3.49)
y€eR3
sup ((v™)* %y ) () < DI N7, (3.50)
yeR3
/ <(U(N))2 *p§v> (y) Piv(y) d*y < Da(t) N2, (3.51)
2
sup / (U(N) (y — x)) phv(z) d®x < Dy(t) N~179%, (3.52)
YyER3 JQN+y
sup  [vNM)(y)| < Dy(t) N~23 701, (3.53)
y€R3\QN

Under this assumption we can conclude convergence of «,, () (t). The following theorem
is the most general version of our main result.

Theorem 3.7. Let t € [0,T) for some 0 < T € RUoco. Let bt € L2(R3*N) be a solution
to the Schrodinger equation with antisymmetric initial condition ¢¥° € L*(R3N). Let
... ,go}tv € L*(R3) be solutions to the fermionic Hartree equations with orthonormal
initial conditions ¢Y, ..., 0% € L*(R3).

We assume that v™) and pty := SN | |©!|? for allt € [0,T) are such that Assumption
holds. Then there is a positive C(t), such that

Qo () (t) < ef(;s C(s)ds Q) (O) + <€fg Cls)ds _ 1) N_a, (3.54)

whereO<5:min{’y—5g,’y—|—%3,'y+(54} and

C(t):12max{4 Dg(t)N—%,4\/§D4(t)N—54,\/ﬁpo(t),\/ﬁ .8 Dl(t)}. (3.55)

Remarks.

10. Similar to (3.38)), the bound (3.54) implies

and a similar bound for the Hilbert-Schmidt norm. However, in general it is not true

0
that o, (0) < C’ ‘,ulfo - u{\ i

P | < VRO (0,00 )F + (8 (e OB —1))F N5 (350)

Hy — My

tr

tr

11. We show in Theorem [3.9] for which situations Assumption [3.6] holds.
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3.3.2 Main Results for —A and Interactions |z|~*

In this section we explicitly consider the non-relativistic Schrodinger equation

N
10t (21, ..., oN) = Z (—Azj + w(N)(acj)> + N_ﬁzv(xi — ;) | Y (21, ... 2N,
j=1 i<j
(3.57)
and the corresponding fermionic Hartree equations
i@tgo?(a:) = (—A + wW) (x) + NP (v * p’}v) (x)) goz-(x), (3.58)
for j =1,..., N, where pi = S-N | |2 The results in this subsection are concerned with

potentials |z|™* with 0 < s < g, sometimes with singularity weakened or cutoff, and the
corresponding 3 =1 — 2, as discussed in Chapter For the following results we assume
that the mean kinetic energy per particle is bounded by a constant, independent of IV, i.e.,
for the total kinetic energy we have Eyin ms(t) = Zf\;l IVel||? < AN.

First, let us state a result about the Coulomb potential that replaces condition by
other conditions, which again depend on properties of the solutions to the fermionic Hartree

equations. (Note that ||A||,, = sup, |A(z)| for all multiplication operators A.)

Corollary 3.8. Let v(x) = &|z|~! and 8 = % We assume that @, ..., oY% are such that

N
Exinmt (t) = Z ||Vl ‘2 < AN, (3.59)

=1
N

\ N
=1

for some A, D > 0 (independent of N) and all t € [0,T). Then assumption (3.36) from
Theorem holds. Therefore, there is a positive constant C' (independent of N ), such that

<D

oo

; (3.60)

an(t) < e“ an(0) + (e“f —1) N7 (3.61)

Let us now come to the main result of this section, where we state for which inter-
actions the mean-field approximation holds under the only condition that Eyinms(t) =

Zf\;l HVgpﬂ ‘2 < AN. Note that Eyinmt(t) < AN is basically just a condition on the initial
states ¢Y,...,»% and the external field. Recall that the fermionic Hartree time evolution
conserves the total Hartree energy. For repulsive interactions, it is therefore expected that,
for nice enough external fields, including, e.g., external Coulomb fields generated by nuclei
with some N-independent distances to each other, the kinetic energy at all times ¢ is bounded
by AN, if it is initially bounded by C'N. A blowup of solutions is only expected to happen
for strong attractive interactions (e.g., for gravitating fermions), see, e.g., [27, B1], 29]. There
are several works about solution theory to the Hartree(-Fock) equations [9, 13, 12, [10];
however, estimates of Sobolev norms with explicit N-dependence are rare.

We can treat interactions with weak enough singularities (||, with 0 < s < 2), with
singularity cut off (and long-range behavior like |z|~*, with 0 < s < g), and with long-range
behavior like |x|~! but weaker singularity.
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Theorem 3.9. Let ¢ € L2(R3N) be a solution to the Schrédinger equation (3.57) with
antisymmetric initial condition ¢° € L2(R3N). Let ¢i,... o4 € L*(R3) be solutions to the
fermionic Hartree equations (3.58)) with orthonormal initial conditions ¢, ..., % € L*(R3),
and with

N
2
Exinmt(t) = Z |[Vei||” < AN (3.62)
i=1
for some A >0 and all t > 0. Then there is a positive constant C, such that

e for interactions

3
v(x) = x| %, with 0 < s < R and B =1— %, (3.63)

we have
an(t) < e an(0) + (e“ = 1) N1, (3.64)

with C o< Az ;

e for interactions

. <lz|™% , for|z| <e .
— (o9} < I
v=2vs. € L with 0 < vs(x) { Z 2=t for|a] > e, , with € > 0,
6
with0<s<g(mdﬁ:1—§, (3.65)
we have
Qo (1) (t) < 6Ct Q) (0) + (€Ct — 1) Nf’y, (366)
forallO<’y§1—%;
e for interactions
|x|=% , for|z| <1 , 1 2
v(x) { 2L for |2] > 1, ,with 0 < s < 3 and S 3 (3.67)
we have
A (8) < €“P e (0) + (e9F = 1) N7, (3.68)

for allO<7§%— 9_41555.

Finally, let us show that, when the Coulomb interaction is scaled with N~!, then, for
systems with initial total kinetic energy bounded by AN, the dynamics is free.

Proposition 3.10. Let ¢}, ..., % € L*(R?) be solutions to the free equations

i@tcpﬁ(x) = —Aapé-(x) (3.69)
for j=1,..., N, with orthonormal initial conditions cp(l), ce go?v € L*(R3) with
al 2
Binme(0) = Y _[|Ve?||” < AN (3.70)
i=1

for some A > 0. Let ' € L*(R3N) be a solution to the Schrédinger equation (3.57)
with B = 1, v(z) = £|z|~" and wN)(z) = 0, and with antisymmetric initial condition
Y0 € L2(R3N). Then, for % <y < 1, there is a positive constant C' such that for allt > 0,

o) (1) < @y (0) + CEN T, (3.71)

where 0 < § = min{% - 53+ %} In particular, for v = % we have the mazximal

convergence rate § = %.



3.4. Outline of the Proof 33

Remarks.

12. The proposition also holds with external field w(™)(z) that is such that it preserves
the bound YV | [|V¢!|[> < AN for all times.

13. Note that for 3 = 1, v(z) = |z|~" and wN) (x) that preserve the bound Zf\il V]2 <
AN for all times, the condition (3.36]) from Theorem [3.5{holds due to Hardy’s inequality
and energy conservation. Therefore, in this case we can deduce the bound

an(t) < e an(0) + (e —1) N7, (3.72)

which gives a better convergence rate than in Proposition but exponential growth
in time. However, as explained in Remark [6] for nice initial data, one would expect

that
(vQ*p§v>(y) < DN, (3.73)
which implies the bound
an(t) < exp (CN*%t> (an(0) + N7Y), (3.74)
and therefore in particular
an(t) < an(0) + Ct N3, (3.75)

3.4 Outline of the Proof

The proofs of the main results from Chapters and are given in Chapters [dH7] In
Chapter [4] we establish some notation, state inequalities we often use during the proofs, and
explain in more detail properties of the projectors from Definition In Chapter [5] the
proofs of the lemmas about the convergence of reduced density matrices are given. These
proofs were already outlined in Chapter [3.2] Then, in Chapter [6] we prove the theorems for
general free Hamiltonians H° and interactions v¥) from Chapter and in Chapter
we prove the results for HY = —A and interaction potentials |z|~* from Chapter Let
us now outline these proofs of our main results.

The general strategy of the proof is the following. First, we calculate the time derivative
of af(t) = ar(¥h, i, ..., ¢4 ), where ¢ is a solution to the Schrodinger equation and
ol ..., ¢l are solutions to the fermionic Hartree equations. (This is a simple, straightforward
calculation.) Second, we bound the time derivative by terms proportional to a(t) or N—°
for some § > 0, i.e.,

drap(t) < O(t) (af(t) + N*‘;) . (3.76)

Then we use the Gronwall Lemma (which we state as Lemma [6.14]) to conclude that
ap(t) < edo Cds o (0) + (ef(f Cls)ds _ 1) NS, (3.77)

which is the desired bound.

Outline for Theorem Let us start with the most simple case where we use o, (t),
i.e., the a-functional with the weight function n(k) = %, as considered in Theorem The
first step is to calculate Ozcv, (t). This is done in Chapter for general weight functions f(k).
In the case of a,(t) this is a very simple calculation, due to the identity a,(t) = (¢, q11bt)).
Recall here our loose notation: the projectors p; and ¢; are always time dependent, since they
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are build with the time dependent solutions to the fermionic Hartree equations ¢, .. ., goﬁv. In
fact, g1 solves the Heisenberg equation of motion i0;q1 = [H {nf, q1), where H {nf = HY+ VI(N)
is the “mean-field Hamiltonian”, acting on the first variable (the variable that ¢; depends
on), and [a, b] = ab — ba is the commutator. The wave function 1’ solves the Schrédinger
equation i9p)t = Hy' with H = Zévzl H) + di< vi(;-v). We thus find

Aporn (t) = O (W', ")

= (0", ") + (W°, (Deq)¥") + (W', q1(9"))
= i(HY', qio") — i [HP @) — i@, o Ho'))

=1 <¢t7 [H - H{nfv Q1]¢t>>

~

=it [ S HY+Y ol —H) v g | gt
| i<j

=ilw!, |3 ol = v q | o)

[ j>2

=i [V = Doy’ = ™ ar| ), (3.78)

where we used that [h;,q1] = 0Vj > 2 for all operators h; that act only on the j-th variable,
and in the last step we used the antisymmetry of 1)!. Note that the kinetic and external
field terms coming from the Schrodinger and the fermionic Hartree equations cancel. This
is the reason why Theorem (and also holds for any H]Q. We can simplify
by inserting two identities 1 = p; + ¢; and 1 = ps + ¢o in front of each v*. Due to the
commutator structure, vis = ve; (i.e., v(x1 — x2) = v(z2 — x1)) and pi1q1 = 0 = page, only
three summands remain, such that we find

dran(t) = 21m (v, ((N — Dpavly ps - VfN))PW»
+2Im <<1,Z)t, 9192 (N — 1)“512\[) plp2¢t>>
+21m (9, @1 (N — 1oy prgat ). (3.79)

Note that the second and third term on the right-hand side of do not depend on the
mean-field V; at all; it is only the first term where the mean-field makes the contribution
coming from the Schrodinger interaction small.

The three terms on the right-hand side of have a nice intuitive explanation. Let us
call the contributions coming from any projector p “particle in the Sea” and those coming
from any projector ¢ “particles outside the Sea”. With Sea we thus mean the antisymmetrized
product of ¢, ..., %, the “Fermi Sea” or “condensate”, and with “outside the Sea” we
mean those parts of ¢’ that do not contain ¢, ..., ¢4 . The vg) summand from the first
term on the right-hand side of gives a contribution only if two particles in the Sea
(the p1,p2 on the right side of the scalar product) transition into one particle outside the
Sea and one in the Sea (the g1, p2 on the left side of the scalar product). Furthermore, the
contribution from this term is “big” only if 1* contains many parts of !, ..., oY, since
there are three p’s in the scalar product. The second term on the right-hand side of
gives a contribution only if two particles in the Sea (the pi,ps on the right side of the scalar
product) transition into two particles outside the Sea (the g1, g2 on the left side of the scalar
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product). The third term contributes only if one particle in the Sea and one outside the
Sea (the p1,¢o on the right side of the scalar product) transition into two particles outside
the Sea (the ¢1, g2 on the left side of the scalar product). Due to the three ¢’s, this third
term is “big” if 4" already contains many parts orthogonal to ¢!, ..., ¢Y% . Finally, note that
these three contributions are exactly what one would intuitively expect. The change in the
“number of particles in the Sea” (J:cv,(t)) can be caused by those three transitions (and
their reverse processes): two particles in the Sea interact and one gets kicked out (becomes
correlated), two particles in the Sea interact and both get kicked out, one particle in the
Sea interacts with one outside the Sea and gets kicked out.

Now let us discuss how these three terms can be bounded rigorously. At this point, if
(V) (V) _ v(_N) with v( ) >0,

=0
+
and then split up each of the three terms into two contributions, coming from U_(’_N) and

v(_N). Since each contribution is estimated separately, we only deal with positive V) in the
following.

The gq-pq term. Let us begin with the third term on the right hand side of (3.79)),
which is the easiest to bound. Note that quqQWH < quth = (W, @t = Jan(t)

Using Cauchy-Schwarz, we find that

v®) has both negative and positive parts, we split up v

N<<¢taQ1CI2U§12V)p1Q2¢t>> < N||qg2v'|| va)qu?ﬁtH
< Nv/an(t) \/ <<1/1t7 @201 (vg))Qplqu»
< Nm\/!\qzwtl ? up <<¢,p1 (v§év))2p1¢>>

< an(t)\/N2 sup <<¢,p1 (vig ) p1¢>>> (3.80)

where the supremum is taken over all ¢ € L*(R3") which are antisymmetric in all but the
second variable (because of the ¢2). As we show in Chapter it turns out that

<<<l>,p1 (’012 ) p1¢>> ;;13@ ((v(N))Q*pfv) (y) (3.81)

2
(where pty = SN |©4]?), which follows from diagonalizing p (vg)> p1; the extra factor

N~! comes from the antisymmetry of ¢ (it does not matter that ¢ is not antisymmetric in
the second variable). Note that the inequality (3.81]) is very similar to the inequality

{6, A1g)) < N7H[ A1l (3.82)

for any self-adjoint A; (that acts only on z1) and antisymmetric ¢, where ||||,, denotes
the trace norm. This inequality can be proven by diagonalizing A; = > Iy loj) (il and
calculating

(¢, Ar9)) = <<¢vz)\j":0j><@j‘1¢>> < Z Al sup |, [5)(pil1o)]. (3.83)

Since 3, | = [lalle and (@, 103)(05168) = N~ SN (6, [03) (@3lmé) < N1 (since
Zﬁ:l l©;){¢jlm is a projector due to the orthonormality of the ¢;’s), (3.82)) follows. To
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summarize, the gg-pq term from the right-hand side of is bounded by Ca,(t), under
the assumptions of Theorem

The qq-pp term. Let us now estimate the second term on the right-hand side of
(3.79). Here, we have again two ¢’s available, so the term should be proportional to «ay,(t).
However, both ¢’s are on the same side of the scalar product, so we cannot directly apply
Cauchy-Schwarz. But by a trick using the antisymmetry of 1!, we can shift the g2 to the
right side of the scalar product, on the expense of a boundary term of O(N~!). In more
detail, we estimate, using Cauchy-Schwarz again,

(ot 0y =) = (0 > )
m=2

< o]

N
N
> a0 prpmtt
m=2

N

< Va3 (Dol pipnt)

m,n=2

N

<Vau®),| Y (ool anaa Y vt )

m#n=2

N

| (D)

m=2

S o P (O X D
i \/m\/N«W, p2p1 (Ug)) 2p1p2wt>>
< m\/(N%m(t) +N) st;p <<¢,p2p1 (vg)>2p1p2¢>>-

(3.84)
Similar to (3.81)), one can show that
2 2
<<¢,P2p1 (Ug)) p1p2¢>> < N_Q/ ((U(N)> *va) ()oiv (y) d*y,
2
< N~ 'sup ((W) *pﬁv> (v), (3.85)
yeR3

which is also shown in Chapter [6.3] and where the second inequality follows from Holder’s
inequality and [ p%; = N. Thus, if condition (3.36]) of Theorem holds, we find

<<¢t7 q1q2(N — 1)U§]2V)p1p2¢t>> < Cv/an(t)Van(t) + N-1
< Cvon(t)2 + 20, (t)N-1 4 N2
= C(an(t) + N7, (3.86)

The gp-pp term. We now turn to the first term on the right-hand side of (3.79). This
term is the hardest to control, since here it is crucial to use the fact that the interaction from
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the Schrodinger equation and the mean-field from the fermionic Hartree equations cancel in
a certain sense. Note that we did not use any such cancellation so far. Before we outline the
estimate, let us stress that here lies the crucial difference compared to the bosonic Hartree
equation, as treated in [47) 35]. In this case there is just one orbital ¢, so for example
P2 = |@(22))(p(z2)|. Furthermore, v™)(z) = N~1v(z) and Vl(N)(ac) = (v*]|p|?) (). Then
(recall that go = 1 — p2)

VA ol = 102 = (0% ) (1) — Dot mslota))ote)

= (ox]oP) (o) - Y=

U (0 lof?) (@)
= (vxle?) (1) (a2 + N 'pa), (3.87)

such that the first term can be bounded by «,(t) (due to the two available ¢’s) and a
term of order N _1E| In the fermionic case we cannot use the same argument since ps is
a sum of projectors, each projecting on one of the N orbitals. However, as we have used
before and show in Chapter one can diagonalize the operator pgvgv)pg in the sense that

N . N
p2v§2 )pg = Zf\il Ni(z1)|x; (@2)) (X7 (x2)], where it turns out that Zfil Ai(z) = V1( )(:c)
Then

N

N
VY = pa(V = iy pa = D7 M) = (V = 1) 37 Xilen) [ () (0 ()|
i=1 i=1

N
= N (1 (N - D @) 0 @) (3.8

Due to the antisymmetry of 1, the term (1 — (N — 1)|x" (z2)) (X" (z2)|) corresponds to a
projector called qxz‘zl. It can be shown that this additional qxizl gives us an additional g9
on the right side of the scalar product of the first term; again at the expense of a small
boundary term of O(N~1). We do not present the full estimate here in the outline, since it
is technical and lengthy; the explicit estimate can be found in Chapter [6.4] To summarize,
also the first term can be bounded by Cay,(t). This concludes the proof of Theorem

Note, that the gp-pp term is not only technically the hardest to control, but also the
reason why we cannot prove Theorem [3.9|for Coulomb interaction (including the singularity).
The conditions from the estimate make further properties of the solutions to the fermionic
Hartree equations necessary.

Outline for Theorem Let us now describe what is gained by using a different
weight function than n(k). We saw that in the third term (and, as it turns out, also in the
first term) on the right-hand side of , there is only one projector p available which lead
to the condition (v(N))2 x py < CN~L. This condition seems to be too strong and we would
like to relax it. Let us first consider the time derivative of a¢(t) for a general weight function
f(k). This is, as in the case f(k) = n(k), a straightforward, but more lengthy calculation,

*Note that in [A7, [35], the term (v * |¢|*) (1) g2 is usually regarded as being part of the gg-pg term.
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which is the content of Chapter [6.1] Let us present the result here:
Orary(t) =21Im <<¢ta N <f— f—l) q1p2 ((N —1ofy) - ‘G(N))Plpﬂ/’t»
+ Im <<¢ta N (J?— ﬁQ) g2 (N = Dofy P1p21/1t>>
+2Im <<¢t7 N (J?— f—l) 7192 ((N ~ 1oy’ — V1(N))P1(D¢t>>- (3.89)

The terms f — f_4 can be interpreted as a “derivative”, since

N
F=Ta=3 (&) = f(k = 1) Py (3.90)
k=0
Let us now see what we gain by choosing the weight function
k_ vy
Wy~ ] v for k<N
m (k) { 1 ,otherwise (3.91)
for some 0 < v < 1. (Note that for v = 1 we recover the case m (k) = n(k) = £ from
above.) For the “derivative” we find
o N
m —m®_y = Z (m(k:) —m(k — 1)) Py,
k=0
NY
~ Z N7 Py (3.92)
k=0

Now consider the splitting ¢ = ch\;o Py ¢ = ZQ/:O ¢ for some antisymmetric ¢ €
L?*(R3N). Then we find that

—_—

(m(w _ m(ml) dp =0 Vk>N. (3.93)

We use this fact to improve the estimate for the third term. Heuristically, q1q2t* has only
contributions coming from large k (at least in the first and second variable, which is enough
to make the argument work). But for these contributions the “derivative” is zero, which
makes the third term on the right-hand side of very small. This can also be used for
the first term, where we gain additional projectors g due to cancellations between Schrodinger
and mean-field interactions, as explained after . The downside of using the weight
function m(W)(k) is that we gain only a prefactor N7 from the “derivative” , instead
of N=! when we use n(k). However, as it turns out, this effect can be controlled, and only
leads to a worse convergence rate. This heuristic reasoning is made precise in Chapter
where we bound 0;a,,(,) (t) rigorously. For that, several lemmas are necessary, which we
establish in Chapter [6.2] Finally, in Chapter we use the conditions from Theorem [3.7] to
calculate the convergence rate and to put the estimates together.

Outline for results of Section Let us now discuss how to prove the results for
H? = —A; +w™)(x;) and interactions vV) (z) = N=%|z|~*. In order to apply Theorems

and we have to evaluate expressions like v ply and v? ply, (where pl; = ZZ]\L et
for interactions |z|~° with weak or cut off singularity. It turns out that naturally these
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expressions can be bounded in terms of the total kinetic energy. A key role is played by the
kinetic energy inequality due to Lieb and Thirring [411 [38],

/}W (pﬁv(ﬂf))g Pr<C i Vet (3.94)
=1

This inequality crucially depends on the fermionic naQture of the wave function; for bosonic
wave functions, it only holds with an extra factor N3 on the right-hand side (think of the
example of plane waves in a box from Chapter . Let us now consider the mean-field
interaction |- |~ % p;. We assume that the total kinetic energy Zf\il [Vt]|> < AN. We first

split the integration into two parts, over a ball with radius Ry o« N 5 and its complement,
then apply Holder’s inequality, and use (3.94) and [ pf, = N:

RS [ —yl° Bry() & = yl* By &~ yl*
3
[by Holder] < (/ p'}v(x)g d3x> (/ |z — y]_%s d3x> +
Bry () Bry (v)
(/ piv() dgfﬁ) sup |z —y|”*
Bry (y) z€BR (V)
< ([ i@
Sy

3 5
d3x> / |x|_gsd3x +

([ o) { s Lol
R3 2€Bp  (0)

S

SIS

N

wlot

6 _
by @99 < CN3RY °+ NRy
< CN'75. (3.95)

Since |1:]7%s is integrable over a ball only for 0 < s < g, we restrict ourselves to those s. We
thus showed that 3 =1 — $ is the correct scaling exponent for interactions v,(z) = |z|~°.
Note that this remains so when we cut off the singularity, i.e., can in general not be
improved.

The condition v? % ply can be evaluated by similar methods (which we do in Chapter .
However, here we have to deal with a much stronger singularity. Thus, we either need
stronger conditions on pl;, for example ||ply||cc < C as we consider in Corollary or we
need to restrict ourselves to weaker or cut off singularities, as considered in Theorem
Finally, Proposition can be proven by using that for v™) (z) = N=1|z|~!, the mean-field
interaction is only of O(N 7%), as shows. The explicit proofs of the results are given
in Chapter

3.5 Theorem and Sketch of Proof for Semiclassical Scaling

The proof we outlined in Chapter was, in a sense, tailor-made for particles with average
velocities of O(1). In order to demonstrate that the a-method also works for situations
where this is not the case, we here give a derivation of the mean-field dynamics for the
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semiclassical case dlscussed in Chapter 2.2] There, one has to use the fact that the average
velocities are O(N 3) A derivation of the mean-field dynamics in this case has recently been
given in [§]. Here, we mostly reproduce the result obtained there; we actually use estimates
about the propagation of properties of the initial data from [§]. A slight improvement is that
our conditions on the initial data are more transparent and general. Let us state our main
theorem for the semiclassical case here, and give an outline of the proof, in particular, of what
steps are different compared to Chapter The full proof can be found in Appendix [A]

We consider, as discussed in Chapter the non-relativistic Schrodinger equation with
semiclassical scaling (for simplicity, without external fields),

N
INT3O = —NT3Y At e N ST (e — )t (3.96)

j=1 1<i<j<N

The corresponding semiclassical fermionic Hartree equations are
INTEOh = (-NTEA+ N (uxply) ) (3.97)

and the semiclassical Hartree-Fock equations are

iN*%&yE: (—N*%A—i—N* (v*ply) ) L 12 v *x cp’,;*goz oL, (3.98)

for j = 1,...,N, and recall p}, = Zl 1 l¢t%. Note that here we do not have to use the
long-range behavior of the interaction, since we are interested in solutions in some constant,
N-independent volume, i.e., very high densities. For technical reasons, we consider basically
bounded interactions (the more exact conditions are stated in Theorem below). Note
that for these interactions the exchange term is always subleading (taking the N~! from the
scaling into account). Since the exchange term is easier to handle for bounded interactions,
we can prove the theorem for both the fermionic Hartree and Hartree(-Fock) equations.
The following theorem is analogous to [8, Thm. 2.1]. We write p;(0) = Zjvzl \go?><g0?\1 for
the projector p; at time ¢ = 0. Recall that we denote the trace norm by [|-||,, (see also

Chapter .
Theorem 3.11. Let ¢t € L2(R3N) be a solution to the Schrédinger equation (3.96) with

antisymmetric initial condition ¥° € L2(R3N). Let ¢i,..., % € L2(R?) be either solutions
to the fermionic Hartree equations (3.97) or to the Hartree-Fock equations (3.98)), with
orthonormal initial conditions ¢\, ..., % € L*(R3).

We assume that v € L'(R3) and

/d3k (1+ [B[2) [o(k)| < oo, (3.99)
where 9 is the Fourier transform of v. We also assume that the initial conditions 9, . . ., QD(])V €

L?(R3) are such, that

< N3, (3.100)

1 k
ISR
kers 1+ |K|

1 [p1(0), V][, < N, (3.101)

for some constant ¢ > 0, where p1(0) = Zjvz1 \g09><g0?\1.
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Then, there are positive C1,Co, such that for allt > 0,
an(t) < exp (Cexp(Cat)) (an(O) + N_l). (3.102)

Remarks.

14. It follows from Lemma that (3.102)) implies for density matrices the estimate
1
+—=1, (3.103)

| LS00 <’ W TVR

for some constant C(t); a similar estimate holds in Hilbert-Schmidt norm.

W N

t /\(pt
it ! Ky — Hp

Ky — My

15. The theorem also holds with external fields that are such that they preserve the bounds
(3.100) and (3.101) for all ¢.

Let us now outline the proof of Theorem Recall that we are looking for a bound
Oan(t) < C(t) (an(t) + N71), (3.104)

and then use the Gronwall Lemma to deduce (3.102)). It turns out that for this proof it
is sufficient to use an(t), i.e., the weight function n(k) = £. For 4! a solution to the
Schrédinger equation (3.96) and ¢, ..., gp'}v solutions to the fermionic Hartree equations

(3.97) (or the Hartree-Fock equations (3.98))), we find (as in (3.79), using explicitly the
scaling)

Orcen(t) = 2N I (0", 01 (V= Dpaviops = Vi )pr0'))
+2N "5 Im <<¢t, q1g2(N — 1)012p1p2¢t>>
+2N75 Im <<¢)t, q1g2(N — 1)”12P1Q21/Jt>> (3.105)

(where V] is either the direct or direct plus exchange term). As mentioned above, we cannot

use here that we gain an additional NV =3 from the long-range behavior of the interaction
(as we did, e.g., in Lemma ; the mean-field term Vj is of O(N), such that it seems that

Orau (t) is of O(N %) However, what we use now is that the average velocity of the particles

is O(N %) (due to the high density and the fact that we consider fermions). In Theorem
we phrased this in the form that

H [pl(O),eik'x] <N’ (3.106)

(where ¢ can depend on k). An argument why (3.106|) (together with (3.101])) expresses the
fact that the average velocities are O(N %) can be found in [8]; at this point, let us just

recall from Chapter that a semiclassical density matrix has roughly the form

¢ (N%(x _ y)) Xz + ). (3.107)

It turns out, that (3.106]) captures that there is an additional factor N 5 in the “velocity
profile” ¢ of the density matrix. One part of the proof of Theorem [3.11]is to propagate the
conditions (3.100) and (3.101) in time, i.e., to show that

< c(t)N3, (3.108)

tr

1 ik-x
sup || [pr(8), ¢
kers 1+ |K|
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[ [p1(2), V1 < c(t)N, (3.109)

where py(t) = SN, |5) (@hl1, and @, . .., ¢l are solutions to the Hartree(-Fock) equations.
Note that is necessary to show that holds, but will not be used in the
estimates for Oiay,(t). The exact statement is Lemma which has been proven in [§].
The constants ¢(t) are of the form c¢(t) = ¢1 exp(cot) (which is the reason why we get the
double exponential in the estimate (3.102); the other exponential comes from the Gronwall
argument for Opa,(t)). Let us from now on take for granted that holds for all times
and note that (due to p1g1 = 0)

<CN3, (3.110)

tr

leeik'x(h = H [Pl,eik'x} o5}

<]
tr

tr

where for ease of notation we do not write out the ¢t-dependence of p1,q; anymore (also
constants C' can be time-dependent).

The estimate can now be used to gain an additional factor N =3 in the time
derivative of av,(t). Let us here only regard the third term from , the qg-pq term, which
is again the most simple to estimate. Using the Fourier decomposition of the interaction
potential, v(z) = [ d*k 9(k)e’**, and Cauchy-Schwarz, we find

N3

<<¢t,Q1qu12p1qzwt>>( — N3

/d?’k (k) <<¢t, q1q2eik(’“_“)p1qwt>>(

— N3 /d3k: (k) <<¢t,qleikxlpquG_ik”qgwt»‘. (3.111)

It is now convenient to use the singular value decomposition of the (compact) operator
q1e’®ip, . ie., we use g€ p; = > o ttelde)(@el1 for some orthonormal {¢y}een and {¢g}ren
and g > 0, where >, 1y = quelkwlletr. Then, by Cauchy-Schwarz, (3.82)) and (3.110)),

/ Pro(k)) W<<1/’, q2|P0) <<5£’16_ikmq2¢>> ‘
0

by C-8] < Né/d?’k: ]@(k)\ZMH<¢e|1QQ¢H "<¢3£|1Q2¢”
7

N3

<<¢,q1q2v12p1q21/)>>‘ — N3

by @) < Né/d% o[ || N llgawlP (3112)
Therefore, if [ d3k |0(k)| < oo (or, more exactly, when (3.99) holds), we find the bound

N3

(v amvman )| < Can(t). (3.113)

For the first and second term in (3.105)), we proceed similar to Chapter and use the
singular value decomposition of ¢1e?**1p; again. As in Chapter an additional boundary
term of O(N~!) arises, such that in total we find

Bran(t) < C(1) (an(t) n N—l). (3.114)
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3.6 Outlook

In this thesis we have seen how the fermionic Hartree(-Fock) equations can be derived
from the microscopic Schrodinger dynamics in a many particle limit. An understanding of
how and why this is the case is very important with respect to the more general goal to
understand how macroscopic (or effective) behavior arises from microscopic physics. With
the results outlined in Chapter and this work, we now have a good understanding of
how this works for mean-field descriptions for (non-relativistic) fermions. However, several
more detailed and more advanced questions are still open.

e Concerning the results in this work, it would be interesting to show that the conditions
we formulated on the solutions to the fermionic Hartree equations (in particular, in
Theorem Theorem or Corollary hold for the physically very relevant case
of Coulomb interaction under suitable smoothness conditions on the initial data. It
might furthermore be interesting to investigate other physically relevant interactions.

e A derivation for the semiclassical case with Coulomb interaction is still an open
problem.

e One could try a derivation of mean-field limits for fermions for relativistic equations,
e.g., the Dirac-Fock equations (see, e.g., [30] and references therein). A first step in
this direction is [7] where a pseudo-relativistic Hamiltonian is considered.

e It would be interesting to identify relevant situations where the exchange term is not
subleading. Alternatively, one could look for scenarios where the exchange term is
subleading, but gives a larger contribution to the dynamics than the error terms in a
derivation of the fermionic Hartree equations. Then one could try to show that the
Hartree-Fock equations give a better approximation to the Schrodinger dynamics than
the Hartree equations.

e It might be possible to give technically better estimates for 9;a¢(t), which reflect even
better that correlations are caused by fluctuations, as discussed in Chapter (see, in
particular, Equation . A first step in this direction is [34] where the fluctuations
around the mean-field are analyzed much more carefully.

e Another topic is to analyze and derive other effective evolution equations for fermions.
For example, it could be interesting to consider scalings for fermions that are similar
to Gross-Pitaevskii scalings for bosons. Another very interesting scaling is the so-called
kinetic limit for fermions (see, e.g., [43]) where the long-time behavior is investigated
and the dynamics is approximated by a quantum Boltzmann equation.






Part 11

Proof of Main Results






Chapter 4

Notation and Preliminaries

4.1 Notation and Basic Inequalities

Let us first establish some notation that we use throughout the following chapters. We denote
by JZ a Hilbert space and we always assume it is separable. Its inner product is denoted
by (-,-) or {(-,-)) and the norm of any f € J# by ||f|| = \/{f, f). For any z € C% we write
2|2 := Zle |22, where for z; € C, |2;|* = 2} z;, with * denoting complex conjugation. The
Hilbert space of complex square integrable functions on R? is denoted by L?(R%) = L?(R¢, C)
and H'(RY) denotes the first Sobolev space, i.e.,

H'(RY) = {feL2(Rd) il <oo}. (4.1)
For f € L*(R?) we sometimes write

1P = [ et = [1rf (4.2

In order to differentiate between the scalar product on L?(R3") and scalar products on
another L2(R%) (usually L2(R?)) we always write ((-,-)) for the scalar product on L2(R3").
We denote by (-, ))q+1,...n the scalar product only in the variables z441,..., 2N, i.e., it is a
“partial trace” or “partial scalar product”, formally defined for any x,v € L?(R3V) by

(b, xXDar1,.. N(T1,. .., 2q) = /d3xa+1 .. ./d?’a:N v (z1,...,eN)x(z1,...,2N), (4.3)

which should be regarded as a vector in L'(R3?) (for xy = 1, it is the diagonal of the
reduced a-particle density matrix, see Chapter [5.2). As mentioned in Definition for any
¢ € L?(R3), we use the bra-ket notation

Pin = [9)(#lm = l@(@m)) (@ (zm)] (4.4)
for the projector defined by
) (o1, so) = 9l [ @)oo, (1.5
for any ¢ € L?(R3Y). In other words,
Pl =1®..01lep) (e ®1®...01. (4.6)
m—1 times N—m times

47
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In the same style we denote by |-),, a vector in L?(IR?) acting only on the m-th variable of
L2((R*)N), by (| its dual, and by (-, ), the scalar product only in the m-th variable.
For any operator A : L?(R%) — L?*(R?%) we denote the operator norm by

[|Af]]
o£fer2(d) ||fl|

— s [lAf]. (4.7)
FEL2(RY),||f]|=1

1Allop =

For self-adjoint A, the operator norm can be expressed as

IAllgp = sup  [{f,Af)], (4.8)
feL2fll=1

see, e.g., [48]. We denote the trace norm by ||-||,, and the Hilbert-Schmidt norm by ||-||yg,
see Section for more details. We denote the commutator of two operators A, B by

[A, B] .= AB — BA. (4.9)

Given ¢1,...,on € L*(R3) we denote the density by py(z) = Zf\il lpi(z)]? and the
total kinetic energy by

N N
Exinmt = Y (9i (=A)pi) = > |IVeril[*. (4.10)
=1

i=1

We use the notation []¢ (for any ¢ € L?(R?)) as abbreviation for the simple product

N N
<H go) (x1,...,2N) = Hgo(acz) (4.11)
i=1 i=1

and )\ ¢; as abbreviation for the antisymmetrized product

N

N
Aws | @) = <= S 07 T oty (@0, (4.12)

Jj=1

where Sy is the symmetric group and (—1)? the sign of the permutation o.
Given a function h : R? — R we introduce hiz : R? x R? — R, hia(z1, 12) = h(xg — 22).

We use the Landau notation O(+), i.e., f(N) € O(g(N)) means that limy_,o % < 00. We
always denote by Br(z) the open ball with radius R around z, i.e.,
Br(z) = {y eR?: |z —y| < R} . (4.13)

For any set Q C R? we write Q = R?\ Q.
Let us also list some well-known inequalities that we frequently use (for proofs, see, e.g.,
[37]). We denote by (£2, X, 1) a general measure space.

o Cauchy-Schwarz inequality for CV. Let a,b € CV. Then

N

Z apb

k=1

N N
<D lanl?y | > lbkl?. (4.14)
k=1 k=1
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o Cauchy-Schwarz inequality for L?(2). Let 1, x € L*(Q2). Then
(w0, )] < @l x| - (4.15)

e Holder’s inequality. Let 1 < p, ¢ < co with %ﬂ—% = 1. Let f € LP(Q0), g € L9(R2). Then
fg € L'() and
Fglly < I1f11, Hllg - (4.16)

4.2 More about the Projectors

In this section we summarize some properties of the projectors from Definition [3.1] and
define more projectors that we need in the course of the proofs in the following chapters.

Definition 4.1. Let ¢1,...,¢n € L*(R3) be orthonormal.
(a) We define

N
P =Y pid (4.17)
m=1
and
q¥1 =1—p¥i. (4.18)

(b) For a <n < N we define

(e i1 ) o
m=1 sym

m=a+1

The operator

P = le){elm = le(zm))(p(zm)] (4.20)
is indeed a projector on L?(R3Y). For ¢; L ¢; and all m,n =1,..., N we have
pfipyd =0 and [pf{,p?] =0. (4.21)

From that we conclude the following properties of the projectors p,, and ¢,, = 1 — pp,:

Pm@m = 0, (4.22)
[pm>pn] = [pma Qn] = [qm,qn] =0, (4.23)

for all m,n = 1,..., N. For antisymmetric 1,5 € L>(R3"), we have
PiPptbas =0 (4.24)

for all m # n, since
(pf@pﬁ%s) (1'17 e 7xN) = (P(wm)@(xn) / dmmdanO(xm)*(P(xn)*was(- s my e e Ty - )
= —p(xm)e(Ty) /dwmdacncp(xm)*gp(xn)*was(. ey Ty ey Ty e )

= —p(xm)e(Tn) /da:ndxmap(asn)*go(a:m)*i/)as(. C s Ty ey Ty e )
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Therefore, on antisymmetric functions in L?(R3V), the operators p¥* and ¢¥i = 1 — p¥ are
projectors, and for any antisymmetric ¥,s € L?(R3V) we have

p“’iq%%s = 07 (4.26)

[p¥", %7 tbas = [P, ¥ |¢as = [q¥", 4% thas = O, (4.27)

foralli,j=1,...,N.

When one considers the operator norm of the projectors pf, it makes an important
difference if it is calculated on all L? functions or only on antisymmetric functions in L?, as
the following lemma shows. Recall that ((-,-))q+1,.. n denotes the scalar product only in the
variables zg41,...,ZN.

Lemma 4.2. (a) Let 1,5 € L*(R3N) be antisymmetric and normalized. Then, for all

m=1,...,N,
1
«wa&pﬁﬂ/)as» < N (4.28)
(b) Let wég“’a € L2(R3N) be antisymmetric in all variables except x1,...,x,. Let m €
{a+1,...,N}. Then
1
(ke Rl ) < e (Bl 8. (1.29)
Furthermore, also
1
<<7l} 7pm¢as >>a+17~~,N(:E17 cee ,l’a) < N — a<<w;g..,a’ 7/};29."7a>>a+17m,N($1a cee a$a)>

(4.30)
for almost all x1,...,xq (with the definition of (-, )a+1,..N from (4.3))).

Proof. (a) First, note that for all antisymmetric ¥gs, |[p?Was|| < |[tas]|, since p? is a
projector on antisymmetric 1,5. Using this and the antisymmetry of 1,5 we find

N
<<%57Pf1%s>> = Jb«wa&nzlpﬁ"ﬂas» = %«@bas’ptpwas» = % HPSD%SHQ < % HwaSHQ .
(4.31)

(b) Now suppose that wég“’a is antisymmetric in all variables except x1,...,x, and let
me{a+1,...,N}. Then Zf:[:aﬂpﬁ is still a projector on those functions, and

N
> pEa

n=a+1

l=a+1 n=a+1

= (use i pivti)

n=a+1

N
1.,
> pEyat

n=a+1

(4.32)
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Therefore, using Cauchy-Schwarz,

(s o) = (v, S sl )

n=a-+1
1 N
< el || 3 ek
n=a+1
1
< (ki vk, (4:33)

Both (4.32) and (4.33)) remain true if the scalar products (and the corresponding norms)
are only partial, i.e., when it is integrated only in the variables x4y1,...,ZN. ]

By using the example of the antisymmetrized product state /\jV: 1 ¢j, we see that the

operator norm on antisymmetric functions |||, ., of pi is indeed
1555l = — (4.34)
P op,as \/N’ :
while in general
P llop = 1, (4.35)

which can be seen by using the product state H i1 Pk (x;). Let us make one more remark
(which is not necessary for the proofs later). One could as well define

N
P]IV,k: = HqWJ H p@J — Z H(ij)lfaj (qcpj)aj’ (436)
Jj=1 j=k+1 sym acAg j=1

with the same notation as in Definition and
N
= f(k) Py, (4.37)
k=0

i.e., one could define Py, ]?and oy with the projectors p¥7 instead of p,,. However, on
antisymmetric functions both definitions coincide, i.e., for all antisymmetric 1, € L?(R3YV),

PN,kwas = P],V k’@bas- (438)

This can be seen by multiplying out Py 114s and PN Vas, and using pripm =0 for i # j
and piphtbes = 0 for n # m.






Chapter 5

Density Matrices

In this chapter, we prove the results from Chapter about the relation of a¢(t) to the
reduced density matrices of 9! and of the antisymmetrized product state A 4,03.

5.1 Trace Norm and Hilbert-Schmidt Norm

We first give a brief overview of the definition and some properties of trace class and
Hilbert-Schmidt operators. The following well-known statements and their proofs can be
found, for example, in [48], chapter VI].

Let s be a Hilbert space and A, B : # — . Let {y; }ien be an orthonormal basis
of J#. For any bounded positive operator A : 7 — J we define the trace of A as
tr(A) = >cn (@i, Api). It is independent of the chosen orthonormal basis and

o tr(A+ B) = tr(A) + tr(B),
o tr(AA) = Atr(A) for all A > 0,

o tr(UAU ) = tr(A) for any unitary operator U.

A bounded operator A is called trace class if and only if tr|A| < co. The trace class operators
are a Banach space with norm ||-||,, = tr|- |. We have |tr(A)| < ||A]],,. If A is trace class
then so is A*, the adjoint of A. If A is trace class and B is bounded then AB and BA are
trace class. Every trace class operator is compact.

A bounded operator A is called a Hilbert-Schmidt operator if and only if tr(A*A) < co.
The Hilbert-Schmidt operators are a Hilbert space with the scalar product defined as
(A,B) =3 icn (i, A*By;) and norm ||Al|yg = \/tr(A*A). Every Hilbert-Schmidt operator
is compact. On L? spaces, Hilbert-Schmidt operators have a simple form, as the following
statement shows. Let (M, i) be a measure space. A bounded operator A on L?(M,dpu) is
Hilbert-Schmidt if and only if there is a K € L*(M x M, du ® du) with

(Af)(x) = / K (2, 9) £ (5)du(y). (5.1)

Then
s = [ 1K) Pau(e)dn(o) (5.2)

For a positive trace class operator A : L?(R%) — L2(R%) (d € N) with continuous integral
kernel K (z,y), we have that

AL, = tr(4) = / K(z, ) dz. (5.3)
53
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If A is trace class then it is also a Hilbert-Schmidt operator; in fact

1 Allop < [[Allas < (1Al (5.4)

op —

Self-adjoint trace class operators A can be diagonalized with real eigenvalues \; (7 € N) and
we have

1Al =sup Xil,  [[Allfs = Y INP Al = D Al (5.5)
€N iEN iEN

Finally we collect some inequalities (which hold whenever the respective norms exist),
which we frequently use in the proofs of the lemmas in Chapter [5.2}

1ABlg < [[Allop [ Bll5: » (5.6)
1ABl[as < [|Allop [1Bllas - (5.7)
1ABle; < [[A]lgs [1Bllgs - (5.8)

5.2 Convergence of Reduced Density Matrices

For any normalized symmetric or antisymmetric 1» € L?(R3™) we define the reduced k-particle
density matrix u}f : L2(R3%) — L2(R3F) by its integral kernel

H}é)(xl;” . 7xk;y17"')y]€)

:/w(l‘l,---,wk,iﬁkﬂ,---JCNW*(yl,---,yk,ﬂfkﬂ,---,UCN)d3iL‘k+1---d3ZEN- (5.9)

Note that uf has an eigenfunction expansion Reduced density matrices have the following
well-known properties.

Lemma 5.1. (a) ,u}f is non-negative, i.e., <f, u}ff> >0 Vfe L?(R3*),

@ [lt]], = iy =

(¢) For antisymmetric 1, ’:“1 s < %

In order to get used to notation we provide a proof for Lemma [5.1

'One can write
Byt ) = 3 i (@) sy, (5.10)
i=1
with ¢; € L?(R®**) and u; > 0. Then, in particular, the diagonal is

,uf(xl, ey TR Ty D) = Z,ui |pi(z1,. . .,xk)\Q. (5.11)
i=1
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Proof. (a) For all f € L2(R?) we find

(£ f) = G, £
2

:/d$k+1...d.1‘]v’/dl‘l...dl‘kf*(aj‘l,...,xk)w(xl,...,.%]\r)
> 0. (5.12)

(b) Recall that ¢ € L?(R3*M) is normalized. Since /f,f is non-negative,
Also,

‘MZ}HU‘ - tr(MZ)

() = (. 0) = 1. (5.13)
(c) For all f € L?(R?) with ||f|| = 1 and antisymmetric 1,5 € L*(R3*V) we find

(Fo182 £ ) = (s LF @) F@0)] )
= <<wasyp{was»

1 N
= N<<wasy Z pszas >> (514)
=1

Since pf = Zf\il p{ is a projector on antisymmetric ¢,s we have
<<'¢as:pf¢as>> <1 (5.15)
Since H;ﬂf = SUDjser2 ||f||=1 <f, ;flpf> the statement follows. O
op

Let us give some examples of one- and two-particle density matrices. For a simple product
Hf\i 1 ¢ (a bosonic condensed state) we find

pi " =pt, (5.16)
b7 = pfps (5.17)
For an antisymmetrized product state /\j\[:1 ¢; we find
W7 = S (5.18)
Nej 1 -
py' = NN =) (P2 —MX:I e} (@it lei) (@il (5.19)

We now give the proof of Lemma [3.2] i.e., of the relation between convergence in the ay,
sense and convergence of the reduced density matrices in trace norm and Hilbert-Schmidt
norm. Recall that Lemma concerns y, i.e., the a-functional with the weight n(k) = %
Proof of Lemma[3.4. Recall that u{\@j = %pl. We first show that %pl — pl,uql/}pl is a
non-negative operator with trace norm «,,. Note that the operator pl;flppl maps the N-

dimensional subspace span(p1, ..., pn) to itself. Also, py ,uqul is non-negative and self-adjoint.
We can therefore diagonalize it, i.e., there is an orthonormal basis {x1,...,xn}, such that

N N
P e =Y i) (il = D Aipl (5.20)
=1 i=1
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with \; > 0Vi=1,...,N. Note that, since span(xi,...,xn) = span(¢1,...,on),

N N
pr=> p" = p" (5.21)
i=1 i=1
We also have that all \; < %, since
Ai = <Xi,p1H11pp1Xz'> = <<1/1, \Xi><Xi!11/)>> < %<<1/}7¢>> < % (5.22)
Also note that
N N N
Y= <Xi7P1M11pP1Xi> = <<1/1Z |Xi><Xi|1T/J>> = <<w,p1w>> =l—an,  (523)
i=1 i=1 i=1
since 1 = p1 + ¢1. Since 0 < \; < %,
1 P = 1 Xi
NPT PP = Z (N - )\i> D1 (5.24)
i=1

is non-negative and

1 "
Nm — D1y P1

1 » 1 Xi
. = tr (Npl - pl,qul) =tr <; <N - )\z‘> D1 >

7

N
=1-) X\
i=1
= ap. (5.25)

We now show H/ff - ,u{\ ¥i

< v/8ay,. Note that the operators ,tﬁf, pl,ulfpl and ql,uqfql
tr

are non-negative, and that
=¥, ) =1—an and ||quia|| = (v, av)) = an. (5.26)
tr << >> ‘ ‘ ‘ ‘tr << >>

By inserting two identities 1 = p; 4+ ¢1 we find, using (5.25)), (5.26]), the triangle inequality
(abbreviated A ineq.), and [|[AB||,, < ||Al|gs [|Bllys:

‘ )plljfpl

; 1
HM{\% - NH ’tr = HNpl - plﬂ%pl —plﬂlfch - qm%pl - qufffh

tr

+ )pl,uqu o + quzfm o + H‘h/ff(ﬂ

piy/ A 1l @ a1 1l p
pry/ /flp q1y\/ le

=20y + 2\/‘ ‘pmlme ‘quﬁfql H
tr tr

[by ] =20, +2 V an(l - an)- (527)

tr

1
by Aineq] < HNpl - pl/flppl
tr

d
tr

by (25, (6.26)] SanJr‘

+ o,
tr

[by ] Szan+2‘

HS HS
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Since 0 < o, < 1, it is indeed true that

20, 4 2v/ (1 — ap) < V/8ay, (5.28)

since the continuous function f(a) = v8a — 2a0 — 2y/(1 — ) has its only minimum at
o= 5 with f () =0, and also f(0) = f(1) > 0, thus f(«) > 0 for all € [0,1], showing
523).

/\‘P]

We now show 2¢q, < Hul . We find, using , (15.26]), tr(qlulpl) =

tr(pipfqr) = 0 and [ex(A)] < ||A]l,, that

200, = tr (M . — P1iq p1) + tr (quffm)
=tr ( — p1M1P1 + qipq Q1>

—tr<< —Ml)(m—m))

< || = ) o1 =)

by E8)] < |[p1 — a1llop ‘MA% g H
_ HM/\% — i (5.29)
Note that indeed ||p; — quOp =1, e.g., since for all f € L?(R?),
1(pr — ) f1I? = (f, (01 — ) f) = (f, (pr + @) f) = IfI7 (5.30)
We now show Hul — ,u/\% s < %an. Recall that H;ff = % and H,ul " 1. We
find, using ||AB||,, < HAH B[
o =t g = e - 22)’)
1 1, 2
=tr (N2P1 - NP - NM1P1 + ( ) >
=~ wlw) — we) wee (1))
wem < b (1- Qo)) - 5o o a1l
wien = o L) o
_ %an, (5.31)

We now show «,, < \/>H,u1 /\%

g 0sing [[ 4Bl < [[Allys ||Bllus, [|ABIl <
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1 Allop 1Bl [1p1llas = VN, llpill, =1 and (B-25) we find

H(uf\% - Mf) p1H
> tr

b = i
HS |1p1llus
1 le (M{\% - M%) b1 .
by G6)] = .
B =T8N T T,
I | I
= \/]V Npl P1pq P1 .
1
by (5.25)] = — ap,. 5.32
by (5.25)] JN (5.32)
Together, the inequalities ([5.27)) with (5.28)), (5.29), (5.31) and (5.32)) prove (3.24) and
B.25). 0

Finally, let us prove Proposition [3.4] which shows that the operator norm is not useful to
measure the desired convergence.

Proof of Proposition[3.4 Starting from (5.25) from the proof of Lemma and using
2
IABly, < [|Allus [1Bllus: 1AB|lus < [|Allus [|Bllop and [|p1|[zg = N, we find

1 .
ap = HNpl —pip|| = le (M{\% - qu) le
tr tr

by B3] < |[p1llus H(u{\‘” - Mf)leHs

Ne;j

2
by E-7] SHMHHSHM _M%HOP

= N[ =] (5.33)
op
which proves ([3.32)) and thus (3.33)).
We now construct an example for which a;,, — 0, but N ‘ ’;fl/} — ,u{\ i = 1. Consider
op
the density matrix
- 1 N
u}”:N(p’erZpli) with  (x,pi) =0Vi=1,...,N, (5.34)
i=2
arising from the wave function ¢ = /\;V: 9 A x. We find o, = % and
~ ) 1
NHM%—M{\% ZNHN(p’f—pfl) =1 (5.35)
op op

thus providing the desired example. O



Chapter 6

Proof of Theorems for General vV)

6.1 The Time Derivative of a/(?)

The expression for the time derivative of a(t) for arbitrary weight functions f(k) follows
from direct calculation. We calculate it here for the general setting where the wave function
Yt e L2(R3N) is a solution to

N
o)t = HVy = (> HY+ Y o™ (@ —ay) | ¥, (6.1)
j=1 1<i<j<N

where the Hamiltonian H" is a self-adjoint operator, v™)(z) = v(¥)(—z) is a (possibly
scaled) real interaction potential and HJQ acts only on the j-th variable.

The general form of the fermionic mean-field equations for the one-particle wave functions
ol ol € LA(R3) is

i1 () = H™l(2) = HOpl(2) + (VI9#h2hvgl) (a), (62)

where VN:G#1¢x = V(V) is the mean-field interaction. The two interesting cases are when
there is only the direct interaction,

where pl, = vaz L l¢t%, and when there is direct and ezchange interaction,

VN,j,go’i,...,cpf\,(P;(x) _ (Vdin(N) + Vexch,(N)) (pg(x)
N
= ™ % ) @)k (@) = D (v x () (@) ell@). (64)
/=1

In the following chapters we often add a subscript to some of the operators above to denote
the particle index on which the operator acts, for example, as an operator on L?(R3V),

v =19...01evMele...01. (6.5)
k—1 times N—Ek times

Lemma 6.1. Let o' € L2(R3YN) be an antisymmetric solution to the Schrédinger equation
(6.1) and let i, ..., 0% € L*(R3) be orthonormal solutions to the mean-field equations

99
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6.2). We define Wiy := N(N — 1)1}@7) - NVl(N) - NV2(N). Then, for f and ay(t) from

Definition |3.1

N
O f = [Z H;,’Ejf,f] : (6.6)

m=1

D (t) = %<<¢t, W, Flut). (6.7)
Remarks.

16. At this point, let us emphasize again that the kinetic and external field terms coming
from the Schrodinger and the fermionic mean-field equations cancel, which is why
the main theorems hold for any Hjo. Furthermore, only W19, the difference between
Schrodinger interaction and mean-field, enters, i.e., the method focuses directly on the
relevant point.

Proof. Note that the operators py,, ¢m, Pn x all depend on ¢ through the orbitals ¢!, ..., ¢k
For ease of notation,we do not explicitly write out this ¢t-dependence. In order to prove
we first calculate the time derivatives of p,, and ¢,,, and then of Py ;. We find

N

S S (ST

<.
[y

I
M) =

((Zat’(ﬁé(mm») <‘P§(xm)‘ + ‘S";(mm» (Zat<90§(xm)’))

.
Il
—

I
M) =

(H$f|so§-<xm>><so§-<xm>\ - rso§<xm>><H3;fso§<xm>|)
=1

= [H3 o] (6.:8)

<
I

and, using p,, + ¢m = 1,
iatQm = *iatpm = - [Hnn;lfypm} = {Hﬁf, Qm] . (6'9)

Now recall from Definition B.1] that
N
Pui =3 T m) o () (6.10)
EI:EAk m=1

with the set

N
Ak:{62(@1,...,QN)€{0,1}N: Zam:k}. (6.11)

m=1

For the following calculation we abbreviate Ry, = (py,)' ™% (g ). Then i0: Ry, = [HDE, R,,,]
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holds for a,, = 0 and a,, = 1. It follows that

N
i0 Py =10, Y [ Re

ac Ay l=1

, (6.12)

and thus

i@tf zath PNk—Zf 18tPNk—Zf [ZHmf7PN,k

m=1

N
- [ ]
m=1
(6.13)
Using this and the antisymmetry of ¢!, we calculate the time derivative of a¢(t). We find

dt0) = fw>>

(o 0y (.70 D+ (- (00))
i Fe) - o P s |32 7] o)
(

N
i
[~

Wt _HN Z Hﬁfjf] ¢t>>
(o [Se S -y S (v );1w>

m=1
1<i<j<N m=1

=i | X v<N><xi—wj>—§VéN%f “)
_1<i<j§N m=1
o [XO e 3t A
%(@t [le, } >> (6.14)

In order to simplify the expression (6.7)) we need the following auxiliary lemma.

Lemma 6.2. As in Deﬁmtion we abbreviate Pém} = p1p2, Pl{l’z} = p1g2 + q1p2 and

P2{1’2} = q1q2. Let his be an operator that acts only on the first and second particle indez.
Then
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(a) for all a,b=0,1,2, and for allk=1,...,N,

(le’z}h12pl;{1’2}> PNk = PN k+ta—b (Pa{l’z}h12pz;{1’2}> ; (6.15)

Py (P(;{l’2}h12pz;{1’2}) = (P(Q{I’Q}hmpb{l’%) PN ktb—a (6.16)
(b) for all a,b=0,1,2,

(PEP bl ) F= foy (P22 (6.17)

f(PiLQ}hlng{M}) - (Pglvz}hlgpjm}) 7w (6.18)

Proof. (a) We first split up the Py,

2
N
Pyy =Y P BN (6.19)
d=0

where P,;{E’l'i“’N}, as in Definition contains k — d ¢’s, and acts only on the variables
3,...,N. Now note that p, 2 p {12t — 5 . P {12} Then we find

2
(P04 s = (PO 8) S 7
d=0
1,2} 5{3,...N
= P o PP

_ P,;{E’l;"’N}le’Q}h12P;1’2}

2
= > PR (PO P )
d=0

= PN k+a—b (ij}hlng{1’2}Pb{1’2}) . (6.20)

In the same way (or by just renaming k' = k + a — b, such that k = k' + b — a) we find
that (6.16) holds.

(b) From (/6.20)) it follows directly that

N
(le,z}h12pb{172}> f — Pj172}h12pgl72} Z f(k)PNJC
k=0

F(B) Py oy P2 hyp PAVH

I
hE

k=0
— (le’g}hlng{1’2}> , (6.21)
and in the same way ([6.18) follows directly from (6.16)). O

With Lemma we can simplify the expression (6.7) for the time derivative of a¢(t) by
splitting it into three parts, each of which will be estimated separately later.
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Lemma 6.3. Let o' € L2(R3N) be an antisymmetric solution to the Schrédinger equation
(6.1) and let @i, ..., o4 € L?(R3) be orthonormal solutions to the mean-field equations (6.2)).
Then

ores () = 20m (0, N (F= Fa) a (N = Dpooidp = V) prot))
+ Im <<¢t, N (]?— J?fz) @1q2(N — 1)U£]2V)p1p2¢t>>
+2Im <<¢t7 N (J?— f—l) q1q2(N — 1)U§]2V)P1QQW>>- (6.22)

Remarks.

17. Note that the time derivative is formally the same as for bosons, where p; := |¢){p]1,
see [46], 47]. Note that in [46, [47] the splitting into three summands is done slightly

differently: compared to (6.22)), an additional identity 1 = ps + g2 is added in front of

V1(N )

18. For the case f(k) = n(k) = £ we find a simple expression for the time derivative of
an(t) = (P, 1t). Note that, in view of Deﬁnition and the identity Zivzo Pnp =1
(which we prove later in Lemma [6.4),

N N
o~ k k—1 1 1 1
n_n_1:§j<N—( - )>PN,k:§jPN,k=—PN,o, (6.23)

and

—Pno. (6.24)
Then, using Py ,0q1 = 0 = Pn,1q1q2, the expression ((6.22) simplifies to

Oron(t) = 21m (0" 1 (N = Doy 2 = V) vt
4 Tm <<¢t, q1g2(N — 1)v§§v)p1p2¢t>>

+2Im <<¢t, q1g2(N — 1)U§]2V)P1Q2¢t>>- (6.25)

Proof of Lemma[6.3 We calculate the time derivative of af(t) using the expression
from Lemma [6.1] The idea of the proof is to insert two identities 1 = p1 + ¢1 and 1 = pa + @2
in front of each 1 (which leads to 16 summands) and then to use Lemma in order to
shift f It turns out that a lot of terms drop out due to the commutator structure. We

again use the notation P0{1’2} = p1p2, Pl{l’Q} = p1g2 + q1p2 and P2{1’2}
1,2 . .

S P = 1, since pips + piga + qip2 + 1g2 = (01 + 1) (P2 + ¢2) = 1. We abbreviate

P, = le’z} for the following calculation. Inserting the two identities and using Lemma

= g1¢2. Note that
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we find (a <> b means that we interchanged the indices a, b)

Oy ()

%)

: (v,

<¢t, P, {Wm, ﬂ Py ¢t>>

IS
o
Il
o

I
N | . N | = N | =
M M
/\
/\ /\

P!, (PzzWHPaf_ fPaWIQPa) zN>>

+

=3

Y, (PaWIQPbJ?_ J?PanPb) ?/Jt>>

+
N | . N | .

g g

/\é\~

=

Y, (PaW12be_ fPaWuPb) ¢t>>

e = 2 30 (', (PWPf — FRWiE;) o)

~
8 <
]

S

<<¢t, (PbWIQPaf_ J?PbWwPa) ¢t>>

[by a <> b] +§

NS

by Lem.[6.2] = %Z <1!1t, <J?b—a - f) PaWi2 By ¢t>>
a>b

- % Z <<1/1t; PWia P, (J?b—a - f) ¢t>>
a>b

= —Imz <<¢t, (ﬁ—a - fA> P,Wia Py ¢t>>
a>b

= —Im <<wt, (f—l - f) (P12 + (I1P2)W12p1p2¢t>>
(fa— f) Q1Q2W12p1p2¢t>>
(Fa - f) n1g2Wi2(p1g2 + Q1p2)1/1t>>
[by Wiz = Wa1] = 2Im <<¢t, (f— f—l) Q1P2W12p1p2¢t>>
+ Im <<¢t7 (A— J?—2> Q1Q2W12P1P21/1t>>
(f- ﬁl) Q1qu12p1qz¢t>>- (6.26)

(N)

Now recall that Wiy := N(N — l)v%v) - NV — NV2(N). Inserting this definition, and
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using p1q1 = 0 = p2g2 and p2 + g2 = 1, we find

Oporp(t) = 2Im <<¢t, (f— J?fl) Q1p2 (N(N —1)0fy) - N NVQ(N)) p1p2¢t>>
1 (0, (F= o) aas (NOV = 105 = NV = NV prpaut )
+21m (", (F= For) quge (NV = ol = NV = NV prgaut)

=2Im <<¢t, (f— f—l) qip2 (N(N Doty p1p2¢t>>

- NV
+Im <<¢t7 (f— fA—2) q142 (N(N —1)vfy )Plpzib >>
+21Im <<7Z)t, (J?— ﬁl) 0142 (N(N ~ 1oy — Ny )plqw >>
=20 (v, N (F = F1) o (8 = Dpaotype = V) prot))
+ Im <<¢Jt,N (J?— f—2) q01G2 ((N - 1)”%2 )) p1P2¢t>>
+2Im <<¢t7 N <J?— f—l) 7192 ((N ~ vy )> p1Q2¢t>> (6.27)

O]

In order to control the time derivative of ay(t), each of the three terms in (6.22) is
bounded separately. Before we estimate these terms in Chapter we need to establish
several techniques and properties of these terms in Chapters and

6.2 General Lemmas about the Projectors, fand ag(t)

The following lemma collects some properties of the projectors Py and the operator n
from Definition [3.1] and (3.10]) that we use in subsequent lemmas.

Lemma 6.4. For the objects from Deﬁm’tion and all antisymmetric Vqs € L?(R3V),

PyiPng = 0pePny VE£=1,...,N, (6.28)
N
Z Py =1, (6.29)
k=0
n:= Z NPN,k = N Z dm, (6.30)
k=0 m=1
Qp = <<wa57ﬁwas>> = «wa& Q1¢as>>7 (631)
N 2
{(Vas, 1@2tas)) < N —1 {tas, ()" as)- (6.32)

Proof. Recall from Definition that the projectors Py, are defined by

N
Pry= > [ @m) " (gm)™ (6.33)

acA, m=1
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with the set

N
A = {Ei:(al,...,aN)E{O,l}N:Zam:k}.

m=1

From pp,qn, = 0 it follows that for all £,/ =1,..., N,

N
PniPrne= > > T @m) " (@m)™ 0m) =" (gm)""

e Ay pea, m=1

N
= Z Z H 5ambm(pm)liam(Qm)am

acAyg EEA( m=1

N
= 614:[ Z H (pm)liam(Qm)a

ac A, m=1

= OpePn -

From Up_o Ax = {0, 1} and py, + g = 1 it follows that

ZPNk—ZZ H ()~ (gm)”

k= OaE.Akm 1

= Z H (pm)l_am (gm)™™

@c{0,1}N m=1
N

= (pm + Qm)
=1

I
= 3

Now recall that Py j contains £ ¢’s in each summand and therefore

N
(Z qm) Py =k Py

m=1

Using this and (6.36]) we find

k=0 k70

From the antisymmetry of 1,5 and (6.38]) it then follows directly that

1

N
~ 1
<<ﬂ)asyn¢as>> = N E <<wa57Qm'¢}as =
m=1

N
Z ¢asa q1 ";Z)as <<¢Jasa q1'¢}as>>-
m:l

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)
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Using again the antisymmetry of 1,5, as well as (6.38)) and (6.39), we find

(s 2vas) = =7 D (Wb 1mves)
1 m_i[
= N_1 (Z (Yas, (1am¥as)) — (Pas, Q1¢as>>>
1 TZ_IN al
= N_1\w Z ZWW Amdntas) — (Yas, QI¢as>>>
m=1n=1
N N
= % Z Z 12 was,Qan¢as>> - %«was; q1¢as>>>
=1n=1

N
N ( was, (]17 Z Qm> was - ;(Was,(hiﬁas»)

by (638)] = wa& was > - % <<1/}a57 Q11/}as»
>0
N 7 (as, (7 )? Yas))- (6.40)
]

We now turn to the operators ffrom Definition The following lemma gives a simple
expression for powers of f.

Lemma 6.5. For all0<se€Q and f >0,
(f)s -y (6.41)

Proof. Recall that according to Lemma
PPN = 0kePy (6.42)

forall kK, =1,...,N. Let 0 #n € N. Then

(f)n = f: f(k1) PN gy - - Z f(kn) PN,

k1=0 fen=0
N n n
= Z (H f(’%‘)) (H PN,kj)
Kiyeokn=0 \j=1 j=1
N
= (k)" Py
k=0
= fn. (6.43)

Recall that f > 0. It follows that for all 0 # m € N,

(/%) =17 -7 (6.44)
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SO

1 —

A\ T
(f ) = fm. (6.45)
Together, Equations ((6.43)) and (6.45)) prove the lemma. O

For completeness, let us also show how f can be inverted. (The next lemma is not
necessary for proving the rest of the statements in this thesis.)

Lemma 6.6. Let f(0) =0 and f(k) >0 for all0 < k < N. Then, for all0 < s € Q,

o~ —

[P (1= Pno) =[5, (6.46)
with the definition f/_\s = Zszl f(k)"*Pn .

Proof. Recall that f(0) = 0. First, note that

1 f(k) /=1
N
= Z Py i
k=1
=1 - Pyy. (6.47)
It follows that
fl=f"1(1~Pynp). (6.48)
Therefore, for all 0 < s € Q,
f_s — f_l = J/L‘\—S (]l — PN70)S . (649)

We now show that (1 — Py)® = 1— Pn. First, let 0 # n € N. By induction ((1 — PN,o)l =
1 — Py, and now assuming (1 — Py)" = 1 — Pny),

(1 - Pno)""" = (1— Pno)" (1 — Pny)
= (1 - Pnyo) (1 - Pnp)
=1—Pno—Pno+ Pnp
—1 - Pyy, (6.50)

3=

so (1 — Pyg)" =1 — Py for all 0 # n € N. Then also (1 — Pyg)™ = 1 — Py, since
(1 — Pno)™ = 1 — Pny, which proves the lemma. O

In order to estimate the three terms in (6.22) of the time derivative of a¢(t), we need to
use the Cauchy-Schwarz inequality on both sides of the scalar product. It turns out that we

often need a 4/ f— f,d together with a 1, so we need to shift one 4/ f— f,d to the other
side of the scalar product. The following lemma shows how this can be done.

Lemma 6.7. Let hia be an operator acting only on x1 and x2, a,b € {0,1,2} and d €
{1,2}. (Recall that according to Deﬁm’tz’on Pyt = pipo, PYE = pigo + qups and



6.2. General Lemmas about the Projectors, f and ay(t) 69

P12} = q1q2.) Then, for all monotone increasing f and v € L*(R3V),
(67w
1
= <<¢, (]?* f—d) ’ Pa{l’Q}h12Pb{1’2}><

a—b 2
X (fa—b ~ fabod + Z f(N—d+ f)PN,N—(a—b)+e> ¢>>

/=1

(0 (F=F) PR (- o) o). 65D

Proof. Recall that for all k < 0 and & > N we define f(k) = 0 and Py = 0. Also recall the
definition of the shifted f,

N
fa=>>_ f(k+d)Pxy. (6.52)

k=0
We find, using Lemma and Py PNy = 0kePn i, from Lemma that

(v, (F = F-a) P2 o Ry )

= (2 ) = 15— ) PP )

k=0

N
[by Lem.[62] = <<q/;, Z (f(k) — f(k— d))%PvaPa{va}thb{l’Q}><
k=0

X (FOR) = F(k = D) * Prgs-at)))

N
- <<¢7 Z (F(k) = f(k — d))%PN&Pa{l’Q}hme{lz}x

k=0
N+b—a )
X (f(e—b+a)—f(ﬁ—b+a—d))5PNw>>. (6.53)
{=b—a
Note that f(k) — f(k—d) > 0 since f is monotone increasing. Furthermore, with Lemma [6.5]
N+b—a 1
3 (f(z—b+a) - f(ﬁ—b+a—d))2PN¢zp
{=b—a

N+b—a %
= < Z (f(f—b+a)—f(ﬁ—b+a—d))PN,e> (8

{=b—a
~ ~ N 3
= (fab — fa—b—d + Z fl—b+a— d)PN,Z> (0
(=N+b—at1
a—b 2
= <J?a—b ~ faba+ Z f(N—d+ K)PN,N(ab)JrZ) Y. (6.54)
=1

In order to show the second equality in (6.51]) we use that in (6.53]) there is a Pb{l’2} in front
of (6.54). The operator PI;{LQ} contains b ¢’s or (2 — b) p’s. Therefore PN,ng{w} = 0 for all
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N+b—a< <N for all combinations of a,b = 0,1, 2[| Then, in (6.54) multiplied with
Pb{1’2} , one can replace Zévz *;E‘a“ by Zé\f:bf 40 and

N+b—a

Z (f(ﬁ—b—l—a) —f(g_b_i_a_d))éPijb{la}w

N 1
-3 (f(e —b+a)—fl—b+a— d)) 2 Py Py

{=b—a
N N %
= ( Z f(ﬁ—b—i—a)PNJ— Z f(e_b“‘a—d)PN’g) Pb{l,Q}w
t=b-a {=b—a
n ~ 1
= (fa=b — fa=b—-d) QPb{l’Q}w. (6.55)

O]

The next lemma shows how expressions involving 4/ f— f_d 1) and possibly one or two

¢’s can be estimated explicitly for the weight function m(?) (k) that we use later.

Lemma 6.8. Let il = m() — Z]kV:O m) (k) Py g with m) (k) as in (3.12). For any
antisymmetric V,s € L*(R3N), we abbreviate

~ PN
1111 = (m - m—d)Q ¢asa (656)
and
~ d 2
Yo = (md — M+ Y mN—d+ e)PN,N_d+g> Vs, (6.57)
/=1
for any d =1,2. Then, for all c = 0,1 and all normalized antisymmetric s,
~ 112
‘ Yel| <dN77, (6.58)
~ 112 .
quc <d(d+1)°N"" o, (6.59)
~ 112
[nasde]|” < dta+1% N2 (6.60)

Proof. The proof of this lemma is not hard but the many different cases and the appearance
of certain boundary terms make it a bit lengthy. Let us therefore give a short version of the

LThe possible cases are:
e b—a= —1: Then £ = N and either b = 0 or b = 1. Then Pb{l’2} contains at lest one p and since
Pn,np1 = 0, also PN,ZPb{I’Q} =0.

e b—a = —2: Then either { = N —1or £ = N and b = 0. Then Pb{l’Q} contains two p’s and since
Py n-1p1p2 = 0 = Py np1p2, also PNngb{l’z} = 0.
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proof first and afterwards present more details. First, recall that according to Lemma [6.4]
for all ¥,

N
<<wa57 Q1wa8>> = Z %«was; PN,kwas»a (6.61)
k=0
and
N k 2
<<waS7QIq2¢as>> < 22 <N> <<¢QS,PN,]€¢QS>>. (6,62)
k=0

We denote by || the floor function, i.e., for any z € R, |z] = max{m € Z : m < z}. Note
that

(N7
Qm = im(k) <<'¢as, PN,kﬂ)as>> = § %<<was, PN,k¢as>> + i <<wa87 PN,kwas>>-
k=0 k=1 k=|N7|+1
(6.63)
Short version. Note that

N N7
M= (m(k) — k- d)) Pyi~ N3 Py, (6.64)

k=0 k=0

and similarly for mg —m. (It is this point where we neglect boundary terms at k ~ N7; later
the “~ ...” isreplaced by “< C'...”.) Therefore (note that ¢g;m = mgq; and Zfev:() Py =1),

16— )2 [ = (s (7= 1)) = NS (s Pt < N7
= (6.65)
R ERT g Yas; q1 (M — M—q)tas ) = N7 %3 r Vass PNk Vas
N
k=0

SNy e thans Proithas ) < N7, (6.66)

k=0
and
avae (72— -0) | | = (s 12 (71— ) ) £ N 3 A (s Prcsts)
k=0

= N2 % A’f;«was, Py ithas )) < N2, (6.67)

k=0

What we now do in the more detailed proof is to keep track of the boundary terms at
k ~ N7 and therewith keep track of the exact constants that appear in the estimates.
Detailed proof. Let us first consider

& = (M — M_g)? Pas. (6.68)
We need the following estimates:

ko _ (k—d) ,k:gNMrd}_{ £ k< NY+d

(m(k)_m(k’_d))g{m R 0 k>N'4+d°

0 k> NV +d (6.69)
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k dk < N7 4 d
o _ _ < N’Y b Py
N<m(k) m(k d)> = { 0 ,k>NV"+d

e k<
<} a+a)

A NT<k<NT+d

0 k> N7+d
k
k< NV
d(d + 1 N7 =
<(N+) 1 ,NY<k<N'+d , (6.70)
0 ,k>NV'+d

k2 dk?_ L < N 4 d
_ _ _ < N2N~/ 9 =
<N> (m(k) m(k d)> = { 0 k>N'+d

N
one . k<N
< d(N7+d)?

N NT<k<N'+d

0 ,k>N'+d
k
ko p<NY
d(d+1)2N7 | N7 F S
g% 1 N <k<N'+d . (6.71)
0 ,k>N'+d

With theses estimates we have

feteos
3 (k) =tk = D) (s Pratias)

k=

Hm m_ d was

[e=]

~~

>0 >0
|N7|+d

dy <<¢as, PN ;s >>
0

N
< <<w > Py ks )

d

A

-2 (6.72)
and, with ,
o (72— ) |
= ivj ( d)) <<¢a57 Q1PN,k¢as>>
k=0
= i %(m(k) —m(k — d)) <<1/)as, PN,k¢as>>
k=0
N7 N
< d(deLl) (Z %<<was;PN,k¢as>> + Z <<¢as,PN,k¢as>>)
k=0 k=|N7]|+1
< d(d; Do (6.73)
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and, with (6.62]),

—~ —~ 1
HQ1(I2 (m - m—d) 2 'Qbas
N

- (m(k‘) —m(k — d)) <<¢as, Q1Q2PN,1§WS>>

2

k=0
N k 2
<23 (iy) (m9=mts— ) (P
d(d+ 12N (1 g, al
< ]\]-2) (Z m<<¢asa PN,k¢as>> + Z <<77Z}asa PN,k¢as>>
k=0 k=|N7]+1
< W Q. (6.74)
We now consider
B d 3
P = (T/fld —m+ Z m(N —d+ e)PNdeJre) Was- (6.75)
(=1
We need the estimates
d
(m(k:er)—m(k:))g{ X f\rfi\lg\r—d , (6.76)
k d k_
N(m(k+d)—m(k))§N{ N N o hen_a (6.77)
k 2 dk? k< N7
(N) (mlh ) = m(k)) < Yo N <k<N-—d
dN7 [ ko k< N7
SN2 {]\(fl7 S NY<k<N-—-d (6.78)
With these estimates we find
1 2
d 2
(md —m+ Z’m(N —d+ E)PN,N—dM) Yas
=1
d
= << as; (fﬁd —m + Zm(N —d+ E)PN,N—d+Z)¢as>>
N = d
= > (e ((m(k +d) = m(k)) Pyg+ Y m(N —d+ e>PN,N_d+e> o)
N -
= > (mlk+d) = m(k)) (as, Prstbas )
k=0
[N7] d
< ];) m <<1/)a57 PN,kwas>>
< i (6.79)

3
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and, with (6.61]),

1 2
@ (ﬁ”&d —m+ zd: m(N —d+ K)PN,NdM) Yas
/=1

N—d k
= Z N(m(k + d) ( )) <<1/}as,PN,k1/}as>>

k=0

d [k al
< N N7 <<7;Z)a57 PN,k¢as>> + Z <<1/}a3, PN,k¢as>>

k=0 k=|N7]+1

< %am, (6.80)

and, with (6.62]),

d 3
7192 (ﬁld —m+ Y m(N—d+ f)PN,NdH) Vas

=1
Y (]’;) (mk +d) = m(k)) (s, Pysidas )
k=0
< N7 S i P 3 P,
ez 5 (s Prpthas ) + k:u%ﬂ (T
< d]]VV; Q.- (6.81)

6.3 Diagonalization of p,hi9ps and Related Lemmas

In the time derivative of ay from equation there appears the operator poviaps. Later,
when we use the Cauchy-Schwarz inequality on the terms from , we also have to
deal with related operators like pgv%ng. Generally, for any function h(z) (recall that we
write hio = h(z1 — z2)), an operator of the type pahiapo is a multiplication operator in x4
and a projector onto the N-dimensional subspace span(¢1,...,¢n) in the second variable.
Therefore one can write it as an x; dependent (/N x N)-matrix, acting on the second variable.
This matrix is self-adjoint and non-negative for h > 0. Therefore, for fixed z;, one can
diagonalize it, as is shown in the following lemma. (Since we later split v = v4 — v_, with
v4,v_ > 0 we state the lemma only for non-negative h.) Recall that we denote by |-),, a
vector acting on the m-th variable of L?(R3Y), and by (-,-),, the scalar product only in the
m-th variable.

Lemma 6.9. Let h(x) be a non-negative function. Let h and @1,...,pN be such that
(h*pn)(x) < o0 (6.82)

for all x € R3, where pn(x) := SN | |@i(x)[?. Then, for fived x1, there are orthonormal
functions x7*, ..., x\ € span(g1,...,pN) and non-negative eigenvalues Ai(z1), ..., An(z1),
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such that

N N
)
pohiopa = (@) [XT (2 = Y Xilw1) py’ (6.83)
=1 =1
with

Ai(z1) = (X ha X )y (1) = /dgx h(zy —z) X (z))* < oo Vi=1,...,N Va; € R®

(6.84)
and, for i # j,
<Xf1, hia x}“>2 (r1) =0 Yz €R3. (6.85)
Furthermore,
N N
D Xi(m1) =) (@i haz i)y (31) = (hx piv) (). (6.86)
i=1 i=1
Proof. In the following we always keep x1 fixed. First, note that
N
pahiops = Y lei)(pila h(wr — x2) [;) (0512
i,j=1
N
= > (pish1a 9)), (1) |3) (@52 (6.87)
ij=1

In the second variable this is a self-adjoint (N x N)-matrix. For A > 0 it is non-negative
and can therefore be diagonalized with non-negative eigenvalues. That means, there is a
unitary (N x N)-matrix U(z1), such that, for all i = 1,..., N, the functions

N
X2 =D Uin(@1) lon) (6.88)
k=1
are orthonormal, and such that
N N o
pahiape = Xi(x) X (2 = D Nila) py' - (6.89)
i=1 i=1

Note that (6.88) can be inverted, i.e.,

N

)2 = Y Ugi(@1) [X§")2s (6.90)
(=1

where * denotes complex conjugation. The projector ps is independent of the choice of basis,
therefore

N N
p2=_leidpilz =Y i e (6.91)
i=1 i=1

Then, since span(xi*,..., Xy ) = span(e1,...,on),

Ai(w1) = (Xi*s pehazpaxit )y (v1) = (X5 ha2 X5 ) o (71) (6.92)
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and, for all ¢ # j,

Xi 7P2h12p2XJ > (1)

)=
< j1>2(x1)
A
0.

<X1 s hi2 X5 >

j(@ )<xz X > (1)

_ (6.93)
Furthermore, since U(x1) is unitary,
N
Z)\ (21) :Z (G hz Xty (1)
i=1
N N N
1=1 j=1 k=1
N N /N
=33 Us @) Uin( x1)> (@5, h12 0r)s (1)
7j=1k=1 \i=1
N N
= sz%k (¢js 12 @r)y (1)
j=1 k=1
N
=3 (g5, bz o)y (21)
7j=1
= (hxpn)(21). (6.94)
O

Lemma can now be used to bound scalar products involving expressions like paohiapo
by the convolution h x py. The following three lemmas treat the expressions that we need
later in order to bound the time derivative of af(t). Recall that py (z) := S| |pi(z)[2.

Lemma 6.10. Let ¢1,...,on € L*(R3) be orthonormal and h > 0. Then, for all antisym-
metric 1hes € L*(R3Y),

<<¢a57 D2 h12 p2¢as>> N 1_ ( Suﬂg (h * PN) (y)) <<¢asa ¢as>> . (695)
yeR3

This inequality remains true when Yqs 18 antisymmetm’c only in the variables xo, ..., xN. It
also remains true with 1 replaced by N 5, when Yas is antisymmetric only in the vamables
T2,T4,T5,.--,TN-

Lemma 6.11. Let ¢1,...,on € L2(R3) be orthonormal and h > 0. Then, for all antisym-
metric g5 € L*(R3Y),

1

<<wa57 P1pP2 h12 plp?lpas» < m </]R3 (h * PN)(y) pN(y) d3y> ((10@5, ¢a5>>- (696)

This inequality remains true with m replaced by m, when s 1 antisymmetric

only in the variables x1,x2,T4,...,TN.
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Lemma 6.12. Let ¢1,...,on € L2(R3) be orthonormal and h > 0. Then, for all antisym-
metric a5 € L2(R3N),

2
{(Yas, a3p1p2 hi2h13 p1p3gatbas)) < v - 1)1( =) ( sup (h* pN)(?/)) (Yass @1 Vas)-
(6.97)

Proof of Lemma[6.10, First, recall that we denote by (-, a+1,. .~(21,...,24) the scalar
product only in the variables x,11,..., 2N, evaluated at x1, ..., g, i.e.,

«w, X>>a+1,m7N(x1, . ,a:a) = /dga:aH e / dSJJN ”(ﬁ*(xl, e ,a:N)X(:cl, e ,xN). (698)

For all antisymmetric 1,5 we find, using Lemmas [6.9] and

N xy
<<7/}a57p2 h12 pz%s» = Z«was; Al(xl) p;(i 1/}‘15»
=1 N
/d?’xlz)\z wl wasapg ¢a8>> 2,...,N (xl)
>0 >0 Vi
N
[by Lem. [4.2] - /d3$1 Z )\z «Tl 7/’(187 was» (‘7:1)

< Nl_ 1 <S;11p;/\i($l)> /d xl«wa&was» (1‘1)

= g (sup s o)) ) (), (6.99)

Note that we did not use the antisymmetry in the first variable, so remains true when
Yas 1S antisymmetric only in z9,...,zyN. For all wéf’ that are antisymmetric in all variables
except z1, z3, we find, again using Lemmas [6.9] and

N
1
(2, p2 haa o) = (s M) py* i)
i=1
N (L'
:/d%lz)‘i(xl)/dgivza (W3, pY W N2a,.. (@1, T3)
i:lH/_/
0 >0 Vazi1,z3

N
[by Lem. [£2) S/dgxlez‘(xl)Nl_Q/ 3{(v0as’s Yo Vo4, N (21, 23)
=1

N
S <SHPZ/\i($1))/ (% Yas D2, (21)

~ e (sup o)) ) (. ). (6.100)

—

O
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Proof of Lemma|6.11]. In the following we diagonalize pahiopo as in Lemma For g > 0,
we also diagonalize p1g(z1)p1 as (IV x N)-matrix in the first variable. Here the eigenvalues
are positive numbers p; and we call the eigenvectors ¢;, i.e.,

p1g(z1)p1 = Zugp (6.101)

and

N N

S =Y eratane), = [ a@ on(o)de (6.102)
Using the diagonalizations and Lemma [£.2] we find

J
d
<<was,p1p2 hi2 p1p2tas >> < P1%as, P212D2 P1Vas >>

=2

z
plwa& )\z‘(ﬂUl)P;CZ plwas>>
i=1
/d3.1‘1
N

[by Lem. < Nl— 1 /d3:[‘1 ; )\i(l'l)<<p17;basap1¢as>>27m7N(5L'1)
N

= ﬁ«%s,m > i) P11/Jas>>

—_——
==g(z1)

L Y )

¢a37p1 was >>

I
=~

.

Mz

Ai( )<<P1¢as,p2 pl%s>>2 N(331)

geeey

Il
i

7

>0 Vz1

I
Tl-
.’612
{:
=

>0 >0
by Lem. i3] < N(Nl—l) (il Hj <<¢as,%s>>
=

_ N(Nl—l) ( [ st@nta) d3m> (Yoo s )

_ N(Nll) ( / (h* o) () pi () d%) (Yo tas ) (6.103)

If 45 is antisymmetric in all variables except xs, then, similarly to (6.100]), one can only
extract factors N 5 instead of N 7, and ﬁ instead of % from the antisymmetry of 1,5,
as can be seen from Lemma [ O

Proof of Lemma[6.13. We denote by ¢iy™"" a normalized function in L2(R3N) that is
antisymmetric in all varlables except in z;,, ..., x;,. Recall that h is positive. Then, using
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Cauchy-Schwarz and Lemma [6.10]in the end,

(as, @3p1P2 h12h13 P1P3G2Yas))
= (Vas, 3 P1V h13 p2/ hi2 V/ hisps \/ hi2p1 @2¥as))

< ||g3tas|| (Sng\/ hisp1 62 ) (Stllg v hi2pa 912
¢)(lS ¢az§
X ( 1D hi3ps dL2 ) (SI;PH\/hmpl o2, ) l|g2%as]|
as ¢as
2 2
= lla1vas|P <sng\/h12p1 o2 ) (sgg Vhizps 17 )
¢(IS ¢a?5‘

= [|q1¢as||” <Sgp <<¢§S,P1h12pl¢§s>>> (SUP (da2, p2hi1apo ¢(11’53>>>

1,3
Pa’s

>x

as

2
1
by Lem BIY - < oy (;Sﬂgé(hw)(y)) (Vas: 1 Vas))- (6.104)

O]

6.4 Bounds on 0;0(t)

We now give the rigorous bounds for the three terms in the time derivative of a(t) given
by . Here, we use the weight function m('Y)(k:) from . This also contains the case
where v = 1, thus the bounds also hold for the weight function n(k). The estimates are
collected in the following lemma, which constitutes the heart of the proof of our main results.

We state this lemma only for positive v(¥). If v¥(¥) contains both positive and negative

parts we write v(N) = (N) — o™ with U(N), ()

2|) separately for v( ) and U(N) We denote the direct term by ler N) (v(N) *pN) (21).

Lemma 6.13. Let ¢1,...,pnx € L2(R3) be orthonormal and ¢ € L?(R3N) be antisymmetric.
Let vN) be positive and set py(x) = vazl loi(z)]?. Then,

> 0, and then estimate the three terms in

(a) for the gp-pp term,
28 1 (4, () = m &) a1 (N = Dpoof e = i )i )|

1
2

S4<SUP /Q N(mvm(:cl—y) <>dy> N2 (o (1) + N77)

z1€R3
+4V/2 ( sup o) (y)) N2t3 (amm (t) + N—V), (6.105)
yeQn (0)
for any (possibly N dependent) volume Qp, with Qn(z1) = Qn + 21 and m =R3\ Qu
(possibly Oy = R3 or Qn = 0); also, with V(N) ler’(N) or V(N)

‘2]\7 Im <<¢7 (77;6) - 77;6)—1) T ((N — Dpovly )by — V] )p1¢>>’

IS
[N]9)

<4\f<sup( *pN)(y)>N —2, (6.106)

€R3
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(b) for the qq-pp term,
’Nlm <<1/% (ﬁ(?) - /(;)—2) q1g2 ((N - 1)U§]2V))p1p2¢>>‘

2
< \/ﬁ< (Sup (v(N) *PN)(Z/)) 047271@)

yeR3

1
2

+ < / ((U(N))Q*PN> () P (y) d3y> Ao ()N ”) : (6.107)

and also,

—_

’Nlm <<1/% (m”) - m(V)—z) 7192 ((N - 1)U§]2V))p1p2¢>>‘

<Viz ( J (@) %) ) o (o) d3y) % (e +N77), (6.108)

(c) for the qq-pq term,
)2N Im <<¢, (77;(;) - Tg(?)fl) q1G2 ((N - 1)U§]2V)>p1Q2¢>>‘

1
2

<4 <sup (™) 5 pn) <y>> NZ a6 (t). (6.109)

yER3

Proof. For ease of notation, we often omit subscripts and superscripts N or (N) in this

proof; in particular, we abbreviate v = V), Vldir = Vldir’(N) and p = pn.

The gp-pp term. Using Lemma we find that

‘2]\7 Im <<¢, (777(;) - 77;(7)—1> q ((N — 1)pavi2ps — V1dir)P1¢>>‘

= ’2N1m << P, (75@) - m(w)1)§ @ ((N — 1)paviaps — V1d1r> y

o))

= 2N [t (%01 (V= Dpaviaps = Vi )it} (6.110)

In order to estimate , we diagonalize pavi2ps according to Lemma We call the
eigenvectors y' and the eigenvalues \;(z1). Note that Vi (21) = Zf\il Ai(x1). We denote
by Qn C R? a possibly N dependent volume. For ease of notation we omit the subscript N,
i.e., we write 2 := Qp for the proof. We split the eigenvalues into two parts:

=3

X P1 (m(’?)l —m + mw) (N)PN,N)

(SIS

M) = [ vler =) W)

- / o(er — ) O @) Py + /< Wy (6111
Q(z1) Q(z1)

=23 (z1) ::)\iﬁ(zl)
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Then, continuing from ((6.110]), we find

'<<1;, 7l <(N — )p2viopa — Vldir)pl{zl»
[ (3 pute ) i)
m=2
sa(Frr £ e
i=1 m=2 =1

—_——
X!
~ a1 ~
[ St (-2 )
i=1 N————
Tl
:;—q;zil
al i 1~ N ~ o T~
< |3 (Fan@a md )| + | D (6 arl@)d p1¢/>>‘. (6.112)
i=1 i=1
Here we introduced the projectors
N
Pl =Y pf, ¢f =1-p% (6.113)
m=2

that act on all but the first variable (see also Chapter [4.2). Note that, for all ¢}, that are
antisymmetric in all variables except x1,

N
<<wis, > aZiis >> =
=1

= (V= {0k @b ) + {0k 01 ). (6.114)

z1\ 2 zq
This remains true if |@;)m = [x;")m (m > 2). We also have that (q;iil ) Pl = q;?l Wl
Using this, Cauchy-Schwarz (C.-S.), (6.114) and Lemma we find for the first summand



82 6. Proof of Theorems for General vV)

n (6.112),

> (7 ml)q;?pﬂz'»;

=1

[by C.-S.]

ennd]| ||

< (z (TS

N|=
[NIE

WE

;

(i )

i=1 =1
by @114)] < (Supi\[: ()‘?(331))2> 5 <<<@Z7 Q11;>>>%X
1oi=1
x ((N - 1)<<1Z/ap1Q2QZ'>> + <<J/7p1%;,>>) ’
em su 3 Qi 2)é o : « - :
[by Lem.[6.8) < (wlp;(&( 1)) <2N m(v)) <2 mn + N )

1

1
N 2
2
<2 (s 3 80" ) 8 (o 42 4070

N , I
=2 <supz (A} (1)) > N~2 (amm +N7>. (6.115)

Furthermore, using Cauchy-Schwarz and the fact that x7*',...,x% are normalized, we find

2 (a1) = / o(zr — ) ()2 dy
Q(z1)

2 _ 1 2 53 3
< </Q<x1>”“””1 ¥ X (1) dy> (/me W) d )

< (/ vz —y) X () d3y> : (6.116)
Q(z1)

Now observe that SN [x* (y)]* = 2N, |¢i(y)|?, which follows directly from x**(y) =
fo:l Uir(z1) ¢r(y) with U(z1) unitary. Thus,

[NIE
[N

N

N 9 2 2
su Qx su 'U ﬂj —
(f;OZ(l))) _< pZZ/M1 =) X () d )

= (sup/ v (z1 — y)p(y) d3y> : (6.117)
1 JQ(z1)

Let us turn to the second summand in (6.112)). First, note that due to the normalization of

=
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1

T1
Xl 7"'aXNa

2 () = /( — ) @) dy
Q(z1)

g( sup v(x; — )/ Ix;!
yeQ(z1

= sup U(y). (6.118)
yeQ(0)

x

z1\ 2 1
Then we find, using Cauchy-Schwarz (C.-S.), (q;il > Vas = q;il g5 Tor all antisymmetric

Vas, (6.114), (6.118) and Lemma [6.8]
N ~ = z1 ~
’Z <<1/17Q1)\?(901)q;i1 p1¢/>>‘
=1

’ i <<¢aQIq7é1 A (xl)q?ﬂ m >>‘
=1
by C.-S.] i
- ) :
(Z <<w,q1q¢1 A (9”1)‘]#1 q1¢>>> (
=1 =
(o) S eaion)) -

(1)

1
N 2

[by C.-S.]

IN

(s )

.

NI

=1

X(Gﬁwm>i<,mﬁmw»

=1

by @I < (S.up A%l)) <<N -0 aed) +{dad >>>

1,21

X ((N— 1)<<1Z/7P1Q2QZI>> W pryf >

— 2
by Lem.[6.g < (sup A?(azﬁ) <4N71am<7) + 2N1am<7)> <2am(y) + N”)

4,21

N

by ([GI18)] S\/§<sup v(y)> N373 x

y€Q(0)
1
2

1 1 1.
x <a3n('v) +oN Tape + 5N ol o) + il Q,Yam(’Y))

1
7.1 _ _ov )2
<8 < sup v(y)) N273 (oz?n(w +2N Y, + N 27)

yeQ(0)

= \f( sup v(y )) N
y€Q(0)

[N

[N

(am('y) + N_7> . (6119)
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The bounds (6.115) with (6.117]), and (6.119) give the bound (6.105]) on (6.110)).
The alternative estimate ({6.106)) can be obtained by starting from the second last line of

(6.110). Using Cauchy-Schwarz (C.-S.) and Lemmas and [6.8 we find

2N ’Im <<1;, Q1 ((N — 1)paviaps — Vldir>plqz/>>’
<2N(N —1) ’<<J qwzvmplpz{/;’»‘ +2N ‘<<J qﬂﬁdirplibv'»‘

by C-8] < 2N(N —1) H\/EQMMZH H\/@MPWZ/H +2N HQNZH H‘Gdir}?lizl

WZH <81;p(v*p)(y))% y/

1
2
[by Lem. < 2N <sup(v *p) (y)>
y

+ON HquZH <81y1p(v * p)2(y)> : W

by Lem. B§ < 4V (Sl;p(v * p)(y)> (2N _1Oém('v)> : (N ‘”) :

(SIS

= 4V2 <s1y1p(u * p)(y)) N2~3, (6.120)

which of course also holds when V' = 0.

The gq-pp term. Using Lemmal6.7] the antisymmetry of 1) and Cauchy-Schwarz (C.-S.),
we find that

‘Nlm <<1/17 (777(;) - ﬂ;(?)—z) 7192 ((N - 1)012>p1pz¢>>’

— 1

= ‘Nlm <<1/), (T;(;) - WL('Y)fz)5 CJ1CJ2<(N - 1)”12) X

-

—_—

X p1p2 (m(’Y)Q —m® +m (N —-1)Pyn-1+ m(W)(N)PNyN)

NI

o)

::'J’
= ‘(N —1)NIm <<1Z, q1q2 v12p1p2@5’>>‘
~ N ~
[by antisym.] = ‘Nlm <<w, q1 Z gm Vim plpm¢,>>
m=2
~ N ~
by C-8] <N HqﬂbH HZ G Vim P1Pm Y || - (6.121)
m=2
From Lemma [6.8] we have
2
qud}H <6N"La, . (6.122)

The trick of shifting one ¢ to the right-hand side of the scalar product is now done in the
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following calculation. Using Lemmas and we find

2 N

= <<¢’,plpmvlmqmqnv1npnp1¢’>>

m,n=2

m#n
N ~ ~
+ Z <<1//7 P1PmV1imdmV1mPmP1 1// >>

m=2

= (N -1)(N - 2)<<1Z/,(J3p1p2012“13p1p3q2&>>

+ (N - 1)<<QZ/,p1p2U12Q2U12p1p2J>>

N o~
Z dm V1m plpm¢/

m=2

by Lem BT < <s1;p<v * p><y>> (70
by Lem. BT + N / (0% % p)(y) p(y) dy <<QZ'1Z'>>

2
by Lem. 5§ < <s1;p(v *p)(y)) 2N oy, + / (v* % p)(y) p(y) d®y 2N 17
(6.123)

With (6.122) and (6.123) we can continue the estimate from (6.121)):

N
|35 |
m=2

1
2

N|=

2
<N (6N a,m) ((Sup(v*p)(y)> 2Ny, +/(v2*p)(y) p(y) d’y 2N‘1‘”>

Y

NI

)

2
< VIZ <<sup<v*p><y>> 2+ [P %)) ) &y amwN—V) . (6.124)

This proves (6.107]). For the alternative estimate (6.108)), we use Lemma instead of
Lemma in (6.123)); that is, we bound

(N = 1)(N — 2)<<{§’, q3p1p21)12?)13p1p3q2{/7>>

by C-8] < (N —1)(N—2) “012]91172(13?;/“ HU13p1p3QZJ/H

prienfT < [ @) o)y (Tl ). (6.125)

Using that, we derive the bound (/6.124)) with supy(v*p)Q(y) replaced by [(v?xp)(y) p(y) d®y,
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ie.,

N
]| 35 v
m=2

N

< V12 ( / (0% % p)(y) p(y) d?’y)% (afnm +apm N _7)
< Vi ( [0+ ) o) )

= V12 ( / (W2 % p)(y) p(y) d“"’y)é (en +N77), (6.126)

which is the desired bound (|6.108)).

1
2

[NIES

<O‘fn<w + 20,y N7+ N _2W>

The qq-pq term. Using Lemma [6.7] we find that
’2N Im <<¢7 (77;(;) — 77:(7)—1) 70162 ((N - 1)”12)?1Q2¢>>‘

= ot (. (00 = 1) (= D)

s morn) o)

= ’2N Im <<TZ7 7162 <(N - 1)012)111(]21;/»‘ : (6.127)

Using Cauchy-Schwarz (C.-S.) and Lemmas and we find

—_—

X D142 (m(“f)l — m(“/) + m(N)PNJ\f)

N

2 (10 (N~ ez raai?”)

by -] < 2N(N —1) quzJH HU12P1QQJ,H

1
2

by Lem.[p.g) < 2N(N —1) (4N7_2am<7))% (<<1,Z',Q2 P1viop1 qQJ’>>)

((N - (sup<v2 *p><y>) (v qg{z?'>>)é

Y

VI

[by Lem. < 2N(N — 1) (4N7_204m(7))

N

((N _ (sup<v2 X p><y>) Nt amw)5

Y

[by Lem.[6.§] < 2N(N —-1) (4N’77204m(7))

2
<4 <sup(112 * p)(y)> N7 a, ). (6.128)
Yy

O

6.5 Proof of the Theorems

Let us first state the well-known Gronwall Lemma which we need in the proofs of the main
theorems.
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Lemma 6.14 (Gronwall). Let t > 0 and let n : R — R be a differentiable function that
satisfies the estimate

Im(t) < C@)(n(t) +e) (6.129)
with some real constant € and continuous function C' : R — R. Then for allt > 0,

n(t) < efo CME(0) 4 (el OO 1), (6.130)

Since different versions of the Gronwall Lemma exist, let us here briefly prove the one
we stated above.

Proof. Let 0 <t < oo. Let f: R — R be a differentiable function that satisfies

O f(t) < C(t)f(t) (6.131)
and let .
g(t) = elo C)ds, (6.132)
in particular, g > 0. Then
o (f> _@f)g—f09) _Cfg—ICy_,, (6.133)
g g g
Since £(0) = f(0) it follows that £(t) < £(0), i.e
F(t) < g()£(0) = F(0)elo €, (6.134)
We now define the function £ : R — R as
£(t) = elo C@Msp(0) 4 (efot Cls)ds _ 1) e (6.135)
It follows that
0i&(t) = C(t)(&(t) +e) (6.136)
and £(0) = n(0). We then have
Oh(n—¢) <Cln+e)—C+e)=Cn—g) (6.137)
and with
n(t) = £(t) < (n(0) — £(0))eko C% — o, (6.138)
ie., n(t) < &(1). =

Note that the Gronwall Lemma can indeed be applied to a¢(t), since it is differentiable
due to the scalar product structure. We now prove the main theorems from Section [3.3.1
Proof of Theorem [3.3, First, we split v(¥) = U_(,'_N) — v(_N), with USLN),U(_N) > 0. Accordingly,
we have

Oray(t) = Termy — Term_, (6.139)

with
s =2 5973 (V- D - ) )
+Im << (f ) q1g2(N — vy 1)2 p1p2¢t>>
+2Tm << ( ) na2(N — 1)) prasd >> (6.140)
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We proceed by estimating | Term | and |Term_| separately. We use the bounds (6.105) with
Qn =R3, (6.108) and (6.109)) from Lemma with v = 1, and, due to [ ply = N,

/(v2 * P ) () Piv(y) Py < (sgp(v2 *pﬁv)(y)) N. (6.141)

We then find
Term. | < 4/D1(t) <an(t) n N—l)
+ V12 \/IT(t)(an(t) + N—l)
+4y/Di (1) an(t)

< %C(t) (ozn(t) + N‘l), (6.142)

with 0 < C(t) = 4(4 + v/3) /D1 (t) < 24/D(t). Therefore,

O (t) < |Termy | + |Term_| < C(t) (an(t) + N_1>. (6.143)
Applying the Gronwall Lemma gives (13.37)). O

Remarks.

19. Following up on Remark [J] after Theorem let us consider the size of the error
we make by neglecting the exchange term. We suppose that the exchange term is of
O(N_g). It then gives an additional term C(t)N~3y/a,(t) in the time derivative of
an(t). Then (note that (a + b)? < 2(a® + b?))

Bran(t) < CO(1) (an(t) N4 NS m)
<o) (Vo +88) v 71)
< 20(1) <an(t) FNTE N—l) , (6.144)

so the error in Orap,(t) is only of O(Nfg).

Now we prove the most general version of our main theorems, using the counting
functional o) (t).

Proof of Theorem[3.7. Under the assumptions (3.49)-(3.53)) (which hold for viN) separately),
and using the splitting from (6.139)) again, Lemma gives

% e, o) () < 4y/D3 () N~ F (amm (t) + N’V) + 4V2Dy(t) N0 (amw) (t) + N’7>

D=

+ V12 (Do(t)2 a, o (t) + Da(t) o, ) (1) Néﬂ)
+ 8V D1(t) oy (2).- (6.145)

Now note that for any o, Cy > 0,

1
2

(a® + Cna)? < (a2 +2Cya + C3)? = a + Cy. (6.146)
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Using this we find that

D16 (1) < C(1) (@ () + N2, (6.147)

where 0 < 5:min{'y—5g,’y+ %,’y—i—&;} and

D
C(t) = 12 max {4«/D3(t)N‘823 L 4V2D4(H)N =% /12Dy (t), \/E;g;, 8v/ Dy (t)}.
0
(6.148)
(Note that Dg(t) > 0 for all ¢ > 0.) Applying the Gronwall Lemma gives (3.54)). O






Chapter 7

Proof of Results for —A and
Interactions |r|™°

Note that in this chapter, for ease of notation, C' denotes a constant which can be different
from line to line.

7.1 Kinetic Energy Inequalities

In this section, we state some well-known inequalities, which we use in Chapter to
show that the conditions of Theorems and hold if Fyin mt(t) < AN. We denote the
kinetic energy of a wave function ¥ by Fiin ¢ = (%, Z;V:1(—ij)¢>>a and the diagonal of
the reduced one-particle density matrix, normalized to N, by p¥(z). With the notation from
B9, p¥(z) = Nuqf(x;x). Recall that H!(R?) = {f € L*(R?) : ||V f]| < oco}.

First, we need the kinetic energy inequality due to Lieb and Thirring [41], see also [3§].
(Note that we state the lemma here in a slightly less general version than in [3§].)

Lemma 7.1 (Corollary 4.1 in [38]). Let ¢» € HY(R3Y) be antisymmetric. Then
PR 5 _2
p¥(z)s d’x < §(27T) 3 Ein,y- (7.1)
R3

We mostly need this lemma for antisymmetrized product states. Lemma[7.I]then says that
for orthonormal 1, ...,on € HY(R3), pn(x) = Z]L li(z)]? and Eyinmt = Zf\il IVeill?,
we have

ot

5 _2
/ (@)} P < 2(2m)3 Bn. (7.2)
R3 9
From Lemma it immediately follows a rigorous version of the statement that any
fermionic wave function with kinetic energy of O(N') “occupies a volume” at least proportional
to N. This is captured by the following lemma which is similar to Theorem 7.2 in [38].

Lemma 7.2. Let o € HY(R*N) be antisymmetric. Let Q be a measurable subset of R with
volume vol(Q) = [, dx. Then

oo

/pr(x) d*z < C (vol(Q))5 (Finp) (7.3)

91
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Proof. By Holder’s inequality and Lemma

o< ( / 1) ( / (pw)g)g < (vol(2))¥ (CFian)? (7.4

O]

(1-9173
Thus, for wave functions with Ey;, , < CN, it follows that, e.g., for Qy . = [0, NS ] ,
ie., vol(Qn.) = N17¢ e >0,

/ p¥(z) d3z < CN1—3¢, (7.5)
QN,E

i.e., there are still CN particles outside the volume Q. (recall [ p¥ = N).
For Section we also need the Hardy-Littlewood-Sobolev inequality (see, e.g., [37,
Theorem 4.3]), here stated for three dimensions.

Lemma 7.3 (Hardy-Littlewood-Sobolev Inequality). Let p,7 > 1 and 0 < X\ < 3 with
%—F % + 1 =2 Let f € LP(R®) and h € L"(R3). Then there is a constant C = C(),p), such
that

< CIflp A, - (7.6)

/ / @)z — g hy) de dy
RS R?)

For later reference, we also state Hardy’s inequality (see, e.g., [38]):

Lemma 7.4 (Hardy’s inequality). Let f € HY(R3). Then

T 2

7.2 An Estimate Using the Boundedness of Kinetic Energy

Let us now use the kinetic energy inequality from Lemma [7.1] to estimate the mean-field term
v®) % pn. The lemma we prove in this section is necessary for the proofs of the results from
Chapter which we present in Chapter Recall that we want to consider situations
where Eyinmf(t) < AN and interaction potentials with a long range behavior like

6
vs(x) = |2| 7%, for 0 < s < 5 (7.8)
For € > 0, let us define the class of interactions with singularity cut off as
Vs € L™ such that ve () = || 7% for |2] > ¢, 0 < vge(x) < |z|™° Vo € RS (7.9)

From the next lemma we can read off that the correct scaling exponents for vy and v, are
f=1-3.

Lemma 7.5. Let ¢1,...,on € L*(R3) be orthonormal. We assume that

N
Ekin,mf = Z ||VCPZ||2 < AN (710)

=1

for some A > 0. Let
oM (z) = NP u(z) (7.11)
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with either v = v, (see (7.8))) or v ="vs. (see (7.9))), and witsh B=1-50<s<Z Weset
pn(x) = N @i(x)[?. Then there is a constant 0 < C o A3 (independent of N, dependent
on s) such that

(U<N> X pN> (y) <C VyeRS (7.12)

Furthermore, there is an explicit example of orbitals p1, ..., N, namely plane waves with
constant density, such that also (v(N) *pN) (y) > C" Vy € R3 for some C' > 0.

Remarks.

20. An immediate consequence of ((7.12)) is, that the scaled direct interaction energy of
any orbital is O(1),

/RB (v(N) *PN) W) |pi(y)PdPy <C Vi=1,...,N, (7.13)

and the total scaled direct interaction energy is O(N),

/RS (v(N) *pzv) (y) px(y) d*y < CN. (7.14)

This follows directly from Hoélder’s inequality, using H|g01]2‘ }1 =1 and ||pn]||; = N.

21. The proof could easily be generalized for ¢1, ..., N With Eyiyms < AN % for a certain

range of §’s. In the semiclassical case outlined in Chapter where Eyinms < AN g,
we find that for all s, the right scaling exponent is 5 =1, i.e.,

N1 (vs*pn) (y) <C Yy eR3. (7.15)

This follows directly from choosing Ry N-independent in ((7.18)). In fact, one can easily
5
show that ([7.15)) even holds for any interaction potential in LfOC(]Rg), i.e., when the

singularities are in L%(R3).

Proof. From ([7.1]) with the assumption ((7.10|) it follows that

(27)"3AN. (7.16)

O ot

/ pN(x)% Br <
R3

Furthermore, recall that [ py = N. In the following, we show the inequality (7.12]) only for
vs. Then, since vs . < v, it also follows for vs .. Recall that Br(y) = {z € R3: |z — y| < R}
and Br(y) := R?\ Bg(y). First, note that for 0 < s < g,

5 : 5 : 4 5 :
/ |z| 2% dBr| = 47r/ ro25P%dr | = — R373°
BR(O) BR(O) 3 — §S

2
47 > 6_,
= = R57°. (7.17)
3—58
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Then, using Holder’s inequality, (7.16), [ py = N and (7.17), we find for any possibly
N-dependent Ry > 0,

/ PN(HT)S d%:/ PN(HC)S d3:c+/ PN(HC)S B
ro |2 — Y] Bry(y) 1 =Yl Bry ) 1~ Y]
3
5
[by Hélder] < (/ pN(x)g d?’x) </ |z — y|_gs d%)
Bry (v) Bry, (y)
+ (/ pn () d3x> sup |z —y[~*
Bry (v)

xeBRN (y)

(S]]

2

3 5
<([ov@ies) ([ et
R3 Bry (0)

+</ pN(w)dBw) sup |z ~*
R3 IEBRN(O)

§_s
by @18, FT)] < CNSRY ~+ NRy. (7.18)

Setting Ry = N3 (if we set Ry = N? and then optimize (7.18)) with respect to § we find
§ = %) we find

/ PN s < NI (7.19)
RS |2 — yl®

Using the explicit values of the constants from ([7.16) and (7.17)), setting Ry = rN %, with
N-independent r > 0, and minimizing the resulting expression (|7.18]) with respect to r gives
an explicit value for the constant of (7.19):

%_1 S S S
c=(8-5)" s (S) ok seni 4, (7.20)
5 5
Note that (7.19) does not follow directly from the generalized Young inequality
L x gl < Cllgllguw I F1l (7.21)

with % + % =1+ 1 and where ||| 4w denotes the weak L7 norm, since it only holds for
1<p,qr<oo.

It remains to show that when the ¢1,...,onN are plane waves with constant kinetic
energy per particle, the inequality holds also in the other direction. Let 1y (z) denote
the characteristic function of the set [—%, %}3 =V C R3 and let N = cL? with constant c.
The orthonormal functions

on(z) = L7 26 TH 1y (), (7.22)

k € 73, have the density po(z) = D |kl A | =N lor(x)|? = %]lv(:n) = cly(z). In the ground
state, the kinetic energy is proportional to IV, since

1
Z (P, (=A)pr) = Z (;k) <C (;) / 2 r2dr o L—; — ¢5N.
|k|,#|k|=N ||, k|=N 0
(7.23)
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Then (as we already know from ([7.12))), we find

s |z —yl*

e < o)) = [ PO [ eyl

N
< c/[ L 2|7 3z o / S r2dr o« N5, (7.24)
-LL 0

SISl

Also, for example for R > |y|,

/ pO(x)s B :C/ |:U—y\_5d333:c/ ’:U|_sd3ll,‘
7o [~ 547 541"

R L 3—s L 3=s s
> C'/ S r?dr oc <R + 2> — R > (2> o N'75. (7.25)
R

In the same way, for example for R > |y| + ¢ and for N big enough,

R+% .
/ po()vs.e(2) Pz > C'/ =S ridr o N'73. (7.26)
R3 R

From this, it follows directly that (7.12) holds with > for the example of plane waves. [J

7.3 Proof of the Results

Proof of Corollary[3.8. We use Theorem We thus have to show that for v(V)(z) =
2
N75 |z,

((U(N))2 * p§V> (y) <CON7' vyeR?, (7.27)

if Eyinmt < AN and Hp’}v‘ ‘OO < D. Let us write Qy = BN% (0), i.e., the ball with radius N3

around 0, and define Qpn(y) = Qn +y and S = R3\ S for any set S C R3. By splitting the
convolution into two integrals and then using Holder’s inequality, we find (similar to the

calculation (|7.18]))
2 4
((v(N)) *P§V> (y)=N"s (/ lz —y| 2 ply () Pz + / lz —y|2pl (z) d3a:>
On(y) On(y)

w5 ([ a2 L+ (s 1) ]
QN LEEﬁN

< CN7H(NF ||ply]], + NTEN)
<CN L (7.28)
O
Proof of Theorem[3.9 We consider the three different interactions separately.
o Let
vs(x) = £|z| 7%, with 0 < s < % and f=1— g (7.29)
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We use Theorem i.e., we have to show that ((vgN))Q * p§V> (y) KON~ vy eR3.

Since we consider only 0 < s < %, we can use (|7.12)) with s replaced by 2s (recall that
(7.12) holds for 0 < s < g) When we write out the scaling explicitly, (7.12]) becomes

(025 % ply) (y) < ONU-%), (7.30)
Thus,
((vﬁm)2 * pﬁv) (y) = N~20-5) (v§ * pﬁv) (v)
= N_2(1_§) (7)25 * p’}\[) (y)

=CN L. (7.31)

If we use that the constant in ((7.12]) is proportional to A3, we find that the constant

in ((7.31)) is proportional to A% and thus the C' appearing in the a,-estimate (3.64)) is
proportional to Az.

o Let
< s <
vse € L with 0 < wge(x)q — ] for [o] < e ,with € > 0,
’ ' = |z| , for |z| > ¢,
With0<s<gandﬂzl—§. (7.32)

We use Theorem with Qx = ). The assumption (3.49) is satisfied according to
Lemma Using vs . € L™ and (3.49)) we find

(00 % ply ) () < N0 )(supvss(y)) (v %y ) ()
< oN—(1-35), (7.33)

i.e., (3.50) holds if v <1 — £. In order to show that (3.51)) holds, we use the Hardy-

Littlewood-Sobolev inequality (7.6]). Note that from [ pf = N and [ (p’}v)g <CN it
follows that [(pl)? < CN for all 1 < p < 2. For A = 2s we have p= (1 — £)~! and,
since0<s<g,weﬁnd1<p<g, so that

//E@/Rs(vs,e(w—y)zt() alf”:cd?’y</Rg/]R3 ’x_ ’25 Y) B iy
<olaz=c(furr)

< CN# = CN2(1-3), (7.34)
ie., is satisfied with do = 0. Furthermore,
sup v( (y) <CN~ (1- ) (7.35)
y€ER3
ie., - holds if L + 4+ 904 = 1 — %; that is, since 94 > 0, v < 1 — 2 Thus

8

d = min{y — 52,74—54} = ~. The condltlons onvyarey <1—2and-~ < 1—=

therefore, the theorem holds for all v < 3
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o Let

 x|m® L for |z <1
”(x)—{ o[- for o] > 1, (7.36)

with 0 < s < 1 and 8 = 2. First, note that Lemma applies, since |v(z)| < |z|~L.
Using this, we find that

sup (!v(N)I */ﬁv) (y) < Do, (7.37)
y€eR3
and, from (|7.34) with s =1,
/ <(v‘N))2*p§v> (y) ply () d*y < D (7.38)

With Hardy’s inequality (7.7)) we find

4
3

N
(™) 5oy ) () < N73 (11725 ol ) () < ONT3 Y0 ||| P < Dy N5 (7.39)
=1

Therefore, since v < % was assumed, the assumptions (3.49)), (3.50) and (3.51) hold,
with d2 = 0. Let us now turn to assumption (3.53)). Let us write Qn(y) = By_5(y)

for the ball with radius N~ around y, with 6= ﬁ. Using Holder’s inequality and
Lemma we find

ol

2
[ (=) @ =N [y ) s
Qn(y) Qn(y)

2
5 3
[by Holder] < N3 / (|95|_2S)g 3z </ pfv(:c)g dsa:) ’
Qn(0) R3

2
5

4 N_S 3
by Lem.[f]] < CN ™3 </ P08 r2dr> Ns
0

coN- (<N_5>3—55) 2

— O N 15804280, (7.40)
Inserting 0 = ﬁ, we find
(N) 2y 3 -1
sup (v (y — x)) py(z)d’z < D3 N7, (7.41)
yER3 JQN (y)

so assumption (3.52)) holds, with d3 = 0. Then it follows that

_2 2445
sup ‘U(N)(y)‘ =N"3 sup lo(y)| = N5 s, (7.42)
yER3\Qy yeRNB _5(0)

Thus, for assumption (3.53|) to hold we need that (94 = 0)

—_
|2

2 4sis—g-1, (7.43)

[\
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ie.,

1 ~ 1 4s
<5 —280= — . 7.44
T3 0T T 9 T 1ss (744)
The convergence rate is § = min {’y — 02,7 + %3,7 + (54} = 1. O

Proof of Proposition[3.10. Note that the equations (3.69)) conserve the total energy which
in this case is the total kinetic energy. Therefore (3.70) holds for all times ¢t > 0, i.e.,
Elinmt(t) < AN. In the following, we write v¥)(z) = N~'v(z). From Lemma 7.5 we find

(lo™ %ol ) () = N5 (N5 ([o] +ply ) () < N, (7.45)

and from the Hardy-Littlewood-Sobolev inequality, i.e., (7.34) with s =1,

2
/, ((v<N>) *pN> ) o)y = N2 [ (2 pw) ) pvl) Py < ON L (1.0
Using Hardy’s inequality (7.7)) we find

t
_ r — _ _
((U(N))2 N pgv) (y) = N2 8 W Br < ON 2Egume(t) <ON-L (7.47)

Now we apply Lemma and use the alternative estimate (6.106]) for the gp-pp term and
(6.108) for the gg-pp term. Then (using a,, ) (t) < 1)

6tam(7)(t) S CN_%—'—%_% + CN_% (1 + N—’y) + CN%_%
S ONT, (7.48)

Where5:min{%—%,%,—%+%} :min{%—%,—%—l—%}. For 6 > 0 we need % <~y <l

Now (3.71)) immediately follows by integrating (7.48)). O



Appendix A

Proof for Semiclassical Scaling

We here prove Theorem We need some auxiliary lemmas. First, we state the result
about the propagation of the semiclassical initial data that was obtained in [§]. (Recall that
0 is the Fourier transform of the interaction potential v.)

Lemma A.1 (Proposition 3.4 in [§]). Let v € LY(R3) be such that
/d% (1+ |B[2) [6(k)| < oo. (A1)

Let wy be a non-negative trace class operator on L*(R3), with tr(wy) = N, lwnlop <1
and such that 1
v ]

sup
kers 1+ |k

< CN3, (A.2)

tr

llwn, V]I, < CN. (A.3)
Let wny be the solution to the Hartree-Fock equation (3.98) (or the Hartree equation (3.97)))

with initial data wy. Then, there exist constants c1,co > 0, only depending on v, such that

[WN,ta ezk-x]

1 2
—_ <c¢1N3 t A4
o o Sl expleal) (A
lwnas VI, < erN explealt]) (A5)
for allt e R.
We apply this lemma to the case wy = p1(0) and wy,; = p1(t). What we refer to later in

the proof of Theorem is (using p1q1 = 0)
= Hfh {Pheikﬂ < H [pheikx}
tr tr

We also make use of the singular value decomposition for compact operators. We state
this decomposition for later reference in a separate lemma (for the proof, see, e.g., [48, Thm.
VL.17]).

are™p, SNEC@ K. (A

t

Lemma A.2 (Singular value decomposition). Let A be a compact operator on a Hilbert
space . Then there exist (not necessarily complete) orthonormal sets {¢s}oen and {¢e}oen
and positive real numbers py such that

A= pulde) (bl. (A.7)
¢
The singular values py are the eigenvalues of |A|.

99



100 A. Proof for Semiclassical Scaling

It follows in particular that ||A||,, = >, t¢. Another lemma we use in the proof of
Theorem [3.11}is the following.

Lemma A.3. Let A; : L?(R?) — L?(R3) be positive self-adjoint compact operators that act

only on x;. Then, for all antisymmetric 1 € L?>(R3Y),

‘<<¢, A1A2A3¢>>‘ < | A1]]

I et

Proof. We use the eigenvalue decomposition Ay = >, Aj|¢;){(¢;[1 and Lemma which
immediately yields

(v etz )| = |30 0 (w00l A dse )

by Lem.[i2) < Z Aj(Nl_Q) )<<w’ A2A3¢>>‘

1
_mHAlHtr

(v, A2 ). (A.9)

O]

Proof of Theorem|3.11. The strategy of the proof is again to calculate the time derivative
of a,,(t) and proving the bound

o (t) < C(t) (an(t) + N7H). (A.10)

Then the desired bound (3.102)) follows from the Gronwall Lemma
We calculate the time derivative of «,(t) as in Lemma in particular, we can use

(6.25)), since the weight function is n(k) = % here. Due to the N~5 in front of the time

derivatives in the Schrodinger and mean-field equations, we get an additional factor of N 3.
We find, using the scaling o) = N1y,

Orcen(t) = 285 T (0", 1 (V= Dpovfy p2 = V™ 1ot
+2N% Im <<¢t, 0192 ((N - 1)v§]2v))p1p2wt>>
+2N5 I (o', gz (N = 1o ) praavt )

= 2N "5 tm (0, g1 (N = Dpaviops = Vi )pros")
+2N "5 Im <<¢t, q1g2 (N = 1)vi P1p2¢t>>

+2N"3Im <<1/1t, q1g2 (N — 1)vo plQ2¢t>>a (A.11)

with V3 = V3" in the case of the fermionic Hartree equations, and V; = Vi 4 Vpgxeh
in the case of the Hartree-Fock equations. We now estimate the three terms separately.
For ease of notation we omit the t-dependence in the following, i.e., we write 1! = 1),
¢t = ¢; and the constants C' could be t-dependent. For the estimates, we decompose v
in its Fourier components, i.e., we write v(z) = [ d®k9(k)e’**. Note that the assumption
[ @3k (1 +|k[?)|9(k)| < oo in particular implies that [ dk |6(k)| < oo and [ &3k |k |o(k)| <
00.
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The gp-pp term. Let us first simplify the contribution from the exchange term. We
find

N
Vexch — Z (viz * (ppe;)) (z1)]ee) (pih
j,=1

y

N
@rok) Y- (0w (piey) ) @l (el

ISH
w
ol
S
—~
N
N—
mN
7
B
.
~
M=
_
AS)
<
~
S
AS)
S
AS)
\/
—
AS)
<
_

Bk o(k)e**ip e Frip,. (A.12)

I
|
=
ol
/§\>
=
Q
B
=
=
S
©
o
~——
<
<
5
=

Thus, by Cauchy-Schwarz,

<<¢ @ e’“hmw»l =N75| [ dkok )<<¢ q1e™ pre ik“pw»’

2 ~
< N75 [ &k |o(k)| [lav]]

< CN~3\/an. (A.13)

Here we see explicitly that the contribution from the exchange term is of lower order in
N. Now follows the main part of the proof, namely to estimate the part of the gp-pp term,
where the difference between the Schrodinger and the mean-field interaction appears. Let us
first rewrite this term using the Fourier decomposition of v. We find

V(0 (V= D = V)i
— N} / dProk ><<w,q1((N—1>p2e““<“”’pz—i%e"’“m')%>)P1¢>>

Jj=1

g/d3k‘ o(k )<<¢, ((N — 1)p26_ikx2p2 — iv: <g0j, e_ik$g0j> )qleik“pﬂ/}». (A.14)

To deal with this expression we would like to diagonalize the operator pae™**2py . similar to
as we did in the proof of Lemma However, since it is not self-adjoint, we decompose
e~ % — cos(kx) — isin(kx) and diagonalize the self-adjoint operators

p2 cos(kxzo)py = Z)\]p2 , po sin(kxa)pe = Z)\Jp;@, (A.15)

where the real eigenvalues A;, 5\j and orthonormal eigenvectors x;, x; depend on k. The
eigenvalues have the property that A\; = (x;, cos(kz)x; ), so |A;| < HXjH2 = 1, and further-
more Zévzl Aj = Zjvzl (xj,cos(kx)x;) = Zjvzl (pj, cos(kx)p;), and analogous for A;. In the
following, we use the projector qijl =1- Z%:Q pii (it is a projector on antisymmetric
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functions). Let us now decompose the expression (A.14]) by using e~*? = cos(kx) — i sin(kzx).
We also use the singular value decomposition ¢; e”“”l p1 = 3, pelde) (¢e]1. Note that according
to Lemma Dok = queml le .- For the cos-term, we find, using the diagonalization

from (A.15)), Cauchy-Schwarz (C.-S.), (6.114) and Lemma [4.2]

N [kt (o, (3 = Dpacosaz)ps - §Nj <saj,cos<kx>soj>)qle“%w)]

Jj=1

o =N e (V= = 1))
. v
[by antisym] = N3 /dsk (k) Z/\j<<1/% (Z Py — 1) Q16ikx1p1¢>>‘
j=1 m=2
~ N3 /d3k@(k)§:Aj<<z/} q¢1q16ik11p11/1>>‘
j=1
= NH] [ T ZW<<¢,Q¢1¢e><¢e|1q¢1¢>>‘
j=1
wosi <N [ Bl \ 2 S]]

by C-8] < N3 /dgk !’D(k)\ZM i<<¢7q¢1|¢e><¢z\1¢>>
¢

J S (o, Gl )

J:

e =N [ ko \ZM\/<<¢ 60) (Gl (Naz + p2)))

\/ (v 190 (Geh (e +p2)0 )

<.
Il
—_

[by Lem.[f.2) < N=5 | &3k [0(k)| quelk“le << (g2+ N— pQ)w>>
by (A-6)] <C/d3k 10(k)[ (1 + |k]) (cn + N7
< C(an+ N~ ) (A.16)

The sin-term goes exactly analogous. Let us summarize. If we consider only the fermionic
Hartree equations (i.e., without exchange term), we find from (A.16)) that

lgp-pp term| < C(an(t) + N*1>. (A.17)

If we consider the Hartree-Fock equations, we use additionally (A.13)), and thus find the
same bound,

|qp-pp term| < C(an(t) +N 4 \/an(t)N_%) < C’(an(t) n N‘l). (A.18)



103

The gq-pp term. Similarly to Lemma [6.13] we use the antisymmetry of 1) to shift one ¢
to the right-hand side of the scalar product. In the following, we use the short-hand notation
Ak = gpe*®mp,, and the decomposition AX, = >, 1s|de)(¢e|m. Note that in particular

AR, | = JAEFAE =37, 1| de) (Delm and |AES| =57, pue|de) (delm- We then find
‘<<1/%Q1Q2(N - 1)”12p1p2¢>>‘
=(N-1) ’ /dsk@(k)<<¢,me“mp1qzei’““pzw>>’

by antisym] = ’/dgkﬁ(k)ZM@<<%Q1|¢@)(GEA1 i A;zk¢>>’
¢ m=2

N

preos) < [ERlpmIY (@] H@sgh > Aty

L m=2
pros) < [ dk r@(mM(@,ql\A’f*rqlw»x

x \/ N2((w, A7 Ak AR ) + N a8 A7 e ). (A1)

The appearing terms are bounded as follows. First, since H]Alf

*mop < 1’

(v a4 10 ) <l 145

< ap. (A.20)
op

Furthermore, using Lemma |A.3| twice,
> ¢ felxe) (Xelm, we find

(v Az 12814576 ) = 3 e (a0 IARIR5) O e el A )
j

< ({1,021 4511451 145 g0 )
Ak

}\Ag"f*\HOp < 1 and the decomposition A F =

Q. (A.21)

tr

[by Lem. twice] < CN_2 ‘ ’Alf

tr

Finally, using sup, s = H|Alf| ’ ‘Op <1, Lemma and Lemma for the first inequality,

we find
(o s4Ps) < ], o 47
=CN~ 1| |4} tr%:#?<<¢,|€5£>(€5z|2¢>>

[by Lem. [4.2) SCNfz A’f . <S1§puz) E [y,
r
l

< CON72|| A% ||A"

(A.22)

tr tr '

Using the estimates (A.20]), (A.21) and (A.22]) for the terms in (A.19) and using (A.6) we

find for the gg-pp term, that

<<¢,q1€J2(N - 1)”12P1p2¢>>‘ < C/d3k o(k)(1 + |k|)vanv oy + N1
<Com+N7H). (A.23)

N3
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The qq-pq term. Using the Fourier decomposition of v, the singular value decomposition
of q1e?**1p,, Cauchy-Schwarz, (A.6) and Lemma we find

N3

/dgk (k) <<w7 Q1€ikx1P1QQ€7ikm%¢>>’
/ o) 3 el lod(dehe g0 )|
l

pro-s) <N [ @rlow] S ue[(6ae ||| @]
L

<<¢7 Q1qQ’U12p1qu>> ‘ — N3

— N3

1 N - _
by Lem.[i7] < Ns/d3k]v(k:)] que’kxlplutr]\f 1 Hqng2

by (B8] < Con. (A.24)



Bibliography

1]

V. Bach. Error bound for the Hartree-Fock energy of atoms and molecules. Commun.
Math. Phys., 147(3):527-548, 1992.

V. Bach. Accuracy of mean field approximations for atoms and molecules. Commun.
Math. Phys., 155(2):295-310, 1993.

C. Bardos, B. Ducomet, F. Golse, A. D. Gottlieb, and N. J. Mauser. The TDHF
approximation for Hamiltonians with m-particle interaction potentials. Commun. Math.
Sci., 5:1-9, 2007.

C. Bardos, F. Golse, A. D. Gottlieb, and N. J. Mauser. Mean field dynamics of fermions
and the time-dependent Hartree-Fock equation. J. Math. Pures Appl., 82(6):665—-683,
2003.

C. Bardos, F. Golse, A. D. Gottlieb, and N. J. Mauser. Accuracy of the time-dependent
Hartree-Fock approximation for uncorrelated initial states. J. Stat. Phys., 115(3-4):1037—
1055, 2004.

N. Benedikter, G. de Oliveira, and B. Schlein. Quantitative derivation of the Gross-
Pitaevskii equation. Preprint, 2012. http://arxiv.org/abs/1208.0373v2.

N. Benedikter, M. Porta, and B. Schlein. Mean-field dynamics of fermions with
relativistic dispersion. J. Math. Phys., 55(2), 2014.

N. Benedikter, M. Porta, and B. Schlein. Mean-field evolution of fermionic systems.
Commun. Math. Phys., to appear, 2014. http://arxiv.org/abs/1305.2768v3.

A. Bove, G. Da Prato, and G. Fano. An existence proof for the Hartree-Fock time-
dependent problem with bounded two-body interaction. Commun. Math. Phys.,
37(3):183-191, 1974.

A. Bove, G. Da Prato, and G. Fano. On the Hartree-Fock time-dependent problem.
Commun. Math. Phys., 49(1):25-33, 1976.

W. Braun and K. Hepp. The Vlasov dynamics and its fluctuations in the 1/N limit of
interacting classical particles. Commun. Math. Phys., 56(2):101-113, 1977.

J. M. Chadam. The time-dependent Hartree-Fock equations with Coulomb two-body
interaction. Commun. Math. Phys., 46(2):99-104, 1976.

J. M. Chadam and R. T. Glassey. Global existence of solutions to the Cauchy problem
for time-dependent Hartree equations. J. Math. Phys., 16(5):1122-1130, 1975.

105


http://arxiv.org/abs/1208.0373v2
http://arxiv.org/abs/1305.2768v3

106

[14]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

Bibliography

P. A. M. Dirac. Note on exchange phenomena in the Thomas atom. Math. Proc.
Cambridge Philos. Soc., 26(3):376-385, 1930.

A. Elgart, L. Erdos, B. Schlein, and H.-T. Yau. Nonlinear Hartree equation as the
mean field limit of weakly coupled fermions. J. Math. Pures Appl., 83(10):1241-1273,
2004.

L. Erdos, B. Schlein, and H.-T. Yau. Derivation of the Gross-Pitaevskii hierarchy for the
dynamics of Bose-Einstein condensate. Commun. Pure Appl. Math., 59(12):1659-1741,
2006.

L. Erdés, B. Schlein, and H.-T. Yau. Derivation of the cubic non-linear Schrédinger
equation from quantum dynamics of many-body systems. Invent. Math., 167(3):515-614,
2007.

L. Erdos, B. Schlein, and H.-T. Yau. Rigorous derivation of the Gross-Pitaevskii
equation. Phys. Rev. Lett., 98(4), 2007.

L. Erdos, B. Schlein, and H.-T. Yau. Rigorous derivation of the Gross-Pitaevskii
equation with a large interaction potential. J. Am. Math. Soc., 22(4):1099-1156, 2009.

L. Erdés, B. Schlein, and H.-T. Yau. Derivation of the Gross-Pitaevskii equation for
the dynamics of Bose-Einstein condensate. Ann. Math., 172(1):291-370, 2010.

L. Erdos and H.-T. Yau. Derivation of the nonlinear Schrédinger equation from a many
body Coulomb system. Adv. Theor. Math. Phys., 5(6):1169-1205, 2001.

C. L. Fefferman and L. A. Seco. On the energy of a large atom. Bull. Amer. Math.
Soc. (N.S.), 23(2):251-633, 1990.

C. L. Fefferman and L. A. Seco. On the Dirac and Schwinger corrections to the
ground-state energy of an atom. Adv. Math., 107(1):1-185, 1994.

V. Fock. Naherungsmethode zur Losung des quantenmechanischen Mehrkdrperproblems.
Z. Phys., 61(1-2):126-148, 1930.

J. Frohlich and A. Knowles. A microscopic derivation of the time-dependent Hartree-
Fock equation with Coulomb two-body interaction. J. Stat. Phys., 145(1):23-50, 2011.

J. Frohlich, A. Knowles, and S. Schwarz. On the mean-field limit of bosons with
Coulomb two-body interaction. Commun. Math. Phys., 288(3):1023-1059, 2009.

J. Frohlich and E. Lenzmann. Dynamical collapse of white dwarfs in Hartree- and
Hartree-Fock theory. Commun. Math. Phys., 274(3):737-750, 2007.

G. M. Graf and J. P. Solovej. A correlation estimate with applications to quantum
systems with Coulomb interaction. Rev. Math. Phys., 6(5a):977-997, 1994.

C. Hainzl, E. Lenzmann, M. Lewin, and B. Schlein. On blowup for time-dependent
generalized Hartree-Fock equations. Ann. Henri Poincaré, 11(6):1023-1052, 2010.

C. Hainzl, M. Lewin, and C. Sparber. Existence of global-in-time solutions to a
generalized Dirac-Fock type evolution equation. Lett. Math. Phys., 72(2):99-113, 2005.



Bibliography 107

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

C. Hainzl and B. Schlein. Stellar collapse in the time dependent Hartree-Fock approxi-
mation. Commun. Math. Phys., 287(2):705-717, 2009.

D. R. Hartree. The wave mechanics of an atom with a non-Coulomb central field. Part
I. Theory and methods. Math. Proc. Cambridge, 24(1):89-110, 1928.

K. Hepp. The classical limit for quantum mechanical correlation functions. Commun.
Math. Phys., 35(4):265-277, 1974.

M. Jeblick, D. Mitrouskas, S. Petrat, and P. Pickl. Effective dynamics of a tracer particle
in a dense homogeneous quantum gas. Preprint, 2014. http://arxiv.org/abs/1402.1696.

A. Knowles and P. Pickl. Mean-field dynamics: Singular potentials and rate of conver-
gence. Commun. Math. Phys., 298(1):101-138, 2010.

O. E. Lanford. Time evolution of large classical systems. In J. Moser, editor, Dynamical
systems, theory and applications, volume 38 of Lecture Notes in Physics, pages 1-111.
Springer, 1975.

E. Lieb and M. Loss. Analysis. American Mathematical Society, second edition, 2001.

E. Lieb and R. Seiringer. The Stability of Matter in Quantum Mechanics. Cambridge
University Press, 2010.

E. Lieb and B. Simon. On solutions to the Hartree-Fock problem for atoms and
molecules. J. Chem. Phys., 61(2):735-736, 1974.

E. Lieb and B. Simon. The Hartree-Fock theory for Coulomb systems. Commun. Math.
Phys., 53(3):185-194, 1977.

E. Lieb and W. E. Thirring. Bound for the kinetic energy of fermions which proves the
stability of matter. Phys. Rev. Lett., 35(11):687—-689, 1975.

P. L. Lions. Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math.
Phys., 109(1):33-97, 1987.

J. Lukkarinen and H. Spohn. Not to normal order—notes on the kinetic limit for weakly
interacting quantum fluids. J. Stat. Phys., 134(5-6):1133-1172, 2009.

H. Narnhofer and G. L. Sewell. Vlasov hydrodynamics of a quantum mechanical model.
Commun. Math. Phys., 79(1):9-24, 1981.

P. Pickl. Derivation of the time dependent Gross Pitaevskii equation with external
fields. Preprint, 2010. http://arxiv.org/abs/1001.4894v2.

P. Pickl. Derivation of the time dependent Gross-Pitaevskii equation without positivity
condition on the interaction. J. Stat. Phys., 140(1):76-89, 2010.

P. Pickl. A simple derivation of mean field limits for quantum systems. Lett. Math.
Phys., 97(2):151-164, 2011.

M. Reed and B. Simon. Methods of Modern Mathematical Physics. I: Functional
Analysis. Academic Press, Inc., first edition, 1980.

I. Rodnianski and B. Schlein. Quantum fluctuations and rate of convergence towards
mean field dynamics. Commun. Math. Phys., 291(1):31-61, 2009.


http://arxiv.org/abs/1402.1696
http://arxiv.org/abs/1001.4894v2

108 Bibliography

[50] J. C. Slater. Note on Hartree’s method. Phys. Rev., 35(2):210-211, 1930.

[51] H. Spohn. Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod.
Phys., 53(3):569-615, 1980.

[52] H. Spohn. On the Vlasov hierarchy. Math. Methods Appl. Sci., 3(1):445-455, 1981.

[53] H. Spohn. Large Scale Dynamics of Interacting Particles. Springer, first edition, 1991.



Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, §8, Abs. 2 Pkt. 5)

Hiermit erkldre ich an Eidesstatt, dass die Dissertation von mir selbststédndig, ohne
unerlaubte Beihilfe angefertigt ist.

Miinchen, den 15.05.2014 Soren Petrat



	I Background and Presentation of Main Results
	Introduction
	The Physics: Mean-field Dynamics of Fermions
	A New Scaling for Fermionic Mean-field Limits
	The Scaled Equations and the Physics
	Origin of the Scaling
	Different Formulations of the Problem
	Applications

	Mean-field Limit Coupled to a Semiclassical Limit
	Literature
	Fluctuations
	The Exchange Term

	Mathematical Results
	The Counting Functional
	Connection to Density Matrices
	Main Results
	Main Theorems for General v(N)
	Main Results for - and Interactions |x|-s

	Outline of the Proof
	Theorem and Sketch of Proof for Semiclassical Scaling
	Outlook


	II Proof of Main Results
	Notation and Preliminaries
	Notation and Basic Inequalities
	More about the Projectors

	Density Matrices
	Trace Norm and Hilbert-Schmidt Norm
	Convergence of Reduced Density Matrices

	Proof of Theorems for General v(N)
	The Time Derivative of f(t)
	General Lemmas about the Projectors, f"0362f and f(t)
	Diagonalization of p2h12p2 and Related Lemmas
	Bounds on t f(t)
	Proof of the Theorems

	Proof of Results for - and Interactions |x|-s
	Kinetic Energy Inequalities
	An Estimate Using the Boundedness of Kinetic Energy
	Proof of the Results

	Proof for Semiclassical Scaling


