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Summary 
 

     
Summary

Neurodegenerative diseases such as Alzheimer´s disease, amyotrophic lateral sclerosis 

(ALS) and frontotemporal dementia (FTD) are defined by progressive and selective loss 

of neurons. With increasing age the risk of developing a neurodegenerative disease 

exponentially rises. To date these diseases are untreatable, imposing a significant 

medical, social and financial burden onto our ageing society. Typical features of 

neurodegenerative diseases are abnormal aggregation of a disease characterizing protein 

and its deposition in pathological inclusions. A unifying feature in the majority of ALS 

cases and several subtypes of FTD is the pathological deposition of the TAR DNA-

binding protein of 43kDa (TDP-43) or the Fused in Sarcoma (FUS) protein. 

Furthermore, stress granule (SG) marker proteins are consistently detected in FUS 

inclusions, suggesting that SGs might be involved in the formation of FUS inclusions. 

However, whether pathologic TDP-43 inclusions contain SG marker proteins is still 

controversially discussed.  

In this thesis I demonstrate that cytosolically mislocalized full-length TDP-43 is 

recruited into SGs, whereas C-terminal fragments of TDP-43 (TDP-CTFs) fail to 

localize to SGs. In accordance with these cell culture data, spinal cord inclusions in 

ALS and FTD patients contain full-length TDP-43 and SG marker proteins. In contrast, 

hippocampal inclusions are enriched for TDP-CTFs but are SG marker-negative. Thus, 

the protein composition of TDP-43 inclusions determines whether SG marker proteins 

are co-deposited in TDP-43 inclusions or not. By analyzing the prerequisites for SG 

recruitment of TDP-43 and FUS, I demonstrate that cytosolic mislocalization of TDP-

43 and FUS is required for their localization in SGs. Additionally, I found that both 

proteins have the same requirements for SG recruitment, as their main RNA-binding 

domain and a glycine-rich domain are essential for SG localization. 

  A detailed analysis of the protein composition of FUS inclusions in ALS and 

FTD cases unveiled that FUS inclusions in FTD cases contain not only FUS, but all 

FET (FUS, Ewing sarcoma protein (EWS), TATA binding protein-associated factor 15 

(TAF15)) family proteins. Here, I provide evidence that this cytosolic deposition of 

FET proteins can be mimicked in cultured cells by inhibition of Transportin-mediated 

nuclear import, which causes cytosolic mislocalization of all FET proteins and 

recruitment of these proteins in SGs. In contrast to FTD cases, FUS inclusions in ALS 

cases contain only FUS, but not EWS and TAF15. In line with that, I show that ALS-
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associated FUS mutations result in cytosolic mislocalization of FUS that is upon 

subsequent cellular stress sequestered into SGs. These SGs then contain only FUS but 

not EWS or TAF15, demonstrating that mutant FUS is unable to co-sequester EWS or 

TAF15.  

In addition, I contributed to two studies that revealed that nuclear import defects 

are involved in the pathogenesis of ALS and FTD. ALS associated FUS mutations are 

frequently located within the proline-tyrosine nuclear localization signal (PY-NLS) of 

FUS and thus disrupt Transportin-mediated nuclear import and cause cytosolic 

mislocalization of FUS. EWS and TAF15 also contain a PY-NLS and thus are imported 

into the nucleus via Transportin. This interaction between Transportin and FET proteins 

can be modulated by arginine methylation that reduces Transportin binding. In FTD 

patients with FUS inclusions, this post-translational modification seems to be defective, 

as FUS inclusions in these cases contain hypomethylated FUS.  

Taken together, these data provide evidence that nuclear import defects and 

sequestration of FUS and TDP-43 in SGs are consecutive steps in the pathogenesis of 

ALS and several subtypes of FTD.  
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Zusammenfassung

Neurodegenerative Erkrankungen wie die Alzheimer-Erkrankung, die Amyotrophe 

Lateralsklerose (ALS) und die Frontotemporale Demenz (FTD) sind durch den 

progressiven und selektiven Verlust von Neuronen gekennzeichnet. Mit steigendem 

Alter nimmt das Risiko eine neurodegenerative Erkrankung zu entwickeln exponentiell 

zu. Bislang gelten diese Krankheiten als nicht behandelbar, was eine signifikante 

medizinische, soziale und finanzielle Belastung für unsere alternde Gesellschaft 

darstellt. Typische Charakteristika neurodegenerativer Erkrankungen sind die 

abnormale Aggregation eines Krankheits-assoziierten Proteins, sowie dessen 

Anhäufung in pathologischen Ablagerungen. Gemeinsames Merkmal der meisten ALS 

Fälle und bestimmter Untergruppen von FTD sind pathologische Ablagerungen, die 

hauptsächlich das TAR DNA-binding protein of 43kDa (TDP-43) oder das Fused in 

Sarcoma (FUS) Protein enthalten. In FUS Ablagerungen werden stets auch 

Markerproteine für Stress-Körnchen (engl. stress granules, SG) detektiert, was darauf 

schließen lässt, dass SGs an der Bildung von FUS Ablagerungen beteiligt sein könnten. 

Bei pathologischen TDP-43 Ablagerungen ist hingegen immer noch umstritten ob diese 

SG Markerproteine enthalten.  

 In der vorliegenden Arbeit konnte ich zeigen, dass zytosolisch mislokalisiertes, 

unfragmentiertes TDP-43 in SGs rekrutiert wird, wohingegen C-terminale Fragmente 

von TDP-43 (TDP-CTFs) nicht in SGs lokalisieren. Diese Ergebnisse stimmen mit den 

Beobachtungen in ALS und FTD Patienten überein, wo TDP-43 Ablagerungen im 

Rückenmark unfragmentiertes TDP-43 und SG Markerproteine enthalten. Im Gegensatz 

dazu sind hippocampale Ablagerungen mit TDP-CTFs angereichert, enthalten jedoch 

keine SG Marker. Die Proteinzusammensetzung der TDP-43 Ablagerungen bestimmt 

also, ob SG Markerproteine darin abgelagert werden oder nicht. Bei der Bestimmung 

von Voraussetzungen für die Rekrutierung von TDP-43 und FUS in SGs konnte ich 

feststellen, dass eine zytosolische Umverteilung notwendig ist, damit TDP-43 und FUS 

in SGs sequestriert werden können. Des Weiteren konnte ich zeigen, dass beide 

Proteine ihre Haupt-RNA-bindende Domäne, sowie die Glycin-reiche Domäne für die 

Lokalisierung in SGs benötigen.  

 Eine detaillierte Analyse der Proteinzusammensetzung von FUS Ablagerungen 

in ALS und FTD hat aufgedeckt, dass FUS Ablagerungen in FTD-Patienten nicht nur 
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FUS, sondern alle FET (FUS, Ewing sarcoma protein (EWS), TATA binding protein-

associated factor 15 (TAF15)) Familienproteine beinhalten. Ich konnte zeigen, dass 

diese cytosolische Ablagerung von FET Proteinen in Zellkultur durch eine Hemmung 

des Transportin-vermittelten Kerntransports nachgestellt werden kann, da dies zur 

zytosolischen Anhäufung aller FET Proteine und deren Rekrutierung in SGs führt. Im 

Gegensatz zu FTD Fällen enthalten FUS Ablagerungen in ALS nur FUS, nicht aber 

EWS und TAF15. In Zellkultur-Experimenten konnte ich zeigen, dass ALS-assoziierte 

FUS Mutationen zur zytosolischen Umverteilung von FUS führen, welches dann durch 

nachfolgenden zellulären Stress in SGs rekrutiert wird. Diese SGs enthalten FUS, 

jedoch nicht EWS oder TAF15, was beweist, dass mutiertes FUS nicht wildtypisches 

EWS oder TAF15 sequestrieren kann.  

 Darüber hinaus habe ich an zwei Publikationen mitgearbeitet, in denen gezeigt 

wurde, dass Defekte im Kernimport an der Pathogenese von ALS und FTD beteiligt 

sind. ALS-assoziierte FUS Mutationen sind häufig im Prolin-Tyrosin 

Kernlokalisierungs-Signal (PY-NLS) lokalisiert und zerstören so den Transportin-

vermittelten Kernimport und führen zur zytosolischen Misslokalisierung von FUS. 

EWS und TAF15 enthalten ebenfalls ein PY-NLS und werden daher über Transportin in 

den Kern importiert. Die Interaktion zwischen Transportin und den FET Proteinen kann 

durch Arginin-Methylierung moduliert werden, welche die Transportin-Bindung 

reduziert. In FTD Patienten mit FUS Ablagerungen scheint diese post-translationale 

Modifikation gestört zu sein, da FUS Ablagerungen in diesen Fällen hypomethyliertes 

FUS enthalten. 

Diese Daten liefern Beweise dafür, dass Defekte im Kernimport und die 

Sequestrierung von FUS und TDP-43 in SGs aufeinanderfolgende Schritte in der 

Pathogenese von ALS und verschiedenen Varianten von FTD sind.  
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   Introduction 
 

1 Introduction

Neurodegenerative diseases are characterized by progressive neuronal dysfunction and 

selective loss of neurons. During neurodegeneration structural changes in different 

proteins impair the function of neurons and eventually result in neuronal cell death. 

Characteristic features of neurodegenerative diseases such as Alzheimer´s disease, 

Parkinson´s disease, Amyotrophic lateral sclerosis (ALS) and Frontotemporal dementia 

(FTD) are aberrant protein aggregates. These aggregates are reminiscent of prion 

aggregates as they contain misfolded proteins, seed aggregation in vitro and in vivo, and 

spread within and/or among brain regions (Goedert et al., 2010; Jucker and Walker, 

2013). Furthermore, proteins aggregating in neurodegenerative diseases often contain 

domains that are under physiological conditions unfolded but aggregation-prone once 

aggregation is seeded and are hence termed as “prion-like” (Cushman et al., 2010; King 

et al., 2012). However, in contrast to the prion protein (Prp) these proteins are not 

infectious. The identification of the aggregated protein(s) in the different 

neurodegenerative diseases has marked a breakthrough in these fatal disorders as this 

provided further insight into underlying pathomechanisms (Haass and Selkoe, 2007). 

Accordingly, the identification of the RNA-binding proteins TDP-43 or FUS, which 

both contain a prion-like domain, as major component of pathological aggregates in the 

majority of ALS- and FTD-patients has been a seminal discovery (Arai et al., 2006; 

Neumann et al., 2006; Neumann et al., 2009a).  

 

1.1 ALS and FTD – related diseases sharing molecular pathology and genetics 

 

ALS and FTD are related neurodegenerative diseases with overlapping clinical 

phenotypes, pathology and genetics. ALS, also known as Lou Gehrig´s disease, is an 

incurable disease caused by selective degeneration of upper and lower motor neurons. 

Due to decreased innervation, muscles progressively weaken and ALS patients develop 

restrictions in motion, swallowing, speaking, and breathing. Between 1 and 5 years after 

disease onset, respiratory failure and infections weaken the patient and increase the 

vulnerability to pneumonia, which then usually causes death (Mackenzie et al., 2010; 

Kiernan et al., 2011). Approximately 5-10% of ALS are inherited and classified as 

5



Introduction 

familial ALS (fALS), whereas in the vast majority no family history of ALS is 

documented (sporadic ALS, sALS) (Kiernan et al., 2011).  

FTD is the second most common presenile dementia after Alzheimer’s disease (Pan and 

Chen, 2013). The related term Frontotemporal lobar degeneration (FTLD) describes the 

neuropathological features of FTD (in the following text FTLD is used to designate 

both, disease and neuropathology), as the disease is characterized by an atrophy of the 

frontal and temporal cerebral lobes (Pan and Chen, 2013). These brain regions regulate 

behavior and cognitive functions and thus FTLD patients can exhibit apathy, 

disinhibition, lack of empathy and/or language dysfunction (McKhann et al., 2001; 

Snowden et al., 2002; Pan and Chen, 2013). Swallowing difficulties and loss of personal 

hygiene facilitate infections and pneumonia, ultimately leading to death due to 

respiratory failure after 4 to 14 years on average (Garcin et al., 2009; Kiernan et al., 

2011). About 60% of FTLD patients have a family history of the disease and the 

remaining FTLD cases are sporadic (Pan and Chen, 2013).  

Interestingly, ALS and FTLD seem to be related, as frequently patients present 

overlapping phenotypes (Robberecht and Philips, 2013). About half of the ALS patients 

display at least mild cognitive and behavioral changes during disease progression 

(Ringholz et al., 2005; Consonni et al., 2013). In addition, about 30% of patients with 

FTLD exhibit some features of motor neuron dysfunction or even concomitant ALS 

symptoms (Lomen-Hoerth et al., 2002; Burrell et al., 2011). These overlapping 

phenotypes indicate that ALS and FTLD form a disease continuum with pure forms of 

ALS and FTLD at the extreme ends and overlapping phenotypes in between (Table 1). 

1.1.1 Molecular pathology and genetics of ALS and FTLD 

Over the last decade, important discoveries in the neuropathology and genetics of ALS 

and FTLD have started to reveal the molecular basis for this clinical overlap. ALS and 

FTLD are categorized in different subtypes depending on the major aggregated protein 

in the pathological inclusions (Table 1). In most ALS patients TAR DNA-binding 

protein of 43 kDa (TDP-43) or Superoxide dismutase 1 (SOD1) inclusions are detected. 

The vast majority of patients with an overlapping ALS/FTLD phenotype present 

inclusions containing TDP-43 and dipeptide repeat (DPR) proteins, which are translated 

from an associated repeat expansion in the C9orf72 gene (Dejesus-Hernandez et al., 

2011; Renton et al., 2011; Mori et al., 2013). In FTLD, about 40% of the patient show 

ubiquitin-negative, Tau-positive inclusions (Joachim et al., 1987; Pan and Chen, 2013). 
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The remaining 60% of the FTLD cases have ubiquitin-positive inclusions (Mackenzie 

and Rademakers, 2007). Most of these cases contain either TDP-43 (Neumann et al., 

2006) or FET (FUS, Ewing sarcoma protein (EWS), TATA-binding protein associated 

factor 15 (TAF15)) proteins in pathological inclusions (Munoz et al., 2009; Neumann et 

al., 2009a; Brelstaff et al., 2011; Neumann et al., 2011). Moreover, in a small proportion 

of FTLD cases with ubiquitin- and p62-positive inclusions the deposited protein 

remains to be identified. In my thesis I concentrated on TDP-43 and FUS. Further 

details on the pathomechanisms of Superoxide dismutase 1 (SOD1) (Ilieva et al., 2009), 

C9orf72 (Ling et al., 2013), microtubule associated protein Tau (MAPT) (Spillantini 

and Goedert, 2013), Progranulin (PGRN) (Sieben et al., 2012), Valosin-containing 

protein (VCP) (Sieben et al., 2012) and charged multivesicular body protein 2B 

(CHMP2B) (Sieben et al., 2012) are described in several recent review articles.  

In most ALS patients the major component of the neuronal, cytosolic ubiquitin-

positive inclusions is TDP-43 (Fig. 1, first panel) and these cases are termed ALS-TDP 

(Table 1) (Arai et al., 2006; Neumann et al., 2006). Additionally, TDP-43- and 

ubiquitin-positive inclusions were found in about 50% of FTLD patients (FTLD-TDP, 

Table 1; Fig.1, second panel) (Arai et al., 2006; Neumann et al., 2006) and ALS-TDP 

and FTLD-TDP are also referred to as TDP-proteinopathies. Specific biochemical 

characteristics of TDP-43 inclusions include hyperphosphorylation and ubiquitination 

of deposited TDP-43 and the accumulation of C-terminal fragments of TDP-43 (TDP-

CTFs) in hippocampal TDP-43 inclusions (Lee et al., 2012). TDP-CTFs can arise by 

caspase-cleavage of full-length TDP-43 (Zhang et al., 2007; Dormann et al., 2009) or 

could reflect an alternative splicing product or a cryptic transcription start (Nishimoto et 

al., 2010; Lee et al., 2012). The identification of TDP-43 pathology in ALS and FTLD 

patients motivated screening for disease-associated mutations in TARDBP, the gene 

encoding TDP-43. To date, over 40 TARDBP mutations have been identified, mainly in 

ALS patients and very rarely in FTLD patients (Table 1) (Gitcho et al., 2008; Kabashi et 

al., 2008; Sreedharan et al., 2008; Van Deerlin et al., 2008; Robberecht and Philips, 

2013) 
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Table 1. Revised classification of ALS and FTLD 

ALS (blue) and FTLD (yellow) are shown as the extreme ends of a disease continuum with ALS/FTLD 
(green) as overlapping phenotype. Both diseases are divided into different clinical subtypes depending on 
the deposited protein. Gene mutations associated with the different subtypes are indicated in italic and 
mutations only detected in rare cases are indicated in parenthesis. Mutations in the SOD1 gene resulting 
in SOD1 inclusions were the first mutations found to be associated with fALS (Rosen et al., 1993). In 
most ALS patients TDP-43-positive inclusions are detected (Neumann et al., 2006) and can arise 
sporadically or can be caused by mutations in TARDBP, the gene encoding TDP-43, (Gitcho et al., 2008; 
Kabashi et al., 2008; Sreedharan et al., 2008; Van Deerlin et al., 2008) or other genes. FUS inclusions in 
ALS patients are caused by mutations in FUS (Kwiatkowski et al., 2009; Vance et al., 2009). In the vast 
majority of families with ALS-FTLD an abnormal repeat expansion in the C9orf72 gene was identified 
(Dejesus-Hernandez et al., 2011; Renton et al., 2011) which is translated into dipeptide-repeat (DPR) 
proteins (Mori et al., 2013) that are deposited in ALS/FTLD-DPR patients. In FTLD, mutations in the 
MAPT gene result in FTLD with Tau-positive, ubiquitin-negative inclusions (Hutton et al., 1998). The 
majority of FTLD patients have ubiquitin-positive inclusions (Pan and Chen, 2013) and in about 80 – 
90% of these patients TDP-43 is the major constituent of these inclusions (FTLD-TDP) (Neumann et al., 
2006). FTLD-TDP can occur sporadically or can be caused by mutations in PGRN (Baker et al., 2006; 
Cruts et al., 2006) or rarely in TARDBP (Van Deerlin et al., 2008; Kovacs et al., 2009) or VCP (Watts et 
al., 2004). In about 10-20 % of the FTLD patients with ubiquitin-positive inclusions, FUS, EWS and 
TAF15 (FET proteins) are deposited together with Transportin (TRN) (Munoz et al., 2009; Neumann et 
al., 2009a; Brelstaff et al., 2011; Neumann et al., 2011; Troakes et al., 2013) and mutations in FUS are 
only rarely found in these patients (Van Langenhove et al., 2010; Van Langenhove et al., 2012). In 
addition, rare cases of FTLD are genetically linked to mutations in the CHMP2B gene (Skibinski et al., 
2005) and pathological inclusions contain components of the ubiquitin-proteasome system (ubiquitin and 
p62,(FTLD-UPS)) (Holm et al., 2007). Table modified from (Dormann and Haass, 2013). 
 
 

In 2009, FUS was found in pathological inclusions in rare cases of ALS (ALS-

FUS, Table 1) (Kwiatkowski et al., 2009; Vance et al., 2009) and FTLD (FTLD-FUS, 

Table 1) (Munoz et al., 2009; Neumann et al., 2009a; Neumann et al., 2009b) that do 

not contain TDP-43 or SOD1 in pathological inclusions (Fig. 1, right panels). ALS-FUS 

and FTLD-FUS are together referred to as FUS-proteinopathies. Like TDP-43, FUS is a 

DNA/RNA-binding protein and mutations in the FUS gene are predominantly found in 

ALS patients (Kwiatkowski et al., 2009; Vance et al., 2009) and rarely in FTLD patients 

(Table 1) (Van Langenhove et al., 2010; Van Langenhove et al., 2012), indicating that 

mutations in TDP-43 or FUS cause ALS rather than FTLD. Recent analysis determining 
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the composition of pathological FUS inclusions revealed that FUS inclusions in FTLD-

FUS also contain EWS and TAF15 (Table 1) (Neumann et al., 2011; Davidson et al., 

2013). In contrast, ALS-FUS cases are negative for EWS and TAF15, thereby 

suggesting that ALS-FUS and FTLD-FUS might be caused by different 

pathomechanisms (Neumann et al., 2011).  

 
 

 
Fig. 1. Cytoplasmic TDP-43 and FUS inclusions in ALS and FTLD patients. The characteristic 
ubiquitinated TDP-43-inclusions are frequently observed in spinal cord motor neurons in ALS-TDP and 
in dentae granule cells in the hippocampus of FTLD-TDP cases (left panels). FUS inclusions are detected 
in motor neurons of ALS-FUS cases with FUS mutations and rarely in FTLD-FUS (right panels). Note 
the larger size of motor neurons compared to dentae granules cells in the hippocampus. Arrowheads mark 
cells with TDP-43 or FUS inclusions. Scale bar: 20μm. Figure adapted from (Dormann and Haass, 2011).  
 
 

1.2 TDP-43 - DNA/RNA-binding protein with pivotal roles in neurodegeneration 

 

TDP-43 was originally identified as a transcriptional repressor that binds to the TAR 

regulatory element in the HIV long terminal repeat (Ou et al., 1995). However, the 

identification of TDP-43 inclusions in FTLD patients and in the majority of ALS 

patients (Arai et al., 2006; Neumann et al., 2006), together with the association of 

TARDBP mutations in ALS (Gitcho et al., 2008; Kabashi et al., 2008; Sreedharan et al., 

2008; Van Deerlin et al., 2008) dramatically increased the interest in this protein.  

1.2.1 Role of TDP-43 in RNA metabolism 

TDP-43 is a predominantly nuclear protein with multiple functions in RNA metabolism 

(Winton et al., 2008a; Buratti and Baralle, 2012). Several splicing factors such as 

members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family (Buratti et al., 

2005; Freibaum et al., 2010), Survial of motorneuron (SMN) (Tsuiji et al., 2013) and 

other proteins involved in splicing (Elden et al., 2010; Freibaum et al., 2010; Ling et al., 

2010) interact with TDP-43. Moreover, the interaction between TDP-43 and SMN is 
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essential for SMN-containing nuclear Gem bodies and proper levels of U-rich small 

nuclear ribonucleoproteins (U snRNPs), which are central components of the 

spliceosome (Tsuiji et al., 2013). 

TDP-43 binds about one third of the total transcriptome (Ling et al., 2013) and 

RNA targets of TDP-43 have been identified in mouse brain (Polymenidou et al., 2011), 

human brain (Tollervey et al., 2011), primary neurons (Sephton et al., 2011) and cell 

lines (Xiao et al., 2011; Colombrita et al., 2012). Additionally, splicing pattern changes 

in thousands of specific targets upon depletion of TDP-43 in adult mouse brains 

(Polymenidou et al., 2011) support the notion that TDP-43 is an essential regulator of 

RNA processing. TDP-43 can affect alternative splicing positively as it promotes for 

example exon skipping in Cystic fibrosis transmembrane conductance regulator (CFTR) 

mRNA (Buratti and Baralle, 2001; Buratti et al., 2001) and negatively as it inhibits 

splicing of the human splicing factor SC35 mRNA (Dreumont et al., 2010). In neurons, 

TDP-43 is part of a protein complex that is involved in alternative splicing of mRNAs 

associated with synapse formation, neuronal development and RNA metabolism 

(Sephton et al., 2011; Tollervey et al., 2011; Colombrita et al., 2012). Besides its role in 

mRNA splicing, TDP-43 modifies mRNA stability of several mRNA such as HDAC 6 

(Fiesel et al., 2010), NFL (Strong et al., 2007) and others (Ayala et al., 2008a; 

Colombrita et al., 2012), including its own mRNA (see below).  

1.2.2 Autoregulation of TDP-43 

As TDP-43 is such an essential regulator of RNA metabolism, its own levels have to be 

accurately controlled. Therefore, TDP-43 controls its own mRNA stability via a 

negative feedback mechanism, which involves binding of TDP-43 to its own 3´UTR, 

resulting in TDP-43 mRNA instability and degradation (Ayala et al., 2011; 

Polymenidou et al., 2011; Sephton et al., 2011; Tollervey et al., 2011). This 

autoregulatory mechanism, which ensures proper levels of TDP-43, is also observed in 

TDP-43 animal models. Heterozygous TDP-43 knockout mice increase mRNA levels of 

the remaining TDP-43 allele to compensate for the loss of one allele and have similar 

TDP-43 levels as their wildtype littermates (Kraemer et al., 2010; Sephton et al., 2010; 

Wu et al., 2010). 

1.2.3 Cytosolic functions of TDP-43 

Although TDP-43 is a nuclear protein, it undergoes nucleocytoplasmic shuttling (Ayala 

et al., 2008b; Winton et al., 2008a). In the cytoplasm, TDP-43 interacts with stress 
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granule (SG) proteins (Freibaum et al., 2010) and in neurons it is detected in neuronal 

RNA transport granules (Elvira et al., 2006; Wang et al., 2008; Fallini et al., 2012). 

Upon neuronal activity TDP-43 is enriched within RNA transport granules, suggesting a 

role of TDP-43 in RNA transport and local translation at the synapse (Wang et al., 

2008; Liu-Yesucevitz et al., 2011). Moreover, increased levels of TDP-43 impair axonal 

outgrowth (Fallini et al., 2012), which is in line with the notion that TDP-43 has several 

RNA targets that are essential for neuronal development (Tollervey et al., 2011; 

Colombrita et al., 2012).  

1.2.4 Animal models of TDP-43 

Overexpression of TDP-43 in several animal models, such as worms (Ash et al., 2010; 

Liachko et al., 2010), flies (Hanson et al., 2010; Li et al., 2010; Voigt et al., 2010), 

zebrafish (Kabashi et al., 2010), rats (Zhou et al., 2010) and mice (Tatom et al., 2009; 

Wegorzewska et al., 2009; Tsai et al., 2010; Wils et al., 2010; Xu et al., 2010) is not 

tolerated and results in neurodegeneration and reduced life span. Nevertheless, in most 

of these animal models wildtype TDP-43 is neurotoxic and sometimes wildtype TDP-43 

has a more severe phenotype than TDP-43 mutants (Voigt et al., 2010). These models, 

however, only partially recapitulate the disease, as no gene duplication mutations have 

been found in ALS patients. Interestingly, when human TDP-43 is expressed at the 

same level as endogenous TDP-43 in the central nervous system of mice, only mutant, 

but not wildtype, TDP-43 provokes progressive neurodegeneration (Arnold et al., 

2013). Thus, such an animal model might better reflect the pathomechanisms of 

TARDBP mutations.  

Similar to overexpression, depletion of TDP-43 in flies is detrimental for 

neurons (Feiguin et al., 2009). In homozygous knockout mice embryonic lethality 

becomes evident after embryonic day 3.5 (Kraemer et al., 2010; Sephton et al., 2010; 

Wu et al., 2010) and possibly until this stage maternal TDP-43 mRNA can compensate 

the loss of TDP-43 (Wu et al., 2010). The inner cell mass of these embryos shows a 

defect in outgrowth in vitro (Sephton et al., 2010; Wu et al., 2010), demonstrating that 

TDP-43 is essential during embryogenesis. Thus, conditional knockout mice are 

necessary to study loss of TDP-43. Conditional knockout of TDP-43 in murine spinal 

cord neurons causes an ALS phenotype with progressive neurodegeneration and muscle 

atrophy (Wu et al., 2012) as seen for TDP-43 overexpression, again proving that 

disturbing the carefully titrated TDP-43 levels in either direction cause 
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 N-terminal domain 

Structural features of the N-terminal domain are �-strands, which facilitate DNA-

binding properties of TDP-43 (Chang et al., 2012) and are essential for splicing of 

CFTR mRNA (Zhang et al., 2013). In addition, this domain mediates homodimerization 

(Kuo et al., 2009) and aggregation of TDP-43 (Zhang et al., 2013). Within the N-

terminal domain of TDP-43 is a bipartite classic NLS. Usually, classic NLSs are 

recognized by the nuclear import factor Importin �/�, which cooperatively binds NLS-

containing proteins and promotes their nuclear import (Wente and Rout, 2010) (see also 

section 1.4). Replacing basic key residues of the TDP-43 NLS by alanine results in 

cytoplasmic mislocalization of TDP-43 (Ayala et al., 2008b; Winton et al., 2008a).  

 

RNA-binding domains

Two RRMs mediate TDP-43 DNA- and RNA-binding to TG- and UG-rich motifs, 

respectively, and TDP-43 preferentially binds within long introns, 3´UTRs and to non-

coding RNAs (Buratti and Baralle, 2001; Polymenidou et al., 2011; Sephton et al., 

2011; Tollervey et al., 2011). RRM1 is necessary and sufficient for binding to UG-rich 

RNAs (Buratti and Baralle, 2001). In contrast, RRM2 is not essential for RNA-binding 

(Buratti and Baralle, 2001), but for splicing activity of TDP-43 and possibly plays a role 

in chromatin organization (Ayala et al., 2005; Ayala et al., 2008b; Fiesel et al., 2010).  

 

Glycine-rich domain

The intrinsically disordered C-terminal G-rich domain in TDP-43 is a prion-like domain 

with homology to the yeast prion protein Sup35p (King et al., 2012) and this domain 

mediates sequestration of TDP-43 into polyglutamine (polyQ) aggregates (Fuentealba et 

al., 2010). Furthermore, residues 318-343 form an amyloidogenic core essential for 

TDP-43 aggregation (Jiang et al., 2013). The interaction with the hnRNP family 

members hnRNP A1 and hnRNP A2/B1 mediated by this domain inhibits CFTR 

splicing and regulates splicing in human and fly (Ayala et al., 2005; Buratti et al., 

2005). However, ALS-associated mutations in this region do not alter the interaction 

with hnRNP A2 (D'Ambrogio et al., 2009).  
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1.2.6 ALS-associated mutations cluster in the Glycine-rich domain

Nearly all ALS-associated TARDBP mutations cluster in the C-terminal G-rich domain 

(Fig. 2) and several different pathomechanisms have been suggested. Some studies 

reported cytosolic mislocalization of mutant TDP-43 (Barmada et al., 2010; Ritson et 

al., 2010) (Liu-Yesucevitz et al., 2010), however, other studies showed that mutant 

TDP-43 remain nuclear (Kabashi et al., 2010; Ling et al., 2010; Voigt et al., 2010). 

Furthermore, it was suggested that TARDBP mutations enhance and accelerate 

aggregation and toxicity of TDP-43 (Johnson et al., 2009; Nonaka et al., 2009; Arai et 

al., 2010; Barmada et al., 2010; Kabashi et al., 2010; Liachko et al., 2010; Liu-

Yesucevitz et al., 2010; Ritson et al., 2010; Zhou et al., 2010). In addition, it has been 

reported that TARDBP mutations increase the propensity to interact with FUS (Ling et 

al., 2010), which is somewhat at odds with other studies (Freibaum et al., 2010; Kim et 

al., 2010). Thus, despite extensive research over the past few years, it still needs to be 

clarified, whether TARDBP mutations cause neurodegeneration by loss of nuclear TDP-

43 (loss-of-function) or by aberrant aggregation and toxicity (toxic gain-of-function) or 

a combination of both.  

Taken together, TDP-43 is an aggregation-prone DNA/RNA-binding protein 

with a pivotal role in transcription and splicing of several thousand genes. The 

functional consequences of TARDBP mutations, although extensively studied in the 

past, still remain to be elucidated.  

1.3 FUS, EWS und TAF15 (FET proteins) - multifunctional DNA/RNA-binding 

proteins linked to neurodegeneration 

 

About 20 years ago the DNA/RNA-binding protein FUS, also known as Translocated in 

sarcoma (TLS), was identified as part of fusion oncogenes in various cancers, including 

liposarcoma and myeloid leukemia (Crozat et al., 1993; Rabbitts et al., 1993; Ichikawa 

et al., 1994; Bertolotti et al., 1999). FUS is a member of the FET protein family together 

with EWS and TAF15, which were also identified as fusion oncogenes in different 

types of cancer (Delattre et al., 1992; May et al., 1993; Attwooll et al., 1999; 

Panagopoulos et al., 1999; Martini et al., 2002; Tan and Manley, 2009). In these 

cancers, the N-terminal half of the FET proteins is fused to the DNA-binding domain of 

a transcription factor, e.g. of C/EBP homologous protein (CHOP) or erythroblastosis 
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virus E26 oncogene homologue (ERG), giving rise to a fusion oncogene that acts as 

abnormal transcription factor (Crozat et al., 1993; Rabbitts et al., 1993; Sanchez-Garcia 

and Rabbitts, 1994). This abnormal transcription factor causes misregulation of several 

target genes and results in cell growth disturbances and tumor formation (Zinszner et 

al., 1994; Schwarzbach et al., 2004).  

However, FET proteins are not only implicated in various types of cancer, but 

also in the neurodegenerative diseases ALS and FTLD. FUS mutations associated with 

ALS-FUS and very rarely EWS and TAF15 mutations are detected in ALS patients 

(Table 1, Fig. 3) (Kwiatkowski et al., 2009; Vance et al., 2009; Couthouis et al., 2011; 

Ticozzi et al., 2011; Couthouis et al., 2012). Moreover, all FET proteins are co-

deposited in FTLD-FUS (Neumann et al., 2011; Davidson et al., 2013). 

1.3.1 Role of FET proteins in transcription and splicing  

FET proteins are predominantly nuclear proteins involved in a multitude of nuclear 

processes (Dormann and Haass, 2013). All FET proteins co-purify with the general 

transcription factor IID (TFIID) and the RNA-Polymerase II (Bertolotti et al., 1996; Tan 

and Manley, 2009). Furthermore, FUS and TAF15 are transcription factors that can 

regulate their target genes both positively and negatively (Tan et al., 2012; Ballarino et 

al., 2013). Besides these shared targets, FUS is specifically enriched at the promoters of 

genes encoding proteins with nuclear or cytoplasmic function and those involved in 

gene expression (Tan et al., 2012), whereas TAF15 controls expression of an miRNA 

cluster and of genes involved cell cycle regulation and cell death (Ballarino et al., 

2013).  

All FET proteins contain multiple RNA-binding motifs, which bind mRNAs 

with AU-rich stem-loop structures (Hoell et al., 2011; Ishigaki et al., 2012) and G-rich 

motifs such as GGU, GUGGU and GGUG (Lerga et al., 2001; Iko et al., 2004; Lagier-

Tourenne et al., 2012; Rogelj et al., 2012). Furthermore, FUS has several thousand pre-

mRNA targets and interacts with intronic RNA regions and long non-coding RNAs 

(Lagier-Tourenne et al., 2012; Rogelj et al., 2012). Upon FUS depletion in either 

Xenopus laevis embryos or mouse brains, several hundred splice changes are detected, 

corroborating the role of FUS as general splice regulator (Dichmann and Harland, 2012; 

Lagier-Tourenne et al., 2012; Rogelj et al., 2012). Although there is little overlap 

between these studies, splicing of the MAPT mRNA is altered consistently in all studies 

upon FUS depletion. This is in accordance with another study, which demonstrated that 
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upon FUS depletion in primary neurons MAPT exons 3 and 10 are included (Orozco et 

al., 2012). This results in a longer Tau isoform that has also been found to be increased 

in patients with FTLD and Parkinsonism (Hutton et al., 1998). Additionally, FET 

proteins are together with SMN part of the spliceosome (Zhou et al., 2002; Yamazaki et 

al., 2012; Tsuiji et al., 2013), regulating pre-mRNA splicing in general and splice site 

selection specifically (Bertolotti et al., 1996; Bertolotti et al., 1998; Zhang et al., 1998; 

Kameoka et al., 2004). Since FET proteins interact with RNA polymerase II, pre-

mRNAs and splicing factors (Zinszner et al., 1994; Yang et al., 1998), another putative 

role of these proteins is to link transcription and splicing (Tan and Manley, 2009).  

1.3.2 Autoregulation of FET protein  

Some recent findings, e.g. that FUS associates with its own mRNA in a conserved 

region, which might be either a 3´UTR or a retained intron (Hoell et al., 2011; Lagier-

Tourenne et al., 2012; Orozco et al., 2012), indicate that FUS is autoregulated. 

Moreover, in mouse and human brain an alternative isoform of FUS is detected, that is 

likely to be degraded via nonsense mediated decay (Lagier-Tourenne et al., 2012) 

Analysis of mice expressing human FUS further corroborates the idea of FUS 

autoregulation as these mice show a dose-dependent decrease of endogenous FUS 

(Mitchell et al., 2013). But FUS does not only regulate its own levels, but also seems to 

regulate EWS levels. FUS binds EWS mRNA (Hoell et al., 2011; Lagier-Tourenne et 

al., 2012) and upon transient knockdown of FUS, EWS protein levels show an about 2-

fold increase (Han et al., 2012). However, EWS proteins levels are not elevated in 

heterozygous or homozygous FUS knockout mice (Kuroda et al., 2000), which might be 

due to an unknown compensatory mechanism upon stable knockout. Thus, how FUS is 

autoregulated as well as if and how FUS and EWS cross-regulate or compensate each 

other needs to be further elucidated.  

1.3.3 Cytosolic functions of FET proteins  

Although FUS is found in the nucleus in the steady state, it continuously shuttles 

between the nucleus and cytoplasm (Zinszner et al., 1997). In neurons, FUS is part of 

RNA transport granules which transport mRNAs to dendritic spines for local translation 

(Kanai et al., 2004; Fujii and Takumi, 2005; Elvira et al., 2006). FUS interacts with the 

motor proteins Kinesin (Kanai et al., 2004) and Actin (Yoshimura et al., 2006) and is 

essential for spine morphology (Fujii et al., 2005). Moreover, FUS and TAF15 localize 

together with other RNA-binding proteins and RNAs to spreading initiation centers (de 
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Hoog et al., 2004) (Andersson et al., 2008), although their exact function in these 

centers remains to be investigated. Thus, FUS appears to have important functions not 

only in the nucleus but also in the cytoplasm (Dormann and Haass, 2013). 

1.3.4  Animal models of FET proteins  

Overexpression of FUS in worms (Vaccaro et al., 2012), flies (Chen et al., 2011; Wang 

et al., 2011), mice (Mitchell et al., 2013) and rats (Huang et al., 2011) causes 

progressive neurodegeneration and recapitulates key features of FUS-proteinopathies. 

Ectopic expression of human FUS in flies shows that human wildtype FUS localizes in 

the nucleus, whereas mutant FUS is cytosolic (Chen et al., 2011; Lanson et al., 2011; 

Murakami et al., 2012) and result in degeneration of motor neurons and reduced life 

span (Chen et al., 2011; Lanson et al., 2011). Strikingly, eye degeneration is less severe 

in flies overexpressing wildtype FUS compared to flies overexpressing ALS-associated 

FUS mutants, indicating that mutant FUS is more toxic than wildtype FUS (Lanson et 

al., 2011). Similar, overexpressing ALS-associated FUS mutants in rats causes broad 

neurodegeneration and progressive paralysis (Huang et al., 2011).  

Analysis of FUS knockout mice and EWS knockout mice revealed that 

maintenance of genomic integrity and DNA repair is a common function of FET 

proteins, as resistance of radiation if impaired in these mice (Hicks et al., 2000; Kuroda 

et al., 2000; Li et al., 2007). In these studies no obvious neurodegeneration was 

observed (Hicks et al., 2000; Kuroda et al., 2000), but another group analyzed primary 

neurons derived from FUS knockout mice and reported that these neurons present a 

lower spine density and abnormal spine morphology (Fujii et al., 2005). Additionally, 

knockdown of FUS in flies (Sasayama et al., 2012) or zebrafish (Kabashi et al., 2011) 

leads to shortening of the axon length and behavioral abnormalities, indicating that FUS 

is needed for proper neuronal development.  

1.3.5 Specific functions of different FET protein domains

FET proteins are structurally related multifunctional proteins with an N-terminal 

transcriptional activation domain, several nucleic acid-binding domains and a C-

terminal NLS (Fig. 3).  
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RNA-binding domains of FET proteins   

FET proteins contain an RRM and in FUS this domain alone is sufficient to bind RNAs 

with GGUG motifs (Lerga et al., 2001). A positively charged loop in this domain 

confers DNA- and RNA-binding properties to FUS (Crozat et al., 1993; Prasad et al., 

1994; Baechtold et al., 1999; Liu et al., 2013). Nevertheless, the RRM domain is not the 

only RNA-binding domain in FET proteins, as it was shown, that the RGG2-ZnF-RGG3 

domain has also RNA-binding properties (Ohno et al., 1994; Zinszner et al., 1997; Iko 

et al., 2004). Especially the ZnF between the RGG motifs seems to be responsible for 

binding single stranded RNAs containing a GGU motif with micromolar affinity 

(Nguyen et al., 2011). In addition, the RGG2-ZnF-RGG3 domain of FUS is required for 

interaction with SMN, which is essential for spliceosome integrity and formation of 

nuclear foci termed “Gems” that are essential for pre-mRNA splicing (Yamazaki et al., 

2012; Tsuiji et al., 2013). In contrast, EWS interacts with SMN via its RGG1 domain 

(Young et al., 2003).  

 

C-terminal PY-NLS  

Finally, all FET proteins contain in their most C-terminal region a non-classical PY-

NLS (Lee et al., 2006; Zakaryan and Gehring, 2006; Marko et al., 2012). Interestingly, 

most of the ALS-associated FUS mutations are clustered in this region (Fig. 3) and 

result in cytosolic accumulation of mutant FUS (Kwiatkowski et al., 2009; Vance et al., 

2009; Dormann et al., 2010).  

In summary, all FET proteins are multifunctional DNA/RNA-binding proteins 

with domains specifically mediating essential roles in RNA metabolism, such as 

regulating transcription and pre-mRNA splicing or linking transcription and splicing co-

transcriptionally (Paronetto et al., 2011; Dormann and Haass, 2013).  

 

1.4 Impairment of nuclear transport in ALS and FTLD 

 

Characteristic features of ALS and FTLD are the cytosolic deposition and nuclear 

depletion of the normally predominantly nuclear proteins TDP-43 and FUS, pointing to 

a nuclear transport defect as a key step in the pathological cascade in these diseases 

(Dormann and Haass, 2011). This is reinforced by the identification of ALS-associated 

mutations in the NLS of FUS, which cause cytosolic mislocalization (Kwiatkowski et 
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al., 2009; Vance et al., 2009; Dormann et al., 2010). In contrast, none of the ALS-

associated TARDBP mutations affects the NLS of TDP-43 and a more general 

dysfunction in nuclear transport has to be envisaged in TDP-proteinopathies.  

1.4.1 Nuclear transport – transport factors and basic mechanisms  

The compartmentalization between nucleus and cytoplasm in eukaryotic organisms 

provokes the demand for transport mechanisms between these two compartments. In 

eukaryotic organisms translation occurs in the cytoplasm, thus mechanisms evolved by 

which proteins with nuclear fate can be selectively imported into the nucleus. Nuclear 

pore complexes (NPCs) span the nuclear envelope (NE) (Fig. 4) and are essential for a 

controlled and selective nucleocytoplasmic transport. The NPC builds a physical barrier 

for proteins above 40 kDa, but allows free diffusion of water, ions and small molecules 

below 40 kDa (Keminer and Peters, 1999; Wente and Rout, 2010). Proteins destined for 

the nucleus possess a NLS, whereas proteins that need to exit the nucleus contain a 

nuclear export signal (NES) (Izaurralde and Adam, 1998). To decode the cellular fate of 

a given protein, transport receptors specifically recognize and interact with the NES 

and/or NLS in their cargo proteins. These transport receptors are responsible for 

translocation of their cargo protein through the NPC and are part of the karyopherin 

protein family. Well-studied examples are the heterodimeric Importin �/� transport 

receptor complex, which recognizes classical mono- and bipartite NLS sequences and 

Transportin, which recognizes a PY-NLS present in many RNA-binding proteins (Cook 

et al., 2007). PY-NLSs have an N-terminal hydrophobic or basic motif, a basic residue 

and a PY-motif at the C-terminus. The overall basic character of this type of NLS 

allows binding to negatively charged residues in Transportin (Lee et al., 2006; Cook et 

al., 2007). 

1.4.2  Regulation of nuclear transport by Ran  

During nuclear import, the transport receptor, hereafter referred to as receptor, (e.g. 

Importin �/� or Transportin) binds the NLS of a cargo protein. Afterwards, the receptor-

cargo complex interacts transiently with and translocates through the NPC into the 

nucleus (Wente and Rout, 2010) (Fig. 4). In the nucleoplasm, the small Ras-like 

GTPase Ran (RanGTP) binds to the allosteric site of the receptor, which induces a 

conformational change in the cargo-binding pocket of the receptor, resulting in 

dissociation of the receptor-cargo complex and release of the cargo protein in the 

nucleoplasm (Rexach and Blobel, 1995; Gorlich et al., 1996; Lee et al., 2005) (Fig. 4). 
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Receptor and bound RanGTP then recycle through the NPC into the cytoplasm. Upon 

hydrolysis of RanGTP to RanGDP in the cytosol, the receptor–RanGDP complex falls 

apart, thereby releasing the transport receptor for a further round of nuclear transport 

(Cook et al., 2007; Wente and Rout, 2010).  

 
 

 
Fig. 4. Nuclear import of transport receptors and their cargo proteins. In the cytoplasm the transport 
receptor (receptor) interacts with the NLS of a cargo protein (cargo). This interaction enables 
translocation of the receptor-cargo complex through the NPC, which spans the NE. In the nucleus the 
level of RanGTP is high and binding of RanGTP to the receptor induces a conformational change in the 
cargo-binding pocket of the receptor. This conformational change weakens its interaction with the cargo, 
thus dissociating the receptor cargo complex and releasing the cargo in the nucleus.  
 
 

Directionality of nuclear transport is mediated by a concentration gradient of 

RanGTP and its regulators (Fig. 4). Cytosolic RanGTPase activating protein (RanGAP) 

hydrolyses GTP to GDP, sustaining low levels of RanGTP in the cytoplasm (Bischoff et 

al., 1995; Yoneda et al., 1999). In contrast, RanGuanine nucleotide exchange factor 

(RanGEF) is mainly nuclear and yields high levels of RanGTP in the nucleus by 

converting RanGDP to RanGTP (Bischoff and Ponstingl, 1991; Yoneda et al., 1999). 

Low RanGTP concentrations in the cytoplasm allow the formation of the receptor-cargo 

complex, whereas high RanGTP concentrations in the nucleus facilitate the dissociation 

of the cargo protein from the transport receptor (Izaurralde and Adam, 1998; Cook et 

al., 2007; Wente and Rout, 2010). Transport receptors that mediate nuclear export use 

an analogous but inverted process. Here, high RanGTP levels in the nucleus facilitate 

export-receptor-cargo binding, while low cytoplasmic RanGTP levels allow dissociation 

of the exported cargo from the export-receptor (Izaurralde and Adam, 1998; Cook et al., 

2007; Wente and Rout, 2010). 
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1.4.3 Arginine methylation fine-tunes nuclear transport of RNA-binding proteins  

Nuclear transport can be fine-tuned at several levels, including post-translational 

modification of cargo proteins (Terry et al., 2007). Post-translational modifications such 

as phosphorylation, ubiquitination, SUMOylation and arginine methylation can induce a 

conformational change that alters the accessibility of the NLS or alter the binding 

affinities between cargo proteins and transport receptors (Terry et al., 2007; Nicholson 

et al., 2009; Nardozzi et al., 2010). 

Arginine methylation is a post-translational modification abundant in RNA-

binding proteins, as it can affect not only subcellular localization but also RNA-binding 

properties (Pahlich et al., 2006). This post-translational modification does not change 

the charge of the modified arginine, but increases its bulkiness and hydrophobicity. In 

contrast to other post-translational modifications, arginine methylation is considered 

very stable. However, some studies point to regulated methylation/demethylation cycles 

(Metivier et al., 2003; Sakabe and Hart, 2010), although no demethylases have been 

identified convincingly (Yang and Bedford, 2013). 

Protein arginine methyltransferases (PRMTs) catalyze arginine methylation and 

promote transfer of a methyl group (CH3
-) from S-adenosyl methionine (SAM) to the 

guanidino (CH6N3
+) nitrogen of an arginine (Nicholson et al., 2009; Yang and Bedford, 

2013). Three types of arginine methylation are known: monomethylation, symmetric 

dimethylation, and asymmetric dimethylation (Yang and Bedford, 2013).  

 

 

22



   Introduction 
 

 
Fig. 5. Different types of arginine methylation. PRMTs first catalyze the transfer of a methyl group 
from SAM to one of the terminal guanidino nitrogens of an arginine, thereby generating monomethyl 
arginine. Subsequent addition of a second methyl group to the same terminal guanidino nitrogen results in 
asymmetric dimethylarginine. In contrast, symmetric dimethylarginine is formed when a second methyl 
group is added to the other guanidino nitrogen.  
 
 

PRMT1 is responsible for the majority of total protein arginine methylation in 

cells. It catalyzes monomethylation and asymmetric dimethylation and has a broad 

substrate specificity (Tang et al., 2000; Zhang and Cheng, 2003; Bedford and Clarke, 

2009). Known PRMT1 substrates are proteins involved in transcription, splicing and 

signal transduction. The methylated arginine is often, but not always flanked by one or 

more glycines forming a RGG or glycine- and arginine-rich (GAR) motif (Nicholson et 

al., 2009; Thandapani et al., 2013; Yang and Bedford, 2013). Interestingly, all FET 

proteins have been described to be asymmetrically dimethylated in their RGG domains 

(Belyanskaya et al., 2001; Rappsilber et al., 2003; Ong et al., 2004; Jobert et al., 2009; 

Du et al., 2011). PRMT1-mediated asymmetric dimethylation of EWS and TAF15 has 

been described to alter their subcellular localization, their activity as transcription 

factors and protein-protein interactions (Young et al., 2003; Araya et al., 2005; Jobert et 

al., 2009; Shaw et al., 2009). However, the functional consequences of asymmetric 

dimethylation of FUS remain to be elucidated.  
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1.5 RNA-binding proteins in stress granules (SGs)

1.5.1 SGs in neurodegeneration  

Over the last few years, much attention has been drawn to the connection between SGs 

and neurodegenerative diseases. SGs store mRNAs during cellular stress and RNA-

binding proteins attached to these mRNAs are essential components of SGs. 

Interestingly, several RNA-binding proteins that localize to SGs have recently been 

linked to neurodegenerative diseases.  

First, FUS and TDP-43 and were found to localize in SGs (Andersson et al., 

2008; Colombrita et al., 2009; Dormann et al., 2010; Bentmann et al., 2012). Second, 

repeat expansion in the ATXN2 gene, encoding the RNA-binding protein Ataxin-2, can 

cause spinocerebellar ataxia type 2 and ALS-TDP (Pulst et al., 1996; Elden et al., 2010). 

Ataxin-2 is recruited into SGs upon exposure to various stressors (Ralser et al., 2005; 

Ariumi et al., 2011; Nihei et al., 2012) and seems to be important for SG formation, as 

cells depleted for Ataxin-2 form fewer SGs upon cellular stress (Nonhoff et al., 2007). 

Third, mutations in the Angiogenin (ANG) gene have been associated with ALS-TDP 

(Greenway et al., 2006; van Blitterswijk and Landers, 2010) and ANG localizes into 

SGs upon stress (Pizzo et al., 2013). ANG is a ribonuclease and disease-associated 

mutations in ANG are reported to impair subcellular localization and ribonuclease 

activity (Greenway et al., 2006; Crabtree et al., 2007). Additionally, cells expressing 

ANG-K40I, an ALS-associated variant of ANG, form fewer SGs upon cellular stress 

(Thiyagarajan et al., 2012). These are only three examples of RNA-binding proteins 

associated with ALS and FTLD that are also detected in SGs, but several recent reviews 

extensively discuss this connection in further detail (Wolozin, 2012; Bentmann et al., 

2013; Li et al., 2013; Thomas et al., 2013).  

1.5.2 SGs as storage particles of mRNA and proteins 

SGs are cytosolic particles that are rapidly formed in eukaryotic cells exposed to 

environmental stressors, such as oxidative stress, osmotic shock, thermal stress and viral 

infection (Kedersha and Anderson, 2007; Spriggs et al., 2010; Emara et al., 2012; 

Hofmann et al., 2012; Lloyd, 2012). They transiently store and thereby prevent 

translation of poly(A) mRNA encoding housekeeping genes in order to conserve energy 

by prioritizing selective translation of proteins necessary for stress adaption (Stohr et 

al., 2006). Thus, expression of mRNAs encoding heat-shock proteins (HSPs), 
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chaperones and other stress-response proteins is maintained or enhanced, as these 

mRNAs use non-canonical translation initiation motifs to circumvent the translational 

arrest in SGs (Sherrill et al., 2004; Bornes et al., 2007; Spriggs et al., 2010). Upon 

stress, cells start a customized response dependent on cell type and stressor, therefore 

mRNA and protein composition of SGs is highly variable (Anderson and Kedersha, 

2009b; Emara et al., 2012). Nevertheless, some proteins are core components of SGs 

and serve as SG marker proteins as they are not found in other messenger 

ribonucleoproteins (mRNPs) such as processing-bodies (p-bodies) or RNA transport 

granules (Kedersha et al., 2005; Buchan and Parker, 2009). Some of these SG marker 

proteins are components of the 48S pre-initiation complexes consisting of small 

ribosomal subunits, eukaryotic translation initiation factors (e.g. eIF3, eIF4E and 

eIF4G) and Poly(A)-binding protein 1 (PABP-1) (Kedersha et al., 2002). Furthermore, 

SGs contain certain RNA-binding proteins, that can promote SG assembly when 

overexpressed, such as Ras-GTPase-activating protein SH3-domain-binding protein 

(G3BP) and T cell internal antigen-1 (TIA-1) (Tourriere et al., 2003; Gilks et al., 2004). 

Three possible fates for mRNAs in SGs are known: (1) translation re-initiation (often 

for mRNAs encoding stress-adaptive proteins), (2) storage as translationally silenced 

mRNA or (3) degradation in interacting p-bodies, which contain mRNA decay proteins 

(Anderson and Kedersha, 2009a; Buchan and Parker, 2009).  

1.5.3 SG formation  

Upon cellular stress, eukaryotic cells form SGs via an eIF2�-dependent or eIF2�-

independent pathway (Fig 6). In the eIF2�-dependent pathway, four different 

serine/threonine kinases (PKR, PERK, HRI, GCN) serve as sensors for environmental 

stress (Anderson and Kedersha, 2008; Buchan and Parker, 2009) (Fig. 6). Upon stress, 

these kinases are activated and in turn phosphorylate the alpha subunit of eIF2 

(Anderson and Kedersha, 2008; Buchan and Parker, 2009). Translation initiation 

usually needs eIF2� in its unphosphorylated state to initiate translation, thus 

phosphorylation of eIF2� inhibits initiation of a further round of translation. 

Alternatively, chemicals such as hippuristanol and pateamine A induce SG-

formation via the eIF2�-independent pathway. Direct binding of pateamine A for 

example diminishes the helicase activity of eIF4A, which results in translation initiation 

inhibition and SG formation (Low et al., 2005; Dang et al., 2006; Mazroui et al., 

2006).When translation initiation is stopped either via the eIF2�-dependent or eIF2�-
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independent pathway, ribosomes finish their round on the translated transcript and then 

“run-off”, as a further round of translation cannot be initiated. The remaining 48S pre-

initiation complex stays bound to the 5´UTR of the mRNA (Fig. 6) (Anderson and 

Kedersha, 2008). Although the next step (SG nucleation) is not yet fully understood, it 

is assumed that aggregation-prone SG proteins, such as TIA-1, TIAR and G3BP, 

associate with the 48S pre-initiation complex and form mRNP oligomers. Subsequently, 

crosslinking via PABP-1 and additional protein-protein interactions promote the 

assembly of mature SGs (Fig. 6, SG assembly) (Anderson and Kedersha, 2008).  
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Fig. 6. SG formation and dissolution. Under normal conditions, several ribosomes bind the circularized 
mRNA and translate the mRNA into newly synthesized protein. Cellular stress results in inhibition of 
translation initiation and starts SG formation. During SG nucleation, SG proteins (blue) bind to the 48S 
pre-initiation complex forming mRNP oligomers. The assembly of mRNP oligomers to SGs is promoted 
by crosslinking via PABP-1 and post-translational modifications such as O-glycosylation. During stress 
recovery, SG proteins dissociate, ribosomes are recruited to the released mRNA and translation can be re-
initiated. Figure modified from (Bentmann et al., 2013). 
 
 
Post-translational modifications are known to regulate SG assembly. Besides 

phosphorylation of the �-subunit of eIF2, O-glycosylation of the small ribosomal 

subunit is involved in SG formation, probably by acting as molecular glue between 

mRNPs or by facilitating repression of translation initiation by modifying ribosomal 
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subunits. Furthermore, arginine methylation is necessary for proper SG recruitment of 

several RNA-binding proteins, as it can modify RNA-binding properties and subcellular 

localization (see also section 1.5). For example, the RNA-binding proteins Fragile X 

mental retardation protein (FMRP) and Cold-inducible RNA-binding protein (CIRP) 

localize to SGs when arginine residues within their RGG domains are methylated 

(Dolzhanskaya et al., 2006; De Leeuw et al., 2007). Furthermore, PRMT1 itself is also 

recruited into SGs upon arsenite stress (Yamaguchi and Kitajo, 2012).  

1.5.4 SG dissolution  

When sublethal stress has passed, SG rapidly dissolve during the recovery phase (Fig. 

6) thereby releasing sequestered poly(A) mRNAs and SG proteins (Kedersha et al., 

2005). Concomitantly, the large ribosomal subunit binds to the 48S pre-initiation 

complex and translating polysomes can be re-formed (Fig. 6). Because 48S pre-

initiation complexes remain assembled during their storage in SGs, translation rates can 

rapidly increase upon stress recovery. Dissolution of SGs and recovery of translation is 

facilitated by chaperones, thus overexpression of HSP70 accelerates SG dissolution and 

enhances translation rate during recovery (Kedersha and Anderson, 2002; Thomas et al., 

2009). Recently, dual specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3) 

has been shown to be an important regulator of SG dissolution (Wippich et al., 2013). 

The active form of DYRK3 promotes SG dissolution, whereas inhibiting the kinase 

activity of DYRK3 hampers SG dissolution (Wippich et al., 2013). In addition, the 

dynamic equilibrium between SGs and polysomes becomes evident by the use of drugs 

(e.g. cycloheximide and emetine) that freeze ribosomes on translating polysomes and 

thus prevent SG formation upon cellular stress (Kedersha et al., 2000). In contrast, 

polysome-destabilizing drugs such as puromycin, facilitate SG formation (Kedersha et 

al., 2000; Chudinova et al., 2012). 
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2 Aims of the study 

The identification of the RNA-binding proteins TDP-43 and FUS in pathological 

inclusions in ALS and FTLD patients together with the detection of disease-associated 

mutations in the TARDBP and FUS genes was a major breakthrough in understanding 

these devastating neurodegenerative disorders (see also 1.1 – 1.3). As both proteins are 

under physiological conditions predominantly nuclear, it was surprising to find 

pathological inclusions containing aggregated FUS and TDP-43 in the cytosol, raising 

the question how cytosolic TDP-43 and FUS inclusions arise. As both FUS and TDP-43 

are detected in SGs upon cellular stress (Colombrita et al., 2009; Dormann et al., 2010), 

I hypothesized that pathological inclusions might originate from SGs and that a detailed 

analysis of how FUS and TDP-43 are recruited into SGs might give important insights 

in the pathomechanisms of FUS- and TDP-proteinopathies.  

 Thus my major aim was to determine the requirements for SG recruitment of 

FUS and TDP-43. Therefore, I analyzed which stressors induce the recruitment of FUS 

and TDP-43 in SGs, whether cytosolic mislocalization of FUS and TDP-43 is a 

prerequisite for SG localization and whether the sequestration of FUS and TDP-43 can 

also be observed in primary neurons. Furthermore, I determined which domains of FUS 

and TDP-43 are essential for their SG recruitment and tested whether SG recruitment 

correlates with the RNA-binding properties of these domains. Moreover, I examined 

how ALS-associated TARDBP mutations affect SG recruitment of TDP-43 or SG 

formation in general.  

In addition, because FUS inclusions in ALS-FUS contain only FUS, whereas 

FUS inclusions in FTLD-FUS contain all FET proteins (Neumann et al., 2011), I aimed 

to model this differential protein composition of FUS inclusions in cell culture, in order 

to understand the underlying pathomechanisms. To this end, I tested whether general 

inhibition of Transportin-mediated nuclear import causes accumulation of all FET 

proteins and whether EWS and TAF15 are co-sequestered with mutant FUS in SGs. As 

ALS and FTLD patients show a selective degeneration of neurons, I investigated the 

localization of mutant FUS in also primary rat neurons. Moreover, I established stress 

conditions that evoke SG formation in HeLa cells and primary neurons. Finally, I 

determined whether arginine methylation affects nuclear import of EWS and TAF15, as 

previously shown for FUS (Dormann et al., 2012; Tradewell et al., 2012). 
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3 Results

 
This chapter is separated in 4 sections according to the studies published in 

international, peer-reviewed journals. Each study is summarized independently and if 

applicable additional information is shown. In addition, a declaration about my 

contributions within these studies is given.  
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3.1 Stress granule recruitment of FUS and TDP-43 depends on RNA-binding 

and protein-protein interactions

Bentmann E, Neumann M, Tahirovic S, Rodde R, Dormann D*, Haass C*  

Requirements for Stress Granule Recruitment of Fused in Sarcoma (FUS) and Tar 

DNA-binding Protein of 43 kDa (TDP-43) 

J Biol Chem 2012 Jun 29;287(27):23079-94 Epub 2012 May 4  

 
Several recent studies have demonstrated that FUS and TDP-43 are recruited into SGs 

upon different types of stress (Colombrita et al., 2009; Moisse et al., 2009a; Bosco et 

al., 2010; Dormann et al., 2010; Liu-Yesucevitz et al., 2010; Dewey et al., 2011; Gal et 

al., 2011; Ito et al., 2011; McDonald et al., 2011; Meyerowitz et al., 2011). However, 

which domains of FUS and TDP-43 are involved in SG recruitment is currently 

unknown. Two mutually not exclusive mechanisms can be considered. First, FUS and 

TDP-43 may be recruited to SGs by virtue of their RNA-binding capacity. Second, it is 

conceivable that protein-protein interactions might be responsible for localizing FUS or 

TDP-43 into SGs. 

3.1.1  Stress granule recruitment of FUS  

First, I demonstrated that only the cytosolic ALS-associated FUS mutation FUS-P525L 

but not wildtype FUS (FUS-WT) is recruited into SGs upon treatment with three 

different stressors (44°C heat shock, sodium arsenite or clotrimazole treatment). 

Furthermore, I verified that sequestration of FUS-P525L into SGs is not cell type 

specific, but occurs in HeLa cells, SH-SY5Y cells and primary rat hippocampal 

neurons. After having determined these general aspects of SG recruitment, I tested 

which domain(s) of FUS mediate recruitment to SGs.  

Upon heat shock, the N-terminal SYGQ-rich domain (termed Q in (Bentmann et 

al., 2012)), the glycine-rich RGG1 domain (termed G in (Bentmann et al., 2012)) and 

the RRM domain (termed R in (Bentmann et al., 2012)) remained mainly diffuse 

cytosolic, but small amounts were recruited into SGs. Only the C-terminal RGG2-ZnF-

RGG3 domain (termed Z in (Bentmann et al., 2012)) was efficiently recruited into SGs, 

although to a lesser extent than full-length FUS. Combining the single domains (RGG1 

+ RRM + RGG2-ZnF-RGG3) increased the localization to SGs and reached the same 

levels as full-length FUS-P525L suggesting that all three domains contribute to SG 
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recruitment. In contrast, the SYGQ-rich domain is dispensable for SG recruitment of 

FUS, as a construct lacking this domain was recruited into SGs to the same extent as 

full length FUS-P525L. 

Furthermore I examined whether SG recruitment and RNA-binding of individual 

FUS domains correlate with each other. As expected, UG-rich RNA oligonucleotides 

were efficiently and selectively bound by full-length FUS. Of the individual domains, 

only RGG2-ZnF-RGG3-domain-containing constructs showed binding to the UG-rich 

RNA oligonucleotides. Thus the ability to bind RNA correlates with SG recruitment, 

suggesting that RNA-binding via the RGG2-ZnF-RGG3 domain plays an important role 

in SG recruitment of FUS. In contrast, the RGG1 domain and RRM domain, which 

were unable to bind UG-rich oligonucleotides, facilitate SG recruitment probably via 

protein-protein interactions.  

 

3.1.2 Stress granule recruitment of TDP-43  

To characterize the determinants for SG recruitment of TDP-43, I first examined how 

nuclear versus cytosolic localization affects its SG recruitment. In contrast to wildtype 

TDP-43 (TDP-WT), TDP-NLSmut, an artificial cytosolic TDP-43 mutant with a mutated 

NLS, was sequestered into SGs in HeLa cells, primary rat hippocampal neurons and 

SH-SY5Y cells, demonstrating that cytosolic mislocalization of TDP-43 is a 

prerequisite for SG recruitment.  

Next I analyzed whether ALS-associated TARDBP mutations alter subcellular 

localization of TDP-43 as previously reported (Barmada et al., 2010; Liu-Yesucevitz et 

al., 2010). However, three different ALS-associated TARDBP mutations (A315T, 

M337V, G348C) that were analyzed were all nuclear both in unstressed cells and upon 

heat shock, in line with other studies reporting a nuclear localization of TARDBP 

mutants (Kabashi et al., 2010; Ling et al., 2010; Voigt et al., 2010). To test whether 

TARDBP mutations alter the amount of TDP-43 in SGs once TDP-43 is mislocalized in 

the cytosol, the same TARDBP mutations (A315T, M337V, G348C) were introduced 

into the TDP-NLSmut construct. However, all double mutant TDP-43 constructs showed 

similar SG recruitment as TDP-NLSmut without an ALS-associated point mutation. 

Whether TDP-43 inclusions contain SG marker proteins was under debate, as in 

two studies SG marker proteins could not be detected in TDP-43 inclusions (Colombrita 

et al., 2009; Dormann et al., 2010), whereas two other studies reported that SG marker 
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proteins co-label TDP-43-inclusions (Volkening et al., 2009; Liu-Yesucevitz et al., 

2010). Interestingly, one study demonstrated that depending on the analyzed tissue, 

different TDP-43 species are present in pathological TDP-43 inclusions: Spinal cord 

inclusions mainly contain full-length TDP-43 and inclusions in the hippocampus and 

cortex contain mainly TDP-CTFs (Igaz et al., 2008; Neumann et al., 2009c). By 

comparing SG marker proteins in TDP-43 inclusions in different tissues, our 

collaboration partner Prof. Dr. Manuela Neumann, DZNE and University of Tübingen, 

found that spinal cord TDP-43 inclusions contain full-length TDP-43 and PABP-1, a SG 

marker protein. In contrast, hippocampal inclusion containing mainly TDP-CTF did not 

co-label with PABP-1. In line with this finding, a construct encoding a C-terminal 

fragment of TDP-43 (termed �1-173 in (Bentmann et al., 2012)) failed to be recruited 

into SGs in HeLa cells. In addition, NLSmut-�C which lacks the C-terminal G-rich 

domain (termed G-rich in (Bentmann et al., 2012)), where almost all ALS-associated 

TARDBP mutations cluster, was only poorly sequestered into SGs. Additionally, I tested 

RNA-binding of different TDP-constructs to possibly correlate RNA-binding with SG-

recruitment. In contrast to TDP-CTF, which lacks the RRM1 domain and showed not 

binding to UG-rich RNA oligonucleotides, NLSmut-�C exhibited similar binding to 

these RNA oligonucleotides as TDP-WT and TDP-NLSmut. The finding that despite 

normal RNA-binding, NLSmut-�C showed reduced SG recruitment indicates that 

besides RNA-binding TDP-43 requires also other features, probably protein-protein 

interactions for efficient SG recruitment.  

 

Contribution to this study: 
As first author of this manuscript, I had major conceptual and experimental 

contributions. In detail, I established different stressors (heat shock, arsenite, 

clotrimazole) in HeLa cells (Fig. 1B; 2 B,C; 4B; 6A; 7A,C; 9B,C; S1, S2A, S4B, S5A, 

S7B in (Bentmann et al., 2012)) and heat shock as stressor to induce SG formation in 

SH-SY5Y cells and primary rat hippocampal neurons (Fig. 1C; 4C; S2B; S5B in 

(Bentmann et al., 2012)). Cloning of TDP-NLSmut constructs carrying ALS-associated 

TARDBP mutations (Fig.7 in (Bentmann et al., 2012)). Transient transfection of FUS or 

TDP-43 constructs in HeLa cells and SH-SY5Y cells (Fig. 1B; 2 B,C; 4B; 6; 7; 9 in 

(Bentmann et al., 2012)). Immunofluorescence staining and analysis of SG formation 

using confocal microscopy in HeLa, SH-SY5Y cells in primary rat hippocampal 

neurons (Fig. 1, 2, 4, 6, 7, 9 in (Bentmann et al., 2012)). Quantification of SG 
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recruitment of FUS or TDP-43 deletion constructs to heat shock- or clotrimazole-

induced SGs (Fig. 2C; 7C; Fig. 9C in (Bentmann et al., 2012)). Establishment of an 

RNA-binding assay and in vitro transcription and translation of [35S] methionine-

labeled FUS or TDP-43 constructs (Fig. 3; 10 in (Bentmann et al., 2012)). Analysis of 

expression levels and quantification of nuclear and cytosolic fluorescence intensities of 

TDP-43 constructs carrying ALS-associated point mutations (Fig. 6B,C in (Bentmann et 

al., 2012)). Drawing of schematic diagrams and a model figure (Fig. 1A; 2A; 4A; 9A; 

11 in (Bentmann et al., 2012)).  

 

 

Additional unpublished data

As a follow-up to our published study, I addressed whether FUS or TDP-43 are 

necessary for SG formation. Therefore I performed siRNA-mediated knockdown of 

endogenous FUS (siFUS) or TDP-43 (siTDP) and subjected these cells to clotrimazole 

stress. Endogenous FUS levels were efficiently reduced with siFUS compared to cells 

transfected with a control siRNA (NT control) (Fig. 7A), however SGs were still 

formed normally upon clotrimazole treatment and no obvious difference in SG 

formation between cells transfected with NT control or siFUS was observed (Fig. 7B). 

Similarly, TDP-43 knockdown did not change the efficiency of SG formation (Fig. 7C, 

7D).  
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Fig. 7. FUS and TDP-43 are not essential for SG formation. (A) Total cell lysates of cells transfected 
with siFUS or NT control, were analyzed by SDS-PAGE and immunoblotting with a FUS-specific 
antibody, �-Actin served as a loading control (lower panel). Immunoblots show efficient knockdown of 
siFUS-transfected cells. (B) Endogenous FUS was silenced by siRNA-mediated knockdown (siFUS), 
non-targeting siRNA (NT control) was used as a negative control; 72 hours post-transfection HeLa cells 
were incubated with 20μM clotrimazole for 30 min or left untreated (control). Cells were fixed, stained 

35



Results 

with FUS (green) and TIA-1 (red)-specific antibodies and nuclei counterstain (DAPI, blue) and analyzed 
by confocal microscopy. Panels on the right show a higher magnification of the boxed region (high mag). 
FUS knockdown does not alter the formation of TIA-1 positive SGs induced by clotrimazole. Scale bars: 
20 μm. (C) Immunoblot of endogenous TDP-43 in HeLa cells following transfection with siTDP or NT 
control, Tubulin served as a loading control (lower panel). TDP-43 siRNA efficiently silences TDP-43 
expression. (D) Endogenous TDP-43 was silenced by siRNA-mediated knockdown (siTDP), a control 
siRNA (NT control) was used as negative control. Prior to fixation, cells were incubated with 20 μM 
clotrimazole for 30 min or left untreated (control). After staining with TDP-43 (green) and TIA-1 (red) –
specific antibodies, SG formation was examined by confocal microscopy. TDP-43 silencing does not 
inhibit formation of TIA-1 positive-SGs. Note, that endogenous (i.e. nuclear) TDP-43 is not sequestered 
into clotrimazole-induced SGs. Scale bars: 20 μm. 
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3.2 TAF15 and EWS are co-deposited with FUS in FTLD-FUS, but not in ALS-

FUS

Neumann M, Bentmann E, Dormann D, Jawaid A, Dejesus-Hernandez M, Ansorge O, 

Roeber S, Kretzschmar HA, Munoz DG, Kusaka H, Yokota O, Ang LC, Bilbao J, 

Rademakers R, Haass C, Mackenzie IRA 

FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS 

pathology from amyotrophic lateral sclerosis with FUS mutations. 

Brain. 2011 Sep;134(Pt 9):2595-609. Epub 2011 Aug 19. 

 
ALS-associated FUS mutations result in cytosolic mislocalization of mutant FUS 

(Dormann et al., 2010). In contrast, no genetic alterations have so far been detected in 

FTLD-FUS patients (Neumann et al., 2009a; Urwin et al., 2010; Snowden et al., 2011), 

suggesting that mechanisms underlying FUS deposition in FTLD-FUS are distinct from 

those in ALS-FUS. Within this study, our collaboration partner Prof. Neumann further 

characterized the composition of FUS inclusions in FTLD-FUS and ALS-FUS patient 

brain samples. In post-mortem brains of FTLD-FUS patients, TAF15 was consistently 

detected in FUS-positive inclusions, whereas EWS was variably co-localized in FUS 

inclusions. In healthy controls, all three FET proteins were predominantly nuclear and 

no cytoplasmic inclusions were detectable. Interestingly, FUS inclusions in ALS-FUS 

were devoid of EWS and TAF15 and both proteins were exclusively detected in the 

nucleus. This striking difference in the composition of FUS inclusions between FTLD-

FUS and ALS-FUS corroborates the hypothesis that the two different FUS-

proteinopathies have different underlying pathomechanisms.  

My contribution to this work was to model Prof. Neumann´s neuropathology 

data in cultured cells. To this end, I expressed the ALS-associated FUS mutation FUS-

P525L in HeLa cells and tested whether it could sequester endogenous TAF15 and 

EWS into SGs. Consistent with the neuropathological findings, recruitment of FUS-

P525L into SGs did not change the subcellular localization of endogenous TAF15 and 

EWS, demonstrating that mislocalized, mutant FUS cannot sequester nuclear EWS and 

TAF15 to SGs. To test whether a defect in Transportin-mediated import may underlie 

the pathological co-deposition of all three FET proteins observed in FTLD-FUS 

patients, I expressed a competitive peptide inhibitor of the Transportin pathway called 
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M9M (Cansizoglu et al., 2007) in HeLa cells. As all FET proteins contain a PY-NLS, I 

speculated that GFP-M9M should not only block nuclear import of FUS as shown in 

(Dormann et al., 2010), but also of EWS and TAF15. Indeed, in GFP-M9M-expressing 

cells TAF15 and EWS were mislocalized to the cytosol, with EWS being mislocalized 

to less strongly and TAF15 being more strongly mislocalized than FUS. In addition, 

TAF15 and EWS formed punctate structures that were confirmed to be bona fide SGs 

by co-labeling with the SG marker protein TIA-1 (see additional unpublished data, Fig. 

8, upper rows). In contrast, GFP expression alone did not alter the subcellular 

localization of TAF15 and EWS, leaving TAF15 and EWS nuclear. This data 

demonstrates that a dysfunction of Transportin-mediated nuclear import results in 

cytosolic accumulation of all three FET proteins, supporting the notion that ALS-FUS 

and FTLD-FUS have distinct underlying pathomechanisms. In ALS-FUS, FUS 

inclusions are a result of the specific disruption of FUS nuclear import due to a mutation 

in the PY-NLS of FUS. In FTLD-FUS, all FET proteins appear to be not properly 

imported into the nucleus, suggesting a general impairment of Transportin-mediated 

nuclear import. Such a defect could either occur during ageing or could be mediated by 

a different mechanism (e.g. post-translational modifications) that selectively inhibits 

nuclear import of FET proteins.  
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Additional unpublished data

As a follow-up to publication 2, I confirmed that punctate structures observed upon 

expression of GFP-M9M in HeLa cells were indeed SGs by co-labeling for TIA-1, a SG 

marker protein.  

 
 

 

Fig. 8. Expression of GFP-M9M leads to sequestration of EWS and TAF15 into SGs. M9M is a 
chimeric peptide designed to bind the nuclear import receptor Transportin with unusually high affinity 
and thus competes with natural Transportin substrates. GFP-tagged M9M (GFP-M9M, green) or GFP 
alone were expressed in HeLa cells for 24 h. Cells were fixed, stained with EWS or TAF15 (both shown 
in red) and TIA-1 (white)- specific antibodies and were analyzed using confocal microscopy. Inhibition of 
Transportin-mediated nuclear import causes localization of TAF15 and EWS into SGs. Note that EWS 
shows only a mild mislocalization with large amounts of the protein remaining in the nucleus, compared 
to the striking mislocalization and nuclear depletion of TAF15. Scale bar: 20 μm. 
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Contribution to this study: 

Immunofluorescence and confocal analysis of EWS and TAF15 localization in HeLa 

cells transiently transfected with either HA-FUS-WT or HA-FUS-P525L after heat 

shock or control conditions (Fig. 7 A; S3 in (Neumann et al., 2011)). Transient 

transfection of a Transportin-specific inhibitor (GFP-M9M) in HeLa cells, 

immunofluorescence staining of FUS, EWS and/or TAF15 and analysis via confocal 

microscopy (Fig. S3 in (Neumann et al., 2011)).  
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3.3 C-terminal FUS mutations impair Transportin-mediated nuclear import of 

FUS

Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, Than ME, 

Mackenzie IR, Capell A, Schmid B, Neumann M, Haass C  

ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated 

nuclear import. 

EMBO J. 2010 Aug 18;29(16):2841-57. Epub 2010 Jul 6. 

Most ALS-associated FUS mutations cluster in the C-terminal domain of FUS (Fig. 3) 

and result in cytoplasmic mislocalization of the mutant FUS protein (Kwiatkowski et 

al., 2009; Vance et al., 2009). Initially, the underlying pathomechanism was unknown.  

By investigating the exact pathomechanism of ALS-associated FUS mutations, 

Dr. Dormann demonstrated that FUS-WT localizes in the nucleus, whereas the four 

tested C-terminal FUS mutants (R521G, R524S, R522G, P525L) were mislocalized to 

the cytoplasm in HeLa cells. Intriguingly, the degree of cytosolic mislocalization of 

mutant FUS inversely correlated with the age of disease-onset in the ALS-patients 

carrying these mutations. As ALS patients present progressive neuronal degeneration, 

my contribution to this study was to investigate whether the cytosolic mislocalization of 

C-terminal FUS mutants observed in HeLa cells can be confirmed in neurons. 

Therefore, I analyzed the subcellular localization of FUS-WT and FUS-P525L in 

primary rat hippocampal and cortical neurons using confocal microscopy. In line with 

the results in HeLa cells, FUS-WT was nuclear, whereas FUS-P525L was redistributed 

to the cytosol and neuritic processes. Moreover, I showed that N-terminal FUS mutants 

(G156E, R216C, G225V, R234C, R244C) remained nuclear in HeLa cells and that a 

combination of N-terminal mutations with the P525L mutation, did not aggravate the 

cytosolic mislocalization of FUS-P525L.  

Furthermore, Dr. Dormann determined that Transportin binds the PY-NLS of 

FUS and mediates nuclear import of FUS. Notably, upon expression of the Transportin 

inhibitor GFP-M9M in HeLa cells and primary neurons, FUS was detected in cytosolic, 

punctate structures. Since FUS is an RNA-binding protein (Zinszner et al., 1997; Iko et 

al., 2004), we wondered whether the punctate structures are SG and stained with 

antibodies against SG marker proteins. For further analyses of the punctate structures, I 

established heat shock as a stressor in HeLa cells and Dr. Dormann confirm that all 
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cytosolic FUS mutants co-localize with the SG-marker PABP-1. In addition, Prof. 

Neumann showed that cytosolic, neuronal FUS inclusions in post-mortem brains of 

ALS and FTLD patients were consistently co-labeled with antibodies against the SG 

marker proteins PABP-1 and eIF4G.  

Nevertheless, it is important to note that cytosolic FUS mutants in the absence of 

stress show a diffuse cytosolic staining, suggesting that cytosolic mislocalization of 

FUS does not per se induce SG formation, but additional stress is needed to recruit 

cytosolic FUS in SGs. To test this hypothesis I subjected primary rat hippocampal 

neurons expressing wildtype FUS or FUS-P525L to heat shock or left them untreated. 

Indeed, FUS-P525L was recruited into SGs only upon heat shock. FUS-WT remained 

nuclear after heat shock, even though SGs were formed. These findings suggest that 

nuclear transport defects and cellular stress are two subsequent hits in the pathological 

cascade of FUS inclusion formation.  

 
Contribution to this study: 

Immunofluorescence staining and confocal analysis of primary rat hippocampal and 

cortical neurons transiently transfected with HA-FUS-WT, HA-FUS-P525L, GFP or 

GFP-M9M, respectively (Fig. 3A; 5A; S3A in (Dormann et al., 2010)). Quantification 

of nuclear and cytosolic HA-FUS-WT and HA-FUS-P525L immunofluorescence 

intensities (Fig. 3B in (Dormann et al., 2010)). Establishment of heat shock as stressor 

to induce SGs in transiently transfected HeLa cells and primary neurons (Fig. 8A,B in 

(Dormann et al., 2010)). Cloning of HA-tagged FUS-P525L carrying additional N-

terminal fALS-associated FUS mutation (Fig. S2A in (Dormann et al., 2010)).  
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3.4 Arginine methylation modulates nuclear import of FET proteins

Dorothee D, Madl T*, Valori CF*, Bentmann E, Tahirovic S, Abou-Ajram C, 

Kremmer E, Ansorge O, Mackenzie IRA , Neumann M, Haass C 

Arginine Methylation next to the PY-NLS modulates Transportin Binding and Nuclear 

Import of FUS 

EMBO J. 2012 Nov 14;31(22):4258-75. Epub 2012 Sep 11. 

Nuclear import defects seem to be intimately linked to the pathomechanism of ALS-

FUS and FTLD-FUS. In ALS-FUS, mutations in the FUS PY-NLS impair the 

interaction with Transportin, resulting in cytosolic deposition of mutant FUS (Bosco et 

al., 2010; Dormann et al., 2010). In FTLD-FUS, only rarely mutations in the FUS gene 

are found (Urwin et al., 2010; Snowden et al., 2011; Dormann and Haass, 2013), 

therefore a mutant PY-NLS cannot be accused for the pathologic mislocalization of 

FUS, but rather a general transport dysfunction has to be supposed. This notion is 

supported by the recent detection of the FET proteins EWS and TAF15, two other 

Transportin-cargo proteins, in FUS inclusions in FTLD-FUS patients (see also 

Publication 2 (Neumann et al., 2011))(Davidson et al., 2013). Interestingly, all FET 

proteins were previously shown to be asymmetrically dimethylated in their RGG boxes 

(Belyanskaya et al., 2001; Rappsilber et al., 2003; Ong et al., 2004; Jobert et al., 2009; 

Du et al., 2011), but the functional consequences of this posttranslational modification 

are only poorly understood. 

To assess whether arginine methylation affects nuclear transport of FUS, Dr. 

Dormann treated cells with the broad methylation inhibitor Adenosine-2,3-dialdehyde 

(AdOx) and analyzed the subcellular localization of HA-tagged FUS-WT and four 

different ALS-associated FUS mutants. Strikingly, inhibition of arginine methylation 

with AdOx prevented cytosolic mislocalization of FUS mutants, i.e. these mutants were 

nuclear in AdOx-treated cells. To test whether nuclear transport of all FET proteins is 

similarly modulated by arginine methylation, I cloned and expressed wildtype and 

artificial cytosolic mutants of EWS and TAF15 in untreated and AdOx-treated HeLa 

cells and analyzed their subcellular localization. In untreated cells, all wildtype FET 

(FET-WT) proteins were nuclear, whereas the NLS mutants FUS-P525L, EWS-P655L 

and TAF15-P591L were localized to the cytoplasm. Upon AdOx-treatment, all FET 
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protein mutants were confined to the nucleus, suggesting that inhibition of methylation 

affects nuclear import of all FET proteins in a similar manner.  

As AdOx is a broad methylation inhibitor, Dr. Dormann aimed to prevent 

arginine methylation more specifically and silenced PRMT1, the major protein arginine 

methyltransferase (Bedford and Clarke, 2009; Nicholson et al., 2009) (see also section 

1.5). Similar to AdOx, PRMT1 knockdown increased the amount of nuclear FUS-

P525L, suggesting that inhibition of arginine methylation restores nuclear import of 

mutant FUS. To test whether Transportin is responsible for nuclear import of mutant 

FUS upon inhibition of methylation, Dr. Dormann treated cells expressing GFP-M9M 

with AdOx. In these cells, FUS-P525L remained cytosolic despite AdOx-treatment, 

confirming that the nuclear re-localization of FUS-P525L upon inhibition of 

methylation depends on Transportin. Furthermore, different in vitro binding assays 

revealed that both the PY-NLS and the RGG3 domain interact with Transportin and that 

arginine methylation in the RGG3 domain of FUS reduces the interaction with 

Transportin.  

To determine if the co-deposition of Transportin with FET proteins in FTLD-

FUS could be caused by hypomethylation of FUS, Dr. Dormann raised a monoclonal 

antibody specific to methylated FUS. Using this antibody, Prof. Neumann determined 

that FUS inclusions in ALS-FUS contain methylated FUS. In a HeLa cell line stably 

expressing FUS-P525L, which I generated, Dr. Dormann observed that FUS-P525L is 

recruited into SGs in the methylated state, thus reflecting the pathology observed in 

ALS-patients. In contrast, methylated FUS cannot be detected in FUS inclusion in 

FTLD-FUS patients, suggesting that hypomethylation might be involved in the 

pathomechanism. This corroborates the hypothesis that both diseases are caused by 

distinct pathomechanisms.  

 

Contribution to this study: 

Cloning of EWS and TAF15 constructs, transient transfection of HA-tagged FUS, EWS 

or TAF15 (WT or cytosolic mutant) into HeLa cells, immunofluorescence staining, 

confocal analysis and quantification of nuclear and cytosolic fluorescence intensities 

(Fig. 2 (Dormann et al., 2012)). Generation of HeLa cell lines stably expressing HA-

tagged FUS-WT or FUS-P525L by lentiviral transduction (Fig. 8D (Dormann et al., 

2012)). Drawing of a model figure (Fig. 10 B (Dormann et al., 2012)).  
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Additional unpublished data

Recently, the identification of TAF15 mutations in sporadic ALS cases was reported 

(Couthouis et al., 2011). These TAF15 mutations cluster in the C-terminal ZnF and 

RGG3 domain but are not located in the PY-NLS (Fig 3). As mainly arginine and 

glycine residues are mutated, I wondered whether these mutations affect the subcellular 

localization of TAF15, e.g. by altering arginine methylation of the RGG3 domain and 

thus disrupting the interaction with Transportin. To test this hypothesis, I cloned and 

expressed TAF15-WT, TAF15-P591L, and four different ALS-associated TAF15 

mutants (M368T, D386N, G391E, G473E) in untreated or AdOx-treated HeLa cells. As 

a positive control for AdOx treatment, I used the artificial cytosolic mutant TAF15-

P591L, which indeed became nuclear upon AdOx treatment (Fig. 9, right panel). 

However, ALS-associated TAF15 mutants remained predominantly nuclear in untreated 

and AdOx-treated cells (Fig. 9, middle panels), demonstrating that ALS-associated 

TAF15 mutations do not alter nuclear import of TAF15 mutants and suggesting an 

undisturbed interaction with Transportin.  

 

 

 

 

 
 

45



Results 

 

Fig. 9. ALS-associated TAF15 mutations do not disturb nuclear localization of TAF15. HA-tagged 
TAF15-WT or TAF15 carrying the indicated ALS-associated mutations or a mutation disrupting the PY-
NLS (P591L) were transiently expressed in untreated (upper panels) or AdOx-treated (lower panels) 
HeLa cells for 24h. Cells were fixed, stained with an HA (green)-specific antibody and a nuclear counter-
stain (blue) and analyzed by confocal microscopy. ALS-associated TAF15 mutants are nuclear in both 
untreated and AdOx-treated cells, suggesting that the mutations do not impair the recognition of the PY-
NLS by Transportin. In contrast, the artificial P591L mutation disrupts the PY-NLS and results in 
cytosolic mislocalization of TAF15; upon AdOx treatment, this mutant is predominantly nuclear, 
indicating that methylation modulates nuclear import of TAF15. Scale bar: 20 μm. 
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3.5 Additional Publication: 

At the 32nd Blankenese Conference I won the poster prize which came with the 

invitation to write a review for the FEBS Journal. 

Bentmann E, Haass C, Dormann D

Stress Granules in Neurodegeneration – Lessons learnt from TDP-43 and FUS  

FEBS J 2013 Sep;280(18):4348-70. Epub 2013 May 9  

 

Contribution: 

Content and writing of the manuscript.  
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4 Discussion

4.1  FUS and TDP-43 have similar requirements for SG recruitment  

4.1.1 RNA-binding properties are essential but not sufficient for SG recruitment of 

FUS 

Given the potential importance of SGs in the formation of pathological FUS inclusion, I 

set out to determine how FUS is recruited into SGs. Some studies report that transient 

overexpression of ALS-associated cytosolic FUS mutants or even FUS-WT is sufficient 

to induce SG formation (Andersson et al., 2008; Kino et al., 2010; Gal et al., 2011; Ito 

et al., 2011). However, I and others found that upon moderate transient or stable 

expression FUS mutants remain diffusely distributed in the cytosol and that additional 

stress is needed to induce SG formation (Bosco et al., 2010; Dormann et al., 2010; 

Bentmann et al., 2012; Kato et al., 2012). These results suggest that formation of SGs 

upon transient overexpression of mutant FUS is most likely due to transfection stress 

(Kedersha and Anderson, 2007; Bentmann et al., 2013). Moreover, I tested three 

different stressors and investigated if one of these stressors would result in the 

localization of FUS-WT into cytosolic SGs as previously described (Andersson et al., 

2008; Blechingberg et al., 2012). However, regardless of which stressor was analyzed, 

FUS-WT is confined to the nucleus and does not localize to TIA-1 positive SGs 

(Bentmann et al., 2012). In contrast, the ALS-associated cytosolic mutant FUS-P525L 

consistently localize in SGs upon treatment with all stressors tested. Thus, cytosolic 

mislocalization is a prerequisite for SG recruitment of FUS (Bentmann et al., 2012).  

Moreover, I set out to determine in detail which domains are required for SG 

recruitment of FUS. Two mutually non-exclusive mechanisms of SG recruitment are 

conceivable – (1) RNA-binding and/or (2) protein-protein interactions. My results have 

shown that FUS is mainly recruited into SGs via RNA-binding mediated by the RGG2-

ZnF-RGG3 domain (Bentmann et al., 2012) (see model in Fig. 10). In addition, the 

RGG1 domain and the RRM domain contribute to SG recruitment of FUS, but show no 

RNA-binding to UG-rich oligonucleotides. Form these results I conclude that beside 

RNA-binding mediated by the RGG2-ZnF-RGG3 domain, putative protein-protein 

interactions mediated by the RGG1 domain and RRM domain facilitate SG recruitment 

of FUS (Fig. 10) (Bentmann et al., 2012). Consistent with my data, another group 

reported that the RGG2-ZnF-RGG3 domain is the main RNA-binding domain (Iko et 
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al., 2004). Nevertheless, it cannot be excluded that the RGG1 and RRM domains bind 

to other RNAs that are not UG-rich, as several groups identified additional RNA-

binding motifs of FUS (Lerga et al., 2001; Hoell et al., 2011). In this case, the RGG1 

and RRM domains may contribute to SG recruitment also by binding to RNA.  

Surprisingly, the N-terminal prion-like SYGQ-rich domain does not seem to 

contribute to SG recruitment of FUS, but seems to be entirely dispensable. This is an 

unexpected result, as it was reported that the prion-like domain of TIA-1, which shows 

homology to the prion-like domain of FUS (King et al., 2012), facilitates SG formation 

(Gilks et al., 2004; Furukawa et al., 2009). Moreover, the SYGQ-rich domain of FUS is 

aggregation-prone and aggregated FUS binds prion-like domains of other RNA-binding 

proteins that are also SG components (Kato et al., 2012). Artificial tyrosine (Y) to serine 

(S) mutations within the SYGQ-domain have been reported to disrupt the association of 

FUS with SGs (Kato et al., 2012), which at first glance seems to contradict my finding 

that the SYGQ-domain is dispensable for SG recruitment. However, the authors of this 

study did not co-label for a SG marker protein, so it is impossible to distinguish 

between two possible scenarios: First, it might be that Y to S mutations prevent the 

reversible transition from soluble to polymeric FUS. This transition might be essential 

for the movement in and out of SGs and hence Y to S FUS mutants are not detected in 

SGs. Second, the Y to S mutations might create a dominant-negative FUS mutant which 

inhibits SG formation in general and therefore Y to S FUS mutants remain diffusely 

distributed in the cytosol during cellular stress. My preliminary data provide evidence 

for the latter scenario, since I found that cells expressing Y to S FUS mutants have a 

strongly reduced number of SGs (data not shown). Although a detailed analysis would 

be required to further elucidate the dominant-negative mechanism of these Y to S 

mutants on SG formation, these results would give an explanation for the conflicting 

results. Nevertheless, one has to be cautious when comparing deletion mutants with 

artificial point-mutants, as both deletion of a whole domain and change of several 

amino acids in a specific domain might change protein folding. However, as deletion of 

the Q domain did not impair RNA-binding of FUS, it seems likely that this deletion 

mutant is properly folded and thus comparable to full-length FUS.  

 Although cytosolic FUS is readily sequestered into SGs, depletion of FUS does 

not inhibit SG formation per se (Fig. 7B). These results are in agreement with two other 

studies showing that transient FUS knockdown does not change the number of SGs per 

cell or the size of SGs (Aulas et al., 2012; Blechingberg et al., 2012). Thus, I conclude 
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that FUS is not an essential SG component whose presence is necessary for SG 

formation.  

 

 
Fig. 10. Model of SG recruitment of FUS and TDP-43. Upon stress, translation is paused and the 48S 
pre-initiation complex consisting of the small ribosomal subunit, translation initiation factors and PABP-1 
bound to mRNA is transiently stored in SGs. I propose that SG recruitment of FUS and TDP-43 involves 
RNA-binding and protein-protein interactions. Both proteins bind UG-rich RNAs via their major RNA-
binding domains (RGG2-ZnF-RGG3 for FUS and RRM1 for TDP-43) and thus might be routed into SG 
by the associated mRNAs. Yet, additional domains which showed no binding to UG-rich RNAs, enhance 
recruitment of FUS to SGs. These results suggest that additional protein-protein interaction with the 
currently unknown proteins X and Y participate in SG recruitment of FUS and TDP-43.  
 
 

4.1.2 TARDBP mutations do not affect subcellular localization or SG recruitment of 

TDP-43

In contrast to C-terminal ALS-associated FUS mutations that are known to disrupt 

nuclear import of FUS, the mechanism behind TARDBP mutations is still puzzling. 

Some studies claim that TARDBP mutations result in cytosolic mislocalization 

(Barmada et al., 2010; Liu-Yesucevitz et al., 2010; Ritson et al., 2010). However, I did 

not observe cytosolic accumulation of the three different TARDBP mutations (A315T, 

M337V, G348C) tested (Bentmann et al., 2012), consistent with reports from others 

(Kabashi et al., 2010; Ling et al., 2010; Voigt et al., 2010; Dewey et al., 2011). These 

conflicting results might be due the fact that different studies investigated different 

ALS-associated TARDBP mutations or due to different cell types used for the analysis. 
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Nevertheless, cytosolic mislocalization does not seem to be a general and obvious 

pathomechanism for TARDBP mutations.  

As cytosolic mislocalization is a crucial prerequisite for SG recruitment of FUS, 

I speculated that the recruitment of TDP-43 into SGs might also require cytosolic 

mislocalization. To test this hypothesis, I analyzed whether TDP-WT localizes in SGs 

upon cellular stress. Regardless of which stressor is used, TDP-WT remains nuclear, 

although TIA-1 positive SGs are formed. In contrast, TDP-43 with an artificial NLS 

mutation (TDP-NLSmut), which is diffusely distributed in the cytosol without stress, is 

recruited into cytoplasmic SGs upon exposure to different stressors. This demonstrates 

that similar to FUS, also for TDP-43 cytosolic mislocalization is a prerequisite for SG 

recruitment.  

An alternative pathomechanism of TARDBP mutations could be alterations in 

SG formation and kinetics. One study suggested that the ALS-associated mutation they 

analyzed (R361S) is a loss-of-function mutation as cells expressing this TARDBP 

mutant formed less SGs during stress (McDonald et al., 2011). However, two other 

studies reported an increase in SG formation upon overexpression of TARDBP mutants, 

indicating a gain-of-function mechanism (Liu-Yesucevitz et al., 2010; Dewey et al., 

2011). Yet, I did not observe such effects for three ALS-associated TARDBP mutations 

examined, as their presence did not alter the amount of TDP-NLSmut sequestered in SGs 

(Bentmann et al., 2012). Nevertheless, it cannot be excluded that other TARDBP 

mutations, which were not analyzed here, alter SG recruitment of TDP-43 or SG 

persistence, disassembly or dynamics.  

Additionally, I demonstrated that TDP-43 is not essential for SG formation (Fig. 

7D) consistent with the results of two other studies (Colombrita et al., 2009; Liu-

Yesucevitz et al., 2010). In contrast, two other groups reported that depletion of TDP-43 

leads to a reduced number of SGs and that the remaining SGs are smaller, however, the 

effects are quite small (McDonald et al., 2011; Aulas et al., 2012). Thus, additional 

detailed investigation of SG formation and kinetics upon TDP-43 depletion are 

necessary to determine whether or not TDP-43 influences SG formation, size or 

dynamics.  
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4.1.3 TDP-43 is recruited into SGs via RNA-binding and additional protein-protein 

interactions  

By analyzing SG recruitment of TDP-43 in further detail, I showed that full-length 

TDP-43 is rapidly sequestered into SGs upon stress, whereas TDP-CTF is only poorly 

recruited to SGs (Bentmann et al., 2012). TDP-CTFs lack the RRM1, which is essential 

for binding of TDP-43 to UG-rich RNA oligonucleotides (Buratti and Baralle, 2001; 

Bentmann et al., 2012), indicating that RNA-binding is essential for SG recruitment of 

TDP-43. Nevertheless, protein-protein interactions may also be involved in SG 

recruitment of TDP-43, as a TDP-43 mutant lacking the G-rich domain (NLSmut-�C) is 

only poorly recruited to SGs. This domain mediates interaction with hnRNP A1 and 

hnRNP A2/B1 (Buratti et al., 2005) and possibly other unknown proteins, so it might be 

that these protein-protein interactions facilitate SG recruitment of TDP-43 (Fig. 10).  

Furthermore, through my collaboration with Prof. Manuela Neumann, I could 

resolve controversial results regarding SG markers in pathological TDP-43 inclusions. 

Two studies reported a lack of SG marker proteins in pathological inclusions 

(Colombrita et al., 2009; Dormann et al., 2010), whereas two others detected SG marker 

proteins as consistent components of TDP-43 inclusions (Volkening et al., 2009; Liu-

Yesucevitz et al., 2010). I demonstrated that the co-deposition of SG markers depends 

on the analyzed tissue and thus on the TDP-43 species present in TDP-43 inclusions 

(Igaz et al., 2008; Neumann et al., 2009c; Bentmann et al., 2012). TDP-43 inclusions in 

the spinal cord containing mainly full-length TDP-43 are SG-marker positive. In 

contrast, hippocampal inclusions enriched for TDP-CTFs are SG-marker negative 

(Bentmann et al., 2012). This is in accordance with my data in HeLa cells (see above) 

where only full-length TDP-43 was efficiently recruited into SGs.  

How differences in the composition of TDP-43 inclusions between tissues arise, 

why TDP-CTFs are especially enriched in hippocampal inclusions and how TDP-CTFs 

are generated is still enigmatic. The absence of SG markers from CTF-containing 

inclusions could have two plausible explanations. First, TDP-CTF might be formed by 

proteolytic cleavage of full-length TDP-43 present in SGs. Due to lack of RNA-binding 

of the newly generated TDP-CTFs, they may dissociate and give rise to SG-marker 

negative inclusions. Second, they might be formed independently of SG recruitment of 

TDP-43. TDP-CTFs have a higher aggregation propensity than TDP-WT (Li et al., 

2011) and TDP-CTFs induce formation of hyperphosphorylated and ubiquitinated TDP-

43 inclusions in cultured cells over time (Igaz et al., 2009; Nonaka et al., 2009; Li et al., 
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2011). However, further studies are required to unveil which of these scenarios is 

correct or whether a completely different mechanism is responsible for deposition of 

TDP-CTFs without SG markers. 

 

 

4.2 FUS inclusions in ALS-FUS and FTLD-FUS vary in their composition

 

ALS-FUS and FTLD-FUS are both FUS-proteinopathies with characteristic FUS-

positive inclusions and initially it was suggested that they might have a common 

underlying pathomechanism. However, significant differences in the composition of 

FUS inclusions in ALS-FUS and FTLD-FUS have provided strong evidence that the 

two diseases have different underlying pathomechanisms. I demonstrated that upon 

expression in HeLa cells, only the ALS-associated FUS-P525L mutant, but none of the 

other FET proteins is cytosolically mislocalized and sequestered in SGs upon cellular 

stress (Neumann et al., 2011). This can be explained by the fact that only the PY-NLS 

of FUS is disrupted by ALS-associated mutations and the PY-NLSs of EWS and TAF15 

are still intact. Furthermore, the observation that the FET family members EWS and 

TAF15 remain nuclear in HeLa cells expressing FUS-P525L, demonstrates that 

cytosolic accumulation of FUS does not co-sequester the other FET family proteins. 

Consistently, FUS inclusions in ALS-FUS patients, which carry an ALS-associated 

mutation, contain only FUS but not EWS or TAF15 (Neumann et al., 2011).  

 In sharp contrast to ALS-FUS, pathological inclusions in FTLD-FUS contain all 

FET proteins. However, there are some differences between EWS and TAF15. Whereas 

the latter is detected in all FUS inclusions in FTLD-FUS, EWS is not consistently found 

in theses inclusions and often to a smaller amount than TAF15 (Neumann et al., 2011). 

By inhibition of Transportin-mediated nuclear transport in HeLa cells, I could mimic 

these neuropathological findings. Upon expression of GFP-M9M, all FET proteins 

accumulate in the cytosol (Neumann et al., 2011), however the co-accumulation of 

TAF15 with FUS in SGs is much stronger than the co-accumulation of EWS with FUS 

in SGs, as a substantial proportion of EWS is still detected in the nucleus and only a 

minor extent is recruited into SGs (Neumann et al., 2011). As inhibition of Transportin-

mediated nuclear transport resembles the composition of pathologic inclusions found in 

FTLD-FUS patients, the pathomechanism of FTLD-FUS may involve a general 
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dysfunction in nuclear import of FET proteins, followed by their sequestration into SGs 

(Dormann and Haass, 2011; Neumann et al., 2011; Rademakers et al., 2013).  

Interestingly, the nuclear import receptor of FUS, Transportin (Lee et al., 2006; 

Dormann et al., 2010), is consistently found in FUS inclusions in FTLD-FUS but not in 

ALS-FUS patients (Brelstaff et al., 2011; Neumann et al., 2012; Davidson et al., 2013). 

Yet, it is still debated whether Transportin becomes insoluble in FTLD-FUS or not. One 

study shows that Transportin becomes insoluble in FTLD-FUS patients whereas in 

control patients Transportin remains soluble (Brelstaff et al., 2011). In contrast, another 

study could not confirm this result, as they reported that the solubility of Transportin 

varies in both FTLD-FUS patients and health controls, thus insolubility of Transportin 

could not be linked to FTLD-FUS (Neumann et al., 2012) Further studies are required 

to determine whether Transportin is insoluble in FTLD-FUS patients.  

The accumulation of Transportin in FUS/FET inclusions might give rise to a 

vicious circle in which the deposition of Transportin in FUS inclusions decreases the 

availability of Transportin for FUS and possibly other PY-NLS-containing cargo 

proteins in the cytosol (Brelstaff et al., 2011). Thus Transportin-mediated nuclear 

transport may be derogated and cytosolic accumulation of FUS may steadily increase. 

Recent analysis of 13 additional Transportin cargos demonstrated that these cargos are 

not co-deposited in FTLD-FUS inclusions. This indicates that a general Transportin 

defect that affects multiple PY-NLS cargo proteins, e.g. due to age-dependent decline in 

expression or genetic alterations, is not very likely. The fact that some cargos seems to 

be correctly imported while others not, rather points to an alternative mechanism, e.g. 

posttranslational modifications in specific cargo proteins, that specifically alter the 

interaction of these proteins with Transportin.  

 

 

4.3 FUS mutations in ALS-FUS disrupt nuclear import of FUS

 

During my collaboration with Dr. Dormann, we were able to unveil that ALS-associated 

FUS mutations result in the cytosolic mislocalization of these FUS mutants by 

disrupting the interaction between FUS and Transportin in HeLa cells and in primary 

neurons (Dormann et al., 2010). FUS directly interacts with both Transportin 1 and 

Transportin 2 (Guttinger et al., 2004) and upon knockdown of either Transportin 1 or 
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Transportin 2 alone FUS is still efficiently imported (Dormann et al., 2010), suggesting 

that the two Transportin isoforms are functionally redundant. Several other studies have 

confirmed that ALS-associated FUS mutations cause cytosolic mislocalization of FUS 

(Bosco et al., 2010; Kino et al., 2010; Gal et al., 2011; Ito et al., 2011) and that 

mutations in the PY-NLS weaken the Transportin-binding affinity of FUS (Niu et al., 

2012; Zhang and Chook, 2012).  

Intriguingly, the affinity of FUS mutants with Transportin correlates with the 

degree of cytosolic mislocalization of FUS and the age of disease-onset and disease 

duration in FUS mutation carriers (Dormann et al., 2010; Niu et al., 2012; Zhang and 

Chook, 2012). For example, the P525L mutation, often associated with juvenile-onset 

ALS and rapid disease progression (Chio et al., 2009b; Kwiatkowski et al., 2009; 

Baumer et al., 2010; Sproviero et al., 2012) decreases Transportin binding by 9-fold 

(Zhang and Chook, 2012) and shows a very drastic mislocalization (Dormann et al., 

2010). In addition, FUS truncation mutations lacking the entire PY-NLS have an 

unusual early disease-onset and a more severe phenotype compared to most ALS-

associated FUS missense mutations (Waibel et al., 2010; Yan et al., 2010; Belzil et al., 

2011; Yamashita et al., 2012; Waibel et al., 2013), thereby corroborating the correlation 

between reduced Transportin affinity, cytosolic mislocalization and disease severity. In 

contrast, FUS mutations associated with mid- and late-onset ALS, such as R521C and 

R524C, decrease Transportin binding affinity by only 3-fold and 1.4-fold, respectively 

(Zhang and Chook, 2012) and show only a mild cytosolic mislocalization (Dormann et 

al., 2010). Although FUS mutants have reduced binding affinities compared to FUS-

WT, they are still in the nanomolar range which means that they still, albeit weaker, 

interact with Transportin. These remaining binding affinities of many FUS mutants 

might explain disease manifestation later in life and the fact that cells transfected with 

FUS mutants (Bosco et al., 2010; Dormann et al., 2010; Gal et al., 2011; Ito et al., 2011; 

Dormann et al., 2012) or neurons harboring pathological FUS inclusion in FUS-

proteinopathies (Neumann et al., 2009a) still have some nuclear FUS.  
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4.4  Aberrant arginine methylation in FTLD-FUS? 

 

ALS-FUS is caused by mutations in the FUS gene; in contrast, FUS mutations were 

detected only very rarely in FTLD-FUS, suggesting that another mechanism might 

cause cytoplasmic mislocalization of FUS in FTLD-FUS patients. This is also supported 

by the different composition of FUS inclusions in ALS-FUS and FTLD-FUS (see 

section 4.2). In my collaboration with Dr. Dormann, we demonstrated that arginine 

methylation in the RGG3 domain adjacent to the PY-NLS additionally influences the 

interaction of FUS with Transportin (Dormann et al., 2012). In general, post-

translational modifications can alter nuclear transport (see section 1.4) (Terry et al., 

2007; Nicholson et al., 2009; Nardozzi et al., 2010), and for example arginine 

methylation triggers nuclear localization of several RNA-binding proteins (Cote et al., 

2003; Aoki et al., 2002; Araya et al., 2005) 

Inhibition of arginine methylation reverses the cytosolic mislocalization of 

several cytosolic ALS-associated FUS mutations, e.g. FUS-P525L, by restoring 

Transportin-mediated nuclear import (Dormann et al., 2012). Likewise, cytosolic 

mislocalization of artificial cytosolic mutants of EWS and TAF15 is prevented by 

inhibition of arginine methylation, pointing to a common mechanism in all FET proteins 

(Dormann et al., 2012).  

Analysis of FUS inclusions in ALS-FUS and FTLD-FUS elucidated that 

antibodies specific for methylated FUS (meFUS) label ALS-FUS inclusions but not 

FTLD-FUS inclusions (Dormann et al., 2012). This lack of labeling with meFUS 

specific antibodies in FTLD-FUS prompted us to propose that these FUS inclusions are 

hypomethylated. As FTLD-FUS inclusions contain all FET proteins (Neumann et al., 

2011), we hypothesize that hypomethylation of all FET proteins is responsible for 

overly tight FET-Transportin-binding and thus selective co-deposition of FET proteins 

with Transportin in FTLD-FUS. Deposition in the cytoplasm may occur because 

Transportin-FET complexes may be unable to dissociate in the nucleus, and instead may 

be re-exported into the cytoplasm. Thus, overly tight binding of FET proteins to 

Transportin could result to increased levels of FET proteins in the cytosol.  

As PRMT1 has been shown to methylate all FET proteins (see section 1.3) 

(Araya et al., 2005; Pahlich et al., 2005; Jobert et al., 2009; Dormann et al., 2012; 

Tradewell et al., 2012; Yamaguchi and Kitajo, 2012; Scaramuzzino et al., 2013), it can 

be speculated that PRMT1 is downregulated or mutated in FTLD-FUS patients. 
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However, by sequencing PRMT1, PRMT3, and PRMT8 in 20 FTLD-FUS patients, no 

mutations could be identified, demonstrating that mutations in PRMTs are not a 

common cause for the hypomethylation of FET proteins in FTLD-FUS (Ravenscroft et 

al., 2013). Furthermore, another PRMT1-substrate, PABPN1, which has a higher 

affinity for Transportin in the unmethylated state than in the methylated state (Fronz et 

al., 2011), is not co-deposited with FET proteins in post-mortem brains of FTLD-FUS 

patients but shows a normal nuclear staining (Neumann et al., 2012). This suggests that 

PRMT1 activity and levels are probably not altered in FTLD-FUS, since one would 

then also expect PABPN1 to be hypomethylated and co-deposited in pathological 

inclusions. Nevertheless, three different PRMTs (PRMT1, PRMT3, PRMT6) can 

methylate PABPN1 in vitro (Fronz et al., 2008) and it needs to be addressed whether 

PRMT3 and PRMT6 can compensate for a loss of PRMT1 in vivo, explaining why 

PABPN1 may not be co-deposited in FTLD-FUS inclusions despite a PRMT1 defect.  

 

4.5  Multiple hit-model for the pathogenesis of FUS- and TDP-proteinopathies 

 

The finding that ALS-associated FUS mutations disrupt the protein´s NLS and result in 

cytosolic mislocalization (Dormann et al., 2010) has been an important step in 

understanding the pathomechanism of FUS-proteinopathies. However, expression of 

FUS mutants in different cell lines or primary neurons results in a diffuse cytosolic 

distribution of these mutants (Bosco et al., 2010; Dormann et al., 2010; Kino et al., 

2010; Bentmann et al., 2012) and does not mimic the large pathological FUS-inclusions 

observed in ALS-FUS or FTLD-FUS patients (Fig. 11) 

 
 

 

 

 

 

 
Fig. 11. Diffuse distribution of FUS-P525L in neurons is in stark contrast to aggregated FUS-
inclusions. Without additional exposure to cellular stressors, HA-tagged FUS-P525L is diffusely 
distributed in primary neurons (left). This diffuse distribution is in stark contrast to the large cytosolic 
aggregates found in patients with FUS-proteinopathies (right). Similar results are also obtained for TDP-
43. Figure with pathological inclusion taken from (Dormann and Haass, 2011). 
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From this result, we concluded that FUS mutations alone might not be sufficient to 

evoke FUS inclusion formation, but might be rather the first hit in a pathological 

cascade, which brings a nuclear protein into the cytosol. Furthermore, we hypothesized 

that cellular stress may be the second hit, which brings cytosolic FUS or TDP-43 into 

SGs and that SGs might be the origin of the pathological inclusions containing 

aggregated FUS and TDP-43. Several studies that found SG marker proteins in 

pathological FUS or TDP-43 inclusions support this hypothesis (Fujita et al., 2008; 

Volkening et al., 2009; Baumer et al., 2010; Dormann et al., 2010; Elden et al., 2010; 

Liu-Yesucevitz et al., 2010; Bentmann et al., 2012). Nevertheless, SGs in cultured cells 

are under all stress conditions tested reversible, as they fully disassemble during the 

recovery period when cells are not anymore exposed to cellular stress (Fig. 12). Thus, 

even though the sequestration of cytosolic FUS or TDP-43 into SGs might be the 

second hit in FUS and TDP-proteinopathies, it still does not fully reflect all events in 

the pathogenesis of FUS and TDP-43 inclusions. 

 
 

 
Fig. 12. Upon stress, FUS-P525L is recruited into SGs, however, these FUS-containing SGs dissolve 
after recovery from stress. Upon low level transient expression HA-tagged FUS-P525L shows a 
uniform distribution in HeLa cells (left). When cells are exposed to stress, in this case to heat shock, they 
readily form SGs and FUS-P525L is recruited into these granules (middle). When sublethal stress has 
passed, SGs disassemble, release their components and FUS is again uniformly distributed in the cell 
(right). Scale bar: 20 μm. Figures taken from (Bentmann et al., 2012). 
 
 
The results of our group (Dormann et al., 2010; Bentmann et al., 2012) allowed us to 

develop a multiple hit model of FUS and TDP-43 inclusion formation (Fig. 13) 

(Dormann and Haass, 2011). In this model the first hit is the cytosolic mislocalization of 

FUS or TDP-43. The second hit is the recruitment of cytosolic mislocalized FUS or 

TDP-43 in SGs upon cellular stress and the third hit is the conversion of reversible SGs 

into irreversible pathological inclusions.  
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In ALS-FUS, mutations disrupt the PY-NLS of FUS, therefore mutant FUS accumulates 

in the cytoplasm but EWS and TAF15 remain nuclear as their PY-NLS is unaffected 

(Fig. 16A) (Dormann et al., 2010; Dormann and Haass, 2013). In FTLD-FUS, FUS and 

presumably the other FET proteins are hypomethylated, which results in an overly tight 

interaction with Transportin (Dormann et al., 2012). This may cause re-export of the 

FET proteins together with Transportin from the nucleus to the cytoplasm and 

deposition of the Transportin-FET complexes in pathological aggregates (Fig. 16B) 

(Dormann et al., 2010; Dormann and Haass, 2013). Thus, different pathomechanisms 

result in cytosolic mislocalization of FUS in ALS-FUS and FTLD-FUS. Nevertheless, 

cytosolic mislocalization of this, under normal conditions predominantly nuclear, 

protein seems to be an essential first hit in the pathological cascade that leads to FUS 

and TDP-43 inclusion formation.  

4.6.2 Second hit: Recruitment of cytosolic FUS in SGs

The causes for cytosolic mislocalization of FUS in ALS-FUS and FTLD-FUS are 

different, but the consequence is the same. After this first hit, the pathomechanisms of 

ALS-FUS and FTLD-FUS converge in the second hit, which is the recruitment of 

cytosolic FUS in SGs during cellular stress (Fig. 16C). When I transiently transfect 

ALS-associated FUS mutants in HeLa cells or neurons, I obtained diffusely distributed, 

cytosolic FUS and no obvious aggregation (Dormann et al., 2010). Additional stress, 

such as oxidative or thermal stress, is needed to sequester cytosolic FUS into SGs in cell 

culture and thus serves as a second hit in the cascade that ultimately leads to 

pathological FUS inclusions (Bosco et al., 2010; Dormann et al., 2010; Bentmann et al., 

2012).  

In vivo, SGs have been observed upon hypoxia, brain injury and ischemia, e.g. in 

muscles of Drosophila (van der Laan et al., 2012) and in brains of rats and mice (Kim et 

al., 2006; Moisse et al., 2009b). Remarkably, oxidative stress (Barber and Shaw, 2010), 

head injury (Abel, 2007; Chen et al., 2007; Chio et al., 2009a; Gavett et al., 2011), 

reduced blood flow (Tanaka et al., 1993; Rule et al., 2010) and chronic viral infection 

(De Chiara et al., 2012) have been associated with an increased risk for motor neuron 

disease and dementia and might be second hits in vivo in the pathogenesis of ALS-FUS 

and FTLD-FUS, driving diffusely distributed FUS into SGs.  

Notably, FUS-positive SGs in cells and FUS inclusions in ALS and FTLD share 

some important features, corroborating our hypothesis that pathological FUS inclusions 
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may arise from SGs. Both are composed of granular fibrils of about 10 nm with 

moderate electron density and are non-membrane bound structures (Munoz-Garcia and 

Ludwin, 1984; Kedersha and Anderson, 2002; Mosaheb et al., 2005; Souquere et al., 

2009). In addition, certain proteins such as PABP-1, eIF4G and TIA-1 and poly(A)-

mRNA are characteristic components of SGs in cell culture (Kedersha et al., 2000; 

Kedersha et al., 2002) and were found to be co-deposited in pathological FUS inclusion 

in ALS-FUS and FTLD-FUS cases (Fujita et al., 2008; Souquere et al., 2009; Baumer et 

al., 2010; Dormann et al., 2010). Nevertheless, some differences exist, as SGs are 

dynamic and reversible structures that dissolve upon stress removal (Kedersha et al., 

1999; Bentmann et al., 2012), whereas FUS inclusions are insoluble (Neumann et al., 

2009a). SGs in cell culture are usually multiple small granules, whereas FUS inclusions 

in post-mortem brains are much larger and usually only one inclusion per cell is 

observed (Neumann et al., 2009a; Dormann et al., 2010). However, during cellular 

stress SGs can enlarge and coalesce (Kedersha et al., 2000) and it is conceivable that a 

third hit might promote the fusion of SGs to larger insoluble FUS inclusions (Fig. 16D). 
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4.6.3 Third hit: FUS-positive SGs might be converted into pathological inclusions 

How reversible FUS-positive SGs can be converted into insoluble pathological 

inclusions in FUS-proteinopathies remains to be elucidated. Four mutually non-

exclusive mechanisms are conceivable.  

First, irreversible aggregation of FUS might be induced when critical 

concentrations of aggregation-prone RNA-binding proteins are reached within SGs. 

Recently, FUS and other RNA-binding proteins that possess a low complexity domain 

have been shown to aggregate in a concentration-dependent manner and these 

aggregates consist of polymerized amyloid-like fibers (Kato et al., 2012). Alternatively, 

RNA might enhance the aggregation as it was shown for Tau and Prion protein 

(Kampers et al., 1996; Deleault et al., 2003). 

Second, SG dissolution might be impaired, e.g. by chronic inactivation of dual 

specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3) (Wippich et al., 

2013). Kinase activity of DYRK3 is necessary for SG dissolution and release of 

mammalian target of rapamycine complex 1 (mTORC1) from SGs. Thus, inactivation 

of the kinase activity of DYRK3 induces SG formation, SG persistence and inhibition 

of mTORC1 signaling (Wippich et al., 2013). Furthermore, reduced levels of heat shock 

proteins (Gilks et al., 2004; Mazroui et al., 2007), cellular acidosis (Chudinova et al., 

2012) or chronic stress (Meyerowitz et al., 2011) can impair SG dissolution, resulting in 

persistent SGs.  

Third, phosphorylation of eIF2� is one of the first steps in SG formation and 

slows down the rate of translation (Kayali et al., 2005; Jamison et al., 2008; Buchan and 

Parker, 2009; Hofmann et al., 2012). Sustained eIF2�-phosphorylation and hence 

prolonged inhibition of translation initiation was shown to induce cell death, suggesting 

that overactive SG formation and/or impairment in SG recovery can cause 

neurodegeneration (DeGracia and Hu, 2007; DeGracia et al., 2007; Moreno et al., 

2012).  

Finally, SGs have been reported to be cleared by autophagy, indicating that 

dysfunction of autophagy might result in persistent SGs (Buchan et al., 2013). VCP is 

important for autophagosome maturation (Tresse et al., 2010) and mutations in VCP are 

associated with ALS (Watts et al., 2004; Johnson et al., 2010) and a multisystemic 

disorder termed inclusion body myophathy, Paget´s disease of bone and frontotemporal 

dementia (IBMPFD) (Watts et al., 2004). These mutations impair the formation of 

autophagosomes and result in the accumulation of immature autophagic vesicles and 
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ubiquitin-positive protein aggregates. Interestingly in cells depleted of VCP, SGs were 

shown to persist after stress removal (Buchan et al., 2013). This suggests that SGs are 

not cleared when autophagy is dysfunctional and thus might give rise to pathological 

inclusions. Interestingly, mutations in proteins with important functions in autophagy 

e.g. Optineurin (Maruyama et al., 2010), Ubiquilin2 (Deng et al., 2011) and 

SQSTM1/p62 (Fecto et al., 2011) are detected in rare ALS cases. Thus, several pieces 

of evidence support a link between autophagic defects and aggregate formation in ALS 

and FTLD. 

 

4.7 Possible multiple hits in TDP-proteinopathies  

 

Although my work mainly focused on FUS and FET proteins, there is evidence that the 

same multiple hit model can also be applied for TDP-43, which will be discussed in the 

following. 

4.7.1 First hit: Possible mechanisms that drive TDP-43 into the cytosol

Despite extensive research, the mechanism behind TARDBP mutations and the cytosolic 

deposition of TDP-43 inclusions in TDP-proteinopathies is still puzzling. To date, 43 

TARDBP missense mutations have been identified and almost all cluster in the C-

terminal G-rich domain (Fig. 3) and none of these ALS-associated mutations affects the 

classic NLS of TDP-43. An Alanine to Valine (A90V) substitution between the bipartite 

NLSs was reported to disrupt nuclear localization of TDP-43 (Winton et al., 2008b), but 

this mutation is a genetic polymorphism in TDP-43, as it is also detected in healthy 

controls (Guerreiro et al., 2008; Kabashi et al., 2008; Sreedharan et al., 2008; Benajiba 

et al., 2009; Corrado et al., 2009). Although some studies claim that TARDBP mutations 

in the G-rich domain of TDP-43 result in cytosolic mislocalization (Barmada et al., 

2010; Liu-Yesucevitz et al., 2010; Ritson et al., 2010), three TARDBP mutations that I 

investigated (A315T, M337V, G348C) remained nuclear when I expressed them in 

HeLa cells (Bentmann et al., 2012), consistent with reports from others (Kabashi et al., 

2010; Ling et al., 2010; Dewey et al., 2011). Thus, convincing evidence for the idea that 

TARDBP mutations directly disrupt nuclear import of TDP-43 is so far lacking and 

other mechanisms for cytosolic mislocalization of TDP-43 have to be considered.  

A possible mechanism how cytosolic mislocalization of TDP-43 might arise is 

by dysfunction in the Importin �/� pathway. Indeed, a decrease of the nuclear import 
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factors cellular apoptosis susceptibility protein (CAS) and Importin �2 was detected in 

post-mortem brains of ALS-TDP and FTLD-TDP cases (Nishimura et al., 2010). In 

addition, upon axonal injury or cerebral ischemia, importin � levels are reduced and 

result in TDP-43 mislocalization to the cytosol in mouse brains (Sato et al., 2009; 

Shindo et al., 2013).  

4.7.2 Second hit: Cytosolic TDP-43 is recruited into SGs upon cellular stress

I found that not only cytosolic FUS, but also cytosolic TDP-43 localizes to SGs upon 

exposure to various stressors, such as heat shock or oxidative stress (Bentmann et al., 

2012) and several SG proteins have been identified as TDP-43 interactors (Freibaum et 

al., 2010). One study suggested that TARDBP mutations cause a loss-of-function with 

respect to SG formation (McDonald et al., 2011). However, two studies reported more 

SG formation upon overexpression of TDP-43 mutants, indicating a toxic-gain-of-

function (Liu-Yesucevitz et al., 2010; Dewey et al., 2011). In my study, I did not 

observe increased or reduced localization of mutant TDP-43 in SGs, as the amount of 

mutant TDP-43 in SGs was not altered compared to controls (Bentmann et al., 2012). 

Nevertheless, I cannot exclude that other ALS-associated TARDBP mutations that I did 

not examine show an effect on SG recruitment of TDP or SG dynamics.  

 

4.7.3 Third hit: Conversion of SGs into TDP-43 inclusions.  

Once cytosolic TDP-43 is recruited into SGs, the same mechanisms as described in 

4.6.3 for FUS (e.g. chronic stress, dysfunction in dissolution of SGs or autophagic 

clearance of SGs) might convert reversible TDP-43-containing SGs into irreversible 

inclusions composed of aggregated TDP-43.  

Moreover, recent studies have demonstrated that TDP-43 forms aggregates in 

vitro through its C-terminal prion-like G-rich domain (Johnson et al., 2009; Furukawa et 

al., 2011; Guo et al., 2011). Furthermore, intracellular aggregation of TDP-43 can be 

facilitated by addition of fibrillar TDP-43 aggregates prepared in vitro (Furukawa et al., 

2011) or by insoluble TDP-43 isolated from ALS or FTLD patient brains (Nonaka et al., 

2013). Thus, especially for TDP-43 mechanisms such as the unfolded protein response 

inhibiting protein misfolding are essential and an age-dependent decline of proteins 

involved in protein homeostasis might tip the balance towards TDP-43 aggregation. 

Furthermore, mutations in genes coding for proteins involved in the regulation of the 

unfolded protein response (Nishimura et al., 2004) or autophagy (Maruyama et al., 
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2010; Fecto et al., 2011) have been identified in ALS patients and might contribute to 

the pathogenesis of TDP-proteinopathies (Ling et al., 2013).  

Once TDP-43 is trapped in irreversible aggregates, a vicious circle might 

exacerbate the situation (Lee et al., 2012). TDP-43 autoregulation is essential to prevent 

excessive TDP-43 mRNA production and to sustain cell viability (see also 1.2.2). When 

TDP-43 is trapped in aggregates and is not able to autoregulate its own expression, the 

consequences are increased TDP-43 levels that in turn might facilitate TDP-43 

aggregation. Such a feed forward mechanism might ultimately result in formation of 

huge TDP-43 aggregates, loss of nuclear TDP-43 and cell death.  

 

4.8  Alternative scenarios of inclusion formation in neurodegenerative diseases  

 

SG marker proteins have been identified in various neurodegenerative diseases. Not 

only FUS or TDP-43 inclusions in ALS and FTLD contain SG proteins, but SG proteins 

have been also detected e.g. in Tau or polyQ inclusions in Alzheimer´s disease 

(Vanderweyde et al., 2012), FTLD-Tau (Vanderweyde et al., 2012) and Huntington´s 

disease (Waelter et al., 2001). Thus, mounting evidence has implicated SGs as 

important players in several neurodegenerative diseases. In addition to the multiple hit 

model I present in this thesis (sections 4.5 - 4.7), other scenarios can be envisioned that 

will be shortly presented in the following.  

4.8.1 Aggregation independent of SGs  

In an alternative scenario, mutations or altered post-translational modifications may 

provoke aggregation of FUS, TDP-43 or other aggregation-prone protein such as Tau, 

SOD1 or Huntingtin without initial recruitment of these proteins into SGs. TARDBP 

mutations are reported to enhance TDP-43 aggregation in cell culture, yeast and in vitro 

(Johnson et al., 2009; Nonaka et al., 2009; Arai et al., 2010; Liu-Yesucevitz et al., 2010; 

Guo et al., 2011). In addition, phosphorylation and caspase cleavage further increase the 

aggregation propensity of TDP-43 (Zhang et al., 2009; Brady et al., 2011). For FUS, 

alterations in arginine methylation of FUS might increase its aggregation propensity, as 

shown for other RNA-binding proteins that aggregate and become insoluble when 

arginine methylation is reduced (Ostareck-Lederer et al., 2006; Perreault et al., 2007). In 

mice expressing mutant SOD1 show an age-dependent increase of SOD1 aggregation in 

neuronal tissues that resulted in formation of fibrillar aggregates (Wang et al., 2002a; 
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Wang et al., 2002b). These aggregates themselves and/or additional cellular stress might 

then initiate SG formation. Subsequently, SGs might secondarily fuse with already 

existing protein aggregates and give rise to pathological inclusions containing SG 

marker proteins.  

 

4.8.2 Sequestration of nuclear transport factors in SGs 

Nuclear transport factors such as Transportin (Chang and Tarn, 2009), Importin �1 

(Chang and Tarn, 2009), importin �1, �4 and �5 (Fujimura et al., 2010; Mahboubi et al., 

2013) have been shown to be components of SGs. This is an interesting finding, as the 

vast majority of ALS cases and half of the FTLD cases are sporadic and are not caused 

by mutations in FUS or TARDBP, thus alternative mechanisms of formation of cytosolic 

FUS and TDP-43 inclusions have to be supposed. It has been shown that exposure of 

cells to oxidative stress or heat shock causes sequestration of Transportin, Importin �1, 

Importin �4 and Importin �5 in SGs (Chang and Tarn, 2009; Fujimura et al., 2010; 

Mahboubi et al., 2013). This may result in reduced levels of free nuclear transport 

factors in the cytosol, so that proper nuclear import of FUS and TDP-43 might not be 

sustained, resulting in cytosolic mislocalization of FUS and TDP-43. Additional cellular 

stress and/or subsequent protein-protein interactions with transport factors captured in 

these SGs might recruit cytosolic FUS and TDP-43 into SGs, which then might be 

converted into irreversible inclusion by mechanisms discussed in 4.6.3 and 4.7.3. 

 

Concluding remarks 

Within the last decade our knowledge about key genes and pathomechanisms of ALS 

and FTLD has dramatically increased and mounting evidence supports the notion that 

SGs are key players in neurodegeneration. Nevertheless, we are still lacking cell culture 

and animal models that resemble features of ALS and FTLD with progressive 

neurodegeneration and pathological inclusions. My studies suggest that it might be 

important to incorporate different cellular stressors that induce SG formation and are 

linked to neurodegeneration into these models (Bentmann et al., 2013). In addition, 

further hits such as defects in autophagy or chronic stress may be required to trigger 

TDP-43 and FUS pathology and neurodegeneration in existing cell culture and animal 

models. 
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Abbreviations

μm Micrometer 

AdOx Adenosine-2,3-dialdehyde  

A  Adenine  

ALS Amyotrophic lateral sclerosis  

ANG Angiogenin 

ATXN-2 Ataxin-2 

AU-rich Adenine uracil 

C Cytosine 

CAS Cellular apoptosis suceptibility protein  

CFTR Cystic fibrosis transmembrane conductance regulator 

CHMP2B Charged multivesicular body protein 2B  

CHOP C/EBP homologous protein 

CIRP Cold-inducible RNA-binding protein 

C-terminal  Carboxy-terminal end of a protein 

CTF C-terminal fragment 

DAPI  4’,6’-diamidino-2-phenylindole 

DNA Deoxyribonucleic acid  

DPR Dipeptide-repeat proteins 

DYRK3 Dual specificity tyrosine-phosphorylation-regulated kinase 3 

e.g.  Exempli gratia 

eIF Eukaryotic translation initiation factor 

ERG Erythroblastosis virus E26 oncogene homologue 

EWS Ewing sarcoma protein  

fALS familial ALS 

Fig. Figure 

FMRP Fragile X mental retardation protein  

FTD Frontotemporal dementia 

FTLD  Frontotemporal lobar degeneration  

FUS  Fused in sarcoma  

G Guanosine 

G3BP Ras-GTPase-activating protein SH3-domain-binding protein  
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GCN General control nonderepressible  

GDP  Guanosine-5'-diphosphate 

GFP  Green fluorescent protein 

GTP Guanosine-5'-triphosphate 

HA Hemagglutinin 

HeLa Cell line derived from a human cervical carcinoma of Henrietta Lacks 

high mag High magnification 

hnRNP Heterogeneous nuclear ribonucleoprotein 

HRI Heme-regulated initiation factor 2a kinase 

HSPs Heat shock proteins 

i.e. Lat. Id est,  

kDa Kilodalton 

KdITC Dissociation constant isothermal titration calorimetry 

MAPT  Microtubule-associated protein Tau  

meFUS Methylated FUS 

min Minute 

mRNP Messenger ribonucleoprotein  

mTORC1 Mammalian target of rapamycine complex 1 

NE Nuclear envelope 

NES Nuclear export signal  

NLS  Nuclear localization signal  

NPC Nuclear pore complex 

NT control Non-targeting control 

OPTN Optineurin 

PABP-1 Poly(A)-binding protein 1 

PABPN1 Nuclear poly(A) binding protein 

p-bodies Processing bodies 

PERK PKR-like endoplasmic reticulum kinase 

PFN1 Profilin1 

PGRN Progranulin 

PKR Protein kinase R 

polyQ PolyGlutamine  
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PRMTs Protein arginine methyltransferases  

PrP  Prion protein 

PTMs Post-translational modifications  

PY-NLS Proline-tyrosine nuclear localization signal  
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RanGAP  RanGTPase activating protein 
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RNA Ribonucleic acid 

RRM RNA recognition motif 

sALS sporadic ALS 

SAM S-adenosylmethionine  
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SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SGs Stress granules  

siFUS Small interfering RNA against FUS 

siRNA Small interfering RNA 

siTDP Small interfering RNA against TDP-43 

SKAR  Ribosomal S6 kinase 1 Aly/REF-like target 

SMN  Survival of motor neuron  

SOD1  Superoxide dismutase 1 

SQSTM1 Sequestosome 1/p62 

SR protein Serine-arginine protein 

SYGQ Serine-tyrosine-glycine-glutamine  

T Thymine  

TAF15 TATA binding protein-associated factor 15  

TDP-43 Trans-activation response DNA-binding protein of 43 kDa  

TFIID Transcription factor II D 

TG-rich Thymine guanosine-rich 

TIA-1 T cell internal antigen-1 

TIAR TIA-1-related 

TLS Translocated in sarcoma 

TLS Translocated in sarcoma  
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U snRNPs U-rich small nuclear ribonucleoproteins  

UBQLN2 Ubiquilin2 
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UTR Untranslated region 
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VCP  Valosin-containing protein 
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Background: Stress granules (SG) have been implicated in the formation of pathological FUS and TDP-43 inclusions.

Results: SG recruitment of FUS and TDP-43 requires cytosolic mislocalization and their main RNA binding domain and

glycine-rich domain.

Conclusion: FUS and TDP-43 have similar requirements for SG recruitment.

Significance: Understanding how FUS and TDP-43 are recruited to SG is critical for understanding FTLD/ALS pathology.

Cytoplasmic inclusions containing TAR DNA-binding pro-

tein of 43 kDa (TDP-43) or Fused in sarcoma (FUS) are a hall-

mark of amyotrophic lateral sclerosis (ALS) and several

subtypes of frontotemporal lobar degeneration (FTLD). FUS-

positive inclusions in FTLD and ALS patients are consistently

co-labeled with stress granule (SG) marker proteins. Whether

TDP-43 inclusions contain SG markers is currently still

debated. We determined the requirements for SG recruitment

of FUS and TDP-43 and found that cytoplasmic mislocalization

is a common prerequisite for SG recruitment of FUS and TDP-

43. For FUS, the arginine-glycine-glycine zinc finger domain,

which is the protein’s main RNA binding domain, is most

important for SG recruitment, whereas the glycine-rich domain

and RNA recognitionmotif (RRM) domain have aminor contri-

bution and the glutamine-rich domain is dispensable. For TDP-

43, both the RRM1 and the C-terminal glycine-rich domain are

required for SG localization. ALS-associated point mutations

located in the glycine-rich domain of TDP-43 do not affect SG

recruitment. Interestingly, a 25-kDa C-terminal fragment of

TDP-43, which is enriched in FTLD/ALS cortical inclusions but

not spinal cord inclusions, fails to be recruited into SG. Consis-

tently, inclusions in the cortex of FTLD patients, which are

enriched for C-terminal fragments, are not co-labeled with the

SG marker poly(A)-binding protein 1 (PABP-1), whereas inclu-

sions in spinal cord, which contain full-length TDP-43, are fre-

quently positive for this marker protein.

Amyotrophic lateral sclerosis (ALS)3 and frontotemporal

lobar degeneration (FTLD) are related neurodegenerative dis-

eases in which the majority of cases are characterized by the

pathological accumulation of the TAR DNA-binding protein

43 (TDP-43) or the Fused in sarcoma (FUS) protein (1). TDP-43

and FUS are DNA/RNA-binding proteins that are involved in

transcriptional regulation, pre-mRNA splicing, microRNA

processing, and mRNA transport (for review, see in Refs. 2 and

3). Although both proteins exert their function predominantly

in the nucleus, pathological TDP-43 and FUS inclusions are

mostly observed in the cytoplasm. Strikingly, inclusion-bearing

cells often show a loss or reduction of nuclear TDP-43 or FUS

staining (4–11). This has led to the hypothesis that loss of

nuclear TDP-43 or FUS is a crucial step in disease progression.

Both proteins havemultiple RNA binding domains as well as

a protein interaction domain predicted to have prion-like prop-

erties. TDP-43has twoRNArecognitionmotif (RRM)domains,

RRM1 and RRM2, with RRM1 being the predominant func-

tional RNA binding domain (12). In addition, TDP-43 contains

a C-terminal glycine-rich domain that mediates interactions

with other heterogeneous nuclear ribonucleoproteins and is

required for splicing regulation (13). This domain is highly

aggregation-prone (14–18) and due to its amino acid composi-

tion has been suggested to have prion-like properties (19–22).

FUS has multiple RNA binding domains with arginine-glycine-

glycine (RGG)motifs, a RRMdomain, and a zinc finger domain

shown to mediate RNA binding (23, 24). In addition, FUS con-
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tains an N-terminal glutamine-rich domain that functions as a

potent transcriptional activation domain (25) and was pre-

dicted to be a prion-like domain (19–21).

The relevance ofTDP-43 andFUS in the pathogenesis ofALS

and FTLD was strongly supported by the discovery of auto-

somal dominantmutationswithinTARDBP (the gene encoding

TDP-43) and FUS in familial forms of ALS (6, 7, 26). So far,

almost 40 different TARDBP mutations have been reported;

most of them are missense mutations in the glycine-rich C-ter-

minal domain. Although it has been claimed that TARDBP

mutations increase aggregation tendency (14, 15, 27, 28), alter

the protein cellular localization (29–31), or alter the protein

half-life and interactions with other proteins (32), the patho-

genic mechanism of these mutations is still unclear, as many

inconsistencies among different studies have been reported.

Pathogenic mutations in the FUS gene are mostly clustered in

the C-terminal proline-tyrosine nuclear localization signal

(PY-NLS) and impair Transportin-mediated nuclear import of

FUS (33–36). Interestingly, mutations that show a very severe

nuclear import defect, such as P525L, cause an unusually early

disease onset and rapid disease progression (37–39), suggesting

that impaired nuclear import of FUS is causally linked to the

disease (33, 40). Even though it is still unclear how reduced

nuclear import of FUS leads to neurodegeneration, it has been

shown that blockade of Transportin-mediated nuclear import

or FUSmutations leads to recruitment of FUS into stress gran-

ules (SG), implicating SG and reduced nuclear transport in dis-

ease pathogenesis (33, 34, 36, 40, 41). This is supported by the

presence of SG markers in inclusions in ALS/FTLD-FUS

patients (33, 42).

SG are cytosolic structures that form transiently upon expo-

sure of cells to environmental stress, such as heat, viral infec-

tion, oxidative stress, or hypoxia (43). They arise from poly-

somes and store mRNAs encoding housekeeping proteins but

excludemRNAs encoding chaperones and enzymes involved in

damage repair. In addition to mRNAs, SG contain many RNA-

binding proteins, such as poly(A)-binding protein 1 (PABP-1)

and T cell intracellular antigen 1 (TIA-1), which serve as spe-

cific markers for SG (44). In cultured cells, SG formation can be

elicited with a variety of stress treatments, such as heat shock

(42–44 °C), osmotic shock, UV irradiation, or substances that

elicit mitochondrial and/or oxidative stress (44). SG have also

been observed in vivo (41, 45–47), and SG marker proteins

were found to label the pathological FUS inclusions in post

mortembrains ofALS/FTLDpatients (33, 42). Thus, it has been

suggested that SG might be the precursors of the pathological

FUS inclusions in ALS/FTLD-FUS patients (33).

How FUS is recruited to SG is currently unknown. Because

FUS is an RNA-binding protein, it is conceivable that it is

recruited into these structures via its associatedmRNAs. Alter-

natively, protein-protein interactions might be involved in

localization of FUS to SG. Interestingly, TIA-1 contains a prion-

like glutamine-rich domain that has homology to the N-termi-

nal glutamine-rich domain of FUS and promotes SG assembly

by a prion-like aggregation mechanism (48, 49). Whether this

domain of FUS is required for SG recruitment or aggregation is

still unknown.

TDP-43 has also been described to be recruited to SG under

various stress conditions (31, 50–55), and SG-associated pro-

teins have been identified as TDP-43-interacting proteins (56).

However, it is still controversial whether TDP-43 inclusions in

human patients contain SG markers. Two studies found a lack

of SG markers in TDP-43 inclusions of ALS/FTLD-TDP

patients (33, 50), whereas two other studies reported co-label-

ing of TDP-43 inclusions with SG markers (31, 57). Further-

more, it is still not clear if or how TARDBPmutations affect SG

recruitment. One cell culture study reported that TARDBP

mutations increase the number of cells with TDP-43 inclusions

in response to stress (31), whereas another group found that

mutant (R361S) TDP-43 impairs SG formation (54), and a third

study reported that overexpression ofmutant (G348C) TDP-43

leads to larger SG (51).

To address how FUS and TDP-43 are recruited into SG, we

mapped the domains required for SG recruitment of FUS and

TDP-43. In addition, we analyzed the effect of various forms of

ALS-associated TARDBP mutations on SG recruitment of

TDP-43 and further investigated the presence of SG marker

proteins in TDP-43 inclusions in ALS/FTLD-TDP cortex and

spinal cord.

EXPERIMENTAL PROCEDURES

Cell Culture and Transfection—Human cervical carcinoma

cells (HeLa) were cultured in Dulbecco’s modified Eagle’s

medium with Glutamax (Invitrogen) supplemented with 10%

(v/v) fetal calf serum (Invitrogen) and penicillin/streptomycin

(PAA Laboratories). Transfection of HeLa cells was carried out

with FuGENE 6 (Roche Applied Science) or Lipofectamine

2000 (Invitrogen) according to themanufacturer’s instructions.

Hippocampal neurons were isolated from embryonic day 18

rats as described previously (58). Neurons were plated at den-

sities of 18,000 cells/cm2 in 6-cm tissue culture dishes contain-

ing poly-L-lysine (1 mg/ml; Sigma)-coated glass coverslips and

Neurobasal medium supplemented with 2% B27 and 0.5 mM

glutamine (all from Invitrogen). On day in vitro 7 (DIV 7), cul-

tured neuronswere transfectedwith FUSorTDP-43 constructs

using Lipofectamine 2000 (Invitrogen) and were analyzed on

DIV 9.

Stress and Inhibitor Treatment—Heat shock was performed

by incubating cells for 1 h in a tissue culture incubator heated to

44 °C. For recovery experiments, cells were shifted back to

37 °C and incubated another 60 min. Where indicated, cyclo-

heximide (Sigma) was added at a concentration of 20 �g/ml

immediately before shifting cells to 44 °C. Clotrimazole (Sigma

C6019)was dissolved inDMSO (20mM stock) andwas added to

cells under serum-free conditions inOpti-MEM (Invitrogen) at

a final concentration of 20 �M for 30min. Sodium (meta)arsen-

ite (Sigma S71287) was dissolved in water (100 mM stock) and

added to cells at a final concentration of 0.5 mM for 30 min.

Antibodies—The following antibodies were used: �-actin-
specific mouse monoclonal antibody clone AC-74 (Sigma);

GFP-specific rabbit polyclonal antibody (BD Living Colors);

HA-specific mouse monoclonal antibody HA.11 (Covance);

horseradish peroxidase (HRP)-coupled rat monoclonal anti-

HA antibody 3F10 (Roche Applied Science); myc-specific

mouse monoclonal antibody 9E10 (sc-40, Santa Cruz); PABP-
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1-specific rabbit polyclonal antibody (Cell Signaling); TDP-43-

specific rabbit polyclonal antibody TARDBP (Proteintech);

polyclonal antibodies raised against amino acid residues 6–24

of TDP-43 (N-t TDP-43) and amino acid residues 394–414 of

TDP-43 (C-t TDP-43) (59); phosphoserine 409/410-specific

TDP-43 rat monoclonal antibody clone 1D3 (60); TIA-1-spe-

cific goat polyclonal antibody (C-20, Santa Cruz); �-tubulin-
specific mouse monoclonal antibody clone B-5–1-2 (Sigma);

����-tubulin-specific rabbit polyclonal antibody clone Tuj1

(Sigma); V5-specific mouse monoclonal antibody (R960–25,

Invitrogen). Secondary antibodies for immunoblotting were

HRP-coupled goat anti-mouse or anti-rabbit IgGs (Promega).

For immunofluorescence stainings, Alexa-488, Alexa-555,

Alexa-594, and Alexa-647-conjugated donkey anti-mouse,

anti-rabbit, anti-rat or anti-goat IgG (Invitrogen) were used.

cDNA Constructs and Primers—HA-FUS-WT, HA-FUS-

P525L, and GFP-Bimax were described in Dormann et al. (33).

For FUS deletion constructs, the individual domains of FUS

were amplified by PCR, and PCR products were cloned into the

pcDNA3.1/Hygro(�) vector (Invitrogen) via BamHI/XhoI

restriction digest. TDP-WT-V5, myc-TDP-WT, and TDP-�1–
173-V5 were described in Dormann et al. (61). For TDP-

NLSmut, amino acids 82–84 of TDP-WT-V5 were mutated to

alanine by QuikChange mutagenesis (Stratagene) as described

byWinton et al. (62). ALS-associated point mutations (A315T,

M337V, and G348C) were introduced into myc-TDP-WT or

TDP-NLSmut-V5 by QuikChange mutagenesis (Stratagene).

NLSmut-�C encoding amino acids 1–273 of human TDP-43

was amplified by PCR and after BamHI/XbaI restriction digest

was cloned into the pcDNA6/V5-His vector (Invitrogen) that

contained a stop codon between the V5 and the polyhistidine

tag sequence. GFP-tagged constructs were generated by sub-

cloning the respective sequences into pEGFP-C1 (Clontech).

For all constructs, sequence integrity was verified by sequenc-

ing. Oligonucleotides sequences are available upon request.

Human Post Mortem Tissue—Histological analysis included

five cases of FTLD-TDP (FTLD-TDP subtype A (n � 2), sub-

type B (n� 2), and subtype C (n� 1) according toMackenzie et

al. (63)) and four ALS cases with TDP-43 pathology.

Immunocytochemistry and Immunohistochemistry—For im-

munocytochemistry of HeLa cells, cells were fixed for 15min in

4% paraformaldehyde in PBS, permeabilized for 5 min in 0.2%

Triton X-100with 50mMNH4Cl, and subsequently blocked for

20–30 min in 5% donkey serum in PBSS (PBS with 0.1% sapo-

nin). Cells were stained with the indicated primary and second-

ary antibodies diluted in 5% donkey serum in PBSS for 30 min

and washed 3–5 times in PBSS. To visualize nuclei, cells were

stainedwith TO-PRO-3 iodide (Invitrogen, 1:500 in PBS) for 15

min and washed 3 times in PBS. Coverslips weremounted onto

glass slides using ProLong Gold Antifade Reagent (Invitrogen).

For immunocytochemistry of hippocampal neurons, neu-

rons were fixed with 4% paraformaldehyde onDIV 9, quenched

in 50 mM ammonium chloride for 10 min, and permeabilized

with 0.1% Triton X-100 for 3 min. After blocking with 2% fetal

bovine serum (Invitrogen), 2% bovine serum albumin (Sigma),

and 0.2% fish gelatin (Sigma) dissolved in PBS, neurons were

incubated with respective primary and secondary antibodies

diluted in 10% blocking solution. 4�-6-Diamidino-2-phenyl-in-

dol (DAPI, Invitrogen) was used as a nuclear counterstain.

Immunohistochemistry on human post mortem material

was performed on 5-�m-thick sections of formalin-fixed, par-

affin-embedded sections from spinal cord or hippocampus

with the N- and C-terminal TDP-43-specific antibodies and

anti-PABP-1 using the NovoLink™ Polymer Detection kit

(Novocastra) and developed with 3,3�-diaminobenzidine.

Microwave antigen retrieval was performed for all stainings.

Double-label immunofluorescence for PABP-1 and pTDP-43

was performed using Alexa-488- and -594-conjugated second-

ary antibodies. DAPI (Vector Laboratories) was used for

nuclear counterstaining.

Image Acquisition and Quantification—Confocal images

were obtained with an inverted laser scanning confocal micro-

scope (Zeiss Axiovert 200M)with a 63�/1.4N.A. oil immersion

lens using a pinhole diameter of 1 Airy unit in the red channel.

Pictures were taken and analyzed with the LSM 510 confocal

software (Zeiss). For HeLa cells, single confocal images were

taken in the plane of the largest cytosolic area. For neurons, a

series of images along the z axis was taken and projected into a

single image using the maximal projection tool of the LSM 510

software. Immunofluorescence images of brain sections were

obtained by wide-field fluorescence microscopy (BX61 Olym-

pus with digital camera F-view, Olympus).

Nuclear and cytosolic localization was quantified with the

LSM 510 colocalization tool as described in Dormann et al.

(33). Stress granule localization was quantified with Image J as

follows. Image identity was blinded, and FUS or TDP-43

(green)/TIA-1 (red) double positive cytoplasmic granules as

well as the entire cell were manually encircled to measure fluo-

rescence intensities of the green channel. After background

subtraction, the percentage of FUS or TDP-43 in SGwas calcu-

lated. For each condition, 10–20 cells were analyzed. Means

across all cells and standard deviations were calculated.

Cell Lysates and Immunoblotting—Total cell lysates were

prepared in ice cold radioimmune precipitation assay (RIPA)

buffer freshly supplemented with complete EDTA-free prote-

ase inhibitor mixture (Roche Applied Science) for 15 min on

ice. Lysates were sonicated in a bioruptor (Diagenode, 45 s on

high), and protein concentration was determined by BCA pro-

tein assay (Pierce). Equal amounts of protein were separated by

SDS-PAGE, transferred onto a PVDF membrane (Immo-

bilon-P, Millipore), and analyzed by immunoblotting using the

indicated antibodies. Bound antibodies were detected with the

chemiluminescence detection reagents ECL (Amersham Bio-

sciences) or Immobilon (Millipore).

RNA Binding Assay—RNA binding of FUS and TDP-43

domains was determined in an in vitro RNA binding assay

according to Lerga et al. (24). Briefly, proteins were in vitro

transcribed and translated using the TNT T7 Coupled Reticu-

locyte Lysate System (Promega) and labeled with 20 �Ci of
[35S]methionine (Amersham Biosciences). Strep-Tactin-Sep-

harose (IBA) was blocked with 200 �g/ml yeast tRNA (Roche

Applied Science) and 0.125mg/ml bovine serumalbumin (BSA,

New England Biolabs) in wash buffer (10 mM Tris-HCl, pH 7.4,

100mMNaCl, 2.5mMMgCl2, 0.5mMDTT, 0.5mMEGTA, 0.5%

TritonX-100, 10% glycerol) for 30min at 4 °C. Afterward, bioti-
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nylated RNA oligonucleotides (UG12, UGUGUGUGUGUGU-

GUGUGUGUGUG; GGUG, UUGUAUUUUGAGCUAGUU-

UGGUGAU; CCUC, UUGUAUUUUGAGCUAGUUUCCU-

CAU, all from Thermo Fisher Scientific) were bound to the

preblocked Sepharose beads. Beads were rinsed twice with

wash buffer and incubated with radiolabeled samples for 10

min at 4 °C in blocking buffer. Beads were washed 5 times in

wash buffer and boiled 5 min in Laemmli buffer. Bound radio-

labeled proteins were separated by SDS-PAGE and visualized

by fluorography. 10% of the radiolabeled sample was directly

used for SDS-PAGE and fluorography to visualize the input of

radiolabeled protein.

RESULTS

RGG-Zinc Finger Domain of FUS Is Most Important for SG

Recruitment, Whereas Glutamine-rich Domain Is Dispensable—

We and others previously found that cytosolically mislocalized

FUS is recruited to SG upon cellular stress (33, 34, 41). It is,

however, still unknown whether cytosolic FUS is recruited into

SG via its bound mRNAs or via protein-protein interactions,

involving for example its TIA-1-related N-terminal domain or

even both. To determine which domains are responsible for

recruitment of FUS to SG, we expressed individual FUS

domains in HeLa cells with an N-terminal HA tag and analyzed

their SG recruitment in comparison to full-length FUS (see Fig.

1A for a schematic diagram). To this end we introduced the

P525L mutation into the PY-NLS of the respective constructs,

because this mutation causes cytosolic retention of FUS and

allows its efficient recruitment to TIA-1-positive SG (33). In

contrast, constructs carrying a wild-type (WT) PY-NLS were

almost exclusively nuclear and, hence, were not recruited to SG

upon cellular stress (supplemental Fig. S1).

Initially, we investigated a variety of stress conditions such as

heat shock (44 °C), oxidative stress caused by sodium arsenite

treatment, and mitochondrial stress caused by clotrimazole

treatment for their ability to induce SG formation. Consistent

with our previous findings (33), FUS-WT was located in the

nucleus and, therefore, was not recruited to SG upon cellular

FIGURE 1. Cytosolic FUS is recruited to SG upon treatment with various stressors. A, shown is a schematic diagram of FUS wild-type (WT) and P525L mutant
used for transient transfection in HeLa cells. HA, HA epitope tag; Q, glutamine-rich domain; G, glycine-rich domain; R, RRM domain; Z, arginine-glycine-glycine
(RGG) zinc finger domain. B, HeLa cells were transiently transfected with N-terminal-HA-tagged FUS-WT or FUS-P525L. 24 h after transfection cells were
subjected to heat shock (44 °C for 1 h), sodium arsenite (0.5 mM for 30 min), or clotrimazole (20 �M for 30 min) or were left untreated (Control). Cells were fixed,
stained with an HA-specific antibody (green), a TIA-1-specific antibody (red), and a nuclear counterstain (blue) and analyzed by confocal microscopy. Panels to
the right show a higher magnification of the boxed region. Although FUS-WT remained nuclear, FUS-P525L was sequestered into SG under all stress
conditions examined. Scale bars, 20 �m. C, primary rat hippocampal neurons were transiently transfected with HA-FUS-WT or P525L on DIV 7. 48 h after
transfection, neurons were subjected to heat shock (44 °C) for 1 h or left untreated (37 °C). Neurons were fixed and stained with an HA-specific antibody
(green), a TIA-1-specific antibody (red), and the neuronal marker antibody Tuj1 (white) to visualize neuronal morphology. FUS-P525L showed cytoplas-
mic mislocalization and was recruited to TIA-1-positive SG upon heat stress. Insets in the upper right corner show a higher magnification of the boxed
region. Scale bars, 20 �m.
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stress (Fig. 1B, upper panels). In contrast, FUS-P525L was effi-

ciently recruited into SG under all stress conditions examined

(Fig. 1B, lower panels). FUS-P525L-positive granules were bona

fide stress granules, as they were co-localized with the SG

marker TIA-1 and disassembled upon cycloheximide treat-

ment or recovery from heat stress (supplemental Fig. S2A). SG

recruitment of FUS-P525Lwas not a cell type-specific phenom-

enon, as it could also be observed in primary hippocampal neu-

rons (Fig. 1C) and in SH-SY5Y neuroblastoma cells (supple-

mental Fig. S2B).

Using heat shock as stress condition, we next examined how

well the individual domains of FUS are recruited to SG (see the

schematic diagram in Fig. 2A). To obtain quantitative informa-

tion, we measured the percentage of FUS protein localized in

TIA-1-positive SG (see “Experimental Procedures” for details).

In contrast to full-length FUS-P525L, the glutamine-rich

domain (Q) remained diffusely distributed in the cytosol after

heat shock, and no granular localization became evident even

though TIA-1-positive SG formed in transfected cells (Fig. 2, B

and C). Thus, despite its homology to the prion-like domain of

TIA-1 (48, 49), the Q domain of FUS does not seem to be

involved in SG recruitment. The glycine-rich domain (G) and

the RRMdomain (R) remained predominantly diffusely cytoso-

lic, but small amounts were found in TIA-1-positive SG (Fig. 2,

B and C). Finally, the C-terminal RGG-zinc finger domain (Z),

which was rendered cytosolic by addition of the P525L muta-

tion (ZP525L), showed more SG recruitment than all other

domains examined. Because the HA-tagged Q and ZP525L

domain showed very weak expression compared with the other

constructs and could not be detected by Western blot (supple-

mental Fig. S3), we expressed these apparently unstable

domains as GFP fusion proteins along with GFP-FUSP525L as a

control. This yielded higher expression levels (supplemental

Fig. S4A) and confirmed that the ZP525L domain shows SG asso-

ciation, whereas the Q domain does not (supplemental Fig.

S4B).

Because our quantitative analysis revealed that none of the

individual domains was recruited to SG to the same extent as

the full-length protein (Fig. 2C), we analyzed combinations of

the three domains (RZP525L, GRZP525L, and GR) and asked if

this would enhance SG recruitment. Indeed, the combination

of these domains showed an additive effect compared with the

individual domains (Fig. 2, B and C), suggesting that all three

domains contribute to SG recruitment. Finally, we analyzed

combinations of theQ domainwith other domains (QGR,QG),

to exclude that theQdomainmight have a different effect in the

context of the other domains. However, QGR and QG did not

differ in their SG localization from GR and G, respectively,

demonstrating that the Q domain is indeed dispensable for SG

recruitment. Consistently, the GRZP525L protein, which lacks

the Q domain, was recruited to SG equally well as full-length

FUS-P525L. Furthermore, the relatively weak SG recruitment

efficiency of the QGR protein confirms that the C-terminal Z

domain plays the most important role for SG association of

FUS.

In summary, the RGG-zinc finger domain (Z) is the most

important domain for SG recruitment of FUS. The glycine-rich

domain (G) and to a minor extent the RRM domain (R) also

contribute to SG recruitment, whereas the prion-like gluta-

mine-rich domain (Q) is dispensable.

RGG-Zinc Finger Domain Is Main RNA Binding Domain of

FUS—To explore if SG recruitment of the different FUS

domains can be correlated with their ability to bind RNA, we

examined their RNAbinding capacity in an RNAbinding assay.

To this end we in vitro translated the same FUS constructs and

performed a pulldown assay with biotinylated RNA oligonu-

cleotides immobilized on streptavidin beads. Because FUS is

known to preferentially bind to UG-rich sequences, specifically

to oligonucleotides containing a GGUG motif (24), we first

tested the ability of FUS-WT to bind to UG12 or a GGUG-

containing oligonucleotide (UUGUAUUUUGAGCUAGUUU-

GGUGAU, named GGUG). The same oligonucleotide with a

CCUC motif (named CCUC) was used as a negative control.

Consistent with the previously reported finding that FUS binds

to UG-rich sequences, FUS-WTwas efficiently pulled down by

UG12 and to a lesser extent by GGUG but not CCUC (Fig. 3A).

UsingUG12 as RNAbait, we next examined the RNAbinding

capacity of the individual FUS domains and combinations

thereof (Fig. 3B). This demonstrated that only proteins contain-

ing the Z domain (ZP525L, RZP525L, and GRZP525L) showed effi-

cient and selective binding to UG12 RNA (note that compared

with ZP525L, RZP525L and GRZP525L showed stronger signals

already in the input gel, and therefore, signals obtained in the

pulldown assay cannot be compared directly). In contrast, the

Q, G, and R domain and different combinations thereof (GR,

QGR, QG) were not pulled down in our RNA binding assay,

demonstrating that Q, G, and R show no or only weak binding

to UG12 RNA. Thus, the C-terminal Z domain seems to be

responsible for the preferential binding toUG-rich RNA. Inter-

estingly, the domain with the highest RNA binding capacity (Z)

was the one most important for SG recruitment (Fig. 2). This

correlation suggests that FUSmight be recruited to SGby virtue

of its RNAbinding capacity. The domains that contribute to SG

recruitment to a lesser extent (G and R) showed no RNA bind-

ing capacity in our in vitro binding assay, suggesting that they

might contribute to SG recruitment through other means, pos-

sibly protein-protein interactions.

Cytosolic Mislocalization Is Prerequisite for SG Recruitment

of TDP-43—Similar to FUS, TDP-43 has been described to be

localized in SG under various experimental conditions (31,

50–55). Because cytosolic mislocalization is a prerequisite for

efficient SG recruitment of FUS (Fig. 1 and Refs 33 and 41), we

speculated that this might also be the case for TDP-43. To test

this hypothesis, we mutated three essential amino acids of the

classical bipartite nuclear localization signal (62) and analyzed

SG recruitment of this artificial NLS mutant (NLSmut, see Fig.

4A for a schematic diagram) in comparison to wild-type

TDP-43 (TDP-WT) upon exposure to different stressors.

TDP-WT was predominantly nuclear with and without stress

and was not detectable in cytoplasmic granules (Fig. 4B, upper

panels). In contrast, the partially cytosolic NLSmut protein was

readily detectable in TIA-1-positive SG upon heat shock, clo-

trimazole treatment, and sodium arsenite treatment (Fig. 4B,

lower panels). TDP-43-positive granules dissolved upon cyclo-

heximide treatment or recovery fromheat stress (supplemental

Fig. S5A), demonstrating that they are indeed SG and not pro-
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tein aggregates. Moreover, SG recruitment of NLSmut but not

TDP-WT was observed in primary hippocampal neurons (Fig.

4C) and SH-SY5Y cells (supplemental Fig. S5B). Thus, in all cell

types examined, only cytosolic but not nuclear TDP-43 is effi-

ciently recruited to SG.

To corroborate this finding, we expressed an Importin �/�
inhibitor peptide fused to GFP (GFP-Bimax) (64) in HeLa cells.

Consistent with our previous findings (33), this caused endog-

enous TDP-43 to accumulate in the cytosol (Fig. 5). In line with

the view that cytosolicmislocalization ofTDP-43 is required for

FIGURE 2. The C-terminal RGG-zinc finger domain of FUS is the most important domain for SG recruitment. A, shown is a schematic diagram of different
FUS constructs analyzed for SG recruitment. The P525L mutation was introduced into the PY-NLS to obtain proteins mislocalized in the cytosol. B, shown is
immunocytochemistry of HeLa cells expressing the different FUS constructs shown in A. Before fixation, cells were subjected to heat shock (44 °C for 1 h) or left
untreated (37 °C). Cells were stained with an HA-specific antibody (green), a TIA-1-specific antibody (red), and a nuclear counterstain (blue) and analyzed by
confocal microscopy. Panels to the right show a higher magnification of the boxed region. The Z domain is most important for SG recruitment, whereas the Q
domain is dispensable. The G and R domains also contribute to SG recruitment but to a lesser extent than Z. Scale bars � 20 �m. C, the percentage of FUS
localized in TIA-1-positive SG was quantified using ImageJ. 10 –20 cells were analyzed in a blinded manner, means across all cells were calculated, and S.D. are
indicated by error bars. Note that the percentage of FUS-P525L in SG seems surprisingly low when looking at the corresponding confocal images in B. However,
SG are very small compared with the remaining cellular volume, and therefore, FUS-P525L diffusely distributed in the cytosol and nucleus amounts to a
significant percentage of the total protein (more than 80%).
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SG recruitment, endogenous TDP-43 was detectable in heat

shock-induced SG only when its nuclear import was blocked by

expression of the GFP-Bimax inhibitor (Fig. 5). In contrast, in

control (GFP)-transfected cells, TDP-43 remained nuclear and

was not detectable in SG upon heat shock. Together these find-

ings demonstrate that similar to FUS, SG recruitment of

TDP-43 requires at least a partial mislocalization of the nuclear

protein to the cytosol.

ALS-associated TARDBP Mutations Do Not Affect Nuclear

Localization or SG Recruitment—Despite extensive research

over the last few years, the pathogenic mechanism of ALS-as-

sociated TARDBP mutations remains unclear. Some TARDBP

mutations have been reported to cause cytosolic missorting of

the protein (30, 31); however, this could not be confirmed in

other studies (28, 32, 51). Furthermore, it is still not clear if and

how TARDBP mutations affect SG recruitment, as controver-

sial findings have been reported (31, 51, 54).

Because our data above imply that SG recruitment could be

indicative of cytosolic mislocalization, we examined the local-

ization of three well studied ALS-associated TARDBP muta-

tions (A315T, M337V, and G348C) upon heat shock to see if

these mutants would be preferentially detected in SG. How-

ever, none of the three examined ALS-associated point

mutants showed detectable localization in TIA-1-positive

SG upon heat shock (44 °C); instead, they were located

entirely in the nucleus like TDP-WT (Fig. 6A; for expression

levels see Fig. 6B). Consistently, a quantification of the

amount of nuclear/cytosolic TDP-43 in cells cultured under

normal culture conditions (37 °C) demonstrated that the

three point mutants had an almost exclusive nuclear local-

FIGURE 3. The RGG-zinc finger domain of FUS binds to UG-rich RNA. A, FUS-WT was in vitro translated in the presence of [35S]methionine (left lane, input) and
was analyzed for binding to different RNA oligonucleotides immobilized on streptavidin beads (right lanes, UG12, UGUGUGUGUGUGUGUGUGUGUGUG; GGUG,
UUGUAUUUUGAGCUAGUUUGGUGAU; CCUC, UUGUAUUUUGAGCUAGUUUCCUCAU). FUS was pulled down most efficiently by UG12 and to a lesser extent by
GGUG RNA. B, the indicated FUS constructs were in vitro translated in the presence of [35S]methionine (upper panel, Input). Biotinylated UG12 RNA immobilized
on streptavidin beads was used to pull down radioactively labeled proteins (lower panel, Pulldown). CCUC RNA was used as a negative control. FUS-WT and
P525L and all proteins comprising the ZP525L domain were specifically pulled down by UG12 RNA, whereas the other proteins did not show detectable RNA
binding. Open arrowheads indicate degradation products.
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ization and did not differ from the WT protein (Fig. 6C).

Thus, the examined ALS-associated TARDBP mutations

(A315T, M337V, and G348C) do not cause cytoplasmic mis-

localization or SG recruitment of TDP-43.

Because it is possible that TARDBPmutations may affect SG

recruitment once the protein has accumulated in the cytosol,

for example as a consequence of axonal injury (65) or reduced

expression of nuclear import factors (66), we introduced the

same ALS-associatedTARDBPmutations into the NLSmutant

of TDP-43 to see if the mutations would impair or enhance

SG recruitment of cytosolic TDP-43. As expected, TDP-

NLSmutA315T, NLSmutM337V, and NLSmutG348C showed the

same cytosolic mislocalization as NLSmut (Fig. 7A, left panels)

and similar expression levels (Fig. 7B). Upon cellular stress elic-

ited by clotrimazole treatment, all mutants were readily detect-

able in TIA-1-positive SG (Fig. 7A, right panels). A quantitative

analysis of SG recruitment showed that the ALS-associated

TARDBP mutants were incorporated into SG to a similar

degree as NLSmut (Fig. 7C). Taken together, the examined

ALS-associated point mutations in the glycine-rich C-terminal

domain of TDP-43 (A315T,M337V, and G348C) neither cause

cytosolic mislocalization of nuclear TDP-43 nor do they affect

SG recruitment of cytosolic TDP-43.

TDP-43 Inclusions in Spinal Cord but Not in Cortex Contain

SG Marker PABP-1—Even though TDP-43 can be recruited to

SG under various experimental conditions (this study and Refs.

31, 50, 51, 53, and 56), it is still controversial whether TDP-43

inclusions in ALS/FTLD patients contain SG marker proteins.

Two studies showed a lack of SGmarkers in TDP-43 inclusions

(33, 50), whereas two other studies reported co-labeling of

TDP-43 inclusions with SGmarkers (31, 57).We reasoned that

these discrepancies might be due to the fact that TDP-43 inclu-

sions differ in their TDP-43 species composition, with inclu-

sions in the spinal cord of ALS and FTLD patients containing

predominantly full-length TDP-43 and inclusions in the cor-

tex and hippocampus of ALS and FTLD patients being highly

1 414NLSmut

1 414NLS

RRM1

RRM1 RRM2

RRM2

G-rich

G-rich

V5

V5

FIGURE 4. Cytosolic mislocalization is a prerequisite for SG recruitment of TDP-43. A, shown is a schematic diagram of TDP-43 wild-type (WT) and NLS
mutant (NLSmut). NLSmut, triple point mutation in the classical nuclear localization signal (K83A/R84A/K85A); G-rich, glycine-rich domain; V5, V5 epitope
tag. B, C-terminal-V5-tagged TDP-WT or NLSmut were transiently transfected into HeLa cells and 24 h later were subjected to heat shock (44 °C for 1 h),
sodium arsenite (0.5 mM for 30 min), or clotrimazole (20 �M for 30 min) treatment or were left untreated (Control). Cells were fixed, stained with a V5
(green) and TIA-1 (red)-specific antibody and a nuclear counterstain (blue), and analyzed by confocal microscopy. Panels to the right show a higher
magnification of the boxed region. Although the cytosolic NLS mutant was sequestered into SG, TDP-WT remained nuclear under all stress conditions
examined. Scale bars � 20 �m. C, primary rat hippocampal neurons were transiently transfected with V5-tagged TDP-WT or NLSmut. 48 h post-
transfection, neurons were subjected to heat shock (44 °C) for 1 h or left untreated (37 °C). Neurons were fixed and stained with a V5-specific antibody
(green), a TIA-1-specific antibody (red), and the neuronal marker antibody Tuj1 (white) to visualize neuronal morphology. NLSmut showed partial
cytoplasmic mislocalization and was recruited to TIA-1-positive SG upon heat stress. Insets in the upper right corner show a higher magnification of the
boxed region. Scale bars, 20 �m.
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enriched for C-terminal fragments (CTFs) of �25 kDa (59,

60).

To see if differences in the TDP-43 species composition

might account for the different results regarding co-labeling of

TDP-43 inclusions with SGmarkers, we stained sections of spi-

nal cord or cortex (hippocampus) from ALS-TDP and FTLD-

TDPcaseswithN- andC-terminal TDP-43 antibodies aswell as

antibodies specific for the SG marker protein PABP-1. Inclu-

sions in the spinal cord were consistently labeled with both N-

and C-terminal TDP-43 antibodies, whereas inclusions in the

cortex, including those in dentate granule neurons, were only

labeled with the C-terminal antibody (Fig. 8), confirming pre-

vious results (59). Cortical TDP-43 inclusions were not immu-

noreactive for PABP-1, confirming our previous results (33).

However, we revealed PABP-1 positivity in a subset (�66%) of

TDP-43-positive inclusions in the spinal cord, as demonstrated

by double-label immunofluorescence (Fig. 8 and supplemental

Fig. S6). Thus, TDP-43 inclusions in spinal cord and cortex

show a differential co-labeling for the SG marker protein

PABP-1.

25-kDa CTF of TDP-43 Is Not Recruited to SG—We specu-

lated that the differences in SG marker co-labeling of TDP-43

inclusions in different tissues may be due to the presence of

different TDP-43 species, with distinct abilities to be recruited

to SG. Because inclusions in cortex are highly enriched in CTFs

of TDP-43 (59, 60) and are negative for PABP-1 (Fig. 8), we

wondered if CTFs may be unable to associate with SG. To test

this hypothesis, we expressed a CTF of �25 kDa (TDP�1–173,
see Fig. 9A for a schematic diagram) in HeLa cells and analyzed

its recruitment to TIA-1-positive SG upon cellular stress. Like

NLSmut, TDP�1–173 was partially localized in the cytosol

under control conditions (Fig. 9B, left panels), as it lacks the

N-terminal domain including the protein NLS (Fig. 9A). How-

ever, in contrast to NLSmut, TDP�1–173 remained diffusely

distributed in the cytosol upon clotrimazole treatment and,

consistent with our hypothesis, was very poorly incorporated

into TIA-1-positive SG (Fig. 9, B, right panels, and C). Because

TDP�1–173 showed very low expression levels compared with

NLSmut (Fig. 9D), we repeated the experiment with GFP-

tagged TDP�1–173 to exclude that the lack of SG association

was simply due to low protein levels. Similar to V5-tagged

TDP�1–173, the highly expressed GFP-tagged TDP�1–173
remained diffusely distributed upon cellular stress (supplemen-

tal Fig. S7,A andB). Thus, independent of expression levels, the

25-kDa CTF fails to associate with SG. This might explain why

cortical TDP-43 inclusions, which are highly enriched in CTFs

and contain little full-lengthTDP-43 (Fig. 8 andRefs. 59 and 60)

are not co-labeled with SG marker proteins.

C-terminal Glycine-rich Domain of TDP-43 Is Required for

Efficient SG Recruitment—Surprisingly, not only deletion of

amino acids 1–173 but also deletion of the C-terminal glycine-

rich domain fromTDP-43NLSmut (NLSmut-�C, see the sche-
matic diagram in Fig. 9A) led to a strong reduction in SG

recruitment, as NLSmut-�C remainedmostly diffusely distrib-

uted in the cytoplasm upon cellular stress (Fig. 9, B and C).

Expression level differences could not account for this effect, as

NLSmut-�Cwas at least as well expressed asNLSmut (Fig. 9D).

To test whether reduced RNA binding may be responsible for

reduced SG recruitment of NLSmut-�C, we performed an

RNA binding assay using UG12 RNA as a TDP-43-specific tar-

get sequence (12). As expected, TDP-WTwas efficiently pulled

down by UG12 (Fig. 10A). Interestingly, TDP-WT bound

equally well to GGUG but not the corresponding CCUC oligo-

nucleotide, consistent with the recent finding that TDP-43 can

bind to sequences other than UG repeats (67).

Using UG12 as the RNA bait, we next compared the RNA

binding capacity of full-length TDP-43 (WT and NLSmut) and

the two deletion mutants NLSmut�C and �1–173. The full-

length proteins were specifically pulled down in our RNA bind-

ing assay, whereas TDP-�1–173, which lacks the protein main

RNA recognition motif (RRM1) (12), failed to bind to UG12

RNA (Fig. 10B), which might explain why this fragment is not

recruited to SG in FTLD/ALS patients (Fig. 8) and in cultured

cells (Fig. 9). In contrast, NLSmut-�C bound to UG12 RNA as

efficiently as full-length TDP-43 (Fig. 10B), demonstrating that

the reduced SG recruitment capacity of this deletion mutant

cannot be explained by reduced RNA binding. Thus, the gly-

cine-rich domain seems to possess other, so far unknown fea-

tures that are important for SG recruitment.

In summary, RNA binding of TDP-43 depends on the N-ter-

minal RRM1 domain but not the C-terminal glycine-rich

domain. Because both domains are required for SG recruitment

of TDP-43, we suggest that RNA binding plus additional fea-

tures encoded in the C-terminal glycine-rich domain such as

protein-protein interactions might contribute to SG recruit-

ment of TDP-43.

FIGURE 5. Endogenous TDP-43 is sequestered into heat shock-induced
SG upon inhibition of Importin �/�-dependent nuclear import. HeLa cells
were transfected with an Importin �/�-specific peptide inhibitor fused to GFP
(GFP-Bimax) or GFP as a control (green). 24 h post-transfection cells were sub-
jected to heat shock (44 °C for 1 h) or kept at control temperature (37 °C)
before fixation. Cells were co-stained for endogenous TDP-43 (red) and TIA-1
(white) and analyzed by confocal microscopy. Expression of GFP-Bimax
resulted in cytosolic mislocalization of endogenous TDP-43 and recruitment
into SG upon heat shock. Under control conditions (GFP), TDP-43 was pre-
dominantly nuclear and did not colocalize with SG after heat shock. Scale
bars � 20 �m.
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DISCUSSION

Two different mechanisms of how FUS and TDP-43 are

recruited to SG can be envisaged. First, because both proteins

have multiple RNA binding motifs (12, 24, 68), it is conceivable

that they are recruited into SG via boundmRNAs. Second, pro-

tein-protein interactions with other SG-associated proteins

could be involved. Our results suggest that RNAbinding plays a

crucial role for SG recruitment of both FUS and TDP-43, as

deletion mutants lacking the principal RNA binding domains

(Z domain of FUS and RRM1 domain of TDP-43) showed poor

recruitment to SG. This correlation between RNA binding and

SG recruitment suggests that FUS and TDP-43 might be

recruited into SG through binding to UG-rich RNA sequences

(see the model in Fig. 11), although we cannot exclude that

protein-protein interactions mediated by the Z and RRM1

domain are involved as well.

In addition, domains that did not bind to UG-rich RNA in

our in vitro assay (G and R domain of FUS and the C-terminal

glycine-rich domain of TDP-43) seem to contribute to SG

recruitment as well, as deletion of these domains impaired SG

recruitment. Given their lack of RNA binding, these domains

may contribute to SG recruitment by providing protein-protein

interactions with other SG proteins (symbolized by protein X

and Y in Fig. 11). However, we cannot exclude that these puta-

tive protein-interacting domains bind to RNA sequences not

represented in our in vitro binding assay and that these protein-

RNA interactions contribute to SG recruitment. Indeed, recent

cross-linking and immunoprecipitation (CLIP) experiments

have shown that FUS can bind to AU-rich stem loop structures

(69) and TDP-43 can bind to sequences other than UG repeats

(67).Which domain(s) of FUS andTDP-43mediates binding to

these alternative target sequences remains to be investigated.

Our finding that the C-terminal glycine-rich domain of

TDP-43 (amino acid residues 274–414) is required for efficient

SG recruitment is consistent with previously published data

showing that residues 268–315 are necessary for localization of

TDP-43within SG (50, 51). Because the C-terminal domain has

been reported to mediate protein-protein interactions, such as

interactions with other heterogeneous nuclear ribonucleopro-

teins (13) including FUS (70), it seems likely that protein-pro-

FIGURE 6. ALS-associated TARDBP mutations do not alter the cellular localization of TDP-43. A, Myc-tagged wild-type TDP-WT or TDP-43 carrying the
indicated ALS-associated point mutations (A315T, M337V, or G348C) were transiently transfected into HeLa cells. 24 h post-transfection cells were subjected
to heat shock (44 °C for 1 h) or kept at control temperature (37 °C). Afterward cells were fixed, stained with a myc (green) and TIA-1 (red)-specific antibody and
a nuclei counterstain (blue), and analyzed by confocal microscopy. Both TDP-WT and the ALS-associated point mutants were nuclear under control conditions
and remained nuclear upon heat shock. Scale bars � 20 �m. B, shown are expression levels of TDP-43 constructs used in A. Total cell lysates were analyzed by
immunoblotting with a myc-specific antibody (upper panel). Tubulin served as a loading control (lower panel). All lanes were from the same exposure of the
same blot. C, quantification of nuclear and cytosolic fluorescence intensities of myc staining at 37 °C is shown. Error bars indicate S.D.
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tein interactions contribute to SG recruitment of TDP-43,

although the protein(s) involved remains to be identified (pro-

tein X in Fig. 11). Freibaum et al. (56) identified numerous pro-

teins involved in translation and SG-associated proteins as

TDP-43-interacting proteins. Furthermore, TDP-43 andTIA-1

were found to interact in co-immunoprecipitation assays; how-

ever, this was only seen upon overexpression of both proteins

(31). Nevertheless, TIA-1 and other SG-associated proteins are

obvious candidates for proteins that recruit TDP-43 into SG via

its C-terminal domain.

Althoughwe did not observemyc- orV5-taggedTDP-WTor

endogenous TDP-43 in SG after various stress treatments (Fig.

4–7), it is possible that very small amounts of TDP-43, unde-

tectable by our antibodies, are present in SG under these con-

ditions. That this might be the case is suggested by several

reports describing at least small amounts of wild-type TDP-43

in SG upon various stress treatments (31, 50, 51, 53, 54, 56).

Nevertheless, we could show that an artificial mutation in the

TDP-43 NLS (NLSmut) or inhibition of Importin �/�-medi-

ated nuclear import readily caused SG localization of TDP-43

upon cellular stress. We, therefore, suggest that cytosolic mis-

localization is a prerequisite for recruitment ofTDP-43 into SG.

Cytosolic mislocalization may be artificially caused by high

expression levels of TDP-WT and thusmay allow unphysiolog-

ical SG recruitment. Under physiological expression levels, we

suggest that a nuclear import defect as the primary hit and

cellular stress as the second hit are required for SG recruitment

of TDP-43 (33, 40). In vivo, axonal injury (65) or reduced

expression of nuclear transport factors, such as cellular apopto-

sis susceptibility protein (CAS) and Importin-�2 (66), might

constitute such a primary hit leading to the cytoplasmic mislo-

calization of TDP-43 in ALS/FTLD-TDP patients.

What remains enigmatic is the cellular mechanism of ALS-

associated TARDBP mutations. In contrast to ALS-associated

FIGURE 7. ALS-associated TARDBP mutations do not affect SG recruitment of cytosolic TDP-43. ALS-associated point mutations (A315T, M337V, G348C)
were introduced into the TDP-43 NLS mutant (NLSmutA315T, NLSmutM337V, NLSmutG348C), and the effect of mutations on SG recruitment was analyzed. A, HeLa
cells transiently transfected with the indicated TDP-43 constructs were incubated with clotrimazole for 30 min or left untreated (Control). Cells were fixed,
stained with a V5 (green) and TIA-1 (red)-specific antibody and a nuclear counterstain (blue), and analyzed by confocal microscopy. ALS-associated point
mutations did not affect SG recruitment of cytosolic TDP-43. Scale bars � 20 �m. B, protein levels in total cell lysates were analyzed by immunoblotting with a
V5-specific antibody (upper panel), and tubulin served as a loading control (lower panel). The black arrowhead indicates full-length TDP-43, and the white
arrowhead indicates caspase-generated 35-kDa CTF frequently observed under transient transfection conditions (61, 75). C, the percentage of TDP-43 localized
in TIA-1-positive SG was quantified using ImageJ. 15–20 cells were analyzed in a blinded manner, means across all cells were calculated, and S.D. are indicated
by error bars.
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FUS mutations, TARDBP mutations in the glycine-rich C-ter-

minal domain (A315T, M337V, and G348C) did not affect

nuclear localization in our study, consistent with previous

reports (28, 32, 51). Whether ALS-associated TARDBP muta-

tions affect SG formation was controversial. Two studies

reported that TARDBP mutations increase the number or size

FIGURE 8. TDP-43 inclusions in spinal cord but not hippocampus are frequently co-labeled for the SG marker protein PABP-1. TDP-43 immunohisto-
chemistry performed on formalin-fixed, paraffin-embedded tissue sections of spinal cord (upper panels) or hippocampus (lower panels) from FTLD-TDP and
ALS-TDP cases is shown. Staining with N-terminal and C-terminal TDP-43-specific antibodies demonstrated labeling of neuronal cytoplasmic inclusions in
motor neurons in the spinal cord with both antibodies (ALS case #1 shown), whereas inclusions in dentate granule neurons in the hippocampus were labeled
only with the C-terminal antibody (FTLD-TDP case #1 shown). Double-label immunofluorescence stainings of the same cases showed co-labeling of phospho-
TDP-43 positive inclusions (green) with the SG marker protein PABP-1 (red) in the spinal cord but not in cortical inclusions. Nuclei were stained with DAPI (blue).
Scale bars � 10 �m.

FIGURE 9. 25 kDa C-terminal fragment and a C-terminal deletion mutant of TDP-43 are poorly sequestered into SG. A, shown is a schematic diagram of
TDP-43 deletion mutants analyzed for SG recruitment. The deletion mutant �1–173 was chosen to mimic the 25-kDa CTF found to be deposited in cortical
regions of FTLD-TDP patients (4, 59). The C-terminal deletion mutant (NLSmut�C) lacks the prion-like glycine-rich domain. B, the indicated TDP-43 constructs
were transiently transfected in HeLa cells. Before fixation, cells were treated with clotrimazole (20 �M, 30 min) or left untreated (control). Subsequently, cells
were stained with a V5 (green) and TIA-1 (red)-specific antibody and a nuclear counterstain (blue) and analyzed by confocal microscopy. Panels to the right show
a higher magnification of the boxed region. In contrast to full-length TDP-NLSmut, both deletion mutants remained predominantly diffuse in the cytosol upon
heat shock and were poorly recruited to SG. Scale bars � 20 �m. C, the percentage of TDP-43 localized in TIA-1-positive SG was quantified using ImageJ. 15–20
cells were analyzed in a blinded manner, means across all cells were calculated, and S.D. are indicated by error bars. D, protein levels in total cell lysates were
analyzed by immunoblotting with a V5-specific antibody (upper panel); tubulin served as a loading control (lower panel). Black arrowheads indicate full-length
TDP-NLSmut or the two deletion mutants, and white arrowheads indicate degradation products. All lanes were from the same exposure of the same blot.
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of SG, suggesting a toxic gain-of-function mechanism (31, 51),

whereas another group found that R361S is a loss-of-function

mutationwith regard to SG formation, leading to fewer SG (54).

In our study the percentage of TDP-NLSmut in SG was not

significantly altered by the presence of ALS-associated point

mutations (A315T, M337V, and G348C) despite the impor-

tance of the C-terminal domain for SG recruitment. However,

it remains possible that the dynamics of SG formation or disso-

lution are affected by ALS-associated TARDBP mutations, as

recently suggested for R361S (54).

Another dispute that has remained unresolved is whether

TDP-43 inclusions in FTLD and ALS patients contain SG

marker proteins or not. Two studies reported a co-labeling of

TDP-43 inclusionswith SGmarkers (31, 57), whereas two other

A

B
Input

S  labeled:35 S  labeled:35

S  labeled:35

FIGURE 10. The C-terminal deletion mutant of TDP-43 still binds to UG12 RNA. A, TDP-WT was in vitro translated in the presence of [35S]methionine (left lane,
Input) and was analyzed for binding to different RNA oligonucleotides immobilized on streptavidin beads (right lanes, UG12, UGUGUGUGUGUGUGUGUGUGU-
GUG; GGUG, UUGUAUUUUGAGCUAGUUUGGUGAU; CCUC, UUGUAUUUUGAGCUAGUUUCCUCAU). TDP-43 bound to both UG12 and GGUG RNA but not to
CCUC RNA). B, the indicated TDP-43 constructs were in vitro translated in the presence of [35S]methionine (upper panel, Input). Biotinylated UG12 RNA or CCUC
control RNA were immobilized on streptavidin beads and were used to pull down radioactively labeled proteins (lower panel, Pulldown). TDP-WT and NLSmut
as well as the C-terminal deletion mutant NLSmut-�C were specifically pulled down by UG12 RNA, whereas the �1–173 deletion mutant resembling the 25-kDa
CTF did not bind to UG12 RNA.

FIGURE 11. Model of SG recruitment of TDP-43 and FUS. Upon cellular stress, translation of mRNAs is arrested and translationally silent preinitiation
complexes that contain mRNA, the small ribosomal subunit (40 S), early initiation factors (e.g. eIF3, eIF4A, eIF4G), and PABP-1 are packaged into SG. We suggest
that recruitment of TDP-43 (left) or FUS (right) into SG involves both protein-RNA and protein-protein interactions. TDP-43 and FUS bind to UG-rich mRNA
sequences via their main RNA binding domain (RRM1 in TDP-43 and RGG-zinc finger (Z) domain in FUS, respectively) and thus might be recruited into SG via
their associated mRNAs. Because additional domains that did not show binding to UG-rich RNA in our RNA binding assay also contribute to SG recruitment of
TDP-43 and FUS, we suggest that additional protein-protein interactions with proteins X and Y are involved in SG recruitment of TDP-43 and FUS.
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studies did not find evidence for SGmarker co-labeling (33, 50).

Our data suggest that SG marker co-labeling is dependent on

the presence of full-length TDP-43, which is muchmore abun-

dant in spinal cord inclusions than in cortical TDP-43 inclu-

sions (this study and Refs. 59 and 60). We, therefore, suggest

that the reported discrepancies could be due to the presence of

different TDP-43 species in inclusions in different regions of

the central nervous system. How CTFs are generated and why

cortical TDP-43 inclusions are highly enriched in these frag-

ments is still unclear. The absence of SG markers from CTF-

containing inclusions suggests that these inclusions either arise

independently of SG or that CTFs dissociate from SG upon

proteolytic cleavage of full-length TDP-43, presumably due to

its reduced RNA binding capacity. How exactly SG relate to

CTF generation andTDP-43 inclusion formation remains to be

investigated.

The presence of SG marker proteins and RNA in pathologi-

cal FUS or TDP-43 inclusions has led to the hypothesis that

these inclusions could arise from stress granules (31, 33, 42, 55).

Indeed, various forms of stress have been implicated in the

pathogenesis of ALS, including oxidative stress, mitochondrial

dysfunction, damage to the vasculature, and inflammatory

reactions (71–73). Even though it remains to be seen whether

SG are actually pathogenic or protective, this model offers a

plausible mechanism for how pathological aggregation of cyto-

solic FUS or TDP-43 might be triggered in response to cellular

stress. Recruitment into SGmost likely increases the local FUS

or TDP-43 concentration, which might seed aggregation of

these otherwise soluble proteins in a prion-like manner (74).

Whether the prion-like domains of FUS and TDP-43 are sec-

ondarily involved in seeding aggregation remains to be seen.

We note that so far cellular models were unable to recapitulate

bona fide FUS or TDP-43 aggregation, as FUS- or TDP-43-

containing SG are rapidly disassembled upon stress removal

(Ref. 41 and this study). We, therefore, believe that additional

hits or chronic stress might be needed for irreversible aggrega-

tion of SG-localized proteins (40).
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SUPPLEMENTAL DATA 
 
FIGURE S1.  Expression of FUS domain constructs containing the WT PY-NLS. 
Immunocytochemistry of transiently transfected HeLa cells expressing HA-tagged FUS-Z, FUS-RZ and 
FUS-GRZ, respectively.  24 hours after transfection cells were exposed to heat shock (44°C for 1 hour) or 
left untreated (37°C).  Cells were fixed, stained with an HA-specific antibody (green), a TIA-1–specific 
antibody (red) and a nuclear counterstain (blue) and were analyzed by confocal microscopy.  FUS proteins 
containing the Z-domain with the WT PY-NLS were nuclear both under control conditions and after heat 
shock.  Scale bars: 20 μm.  
 
FIGURE S2.  Heat shock-induced FUS-positive granules are SG.  
(A) To verify that stress-induced FUS-positive granules are bona fide SG, HeLa cells expressing HA-FUS-
P525L were treated with cycloheximide (CHX) during heat shock (44°C + CHX) or were allowed to 
recover from heat shock (44°C + rec) by incubation at 37°C for 1 hour subsequent to heat shock.  
Afterwards cells were fixed, stained with an HA-specific antibody (green), a TIA-1-specific antibody (red) 
and a nuclear counterstain (blue) and were analyzed by confocal microscopy.  CHX blocks translational 
elongation and is a well-known inhibitor of SG assembly.  Addition of CHX prevented the formation of 
TIA-1/FUS-positive SG.  Moreover, FUS-positive granules disassembled after recovery from heat stress, 
confirming their SG identity.  Scale bars: 20 μm.  
(B) SH-SY5Y neuroblastoma cells were transiently transfected with HA-tagged FUS-WT or FUS-P525L. 
24 hours post-transfection cells were subjected to heat shock (44°C for 1 hour) or kept at control 
temperature (37°C).  SH-SY5Y cells were fixed, stained with an HA-specific antibody (green), a TIA-1-
specific antibody (red) and a nuclear counterstain (blue) and were analyzed using confocal microscopy.  
Like in HeLa cells, FUS-WT was nuclear with and without stress, while cytoplasmically mislocalized FUS-
P525L was recruited into SG upon cellular stress.  Scale bars: 20 μm.  
 
FIGURE S3.  Expression of FUS domain constructs.   
Expression levels of HA-FUS constructs were examined by immunoblot.  Total cell lysates were prepared 
in RIPA buffer and after SDS-PAGE were analyzed by immunoblotting with an HA-specific antibody 
(upper panel).  A longer exposure of the same blot shows the weakly expressed R domain (middle panel).  
Actin served as a loading control (lower panel).  Note that HA-tagged Q and ZP525L were not detectable by 
HA immunoblot.  
 
FIGURE S4.  GFP-tagged FUS-ZP525L but not Q is recruited to SG. 
Since HA-tagged FUS-Q and ZP525L were poorly expressed and not detectable by HA immunoblot, GFP-Q, 
GFP-ZP525L and full-length GFP-FUS-P525L were expressed in HeLa cells and analyzed for expression and 
SG recruitment 24 hours post-transfection. 
(A) Protein levels in total cell lysates were analyzed by immunoblotting with a GFP-specific antibody 
(upper panel).  �-Actin served as a loading control (lower panel).  Black arrowheads indicate GFP-tagged 
FUS proteins, white arrowhead indicates a degradation product.   
(B) 24 hours post-transfection cells were subjected to heat shock (44°C for 1 hour) or left untreated (37°C).  
Cells were fixed, stained with a TIA-1-specific antibody (red) and a nuclear counterstain (blue) and 
analyzed by confocal microscopy.  GFP-tagged proteins were visualized in the green channel via GFP 
fluorescence (green).  Note that despite the P525L mutation, GFP-ZP525L showed a more prominent nuclear 
localization than full-length GFP-FUS-P525L.  Nevertheless, GFP-ZP525L can be found to overlap with  
TIA-1, whereas GFP-Q is poorly recruited to SG and remains mainly diffusely distributed in the cytosol.  
Scale bars = 20 μm.   
 
FIGURE S5.  Heat shock-induced TDP-43-positive granules are SG.  
(A) To verify that stress-induced TDP-43-positive granules are bona fide SG, HeLa cells expressing V5-
tagged TDP-43 NLSmut were treated with cycloheximide (CHX) during heat shock (44°C + CHX) or were 
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allowed to recover from heat shock (44°C + rec) by incubation at 37°C for 1 hour subsequent to heat shock.  
Subsequently, cells were fixed, stained with a V5-specific antibody (green), a TIA-1-specific antibody (red) 
and a nuclear counterstain (blue) and analyzed by confocal microscopy.  CHX-treated cells show no SG 
and TDP-43-positive granular structures resolve after recovery from heat shock, showing that the TDP-43-
positive granules are indeed SG and not aggregates due to overexpression of TDP-43.  Scale bars: 20 μm.  
(B) Immunocytochemistry of SH-SY5Y cells transfected with TDP-WT-V5 or TDP-NLSmut-V5.  24 hours 
post-transfection, cells were subjected to heat shock (44°C for 1 hour) or left untreated (37°C).  Cells were 
fixed, stained with a V5-specific antibody (green), a TIA-1-specific antibody (red) and a nuclear 
counterstain and analyzed by confocal microscopy.  Like in Hela cells, TDP-WT remained nuclear and 
NLSmut was sequestered into SG upon heat stress.  Scale bars: 20 μm.   
 
FIGURE S6.  Percentage of PABP-1-positive TDP-43 inclusions in the spinal cord of ALS-TDP and 
FTLD-TDP patients.  
(A) Double-label immunofluorescence stainings for pTDP-43 (green) and the SG marker PABP-1 (red) 
showing colocalization in inclusions in ALS case #2 (I) and ALS case #3 (II).  Notice that a subset of 
pTDP-43 inclusions in the spinal cord in all cases are only labeled for pTDP-43, as shown here for ALS 
case #1 (III).  Nuclei were stained with DAPI (blue).  Scale bar = 10 �M. 
(B) pTDP-43 and PABP-1-labeled neuronal cytoplasmic inclusions in the anterior horn on double-label 
immunofluorescence stainings were counted on 1-2 spinal cord sections from each case.  66 % of the 
pTDP-43-positive inclusions showed co-labeling with the SG marker protein PABP-1. 
 
FIGURE S7.  GFP-tagged TDP-�1-173 is not recruited to SG. 
Since V5-tagged TDP-�1-173 was poorly expressed and only gave a weak band in V5 immunoblot, GFP-
�1-173 and full-length GFP-NLSmut were expressed in HeLa cells and analyzed for expression and SG 
recruitment 24 hours post-transfection. 
(A) Protein levels in total cell lysates were analyzed by immunoblotting with a GFP-specific antibody 
(upper panel).  �-Actin served as a loading control (lower panel).  Black arrowheads indicate GFP-tagged 
TDP-43 proteins, white arrowheads indicate degradation products.   
(B) 24 hours post-transfection cells were treated with clotrimazole (20 μM for 30 min) or left untreated 
(control).  Cells  were fixed, stained with a TIA-1-specific antibody (red) and a nuclear counterstain (blue) 
and analyzed by confocal microscopy.  GFP-tagged proteins were visualized in the green channel via GFP 
fluorescence (green).  Despite high expression levels, GFP-�1-173 did not co-localize with TIA-1-positive 
granules, whereas full-length GFP-NLSmut was readily recruited to SG.  Scale bars = 20 μm.   
 
�
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Fig. S4
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Fig. S5

A

B

130



Fig. S6
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ALS #1 7 4 57.14%
ALS #2 9 7 77.78%
ALS #3 3 2 66.67%
ALS #4 4 3 75.00%
FTLD-TDP #1 11 7 63.64%
FTLD-TDP #2 5 3 60.00%
Total 39 26 66.67%
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A

B

37

50

75

50

N
LS

m
ut

�1
-1

73

Control Clotrimazole

GFP-TDP TIA-1 Merge/ nuclei GFP-TDP TIA-1 Merge/ nuclei

Actin

full length

�1-173

kDa

132



BRAIN
A JOURNAL OF NEUROLOGY
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Accumulation of the DNA/RNA binding protein fused in sarcoma as cytoplasmic inclusions in neurons and glial cells is the

pathological hallmark of all patients with amyotrophic lateral sclerosis with mutations in FUS as well as in several subtypes

of frontotemporal lobar degeneration, which are not associated with FUS mutations. The mechanisms leading to inclusion

formation and fused in sarcoma-associated neurodegeneration are only poorly understood. Because fused in sarcoma belongs

to a family of proteins known as FET, which also includes Ewing’s sarcoma and TATA-binding protein-associated factor

15, we investigated the potential involvement of these other FET protein family members in the pathogenesis of fused in

sarcoma proteinopathies. Immunohistochemical analysis of FET proteins revealed a striking difference among the various con-

ditions, with pathology in amyotrophic lateral sclerosis with FUS mutations being labelled exclusively for fused in sarcoma,

whereas fused in sarcoma-positive inclusions in subtypes of frontotemporal lobar degeneration also consistently immunostained

for TATA-binding protein-associated factor 15 and variably for Ewing’s sarcoma. Immunoblot analysis of proteins extracted from

post-mortem tissue of frontotemporal lobar degeneration with fused in sarcoma pathology demonstrated a relative shift of all

FET proteins towards insoluble protein fractions, while genetic analysis of the TATA-binding protein-associated factor 15

and Ewing’s sarcoma gene did not identify any pathogenic variants. Cell culture experiments replicated the findings of amyo-

trophic lateral sclerosis with FUS mutations by confirming the absence of TATA-binding protein-associated factor 15 and

Ewing’s sarcoma alterations upon expression of mutant fused in sarcoma. In contrast, all endogenous FET proteins were
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recruited into cytoplasmic stress granules upon general inhibition of Transportin-mediated nuclear import, mimicking the

findings in frontotemporal lobar degeneration with fused in sarcoma pathology. These results allow a separation of fused in

sarcoma proteinopathies caused by FUS mutations from those without a known genetic cause based on neuropathological

features. More importantly, our data imply different pathological processes underlying inclusion formation and cell death

between both conditions; the pathogenesis in amyotrophic lateral sclerosis with FUS mutations appears to be more restricted

to dysfunction of fused in sarcoma, while a more global and complex dysregulation of all FET proteins is involved in the

subtypes of frontotemporal lobar degeneration with fused in sarcoma pathology.

Keywords: FUS; TAF15; EWS; amyotrophic lateral sclerosis; frontotemporal dementia

Abbreviations: ALS = amyotrophic lateral sclerosis; BIBD = basophilic inclusion body disease; EWS = Ewing’s sarcoma protein;
FUS = fused in sarcoma; FTLD = frontotemporal lobar degeneration; FTLD-U = frontotemporal lobar degeneration with
ubiquitin-positive inclusions; NIFID = neuronal intermediate filament inclusion body disease; TAF15 = TATA-binding
protein-associated factor 15; TDP-43 = TAR-DNA binding protein 43 kDa

Introduction
The identification of the DNA/RNA binding protein TAR-DNA

binding protein 43 kDa (TDP-43) as the disease protein in most

forms of amyotrophic lateral sclerosis (ALS) and in the most

common form of frontotemporal lobar degeneration (FTLD), con-

firmed that these two neurodegenerative conditions belong to a

clinicopathological spectrum of diseases and initiated the concept

of RNA dysmetabolism as a crucial event in disease pathogenesis

(Neumann et al., 2006; Mackenzie et al., 2010a). This idea was

corroborated with the subsequent discovery of another DNA/RNA

binding protein fused in sarcoma (FUS), as the pathological protein

in many remaining TDP-43-negative cases with ALS and FTLD.

Briefly, the finding of mutations in the FUS gene as cause of

familial ALS (Kwiatkowski et al., 2009; Vance et al., 2009) was

rapidly confirmed in genetic screenings of large ALS cohorts

throughout the world and were found to account for �3% of

familial ALS and �1% of sporadic ALS (Mackenzie et al.,

2010a). The majority of FUS mutations cluster in the C-terminus

of the protein that encodes for a non-classical nuclear localization

sequence (Lee et al., 2006; Dormann et al., 2010). FUS mutations

have been shown to disrupt this motif, resulting in impaired

Transportin-mediated nuclear import of FUS and increased con-

centrations of cytoplasmic FUS (Dormann et al., 2010; Ito et al.,

2011; Kino et al., 2011). In line with the idea that altered nuclear

import is a key event in disease pathogenesis, the neuropathology

associated with ALS with FUS mutations (ALS-FUS) is character-

ized by abnormal cytoplasmic neuronal and glial inclusions that are

immunoreactive for FUS (Kwiatkowski et al., 2009; Vance et al.,

2009; Blair et al., 2010; Groen et al., 2010; Hewitt et al., 2010;

Rademakers et al., 2010; Mackenzie et al., 2011b).

Subsequently, FUS was studied in other neurodegenerative dis-

eases and identified as a component of the inclusions in several

subtypes of FTLD, now subsumed as FTLD-FUS (Mackenzie et al.,

2010b). This group includes cases initially designated as atypical

FTLD with ubiquitin-positive inclusions (FTLD-U) (Neumann et al.,

2009b), neuronal intermediate filament inclusion disease (NIFID)

(Neumann et al., 2009a) and basophilic inclusion body disease

(BIBD) (Munoz et al., 2009). In contrast to cases presenting

with pure ALS, which are almost always associated with mutations

in FUS, no genetic alterations of FUS have been reported to date

for cases within the FTLD-FUS group (Neumann et al., 2009a, b;

Rohrer et al., 2010; Urwin et al., 2010; Snowden et al., 2011).

Thus, the mechanisms underlying FUS accumulation in FTLD-FUS

as well as an explanation for the different patterns of FUS path-

ology in the distinct FTLD-FUS subtypes awaits further clarification

(Mackenzie et al., 2011a).

FUS is a multifunctional DNA/RNA binding protein and belongs

to the FET family of proteins that also includes Ewing’s sarcoma

protein (EWS), TATA-binding protein-associated factor 15 (TAF15)

and the Drosophila orthologue Cabeza (Law et al., 2006; Kovar

2011). The FET proteins were initially discovered as components of

fusion oncogenes that cause human cancers. Their normal func-

tion is predicted to include roles in RNA transcription, processing,

transport, microRNA processing and DNA repair (Law et al., 2006;

Tan and Manley, 2009; Kovar, 2011). In most cell types, all of the

FET proteins are predominantly localized to the nucleus, but they

are able to continuously shuttle between the nucleus and cyto-

plasm (Zinszner et al., 1997; Zakaryan and Gehring 2006; Jobert

et al., 2009). Protein-interaction studies have revealed that FET

proteins are able to interact with each other, suggesting that they

may form protein complexes (Pahlich et al., 2008; Kovar, 2011).

This raises the possibility that alterations of TAF15 and EWS might

also be involved in the pathogenesis of FUS-opathies.

In order to address this hypothesis we performed detailed

immunohistochemical, biochemical and genetic analyses of

TAF15 and EWS in a range of cases with FTLD-FUS and ALS-

FUS that covers the complete spectrum of FUS-opathies. Our

data revealed striking differences in FET protein alterations

between ALS-FUS and FTLD-FUS, thereby strongly suggesting

different disease mechanisms underlying these conditions.

Materials and methods

Case selection
Cases with FUS pathology, including atypical FTLD-U (n = 15), BIBD

(n = 7), NIFID (n = 4) and ALS-FUS (n = 6), were selected from previ-

ous studies (Munoz et al., 2009; Neumann et al., 2009a, b; Mackenzie

et al., 2011a, b). Detailed clinical and pathological description of each

2596 | Brain 2011: 134; 2595–2609 M. Neumann et al.
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of the FTLD-FUS and ALS-FUS cases has been published previously

and is summarized in Supplementary Table 1.

Neurological control cases for immunohistochemistry included FTLD

with TDP-43 pathology [(n = 17); including sporadic subtype 1 (n = 3),

subtype 2 (n = 2), subtype 3 (n = 6), according to Mackenzie et al.

2006, familial with GRN mutations (n = 2), familial with VCP muta-

tions (n = 2) and familial linked to chromosome 9p (n = 2)], FTLD with

tau pathology (n = 8; including two each of Pick’s disease, progressive

supranuclear palsy, corticobasal degeneration and argyrophilic grain

disease), FTLD with CHMP2B mutations (n = 2), sporadic ALS with

TDP-43 pathology (n = 8), familial ALS with SOD1 mutations (n = 2),

Alzheimer’s disease (n = 4), Lewy body disease (n = 4), multiple system

atrophy (n = 2), Huntington’s disease (n = 2), spinocerebellar ataxia

(n = 3) and neuronal intranuclear inclusion body disease (n = 1).

Normal control tissue (n = 4) was from elderly patients with no history

of neurological disease.

Antibodies
A number of commercially available anti-TAF15 and anti-EWS antibo-

dies were tested by immunohistochemistry on formalin-fixed

paraffin-embedded brain tissue and by immunoblot. Results are sum-

marized in Supplementary Table 2. Three TAF15 antibodies revealed

physiological staining in tissue sections. The polyclonal antibody

TAF15-IHC-00094-1 (Bethyl) was used for staining of all cases and

for immunofluorescence. TAF15-309A and 308A (Bethyl) were used

for confirmation in selected sections and for immunoblots;

TAF15-308A was used in cell culture experiments. For EWS, four anti-

bodies revealed physiological staining in tissue sections. The monoclo-

nal antibody EWS-G5 (Santa Cruz) was used for staining of all cases,

immunofluorescence, immunoblotting and cell culture experiments.

Selected sections were stained with EWS-IHC-00086 (Bethyl),

EWS-3319-1 and EWS-3320-1 (Epitomics) for confirmation. Given

the homology of FET proteins, possible cross-reactivity of the TAF15

and EWS antibodies with FUS was excluded by immunoblot analysis

(Supplementary Fig. 1).

Other primary antibodies employed included polyclonal anti-FUS

HPA008784 (Sigma-Aldrich, 1 : 2000), FUS-302A (Bethyl, 1 : 10 000),

monoclonal anti-FUS (ProteintechGroup, 1 : 1000), monoclonal

anti-�-internexin (Zymed, 1 : 500), monoclonal anti-haemagglutinin

(Sigma, 1 : 500), and polyclonal anti-haemagglutinin (Sigma, 1 : 200).

Immunohistochemistry and
immunofluorescence
Immunohistochemistry was performed on 5-mm thick paraffin sections

using the Ventana BenchMark XT automated staining system (Ventana)

and developed with aminoethylcarbizole or using the NovoLinkTM

Polymer Detection Kit and developed with 3,30-diaminobenzidine.

Microwave antigen retrieval was performed for all stainings.

FUS, TAF15 and EWS pathology was evaluated using a semi-

quantitative grading system, similar to that used in previous studies

in which the pathological lesions are scored as absent (�), rare ( + ),

occasional ( + + ), common ( + + + ) or numerous ( + + + + ). A grad-

ing of ‘rare’ indicates that extensive survey of the tissue section is

required for identification. ‘Occasional’ means that the lesions are

easy to find but not present in every microscopic field. The pathology

is considered ‘common’ when at least one example is present in most

high-power fields. When many lesions are present in every high-power

field, then the lesions are considered to be ‘numerous’.

Double-label immunofluorescence was performed on selected cases

for FUS and TAF15 or EWS, and �-internexin and TAF15 or EWS.

The secondary antibodies were Alexa Fluor 594 and Alexa Fluor 488

conjugated anti-mouse and anti-rabbit IgG (Invitrogen, 1 : 500).

40-6-diamidino-2-phenylindol was used for nuclear counterstaining.

Immunofluorescence images of brain sections were obtained by

wide-field fluorescence microscopy (BX61 Olympus with digital

camera F-view, Olympus).

Biochemical analysis
Fresh-frozen post-mortem frontal grey matter from atypical FTLD-U

(n = 5), BIBD (n = 1), NIFID (n = 1), FTLD with TDP-43 pathology

(n = 5), Alzheimer’s disease (n = 2) and normal controls (n = 4) was

used for the sequential extraction of proteins with buffers of increasing

stringency, using a protocol described previously (Neumann et al.,

2009b). Briefly, grey matter was extracted at 2ml/g (v/w) by repeated

homogenization and centrifugation steps (120 000 g, 30min, 4�C) with

high-salt buffer (50mM Tris–HCl, 750mM NaCl, 10mM NaF, 5mM

EDTA, pH 7.4), 1% Triton-X 100 in high-salt buffer, radioimmunopre-

cipitation assay buffer (50mM Tris–HCl, 150mM NaCl, 5mM EDTA,

1% NP-40, 0.5 % sodium deoxycholate, 0.1% sodium dodecyl sul-

phate) and 2% sodium dodecyl sulphate buffer. To prevent carry over,

each extraction step was performed twice. Supernatants from the first

extraction steps were analysed while supernatants from the wash steps

were discarded. The 2% sodium dodecyl sulphate insoluble pellet was

extracted in 70% formic acid at 0.5ml/g (v/w), evaporated in a

SpeedVac system. The dried pellet was resuspended in sample buffer

and the pH adjusted with NaOH. Protease inhibitors were added to all

buffers prior to use. For immunoblot analysis, fractions were resolved

by 7.5% sodium dodecyl sulphate–polyacrylamide gel electrophoresis

and transferred to polyvinylidene difluoride membranes (Millipore).

Membranes were blocked with Tris-buffered saline containing 3%

powdered milk and probed with anti-FUS, anti-TAF-15 or anti-EWS

antibodies. Primary antibodies were detected with horseradish

peroxidase-conjugated anti-rabbit or anti-mouse IgG (Jackson

ImmunoResearch), signals were visualized by a chemiluminescent re-

action (Pierce) and the Chemiluminescence Imager Stella 3200

(Raytest). Quantification of band intensities was performed with

AIDA software. The Mann–Whitney U-test was used for statistical

analysis of insoluble/soluble ratios with significance level set as

P5 0.05.

Cell culture experiments
HeLa cells were cultured in Dulbecco’s modified Eagle’s medium with

Glutamax (Invitrogen) supplemented with 10% (v/v) foetal calf serum

(Invitrogen) and penicillin/streptomycin. Transfection of HeLa cells was

carried out with Fugene 6 (Roche) or Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s instructions. Expression vectors with

haemagglutinin-tagged human FUS with the p.P525L mutation and

with the Transportin-specific inhibitor peptide M9M fused to green

fluorescent protein were generated as described previously

(Dormann et al., 2010). In some experiments, cells were subjected

to heat shock (1 h at 44�C) 24 h after transfection. For immunofluor-

escence, HeLa cells were fixed for 15min in 4% paraformaldehyde in

phosphate-buffered saline, permeabilized for 5min in 0.2% Triton

X-100 with 50mM NH4Cl and subsequently blocked for 20–30min

in 5% goat serum. Cells were stained with the indicated primary

and secondary antibodies, diluted in blocking buffer for 30min.

Alexa Fluor 488, 555 and 647 conjugated goat anti-mouse and goat

anti-rabbit IgGs were used as secondary antibodies. To visualize nuclei,
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cells were stained with TO-PRO-3 iodide (Invitrogen) for 15min.

Confocal images were obtained with an inverted laser scanning con-

focal microscope (Zeiss Axiovert 200M).

Genetic analysis
DNA was available from six atypical FTLD-U, one NIFID and one BIBD

case. EWS breakpoint region 1 (EWSR1) exons 1–18 and TAF15 exons

1–16 were polymerase chain reaction amplified using primers designed

to flanking intronic sequences using Qiagen products (Qiagen).

Polymerase chain reaction conditions and primer sequences available

on request. Polymerase chain reaction products were purified using the

Ampure system (Agencourt Bioscience Corporation) and sequenced

using Big Dye terminator V.3.1 products (Applied Biosystems).

Sequencing products were purified using the CleanSEQ method

(Agencourt) and analysed on an ABI 3730 DNA analyser (Applied

Biosystems). Sequence analysis was performed using Sequencher

software (Gene Codes).

Results
Detailed clinical and pathological descriptions of each of the cases

with FTLD-FUS and ALS-FUS have been published previously and

are summarized in Supplementary Table 1. TAF15 and EWS

pathology was evaluated in neuroanatomical regions previously

shown to be most affected by FUS pathology in each condition

and results are summarized in Table 1.

TAF15 and EWS pathology is present
in all subtypes of frontotemporal
lobar degeneration with FUS pathology
Immunohistochemistry for TAF15 revealed robust physiological

staining of neuronal nuclei and weaker and more variable staining

of glial nuclei in all cases and controls (Fig. 1A). All subtypes of

FTLD-FUS showed strong TAF15 immunoreactivity in neuronal

and glial inclusions that were of similar morphology, number

and anatomical distribution as demonstrated with FUS antibodies

(Fig. 1 and Table 1). Specifically, atypical FTLD-U cases showed

TAF15-positive round neuronal cytoplasmic inclusions in hippo-

campus, neocortex and lower motor neurons, as well as vermiform

or round neuronal intranuclear inclusions predominantly in the

dentate gyrus (Fig. 1B–E). NIFID and BIBD cases were found to

have numerous round or tangle-like inclusions throughout cortical,

subcortical, brainstem and spinal cord regions (Fig. 1F–H). In add-

ition to neuronal inclusions, all subtypes of FTLD-FUS revealed at

least some TAF15-positive dystrophic neurites and glial cytoplas-

mic inclusions (Fig. 1I, J) that were more numerous in NIFID and

BIBD than in atypical FTLD-U. Notably, most inclusion bearing

cells in FTLD-FUS showed a striking reduction of the physiological

nuclear staining for TAF15 (Fig. 1B and C). Similar results were

observed using TAF15 antibodies recognizing different epitopes,

including the mid-region and C-terminus.

Double-label immunofluorescence confirmed co-localization

of FUS and TAF15 in almost all inclusions in FTLD-FUS cases

(Fig. 2). There was a tendency for intranuclear inclusions in atyp-

ical FTLD-U and NIFID to be more strongly labelled for FUS

compared with TAF15 and they were rarely found to be only

FUS positive (Fig. 2B). In NIFID cases, TAF15 and �-internexin

labelled discrete inclusions in the same neurons (Supplementary

Fig. 2A), a finding similar to our previous results for FUS and

�-internexin (Neumann et al., 2009a).

Antibodies against EWS revealed nuclear and diffuse cytoplas-

mic staining of neuronal and glial cells as the normal physiological

staining pattern (Fig. 3A). However, EWS staining was more vari-

able among cases compared with TAF15 with some sections com-

pletely lacking physiological staining while others revealed strong

background staining making the scoring of EWS pathology in

some cases more uncertain. Nevertheless, all subtypes of

FTLD-FUS revealed at least some EWS-positive inclusions (Fig. 3

and Table 1) and similar results were obtained with four EWS

antibodies recognizing different epitopes at the N-terminal and

mid-region. Importantly, notable differences were observed be-

tween the distinct FTLD-FUS subtypes. In atypical FTLD-U,

EWS-positive neuronal cytoplasmic and intranuclear inclusions

were less numerous than those labelled with FUS, being rare to

moderate in neocortical regions and lower motor neurons

(Fig. 3B–D and G) and the staining intensity tended to be rather

weak. In contrast, inclusions in NIFID and BIBD revealed a much

more robust EWS staining intensity and the frequency of path-

ology in cortical, subcortical, brainstem and spinal cord regions

was comparable with that seen with FUS (Fig. 3E, F and H).

Due to the variability in staining intensity among cases, analysis

of the normal physiological staining pattern of EWS was more

difficult to assess; however, nuclear EWS staining was retained

in at least some inclusion bearing cells.

Double-label immunofluorescence for EWS and FUS confirmed

that in atypical FTLD-U only a subset of FUS-positive inclusions

also labelled for EWS (Fig. 4A), while most FUS pathology in

NIFID and BIBD revealed clear EWS co-localization (Fig. 4B–E).

EWS and �-internexin labelled discrete inclusions in the same neu-

rons in NIFID (Supplementary Fig. 2B) in accordance with the FUS

and TAF15 results.

Absence of TAF15 and EWS pathology
in amyotrophic lateral sclerosis
with FUS mutations
Next, we analysed the pattern of TAF15 and EWS staining in six

ALS-FUS cases, which included four different FUS mutations. All

cases showed robust FUS pathology, particularly in the spinal cord

and motor cortex, with neuronal cytoplasmic inclusions (including

basophilic inclusions) as well as variable presence of glial inclusions

(Mackenzie et al., 2011b). Interestingly, and in striking contrast to

FTLD-FUS, neither TAF15 nor EWS immunohistochemistry demon-

strated any neuronal or glial inclusions in cortical, subcortical,

brainstem or spinal cord regions in any of the ALS-FUS cases

(Fig. 5). The absence of TAF15 and EWS immunoreactivity of

FUS-positive inclusions in ALS-FUS was further confirmed by

double-label immunofluorescence (Fig. 5G–L). Notably, cells with

FUS-immunoreactive inclusions retained their physiological nuclear

staining for TAF15 and EWS.

2598 | Brain 2011: 134; 2595–2609 M. Neumann et al.

136



T
ab

le
1

Su
m
m
ar
y
o
f
im

m
u
n
o
re
ac
ti
vi
ty

fo
r
FE
T
p
ro
te
in
s
in

FT
LD

-F
U
S
su
b
ty
p
es

an
d
A
LS
-F
U
S

FU
S

T
A
F1

5
EW

S

FC
H
C

B
G

B
S

LM
N

FC
H
C

B
G

B
S

LM
N

FC
H
C

B
G

B
S

LM
N

A
ty
p
ic
al

FT
LD

-U

1
+
+

+
+
+
+

+
+
+

+
+
+

+
+

+
+
+

+
+
+
+

N
D

N
D

+
+
+

+
+
+
+

N
D

N
D

N
A

2
+
+
+

N
A

+
+
+

+
+
+

+
+

+
+
+

N
A

N
D

N
D

+
+

+
+
+

N
A

N
D

N
D

(+
)

3
+
+

+
+
+

+
+
+

+
+

+
+
+

+
+

+
+
+

N
D

N
D

+
+
+

+
+

+
+

N
D

N
D

+
+

4
+
+

+
+

+
+

N
A

N
A

+
+
+

+
+

N
D

N
A

N
A

+
+

(+
)

N
D

N
A

N
A

5
+
+
+

+
+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+
+

N
D

N
D

+
+
+
+

+
+

+
+
+

N
D

N
D

(+
+
)

6
+
+
+

+
+
+
+

+
+
+

+
+
+

+
+
+
+
+

+
+
+
+

N
D

N
D

+
+

+
+

+
+
+

N
D

N
D

(+
)

7
+
+
+

+
+
+
+

N
A

N
A

+
+
+
+

+
+
+
+

N
A

N
A

+
+

+
+

N
A

N
A

�
8

+
+
+
+

+
+
+
+

+
+
+
+

+
+

+
+

+
+
+
+

+
+
+
+

N
D

N
D

+
+

+
+
+
+

N
D

N
D

+

9
+
+

+
+
+

N
A

N
A

+
+

+
+

N
A

N
A

N
A

+
+

+
N
A

N
A

N
A

+

1
0

+
+

+
+
+

+
+

+
+

+
+

+
+

+
+
+

N
D

N
D

+
+

+
+

N
D

N
D

+

1
1

+
+

+
+

+
+

+
+

+
+
+

N
R

N
D

N
D

+
+

+
N
R

N
D

N
D

+

1
2

+
+

+
+

+
+

+
+
+

+
+
+

+
+

N
D

N
D

+
+

+
(+

)
N
D

N
D

+

1
3

+
+
+

+
+

+
+

+
+

+
+

+
+
+

+
+

N
D

N
D

+
+

+
+

N
D

N
D

+

1
4

+
+
+

+
+
+
+

+
+
+

+
+
+

+
+

+
+
+

+
+
+
+

N
D

N
D

+
+
+

+
+

N
D

N
D

+

1
5

+
+
+

+
+
+

+
+

+
+
+

N
D

N
D

+
(+

)
+
+

N
D

N
D

+

In
te
n
si
ty

N
C
I

St
ro
n
g

St
ro
n
g

W
ea
k/
M
o
d
er
at
e

N
IF
ID 1

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

N
D

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

N
D

+
+
+

2
+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

N
D

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+

N
D

+
+
+

3
+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

N
D

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

N
D

+
+
+
+

4
+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+
+

+
+
+
+

+
+
+
+

N
D

+
+
+
+
+

+
+
+
+

+
+
+
+

N
D

N
A

In
te
n
si
ty

N
C
I

St
ro
n
g

St
ro
n
g

St
ro
n
g

B
IB
D 1

+
+
+
+

+
+
+
+

+
+
+

+
+
+
+

+
+
+

+
+
+
+

+
+
+
+

+
+
+

N
D

+
+
+
+

(+
+
+
+
)

(+
+
+
)

(+
+
+
)

N
D

(+
)

2
+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+

+
+
+
+

+
+
+
+

N
D

+
+
+
+

+
+
+

(+
+
)

(+
+
)

N
D

(+
)

(+
)

3
+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

N
R

+
+
+
+

N
D

N
R

(+
+
+
+
)

N
R

(+
)

N
D

(+
+
)

4
+
+
+
+

+
N
A

+
+
+
+

+
+
+
+

+
+
+
+

+
N
A

+
+
+
+

+
+
+
+

+
+
+
+

(+
)

N
A

(+
+
+
+
)

N
R

5
+
+
+
+

+
+

+
+

+
+
+
+

+
+
+
+

N
R

+
+
+
+

+
+
+

+
+
+
+

N
R

N
A

N
D

(+
+
+
)

(+
)

6
+
+
+
+

+
+
+

+
+
+

+
+
+
+

+
+
+
+

+
+
+

+
+
+

+
+
+

+
+
+
+

+
+
+

+
+
+

+
+

+
+
+

+
+
+

+
+
+

7
+
+
+
+

+
+
+

+
+
+
+

+
+
+
+

+
+

+
+
+
+

+
+
+

+
+
+
+

N
D

+
+

+
+
+
+

+
+
+

+
+
+
+

N
D

+

In
te
n
si
ty

N
C
I

St
ro
n
g

St
ro
n
g

St
ro
n
g

A
LS
-F
U
S

1
p
.R
5
2
1
C

+
�

+
+

+
+
+
+

�
N
D

�
�

�
�

N
D

�
�

�
2
p
.R
5
2
1
C

+
+

�
+
+

�
+
+
+

�
N
D

�
N
A

�
N
A

N
D

N
A

N
A

�
3
p
.R
5
1
4
S/
E5

1
6
V

+
+
+

�
+
+
+

+
+

+
+
+

�
N
D

�
�

�
�

N
D

�
�

�
4
p
.P
5
2
5
L

+
+
+

�
�

+
+
+
+
+

N
A

N
D

�
�

�
N
A

N
D

�
�

�
5
p
.P
5
2
5
L

+
+
+

�
�

+
+
+

+
+
+
+

�
N
D

�
�

�
�

N
D

�
�

�
6
p
.Q

5
1
9
lf
sX
9

+
+
+

�
+

+
+
+

+
+
+

�
N
D

�
�

�
�

N
D

�
�

�
In
te
n
si
ty

N
C
I

St
ro
n
g

A
b
se
n
t

A
b
se
n
t

Se
m
iq
u
an

ti
ta
ti
ve

g
ra
d
in
g
:
�

=
ab

se
n
t;

+
=
ra
re
;
+
+

=
o
cc
as
io
n
al
;
+
+
+

=
m
o
d
er
at
e;

+
+
+
+

=
n
u
m
er
o
u
s.
Sc
o
re
s
in

p
ar
en

th
es
es

in
d
ic
at
e
se
ct
io
n
s
w
h
er
e
th
e
q
u
al
it
y
o
f
th
e
im

m
u
n
o
st
ai
n
in
g
m
ak

es
th
e
ac
cu
ra
cy

o
f
th
e
sc
o
ri
n
g

u
n
ce
rt
ai
n
.
B
G

=
b
as
al

g
an

g
lia
;
B
S
=
u
p
p
er

b
ra
in
st
em

;
FC

=
fr
o
n
ta
l
co
rt
ex

(m
id
-f
ro
n
ta
l
g
yr
u
s
fo
r
at
yp

ic
al

FT
LD

-U
,
N
IF
ID

an
d
B
IB
D
;
p
re
ce
n
tr
al

g
yr
u
s
fo
r
A
LS

-F
U
S)
;
H
C
=
h
ip
p
o
ca
m
p
u
s;
LM

N
=
lo
w
er

m
o
to
r
n
eu

ro
n
s
o
f
sp
in
al

co
rd

o
r

h
yp

o
g
lo
ss
al

n
u
cl
eu

s;
N
A
=
n
o
t
av
ai
la
b
le
;
N
C
I
=
n
eu

ro
n
al

cy
to
p
la
sm

ic
in
cl
u
si
o
n
;
N
D
=
st
ai
n
in
g
n
o
t
d
o
n
e;

N
R
=
n
o
im

m
u
n
o
re
ac
ti
vi
ty
,
n
ei
th
er

p
h
ys
io
lo
g
ic
al

n
o
r
p
at
h
o
lo
g
ic
al

in
th
e
en

ti
re

se
ct
io
n
.

TAF and EWS in FUS-opathies Brain 2011: 134; 2595–2609 | 2599

137



TAF15 and EWS immunoreactivity
in neurological controls
The normal controls and the majority of neurological controls did

not reveal any TAF or EWS pathology (Table 2). Specifically, there

was no labelling of the characteristic inclusions in Alzheimer’s

disease, Lewy body disease, FTLD with tau pathology, ALS with

TDP-43 pathology or ALS due to SOD1 mutations. Inclusions in

FTLD with TDP-43 pathology were negative, with the exception

of one case that showed a small number of TAF15-positive cortical

neurites and EWS staining of a minority of inclusions in the hip-

pocampal dentate granule cells. Glial inclusions in multiple system

atrophy were negative for FUS and TAF15; however, one case

showed weak EWS labelling. Interestingly, intranuclear inclusions

in spinocerebellar ataxia and Huntington’s disease, previously

shown to be FUS positive (Doi et al., 2010; Woulfe et al.,

2010), were consistently labelled for EWS but not TAF15, while

the FUS-positive inclusions in neuronal intranuclear inclusion

body disease were negative for both. These findings for intranuc-

lear inclusions are noteworthy in suggesting that different combin-

ations of FET proteins are involved in inclusion formation in a

disease-specific fashion and that co-aggregation of all three FET

proteins is a specific feature of FTLD-FUS.

Biochemical analysis of TAF15 and EWS
in frontotemporal lobar degeneration
with FUS pathology
A change in the solubility of FUS protein has previously been

shown to be a consistent biochemical alteration in atypical

FTLD-U (Neumann et al., 2009b) and NIFID (Page et al., 2011).

To gain further insight into potential biochemical alterations of

TAF15 and EWS, proteins were sequentially extracted from

frozen brain tissue from FTLD-FUS, as well as normal and neuro-

logical controls, using a series of buffers containing detergents

and acids with an increasing ability to solubilize proteins.

Unfortunately, sufficient amounts of frozen tissue from ALS-FUS

cases were not available for analysis.

TAF15, EWS and FUS could be detected as major bands at the

expected molecular mass of �75, �90 and �73 kDa, respectively,

in the high salt (soluble proteins) and sodium dodecyl sulphate

(enriched for insoluble proteins) fractions from FTLD-FUS, as

well as controls (Fig. 6A). However, remarkable differences were

observed in the amount of the proteins in the distinct fractions in

FTLD-FUS compared with controls. In accordance with previous

findings, a clear shift of FUS towards the insoluble fraction was

Figure 1 TAF15 pathology in FTLD-FUS. TAF15 immunohistochemisty performed on sections of post-mortem brain tissue from normal

control (A), atypical FTLD-U (B–E), NIFID (F) and BIBD (G–J). Normal physiological staining pattern, consisting of strong immunoreactivity

of neuronal nuclei was seen in normal controls (A) and FTLD-FUS subjects (B). In atypical FTLD-U numerous round neuronal cytoplasmic

inclusions were seen in the dentate granule cells (B and C). Note the dramatically reduced nuclear staining in inclusion bearing cells (arrows

in C) compared with adjacent cells without inclusions (arrowhead in C). Neuronal intranuclear inclusions with vermiform (D) or ring-like

morphology (E) were a consistent finding in the dentate granule and pyramidal cells of the hippocampus in all subjects with atypical

FTLD-U. Numerous cytoplasmic inclusions with variable morphology ranging from round, crescentic, globular and tangle-like were present

in neurons in NIFID (F) and BIBD (G) as shown here in frontal cortex. All FTLD-FUS cases revealed at least rare inclusions in lower motor

neurons (H) as well as variable numbers of glial cytoplasmic inclusions in the white matter of affected brain regions (I, J). Scale bar: A, B, F

and G = 25 mm; C–E, I and J = 5 mm; H = 10mm.
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Figure 2 Co-localization of TAF15 and FUS in FTLD-FUS inclusions. Double-label immunofluorescence for FUS (red) and TAF15 (green),

with DAPI staining of nuclei in the merged images. (A) In atypical FTLD-U the vast majority of inclusions showed co-localization of

FUS and TAF15. (B) However, note that single neuronal intranuclear inclusions in atypical FTLD-U were not labelled for TAF15 (arrow)

while the cytoplasmic inclusion in the same cell shows co-localization (arrowhead). Consistent co-labelling for TAF15 was revealed for FUS

pathology in NIFID (C) and BIBD (D). Inclusions in the lower motor neurons (E, atypical FTLD-U case) and glial cytoplasmic inclusions

(F, BIBD case), also showed colocalization. Scale bar: A, C and D = 10 mm; B = 4mm; E and F = 6.5 mm.
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seen in all FTLD-FUS cases resulting in a significantly higher insol-

uble : soluble ratio (median 0.58, mean 2.51 � 3.54), compared

with controls (median 0.13, mean 0.17 � 0.17, P = 0.0038)

(Fig. 6B). A similar change in solubility was observed for TAF15

with a significantly higher insoluble : soluble ratio for FTLD-FUS

cases (median 2.47, mean 4.09 � 3.70) compared with controls

(median 0.50, mean 0.36 � 0.21, P = 0.0006). Notably, in some

FTLD-FUS cases the shift in solubility was even more pronounced

for TAF15 than that observed for FUS (e.g. atypical FTLD-U Case

14 and NIFID Case 2). For EWS, there was a similar tendency for

higher levels in the insoluble protein fraction in cases with

FTLD-FUS (median 1.55, mean 1.5 � 0.78) compared with con-

trols (median 0.80, mean ratio = 0.8 � 0.44); however, the differ-

ence did not reach significance.

Despite the change in solubility, there was no evidence of other

biochemical alterations of TAF15 and EWS, as indicated by abnor-

mal molecular weight species, using antibodies specific for differ-

ent TAF15 and EWS epitopes.

Genetic analysis of TAF15 and EWSR1
in frontotemporal lobar degeneration
with FUS pathology
Sequence analyses of EWSR1 and TAF15 did not identify any

novel coding variants in the eight FTLD-FUS cases with DNA

available, with the exception of a 24 base pair deletion in

TAF15 exon 15 in atypical FTLD-U Case 13 (c.1674_1697del),

predicted to delete eight amino acids (p.G559_Y566del). This par-

ticular deletion has not been reported previously; however, similar

deletions have been found in controls, suggesting it is likely a

benign polymorphism (Ticozzi et al., 2011). Novel non-coding

variants identified are summarized in Supplementary Table 3.

Characteristic features of human
FUS-opathies are recapitulated in
cultured cells
The strikingly different patterns of FET protein immunoreactivity in

the pathology of FTLD-FUS versus ALS-FUS, suggest different

mechanisms underlying inclusion body formation. To further ad-

dress this issue we investigated whether the absence of TAF15 and

EWS alterations seen in ALS-FUS would be recapitulated in cul-

tured cells expressing mutant FUS.

In accordance with previous results (Dormann et al., 2010),

HeLa cells expressing FUS with the p.P525L mutation (a mutation

present in two of our studied cases with ALS) showed a robust

increase of cytoplasmic FUS compared with cells expressing

wild-type FUS (Fig. 7A and Supplementary Fig. 3). Under stress

conditions of heat shock, cells expressing mutant FUS showed

recruitment of FUS into punctuate cytoplasmic structures,

Figure 3 EWS pathology in FTLD-FUS. EWS immunohistochemistry performed on sections of post-mortem brain tissue from normal

control (A), atypical FTLD-U (B–D, G), NIFID (E) and BIBD (F and H). Normal physiological staining pattern of nuclei and diffuse

cytoplasmic labelling (A). In atypical FTLD-U, round cytoplasmic and intranuclear inclusions were observed in the dentate granule cells

with variable labelling intensity (B). Higher magnification of cytoplasmic (C) and vermiform intranuclear inclusion (D) in atypical FTLD-U.

Numerous neuronal cytoplasmic inclusions with variable morphology including round, crescentic, globular and tangle-like showed strong

immunoreactivity in NIFID (E) and BIBD (F) as shown here in frontal cortex. Most cases with FTLD-FUS revealed at least rare inclusions

in lower motor neurons (G) as well as variable numbers of glial cytoplasmic inclusions in the white matter of affected brain regions (H).

Scale bar: A, B, E and F = 25 mm; C, D and H = 5mm; G = 10 mm.
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Figure 4 Co-localization of EWS and FUS in FTLD-FUS inclusions. Double-label immunofluorescence for FUS (red) and EWS (green), with

DAPI staining of nuclei in the merged images. In atypical FTLD-U, only a subset of FUS-positive neuronal cytoplasmic and intranuclear

inclusions were stained for EWS (A). In contrast, robust co-labelling for EWS and FUS was observed in most inclusions in NIFID (B) and

BIBD (C). Inclusions in the lower motor neurons (D, BIBD case) as well as glial cytoplasmic inclusions (E, BIBD case) also showed

co-localization. Scale bar: A–C = 10 mm; D = 6.5 mm; E = 4 mm.
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Figure 5 Absence of TAF15 and EWS pathology in ALS-FUS. Lower (A) and upper (D) motor neurons in all ALS-FUS cases contained at

least some cytoplasmic inclusions strongly labelled for FUS; however, no inclusions (including basophilic inclusions, arrows) were labelled

for TAF15 (B, lower motor neuron; E, upper motor neuron) or EWS (C, lower motor neuron; F, upper motor neuron). Note the regular

nuclear staining for both TAF15 (B and E) and EWS (C and F) in inclusion-bearing cells (arrows). The absence of TAF15 and EWS

pathology in ALS-FUS was confirmed by double-label immunofluorescence that showed robust FUS-immunoreactivity of round and

tangle-like neuronal inclusions in the spinal cord (red, G–J) that were not labelled for TAF15 (green in G and I) or EWS (green in H and J).

In addition, FUS-positive glial cytoplasmic inclusions present in a subset of cases (red, K and L, basal ganglia) showed no co-localization for

TAF15 (green, K) or EWS (green, L). Scale bar in A: A–C = 10 mm; D–F = 22 mm. Scale bar in G: G–J = 10 mm; K and L = 30 mm.
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corresponding to stress granules. In contrast, these same condi-

tions resulted in no changes in the subcellular distribution of en-

dogenous TAF15 or EWS. Specifically, both proteins remained

almost exclusively within the nucleus and there was no recruit-

ment of TAF15 or EWS into FUS-positive stress granules. In

this way, cells expressing an ALS-associated FUS mutation

recapitulate our findings in human ALS-FUS, demonstrating the

absence of other FET protein members in cytoplasmic FUS

inclusions.

To investigate whether the accumulation of all FET proteins in

FTLD-FUS might reflect a more general problem of Transportin-

mediated nuclear import, we studied the effect on TAF15 and

EWS by transfecting HeLa cells with a Transportin-specific com-

petitive inhibitor peptide (M9M) fused to green fluorescent protein

(Fig. 7B). Similar to what has been shown previously for FUS

(Dormann et al., 2010), a striking redistribution of endogenous

TAF15 and EWS proteins to the cytoplasm was observed, that

was associated with the formation of stress granules with

co-localization of all FET proteins. Notably, recruitment of FUS

and TAF15 into stress granules in this system seemed to be

more efficient compared with EWS, based on staining intensities

of stress granules, recapitulating the differences we observed in

the staining intensities of inclusions for FET proteins in atypical

FTLD-U. Furthermore, the most obvious reduction of normal

nuclear protein levels was found for TAF15, similar to the dramatic

decrease in nuclear staining intensity in inclusion bearing cells in

FTLD-FUS. Thus, inhibition of Transportin-mediated nuclear import

in cultured cells mimics characteristic alterations of FET proteins

found in human FTLD-FUS.

Discussion
FUS accumulates in the pathological cellular inclusions that char-

acterize all cases of ALS with FUS mutations and a variety of FTLD

subtypes, collectively referred to as FTLD-FUS (Kwiatkowski et al.,

2009; Munoz et al., 2009; Neumann et al., 2009a, b; Vance

et al., 2009; Mackenzie et al., 2010b). Our knowledge of the

underlying mechanisms leading to FUS accumulation and

FUS-mediated cell death is still limited. So far, most insights

come from studies analysing the functional consequences of FUS

mutations. As demonstrated in cell culture experiments, pathogen-

ic FUS mutations interfere with the Transportin-mediated nuclear

import, leading to increased levels of cytoplasmic FUS where it is

recruited into stress granules upon stress conditions (Dormann

et al., 2010; Ito et al., 2011; Kino et al., 2011). Since stress gran-

ule markers have been found in FUS-positive inclusions in

FTLD-FUS and ALS-FUS, it has been suggested that stress granules

might be the precursors of pathological FUS-inclusions (Dormann

et al., 2010; Dormann and Haass, 2011).

Although there is some clinical and pathological overlap

between ALS-FUS and FTLD-FUS, the presence of significant

differences in the phenotypes and the morphological patterns of

FUS pathology (Mackenzie et al., 2011b) and the fact that no

FTLD-FUS case has yet been associated with a FUS mutation

(Neumann et al., 2009a, b; Rohrer et al., 2010; Urwin et al.,

2010; Snowden et al., 2011), raise questions as to whether

these conditions represent a clinicopathological spectrum of dis-

eases with a shared pathomechanism or whether the pathogenic

pathways triggered by FUS mutations may be different from those

involved in FTLD-FUS.

In the present study, we performed a detailed analysis of the

role of the FUS homologues TAF15 and EWS in the spectrum of

FUS-opathies and identified remarkable differences in the protein

composition of inclusions between FTLD-FUS and ALS-FUS. These

findings strongly support the idea that the pathological processes

underlying cell death in ALS-FUS might be different from those in

FTLD-FUS.

None of the ALS-FUS cases investigated, including six cases with

four different FUS mutations, showed any alteration in the sub-

cellular distribution of TAF15 or EWS and no evidence of

co-accumulation of these proteins in the FUS-positive pathological

inclusions. Importantly, we confirmed retention of the normal

physiological staining pattern and the absence of TAF15 and

EWS co-localization in the cytoplasmic FUS pathology (i.e. stress

granules) that develops in cultured cells expressing ALS-associated

FUS mutations (Dormann et al., 2010). Thus, cytoplasmic

accumulation of FUS per se does not trigger an alteration in the

subcellular distribution of its homologues and does not lead to

sequestration of TAF15 and EWS into FUS inclusions as a second-

ary phenomenon. This strongly implies that the pathological pro-

cesses in ALS-FUS are restricted to dysfunctions of FUS. Since the

ALS-FUS cases we studied do not cover the entire spectrum of

reported FUS mutations, we cannot exclude the possibility that

other FUS mutations, particularly those reported in exons 3, 5 or

6 (Mackenzie et al., 2010a) might be associated with TAF15 and/

or EWS pathology. However, since our analysis did include two

Table 2 Immunoreactivity for FET proteins in other
neurodegenerative diseases

Diagnosis FUS TAF15 EWS

AD 0/4 0/4 0/4

FTLD-TDP 0/17 1/17a 1/17a

FTLD with CHMP2B 0/2 0/2 0/2

FTLD-tau 0/8 0/8 0/8

ALS-TDP 0/8 0/8 0/8

ALS with SOD1 0/2 0/2 0/2

MSA 0/2 0/2 1/2b

LBD 0/2 0/2 0/2

SCA 3/3 0/3 3/3

HD 2/2 0/2 2/2

NIIBD 1/1 0/1 0/1

a One FTLD-TDP subtype 2 case [according to (Mackenzie et al., 2006)] with
semantic dementia showed moderated EWS-immunoreactivity in a subset of
neuronal cytoplasmic inclusions in the dentate gyrus and TAF15-immunoreactivity
in a small proportion of long neurites.
b One case showed EWS-immunoreactivity in a small proportion of glial

cytoplasmic inclusions.
AD = Alzheimer’s disease; ALS-TDP, amyotrophic lateral sclerosis with TDP-43
pathology; ALS with SOD1 = amyotrophic lateral sclerosis due to mutations in
SOD1 gene; FTLD-TDP = frontotemporal lobar degeneration with TDP-43 path-
ology; FTLD-tau, frontotemporal lobar degeneration with tau pathology; FTLD
with CHMP2B = frontotemporal lobar degeneration with mutations in CHMP2B

gene; HD = Huntington’s disease; LBD = Lewy body disease; MSA = multiple
system atrophy; NIIBD = neuronal intranuclear inclusion body disease;
SCA = spinocerebellar ataxia.
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cases with the most common FUS mutation (p.R521C), this is

unlikely to be a frequent finding.

In sharp contrast to ALS-FUS, abnormal co-accumulation of all

three FET proteins into pathological inclusions was a consistent

and specific feature of all subtypes of FTLD-FUS. This finding fur-

ther extends the similarities between the various subtypes of

FTLD-FUS, thereby strongly supporting the idea, that atypical

FTLD-U, NIFID and BIBD are closely related disease entities

Figure 6 Biochemical analysis of FET proteins in FTLD-FUS. (A) Proteins were sequentially extracted from frontal cortex of atypical

FTLD-U, NIFID, BIBD, normal as well as neurological controls. High salt (Lane 1), Triton-X-100 (Lane 2), radioimmunoprecipitation assay

buffer (Lane 3), 2% sodium dodecyl sulphate (Lane 4) and formic acid (Lane 5) protein fractions were separated by sodium dodecyl

sulphate–polyacrylamide gel electrophoresis and immunoblotted with anti-TAF15 (TAF15-309A), EWS (G5) and FUS (FUS-302A). All

proteins were present in the soluble high salt fraction and sodium dodecyl sulphate fraction in each case as one major band at the expected

molecular size for the full-length proteins. However, the amount of TAF15 and FUS in the sodium dodecyl sulphate fraction was much

higher in FTLD-FUS compared with controls, while the shift towards the sodium dodecyl sulphate fraction was less obvious for EWS.

(B) Densitometric quantification of band intensities of FUS, TAF15 and EWS in the soluble (high salt) and insoluble (sodium dodecyl

sulphate) fraction was performed. Calculated insoluble/soluble ratios for each protein in the FTLD-FUS (n = 7) and control group (n = 11,

including four normal controls, five FTLD with TDP-43 pathology and two cases with Alzheimer’s disease) are shown as box plot showing

the range of values, with the box being subdivided by the median into the 25th and 75th percentiles. Filled rhombus represents the mean;

circles represent outliers. aFTLD-U = atypical FTLD-U.
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Figure 7 Analysis of FET proteins in cell culture systems. (A) Cytoplasmically mislocalized mutant FUS does not sequester TAF15 or EWS

into stress granules upon heat shock. HeLa cells transiently transfected with haemagglutinin-tagged human FUS with the P525L mutation

(HA-FUS-P525L) were left untreated (37�C, top) or subjected to heat shock (1 h at 44�C, bottom) 24 h after transfection. Cells were

stained with antibodies against haemagglutinin (green) and EWS (red) or TAF15 (red) and analysed by confocal microscopy. Under control

TAF and EWS in FUS-opathies Brain 2011: 134; 2595–2609 | 2607
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(Mackenzie et al., 2011a). However, our results also suggest some

important differences among distinct FET family members in the

different FTLD-FUS subtypes. While antibodies against TAF15 ro-

bustly labelled virtually all FUS pathology in atypical FTLD-U,

NIFID and BIBD, subtle disease-specific differences were observed

for EWS. Only a proportion of inclusions in atypical FTLD-U cases

labelled for EWS and the staining intensity was often weak. In

contrast, inclusions in NIFID and BIBD were more consistently

and robustly labelled for EWS. Because the quality of immunos-

taining obtained with the commercial EWS antibodies employed

was not felt to be optimal in all sections, we are cautious in in-

terpreting these results. However, they raise the possibility of

subtle differences in the pathogenic pathways involved in the dif-

ferent FTLD-FUS subtypes, that may underlie the distinct clinico-

pathological phenotypes previously described (Mackenzie et al.,

2011a).

Another difference in the pattern of immunostaining among

the FET proteins in FTLD-FUS is worth noting for its potential

functional significance. Whereas inclusion bearing cells often

demonstrated at least partial retention of nuclear FUS and EWS

localization, a dramatic and consistent reduction of physiological

nuclear staining was observed for TAF15, suggesting a possible

loss-of-function mechanism.

The mechanisms leading to the accumulation of all FET proteins

in FTLD-FUS remain unclear. The results in human ALS-FUS and

in cultured cells expressing mutant FUS indicates that other FET

proteins are not secondarily entrapped within FUS inclusions.

An alternate mechanism is suggested by our cell culture data in

which inhibition of Transportin-mediated nuclear import resulted

in recruitment and co-localization of all FET proteins into stress

granules. This favours a scenario in which a broader nuclear

import defect in FTLD-FUS leads to increased cytoplasmic levels

of all FET proteins (and possibly other proteins), which then pre-

disposes to their abnormal accumulation. Although the underlying

defect in nuclear import could reflect a direct dysfunction of the

Transportin import machinery, preliminary studies in which we

found no alterations in the subcellular distribution of other

Transportin cargos, such as hnRNPA1, makes this mechanism

more unlikely. Alternatively, altered post-translational modifica-

tions of FET proteins, such as phosphorylation or arginine methy-

lation, might affect their subcellular localization and nuclear import

in FTLD-FUS (Tan and Manley, 2009; Kovar, 2011). While

biochemical analysis has so far revealed only a relative change in

solubility for FET proteins (Neumann et al., 2009b and this study),

the presence of potential disease-associated post-translational

modifications as well as alterations of the transportin machinery

requires further studies.

Our findings in FTLD-FUS add TAF15 and EWS to the growing

list of DNA/RNA binding proteins involved in neurodegenerative

diseases. Despite the fact that we have not detected any patho-

genic mutations in TAF15 and EWSR1 in our FTLD-FUS cases,

both genes are considered promising candidates for genetic

screens in FTLD and ALS and a very recent report has described

coding variants in TAF15 in ALS, although their pathogenicity re-

mains to be confirmed (Ticozzi et al., 2011).

In summary, this study demonstrates the co-accumulation of all

members of the FET protein family in the characteristic inclusions

as specific feature of FTLD-FUS but not of ALS-FUS, thus allowing

a clear separation between genetic and non-genetic forms of

FUS-opathies by neuropathological features. More importantly,

these findings imply that different pathomechanisms underlie in-

clusion body formation and cell death in ALS-FUS versus

FTLD-FUS. Our data indicate that neurodegeneration associated

with FUS mutations is probably the result of a restricted dysfunc-

tion of FUS, whereas a more complex dysregulation of all FET

family members seems to be involved in FTLD-FUS pathogenesis.

While the relative roles of the different FET proteins in the disease

pathogenesis of FTLD-FUS remain to be determined in future stu-

dies, our data suggest that the conditions currently subsumed

within the FTLD-FUS molecular subgroup might be more appro-

priately designated as FTLD-FET, in accordance with the recently

proposed system of FTLD nomenclature (Mackenzie et al., 2009).
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Supplementary Online Material:  

Supplementary Table 1: Demographic and clinical features of FTLD-FUS and ALS-
FUS cases. 

NP diagnosis Case
No 

Sex Family 
history 

Onset 
(y) 

Duration 
(y) 

Dementia Park ALS References 

aFTLD-U 1 F no 38 11 bvFTD no no (Mackenzie et al., 2008; 
Neumann et al., 2009a) 

aFTLD-U 2 F no 37 8 bvFTD no no (Mackenzie et al., 2008; 
Neumann et al., 2009a)�

aFTLD-U 3 F no 40 11 bvFTD no no (Mackenzie et al., 2008; 
Neumann et al., 2009a)�

aFTLD-U 4 F no 32 7 bvFTD no no (Mackenzie et al., 2008; 
Neumann et al., 2009a)�

aFTLD-U 5 M no 29 7 bvFTD no no (Mackenzie et al., 2008; 
Neumann et al., 2009a)�

aFTLD-U 6 F no 36 6 bvFTD no no (Mackenzie et al., 2008; 
Neumann et al., 2009a)�

aFTLD-U 7 M no na na bvFTD no no (Neumann et al., 2009a) 

aFTLD-U 8 F no 46 4 bvFTD no no (Neumann et al., 2009a; 
Roeber et al., 2008) 

aFTLD-U 9 M no 36 5 bvFTD no no (Neumann et al., 2009a; 
Roeber et al., 2008)�

aFTLD-U 10 M no 41 5 bvFTD no no (Neumann et al., 2009a; 
Roeber et al., 2008)�

aFTLD-U 11 F no 39 9 bvFTD no no (Neumann et al., 2009a; 
Roeber et al., 2008)�

aFTLD-U 12 F no 35 5 bvFTD no no (Neumann et al., 2009a; 
Roeber et al., 2008)�

aFTLD-U 13 M no na na bvFTD no no (Neumann et al., 2009a; 
Roeber et al., 2008)�

aFTLD-U 14 M no 28 5 bvFTD no no (Neumann et al., 2009a; 
Roeber et al., 2008)�

aFTLD-U 15 F no 39 15 bvFTD no no (Neumann et al., 2009a; 
Roeber et al., 2008)�

NIFID 

1

F no 25 4 PPA, bvFTD no yes (Cairns et al., 2004; 
Mackenzie and Feldman 
2004; Neumann et al.,
2009b) 

NIFID 2 F no 34 7 PPA, bvFTD no yes (Neumann et al., 2009b)

NIFID 3 M no 58 3 PPA no no (Neumann et al., 2009b)

NIFID 4 F no 53 3 bvFTD yes no (Neumann et al., 2009b)

BIBD 1 M no 29 10 bvFTD no yes (Munoz et al., 2009; Munoz-
Garcia and Ludwin 1984) 

BIBD� 2 M no 57 6 bvFTD yes no (Munoz et al., 2009; Yokota
et al., 2008) 

BIBD� 3 F no 56 11 bvFTD no no (Munoz et al., 2009; Yokota
et al., 2008) 

BIBD� 4 M no 36 6 no no yes (Kusaka et al., 1990; Munoz
et al., 2009)  

BIBD� 5 M no 53 5 no no yes (Kusaka et al., 1990; Munoz
et al., 2009) 

BIBD� 6 F no 43 8 no yes no (Munoz et al., 2009) 

BIBD� 7 M no 46 5 yes yes no (Behring et al., 1998) 

ALS-FUS
(p.R521C) 

1 F yes 62 4 no no yes (Mackenzie et al., 2011; 
Rademakers et al., 2010) 

ALS-FUS
(p.R521C)

2 F yes 44 2 no no yes (Mackenzie et al., 2011) 

ALS-FUS
(p.R514S/E516V) 

3 M no 44 3 no no yes (Mackenzie et al., 2011; 
Robertson et al., 2011) 

ALS-FUS
(p.P525L) 

4 F no 22 < 1 no no yes (Baumer et al., 2010; 
Mackenzie et al., 2011) 

ALS-FUS 
(p.P525L) 

5 F no 18 < 1 no no yes (Baumer et al., 2010; 
Mackenzie et al., 2011) 

ALS-FUS
(p.Q519lfsX9) 

6 M no 18 < 1 mild 
learning 
difficulty 

no yes (Baumer et al., 2010; 
Mackenzie et al., 2011) 

aFTLD-U, atypical frontotemporal lobar degeneration with ubiquitinated inclusions; ALS, amyotrophic lateral sclerosis,  
ALS-FUS, Amyotrophic lateral sclerosis with mutations in FUS gene; BIBD, basophilic inclusion body disease; bvFTD, 
behavioural variant of frontotemporal dementia; na, not available; NIFID, neuronal intermediate filament inclusion body 
disease; Park, parkinsonism; PPA primary progressive aphasia��
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Supplementary Table 2: Summary of TAF15 and EWS antibodies tested

Company Product No Species Epitope IHC WB 

TAF15      

Bethyl IHC-00094-1 RP 200-250 1:200-1:400 1:1000 

Bethyl A300-308A RP 200-250 1:1000-1:2000 1:5000 

Bethyl A300-309A RP 550-592 1:1000-1:2000 1:5000 

Abnova H00008148-B01P MP na no no 

Abcam TAF15B11A6 MM na no no 

EWS      

Santa Cruz G5-sc28327 MM 2-43 1:100-1:300 1:500 

Bethyl IHC-00086 RP 100-150 1:200 nd 

Epitomics 3319-1 RP 130 - 155 1:100 nd 

Epitomics 3320-1 RP 345 - 370 1:1000 nd 

Amsbio M01, clone 5C10 MM 358-454 no 1:200* 

IHC, immunohistochemistry; MM, mouse monoclonal; MP, mouse polyclonal; na, not available; nd, not determined; RP, 
rabbit polyclonal; WB, Western blotting.  
* Additional staining of band ~75 kD, suggesting cross-reactivity with TAF15 (see Supplementary Fig. 1). 

149



3

Supplementary Table 3.  
Non-coding variants identified in EWSR1 and TAF15 in FTLD-FUS 

Gene Region Nucleotide Change FTLD-FUS 

EWSR1 Intron 3 c.102+14_21delTAATTACA 1/8 

TAF15 3’UTR c.*19C>T 1/8 

TAF15 Intron 10 c.783+142G>C 5/8 
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Supplementary Figure 1 

Specificity testing of used TAF15 and EWS antibodies by immunoblot.  

High-salt fraction extracted from frontal cortex of patient with FTLD-FUS subjected to 

7.5% SDS-PAGE and blotted onto PVDF membrane. Membrane was cut into strips that 

were immunolabeled with the indicated primary antibodies against EWS (lane 1 and 2), 

TAF15 (lane 3-5) and FUS (lane 6). Note that all antibodies recognize a single band of 

the expected molecular size, only EWS-5C10 showed additional weak labeling of a band 

at the similar size of TAF15 suggesting weak cross reactivity to TAF15. One strip (lane 

7) was probed for TAF15 and FUS to clearly demonstrate that distinct bands are 

recognized by TAF15 and FUS antibodies.  
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Supplementary Figure 2:  

Double-label immunofluorescence for TAF15, EWS and �-internexin in NIFID: 

Neurons in NIFID with compact �-internexin-positive inclusions (A and B, green) always 

revealed additional TAF15 (A, red) and EWS (B, red) pathology. Note that separate, 

discrete inclusions are labeled for TAF15 and �-internexin (A) and EWS and �-

internexin (B) in the same neuron. Scale bar: 4 μm.  
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Supplementary Figure 3: 

Analysis of FET proteins in cells overexpressing wildtype FUS 

HeLa cells were transiently transfected with hemagglutinin-tagged human wildtype FUS 

(HA-FUS-WT) and left untreated (37°C, upper panel) or subjected to heat shock (1h at 

44°C, lower panel) 24h after transfection. Cells were stained with antibodies against HA 

(green) and EWS (red) or TAF15 (red) and analyzed by confocal microscopy. Under 

both conditions, HA-FUS-WT as well as endogenous TAF15 and EWS are localized in 

the nucleus. Scale bar: 20μm.
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Mutations in fused in sarcoma (FUS) are a cause of familial

amyotrophic lateral sclerosis (fALS). Patients carrying

point mutations in the C-terminus of FUS show neuronal

cytoplasmic FUS-positive inclusions, whereas in healthy

controls, FUS is predominantly nuclear. Cytoplasmic FUS

inclusions have also been identified in a subset of fronto-

temporal lobar degeneration (FTLD-FUS). We show that a

non-classical PY nuclear localization signal (NLS) in the

C-terminus of FUS is necessary for nuclear import. The

majority of fALS-associated mutations occur within the

NLS and impair nuclear import to a degree that correlates

with the age of disease onset. This presents the first case of

disease-causing mutations within a PY-NLS. Nuclear im-

port of FUS is dependent on Transportin, and interference

with this transport pathway leads to cytoplasmic redis-

tribution and recruitment of FUS into stress granules.

Moreover, proteins known to be stress granule markers

co-deposit with inclusions in fALS and FTLD-FUS patients,

implicating stress granule formation in the pathogenesis

of these diseases. We propose that two pathological hits,

namely nuclear import defects and cellular stress, are

involved in the pathogenesis of FUS-opathies.

The EMBO Journal (2010) 29, 2841–2857. doi:10.1038/

emboj.2010.143; Published online 6 July 2010

Subject Categories: neuroscience; molecular biology

of disease

Keywords: amyotrophic lateral sclerosis (ALS); frontotem-

poral lobar degeneration (FTLD); fused in sarcoma (FUS);

stress granules; Transportin

Introduction

ALS, also known as Lou Gehrig’s disease, is an incurable,

severely disabling condition that is characterized by the

degeneration of both upper and lower motor neurons. Loss

of motor neurons leads to progressive muscle weakening,

atrophy and spasticity. The majority of patients succumb to

the disease within 1–5 years after disease onset, typically

because of respiratory failure (Boillee et al, 2006). Although

the majority of ALS cases are sporadic (sALS), about 10% are

inherited in a dominant manner (fALS) (Boillee et al, 2006;

Valdmanis and Rouleau, 2008). Of these, about 5–10% are

caused by mutations in the TAR DNA-binding protein 43

(TDP-43) gene on chromosome 1 (Gitcho et al, 2008;

Kabashi et al, 2008; Mackenzie and Rademakers, 2008;

Sreedharan et al, 2008) or the FUS gene on chromosome 16

(Kwiatkowski et al, 2009; Vance et al, 2009). Although these

genes account for only a small number of fALS cases, their

gene products seem to have a crucial function in the patho-

genesis of the majority of ALS cases, including sALS, as well

as the related disorder frontotemporal lobar degeneration

with ubiquitin-positive inclusions (FTLD-U). Both neurode-

generative diseases are characterized by the presence of

neuronal and/or glial TDP-43 or FUS inclusions. TDP-43

inclusions are found in most ALS cases, with the exception

of fALS caused by mutations in the Cu/Zn superoxide

dismutase (SOD1) gene (Mackenzie et al, 2007). Moreover,

TDP-43-positive inclusions are also found in 490% of FTLD-

U patients (Arai et al, 2006; Neumann et al, 2006), now

renamed as FTLD-TDP (Mackenzie et al, 2010). FUS inclu-

sions are present in the remaining 10% of atypical TDP-43-

negative FTLD-U cases (aFTLD-U) (Neumann et al, 2009a)

and in other rare cases of FTLD, such as basophilic inclusion

body disease (BIBD) (Munoz et al, 2009) and neuronal

intermediate filament inclusion disease (NIFID) (Neumann

et al, 2009b), now subsumed as FTLD-FUS (Mackenzie et al,

2010), as well as in fALS patients carrying FUS mutations

(Kwiatkowski et al, 2009; Vance et al, 2009). These diseases

are now commonly termed FUS-opathies (Munoz et al, 2009).

The discovery of TDP-43 and FUS inclusions in both ALS and

FTLD has led to the concept that ALS and FTLD are related

diseases and that the same proteins are involved in their

pathogenesis (Neumann et al, 2009a). This is further sup-

ported by the fact that up to 50% of ALS patients show

cognitive impairment and a significant portion of FTLD

patients develop motor neuron disease (Talbot and Ansorge,

2006).

Both FUS and TDP-43 are DNA- and RNA-binding

proteins that shuttle continuously between the nucleus and

cytoplasm (Zinszner et al, 1997b; Ayala et al, 2008) and are

involved in multiple steps of gene expression, such as tran-

scriptional regulation, pre-mRNA splicing and microRNA

processing (Buratti and Baralle, 2008; Lagier-Tourenne and

Cleveland, 2009). In addition, FUS has been implicated in

mRNA export and mRNA transport to neuronal dendrites
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(Fujii and Takumi, 2005; Fujii et al, 2005). Although FUS and

TDP-43 normally reside and function predominantly in the

nucleus, pathological FUS and TDP-43 inclusions are mostly

observed in the cytosol, and inclusion-bearing cells often

show a reduction of nuclear staining (Arai et al, 2006;

Neumann et al, 2006, 2009a; Kwiatkowski et al, 2009;

Vance et al, 2009). It is completely unclear, how cytosolic

FUS and TDP-43 inclusions arise and apart from p62 and

ubiquitin, no other cellular markers or co-aggregating pro-

teins have been detected within these inclusions (Neumann

et al, 2006, 2007, 2009a; Kwiatkowski et al, 2009; Vance et al,

2009). As the inclusions occur predominantly in the cytosol,

defects in nucleocytoplasmic transport or enhanced aggrega-

tion in the cytosol may lead to cytoplasmic mislocalization of

TDP-43 and FUS. This may interfere with their physiological

nuclear function or cause a toxic gain-of-function because of

excessive accumulation in the cytoplasm.

For TDP-43, a classical NLS in the N-terminal domain has

been identified and experimentally confirmed (Winton et al,

2008). However, none of the over 30 mutations identified in

TDP-43 so far affect the NLS, and it is still unclear whether

any of the mutations functionally affect nucleocytoplasmic

transport. Moreover, expression of TDP-43 in yeast and

neuroblastoma cells suggested that the fALS-associated mu-

tations might increase the aggregation propensities of TDP-43

rather than impairing its nuclear transport (Johnson et al,

2009; Nonaka et al, 2009). For FUS, it has been described that

some of the fALS-associated mutations in the C-terminal

region lead to an accumulation of the protein in the cytosol

(Kwiatkowski et al, 2009; Vance et al, 2009). However, the

underlying cellular mechanism is unknown, and it is not

clear whether disturbed nuclear transport or aberrant cyto-

plasmic aggregation of mutant proteins leads to the cytosolic

redistribution of mutant FUS. A non-classical R/H/KX2�5PY-

NLS has been predicted in the FUS C-terminal region (Lee

et al, 2006). However, experimental evidence is missing that

this sequence is required for nuclear import of FUS and the

function of the predicted NLS is controversial. For example, a

homologous motif in the related Ewing sarcoma protein

(EWS), which belongs to the same transcription factor family

(Law et al, 2006; Zakaryan and Gehring, 2006), was shown to

be necessary, but not sufficient for nuclear import of EWS

(Zakaryan and Gehring, 2006). Furthermore, an N-terminal

fragment, but not a C-terminal fragment of FUS has earlier

been shown to localize to the nucleus (Zinszner et al, 1997b).

Nevertheless, 12 out of 22 FUS mutations identified in

fALS patients are concentrated within the predicted

NLS (Figure 1A) (Belzil et al, 2009; Chio et al, 2009;

Kwiatkowski et al, 2009; Ticozzi et al, 2009; Vance et al,

2009; Corrado et al, 2010) and the motif is highly conserved

during evolution (Figure 1B). We, therefore, assessed

whether the predicted NLS was functionally relevant and

whether it would be impaired by fALS-associated FUS

mutations.

Results

C-terminal region of FUS is necessary and sufficient

for nuclear import

To test whether the C-terminal domain of FUS is required for

nuclear import, we generated a deletion mutant lacking the

C-terminal 13 amino acids (D514–526) (Figure 1A) and

analysed its localization in HeLa cells. In contrast to wild-

type (WT) FUS, which was located almost exclusively in the

nucleus, the deletion mutant showed a predominantly

(72±4%) cytoplasmic localization (Figure 1C, see D for

quantification). This shows that the C-terminal domain

(amino acids 514–526) is necessary for efficient nuclear

import of FUS. We next investigated whether the three

arginine residues most frequently mutated in FUS-positive

fALS patients (R521, R522, R524; see Figure 1A) are critical

for nuclear import. When we changed these three arginines to

alanine (R521A/R522A/R524A), the localization of the triple

point mutant was indistinguishable from that of the deletion

mutant (73±3% cytosolic; Figure 1C and D), showing that at

least one of these arginines is essential for nuclear localiza-

tion of FUS (for individual arginine mutations, see Figure 2).

In addition, the two arginine residues further upstream (R514

and R518) are also required for nuclear import, as an R514A/

R518A mutant showed a predominantly (65±5%) cytosolic

localization (Figure 1C and D). These findings suggest that

fALS-associated mutations may affect a functionally active

NLS located in the C-terminus of FUS.

To test whether the C-terminal tail of FUS is not only

necessary but also sufficient for active nuclear import, we

transplanted this domain onto the C-terminus of the cytosolic

reporter protein GST-GFP. Owing to its size (55 kDa), the GST-

GFP fusion protein is largely excluded from the nucleus

(Figure 1E) and requires active nuclear import mediated by

an NLS (Iijima et al, 2006; Terry et al, 2007). Similar to the

well-characterized classical NLS of the SV40 large T antigen

(SV40-NLS) (Kalderon et al, 1984), the C-terminal 13 amino

acids of FUS (FUS514�526) mediated an almost exclusive

nuclear localization of the reporter protein (Figure 1E, see F

for quantification). In contrast, the same amino acids ar-

ranged in random order (FUS514�526 scrambled) were not able

to mediate import of GST-GFP (Figure 1E and F), showing

that the FUS NLS activity requires a specific sequence

motif rather than the random presence of several positively

charged arginines. Taken together, these experiments demon-

strate that the C-terminal tail of FUS is necessary and

sufficient for active nuclear import and thus constitutes a

bona fide NLS.

fALS-associated point mutations in the C-terminal

domain disrupt nuclear import of FUS

After functionally identifying the NLS of FUS, we analysed

four fALS-associated point mutations that occur within this

domain at evolutionarily conserved residues (R521G, R522G,

R524S, P525L; see Figure 1B) (Chio et al, 2009; Kwiatkowski

et al, 2009) and asked whether they may disrupt nuclear

import. Indeed, all four point mutations showed a varying

degree of cytosolic accumulation, ranging from a mild mis-

localization for R521G and R524S (16±10% and 21±7%

cytosolic, respectively) over an intermediate phenotype for

R522G (45±9% cytosolic) to a severe mislocalization for

P525L (65±5% cytosolic) (Figure 2A, see B for quantifica-

tion, note that mutations were ordered according to their

strength/age of onset). R521H and R521C, the fALS-asso-

ciated FUS mutations identified most frequently (Belzil

et al, 2009; Drepper et al, 2009; Kwiatkowski et al, 2009;

Ticozzi et al, 2009; Vance et al, 2009; Corrado et al, 2010; Lai

et al, 2010; Suzuki et al, 2010), also caused a mild nuclear

import defect, similar to R521G (Supplementary Figure S1A

FUS mutations disrupt Trp-mediated nuclear import
D Dormann et al

The EMBO Journal VOL 29 | NO 16 | 2010 &2010 European Molecular Biology Organization2842

156



and B). The fact that none of the point mutants are comple-

tely excluded from the nucleus is consistent with the finding

that in fALS patients with FUS mutations neurons with

cytoplasmic FUS inclusions still show some immunolabelling

of the nucleus (Kwiatkowski et al, 2009; Vance et al, 2009;

Rademakers et al, 2010). The observed cytoplasmic misloca-

lization cannot be attributed to a higher expression level of

the point mutants, as similar expression levels were observed

for all mutants (Figure 2C). Thus, R522 and P525 are

important residues in the C-terminal NLS of FUS, whereas

R521 and R524 have a less important function for NLS

activity. Another important residue is the highly conserved

tyrosine at the C-terminus, which is predicted to have an

important function in a PY-NLS (Lee et al, 2006), as its

mutation to an alanine results in a dramatic relocalization

of FUS (Supplementary Figure S1C and D). Furthermore, it is

remarkable that the P525L and R522G mutations, which

show the strongest degree of cytosolic mislocalization, were
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reported to cause especially aggressive forms of fALS, with a

mean disease onset at 24 and 28.5 years, respectively (Chio

et al, 2009; Kwiatkowski et al, 2009). Thus, the degree of

cytosolic mislocalization is inversely correlated to the age of

disease onset (Figure 2B).

As deletion or mutation of the C-terminal NLS did not

eliminate nuclear import completely (see Figures 1B and 2B),

we investigated whether any of the point mutations located in

the N-terminal SYGQ- and G-domains (Figure 1A) might

affect a putative second NLS. However, all of the investigated

N-terminal point mutants (G156E, R216C, G225V, R234C,

R244C) showed an almost exclusive nuclear localization,

indistinguishable from the WT protein (Figure 2D, see E for

quantification). Furthermore, N-terminal point mutations did

not further aggravate mislocalization of the P525L mutant

(Supplementary Figure S2A and B), making it unlikely that

they affect a second, weaker NLS, which might become

important when the C-terminal NLS is impaired. Together,

these findings show that C-terminal fALS-associated FUS

mutations affect the protein’s major NLS and thus impair

its nuclear import, whereas the so far identified N-terminal

FUS mutations do not impair nuclear localization. The latter

suggests that these mutations cause disease through a differ-

ent cellular mechanism.

FUS-P525L mutation disrupts nuclear import in primary

neurons and prevents import of a cytosolic reporter

in vitro and in vivo

As fALS-associated FUS mutations specifically cause degen-

eration of neurons in the cortex and spinal cord (Kwiatkowski

et al, 2009; Vance et al, 2009), we wanted to confirm that

these mutations also affect FUS import in neuronal cells.
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We, therefore, prepared primary neuronal cultures from

embryonic (E19) rat hippocampus and frontal cortex and

examined the subcellular localization of the WT protein

and the strong P525L mutant on transfection of the corre-

sponding cDNA constructs. As in HeLa cells, FUS-WT was

located almost exclusively in the nucleus, whereas the P525L

mutant was strongly redistributed to the cytosol, extending

even into the neuronal processes in both cortical and hippo-

campal neurons (Figure 3A, see B for quantification). Thus,
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completely disrupts activity of the C-terminal NLS. Scale bar, 20 mm. (D) Quantification of nuclear and cytosolic fluorescence intensities. Error
bars indicate s.d. (E) To confirm functionality of the FUS-NLS in vivo, the indicated GST-GFP reporter constructs were injected into fertilized
zebrafish eggs. On day 2 post-fertilization, embryos were stained with a GFP-specific antibody (green) and a nuclear counter-stain (blue), and
subcellular localization of the reporter constructs was analysed in muscle cells and spinal cord neurons by confocal microscopy. In both cell
types, the FUS514�526 WT sequence mediates efficient nuclear import (left panels), whereas reporter proteins carrying the P525L mutation or
scrambled NLS remain cytosolic (middle and right panels). Arrowheads indicate axonal localization of reporter proteins in spinal cord neurons.
Scale bar, 10 mm.
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import not only in transformed cell lines, but also in primary

neuronal cells, the cell type primarily affected in FUS-opathies.

To further support that cytosolic mislocalization of

the fALS mutants was due to a disrupted NLS activity, the

P525L mutation was introduced into the GST-GFP-FUS514�526

reporter construct and analysed for its effect on nuclear

import. Consistent with the data shown in Figures 2A and

3A, the proline mutation efficiently blocked nuclear import of

the reporter protein, as its localization was indistinguishable

from that of the FUS514�526 scrambled reporter (Figure 3C and

D). This further supports that fALS-associated point muta-

tions disrupt the FUS514�526 NLS. To provide in vivo evidence

for these findings, we injected the same reporter constructs

into zebrafish eggs and analysed their subcellular localization

in zebrafish embryos on day 2 post-fertilization. In

both myocytes and spinal cord neurons, the FUS514�526 WT

sequence mediated efficient nuclear import, whereas reporter

proteins carrying the P525L mutation or scrambled NLS

remained cytosolic and were detectable in axonal processes

of spinal cord neurons (Figure 3E). These data corroborate

that fALS-associated point mutations in the FUS-NLS disrupt

nuclear import in a living animal in different cell types,

including spinal cord neurons.

Nuclear import receptor Transportin is required

for nuclear import of FUS

Next, we searched for the cellular mechanism of nuclear

transport affected by the fALS mutations described above.

The NLS of FUS bears some homology to other NLSs with a

PY motif, which have been shown to be recognized by the

nuclear transport receptor Transportin (Trp), also known as

Karyopherin b2 (Lee et al, 2006; Imasaki et al, 2007). As FUS

has been shown to interact with Trp in in vitro pull down

assays (Guttinger et al, 2004; Lee et al, 2006), we speculated

that Trp may mediate nuclear import of FUS by binding to its

C-terminal NLS and that fALS-associated point mutations

might interfere with this import pathway. To test whether

Trp is responsible for nuclear import of FUS, we performed

siRNA-mediated knockdown of the two Trp homologues,

Trp1 and Trp2, two closely related proteins shown to have

redundant function as nuclear import receptors (Guttinger

et al, 2004; Rebane et al, 2004). Whereas knockdown of

either Trp1 or Trp2 alone had not effect on nuclear import

of FUS (data not shown), knockdown of both Trp variants

significantly impaired nuclear import of endogenous FUS, as

about 25% of the protein was found outside the nucleus on

Trp1/2 silencing (Figure 4A, see B for quantification). The

fact that substantial amounts of FUS are still detectable in the

nucleus may be due to residual Trp1 remaining in siRNA-

transfected cells (Figure 4C, middle panel) or could indicate

that additional import receptors are involved in nuclear

import of FUS. To test whether Trp is the predominant import

receptor for the C-terminal NLS, we expressed the two FUS

mutants R521G and P525L in cells that had been transfected

with Trp1/2-specific siRNAs. As a control, we examined the

behaviour of HA-tagged WT FUS. Similar to endogenous FUS

(Figure 4A), HA-tagged FUS-WT showed a moderate redis-

tribution to the cytoplasm on Trp knockdown (Figure 4D

and E, see F for knockdown efficiency and HA-FUS

protein levels). Interestingly, the FUS-R521G mutant, which

showed only a mild cytosolic mislocalization in non-siRNA

transfected (Figure 2A) or control siRNA-transfected cells

(Figure 4D, upper panel), was strongly affected by Trp silen-

cing, as 460% of the protein redistributed to the cytosol

under these conditions (Figure 4D and E). This shows that

the R521G mutation indeed interferes with the Trp pathway

and strongly suggests that Trp is the major import receptor for

the C-terminal NLS of FUS. In line with this, the severe

cytosolic mislocalization of the P525L mutant was only

slightly, if at all, aggravated by Trp silencing (Figure 4D and

E). This further corroborates that Trp is the major import

receptor recognizing the FUS PY-NLS.

The structures of several non-classical PY-NLSs bound to

Trp have been solved and converge to a consensus-binding

geometry consisting of an N-terminal hydrophobic/basic

motif and the C-terminal motif R/H/KX2�5PY (Lee et al,

2006; Cansizoglu et al, 2007; Imasaki et al, 2007). On the

basis of these data, we modelled the FUS C-terminal sequence

as subtype RXXPY bound to Trp (Figure 4G). Interestingly,

our model shows two distinct binding areas within this

RXXPY motif: R522 makes strong charged H-bond/ion-pair

interactions with the side chain carboxylates of E509 and

D543 of Trp1. The second area of tight binding comprises

residues P525 and Y526. As in the experimental structures,

the proline allows a particular kinked main chain geometry

between these two residues, enabling a specific surface

recognition, consisting of a hydrophobic pocket that engulfs

the proline side chain and the phenyl ring of Y526 and an

H-bond contact to Y526. In contrast, no specific interaction

partner can be found for R521, resulting most likely in a

somewhat flexible conformation, and only a weak attractive

force between the receptor surface and R521 because of the

negative electrostatic potential of the Trp surface in this

region can be predicted. Similarly, R524 points away from

the receptor surface and should not contribute significantly to

recognition. Thus, our model is consistent with our analysis

of the fALS-associated FUS mutations (Figure 2A and B), as

changes in amino acids that are responsible for strong con-

tacts between the FUS C-terminal sequence and Trp (R522

and P525) resulted in a severe cytosolic relocalization and

early disease onset, whereas mutation of either R521 or R524

to glycine or serine only resulted in a mild mislocalization

and later disease onset.

As siRNA-mediated silencing of Trp did not result in a

complete block of the Trp pathway (see residual Trp1 levels in

Figure 4C and F) and only led to a moderate cytosolic

redistribution of WT-FUS, we searched for a more efficient

way of blocking Trp-mediated nuclear import. To this end, we

took advantage of a Trp-specific inhibitor peptide (M9M)

designed to bind Trp with high affinity by joining the

N-terminal half of the hnRNP A1 NLS (called M9) with the

C-terminal half of the PY-NLS of hnRNP M (Cansizoglu et al,

2007). By combining these two high-affinity-binding sites, the

M9M peptide efficiently competes with natural substrates of

Trp, such as hnRNPA1, HuR and hnRNP M (Cansizoglu et al,

2007). We reasoned that if Trp mediates nuclear import of

FUS by binding to its C-terminal PY-NLS, the high-affinity

peptide inhibitor should compete for this interaction and thus

should prevent or reduce nuclear import of endogenous FUS.

Indeed, when we expressed a GFP-M9M construct in cortical

neurons (Figure 5A), hippocampal neurons (Supplementary

Figure S3A) and HeLa cells (Figure 5B and C), the transfected

cells showed a striking redistribution of endogenous FUS to

the cytosol. In contrast, TDP-43, which is imported through
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Figure 4 Transportin is required for nuclear import of FUS. (A) The two Trp homologues, Trp1 and Trp2, were silenced by siRNA-mediated
knockdown, using two different siRNA pools (no. 1 and no. 2). A non-targeting (NT) siRNAwas used as a negative control; 72h post-transfection,
cells were stained with an FUS-specific antibody (green) and a nuclear counter-stain (blue) and were analysed by confocal microscopy. Trp1/2
double knockdown leads to a partial cytoplasmic redistribution, showing that Trp is involved in nuclear import of FUS. Scale bar, 20mm.
(B) Quantification of nuclear and cytosolic fluorescence intensities. Error bars indicate s.d. (C) Verification of knockdown efficiency by
immunoblot. Total cell lysates were examined with a pan-Trp (Trp1/2)- and a Trp1-specific antibody (upper two panels). a-Tubulin served as a
loading control (lower panel). Note that the Trp1-specific antibody is more sensitive than the pan-Trp antiserum and detects residual levels of
Trp1 (middle panel). (D) HeLa cells were transfected with NTsiRNA or Trp1/2-specific siRNA pool no. 1 or no. 2 and 24h later with the indicated
HA-tagged FUS constructs. Another 24 h later, cells were stained with an HA-specific antibody (green) and a nuclear counter-stain (blue) and
were analysed by confocal microscopy. Trp silencing leads to a dramatic cytosolic mislocalization of the otherwise weakly mislocalized R521G
mutant, but has almost no further effect on the already strongly mislocalized P525L mutant. Scale bar, 20mm. (E) Quantification of nuclear
and cytosolic fluorescence intensities. Error bars indicate s.d. (F) Verification of knockdown efficiency and expression of HA constructs by
immunoblot. Total cell lysates were examined with antibodies specific for Trp1/2, Trp1 and HA (upper three panels). b-actin served as a loading
control (lowest panel). (G) Model of the FUS PY-NLS (stick model with grey carbons, red oxygens, blue nitrogens, important amino-acid
residues labelled in green) bound to the semitransparent electrostatic surface of Trp coloured according to its calculated negative (�25 e/kT,
red) and positive (þ 25 e/kT, blue) electrostatic surface potential. Underlying amino-acid residues of special importance for binding of the FUS-
NLS are depicted as stick model and labelled in black. Residues responsible for the charged H-bond/salt-bridge contact to FUS-R522 and
residues forming the hydrophobic pocked for FUS-PY526 and the H-bond network connecting to FUS-Y526 OH are shown with blue, orange and
green carbons, respectively. H-bonds are indicated as broken black lines. This figure was made with pymol (DeLano Scientific LLC, USA,
http://www.pymol.org).
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the classical NLS-dependent importin a/b (karyopherin a/b1)
pathway (Winton et al, 2008), was not affected by expression

of the M9M inhibitor and remained nuclear even in cells with

cytoplasmic FUS staining (Figure 5D). As an additional con-

trol, we expressed an importin a/b-specific inhibitor con-

struct (GFP-Bimax2), designed to bind to importin a with

high affinity (Kosugi et al, 2008). As expected, the importin

a/b-specific inhibitor interfered with the nuclear import of

TDP-43, but not of FUS (Supplementary Figure S3B). These

data show that Trp, but not the classical import receptor

importin a/b, is required for nuclear import of FUS. Taken

together, our knockdown and competition experiments and

structural modelling of the FUS PY-NLS indicate that FUS is

imported into the nucleus through the Trp receptor and

suggest that the pathogenic mechanism underlying the

C-terminal FUS mutations is an impairment of Trp-dependent

nuclear import of FUS.

Redistribution of FUS into cytoplasmic stress granules

Interestingly, we noted that after GFP-M9M expression, HeLa

cells and primary neurons with cytosolic FUS redistribution

often showed a punctuate localization pattern of FUS (mag-

nifications in Figure 5A and B, see for quantification). As FUS

is an RNA-binding protein (Zinszner et al, 1997b), we won-

dered whether the observed puncta might be stress granules,

cytoplasmic RNP structures that temporarily store transla-

tionally arrested mRNAs during cellular stress (Anderson and

Kedersha, 2006). In addition to stalled mRNAs, stress gran-

ules contain characteristic proteins, such as proteins of

the small ribosomal subunit, translation initiation factors
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Figure 5 Expression of a Trp-specific peptide inhibitor leads to the cytosolic redistribution of FUS, but not TDP-43. (A, B) A peptide competitor
(M9M) designed to bind to the PY-NLS-binding site in Trp with very high affinity was expressed in primary rat cortical neurons (A) or HeLa
cells (B) as a GFP-fusion protein (green). After staining with an FUS-specific antibody (red), cells were analysed by confocal microscopy.
Expression of the Trp-specific inhibitor construct causes a marked cytoplasmic redistribution and localization of endogenous FUS in
cytoplasmic punctate structures. Scale bar, 20 mm. Insert in (A) and panels on the right of (B) show magnifications of the boxed regions.
(C) Quantification of the percentage of HeLa cells with exclusively nuclear, diffuse cytosolic and punctuate cytosolic FUS staining. Error bars
indicate s.d. (D) To show selectivity of the M9M peptide inhibitor, GFP or GFP-M9M (green)-transfected HeLa cells were co-stained for
endogenous FUS (red) and TDP-43 (white) and were analysed by confocal microscopy. In contrast to FUS, nuclear localization of TDP-43 is not
affected by expression of the M9M construct. Scale bar, 20mm.
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including eIF3 and eIF4G and a large variety of RNA-binding

proteins, such as the PolyA-binding protein (PABP-1), the

translational silencer T cell intracellular antigen-1 (TIA-1),

TIA-1-related protein (TIAR) and the Ras-GAP-SH3-binding

protein (G3BP1). These proteins specifically associate with

stress granules and not with other types of cytoplasmic RNA

granules, such as processing bodies (P bodies) associated

with mRNA decay (Kiebler and Bassell, 2006). Therefore,

they are commonly used as specific markers of stress gran-

ules (Anderson and Kedersha, 2008). Co-staining with anti-

bodies specific to PABP-1, TIA-1, TIAR and G3BP1 showed

that indeed FUS was localized to stress granules in GFP-M9M-

transfected cells (Figure 6A, rows 1–4). In contrast,

the P body-specific marker protein Dcp1 did not co-stain

with FUS (Figure 6A, row 5), excluding that the FUS-positive

granules observed after GFP-M9M expression correspond to P

bodies. Furthermore, on addition of the polysome-stabilizing

drug cycloheximide, a well-known inhibitor of stress granule

assembly (Kedersha and Anderson, 2007), FUS remained

diffusely distributed in the cytosol and no FUS-positive

G3BP1-positive granules could be observed (Figure 6B).

This confirms that the FUS-positive granules observed after

GFP-M9M expression are stress granules. Together, our data

suggest that cytoplasmically mislocalized FUS may be re-

cruited into stress granules under conditions of cellular

stress, such as strong inhibition of Trp-dependent transport

by GFP-M9M over-expression.

Pathologic inclusions in fALS and FTLD-FUS patients

contain marker proteins of stress granules

As stress granules dynamically grow and coalesce on pro-

longed stress exposure (Kedersha et al, 2000), we wondered

whether the FUS-containing stress granules might be related

to the large FUS-positive inclusions present in brains of fALS

and FTLD-FUS patients. We, therefore, analysed sections of

post-mortem brain and spinal cord tissue from an fALS case

carrying an FUS-R521C mutation and from cases with spora-

dic FTLD-FUS, including aFTLD-U (n¼ 3), NIFID (n¼ 3) and

BIBD (n¼ 1), by immunohistochemistry and double-label

immunofluorescence for the presence of the stress granule

marker PABP-1 in neuronal cytoplasmic inclusions (NCIs).

Strikingly, all cases with FUS pathology revealed strong

labelling for PABP-1 in NCIs in affected brain regions such

as spinal cord and hippocampus (Figure 7A, upper panels).

This was further confirmed by double-label immunofluores-

cence with anti-p62 (green), a robust marker of NCIs in FUS-

opathies (Neumann et al, 2009a, b; Munoz et al, 2009), and

anti-PABP-1 (red), which showed a clear co-localization in

NCIs of all tested FUS-opathy cases (Figure 7A, lower panels).

Furthermore, NCIs in all cases examined showed an enrich-

ment for another stress granule marker protein, eIF4G

(Figure 7B). Notably, cases with FTLD-TDP pathology

(n¼ 2) included as neurologic controls showed no staining

of NCIs with PABP-1 or eIF4G (Figure 7A and B). This

suggests that co-sequestration of stress granule-associated

proteins is a specific feature of FUS inclusions and that stress

granule formation might be involved in inclusion body

formation in FUS-opathies.

C-terminal fALS mutations favour recruitment of

FUS into stress granules

It is important to note that in our cellular models FUS-positive

stress granules were observed after GFP-M9M expression

(Figure 6), but not on expression of mutations interfering

with the NLS of FUS, despite their substantial redistribution

to the cytosol (Figures 1 and 2). This suggests that cytosolic

mislocalization by itself is not sufficient for the formation

of FUS-containing granules, but that additional cellular

stress (e.g. strong inhibition of Trp-dependent transport

by GFP-M9M expression) is required for this to occur.

To test this hypothesis, we expressed FUS-WT and the

above-examined C-terminal FUS mutants (R521G, R522G,

R524S, P525L) in HeLa cells (Figure 8A) and primary neurons

(Figure 8B), subjected them to heat shock and analysed
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Figure 6 Redistribution of FUS into cytoplasmic stress granules.
(A) GFP-M9M (green)-transfected HeLa cells were co-stained for
endogenous FUS (red) and the stress granule marker proteins TIAR,
PABP-1, TIA-1, G3BP1 or the P body marker Dcp1 (white).
Co-staining of FUS with TIAR, PABP-1, TIA-1 and G3BP1 shows
that the punctate FUS-positive structures are stress granules. Note
that there is no co-localization with the P body marker Dcp1. Scale
bar, 20mm. (B) GFP-M9M (green)-transfected HeLa cells were
stained for endogenous FUS (red) and the stress granule marker
G3BP1 (white). Where indicated, the polysome-stabilizing drug
cycloheximide (CHX) was added for 1 h before fixation to prevent
stress granule formation. Cycloheximide prevents formation of
G3BP1- and FUS-positive cytosolic structures, confirming their
stress granule identity. Scale bar, 20 mm.
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whether the proteins would be recruited to stress granules.

In the absence of heat stress, the expressed proteins showed

the above-described localization pattern and no stress

granules could be detected with a PABP-1 or TIAR antibody

(Figure 8A and B, left panels). In contrast, after heat shock,

all FUS mutants localized to cytoplasmic stress granules

(Figure 8A and B, right panels, for additional stress granule

markers, see Supplementary Figure S4A), confirming our

hypothesis that additional cellular stress is required for

the recruitment of FUS into stress granules. The presence

of cycloheximide during heat shock completely pre-

vented the granular localization of the FUS-P525L mutant

(Supplementary Figure S4B), confirming that the FUS

mutant-containing granules observed after heat shock cor-

respond to stress granules. Consistent with the GFP-M9M

experiment (Figure 5D) and the pathology data shown in

Figure 7, TDP-43 was not detectable in FUS-P525L-positive

stress granules after heat shock (Figure 8C). Interestingly,

FUS-WT also remained exclusively nuclear after heat

shock and was not detectable in cytoplasmic stress granules

(Figure 8A and B, right panels). This suggests that only

cytoplasmically mislocalized FUS is recruited into stress

granules. In line with this, the amount of mutant FUS in

stress granules correlated with the degree of cytoplasmic

mislocalization of the point mutants and inversely with

their age of disease onset (Figure 8A). This suggests that

cytosolic mislocalization strongly facilitates the formation of

FUS-positive stress granules.

In conclusion, our data suggest that two pathological

hits, namely cytosolic mislocalization of FUS and cellular

stress, are required for the formation of FUS-positive stress

granules, both in peripheral and neuronal cells (Figure 9).

Furthermore, recruitment of cytoplasmic FUS into stress

granules might be an important cellular mechanism leading
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Figure 7 Neuronal cytoplasmic inclusions (NCIs) in patients with FUS pathology contain the stress granule marker proteins PABP-1 and eIF4G.
(A) Upper panels: PABP-1 immunohistochemistry performed on sections of post-mortem tissue reveals strongly immunoreactive NCIs in motor
neurons in the spinal cord in fALS-R521C, in dentate granule cells of the hippocampus in aFTLD-U and NIFID as well as in motor neurons in the
spinal cord in BIBD. In contrast, no PABP-1-labeled inclusions were detectable in dentate granule cells of the hippocampus in FTLD-TDP. Scale
bar, 25mm. Lower panels: double-label immunofluorescence stainings of the same cases and brain regions show co-localization of PABP-1 (red)
with p62-positive inclusions (green) in fALS-R521C, aFTLD-U, NIFID and BIBD, but no PABP-1 staining in FTLD-TDP inclusions. Note that p62
is a robust marker of FUS and TDP-43 NCIs and was used because double labelling for FUS and PABP-1 was technically not possible, as
available antibodies working on paraffin-embedded tissue were both rabbit polyclonal antisera. Scale bar, 12.5mm. (B) eIF4G immunohis-
tochemistry reveals labelling of NCIs in motor neurons in the spinal cord in fALS-R521C, in dentate granule cells of the hippocampus in aFTLD-
U and NIFID and neurons in frontal cortex in BIBD. No NCIs were detectable in dentate granule cells in FTLD-TDP. Scale bar, 25 mm.
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Figure 8 C-terminal fALS-associated FUS mutations favour recruitment of FUS into stress granules. (A) HeLa cells were transiently transfected
with the indicated HA-tagged FUS constructs; 24 h post-transfection, cells were subjected to heat shock (441C for 1 h, right panels) or were kept
at control temperature (371C, left panels). Cells were fixed, stained with an HA-specific antibody (green), a PABP-1-specific antibody (red) and
a nuclear counter-stain (blue) and analysed by confocal microscopy. In contrast to WT-FUS, which remains almost exclusively nuclear on heat
shock, all FUS mutants are recruited into PABP-1-positive stress granules. The amount of FUS in stress granules correlates with the cytoplasmic
mislocalization and average age of disease onset of the individual point mutations, suggesting that cytoplasmic mislocalization favours
recruitment of FUS to stress granules. Scale bar, 20 mm. (B) Primary rat hippocampal neurons were transiently transfected with HA-tagged FUS-
WTor the P525L mutant, mCherry (red) was co-transfected to visualized neuron morphology. Two days post-transfection, cells were subjected
to heat shock (441C for 1 h) or were kept at control temperature (371C) and were stained with an HA-specific antibody (green) and a TIAR-
specific antibody (white). WT-FUS remains almost exclusively nuclear on heat shock, whereas the P525L mutant shows a mostly granular
localization and co-localizes with TIAR-positive stress granules. Scale bar, 10mm. (C) HeLa cells transiently transfected with the HA-tagged
FUS-P525L mutant were subjected to heat shock (441C for 1 h) or were kept at control temperature (371C). Cells were stained with an HA-
specific antibody (green), a TDP-43-specific antibody (red) and a nuclear counter-stain (blue) and analysed by confocal microscopy. TDP-43 is
not recruited into FUS-P525L-containing stress granules. Scale bar, 20mm.
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to FUS pathology, as stress granule marker proteins also

co-deposit with FUS in brains of fALS and FTLD-FUS patients

(Figure 7).

Discussion

Our data show that the C-terminal domain of FUS harbours

the protein’s major NLS, which mediates Trp-dependent

nuclear import. Furthermore, we show that several fALS-

associated point mutations in the C-terminus of FUS disrupt

this import mechanism, leading to cytoplasmic mislocaliza-

tion of the protein. As the loss of nuclear import correlates

with the age of disease onset of the individual point muta-

tions, it seems likely that the nuclear import defect is causally

linked to the disease. However, we could also show that

additional cellular stress, such as heat shock, is necessary to

cause a clustering of cytosolic FUS in the form of stress

granules. As we consistently found the stress granule markers

PABP-1 and eIF4G co-deposited with FUS inclusions in the

whole spectrum of FUS-opathies, including fALS-FUS,

aFTLD-U, NIFID and BIBD, we implicate cellular stress in

the pathogenesis of these FUS-opathies and propose that two

pathological hits, namely a nuclear import defect and cellular

stress, are involved in the pathogenesis of FUS-associated

diseases.

The identified NLS in the C-terminus of FUS corresponds to

the class of non-classical PY-NLSs, which are recognized by

the nuclear transport receptor Trp (Lee et al, 2006). PY-NLSs

typically are 20–30 residue signals with a C-terminal

R/H/KX2�5PY consensus motif preceded by a hydrophobic

or basic motif, which both make important contacts with

Trp (Lee et al, 2006; Imasaki et al, 2007). The C-terminal

tail of FUS fulfils the criteria of this consensus motif and

indeed we could show that import of FUS depends on Trp

(Figures 4 and 5). Our mutational analysis suggests that

R522, P525 and Y526 are the important residues of the

R/H-X2�5PY consensus motif and that R514 and/or R518

may constitute the N-terminal basic motif required for inter-

action with Trp (Figures 1 and 2; Supplementary Figure S1).

This is supported by our three-dimensional model of the

FUS-NLS bound to Trp (Figure 4G), explaining why muta-

tions in residues R522, P525 and Y526 specifically affect Trp

interaction and, therefore, show the most severe impairment

of nuclear transport. To our knowledge, this is the first case in

which mutations within a PY-NLS cause a human disease.

The only other known example of disease-causing mutations

in an NLS is Swyer syndrome, in which mutations in the

classical NLS of SRY, the testes-determining transcription

factor encoded by the human Y chromosome, lead to a

reduced activation of testes-specific genes and thus male-to-

female sex reversal (Li et al, 2001; Harley et al, 2003).

Considering the large number of important nuclear proteins,

it seems likely that other human diseases can be attributed to

nuclear import defects because of mutations within different

types of NLSs.

Our data show that mutations in R522 and P525 lead to a

strong cytosolic mislocalization of FUS, however, without a

complete exclusion of mutant proteins from the nucleus

(Figure 2A and B). This is consistent with the observations

that neurons of fALS patients with FUS mutations still show

some immunolabelling in the nucleus (Kwiatkowski et al,

2009; Vance et al, 2009; Rademakers et al, 2010). Although

the reported number of patients is still small, it is striking that

mutations in R522 and P525 cause an especially aggressive

form of ALS. The five reported patients with a P525L muta-

tion all had a very early onset of disease (mean age of onset:

24 years) and an unusually rapid disease progression, with

death in o12 months (Chio et al, 2009; Kwiatkowski et al,

2009). R522G (n¼ 2) was the second most aggressive muta-

tion reported by Kwiatkowski et al (2009) (mean age of onset:

28.5 years; mean duration: 25 months). Thus, the two muta-

tions that showed the most severe nuclear import defect

(Figure 2A and B) and were most readily recruited into stress

granules on heat shock (Figure 7A) caused the most aggres-

sive disease course of all reported FUS mutations.

Furthermore, the R521G (n¼ 19) and R524S (n¼ 1) muta-

tions, which showed a much weaker import defect (Figure 2A

and B) and were recruited into heat-induced stress granules

to a lesser degree (Figure 7A), on average caused disease at

a much later age (average age of onset: 43 and 34 years,

respectively). Interestingly, the weak R521G mutation

showed incomplete penetrance, as two members of an

R521G family lived well past the average age of onset without

developing disease (Kwiatkowski et al, 2009). This is con-

sistent with our hypothesis that environmental stress con-

tributes to disease initiation. Different exposure of

individuals to environmental stress might also explain the

variation in the age of onset reported for other fALS-asso-

ciated FUSmutations (Kwiatkowski et al, 2009). Although the

number of FUS mutation carriers reported to date is still

small, Alzheimer’s disease (AD) research has shown that

the in vitro effects of presenilin mutations can be clearly

correlated with the age of disease onset (Duering et al, 2005;

Page et al, 2008), and in some cases, cell culture experiments

have even predicted familial AD mutations and their disease

onset. Given the severe effect of the Y526A mutation on

nuclear import of FUS, it seems possible that fALS patients

carrying FUS-Y526 mutations may be identified in the near

future and one would predict a similarly early age of onset as

for the P525L mutation. Consistent with this hypothesis, a

novel frameshift mutation, which leads to a premature stop

codon and thus truncation of the C-terminal 60 amino acids

of FUS, was recently reported with a disease onset of 20 years

(DeJesus-Hernandez et al, 2010).

1. Nuclear import
defect

2. Experimental or
cellular stress

Long-term
persistence

of stress

Physiological
condition

Cytosolic
mislocalization

Recruitment to
stress granules

Pathological condition,
large inclusions

Figure 9 A two hit model of FUS pathology. Green colour represents FUS distribution. For details see Discussion.
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In addition to mutations in the C-terminal tail of FUS,

several point mutations have been identified in the N-term-

inal SYGQ- or G-rich domains of FUS (Belzil et al, 2009;

Kwiatkowski et al, 2009; Ticozzi et al, 2009; Corrado et al,

2010) (Figure 1A). As deletion of the C-terminal NLS did not

completely eliminate nuclear import (Figure 1C and D) and

an N-terminal fragment comprising the SYGQ- and G-do-

mains was described to localize to the nucleus (Zinszner

et al, 1997a, b), it seemed possible that the N-terminal

fALS-associated mutations disrupt a putative second NLS.

However, our mutational analysis (Figure 2D and E;

Supplementary Figure S2A and B) suggests that N-terminal

fALS mutations act through a different cellular mechanism.

As the SYGQ- and G-rich domains are involved in transcrip-

tional activation and have been shown to interact with RNA

polymerase II and various transcription factors (Zinszner

et al, 1994; Yang et al, 2000; Law et al, 2006), the mutations

instead might modulate FUS function as a transcriptional

activator, either impairing or aberrantly activating transcrip-

tion of neuronal target genes. The finding that different

clusters of mutations within one gene may affect different

cellular mechanisms is not too surprising, given the fact that

familial AD-causing mutations in three different regions with-

in and around the amyloid b (Ab) peptide domain have

fundamentally different consequences on Ab metabolism

and aggregation (Haass, 2004).

Strikingly, we found a co-deposition of cytosolic FUS with

various stress granule marker proteins in cells subjected to

cellular stress as well as in brains of fALS-FUS and FTLD-FUS

patients. However, some differences exist between the FUS-

positive stress granules observed in our cellular models

(primary neurons and HeLa cells) and the FUS inclusions

present in fALS and FTLD-FUS patients: GFP-M9M-expres-

sing cells or cells exposed to heat shock contain multiple

small FUS granules in the perinuclear region or in neuritic

processes (Figures 6 and 8). In contrast, NCIs in brains of

FTLD-FUS patients are usually much larger (see Figure 7;

Neumann et al, 2009a). However, the granules in our in vitro

cultures and the inclusions in brains of patients also share

important properties: first, they resemble each other ultra-

structurally, as both stress granules and inclusions in BIBID

and NIFID patients appear as fibrillogranular aggregates in

electron microscopy (Munoz-Garcia and Ludwin, 1984;

Mosaheb et al, 2005; Souquere et al, 2009). A second

common property is their protein composition: they both

contain FUS and the stress granule markers PABP-1 and

eIF4G, but not TDP-43. Interestingly, before the discovery

of FUS in ALS and FTLD, Fujita et al (2008) described that the

basophilic inclusions in BIBD patients contain markers of

stress granules. Stress granules are known to be dynamic

entities that can enlarge and coalesce on prolonged stress

exposure (Kedersha et al, 2000). Hence, it seems possible that

in the presence of chronic stress, such as oxidative stress,

viral infections or proteasome inhibition (Anderson and

Kedersha, 2008), small stress granules give rise to larger

granules and eventually to large, insoluble inclusions.

It will, therefore, be interesting to see if indeed RNA and

further RNA-binding proteins commonly found in stress

granules in in vitro cultures are present in FUS inclusions in

fALS and FTLD-FUS patients.

Several reports recently described that TDP-43 can be

found in stress granules under various experimental condi-

tions (Colombrita et al, 2009; Moisse et al, 2009; Volkening

et al, 2009; Freibaum et al, 2010). First, sciatic axotomy in

adult mice was reported to cause a marked increase of

cytoplasmic TDP-43 and its co-localization with the RNA-

binding proteins Staufen and TIA-1 (Moisse et al, 2009).

In cellular models, oxidative stress and proteasome inhibition

were reported to lead to a partial recruitment of TDP-43 into

stress granules (Colombrita et al, 2009; Freibaum et al, 2010),

and Freibaum et al identified numerous components of stress

granules as TDP-43-interacting proteins (Freibaum et al,

2010). Although our data clearly show that the FUS-contain-

ing stress granules observed after GFP-M9M expression or

heat shock do not contain TDP-43 (Figures 5D and 8C), this

might be explained by the fact that TDP-43 was predo-

minantly nuclear under these experimental conditions.

According to our two hit model, it seems possible that similar

to FUS, cytosolic relocalization of TDP-43 is a prerequisite for

efficient stress granule recruitment. Thus, it can be specu-

lated that in the studies mentioned above, TDP-43 was at

least partially mislocalized to the cytosol before cellular

stress.

What remains controversial is the data on stress granule

markers in patients with TDP-43 pathology. One study re-

ported a stronger TIA-1 (stress granule) and XRN-1 (P body)

staining in sALS patients compared with healthy controls

(Volkening et al, 2009), whereas another study found a lack

of stress granule markers in TDP-43 inclusions of sALS

patients (Colombrita et al, 2009). Consistent with the latter

study, inclusions of FTLD-TDP patients were consistently

negative for the stress granule markers PABP-1 and eIF4G

in our study (Figure 7). Further studies with larger number of

patients are needed to clarify this issue.

Although we did not observe HA-tagged WT-FUS (Figure

8A and B) or endogenous FUS (data not shown) in stress

granules on heat shock, it is possible that very small amounts

of FUS, undetectable by our antibodies, are present in stress

granules even in untransfected or FUS-WT-transfected cells.

That this might be the case is suggested by the report of

Andersson et al (2008), showing a recruitment of endogenous

FUS to stress granules on exposure of cell lines to oxidative

stress. Nevertheless, our analysis of fALS-associated FUS

mutations strongly suggests that cytosolic mislocalization of

FUS favours recruitment of the protein into stress granules, as

the degree of stress granule recruitment correlated with the

cytoplasmic mislocalization of the individual point mutations

(Figure 8A). Thus, our data suggest that cytosolic FUS is

recruited to stress granules, and furthermore, imply that an

increased presence of FUS in the cytosol favours the forma-

tion of FUS-positive stress granules. In the light of these data,

one may postulate that at least small amounts of FUS have to

accumulate in the cytosol to trigger the onset of sporadic

FTLD-FUS. As not only fALS patients with FUS mutations but

also sporadic FTLD-FUS patients show a neuronal cytoplas-

mic redistribution of FUS (Munoz et al, 2009; Neumann et al,

2009a, b) and a co-deposition of FUS and stress granule

marker proteins in NCIs (this study), the question arises

what causes the abnormal cytoplasmic accumulation of

FUS in cases without FUS mutations. Subtle alterations in

the Trp pathway, for example caused by reduced Trp expres-

sion or post-translational modifications of FUS, might lead to

an increase of FUS in the cytosol even in the absence of

FUS mutations. Indeed, weak cytosolic FUS staining is
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consistently observed in post-mortem brain tissue from

healthy controls (Neumann et al, 2009a), indicating that

cytosolic FUS may accumulate during ageing. In combination

with environmental stress, a small increase in cytosolic FUS

may then be sufficient to initiate clustering of FUS in stress

granules and eventually larger inclusions (Figure 9).

Materials and methods

Cell culture and transfection
Human cervical carcinoma cells (HeLa) were cultured in Dulbecco’s
modified Eagle’s medium with Glutamax (Invitrogen) supplemen-
ted with 10% (vol/vol) foetal calf serum (FCS, Invitrogen) and
penicillin/streptomycin (PAA). Transfection of HeLa cells was
carried out with Fugene 6 (Roche) or Lipofectamine 2000
(Invitrogen) according to the manufacturer’s instructions. Hippo-
campal and cortical neurons were cultured from embryonic day 19
rat embryos as described earlier (Tada et al, 2007). Neurons were
transfected on day in vitro (DIV) 5 using Lipofectamine 2000
(Invitrogen) and were analysed on DIV 7. When mCherry was used
as a filler to visualize neuron morphology, the mCherry:HA-FUS
DNA ratio was 1:10.

Antibodies and inhibitors
A complete list of all antibodies used can be found in the
Supplementary data. Cycloheximide (Sigma) was used at a
concentration of 20 mg/ml.

cDNA constructs and primers
The cDNA sequence of human FUS (NM_004960) was amplified
from a human brain cDNA library and was cloned by XhoI/BamHI
restriction digest into the pcDNA3.1/Hygro(�) vector (Invitrogen)
with an N-terminal HA-tag. HA-FUS-P525L was generated from the
FUS-WT construct by QuikChange mutagenesis (Stratagene), all
other FUS mutations were introduced through conventional PCR
primers and PCR products were cloned into pcDNA3.1/Hygro(�)
through restriction digest. The pGST-EGFP-C1 vector was generated
by inserting the GST sequence with a Kozak sequence into the
NheI/AgeI restriction sites of the pEGFP-C1 vector (Clontech). NLS
reporter constructs were generated by ligating annealed oligos into
the XhoI/BamHI restriction sites of pGST-EGFP-C1. The nuclear
import inhibitor constructs (GFP-M9M, GFP-Bimax2) were gener-
ated by ligating annealed oligos into the XhoI/BamHI restriction
sites of pEGFP-C1. For all constructs, sequence integrity was
verified by sequencing. Oligonucleotides sequences are available on
request.

Zebrafish husbandry and embryo injection
All of the experiments were performed in compliance with the
guidelines of the German Council on Animal Care. WTAB zebrafish
were kept at 281C and raised and mated as described (Mullins et al,
1994). GST-EGFP constructs (25 ng/ml) were injected into fertilized
eggs at the one-cell stage; 48 h old embryos were stained as
described in the Supplementary data.

Human post-mortem tissue
Cases with confirmed FUS pathology used in this study have been
earlier described and included a case of fALS with an FUS-R521C
mutation (Rademakers et al, 2010) and cases of aFTLD-U (n¼ 3)
(Neumann et al, 2009a), NIFID (n¼ 3) (Neumann et al, 2009b) and
BIBD (n¼ 1) (Munoz et al, 2009). In addition, FTLD-TDP (n¼ 2) as
neurologic controls and cases with no history of neurologic diseases
(n¼ 2) were included.

Immunocytochemistry and immunohistochemistry
For immunocytochemistry on HeLa cells and neurons, cells were
fixed for 15min in 4% paraformaldehyde in PBS, permeabilized for
5min in 0.2% Triton X-100 with 50mM NH4Cl and subsequently
blocked for 20–30min in blocking buffer (5% goat serum or 2%
BSA in PBSS¼PBS with 0.1% saponin). Cells were stained with the
indicated primary and secondary antibodies diluted in blocking
buffer for 30min and were washed 5� in PBSS. To visualize nuclei,
cells were stained with TO-PRO-3 iodide (Invitrogen) for 15min and
were washed 3� in PBS. Coverslips were mounted onto glass slides

using ProLong Gold Antifade Reagent (Invitrogen). All steps were
carried out at RT.

Immunohistochemistry on human post-mortem material was
performed on 5mm thick sections of formalin fixed, paraffin-
embedded tissue from spinal cord, medulla or hippocampus with
the indicated antibodies (after microwave antigen retrieval) and the
avidin–biotin complex detection system (Vector Laboratories) with
3,30-diaminobenzidine as chromogen. Double-label immunofluor-
escence for PABP-1 and p62 (after microwave antigen retrieval) was
performed using Alexa-488 and -594-conjugated secondary anti-
bodies; 40-6-diamidino-2-phenylindol (Vector Laboratories) was
used for nuclear counter-staining.

Image acquisition and quantification
Confocal images of HeLa cells, primary neurons and zebrafish
embryos were obtained with an inverted laser scanning confocal
microscope (Zeiss Axiovert 200M) with a 63� /1.4 NA oil
immersion lens, using a pinhole diameter of 1 Airy unit. Pictures
were taken and analysed with the LSM 510 confocal software
(Zeiss), and, if necessary, for printing, brightness and contrast were
linearly enhanced using the LSM image browser (Zeiss). For HeLa
cells, single confocal images were taken in the plane of the largest
cytosolic area. For neuronal cultures and zebrafish embryos, a
series of images along the z axis was taken and projected into a
single image using the maximal projection tool of the LSM 510
software. Immunofluorescence images of brain sections were
obtained by wide-field fluorescence microscopy (BX61 Olympus
with digital camera F-view, Olympus).

Nuclear and cytosolic localization was quantified with the LSM
510’s co-localization tool as follows: total fluorescence intensities of
the green channel were calculated from the mean fluorescence
intensity and the number of pixels. Pixels that were co-localized
with TO-PRO-3 were considered ‘nuclear’ and pixels that did not
overlap with TO-PRO-3 were considered ‘cytosolic’. For each
sample, 7–12 randomly selected fields were analysed, containing
a total of 50–100 transfected cells. Means across all fields were
calculated and s.d. are indicated by error bars. Pictures and
quantification shown are from one experiment, but are representa-
tive of several experiments.

siRNA-mediated knockdown of Trp1 and Trp2
Trp1/2 knockdown was achieved using two different siRNA pools:
Trp1/2 pool #1 consisted of the Trp1-specific siGENOME siRNA D-
011308-01 (target sequence: 50-guauagagaugcagccuua-30) and the
Trp2-specific siGENOME SMART pool M-020491-01 (target se-
quences: 50-gggcagagaugcagccuua-30; 50-gcaguucucugagcaauuc-30;
50-aaacaggagugucucaaca-30; 50-gcgcugauggacaauauug-30), both
from Dharmacon. Trp1/2 pool #2 consisted of the Trp1-specific
siGENOME siRNA D-011308-04 from Dharmacon (target sequence:
50-caauuggucgucuugguua-30) and the Trp2-specific siGENOME
SMART pool M-020491-01 (see above). A non-targeting (NT) siRNA
(ON-TARGET plus NT siRNA #3, D-001810-03 from Dharmacon)
was used as a negative control. Cells were reverse transfected using
a total of 50 pmol siRNA and 5ml Lipofectamine 2000 (Invitrogen)
per six well. Medium was changed 4–6h post-transfection and
effect of knockdown was analysed 48–72h post-transfection.

Cell lysates and immunoblotting
Cells were washed twice in PBS, scraped off and pelleted at 1000 g,
5min. Total cell lysates were prepared in ice cold RIPA buffer freshly
supplemented with complete EDTA-free protease inhibitor cocktail
(Roche). After 15min lysis on ice, lysates were sonicated in a
bioruptor (Diagenode, 45 s on high) and protein concentration was
determined by BCA protein assay (Pierce); 4� SDS–PAGE sample
buffer was added and samples were boiled for 5min. Proteins were
separated by SDS–PAGE, transferred onto a PVDF membrane
(Immobilon-P, Millipore) and analysed by immunoblotting using
the indicated antibodies. Bound antibodies were detected with
the chemiluminescence detection reagents ECL (Amersham) or
Immobilon (Millipore).

Structural modelling
The C-terminal amino-acid residues D520–Y526 of FUS were
modelled manually into the Trp-binding pocket. Residues of the
non-classical NLSs of subtype RXXPY (pdb-entries 2OT8 (Cansi-
zoglu et al, 2007) and 2Z5K (Imasaki et al, 2007) differing between
the experimental structures and the FUS C-terminal sequence were
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exchanged obeying standard amino-acid conformations (Engh and
Huber, 1991) and the resulting structure was locally energy
minimized using MAIN (Turk, 1992), keeping the Trp molecule
rigid.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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Supplementary data 
 
Figure S1: 

 

Figure S1: FUS mutants R521C and R521H cause a mild cytosolic mislocalization similar 

R521G, whereas mutation of Y526 causes a strong nuclear import block 

(A) HA-tagged wild-type (WT) FUS, FUS-R521G, -R521C, or -R521H were transiently expressed in 

Hela cells.  Cells were stained with an HA-specific antibody (green) and a nuclear counterstain (blue) 
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and were analyzed by confocal microscopy.  Both R521C and R521H show a mild cytosolic 

mislocalization similar to R521G.  Scale bar: 20 �m. 

(B) Quantification of nuclear and cytosolic fluorescence intensities.  Error bars indicate standard 

deviations.  

(C) HA-tagged FUS-WT or FUS-Y526A were transiently expressed in Hela cells.  Cells were stained 

with an HA-specific antibody (green), a nuclear counterstain (blue) and analyzed by confocal 

microscopy.  The Y526A mutant shows a strong cytosolic mislocalization, demonstrating that the C-

terminal tyrosine residue is a key residue of the FUS NLS.  Scale bar: 20 �m. 

(D) Quantification of nuclear and cytosolic fluorescence intensities.  Error bars indicate standard 

deviations.  
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Figure S2: 

 

Figure S2: N-terminal fALS-associated FUS mutations do not further impair mislocalization of 

the P525L mutant 

(A) HA-tagged wild-type (WT) FUS, FUS-P525L or FUS-P525L carrying the additional N-terminal 

mutations R216C, R234C or R244C were transiently expressed in Hela cells.  Cells were stained with 

an HA-specific antibody (green) and a nuclear counterstain (blue) and were analyzed by confocal 

microscopy.  The P525L mutant shows a strong cytosolic mislocalization, which is not further 

exacerbated by any of the N-terminal fALS-associated point mutations.  Scale bar: 20 �m. 

(B) Quantification of nuclear and cytosolic fluorescence intensities.  Error bars indicate standard 

deviations.   
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Figure S3: 

 

Figure S3: Inhibition of the Trp pathway leads to cytosolic relocalization of FUS, while 

inhibition of the importin ���� pathway causes mislocalization of TDP-43 but not FUS. 

(A) The Trp-specific inhibitor (GFP-M9M) or GFP as a control were expressed in primary rat 

hippocampal neurons (green).  After staining with a FUS-specific antibody (red), cells were analyzed 

by confocal microscopy.  Expression of the Trp-specific inhibitor causes a marked cytoplasmic 

redistribution and localization of FUS in cytoplasmic punctate structures.  Scale bar: 20 �m.   

(B) To exclude that FUS is imported via the importin ��� receptor, an importin-specific inhibitor 

construct (GFP-Bimax2) was expressed in HeLa cells (green).  Cells were stained for endogenous 

TDP-43 or FUS (red) and a nuclear counterstain (blue) and were analyzed by confocal microscopy.  

TDP-43, which carries a classical bipartite NLS, redistributes to the cytosol upon inhibition of the 

importin ��� pathway, whereas FUS remains completely nuclear.  Cells expressing GFP-Bimax2 are 

labeled with a white arrow.  Scale bar: 20 �m. 
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Figure S4: 
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Figure S4: C-terminal fALS-associated FUS mutations are recruited into bona fide stress 

granules upon heat shock.  

(A) HeLa cells transiently transfected with the HA-tagged FUS-P525L mutant were subjected to heat 

shock (44°C for 1 h, right panels) or were kept at control temperature (37°C, left panels).  Cells were 

fixed, co-stained with an HA-specific antibody (green) and antibodies specific for the stress granule 

marker proteins TIAR, TIA-1, G3BP1 or the P body marker protein Dcp1 (red) and a nuclear 

counterstain (blue) and were analyzed by confocal microscopy.  FUS-P525L colocalizes with all stress 

granule marker proteins, but not with Dcp1, indicating that FUS-P525L-containing granules are indeed 

stress granules.  Scale bar: 20 �m.   

(B) HeLa transiently transfected with the HA-tagged FUS-P525L mutant were subjected to heat shock 

(44°C for 1h) in the presence or absence of the polysome-stabilizing drug cycloheximide (CHX) or 

were kept at control temperature (37°C).  Cells were fixed, co-stained with an HA-specific antibody 

(green) and a G3BP1-specific antibody (red) and a nuclear counterstain (blue) and were analyzed by 

confocal microscopy.  Cycloheximide completely prevents formation of G3BP1- and FUS-P525L-

positive stress granules, demonstrating that the granular FUS-P525L-positive structures observed after 

heat shock indeed correspond to stress granules.  Scale bar: 20 �m.   
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Supplementary materials and methods 

 

Antibodies 

The following antibodies were used:  HA-specific mouse monoclonal antibody HA.11 (Covance) or 

horseradish peroxidase (HRP)-coupled rat monoclonal anti-HA antibody 3F10 (Roche);  GFP-specific 

rabbit polyclonal antiserum BD Living Colors (BD Biosciences);  FUS-specific mouse monoclonal 

antibody 4H11 (Santa Cruz) or rabbit polyclonal A300-294A (Bethyl) or rabbit polyclonal 

(HPA008784, Sigma);  TDP-43-specific rabbit polyclonal antibody (TARDBP, Proteintech);  LDH-

specific rabbit polyclonal antibody (Santa Cruz);  pan-Trp (Trp1/2)-specific goat polyclonal antibody 

N-19 (Santa Cruz);  Trp1-specific mouse monoclonal clone D45 (Sigma);  �-Tubulin-specific mouse 

monoclonal antibody clone B-5-1-2 (Sigma);  �-actin specific mouse monoclonal antibody clone AC-

74 (Sigma);  TIAR-specific rabbit polyclonal antibody (Cell Signaling);  PABP-1-specific mouse 

monoclonal antibody clone 10E10 (Sigma);  TIA-1-specific rabbit polyclonal antibody (AV40981, 

Sigma);  TIA-1-specific goat polyclonal antibody (C-20, Santa Cruz);  G3BP1-specific rabbit 

polyclonal antibody (HPA004052, Sigma);  Dcp1-specific rabbit polyclonal antibody (HPA013202, 

Sigma);  PABP-1-specific rabbit polyclonal antibody (Cell Signaling);  p62-specific mouse 

monoclonal antibody (BD Transduction Laboratories);  eIF4G-specific rabbit polyclonal antibody 

(Cell Signaling).  Secondary antibodies for immunoblotting were HRP-coupled goat anti-mouse or 

anti-rabbit IgG (Promega) or HRP-coupled donkey anti-goat IgG (Santa Cruz).  For 

immunocytochemistry and immunohistochemistry Alexa-488, Alexa-555, Alexa-594 and Alexa-647-

conjugated goat anti-mouse or anti-rabbit IgG (Invitrogen) were used.  

 

Whole mount staining of zebrafish embryos 

Embryos were fixed with 4% paraformaldehyde overnight at 4°C.  Fixed embryos were dehydrated 

through a methanol series, kept in methanol overnight at -20°C, subsequently rehydrated through a 

methanol series and washed 3 times in PBS containing 0.1% Tween-20 (PBST).  Embryos were then 

permeabilized in 1 mg/ml collagenase (Sigma) for 15 min and washed 5 times with PBST.  After 
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blocking for 1 h in newborn calf serum with 0.1% Tween-20 (NCST), embryos were stained with the 

anti-GFP-antibody overnight at 4°C and washed 2 x 30 min with PBST.  The secondary antibody goat 

anti-rabbit-Alexa-488 was added for 2 h at RT and washed 4 x 30 min with PBST.  TO-PRO-3 iodide 

(Invitrogen) was incubated for 1 h at RT and subsequently rinsed with PBST.  Embryos were then 

mounted in low melting agarose (BioWhittaker) for confocal imaging.  
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Fused in sarcoma (FUS) is a nuclear protein that carries a

proline-tyrosine nuclear localization signal (PY-NLS) and

is imported into the nucleus via Transportin (TRN).

Defects in nuclear import of FUS have been implicated in

neurodegeneration, since mutations in the PY-NLS of FUS

cause amyotrophic lateral sclerosis (ALS). Moreover, FUS

is deposited in the cytosol in a subset of frontotemporal

lobar degeneration (FTLD) patients. Here, we show that

arginine methylation modulates nuclear import of FUS via

a novel TRN-binding epitope. Chemical or genetic inhibi-

tion of arginine methylation restores TRN-mediated

nuclear import of ALS-associated FUS mutants. The

unmethylated arginine–glycine–glycine domain preceding

the PY-NLS interacts with TRN and arginine methylation

in this domain reduces TRN binding. Inclusions in ALS-

FUS patients contain methylated FUS, while inclusions in

FTLD-FUS patients are not methylated. Together with

recent findings that FUS co-aggregates with two related

proteins of the FET family and TRN in FTLD-FUS but not in

ALS-FUS, our study provides evidence that these two

diseases may be initiated by distinct pathomechanisms

and implicates alterations in arginine methylation in

pathogenesis.

The EMBO Journal (2012) 31, 4258–4275. doi:10.1038/

emboj.2012.261; Published online 11 September 2012
Subject Categories: neuroscience
Keywords: amyotrophic lateral sclerosis (ALS); arginine

methylation; frontotemporal lobar degeneration (FTLD);

fused in sarcoma (FUS); Transportin (TRN)

Introduction

Fused in sarcoma (FUS), also known as translocated in

liposarcoma (TLS), is a nucleic acid-binding protein that is

predominantly localized in the nucleus and has been impli-

cated in various nuclear processes, such as transcription,

splicing and microRNA processing (Lagier-Tourenne et al,

2010). Recently, mutations in FUS have been described as

a cause of familial amyotrophic lateral sclerosis (ALS)

(Kwiatkowski et al, 2009; Vance et al, 2009). ALS is an

incurable adult-onset neurodegenerative disease of the

human motor system. It is characterized by motor neuron

degeneration in the brainstem and spinal cord, leading to

progressive paralysis and eventually death due to respiratory

muscle failure, typically within 1–5 years of disease onset

(Kiernan et al, 2011). The majority of ALS cases are sporadic,

but about 10% are inherited in a dominant manner (familial

ALS, fALS) (Da Cruz and Cleveland, 2011). Of these, about

4% are caused by mutations in the FUS gene on chromosome

16 (ALS-FUS). Most pathogenic mutations identified so far

are located at the very C-terminus of the FUS protein and

affect a proline-tyrosine nuclear localization signal (PY-NLS)

(Lee et al, 2006) (Figure 1A). This non-classical NLS is bound

by the nuclear import receptor Transportin (TRN), also

known as Karyopherin b2 (Kapb2), which translocates PY-

NLS-containing cargo proteins across the nuclear pore com-

plex (Chook and Suel, 2011). Pathogenic FUS mutations affect

key residues of the PY-NLS or completely delete the signal

sequence and thus impair nuclear import of FUS (Bosco et al,

2010; Dormann et al, 2010; Kino et al, 2010; Gal et al, 2011;

Ito et al, 2011; Zhang and Chook, 2012). This nuclear

transport defect is directly involved in pathogenesis, since

mutations that cause a very severe nuclear import block (e.g.,

FUS-P525L) cause an unusually early disease onset and rapid

disease course (Chio et al, 2009; Baumer et al, 2010; Bosco

et al, 2010; DeJesus-Hernandez et al, 2010; Dormann et al,

2010; Waibel et al, 2010; Yan et al, 2010). Moreover, the FUS

protein is deposited in abnormal protein inclusions in

neurons and glia of ALS-FUS patients and nuclei often

show a reduced FUS staining (Kwiatkowski et al, 2009;

Vance et al, 2009; Blair et al, 2010; Groen et al, 2010; Hewitt

et al, 2010; Rademakers et al, 2010; Mackenzie et al, 2011),

further supporting the idea that nuclear import of FUS might

be disturbed in this disease.
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After the discovery of FUS mutations in familial ALS, FUS

was studied in a related neurodegenerative disorder, fronto-

temporal lobar degeneration (FTLD), since ALS and FTLD

share many clinical and pathological features (Lomen-Hoerth

et al, 2002; Murphy et al, 2007; Mackenzie et al, 2010b).

This revealed that FUS is also a component of the abnormal

protein inclusions in several subtypes of FTLD, subsequently

termed FTLD-FUS (Mackenzie et al, 2010a). In contrast to

ALS-FUS, which is caused by FUS mutations, no genetic

alterations in the FUS gene have so far been identified in

FTLD-FUS cases (Neumann et al, 2009a, b; Urwin et al, 2010;

Snowden et al, 2011). Thus, the pathological redistribution

of FUS in these cases cannot be explained by a mutant

PY-NLS, suggesting that a more general dysregulation

of TRN-mediated transport may underlie FUS pathology and

neurodegeneration in FTLD-FUS. This is supported by the

recent finding that in addition to FUS, two related PY-NLS-

containing proteins, Ewing sarcoma protein (EWS) and TATA-

binding protein-associated factor 15 (TAF15), which belong

to the same protein family (FET family), as well as TRN, are

present in inclusions of FTLD-FUS patients (Brelstaff et al,

2011; Neumann et al, 2011, 2012; Davidson et al, 2012). How

this pathological redistribution and co-deposition of FUS,

EWS and TAF15 and TRN occurs in FTLD-FUS is currently

unknown.

Nucleocytoplasmic transport can be regulated at multiple

levels, including post-translational modifications of transport

cargo, such as phosphorylation or ubiquitination (Terry et al,

2007). In addition, arginine methylation, which is a common

post-translational modification of nuclear RNA-binding

proteins, has been described to affect nuclear localization of

several proteins, although the regulatory mechanism(s)

are still largely unknown (Bedford and Clarke, 2009).

Arginine methylation involves transfer a methyl group from

S-adenosyl-L-methionine (SAM) onto one or both of the

guanidinium nitrogens of the arginine side chain with the

help of protein N-arginine methyltransferases (PRMTs),

resulting in monomethylarginine, symmetric or asymmetric

dimethylarginine residues (Pahlich et al, 2006). This alters

the hydrophobicity and hydrogen bonding capacity of the

modified arginine residues and can affect protein–protein

interactions (Bedford and Clarke, 2009; Pahlich et al, 2006).

FUS, EWS and TAF15 have been described to undergo

extensive asymmetric dimethylation in their arginine–

glycine–glycine (RGG) domains (Figure 1A) (Belyanskaya

et al, 2001; Lee and Bedford, 2002; Rappsilber et al, 2003;

Ong et al, 2004; Araya et al, 2005; Pahlich et al, 2005;

Hung et al, 2009; Jobert et al, 2009; Du et al, 2011), and

there is evidence that arginine methylation can affect their

nucleocytoplasmic localization (Araya et al, 2005; Jobert

et al, 2009; Tradewell et al, 2012). However, the molecular

mechanism by which arginine methylation may affect

nuclear localization of the FET proteins is unknown and it

is unclear whether arginine methylation is involved in the

pathology of ALS/FTLD-FUS.

We now show that arginine methylation impairs TRN-

dependent nuclear import of FUS, by decreasing binding of

TRN to a novel TRN-binding motif next to the PY-NLS of FUS.

Furthermore, immunohistochemistry with novel methyl-

FUS-specific antibodies revealed that inclusions in ALS-FUS

patients contain methylated FUS, while deposited FUS in

FTLD-FUS cases is unmethylated. Our findings provide new

insights into the mechanism of TRN-cargo recognition in

general and suggest that altered arginine methylation of

FET proteins may be involved in the pathological co-deposi-

tion of FET proteins and TRN in FTLD-FUS.

Results

Inhibition of methylation restores nuclear localization of

ALS-associated FUS mutants

To test if arginine methylation affects the nuclear localization

of FUS, we treated HeLa cells with the general methylation

inhibitor, adenosine-2,3-dialdehyde (AdOx), which inhibits

all SAM-dependent enzymatic reactions, including protein

arginine methylation (Chen et al, 2004), and analysed

its effect on localization of HA-tagged wild-type FUS (WT)

and four cytoplasmically mislocalized ALS-associated FUS

mutants (Dormann et al, 2010). Consistent with our

previous findings, FUS-WT was located almost exclusively

in the nucleus in untreated cells, whereas the ALS-associated

FUS mutants showed a varying degree of cytoplasmic

mislocalization, ranging from a very mild mislocalization

for R521G, over an intermediate phenotype for R524S and

R522G, to a severe mislocalization for P525L (Figure 1B

upper panels, see C for quantification). Strikingly, upon

treatment of cells with AdOx, all FUS mutants showed a

predominant nuclear localization and were almost indistin-

guishable from the WT protein (Figure 1B lower panels

and C). This could not be attributed to altered expression

levels, since similar HA–FUS protein levels were observed in

untreated and AdOx-treated cells (Figure 1D). Thus, inhibi-

tion of methylation with AdOx restores nuclear localization of

ALS-associated FUS mutants, suggesting that nuclear import

of FUS might be modulated by arginine methylation.

The same phenomenon could also be observed in primary

rat hippocampal neurons, where FUS-WTwas located almost

exclusively in the nucleus (0% cells with mislocalized FUS),

while the P525L mutant was partially mislocalized to the

cytosol, including neuritic processes, in the majority of

neurons (89±1%) (Figure 1E). AdOx treatment significantly

reduced the cytoplasmic mislocalization of FUS-P525L

(26±12% cells with mislocalized FUS, Po0.05). Thus, nu-

clear localization of mutant FUS is affected by methylation

not only in transformed cell lines, but also in primary

neurons, demonstrating that this is not a cell-type-specific

phenomenon.

Methylation affects nuclear localization of FET protein

mutants

Since not only FUS but also the other FET family members,

EWS and TAF15, are subject to arginine methylation

(Belyanskaya et al, 2001; Ong et al, 2004; Araya et al, 2005;

Pahlich et al, 2005; Jobert et al, 2009) and the three proteins

share a very similar domain structure (Figure 2A), we specu-

lated that arginine methylation may regulate nuclear import

of all FET proteins in a similar manner and may contribute to

their pathological deposition in FTLD-FUS (Neumann et al,

2011; Davidson et al, 2012). To test this hypothesis, we

mutated the PY-NLS of EWS (EWS-P655L) and TAF15 (TAF-

P591L) to generate cytoplasmic point mutants analogous to

FUS-P525L. In contrast to WT EWS and TAF15, EWS-P655L

and TAF-P591L were partially mislocalized to the cytoplasm

(Figure 2B, see C for quantification). Upon treatment with
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AdOx, all three FET protein mutants became predominantly

nuclear, suggesting that nuclear localization of all FET family

members is affected by methylation in a similar manner.

Silencing of protein N-arginine methyltransferase 1

(PRMT1) causes nuclear localization of FUS-P525L

AdOx inhibits all SAM-dependent pathways including DNA,

lipid and protein methylation (Bartel and Borchardt, 1984;

Liteplo and Kerbel, 1986). Therefore, the above-described

relocalization of FUS mutants by AdOx could depend on

any of these mechanisms. FUS has been previously

reported to be asymmetrically dimethylated on arginine

residues (Rappsilber et al, 2003; Ong et al, 2004) and it is

known that protein arginine methylation can affect

subcellular localization of various proteins (reviewed in

Bedford and Clarke, 2009). We therefore speculated that
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specifically inhibition of arginine methylation could be

responsible for the striking relocalization of FUS mutants

upon AdOx treatment.

To test this hypothesis, we silenced the major protein

arginine methyltransferase predominantly responsible for

most asymmetric arginine dimethylation, protein N-arginine

methyltrasferase 1 (PRMT1) (Pawlak et al, 2000; Tang et al,

2000), using two different PRMT1-specific siRNAs. Two days

after siRNA delivery, HA-tagged FUS-WT or FUS-P525L was

transfected into cells and their localization was examined

by confocal microscopy. Consistent with our hypothesis,

silencing of PRMT1 caused a predominantly nuclear

localization of FUS-P525L, whereas the typical partially

cytoplasmic localization could be observed in control

siRNA-transfected cells (Figure 3A and B). Rescue of nuclear

localization of FUS-P525L, although significant (Po0.001),

was not as efficient as with AdOx treatment, which could be

due to residual amounts of PRMT1 in PRMT1 siRNA-trans-

fected cells (see immunoblot in Figure 3A) or to the methyla-

tion of FUS by other PRMTs. Nevertheless, siRNA-mediated

silencing of PRMT1 mimicked the effect of AdOx treatment,

demonstrating that nuclear localization of mutant FUS is

modulated by PRMT1-dependent arginine methylation.

Nuclear import of mutant FUS upon AdOx treatment is

Transportin dependent

Nuclear import of FUS has been shown to be mediated by the

nuclear import receptor TRN. To test if nuclear localization of

FUS-P525L upon AdOx treatment or PRMT1 knockdown is

still dependent on TRN, we utilized a TRN-specific inhibitor

peptide (M9M), which binds to TRN with high affinity and

thus efficiently competes with nuclear import of regular TRN

substrates (Cansizoglu et al, 2007). In addition, we utilized a

similar high-affinity peptide inhibitor (Bimax) for the

classical nuclear import receptor Importin a (Kosugi et al,

2008), since it is also conceivable that arginine methylation

masks a so far unidentified NLS, which would become

accessible to Importin a upon methylation inhibition.

We expressed these competitor peptides as GFP fusion

proteins (GFP–M9M and GFP–Bimax) together with HA-

tagged FUS-P525L in HeLa cells and analysed cellular

localization of mutant FUS upon AdOx or mock treatment.
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Figure 2 Methylation affects nuclear localization of EWS and TAF15 mutants. (A) Schematic diagram showing the domain structures of FUS,
EWS and TAF15 (FET proteins). (B) Localization of HA-tagged FUS, EWS or TAF15 (WTor with mutant PY-NLS) in untreated or AdOx-treated
HeLa cells. Cytoplasmic FET protein mutants become predominantly nuclear upon AdOx treatment, suggesting that methylation affects nuclear
import of all FET family members in a similar fashion. Scale bars: 20mm. (C) Quantification of nuclear and cytosolic fluorescence intensities.
Values are means across n cells, error bars indicate s.d. Statistical significance is displayed as *** (Po0.001) (one-way ANOVA).

Figure 1 Cytoplasmic mislocalization of ALS-associated FUS mutants is abrogated upon inhibition of methylation. (A) Schematic diagram
showing the domain structure of FUS. Sequence of the C-terminal PY-NLS and ALS-causing point mutations within the NLS are given below.
ALS-associated mutations outside the PY-NLS are described elsewhere (Mackenzie et al, 2010b). SYGQ-rich¼ serine, tyrosine, glycine,
glutamine-rich domain; RRM¼RNA recognition motif; ZnF¼ zinc finger. (B) Localization of HA-tagged FUS WT or the indicated ALS-
associated FUS mutants in untreated (upper panels) or AdOx-treated (lower panels) HeLa cells. ALS-associated FUS mutants become
predominantly nuclear upon AdOx treatment, suggesting that methylation modulates nuclear import of FUS. Scale bars: 20mm.
(C) Quantification of nuclear and cytosolic fluorescence intensities. Values are means across n cells, error bars indicate standard deviations
(s.d.). Statistical significance between untreated and AdOx-treated is displayed as *** (Po0.001; one-way ANOVA). (D) HA–FUS protein levels
in untreated and AdOx-treated HeLa cells were analysed by immunoblotting with an HA-specific antibody (upper panel). Actin served as a
loading control (lower panel). AdOx treatment does not affect expression of HA–FUS constructs. (E) Localization of HA-tagged FUS-WT or
P525L (red) in untreated or AdOx-treated primary rat hippocampal neurons. YFP (green) served as a cytosolic filler protein to visualize
neuronal morphology, nuclei were visualized with DAPI. In contrast to untreated neurons, AdOx-treated neurons rarely show cytoplasmic
mislocalization of FUS-P525L. Scale bars: 20mm. Figure source data can be found with the Supplementary data.
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As expected, in control (GFP)-transfected cells, FUS-P525L

showed the above described nuclear localization upon AdOx

treatment (Figure 4A, left panels). Consistent with our pre-

vious data (Dormann et al, 2010), GFP–M9M expression led

to recruitment of FUS-P525L into cytosolic stress granules in

about half of the cells (Figure 4A, middle panels). However,

both in cells with and without stress granules, nuclear

accumulation of FUS-P525L upon AdOx treatment was

blocked by GFP–M9M expression, demonstrating that TRN

activity is required for nuclear import of mutant FUS. In

contrast, the classical Importin a-dependent nuclear import

pathway does not seem to be involved, since AdOx-mediated

nuclear import of FUS-P525L still occurred in cells transfected

with the Importin a inhibitor (GFP–Bimax) (Figure 4A, right

panels). Thus, nuclear localization of mutant FUS upon AdOx

treatment is dependent on TRN, but not Importin a activity.

To investigate whether TRN mediates the above-described

relocalization by direct binding of mutant FUS or indirectly

via another TRN substrate, we analysed a FUS deletion

mutant lacking the most essential amino acids of the FUS

PY-NLS (D514–526, see schematic diagram in Figure 4B)

(Dormann et al, 2010; Zhang and Chook, 2012). In contrast

to FUS-P525L, which was mostly nuclear upon AdOx

treatment, the C-terminal deletion mutant was strongly

mislocalized to the cytosol in both untreated and AdOx-

treated cells (Figure 4B). This demonstrates that the mutant

PY-NLS of FUS is required for nuclear relocalization upon

AdOx treatment, suggesting that TRN directly binds to and

imports mutant FUS upon inhibition of methylation.

Arginines in the RGG3 domain of FUS are required for

nuclear import of mutant FUS

Next, we searched for the mechanism how arginine methyla-

tion may regulate TRN-dependent nuclear import of FUS. One

possibility would be that, similar to the nuclear poly(A)-

binding protein (PABPN1) (Fronz et al, 2011), arginine

methylation within the PY-NLS of FUS (on residues R514,

R518, R521, R522 and/or R524) may affect TRN binding.
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Figure 3 PRMT1 silencing causes increased nuclear localization of FUS-P525L. (A) Protein N-arginine methyltransferase 1 (PRMT1)
expression was silenced in HeLa cells by transfection of two different siRNAs (PRMT1#1 and PRMT1#2), a control (ctrl.) siRNA was used
as a negative control. In all, 48 h after siRNA delivery, cells were transfected with HA-tagged FUS-WT or P525L and localization of these
proteins was examined by HA immunostaining (green) and confocal microscopy. PRMT1 knockdown causes a predominantly nuclear
localization of the FUS-P525L mutant, suggesting that arginine methylation by PRMT1 modulates nuclear import of FUS. Scale bars: 20mm.
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Another possibility would be that the RGG motifs N-terminal

of the PY-NLS could be involved in modulating TRN binding

and nuclear import of FUS. The latter scenario would be

consistent with the fact that methylated arginines have been

exclusively identified in the RGG domains and not the PY-

NLS of FUS (Rappsilber et al, 2003; Ong et al, 2004).

To find out if arginine residues in the PY-NLS or the RGG3

domain mediate the differential localization of mutant FUS

upon methylation inhibition, we attached the mutant PY-NLS

(514–526P525L) alone or with the RGG3 domain (455–

526P525L) to the C-terminus of the cytosolic reporter protein

GST–GFP (see Figure 5A for a schematic diagram). As shown
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Figure 4 Nuclear import of FUS-P525L upon AdOx treatment is dependent on TRN. (A) Localization of HA–FUS-P525L in untreated or AdOx-
treated HeLa cells after co-expression of GFP as a control, a competitor of the TRN pathway (GFP–M9M) or a competitor of the Importin a
pathway (GFP–Bimax) (green). After HA immunostaining (red), localization of mutant FUS was examined by confocal microscopy. The bottom
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previously (Dormann et al, 2010), GST–GFP carrying the

intact PY-NLS (514–526WT) was efficiently imported into the

nucleus, while a reporter protein carrying the mutant PY-NLS

(514–526P525L) failed to be imported efficiently (Figure 5A,

see B for quantification). Upon AdOx treatment, the GST–

GFP–514–526P525L reporter protein remained predominantly

cytoplasmic, demonstrating that the five arginines within the

PY-NLS do not mediate nuclear import upon AdOx treatment.

In contrast, the reporter protein encompassing the RGG3

domain plus the PY-NLS (455–526P525L) fully recapitulated

the AdOx-mediated nuclear localization phenotype observed

for the full-length protein (Figure 5A and B). A mutant

version of this reporter construct, where all arginines within

RGG motifs where replaced by lysines (455–526-RmutP525L,

see schematic diagram in Figure 5A) and therefore cannot be

methylated by PRMT1 (Butler et al, 2011), failed to localize to

the nucleus upon AdOx treatment. Thus, arginines within the

RGG3 domain are necessary and sufficient for restoring

nuclear import of the mutant reporter protein upon

methylation inhibition.

The RGG3 domain of FUS interacts tightly with TRN and

rescues weaker binding of the mutant PY-NLS

To prove that the RGG repeats in the RGG3 domain of FUS

directly bind to TRN, we analysed the interaction of recom-

binant FUS comprising residues 454–526 (FUS454–526WTand

FUS454–526P525L, see Figure 6A for a schematic diagram)

with recombinant TRN by NMR spectroscopy. NMR spectra

of FUS454–526WT and FUS454–526P525L in isolation showed

that the two proteins are intrinsically disordered, given the

distribution of signals in regions characteristic for random

coil proteins (Figure 6B). Lack of stable tertiary and second-

ary structure is a common feature of known PY-NLSs and

allows for highly specific binding of a great variety of

different transportin cargo proteins (Chook and Suel, 2011).

Upon addition of TRN, most NMR signals that are

characteristic for glycine residues disappeared both in

FUS454–526WT as well as in FUS454–526P525L (Figure 6C,

left panels), demonstrating that the RGG motifs indeed bind

to TRN. The NMR signal of the C-terminal tyrosine residue

(Y526) disappeared upon addition of TRN in the WT protein,
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Figure 5 Arginine residues in the RGG3 domain of FUS are required for nuclear import of mutant FUS. (A) GST–GFP reporter proteins with the
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but was only slightly affected in FUS454–526P525L (Figure 6C,

right panels), demonstrating binding of TRN to the

C-terminal PY but not the mutant C-terminus. Thus, the

P525L mutation disrupts binding of the C-terminal tyrosine

to TRN, while the RGG3 repeat region interacts tightly with

TRN in both WT and mutant FUS.

To quantitatively assess binding of the RGG3 repeat region

to TRN, we studied the interaction of recombinant FUS454–

526 or synthetic FUS peptides with TRN by isothermal

titration calorimetry (ITC) (Figure 6D). This showed that

both FUS454–526WT and FUS454–526P525L formed high-affi-

nity complexes with TRN, with virtually identical dissocia-

tion constants below micromolar Kd (Supplementary Figure

S1; Figure 6D). Thus, the binding affinity is unaffected by the

C-terminal P525L mutation, suggesting that tight interaction

between the unmethylated RGG3 domain and TRN can

rescue weak binding of the C-terminus in the P525L mutant.

Shorter FUS peptides lacking the N-terminal part of the RGG3

repeat region (FUS489–526WT) or the entire RGG3 domain

(FUS504–526WT) bound to TRN with reduced affinities com-

pared to FUS454–526WT (Figure 6D), confirming that the

RGG3 repeats next to the PY-NLS stabilize the FUS–TRN

interaction. The importance of the RGG3 repeat region for

TRN binding became even more apparent in the context of

the P525L mutation, where shortening or deletion of the

RGG3 repeat region (FUS489–526P525L or FUS 504–526P525L)

severely impaired or completely prevented TRN binding

(Figure 6D). Finally, we tested if the RGG3 domain alone

was able to bind to TRN in the absence of a C-terminal PY-

NLS. Indeed, a synthetic FUS peptide comprising the RGG3
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Figure 6 Both the RGG3 domain and the PY-NLS of FUS interact with TRN. (A) Schematic diagram of recombinant FUS proteins analysed by
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PY-NLS and can compensate for the lack of binding of the mutant C-terminus in the P525L mutant.

Arginine methylation of FUS impairs TRN binding
D Dormann et al

4265&2012 European Molecular Biology Organization The EMBO Journal VOL 31 | NO 22 | 2012

187



repeat domain only (FUS473–503) bound to TRN with an

affinity comparable to the WT PY-NLS (FUS504–526WT)

(Figure 6D). Taken together, our NMR and ITC analysis

demonstrate that the unmethylated RGG3 domain of FUS

binds tightly to TRN and that this interaction can even rescue

weak binding of the mutant C-terminus in the ALS-associated

P525L mutant.

Arginine methylation in the RGG3 domain of FUS

impairs TRN binding

Based on our cellular assays, we speculated that arginine

methylation in the RGG3 domain should impair TRN

binding. To test this hypothesis, we performed in vitro pull-

down assays with recombinant TRN and synthetic FUS pep-

tides comprising the RGG3 domain either unmethylated or

with asymmetrically dimethylated (me) arginine residues

(FUS473–526 and meFUS473–503; see schematic diagram in

Figure 7A). Biotinylated FUS peptides were immobilized on

streptavidin beads and were incubated with varying amounts

of recombinant His6-tagged TRN or His6–GST as a control.

Consistent with our hypothesis, the unmethylated RGG3

peptide efficiently pulled down TRN, while TRN binding

was undetectable for the methylated RGG3 peptide

(Figure 7A). In line with these data, ITC and NMR showed

TRN binding for the unmethylated FUS473–503 peptide,

whereas no TRN binding could be observed for the methy-

lated peptide (Figure 7A; Supplementary Figure S2A). Thus,

arginine methylation in the RGG3 repeat domain of FUS

strongly interferes with TRN binding.

We next investigated the effect of arginine methylation on

TRN binding in the context of the C-terminal PY-NLS and thus

performed in vitro pulldown assays with peptides comprising

the WT or mutant PY-NLS preceded by four unmethylated or

asymmetrically dimethylated RGG repeats (FUS489–526WT,

meFUS489–526WT, FUS489–526P525L and meFUS489–

526P525L; see schematic diagrams in Figure 7B and C; these

peptide were used since synthesis of longer peptides compris-

ing the entire methylated RGG3 domain plus PY-NLS was not

successful and in vitro methylation of the recombinant

FUS454–526 proteins was very inefficient). We expected

that arginine methylation would be especially detrimental

for TRN binding of the P525L mutant, where binding of the

C-terminal residues to TRN is strongly impaired (Figure 6C).

Consistent with this hypothesis, arginine methylation

strongly interfered with TRN binding of the mutant peptide

in our pulldown assay (Figure 7B), and ITC and NMR showed

weak TRN binding of the unmethylated FUS489–526P525L
peptide and no binding of meFUS489–526P525L (Figure 7B;

Supplementary Figure S2B). Interestingly, methylation also

slightly impaired TRN binding of the WT peptide (Figure 7C),

and ITC and NMR confirmed a reduced TRN binding affinity

(B3-fold higher Kd) for meFUS489–526WT in comparison to

FUS489–526WT (Figure 7C; Supplementary Figure S2C).

Considering that the (me)FUS489–526WT peptides comprise

only four RGG repeats and not the entire RGG3 domain, it

seems likely that arginine methylation has a more dramatic

effect on TRN binding in the presence of the entire RGG3

domain. Thus, arginine methylation in the RGG3 repeat

domain not only impairs TRN binding of the FUS-P525L

mutant, but also slightly modulates TRN binding of the WT

protein.

Methylated FUS-P525L is recruited to stress granules

upon cellular stress

Our finding that ALS-associated FUS mutants become

nuclear upon inhibition of arginine methylation implies

that mutant FUS must be methylated, since otherwise the

mutant protein should be imported into the nucleus and it

would be difficult to explain the correlation between nuclear

transport defect and clinical phenotype (Dormann et al, 2010;

Dormann and Haass, 2011). To test if FUS and ALS-associated

FUS mutants are indeed methylated, we raised monoclonal

antibodies specific to the methylated RGG3 domain (epitope

meFUS473–503; Figure 8A). Two monoclonal antibodies

(14H5 and 9G6) selectively recognized endogenous methy-

lated FUS, since signals obtained by immunoblotting

(Figure 8B) and immunofluorescence (Figure 8C) disap-

peared upon AdOx treatment or FUS knockdown. Methy-

lated FUS was located exclusively in the nucleus both in HeLa

cells (Figure 8C) and primary rat hippocampal neurons

(Supplementary Figure S3C). In addition, cytosolic FUS mu-

tants, such as FUS-P525L, were also recognized by the

meFUS-specific antibodies (Figure 8D), which is consistent

with our finding that inhibition of methylation restores

nuclear localization of mutant FUS.

Stress granules have been suggested to be precursors of

pathological FUS inclusions, since inclusions in ALS-FUS and

FTLD-FUS patients are immunoreactive for stress granule

marker proteins (Fujita et al, 2008; Dormann et al, 2010).

We therefore used stress granules as a pathological surrogate

for FUS inclusions and examined whether they contain

methylated FUS-P525L. Consistent with our previous

findings (Dormann et al, 2010; Bentmann et al, 2012),

cytosolic FUS-P525L was recruited to stress granules in

HeLa cells exposed to heat shock (Figure 8D). FUS-P525L-

positive granules were not only co-stained with an antibody

specific for the stress granule marker protein TIA-1, but also

were co-labelled with a meFUS-specific antibody (Figure 8D).

This demonstrates that methylated FUS-P525L is recruited to

stress granules, the potential precursors of pathological FUS

inclusions in ALS-FUS patients.

Inclusions in ALS-FUS contain methylated FUS, while

inclusions in FTLD-FUS are hypomethylated

To investigate the methylation status of FUS in human brain,

we analysed post mortem tissue from ALS-FUS, FTLD-FUS

and healthy controls by immunohistochemistry and double-

label immunofluorescence with the newly generated meFUS-

specific antibodies. Like in cultured cells, the physiological

staining pattern for meFUS was predominantly nuclear in

controls and FUS-opathies (Supplementary Figure S3B

and C). Consistent with our hypothesis that arginine methy-

lation contributes to the pathological mislocalization of mu-

tant FUS proteins, we revealed a very strong and consistent

co-labelling of all FUS-positive cytoplasmic neuronal and glial

inclusions with the meFUS antibody in all ALS-FUS cases

investigated, including four different FUS mutations

(Figure 9A). Thus, inclusions in ALS-FUS patients contain

methylated FUS.

Next, we investigated the spectrum of FTLD-FUS, including

atypical FTLD-U (aFTLD-U), neuronal intermediate filament

inclusion body disease (NIFID) and basophilic inclusion body

disease (BIBD). Surprisingly, FUS-positive neuronal and glial

cytoplasmic inclusions as well as intranuclear inclusions in all
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FTLD-FUS subtypes were not labelled with the meFUS-specific

antibody (Figure 9B), while a physiological nuclear staining

was observed in all cases (Supplementary Figure S3B and C).

Thus, in striking contrast to ALS-FUS, inclusions in FTLD-FUS

appear to contain unmethylated FUS. This suggests hypo-

methylation of FUS (and potentially the other FET proteins) as

a potential pathomechanism that might contribute to the

co-deposition of FET proteins with TRN in FTLD-FUS.
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Discussion

By studying ALS-associated FUS mutations, we have uncov-

ered a novel TRN-binding epitope, which is sensitive to

arginine methylation. This broadens our perspective of

TRN-cargo recognition, which classically has been thought

to be determined by three modular, linear TRN-binding

epitopes: (1) The PY of the C-terminal R/K/H/X2–5PY motif,

(2) the basic residue of the R/K/H/X2–5PY motif and (3) an

N-terminal hydrophobic or basic motif (Suel et al, 2008).

Together, these three epitopes were described to constitute a

signal of B30 residues with intrinsic structural disorder and

overall basic character (Lee et al, 2006; Suel et al, 2008).

Based on these rules, Lee et al (2006) predicted a PY-NLS in

the C-terminus of FUS and later on FUS residues 514–526

were shown to be necessary and sufficient for nuclear import

in cultured cells and in vivo (Bosco et al, 2010; Dormann et al,

2010). Structural modelling of FUS residues 520–526 into the

TRN-binding pocket showed that residues R522 and Y526

make strong H-bond interactions with TRN and that P525

allows a particular kinked geometry between P525 and Y526,

leading to specific surface recognition of the two C-terminal

residues by TRN (Dormann et al, 2010). Recently, the crystal

structure of the FUS PY-NLS (residues 498–526) bound to

TRN has been solved (Zhang and Chook, 2012). This revealed

that the FUS PY-NLS consists of a C-terminal PY motif (1), an

atypical arginine-rich polarized a-helix (2) and an N-terminal

hydrophobic motif (3) (see schematic diagram in Figure 10A)

and showed that residues mutated in ALS, for example, P525,

make numerous contacts with TRN.

We studied longer recombinant FUS proteins (FUS454–

526WT and FUS454–526P525L) in complex with TRN and

surprisingly found that the RGG repeat domain preceding

the PY-NLS interacts tightly with TRN and is even able to

rescue weak binding of the C-terminus in the P525L mutant

(Figure 6D). Moreover, the RGG3 domain can even bind to

TRN independently of the PY-NLS, with an affinity compar-

able to the PY-NLS itself (KdITC¼ 11.7 mM for FUS473–503

versus 20mM for FUS504–526WT). This defines the RGG

repeat region adjacent to the PY-NLS of FUS as a novel

TRN-binding motif and extends the classical PY-NLS consen-

sus sequence with a fourth binding epitope (Figure 10A).

Thus, at least for certain cargo proteins such as the FET

proteins, the TRN-binding site can be much larger than

previously anticipated. Interestingly, TRN also binds multiple

proteins without a PY-NLS, such as ribosomal proteins,

histones, c-Fos, HIV-Rev and others (Chook and Suel, 2011),

suggesting that TRN can recognize different classes of NLSs.

Our data suggest that unmethylated RGG repeats might be

such a signal. Supporting this idea, the RGG domain of a

putative TRN substrate, Cold-inducible RNA-binding protein

(CIRP), is required for nuclear import of CIRP and arginine

methylation causes cytoplasmic accumulation of CIRP (Aoki

et al, 2002).

Nevertheless, our data have shown that epitope 1 and 2 of

the (mutant) PY-NLS of FUS are still required for TRN

binding, since a FUSD514–526 deletion mutant failed to

be imported under conditions of methylation inhibition

(Figure 4B). This suggests that the C-terminal TRN-binding

epitopes might anchor the protein for further interaction of

the RGG repeats with the negatively charged surface in the

interior of TRN. In line with this hypothesis, addition of

either the WT or mutant PY-NLS to the unmethylated RGG3

domain led to high-affinity interactions below micromolar Kd

(Figure 6D). Taken together, our data suggest a novel model

of FUS-TRN recognition (Figure 10B), where epitopes 1–3 of

the PY-NLS anchor the FUS C-terminus to TRN and the

adjacent RGG repeats stabilize the interaction, presumably
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fluorescence of spinal cord sections from four ALS patients carrying
different FUSmutations with a monoclonal antibody against meFUS
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by interacting with the negatively charged surface in the

interior of TRN. Methylation of the RGG repeats interferes

strongly with TRN binding, probably due to changing

hydrogen bonding and local hydrophobicity. In the methy-

lated WT protein, the C-terminal epitopes nevertheless bind

tightly enough to allow nuclear import, while in the methy-

lated P525L mutant, weak binding of both epitopes 1 and 4

abrogates nuclear import, leading to cytoplasmic accumula-

tion (Figure 10B).

It seems possible that other TRN substrates are modulated

by arginine methylation in a similar fashion. Indeed, a recent

study reported that arginine methylation of the nuclear

poly(A) binding protein (PABPN1) weakens its interaction

with TRN and that several nuclear proteins, including FUS,

show increased TRN binding in PRMT1 knockout cells (Fronz

et al, 2011). PABPN1 is methylated on key residues within the

PY-NLS, such as the N-terminal basic cluster and the

C-terminal RX6PY motif (Smith et al, 1999; Lee et al, 2006),

suggesting that in the case of PABPN1 arginine methylation

within epitopes 2 and 3 of the PY-NLS might interfere with

TRN binding. In contrast, FUS and the other FET proteins are

methylated exclusively on arginine residues in epitope 4

(Belyanskaya et al, 2001; Rappsilber et al, 2003; Ong et al,

2004; Pahlich et al, 2005; Jobert et al, 2009) and our analysis

has shown that arginine methylation within the RGG3

domain and not in other epitopes of the PY-NLS modulates

TRN binding (Figure 5). Beyond the FET family proteins,

several confirmed or predicted PY-NLS-containing proteins

(Lee et al, 2006) contain methylated RGG motifs within the

vicinity of the PY-NLS. Whether TRN-dependent nuclear

import of these proteins is regulated by arginine methy-

lation in a similar fashion remains to be shown.

Although ALS-FUS and FTLD-FUS have an overlapping

clinical phenotype and neuropathology, the pathological in-

clusions in these two disorders were recently found to have a

significantly different protein composition: Inclusions in ALS-

FUS contain only the FUS protein, while inclusions in FTLD-

FUS show a co-deposition of all FET proteins (FUS, EWS, and

TAF15) and TRN (Brelstaff et al, 2011; Neumann et al, 2011,

2012; Davidson et al, 2012) (Figure 10B). Our study has

revealed additional striking differences in the neuropathology

of ALS-FUS and FTLD-FUS (Figure 9), further supporting the

idea that the two disorders are caused by different pathome-

chanisms (Mackenzie and Neumann, 2012; Rademakers

et al, 2012). In ALS-FUS, pathological inclusions contain

methylated FUS, in line with the severe nuclear import

defect observed for methylated FUS mutants in our cellular

models (Figure 10B). Thus, arginine methylation seems to be

required for the pathological mislocalization of ALS-asso-

ciated FUS mutants and it is tempting to speculate that

differences in arginine methylation might determine the age

of disease onset, which can vary substantially between

patients with the same point mutation (Kwiatkowski et al,

2009; Rademakers et al, 2010; Yan et al, 2010). Accordingly,

we propose that ALS-FUS is a dominantly inherited human

disease that might be modulated by a post-translational

modification.

In contrast to ALS-FUS, which seems to be restricted

to a dysfunction of FUS, FTLD-FUS appears to involve a

more general defect in TRN-mediated nuclear import

(Dormann and Haass, 2011; Mackenzie and Neumann, 2012;

Rademakers et al, 2012). However, a general dysfunction or

reduced expression of TRN seems unlikely, since none of 13

additional TRN cargo proteins investigated (e.g., heterogenous

ribonucleoprotein A1, Sam68 and PABPN1) co-accumulate
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Figure 10 Model of the FUS–TRN interaction in cellular models
and human FUSopathies. (A) Schematic diagram of FUS with
sequences of the C-terminal PY-NLS (light red) and RGG3 domain
(light green). Numbers indicate epitopes that contribute to TRN
binding: 1¼C-terminal PY motif; 2¼ central basic motif forming a
polarized helix; 3¼N-terminal hydrophobic motif; 4¼RGG repeat
region as a novel TRN-binding epitope. (B) Panels on the left show
the interaction of methylated and unmethylated FUS-WT and FUS-
P525L with TRN and the consequences for nuclear import in
cultured cells. The PY-NLS of FUS is shown in light red and the
RGG3 repeat region in light green. The yellow star denotes asym-
metric dimethylation of the RGG3 domain. Panels on the right show
the pathological situation in post mortem brains of FTLD-FUS and
ALS-FUS patients. In FTLD-FUS, neuronal cytoplasmic inclusions
contain all three FET proteins and TRN, but are not immunoreactive
with meFUS-specific antibodies, suggesting that hypomethylation of
the FET proteins and thus increased TRN binding may possibly be
involved in the co-deposition of these proteins in FTLD-FUS. In
contrast, ALS-FUS caused by FUS mutations is characterized by
neuronal cytoplasmic inclusions that contain methylated FUS, but
are negative for EWS, TAF15 and TRN. This suggests that the
selective nuclear import defect of the FUS protein is caused by
combination of a genetic defect (point mutation in TRN-binding
epitopes 1–3) and post-translational modification (arginine methy-
lation in TRN-binding epitope 4).
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with the FET proteins and TRN in FTLD-FUS (Neumann et al,

2012). Our data suggest that instead, defective arginine

methylation of the FET proteins selectively alters their TRN-

binding affinity (Figure 10B). Such hypomethylation of the FET

proteins may lead to enhanced binding of the FET proteins to

TRN and may hamper dissociation of FET–TRN transport

complexes. Even though differences in TRN-binding affinity

of methylated versus unmethylated FUS-WT may be small, it

seems possible that over long periods of time, a slight increase

in FET–TRN binding may lead to a co-deposition of FET

proteins and TRN in cytoplasmic and nuclear inclusions in

this late-onset neurodegenerative disease. It is also interesting

to note that arginine methylation can affect protein aggregation,

and in all reported cases hypomethylation favoured protein

oligomerization/aggregation (Yu et al, 2004; Ostareck-Lederer

et al, 2006; Perreault et al, 2007). Thus, hypomethylation might

contribute to the pathological deposition of the FET proteins by

affecting both their nuclear import and their aggregation

behaviour.

What remains to be answered is how and why hypomethy-

lation of the FET proteins might arise. The fact that PABPN1,

which also binds to TRN with higher affinity in PRMT1

knockout cells (Fronz et al, 2011), is not co-deposited with

FET proteins and TRN in FTLD-FUS (Neumann et al, 2012)

argues against a general defect in arginine methylation and

rather points to a selective hypomethylation of FET proteins.

The question why hypomethylation of FET proteins might

arise in FTLD-FUS brings up a related question, namely what

is the physiological role of FET protein methylation in the

first place? It can be speculated that arginine methylation of

FET proteins reduces their affinity for TRN to a degree

that allows for efficient dissociation of the import complex

by RanGTP in the nucleus. Overly tight binding of

hypomethylated FET proteins to TRN might hamper their

dissociation from TRN in the nucleus, leading to re-export of

FET–TRN complexes and ultimately to a reduction of FET

proteins in the nucleus and co-deposition of FET and TRN in

the cytoplasm (Figure 10B). Alternatively, it can be envisaged

that arginine methylation of FET proteins is a fine-tuning

mechanism to ensure that small amounts of newly synthe-

sized FET proteins stay behind in the cytoplasm to fulfil

important cytosolic functions. This would be in agreement

with the findings that small amounts of cytosolic FUS are

present in human and mouse brain (Neumann et al, 2009a;

Aoki et al, 2012) and that FUS seems to play a role in mRNA

transport to dendritic spines (Fujii and Takumi, 2005; Fujii

et al, 2005; Liu-Yesucevitz et al, 2011). Additionally, FUS has

been identified at focal adhesions and was shown to function

in cell spreading (de Hoog et al, 2004). Finally, it cannot be

excluded that arginine methylation regulates additional

features of FET proteins, such as RNA binding or additional

protein–protein interactions. The physiological role of argi-

nine methylation of FET proteins and the mechanism behind

a potential hypomethylation in FTLD-FUS certainly warrant

further studies.

Materials and methods

Cell culture, transfection, inhibitor and stress treatment
Human cervical carcinoma cells (HeLa) were cultured and trans-
fected as described previously (Dormann et al, 2010). HeLa cells
stably expressing HA–FUS-WTor HA–FUS-P525L were generated by
lentiviral transduction as described in Kuhn et al (2010), followed

by selection with 0.5mg/ml puromycin (Sigma). Hippocampal
neurons were isolated from embryonic day 18 rats as described
previously (Kaech and Banker, 2006). Neurons were plated at
densities of 18 000 cells/cm2 in 6 cm tissue culture dishes
containing poly-L-lysine (1mg/ml; Sigma-Aldrich)-coated glass
coverslips and Neurobasal medium supplemented with 2% B27
and 0.5mM glutamine (all from Invitrogen). On day in vitro (DIV)
7, cultured neurons were transfected with HA–FUS constructs using
Lipofectamine 2000 (Invitrogen). YFP was co-transfected as a
marker to visualize neuronal morphology. For all transient transfec-
tions, cells were analysed 24h post-transfection. AdOx (Sigma) was
dissolved in water and was used at a concentration of 20 mM (HeLa)
or 10mM (neurons) and was added to cells upon plating (HeLa) or
DIV 7 (neurons) 9 h prior to transfection. Heat shock was performed
by incubating cells for 1 h in a tissue culture incubator heated
to 441C.

Antibodies
A list of all commercially available antibodies used can be found in
the Supplementary data. Rat monoclonal antibodies against an
ovalbumin-conjugated meFUS473–503 peptide epitope were gener-
ated at the Institute of Molecular Immunology, Helmholtz Center
Munich by standard procedures.

cDNA constructs and primers
All HA-tagged FUS, EWS and TAF15 constructs used for transient
transfections were in pcDNA3.1/Hygro(� ) (Invitrogen) and all
GFP and GST–GFP constructs were in pEGFP–C1 (Clontech).
Lentiviral HA–FUS constructs used for generation of stable HeLa
cell lines were in pCDH-Ef1-MCS-IRES-Puro (System Biosciences).
The cDNA encoding full-length human TRN with a C-terminal His6-
tag was in a pQE-60 vector (pQE-60-TRN–His6) and was a generous
gift of Dirk Görlich. The cDNA encoding His6-tagged FUS454–526
(WT or P525L) was in a petM11-ZZ–His6 vector. Details on cloning
of mutant constructs can be found in the Supplementary data
(Rydzanicz et al, 2005).

Recombinant proteins and synthetic peptides
Details on expression and purification of recombinant proteins
can be found in the Supplementary data. Synthetic peptides
(FUS473–503, meFUS473–503, FUS489–526WT and meFUS489–
526WT, FUS489–526P525L, meFUS489–526P525L, FUS504–526WT and
FUS504–526P525L) were synthesized and HPLC-purified by Peptide
Specialty Laboratories GmbH, Heidelberg, Germany and were
dissolved in TRN-binding buffer (20mM sodium phosphate buffer,
pH 6.8, 50mM NaCl, 1mM EDTA, 1mM DTT).

Immunocytochemistry
Immunocytochemistry on HeLa cells was performed as described in
Dormann et al (2010). Hippocampal neurons were fixed with 4%
paraformaldehyde, quenched in 50mM ammonium chloride for
10min and permeabilized with 0.1% Triton X-100 for 3min. After
blocking with 2% fetal bovine serum (Invitrogen), 2% bovine
serum albumin (Sigma-Aldrich) and 0.2% fish gelatin (Sigma-
Aldrich) dissolved in phosphate-buffered saline, neurons were
incubated with respective primary and secondary antibodies
diluted in 10% blocking solution. DAPI (Invitrogen) was used as a
nuclear counterstain.

Immunohistochemistry and immunofluorescence on human
post mortem tissue
Immunohistochemistry conditions for meFUS antibodies were opti-
mized using a tissue microarray that included formalin-fixed, paraffin-
embedded biopsy material from a glioblastoma and a brain metastasis
from a colon carcinoma as well as post mortem tissue from hippo-
campus and temporal cortex of three controls with no history of
neurological disease. Studied FUS-opathy cases with robust pathology
in selected neuroanatomical regions included aFTLD-U (n¼ 3), BIBD
(n¼ 1), NIFID (n¼ 1) and four ALS-FUS cases with three different
missense and one truncation mutation, described in detail in previous
studies (Neumann et al, 2011). Immunohistochemistry was performed
on 5mm thick paraffin sections using the NovoLinkTM Polymer
Detection Kit and developed with 3,30-diaminobenzidine. For
double-label immunofluorescence, the secondary antibodies Alexa
Fluor 594 and Alexa Fluor 488-conjugated anti-rabbit and anti-rat
IgG (Invitrogen, 1:500) were used with Hoechst 33342 (Sigma) for
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nuclear counterstaining. Incubation with primary antibodies meFUS
9G6 (dilution 1:30) and anti-FUS HPA008784 (Sigma, 1:1000) was
performed for 1h at room temperature following microwave antigen
retrieval.

Fluorescence image acquisition
Two or three-colour confocal images of HeLa cells were obtained
with an inverted laser scanning confocal microscope (Zeiss
LSM510) with a � 63/1.4 oil immersion lens, using a pinhole
diameter of 1 Airy unit. An image series along the z axis was
taken and projected into a single image using the maximal projec-
tion tool of the LSM 510 software (Zeiss). Four-colour confocal
images of HeLa cells were taken with an inverted laser scanning
confocal microscope (Zeiss LSM710) with a � 40/1.4 oil immersion
lens. Using the Zen 2011 software (Zeiss), single confocal images
were taken in the plane of the largest cytosolic area. For neurons,
images were acquired with a wide-field fluorescence microscope
(Axio Imager A2 inverted microscope and AxioVision software,
both from Zeiss). For human post mortem tissue, immunofluores-
cence images were obtained by wide-field fluorescence microscopy
(BX61 Olympus with digital camera F-view, Olympus). If necessary
for printing, brightness and contrast were linearly enhanced using
Adobe Photoshop’s Level tool. Images and quantification shown are
from one experiment, but are representative of at least three
independent experiments.

Image quantification and statistics
Nuclear and cytosolic localization was quantified with the LSM 510
colocalization tool as follows: Total fluorescence intensities of the
green channel were calculated from the mean fluorescence intensity
(MFI) and the number of pixels. Pixels that were colocalized with
the nuclear counterstain were considered ‘nuclear’ and pixels that
did not overlap with the nuclear counterstain were considered
‘cytosolic’. Typically 30–50 randomly selected cells (n) were ana-
lysed and mean values±s.d. across n cells were calculated.
Statistical analysis was carried out using the one-way ANOVA test
with a Tukey post test. Images and quantification shown are from
one experiment, but are representative of at least three independent
experiments. For quantification of HA–FUS localization in neurons,
300 randomly selected cells per experiment (n¼ 3) were scored for
cytoplasmic mislocalization of transfected HA–FUS constructs and
the percentage of cells with mislocalized FUS±s.d. were calculated.
Statistical analysis was carried out using the unpaired two-tailed
t-test.

siRNA-mediated knockdown
PRMT1 knockdown was achieved using two different PRMT1-
specific siRNAs from Qiagen (Hs_HRMT1L2_7 and Hs_
HRMT1L2_8). Negative control siRNA (Cat. No. 1022076, Qiagen)
was used as a control. FUS knockdown was achieved using the ON-
TARGET plus SMARTpool L-009497 from Dharmacon. Cells were
reverse transfected using 20 pmol siRNA and 5 ml Lipofectamine
2000 (Invitrogen) per six-well. Medium was changed 4–6 h post-
transfection and effect of knockdown was analysed 48 h (FUS
knockdown) or 72 h (PRMT1 knockdown) post-transfection.

Cell lysates and immunoblotting
Total cell lysates were prepared in ice-cold RIPA buffer freshly
supplemented with Complete Protease Inhibitor Cocktail (Roche).
Lysates were sonicated (Bioruptor from Diagenode) and protein
concentration was determined by BCA protein assay (Pierce). In all,
4� SDS–PAGE sample buffer was added and samples were boiled
for 5min. Proteins were separated by SDS–PAGE, transferred onto a
PVDF membrane (Immobilon-P, Millipore) and analysed by immu-
noblotting using the indicated antibodies. Bound antibodies were
detected with the chemiluminescence detection reagents ECL or
ECL prime (both from Amersham) or Immobilon (Millipore).

In vitro pulldown assay
N-terminally biotinylated peptides were immobilized on streptavi-
din sepharose beads (GE Healthcare, 440 pmol peptide/5ml beads)
and were blocked in wash buffer (20mM sodium phosphate buffer
pH 7.4, 150mM KCl, 0.5mM EDTA, 5mM MgCl2, 10% glycerol,
1mM DTT) supplemented with 0.5mg/ml BSA. In all, 5 ml peptide-
loaded beads were incubated with the indicated amounts of recom-
binant TRN–His6 or His6–GST in 500 ml of the same buffer for 1–3h

at 41C. Beads were washed three times in wash buffer and boiled for
3min in 2� SDS–PAGE sample buffer. Eluted proteins were sepa-
rated by SDS–PAGE (10–20%) and visualized by staining with
GelCode Blue Stain Reagent (Thermo Scientific). Band intensities
were quantified using the MultiGaugeV3.0 programme. After back-
ground subtraction, the band with the highest pixel number was set
to 1.0 AU (arbitrary units).

Isothermal titration calorimetry
Binding affinities of FUS peptides and recombinant proteins to TRN
were determined using ITC on a VP-ITC Microcal calorimeter
(Microcal, Northhampton, USA) at 251C or 101C (FUS473–503;
due to entropy–enthalpy compensation at 251C) with 35 rounds of
12ml injections. All proteins/peptides were dialyzed or dissolved
in TRN-binding buffer. The ITC data were analysed with the
program MicroCal Origin software version 7.0 and single site
binding model.

NMR experiments
Samples for NMR measurements contained 0.008–0.012mM protein
in TRN-binding buffer with 10% 2H2O added for the lock signal. For
the TRN bound measurements, 15N isotope labelled FUS454–526WT
and FUS454–526P525L were titrated with increasing amounts of
unlabelled TRN to stoichiometric ratios (FUS:TRN) of 1:0.1, 1:0.3,
1:0.5, 1:0.7, 1:1 and 1:2.6. Spectral changes were monitored by 1D
1H and 2D 1H,15N HSQC spectra in each step of the titration. For the
FUS peptide bound measurements, unlabelled TRN was titrated
with increasing amounts of FUS peptides (FUS473–503, meFUS473–
503, FUS489–526P525L, meFUS489–526P525L, FUS489–526WT,
meFUS489–526WT) to stoichiometric ratios (TRN:FUS) of 1:0.25,
1:0.5, 1:1. Spectral changes were monitored by 1D 1H spectra in
each step of the titration. Details on NMR spectra recording and
processing can be found in the Supplementary data.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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Supplementary Information 

 

Supplementary Material and Methods 

 

Antibodies 

The following commercial antibodies were used:  HA-specific mouse monoclonal HA.11 

(Covance) or horseradish peroxidase (HRP)-coupled HA-specific rat monoclonal 3F10 

(Roche);  GFP-specific rabbit polyclonal (BD Living Colors from BD Biosciences or 

Fitzgerald Industries International);  PRMT1-specific rabbit monoclonal EPR3292 (Abcam);  

FUS-specific mouse monoclonal antibody 4H11 (Santa Cruz) and rabbit polyclonal A300-

294A (Bethyl) and HPA008784 (Sigma);  TIA-1-specific goat polyclonal antibody (C-20, 

Santa Cruz);  �-Tubulin III-specific rabbit polyclonal antibody (Tuj1, Sigma);  �-Tubulin-

specific mouse monoclonal antibody clone B-5-1-2 (Sigma); ��-actin specific mouse 

monoclonal antibody clone AC-74 (Sigma).  Secondary antibodies for immunoblotting were 

HRP-coupled goat anti-mouse, anti-rabbit or anti-rat IgG (Promega).  For 

immunocytochemistry, Alexa-488, Alexa-555 or Alexa647-conjugated goat or donkey anti-

mouse, anti-rabbit or anti-rat IgG (Invitrogen) were used.  

�

Cloning of cDNA constructs 

The pcDNA3.1/Hygro(-) constructs encoding HA-tagged FUS-WT, R521G, R522G, R524S, 

P525L, �PY-NLS (�514-526), GFP-M9M, GFP-Bimax, GST-GFP-514-526WT and GST-GFP-

514-526P525L have been described previously (Dormann et al, 2010).  For generation of 

lentiviral constructs, HA-FUS-WT and HA-FUS-P525L were subcloned from 

pcDNA3.1/Hygro(-) into pCDH-Ef1-MCS-IRES-Puro via NheI/BamHI restriction digest.  For 

generation of the GST-GFP455-526P525L reporter construct, the respective FUS sequence was 

PCR amplified and cloned via XhoI/BamHI restriction digest into the pGST-EGFP-C1 vector 
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described in Dormann et al, 2010.  The FUS455-526-RmutP525L sequence was assembled from 

6 oligonucleotides according to Rydzanicz et al., 2005 and was subsequently cloned into 

pGST-EGFP-C1.  The cDNA sequence of human EWS (NM_005243.3) was amplified from an 

human brain cDNA and was cloned by XhoI/HindIII restriction digest into pcDNA3.1/Hygro(-

) with an N-terminal HA-tag.  The cDNA sequence of human TAF15 (BC046099) was 

amplified from an I.M.A.G.E. full length cDNA clone (IRATp970A0976D, Source 

BioScience) and was cloned by XbaI/BamHI restriction digest into pcDNA3.1/Hygro(-) with 

an N-terminal HA-tag.  Point mutations (EWS-P665L and TAF15-P591L) were introduced by 

conventional PCR via the reverse primer.  For bacterial expression constructs, the sequences 

encoding FUS454-526WT or FUS454-526P525L were PCR amplified and cloned into the 

petM11-ZZ-His6 vector via NcoI/BamHI restriction digest.  For all constructs, sequence 

integrity was verified by sequencing.  Oligonucleotide sequences are available upon request. 

 

Recombinant protein expression and purification 

For expression of recombinant ZZ-His6-FUS454-526WT or FUS454-526P525L, the bacterial 

expression vectors petM11-FUS454-526 (WT or P525L) were transformed into BL21-DE3-

Rosetta cells and 1 l expression cultures were grown in modified M9 minimal medium 

supplemented with 15NH4Cl.  For expression of His6-tagged TRN, the pQE-60-TRN-His6 

vector was transformed into E.coli BL21(DE3)pLysS cells and cells were grown in standard 

lysogeny broth (LB) medium.  Cells were induced at an OD(600 nm) of 0.7 - 0.8 with 0.5 mM 

IPTG followed by protein expression for 16 h at 20°C (TRN-His6) or 4 h at 37°C (FUS-454-

526).  Unlabeled or 15N-labeled His6-tagged proteins were purified under native conditions 

using Ni-NTA agarose (Qiagen) according to the QIAexpressionist protocol (Qiagen).  For 

FUS454-526, the eluted proteins were subjected to a brief heat shock (10 min at 90°C) to 

denature contaminating proteases.  All proteins were dialyzed against TRN binding buffer (20 

mM sodium phosphate buffer, pH 6.8, 50 mM NaCl, 1 mM EDTA, 1 mM DTT).  To obtain 
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untagged FUS454-526 proteins, the ZZ-His6 tag was cleaved off with TEV protease. After 10-

fold dilution in the buffer used for Ni-NTA purification, the tag, TEV protease and uncleaved 

protein were removed by a second affinity purification on Ni-NTA resin.  For NMR 

measurements samples were buffer exchanged to TRN binding buffer using a PD10TM column 

(GE Healthcare) and concentrated using Amicon Ultra-15 (Millipore) centrifugal filter units.   

�

NMR spectra recording and processing 

NMR spectra were recorded at 298 K on an Avance III 900 Bruker NMR spectrometer 

equipped with a cryogenic triple resonance gradient probe.  All spectra were recorded with a 

recycle delay of 1.0 s, spectral widths of 20/30 ppm centered at 4.7/118.5 ppm in 1H/15N, with 

1024 and 128 points, respectively, using 64 scans per increment.  Spectra were processed with 

NMRPipe/Draw and analyzed with Sparky 3 (T. D. Goddard & D. G. Kneller, University of 

California, San Francisco, USA).  Chemical shift assignment of the C-terminal residue was 

confirmed with a standard 15N-edited TOCSY-HSQC spectrum.  

 

�

�

�

�

�

�

�

�

�
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(B) Overlay of 1D 1H NMR spectra recorded for TRN with increasing amounts of FUS489-

526P525L and meFUS489-526P525L peptides.  The increase in signal intensity corresponds to the 

amount of unbound FUS peptide.  In agreement with the weak binding observed by ITC, a 

strong increase in NMR signals characteristic for unbound FUS is observed.  

(C) Overlay of 1D 1H NMR spectra recorded for TRN with increasing amounts of FUS489-

526WT and meFUS489-526WT peptides.  In agreement with the binding observed by ITC (KdITC 

= 2.8 μM), a weak increase in NMR signals is observed for the unmethylated peptide.    The 

increase in signal intensity for the methylated peptide (KdITC = 7.8 μM) was significantly lower 

than for meFUS489-526P525L, but stronger than for FUS489-526WT. 

� �
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Supplementary Figure S3: Physiological staining of methylated FUS in primary neurons 

and human post mortem tissue 

(A) Primary rat hippocampal neurons were co-labeled with a meFUS-specific antibody (9G6, 

green), the neuronal marker antibody Tuj1 (red) to visualize neuronal morphology and a 

nuclear counterstain (blue).  Methylated FUS is located in nuclei of neurons.  Scale bar: 20 μm.   

(B) Immunohistochemistry with a meFUS-specific antibody (9G6) revealed strong nuclear and 

faint cytoplasmic physiological staining as shown in the dentate granule cells of a control case 

(left) and an unaffected cortical brain region of a BIBD case (right).  Scale bars: 50 μm.   

(C) Double-label immunofluorescence with a meFUS antibody (9G6, green), a polyclonal pan-

FUS antibody (red) and nuclear counterstaining (blue) of unaffected neurons in the brainstem 

of a BIBD case demonstrating predominant nuclear staining with both antibodies.  Scale bar: 

20 μm.   
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Stress granules (SGs) are cytoplasmic foci that rapidly form when cells are

exposed to stress. They transiently store mRNAs encoding house-keeping

proteins and allow the selective translation of stress-response proteins (e.g.

heat shock proteins). Besides mRNA, SGs contain RNA-binding proteins,

such as T cell internal antigen-1 and poly(A)-binding protein 1, which can

serve as characteristic SG marker proteins. Recently, some of these SG

marker proteins were found to label pathological TAR DNA binding pro-

tein of 43 kDa (TDP-43)- or fused in sarcoma (FUS)-positive cytoplasmic

inclusions in patients with amyotrophic lateral sclerosis and frontotemporal

lobar degeneration. In addition, protein aggregates in other neurodegenera-

tive diseases (e.g. tau inclusions in Alzheimer’s disease) show a co-localiza-

tion with T cell internal antigen-1 as well. Moreover, several RNA-binding

proteins that are commonly found in SGs have been genetically linked to

neurodegeneration. This suggests that SGs might play an important role in

the pathogenesis of these proteinopathies, either by acting as a seed for

pathological inclusions, by mediating translational repression or by trap-

ping essential RNA-binding proteins, or by a combination of these mecha-

nisms. This minireview gives an overview of the general biology of SGs

and highlights the recently identified connection of SGs with TDP-43, FUS

and other proteins involved in neurodegenerative diseases. We propose that

pathological inclusions containing RNA-binding proteins, such as TDP-43

and FUS, might arise from SGs and discuss how SGs might contribute to

neurodegeneration via toxic gain or loss-of-function mechanisms.

Abbreviations

ALS, amyotrophic lateral sclerosis; ANG, angiogenin; ATXN2, ataxin-2; CTF, C-terminal fragment; DYRK3, dual specificity tyrosine-

phosphorylation-regulated kinase 3; eIF, eukaryotic translation initiation factor; EWS, Ewing sarcoma protein; FMRP, fragile X mental

retardation protein; FTLD, frontotemporal lobar degeneration; FUS, fused in sarcoma; G3BP, Ras-GTPase-activating protein SH3-domain-

binding protein; Htt, huntingtin; mRNP, messenger ribonucleoprotein; mTORC1, mammalian target of rapamycin complex 1; NLS, nuclear

localization signal; PABP-1, poly(A)-binding protein 1; P-bodies, processing bodies; PTM, post-translational modification; RGG, arginine-

glycine-glycine; RRM, RNA recognition motif; SCA2, spinocerebellar ataxia type 2; SG, stress granule; siRNA, small interfering RNA; SMA,

spinal muscular atrophy; SMN, survival of motor neurone; SOD1, superoxide dismutase 1; SYGQ, serine-tyrosine-glycine-glutamine; TAF15,

TATA-binding protein-associated factor 15; TDP-43, TAR DNA binding protein of 43 kDa; TIAR, TIA-1-related; TIA-1, T cell internal antigen-1;

TLS, translocated in liposarcoma; ZnF, zinc finger.
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Introduction

Abnormal neuronal inclusions consisting of disease-

characterizing protein aggregates are key features of

almost all neurodegenerative diseases [1]. In many

of these disorders (e.g. in Alzheimer’s disease), the

identification of the proteinaceous components of the

pathological inclusions was an important step in under-

standing the associated disease mechanisms. Similarly,

research in amyotrophic lateral sclerosis (ALS) and

frontotemporal lobar degeneration (FTLD) was tremen-

dously advanced by the discovery that the RNA-binding

proteins TAR DNA-binding protein of 43 kDa (TDP-

43) or fused in sarcoma (FUS) are abnormally deposited

in neuronal and glial cytoplasmic inclusions in the

majority of ALS and FTLD patients [2–4]. This has led
to the concept that defects in RNA metabolism are an

important pathomechanism in ALS and FTLD [5–7].
Recently, stress granule (SG) marker proteins were

found to be additional components of the TDP-43- or

FUS-positive cytoplasmic inclusion in ALS and FTLD

patients [8–12], a finding that has lead to an entirely

new mechanism of inclusion formation. Moreover, sev-

eral other proteins associated with neurodegenerative

diseases [e.g. tau, ataxin-2, survival of motor neurone

(SMN) and angiogenin (ANG)] are recruited into SGs

upon noxious conditions and/or regulate SG assembly

[13]. Thus, SGs have not only emerged as a new player

in ALS and FTLD, but also possibly play an impor-

tant role in other neurodegenerative disorders.

Because TDP-43 and FUS were the first proteins

shown to be co-deposited with SG proteins in human

post mortem brains, we use the case of TDP-43 and

FUS to highlight the newly-identified role of SGs in

neurodegenerative diseases. We first provide a brief

introduction into FTLD and ALS and the pathobiology

of TDP-43 and FUS. We then provide an overview of

SGs in general and present what is known about their

connection to TDP-43, FUS and other RNA-binding

proteins linked to neurodegenerative diseases. Finally,

we discuss the different mechanisms by which SGs may

contribute to the formation of pathological protein

inclusions and neurodegeneration in general.

ALS and FTLD: related but not
identical neurodegenerative diseases

ALS and FTLD are related neurodegenerative disor-

ders that are connected by overlapping clinical pheno-

types [14]. ALS, also known as Lou Gehrig′s disease,

is the most common motor neurone disease and is

caused by selective degeneration of motor neurones.

This results in gradual muscle weakness and atrophy

that ultimately leads to death [15]. FTLD is the second

most common dementia below the age of 65 years and

is characterized by atrophy of the frontal and temporal

lobe [16]. Because these brain regions control behav-

iour and cognitive function (e.g. language), patients

suffering from FTLD exhibit progressive changes in

their personality and/or language [16]. FTLD is

accompanied by motor neurone symptoms in a signifi-

cant proportion of patients and cognitive and behavio-

ural impairment is observed in up to 75% of ALS

patients [17]. This has led to the view that ALS and

FTLD form a clinical disease continuum, in which

both entities are linked by overlapping syndromes [14].

Over the last few years, seminal discoveries in the

neuropathology and genetics of ALS and FTLD have

revealed a common molecular basis of the two diseases.

In 2006, the DNA/RNA-binding protein TDP-43 was

identified as major component of the ubiquitinated

inclusions found in the brain and spinal cord in the vast

majority of ALS patients (ALS-TDP). Additionally,

TDP-43 was found to be the pathological hallmark

protein in approximately 50% of FTLD patients

(FTLD-TDP) [2,3], whereas most of the remaining

FTLD cases show TDP-43-negative, but tau-positive

neuropathology (FTLD-tau) [14]. Shortly afterwards,

mutations in TARDBP, the gene encoding TDP-43,

were identified in rare cases of familial ALS [18–21],
demonstrating that TDP-43 is not just an innocent

bystander, but also plays a crucial role in the pathogen-

esis of ALS/FTLD. Up to now, more than 40 dominant

mutations in the TARDBP gene have been identified in

ALS and occasionally in FTLD patients [22] (http://

www.molgen.vib-ua.be/FTDMutations) (Fig. 1). In

2009, another DNA/RNA-binding protein called FUS

was found in pathological protein aggregates in rare

familial ALS cases with a FUS mutation [23,24] (Fig. 1)

and in approximately 5–10% of sporadic FTLD cases

(FTLD-FUS) [4,25,26]. Recently, the most common

genetic cause of ALS and FTLD could be linked to

a GGGGCC repeat expansion in the C9ORF72 gene

[27–29]. The expanded hexanucleotide repeat is trans-

lated into aggregating dipeptide repeat proteins, which

are deposited in the brains of C9ORF72 mutation carri-

ers [30,31]. Noteworthy, the C9ORF72 mutation was

also identified in patients with a combined ALS/FTLD

phenotype, further confirming the genetic and clinical

overlap of these two disorders. Thus, the genetics and

neuropathology of FTLD and ALS, which are reviewed

in more detail elsewhere [14,22], clearly demonstrate a

link between the two diseases and suggest that they are

caused by similar pathomechanisms.
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TDP-43 and FUS: multifunctional RNA-
binding proteins with pivotal roles in
ALS and FTLD

TDP-43 was initially discovered as a protein that binds

to the TAR regulatory element in the HIV long

terminal repeat [32]. Subsequently, it was shown that

TDP-43 can also bind to RNA and regulates splicing

of the cystic fibrosis transmembrane conductance regu-

lator [33]. Today, we know that TDP-43 has appar-

ently several thousand RNA targets in the brain
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Fig. 1. Schematic diagram and SG recruitment of TDP-43 and FUS. (A) Domain structure of TDP-43 and FUS and disease-associated

mutations. Mutations in TARDBP, the gene encoding TDP-43, and FUS were identified in familial cases of ALS (shown in black) and FTLD

(shown in blue). Besides missense mutations, premature stop codons (X), deletions (del), insertions (ins) and frameshift (fs) mutations are

designated. The most frequently identified FUS mutations cluster in the protein’s NLS and disrupt the interaction with the nuclear import

factor transportin. Mutations in the N-terminal prion-like domain termed the SYGQ-rich domain in FUS are considered to be risk factors

because they were mainly found in sporadic cases [22]. By contrast, all disease-causing TDP-43 mutations cluster in a prion-like domain

termed the glycine-rich (Gly-rich) domain. Both FUS and TDP-43 contain a nuclear export signal (NES) and RRMs. FUS contains additional

RNA-binding motifs, as well as a ZnF and RGG repeats. (B) Wild-type (WT) TDP-43 and FUS are localized in the nucleus (left row), whereas

mutants with a defective NLS (NLS mut) accumulate in the cytosol (second row). Upon cellular stress (e.g. heat shock, 1 h at 44 °C),

cytosolic TDP-43 and FUS are recruited into TIA-1-positive SGs (third row). Pathological TDP-43 and FUS inclusions in ALS/FTLD patients

also contain SG marker proteins, such as PABP-1 (right row), suggesting that they might originate from SGs. Note that p62 is an

established marker of FUS-positive pathological inclusions and was used because double-labelling for FUS and PABP-1 was technically not

possible, and the available antibodies that work on paraffin-embedded tissue were both rabbit polyclonals. This research was published

previously [9,12] and is reproduced with permission.
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[34,35]. Moreover, TDP-43 is involved in microRNA

processing [36,37] and plays a role in mRNA transport

and local translation in dendritic spines [38–41]. TDP-

43 has two RNA recognition motifs (RRMs)

(Fig. 1A), of which only RRM1 is necessary and suffi-

cient for specific binding to nucleic acids [33]. More-

over, TDP-43 has a C-terminal glycine-rich domain

that mediates protein–protein interactions [42–44].
Interestingly, this domain is intrinsically disordered

and was shown to have similarity to yeast prions,

which exhibit ordered, self-perpetuating aggregation

[45–47]. Conspicuously, almost all disease-associated

TARDBP mutations are clustered in the C-terminal

glycine-rich domain (Fig. 1A). Despite extensive

research over the last few years, the pathomechanism

of these mutations is still unclear. One study reported

an increased protein–protein interaction with FUS

[48], whereas other studies could not confirm these

results [44,49]. Some TARDBP mutations were

reported to cause cytosolic mislocalization [10,50,51],

whereas other studies reported an unchanged nuclear

localization of mutant TDP-43 [12,48,52]. Moreover,

TARDBP mutations have been described to increase

and accelerate TDP-43 aggregation and toxicity

[10,50,51,53–58]. Finally, wild-type but not mutant

TDP-43 stimulates the growth of dendrites and axons

in Drosophila [40,59], suggesting that TARDBP muta-

tions may be partial loss-of-function alleles. This is

also supported by the finding that TARDBP mutations

are slightly less efficient in rescuing the phenotype of

zebrafish null mutants [60]. Thus, the mechanism(s) by

which TARDBP mutations cause disease are still con-

troversial and remain to be clarified.

FUS, also known as translocated in liposarcoma

(TLS), was initially discovered in characteristic chro-

mosomal translocations in human sarcomas, giving

FUS/TLS its name [61,62]. Similar to TDP-43, FUS is

a DNA/RNA-binding protein that regulates transcrip-

tion and splicing of hundreds of target genes [63–65]
and is involved in mRNA transport and local transla-

tion [66–69]. FUS contains an N-terminal serine-tyro-

sine-glycine-glutamine (SYGQ)-rich transcriptional

activation domain [70,71] (Fig. 1A), which is intrinsi-

cally unfolded and, similar to the TDP-43 glycine-rich

domain, was predicted to have prion-like properties

[45]. Additionally, FUS contains several RNA-binding

elements, such as arginine-glycine-glycine (RGG)

domains, an RRM and a zinc finger (ZnF) (Fig. 1A).

Although it has not been fully determined whether all

of these domains are necessary and sufficient for

RNA-binding, several in vitro studies have suggested

that the C-terminal RGG2-ZnF-RGG3 domain is

most likely the major RNA-binding domain [12,72,73].

Many ALS-associated FUS mutations are clustered in

the very C-terminal region and disrupt the interaction

of the nonclassical proline-tyrosine nuclear localization

signal (NLS) with the nuclear import receptor trans-

portin/karyopherin b2 [9,74–78]. This causes a reduced

nuclear import of FUS and results in cytosolic mislo-

calization of mutant FUS. Notably, the degree of cyto-

plasmic mislocalization correlates negatively with the

age of onset and disease severity (i.e. strong mutations,

such as P525L, that show a severe cytosolic accumula-

tion cause an unusually early disease onset and a rapid

disease progression, whereas mutations that cause a

mild cytosolic mislocalization show an incomplete pen-

etrance) [9,23,78]. Thus, defective nuclear import and/

or the cytosolic accumulation of FUS appear to be

key events in ALS pathogenesis [79].

Both TDP-43 and FUS are predominantly nuclear

proteins, yet the pathological inclusions containing

TDP-43 or FUS are frequently found in the cytosol

[3,4]. This has led to the idea that defects in nuclear

import are involved in this pathological redistribution

[79] (Fig. 1B). In the case of ALS-FUS, mutations in

the NLS of FUS obviously explain the cytosolic mislo-

calization. In TDP-43-proteinopathies, reduced levels

of nuclear import factors were proposed to contribute

to the cytosolic distribution of TDP-43 [80]. However,

FUS and TDP-43 variants with a defective NLS (NLS

mut) are homogenously distributed in the cytosol

(Fig. 1B), indicating that their presence in the cytosol

does not automatically cause aggregation of these pro-

teins. Instead, environmental stress appears to be

required to initiate clustering of cytosolic FUS or

TDP-43 in SGs [9,10,12,74–76,81] (Fig. 1B). Because

SG marker proteins [e.g. poly(A)-binding protein 1

(PABP-1)] are present in cytosolic TDP-43/FUS inclu-

sions in ALS/FTLD patients (Fig. 1B), it can be

hypothesized that SGs are precursors of these patho-

logical inclusions and thus may be relevant in the

pathomechanism of TDP-43- and FUS-proteino-

pathies.

SGs: cytoplasmic messenger
ribonucleoprotein (mRNP) particles
with cytoprotective function

Function and composition of SGs

SGs are cytoplasmic non-membrane covered mRNP

particles composed of poly(A)+ mRNAs and RNA-

binding proteins. They are formed by eukaryotic cells

in response to environmental stress and facilitate cell

survival by prioritizing the synthesis of stress-protec-

tive proteins, such as heat shock proteins and
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chaperones, at the same time as transiently storing

mRNAs encoding house-keeping proteins [82,83].

Thus, SGs are considered to be storage/sorting sta-

tions, where transcripts can be stored in a translation-

ally silent form, sorted for translation re-entry or

degraded in interacting processing bodies (P-bodies),

which are extensively reviewed elsewhere [83–85]. With

this triage, cellular anabolic energy is saved because a

portion of the already synthesized mRNAs can be

translated at a later time-point and they are not nonse-

lectively degraded. Additionally, SGs sequester impor-

tant signalling molecules and thereby enhance cell

survival during stress [86]. SGs sequester regulatory

apoptotic proteins (e.g. TRAF2 and RACK1) and

thereby inhibit apoptosis [87–89]. Moreover, the mam-

malian target of rapamycin complex 1 (mTORC1), a

central regulator of cell growth and metabolism, is

sequestered into SGs upon cellular stress, which pro-

tects cells from DNA damage [90].

How are certain mRNAs recruited into SGs, whereas

others escape the translational arrest in SGs? mRNAs

found in SGs often contain 5′-terminal oligopyrimidine

tracts, which are commonly found in mRNAs encoding

ribosomal proteins and translation elongation factors.

The inclusion of these 5′-terminal oligopyrimidine

tract-containing mRNAs into SGs ensures that energy-

consuming processes, such as ribosome formation, are

suppressed during cellular stress [91–93]. Additionally,

transcripts that require eukaryotic translation initiation

factor (eIF)4A-dependent 5′ UTR scanning are prefer-

entially included into SGs, because eIF4A is inactivated

during SG assembly [83]. By contrast, mRNAs encod-

ing for proteins necessary for stress adaption escape

the translational arrest in SGs by using noncanonical

translation initiation motifs [92,94–97].
Besides mRNA, SGs comprise mRNA-bound 48S

pre-initiation complexes composed of small ribosomal

subunits and translation initiation factors (e.g. eIF3,

eIF4E and eIF4G). Moreover, SGs contain proteins

involved in mRNA stabilization, processing and trans-

port, such as PABP-1, T cell internal antigen-1 (TIA-1),

TIA-1-related (TIAR) and Ras-GTPase-activating pro-

tein SH3-domain-binding protein (G3BP) [84,89,98–
101]. These proteins can promote SG assembly [83] and

serve as specific SG markers because they are only

found in SGs, and not in other cytoplasmic mRNP

granules, such as P-bodies or transport granules

[100,102].

SG assembly and disassembly

Under acute stress conditions, actively-translating poly-

somes are rapidly disassembled and, simultaneously,

SGs are assembled (Fig. 2). Experimental stress condi-

tions that induce SGs include oxidative stress induced

by arsenite or H2O2, osmotic shock induced by expo-

sure to sorbitol, mitochondrial stress induced by car-

bonyl cyanide p-(trifluoromethoxy)-phenylhydrazon

(FCCP) or clotrimazole, UV irradiation, viral infection,

cellular acidosis and thermal stress [102–107]. These

toxic environmental stimuli impair translation initia-

tion via an eIF2a-dependent or -independent pathway,
ultimately leading to translational arrest.

eIF2a-dependent SG assembly is induced when

stress stimuli activate specific serine/threonine kinases

(PKR, PERK, HRI, GCN) [108]. These kinases subse-

quently phosphorylate and thereby inactivate the a
subunit of eIF2 [98] (Fig. 2), which is usually required

for translation initiation in its unphosphorylated state.

Phosphorylation of eIF2a results in decreased produc-

tion of the ternary complex composed of eIF2-GTP-

Met-tRNAi
Met (Fig. 2), which must bind to the 40S

small ribosomal subunit to initiate mRNA scanning

and start codon selection. As a result of the decreased

availability of eIFs and ternary complexes, a further

round of translation cannot be initiated [83]. Other

chemicals (e.g. hippuristanol, pateamine A) initiate SG

assembly independently of eIF2a. They interfere with

translation initiation by blocking eIF4A helicase,

which is required for the ribosome recruitment phase

of translation initiation. When the eIF4A helicase is

impaired, translation initiation is stalled and SGs are

formed in an eIF2a-independent manner [109–113].
Both the eIF2a-dependent and the eIF2a-independent
pathways prevent translation initiation and, thus,

actively-translating ribosomes finish their round and

then run-off from the transcript. Nevertheless, the

so-called 48S pre-initiation complex, consisting of one

40S small ribosomal subunit, several eIFs and PABP-1,

remains bound to the 5′ UTR of the mRNA [83]

(Fig. 2). Although the next step (SG nucleation) is not

yet fully understood, it has been suggested that aggre-

gation-prone RNA-binding proteins, such as G3BP,

TIA-1, fragile X mental retardation protein (FMRP)

and tristetraprolin [83], associate with mRNPs and

promote their aggregation (Fig. 2). After this primary

aggregation step, protein–protein interactions and

especially mRNA-bound PABP-1 cross-link individual

aggregated mRNPs to initiate clustering into micro-

scopically visible SGs [83] (Fig. 2). However, it should

be noted that SGs do not have all the properties of

aggregates typically associated with neurodegenerative

diseases because their formation is fully reversible

upon recovery from stress and they do not contain the

insoluble, fibrous b-sheet-containing aggregates typi-

cally found in most neurodegenerative disorders.
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Besides eIF2a phosphorylation, other post-transla-

tional modifications play an important role in regulat-

ing SG assembly or the recruitment of RNA-binding

proteins to SGs. O-linked N-acetylglucosamine (O-Glc-

NAc)-modified proteins accumulate in SGs and the

depletion of key enzymes of the glucose to GlcNAc

conversion abolishes SG formation, suggesting that

O-GlcNAc modifications are important for proper SG

formation [114]. Possible functional explanations are

that these sugars act as molecular glue in the aggrega-

tion process of untranslated mRNPs or that O-Glc-

NAc modifications promote translational repression

via interference with ribosomal subunits [115]. Another

post-translational modification linked to SGs is

eIF2�	 PeIF2�	
independent

P

Stress

PKR
 PERK
   HRI
     GCN

Hippuristanol
pateamine A

Newly synthesized protein

Ribosome

SG protein

Polysome 48S pre-initiation 
complex

mRNP
oligomers

Stress granule

Recovery 

SG nucleation

SG assembly 

Fig. 2. SG life cycle. Under physiological conditions, several ribosomes that translate mRNA into protein are bound to an mRNA molecule,

forming a polysome. Upon cellular stress, elongating ribosomes run-off the transcript as a result of the reduced availability of eIFs, leaving

behind a circularized mRNP (48S pre-initiation complex). SG nucleation is initiated by the recruitment of SG-associated proteins, such as TIA-

1, G3BP and tristetraprolin (blue), which triggers the aggregation of mRNPs. Subsequently, protein–protein interactions and cross-linking via

PABP-1, as well as O-glycosylation of the small ribosomal subunit, facilitate the assembly of the aggregated mRNPs into SGs. During

recovery from stress, SG proteins dissociate from the SG, allowing ribosomes to bind and re-form a translating polysome.
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methylation of arginine residues by peptidylarginine

methyltransferases. The RNA-binding proteins FMRP,

CIRP and FUS can be methylated in their RGG

repeat motifs and localize to SGs in the methylated

state [116–119]. Global inhibition of methylation

decreases the recruitment of these proteins into SGs,

either by altering the protein’s subcellular localization

and therefore its availability for SGs [118,119], or pos-

sibly by changing its RNA-binding affinity or so far

unknown mechanisms.

When sublethal stress has passed, SGs are rapidly

disassembled and polysomes are re-formed [98] (Fig. 2).

Because 48S pre-initiation complexes are preserved in

SGs in an assembled state, translation can be rapidly

reactivated upon stress recovery. The re-formation of

polysomes from SGs requires chaperones and can be

promoted by the overexpression of staufen [120] or heat

shock protein 70 [121]. Moreover, this step is regulated

by the dual specificity tyrosine-phosphorylation-regu-

lated kinase 3 (DYRK3), which cycles between SGs

and the cytosol and regulates SG assembly/disassembly

[122]. When DYRK3 kinase activity is inhibited,

DYRK3 remains associated with SGs and prevents

their dissolution and the release of sequestered

mTORC1. When stress signals are gone, the kinase

activity of DYRK3 is required for disassembly of SGs

and reactivation of mTORC1 signalling. These recent

findings revealed an interesting mechanism of how a

kinase couples SG assembly/disassembly to transla-

tional control via mTORC1 signalling and may have

implications for neurodegenerative diseases. Addition-

ally, the drugs cycloheximide and emetine were shown

to actively dissolve pre-formed SGs [123,124]. Both

chemicals freeze ribosomes on translating mRNA,

thereby inhibiting ribosome run-off and SG formation.

Because SGs and polysomes are in dynamic equilib-

rium, this leads to the disassembly of pre-formed SGs.

Stressors that initiate SG formation in vivo

SGs were not only observed in cultured cells after vari-

ous experimental stress conditions, but also in embry-

onic muscles of Drosophila after hypoxia [125] and in

the brains of rats and mice after experimentally-

induced brain injury. Mechanical injury in the hippo-

campus of rats causes a shift of FMRP from poly-

somes to SGs, supporting the idea that SGs form after

brain injury [126]. Moreover, sciatic axotomy in mice

induces the redistribution of TDP-43 to the cytosol,

where it co-localizes with TIA-1 [127]. Additionally,

global brain ischaemia leads to rapid eIF2a phosphor-

ylation, SG formation and translational inhibition in

hippocampal CA3 neurones [128,129]. Forty-eight

hours later, translation is completely restored and CA3

neurones are protected from cell death [129]. By con-

trast, hippocampal CA1 neurones show persistent SGs

and irreversible translational arrest, which is correlated

with the increased cell death of CA1 pyramidal neuro-

nes [128,129]. At later time-points, some SGs co-local-

ize with ubiquitin [130], suggesting that they might

give rise to the ubiquitin-positive protein aggregates

that are found in many neurodegenerative diseases.

Interestingly, oxidative stress, damage to the vascula-

ture, mechanical head injury and chronic viral infections

were all reported to be risk factors for motor neurone

disease and dementia [131–137]. Thus, it is possible that
these physiological stressors may trigger the sequestra-

tion of RNA-binding proteins (e.g. TDP-43 and FUS)

into SGs and thus contribute to neurodegeneration.

SGs in neurodegeneration

In the past few years, dysfunction in RNA metabolism

has been recognized as a common theme in several

neurodegenerative diseases [6,7,138]. Neurones appear

to be especially vulnerable to disturbances in RNA

processing and transport, possibly as a result of their

long processes, which requires spatial and temporal

separation of translation [41,139]. It is conspicuous

that several proteins associated with neurodegenerative

diseases are RNA-binding proteins and are recruited

into SGs (Table 1). The best studied examples are

TDP-43 and FUS. Other examples are the ‘cousins’ of

FUS, Ewing sarcoma protein (EWS) and TATA-bind-

ing protein-associated factor 15 (TAF15), which are

genetically linked to ALS and are co-deposited with

FUS in the pathological inclusions in FTLD-FUS

patients. Moreover, mutations in the RNA-binding

proteins ANG and ataxin-2 (ATXN2) cause ALS, and

mutations in the protein SMN lead to ALS or spinal

muscular atrophy (SMA). Interestingly, all of these

proteins have been found in SGs and/or regulate SG

assembly (Table 1). Moreover, SG marker proteins

have been identified as components of pathological

TDP-43 and FUS inclusions and other proteins

involved in different neurodegenerative disorders

(Table 2). This suggests that SGs play an important

role in neurodegeneration, either as precursors of the

pathological inclusions or by the depletion of essential

transcripts or RNA-binding proteins, or by a combina-

tion of these mechanisms.

TDP-43: an important player in SG formation?

As already noted above, TDP-43 is recruited to SGs in

cell lines and primary neurones exposed to different
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experimental stressors [10,12,44,140–144]. Nuclear

wild-type TDP-43 is found in SGs only to a minor

extent, whereas cytosolic TDP-43 mutants with a

defective NLS are efficiently recruited to SGs upon cel-

lular stress [10,12]. Thus, not unexpectedly, TDP-43

needs to be present in the cytosol before being

recruited to SGs. Whether TDP-43 can nucleate SGs

and how ALS-linked TARDBP mutations influence

SGs has been intensely investigated over the past few

years; however, no clear picture has emerged so far.

Some studies have reported that TDP-43 overexpres-

sion itself is sufficient to induce SG formation

[10,44,51,141,145–147], which would put TDP-43

together with G3BP and TIA-1/TIAR in the group of

SG-nucleating proteins. However, other studies have

shown that a low level expression of TDP-43 per se

does not induce SGs, although additional stress is

needed for SG formation and recruitment of TDP-43

into SGs [12,140–143]. Thus, experiments with TDP-43

overexpression should be interpreted with caution

because it is possible that SG formation in these stud-

ies is induced not by the protein itself, but rather by

the accompanying transfection stress.

It is still a matter of controversy as to whether small

interfering RNA (siRNA)-mediated silencing of TDP-

43 affects SGs. One group reported that siRNA-medi-

ated depletion of TDP-43 decelerates initial SG nucle-

ation via TIA-1 and hinders the secondary aggregation

of SGs upstream of G3BP [142,148]. However, other

groups have observed no change in SG formation

upon TDP-43 knockdown [10,140]. Moreover, it is still

a matter of debate if and how ALS-associated TARDBP

mutations affect SG formation. Two groups found

that the G348C and R361S mutations lead to fewer

SGs [141,142], whereas another group reported more

SGs in cells expressing different TARDBP mutations

(G294A, A315T, Q331K, Q333R) [10]. By contrast, a

further study found no differences in SG recruitment

of mutant TDP-43 (A315T, M337V or G348C) com-

pared to wild-type TDP-43 [12]. However, the region

in which these mutations are clustered (Fig. 1) appears

to be crucial for SG recruitment because the deletion

of the C-terminal glycine-rich domain abolishes the

association of TDP-43 with SGs [12,140,141]. Besides

the C-terminal region, the N-terminal domain compris-

ing the major RNA-binding domain (RRM1) (Fig. 1)

is also necessary for SG incorporation of TDP-43

because C-terminal fragments (CTFs) of TDP-43 fail

to show SG association [12]. Thus, only full-length

TDP-43 (and not N- or CTFs) is efficiently recruited

to SGs, indicating that efficient SG recruitment of

TDP-43 requires both RNA-binding and protein–pro-
tein interactions.

Cytosolic FUS is recruited to SGs

Similar to TDP-43, only cytosolically mislocalized

FUS but not nuclear wild-type FUS is efficiently

sequestered into SGs [9,12,75,81,149]. Thus, although

small amounts of endogenous FUS are occasionally

found in SGs [150,151], nuclear import defects caused

by ALS-associated FUS mutations in the proline-tyro-

sine NLS (Fig. 1) strongly enhance the incorporation

of FUS into SGs. Whether cytosolic FUS induces SGs

or not remains controversial. Transient overexpression

of cytosolic FUS mutants was reported to induce SG

formation [74–76]. However, upon mild overexpression

or stable expression of FUS mutants, additional stress

is needed to induce SGs and to recruit cytosolic FUS

into SGs in cell lines, cultured primary neurones or

zebrafish embryos [9,12,81,149]. Thus, SGs observed

upon the overexpression of mutant FUS (in the

absence of exogenous stress) are most likely induced

by transfection stress and thus should be interpreted

with caution. Furthermore, the finding that siRNA-

mediated depletion of FUS does not affect the number

Table 1. Summary of RNA-binding proteins linked to neurodegenerative diseases and their presence in SGs

Protein Link to disease [Reference] Presence in SGs [Reference]

Angiogenin (ANG) Mutations in ALS [7,186] Yes [185,188]

Ataxin-2 (ATXN2) Poly Q expansions in ALS and SCA2 [11,163] Yes [145,169–172]

Ewing sarcoma protein (EWS) Mutations in ALS, inclusions in FTLD-FUS [154,155,158] Yes [150,151]

Fused in sarcoma (FUS) Mutations and inclusions in ALS/FTLD-FUS, inclusions in polyQ

diseases [4,23–25,222–225]

Yes [9,74–76,81,150]

Survival of motor neurone (SMN) Mutations in ALS and SMA [180] Yes [181]

TATA-binding protein-associated

factor 15 (TAF15)

Mutations in ALS, inclusions in FTLD-FUS [154,155,158] Yes [150,151,159]

TAR DNA binding protein of

43 kDa (TDP-43)

Mutations and inclusions in ALS/FTLD-TDP [18–20,226–229],

inclusions in a subset of Alzheimer’s disease [230–232] and

Huntington′s disease [233]

Yes [10,12,44,127,140–144,146]
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or size of SGs [148,151] demonstrates that FUS is not

required for SG formation.

Similar to TDP-43, RNA-binding appears to be cru-

cial for SG recruitment of FUS because the main

RNA-binding domain of the protein, the C-terminal

RGG2-ZnF-RGG3 domain (Fig. 1), is the most

important domain for SG recruitment [12]. By con-

trast, the prion-like SYGQ-domain (Fig. 1) was shown

to be dispensable for SG incorporation of FUS [12].

Recently, in vitro and yeast studies suggested that the

SYGQ-domain confers aggregation propensity and is

able to form amyloid-like fibres at high concentrations

[149,152], confirming former in silico predictions [45].

Mutation of tyrosine residues in this domain prevents

the recruitment of cytosolic FUS into SGs [149]. This

appears to contradict the finding that the SYGQ-

domain is dispensable for SG recruitment of FUS.

However, the possibility cannot be excluded that tyro-

sine mutations convert the resulting protein into a

dominant negative mutant, which forms aberrant pro-

tein–protein interactions and therefore can no longer

be recruited into SGs.

The FET family proteins EWS and TAF15

EWS and TAF15 are two DNA/RNA-binding pro-

teins that are closely related to FUS. Together, these

three proteins form a protein family of structurally

and functionally related proteins called the FET (FUS,

EWS, TAF15) family [153]. Recently, EWS and

TAF15 have been implicated in ALS/FTLD because

they were found to accumulate together with FUS in

pathological protein inclusions in brains of FTLD-

FUS patients [154,155]. Additionally, mutations in

EWS and TAF15 were identified in ALS patients,

although the underlying pathomechanism is still

unclear because the mutations do not alter the protein

NLS [156–158]. Similar to FUS, both proteins are

mainly nuclear, although minor amounts can be incor-

porated into SGs [150,151,159]. Upon inhibition of

transportin-mediated nuclear import, TAF15 accumu-

lates in the cytosol and a substantial fraction is incor-

porated into SGs [154]. As in FUS, the C-terminal

RGG2-ZnF-RGG3 domain of TAF15 was shown to

mediate SG recruitment [160]. Thus, cytosolic TAF15

(and possibly EWS) appears to be recruited to SGs by

the same mechanisms as FUS.

Ataxin-2, SMN and ANG: linked to ALS and

important for SG?

Two genes that encode RNA-binding proteins and are

considered to be risk factors for ALS are ATXN2 and

SMN. Both proteins appear to play an important role in

SG formation. Another protein that is important for SG

assembly is ANG, which is mutated in ALS patients.

Ataxin-2 is involved in several RNA processing

events and directly interacts with polyribosomes

[161,162]. Trinucleotide repeat expansions (> 35 CAG)

in the ATXN2 gene cause a progressive neurodegenera-

tive disease: spinocerebellar ataxia type 2 (SCA2)

[163]. An intermediate length repeat expansion (27–33

Table 2. SG marker proteins in pathological protein aggregates

Disease Deposited protein SG SG marker(s) analyzed Analyzed tissue [Reference]

ALS TDP-43 + TIA-1, staufen Spinal cord (sALS) [8]

TDP-43 � TIAR, HuR Spinal cord (sALS) [140]

TDP-43 + TIA-1 Spinal cord (sALS) [10]

TDP-43a + Ataxin-2 Spinal cord (sALS) [11]

TDP-43 (full-length) + PABP-1 Spinal cord (sALS) [12]

FUSb + PABP-1, eIF4G Spinal cord (fALS-FUS) [9]

FUSb + PABP-1 Spinal cord (fALS-FUS) [199]

SOD-1 + TIA-1, HuR Spinal cord extracts (murine) [189]

FTLD TDP-43 + eIF3 Frontal cortex (FTLD-TDP) [10]

TDP-43 + Ataxin-2 Temporal lobe (FTLD-TDP) [11]

TDP-43 (full-length) + PABP-1 Spinal cord (FTLD-TDP) [12]

TDP-43 (CTF) � PABP-1 Hippocampus (FTLD-TDP) [9,12]

FUSb + TIA-1, PABP-1 Motor cortex and spinal cord (FTLD-FUS) [198]

FUSb + PABP-1, eIF4G Hippocampus and spinal cord (FTLD-FUS) [9]

Tau + TIA-1 Frontal cortex (FTLD-tau) [192]

Alzheimer’s disease Tau + TIA-1 Frontal cortex (Alzheimer’s disease) [192]

SCA2 TDP-43 + Ataxin-2 Brain stem (SCA2) [11]

Huntington′s disease Htt (poly Q) + TIA-1 HEK293 Tet-off cells [190]

a Analyzed cases were TDP-proteinopathies; therefore, the deposited protein is presumed to be TDP-43. b Analyzed cases were FUS-pro-

teinopathies; therefore, the deposited protein is presumed to be FUS.
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CAG) in ATXN2 was found to be a risk factor for

sporadic ALS with TDP-43 inclusions [11], a finding

that was subsequently reproduced in several other

studies [164–167]. In cells overexpressing TDP-43,

ataxin-2 forms large cytosolic inclusions and interacts

with TDP-43 in an RNA-dependent manner [11]. In

ALS-TDP patients, ataxin-2 is found in cytoplasmic

inclusions in approximately 25% of spinal cord neuro-

nes. Recently, ataxin-2 was also found to co-localize

with FUS in cytoplasmic inclusions of ALS-FUS

patients [168]. Upon oxidative stress or heat shock,

endogenous Ataxin-2 accumulates in SGs, whereas

depletion of ataxin-2 strongly reduces the number of

SG-positive cells upon arsenite treatment [145,169–
172], indicating that ataxin-2 may be necessary for

proper SG formation. Whether ataxin-2 inclusions in

ALS-TDP and ALS-FUS patients contain SG markers

and whether mutant ataxin-2 affects SG formation

and the recruitment of TDP-43 or FUS to SGs has

not yet been reported.

SMN has important functions in RNA metabolism

(e.g. assembly of pre-mRNA splicing complexes and

axonal transport of mRNAs) [173]. Initially, muta-

tions in the SMN gene were identified in patients suf-

fering from the motor neurone disorder SMA.

Disease-causing mutations are loss-of-function muta-

tions resulting in decreased SMN mRNA and protein

levels [174–177]. Remarkably, SMN levels correlate

with disease severity (i.e. SMN levels are dramatically

reduced in severe SMA, although they are decreased

only modestly in mild forms of the disease) [176].

Additionally, reduced SMN levels were identified as a

risk factor for ALS [178,179]. Upon cellular stress,

endogenous SMN is recruited to SGs and, interest-

ingly, fibroblasts from SMA patients or SMN-depleted

cells show reduced SG formation [180,181]. This sug-

gests that defects in SG formation might contribute to

SMA pathogenesis.

ANG is a ribonuclease with angiogenic and cyto-

protective functions [182]. Stress initiates the secretion

of ANG by motor neurones to adjacent astrocytes,

which take up ANG by clathrin-mediated endocytosis

[183]. ANG can cleave tRNAs [184], thus inducing

eIF2a-phosphorylation and SG assembly [185]. It has

been proposed that this might change the protein pro-

file in astrocytes, which in turn could secrete protec-

tive molecules and/or prevent the astrocytic

production of toxic factors [182]. Mutations in ANG

were identified in ALS patients [7,186] and found to

disrupt its RNase activity and subcellular localization

[186,187]. Expression of an ALS-associated ANG

mutant (K40I) with reduced RNAse A activity results

in slightly reduced SG formation upon exposure of

cells to oxidative stress [188]. Whether this is indeed a

pathomechanism of ANG mutations remains to be

determined.

Non-RNA-binding proteins related to

neurodegenerative diseases and SGs

Besides RNA-binding proteins, some non-RNA-bind-

ing proteins related to neurodegenerative diseases

appear to have a connection to SGs. One example is

mutant superoxide dismutase 1 (SOD1), which inter-

acts with SG-associated proteins and co-localizes with

SG markers in cell culture and murine spinal cord

extracts [189] (Table 2). Another example is mutant

huntingtin (Htt) with pathological poly Q expansion,

which co-localizes with TIA-1 in different cell lines

[190] (Table 2). Moreover, cells expressing an aggre-

some-forming cytosolic variant of the prion protein

are deficient in SG formation [191]. Finally, the micro-

tubule-associated protein tau was shown to facilitate

SG formation when co-expressed with TIA-1 in cul-

tured cells, and TIA-1 overexpression enhances the

formation of tau aggregates [192]. Based on these find-

ings, it has been proposed that aggregating proteins,

such as tau, may stimulate SG formation and cross-

seeding of SG aggregation around the primary protein

aggregates [13].

SG markers co-localize with pathological protein

inclusions in neurodegenerative diseases

Pathological inclusions in several neurodegenerative

diseases were reported to co-localize with SG marker

proteins (Table 2), suggesting that these inclusions

might originate from SGs. First, TDP-43 inclusions in

ALS patients were found to co-localize with various

SG markers (e.g. TIA-1, PABP-1 and staufen) [8,10–
12], although one study reported a lack of TIAR and

HuR co-labelling of TDP-43 inclusions [140] (Table 2).

Possible explanations for these conflicting results could

be variations in SG composition and/or the use of dif-

ferent SG marker antibodies. Similar discrepancies

exist for FTLD patients because two studies confirmed

the presence of SG marker proteins in FTLD-TDP

patients [10,11], whereas another study did not detect

SG markers in hippocampal TDP-43 inclusions [9].

These discrepancies might be explained by the finding

that different TDP-43 species are present in different

brain regions [12,193,194]. Although cortical and hip-

pocampal inclusions are enriched for TDP-43 CTFs

and are not co-labelled with PABP-1, inclusions in the

spinal cord contain full-length TDP-43 and are posi-

tive for SG markers [12]. This suggests that SG marker
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co-labelling depends on the presence of full-length

TDP-43, which is much more abundant in spinal cord

inclusions than in cortical/hippocampal TDP-43 inclu-

sions. Consistently, the cell culture experiments

described above show that CTFs of TDP-43 are not

incorporated into SGs, probably because they lack the

protein’s main RNA-binding motif [12]. This observa-

tion might be explained by the fact that TDP-43 CTFs

are particularly aggregation prone [195–197] and might

start to aggregate and form inclusions without the con-

tribution of SGs. This could indicate that CTFs of

TDP-43 cause neurotoxicity independently of SGs and

challenges the concept that SGs play a pathogenic role

in neurodegeneration.

In addition to TDP-43 proteinopathies, all FUS-

opathies examined show robust co-localization of sev-

eral SG markers (TIA-1, PABP-1 or eIF4G) with

pathological FUS inclusions [9,198,199] (Table 2).

Moreover, the co-localization of SG markers with pro-

tein aggregates is not only limited to ALS and FTLD,

but also has been observed for tau inclusions in Alz-

heimer’s disease and FTLD-tau patients [13,192] and

TDP-43-positive inclusions of SCA2 cases [11]

(Table 2). These findings strongly suggest that SGs are

involved in the formation of pathological protein

inclusions in different neurodegenerative diseases. Pos-

sible scenarios for how SGs may be connected to path-

ological protein inclusions are discussed below.

Possible pathomechanims involving
SGs

Are SGs precursors of pathological protein

inclusions in neurodegenerative diseases?

A key question that remains to be answered is whether

pathological protein inclusions originate from SGs

(Fig. 3, left), from protein aggregates that fuse with

SGs (Fig. 3, middle) or from protein aggregates that

secondarily sequester SG marker proteins (Fig. 3,

right). The first scenario appears more likely for RNA-

binding proteins, such as TDP-43 and FUS, whereas

the second and third scenarios appear more plausible

for non-RNA-binding proteins, such as tau, SOD1

and Htt.

In the first scenario, cellular stress causes sequestra-

tion of TDP-43 or FUS into SGs together with its

mRNA targets (Fig. 3, left). Several mutually non-

exclusive mechanisms may then contribute to inclusion

formation. First, high local concentrations of mRNA-

bound TDP-43 or FUS may be reached in SGs.

Interestingly, high concentrations of FUS were

recently shown to initiate polymerization into amyloid-

like fibres in vitro [149]. Second, the aggregation of

TDP-43 or FUS within SGs might be assisted by the

presence of RNA, which was shown to stimulate

aggregation of purified tau and PrP [200,201]. Third,

SG dissolution might be impaired (e.g. by chronic inhi-

bition of DYRK3 kinase activity) [122]. Additionally,

reduced heat shock protein 70 levels [121,202], cellular

acidosis [104] or chronic stress [143] may impair SG

disassembly. All of these mechanisms could convert

reversible SGs into permanent structures and facilitate

seeding of TDP-43 or FUS aggregation (Fig. 3, left)

[13,203].

In the second scenario, the formation of pathologi-

cal TDP-43 or FUS inclusions depends on both aggre-

gation and SG formation. (Fig. 3, middle). According

to this scenario, TDP-43 or FUS aggregate because

they are intrinsically aggregation-prone proteins that

rapidly aggregate in vitro, yeast and cultured cells

[53,149,152,204–206]. TARDBP mutations might even

increase the aggregation propensity of TDP-43 [10,53–
55,205] and the phosphorylation status may further-

more influence the aggregation of TDP-43 [207]. In the

case of FUS, defects in arginine methylation might

enhance its aggregation, as previously described for

other proteins [208–210]. Environmental stress or stress

provoked by TDP-43 or FUS aggregates then may eli-

cit SGs, which subsequently may be sequestered by

TDP-43 or FUS aggregates (Fig. 3, middle). Such a

model has recently been proposed by Wolozin [13],

who suggests that protein aggregates stimulate SG for-

mation and serve as a nidus for further aggregation of

SGs by binding to other RNA-binding proteins or

RNA in SGs. Whether such a cross-seeding mecha-

nism between aggregation-prone proteins and SG com-

ponents can indeed occur remains to be tested in

cellular and animal models.

In the third model, pathological inclusion formation

occurs completely independently of SGs (Fig. 3, right).

As described in the previous model, TDP-43 or FUS

may form protein aggregates as a result of mutations

or post-translational modifications (PTMs). Protein–
protein interactions between the prion-like domain of

TDP-43 or FUS and the prion-like domain of other

SG-associated proteins, such as TIA-1 [10,121,149],

may secondarily incorporate SG marker proteins into

pre-formed TDP-43 or FUS aggregates (Fig. 3, right).

In this scenario, the formation of pathological protein

inclusions only depends on protein aggregation and

further protein–protein interactions, although it is

independent of stress and SG formation. To distin-

guish between the different models, it may be essential

to identify the entire set of mRNAs and SG proteins

in pathological protein inclusions.

4358 FEBS Journal 280 (2013) 4348–4370 ª 2013 The Authors Journal compilation ª 2013 FEBS

Stress granules in neurodegeneration E. Bentmann et al.

215



Because pathological TDP-43/FUS inclusions also

contain ubiquitin and p62/sequestosome 1 [211–213]
(Fig. 3, bottom), defects in protein degradation may

furthermore contribute to the formation of

pathological protein inclusions. TDP-43 or FUS aggre-

gates might become polyubiquitinated and thus tagged

for degradation. Subsequently, p62/sequestosome 1

may bind the ubiquitin chains and target these protein

aggregates for autophagic degradation [214,215]. How-

ever, this pathway may be functionally impaired or

overwhelmed [216], leading to persistent ubiquitin and

p62-positive inclusions (Fig. 3, bottom).
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Fig. 3. Alternative models for the formation of SG marker-positive pathological inclusions. The first model (left) proposes that SGs are the

origin of pathological TDP-43/FUS inclusions. Upon cellular stress, TDP-43/FUS are sequestered into SGs together with their mRNA targets.

This is a reversible process, although the high local concentration of these aggregation-prone proteins within SGs and/or the presence of

RNA as a templating agent might trigger the aggregation of TDP-43/FUS. Additionally, defects in SG disassembly (e.g. caused by inhibition

of DYRK3 or Hsp70 or by chronic stress) could contribute to the conversion of SGs into pathological inclusions. In the alternative second

model (middle), aggregation of FUS/TDP-43 or other aggregation-prone proteins, such as tau, SOD1 and poly Q Htt, is triggered by

mutations or post-translational modifications (PTMs). These aggregates and/or external stress stimuli elicit the formation of SGs, which are

then sequestered by pre-formed FUS/TDP-43 aggregates via protein–protein or protein–RNA interactions. In the third model (right),

inclusions form completely independently of stress and SGs. Mutations and/or PTMs that enhance the intrinsic aggregation propensity of

FUS, TDP-43 and other aggregation-prone proteins result in misfolded protein aggregates. Subsequently, SG marker proteins, such as TIA-1

or PABP-1, may be recruited into these aggregates together with their bound mRNA. The presence of ubiquitin and p62 in these SG

marker-positive pathological inclusions (bottom) may indicate that a defect in the clearance of these aggregates by the protein degradation

machinery contributes to inclusion formation.
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Are SGs protective or detrimental?

As explained earlier in this minireview, SG formation

is generally considered to be a protective mechanism

because SGs enable the preferential synthesis of stress-

protective proteins and sequester pro-apoptotic pro-

teins. For example, the chemical inhibition of SG for-

mation after cold shock results in increased cell death

[107]. Moreover, neurones that mount an efficient

stress response (i.e. transient formation of SGs fol-

lowed by a complete recovery of translation) are pro-

tected from ischaemia-induced cell death [128,129],

further supporting the notion that SGs have an impor-

tant neuroprotective function. This also could explain

why mutations in genes that play a role in SG forma-

tion, such as ATXN2, SMN and ANG, are associated

with neurodegenerative diseases (Table 1).

Even though SGs may initially be cytoprotective,

they may become neurotoxic when the SG pathway is

overactive [13] or when SGs fail to dissolve and trans-

lational repression persists for too long. This appears

to be the case in hippocampal CA1 neurones, which

show an irreversible translational arrest and increased

cell death after global brain ischaemia [128,129].

Another example is prion replication, in which persis-

tent eIF2a-mediated translational repression causes

synaptic loss and neurotoxicity in mice [217]. Overex-

pression of GADD34, a eIF2a-phosphatase, reduces

the levels of phosphorylated eIF2a and rescues neuro-

nal loss and survival. Although SG formation was not

examined in that study, it is possible that SGs induced

by phosphorylated eIF2a may contribute to neurode-

generation in this model.

Nevertheless, because SGs have important stress-

protective functions, pharmacological inhibition of SG

formation, recently proposed as a therapeutic

approach [13], might not be a viable strategy for thera-

peutic intervention because severe side effects are to be

expected.

How may aberrant SGs cause toxicity?

The permanent trapping of TDP-43, FUS or other

aggregation-prone proteins together with SG proteins

(Fig. 3) may cause toxicity through a variety of loss-

of-function or gain-of-function mechanisms. TDP-43

and FUS both have a multitude of different functions,

such as regulating pre-mRNA splicing, transcription

and mRNA transport into dendritic spines [5,69,218],

and so it would not be unexpected if trapping of

TDP-43 or FUS in persistent SGs or mature inclusions

resulted in a detrimental loss-of-function. Moreover,

the other RNA-binding proteins that are recruited into

SGs and are found in pathological inclusions in neuro-

degenerative diseases, such as EWS, TAF15 and

ATXN2 (Tables 1 and 2), may also not be able to ful-

fill their physiological function. Finally, permanent

trapping of SG marker proteins and mRNAs in persis-

tent SGs or inclusions may further contribute to a

toxic loss-of-function. Besides trapping of essential

RNA-binding proteins or SG proteins, sustained trans-

lational arrest may cause a toxic loss-of-function of all

kinds of essential cellular proteins.

Alternatively, or additionally, deposition of TDP-43,

FUS or other aggregation-prone proteins together with

SG proteins in irreversible cytosolic aggregates might

provoke toxicity through gain-of-function mechanisms.

Aggregated TDP-43 or FUS or SG proteins may have

altered protein–protein or protein–RNA interactions

(e.g. they may lose or gain interaction partners or dis-

play altered binding kinetics). Furthermore, permanent

trapping of TDP-43 in SGs may initiate a toxic feed-for-

ward mechanism that enhances TDP-43 expression

because TDP-43 autoregulates its own levels [34,219].

Concluding remarks

Over the past 6 years, we have rapidly increased our

knowledge about the key genes and pathological pro-

teins in two fatal neurodegenerative diseases: FTLD

and ALS. Nevertheless, cellular and animal models

that mimic the human pathology are still missing.

Interestingly, many stressors that can elicit SG forma-

tion in cultured cells or animal models (e.g. oxidative

stress, mitochondrial dysfunction, viral infection, brain

injury and damage to the vasculature) have been impli-

cated in neurodegeneration [131,132,137,220,221].

Given the evidence that SGs might play an important

role in ALS/FTLD pathogenesis, it will be essential to

incorporate these stressors (or even a combination of

different stressors) into our current cellular and animal

models. This may more faithfully recapitulate the

human neuropathology and the neurodegenerative

process. Long-term in vivo imaging in such models

may eventually allow us to visualize the conversion of

SGs into pathological protein aggregates. Additionally,

it will be important to gain a deeper understanding of

the basic cell biology of SGs. Identifying the factors

and mechanisms that are involved in the dissolution of

SGs or their conversion into permanent structures will

be the next big enigma that requires a solution.
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