(Präoperative) Gerinnungsdiagnostik bei Kindern
– eine prospektive Studie

Dissertation
zum Erwerb des Doktorgrades der Medizin
an der Medizinischen Fakultät der
Ludwig-Maximilians-Universität zu München

vorgelegt von
Johanna Maria Harris, geb. Treutwein
aus Augsburg
2014
Inhaltsverzeichnis

1. Einleitung .. 1

1.1 Fragestellung ... 1

1.2 Aktuelle Leitlinien und aktuelles Vorgehen ... 3

1.3 Hämostase ... 8
 1.3.1 Allgemeines zur Hämostase ... 8
 1.3.2 Primäre Hämostase ... 8
 1.3.3 Prokoagulatorische Gerinnungsfaktoren ... 10
 1.3.4 Gerinnungskaskade ... 11
 1.3.5 Inhibitoren der plasmatischen Gerinnung und Fibrinolyse .. 12
 1.3.6 Besonderheiten der Hämostase beim Kind ... 13

1.4 Gerinnungsstörungen mit Blutungsneigung ... 16
 1.4.1 Angeborene plasmatische Gerinnungsstörungen ... 16
 1.4.2 Erworbene plasmatische Gerinnungsstörungen .. 22
 1.4.3 Thrombozytäre und vaskuläre Gerinnungsstörungen 24
 1.4.4 Zusammenfassung ... 25

1.5 Hämostaseologische Labordiagnostik ... 27
 1.5.1 Allgemeines zur hämostaseologischen Labordiagnostik.... 27
 1.5.2 Quick, PTT und Thrombozytenuntersuchungen ... 27
 1.5.3 Spezielle Gerinnungstests .. 30

2. Studiendesign .. 34

3. Methoden ... 40

 3.1 Allgemeine Informationen ... 40
 3.2 Anamneseerhebung ... 40
3.3 Körperliche Untersuchung... 40
3.4 Präanalytische Methoden... 41
3.5 Labormethoden... 41
3.6 Auswertung.. 45
 3.6.1 Studienteilnehmer.. 45
 3.6.2 Anruf bzw. Anschreiben... 45
 3.6.3 Definitionen „Anamnese“, „Klinik“ und „pathologische Diagnose“.. 45
 3.6.4 Verwendete Programme und statistische Methoden........... 46
4. Ergebnisse.. 48
 4.1 Allgemeine Daten.. 48
 4.2 Vorstellungsgründe.. 48
 4.3 Pathologische Laborergebnisse... 50
 4.3.1 Externe Laboruntersuchungen vor Erstvorstellung.............. 50
 4.3.2 Laboruntersuchungen bei Erstvorstellung........................... 51
 4.3.3 Reproduzierbarkeit der Voruntersuchungsergebnisse........... 53
 4.3.4 Einzelfaktoren bei auffälligen Globalwerten...................... 54
 4.3.5 Einzelfaktoren bei normalen Globalwerten.......................... 56
 4.3.6 Einfach und mehrfach verlängerte PTT............................... 58
 4.3.7 Ausmaß der PTT-Verlängerung.. 60
 4.3.8 Laborauffälligkeiten nach Infekten.................................... 60
 4.3.9 Laborauffälligkeiten nach Impfungen.................................. 61
 4.3.10 Laborauffälligkeiten nach Medikamenteneinnahme........... 61
 4.3.11 Diagnose Lupusinhibitor... 63
 4.4 Gerinnungsdiagnostik bei geplanten Operationen...................... 64
 4.4.1 Geplante Operationen.. 64
 4.4.2 Verlauf bei geplanten Operationen.. 65
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.3</td>
<td>Perioperative Blutungen nach Erstvorstellung</td>
<td>67</td>
</tr>
<tr>
<td>4.5</td>
<td>Eigenanamnese</td>
<td>69</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Perioperative Blutung bei vorausgegangener Operation</td>
<td>69</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Weitere Punkte der Eigenanamnese</td>
<td>70</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Zusammenhang Eigenanamnese und Diagnose</td>
<td>72</td>
</tr>
<tr>
<td>4.6</td>
<td>Familienanamnese</td>
<td>73</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Verwandte mit Gerinnungsstörungen</td>
<td>73</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Verwandte mit klinischer Blutungsneigung</td>
<td>74</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Familienanamnese allgemein</td>
<td>76</td>
</tr>
<tr>
<td>4.7</td>
<td>Anamnese allgemein</td>
<td>76</td>
</tr>
<tr>
<td>4.8</td>
<td>Altersabhängigkeit der Ergebnisse</td>
<td>77</td>
</tr>
<tr>
<td>4.9</td>
<td>Körperliche Untersuchung</td>
<td>79</td>
</tr>
<tr>
<td>4.10</td>
<td>Diagnose von Willebrand-Syndrom</td>
<td>80</td>
</tr>
<tr>
<td>4.10.1</td>
<td>Vorstellungsgründe bei Diagnose von Willebrand-Syndrom</td>
<td>80</td>
</tr>
<tr>
<td>4.10.2</td>
<td>Symptome bei Diagnose von Willebrand-Syndrom</td>
<td>81</td>
</tr>
<tr>
<td>4.10.3</td>
<td>Bedeutung der Plättchenfunktionsanalyse</td>
<td>83</td>
</tr>
<tr>
<td>4.11</td>
<td>Diagnosen</td>
<td>83</td>
</tr>
<tr>
<td>4.12</td>
<td>Vorhersagekraft verschiedener Parameter</td>
<td>85</td>
</tr>
<tr>
<td>5.</td>
<td>Diskussion</td>
<td>88</td>
</tr>
<tr>
<td>6.</td>
<td>Zusammenfassung</td>
<td>118</td>
</tr>
<tr>
<td>7.</td>
<td>Literaturverzeichnis</td>
<td>121</td>
</tr>
<tr>
<td>8.</td>
<td>Sonstige Verzeichnisse</td>
<td>131</td>
</tr>
<tr>
<td>8.1</td>
<td>Abkürzungen und Akronymene</td>
<td>131</td>
</tr>
<tr>
<td>8.2</td>
<td>Tabellen</td>
<td>132</td>
</tr>
<tr>
<td>8.3</td>
<td>Abbildungen</td>
<td>134</td>
</tr>
</tbody>
</table>
9. Danksagung.. 136
10. Veröffentlichungen... 137
11. Eidesstattliche Versicherung... 138
1. Einleitung

1.1 Fragestellung

Pädiatrische Gerinnungszentren sind unter anderem darauf spezialisiert, zu klären, ob bei Kindern eine Störung der Blutgerinnung vorliegt. Die Frage nach einer erhöhten Blutungsneigung ergibt sich meist aus auffälligen hämostaseologischen Laborwerten, welche oftmals vor einer geplanten Operation durchgeführt werden.

Es ist demnach von großer Wichtigkeit, Gerinnungsstörungen bei Kindern präoperativ zu erkennen. Dann kann entschieden werden, ob die Indikation zur Operation trotz des erhöhten Risikos weiter besteht, bestimmte prophylaktische Maßnahmen empfohlen sind oder der Patient speziell überwacht werden muss.

Das Zentrum für Pädiatrische Hämostaseologie des Dr. von Haunerschen Kinderspitals München beschäftigt sich seit langem mit diesem Thema. Nach retrospektiven Analysen soll mit der hier vorgelegten Arbeit das Thema prospektiv und standardisiert bearbeitet werden.
Dabei sollen folgende Fragen beantwortet werden:
Kann eine Blutungsneigung bei Kindern durch Verwendung eines standardisierten Anamnesefragebogens, durch Laboruntersuchungen oder durch die Kombination von standardisierter Anamnese mit Laboruntersuchungen besser identifiziert werden?
Wie hoch ist der Anteil an Gerinnungsstörungen mit Blutungsneigung bei den Kindern, die aufgrund einer im Screening festgestellten aPTT-Verlängerung oder einer anderen gerinnungsrelevanten Laborauffälligkeit in eine hämostaseologische Ambulanz überwiesen werden? Treten im Vergleich dazu bei Kindern mit anamnestischen Blutungssymptomen vermehrt Koagulopathien auf?
Lässt sich aus dem Verlauf der bei uns untersuchten Patienten festlegen, welche Parameter am besten ein Blutungsrisiko vorhersagen können?

Die vorliegende Studie soll zur Validierung eines standardisierten Fragenkatalogs in der präoperativen Evaluierung beitragen. Zudem soll sie den verlängerten aPTT-Wert näher beleuchten und dessen Wertigkeit beurteilen. Es soll gezeigt werden, ob und welche weiterführende Labordiagnostik in einem solchen Fall notwendig ist.
Die Vorhersagekraft der einzelnen Bereiche Labordiagnostik, Eigen- und Familienanamnese und körperliche Untersuchung im Hinblick auf die Diagnose einer Gerinnungsstörung mit Blutungsneigung steht dabei im Mittelpunkt.
1.2 Aktuelle Leitlinien und aktuelles Vorgehen

Ein Blick in deutsche und internationale Leitlinien zur präoperativen Abklärung von Blutungsneigungen zeigt, dass sich die medizinischen Fachgesellschaften bis heute nicht einig sind und es bisher keine evidenzbasierten, allgemein gültigen Empfehlungen gibt.

Eine etablierte Informationsquelle für Ärzte ist die deutsche Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Laut eigener Aussage basieren deren Leitlinien auf aktuellen wissenschaftlichen Erkenntnissen und in der Praxis bewährten Verfahren, um Ärzten eine rechtlich nicht bindende Entscheidungshilfe zur Hand zu geben (AWMF Leitlinien 2010).

Die aktuelle Leitlinie der AWMF zu kindlichen Leistenhernien enthält keinen Kommentar zur Blutgerinnung (Lange und Wessel 2010), ebenso wenig die Leitlinie zu Phimose und Paraphimose, die sich gerade in Überarbeitung befindet (Bartsch et al. 2008).

Gemäß den seit 1998 nicht aktualisierten Empfehlungen der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin können bei der anästhesiologischen Voruntersuchung junger, asymptomatischer Patienten vor elektiven Operationen die gründliche Anamnese und körperliche Untersuchung laborchemische

In der Leitlinie zur operativen Weisheitszahnentfernung der Zahnärztlichen Zentralstelle für Qualitätssicherung fällt die Bestimmung der Gerinnungsparameter unter „in Einzelfällen hilfreiche weitergehende Untersuchungen bei Begleiterkrankungen“. Es bleibt somit dem ausführenden (Zahn-)Arzt überlassen, sich für oder gegen eine Labordiagnostik zu entscheiden (Kunkel 2012).

Auf der anderen Seite ist laut einer Veröffentlichung des Kompetenzzentrums Hämostaseologie Rheinland-Pfalz-Saarland aus dem Jahr 2009 ein laboranalytisches Minimalprogramm bestehend aus Thrombozytenzahl, Quick, aPTT sowie Fibrinogen ergänzend zur Anamnese und klinischen Untersuchung vor elektiven Eingriffen unverzichtbar (Albert et al. 2009).

Bei Kindern mit bekannter Gerinnungsstörung, einer auffälligen bzw. nicht erheblichen Anamnese oder klinischen Blutungszeichen müssen laut
Stellungnahme hingegen diagnostische Schritte, insbesondere auch zur Abklärung eines von-Willebrand-Syndroms, eingeleitet werden (Hörmann 2006).

Tabelle 1 (S. 6) fasst die erwähnten Empfehlungen zur präoperativen laborchemischen Gerinnungsdiagnostik zusammen:
Tab. 1: Empfehlungen zur präoperativen laborchemischen Gerinnungsdiagnostik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenotomie</td>
<td>Tonsillektomie</td>
<td>Parazentese, Zahneextraktionen</td>
<td>Anästhesie</td>
</tr>
<tr>
<td>Bestimmung von Quick, aPTT, Thrombozytenzahl und Fibrinogen</td>
<td>Bestimmung von Quick, aPTT, Thrombozytenzahl und Fibrinogen</td>
<td>Bestimmung von Quick, aPTT, Thrombozytenzahl und Fibrinogen</td>
<td>Empfehlungen beziehen sich auf operative Eingriffe</td>
</tr>
<tr>
<td>bei auffälliger bzw. nicht erhebbbarer Anamnese oder auffälliger körperlicher Untersuchung</td>
<td>bei auffälliger bzw. nicht erhebbbarer Anamnese oder auffälliger körperlicher Untersuchung</td>
<td>Parazentese: Kein Test nötig</td>
<td>Eingriff nicht erwähnt</td>
</tr>
<tr>
<td>ohne vorliegende Grunderkrankung keine Diagnostik nötig</td>
<td>ohne vorliegende Grunderkrankung keine Diagnostik nötig</td>
<td>ohne vorliegende Grunderkrankung keine Diagnostik nötig</td>
<td>Eingriff nicht erwähnt</td>
</tr>
<tr>
<td>Up to Date (Coutre 2012)</td>
</tr>
<tr>
<td>Eingriff nicht erwähnt</td>
<td>Bestimmung von Quick, aPTT, Thrombozytenzahl</td>
<td>bei auffälliger Anamnese und/oder körperlicher Untersuchung</td>
<td>Eingriff nicht erwähnt</td>
</tr>
<tr>
<td>Österreich (Pfanner et al. 2007)</td>
</tr>
<tr>
<td>bei auffälligem Anamnesefragebogen</td>
<td>bei auffälligem Anamnesefragebogen</td>
<td>bei auffälligem Anamnesefragebogen</td>
<td>bei auffälligem Anamnesefragebogen</td>
</tr>
</tbody>
</table>

Trotz dieser Tendenz der Leitlinien zu anamneseabhängiger Gerinnungsdiagnostik zeigt ein Blick in die Praxis, dass viele Ärzte dennoch präoperativ routinemäßig die Parameter Quick, aPTT und Thrombozytenzahl bestimmen lassen. Patel et al. führten 1997 eine Umfrage durch und stellten fest, dass bei 45% der Kinder vor elektiven Tonsillektomien präoperative Quick- und aPTT-Werte bestimmt wurden (Patel et al. 1997). Laut Eberl verzichten die meisten Kinderchirurgen vor kleineren,
ambulanten Eingriffen inzwischen auf eine hämostaseologische Labordiagnostik, fast alle HNO-Ärzte führen sie jedoch durch (Eberl 2006).

1.3 Hämostase

1.3.1 Allgemeines zur Hämostase

Als Hämostase bezeichnet man den Prozess der Bildung eines Blutgerinnsels am Ort einer Gefäßverletzung. Im Falle einer Verletzung muss die Reaktion des Gerinnungssystems schnell, lokal begrenzt und sorgfältig reguliert vonstatten gehen, um sowohl eine lokale Blutstillung als auch die allgemeine Fließfähigkeit des Blutes zu gewährleisten (Lawrence 2010). An diesem komplexen Prozess sind verschiedene Systeme beteiligt:

- Blutgefäße mit Endothel und Subendothel (vaskuläre Komponente)
- Thrombozyten, Erythrozyten und Leukozyten (zelluläre Komponente)
- plasmatische Gerinnungsfaktoren und ihre Inhibitoren (plasmatische Komponente)
- Bestandteile der Fibrinolyse und ihre Inhibitoren (fibrinolytisches System)

Obwohl die Blutgerinnung ein dynamischer Vorgang mit stark miteinander verwobenen Prozessen ist, lässt sie sich grob in vier Phasen aufteilen: In Phase 1 (auch primäre, thrombozytenvermittelte Hämostase genannt) erfolgt eine Gefäßverengung (Vasokonstriktion) sowie die Aktivierung von Thrombozyten mit Bildung eines Thrombozytengerinnsels. Phase 2 beinhaltet die sekundäre, plasmatische Hämostase mit Fortführung des Prozesses durch die Gerinnungskaskade. In Phase 3 wird die Gerinnung durch antithrombotische Kontrollmechanismen beendet, bevor schließlich in Phase 4 das Gerinnsel durch die Fibrinolyse aufgelöst wird.

Im Folgenden sollen die Grundlagen der Blutgerinnung dargelegt werden.

1.3.2 Primäre Hämostase

Zur ersten Phase der Hämostase gehören eine Gefäßverengung am Ort der Verletzung sowie die Adhäsion, Aktivierung und Aggregation von Thrombozyten.
Vasokonstriktion

Aktivierung von Thrombozyten
Die kernlosen Blutplättchen (Thrombozyten) spielen eine zentrale Rolle im Gerinnungssystem. Sie entstehen im Knochenmark durch Sequestrierung aus Megakaryozyten. Im peripheren Blut beträgt ihre Konzentration normalerweise 150-400 x 10^9/l, ihre Lebensdauer 7-9 Tage. Im Zuge der Blutgerinnung bilden sie zum einen einen Plättchenpfropf am Ort der Verletzung und setzen zudem wichtige Phospholipide für die plasmatische Gerinnung frei.

Aktivierte Thrombozyten gehen von der Scheibenform in eine sphärische Form mit adhäsiven Ausläufern (Pseudopodien) über. Es kommt zur Freisetzung von wichtigen Proteinen aus dem Zytosol der Plättchen, welche weitere Thrombozyten stimulieren und rekrutieren.

Die anschließende Aneinanderlagerung von aktivierten Thrombozyten bezeichnet man als Aggregation. Fibrinogen wirkt hierbei als Brücke zwischen den Glykoproteinrezeptoren IIb/IIIa auf der Oberfläche der Plättchen. Das somit entstandene Gerinnsel erhält seine Stabilität durch die Thrombin-generierte Umwandlung des Fibrinogens in Fibrin.
1.3.3 Prokoagulatorische Gerinnungsfaktoren

Tab. 2: Prokoagulatorische Gerinnungsfaktoren

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Plasma-konzentration (mg/dl) bei Erwachsenen</th>
<th>Biologische Halbwertszeit (h)</th>
<th>Hämostatische Mindestaktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Fibrinogen</td>
<td>200 – 450</td>
<td>110 - 112</td>
</tr>
<tr>
<td>II</td>
<td>Prothrombin</td>
<td>5 – 10</td>
<td>41 - 72</td>
</tr>
<tr>
<td>V</td>
<td>Proaccelerin</td>
<td>ca. 1</td>
<td>12 - 15</td>
</tr>
<tr>
<td>VII</td>
<td>Proconvertin</td>
<td>ca. 0,1</td>
<td>2 – 5</td>
</tr>
<tr>
<td>VIII</td>
<td>Antihämophiles Globulin A</td>
<td>0,5 - 1,0</td>
<td>10 - 18</td>
</tr>
<tr>
<td>IX</td>
<td>Antihämophiles Globulin B (Christmas-Faktor)</td>
<td>0,5 - 0,7</td>
<td>18 - 30</td>
</tr>
<tr>
<td>X</td>
<td>Stuart-Prower-Faktor</td>
<td>-</td>
<td>20 - 42</td>
</tr>
<tr>
<td>XI</td>
<td>Plasma-Thromboplastin-Anteecedent</td>
<td>ca. 0,6</td>
<td>10 - 20</td>
</tr>
<tr>
<td>XII</td>
<td>Hageman-Faktor</td>
<td>1,5 - 4,7</td>
<td>50 - 70</td>
</tr>
<tr>
<td>XIII</td>
<td>Fibrinstabilisierender Faktor</td>
<td>1 – 4</td>
<td>100 - 120</td>
</tr>
<tr>
<td>vWF</td>
<td>von-Willebrand-Faktor</td>
<td>2 – 10</td>
<td>6 - 12</td>
</tr>
</tbody>
</table>

(aus: Bidlingmaier et al. 2007)
1.3.4 Gerinnungskaskade

Als Gerinnungskaskade bezeichnet man die Enzym-Substrat-Reaktionen zur Aktivierung der Gerinnungsfaktoren bis hin zur letztendlichen Entstehung von Thrombin (Faktor IIa). Diese Reaktionen finden direkt am Ort der Gefäßverletzung statt, nämlich an negativ geladenen Phospholipiden, wie sie unter anderem auf aktivierten Thrombozyten oder Subendothelzellen vorhanden sind.

Der Gesamtprozess der Gerinnungskaskade besteht nicht aus Einzelschritten, sondern läuft zum Großteil parallel und mit zahlreichen Querverbindungen ab.

Anschließend bildet der Tissue Factor zusammen mit im Blut zirkulierendem Faktor VII einen Komplex, den TF-FVIIa-Komplex, welcher wiederum die Faktoren VII, IX und X aktiviert. Zusätzlich kann Faktor IXa in Komplex mit Faktor VIIIa den Faktor X aktivieren. Der dafür notwendige Faktor IXa entsteht entweder über den TF-FVIIa-Komplex oder durch Thrombin-aktivierten Faktor XIa. Der Faktor VIII kann sowohl durch Faktor Xa als auch durch Thrombin aktiviert werden.

Die gemeinsame Endstrecke der verschiedenen Prozesse ist die Aktivierung von Faktor X, welcher mit Faktor Va Prothrombin in Thrombin (FIIa) umwandelt. Calcium ist als Kofaktor bei vielen dieser Schritte notwendig.

Thrombin als letztes Enzym der Gerinnungskaskade aktiviert sowohl Thrombozyten als auch die Faktoren V, VIII und XIII. Zudem wandelt es unter Mitwirkung von Faktor XIIIa lösliches Fibrinogen in unlösliche Fibrinpolymere um.

Aufgrund der neuen Erkenntnisse ist die Einteilung der plasmatischen Gerinnungsabläufe in ein intrinisches (endogenes) und ein extrinisches (exogenes) System weitgehend überholt und nur noch didaktisch sinnvoll. Sie hilft vor allem beim Verständnis der klassischen Gerinnungstests wie Quick und aPTT (siehe Abbildung 1, S. 12).
In Abbildung 1 entspricht der rechte Anteil bis zur Aktivierung von Faktor X dem endogenen System, dessen Bestandteile im aPTT-Test erfasst werden. Der linke Teil zeigt den exogenen Weg der Gerinnungskaskade, messbar durch den Quick-Test.

1.3.5 Inhibitoren der plasmatischen Gerinnung und Fibrinolyse

Für die lokale Begrenzung einer Gerinnelbildung bei Gefäßverletzung und für den Schutz des Organismus vor einer überschießenden Gerinnung sorgen Inhibitoren des Gerinnungssystems.

Die wichtigsten Inhibitoren sind Antithrombin (AT, früher AT III), Protein C und Protein S. Antithrombin ist besonders affin zu Thrombin und FXa. Die hemmende Wirkung von Antithrombin auf die Fibrinbildung kann durch Heparin um das 100.000 bis 400.000-fache beschleunigt werden.

Um die Gefäßdurchgängigkeit nach einer Verletzung und der Bildung eines Fibringerinnsels wiederherzustellen, muss das Gerinnsel abgebaut werden (Fibrinolyse). Schlüsselenzym hierfür ist das Plasmin(ogen), dessen Aktivierungssystem ähnlich der Gerinnungskaskade hochkomplex ist. Die Endprodukte der Fibrinolyse lassen sich als D-Dimere im Blut nachweisen.

1.3.6 Besonderheiten der Hämostase beim Kind

<table>
<thead>
<tr>
<th>Faktoren/ Werte (Einheit)</th>
<th>reifes Neugeborenes</th>
<th>1 Monat – 1 Jahr</th>
<th>1 - 5 Jahre</th>
<th>6 – 10 Jahre</th>
<th>11 – 16 Jahre</th>
<th>Erwachsene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombo- plasnzeit (s)</td>
<td>15,6 (14,4 – 16,4)</td>
<td>13,1 (11,5 – 15,3)</td>
<td>13,3 (12,1 – 14,5)</td>
<td>13,4 (11,7 – 15,1)</td>
<td>13,8 (12,7 – 16,1)</td>
<td>13 (11,5 – 14,5)</td>
</tr>
<tr>
<td>aPTT (s) (Reagens aPTT-A)</td>
<td>38,7 (34,3 – 44,8)</td>
<td>39,3 (35,1 – 46,3)</td>
<td>37,7 (33,6 – 43,8)</td>
<td>37,3 (31,8 – 43,7)</td>
<td>39,5 (33,9 – 46,1)</td>
<td>33,2 (28,6 – 38,2)</td>
</tr>
<tr>
<td>F II (%)</td>
<td>54 (41 – 69)</td>
<td>90 (62 – 103)</td>
<td>89 (70 – 109)</td>
<td>89 (67 – 110)</td>
<td>90 (61 – 107)</td>
<td>110 (78 – 138)</td>
</tr>
<tr>
<td>F V (%)</td>
<td>81 (64 – 103)</td>
<td>113 (94 – 141)</td>
<td>97 (67 – 127)</td>
<td>99 (56 – 141)</td>
<td>89 (67 – 141)</td>
<td>118 (78 – 152)</td>
</tr>
<tr>
<td>F VII (%)</td>
<td>70 (52 – 88)</td>
<td>128 (83 – 160)</td>
<td>111 (72 – 150)</td>
<td>113 (70 – 156)</td>
<td>118 (69 – 200)</td>
<td>129 (61 – 199)</td>
</tr>
<tr>
<td>FVIII (%)</td>
<td>182 (105 – 329)</td>
<td>94 (54 – 145)</td>
<td>110 (36 – 185)</td>
<td>117 (52 – 182)</td>
<td>120 (59 – 200)</td>
<td>160 (52 – 290)</td>
</tr>
<tr>
<td>vWF (%) (Andrew 1992, 1997)</td>
<td>153 (50 – 278)</td>
<td>107 (50 – 197)</td>
<td>82 (60 – 120)</td>
<td>95 (44 – 144)</td>
<td>100 (46 – 153)</td>
<td>92 (50 – 158)</td>
</tr>
<tr>
<td>F IX (%)</td>
<td>48 (35 – 56)</td>
<td>71 (43 – 121)</td>
<td>85 (44 – 127)</td>
<td>96 (48 – 145)</td>
<td>111 (64 – 216)</td>
<td>130 (59 – 254)</td>
</tr>
<tr>
<td>F X (%)</td>
<td>55 (46 – 67)</td>
<td>95 (77 – 122)</td>
<td>98 (72 – 125)</td>
<td>97 (68 – 125)</td>
<td>91 (53 – 122)</td>
<td>124 (96 – 171)</td>
</tr>
<tr>
<td>F XI (%)</td>
<td>30 (7 – 41)</td>
<td>89 (62 – 125)</td>
<td>113 (65 – 162)</td>
<td>113 (65 – 162)</td>
<td>111 (65 – 139)</td>
<td>112 (67 – 196)</td>
</tr>
<tr>
<td>F XII (%)</td>
<td>58 (43 – 80)</td>
<td>79 (20 – 135)</td>
<td>85 (36 – 135)</td>
<td>81 (26 – 137)</td>
<td>75 (14 – 117)</td>
<td>115 (35 – 207)</td>
</tr>
<tr>
<td>Anti- thrombin (%)</td>
<td>76 (58 – 90)</td>
<td>109 (72 – 134)</td>
<td>116 (101 – 131)</td>
<td>114 (95 – 134)</td>
<td>111 (96 – 126)</td>
<td>96 (66 – 124)</td>
</tr>
</tbody>
</table>
1.4 Gerinnungsstörungen mit Blutungsneigung

Gerinnungsstörungen mit Blutungsneigung lassen sich in angeborene und erworbbene Erkrankungen unterteilen, wobei es in jeder Gruppe wiederum plasmatische, thrombozytäre und vaskuläre Störungen gibt. Im Folgenden soll vor allem auf die plasmatischen Koagulopathien eingegangen werden, da sie für die vorliegende Studie die größte Bedeutung haben.

1.4.1 Angeborene plasmatische Gerinnungsstörungen

Angeborene Gerinnungsstörungen sind zum Großteil plasmatische Koagulopathien. Pathophysiologisch ist die Aktivität eines Gerinnungsfaktors oder mehrerer Faktoren aufgrund eines quantitativen oder qualitativen Defekts eingeschränkt. Am häufigsten ist das von-Willebrand-Syndrom, dann folgen die Hämophilien A und B. Andere kongenitale plasmatische Gerinnungsstörungen wie autosomal rezessiv vererbte Faktorenmängel oder eine Dysfibrinogenämie sind sehr selten.

Das von-Willebrand-Syndrom

Epidemiologie und Pathophysiologie

Der von-Willebrand-Faktor (vWF), ein multimeres Glykoprotein aus Endothelzellen und Megakaryozyten, spielt zum einen als Brückenprotein bei der Adhäsion von Thrombozyten untereinander sowie von Thrombozyten und subendothelialen Kollagen eine Rolle. Zum anderen ist der im Plasma zirkulierende Faktor VIII durch eine Bindung an vWF vor einem proteolytischen Abbau geschützt. Ein Mangel an vWF führt somit sekundär auch zu einem Abfall des Faktor VIII-Spiegels.
Einteilung
Das von-Willebrand-Syndrom wird nach quantitativen und qualitativen Defekten in verschiedene Typen und Subtypen eingeteilt. Beim Typ 1, mit 70-80% der häufigste, steht eine quantitative Fehlfunktion im Vordergrund, d.h. der vWF-Spiegel ist erniedrigt. Beim Typ 2 und seinen Subtypen (10-21% aller vWS) liegen verschiedene qualitative Abnormalitäten in der Struktur des vWF vor. Typ 3 (ca. 1% bis maximal 10% der vWS) ist die schwerste Form. Hier fehlt der vWF gänzlich, wodurch es zusätzlich zu einem relevanten Faktor VIII-Mangel kommt (Kleinschmidt et al. 2002, Barthels und von Depka 2003).
Neben der kongenitalen Form des von-Willebrand-Syndroms kann es in Verbindung mit anderen Erkrankungen auch zu einer erworbenen Form des vWS kommen (siehe auch 1.4.2 „Erworbene plasmatische Gerinnungsstörungen“, S. 22).

Klinik
Obwohl Patienten mit vWS Typ 1 die leichteste Symptomatik aufweisen, sollte diese Form nicht „mild“ genannt werden, um eine Bagatellisierung zu vermeiden.

Tabelle 4 (S. 18) gibt einen Überblick über die Häufigkeit der verschiedenen Symptome beim vWS im Vergleich zur Normalbevölkerung.
Tab. 4: Häufigkeit klinischer Symptome beim vWS (Pfanner et al. 2007 nach Silwer 1973)

<table>
<thead>
<tr>
<th>Klinische Symptome</th>
<th>vWS</th>
<th>Normalbevölkerung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epistaxis</td>
<td>62,5%</td>
<td>4,6%</td>
</tr>
<tr>
<td>Hypermenorrhoe</td>
<td>60,1%</td>
<td>25,3%</td>
</tr>
<tr>
<td>Blutungen nach Zahnextraktionen</td>
<td>51,5%</td>
<td>4,8%</td>
</tr>
<tr>
<td>Hämatomneigung</td>
<td>49,2%</td>
<td>11,8%</td>
</tr>
<tr>
<td>verlängerte Blutung aus Wunden</td>
<td>36,0%</td>
<td>0,2%</td>
</tr>
<tr>
<td>Zahnfleischbluten</td>
<td>35%</td>
<td>7,4%</td>
</tr>
<tr>
<td>Blutungen postoperativ</td>
<td>28,0%</td>
<td>1,0%</td>
</tr>
<tr>
<td>Blutungen postpartal</td>
<td>23,3%</td>
<td>19,5%</td>
</tr>
<tr>
<td>gastrointestinale Blutungen</td>
<td>14%</td>
<td>0,6%</td>
</tr>
<tr>
<td>Gelenkblutungen</td>
<td>8,3%</td>
<td>0%</td>
</tr>
<tr>
<td>Hämaturie</td>
<td>6,8%</td>
<td>0,6%</td>
</tr>
</tbody>
</table>

Diagnostik

Patienten mit einem von-Willebrand-Syndrom weisen meist normale Quick-Werte und Plättchenzahlen auf, die aPTT ist erst bei einem starken Faktor VIII-Mangel
verlängert (Barthels und von Depka 2003). In verschiedenen weiteren Labortests können Quantität, Qualität sowie die Funktion des von-Willebrand-Faktors bestimmt werden. Die in dieser Studie angewandten Untersuchungen werden unter 1.5 „Hämostaseologische Labordiagnostik“ (S. 27) sowie 3.5 „Labormethoden“ (S. 41) genauer beschrieben. Nur eine Kombination aller Tests in Phasen völliger Gesundheit unter Beachtung der Anamnese erlaubt eine annähernd sichere Diagnose, was insbesondere bei Kindern mit rezidivierenden Infekten schwierig ist. Deswegen kann oft nur eine sogenannte „Grauzone“ diagnostiziert werden, was bedeutet, dass bei dem Patienten ein vWS nicht sicher ausgeschlossen werden kann.

Therapie

Therapeutisch greift man beim vWS Typ 1 vor allem auf das Vasopressin-Analogon Desmopressin (DDAVP, z.B. Minirin™ oder Octostim™) zurück. Es mobilisiert körpereigene, endotheliale vWF-Speicher, wodurch der vWF-Spiegel für 3 bis 5 Tage verdoppelt bis vervierfacht werden kann. Kinder unter 3 Jahre sollten jedoch unter anderem wegen einer möglichen erhöhten Krampfbereitschaft kein Desmopressin erhalten. Bei Typ 2 und Typ 3 hilft die Gabe von von-Willebrand-Faktor und Faktor VIII-haltigem Konzentrat (z.B. Hämate HS) Im Akutfall kann das Antifibrinolytikum Tranexamsäure (Cyklokapron®) parenteral, oral oder lokal verabreicht werden.

Die folgende Tabelle 5 (S. 20) fasst einzelne Aspekte der verschiedenen vWS-Typen zusammen:
<table>
<thead>
<tr>
<th>Typ und Anteil an vWS</th>
<th>Charakteristik</th>
<th>klinische Symptomatik / Blutungsneigung</th>
<th>Verteilung der vWF-Multimere</th>
<th>genetische Übertragung</th>
<th>Therapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 70 - 80%</td>
<td>quantitative Verminderung des vWF</td>
<td>oft keine / nur mild oft erst bei Operationen</td>
<td>normal</td>
<td>autosomal-dominant, variable Expressivität + Penetranz</td>
<td>DDAVP</td>
</tr>
<tr>
<td>2A 10%</td>
<td>qualitative Verminderung des vWF</td>
<td>variabel, meist mittelschwer</td>
<td>hoch-/ mittel-molekulare Multimere vermindert / fehlend</td>
<td>autosomal-dominant / - rezessiv, vielfältige Mutationen</td>
<td>vWF / FVIII-haltiges Konzentrat</td>
</tr>
<tr>
<td>2B 3 - 5%</td>
<td>abnormer vWF mit erhöhter Affinität zum Glykoprotein-Ib- Rezeptor</td>
<td>variabel, schwere Symptome möglich</td>
<td>hoch-molekulare Anteile fehlen</td>
<td>autosomal-rezessiv, multiple Mutationen</td>
<td>vWF / FVIII-haltiges Konzentrat</td>
</tr>
<tr>
<td>2M 3%</td>
<td>verminderte vWF-Thrombozyten-Interaktion</td>
<td>variabel, schwere Symptome möglich</td>
<td>normal</td>
<td>autosomal-dominant</td>
<td>vWF / FVIII-haltiges Konzentrat</td>
</tr>
<tr>
<td>2N 3%</td>
<td>verminderte vWF-Affinität zu FVIII</td>
<td>oft klinische Ähnlichkeit mit Hämophilie A</td>
<td>normal FVIII-Aktivität <25%</td>
<td>autosomal-dominant</td>
<td>vWF / FVIII-haltiges Konzentrat</td>
</tr>
<tr>
<td>3 1%</td>
<td>nahezu komplettes Fehlen des vWF</td>
<td>schwer</td>
<td>normal wenn überhaupt nachweisbar FVIII erniedrigt</td>
<td>autosomal-dominant</td>
<td>vWF / FVIII-haltiges Konzentrat, Alloantikörper-Bildung in 10 - 15%</td>
</tr>
</tbody>
</table>
Hämophilie A und B
Durch den genetischen Defekt ist die Aktivierung des Faktor X gestört. Zwar ist die primäre Blutstillung (Vasokonstriktion und Plättchenaggregation) intakt, der Rest der Blutgerinnung läuft jedoch verzögert oder ineffizient ab, was zu einem mangelnden oder späten Verschluss von Gefäßdefekten führt.
Die Einteilung der Hämophilien erfolgt je nach Restaktivität des betroffenen Gerinnungsfaktors (siehe Tabelle 6).

Tab. 6: Hämophilie-Einteilung (nach World Federation of Hemophilia 2005)

<table>
<thead>
<tr>
<th>Schweregrad der Hämophilie</th>
<th>Aktivität des Faktors VIII / IX</th>
<th>Symptomatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>milde Hämophilie</td>
<td>5 – 40 %</td>
<td>Blutungen nach OP/Trauma</td>
</tr>
<tr>
<td>mäßige Hämophilie</td>
<td>1 - 5 %</td>
<td>Blutungen nach Bagatelltraumen</td>
</tr>
<tr>
<td>schwere Hämophilie</td>
<td>< 1%</td>
<td>häufige, spontane Blutungen auch ohne Trauma</td>
</tr>
</tbody>
</table>

Schwere Hämophilien (ca. 50% der Betroffenen) fallen meist schon im Säuglingsalter durch Spontanblutungen mit großflächigen subkutanen und intramuskulären Hämatomen auf. Nach Traumata oder Operationen (z.B. Tonsillektomien oder Zahnextraktionen) kann es verzögert zu starken Blutungen kommen. Rezidivierende Gelenkblutungen in Knie, Sprunggelenk oder Ellbogen führen unbekämpft zur hämophilen Arthropathie mit degenerativen Veränderungen bis hin zur vollständigen...
Zerstörung des Gelenks. Patienten mit leichter Hämophilie neigen zu Hämatomen und Nachblutungen bei Verletzungen.

Die Therapie besteht in der Substitutionstherapie mit Faktor VIII- bzw. IX-Konzentrat, bei mildem Faktor-VIII-Mangel kann bei Kinder über 3 Jahren auch Desmopressin (z.B. Minirin®) verabreicht werden.

1.4.2 **Erworbene plasmatische Gerinnungsstörungen**

Die erworbenen plasmatischen Gerinnungsstörungen treten in der Gesamtbevölkerung häufiger auf als die hereditären Formen, sind aber im Kindesalter selten. Es handelt sich dabei, wie z. B. bei Vitamin-K-Mangel, oft um Mangelzustände an mehreren Faktoren. In der Regel können die zu Grunde liegenden Erkrankungen durch die Anamneseerhebung aufgedeckt werden. Tabelle 7 gibt einen Überblick:

<table>
<thead>
<tr>
<th>Ursache</th>
<th>Beispiel für zugrunde liegende Erkrankung</th>
<th>Folgen für das Gerinnungssystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K-Mangel</td>
<td>Störung der Fettverdauung, gestillte Neugeborene</td>
<td>eingeschränkte Synthese der Faktoren II, VII, IX, X</td>
</tr>
<tr>
<td>Lebererkrankung</td>
<td>Hepatitis</td>
<td>eingeschränkte Synthese aller Gerinnungsfaktoren außer vWF</td>
</tr>
<tr>
<td>Verbrauchskoagulopathie (disseminierte intravasale Gerinnung, DIC)</td>
<td>Sepsis durch Meningokokken</td>
<td>Mangel an Gerinnungsfaktoren durch erhöhten Verbrauch bei intravasaler Fibrinbildung</td>
</tr>
<tr>
<td>erworbenes von-Willebrand-Syndrom</td>
<td>Herzfehler, Endokarditis, Valproateinnahme, Hypothyreose</td>
<td>Mangel an vWF, Hemmung der Synthese des vWF</td>
</tr>
</tbody>
</table>
Antiphospholipid-Antikörper und Lupusinhibitor

Die Antiphospholipid-Antikörper (APA), eine Mischung aus IgG- und IgM-Autoantikörpern, sind gegen negativ geladene Phospholipide oder Phospholipid bindende Serumproteine gerichtet (unter anderem gegen Cardiolipin und β₂-Glykoprotein I) und weisen dadurch Wechselwirkungen mit dem Gerinnungssystem auf (Hanly 2003).

Bei Kindern ist diese Symptomatik in den überwiegenden Fällen kaum ausgeprägt. Die Diagnose „Lupusinhibitor“ wird meist zufällig gestellt, zum Beispiel aufgrund einer verlängerten aPTT im Rahmen einer präoperativen Gerinnungsdiagnostik. Bei

1.4.3 Thrombozytäre und vaskuläre Gerinnungsstörungen
Neben den plasmatischen Störungen der Blutgerinnung kann auch eine Störung im Bereich der Thrombozyten oder der Gefäße zu einer erhöhten Blutungsneigung führen.

Thrombozytäre Gerinnungsstörungen

Vaskuläre Gerinnungsstörungen

Angeborene vaskuläre Blutungsneigungen wie Morbus Osler, das kavernöse Riesenhämangiom (Kasabach-Merritt) oder Bindegeweberkrankungen sind sehr selten und beruhen in der Regel auf strukturellen Gefäßwanddefekten oder einer verminderten Gefäßfragilität.

1.4.4 Zusammenfassung

Die häufigsten Hämostasestörungen mit Blutungsneigung sind in Tabelle 8 zusammengefasst:

Tab. 8: Gerinnungsstörungen mit Blutungsneigung (nach Pfanner et al. 2007)

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>Häufigkeit in der Bevölkerung</th>
<th>typische klinische Symptome</th>
<th>mögliche Labortests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombozytenfunktionsstörungen</td>
<td>3 – 4 %</td>
<td>Schleimhautblutungen (ähnlich dem vWS)</td>
<td>PFA-100</td>
</tr>
<tr>
<td>(medikamenteninduziert, organassoziiert, angeboren)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>von-Willebrand-Syndrom (vWS)</td>
<td>1 – 2 %</td>
<td>Schleimhautblutungen</td>
<td>PFA-100 Ristocetin-Kofaktor-Aktivität, vWF:AG Faktor VIII aPTT</td>
</tr>
<tr>
<td>Typ 1</td>
<td>davon 70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ 2</td>
<td>davon 20–30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ 3</td>
<td>davon 1-10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hämophilie A</td>
<td>1:5.000 männliche Geburten</td>
<td>Gelenkblutung</td>
<td>aPTT Quick</td>
</tr>
<tr>
<td>Hämophilie B</td>
<td>1:30.000 männliche Geburten</td>
<td>Gelenkblutung</td>
<td>aPTT Quick</td>
</tr>
</tbody>
</table>

Große klinische Studien zu Diagnostik und Therapie von Gerinnungsstörungen im Kindesalter fehlen, da geringe Fallzahlen und ethische Bedenken die Durchführung erschweren.

1.5 Hämostaseologische Labordiagnostik

1.5.1 Allgemeines zur hämostaseologischen Labordiagnostik

Die weite und rasche Verfügbarkeit von hämostaseologischen Labortests birgt gleichzeitig Chancen und Risiken. Im Idealfall wird eine laborchemische Gerinnungsuntersuchung zur Beantwortung einer konkreten Frage angefordert. Die Qualität der Antwort hängt dann von der Genauigkeit der Frage und der Eignung des Labortests für diese Fragestellung ab. Sensitivität, Spezifität sowie der negativ und positiv prädiktive Wert spielen hierbei eine wichtige Rolle.

Vor diesem Hintergrund werden im Folgenden die am häufigsten verwendeten laborchemischen Gerinnungstests vorgestellt:

1.5.2 Quick, aPTT und Thrombozytenuntersuchungen

Als Globaltests der Blutgerinnung werden die Prothrombinzeit (Quick) und die aktivierte partielle Thrombinzeit (aPTT) bezeichnet. Mit ihnen kann fast die gesamte plasmatische Gerinnung erfasst werden. Entwickelt und validiert sind diese Tests zur Überwachung einer Antikoagulation mit Heparin oder Vitamin-K-Antagonisten. Sie sind fast überall verfügbar und aufgrund von Sensitivität und Spezifität zum Screening auf die meisten schweren Einzelfaktorenmängel geeignet.

Durch den Quick-Test wird demnach der extrinsische (Faktor VII und Gewebefaktor) und durch die aPTT der intrinsische Weg der Blutgerinnung (Faktoren VIII, IX, XI und XII) gemessen. Beide Tests erfassen die Faktoren der gemeinsamen Endstrecke I, II, V und X. Allerdings wird weder durch den Quick-Test noch durch die aPTT die Aktivität des Faktor XIII bestimmt, der jedoch eine wichtige Rolle in der Blutgerinnung spielt (siehe 1.3 „Hämostase“, S. 8).

Abbildung 2 (S. 29) verdeutlicht die durch die Globaltests gemessenen Bestandteile des hämostatischen Systems.
Thrombozytenuntersuchungen

1.5.3 Spezielle Gerinnungstests

Aktivität der einzelnen plasmatischen Gerinnungsfaktoren

Die Aktivität der Gerinnungsfaktoren II, V, VII und X wird ebenfalls unter Zuhilfenahme von Mangelplasma bestimmt, dabei wird anstatt der aPTT der Quick-Wert bestimmt.
Fibrinogen

Diagnostik des von-Willebrand-Syndroms
Um ein von-Willebrand-Syndrom festzustellen, wird eine Kombination verschiedener Labortests verwendet (siehe auch 1.4.1 „Angeborene plasmatische Gerinnungsstörungen“, S. 16).

Lupusinhibitor
In unserem Labor wurde der Dilute Russells Viper Venom Test (DRVVT) sowohl als Screeningtest als auch zur Bestätigung des Vorhandenseins von Lupusinhibitoren verwendet. Hierbei aktiviert der Extrakt des Schlangengifts der Russell Viper den Faktor X in der Plasmaprobe direkt, so dass das Ergebnis nicht durch einen Mangel an vorgeschalteten Gerinnungsfaktoren (u.a. VII, VIII, IX oder XI) beeinflusst wird.
Für den ersten Schritt verwendet man ein Reagens mit niedriger Phospholipidkonzentration, welches dadurch sehr sensibel auf Lupusinhibitoren
reagiert (LAC Screen) und bei Vorhandensein eines Lupusinhibitors eine erhöhte Gerinnungszeit aufweist. Im zweiten Testschritt, dem LAC Confirm, befinden sich mehr Phospholipide im Reagens, so dass die Antikörper neutralisiert werden und sich die Gerinnungszeit wieder verkürzt. Beide Ergebnisse werden jeweils als Verhältnis zum Normalwert dargestellt (Screen Ratio und Confirm Ratio). Die LAC-Ratio zeigt das Verhältnis von Screen Ratio zu Confirm Ratio. Liegt dieser Wert über 2,0, ist der Lupusinhibitor stark vorhanden, unter 1,2 ist der Nachweis negativ. Eine genauere Bestimmung der Art der Antikörper kann mittels ELISA-Test durchgeführt werden. Auf diese Weise werden die Untergruppen Cardiolipin-IgG und –IgM sowie β_2-Glykoprotein-IgG bzw. –IgM nachgewiesen.
2. Studiendesign

Außerdem wurden Kinder miteinbezogen, die aufgrund klinischer Beobachtungen (z.B. perioperative Blutung bei Voroperation oder auffällige Familienanamnese) explizit zur Abklärung einer möglichen Gerinnungsstörung überwiesen wurden. Zusätzlich wurden Patienten der Allgemeinambulanz des Haunerschen Kinderspitals mit berücksichtigt, bei denen der dringende Verdacht auf eine Blutungsneigung auch ohne Studie zu einer erweiterten Gerinnungsdagnostik geführt hätte (Tab. 9).

Tab. 9: Einschlusskriterien

<table>
<thead>
<tr>
<th>Kinder über 1 Jahr bis zum vollendeten 17. Lebensjahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ambulante Vorstellung in der Gerinnungssprechstunde oder Allgemeinambulanz</td>
</tr>
<tr>
<td>präoperativ beim niedergelassenen Arzt aufgefallen durch Anamnese und/oder pathologische laborchemische Gerinnungstests</td>
</tr>
<tr>
<td>ODER</td>
</tr>
<tr>
<td>überwiesen zur Abklärung einer Gerinnungsstörung ohne geplante Operation</td>
</tr>
<tr>
<td>ODER</td>
</tr>
<tr>
<td>andere ambulante Patienten mit Verdacht auf eine Gerinnungsstörung</td>
</tr>
</tbody>
</table>
Nicht mit eingeschlossen wurden Kinder unter einem Jahr, stationär aufgenommene Kinder, bei denen Gerinnungsuntersuchungen durchgeführt werden mussten, andere ambulante Patienten, bei denen eine erweiterte Gerinnungsdiagnostik ohne diese Studie nicht durchgeführt worden wäre (z. B. keine oder nur leichte Hinweise auf eine Blutungsneigung) sowie alle Kinder, bei denen eine andere, ausführlichere Diagnostik notwendig war (Tab. 10).

Tab. 10: Ausschlusskriterien

<table>
<thead>
<tr>
<th>Kriterium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinder unter einem Jahr</td>
</tr>
<tr>
<td>stationäre Kinder</td>
</tr>
<tr>
<td>ambulante Kinder mit keinen/geringen Hinweisen auf eine Blutungsneigung</td>
</tr>
<tr>
<td>Kinder, bei denen eine andere Diagnostik indiziert war</td>
</tr>
</tbody>
</table>

Aktuelle oder vor kurzem erfolgte Impfungen oder Infekte waren explizit kein Ausschlusskriterium, wenn die Diagnostik auch unabhängig von der Studie wegen besonderer Dringlichkeit zu diesem Zeitpunkt durchgeführt worden wäre. Weitere, gleichzeitig durchgeführte Labortests der Patienten z.B. im Rahmen eines Thrombophiliescreenings wurden bei der Auswertung nicht beachtet.

Abklärung von angeborenen oder erworbenen Gerinnungsstörungen bei Kindern und Jugendlichen
(aPTT-Studie)

<table>
<thead>
<tr>
<th>Vorstellungsgrund</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bekannte Grunderkrankung (z.B. Asthma, Colitis, Krampfleiden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voruntersuchungen</th>
<th>Datum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>aPTT-Verlängerung</td>
<td>Sek: _______ mehrfach kontrolliert?</td>
</tr>
<tr>
<td>Quick-Erniedrigung</td>
<td>%: _______</td>
</tr>
<tr>
<td>andere Auffälligkeiten:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blutung bei Voroperationen</th>
<th>ja ☐ (bitte beschreiben)</th>
<th>nein ☐ (bitte Vor-OP angeben)</th>
<th>keine OP ☐</th>
</tr>
</thead>
</table>

| Hämatome häufiger als normal? | ja ☐ (bitte beschreiben mit Lokalisation, z.B. oberhalb des Knies) | nein ☐ |

<table>
<thead>
<tr>
<th>Nasenbluten häufiger als normal?</th>
<th>ja ☐ (bitte beschreiben: Häufigkeit, Dauer, Tamponade?)</th>
<th>nein ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>spontan</td>
<td>bekannte Allergie</td>
<td>schon abgeklärt bei HNO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probleme beim Zahnwechsel?</th>
<th>ja ☐ (bitte beschreiben)</th>
<th>nein ☐</th>
<th>bislang kein Zahnwechsel ☐</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Periodenblutung</th>
<th>ja ☐ (bitte Dauer und Stärke angeben)</th>
<th>nein ☐</th>
<th>keine Periodenblutung ☐</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Blut im Urin</th>
<th>ja ☐ (mikro / makro)</th>
<th>Datum:</th>
<th>nein ☐</th>
</tr>
</thead>
</table>
Blut im Stuhl

- ja (okkult / makro) Datum: ____________ nein

Impfungen?

- ja (STIKO / anders) ja, in den letzten 4 Wochen: ____________ nein

Infektionen in den letzten 4 Wochen?

- ja, und zwar: ____________ / aktuell nein

Medikamente in den letzten 4 Wochen?

- ja (bitte beschreiben, bis wann? Aspirin, Valproat, Pille etc. abfragen!) nein

Familienanamnese:

CAVE: explizit nach Hämophilie / Bluter-Krankheit, Willebrand, Schlaganfall, Thrombose, Gefäßerkrankung etc. fragen!

Gerinnungsstörungen in der Familie bekannt?

- ja (Diagnose, Verwandtschaftsgrad, ggfs Behandler) nein

Leidet ein Familienmitglied an einer klinischen Blutungsneigung (s. Seite 1)?

- ja (bitte beschreiben, z.B. auch Blutung der Mutter bei Geburt von Kindern, Menstruationsprobleme?) nein

Körperliche Untersuchung:

<table>
<thead>
<tr>
<th>Größe: _____ cm</th>
<th>Gewicht: _____ kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hämamate: nein</td>
<td>ja:__________________</td>
</tr>
<tr>
<td>Petechien: nein</td>
<td>ja:__________________</td>
</tr>
<tr>
<td>Exanthem o.ä.: nein</td>
<td>ja:__________________</td>
</tr>
<tr>
<td>Verletzungen: nein</td>
<td>ja:__________________</td>
</tr>
<tr>
<td>HNO: oB</td>
<td>auffällig:__________________</td>
</tr>
<tr>
<td>Lymphknoten: oB</td>
<td>auffällig:__________________</td>
</tr>
<tr>
<td>Abdomen: oB</td>
<td>auffällig:__________________</td>
</tr>
<tr>
<td>Pulmo/Cor: oB</td>
<td>auffällig:__________________</td>
</tr>
<tr>
<td>Sonstiges: oB</td>
<td>auffällig:__________________</td>
</tr>
</tbody>
</table>

Unterschrift Arzt

Abb. 3: Standardisierter Anamnesefragebogen
Die standardisierte laborchemische Untersuchung bestand bei einem Großteil der Patienten aus folgenden Parametern:

Tab. 11: Bestimmte Laborparameter

<table>
<thead>
<tr>
<th>Parameter (Einheit)</th>
<th>Parameter (Einheit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukozytenzahl (x10^9/l), Erythrozytenzahl (x10^12/µl), Hämoglobin (g/dl), Hämatokrit (%), MCH (pg/Erythrozyt), MCV (fl)</td>
<td>Thrombozytenzahl (x10^9/l), aPTT (sec), Quick (%), Fibrinogen (g/l)</td>
</tr>
<tr>
<td>Faktor VIII:C (%), Faktor VIII-Bindungskapazität (%), Faktor IX (%), Faktor XI (%), Faktor XII (%), Faktor XIII (%), vWF (%), vWF-Multimere (normales Muster vorhanden/nicht vorhanden), vWF:CBA (%), vWF:AG (%), vWF:RistoCoF (%), PFA100-Epinephrin (sec), PFA100-ADP (sec)</td>
<td>Lupusinhibitor (Ratio), Cardiolipin-IgM (U/l), Cardiolipin-IgG (U/l), Glykoprotein-IgG-AK (U/l), Glykoprotein-IgM-AK (U/l)</td>
</tr>
<tr>
<td>GOT (U/l), GPT (U/l), γ-GT (U/l), AP (U/l)</td>
<td></td>
</tr>
</tbody>
</table>

Bei einigen Kindern konnten aus verschiedenen Gründen, z.B. um den Blutverlust gering zu halten oder aufgrund der schlechten Venenverhältnisse, nicht alle Werte bestimmt werden, so dass es bei Studienabschluss pro Parameter eine unterschiedliche Zahl an Ergebnissen gab.

Die Diagnose eines Lupusinhibitors wurde dann gestellt, wenn bei einem Kind mindestens eine aPTT-Verlängerung bekannt war und entweder mindestens zwei der Gerinnungsfaktoren VIII, IX, XI und XII erniedrigt waren und/oder sich erhöhte Cardiolipin- oder β_2-Glykoprotein-Antikörper nachweisen ließen und/oder die LAC hochnormal oder erhöht war. Gleichzeitig durfte die Eigenanamnese des Kindes nicht auf eine Gerinnungsstörung mit Blutungsneigung hinweisen.

Die Diagnose-abhängig ausgesprochenen Therapieempfehlungen unterschieden sich nicht von den bisher in der Gerinnungsambulanz angewandten. Es wurde für jedes Kind eine individuelle Therapieempfehlung entsprechend der Gesamtsituation gegeben (siehe Tab. 12).

Tab. 12: Therapieempfehlungen

<table>
<thead>
<tr>
<th>anamnestisch Hinweis auf Blutungsneigung</th>
<th>bei Eingriffen im Schleimhautbereich ggf. Tranexamsäure (Cyklokapron®) oral für 3-5 Tage, Überwachung bis zum Ende des OP-Tages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupusinhibitor/ vWS Typ 1 ohne Blutungsneigung in Anamnese</td>
<td>bei Eingriffen im Schleimhautbereich Tranexamsäure oral für 3-5 Tage, stationäre Überwachung postoperativ</td>
</tr>
<tr>
<td>Lupusinhibitor/ vWS Typ 1 mit Blutungsneigung in Anamnese</td>
<td>bei Eingriffen im Schleimhautbereich Tranexamsäure oral für 3-5 Tage, stationäre Überwachung postoperativ; bei Kindern >3 J präoperativ Desmopressin (z.B. Minirin®), bei Nichtansprechen vWF/FVIII-haltiges Konzentrat (z.B. Haemate HS®); bei Kindern <3 J keine präoperative Therapie, sondern vWF/FVIII-haltiges Konzentrat bei Bedarf</td>
</tr>
<tr>
<td>vWS Typ 2</td>
<td>bei Eingriffen im Schleimhautbereich Tranexamsäure oral für 3-5 Tage, präoperativ vWF/FVIII-haltiges Konzentrat, stationäre Überwachung postoperativ meist mindestens 5 Tage</td>
</tr>
<tr>
<td>Faktorenmangel</td>
<td>Therapie nach Substitutionsplan, stationäre Überwachung für mindestens 7 Tage</td>
</tr>
</tbody>
</table>

3. Methoden

3.1. Allgemeine Informationen

3.2 Anamneseerhebung

3.3 Körpliche Untersuchung

3.4 Präanalytische Methoden

Alle Blutentnahmen wurden von Ärzten der Gerinnungs- oder Allgemeinambulanz des Dr. von Haunerschen Kinderspitals durchgeführt.
Auf folgende, für eine korrekte Blutentnahme unerlässliche Punkte wurde dabei geachtet:
- kurze Stauung der Vene (maximal 60 Sekunden)
- Öffnung der Stauung unmittelbar nach möglichst schonender Venenpunktion
- keine Verwendung des ersten Röhrchens für die Gerinnungsanalyse
- sofort vorsichtiges Schwenken des Citratröhrchens
- Einhaltung des korrekten Mischverhältnisses
- zügige Weiterverarbeitung der Probe

3.5 Labormethoden

Tab. 13: Thrombozytenuntersuchungen

<table>
<thead>
<tr>
<th>Art der Untersuchung</th>
<th>Messmethode</th>
<th>verwendetes Reagens, Firma</th>
<th>Normbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombozytenzahl</td>
<td>elektronisches Zählverfahren</td>
<td>CBC-Analyzer (Firma Sysmex GmbH Deutschland, Norderstedt)</td>
<td>250.000 – 440.000 /µl</td>
</tr>
<tr>
<td>Morphologie</td>
<td>mikroskopische Begutachtung eines Blutausstriches</td>
<td>Axiolab (Carl Zeiss AG Deutschland, Oberkochen)</td>
<td></td>
</tr>
<tr>
<td>Plättchenfunktionsanalyse PFA-100®</td>
<td>PFA-100® (Firma Dade Behring Marburg GmbH)</td>
<td>Kit Dade PFA Collagen/ADP bzw. Collagen/EPI (Firma Dade Behring Marburg GmbH)</td>
<td>Kollagen/ADP: Normwert <110 Sekunden Kollagen/EPI: Normwert < 143 Sekunden</td>
</tr>
</tbody>
</table>
Tab. 14: Quickwert und Quick-wirksame Einzelfaktoren

<table>
<thead>
<tr>
<th>Art der Untersuchung</th>
<th>Reagens</th>
<th>Analysator</th>
<th>Normwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick-Wert</td>
<td>Thromborel S (Firma Dade Behring Marburg GmbH)</td>
<td>AMAX CS-190 (Amelung GmbH Lemgo)</td>
<td>70 – 100%</td>
</tr>
<tr>
<td>Einzelfaktoren II, V, VII und X (Einstufentest)</td>
<td>Thromboplastin-Reagens: HemosIL RecombiPlasTim Normalplasma: HemosIL Normal Control Mangelplasma: HemosIL Factor II bzw. V bzw. VII bzw. X deficient plasma (Instrumentation Laboratory Company, Lexington USA)</td>
<td>ACL 9000 (Instrumentation Laboratory Company, Lexington USA)</td>
<td>70 – 100%</td>
</tr>
</tbody>
</table>

Tab. 15: aPTT-Wert und aPTT-wirksame Einzelfaktoren

<table>
<thead>
<tr>
<th>Art der Untersuchung</th>
<th>Reagens</th>
<th>Analysator</th>
<th>Normwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>aPTT</td>
<td>Pathrombin SL (Firma Dade Behring Marburg GmbH)</td>
<td>AMAX CS-190 (Amelung GmbH Lemgo)</td>
<td>30 – 40 Sekunden</td>
</tr>
<tr>
<td>Einzelfaktoren VIII, IX, XI, XII (Einstufentest)</td>
<td>1. aPTT-Reagens HemosIL aPTT-SP (liquid) 2. Normalplasma HemosIL Normal Control 3. Mangelplasma: HemosIL Factor VIII bzw. IX bzw. XI bzw. XII deficient plasma (Instrumentation Laboratory Company, Lexington USA)</td>
<td>ACL 9000 (Instrumentation Laboratory Company, Lexington USA)</td>
<td>Kinder über 1 Jahr: VIII 70 – 150% IX 70 – 100% XI 70 – 100% XII 70 – 100%</td>
</tr>
</tbody>
</table>
Tab. 16: Faktor XIII und Fibrinogen

<table>
<thead>
<tr>
<th>Art der Untersuchung</th>
<th>Reagens</th>
<th>Analysator</th>
<th>Normwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faktor XIII</td>
<td>Normal- und Mangelplasma (Siemens Healthcare Diagnostics GmbH, Eschborn)</td>
<td>BCS® Siemens (Siemens Healthcare Diagnostics GmbH, Eschborn)</td>
<td>70 – 130%</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>Methode nach Clauss</td>
<td>Testsubstanz Multifibren U (Dade Behring Marburg GmbH)</td>
<td>Normbereich >160mg/dl</td>
</tr>
</tbody>
</table>

Tab. 17: Lupusinhibitor-Diagnostik

<table>
<thead>
<tr>
<th>Art der Untersuchung</th>
<th>Reagens und Analysator</th>
<th>Aussagekraft / Messmethode</th>
<th>Normwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachweis des Lupusinhibitors</td>
<td>HemosIL LAC Screen und ACL 9000 (Instrumentation Laboratory Company, Lexington USA)</td>
<td>Phospholipidarmes DRVVT-Reagens</td>
<td>bei Vorhandensein von Lupusinhibitoren Verlängerung der Gerinnungszeit, Screen Ratio >1,2</td>
</tr>
<tr>
<td>Bestätigung des Nachweises</td>
<td>HemosIL LAC Confirm und ACL 9000 (Instrumentation Laboratory Company, Lexington USA)</td>
<td>Phospholipid-reiches DRVVT-Reagens</td>
<td>bei Vorhandensein von LI Normalisierung der Gerinnungszeit; normalisierte LAC Ratio (Screen Ratio:Confirm Ratio)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ratio >2,0: Lupus-inhibitor (LI) stark</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ratio 1,5-2,0: LI gemäßigt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ratio 1,2-1,5: LI schwach</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ratio < 1,2: kein LI</td>
</tr>
<tr>
<td>Cardiolipin- IgG und IgM</td>
<td>ELISA-Platten (Phadia GmbH Freiburg)</td>
<td>Auswertung am Tecan-Plattenphotometer</td>
<td>< 11 U/l</td>
</tr>
<tr>
<td>β₂-Glykoprotein-IgG und IgM</td>
<td>ELISA-Platten (Orgentec Diagnostika GmbH Mainz)</td>
<td>Auswertung am Tecan-Plattenphotometer</td>
<td>< 11 U/l</td>
</tr>
<tr>
<td>Art der Untersuchung</td>
<td>Reagens und Analysator</td>
<td>Aussagekraft / Messmethode</td>
<td>Normwert</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>vWF:AG</td>
<td>HemosIL von Willebrand Factor Antigen Kit und ACL 9000 (Instrumentation Laboratory Company, Lexington USA)</td>
<td>Konzentration des vWF; Latex-Immunoassay</td>
<td>50 – 150 %</td>
</tr>
<tr>
<td>vWF</td>
<td>HemosIL Reagens und ACL 9000 (Instrumentation Laboratory Company, Lexington USA)</td>
<td>Aktivität des vWF; Latex-Immunoassay</td>
<td>50 – 150 %</td>
</tr>
<tr>
<td>Ristocetin-Kofaktor-Aktivität</td>
<td>BC von Willebrand-Reagens (Firma Dade Behring Marburg GmbH)</td>
<td>Funktion des vWF</td>
<td>50 - 150 %</td>
</tr>
<tr>
<td>vWF-CBA (Kollagenbindungsaktivität)</td>
<td>ELISA-Platte (Firma Haemochrom Diagnostica GmbH, Essen)</td>
<td>Fähigkeit des vWF, an Kollagen und Thrombozyten zu binden</td>
<td>60 – 130%</td>
</tr>
<tr>
<td>Multimerenanalyse (Prof. Dr. U. Budde, Hamburg)</td>
<td>Elektrophorese auf Agarose-Gel, Chemiluminiszenz</td>
<td>Auftrennung der verschiedenen großen vWF-Multimere, visuelle Erfassung der Verteilung</td>
<td>vWS Typ 1: alle Multimere in vermindelter Konzentration; vWS Typ 2: Multimere höchstens in Spuren nachweisbar; vWS Typ 2A: keine hoch- und mittelmolekularen Multimere; Typ 2B: diese deutlich vermindert</td>
</tr>
<tr>
<td>Faktor VIII: Bindungs- kapazität (Prof. Dr. U. Budde, Hamburg)</td>
<td>ELISA</td>
<td>Fähigkeit der Bindung an Faktor VIII</td>
<td>60 - 170%</td>
</tr>
</tbody>
</table>
Weitere Laboruntersuchungen
Zum Ausschluss einer Hepatopathie wurden bei einigen Patienten zusätzlich Bilirubin, Glutamat-Oxalat-Transaminase (GOT), Glutamat-Pyruvat-Transaminase (GPT), γ-Glutamyltranspeptidase (Gamma-GT) und Alkalische Phosphatase (AP) im Rahmen der klinischen Chemie untersucht. Kein Kind musste aufgrund von pathologischen Werten von dieser Studie ausgeschlossen werden.

3.6 Auswertung

3.6.1 Studienteilnehmer
Im Zeitraum vom 15.03.2004 bis 24.05.2006 entsprachen 296 Patienten den Einschlusskriterien der Studie. Folgevorstellungen bis zum 1. August 2007 wurden festgehalten.

3.6.2 Anruf bzw. Anschreiben

3.6.3 Definitionen „Anamnese“, „Klinik“ und „pathologische Diagnose“
Eine positive Familienanamnese lag dann vor, wenn Eltern, Geschwister oder andere Verwandte unter einer bereits diagnostizierten Gerinnungsstörung oder einer klinisch auffälligen Blutungsneigung litten. Familienmitglieder mit Hirninfarkten,
Lungenembolien oder anderen thromboembolischen Krankheitsbildern zählten nicht dazu.

In der körperlichen Untersuchung bei Erstvorstellung wurden Hämatome und Petechien als klinisch auffällig gewertet.

Zu den pathologischen Diagnosen im Sinne von Gerinnungsstörungen mit Blutungsneigungen wurden folgende Erkrankungen gezählt (siehe Tab. 19):

<table>
<thead>
<tr>
<th>Tab. 19: Pathologische Diagnosen</th>
</tr>
</thead>
<tbody>
<tr>
<td>alle Formen des von-Willebrand-Syndroms inkl. Grauzone</td>
</tr>
<tr>
<td>Hämophilie A und B</td>
</tr>
<tr>
<td>einzelne Faktorenmängel (außer Faktor XII-Mangel)</td>
</tr>
<tr>
<td>Thrombozytendefekte</td>
</tr>
</tbody>
</table>

Die Diagnosen „Lupusinhibitor“ und „Faktor XII-Mangel“ zählten nicht zu den pathologischen Diagnosen.

3.6.4 Verwendete Programme und statistische Methoden

Bei der Auswertung der in dieser Studie erhobenen Daten kamen folgende Programme zum Einsatz:

<table>
<thead>
<tr>
<th>Tab. 20: Verwendete Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsschritt</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td>Sammlung der Daten</td>
</tr>
<tr>
<td>Sammlung der Daten + Umsetzung in Abbildungen</td>
</tr>
</tbody>
</table>

Als statistische Testverfahren kamen der Chi-Quadrat-Test sowie der Fisher-Exact-Test zur Anwendung. Als Signifikanzniveau wurden 5% ($p = 0.05$) festgelegt. Somit
musste die Wahrscheinlichkeit, dass Unterschiede zwischen den untersuchten Patientengruppen durch Zufall zustande kamen, kleiner als 5% sein, um als statistisch signifikant zu gelten. Alle Angaben wurden in Prozent berechnet und auf die erste Kommastelle gerundet.

Zudem wurden in der Ergebnisbewertung folgende Begriffe der Statistik berechnet:

Tab. 21: Begriffe der Statistik

<table>
<thead>
<tr>
<th>Ergebnisbewertung</th>
<th>Begriffsbestimmung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivität (=Empfindlichkeit)</td>
<td>Wahrscheinlichkeit, einen tatsächlich positiven Sachverhalt durch einen positiven Test zu erkennen (Anteil der richtig positiv erkannten Sachverhalte an der Gesamtheit der wirklich positiven Sachverhalte)</td>
</tr>
<tr>
<td>positiv prädiktiver Wert</td>
<td>Wahrscheinlichkeit, dass der Sachverhalt wirklich zutrifft wenn der Test positiv ausfällt</td>
</tr>
<tr>
<td>Spezifität</td>
<td>Wahrscheinlichkeit, einen tatsächlich negativen Sachverhalt durch einen negativen Test zu erkennen (Anteil der richtig negativ erkannten Sachverhalte an der Gesamtheit der wirklich negativen Sachverhalte)</td>
</tr>
<tr>
<td>negativ prädiktiver Wert</td>
<td>Wahrscheinlichkeit, dass der Sachverhalt wirklich nicht zutrifft, wenn der Test negativ ausfällt</td>
</tr>
</tbody>
</table>
4. Ergebnisse

4.1 Allgemeine Daten

In diese Studie wurden 296 Patienten prospektiv eingeschlossen. Die Altersspanne der Kinder reichte von 1 Jahr bis 17 Jahre, 60,5% waren männlich und 39,5% weiblich (Verhältnis Jungen zu Mädchen 1,5:1). Der Altersmedian betrug 5 Jahre. Das Durchschnittsalters (Median) der Mädchen lag mit 5 Jahren und 6 Monaten geringfügig höher als das der Jungen mit 5 Jahren und 4 Monaten. Siebenunddreißig Kinder (12,5%) hatten das dritte Lebensjahr noch nicht vollendet, 184 Kinder (62,2%) waren zwischen drei und sieben Jahren und 75 Kinder (25,3%) zwischen acht und achtzehn Jahren alt (siehe Abb. 4).

![Altersverteilung der Patienten](image)

Abb. 4: Altersverteilung der Patienten

4.2 Vorstellungsgründe

Im Zuge der standardisierten Anamnese wurde der genaue Grund der Vorstellung bzw. der Überweisung erfragt. Hierbei konnten mehrere Gründe angegeben werden. Die weitaus größte Gruppe der Kinder, nämlich 74,7% (221/296), kam aufgrund von Auffälligkeiten einer hämostaseologischen Labordiagnostik. Davon waren 80,1% (177/221) der Labortests im Rahmen einer Operationsvorbereitung durchgeführt worden. Insgesamt 182 Kinder (61,5% aller Patienten) hatten extern einen
verlängerten aPTT-Wert gezeigt, 23 (7,8%) kamen mit einem erniedrigten Quick-Wert und 16 (5,4%) hatten sonstige gerinnungsrelevante Laborauffälligkeiten.

Bei 94 Kindern (31,8%) waren eine auffällige Familien- oder Eigenanamnese der Grund der Vorstellung. Unter den Punkt „auffällige Eigenanamnese“ fielen die 50 Kinder (16,9% aller Patienten) mit klinischen Zeichen einer Blutungsneigung in der Eigenanamnese. Achtzehn Kinder (6,1%) hatten während oder nach einer vorausgegangenen Operation vermehrt geblutet und stellten sich deswegen zur weiteren Diagnostik vor. 44 Kinder hatten mindestens einen Angehörigen mit einer hämorrhagischen Diathese oder einer klinischen Blutungsneigung. Bei ihnen sollte das Vorliegen einer familiären Blutgerinnungsstörung überprüft werden.

Das nachfolgende Diagramm (Abb. 5) zeigt eine Aufschlüsselung der Vorstellungsgründe nach Prozentanteilen (die Nennung mehrerer Vorstellungsgründe war möglich).

Zusammenfassend lassen sich zwei Patientengruppen unterscheiden: auf der einen Seite die Patienten, die sich aufgrund von auffälligen Laboruntersuchungen vorstellten (74,7%), auf der anderen Seite die Patienten, die anamnestisch selbst oder in der Familie Hinweise auf eine Gerinnungsstörung mit Blutungsneigung zeigten (37,8%).
4.3 Pathologische Laborergebnisse

4.3.1 Externe Laboruntersuchungen vor Erstvorstellung

In der folgenden Vierfeldertafel (Tabelle 22) ist der Zusammenhang zwischen dem extern bestimmten aPTT-Wert und der Diagnose einer Gerinnungsstörung dargestellt.

<table>
<thead>
<tr>
<th>aPTT-Wert extern verlängert</th>
<th>Gerinnungsstörung ja</th>
<th>Gerinnungsstörung nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Row Percent)</td>
<td>47</td>
<td>151</td>
</tr>
<tr>
<td>(23,7%)</td>
<td>(76,3%)</td>
<td></td>
</tr>
</tbody>
</table>

| aPTT-Wert extern normal | 17 | 30 |
| (Row Percent) | (36,2%) | (63,8%) |

Dass eine auswärts verlängerte aPTT-Messzeit das Vorliegen einer Gerinnungsstörung nicht mit ausreichender Sicherheit vorhersagen konnte, zeigte der niedrige positiv prädiktive Wert von 23,7% bzw. die Sensitivität von 73,4%. Auch wenn der aPTT-Wert extern normal war, wiesen dennoch über ein Drittel dieser Kinder eine Blutungsneigung auf (negativ prädiktiver Wert 63,8%). Die Spezifität war mit 16,6% ebenfalls sehr gering. Das Ergebnis erwies sich im Chi-Quadrat-Test als statistisch nicht signifikant, die Zufallswahrscheinlichkeit lag mit 8,1% etwas über dem Signifikanzniveau.

Von den auswärts bestimmten Quick-Werten waren nur 31 von 245 (12,7%) erniedrigt. Auch hier wurde die Einstufung als pathologisch durch den Grenzwert des bestimmenden Labors beeinflusst. Fünf Werte über 69% wurden als auffällig bewertet.
Zusammenfassend entfiel also bei den auswärts festgestellten Laborauffälligkeiten der größte Teil (85,5%) auf eine verlängerte aPTT-Messzeit (siehe Abb. 6). Bei 15 Kindern waren beide Globalwerte pathologisch (7,0%), bei 16 nur der Quick-Wert (7,5%).

![Auffällige Laborvoruntersuchungen (n=214)](image)

4.3.2 Laboruntersuchungen bei Erstvorstellung

Bei allen Kindern wurde im Rahmen eines kleinen Blutbildes die Thrombozytenzahl bestimmt. Dabei lagen 31 Werte (10,5%) im unteren Normbereich zwischen 150.000/µl und 250.000/µl. Lediglich bei zwei Kindern (0,7%) wurde eine Thrombozytopenie festgestellt (117.000/µl bzw. 106.000/µl). Da solche Plättchenzahlen nur in Ausnahmefällen zu Blutungen führen und häufig infektgetriggert auftreten, wurde bei diesen Patienten die Thrombozytopenie nicht als Gerinnungsstörung mit Blutungsneigung gewertet.
Ein besonderes Augenmerk lag auf den sogenannten Globaltests der Gerinnung, der aPTT-Messzeit und dem Quick-Wert. Von 296 aPTT-Werten erwiesen sich 119 (40,2%) als über den Grenzwert von 40 Sekunden hinaus verlängert. Die restlichen lagen im Normbereich (58,8%) oder waren labortechnisch nicht bestimmbar (Messfehler, 1,0%) (siehe Abb. 7).

Abb. 7: aPTT-Werte bei Erstvorstellung

Eine verlängerte aPTT-Messzeit zeigte auch bei Bestimmung in unserem Labor einen niedrigen positiv prädictiven Wert von 26,1% sowie eine geringe Sensitivität von 40,8% in Bezug auf die Diagnose einer Gerinnungsstörung. Aus einem verlängerten aPTT-Wert ließ sich somit nicht sicher auf das Vorliegen einer Blutungsneigung schließen. Etwas höher waren die Werte für Spezifität bzw. negativ prädictiven Wert mit 59,5% bzw. 74,1%. Die Auswertung der Vierfeldertafel mit dem Chi-Quadrat-Test ergab jedoch eine Zufallswahrscheinlichkeit von p=0,97 (siehe Tab. 23, S. 53).
Beim Quick-Wert zeigte sich mit 4,1% (12/296) ein weitaus niedrigerer Anteil an pathologischen Ergebnissen. 94,6% der Werte waren normal, 4 Werte konnten labortechnisch nicht bestimmt werden. Bei erniedrigtem Quick-Wert lag der Anteil an Kindern mit Gerinnungsstörung bei 33,3% (4/12). Die Diagnose lautete bei allen 4 Patienten „Faktor VII-Mangel“ mit Faktor VII-Werten von 25%, 31%, 38% bzw. 43%. Von diesen Kindern wurde eines unter nicht genau bekannter medikamentöser Prophylaxe problemlos operiert, die anderen wiesen auch in der telefonischen Nachbefragung nach Erstvorstellung keine erhöhte Blutungsneigung auf.

Nur 7 Kinder hatten pathologische Ergebnisse beider Globaltests (2,4%), bei 169 Kindern waren beide normal (57,1%). Die zweitgrößte Gruppe bildeten die Patienten mit verlängertem aPTT-Wert bei normalem Quick-Wert (108/296, 37,8%).

4.3.3 Reproduzierbarkeit der Voruntersuchungsergebnisse

Wie unter 4.3.1 (S. 50) dargestellt, lag bei insgesamt 80,8% (198/245) der Kinder mit Voruntersuchungen der aPTT-Wert oberhalb des Normbereichs. Bezogen auf diese Kinder konnte die erneute Abnahme bei der Erstvorstellung im Haunerschen Kinderspital die aPTT-Verlängerung bei der Hälfte der Patienten (99/198) bestätigen. 96 aPTT-Werte hatten sich normalisiert (48,5%), 3 konnten nicht bestimmt werden. Im Gegenzug wiesen 12 Kinder mit zuvor normalem aPTT-Wert nach Bestimmung in unserem Labor eine Verlängerung auf (siehe Abb. 8, S. 54).
Kontrolle der pathologischen aPTT-Vorbefunde (n=198)

Abb. 8: Kontrolle der pathologischen aPTT-Vorbefunde

Beim Quick-Wert konnten 95,8% (205/214) der normalen und 22,6% (7/31) der pathologischen Vorbefunde bestätigt werden. Die Mehrzahl (24/31, 77,4%) der zuvor erniedrigten Werte hatte sich normalisiert.

4.3.4 Einzelfaktoren bei auffälligen Globalwerten

Im klinischen Alltag zielen die Messungen von aPTT- und Quick-Wert unter anderem darauf ab, relevante Faktorenmängel aufzudecken, ohne dafür die Gerinnungsfaktoren einzeln bestimmen zu müssen. Bei der Erstvorstellung der Studienpatienten wurden verschiedene Einzelfaktoren zusätzlich bestimmt, welche im Folgenden mit auffälligen Globalwerten in Zusammenhang gebracht werden.

Die Faktoren lagen dabei teilweise deutlich unterhalb des Normbereiches, insgesamt hatten 62,1% der Patienten mindestens eine Faktorenaktivität unter 60% (siehe Tabelle 24, S. 56).

Tab. 24: Einzelfaktoren bei verlängerter aPTT-Messzeit

<table>
<thead>
<tr>
<th>Einzelfaktoren (Anzahl Bestimmungen bei verlängertem aPTT-Wert)</th>
<th>Aktivität 60-69%</th>
<th>Aktivität 50-59%</th>
<th>Aktivität 2-50%</th>
<th>Anzahl erniedrigt insgesamt</th>
<th>Anzahl normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>F VIII (n=118)</td>
<td>24</td>
<td>20</td>
<td>33</td>
<td>77</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>20,3%</td>
<td>16,9%</td>
<td>28,0%</td>
<td>65,3%</td>
<td>34,7%</td>
</tr>
<tr>
<td>F IX (n=116)</td>
<td>36</td>
<td>29</td>
<td>13</td>
<td>78</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>31,0%</td>
<td>25,0%</td>
<td>11,2%</td>
<td>67,2%</td>
<td>32,8%</td>
</tr>
<tr>
<td>F XI (n=116)</td>
<td>17</td>
<td>12</td>
<td>17</td>
<td>46</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>14,6%</td>
<td>10,3%</td>
<td>14,6%</td>
<td>39,7%</td>
<td>60,3%</td>
</tr>
<tr>
<td>F XII (n=117)</td>
<td>18</td>
<td>7</td>
<td>51</td>
<td>76</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>15,4%</td>
<td>6,0%</td>
<td>43,6%</td>
<td>65,0%</td>
<td>35,0%</td>
</tr>
</tbody>
</table>

Parallel zum aPTT-Wert und den Faktoren VIII, IX, XI und XII ist der Quick-Wert vor allem von der Aktivität der Faktoren II, V, VII und X abhängig. Bei einigen der 22 Patienten, deren Quick-Wert entweder in der Voruntersuchung oder bei Erstvorstellung erniedrigt war, wurden zusätzlich die Quick-beeinflussenden Faktoren untersucht. Dabei erwies sich der Faktor VII am häufigsten als erniedrigt, nämlich bei 13 von 22 Bestimmungen (59,1%). Beim Faktor II waren 10% der Werte erniedrigt (1/10), beim Faktor V 16,7% (2/12) und beim Faktor X 10,5% (2/19).

4.3.5 Einzelfaktoren bei normalen Globalwerten

Insgesamt waren trotz einer als normal gewerteten aPTT-Messzeit unseres Labors (n=174) bei 106 Patienten einer oder mehrere der Faktoren VIII, IX, XI und XII außerhalb des Normbereichs (60,9%). Auch wenn man nur die Faktoren VIII, IX und XI und Werte unter 60% als pathologisch berücksichtigt, lag der Anteil immerhin noch bei 24,1% (42/174) (siehe Abb. 10, S. 57).
Auch hier waren die Faktoren zum Teil deutlich außerhalb des Normbereichs, wenn auch zu einem geringeren Anteil als bei einer auffälligen aPTT-Messzeit (siehe Tab. 25).

Tab. 25: Einzelfaktoren bei normaler aPTT-Messzeit

<table>
<thead>
<tr>
<th>Einzelfaktoren (Anzahl Bestimmungen bei normalem aPTT-Wert)</th>
<th>Aktivität 60-69%</th>
<th>Aktivität 50-59%</th>
<th>Aktivität 23-50%</th>
<th>Anzahl erniedrigt insgesamt</th>
<th>Anzahl normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>F VIII (n=166)</td>
<td>37</td>
<td>19</td>
<td>13</td>
<td>69</td>
<td>97</td>
</tr>
<tr>
<td>davon %</td>
<td>22,3%</td>
<td>11,4%</td>
<td>7,8%</td>
<td>41,6%</td>
<td>58,4%</td>
</tr>
<tr>
<td>F IX (n=158)</td>
<td>39</td>
<td>7</td>
<td>2</td>
<td>48</td>
<td>110</td>
</tr>
<tr>
<td>davon %</td>
<td>24,7%</td>
<td>4,4%</td>
<td>1,3%</td>
<td>30,4%</td>
<td>69,6%</td>
</tr>
<tr>
<td>F XI (n=158)</td>
<td>16</td>
<td>3</td>
<td>2</td>
<td>21</td>
<td>137</td>
</tr>
<tr>
<td>davon %</td>
<td>10,1%</td>
<td>1,9%</td>
<td>1,3%</td>
<td>13,3%</td>
<td>86,7%</td>
</tr>
<tr>
<td>F XII (n=156)</td>
<td>10</td>
<td>8</td>
<td>16</td>
<td>34</td>
<td>122</td>
</tr>
<tr>
<td>davon %</td>
<td>6,4%</td>
<td>5,1%</td>
<td>10,3%</td>
<td>21,8%</td>
<td>78,2%</td>
</tr>
</tbody>
</table>

Parallel zum aPTT-Wert wurden bei 37 Patienten einige oder alle der Quick-beeinflussenden Faktoren zusätzlich bestimmt. Auch hier zeigte sich, dass trotz normaler Quick-Werte die Einzelfaktoren zum Teil erniedrigt waren, jedoch zu einem deutlich niedrigeren Prozentsatz als bei der aPTT-Messzeit und den aPTT-beeinflussenden Faktoren (siehe Abb. 11, S. 58).
4.3.6 Einfach und mehrfach verlängerte aPTT-Messzeit

Neben den Laborergebnissen, welche die Patienten von außerhalb mitbrachten, wurden zumindest bei der Erstvorstellung in unserem Haus die Gerinnungsparameter bestimmt. 74 Kinder stellten sich ein zweites, 11 ein drittes Mal vor, so dass sich die Anzahl der bestimmten Laborwerte unterschieden. Der Anteil an pathologischen Diagnosen (Definition siehe Tabelle 19, S. 46) lag bei Patienten mit einem auswärts verlängerten aPTT-Wert bei 23,7% (47/198), mit einem auffälligen aPTT-Wert bei uns bei 26,1% (31/119).

Tabelle 26 (S. 59) schlüsselt die einzelnen Gerinnungsstörungen mit Blutungsneigung nach der bei uns gemessenen aPTT-Messzeit auf.
Tab. 26: Gerinnungsstörungen und aPTT-Wert bei Erstvorstellung

<table>
<thead>
<tr>
<th>Gerinnungsstörung</th>
<th>Gesamt</th>
<th>aPTT-Wert verlängert</th>
<th>aPTT-Wert normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faktor VII-Mangel</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Faktor XI-Mangel</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>von-Willebrand-Syndrom</td>
<td>33</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>Grauzone vWS</td>
<td>32</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Faktor XIII-Mangel</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Thrombozytenstörung</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Die Unterschiede waren beim Quick-Wert geringer: 32,3% der Kinder mit extern niedrig gemessenem Quick und 33,3% mit bei uns erniedrigtem Quick-Wert litten unter einer Blutungsneigung.

Hatte ein Kind mehrfach auffällige Gerinnungswerte, so erhöhte sich die Wahrscheinlichkeit einer pathologischen Diagnose nicht deutlich. Von den 96 Kindern, deren aPTT-Wert sich bei Erstvorstellung in unserem Haus nach vorheriger Verlängerung normalisiert hatte, wiesen 24,0% (23/96) eine klinische Blutungsneigung auf. War der Wert hingegen bei uns nochmals verlängert, so lag der Anteil bei 23,2% (23/99).

Nicht alle Kinder stellten sich ein zweites oder drittes Mal vor, so dass die Anzahl der auszuwertenden Kinder im Verlauf der Vorstellungen abnahm. Zwei Kinder wiesen dreimal eine aPTT-Verlängerung in unserem Labor auf, litten aber unter keiner klinischen Störung der Gerinnung. War die aPTT-Messzeit mindestens zweimal verlängert, hatten 17,6% (3/17) eine pathologische Diagnose, bei zweimaligem
normalem Ergebnis ließ sich jedoch in 33,3% (13/39) trotzdem eine klinische Blutungsneigung diagnostizieren.

4.3.7 Ausmaß der aPTT-Verlängerung
Es wird diskutiert, inwiefern das Ausmaß einer aPTT-Verlängerung Rückschlüsse auf das Vorliegen einer Gerinnungsstörung zulässt.
Bei 20 Kindern war nach Angaben der Eltern die extern bestimmte aPTT-Zeit zwar verlängert, einen genauen Wert konnten sie aber nicht angeben. Diese Kinder wurden im folgenden Diagramm (Abb. 12) nicht berücksichtigt. Miteinbezogen wurde der erstbekannte aPTT-Wert, unabhängig davon, ob er extern oder in unserem Labor bestimmt wurde. Insgesamt war bei 42 der 186 Kinder mit genau bekannter aPTT-Verlängerung eine Gerinnungsstörung diagnostizierbar (22,6%), bei normaler aPTT-Messzeit hingegen bei 26 von 90 (28,9%) (siehe Abb. 12).

Anteil Gerinnungsstörungen bei verschiedenen aPTT-Werten

Abb. 12: Anteil Gerinnungsstörungen bei verschiedenen aPTT-Werten

Die Wahrscheinlichkeit einer Gerinnungsstörung nahm also nicht mit dem Ausmaß einer aPTT-Verlängerung zu.

4.3.8 Laborauffälligkeiten nach Infekten
Unter der Annahme, dass bestimmte gerinnungsbeeinflussende Antikörper wie der Lupusinhibitor vermehrt im Rahmen von Infekten auftreten (siehe auch 1.4.2 „Erworbene plasmatische Gerinnungsstörungen“, S. 22), wurde bei der Erstvorstellung auch nach Infekten im Monat vor der Vorstellung gefragt.
Nach Angaben der Eltern hatten 150 der 296 Kinder (50,7%) kürzlich einen Infekt durchgemacht. Von 12 Kindern erhielten wir keine Angaben, die übrigen waren gesund.

Bei den Kindern mit Infektanamnese waren die externen aPTT-Werte bei 72,3% (109/150) auffällig, bei den gesunden Kindern lediglich in 53%. Die erneute Blutentnahme in unserem Haus konnte keinen Unterschied zwischen den beiden Gruppen mehr zeigen: nach einem Infekt war die aPTT-Messzeit bei uns bei 41,3% (62/150) verlängert, ohne Infekt im vergangenen Monat lag die Rate bei 41,0%.

Der Quick-Wert lag nach einem Infekt bei 4,0% der Kinder unterhalb des Grenzwertes (6/150), bei gesunden Kindern bei 3,7%.

4.3.9 Laborauffälligkeiten nach Impfung

Da Impfungen ähnlich wie Infekte das Immunsystem stimulieren und unter anderem zur Bildung von gerinnungsbeeinflussenden Antikörpern führen können, wurden die Eltern auch nach kürzlich erfolgten Impfungen gefragt.

Laut Angaben der Eltern wurden 10 der 296 untersuchten Kindern (3,4%) in den letzten vier Wochen vor Erstvorstellung geimpft. 82,8% (245/296) waren allgemein geimpft, aber nicht in dem Monat vor der Vorstellung, die restlichen 41 hatten keine Impfungen oder machten keine Angaben.

Unter den erst kürzlich Geimpften fanden sich bei Erstvorstellung bei 5 (50,0%) eine verlängerte aPTT-Wert, wohingegen der aPTT-Wert bei den allgemein geimpften Kindern nur in 38,8% verlängert war. Durch eine kürzlich erfolgte Impfung verlängerte sich also in unserem Kollektiv der aPTT-Wert.

4.3.10 Laborauffälligkeiten nach Medikamenteneinnahme

36,8% (109/296) der Kinder hatten nach Auskunft ihrer Eltern in den letzten vier Wochen vor Erstvorstellung Medikamente eingenommen. Hierunter wurden alle

Verlängerte aPTT mit/ohne vorhergehende Medikation

<table>
<thead>
<tr>
<th>Medikationsspanne</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine (n=161)</td>
<td>44,1</td>
</tr>
<tr>
<td>Antibiotika (n=22)</td>
<td>36,4</td>
</tr>
<tr>
<td>NSAR (n=18)</td>
<td>16,7</td>
</tr>
<tr>
<td>Antiepileptika</td>
<td>0</td>
</tr>
<tr>
<td>sonstige (n=111)</td>
<td>45,9</td>
</tr>
</tbody>
</table>

Abb. 13: Verlängerte aPTT-Messzeit mit/ohne vorhergehende Medikation

Parallel dazu lag der Anteil der erniedrigten Quick-Werte nach Antibiotikaeinnahme bei 4,5% (1/22), nach NSAR bei 16,7% (3/18), nach sonstiger Medikation bei 6,3% (7/111) und nach Antiepileptika bei 0%. Kinder ohne vorhergehende Medikation hatten lediglich in 1,9% einen auffälligen Quick-Wert (3/160). Der Quick-Wert wurde also in unserem Kollektiv durch eine Medikamenteneinnahme, vor allem durch NSAR, beeinflusst.
4.3.11 Diagnose Lupusinhibitor

136 Kinder mit Lupusinhibitor kamen mit bereits extern durchgeführten Laboruntersuchungen in unsere Ambulanz, bei 120 (88,2%) von ihnen war die externe aPTT-Messzeit verlängert gewesen. 71 (59,2%) von ihnen hatten auch bei der Erstvorstellung bei uns einen pathologischen Wert, bei 47 hatte sich die aPTT-Messzeit in der Zwischenzeit normalisiert. Bei diesen 47 Patienten war jedoch in den allermeisten Fällen (97,5%) mindestens einer der aPTT-beeinflussenden Faktoren erniedrigt bzw. der Lupusinhibitor-Nachweis auffällig, so dass sich die Diagnose eines Lupusinhibitors ergab.

Bei 27 der 157 Kinder erwies sich die LAC-Ratio als auffällig (17,2%). Da zudem die Bestimmung der verschiedenen Antikörper-Untergruppen wenig Pathologien ergab (Cardiolipin-IgM- und -IgG-Antikörper bei 9 bzw. 13 Kindern erhöht, β2-Glykoprotein-IgG- und -IgM-Antikörper bei 3 bzw. 12 Patienten) stützte sich die Diagnose bei den meisten Kindern auf einen verlängerten aPTT-Wert und pathologische Spiegel der Einzelfaktoren VIII, IX, XI oder XII. Insgesamt 141 der Kinder mit Lupusinhibitor hatten mindestens einen erniedrigten aPTT-beeinflussenden Faktor (89,8%).

Betrachtet man alle Patienten mit verlängerten aPTT-Werten in externen Voruntersuchungen, so ergab sich bei 60,6% (120/198) die Diagnose eines Lupusinhibitors. Von 119 bei uns verlängerten aPTT-Werten ließen sich sogar 68,9% (82/119) auf einen Lupusinhibitor zurückführen.
46 der 157 Kinder (29,3%) kamen zu einer Kontrolluntersuchung, die meisten im Abstand von 4 bis 36 Monaten (Median 13,5 Monate). Bei 43 davon wurden nochmals aPTT- und andere Laborwerte bestimmt.

War bei einem Kind mit Diagnose Lupusinhibitor die aPTT-Messzeit schon bei der Erstvorstellung normal gewesen, so blieb der Wert in 87,0% (20/23) auch bei der Folgevorstellung unauffällig. Bei Erstvorstellung verlängerte aPTT-Messzeiten bestätigten sich beim Folgekontakt bei 65,0% (13/20), bei 7 Kindern hatten sie sich normalisiert (35,0%). Der Median des Abstands zwischen Erst- und Zweitvorstellung war bei diesen beiden Gruppen vergleichbar (11 Monate bei den Kindern mit zweimaliger aPTT-Verlängerung versus 14 Monate bei Kindern mit aPTT-Normalisierung). Von den drei Kindern mit dritter Vorstellung und verlängertem ersten aPTT-Wert hatte sich bei einem der Test normalisiert.

4.4 Gerinnungsdiagnostik bei geplanten Operationen

4.4.1 Geplante Operationen

Bei 184 der 296 Studienteilnehmer (62,2%) waren zum Zeitpunkt der Vorstellung eine oder mehrere Operationen geplant. Eingriffe im HNO-Bereich wie Adenotomien, Tonsillektomien und Parazentesen stellten zusammen mit 60,6% mehr als die Hälfte der geplanten Operationen dar, der Rest entfiel auf Zahnoperationen (21,7%), Herniotomien und Orchidopexien (5,9%), Zirkumzisionen (6,3%) und sonstige Operationen (5,5%).

Beim Kinderarzt hatten sich bei diesen Kindern im Zuge einer präoperativen laborchemischen Gerinnungsdiagnostik (aPTT, Quick und eventuell weitere Tests) oder im Rahmen der Erhebung der Familien- und Eigenanamnese Auffälligkeiten ergeben, die zur Überweisung ins Gerinnungszentrum führten. Eine auswärtige Laboruntersuchung wurde bei 177 dieser 184 Kinder (96,2%) durchgeführt. Dabei waren 87,0% der aPTT- und 13,0% der Quick-Werte auffällig.

Im folgenden Diagramm (Abbildung 14, S. 65) werden die Vorstellungsgründe der Kinder mit geplanten Operationen aufgeschlüsselt (die Nennung mehrerer Gründe war möglich):
4.4.2 Verlauf bei geplanten Operationen

Aufschlüsselung der durchgeführten Operationen (n = 153)

In der telefonischen Nacherhebung wurde auch nach der Anwendung einer präoperativen Blutungsprophylaxe gefragt. 23 Eltern waren sich nicht sicher, ob ihr Kind eine dementsprechende Medikation erhalten hatte, 27 bejahten die Frage ausdrücklich (22,1% der operierten Kinder). In den meisten Fällen (18/27) waren den Eltern die genauen Wirkstoffe nicht geläufig, vier Kinder erhielten dezidiert Desmopressin (Minirin®), drei Tranexamsäure (Cyklokapron®), je eines vWF/FVIII-haltiges Konzentrat (Haemate HS®) und Faktor IX-Konzentrat. Wenn nach unseren Therapieempfehlungen (siehe Tabelle 12 unter 2. „Studiendesign“, S. 39) agiert worden wäre, müsste die Zahl der Tranexamsäuregaben deutlich höher liegen, da mindestens 90 Kinder mit den Diagnosen Lupusinhibitor oder vWS Typ 1 operiert wurden.

Von 133 Operationen konnten Angaben zur Dauer des stationären Aufenthaltes erhoben werden, 10 Eltern konnten die genaue Tagesanzahl nicht nennen. 30,0% der Eingriffe wurden ambulant durchgeführt (40/133), 15,8% der Kinder blieben über eine Nacht in der Klinik. Länger als 6 Tage waren 16 Patienten (12,0%) stationär und zwar vor allem bei Tonsillektomien (11/16). Bei einem Kind trat trotz einer stationären Überwachung von 7 Tagen am neunten postoperativen Tag eine Nachblutung auf (Kind Nr. 237).
61 Eltern gaben an, dass insgesamt 76 geplante Operationen bei ihren Kindern nicht durchgeführt worden waren. Das Ergebnis der hämostaseologischen Abklärung bei uns war für 15 Patienten der Absagegrund, auch wenn diese Patienten in 73,3% die Diagnose eines Lupusinhibitors aufwiesen (11/15) (siehe Tab. 27).

Tab. 27: Nicht durchgeführte Operationen

<table>
<thead>
<tr>
<th>Art der geplanten Operation</th>
<th>Absagegrund Gerinnung (15 Kinder)</th>
<th>Absagegrund fehlende Indikation (13 Kinder)</th>
<th>Absagegrund nicht bekannt/OP noch geplant (33 Kinder)</th>
<th>Absagen gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenotomie</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>35</td>
</tr>
<tr>
<td>Tonsillektomie</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Parazentese</td>
<td>-</td>
<td>2</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Zahnoperation</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Zirkumzision</td>
<td>2</td>
<td>-</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Herniotomie</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sonstige</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>17</td>
<td>16</td>
<td>43</td>
<td>76</td>
</tr>
</tbody>
</table>

4.4.3 Perioperative Blutungen nach Erstvorstellung

Insgesamt 153 Operationen wurden bei den Studienteilnehmern telefonisch oder in Folgevorstellungen erfasst. 5 Kinder (4,2%) hatten dabei eine intra- oder postoperative Blutung erlitten.

Die Eltern konnten über die Blutungseignisse der 5 Patienten zum Teil nur begrenzt Informationen geben. Bei keinem dieser Kinder war nach der Vorstellung in unserem Haus eine Blutungsneigung diagnostiziert worden. Drei wiesen einen Lupusinhibitor auf, die anderen zwei hatten keine nachweisbare Störung der plasmatischen Gerinnung (siehe Tab. 28, S. 68).
Tab. 28: Vorstellung der Kinder mit perioperativer Blutung

<table>
<thead>
<tr>
<th>Vorstellungsgrund</th>
<th>Kind Nr. 161</th>
<th>Kind Nr. 237</th>
<th>Kind Nr. 250</th>
<th>Kind Nr. 264</th>
<th>Kind Nr. 312</th>
</tr>
</thead>
<tbody>
<tr>
<td>aPTT-Wert verlängert vor OP</td>
<td>aPTT-Wert verlängert vor OP</td>
<td>aPTT–Wert verlängert vor OP</td>
<td>Familienanamnese auffällig</td>
<td>aPTT-Wert verlängert vor OP</td>
<td></td>
</tr>
<tr>
<td>Art der OP</td>
<td>Zahnextraktion</td>
<td>TE</td>
<td>AT</td>
<td>AT</td>
<td>Paukenröhrchen</td>
</tr>
<tr>
<td>Therapie</td>
<td>nicht bekannt</td>
<td>Re-Operation</td>
<td>Beobachtung</td>
<td>Beobachtung</td>
<td>nicht bekannt</td>
</tr>
<tr>
<td>aPTT/Quick bei uns</td>
<td>normal/normal</td>
<td>verlängert/normal</td>
<td>verlängert/normal</td>
<td>normal/normal</td>
<td>verlängert/normal</td>
</tr>
<tr>
<td>Eigenanamnese</td>
<td>negativ</td>
<td>negativ</td>
<td>negativ</td>
<td>positiv (Epistaxis)</td>
<td>negativ</td>
</tr>
<tr>
<td>Familienanamnese</td>
<td>positiv (Vater postoperative Blutung)</td>
<td>positiv (Schwester FX-Mangel)</td>
<td>positiv (Mutter postoperative Blutung + Hypermenorrhoe)</td>
<td>negativ</td>
<td>negativ</td>
</tr>
<tr>
<td>Diagnose</td>
<td>Lupus-inhibitor</td>
<td>keine Störung</td>
<td>Lupus-inhibitor</td>
<td>keine Störung</td>
<td>Lupus-inhibitor</td>
</tr>
</tbody>
</table>

Aufgrund der niedrigen Zahl an perioperativen Blutungen kann keine Aussage über die Vorhersagekraft verschiedener Parameter in Bezug auf eine Blutung gemacht werden. Zudem fand eine Vielzahl der geplanten Eingriffen nicht statt, es wurde also nur eine selektierte Patientenanzahl operiert. Von den operierten Patienten erhielten außerdem 22,1% eine medikamentöse Blutungsprophylaxe, bei weiteren 18,9% waren sich die Eltern nicht sicher, ob ihr Kind ein Medikament gegen Blutungen bekommen hatte. Eventuell hätte die Blutungsrate ohne diese Prophylaxe höher gelegen.
4.5 Eigenanamnese

Neben Labortests spielt die persönliche Blutungsgeschichte eines Patienten eine sehr wichtige Rolle in der Diagnostik einer möglichen Gerinnungsstörung oder eines erhöhten Risikos für perioperative Blutungen.

4.5.1 Perioperative Blutung bei vorausgegangener Operation

Von den insgesamt 296 Kindern wurden 121 (40,9%) schon mindestens einmal vor Erstvorstellung operiert, bei einem Kind wurden keine Angaben gemacht. Dabei stellten Operationen im Hals-Nasen-Ohren-Bereich wiederum mit 67 Operationen den größten Anteil (55,4%).

Den Eltern zufolge erlitten dabei 28, also 23,1% der operierten Kinder eine perioperative Blutung, bei 7 von ihnen wurde später eine Gerinnungsstörung mit Blutungsneigung diagnostiziert (25,0%). Bei den 18 Kindern, die sich dezidiert aufgrund der vorausgegangenen Blutung im Gerinnungszentrum vorstellten, lag der Anteil an diagnostizierten Gerinnungsstörung noch etwas höher bei 27,8%. Es stellten sich unter anderem 9 Kinder vor, die während oder nach einer Adenotomie geblutet hatten. Bei ihnen fand sich ein vergleichsweise hoher Anteil an Koagulopathien von 44,4% (4/9), die sich alle als von-Willebrand-Syndrom oder vWS-Grauzone manifestierten.

Perioperative Blutungen in der Anamnese eines Patienten hatten somit allgemein eine Sensitivität von 25,9% und einen positiv prädiktiven Wert von 25,0% für das Vorliegen einer Gerinnungsstörung. Waren die Kinder ohne Komplikationen operiert worden, litten sie zu 78,5% nicht unter einer Blutungsneigung (negativ prädiktiver Wert), die Spezifität erreichte 77,7%. In der Auswertung nach dem Chi-Quadrat-Test
erreichte das Ergebnis jedoch mit einem p-Wert von 0,70 keine statistische Signifikanz (siehe Tab. 29).

Tab. 29: Vierfeldertafel Blutung bei Voroperation und Gerinnungsstörung

<table>
<thead>
<tr>
<th></th>
<th>Gerinnungsstörung ja</th>
<th>Gerinnungsstörung nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blutung bei Voroperation</td>
<td>7 (25,0%)</td>
<td>21 (75,0%)</td>
</tr>
<tr>
<td>(Row Percent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unauffällige Voroperation</td>
<td>20 (21,5%)</td>
<td>73 (78,5%)</td>
</tr>
<tr>
<td>(Row Percent)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.5.2 Weitere Punkte der Eigenanamnese

Bei der Erfassung der Eigenanamnese der Kinder wurde nach verschiedenen Zeichen einer möglichen Blutungsneigung gefragt. Mehrfachnennungen waren möglich. Die häufigsten Auffälligkeiten waren vermehrtes Nasenbluten bei 23,3% (69/296) und eine Hämatomneigung auch ohne adäquates Trauma bei 18,6%.

Zwei Eltern der 69 Kinder mit rezidivierender Epistaxis in der Anamnese gaben eine bekannte Allergie als Auslöser an. 12 Kinder waren zur weiteren Abklärung des Nasenblutens bereits beim HNO-Arzt vorstellig geworden, der eine vulnerable Schleimhaut oder einen hyperplastischen Venenplexus (Locus Kieselbachii) als Grund ausgeschlossen hatte. Von diesen Kindern hatten 3 ein von-Willebrand-Syndrom (25%), von den Patienten ohne HNO-Abklärung, aber mit vermehrtem Nasenbluten ergab sich die Diagnose vWS bei 13 von 55 (23,6%).

Abb. 16: Vorkommen anamnestischer Auffälligkeiten bei Kindern mit/ohne Gerinnungsstörung

Es ist zudem von Interesse, wie stark ein anamnestischer Hinweis auf eine Blutungsneigung tatsächlich mit einer Gerinnungsstörung zusammenhängt. Die folgende Tabelle 30 (S. 72) verdeutlicht, wie viele Kinder mit einer anamnestischen Auffälligkeit die Diagnose einer Gerinnungsstörung erhielten und wie viele mit dieser Auffälligkeit keine auffällige Diagnose erhielten.
Tab. 30: Blutungssymptome und Anamnese bei Kindern mit/ohne Gerinnungsstörung

<table>
<thead>
<tr>
<th>Art der Auffälligkeit</th>
<th>Anteil an Kindern</th>
<th>davon Gerinnungsstörung</th>
<th>Diagnose Gerinnungsstörung bei Kindern ohne diese Auffälligkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>perioperative Blutung bei Voroperation (n=121)</td>
<td>28 / 121 (23,1%)</td>
<td>7 / 28 (25,0%)</td>
<td>20 / 93 (21,5%)</td>
</tr>
<tr>
<td>Epistaxis (n=295)</td>
<td>69 / 295 (23,4%)</td>
<td>17 / 69 (24,6%)</td>
<td>60 / 226 (26,5%)</td>
</tr>
<tr>
<td>Hämatomneigung (n=291)</td>
<td>55 / 291 (18,9%)</td>
<td>10</td>
<td>64 / 236 (27,1%)</td>
</tr>
<tr>
<td>Zahnfleischbluten o.ä. (n=179)</td>
<td>10 / 179 (5,6%)</td>
<td>1 / 10 (10,0%)</td>
<td>41 / 169 (24,3%)</td>
</tr>
<tr>
<td>Blut im Stuhl (n=292)</td>
<td>10 / 292 (3,4%)</td>
<td>3 / 10 (33,3%)</td>
<td>73 / 282 (25,9%)</td>
</tr>
<tr>
<td>Blut im Urin (n=293)</td>
<td>7 / 293 (2,4%)</td>
<td>3 / 7 (42,9%)</td>
<td>73 / 286 (25,5%)</td>
</tr>
<tr>
<td>verstärkte Periode (n=8)</td>
<td>1 / 8 (12,5%)</td>
<td>0 / 1</td>
<td>3 / 7 (42,9%)</td>
</tr>
<tr>
<td>Familienanamnese allgemein auffällig (n=296)</td>
<td>127 / 296 (42,9%)</td>
<td>39 / 127 (30,7%)</td>
<td>38 / 169 (22,5%)</td>
</tr>
<tr>
<td>Mutter verstärkte Regelblutung (n=296)</td>
<td>24 / 296 (8,1%)</td>
<td>7 / 24 (29,2%)</td>
<td>70 / 272 (25,7%)</td>
</tr>
</tbody>
</table>

4.5.3 Zusammenhang Eigenanamnese und Diagnose

Betrachtet man nun die 138 Kinder, bei denen mindestens ein Punkt der Eigenanamnese auffällig war, so konnte bei 31 die Diagnose einer Gerinnungsstörung mit Blutungsneigung gestellt werden (22,5%). Die Wahrscheinlichkeit einer Blutungsneigung erhöhte sich mit der Anzahl der auffälligen Punkte der Eigenanamnese. So hatten von den Kindern mit nur einer anamnestischen Auffälligkeit 21,5% eine Blutungsneigung (23/107), bei zwei oder mehr Punkten erhöhte sich der
Anteil auf 25,6% (8/31). Allerdings zeigte sich auch bei 29,1% der Patienten ohne Auffälligkeiten in der Eigenanamnese eine Gerinnungsstörung (46/158) (siehe Tab. 31).

Tab. 31: Vierfeldertafel Eigenanamnese und Gerinnungsstörung

<table>
<thead>
<tr>
<th>Gerinnungsstörung ja</th>
<th>Gerinnungsstörung nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenanamnese auffällig</td>
<td>31 (22,5%)</td>
</tr>
<tr>
<td>Eigenanamnese unauffällig</td>
<td>46 (29,1%)</td>
</tr>
</tbody>
</table>

Die Eigenanamnese allein erreichte eine Sensitivität von 40,3% bei einem positiv prädiktiven Wert von 22,5%. Es konnte also nicht aus einer auffälligen Eigenanamnese allein auf das Vorliegen einer Gerinnungsstörung geschlossen werden. Hatte das Kind keine Auffälligkeiten in der Anamnese, so hatte es zu 70,9% auch keine Gerinnungsstörung. Die Spezifität lag bei 51,1%. Die Auswertung der Vierfeldertafel mit dem Chi-Quadrat-Test erreichte kein signifikantes Ergebnis, die Zufallswahrscheinlichkeit lag bei 19,3%.

4.6 Familienanamnese

4.6.1 Verwandte mit Gerinnungsstörungen

Die Frage nach bereits diagnostizierten Gerinnungsstörungen in der Familie bejahten zunächst 82 Eltern. Nach genauerer Auswertung erwiesen sich nur 45 Angaben (15,2% aller Kinder) als für unsere Fragestellung relevant, da Familienmitglieder mit
Hirninfarkten, Lungenembolien oder anderen thrombembolischen Krankheitsbildern nicht gewertet wurden.

Gerinnungsstörungen in der Familie

keine Angaben
3,4%

vorhanden
15,2%

nicht vorhanden
81,4%

Abb. 17: Gerinnungsstörungen in der Familie

Von den 45 Kindern mit einer Gerinnungsstörung in der Familie hatten 14 (31,1%) selbst eine Gerinnungsstörung mit Blutungsneigung, bei den Kindern ohne familiäre Gerinnungsstörung lag der Anteil mit 25,1% etwas niedriger (63/251).

Das Vorliegen einer familiären Gerinnungsstörung erreichte somit einen positiv prädiktiven Wert von 31,1% bei einer Sensitivität von 18,2%. Wenn eine Gerinnungsstörung in der Verwandtschaft verneint wurde, hatten 74,9% dieser Kinder tatsächlich keine Gerinnungsstörung. Die Spezifität lag mit 85,8% sogar noch etwas höher. Insgesamt war der Zusammenhang bei einem p-Wert von 0,40 jedoch nicht statistisch signifikant.

4.6.2 Verwandte mit klinischer Blutungsneigung

Die Frage nach klinisch manifesten Blutungsneigungen in der Verwandtschaft, zum Beispiel rezidivierendem Nasenbluten, vermehrten Hämatome oder Blutungen nach Geburten und Operationen, bejahten 117 Eltern (39,5%). Bei 172 fand sich keine Blutungsneigung in der Familie, 2,4% machten keine Angaben (siehe Abbildung 18, S. 75).
Blutungsneigung in der Familie

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>vorhanden</td>
<td>39,5%</td>
</tr>
<tr>
<td>nicht vorhanden</td>
<td>58,1%</td>
</tr>
<tr>
<td>keine Angaben</td>
<td>2,4%</td>
</tr>
</tbody>
</table>

Abb. 18: Blutungsneigung in der Familie

Besonders häufig traten folgende Blutungsneigungen auf: rezidivierende Epistaxis (bei 59 Angehörigen), postoperative Nachblutungen (40 Angehörige), Hämatomneigung (39 Angehörige), verstärkte Regelblutung bei weiblichen Verwandten (32 Angehörige) und intra- oder postpartale Blutungen (13 Angehörige).

Litt mindestens ein Verwandter an einer klinischen Blutungsneigung, so lag der Anteil der Kinder mit einer relevanten Gerinnungsstörung bei 31,6% (37/117), ohne diese Angabe lag der Anteil an Gerinnungsstörungen bei 22,7% (39/172).

Ähnlich der Frage nach Gerinnungsstörungen in der Familie erreichte auch die Frage nach familiären Blutungsneigungen für sich allein gesehen eine geringe Sensitivität von 48,7% bei einem positiv prädiktiven Wert von 31,6%. Die Werte für Spezifität und negativ prädiktiven Wert lagen mit 62,4% bzw. 77,3% etwas höher. Somit ließ sich weder aus dem Vorliegen einer Blutungsneigung in der Familie eines Patienten noch aus dem Fehlen einer solchen Belastung ein sicherer Rückschluss auf das Vorliegen einer Gerinnungsstörung ziehen. Der p-Wert der Auswertung mittels Chi-Quadrat-Test lag bei 0,09, war also nicht statistisch signifikant.

Betrachtet man die Kinder, deren Mütter eine verstärkte Regelblutung angaben (24 Kinder), so konnte bei 7 Kindern (29,2%) eine Gerinnungsstörung mit Blutungsneigung diagnostiziert werden gegenüber 25,7% (70/272) bei Kindern von unauffälligen Müttern.
4.6.3 Familienanamnese allgemein

Zusammenfassend lässt sich feststellen, dass bei 169 Kindern (57,1%) die Familienanamnese vollkommen unauffällig war, das heißt es waren weder Gerinnungsstörungen noch Blutungsneigungen in der Verwandtschaft bekannt. Von diesen Kindern litten 22,5% (38/169) selbst unter einer Gerinnungsstörung mit Blutungsneigung, bei den Kindern mit auffälliger Familienanamnese lag der Anteil bei 30,7% (39/127) (siehe Tab. 32). Damit erreichte die Familienanamnese allgemein einen positiv prädiktiven Wert von 30,7% bei einer Sensitivität von 50,7% und einer Spezifität von 59,8%. Der negativ prädiktive Wert von 77,5% bedeutet, dass weniger als ein Viertel der Kinder mit negativer Familienanamnese doch an einer Blutungsneigung litten. Insgesamt ergab jedoch auch diese Auswertung mittels Chi-Quadrat-Test kein signifikantes Ergebnis, die Zufallswahrscheinlichkeit lag bei 11,1%.

Tab. 32: Vierfeldertafel Familienanamnese und Gerinnungsstörung

<table>
<thead>
<tr>
<th>Familienanamnese</th>
<th>Gerinnungsstörung ja</th>
<th>Gerinnungsstörung nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>auffällig (Row Percent)</td>
<td>39 (30,7%)</td>
<td>88 (69,3%)</td>
</tr>
<tr>
<td>unauffällig (Row Percent)</td>
<td>38 (22,5%)</td>
<td>131 (77,5%)</td>
</tr>
</tbody>
</table>

44 Kinder wurden dezidiert aufgrund einer auffälligen Familienanamnese vorgestellt. Bei 27 (61,4%) von ihnen war zudem die eigene Krankengeschichte auffällig. Der Anteil an relevanten Gerinnungsstörungen lag in dieser Gruppe bei 31,8% (14/44).

4.7 Anamnese allgemein

Im klinischen Alltag wird selten zwischen Eigen- und Familienanamnese unterschieden, sondern es wird allgemein bewertet, ob die Anamnese eines Kindes auffällig ist. In unserer Studie zeigten 189 Kinder (63,9%) entweder in der eigenen Krankengeschichte oder in der Verwandtschaft Hinweise auf eine Gerinnungsstörung mit Blutungsneigung. Bei 48 von ihnen ließ sich eine Koagulopathie diagnostizieren (25,4%) (siehe Tab. 33, S. 77). Damit erreichte die Anamnese eine Sensitivität von
62,3% bei einem positiv prädiktiven Wert von 25,4%. War die Anamnese eines Kindes unauffällig, so lag zu 72,9% auch keine Gerinnungsstörung vor. Die Spezifität hatte einen Wert von 35,6%. Die Ergebnisse erwiesen sich jedoch als nicht signifikant mit einem p-Wert von 0,75.

<table>
<thead>
<tr>
<th>Tab. 33: Vierfeldertafel Anamnese allgemein und Gerinnungsstörung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerinnungsstörung ja</td>
</tr>
<tr>
<td>Anamnese insgesamt auffällig</td>
</tr>
<tr>
<td>(Row Percent)</td>
</tr>
<tr>
<td>Anamnese insgesamt unauffällig</td>
</tr>
<tr>
<td>(Row Percent)</td>
</tr>
</tbody>
</table>

4.8 Altersabhängigkeit der Ergebnisse

Unter anderem bei der Erhebung der Eigenanamnese ist auch das Alter der Patienten von Bedeutung, da Kinder im Laufe ihres Lebens unterschiedlichen Herausforderungen an das Gerinnungssystem ausgesetzt sind. So war in der Altersgruppe bis 24 Monate bei 40,5% der Kinder die Eigenanamnese auffällig (15/37), im Alter von 3 bis 7 Jahren dagegen bei 26,7% (79/184) und bei Kindern ab 8 Jahren in 58,7% (44/75).

Folgende Diagramme (Abbildung 19 und 20, S. 78) zeigen den Zusammenhang von Eigenanamnese und der Diagnose einer Blutungsneigung in den verschiedenen Altersgruppen:
Es fällt auf, dass sich der Anteil der Gerinnungsstörungen meist um die 20 – 25 % bewegte, mit Ausnahme der Gruppe der Kinder zwischen 1 und 2 Jahren und unauffälliger Eigenanamnese (n=22), in der er über 50% lag. Genau bei diesen Kindern ist eine Gerinnungsstörung aber aufgrund der eingeschränkten körperlichen Aktivität klinisch oft noch nicht auffällig und die Eigenanamnese somit nicht aussagekräftig.
4.9 Körperliche Untersuchung

Neben der Anamneseerhebung und der Blutentnahme wurde jedes Kind bei der Vorstellung in unserer Ambulanz körperlich untersucht. Dabei wurden bei 107 der 296 Patienten, also bei 36,1%, Hämatome oder Petechien festgestellt. Von diesen Kindern hatten 30 eine definierte Gerinnungsstörung mit Blutungsneigung (28,0%). Bei Kindern ohne diese Befunde wurde in 25,0% der Fälle eine Koagulopathie diagnostiziert (47/188) (siehe Tabelle 34).

<table>
<thead>
<tr>
<th></th>
<th>Gerinnungsstörung ja</th>
<th>Gerinnungsstörung nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Körperliche Untersuchung auffällig</td>
<td>30</td>
<td>78</td>
</tr>
<tr>
<td>(Row Percent)</td>
<td>(27,8%)</td>
<td>(72,2%)</td>
</tr>
<tr>
<td>Körperliche Untersuchung unauffällig</td>
<td>47</td>
<td>141</td>
</tr>
<tr>
<td>(Row Percent)</td>
<td>(25,0%)</td>
<td>(75,0%)</td>
</tr>
</tbody>
</table>

Die Beurteilung der Kinder nach klinischen Auffälligkeiten zum Zeitpunkt der Erstvorstellung hatte eine geringe Sensitivität von 39,0% und einen niedrigen positiv prädiktiven Wert von 27,8%. Hämatome oder Petechien wiesen in unserer Studie nicht mit Sicherheit auf das Vorliegen einer Gerinnungsstörung hin. Fehlten klinische Auffälligkeiten, so hatte das Kind zu 75,0% keine Blutungsneigung, die Spezifität lag bei 64,4%. Die Ergebnisse erreichten jedoch keine statistische Signifikanz (p=0,6) (siehe auch Abb. 21, S. 80).
Da Kinder verschiedener Altersgruppen aufgrund ihrer körperlichen Aktivitäten unterschiedlichen „hämostaseologischen Herausforderungen“ ausgesetzt sind, sind auch die Anteile der Kinder mit Hämatomen unterschiedlich. Aus der Gruppe der bis Zweijährigen wiesen 24,3% Hämatome bei der körperlichen Untersuchung auf, bei den 3- bis 7-Jährigen („Tobealter“) lag der Anteil schon bei 38%. Von den Kindern über 8 Jahre, die im Allgemeinen wieder etwas ruhiger sind, zeigten 34,7% Hämatome.

4.10 Diagnose von-Willebrand-Syndrom

4.10.1 Vorstellungsgründe bei Diagnose von-Willebrand-Syndrom

Bei 33 Kindern stellten wir die Diagnose eines von-Willebrand-Syndroms. Die Mehrzahl dieser Patienten war durch eine verlängerte aPTT-Messzeit aufgefallen (57,6%), zwölf der Blutentnahmen waren aufgrund einer geplanten Operation durchgeführt worden. Mit einer auffälligen Eigenanamnese kamen 6 Kinder (18,2%), mit auffälliger Familienanamnese 7 (21,2%) Kinder.

32 Kinder erhielten die Diagnose „von-Willebrand-Syndrom Grauzone“, da bei ihnen ein von-Willebrand-Syndrom nicht mit letzter Sicherheit ausgeschlossen werden konnte. Diese Patienten fielen ebenfalls vor allem durch eine verlängerte aPTT-Messzeit auf. Bei 20 Kindern war dieser Wert der Vorstellungsgrund (62,5%) und bei
18 von ihnen fand die Blutentnahme präoperativ statt. Eigen- und Familienanamnese waren bei jeweils 15,7% (5/32) der Grund der Vorstellung (siehe Tab. 35).

Tab. 35: Vorstellungsgründe bei Diagnose vWS oder Grauzone

<table>
<thead>
<tr>
<th>Typ des vWS</th>
<th>aPTT-Wert verlängert</th>
<th>Eigenanamnese auffällig</th>
<th>Familienanamnese auffällig</th>
<th>Quick oder sonstige Werte auffällig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ 1</td>
<td>18</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Typ 2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Grauzone</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>insgesamt</td>
<td>39</td>
<td>11</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(60,0%)</td>
<td>(16,9%)</td>
<td>(18,5%)</td>
<td>(4,6%)</td>
</tr>
</tbody>
</table>

4.10.2 Symptome bei Diagnose von-Willebrand-Syndrom
Besonders interessant ist die Eigenanamnese bei Patienten mit von-Willebrand-Syndrom, da man vermehrt Auffälligkeiten wie Schleimhautblutungen oder ähnliches erwartet.

Im folgenden Diagramm (Abbildung 22, S. 82) sind die einzelnen anamnestisch erfassten Auffälligkeiten der Kinder nach Diagnosen aufgeschlüsselt. Es zeigt sich, dass lediglich im Bereich „Hämaturie“ die Häufigkeit der Diagnose vWS der des Lupusinhibitors nahe kommt, wobei hier die niedrige Prävalenz von insgesamt 7 Kindern mit Hämaturie beachtet werden muss. Anamnestische perioperative Blutungen waren zu 42,9% bei Kindern mit Lupusinhibitor und nur zu 17,9% bei vWS-Patienten aufgetreten, wobei auch hier die relativ geringen Fallzahlen (4 Blutungen bei insgesamt 13 Operationen bei vWS-Patienten) die Aussagekraft einschränken.

Verlängerte Periodenblutungen, wie sie als Symptom bei Patientinnen mit vWS immer wieder angegeben werden, wurden bei uns nicht genannt, es machten jedoch auch nur zwei der Mädchen mit vWS Angaben zu diesem Anamnesepunkt.
Diagnosen bei verschiedenen klinischen Symptomen

Abb. 22: Diagnosen bei verschiedenen klinischen Symptomen
4.10.3 Bedeutung der Plättchenfunktionsanalyse
Zur Diagnose eines von-Willebrand-Syndroms wurden unter anderem die Plättchenfunktionstests PFA-Epinephrin und PFA-ADP eingesetzt (siehe auch 1.5 „Hämostaseologische Labordiagnostik“, S. 27).
Die folgende Tabelle 36 stellt die daraus berechneten Werte für Sensitivität, Spezifität, positiv und negativ prädictiven Wert im Hinblick auf ein vWS/vWS-Grauzone dar.

<table>
<thead>
<tr>
<th></th>
<th>PFA-100 Epi</th>
<th>PFA-100-ADP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivität</td>
<td>34,0</td>
<td>8,0</td>
</tr>
<tr>
<td>Positiv prädiktiver Wert</td>
<td>43,9</td>
<td>66,7</td>
</tr>
<tr>
<td>Spezifität</td>
<td>87,0</td>
<td>98,9</td>
</tr>
<tr>
<td>Negativ prädiktiver Wert</td>
<td>81,5</td>
<td>79,5</td>
</tr>
</tbody>
</table>

4.11 Diagnosen
Bei insgesamt 77 der 296 Kinder der Studie (26,0%) wurde eine Gerinnungsstörung mit Blutungsneigung diagnostiziert (siehe Abb. 23, S. 84).
Dabei war das von-Willebrand-Syndrom mit 11,1% aller Kinder (33/296) und einem Anteil von 42,9% an allen pathologischen Diagnosen am häufigsten. 23 Kinder hatten ein vWS Typ 1, fünf eine vWS-Variante mit niedrigem thrombozytären von-Willebrand-Faktor und fünf ein vWS Typ 2. Insgesamt 32 Kinder erhielten die Diagnose vWS Grauzone.
Die übrigen diagnostizierten Gerinnungsstörungen waren Faktor VII-Mangel (7/296, 2,4%), Faktor XIII-Mangel (2/296, 0,7%), Faktor XI-Mangel (1/296, 0,3%) sowie je ein
Kind mit qualitativem Thrombozytendefekt und idiopathisch thrombozytopenischer Purpura.

Aufschlüsselung Gerinnungsstörungen (n=77)

![Diagramm](image)

Abb. 23: Aufschlüsselung Gerinnungsstörungen

Bei dem Großteil der vorgestellten Kinder (218/296, 73,6%) konnten wir nach der bei uns durchgeführten ausführlichen Diagnostik keine dezidierte Gerinnungsstörung mit Blutsneigung feststellen. 53,0% aller Kinder wiesen einen Lupusinhibitor auf, 19,3% der Kinder erhielten die Diagnose „keine Störung der plasmatischen Gerinnung“ (siehe Abb. 24, S. 85).

Auch die Kinder ohne Blutsneigung stellten sich zum Großteil (141/218, 64,7%) aufgrund einer verlängerten aPTT-Messzeit vor. Bei den Kindern mit der Diagnose Lupusinhibitor war die abnorme aPTT-Messzeit sogar bei 72,0% (113/157) der Vorstellungsgrund.
Diagnosen ohne Blutungsneigung (n=218)

- Faktor XII-Mangel (n=4) 1,8%
- keine Störung (n=57) 26,1%
- Lupusinhibitor (n=157) 72,1%

Abb. 24: Diagnosen ohne Blutungsneigung

4.12 Vorhersagekraft verschiedener Parameter

Bei Auswertung der bisher untersuchten Parameter (externer aPTT-Wert, aPTT-Wert in unserem Labor, Eigenanamnese, Familienanamnese, körperliche Auffälligkeiten) mit dem Chi-Quadrat-Test ergab sich für keinen Parameter ein signifikantes Ergebnis im Hinblick auf die Vorhersagekraft einer Gerinnungsstörung mit Blutungsneigung (siehe Tab. 37, S. 86).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sensitivität</th>
<th>positiv prädiktiver Wert</th>
<th>Spezifität</th>
<th>negativ prädiktiver Wert</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>aPTT-Wert extern</td>
<td>73,4</td>
<td>23,7</td>
<td>16,6</td>
<td>63,8</td>
<td>0,08</td>
</tr>
<tr>
<td>aPTT-Wert bei uns</td>
<td>40,8</td>
<td>26,1</td>
<td>59,5</td>
<td>74,1</td>
<td>0,97</td>
</tr>
<tr>
<td>Eigen-anamnese</td>
<td>40,3</td>
<td>22,5</td>
<td>51,1</td>
<td>70,9</td>
<td>0,19</td>
</tr>
<tr>
<td>Familien-anamnese</td>
<td>50,7</td>
<td>30,7</td>
<td>59,8</td>
<td>77,5</td>
<td>0,11</td>
</tr>
<tr>
<td>Anamnese allgemein</td>
<td>62,3</td>
<td>25,4</td>
<td>35,6</td>
<td>72,9</td>
<td>0,75</td>
</tr>
<tr>
<td>Körperliche Auffälligkeiten</td>
<td>39,0</td>
<td>27,8</td>
<td>64,4</td>
<td>75</td>
<td>0,60</td>
</tr>
</tbody>
</table>

In den meisten Fällen werden die verschiedenen Parameter nicht einzeln erhoben. Es stellte sich somit die Frage, welche Kombination von Untersuchungen am ehesten eine Gerinnungsstörung mit Blutungsneigung vorhersagen kann.

Setzte man eine unauffällige Anamnese voraus, so zeigten zusätzliche laborchemische Gerinnungswerte eine Sensitivität von 48,3% mit einem positiv prädiktiven Wert von 28,0% (Spezifität 53,2%, negativ prädiktiver Wert 73,2%). Die Blutergebnisse lieferten also keinen eindeutigen Hinweis auf eine Blutungsneigung, wenn die Krankengeschichte eines Kindes und dessen Familie bereits unauffällig war.

Ergaben sich in der Anamnese Auffälligkeiten, so betrug die Sensitivität der Globalwerte Quick- und aPTT-Wert ebenfalls nur 44,7%, der positiv prädiktive Wert lag hier bei 28,4% (Spezifität 62,1%, negativ prädiktiver Wert 77,0%). Die Auswertungen der jeweiligen Vierfeldertafeln nach dem Chi-Quadrat-Test erreichten jedoch kein Signifikanzniveau (p=0,89 bei negativer Anamnese, p=0,41 bei positiver Anamnese) (siehe Tab. 38, S. 87).
Neben der Anamnese gehörte die körperliche Untersuchung aller Patienten bei Erstvorstellung zum Routinevorgehen. Bei 107 Patienten (36,1%) zeigten sich dabei Hämatome oder Petechien. Die zusätzliche Bestimmung der Globalparameter der Gerinnung erreichte bei diesen Patienten eine Sensitivität von 43,3% bei einem positiv prädiktiven Wert von 27,7% (Spezifität 55,8%, negativ prädiktiver Wert 71,7%). Nicht einmal ein Drittel der Patienten mit auffälliger körperlicher Untersuchung und pathologischem Quick- oder aPTT-Wert litten demnach an einer Gerinnungsstörung, die zusätzliche Laboruntersuchung war nicht zielführend. Das Ergebnis war jedoch statistisch nicht signifikant mit einem p-Wert von 0,94 bei auffälliger Klinik.

Betrachtete man schließlich die Kombination von Anamnese und körperlichen Symptomen, so hatten (unter Voraussetzung einer insgesamt auffälligen Anamnese) Hämatome und/oder Petechien beim Kind eine Sensitivität von 41,7% für den Nachweis einer Blutungsneigung bei einem positiv prädiktiven Wert von 25,0%. Spezifität und negativ prädiktiver Wert lagen bei 57,4% bzw. 74,3%.

Ergaben sich aus der Krankengeschichte keine Auffälligkeiten, so hatte das Kind zu 75,9% keine Gerinnungsstörung, wenn in der Untersuchung ebenfalls keine Pathologien auffielen. Sensitivität und positiv prädiktiver Wert lagen in dieser Konstellation bei 52,6% bzw. 35,7%, die Spezifität bei 76,9%.

Wiederum jedoch erreichten auch diese Auswertungen mittels Chi-Quadrat-Test keine Signifikanz, die p-Werte lagen bei 0,92 (auffällige Anamnese) bzw. 0,23 (unauffällige Anamnese).

Tab. 38: Vergleich der Vorhersagekraft von Gerinnungsstörungen durch verschiedene Kombinationen von Parametern

<table>
<thead>
<tr>
<th></th>
<th>Sensitivität</th>
<th>Positiv prädiktiver Wert</th>
<th>Spezifität</th>
<th>Negativ prädiktiver Wert</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auffällige Anamnese + Labor</td>
<td>44,7</td>
<td>28,4</td>
<td>62,1</td>
<td>77,0</td>
<td>0,41</td>
</tr>
<tr>
<td>Auffällige KU + Labor</td>
<td>43,4</td>
<td>27,7</td>
<td>55,8</td>
<td>71,7</td>
<td>0,94</td>
</tr>
<tr>
<td>Auffällige Anamnese + KU</td>
<td>41,7</td>
<td>25,0</td>
<td>57,4</td>
<td>74,3</td>
<td>0,92</td>
</tr>
</tbody>
</table>
5. Diskussion

Die in dieser Studie gewonnenen und ausgewerteten Daten erlauben verschiedene Aussagen. Im Folgenden sollen die Ergebnisse im Hinblick auf ihre Vergleichbarkeit mit anderen Studien und Veröffentlichungen sowie die daraus zu ziehenden Schlüsse dargestellt werden.

Augenmerk auf die aPTT

Vor allem die aPTT-Messzeit erweist sich bei diesen Untersuchungen immer wieder als auffällig. Eine verlängerte aPTT-Messzeit war bei 61,5% unserer Patienten der Vorstellungsgrund, ein erniedrigter Quick-Wert nur bei 7,8%. Eine vergleichbare Veröffentlichung aus dem Jahr 2005 nennt bei 72% der Vorstellungsgründe eine aPTT-Verlängerung versus 17% mit Quick-Erniedrigung (Acosta et al. 2005).

Zwar gab knapp die Hälfte der Eltern an, dass die auswärts durchgeführten Blutuntersuchungen mehrfach kontrolliert wurden, bei erneuter Abnahme in unserem Labor erwiesen sich dennoch 96 von 198 vorher abnormen aPTT-Werten als normal (48,5%). Ähnliches fanden Klinge et al. in einer Studie an 257 Kindern, welche mit verlängertem aPTT-Wert zur Gerinnungsdiagnostik überwiesen worden waren. Bei 39,3% lag der aPTT-Wert nach erneuter Abnahme im Normbereich (Klinge et al. 2004). Für dieses Phänomen gibt es mehrere Erklärungen.

Altersentsprechende Normwerte und Einfluss der Grenzwerte
In dieser Studie kam ein aPTT-Grenzwert von 40 Sekunden zur Anwendung, was den Herstellerangaben entspricht und nach den langjährigen Erfahrungen unseres Labors für Kinder nach dem 6. Lebensmonat adäquat ist.
Welche Auswirkungen die Festlegung des oberen Grenzwerts der aPTT-Messzeit haben kann, zeigte sich in der Studie von Klinge et al. 2004. Die zwei teilnehmenden Studienzentren arbeiteten mit verschiedenen Normwerten (40 sec versus 45 sec) und wiesen somit deutlich unterschiedliche Anteile an pathologischen aPTT-Messzeiten auf (72% versus 36%). Der Anteil an Gerinnungsstörungen mit Blutungsneigung wie dem von Willebrand-Syndrom war jedoch interessanterweise im Kollektiv mit weniger aPTT-Verlängerungen (Normwert aPTT bis 45 sec) doppelt so hoch wie bei einem Grenzwert von 40 sec (13,6% versus 6,8%).

Von den 245 Kindern, welche sich bei uns mit auswärtigen Laboruntersuchungen vorstellten, war bei 20 Patienten (10,1%) der aPTT-Wert durch das externe Labor bereits unter der bei uns geltenden Obergrenze von 40 Sekunden als verlängert eingestuft worden. Von diesen Kindern hatten nach der Diagnostik in unserem Haus drei Viertel keine Gerinnungsstörung mit Blutungsneigung. Die restlichen 5 Patienten litten jedoch alle unter einem von-Willebrand-Syndrom oder erhielten die Diagnose „vWS-Grauzone“.

Bevor man also einen grenzwertig normalen oder auch einen nur leicht erhöhten aPTT-Befund als vernachlässigbar einstuft, sollte man trotz allem bei Unklarheiten oder anamnestischen Verdachtsmomenten die aPTT-beeinflussenden Einzelfaktoren bestimmen, um keine Gerinnungsstörung mit Blutungsneigung zu übersehen.

Ausmaß der aPTT-Verlängerung kein Kriterium

Zusammenhang zwischen dem absoluten aPTT-Wert und der Wahrscheinlichkeit einer Gerinnungsstörung feststellen. Auch eine perioperative Blutung hing in zwei weiteren Veröffentlichungen nicht vom Ausmaß der aPTT-Verlängerung ab (Burk et al. 1992, Kitchens 2005).

Sensitivität der Reagenzien für Faktorenmängel

Einige Autoren betonen, dass verschiedene aPTT-Reagenzien auf Faktorenmängel unterschiedlich empfindlich reagieren und teilweise sogar erst bei einer Faktorenaktivität von unter 30% eine aPTT-Verlängerung zeigen (Chee und Greaves 2003, Cobas 2001).

In dieser Studie lagen rund 19% der Faktor VIII-Werte trotz normaler aPTT-Messzeit unter 60% des normalen Faktorenlevels. Der niedrigste Faktor VIII-Wert lag bei 23%, wobei dieser Patient bei zwei Vorstellungen bei uns keinen Hinweis auf eine Blutungsneigung zeigte. Dagegen erhielt ein Patient mit normaler aPTT und Faktor VIII von 27% aufgrund von anamnestischen Auffälligkeiten die Diagnose von-Willebrand-Syndrom Grauzone.

Zusammen genommen erwiesen sich bei fast einem Viertel der Patienten mit normaler aPTT-Messzeit einer oder mehrere der Faktoren VIII, IX oder XI als erniedrigt. Dabei lag der Faktor IX minimal bei 26% und der Faktor XI bei minimal 39%, was in der Regel nicht mit einer Blutungsneigung einhergeht.

Dabei darf dem häufigen Faktor XII-Mangel in diesem Zusammenhang keine Bedeutung zugemessen werden. Mehrere Autoren stellen in ihren Artikeln klar, dass

Präanalytische Fehler

Tab. 39: Präanalytische Fehler

<table>
<thead>
<tr>
<th>Fehler</th>
<th>Folge</th>
</tr>
</thead>
<tbody>
<tr>
<td>zu wenig Blut im Röhrchen</td>
<td>zu viel Antikoagulans im Verhältnis zum Serum</td>
</tr>
<tr>
<td>Hämatokrit >55% beim Kind</td>
<td></td>
</tr>
<tr>
<td>Schaumiges Blut durch starkes Schütteln</td>
<td>Gerinnungsaktivierung im Schaum</td>
</tr>
<tr>
<td>kleine Kanüle</td>
<td>Gerinnungsaktivierung durch zähes Tropfen</td>
</tr>
<tr>
<td>langes Stauen, keine sofortige Venenpunktion</td>
<td>Gerinnungsaktivierung</td>
</tr>
<tr>
<td>Abnahme aus liegendem Zugang</td>
<td>Verfälschung durch iv-Flüssigkeiten</td>
</tr>
<tr>
<td>Abnahme aus Hämatomen o.ä., lange Wartezeit bis Verarbeitung</td>
<td>Verfälschung der Werte</td>
</tr>
<tr>
<td>Lagerung von EDTA-Blut im Kühlschrank</td>
<td>falsche Werte für Thrombozyten</td>
</tr>
</tbody>
</table>

Laut Bergmann (2003) sollte nach einer Stauung von maximal 60 Sekunden die Venenpunktion erfolgen, erst das EDTA-, dann das Citratröhrchen gefüllt werden, welches sofort vorsichtig geschwenkt werden muss. Eine Verarbeitung innerhalb von zwei Stunden verhindert weitgehend eine Verfälschung der Werte. Ist das nicht gewährleistet, muss das Plasma bis zur Messung tiefgefahren werden. Die Blutentnahmen für diese Studie wurden durch die Ärzte der Gerinnungs- oder Allgemeinambulanz des Dr. von Haunerschen Kinderspitals München durchgeführt,
welche über die Bedeutung der Präanalytik aufgeklärt und geschult waren. Das hauseigene Labor garantierte eine zeitnahe Bearbeitung der Blutproben. Dadurch konnte ein Großteil der präanalytischen Fehlerquellen von vornherein vermieden werden, was sicher zu einem Teil der aPTT-Normalisierungen beigetragen hat.

Rezidivierende Infekte und Lupusinhibitoren

Ein weiterer Grund für den hohen Anteil an (wieder) normalen aPTT-Werten unserer Patienten könnte der Zeitpunkt der Blutentnahme nach Infekten oder generell die Infektneigung des Patientenkollektivs sein.

Insofern liegt die Annahme nahe, dass unsere Patienten nicht dem Durchschnitt entsprachen, sondern häufiger unter Infekten der oberen Luftwege litten als Kinder im Allgemeinen. Insgesamt gaben 150 Eltern an, dass ihr Kind im Monat vor der Vorstellung in unserer Gerinnungsambulanz einen Infekt gehabt habe. Das entsprach einem prozentualen Anteil von 50,7%.

Generell sind Blutwerte im akuten Infekt anders als beim gleichen gesunden Kind, da vor allem die Faktoren des Faktor VIII-Komplexes als Akut-Phase-Proteine eine Rolle spielen (Klinge et al. 2004).

Aber auch nach Infekten können Veränderungen der hämostaseologischen Laborparameter auftreten. Hier kommen die sogenannten Lupusinhibitoren ins Spiel, Antiphospholipid-Antikörper, welche gegen verschiedene Strukturen gerichtet sein können und definitionsgemäß Phospholipid-abhängige Testverfahren beeinflussen (Hanly 2003, siehe auch 1.4.2 „Erworbene plasmatische Gerinnungsstörungen“, S. 22).

Dabei muss eine Unterscheidung zwischen Erwachsenen und Kindern getroffen werden.
Antiphospholipid-Antikörper im Allgemeinen scheinen bei Erwachsenen bei der Entstehung von Thrombosen und rezidivierenden Aborten im Rahmen des Antiphospholipid-Antikörper-Syndroms eine Rolle zu spielen. Welche pathogenetischen Mechanismen dahinter stecken und welche Rolle die Antigenspezifität der Antikörper spielt, ist größtenteils ungeklärt (Bermas und Schur 2010).

Lupusantikörper bei Kindern

Bei Kindern machen sich die Lupusinhibitoren, welche laut mehreren Veröffentlichungen gehäuft mit Infekten der oberen Luftwege einhergehen (u.a. Singh et al. 1988), meist erstmals durch eine verlängerte aPTT-Messzeit bemerkbar. Zwar zeigte sich in unseren Daten kein signifikanter Unterschied in der Häufigkeit pathologischer aPTT-Werte zwischen gesunden und vor Vorstellung kranken Kindern (41,0% versus 41,3%), was jedoch für die geringe Anfälligkeit des bei uns verwendeten aPTT-Reagens für Lupusinhibitoren sprechen dürfte und nicht gegen das Vorhandensein dieser Antikörper an sich.

Bei insgesamt 157 Kindern stellten wir nach der ausführlichen Abklärung die Diagnose eines Lupusinhibitors (53,0%), was damit mit Abstand die häufigste Diagnose war. Vor allem bei Kindern mit aPTT-Verlängerungen ließen sich Lupusantikörper nachweisen: eine extern verlängerte aPTT-Messzeit war zu 60,6%, eine bei uns verlängerte zu 68,9% auf einen solchen Antikörper zurückzuführen.

Blutungen bei Lupusinhibitor

Es muss jedoch beachtet werden, dass von den 71 Kindern, welche mit der Diagnose eines Lupusinhibitors operiert wurden, 16 eine medikamentöse Blutungsprophylaxe mit Desmopressin, Tranexamsäure, vWF/FVIII-haltiges Konzentrat oder Faktor IX-Konzentrat erhalten hatten und dadurch eventuell weitere Blutungen verhindert wurden. Die in unserer Ambulanz ausgesprochene Therapieempfehlung, beim Vorliegen von Lupusantikörpern vor Schleimhauteingriffen 3 bis 5 Tage Tranexamsäure (Cyklokapron®) zu verabreichen und die Kinder postoperativ stationär zu überwachen, trägt der Tatsache Rechnung, dass eine Blutungsneigung bei diesen Kinder nicht endgültig ausgeschlossen werden kann, auch wenn die Diagnose Lupusinhibitor bei der Auswertung der Daten dieser Studie nicht als eindeutig pathologische Diagnose mit Blutungsneigung zählte.
Verlauf der Laborauffälligkeiten bei Lupusantikörpern

In dieser Studie war der genaue Zeitraum zwischen der Blutentnahme beim niedergelassenen (Kinder-)Arzt und der Erstvorstellung in unserem Haus nicht bekannt. Somit könnte der hohe Anteil an normalen aPTT-Werten bei uns zum Teil auch auf den zeitlichen Abstand zur ersten Messung zurückzuführen sein. Von den 120 Kindern mit Diagnose Lupusinhibitor und externen Laboruntersuchungen war bei 39,3% der aPTT-Wert bei Erstvorstellung bereits normal. Die Diagnose ergab sich bei ihnen aus den noch erniedrigten aPTT-beeinflussenden Faktoren oder einem auffälligen Lupusnachweis.

46 der 157 Kinder mit Diagnose Lupusinhibitor kamen zu einer Kontrolluntersuchung nach 13,5 Monaten (Median). Sieben der 20 Kinder (35,0%) mit verlängerter aPTT-Messzeit bei Erstkontakt hatten bei Zweitvorstellung einen normalen Wert, was ein transientes Vorhandensein der Antikörper nahe legt. Die 13 Kinder mit der Diagnose Lupusinhibitor, bei denen sich in der Zweitvorstellung erneut ein auffälliger aPTT-Wert zeigte, waren nach einem vergleichbaren Zeitabstand zur Kontrolle gekommen wie die anderen 7 Kinder (Median 11 Monate versus 14 Monate), offenbar ohne dass der Inhibitor in der Zwischenzeit verschwunden wäre. Bei ihnen könnte durch eine zwischenzeitlich durchgemachte Infektion die Antikörperbildung getriggert worden sein. Auf dieses Erklärungsmodell

Es gibt einzelne Veröffentlichungen, die zur Abgrenzung von einer vorübergehenden Antikörper-Antwort eine Wiederholung der Gerinnungsdiagnostik im Abstand von 6 Wochen (Hanly 2003) bzw. das Warten bis zur Normalisierung der Werte empfehlen, um keine andere hämostaseologische Störung zu übersehen (Burk et al. 1992).

Kinder nach Impfungen

Da durch Impfungen bestimmte Infektionen absichtlich imitiert werden, um das Immunsystem zu stimulieren, kann auch nach einer Impfung ein Lupusinhibitor auftreten und die Labordiagnostik beeinflussen. In unserer Studie gaben 10 Eltern an, dass ihr Kind in den vier Wochen vor der Erstvorstellung geimpft worden war. Es fand sich bei diesen Kindern zu 70,0% eine extern verlängerte aPTT-Messzeit, bei fünf (50,0%) bestätigte sich die Auffälligkeit in unserer Laborkontrolle. Es sollte empfohlen werden, einen zeitlichen Abstand zwischen Impfungen und laborchemischen Gerinnungsuntersuchungen einzuhalten, um den verfälschenden Einfluss von Lupusinhibitoren zu vermeiden. Aufgrund der niedrigen Zahl der kürzlich geimpften Kinder in unserer Studie ist jedoch die Aussagekraft dieser Beobachtungen gering und sollte durch weitere Untersuchungen bestätigt werden.

Einfluss von Medikamenten

Die für die Blutgerinnung relevanten Wirkstoffklassen der Antibiotika, nicht-steroidalen Antirheumatika (NSAR) und Antiepileptika wurden lediglich von 22 bzw.
18 bzw. 8 Patienten verwendet. Der Anteil an pathologischen aPTT-Werten lag ohne Medikamenteneinnahme bei 44,1%, nach Antibiotika bei 36,4% und nach NSAR mit 16,7% nochmals niedriger - entgegen den Erwartungen.

Beim Quick zeigte sich hingegen ein erhöhter Anteil an pathologischen Werten nach Antibiotika- (4,5%) sowie nach NSAR-Einnahme (16,7%) versus 1,9% ohne Medikamente. Keines der 8 Kinder unter antiepileptischer Therapie hatte in unserem Labor einen auffälligen aPTT- oder Quick-Wert.

Koscielny et al. führten in ihrer Studie 2004 ganze 63,6% der pathologischen Laborwerte bei erwachsenen Patienten mit positiver Blutungsanamnese auf die Einnahme von Medikamenten zurück. Vor allem Aspirin und andere NSAR waren dafür verantwortlich. Von diesen Patienten hatten 8,6% bei der Anamneseerhebung vergessen, ihre Medikamente zu erwähnen (Koscielny et al. 2004).

Lupusinhinhibor und aPTT

Was den Vergleich verschiedener aPTT-Werte erschwert, ist die Tatsache, dass gängige aPTT-Reagenzien unterschiedlich sensitiv auf das Vorhandensein von Lupusinhibitoren reagieren. Auch die Empfindlichkeit auf die Inhibitoruntergruppen unterscheiden sich (Adcock und Marlar 1992).

Bei Verwendung eines inhibitorunempfindlichen Reagens würde sich demnach der aPTT-Wert beim gleichen Kind normalisieren, auch wenn vorher ein Antikörper nachgewiesen werden konnte (Eberl et al. 1996). Das bei uns verwendete Reagens Pathrombin SL der Firma Dade Behring gilt als relativ unempfindlich gegenüber Lupusinhibitoren, was ebenfalls zu einer „Normalisierung“ der vorher auffälligen aPTT-Werte geführt haben könnte.

Sensitivere Tests für den Nachweis von Lupusinhibitoren sind unter anderem die Tissue Thromboplastin Inhibition (TTI) oder die Kaolin Clotting Time (Ravelli et al. 1994), welche in dieser Studie nicht zum Einsatz kamen. Sie sollten bei Verdacht auf
ein Antiphospholipid-Antikörper-Syndrom durchgeführt werden, da dann auch die Unterscheidung der Antikörper-Untergruppen von Bedeutung ist (Sié 2000).

Richtige Einschätzung der aPTT-Messzeit

Wie in Tabelle 40 dargestellt, müssen demnach für eine adäquate Einschätzung eines aPTT-Wertes folgende Punkte beachtet werden:

<table>
<thead>
<tr>
<th>Tab. 40: Einflussgrößen auf die aPTT-Messzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>altersentsprechende Normwerte</td>
</tr>
<tr>
<td>adäquater oberer Grenzwert</td>
</tr>
<tr>
<td>Sensitivität des Reagens für Faktorenmängel</td>
</tr>
<tr>
<td>Bedeutung verschiedener Faktoren(-mängel) für die Gerinnung (z.B. Faktor XII)</td>
</tr>
<tr>
<td>präanalytische Fehler</td>
</tr>
<tr>
<td>Vorhandensein von Lupusinhibitoren (nach Infekten, Impfungen o.ä.)</td>
</tr>
<tr>
<td>Einnahme von Medikamenten</td>
</tr>
<tr>
<td>Sensitivität des Reagens für Lupusinhibitoren</td>
</tr>
</tbody>
</table>

Einflussgrößen auf den Quick-Wert

Zu den „Globalwerten“ der Gerinnung zählt neben dem aPTT- auch der Quick-Wert. Dieser Wert liegt aber im Gegensatz zur aPTT-Messzeit bei Kindern nur relativ selten außerhalb des Normbereichs. So stellten sich in dieser Studie lediglich 23 der 296 Kinder (7,8%) aufgrund eines erniedrigten Quick-Wertes vor, bei insgesamt 31 Kindern war der externe Wert auffällig (12,7%). Die Abnahme in unserem Labor ergab bei 12 Kindern Abweichungen (4,1%).

Auch präanalytische Fehler können das Ergebnis beeinflussen, was mit ein Grund dafür sein dürfte, dass sich 77,4% der zuvor auffälligen Quick-Werte bei der Abnahme in unserem Labor als normal herausstellten.
Einzelne Gerinnungsfaktoren und Quick-Wert

Eine genauere Analyse unseres Patientenkollektivs ergab, dass trotz normaler Quick-Werte die entsprechenden Einzelfaktoren zum Teil erniedrigt waren, wenn auch zu einem deutlich geringeren Prozentsatz als bei dem aPTT-Wert und den aPTT-beeinflussenden Faktoren.

Zusätzliche Faktoren der Gruppe II, V, VII und X wurden bei insgesamt 37 Patienten mit normalem Quick-Wert bestimmt. 18,9% wiesen dabei mindestens eine Erniedrigung auf. Die Abweichungen lagen zum Großteil nur knapp unter dem Normbereich, bei einem Patienten zeigte sich allerdings ein deutlicher Faktor VII-Mangel mit einer Aktivität von nur 34% trotz normalem Quick-Wert von 84%. Diese Auffälligkeit bestätigte sich auch bei zwei Nachuntersuchungen, wobei der Quick dann auch mit 68% bzw. 69% grenzwertig erniedrigt war. Wäre der Wert jedoch nur einmal bestimmt worden und hätte man auf die zusätzliche Untersuchung der Einzelfaktoren verzichtet, wäre der Faktor VII-Mangel nicht aufgefallen.

Auch bei 22 Kindern mit extern oder bei uns erniedrigtem Quick-Wert wurden die Quick-beeinflussenden Gerinnungsfaktoren II, V, VII und X bestimmt. Dabei ließ sich bei 68,2% mindestens ein erniedrigter Faktor feststellen. Laut Cobas (2001) ist der Quick-Wert erst erniedrigt, wenn die Aktivität eines der Faktoren V, VII oder X unter 50% bzw. des Faktors II unter 30% liegt. Wir fanden jedoch in unserem Kollektiv 3 Kinder mit erniedrigtem Quick-Wert und lediglich minimaler Verringerung der Faktoren V bzw. VII (zwischen 60% und 69%) und normalen restlichen Werten. Somit scheint diese Aussage nicht uneingeschränkt zu gelten.

Insgesamt erhielten 33,3% der Patienten mit bei uns erniedrigtem Quick-Wert die Diagnose einer Gerinnungsstörung. Diese 4 Kinder litten unter einem Faktor VII-
Mangel, welcher in allen Fällen durch einen präoperativ erniedrigten Quick-Wert aufgefallen war.

Stellenwert eines präoperativen Gerinnungslabors

Routinelabor nicht sinnvoll

Scheckenbach et al. (2008) fanden in einer retrospektiven Studie mit 688 pädiatrischen und erwachsenen Patienten präoperativ bei lediglich 0,9% eine zuvor nicht bekannte, klinisch relevante Gerinnungsstörung. Bei keinem dieser Patienten trat bei anschließender Operation eine perioperative Blutung auf.

Der Anteil an relevanten Gerinnungsstörungen lag in unserer Studie mit 26,0% deutlich höher. Es handelte sich jedoch bei unseren Patienten um ein vorselektiertes Kollektiv, da nur Kinder mit laborchemischen oder anamnestischen

Der aPTT-Wert allein hatte in unserer Studie in Bezug auf die Diagnose einer Blutungsneigung einen niedrigen positiv prädiktiven Wert von 26,1% sowie eine geringe Sensitivität von 40,8%.

Dempfle führte das Argument an, dass sich viele Gerinnungsstörungen wie z.B. eine disseminierte intravasale Gerinnung oder Verlustkoagulopathie auch erst intraoperativ entwickeln können und somit durch präoperative Tests nicht erfasst werden (Dempfle 2005). Kitchens stellte zudem klar, dass der aPTT-Wert nie als Screeninginstrument für mögliche Gerinnungsstörungen gedacht war, sondern vor allem eine Heparintherapie überwachen sollte. Die an die aPTT-Messzeit gestellte Forderung, Patienten mit Blutungsneigung herauszufiltern, kann sie demnach nicht erfüllen (Kitchens 2005).

Gerinnungslabor und perioperative Blutungen

Neben der mangelnden Fähigkeit, generell Gerinnungsstörungen zu identifizieren, lassen sich auch Blutungen während oder nach einer Operation durch die Bestimmung der globalen Gerinnungsparameter nicht vorhersagen.

Von den 5 Kindern, welche in unserer Studie eine intra- oder postoperative Blutung erlitten, hatten drei einen verlängerten aPTT-Wert, jedoch keiner die Diagnose einer relevanten hämorrhagischen Diathese. In einer Studie von Zwack und Derkay (1997) zeigten 76,3% der Kinder mit einer perioperativen Blutung normale Globalwerte und lediglich ein Patient (2,6%) wies eine minimal verlängerte aPTT-Messzeit auf. Diese
Erkenntnisse stützen die Vermutung, dass andere Faktoren als schwere Gerinnungsstörungen eine größere Rolle für Nachblutungen spielen (Derkay 2000). Der aPTT-Wert erreichte nach unseren Berechnungen in Bezug auf eine perioperative Blutung eine Sensitivität von 60,0% bei einem sehr geringen positiv prädiktiven Wert von 2,5%. Zwar ist die Aussagekraft aufgrund der niedrigen Fallzahl von 5 perioperativen Blutungen in unserer Studie eingeschränkt, ähnliche Werte errechneten jedoch auch Asaf et al. (2001) bei einer Studie an 416 Kindern vor AT/TE. Die Sensitivität einer verlängerten präoperativen aPTT-Messzeit für eine intraoperative Blutung betrug bei ihnen 26,3%, der positiv prädiktive Wert lediglich 8,1%. Für eine postoperative Blutung lagen die Zahlen bei 13,3% bzw. 3,2%. Howells et al. (1997) stellten bei 339 Patienten mit einem präoperativ verlängerten aPTT-Wert ebenfalls keine erhöhte Rate an Nachblutungen fest.

Munro et al. fanden in ihrem Review von 9 Studien kein Argument für das präoperative Routinelabor, da entweder der Zusammenhang zwischen auffälligen Werten und perioperativen Blutungen nicht vorhanden war oder der positiv prädiktive Wert so niedrig ausfiel, dass er klinisch nicht verwertbar war (Munro et al. 1997).

Eine weitere Metaanalyse von Krishna und Lee aus dem Jahr 2001 beurteilte vier prospektive Studien mit insgesamt 3384 Patienten vor AT/TE. 116 Patienten erlitten eine perioperative Blutung (3,4%), davon wiesen jedoch nur 8 (6,9%) abnorme Gerinnungsuntersuchungen auf. Sowohl die Analyse dieser Werte als auch die Auswertung von 8 weiteren, retrospektiven Studien ergab für das präoperative Gerinnungslabor eine schlechte Sensitivität sowie einen niedrigen positiv prädiktiven Wert. Die Autoren sprachen sich aufgrund dessen gegen eine routinemäßige präoperative Bestimmung von Gerinnungsparametern aus (Krishna und Lee 2001).

Argumente für die Durchführung eines Gerinnungslabors

Zudem argumentieren Sandoval et al., dass die Kosten für eine Labordiagnostik im Vergleich zu den Kosten für Anästhesie oder Operateur so gering sind, dass man die
höheren Kosten mit der erreichbaren Risikominderung begründen kann. In der von
ihnen durchgeführten Studie konnte bei 21,3% der Patienten mit präoperativ
verlängertem aPTT-Wert eine zuvor unbekannte Blutungsneigung diagnostiziert
werden (Sandoval et al. 2003).
Immer wichtiger wird der Punkt der medicolegalen Absicherung: Das Versäumnis,
präoperativ Gerinnungstests durchgeführt zu haben, kann im Falle einer
perioperativen Blutung unter Umständen zum Vorwurf der Fahrlässigkeit führen.
Allerdings weisen Eberl et al. (2005) darauf hin, dass das Risiko einer Blutung auch
durch Anamnese, körperliche Untersuchung und eine adäquate perioperative
Betreuung besser minimiert werden kann als durch eine Labordiagnostik.

Stellenwert der Anamnese

Welche Maßnahmen soll also der Operateur ergreifen, um Kinder mit erhöhtem
Blutungsrisiko präoperativ zu identifizieren?

Als effektivstes Screeningmittel gilt vielen Autoren die Eigen- und Familienanamnese
eines Patienten.

Anamnese und perioperative Blutung

In einer Studie von Burk et al. (1992) erreichte die Anamnese, welche bei 129 der
1603 erfassten Kinder erhoben wurde und bei 10,8% auffällig war, eine Spezifität von
86% und einen negativ prädiktiven Wert von 68% in Bezug auf eine perioperative
Blutung, bei jedoch niedriger Sensitivität.

Licameli et al. (2008) erhoben mittels Fragebogen die Anamnese von 7730 Kindern
vor einer geplanten AT/TE und bestimmten dann nur bei auffälliger Anamnese
(25,2% der Kinder) laborchemische Gerinnungsparameter. Von diesen Kindern
hatten zwar nur 141 (7,2%) pathologische Laborergebnisse, diese bluteten jedoch zu
6,4% nach. Die Sensitivität des Fragebogens allein in Bezug auf eine perioperative
Blutung lag bei 18%, die Spezifität relativ hoch bei 93%.

In einer anderen prospektiven Studie an 702 Kindern vor AT/TE war die Anamnese
den laborchemischen Gerinnungsparameter in Bezug auf eine perioperative Blutung
überlegen: Die Anamnese erreichte eine Sensitivität von 40,7%, der positiv prädiktive
Wert lag bei 9,2%, der negativ prädiktive Werte bei 97,6% (Eberl et al. 2005). Die
Autoren folgerten, dass bei einer gut erhebbaren, unauffälligen Anamnese eine Laborkontrolle keine zusätzliche Sicherheit leistet.

Bei Howells et al. (1997) hatte keiner der 339 untersuchten Patienten eine auffällige Eigenanamnese, 2,4% jedoch familiäre Auffälligkeiten. Ein Patient aus dieser Gruppe (12,5%) erlitt eine perioperative Blutung im Vergleich zu 2,5% Nachblutung bei Patienten mit verlängerter aPTT-Messzeit.

Die Anzahl an perioperativen Blutungen lag in unserem Patientenkollektiv mit 5 Kindern (4,2% aller operativen Eingriffe) relativ niedrig, weswegen die Vergleichbarkeit mit anderen Studien eingeschränkt ist. Bei 3 Kindern war die Familienanamnese auffällig, wobei jeweils Verwandte ersten Grades von einer Blutungsneigung betroffen waren, ein Kind hatte selbst gehäuft Nasenbluten. Das entspricht einer Blutungsrate von 5,9% (4/68) bei anamnestisch auffälligen Kindern mit OP versus 2,0% bei Kindern mit unauffälliger Anamnese. Bei keinem der Kinder wurde die Diagnose einer Gerinnungsstörung mit Blutungsneigung gestellt.

Anamnese und Gerinnungsstörung

Bei uns war die Eigenanamnese bei fast der Hälfte der Kinder auffällig (46,7%). Bei 31 dieser Kinder wurde eine Blutungsneigung diagnostiziert (22,5%). Da allerdings auch bei 29,1% der Patienten ohne anamnestische Blutungssymptome eine Gerinnungsstörung vorlag, war die Eigenanamnese in unserer Studie kein signifikanter Prädiktor für eine pathologische Diagnose. Die Sensitivität lag bei 40,3% bei einem positiv prädiktiven Wert von 22,5%. Somit hatte lediglich eines von 5 Kindern mit positiver Eigenanamnese eine Blutungsneigung.

Unabhängig davon erwies sich bei 42,9% der Kinder die Familienanamnese als auffällig, von ihnen litten 30,7% an einer Gerinnungsstörung. Kinder aus „gerinnungsgesunden“ Familien hatten zu 22,5% eine pathologische Diagnose. Trotz fehlender Signifikanz (p=0,11) waren Sensitivität und positiv prädiktiver Wert mit 50,7% bzw. 30,7% etwas besser als bei der Eigenanamnese. Dies könnte daran liegen, dass vor allem bei jungen Patienten die Zeitspanne der Eigenanamnese zu kurz ist, um auffällig zu werden, wohingegen sich eine Blutungsneigung bei Erwachsenen häufig bei Operationen oder Geburten demaskiert.

Koscielny et al. (2004) errechneten in ihrer Studie an 5649 erwachsenen Patienten einen positiv prädiktiven Wert von über 99% im Hinblick auf eine Gerinnungsstörung,

Sandoval et al. (2002) fanden in einer Untersuchung an 178 Kindern mit rezidivierender Epistaxis heraus, dass die auffällige Familienanamnese als signifikanter Prädiktor für eine Blutungsneigung beim Kind zu werten ist. Das Vorhandensein von Blutungssymptomen beim Kind wie gehäuftes Nasenbluten zeigte jedoch keine signifikante Korrelation.

Genaue Erhebung der Anamnese

Um nun aus einer Anamnese ausreichend Informationen über eine mögliche Blutungsneigung des Kindes zu erfahren, ist es wichtig, die Krankengeschichte möglichst umfassend, aber auch nicht zu ausufernd zu erheben. Der in dieser Studie angewendete standardisierte Fragebogen enthielt deshalb vor allem stichpunktartige Fragen in Ja/Nein-Form mit eventuellen Ergänzungen. Der aufnehmende Arzt stellte den Eltern des Kindes die Fragen, hakte bei Auffälligkeiten gezielt nach und notierte die Antworten (siehe auch 2. „Studiendesign“, S. 34).

Im Gegensatz zu schriftlich ausformulierten Fragebögen ergibt sich jedoch hier das Problem der genauen Wortwahl bei der Vorstellung. Ob zum Beispiel bei der Frage nach Problemen beim Zahnwechsel auch andere orale Symptome wie Zahnfleischbluten miterfasst wurden, hing von der Genauigkeit der Anamnese durch

Mögliche Ergänzungen zu unserem Fragebogen sind die Erfassung von eventuell stattgefundenenden Bluttransfusionen als indirekter Indikator für eine verstärkte Blutung (Rapaport 1983), die Frage nach Impfhämatomen oder Blutungen bei Abfall des Nabels sowie eine getrennte Familienanamnese für Mutter und Vater.

Einschränkungen der Aussagekraft von Anamnesen bei jungen Patienten

Die Eigenanamnese bei Kindern verschiedener Altersklassen ist nicht direkt vergleichbar. Die Anzahl der „kritischen“ Situationen für die Blutgerinnung wie z.B. Verletzungen, Stürze oder Operationen nimmt mit dem Alter zu. Der Anteil an Kindern mit Gerinnungsstörungen in unserer Studie schwankte bei den Kindern mit auffälliger Eigenanamnese in den verschiedenen Altersstufen zwischen 20,0% und 22,8%, bei den Kindern mit unauffälliger Anamnese zwischen 3 und 7 Jahren lag der Anteil bei 24,8%, zwischen 8 und 19 Jahren bei 25,8%.

Hierbei fiel die Gruppe der jüngsten Kinder (bis 2 Jahre) mit negativer Eigenanamnese auf, die zu 54,5% an einer Gerinnungsstörung litten. Die Krankengeschichte dieser Kinder wies in vielen Fällen noch keine Operation oder größere Verletzung auf. Aus der unauffälligen Anamnese konnte in diesen Fällen trotzdem nicht auf eine intakte Blutgerinnung geschlossen werden, da das Gerinnungssystem bisher keinen ausreichenden Herausforderungen unterworfen war. Zu beachten ist jedoch hierbei die relativ geringe Fallzahl von 22 Kindern.

Systemische Fehler bei der Anamneseerhebung

Fehler wie eine nicht ausreichende Anamnese durch die „Vergesslichkeit“ des Arztes oder fehlende Ausführlichkeit der abgefragten Inhalte lassen sich auch mithilfe eines vorgefertigten, ausformulierten Fragebogens vermeiden.

Die Auswertung eines durch den Patienten bzw. dessen Eltern ausgefüllten Fragebogens allein ist jedoch nicht ausreichend. Der Arzt muss bei den als auffällig angegebenen Punkten nachfragen, konkretisieren und gewichten. So gaben

Spontanmutationen und erworbene Blutungsneigungen

Epistaxis und Hämatomneigung in der Anamnese
Betrachtet man nun die einzelnen Punkte der Eigenanamnese, so fällt auf, dass rezidivierendes Nasenbluten in unserer Studie mit 69 Nennungen das häufigste Symptom war (23,3% aller Kinder). Bei knapp einem Viertel (24,6%) dieser Kinder konnte eine Blutungsneigung diagnostiziert werden. Sandoval et al. (2002) fanden in ihrer Studie bei einem Drittel der Kinder mit Vorstellungsgrund Epistaxis eine Gerinnungsstörung. In dieser Veröffentlichung hatten abgesehen vom Nasenbluten
nur eine auffällige Familienanamnese und überraschenderweise die aPTT-Messzeit einen guten prädiktiven Wert in Bezug auf eine Gerinnungsstörung.

Auch eine Hämatomneigung kann auf eine Störung der Hämostase hinweisen, wobei die relativ niedrigen Fallzahlen in unserer Studie dies nicht belegen können. In anderen Veröffentlichungen konnte jedoch festgestellt werden, dass die Häufigkeit großer und multifokaler Hämatome bei Kindern mit einer bekannten Blutungsneigung signifikant höher liegt (Nosek-Cenkowska et al. 1991).

Anamnese, körperliche Untersuchung und Diagnose Gerinnungsstörung

Insgesamt eignete sich die Anamnese allein in unserer Studie nur bedingt für die Vorhersage einer Gerinnungsstörung. Lediglich etwas mehr als ein Viertel der Kinder mit auffälliger Anamnese litten tatsächlich unter einer Blutungsneigung (positiv prädiktiver Wert 25,4%). War die Anamnese komplett unauffällig, konnte immerhin bei knapp drei Viertel von einer intakten Hämostase ausgegangen werden (negativ prädiktiver Wert 72,9%).

Auch der Stellenwert einer körperlichen Untersuchung zum Zeitpunkt der Erstvorstellung wurde in unserer Studie untersucht. Zwar lässt sich aus dem Vorliegen von Hämatomen oder Petechien nicht mit Sicherheit auf eine Blutungsneigung schließen (der positiv prädiktive Wert lag bei 27,8%), jedoch kann unter Umständen aus der Art der Auffälligkeiten auf die Ursache der Blutung geschlossen werden. So weisen Petechien im allgemeinen eher auf eine Thrombozytopenie oder Thrombozytenfunktionsstörung hin, ausgedehnte Hämatome oder ein Hämarthros kommen gehäuft bei plasmatischen Gerinnungsstörungen vor.
Zu achten ist auch auf eine Reihe klinischer Auffälligkeiten, welche Hinweise auf eine mögliche Grunderkrankung mit Auswirkung auf das Gerinnungssystem geben können, wie zum Beispiel ein Ikterus bei Leberinsuffizienz (Halimeh et al. 2003).

Kein eindeutiger Beleg für „richtiges“ prä operatives Vorgehen

Trotz der Vielzahl von Veröffentlichungen, die sich mit der Problematik „präoperative Diagnose einer Gerinnungsstörung“ befassen, ergibt sich kein einheitliches Bild. Einige Autoren legen sich auf das eine oder andere Vorgehen fest und belegen dies mit Zahlen aus ihren Studien oder ihrer klinischen Erfahrung.

In Anbetracht der Tatsache, dass weder die Laboruntersuchungen noch die Anamnese oder körperliche Untersuchung in unserer Studie signifikante Ergebnisse und gute Werte für Sensitivität und positiv prädiktiven Wert aufwiesen, ist jedoch fraglich, ob für das eine oder andere Vorgehen plädiert werden kann.

Weitere Risikofaktoren für eine perioperative Blutung

Ganz unabhängig von den Gerinnungsstörungen gibt es eine Reihe weiterer Risikofaktoren für intra- oder postoperative Blutungen.

Zuallererst ist hier die Art der Operation zu nennen. Erfahrungsgemäß kommt es bei bestimmten kleineren Eingriffen häufiger zu Nachblutungen als z.B. bei großen Operationen im Bauchraum (Dempfle 2005). Das Blutungsrisiko der geplanten Operation kann nach Coutre 2012 folgendermaßen abgeschätzt werden (Tab. 41):
Tab. 41: Blutungsrisiko verschiedener operativer Eingriffe (nach Coutre 2012)

Geringes Risiko (z.B. Lymphknotenbiopsie, Hernienchirurgie)
- keine vitalen Organe betroffen
- keine lokale Fibrinolyse
- lokale Hämostase funktioniert
- begrenztes chirurgisches Präparieren notwendig
- Operationssitus gut zugänglich

Mittleres oder hohes Risiko (z.B. Tonsillektomie, orale/nasale Operationen, Laparatomie)
- vitale Organe betroffen
- lokale Fibrinolyse (z.B. Mundraum)
- lokale Hämostase ineffektiv
- OP oder zugrundeliegende Erkrankung haben hämostatische Auswirkungen
- Blutungskomplikationen sind häufig und/oder schränken das Operationsergebnis voraussichtlich ein

Die Tonsillektomie (TE) zählt somit zu den Eingriffen mit mittlerem oder hohem Risiko, was sich auch in der in der Literatur angegebenen Nachblutungshäufigkeiten zwischen 2% und 4% ausdrückt (Krishna und Lee 2001). Die besondere Problematik bei der TE liegt unter anderem in der variablen Gefäßversorgung der Tonsillen sowie postoperativ in der Gefahr des Abstreifens der Wundbeläge beim Schlucken, Niesen oder Husten.

Zwei der in unserer Studie erfassten Blutungen betrafen Kinder mit Adenotomien (4,0% der durchgeführten AT), was aufgrund der allgemein als niedrig angegebenen Blutungshäufigkeit bei dieser Operation auffällig ist. Bei Adenotomien gelten Blutungen als sehr seltene Komplikation in einer Größenordnung von 0,2-0,3% (Crysdale und Russel 1986, Windfuhr et al. 2005). Ein Patient wies dabei einen Lupusinhibitor auf, der andere zeigte normale Laborwerte. Beide Blutungereignisse
(eines intra-, das andere postoperativ) benötigten jedoch keine Nachoperation und wurden lediglich beobachtet.

Zeitpunkt von perioperativen Blutungen

Diagnose von Willebrand-Syndrom

Insgesamt ließ sich bei 77 der 296 (26,0%) Studienteilnehmer eine Gerinnungsstörung mit Blutungsneigung nachweisen, davon bei 33 Kindern ein gesichertes sowie bei 32 Kindern ein wahrscheinliches von-Willebrand-Syndrom („Grauzone“). Das entspricht einem Anteil von 11,1% bzw. 10,8% an allen Kindern. Die Prävalenz des vWS in der Normalbevölkerung wird mit bis zu 1% angegeben. Der deutlich höhere Anteil in unserer Studie lag an der Vorselektion der untersuchten

Die Diagnose eines von-Willebrand-Syndroms stellt Hämostaseologen immer wieder vor Probleme. Schleimhautblutungen oder eine Hämatomneigung treten beim vWS gehäuft auf. Die Zahlen unserer Studie belegten dies nicht eindeutig (Hämatomneigung bei 30,8% der vWS-Patienten versus 23,5% der Kinder mit anderer Diagnose, gehäufte Epistaxis bei 27,3% versus 23,5%). Auf der anderen Seite litten 42,9% der Patienten mit Hämaturie an einem von-Willebrand-Syndrom oder erhielten die Diagnose Grauzone, bei den Kindern mit Blut im Stuhl lag der Anteil bei 30,0%.

Laborchemische Diagnostik des von-Willebrand-Syndroms

Als Screeningparameter ist unter anderem die aPTT-Messzeit im Gespräch. 19 der 33 Kinder mit der Diagnose eines vWS stellten sich aufgrund eines extern verlängerten aPTT-Wertes vor. Bei zwölf dieser Kinder war die Blutentnahme präoperativ durchgeführt worden. Wäre vor der geplanten Operation auf die Labordiagnostik verzichtet worden, wäre möglicherweise die Diagnose des von-Willebrand-Syndroms bei diesen 12 Kindern verschleppt worden.

Jedoch eignet sich die aPTT-Messzeit allein nach Auffassung vieler Autoren nicht als Screeningtest für das vWS (so u.a. Spannagl und Schramm 2001). In verschiedenen Veröffentlichungen hatten Kinder mit nachträglich diagnostiziertem vWS präoperativ unauffällige aPTT-Zeiten (De Diego et al. 1999, Kleinschmidt et al. 2002). Die erneute Abnahme bei Erstvorstellung zeigte auch bei 57,6% unserer vWS-Patienten
einen normalen aPTT-Wert. Dagegen wies der aPTT-Wert in einer Studie von Lippi et al. an 204 Patienten eine Sensitivität von 100% im Hinblick auf ein vWS auf, allerdings erst nach Ausschluss anderer Gründe einer aPTT-Verlängerung wie Lupusinhibitoren (Lippi et al. 2007).

Auch wenn die Globalwerte aPTT und Quick in der Studie von Acosta et al. (2005) bei wiederholter Abnahme und normalen Ergebnissen einen negativ prädiktiven Wert von über 95% in Bezug auf eine Gerinnungsstörung zeigten, fand sich letztendlich bei 3,4% der Patienten dennoch ein vWS. Diese Erkrankung scheint sich also einem Screening durch die aPTT-Messzeit zu entziehen.

Wie bereits in der Einleitung dargelegt, kann der vWF-Spiegel deutlich schwanken. Zwar hat auch die Blutgruppe einen Einfluss auf den vWF-Level, jedoch betonen Sadler et al. (2000), dass die Werte zusätzlich durch andere Faktoren wie z.B. Stress so stark beeinflusst werden, dass blutgruppenabhängige Normwerte keinen Sinn machen würden. In unserer Studie wurde die Blutgruppe nicht in die Auswertung miteinbezogen, da ergänzende Diagnosekriterien angewandt wurden und zum Beispiel kein Kind bei erniedrigten vWF-Werten bei Blutgruppe 0 als „sicher gesund“ diagnostiziert worden wäre.

Rolle der Plättchenfunktionsanalyse PFA-100

von 95%. Die Normwerte der PFA-100 Verschlusszeiten sind bei Kindern und Erwachsenen vergleichbar und unabhängig von der Größe der zur Blutentnahme verwendeten Nadel (Carcao et al. 1998).

Favaloro (2001) und Dean et al. (2000) schlossen in ihren Veröffentlichungen, dass die PFA-100 mit ihrer einfachen Durchführbarkeit und hohen Sensitivität ein sehr guter Screeningtest für eventuelle Blutungsneigungen ist, aber nicht spezifisch auf eine bestimmte Krankheit hindeutet.

Trotzdem unterliegt auch die PFA-100 gewissen Einschränkungen. Sie ist anfällig für Verfälschungen durch abnorme Thrombozytenzahlen oder einen pathologischen Hämatokrit und sollte deswegen nur in Kenntnis des Blutbildes interpretiert werden. Zudem bleibt die Diagnose eines vWS Typ 1 aufgrund von nur leicht veränderten oder schwankenden vWF-Spielen eine Herausforderung (Harrison 2005, Liesner et al. 2004). Dies könnte erklären, wieso die PFA-100 in unserer Studie keine herausragenden Vorhersagewerte in Bezug auf das vWS zeigte: Die PFA-100-Epinephrin Verschlusszeit (41 Kinder mit verlängerten Werten) erreichte eine Sensitivität von 34,0%, nicht ganz die Hälfte dieser Kinder wies ein vWS auf (positiv prädiktiver Wert 43,9%). Nur 6 der PFA-100-ADP-Zeiten lagen oberhalb des Normbereichs. Immerhin zwei Drittel dieser Kinder hatten eine pathologische Diagnose trotz einer niedrigen Sensitivität von 8,0%. Mehr als ein Drittel (36,4%) der Kinder mit normalen PFA-ADP- und PFA-Epinephrin-Werten litt dennoch unter einem vWS.

Somit kann argumentiert werden, dass die Untersuchung mittels PFA-100 bei verdächtigen Patienten durchaus aufgrund ihres hohen negativ prädiktiven Wertes zum Ausschluss eines vWS herangezogen werden kann, umgekehrt durch abnorme Verschlusszeiten aber nicht auf ein vWS geschlossen werden kann. Eine aktuelle Studie aus Österreich folgert deshalb, dass auch die PFA-100 sich nicht als Screeningparameter für alle Kinder vor operativen Eingriffen eignet, wenn sich aus der Anamnese keine Verdachtsmomente für eine Blutungsneigung ergeben (Roschitz et al. 2007).

In unserer Studie wären mindestens 16 der Kinder mit vWS auch ohne Bestimmung der PFA-100 durch die Anamneseerhebung auffällig geworden (48,5%), bei den Kindern mit der Diagnose einer vWS-Grauzone immerhin mindestens 50,0%.
Es zeigt sich also, dass die Frage nach dem Vorliegen eines von-Willebrand-Syndroms nicht einfach beantwortet werden kann. Patienten und ihre Familie müssen mehrmals untersucht werden, um eine eindeutige Aussage treffen zu können (Rodeghiero 2002). Dies spiegelt sich wider in der hohen Anzahl an „vWS-Grauzonen“ in unserem Patientenkollektiv (10,8% aller Patienten).
6. Zusammenfassung

Die präoperative Diagnose von Gerinnungsstörungen bei Kindern stellt eine Herausforderung dar. Laborchemische Globalwerte wie aPTT- und Quick-Wert haben sich als Screeninginstrumente bereits in mehreren Studien als problematisch erwiesen, werden jedoch weiterhin oft verwendet.

Die Zahlen dieser Studie sowie weiterer Veröffentlichungen belegen, dass ein generelles, unselektives Laborscreening bei Kindern zum Ausschluss einer Blutungsneigung nicht ziel führend ist. In unserer Studie stieg der negativ prädiktive Wert einer unauffälligen Anamnese durch Ergänzung mit Globalwerten lediglich um 0,3%. Die Wahrscheinlichkeit des Vorliegens einer Gerinnungsstörung erhöht sich also durch pathologische Laborergebnisse bei unauffälliger Anamnese nicht wesentlich, so dass die Bestimmung von aPTT- und Quick-Wert keinen ausreichenden diagnostischen Nutzen hat, um das Trauma, den Aufwand und die Mehrkosten einer Blutentnahme bei Kindern zu rechtfertigen.

Verschiedene Empfehlungen tragen dieser Erkenntnis inzwischen Rechnung und sehen eine auffällige Anamnese als Eingangskriterium für eine weitergehende laboranalytische Gerinnungsdagnostik. Albert et al. (2009) vom Kompetenzzentrum Hämostaseologie Rheinland-Pfalz-Saarland argumentieren zwar, dass Thrombozytopenien als häufigste klinisch relevante Koagulopathie durch eine präoperative Labordiagnostik aufgedeckt werden. Dies lässt sich jedoch nicht ohne weiteres auf das pädiatrische Klientel übertragen. In unserer Studie lagen 11,1% der
Thrombozytenzahlen unterhalb des Normbereichs, alle aber über 100.000/µl und somit oberhalb der Grenze für Spontanblutungen.

Hauptvorstellungsgrund dieser Studie war ein extern verlängerter aPTT-Wert. Knapp die Hälfte der zuvor auffälligen aPTT-Zeiten erwies sich unter anderem durch eine korrekte Präanalytik mit adäquater Blutabnahme, eine zügige Weiterverarbeitung der Blutproben sowie die Verwendung geeigneter Reagenzien bei Abnahme in unserem Haus als normal.

Zudem zeigten sich Lupusantikörper für 60,6% der externen aPTT-Verlängerungen verantwortlich. Da noch nicht vollständig geklärt ist, ob bei dieser Diagnose tatsächlich von einer normalen Blutgerinnung beim Kind auszugehen ist, greift hier die Empfehlung, neben dem Labor die klinischen Symptome des Kindes und die Anamnese in die Überlegungen mit einzubeziehen und bei anstehenden Operationen prophylaktisch Tranexamsäure (Cyklokapron®) zu verabreichen.
Ein Drittel der bei Erstvorstellung geplanten Operationen dieser Studie wurden letztendlich nicht durchgeführt, bei immerhin 21,3% aufgrund einer im Verlauf nicht mehr bestehenden Notwendigkeit. Gerade bei Kindern sollte die Indikation zu elektiven HNO-Operationen sehr streng gestellt werden, da auch trotz korrekter Anamneseerhebung nicht alle Blutungsneigungen entdeckt werden können und unabhängig davon ein generelles Blutungsrisiko bei operativen Eingriffen besteht. Umso wichtiger ist die ausreichende postoperative Überwachung der Patienten sowie die Aufklärung der Eltern über das richtige perioperative Verhalten, so dass im Falle einer Blutung schnell und korrekt gehandelt werden kann.

7. Literaturverzeichnis

A:

Arch Pathol Lab Med 2005; 129 (8): 101–106

An Esp Pediatr 2001; 54:444-449

Hämostaseologie 2009;29: 58 – 63

American Academy of Otolaryngology Head- and NeckSurgery (2000a). Clinical Indicators Adenoidectomy
http://www.entnet.org/Practice/Adenoidectomy.cfm

American Academy of Otolaryngology Head- and NeckSurgery (2000b). Clinical Indicators Myringotomy and Tympanostomy Tubes
http://www.entnet.org/Practice/Myringotomy-and-Tympanostomy-Tubes.cfm

http://www.entnet.org/Practice/upload/TA_Adentonsillectomy-CI_May-2012-2.pdf

Sem Perinat 1997; 21(Volume 1):70 – 85

Asaf T, Reuveni H, Yermiahu T et al. (2001). The need for routine pre-operative coagulation screening tests (prothrombin time PT/partial thromboplastin time aPTT) for healthy children undergoing elective tonsillectomy and/or adenoidectomy.

http://www.awmf-online.de
B:

C:

Up to date Version 18.1, http://www.uptodate.com

E:

Pädiatrie hautnah 2006; 1: 27 – 32

Pad Prax 1996; 50: 397-403

Eckman MH, Erban JK, Singh SK et al. (2003). Screening for the risk for the bleeding or thrombosis.
Annals of Internal Medicine 2003; 138: 15-24

F:

Haemophilia 2001; 7: 170-179

G:

Thromb Res 1997; 88: 255-9

Pediatrics 1961; 28: 1011 – 1018
H:

J:

K:

Lippi G, Franchini M, Poli G et al. (2007). Is the activated partial thromboplastin time suitable to screen for von Willebrand factor deficiencies?
Blood Coagul Fibrinolysis 2007; 18(4): 361-4

M:

Thromb Haemost 2000; 83: 174 – 175

Mannucci PM, Duga S, Peyvandi F (2010). Rare (recessively inherited) coagulation disorders
Up to Date Version 18.1, http://www.uptodate.com

Lancet 2004; 364: 697 – 702

N:

P:

R:

S:

T:

W:

Z:

8. Sonstige Verzeichnisse

8.1 Abkürzungen und Akronyme

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Adenosindiphosphat</td>
</tr>
<tr>
<td>AP</td>
<td>Alkalische Phosphatase</td>
</tr>
<tr>
<td>APA</td>
<td>Antiphospholipid-Antikörper</td>
</tr>
<tr>
<td>APC</td>
<td>aktiviertes Protein C</td>
</tr>
<tr>
<td>APS</td>
<td>Antiphospholipid-Antikörper-Syndrom</td>
</tr>
<tr>
<td>AT</td>
<td>Adenotomie</td>
</tr>
<tr>
<td>ATIII</td>
<td>Antithrombin</td>
</tr>
<tr>
<td>AWMF</td>
<td>Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktives Protein</td>
</tr>
<tr>
<td>DDAVP</td>
<td>Desmopressin</td>
</tr>
<tr>
<td>DIC</td>
<td>disseminierte intravasale Gerinnung</td>
</tr>
<tr>
<td>DRVVT</td>
<td>Dilute Russell Viper Venom Test</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethyldiamintetraessigsäure</td>
</tr>
<tr>
<td>EPI</td>
<td>Epinephrin</td>
</tr>
<tr>
<td>γ-GT</td>
<td>Gamma-Glutamyltranspeptidase</td>
</tr>
<tr>
<td>GOT</td>
<td>Glutamat-Oxalat-Transaminase</td>
</tr>
<tr>
<td>GP</td>
<td>Glykoprotein</td>
</tr>
<tr>
<td>GPT</td>
<td>Glutamat-Pyruvat-Transaminase</td>
</tr>
<tr>
<td>HNO</td>
<td>Hals-Nasen-Ohren</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G</td>
</tr>
<tr>
<td>IgM</td>
<td>Immunglobulin M</td>
</tr>
<tr>
<td>LA</td>
<td>Lupusantikoagulans, Lupusantikoagulanzien</td>
</tr>
<tr>
<td>LI</td>
<td>Lupusinhibitor(en)</td>
</tr>
<tr>
<td>LMU</td>
<td>Ludwig-Maximilians-Universität</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>p</td>
<td>Irrtumswahrscheinlichkeit</td>
</tr>
<tr>
<td>PFA</td>
<td>Plättchenfunktionsanalyse</td>
</tr>
</tbody>
</table>
aPTT aktivierte partielle Thromboplastinzeit
sec Sekunde
TE Tonsillektomie
TF Tissue Factor, Gewebefaktor
t-PA Gewebsplasminogen-Aktivator
vWF von-Willebrand-Faktor
vWF:AG von-Willebrand-Faktor-Antigen
vWF:CBA von-Willebrand-Faktor-Kollagenbindungsaktivität
vWF:RCCP von-Willebrand-Faktor Ristocetin Kofaktor-Aktivität
vWS von-Willebrand-Syndrom

8.2 Tabellen
Tab. 43
Tab. Nr. Inhalt Seite
Tab. 1 Empfehlungen zur präoperativen laborchemischen Gerinnungsdiagnostik.. 6
Tab. 2 Prokoagulatorische Gerinnungsfaktoren.. 10
Tab. 3 Altersabhängige Normwerte der Gerinnungsparameter.......................... 14
Tab. 4 Häufigkeit klinischer Symptome beim vWS.. 18
Tab. 5 Übersicht zum von-Willebrand-Syndrom... 20
Tab. 6 Hämophilie-Einteilung.. 21
Tab. 7 Beispiele erworbener plasmatischer Gerinnungsstörungen mit
 Blutungsneigung... 22
Tab. 8 Gerinnungsstörungen mit Blutungsneigung.. 26
Tab. 9 Einschlusskriterien.. 34
Tab. 10 Ausschlusskriterien... 35
Tab. 11 Bestimmte Laborparameter... 38
Tab. 12 Therapieempfehlungen... 39
Tab. 13 Thrombozytenuntersuchungen.. 41
Tab. 14 Quickwert und Quick-wirksame Einzelfaktoren.................................. 42
Tab. 15 aPTT-Wert und aPTT-wirksame Einzelfaktoren.................................. 42
Tab. 16 Faktor XIII und Fibrinogen... 43
Tab. 17 Lupusinhibitor-Diagnostik.. 43
Tab. 18 von-Willebrand-Syndrom-Diagnostik... 44
8.3 Abbildungen

<table>
<thead>
<tr>
<th>Abb. Nr.</th>
<th>Inhalt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb. 1</td>
<td>Klassisches Schema der Gerinnungskaskade</td>
<td>12</td>
</tr>
<tr>
<td>Abb. 2</td>
<td>Bezug von Quick- und aPTT-Wert zu Gerinnungsfaktoren</td>
<td>29</td>
</tr>
<tr>
<td>Abb. 3</td>
<td>Standardisierter Anamnesefragebogen</td>
<td>36-37</td>
</tr>
<tr>
<td>Abb. 4</td>
<td>Altersverteilung der Patienten</td>
<td>48</td>
</tr>
<tr>
<td>Abb. 5</td>
<td>Vorstellungsgründe der Patienten</td>
<td>49</td>
</tr>
<tr>
<td>Abb. 6</td>
<td>Auffällige Laborvoruntersuchungen</td>
<td>51</td>
</tr>
<tr>
<td>Abb. 7</td>
<td>aPTT-Werte bei Erstvorstellung</td>
<td>52</td>
</tr>
<tr>
<td>Abb. 8</td>
<td>Kontrolle der pathologischen aPTT-Vorbefunde</td>
<td>54</td>
</tr>
<tr>
<td>Abb. 9</td>
<td>Anteil erniedriger Faktoren VIII, IX, XI und XII bei verlängerter aPTT</td>
<td>55</td>
</tr>
<tr>
<td>Abb. 10</td>
<td>Anteil erniedriger Faktoren VIII, IX, XI und XII bei normaler aPTT</td>
<td>57</td>
</tr>
<tr>
<td>Abb. 11</td>
<td>Faktoren II, V, VII und X bei normalem Quick-Wert</td>
<td>58</td>
</tr>
<tr>
<td>Abb. 12</td>
<td>Anteil Gerinnungsstörungen bei verschiedenen aPTT-Werten</td>
<td>60</td>
</tr>
<tr>
<td>Abb. 13</td>
<td>Verlängerte aPTT-Messzeit mit/ohne vorhergehende Medikation</td>
<td>62</td>
</tr>
<tr>
<td>Abb. 14</td>
<td>Vorstellungsgründe bei geplanter Operation</td>
<td>65</td>
</tr>
<tr>
<td>Abb. 15</td>
<td>Aufschlüsselung der durchgeführten Operationen</td>
<td>66</td>
</tr>
<tr>
<td>Abb. 16</td>
<td>Vorkommen anamnestischer Auffälligkeiten bei Kindern mit/ohne Gerinnungsstörung</td>
<td>71</td>
</tr>
<tr>
<td>Abb. 17</td>
<td>Gerinnungsstörungen in der Familie</td>
<td>74</td>
</tr>
<tr>
<td>Abb. 18</td>
<td>Blutungsneigung in der Familie</td>
<td>75</td>
</tr>
<tr>
<td>Abb. 19</td>
<td>Diagnose Gerinnungsstörung bei auffälliger Eigenanamnese in verschiedenen Altersgruppen</td>
<td>78</td>
</tr>
<tr>
<td>Abb. 20</td>
<td>Diagnose Gerinnungsstörung bei unauffälliger Eigenanamnese in verschiedenen Altersgruppen</td>
<td>78</td>
</tr>
<tr>
<td>Abb. 21</td>
<td>Anteil Gerinnungsstörungen bei Kindern mit/ohne körperliche Auffälligkeiten</td>
<td>80</td>
</tr>
<tr>
<td>Abb. 22</td>
<td>Diagnosen bei verschiedenen klinischen Symptomen</td>
<td>82</td>
</tr>
<tr>
<td>Abb. 23</td>
<td>Aufschlüsselung Gerinnungsstörungen</td>
<td>84</td>
</tr>
</tbody>
</table>
Abb. 24 Diagnosen ohne Blutungsneigung
9. Danksagung

Mein ganz besonderer Dank gilt Herrn Dr. Christoph Bidlingmaier (Pädiatrisches Gerinnungszentrum am Dr. von Haunerschen Kinderspital München) für seine hervorragende Betreuung während der Studie und des Erstellens der Doktorarbeit. Seine fachliche Kompetenz, sein kontinuierlicher Einsatz, seine enorme Hilfsbereitschaft und nicht zuletzt seine Geduld waren für das Gelingen der Dissertation maßgeblich.

Meiner Doktormutter PD Dr. Karin Kurnik, Leiterin des Pädiatrischen Hämophiliecentrums des Dr. von Haunerschen Kinderspitals München danke ich für die wohlwollende Begleitung und Unterstützung während des Promotionsverfahrens. Den Assistenzärzten der Allgemein- und Gerinnungsambulanz des Dr. von Haunerschen Kinderspitals sowie Schwester Susan Jenkins möchte ich ebenfalls für ihre Unterstützung danken.

Weiterhin danke ich besonders Frau Carola Lehmann, medizinische Dokumentarin am Bremer Institut für Präventionsforschung und Sozialmedizin, Abteilung Biometrie & EDV, unter deren maßgeblicher Mitarbeit die Datenauswertung erfolgte.

10. Veröffentlichungen

Teile dieser Arbeit wurden auf wissenschaftlichen Kongressen vorgestellt:

Bidlingmaier C., Treutwein J., Olivieri M., Kurnik K.
Repeated testing in children with suspected mild bleeding disorders: profits and problems
55. Jahrestagung der Gesellschaft für Thrombose- und Hämostaseforschung (GTH) (2011), Wiesbaden, Deutschland

Bidlingmaier C., Sax F., Treutwein J., Kurnik K.
The PTT is not enough – Preoperative coagulation screening in children
Eidesstattliche Versicherung

Name, Vorname

Ich erkläre hiermit an Eides statt,

dass ich die vorliegende Dissertation mit dem Thema

selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe.

Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde.

__________________________ ____________________________
Ort, Datum Unterschrift Doktorandin/Doktorand