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Abstract

In this thesis, we investigate different aspects of gravity as an effective field theory.

Building on the arguments of self-completeness of Einstein gravity, we argue that any

sensible theory, which does not propagate negative-norm states and reduces to General

Relativity in the low energy limit is self-complete. Due to black hole formation in

high energy scattering experiments, distances smaller than the Planck scale are shielded

from any accessibility. Degrees of freedom with masses larger than the Planck mass are

mapped to large classical black holes which are described by the already existing infrared

theory. Since high energy (UV) modifications of gravity which are ghost-free can only

produce stronger gravitational interactions than Einstein gravity, the black hole shielding

is even more efficient in such theories. In this light, we argue that conventional attempts

of a Wilsonian UV completion are severely constrained. Furthermore, we investigate the

quantum picture for black holes which emerges in the low energy description put forward

by Dvali and Gomez in which black holes are described as Bose-Einstein condensates

of many weakly coupled gravitons. Specifically, we investigate a non-relativistic toy

model which mimics certain aspects of the graviton condensate picture. This toy model

describes the collapse of a condensate of attractive bosons which emits particles due to

incoherent scattering. We show that it is possible that the evolution of the condensate

follows the critical point which is accompanied by the appearance of a light mode.

Another aspect of gravitational interactions concerns the question whether quantum

gravity breaks global symmetries. Arguments relying on the no hair theorem and

wormhole solutions suggest that global symmetries can be violated. In this thesis, we

parametrize such effects in terms of an effective field theory description of three-form

fields. We investigate the possible implications for the axion solution of the strong CP

problem. Since the axion is the (pseudo-) Goldstone boson of a broken U(1) global

symmetry, quantum gravitational global symmetry violations could reinstate the CP

problem even in the presence of the axion. We show that in the presence of massless

neutrinos possible conflicts with the axion solution can be resolved. Demanding a viable

axion solution of the strong CP problem, we derive new bounds on neutrino masses. In

addition, we investigate the QCD vacuum energy screening mechanism for light quarks.

It is well-known that the θ-dependence of the QCD vacuum vanishes linearly with the

lightest quark mass. By an analogy with Schwinger pair creation in a strong electric field,
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Abstract vi

we consider vacuum screening by η′ bubble nucleation. We find that using the standard

instanton approximation for the η′ potential, the linear dependence is not recovered. We

take this as an indication for the non-analyticity of the QCD vacuum energy proposed

by Witten.

In the last part of this thesis, we are concerned with gravitational effects on cosmological

scales. The recent Planck data indicate that one of the best motivated dark matter

candidates, the axion, is in conflict with bounds on isocurvature perturbations. We

show that the isocurvature fluctuations can be efficiently suppressed when introducing a

non-minimal kinetic coupling for the axion field during inflation. Thus, the axion can be

a viable dark matter candidate for a large range of parameters. We show that the same

coupling allows for the Standard Model Higgs to drive inflation and the dark matter

density to be produced by the axion.

Gravitational effects on large scales would also be sensitive to a possible mass for the

graviton. However, such a modification has been known to be plagued by inconsistencies.

In light of the recent proposal of a ghost-free theory of massive gravity by de Rham,

Gabadadze and Tolley, we investigate the cubic order interactions of this theory in terms

of helicities of a massive spin-2 particle. We find that it is not possible to truncate the

action at cubic order without introducing higher derivative terms strongly coupled at

scale Λ5. Additionally, we consider possible cubic interaction terms for a massive spin-2

particle on a Minkowski background. We derive the unique interaction terms which are

free of higher derivatives.



Zusammenfassung

In dieser Dissertation untersuchen wir verschiedene Aspekte der als effektive Feldthe-

orie aufgefassten Quantengravitation. Basierend auf Argumenten der Selbstkomplet-

tierung von Einstein-Gravitation zeigen wir, dass jede Theorie, die keine propagierenden

Zustände mit negativer Norm aufweist und die sich zudem auf Einstein-Gravitation im

Niederenergie-Limes reduziert, selbstkomplett ist. Durch die Formierung von schwarzen

Löchern in Streuexperimenten bei hohen Energien, sind Distanzen, die kleiner als die

Planck Skala sind, von jedwedem Zugriff abgeschirmt. Freiheitsgrade mit einer Masse,

die größer als die Planck-Masse ist, werden hierbei auf klassische schwarze Löcher abge-

bildet, die wiederum durch die schon existierende Infrarot-Theorie beschrieben sind. In

Modifikationen von Geist-freier Gravitation bei hohen Energien ist die Abschirmung

durch schwarze Löcher sogar noch effizienter, da solche, mit Einstein-Gravitation ver-

glichen, stärkere gravitative Wechselwirkungen erzeugen. In Angesicht dessen sind kon-

ventionelle Versuche der UV Komplettierung im Wilsonschen Sinne äußerst eingeschränkt.

Weiterhin betrachten wir das von Dvali und Gomez vorgeschlagene Quantenbild schwarzer

Löcher gemäß dem schwarze Löcher als ein Bose-Einstein Kondensat von vielen schwach

gekoppelten Gravitonen aufgefasst werden können. Im Speziellen untersuchen wir ein

nicht-relativistisches Analogon, welches gewisse Aspekte dieses Graviton- Kondensat-

Bildes widerspiegelt. In diesem Beispielsystem kollabiert ein Kondensat attraktiver

Bosonen unter durch inkohärente Streuprozesse verursachter Aussendung von Teilchen.

Wir zeigen, dass sich das Kondensat während seiner Zeitentwicklung am kritischen Punkt

aufhalten kann mit dem hiermit verbundenen Auftreten einer leichten Mode.

Ein weiterer Aspekt der gravitativen Wechselwirkung betrifft die Frage, in wie weit

Quantengravitation globale Symmetrien bricht. Betrachtungen, die auf dem No-Hair

Theorem wie auch Wurmloch-Lösungen beruhen, legen nahe, dass globale Symmetrien

verletzt werden können. In der vorliegenden Arbeit parametrisieren wir solche Effekte

in einer effektiven Feldtheorie von Dreiform-Feldern und untersuchen die möglichen Im-

plikationen für die Axionlösung des starken CP-Problems. Da das Axion ein (Pseudo)

Goldstone-Boson einer gebrochenen, globalen U(1) Symmetrie ist, könnten solche, auf

der Quantengravitation beruhenden, Symmetriebrechungen das CP Problem wieder

einführen, trotz der Anwesenheit eines Axions. Wir zeigen, dass in der Gegenwart eines

massenlosen Neutrinos die möglichen Konflikte mit der Axionlösung aufgelöst werden
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können. Aus der Voraussetzung, dass eine valide Axionlösung des CP-Problems ex-

istiert, leiten wir neue Grenzen für die Neutrinomasse her. Weiterhin untersuchen wir

den Abschirmungsmechanismus, der durch die Vakuumenergie für leichte Quarks in der

QCD verursacht wird. Es ist bekannt, dass die θ-Abhängigkeit des QCD-Vakuums mit

der leichtesten Quarkmasse linear verschwindet. Analog zur Schwinger-Paarerzeugung

in einem starken elektrischen Feld betrachten wir die Vakuumsabschirmung durch die

Blasenbildung von η′-Vakua. Unter Verwendung des Potentials für η′, das durch Standard-

Instanton-Rechnungen gegeben ist, können wir die lineare Abhängigkeit nicht repro-

duzieren. Wir betrachten dies als Indikation für die von Witten vorgeschlagene Nicht-

Analytizität der QCD-Vakuumenergie.

Im letzten Teil der Arbeit betrachten wir Gravitationseffekte auf kosmologischen Skalen.

Neuste Daten des Planck Satelliten weisen darauf hin, dass einer der vielversprechensten

Kandidaten für die Dunkle Materie, das Axion, in Konflikt ist mit durch adiabatischen

Fluktuationen vorgegebenen Grenzen. Wir zeigen, dass diese Fluktuationen effizient

unterdrückt werden können, wenn für das Axionenfeld während der Inflation ein nicht-

minimaler kinetischer Kopplungsterm eingeführt wird. Auf Grundlage dessen kann das

Axion als möglicher Kandidat für dunkle Materie erhalten bleiben. Weiterhin zeigen

wir, dass ein solcher kinetischer Term dem Higgs-Teilchen des Standardmodells erlaubt

die Inflation anzutreiben und dass die Dichte der dunklen Materie tatsächlich vom Axion

erzeugt werden kann.

Gravitationseffekte auf großen Skalen sind zudem potentiell von einer möglich endlichen

Masse des Gravitons abhängig. Jedoch ist bekannt, dass solche Modifikationen der Grav-

itation zu Inkonsistenzen führen können. Unter Betrachtung des kürzlich von de Rham,

Gabadadze and Tolley vorgeschlagenen Szenarios einer Geist-freien Theorie der massiven

Gravitation untersuchen wir die Wechselwirkungen kubischer Ordnung in dieser Theo-

rie, ausgedrückt in den Helizitäten eines massiven Spin-2 Teilchens. Wir finden, dass

es nicht möglich ist, die entsprechende Wirkung in kubischer Ordnung zu trunkieren,

ohne dass höhere Ableitungsterme eingeführt werden müssen, die auf der Skala Λ5 stark

gekoppelt sind. Im Weiteren betrachten wir mögliche kubische Wechselwirkungsterme

für massive Spin-2 Teilchen auf einem Minkowski-Hintergrund. Wir leiten die eindeutig

bestimmten Wechselwirkungen her, welche, ausgedrückt in Helizitäten, frei von höheren

Ableitungen sind.
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Chapter 1

Introduction

After almost 100 years of its discovery, General Relativity is still a theory of many

puzzles. Whereas all other known fundamental interactions, the strong, weak and elec-

trodynamic forces, can be successfully described within the framework of quantum field

theory, gravity has so far eluded a formulation as a fundamental quantum field theory.

In this respect, conventionally the most outstanding problems have been considered

the problem of ultraviolet (UV) divergences leading to the non-renormalizability of the

theory, and the problem of unitarity violation in high energy scattering amplitudes. Ef-

forts to reconcile gravity with the notion of renormalizability have been numerous and

amongst others led to the development of string theory and supergravity. One of the

most cited problems of non-renormalizability is the inability to make a definite prediction

for measurements. Computing quantum corrections in such non-renormalizable theories

requires the inclusion of an infinite series of counter-terms all added with a parameter

whose value has to be determined from experiment. It was therefore long conventional

believe that such theories cannot make definite predicitions and should therefore be

disregarded.

From a modern perspective, however, renormalizability is no longer considered to be

the sacred criterion for a theory to prove its predictive power. Experiments can only

measure parameters up to a certain accuracy and up to a certain energy scale. Therefore,

as long as a theory can be organized in such a way that one can quantify the error that

comes with its predictions, it should be considered a viable physical approach. This is

the underlying philosophy of effective field theory (EFT).

In general, the logic of effective field theory is the following. In order to describe physics

at a given scale, one needs to consider degrees of freedom which are propagating and

interacting at the specific scale of interest. For example, in order to describe the weak

beta decay with characteristic energy scales of order 10 MeV, one can consider Fermi’s

famous theory of a four-fermion interaction. This theory is non-renormalizable, but

nevertheless it describes the beta decay to high accuracy. Today, it is well-known that the

underlying fundamental theory is the theory of weak interactions. In this fundamental,

renormalizable theory, the point-like four-fermion interaction is mediated by the W -

boson of mass mW ' 80 GeV and it reproduces Fermi’s point-like interactions when

1
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evaluated at energies much below mW . Such a large separation of scales illustrates the

philosophy of effective field that physics of small scales ∼M−1 decouples and influences

physics at large scales E−1 only through corrections which can be organized in terms of

a power series in E/M .

Starting from a low energy effective field theory, as one moves to higher energy scales

the expansion in terms of E/M breaks down at the point when the energy becomes

comparable to the scale E ∼ M of the underlying, possibly unknown theory. The

physics of small length scales becomes important at this point and one has to find a way

to resolve it. Usually, this is done by intergrating in new, “heavy” degrees of freedom

with masses of order of M , which then become dynamical degrees of freedom. Starting

from Fermi’s theory this would correspond to integrating in the W -boson. This process

of integrating in new degrees of freedom in order to resolve small distances is referred

to as a Wilsonian “UV”-completion.1 It is important to note that in such an effective

low energy description the theory can nevertheless describe quantum processes. For

example, it is perfectly possible and legitimate to compute quantum corrections via loop

diagrams in an effective field theory, as long as one takes into account that physics

beyond a certain energy scale (the cutoff) is already implicitly accounted for in the

definition of the coupling constants of the theory. In turn, such quantum corrections

can be organized in terms of powers of E/M as well.

1.1 Self-Completion of Gravity and Black Hole N-Portrait

Let us come back to gravity. It is well-established that General Relativity describes

the dynamics of the solar system with very high accuracy. Therefore, it is sensible

to assume that it can be treated as an effective field theory at low energies. In this

context, General Relativity can only reliably describe gravitational interactions up to

the Planck scale MP which sets the intrinsic strong coupling scale of gravity. After this

scale, new physics is required to take over. This is the road which had been mainly

taken to find a possible theory of quantum gravity. It is, however, not the only one.

In fact, General Relativity already hints towards the route of escape: the formation

of black holes. Black holes are produced whenever an energy E is compacted within

a region of space that is smaller than the corresponding Schwarzschild radius RS(E).

Thus, the effective field theory of gravity predicts black hole formation in high energy

collisions [1–6]. In this light, it has been suggested that gravity might not need a UV-

completion in the Wilsonian sense [3, 7]. In [7], Dvali and Gomez argued that, in fact,

the only outcome of a scattering experiment with energies E larger than the Planck scale

MP , and impact parameter smaller than LP ≡ M−1
P , is a black hole of mass M = E

and size given by its Schwarzschild radius RS = 2M/M2
P . For energies E � MP ,

this black hole is a well-defined classical object fully described by low energy physics.

Therefore, also the stipulated unitarity violation in trans-Planckian scatterings is avoided

[7]. Furthermore, it is for Heisenberg’s uncertainty principle that in quantum field theory

short distance scales can only be probed by high energy scattering experiments. Thus,

1Notice that in terms of scattering amplitudes which similarly can be organized in a series E/M in
an effective field theory, the breakdown of this expansion is accompanied by a breakdown of unitarity.
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to probe sub-Planckian distance scales becomes impossible as the momentum transfer

needed inevitably leads to black hole formation [7].

Classical field configurations cannot probe distances smaller than the characteristic wave-

length of their constituents which typically sets the size of the configuration. Since black

holes of mass M �MP are such classical objects, they cannot probe physics at distances

smaller than its size RS . One can lower the momentum transfer p of the scattering ex-

periment and, by continuity, one finds that for any scattering experiment with p > MP

a black hole is the unique outcome [7]. Therefore, Einstein gravity (General Relativ-

ity) can be considered self-complete in the UV. This is, however, a different notion of

UV-completeness than in the Wilsonian approach. Instead of having to integrate in new

heavy (M > MP ) degrees of freedom at energies larger than MP , in gravity high-energy

states correspond to classical configurations which can indeed be described by the low

energy physics of the theory. In consequence, this UV-IR mapping abolishes the need of

a UV-completion in the Wilsonian sense [7]. Nonetheless, the effective theory of gravity

is a theory of quantum gravity. It describes the gravitational interactions in terms of

an exchange of gravitons, which are the quanta of the field configuration and can thus

be quantized in a standard effective field theory treatment with the only difference that

there is no need to integrate in new physics at high energies.

In this thesis, we build on the work of [7] and show that the self-completeness of gravity

is expected to hold for any sensible theory which reduces to General Relativity in the low

energy approximation [8]. Our argument is based on the fact that in any modification

of gravity which propagates only positive norm states, the gravitational interaction can

only become stronger compared to General Relativity. We argue that the scale of the

onset of strong coupling M∗ always coincides with the point of black hole formation [8].

Therefore, the black hole formation sets in for momentum transfer p = M∗ even smaller

than MP . Furthermore, the implications arising from the self-completeness due to black

hole formation for conventional (Wilsonian) attempts of UV completion is investigated;

in particular, in the context of the so-called Asymptotic Safety scenario [9, 10]. We find

that there cannot exist any UV degrees of freedom which could induce such a behaviour

as these states should correspond to black holes [8].

Having established that the theory of gravity is indeed self-complete in the UV, the

low energy theory should also provide a quantum picture of black hole physics. Two of

the long-standing puzzles of black holes are the origin of entropy [11–13] and the infor-

mation paradox [14]. In 1972 Bekenstein argued that black holes should carry entropy

in order not to violate the second law of thermodynamics [12]. Following his argu-

ments, the entropy is given by the area of the black hole horizon. On the other hand,

a statistical mechanics interpretation of the entropy in terms of the number of different

micro-states of a black hole seemed elusive until Strominger and Vafa [15] computed the

entropy of five-dimensional extremal black holes in N = 4 supersymmetry by counting

the degeneracy of the corresponding BPS states. It is, however, still unclear how to

find a similar microscopic origin for four-dimensional Schwarzschild black holes. The

information paradox arises in the context of unitarity violation in the process of black

hole evaporation. Hawking showed that due the quantum effects in a black hole space-

time, black holes can emit particles with a spectrum as if they were black bodies with
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a temperature given by their inverse Schwarzschild radius TH ' R−1
S . The information

paradox can be described as the problem of a non-unitary evolution of the process of

black hole formation and its subsequent quantum evaporation [16]. One could envision

to prepare a pure state which one has under full control (information) and which un-

dergoes such an evolution. Since in the semiclassical computation Hawking used the

spectrum of emitted particles is thermal, it is described by a mixed state which reveals

no information about the original state. Hence, such an evolution cannot be unitary.

Since its first appearance, the information paradox has been reformulated in various

ways, see, e.g., [17], but the essential aspect in all these treatises is that the evolution of

black hole formation and subsequent evaporation seems not to be described by a unitary

matrix. However, unitary time-evolution is such a profound principle that it is believed

to be valid, and therefore a quantum theory of gravity better provides a resolution.

Additionally, considering the fact that the information paradox is a result of applying

Hawking’s semi-classical computation to black holes of finite mass and finite life-time, it

seems that indeed a quantum theory for black holes should be able to resolve the issue.

Recently, Dvali and Gomez put forward a microscopic picture of black holes [18–20]

in which black holes are described as Bose-Einstein condensates of N � 1 gravitons

of wavelength of order of the Schwarzschild radius λ = RS . The gravitons are weakly

interacting with strength ∼ 1/(λ2M2
P ) but due to the collective effect of these many

gravitons, the condensate is self-bound. Due to the self-interaction the condensate,

however, is leaky and looses particles. In addition, it was argued that this graviton

condensate is at the critical point of a quantum phase transition [19]. Quantum phase

transitions are necessarily accompanied by large quantum correlations [21], and there-

fore a semiclassical treatment is inappropriate. In addition, at the critical point, light

modes appear which can deform the condensate. Combining these various aspects, the

description leads to a simple microscopic understanding of the aforementioned black

hole phenomena. The entropy of a black hole can be understood in terms of the light

modes which appear at the quantum phase transition and account for the degenerate

microstates of the black hole. Hawking evaporation in turn is described by quantum de-

pletion (leakiness) of the condensate. Semiclassical physics in this language corresponds

to the limit N →∞ and corrections are of the form 1/N [18, 20]. This could entail the

resolution to the information paradox since quantum hair are now important at 1/N

[20] allowing the information to be retrieved during the evaporation process.

In order to gain a fully fledged quantum picture of black holes, one would need to model

the full relativistic theory of graviton condensates which is extremely complex. In this

thesis, instead, we want to find a simpler (non-relativistic) toy model which mimics

a particular aspect of the graviton condensate picture proposed by Dvali and Gomez.

Specifically, we investigate the properties of a non-relativistic Bose condensate which

loses particles during its collapse and can be considered as such a toy model for black

hole evaporation. We find that it is possible that the condensate always stays at the

critical point [22, 23]. When including an external trapping potential in order to mimic

the gravitational self-trapping, light modes appear at the critical point.
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1.2 Gravitational Axion Anomaly and η′ Bubbles

When treating gravity as an effective field theory, it is also possible to couple it to the

Standard Model particle physics and its extensions. An interesting question is how grav-

itational interactions influence symmetries of other interactions. In particular, a subject

of debate has been the gravitational influence on global symmetries. For example, it

has been argued that in the low energy effective field theory U(1) symmetry violating

operators may be induced, either by quantum corrections or non-perturbative effects

[24]. A simplified picture of these effects is due to the no-hair theorem (see e.g. [25])

according to which black holes do not carry any global charges. It is therefore possible

to eliminate global charges from our universe by throwing them into a black hole. Since

radiative corrections have to include also virtual black holes, global symmetry violating

operators will in principle be induced. Furthermore, wormhole solutions might allow

for the elimination of a global charge as well [26–30]. In contrast, local symmetries are

associated with flux lines which can be measured by an observer at infinity. Therefore,

black holes and other non-perturbative solutions cannot destroy local charges as such

an observer can continuously monitor the Gaussian flux at infinity. These are the only

hair commonly associated with black holes.2

The violation of global symmetries, if present, has profound consequences for theories

which involve Goldstone or pseudo-Goldstone particles. Probably, the most famous

example for such a theory is the Peccei-Quinn (PQ) solution to the strong CP prob-

lem [31, 32]. The strong CP problem arises from the non-trivial vacuum structure of

quantum chromodynamics (QCD) due to non-perturbative configurations (instantons).

This is reflected by the appearance of an angular parameter θ whose magnitude sets

the strength of the violation of the symmetry of simultaneous parity transformation

and charge conjugation (CP). The observational bound on CP violation of the strong

interactions (QCD) is θ . 10−9 [33]. Considering that this parameter could, a priori,

take any values within the interval [−π, π], but instead is almost zero, leads to the con-

clusion that a dynamical mechanism may be at work. In order to implement this idea,

one introduces a dynamical field, the axion, which is the Goldstone boson of a broken

U(1)PQ symmetry [31, 32]. The axion gains a potential through interactions with QCD

instantons [34] and its minimum is such that the effective CP violating θ-parameter

(which is now a combination of the original θ-parameter and the axion field) is zero.

If gravitational effects violate global symmetries, the axion solution could be at risk

[24, 35–39]. The contribution due to the gravitational anomaly shifts the minimum

of the axion potential and depending on the strength of the gravitational symmetry

breaking, CP violation could largely exceed experimental bounds. Even though the

exact form of the global symmetry violating operators is not known at present, it can be

argued that their coupling parameter would need to be a very tiny number (O(10−54))

if they are not to interfere with the axion solution for the strong CP problem [24].

2In fact, in the quantum N -portrait put forward by Dvali and Gomez, it is argued that a black hole
can carry quantum hair as an order 1/N effect [18]. Therefore, global symmetries might not be violated
by black holes after all.
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To study this problem, it is convenient to formulate the strong CP problem and the axion

solution in a dual description in terms of three-form gauge fields. In this description,

the CP violation of QCD is signalled by the appearance of a constant electric four-form

background field in the vacuum [40, 41]. The axion solution then corresponds to putting

the three-form into a Higgs phase such that its long-range correlations and hence the

electric field vanish. In the dual description, gravitational effects can be parametrized

by an additional gravitational three-form which couples to the axion [42]. Due to this

coupling, the QCD electric four-form field is no longer screened in the vacuum [8].

In this thesis, we want to argue that a possible resolution to this problem can be achieved

by considering the neutrino lepton number of the Standard Model along the lines of our

work in [43]. In the case of massless neutrinos, the neutrino lepton number is a conserved

global U(1) charge, and thus it is expected to be anomalous under the aforementioned

gravitational corrections. In the three-form description the anomalous current induces a

mass term for the gravitational three-form, which leads to a screening of the gravitational

four-form field. Thus in the massless neutrino scenario the axion solution is saved. In

contrast, the presence of non-zero neutrino masses suppresses this screening. We show

that the condition that the axion still provides a viable solution to the strong CP problem

provides a new theoretical bound on the lightest neutrino mass [43].

Additionally, it is well-known that in the presence of massless quarks, the θ-dependence

of the vacuum becomes unphysical in the sense that θ then shifts under a chiral sym-

metry transformation of the quark phases. Thus vanishing quark masses protect the

CP symmetry. For non-zero quark masses, it is then expected that the induced CP

violation is proportional to some power of the lightest quark mass mq. This dependence

was computed in [44] using current algebra methods and was found to be linear in the

mass ∼ mq. In this thesis, we will consider a different approach to explain this depen-

dence. Analogously to Schwinger pair creation [45] which is responsible for screening

a constant electric field in the two-dimensional Schwinger model [46, 47], we study a

screening mechanism for the QCD four-form electric field by nucleation of η′ bubbles

[48]. The η′ meson is the pseudo-Goldstone boson of the anomalous U(1) chiral symme-

try and is sourced by the QCD θ-term. The correct θ-dependence of [44] is not recovered

which we take as an indication for the postulated non-analyticity of the vacuum energy

[49, 50].

1.3 Axion Dark Matter

Another area of physics where gravity plays an essential role is cosmology. With the

advance of high precision cosmology gravitational interactions are accessible to mea-

surements also on large scales. The observation of the cosmic microwave background

radiation (CMB) has allowed to determine a detailed picture of the history of the uni-

verse and precise measurements of cosmological parameters have established a conclusive

theoretical model of the universe: prior to the hot Big Bang, the universe underwent

a period of accelerated expansion during which all inhomogeneities were diluted. This
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period of inflation also explains the structure of the universe as originating from quan-

tum fluctuations. The evolution of the universe after inflation is well described by the

so-called ΛCDM model which explains, for example, the formation of light elements

during Big Bang Nucleosynthesis, the decoupling of photons after recombination lead-

ing to today’s observable CMB, the observed [51, 52] late acceleration of the universe

and the formation of large-scale structures in galaxies. In this scenario, the late-time

acceleration is ascribed to a cosmological constant Λ which governs the energy-density

of the universe today. Structures are formed due to initial perturbations in the density

of the so-called dark matter which can be described by a mainly gravitationally inter-

acting pressureless fluid. Due to the gravitational attraction, these initial perturbations

could grow and eventually provided a deep enough potential for the baryonic matter to

overcome its own pressure and collapse as well. The recent measurements of the Planck

satellite have confirmed this picture with unpreceeded precision. The observed structure

of the CMB fits nicely within the simplest classes of inflation [53]. The energy density

of the universe is distributed between matter making up for about 30% (of which about

85% is given by dark matter), and the cosmological constant, or Dark Energy, which

constitutes about 70% [54]. Accordingly, the overall energy content of the universe is

made up to only about 5% from ordinary matter described within the Standard Model

of particle physics. This is indeed a very puzzling fact which at the same time opens up

a potential playground for particle models beyond the Standard Model.

Within the unknown components, dark matter is probably the most straightforward to

tackle within the realm of particle physics. The most immediate requirement a viable

dark matter candidate has to fulfil is that its interactions with matter by forces other

than gravity are strongly suppressed. A perfect candidate seems to be the axion [55–

57]. Because of it being a pseudo-Goldstone boson of a broken U(1) symmetry, its

interactions are suppressed by the symmetry breaking scale fa. In order to be compatible

with astrophysical observation, such as, for example, from star cooling [58], this scale

has to be at least larger than fa > 109 GeV which renders the coupling to ordinary

matter very weak. In the simplest scenario for axion dark matter production, the so-

called misalignment mechanism [59], the symmetry is broken before inflation and the

expectation value of the axion field a settles to a homogeneous value ai ∼ fa. As

the universe cools down due to the expansion, a mass term is generated for the axion.

Relaxing towards the minimum of its potential, the axion field starts oscillating thereby

producing non-relativistic dark matter particles with a density proportional to a2
i [59].

The correct dark matter abundance can be obtained for any fa > 1010 GeV [56, 60, 61].

However, during inflation, the massless axion experiences quantum fluctuations around

ai which induce fluctuations in the dark matter density of order δa/ai ∼ HI/ai, where

HI is the Hubble scale. These perturbations persist after inflation and could be detected

in the CMB in terms of isocurvature perturbations [62].

So far, however, neither Planck nor any of the previous missions have detected substan-

tial isocurvature perturbations in the CMB. This puts a severe constraint on dark matter

models with a dominant axion component [56]. In this work, we present a possibility

to soften the isocurvature constraint on the axion by introducing a non-minimal kinetic

coupling on the inflating background as put forward in our work [63]. This coupling
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effectively suppresses the isocurvature perturbations in the axion dark matter density

which are generated during inflation. In addition, the Standard Model Higgs boson can

be considered a possible candidate for the inflaton. However, constraints from accelera-

tor experiments and cosmology have excluded a Higgs with a non-minimal coupling as

an inflaton [64, 65]. Along the lines of earlier work on Higgs inflation [65], we consider

a particular model in which inflation is enforced by the Standard Model Higgs field and

dark matter is produced by the axion when both fields are non-minimally coupled on a

de Sitter background.

1.4 Massive Gravity

Lastly, let us come back to gravity. In terms of an effective field theory, gravity is

described by the interactions of a massless spin-2 particle. Above we have discussed the

effects of possible UV modifications of gravity. Another interesting aspect is to consider

infrared (IR) modifications of gravity which have attracted much interest over the past

years as they may provide an alternative explanation for the late-time accelerated cosmic

expansion, for a review see, e.g., [66].

The most obvious way to modify gravity in the IR is to give a small mass to the graviton.

On the linear level, a mass term for a spin-2 particle uniquely leads to the Fierz-Pauli

action [67]. Albeit seemingly a small perturbation to the massless theory, a mass term,

however small, has profound consequences for the theory. In quantum field theory,

degrees of freedom and correspondingly their one-particle states are labelled according

to their representation of the Poincaré group, specifically according to their mass and

spin. In consequence, a massless spin-2 particle which describes two degrees of freedom,

namely, the two helicity-2 polarizations, lives in a different representation than the

massive spin-2 particle which describes 5 degrees of freedom, i.e., two helicity-2, two

helicity-1 and one helicity-0 polarization. In this light, it is far from trivial that the

introduction of a mass term for the graviton can be regarded a small perturbation.

Indeed, taking the massless limit, the helicity-0 polarization does not decouple from

interactions with external sources and gives rise to the so-called vDVZ discontinuity

[68, 69]. This discontinuity leads to a discrepancy between the predictions of General

Relativity and the ones of the linear theory in the massless limit. However, Vainshtein

[70] argued that around sources the linearised theory of massive gravity breaks down at

scales proportional to the fourth power of the inverse mass. Therefore, it is expected

that General Relativity is recovered in the massless limit only when the full nonlinear

theory is taken into account.

The inclusion of interactions of the full nonlinear theory of General Relativity, however,

was shown to lead to inconsistencies [71], as they invoke the appearance of a sixth

propagating mode with negative kinetic term – the notorious Boulware-Deser ghost

[71]. However, recently, de Rham, Gabadadze and Tolley [72] were able to construct

a nonlinear realization of Massive Gravity which, as was subsequently argued [72–75],

propagates only five degrees of freedom, thus avoiding the Boulware-Deser ghost.
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In this thesis, we further elucidate certain aspects of theories of interacting massive

spin-2 particles as put forward by us in [76]. For energies much larger than the mass

of the spin-2 particle, the representation of the Poincaré group decomposes into its

helicity subgroups. Since possible instabilities in terms of ghost modes are high energy

effects, the analysis in terms of helicity components should allow us to gain further

insight. We first investigate the addition of cubic nonderivative interaction terms to the

cubic Einsteinian derivative interaction. Second, we treat the massive spin-2 particle

as a genuine effective field theory of a massive spin-2 particle without any reference to

gravity and construct a cubic interaction which differs in the derivative structure from

the Einsteinian cubic term, but which nonetheless propagates five degrees of freedom

[76]. We find that it differs in structure from the one proposed by [72] and thus, conclude

that the Lagrangian structure of such theories is not uniquely defined.

1.5 Outline

The outline of this thesis is as follows. In chapter 2 we study the field theoretical

description of a generic theory of gravity flowing to Einstein General Relativity in the

IR. We first recap the basics of gravitaional interactions in terms of EFT and give a short

summary of our findings. We then briefly review the basic findings of [7] who argued

that sub-Planckian distances are unobservable in General Relativity due to black hole

formation. Based on our work in [8], we then argue that in any ghost-free theory of

gravity trans-Planckian propagating quantum degrees of freedom cannot exist and that

this puts a severe constraint on any attempt of conventional Wilsonian UV-completion

of trans-Planckian gravity.

Chapter 3 is devoted to the study of black holes in terms of Bose-Einstein condensates.

At first the idea of the black hole–condensate correspondence of [18, 19] is introduced.

Then follows a brief introduction to the theory of Bose-Einstein condensates, after which

we discuss a condensed matter toy model for a black hole which features a collapse with

simultaneous evaporation and the appearance of light modes. This part will be published

in a forthcoming paper [23].

Chapters 4 and 5 discuss aspects of axion physics. In chapter 4, we begin with a

summary of the strong CP problem [1, 2] and the axion solution [31, 32]. In order to

investigate possible gravitational effects on the axion solution, we employ a dual analysis

in terms of three-form fields and by coupling the neutrino lepton number current to

gravity, we derive a bound on the neutrino mass by requiring the θ-angle to comply with

observational bounds. Furthermore, we investigate the screening of the QCD vacuum

energy in the presence of massive quarks. The role of the axion as a dark matter

candidate is reviewed in chapter 5, where we suggest a possible mechanism to circumvent

current clashes with bounds from isocurvature perturbations [63].

Chapter 6 deals with massive gravity. We first review the status of theories of massive

gravity. Following an introduction to the helicity decomposition, we utilize this method

as a means to investigate the consistency of such theories. Additionally, we derive
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a possible cubic interaction term for a massive spin-2 particle which propagates five

degrees of freedom [76].



Chapter 2

Physics of Trans-Planckian

Gravity

Einstein gravity predicts the formation of black holes in high energy collisions. This

fact opens up a possible way of a non-Wilsonian UV-completion of gravity. In such a

picture, sub-Planckian distances are unobservable as a matter of principle. Degrees of

freedom with masses exceeding the Planck scale are large classical black holes. These are

in turn described by IR degrees of freedom which are accounted for by Einstein gravity.

Since in the weakly coupled regime, new gravitational degrees of freedom always act

attractively, Einstein gravity is the theory with the “weakest” gravitational interaction.

Using this argument, it is suggested that in a ghost-free theory of gravity trans-Planckian

propagating quantum degrees of freedom cannot exist [7]. This UV/IR correspondence

puts a severe constraint on any attempt of conventional Wilsonian UV-completion of

trans-Planckian gravity [8].

In this chapter, we extend the work of [7] and study the self-completeness of Einstein

gravity and its implications. We give a general discussion of gravitational interactions

from an effective field theory perspective in section 2.1, where we also introduce the

concept of a black hole. In section 2.2, we elaborate on the arguments of [7] that

sub-Planckian distances are not accessible in Einstein gravity. Futhermore we argue

in section 2.3 that Einstein’s theory indeed describes the weakest gravitational inter-

action [77]. These arguments together with black hole formation in trans-Planckian

scattering experiments lead us to the conclusion that in any UV modification of gravity

sub-Planckian distances are shielded as we discuss in section 2.4. Section 2.5 concludes

this chapter.

2.1 Gravitational Interactions

Gravitational interactions are described by Einstein’s theory of General Relativity. Its

field theoretical formulation is given in terms of the Einstein-Hilbert action coupled to

11
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matter

S =

∫
d4x
√
−g 1

16πGN
R+

∫
d4x
√
−gLm . (2.1)

Here Lm denotes the matter Lagrangian, GN is the Newton constant and R the Ricci

scalar obained from full contractions of the Riemann tensor Rρσµν = ∂µΓρνσ − ∂νΓρµσ +

ΓρµλΓλνσ − ΓρνλΓλµσ. The Cristoffel symbols Γ are defined in terms of the metric gµν
by Γλµν = 1

2g
λσ(∂µgνσ + ∂νgµσ − ∂σgµν) and g is the determinant of the metric. This

action is invariant under diffeomorphisms. Variation with respect to gµν yields Einstein’s

equations which relate matter, given by the energy-momentum tensor Tµν , to geometry

gµν ,

Gµν ≡ Rµν −
1

2
gµνR = −8πGNTµν , (2.2)

where Gµν is called the Einstein tensor.

In vacuum Tµν = 0, e.g., outside a source, the simplest non-trivial spherically symmetric

solution is given by the famous Schwarzschild solution

ds2 ≡ gµνdxµdxν = −
(

1− 2GNM

r

)
dt2 +

(
1− 2GNM

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) .

(2.3)

This solution also describes one of the most intriguing objects in physics: black holes.

The coordinate singularity at the Schwarzschild radius r = 2GNM ≡ RS denotes a

boundary (the black hole horizon) of region of spacetime from which nothing, not even

light, can escape. From the above equation it follows that whenever a given source

of mass M is localized within a radius smaller than its Schwarzschild radius RS , the

Schwarzschild solution outside the source contains a horizon and, hence, the spacetime

a black hole. This statement can be made rigorous by the so-called Hoop conjecture

[78] which specifies that whenever a given (Lorentz-invariant, cf. section 2.2.1) energy

is contained within a region around which a hoop of radius RS = 2GNE can be placed,

the energy density collapses to form a black hole.

Black holes have a number of peculiar properties of which we will only mention two here;

for an introduction to black hole physics see [79]. First, it was observed by Bekenstein

that black holes need to carry entropy in order to avoid a violation of the second law

of thermodynamics [11]. The entropy is related to the area of its horizon A = 4πR2
S by

SBH = A/(4~). Second, Hawking showed that black holes evaporate by investigating

perturbative quantization about a black hole geometry [14]. In a nutshell, Hawking

radiation is caused by particle production in a non-stationary spacetime. In curved

spacetime, the notion of the vacuum is observer dependent and the notion of particles

and anti-particles for different observers is related by a Bogoliubov transformation. Ac-

cordingly, an observer in the far past, before the black hole collapsed, would define a

different vacuum state than a observer in the far future with the black hole spacetime.

The Bogoliubov transformation relating the two vacua then creates particles with a

thermal spectrum for the observer in the far future. The evaporation follows a Stefan-

Boltzmann law with temperature TH ' R−1
S . The mass M of the black hole decreases

according to
dM

dt
∼ ~
G2
NM

2
. (2.4)
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For a full treatment of Hawing radiation see, e.g. [79] or Hawking’s original computation

[14].

From the quantum field theory point of view, the first term of the action (2.1) describes

the purely gravitational theory which embodies the self-interactions of a massless spin-

2 particle hµν = gµν − ηµν , where ηµν is the Minkowski metric. In lowest order of a

derivative expansion, Einstein’s gravity (General Relativity) can be shown to be the

unique theory of a single interacting massless spin-2 graviton [80–82]. The reduced

Planck mass, MP ≡
√

1/(16πGN ) ∼ 2.4 × 1018GeV, and the corresponding Planck

length, LP ≡ M−1
P ∼ 10−32cm,1 play a central role in Einstein gravity. For exam-

ple, from the field theoretical point of view, MP sets the interaction strength of the

canonically-normalized graviton expanded around Minkowski corresponding to the term

1

MP
hµν T

µν . (2.5)

Here, Tµν is an arbitrary conserved energy-momentum source. A very special property

of gravity is that also self-interactions are regulated by the coupling (2.5), where in this

case Tµν is the energy-momentum tensor of the graviton evaluated to a given non-linear

order in hµν . In [80], it was shown that one can uniquely reconstruct the action (2.1)

by resumming all orders of the graviton self-interactions given by (2.5).

In General Relativity, all energy-momentum sources universally couple to gravity. At

the linearized level, one can thus define an effective dimensionless parameter describing

the strength of the gravitational interaction for any elementary process of characteristic

momentum transfer p,

αEin(p2) ≡ 16πGN p
2 =

p2

M2
P

. (2.6)

Here and throughout this chapter, we consider only asymptotically flat spaces on which

the gravitational interactions (2.1) can be expanded in terms of linear gravitons up to

the strong coupling scale of the theory. Note that in this way one can construct gauge

invariant (i.e. with respect to the background metric diffeomorphism invariant) global

and local operators such as the S-Matrix [4] and/or the scattering amplitude A(p) of a

scattering process prepared at spatial infinity.

Parametrizing the gravitational coupling according to (2.6) immediately reveals why

gravity is weak in low energy (infrared (IR)) processes characterized by p � MP and

therefore αEin � 1. Due to the fact that gravity couples universally with (2.6), Einstein

gravity admits a universal strong coupling scale MP . Indeed the energy-dependence of

αEin is the source of the non-renormalizability of Einstein’s gravity and the reason why

gravitational amplitudes violate perturbative unitarity above the scale MP .

The coupling parametrization (2.6) is equally applicable to extensions of Einstein gravity

in which gravity is mediated by additional degrees of freedom as long as they still

obey the Strong Equivalence Principle [79]. If they do, the coupling remains universal

and an equivalent of (2.6), denoted by αgrav can be defined. For our purposes, it is

then useful to parametrize the notion of the gravitational strength αgrav as well as

1From now on we set ~ = 1.



Chapter 2 Physics of Trans-Planckian Gravity 14

Figure 2.1: In the linear regime, the gravitational interaction between two sources is
mediated by a graviton. The amplitude of such a process is A ∼ αgrav(p2).

its UV-completion by the behaviour of gravitational scattering amplitudes. Consider

a scattering on asymptotically flat space among two conserved external sources,2 Tµν
and τµν , with characteristic momentum-transfer p, see also Fig. 2.1. The scattering

amplitude can be written as

A(p) =
αgrav(p)

(p2)2

(
Tµντ

µν + b(p)Tµµ τ
ν
ν

)
. (2.7)

This equation defines αgrav which at this point is merely a useful parametrization of

the gravitational strength. Notice that in any theory in which gravitational interactions

are mediated by spin-2 states, the parameter b(p) is generically of order one but might

depend on p in a nontrivial way. In principle, b(p) can, however, take larger values

if contributions from spin-0 dominate. Such a case can be easily incorporated in our

following discussion, but is not of our primary interest. Moreover, the dependence on

b(p) can be eliminated by taking at least one of the sources to be relativistic, say τµµ = 0.

Universally, the scale of strong gravity can be defined as the lowest energy scale M∗ for

which

αgrav(p ≡M∗) = 1 . (2.8)

In Einstein gravity, M∗ = MP , whereas in general, M∗ can be arbitrarily lower though

never higher than MP [77] as we will see below. In any given theory, (in a slight abuse

of notation) we refer to the region of energies p � M∗ as the trans-Planckian region

(or the UV) and to the corresponding length scales L � L∗ ≡ M−1
∗ as sub-Planckian

distances.

Now, in quantum field theory, physics at any given length scale can be described in

terms of propagating quantum degrees of freedom. In this sense, all existing states

of the theory (including the classical ones) are in principle accounted for as states of

degrees of freedom which are propagating at the specific length scales of interest. Of

course, as one moves from scale to scale, the notion of elementary propagating degrees

of freedom can change, e.g., some may become composites of more fundamental ones,

but at any scale there always exist some. This is precisely the concept of effective field

theory (EFT).

In this sense, resolving a distance scale L means that one integrates in propagating

degrees of freedom of mass (energy) 1/L which can be treated as elementary at distances

L. For instance, one should be able to describe interactions of these degrees of freedom

within the space-time interval of size L. All known non-gravitational UV-completions

2 For a brief discussion on the notion of external sources in gravity see appendix A. Furthermore,
throughout this chapter, we are only interested in sources that do not violate null energy conditions.
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are based on this fundamental notion. By extending this concept to UV-completions of

gravity beyond the Planck length L � LP (or more general L � L∗), one would need

to integrate in trans-Planckian degrees of freedom of mass m = 1/L � MP . However,

it was suggested in [7] that in a theory which is reduces to Einstein gravity at low

energies, trans-Planckian propagating degrees of freedom cannot exist. Instead, any such

degree of freedom becomes a classical state with smallest size RS ∼ 2L2
P /L; that is it

becomes a black hole with Schwarzschild radius RS corresponding to the mass 1/L. This

classical state is no longer an independent UV entity and is fully described by already

existing IR degrees of freedom, such as the massless graviton. Thus, the would-be trans-

Planckian states carry no information about the trans-Planckian physics and decouple

from quantum processes, just as classical objects should do.3 Therefore, Einstein gravity

self-completes itself in the deep UV by mapping would-be trans-Planckian degrees of

freedom to classical IR states with typical energies 1/RS [7]. In particular, this can be

understood as the field theoretic manifestation of the fact that in Einstein gravity the

Planck length is the shortest length-scale of nature. This is furthermore the underlying

reason for the so-called Generalized Uncertainty Principle [83–88].4 A similar notion

also exists in string theory where it can be argued that the fundamental string length

as well sets a limit on the shortest distance which is possible to be probed [90–96].

The formation of black hole as an outcome of trans-Planckian collisions is a natural

expectation, see e.g. [1, 2]. The discovery of low scale quantum gravity scenarios [97,

98] promoted this possibility to a potentially experimentally-observable phenomenon.

Indeed, black hole formation in high energy scatterings at particle colliders was predicted

in [98] (for subsequent work in this direction see [99–101]). In [3], this feature of gravity

was formulated in terms of the “Asymptotic Darkness” scenario as the unique outcome

of trans-Planckian scattering at small impact parameters. In the following, we will

furthermore argue that a black hole is the only output of any trans-Planckian scattering

process in any healthy theory of gravity. In other words, we will show that there is no

contribution from sub-Planckian distance physics in any high (or low) energy scattering

process.

It is interesting to address the viability of attempts of conventional (Wilsonian) UV-

completions of Einstein gravity in the trans-Planckian domain in the context of the afore-

mentioned self-completeness of gravity. In particular, the proposed self-completeness has

important consequences for cases in which gravity is assumed to become weaker in the

deep UV, an example of which is the Asymptotic Safety scenario [9, 10]. The mapping

of trans-Planckian gravity to classical IR gravity is in conflict with UV-completions of

gravity by asymptotically safe behaviour: There simply are no “UV” degrees of freedom

which could trigger such a behaviour. At best, the fixed point behaviour of this scenario

is fictitious and a relic of the technique used for computing the renormalization group

flow of gravity, cf. [102].

3In fact, these states can be described as a self-bound Bose condensate of N ' R2
S/L

2
P gravitons with

wavelength ∼ RS and interaction strength α ' 1/N [18] as we discuss in chapter 3.
4In [89], this obstruction to probe short distances has been suggested to be related to a kind of locality

bound, where below that scale the local quantum field theory no longer captures all dynamics.
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Figure 2.2: Momentum-scale dependence of αgrav. The dashed line shows a running of
the gravitational coupling where gravity becomes weaker in the weakly coupled regime.
In a ghost free theory this cannot happen. The solid line represents a typical running of
αgrav usually found within the Asymptotic Safety scenario. Here, gravity first hits the
strong coupling (αgrav = 1) at scale M∗, before turning over to the fixed point scaling.
The shaded region indicates the regime in which black hole formation takes place and

which hence cannot be probed by experiments.

In order to see this, we first argue that gravity cannot become weaker than in pure

Einstein gravity before reaching the strong coupling scale by requiring the absence of

negative norm states. To be more precise, as shown in [77], in any ghost-free theory in

the weak-coupling domain, αgrav(p) must satisfy,

αgrav(p) ≥ αEin(p) , (2.9)

and the quantity αgrav(p)/αEin(p) must be a non-decreasing function of p2, at least

until αgrav(p) becomes of order one. In other words, a weakening of gravity cannot

set in while αgrav(p) � 1 (for a pictorial representation see Fig. 2.2) unless there are

negative norm states in the spectrum. Thus, the gravitational coupling first has to reach

the strong coupling point M∗ before its strength can start to decrease. However beyond

M∗, one is in the trans-Planckian domain which is mapped onto classical IR gravity by

the formation of classical black holes. Thus, gravity cannot display Asymptotic Safety

in any well-defined physical sense; due to the black hole barrier distances shorter than

1/M∗ can never be probed in principle. For instance, scattering cross sections with

center of mass energies E are dominated by black hole production for E � MP and

impact parameter ∼ E. This cross section can be estimated by the geometric cross

section of a black hole σ ∼ E2/M4
P which grows with increasing energy [3]. This energy

dependence of σ is hard to reconcile with the notion of Asymptotic Safety, or with a

weakening of UV-gravity in general. This result agrees with a complementary proof

of the impossibility of Asymptotic Safety in a theory of gravity containing black holes

[103]. In [103], Shomer showed that any UV fixed point at which gravity becomes weaker,

as for instance postulated in the Asymptotic Safety scenario, is incompatible with the

Bekenstein-Hawking entropy of black holes. A similar observation that the BH barrier

prevents probing the fixed point behavior of Asymptotic Safety has been made in [5].

To summarize, the self-completeness of gravity [7] raises the question whether Wilsonian
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UV-completions of trans-Planckian gravity are viable or even physically motivated in

the light of the inaccessibility of these scales in scattering experiments.

2.2 Non-existence of Sub-Planckian Distances in Einstein

Gravity

In this section, the notion of gravitational self-completion as put forward in [7] is ex-

plained. Accordingly, the non-existence of trans-Planckian physics in Einstein gravity,

in the sense of probing distances L � LP , is discussed.

Let us briefly clarify that the statement about the impossibility of probing short distance

scales is Lorentz invariant as seen from an observer at spatial infinity. The distances

(and energies) here refer to the distances (and energies) measured in the center of mass

reference frame. In this frame, one may also use the seemingly non-relativistic relation

that shorter distances are measured by higher energies, i.e. E ∼ 1/L. Of course, a

boost will change the values of L and E accordingly but not their relation. However,

the reader might be worried that in the highly nondynamical gravitational background

produced by the colliding sources, the definition of length should include some notion of

the local spacetime. In this case, we will always refer to a “length” as the instantaneous

local invariant length measured by an ADM observer [79], and in this case, the four

dimensional metric is split in a 3 + 1 slicing according to

ds2 = −N2dt2 + gij(dx
i −N idt)(dxi −N idt) . (2.10)

Since we are only concerned with s-wave (spherical) scatterings, one may then choose

coordinates at a fixed time such that they define the following (instantaneous) three-

dimensional metric [78]

gij

∣∣∣
t=const

= φ4(r)δij , (2.11)

where δij is the Kronecker delta and φ(r) is a scaling function. In this way the invariant

length is given by

L(r0) ≡ 4π

∫ r0

0
drφ2(r) , (2.12)

where r0 is the coordinate radius we would like to measure.

From now on, we assume without loss of generality that when considering distances L,

we implicitly assume the above definitions.

2.2.1 Field theoretical Hoop Conjecture

In quantum field theory, any measurement that attempts to resolve a distance scale L

has to excite degrees of freedom of energy 1/L within a box of size L. The explicit

realization of such a measurement is to set up a scattering experiment which involves at

least two particles. These particles are then boosted in such a way that their (Lorentz-

invariant) center of mass energy exceeds 1/L and that their impact parameter is less
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than L. For L � LP , any attempt of this measurement leads to the formation of a

classical black hole (see also [3, 90–96, 98–101]). Note that by itself none of the involved

boosted particles is a black hole even when boosted to energies � MP since there is

no graviton exchange involved. Instead, their correct description is given by so-called

Aichelburg-Sexl geometries [104]. The fact that the outcome of such an experiment will

inevitably produce a black hole can be regarded as the field-theoretical interpretation of

Thorne’s hoop conjecture [105]. It states that a black hole with horizon forms when, and

only when, a mass M is compacted into a region whose circumference in every direction

is less than its Schwarzschild horizon RS(M) = 2M/M2
P .5 Hence, for the scattering

experiment above it implies that a black hole forms any time the transfer energy is

localized (dynamically) within the Schwarzschild radius RS(1/L) corresponding to the

center of mass energy E = 1/L . Thus, any attempt of resolving sub-Planckian distances

will lead to the formation of a macroscopic black hole of horizon size 2L2
P /L, which itself

can only probe large distances.

This observation leads to two important conclusions. First, an elementary state with

mass M > MP cannot exist because its Compton wavelength λc . 1/LP is smaller

than its corresponding Schwarzschild radius RS(M > MP ) > 2Lp. According to the

Hoop conjecture it will form a black hole. Second by virtue of the black hole barrier, no

sub-Planckian distances may ever be probed. Therefore, to talk about these distances

is meaningless from a physical perspective.

The previous discussion has been based on a classical analysis. Thus, one might wonder

whether quantum mechanical arguments could lead to a different conclusion. It has

been argued in [3] that a scattering experiment of transfer energy E �MP with impact

parameter L� LP , may indeed produce elementary particles as an outcome with (quan-

tum) probability e−E
2L2

P . The key observation here is that such a small probability is

due to the production of a virtual black hole. This conclusion can be drawn by noticing

that the factor E2L2
P ∼ S is proportional to the Bekenstein-Hawking black hole entropy

S = πR2
S/L

2
P , and therefore the suppression e−S represents the Boltzmann suppression

of the evaporation of a classical black hole. In other words, the produced particles can

be interpreted as the result of a black hole which formed during the collision and subse-

quently evaporated into elementary particles. Because the Compton wavelength of the

emitted elementary particle is larger than the Planck length, this implies that again no

sub-Planckian distances are probed [7].

2.3 Einstein Gravity is the Weakest Gravity

We have seen in the previous section that because of the black hole barrier sub-Planckian

distances are unphysical. Therefore, the only sense in which one can think about gravity

at trans-Planckian energies is in terms of IR gravity. This fact eliminates the need of a

5This version of the conjecture is of course very vague as it implies the existence of an omniscient
observer who can define a global event horizon. However, although this conjecture can be generalized
by introducing a local definition of horizons, i.e. closed trapped surfaces (see [6] and references therein,
[106]), we are only interested in the point of view of asymptotic observers in flat space (S-matrix) where
the above formulation of the conjecture is applicable.



Chapter 2 Physics of Trans-Planckian Gravity 19

UV-completion of Einstein’s theory in the Wilsonian sense, which could be, e.g., due to

an improved behaviour of the graviton propagator for large p.

In this section we show, following the reasoning of [77], that any modification of gravity

that does not propagate ghost degrees of freedom in the weak regime always produces

a stronger gravitational attraction. In consequence, modifying the theory of gravity can

only lead to black hole production at energies lower than MP making the black hole

barrier even more efficient.

For a scattering process of particles with characteristic momentum transfer ∼ p and a

center of mass energy E ∼ p, weak gravity is defined as the condition

αgrav(p) � 1, (2.13)

where αgrav(p) is given by (2.7). For example, in the pion-nucleon scattering at QCD

scale energies, Einsteinian gravity is weak. In this regime, consider a one-graviton ex-

change process between two energy-momentum sources Tµν and τµν . From (2.7) it follows

that the amplitude of this process in momentum space is given by

A(p) ' Tµν(p)∆µν,αβ(p)ταβ(p), (2.14)

where Tµν(p) and ταβ(p) are the Fourier-transforms of the sources, and ∆µν,αβ(p) is the

graviton propagator in momentum space.

In General Relativity, in which the gravitational force is mediated by a single massless

spin-2 particle, the tensorial structure of A(p) is uniquely fixed by

Amassless(p) = GN
Tµν(p)τµν(p)− 1

2T
µ
µ (p)τνν (p)

p2
. (2.15)

However, if gravity deviates from Einstein’s theory in the UV (or IR), the structure of

A(p) will be different. Nonetheless, it is still extremely restricted. This follows directly

from the spectral representation of the graviton propagator whose general ghost-free

structure in the weak coupling regime is given by

A(p) = Tµν∆µν,αβτ
αβ =

=
1

M2
P

(
Tµντ

µν − 1
2T

µ
µ τνν

p2
+

∫ ∞
0
dsρ2(s)

Tµντ
µν − 1

3T
µ
µ τνν

p2 + s
+

∫ ∞
0
dsρ0(s)

Tµµ τνν
p2 + s

)
,

(2.16)

where we have separated the contributions from the massless spin-2, the massive spin-2

and the spin-0 poles. It is crucial to note that the absence of ghosts demands ρ2(s) ≥ 0

as well as ρ0(s) ≥ 0, ∀s.

In order to understand the meaning of ρ2 and ρ0, let us consider the ADM decomposition

[79] of the metric according to which the graviton can be decomposed into a spin 2

field hij (the spatial metric), a scalar N (the lapse) and a vector N i (the shift).6 In

6i, j, ... are 3-dimensional indices (with a positive defined metric) and α, β, ... are the 4-dimensional
indices
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the transverse-traceless gauge, which can always be taken because of the linearized

diffeomorphism group, the kinetic term of the spin-2 part looks like (∂αhij)(∂
αhij). This

kinetic term has no sign ambiguities, and depending on the choice of the 4-dimensional

signatures, its sign determines whether hij is a propagating ghost or not. This sign is

encoded in ρ2 in (2.16). Of course, in contrast to GR, the trace hii, for example, which

is a scalar degree of freedom, can propagate. The sign of its kinetic term is determined

by ρ0. The tensorial structure is fixed by the requirement of the absence of ghosts as

well.

From (2.16), one is lead to a powerful conclusion: The running of αgrav(p) (or equiv-

alently GN (p)) can be understood in terms of ρ2(s) and ρ0(s), and the positivity re-

quirement automatically excludes a weakening of gravity in the weakly-coupled regime

[77, 107, 108]. Indeed, using the spectral decomposition (2.16) we can represent αgrav(p)

in the following form,
αgrav(p)

αEin(p)
' 1 + p2

∫ ∞
0
ds

ρ2(s)

p2 + s
, (2.17)

where αEin(p) ≡ p2/M2
P is the strength of pure-Einstein gravity and at least one sources

is relativistic. Due to the positivity of ρ2(s),
αgrav(p)
αEin(p) is a never decreasing function larger

than one,
αgrav(p)

αEin(p)
≥ 1 and

d

dp2

(
αgrav(p)

αEin(p)

)
≥ 0 . (2.18)

Thus, in the weakly coupled regime, gravity can never become weaker. In other words,

Einsteinian gravity is the weakest among all possible gravity theories that flow to Ein-

stein gravity with a given GN in the IR. A direct consequence of this fact is that, in the

weak gravity regime, any modification of Einstein gravity produces (for a given mass)

black holes of size RH ≥ RS , where RS = 2GNM is the Schwarzschild horizon [77].

The physical meaning of the above statement is clear. Equation (2.16) shows that the

gravitational force mediated by positive norm particles is always attractive. Thus, the

weakest gravitational coupling at any scale is the one that is mediated by the minimal

number of messengers; this is Einstein gravity mediated by a single massless spin-2

graviton. Furthermore, the positivity of ρ2(s) and ρ0(s) requires the strong coupling

scale M∗ of any UV modification of gravity to be lower than the strong coupling scale

of pure Einsteinian gravity,

M∗ ≤MP . (2.19)

That this inequality is a direct consequence of (2.18) can be easily seen as follows. The

strong coupling scale is given by the minimal scale at which some scattering amplitudes

become of order one. To put a bound on this scale, consider a non-relativistic particle

of mass Mv which produces a gravitational potential h00(r). This potential can now be

probed by an external static non-relativistic source τµν = δ0
µδ

0
ν δ

3(r−r′)m. The strength

of this interaction is set by the amplitude

A =

∫ ∞
0

h00(r′)

MP
δ3(r − r′)md3r′ =

h00(r)

MP
m. (2.20)
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Whenever A/m ∼ 1, unitarity is violated since the probability of the scattering process

to happen per unit time and probe mass is of order one. Thus, for a given mass Mv of

the particle, there is always a radius rv at which the unitarity bound of the theory is

violated, or in other words

2

∫ ∞
0
ds

ρ(s)

M2
P

e−
√
srv

rv
Mv = 1 . (2.21)

Here, we used the fact that one can spectrally decompose h00(r) by using the real space

representation of (2.16).

According to the Heisenberg principle, rv cannot be smaller than the Compton wave-

length of a particle with mass Mv, i.e. rv ≥M−1
v . Therefore, the minimal Mv is obtained

by inverting

2

∫ ∞
0
ds ρ(s)e−

√
s

Mv

(
Mv

MP

)2

= 1 , (2.22)

which gives

Mv =
MP√
I(Mv)

≤MP . (2.23)

Here we made use of the fact that

I(Mv) ≡ 2

∫ ∞
0
dsρ(s)e−

√
s

Mv ≥ 1 , (2.24)

because ρ(s) ≥ 0 for any ghost-free theory. This in turn implies that any ghost free

theory of gravity can only produce a stronger gravitational field than the one produced

in General Relativity for which ρ(s) = δ(s). As this pole exists in any UV-modification

of gravity, it is always included in (2.24). By definition the strong coupling scale of the

theory then obeys M∗ = minvMv ≤MP .7 Thus, we have successfully arrived at (2.19).

An example of a healthy modification of Einstein gravity with the property (2.19) is

provided by Kaluza-Klein theories in which gravity becomes higher-dimensional above

a compactification scale Mc ≡ 1/Rc. For example, the 5-dimensional case corresponds

to a particular form of (2.16) with

ρ2(s) =
∑
n

δ(s− (nMc)
2) , ρ0(s) = δ(s) . (2.25)

For energies p � Mc, (ignoring tensorial structures) the one-graviton exchange ampli-

tude takes the form

A(p) ∝ 1

M∗
√
p2
, (2.26)

where M∗ is the 5-dimensional Planck mass. We can recast this in terms of the usual

4-dimensional propagator but with a momentum dependent Newton constant GN (p)

A(p) ∝ GN (p)
1

p2
, (2.27)

7A consistency check of (2.23) is obtained by considering that in Einstein gravity, in which I = 1,
the strong coupling scale is the Planck scale MP .
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where GN (p) ≡
√
p2

M3
∗

. At p = Mc, the “running” Newtonian coupling must match

the four-dimensional Newton’s constant. This matching gives the well-known geometric

relation between the four- and five-dimensional Planck scales

M∗ = (M2
PMc)

1
3 ≤MP . (2.28)

In this theory, gravity becomes strong at a scale M∗ ≤ MP due to the fact that the

compactification scale is smaller than the four-dimensional Planck scale, Mc < MP .

It is important to note that (2.18) is independent of the precise change of the laws of

gravity. Hence, the only hope for gravity to become weaker in the UV is to first reach

the strong coupling regime, i.e. the scale M∗, and only then turn around its strength.

The next section investigates whether such a behaviour can be physically meaningful.

2.4 Trans-Planckian Gravity is IR Gravity

In the previous section, we argued that gravity cannot become weaker than GR as long

as the interactions are in the weak coupling regime. Here, we want to consider the

possibility that αgrav starts to decrease in the strong coupling regime of gravity, i.e.

for p � M∗. We will argue that such a decrease is unphysical, because the region of

p � M∗ is protected by the black hole barrier and thus it is impossible to probe length

scales L � L∗. Consequently, an asymptotic weakening of gravity at such distances

is physically meaningless, in the sense that there are no new degrees of freedom which

can be integrated in to restore unitarity by a softening of the scattering amplitudes.

Quite the contrary, since gravity in this regime is fully controlled by large distance

classical dynamics, unitarity is restored in a non-Wilsonian way by classical states. Put

differently, there are no perturbative states with masses above M∗ that can be excited

due to the fact that the Compton wavelength of such a particle would be smaller than

its black hole horizon. Rather, the only well-defined meaning of any such state is that of

a non-perturbative classical object, probing at best distances of order of its own black

hole horizon. Due to the positivity of the spectral representation (2.16), these distances,

however, are always larger than L∗.

To see this in detail, consider, for instance, an effective Lagrangian where the UV physics

has been integrated out in a theory in which high energy degrees of freedom are per-

turbative states. In the Wilsonian picture, the information about high energy physics

at scales E = M � MP is carried by propagating quantum degrees of freedom of mass

∼M . For example, integrating out such particles in the theory of a U(1) gauge field Aµ
with field strength tensor Fµν = ∂µAν −∂νAµ results in a series of operators of the form

g Fµν
1

M2 + �
Fµν Fαβ

1

M2 + �
Fαβ + . . . , (2.29)

where g is some effective coupling of order one, which is valid for p � M . Note that

the apparent nonlocality indicated by the d’Alembert operator � in the denominator is
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in fact a remnant of integrating out the heavy degree of freedom of mass M . The full

series still describes a perfectly local quantum field theory.

For comparison, consider now a field theory where the high energy (trans-Planckian)

states are classical black holes. Integrating out these classical objects, one obtains a

series of operators that is given by the leading order (the low energy approximation) of

(2.29) times a Boltzmann suppression,

g e
− M
Mp Fµν

1

M2
Fµν Fαβ

1

M2
Fαβ + . . . . (2.30)

The above form is due to the fact that black holes, which have been integrated out,

scatter into photons by evaporation. Extrapolating the properties of on-shell black holes

one expects virtual black holes to be thermodynamical objects as well, and therefore their

contribution to the scattering amplitude should be at least Boltzmann suppressed. This

produces the exponentially small factor e
− M
Mp in (2.30). However, while the operators in

(2.29) incorporate propagating degrees of freedom that show up at the next to leading

order in an expansion in �/M2, in (2.30), objects of mass larger than MP are not

propagating. Therefore, the operators in (2.30) differ substantially from the ones in

(2.29). In fact, the operators in (2.30) do not carry any more information about energy

scale above MP than any other operator obtained by integrating out a classical (or

solitonic) object of mass M .

To summarize, in a Wilsonian UV completion as, for example, given by (2.29), one can

in principle read off the structure of higher dimensional operators by performing very

precise measurements at low energies and thus decode physics at distances ∼ M−1.

However, in UV completions of the form (2.30), imprints of sub-Planckian distance

physics cannot be detected, even in infinitely precise low energy experiments. Hence,

scales smaller than the strong coupling scale of the gravitational theory can never be

resolved. One can think of this phenomenon as a high energy generalization of the

Heisenberg uncertainty principle which forbids probing distances smaller than the inverse

momentum transferred in a measurement, ∆x∆p & 1, for a pictorial representation see

Fig. 2.3 and for previous literature we refer to [83–88].

2.4.1 Trans-Planckian Pole in Einstein gravity

Let us now consider a concrete example in which one attempts to add an extra propa-

gating degree of freedom to the massless graviton hµν in the trans-Planckian region, cf.

[7]. Let the extra degree of freedom be given by a scalar graviton φ of mass m. The

metric seen by an external probe-source is then given by

gµν = ηµν +
hµν
MP

+ ηµν
φ

MP
. (2.31)

The following discussion will show that this addition is meaningful only as long as

m . MP . It becomes meaningless for m becoming trans-Planckian, i.e. for m > MP .
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Figure 2.3: Trans-Planckian distances are shielded by a black hole barrier. Probing
poles at p2 = L−2 �M2

P one has to localize energy of order L−1 within the distance L.
The corresponding black hole horizon of this energy, RH(L) ≥ RS(L) = 2L2

P /L, shields
the sub-Planckian region (L < LP ) from being probed by any physical experiment.
The sub-Planckian distance L is mapped to the macroscopic distance RH(L). On the
right-hand-side we show a qualitative plot of the energy-distance relation. The grey
“blob” around the Planck scale indicates that at the Planck scale itself we don’t know
how the precise relation between engery and distances is. Also, there is an uncertainty
about the far IR black holes, i.e. for energies EIR = 2L2

P /LIR, as we cannot exclude
the possibility that at scales L� LIR gravity is modified.

However, let us first take a look at Einstein gravity. At large distances, the dynamics of

the massless spin-2 graviton is described by Einstein’s equation (2.2),

Gµν = 8πGN Tµν . (2.32)

In the weak field limit, the metric and Gµν can be expanded in powers of the dimen-

sionless graviton field

gµν = ηµν + h(1)
µν + h(2)

µν + . . . , (2.33)

where we have absorbed the Planck mass from (2.31) into the definition of hµν . We keep

track of the number of gravitons interacting with one another or the source by the use of

a superscript denoting the order of the interaction which is equivalent to an expansion

in powers of GN . The equations of motions (2.32) to first order are given by

�h(1)
µν = − 16πGN (T source

µν − 1

2
ηµν T

source ), (2.34)

where h ≡ hµµ, T ≡ Tαα , and the harmonic gauge gαβΓγαβ = 0 is employed. Indices

are raised and lowered with the background Minkowski metric ηµν . To linear order, the

gauge condition is given by ∂µh
(1)
µν = 1

2∂
(1)
ν h and the only contribution to Tµν is coming

from the energy-momentum tensor of the external source, which is taken to be a static

pointlike mass M with T source
µν = δ0

µδ
0
ν δ

3(r)M . This gives the standard first order result

for the metric perturbation,

h
(1)
µν

MP
= δµν

RS
r
, (2.35)

where RS = 2GNM is the Schwarzschild horizon of the corresponding mass M black

hole of mass M . This can be compared to the full solution (2.3) and it is clear that
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Figure 2.4: Gravitational field produced by a source T . The wiggled lines represent
the emitted gravitons hµν . At the horizon the trilinear and higher order interactions
are of the same order as the one-particle exchange. Hence, to obtain any meaningful

result the series has to be resummed.

for RS/r � 1 the above solution reproduces it.8 Note that to this order, the signal

of approaching the horizon is that h
(1)
µν becomes of order one. At the same time, by

consistency, the proximity of the horizon is signalled by the second and higher order

perturbations in GN becoming of order one, i.e. the contributions from the non-linear

coupling of the graviton to the source are becoming as important as the ones from the

linear coupling to the source. Hence, the series has to be resummed, see also Fig. 2.4.

This signals the formation of a horizon [109, 110].

Notice, despite the corrections to the metric becoming of order one, the characteristic

momenta flowing through the graviton vertices are of order 1/RS , and thus, as long as

RS � LP , the near horizon geometry is not a probe of Planckian physics. For such

sources, gravity is in a weakly-coupled, αgrav � 1, albeit nonlinear regime. There is

an important distinction between the nonlinear regime, characterized by the amplitude

of the metric perturbation being order one, hµν ∼ 1, which can perfectly well happen

while weakly coupled in the sense αgrav � 1, and the regime of strong coupling where

αgrav ≥ 1. Entering into the nonlinear regime from the linear one simply means that the

expansion of the metric gµν in terms of hµν breaks down and one has to work with the

full metric or equivalently resum. Instead, if αgrav ≥ 1, the effective field theory frame

work breaks down and one has to include higher order curvature operators such as, for

instance, R2 in the Lagrangian since they are no longer smaller than R itself.

In order to find non-linear corrections, we have to expand (2.32) to second order in

hµν , which effectively takes into account the interaction of the graviton with its own

energy-momentum tensor Tµν(h). To be fully consistent one would also need to include

the corrections to the energy-momentum tensor of the source T
(1)
µν . Yet, as shown in

appendix A, they are negligible at this order.

The equations of motion for the graviton at second order are given by

G(1)
µν [h(2)] +G(2)

µν [h(1)] = 0 , (2.36)

where G
(1)
µν [h(2)] is the Einstein tensor expanded to first order in the metric perturba-

tion evaluated for the second order perturbation h
(2)
µν . Similarly, G

(2)
µν [h(1)] denotes the

quadratic part of the expanded Einstein tensor evaluated for the first order metric per-

turbation. We will consider the latter to be sourcing the second order perturbation

8It is furthermore instructive to remember that the Newtonian potential Φ(r) can be recovered from
the metric by the identification Φ = g00 − 1 = h00.
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h
(2)
µν and rewrite this contribution to the equations of motion as an graviton energy

momentum tensor given by

8πGN T
(2)
µν [h(1)] = −1

2
h(1) αβ

(
∂µ∂νh

(1)
αβ + ∂α∂βh

(1)
µν − ∂α(∂νh

(1)
µβ + ∂µh

(1)
νβ )
)

−1

2
∂αh

(1)
βν ∂

αh(1) β
µ +

1

2
∂αh

(1)
βν ∂

βh(1) α
µ − 1

4
∂µ h

(1)
αβ ∂ν h

(1) αβ

− 1

4
ηµν

(
1

2
∂α h

(1)
βγ ∂

β h(1) αγ − 3

2
∂α h

(1)
βγ ∂

α h(1) βγ)

)
+

1

4
h(1)
µν �h

(1) . (2.37)

These equations yield the standard corrections to the metric at second order in GN
[109, 110]. For instance, the zero components are given by

h
(2)
00

MP
= −1

2

R2
S

r2
and

h
(1)
00

MP
=
RS
r

(
1 + a

√
RS
Rc

3
)
, (2.38)

where a is a factor of order 1 and Rc is the radius of the matter distribution of the

mass of the source. Taking into account the backreaction of the gravitational field of

the source on itself gives a small shift in the “effective” gravitational mass of the source

particle, which can be safely neglected. The corrections (2.38) are the manifestation of

the fact that at the horizon, i.e. r = RS , the expansion of the metric in powers of RS/r

breaks down, and the series has to be resummed.

Let us now add the extra massive scalar graviton φ from (2.31) to the spectrum of the

theory. It does not change the gravitational field of the massless spin-2 graviton hµν at

first order, since it is only sourced by T source
µν so that (2.35) still holds. The novelty due

to the presence of the massive scalar graviton, which couples to the same static external

source via gµνTµν , is that at second order in GN , h
(2)
µν gets additional corrections from

the coupling to the energy momentum tensor of φ which is

T φµν(φ) = ∂µφ∂νφ −
1

2
ηµν(∂αφ∂

αφ + m2φ2) . (2.39)

These corrections are accounted for by including the contributions from (2.39) evaluated

for the first oder solution φ(1) = e−mr(RS/r) on the right hand side of (2.36). Obviously,

this contribution gives only an exponentially-supressed correction to h
(2)
µν .

In contrast, power-law-suppressed corrections can appear if there are couplings between

φ and h of the form,
φ∂nhk

Mn+k−3
P

, (2.40)

where the tensorial structure is not disclosed. Such contributions can arise, for example,

in non-minimally coupled gravity, and they may induce an effective source for φ,

(� +m2 )φ =
(∂nhk)

Mn+k−3
P

+ ... . (2.41)
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Figure 2.5: A heavy scalar (double line) is mediating the interaction between a source
T and k gravitons (wiggled lines). Integrating-out this scalar at tree-level will induce

an effective point-like interaction between the source and k gravitons.

This can give corrections to φ which are not exponentially suppressed, but only by

powers of (mr)−1 and (MP r)
−1. For example, evaluating the right hand side of (2.41)

for h = h(1) and r � m−1 can give corrections of the order (subject to cancellations in

the tensorial structure)

φ(k)

MP
∼

RkS
rk

1

(MP r)n−2(mr)2
. (2.42)

The reason why these correction are not exponentially suppressed is that they arise

from short range processes which do not require the propagation of virtual φ-quanta

over distances larger than their Compton wavelengths. In other words, these corrections

can be viewed as corrections to the metric in form of non-linear powers of exclusively

massless gravitons, which appear as a result of a tree-level integrating out of a heavy

scalar graviton of mass m (see also Fig. 2.5) leading to

gµν = ηµν +
hµν
MP

+ ηµν
(∂nhk)

Mn+k−3
P m2

+ ... . (2.43)

To summarize, we have seen that corrections coming from a heavy gravitational degree

of freedom to the Einstein metric at distances larger than its Compton wavelengths are

suppressed either exponentially, or by inverse powers of its mass m and thus cannot

significantly affect Einsteinian gravitational dynamics at distances r � m−1. For ex-

ample, they cannot interfere with the formation of black holes with Schwarzschild radius

RS � M−1
P . This is in full accordance with the notion of decoupling of heavy states

at low energies [111].9 Although a heavy quantum state gives negligible corrections to

the metric at large distances, for m . MP , these corrections are still measurable. Thus

signatures of new gravitational physics at scales m−1 can, in principle, be probed at

much larger scales r � m−1 by precision measurements. However, if m � MP this is

not true because the new degree of freedom is no longer a perturbative state. Instead, it

is a macroscopic black hole which does not carry any information about the UV physics.

Take, for example, the massive scalar graviton φ of mass m introduced in (2.31). Once

m � MP , φ can no longer be treated perturbatively since its Compton wavelength m−1

is smaller than its corresponding Schwarzschild radius RS . In order to understand this,

it suffices to examine the gravitational field produced by the non-relativistic particle φ

by simply replacing the mass of the source M by the mass m in equation (2.34). The

analysis following (2.34) immediately shows that the “particle” φ develops a horizon of

9We rely on the decoupling theorem, i.e., the theory at low energies does not give us any information
on the theory at high energies.
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size Rφ = 2m/M2
P which is larger than m−1. For this reason, it has to be considered

as a fully legitimate classical black hole. Consequently, the perturbative analysis, in

which we considered contributions of virtual φ quanta, is no longer applicable. Instead,

one must take into account that φ represents a black hole, and therefore any contact

interaction resulting from its integrating out must be exponentially suppressed by at

least an entropy factor e−S , see section 2.2.1. As a result the effective operator obtained

by integrating-out φ, e.g. (2.43), can no longer feature a power-law suppressed form. In

other words, by becoming trans-Planckian, φ cannot carry any information other than

what is carried by a large IR black hole of the same mass. Therefore, any particle with

trans-Planckian mass has to be integrated out as an ordinary classical black hole of the

same mass.

We are then led to the conclusion that given the fact that any degree of freedom with

mass m � MP is a classical object, it becomes obvious that – no matter how sophisti-

cated – there is no process which can probe trans-Planckian physics [7]. This includes

also processes like black hole evaporation, primordial quantum fluctuation and scatter-

ing experiments. Note that the non-accessibility of sub-Planckian distances is even more

efficient than what we described before. In fact, as shown in [4], before the black hole for-

mation an eikonal barrier may form. In this case, eikonal amplitudes which describe the

exchange of many soft gravitons in terms of ladder diagrams become important prevent-

ing hard energy transfers through a single graviton line which would encode information

about short distance physics even before p ∼MP .

2.4.2 Trans-Planckian Poles in general Theories of Gravity

In this section, the results of the previous section are extended to theories of gravity

in which the strong gravity scale is M∗ < Mp following our work in [8]. One can

show that for these cases the smallest distance which can be probed are larger than in

Einstein gravity. The black hole barrier is more efficient since there are no perturbative

elementary states with mass bigger than M∗. In order to show this the one-graviton

exchange analysis is still a good approximation up to the strong coupling scale M∗. In

fact, although large classical black hole are self-bound states, individual gravitons in

the field interact weakly. The binding potential is a collective effect of a large number

of gravitons N � 1 which together produce a strong gravitational field, cf. chapter

3. Therefore, they can be treated separately as weakly coupled. The proof is a direct

consequence of the fact that the scale of strong coupling M∗ defined by (2.8) also sets

the upper bound on the center of mass energy and the inverse impact parameter above

which the black hole formation starts.

The most straightforward way to show this is to start from the opposite end. Let us take

a large classical black hole of mass M and horizon RH . The only condition on RH is that

for momenta p = R−1
H gravity is in the weakly-coupled regime, αgrav(p = R−1

H ) � 1.

The relation between the horizon RS and M can be found from the condition that

h00(RH)/MP = 1. To be completely general, we employ a spectral representation of

h00 (2.16) with spectral density ρ(s) ≥ 0 to account for the additional degrees of freedom
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in the theory. The condition of having a horizon at RH can be written as

h00(RH)

MP
= 2

∫ ∞
0
ds
ρ(s)

M2
P

e−
√
sRH

RH
M = 1. (2.44)

Notice the Yukawa suppression for each massive state in the spectrum. The effective

gravitational coupling strength in Fourier space αgrav(p) can be represented by,

αgrav(p) =
(p2)2

M2
P

∫ ∞
0
ds

ρ(s)

p2 + s
. (2.45)

One can now start decreasing the mass of the black hole, until the horizon and the inverse

mass cross at RH = M−1. We shall denote the corresponding mass by M∗ ≡ L−1
∗ . Black

holes heavier than M∗ are in the classical regime. Accordingly, scattering processes with

center of mass energy M � M∗ and impact parameter � RH will lead to classical

black hole formation. The crucial point is that strong coupling is reached around the

energy M∗ [8]. As a consequence, there is no window above M∗ in which one can

probe αgrav(p) without encountering black hole formation. One can see this easily by

evaluating αgrav for momenta p = M∗ which is found to be of the same order as the

quantity h00(M−1
∗ )/MP :

αgrav(M∗) =
M2
∗

M2
P

∫ ∞
0
ds

ρ(s)

1 + s/M2
∗
∼ h00(L∗)

MP
= 2

M2
∗

M2
P

∫ ∞
0
ds ρ(s) e−

√
s/M∗ = 1.

(2.46)

The approximate equality follows from the fact that ρ(s) is a positive definite function

which gets exponentially cut off by a Boltzmann factor e−
√
sRH for poles s > M∗ because

they correspond to black holes. Here RH is the horizon of a classical black hole of mass

M =
√
s determined from (2.44). Accordingly, the integration effectively is cut off at

s = M2
∗ , and therfore, the difference between e−

√
s/M∗ and (1 + s/M2

∗ )−1 is negligible

rendering the integrands to be of the same order of magnitude.

2.4.3 On the Weakening of Gravity at the strong-coupling Scale

Summing up the previous findings we are lead to the following picture: By gradually

increasing the momentum transfer p in a scattering experiment one can probe stronger

gravitational couplings. By the time the momentum transfer reaches the scale M∗,

where gravity becomes strongly coupled, black hole formation starts to take over. Any

further attempt of increasing p will result in the formation of larger classical black

holes. The region beyond M∗ is thus outside of the reach of physical experiments in

principle. Therefore, any weakening of αgrav(p) for p � M∗ has no clear physical

meaning as it can never be probed. M∗ is only an upper bound on the threshold scale

of black hole formation, being M∗. Therefore our proof is insensitive to the details of

the theory and valid for any effective field theory of gravity with a cutoff scale M∗ <

MP . Approaching the threshold of black hole formation from the weakly coupled linear

domain, the one-particle exchange is a good approximation. The scale at which it

breaks down coincides with the scale of black hole formation and strong coupling. In

this way, a necessary connection between the strong coupling and the threshold of black
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hole formation emerges, which discloses the impossibility of probing physics at distances

shorter than L∗. We shall now illustrate our general conclusion on two examples [8].

An attempt of asymptotically safe gravity in four dimensions Consider a

theory where Einstein gravity is valid all the way up to the Planck scale. In this theory

M∗ ≡ MP . In the deep UV regime p → ∞ the theory is modified in such a way that

the gravitational coupling approaches a fixed point scaling, i.e. αgrav → α∞ = const, as

proposed in the Asymptotic Safety scenario [9, 10]. In order to investigate whether this

behaviour could have a well-defined physical meaning, one can define an interpolating

propagator of the form

∆(p) =
1

M2
P p

2

1

1 + p2

α∞M2
P

, (2.47)

which connects the IR propagator of Einstein gravity ∆(p) = 1
M2
P p

2 to the stipulated

fixed point behaviour ∆(p) → α∞
p4 for p � √α∞MP in the deep UV. In the UV limit,

one finds αgrav(p) = 16πGN (p)p2 ' α∞ > 1 and α∞ is constant. In order to probe

distances r ∼ 1√
α∞MP

, the center of mass energy needs to be of the order E ∼ √α∞MP

and the momentum transfer p ∼ E.

This example is similar to the scenario of an additional graviton of trans-Planckian mass

m which we considered in (2.31) and below. The only difference is that now the trans-

Planckian state has a negative norm. Let us ignore this sign for a moment since it does

not affect our argument about the impossibility of resolving the heavy mass pole. Black

hole formation cannot be influenced by the would-be asymptotically safe behavior in the

deep UV since for the dynamics of the formation of a black hole of size RH corresponding

to E ∼ √α∞MP , the ghost pole is decoupled and therefore irrelevant. As a consequence,

any attempt of probing the length scales L =
√
α∞
−1LP which correspond to the fixed

point regime results in the formation of a black hole of macroscopic size RH ' 2LP
√
α∞.

In this case, the black hole horizon is determined by [8]

h00(RH) = 2

√
α∞
MP

1

RH

[
1− α∞e−

√
α∞MPRH

]
= 1 , (2.48)

It is apparent that the existence of the heavy ghost pole at
√
α∞MP only affects the

value of the black hole horizon RH with exponentially weak corrections. Accordingly,

in an attempt to probe distances smaller than the Planck length LP , a black hole with

radius RH ' 2
√
α∞
MP

> M−1
P will be produced rendering the penetration of the trans-

Planckian region impossible. Asymptotic Safety is thus rendered irrelevant before it had

any chance to influence gravitational physics.

To conclude, the existence of the ghost pole, which was assumed to be responsible for the

Asymptotic Safety behavior, is rendered meaningless. Moreover, the UV-IR connection

of gravity indicates that it should not have been included in the first place. Indeed, as a

result of the black hole barrier, any physically sensible trans-Planckian state is mapped

to a macroscopic object from the IR region. However, in a consistent theory of gravity

there are no negative energy classical states and the ghost pole simply cannot have any
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IR counterpart. Thus it should be excluded as a conseequence of the self-consistency of

the theory.

Asymptotically safe gravity with a lower cut-off scale Next, we wish to con-

sider an extension to the previous example in which gravity becomes strong at a scale

M5 < MP . This happens whenever new (positive norm) gravitons open up at some

intermediate energies. A good example of this property is provided by five dimen-

sional Kaluza-Klein theories [112, 113], in which gravity becomes higher-dimensional

above the compactification scale Mc = R−1
c , cf. (2.25) and below. At short distances

r < Rc gravity can probe the extra dimension and becomes strong at distances of the

five-dimensional Planck length L5 = (Rc/M
2
P )

1
3 .

Due to the fact that at high energies gravity can probe the extra dimension, four dimen-

sional gravity becomes “weaker” at these energies. Such a behaviour could be thought

of to be similar to the Asymptotic Safety fixed point scenario, but the underlying rea-

son for its weakening is different. Once gravity can penetrate the extra dimension, the

gravitational flux lines will also extend into this dimension. Therefore, the gravitational

potential at these scales is determined by a five dimensional Gauss law which gives a

gravitational potential between two probes with masses M and m

V (r) ∝ Mm

M3
5

1

r2
. (2.49)

Here M5 ≡ L−1
5 is the five dimensional Planck scale. The potential with its ∝ 1/r2

behaviour falls of faster than the usual four dimensional potential which obeys ∝ 1/r.

From the point of view of the four dimensional theory, the underlying five dimensional

theory is imprinted into the tower of massive scalar Kaluza Klein states with masses

mn = n2/R2
c , where n is an integer number. These states couple universally to matter,

because they are a result of the compactification of the fifth dimension. They also

contribute to the scattering amplitudes of gravity and modify the propagator of these

theories in four dimensions according to

∆(p) =


(MP /M5)2∑

n=1

1

p2 + n2

R2
c

 , (2.50)

where RcM
3
5 ≡ M2

P . This means that above the scale 1
Rc

there is a tower of massive

gravitons, which makes gravity strong already at scale M5 instead of MP . Consequently,

the shortest observable length scale in this theory is L5 ≡M−1
5 .

Consider now such a theory equipped with a gravitational fixed point at scales p�M5.

The corresponding interpolating propagator is given by

∆(p) =


(MP /M5)2∑

n=1

1

p2 + n2

R2
c

 1

1 + p2

α∞M2
P

. (2.51)
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As in (2.47), there is a trans-Planckian ghost pole which mimics the fixed point be-

haviour. Additionally, there exists a black hole barrier at the strong coupling scale M5.

Correspondingly, also for this case, the ghost pole cannot be probed and remains un-

physical [8]. Indeed for energies required to probe the ghost pole, E ∼ √α∞MP , the

black hole horizon is macroscopic RH '
(
α∞Rc/M

3
5

) 1
4 �M−1

5 , and the associated state

belongs to the classical gravity region.

We have seen that also in this example Asymptotic Safety has no physical meaning.

The black hole barrier, which maps the trans-Planckian region to classical IR gravity,

precludes probing distances where the fixed point behaviour might become relevant.

2.4.4 Continuum Tails of Trans-Planckian Physics

After having discussed examples of isolated poles in the graviton propagator, we wish

to extend this discussion to the case where one includes a continuum of states [7]. Such

states could result in sub-leading corrections to the one particle exchange diagrams

represented by the decomposition (2.16), which seemingly may be probed in the deep

IR. In particular, let us focus on sub-leading corrections that would make gravity slightly

weaker.

For clarity, let us consider General Relativity with a strong gravity scale MP and a

perturbation to the Newtonian potential of the type

V (r) = GN
mM

r

(
1− L2

r2
+O

(
L3

r3

))
. (2.52)

In fact, this potential has been considered, for example, as the correction to the New-

tonian physics within the Asymptotic Safety scenario for gravity [114]. The 1-loop

correction to the Schwarzschild metric in an effective field theory approach studied in

[115, 116] was also found to be of this type.

The negative contribution ∼ L2/r3 can be understood as the result of an exchange of a

continuum tower of ghost states. This can be easily seen when rewriting (2.52) as, cf.

[117],
V (r)

m
' GNM

[
1

r
− L2

∫ ∞
0

dm̃
e−m̃r

r
m̃

]
. (2.53)

The second term is nothing else than a sum over a continuum of massive particles. Going

to Fourier space one readily obtains

V (p)

m
' GNM

[
1

p2
− L2

2

∫ ∞
0

ds
1

p2 + s

]
. (2.54)

In other words, the potential (2.52) can be understood in terms of the exchange of

a massless graviton and an infinite tower of equally distributed massive ghosts with

a constant spectral density ρ(s) = L2/2. Performing the integral in (2.54), one can

think of this potential as the usual Newtonian potential V (r) ∝ GN/r where Newton’s
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constant, GN , is no longer constant but momentum dependent corresponding to

GN (p) = GN [1− L2p2 ln p] . (2.55)

Such a behaviour would make gravity weaker at high energies.

If L � LP , the contribution from the ghost tower dominates at scales much larger than

LP , and the theory is already unreasonable in the IR. Under these circumstances, the

continuum correction (2.52) cannot exist in a consistent theory. In the opposite limit, if

L � LP , for any classical black hole the correction from the ghost tower is subdominant

to the first non-linear correction from the massless graviton, which according to (2.38)

goes as ∼ R2
s/r

2. Thus the ghost tower cannot affect the black hole formation and the

black hole barrier cannot be altered. Consequently, the trans-Planckian members of the

continuum are also shielded by the black hole barrier making them either unphysical

or simply inconsistent [8]. Hence, there is no domain in which the potential (2.52) is a

sensible description of physics.

A seeming way out of the impossibility of probing UV distances would be to construct

a scattering experiment with center of mass energy E < M2
PL and impact parameter

b < L, i.e. momentum transfer p > M2
PL. In this region, from the expanded potential

(2.52) it seems that black holes cannot form. However, such an experiment cannot be

performed in principle. As the impact parameter needed is smaller than the Compton

wavelength of the particle of mass M = E, these center of mass energies can never

probe distances ∼ b. According to the Heisenberg principle, energies E can only probe

distances ∼ 1/E. Hence, the minimal distance such an experiment can probe is E−1 >

(LP /L)LP which greatly exceeds LP . Once again, the Planck scale turns out to be

impenetrable.

2.4.5 Sub-Planckian Experiments

In this section, we consider the question of whether trans-Planckian physics can be ob-

served by preparing a scattering experiment at scales in which possible modifications

of gravity are already important [8]. Such a scenario was proposed in [118]. The au-

thors envisioned an experiment prepared at distances shorter than the strong gravity

scale. They investigated whether the hoop conjecture may be violated thus enabling a

resolution of sub-Planckian scales without the black hole barrier being able to interfere.

Suppose the experiment could indeed be set up without black hole formation such that

an asymptotic observer can detect some output from the experiment. This then implies

that a degree of freedom with energy larger than the Planck mass has to leave a sphere

of radius LP before reaching the detector. The degree of freedom has to have a mass

M > L−1
P as otherwise it is not a probe of this small distance region and could not have

been localized within it. As soon as it crosses the radius LP , a black hole forms since then

gravity is in the weakly coupled regime and thus described by Einstein gravity. However,

if there was no black hole before, this would be in contradiction to the conservation of

energy which is manifest on an asymptotically flat background. An asymptotic observer
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may now draw a sphere around the region of the experiment and continuously monitor

the energy inside the sphere by measuring the Gaussian flux at infinity. Therefore,

the only way of conserving the flux at infinity is to exclude the absence of the black

hole during the setup and course of the experiment. We thus conclude that at best the

experiment was prepared inside of an already existing black hole.

Taking a slightly different perspective, one can say that energy cannot be localized within

a distance L � LP when information (encoded in energy) crosses outside this region

without causing a surrounding gravitational field of a black hole. Imagine for example

an extreme case in which the gravitational force vanishes at some scale L � LP and

take a spherical shell placed entirely inside this region. Although this shell has positive

energy, it does not gravitate as long as its radius R � L. Naively, one would conclude

that there is no gravitational field outside the sphere such that an asymptotic observer

would see only flat space. Now, let the shell communicate with an outside observer by

expanding and crossing outside the L sphere. At some point, this sphere will cross into

a R > L region. Since the energy of the shell is trans-Planckian, it has to form a black

hole. However, the black hole cannot appear out of nothing because of the conservation

of the Gaussian flux at infinity. Consequently, a black hole must have been formed from

the very beginning when the experiment has been set up.

2.4.6 Infrared Scales

For definiteness, we limited the treatment of self-completeness of gravity to theories

which flow to Einstein gravity on asymptotically-flat spaces in the deep IR. Nonetheless,

a theory may contain an infrared scale LIR beyond which this assumption breaks down.

For example, this could be the scale of a small background curvature like the cosmological

constant, or something more profound. Since the existence of such a scale might modify

the properties of black holes, the connection between deep-UV gravity and classical IR

black holes can also be affected. Nonetheless, one can still expect the above conclusions

to holds in the energy interval between 1/LIR and LIR/(2L
2
P ), the latter value being

set by the mass of an Einsteinian black hole with Schwarzschild radius equal to LIR, see

also Fig. 2.3.

If LIR is a curvature radius produced by a positive cosmological constant, we expect

the concept of a minimal length to be unaffected. If anything, positive curvature makes

it harder to probe short distances, since for a given mass the effective Schwarzschild

radius is increased on de Sitter. For example, the time component of a static metric in

Schwarzschild coordinates is then given by

g00 = 1− 2GN
M

r
− r2

LIR
. (2.56)

For the observed cosmological constant, LIR = 1028cm, the deviation from the flat

space case only appears for energies comparable to the mass of the observable Universe

and can thus safely be ignored. If, on the other hand, LIR is related to a negative

cosmological constant, the issue is more subtle and one may consider the concept of
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AdS/CFT correspondence [119–121]. This poses an interesting problem on its own but

is beyond the scope of this thesis.

2.5 Summary

In [7], it was argued that quantum gravity might be fully described by light degrees of

freedom and that in this sense Einstein gravity can be considered self-complete. Follow-

ing this idea, we have shown that this self-completeness property, which is built-in in

Einstein gravity, persists for a wide class of its deformations. The basic reason for this

universal self-completeness is the non-existence of trans-Planckian propagating degrees

of freedom. Any would-be trans-Planckian pole is mapped to a classical IR state which

is described by low-energy degrees of freedom of the IR theory.

This remains true in the presence of black hole evaporation if one assumes that it is

fully described by low energy physics. For a more detailed account on this matter we

refer to chapter 3. This assumption is backed by noticing that, in order to see trans-

Planckian corrections to Hawking evaporation, one should integrate in an operator of

mass larger than the Planck scale. However, this operator defines a particle of Compton

wavelength smaller than the black hole horizon in the weakly coupled region, so that such

an operator can only integrate in other black holes, which are again classical objects.

As a consequence, we have seen that the same properties that make Einsteinian grav-

ity self-complete in the deep UV also render many attempts of a conventional UV-

completion in the trans-Planckian region physically meaningless. We have focused on

the class of attempted UV-completions which are based on the ideas of an asymptotic

weakening or of Asymptotic Safety. We have shown that in Einstein gravity and its

ghost-free deformations there is essentially no energy interval in which such ideas can

be realized in a physically clear way. We have found that, in both cases, the necessary

condition is that a weakening (or safety) can only take place within the strong gravity

domain. Additionally, we have shown that in ghost-free extensions of Einstein gravity

this domain includes the regime where gravity starts to be mapped to the IR region due

to black hole formation. In other words, there is no interval of distances in which gravity

may be strongly-coupled but not shielded by the black hole barrier. Therefore, such UV

completions could only be meaningful if they could be mapped to IR physics. However,

the states responsible for an asymptotic weakening have negative norm and hence, they

cannot be mapped to well-defined IR states. We did not address the question of a con-

nection between the self-completeness of gravity and a string theoretic completion. This

is an interesting problem on its own and we refer the reader to [7] and references therein.





Chapter 3

Black Holes as

Bose-Einstein-Condensates

In the previous chapter 2, we have elaborated that Einstein’s theory of General Relativity

is self-complete in a non-Wilsonian way. Due to black hole formation in high-energy

scattering, distances shorter than the Planck length LP (or L∗ in a theory with lower

cutoff) cannot be probed. Unitarity violation is avoided as the decay of a black hole

in highly energetic states is exponentially suppressed. If gravity is indeed self-complete

in this sense, also black hole physics must be describable within Einstein’s theory when

treated on a quantum level.

Such a picture has been put forward in [18–20, 122] where Dvali and Gomez argued

that black holes can be described as Bose-Einstein condensates of N � 1 self-bound

gravitons of wavelength of order of the Schwarzschild radius λ = RS . Furthermore,

this condensate is thought to be at the critical point of a quantum phase transition

which is usually accompanied by large quantum correlations necessitating a quantum

description beyond a mean-field treatment. As a result, if the black hole is described as

such a state, some of its properties cannot be recovered in the semi-classical treatment of

General Relativity. The corresponding microscopic theory of self-bound N gravitons can

provide a framework within which some of the mysterious properties of black hole physics

such as the information paradox [14] and the origin of entropy [12] can be addressed.

In this chapter, we want to investigate certain properties of the black hole condensate

picture of [18, 19] by using a toy model inspired by condensed matter physics. In section

3.1, the quantum N-portrait of black holes [18] is reviewed and the notation is set up.

Section 3.2 serves as a simplified introduction to the theory of Bose-Einstein condensates

and the notion of the black hole as a condensate at a critical point [19] is introduced.

We establish a toy model of a collapsing condensate which stays at the critical point

throughout its evolution in section 3.3. We also derive the Bogoliubov spectrum for the

lowest excitations around such a solution.

37
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3.1 Self-bound Graviton Condensates

Let us review the most important ideas of the so-called quantum N-portrait of black

holes [18]. Its description rests on the fact that one should consider a black hole to be

a bound state of N � 1 gravitons of wavelength λ =
√
NLP interacting weakly with

strength α = 1/N .

The occupation number N can be used as a measure of classicality [123]. Quantum

mechanically, (semi)-classical objects are then described by states with a large N � 1.

In quantum field theory the occupation number N counts the number of quanta in a

given field configuration. Examples are the number of photons in an electric field or in

the present case the number of gravitons in a gravitational field.

The gravitational field produced by a source of mass M and size R is given to leading

order by φ = −RS/r for r ≥ R and φ = RS/2(r2/R3 − 3/R) inside R, where RS =

2~M/M2
P is the Schwarzschild radius. The occupation number of gravitons in this field

is [18]

N ' 1

~
MRS '

M2

M2
P

. (3.1)

The measure of classicality N then implies that for large masses M �MP the gravita-

tional field is classical consistent with the expectation that macroscopic gravity is well

described by General Relativity.

In terms of individual gravitons, the energy of the gravitational field is given by

EG ∼
MRS
R
∼
∑
λ

~Nλλ
−1 , (3.2)

where Nλ counts the number of gravitons of energy ~λ−1. The maximum number of

quanta in this field configuration is obtained when the distribution is peaked at λ ∼
R. The assumption that the energy is distributed equally among the gravitons leads

therefore to the proclamation that to leading order the gravitational field consists of

N ∼ EGR/~ = M2/M2
P gravitons of wavelength R [18, 124].

For a given size R of the source, the number of constituent gravitons [18] is maximized

by a black hole with R = RS , as this is the minimal radius the energy M can be

compressed into. Increasing the number of gravitons N (and therefore M) in a black

hole invariably enlarges its radius RS . For this reason, black holes comprise the most

densely packed states of gravitons. According to (3.2), at this point the gravitational

energy becomes equal to the energy of the source for a black hole which consequently

forms a self-sustained system of N gravitons. Independently of the composition of the

source, N becomes a universal quantity for the black hole which describes its dynamical

characteristics [18].1 In the spirit of Birkhoff’s theorem, N assumes the role of the mass

M as the universal defining parameter of the black hole. Interestingly, the occupation

1Notice that in case of charged or rotating black holes, N does of course not fully describe the black
hole, but there will be additional parameters like, for example, the number of charged constituents NB .
However, here we are only concerned with Schwarzschild black holes.
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number N also captures the quantum hair associated with the black hole, and rather

than being exponentially weak, these hair are only suppressed by factors 1/N [20].

To summarize the quantum N-Portrait, we recap the defining features of a black hole of

mass M described as a self-sustained graviton condensate [18]. The occupation number

of gravitons in the field is defined

N =
M2

M2
P

=
R2
S

L2
P

, (3.3)

where the Planck length is defined by LP = 1/(~MP ). The energy or mass of the black

hole is determined by the N constituent gravitons [18]

M =
√
N

~
LP

=
√
NMP , (3.4)

which are to leading order of wavelength

λ = RS =
√
NLP . (3.5)

These gravitons are weakly interacting with a dimensionless coupling strength given by

[18]

α =
L2
P

λ2
=

1

N
. (3.6)

Although for large N the individual coupling strength of gravitons is very small, such

a bound state can exist for arbitrary N due to the collective potential produced by

the N − 1 other gravitons. This collective binding potential can be described by a

Hartree approximation to leading order. Because of the weak interaction strength of the

individual gravitons, one can assume that the wave function of the N -particle system

Ψ(r) is well approximated by a product of the single-particle wave functions ψi(r)

Ψ(r) =

N∏
i=1

ψi(r) . (3.7)

In this approximation one graviton is subject to a collective potential which is given by

the sum over all individual contributions [18]

V (r)
∣∣
r&λ = −

N∑
i=1

~α
1

r
= −N~α

1

r
. (3.8)

Note that a particle of wavelength λ effectively does not feel a potential varying on

scales smaller than its own wavelength. For a graviton of wavelength λ, this potential

becomes maximally deep at a distance r = λ. It then follows that such a bound state

cannot provide any probe of trans-Planckian physics since its constituents are gravitons

of wavelength λ = RS & LP . In this regard it can be stipulated that trans-Planckian

physics is physics of large occupation number N . Probing short distances L � LP
results in the formation of a macroscopic black hole with occupation number N � 1.

Independently of whether the source is a classical macroscopic object which itself has
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a large occupation number or whether the black hole is produced from a two particle

scattering experiment, the outcome is universally defined by the center of mass energy

M determining the number of gravitons in the field N = M2/M2
P .

Notice that the bound state, however, is leaky. The escape energy of one graviton is

given by Eesc = ~λ−1 which is exactly the energy of a single graviton in the condensate.

Thus any scattering with non-zero momentum transfer among the gravitons will take

one graviton out of the condensate and into the continuum [18]. Following such an

event the black hole consists of N − 1 gravitons which redistribute their energy in such

a way that, again, the black hole is a bound state of now N ′ = N − 1 gravitons of

wavelength λ′ =
√
N − 1LP interacting with strength α′ = 1/(N−1) according to (3.6).

This is one of the pecularities of gravity and should be contrasted with the cold atoms

scenario discussed in 3.2; due to the momentum dependent coupling strength α for any

N & 1 such a bound state of gravitons exist. The evaporation process will continue in

a self-similar way until the black hole condensate disappears.

3.1.1 Leakiness and Hawking Evaporation

From phase space arguments it follows that the most probable scattering is a 2 → 2

scattering of gravitons during which one of them gains the escape energy ∼ ~λ−1. The

rate for such a process is given by [18]

Γ '
(
N

2

)
α2 ~√

NLP
' N2 1

N2

~√
NLP

, (3.9)

where the first factor is a combinatorical factor from the fact that we have N gravitons

of which two should scatter. Of course, also three or more gravitons can scatter and

take a graviton into the continuum which is of higher energy, but these processes are

suppressed by higher powers of 1/N . For example, the next-to-leading order process of

scattering a graviton of energy ∼ 2~λ−1 into the continuum happens via a consecutive

scattering of three gravitons which yields Γ ' 2~N3/(N4
√
NLP ). The total emission

rate is thus an expansion in 1/N and to leading order determined by

Γ =
~√
NLP

+
~
LP
O(

1
√
N

3 ) (3.10)

which sets the characteristic time scale ∆t = ~Γ−1 during which one graviton of wave-

length
√
NLP is radiated away. The rate of depletion following from this analysis is

[18]
dN

dt
= − 1√

NLP
(3.11)

and can be recast into the more familiar evaporation rate for a black hole by taking into

account (3.4)
dM

dt
= − ~

NL2
P

. (3.12)
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One can then define a temperature for large N , T = ~/(
√
NLP ), which reproduces the

thermodynamic temperature for a black hole of mass M , TB ' ~/(GNM) ∼ M2
P /M

(see [13, 14, 125] and references therein), where GN is the Newton constant.

Finally, in order to make a connection with Hawking radiation, one may take the semi-

classical limit in which Hawking performed his computation [14]. In the double-scaling

limit

N →∞, LP → 0, L ≡
√
NLP = fixed, ~ 6= 0 , (3.13)

one recovers the Stefan-Boltzmann law for the depletion of the leaky condensate

dM

dt
∼ −1

~
M4
P

M2
∼ − 1

~3
R2
ST

4
B . (3.14)

Note that dM
dt does not diverge in the classical limit ~ → 0 but rather goes to zero,

because M2
P = ~G−1

N → 0 as ~ → 0. The black hole temperature therefore scales as

TB ∼ ~ when all other classical quantities remain constant in the limit ~→ 0.

The most probable wavelength of an emitted graviton is λ ∼ RS which is in agreement

with the thermal Hawking spectrum. The exponential suppression of high frequency

modes can be argued to arise from a cascade of k scattering events that are necessary

to produce a highly energetic graviton of wavelength k−1RS [18].

3.2 Condensates at the critical Point

The second important observation made by Dvali and Gomez is the fact that the graviton

Bose-Einstein condensates lives right at a critical point of a quantum phase transition.2

Although two gravitons individually interact very weakly with α ∼ 1/N , cf. (3.6),

the effective potential each graviton feels is made up from N gravitons resulting in a

collective strength αN = 1. Remarkably, this condition characterizes the point of a

quantum phase transition in a simple nonrelativistic bosonic system, see, e.g., [21, 128].

The suggested analogy to nonrelativistic Bose-Einstein condensates at the critical point

could help to resolve some of the mysteries of the semi-classical treatment of black hole

physics. A fundamental aspect of a quantum phase transition is the existence of large

quantum correlations, which are manifest in the appearance of almost gapless collective

excitations (the Bogoliubov modes). In addition to being responsible for the instability

of the condensate at the critical point, they account for its quantum depletion and

the (near) degeneracy of the quantum states of the condensate. These properties, if

carried over to the black hole description, could provide a microscopic explanation for

such phenomena as black hole evaporation, entropy and also holography. In the semi-

classical limit, however, these features become infinitely hard to resolve as the number

of constituents N becomes infinite.

2We will use the terms critical point and bifurcation point invariably as we want to be able to make
a connection between the one-dimensional cases studied in [126, 127] to the three-dimensional situation
we will establish in section 3.3.
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For a bound state of size R ∼ λ consisting of N gravitons of wavelength λ the total

kinetic energy is given by

〈Ek〉 = N
~
λ
, (3.15)

and its potential energy reads

〈V 〉 = −~N2α

λ
. (3.16)

Minimizing the total energy 〈Ek + V 〉 leads to

d 〈Ek + V 〉
dR

= (1− αN)
~
R

= 0 . (3.17)

It follows that the graviton condensate can form a self-sustained bound state if αN = 1.

This is what was called maximal packing before. The size of the condensate can be

obtained from the virial theorem 〈Ek〉 ∼ 〈V 〉, and it is given by the wavelength of the

gravitons λ =
√
NLP recovering (3.5).

To establish a connection between the graviton condensate and nonrelativistic Bose-

Einstein condensates encountered in condensed matter physics, it is instructive to first

briefly recap some basic facts about Bose-Einstein condensates. A nonrelativistic inter-

acting Bose gas is described by a many-body Hamiltonian of the form

Ĥ =

∫
d3rΨ̂†(~r)

[
~2

2m
∇2 + Vext(~r)

]
Ψ̂(~r)

+
1

2

∫
d3rd3r′Ψ̂†(~r)Ψ̂†(~r′)V (~r − ~r′)Ψ̂(~r)Ψ̂(~r′) , (3.18)

where Ψ̂†(~r) and Ψ̂(~r) are the creation and annihilation operators of bosons of mass

m, and Vext(~r) is an external potential which we will set to zero in this section. The

potential V (~r − ~r′) describes the interaction of two bosons at positions ~r and ~r′. The

density is normalized according to∫
d3r〈Ψ̂†(~r)Ψ̂(~r)〉 =

∫
d3r〈N̂(~r)〉 = N , (3.19)

where N̂(~r) is the number density operator and N the total number of bosons.

The real-space field operator can be expanded in the basis of the single particle operators

âα which span the Fock space of the noninteracting theory

Ψ̂(~r) =
∑
α

ψα(~r)âα

Ψ̂†(~r) =
∑
α

ψ∗α(~r)â†α , (3.20)

where the ψα(~r) are the one-particle wave functions. The operators âα obey the standard

commutation relations [129]

[âα, âβ] = [â†α, â
†
β] = 0 , [âα, â

†
β] = ~ δα,β . (3.21)
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Bose-Einstein condensation is signalled by one state (which we denote w.l.o.g. by â†0)

becoming macroscopically occupied with occupation number N0 such that in the ther-

modynamic limit N → ∞ the ratio N0
N 6= 0. In this case states which have occupation

numbers N0 ± 1 and N0 are indistinguishable and it can be shown (see e.g. [129]) that

the creation and annihilation operator for such a state commute. One can therefore re-

place them by an ordinary c-number â0 = â†0 '
√
N0. The classical wave function ψ0(~r)

takes the role of an order parameter and the global U(1) phase symmetry of Ψ̂(~r) is

spontaneously broken. The field operator can then be expanded around its macroscopic

expectation value ψ0 = 〈Ψ̂(~r)〉

Ψ̂(~r) = ψ0(~r) + δψ̂(~r) . (3.22)

The density of the condensate is given by n0(~r, t) = |ψ0(~r)|2 and normalized to
∫
d3r|ψ0(~r)|2

= N0 ' N . For a homogeneous condensate in a volume V the wave function of the con-

densate is φ0(~r) =
√
N0/V '

√
N/V .

Upon promoting the field operators Ψ̂(~r) to be time-dependent according to the Heisen-

berg picture, the evolution of Ψ̂(~r, t) is given by the Heisenberg equation of motion

i~∂tΨ̂(~r, t) = [Ψ̂(~r, t), Ĥ] =

[
−~2∇2

2m
+ Vext +

∫
d3r′Ψ̂(~r′, t)V (~r − ~r′)Ψ̂(~r′, t)

]
Ψ̂(~r, t) .

(3.23)

This equation is so far exact. If 〈δψ̂(~r, t)〉, or equivalently the relative depletion of the

condensate (N − N0)/N0, is small, the ground state of the condensate can be well ap-

proximated by setting Ψ̂(~r, t) ' ψ0(~r, t). Since V (~r − ~r′) shall denote a short-range

interaction potential, in the low-energy limit it may be replaced with a contact interac-

tion V0δ(~r−~r′). In the weak coupling limit, the interaction is determined by the s-wave

scattering length a and V0 = 4π~2a/m. It is attractive for a < 0 and repulsive for a > 0.

This approximation holds as long as the momenta of the bosons are small compared to

the inverse range of the interatomic interaction, which is the case for |a|3N/V � 1 at

zero temperature.

Inserting this mean-field approximation yields the time-dependent Gross-Pitaevskii equa-

tion [130, 131]

i∂tψ0(~r, t) =

[
−∇

2

2m
+ Vext + V0|ψ0(~r, t)|2

]
ψ0(~r, t) , (3.24)

where we set ~ = 1 from now on.

The Gross-Pitaevskii equation can equally be derived from an action principle within

a field theoretical approach. The real-time action for a gas of nonrelativistic bosonic

particles is

S[Ψ∗,Ψ] =

∫ ∞
0

dt

∫
d3r

{
Ψ∗(~r, t)

(
i∂t −

∇2

2m
+ Vext − µ

)
Ψ(~r, t) +

1

2
V0|Ψ(~r, t)|4

}
,

(3.25)

where we switched to the grand-canonical ensemble Ê = Ĥ−µN̂ . The chemical potential

is defined by µ = ∂E
∂N . The mean-field equation of motion for the condensate wave
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function Ψ(~r, t) = ψGC0(~r, t) can be derived by varying (3.25) with respect to ψGC0(~r, t).

To obtain (3.24) from this one needs to solve the constraint from the chemical potential

and perform the field redefinition Ψ(~r, t) → eiµtΨ(~r, t). In the following, we drop the

subscript differentiating between the canonical and the grand-canonical formalism and

keep in mind that one can always change between the descriptions using the above

recipe.

For the time-independent condensate ground state, which corresponds to the saddle

point of the action (3.25), µ can be determined by the condition that the linear fluctu-

ations about ψGC0(~r) vanish, i.e. 〈δψGC(~r, t)〉 = 0. This leads to the time-independent

Gross-Pitaevskii equation [130, 131]

µψ0(~r) =

[
−∇

2

2m
+ Vext(~r) + V0|ψ0(~r)|2

]
ψ0(~r) . (3.26)

For attractive interactions in three dimensions the Bose-Einstein condensate can only be

stabilized for a nonzero trapping potential Vext or within a box of size L. Nevertheless,

the condensate is only metastable, because the attractive force lowers the interaction

energy if the density grows around its center which can eventually overcome the kinetic

pressure of its gradient.

3.2.1 Bogoliubov Excitations

Once one has obtained the stationary condensate solution ψ0(~r) of (3.24), one can anal-

yse the effect of quantum fluctuations about this solution. To this end the field is

decomposed according to Ψ(~r, t) = ψ0(~r) + δψ(~r, t). Separating positive and negative

frequency ω excitations, δψ(~r, t) can be written as

δψ(~r, t) = u(~r)e−iωt + v∗(~r)eiωt . (3.27)

Inserting this decomposition into (3.25) and using (3.26), one can derive the equations

of motion for u(~r) and v(~r)

ωu(~r) = [H0 − µ+ 2V0ψ
2
0(~r)]u(~r) + V0ψ

2
0(~r)v(~r) (3.28)

−ωv(~r) = [H0 − µ+ 2V0ψ
2
0(~r)]v(~r) + V0ψ

2
0(~r)u(~r) , (3.29)

where H0 = −∇2

2m + Vext(~r). These are the celebrated Bogoliubov-de Gennes equations

[132].

In an operator approach they can equivalently be derived by decomposing the fluctuation

operator

δψ̂(~r) =
∑
i

(ui(~r)α̂i(t) + v∗i (~r)α̂
†
i (t)) , (3.30)

and deriving the Heisenberg equation of motion (3.24) for Ψ̂(~r, t) = e−iµt(ψ0(~r) +

δψ̂(~r, t)). The Hamiltonian for the fluctuations is diagonal in the basis of the Bogoliubov

modes α̂, α̂† where the coefficients u(~r) and v(~r) fulfill (3.28) and (3.29). For standard
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commutation relations for âi and â†i , the u(~r) and v(~r) are normalized according to∫
d3r

[
ui(~r)u

∗
j (~r)− v∗i (~r)vj(~r)

]
= δij . (3.31)

For a homogeneous condensate with periodic boundary conditions, the single particle

wave functions are plane waves ψα(~r) = 1√
L3
ei
~k~r, with ~k = 2π~n/L and ni = 0,±1,±2, . . ..

The ground state wave function is constant, ψ0(~r) =
√

N
L3 = ψ0, and the chemical

potential is given by µ = V0|ψ0|2. The spectrum of the Bogoliubov excitations is then

ω~k =

√√√√ ~k2

2m

(
~k2

2m
+ 2V0|ψ0|2

)
, (3.32)

and Ĥ =
∑

~k
ω~kα̂

†
~k
α̂~k. Now, one can estimate the number of particles depleted from the

condensate into excited states. It is

N −N0 = N ′ = 〈δψ̂†(~r)δψ̂(~r)〉 =
∑
~k

|v~k|
2 , (3.33)

which gives

N ′ =
∑
~k

1

2

(
~k2

2m + V0|ψ0|2

ω~k
− 1

)
(3.34)

for a homogeneous condensate with ω~k given by (3.32).

For attractive interactions the depletion of a homogeneous Bose-Einstein condensate

in a box of size L3 diverges for a certain value of the coupling strength V0N0 ' L
m .

At this point the first excitation becomes gapless and consequently the ground state

unstable. In one dimension this value corresponds to the critical point of a quantum

phase transition, where the uniform ground state develops into a bright soliton; see for

example [21, 133] and references therein. Interestingly, the divergence of the depletion is

an artifact of the mean field approximation used in deriving (3.34). It was shown in [133]

using an exact diagonalization method that for a one-dimensional Bose gas although the

depletion becomes maximal it remains finite at the phase transition point. Additionally

the lowest Bogoliubov excitation is gapped of order ∼ N−
1
3 and the Goldstone mode in

turn becomes gapless as ∼ 1/N . The results of mean field theory becomes only exact in

the limit N →∞.

Precisely this is the key point for the black hole correspondence. In (3.10) and below

we argued along the lines of [18] that the black hole semi-classical description is only

correct up to 1/N corrections and that many puzzling properties of black holes thus

are due to the inexact description in semi-classical physics [18–20]. The same happens

for the critical point of a quantum phase transition. Mean field theory corresponding

to a semi-classical treatment cannot capture the correct physics of the phase transition

and is always corrected by factors of O(1/N). If a black hole could indeed be described

as a Bose-Einstein condensate at the point of a quantum phase transition, it is clear

that quantum fluctuations are important at order 1/N instead of the usually assumed
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exponential suppression e−N [134, 135]. These corrections could provide a mechanism

to resolve the information paradox [14] as their accumulated effect tends to be of order

one over the lifetime of the black hole.

Inspired by the work [18, 19], the two papers [126, 127] investigated further properties

of a one dimensional Bose-Einstein condensate at the critical point. It was shown that

quantum correlations are important close to the critical point also for large N [126].

Furthermore it was found [126] that the fluctuation entanglement of modes is peaked at

the critical point and is long-range. In [127], it was established that the instabilities at

the critical point lead to a logarithmic quantum break time (see references in [127]), i.e.

the time it takes to depart O(1) from mean field theory, which can enhance the effects

of the 1/N quantum corrections quickly. The quantum break time was connected to

the so-called scrambling time [136]. It was argued that if these results could be carried

over to the black hole picture, black holes would behave according to the fast scrambling

conjecture [136, 137].

3.2.2 Black Holes at the critical Point

The energy functional of a localised Bose-Einstein condensate, say of Gaussian form of

width L, can be approximated by

〈H〉 =
1

2m

N

L2
− |V0|

2

N2

L3
, (3.35)

using the normalisation of the condensate wave function (3.19). This functional has an

extremum at |V0|N ' L/m. If the collective potential energy ∼ V0N is larger than this,

the condensate collapses.

The black hole equations (3.15) and (3.16) can be recovered from (3.35) via the replace-

ment

m→ 1

L
, and V0 → −αL2 . (3.36)

Around such a condensate, the excitations are given by (3.32) which in terms of the

black hole variables can be written as [19]

ω~n =
1√
NLP

√
~n2(~n2 − αN) . (3.37)

Here ~n denotes the unit vector of the momentum in ~k-direction defined above (3.32).

The depletion is determined by (3.33) and yields in the black hole picture [19]

N ′ =
∑
~n

1

2

(
~n2 − 1

2αN√
~n2(~n2 − αN)

− 1

)
. (3.38)

In this picture the critical point corresponds to α = 1/N which was precisely what was

postulated as interaction strength in (3.6). Taking into account 1/N corrections, it was
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shown in [19] that the depletion at the critical point obeys

N ′ ' |v1|2 '
√
N , (3.39)

and the energy gap of the first Bogoliubov mode goes as

ω1 '
1

NLP
. (3.40)

Since the depletion decreases for higher momentum modes as inverse ~n2, it is sufficient

to consider the first mode to gain qualitative insight.

The evaporation law (3.11) can be derived by assuming that the depleted bosons are

coupled to the continuum and can leave the condensate. The depletion of a black hole is

given by (3.38) and it takes the time δt = Γ−1, see (3.9), to scatter one pair. Therefore

to scatter
√
N gravitons takes

√
Nδt and the depletion leads to the same evaporation

law as (3.11).

One of the important differences between the black hole condensate and generic cold

atom condensates lies within the coupling α and V0. For cold atomic gases, V0 is an

external parameter which depends on the interactions of the specific atoms but is inde-

pendent of the number of bosons N . Therefore, the criticality condition V0N ' L
m can

only be achieved for one specific value of N for a given V0.

In gravity, however, the situation is different as α depends precisely in such a way on N

that (to leading order) the criticality condition αN = 1 can be satisfied for any N [19].

Therefore, a black hole can be understood as a Bose-Einstein condensate at the critical

point of a phase transition. It always remains critical as the evaporation of one graviton

N → N − 1 takes the black hole to another critical condensate by readjusting its size.

In this sense, simultaneous depletion and collapse take care of the criticality condition.

The collective, almost gapless quantum excitations of the condensate (3.37) can provide

the quantum holographic degrees of freedom which were suggested to be responsible for

the black hole entropy in [18]. At the critical point, they become almost gapless. If

there exist N such modes which are maximally gapped as 1
N , there are NN black hole

microstates which are indistinguishable. Therefore, the entropy of a macroscopic black

hole described by the number of constituents N scales as S ' N logN [19] and the

leading order thus reproduces the Bekenstein entropy ∼ R2
S/L

2
P [12].

3.3 A collapsing Condensate as a Black Hole Toy Model

In order to further establish the analogy between the cold atomic system and the graviton

condensate, we propose a toy model describing a collapsing Bose-Einstein condensate in

three (spatial) dimensions which constantly emits particles during its evolution. In the

context of cold atoms such a system has previously been studied, e.g., in [138]. To make

a connection with black hole physics, we demand that the Compton wavelength of the

bosons is determined by the size of the condensate. Such a system makes it feasible to
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model a condensate which collapses and simultaneously evaporates while always staying

at the critical point. It thus provides a nice playground to study other postulated

features of the black hole condensate picture such as the appearance of nearly gapless

Bogoliubov modes, which we will compute in the last part of this chapter.

3.3.1 Collapsing Bose-Einstein Condensate

In this subsection the equations describing the dynamical evolution of an attractive

Bose-Einstein condensate will be introduced. These have been derived in [138] which we

will follow closely; see also references therein for earlier work.

The contact interaction in (3.25) is a valid description given by the mean-field Bogoliubov

approximation, which is appropriate at low temperatures and considers the interactions

to be dominated by two-body s-wave scattering. It does, however, not capture some of

the physics that can occur within an inhomogeneous condensate. One aspect is that

the incoherent elastic scattering of two particles can lift one of the particles out of

the condensate. Notice that such a process is forbidden in a homogeneous condensate

by momentum conservation. In an inhomogeneous condensate, however, these kind of

scattering events lead to an actual leakage of the condensate.

The rate of the loss of atoms of a condensate generically is given by the imaginary part

of the interaction energy [138]

dN0(t)

d t
= 2Im[Eint(t)] . (3.41)

Within the Bogoliubov approximation the interaction energy is given by

Eint(t) =
V0

2

∫
d3r|ψ0(~r, t)|2 , (3.42)

which is real and thus cannot describe the emission of bosons from the condensate. It

can be shown that the two-body interaction matrix T 2B = V0 used in the Bogoliubov

approximation should be replaced by the many-body interaction matrix TMB which

describes also incoherent collisions. The resulting effective action is given by the so-

called Caldeira-Leggett model [139] featuring the many-body interaction matrix which

acquires an imaginary part [140, 141].

In momentum space, the two-body interaction is

Eint =
1

2

4∏
i=1

∫
d3ki
(2π)3

ψ∗0(~k4)ψ∗0(~k3)(2π)3δ(~k4 + ~k3 − ~k2 − ~k1)V0ψ0(~k2)ψ0(~k1) , (3.43)

whereas the imaginary part of the many-body interaction reads [140, 141]

Im[TMB(~k1,~k2,~k3,~k4)] =

−2πV 2
0

∫
d3k

(2π)3
δ(ε(~k2)+ε(~k1)−ε(~k)−ε(~k1+~k2−~k))ψ∗0(~k4+~k3−~k, t)ψ0(~k1+~k2−~k, t) ,

(3.44)
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where ε(~ki) =
~k2
i

2m and ~k is the momentum of the ejected boson. Such a process can be

understood diagrammatically by using the optical theorem for the process displayed in

Fig. 3.1, i.e. it is the result of an effective three-body interaction which acquires an

imaginary part.

Figure 3.1: The effective three-body scattering responsible for the evaporation of the
condensate. Using the optical theorem this process describes the incoherent scattering
of two condensate atoms (dashed lines) which takes one of them out of the condensate

(solid line).

The collapse dynamics of the Bose-Einstein condensate can be described by a variational

approach. When considering a harmonic trapping potential of frequency ω0, a Gaussian

wave function with time-dependent width q(t) turns out to provide a good approximation

[128, 142, 143]. The ansatz is given by

ψ0(~r, t) =
√
N0

(
1

πq(t)2

) 3
4

e
− r2

2q2(t)
(1−imq(t)q̇(t))

, (3.45)

where the dot denotes the derivative with respect to t. Note that the spatial dependence

of the phase ensures the matter flow towards the center of the collapsing cloud. The

equations of motion for the variational parameters are obtained from the variation of

the energy functional 〈Ĥ〉 (3.18) which yields

δ〈Ĥ〉
δq(t)

= 0 ⇒ m
d2q(t)

dt2
= − d

dq(t)
V (q(t);N0(t)) , (3.46)

where

V (q(t), t) =
3

2mq(t)2
+

3

2
mω2

0q(t)
2 +

√
2

π

V0N0(t)

mq(t)3
. (3.47)

These equations are then coupled to the equation for the depletion rate of N0(t) (3.41)

which finally yields [138]
dN0(t)

dt
=

√
5

8π3

V 2
0 mN0(t)3

q(t)4
. (3.48)

3.3.2 Collapsing Black Hole Toy Model

To establish a connection to black hole physics we make the replacement m → L−1 =

q(t)−1 (3.36) and investigate the resulting dynamics. Subject to this replacement, the
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trial wave function (3.45) becomes

ψ0(~r, t) =
√
N0

(
1

πq(t)2

) 3
4

e
− r2

2q2(t)
(1−iq̇(t))

. (3.49)

The variational energy functional 〈Ĥ〉 yields the effective potential (3.47)

dV (q(t), t)

dq(t)
= − 1

2q(t)
− 1

2
ω2

0q(t)−
1

2

q̇(t)2

q(t)2
+

1√
2
√

2π
3
2

|V0|N0(t)

q(t)3
, (3.50)

and the depletion rate (3.48) is now

dN0(t)

dt
=

√
5

8π3

V 2
0 N0(t)3

q(t)5
. (3.51)

For simplicity, we first consider the untrapped gas w0 = 0. It turns out to be convenient

to rescale the parameters such that one is only working with dimensionless quantities.

This is achieved by the following rescaling

q(t) =

(
1

2π2

) 1
4 √
|V0| q̃(t) , t =

(
2

π3

) 1
4 √
|V0| t̃ . (3.52)

The resulting evolution equations are

q̃′′ = −N
q̃

+
1

q̃
(1 +

q̃′

2
)

N ′ = −
√

5

8

N3

q̃5
, (3.53)

where the prime denotes the derivative with respect to the rescaled time t̃.

The effective potential can then be obtained from the integration of the dimensionless

version of (3.50) which yields

Veff(q̃) = −1

2

N

q̃2
− (1 + q̃′2)Logq̃ . (3.54)

From this expression (see also Fig. 3.2), it is apparent that without a trapping potential

there exists only one extremum given by the maximum at

q̃ext =

√
2N

2 + q̃′2
. (3.55)

To establish the analogy between this collapse and an evaporating black hole, we would

like to find a solution for q̃(t̃) and N(t̃) which behaves as q̃ ∼
√
N . It turns out that

such a behaviour can be found from an ansatz where q̃′′ = 0. Consider a condensate of

intial width q̃0 which obeys

q̃(t̃) = q̃0 − vt̃ , (3.56)
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Figure 3.2: The effective potential (3.54) is displayed in arbitrary units for a given N
and q̃′. The maximum of the potential corresponds to the critical point of the collapse.

with v = q̃′ constituting the velocity of the width. Inserting this ansatz into the first

equation in (3.53) and using that q̃′′ = 0 yields the algebraic expression for N(t̃) in terms

of q̃,

N(t̃) = (1 +
v2

2
)q̃(t̃)2 . (3.57)

However, to find a consistent expression, v has to solve a constraint which can be ob-

tained from inserting (3.56) and (3.57) into the second equation of (3.53). This generates

an algebraic constraint for v which has two solutions

v1 ' 0.5 , v2 ' 1.24 . (3.58)

Each of these solutions for v fixes the necessary initial condition on q̃0 for a given N0

q̃0 =

√
2N0

2 + v2
. (3.59)

In consequence the two solution for v1 or v2 obey N ∼ q̃2 during the collapse. Physically

this implies that for both solutions the condensate sits always on maximum of the

effective potential (3.55) which characterizes a critical point in three dimensions. We

have thus realized a model featuring a self-similar collapse at the critical point. A

pictorial representation of such a critical solution is displayed in Fig. 3.3.

Figure 3.3: The critical solution (3.56) and (3.57) for v1 is displayed.
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Note, however, the analogy is not perfect since the depletion rate N ′ of this collapse does

not speed up for decreasing N as it would be expected for a black hole (3.11). Instead,

it rather slows down for small N according to

N ′ ∼
√
N . (3.60)

This also leads to a discrepancy of the lifetime of such a collapsing condensate

t̃end =
q̃0

v
=

1

v

√
2N0

1 + 2v2
∼
√
N (3.61)

and a black hole which goes as tBH ∼M3 ∼ N
3
2 .

Considering that our model originally described a non-relativistic contact interaction

it does not come as a surprise that we cannot reproduce all the features of black hole

dynamics which are given by relativistic long-range interactions. However, it is worth

noting that we have achieved to model a self-similar collapse which always stays at the

critical point.

Interestingly, even detuning the initial conditions by choosing a q̃0 too large for the num-

ber of particles N0, the evolution will bring the collapse close to the N ∼ q̃2 behaviour

at late times, as has been verified numerically [22].

3.3.3 Trapped Collapse

So far we neglected the fact that the interactions in gravity are long-range which can

lead to self-trapping of matter. Obviously such an effect is not present in a system

with short-range interactions. As it turns out, however, the introduction of an external

trapping potential allows to mimic the effect of self-trapping and thus to further the

analogy between the black hole and the condensates.

Including a harmonic trap with frequency ω0, the effective potential (3.50) (see Fig.

3.4) possesses now two extrema, one maximum and a new minimum, where the latter

corresponds to a metastable solution. The solutions for the position of the maximum

and the minimum depend on the ratio of the self-interaction strength V0 to the trap-

ping frequency ω0 and the number of particles N characterized by the dimensionless

parameter

γ =
NV0m

3
2

(4π
√
ω0)

(3.62)

for the nonrelativistic condensate. Increasing the magnitude of γ (for an attractive con-

densate it is negative), one finds that at a critical coupling γcr the two solutions coincide.

After this point there exist no stable solutions and the condensate will always collapse.

Such a point is called a bifurcation (see Fig. 3.5). Note that there are indications (see

[127] and references therein) that a bifurcation point is essential in obtaining the light

modes which are thought to be responsible for the black hole entropy and other quantum

properties such as fast scrambling.
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bifurca
tion

collapse

Figure 3.4: The effective potential (3.64) is displayed in arbitrary units for a given
N and q̃′ in dependence on the width of the condensate q̃ and the trapping frequency
ω̃. Increasing ω̃ the two extrema as indicated by q̃− and q̃+ merge into a saddle point
(bifurcation point). A further increase in ω leaves no real static solution and the

condensate is always unstable.

Starting from (3.50) we follow the same steps as in the previous section to find the

evolution of the condensate. While the equation of motion for N (3.51) is unchanged,

the evolution of q is now determined by (3.50) with w 6= 0. Rescaling the variables

according to

q =
1

ωc
q̃ , N =

√
2π3

|V0|ω2
c

Ñ , ω = ωcω̃ , t =

√
2

ωc
t̃ , (3.63)

with ωc representing some arbitrary scale yields the effective potential

Veff(q̃) = −1

2

Ñ

q̃2
− (1 +

q̃′2

2
)Logq̃ +

1

2
ω̃2q̃2 . (3.64)

The local extrema are now given by

q̃± =
1

2ω̃

√
2 + q̃′2 ±

√
(2 + q̃′2)2 − 16w̃2Ñ . (3.65)

There exist two real solutions for Ñ > (2+q̃′2

4w̃ )2, while for Ñ < (2+q̃′2

4w̃ )2 there are no real

solutions. At

Ñ = (
2 + q̃′2

4w̃
)2 (3.66)

the two solutions coincide defining the aforementioned bifurcation point. Solutions with

q̃′′ = 0 (which guarantees that q̃(t̃) is a monotonously decreasing function) are then of

the generic form

q̃(t̃) = q̃0 − vt̃ ,

Ñ(t̃) =
2q̃0Ñ0

f(t̃)
q̃2 ,

ω̃(t̃) =
1

q̃(t̃)

√
1 +

v2

2
− 4Ñ0q̃2

0√
2f(t̃)

, (3.67)
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bifurcation

collapse

Figure 3.5: Solutions to the effective potential for the condensate as a function of
ω̃ for fixed Ñ and q̃′. At a critical value of ω̃ the two solutions merge into a tangent

bifurcation. After this point there exist no real stable solutions.

where f(t̃) is a fourth order polynomial in t̃ which is obtained by inserting the ansatz for

q̃ into the equation of motion for Ñ . Our goal is to find solutions representing a collapse

which continuously stay at the bifurcation point. To realize such solutions we need to

make the dimensionless trap frequency ω̃ time-dependent. Keeping in mind that we are

merely modelling a self-trapping potential with an external trap it is not surprising that

the trap has to change during the collapse.

The condition that the collapse takes place at the bifurcation is equivalent to demanding

d2Veff

dq̃2

∣∣∣∣
sol

= 0 . (3.68)

In order to obtain a consistent solution the collapse velocity v has to obey

v1 ' 0.1 , v2 ' 3 . (3.69)

The resulting solutions for the three paramters are

q̃1 ' 1.41

√
Ñ0 − 0.1t̃ Ñ1 ' 0.5q̃2

1 ω̃1 =
0.71

q̃1
(3.70)

q̃2 ' 0.6

√
Ñ0 − 3t̃ Ñ2 ' 2.76q̃2

2 ω̃2 =
1.66

q̃2
. (3.71)

Note that these solutions (see Fig. 3.6) still have the property that q̃ ∼
√
Ñ . All the

properties, cf. (3.60) and (3.61) we found in the previous section are preserved in this

model.

3.3.4 Excitation Spectrum

It has been argued in [19] that the collective excitations about the condensate ground

state could be responsible for the entropy of a black hole. To investigate this conjecture
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Figure 3.6: The critical solution (3.71) is displayed.

further, we make use of the cold atoms analogy and analyse fluctuations about the

collapsing solution. The spectrum is obtained from the Bogoliubov-de Gennes equations

(3.32) which we solve in three dimensions for a spherically symmetric condensate.

The collapsing solution corresponds to the condensate sitting at the maximum of the ef-

fective potential (3.54) or the bifurcation point (3.64) with condensate width qext. While

we have argued that due to self-trapping because of long-range effects a more appro-

priate black hole toy model can be found by introducing a variable trapping potential

3.3.3, such a setup also provides a better controlled numerical implementation as one

can approach the critical point from a metastable solution.

Let us the investigate the excitations about such a solution. We will assume that the

collapse occurs quasi-stationary and therefore, we can at each time-step treat the Gaus-

sian condensate wave function with a given q, N and ω as a stationary solution. The

excitation spectrum can be determined by the Bogoliubov-de Gennes equations (3.28)

and (3.29). The Hamiltonian and the condensate are spherically symmetric. The Bo-

goliubov modes, therefore, can be decomposed into spherical harmonics Ylm according

to

u(~r) =
∑
lm

Ylm(θ, ϕ)ul(r) ,

v(~r) =
∑
lm

Ylm(θ, ϕ)vl(r) . (3.72)

Carefully evaluating the expressions (3.28) and (3.29), one is left with an effective one-

dimensional problem which can be solved by numerically diagonalizing the equations.

The numerical implementation of the correct boundary conditions is simplified by the

use of the rescaled Bogoliubov modes ul(r) = ũl/r and vl(r) = ṽl/r. We then obtain a

system of coupled equations which can be written in terms of the matrix equation(
H̃0l − µ+ 2V0ψ

2
0 V0ψ

2
0

−V0ψ
∗2
0 −H̃0l + µ− 2V0ψ

2
0

)(
ũl
ṽl

)
= ωnl

(
ũl
ṽl

)
, (3.73)

where we suppressed the dependence on the radial coordinate. The Hamiltonian which

acts on ũl and ṽl is given by

H̃0l = − ∂2
r

2m
+

1

2
mω2r2 +

l(l + 1)

r2
. (3.74)
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Figure 3.7: The Bogoliubov spectrum ω for a Bose-Einstein condensate in a spheri-
cally symmetric harmonic trap is shown in units of the trapping frequency ω0 as a func-
tion of the dimensionless parameter γ. At the bifurcation point γcrit, the n = 1, l = 0

excitation becomes gapless and the condensate develops an instability.

We use a straightforward linear discretization of the radial coordinate dependence where

the numerical grid has a finite extent that is much larger than the ground state width of

the harmonic trapping potential, rmax � 1/
√
mω. The differential operator ∂2

r is imple-

mented using a finite difference method. The boundary conditions for the Bogoliubov

modes are given by ũ(r)|r=0 = 0 and ũ(r)|r→∞ = 0 and similar for ṽ. Note that it is

important to correctly implement the (anti) symmetries of u(r) and v(r) around r = 0

for even (odd) l as appropriate for the three dimensional problem.

As a check of our numerical procedure, we first compute the spectrum for a spherically

symmetric nonrelativistic gas of bosons with mass m subject to an external harmonic

trapping potential and compare it to the literature [144, 145]. In order to determine the

ground state wavefunction for a given interaction strength V0 we used the variational

ansatz (3.45) with the condensate width q as a variational parameter and determine

the energy functional E(q) ≡ 〈Ĥ〉 given by (3.18). Above a critical interaction strength

γ > γcrit, the variational energy E(q) always features a local minimum at finite q corre-

sponding to a metastable condensate, see Fig. 3.4. This local minimum becomes arbi-

trary shallow as the bifurcation point is approached. It describes a stable state without

matter flow and thus there is no spatial dependence of the phase and one should set

q̇ = 0. Finally, the chemical potential is determined by µ ' 〈Ĥ〉/N . This sets the stage

for solving the Bogoliubov-de Gennes equations (3.73).

In Fig. 3.7 we show the first excitation energies for the lowest angular momentum modes

l = 0, 1, 2 as a function of the dimensionless parameter γ defined in (3.62) in units of the
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trapping frequency denoted by ω0. For γ = 0, there is no inter-particle interaction, and

the Gaussian wave function is the exact solution and accordingly the excitation energies

are integer multiples of the trapping frequency ω0. The n = 0, l = 1 mode with its

p-wave symmetry is the so-called sloshing mode which exists no matter the interaction

strength. It describes the oscillation of the condensate cloud as a whole in the harmonic

trap and thus is always determined by the trapping frequency. Deviations from this

exact statement in our excitation spectrum are due to the variational wave function

not being an exact ground state for nonzero self-interactions γ 6= 0. The n = 0, l = 0

mode in turn is the Goldstone mode of the broken global U(1) phase symmetry of the

condensate wave function and is always gapless.

The bifurcation point of the energy functional is given in the variational approach with

one Gaussian trial wave function by γcrit = 0.67 [144, 145]. Approaching this point

the Bogoliubov approximation breaks down which is signalled by the softening of the

n = 1, l = 0 mode which physically represents the so-called breathing mode of the

condensate. It has been shown [144, 145] that within the Bogoliubov approximation the

gap vanishes according to a power law ω10 ∼ (γ − γcrit)
ξ with the mean field critical

exponent ξ = 1/4. From the excitation energies close to the critical point we are able to

recover this power law with reasonable accuracy which attests the strength and stability

of our numerical method. Note that we are, however, not able to follow the excitation

spectrum exactly up to the point where the Bogolubov modes become gapless. This

is due to our expanding about a variationally obtained ground state which is not the

exact ground state of the system. Furthermore, our code could be improved by using

more grid points but for computational feasibility we shall be satisfied with the above

outcome.

Confident that our code gives us the qualitatively correct Bogoliubov spectrum, we can

now turn our attention to the toy model for the collapse of a black hole. In order to do

so, we will make the replacement m → 1/q in (3.74) and in the energy functional 〈Ĥ〉
given by (3.18). Furthermore, γ has to be adjusted to the black hole toy model which

yields

γ =
V0Nω

2
0

(2π)
3
2

. (3.75)

The collapsing condensate solutions (3.70) and (3.71) are tuned such that they are always

at the bifurcation point of the energy functional. For each solution (3.70) and (3.71),

therefore, γ(t) = γcrit is constant during the collapse and given by

γcrit1 ' −0.126 , γcrit2 = −3.8 . (3.76)

In order to obtain these values, one has to go back to the dimensionful quantities q, w

and N .

It is thus sufficient to compute the spectrum once for γcrit, because it will remain the

same during the collapse within the Bogoliubov approximation. Exactly this self-similar

behaviour of the Bogolibov modes is expected for the black hole as argued in section

3.2.1. Numerically we compute the Bogoliubov spectrum for γ > γcrit and approach

the critical point from this side. This allows us to gain qualitative insight into the
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Figure 3.8: The Bogoliubov spectrum ω for the collapsing condensate solution (3.70)
in a spherically symmetric harmonic trap is shown in units of the trapping frequency
ω0 as a function of the dimensionless parameter γ. The n = 1, l = 0 mode becomes
lighter as one approaches the critical γ. Due to the rather poor variational ground state

approximation, it does not become gapless.

behaviour of the Bogoliubov modes when approaching the critical point. As before,

above the critical interaction strength defined by γ the variational energy, E(q) has one

minimum at qmin. This determines the variational ground state wave function around

which we expand. In contrast to before, we choose the phase velocity q̇ such that it

coincides with the value given for the respective critical collapse solution v1 or v2 (3.69).

This choice ensures that for γcrit we arrive at the wave function determined by the

solutions (3.70) and (3.71).

The results for v1 = 0.1 are displayed in Fig. 3.8. The spectrum has the same qualitative

features as the one obtained for a trapped nonrelativistic Bose gas shown in Fig. 3.7.

There are, however, differences. For instance, the Bogoliubov excitations without inter-

actions are no longer integer multiples of the trapping frequencies. This is not surprising

as in our ansatz the mass is replaced by the inverse size of the condensate and thus the

Hamiltonian is given by

H = −q∇
2

2
+

1

2

1

q
ω2r2 + V0ψ

2
0 . (3.77)

This Hamiltonian, for V0 = 0, has a ground state solution which is given by a Gaus-

sian wavefunction (3.45) of width q̄ =
√
q/ω, not q. The variational wave function

(3.45) is thus even for zero interaction not the exact ground state of the system. As

a consequence the Bogoliubov modes are no longer integer multiple frequencies of the

trapping frequency ω0. For all modes apart from the sloshing mode n = 0, l = 1 this
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effect is, however, not very strong. Turning on self-interactions of the bosons, the trial

wave function (3.45) becomes less accurate and the quantitative spectrum less accurate.

Nonetheless, the qualitative features of the excitations are still visible. Approaching the

critical collapse solution γcrit1, the breathing mode n = 1, l = 0 becomes light whereas

the others start to become more gapped. We expect that by using a more appropriate

trial wave function for the ground state, one recovers the gapless breathing mode at the

critical point similar to the case of a trapped spherically symmetric Bose-Einstein gas.

3.4 Summary

In this chapter, we considered certain aspects of the black hole condensate picture pro-

posed in [18]. By relying on a simple model borrowed from cold atomic physics, we were

able to reproduce specific features expected from the black hole picture. In particular,

we considered a condensate which due to incoherent scattering loses particles while it

collapses. It was shown that it is possible to find a solution for the time evolution of the

condensate such that it always stays at the critical point. In order to model the self-

trapping behaviour of gravitons, a time-dependent trapping potential was introduced

and we showed that, within the limits of our approximation, at the critical point a light

mode appears.





Chapter 4

Gravitational Axion Anomaly and

η′ bubbles

It is a long held believe that gravitational interactions intrinsically violate global sym-

metries [24]. The simplest argument comes from considerations about black holes. Due

to the no-hair theorem [25], black holes can only carry gauge charges. Therefore, it is

argued that by throwing a global charge into a black hole, it can be removed from our

universe. At present, the exact form of the symmetry violating operators is unknown,

however, it can be argued that their coupling strengths need to be very small if they are

not to interfere with known global symmetries. One context in which a global symmetry,

or better a Goldstone boson of a global symmetry breaking, arises is the axion solution to

the strong CP problem. The symmetry breaking by quantum gravity corrections could

potentially lead to the loss of viability of the axion solution. One can, however, envision

a scenario in which the gravitational anomaly is coupled to an extra U(1) symmetry

which in turn could soften the constraints on the smallness of the gravitational anomaly

couplings.

The strong CP problem is closely related to the nontrivial vacuum structure of QCD.

Due to non-perturbative effects, the vacuum energy becomes dependent on an angular

parameter [34]. Witten has argued in [49] that the vacuum energy is a multivalued

function with nonanalyticities around θ = π. In addition, it is known that by the

presence of massless quarks this θ-dependence is screened and that for small masses

mq the θ-dependence vanishes linearly in mq. By treating the screening of the vacuum

energy as a result of Schwinger pair creation (to be precise, by bubble nucleation), we

gain insight into the structure of the vacuum energy.

In section 4.1, we discuss the CP problem. The solution for it in terms of the Peccei

Quinn axion is presented in section 4.2. In section 4.3, we reformulate the CP problem

and the axion solution in the dual three-form language. Section 4.4 discusses how the

aforementioned gravitational operators can be parametrized in the dual description and

a resolution of the problem of quantum gravitational effects on the axion solution is

presented. In the absence of other influences this allows us the possibility to derive a

61
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bound on neutrino masses. In the last section 4.5, we briefly consider the potential non-

analyticity of the QCD vacuum energy by investigating the screening in the presence of

a light quark in terms of an analogue to Schwinger pair creation.

4.1 The strong CP Problem

4.1.1 Axial Anomaly

The theory of strong interactions is described by the QCD Lagrangian which takes the

following form

L = − 1

4g2
F aµνF

µν a +
3∑

f=1

iψ̄f /Dψf +
∑
f

mf ψ̄fψf , (4.1)

where F aµν = ∂µA
a
ν − ∂νAaµ + fabcAbµA

c
ν is the field strength of the gluon field Aaµ and

g is the strong coupling constant. The superscript a denotes the gauge group index.

The structure constant of the gauge group SU(3), fabc, is defined by [T a, T b] ≡ ifabcT c,
where the T as are the generators of SU(3). Quarks are represented by Dirac spinors

ψf , where f denotes the flavour, and mf denotes their masses. The covariant derivative

is given by Dµ = ∂µ − iAaµT a and /D = Dµγµ with the Dirac gamma matrices γµ. The

Lagrangian is invariant under the gauge transformations Aµ → UAµA
−1 + iU∂µU

−1,

where U = exp iΛaT a is an element of the gauge group SU(3).

In the chiral limit mf → 0, assuming there are three flavours of quarks,1 the theory

(4.1) has the following (classically) conserved currents

jµ = ψ̄γµψ̄ , jµa = ψ̄γµτaψ ,

jµ5 = ψ̄γµγ5ψ̄ , jµ5a = ψ̄γµγ5τaψ , (4.2)

where the τa are the generators of the flavour SU(3) and ψ is a column of ψf and the

τa act on these. The conservation law tells us ∂µj
µi = 0.

Actually, however, only the vector currents jµ and jµa are conserved and correspond to

symmetries of the strong interactions, namely, the baryon number symmetry associated

with jµ and the isospin symmetry jµa. The axial symmetries jµ5 and jµ5a do not have

any observed counterpart in the strong interactions. In the chiral limit, the latter is

spontaneously broken by the formation of quark-antiquark condensates with 〈ψ̄ψ〉 6= 0.

As with any spontaneously broken global symmetry, there is a massless Goldstone boson

associated with each broken symmetry generator. In nature, however, the masses of the

three lightest quarks are not zero but small. Therefore, there should exist 32 − 1 = 8

light pseudo-Goldstone bosons in the spectrum from the breaking of jµ5a. These are

1In QCD there exist three light quark flavours, the u, d and s quark. Therefore, the limit of three
massless quark flavours is a viable first approximation albeit a very crude one. The symmetry between
these three flavours which approximately persists for nonzero masses is the foundation of the eight fold
way [146].
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Figure 4.1: The triangle diagram which gives an anomalous contribution to the axial
current Jµ5 .

the π, K and η mesons. In principle, one would expect that the same is true for the

singlet axial UA(1) symmetry with current jµ5 requiring the existence of a ninth (SU(3)

flavour singlet) light Goldstone boson of a mass close to the pion mass mπ ' 135 MeV.

Such a particle, however, has not been observed in the spectrum. Instead, there is a

flavour singlet meson of mass mη′ ' 1GeV. In the early 1970’s, this problem was dubbed

the UA(1) problem [147]. Somehow QCD cannot possess a UA(1) symmetry on the full

quantum level.

Indeed, that the current jµ5 is anomalous as was first shown by [148–150] by the analysis

of the triangle diagram shown in Fig. 4.1 which leads to a violation of the U(1)A
symmetry: the Adler-Bell-Jackiw anomaly [148–150]. It gives a nontrivial contribution

to the divergence of the axial current jµ5 (4.2) and yields

∂µj
µ5 =

g2Nf

32π2
FµνaF̃ aµν , (4.3)

where F̃ aµν = 1
2εµναβF

αβ a is the dual field strength, Nf is the number of flavours.

According to Noether’s theorem, this term induces a change in the action (4.1) under

the symmetry transformation

ψf → eiγ
5αψf and ψ̄f → ψ̄fe

iγ5α , (4.4)

which for infinitesimal α is given by

δS = α

∫
d4x∂µj

µ5 =

∫
d4xα

g2Nf

32π2
FµνaF̃ aµν . (4.5)

The 1-loop anomaly contribution (4.3) is actually exact [151, 152], as can be shown by

deriving the anomaly in the path integral formalism. In this formulation, (4.3) shows

up, because the fermionic measure DψDψ̄ in the path integral Z =
∫
DψDψ̄DAµeiS is

not invariant under (4.4) [152].

Naively, one would think that (4.5) is still equal to zero as the term Fµν aF̃ aµν = ∂µK
µ

with Kµ = εµαβγAaα(F aβγ −
g
3f

abcAbβA
c
γ) is a total derivative [153]. However, ’t Hooft

showed [154] that instanton configurations can provide non-zero contributions to the

integral ∫
d4x

g2Nf

32π2
FµνaF̃ aµν = ν . (4.6)

Here, ν is the topological charge [155] which takes integer values for finite action field con-

figurations such as instantons. Later, Witten argued in [49] that the original derivation

by ’t Hooft [154] cannot be the complete story. For example, the boundary conditions
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imposed on Aaµ being a pure gauge term Aaµ ∼ U∂µU−1 is not appropriate for a strongly-

interacting theory. We will discuss this issue in more detail in section 4.5, but we want

to ascertain that there exist non-zero contributions to (4.3) [50, 156] such that the UA(1)

symmetry is anomalous in QCD.

To summarize, due to the axial anomaly which is signalled by (4.3) having non-zero ma-

trix elements at zero momentum, there is no UA(1) symmetry in the strong interactions

and therefore no Goldstone boson is expected in the chiral limit.

4.1.2 Strong CP Problem

With the resolution of the U(1)A problem another one appeared. The same instantons

that are responsible for the U(1)A not being a symmetry also induce a nontrivial vacuum

structure in QCD. There exists a continuous set of vacua labelled by the real parameter

θ, which is periodic 0 ≤ θ ≤ 2π. For an introduction into the subject, see for example

[157]. This θ-dependence is reflected by an additional term appearing in the path integral

of pure Yang-Mills theory which yields

Zθ(J) =

∫
DA exp

∫
d4x

[
−1

4
F aµνF

µν a − g2θ

32π2
FµνaF̃ aµν + JµaAaµ

]
. (4.7)

Most importantly, the extra term is responsible for the strong interactions to violate

the combined CP symmetry of parity and charge conjugation. CP violation of these

interactions comes with a strength proportional to the vacuum angle θ. The effect of

the CP-violation can, for instance, be characterized by the ratio [44]

〈g2FµνaF̃ aµν〉
〈g2FµνaF aµν〉

. (4.8)

On the experimental side, the most stringent bound on CP violating effects in QCD

arises from the neutron electric dipole moment dn, which is constrained experimentally

by |dn| < 3 × 10−26e cm [33]. The electric dipole moment of the neutron, in turn, is

connected to the vacuum angle θ via (4.8) as dn ∼ mqθ. Hence, in order to comply

with the experimental bounds, θ has to be very small, θ < 10−9 [44, 158]. Taking into

account the wide range of 0 ≤ θ < 2π which θ could a priori take, naturally the question

arises why the value of θ in the vacuum we live in is so small. This is called the strong

CP problem.

Nevertheless, given certain circumstances θ can be an intrinsically unobservable param-

eter and the strong interactions then conserve CP. This is, for example, the case if there

exist massless fermions in the theory as discussed in the previous section 4.1.1. Because

of the axial anomaly, the chiral transformation (4.4) then induces a change of the θ

vacuum due to the anomaly [159]. The θ-parameter is given by

θ → θ′ = θ −Nfα . (4.9)
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In consequence, in a theory with massless quarks the θ-dependence is rendered unob-

servable and CP is not violated by the strong interactions.

Standard current algebra results, however, strongly disfavour zero masses for the lightest

quark (the u-quark) [160–162] even though experimentally it is not yet ruled out that

mu = 0 [163]. The mass term in (4.1) (cf. [164]),

Lm =
∑
f

|mf |ψ̄fe−iφfγ
5
ψf , (4.10)

has in general complex quark masses mf = |mf |eiφf . The phase φf of the complex mass

can be removed by a redefinition of the fields ψf in the path integral. This is equivalent

to a chiral transformation (4.4) with parameter α = φf/2 on the path integral which

shifts the vacuum angle (4.9) to

θ′ = θ −
∑
f

1

2
φf = θ − arg det M , (4.11)

where detM is the determinant of the quark mass matrix. The angle θ′ can be shifted

between the quark masses and the term FF̃ but it cannot be removed completely. For

this reason θ remains an observable parameter. For a nonzero value, it renders the strong

interactions CP-violating and thus one faces again the strong CP problem.

Interestingly, the above presentation already reveals one solution to the CP problem,

namely, having at least one massless quark in the theory, for example mu = 0. In

this case, detM = 0 and the quark mass terms become invariant under the chiral

transformation (4.4) of the u-quark allowing the angle θ′ to be rotated away. However,

it needs rather convoluted theories in order to accommodate a zero mass u-quark, see

e.g. [160–162].

4.2 Introducing the Axion

The lesson learned from the previous section is that whenever there is a global chiral U(1)

symmetry (4.4) which is explicitly broken by color axial anomalies at the quantum level,

the θ-parameter2 becomes unobservable. In [31], Peccei and Quinn followed this line of

reasoning and found a dynamic solution to the strong CP problem. They constructed a

Lagrangian which is invariant under an additional U(1)PQ by introducing two instead

of one Higgs field into the Standard Model. This U(1)PQ symmetry is spontaneously

broken at a scale fa and as a result a Goldstone boson, the so-called axion a(x), appears

in the theory. As a matter of fact, the axion will not be massless due to the explicit

breaking of U(1)PQ by the axial anomaly. Being the Goldstone boson of the broken

U(1)PQ, the axion transforms according to

a(x)→ a(x) + αfa , (4.12)

2In the following we assume that we have performed a chiral rotation such that the quark masses are
real and all the CP violating phases have been shifted into the coefficient of FF̃ .
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where the symmetry breaking scale fa is given by the vacuum expectation value of the

corresponding complex scalar (Higgs) field.

From an effective field theory point of view, it is not necessary to specify the underlying

dynamical origin of the axion field in order to solve the strong CP problem. The only

requirement is that in the low energy approximation the Lagrangian of the axion has to

reduce to the following form

L = −1

4
FµνaF aµν+θ

g2

32π2
FµνaF̃ aµν−

1

2
∂µa∂

µa+L(∂µa/fa;ψf )+
a

fa

g2

32π2
FµνaF̃ aµν . (4.13)

The last term, which originates from the axial anomaly, not only violates the shift sym-

metry of the axion but also introduces a potential for it. In the vacuum, the dynamical

field a will settle into the minimum of its potential which is given by [31, 165]

〈∂Vaxion

∂a
〉 = − 1

fa

g2

32π2
〈FµνaF̃ aµν〉

∣∣∣∣
〈a〉=−faθ

= 0 . (4.14)

The mass of the axion is then determined by

ma = 〈∂
2Vaxion

∂a2
〉 = − 1

fa

g2

32π2

∂

∂a
〈FµνaF̃ aµν〉

∣∣∣∣
〈a〉=−faθ

. (4.15)

The minimum of the potential (4.14) lies precisely at the point were the θ-term is

cancelled by the axion. This is the celebrated solution to the strong CP problem first

proposed by Peccei and Quinn [31].

In their original model, Peccei and Quinn constructed the symmetry breaking scale such

that it coincides with the electroweak scale, fa ∼
√
Gf
−1

which resulted in too strong

couplings to other particles. An axion with such a low breaking scale has long since been

excluded [166, 167]. In contrast, so-called invisible axion models with fa �
√
Gf
−1

,

see e.g. [168–170], have such weak couplings to ordinary matter that they are perfectly

viable although they make direct axion searches difficult, see, e.g. [171–173].

The essence of the axion solution to the strong CP problem can be summarized as

follows. By promoting the θ-parameter into a dynamical axion field3 which is the pseudo

Goldstone boson of the broken U(1)PQ and sourced by FF̃ , one guarantees that the

vacuum of the theory is at the minimum of the axion potential (4.14) corresponding to

〈FF̃ 〉 = 0. Thus CP is unbroken. Individual axion models only differ by the underlying

dynamics that generate the effective Lagrangian (4.13). However, the precise origin of

the axion is unimportant for the solution of the strong CP problem.

4.3 Dual Description

The strong CP problem and the appearance of the θ parameter can be reformulated

in terms of a massless three-form field that mediates a constant long-range four-form

3Essentially, one makes the replacement θ → a/fa.
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electric field in the vacuum [40, 174]. This electric field is CP-violating and its value

is equal to 〈FF̃ 〉. Therefore a nonzero constant electric four-form field corresponds to

a nonzero θ-angle. This is analogous to the existence of a constant electric field in two

dimensional electrodynamics (the Schwinger model) [45–47], where the electric field is

also related to the appearance of a periodic parameter θ.

In the dual description, the solution to the strong CP problem either by the axion or

by massless quarks corresponds to dynamically creating a mass gap for the three-form

gauge field, i.e. to putting it into a Higgs phase.

4.3.1 The strong CP Problem in three-form Language

The QCD strong CP problem is easily formulated in the three-form language (see, e.g.,

[42, 175, 176]). The θ-term of (4.7) can be rewritten in terms of the Chern-Simons

three-form

Cαβγ = Aaα(F aβγ −
g

3
fabcAbβA

c
γ) , (4.16)

whose field strength is given by the aforementioned four-form electric field Eαβγδ =

∂[αCβγδ]. The resulting Lagrangian reads

Lθ = θ
g2

32π2
F aµνF̃

µνa = θEαβγδε
αβγδ = θE . (4.17)

Under an infinitesimal SU(3) gauge transformation of QCD given by Aaµ → Aaµ+ 1
g∂µω

a+

ifabcωbAcµ, the Chern-Simons three-form shifts according to Cαβγ → Cαβγ+∂[αA
a
β∂γ]ω

a.

The composite Chern-Simons term Cαβγ becomes a fundamental variable at low energies

� ΛQCD in the sense that it describes the relevant weakly-coupled degrees of freedom.

It is known that it propagates long-range correlations if the topological susceptibility

χ is nonzero [40], which can be seen from the associated Chern-Simons current Kµ =

εµαβγC
αβγ having a pole at zero momentum [41]

χ = lim
q→0

qµqν
∫
d4xeiqx〈0|Kµ(x)Kν(0)|0〉 = const . (4.18)

The correlator of the massless three-form then obeys

〈C,C〉q→0 ∝
1

q2
. (4.19)

It immediately follows from a Fourier analysis that this behaviour induces a constant

topological susceptibility, i.e. a constant electric four-form field, in the vacuum since

FF̃ = E = dC ∼ qC. Thus one finds

〈E,E〉 = 〈FF̃ , F F̃ 〉q→0 = const . (4.20)

At low energies, the effective Lagrangian for the three-form can be written as

L3−form = θE +K(E) + . . . , (4.21)
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where K(E) includes the kinetic term for C and its exact form is unknown in QCD. The

first term (in a low momentum and large N approximation, cf. [42]) will generically be

∝ E2. The solution to the associated equation of motion is given by a constant electric

field E which is sourced by θ. Therefore, the existence of a constant electric field and

the θ-dependence of the theory are intimately linked.

4.3.2 Higgsing the four-form electric Field

The dynamical solutions to the strong CP problem, either a zero mass quark or the

introduction of an axion field, proposed in section 4.2 can be treated on a common basis

in the dual description. The basic idea relies on the fact that an efficient way of screening

a constant electric field is by simply putting it into a Higgs phase.

Introducing an anomalous U(1)PQ symmetry – be it the chiral symmetry (4.4) when in-

troducing massless quarks or an additional one via the axion solution – yields a coupling

to the three-form field given by Λ−2eαβγδCαβγ
∂δ∂µ
� Jµ5 . Here, Jµ5 denotes the anomalous

current of the U(1)PQ, see, e.g., [175], whose divergence is given by E

∂µJ
µ
5 = αAFF̃ = αAE , (4.22)

where αA is a numerical coupling constant. Note that we dropped Lorentz and group

indices in order to clarify the equations. Taking into account the coupling generated via

the anomaly Fig. 4.1, the effective Lagrangian (4.21) obtains an additional term and

reads
E2

2 · 4!Λ4
+ Λ−2αAE

∂µ
�
Jµ5 . (4.23)

Variation with respect to the Chern-Simons field and using (4.22) on the equation of

motion yields

�E = αAΛ2E . (4.24)

The electric field is in a Higgs phase and its pole at zero momentum (4.18) is removed.

This demonstrates how the anomalous U(1)PQ symmetry generically puts the electric

four-form field into a Higgs phase and thus solves the strong CP problem.

For the axion solution the divergence of the current is related to a via

Jµ5 = fa∂µa . (4.25)

Therefore, the Lagrangian describing the dynamics of the three-form field Cαβγ and the

axion is given by

L =
1

2
∂µa∂

µa+
a

fa
Eαβγδε

αβγδ − 1

2 · 4!Λ4
EαβγδE

αβγδ . (4.26)

The gauge symmetry Cαβγ → Cαβγ + ∂[αΩβγ], which is unbroken in the Higgs phase,

guarantees that the couplings in the dual description are such that they respect the shift

symmetry of a. Note that this description is, at low energies, completely equivalent to

(4.13). The potential term of a can be recovered by integrating out Cαβγ and deriving
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the equation of motion for a

�a+m2
a(a− k0) = 0 , (4.27)

where k0 is an integration constant. Gauging the dual theory has created a potential

term for the axion which automatically requires 〈a〉 = 0 in the vacuum. This is equivalent

to the electric four-form being screened in the Higgs phase E = 0 (4.14). Thus, we have

made the connection between the axion and the 〈FF̃ 〉 vacuum expectation value being

zero, as the latter is given by 〈E〉.

Below (4.21), we mentioned that the exact form of K(E) is unknown; therefore, one

should allow for a generic form of K(E) in (4.26). It turns out that its form is closely

related to the axion potential V (a) which is obtained after integrating out E in (4.26)

La =
1

2
∂µa∂

µa− V (a) . (4.28)

The equivalence is then established by choosing K(E) such that

dV (a)

da
= − 1

fa
E = − 1

fa
invK ′

(
m2
a(k0 − a)

)
, (4.29)

where “inv” denotes the inverse function and the prime differentiation with respect to

the argument. Thus a generic potential V (a) can be represented in the dual description

via

V (k0 − a) = − 1

fa

∫
da invK ′

(
m2
a(k0 − a)

)
. (4.30)

An essential property of this formalism is that at the extrema of the axion potential

(4.29), the four-form electric field strength E vanishes for any function K. Again, this

is simply due to the fact that in the Higgs phase the field E is screened. Nonetheless,

this is precisely the way the axion solves the strong CP problem in QCD as we shall see

in the next section.

The effective potential for the axion is then related to the θ-parameter via a ↔ θ and

for K(E) = E2, one finds the well-known relation [50, 156]

dV (a)

da
↔ dE(θ)

dθ
∝ 〈FF̃ 〉 . (4.31)

In section 4.1, we have seen that the strong CP problem can also be solved by in-

troducing massless quarks which are charged under the chiral symmetry (4.4). In the

phenomenological description outlined above, this solution can be understood in terms

of the η′ meson. The η′ meson is now the pseudo-Goldstone boson of the broken U(1)

and related to the current via Jµ5 = Λ∂µη
′ similar to (4.25). Basically, one only has to

replace the axion field a in (4.26) and everything else follows. The electric four-form

field is screened in precisely the same way and physics becomes θ-independent.

Thus, the essence of the solution to the strong CP problem lies in finding a way to screen

an electric four-form field strength via Higgsing of its gauge field.
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For completeness, we would like to mention that one could formulate all of the above

in terms of the fully dual picture, where also the axion is dualized and replaced by a

two-form field Bµν . After the duality transformation of the axion a ↔ Bµν and the

gauge field Aµ ↔ Cαβγ , their interaction is described by

L =
1

f2
a

(Pαβγ − Cαβγ)2 − 1

2 · 4!Λ4
EαβγδE

αβγδ , (4.32)

where m is a dimensionful “coupling” constant which is chosen such that it is equal to

the mass of the axion later on. Pαβγ = ∂[αBβγ] is the two-form field strength. This

Lagrangian is invariant under the gauge transformation Cαβγ → Cαβγ + ∂[αΩβγ] and

Bµν → Bµν + Ωµν , where Ωβγ is an arbitrary two-form. Thus, in the dual picture,

the U(1) global symmetry is promoted to a local gauge symmetry. This must have

necessarily happened in order not to increase the number of degrees of freedom in the

dual theory. The Lagrangian (4.32) describes the Higgs phase of the gauge field Cαβγ ,

which gains a mass in a gauge-invariant way by “eating” the two-form Bµν .

4.4 Potential Issues of the Axion Solution

The aim of this chapter is to investigate two controversies surrounding the axion that

are discussed in the literature. The first is the impact of quantum gravity corrections on

the axion solution. The second concerns possible issues with the derivation of the axion

potential in the instanton gas approximation.

4.4.1 Gravity Effects as an extra Three-Form

It is a long standing question whether quantum gravity effects could lead to possible

non-CP conserving corrections, see e.g., [24]. Since perturbative gravitational inter-

actions are known to be CP conserving, only nonperturbative effects could introduce

CP violating operators. Arguments that nonperturbative quantum gravity could undo

the axion solution are generically based on the appearance of gravitational or world-

sheet instantons and wormhole solutions, see, e.g., [24, 26–30, 35–39] and references

therein. Support for these presumptions comes from the general believe that black holes

or wormhole solutions can absorb global charges. In consequence, these charges become

inaccessible to an observer in our universe. Hence, quantum gravity is expected to break

global symmetries. Local symmetries, on the other hand, are thought to be conserved

by quantum gravity. The reason is that since local charges can always be monitored by

measuring the Gaussian flux at infinity, they cannot simply disappear due to quantum

gravity effects in the vicinity of a wormhole or a black hole. For the (non-) violation of

global symmetries in quantum gravity, however, no consistent picture has emerged so

far.

Naively, one could think that, since in the dual description of the axion in terms of

the two-form field Bµν the global U(1) symmetry was promoted to a gauge symmetry,

the axion solution cannot be overthrown by quantum gravity corrections. Of course,
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this cannot be the full story as it was shown in [24, 35–39] that there exist operators

which could lead to the destruction of the strong CP solution in the axion scalar field

language. It is, therefore, inevitable that also in the dual description analogous operators

will appear. This brings to light the strength of the dual description (the three-form

language) (4.32): Since quantum gravity corrections are not expected to violate the

gauge symmetry, they must enter the theory (4.32) in a gauge invariant way. In the

three-form language, the axion solution amounts to higgsing the three-form which is

responsible for the CP violating electric field E in the vacuum. In order to see CP

violating operators in the dual picture, gravity must thus induce an independent gauge

invariant mass term for the two-form Bµν . If gravity provides an additional three-form

field coupled to Bµν , this is indeed what happens.

Coupling a second three form Gαβγ to the axion Bµν in (4.32) [42] in such a way that

it also shifts under gauge symmetries of Gαβγ , i.e. Bµν → Bµν + Υµν under Gαβγ →
Gαβγ + ∂[αΥβγ], introduces the Lagrangian [42]

L =
1

f2
a

(dB − αAC − αGG)2 +
1

48Λ4
E2 +

1

48m4
G

E2
G . (4.33)

Here, we have suppressed Lorentz indices and EG = εαβγδEGαβγδ is the field strength of

Gαβγ and dG = ∂[µGαβγ] defines the exterior derivative. The factors αA and αG define

the relative strengths of the coupling of the axion to QCD and gravity and the scale

mG is the scale at which the gravitational anomaly enters. The axion can now only

give mass to the combination C1 = αAC + αGG, but not to C2 = αAC − αGG which is

orthogonal to C1. Using these three-form fields, one finds that only the field strength of

the former E1 = dC1 is in the Higgs phase and has vanishing vacuum expectation value.

The field strength of the latter E2 = dC2, however, produces a long-range electric field

in the vacuum. The axion solution to the strong CP problem is, thus, spoiled [42].

Performing a duality transformation on (4.33), one can go back to the standard scalar

field description of the axion. The axion potential (4.29) is now determined by both

electric fields, the one produced by the axial anomaly of QCD and the one from gravity.

As a result, the minimum of the axion potential,

dV (a)

da
= − 1

f2
a

(αAE + αGEG) = 0 , (4.34)

no longer coincides with E.4 Generally speaking, if the number of three-forms is larger

than the number of potential axion fields, there will always be at least one long-range

electric four-form field in the vacuum [42]. Note, however, that the axion still solves

the strong CP problem within the observational bounds if the gravitational mixing with

the axion is strongly suppressed relative to the mixing with QCD, more precisely if
αG
αA
� 10−9.

4Notice that such an additional three-form can be considered as due to higher dimensional operators

of the form (Pαβγ − Cαβγ) m2�
�+m2 Π

[α
µ (Pµβγ] − Cµβγ]), which is what one obtains after integrating out

Gαβγ in (4.33).
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If gravity is to interfere with the axion solution, it has thus to provide an additional three-

form. The Chern-Simons term in gravity, Gαβγ = 1
12Γρσ[α∂βΓσγ]ρ with Γρµν the Christoffel

connection, is a potential candidate. The topological invariant of the Riemann tensor

and its dual RR̃ are related to Gαβγ (cf. (4.17)) via

RR̃ = εαβγδRρσαβR
σ
ργδ =

1

3
εαβγδ∂[αGβγδ] = EG . (4.35)

The gauge symmetry here are coordinate transformations, cf. chapter 2, under which G

shifts as an exterior derivative of a two-form Υβγ , G→ G+ dΥ.

In order for gravity to interfere with the axion solution, two conditions must be satisfied:

First, the correlator of Gαβγ must develop a massless pole in the absence of the axion

〈RR̃,RR̃〉q→0 = const , (4.36)

which implies that there is a nonzero long-range electric four-form field EG 6= 0 in

the vacuum. Second, the coupling aRR̃ which is equivalent to dBG in (4.33) must be

generated. This could, for example, happen through the gravitational anomaly [177].

We will not be concerned with the actual origin of such a gravitational three-form and

refer to the literature about possible violations of global symmetries due to quantum

gravity effects [24]. We rather want to consider what implications these effects have for

the axion solution and what can be done about it.

4.4.2 A Way out

Coupling additional global symmetries to the gravitational anomaly [177–179] can avoid

the breakdown of the axion solution [42]. In such a case, the gravitational anomaly leads

to the nonconservation of the corresponding current ∂µJ
µ
g ∝ RR̃, and the corresonding

θG ∼ EG can be rotated away in the same way as θ in QCD by introducing a U(1)PQ.

In the three-form language, this amounts to introducing an additional two-form BGµν
which does not couple to the QCD three-form Cαβγ but only to the gravitational Gαβγ
[42] yielding the Lagrangian

L =
1

2 · 4!Λ4
E2 +

1

2 · 4!m4
G

E2
G +

1

f2
a

(αAC + αGG+ dB)2 +m−2
G (G+ dBG)2 . (4.37)

The additional two-form higgses the field EG and therefore, both E and EG are screened

in the vacuum as can easily be verified from the equations of motion.

Interestingly, with the massless neutrinos, the Standard Model provides a perfect can-

didate for an anomalous gravity coupling which does not couple to the axial anomaly.

In the following, we want to argue along the lines of [43] that the neutrino with the

neutrino lepton number serving as the anomalous U(1) can protect the axion solution

against quantum gravity corrections. For finite neutrino masses [180], in turn, this

mechanism puts a bound on the neutrino mass [43] when other contributions can be

discarded. This issue is discussed in section 4.4.3.
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To wrap things up, assuming the axion is anomalous with respect to both the trian-

gle anomaly and gravity, the divergence of its corresponding U(1)PQ current (4.25) is

sourced by the four-form fields E and EG

∂µJ
µ
5 = αAE + αGEG , (4.38)

where αA and αG are numerical coupling constants and the latter is a parameter deter-

mined by the nature of the gravitational anomaly. Its value is currently undetermined

and we shall treat it as a free parameter. We saw in (4.33) that the axion can only put

one electric field into a Higgs phase; the other one still has a pole at q2 = 0.

However, in addition there is now an extra global U(1), the neutrino lepton number

symmetry, νL → eiαννL. Its current JµνL = ν̄Lγ
µνL is anomalous with respect to gravity,

but not QCD,

∂µJ
µ
νL

= αGRR̃ = αGEG . (4.39)

The effective Lagrangian induced by these anomalies is

L =
1

2 · 4!Λ4
E2 +

1

2 · 4!m4
G

E2
G +

αA
f2
a

E
∂µ
�
Jµ5 +

αG
m2
G

EG
∂µ
�
Jµ5 +

αG
m2
G

EG
∂µ
�
JµνL . (4.40)

This Lagrangian is equivalent to (4.37) (cf. also (4.23) in section 4.3.2). Thus, there are

no massless modes in E or EG.

4.4.3 Neutrino Masses

Observations of neutrino oscillations [180] have established that neutrinos are not mass-

less but possess a tiny mass which is experimentally bounded by
∑
mν . 0.3eV [181],

where the sum is over all neutrino flavours. Following our work in [43], we want to

analyse how these affect the CP violation scenarios presented before.

Due to the tiny neutrino mass, the neutrino lepton number is explicitly broken. This

introduces an additional factor to the divergence of the current (4.39)

∂µJ
µ
νL

= αGRR̃+ 2mν ν̄Lγ
5νL . (4.41)

Analogously to (4.25), the current is identified with a pseudo-scalar ην which is the

pseudo-Goldstone boson of the broken symmetry transformation given by

ην =
1

m2
G

2ν̄Lγ
5νL and JµνL = mG∂

µην . (4.42)
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The dynamics of the theory is now governed by the Lagrangian (4.40) with an addi-

tional mass term 1
2mνmGη

2
ν . Replacing the currents with their corresponding pseudo-

Goldstone bosons (4.25) and (4.42) yields [43]

L =
1

2 · 4!Λ4
E2 +

1

2 · 4!m4
G

E2
G − faa

EG
m2
G

− ην
EG
mG
− a

fa
E

+
1

2
∂µa∂

µa+
1

2
∂µην∂

µην −
1

2
mνmGη

2
ν . (4.43)

The equations of motion for C and G are (in the following we drop indices and work in

a coordinate free notation)

d

(
E

Λ2
QCD

+ Λ2
QCD

a

fa

)
= 0

d

(
EG
m2
G

+m2
G

a

fa
+mGην

)
= 0 , (4.44)

and the ones for a and ην read

fa�a = −EG − E

�ην +mνmGην = −EG
mG

. (4.45)

Their solution gives the following expressions [43]

E = Λ4
QCD

mνm
4
G(−α+ β)

m4
Gmν + Λ4

QCD(−mG +mν)

EG = m4
G

mνΛ4
QCD(α− β)

m4
Gmν + Λ4

QCD(−mG +mν)
, (4.46)

where α and β are dimensionless integration constants of (4.44), i.e. E = −Λ4
QCD

a
fa

+

Λ4
QCDβ and EG = −m4

G
a
fa
−mGην + αm4

G.

Let us parametrize this result by the ratio of the neutrino mass to the gravitational

scale by defining ε = mν
mν−mG . The solution for the QCD electric four-form field EG then

depends on ε as follows 5

E = Λ4
QCD

ε

ε+
Λ4
QCD

m4
G

. (4.47)

The limit of massless neutrinos, ε → 0 leads to a vanishing of E (as well as EG = 0).

Thus, we recover the result of section 4.4.2. Considering a neutrino mass mν much

smaller than the gravitational scale mG, mν � mG, ε ' −mν
mG

, the electric field of the

QCD vacuum is instead

E = −Λ4
QCD

mνm
3
G

Λ4
QCD −mνm3

G

. (4.48)

5Note that we are not concerned with the actual value the gravitational electric field takes in the
vacuum as it is not constrained by measurements.
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To be compatible with observations (e.g. the electric dipole moment discussed below

(4.8)), the electric field E = θχ must be less than E < 10−9Λ4
QCD.

It is instructive to look at the possible limits on E. If the denominator in (4.48) is

dominated by mνm
3
G, there is no screening and E ∼ Λ2

QCD. On the other hand, if

Λ4
QCD � mνm

3
G, one obtains a bound on the neutrino mass which is [43]

mν . 10−9
Λ4
QCD

m3
G

. (4.49)

In turn, measuring the neutrino mass would introduce an upper bound on the gravita-

tional scale mG with which the anomaly enters if neutrinos are to solve the gravitational

CP violation. Experimental searches currently focus on the mass range 0.2 eV < mν <

2 eV which would give the bound mG . 0.2 GeV if detected.

4.5 Nonanalyticity of the Axion Potential

In [49], Witten made the compelling argument that the θ-dependence of the QCD vac-

uum is not necessarily described correctly by the standard instanton gas approximation

[34]. In weak coupling, the θ-dependence can reliably be computed via instanton effects

which are of order e−8π2/g2
e±iθ. However, the imposed boundary condition of the gauge

field approaching a pure gauge at infinity

Aµ → U∂µU
−1, for |x| → ∞ , (4.50)

is not sensible in an unbroken, asymptotically free theory which exhibits confinement.

Furthermore, as in such theories instantons of all sizes are relevant, one cannot compute

the θ-dependence reliably in an instanton gas approximation due to infrared divergences

for large instanton contributions.

A different approach can be taken by considering the large N limit of an SU(N) gauge

theory [182]. This constitutes a well-suited method to understand a gauge theory with

only a small number of light quarks in four dimensions. The large N limit is defined

by taking N → ∞ while keeping the ’t Hooft coupling λ = g2N fixed.6 In this limit,

the instantons of the classical action are expected to contribute only at order e−8π2N/λ.

There are, however, arguments that the θ-dependence of the QCD vacuum is present in

leading order of a 1/N expansion. For example, in a two-dimensional solvable CPN−1

sigma model, it can be shown that some of the properties usually attributed to the

effect of instantons, such as, e.g., the existence of a θ angle and the resolution of the

U(1) problem, appear to leading order in 1/N [49]. In these theories, the topological

charge is not quantized and therefore, there are no instantons for the classical action to

begin with.

6This limit can be compared to the semi-classical limit we are considering in chapter 3. Black hole
semi-classics can be understood as a large N limit in ’t Hooft’s sense.
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Even though the θ-dependence of the vacuum energy E(θ) cannot be calculated exactly,

there are still generic properties which can be established in the large N -limit [183, 184]:

E(θ) = N2Λ2F (
θ

N
) ,

E(θ) = E(θ + 2π) . (4.51)

These conditions can only be fulfilled if either E(θ) is a constant or a multivalued

function [183]. If the latter is the case, there exists a family of vacua labelled by the

integer number k with energy

Ek(θ) = N2Λ4F (
θ + 2πk

N
) . (4.52)

The true vacuum for any value of θ is found by minimization of Ek(θ) with respect to k

E(θ) = min
k
N2Λ4F (

θ + 2πk

N
) ' Λ4 min

k
(θ + 2πk)2 +O(

1

N
). (4.53)

This function is periodic in θ → θ + 2π, but at integer multiples of π there is a jump

between two branches of different k.

Introducing quarks into the theory, the vacuum energy E(θ) for pure gluodynamics

without quarks becomes a potential for the η′ meson and its mass is given by the Witten-

Veneziano formula [50, 156]

m2
η′ =

4Nf

f2
π

(
d2E

dθ2

)no quarks

θ=0

, (4.54)

which was derived in the large N limit. The above arguments suggest that the θ-

dependence of the vacuum energy

E(θ) = −mqΛ
3 cos θ (4.55)

which is derived from a standard instanton gas approximation, is not fully correct.

4.5.1 Schwinger Pair Creation and η′ Bubble Nucleation

In the following, we want to add another piece of evidence in favour of the non-analyticity

of the QCD vacuum θ-dependence. To this end, we draw an analogy between the

screening of integer charges in the two dimensional Schwinger model and the screening

of the θ-term in a QCD-like theory with light quarks.

The Schwinger model [45] describes two dimensional quantum electrodynamics with

massless fermions. It has interesting similarities to four dimensional Yang-Mills theory.

For example, the theory contains no asymptotic states of free fermions and local charge

conservation is spontaneously broken [46]. The Lagrangian of this model is

L = ψ̄(i/∂ − e /A)ψ − 1

4
FµνFµν , (4.56)
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where Fµν = ∂µAν − ∂νAµ is the photon field strength. This theory is exactly solvable

and has a number of interesting features [45, 185]. The theory is in a Higgs phase and

therefore charge screening occurs, i.e. there is no long-range correlator between widely

seperated charges. Additionally, global chiral symmetry breaking occurs, but, similarly

to QCD, due to the existence of an axial anomaly there is no Goldstone boson.

As explained below, adding a mass term

mψ̄ψ (4.57)

introduces a dependence of the vacuum energy on an angular variable θ [47]. Further-

more, it can be shown [47] that for a generic charge Q a long-range force is present.

However, most importantly, if Q is an integer multiple of e, the long-range force van-

ishes. This can be seen from the interaction energy for widely separated (of distance L)

charges

E =

(
E(θ − 2πQ

e
)− E(θ)

)
L . (4.58)

Since θ is periodic in 2π, the interaction energy is periodic in Q. Specifically, whenever

Q is an integer multiple of e, the energy is zero indicating the absence of a long-range

electric field.

The periodicity in Q can be understood as a screening by pair production [46]. The

Lagrangian (4.56) has a solution for the electric field strength F01 (we have chosen the

gauge A1 = 0 such that this is the only independent component of Fµν) given by

F01 = e∂−1
1 j0 + F , (4.59)

where j0 = ψ†ψ is the current density of the fermions and F is an arbitrary constant

background electric field, cf. section 4.2. For certain values of F , it is energetically

favourable to produce a quark-antiquark pair separated by the distance L [46]. The

gain in electrostatic energy for such a process is

∆E =
1

2
L
(
(F ± e)2 − F 2

)
. (4.60)

For (F ± e)2 − F 2 ≤ 0, the energy gain can be made arbitrarily large by increasing

the distance of the pair produced. Thus, it can always overcome the energy needed

to materialize two electrons out of the vacuum which is ∼ 2m. While for |F | ≥ 1
2e,

the vacuum energy can always be lowered by producing a pair of opposite charge, the

electric field will be unscreened for |F | ≤ 1
2e. The parameter θ with its periodicity of 2π

then depends on F as

θ = 2π
F

e
. (4.61)

The probability of pair creation is of order one for the critical electric field F = m2/e.

Therefore, the θ-dependence is suppressed by order ∼ m2 with the lightest fermion mass.

Let us then apply a similar argument to four dimensional QCD with light quarks. In

the presence of quarks, the vacuum energy E(θ) effectively becomes a function of the η′

meson, E(θ + η′/ΛQCD), cf. (4.54) and (4.55). For massless fermions the θ parameter
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is unphysical, the potential for η′ becomes flat and its expectation value arbitrary. This

constitutes the massless quark solution to the strong CP problem. In this case θ can

always be adjusted such that E(θ + η′/ΛQCD) is minimal. Turning on quark masses,

θ becomes a physical parameter. It is, however, still 2π periodic and therefore the

potential for η′ is periodic in 2πΛQCD. This is very similar to the Schwinger case where

the charge Q is periodic as in (4.58).

We would like to further the analogy and take the periodicity of E in terms of η′ as a

result of bubble nucleation with different η′ vacua. To simplify the discussion, let us

go back to the three-form picture established in section 4.3. In this language, the θ-

dependence of the theory can be understood (similar to the two dimensional Schwinger

model) as the appearance of a constant electric background field which we called E. It

is given by

〈FF̃ 〉 ∼ θE . (4.62)

In section 4.3.2 it was shown that if one screens the electric field E, the theory is

independent of θ. We know that for massless quarks it is indeed zero. Thus, the

background field E must depend on the quark masses in such a way that it vanishes

together with the lightest quark mass (4.9). The dependence on the lightest quark

masses has been calculated a long time ago using current algebra methods [44]. The

electric field is of first order in the lighest quark mass

〈FF̃ 〉 ∼ θmqΛ
3
QCD . (4.63)

Employing the analogy to the Schwinger model, we consider a screening mechanism

by bubble nucleation as proposed above [186]. Analogously to (4.58) and (4.60), the

total energy of the vacuum is lowered when η′ takes a smaller value, as this screens the

electric field E. The energy gain of a bubble of radius R which has a value of η′ lower

by 2πΛQCD in the inside compared to an outside value of η′ is

∆Evac =

∫
d3x

(
(

E

Λ2
QCD

− 2πΛ2
QCD)2 − E2

Λ4
QCD

)
' −8

3
π2R3E , (4.64)

where we have assumed E ≥ Λ4
QCD. This energy gain has to be compared to the

cost of producing such a bubble, which depends on the bubble size in contrast to the

two dimensional Schwinger case where the energy cost is always 2m. Thus, one has to

compute the wall tension. Let us assume the potential for η′ is given by the one obtained

from standard instanton calculus (4.55)

V (η′) = mqΛ
3
QCD cos

η′

Λ
, (4.65)

which sets the mass for η′ to m2
η′ = mqΛQCD. The domain wall solution for such a

potential is well-known (see e.g. [157]) and reads

η′w(z) = 2(arcsin tanhmη′z +
π

2
) , (4.66)
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where η′ is chosen to vary along the z-direction. The typical width of such a soliton is

m−1
η′ . The wall tension is given by

TW =
H

A
=

∫
dz

[(
dη′w(z)

dz

)2

+ V (η′w)

]
' 8mη′Λ

2
QCD , (4.67)

with A =
∫
dxdy the area of the wall. The energy stored in such a wall for a bubble of

size R is then

EW = TW 4πR2 = 32πmη′Λ
2
QCDR

2 . (4.68)

Since the energy of a spontaneously nucleated bubble must vanish, the critical radius of

the bubble is determined by

Rcrit = 3
TW

4πEΛQCD
'

12mη′Λ
2
QCD

E
. (4.69)

In order for the bubble nucleation process to be efficient enough to screen the vacuum,

the probability of nucleation of a critical bubble must be of order ∼ 1. The probability

of nucleation of a bubble Γ ∼ e−Scrit is given by its Euclidean action Scrit = Hm−1
η′ . For

Scrit ∼ 1, the electric field E has to have at least the value [48]

E ≥
T

3
2
W

ΛQCDmη′
' mη′Λ

3
QCD = m

1
2
q Λ

7
2
QCD . (4.70)

This result is in contradiction to the dependency of the electric field on the lightest

quark mass derived in [44], see (4.63).

How could such a discrepancy arise? In the two dimensional Schwinger model, the

screening of the electric field in the vacuum can be described by pair production of

elementary charges. Therefore, one could expect that the analogue of pair creation,

namely, the nucleation of bubbles with values of lower η′ would be able to produce the

correct dependence on the lightest quark mass. This seems not to be the case. In order

to describe the bubble nucleation process, we assumed that the potential for η′, which

is given by the vaccum energy E(θ), is given by (4.55). However, as we have outlined

above, there are indications that the vacuum energy functional of QCD is not given

by (4.55), but instead by (4.53) which is a nonanalytic function of θ. In this case our

analysis is invalidated. Therefore, we take the discrepancy between our result (4.70) and

the result (4.63) as a further indication for the nonanalytic behaviour of E(θ).

Finally, let us mention that in the three-form language of section 4.3, the correct de-

pendence on the lightest quark mass (4.63) can be obtained. To see this, let us remind

ourselves that the effective Lagrangian for the η′ field is

L =
1

2

E2

Λ4
+
Z

Λ3
εαβγδCαβγ∂δη

′ +
1

2
∂αη

′∂αη′ +
1

2
m2
η′η
′2 , (4.71)
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where Z is a constant of dimension [m]2 and Λ = ΛQCD. The equations of motions for

Cαβγ and η′ are

∂α(E − ZΛη′) = 0

∂2η′ +m2
η′η
′ +

Z

Λ2
E = 0

⇒ E = ZΛ(η′ + η′0) and E 6=
dVη′

dη′

⇒ η′ =
−Z2

Λ2m2
η′ + Z2

η′0 and E '
m2
η′Λ

2

Z2
η′0 ∝ mq ,

(4.72)

where η′0 is an arbitrary integration constant. Thus, the electric field is suppressed

linearly by the lightest quark mass as expected from (4.63).

4.6 Summary

This chapter contained a brief introduction to axion physics and potential problems

it faces. We first discussed the influence of quantum gravity corrections on the axion

solution in terms of a dual description. We showed that in terms of three-form gauge

fields gravitational corrections can be parametrized as an additional three-form which

is coupled to the axion by an anomalous current. By introducing an additional U(1)

symmetry whose current is anomalous with respect to gravity and which is provided by

the neutrino lepton number, we showed that a possible threat for the success of the axion

solution can be avoided. For the case of non-zero neutrino masses, we derived a bound

on these masses which depends on the gravitational anomaly scale by requiring that the

axion solution is viable within the experimental bounds. In addition, we analyzed the

screening of the QCD vacuum electric field in the presence of light quarks in terms of

bubble nucleation of different η′ vacua. We found that using the standard instanton

approximated vacuum energy potential does not reproduce the correct result.



Chapter 5

Axion Dark Matter and

non-minimal Couplings to

Gravity

With the recent measurements of the cosmic microwave background by the Planck satel-

lite [187], the theoretical framework for cosmology has been put to further tests. Re-

markably, the standard six-parameter ΛCDM model for cosmology provides an excellent

fit for the data. Parameter values defining this model have been measured precisely

and the composition of the energy density of the universe today is determined by the

dark energy density ΩΛ ' 0.69, the dark matter density ΩCDM ' 0.26, and the baryonic

energy density Ωb ' 0.05. Due to the absence of substantial non-Gaussianities, obser-

vations are consistent with the simplest models of inflation which produce an almost

scale-invariant adiabatic power spectrum. In light of the constraints on isocurvature

perturbations, the bounds on the most generic models of dark matter based on QCD

axions have been tightened.

In order to obtain the correct dark matter abundance from axions, while at the same

time avoiding an overproduction of isocurvature fluctuations, the Hubble scale during

inflation needs to be very low. In this chapter we argue that, by considering non-minimal

kinetic couplings of scalar fields to gravity, this picture can be changed and the axion

can account for the observed dark matter density while avoiding an overproduction

of isocurvature fluctuations. Furthermore, we show that the particle content of the

Standard Model can provide for a successful inflationary scenario while the dark matter

density is generated by axion particles.

The outline of this chapter is as follows. In section 5.1, we recapitulate the basics of

inflation, whereas the concept of dark matter is introduced in section 5.2. In the same

section, we also introduce the so-called misalignment mechanism for axion dark matter

and review the latest bounds from cosmological observations. A mechanism to ease the

conflict between axion dark matter and observational bounds is proposed in section 5.3.

The last section 5.4 is devoted to a possible implementation of cosmology within the

Standard Model.

81
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5.1 The Inflationary Universe

The theory of inflation is one the cornerstones of modern cosmology. It describes the

accelerated expansion of our universe before the standard hot big bang scenario [188].

Introduced initially [189–192] to solve such long-standing puzzles as the horizon problem,

it was soon realized that it could not only explain the homogeneity of the observed cosmic

microwave background but also explain the origin of the perturbations in the universe

[193–195]. An isotropic and homogeneous universe is described in General Relativity by

the Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 +R(t)2

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
. (5.1)

Here, t is the time-coordinate, (r, θ, φ) are the spatial three dimensional spherical coor-

dinates and R(t) is the scale factor. The parameter k determines the curvature of the

universe and we assume it to be zero in the following as supported by observations [54].

The (r, θ, φ) are so-called comoving coordinates since in an FRW background without

external forces a particle at rest remains at the same coordinate position during the evo-

lution of the universe. Physical length scales are measured by multiplying the comoving

length by the scale factor R(t).

The evolution of the universe is sourced by the energy density of the material it encloses.

For the FRW metric, this energy density is given by an isotropic fluid whose equation

of motion in the background (5.1) is

ρ̇+ 3H(ρ+ p) = 0 . (5.2)

Here, H = Ṙ
R is the Hubble constant and ρ and p are the density and the pressure of

the fluid. From the Einstein equations follow the Friedmann equations

H2 =
1

3M2
P

ρ , (5.3)

R̈

R
= − 1

3M2
P

(ρ+ 3p) . (5.4)

There are three important cosmological solutions to these equations. First, if the fluid

consists of non-relativistic particles, called matter, the pressure is effectively zero and

ρ ∝ R−3 and R ∝ t
2
3 . Second, for relativistic particles, called radiation, p = ρ/2 and

ρ ∝ R−4 and R ∝ t
1
2 . The third solution describes a cosmological constant background

fluid which has negative pressure p = −ρ and ρ is constant. In such a background, the

scale factor, however, grows exponentially. Since we have set k = 0, (5.3) defines the

critical density ρc for which the universe is flat. Note that if we had not set k = 0, there

would have appeared a term ∼ k/R2(t) on the right-hand side of (5.3). Finally, the

density parameter Ω is defined as the ratio of the density of a given fluid to the critical

density

Ω =
ρ

ρc
. (5.5)

In a flat FRW universe, the total energy density is Ωtot = 1.
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The standard hot big bang scenario explains the evolution of the universe from an al-

most isotropic and homogeneous state of high temperature and density to the observed

universe today. As the temperature dropped to T ∼ 100GeV due to the universe’s

expansion, the electro-weak phase transition took place and gauge bosons became mas-

sive. Quarks and gluons were bound to protons and neutrons (T ∼ 200MeV), and the

light elements were formed (nucleosynthesis at T ∼ 0.05MeV). At the point of matter-

radiation equality (T ∼ eV) the initially dominating radiation density became equal

to the non-relativistic matter density which prevails today. Shortly afterwards, elec-

trons were bound to nuclei and the photons decoupled. These photons have been free

streaming ever since and are imprinted in the cosmic microwave background radiation.

Galaxies and clusters formed from small inhomogeneities due to gravitational collapse

creating today’s structured universe.

The hot big bang scenario gives a successful description of the evolution outlined above.

To comply with observations, however, the initial conditions need to be extremely fine-

tuned. For instance, the universe today is observed to be flat |Ω− 1| ' 0 to the percent

level [54]. However, if it is not exactly flat today it would have needed to fulfill the

bound |Ω − 1| ≤ O(10−27) at T ∼ 100GeV, since the difference |Ω − 1| grows in time.

Additionally, the big bang scenario cannot explain the observed low relic density [196].

Assuming that the Standard Model gauge group SU(3)×SU(2)×U(1) originates from

a Grand Unified Theory (GUT), there must have been a phase transition in the early

universe which broke the GUT gauge group down to the Standard Model. During such a

phase transition topological defects, such as monopoles, are usually produced. Standard

computations estimate a density for them which is much larger than the observational

bounds [196]. Most importantly, the hot big bang scenario cannot explain the isotropy

observed in the cosmic microwave radiation. This isotropy exists on such large scales

that in a matter- or matter-radiation dominated universe they would have never been

in causal contact and the radiation could not have thermalized. Additionally, also the

observed perturbations in the CMB could not have been created by any causal physics.

These issues have been solved within the theory of inflation. For an introdution see,

e.g., [188, 197]. During inflation the universe undergoes an accelerated expansion with

scale parameter R̈ > 0 which requires a negative pressure p < −ρ/3. The simplest

fluid with such an equation of state is a cosmological constant with p = −ρ. This

leads to an exponential expansion R(t) ∝ eHt with a constant Hubble scale H. The

expansion immediately solves the horizon and flatness problem as well as the problem

of relic abundance. Because of the exponentially growing size of the universe, all energy

densities are diminished since the density of the cosmological constant is constant (in

the general case for p < −ρ/3 the energy density of the inflating background falls off

at most as R(t)−2). This includes also the energy density stored in the curvature. As

inflation corresponds to a decreasing comoving Hubble length H−1/R(t), regions which

are now far from causal contact could have been correlated before or during inflation.

Generically, one needs about N ' 60 e-foldings, i.e. during the time δt inflation lasts

the scale factor has to increase by a factor of about e60 in order to solve the horizon

problem.
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Standard inflationary scenarios are usually governed by a scalar field φ coupled to gravity

which has a density and pressure given by

ρφ =
1

2
φ̇2 + V (φ)

pφ =
1

2
φ̇2 − V (φ) . (5.6)

The Friedmann equation becomes

H2 =
1

3M2
P

[
φ̇2 + V (φ)

]
, (5.7)

and the evolution of φ obeys

φ̈+ 3Hφ̇ = −V ′(φ) , (5.8)

where the prime denotes the derivative with respect to φ. Notice that there is no

gradient term present in the equation of motion for φ. In order to drive an accelerated

expansion of an FRW universe, the background energy density has to be sufficiently

smooth. Additionally, any spatial gradient is diluted away exponentially fast during

the period of inflation. In order for the scalar field to obey the condition p < −ρ/3
its evolution has to be dominated by its potential, i.e. φ̇ < V (φ) which leads to the

so-called slow-roll approximation. Finally, the potential of the scalar field should have

a minimum so that inflation can find its end.

The evolution equations (5.7) and (5.8) in the slow-roll approximation reduce to

H2 =
V (φ)

3M2
P

,

3Hφ̇ = −V ′(φ) . (5.9)

Defining the slow-roll parameters for a minimally coupled scalar field

ε =
M2
p

2

(
V ′

V

)2

, (5.10)

η =
M2
pV
′′

V
, (5.11)

which measure the slope and the curvature of the potential, the necessary conditions for

the approximation to be applicable are

ε� 1 , |η| � 1 . (5.12)

One of the intriguing properties of inflation is the existence of an attractor solution [198].

Thus, if the potential is able to support inflation, in time all solutions will converge to

this inflating solution.

Once the solution φ(t) approaches the minimum of the potential V , the slow roll con-

ditions (5.12) become violated and the field starts oscillating. Couplings of the inflaton

field to matter then transfer its energy density to radiation, a process which is called

reheating. A detailed account on this subject can be found in [197].
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The great success of inflation rests on its capability to predict the origin of cosmic

perturbations which we observe in the CMB and which are thought to be responsible

for the formation of structure in our universe. These have first been computed by

Chibisov and Mukhanov in [193]. During inflation, the scalar field φ fluctuates quantum

mechanically. These fluctuations are stretched to super-horizon scales with unchanged

amplitudes as they become frozen. Thus their values are universally determined by their

values at horizon crossing. Let us briefly review how the resulting power spectrum of

the CMB is generated. For an excellent introduction we refer to, e.g., [197, 199].

The equations of motions of the scalar field perturbations φ = φ0 + δφ in Fourier space

are given by (see for example [197, 199])

¨δφk + 2RH ˙δφk + k2δφk = 0 . (5.13)

Note that this equation has been derived in the slow roll approximation. While the

mean of a given Fourier mode is zero 〈δφk〉 = 0, the variance of a given mode is nonzero

yet uncorrelated with others

〈δφkδφ∗k′〉 ≡ (2π)3Pδφ(k)δ3(~k − ~k′) . (5.14)

The power spectrum k3Pδφ(k) is scale-invariant if k3Pδφ(k) = const which is the case to

lowest order in the slow roll approximation (5.12).

Through the coupling to gravity, the fluctuations in the inflaton field are transferred to

metric perturbations with a power spectrum determined by [197]

PΦ =
1

8π2M2
P

H2

ε
. (5.15)

It has been measured by Planck to be PΦ = 2.21 × 10−9 [53] and we have used the

convention to rescale PΦ by k3 since it is scale-invariant. While in the exact slow-

roll limit, the spectrum is scale-invariant, the inclusion of a finite non-zero ε leads to

deviations from this flatness which is traditionally parametrized by the so-called spectral

index ns according to

PΦ =
1

8π2M2
P

H2

ε

(
k

k0

)ns−1

. (5.16)

The spectrum is called blue-tilted for ns > 1 and red-tilted for ns < 1. The value ns = 1

corresponds to exact scale invariance. In the standard slow roll approximation for a

scalar field, the spectral index is given by the slow roll parameters and reads

ns − 1 = 2η − 6ε . (5.17)

The Planck satellite [53] has measured its value to high precision and found ns = 0.96±
0.073 in excellent agreement with the calculations of Chibisov and Mukhanov [193].
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5.2 Dark Matter

The existence of dark matter – a kind of matter which does not, or only very weakly,

interact with photons – has become well-established through observational evidence.

Beginning with the observation of galactic rotation curves by Zwicky in the early 1930s

[200], later observations confirmed that luminous objects in galaxies and galaxy clusters

move faster than expectations from determining the mass by the standard luminosity

relation suggest. Applying the virial theorem to galaxies or galaxy cluster, one pre-

sumes that outside the visible matter, the velocities v of objects on stable Keplerian

orbits should fall off as v ∼
√

1/r with distance r. Instead, however, one observes con-

stant velocity dispersions indicating the existence of a halo of gravitating non-luminous

matter. By now a vast amount of evidence for the existence of such dark matter has

accumulated. Galactic rotation curves [201–203], gravitational leansing data [204–206]

and lately precise information from fitting cosmological parameters to the observations

of the CMB [54] have led to the paradigm of dark matter.

With baryonic matter only accounting for an energy density of Ωb = 0.0486 [54], the

total amount of dark matter in our universe is estimated to be ΩCDM = 0.26472 [54]

which is about 80 − 85% of all the matter in the universe. Information from large-

scale structure formation gives further insight into the nature of dark matter. In order

to form the observed structure of our universe [207], dark matter is favoured to have

been non-relativistic at the time of structure formation. This leads to the model of

cold dark matter. Although dark matter provides a consistent framework to explain

observations, it has, so far, only been evident through gravitational interactions. It is

thus not excluded that instead of postulating the existence of dark matter, one needs

to modify gravity on the appropriate scales. Hitherto, no compelling model of such a

modification has been suggested which could address all the evidence for dark matter

[208, 209]. For an introductory review on dark matter see [210].

Having established the existence of dark matter, the immediate question is what its

particle physics origin could be. Possible candidates must be stable on cosmological

time scales in order not to have decayed by now. Furthermore, they must interact only

very weakly with radiation and produce the correct relic density. Candidates include

primordial black holes, weakly-interacting massive particles (WIMPs), sterile neutrinos

and axions. Research is going on in many of these directions, especially since beyond

the Standard Model physics predicts a plethora of possible WIMP candidates. In this

thesis, however, we will only consider the axion.

5.2.1 Axionic Dark Matter via the Misalignment Mechanism

The axion introduced in chapter 4, cf. (4.13), seems to be the perfect dark matter can-

didate: it naturally appears in the solution to the strong CP problem and its couplings

to ordinary matter are highly suppressed as indicated by the bound on the scale of

symmetry breaking from astrophysical observations which is fa > 109GeV [58]. These

auspicious premises have led to large activities in the field of axionic dark matter since



Chapter 5 Axion Dark Matter and non-minimal Couplings to Gravity 87

the early 1980s [211–213]. One can generically distinguish between three scenarios of ax-

ion production in the universe providing for the dark matter abundance (for an extensive

review see [57]): first by thermal production, second by topological effects via breaking

of the PQ symmetry after inflation, or third from the so-called vacuum misalignment

mechanism where the initially arbitrary axion field amplitude is forced to coherent os-

cillations about the minimum of its potential once QCD effects become important.

It has been shown [214, 215] that a thermally produced axion1, cannot contribute the

dominant dark matter component of the universe and satisfy the experimental and

theoretical bounds simultaneously. The topological production of axions occurs if the

PQ symmetry is restored after inflation, i.e. if the reheating temperature TRH is larger

than the temperature of the PQ-phase transition TPQ. The symmetry breaking of the

PQ symmetry after (or during) reheating generates axionic strings [216, 217]. These

strings are usually assumed to decay into axions before their energy density dominates

the universe. The axions produced in this way become non-relativistic after the QCD

phase transition when the axion mass develops and could contribute to the dark matter

density of the universe. This scenario, however, comes with a caveat: After the QCD

phase transition there exist N degenerate vacua associated with the color anomaly.

Therefore, domain walls between these vacua form and quickly start to dominate the

energy density of the universe [60, 218]. Domain walls are gravitationally repulsive and

thus lead to an accelerated expansion of the universe. Finally, the structures produced in

this scenarios are different from those observed. Therefore, such scenarios are generally

disfavoured [60, 218].

This leaves the misalignment mechanism which also provides the most natural produc-

tion mechansim as it always contributes to the dark matter density. In this scenario,

the underlying U(1) symmetry is broken before or at the beginning of inflation at the

scale fa and is not restored during or after inflation. The corresponding Higgs field

settles into its minimum and the axion angle Θi = ai
fa

assumes a constant value between

[−π, π]. The value of Θi is constant only within one causally connected region, but can

vary between different causal patches. Nevertheless, after inflation each of these patches

will have been stretched out such that in our observable universe only one initial angle

prevails.

The equation of motion for the axion field a in an expanding FRW background (5.1) is

given by

ä+ 3Hȧ+m2
aa = 0 . (5.18)

Note, that only the zero-mode contributes significantly to the dark matter abundance,

see, e.g., [219], as the energy of the spatial gradient decays much faster. The mass of the

axion is produced by non-perturbative effects which are temperature dependent [220];

for the case of zero temperature see section 4.5 and 4.2. Furthermore, at first H � ma

which is why the axion field amplitude initially remains constant, a = ai = Θifa. Once

the temperature of the universe reaches the QCD scale, the instanton potential for the

axion will start to build up. The axion will then roll towards the minimum of the

potential at a
fa

= Θ = 0 and will start to oscillate with an amplitude ∼ Θi when the

1These would, in fact, constitute warm dark matter.
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temperature Tosc is reached. These coherent oscillations about Θ = 0 form a Bose-

Einstein-condensate of nonrelativistic axion particles and contribute to the dark matter

density of the universe. At the time when ma(Tosc) ≈ 3H(Tosc), the energy density can

be determined from the virial theorem [57] which yields

ρa(Tosc) ' ma(Tosc)
2a2
i '

1

2
ma(Tosc)

2Θ2
i f

2
a . (5.19)

The mass of the axion is produced by nonperturbative, temperature dependent QCD

effects. Most computations of the axion potential are performed in the dilute instanton

gas approximation [56, 221], where the biggest uncertainty in the mass of the axion ap-

pears around the QCD phase transition. Due to strong correlations and strong coupling

at the phase transition, the computation of the potential becomes challenging. For an

updated computation of the axion mass see [221]. Note that the issues concerning the

standard instanton derivation (see chapter 4) and possible non-analyticities of the axion

potential can be disregarded in our discussion. We can use the potential derived in [221]

since the axion phase Θi needed later on is small enough such that the axionic potential

is well approximated by the mass square m2
a(T ). This eliminates the need to know the

full axion potential as also the non-analytic potential can be approximated by m2
a(T )

when expanded around zero. As the axion mass (potential) is strongly temperature

dependent, we will consider two different regimes in the following. In the first regime

oscillations start at a temperature above the QCD phase transition, i.e. Tosc & ΛQCD,

while in the second they start after the QCD phase transition occured, i.e. Tosc . ΛQCD.

The oscillation temperature is given by [221, 222],

Tosc '

9.16× 102MeV
(

fa
1012GeV

)−0.184
,

6.65× 104MeV
(

fa
1012GeV

)−0.5
.

(5.20)

One finds [221, 222] that depending on the value of fa the axion starts oscillating ear-

lier for smaller fa, or later (at lower temperatures) for larger fa. Once ma � H, it

follows from (5.18) that the energy density of axions per comoving volume ρa(t)/R(t)3

is conserved. The axion energy density of today is [213]

ρa(T0) = ρa(Tosc)
ma(Tosc)

ma(T )

(
R(Tosc)

R(T )

)3

, (5.21)

where T0 denotes the temperature of the universe today and R(T ) is the scale factor at

a given temperature T or equivalently at a given time t. The mass of the axion today

at T = T0 is given by m2
a(T0) ≡ m2

a = mumdf
2
πm

2
π/((mu + md)

2f2
a ) ' Λ4

QCD/f
2
a . Note

that we are not concerned with scenarios [223, 224] which include a short period of late

inflation which would dilute the axion density (5.21) more efficiently.

The energy density of axions today can be expressed in terms of the initial misalignment

angle Θi and the axion decay constant fa. It reads [56, 222]
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Ωah
2 '

0.195 Θ2
i

(
fa

1012GeV

)1.184
; (fa < fΛ),

0.0035345 Θ2
i

(
fa

1012GeV

)1.5
; (fa > fΛ) ,

(5.22)

where fΛ ≡ 3.6× 1017GeV and h = H0/(100km s−1Mpc−1) is a numerical factor which

accounts for the uncertainties in the measurements of the Hubble parameter today H0 =

(67.3± 1.2)km s−1Mpc−1. The upper expression corresponds to Tosc > ΛQCD while the

lower applies for Tosc < ΛQCD. The dark matter density parameter determined by

Planck measurements is ΩCDMh
2 = 0.1199±0.0027. Fluctuations

√
〈δΘi

2〉 in Θi which

could be, in principle, induced during inflation contribute to the dark matter energy

density. However, for the values of Θi that we consider, they are negligible. Nonetheless,

these fluctuations have an observational effect which we will discuss in the next section.

Corrections to (5.22) from anharmonicities are non-negligible only for Θi > π, i.e. for

axion cold dark matter in the fa < 5 × 1011GeV range. These do not change our

conclusions qualitatively and for the sake of the argument we assume fa > 1011 GeV.

Equation (5.22) can be recast in terms of the more intuitive ratio of the dark matter

density ρaDM provided by axions to the total observed dark matter energy density ρobs
DM

[54]

ρaDM

ρobs
DM

' Θ2
i

1.7
(

fa
1012GeV

)1.184
; (fa < fΛ)

8× 105
(

fa
1017GeV

)1.5
; (fa > fΛ) ,

(5.23)

where ρobs
DM = 1.3 keV/cm3 [54]. Note that for each value of fa & 1012 GeV there is an

initial condition for which axions can account for all the dark matter. We denote it by

Θi(fa).

5.2.2 Isocurvature Constraints

The main additional constraint on the misalignment mechanism comes from isocurvature

perturbations. During inflation the axion is essentially massless since HI � ma. There-

fore, the axion will be subject to quantum fluctuations in the quasi-de Sitter spacetime

like any light scalar field in de Sitter. The amplitude of these quantum fluctuations is of

the order of the Hubble scale (cf. section 5.1) with an almost scale invariant spectrum

〈
|δ2a(k)|

〉
=
H2
I

4π2

2π

k3
⇔ σΘ =

HI

2πfa
, (5.24)

where σΘ =
√
〈δΘi

2〉. The underlying physics also produces perturbations in the inflaton

seeding the structure of today’s universe. Since the axion potential is flat during inflation

and the gradient energy is negligible, see, e.g., [219], these fluctuations, which are called

isocurvature or entropy perturbations (cf. [62]), do not perturb the total energy density

of the universe, but only the number density of axions.
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The gauge-invariant entropy perturbations can be defined as [62]2

S =
δna
na
− δnγ

nγ
= δa −

3

4
δγ , (5.25)

where na and nγ denote the axion and the radiation number density and δa ≡ δρa
ρa

and

δγ ≡ δργ
ργ

the energy density contrast of the axion field and radiation, respectively. Since

all other matter is tightly connected to the radiation energy density (as they are assumed

to be in thermal equilibrium), δb = 3
4δν = 3

4δγ [62], we will only explicitly consider the

entropy perturbation between the axion and radiation. After the perturbations have left

the horizon, they remain constant. This is true for both the adiabatic and the curvature

perturbations (see, e.g., [62, 225]). The isocurvature mode characterizes the relative

number density perturbation of different fluids on constant curvature hypersurfaces, i.e.

constant energy density hypersurfaces. Therefore, the density perturbations of the axion

and radiation are related by

δρa + δργ = 0

ρaδa = −ργδγ . (5.26)

Hence, during radiation domination (ργ � ρa), δa � δγ and the initial condition for the

entropy perturbation (5.25) is Si = δa = δna/na. The entropy perturbation, S, remains

constant as long as it is outside the horizon [62]. When these perturbation reenter the

horizon, however, the universe is matter dominated and the perturbations, initially set

by the axion fluid, are converted into temperature perturbations,

S? = −3

4
δγ = −3

δT

T

⇒ δT

T

∣∣∣∣
iso

= −1

3
δai . (5.27)

They can be detected in the cosmic microwave background (CMB). Observationally, they

can be disentangled from the adiabatic perturbations generated by the inflaton, since

the isocurvature perturbations shift the acoustic peaks towards smaller scales [226].

So far, however, no isocurvature perturbations have been observed [53]. The relevant

bound on isocurvature perturbations of dark matter is best expressed as a bound on the

ratio α of the isocurvature perturbations, Piso = 〈(δT/T )2〉iso, to the total temperature

perturbations of the CMB, Ptot ' Pad = 〈(δT/T )2〉ad,

α ≡ Piso
Pad
'

H2
I

Psπ2f2
aΘ2

i

< 0.039 (95%C.L.), (5.28)

where Ps = 2.2× 10−9 is the power spectrum of the CMB measured by Planck [53].

The bound (5.28) together with the measured dark matter density (5.23) constrains the

parameters of the axionic dark matter model. One can translate (5.28) to a bound on

2We work in comoving coordinates, so that all quantities have to be considered in the comoving
gauge.
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the Hubble scale during inflation by inserting Θi(fa) given by (5.23) which yields

HI < π
√
αPsfaΘi(fa) . (5.29)

This bound has been much discussed in the literature, see e.g. [56, 222]. If the axion

accounts for all the dark matter, one finds

HI <

2.3× 107
(

fa
1012GeV

)0.41
GeV ; (fa < fΛ)

3.2× 109
(

fa
1017GeV

)0.25
GeV ; (fa > fΛ) .

(5.30)

As explained in chapter 2, all physical scales must be sub-Planckian. Thus, in order to

have a sensible effective field theory for the axion, the scale of the effective field theory

(here the symmetry breaking scale) has to be smaller than the Planck scale, fa < MP .

This constrains the Hubble scale during inflation to be smaller than HI . 1010GeV, see

also [56].

Generically, the simplest models of inflation, e.g., chaotic single field slow-roll scenarios,

have a Hubble scale during inflation of the order HI ' 1013GeV. This can be easily

checked from (5.15) and (5.17) when taking into account the observational data from

Planck which measured the power spectrum Ps = 2.2 × 10−9 and the spectral index

ns = 0.9603 ± 0.0073 [53]. For most single field scenarios, in particular those with a

monomial potential,3 ε ∼ O(10−3) which gives a Hubble rate ' 1013GeV.

Considering slow-roll scenarios, only those with a hierarchy between the two slow-roll

parameters η � ε can provide a sufficiently low Hubble scale H . 1010 GeV. It is only

then that the axion isocurvature bound is avoided. Possible realizations are, for exam-

ple, natural inflation scenarios [227], where ns receives the dominant contribution from

a tachyonic mass. However, these scenarios generically need trans-Planckian physical

scales in order to match observations [53].

Finally, generic multifield scenarios, which could in principle allow for a low Hubble scale,

are in conflict with the absence of non-Gaussianities fNL . 2.7 ± 5.7 [53]. The bound

could, nevertheless, be avoided if CMB anisotropies are transferred from isocurvature

perturbations of a light scalar which decays to radiation at the end of inflation, e.g., to

the curvaton [228]. We will not discuss such models here.

With this we conclude that in generic single field slow-roll inflation, a low Hubble scale is

disfavoured and thus these scenarios are in tension with the proposed models of axionic

dark matter.

3For a potential V ∝ φn, ε = n2

2

M2
P
φ2 = n

2(n−1)
.
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5.3 Saving the Dark Matter Axion

In the last section, we saw that the constraints on the axion dark matter scenario which

are in conflict with observations are rooted in the large amplitude of quantum fluctua-

tions of the axion during the de Sitter expansion. This section presents two possible ways

to suppress these fluctuations. First, we consider a specific model which generically has a

low inflationary Hubble scale. Second, we effectively suppress perturbations in the axion

field by changing its kinetic term on de Sitter. In this way, the amplitude of the axion

field, which imprints its perturbations into temperature fluctuations, is smaller than the

canonically normalized field which receives quantum fluctuations during inflation.

5.3.1 Small Scale Inflation

In order to obtain a small scale inflationary scenario, we consider the model of [229],

which can be understood as a modification of natural inflation [227]. In this model all

physical scales are sub-Planckian. First, let us familiarize ourselves with the gravita-

tionally enhanced friction mechanism (GEF) of [65]. The idea of the GEF model is to

consider an effective field theory on de Sitter which includes an additional nonrenormal-

izable coupling in contrast to General Relativity. In the Einstein frame, the Lagrangian

is given by [65]

1

2

∫
d4x
√
−g

[
M2
PR−

(
gαβ−G

αβ

M2
φ

)
∂αφ∂βφ− 2V (φ)

]
. (5.31)

We conveniently work in the Einstein frame, as it is the frame in which the graviton has

a canonical kinetic term. Gαβ is the Einstein tensor which on a quasi de Sitter spacetime

takes the form Gαβ ' −3gαβH2. Notice that on FRW backgrounds which are driven by

a fluid with an equation of state which obeys

p ≤ −1

6
ρ , (5.32)

the Einstein tensor Gµν defines a causal structure for the kinetic term. This is the case

for all inflating backgrounds.

It is important to note that the strong coupling scale on such a background is not given by

Mφ, but rather by Λ3
GEF = (1 + 3H

2

M2
φ

)M2MP . Thus, the effective field theory considered

is an expansion of higher-dimensional operators which are suppressed by ΛGEF on this

background. The inflationary scenario considered is slow roll, i.e. all derivatives are

“small”. Thus only the lowest order in derivatives of the scalar φ are considered. The

Lagrangian (5.31) is ghost-free, meaning that all equations of motions contain only two

time derivatives of the fields. In fact, in the decoupling limit, where one first integrates

out the equation of motion of gravity and then sends MP →∞ keeping MPM
2 and all

other scales fixed, one recovers the quartic Galileon term for the scalar field [230, 231]

which is known to reduce to an equation of motion without higher time derivatives.
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During inflation, the kinetic term of the field φ is effectively renormalized by

γ2 = 1 +
3H2

I

M2
φ

. (5.33)

The scalar field φ must then be canonically normalized to φ̄ = γφ, and the potential

changes according to V (φ) → V (φ̄/γ). In the high friction regime HI � Mφ [229], the

curvatures of the potential are suppressed by factors of γ, e.g. ∂φ̄V = V ′/γ � V ′, where

the prime denotes derivatives w.r.t. φ. Therefore, potentials that are steep in φ can

be flat in φ̄ and at the same time weakly coupled [65, 232]. This is the gravitationally

enhanced friction mechanism (GEF) explained in [229] and [233]. In these models, the

power spectrum of fluctuations and their spectral index are given by

Ps =
H2
I

8π2M2
p

1

ε
and ns − 1 = −8ε+ 2η, (5.34)

where

ε =
V ′2M2

p

2V 2

1

γ2
; η =

V ′′M2
p

V

1

γ2
(5.35)

are the slow-roll parameters of the theory, which satisfy η, ε � 1. Note that they are

different from those in standard slow roll inflationary theories, cf. (5.9).

Let us return to the original proposal of this section, namely considering a natural

inflation scenario equipped with the above described additional gravitational coupling

on de Sitter. The potential for the scalar field is given by

V (φ) = Λ4
h(2− cosφ/fh)). (5.36)

Such a potential can be understood as that of a hidden (additional) axion, characterized

by a decay constant fh, which is the inflaton. The potential is induced by instanton

effects of a hidden gauge group with strong-coupling scale Λh. In the small field case

(φ/fh � 1), one finds

V (φ) ' Λ4
h(2− φ2/2f2

h) . (5.37)

For such a potential (5.34) directly implies

1− ns ' 2η =
M2
p

f2
h

1

γ2
. (5.38)

As Planck measures 1 − ns ' 0.04, these models only allow for fh � MP in the high

friction limit γ � 1. Otherwise, these models are excluded on the grounds that no

physical scale should be larger than the Planck scale.

The power spectrum relates HI and φ/fh via ε = φ2M2
P /f

4
h ,

HI = π
√
Ps(1− ns)/2 Mp

φ

fh
' 5× 1013 φ

fh
GeV. (5.39)

Thus, by considering a small ratio φ/fh, one can have a low scale inflationary scenario

with HI < 1010GeV. In this model, axion dark matter created via the misalignment
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mechanism [56, 222] is in agreement with isocurvature bounds from Planck [53]. Fur-

thermore, since the model is single-field, non-Gaussianities are negligible [234].

5.3.2 Suppressing Isocurvature Perturbations

The isocurvature perturbations are given by the ratio δa/ai at the time the axion starts

oscillating, i.e. H ' ma. The perturbations δa are generated during inflation when

the scalar field acquires quantum fluctuations due to the de Sitter background. They

subsequently leave the horizon and become frozen. In order to compute the induced

quantum fluctuations, one has to consider the canonically normalized field. During

inflation, the canonically normalized field is ā =
√
γa, where γ is given by (5.33). It

receives quantum fluctuations of the order of the Hubble scale, δā = HI
2π . In terms of

the field a, which is introduced in the Lagrangian (5.31), this yields δa = HI√
γ . Once

the axion field starts oscillating, these perturbations become gravitationally coupled to

the radiation fluid as in (5.25). At this time, inflation has long passed, the universe

is radiation dominated and HI � M . This means that the initial conditions for the

axionic entropy perturbations are set by the canonically normalized field a. Thus, the

correct initial condition for Si is given by

Si =
δa

ai
=

HI

2π
√
γfaΘi

, (5.40)

where we used ai = faΘi. Essentially, this mechanism is equivalent to enhancing the

decay constant of the axion, fa → fa

√
(1 + 3H

2

M2
a

), during inflation only.4

Instead of a bound on the Hubble scale as in (5.29), one now obtains a relation between

the suppression scale Ma and the isocurvature ratio (5.28) which reads

f2
aΘ2

i =
M2
a

Asπ2α
. (5.41)

In contrast to before, this is independent of the scale of inflation and thus abolishes the

need for a small scale inflationary scenario. Note that the constraint (5.29) has changed

to fa �
Ma

Θi
. Taking into account the required dark matter abundance, Ma can be

determined as a function of fa and the measured parameters Ps, α and Ωch
2. The latter

is the solution to the equations

Ωch
2 ≥


0.195M2

a
π2αf2

aAs

(
fa

1012GeV

)1.184
; (fa . fΛ)

0.0035345M2
a

π2αf2
aAs

(
fa

1012GeV

)1.5
; (fa & fΛ) .

(5.42)

4This mechanism is similar in spirit to a time-varying axion decay constant fa proposed by Linde
[191] in order to suppress the isocurvature perturbations of the axion.
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Using the Planck data [53] the upper bound on Ma is

Ma ≤Mmax
a =

4.0× 107
(

fa
1012GeV

)0.41
GeV ; (fa . fΛ),

5.2× 109
(

fa
1017GeV

)0.25
GeV ; (fa & fΛ) .

(5.43)

Imposing fa < Mp, we get Ma < 1.2 × 1010GeV. In our scenario Θi is small as long

as fa > 1011 GeV and anharmonic effects can be safely neglected which justifies our

assumptions a posteriori. Indeed, for fa ∼ 4× 1016 GeV we have Θi = 1.5× 10−3.

Another way of softening the cosmological bounds on the axion was proposed in [235].

There, the possibility that the QCD sector becomes strongly coupled during inflation

is discussed. This is achieved by letting the QCD gauge coupling to be determined

by the vacuum expectation value of some scalar field, e.g. the inflaton or a dilaton.

Such a coupling arises naturally in superstring or supergravity theories where the gauge

coupling is determined by the following term in the Lagrangian

f(φ/Mp)F
a
µνF

aµν , (5.44)

where f is some function of the field φ and F aµν is the QCD field strength tensor. If

f(φ/Mp) is small during inflation, the scale ΛQCDeff
∝ exp−αf(φ/Mp)Mp with α being

a numerical factor, can become large and instantons can produce a mass ma ∼ HI

for the axion. Hence, the axion will settle into its minimum at a = 0 during inflation.

Nevertheless, it can still account for the dark matter density of our universe since during

reheating with temperature TR (when the gauge coupling has settled to its low energy

value and the axion has no longer a potential) thermal effects will induce perturbations

in the axion field. For temperatures TR > T > ΛQCD, when ma = 0, one can assume

a random walk for the axion perturbations of ∆a ∼ T per Hubble time. During the

interval [TR − ΛQCD], the deviation can be at most ∆a ∼ TR. Therefore, the typical

energy scale of the coherent oscillations is given by ρa ∼ 1
2m

2
aT

2
R. With this mechanism,

the bounds on the isocurvature perturbations are easily circumvented, as the axion is

no longer light during inflation and hence does not receive quantum fluctuations.

5.4 Inflation and Dark Matter from the Standard Model

This section considers a setup where on de Sitter the gravitational couplings to a scalar

field are generically of the form (5.31). Within this setup, it is possible that the Standard

Model of particle physics (with the addition of the QCD axion) provides the particle

content needed to explain both inflation and the dark matter abundance.

So far, no conclusive candidate for the scalar inflaton field has emerged. The Standard

Model itself includes only one scalar particle, the Higgs bosons [236–240]. In the Stan-

dard Model, the Higgs is introduced to unitarize the scattering amplitudes of W -bosons.

In this description, the W -particles are massive because of spontaneous symmetry break-

ing in the Higgs sector. The Goldstone boson from the electro-weak symmetry breaking

combines with the W vector boson to become its longitudinal polarization; it is “eaten”
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by the W -boson to acquire a mass. In addition, the Higgs particle provides a generic

way of giving mass to the Standard Model fermions. The discovery of this particle has

long been considered the holy grail of particle physics until recently, the first hints of

its discovery appeared [241, 242]. Experiments at the LHC detected a signal of a scalar

particle with mass of ∼ 125− 126 GeV [241, 242]. Although it is still not exactly proven

that it is the Standard Model Higgs boson, the existence of a scalar particle seems to be

established.

As shown in [65], the Higgs boson h with action (5.31) and potential

V (h) =
λ

4
(|h|2 − v2)2 , (5.45)

where v = 246 GeV is the Higgs boson vacuum expectation value and λ is the Higgs

self-coupling, leads to a successful model of inflation. In the following, we assume that

during inflation |h| � v and therefore, the potential is approximately V (h) ' λ/4 h4.

This is a reasonable assumption since in order to drive inflation the amplitude of the

Higgs field must be |h| ∼ 0.01λ−
1
4MP at that time. Note that canonical inflationary

models with a potential λφ4 are ruled out by Planck because they result in too much

gravitational wave emission [53]. However, in the GEF mechanism, the amplitudes of

gravitational waves are suppressed and the bounds can be evaded [229, 230].

Equations (5.34) predict HI = 2πMp

√
2Ps(1− ns)/5 = 9×1013 GeV, while Mh remains

an open parameter. To determine a bound on Mh we have to complement them with

the Friedman equation

H2
I '

V

3M2
P

=
λφ4

12M2
P

, (5.46)

which during slow-roll, ε ' 8M2
P /(φ

2γ), then leads to

Mh = 4.0MP (1− ns)
5
4P

3
4
s λ
− 1

4 ' λ−
1
4 5.5× 1010GeV. (5.47)

The recent measurement of ATLAS and CMS of the Higgs boson mass, mh ≈ 126 GeV

[241, 242], give λ = 0.26. However, λ runs from the electroweak scale to the scale ∼ HI

where our formulas apply. As an order of magnitude estimate of the values of λ during

inflation, we considered the Standard Model renormalization group equations up to the

scale HI , for a recent computation see e.g. [243]. In order to avoid the electroweak

instability problem (see e.g. and [244] references therein), we consider values of the top

mass mt ' 171GeV at the electroweak scale and values of the strong coupling constant

αs = 0.1184. This is within the 3σ range of the measured value. Of course, new physics

can play an important role in the running, but this is a source of uncertainties that we

cannot address. The additional non-minimal coupling itself influences the running (at

scales > Mh) on de Sitter. We expect that it softens the running such that λ > 0 even

for different values of mt, but this important aspect is left for future work. All in all, the

assumption λ(HI) > 0 allows to consider λ ∼ 0.01 as an order-of-magnitude estimate.

If our model is responsible for having Higgs inflation and QCD axions as dark matter,

we would ideally only tolerate a small hierarchy between Ma and Mh. The ratio Ma/Mh

is not fixed by our model and Planck data, but it is bounded from above because of the
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Figure 5.1: Isocontours of Mmax
a /Mh, i.e. the maximum value of Ma/Mh in our model

of Higgs inflation and axion dark matter allowed by Planck constraints on isocurvature
perturbations. We have used λ(HI) = 0.01. The spectral index ns measured by Planck
is shown as yellow bands for 1 and 2σ error. The area outside is disfavored at 95% C.L.

upper limit for Ma, c.f. (5.43). The upper limit Mmax
a /Mh depends on the value of fa

and generally decreases with decreasing fa. In Fig. 5.1 we show isocontours of Mmax
a /Mh

in the ns − fa plane. We see that natural values (Mmax
a /Mh ∼ 0.1) are possible for the

highest meaningful values of fa ∼ Mp. Even for values of fa ∼ 1016 GeV, we get quite

acceptable ratios of 0.01 < Mmax
a /Mh . 0.03. These numbers are relatively sensitive to

uncertainties on the measured value of ns but not on λ, because it enters mainly through

Mh, which scales as (1−ns)5/4/λ1/4 (see (5.47)). Therefore, even though for a complete

picture one has to perform the full RG analysis, one can be confident that this will not

change the main conclusions.

5.5 Summary

The axion is one of the best motivated dark matter candidates at hand. Due to its nature

of a pseudo-Goldstone particle in the Peccei-Quinn solution to the strong CP problem, its

couplings to other matter are suppressed by the breaking scale of the stipulated U(1)PQ
symmetry. If it can be produced in the early universe, it could account for parts, or

even all, of the observed dark matter density today. One such production mechanism

is the so-called misalignment mechanism in which the axion density originates from an

initial random value the axion field asssumes after symmetry breaking. Once QCD

effects become important, the axion acquires a mass and while relaxing towards the

minimum of its potential, it produces non-relativistic axion particles. However, during

inflation the axion is light and thus sensitive to quantum fluctuations. Depending on the

inflationary energy scale ∼ HI , the generated isocurvature perturbations are in conflict

with observations which put a severe constraint on axion dark matter scenarios.
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In this chapter, we have shown that by changing the kinetic coupling of the axion on

inflationary backgrounds the tension between observation and predictions can be eased.

We found that it is possible to produce the correct amount of dark matter without any

restriction from the scale of inflation. In addition, we pointed out that with the latest

Planck data, possible low scale inflationary models which could avoid the bounds without

any additional coupling for the axion are rare. An example of such a model was presented

in section 5.3. Lastly, we tried to push our model such that it can accommodate inflation

and dark matter within the realm of Standard Model physics (including the axion) and

found that it is possible within a common framework of non-minimal kinetic couplings.



Chapter 6

Massive Gravity

In relativistic quantum field theory on Minkowski space, one particle states can be

labelled according to their representation of the Poincaré group. The Casimir operators,

which are those operators that commute with all generators of the group transformations,

classify the invariant mass m2 and the spin s. Each irreducible representation is then

uniquely labelled by m and s.

In principle, this classification is most useful when considering the eigenstates of the

full Hamiltonian. However, in most cases, the exact diagonalization of the interacting

Hamiltonian is extremely involved and not practicable. Instead, one introduces the con-

cept of asymptotic states which are eigenstates of the quadratic part of the Hamiltonian.

This is a particular useful representation since interactions are considered to be local-

ized in time and space, and hence the measured particle eigenstates are asymptotically

equivalent to the asymptotic states. This also brings about the concept of the S-matrix

which is defined as the transition amplitude of some asymptotic initial state |in〉 to an

asymptotic final state |out〉 induced by the Hamiltonian of the system. The square of

the S-matrix can be interpreted as the probability of transition

P (in, out) = |〈out|S|in〉|2 ⇒ |〈out|S|in〉| ≤ 1 . (6.1)

It immediately follows that for a fundamental theory the S-matrix should be a unitary

operator and each single scattering process must have probability smaller than one.

As discussed in the introduction 1, effective field theories are very useful to describe

physics at a certain scale considering only the relevant operators at this scale. Usually

this can be thought of as having integrated out heavy physics in the path integral down to

a certain scale Λ which gives a low energy approximation of the theory. This procedure

generically will introduce operators which lead to a nonunitary S-matrix at energies

larger than the scale Λ. However, as the effective theory can only describe physics

accurately at energies much lower than Λ, this seeming unitarity violation will need

to be taken care of only when considering the full fundamental theory. In a standard

treatment, at these high energy scales, new degrees of freedom will enter the theory

(they are integrated in) and thus provide a viable ultraviolet (UV) theory. This is what

was called a UV completion in the Wilsonian sense. However, as we have discussed in

99
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chapter 2 for gravity there might be other ways to cure the apparent unitarity violation

of an effective field theory [7, 8, 245].

It is interesting that the Standard Model of particle physics1 which describes the inter-

actions of fundamental massive and massless spin-0 and spin-1/2 fields together with

a fundamental massless spin-1 field can be considered a fundamental theory that does

not violate unitarity at any scale. Gravity on the other hand has to be considered an

effective field theory; although it might not be necessary to find a UV completion in the

Wilsonian sense, see chapter 2. The field theoretical treatment describes gravity as the

interaction of a massless spin-2 particle with itself and universally with all other particles

determined by the laws of General Relativity. It can be shown that General Relativity

is essentially the unique theory of an interacting massless spin-2 particle [80–82], i.e. 2

degrees of freedom. By essentially we mean in the lowest order of a momentum expan-

sion. An interesting question to ask is then whether interactions of a massive spin-2

particle obey such a uniqueness theorem and whether one can formulate a consistent

interacting theory of a massive spin-2 particle. The latter question is of an even more

critical importance and has been of much interest over the past 50 years [66]. This

question will be at the center of this chapter.

Let us, however, briefly mention that, apart from these theoretical motivations, an in-

teracting massive spin-2 field would also be an interesting possibility to provide for

an infrared (IR) modification of gravity. For instance, at first, it seems that it might

not be possible to distinguish a very small graviton mass from a zero mass experimen-

tally.Therefore at long distance scales, where the mass term becomes important, the

gravitational laws derived from General Relativity could be modified while solar system

experiments would not be affected. It is hoped that this could, for example, explain

the accelerated expansion of the universe recently indicated by the measurements of the

redshift of supernovae [51, 52], large-scale structure [246], baryon acoustic oscillations

[247] and the CMB [54]. If General Relativity is to describe also large scale gravitation,

this accelerated expansion has to be attributed to the existence of some sort of dark

energy which constitutes a little less than 70% of the universe’s energy density [54]. It

can either be explained by a mere cosmological constant which is added to the Einstein-

Hilbert action, or by some sort of dynamical dark energy, which can be explained, for

example, by a scalar field with a negative pressure [248, 249]. Another possibility is

to try the aforementioned modification of General Relativity in the infrared, which, for

specific deformations, can lead to self-accelerating solutions [250–253]. An extensively

studied example of this mechanism is f(R) theory, where f is a function of the Ricci

scalar R [252]. These theories can also be considered to provide a particular model of

inflation [197, 254]. The addition of a small mass term for the graviton as a possible

IR modification however comes with a caveat. Considering that a massive spin-2 par-

ticle propagates five degrees of freedom, namely its five polarizations (two helicity-2,

two helicity-1 and one helicity-0 modes) in contrast to a massless spin-2 particle which

only propagates two polarizations, it is far from clear that in the limit of m → 0 the

predictions of the massive theory recover the massless one. In order for this to happen,

the additional polarizations would need to decouple in this limit.

1The Standard Model does not include the gravitational interaction.
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In this chapter, we will in particular focus on the development of Lorentz-invariant

theories of massive gravity. Specifically, we will concentrate on the general question of

whether consistent – by consistent we mean the absence of additional ghost-like degrees

of freedom – interacting theories of massive spin-2 particles can exist. From a technical

point of view our study complements the analyses which have been done previously in

the literature.

The outline of the chapter is as follows. After reviewing recent developments of massive

gravity in section 6.1, we recapitulate the findings of Fierz and Pauli and Boulware and

Deser in sections 6.2 and 6.3. We also provide a short analysis of the number of degrees

of freedom. Section 6.4 introduces the concept of ghosts from higher derivatives. The

Stückelberg formalism in general and specifically for massive gravity is presented in sec-

tion 6.5. This section concludes with the introduction of the de Rham-Gabadadze-Tolley

massive gravity. In section 6.6, we discuss our findings for massive spin-2 particles in

terms of helicities. The last section 6.8 deals with the construction of a cubic interaction

Lagrangian for a massive spin-2 particle which is ghost-free in terms of helicities.

6.1 Developments in Massive Gravity

In 1939, Fierz and Pauli studied the wave equations for a massive spin-2 particle on a

Minkowski background [67] and wrote down their unique action [255] at linear order from

which consistent wave equations can be obtained. When about thirty years later, van

Dam, Veltman [68] and independently Zakharov [69] computed certain predictions in a

linear theory of massive gravity in the limit m→ 0, one of their profound observations

was that the bending of light by the Sun and the perihelion precession of Mercury

deviate as much as 25% from the ones obtained in General Relativity. Whereas the

additional two vector polarizations which appear in massive gravity decouple in the zero

mass limit, the scalar does not, and its coupling to the trace of the energy-momentum

tensor, Tµµ , contributes an additional attractive force between sources. This is called

the vDVZ discontinuity. The observational bounds on the bending of light and the

perihelion precession agree with the predictions of massless gravity up to 10% (see e.g.

[256]), and hence, one could think that even a tiny mass for the graviton is excluded

and m = 0 hence an exact equality.

However, in 1972 Vainshtein [70] pointed out that the linear approximation does break

down in the limit of zero mass and nonlinearities become important at distances rV =

(2 M
M2
P
m−4)

1
5 when approaching a source from infinity (M is the mass of the source, MP

the Planck mass, and m the mass of the graviton). Therefore, at least at solar system or

galactic scales, nonlinearities are always important for small masses m and experiments

do not completely rule out a small graviton mass. Note that it has been shown that

in specific models, the nonlinearities can indeed lead to a continuous behaviour in the

massless limit [257–259].

Still, the nonlinear extension of massive gravity has been found to be plagued by incon-

sistencies. In 1972, Boulware and Deser [71] concluded based on a Hamiltonian analysis
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that “in the massive version of the full Einstein theory, there are necessarily six rather

than five degrees of freedom”. The additional degree of freedom has a wrong-sign kinetic

term on a non-trivial background and thus represents a ghost-like instability. On the

level of the action, the appearance of the ghost is signalled by a cubic sixth derivative

interaction term for the helicity zero component. The sixth derivative term was found

in terms of the leading singularity of the graviton propagator to be ∼ m−4 in [257]. The

appearance of the ghost was shown later in terms of Stückelberg fields in [260]. The

latter analysis paved the way towards a new understanding of massive gravity in terms

of an effective field theory.

An important insight of [260] was that the exceptionally low cutoff of the nonlinear

Fierz-Pauli theory, which is of the order of (1011km)−1 could be raised when adding

higher order potential terms. This was important as otherwise solar system physics

could not be described by these effective theories without the knowledge of the full UV

completion. One aspect which cannot be avoided is that these theories still become

strongly coupled at (1000km)−1. In this light it poses an interesting question whether

they can describe the tabletop experiments on earth.

The effective field theory language and the possibility of adding higher order terms in

order to raise the cutoff of the theory have triggered a revival of massive gravity. After

Creminelli et. al. [261] suggested that ghost-like instabilities are unavoidable, a series

of papers tried to construct manifestly stable theories of massive gravity [262, 263].

On a Minkowski background, these nonlinear theories were explicitly resummed in [72]

and found to describe five degrees of freedom and, thus, to avoid the Boulware-Deser

ghost in the decoupling limit to all orders. It was also shown that the Hamiltonian

constraint can be maintained in these theories away from the decoupling limit up to and

including fourth order nonlinearities. On the Hamiltonian level it was then argued in

[73] that there exist enough constraints to eliminate the ghost degree of freedom in the

full nonlinear theory suggested by de Rham, Gabadadze and Tolley. Later these findings

were confirmed also in the Stückelberg language [75].

A slightly different approach to the concept of massive gravity is given by the so-called

gravitational Higgs mechanism, see for example [2, 264–266] and references therein.

Within this approach, it was shown that the ghost reappears at fourth order [267] but

can be avoided under certain conditions.

6.2 The Fierz-Pauli Action

The action for a free massive spin-2 field described by a symmetric two tensor hµν on a

Minkowski background is determined by the Fierz-Pauli action [67]

S =

∫
d4xL =

∫
d4x

(
∂µh

µν∂νh− ∂µhρσ∂ρhµσ +
1

2
∂µh

ρσ∂µhρσ −
1

2
∂µh∂

µh

−1

2
m2(hµνhµν − h2)

)
, (6.2)
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where h ≡ hµµ is the trace of the graviton. This action uniquely describes the five

propagating helicities which make up a massive spin-2 particle. The relative coefficient

of the mass term of −1 between hµνhµν and h2 is important to eliminate the additional

sixth degree of freedom which would otherwise propagate with a wrong-sign kinetic term

[255]. The number of degrees of freedom for (6.2) can be easily counted when taking

into account the Bianchi identities which yield two constraint equations

∂µh
µν = ∂νh ,

h = 0 , (6.3)

of which the first one can be obtained by acting with ∂µ on the equations of motion and

the second one by reinserting the first one into (6.2) and then taking the trace. Equations

(6.3) give five constraints which eliminate five of the ten components of the symmetric

tensor hµν . If departing from the Fierz-Pauli mass term, the second equation of (6.3)

turns into an equation of motion for the trace h which hence becomes propagating.

Let us examine the action (6.2) in more detail. For m = 0, it describes linearized Einstein

gravity and is invariant under linearized diffeomorphisms, hµν → hµν + 1
2(∂µξν + ∂νξµ),

where ξµ(x) defines the linear coordinate transformation. The gauge redundancy fixes

the relative coefficients of the two-derivative terms. In order to count degrees of freedom,

one can also employ a Hamiltonian analysis. After having integrated (6.2) by parts such

that h00 and h0i do not appear with time derivatives, the canonical momenta of the

Lagrangian (6.2) are

πij =
∂L
∂ḣij

= ḣij − ḣiiδij − 2∂(ihj)0 , (6.4)

where we use the symmetrization convention a(µbν) = 1
2(aµbµ+aνbµ). The other canon-

ical momenta (π00 and π0i) are zero due to the integration by parts. Inverting (6.4), one

obtains

ḣij = πij − πkkδij + 2∂(ihj)0. (6.5)

Performing the Legendre transformation and rewriting the Lagrangian in terms of the

canonical momenta yields

L = πij ḣij −H+ 2h0i∂jπij + h00(∇2hii − ∂i∂jhij) ,

where H =
1

2
π2
ij −

1

4
π2
ii +

1

2
∂khij∂khij − ∂ihjk∂jhik + ∂ihij∂jhkk −

1

2
∂ihjj∂ihkk.

(6.6)

The variables h00 and h0i appear only linearly in terms without time-derivatives. There-

fore, they are Lagrange multipliers which give the constraint equations ∇2hii−∂i∂jhij =

0 and ∂jπij = 0. These constraints commute, in the sense of Poisson brackets, with the

Hamiltonian. Thus, they are first class constraints. For an introduction to constraint

systems see for example [268, 269]. The appearance of first class constraints is charac-

teristic for theories with a gauge symmetry. The constraints together with the induced

gauge transformations reduce the physical phase space to a four dimensional hypersur-

face, which is described by the canonical coordinates of the two physical polarizations

of the massless spin-2 graviton and their conjugate momenta.
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Adding a mass term to the analysis changes the Hamiltonian and the Lagrangian of

(6.6) in the following way

L = πij ḣij −H+m2h2
0i + 2h0i∂jπij + h00(∇2hii − ∂i∂jhij −m2hii) ,

where H =
1

2
π2
ij −

1

4
π2
ii +

1

2
∂khij∂khij − ∂ihjk∂jhik + ∂ihij∂jhkk

−1

2
∂ihjj∂ihkk +

1

2
(hijhij − h2

ii). (6.7)

Note that the conjugate momenta are unaffected by the additional mass term. However,

the structure of the Lagrangian is different and h0i is no longer a Lagrange multiplier.

Nevertheless, it is still non-dynamical and its equation of motion yields the algebraic

relation

h0i = − 1

m2
∂iπij . (6.8)

h00 remains a Lagrange multiplier and it enforces the constraint

∇2hii − ∂i∂jhij −m2hii = 0 , (6.9)

which is now a second class constraint. The resulting secondary constraint arises from

the fact that the constraint is conserved in time, i.e. it commutes with the Hamiltonian.

Since h0i is determined by (6.8) and h00 gives two second class constraints (one primary

and one secondary), the resulting physical phase space is then ten dimensional and

describes the five physical polarizations of the massive spin-2 particle and their conjugate

momenta. Departing from the Fierz-Pauli mass term introduces nonlinearities in h00 and

the constraint which fixes the trace hii to zero for (6.6) is lost which leads to either a

tachyonic or ghost-like sixth degree of freedom [71, 255].

Let us briefly mention coupling to sources. Adding a source term to the Lagrangian (6.2)

of the form hµνT
µν does not change the linear constraint analysis. No matter whether

the source is conserved, ∂µT
µν = 0, or not, the source coupling will only introduce h00

and h0i linearly and without time derivatives. Therefore, it will not affect the number

of constraints. Note that the same holds true for any linear coupling of hµν to sources.

6.3 Nonlinear Interactions

First let us consider the case of General Relativity and analyze the constraint structure

that arises when introducing nonlinear interactions. Using the ADM formalism [270,

271], the full action can be written as

S =

∫
d4x
√
−g R =

∫
d4x(πij γ̇ij−NR(0)−NiR

i−2(πijNj−
1

2
πN i+N |i

√
γ)|j), (6.10)

where γij ≡ gij , N ≡ (−g00)−
1
2 , Ni ≡ g0i, the R’s are functions of the spatial metric

γij and its conjugate momentum πij , but do not depend on N or Ni. R is the four

dimensional Ricci scalar and −R(0) ≡ 3R + γ−
1
2 (1

2π
2 − πijπ

ij) and 3R is the three

dimensional Ricci scalar with respect to the metric γij . R
i = −2πij|j , where the bar “|”
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denotes covariant differentiation with respect to the spatial metric γij . In the massless

theory, N and Ni are Lagrange multiplier which enforce first class constraints on the

system, thereby eliminating four (and correspondingly eight phase space) degrees of

freedom. This corresponds to two propagating helicities of the massless spin-2 particle.

To linear order N = 1− 1
2h00 and Ni = h0i and one recovers the result of the previous

section.

Introducing a mass term in the full nonlinear theory of General Relativity leads to

immediate trouble, as it reintroduces the sixth degree of freedom which could be tuned

away in the Fierz-Pauli theory as we will see. Expanded around a background metric,

gµν = g
(0)
µν +hµν , the Fierz-Pauli mass term f = (hµνh

µν−h2) can be expressed in terms

of Ni and the nonlinear N [71],

f = h2
ij − h2

ii − 2N2
i + 2hii(1−N2 −Nig

(0)ijNj). (6.11)

In contrast to the linear case, now N (which to linear order is equivalent to h00) appears

quadratically and neither N nor Ni are Lagrange multipliers. They are both determined

by the constraint equations they yield and as a result the trace hii is no longer constrained

to be nondynamical. Therefore, there are now six degrees of freedom propagating.2

To this end, we have recovered the result of Boulware and Deser who concluded in 1972

that adding a mass term to General Relativity unavoidably leads to a sixth propagating

mode, the so-called Boulware-Deser ghost. This conclusion has been challenged in recent

years by reinvestigations of the theory of massive gravity in terms of an effective field

theory language [72, 73, 75, 260]. In order to better understand these developments, we

will introduce the effective field theory language and the Stückelberg mechanism in the

next section. But first, let us quickly review the connection between ghosts and higher

derivative terms.

6.4 Ghosts from higher Derivatives

In the following, massive gravity will be analyzed in terms of effective field theory de-

grees of freedom. In this language, the Boulware-Deser ghost will show up as a higher-

derivative term on the Stückelberg fields. Therefore, let us briefly recap the arguments

of Ostrogradski (see for example [272–274] and referenes therein) which explain why

higher derivative kinetic terms imply additional ghost-like degrees of freedom. Consider

the following toy Lagrangian for a scalar field φ (cf. [261])

L = −1

2
∂µφ∂

µφ− 1

2Λ2
(�φ)2 − V (φ) , (6.12)

where Λ denotes some mass parameter which determines the cutoff of the effective field

theory. First consider only the time-dependent part of φ by going to Fourier space and

2As a side remark, let us mention that the requirement of adding three additional degrees of freedom to
the massless Einstein-Hilbert Lagrangian in order to obtain a massive spin-2 representation necessitates
the introduction of a background metric g

(0)
µν for the mass term.
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absorbing the ~k-dependence into the potential Vk(φk),

L = −1

2
φ̇2
k −

1

2Λ2
(φ̈k)

2 − Vk(φk). (6.13)

In order to perform a Hamiltonian analysis for this Lagrangian according to the Ostro-

gradski prescription one introduces the canonical variables φ1 = φ and φ2 = φ̇ and we

omit the subscripts k. The conjugate momenta are then Π1 = δL
δφ̇

= 1
Λ2∂

3
t φ − φ̇ and

Π2 = − 1
Λ2 φ̇ and the Hamiltonian reads

H = −L+ Π1φ̇1 + Π2φ̇2 = − 1

2Λ2
Π2

2 + Π1φ2 +
1

2
φ2

2 + V (φ1). (6.14)

This Hamiltonian exhibits a linear instability in Π1. Choosing negative Π1, one can

arbitrarily lower the energy of the system and there is no well-defined vacuum state in the

theory. This is the essence of Ostrogradski’s theorem which states that higher-derivative

Lagrangians which are not degenerate exhibit a linear instability in the Hamilitonian.

In terms of a Lagrangian analysis, the ghost instability can be recovered by rewriting

the Lagrangian (6.12) in terms of two scalar fields of which one now has a wrong-sign

kinetic term

L = −1

2
(∂µφ)2 − ∂µχ∂µφ−

1

2
Λ2χ2 − Vint(φ)

= −1

2
(∂µφ

′)2 +
1

2
(∂µχ

′)2 − 1

2
Λ2χ′2 − Vint(φ

′, χ′) , (6.15)

where in the last line we have diagonalized the kinetic terms and canonically normalized

the fields. The first line reduces to (6.12) when integrating out the field χ via its

equations of motion. Of the two fields one has positive energies and the other negative

ones, therefore a vacuum state defined as the state of zero particles φ and χ and with

energy zero will no longer be stable once the interactions are switched on. To be precise,

the vacuum can spontaneously create φ and χ particles on-shell without violating energy

conservation. This is in contrast to theories were all particles have a kinetic term with

the correct sign. The fact that for healthy theories the S-matrix overlap between a single

particle in-state and a multiparticle out-state vanishes asymptotically crucially depends

on the fact that the energy of these states is strictly positive and hence the multiparticle

state always has larger energy than the single particle state, see e.g. chapter 5 of [164].

This decay of the vacuum with zero particles into a state with infinitely many φ- and

χ-quanta can occur infinitely fast and therefore violates unitarity, as the phase space of

final states is infinite, which is equivalent to saying that the density of states around the

vacuum is infinite.

Notice that this is actually different to a particle with a tachyonic mass, i.e. a negative

mass squared. Even though particle creation from the vacuum can occur in much the

same way, the phase space of the final state is not infinite. Rather it is restricted to

momenta smaller than the tachyonic mass. On the classical level, this can be seen by

the fact that the perturbations grow exponentially as emt so that the time scale of the

decay is bounded by m−1.
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To conclude the discussion on ghosts from higher derivatives, we want to point out that

the above arguments strictly speaking are only valid for fundamental field theories. In an

interacting effective field theory, the higher derivative term in (6.12) has to be considered

as an operator appearing in an expansion about the scale Λ. However, the ghost mass

in (6.15) is Λ2, and thus the system allows for the possibility that new physics entering

at scales Λ might cure the ghost instability.

6.5 Stückelberg Formalism and Massive Gravity

This section provides an introduction to the Stückelberg formalism [275] and will outline

the effective field theory developments in massive gravity which have occured over the

past decade [260].

6.5.1 Stückelberg for massive Gauge Fields

First, let us review the basics of the Stückelberg trick by means of massive electrody-

namics. Consider the Proca action

S =

∫
d4x(−1

4
FµνFµν −

1

2
m2AµA

µ +AµJ
µ), (6.16)

where Fµν = ∂µAν − ∂νAµ and Jµ is a source which a priori need not be consereved.

For m = 0 and the source now being conserved, this action is invariant under the gauge

transformation Aµ → Aµ + ∂µΛ, where Λ is an arbitrary function of the spacetime

coordinates. Then only two of the four components of Aµ are propagating. Instead, for

m 6= 0 the action (6.16) is no longer gauge invariant and it describes three dynamical

degrees of freedom, a massive spin-1 particle, because the timelike component of Aµ
can be eliminated via the constraint ∂µAµ = 0 which follows from the divergence of

the equation of motion of (6.16) without sources. Taking the limit m → 0 on the level

of the Lagrangian, one naively looses one degree of freedom. Nonetheless this limit is

consistent since it can be shown that the correlation function between two consvered

sources approaches the massless one for m→ 0.

The Stückelberg trick is to include an extra scalar field φ via the transformation Aµ →
Aµ + 1

m∂µφ and to define the gauge transformation δAµ = ∂µΛ and simultaneously

δφ = −mΛ. The action is then given by

S =

∫
d4x(−1

4
FµνFµν−

1

2
m2AµA

µ−mAµ∂µφ−
1

2
∂µφ∂

µφ+AµJ
µ− 1

m
φ∂µJ

µ). (6.17)

Note that we introduced the longitudinal scalar φ in such a way that its kinetic term is

already canonically normalized. Aµ carries now two degrees of freedom and the scalar φ

one. One can recover (6.16) when choosing the unitary gauge φ = 0 which means that

(6.16) and (6.17) describe the same physical theories. It is then possible to take the limit

m→ 0 on the level of the Lagrangian (6.17) without losing degrees of freedom. In this

language, one easily sees that the additional scalar decouples if the source is conserved
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or the non-conserved part goes at least faster than ∼ m to zero. The vector and the

scalar decouple and we are left with massless electrodynamics and a free, decoupled

scalar. The corresponding Lagrangian is given by

L = −1

4
FµνFµν −

1

2
∂µφ∂

µφ+AµJ
µ (6.18)

with gauge symmetries δAµ = ∂µΛ and δφ = 0.

In the same way, one can restore gauge invariance in a massive non-abelian gauge theory

[260] with Lagrangian

L = − 1

g2
TrF 2 +

m2

g2
TrA2 , (6.19)

where Fµν is the field strength of the non-abelian field Aµ. Performing a pseudo gauge

transformation Aµ → UAµU
† + iU∂µU

†, one can introduce the Stückelberg fields U =

eiπ. The Lagrangian turns into

L = − 1

g2
TrF 2 +

m2

g2
Tr|DµU |2 (6.20)

which transform under the new symmetry U → UΛ† and Aµ → ΛAµΛ† + iΛ∂µΛ†. Note

that the covariant derivative is defined as DµU ≡ ∂µU − iUAµ. One can switch between

the description of (6.19) and (6.20) by going to the unitary gauge where U = 1.

We have seen that the physics of the unitary gauge Lagrangian and the Lagrangian

with Stückelberg fields is the same even though in contrast to the first, the latter one

is invariant under an additional gauge transformation. This reveals the fact that gauge

invariance is not a fundamental principle, but rather a redundancy of description. In-

troducing extra fields with an appropriate set of gauge transformations, one can make

any Lagrangian gauge invariant.

The Stückelberg description has the following advantages in terms of effective field the-

ory. Firstly, at energies much larger than the mass m, the Stückelberg fields become the

longitudinal components of the gauge boson. In the Stückelberg description, it is appar-

ent that these become strongly coupled at scales ∼ 4πm/g. The relevant interactions

arise from the mass term and are ∼ ( gm)n−2∂2πn, where n ∈ N. This is obscured in the

unitary gauge description and it takes more careful effort to recover these results, for

example, by explicitly considering the polarization tensors. Secondly, the Stückelberg

fields allow for simple power counting arguments in order to determine which non-

gauge-invariant operators can be generated by radiative corrections. Lastly, since it is

the longitudinal modes which become strongly coupled, the Stückelberg picture provides

a straightforward approach in order to search for possible UV completions.

6.5.2 Stückelberg for Massive Gravity

The effective field theory approach of the Stückelberg formalism, which was put forward

in [72, 75, 260–263], can be useful for understanding massive gravity. As a warm-up

exercise let us start with the linearized theory and see how some of the peculiarities
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of the Fierz-Pauli theory show up in terms of the Stückelberg fields. The background

metric is assumed to be flat Minkowski space ηµν and we expand the full metric in terms

of gµν = ηµν + hµν .

The Fierz-Pauli action (6.2) can now be made gauge invariant in a similar way as the

massive photon in the previous section by introducing the Stückelberg fields Aµ via the

pseudo gauge transformation hµν → hµν + 1
m(∂µAν + ∂νAµ). The resulting action reads

L = ∂µh
µν∂νh− ∂µhρσ∂ρhµσ +

1

2
∂µh

ρσ∂µhρσ −
1

2
∂µh∂

µh− 1

2
m2(hµνhµν − h2)

−1

2
FµνFµν − 2m(hµν∂

µAν − h∂µAµ) + hµνT
µν , (6.21)

and is invariant under the transformations δhµν = hµν + ∂µξν + ∂νξµ and δAµ = −mξµ,

where ξµ(x) is an arbitrary four vector and a function of the spacetime coordinates and

Tµν is a conserved source. In order to fully appreciate the benefits of the Stückelberg

decomposition, the vector field can be decomposed into a transverse spin-1 and a spin-0

mode according to Aµ → Aµ + 1
m∂µφ. This yields an additional symmetry δAµ = ∂µΣ

and δφ = −mΣ, where Σ is an arbitrary scalar-valued function, and the Lagrangian

obtains additional terms

L = ∂µh
µν∂νh− ∂µhρσ∂ρhµσ +

1

2
∂µh

ρσ∂µhρσ −
1

2
∂µh∂

µh− 1

2
m2(hµνhµν − h2)

−1

2
FµνFµν − 2m(hµν∂

µAν − h∂µAµ)− 2(hµν∂
µ∂νφ− h�φ) + hµνT

µν .

(6.22)

Note that the spin-2 and the spin-0 degree of freedom are coupled in the m → 0 limit.

Diagonalizing the kinetic terms via hµν → hµν + ηµνφ, one finds that the scalar receives

an additional coupling to the trace of the energy momentum tensor of the source ∼ φTµµ .

This reveals the origin of the vDVZ discontinuity [68, 69] which lies in the appearance

of an additional scalar mode. The diagonalization of the kinetic terms will play an

important role later on when we analyze the helicity decomposition in section 6.6. Note

that in terms of the Stückelberg fields it can be shown that a detuning of the relative

coefficient of the Fierz-Pauli mass term leads to terms ∼ ∂µ∂νφ∂µ∂νφ in the Lagrangian

which yield higher derivatives on the equation of motion. These indicate the appearance

of an additional ghost-like degree of freedom.

Let us now continue the analysis of the fully interacting theory (6.10) and (6.11) and

assume a generic background metric g
(0)
µν . The Lagrangian is given by [71]

L =
√
−gR− 1

4

√
−g(0)g(0)

µν g
(0)
αβ (hµαhνβ − hµνhαβ). (6.23)

The metric of the Ricci tensor R is gµν = g
(0)
µν + hµν . In order to achieve a gauge,

i.e. diffeomorphism, invariant Lagrangian, the Goldstone (Stückelberg) fields have to

be introduced in such a way that the nonlinear diffeomorphisms are respected by the

action (6.23) [260]. In principle, one could just proceed similar to the non-abelian gauge

theory example and introduce the Goldstone fields via a pseudo gauge transformation
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of the metric. This approach, however, has the drawback that it will introduce an

infinite power expansion of hµν in the Stückelberg language. In the following, we dis-

cuss a slightly different path to the Stückelberg description taken in [66, 72, 262, 263]

which is better suited to keep track of the powers of hµν . In this approach, the full

metric gµν still transforms covariantly under general coordinate transformations (diffeo-

morphisms) and the Stückelberg fields enter only through the background metric via

g
(0)
µν (x) → g

(0)
αβ (Y (x))∂µY

α∂νY
β, where the Y α define the coordinate transformation.

Then, defining Hµν ≡ gµν − g(0)
αβ (Y (x))∂µY

α∂νY
β and replacing hµν by Hµν in the ac-

tion, (6.23) becomes invariant under diffeomorphisms f(x) of gµν if the Y α transform

as scalars Y α(x)→ Y α(f(x)).

One can expand the coordinate transformation around the identity Y α = xα − πα, and

on a Minkowski background one finds

Hµν = hµν + ∂µπν + ∂νπµ − ∂µπα∂νπα
Hµν = hµν + ∂µAν + ∂νAµ + 2∂µ∂νφ− ∂µAα∂νAα − ∂µAα∂ν∂αφ− ∂µ∂αφ∂ν∂αφ ,

(6.24)

where the replacement πα = ηαβ(Aβ + ∂βφ) was made in the last line and πµ = ηµαπ
α.3

The infinitesimal symmetry transformation under which gµν and also Hµν transform as

covariant tensors are

δhµν = ∂µξν + ∂νξµ + Lξhµν ,
δAα = ∂αΛ− ξα + ξµ∂µAα ,

δφ = −Λ , (6.25)

where Lξ is the Lie derivative. This kind of Stückelberg prescription allows to construct

a Lagrangian with mass terms which is manifestly invariant under general coordinate

transformations. If one then replaces hµν with Hµν (6.24) in (6.23), one obtains a gauge

invariant mass term for the graviton given by

S =

∫
d4x

(
1

2
M2
P

√
−gR− 1

4
M2
Pm

2√−ggµνgαβ(HµαHνβ −HµνHαβ)

)
. (6.26)

Note that contractions of the full metric with “covariant” metric perturbations gµνHµν

are invariant under diffeomorphisms. In terms of the Stückelberg decomposition (6.24),

the scalar φ does not have a kinetic term when simply expanding Hµν in (6.26). It

is kinetically mixed with the helicity-2 component hµν via m2M2
P (∂µ∂νφh

µν − �φh).

Performing a canonical transformation hµν = ĥµν + m2ηµνφ, where ĥµν now denotes

the helicity-2 component, and canonically normalizing the fields, ĥcµν = MP ĥµν and

Acµ = mMpAµ and φc = m2MPφ, one can expand the Lagrangian (6.26) in terms

of the Stückelberg fields. In the following, we drop the superscript c which denotes

canonical normalization of the fields in order to avoid cluttering up our notation. It

is the assumed that the fields are canonically normalized. The Lagrangian includes

3Note that in contrast to (6.21) the fields in the decomposition (6.24) are not yet canonically nor-
malized, for example φ has mass dimensions [m2].



Chapter 6 Massive Gravity 111

interaction terms of the sort
(∂2φ)3

m4MP
,

(∂2φ)4

m6M2
P

,
∂2φ∂A∂A

m2MP
which become strongly coupled

at the scales Λ5 = (m4MP )
1
5 , Λ4 = (m3MP )

1
4 and Λ3 = (m2MP )

1
3 . The first term

(∂2φ)3

m4MP
violates unitarity at the scale Λ5 which is of the order (1011km)−1 and leads to

a higher derivative kinetic term on a nontrivial background for the scalar φ. In [261]

this term was considered to be an indication of a ghost degree of freedom reappearing

in the interacting theory, in analogy to what was found by Boulware and Deser [71].

Their argument was the following. If one expands φ around a nontrivial background

φ = φ̄+ ϕ, the induced kinetic term schematically reads

− (∂ϕ)2 +
(∂2φ̄)

Λ5
5

(∂2ϕ)2, (6.27)

which leads to an additional ghost-like degree of freedom of mass mghost ∼
Λ5

5

∂2φ̄
. Within

the effective field theory, however, ∂2φ̄ . Λ5 which means that the mass of the ghost is

always above the cutoff and the ghost cannot be excited.

Since it is the self-interactions of φ which become strongly coupled at the lowest scale

Λ5, operators generated by radiative corrections will, in general, be of the form ∂q(∂2φ)p

Λ3p+q−4
5

with p, q ∈ N [260]. These are the only ones allowed for by the symmetries of φ. In

unitary gauge, they correspond to terms like cp,q∂
qhp with cp,q ∼ Λ−3p−q+4

5 Mp
Pm

2p. On

the above background, φ̄ ∼ M
MP

1
r , and one therefore enters the regime where quantum

corrections become important at distance scale r∗ ∼
(
M
MP

) 1
3 1

Λ5
around the source. This

is actually the largest radius derivable from the induced operators and it is exactly the

scale at which the mass of the stipulated ghost drops below the cutoff. The conclusion

that the higher derivatives (6.27) in this theory induce a ghost degree of freedom in

the physical spectrum is, thus, no longer obvious. It is nevertheless true that the UV

completion of the theory will have to take care of the higher derivative structure in order

to ensure that there is no ghost propagating. Otherwise, the theory will be plagued by

the linear instability we have discussed in section 6.4. Notably, the scale r∗, at which

the effective field theory breaks down, is parametrically larger than the Vainshtein scale

rV =
(
M
MP

) 1
5 1

Λ5
implying that there is no region around a classical source where General

Relativity is recovered within the effective theory.

In fact, the scale Λ5 and all its interactions can be removed by adding higher order

potential terms to the Lagrangian [72, 260–263]. This becomes apparent when con-

sidering generic potential terms Ui(g,H) which are of order i in the covariant metric

perturbations Hµν [262],

S =

∫
d4x

(
1

2
M2
P

√
−gR− 1

4
M2
Pm

2√−ggµνgαβ(U2(g,H) + U3(g,H) + U4(g,H) + . . .)

)
,

(6.28)

where U2(g,H) = H2
µν−H

µν
µ , U3(g,H) = c1H

3
µν+c2HH

2
µν+c3H

3 and so forth. The dots

indicate terms of higher order in Hµν . To each order, one can then choose the coefficients

such that the interactions of order Λ5 cancel (c1 = 2c3 + 1
2 , c2 = −3c3− 1

2 and c3 remains

a free parameter) [261, 262]. Indeed, the coefficients of the potential terms Ui(g,H) can
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be chosen such that the lowest scale at which interactions become strongly coupled is

Λ3 [72, 261–263]. De Rham, Gabadadze and Tolley [72] showed that one can explicitly

resum all the nonlinear terms of the effective field theory of gravity which is constructed

as in (6.28). Specifically, the Lagrangian of the theory can be written in terms of the

covariant metric perturbation Hµν as

L =
M2
P

2

√
−g
(
R− m2

4
U(g,H)

)
, (6.29)

where the potential is defined by

U(g,H) = −4
(
〈K〉2 − 〈K2〉

)
= −4

∑
n≤1

dn〈Hn〉

2

− 8
∑
n≤2

dn〈H〉

with Kµν (g,H) = δµν −
√
δµν −Hµ

ν and dn =
(2n)!

(1− 2n)(n!)24n
. (6.30)

Remember that indices of Hµν are raised with the full metric gµν , as are the ones of Kµν .

Angle brackets represent the trace with respect to the full metric such that 〈H〉 = gµνHµν

and 〈H2〉 = gµαgνβHµνHαβ. This Lagrangian, which describes the theory referred to

as de Rahm-Gabadadze-Tolley (dRGT) massive gravity, exactly recovers the coefficients

needed for (6.28) to cancel all strong coupling scales lower than Λ3. In [72] it was

demonstrated that these theories are free of higher derivative interactions in terms of

the Stückelberg fields in the so-called decoupling limit. In this limit one chooses to send

MP →∞ and m→ 0 such that Λ3 = 3
√
m2MP = const. The only relevant interactions

in this limit are the ones among the helicity-2 component hµν and the helicity-0 mode φ

of the Stückelberg decomposition (6.24). Following [72, 262], the resulting Lagrangian

is

LΛ3 = −1

4
hµν(Êh)µν + hµνX

µν , (6.31)

where Xµν = 1
2Λ3

3[Πηµν −Πµν + Π2
µν −ΠΠµν + 1

2(Π2 −Π2
αβ)ηµν ], Πµν = ∂µ∂νφ, and we

use the suggestive notation Π = ηµνΠµν , Π2
αβ = Πρ

αΠρβ and so forth.

Already in [72] it was hinted that the theory (6.29) might possess the correct number

of degrees of freedom even away from the decoupling limit based on the argument that

the Hamiltonian constraint is maintained up to quintic order in the expansion. In [73]

Hassan and Rosen performed a full Hamiltonian analysis following [72] and found that in

terms of an ADM analysis [270, 271] the constraints from N and Ni are not independent.

Therefore, if one solves for the latter constraint first and subsequently reinserts this into

the Hamiltonian, N becomes a Lagrange multiplier, thus eliminating the dangerous sixth

degree of freedom.

6.6 Helicity Analysis of Massive Gravity

A different method to investigate the degrees of freedom of a massive spin-2 particle is to

decompose the field into its helicity components as we have put forward in [76]. This can

be done whenever the considered theory is Poincaré invariant, local and weakly coupled
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in at least some energy interval on an (asymptotic) Minkowski background. Therefore,

the decomposition in terms of helicities of a massive particle is sensible whenever the

energies considered are much larger than the mass of the particle, E
m � 1. At these ener-

gies, the massive spin-2 representation of the Poincaré group decomposes into the direct

sum of irreducible helicity representations. In order to fully appreciate the usefulness

of the helicity decomposition recall that ghost instabilities are instabilities which can

occur on arbitrarily small time scales t ∼ 1
E , signifying that they are UV instabilities.

Accordingly, the time-scale could only be limited by an effective field theory cutoff Λ

which sets an upper bound on the energy scales that can be reliably considered in the

effective theory. As a consequence, helicity degrees of freedom are an appropriate means

of testing for instabilities in a theory at energy scales m� E � Λ, see for example [76].

Additionally, they directly reveal whether the degrees of freedom truly form a spin-2

representation.

6.6.1 The Helicity Decomposition

In the previous section 6.5.1, massive gauge theories have proven useful to understand

certain techniques which also be applied to massive gravity/ massive spin-2 theories .

The same is true for understanding the helicity decomposition. Consider a free massive

spin-1 field Aµ with the Lagrangian (6.16). Quantizing this theory leads to the field

operator Aµ given by (see e.g. [276])

Aµ(x) =

∫
d3k√

(2π)32Ek

3∑
λ=1

(
ε∗µ(λ, k)a†kλe

ik·x + εµ(λ, k)akλe
−ik·x)

)
, (6.32)

where ak and a†k are the usual creation and annihilation operators with standard commu-

tation relations and the εµ(k, λ) are the polarization vectors of which 1, 2 are transversal

to the three-momentum ~k and 3 is in the direction of ~k. Note that in principle one needs

four independent polarization vectors to span the field space for a generic four-vector

Aµ, but the constraint ∂µA
µ = 0 eliminates one of them. One can choose the polariza-

tion vectors εµ(λ, k) such that the corresponding creation operators a†kλ create a helicity

eigenstate particle of helicity −1, 0, 1. This is possible since the Hamiltonian,

H =
∑

λ=−,0,+

∫
d3kωka

†
kλakλ, (6.33)

is diagonal in the helicity basis, i.e. the Hamiltonian commutes with the helicity operator

Λ̂ =
∫
d3k(a†k+ak+−a†k−ak−). “+” and “–” denote the polarizations corresponding to the

helicities +1 and -1. They are linear combinations of the original 1, 2 polarization and

hence transversal. The longitudinal polarization 3 is equal the helicity-0 polarization.

For the helicity decomposition it is important that the 0-polarization evaluated on a

state with momentum ~k with |~k| � m approaches kµ/m evalutated for the same state.



Chapter 6 Massive Gravity 114

More precisely the difference

(ε∗µ(3, k)− kµ

m
) = (

|~k|
m
,
~k

|~k|
k0

m
)T − (

k0

m
,
~k

m
)T ' 1

2

m

|~k|
(−1,

~k

|~k|
)T (6.34)

should approach zero in the massless limit which it does indeed.

Finally, let us introduce the helicity decomposition for a massive vector field Aµ which

is split into two fields, another 4-vector Ãµ and a scalar φ, in the following way

Aµ = Ãµ +
1

m
∂µφ . (6.35)

The fields Ãµ and φ enjoy a common gauge symmetry Ãµ → Ãµ + ∂µΛ and φ→ φ−Λ.

This ensures that there are still only three degrees of freedom propagating. The linear

Lagrangian is given by (6.17) which we display here again for convenience

− 1

4
F̃µνF̃µν −

1

2
m2ÃµÃ

µ −mÃµ∂µφ−
1

2
∂µφ∂

µφ. (6.36)

In fact (6.35) is equivalent to the linear Stückelberg decomposition introduced in (6.17).

However, its motivation is different. (6.35) is constructed in such a way that there exists

a gauge of Ãµ and φ in which φ captures solely the helicity-0 component and Ãµ the

helicity-1 components of Aµ in the high energy limit. In such a gauge, such as, for exam-

ple, the Coulomb gauge (Ã0 = 0 and ∇ ~̃A = 0), Ãµ carries only the polarizations εµ(+, k)

and εµ(−, k). The field operator Ãµ is hence given by (6.32) where the summation now

runs only over 1 and 2, as if it were a massless vector field. The mixing between Ãµ and

φ vanishes for this choice because of the transversality of the polarization vectors. The

field operator for φ can then be chosen to be

φ =

∫
d3k√

(2π)32Ek
((iak)

†eik·x + (iak)e
−ik·x), (6.37)

where ak = ak3 of the spin-1 field. Equation (6.34) then tells us that, in the limit

|~k| � m, 1
m∂µφ describes exactly the helicity-0 polarization of the massive vector field

Aµ. This can be seen by considering the difference between the longitudinal polarization,

Alµ, and the scalar part of the decomposition 1
m∂µφ acting on a state of momentum k

(Alµ −
1

m
∂µφ)|k〉 ∝ (ε∗µ(3, k)− kµ

m
)|k〉 ' 1

2

m2

~k2
|k〉 , (6.38)

which vanishes for m2 � ~k2.

6.6.2 Helicity Decomposition for a massive Spin-2 Particle

In this section, we analyse the theory of dRGT massive gravity [72] in terms of a helicity

decomposition following our work in [76]. For our analysis to be valid, the following set

of conditions must hold for any theory subject to it:
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• The theory has to be Poincaré invariant describing a massive spin-2 particle on

a Minkowski background. The field must live in an irreducible representation of

the Poincaré group labelled by its Casimir operators, its spin s = 2 and its mass

m 6= 0.

• The theory must be local which means it can be expressed in terms of polynomial

interactions of the massive spin-2 field.

• The theory must be weakly coupled in at least a finite energy interval m� E � Λ,

where Λ denotes the effective field theory cutoff.

We have seen in section 6.6.1 that a helicity decomposition for a massive spin-1 particle

diagonalizes the kinetic term at high energies. The same is true for a massive spin-2

particle. For k � m its Poincaré representation decomposes into the two helicity-2, two

helicity-1 and one helicity-0 degree of freedom. A massive spin-2 particle can be written

in terms of its helicities4

hµν = h̃µν +
∂(µAν)

m
+

1

3

(
∂µ∂νχ

m2
+

1

2
ηµνχ

)
, (6.39)

where h̃µν describes the helicity-2, Aµ the helicity-1 and χ the helicity-0 part of the

massive spin-2 Poincaré representation. When analyzing scattering amplitudes, (6.39)

becomes particularly useful since for high energies the asymptotic states can be described

by the individual helicities. Accordingly, the power of the decomposition (6.39) can be

seen explicitly when inserted into the quadratic action (6.2),

LPF = h̃µνEρσµν h̃ρσ −
1

8
FµνF

µν +
1

12
χ�χ− 1

2
m2
(
h̃µν h̃µν − h̃2

)
+

1

6
m2χ2

+
1

2
m2χh̃+m

(
h̃∂µA

µ − h̃µν∂µAν
)

+
m

2
χ∂µA

µ , (6.40)

where h̃µνEρσµν h̃ρσ = ∂µh̃
µν∂ν h̃ − ∂µh̃

ρσ∂ρh̃
µ
σ + 1

2∂µh̃
ρσ∂µh̃ρσ − 1

2∂µh̃∂
µh̃ describes the

linear part of the Einstein action. For k2 � m2, the action becomes diagonal in field

space. The individual kinetic terms for h̃µν and Aµ correspond to massless linearized

Einstein and Maxwell theory, respectively. Thus, in the limit where the mixing of the

individual fields can be neglected, h̃µν carries precisely the two helicity-2, Aµ the two

helicity-1 and χ the single helicity-0 degrees of freedom.

Note that requiring the diagonalization of the kinetic term fixes the relative factor of 1/2

between the χ-terms in (6.39). Similarly, the factors of m in (6.39) normalize the kinetic

terms. They can be determined by the coupling of hµν to sources ∼
∫
d4xTµνhµν . The

propagator of a massive spin-2 field hµν between two conserved sources Tµν and τµν is

4Note, that the fields h̃µν , Aµ, χµ only represent the three helicities at high energies. Otherwise they
correspond to an admixture of all of them. The decomposition is, of course, valid for all energies.
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given by

TµνDµν,ρστ
ρσ = Tµν

(
ηµρηνσ + ηµσηνρ − 2

3ηµνηρσ
)

p2 −m2
τρσ

= Tµν
(
ηµρηνσ + ηµσηνρ − 1

2ηµνηρσ
)

p2 −m2
τρσ + Tµν

1

6

ηµνηρσ
p2 −m2

τρσ .

(6.41)

The first term in the last line corresponds to the helicity-2 state h̃µν . The second term is

an additional interaction from the extra scalar degree of freedom χ and fixes the overall

normalization of it in the helicity decomposition. By considering non-conserved sources

one can accordingly fix the normalization of Aµ in (6.39).

In order for (6.39) to describe the correct number of degrees of freedom it is mandatory

that there are additional redundancies in the components since on the left-hand side of

(6.39) the tensor has ten components and on the right-hand side there are, a priori, 15

components. These redundancies are reflected in the transformations

h̃µν → h̃µν + ∂(µξν) +
1

2
ηµνmΣ ,

Aµ → Aµ + ∂µΣ−mξµ ,
χ → χ− 3mΣ , (6.42)

which leave (6.39) and hence the Lagrangian (6.40) invariant. Here, Σ denotes a scalar

and ξµ a four vector and both are arbitrary functions of spacetime. Together they remove

five redundant components of the decomposition (6.39). Also note here again that by

construction the validity of the decomposition is limited to a theory of a weakly coupled

massive spin-2 particle. If hµν is used to describe different degrees of freedom, (6.39) is

no longer guaranteed to capture the correct physics. This is consistent with the group

theoretical arguments outlined above.

One can thus argue that finding inconsistencies in the analysis of the helicity compo-

nents, as for example higher derivatives, leads to the conclusions that one of the above

assumptions is violated and hence

• The theory contains ghosts.

• There is no weak coupling regime for k2 � m2

• The weakly coupled degrees of freedom cannot be grouped to form a massive spin-2

particle. This happens explicitly for example in Lorentz violating theories.

• Additional degrees of freedom are required to enter the theory at some scale or

the theory is shielded otherwise [245].

• The theory is nonlocal.

It is important to bear in mind that these conclusions can only be drawn from the

analysis within its realm of applicability, i.e. within the limits of the effective field

theory.
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6.7 Einsteinian Interactions

6.7.1 Cubic Vertex

In this section, we apply the helicity decomposition (6.39) to analyze the theory of

(6.29) up to and including cubic order which we have carried out in [76]. This analysis

complements the one of [72, 73] from a different point of view.

Two advantages of the approach using the helicity decomposition are that due to the

assumption of weak coupling, one can concentrate on the cubic order interaction term

at first. Furthermore, as we have argued in section 6.4 the helicity basis constitutes

an appropriate choice of degrees of freedom for a stability analysis concerning ghosts

since one expects the possible instability to arise on energy scales much larger than m.

We will consider only couplings to sources which are linear in the helicity fields, i.e.

which arise from hµνT
µν . We will comment on this choice later on. With this choice

of source-coupling, we will find that higher-derivative terms on the helicities persist in

the theory. However, the ghostly mode never drops below the cutoff on backgrounds

accessible within the effective field theory.

The cubic order interaction Lagrangian can be obtained by expanding (6.23) and adding

all possible cubic non-derivative interaction terms:

L(3) =
1

MP

[
1

4
hαβ∂αh

µν∂βhµν −
1

4
hαβ∂αh∂βh+ hαβ∂βh∂µh

µ
α −

1

2
hµν∂αh∂

αhµν

+
1

8
h∂µh∂

µh− hµν∂αhαµ∂βhβν − hµν∂νhαµ∂βhβα +
1

2
h∂µh

µν∂αh
α
ν

+
1

2
hµν∂αhµν∂βh

β
α −

1

4
h∂αh∂βh

αβ +
1

2
hµν∂αhνβ∂

βhαµ +
1

2
hµν∂βhνα∂

βhαµ

−1

4
h∂αhµν∂

νhµα − 1

8
h∂αh

µν∂αhµν

+m2(k1h
µ
νh

ν
ρh

ρ
µ + k2hhµνh

µν + k3h
3)

]
, (6.43)

where k1, k2, k3 are free parameters. We will at first set external sources to zero as

the coupling hµνT
µν does not introduce higher derivatives. Inserting the decomposition

(6.39), one immediately encounters higher derivatives on Aµ and χ. Those operators with

seven or eight derivatives are boundary terms and disappear on the equations of motion

and are hence irrelevant. Terms with the largest number of derivatives contributing

to the equation of motion are suppressed by the scale Λ5 = 5
√
m4MP . This is the

lowest scale of the theory and constitutes the effective field theory cutoff. Interactions

at this scale are the first ones to become important for the stability analysis. Taking the

decoupling limit MP →∞ and m→ 0 while keeping Λ5 fixed annihilates all interactions
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apart from the ones suppressed by Λ5. The resulting Lagrangian takes the form

Ldec = Lkin(h̃µν , Aµ, χ)− 1

18Λ5
5

(
h̃µν∂µ∂α∂βχ∂ν∂

α∂βχ− h̃µν∂µ∂α∂νχ∂α�χ

−1

2
h̃∂µ∂α∂βχ∂

µ∂α∂βχ+
1

2
h̃∂α�χ∂

α�χ

)
+

1

432Λ5
5

(
(2 + 8k1 + 16k2 + 32k3)(�χ)3 + (2− 24k1 − 16k2)χ�χ�2χ

+(1− 12k1 − 8k2)χ2�3χ

)
, (6.44)

where Lkin contains the kinetic terms of all helicities (6.40) with mass equal to zero due

to the decoupling limit.

On the equations of motion, one can then use the freedom in the parameters k1, k2, k3 to

eliminate the higher derivative self-interactions of χ. One can already infer from (6.44)

that it is not possible to eliminate all higher derivative interactions. In order to cancel

the χ self-interactions we choose

1 + 4k1 + 8k2 + 16k3 = 0

1− 12k1 − 8k2 = 0 . (6.45)

The remaining interactions at the scale Λ5

L(2+3)
dec5 = Lkin(h̃µν , Aµ, χ)− 1

36Λ5
5

h̃ρσEρσµν∂µ∂αχ∂ν∂αχ (6.46)

indicate the appearance of an additional degree of freedom on a background for h̃µν
[76]. However, for perturbative backgrounds which are accessible within the effective

description, the ghost mass always remains above the cutoff. Hence, the ghost does not

appear in the physical spectrum. The stipulated UV completion must then take care of

this possible instability. Within the framework of the gravitational Higgs mechanism, a

similar instability for the Lagrangian proposed in [72] was found at fourth order in [267].

Without sources, the above conclusion, however, only remains true if the theory is

truncated at the cubic level. As has later been studied in [74], adding the fourth order

interaction in hµν shows that the interactions at Λ5 are given by a redundant operator

which thus can be removed by a field redefinition. The fourth order interactions are

actually the only other interactions which come with the scale Λ5 and are given by

1

362Λ10
5

∂µ∂
ρφ∂ρ∂νφEµναβ∂α∂σφ∂β∂σφ . (6.47)

Now, one can perform a nonlinear field redefinition of the field h̃µν of the following form

h̃µν = h̄µν +
1

36Λ5
5

∂µ∂αχ∂ν∂
αχ (6.48)
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which yields a free cubic Lagrangian for the scale Λ5. Note that this field redefinition is

canonical and invertible. The Lagrangian after the field redfinition is

L =
1

2
h̄µνEαβµν h̄αβ −

1

8
FµνFµν +

1

12
χ�χ . (6.49)

Thus, we recover a free theory at the scale Λ5. As pointed out in [74], all scales lower than

Λ3 are redundant operators if one considers all higher order interaction terms appearing

with the respective scale. In terms of helicities, they can be removed by appropriately

defined field redefinitions which are always local and invertible suggesting that they

cannot change the number of degrees of freedom.

Let us make a very important observation here. We have seen that all scales below Λ3

are in fact redundant. Therefore, the true strong coupling scale of the theory is Λ3.

However, it is not possible to find an expansion in terms of Λ3 of the operators hµν
which can be truncated at a given order. To be more precise, let us not consider the

theory in terms of helicities or Stückelberg fields but rather in terms of the spin-2 field

hµν corresponding to what was called unitary gauge in section 6.5.1. For instance, the

theory considered as an expansion in powers of hµν can only then have Λ5 as a redundant

coupling if all appropriate powers of hµν are included. Even though the theory is weakly

coupled at Λ5 when including both cubic and quartic interactions of hµν , it is not possible

to truncate the theory at cubic order in hµν , because this would reintroduce the strong

coupling scale Λ5. The reason for this is that the helicity-0 polarizations, which are the

part of hµν ∝ kµkν
m2 , are already strongly coupled at the scale Λ5 and therefore one needs

to consider all higher order interactions suppressed by this scale. If the coefficients are

tuned appropriately, they combine to redundant operators.

6.7.2 Coupling to Sources

Let us now analyse how the coupling to sources can affect the above conclusions. In

order to be as concrete as possible, first, consider the following example Lagrangian,

also discussed in [74]

L =
1

2
φ�φ+

1

2
ψ�ψ +

�ψ (∂µ∂νφ)2

Λ5
+

(∂µ∂νφ)2� (∂α∂βφ)2

Λ10
. (6.50)

In [74] it was demonstrated that though seemingly a higher derivative action, four initial

conditions suffice to solve the corresponding equations of motion, indicating the absence

of additional degrees of freedom.

Performing a Hamiltonian analysis of (6.50) leads to the same conclusion. Introducing

two auxiliary fields µ = φ̈ and ρ = φ̇ to account for higher derivatives allows for a

straightforward counting of constraints. While initially the phase space dimension is

enlarged from four to eight, one first class and two second class constraints are found

which removes four phase space dimensions, cf. [74]. Thus, only two of the four fields

are propagating.
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At the same time, however, introducing sources into the action can lead to very different

conclusions. A linear coupling Jφφ+Jψψ reintroduces the ghost problem into the action

as was also discussed in [74]. In the Hamiltonian analysis, this is reflected by the fact

that a linear coupling to sources converts the first class constraint into a second class

constraint, while at the same time eliminating the tertiary second class constraint, see

[74]. A system of two second class constraints can only reduce the phase space dimension

by two in our case from eight to six, indicating the presence of the ghost. On the other

hand, specifying a coupling of the form

Jφφ+ Jψ

(
ψ +

1

Λ5
(∂µ∂νφ)2

)
(6.51)

avoids this problem. This can again be confirmed in a Hamiltonian analysis of the full

action, where both the first class and the tertiary constraint are now preserved.

For a classical analysis, cf. section 6.4, to detect the possible appearance of ghost-

like degrees of freedom on certain backgrounds, it is sufficient to prove the existence

of very mild “ε-backgrounds” that induce additional poles of the propagator. It is

straightforward to see that a weak background of the form �ψ = ε results in the following

kinetic action for φ:
1

2
φ

(
�φ+

2ε

Λ5
�2φ

)
. (6.52)

While the resulting ghost obviously has a mass which is parametrically larger than the

cut-off Λ, this is of no immediate interest. Eq. (6.52) simply proves the existence of

backgrounds with additional degrees of freedom.

How can this be reconciled with the previously cited Hamiltonian analysis for (6.50)?

The answer is quite simple. Specifying the coupling to sources makes implicit statements

about the physical degrees of freedom of the system. With a linear coupling, the fields

φ and ψ are the physical degrees of freedom. They can be excited independently. A

background �ψ = ε is a valid physical configuration and leads to a higher derivative

action for φ. The additional pole seen in (6.52) corresponds to the additional modes

found in a Hamiltonian analysis of (6.50) with a linear coupling to sources. On the

other hand, specifying a coupling of the form (6.51) implies that φ and ψ + 1
Λ5 (∂µ∂νφ)2

are the physical degrees of freedom. This immediately signals that a nonlinear field

redefinition should be performed to simplify an analysis of the properties of the theory.

Furthermore, the nonlinear coupling to sources has to be explicitly taken into account

for the ghost analysis. Choosing a background �ψ = ε, and accordingly Jψ = −ε, leads

to a contribution to the quadratic Lagrangian from the source coupling that exactly

cancels the higher derivative term in (6.52).

We have now understood that a ghost analysis relies crucially on specifying the physical

degrees of freedom and this is exactly where shortcomings of a Hamiltonian analysis be-

come visible. Performing such an analysis without specifying the coupling to sources is

not sufficient to exclude the appearance of ghosts on viable backgrounds. The Hamilto-

nian analysis of (6.50) allowed one to conclude that the system is free of ghosts, seemingly

contradicting a straightforward stability analysis. However, we have seen that the latter
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includes additional information, which, when correctly translated into the Hamiltonian,

leads to an agreement between both methods.

We shall now apply this reasoning to the scenario of massive Einstein gravity. While

it is immediately clear that a Hamiltonian analysis without specifying a coupling to

sources does not capture the correct physics on arbitrary backgrounds, the question

whether one can restrict couplings to sources, as addressed in [74], is much more subtle.

Restrictions in this case consist of explicit conditions on the sources, such as demanding

covariant conservation. It is thus not as straightforward to identify the physical degrees

of freedom as in the previous case, where only the linearly coupled fields deserved the

name of propagating degrees of freedom.

In order for the coupling Λ5 in [72, 74] to remain redundant when introducing sources

Tµν , it is important also to include the nonlinear couplings to the sources. Assuming

the source is covariantly conserved,
√
−g∇µTµν ≡ ∂µ(

√
−gTµν) +

√
−gΓνµγT

µγ = 0,

where ∇µ is the covariant derivative with respect to the full metric gµν and Γνµγ =
1
2g
νδ(∂µgδγ + ∂γgδµ− ∂δgµγ) are the Christoffel symbols of the metric. The fact that the

sources are only covariantly conserved is a consequence of the backreaction of gravity

on matter, which is is equivalent to considering an infinite power series of nonlinear

couplings hnµνT
µν , where n ∈ N. Once again, it is then important that one considers

the higher order terms corresponding to the covariant conservation if Λ5 is to be a

redundant coupling. It has been shown in [74] that if one does so, one can indeed retain

this redundancy. For this reason, in terms of the helicities, the field redefinition (6.48)

does not introduce any higher derivatives in the coupling to sources.

Let us briefly note that on the classical level one can always choose sources such that the

condition of covariant conservation is fulfilled. In contrast to gravity however in massive

gravity there is no symmetry a priori which would protect the covariant conservation

of sources. Therefore, for a full quantum analysis one has to make sure that radiative

corrections leave the coupling Λ5 redundant. In [74] it was suggested that this is indeed

the case.

We want to end this section with a general comment on nonlinear field redefinitions.

While well-defined, invertible field redefinitions obviously just correspond to a renaming

of variables and cannot change the physical content of a self-contained theory, these

properties have to be carefully checked. Furthermore, once the observable degrees of

freedom of a theory are specified, a coupling to sources has to be taken into account,

as we have seen in the example given above. Otherwise, nonlinear redefinitions, even

if invertible, may change the notion of physical degrees of freedom and can thus give

misleading results.

6.8 Cubic Interaction for a massive Spin-2 Particle

Interacting massless spin-2 theories which are Lorentz-invariant, weakly coupled and

unitary have been shown by Weinberg and others, see e.g. [80–82], to be uniquely
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described by Einstein’s theory in a low-momentum expansion of operators in four di-

mensions. This means that the interactions of a massless spin-2 particle described by

operators with up to two derivatives have to be precisely those of General Relativity.

This is quite a remarkable property.

The situation changes, however, when considering massive spin-2 particles. The above

theorem no longer applies and, a priori, there are no restrictions on the interactions

apart from Lorentz invariance and that they should propagate only the five helicities of

the massive spin-2 representation. In section 6.2, it was argued that the Lagrangian for a

free massive spin-2 particle propagating two helicity-2, two helicity-1 and one helicity-0

degree of freedom has to be of the Fierz-Pauli form (6.2) [67, 255].

The previous sections were concerned with the analysis of massive spin-2 theories which

keep the full non-linear Einsteinian derivative structure but add potential interactions.

Since these theories are expected to reduce to General Relativity, barring the vDVZ

discontinuity, they are referred to as massive gravity theories.

Starting instead solely from the free Lagrangian of a massive spin-2 field, one can add

interactions and restrict their structure such that they do not change the number of

propagating degrees of freedom, i.e. that the number of constraints is conserved. Fol-

lowing our work in [76], let us first take the Fierz-Pauli Lagrangian (6.2) and add all

possible Lorentz invariant cubic interaction terms with up to two derivatives,

L(3) =
1

Λ7

(
k1h

αβ∂αh
µν∂βhµν + k2h

αβ∂αh∂βh+ k3h
αβ∂βh∂µh

µ
α + k4h

µν∂αh∂
αhµν

+k5h∂µh∂
µh+ k6h

µν∂αh
α
µ∂βh

β
ν + k7h

µν∂νh
α
µ∂βh

β
α + k8h∂µh

µν∂αh
α
ν

+k9h
µν∂αhµν∂βh

β
α + k10h∂αh∂βh

αβ + k11h
µν∂αhνβ∂

βhαµ + k12h
µν∂βhνα∂

βhαµ

+k13h∂αhµν∂
νhµα + k14h∂αh

µν∂αhµν)

+
1

Λ5

(
k15h

µ
νh

ν
ρh

ρ
µ + k16hhµνh

µν + k17h
3
)
. (6.53)

Here Λ constitutes the effective field theory cutoff. In order for the theory to be a useful

description, the cutoff should be larger than m, i.e. 7
√
k(1−13)

−1
, 5
√
k(14−17)

−1 � m
Λ .

It was argued in section 6.6 that the helicity decomposition (6.39) identifies a specific

representation of the massive spin-2 field which is useful when analyzing particular

instabilities as we have carried out in [76]. Higher derivative terms generally indicate the

presence of additional degrees of freedom – at least on the classical level. Additionally,

the helicity decomposition has an intriguing correspondence to the constraint structure

of the Lagrangian in terms of the components of the tensor hµν . We will find that the

Lagrangian which is free of higher derivatives on the helicity components h̃µν , Aµ and χ

is simultaneously the Lagrangian for which h00 is a Lagrange multiplier and h0i remains

non-dynamical.

The idea is the following. Inserting the helicity decomposition (6.39) in (6.53), one can

use the freedom in the parameter space for ki to eliminate higher derivatives on the

equation of motion of the fields h̃µν , Aµ and χ. The advantage of working directly on
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the equation of motion is that all higher derivative terms appearing are relevant, as

boundary terms do not contribute.

The detailed derivation can be found in appendix B. The resulting Lagrangian is [76]

L(3) =
k1

Λ7

(
hαβ∂αh

µν∂βhµν − hαβ∂αh∂βh+ 4hαβ∂βh∂µh
µ
α − 2hµν∂αh∂

αhµν + h∂µh∂
µh

−3hµν∂αh
α
µ∂βh

β
ν − 4hµν∂νh

α
µ∂βh

β
α + 3h∂µh

µν∂αh
α
ν + 2hµν∂αhµν∂βh

β
α

−2h∂αh∂βh
αβ + hµν∂αhνβ∂

βhαµ + 2hµν∂βhνα∂
βhαµ − h∂αhµν∂νhµα

−h∂αhµν∂αhµν
)

+
1

2

k15

Λ5

(
2hµνh

ν
ρh

ρ
µ − 3hhµνh

µν + h3
)
. (6.54)

whose corresponding equations of motion are free of higher time derivatives.

That this theory still propagates the right number of degrees of freedom can be also

easily seen by counting the number of constraints for hµν . As explained in section 6.2,

in the free theory, the five constraints on hµν , (6.8) and (6.9), reduce the number of

degrees of freedom to five. For the Lagrangian (6.54), these constraints are preserved.

For example, the non-derivative part is given by

L =
1

2
k15(3h00(h2

ii − h2
ij) + 6(h0ih0jhij − h2

0ihii) + 3hiih
2
ij − 2hijhjlhli − h3

ii). (6.55)

Hence, h00 and h0i appear in the same way as in the free action. We do not display

the explicit expression for the derivative part because the expression is rather lengthy.

Still, one can easily check that also there h0i remains non-dynamical and can be solved

for algebraically, yielding 3 constraints on hµν . Furthermore, h00 appears as a Lagrange

multiplier in (6.54) and accordingly eliminates another two degrees of freedom [76].

It is easy to understand why the helicity decomposition corresponds to retaining the

same constraints as at linear order. The helicity decomposition takes care of too many,

i.e. greater than two, time-derivatives on the fields χ and Aµ on the equations of motion.

The components h00 and h0i are exactly those components of hµν which can introduce

these higher derivatives as in terms of helicities these correspond to ∂2
0χ, ∂0A0, ∂0∂iχ

and ∂0Ai.

Up to boundary terms, one can rewrite the above Lagrangian in a compact form [66] as

follows

L(3) = k1ε
α1...α4εβ1...β4∂α1∂β1hα2β2 . . . hα4β4 + k15ε

α1...α3σ4εβ1...β3
σ4

hα1β1 . . . hα3β3 . (6.56)

εα1...α4 denotes the totally anti-symmetric four-tensor in four dimension. From its anti-

symmetry properties it is then simple to conclude that the constraint structure of the free

Lagrangian is preserved. If there is one h00 in (6.56), then there cannot be any other

factor of h00 in that term. Therefore, h00 can only appear as a Lagrange multiplier.

Terms with h0i can carry at most one time derivative and one power of h0i or only

spatial derivatives and at most two powers of h0i and all other terms have spatial indices.

Variation with respect to h0i, thus, leads to a constraint equation for itself which defines

it algebraically in terms of the components hij .
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Of course we have only proven the absence of ghosts. As any cubic theory, (6.54) will

still contain tachyonic instabilities. One may however easily extend our formalism to

higher orders, see for example also [277]. Such a theory, however, will not reduce to

General Relativity in the massless limit. Instead, one could consider it as an effective

theory describing the interactions of a massless spin-2 meson.

6.9 Summary

In this chapter, we considered IR modifications of Einstein gravity. We saw that simply

adding a mass term to General Relativity leads to inconsistencies and the appearance of a

sixth propagating mode – the Boulware-Deser ghost. Adding additional non-derivative

interactions de Rham, Gabadadze and Tolley showed that it is possible to construct

a theory, the dRGT model for massive gravity, which only propagates five degrees of

freedom; exactly the correct number for an on-shell massive spin-2 particle. In this

chapter, we have employed an analysis in terms of helicity components of the spin-2

particle in order to investigate the dynamics of the dRGT model. We found that when

truncating the theory at any given order higher derivative interactions appear on the

equation of motion. Although they do not necessarily lead to ghost instabilities, their

existence makes the counting of degrees of freedom to add up to more than five. However,

it is possible to reconcile the findings of dRGT with ours by noticing that if the theory

is allowed to include all orders in nonlinearities, there exists a redundant coupling. This

redundancy can be removed by making a field redefinition which in turn eliminates the

higher derivatives order by order.

In addition, we started from the free theory of a massive spin-2 particle and constructed

possible cubic interaction terms which are free of higher derivatives for the helicity

degrees of freedom at this order. We found that these coefficients do not reproduce

the cubic Einsteinian derivative structure, but instead that the Lagrange multiplier h00

of the free theory retains its role as such. This action could, for example, describe

interactions of a massive spin-2 meson.



Chapter 7

Conclusions and Outlook

The advancement of effective field theories has largely shaped the way we understand

theoretical physics today. We know that it is not necessary to understand the underlying

physics up to arbitrarily high energies if we want to describe physical interactions at a

given (low-energy) scale. Within the framework of effective field theories, it is possible

to formulate gravity as a quantum theory similar to other fundamental forces, like, e.g.,

the Standard Model interactions.

In this thesis, we utilized methods of effective field theory in order to study various

aspects of gravitational interactions. At first (in chapter 2), we followed the ideas of

Dvali and Gomez [7] who argued that quantum gravity at high energy scales is described

by light degrees of freedom which are already present in the IR theory. This so-called

self-completeness of Einstein gravity is due to black hole formation and implies that

short distances are shielded from observations and thus physically inaccessible. Black

holes formed during an attempt to probe such short distances are described by weakly

interacting gravitons – degrees of freedom which are present in the IR. Building on this

idea, we argued that the same properties that make Einstein gravity self-complete in

the deep UV are also responsible for the self-completeness of any UV modification of

gravity. The requirement that only positive norm states appear in the spectrum of the

weakly coupled theory leads to an even “earlier” encounter of black hole formation in

such theories. We established that this has important consequences for attempts of

a standard Wilsonian UV completion of gravity since any weakening of gravitational

interactions can only take place in the strong coupling domain. However, it is precisely

this regime which is shielded by black hole formation. We thus concluded that suggested

UV completions of gravity which rely on an asymptotic weakening of the gravitational

interactions cannot be realized in a physically meaningful way.

Furthermore, we considered the black hole condensate picture proposed by Dvali and

Gomez in [18, 19]. In this picture black holes are described as self-bound condensates of

many weakly interacting gravitons. This proposal points a way towards the resolution

of such long-standing problems in black hole physics as the information paradox and the

microscopic origin of the black hole entropy. Since the condensates are thought to be at

the critical point of a quantum phase transition, quantum correlations are large and thus
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need to be taken into account in order to obtain a correct description of the condensate.

In chapter 3, we studied a toy model system which shares certain characteristics with

black hole systems. Specifically, we investigated a condensate which undergoes a collapse

during which it loses particles due to incoherent scattering. We showed that it is possible

to obtain solutions in which the system undergoes a self-similar collapse while staying

at the critical point. In addition, by computing the excitation spectrum, we could

qualitatively establish the appearance of a light mode.

To summarize, the toy model of a collapsing condensate with a mass given by its inverse

size can reproduce some of the crucial features of the quantum N-portrait [18, 19] in

which black holes are described by a condensate of weakly interacting gravitons. It would

be interesting to analyse how this analogy extends to more involved toy models which,

e.g., either feature long-range derivative interactions (see e.g. [278]) or a relativistic

dispersion relation which may even be realized in tabletop experiments using ultracold

atoms in optical lattices. For example, a relativistic dispersion relation for fermions has

been realized in [279]. Furthermore, a straightforward extension of our work is to com-

pute the depletion of the condensate. Our numerical method provides a straightforward

implementation of this and we will investigate it in a future work. More insight could

also be gained from finding a toy model which exhibits the properties expected for a star

collapsing to form a black hole. In particular, with such a toy model one could study

the dynamical evolution from a graviton condensate which is far from the critical point,

which is the case for the gravitational field of a star, to the critical point at the end of

the collapse. Another aspect to be studied in detail in connection with the proposed

self-completeness of gravity is to find a toy model which starts out from a system of two

scattering gravitons with a very high center of mass energy and subsequently forms a

black hole of many gravitons.

However, we want to note that the origin of entropy in toy models with non-derivative

contact interactions is still under debate. Usually too few light modes appear at the

critical point (see e.g. [126, 127]). Derivative couplings, such as, for example, present in

classicalization could, however, provide a larger number of light modes. There are many

different directions the graviton condensate picture could be extended to. For example,

there are efforts to understand de Sitter and Anti-de Sitter spaces in terms of graviton

condensates.

In the second part of this thesis, we were concerned with the possible effects of quantum

gravity corrections. Quantum gravity is believed to violate global symmetries. However,

neither the exact form of the corresponding symmetry violating operators nor their

suppression strength are known. Such corrections could have important consequences

for the axion solution of the strong CP problem, see chapter 4. By working in the dual

three-form description of the QCD axion solution, it is possible to parametrize these

effects efficiently by introducing an additional three-form coupled to the axion. In this

description, the axion solution corresponds to giving a mass to the QCD three-form

gauge field and thereby screening the θ-angle. If an additional gravitational three-form

is induced which is coupled to the axion, the latter can no longer completely screen the

QCD field. However, we showed that the neutrino lepton number U(1) symmetry of

the Standard Model provides an anomalous current for gravity which can resolve the
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tension with the axion solution. Effectively, there are now two independent mass terms

generated for both the QCD and the gravitational three-form. Although for non-zero

neutrino masses this screening mechanism starts to become inefficient. As long as the

neutrino masses are small, it is still possible to obtain sufficient screening such that the

θ-parameter is within the experimental bounds.

The question whether and how quantum gravitational effects violate global symmetries

is still not settled. Usually the arguments for such a violation rely on the fact that

black holes in the standard semi-classical treatment have no hair. In the quantum

N-portrait of black holes discussed in chapter 3, Dvali and Gomez argued that black

holes could carry quantum hair which are only suppressed by ∼ 1/N (N is the number

of constituent gravitons) instead of the usually assumed exponential suppression e−N .

These hair would indeed imply that black holes do not “destroy” global charges, but

instead the information about global charges Q inside the black could be stored in the

Q/N suppressed hair. In consequence, it could be subsequently released during the

evaporation. This is certainly an interesting aspect of the black hole condensate picture

which requires further studies.

Regarding the strong CP problem, the specific form of the QCD vacuum energy is im-

portant. This was another concern of our work. In the presence of massless quarks,

the θ-dependence of the QCD vacuum becomes unobservable. Indeed, for small quark

masses the θ-dependence is linear in the lightest quark mass as was shown in [44]. In

chapter 4, we considered the screening of the θ-term in terms of bubble nucleation of η′

vacua. This mechanism is analogous to Schwinger pair creation in a strong electric field.

Using the potential for η′ derived from standard instanton calculations, we found that

the linear dependence cannot be reproduced. In fact, taking into account Witten’s argu-

ments about the nonanalyticity of the QCD vacuum energy for θ, this could have been

expected. Thus, we conclude that indeed the stipulated non-analyticities are important

when relying on the vacuum energy for values of θ away from zero.

Gravitational effects appear also on large scales in a cosmological context. An important

question is what constitutes the dark matter which is thought to be responsible for the

(gravitational) formation of structure. In chapter 5, we considered models of axion

dark matter in light of the newest Planck data [187]. Generically, axion dark matter

models in which the dark matter density originates from the so-called misalignment

mechanism are subject to additional constraints from isocurvature perturbations. These

are perturbations in the axion number density which are induced during inflation when

the axion is essentially massless. Observations from Planck have put a tight bound on

isocurvature perturbations. In order for axion dark matter to observe this bound, in

general, the inflationary scale has to be low. On the other hand, theoretical models

for low inflationary scenarios which are compatible with the observations from Planck

are rare. In view of these problems, apart from considering a specific model which

accommodates a low inflationary scale, we proposed a mechanism which suppresses the

isocurvature perturbations of the axion independently of the inflationary scale. This

was achieved by considering a non-minimal kinetic coupling for the axion field which is

large on an inflating background. Furthermore, we considered the possibility of realizing

a cosmological scenario in which inflation is successfully driven by the Standard Model
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Higgs boson and dark matter produced by the axion. Postulating a generic non-minimal

kinetic coupling for scalar fields on a de Sitter background, we found that this is possible

without introducing a large hierarchy of scales in the coupling strengths.

In our approach, we used the fact that we could treat the non-minimal coupling operator

as the covariant resummation of a series of operators of an effective field theory on FRW

with strong coupling scale Λ. In this context, an interesting future analysis could be

to understand how the effective operators change during the transition from the FRW

background to Minkowski. Furthermore, we have hinted that such a coupling to the

Higgs boson on Minkowski could lead to interesting signatures in the running of the

effective Higgs self-coupling. Currently, we are considering whether the additional terms

could improve the running at high energies and help to avoid the electroweak instability

[244].

In the last part of this thesis, we considered theories of massive spin-2 particles. The

introduction of a small mass term for General Relativity has profound consequences. On

the non-linear level, such an addition leads to the appearance of a sixth mode, the so-

called Boulware-Deser ghost. By adding an infinite series of non-derivative interactions,

first put forward by de Rham, Gabadadze and Tolley, it has been shown that this mode

disappears [72, 73, 75]. In chapter 6, we have analyzed the truncated cubic order theory

of dRGT massive gravity. Utilizing a helicity decomposition for the massive spin-2

particle, we found that there appear higher derivative terms on the equation of motion,

suppressed by the scale Λ5 indicating the presence of additional degrees of freedom.

However, considering also higher order interactions which enter with the scale Λ5, it

was argued in [74] that these operators are redundant and can thus be removed by a

field redefinition. This automatically removes the terms containing higher derivatives.

On the other hand, this implies that the theory of [72] cannot be truncated without

reintroducing the scale Λ5 and the accompanying higher derivative terms. However,

since the analysis in terms of helicities is only applicable within the effective field theory,

i.e. below the cutoff, the presence of higher derivative terms does not necessarily imply

that there are negative-norm states in the spectrum.

A second concern of our work was to identify a cubic order self-consistent interaction

for a massive spin-2 particle. Starting from the free theory, we considered all possible

(Lorentz invariant) cubic interaction terms with up to two derivatives and performed a

stability analysis in terms of helicities. By requiring that the theory propagates only

the five helicity components of the massive spin-2 particles, which we ensured by elim-

inating higher derivative interactions, we constructed a viable cubic interaction term.

One interesting aspect is that, in terms of the components of the two tensor hµν , the

constraint structure of the linear theory is preserved in the sense that h00 remains a

Lagrange multiplier and h0i non-dynamical. Such an interaction could, for example,

describe an interacting spin-2 meson.

In the context of massive gravity an obvious next step is to covariantize the theory. For

dRGT massive gravity, this has been considered, for example, in [280]. However, in the

context of the cubic interaction for a massive spin-2 particle we derived in chapter 6, this

has not yet been studied. In this case, a first step would be to put the massive spin-2
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particle on a fixed curved background geometry. In the linear theory, the constraint

structure is kept on the curved background but in order to have a well-defined Cauchy

problem the addition of an extra curvature term is needed [281]. A naive attempt, by

simply replacing the partial derivatives with covariant ones at cubic order, already does

not conserve the constraint structure. In this respect, it would be of much interest to see

in the future whether it is possible to put the Lagrangian (6.54) on a curved background

without loosing any constraints.





Appendix A

Corrections to the

Energy-Momentum Tensor of the

Source

The energy-momentum tensor of colliding particles is modified during a scattering pro-

cess due to their coupling to gravity. This modification is encoded in the conservation

equation

∇αTαβ = 0 (A.1)

which is valid at all orders in nonlinearities. The conservation equation (A.1) is a result

of the diffeomorphism invariance of the action. At linear order, the conservation equation

is obtained from the interaction ∫
d4x

hαβ

Mp
T

(0)
αβ , (A.2)

where T (0) is the energy momentum tensor calculated in absence of gravity, or in other

words, by considering the energy-momentum tensor as an external source. In fact by

considering the linear diffeomorphism group under which the perturbation of the metric

transforms as hαβ = ∂(αξβ) we obtain

∂αT
(0)
αβ = 0 , (A.3)

which is the zeroth order in (A.1). Obviously one may consider the first order in (A.1).

In this case the energy momentum tensor can no longer be consider as an external

source. This is similar, for example, to radiative corrections in QED. However, this

contribution is only important whenever the operator (A.2) is a large, i.e., after black

hole formation (since the colliding particle masses are small with respect to the Planck

scale). However this regime is hidden behind a black hole. Concluding, although it is

true that the energy-momentum tensor is not an external source at full non-linear level,

it is, however, at linearized level, which is the regime considered in this thesis.
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The following computation is to show that the first order corrections to the stress-energy

tensor of the “external” particle are indeed negligible. In this case, the particle can no

longer be considered as a point-like δ-function source. Instead we model the particle

as a perfect fluid ball of radius of its Compton wavelength Rc with constant density

ρ = M
V = const for r < Rc = M−1, where V is the volume of the ball and M the mass

of the particle. The stress-energy tensor of such a ball of fluid is given by

T
(0)
αβ = (ρ+ p)uαuβ + pgαβ . (A.4)

We assume the matter to be non-relativistic to first approximation, i.e. ρ � p. In a

static spacetime the fluid velocity 4-vector points in the same direction as the static

Killing vector field uα ∝ (dt)α, which in our coordinates means uα ∝ δ0
α. A timelike

4-velocity gives the constraint

uαu
α = −1 , (A.5)

and it follows that uα = 1√
−g00

δ0
α.

On a Minkowski background, (A.1) is satisfied by ρ = const, p = 0 and uα being a

solution to the geodesic equation

uα∇αuβ = 0 . (A.6)

This source yields the first order perturbations in the metric, see (2.35). What is the

effect of these perturbations on the source itself? The 4-velocity up to first order cor-

rections is

uα = (1− 1

2
h00)δ0

α . (A.7)

From (2.35) we know that hµν = 2Gm(r)
r δµν with m(r) =

∫ Rc
0 d3xρ. Let us split eq. (A.1)

in two orthogonal parts; one in the direction of uα and the other orthogonal to it:

uα∇αρ+ (ρ+ p)∇αuα = 0 , (A.8)

(p+ ρ)uα∇αuβ + (gαβ + uαuβ)∇αp = 0 . (A.9)

Equation (A.8) gives ∂tρ = 0 which is satisfied trivially. Equation (A.9) gives us the

correction to the pressure due to the selfinteraction of the gravitational source. In a

static spacetime the pressure cannot depend on t and we find

− 1

2
ρ ∂ihtt + ∂ip = 0 , (A.10)

where i denotes the three spatial coordinates. Together with the boundary condition

that p(Rc) = 0 we find that p(1)(r) = 1
2ρ(h

(1)
00 (r)−h(1)

00 (Rc)). So the first order correction

to Tαβ is given by

T
(1)
αβ = 2ρu(1)

α u
(0)
β + p(1)ηαβ , (A.11)

where u
(1)
α = −1

2h
00δ0

α and u
(0)
β = δ0

β.

We see that the first order correction is always subleading as long as hµν � 1. This is

the point where a black hole starts forming and hence our approximation ceases to be
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valid. We conclude that we can safely neglect the back-reaction of the gravitational field

on the source in the weak coupling regime.





Appendix B

Derivation of the cubic order

Lagrangian

This appendix derives the Lagrangian (6.54). Starting from the interaction Lagrangian

(6.53), we first derive the equations of motion for the helicity-0 component χ and sub-

sequently eliminate higher time derivatives. Eradicating �2χ�2χ, �χ�3χ, ∂µ�χ∂µ�2χ

and �χ�2χ fixes four coefficients:

2k10 − k2 − k3 + k4 + 2k5 − k6 + k7 + 2k8 + k9 = 0 ,

k13 + k14 + k5 + k8 +
1

2
(k2 + k3 − k4 − 2k5 + k6 − k7 − 2k8 − k9) = 0 ,

k1 + k11 + k12 + k2 + k3 + k4 + k6 + k7 + k9 = 0 ,

8k16 + 24k17 + (8k1 − k2 − 7k3 + 3k4 − 18k5 − 13k6 + 17k7 + 18k8 + 9k9)m2 = 0 .

We proceed with eliminating terms such as ∂µ�χ∂µ�χ, χ�2χ yielding

6k15 + 4k16 − (2k1 + 11k2 + 5k3 + 3k4 − k6 + 2k7)m2 = 0 ,

−2k1 + k3 + 2k5 + 2k6 − 3k7 − 2k8 − 2k9 = 0 .

Next, consider the equation of motion for the vector Aµ. Cancelling terms of the form

∂µA
µ�2Aα, ∂αA

µ�2Aµ, �Aα�∂µAµ, �Aµ�∂αAµ and �Aµ�∂µAα sets five coefficients:

2k1 + 2k13 + 2k2 + k3 − 2k4 − 2k5 + k7 = 0 ,

2k2 + 3k3 + 2k4 + 2k5 + 2k6 − k7 − 2k8 = 0 ,

2k1 − 2k4 − 2k5 + k7 = 0 ,

2k2 + k3 + 2 (k4 + k5) = 0 ,

k11 + 2k2 + k3 + k6 = 0 .
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Reverting to mixed interactions, the EOM for χ contains terms such as �h̃�2χ, �2h̃�χ,

∂µ∂νχ�2h̃µν and ∂µχ∂
µ�h̃ requiring

−k1 + k11 + 4k2 + k3 = 0 ,

4k2 + 2k3 + 2k4 = 0 ,

k1 + k2 = 0 ,

4k1 − k3 = 0 .
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