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Abstract 

The aim of this cumulative thesis was to develop new chemical tools to investigate 

proteins involved in depression. The thesis has been divided in two parts with the first 

major part aimed at generating the first synthetic ligands for FKBP51 and FKBP52. 

FKBP51 and FKBP52 are co-chaperons of steroid hormone receptor-HSP90 complexes. 

FKBP51 has been implicated in various mood affective disorders. The second part of my 

thesis is aimed at the synthesis of chemical tools to study the targets of clinically used 

antidepressants. 

Part 1: The FK506-binding proteins 51 and 52 are co-chaperons that modulate the signal 

transduction of the glucocorticoid receptor. Single nucleotide polymorphisms in the gene 

encoding FKBP51 have been associated with a variety of psychiatric disorders. FK506 

and rapamycin are two macrocyclic natural products, which unselectively bind to these 

proteins with nanomolar affinity. A structural alignment of FKBP51 and 52 revealed a 

structural divergence at the 80s loop which is a major functional determinant for the 

effect on steroid hormone receptors. Hence the ligand-80s loop interaction is likely to be 

functionally important and further offers the possibility to discriminate between FKBP 

homologs. Taking a simplified FK506 analog as a chemical starting point we followed 

two different approaches to target the 80s loop of FKBP51 and FKBP52.  

In the first approach the tert-pentyl group in the synthetic lead compound was replaced 

with cyclohexyl derivatives that resembled the pyranose group in the natural product 

FK506. A detailed SAR was established which indicated that FKBPs are tolerant towards 

changes in the stereochemistry of the cyclohexyl (pyranose) substituents. In the second 

approach we envisaged to bio-isosterically replace the α-ketoamide moiety by a 

sulfonamide. For a rapid and efficient derivatization of a focused sulfonamide library I 

established a solid phase strategy which has led to the identification of 2 series of ligands 

with submicromolar affinity. Co-crystal structures of representative FKBP ligands of both 

series confirmed the hypothesized binding mode. The best substructures identified in both 

approaches were subsequently integrated into bi/polycyclic scaffolds with reduced 

confirmational flexibility. The sulfonamide substructures turned out to be highly active in 

this context. 



 
 

Part 2: Tricyclic antidepressants (TCA) have an extremely broad pharmacology that is 

still not completely understood. To explore the mechanism of antidepressants in more 

detail we envisioned a photo-labeling approach to better define the TCA-binding 

proteome. 

Towards this goal, I synthesized the imipramine analogs Azidopramine and 

Azidobupramine which retained the drug-like properties of the parent tricyclic 

antidepressants and the strong inhibitory activity of the human serotonin transporter. Both 

compounds were photoreactive while Azidobupramine contained an additional acetylene 

tag for click chemistry. 

Importantly, these probes are amenable to integral transmembrane proteins which 

comprise all currently known antidepressant targets. These probes could enable the 

activity based-profiling of known antidepressant targets in endogenous tissues as well as 

the structural fine-mapping of the binding sites in these proteins.  
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1.1 Introduction 

1.1.1 FK506-Binding protein (FKBP) family 

The immunosuppressive drugs FK506, Rapamycin and Cyclosporin A bind to a highly 

conserved class of protein family referred to as immunophilins, which exhibit peptidyl prolyl 

cis/trans isomerase (PPIase) activity
1-3

. The immunophilin family consists of the FKBP family 

of proteins which binds to FK506 or Rapamycin and the cyclophilin family which bind 

cyclosporin A.  

Table 1
3-6

  

No. Protein Cellular compartment where found 

1 FKBP12 Cytosolic 

2 FKBP12.6 Cytosolic 

3 FKBP 13 Endoplasmatic reticulum 

4 FKBP 15 Endoplasmatic reticulum 

5 FKBP 22 Endoplasmatic reticulum 

6 FKBP 24 Endoplasmatic reticulum 

7 FKBP 25 Nuclear/ cytosolic 

8 FKBP 36 Nuclear 

9 FKBP 38 Cytoplasmic 

10 FKBP 51 Cytoplasmic 

11 FKBP 52 Cytoplasmic 

12 FKBP 60 Endoplasmatic reticulum 

13 FKBP 65 Endoplasmatic reticulum 

14 FKBP 133 Nuclear 

 

The mammalian FKBP family can be classified based on their molecular weight or the cellular 

compartments where they are found. In humans the FKBP family consists of FKBP12, 

FKBP12.6, FKBP 13, FKBP15, FKBP22, FKBP24, FKBP25, FKBP36, FKBP38, FKBP51, 

FKBP52, FKBP60, FKBP65 and FKBP133 (numbers indicate their molecular weight)
3-5,7,8

 

most of which bind to FK506 and exhibit PPIase activity. FKBP38 doesn’t have an intrinsic 

PPIase activity but the PPIase activity of this domain is stimulated by Ca
2+

/CaM
9,10

. Within the 
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FKBP family FKBP12, FKBP12.6, FKBP38, FKBP51 and FKBP52 are the most studied and 

explored members. All the available FKBP structures are largely analogous
3,4

.  

These PPIases are distributed in three major cellular compartments (cytosolic, endoplasmatic 

reticulum, nuclear) and control a number of cellular processes. Human and microbial FKBPs 

have also been shown to exhibit chaperone activity independent of their PPIase activity e.g. 

FKBP52, PfFKBP35 etc (Table 1). 

1.1.2 Domain Structure of FKBPs  

Sequence alignment and structural data across the human FKBP family suggest that the amino 

acid residues which form the PPIase active site and the FK506 binding site remain conserved. 

The domain to which the prototypical natural products bind is termed as the FK1 binding 

domain which also has the peptidyl-prolyl cis–trans isomerase (PPIase) activity. PPIase (also 

known as rotamase activity) is a function that catalyzes the conversion of peptidyl-prolyl bonds 

from trans- to cis-proline or vice versa, which often is a rate-limiting step in protein folding
11

. 

The smaller FKBPs like FKBP12 and FKBP12.6 contain only one domain. Larger FKBPs can 

contain a second FKBP-like domain which is often devoid of the PPIase activity and is termed 

as the FK2 domain. Larger FKBPs like FKBP51 and FKBP52 contain a FK2 domain which has 

higher similarity to FKBP38. FKBP60 and FKBP65 contain up to four PPIase domains. The 

next accompanying domain in FKBP51 and FKBP52 is the tetratricopepetide repeat domain or 

the TPR domain. TPR domains often mediate binding to the Hsp90 machinery.  

1.1.3 Immunosuppressive FKBP Ligands 

The prototypical ligands of the FKBP family are FK506 (1) and Rapamycin (2) (Fig. 1). These 

natural products have immunosuppressive activity and are used in the clinic for the suppression 

of immune responses after organ transplantation to prevent allograft rejection. 

FK506 (Tacrolimus) 1 was first isolated and characterized from Streptomyces tsukubaensis 

which gave the nomenclature to its protein targets, the family of FK506-binding proteins 

(FKBP). FK506 consist of two domains, first a FKBP binding domain and second an effector 

domain which mediates the immunosuppressive activity. The FKBP-FK506 complex binds and 

allosterically inhibits the secondary target calcineurin to which the effector domain binds and 

thus induces its immunosuppressive effect
12

. FKBP12 is the major player that mediates the 

immunosuppressive action of FK506
13,14

.  
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Figure 1 Structures of the immunosuppressive natural product ligands. Blue: immunophilin-

binding domain (FKBP for FK506 and Rapamycin); red: effector domain (calcineurin for FK506, FRB 

domain of mTOR for Rapamycin); green: binds to both FKBP and CaN/mTOR
15

.  

 

The second natural binder of FKBPs, Rapamycin (Sirolimus) 2, was isolated from 

Streptomyces hygroscopicus. The immunosuppressive activity of this compound is exhibited 

via a different ternary partner, the serine-threonine protein kinase mammalian target of 

Rapamycin (mTOR).  mTOR inhibition has been shown to block various signaling pathways 

that control protein translation which play a crucial role in cell cycle progression
16-18

. 

A series of immunosuppressive Rapamycin and FK506 analogs are presently used in the clinic 

or in various phases of clinical trials as these natural products have been shown to be effective 

in various disorders like breast cancer, melanoma and advanced renal cell carcinoma, 

metastatic soft-tissue sarcomas etc
15

. 

1.1.4 Non-Immunosuppressive FKBP Ligands 

1.1.4.1  Neuroimmunophilin Ligands  

Apart from their immunosuppressive activity Rapamycin and FK506 were also shown to have 

additional neuroprotective and neurotrophic effects. Studies have shown that the natural 

products partially mediate these effects via the calcineurin or mTOR dependent pathway
19,20

. In 

any case the immunosuppressive effects of FK506 and Rapamycin limit the chronic use of 

these agents for neurological indications. Contrasting studies have shown that some 

neurological effects are partially independent of the calcineurin or mTOR inhibition which 

stimulated intense efforts across the pharmaceutical industry to identify and develop non-

immunosuppressive immunophilin ligands
6,21,22

.   
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The medicinal chemistry campaigns undertaken by the pharmaceutical industry resulted in 

identification of many FKBP ligands without immunosuppressive activity (Fig. 2 and 3). 

Several of these compounds were shown to be neuroprotective or neuroregenerative
15,22,23

. 

Apart from these primary cellular effects these compounds were also shown to have effects in 

animal models of diabetic neuropathy
24

, traumatic brain injury
25

, Parkinson’s disease
26-28

, 

cerebral ischemia
29,30

, as well as in various models of physical neuronal injury
15,22,24,31

. 

 

 

Figure 2: Natural product-derived non-immunosuppressive FKBP ligands. Modifications 

compared to FK506 or Rapamycin are shaded
15

.   

 

The non-immunosuppressive FKBP ligands differed from the immunosuppressive counterparts 

in two different ways. In the semi- or bio-synthetic analogs the substituents at the effector 

region were altered which resulted in complete loss of binding to calcineurin/ mTOR (e.g., 

FK1706, meridamycin, normeridamycin, ILS920, Way-124466, Wye-592, L685-818, shown in 
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Fig. 2). The developed synthetic ligands mimicked the dicarbonyl pipecolyl moiety of the 

natural products and were devoid of the effector region substituents which bind to calcineurin 

or mTOR (e.g., V-10,367, JNJ460/GM284, GPI1046, GPI1485 in Fig. 3 or compound 3 shown 

in Fig. 4).  

Clinical trials of some of the above mentioned compounds suggested that FKBP blockade 

seems to be well tolerated in humans as no toxic side effects have been reported at doses which 

might result in complete saturation of intracellular FKBP pools (in blood)
32

.    

Nearly all of the biochemical studies reported have been carried out for FKBP12. Most of the 

reported synthetic FKBP ligands are based on the dicarbonyl pipecolyl/prolyl-scaffold which is 

derived from the natural products FK506 or Rapamycin (Fig. 1). GPI1046 was one of the first 

small molecule analogs of FK506 which was designed to preserve the FKBP binding part. It 

was originally reported to be a potent inhibitor of FKBP12 but these findings have been 

contradicted by a number of groups
15,33

.   

 

Figure 3: Synthetic FKBP ligands. The dicarbonyl pipecolyl moiety derived from the central core of 

FK506 or Rapamycin or equivalent groups are shaded
15

. 

There are also discrepancies on the effect of GPI1046 regarding its neurotrophic/ 

neuroprotective effects
34,35

. Other GPI1046 analogs (e.g., compound 3
36

 or JNJ460/GM284
37

) 

have also been reported for their biological effects and FKBP12 inhibition. In addition 

JNJ460/GM284 has also been reported to have submicromolar FKBP52 inhibition
37

. GPI1046 

is believed to be a pro-drug and metabolizes in the body to release GPI1485. GPI1485 has been 
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shown to be devoid of PPIase activity
38

  and has failed to show efficacy in clinical trials for 

Parkinson’s disease/ erectile dysfunction after nerve injury
39

.  

V-10,367 and Biricodar are the most potent synthetic FKBP12 ligand reported to date
40,41

. V-

10,367 has been tested in a number of cellular and animal models for neuroprotection or 

neuroregeneration. A very close analog Biricodar (VX-710) was reported to retain very high 

potency for FKBP12 in a PPIase assay (Kd=3.7nM)
41

 and inhibit the P-glycoprotein (MDR1) 

with 0.75µM
42

. Biricodar has also been investigated in several clinical trials as a 

chemosensitizing agent
43, however, without any beneficial clinical effects. 

Apart from GPI1046 and Biricodar, Timcodar is the third FK506 analog to have entered 

clinical trials. The natural products FK506 and Rapamycin apart from inhibiting FKBPs are 

also known to be inhibitors of P-glycoprotein 1, a major drug efflux transporter
44

. Similar to 

Biricodar, Timcodar (VX-853, Fig. 3) has also been shown to be a potent inhibitor of P-gp 1
42

. 

P-gp inhibition could be a partial contributor to the observed neurological effects of Timcodar 

and analogs thereof (e.g., V13-661 and V-13670) since these compounds have been shown to 

lack FKBP binding but retain P-gp inhibition
15

. 

All though these FKBP analogs have reached the clinics their selectivity profile is not yet 

known. The only FKBP protein for which selective binders have been identified and reported 

in literature is hFKBP38. The Cycloheximide analog DM-CHX (Fig. 4) has been shown to 

selective bind FKBP38 (Kd=85nM) and showed >200-fold selectivity against several other 

FKBP homologs
30

. A co-crystal structure of a close analog (Cycloheximide N-ethylethanoate) 

was solved in complex with an FKBP-like protein from Burkholderia pseudomallei revealing a 

totally novel FKBP-ligand interaction pattern
45

. In contrast to its precursor Cycloheximide, 

DM-CHX is devoid of inhibition of protein translation. 

 

Figure 4: Synthetic FKBP ligands. The dicarbonyl pipecolyl moiety derived from the central core of 

FK506 or Rapamycin or equivalent groups are shaded
15

. 
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1.1.4.2 Rotamase Ligands 

Most of the rotamase (PPIase) ligands have been developed for the prototypical FKBP12 

ligand binding pocket. The basic pharmacophore that is required for FKBP binding is depicted 

in Fig. 5
46

 . 

 

Figure 5: The minimal binding domain that is required for compounds to bind to FKBP12. 

Many of the novel FKBP ligands that have been described in literature have the above basic 

pharmacophore conserved in one form or the other. A detailed structure activity relationship 

(SAR) around each of the minimal binding domain is surveyed below. 

a) Pipecolate core. 

The pipecolate core that is present in FK506 and Rapamycin sits in the pipecolate binding 

pocket which is formed by Val
55

, Phe
46

 and the Asp
37

 in FKBP12 and the indole ring of Trp-59 

which forms the floor of the FKBP12 binding pocket
47,48

. The first compounds had the 

pipecolate core conserved
47

. In GPI1046 (Fig. 3) the six membered pipecolate core was 

replaced by a proline. The next generation of compounds were the rigidified analogs by 

Agouron/ Pfizer, where the relatively open binding pocket of FKBP12 had been taken into 

advantage
49

. In these compound a substituent at the axial position at C
6
 of the pipecolate core 

was introduced and further cyclized with the C
1
 carbonyl to yield a [3.3.1] aza amide core (6) 

or a polycyclic scaffold 7 (Fig. 6) These polycyclic analogs were shown to be useful cores for 

binding to FKBP12.  
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Figure 6: General structures of various pipecolate core analogs identified for FKBP12.  

b) Pyranose group. 

The pyranose moiety present in the natural products FK506 and Rapamycin have been 

substituted by many different analogs. Holt et al. made a series of compounds and showed that 

the oxygen on the pyranose group is not required for activity (Table. 2, e.g., compounds 10-

12)
46

. The pyranose group was further completely substituted by tert-pentyl group to give 

compounds with better binding affinity. This tert-pentyl group was subsequently adopted in 

many of the reported FKBP12 compounds. 

Table 2 Pyranose group substituents
50-52

. 

Tatlock et al. replaced the pyranose moiety with the (R)-(-)-Carvone moiety followed by a 

derivatization of the C-15 position which resulted in compound 14 exhibiting remarkable 

affinity for FKBP12. The reason for its high affinity could be due to a hydrophobic collapse 

caused by the additional alkyl side chain which causes better FKBP12 binding
53

.  

c) Dicarbonyl group. 

The electrophilicity of the α-ketoamide moiety present in most of the non-immunosuppressive 

FK506 analogs is an undesired reactive liability that could result in metabolic instability or 

potential toxicity. The amide carbonyl was shown to be important for activity as it is involved 
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in hydrogen bonding with the Tyr82 of FKBP12. Reduction of the ketone to alcohol
46

 or 

substitution by a di-fluoride 15
54

 did not result in a detrimental change in activity. Bioisosteric 

replacement of the dicarbonyl group with a sulfonamide (16) resulted in compounds having 

equivalent affinity compared to the ketoamides
55,56

. 

 

Figure 7: Compounds where the diketo moiety has been replaced by other substituents. 

d) Cyclohexylethyl substituent (Top group) 

The pipecolate C
1
 ester was also replaced by an amide (17) which completely abolished 

binding to FKBP12
46,57

. Introduction of substituents around the phenyl group (18-20) resulted 

in compounds having better binding affinity.  
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Figure 8: Top group modifications of the non-immunosuppressive FKBP12 ligands. 

Substitution at the carbinol centre (C10) with phenyl or cyclohexyl groups led to a 10-20 fold 

increase in activity compared to that of 18-20. The stereochemistry at the new chiral centre is 

of importance
46

. R enantiomer is 20-40 fold more active than S enantiomer. Compound 25 with 

two substituents and phenyl substitution at carbinol centre had the best activity in this series of 

compound synthesized
46

. 

1.1.4.3  Microbial inhibitors. 

Apart from the human FKBPs, FKBP isoforms have also been identified in various parasites 

and microorganisms which have been suggested as potential anti-infective targets
58

. The most 

widely studied microbial FKBP homolog is the Mip (macrophage infectivity potentiator) 

protein which is present in human pathogens like Legionella pneumophila, the causing agent of 

Legionnaire’s disease, or Trypanosoma cruzi, the pathogen causing Chagas disease. L. 

pneumophila Mip and the Mip from T. cruzi were shown to facilitate infectivity and invasion in 

host tissues in a PPIase dependent and FK506-sensitive manner
59,60

. Oz et al. further showed 

that the non-immunosuppressive analog L-685,818 (Fig. 2) was active in an animal model of T. 

cruzi infection
61

 since the immunosuppressive activity of FK506 would confound the study of 

the role microbial FKBPs on pathogenicity of microorganisms and parasites. The NMR 

structure of L. pneumophila Mip in complex with Rapamycin was solved by Ceymann et al.
62

 

which gave an insight into the binding mode of these compounds in the microbial FKBPs. A 

structure based design approach was carried out by Juli et al. where they designed a series of 

pipecolate-containing sulfonamides as surrogates of Rapamycin. Exemplary compound 4 (Fig. 

4) inhibited the microbial FKBP with an IC50 of 6µM compared to 0.2µM for human FKBP12. 

However, compound 4 was inactive in an assay for macrophage-like cell infection whereas 

Rapamycin as control was active
63

. 

A NMR structure of N-ethyl-CHX (Fig. 4) with Mip from Burkholderia pseudomallei revealed 

a highly unexpected dynamic rearrangement of the active site that has never been observed in 
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any of the FKBP co-crystal structures before
45

. The N-ethyl-CHX analog inhibited the PPIase 

activity of Burkholderia pseudomallei Mip with a KI=6.5µM. 

1.1.5 Interaction of FKBP51 and FKBP52 with the Hsp90 machinery and its 

role in GR maturation and gene transcription 

The steroid hormone receptors (SHRs), especially the glucocorticoid receptor (GR), reside in 

the cytosol and migrate to the nucleus upon activation. Other are nuclear in both forms, i.e., in 

the presence or absence of the ligand (e.g. progesterone receptor)
64

. Before the newly 

synthesized SHRs become receptive to the ligand / hormone they must undergo a heat shock 

protein (Hsp) assisted maturation process (Fig. 9). The first step includes the binding of Hsp70 

and Hsp40 to the GR. The second step includes the binding of SHRs to Hsp90 which occurs in 

the presence of Hsp70 and Hsp organizing protein (Hop), which binds the chaperones by virtue 

of two separate tetratricopeptide repeat (TPR) domains
65

.   

A stabilization protein (p23) further stabilizes the Hsp90-SHR complex in its ATP bound form 

to form the intermediate complex
66

. Binding of ATP reduces the affinity of Hsp90 for Hop, 

which results in the dissociation of Hop and Hsp70 followed by the simultaneous recruitment 

of other TPR proteins, Cyp40, FKBP51, FKBP52 or PP5, to form the oligomeric SHR-Hsp90 

mature complex. The mature complex, depending on the co-chaperone it contains, maintains 

the SHR in a structural conformation that is either highly (FKBP52) or weekly (FKBP51) 

responsive to hormone binding
67-69

. This antagonistic effect of FKBP51 and FKBP52 towards 

the GR has been attributed to differences in the 80s loop of the FK1 domain in these two 

proteins
70

. The FKBPs compete for binding to the SHR-HSP90 complex to form the mature 

complex and, as a result, over-expression of FKBP51 will decrease the receptor regulation by 

FKBP52
67

. After hormone binding the hormone-receptor complex translocates to the nucleus 

where it binds to hormone response elements and regulats gene transcription
71

. 
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Figure 9: Schematic representations of the steroid hormone receptor maturation process and hormone 

binding regulated by FKBPs. 

 

1.1.6 Biological roles of FKBP51 and FKBP52 

1.1.6.1  Stress related disorders 

Chronic and acute stress coping behavior in humans is controlled by a stress hormone system, 

the hypothalamus-pituitary-adrenal (HPA) axis. An imbalance in this system is thought to 

underlie the risk and course of diseases like post-traumatic stress disorder (PTSD), major 

depression, anxiety disorder and bipolar depression
72,73

. The HPA axis is a complex hormone 

cascade mechanism comprising the hypothalamus which secretes the corticotrophin-releasing 

hormone (CRH) after external stress stimuli. Upon stimulation by CRH the pituitary gland 

triggers the synthesis and secretion of the adrenocorticotropic hormone (ACTH) which in turn 

acts on the adrenal cortex and results in the secretion of glucocorticoid hormones (especially 

cortisol) which act on various tissues (Fig. 10). A critical feature of the HPA axis is the 

negative feedback inhibition exerted by cortisol via the GR which keeps the stress reaction in 

balance. During stress related disease conditions the basal set point of the HPA axis hormones 
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and the reactivity of the HPA axis is altered which is interpreted as the body’s inability to 

adequately cope and terminate the stress response, resulting in an increased risk of disease 

development
73

. The opposing functions of FKBP51 and FKBP52 on GR
67,68

, along with human 

genetic studies have identified FKBP51 as a candidate associated with major depression
74

. 

Several studies have shown a correlation between FKBP51 genetic polymorphisms and 

antidepressant response
74-77

. FKBP51 polymorphisms have also been linked with suicidal 

tendency
78-81

, peri-traumatic dissociation
82

, psychosocial stress coping
83

, and PTSD
84

.  FKBP51 

polymorphisms have also been shown to modify the effects of early life trauma in PTSD
84,85

 

and depression
86

.  

 

Figure 10: Schematic representation of role of FKBP51 in the HPA axis and regulation of the HPA axis 

during external stress.  

The role of FKBP51 in stress coping behavior has very recently been firmly shown in several 

independent animal model studies
87-90

. These findings strongly supported FKBP51 as novel 

therapeutic target for psychiatric disorders. Unfortunately neither FK506 nor Rapamycin can be 

used as tools to further dissect the role of FKBP51 and FKBP52 as they have nearly equipotent 

affinities for all FKBPs. Hence, selective FKBP inhibitors are required to better understand the 

underlying biology of these larger FKBPs with respect to psychiatric disorders. 
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1.1.6.2  Cancer etiology 

FKBP51 and FKBP52 have been recently implicated in a variety of cancers
91,92

. Both proteins 

have been identified to be regulated in a number of cancers. FKBP51 was found to be up-

regulated in prostatic hyperplasia and in prostate cancer cells
93

. In addition, the FK506-binding 

ability of FKBP51 has been identified as a positive regulator of androgen receptor and 

androgen-dependent cell growth in prostate cancer cells
94,95

. The effect of FKBP51 on GR has 

been suggested to suppress proliferation in colorectal adenocarcinomas
96

. A recent study has 

outlined the role of FKBP51 in melanocyte malignancy
97

. Apoptosis induced by irradiation was 

seen in cells with silenced FKBP51, while control cells showed autophagy. This study showed 

that inhibition of apoptosis in control cells involved FKBP51-dependent activation of NF-κB 

upon irradiation
97

. In a pancreatic cell line Pei et al. identified FKBP51 as a scaffolding protein 

to enhance the dephosphorylation of the cell growth regulator Akt by the phosphatase 

PHLPP
98

. FKBP51 has been shown to be up-or down-regulated depending on the cell and 

cancer sub-type and activation or inhibition of FKBP51 can ultimately produce a beneficial 

effect to treat proliferating cancer cells. Thus, these opposing effects of FKBP51 have to be 

fine-tuned and taken into consideration before developing a FKBP51-based cancer therapy.  

1.1.6.3  Other Biological Implications  

Neurite Outgrowth: FKBP52 and FKBP51 have also been found to have antagonistic effects 

on neurite outgrowth. In N2a cells FKBP52 was shown to increase neurite outgrowth while 

FKBP51 was shown to shunt neurite outgrowth
99

. 

Immune system: FKBP51 has also been discovered to play a role in immune related disease 

and inflammation. In patients suffering from rheumatoid arthritis FKBP51 is found to be 

expressed in bone marrow cells
100

. During the treatment therapy of chronic obstructive 

pulmonary disease in patients FKBP51 expression is seen to be increased in sputum cells
101

. 

1.1.7 Structural Differences between FKBP51 and FKBP52 FK1 domain 

A three dimensional alignment of several crystal forms of the FK506-binding domain of 

FKBP51 (305R)
102

 and FKBP52 (1P5Q
103

, to be published)  revealed that the largest structural 

divergence between the two proteins are found at the adjacent 40s and the 80s loop (residues 

71-76 and 118-122 for FKBP51, respectively) (Fig. 11). In the 40s loop of FKBP51 Asp
74

 and 

Glu
75

 is replaced by Lys
74

 and Asp
75

 in FKBP52. The Glu
75

 in FKBP51 is about 2Å closer to 

the PPIase active site than Asp
75

 in FKBP52. The tip of the 80s loop in these proteins also has 

structural divergences which basically comprises of Leu
119

 (FKBP51) and Pro
119

 (FKBP52). 
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The Leu
119

-Pro
120

 peptide bond is always found in cis conformation in all known FKBP51 

structures while the Pro
119

-Pro
120

 bond has been suggested to be present either in a cis or a 

trans conformations. Cellular studies have shown the residue at position 119 to be a major 

functional determinant for the diverging effects of FKBP51 and FKBP52 on the steroid 

hormone receptor
70

. 

 

Figure 11: Overlay and cartoon representation of the crystal structure of the FK506-binding domains of 

FKBP51 (305R) shaded in light brown and FKBP52 (unpublished) shaded in light blue. The amino acid 

residues forming the FK506-binding pocket, the 40s and the 80s loop are shown in stick representation. 

The structural differences between the two proteins are indicated, the amino acid residue indicated in 

dark brown corresponds to FKBP51 and amino-acid residue in dark blue corresponds to FKBP52. 
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1.1.7.1  Comparison of FKBP51 and 52 structures with PPIase inhibitors 

The core interactions of FK506 are well conserved in the co-crystal structures of FKBP51 

(305R) and FKBP52 (unpublished). The pipecolate core of FK506 sits atop the indole ring of 

Trp
90

, which forms the bottom of the binding pocket.  The C
1
-carbonyl has a tight hydrogen 

bond contact to the backbone amide of Ile
87

, which is also seen in the co-crystal structures of 

FKBP12. The C
8
-carbonyl is involved in a hydrogen bond with Tyr

113
. Tyr

113
 in FKBP51 

approaches the C
1
-carbonyl at an angle of 107

o
 with respect to the carbonyl plane and below 

van der Waals distance of 3.17 Å which is consistent with an attractive dipolar 

interaction
102,104

. In FKBP52 this attractive dipolar interaction is less pronounced with the 

Tyr
113

 approaching the C
1
 carbonyl at an angle of 104.5

o
 and larger distances of 3.36Ǻ to 3.48 

Å. In both the FK506 co-crystal structures the exocyclic hydroxyl group at C
10

 engages in a 

hydrogen bond with the side chain of Asp
68

. The pyranose group of FK506 (1) approaches the 

80s loop in both the structures and the C
11

 methyl group fills the hydrophobic pocket formed by 

Ile
122

, Tyr
113

 and Phe
67

 (Fig. 9a, 9c and 9d). The C
9
-keto oxygen in both the structures 

occupies a cavity which is formed by the ε-hydrogens of Tyr
57

, Phe
67

 and Phe
130

. 

The crystal structures of FKBP51 and FKBP52 with FK506 (1) and compound 26
105

 adopt a 

very similar binding topology (unpublished). In compound 26 (Fig. 12b) most of the above 

described interactions with FKBP51 and FKBP52 are well conserved as seen in the FK506 

structures. The C
9
-keto oxygen in 26 occupies a similar position to the keto group of FK506. 

Owing to the absence of corresponding hydroxyl group in 26 the hydrogen bond with Asp
68

 is 

no longer observed. The tert-pentyl group sits in the same pocket that is occupied by the 

pyranose group in the FK506 co-crystal structure.  The dimethoxyphenyl ring A sits in the 

cradle that is created by residues Gly
84 

– Ile
87

 and Tyr
113

. Ring B stacks on the edge of Phe
77

. In 

FKBP51 the carboxyl group engages in electrostatically enhanced hydrogen bonds with Lys
109

 

and Arg
31

 of a neighboring FKBP51 molecule in the crystal. 
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Figure 12: Natural and synthetic FKBP ligands (a) Structure of FK506 (1), (b) prototypic synthetic 

ligand of FKBPs 26 which is devoid of immunosuppressive activity (hydrophobic contacts with 

FKBP51 are indicated in green, hydrogen bonds formed are dotted in pink and atom numbering of both 

ligands are shown in blue), (c) binding mode of FK506 (1) in complex with the FK1 domain of 

FKBP51(305R)
102

, (d) binding mode of FK506 (1) in complex with the FKBP52 FK1 domain 

(unpublished). The conserved H-bonds between O
1
-1 and HN-Ile

87
 (blue), O

8
-1and HO-Tyr

113
 (red) and 

HO
10

-1 and O-Asp
68

 (magenta) dotted in black. Leu
119

 and Pro
120

 at the top of the 80s loop in FKBP51 

and Pro
119

 and Pro
120

 at the top of the 80s loop in FKBP52 are colored in cyan in both the structures.  

Based on this observations it was hypothesized that optimization of interaction with the 80s 

loop of the protein has the highest probability of achieving selectivity and functional relevance 

within the two large FKBPs. 
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1.2  Manuscripts and Patents 

 

1. The Chemical Biology of Immunophilin Ligands (Manuscipt-1) 

 

2. Evaluation of Synthetic FK506 analogs as Ligands for FKBP51 and FKBP52 

(Manuscript-2) 

 

3. Exploration of Pipecolate Sulfonamides as Binders of the FK506-Binding Proteins 

51 and 52 (Manuscript-3) 

 

4. Design of Ligand efficiency by conformation control (Manuscript-4) 
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1.2.1 The Chemical Biology of Immunophilin Ligands (Manuscript-1) 

The immunophilin ligands Cyclosporin A, FK506 and Rapamycin are known and used in the 

clinic for their immunosuppressive properties. Pharmaceutical companies have over the years 

invested on many medicinal chemistry campaigns to develop drugs based on these 

immunosuppressive natural products. The immunosuppressive and the non-immunosuppressive 

analogs have been clinically used or investigated in various types of cancers, coronary 

angioplasty, dermatology, hepatitis C infections, and neuroprotection. The immunophilins have 

further been found to play a role in various conditions which has led to increased interest in 

novel immunophilin ligands. Furthermore, the immunophilin ligands have been used as 

sophisticated tools in chemical biology for the understanding of various cellular functions and 

mechanisms. The progress in the above areas in the last five years has been reviewed in the 

underlying manuscript. Part of this review has been implemented in the introduction section of 

this thesis.  

My main contribution to this review where sections 3.3 FKBP51 and FKBP52, 3.4 Microbial 

FKBPs and their role in anti parasitic action, 3.5 Non-immunosuppressive cyclosporin analogs, 

3.6 Non-peptidic cyclophilin inhibitors. 

 

 The Chemical Biology of Immunophilin Ligands. 

S. Gaali, R. Gopalakrishnan, Y. Wang, C. Kozany and F. Hausch*.  

Current Medicinal Chemistry, 2011, 18, 5355-5379. 

Copyright permission granted by Bentham Science Publishers 
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1.2.2 Aim of Manuscripts 2 and 3 

X-ray co-crystal structures of FK506 with FKBP51 (305R) and FKBP52 (in preparation) 

revealed that the pyranose group of FK506 (1) is in close proximity and contacts the 80s loop. 

SAR studies around the pyranose sub-structure have shown that that the methyl group at C
11

 of 

FK506 analogs is important while the pyranose ring oxygen is dispensable for binding to 

FKBP12 (Table 2)
50-52

. The above SAR conclusion is consistent with the FK506-FKBP51 and 

FK506-FKBP52 co-crystal structures where the pyranose oxygen does not seem to be involved 

as a hydrogen bond acceptor while the C
11

-methyl fills the small hydrophobic cavity
102

. The 

exocyclic hydroxyl group present in FK506 at C
10 

engages in a hydrogen bond with Asp
68

 of 

FKBP51/52 which is absent in the co-crystal structures of the non-immunosuppressive analogs 

with FKBP51 and FKBP52. The crystal structures further revealed that the pocket outlined by 

the 80s loop is more open and there could be a potential hydrogen bond interaction partner 

(S
118

). Taking these as structural starting points we decided to follow two different approaches 

to target the 80s loop of FKBP51 and FKBP52 to gain affinity and selectivity. The patent 

applications of the compounds and the treatment for which these compounds can be useful 

have been filed. 

 Pipecolate-diketoamides for treatment of psychiatric disorders.  

Gopalakrishnan R, Hausch, F. (Patent No. EP-11075275.5)  

  “Reprinted (adapted) with permission from Ranganath Gopalakrishnan et al. 

Evaluation of Synthetic FK506 Analogs as Ligands for the FK506-Binding Proteins 51 

and 52, Journal of Medicinal Chemistry, March 29, 2012, DOI: 10.1021/jm201746x. 

Copyright (2012) American Chemical Society.” 

 Pipecolate-sulfonamides for treatment of psychiatric disorders.   Gopalakrishnan 

R, Hausch, F. (Patent No. EP-11195970.6) 

 “Reprinted (adapted) with permission from Ranganath Gopalakrishnan et al. 

Exploration of Pipecolate Sulfonamides as Binders of the FK506-Binding Proteins 51 and 

52, Journal of Medicinal Chemistry, March 29, 2012, DOI: 10.1021/jm201747c. Copyright 

(2012) American Chemical Society.” 
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1.2.2.1 Evaluation of Synthetic FK506 Analogs as Ligands for FKBP51 and FKBP52 

(Manuscript-2) 

In this manuscript we report the co-crystal structure of FKBP51 with a simplified α-ketoamide 

analog derived from FK506 and the first structure-activity relationship analysis for FKBP51 

and FKBP52 based on this compound. Further, the tert-pentyl group of this ligand was 

systematically replaced by a cyclohexyl ring system which more closely resembles the 

pyranose ring in the high affinity ligands Rapamycin and FK506. The compounds in this series 

had various alkyl substituents at the C
11

 position. The interaction with FKBPs was found to be 

surprisingly tolerant to the stereochemistry of the attached cyclohexyl substituents. The 

molecular basis for this tolerance was elucidated by X-ray co-crystallography. 

 

Figure 13: Protypical pyranose containing FK506 analogs 

 

 

 

 

.  
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Own Contributions: 

In the manuscript, my personal contributions have been the following: 

1. Partial optimization of synthesis protocol (Scheme-1) and synthesis of analogs 6a, 6b, 

6e, 6f in Table 1 of the manuscript. 

2. Establishment of the synthesis protocol (Scheme-2) and optimization of synthesis 

protocol (Supp. Scheme-S1, S5 and partially S3) for the synthesis of α-keto acids and further 

incorporation into the corresponding α-ketoamides (Scheme-3). Synthesis and purification of 

all intermediates and compounds (3a*- 3j*) followed by structural characterization of all the 

compounds in Table 1 and 2. 

3. Characterization of the final compounds in the fluorescence polarization assay together 

with B. Hoogeland and C. Kozany. Data analysis of the tested compounds. 
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Evaluation of Synthetic FK506 Analogs as Ligands for FKBP51 and FKBP52 

Ranganath Gopalakrishnan
1
, Christian Kozany

1
, Steffen Gaali

1
, Christoph Kress

1
, Bastiaan 

Hoogeland
1
, Andreas Bracher

2
, Felix Hausch

1
*.  

1
Max Planck Institute of Psychiatry, Kraepelinstr. 2, 80804 Munich, Germany,  

2
Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany 

Correspondance: Email: hausch@mpipsykl.mpg.de, phone: +49(89)30622640, fax: +49(89)30622610 

Abstract: The FK506-binding proteins (FKBP) 51 and 52 are co-chaperones that modulate the 

signal transduction of steroid hormone receptors. Both proteins have been implicated in 

prostate cancer. Furthermore, single nucleotide polymorphisms in the gene encoding FKBP51 

have been associated with a variety of psychiatric disorders. Rapamycin and FK506 are two 

macrocyclic natural products that bind to these proteins indiscriminately, but with nanomolar 

affinity. We here report the co-crystal structure of FKBP51 with a simplified α-ketoamide 

analog derived from FK506 and the first structure-activity relationship analysis for FKBP51 

and FKBP52 based on this compound. In particular, the tert-pentyl group of this ligand was 

systematically replaced by a cyclohexyl ring system which more closely resembles the 

pyranose ring in the high affinity ligands rapamycin and FK506. The interaction with FKBPs 

was found to be surprisingly tolerant to the stereochemistry of the attached cyclohexyl 

substituents. The molecular basis for this tolerance was elucidated by X-ray co crystallography. 

 

 

mailto:hausch@mpipsykl.mpg.de


50 Medicinal chemistry approach to identify new ligands for FKBP51 and FKBP52 
 

 
 

Introduction:  

Immunosuppressant natural products like FK506 (Fig. 1a) and rapamycin bind with high 

affinity to immunophilins of the FKBP (FK506 binding protein) family, which often also 

possess peptidyl-propyl isomerase (PPIase) activity. The best-characterized member of the 

FKBP family is FKBP12, a 12kD protein, which consists only of the FK506-binding domain. 

FKBP12-FK506 and FKBP12-rapamycin complexes create binding surfaces for binding to 

calcineurin (CaN) and mTOR, respectively
1
. The inhibition of the latter proteins mediates the 

immunosuppressive action of the two natural products. FKBP12 has also been shown to 

modulate the ryanodine receptor (RyR) channels and to bind to the transforming growth factor 

β receptor I. FK506 inhibits these interactions consistent with a shared common binding site
2
.  

The higher molecular weight FKBP homologs FKBP51 and FKBP52 act as co-chaperones for 

the heat shock protein 90 (Hsp90). In the Hsp90 heterocomplex FKBP51 and FKBP52 have 

been shown to modulate signal transduction by the glucocorticoid receptor in a mutually 

antagonistic direction
3-5

. FK506 was shown to inhibit the proliferation of prostate cancer cells. 

This was attributed to blockade of the enhancing effect of FKBP51 on the androgen receptor in 

these cells
6,7

. Numerous human genetic studies have shown that single nucleotide 

polymorphisms in the gene encoding FKBP51 are associated with a variety of psychiatric 

disorders
8
. Very recently, several independent studies using kockdown or  kockout mice 

strongly supported an important role of FKBP51 in stress-coping behaviour
9-12

. These findings 

have rendered FKBP51 as a novel target for treatment of psychiatric disorders. However, 

neither FK506 nor rapamycin can be used as a tool to investigate the roles of individual FKBPs 

in mammalian system due to strong off-target effects and lack of selectivity. Thus, non-

immunosupressive and selective inhibitors for the large FKBP homologs FKBP51 and FKBP52 

are required. 

At the end of the last millennium various sub-classes of high affinity FKBP12 ligands were 

described which were devoid of the immunosuppressive activity present in FK506 and 

rapamycin
13,14

. α-Ketoamide derivatives without the effector region were the most widely 

studied series exemplified by compound 2a
15

 (Fig. 1). For FKBP12 the tert-pentyl group in 2a 

was found to be a good surrogate for the pyranose group in FK506 and rapamycin
16

. While the 

high affinity of the natural products FK506 and rapamycin were retained for the larger FKBPs, 

the binding affinity of 2a for the larger FKBPs was substantially weaker
17

. We thus first set out 

for a basic characterization of the structure-activity relationship of 2a. To analyze the 
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interactions with the 80s loop in more detail we then substituted the tert-pentyl group in 2a with 

cyclohexyl analogs which more closely mimic the pyranose group in the high affinity natural 

product ligands (Fig. 1c). 

Result and Discussion 

Crystal structure of the 2a-FKBP51 complex  

As a structural starting point for a rational design the co-crystal structure of 2a, the only 

synthetic ligand known for FKBP51, was solved in complex with the FK506-binding domain 

of FKBP51 at 1.5 Å resolution (Fig. 1d and 1e). Upon binding of compound 2a FKBP51 

adopts a very similar conformation as found in the FK506 complex
18

 (Fig. 1d). Most active site 

residues are virtually superimposable in the two co-crystal structures. Compared to the FK506 

complex (3O5R), Phe
77

 moves into the binding pocket, while Asp
68

 and the tip of the 80s loop 

(Leu
119

-Lys
122

) move outward in the FKBP51-2a complex, the latter in part due to crystal 

contacts with a neighboring FKBP51 molecule. 
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Fig. 1 Natural and synthetic FKBP ligands: (a) Structure of FK506 (1), (b) prototypic synthetic ligand 

of FKBPs 2a, which is devoid of immunosuppressive activity (hydrophobic contacts with FKBP51 are 

indicated in green, hydrogen bonds are represented as pink dotted lines), (c) prototypic cyclohexyl-

substituted ligand 3, (d, e) binding mode of 2a with FKBP51, (d) surface representation of FKBP51 in 

complex with 2a (green). FK506 bound to FKBP51 (3O5R) is superimposed in yellow. (e) Ribbon 

representation of FKBP51 showing the conserved H-bonds between O
1
-2a and HN-Ile

87
 (dark blue) and 

between O
8
-2a and HO-Tyr

113
 (red) as black dotted lines. Leu

119
 and Pro

120
 at the top of the 80s loop are 

colored in cyan. The dipolar interaction between OH-Tyr
113

 and C
1
-carbonyl is shown as a dotted line in 

magenta. 

The core interactions of FK506 are conserved for 2a with the common pipecolate ring sitting 

atop the indole of Trp
90

, which forms the floor of the FKBP binding pocket. The C
1
-carbonyl of 

the pipecolate forms a hydrogen bond with the backbone amide of Ile
87

 (d= 2.92 Å), while the 

C
8
-carbonyl of the -ketoamide engages in a hydrogen bond with the hydroxyl group of Tyr

113
 

(d= 2.65 Å). The latter approaches the C
1
-carbonyl at an angle of 107° and below van-der-

Waals distance (3.17Å) consistent with an attractive dipolar interaction
19

. The C
9
-keto oxygen 

of 2a occupies a position similar to the keto group of FK506, while the hydrogen bond with 

Asp
68

 seen in 305R is no longer conserved owing to the absence of the corresponding hydroxyl 

group in compound 2a. The tert-pentyl group of compound 2a sits in pocket formed by the 80s 

loop (Ser
118

-Ile
122

) which is occupied by the pyranose group of FK506 in the FK506-FKBP51 

complex. Compared to a similar compound (SB3) in a complex with FKBP12 (1FKG
16

) the 

ethyl of the tert-pentyl group is rotated by 180° and faces the 80s loop. The dimethoxyaryl 

group (ring A) of 2a sits in a cradle formed by residues Gly
84

-Ile
87

 and Tyr
113

 and engages in 

van-der-Waals contacts with Glu
20

 from a neighboring FKBP51 molecule in the crystal. The 

acetyloxyaryl group (ring B) stacks on top of the edge of Phe
77

 and its carboxyl moiety forms 

electrostatically enhanced hydrogen bonds with Lys
108

 and Arg
31

 from a neighboring molecule. 

Structure-activity relationship (SAR) of the pipecolate core and ester substituent 

So far virtually nothing is known about the interaction of the large FKBPs with small molecule 

ligands. To the best of our knowledge only one and three synthetic ligands have been described 

for FKBP51 and FKBP52, respectively
17,20,21

.  

As a first characterization of the recognition properties of FKBP51 and FKBP52 we engaged 

on a basic structure-activity relationship analysis of the prototypic ligand 2a. The analogs of 2a 

(Tab. 1) were synthesized by esterification or by alkylation of the C
1
 carboxylate of the 
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building blocks 4a-d as outlined in Scheme 1 or Scheme S4. The latter were prepared from the 

corresponding pipecolate analogs by N-oxalylation, introduction of the tert-pentyl moiety 

followed by deprotection of the C
1
 carboxylate (scheme S3)

16
. The 4,5-dehydropipecolate 

building block 4c was synthesized from allyl glycine in four steps (scheme S2 and S3)
22

. 

Building block 5a was obtained in 98% enantiomeric excess and 94% yield by a Noyori-

catalyzed enantioselective reduction of the known keto precursor 13a (Scheme S1)
15

. Building 

blocks 5b (Scheme S1) and 5c were synthesized as described
23

.  

 

Scheme 1: General synthesis protocol of compounds 2a-2d, 6a-6h. 
a 
Reagent and conditions : (a) DCC, 

DMAP,  rt, 12h. (b) (i) DCC, DMAP, rt, 12h. (ii) 20% TFA in DCM, rt, 6h, (c) DIPEA, toluene, reflux, 

40h. 

In an initial SAR analysis we explored the contributions of individual substructures in 2a by 

first focusing on the pipecolate core. Replacement by a proline (2b) or a 4,5-

dehydropipecolinic acid (2c) decreased the affinity for FKBPs 4-6 fold while thiomorpholine-

3-carboxylic acid (2d) abrogated detectable binding to the large FKBPs. Since even small 

changes at the core diminished affinity we kept the pipecolate core constant in all further 

derivatives. We then replaced the pipecolate C
1
 ester by an amide (2e) which completely 

abolished binding to larger FKBPs. This was anticipated since the additional hydrogen bond 

donor would point to the hydrophobic tert-pentyl group of 2e when bound in a homologous 

binding mode as 2a. 

We next explored the requirements of the ester “top” group. Smaller substituents like in 6a-6d 

resulted in analogs with 7-100 fold lower affinity for FKBP12 and no activity for larger FKBPs 
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as compared to 2a. Compound 6b (also called GPI-1046
24

) has been reported as one of the 

most potent and advanced inhibitors for FKBP12. Similar to the corresponding pipecolate 

analog 6c, GPI-1046 (6b) had no binding to larger FKBPs and micromolar affinity to FKBP12 

in the fluorescence polarization assay which is consistent with the discrepancies previously 

observed as reviewed by Gaali. et.al for GPI-1046 by others
1
. To eliminate the negative charge 

in 2a we exchanged the free acid moiety by a morpholine group (6e) which increased affinity 

2-4 fold and induced a slight preference for FKBP52 vs. FKBP51. In contrast to the carboxylic 

acid analog 2b, the morpholine-containing proline derivative 6f retained detectable but three-

fold reduced binding. Replacement of the oxyacetyl group in 6g by an amine resulted in 

compound having similar affinity.  

Table-1 

Compd. No Structure Purity FKBP12 FKBP51FK1 FKBP52FK1 

  IC50(µM) 

2a 

 

 > 99% 0.17 ± 0.05 8.36 ± 0.98 10.5 ± 1.5 

2b 

 

> 99% 0.80 ± 0.05 51.5 ± 31.9 41.6 ± 15.8 

2c 

 

> 99% 0.55  ± 0.06 32.73  ± 12.3 49.2  ± 24.6 

2d 

 

> 98% 1.29 ± 0.14 >100 >100 

2e 

 

> 99% 3.38 ± 0.54 >100 >100 
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6a 

 

> 99% 17.1 ± 2.7 >100 >100 

6b  > 99% 1.24 ± 0.33 >100 >100 

6c 

 

> 99% 2.11 ± 0.20 >150 >150 

6d 

 

> 99% 2.45 ± 0.44 >100 >100 

6e  > 99% 0.10 ± 0.02 4.15 ± 1.45 2.8 ± 1.10 

6f 

 

> 99% 1.05 ± 0.09 15.34 ± 1.94 5.55 ± 1.16 

6g 

 

≥98% 0.10 ± 0.05 3.8 ± 1.05 1.07 ± 0.84 

6h 

 

> 99% 0.15 ± 0.02 19.3 ± 6.6 11.6 ± 1.6 

6i  >98% 0.017 ± 0.020 8.52 ± 2.81 7.37 ± 3.28 

6j  > 99% 

 

 

 

>100 >100 >100 
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Table-1 Purity of the compounds was confirmed by using HPLC. Binding affinities to 

FKBP12, FKBP51 (FK1 domain) and FKBP52 (FK1 domain) were determined by a 

fluorescence polarization assay
17

. 

Finally, we replaced the tert-pentyl group with 3,4,5-trimethoxyphenyl in 6h (scheme S6) 

which led to a two-fold decrease in affinity for FKBP51 while having equivalent binding for 

FKBP12 and FKBP52. Additionally, two  FK506 analogs that had been evaluated in the clinic 

were tested for their binding to the larger FKBPs
1
. Biricodar (VX-710, 6i) potently bound to 

FKBP12 while displaying moderate affinity for the larger FKBPs. In contrast, the related 

Timcodar (VX-853, 6j) which lacks the pipecolate core had no binding affinity for any FKBPs, 

consistent with the SAR data observed above.  

Exploration of pyranose/tert-pentyl analogs 

A three-dimensional alignment of FKBP12 and the FK506-binding domains of FKBP51 and 

FKBP52 revealed that the core residues of the binding pockets are highly conserved. The 

largest differences were found in the adjacent 40s and 80s loops (residues 71-76 and 118-122 

for FKBP51, respectively). The 80s loop of FKBP51 further contains Leu
119 

which is replaced 

by Pro
119

 in FKBP52. Cellular studies have shown the residue at position 119 to be a major 

functional determinant for the effect on steroid hormone receptors
25

. Optimization of 

interactions with this part of the protein thus could impart selectivity and functional efficacy 

towards steroid hormone receptor for the large FKBPs. We therefore decided to investigate the 

interaction with this part of the protein in more detail. 

The X-ray structure of FK506 with FKBP12(1FKJ)
26

, with the FK1 domains of FKBP51(PDB 

code 305R)
18

 and FKBP52 (manuscript in preparation) revealed that the pyranose group in 

FK506 (1) contacts the 80s loop. SAR studies around the pyranose group have shown that the 

methyl group at C
11

 of FK506 analogs is important while the pyranose ring oxygen is 

dispensable for binding to FKBP12
27-29

. This is consistent with the FK506-FKBP51 co-crystal 

structure where the C
11

-methyl fills a small hydrophobic cavity, while the pyranose ring 

oxygen of FK506 does not seem to act as a hydrogen bond acceptor
18

. The pyranose of FK506 

further contains an exocyclic hydroxyl group at C
10

 that engages in a hydrogen bond with 

Asp
68

 of FKBP51. This could contribute to the higher affinity observed for the natural product. 

The 2a-FKBP51 co-crystal structure shows that the tert-pentyl group in 2a occupies the same 

subpocket below the 80s loop as the pyranose ring in FK506. We therefore decided to replace 
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the tert-pentyl group in 2a with cyclohexyl derivatives that more closely resembled the 

pyranose in the high-affinity ligand FK506 (1). The first series of compounds investigated had 

a methyl substituent (3a) at C
11

 as in FK506. The FK506-FKBP51 crystal structure (305R) 

further revealed that the 80s subpocket in the large FKBPs is more open and has a potential 

hydrogen bond interaction partner (S
118

) in its vicinity. We therefore also prepared cyclohexyl 

analogs with larger or hydrophilic C
11

 substituents.  

 

Scheme 2: General synthesis protocol of diketo acids 11a-e. 
a 
Reagent and conditions : (a) L-threonine, 

MgSO4, HCHO, THF, 5 days. (b) MOMCl, DIPEA, DCM 12h. (c) TMS acetylene, n-BuLi, -78
o
C, 2h. 

(d) N-bromosuccinimide, AgNO3, acetone, 2h. (e) KMnO4, pH 7 (MgSO4, NaHCO3), MeOH: H2O: 1:1, 

0
o
C to room temperature, 1h. (f) 1M LiOH, MeOH, 6h. 

A four step synthesis scheme for the α-keto acids 11a-b and 11d-e was set up starting from the 

corresponding racemic cyclohexanones 8a or 8b (Scheme 2). Alternatively, for 11c the 

enantiopure MOM-protected 2-hydroxymethyl cyclohexanone 8c was used. The latter was 

obtained in two steps from cyclohexanone by an organocatalyzed formylation
30,31

. TMS 

acetylene was reacted with 8a-c to obtain the cis and trans diastereomers 9a- 9f 
32

 

(stereochemistry assigned by NMR
33

) in nearly equal amounts which could be separated using 

column chromatography. N-bromosuccinimide was used to cleave the TMS group and 

introduce the bromide at the terminal alkynes (10a-e)
34

 followed by oxidation of the activated 

alkynes by KMnO4 to yield the corresponding α-keto esters
35-38

. These were further hydrolysed 

to give the α-keto acids 11a-b and 11d-e, as racemic mixtures, and enantiopure 11c.  
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The α-keto acids (11a-e) were coupled with the pipecolic acid building blocks 12a-d as 

outlined in Scheme 3 to give compounds 3a-3g and 3i-3j as mixture of diastereomers and 3h as 

a single pure diastereomers. The affinities for FKBPs were either tested as mixture of 

diastereomers (3a-3g, 3i-3j) or after diastereomeric separation using preparative HPLC (Table-

2).  

 

Scheme 3: General synthesis protocol of compounds 3a-3j. 
a 

Reagent and conditions : (a) (S)-1-Boc-

piperidine-2-carboxylic acid, K2CO3, KI, 60
o
C, 12h. (b) 20% TFA in DCM, rt, 2h. (c) (S)-1-Fmoc-

piperidine-2-carboxylic acid, DCC, DMAP, rt, 12h. (d) 20% 4-methylpiperidine in DCM, rt, 4h. (e) 

11a-e, HATU, DIPEA, rt, 16h. (f) (i) 11a-e , HATU, DIPEA, rt, 16h. (ii) 20% TFA in DCM, rt, 6h. 

Introduction of the FK506-like cyclohexyl moiety in 3a increased affinity for FKBPs two-fold 

compared to 2a indicating that the cyclohexyl moiety might indeed better interact with the 80s 

loop than the tert-pentyl group. We next explored the influence of the ester “top” group in the 

context of the cyclohexyl substituent. Removing the acetyloxyaryl ring (ring B) as in 3c 

reduced the affinity for FKBPs by 6 fold. This is in contrast to the results observed for the C
11

-

ethyl analog 3d and the corresponding tert-pentyl containing substance 6d. Further shortening 

of the linker connecting the dimethoxyaryl moiety (ring A) as in 3b substantially decreased 

affinity for all FKBPs. This indicates that the linker length is critical for optimal positioning of 

the dimethoxyaryl moiety, at least in the cyclohexyl series. Similar to the tert-pentyl series, 

replacement of the carboxylate by a morpholine in compounds 3e and 3g increased affinity for 

FKBPs and induced a slight preference for FKBP52 compared to FKBP51. 

We next investigated the role of the C
11

 substituent on the cyclohexyl moiety. The C
11

-methyl 

(3a*), C
11

-ethyl (3f*) and C
11

-hydroxylmethyl derivative (3h) had similar binding for the larger 

FKBPs while the affinity for FKBP12 was reduced. Importantly, however, we also found that 

the diastereomeric mixtures 3i* and 3j* had almost equivalent binding to FKBPs as their 

FK506-like counterparts 3a* and 3f*. This was somewhat surprising since in the “unnatural” 
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diastereomers 3i* and 3j* the Asp
68

-HO
10

 hydrogen bond and hydrophobic 80s loop contacts 

of the C
11

-substitutent are not possible at the same time. To further investigate the influence of 

stereochemistry and the substitution pattern at the cyclohexyl ring in more detail we separated 

the individual diastereomers 3a-1, 3a-2, 3i-1, 3i-2, 3f-1 and 3f-2.  

Again, these diastereomers had almost equivalent binding to the proteins. These observation 

led us to conclude that the stereochemistry around the pyranose group in FK506/rapamycin like 

ligands is not as important for activity as previously thought and that the 80s loop is flexible 

enough to accommodate the small stereo chemical changes in the active site.  

Table-2 

Compd. 

No. 

R1 FKBP12 FKBP51FK1 FKBP52FK1 

IC50(µM) 

3a* 

 

0.055 ± 0.004 4.20 ± 0.11 2.13 ± 0.21 

3b* 

 

2.2  ± 0.5 >100 >100 

3c* 

 

0.31 ± 0.04 29.39 ± 8.5 11.7 ± 6.4 

3d* 

 

2.78 ± 0.02 >100 >100 

3e* 

 

0.057 ± 0.004 2.02 ± 0.14 0.89 ± 0.06 
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3f* 

 

0.32 ± 0.025 3.9 ± 1.2 9.5 ± 1.3 

3f-1 

 

0.128 ± 0.03 5.8 ± 0.6 4.2 ± 0.3 

3f-2 

 

0.343 ± 0.09 3.9 ± 0.6 3.5 ± 0.6 

3g* 

 

0.47 ± 0.06 9.66 ± 0.83 3.72 ± 1.02 

3h 

 

0.507 ± 0.08 8.5 ± 0.6 6.2 ± 0.5 

3i* 

 

0.055 ± 0.004 4.13 ± 0.20 2.64 ± 0.19 

3a-1 

 

0.056 ± 0.004 4.27 ± 0.19 2.44 ± 0.17 

3a-2 

 

0.048 ± 0.006 4.54 ± 0.24 2.88 ± 0.21 

3i-1 

 

0.049 ± 0.005 4.18 ± 0.15 2.20 ± 0.13 

3i-2 

 

0.063 ± 0.003 4.96 ± 0.25 2.64 ± 0.25 
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3j* 

 

0.57 ± 0.12 9.13 ± 0.59 9.77 ± 1.48 

Table-2: *Mixture of diastereomers. Binding affinity to FKBP12, FKBP51 (FK1 domain) and FKBP52 

(FK1 domain) determined by fluorescence polarization assay
17

. 

Crystal structures of 3f-1 and 3f-2 

To understand the unexpected binding of the non-canonical diastereomers we solved the co-

crystal structure of both 3f-1 and 3f-2 with the FK506-binding domain of FKBP51 (Fig. 2). 

Depending on whether the complexes were crystallized or the compounds were added to pre-

formed crystals, different crystal forms were obtained. In both co-crystal lattices the ligands 

engaged Glu
20

, Arg
31

 and Lys
108

 of a neighboring FKBP51 molecule, similar to the crystal 

contacts observed for 2a (see above).  

Upon binding of compound 3f-1 or 3f-2 FKBP51 adopts the same structure as found in 

FKBP51 complexed with 1 and 2a. Likewise, the binding modes for the pipecolate, the ester 

“top” group and the α-keto amide of 3f-1 or 3f-2 were almost perfectly superimposable to those 

found for 2a in complex with FKBP51. In particular the hydrogen bond network and the 

dipolar interaction comprising Ile
87

-NH, C
1
=O, Tyr

113
-OH and C

8
=O is conserved. In 3f-1 a 

hydrogen bond of C
10

-OH with Asp
68

 (d= 2.75 Ǻ) is formed similar to the one observed for the 

pyranose group of FK506 (PDB code 3O5R). However, the cyclohexyl group in 3f-1 is slightly 

lifted out of the binding pocket and slightly rotated likely to relieve a steric clash of the larger 

C
11

 substituent. For the C
11

 substituent two orientations seem to be possible which occupy 

similar positions like the ethyl group of the tert-pentyl moiety in 2a (Fig. 2a). In the case of 3f-

2 the cyclohexyl moiety is rotated by 180° which allows the C
11

 ethyl substituent to occupy 

almost an identical position as for 3f-1 indicating that this hydrophobic interaction might be 

rather important (Fig. 2b). In this conformation the hydrogen bond with Asp
68

 is no longer 

possible but the C
10

-OH now forms water-mediated hydrogen bonds to Tyr
113

 and Ser
118

.  This 

water network might provide the binding energy to compensate for the loss of the C
10

-

OH
…

Asp
68

 H-bond.   
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Fig. 2 X-ray crystal structure of 3f-1 and 3f-2 in the FK506-binding domain of FKBP51. The hydrogen 

bonds between O
1 

and HN-Ile
87

 (shadowed blue) and between O
8
 and HO-Tyr

113
 (shadowed red) are 

represented as dotted black lines. The dipolar interaction between OH-Tyr
113

 and C
1
 carbonyl is 

indicated by a dotted pink line. Leu
119

 and Pro
120

 of the 80s-loop are indicated in cyan. (a) Binding 

mode of 3f-1 in the active site of FKBP51. The additional hydrogen bond between HO
10

-3f-1 and O-

Asp
68

 (shadowed magenta) is shown as dotted black line. (b) Binding mode of 3f-2 in the active site of 

FKBP51. The hydrogen bond network formed by a water molecule (green) with Tyr
113

 and Ser
118

 

(yellow) of FKBP51 and with C
10

-OH of 3f-2 complex is indicated by a dotted black line.  

Conclusion: 

This study for the first time describes a detailed structure-activity relationship of ligands for the 

larger FKBPs 51 and 52. Though SAR of α-ketoamides for FKBP12 has been extensively 

documented this is the first instance where a direct comparison of binding trends between 

FKBP12 and larger FKBPs have been studied. X-ray co-crystal structure of 2a was obtained as 

the starting point, followed by a systematic exploration of the contributions of each substituent 

on affinity to FKBP51 or FKBP52. Larger top groups as in 2a and 6e were found to be have 

better binding affinity, while the pipecolic core (2a) was found to be essential. The tert-pentyl 

group in 2a was further substituted by a cyclohexyl group which mimicked the pyranose in 

FK506 and rapamycin. From the binding studies and X-ray co-crystal structure of the 

diasteromers (3f-1 and 3f-2) we can conclude that the FKBPs are tolerant towards change of 

the stereochemistry around the cyclohexyl (pyranose) substituents. These co-crystal structures 

also suggest that multiple molecular binding modes are possible for the 80s loop interaction 

which is in line with the high flexibility of this region.  
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Experimental section:  

Chemistry: Chromatographic separations were performed either by manual flash 

chromatography or by automated flash chromatography using an Interchim Puriflash 430 with 

an UV detector. Organic phases were dried over MgSO4, and the solvents were removed under 

reduced pressure. Merck F-254 (thickness 0.25mm) commercial plates were used for analytical 

TLC to follow the progress of reactions. Silica gel 60 (Merck 70-230 mesh) was used for 

manual column chromatography. Unless otherwise specified, 
1
H NMR spectra, 

13
C NMR 

spectra, 2D HSQC, HMBC and COSY of all intermediates were obtained from the Department 

of Chemistry and Pharmacy, LMU, on a Bruker AC 300, a Bruker XL 400, or a Bruker AMX 

600 at room temperature. Chemical shifts for 
1
H or 

13
C are given in ppm (δ) relative to 

tetramethylsilane (TMS) as internal standard. Mass spectra (m/z) were recorded on a Thermo 

Finnigan LCQ DECA XP Plus mass spectrometer at the Max Planck Institute of Psychiatry, 

while the high resolution mass spectrometry was carried out at MPI for Biochemistry 

(Microchemistry Core facility) on Varian Mat711 mass spectrometer. The purity of the 

compounds was verified by reversed phase HPLC. 

HPLC conditions for product analysis: Column: Jupiter 4 µm Proteo 90 A, 250 x 4.6 mm, 

Phenomenex, Torrance, USA, Wavelength: 224nm, 280nm Flow rate: 1ml/min, Buffer A: 

0.1% TFA in 5% MeCN/Water, Buffer B: 0.1% TFA in 95% MeCN/water. Gradient A After 

1 min elution with 100% buffer A, linear gradient of 0-100% buffer B for 30 min.  

LCMS conditions for product analysi: Column: YMC Pack Pro C8, 100 x 4.6 mm, 3µm 

Wavelength: 224nm, 280nm Flow rate: 1ml/min, Buffer A: 0.1% HCOOH in 5% 

MeCN/water, Buffer B: 0.1% HCOOH in 95% MeCN/water. Gradient A: 1min 100% buffer 

A, then linear gradient of 0-100% buffer B for 11 min.  

Preparative HPLC for diasteromer seperation: Compound was dissolved in 40% buffer B 

and the purification was carried out with a injection loop volume of 2ml, Column: Jupiter 

10μm Proteo 90 A, 250 x 21.7 mm, 10micron Phenomenex, Torrance, USA, Wavelength: 

224nm, Flow rate: 25ml/min, Buffer A: 0.1% TFA in 5% MeOH/Water, Buffer B: 0.1% TFA 

in 95% MeOH/water..  

Synthesis of (S)-methyl 1-(3,3-dimethyl-2-oxopentanoyl)piperidine-2-carboxylate (4a) 

The compound was prepared as described previously
16

.  
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Synthesis of (S)-methyl 1-(3,3-dimethyl-2-oxopentanoyl)pyrrolidine-2-carboxylate (4b) 

Prepared from the methyl ester of L-Proline in an analogous manner to 4a. 

General Method A. 

A solution of alcohol 5a-c, carboxylic acid 4a-d and DMAP in DCM at room temperature was 

treated with DCC. After stirring for 12 h the mixture was diluted with EtOAc and filtered 

through a plug of celite. The filtrate was concentrated and the crude material flash 

chromatographed to afford the product. 

General Method B. 

A solution of bromide 7a-c and carboxylic acid 4a or 4b was treated with DIPEA in toluene at 

reflux for 40 h. Afterwards, the mixture was diluted with EtOAc (30ml) and filtered through a 

plug of celite. The filtrate was concentrated and the crude material flash chromatographed to 

afford the product. 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(3,3-dimethyl-2-oxopentanoyl) 

piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid 2a 

The compound was prepared as described previously 
17

 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(3,3-dimethyl-2-oxopentanoyl)py -

rrolidine-2-carbonyloxy)propyl)phenoxy)acetic acid 2b 

General method A was used for coupling of alcohol 5a (75.9mg, 0.188 mmol) and acid 4b (50 

mg, 0.207 mmol) using DMAP (2.5 mg, 0.0207 mmol) and DCC (43mg, 0.207 mmol). The 

crude product was chromatographed using Hexane: EtOAc 3: 1 to afford ester 2.  

TLC (Hexane: EtOAc 3:1): Rf = 0.19. 

HPLC (Gradient A) retention time= 30.1-30.4min 

HRMS 626.3229 [M + H]
 +

, calculated 626.3250 [M + H]
 +

. 

Ester 2 was treated with 20% TFA in DCM at room temperature. The mixture was stirred for 

6h. TFA and DCM were evaporated under reduced pressure to yield the free acid 2b (22.6mg, 

0.039mmol, 21%) over two steps.  

TLC (Hexane: EtOAc: MeOH: AcOH:  6:3: 0.5: 0.5): Rf = 0.25. 

HPLC (Gradient A) retention time= 24.8-25.2min 

1
H NMR (600 MHz, CDCl3) δ= 0.79 (t, 3H, J= 7.2Hz), 1.14 (s, 3H), 1.16 (s, 3H), 1.59-1.70 (s, 

2H), 1.89-2.05 (m, 4H), 2.15-2.24 (m, 2H), 2.48-2.60 (m, 2H), 3.44-3.70 (m, 2H), 3.80 (s, 3H), 
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3.82 (s, 3H), 4.55 (s, 2H), 4.58-4.61(m, 1H), 5.66-5.72 (m, 1H), 6.62-6.66 (m, 2H), 6.74 (d, 

1H, J= 8.4Hz), 6.78-6.81 (m, 1H), 6.85- 6.89 (m, 2H), 7.18-7.21 (m, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 9.05, 23.20, 23.76, 24.99, 29.89, 31.36, 32.33, 38.26, 47.05, 

47.46, 56.04, 58.78, 65.74, 76.39, 111.52, 112.03, 112.56, 114.58, 119.63, 120.39, 129.86, 

133.76, 141.91, 147.48, 149.02, 158.05, 163.74, 165.53, 170.83, 207.13. 

MS (ESI) m/z: found Rt 11.52 min. (Method LCMS), 592.32 [M + Na]
+
. 

HRMS 570.3268[M + H]
+
, calculated 570.3225 [M + H]

 +
. 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(3,3-dimethyl-2-oxopentanoyl)-

1,2,3,6-tetrahydropyridine-2-carbonyloxy)propyl)phenoxy)acetic acid 2c 

General method A was used for coupling of alcohol 5a (71.7mg, 0.178 mmol) and acid 4c (50 

mg, 0.19 mmol) using DMAP (2.4 mg, 0.0196 mmol) and DCC (39.2 mg, 0.19 mmol). The 

crude product was chromatographed using Hexane: EtOAc 3: 1 to afford ester 3  (115mg, 

0.180 mmol, 91%)  

TLC (Hexane: EtOAc 1: 1): Rf = 0.8. 

HPLC (Gradient A) retention time= 30.2-30.6min 

1
H NMR (300 MHz, CDCl3) δ== 0.77-0.91 (m, 3H), 1.12 (d, 2H, J= 4.2Hz), 1.21 (s, 3H), 1.22 

(s, 3H), 1.47 (s, 9H), 1.96-2.08 (m, 1H), 2.15-2.28 (m, 1H), 2.44-2.62 (m, 3H), 2.66-2.83 (m, 

1H), 3.72-4.00 (m, 8H), 4.34-4.47 (m, 1H), 4.52 (s, 2H), 5.48-5.59 (m, 1H), 5.69-5.86 (m, 2H), 

6.64-6.67 (m, 2H), 6.75-6.87 (m, 3H), 6.92 (d, 1H, J= 7.8Hz), 7.21-7.27 (m, 1H). 

13
C NMR (75 MHz, CDCl3) δ= 9.00, 23.54, 23.69, 26.21, 28.24, 31.36, 32.71, 38.21, 43.15, 

46.9, 54.6, 56.03, 56.14, 65.95. 76.87, 82.52, 111.57, 111.99, 113.24, 114.50, 119.94, 120.40, 

122.61, 124.07, 129.90, 133.65, 141.50, 147.56, 149.11, 158.32, 167.42, 168.07, 169.61, 

207.48. 

HRMS 582.2601[M – tBu + H]
+
, 660.3110 [M + Na]

+
, calculated 582.2625 [M – tBu + H]

+
, 

660.3143[M + Na]
+
. 

 

Ester 3(100 mg, 0.157 mmol) was treated with 20% TFA in DCM at room temperature. The 

mixture was stirred for 6h. TFA and DCM were evaporated under reduced pressure to yield the 

free acid 2c (61mg, 0.104mmol, 67%). 

TLC (Hexane: EtOAc: AcOH: 5:5: 0.5): Rf = 0.35. 

HPLC (Gradient A) retention time= 25.4-25.9min 

1
H NMR (300 MHz, CDCl3) δ= 0.89 (t, 3H, J= 7.5 Hz), 1.22 (s, 3H), 1.23 (s, 3H), 1.67-1.75 

(m, 3H), 1.99-2.29 (m, 2H), 2.51-2.64 (m, 3H), 3.73 (t, 1H, J= 18.8 Hz), 3.85 (s, 3H), 3.86 (s, 
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3H), 3.97 (d, 1H, J= 18.7 Hz), 4.37-4.38 (m, 1H), 4.68 (s, 2H), 5.50-5.89 (m, 3H), 6.66 (s, 1H), 

6.69 (s, 1H), 6.77-6.81 (m, 1H), 6.83- 6.94 (m, 3H), 7.17-7.24 (m, 1H). 

13
C NMR (75 MHz, CDCl3) δ= 9.06, 23.56, 23.66, 27.38, 29.37, 31.44, 32.73, 38.31, 43.26, 

54.75, 56.10, 56.17, 65.36, 76.88, 111.64, 112.06, 112.82, 114.92, 120.48, 122.57, 123.98, 

125.53, 130.07, 133.61, 141.88, 147.63, 149.14, 158.07, 167.34, 169.54, 172.76, 207.48. 

MS (ESI) m/z: found Rt 11.12 min. (Method LCMS), 604.92 [M + Na]
+
. 

HRMS 582.3266 [M + H]
+
, calculated 582.3225 [M + H]

 +
. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((R)-4-(3,3-dimethyl-2-oxopentanoyl)thio 

morpholine-3-carbonyloxy)propyl)phenoxy)acetic acid 2d 

General method A was used for coupling of alcohol 5a (67mg, 0.166 mmol) and acid 4d (50 

mg, 0.183 mmol) using DMAP (2.2 mg, 0.018 mmol) and DCC (38 mg, 0.183 mmol). The 

crude product was chromatographed using Hexane: EtOAc 3: 1 to afford ester 4 (104mg, 0.158 

mmol, 87%)  

TLC (Hexane: EtOAc 1: 1): Rf = 0.80. 

HPLC (Gradient A) retention time= 30.2-30.6min 

1
H NMR (600 MHz, CDCl3) δ= 0.83-0.86 (m, 3H), 1.19 (s, 3H), 1.21 (s, 3H), 1.44 (s, 9H), 

1.56-1.63 (m, 1H), 1.68-1.76 (m, 1H), 2.01-2.08 ((m, 1H), 2.20-2.26 (m, 1H), 2.33-2.38 (m, 

1H), 2.51-2.65 (m, 2H), 2.71-2.81 (m, 1H), 2.91-3.03 (m, 1H), 3.08-3.27 (m, 1H), 3.51-3.58 

(m, 2H), 3.81 (s, 3H), 3.82 (s, 3H), 4.48 (s, 2H), 5.55-5.56 (m, 1H), 5.74-5.84 (m, 1H), 6.65-

6.68 (m, 2H), 6.74-6.76 (m, 1H), 6.79 (d, 1H, J= 8Hz), 6.86 (s, 1H), 6.92 (d, 1H, J= 8.2Hz), 

7.20-7.25 (m, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 8.92, 23.05, 23.84, 27.37, 28.23, 28.72, 31.36, 32.64, 38.23, 

45.60, 47.00, 51.72, 56.02, 56.12, 65.96, 77.37, 82.56, 111.55, 112.03, 113.46, 114.37, 119.98, 

120.41, 129.94, 133.71, 141.32, 147.54, 149.07, 158.33, 167.87, 168.05, 171.27, 207.64. 

HRMS 602.2355 [M – tBu + H]
+
, 658.3018 [M + H]

+
, calculated 602.2346 [M – tBu + H]

+
, 

658.3072 [M + H]
 +

. 

 

Ester 4(100 mg, 0.152 mmol) was treated with 20% TFA in DCM at room temperature. The 

mixture was stirred for 6h. TFA and DCM were evaporated under reduced pressure to yield the 

free acid 2d (58.1mg, 0.096mmol, 64%). 

TLC (Hexane: EtOAc: AcOH: 5:5: 0.5): Rf = 0.42. 

HPLC (Gradient A) retention time= 25.2-25.7min 
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1
H NMR (600 MHz, CDCl3) δ= 0.84-0.87 (m, 3H), 1.17 (s, 3H), 1.20 (s, 3H), 1.55-1.76 (m, 

2H), 2.05-2.10 (m, 1H), 2.21-2.28 (m, 1H), 2.34-2.41 (m, 1H), 2.56-2.69 (m, 2H), 2.74-2.84 

(m, 1H), 2.92-3.04 (m, 1H), 3.10-3.24 (m, 1H), 3.50-3.59 (m, 2H), 3.82 (s, 3H), 3.84 (s, 3H), 

4.64 (s, 2H), 5.56-5.57 (m, 1H), 5.76-5.83 (m, 1H), 6.65-6.69 (m, 2H), 6.75-6.76 (m, 1H), 

6.80-6.86 (m, 2H), 6.91 (d, 1H, J= 7.8 Hz), 7.21-7.25 (m, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 8.91, 23.04, 23.81, 27.38, 28.76, 31.42, 32.65, 38.30, 45.67, 

47.06, 51.96, 56.08, 56.14, 65.30, 80.28, 111.61, 112.11, 112.44, 114.87, 130.11, 133.65, 

141.72, 147.56, 149.08, 158.02, 167.78, 168.02, 173.02, 207.55. 

MS (ESI) m/z: found Rt 11.85 min. (Method LCMS), 624.45 [M + Na]
+
. 

HRMS 602.2379 [M + H]
+
, calculated 602.2346 [M + H]

 +
. 

 

Synthesis of 2-(3-(3-(3,4-dimethoxyphenyl)-1-((S)-1-(3,3-dimethyl-2-oxopentanoyl)piperidi -

ne -2-carboxamido)propyl)phenoxy)acetic acid (mixture of diasteromers) 2e 

General method A was used for coupling of amine 19 (71.5mg, 0.178 mmol) and acid 4a (50 

mg, 0.195 mmol) using DMAP (2.3 mg, 0.019 mmol) and DCC (40 mg, 0.195 mmol). The 

crude product was chromatographed using Hexane: EtOAc 1: 1 to afford ester 5 (110mg, 0.172 

mmol, 96%)  

TLC (Hexane: EtOAc 1: 1): Rf = 0.7. 

HPLC (Gradient A) retention time= 28.2-28.8min 

1
H NMR (300 MHz, CDCl3) δ= 0.82-0.92 (m, 3H), 1.18-1.26 (m, 6H), 1.46 (s, 9H), 1.57-1.75 

(m, 5H), 2.23-2.70 (m, 3H), 3.16-3.38 (m, 1H), 3.83 (s, 3H), 3.84 (s, 3H), 4.43-4.45 (m, 2H), 

4.87-4.96 (m, 1H), 5.06 (t, 1H, J= 6Hz), 6.63-6.96 (m, 6H), 7.19-7.28 (m, 1H). 

13
C NMR (75 MHz, CDCl3) δ=  8.94, 9.03, 20.60, 21.21, 22.92, 22.96, 23.33, 23.39, 23.44, 

23.72, 25.26, 25.36, 28.37. 32.66, 32.89, 32.91, 38.45, 38.78, 44.59, 44.64, 46.77, 46.80, 51.59, 

53.43, 53.46, 56.02, 56.11, 60.55, 65.91, 82.46, 111.55, 112.07, 113.32, 113.58, 119.72, 

119.77, 120.36, 120.38, 130.01, 130.10, 133.93, 134.00, 143.95, 147.48, 149.06, 149.08, 

158.42, 158.46, 166.64, 166.74, 168.08, 169.00, 169.17, 171.27, 207.98, 208.01, 210.02, 

210.31. 

HRMS 639.3611 [M + H]
 +

, calculated 639.3665 [M + H]
 +

. 

 

Ester 5(110 mg, 0.172 mmol) was treated with 20% TFA in DCM at room temperature. The 

mixture was stirred for 6h. TFA and DCM were evaporated under reduced pressure to yield the 

free acid 2e (40mg, 0.068mmol, 40%). 

TLC (Hexane: EtOAc: AcOH 5: 5: 0.5): Rf = 0.19. 
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HPLC (Gradient A) retention time= 26.2-26.8 min 

1
H NMR (600 MHz, CDCl3) δ= 0.86-0.94 (m, 3H), 1.08-1.16 (m, 6H), 1.42 (s, 9H), 1.49-1.65 

(m, 5H), 2.20-2.60 (m, 3H), 3.05-3.40 (m, 1H), 3.79 (s, 3H), 3.80 (s, 3H), 4.46-4.49 (m, 2H), 

4.86-4.96 (m, 1H), 5.07 (t, 1H, J= 6Hz), 6.63-6.95 (m, 6H), 7.20-7.28 (m, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 8.94, 9.03, 20.60, 21.21, 22.92, 22.96, 23.33, 23.39, 23.44, 

23.72, 25.26, 25.36, 32.66, 32.89, 32.91, 38.45, 38.78, 44.59, 44.64, 46.77, 46.80, 51.59, 53.43, 

53.46, 56.02, 56.11, 60.55, 65.91, 111.55, 112.07, 113.32, 113.58, 119.72, 119.77, 120.36, 

120.38, 130.01, 130.10, 133.93, 134.00, 143.95, 147.48, 149.06, 149.08, 158.42, 158.46, 

166.64, 166.74, 168.08, 169.00, 169.17, 171.27, 207.98, 208.01, 210.02, 210.31. 

MS (ESI) m/z: found Rt 11.01 min. (Method LCMS), 583.28 [M + H]
+
, 605.60 [M + Na]

+
. 

HRMS 583.3577 [M + H]
 +

, calculated 583.3541 [M + H]
 +

. 

 

Synthesis of (S)-methyl 1-(3,3-dimethyl-2-oxopentanoyl)piperidine-2-carboxylate 6a 

The compound was prepared as described previously
16

.  

TLC (Hexane : EtOAc 8: 2): Rf = 0.40, Yield- 640mg (73%). 

HPLC (Gradient A) retention time= 22.8-23.1 min 

1
H NMR (400 MHz, CDCl3) δ= 0.83 (dt, 3H, J= 1.2, 7.2Hz), 1.14 (s, 3H), 1.17 (s, 3H), 1.26-

1.50 (m, 2H), 1.58-1.74 (m, 5H), 2.24 (d, 1H, J= 14Hz), 3.12-3.19 (m, 1H), 3.33 (d, 1H, J= 

13.8Hz), 3.70 (s, 3H), 5.20 (d, 1H, J= 5.6Hz). 

13
C NMR (100 MHz, CDCl3) δ= 8.69, 21.11, 22.85, 23.54, 24.82, 26.27, 32.45, 43.89, 46.70, 

51.06, 52.35, 167.49, 170.77, 207.77. 

MS (ESI) m/z: found Rt 12.94 min. (Method LCMS), 270.30 [M + H]
+
, 292.24 [M + Na]

+
. 

calculated 270.28 [M + H]
 +

, 292.15[M + Na]
 +

. 

 

Synthesis of (S)-3-(pyridin-3-yl)propyl 1-(3,3-dimethyl-2-oxopentanoyl)pyrrolidine-2-

carboxylate 6b 

General method A was used for coupling of alcohol 5d (34mg, 0.249 mmol) and acid 4b (60 

mg, 0.248 mmol) using DMAP (3.3 mg, 0.027 mmol) and DCC (65.8 mg, 0.298 mmol). The 

crude product was chromatographed using DCM: MeOH 9.3: 0.7to afford 6b (52mg, 0.144 

mmol, 57%). 

TLC (DCM: MeOH 9.7:0.3): Rf = 0.39. 

HPLC (Gradient A) retention time= 14.87-15.26 min 
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1
H NMR (400 MHz, CDCl3) δ= 0.85 (t, 3H, J = 7.6 Hz), 1.20 (s, 3H), 1.24 (s, 3H),   1.64-1.71 

(m, 2H), 1.91-2.04 (m, 5H), 2.19-2.30  (m, 1H), 2.66-2.73 (m, 2H),  3.40-3.54 (m, 2H), 4.08-

4.20 (m, 2H), 4.49-4.52  (m, 1H), 7.19-7.23 (m, 1H), 7.50-7.53 (m, 1H), 8.45 (s, 2H). 

13
C NMR (100 MHz, CDCl3) δ= 8.92, 23.10, 23.70, 24.87, 29.17, 29.92, 32.34, 33.93, 46.94, 

47.17, 58.33, 64.18, 123.37, 135.98, 147.54, 149.83, 165.14, 171.41, 206.98 

MS (ESI) m/z: found Rt 9.51 min. (Method LCMS), 361.35 [M + H]
 +

, 

HRMS 361.2299 [M + H]
 +

, calculated 361.2249 [M + H]
 +

. 

 

Synthesis of (S)-3-(pyridin-3-yl)propyl1-(3,3-dimethyl-2-oxopentanoyl)piperidine-2-carbox-

ylate 6c 

General method B was used for reacting the bromide 7a (37.8mg, 0.19mmol) and acid 4a (48.5 

mg, 0.19 mmol) using DIPEA (24.7 mg, 0.23 mmol). The crude product was chromatographed 

using DCM: MeOH 9.3: 0.7to afford 6c (45mg, 0.12 mmol, 64%)  

 TLC (DCM: MeOH 9.7:0.3): Rf = 0. 30,  

HPLC (Gradient A) retention time- 16.9-17.4min 

1
H NMR (300 MHz, CDCl3) δ= 0.82 (t, 3H, J= 7.5 Hz), 1.16 (d, 6H, J= 9.3 Hz), 1.36 (s, 2H), 

1.59-1.70 (m, 4H), 1.87-1.95 (m, 2H), 2.23 (d, 2H, J= 14.16 Hz), 2.65 (t, 2H, J= 7.9 Hz), 3.15-

3.31 (m, 2H), 4.12 (t, 2H, J= 8.0 Hz), 5.21 (d, 1H, J= 5.3 Hz), 7.46 (d, 2H, J= 7.8 Hz), 8.40 (s, 

2H). 

MS (ESI) m/z: found Rt 4.80 min. (Method LCMS), 375.39 [M + H]
+
, 

HRMS 375.2642 [M + H]
 +

, calculated 375.2606 [M + H]
 +

. 

 

Synthesis of (S)-2-(3,4-dimethoxyphenoxy)ethyl 1-(3,3-dimethyl-2-oxopentanoyl)piperidine -

2-carboxylate 6d 

General method B was used for reacting the bromide 7b (50mg, 0.19mmol) and acid 4a (50mg, 

0.196mmol) using DIPEA (24.7mg, 0.23mmol). The crude product was chromatographed 

using Hexane: EtOAc 4:1 to afford 6d (70mg, 0.16mmol, 84%). 

TLC (Hexane: EtOAc 4:1): Rf = 0.45. 

HPLC (Gradient A) retention time= 25.8-26.4 min 

1
H NMR (300 MHz, CDCl3) δ= 0.86 (t, 3H, J=7.5Hz), 1.16 (s, 3H), 1.20 (s, 3H), 1.58-1.79 (m, 

7H), 2.33 (d, 1H, J= 14.1 Hz), 3.18-3.28 (m, 1H), 3.38 (d, 1H, J= 13.2 Hz), 3.82 (s, 3H), 3.84 

(s, 3H), 4.13 (t, 2H, J= 4.8 Hz), 4.44-4.56 (m, 2H), 5.30 (d, 1H, J= 5.1Hz), 6.37 (dd, 1H, J= 2.7, 

8.7 Hz), 6.50 (d, 1H, J= 4.05 Hz), 6.76 (d, 1H, J= 8.7 Hz). 
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13
C NMR (75 MHz, CDCl3) δ= 8.94, 21.37, 23.07, 23.87, 25.11, 26.62, 32.07, 44.19, 46.94, 

51.42, 56.08, 56.64, 63.90, 66.50, 101.31, 104.22, 112.03, 144.16, 150.15, 153.16, 167.74, 

170.59, 207.98. 

MS (ESI) m/z: found Rt 11.77 min. (Method LCMS), 436.37 [M + H]
+
, 458.39 [M + Na]

+
. 

HRMS 436.2627 [M + H]
+
, calculated 436.2657 [M + H]

+
. 

 

Synthesis of (S)-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl)1-( 

3,3-dimethyl-2-oxopentanoyl)piperidine-2-carboxylate 6e 

General method A was used for coupling of alcohol 5b (95mg, 0.235 mmol) and acid 4a (60 

mg, 0.235 mmol) using DMAP (3.1 mg, 0.026 mmol) and DCC (62.1 mg, 0.282 mmol). The 

crude product was chromatographed using DCM: MeOH 9.3: 0.7to afford 6e (51mg, 0.079 

mmol, 34%)  

TLC (DCM: MeOH 9.7:0.3): Rf = 0.62. 

HPLC (Gradient A) retention time= 18.87-19.32 min 

1
H NMR (400 MHz, CDCl3) δ= 0.87 (t, 3H, J= 7.6 Hz), 1.19 (s, 3H), 1.21 (s, 3H), 1.56-1.76 

(m, 7H), 1.99-2.08 (m, 1H), 2.19-2.37 (m, 2H), 2.47-2.59 (m, 6H), 2.80 (t, 2H, J= 5.2Hz), 3.14 

(dt,, 1H, J= 3.2, 13.2 Hz), 3.34 (d, 1H, J= 13.2 Hz), 3.73 (t, 4H, J= 4.4 Hz). 3.84 (s, 3H), 3.85 

(s, 3H), 4.11, (t, 2H, J= 5.6 Hz), 5.30 (d, 1H, J= 5.2 Hz), 5.75 (q, 1H, J= 2.4, 5.6 Hz), 6.65-6.68 

(m, 2H), 6.75-6.78 (m, 1H), 6.81-6.84 (m, 1H), 6.87-6.92 (m, 2H), 7.22-7.26 (m, 1H). 

13
C NMR (100 MHz, CDCl3) δ= 8.74, 21.18, 23.09, 23.49, 24.94, 26.41, 31.24, 32.45, 38.01, 

44.12, 46.66, 51.23, 54.04, 55.80, 55.89, 57.63, 65.68, 66.81, 77.02, 111.25, 111.69, 113.01, 

114.20, 119.04, 120.11, 129.64, 133.43, 141.31, 147.29, 148.83, 158.82, 167.19, 169.65, 

207.76. 

MS (ESI) m/z: found Rt 10.90 min. (Method LCMS), 639.45 [M + H]
+
.  

HRMS 639.3566 [M + H]
 +

, calculated 639.3567 [M + H]
 +

. 

 

Synthesis of (S)-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl) 1-

(3,3-dimethyl-2-oxopentanoyl)pyrrolidine-2-carboxylate 6f 

General method A was used for coupling of alcohol 5b (50mg, 0.124 mmol) and acid 4b (30 

mg, 0.124 mmol) using DMAP (1.6 mg, 0.013 mmol) and DCC (33 mg, 0.149 mmol). The 

crude product was chromatographed using DCM: MeOH 9.3: 0.7to afford 6f (45mg, 0.072 

mmol, 59%)  
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TLC (DCM: MeOH 9.7:0.3): Rf = 0.38. 

HPLC (Gradient A) retention time= 18.79-19.19 min 

1
H NMR (400 MHz, CDCl3) δ= 0.81-0.86 (m, 3H), 1.19-1.22 (m, 6H), 1.56-1.75 (m, 3H), 1.89-

2.01 (m, 4H), 2.17-2.25 (m, 1H), 2.45-2.61 (m, 6H), 2.79 (s, 2H), 3.45-3.54 (m, 2H), 3.72 (t, 

4H, J= 4.8 Hz), 3.83 (s, 3H), 3.85 (s, 3H), 4.11 (t, 2H, J= 5.6 Hz), 4.56-4.66 (m, 1H), 5.65-5.77 

(m, 1H), 6.64-6.66 (m, 1H), 6.67 (s, 1H), 6.75-6.77 (m, 1H), 6.79-6.84 (m, 1H), 6.88-6.90 (m, 

2H), 7.20-7.25 (m, 1H). 

13
C NMR (100 MHz, CDCl3) δ= 8.92, 23.23, 23.59, 24.93, 31.07, 32.20, 33.93, 38.04, 46.86, 

47.14, 49.06, 54.04, 55.81, 57.63, 65.67, 66.85, 76.19, 111.21, 111.79, 112.70, 114.08, 118.75, 

120.11, 129.50, 133.63, 141.48, 147.21, 148.78, 158.78, 165.04, 170.62, 207.01. 

MS (ESI) m/z: found Rt 10.59 min. (Method LCMS), 625.47 [M + H]
+
,  

HRMS 625.3421 [M + H]
 +

 calculated 625.3411 [M + H]
 +

. 

 

(S)-((R)-1-(3-aminophenyl)-3-(3,4-dimethoxyphenyl)propyl) 1-(3,3-dimethyl-2-oxopenta 

noyl)piperidine-2-carboxylate 6g 

Obtained from Cayman Chemicals, Compound name: SLF, Cat no. 1000974. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(2-oxo-2-(3,4,5-trimethoxyphen 

yl)acetyl)piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid 6h 

To a stirred solution of the 12c (51mg, 0.1mmol) in DCM under argon was added sequentially 

N,N-Diisopropyl-ethylamine (DIPEA) (15.7mg, 0.125mmol) to which was added 22 (26mg, 

0.1mmol). The reaction mixture was stirred for 1h at room temperature. Saturated NH4Cl 

solution was added to the reaction and the solution was stirred for 10 min. The organic phase 

was separated and the aqueous phase was extracted with ethyl acetate (3x 100ml). The 

combined organic phases were washed with brine (10ml), dried over MgSO4 and the residual 

solid was purified by column chromatography using Hexane : EtOAc 4:1 to afford ester 6 

(35.8mg, 0.048mmol, 49%). 

TLC (Hexane: EtOAc 4:1): Rf = 0.45. 

HPLC (Gradient A) retention time= 18.92-19.16min 

1
H NMR (600 MHz, CDCl3) δ= 1.48 (s, 9H), 1.58-1.66 (m, 1H), 1.78-1.85 (m, 3H), 2.06-2.12 

(m, 1H), 2.24-2.30 (m, 2H), 2.44 (d, 1H, J= 12.6 Hz), 2.52-2.57 (m, 1H), 2.59-2.64 (m, 1H), 

3.27 (t, 1H, J= 12.6 Hz), 3.48 (d, 1H, J= 12.6Hz), 3.82 (s, 6H), 3.85 (s, 6H), 3.92 (s, 3H), 4.52 

(s, 2H), 5.41 (d, 1H, J= 4.8Hz), 5.73 (t, 1H, J= 6.6Hz), 6.63-6.70 (m, 3H), 6.76-6.81 (m, 2H), 

6.90 (s, 1H), 6.95 (d, 1H, J= 7.8 Hz), 7.09 (s, 1H), 7.28-7.35 (m, 1H). 
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Ester 6(35.8mg, 0.048mmol) was treated with 20% TFA in DCM at room temperature. The 

mixture was stirred for 6h. TFA and DCM were evaporated under reduced pressure to yield the 

free acid 6h (30.9mg, 0.045mmol, 96%). 

TLC (Hexane: EtOAc: AcOH 5:5: 0.5): Rf = 0.37. 

HPLC (Gradient A) retention time= 23.8-24.6min 

1
H NMR (600 MHz, CDCl3) δ= 1.50-1.56 (m, 1H), 1.61-1.66(m, 1H), 1.83-1.91 (m, 2H), 1.98-

2.10 (m, 2H), 2.22-2.28 (m, 1H), 2.42 (d, 1H, J= 13.8 Hz), 2.56-2.61 (m, 1H), 2.64-2.69 (m, 

1H), 3.25-3.30 (m, 1H), 3.45 (d, 1H, J= 12 Hz), 3.71 (s, 6H), 3.84 (s, 3H), 3.85 (s, 3H), 3.88 (s, 

3H), 4.58 (s, 2H), 5.40 (d, 1H, J= 5.4 Hz), 5.56-5.66 (m, 1H), 6.66-6.67 (m, 2H), 6.75-6.78 (m, 

1H), 6.82 (d, 1H, J= 7.8 Hz), 6.87-6.88 (m, 2H), 7.16 (s, 2H), 7.22 (t, 1H, j= 7.8Hz). 

13
C NMR 150 MHz, CDCl3) δ= 24.84, 28.41, 28.44, 31.65, 38.45, 44.56, 52.17, 56.06, 56.14, 

56.39, 61.14, 77.40, 107.09, 111.43, 111.58, 111.89, 114.92, 119.85, 120.41, 127.87, 129.85, 

133.48, 142.25, 144.19, 147.64, 149.15, 153.63, 158.17, 168.36, 170.23, 177.39, 190.70 

MS (ESI) m/z: found Rt 13.29 min. (Method LCMS), 702.22 [M + Na]
+
. 

HRMS 680.3277 [M + H]
+
, calculated 680.3129 [M + H]

 +
. 

 

Synthesis of (S)-1,7-di(pyridin-3-yl)heptan-4-yl 1-(3,3-dimethyl-2-oxopentanoyl)piperidi ne-

2-carboxylate (Biricodar) 6i 

The compound was prepared as described previously
23,39

.  

Timcodar 6j 

Obtained from the group of Dr. Edwin Sanchez.  

Synthesis of (S)-2-((MOM)methyl)cyclohexanone 8c 

The (S)-2-(hydroxymethyl)cyclohexanone was prepared as already described
31

. To this 

compound (1.5g, 11.7 mmol) in DCM was added N,N-Diisopropyl-ethylamine(3.7g, 29.3 

mmol). The mixture was stirred at 0
o
C for 5 min before MOM-Cl (2g, 25.7 mmol) was added. 

After stirring for 3h the mixture was concentrated under reduced pressure and subjected to 

purification by column chromatography using Hexane: EtOAc 8:2 to afford 8c (1.8g, 10.5 

mmol, 90%) as a colorless liquid. 

TLC (Hexane: EtOAc 8:2): Rf = 0.45 
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1
H NMR (300 MHz, CDCl3) δ= 1.36-1.49 (m, 1H), 1.54-1.71 (m, 2H), 1.77-1.89 (m, 1H), 1.95-

2.06 (m, 1H), 2.13-2.38 (m, 3H), 2.50-2.60 (m, 1H), 3.29 (s, 3H), 3.41-3.47 (m, 1H), 3.75-3.80 

(m, 1H), 4.58 (d, 2H, J= 2.1 Hz). 

13
C NMR (75 MHz, CDCl3) δ= 24.63, 27.62, 31.16, 41.99, 50.67, 55.08, 66.72, 96.62, 211.13 

MS (ESI) m/z: 195.67 [M + Na]
 +

, calculated 195.10 [M + Na]
 +

. 

 

General procedure for the synthesis of 2-alkyl-1-((trimethylsilyl)ethynyl)cyclohexanol 9 

The THF solution of lithium reagent was generated by treating trimethylsilylacetylene (3ml, 

21.4 mmol) with n-BuLi (2M in hexane, 11.6ml) at -78
o
C. The solution was stirred for 0.5h at 

that temperature. To this a solution of 2-alkylcyclohexanone (8a -8c) (17.8 mmol) in THF 

(5ml) was added and stirred for an additional 2h. Then the solution was quenched by addition 

of a saturated aqueous NH4Cl solution. The organic phase was separated and the aqueous phase 

was extracted with ethyl acetate (3x 100ml). The combined organic phases were washed with 

brine (30ml) and dried over MgSO4. The solution was concentrated and then flash 

chromatographed using Hexane: EtOAc 9:1 to afford each of the two diastereomers 9a -9f.  

 

(1S,2R)-2-Methyl-1-((trimethylsilyl)ethynyl)cyclohexanol and (1R,2S)-2-Methyl-1-((trimet 

hylsilyl)ethynyl)cyclohexanol 9a  

Compound 9a(1.2g, 33%)was obtained from 8a (2g) as a colorless liquid.  

TLC (Hexane: EtOAc 9:1): Rf = 0.36 

1
H NMR (300 MHz, CDCl3) δ= 0.17(s, 9H), 1.06(d, 3H, J = 6.9 Hz), 1.23-1.33 (m, 1H), 1.48-

1.71 (m, 7p), 1.95-2.02 (m, 1P). 

13
C NMR (75 MHz, CDCl3) δ= 0.01, 16.00, 21.06, 25.02, 29.15, 39.15, 40.48, 69.77, 86.95, 

110.61 

HRMS 193.1390 [M - OH]
 +

, calculated 193.1413 [M - OH]
 +

. 

(1S,2R)-2-Ethyl-1-((trimethylsilyl)ethynyl)cyclohexanol and (1R,2S)-2-Ethyl-1-((trimethyls 

ilyl)ethynyl)cyclohexanol 9b: Compound 9b (1.65g, 46%)was obtained from 8b (2.2g) as a 

colorless liquid.  

TLC (Hexane: EtOAc 9:1): Rf = 0.40 

1
H NMR (300 MHz, CDCl3) δ= 0.17(s,9H), 0.86-0.96 (m, 6H), 1.12-2.42 (m, 22H). 

13
C NMR (75 MHz, CDCl3) δ= 0.024, 11.68, 12.30, 21.23, 22.88, 24.80, 25.46, 28.00, 33.28, 

39.47, 41.94, 47.47, 52.31, 70.32, 87.09, 110.85. 

HRMS 208.2069 [M - OH]
 +

, calculated 208.1569 [M - OH]
 +

. 
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(1S,2S)-2-((methoxymethoxy)methyl)-1-((trimethylsilyl)ethynyl)cyclohexanol 9c:  

Compound 9c (2.1g, 46%)was obtained from 8c (3g) as a colorless liquid.  

TLC (Hexane: EtOAc 9:1): Rf = 0.45 

1
H NMR (300 MHz, CDCl3) δ= 0.17(s,9H), 1.31-2.04 (m, 9H), 3.40(s, 3H), 3.58 (dd, 1H, J = 

2.4, 9.3 Hz), 4.26 (dd, 1H, J = 3.6, 9.6 Hz), 4.64 (dd, 2H, J = 6.6, 10.8 Hz). 

13
C NMR (75 MHz, CDCl3) δ= 0.00, 20.70, 24.67, 25.57, 39.18, 45.07, 55.41, 69.77, 70.75, 

87.06, 96.54, 110.30. 

HRMS 254.2134 [M - OH]
 +

, calculated 254.2124 [M - OH]
 +

. 

(1R,2R)-2-Methyl-1-((trimethylsilyl)ethynyl)cyclohexanol and (1S,2S)-2-Methyl-1-((trime 

thylsilyl)ethynyl)cyclohexanol 9d 

 Compound 9d (1.1 g, 31%) was obtained from 8a (2g) as a colorless liquid. 

TLC (Hexane: EtOAc 9:1): Rf = 0.32 

1
H NMR (300 MHz, CDCl3) δ= 0.18 (s,9H), 1.04 (d, 3H, J = 6.6 Hz), 1.17-1.32 (m, 2H), 1.41-

1.73 (m, 6H), 1.96-2.02 (m, 1H). 

13
C NMR (75 MHz, CDCl3) δ= 0.02, 16.03, 24.29, 25.50, 32.29, 40.63, 42.53, 73.42, 90.63, 

106.80. 

HRMS 193.1278 [M - OH]
 +

, calculated 193.1413 [M - OH]
 +

. 

 

(1R,2R)-2-Ethyl-1-((trimethylsilyl)ethynyl)cyclohexanol and (1S,2S)-2-Ethyl-1-((trimeth 

ylsilyl)ethynyl)cyclohexanol 9e 

 Compound 9e (1.3g, 37%) was obtained from 8b (2.2g) as a colorless liquid. 

TLC (Hexane: EtOAc 9:1): Rf = 0.37 

1
H NMR (300 MHz, CDCl3) δ= 0.19(s,9H), 0.94 (t, 3H, J= 7.2Hz), 1.04-1.30 (m, 4H), 1.43-

1.74 (m, 4H), 1.80-2.01 (m, 3H). 

13
C NMR (75 MHz, CDCl3) δ= 0.03, 11.93, 21.73, 24.15, 25.49, 28.36, 41.11, 49.56, 73.04, 

90.46, 107.33. 

HRMS 208.2069 [M - OH]
 +

, calculated 208.1569 [M - OH]
 +

. 

 

(1R,2S)-2-((methoxymethoxy)methyl)-1-((trimethylsilyl)ethynyl)cyclohexanol 9f 

Compound 9f (1.9g, 41%) was obtained from 8c (3g) as a colorless liquid. 

TLC (Hexane: EtOAc 9:1): Rf = 0.40 
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1
H NMR (300 MHz, CDCl3) δ= δ= 0.18 (s,9H), 1.03-1.29 (m, 2H), 1.46-1.55 (m, 3H), 1.67-

1.71 (m, 2H), 1.80-1.90 (m, 1H), 2.02-2.06 (m, 1H), 3.41 (s, 3H), 3.48 (dd, 1H, J= 4.2, 9.6 Hz) 

3.87 (T, 1H, J= 9.9 Hz), 4.64 (s, 2H). 

13
C NMR (75 MHz, CDCl3) δ= 0.04, 23.16, 24.94, 26.29, 39.48, 46.06, 55.59, 71.68, 72.87, 

90.49, 96.49, 106.78. 

HRMS 254.2134 [M - OH]
 +

, calculated 254.2124 [M - OH]
 +

. 

 

General procedure for the synthesis of 2-alkyl-1-(bromoethynyl)cyclohexanol 10 

To solution of 9a-e (1.3 mmol), N-bromosuccinimide (1.5 mmol) and AgNO3 (0.5 mmol) in 

acetone (10 ml) was added and the resulting solution was stirred in darkness for 2h at room 

temperature. Acetone was evaporated under reduced pressure and the solids were removed by 

filtration through a celite pad (washing with ether). The combined organic phase were 

concentrated and subjected to purification by column chromatography using Hexane: EtOAc 

9:1 to yield 10a-e as yellow liquids. 

 

(1S,2R)-1-(Bromoethynyl)-2-methylcyclohexanol and (1R,2S)-1-(Bromoethynyl)-2-methyl 

cyclohexanol 10a 

Compound 10a (256 mg, 91%) was obtained from 9a (273mg) as a yellow liquid.  

TLC (Hexane: EtOAc 9:1): Rf = 0.30 

1
H NMR (300 MHz, CDCl3) δ= 1.06 (d, 3H, J = 6.9 Hz), 1.29-1.73 (m, 8H),1.97-2.04 (m, 1H). 

13
C NMR (75 MHz, CDCl3) δ= 16.05, 20.94, 24.95, 29.09, 39.17, 40.52, 43.04, 70.79, 84.60. 

HRMS m/z 199.0193, 201.0169 [M - OH]
 +

, calculated 199.0122, 201.0102 [M - OH]
 +

. 

 

(1S,2R)-1-(Bromoethynyl)-2-ethylcyclohexanol and (1R,2S)-1-(Bromoethynyl)-2-ethylcyclo 

hexanol 10b 

Compound 10b (264 mg, 88%) was obtained from 9b (292 mg) as a yellow liquid. 

TLC (Hexane: EtOAc 9:1): Rf = 0.36 

1
H NMR (300 MHz, CDCl3) δ= 0.96 (d, 3H, J = 7.2 Hz ), 1.13-1.30 (m, 3H), 1.36-1.45 (m, 

1H), 1.50-1.74 (m, 5H), 1.83-2.02 (m, 2H). 

13
C NMR (75 MHz, CDCl3) δ= 12.17, 21.10, 23.03, 24.81, 25.35, 39.55, 43.17, 47.78, 71.39, 

84.74. 

HRMS m/z 213.0268, 215.0245 [M - OH]
 +

, calculated 213.0279, 215.0259 [M - OH]
+
. 
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(1S,2S)-1-(Bromoethynyl)-2-((methoxymethoxy)methyl)cyclohexanol 10c 

Compound 10c (327 mg, 90%)was obtained from 9c (350mg) as a yellow liquid.  

TLC (Hexane: EtOAc 9:1): Rf = 0.39 

1
H NMR (300 MHz, CDCl3) δ= 1.33-2.07 (m, 9H), 3.41(s, 3H), 3.59 (dd, 1H, J = 2.4, 9.6 Hz), 

4.24 (dd, 1H, J = 3.3, 9.6 Hz), 4.65 (dd, 2H, J = 6.6, 13.2 Hz). 

13
C NMR (75 MHz, CDCl3) δ= 20.61, 24.67, 25.51, 39.17, 43.23, 45.09, 55.39, 70.66, 70.87, 

84.39, 96.51. 

HRMS m/z 259.0104, 261.0123[M - OH]
 +

, calculated 259.0334, 261.0314 [M - OH]
 +

. 

 

(1R,2R)-1-(Bromoethynyl)-2-methylcyclohexanol and (1S,2S)-1-(Bromoethynyl)-2-methylc 

yclohexanol  10d 

Compound 10d (254 mg, 90%) was obtained from 9d (270mg) as a yellow liquid. 

TLC (Hexane: EtOAc 9:1): Rf = 0.28 

1
H NMR (300 MHz, CDCl3) δ= 1.05 (d, 3H, J= 6.6 Hz), 1.20-1.29 (m, 2H), 1.48-1.75 (m, 6H), 

2.00-2.05 (m, 1H). 

13
C NMR (75 MHz, CDCl3) δ= 16.66, 24,18, 25.43, 32.16, 40.63, 42.73, 45.35, 74.40, 81.18. 

HRMS m/z 199.0193, 201.0169 [M - OH]
 +

, calculated 199.0122, 201.0102 [M - OH]
 +

. 

 

(1R,2R)-1-(Bromoethynyl)-2-ethylcyclohexanol and (1S,2S)-1-(Bromoethynyl)-2-ethylcyclo 

hexanol 10e 

Compound 10e (267 mg, 89%) was obtained from 9e (292 mg) as a yellow liquid. 

TLC (Hexane: EtOAc 9:1): Rf = 0.32 

1
H NMR (300 MHz, CDCl3) δ= 0.97 (d, 3H, J = 7.2 Hz ), 1.09-1.25 (m, 3H), 1.36-1.76 (m, 

6H), 1.87-2.03 (m, 2H). 

13
C NMR (75 MHz, CDCl3) δ= 12.57, 23.15, 24.97, 25.68, 25.55, 40.51, 45.60, 48.11, 75.20, 

81.16. 

HRMS m/z 213.0361, 215.0340 [M - OH]
 +

, calculated 213.0279, 215.0259 [M - OH]
 +

. 

General procedure for the synthesis of α-ketoesters of 11a-e 

To a solution of 10a-e (1.08 mmol) in MeOH (5ml) was added a solution of NaHCO3 (45.5 mg, 

0.54 mmol) and MgSO4 (261mg, 2.16 mmol) in water (5ml) at 0
o
C. The mixture was stirred for 

10 min vigorosuly before KMnO4 (513mg, 3.25 mmol) was added. The mixture was allowed to 

warm to room temperature and stirred at this temperature for 1h. The solids were removed by 

filtration through celite pad and washed with ethyl acetate. The organic phase was separated 
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and the aqueous phase was extracted with ethyl acetate (3x 100ml). The combined organic 

phases were washed with brine (30ml) and dried over MgSO4. The solution was concentrated 

and then flash chromatographed using Hexane: EtOAc 9:1 to afford the corresponding α-

ketoesters of 11a-e. 

 

Methyl 2-((1S,2R)-1-hydroxy-2-methylcyclohexyl)-2-oxoacetate and Methyl 2-((1R,2S)-1-

hydroxy-2-methylcyclohexyl)-2-oxoacetate 

The corresponding α-ketoester of 11a (117 mg, 65%) was obtained from 10a (235 mg) as an 

oily liquid. 

TLC (Hexane: EtOAc 9:1): Rf = 0.61 

1
H NMR (300 MHz, CDCl3) δ= 0.81 (d, 3H, J = 6.6 Hz ), 1.25-1.90 (m, 8H), 2.03- 2.16 (m, 

1H), 3.90 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ= 16.00, 20.16, 25.35, 29.27, 34.99, 36.25, 52.74, 80.88, 163.61, 

200.66. 

 

Methyl 2-((1S,2R)-2-ethyl-1-hydroxycyclohexyl)-2-oxoacetate and Methyl 2-((1R,2S)-2-ethyl-

1-hydroxycyclohexyl)-2-oxoacetate 

The corresponding α-ketoester of 11b (160 mg, 69%) was obtained from 10b (250 mg) as an 

oily liquid and was further hydrolyzed without further purification. 

TLC (Hexane: EtOAc 9:1): Rf = 0.64 

 

Methyl 2-((1S,2S)-1-hydroxy-2-((methoxymethoxy)methyl)cyclohexyl)-2-oxoacetate 

The corresponding α-ketoester of 11c (170 mg, 60%) was obtained from 10c (300 mg) as an 

oily liquid. 

TLC (Hexane: EtOAc 9:1): Rf = 0.60 

1
H NMR (300 MHz, CDCl3) δ= 1.44-2.40 (m, 8H), 2.59-2.70 (m,1H),  3.27(s, 3H), 3.38- 3.42 

(m, 2H), 3.87 (s, 3H), 4.42 (dd, 2H, J = 6.6, 18.6 Hz). 

13
C NMR (75 MHz, CDCl3) δ= 20.74, 23.65, 24.81, 35.62, 42.23, 52.54, 55.50, 68.34, 78.81, 

96.24, 161.37, 197.77. 

MS (ESI) m/z  282.73[M + Na]
 +

, calculated 282.71 [M + Na]
 +

. 

 

Methyl 2-((1R,2R)-1-hydroxy-2-methylcyclohexyl)-2-oxoacetate and Methyl 2-((1S,2S)-1-

hydroxy-2-methylcyclohexyl)-2-oxoacetate 
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The corresponding α-ketoester of 11d (85 mg, 47%) was obtained from 10d (235 mg) as an 

oily liquid. 

TLC (Hexane: EtOAc 9:1): Rf = 0.58 

1
H NMR (300 MHz, CDCl3) δ= 0.76 (d, 3H, J = 3.6 Hz ), 1.29-1.83 (m, 8H), 1.99- 2.11 (m, 

1H), 3.86 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ= 15.96, 20.11, 25.31, 29.22, 34.95, 36.21, 52.68, 80.84, 163.62, 

200.69. 

 

Methyl 2-((1R,2R)-2-ethyl-1-hydroxycyclohexyl)-2-oxoacetate and Methyl 2-((1S,2S)-2-ethyl-

1-hydroxycyclohexyl)-2-oxoacetate 

The corresponding α-ketoester of 11e (127 mg, 55%) was obtained from 10e (250 mg) as an 

oily liquid and was further hydrolyzed without further purification. 

TLC (Hexane: EtOAc 9:1): Rf = 0.61 

 

General procedure for the synthesis of 2-(1-hydroxy-2-alkylcyclohexyl)-2-oxoacetic acid 

(11a-e) 

To the above synthesized α-ketoesters was added 1M LiOH in MeOH: H2O (1:1) and the 

reaction stirred for 6h at room temperature. The reaction was acidified to pH=2 by addition of 

1M HCl. The aqueous layer was extracted with ethyl acetate (3x 20ml). The combined organic 

phases were washed with brine (30ml) and dried over MgSO4. The solution was concentrated 

under reduced pressure to furnish the free acid 11a-e as an oily liquid. 

 

2-((1S,2R)-1-Hydroxy-2-methylcyclohexyl)-2-oxoacetic acid and 2-((1R,2S)-1-Hydroxy-2-

methylcyclohexyl)-2-oxoacetic acid 11a 

Compound 11a (105 mg, overall yield for 2 steps 52%) was obtained from 10a (235 mg) as a 

oily liquid. 

TLC (Hexane: EtOAc: TFA 9:1:0.1): Rf = 0.28 

1
H NMR (400 MHz, CDCl3) δ= 0.78 (d, 3H, J = 6.8 Hz), 1.33-1.95 (m, 8H), 2.15 - 2.24 (m, 

1H). 

13
C NMR (100 MHz, CDCl3) δ= 16.32, 20.32, 25.46, 29.41, 35.12, 36.57, 81.55, 162.81, 

200.53. 

 

2-((1S,2R)-2-Ethyl-1-hydroxycyclohexyl)-2-oxoacetic acid and 2-((1R,2S)-2-Ethyl-1-hydr 

oxycyclohexyl)-2-oxoacetic acid 11b 
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Compound 11b (141 mg, overall yield for 2 steps 65%) was obtained from 10b (250 mg) as a 

oily liquid. 

TLC (Hexane: EtOAc: TFA 9:1:0.1): Rf = 0.26 

1
H NMR (400 MHz, CDCl3) δ= 0.83 (t, 3H, J= 7.6Hz), 1.13-1.36 (m, 4H), 1.57-1.62 (m, 2H), 

1.73-1.96 (m, 5H). 

13
C NMR (100 MHz, CDCl3) δ= 11.82, 20.39, 23.95, 25.08, 25.46, 35.32, 43.14, 82.20, 164.12, 

201.23. 

 

2-((1S,2S)-1-Hydroxy-2-((methoxymethoxy)methyl)cyclohexyl)-2-oxoaceticacid11c 

Compound 11c (170 mg, overall yield for 2 steps 59%) was obtained from 10c (300 mg) as an 

oily liquid.  

TLC (Hexane: EtOAc: TFA 9:1:0.1): Rf = 0.26 

1
H NMR (300 MHz, CDCl3) δ= 1.44-1.67 (m, 7H), 2.70-2.80 (m, 1H), 3.26-3.41 (m, 6H), 4.41-

4.47 (m, 2H). 

13
C NMR (75 MHz, CDCl3) δ= 20.59, 23.34, 24.53, 35.27, 42.79, 55.74, 68.03, 78.38, 96.12, 

160.39, 196.63. 

 

2-((1R,2R)-1-Hydroxy-2-methylcyclohexyl)-2-oxoacetic acid and 2-((1S,2S)-1-Hydroxy-2-

methylcyclohexyl)-2-oxoacetic acid 11d 

Compound 11d (68 mg, overall yield for 2 steps 34%) was obtained from 10d (235 mg) as an 

oily liquid. 

TLC (Hexane: EtOAc: TFA 9:1:0.1): Rf = 0.24 

1
H NMR (300 MHz, CDCl3) δ= 0.76 (d, 3H, J = 6.6 Hz ), 1.29-1.51 (m, 3H), 1.55-1.62 (m, 

2H), 1.67-1.72 (m, 2H), 1.83-1.93 (m, 1H), 2.06-2.18 (m, 1H). 

13
C NMR (75 MHz, CDCl3) δ= 16.00, 20.22, 25.37, 29.31, 34.88, 36.21, 80.82, 164.55, 201.85 

 

2-((1R,2R)-2-Ethyl-1-hydroxycyclohexyl)-2-oxoacetic acid and 2-((1S,2S)-2-Ethyl-1-hydro 

xycyclohexyl)-2-oxoacetic acid 11e 

Compound 11e (101 mg, overall yield for 2 steps 51%) was obtained from 10e (250 mg) as an 

oily liquid. 

TLC (Hexane: EtOAc: TFA 9:1:0.1): Rf = 0.23 

1
H NMR (300 MHz, CDCl3) δ= 0.83 (t, 3H, J= 4.2Hz), 1.12-1.33 (m, 4H), 1.56-1.63 (m, 2H), 

1.72-1.97 (m, 5H). 
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3
C NMR (75 MHz, CDCl3) δ= 11.79, 20.38, 23.94, 25.08, 25.47, 35.31, 43.15, 82.21, 164.10, 

201.14 

Synthesis of tert-butyl 2-(3-(3-(3,4-dimethoxyphenyl)propanoyl)phenoxy)acetate 13a 

A solution of corresponding phenol
15

(5g, 15.46 mmol) and K2CO3 (4.8g, 34.9mmol) in acetone 

(30mL) was treated with tert-butyl bromoacetate (3.7g, 19.21mmol) and stirred at room 

temperature for 20h. After this time the reaction mixture was filtered, concentrated and flash 

chromatographed to afford compound 5 (6.6g, 16.5mmol, 94%). 

TLC (Hexane:EtOAc  8:2): RF = 0.50. 

1
H NMR (400 MHz, CDCl3) δ= 1.45 (s, 9H), 2.97 (t, 2H, J = 8 Hz), 3.22 (t, 2H, J = 8 Hz), 

3.82 (s, 3H), 3.83 (s, 3H), 4.52 (s, 2H), 6.73-6.78 (m, 3H), 7.09 (dd, 1H, J = 0.8, 2.4 Hz), 7.33 

(t, 1H, J = 8 Hz), 7.43 (m, 1H), 7.53 (dd, 1H, J = 1.2, 7.6). 

13
C NMR (100 MHz, CDCl3) δ= 27.99, 29.77, 40.70, 55.80, 65.63, 82.55, 111.35, 111.81, 

113.06, 119.99, 120.12, 121.39, 129.66, 133.77, 138.22, 147.38, 148.88, 158.12, 167.57, 

198.77. MS (ESI) m/z 439.13 [M + K]
 +

, calculated 439.15 [M + K]
 +

. 

 

Synthesis of 3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propan-1-one 13b 

A solution of the corresponding phenol (15.6 g, 59.5 mmol) in dry DMF (300 ml) under an 

atmosphere of nitrogen was treated with K2CO3 (33.2 g, 240 mmol) and 4-(2-

chloroethyl)morpholine hydrochloride (11.1 g, 59.6 mmol). The mixture was heated with 

stirring at 90°C for 2 hours until TLC indicated complete conversion. The mixture was cooled 

to room temperature and poured into ice-cold water (3.2 l). The precipitate of the title 

compound was collected by filtration, washed with water (3 x 200 ml) and dried in vacuo to 

yield 13b (17.7 g, 44.3 mmol, 74%) The product was used for the next step without further 

purification.  

1
H NMR (300 MHz, CDCl3) δ=  2.49-2.54 (m, 4H), 2.75 (t, J = 5.7 Hz, 2H), 2.94 (t, J = 7.7 Hz, 

2H), 3.20 (t, J = 7.7 Hz, 2H), 3.65-3.69 (m, 4H), 3.79 (s, 3H), 3.81 (s, 3H), 4.08 (t, J = 5.6 Hz, 

2H), 6.69-6.74 (m, 3H), 7.04 (dd, J = 0.8 Hz, J = 2.6 Hz, 1H), 7.29 (t, J = 7.9 Hz, 1H), 7.41-

7.49, (m, 2H). 

 

Synthesis of (R)-tert-butyl2-(3-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenoxy)acetate 

5a 

A solution of the ketone 13a (6.5g, 16.48mmol) in isopropanol (50 ml) was charged into the 

hydrogenation reactor (High-pressure laboratory autoclave Model IV from Roth) along with 
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K2CO3 (2.3g, 16.48mmol). The reactor was flushed twice with argon. Afterwards Noyuri 

catalyst (ABCR AB131600) was added. The reactor was flushed with argon, sealed and 

hydrogen gas was flushed into the reactor twice. The reaction was then stirred at room 

temperature with hydrogen gas at 15 bar pressure for 6 days. Afterwards the reaction was 

filtered through celite pad and washed continuously with diethyl ether. The organic solvent was 

dried under vacuum to yield compound 6 (6.2g. 15.42mmol, 94%, 99% ee using chiracel OD-H 

column Hexane: isopropanol isocratic gradient). 

TLC (Hexane:EtOAc 8:2): Rf = 0.3 

1
H NMR (300 MHz, CDCl3) δ= 1.47 (s, 9H), 2.03 (m, 2H), 2.642 (m, 2H), 3.83 (s, 3H), 3.84 

(s, 3H), 4.49 (s, 2H), 4.66-4.61 (m, 1H), 6.70-6.80 (m, 4H), 6.95-6.91 (m, 2H), 7.24(t, 1H, J = 

7.8 Hz). 

13
C NMR (75 MHz, CDCl3) δ= 28.01, 31.56, 40.62, 55.79, 55.90, 65.62, 73.55, 82.32, 111.31, 

111.80, 112.18, 113.53, 119.08, 120.19, 129.48, 134.40, 146.56, 147.16, 148.82, 158.07, 

168.01.  

MS (ESI) m/z 425.20 [M + Na]
 +

, 441.17 [M + K]
 +

, calculated 425.19 [M + Na]
 +

, 441.17 [M + 

K]
 +

. 

 

Synthesis of (R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propan-1-ol) 5b 

Dry THF (35 ml) was added under an atmosphere of nitrogen to the 13b (25 g, 62.6 mmol). 

The mixture was cooled to -20°C and a 1.8 M solution of (+)-B-chlorodiisopino 

campheylborane [(+)-DIP chloride] in hexane (53 ml, 95.4 mmol) which had been diluted with 

dry THF (70 ml) was slowly added dropwise. The temperature was kept below -10°C and the 

mixture stirred for 3 hours. It was placed in a refrigerator overnight and another 0.2 equivalents 

of (+)-DIP chloride was added. After another day at -20°C the solvent was removed under 

reduced pressure, the residue treated with ether (170 ml) and the mixture cooled to 0°C. 

Diethanolamine (60 ml) was added and it was stirred for a while. The formed precipitate was 

removed by filtration and washed with ether. The combined filtrates were concentrated under 

reduced pressure, and the title compound was obtained from the residue by column 

chromatography as oil (silica gel; CH2Cl2 / MeOH gradient 100:0 to 94:6) to give 5b (17.2 g, 

mmol, 68 %). 

1
H NMR (300MHz, CDCl3) δ= 1.84-2.08 (m, 2H), 2.27 (bs, 1H), 2.45-2.52 (m, 4H), 2.52-2.67 

(m, 2H), 2.70 (t, J = 5.8 Hz, 2H), 3.61-3.67 (m, 4H), 3.78 (2s, 6H), 4.02 (t, J = 5.8 Hz, 2H), 

4.54-4.60 (m, 1H), 6.62-6.76 (m, 4H), 6.82-6.87 (m, 2H), 7.14-7.21 (m, 1H).  

MS (ESI) m/z 402 [M + H]
+
 and 424 [M + Na]

+
, calculated 402 [M + H]

 +
, 424 [M + Na]

+
. 
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Synthesis of (S)-1-(((9H-fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid 28 

A solution of the L-pipecolic acid 27 (3.6g, 38.7 mmol) in 40ml of 10% sodium carbonate was 

dissolved in a round bottom flask and stirred for 5 min at room temperature. To this solution 

was added Fmoc oxy-succinimide (8.5g, 34.8 mmol) dissolved in 35 ml dioxane and the 

reaction was stirred overnight. After 24h water was added and the aqueous layer was extracted 

with ethyl acetate. The aqueous layer was acidified (pH=2) by addition of concentrated HCl. 

The acidic layer was extracted with ethyl acetate (3x 40ml). The organic phase was washed 

with 1N HCl followed by brine, dried over MgSO4 and concentrated under reduced pressure to 

yield an oily colorless liquid. The oily liquid was dissolved in ether and cooled to yield a fluffy 

white solid which was washed with hexane and dried to yield compound 7 (8.2g, 38.7mmol, 

83%). 

TLC (Hexane: EtOAc: TFA 1:1: 0.2): RF = 0.60 

HPLC (Gradient A) retention time= 24.6-24.8 min 

1
H NMR (300 MHz, CDCl3) δ=1.28-1.53 (m, 2H), 1.69-1.82 (m, 3H), 2.19-2.37 (m, 1H), 3.15 

(t, 1H, J= 13.2Hz), 4.05-4.33 (m, 2H), 4.37-4.49 (m, 2H), 4.76-5.05(m, 1H), 7.28-7.41 (m, 4H), 

7.55-7.62 (m, 2H), 1.77 (s, 2H). 

13
C NMR (75 MHz, CDCl3) δ= 20.72, 24.70, 26.55, 41.94, 47.25, 54.19, 67.86, 119.97, 125.08, 

127.07, 127.68, 141.33, 143.89, 156.65, 177.36 

MS (ESI) m/z 352.66 [M + H]
 +

, calculated 352.40 [M + H]
 +

. 

 

Synthesis of (S)-1-tert-butyl 2-(3,4-dimethoxyphenethyl) piperidine-1,2-dicarboxylate 

(precursor of 12a) 

To a solution of 7c (385 mg, 1.57 mmol) in acetone (10ml) was added (S)-1Boc-piperidine-2-

carboxylic acid (300mg, 1.30 mmol), K2CO3 (217 mg, 1.57 mmol), and KI (catalytic amount). 

The reaction mixture was stirred at 60
o
C for 12h. The mixture was filtered and the solid residue 

washed with ethyl acetate (3 X 30 ml). The combined organic phases were washed with brine 

(30ml) and dried over MgSO4. The solution was concentrated and then the residue was purified 

by chromatography using Hexane: EtOAc 8:2 to afford precursor of 12a (440mg, 1.12 mmol, 

85%). 

TLC (Hexane:EtOAc  8:2): RF = 0.46 

1
H NMR (300 MHz, CDCl3) δ= 1.46 (s,1H), 1.58-1.59 (m, 3H), 2.17 (d, 1H, j= 13.2 Hz), 2.91 

(t, 2H, j= 6.9 Hz), 3.87 (s, 3H), 3.89 (s, 3H), 3.91-4.17 (m, 2H), 4.35 (t, 2H, J= 6.9 Hz), 4.71-

4.88(m, 1H), 6.75-6.83(m, 3H). 
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13
C NMR (75 MHz, CDCl3) δ= 28.36, 34.75, 55.80, 55.94, 65.53, 79.89, 111.35, 112.11, 

120.90, 147.78, 148.95.  

HRMS m/z  294.1694 [M – Boc + H]
 +

, 394.2277 [M + H]
 +

, 416.2083 [M + Na]
 +

, calculated 

294.1716 [M – Boc + H]
 +

, 394.2151 [M + H]
 +

, 416.2044 [M + Na]
 +

. 

 

Synthesis of 4-(2-bromoethoxy)-1,2-dimethoxybenzene (7b) 

A solution of 3,4-dimethoxyphenol (500mg, 3.24 mmol) in acetone (5ml) was added to K2CO3 

(538 mg, 3.89 mmol) and the reaction was stirred for 10min. Dibromoethane (2.4g, 12.97 

mmol) was added to the reaction mixture before being heated to reflux for 12h. Afterwards the 

mixture was cooled to room temperature and 1M NaOH solution was added. The organic phase 

was separated and the aqueous phase was extracted with ethyl acetate (3x 30ml). The combined 

organic phases were washed with brine (30ml), dried over MgSO4 and the residual product was 

purified by chromatogrpahy using Hexane: EtOAc 7:3 to afford 7b (510mg, 1.95 mmol, 60%). 

TLC (Hexane: EtOAc 7:3): RF = 0.41 

1
H NMR (300 MHz, CDCl3) δ= 3.64 (t, 2H, J= 6.3 Hz), 3.85 (s,3H), 3.87 (s,3H), 4.26 (t, 2H, 

J= 6.3 Hz), 6.42 (dd, 1H, J= 2.7, 8.7 Hz), 6.57 (d, 1H, J= 2.7Hz), 6.79 (d, !H, J= 8.7Hz). 

13
C NMR (75 MHz, CDCl3) δ= 20.30, 55.89, 56.42, 65.59, 101.37, 104,27, 111.75, 144.09, 

149.97, 152.05 

MS (ESI) m/z 261.18 [M + H]
 +

, calculated 261.26 [M + H]
 +

. 

 

Synthesis of (S)-1-tert-butyl2-(2-(3,4-dimethoxyphenoxy)ethyl)piperidine-1,2-dicarboxylate 

(precursor of 12b) 

To a solution of 7b (200mg, 0.76 mmol) in acetone (10ml) was added (S)-1Boc-piperidine-2-

carboxylic acid (150 mg, 0.65 mmol), K2CO3 (108 mg, 0.78 mmol), and KI (catalytic amount). 

The reaction mixture was stirred at 60
o
C for 12h. The mixture was filtered and the solid residue 

was washed with ethyl acetate (3 X 30 ml). The combined organic phases were washed with 

brine (30ml) and dried over MgSO4. The solution was concentrated and then the residual crude 

product was purified by chromatography using Hexane: EtOAc 7:3 to afford precursor of 12b 

(200mg, 0.50 mmol, 77%). 

TLC (Hexane:EtOAc  7:3): RF = 0.39 

1
H NMR (600 MHz, CDCl3) δ= 1.42 (d, 9H, J= 19.2 Hz), 1.57-1.65 (m, 4H), 2.17-2.23 (m, 

1H), 2.86- 3.01 (m, 1H), 3.82 (s,3H), 3.83 (s,3H), 3.88-4.02 (m, 1H), 4.11 (t, 2H, J= 4.8 Hz), 

4.45 (t, 2H, J= 4.8 Hz), 4.75 (s, 0.5H), 4.91 (s, 0.5H), 6.37 (dd, 1H, J= 3, 9 Hz), 6.51 (d, 1H, J= 

1.2 Hz), 6.76 (d, 1H, J= 8.4 Hz). 
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13
C NMR (150 MHz, CDCl3) δ= 26.79, 28.37, 41.03, 42.08, 53.79, 54.86, 55.81, 56.39, 63.17, 

66.49, 101.08, 103.94, 111.68, 143.82, 149.84, 153.02, 171.89. 

MS (ESI) m/z 432.20[M + Na]
 +

, 448.20[M + K]
 +

, calculated 432.20 [M + Na]
 +

, 448.17[M + 

K]
 +

. 

 

Synthesis of (S)-1-(9H-fluoren-9-yl)methyl 2-((R)-1-(3-(2-tert-butoxy-2-oxoethoxy)phenyl)-

3-(3,4-dimethoxyphenyl)propyl) piperidine-1,2-dicarboxylate: (precursor of 12c) 

A solution of alcohol 5a (2g, 4.97 mmol), carboxylic acid 28 (1.9g, 5.47 mmol), and DMAP 

(0.06 g, 0.54mmol) in 30mL DCM at room temperature was treated with DCC (1.1g, 5.47 

mmol). The mixture was stirred for 12h. Afterwards the organic solvent was dried and the solid 

was dissolved in diethyl ether (50mL) and filtered through a plug of celite. The filtrate was 

concentrated and then flash chromatographed using Hexane: EtOAc 2:1 to afford precursor of 

12c (3.5g, 4.78 mmol, 96%). 

TLC (Hexane :EtOAc 2:1): Rf = 0.4. 

1
H NMR (600 MHz, CDCl3) δ= 1.46 (s, 10H), 1.68-1.76 (m, 3H), 1.98-2.04 (m, 1H), 2.14-2.22 

(m, 1H), 2.29-2.33 (m, 1H), 2.41-2.58 (m, 2H), 2.96-3.15 (m, 1H), 3.81 (s, 3H), 3.83 (s, 3H), 

4.07-4.15 (m, 2H), 4.26-4.49 (m, 5H), 5.02 (d, 1H, J= 5.4 Hz), 5.73-5.77 (m, 1H), 6.57-6.63 

(m, 2H), 6.72-6.81 (m, 2H), 6.88 (s, 1H), 6.93-6.95 (m, 1H), 7.16-7.24 (m, 2H), 7.28-7.48 (m, 

2H), 7.57-7.80 (m, 1H), 7.69-7.71 (m, 1H), 7.75-7.77 (m, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 15.35, 17.89, 20.80, 24.76, 26.81, 28.00, 31.10, 38.03, 42.02, 

47.20, 55.77, 55.89, 63.75, 65.72, 67.77, 76.18, 82.35, 104.18, 111.26, 111.56, 111.65, 113.23, 

113.90, 119.64, 119.88, 119.89, 119.93, 125.06, 127.02, 127.62, 127.66, 129.65, 133.46, 

141.26, 141.67, 143.85, 144.08, 147.25, 148.81, 156.38, 158.01, 167.88, 170.86. 

MS (ESI) m/z  758.60[M + Na]
 +

, 774.53[M + K]
 +

, calculated 758.33[M + Na]
 +

, 774.30 [M + 

K]
 +

. 

 

Synthesis of (S)-1-(9H-fluoren-9-yl)methyl 2-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morph-

olinoethoxy)phenyl)propyl) piperidine-1,2-dicarboxylate (precursor of 12d) 

A solution of alcohol 5b (171 mg, 0.427mmol), carboxylic acid 28 (150mg, 0.427 mmol), and 

DMAP (5.7 mg, 0.047mmol) in 10mL DCM at room temperature was treated with DCC (113 

mg, 0.51 mmol). The mixture was stirred for 12h after which the organic solvent was dried. 

The solid was dissolved in diethyl ether (50mL) and filtered through a plug of celite. The 

filtrate was concentrated and then flash chromatographed using DCM: MeOH 9.7:0.3 to afford 

precursor of 12d (280 mg, 0.38 mmol, 89%). 
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TLC (EtOAc: 1): Rf = 0.56. 

1
H NMR (300 MHz, CDCl3) δ= 1.31-1.51 (, 2H), 1.67-1.82 (m, 3H), 1.89-1.99 (m, 1H), 2.14-

2.39 (m, 2H), 2.47-2.64 (m, 6H), 2.70-2.83 (m, 2H), 2.96-3.21 (m, 1H), 3.74 (s, 4H), 3.83 (s, 

3H), 3.85  (s, 3H), 4.00-4.04 (m, 1H), 4.09-4.17 (m, 4H), 4.26-4.49 (m, 3H), 5.74-5.80 (m, 1H), 

6.60-6.67 (m, 2H), 6.74-6.94 (m, 4H). 

13
C NMR (75 MHz, CDCl3) δ= 21.04, 24.95, 25.63, 31.22, 38.09, 41.98, 47.22, 54.00, 55.81, 

55.92, 57.59, 60.38, 65.57, 66.75, 67.78, 76.28, 111.33, 111.73, 113.04, 113.93, 118.95, 

119.95, 120.10, 125.06, 127.06, 127.67, 129.64, 133.51, 141.27, 141.52, 141.71, 143.87, 

144.08, 147.33, 148.87, 156.38, 158.77, 170.94. 

MS (ESI) m/z 735.57 [M + H]
 +

, calculated 735.40 [M + H]
 +

. 

 

Synthesis of (S)-3,4-dimethoxyphenethyl piperidine-2-carboxylate 12a 

Precursor of 12a (390 mg, 0.991 mmol) was treated with 20% TFA in DCM at room 

temperature. The mixture was stirred for 2h. TFA and DCM were evaporated under reduced 

pressure to yield 12a (280mg, 0.95mmol, 96.2%). 

TLC (Hexane: EtOAc: TEA 7:2.8: 0.2): Rf = 0.24. 

1
H NMR (300 MHz, CDCl3) δ= 1.57 (s, 1H), 1.84 (s, 4H), 2.18 (d, 1H, J= 12.9 Hz), 3.54 (s, 

1H), 3.86 (s, 3H), 3.87 (s, 3H), 3.89-3.96 (m, 1H), 4.37 (d, 3H, J= 7.8 Hz), 6.73 (d, 2H, J= 6.9 

Hz), 6.81 (d, 1H, J= 9.3 Hz). 

13
C NMR (75 MHz, CDCl3) δ= 21.48, 21.71, 25.52, 34.18, 44.15, 55.83, 55.89, 56.84, 66.97, 

111.42, 112.06, 120.81, 129.18, 147.94, 149.00.  

MS (ESI) m/z 294.17 [M + H]
 +

, calculated 294.41 [M + H]
 +

. 

 

Synthesis of (S)-2-(3,4-dimethoxyphenoxy)ethyl piperidine-2-carboxylate 12b 

Precursor of 12b (200 mg, 0.488 mmol) was treated with 20% TFA in DCM at room 

temperature. The mixture was stirred for 2h. TFA and DCM were evaporated under reduced 

pressure to yield 12b (150mg, 0.48mmol, 99%). 

TLC (Hexane: EtOAc: TEA 7:2.8: 0.2): Rf = 0.16. 

1
H NMR (600 MHz, CDCl3) δ= 1.54-1.61 (m, 1H), 1.82-1.97 (m, 4H), 2.24-2.28 (m, 1H), 2.99-

3.04 (m, 1H), 3.55 (d, 1H, J= 12.6 Hz), 3.82 (s, 3H), 3.83 (s, 3H), 3.92 (dd, 1H, J= 3.6, 11.4 

Hz), 4.11 (t, 2H, J= 4.2 Hz), 4.45-4.54(m, 2H), 6.35 (dd, 1H, J= 3, 9 Hz), 6.50 (d, 1H, J= 3 Hz), 

6.76 (d, 1H, J= 9 Hz). 

13
C NMR (150 MHz, CDCl3) δ= 21.50, 21.74, 25.60, 44.14, 55.81, 56.39, 56.83, 64.71, 65.85, 

100.97, 103.94, 111.74, 143.98, 149.91, 152.71, 168.48.  
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MS (ESI) m/z 310.36 [M + H]
 +

, calculated 310.26 [M + H]
 +

. 

 

Synthesis of (S)-((R)-1-(3-(2-tert-butoxy-2-oxoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)-

propyl) piperidine-2-carboxylate 12c 

Precursor of 12c (3.5 g, 4.8 mmol) was treated with 20% 4-methylpiperidine in DCM at room 

temperature. The mixture was stirred for 4h. 4-methylpiperidine and DCM were evaporated 

under reduced pressure. Saturated NH4Cl solution was added to the filtrate and the solution was 

stirred for 10 min. The organic phase was separated and the aqueous phase was extracted with 

ethyl acetate (3x 100ml). The combined organic phases were washed with brine (30ml), dried 

over MgSO4 and the residual solid was purified by chromatography using Hexane: EtOAc : 

TEA 7:2.8: 0.2 to yield 12c (2.2g, 4.3mmol, 91%). 

TLC (Hexane: EtOAc: TEA 7:2.8: 0.2): Rf = 0.33. 

1
H NMR (600 MHz, CDCl3) δ= 1.42 (s, 9H), 1.43-1.50 (m, 2H), 1.52-1.57 (m, 1H), 1.61-1.68 

(m, 1H), 1.69-1.74 (m, 1H), 1.99-2.04 (m, 2H), 2.15-2.21 (m, 1H), 2.44-2.55 (m, 2H), 2.62-

2.66 (m, 1H), 3.05-3.08 (m, 1H), 3.42 (dd, 1H, J= 3, 10.2 Hz), 3.78 (s, 3H), 3.79 (s, 3H), 4.45 

(s, 2H), 5.65-5.71 (m, 1H), 6.58-6.62 (m, 2H), 6.70-6.74 (m, 2H), 6.81-6.89 (m, 2H), 7.18 (t, 

1H, J= 8.4Hz). 

13
C NMR (150 MHz, CDCl3) δ= 23.53, 24.78, 27.97, 28.41, 31.19, 37.83, 45.08, 55.80, 55.85, 

58.08, 65.63, 75.83, 82.29, 112.27, 111.63, 113.07, 113.79, 119.72, 120.09, 129.56, 133.44, 

141.60, 146.26, 148.81, 157.97, 167.84, 171.63. 

MS (ESI) m/z 514.53[M + H]
 +

, calculated 514.27 [M + H]
 +

. 

 

Synthesis of (S)-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl) 

piperidine-2-carboxylate 12d 

Precursor of 12d (250 mg, 0.34 mmol) was treated with 20% 4-methylpiperidine in DCM at 

room temperature. The mixture was stirred for 4h. 4-methylpiperidine and DCM were 

evaporated under reduced pressure. Saturated NH4Cl solution was added to the filtrate and the 

solution was stirred for 10 min. The organic phase was separated and the aqueous phase was 

extracted with ethyl acetate (3x 100ml). The combined organic phases were washed with brine 

(30ml), dried over MgSO4 and the residual solid was purified by chromatogrpahy using 

Hexane: EtOAc: TEA 2: 7.8: 0.2 to yield 12d (160 mg, 0.31mmol, 84%). 

TLC (Hexane: EtOAc: TEA 7:2.8: 0.2): Rf = 0.3. 

1
H NMR (300 MHz, CDCl3) δ= 1.48-1.60 (m, 1H), 1.67-1.89 (m, 2H), 1.89-2.10 (m, 3H), 2.17-

2.31 (m, 2H), 2.44-2.62 (m, 1H), 2.85 (s, 2H), 3.06 (s, 3H), 3.08 (s, 3H), 3.27-3.42 (m, 1H), 



87 Medicinal chemistry approach to identify new ligands for FKBP51 and FKBP52 
 

 
 

3.77-3.85 (m, 5H), 4.18-4.35 (m, 2H), 5.70 (t, 1H, J= 7.2 Hz), 6.62-6.66 (m, 2H), 6.72-6.80 (m, 

2H), 6.86 (d, 1H, J= 7.8Hz), 6.95 (s, 1H), 7.19 (t, 1H, J= 8.1 Hz). 

13
C NMR (75 MHz, CDCl3) δ= 21.59, 22.00, 26.01, 31.15, 37.82, 44.12, 45.89, 55.91, 55.95, 

56.67, 57.17, 64.55, 65.60, 77.65, 111.35, 111.83, 112.36, 111.72, 119.27, 120.18, 129.57, 133 

.31, 140.98, 147.29, 148.84, 158.45, 167.88. 

MS (ESI) m/z 513.29 [M + H]
 +

, calculated 513.32 [M + H]
 +

. 

 

General procedure for coupling of 12a-d with 11a-e to yield 3a-3j 

To a stirred solution of the free amines (12a-d) in acetonitrile under argon was added 

sequentially N,N-Diisopropyl-ethylamine (DIPEA), HATU and the di-ketoacids (11a-e). The 

reaction mixture was stirred for 16h at room temperature. Saturated NH4Cl solution was added 

to the reaction and the solution was stirred for 10 min. The organic phase was separated and the 

aqueous phase was extracted with ethyl acetate (3x 100ml). The combined organic phases were 

washed with brine (10ml), dried over MgSO4 and the residual solid was purified by column 

chromatogrpahy. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(2-((1S,2R)-1-hydroxy-2-methyl 

cyclohexyl)-2-oxoacetyl)piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid (3a*) 

To 12c (211mg, 0.412 mmol) was added DIPEA (160 mg, 1.24 mmol), HATU (234 mg, 0.618 

mmol), 11a (92 mg, 0.494 mmol) and the reaction was treated as described above. The residual 

solid obtained was purified by column chromatography using Hexane: EtOAc 6:4 to yield 3a* 

ester (46mg, 0.067 mmol, 20%). 

TLC (Hexane: EtOAc 6:4): Rf = 0.41. 

HPLC (Gradient A) retention time= 32.1-32.6 min 

1
H NMR (600 MHz, CDCl3) δ= 0.84 (t, 3H, J= 5.4 Hz), 1.30-1.41 (m, 6H), 1.47 (m, 9H), 1.61-

1.85(m, 7H), 2.00-2.13 (m, 2H), 2.20-2.28(m, 1H), 2.36 (d. 1H, J= 13.8Hz), 2.47-2.61 (m, 2H), 

3.10-3.17 (m, 1H), 3.49 (d, 1H, J= 13.2 HZ), 3.85 (s, 6H), 4.53 (s, 2H), 5.29 (s, 1H), 5.74-5.79 

(m, 1H), 6.66-6.67 (m, 2H), 6.76-6.78 (m, 1H), 6.81-6.84 (m, 1H), 6.88-6.93 (m, 1H), 6.95-

7.00 (m, 1H), 7.25-7.28 (m, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 16.14, 20.33, 20.92, 25.33, 26.24, 28.02, 29.97, 36.89, 38.05, 

44.31, 51.53, 55.80, 65.70, 76.69, 81.21, 82.35, 111.27, 111.68, 113.18, 114.25, 119.85, 

120.13, 129.73, 133.47, 141.38, 147.34, 148.83, 158.07, 166.55, 167.87, 169.27, 205.06. 

MS (ESI) m/z 682.07 [M + H]
 +

, calculated 682.85 [M + H]
 +

. 
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3a* ester(46 mg, 0.067 mmol) was treated with 20% TFA in DCM at room temperature. The 

mixture was allowed to stir for 6h. TFA and DCM was evaporated under reduced pressure to 

yield the free acid 3a* (32mg, 0.051mmol, 77%). 

TLC (Hexane: EtOAc: TFA 6:3.9: 0.1): Rf = 0.33. 

HPLC (Gradient A) retention time= 24.6-25.1 min 

1
H NMR (600 MHz, CDCl3) δ= 0.82-0.88 (m, 3H), 1.36-1.92 (m, 13H), 2.03-2.13 (m, 2H), 

2.23-2.38 (m, 2H), 2.50-2.67 (m, 2H), 3.24-3.31 (m, 1H), 3.48-3.55 (m, 1H), 3.85 (s, 3H), 3.86 

(s, 3H), 4.67 (s, 2H), 5.25-5.27 (m, 2H), 5.74-5.77 (m, 1H), 6.56-6.70 (m, 2H), 6.77-6.80 (m, 

1H), 6.82-6.87 (m, 1H), 6.89-6.96 (m, 2H), 7.26-7.29 (m, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 16.3, 20.16, 20.87, 24.79, 25.29, 26.55, 29.30, 31.35, 35.59, 

37.60, 39.45, 44.28, 51.92, 55.87, 55.92, 65.07, 76.86, 82.24, 111.37, 111.70, 115.71, 116.21, 

119.71, 120.20, 129.90, 133.21, 141.51, 147.41, 148.89, 157.74, 167.39, 169.20, 171.63, 

205.23. 

MS (ESI) m/z: found Rt 13.88 min. (Method LCMS), 648.45 [M + Na]
+
, 

HRMS 626.2902 [M + H]
 +

, calculated 626.2887 [M + H]
 +

. 

 

The diasteromeric mixture was further separated using preparative HPLC Gradient 62-77% B 

for 35min to yield diasteromer 3a-1 (6mg) and 3a-2 (9mg). 

3a-1 

HPLC (Gradient A) retention time= 24.6-24.8min 

1
H NMR (600 MHz, CDCl3) δ= 0.82 (d, 3H, J= 5.4 Hz), 1.38-1.43 (m, 2H), 1.44-1.48 (m, 2H), 

1.53-1.58 (m, 2H), 1.64-1.70 (m, 3H), 1.74-1.81 (m, 2H), 2.04-2.12 (m, 2H), 2.22-2.28 (m, 

1H), 2.52-2.67 (m, 2H), 2.98 (d, 1h, J= 5.4 Hz), 3.08 (s, 1H), 3.12 (s, 1H), 3.25 (dt, 1H, J= 2.4, 

13.2 Hz), 3.53 (d, 1H, J=13.2 Hz), 3.64-3.67 (m, 1H), 3.72 (s, 1H), 3.85 (s, 3H), 3.86 (s, 3H), 

4.63 (s, 2H), 5.24 (d, 1H, J= 4.8Hz), 5.74-5.80 (m, 1H), 6.66-6.69 (m, 2H), 6.77-6.79 (m, 1H), 

6.83-6.94 (m, 3H), 7.26-7.28 (m, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 16.15, 20.18, 21.06, 24.79, 25.27, 26.52, 29.68, 31.41, 35.57, 

36.61, 37.64, 44.18, 51.88, 55.86, 55.92, 63.81, 81,38, 111.35, 111.68, 115.65, 115.66, 119.54, 

120.16, 129.85, 133.19, 141.53, 147.45, 148.93, 157.92, 167.57, 169.26, 169.26, 205.46. 

MS (ESI) m/z: found Rt 13.87 min. (Method LCMS), 648.40 [M + Na]
+
, calculated 648.45 [M 

+ Na]
 +

. 

 

3a-2 

HPLC (Gradient A) retention time= 24.9-25.1min 
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1
H NMR (600 MHz, CDCl3) δ= 0.84 (d, 3H,J= 6.6Hz), 1.38-1.85 (m, 10H), 2.06 (s, 2H), 2.20-

2.31 (m, 1H), 2.49-2.65 (m, 2H), 2.97 (d, 1H, J= 6.6 Hz), 3.05 (s, 1H), 3.12 (s, 1H), 3.25 (t, 1H, 

J= 12.6Hz), 3.48 (d, 1H, J= 10.8 Hz), 3.65 (s, 1H), 3.72 (s, 2H), 3.84 (s, 3H), 3.85 (s, 3H), 4.81 

(s, 2H), 5.26 (s, 1H), 5.74 (s, 1H), 6.66-6.68 (m, 2H), 6.77-6.94 (m, 4H), 7.21-7.24 (m, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 16.15, 20.21, 20.94, 24.82, 25.31, 26.40, 29.68, 31.35, 35.31, 

36.72, 37.15, 42.16, 43.25, 44.25, 44.54, 46.53, 48.81, 51.75, 55.86, 55.92, 56.79, 63.84, 81.66, 

111.34, 111.70, 115.51, 119.59, 120.17, 129.82, 133.32, 141.58, 147.41, 148.91, 157.91, 

167.37, 169.34, 205.95. 

MS (ESI) m/z: found Rt 13.91 min. (Method LCMS), 648.31 [M + Na]
+
, calculated 648.45 [M 

+ Na]
 +

. 

 

Synthesis of 3,4-dimethoxyphenethyl 1-(2-((1S,2R)-1-hydroxy-2-methylcyclohexyl)-2-

oxoacetyl)piperidine-2-carboxylate (3b*) 

To 12a (33mg, 0.112 mmol) was added DIPEA (43.4 mg, 0.336 mmol), HATU (40.5mg, 0.168 

mmol) and 11a (25 mg, 0.134 mmol) . The reaction was treated as described above. The 

residual solid obtained was purified by column chromatography using Hexane: EtOAc 6:4 to 

yield 3b* (25mg, 0.054 mmol, 49%). 

TLC (Hexane: EtOAc 6:4): Rf = 0.57. 

HPLC (Gradient A) retention time= 25.8-26.2 min 

1
H NMR (600 MHz, CDCl3) δ= 0.83 (m, 3H), 1.39-1.77 (m, 14H), 2.07-2.12 (m, 2H), 2.26 (d, 

1H, J= 14.4 Hz), 2.89-2.94 (m, 2H), 3.09-3.17 (m, 1H), 3.46 (t, 1H, J= 11.4 Hz), 3.86 (s, 3H), 

3.87 (s, 3H), 4.31-4.43 (m, 2H), 5.24 (s, 1H), 6.72-6.81 (m, 3H). 

13
C NMR (150 MHz, CDCl3) δ= 16.12, 20.35, 20.80, 24.95, 25.37, 26.30, 29.50, 34.56, 35.67, 

36.81, 44.04, 51.46, 55.86, 55.91, 65.99, 81.23, 111.29, 111.99, 120.93, 129.85, 147.78, 

148.95, 166.83, 169.99, 204.98. 

MS (ESI) m/z: found Rt 14.16 min. (Method LCMS), 462.70 [M + H]
+
, 484.44 [M + Na]

+
, 

HRMS 462.2944 [M + H]
+
, calculated 462.2914 [M + H]

 +
. 

 

Synthesis of 2-(3,4-dimethoxyphenoxy)ethyl 1-(2-((1S,2R)-1-hydroxy-2-methylcyclohexyl)-2-

oxoacetyl)piperidine-2-carboxylate (3c*) 

To 12b (34.6 mg, 0.112 mmol) was added DIPEA (43.4 mg, 0.336 mmol), HATU (40.5mg, 

0.168 mmol) and 11a (25 mg, 0.134 mmol). The reaction was treated as described above. The 

residual solid obtained was purified by column chromatography using Hexane : EtOAc 1:1 to 

yield 3c* (33mg, 0.069 mmol, 62%). 
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TLC (Hexane: EtOAc 1:1): Rf = 0.28. 

HPLC (Gradient A) retention time= 25.8-26.2 min 

1
H NMR (600 MHz, CDCl3) δ= 0.821 (dd, 3H, J= 6.6Hz), 1.41-1.79 (m, 13H), 2.04-2.13 (m, 

1H), 2.35 (d, 1H, J= 13.8 Hz), 3.22- 3.34 (m, 1H), 3.51 (t, 1H, J= 12Hz), 3.83 (s, 3H), 3.85 (s, 

3H), 4.13-4.15 (m, 2H), 4.43- 4.56 (m, 2H), 5.30 (d, 1H, J= 5.4Hz), 6.37-6.40 (m, 1H), 6.52 (t, 

1H, J= 3Hz), 6.76 (d, 1H, J= 9Hz). 

13
C NMR (150 MHz, CDCl3) δ= 16.13, 20.33, 21.06, 24.84, 26.40, 29.47, 34.60, 35.64, 36.82, 

44.09, 51.49, 55.85, 56.40, 63.77, 66.35, 81.18, 101.09, 104.07, 111.71, 143.92, 149.88, 

152.83, 166.98, 170.03, 205.03. 

MS (ESI) m/z: found Rt 13.91 min. (Method LCMS), 478.35 [M + 1]
+
, 500.40 [M + Na]

+
, 

HRMS 478.2405 [M + H]
 +

, calculated 478.2403 [M + H]
 +

. 

 

2-(3,4-dimethoxyphenoxy)ethyl 1-(2-((1S,2R)-2-ethyl-1-hydroxycyclohexyl)-2-oxoacetyl) 

piperidine-2-carboxylate (3d*) 

To 12b ( 64.4 mg, 0.208 mmol) was added DIPEA (81 mg, 0.624 mmol), HATU (75 mg, 0.312 

mmol) and 11b (50 mg, 0.250 mmol). The reaction was treated as described above. The 

residual solid obtained was purified by column chromatography using Hexane : EtOAc 1:1 to 

yield 3d* (25 mg, 0.051 mmol, 25%). 

TLC (Hexane: EtOAc 6:4): Rf = 0.50. 

HPLC (Gradient A) retention time= 25.5-25.9 min 

1
H NMR (600 MHz, CDCl3) δ= 0.85-0.88 (m, 3H), 1.41-1.88 (m, 18H), 2.35 (d, 1H, J= 12Hz), 

3.22-3.29 (m, 1H), 3.49-3.53 (m, 1H), 3.83 (s, 3H), 3.85 (s, 3H), 4.13-4.16 (m, 2H), 4.35-4.57 

(m, 2H), 5.31 (s, 1H), 6.37-6.40 (m, 1H), 6.51-6.53 (m, 1H), 6.77 (d, 1H, J= 9Hz). 

13
C NMR (150 MHz, CDCl3) δ= 11.78, 20.66, 20.90, 23.67, 24.94, 25.46, 26.42, 35.91, 43.72, 

44.06, 55.85, 56.40, 63.70, 66.36, 82.34, 101.10, 104.08, 111.72, 143.97, 149.88, 152.85, 

152.90, 166.82, 170.01, 205.09. 

MS (ESI) m/z: found Rt 13.69min. (Method LCMS), 492.21 [M + H]
+
, calculated 492.24 [M + 

H]
 +

. 

 

Synthesis of (S)-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl) 1-

(2-((1S,2R)-1-hydroxy-2-methylcyclohexyl)-2-oxoacetyl)piperidine-2-carboxylate (3e*) 

To 12d (60mg, 0.117 mmol) was added DIPEA (60 mg, 0.468 mmol), HATU (66mg, 

0.175mmol) and 11a (26 mg, 0.14 mmol) and the reaction was treated as described above. The 
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residual solid obtained was purified by column chromatography using Hexane : EtOAc 1:1 to 

yield 3e* (41mg, 0.060mmol, 52%). 

TLC (DCM: MeOH 9.3:0.7): Rf = 0.50. 

HPLC (Gradient A) retention time= 21.1-21.7 min 

1
H NMR (400 MHz, CDCl3) δ= 0.79-0.86 (m, 3H), 1.40-1.74 (m, 13H), 1.98-2.38 (m, 7H), 

2.48-2.61 (m, 2H), 2.83-2.87 (m, 1H), 2.96-3.05 (m, 2H), 3.09-3.18 (m, 1H), 3.47-3.51 (m, 

1H), 3.77-3.85 (m, 11H), 4.17-4.24 (m, 2H), 5.29 (t, 1H, J= 4.4 Hz), 5.74-5.77 (m, 1H), 6.65-

6.68 (m, 2H), 6.75-6.78 (m, 2H), 6.81-6.84 (m, 1H), 6.86-6.96 (m, 2H), 7.22-7.27 (m, 1H). 

13
C NMR (100 MHz, CDCl3) δ= 16.12, 16.14, 20.25, 20.29, 20.90, 21.11, 24.88, 24.92, 25.32, 

25,35, 26.23, 26.32, 29.34, 29.41, 31.17, 31.25, 34.85, 35.31, 36.89, 36.90, 38.01, 38.24, 44.24, 

44.29, 51.49, 51.64, 53.67, 53.74, 55.81, 55.90, 57.31, 57.36, 64.82, 64.82, 65.83, 66.03, 77.22, 

81.16, 81.23, 111.23,111.26, 111.65, 111.69, 112.73, 113.06, 114.08, 114.38, 119.23, 119.40, 

120.11, 120.13, 129.73, 129.78, 133.30, 133.46, 141.41, 141.59, 147.33, 148.82, 148.85, 

158.36, 158.42, 166.59, 166.73, 169.31, 169.40, 205.13, 205.47. 

MS (ESI) m/z: found Rt 11.32min. (Method LCMS), 681.38 [M + H]
+
, 

HRMS 681.4418 [M + Na]
 +

, calculated 681.4373. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(2-((1S,2R)-2-ethyl-1-hydroxy-

cyclohexyl)-2-oxoacetyl)piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid (3f*) 

To 12c ( 214mg, 0.416 mmol) was added DIPEA (161 mg, 1.25 mmol), HATU (236 mg, 0.624 

mmol) and 11b (100 mg, 0.499 mmol) and the reaction was treated as described above. The 

residual solid obtained was purified by column chromatography using Hexane : EtOAc 6:4 to 

yield 3f* ester (62mg, 0.089 mmol, 21%). 

TLC (Hexane:  EtOAc 6:4): Rf = 0.71. 

HPLC (Gradient A) retention time= 32.6-32.9 min 

1
H NMR (600 MHz, CDCl3) δ= 0.87 (t, 3H, J= 7.2Hz), 1.28-1.37 (m, 4H), 1.48 (s, 9H), 1.65-

1.88 (m, 11H), 2.00-2.09 (m, 1H), 2.20-2.27 (m, 1H), 2.37 (d, 1H, J =13.8Hz), 2.47-2.62 (m, 

2H), 3.05-3.20 (m, 1H), 3.49-3.53 (m, 1H), 3.85 (s, 3H), 3.86 (s, 3H), 4.52 (d, 2H, J=4.8 Hz), 

5.31 (d, 1H, J= 5.4 Hz), 5.75-5.79 (m, 1H), 6.65-6.67 (m, 2H), 6.76-6.78 (m, 1H), 6.81-6.83 

(m, 1H), 6.87-7.00 (m, 2H), 7.25-7.28 (m, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 11.78, 20.65, 23.65, 23.66, 24.92, 25.27, 26.26, 28.02, 29.66, 

31.17, 35.27, 38.04, 44.28, 51.65, 55.80, 55.90, 65.70, 76.69, 81.99, 82.36, 111.27, 111.68, 

113.44, 114.22, 119.87, 120.13, 129.72, 133.48, 141.37, 147.27, 148.83, 156.05, 158.06, 

166.58, 167.83, 169.26, 205.17. 
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MS (ESI) m/z 696.84 [M + H]
 +

, calculated 696.72 [M + H]
 +

. 

 

3f* ester (62 mg, 0.089 mmol) was treated with 20% TFA in DCM at room temperature. The 

mixture was allowed to stir for 6h. TFA and DCM was evaporated under reduced pressure to 

yield the free acid 3f* (40mg, 0.062mmol, 80%). 

TLC (Hexane: EtOAc: TFA 1:1: 0.2): Rf = 0.45. 

HPLC (Gradient A) retention time= 25.3-25.9 min 

MS (ESI) m/z: found Rt 15.93 min. (Method LCMS), 662.63 [M + Na]
+
. 

HRMS 640.3739[M + H]
 +

, calculated 640.3043 [M + H]
 +

. 

 

The diasteromeric mixture was further separated using preparative HPLC Gradient 65-70% B 

for 15min to yield diasteromer 3f-1 (5mg) and 3f-2 (7mg). 

 

3f-1 

HPLC (Gradient A) retention time= 25.3-25.5min 

HRMS 640.3773[M + H]
 +

, calculated 640.3043 [M + H]
 +

. 

 

3f-2 

HPLC (Gradient A) retention time= 25.7-25.9min 

HRMS 640.3764[M + H]
 +

, calculated 640.3043 [M + H]
 +

. 

 

Synthesis of (S)-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl)1-

(2-((1S,2R)-2-ethyl-1-hydroxycyclohexyl)-2-oxoacetyl)piperidine-2-carboxylate (3g*) 

To 12d (60 mg, 0.117 mmol) was added DIPEA (55 mg, 0.425 mmol), HATU (60mg, 0.158 

mmol) and 11b (28 mg, 0.139 mmol) and the reaction was treated as described above. The 

residual solid obtained was purified by column chromatography using Hexane: EtOAc 1:1 to 

yield 3g* (20mg, 0.028 mmol, 25%). 

TLC (DCM: MeOH 9.7: 0.3): Rf = 0.48. 

HPLC (Gradient A) retention time= 21.7-22.3 min 

1
H NMR (300 MHz, CDCl3) δ= 0.77-0.86 (m, 3H), 1.41-1.74 (m, 15H), 1.96-2.36 (m, 7H), 

2.45-2.61 (m, 2H), 2.87-2.89 (m, 1H), 3.00-3.10 (m, 2H), 3.12-3.19 (m, 1H), 3.47-3.51 (m, 

1H), 3.77-3.86 (m, 11H), 4.19-4.25 (m, 2H), 5.29 (t, 1H, J= 4.8 Hz), 5.74-5.77 (m, 1H), 6.65-

6.69 (m, 2H), 6.76-6.78 (m, 2H), 6.81-6.84 (m, 1H), 6.84-6.98 (m, 2H), 7.23-7.28 (m, 1H). 
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13
C NMR (75 MHz, CDCl3) δ=11.83, 12.40, 20.51, 20.63, 21.55, 22.68, 23.63, 24.93, 25.25, 

25.45, 29.36, 30.57, 31.19, 31.29, 31.92, 34.27, 35.56, 38.61, 43.69, 43.77, 44.31, 51.50, 51.62, 

53.65, 55.87, 55.95, 57.31, 61.77, 65.56, 70.36, 70.61, 77.22, 82.04, 111.38, 111.78, 113.11, 

114.10, 114.42, 120.20, 129.83, 130.91, 133.39, 133.53, 141.61, 147.42, 148.94, 158.32, 

158.45, 166.65, 166.69, 169.34, 169.43, 205.13, 205.41. 

MS (ESI) m/z: found Rt 8.95 min. (Method LCMS), 695.45 [M + H]
 +

,  

HRMS 695.4492 [M + H]
 +

, calculated 695.4429 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(2-((1S,2S)-1-hydroxy-2-(hydroxyl 

methyl)cyclohexyl)-2-oxoacetyl)piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid (3h) 

To 12c (208mg, 0.404 mmol) was added DIPEA (158 mg, 1.22 mmol), HATU (230 mg, 0.608 

mmol) and 11c (120 mg, 0.487 mmol) and the reaction was treated as described above. The 

residual solid obtained was purified by column chromatography using Hexane: EtOAc 1:1 to 

yield 3h ester (60mg, 0.080 mmol, 20%). 

TLC (Hexane: EtOAc 1:1): Rf = 048. 

1
H NMR (600 MHz, CDCl3) δ= 1.26-1.37 (m, 4H), 1.46 (s, 9H), 1.51-1.63 (m, 3H), 1.64-1.79 

(m, 5H), 1.96- 2.08 (m, 1H), 2.15-2.26 (m, 2H), 2.33 (d, 1H, J= 14.4 Hz), 2.45-2.62 (m, 2H), 

3.13-3.21 (m, 1H), 3.25 (s, 1H), 3.27-3.29 (m, 1H), 3.30 (s, 1H), 3.48-3.53 (m, 1H), 3.55-3.58 

(m, 1H), 3.64-3.67 (m, 1H), 3.83-2.84 (m, 6H), 4.44-4.48 (m, 1H), 4.50 (s, 2H), 4.51-4.59 (m, 

1H), 5.28 (t, 1H, J= 5.4 Hz), 5.72-5.78 (m, 1H), 6.64-6.67 (m, 2H), 6.75-6.77 (m, 1H), 6.79-

6.82 (m, 1H), 6.88-7.00 (m, 2H), 7.23-7.26 (m, 1H).     

13
C NMR (150 MHz, CDCl3) δ= 14.09, 20.38, 20.40, 22.67, 24.67, 24.72, 24.97, 24.99, 25.12, 

25.17, 26.32, 26.46, 29.35, 29.67, 29.69, 31.13, 31.91, 31.92, 35.50, 36.16, 37.98, 38.03, 41.50, 

41.64, 44.13, 44.20, 51.60, 51.67, 55.29, 55.35, 55.80, 55.89, 65.69, 69.84, 69.89, 76.56, 76.58, 

81.26, 81.28, 82.36, 82.38, 96.39, 96.49, 111.26, 111.67, 113.27, 114.06, 114.13, 119.77, 

119.89, 120.13, 129.62, 129.69, 133.40, 133.48, 141.35, 141.54, 147.26, 147.29, 148.82, 

148.83, 159.01, 158.04, 165.87, 166.07, 166.81, 167.09, 167.89, 167.90, 169.47, 169.50, 

205.48, 206.00 

MS (ESI) m/z 764.51 [M + Na]
 +

, calculated 764.36 [M + Na]
 +

. 

 

3h ester(60 mg, 0.080 mmol) was treated with 20% TFA in DCM at room temperature. The 

mixture was allowed to stir for 6h. TFA and DCM was evaporated under reduced pressure to 

yield the free acid 3h (16mg, 0.024mmol, 31%). 

TLC (Hexane: EtOAc: TFA 6: 4: 0.1): Rf = 0.41. 
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HPLC (Gradient A) retention time= 25.7-26.1 min 

1
H NMR (600 MHz, CDCl3) δ= 1.32-1.88 (m, 13H), 2.02-2.10 (m, 1H), 2.16-2.28 (m, 2H), 

2.37-2.40 (m, 1H), 2.51-2.65 (m, 2H), 3.20-3.26 (m, 1H), 3.51-3.59 (m, 1H), 3.60-3.67 (m, 

1H), 3.73-3.80 (m, 1H), 3.85 (s, 6H), 4.63-4.70 (m, 2H), 5.32 (d, 1H, J= 5.4 Hz), 5.73-5.79 (m, 

1H), 6.66-6.70 (m, 2H), 6.77-6.80 (m, 1H), 6.84-6.89 (m, 2H), 6.92-6.96 (m, 1H), 7.25-7.29 

(m, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 20.67, 20.80, 21.19, 23.60, 24.92, 25.47, 26.60, 29.68, 31.29, 

34.48, 44.50, 44.56, 51.92, 55.91, 65.06, 69.07, 76.67, 81.87, 111.35, 111.72, 115.07, 115.16, 

119.99, 120.18, 129.84, 133.26, 141.63, 147.40, 148.85, 157.77, 166.31, 169.38, 169.47, 

204.17. 

MS (ESI) m/z: found Rt 13.12 min. (Method LCMS), 642.90 [M + H]
+
. 

HRMS 642.3570 [M + H]
 +

, calculated 642.3536  [M + H]
 +

. 

 

Synthesis of  2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(2-((1R,2R)-1-hydroxy-2-methyl 

cyclohexyl)-2-oxoacetyl)piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid (3i*) 

To 12c ( 210mg, 0.412 mmol) was added DIPEA (160 mg, 1.24 mmol), HATU (234 mg, 0.618 

mmol) and 11d (92 mg, 0.494 mmol) and the reaction was treated as described above. The 

residual solid obtained was purified by column chromatography using Hexane: EtOAc 6:4 to 

yield 3i* ester (38mg, 0.055 mmol, 14%). 

  

3i* ester(38 mg, 0.055 mmol) was treated with 20% TFA in DCM at room temperature. The 

mixture was allowed to stir for 6h. TFA and DCM was evaporated under reduced pressure to 

yield the free acid *3i (27mg, 0.043mmol, 77%). 

HPLC (Gradient A) retention time=27.3-27.7min 

MS (ESI) m/z: found Rt 15.56 min. (Method LCMS), 648.55 [M + Na]
+
, calculated 648.45 [M 

+ Na]
 +

. 

 

The diasteromeric mixture was further separated using preparative HPLC Gradient 61-71% B 

for 20min to yield diasteromer 3i-1 (5mg) and 3i-2 (8mg). 

3i-1 

HPLC (Gradient A) retention time= 27.2-27.4min. 

1
H NMR (600 MHz, CDCl3) δ= 0.82 (d, 3H, J= 6.6 Hz), 1.36-1.51 (m, 3H), 1.54-1.59 (m, 2H), 

1.65-1.72 (m, 3H), 1.77-1.82 (m, 1H), 1.92 (d, 1H, J= 12.6 Hz), 2.03-2.13 (m, 2H), 2.23-2.30 

(m, 1H), 2.37 (d, 1H, J= 14.4 Hz), 2.52-2.68 (m, 2H), 3.54 (d, 1H, J= 12.6Hz), 3.64-3.65 (m, 
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1H), 3.72 (s, 3H), 3.85 (s, 3H), 3.86 (s, 3H), 4.67 (s, 2H), 5.25 (d, 1H, J= 5.4 Hz), 5.75-5.77(m, 

1H), 6.67-6.70 (m, 2H), 6.77-6.80 (m, 1H), 6.83 (s, 1H), 6.89-6.94 (m, 2H), 7.27-7.29 (m, 1H). 

MS (ESI) m/z: found Rt 15.51 min. (Method LCMS), 648.59 [M + Na]
+
, calculated 648.45 [M 

+ Na]
 +

. 

 

3i-2 

HPLC (Gradient A) retention time= 27.3-27.6min. 

1
H NMR (600 MHz, CDCl3) δ= 0.85 (d, 3H,J= 6.6Hz), 1.37-1.86 (m, 12H), 2.02-2.14 (m, 2H), 

2.23-2.29 (m, 1H), 2.36 (d, 1H, J= 14.2 Hz), 2.52-2.66 (m, 2H), 3.65 (d, 1H, J= 5.4 Hz), 3.73 

(s, 3H), 3.85 (s, 3H), 3.86 (s, 3H), 4.68 (s, 2H), 5.27 (d, 1H, J= 5.4 Hz), 5.74 -5.79 (m, 1H), 

6.65-6.70 (m, 2H), 6.79 (d, 1H, J= 7.8 Hz), 6.81-6.95 (m, 3H), 7.24-7.29 (m, 1H). 

MS (ESI) m/z: found Rt 15.67 min. (Method LCMS), 648.51 [M + Na]
+
, calculated 648.45 [M 

+ Na]
 +

. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(2-((1R,2R)-2-ethyl-1-hydroxy 

cyclohexyl)-2-oxoacetyl)piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid (3j*) 

To 12c (21.4mg, 0.041mmol) was added DIPEA (15.1 mg, 0.117 mmol), HATU (23.7 mg, 

0.063 mmol) and 11e (10.0 mg, 0.05 mmol) and the reaction was treated as described above. 

The residual solid obtained was purified by column chromatography using Hexane: EtOAc 6:4 

to yield 3j* ester (6.6 mg, 0.009 mmol, 22%). 

TLC (Hexane: EtOAc 6: 4): Rf = 0.46. 

HPLC (Gradient A) retention time= 31.5-31.9 min 

MS (ESI) m/z 662.55 [M – tBu + Na]
 +

, calculated 662.54 [M – tBu + Na]
 +

. 

 

3j* ester (6.6 mg, 0.009 mmol) was treated with 20% TFA in DCM at room temperature. The 

mixture was allowed to stir for 6h. TFA and DCM was evaporated under reduced pressure to 

yield the free acid 3j* (5.7 mg, 0.007 mmol, 91%). 

TLC (Hexane: EtOAc: TFA 1:1: 0.1): Rf = 0.35. 

HPLC (Gradient A) retention time= 25.6-26.1 min 

MS (ESI) m/z: found Rt 14.29min. (Method LCMS), 662.55 [M + Na]
+
,  

HRMS 640.3063 [M + H]
 +

, calculated 640.3043 [M + H]
 +

. 

 

Supporting Information. Reaction schemes of intermediates. This material is available free of 

charge via the Internet at http://pubs.acs.org. 

http://pubs.acs.org/
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Crystallography 

Crystals and Co-crystals of the FKBP51 Fk1 domain construct comprising residues 16-140 and 

containing mutation A19T were obtained as previously described
18

. Diffraction data were 

collected at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The data 

were processed with MOSFLM
40

 and XDS
41

, SCALA
42

 and TRUNCATE
43

. The crystal 

structures were solved by molecular replacement employing the program MOLREP
44

. The 

dictionaries for the ligand compounds were generated with the PRODRG server
45

. The 

structures were refined with REFMAC
46

. Manual model building was performed with COOT
47

. 

Molecular-graphics figures were generated using PyMOL (http://www.pymol.org). 
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Scheme S4 Synthesis scheme of compound 6d 

 

Scheme S5  

 

Scheme S6 Synthesis scheme of compound 6h 
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Table-S1 Data collection and Refinement Statistics 

Dataset PDB code4DRK PDB 

code4DRM  

PDB code4DRN PDB code4DRO PDB code4DRP 

Ligand 2a 3f-1 soak 3f-1 cocryst 3f-2 soak 3f-2 cocryst 

Beamline ESRF, ID23-1 ESRF, ID14-1 ESRF, ID23-1 ESRF, ID14-1 ESRF, ID23-1 

wavelength (Å) 0.9757 0.933 0.900 0.933 0.900 

space group P212121 P212121 P212121 P212121 P212121 

cell dimensions,  

a, b, c (Å);  

 

, ,  (°) 

 

56.16, 62.29, 

69.68; 

90, 90, 90 

 

42.16, 55.27, 

56.82; 

90, 90, 90 

 

49.27, 52.54, 

57.02; 

90, 90, 90 

 

42.19, 54.79, 

56.74; 

90, 90, 90 

 

49.91, 56.56, 

57.59; 

90, 90, 90 

resolution limits 

(Å)* 

30.40 – 1.5 

(1.58 – 1.5) 

42.15 - 1.48  

(1.56 - 1.48) 

25.06 - 1.07  

(1.13 – 1.07) 

33.43 - 1.1 

(1.16 - 1.1) 

25.38 - 1.79 

(1.89 - 1.79) 

Rmerge **
,
* 0.085 (0.381) 0.066 (0.477) 0.045 (0.576) 0.067 (0.353) 0.062 (0.190) 

I/sigma **
,
* 14.8 (4.2) 11.3 (2.4) 13.2 (1.8) 10.3 (3.1) 12.4 (3.5) 

multiplicity * 6.5 (6.2) 3.5 (3.4) 3.7 (3.7) 2.4 (2.4) 3.3 (2.3) 

completeness (%) * 99.7 (98.7) 99.5 (97.1) 95.2 (91.4) 99.7 (98.7) 97.5 (84.0) 

Wilson B-factor (Å
2
) 11.13 13.31 8.05 6.06 20.88 

Refinement      

resolution range 20 – 1.5 20 - 1.48 20 – 1.07 20 - 1.1 20 - 1.8 

reflections (test set) 37697 (1995) 21603 (1135) 59549 (3141) 51373 (2699) 14559 (769) 

Rcryst  0.1658 0.1760 0.1548 0.1477 0.2200 

Rfree  0.1995 0.2082 0.1724 0.1725 0.2609 

number of atoms 2610 1299 1364 1357 1205 

r.m.s.d. bonds (Å) 0.014 0.015 0.011 0.013 0.013 

r.m.s.d. angles (°) 1.579 1.604 1.600 1.613 1.472 

Ramachandran plot       

 % most favored 

region*** 

98.94 98.71 97.3 98.9 99.21 

 % additionally 

allowed*** 

0 0.92 1.8 0 0 

*  Values in parenthesis for outer shell. 

**  As defined in Scala. 

***  As defined in Coot.  
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1.2.2.1.1 Discussion (Manuscript-2) 

In this study an extensive SAR analysis of α-ketoamide containing pipecolates as binders for 

FKBP51 and FKBP52 was carried out. This class of compounds has been extensively studied 

and validated for their binding to FKBP12. Here a direct comparison of the binding affinities of 

these compounds between FKBP12 and larger FKBPs has been studied.  

Starting from the X-ray crystal structure of the lead compound (2a), a structure-based design 

approach was followed to study the contributions of each substructure on the binding affinity 

for FKBP51 and FKBP52. Firstly, the pipecolate core which is present in 2a and the natural 

product was substituted with other core structures (2b, 2c and 2d). The pipecolate core was 

found to be essential for binding to the larger FKBPs. Next the effect of top group 

modifications on the binding affinity was studied. Larger top group substituents (2a, 6e) were 

found to have better binding affinity as compared to the smaller top groups (6a, 6b and 6c). 

The morpholine top group was found to have the best binding affinity as compared to all other 

substituents. To further optimize the ligand for their binding affinity, the pipecolic core and the 

larger top groups were kept constant for the rest of the studies.  

Next the interaction with the 80s loop was investigated in detail for gaining affinity and 

selectivity as both the proteins have a structural divergence in this loop. The tert-pentyl group 

in the lead compound (2a) was proposed to be substituted with a substituent that closely 

mimics the pyranose group in the natural products FK506 and Rapamycin. The cyclohexyl 

group was chosen as the pyranose oxygen in FK506 and Rapamycin is dispensable and has 

been shown to have no interaction with the protein surface
102

. This substitution resulted in 

compound 3a* having 2-5 fold better affinity to the larger FKBPs as compared to 2a. Next an 

extensive SAR around the cyclohexyl group was carried out to systematically understand the 

importance of the C
10

-and C
11

-substituents. First the role of C
11

-substituent on the cyclohexyl 

moiety was investigated. A series of cyclohexyl containing compounds were synthesized with 

varying chain length at the C
11

-methyl substituent (3a*, 3f*, 3h*). The binding affinity of this 

series of compounds was similar for the larger FKBPs thereby concluding that chain length or 

substitution of carbon with oxygen doesn’t affect the binding affinity. 

Finally, analogs were designed to investigate the effect of stereochemistry at the C
11

-methyl 

and C
10

-OH on the binding affinities. This series comprised of the diasteromeric mixture 3a*, 

3f*, 3i* and 3j*. All these compounds surprisingly had equivalent binding affinities. This 

observation was unexpected. The natural diasteromers 3a*, 3f* (stereochemistry at C
10

 and C
11
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similar to FK506 and Rapamycin) were expected to bind to the protein with a similar binding 

mode as the natural compound. The unnatural diasteromers 3i* and 3j* on the other hand were 

hypothesized to bind weekly as hydrogen bond between OH
10

-Asp
68

 and the hydrophobic 80s 

loop contacts of the C
11

-methyl/ethyl substituents was not possible simultaneously. To further 

dissect the above observations with respect to the pure diasteromers, the individual 

diasteromers 3a-1, 3a-2, 3i-1, 3i-2, 3f-1 and 3f-2 of the diasteromer mixture 3a*, 3i* and 3f* 

were separated. All these compounds were found to have equivalent binding to the FKBPs. 

From the above set of compounds we could thus conclude that the stereochemistry at the C
10

 

and C
11

 was not important. This observations concluded from the binding studies were further 

supported by X-ray co-crystal structures (3f-1, 3f-2).  

The X-ray co-crystal structure showed that the binding mode of both the compounds in the 

active site of FKBP51 was similar. In case with 3f-1 all three hydrogen bonds observed in the 

co-crystal structure of FK506 are conserved. In 3f-2 the cyclohexyl ring is flipped and the 

hydrogen bond between HO
10

-3f-1 and O-Asp
68

 is not present. But the retention of the binding 

affinity can be argued owing to the fact there is presence of an additional water mediated 

hydrogen bond with Tyr
113

 and Ser
118

 of FKBP51 and C
10

-OH of 3f-2.  

This elaborate study thus helps us to conclude that the stereochemistry at the hydroxyl and the 

methyl substituent on the pyranose ring of FK506 and Rapamycin are not important to gain 

affinity towards the protein subtypes. Overlay of different FKBP51 FK1 domain co-crystal has 

shown the 80s loop to be flexible. We thus infer that it is this loop flexibility that might make 

the FKBPs tolerant towards subtle changes in the stereochemistry around the cyclohexyl group. 

The rationale for binding of all the diasteromers with multiple binding modes and conserved 

80s loop interaction can thus be explained. 
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1.2.2.2  Exploration of Pipecolate Sulfonamides as Binders of the FK506-Binding 

Proteins 51 and 52 (Manuscript 3) 

The electrophilicity of the α-keto amide moiety present in most of the non-immunosuppressive 

FK506 analogs (as well as in the compounds of manuscript 2) is an undesired reactive liability 

that could result in metabolic instability or potential toxicity. In the second approach a 

bioisosteric replacement of the α-keto amide moiety of Rapamycin and FK506 with a 

sulfonamide was envisaged with the retention of the conserved hydrogen bonds. For a rapid 

and efficient derivatization of a focused sulfonamide library we envisaged a solid phase 

synthesis strategy which led to ligands with submicromolar affinity for FKBP51 or with 4-fold 

selectivity versus FKBP52. The molecular binding mode for one sulfonamide analog was 

confirmed by X-ray crystallography. 

 

Figure 14: Prototypic sulfonamide containing analogs. 

Own Contributions: 

In the attached manuscript my personal contributions have been the following: 

1. Establishment of the solid support synthesis protocol (Scheme-1) and the solution phase 

protocol (Scheme-2). Synthesis, purification and structural characeterization of all compounds 
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supported by B. Hoogeland and C. Kozany. Data analysis of the tested compounds. 
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Abstract: FK506-binding proteins (FKBP) 51 and 52 are co-chaperones that modulate the 

signal transduction of steroid hormone receptors. Single nucleotide polymorphisms in the gene 

encoding FKBP51 have been associated with a variety of psychiatric disorders. Rapamycin and 

FK506 are two macrocyclic natural products, which tightly bind to all these proteins. A bio-

isosteric replacement of the α-ketoamide moiety of rapamycin and FK506 with a sulfonamide 

was envisaged with the retention of the conserved hydrogen bonds. A focused solid support-

based synthesis protocol was developed, which led to ligands with submicromolar affinity for 

FKBP51 and FKBP52. The molecular binding mode for one sulfonamide analog was 

confirmed by X-ray crystallography. 
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Introduction: 

Members of the FKBP (FK506-binding protein) family display peptidyl prolyl isomerase 

(PPIase) activity and bind to the immunosuppressive natural products FK506 and rapamycin. 

The prototypical FKBP12 is the most widely studied member of this family. In complex with 

FKBP12, FK506 and rapamycin also interact with and inhibit calcineurin (CaN) and mTOR, 

respectively, thereby mediating their immunosuppressive action. Prior studies led to analogs 

devoid of immunosuppressive activity
1-3

, as exemplified by compound 2 (Fig. 1)
4
. The high 

molecular weight multi-domain homologs of FKBP12, FKBP51, and FKBP52 act as co-

chaperones for the heat shock protein 90 (Hsp90) and modulate the signal transduction of the 

glucocorticoid receptor in a mutually antagonistic direction
5-7

. Human genetic studies have 

shown single nucleotide polymorphisms in the gene encoding FKBP51 to be associated with 

various stress-related psychiatric disorders
8
. Recent characterization of FKBP51 knockout mice 

has further validated these findings
9-12

. To further dissect the role of larger FKBPs and to better 

understand the underlying biology, selective inhibitors targeting FKBP51 are required. Neither 

FK506 nor rapamycin can be used as tools as they have nearly equipotent affinities for all 

FKBPs.  

Extensive medicinal chemistry campaigns on analogs of FK506 and rapamycin have shown 

that the two conserved hydrogen bonds shown in Fig. 1 are required for binding to FKBPs. The 

electrophilicity of the α-ketoamide moiety present in most of the non-immunosuppressive 

FK506 analogs is an undesired reactive liability that could result in metabolic instability or 

potential toxicity. For FKBP12 it has been shown that the α-ketoamide can be bioisosterically 

replaced by a sulfonamide moiety to yield compounds that retain binding to FKBP12
2,13-15

. 
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Fig. 1 Natural and synthetic ligands that bind to large FKBPs. (a) Structure of FK506 (1). (b) 

The prototypic synthetic ligand 2, which is devoid of immunosuppressive activity. Key 

hydrogen bonds with FKBP51 are indicated by dotted lines; the position of the 80s loop 

interacting with the tert-pentyl moiety is indicated in cyan. 

However, these compounds have not been tested for their binding profile with the larger 

FKBPs. Until very recently, compound 2 has been the only synthetic ligand tested for its 

binding affinity for FKBP51. In quest for finding improved inhibitors of FKBP51 or FKBP52 

we envisaged a solid phase synthesis methodology for the synthesis of pipecolate sulfonamide 

compounds to gain insight into the structure activity relationship (SAR) of this series for the 

larger FKBP isoforms.  

Results and Discussion: 

Chemistry: 

Strategy: A three-dimensional alignment of the FK506-binding domains of FKBP51(3O5E)
16

, 

FKBP52 (to be published) and FKBP12 (2PPN)
17

 revealed the largest structural divergences 

close to the binding pocket at the 80s loop (Ser
118

-Ile
122

 of FKBP51/52). The 80s loop of 

FKBP51 contains Leu
119 

which is replaced by Pro
119

 in FKBP52 possibly contributing for the 

structural difference in this region. Importantly, the residue at position 119 was shown to be a 

major functional determinant for the effect on steroid hormone receptor
18

. Hence an 

optimization of interactions with this part of the protein has a higher probability of achieving 

selectivity and functional relevance within the FKBP family. The X-ray structures of FK506 

with the FK1 domain of FKBP51 (3O5R) and FKBP52 (unpublished) confirmed that the 

pyranose group in FK506 (1) contacts the 80s loop. Sulfonamide substituents as replacements 

of the pyranose group have been shown to have contact with the 80s loop in FKBP12
2,13,14,19

. 

Compound 2, until very recently the only known synthetic FKBP51 ligand, was chosen as a 

starting point for the synthesis of sulfonamide analogs. For a rapid derivatization of compounds 

targeting the 80s loop we envisaged a solid phase strategy for synthesis of a focused 

sulfonamide library. 

Solid phase synthesis of a focused sulfonamide library: The precursor 3 was synthesized as 

described
20

. This was further coupled with the pipecolic acid 4 followed by liberation of the 

acid to give the building block 5. The latter was anchored on a 2-chloro trityl resin.  
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Scheme-1 a. Synthesis of the pipecolate framework 

 

a 
Reagents and conditions : (a) DCC, DMAP, 0 

o
C to r.t., 20h (for 3a); HATU, DIPEA, r.t., 2h (for 3a) 

(b) 20% TFA in CH2Cl2, r.t., 6h. (c) DIPEA, CH2Cl2, r.t., 16h; and DIPEA, methanol, r.t., 4h. (d) 20% 

4-methyl-piperidine, CH2Cl2, r.t., 1h. (e) DIPEA, CH2Cl2, r.t., 16h. (f) 1% TFA in CH2Cl2, r.t., 1h. 

The immobilized building block was deprotected to give 6 and was further reacted with a 

library of commercial sulfonyl chlorides 7. Cleavage form the solid support under mild acidic 

conditions yielded compounds 8-37, 49-79 and 46, 47. This solid support protocol was used for 

the synthesis of a small focused library followed by primary screening as well as for the 

resynthesis of hits for further characterization. The best sulfonamide analogs of this series were 

further attached to pipecolate core where the free acid moiety in 8-37, 49-79 was exchanged by 

a morpholine group in 40-45 (scheme 2).  
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Scheme-2 a. Synthesis of the various top groups containing sulfonamide 

 

a 
Reagent and conditions : (a) DIPEA, RSO2Cl, CH2Cl2, r.t., 16h.  

Biology: 

The sulfonyl chloride building blocks were designed to initially probe a variety of aliphatic and 

aromatic sulfonyl moieties as well as substituents around the aromatic rings. Out of 36 

compounds in the medium-throughput screening, 28 compounds inhibited tracer binding to 

FKBP12 by more than 15% while 8 compounds displayed inhibition of more than 85% at 5 μM 

(supplementary information and Table-1). 7 compounds inhibited the tracer binding to the FK1 

domain of FKBP52 by more than 15% at 5 μM, whereas 5 hits were identified for the FK1 

domain of FKBP51. The initial screening assay results indicated that sulfonamides can be 

surrogates of the α-ketoamides in the context of this scaffold, but that efficient binding 

critically depended on the nature of the sulfonamide substituent, at least for the larger FKBPs. 

In general, the inhibitory activity was much higher for FKBP12 than for the larger FKBPs. This 

could be related to the core structure 6 which was designed and optimized for FKBP12 as well 

as to the more concave 80s loop of FKBP12.  

The most promising compounds 8-12 from the primary screening were selected, resynthesized 

in larger scale and characterized in more detail. The binding affinities of all sulfonamide hits 

were weaker for all tested FKBPs compared to the reference compound 2. However, in general, 

the affinity for FKBP12 was compromised in a stronger way than those for the larger FKBPs.  



113 Medicinal chemistry approach to identify new ligands for FKBP51 and FKBP52 
 

 
 

Compounds 9 and 10 turned out to have the highest binding affinity for FKBP51 and 52 and 

were further evaluated in two series (Table-2).  

 

Table-1 Binding affinities for the primary hits towards FKBP paralogs. 

Compd. No. R Purity % FKBP12 FKBP51FK1 FKBP52FK1 

   IC50(µM) 

2  >99 0.114 ± 0.015 6.3 ± 0.9 9.37 ± 1.9 

8 

 

>99 1.8 ± 0.1 62.8 ± 10.7 >100 

9 

 

>98 1.2 ± 0.2 30.7 ± 15.7 32.8 ± 14.5 

10 

 

>99 1.1 ± 0.1 11.6 ± 1.1 32.5 ± 3.5 

11 
 

>96 10.1 ± 1.0 >100 >100 

12 
 

>99 4.6 ± 0.15 67.1 ± 12.1 >100 

Binding affinity to FKBP12, FKBP51 (FK1 domain) and FKBP52 (FK1 domain) determined by a 

fluorescence polarization assay
21

. 

Exploration of the SAR:  The first series of derivatives probed the influence of the substituent 

at the meta position. The compounds in this series included m-CN 13, m-NO2 14, m-NH2 15, 

m-(2-methylpyrimidin-4-yl) 16, m-(pyrimidin-4-yl) 17, m-F 18, and m-Br 19 aromatic 

sulfonamides. All these compounds had binding affinity between 0.3-10 μM for FKBP12. The 

meta-substituted halogen derivatives had better binding affinity to the larger FKBPs, among 

these 19 being the best. Compound 15 was synthesized by reduction of the nitro group in 14. 
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The m-CN 13, m-NO2 14 and m-NH2 15 analogs had slightly reduced binding affinities to the 

FKBPs compared to the m-Cl aromatic sulfonamide 9, while compound 16 and 17 were 

inactive for the larger FKBPs.  

We next set out to explore multi-substituted aromatic sulfonamide groups. The di-chloro 

substituted aromatic sulfonamide 20 had slightly better binding affinity than the mono meta-

chloro substituted aromatic sulfonamide 9 (Table-2).  In contrast, an additional chloro-

substituent in the para-position 21 was found to substantially reduce binding to the FKBPs. A 

similar result was found for the meta, para-dimethoxy substituted sulfonamide 22 but, 

interestingly, compound 23 having an m-Cl, p-OMe substitution had better binding affinity. 

This series of compounds indicated the following SAR m-di-Cl > m-Cl > m,p-di-Cl >> p-Cl >> 

o-Cl for the aryl sulfonamide substituents. 

To further explore the acceptable nature of the groups at the meta positions the derivatives m-

difluoro 24, 3,5-bis(trifluoromethyl) 25, 3-bromo-5-(trifluoromethyl) 26, and 3,5-bis(carboxy-

methyl) 27 were synthesized. Compound 24 had reduced affinity compared to the mono-fluoro 

substituted analog 18, while the three other compounds were inactive for FKBP51 or FKBP52. 

This series led us to conclude that a halogen is a preferred substituent at the meta-position for 

the larger FKBPs (Table-2).  

 

Table-2 Meta substituted analogs synthesized for SAR extrapolation. 

Compd. No. R1 R2 R3 Purity 

% 

FKBP12 FKBP51FK1 FKBP52FK1 

   IC50(µM) 

13 CN H H >98 3.8 ± 0.3 28.5 ± 9.6 69.9 ± 65.4 

14 NO2 H H >98 1.9 ± 0.13 47.2 ± 7.1 >100 

15 NH2 H H >99 1.9 ± 0.2 45.4 ± 13.1 >100 
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16 

 

H H >99 8.1 ± 1.2 >100 >100 

17 
 

H H >99 9.1 ± 0.7 >100 >100 

18 F H H >99 1.09 ± 0.07 54.05 ± 7.0 84.5 ± 51.00 

19 Br H H >99 0.32 ± 0.03 15.78 ± 1.25 15.69 ± 6.84 

20 Cl H Cl >99 0.80 ± 0.08 22.6 ± 8.2 14.3 ± 1.8 

21 Cl Cl H >99 6.1 ± 5.7 >100 >100 

22 OMe OMe H >96 7.6 ± 1.9 >100 >100 

23 Cl OMe H >99 0.60 ± 0.07 29.6 ± 1.9 40.3 ± 5.1 

24 F H F >98 1.00 ± 0.06 88.2 ± 11.6 Not measured 

25 CF3 H CF3 >99 5.1 ± 0.4 >100 >100 

26 CF3 H Br >99 2.4 ± 0.2 >100 >100 

27 COO

Me 

H COOMe >98 4.5 ± 0.5 >100 >100 

28 Cl OH Cl >99 0.67± 0.04 6.2± 0.5 20.3 ± 1.9 

29 Cl OMe Cl >99 0.23 ± 0.02 16.4 ± 1.7 17.7 ± 1.6 

30 Cl N-Ac Cl >98 1.18 ± 0.04 16.1 ± 0.96 20.5 ± 2.7 

31 OMe OMe COOH >98 No binding No binding No binding 

32 NO2 

 

>98 1.5 ± 0.14 27.2 ± 3.1 43.9 ± 10.1 

33 NH2 

 

>98 2.57 ± 0.55 >100 >100 

34 H 

 

>98 1.2 ± 0.09 18.4 ± 1.4 26.5 ± 4.9 
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35 H 

 

>99 0.021 ± 

0.02 

14.7 ± 1.1 66.5 ± 27.1 

36 H 

 

>99 0.66 ± 0.05 >100 >100 

37 H 

 

>98 0.75 ± 0.04 >100 >100 

The purity of the compounds was confirmed using HPLC. The binding affinity of the compounds to 

FKBP12, FKBP51 (FK1 domain) and FKBP52 (FK1 domain) was determined by a fluorescence 

polarization assay
21

. 

The second series of sulfonamide derivatives was designed to probe the substitution pattern at 

the fused thiazole ring of compound 10. A substitution by methyl at C-2 resulted in compound 

34 which had equivalent binding to 10. Conversion to the corresponding benzothiazol-2(3H)-

one 35 resulted in nanomolar affinity for FKBP12, low micromolar binding for FKBP51 and 

high micromolar affinity to FKBP52. The reasons for this striking selective preference for 

FKBP12 are currently unknown. However, the sulfur in the meta-position seems to be 

extremely important since substitution by a methylene as in 36 or oxygen 37 resulted in a 

dramatic loss of affinity for all FKBPs (Table-2).  

X-Ray Crystal Structure. The X-ray crystal structure of the FK506-binding domain of 

FKBP51 complexed with ligand 20 was solved to 1.0 Å resolution. In this complex, FKBP51 

adopts the same folding topology as found in FKBP51 complexed with 1 and 2. Compared to 

the latter structures Asp
68

 moves into the binding pocket, while Tyr
113

 and Ser
118

 move out. The 

ligand adopts a similar binding mode compared to that of 1 or 2 with the common pipecolate 

ring being nearly superimposable (Fig. 2b). The pipecolyl ring of each ligand sits atop the 

indole of Trp
90

, which forms the floor of the FKBP binding pocket. Similar to FK506 the C
1
-

carbonyl of the pipecolate forms a hydrogen bond with the backbone amide of Ile
87

. One 

oxygen of the sulfonamide (S=OA) engages the ε-hydrogen of Phe
130

 and the hydroxyl group of 

Tyr
113

. This latter contact is substantially longer (3.37Å) compared to the corresponding 

hydrogen bonds formed between Tyr
113

 and the C
8
-carbonyl groups of α-ketoamides like 

FK506, 2 or analogs thereof. The p-oxygen of Tyr
113

 engages in a rather short dipolar contact 

with the C
1
-carbonyl of 20 (3.06Å). Similar although less intense dipolar interactions have also 

been observed in FKBP51-complexes with FK506 and 2. FKBP51 and 20 engage in a number 

of aromatic CH ···O-acceptor interactions, e.g., the oxygen of the sulfonamide (S=OB) and the 
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ε-hydrogens of Tyr
57

, Phe
67

 and Phe
130

. These interactions correspond to the contacts formed 

by the C
9
-keto group of FK506 with the same residues of FKBP51 thereby confirming that the 

sulfonamide is a bioisosteric mimic of the α-ketoamide moiety. As expected, the dichloro aryl 

ring sits below the 80s loop and packs on Ile
122

. The two ortho-hydrogens of the sulfonylphenyl 

ring form close contacts (2.95Å) with the p-oxygen of Tyr
113

 and with carboxylate of Asp
68

, 

respectively. One of the aromatic chlorines might form a van-der-Waals contact with Lys
121

, 

while the other chlorine engages Ser
118

. For the latter, two conformations seem possible, one 

compatible with a hydrogen bond to the aromatic chlorine, the other with a linear C-Cl∙∙∙O 

geometry consistent with a halogen bond
22,23

. The dimethoxyphenyl and acetoxyphenyl rings 

were poorly resolved in the electron density map indicating strong disorder. In the most 

populated conformer the top group is rotated by 120° compared to compound 2, most likely 

stabilized by π-π stacking interactions between the acetoxyphenyl ring B and the dichloro aryl 

substituent of the sulfonamide. The dimethoxyphenyl ring A stacks on the edge of Phe
77

 and 

points into a solvent channel. Its ortho-hydrogen forms an aromatic hydrogen bond (d=2.97Å) 

to the backbone carbonyl of Gln
85

.  

 

Fig. 2 X-ray crystal structure of 20 in complex with the FK1 domain of FKBP51. (a) Chemical structure 

of 20. Hydrophobic contacts with FKBP51 are indicated in green, hydrogen bonds are shown as dotted 

lines in pink, aromatic hydrogen bonds are indicated in blue and the unresolved groups are in grey. (b) 

20 bound to the FK1 domain of FKBP51. The three hydrogen bonds between O
1
-20 and HN-Ile

87
, 

between O
8
-20 and HO-Tyr

113
, and between Cl

11
 and O-S

118 
are shown as dotted red lines. The dipolar 

interaction between the C
1
-carbonyl and HO-Tyr

113
 and the halogen bond between Cl

11
 and O-S

118 
are 

shown in black. Aromatic hydrogen bonds between ring A and Gln
85

, C
10

-H and OH-Tyr
113

, C
14

-H and 

OH-Asp
68 

are shown in blue. Leu
119

 and Pro
120

 at the top of the 80s loop are colored in cyan and the 

conserved water below the 80s loop is shown in yellow. 
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SAR extension 

The X-ray co-crystal structure of the sulfonamide 20 revealed a water molecule engaged in a 

hydrogen bond with the amide of Lys
121

 that is situated close to the para-position of the 

sulfonamide aromatic ring (Fig. 2b).  Water molecules below Pro
120

 of the 80s loop have been 

observed in several FKBP51 crystal structures
16

 (unpublished observations). We therefore 

explored whether this conserved water molecule could be engaged by substituents in the para-

position of the sulfonamide aromatic ring. Introduction of a p-OH substituent in compound 28 

did not affect the affinity for FKBP51 while improving the selectivity vs. FKBP52 three-fold 

(Table-2). A similar trend was observed for the p-NHAc substituted analog 30, but not in the p-

OMe substituted analog 29. The tri-substituted analog 33 had similar affinities compared to the 

corresponding mono-substituted derivative 15, whereas for 32 the affinities were slightly 

increased compared to 14.  The tri-substituted analog 31 was inactive, similar to the 

disubstituted analog 22. 

Modification of the top group 

The charged carboxylic acid attached to ring B in the above series is likely to reduce the cell 

permeability of these compounds. To remove this undesired property the free acid moiety was 

replaced by various groups as shown in Scheme 2 to yield compounds 38-48. Simplified 

substituents at C-1 as in compounds 38 and 39 resulted in complete loss of activity for the large 

FKBPs. The next series of compounds included the substitution of the free acid moiety with a 

morpholine group. Surprisingly, in the morpholine-series phenyl sulfonamides substituted with 

meta-dichloro  40, with meta-dichloro, p-OMe 41 and the benzothiazole analog 42 were 

inactive for all FKBPs including FKBP12 (Table-3). This could be attributed in part to a 

detection limit imposed by the lower solubility of these compounds. In striking contrast, the 

meta-dichloro, para-hydroxy substituted analog 42 displayed submicromolar affinities for all 

tested FKBPs. This potency and the almost equal affinity for the large FKBPs vs. FKBP12 is 

remarkable, especially when compared to the very close analogs 22 (carboxyl group instead of 

morpholine), 40, 43 (para-hydrogen or para-methoxy instead of para-hydroxy) and 45 (para 

NH-acetyl). A similar unexpected activity was observed for the morpholine-containing 

benzothiazol-2(3H)-one analog 44 which was much more active than thiazole-containing 

analog 41 or the carboxyl-derivative 35. The affinity of 44 rivaled those of the natural product 
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FK506 (Table-2). The molecular underpinnings for the extraordinary activities of 42 and 44 

remain to be established. 

Last but not the least we replaced the pipecolate C
1
 ester by an amide (46, 47), which 

completely abolished the binding to larger FKBPs. Compound 47 retained substantial binding 

to FKBP12 in line with the preference of this substituent for FKBP12 observed with 44. The 

loss of binding affinity of 46 and 47 can be attributed to the additional hydrogen bond donor 

that would point in the direction of the aromatic ring when bound in a homologous binding 

mode as 20. Finally, in 48 the top group was replaced by a symmetric top group as present in 

Biricodar
3
 which resulted in equivalent affinity as 28.  

 

Table-3. FKBP binding affinity of sulfonamides with different pipecolate ester substituents 

Compd. No. R1 R2 R3 Purity % FKBP12 FKBP51FK1 FKBP52FK1 

    IC50(µM) 

38 Cl H Cl >98 >100 >100 >100 

39 H 
 

>99 0.20 ± 0.10 66.27 ± 37.9 >100 

40 Cl H Cl >99 >50 µM 
a
 >50 µM 

a
 >50 µM 

a
 

41 H 
 

>98 >50 µM 
a
 >50 µM 

a
 >50 µM 

a
 

42 Cl OH Cl >99 0.115 ± 0.014 0.456 ± 0.05 0.71 ± 0.10 

43 Cl OMe Cl >99 >50 µM 
a
 >50 µM 

a
 >50 µM 

a
 

44 H 

 

>99 0.003 ±  0.0005 

 

2.03 ± 0.09 3.41 ± 0.42 

45 Cl N-Ac Cl >99 0.45 ± 0.03 12.3 ± 18.9 8.3 ± 6.8 
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46 Cl OH Cl >99 >100 >100 >100 

47 H 

 

>99 1.4 ± 0.21 >100 >100 

48 Cl OH Cl >99 0.87 ± 0.07 9.69 ± 0.76 15.13 ± 0.23 

a Low solubility impaired binding measurements. 

Conclusion: Using a bioisosteric replacement strategy we converted the α-ketoamide motif 

derived from FK506 and rapamycin into a sulfonamide motif with conservation of the 

hydrogen bond pattern as confirmed by the co-crystal structure of 20. By using a solid phase 

synthesis protocol we were able to generate, screen and optimize a focused library of these 

compounds. This led to the identification of aromatic sulfonamides with soft substituents in the 

meta-position as preferred binders of the larger FKBPs. In combination with the morpholine-

modified top group this resulted in a 15-20 fold enhancement in affinity for FKBP51 or 

FKBP52 compared to the starting compound 2. The most advanced compound 42 is the best 

synthetic ligand known for the large FKBPs. Compound 44 has exceptionally high affinity for 

FKBP12 rivaling those of the natural products FK506 and rapamycin. 

Experimental section:  

Chemistry: All solvents were purchased from Roth, reagents were bought from Aldrich-Fluka 

and the sulfonyl chlorides were obtained from Maybridge, Sigma Aldrich, ABCR or AKos, 

unless otherwise stated. 

Chromatographic separations were performed either by manual flash chromatography or by 

automated flash chromatography using an Interchim-Puriflash 430 with a UV detector. Extracts 

were dried over MgSO4 and the solvents were removed under reduced pressure. Merck F-254 

commercial plates were used for analytical TLC to follow the course of reaction and visualized 

by UV light at either 254 or 365 nm. Silica gel 60 (Merck 70-230 mesh) was used for column 

chromatography.  NMR spectra of all compounds were obtained from the Department of 

Chemistry and Pharmacy, LMU, on a Bruker AC 300, a Bruker XL 400, or a Bruker AMX 600 

at room temperature in deutero-CDCl3 with tetramethylsilane (TMS) as internal standard, 

unless otherwise stated. Mass spectra (m/z) were recorded on a Thermo Finnigan LCQ DECA 

XP Plus mass spectrometer at the Max Planck Institute of Psychiatry, while the high resolution 

mass spectrometry was carried out at the MPI for Biochemistry (Microchemistry Core Facility) 

on a Varian Mat711 mass spectrometer.  
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HPLC analysis was carried out using a Jupiter 4 µm Proteo column (250 x 4.6 mm, 5µm 

particle size), Wavelength: 224nm, 280nm; Flow rate: 1ml/min; Buffer A: 0.1% TFA in 5% 

MeCN/water; Buffer B: 0.1% TFA in 95% MeCN/water; Gradient A: After 1min elution with 

100% buffer A, linear gradient of 0-100% buffer B for 30 min. 

Method LCMS: YMC Pro C-8 (100 x 4.6 mm, 3µm particle size) column, Wavelength: 

224nm, 280nm; Flow rate: 1ml/min; Buffer A: 0.1% HCOOH  in 5% MeCN/water; Buffer B: 

0.1% HCOOH in 95% MeCN/water; Gradient B: 1min 100% buffer A, then linear gradient of 

0-100% buffer B for 11 min. 

 Final compounds were purified using a preparative HPLC Jupiter 10μm Proteo (250 x 21.7 

mm, 10µm particle size) column. Compounds were dissolved in 40% buffer B and the 

purification was carried out with an injection loop volume of 2ml. Wavelength: 224nm; Flow 

rate: 25ml/min; Buffer A: 0.1% TFA in 5% MeOH/Water; Buffer B: 0.1% TFA in 95% 

MeOH/water; Gradient C: 40% B, then a linear gradient of 60-70% B for 15 min.  

  

Synthesis of 2-(3-((1R)-1-(1-(((9H-fluoren-9-yl)methoxy)carbonyl)piperidine-2-

carbonyloxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 5a. 

The reaction was performed as previously described 
20

 to yield the pipecolic ester 1. 

To the pipecolic ester 1  (3g, 4mmol) a solution of 20% TFA in DCM (20mL) was added at 

0
o
C. The mixture was allowed to warm to room temperature and stirred for 6h after which time 

it was diluted with DCM and evaporated under reduced pressure to remove solvents and TFA. 

The crude material was then subjected to column chromatography using hexane: EtOAc: TFA 

7.2:2.8: 0.2 to afford product 5a (2.7g, 4mmol, 100%). 

TLC (Hexane: EtOAc: TFA 7:2.8:0.2): Rf = 0.38. 

HPLC (Gradient A) retention time= 32.21-32.62 min 

1
H NMR (600 MHz, CDCl3) δ=  1.39-1.49 (m, 2H), 1.74 (dd, 3H, J= 11.7, 45.6 Hz), 2.02-2.11 

(m, 1H), 2.15-2.31 (m, 2H), 2.53-2.70 (m, 2H), 2.75-2.83 (m, 1H), 3.19 (t, 1H, J= 12.1 Hz), 

3.85 (s, 6H), 3.99-4.12 (m, 1H), 4.22 (t, 1H, J= 6.8Hz), 4.33-4.45 (m, 1H), 4.65 (dd, 1H, J= 

16.6 35.3 Hz), 4.83 (s, 0.5H), 4.99 (d, 0.5H, J= 4 Hz), 5.67 (dd, 1H, J= 4.8, 8.3 Hz), 6.54-6.71 

(m, 2H), 6.72-6.82 (m, 2H), 6.82-6.97 (m, 2H), 7.16-7.31 (m, 4H), 7.31-7.41 (m, 2H), 7.51-

7.55 (m, 1H), 7.67-7.77 (m, 2H). 

13
C NMR (150 MHz, CDCl3) δ= 21.07, 25.02, 27.27, 31.80, 38.43, 42.24, 47.39, 54.95, 56.23, 

56.30, 65.56, 68.68, 76.94, 110.38, 111.76, 112.07, 115.98, 120.07, 120.33, 120.60, 125.32, 

127.45, 128.11, 130.17, 133.71, 141.60, 142.52, 143.91, 144.09, 147.70, 149.21, 157.22, 

158.17, 170.94, 172.24. 
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Synthesis of 2-(3-((1R)-1-(1-(((9H-fluoren-9-yl)methoxy)carbonyl)piperidine-2-carbonyl-

oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 5b.  

The reaction was done as previously described 
20

 to yield the pipecolic ester 2. 

To the pipecolic ester 2  (0.52 g, 0.71 mmol) a solution of 20% TFA in DCM (20mL) was 

added at 0
o
C. The mixture was allowed to warm to room temperature and stirred for 2.5 h after 

which time it was diluted with DCM and evaporated under reduced pressure to remove solvents 

and TFA. The crude material was then subjected to column chromatography using Hexane: 

EtOAc: TFA 6:4: 0.1 to yield product 5b (410g, 0.60 mmol, 84%). 

TLC (Hexane: EtOAc: TFA 6:4:0.1): Rf = 0.38. 

MS (ESI) m/z: found Rt 14.72 min. (Method LCMS), 679.77 [M + H]
 +

, 701.53 [M + Na]
+
, 

calculated 679.35 [M + H]
 +

, 701.28 [M + Na]
+
. 

 

Coupling of free acid 5a to the trityl resin. 

2-Chloro tritylresin (6.1g, 7.9mmol, Novabiochem) resin was swollen in DCM for 1h and 

added to a mixture of 2-(3-((1R)-1-(1-(((9H-fluoren-9-yl)methoxy)carbonyl) piperidine-2-

carbonyloxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy) acetic acid 5a (2.7 g, 3.97mmol ) and 

i-Pr2EtN (2g, 15.89mmol) in 20 ml dry DCM. The reaction was monitored by removing 

aliquots of the reactant mixture (10 μL) over a period of 1- 24h which were filtered and dried. 

The analytes were then re-dissolved in buffer A subjected to HPLC analysis and checked for 

the disappearance of compound 5a. The slurry was agitated for 16h and then filtered. The resin 

was washed with DCM (3 x 50ml); DCM: MeOH: i-Pr2EtN 17:2:1 (3 x 50ml); DCM (3 x 

20ml); DMF (3 x 25ml); MeOH (3 x 50ml); CHCl3 (3 x 50ml) and diethyl ether (3 x 50ml). 

The resin was dried under high vacuum overnight to yield a free flowing resin immobilized 

with compound 5a. The loading of the free acid was calculated using Fmoc deprotection and 

measurement of the Fmoc absorbance. 

 

Coupling of free acid 5b to the trityl resin. 

Loading reaction was carried out as described previously. 

 

Final Library Synthetic route:  

Fmoc-protected immobilized pipecolate 5a was pre-weighed (approximately 50 mg, 0.019 

mmol) and transferred to each of 36 wells of a 96-well parallel synthesis reactor platform 

obtained from FlexChem® peptide synthesis system. The resin was swollen for 1h in 1mL 



123 Medicinal chemistry approach to identify new ligands for FKBP51 and FKBP52 
 

 
 

DCM followed by addition of 2mL of 20% 4-methyl piperdiene in DCM and the reactor was 

stirred for 1h for the Fmoc deprotection to give 6a. The wells were washed with DCM (1X 

3mL) by vacuum assisted filtration. The resins were dried and the sulfonyl chlorides (0.095 

mmol) obtained commercially from Maybridge were weighed (15- 40mg) and added to the 

wells as a solution in DIPEA (30 mg, 0.237 mmol) in 0.25mL DCM for the first
 
coupling and 

15 mg (0.119 mmol) in 0.25mL DCM for the second coupling with 0.057 mmol (5- 12mg) 

sulfonyl chloride. The reaction time was 4h for first coupling and 20h for the second coupling. 

The wells were subsequently washed with DCM and ethanol to completely remove excess of 

unreacted sulfonyl chlorides. The compounds were finally cleaved in presence of 1mL of 1% 

TFA solution in DCM for 20 min. Each of the solutions were collected by vacuum filtration 

and dried by air blowing to give approximately 12mg of the crude products. The purity of the 

above crude products was analyzed by HPLC using gradient A and 36 of these compounds 

were further purified by preparative HPLC using the gradient B. The remaining compound 50 

was purified using ion exchange column chromatography to get rid of the traces of unreacted 

educt. The purified compounds were characterized using mass spectroscopy and dried under 

high vacuum to yield approximately 1-3 mg of the final desired sulfonamides.   

 

Medium Scale synthesis: 

Deprotection of Fmoc resin 6a:  

The coupled resin 5a was weighed (210 mg, 0.08mmol) and added to syringes, swollen in 

DCM (4 mL) for 1h, and the Fmoc protecting group was removed using 20% 4-methyl 

piperidine/DCM (4ml) for 1h. After filtration, the resin was washed with DCM (3 x 5ml) and 

used for the next coupling step. 

 

Synthesis of sulfonamides: 

To the above resin i-Pr2EtN (40mg, 0.317mmol) in dry DCM (3 mL) was added and stirred for 

20min. To this solution the sulfonyl chloride (0.237mmol) in 500 µL of DCM was added and 

the reaction was stirred for 4h at room temperature. After the first coupling step the resins were 

filtered, washed with DCM (3 x 10ml) and then subjected to second coupling with i-Pr2EtN 

(30mg, 0.237mmol), sulfonyl chloride (0.158 mmol) in DCM (3 mL) and stirred for 16h at 

room temperature. The resins were washed with DCM (3 x 5ml) and dried to give the 

derivatized resins. These were re-swollen in DCM reacted with 1% TFA/DCM (3ml) for 1h 

and then washed with 1% TFA/DCM (3 x 3ml) and further washed with DCM (3 x 5ml). The 

combined filtrates were concentrated in vacuo to yield the compounds 8-37.  (crude weight ~ 
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50mg). The crude compounds were further purified by preparative HPLC using Gradient C. 

The purified peaks were further dried by lyophilization. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(4-(pyrimidin-2-yl)phenylsulfonyl) 

piperidine -2-carbonyloxy) propyl)phenoxy)acetic acid 8 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.18, yield= 13.5mg (30%). 

HPLC (Gradient A) retention time= 25.1-25.3 min 

1
H NMR (600 MHz, CDCl3) δ= 1.29 (t, 1H, J = 7.2 Hz), 1.55 (dd, 1H, J = 3.6, 9 Hz), 1.67 (d, 

1H, J = 12.6), 1.72 (d, 1H, J = 13.8 Hz), 1.85-1.91 (m, 1H), 1.93-1.99 (m, 1H), 2.13- 2.19 (m, 

1H), 2.24 (d, 1H, J = 13.2 Hz), 2.45- 2.50 (m, 2H), 2.55- 2.59 (m, 1H), 3.11-3.16 (m,2H), 3.75 

(d, 1H, J = 9.6 Hz), 3.82 (s, 3H), 3.83 (s, 3H), 4.91 (d, 1H, J = 4.8 Hz), 5.53 (q,1H, J = 3, 4.8 

Hz), 6.61 (s, 1H), 6.63 (d, 1H, J = 7.8 Hz), 6.74 (d, 1H, J = 7.8 Hz), 6.80 (s, 1H), 6.92 (d, 1H, 

J = 7.2 Hz), 7.01(d, 1H, J = 7.8 Hz), 7.32- 7.35 (m,2H), 7.59 (d. 2H, J = 8.4 Hz), 8.25 (d, 2H, 

J = 8.4 Hz), 8.91 (d, 2H, J = 4.8 Hz). 

13
C NMR (150 MHz, CDCl3) δ= 20.02, 24.74, 28.17, 31.42, 38.30, 42.45, 45.66, 55.33, 55.82, 

65.24, 76.43, 111.28, 111.60, 112.94, 114.37, 118.85, 120.02, 120.09, 127.61, 128.51, 130.01, 

133.25, 140.05, 141.31, 142.19, 147.34, 148.85, 157.41, 157.77, 162.90, 169.73 

MS (ESI) m/z: found Rt 11.74 min. (Method LCMS), 676.12 [M + H]
 +

, 698.16 [M + Na]
+
, 

HRMS 676.2305 [M + H]
 +

, calculated 676.2251 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(3-chlorophenylsulfonyl)piperidine-2-carbonyloxy)-3-(3,4-

dimethoxy phenyl) propyl- phenoxy)acetic acid 9 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.50, yield= 25.4 mg (57%). 

HPLC (Gradient A) retention time= 26.1-26.5 min 

1
H NMR (400 MHz, DMSO) δ= 1.12-1.18 (m,4H), 1.59 (t, 2H, J = 13.6 Hz), 1.98-2.13 (m, 

2H), 2.40 (t, 2H, J = 6.8 Hz), 3.07 (t. 1H, J = 12 Hz), 3.61 (d, 1H, J = 12 Hz), 3.69 (s,3H), 

3.70 (s,3H), 4.55 (s,2H), 4.68 (d, 1H, J = 4Hz), 5.50 (t, 1H, J = 4.8Hz), 6.56 (d,1H, J = 7.6 

Hz), 6.60 (s,1H), 6.72 (d,1H, J = 8 Hz), 6.76-6.80 (m, 3H), 7.19- 7.26 (m, 2H), 7.46 (d, 2H, J 

= 7.2 Hz), 7.61 (s, 1H). 

13
C NMR (100 MHz, DMSO) δ= 20.05, 24.51, 27.74, 31.05, 37.92, 42.79, 55.32, 55.76, 64.99, 

76.13, 111.95, 112.23, 112.85, 114.11, 119.22, 120.33, 125.36, 126.62, 129.77, 130.88, 132.66, 

133.48, 134.48, 141.75, 141.95, 147.34, 148.92, 158.18, 169.61, 172.41. 

MS (ESI) m/z: found Rt 12.34 min. (Method LCMS), 654.17, 656.16 [M + Na]
+
. 

 HRMS 632.2212, 634.2205[M + H]
 +

, calculated 632.2143 [M + H]
 +

. 
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Synthesis of 2-(3-((R)-1-((S)-1-(benzo[d]thiazol-5-ylsulfonyl)piperidine-2-carbonyloxy)-3-

(3,4-dimethoxyphenyl)propyl) phenoxy)acetic acid 10 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.20, yield= 25.4mg (59%). 

HPLC (Gradient A) retention time= 24.6-25.0 min 

1
H NMR (600 MHz, CDCl3) δ= 1.08-1.15 (m,1H), 1.38-1.45 (m,1H), 1.60 (t, 2H, J = 12 Hz), 

1.70-1.76 (m,1H), 1.94-2.00 (m,1H), 2.11- 2.18 (m,1H), 2.43- 2.54 (m,1H), 3.23 (dt, 1H, J = 3, 

6 Hz), 3.76-3.78 (m,1H), 3.85(s, 6H), 4.65 (s, 2H), 4.84 (d, 1H, J = 4.2 Hz), 5.55 (t, 1H, J = 

7.2 Hz)),  6.63 (s, 1H), 6.64 (d, 1H, J = 1.8 Hz)), 6.78 (d, 2H, J = 5.4 Hz), 6.81 (dd, 1H, J = 

2.4, 6 Hz), 6.85 (d, 2H, J = 8.5 Hz), 7.22 (t, 1H, J = 7.8 Hz), 7.8 (dd, 1H, J = 1.8, 8.4 Hz), 8.13 

(d, 1H, J = 8.4 Hz), 8.46 (d, 1H, J = 1.8 Hz), 9.18 (s, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 19.91, 24.61, 27.69, 31.22, 37.87, 42.81, 55.27, 55.91, 55.92, 

65.00, 76.54, 111.34, 111.73, 112.91, 114.16, 119.88, 120.14, 121.92, 123.95, 124.83, 129.78, 

133.20, 133.83, 137.56, 141.50, 147.39, 148.87, 154.92, 157.56, 158.03, 169.95, 171.84 

MS (ESI) m/z: found Rt 11.34 min. (Method LCMS), 655.06 [M + H]
 +

, 677.16 [M + Na]
+
. 

HRMS 655.2286 [M + H]
 +

, calculated 655.2206 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(furan-3-ylsulfonyl)piperidine-2-

carbonyloxy) propyl)phenoxy)acetic acid 11 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.37, yield= 25mg (56%). 

HPLC (Gradient A) retention time= 24.4-24.8 min 

1
HNMR (300 MHz, CDCl3) δ= 1.10-1.18 (m,1H), 1.43-1.52 (m,1H), 1.61-1.81(m,2H), 2.00-

2.12(m,1H), 2.19-2.30 (m, 2H), 2.37 (s,2H), 2.52-2.65 (m,2H), 3.14-3.28 (m,2H), 3.87(s,3H), 

3.88 (s,3H), 4.68 (s, 2H), 4.82 (d, 1H, J = 4.5 Hz), 5.70 (dd. 1H, J = 2.1,5.7 Hz) , 6.58 (q,1H, J 

= 0.9, 1.2Hz), 6.70 (dd, 2H, J = 2.1, 4.5 Hz), 6.79-6.87 (m,2H), 6.91-6.96 (m, 2H), 7.25 (d, 

1H, J = 2.1 Hz), 7.44 (t, 1H, J = 2.4 Hz), 7.91 (q, 1H, J = 0.9 Hz). 

13
C NMR (75 MHz, CDCl3) δ=  21.45, 24.62, 27.72, 31.25, 37.92, 42.57, 55.18, 55.93, 55.94, 

64.92, 76.40, 108.52, 111.40, 111.80, 112.88, 114.30, 119.97, 120.20, 127.37, 128.21, 133.29, 

141.86, 144.42, 145.50, 147.42, 148.92, 157.66, 170.10 

MS (ESI) m/z: found Rt 11.29 min. (Method LCMS), 610.16 [M + Na]
+
. 

HRMS 588.2354 [M + H]
 +

, calculated 588.2325 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(benzo[b]thiophen-2-ylsulfonyl)piperidine-2-carbonyloxy)-3-

(3,4-dimethoxyphenylpropyl)phenoxy)acetic acid 12 
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TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.62, yield= 23.8 mg (55%). 

HPLC (Gradient A) retention time= 21.8-22.2 min 

1
HNMR (300 MHz, CDCl3) δ= 1.12- 1.21 (m,1H), 1.44-1.52(m,1H), 1.60-1.64 (m,2H), 1.70-

1.81 (m,1H), 1.96-2.07 (m,1H), 2.14-2.26(m,2H). 2.47-2.65(m,2H), 3.36 (dt, 1H, J = 3 Hz), 

3.86 (s,3H), 3.87 (s, 3H), 4.66 (s,2H), 4.87 (d, 1H, J = 4.2 Hz), 5.65 (dd, 1H, J = 2.4, 6.6 Hz), 

6.66-6.69 (m,2H), 6.77-6.85 (m,2H), 6.91(d, 2H, J = 7.2), 7.24 (t, 1H, J = 8.1 Hz), 7.40-

7.49(m, 2H), 7.79-7.84 (m,3H). 

13
C NMR (75 MHz, CDCl3) δ=  19.87, 24.47, 27.45, 31.28, 37.98, 43.04, 55.47, 55.93, 55.94, 

64.90, 76.44, 111.39, 111.84, 112.73, 114.36, 119.95, 120.22, 122.66, 125.36, 125.58, 127.08, 

128.91, 129.76, 133.36, 137.63, 141.35, 141.61, 141.82, 147.39, 148.90, 157.59, 169.84. 

MS (ESI) m/z: found Rt 12.28 min. (Method LCMS), 676.95 [M + Na]
+
. 

HRMS 732.2501 [M + DMSO]
 +

, calculated 732.2592[M + DMSO]
 +

. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(3-cyanophenylsulfonyl)piperidine-2-carbonyloxy)-3-(3,4-

dimethoxyphenyl )propyl)phenoxy)acetic acid 13 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.58, yield= 29.5mg (61%). 

1
HNMR (600 MHz, CDCl3) δ= 1.02- 1.10 (m,1H), 1.40-1.47 (m,1H), 1.60-1.64 (m,2H), 1.72-

1.78 (m,1H), 1.99-2.06 (m,1H), 2.16-2.22 (m,2H), 2.49-2.59 (m,2H), 3.15(dt,1H, J = 3 Hz, 

13.2 Hz),3.7 (d, 1H, J = 9.6 Hz), 3.86 (s,3H), 3.87 (s, 3H), 4.67 (s,2H), 4.81 (d, 1H, J = 4.8 

Hz), 5.60 (dd, 1H, J = 6 Hz), 6.67-6.69 (m,2H), 6.81 (d, 1H, J = 7.8 Hz), 6.83-6.84 (m, 1H), 

6.90 (d,1H, J = 7.8 Hz), 7.26 (dd, 1H, J = 7.8  Hz), 7.56 (t, 1H, J = 7.8 Hz), 7.78 (td, 1H, J = 

1.2 Hz, 7.8 Hz), 7.99-7.99 (m, 1H), 8.07 (t, 1H, J = 1.8Hz). 

13
C NMR (150 MHz, CDCl3) δ= 19.83, 24.63, 27.80, 31.25, 37.82, 42.88, 55.39, 55.93, 55.97, 

64.78, 76.70, 111.37, 111.82, 112.95, 113.38, 114.23, 117.30, 120.00, 120.16, 129.87, 130.70, 

131.05, 133.16, 135.56, 141.58, 141.77, 147.43, 148.88, 157.53, 169.67, 171.85. 

MS (ESI) m/z: found Rt 13.12min. (Method LCMS), 645.40 [M + Na]
+
. 

HRMS 701.2628 [M + DMSO]
 +

, calculated 701.2624 [M + DMSO]
 +

. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(3-nitrophenylsulfonyl)piperidine -

2-carbonylo xy propyl)phenoxy)acetic acid 14 

TLC (Hexane: EtOAc: TFA 5.5:4.5:0.2): Rf = 0.44, yield= 24.0 mg (48%). 

HPLC (Gradient A) retention time= 24.4-24.8 min 

1
HNMR (600 MHz, CDCl3) δ= 1.00- 1.01 (m,1H), 1.43-1.49 (m,1H), 1.60-1.63 (m,2H), 1.74-

1.80 (m,1H), 1.98-2.04 (m,1H), 2.15-2.23 (m,2H), 2.46-2.57 (m,2H), 3.15 (dt,1H, J = 2.4 Hz, 
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12.6 Hz), 3.74 (td, 1H, J = 2.4, 9.6 Hz), 3.85 (s,3H), 3.86 (s, 3H), 4.65 (s,2H), 4.85 (d, 1H, J = 

4.2 Hz), 5.57 (dd, 1H, J = 6.6 Hz), 6.65-6.67 (m,2H), 6.79-6.82 (m, 3H), 6.87 (d, 1H, J = 7.8 

Hz), 7.24 (dd, 1H, J = 7.8  Hz), 7.62 (t, 1H, J = 7.8 Hz), 8.06-8.08 (m, 1H), 8.34-8.36 (m, 1H), 

8.59(t, 1H, J = 1.8 Hz). 

13
C NMR (150 MHz, CDCl3) δ= 19.81, 24.65, 27.86, 31.21, 37.76, 42.88, 55.47, 55.92, 55.93, 

64.76, 76.73, 111.35, 111.77, 112.98, 114.14, 120.12, 122.34, 126.91, 129.85, 130.13, 132.62, 

133.17, 141.53, 142.09, 147.40, 148.07, 148.87, 157.55, 169.65, 172.65 

MS (ESI) m/z: found RT 13.40 min. (Method LCMS), 665.25 [M + Na]
+
. 

 HRMS 721.2027 [M + DMSO]
 +

, calculated 721.2022 [M + DMSO]
 +

. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(3-aminophenylsulfonyl)piperidine-2-carbonyloxy)-3-(3,4-

dimethoxyphenyl)propyl)phenoxy)acetic acid 15 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.28, yield= 35 mg (66%). 

HPLC (Gradient A) retention time= 21.32-21.52 min 

1
HNMR (600 MHz, CDCl3) δ= 1.21-1.29 (m, 1H), 1.46-1.52 (m, 1H), 1.60-1.66 (m, 1H), 1.69-

1.74 (m, 1H), 1.79- 1.86 (m, 1H), 1.89-1.96 (m, 1H), 2.07-2.13 (m, 1H), 2.42-2.56 (m, 2H), 

3.10-3.25 (m, 1H), 3.74-3.79 (m, 1H), 3.84 (s, 6H), 4.66 (s, 2H), 4.70-4.74 (m, 1H), 5.53 (s, 

1H), 6.60-6.68 (m, 3H), 6.74-6.80 (m, 2H), 6.82-6.86 (m, 2H), 7.13-7.20 (m, 2H), 7.36-7.54 

(m, 2H). 

13
C NMR (150 MHz, CDCl3) δ= 20.06, 24.80, 28.03, 31.36, 37.99, 42.76, 55.20, 55.89, 55.92, 

65.02, 76.38, 111.33, 111.68, 112.54, 114.44, 118.69, 119.84, 120.12, 123.19, 124.25, 129.94, 

130.21, 133.19, 139.69, 140.92, 141.93, 147.39, 148.87, 157.64, 169.72, 172.07 

MS (ESI) m/z: found RT 10.87 min. (Method LCMS), 613.12 [M + H]
+
, 635.17 [M + Na]

+
, 

HRMS 613.2704 [M + H]
 +

, calculated 613.2682 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(3-(2-methylpyrimidin-4-

yl)phenylsulf-onyl) piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid 16 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.22, yield= 48.3 mg (90%). 

HPLC (Gradient A) retention time= 23.1-23.5 min 

1
HNMR (600 MHz, CDCl3) δ= 1.14- 1.21 (m,1H), 1.51-1.58(m,1H), 1.61-1.63 (m,1H), 1.71-

1.75 (m,1H), 1.83-1.90 (m,1H), 1.96-2.02 (m,1H). 2.12-2.18 (m,1H), 2.32 (d, 1H, J = 13.8 Hz), 

2.45- 2.49 (m,1H), 2.52-2.57(m,1H),3.66 (d, 1H, J = 12 Hz), 3.79 (s,3H), 3.80 (s, 3H), 4.59 

(d,1H, J = 16.8 Hz), 4.67 (d, 2H, J = 16.8 Hz), 4.98 (d, 1H, J = 5.4 Hz), 5.51 (dd, 1H, J = 5.4 

Hz), 6.66-6.64 (m,2H), 6.75 (m, 2H, J= 8.4 Hz), 6.81-6.86 (m, 2H), 7.26 (m, 1H), 7.66 (t, 1H, J 
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= 7.8 Hz), 8.01(d, 1H, J = 6 Hz), 8.01- 8.08 (m, 1H), 8.41-8.43(m,1H), 8.73 (t, 1H, J = 1.8 

Hz), 9.07 (d, 1H, J = 6.6 Hz). 

13
C NMR (150 MHz, CDCl3) δ= 20.19, 22.94, 24.75, 28.08, 31.23, 37.79, 43.03, 55.21, 55.87, 

55.88, 65.36, 77.06, 111.41, 111.61, 112.78, 115.21, 115.33, 118.94, 120.22, 127.o2, 129.86, 

130.19, 131.83, 132.08, 133.02, 134.97, 141.62, 141.84, 147.39, 148.85, 151.43, 157.99, 

164.28, 167.69, 170.58, 171.54 

MS (ESI) m/z: found Rt 12.59 min. (Method LCMS), 690.37 [M + H]
+
, 712.17 [M + Na]

+
, 

HRMS 690.2936 [M + H]
 +

, calculated 690.2907 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(3-(pyrimidin-4-yl)phenylsulfonyl) 

piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid 17 

TLC (Hexane: EtOAc: TFA 5:4.8:0.2): Rf = 0.43, yield= 41.9 mg (80%). 

HPLC (Gradient A) retention time= 24.2-24.6 min 

1
HNMR (600 MHz, CDCl3) δ= 1.10- 1.17 (m,1H), 1.37-1.44 (m,1H), 1.58-1.61 (m,2H), 1.66-

1.72 (m,1H), 1.94-2.00 (m,1H),  2.13-2.19 (m,2H),  2.42-2.47 (m,1H), 2.50- 2.55 (m,1H), 

3.25(dt,1H, J= 3 Hz, 12.6 Hz),3.83 (d, 1H, J = 6 Hz), 3.85 (s,3H), 3.85 (s, 3H), 4.67 (d, 2H, J 

=6 Hz), 4.83 (d, 1H, J = 4.2 Hz), 5.60 (dd, 1H, J =5.4 Hz),6.62-6.64 (m,2H), 6.77 (d, 1H, J 

=8.4 Hz), 6.80-6.82 (m, 1H), 6.86-6.88 (m.2H), 7.22 (t, 1H, J =8.4  Hz), 7.28 (t, 1H, J = 4.8 

Hz), 7.59 (t, 1H, J = 7.8 Hz), 7.92-7.94 (m, 1H), 8.55 (dd, 1H, J = 1.2 Hz, 7.8Hz), 8.85 (d, 3H, 

J = 4.8 Hz). 

13
C NMR (150 MHz, CDCl3) δ= 19.99, 24.53, 27.41, 31.28, 38.02, 42.93, 55.35, 55.88, 55.92, 

64.85, 111.31, 111.74, 112.30, 114.60, 119.88, 119.95, 120.17, 127.01, 129.17, 129.45, 129.71, 

132.08, 133.42, 137.71, 141.12, 141.77, 147.27, 148.79, 157.41, 157.63, 162.78, 170.08, 

172.04. 

MS (ESI) m/z: found Rt 13.30 min. (Method LCMS), 676.20 [M + H]
+
, 698.33 [M + Na]

+
, 

HRMS 676.2783 [M + H]
 +

, calculated 676.2811 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(3-fluorophenylsulfonyl)pipe-

ridine-2-carbonyloxy)propyl)phenoxy)acetic acid 18 

TLC (Hexane: EtOAc: TFA 5.5:4.5:0.2): Rf = 0.44, yield= 23.5 mg (49%). 

HPLC (Gradient A) retention time= 24.70-24.85 min 

1
HNMR (300 MHz, CDCl3) δ= 1.24-1.33 (m,1H), 1.41-1.53(m,1H), 1.63-1.85 (m, 3H), 1.94-

2.06 (m,1H), 2.12-2.27 (m, 2H), 2.45-2.61 (m, 2H), 3.18 (t, 1H, J= 12.7 Hz), 3.74 (d, 1H, J= 
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12.6 Hz), 3.85 (s, 6H), 4.71 (s, 2H), 4.80 (d, 1H, J= 4.8Hz), 5.63 (t, 1H, J= 7.8 Hz), 6.65-6.67 

(m, 2H), 6.75 (d, 1H, J= 8.7 Hz), 6.89- 6.93 (m, 3H), 7.13- 7.34 (m, 3H), 7.39-7.41 (m, 2H). 

13
C NMR (75 MHz, CDCl3) δ= 20.05, 24.62, 27.89, 31.24, 37.95, 42.77, 55.37, 55.88, 55.93, 

65.32, 76.34, 111.38, 111.78, 112.56, 114.18, 114.50, 119.43, 119.71, 120.18, 122.83, 129.86, 

130.49, 133.29, 141.77, 147.39, 148.89, 157.75, 160.53, 163.86, 165.31, 169.73. 

MS (ESI) m/z: found Rt 13.19 min. (Method LCMS), 638.19 [M + Na]
+
. 

HRMS 616.2488 [M + H]
 +

 calculated 616.2468 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(3-bromophenylsulfonyl)piperidine-2-carbonyloxy)-3-(3,4-

dimethoxyphenyl)propyl)phenoxy)acetic acid 19 

 

TLC (Hexane: EtOAc: TFA 5.5:4.5:0.2): Rf = 0.36, yield= 29.87mg (57%). 

HPLC (Gradient A) retention time= 25.89-26.02 min 

1
HNMR (300 MHz, CDCl3) δ = 1.24-1.32 (m, 1H), 1.39-1.52 (m,1H), 1.62-1.85 (m, 3H), 1.94- 

2.05(m, 1H), 2.11–2.27(m, 2H), 2.44-2.62 (m, 2H), 3.16 (dt, 1H, J= 2.7; 12.6 Hz), 3.71 (d, 1H, 

J= 9.9 Hz), 4.70 (s, 2H), 4.80 (d, 1H, J= 4.5 Hz), 5.65 (t, 1h, J= 8.1 Hz), 6.65-6.68 (m, 2H), 

6.79 (d, 1H, J= 8.7 Hz), 6.88-6.93 (m, 3H), 7.11 (t, 1H, J= 8.1 Hz), 7.31 (t, 1H, J= 8.25 Hz), 

7.52 (dd, 1H, J= 0.9; 7.8 Hz), 7.59 (dd, 1H, J= 0.9, 7.9 Hz), 7.87 (t, 1H, J= 1.8Hz). 

13
C NMR (75 MHz, CDCl3) δ= 20.06, 24.59, 27.87, 31.23, 37.96, 42.79, 55.48, 55.89, 55.94, 

64.86, 76.43, 111.41, 111.80, 112.60, 114.53, 120.09, 120.21, 122.73, 125.64, 129.89, 130.33, 

133.32, 135.46, 141.60, 141.75, 147.37, 148.86, 157.75, 169.81, 172.68. 

MS (ESI) m/z: found Rt 13.33 min. (Method LCMS), 698.31, 700.12 [M + Na]
+
. 

 HRMS 676.1716, 678.1715 [M + H]
 +

, calculated 676.1718 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(3,5-dichlorophenylsulfonyl)piperidine-2-carbonyloxy)-3-

(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 20 

TLC (Hexane: EtOAc: TFA 5.5:4.5:0.2): Rf = 0.58, yield= 22.6mg (44%). 

HPLC (Gradient A) retention time= 26.8-27.3 min 

1
HNMR (600 MHz, CDCl3) δ= 1.03- 1.10 (m,1H), 1.40-1.47 (m,1H), 1.60-1.63 (m,2H), 1.71-

1.77 (m,1H), 1.99-2.06 (m,1H), 2.16-2.23 (m,2H), 2.49-2.59 (m,2H), 3.20 (dt,1H, J =  2.4 Hz, 

12.6 Hz), 3.71 (td, 1H, J = 1.2, 12.6 Hz), 3.85 (s,3H), 3.86 (s, 3H), 4.66 (s,2H), 4.78 (d, 1H, J 

= 4.8 Hz), 5.63 (dd, 1H, J = 6 Hz), 6.66-6.68 (m,2H), 6.79 (d, 1H, J =  7.8 Hz), 6.83-6.84 (m, 

1H), 6.85 (t,1H, J = 2.4 Hz), 6.90 (d, 1H, J = 7.8 Hz), 7.26 (dd, 1H, J = 7.8  Hz), 7.49 (t, 1H, J 

= 1.8 Hz), 7.66 (d, 1H, J = 1.8 Hz). 
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13
C NMR (150 MHz, CDCl3) δ= 19.74, 24.61, 27.74, 31.28, 37.84, 42.89, 55.32, 55.92, 64.78, 

76.65, 111.33, 111.75, 112.95, 114.17, 120.00, 120.17, 125.45, 129.87, 132.42, 133.21, 135.73, 

141.63, 142.89, 147.40, 148.86, 157.53, 169.57, 172.53. 

MS (ESI) m/z: found Rt 14.33 min. (Method LCMS), 688.19, 690.19 [M + Na]
+
. 

 HRMS 666.1753, 668.1713 [M + H]
 +

, calculated 666.1753 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(2,3-dichlorophenylsulfonyl)piperidine-2-carbonyloxy)-3-

(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 21 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.50, yield= 18.7 mg ( 43%) 

HPLC (Gradient A) retention time= 27.1-27.5 min 

1
HNMR (600 MHz, CDCl3) δ= 1.02- 1.08 (m,1H), 1.41-1.46 (m,1H), 1.60-1.64 (m,2H), 1.70-

1.76 (m,1H), 2.00-2.06 (m,1H), 2.15-2.24 (m,2H), 2.50-2.60 (m,2H), 3.21 (dt,1H, J =  2.4 Hz, 

12.6 Hz), 3.70 (td, 1H, J = 1.2, 12.6 Hz), 3.85 (s,3H), 3.86 (s, 3H), 4.65 (s,2H), 4.77 (d, 1H, J 

= 4.8 Hz), 5.63 (dd, 1H, J = 6 Hz), 6.65-6.67(m,2H), 6.73 (d, 1H, J =  7.8 Hz), 6.80-6.82 (m, 

1H), 6.85 (t,1H, J = 2.4 Hz), 6.92 (s,1H), 7.25 (dd, 1H, J = 7.8  Hz), 7.49 (t, 1H, J = 1.8 Hz), 

7.67 (d, 1H, J = 1.8 Hz). 

MS (ESI) m/z: found Rt 12.79 min. (Method LCMS), 688.14, 690.11 [M + Na]
+
. 

HRMS 688.1090 , 690.1061 [M + Na]
 +

, calculated 688.1086, 690.1092 [M + Na]
 +

. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(3,4-dimethoxyphenylsulfonyl) 

piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid 22 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.38, yield- 32.89 mg (62%). 

HPLC (Gradient A) retention time= 23.1-23.5 min 

1
HNMR (600 MHz, CDCl3) δ= 1.08- 1.15 (m,1H), 1.32-1.39(m,1H), 1.53-1.60(m,2H), 1.64-

1.70(m,1H), 1.99-2.06 (m,1H), 2.14-2.23(m,2H). 2.48-2.59(m,2H), 3.19 (dt, 1H, J = 3, 10.2 

Hz), 3.63 (d,1H, J = 11.4Hz), 3.83 (s,3H), 3.84 (s,3H), 3.87 (s,3H), 3.87 (s, 3H),  4.65 (s,2H), 

4.78 (d, 1H, J = 4.8 Hz), 5.64 (dd, 1H, J = 1.2, 6.0 Hz), 6.66 (d,2H, J = 7.2 Hz), 6.73 (s, 1H, J 

= 8.4Hz), 6.81- 6.83(m, 2H), 6.88-6.91 (m, 2Hz), 7.22-7.24(m,2H), 7.41 (dd,1H, J = 0.6, 

8.4Hz).  

13
C NMR (150 MHz, CDCl3) δ= 20.04, 24.43, 27.53, 31.25, 37,98,42.63, 55.16, 55.88,55.89, 

56.06, 56.17, 64.89, 76.48, 109.76, 110.41, 111.32, 111.74, 112.74, 114.40, 119.85, 120.16, 

121.03, 129.75, 131.88, 133.30, 141.79, 147.34, 148.84, 148.93, 152.41, 157.58   

MS (ESI) m/z: found Rt 12.83 min. (Method LCMS), 680.21 [M + Na]
+
. 

 HRMS 680.2753 [M + Na]
 +

, calculated 658.2744. 
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Synthesis of 2-(3-((R)-1-((S)-1-(3-chloro-4-methoxyphenylsulfonyl)piperidine-2-carbony 

loxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 23 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.45, yield- 11.7mg (25%). 

HPLC (Gradient A) retention time= 24.98-25.12 min 

1
HNMR (300 MHz, CDCl3) δ= 1.25-1.34 (m, 1H), 1.41-1.54 (m, 1H), 1.63-1.85 (m, 3H), 1.95-

2.06 (m, 1H), 2.13-2.27 (m, 2H), 2.46-2.64 (m, 2H), 3.15 (dt, 1H, J= 2.7, 12.6 Hz), 3.69 (d, 1H, 

J= 12.1 Hz), 3.86 (s, 6H), 3.89 (s, 3H), 4.72 (s, 2H), 4.81 (d, 1H, J= 4.5 Hz), 5.66 (t, 1H, J= 6.6 

Hz), 6.65-6.72 (m, 3H), 6.78 (d, 1H, J= 8.7 Hz), 6.91- 6.96 (m,3H), 7.32 (t, 1H, J= 8.3 Hz), 

7.47 (dd, 1H, J= 2.4, 9.3 Hz), 7.72 (d, 1H, J= 2.4 Hz) 

13
C NMR (75 MHz, CDCl3) δ= 20.09, 24.60, 27.93, 31.25, 38.11, 42.63, 55.31, 55.90, 55.94, 

56.37, 64.87, 76.21, 111.33, 111.38, 111.79, 112.22, 114.68, 120.14, 120.19, 122.95, 127.55, 

129.16, 129.85, 132.20, 133.30, 142.00, 147.40, 148.89, 157.74, 158.07, 169.87, 172.04.   

MS (ESI) m/z: found Rt 13.48 min. (Method LCMS), 684.27 [M + Na]
+
. 

HRMS 662.2304, 664.2288 [M + H]
 +

, calculated 662.2308 [M + H]
 +

. 

 

 

Synthesis of 2-(3-((R)-1-((S)-1-(3,5-difluorophenylsulfonyl)piperidine-2-carbonyloxy)-3-(3,4-

dimethoxyphenyl)propyl)phenoxy)acetic acid 24 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.38, yield= 23.5mg (57%). 

HPLC (Gradient A) retention time= 25.22-25.39 min 

1
HNMR (300 MHz, CDCl3) δ= 1.21-1.35 (m, 1H), 1.42-1.55 (m, 1H), 1.65-1.84 (m, 3H), 1.96-

2.08 (m, 1H), 2.14-2.30 (m, 2H), 2.45-2.63 (m, 2H), 3.17 (t, 1H, J= 12 Hz), 3.73 ( d, 1H, J= 

11.9 Hz), 3.85 (s, 6H), 4.78 (s, 2H), 4.72 (s, 1H), 5.66 (t, 1H, J= 6 Hz), 6.65-6.68 (m, 2H), 6.79 

(d, 1H, J = 4.4 Hz), 6.87-6.93 ( m, 4H), 7.20 (d, 2H, J= 1.8 Hz), 7.31 (t, 1H, J= 7.5 Hz). 

13
C NMR (75 MHz, CDCl3) δ= 20.09, 24.66, 27.88, 31.23, 37.83, 42.99, 53.42, 55.59, 55.87, 

55.93, 77.23, 107.66, 107.98, 110.43, 110.79, 111.39, 111.76, 112.74, 114.49, 120.09, 120.18, 

129.93, 133.26, 141.51, 143.17, 147.40, 148.88, 157.69, 160.92, 164.13, 169.63. 

MS (ESI) m/z: found Rt 13.46min. (Method LCMS), 656.19 [M + Na]
+
. 

HRMS 634.7102 [M + H]
 +

, calculated 634.7099 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(3,5-bis(trifluoromethyl)phenylsulfonyl)piperidine-2-

carbonyloxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 25 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.47, yield= 30.1mg (51%). 
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HPLC (Gradient A) retention time= 27.5-27.8 min 

1
HNMR (600 MHz, CDCl3) δ= 0.99- 1.01 (m,1H), 1.40-1.47(m,1H), 1.59-1.61(m,2H), 1.73-

1.79 (m,1H), 1.99-2.05 (m,1H), 2.14-2.23(m,2H). 2.46-2.56(m,2H), 3.09 (dt, 1H, J = 2.4 

Hz),3.69 (dd, 1H, J = 1.8 Hz), 3.84  (s,3H), 3.85 (s, 3H), 4.64 (s,2H), 4.83 (d, 1H, J = 4.2 Hz), 

5.56 (t, 1H, J = 6.6 Hz), 6.63-6.66 (m,2H), 6.78(d,1H, J = 7.8 Hz), 6.80-6.82 (m,2H), 6.88(d, 

2H, J= 7.8), 7.24 (t, 1H, J =7. 8 Hz), 8.031(s, 1H), 8.20(s, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 19.74, 24.58, 27.88, 31.21, 37.71, 42.83, 55.59, 55.87, 55.88, 

64.73, 76.92, 111.31, 111.71, 113.02, 114.13, 119.98, 120.09, 121.62, 123.44, 125.27, 127.29, 

127.51, 129.87, 133.12, 141.57, 142.63, 147.39, 148.83, 157.48, 169.47, 172.22   

MS (ESI) m/z: found Rt 14.65 min. (Method LCMS), 756.20 [M + Na]
+
. 

HRMS 812.2680 [M + DMSO]
 +

, calculated 812.2619 [M + DMSO]
 +

. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(3-bromo-5-(trifluoromethyl)phenylsulfonyl)piperidine-2-

carbonyloxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 26 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.50, yield= 28.5mg (47%). 

HPLC (Gradient A) retention time= 27.5-27.8 min 

1
HNMR (600 MHz, CDCl3) δ= 0.97-1.04 (m,1H), 1.40-1.46(m,1H), 1.59-1.62(m,2H), 1.71-

1.77(m,1H), 1.99-2.05(m,1H), 2.15-2.22(m,2H). 2.47-2.57(m,2H), 3.15 (dt, 1H, J 2.4, 12.6 Hz, 

), 3.68 (dd, 1H, J = 2.6Hz), 3.84 (s,3H), 3.85 (s, 3H), 4.65 (s,2H), 4.80 (d, 1H, J = 4.8 Hz), 

5.59 (t, 1H, J = 7.2 Hz), 6.64-6.67 (m,2H), 6.78 (d, 1H, J = 8.4Hz), 6.81-6.84(m, 2H), 

6.89(d,1H, J = 7.2Hz), 7.25 (t, 1H, J = 7.8Hz), 7.90(s, 1H), 7.95 (s,1H), 8.08(s,1H) 

13
C NMR (150 MHz, CDCl3) δ= 19.74, 24.59, 27.80, 31.24, 37.77, 42.86, 55.45, 55.90, 64.75, 

76.77, 111.32, 111.74, 112.98, 114.15, 119,99, 120.14, 122.80, 123.32, 129.87, 132.12, 132.15, 

133.17, 133.25, 141.60, 142.89, 147.39, 148.84, 157.49, 169.49, 172.39. 

MS (ESI) m/z: found Rt 14.60 min. (Method LCMS), 766.16, 768.08 [M + Na]
+
. 

HRMS 766.1568, 768.1556 [M + Na]
 +

, calculated 744.1511. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(3,5-bis(methoxycarbonyl)phenylsulfonyl)piperidine-2-carbon 

-yloxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 27 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.52, yield= 22mg (41%). 

HPLC (Gradient A) retention time= 24.82-25.02 min 

1
HNMR (400 MHz, CDCl3) δ= 1.21-1.31 (m, 1H), 1.37-1.47 (m, 1H), 1.61-1.80 (m, 3H), 1.91-

2.00 (m, 1H), 2.08-2.17 (m, 1H), 2.28 (d, 1H, J= 6.8 Hz), 2.40-2.55 (m, 2H), 3.15 (dt, 1H, J= 

2.8, 12.8 Hz), 3.78 (d, 1H, J= 12.6 Hz), 3.82 (s, 3H), 3.83 (s, 3H), 3.93 (s, 6H), 4.70 (s, 2H), 
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4.81 (s, 1H, J= 2.4 Hz), 5.63 (t, 1H, J= 6.8 Hz), 6.61-6.63 (m, 2H), 6.75 (d, 1H, J= 4.2 Hz), 

6.84-6.88 (m, 3H), 7.23-7.27 (m, 1H), 8.54 (s, 1H), 8.55 (s, 1H), 8.76 (t, 1H, J= 1.6 Hz). 

13
C NMR (100 MHz, CDCl3) δ= 20.21, 24.65, 27.77, 31.13, 37.76, 43.04, 52.85, 55.61, 55.84, 

55.89, 64.91, 76.47, 111.27, 111.68, 112.70, 114.57, 120.08, 120.10, 129.79, 131.53, 131.95, 

133.25, 134.01, 141.30, 141.73, 147.31, 148.80, 157.58, 164.86, 169.61, 172.02. 

MS (ESI) m/z: found Rt 11.80 min. (Method LCMS), 736.16 [M + Na]
+
. 

HRMS 714.2720 [M + H]
 +

, calculated 714.2642 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(3,5-dichloro-4-hydroxyphenylsulfonyl)piperidine-2-carbonyl 

-oxy) -3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 28 

TLC (Hexane: EtOAc: TFA 4.8 :5:0.2): Rf = 0.50, yield= 12.3mg (23%). 

HPLC (Gradient A) retention time= 26.8-27.1 min 

1
HNMR (300 MHz, CDCl3) δ= 1.00-1.10 (m, 1H), 1.38-1.53 (m, 1H), 1.60-1.68 (m, 2H), 1.74-

1.87 (m, 1H), 2.01-2.12 (m, 1H), 2.16-2.26 (m, 2H), 2.53-2.62 (m, 2H), 3.21 (t, 1H, J= 12Hz), 

3.72 (d, 1H, J= 12Hz), 3.87 (s, 6H), 4.65 (s, 2H), 4.77 (d, J= 2.7Hz), 5.63 (t, J= 6Hz), 6.69-

6.71(m, 2H), 6.80-6.93(m, 4H), 7.28 (s, 1H), 7.78 (s, 1H), 7.99 (s, 1H). 

13
C NMR (75 MHz, CDCl3) δ= 19.66, 24.66, 27.85, 31.34, 37.88, 43.01, 55.4, 55.95, 64.82, 

77.21, 111.44, 111.83, 113.02, 114.23, 119.84, 120.21, 122.20, 127.86, 128.97, 129.89, 139.94, 

141.75, 145.83, 147.22, 148.89, 153.52, 157.56, 169.51, 172.35. 

MS (ESI) m/z: found Rt 13.66 min. (Method LCMS), 704.68 [M + Na]
+
. 

HRMS 682.1962, 684.1949 [M + H]
 +

, calculated 682.1902 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(3,5-dichloro-4-methoxyphenylsulfonyl)piperidine-2-carbonyl 

-oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 29 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.41, yield= 18.3mg (39%). 

HPLC (Gradient A) retention time= 27.25-27.47 min. 

1
HNMR (600 MHz, CDCl3) δ= 1.02-1.09 (m,1H), 1.39-1.46(m,1H), 1.59-1.62(m,2H), 1.70-

1.76(m,1H), 1.99-2.05(m,1H), 2.15-2.23(m,2H). 2.49-2.59(m,2H), 3.18 (dt, 1H, J 2.4, 12.6 Hz, 

), 3.68 (dd, 1H, J = 3, 12.6 Hz), 3.84 (s,3H), 3.85 (s, 3H), 3.92 (s, 3H), 4.66 (s,2H), 4.76 (d, 

1H, J = 4.8 Hz), 5.61 (t, 1H, J = 6.6 Hz), 6.64-6.67 (m,2H), 6.78 (d, 1H, J = 8.4Hz), 6.81-

6.84(m, 2H), 6.89(d,1H, J = 7.8Hz), 7.25 (t, 1H, J = 7.8Hz), 7.71(s, 2H). 

13
C NMR (150 MHz, CDCl3) δ= 19.78, 24.58, 27.70, 31.28, 37.83, 42.84, 55.31, 55.90, 60.95, 

64.85, 76.64, 111.34, 111.76, 112.90, 114.23, 120.01, 120.17, 127.73, 129.85, 130.06, 133.19, 

136.95, 141.66, 147.37, 148.84, 155.65, 157.48, 169.67. 
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MS (ESI) m/z: found RT 11.84 min. (Method LCMS), 718.37, 720.26 [M + Na]
+
. 

HRMS 696.1423, 698.2819 [M + H]
 +

, calculated 696.1418, 698.2807 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(4-acetamido-3,5-dichlorophenylsulfonyl)piperidine-2-car -

bonyloxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 30 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.48, yield= 10.98 mg (21%). 

HPLC (Gradient B) retention time= 22.45-22.67min 

1
HNMR (300 MHz, CDCl3) δ= 1.27 (s, 3H), 1.63-1.81 (m, 1H), 1.95-2.05 (m, 2H), 2.12-2.33 

(m, 5H), 2.51 (t, 2H, J= 6.9 Hz), 3.06 (t, 1H, J= 10.8 Hz), 3.74 (d, 1H, J= 10.2 Hz), 3.85 (s, 

3H), 3.86 (s, 3H), 4.67 (s, 3H), 4.80 (d, 1H, J= 4.8 Hz), 5.63 (t, 1H, J= 6 Hz), 6.65-6.68 (m, 

2H), 6.74(s, 1H), 6.80 (d, 1H, J= 8.4 Hz), 6.85-6.92 (m, 2H), 7.29 (t, 1H, J= 7.9Hz), 7.68 (s, 

2H). 

13
C NMR (75 MHz, CDCl3) δ= 20.14, 24.80, 28.02, 29.69, 31.24, 37.65, 43.11, 55.61, 55.86, 

55.96, 64.97, 76.72, 111.41, 111.77, 112.99, 114.45, 120.25, 120.30, 127.00, 130.00, 133.20, 

134.24, 135.52, 140.49, 141.28, 147.38, 148.84, 157.66, 169.49, 169.60, 171.46. 

MS (ESI) m/z: found Rt 12.25 min. (Method LCMS), 723.02, 725.02 [M + 1]
+
. 

HRMS 723.2017, 725.2081 [M + H]
 +

, calculated 723.2022, 725.2040 [M + H]
 +

. 

 

Synthesis of 5-((S)-2-(((R)-1-(3-(carboxymethoxy)phenyl)-3-(3,4-dimethoxyphenyl)-propoxy) 

carbonyl)piperidine-1-ylsulfonyl)-2,3-dimethoxybenzoic acid  31 

TLC (DCM: MeOH 9.7:0.3): Rf = 0.38, yield= 7.23mg (45%). 

HPLC (Gradient A) retention time- 22.79-22.95 min 

1
HNMR (400 MHz, DMSO) δ= 1.58-1.73 (m, 3H), 1.94-2.05 (m, 2H), 2.15-2.30 (m, 4H), 2.71-

2.97 (m, 3H), 3.67-3.71 (m, 9H), 3.80 (s, 3H), 4.22 (t, 1H, J= 7.6 Hz), 4.58 (s, 2H), 5.35 (s, 

1H), 6.68-6.72 (m, 1H), 6.75 (s, 1H), 6.81-6.89 (m, 4H), 6.95-6.99 (m, 1H), 7.06-7.11 (m, 1H), 

7.16-7.20 (m, 1H). 

13
C NMR (100 MHz, DMSO) δ= 21.20, 25.10, 31.08, 31.61, 36.50, 51.04, 52.19, 55.33, 55.92, 

56.03, 56.06, 61.24, 64.84, 108.62, 111.06, 112.33, 112.40, 112.62, 114.33, 120.46, 120.71, 

129.88, 133.63, 135.79, 137.97, 145.07, 147.45, 147.74, 148.33, 148.59, 149.09, 151.85, 

158.28, 170.61. 

MS (ESI) m/z: found Rt 10.48 min. (Method LCMS), 702.10 [M + H]
+
. 

HRMS 702.2761 [M + H]
 +

, calculated 702.2142 [M + H]
 +

. 
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Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(7-nitro-2,3-dihydrobenzofuran-5-

ylsulfonyl)piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid  32 

TLC (DCM: MeOH 9.7:0.3): Rf = 0.43, yield= 22mg (42%). 

HPLC (Gradient A) retention time= 24.08-24.24 min 

1
HNMR (400 MHz, CDCl3) δ= 1.24-1.32 (m, 1H), 1.47-1.50 (m, 1H), 1.67-1.77 (m, 2H), 1.82-

1.91 (m, 1H), 1.92-2.01 (m, 1H), 2.09-2.19 (m, 1H), 2.28 (d, 1H, J= 12.4Hz), 2.41-2.60 (m, 

2H), 2.92-3.04 (m, 1H), 3.11-3.20 (m, 2H), 3.74 (d, 1H, J= 12Hz), 3.83 (s, 3H), 3.84 (s, 3H), 

4.70 (s, 2H), 4.78-4.87 (m, 3H), 4.78-4.87 (m, 3H), 5.55-5.59 (m, 1H), 6.61-6.64 (m, 2H), 6.76 

(d, 1H, J= 8Hz), 6.80-6.88 (m, 3H), 7.27 (t, 1H, J= 8Hz), 7.52 (d, 1H, J= 2Hz), 8.24 (d, 1H, J= 

2Hz). 

13
C NMR (100 MHz, CDCl3) δ= 20.17, 24.75, 28.16, 28.29, 31.28, 38.25, 42.17, 55.52, 55.85, 

55.90, 64.78, 74.88, 76.31, 111.30, 111.62, 111.97, 114.46, 119.62, 120.12, 124.34, 128.80, 

129.83, 131.69, 132.14, 133.13, 133.79, 141.85, 147.37, 148.85, 157.74, 157.90, 169.71, 

171.79 

MS (ESI) m/z: found Rt 11.54 min. (Method LCMS), 707.14 [M + Na]
+
. 

HRMS 685.2601[M + H]
 +

, calculated 685.2589 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(7-amino-2,3-dihydrobenzofuran-5-ylsulfonyl)piperidine-2-

carbonyloxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 33 

TLC (DCM: MeOH 9.7:0.3): Rf = 0.35, yield= 6.7mg (14%). 

HPLC (Gradient A) retention time= 21.68-21.89 min 

1
HNMR (600 MHz, CDCl3) δ = 1.24-1.32 (m, 1H), 1.47-1.50 (m, 1H), 1.67-1.77 (m, 2H), 1.82-

1.91 (m, 1H), 1.92-2.01 (m, 1H), 2.09-2.19 (m, 1H), 2.28 (d, 1H, J= 12.4Hz), 2.41-2.60 (m, 

2H), 2.92-3.04 (m, 1H), 3.11-3.20 (m, 2H), 3.74 (d, 1H, J= 12Hz), 3.83 (s, 3H), 3.84 (s, 3H), 

4.70 (s, 2H), 4.78-4.87 (m, 3H), 4.78-4.87 (m, 3H), 5.55-5.59 (m, 1H), 6.61-6.64 (m, 2H), 6.76 

(d, 1H, J= 8Hz), 6.84 (s, 1H),  6.90-6.98 (m, 3H), 7.27 (t, 1H, J= 8Hz), 8.24 (d, 1H, J= 2Hz). 

13
C NMR (150 MHz, CDCl3) δ = 20.17, 24.75, 28.16, 28.29, 31.28, 38.25, 42.17, 55.52, 55.85, 

55.90, 64.78, 74.88, 76.31, 111.30, 111.62, 111.97, 114.46, 119.62, 120.12, 124.34, 128.80, 

129.83, 131.69, 132.14, 133.13, 137.16, 141.85, 147.37, 148.85, 157.74, 157.90, 169.71, 

171.79 

MS (ESI) m/z: found Rt 12.22 min. (Method LCMS), 655.08 [M + H]
+
,  677.25 [M + Na]

+
, 

HRMS 655.2291 [M + H]
 +

, calculated 655.2247 [M + H]
 +

. 
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Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(2-methylbenzo[d]thiazol-6-ylsulf 

onyl)piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid  34 

TLC (DCM: MeOH 9.7:0.3): Rf = 0.26, yield= 22mg (43%). 

HPLC (Gradient A) retention time= 24.22-24.38 min 

1
HNMR (400 MHz, CDCl3) δ= 1.24-1.32 (m, 1H), 1.50-1.61 (m, 1H), 1.65-1.73 (m, 2H), 1.85-

1.95 (m, 2H), 2.03-2.13 (m, 1H), 2.18 (d, 1H, J=13.6 Hz), 2.38-2.54 (d, 2H), 2.89 (s, 3H), 3.17-

3.25 (m, 1H), 3.81 (s, 3H), 3.82 (s, 3H), 4.72 (d, 1H, J= 8.4 Hz), 4.82 (d, 1H, J= 4.4 Hz), 5.44-

5.47 (m, 1H), 6.58-6.61 (m, 2H), 6.68 (s, 1H), 6.74 (d, 1H, J= 8 Hz), 6.98-7.02 (m, 1H). 

13
C NMR (100 MHz, CDCl3) δ= 19.76, 19.96, 24.74, 28.21, 31.33, 38.54, 42.44, 55.07, 55.82, 

55.88, 65.29, 75.86, 111.25, 111.55, 112.34, 114.90, 119.22, 120.06, 120.93, 121.81, 125.10, 

130.15, 133.14, 134.98, 135.77, 142.02, 147.34, 148.83, 154.03, 157.70, 169.43, 171.12, 

172.52. 

MS (ESI) m/z: found Rt 11.66 min. (Method LCMS), 668.16 [M + H]
+
, 691.11  [M + Na]

+
, 

HRMS 669.2459 [M + H]
 +

, calculated 669.2462 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(2-oxo-2,3-dihydrobenzo[d]thiazol -

6-ylsulfonyl)piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid 35 

TLC (DCM: MeOH 9.7:0.3): Rf = 0.37, yield= 24.20mg (46.8%). 

HPLC (Gradient A) retention time= 22.74-22.94 min 

1
HNMR (600 MHz, CDCl3) δ= 1.38-1.45 (m, 1H), 1.59-1.66 (m, 1H), 1.73-1.75 (m, 2H), 1.89-

1.99 (m, 2H), 2.09-2.16 (m, 2H), 2.41-2.46 (m, 1H), 2.52-2.57 (m, 1H), 3.23 (t, 1H, J= 10.2 

Hz), 3.78 (d, 1H, J= 7.8Hz), 3.82 (s, 3H), 3.83 (s, 3H), 4.72-4.82 (m, 3H), 5.41-5.43 (m, 1H), 

6.18 (d, 1H, J= 8.4Hz), 6.58-6.65 (m, 3H), 6.76 (d, 1H, j= 8.4 Hz), 6.92 (d, 1H, J= 6.6Hz), 7.01 

(d, 1H, J= 8.4Hz), 7.09 (d, 1H, J= 8.4Hz), 7.41 (t, 1H, J= 7.8Hz), 7.66 (d, 1H, J= 1.8Hz). 

13
C NMR (150 MHz, CDCl3) δ= 19.52, 24.83, 28.47, 31.44, 38.63, 42.16, 54.77, 55.85, 55.92, 

64.28, 75.54, 111.34, 111.60, 111.69, 113.56, 118.85, 120.12, 121.10, 124,32, 125.93, 130.27, 

133.04, 133.23, 138.48, 142.51, 147.43, 148.89, 157.44, 169.46, 172.87, 173.00. 

MS (ESI) m/z: found Rt 11.08 min. (Method LCMS), 693.26 [M + Na]
+
. 

HRMS 671.2268 [M + H]
 +

, calculated 671.2255 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(2-oxoindolin-5-ylsulfonyl)piper-

idine-2-carbonyloxy) propyl)phenoxy)acetic acid 36 

TLC (Hexane: EtOAc: TFA 6:4:0.1): Rf = 0.25, yield= 6.0mg (12.5%). 

HPLC (Gradient A) retention time= 21.21-21.40min 
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1
HNMR (600 MHz, CDCl3) δ= 1.55-1.64 (m, 1H), 1.69-1.76 (m, 2H), 1.91-2.00 (m, 2H), 2.10-

2.16 (m, 2H), 2.43-2.48 (m, 1H), 2.53-2.58 (m, 1H), 3.16-3.21 (m, 1H), 3.39 (d, 1H, J= 22.8 

Hz), 3.52 (d, 1H, J= 22.8 Hz), 3.73 (s, 1H), 3.82 (s, 3H), 3.83 (s, 3H), 3.87 (s, 1H), 4.71-4.81 

(m, 3H), 5.43-5.45 (m, 1H), 6.25 (d, 1H, J= 8.4 Hz), 6.60-6.62 (m, 2H), 6.72-6.77 (m, 2H), 

6.84-6.89 (m, 1H), 7.04-7.10 (m, 2H), 7.38 (t, 1H, J= 8.4 Hz), 7.45 (s, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 19.63, 24.79, 28.43, 31.39, 36.16, 38.61, 42.13, 54.81, 55.83, 

55.90, 63.93, 75.75, 110.47, 111.35, 111.61, 113.16, 113.50, 118.85, 120.14, 123.25, 125.28, 

128.33, 130.10, 133.09, 142.60, 145.55, 147.37, 148.85, 157.49, 169.65, 171.81, 179.46. 

MS (ESI) m/z: found Rt 11.03 min. (Method LCMS), 675.18 [M + Na]
+
 

HRMS 653.2603 [M + H]
 +

, calculated 653.2591 [M + H]
 +

. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(2-oxo-2,3-dihydrobenzo[d]oxazol -

6-yl -sulfonyl)piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid 37 

TLC (Hexane: EtOAc: TFA 6:4:0.1): Rf = 0.42, yield= 6.4mg (24.6%). 

HPLC (Gradient A) retention time= 21.68-21.85min 

1
HNMR (600 MHz, CDCl3) δ= 1.57-1.64 (m, 1H), 1.701.75 (m, 2H), 1.91-1.99 (m, 2H), 2.10-

2.16 (m, 2H), 2.43-2.48 (m, 1H), 2.53-2.59 (m, 1H), 3.19-3.24 (m, 1H), 3.36 (d, 1H, J= 22.2 

Hz), 3.48 (d, 1H, J= 22.2 Hz), 3.74 (s, 2H), 3.83 (s, 3H), 3.84 (s, 3H), 4.75 (d, 2H, J= 19.0 Hz), 

4.80-4.81 (m, 1H), 5.44-5.46 (m, 1H), 6.20 (d, 1H, J= 8.4 Hz), 6.59-6.63 (m, 2H), 6.72-6.78 

(m, 2H), 6.89 (d, 1H, J= 8.4 Hz), 7.05 (d, 1H, J= 7.8Hz), 7.10 (d, 1H, J= 7.8 Hz), 7.39 (t, 1H, 

J= 8.4 Hz), 7.44 (s, 1H). 

MS (ESI) m/z: found Rt 14.66 min. (Method LCMS), 677.66 [M + Na]
+ 

, calculated 677.54 [M 

+ Na]
+
. 

 

Synthesis of 2-(3,4-dimethoxyphenoxy)ethyl 1-(3,5-dichlorophenylsulfonyl)piperidine-2-

carboxylate 38  

To 71a ((50mg, 0.162mmol) in DCM DIPEA (62.7mg, 0.485mmol) and 3,5-dichlorobenzene 

sulfonyl chloride (39.7mg,0.162mmol) were added. The reaction was stirred at room 

temperature overnight and was purified by flash chromatography using cyclohexane : EtOAc 

3:1 to yield 38. 

TLC (Cyclohexane: EtOAc 3:1): Rf = 0.57, yield= 17mg (20%). 

HPLC (Gradient A) retention time= 22.74-22.94 min 

1
HNMR (600 MHz, CDCl3) δ= 1.47-1.63 (m, 2H), 1.65-1.71 (m, 2H), 1.73-1.85 (m, 1H), 2.16-

2.21 (m, 1H), 3.16-3.24 (m, 1H), 3.72-3.77 (m, 1H), 3.84(s, 3H), 3.85 (s, 3H), 3.97-4.03 (m, 
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1H), 4.03-4.08 (m, 1H), 4.25-4.30 (m, 1H), 4.35-4.40 (m, 1H), 4.75-4.80 (m, 1H), 6.34 (dd, 

1H, J= 2.83, 8.73 Hz), 6.48 (d, 1H, J= 2.8Hz), 6.76 (d, 1H, J= 8.7Hz), 7.49 (t, 1H, J= 1.86, 1.86 

Hz), 7.64(d, 2H, J= 1.85 Hz). 

13
C NMR (150 MHz, CDCl3) δ= 19.88, 24.73, 27.92, 42.88, 55.31, 55.85, 56.41, 63.48, 66.13, 

101.06, 103.99, 111.76, 125.55, 132.29, 135.64, 142.67, 143.99, 149.92, 152.82, 170.23 

MS (ESI) m/z: found Rt 13.97 min. (Method LCMS), 518.55, 520.57 [M + H]
+
, 540.45, 542.23 

[M + Na]
+
. 

HRMS 518.1343, 520.1326 [M + H]
 +

, calculated 518.1289. 520.1312 [M + H]
 +

. 

 

Synthesis of  2-(3,4-dimethoxyphenoxy)ethyl 1-(benzo[d]thiazol-6-ylsulfonyl)piperid ine-2-

carboxylate 39 

To 71a (50mg, 0.162mmol) in DCM DIPEA (62.7mg,0.485mmol) and benzo[d]thiazole-6-

sulfonyl chloride(76mg, 0.323mmol) were added. The reaction was stirred at room temperature 

overnight and was purified by flash chromatography using cyclohexane: EtOAc 1:1 to yield 39 

TLC (Cyclohexane: EtOAc 1:1): Rf = 0.3, yield= 39mg (48%). 

HPLC (Gradient A) retention time= 22.74-22.94 min 

1
HNMR (300 MHz, CDCl3) δ= 1.3-1.62 (m, 2H), 1.62-1.74(m,2H), 1.74-1.88 (m, 1H), 2.15-

2.25 (m, 1H), 3.21-3.34 (m, 1H), 3.74-3.83 (m, 1H), 3.85 (s, 3H), 3.86 (s, 3H), 3.89-

4.05(m,2H), 4.09-4.38(m, 2H), 4.85-4.91 (m, 1H), 6.31-6.37(m, 1H), 6.47-6.51(m, 1H), 6.75-

6.81(m, 1H), 7.90-7.96 (m, 1H), 8.19-8.24(m, 1H), 8.47-8.51(m, 1H), 9.18-9.22(m,1H). 

13
C NMR (75 MHz, CDCl3) δ= 19.98, 24.75, 27.94, 42.80, 55.21, 55.89, 56.44, 63.47, 66.16, 

101.09, 104.07, 111.80, 122.00, 123.98, 124.98, 133.95, 137.34, 144.01, 149.04, 152.84, 

155.20, 157.63, 170.56. 

MS (ESI) m/z: found Rt 12.15 min. (Method LCMS), 507.56 [M + H]
+
, 529.38 [M + Na]

+
. 

HRMS 507.1779[M + H]
 +

, calculated 507.1681 [M + H]
 +

. 

 

General Procedure for the synthesis of Compound 40-45. 

To 71b (19mg, 0.037 mmol) DIPEA (9.2 mg, 0.055 mmol) and the corresponding sulfonyl 

chloride (0.055 mmol) were added The reaction was stirred at room temperature overnight and 

was purified by prep HPLC using gradient C to yield compound 40-45. 

 

Synthesis of (S)-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl)1-

(3,5-dichlorophenylsulfonyl)piperidine-2-carboxylate 40 

TLC (DCM: MeOH 9.7:0.3): Rf = 0.48, yield= 16.42 mg (62%). 



139 Medicinal chemistry approach to identify new ligands for FKBP51 and FKBP52 
 

 
 

HPLC (Gradient A) retention time= 20.8-21.2 min 

1
HNMR (600 MHz, CDCl3) δ= 1.28-1.31 (m, 1H), 1.38-1.47 (m, 1H), 1.64-1.79 (m, 1H), 1.98-

2.04 (m, 1H), 2.15-2.21 (m, 1H), 2.27 (d, 1H, J= 13.8 Hz), 2.48-2.53 (m, 1H), 2.56-2.60 (m, 

1H), 3.09-3.18 (m, 3H), 3.56 (t, 2H, J= 4.8 Hz), 3.66 (dd, 1H, J= 2.4, 13.2Hz), 3.76 (d, 2H, J= 

12Hz), 3.84 (s, 3H), 3.85 (s, 3H), 3.95 (t, 2H, J= 12.6 Hz), 4.02 (d, 1H, J= 2.4Hz), 4.04 (d, 1H, 

J= 2.4 Hz), 4.39 (t, 2H, J= 4.6 Hz), 4.79 (d, 1H, J= 4.8Hz), 6.65-6.67 (m, 2H), 6.77 (d, 1H, J= 

7.8 Hz), 6.80-6.82 (m, 1H), 6.85-6.86 (m, 1H), 6.91 (d, 1H, J= 7.8 Hz), 7.29 (t, 1H, J=8.1 Hz), 

7.46 (t, 1H, J=1.8Hz), 7.55 (s, 1H), 7.55 (s, 1H). 

13
C NMR (150 MHz, CDCl3) δ= 20.15, 24.71, 27.93, 31.28, 37.86, 43.01, 53.93, 55.64, 55.86, 

55.95, 57.55, 65.55, 66.45, 77.21, 111.34, 111.73, 112.87, 114.24, 119.07, 120.13, 125.53, 

129.82, 132.35, 133.33, 135.64, 141.19, 142.98, 147.42, 148.92, 158.7, 169.61 

MS (ESI) m/z: found Rt 8.76 min. (Method LCMS), 721.65, 723.37 [M + H]
 +

. 

HRMS 721.2797, 723.2766 [M + H]
 +

, calculated 721.2739, 723.2745 [M + H]
 +

. 

 

Synthesis of (S)-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl ) 1-

(benzo[d]thiazol-6-ylsulfonyl)piperidine-2-carboxylate 41 

TLC (DCM: MeOH 9.7:0.3): Rf = 0.27, yield= 31.72mg (91%). 

HPLC (Gradient A) retention time= 20.78-20.98 min 

1
HNMR (300 MHz, CDCl3) δ= 1.61-1.74 (m, 3H), 1.77-1.87 (m, 3H), 1.94-2.06 (m, 1H), 2.13-

2.31 (m, 1H), 2.47-2.66 (m, 2H), 3.05-3.23 (m, 3H), 3.55-3.57 (m, 2H), 3.66-3.81 (m, 3H), 

3.85 (s, 6H), 4.00 (s, 4H), 4.46 (s, 2H), 2.90 (d, 1H, J= 4.5 Hz), 5.58-5.63 (m, 1H), 6.65-6.68 

(m, 2H), 6.88-6.96 (m, 3H), 7.24-7.29 (m, 1H), 7.32-7.37 (m, 1H), 7.64-7.68 (m, 1H), 7.89-

7.96 (m, 1H), 8.35 (s, 1H), 9.20 (s, 1H). 

13
C NMR (75 MHz, CDCl3) δ= 24.56, 27.80, 31.30, 33.33, 42.74, 46.50, 52.74, 55.42, 55.85, 

55.93, 56.47, 62.47, 63.91, 76.23, 111.37, 111.73, 112.28, 114.31, 119.97, 120.16, 121.93, 

123.74, 124.85, 129.02, 130.08, 133.25, 137.21, 142.29, 147.42, 148.93, 155.00, 157.39, 

157.99, 169.98. 

MS (ESI) m/z: found Rt 8.45 min. (Method LCMS), 710.51 [M + H]
 +

. 

HRMS 710.2517 [M + H]
 +

, calculated 710.2492 [M + H]
 +

. 

 

Synthesis of (S)-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl)1-

(3,5-dichloro-4-hydroxyphenylsulfonyl)piperidine-2-carboxylate 42 

TLC (DCM: MeOH 9.7:0.3): Rf = 0.45, yield= 15.96mg (58%). 

HPLC (Gradient A) retention time= 19.28-19.61 min 



140 Medicinal chemistry approach to identify new ligands for FKBP51 and FKBP52 
 

 
 

1
HNMR (300 MHz, CDCl3) δ= 1.54-2.06 (m, 6H), 2.14-2.30 (m, 2H), 2.44-2.64 (m, 2H), 2.99-

3.27 (m, 3H), 3.51 (s, 2H), 3.74-3.80 (m, 3H), 3.86 (s, 3H), 3.87 (s, 3H), 4.06 (s, 4H), 4.43 (s, 

2H), 4.72 (d, 1H, J= 4.2Hz), 5.53-5.59 (m ,1H), 6.65-6.69 (m, 3H), 6.78-6.85 (m, 2H), 6.92 (d, 

1H, J=7.8 Hz), 7.29-7.33 (m, 1H), 7.49 (s, 2H). 

13
C NMR (75 MHz, CDCl3) δ= 20.15, 24.94, 28.07, 31.45, 37.87, 42.86, 53.05, 55.25, 55.87, 

55.95, 56.81, 62.50, 63.96, 76.25, 111.39, 111.71, 112.71, 114.02, 119.57, 120.15, 121.53, 

127.30, 130.22, 132.31, 133.18, 141.75, 147.47, 148.95, 151.71, 157.01, 169.52. 

MS (ESI) m/z: found RT 8.76 min. (Method LCMS), 737.04, 739.13 [M + H]
+
. 

HRMS 737.2532, 739.2506 [M + H]
 +

, calculated 737.2501, 739.2542 [M + H]
 +

. 

 

Synthesis of (S)-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl) 

1-(3,5-dichloro-4-methoxyphenylsulfonyl)piperidine-2-carboxylate 43 

TLC (DCM: MeOH 9.7:0.3): Rf = 0.42, yield= 21mg (75%). 

HPLC (Gradient A) retention time= 23.31-23.63min 

1
HNMR (600 MHz, CDCl3) δ= 1.27-1.31 (m, 1H), 1.41-1.46 (m, 1H), 1.65 (d, 1H, J= 13.8Hz), 

1.71-1.80 (m, 2H), 1.99-2.05 (m, 1H), 2.17-2.23 (m, 1H), 2.28 (d, 1H, J= 14.4 Hz), 2.49-2.54 

(m, 1H), 2.56-2.61 (m, 1H), 3.09 (t, 2H, J= 11.4Hz), 3.15(dt, 1H, J= 3, 12.6Hz), 3.54 (t, 2H, J= 

5.2Hz), 3.66 (d, 1H, J= 10.8Hz), 3.71-3.74 (m, 2H), 3.84 (s, 6H), 3.91 (s, 3H), 3.96-4.03 (m, 

4H), 4.40 (d, 2H, J =5.0Hz), 4.79 (d, 1H, J= 4.8Hz), 5.68 (q, 1H, J=3, 5.4 Hz), 6.65-6.67 (m, 

2H), 6.77 (d, 1H, J= 7.8Hz), 6.81-6.83 (m, 1H), 6.85(t, 1H, J= 1.8Hz), 6.90(d, 1H, J= 7.2Hz), 

7.29 (t, 1H, J= 7.8 Hz), 7.61 (s, 2H). 

13
C NMR (150 MHz, CDCl3) δ=  20.05, 24.56, 27.73, 31.26, 37.95, 42.93, 52.87, 55.57, 55.82, 

55.91, 56.58, 60.94, 62.32, 63.90, 76.44, 111.32, 111.70, 112.33, 141.12, 120.03, 120.15, 

127.73, 129.98, 130.07, 133.24, 137.01, 141.83, 147.38, 148.88, 155.61, 157.27, 169.80. 

MS (ESI) m/z: found RT 9.08 min. (Method LCMS), 751.53, 753.32 [M + H]
+
. 

HRMS 751.2705, 753.2674 [M + H]
 +

, calculated 751.2675, 753.2682 [M + H]
 +

. 

 

Synthesis of (S)-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl) 

1-(2-oxo-2,3-dihydrobenzo[d]thiazol-6-ylsulfonyl)piperidine-2-carboxylate 44 

TLC (DCM: MeOH 9.7:0.3): Rf = 0.39, yield= 6.4mg (24.6%). 

HPLC (Gradient A) retention time= 18.92-19.16min 

1
HNMR (300 MHz, CDCl3) δ= 1.71-1.81 (m, 2H), 1.84-2.01 (m, 2H), 2.06-2.22 (m, 2H), 2.39-

2.62 (m, 2H), 3.01-3.12 (m, 2H), 3.26-3.37 (m, 2H), 3.54 (s, 2H), 3.80-3.91 (m, 12H), 4.06 (s, 

4H), 4.26-4.50 (m, 2H), 4.74 (d, 1H, J= 4.8Hz), 5.36-5.41 (m, 1H), 6.55-6.64 (m, 4H), 6.77 (d, 
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1H, J= 7.5Hz), 6.89 (d, 1H, J= 6.9 Hz), 6.99 (d, 1H, J= 7.5 Hz), 7.19 (d, 1H, J= 8.4 Hz), 7.38 (t, 

!h, J= 7.6 Hz), 7.62 (d, 1H, J= 1.8Hz). 

13
C NMR (75 MHz, CDCl3) δ= 24.98, 28.29, 31.43, 38.45, 42.48, 53.47, 54.79, 55.87, 55.94, 

57.28, 62.02, 63.93, 75.83, 111.03, 111.37, 111.69, 112.73, 113.79, 119.18, 120.17, 121.54, 

124.28, 125.73, 130.46, 133.10, 133.39, 138.88, 142.22, 147.47, 148.93, 156.99, 169.62.  

MS (ESI) m/z: found Rt 9.47 min. (Method LCMS), 726.29 [M + H]
+
. 

HRMS 726.3111 [M + H]
 +

, calculated 726.3091 [M + H]
 +

. 

 

Synthesis of (S)-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl) 

propyl)1-(4-acetamido-3,5-dichlorophenylsulfonyl)piperidine-2-carboxylate 45 

TLC (DCM: MeOH 9.7:0.3): Rf = 0.12, yield= 15.4mg (70.8%). 

HPLC (Gradient A) retention time= 19.64-19.81min 

1
HNMR (600 MHz, CDCl3) δ= 1.27-1.29 (m,1 H), 1.49-1.51 (m, 1H), 1.67 (d, 1H, J=12.6 Hz), 

1.73 (d, 1H, J- 13.2 Hz), 1.78-1.84 (m, 1H), 1.95-2.00 (m, 1H), 2.13-2.19 (m, 1H), 2.26 (s, 4H), 

2.48-2.55 (m, 2H), 3.08-3.14 (m, 3H), 3.54 (s, 2H), 3.65-3.74 (m, 3H), 3.81 (s, 3H), 3.84 (s, 

3H), 3.92-3.98 (m, 2H), 4.00-4.04 (m, 2H), 4.36 (m, 2H), 4.78 (d, 1H, J= 4.8Hz), 5,58 (t, 1H, 

J= 7.2 Hz), 6.62-6.64 (m, 2H), 6.76-6.81 (m, 3H), 6.90 (d, 1H, J= 7.8 Hz), 7.28 (t, 1H, J= 7.8 

Hz), 7.61 (s, 2H). 

13
C NMR (150 MHz, CDCl3) δ= 19.95, 24.60, 27.88, 29.66, 31.16, 37.54, 42.98, 53.07, 55.76, 

55.93, 56.80, 61.99, 63.80, 63.82, 76.65, 111.38, 111.68, 114.17, 116.07, 120.06, 120.30, 

126.96, 126.97, 130.13, 133.21, 135.30, 141.68, 147.29, 148.76, 157.19, 159.79, 160.05, 

160.32, 160.58, 169.76 

MS (ESI) m/z: found Rt 10.30 min. (Method LCMS), 778.25, 780.31 [M + H]
+
, 800.23, 802.20 

[M + Na]
 +

 

HRMS 778.3114, 780.3122 [M + H]
 +

, calculated 778.3154, 780.3162 [M + H]
 +

. 

 

Deprotection of Fmoc (resin 6b) 

The coupled resin 5b was weighed (190 mg, 0.05mmol) and added to syringes, swollen in 

DCM (4 mL) for 1h, and the Fmoc protecting group was removed using 20% 4-methyl 

piperidine/DCM (4ml) for 1h. After filtration, the resin was washed with DCM (3 x 5ml) and 

used for the next coupling step. 
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Synthesis of sulfonamides 

To the above resin i-Pr2EtN (25mg, 0.20mmol) in dry DCM (3 mL) was added and stirred for 

20min. To this solution the sulfonyl chloride (0.15mmol) in 500 µL of DCM was added and the 

reaction was stirred for 4h at room temperature. After the first coupling step the resins were 

filtered, washed with DCM (3 x 10ml) and then subjected to second coupling with i-Pr2EtN 

(30mg, 0.237mmol), sulfonyl chloride (0.158 mmol) in DCM (3 mL) and stirred for 16h at 

room temperature. The resins were washed with DCM (3 x 5ml) and dried to give the 

derivatized resins. These were re-swollen in DCM reacted with 1% TFA/DCM (3ml) for 1h 

and then washed with 1% TFA/DCM (3 x 3ml) and further washed with DCM (3 x 5ml). The 

combined filtrates were concentrated in vacuo to yield the compounds 46-47.  (crude weight ~ 

50mg). The crude compounds were further purified by preparative HPLC using Gradient C. 

The purified peaks were further dried by lyophilization. 

 

Synthesis of 2-(3-((R)-1-((S)-1-(3,5-dichloro-4-hydroxyphenylsulfonyl)piperidine-2-carbox-

amido)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 46 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.31, yield= 8 mg (17.4 %). 

HPLC (Gradient A) retention time= 22.6-22.9 min 

1
HNMR (600 MHz, CDCl3) δ= 1.30-1.36 (m, 1H), 1.46 (d, 1H, J= 13.2 Hz), 1.51-1.55 (m, 1H), 

2.01-2.14 (m, 3H), 2.26 (d, 1H, J= 13.2 Hz),2.49-2.63 (m, 2H), 2.85-2.94 (m, 1H), 3.79-3.83 

(m, 2H), 3.85 (s, 3H), 3.86 (s, 3H),  4.49 (d, 1H, J= 4.8 Hz), 4.67 (s, 2H), 4.92-4.97 (m, 1H), 

6.68-6.70 (m, 2H), 6.77- 6.80 (m, 2H), 6.82-6.84 (m, 1H), 6.92 (d, 1H, J= 7.8 Hz), 7.28 (t, 1H, 

J= 7.8 Hz), 7.75 (s, 2H). 

MS (ESI) m/z: found Rt 13.45 min. (Method LCMS), 681.67, 683.48 [M + H]
+
, 703.85, 705.57 

[M + Na]
+
, Calculated 681.58, 683.50 [M + H]

+
, 703.13, 705.24 [M + Na]

+
. 

 

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(2-oxo-2,3-dihydrobenzo[d]thiazol -

6-ylsulfonyl)piperidine-2-carboxamido)propyl)phenoxy)acetic acid 47 

TLC (Hexane: EtOAc: TFA 6:3.8:0.2): Rf = 0.32, yield= 8.2 mg (17.5 %). 

HPLC (Gradient A) retention time= 21.14-21.35min 

1
HNMR (600 MHz, CDCl3) δ= 1.38-1.42 (m, 1H), 1.57-1.66 (m, 5H), 1.93-2.17 (m, 3H), 2.44-

2.56 (m, 2H), 3.71-3.76 (m, 1H), 3.83-3.84 (m, 6H), 4.55-4.60 (m, 1H),4.72-4.73 (m, 2H), 

4.77-4.84 (m, 1H), 6.46 (t, 1H, J= 8.4 Hz), 6.64- 6.73 (m,3H), 6.77 (d, 1H, J= 7.8 Hz), 6.81-

6.83 (m, 1H), 6.93-6.96 (m, 1H), 7.29-7.36 (m, 2H), 7.78-7.79 (m, 1H). 
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MS (ESI) m/z: found Rt 13.27 min. (Method LCMS), 670.50 [M + H]
+
, 692.49 [M + Na]

+
, 

Calculated 670.23 [M + H]
+
, 692.17 [M + Na]

+
. 

 

Synthesis of (S)-1,7-di(pyridine-3-yl)heptane-4-yl 1-(3,5-dichloro-4-hydroxyphenyl-

sulfonyl)piperidine-2-carboxylate 48 

TLC (DCM: MeOH 9.5:0.5): Rf = 0.49, yield= 10.2 mg (47.7%). 

HPLC (Gradient A) retention time= 28.9-29.2min 

MS (ESI) m/z: found Rt 7.01 min. (Method LCMS), 606.18, 608.20 [M + H]
+
 

Calculated 606.18, 608.22 [M + H]
+
. 

X-ray crystallography 

Crystals and co-crystals of the FKBP51 Fk1 domain construct comprising residues 16-140 and 

containing mutation A19T were obtained as previously described
16

. Diffraction data were 

collected at beamline X06DA of the Swiss Light Source (SLS) synchrotron in Villigen, 

Switzerland. The data were processed with MOSFLM
24

 and XDS
25

, SCALA
26

 and 

TRUNCATE
27

. The crystal structure was isomorphous with the apo structure (PDB code 

3O5R). The dictionaries for the ligand compounds were generated with the PRODRG server
28

. 

The structures were refined with REFMAC
29

. Manual model building was performed with 

COOT
30

. Molecular graphic figures were generated using PyMOL (http://www.pymol.org). 

Supporting Information. Purity and activity data for compounds 47-77 from the high 

throughput synthesis and assay. This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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1. Medium throughput small scale synthesis:  

Pre-weighed samples of Fmoc protected immobilized pipecolate solid support were distributed 

to each of 36 wells of a 96 well parallel synthesis reactor platform obtained from FlexChem® 

peptide synthesis system. The Fmoc deprotection was carried out individually in each of the 

wells followed by coupling with sulfonyl chlorides obtained commercially from Maybridge. 

The unreacted excess sulfonyl chlorides were washed followed by the cleavage of the 

pipecolate sulfonamides from the resin under mild acidic condition.  

Out of the 36 compounds 35 compounds were purified by preparative HPLC. Analytical HPLC 

showed the compounds had at least > 90 % purity with most compounds were > 95% pure 

(except 50, 65 and 73). The correct identity was confirmed by mass spectroscopy, as 

summarized in Table-S1. Compound 50 was purified using ion exchange chromatography to 

only 81 % purity. 

2. Library Testing: 

The 36 purified and chemically validated compounds were tested for their binding to FKBP12 

and to the FK1 domains of FKBP51 and FKBP52 in a fluorescence polarization assay
1
. The 

binding of the compounds to the proteins was analyzed by calculating the % inhibition at a 

concentration of 5 µM (Table 1). 

Compounds having better than 15 % inhibition were considered as hits. This threshold yielded 

5 compounds (8-12) having activity for all the three proteins. 
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3.  Table-S1: 

 

 

 

Compo

und 

No. (a) 

Substituent 

Structure  

Mol 

Wt 

Calc 

Mol Wt  

found 

% 

puri

ty 

HP

LC 

FKBP 51 

FK1 % 

inhibition  

FKBP52 

FK1 % 

inhibition 

FKBP 12 

% inhibition 

49  549.2

0 

550.40 [M + 

H]
+
 

96 6.1 

 

3.8 

 

9.6 

 

50  563.2

2 

585.42 [M + 

Na]
+
, 601.42 [M 

+ K]
+
 

81 6.1 

 

8.5 

 

5.8 

 

51 Cl SO2R
 

631.1

6 

654.13 [M + 

Na]
+
 

98 11.7 

 

15.2 

 

96.1 

 

52 SO2R
 

645.1

9 

663.34 [M + 

NH4]
+
 

96 4.3 

 

0 2.0 

 

53 F SO2R
 

615.1

9 

633.00 [M + 

NH4]
+
, 638.33 

[M + Na]
+
 

96 4.3 6.6 

 

93.6 

 

54 Cl

SO2R  
653.2

7 

652.27 [M -H] 

(a) 

98 8.3 14.2 

 

85.3 

55 
SO2R

F

F

F  
665.1

9 

688.13 [M + 

Na]
+
, 702.13 [M 

99 8.9 12.3 

 

85.3 

 

N

O

O

O

O

O
OH

O

S
O O

R

SO2R

SO2R
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+ K]
+
 

56 PhO SO2R
 

689.2

3 

712.33 [M + 

Na]
+
, 726.27 [M 

+ K]
+
 

97 7.2 15.2 

 

72.6 

 

8 SO2R
N

N  
675.2

3 

676.13 [M + 

H]
+
, 698.27 [M 

+ Na]
+
 

99 16.3 15.2 

 

77.0 

 

57 

N

SO2R

 

598.2

0 

599.33 [M + 

H]
+
, 621.20 [M 

+ Na]
+
 

97 6.6 9.5 

 

70.1 

 

58 
N

SO2RPhO

 
690.2

2 

689.27 [M - 1] 

(a) 

99 3.7 11.4 

 

71.3 

 

59 
N

SO2R

 
674.2

3 

675.33 [M + 

H]
+
 

99 2.6 8.5 

 

56.7 

 

60 
SO2R

Cl  

631.1

6 

654.20 [M + 

Na]
+
,  668.27 

[M + K]
+
 

99 1.4 9.5 

 

10.9 

 

61 

RO2S

Cl

Cl  

665.1

3 

688.27 [M + 

Na]
+
, 706.20 [M 

+ K]
+
 

99 3.2 9.5 

 

23.0 

 

9 SO2R

Cl  

631.1

6 

649.27 [M + 

NH4]
+
, 654.27 

[M + Na]
+
, 

670.27 [M + 

K]
+
 

99 17.5 18.0 

 

101.9 

 

62 

SO2R

NN

O

 

679.2

2 

679.93 [M + 

H]
+
, 702.33 [M 

+ Na]
+
, 716.33 

95 4.9 3.8 

 

69.4 
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[M + K]
+
 

63 SO2R

Cl

F3C

 

699.1

5 

716.93 [M + 

NH4]
+
, 722.20 

[M + Na]
+
, 

736.27 [M + 

K]
+
 

91 -0.2 11.4 

 

70.1 

 

64 
SO2R

N
 

650.2

3 

673.20 [M + 

Na]
+
, 689.27 [M 

+ K]
+
 

95 -0.8 6.6 

 

19.8 

 

10 

 

654.1

7 

655.07 [M + 

H]
+
, 677.20 [M 

+ Na]
+
 

93 25.5 

 

16.1 

 

82.1 

 

65 N

SO2R  

650.2

3 

668.20 [M + 

NH4]
+
, 673.13 

[M + Na]
+
, 

689.20 [M + 

K]
+
 

86 

(b) 

10.0 10.4 

 

87.2 

 

66 O

N SO2R
 

668.2

4 

669.40 [M + H]
 

+ 
 

93 9.5 6.6 

 

94.9 

 

67 NN

O SO2R  

669.2

4 

670.27 [M + 

H]
+
, 692.20 [M 

+ Na]
+
, 708.33 

[M + K]
+
 

99 3.2 1.9 

 

74.5 

 

11 
O

SO2R
 

587.1

8 

610.24 [M + 

Na]
+
, 626.18 [M 

+ K]
+
. 

97 15.2 16.2 

 

96.1 

 

68 
O

SO2R

 

587.1

8 

610.27 [M + 

Na]
+
, 624.20 [M 

+ K]
+
. 

97 2.0 5.7 

 

55.4 
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69 
O

SO2R

 
637.2

0 

660.13 [M + 

Na]
+
, 674.33 [M 

+ K]
+
. 

99 5.5 6.6 

 

66.9 

 

70 

S
SO2R

 

603.1

6 

626.27 [M + 

Na]
+
, 642.13 [M 

+ K]
+
. 

95 3.2 8.5 

 

76.4 

 

71 S

RO2S

Ph

 

679.1

9 

702.27 [M + 

Na]
+
. 

99 3.2 9.5 

 

- 0.5 

12 S

RO2S

 
653.1

8 

676.27 [M + 

Na]
+
, 691.93 [M 

+ K]
+
. 

98 12.4 15.2 

 

84.0 

 

72 

S

SO2R

 

653.1

8 

676.07 [M + 

Na]
+
. 

99 3.2 4.7 

 

36.3 

 

73 

O

NRO2S

 

616.2

1 

639.20 [M + 

Na]
+
, 655.27 [M 

+ K]
+
. 

89 -3.0 3.8 

 

- 0.5 

74 

N N

RO2S

 

601.2

1 

602.27 [M + 

H]
+
, 624.20 [M 

+ Na]
+
, 640.13 

[M + K]
+
. 

97 2.1 4.7 

 

42.7 

 

75 

N

N
RO2S

 

601.2

1 

602.20 [M + 

H]
+
, 617.07 [M 

+ NH4]
+
, 624.40 

[M + Na]
+
,  

638.40 [M + 

K]
+
. 

96 -2.5 3.8 

 

32.5 

 

76 

N

N
RO2S

 

629.2

4 

630.27 [M + 

H]
+
, 652.27 [M 

+ Na]
+
,  668.20 

97 5.5 

 

1.9 

 

0 
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[M + K]
+
. 

77 

N

N
Ph

RO2S

 

691.2

6 

 

692.33 [M + 

H]
+
, 714.20 [M 

+ Na]
+
,  728.47 

[M + K]
+
. 

94 0.9 

 

4.7 

 

-1.1 

78 SO2R
 

611.2

2 

634.27 [M + 

Na]
+
. 

95 3.2 

 

3.8 

 

79.0 

 

79 SO2RO2N

 
642.1

9 

665.07 [M + 

Na]
+
. 

95 0.3 

 

0 63.1 

 

Table S1: Summary of the sulfonamide library synthesized by the solid support protocol for screening 

along with the mass, % purity and % inhibition. (a) Negative mode; (b) two peaks in HPLC spectrum. 

The major peak (86 %) while the other is a minor peak corresponding to 12% of the AUC.  
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4.  Table-S2 Data collection and Refinement Statistics 

 

*  Values in parenthesis for outer shell. 

**  As defined in Scala. 

***  As defined in Coot.  

Dataset PDB code 4DRQ 

Ligand Cmpd 20  

beamline SLS,  X06DA 

wavelength (Å) 0. 9116 

space group P212121 

cell dimensions,  

a, b, c (Å);  

, ,  (°) 

 

41.966, 54.641, 56.596; 

90, 90, 90 

resolution limits (Å)* 41.97 – 1.0 

(1.06 – 1.0) 

Rmerge **
,
* 0.033 (0.285) 

I/sigma **
,
* 18.4 (3.6) 

multiplicity * 3.8 (3.6) 

completeness (%) * 99.5 (99.0) 

Refinement  

resolution range 20 – 1.0 

reflections (test set) 66559 (3503) 

Rcryst  0.1375 

Rfree  0.1508 

number of atoms 1332 

r.m.s.d. bonds (Å) 0.012 

r.m.s.d. angles (°) 1.724 

Ramachandran plot   

 % most favored 

region*** 

97.67 

 % additionally 

allowed*** 

1.16 
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S.Reference. 

(1) Kozany, C.; Marz, A.; Kress, C.; Hausch, F. Fluorescent probes to characterise FK506-binding 

proteins. Chembiochem 2009, 10, 1402-1410. 
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1.2.2.2.1 Discussion (Manuscript 3) 

Bioisosteric replacement of equivalent moieties is an established approach to design analogues 

to eradicate the metabolic instability or potential toxicity there by helping to improve stability 

and optimize activity. 

In this strategy the α-ketoamide was substituted with sulfonamides to generate new scaffolds 

with a conserved hydrogen bond pattern. A solid phase synthesis strategy was established to 

generate a focused library of sulfonamide analogs. Firstly, a focused library was designed 

taking into consideration various substitution patterns. This library consisted of 36 compounds 

which were synthesized and further tested in the medium throughput screening platform 

(fluorescence polarization assay) at a single dose concentration. The best hits (8-12) identified 

were resynthesized and screened for their binding to FKBPs. This pilot study led to the primary 

identification of two active aromatic sulfonamides series (9, 10).  

These lead structures were further optimized and a detailed systemic SAR analysis was carried 

out. In the first series various substituents at the meta-positions were incorporated to study their 

effect on the binding to the larger FKBPs (13-33). Halogen substitution at the meta position 

(18-21) was found to be favorable as compared to larger substituents (13-17, 24-27, 31-33). 

The Di-meta Cl substituted analog (20) was used as a representative compound of this series, 

and the postulated binding mode was confirmed by solving the co-crystal structure with the 

FK1 domain of FKBP51. Compound 20 bound to FKBP51 with retention of the conserved 

hydrogen bonds present in the crystal structure of α-ketoamides. Additional dipolar interactions 

and aromatic hydrogen bonds were also present. This co-crystal structure was used as a 

template to gain insights for further modifications to gain selectivity and affinity (28-30). 

Compound 28 having a p-OH substituent in addition to the Di-m-Cl substituent was found to 

have three folds selectivity for FKBP51 while, substitution with p-OMe rescued the affinity of 

29 for FKBP52.  

The second series consisted of fused ring substituents (34-37). Compound 35 was found to 

have an unexpected high binding affinity for FKBP12. Substitution of sulfur in the fused ring 

by carbon or oxygen (36, 37) resulted in complete loss of activity for the larger FKBPs. This 

gives an indication that sulfur at this position is important to retain binding to the FKBPs. 

The best hit analogs from the two series were further combined with various top group 

substituents. The larger top group modifications were found to have better binding affinity (40-

45, 46) as compared to small modifications (38, 39).  Reference sulfonamide compounds 

having a similar scaffold which have been identified and published to have high binding 

affinities for FKBP12/ MIP were also resynthesized to evaluate their effect on larger 
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FKBPs
55,63

. Surprisingly these compounds were not active for FKBP12 in the fluroescence 

polarization assay as claimed in the literature. The compounds did not show any measurable 

binding to the larger FKBPs (Table- 3) in line with the SAR established before. The synthesis 

of these compounds haveb been incorporated in patent No. EP-11195970.6). 

 

Table: 3 Purity of the re-synthesized reference compounds and their binding affinity determined in a 

fluorescence polarization assay. 

Compd. No. R1 R Reference FKBP12 FKBP51FK1 FKBP52FK1 

   IC50(µM) 

A Et 

 

 63.5 ± 14.4 >100 >100 

B Et 

 

63
 54.7 ± 12.7 >100 >100 

C 

 

 

55
 9.8 ± 7.4 >100 >100 

D 

  

63
 9.2 ± 3.7 >100 >100 

 

The best hit analogs (compound 42 and 44) resulted in 15-60 fold enhancement of binding 

affinity for the FKBPs as compared to the lead compound 2. The molecular underpinning of the 

unexpected high binding affininty of compound 42 and 44 is yet to be investigated. This study 

proved the hypothesis that sulfonamides adopt a similar binding mode as the α-ketoamides in 

the binding site of FKBP and can be used as efficient surrogates for α-ketoamides. Further, this 

campaign resulted in identifying and dissecting specific substituents that are important for 

gaining binding affininty for the FKBPs. This study has resulted in finding two potent binders, 

(1) compound 42 is so far the best synthetic ligand known for the larger FKBPs, (2) compound 

44 is one of the most potent ligand known with equivalent potency for FKBP12 compared to 

the natural products FK506 and Rapamycin.  
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The identified sulfonamide lower parts have further being investigated and adapted in rigid 

bicyclic and polycyclic scaffolds. Combination of the sulfonamide substituents discovered in 

this work together with bicyclic scaffold has given substantial increase in the potency of this 

series of ligands. (Wang, Y manuscript in prep.). The polycyclic series of compound is 

discussed in detail in the next section.  
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1.2.3 Design of Ligand Efficiency by Conformation Control (Manuscript 4) 

Yansong Wang
1
,
 
Christian Kozany

1
, Ranganath Gopalakrishnan

1
, Christoph Kress

1
, Bastiaan 

Hoogeland
1
, Andreas Bracher

2
, Felix Hausch

1
*.  

FK506 and Rapamycin have high binding affinity to the FKBPs. This might be in part due to 

the rigid backbone that is present in these macrocyclic compounds. The synthetic compounds 

analyzed in manuscript 2 and 3 have high conformational flexibility. From the co-crystal 

structure elucidated above we postulated the incorporation of an axial substituent at the C
6
-

position of the pipecolate ring which could be further cyclized with the C
1
-carbonyl to limit the 

flexibility and to yield polycyclic aza-amide compounds. 

One of the polycycle compounds known for FKBP12 was resynthesized and the postulated 

binding mode was further confirmed by solving the co-crystal structure of this polycyclic 

compound with FKBP51.  

The most promising lower substructures identified in manuscript 2 and 3 were attached to this 

rigid polycycle core. This series of compounds contained four additional compounds. 

 

Figure 15: Prototypic compounds of the proposed series. 

This work will be part of the manuscript submitted to The Journal of American Chemical 

Society.  

This work comprises a small part of the above manuscript and hence the complete manuscript 

will not be attached and only my contribution will be discussed in the following pages. 
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1.2.3.1.1 Background 

The diketoamides and the sulfonamides ligands that have been described above have a high 

degree of conformational flexibility due to presence of rotatable bonds as compared to the 

natural products FK506 and Rapamycin. This might be a reason for the weak binding affinities 

of these analogs compared to the natural products. In order to identify more efficient scaffolds 

we adopted the polycyclic aza amide core which has been previously described for 

FKBP12
106,107

. To further understand if this concept can be extended to the larger FKBPs 

compound 29 was resynthesized and was found to bind to FKBP51 and 52 with equal potency 

compared to the lead compound (compound 2a ketoamide manuscript). 

The postulated binding mode of 29 was further confirmed by solving the co-crystal structure 

with the FK1 domain of FKBP51 to 1.05Å. Compound 29 bound to FKBP51 similar to 

compounds that were described in the above two manuscripts 2 and 3. Apart from these 

conserved interactions ring B and ring C stack atop each other via [pi] - [pi] interactions (Fig. 

16). The preorganization of ring B might lock ring C into a conformation which is favourable 

for binding. The stacking of these two rings represents a productive ligand hydrophobic 

collapse
108

. 

 

Figure 16: X-ray crystal structure of 29 in complex with the FK1 domain of FKBP51. The two hydrogen bonds 

between O
1
-29 and HN-Ile

87
, and between O

16
-29 and HO-Tyr

113
, are shown as dotted red lines. The dipolar 

interaction between the C
1
-carbonyl and HO-Tyr

113
 is shown in green. Van-der-Waals interactions of the ligand 

with Y
57

, D
68

, F
77

, Y
113 

and S
118

 are shown in black. Leu
119

 and Pro
120

 at the top of the 80s loop are colored in cyan. 
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1.2.3.1.2 Result and Discussion 
 

Taking these observations as an initial lead we further synthesized this polycycle with the  

cyclohexyl ring 30* (Scheme-1) that mimic the pyranose of FK506 or Rapamycin and which 

we had identified previously as preferred substructures compared to the trimethoxyphenyl 

moieties in a monocyclic scaffold [manuscript 2]. In contrast, in the polycyclic context a 

dramatic decrease of the binding affinity was observed when ring C was changed to cyclohexyl 

α-keto amide 30*. The lower affinity of 30* might be due to the loss of favourable [pi] - [pi] 

interactions leading to a loss of the preorganized conformation. Next, the best substituents from 

the sulfonamide series were attached to the polycyclic rigid core (Scheme-1). Compound 31 

and 32 had low to no binding affinity for the larger FKBPs though the binding to FKBP12 was 

still conserved to some extent. Compound 33 was the only compound in this series that had 

detectable affinity for the larger FKBPs. 

Scheme-1 

 

a Reagents and conditions :  (a) HATU, DIPEA, rt, 16h, (b) DIPEA, CH2Cl2, r.t., 1.5h. *Mixture of 

Diasteromers. 
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Compd. No. R FKBP12 FKBP51FK1 FKBP52FK1 

 IC50(µM) 

±29 

 

 5.21± 3.39 6.92± 5.12 

±30* 

 

2.8 ± 4.5 

 

inactive 

 

inactive 

 

±31 

 

0.87 ± 2.5 

 

inactive 

 

inactive 

 

±32 

 

2.09 ± 0.27 

 

>100 >200 

±33 

 

0.70 ± 0.92 

 

13.9 ± 9.7 

 

22.7 ± 19.6 

 

Table 4: Binding affinity to FKBP12, FKBP51 (FK1 domain) and FKBP52 (FK1 domain) determined by a 

fluorescence polarization assay105. * Diastereomeric mixture. 
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1.2.3.1.3 Experimental section 

Chemistry: All solvents were purchased from Roth, reagents were bought from Aldrich-Fluka 

and the sulfonyl chlorides were obtained from Maybridge, Sigma Aldrich, or ABCR unless 

otherwise stated. 

Chromatographic separations were performed either by manual flash chromatography or by 

automated flash chromatography using an Interchim-Puriflash 430 with an UV detector. 

Extracts were dried over MgSO4 and the solvents were removed under reduced pressure. Merck 

F-254 commercial plates were used for analytical TLC to follow the course of reaction and 

visualized by UV light at either 254 or 365 nm. Silica gel 60 (Merck 70-230 mesh) was used 

for column chromatography. NMR spectra of all compounds were obtained from the 

Department of Chemistry and Pharmacy, LMU, on a Bruker AC 300, a Bruker XL 400, or a 

Bruker AMX 600 at room temperature in deutero-CDCl3 with tetramethylsilane (TMS) as 

internal standard, unless otherwise stated. Mass spectra (m/z) were recorded on a Thermo 

Finnigan LCQ DECA XP Plus mass spectrometer at the Max Planck Institute of Psychiatry. 

 HPLC analysis was carried out using a Jupiter 4 µm Proteo column (250 x 4.6 mm, 5µm 

particle size), Wavelength: 224nm, 280nm; Flow rate: 1ml/min; Buffer A: 0.1% TFA in 5% 

MeCN/water; Buffer B: 0.1% TFA in 95% MeCN/water; Gradient A: After 1min elution with 

100% buffer A, linear gradient of 0-100% buffer B for 30 min. 

Method LCMS: YMC Pro C-8 (100 x 4.6 mm, 3µm particle size) column, Wavelength: 

224nm, 280nm; Flow rate: 1ml/min; Buffer A: 0.1% HCOOH  in 5% MeCN/water; Buffer B: 

0.1% HCOOH in 95% MeCN/water; Gradient B: 1min 100% buffer A, then linear gradient of 

0-100% buffer B for 11 min. 

Synthesis of Polycycle core (27). 

The polycycle core (27) was synthesized either by Christoph Kress in the group of Dr. Felix 

Hausch or by the Lead Discovery Center (Taros) as previously described
106

.  

Synthesis of compound 30*. 

To 7 (108mg, 0.358 mmol) DIPEA (139 mg, 1.07 mmol), HATU (129 mg, 0.537 mmol), 28 

(80 mg, 0.430 mmol) were added. The reaction was stirred at room temperature for 16 h and 

the product was purified by column chromatography (Hexane: EtOAc 2:8) to yield compound 

30*. 

TLC (EtOAc: TEA 9.9:0.1): Rf = 0.66, Yield= 25mg (16%). 
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HPLC (Gradient A) retention time = 19.2-19.6 min. 

1
HNMR (600 MHz, CDCl3) δ= 0.71-0.74 (m, 3H); 1.12-1.42 (m, 7H); 1.58-1.64 (m, 3H); 1.80-

1.91 (m, 4H); 2.01-2.16 (m, 2H); 3.76-3.88 (m, 6H); 4.57-4.68 (m, 1.5H); 4.84-4.94 (m, 1H); 

5.07 (s, 0.5H); 6.23-6.26 (m, 1H); 6.32 (s, 0.5H); 6.36-6.38 (m, 0.5H). 

13
C NMR (150 MHz, CDCl3) δ= 15.63, 16.02, 18.03, 18.06, 20.25, 20.46, 25.34, 27.22, 29.27, 

29.30, 30.08, 31.79, 36.74, 36.82, 40.55, 46.86, 51.01, 52.79, 55.30, 55.47, 58.67, 58.83, 80.75, 

81.24, 97.25,, 97.40, 104.99, 105.25,115.79, 116.55, 138.29, 139.04, 157.20, 157.31, 159.80, 

159.93, 163.09, 163.99, 168.66, 168.92, 204.10, 204.75. 

MS (ESI): m/z=  471.33  [M + H]
 +

, calculated: 471.56[M + H]
 +

. 

Synthesis of compound 31. 

To 7 (75mg, 0.247 mmol) DIPEA (45 mg, 0.346 mmol) and 3,5-dichloro-4-hydroxybenzene-1-

sulfonyl chloride (81mg, 0.346 mmol) were added. The reaction was stirred at room 

temperature for 1.5 h and the product was purified by column chromatography (Hexane: 

EtOAc 1:1) to yield compound 4 as white solid. 

TLC (Hexane: EtOAc 3:7): Rf = 0.51, Yield- 100mg (77%). 

HPLC (Gradient A) retention time = 27.2-27.5 min. 

1
HNMR (300 MHz, CDCl3) δ= 1.80-2.37 (m,8H), 2.56 (dt, 1H, J = 3.3, 12.6 Hz, ), 3.84 (s,3H), 

3.80 (s, 3H), 4.48 (s, 1H), 4.55 (t,1H, J = 2.1 Hz), 4.76-4.82 (m, 1H), 4.89-4.91 (m, 1H), 6.06 

(d, 1H, , J = 2.4 Hz ), 6.31 (d, 1H, J = 2.4 Hz), 7.24 (s, 1H), 7.25 (s,1H), 7.31 (t, 1H, J = 

1.8Hz). 

13
C NMR (75 MHz, CDCl3) δ= 17.56, 28.02, 29.50, 31.53, 40.44, 51.66, 54.84, 55.17, 55.50, 

59.05, 97.08, 105.60, 116.06, 125.07, 132.23, 135.60, 138.15, 143.56, 157.05, 159.45, 168.06. 

MS (ESI): m/z=  511.87, 513.47  [M + H]
 +

, calculated: 511.48, 513.13[M + H]
 +

. 

Synthesis of compound 32. 

To 7 (50mg, 0.165 mmol) DIPEA (29.9 mg, 0.232 mmol) and 3,5-dichloro-4-hydroxybenzene-

1-sulfonyl chloride (60.5mg, 0.232 mmol) were added The reaction was stirred at room 

temperature for 2 h and the product was purified by crystallization from methanol to yield 5 as 

white solid. 

TLC (DCM: MeOH 9.6: 0.4): Rf = 0.44, Yield= 19.28mg (23%). 

HPLC (Gradient A) retention time = 23.3-23.6 min 
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1
HNMR (400 MHz, CDCl3 : CD3OD 8 : 2) δ= 1.91-2.07 (m,6H), 2.27-2.31 (m,2H),  2.50-2,57 

(m, 1H), 3.76 (s,3H), 3.79 (s, 3H), 4.44 (s, 1H), 4.51-4.53 (m,1H), 4.72-4.78 (m, 1H), 4.78-4.81 

(m, 1H), 6.02 (d, 1H, , J = 2.4 Hz ), 6.25 (d, 1H, J = 2.4 Hz), 7.24 (s, 1H), 7.25 (s,1H). 

13
C NMR (100 MHz, CDCl3: CD3OD 8:2) δ= 17.55, 27.90, 29.47, 31.34, 40.52, , 51.21, 54.53, 

55.10, 55.44, 59.10, 97.93, 105.19, 116.00, 121.73, 127.00, 132.60, 137.97, 151.88, 156.95, 

159.33, 168.57. 

MS (ESI): m/z=  527.71, 529.62  [M + H]
 +

, calculated: 527.46, 529.14 [M + H]
 +

. 

Synthesis of compound 33. 

To 7 (50mg, 0.165 mmol), DIPEA (29.9 mg, 0.232 mmol) and benzo[d]thiazole-6-sulfonyl 

chloride (60.5mg, 0.232 mmol) were added The reaction was stirred at room temperature for 

1.5 h and the product was purified by column chromatography (Hexane: EtOAc 2:8) to yield 6 

as white solid. 

TLC (Hexane: EtOAc 1:9): Rf = 0.21, Yield= 79.2mg (95%). 

HPLC (Gradient A) retention time = 22.1-22.3 min. 

1
HNMR (300 MHz, CDCl3) δ= 1.79-2.15 (m,8H), 2.46 (dt, 1H, J = 3, 12.6 Hz ), 3.74 (s,3H), 

3.84 (s, 3H), 4.46 (s, 1H), 4.60-4.70 (m,2H), 5.00 (d, 1H, J = 1.8 Hz), 5.70 (d, 1H, J = 2.4 Hz), 

6.27 (d, 1H, , J = 2.4 Hz ), 7.51 (dd, 1H, J = 1.8, 8.7 Hz), 7.95 (m, 2H), 9.15 (s,1H). 

13
C NMR (75 MHz, CDCl3) δ= 17.62, 28.10, 29.21, 31.87, 40.11, 51.83, 54.71, 55.19, 55.51, 

58.86, 96.98, 104.98, 116.52, 121.40, 123.96, 124.33, 133.77, 138.10, 138.17, 155.00, 157.20, 

157.40, 159.22, 168.38. 

MS (ESI): m/z=  500.59 [M + H]
 +

, calculated: 500.65[M + H]
 +

. 
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2.1 Introduction 

2.1.1 Depression 

The most common psychiatric disorders prevalent in the society are major depression and 

bipolar disorder. The most prominent symptoms of these disorders which effect the everyday 

life of the patient include long lasting depressive mood, guilt feeling, anxiety, recurrent 

thoughts of death and suicide and are collectively referred to as “depressive syndrome”
109

. The 

disease treatment and the associated direct and indirect costs have a huge economic burden on 

the society. This explains the huge market share the antidepressants have in the CNS drug 

category, which has continuously increased in the past decades. 

Both non-genetic and genetic factors play an equal role in the development of depression. The 

non-genetic social factors that are the causative reasons include physical and emotional stress, 

affective trauma, viral infection or neurodevelopmental abnormalities. The genetic contribution 

for the risk of depression has been estimated to be roughly about 30-40%. However few 

individual genes that contribute to this risk have been identified
110

, and a single gene 

abnormality fails to explain the multifaceted symptoms of depression
111

.  

The central topic of depression research in the last 60 years that has been driving the 

pharmaceutical industry to search for cure is the monoamine hypothesis. The mechanism of 

action of all classes of antidepressants can be accounted for by the monoamine theory. As 

compared to other disease conditions and disorders the knowledge of the brain and its neural 

circuits are limited. In addition there is a lack of objective diagnostic test which means that the 

diagnosis of this disorder is highly variable with no clear demarcation between a normal, mild 

and highly depressed individual. The antidepressants available in the market are effective in 

only 50% of the treated patients which gives an indication that apart from the monoamine 

theory other pathways can also play a role in the etiology of depression. The known animal 

models for mood disorders also fail to explain the reason why chronic treatment of the 

antidepressants is required in humans before the clinical effects starts to be seen
112

. Most of 

these animal models are based on the monoamine theory and hence it is unclear whether new 

novel antidepressants working by a novel mechanism can be identified using these models.  

2.1.2 Monoamine Hypothesis 

The monoamine hypothesis proposes that disruptions in the serotonergic and the noradrenergic 

systems can result in depression or depression-like symptoms. The therapeutic strategy is to 
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restore the monoamine levels in such patients. Those classical classes of drugs are present 

which elicit their effect in accordance with the monoamine hypothesis. The oldest 

antidepressants are the monoamine oxidase inhibitors (MAO-I) while the second class of drugs 

are the tricyclic antidepressants. However, new evidences have suggested that the monoamine 

hypothesis fails to explain the whole mechanism of action of antidepressants. The cytokine 

hypothesis of depression
113-117

, the hypothalamic pituitary thyroid hypothesis of depression
118-

120
, the role of brain derived neurotrophic factor

121-123
 and cAMP response element binding 

protein
124-126

 have been recently shown to partially explain the mechanism of antidepressants. 

2.1.3 Monoamine transporter inhibitors as antidepressants 

The primary mechanism of action of most or all antidepressant drugs available in market is that 

they are modulators of monoaminergic neurotransmission. As stated above these drugs can be 

divided into three broad class (i) monoamine oxidase inhibitors (MAOIs), (ii) monoamine 

transporter inhibitors (iii) monoamine receptor ligands. 

MAOIs were the first compounds that were available for therapy in the 1960s. The early 

MAOIs like iproniazide, tranylcypromine or phenelzine irreversibly inhibit MAO-A which is 

the main catabolic enzyme for the monoamine transmitter’s noradrenaline (NA), serotonin (5-

HT), and dopamine (DA) (Fig.17). The end result is the generalized increased in monoamine 

levels throughout the CNS
127,128

. The newer analogs of this class of compounds, e.g., 

Moclobemide, are reversible MAO inhibitors. However, MAOIs are very powerful drugs, and 

are the last line of defense as its use is limited due to hepatotoxicity and prominent and lethal 

adverse effect (“the cheese effect”) which leads to hypertensive crisis due to high tyramine 

ingestion
128

. 

The tricyclic antidepressants (e.g., imipramine) elicited their antidepressant effect by inhibiting 

the membrane transporters and the reuptake of 5-HT or NE, thereby causing an increase in the 

synaptic concentrations of monoamines. This class of drugs is very efficient and potent 

although they are characterized by a wide profile of side effects arising due to a variable degree 

of antagonism at the muscarinic, adrenergic and histaminergic receptors (Fig. 17). The second 

generation of TCAs was comparatively more selective to NE uptake (desipramine, 

nortriptyline, maprotiline) with no significant betterment of the side effect. The subsequent 

development of the selective serotonin reuptake inhibitors (SSRIs) fluoxetine and its 

introduction in the clinic has provided the clinicians with a safer treatment alternative and a 

lesser side effect profile. 
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Figure 17 Mechanism of action of various classes of antidepressants on a prototypic monoamine 

transporter (serotonin).  

However, the SSRIs have been found to be ineffective in treating certain class of patients 

which has led to the development of the dual selective drugs SNRIs (venlafaxine and 

duloxetine)
129

. 

2.1.4 SAR studies of TCA class of drugs. 

Tricyclic antidepressants or various other classes of antidepressants preferentially bind to the 

transporters SERT and NET. The binding mode of these compounds to the transporters is not 

fully clarified as the structural insights of these transporters have been controversial. Structure 

activity relationships and homology modeling has been able to provide clues about the distinct 

binding mode and binding site of these classes of drugs. Also, mutagenesis studies have 

provided information regarding residues that are important and required for inhibitor 

binding
130-142

. The first tricyclic antidepressant drug, imipramine (34), was launched by Geigy 

in 1951. The core structure of this drug was obtained by modification of the antipsychotic drug 
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chlorpromazine.  Further modification on the TCA ring gave rise to Clomipramine (36), 

Cyanopramine and Amitriptyline (37). It has been shown that modifications on the TCA ring at 

position 3 resulted in analogs with retention of activity
143,144

. These drugs have the same 

dimethylamino group as in chlorpromazine but have different tricyclic core. Imipramine (34), 

Clomipramine (36), and Cyanopramine have a dibenzoazepine core while in Amitriptyline (37) 

the nitrogen is replaced by carbon to give the dibenzocycloheptene core and an ethylidene 

moiety at position 5.  

Table 4  

No. Name of the 

Drug 

Structure Company Approved Ki (nM)
a
 

  hSERT hNET 

34 Imipramine 

 

Geigy 1951 1.4 37 

35 Desipramine 

 

Geigy 1964 17.6 0.83 

36 Clomipramine 

 

Geigy 1970 0.28 38 

37 Amitriptyline 

 

Hoffmann-La 

Roche 

1961 4.3 35 

38 Nortriptyline 

 

Geigy 1963 18 4.4 

39 Lofepramine 

 

LEO AB 1980 70 5.4 

a
 Values taken from

144
. 

All four compounds have equipotent affinity to SERT and NET which proved that these minor 

structural changes are not of crucial importance
143

.  
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The corresponding N-desmethyl metabolites of the above compounds also have been shown to 

have therapeutic activity. The N-desmethyl metabolites Desipramine (35), and nortriptyline 

(38) have a slight preference on NET as compared to their corresponding precursors which 

have preference for SERT
143

. This gives an indication that the dimethylamino substituent is 

important for higher SERT affinity while the N-desmethyl version gives higher NET affinity. 

Lofepramine (39)
145

, a close analog of imipramine (34) where one of the methyl in the 

dimethylamino center is replaced with a longer side chain, has 14 times more preference to 

NET as compared to SERT
146

. The above series of compounds shows that any subtle changes 

in the dimethylamino group of imipramine gives rise to compounds with varying selectivity 

towards NET and SERT. 
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2.2 Aim of the work (Manuscript-5) 

Tricyclic antidepressants (TCA) tightly bind to a variety of proteins and exert their 

pharmacological action via a wide mechanism of action. The broad pharmacological 

background and molecular mechanisms of these drugs is still poorly understood. The 

unspecific binding of these drugs to wide protein class is thought to be the contributing factor 

for its clinical efficacy and side effects. Hence a photo-labeling approach was conceptualized to 

explore and define the TCA-binding proteome which will help in understanding the mechanism 

of action of antidepressants in detail. 

To identify and fish the binding proteome, the first step is the development and functional 

validation of a chemically modified antidepressant analog with retention of the drug-like 

properties of the parent drug (Imipramine, in this case). The final tool compound should be 

amenable to affinity purification and identification of photo-crosslinked antidepressant binding 

proteins in lysates and endogenous tissue (Fig. 18). Ideally, it should also be applicable to 

integral transmembrane proteins which comprise all currently known antidepressant targets. 

Such a tool could also enable the structural fine-mapping of the binding sites in these proteins.  

 

 

Figure 18. Proposed series of photoreactive TCA analogs. 
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Photoactivable Tricyclic Antidepressants as Trifunctional Probes for the Serotonin 

transporter 
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Abstract:  

Monoamine transporter inhibitors have been the front line therapy for depression for decades. 

The exact binding mode of these drugs to their canonical target, the serotonin transporter, is 

matter of debate. Moreover, these antidepressants are characterized by an extremely complex 

polypharmacology and the role of additional targets for their clinical efficacy is been unclear. 

Here we present the development of multifunctional analogs of the tricyclic antidepressant 

imipramine. These tools inhibit monoamine uptake by the serotonin transporter with nanomolar 

potency, allow for photocrosslinking and contain an acetylene tag for affinity enrichment by 

click chemistry. These chemical tools will be useful for the fine-mapping of the binding mode 

of tricyclic antidepressants or for the identification of alternative targets by mass spectroscopy. 
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Depression is one of the most common disorders and it is expected to be the leading cause of 

disability in 2030 [WHO: The global burden of disease (2004 update)]. The established targets 

for most antidepressants are transporters of monoamine neurotransmitters
1
. While there has 

been substantial progress in the structural biology of this protein class, the exact antidepressant 

binding site has remained controversial, in part due to the poor biochemical tractability of these 

integral membrane proteins
2-5

. In addition to the monoamine transporters additional protein 

targets have been repeatedly been discussed to contribute to the efficacy of the currently 

available antidepressants and the ultimate mechanism of action of these drugs has remained 

elusive. A better understanding of antidepressants as been complicated by their extremely 

broad polypharmacology as well as by a lack of adequate chemical tools
6,7

. In fact, some 

antidepressants are among the most “dirty” drugs currently in clinical use. 

To study the targets of antidepressants in endogenous systems in an unbiased manner, we set 

out to develop antidepressants analogs that would allow for covalent labelling of antidepressant 

binding proteins. Towards this end, we started with the prototypic tricyclic antidepressant 

Imipramine (1) as a chemical starting point. Clinically effective analogs like Clomipramine (3) 

and Cyanopramine (4)
8-11

 suggested that substituents in the 3-position of the tricyclic ring 

system would not compromise the antidepressant activity of this class of drugs [Fig. 1]. We 

thus set out to introduce an azido group in the 3-posotion of Imipramine to graft the known 

photoreactivity of aromatic azides into the tricyclic ring system. 

 

Figure.1 Tricyclic antidepressants drugs used in the clinic. 

The Imipramine analog Azidopramine 9 was synthesized from the commercially available 

azepine analog 1-(3-amino-10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)ethanone 6 in four steps. 

The primary amine of 6 was first converted to the corresponding azide 7. Basic deprotection of 

the acetyl group provided the free secondary amine 8 which was alkylated with 9 to yield the 

tricyclic antidepressant analog Azidopramine (10).  
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Scheme 1: Synthesis of Azidopramine (10): (a) NaNO2, 10% HCl. (b)NaN3, H2O, rt, 1h. (c) KOH, 

MeOH, 60
o
C, 15h. (d) NaH, ClCH2CH2CH2N(CH3)2 (9), 0-60

o
C, toluene. 

The photoreactivity of the aromatic azide 10 was then tested by subjecting the compound to 

UV light exposure (254 nm). TLC analysis (Fig. 2) showed a time dependent conversion under 

these conditions. This confirmed that the introduction of the azide group in Azidopramine 

resulted indeed in a photoreactive AD analog. 

  

Figure 2 Photoreactivity of Azidopramine (10) when subjected to UV light (254 nm) analyzed by thin 

layer chromatography (TLC), mobile phase DCM: MeOH 9.2:0.8 

To verify that Azidopramine retained its biological activity we then tested it in an uptake assay 

for its primary target, the serotonin transporter (SERT). Gratifyingly, Azidopramine inhibited 

the uptake of SERT with an IC50 of 28nM, i.e., with equal potency compared to the parent 

compound Imipramine. This shows that addition of the azide group at position 3 was indeed 

tolerated (Table-1). 

For Azidopramine (10) to be useful as a tool to study the mechanism of action of 

antidepressants, a convenient way to detect Azidopramine in biological samples would be 

extremely useful. We thus set out to explore the possibilities to introduce additional chemical 

tags into Azidopramine (10) to make it amenable to sensitive biochemical detection. Two 

approaches can be envisioned, (i) to convert Azidopramine into a radiotracer, (ii) to introduce 

additional bioorthogonal reactive chemical tags that allow a specific and sensitive labeling of 

Azidopramine photocrosslinking adducts.  

We first envisaged the synthesis of the demethylated analog Desazidopramine 13. The coupling 

of the necessary Boc-protected building block 11 to the azepine 8 turned out to be more 

demanding than the corresponding 3-chloropropyl-dimethyl amine (9) used for the synthesis of 

Azidopramine (10) 

Photo adduct  
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Azidopramine. Stronger activation with a tosyl group and optimization of the reaction 

conditions eventually furnished compound 13 in 64% yield which was deprotected to the 

desired Desazidopramine 14 (Scheme 2). 

 

Scheme 2: Synthesis protocol of Desazidopramine (14) and Azidobupramine (15): (a) (Boc)2O, DMAP, 

ACN, rt, 2h. (b) TsCl, Et3N, DCM, 0
o
C. (c) NaHMDS, toluene, -78

o
C to 70

o
C, 6h. (d) 20%TFA, DCM, 

rt, 4h. (e) 1-bromo-3-butyne (15), K2CO3, KI, 60
o
C, 12h, acetone. 

Demethylation in Desazidopramine substantially reduced activity in the uptake assay for the 

serotonin transporter (SERT) compared to Azidopramine (Table 1). The loss in activity was 

similar to the clinically used antidepressant Desipramine, in line with the known preference of 

the serotonin transporter for di-N-methylated TCA analogs
8,9,11

. Desazidopramine can be used, 

however, as the precursor for the synthesis of tritiated Azidopramine by radioactive 

methylation.  

To allow for a non-radioactive detection of Azidopramine, we alkylated 14 with 1-bromo-3-

butyne (15) to introduce a “click tag” to generate Azidobupramine 16 (Scheme-2). This second 

generation antidepressant analog carried an additional terminal alkyne group for selective 

derivatization with labeled azides by copper-catalyzed cycloaddition. The introduction of 

propyne group was not envisaged in place of the butyne because the resulting compound will 

have a structure similar to MAOIs, e.g. pargyline. This could lead to an additional MAO 

inhibition thereby possibly confounding the interpretation of biological effects
12

. 

Azidubupramine (16) was further tested in the radioactive uptake assay for SERT. Its SERT-

inhibiting activity was found to be weaker than Azidopramine (10), but a stronger compared to 

Des-azidopramine (14) and substantially stronger than the clinically used Lofepramine (5), one 

of the few TCA analogs with a longer N-alkyl substituent
13

.  

TsO N
BOC

Cl N
BOC

TsO N
BOC

TsO N
BOC

Cl N
BOC

Cl N
BOC

TsO N
BOC
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Table-1 SERT uptake assay: [H
3
]-5HT Uptake assay for using HEK293 cells stably over 

expressing human SERT. 

Compd. No. Compd. Name Structure IC50(nM) 

hSERT 

1 Imipramine 

 

22 ± 6 

2 Desipramine 

 

1400 ± 400 

5 Lofepramine 

 

2747 ± 1573 

10 Azidopramine 

 

28 ± 15 

14 Des-Azidopramine 

 

1400 ± 400 

16 Azidobupramine 

 

560 ± 25 

 

In conclusion, this study provides functionalized antidepressant analogs as chemical tools for 

molecular psychiatry. Azidopramine (10) allows for the covalent derivatization of membrane-

localized antidepressant targets like the serotonin transporters. [H
3
]-labelled Azidopramine or 

the tri-functional analog Azidobupramine (16) can both be used to fine-map the antidepressants 

binding site of SERT. Azidobupramine further allows for an affinity enrichment to enable a 

mass spectrometry analysis of the antidepressant binding proteome. Importantly, 

Azidobupramine (16) can interrogate antidepressant binding sites in their native environment in 

an unbiased manner. It is small enough that it could even be used in intact animals, e.g., in 
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animal model of depression. This should be useful to expand our understanding of the 

mechanism of action of clinically used antidepressants. 

Methods: 

Chemistry. Chromatographic separations were performed either by manual flash 

chromatography or by automated flash chromatography using an Interchim- Puriflash 430 with 

an UV detector. Organic phases were dried over MgSO4, and the solvents were removed under 

reduced pressure. Merck F-254 (thickness 0.25mm) commercial plates were used for analytical 

TLC to follow the progress of reactions. Silica gel 60 (Merck 70-230 mesh) was used for 

manual column chromatography. Unless otherwise specified, 
1
H NMR spectra, 

13
C NMR 

spectra, 2D HSQC, HMBC and COSY of all intermediates were obtained from the Department 

of Chemistry and Pharmacy, LMU, on a Bruker AC 300, a Bruker XL 400, or a Bruker AMX 

600 at room temperature. Chemical shifts for 
1
H, 

13
C are given in ppm (δ) relative to 

tetramethylsilane (TMS) as internal standard. Mass spectra (m/z) were recorded on a Thermo 

Finnigan LCQ DECA XP Plus mass spectrometer at the Max Planck Institute of Psychiatry, 

while the high resolution mass spectrometry was carried out at MPI for Biochemistry. 

(Microchemistry Core facility) on Varian Mat711 mass spectrometer. The purity of the 

compounds was verified by reversed phase HPLC (Jupiter 4 µm Proteo 90 A, 250*4.6 mm, 

Phenomenex, Torrance, USA) using gradient A (acetonitrile:water gradient:0.1% TFA of 0 – 

100% in 45 min) unless otherwise specified. Solvents were purchased from Roth, reagents 

were obtained from Aldrich-Fluka unless otherwise noted. 

HPLC conditions for product analysis; Column: Jupiter 4 µm Proteo 90 A, 250 x 4.6 mm, 

Phenomenex, Torrance, USA, Wavelength: 224nm, 280nm Flow rate: 1ml/min, Buffer A: 

0.1% TFA in 5% MeCN/Water, Buffer B: 0.1% TFA in 95% MeCN/water. Gradient A After 

1min elution with 100% buffer A,: linear gradient of 0-100% buffer B for 30 min.  

 Synthesis of 1-(3-azido-10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)ethanone 7 

To a stirred solution of 1-(3-amino-10,11-dihydro-5H-dibenzo [b,f]azepin-5-yl)ethanone 6  ( 

Wako Chemicals, 100 mg, 0.396 mmol) in 10% aqueous hydrochloric acid (2ml), a solution of 

sodium nitrite (27.3 mg, 0.396 mmol) in water was added at 0-5
o
C with vigorous stirring. The 

mixture was kept below 5
o
C for 30 min, and then a solution of sodium azide (28.3 mg, 0.436 

mmol) in water (5ml) was added dropwise while the reaction was kept at the same temperature. 

After being stirred for 1h, the mixture was warmed to room temperature and extracted with 

EtOAc and water. The organic layer was washed with brine, dried with MgSO4 and 
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concentrated under reduced pressure to give 110mg (0.396 mmol, 100%) of compound 7 as 

yellow oily liquid.  

TLC (Hexane: EtOAc 11:9): Rf = 0.58 

1
H NMR (400 MHz, CDCl3) δ= 2.03 (s, 3H, CH3), 2.77-2.86 (m, 2H, CH2CH2), 3.28-3.48 (m, 

2H, CH2CH2), 6.85 (d, 1H, J = 8.4 Hz), 6.96 (s, 1H), 7.07 (s, 1H), 7.13 (d, 1H, J = 8.4 Hz), 

7.29 (m, 4H). 

13
C NMR (100.5 MHz, CDCl3) δ= 22.64, 30.01, 30.59, 118.42, 119.19, 127.46, 127.60. 128.75, 

129.88, 131.87, 137.41, 138.13, 140.94, 142.24, 143.69, 170.56.  

MS (ESI): m/z = 279.13 [M + H] 
+
, 301.13 [M+ Na]

 +
. Mass Calculated: 278.31.  

Synthesis of 3-azido-10,11-dihydro-5H-dibenzo[b,f]azepine 8 

To 110 mg of compound 7 (0.395 mmol) was added potassium hydroxide (72mg, 1.38 mmol) 

dissolved in 10ml of methanol and the reaction mixture was refluxed for 6 h under an argon 

atmosphere. Afterwards, methanol was evaporated and the mixture was extracted with CH2Cl2. 

The oily liquid was dissolved in minimum amount of EtOAc and then recrystallised from 

hexane in the cold to yield needle shaped crystals of 8 (85 mg, 0.359 mmol, 85%). 

TLC (Hexane: EtOAc 9:1): Rf = 0.6. 

1
H NMR (300 MHz, CDCl3) δ= 3.07 (s, 4H), 6.39 (d, 1H, J = 2.1 Hz), 6.49 (dd, 1H, J = 2.1, 6 

Hz), 6.75 (d, 1H, J = 0.9 Hz), 6.84 (dt, 1H, J = 1.2, 7.5 Hz), 7.03 (d, 1H, J = 8.1Hz), 7.06-7.15 

(m, 2H) 

13
C NMR (75 MHz, CDCl3) δ= 34.55, 34.81, 108.06, 109.83, 118.15, 120.12, 125.39, 126.95, 

129.02, 130.64, 132.06, 138.55, 141.87, 143.53. 

MS (ESI): m/z = 237.20 [M + H]
 +

, Mass Calculated: 237.27 [M + H]
 +

. 

Synthesis of 3-dimethylamino-1-propylchloride 9 

Sodium hydroxide and 3-dimethylamino-1-propylchloride hydrochloride (TCI Europe) were 

dissolved separately in water (10 mL). These two solutions were mixed and the pH was 

adjusted to ~14. After extraction with dichloromethane (3x30 mL), the extracts were dried over 

anhydrous sodium sulfate and the solvent was removed to afford 50 mg (53%) of the free base. 

High vacuum was not used as the amine obtained is volatile. 

Synthesis of 3-(3-azido-10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)-N,N-dimethyl propan-1-

amine 10 (Azidopramine) 

A solution of compound 8 (50 mg, 0.212 mmol) was prepared in dry toluene (sure seal, Fluka, 

10ml) at 0
o
C under argon. To the solution was added a suspension of NaH (6.09 mg, 0.254 
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mmol) in toluene (3ml) and the reaction was stirred for 30min. Freshly prepared solution of 3-

dimethylamino-1-propylchloride 9 (33.5mg, 0.275 mmol) (generated from its hydrochloride 

salt) as described above was added dropwise and the reaction was allowed to warm to room 

temperature. The reaction was heated to 60
o
C and stirred overnight. TLC analysis showed 

complete disappearance of the starting educt 8. The reaction mixture was poured into water and 

extracted with EtOAc. The organic layer was washed with brine, dried over MgSO4 and 

concentrated by rotary evaporation. Column chromatography in  dichlorormethane: MeOH 

95:05 of the crude reaction mixture was performed to give compound 10 (Azidopramine, 45 

mg, 0.14mmol, 66%). 

TLC (DCM: MeOH 9:1): Rf = 0.38. 

HPLC (gradient A) Rt: 21.2min, Purity= 99 %. 

1
H NMR (300 MHz, CDCl3) δ= 1.70-1.80 (m, 2H), 2.19 (s, 6H), 2.26-2.37 (m, 2H), 3.15 (s, 

4H), 3.76 (t, 2H, J = 6.9 Hz) 6.61 (dd, 1H J = 2.4, 5.7 Hz), 6.73 (d, 1H, J = 2.1 Hz), 6.984 (dt, 

1H, J = 1.5, 5.4, 6.9 Hz), 7.06 (d, 1H, J = 8.1Hz), 7.11- 7.20 (m, 3H). 

13
C NMR (75 MHz, CDCl3) δ= 25.94, 31.65, 32.22, 45.42, 48.84, 57.49, 110.46, 112.45, 

120.56, 123.22, 126.55, 129.43, 129.96, 131.33, 135.17, 137.87, 147.91, 149.20. 

MS (ESI) : m/z = 322.27 [M + H]
 +

. 

HRMS: 322.1861[M + H]
 +

, Mass Calculated: 322.1853 [M + H]
 +

. 

Synthesis of 3-(tert-butoxycarbonyl(methyl)amino)propyl 4-methylbenzenesulfonate 12 

To 3-(methylamino)propan-1-ol 11 (250 mg, 6.28 mmol)  in acetonitrile was added BOC 

anhydride (680 mg, 12.56 mmol) and a catalytic amount of DMAP. The reaction was stirred for 

2 hours until the disappearance of alcohol 11. The crude mixture was subjected to column 

chromatography (Hexane: EtOAc 55:45) and dried under reduced pressure to obtain (460 mg, 

2.43 mmol, 87%) of the desired product. 

TLC (Hexane: EtOAc 1:1): Rf = 0.46. 

1
H NMR (300 MHz, CDCl3) δ= 1.45 (s, 9H), 1.66-167 (m, 2H), 2.62 (s, 3H), 3.37 (s, 2H), 3.52 

(s, 2H). 

13
C NMR (75 MHz, CDCl3) δ= 28.35, 29.63, 34.13, 44.21, 58.08, 79.96, 157.19. 

To the above compound (90 mg, 0.475 mmol) in dichloromethane was added p-toluene 

sulfonylchloride (136 mg, 0.713 mmol) and triethylamine (96 mg, 0.951 mmol) and the 

mixture was stirred at 0
o
C for 4 h. The reaction mixture was then quenched with water and 

extracted using diethyl ether. The ethereal layer was washed with brine and dried over MgSO4 
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to yield the crude product which was further subjected to column chromatography using 

Hexane: EtOAc 13: 7 to yield 135 mg (0.393 mmol, 84%) of 12 as white oily liquid. 

TLC (Hexane: EtOAc 1:1): Rf = 0.46. 

1
H NMR (300 MHz, CDCl3) δ= 1.41 (s, 9H), 1.81- 1.90 (m, 2H), 2.44 (s, 3H), 2.78 (s, 3H), 

3.23 (t, 2H, J = 6.9 Hz), 4.02 (t, 2H, J = 6.3 Hz), 7.34 (d, 2H, J = 7.8 Hz), 7.77 (d, 2H, J = 8.4 

Hz). 

13
C NMR (75 MHz, CDCl3) δ= 21.63, 27.53, 28.35, 34.59, 45.28, 68.2, 79.62, 125.94, 127.87, 

129.10, 129.88, 132.86, 144.87, 155.60. 

MS (ESI): m/z = 244.13 [M - Boc]
 +

, Mass Calculated: 244.08[M - Boc]
 +

. 

 

Synthesis of tert-butyl 3-(3-azido-10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)propyl(methyl) 

carbamate 13 

To a solution of 3-azido-10,11-dihydro-5H-dibenzo[b,f]azepine 8 (130 mg, 0.550 mmol) in 

5ml dry toluene was added 0.660mL of a 1M solution of  sodium bis (trimethylsilyl) amide in 

hexane (0.660 mmol) under an argon atmosphere at -78
o
C and the mixture was stirred for 0.5h. 

Freshly prepared tosyl analog 12 (227 mg, 0.660 mmol) was added dropwise to the above 

mixture and the reaction flask was allowed to warm to room temperature. The reaction was 

further stirred at 70
o
C overnight and the completion of the reaction was monitored using thin 

layer chromatography. The crude product was poured into water and extracted with EtOAc. 

The organic layer was washed with brine and dried over MgSO4 and concentrated to dryness. 

Column chromatography of the crude reaction mixture was performed in (Hexane: EtOAc 

19:1) as eluent to give compound 13 (150 mg, 0.368 mmol, 67%). 

TLC (Hexane: EtOAc 19:1): Rf = 0.23 

1
H NMR (400 MHz, CDCl3) δ= 1.39 (s, 9H), 1.72- 1.79 (m, 2H), 2.44 (s, 3H), 2.72 (s, 3H), 

3.09 – 3.16 (m, 4H), 3.23 (t, 2H, J = 6.8 Hz), 3.69 (t, 2H, J = 6.8 Hz),  6.59 (dd, 1H, J = 2.4, 

5.6 Hz), 6.68 (d, 1H, J = 2 Hz), 6.96 (dt, 1H, J = 1.2, 7.2 Hz), 7.05 (t, 2H, J = 8 Hz), 7.10-7.16 

(m, 2H). 

13
C NMR (100 MHz, CDCl3) δ= 26.26, 28.39, 31.58, 32.14, 34.23, 46.71, 48.09, 79.31, 110.27, 

112.52, 120.36, 123.33, 126.54, 129.49, 129.91, 131.37, 135.17, 137.89, 147.67, 149.12, 

155.69. 

Synthesis of 3-(3-azido-10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)-N-methylpro-pan-1-

amine 14 (Desazidopramine) 
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Compound 13 (150mg, 0.368mmol) was deprotected in the presence of 20% trifluoroacetic 

acid solution in DCM for 3.5h at room temperature to yield 14. TFA was evaporated under 

reduced pressure and the crude mixture was subjected to a small wash out silica gel column 

using hexane: EtOAc: TEA 3.8:6.0:0.2 to give pure Desazidopramine 14 (85mg, 0.276mmol, 

75%). 

TLC (Hexane: EtOAc: TEA 3.8:6.0:0.2): Rf = 0.29. 

HPLC (gradient A) Rt: 19.2 min, Purity= 98% 

1
H NMR (600 MHz, CDCl3) δ= 1.88- 1.93 (m, 2H), 2.42 (s, 3H), 2.85 (t, 2H, J = 7.2), 3.07 – 

3.12 (m, 4H), 3.75 (t, 2H, J = 6.6 Hz), 6.62 (dd, 1H, J = 2.4, 6 Hz), 6.64 (d, 1H, J = 1.8 Hz), 

6.967(dt, 1H, J = 1.2, 6 Hz), 7.03 (q, 2H, J = 4.8, 7.2 Hz), 7.10-7.15 (m, 2H). 

13
C NMR (150 MHz, CDCl3) δ= 24.69, 31.48, 31.96, 33.26, 47.49, 47.62, 110.15, 112.95, 

120.12, 123.71, 126.70, 129.68, 129.98, 131.50, 135.06, 138.08, 147.15, 148.68.  

MS (ESI) m/z 308.12 [M + H]
 +

. 

HRMS: 308.1685 [M + H]
 +

, Mass Calculated: 308.1704 [M + H]
 +

. 

Synthesis of N-(3-(3-azido-10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)propyl)-N-methylbut-3-

yn-1-amine 16 (Azidobupramine) 

To a solution of 14 (80 mg, 0.260 mmol) in acetone (10ml) was added potassium carbonate 

(180mg, 1.30 mmol) and a catalytical amount of potassium iodide. The mixture was stirred for 

30 min and then further reacted with the 4-bromobut-1-yne (15) (41mg, 0.312 mmol) and 

refluxed at 60
o
C overnight. Acetone was evaporated followed by an aqueous work up and 

extraction with CH2Cl2. The crude mixture was subjected to column chromatography in DCM: 

MeOH mixture to give the desired product 16 (47 mg, 0.130 mmol, 50%).  

TLC (DCM: MeOH 9.2:0.8): Rf = 0.38. 

HPLC (gradient A) Rt: 19.8 min, Purity= 85 % 

1
H NMR (300 MHz, CDCl3) δ= 1.69-1.79 (m, 2H), 1.94-1.96 (t, 1H , J = 2.4 Hz), 2.21 ( s, 3H), 

2.27-2.33 (m, 2H), 2.45 (t, 2H, J = 7.5 Hz), 2.56 (t, 2H, J = 7.2 Hz), 3.15 (s, 4H), 3.78 (t, 2H, J 

= 6.9 Hz), 6.62 (dd, 1H, J= 2.4 Hz), 6.74 (d, 1H, J= 2.4 Hz), 6.90-7.20 (m, 5H). 

13
C NMR (75 MHz, CDCl3) δ= 15.73, 24.45, 30.55, 31.33, 40.86, 47.62, 53.77, 54.90, 67.86, 

81.68, 109.36, 111.29, 119.45, 122.09, 125.41, 128.30, 128.81, 130.21, 134.06, 136.75, 146.80, 

148.10 

MS (ESI): m/z = 360.16 [M + H]
 +

. 

HRMS: 360.2057 [M + H]
 +

, Mass Calculated: 360.2061[M + H]
 +

. 
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Radioactive Serotonin uptake assay in HEK293 hSERT 

Serotonin (5-HT) uptake was performed in HEK293 cells over expressing the human serotonin 

transporter SERT (hSERT). The cell line was kindly provided by the Blakely lab. Cells were 

cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 10% foetal calf serum 

(FCS), 100U/ml penicillin, 100 µg/ml Streptomycin and for the selection 250 µg/ml geneticine 

G418. 

For the uptake assay the protocol from Deecher et al. with some modifications was followed. 

15.000 cells/well were plated in 96 well plates (Corning 3610) containing complete medium. 

Before the plating of the cells, wells were precoated with poly D-lysine for 2 hours. After 48 

hours incubation of the cells in a cell incubator (37ºC, 5% CO2), the medium was removed and 

substituted with 150µl of assay buffer (25mM HEPES, 120mM NaCl, 5mM KCl, 2.5mM 

CaCl2, 1.2mM MgSO4, 2mg/ml glucose, pH 7.4) added with 1µM pargyline. Cells were 

incubated with different compound concentrations in presence of 15nM [H
3
]-5HT 

(Hydoxytryptamine creatinine sulphate, 5-[1,2-
3
H(N)-]serotonin, NET498, PerkinElmer). 

Compounds were diluted in DMSO with a final concentration of 0.5% in the assay. 

After 30 minutes incubation with [H
3
]-5HT the free radioligand was removed with two 

washing steps using 200µl of assay buffer. Cells were than lysed with 25µl NaOH 0.25N and 

shaked for 5 min. Finally 75µl of scintillation cocktail was added and plate was incubated and 

shaken for 30 minutes. Radioactivity was counted using a Wallac Microbeta counter 

(PerkinElmer). The uptake assays were performed in triplicates in the plate format. The curves 

were analysed using SigmaPlot11. Data was fitted to a four parameter logistic curve to deduce 

the IC50 values. 
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2.3 Discussion 

In this manuscript photoactivable tricyclic antidepressants analogs were developed which can 

be used as tools to study the targets and mechanism of clinically used antidepressants. 

These tool compounds were designed starting from clinically used antidepressants. In this 

strategy, in the first step the chloride or the cyano group at position 3 of Clomipramine or 

Cyanopramine was substituted by an azide group to generate Azidopramine (9). The 

corresponding aryl azide moiety was further shown to be activated by UV light, thereby 

generating a highly photoreactive analog, which can in principle covalently cross-link to 

binding partners. Azidopramine (9) was further tested in the established uptake assay and was 

shown to retain the high in vitro affinity for the hSERT. This indicated that the azido 

substitution is well tolerated at this position. Subsequently, Azidobupramine (14) was 

generated as a second generation antidepressant analog, by substituting one methyl of the 

dimethyl amino group with a terminal alkyne to introduce a click handle. The introduction of 

Boc-protected 11 to azepine 8 required substantial optimization. The purification of product 13 

from the educt was difficult and hence a modified synthesis protocol had to be established. 

Herein, the activated tosyl analog 12 was reacted with building block 8 under various 

conditions (Table-5).  

 TABLE -5 

Educt Base Condition Comment 

12 NaH 55-110 
o
C, toluene No reaction, 8 repurifed and 12 degraded. 

12 n-BuLi -78
o
C, toluene No reaction, 8 repurifed and 12 degraded. 

12 NaHMDS 70 
o
C, THF No reaction, 8 repurifed and 12 degraded. 

12 NaHMDS -78 to70 
o
C, toluene Product obtained 

 

Azidobupramine (16) had moderate binding ability in vitro for the hSERT. Nevertheless, the 

terminal alkyne in 16 provides a handle for clicking the transporter ligand complex with biotin 

for enrichment and protein identification or with a flurophore for imaging in cells. In addition 

this compound can also be used in fine mapping of the binding site of antidepressants in their 

transporters. Finally, the precursor Des-azidopramine (14) can also be used to synthesize [
3
H] 

Azidopramine which can be used as a photoreactive radiotracer.  
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3. Summary 

The present study employs different medicinal chemistry approaches to rationally design 

compounds that can be used as tools to dissect and understand the functions of specific protein 

targets implicated in depression.  

In the first part of the thesis three different approaches were pursued to identify compounds 

binding to FKBP51 and FKBP52. The compounds synthesized in all three approaches were 

designed to target the 80s loop. The 80s loop had been shown to have structural differences 

resulting in divergent functions. In the first approach the tert-pentyl group of the lead 

compound was substituted by a cyclohexyl group which mimics the pyranose moiety in natural 

products FK506 and Rapamycin. Here the effect of the stereochemistry at C
10

 and C
11

 on 

binding affinity was studied in detail, followed by X-ray co-crystal analysis. The study 

revealed that the diverging 80s loop is flexible enough to accommodate various stereochemical 

motifs with different binding modes. In the second approach a focused library of sulfonamides 

was synthesized. The sulfonamides were hypothesized to be bio-isosters for the α-ketoamide 

motif. Medium throughput library synthesis and screening identified two potential lead 

compounds. These lead series was further optimized to draw a conclusive SAR. The study led 

to the identification of two highly potent compounds for FKBP12, FKBP51 and FKBP52. In 

the third methodology the best lower parts from the above two methodologies was further 

amalgamated with bicyclic/ polycyclic rigid scaffold. The bicyclic scaffolds turned out to be 

more efficient than the polycyclic counterparts. This study for the first time has generated and 

identified putative ligands that bind to FKBP51 and FKBP52 with submicromolar affinity. Our 

data suggest that further medicinal chemistry and rational optimization of these leads can lead 

to potent selective ligands for FKBP51 and FKBP52. 

In the second part of the thesis we aimed to synthesize compounds which can help to 

understand the function and mechanism of classical antidepressants. The chemical tools thus 

synthesized had an azide and an alkyne group. The azide group was incorporated for photo-

crosslinking while the alkyne group would be used for affinity purification followed by 

identification or for imaging. The designed tool compounds were shown to retain the biological 

property of the clinical antidepressants in an uptake assay. Further these analogs were shown to 

be photoreactive. The initial data suggested that these compounds can be effectively used as 

tools for chemo-proteomic approaches as well as for fine mapping of the binding sites in 

interacting proteins.  
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4. Materials 

4.1 Solvents, reagents and salts 

Compound name CAS No. Company Product code Purity 

n-Hexane 110-54-3 Roth 7339.1 ≥98% 

Cyclohexane 110-82-7 Roth 6570.4 ≥99.5% 

Ethylacetate 141-78-6 Roth CP42.6 ≥ 99.5% 

Chloroform 67-66-3 Roth Y015.3 ≥ 99% 

Dichloromethane 75-09-2 Roth 6053.5 ≥ 99.5% 

Dichloromethane dry 75-09-2 Roth 6053.1 ≥ 99.5% 

Tetrahydrofuran 109-99-9 Roth Ae07.1 ≥ 99.9% 

2-propanol 67-63-0 Roth 7343.1 ≥ 99.9% 

Acetone 67-64-1 Roth 5025.4 ≥ 99.5 % 

Methanol 67-56-1 Roth 8388.4 ≥ 99 % 

Methanol HPLC 67-56-1 Roth 7342.1 ≥ 99.9 % 

Acetonitrile HPLC 75-05-8 Roth 8825.2 ≥ 99.9% 

Toluene 108-88-3 Roth Ae06.1 ≥ 99.5 % 

Diethylether 60-29-7 Roth T900.1 ≥ 99.8 % 

DMF 68-12-2 Roth A5291.1 99% 

TFA 76-05-1 Roth P088.2 ≥ 99.9 % 

Formic acid 64-18-6 Roth 4724.3 ≥ 98% 

DIPEA 7087-68-5 Fluka 03440-250 ≥ 98% 

Triethylamine 121-44-8 Merck 8.08352-1000 99% 

HCl 7647-01-0 Roth 9277.1 37 % 

MgSO4 7487-88-9 Roth 0261.3 99 – 101 % 

KMnO4 7722-64-7 Merck 1.05082.0250 ≥97% 
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Compound name CAS No. Company Product code Purity 

NaCl 7647-14-5 VWR 27810.295 99.8 % 

LiOH 1310-65-2 Sigma 545856-100g ≥99 % 

n-BuLi 2M in cyclohexane 109-72-8 Aldrich 302120-800 ml  

AgNO3 7761-88-8 Riedel-de Haen 61630 ≥ 99.8 % 

4-Methyl piperidine 626-58-4 Aldrich M73206-500ml ≥ 96% 

NaN3 26628-22-8 Aldrich 71290-100g ≥ 99 % 

KOH 1310-58-3 Roth 6571.3 ≥ 85% 

NaH 60% dispersion 7646-69-7 Aldrich 45,291-2 60% 

K2CO3 584-08-7 Roth X894.2 ≥ 99.9 % 

NaNO2 7632-00-0 Roth 8604.1 ≥ 98.7 % 

KI 7681-11-0 Roth 8491.1 ≥ 99 % 

DMAP 1122-58-3 Fluka 29224 ≥ 99.0 % 

NaHMDS 1M in THF 1070-89-9 Aldrich 24558-5  

L-threonine 72-19-5 Sigma T8625-25g ≥ 98 % 

NaHCO3 144-55-8 Roth 8551.1 ≥ 99 % 

HCHO 50-00-0 Roth 4979.14 37 % 

NH4Cl 12125-02-9 Merck 1.01145.0500 99.8 % 

HATU 148893-10-1 Nova Biochem 8.51013-0025  

NBS 128-08-5 ABCR AB114308 99% 

DCC 538-75-0 Aldrich D,800-2 99% 

Noyori catalyst 212143-24-3 ABCR AB131601  

MOM-Cl 107-30-2 Aldrich 100331-25g  

CDCl3 865-49-6 Roth Ae54.1 ≥ 99.38 % 
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4.2 Chemicals 

Compound name CAS No. Company Product code Purity 

3-chlorobenzene-1-sulfonyl chloride  Maybridge BTB06460 97% 

5-methyl-4-isoxaazolesulfonyl chloride  Maybridge CC00271 95% 

3,5-dimethylisoxazole-4-sulfonyl 

chloride 

 Maybridge CC00603 97% 

1,3-benzodioxole-5-sulfonly chloride  Maybridge CC01603 95% 

Furan-2-sulfonly chloride  Maybridge CC02003 97% 

Furan-3-sulfnoyl chloride  Maybridge CC02103 97% 

5-(2-pyridyl)thiophene-2-sulfnoyl 

chloride 

 Maybridge CC02203 Tech 

1-methyl-1H-imidazole-4-sulfonyl 

chloride 

 Maybridge CC03603 95% 

Pyridine-3-sulfonyl chloride 

hydrochloride 

 Maybridge CC04103 95% 

2,4-dimethyl-1,3-thiazole-5-sulfonyl 

chloride 

 Maybridge CC05803 97% 

1,3-benzothiazole-6-sulfonyl chloride  Maybridge CC05903 95% 

1-benzofuran-2-sulfonyl chloride  Maybridge CC06603 95% 

5-phenyl-2-thiophenesulfonyl chloride  Maybridge CC10503 95% 

1-benzothiophene-2-sulfonyl chloride  Maybridge CC12203 97% 

1-benzothiophene-3-sulfonyl chloride  Maybridge CC12303 97% 

Thiophene-2-sulfonyl chloride  Maybridge CC13003 97% 

1,3,5-trimethyl-1H-pyrazole-4-sulfonyl 

chloride 

 Maybridge CC14703 97% 

6-morpholine-4-yl-pyridine-3-sulfonyl 

chloride 

 Maybridge CC17503 97% 

6-phenoxy-3-pyridinesulfonyl chloride  Maybridge CC19603 90% 

6-phenyl-3-pyridinesulfonyl chloride  Maybridge CC21103 97% 
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Compound name CAS No. Company Product code Purity 

3-(2-methyl-4-pyrimidinyl)benzene-

sulfonyl chloride 

 Maybridge CC31603 95% 

4-methyl-3,4-dihydro-2H-1,4-

benzoxazine-6-sulfonyl chloride 

 Maybridge CC36103  

1-methyl-1H-indole-5-sulfonyl 

chloride 

 Maybridge CC41403 90% 

1-methyl-1H-indole-4-sulfonyl 

chloride 

 Maybridge CC45803 97% 

3,5-dimethyl-1-phenyl-1H-pyrazole-4-

sulfonyl chloride 

 Maybridge CC48003 Tech 

1-mehtyl-1H-pyrazole-3-sulfonyl 

chloride 

 Maybridge CC48303 97% 

2-oxoindoline-5-sulfonyl chloride  Maybridge CC53303 Tech 

4-pyrimidine-2-ylbenzenesulfonyl 

chloride 

 Maybridge CC56203 97% 

3-pyrimidine-2-ylbenzenesulfonyl 

chloride 

 Maybridge CC56303 95% 

4-methyl-3,4-dihydro-2H-pyrido[3,2-

b][1,4]oxazine-7-sulfonyl chloride 

 Maybridge CC62003 97% 

1-methyl-1H-pyrazole-5-sulfonyl 

chloride 

 Maybridge CC62303 97% 

1-methyl-1H-indole-7-sulfonyl 

chloride 

 Maybridge CC66903 97% 

4-fluorobenzenesulfonyl chloride  Maybridge DSHS00791  

1-2-dimethyl-1H-imidazole-4-sulfonyl 

chloride 

 Maybridge KM10104 95% 

3-(5-methyl-1,3,4-oxadiazol-2-

yl)benzenesulfonyl chloride 

 Maybridge MO00158 Tech 

(4-chlorophenyl)methanesulfonyl 

chloride 

 Maybridge MO00927 90% 

4-chloro-3-(trifluoromethyl)benzene 

sulfonyl chloride 

 Maybridge MO07002 97% 
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Compound name CAS No. Company Product code Purity 

4-phenoxybenzenesulfonyl chloride  Maybridge MO07030 97% 

2-propanesulfonyl chloride  Maybridge MO08485  

1-ethanesulfonyl chloride  Maybridge MO08486  

4-chlorobenzene-1-sulfonyl chloride  Maybridge SB00912 97% 

4-(trifluoromethyl)benzene-1-sulfonyl 

chloride 

 Maybridge TL00175 97% 

3,4-dichlorobenzene-1-sulfonyl 

chloride 

 Maybridge TL00303 90% 

4-(tert-butyl)benzene-1-sulfonyl 

chloride 

 Maybridge TL00417  

4-methoxybenzene-1-sulfonyl chloride  Maybridge TL00513 97% 

3,4 dimethoxybenzosulfonyl chloride  

 

 Aldrich 452467-1G 98% 

3,4 dimethoxyphenylethyl bromide  

 

40173-90-8 Aldrich 653675-5G 97% 

2-Nitrobenzenesulfonyl chloride 

 

1694-92-4 Aldrich N1,150-7 97% 

Ethyl pipecolinate 15862-72-3 Aldrich 198803-5G 98% 

3-Nitrobenzenesulfonyl chloride 

 

121-51-7 Aldrich 254665-5G 97% 

3,5-Dichlorobenzenesulfonyl chloride 

 

705-21-5 Aldrich 546933-5G 97% 

3-Cyanobenzenesulfonyl chloride 

 

56542-67-7 Aldrich 638358-1G 97% 

3-(3,4-Dimethoxyphenyl)-1-propanol 3929-47-3 Aldrich 197688-5G 99% 

Boc-Pip-OH 26250-84-0 Aldrich 516368-5G 98% 

2,2-Dimethylbutyric acid 595-37-9 Aldrich D15,260-9 96% 

Cyclohexanone 108-94-1 Aldrich 398241-500ml 99% 

Phenylmethanesulfonyl chloride 1939-99-7 Aldrich 159719-5G 98% 
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Compound name CAS No. Company Product code Purity 

Benzoic acid A.C.S. reagent 65-85-0 Aldrich 242381-25G ≥99.5% 

3-Pyridinepropanol 2859-67-8 Aldrich P7120-7 98% 

3’-Hydroxyacetophenone 121-71-1 Aldrich 328103-25G ≥99% 

(S)-(-)-N-Boc carbonyl-2-

piperidinecarboxylic acid 

26250-84-0 Aldrich 516368-5G 98% ee 

Pipecolinic acid 535-75-1 Aldrich P4,585-0 98% 

Cyclohexene 110-83-8 Fluka 29230-100ml ≥99.5% 

tert-Butyl bromoacetate 5292-43-3 Fluka 17035-50ml ≥97% 

2-Methylcyclohexanone 583-60-8 Fluka 66380 ≥98% 

(s)-Pyrrolidine-2-carboxylic acid 147-85-3 Fluka 81710-10G ≥99% 

L-Pipecolinic acid 3105-95-1 Alfa Aesar L15373 99% 

3-bromo,5 -(trifluoromethyl) 

benzenesulfonyl chloride 

351003-46-8 ABCR AB180851 97% 

2- Ethyl cyclohexanone 4423-94-3 ABCR AB126350 99% 

3-5 Bis(trifluoromethyl) 

benzenesulfonyl chloride 

39234-86-1 ABCR AB103447 97% 

4-Nitrobenzenesulfonyl chloride 

 

98-74-8 ABCR AB118187 98% 

3-Bromobenzenesulfonyl chloride 2905-24-0 ABCR AB114107 97% 

3,5-Dichloro-4-

hydroxybenzenesulfonyl chloride 

13432-81-0 ABCR AB181058 97% 

3-Chloro-4methoxybenzenesulfonyl 

chloride 

22952-43-8 ABCR AB267265 95% 

3-Fluorobenzene-10sulfonyl chloride 701-27-9 ABCR AB226807 97% 

3,5-Difluorobenzenesulfonyl chloride 210532-25-5 ABCR AB173895 97% 

Trimethylsilyl acetylene 1066-54-2 ABCR AB102117 98% 

3-Dimethylamino-1-propanol 3179-63-3 ABCR AB116149 99% 

3-(Methylamino)-1-propanol  TCI M1484 >97% 



195  
 

 
 

Compound name CAS No. Company Product code Purity 

N-Methyl-3-chloropropylamine 

Hydrochloride 

 TCI M1048 >99% 

2-Chlorotrityl chloride resin (100-200 

mesh) 

 Novabiochem 01-64-0114  

5-Acetyl-10,11-dihydro-5H-

dibenz[b,f]azepin-3-amine 

 Wako 326-38523  

4-hydroxy-3,5-diisopropyl-

benzenesulfonyl chloride 

 ChemCollect SV000244  

4-hydroxy-3,methoxy-benzenesulfonyl 

chloride 

 ChemCollect SV000258  

5-(chlorosulfonyl)-2,3-

dimethoxybenzoic acid 

 AKOS AKOS000131666  

5-(Chlorosulfonyl)-isophthalic acid 

dimethyl ester 

 AKOS AKOS001074083  

4-Acetamido-3,5-dichlorobenzene-1-

sulfonyl chloride 

 AKOS AKOS000153961  

2-Methylbenzo[d]thiazole-6-sulfonyl 

chloride 

 AKOS AKOS000301981  

2-Oxo-2,3-dihydrobenzo[d]thiazole-6-

sulfonyl chloride 

 AKOS AKOS000302227  

7-nitro-2,3-dihydro-1-benzofuran-5-

sulfonoyl chloride 

 AKOS AKOS005072576  

2,6-dimethylmorpholine-4-sulfonyl 

chloride 

 AKOS AKOS000321499  

4-bromo-1-butyne 

 

38771-21-0 Aldrich 675725-5G 

 

98% 

     

     

 

 



196 Personal Future Outlook. 
 

 
 

5. Personal Future Outlook. 

Interdisciplinary research is very important and crucial for the advancement of available 

medical therapies. Medicinal Chemistry and Chemical Biology are two disciplines which 

exemplify the symbiosis between chemistry and biology which can bring about a better 

understanding of disease and help in paving new drug therapies for the future. Drug research 

and development is a resource and money thirsty campaign normally taken by big 

pharmaceutical companies. Academic involvement in such projects is limited and rare. 

During my PhD study, I have been lucky to be involved in an academic oriented drug 

discovery program either as a main driver or as a collaborator. Close collaboration and 

interactions with clinicians, researchers, pharmacist and leaders in the field has helped me to 

troubleshoot the problems and grow in various aspects of drug development during my PhD 

studies. This experience has helped me to learn and grow in the field of lead identification and 

optimization and has given me a wide and through experience in medicinal chemistry, high 

throughput screening and target identification platforms. 

Rational drug design, structure based drug design campaigns and chemical biology 

technologies clearly suggest that chemical probes will be a routine armory on the table of 

biologists. With parallel improvements in designing chemical probes (synthetic chemistry, 

molecular modeling) and technology platforms (mass spectrometers, DNA sequencing), I 

believe that personalized medicine therapies is just around the corner.  

Spending 4.5 years in a closely knit interdisciplinary environment (research and clinical 

setting), I believe my experience at the Max Planck Institute of Psychiatry will help me in my 

future endeavors.  In the near future I look forward to make progress and contributions to 

tackle unanswered biological questions by designing versatile and potent chemical probes 

which can be applied in clinical and biological settings.  
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2007-to present      Ph.D. student at Hausch Lab,  

                 Max Planck Institute of Psychiatry Munich, Germany 
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