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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich vorwiegend mit der Untersuchung und Weiteren-
twicklung einer einfachen Schätzfunktion für die Masse von frühen Galaxien, die sich für
groe optische Galaxiendurchmusterungen mit mangelhaften und/oder ungenauen Daten
eignen. Wir ziehen einfache und stabile Methoden in Betracht, die eine anisotropieun-
abhängige Massenberechnung einer Galaxie aufgrund von Flächenhelligkeit und projiziert-
ern Geschwindigkeitsdispersionsdiagrammen ermöglichen. Es ist sinnvoll anzunehmen,
dass eine grundlegende Degenaration der Anisotropie der Masse umgangen werden kann,
ohne sich auf zusätzliche Beobachtungsdaten verlassen zu müssen, allerdings nur in einem
speziellen (charakteristischen) Radius, z.B. behandeln die Ansätze nicht die kreisförmige
Massendistribution. Zuverslässige Schätzwerte in einem einzigen Radius können wie folgt
verwendet werden: (i) Kalibrierung anderer Methoden zur Massenberechnung; (ii) Schätzung
einer non-thermalen Zufuhr zum Gesamtdruck im Vergleich zu einem Schätzwert der Masse
einer Röntgengalaxie im gleichen Radius; (iii) Auswertung des Anteils der dunklen Materie
im Vergleich zu der heller Materie; (iv) Ableitung der Steigung des Massenprofils, kom-
biniert mit dem Schätzwert der Masse eines starken Gravitationslinseneffekts; (v) Ersatz
fr die Virialmasse.

Vor kurzem wurden zwei einfache Methoden ausgearbeitet: die lokale (Churazov et al.
2010) und die globale Methode (Wolf et al. 2010). Diese berechnen die Masse in einem spez-
ifischen Radius und sind kaum von der Anisotropie stellarer Umlaufbahnen abhängig. Einer
der Ansätze (Wolf et. al. 2010) verwendet die gesamte, nach der Leuchtkraft gewichtete
Geschwindigkeitsdispersion und wertet die Masse in einem deprojizierten Halblichtradius
aus, d.h. sie verlässt sich auf die globalen Eigenschaften einer Galaxie. Im Gegensatz dazu
verwendet die Churazov et. al.-Methode lokale Eigenschaften, also logarithmische Kurven
der Flächenhelligkeit und der Geschwindigkeitsdispersionsdiagramme, und berechnet die
Masse in einem Radius, in dem die Flächenhelligkeit mit R−2 abnimmt (siehe Richstone
und Tremaine 1984, Gerhard 1993).

Um die Stabilität und Genauigkeit der Methoden zu überprfen, habe ich diese auf an-
alytische Modelle sowie simulierte Galaxien aus einer Stichprobe von kosmologischen Sim-
ulationen, die ähnliche Eigenschaften früher Galaxien aufweisen, angewendet. Die lokalen
sowie globalen Schätzwerte scheinen mit der Masse in dem entsprechenden charakteris-
tischen Radius übereinzustimmen. Insbesondere für massive langsam rotierende Galaxien
ermöglicht die lokale Methode eine nahezu unverfälschte Schätzung der Masse (wenn man
es mit der Stichprobe angleicht) mit einer leichten QMW-Abweichung von ≃ 12% (Kapitel
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2). Wenn man die globale Methode auf massive simulierte Galaxien mit einem annähernd
flachen Geschwindigkeitsdispersionsdiagramm anwendet, kann man ebenfalls eine nahezu
unverfälschte Schätzung der Masse erzielen, obwohl die QMW-Abweichung geringfügig
gröer ausfällt (≃ 14 − 20%), als fr die lokale Methode (Kapitel 4). Eine auffällige Abwe-
ichung wird in der Ermittlung des charakteristischen Radius erwartet, da der Halblichtra-
dius von dem Radiusbereich fr die Analyse und der angewandten Methode abhängt.

Als nächstes habe ich die Schätzfunktionen an einer Stichprobe einer echten frühen
Galaxie, die schon eingehend mit dem neuesten dynamischen Modellverfahren analysiert
wurde, analysiert. Für diese Gruppe von Galaxien liegen die Schätzwerte erstaunlich
nah an den Ergebnissen der Schwarzschildmodelle, obwohl einige davon flach sind und
langsam rotieren. Sobald die lokale Schätzfunktion an das Beispiel angeglichen worden
ist, beträgt die Abweichung von der im dynamischen Modellverfahren errechneten Ideal-
masse ≈ 10% und die QMW-Abweichung ≈ 13% zwischen den verschiedenen Galaxien.
Die Erwartungstreue kann mit Messunsicherheit verglichen werden. Desweiteren wird die
Abweichung größtenteils von einer einzigen Galaxie verursacht, die die höchste Dichte in
der Stichprobe aufweist. Schließt man diese aus der Stichprobe aus, vermindert sich die
Verzerrung auf ≈ 6% und die QMW-Abweichung um ≈ 6%. Die globale Schätzfunktion
für dieselbe Stichprobe zeigt eine mittlere Abweichung von ≈ 4% mit einer geringfügig
größeren QMW-Abweichung von ≈ 15% (Kapitel 4).

Angesichts der positiven Ergebnisse wende ich die lokale Schätzmethode auf eine Stich-
probe an, die fünf helle frühe Röntgengalaxien beinhaltet, die mit einem 6-m Teleskop in
Russland beobachtet werden. Durch die Verwendung der öffentlich verfügbaren Chandra-
Daten ist es mir gelungen, das Röntgenmassenprofil mithilfe der Thesen der Sphärischen
Symmetrie sowie des Hydrostatischen Gleichgewichts von heißem Gas abzuleiten. Ein Ver-
gleich zwischen den Schätzfunktionen der optischen- und Röntgenmasse erlaubte es uns, der
non-thermalen Zufuhr zum Gesamtdruck, die beispielsweise durch microturbulente Gasbe-
wegungen verursacht wurde, Grenzen zu setzen (der an die Stichprobe angeglichene Wert
beträgt ≈ 4%). Sobald die aus der Röntgenstrahlung entstandene Kreisgeschwindigkeit
für die non-thermale Zufuhr korrigiert wurde, lieferte die Diskrepanz zwischen der aus
der Röntgenstrahlung entstandenen Kreisgeschwindigkeit V X

c und der optischen Kreis-
geschwindigkeit für stellare Umlaufbahnen V iso

c Hinweise auf die orbitale Struktur der
Galaxie. Zum Beispiel würden kleine Radii V X

c > V iso
c eher kreisförmigen Umlaufbahnen

entsprechen, während größere Radii eher strahlenförmige Umlaufbahnen vermuten lassen.
Für zwei der Galaxien in unserer Stichprobe liegt die Vermutung nahe, dass bei Radii,
die größer sind als der Halblichtradius, die Umlaufbahnen vorwiegend strahlenförmig wer-
den. Schließlich hat der Unterschied zwischen der optischen Schätzfunktion für Masse am
charakteristischen Radius und der stellaren Zufuhr zur Gesamtmassse der Galaxie es uns
erlaubt, den Anteil der dunklen Materie in der Galaxie abzuleiten. Der vorwiegende Anteil
der dunklen Materie in unserer Stichprobe von frühen Galaxien beträgt ≈ 50% für Salpeter
IMF und ≈ 70% für Kroupa IMF auf dem Radius, der nahe an dem Halblichtradius liegt
(Kapitel 3).



Summary

The work presented here focuses on the investigation and further development of simple
mass estimators for early-type galaxies which are suitable for large optical galaxy surveys
with poor and/or noisy data. We consider simple and robust methods that provide an
anisotropy-independent estimate of the galaxy mass relying on the stellar surface brightness
and projected velocity dispersion profiles. Under reasonable assumptions a fundamental
mass-anisotropy degeneracy can be circumvented without invoking any additional obser-
vational data, although at a special (characteristic) radius only, i.e these approaches do
not recover the radial mass distribution. Reliable simple mass estimates at a single radius
could be used (i) to cross-calibrate other mass determination methods; (ii) to estimate a
non-thermal contribution to the total gas pressure when compared with the X-ray mass
estimate at the same radius; (iii) to evaluate a dark matter fraction when compared with
the luminous mass estimate; (iv) to derive the slope of the mass profile when combined
with the mass estimate from strong lensing; (v) or as a virial mass proxy.

Two simple mass estimators have been suggested recently - the local (Churazov et al.
2010) and the global (Wolf et al. 2010) methods - which evaluate mass at a particular
radius and are claimed to be weakly dependent on the anisotropy of stellar orbits. One
approach (Wolf et al. 2010) uses the total luminosity-weighted velocity dispersion and
evaluates the mass at a deprojected half-light radius, i.e. relies on the global properties
of a galaxy. In contrast, the Churazov et al. technique uses local properties: logarithmic
slopes of the surface brightness and velocity dispersion profiles, and recovers the mass at
a radius where the surface brightness declines as R−2 (see also Richstone and Tremaine
1984, Gerhard 1993).

To test the robustness and accuracy of the methods I applied them to analytic models
and to simulated galaxies from a sample of cosmological zoom-simulations which are similar
in properties to nearby early-type galaxies. Both local and global simple mass estimates
are found to be in good agreement with the true mass at the corresponding characteristic
radius. Particularly, for slowly rotating simulated galaxies the local method gives an almost
unbiased mass-estimate (when averaged over the sample) with a modest RMS-scatter of
≃ 12% (Chapter 2). When applied to massive simulated galaxies with a roughly flat
velocity dispersion profile, the global approach on average also provides the almost unbiased
mass-estimate, although the RMS-scatter is slightly larger (≃ 14− 20%) than for the local
estimator (Chapter 4). A noticeable scatter in the determination of the characteristic
radius is also expected since the half-light radius depends on the radial range used for the
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analysis and applied methodology.
Next I tested the simple mass estimators on a sample of real early-type galaxies which

had previously been analyzed in detail using state-of-the-art dynamical modeling. For this
set of galaxies the simple mass estimates are in remarkable agreement with the results
of the Schwarzschild modeling despite the fact that some of the considered galaxies are
flattened and mildly rotating. When averaged over the sample the simple local method
overestimates the best-fit mass from dynamical modeling by ≈ 10% with the RMS-scatter
≈ 13% between different galaxies. The bias is comparable to measurement uncertainties.
Moreover, it is mainly driven by a single galaxy which has been found to be the most
compact one in the sample. When this galaxy is excluded from the sample, the bias and
the RMS-scatter are both reduced to ≈ 6%. The global estimator for the same sample
gives the mean deviation ≈ 4% with the slightly larger RMS-scatter of ≈ 15% (Chapter
4).

Given the encouraging results of the tests I apply the local mass estimation method
to a sample of five X-ray bright early-type galaxies observed with the 6-m telescope BTA
in Russia. Using publicly available Chandra data I derived the X-ray mass profile assum-
ing spherical symmetry and hydrostatic equilibrium of hot gas. A comparison between
the X-ray and optical mass estimates allowed me to put constraints on the non-thermal
contribution (sample averaged value is ≈ 4%) to the total gas pressure arising from, for
instance, microturbulent gas motions. Once the X-ray derived circular speed is corrected
for the non-thermal contribution, the mismatch between the X-ray circular speed V X

c and
the optical circular velocity for isotropic stellar orbits V iso

c provides a clue to the orbital
structure of the galaxy. E.g., at small radii V X

c > V iso
c would suggest more circular orbits,

while at larger radii this would correspond to more radial orbits. For two galaxies in our
sample there is a clear indication that at radii larger than the half-light radius stellar orbits
become predominantly radial. Finally, the difference between the optical mass-estimate at
the characteristic radius and the stellar contribution to the total mass permitted the deriva-
tion of a dark-matter fraction. A typical dark matter fraction for our sample of early-type
galaxies is ≈ 50% for Salpeter IMF and ≈ 70% for Kroupa IMF at the radius which is
close to the half-light radius (Chapter 3).



Chapter 1

Introduction

Since the beginning of the 20-th century mass measurements of galaxies and clusters of
galaxies is a hot and actively discussed topic. Interest to ‘weighing’ galaxies and galaxies
clustes has led to an extremely important discovery of dark matter. In 1933 Fritz Zwicky
applied the virial theorem to the Coma galaxy cluster and found that the virial cluster
mass is ≈ 400 times greater than the ‘visual’ mass estimated from the total brightness
of the cluster. Zwicky calculations suggested that there must be some form of an unseen
matter (‘dark matter’) which would be able to hold the cluster galaxies together. First
observations of spiral galaxies rotation curves (Babcock, 1939; Mayall, 1951) showed no
Keplerian velocity decrease in the outer regions in contradiction to expectations. This
observation also had no significant influence on scientific community, rather details of the
analysis (e.g., adopted distances) were questioned. Most astronomers in the ∼ 50 − 60s
kept believing that disk galaxies had Keplerian velocities at moderate and large distances
from the center. Thanks to progress in instrumentation, observations of hundreds extended
rotation curves became available in ∼ 1980s, majority of which demostrated no Keplerian
velocity fall. This fact played a major role in convincing the scientific community that
there exist an unseen (dark) matter which accounts for a major part of the total mass of
disk galaxies. It took ≃ 50 years to make the paradigm of the dark matter common and
widely accepted. Dark matter emit/absorb electromagnetic radiation very weakly (if at all)
and interacts with ordinary matter mainly gravitationally. Unfortunaly, up to now there
is no reliable detection of dark matter particles in the Earth experiments, and galaxies
and galaxy clusters retain the status of main laboratories for investigation of dark matter
properties.

Apart from the dark matter studies mass determination of galaxies are crucial for
understanding their formation and evolution processes. The current Λ Cold Dark Matter
cosmological paradigm predicts a hierarchical growth of structures in the Universe. Small
overdensities collapse first, then the resulting dark matter ‘clumps’ merge together and
finally form large halos which serve as ‘cradles’ for galaxy formation. One of the predictions
of the ΛCDM model is that the structural parameters of galaxies correlate with properties
of massive parent dark matter haloes which are in turn tightly coupled with the halo mass
(e.g., Mo, Mao and White, 1998; Macciò, Dutton and van den Bosch, 2008, and references
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therein).

1.1 Mass determination techniques

A number of techniques have been developed in the past to investigate the mass distribu-
tions in early-type galaxies. Each methods has its own set of assumptions and limitations.
Comparison of mass profiles inferred from different techniques is necessary to get reliable
estimates and to control systematic uncertainties, inherent in all methods. It also leads to
interesting constraints on properties of elliptical galaxies, when possible biases are well un-
derstood and systematic errors are under control. Let us briefly describe main approaches
for analysis of early-type galaxies.

1.1.1 X-ray analysis

Massive elliptical galaxies (and galaxy clusters) are bright X-rays sources as found by the
Einstein X-ray observatory (Figure 1.1 shows an example of a X-ray image of a galaxy clus-
ter). X-ray observations of hot diffuse gas in these galaxies (as well as in galaxy clusters)
allows one to probe the galaxy gravitational potential out to ∼ 10 kpc (∼ 10R1/2; R1/2

is the optical half-light radius) where observations in optical or radio bands are extremely
challenging. Assuming hydrostatic equilibrium and spherical symmetry, with known (ob-
tained from observations) gas number density n(r) and temperature T (r) profiles, one can
estimate the galaxy mass:

1

ρ

dP

dr
= −dΦ

dr
=

GM(< r)

r2
(1.1)

M(< r) = − kTr

Gµmp

(

d lnn

d ln r
+

d lnT

d ln r

)

, (1.2)

where ρ = µmpn is the gas density (mp stands for the proton mass, µ for the mean
atomic weight), P = nkT is the thermal gas pressure (k is the Boltzmann constant) and
Φ(r) is the gravitational galaxy potential.

Strictly speaking, the hot coronae of elliptical galaxies could deviate from the spheri-
cal symmetry. Although, a spherical averaging of ellipsoidal objects is shown to introduce
only a small (orientation-averaged) bias for not too flat models (e.g. Buote and Humphrey,
2012). The equation (1.1) does not also account for possible non-thermal contribution to
the gas total pressure, arising from, for instance, turbulent motions, cosmic rays, mag-
netic fields, etc (e.g., Churazov et al., 2008). E.g., numerical simulations suggest that in
relaxed systems the non-thermal support is at the level of 5 - 35% of the total gas pressure
(e.g. Nagai, Vikhlinin and Kravtsov, 2007; Lau, Kravtsov, Nagai, 2009; Zhuravleva et al.,
2013). Comparing X-ray mass estimates with other methods could provide constraints on
the contribution of the non-thermal components to the total gas pressure.
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Figure 1.1: Hot X-ray emitting gas in the Coma cluster of galaxies as seen by ROSAT
satellite is shown on the left (image credit: S.L. Snowden/ROSAT/MPE). The optical
image of is on the right (image credit: O. Lopez-Cruz and I. Shelton/NOAO/AURA/NSF).

1.1.2 Gravitational lensing

Gravitational lensing - bending the light rays by gravitational field - is the only method
of mass determination, which can be applied to objects regardless of their composition
and dynamical state (relaxed or disturbed). Depending on the deflection angle of light,
gravitational lensing is divided into two regimes: strong and weak. If the source is a
subject to strong lensing, the observer sees multiple images of the source and/or ring-
like structures (Figure 1.2). Measuring the angular separation of images one can get an
independent estimate of the total mass inside a cylinder with the Einstein radius RE =
√

4GMDd(Ds −Dd)

c2Ds

, where G is the gravitational constant, c - speed of light, M - the

lens mass, Dd and Ds are the distances from the observer to the lens and to the source
respectively. Strong lensing offers an opportunity to infer the Hubble constant H by
measuring the time delay between the source images and reconstructing a geometry of
the gravitationally lensed system. An advantage of such method for the Hubble constant
determination is that it probes directly the geometric scale of the system.

In the weak lensing regime only distortions of size and shape (tangential ‘stretching’)
of background sources are observed. Weak lensing allows one to investigate the shape of
the gravitational potential and map the dark matter distribution at large radii where other
methods are not applicable, although an amplitude of background galaxies distortions due
to the weak lensing is comparable to the telescope abberations. Currently the weak lensing
techniques are very promising for cosmological studies (to probe dark energy) and rapidly
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Figure 1.2: Example of a strong gravitational lensing. The quasar RXJ1131-123 as seen
by the Hubble Space Telescope. Due to gravitational lensing the quasar appears as four
point-like images connected by an Einstein ring. The lens galaxy is at the center of the
ring.

developing.

1.1.3 Dynamical modeling

All methods that are based on modeling kinematic data of elliptical galaxies suffer from
the fundamental degeneracy between the galaxy mass and the anisotropy of tracer orbits.
The interpretaion of the observed velocity dispersion profile σp(R) alone is found to be
ambigous due to the lack of single ideal tracers on known orbits.

Dynamical modeling using orbit superposition (Schwarzschild method, 1979) is consid-
ered to be the state-of-the-art technique for the investigation of early-type galaxies which
recovers the galaxy’s gravitational potential and orbital structure with an accuracy of
. 15% (e.g., Thomas et al., 2005).

Schwarzschild (1979) introduced a numerical orbit-superposition technique to construct
collisionless phase-space distribution functions of tracers in dynamical equilibrium. The
basic idea of the method is that an elliptical galaxy is considered as a bound system
of individual stars, all possible orbits of which could be defined from the integrals of
motion. In brief, the Schwarzschild method consists of several steps: (i) firstly, in a trial
gravitational potential one composes a library of stellar orbits which correspond to all
possible initial positions in the six-dimensional phase-space; (ii) then one constructes the
superposition of all orbits which describes the observed distribution of surface brightness
I(R) and kinematic profiles (σp(R) and higher moments) as good as possible. (iii) Finally,
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parameters of the gravitational potential are varied, and the whole procedure is carried
out again as long as the deviation of the resulting model from observational data reaches
the minimum value.

The Schwarzschild technique allows one to obtain a radial distribution of a galaxy
mass, to study the contribution of individual components (luminous matter, dark halo
and supermassive black hole) to the galaxy gravitational potential. The method can be
applied to any steady-state collisionless system. No assumptions on the orbit configuration
is required. Derived distribution function in the six-dimensional phase space is guaranteed
to be everywhere positive (= to be physically meaningful). The main challenge is to
construct a representative library of orbits. The orbit-superposition technique is widely
used for determining the mass distribution, dark matter fraction and orbit configuration
of nearby early-type galaxies as well as for ‘weighing’ central black holes. The method is
very sensitive to the quality and completeness of the observational data, and not all the
model parameters are uniquely constrained. It is also computationally expensive. E.g.
the Schwarzschild orbit-superposition analysis of the nearby massive elliptical galaxy M87
took over ∼ 37500 hours of cpu (Gebhardt and Thomas, 2009).

As the sophisticated detailed modeling requires high signal-to-noise observational data
on the line-of-sight velocity moments it is applicable only to nearby galaxies. Large as-
tronomical surveys of galaxies at different redshifts are extremely important for galaxy
formation and mass assembly studies. For such surveys usage of detailed dynamical mod-
eling is not practical/possible especially in a case of poor and/or noisy observational data.
It is desirable to have simple and robust techniques based on the most basic observables
that provide an unbiased mass estimate with a modest scatter.

Before moving to simple mass estimators let us note that recent studies based on dif-
ferent approaches and their combitations suggest that the gravitational potential Φ(r) of
massive elliptical galaxies is close to isothermal (e.g. Gerhard et al., 2001; Treu et al., 2006;
Koopmans et al., 2006; Fukazawa et al., 2006; Churazov et al., 2010).

1.2 The simple(st) mass estimators

1.2.1 The virial theorem and virial-like estimators

Despite an enormous progress in a development of mass determination techniques, the
scalar virial theorem is still widely used for analyzing spheroidal systems especially at high
redshifts where detailed high-quality observational data are not availbale. The total mass
of an isolated spherical system in a steady state can be expressed as (Binney and Tremaine,
2008)

M = 3

〈

σ2
p

〉

rg

G
, (1.3)

where G is the gravitational constant, rg is called the gravitational radius and the
luminosity-weighted average line-of-sight velocity dispersion is defined as
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〈

σ2
p

〉

=

∫

∞

0
σ2
p(R)I(R)RdR

∫

∞

0
I(R)RdR

. (1.4)

Apart from its simplicity the main advantage of the scalar virial theorem is its inde-
pendence from the anisotropy β of tracers’ orbits. Unfortunately, the value of rg depends
on the total and luminous mass distribution of a system, making the formula (1.3) not
practical for mass determintation of real systems. One way to overcome this problem is
to express the gravitational radius in terms of observationally abailable half-light radius
R1/2 under some assumptions on a stellar density. Spitzer (1969) noticed that a ratio be-
tween a 3D half light radius and the gravitational radius r1/2/rg ≈ 0.4 ± 0.2 for different
polytropes (for polytropic index between 3 and 5). This result has been confirmed by
Mamon (2000);  Lokas and Mamon (2001), who theoretically derived r1/2/rg ≈ 0.403 for
the Hernquist (1990) model. For a wide range of stellar light profiles (Sérsic, exponential,
Plummer, King) the 3D half light radius r1/2 is related to the projected half light radius
R1/2 as r1/2 ≈ 1.3R1/2 (Ciotti, 1991; Spitzer, 1987). So the relation (1.3) can be rewritten
as

M ≈ 1.6

〈

σ2
p

〉

R1/2

G
(1.5)

for common analytical stellar density profiles.
Another way to get rid of rg in the equation (1.3) is to assume the isothermal form

of a gravitational potential Φ(r) = V 2
c ln r + const. As mentioned above, approximate

isothermality of elliptical galaxies is suggested by a number of recent indepent studies on
kinematics, X-rays and gravitational lensing. Assuming Vc(r) = const the virial theorem
further simplifies to

M(< r) = 3

〈

σ2
p

〉

r

G
, (1.6)

giving the radial total mass profile which is based on a single observale quantity and
rigorously independent of the anisotropy parameter β.

In any form the virial theorem approach requires determination of the luminosity-
weighted square of the projected velocity dispersion over the entire galaxy or within large
enough aperture. How large should be an aperture radius to ensure that σ2

ap(Rap) =
∫ Rap

0
σ2
p(R)I(R)RdR

∫ Rap

0
I(R)RdR

is insensitive to the anisotropy, i.e. σ2
ap ≈

〈

σ2
p

〉

? Consider, for

example, a spherical galaxy composed of isotropic (the anisotropy parameter β = 0), pure
radial (β = 1) and pure circular (β → −∞) orbits in an isothermal gravitational potential.
As the anisotropy parameter varies between −∞ and 1 the two latter cases are somewhat
extreme and show an expected range of variations of observables due to the unknown
anisotropy. Figure 2.10 shows the aperture velocity dispersion σap(R) as a function of the
aperture radius. The aperture velocity dispersions for different anisotropies are shown in
blue (β = 0), green (β = 1) and magenta (β → −∞). For the de Vaucouleurs’s surface
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Figure 1.3: Aperture velocity dispersion σap as a function of aperture radius (normal-
ized to the half-light radius) for a spherical galaxy described by the de Vaucouleurs law

I(R) ∝ e−7.67(R/R1/2)
4

and an isothermal gravitational potential Φ(r) = V 2
c ln r+const. The

curves show the observed aperture velocity dispersion for different values of the anisotropy
parameter: β = 0 (in blue), β → −∞ (in magenta) and β = 1 (in green). The minimum
aperture radius required to ger a reliable estimate of

〈

σ2
p

〉

is ∼ 10R1/2. Adapted from
Churazov et al. (2010).
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brightness distribution these three curves converge to the same value σap ≈
√

〈

σ2
p

〉

=

Vc/
√

3 at very large aperture radius (∼ 10 half-light radii). For smaller aperture radii the

σap is very sensitive to the anisotropy and can not be used as approximation for
√

〈

σ2
p

〉

.

Large apertures are available mostly for distant galaxies. For nearby ellipticals velocity
dispersion profiles are typically observed out to ∼ 1 − 2 effective radii.

Having the surface brightness distributions and integral field kinematics of 25 nearby
early-type galaxies Cappellari et al. (2006) calibrated the virial-like mass estimator in a
form

M(< r1/2) = k

〈

σ2
p

〉

e
r1/2

G
, (1.7)

where
〈

σ2
p

〉

e
= σ2

e is the luminosity-weighted line-of-sight velocity dispersion calcu-
lated within a projected circular aperture of radius equal to an effective (half-light) radius
R1/2. Comparing the simple virial-like mass estimators with masses from an axisymmetric
Schwarzschild models constructed for the same sample of galaxies, the coefficient k ≈ 2.5
has been derived, i.e. the mass within the 3D effective radius r1/2 can be approximated as

M(< r1/2) ≈ 1.9
σ2
er1/2
G

≈ 2.5
σ2
eR1/2

G
, (1.8)

where r1/2 ≈ 1.33R1/2 used. Note this virial-like mass estimator implies the certain
methodology of R1/2 and σe measurements (for details see Cappellari et al. 2006). The half-
light radius and a total galaxy luminosity are obtained from a fit of R1/4 (de Vaucouleurs)
growth curves to the aperture photometry and the σe is measured in a circular aperture of
radius R1/2 centered on the galaxy.

1.2.2 Estimators based on the spherical Jeans equation

Another common approach to mass determination of elliptical galaxies is to use the station-
ary non-streaming spherical Jeans equation which describes the motion of a collisionless
system of test particles in a gravitational potential Φ(r). The Jeans equation relates to-
gether the anisotropy parameter β, a volume density of tracers j(r) and a radial velocity
dispersion σr(r) (Binney and Tremaine, 2008):

d

dr

(

jσ2
r

)

+ 2
β

r
jσ2

r = −j
dΦ

dr
, (1.9)

where the anisotropy β(r) = 1 − σ2
t /σ

2
r (see Figure 1.4) for the spherically symmetric

case (σt(r) is the tangential velocity dispersion). For a given β(r) one can derive M(< r)
from the Jeans equation linking j(r) and σr(r) to the observable surface brightness I(R)
and projected velocity dispersion σp(R) via the structural projection equation

I(R) = 2

∫

∞

R

j(r)r dr√
r2 −R2

, (1.10)
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Figure 1.4: Projection of a spherical system along the line of sight. r is the 3D radius, R
stands for the projected radius, σt and σr are the radial and tangential velocity dispersions
respectively.

and the anisotropic kinematic projection equation (Binney and Mamon, 1982)

σ2
p(R)I(R) = 2

∫

∞

R

(

1 − R2

r2
β

)

j(r)σ2
rr dr√

r2 −R2
. (1.11)

For isotropic distribution of tracers’ orbits (β = 0) one can solve the spherical Jeans
equation (1.9) and relate the mass M(< r) to the observables (I(R) and σp(R)) via the
isotropic mass inversion equation (Mamon and Boué, 2010):

M(< r) = − r

πGj(r)

∫

∞

r

d2(Iσ2
p)

dR2

RdR√
R2 − r2

, (1.12)

where a 3D stellar density is obtained from the Abel inversion equation:

j(r) = − 1

π

∫

∞

r

dI

dR

dR√
R2 − r2

, (1.13)

In general, for any known anisotropy profile the equation of anisotropic kinematic pro-
jection (1.11) can be inverted to yield the radial velocity dispersion profile σr(r), thus al-
lowing one to derive the mass distribution of a spherical galaxy through the Jeans equation
(1.9) in terms of double integrals of observable profiles I(R) and σp(R) (Mamon and Boué,
2010). Unfortunately, there is no direct and reliable way to derive β(r) from observational
data without invoking an expensive detailed modelling.

Richstone and Tremaine (1984) emphasized that the galaxy mass and the anisotropy
still can be disentangled from the Jeans equation under some reasonable assumptions.
For a spherical galaxy described by the de Vaucouleurs’s surface brightness distrubition
I(R) ∝ e−7.67(R/R1/2)

4

and a constant mass-to-light ratio, values of the observed velocity
dispersion (obtained from the Schwarzschild analysis) for isotropic, circular and radial
orbits are quite similar at some particular radius (see Figure 1 in Richstone and Tremaine
1984 and Figure 1.5), suggesting that at this radius the galaxy mass estimate is minimally
affected by the unknown anisotropy. Based on studies of stellar velocity profiles in the
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Figure 1.5: Projected velocity dispersion as a function of radius (normalized to the half-
light radius) for a spherical galaxy described by the de Vaucouleurs’s surface brightness
profile and isothermal gravitational potential. The curves show the observed velocity dis-
persion for isotropic (blue), circular (magenta) and radial (green) orbits. There exist a spe-
cial radius at which sensitivity to the anisotropy is minimal. Adapted from Churazov et al.
(2010).
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Figure 1.6: Projected velocity dispersion as a function of α for a spherical galaxy described
by the pure power-law surface brightness I(R) ∝ R−α profile and isothermal gravitational
potential. The curves show the observed velocity dispersion for different values of the
anisotropy parameter β. Adapted from Churazov et al. (2010).
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isothermal gravitational potential Gerhard (1993) noticed that for the pure power-law
surface brightness profile I(R) ∝ R−α) the projected velocity dispersion does not depend
on the anisotropy for α = 2 (Figure 1.6). Combining these two notes, Churazov et al.
(2010) proposed a simple mass estimator which determines the galaxy mass at the special
radius which is close to R2 where I(R) declines as ∝ R−2. From the spherical Jeans
equation (1.9) assuming Φ(r) = V 2

c ln r+const one can derive an analytic relation between
the circular speed (V 2

c (r) = GM(< r)/r) and the local properties of I(R) and σp(R) for
the cases of isotropic (β = 0), circular (β → −∞) and radial (β = 1) orbits:

V iso
c = σp(R) ·

√

1 + α + γ

V circ
c = σp(R) ·

√

2
1 + α + γ

α
(1.14)

V rad
c = σp(R) ·

√

(α + γ)2 + δ − 1,

where

α ≡ −d ln I(R)

d lnR
, γ ≡ −

d ln σ2
p

d lnR
, δ ≡

d2 ln[I(R)σ2
p]

d(lnR)2
. (1.15)

A radius where V iso
c , V circ

c and V rad
c have similar values is the special radius where

sensitivity of the method to the anisotropy β is expected to be minimal. Note, that for
σp = const and not very steep surface brightness profiles (δ ≪ α) the equations (1.14) can
be simplified to:

V iso
c = σp(R) ·

√
α + 1

V circ
c = σp(R) ·

√

2
α + 1

α
(1.16)

V rad
c = σp(R) ·

√
α2 − 1.

So for nearly flat velocity dispersion profiles in the isothermal gravitational potential
the galaxy circular speed (or mass) could be estimated at the radius R2 where I(R) ∝ R−2,
as pointed out by Gerhard (1993). For varying line-of-sight velocity disperion one can get
an anisotropy independent estimate of the circular speed using the local properties of the
observed I(R) and σp(R) profiles at the radius where analytic Vc-profiles from the equations
(1.14) have similar values.

While equations (1.14), (1.16) are derived under the assumption of Vc(r) = const, tests
on model spherical ‘galaxies’ with non-logarithmic potentials, non-power law behaviour of
the surface brightness profile and varying anisotropy parameter and tests on a sample of
cosmological zoom-simulations of individual galaxies (Churazov et al., 2010; Lyskova et al.,
2014b) have shown that the circular speed can still be recovered to a reasonable accuracy.

A similar approach has been suggested by Wolf et al. (2010) who derived the simple
mass estimator by manipulating the spherical Jeans equation (1.9) and the scalar virial
theorem. Wolf et al. (2010) noticed that for spherical systems with roughly constant σp(R),
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the mass within the radius r3 where j(r) ∝ r−3 (which is close to r1/2 ≈ 1.33R1/2) is almost
independent of the assumed β(r) and can be approximated as

M(< r3) ≈ 4

〈

σ2
p

〉

R1/2

G
. (1.17)

In contrast to the Churazov et al. (‘local’) approach, this estimator requires averaging
of the velocity dispersion out the the virial radius of the system and determination of
the projected half-light radius, i.e. depends on the global galaxy properties. For the
pure power-law surface brightness distribution and isothermal gravitational potential both

methods gives the same circular speed estimate Vc =
√

3σp(R2) =
√

3
〈

σ2
p

〉

at the special

radius R2 = r3.

1.3 Structure of the thesis

This thesis aims to investigate and further develop simple mass estimators for early-type
galaxies which could be applied to analysis of large optical galaxy surveys.

Chapter 1 gives results of extensive tests of the local mass estimator on a sample of
65 cosmological zoom-simulations of individual galaxies. It is also demonstrated that the
simple method could be succesfully applied to galaxy clusters where individual galaxies
are used as mass tracers.

The application of the simple optical mass estimator to real X-ray bright elliptical
galaxies is discussed in Chapter 2. Comparison of the simple estimate with the X-ray
based and luminous mass profiles allows one to put constraints on the gas physics and
configuration of stellar orbits. In this Chapter I estimate the magnitude of the non-thermal
microturbulent motions of the hot gas, disentagle stellar and dark matter contributions to
the total mass and characterize the distribution of stellar orbits for the analyzed sample
of galaxies.

Chapter 3 presents a comparison of the simple local method with the global approach
suggested by Wolf et al. (2010). To compare the methods I test them on a grid of analytical
models, on samples of simulated galaxies and real early-type galaxies that had been already
modelled using the Schwarzschild orbit superposition technique. A possibility to use the
simple estimates as a proxy for a virial galaxy mass is also discussed.

The main findings are summarized in Conclusions.
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Chapter 2

Testing a simple recipe for estimating
galaxy masses from minimal
observational data.

Based on Mon.Not.R.Astron.Soc., 2012, 423, 1813
N.Lyskova, E.Churazov, I.Zhuravleva, T. Naab, L. Oser, O. Gerhard, X. Wu
and on Astron. Nachr., 2013, 4-5, 360
N.Lyskova

Abstract.
The accuracy and robustness of a simple method to estimate the total mass profile of a

galaxy is tested using a sample of 65 cosmological zoom-simulations of individual galaxies.
The method only requires information on the optical surface brightness and the projected
velocity dispersion profiles and therefore can be applied even in case of poor observational
data. In the simulated sample massive galaxies (σ ≃ 200 − 400 km s−1) at redshift z = 0
have almost isothermal rotation curves for broad range of radii (RMS ≃ 5% for the circular
speed deviations from a constant value over 0.5Reff < r < 3Reff). For such galaxies the
method recovers the unbiased value of the circular speed. The sample averaged deviation
from the true circular speed is less than ∼ 1% with the scatter of ≃ 5 − 8% (RMS) up to
R ≃ 5Reff . Circular speed estimates of massive non-rotating simulated galaxies at higher
redshifts (z = 1 and z = 2) are also almost unbiased and with the same scatter. For the
least massive galaxies in the sample (σ < 150 km s−1) at z = 0 the RMS deviation is
≃ 7 − 9% and the mean deviation is biased low by about 1 − 2%. We also derive the
circular velocity profile from the hydrostatic equilibrium (HE) equation for hot gas in the
simulated galaxies. The accuracy of this estimate is about RMS ≃ 4 − 5% for massive
objects (M > 6.5× 1012M⊙) and the HE estimate is biased low by ≃ 3− 4%, which can be
traced to the presence of gas motions. This implies that the simple mass estimate can be
used to determine the mass of observed massive elliptical galaxies to an accuracy of 5−8%
and can be very useful for galaxy surveys.
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2.1 Introduction

The accurate determination of galaxy masses is a crucial issue for galaxy formation and
evolution models. Disentangling dark matter and baryonic matter of a galaxy permits test-
ing the predictions of ΛCDM-cosmology and probing the mass function. An algorithm for
deriving the mass of a spiral galaxy is straight forward - one just need to measure a rotation
curve from gas or stars that can be safely assumed to be on circular orbits. For elliptical
galaxies the situation is less simple. There is no ‘perfect’ (in terms of accuracy) tracer to
measure the total gravitational potential. The main problem is the degeneracy between
the anisotropy of stellar orbits and the mass. The shape of stellar orbits is not known a
priory and different combinations of orbits may give the same distribution of light. Several
different approaches for mass determination were proposed and succesfully implemented,
like strong and weak lensing (e.g. Gavazzi et al., 2007; Mandelbaum et al., 2006), mod-
elling of X-ray emission of hot gas in galaxies (e.g. Humphrey et al., 2006; Churazov et al.,
2008), Schwarzschild modelling of stellar orbits, etc. Accurate data on the projected line-of-
sight velocity distribution with information on higher-order moments enables an accurate
determination of the mass distribution for nearby ellipticals (e.g. Gerhard et al., 1998;
Thomas et al., 2011). However, in case of minimal available data detailed modelling is
often not possible. Therefore it is important to find a method to measure galaxy masses
with reasonable accuracy which gives an unbiased estimate when averaged over a large
number of galaxies. In particular, it can be extremely useful while analysing large surveys,
especially at high redshifts when detailed observational data of each individual galaxies
are often not available.

The simplest way of estimating the mass of a galaxy is based on the projected velocity
dispersion in a fixed aperture (e.g. Cappellari et al., 2006). A slightly more complicated
approach is described in Churazov et al. (2010). To estimate the mass the only information
required is the light profile and either the dispersion profile measurement or at least a
reliable dispersion measurement at some radius. Testing this particular method on a
sample of simulated galaxies is the subject of this paper. The main questions that we
want to address are (i) What is the accuracy of this method? (ii) Does it give an unbiased
result? (iii) What are the restrictions for application of this method?

The structure of the paper is as follows. In section 2.2, we provide a brief description
of the method. In section 2.3 we describe the sample of simulated galaxies which is used
to test the method. The analysis of the accuracy of the method is presented in section 2.4
where we also discuss alternative methods for determining the circular velocity. A summary
on the bias and accuracy of the various methods is given in section 2.6 with conclusions in
section 2.7.

2.2 Description of the method

The main idea of the method is described in Churazov et al. (2010). Here we just provide
a brief summary.
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The method is based on the stationary non-streaming spherical Jeans equation:

d

dr
jσ2

r + 2
β

r
jσ2

r = −j
dΦ

dr
, (2.1)

where j(r)1 is the stellar luminosity density, σr(r) is the radial component of the veloc-
ity dispersion tensor (weighted by luminosity), β(r) = 1 − σ2

θ/σ
2
r is the stellar anisotropy

parameter (σθ = σφ because of the assumed spherical symmetry) and Φ(r) is the gravita-
tional potential of a galaxy.

While the stellar luminosity density j(r) and radial dispersion σr(r) can not be observed
directly they contribute to the two-dimensional surface brightness I(R) and the velocity
dispersion σ(R) profiles:

I(R) = 2

∫

∞

R

j(r)r dr√
r2 −R2

, (2.2)

σ2(R) · I(R) = 2

∫

∞

R

j(r)σ2
r(r)

(

1 − R2

r2
β(r)

)

r dr√
r2 −R2

. (2.3)

Assuming β(r) = const we note that β = 0 for systems where the distribution of stellar
orbits is isotropic, β = 1 if all stellar orbits are radial and β → −∞ if the orbits are
circular.

Assuming the logarithmic form of the gravitational potential Φ(r) = V 2
c ln(r) + const

and using local properties of given I(R) and σ(R) one can calculate a circular velocity Vc for
three different types of stellar orbits: isotropic (σr = σφ = σθ, β = 0), radial (σφ = σθ = 0,
β = 1) and circular (σr = 0, β → −∞). These relations are given by:

V iso
c = σiso(R) ·

√

1 + α + γ

V circ
c = σcirc(R) ·

√

2
1 + α + γ

α
(2.4)

V rad
c = σrad(R) ·

√

(α + γ)2 + δ − 1,

where

α ≡ −d ln I(R)

d lnR
, γ ≡ −d ln σ2

d lnR
, δ ≡ d2 ln[I(R)σ2]

d(lnR)2
. (2.5)

In case of noisy data on the dispersion velocity profile the subdominant terms γ and δ
can be neglected, i.e. the dispersion profile is assumed to be flat, and equations (2.4) are
simplified to:

V iso
c = σiso(R) ·

√
α + 1

V circ
c = σcirc(R) ·

√

2
α + 1

α
(2.6)

1Throughout this paper we denote a projected 2D radius as R and a 3D radius as r.
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V rad
c = σrad(R) ·

√
α2 − 1.

Let us call a sweet spot the radius at which all three curves V iso
c (R), V circ

c (R) and
V rad
c (R) are very close to each other. One can hope that at the sweet spot the sensitivity

of the method to the stellar anisotropy parameter β is minimal and the estimation of the
circular speed at this particular point is reasonable. E.g. from equations (2.6) it is clear
that in case of the power-law surface brightness profile with α = 2 and β = const the
relation between the circular speed and the projected velocity dispersion does not depend
on the anisotropy parameter (e.g. Gerhard, 1993). While the derivation of equations (2.4),
(2.6) relies on the assumption about a flat circular velocity profile, tests on model galaxies
with non-logarithmic potentials, non-power law behaviour of the surface brightness and
line-of-sight velocity dispersion profiles and with the anisotropy parameter β varying with
radius (Churazov et al., 2010) have shown that the circular speed can still be recovered
to a reasonable accuracy. Now we extend these tests to a sample of simulated elliptical
galaxies.

This method for evaluating the circular speed is not only simple and fast in implemen-
tation but it also does not require any assumptions on the radial distribution of anisotropy
β(r) and mass M(r).

The mathematical derivation of equations (2.4-2.6) can be found in Churazov et al.
(2010). A similar approach and analytic formulae for kinematic deprojection and mass
inversion also can also be found in Wolf et al. (2010) and Mamon et al. (2010).

2.3 The sample of simulated galaxies

2.3.1 Description of the sample

Simulations provide a useful opportunity to test different methods and procedures as all
intrinsic properties of a system at hand are known. The main drawback of simulated objects
is that they may not include all physical processes that take place in reality and thus may
not reflect all complexity of nature. To test the procedure under consideration we have used
a sample of 65 cosmological zoom simulations partly presented in Oser et al. (2010). These
SPH simulations include feedback from supernovae type II, a uniform UV-background
radiation field, star formation and radiative Hydrogen and Helium cooling but do not
include ejective feedback in the form of supernovae driven winds. Present-day stellar masses
of simulated galaxies range from 2.18×1010M⊙h

−1 to 28.68×1010M⊙h
−1 inside 30 kpc. The

softening length used in simulations is about Rsoft=400 pc h−1, h = 0.72. Typically the
softening can affect profiles up to ∼ 3Rsoft, which is ≃ 1.7 kpc in our case. We have followed
a conservative approach and restricted the analysis to radii larger than 3 kpc. It should
be noted that low-mass simulated galaxies may have no real counterparts possibly due
to lack of important physical processes (e.g., significant winds) in simulations. However,
it has been demonstrated in Oser et al. (2012) that the massive simulated galaxies have
properties very similar to observed early-type galaxies (see also Figure 4), i.e. they follow
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Figure 2.1: Circular velocity curves of massive galaxies (σ(Reff) > 200 km s−1) as a
function of radius r. Individual rotation curves normalised to the speed averaged over
[0.5Reff , 3Reff ] are shown in black, green dashed lines indicate the interval [1 − RMS, 1 +
RMS], where RMS = 4.9%, the red thick line represents the overall trend Vc ∝ r−0.06.

the observed scaling relations and their evolution with redshift. For detailed description
of simulations and included physics see Oser et al. (2010).

To effectively increase the number of galaxies we have considered three independent
projections of each galaxy. So the whole sample of simulated galaxies consists of 195
objects2.

2.3.2 Isothermality of potentials in massive galaxies

First of all we have found that massive galaxies in the sample have almost isothermal
rotation curves over broad range of radii. To demostrate this statement (Figure 2.1) we
have selected galaxies with a projected velocity dispersion at the effective radius σ(Reff)
(procedure of computation Reff is described in section 2.3.3) greater than 200 km s−1 and
plotted their circular velocity curves Vc =

√

GM(< r)/r as a function of r/Reff . G is the
gravitational constant, M(< r) is the mass enclosed within r and Reff is the effective radius
of the galaxy. The circular velocity curves were normalised to the value of Vc averaged
over r ∈ [0.5Reff , 3Reff ]. Three circular velocity curves that make the most significant
contribution to the RMS actually correspond to galaxies with the effective radius Reff < 6
kpc. The fact that for these galaxies 0.5Reff is close to the softening length may affect the

2Nevertheless, for calculating an error in a bias estimation (= RMS /
√
N) we conservately use the

number of galaxies rather than the number of projections as the subsamples corresponding to different
projections are not entirely independent.
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Figure 2.2: Excluding the satellites. 150 kpc × 150 kpc. Left: Initial galaxy image. Right:
Cleaned galaxy image.

scatter.

2.3.3 Analysis procedure

The analysis of each galaxy consists of several steps described below.

Step 1: Excluding satellites from the galaxy image.

Usually an image of a simulated galaxy (the distribution of stars projected onto a plane)
contains many satellite objects and needs to be cleaned. Exclusion of satellites makes the
surface brightness and the line-of-sight velocity dispersion profiles smoother and reduces
the Poisson noise associated with satellites. The algorithm we used for removing satellites
is as follows: first, for each star a quantity w characterising the local density of stars
(w ∝ ρ

−1/3
∗ ) and analogous to the HSML (the SPH smoothing length) was calculated and

the array of these values was sorted. Then the (0.4·Nstars)
th term of the sorted w-array was

chosen as a reference value wo. Nstars is a total number of stars in a galaxy and a factor in
front of Nstars is some arbitrary parameter (the value 0.4 was chosen by a trial-and-error
method). Stars with the 3D-radius r > 10 kpc and w < wo are considered as members of
a satellite. After projecting stars onto the plane perpendicular to the line of sight we have
excluded all satellites together with an adjacent area of 1.5 kpc in size. The inititial and
final images of some arbitrarely chosen galaxy (the virial halo mass is ≃ 1.7× 1013M⊙h

−1)
are shown in Figure 2.2.

Step 2: Evaluating I(R) and σ(R).

All radial profiles have been computed in a set of logarithmic concentric annuli around
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Figure 2.3: Influence of satellites on the surface brightness (the upper panel) and the
projected velocity dispersion profiles (in the middle). Open black circles correspond to
the initial galaxy image and solid red circles - to the galaxy image without satellites. The
black dashed curve is the smoothed curve for the initial data and the black solid curve is
for the cleaned data. The bottom panel shows the true circular velocity (black thick line)
and recovered circular velocity for the isotropic distribution of stellar orbits (in blue) for
initial data (dashed) and cleaned data (solid). It is clear that removing satellites reduces
the scatter in the line-of-sight velocity dispersion data and makes the profile smoother.
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the halo center. To calculate the surface brightness profile, corrected for the contamination
from the satellites, we have first counted the number of stars in each annulus, excising
the regions around satellites. The surface area of each annuli has been also calculated,
excluding the same regions. The ratio of there quantities gives us the desired ‘cleaned’
surface brightness profile. The average line-of-sight velocity of stars and the projected
velocity dispersion have been calculated similarly.

Importance of the ‘cleaning’ procedure and the resulting profiles of I(R) and σ(R) are
shown in Figure 2.3. The surface brightness data (open circles correspond to the initial
(‘uncleaned’) image and red solid circles to the ‘cleaned’ image) and the smoothed curves
(the calculation of these curves is described in Step 3) are shown in the upper panel, the
projected velocity dispersion profiles are shown in the middle panel. The true circular
velocity V true

c (r) (black solid curve) and recovered from the initial data (blue dashed line)
and from ‘cleaned’ data (blue solid line) circular velocity for the isotropic distribution of
stellar orbits V iso

c (the first equation in (2.4)) are shown in the bottom panel. The last
curve is in better agreement with the true velocity profile. All results and figures in this
paper are restricted to the region R > 3.0 kpc.

Step 3: Taking derivatives.
To take derivatives we follow the procedure described in Churazov et al. (2010) in

Appendix B. The main idea is that all data points participate in calculating the derivative
but with different weights. The weight function is given by

W (R0, R) = exp

[

−(lnR0 − lnR)2

2∆2

]

, (2.7)

where R0 is the radius at which the derivative is being calculated and the parameter ∆ is
the width of the weight function.

Both observed and simulated surface brightness profiles are typically quite smooth so
we have used ∆I = 0.3 to calculate the logarithmic derivative d ln I(R)/d lnR. For the
line-of-sight velocity dispersion data we have used ∆σ = 0.5. With the assumed values
of ∆ the local perturbations are smoothed out but the global trend of the profiles is not
affected. Changing values ∆I and ∆σ in the range [0.3, 0.5] does not significantly influence
our final result3. The difference (in terms of circular velocity) is less than 1%. As an
example the smooothed curves for the I(R) and σ(R) data in Figure 2.3 are calculated
using this procedure.

We have also tested the influence of parameters of the presented smoothing algorithm.
As long as the smoothed curve describes data reasonably well neither the functional form
of the weight function nor other parameters (like higher order terms in expansion ln I(R) =
a(lnR)2 + b lnR + c or σ(R) = a(lnR)2 + b lnR + c) significantly affect the final result.

Step 4: Estimating the circular velocity.
Applying equations (2.4) or (2.6) to the smoothed I(R) and σ(R) we have calculated

Vc-profiles assuming isotropic, radial and circular orbits of stars. Then we have found a

3If, however, we choose a width of the weight function smaller that ∆ = 0.3 the local scatter in the
data is not smoothed out and the results become ambiguous.



2.3 The sample of simulated galaxies 25

Figure 2.4: Reff −M∗ relation. The blue solid line is the linear fit to data points from the
simulations. The green dashed line is the observed mass-size relation from (Auger et al.,
2010).

radius (a sweet point Rsweet) at which the quantity (V iso
c −V )2 +(V rad

c −V )2 +(V circ
c −V )2,

where V = (V iso
c +V rad

c +V circ
c )/3, is minimal. The value of the isotropic velocity profile at

this particular point is the estimation of the circular velocity speed we are looking for. We
take V iso

c as an estimate of the Vc(R) (rather than V circ
c or V rad

c ) for two reasons. Firstly,
at around one effective radius the dominant anisotropy for most elliptical galaxies is σzz <
σRR ∼ σφφ (Cappellari et al. (2007)). The spherically averaged anisotropy is therefore
only moderate (see also Gerhard et al. (2001), Figure 4). Massive elliptical galaxies are
the most isotropic. Thus an isotropic orbit distribution is a much better approximation
than purely radial or circular orbits. Secondly, the value of V iso

c is less prone to spurious
wiggles in I(R) and σ(R).

The effective radius Reff is calculated as a radius of the circle which contains half of
the projected stellar mass, taking into account effects of cleaning. We found that in the
simulated data-set the value of the effective radius depends on the maximal radius used to
calculate the total number of stars in a galaxy. The problem is especially severe for the most
massive galaxies as they have an almost power-law 3D stellar density distribution ρ∗ ∝ r−a

with a ≃ 3. In our analysis (in contrast to Oser et al. (2012)) we have not introduced any
artificial cut-off and used all stars in the smooth stellar component (excluding substructure)
of the main galaxies out to their virial radii for the calculation of the effective radius. The
resulting effective radii as a function of total stellar mass (in logarithmic scale) are shown
in Figure (2.4). The slope and the normalization of the Reff −M∗ relation are close to the
fit of SLACS data by Auger et al. (2010).

The axis ratio q of each projection of a galaxy is calculated as a square root of eigenval-
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Figure 2.5: The fraction of galaxies (in %) as a function of deviation ∆opt =
(

V iso
c − V true

c

)

/V true
c evaluated via equations (2.4) at different radii: Rsweet (panel (A)),

Reff (panel (B)), 0.5Reff (panel (C)) and 2Reff (panel (D)).

ues of the diagonalised inertia tensor. The inertia tensor is computed within the effective
radius without excluding substructures. We have found that q is not sensitive to our
cleaning procedure as normally there are almost no satellites within Reff .

2.4 Analysis of the sample

2.4.1 At a sweet point

For each galaxy in the sample we have performed all steps described above and we have
selected the radius at which the circular velocity curves for isotropic, circular and radial or-
bits (equations (2.4)) intersect or lie close to each other. Then we have calculated the value
of the isotropic speed V iso

c at this radius. To measure the accuracy of our estimates let us
introduce a deviation from the true circular speed ∆opt =

(

V iso
c − V true

c

)

/V true
c , where V iso

c

and V true
c should be taken at the sweet spot Rsweet. The subscript ‘opt’ (= optical) is used
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Figure 2.6: Left: Example of the galaxy that perfectly suits for the analysis. The surface
brightness and the projected velocity dispersion profiles are shown in panels (A) and (B)
correspondingly. Data are represented as red points and smoothed curves that were used
to compute derivatives (α, γ, δ) as black solid lines. The auxilary coefficients α, γ,−δ and
α+γ are shown in panel (C) in red solid, blue dotted, green dash-dotted and black dashed
lines, respectively. Circular velocity profiles for isotropic orbits of stars (blue solid line),
pure radial (green dash-dotted) and pure circular (magenta dashed) orbits as well as the
true circular speed (black thick curve) are presented in panel (D) for the full version of
the analysis (equations (2.4)). And the same curves for the simplified analysis (equations
(2.6)) are shown in panel (E). Right: Example of the galaxy with large deviation ∆opt due
to merger activity. The crest in the projected velocity dispersion profile at R ≃ 20 kpc
leads to the significatly overestimated value of the circular speed.
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Figure 2.7: Left: Shown in cyan is the histogram for deviations for galaxies with the axis
ratio q < 0.6, in black is the histogram for the same galaxies but seen in a projection with
the axis ratio q close to unity (= seen along the rotation axis). Right: The histogram for
deviations for the sample when merging and oblate galaxies seen along the rotation axis
are excluded (subsample ‘G’). The average deviation ∆opt = (−1.2± 0.9)%, RMS = 6.8%.
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to distinguish this method (based on optical data) from circular speed calculations based
on X-ray data. We have plotted the number of galaxies (normalised to the total number of
galaxies and expressed in %) versus the deviation ∆opt in a form of a histogram. To have
an idea whether the method under consideration gives resonable accuracy, histograms for
deviations at Reff , 0.5Reff and 2Reff are also shown. The whole sample (‘subsample A’) is
presented in Figure 3.6. The sample averaged value of the deviation ∆opt is slightly less
than zero in all cases. For example, at the sweet point ∆opt = (−1.8 ± 1.1)% while the
RMS = 8.6%4.

Large deviations (∼ 30 − 40%) are seen only in galaxies with ongoing merger activity.
The influence of mergers appears as ‘waves’ in the projected velocity dispersion profile.
The example of such a system is shown in Figure 2.6 (right panel). The presence of such
‘waves’ indicates that the circular speed could be significantly overestimated (by a factor
of ∼ 1.2 − 1.5), which is not surprising as the method is based on the spherical Jeans
equations and the assumption about dynamical equilibrium is violated. When the profiles
I(R) and σ(R) are smooth and monotonic the circular speed can be recovered with much
higher accuracy (Figure 2.6, left panel).

The sample includes galaxies with different values of ellipticity. The axis ratio q (com-
puted from the diagonalized inertia tensor within Reff) ranges from 0.19 to 0.99. To test
the possible influence of the ellipticity on the accuracy of estimates we have selected galax-
ies with axis ratio q < 0.6. The resulting distribution as a function of the circular speed
deviations is almost symmetric, unbiased, with RMS ≃ 8% (Figure 2.7). On the other
hand, if we consider the same galaxies seen in a projection with the maximum value of
the axis ratio q, we get the distribution appreciably biased toward negative values of the
deviation (∆opt = (−10.2± 1.6)%). The reason for this bias is rotation. When observing a
galaxy along its rotation axis the projected velocity dispersion is appreciably smaller than
for perpendicular directions. To further test this statement we have rotated each galaxy
so that the principal axes of the galaxy (A ≥ B ≥ C) coincide with the coordinate system
(x, y and z, correspondingly) and analysed velocity maps for each projection. As a criteria

for rotation we have used the anisotropy-parameter (v/σ)∗ =
v/σ

√

(1 − q)/q
, where v is the

average rotation velocity of stars, σ is the mean velocity dispersion and q is the axis ratio
(Binney, 1978; Bender and Nieto, 1990). If (v/σ)∗ > 1.0 then the object is assumed to be
rotating. We have found that the most massive simulated galaxies usually do not rotate
or rotate slowly and show signs of triaxiality while less massive galaxies rotate faster and
show signs of axisymmetry. This statement is in agreement with observational studies (e.g.
Cappellari et al. (2007) and references therein). Moreover, the majority of rotating galax-
ies appears to be oblate, rotating around the short axis. So for the oblate galaxies observed
along the rotation axis (and as a consequence seen in a projection with the axis ratio q
close to unity) the method gives underestimated values of the circular speed. It should be
noted that when observing the rotating galaxies along long axes the circular speed esti-

4x =

∑

x

N
, RMS =

√

∑

(x− x)2

N − 1
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Figure 2.8: Left: Distribution of galaxies from the subsample ‘MG’ (massive galaxies with
σ(Reff) > 150 km s−1 when merging and oblate galaxies observed along the rotation axis
are excluded) according to their deviations. Deviations are calculated at Rsweet (panel (A)),
Reff (panel (B)), 0.5Reff (panel (C)) and 2Reff (panel (D)). Right: The same histograms
but for the simplified version of the analysis (equations (2.6))

mate is slightly biased towards overestimation (Thomas et al. (2007) reached the similar
conlusion). The average deviation for the subsample of oblate galaxies seen perpendicular
to the rotation axis is biased high by ∆opt ≃ (4.4 ± 1.4)% with RMS = 6.3%.

To investigate possible projection effects on the results of our analysis we have picked
one rotating galaxy (the virial halo mass is ≃ 2.2× 1012M⊙h

−1) and calculated the surface
brightness and the velocity dispersion profiles for different lines of sight. While the light
profiles are quite similar, the velocity dispersion profiles may differ significanly when the
line of sight is parallel to the rotation axis and perpendicular to it. We have calculated
the average value of the circular speed estimates taking into account the probability of
observing the galaxy at different angles. For the selected galaxy the average deviation
from the true Vc is about −4.9% and the maximum deviation (when observing along the
rotation axis) is about −25%.

It should be mentioned that the method under consideration was designed for recovering
the circular speed in massive elliptical galaxies and it does not pretend to give accurate
results for low-mass galaxies. In addition, not so many elliptical galaxies with σ < 150 −
200 km s−1 are observed (e.g. Bernardi et al., 2010).

It is convenient to distinguish low and high mass simulated galaxies by the value of
the projected velocity dispersion at the effective radii. Let us call ‘massive’ galaxies with
σ(Reff) > 150 km s−1. If we apply our analysis to the subsample of massive galaxies and
exclude merging and oblate galaxies seen along the rotation axis (the subsample ‘MG’),
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we get an unbiased distribution with RMS = 5.4%. The resulting histogram is shown in
Figure 2.8, left image, panel (A). Estimations at other radii give slightly more biased and
slightly less accurate results (Figure 2.8, left image, panels (B)-(D)).

Thereby we have marked out four subsamples - the whole sample without exceptions
(‘A’ - all), the sample without merging or oblate galaxies seen along the rotation axis (‘G’
- good), the subsample of massive galaxies (‘M’ - massive) with σ(Reff) > 150 km s−1 and,
finally, the subsample of massive galaxies when merging and oblate galaxies observed along
the rotation axis are excluded (‘MG’ - massive and good).

In case of missing or unreliable data on the line-of-sight velocity dispersion profile
Churazov et al. (2010) suggest to apply a simplified version of the aforementioned analysis
(equations (2.6)). By neglecting terms γ and δ we assume that the projected velocity
dispersion profile is flat. Then the radius at which I(R) ∝ R−2 is the sweet point. The
resulting histograms for the subsample ‘MG’ are shown in Figure 2.8, right panel. It can
be seen that data on the projected velocity dispersion plays noticable role in the analysis
if the required accuracy is of order of several %. Neglecting its derivatives leads to a bias
towards underestimated values of Vc (∆opt = (−4.0±1.1)% at the sweet point) and broader
wings/tails (RMS = 6.4% at Rsweet) compared to Figure 2.8, left panel. Nonetheless, if
only the surface brightness profile and some data on the projected velocity dispersion are
available the simplified version of the method seems to be a good choice.

2.4.2 Simulated galaxies at high redshifts

We have also tested the same procedure for galaxies at higher redshifts. Namely, at z = 1
and z = 2. The fraction of merging galaxies in the sample is larger at high redshift than at
z = 0 and the number of stars in each halo is considerably smaller. Nevertheless, results
are quite encouraging. For the subsample ‘MG’ the average deviation of the circular speed
for the isotropic distribution of orbits at the sweet point (estimated via equations (2.4))
from the true one is close to zero and the scatter is modest. At redshift z = 1 the average
deviation is ∆opt = (−0.3 ± 1.1)% and RMS = 6.0 %, at z = 2 ∆opt = (0.9 ± 2.2)% and
RMS = 8.0 %.

2.4.3 Mass from integrated properties

Asssuming the logarithmic form of the gravitational potential Φ(r) = V 2
c ln r + const we

can estimate the potential Φ over some range of radii up to a constant. To calculate the
potential one needs to know the circular velocity profile. If we assume that this profile
roughly coincides with the isotropic profile V iso

c over some range of radii (let us choose
R ∈ [0.5Reff , 3Reff ] as a range of radii easily available for observations), we can define:

Φopt =

R
∫

0.5Reff

[

V iso
c

]2

r
dr, (2.8)



32 2. Simple recipe for estimating galaxy masses

Figure 2.9: Accuracy of the derived potential of massive galaxies (merging and oblate
objects seen along the rotation axis are excluded). In cyan shown the histogram for the
quantity ∆Φ = (1− κ) · 100%, where κ = ∆Φtrue/∆Φopt. In black shown the histogram for

the deviation ∆̃opt of the estimated at the sweet point
[

V iso
c

]2
from the true one [V true

c ]
2
.

Left: Histograms for the full version of the analysis (equations (2.4)). The average value
of κ is κ = 1.02 ± 0.02 and RMS = 10.3%. The average value of the deviation ∆̃opt is
(−0.2 ± 1.9)% and RMS = 11.3%. Right: Histograms for the simplified version of the

analysis (equations (2.6)). κ = 1.09 ± 0.02 and RMS = 11.8%, ∆̃opt = (−7.2 ± 2.1)% and
RMS = 12.7%.
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where R ∈ (0.5Reff , 3Reff) and V iso
c can be found from the full version of the analysis

(the first equation of (2.4)) or from the simplified version (the first equation of (2.6)). As
the true potential is known we can write Φtrue = κ · Φopt + const. In the ideal case κ =
∆Φtrue/∆Φopt = 1.0. The accuracy of such an approach is illustrated in Figure 2.9. In cyan
is shown the distribution of subsample ‘MG’ of galaxies as a function of ∆Φ = (1−κ)·100%.
Just to remind this subsample consists of the massive galaxies with σ(Reff) > 150 km s−1

and merging galaxies as well as oblate galaxies seen along their rotation axes are excluded.
In case of the full analysis the distribution is almost unbiased (the average value of κ is
1.02 ± 0.02) with RMS = 10.9%. For the simplified formula of V iso

c we see some offset
kappa = 1.09±0.02 and RMS = 11.8%. In approximation of small deviations RMS defined

for the potential calculations is twice as large as RMS for the circular velocity calculations
because the potential Φ scales as V 2

c . To compare this approach with previous results let

us introduce the deviation ∆̃opt = (
[

V iso
c

]2− [V true
c ]

2
)/ [V true

c ]
2

estimated at the sweet point
Rsweet. Resulting distribution for the same subsample is shown in black in Figure 2.9. As
expected the width of this distribution is nearly two times larger than the distribution of
circular velocity estimates (Figure 2.8).

As we see the gravitational potential can be estimated via V iso
c with reasonable accuracy.

This fact is in agreement with the aforementioned statement that most massive galaxies
in the sample have almost flat circular velocity profiles in broad range of radii.

2.4.4 Circular speed derived from the projected dispersion in a
fixed aperture

When data on the velocity dispersion are available only in the form of aperture dispersions
one can estimate the circular speed using the simple relation

V 2
c = 3 · σ2

ap(< R), (2.9)

where σap(< R) is the velocity dispersion measured within some aperture R. To test this
way of evaluating the circular speed we have computed the luminosity-weighted dispersion
within the aperture of radius R (excluding the region R < 2Rsoft = 3 kpc where softetning
may affect results of the analysis)

σ2
ap(< R) =

R
∫

2Rsoft

I(x)σ2(x)xdx

R
∫

2Rsoft

I(x)xdx

(2.10)

and calculated the deviation from the true circular speed at different radii: at the
sweet point Rsweet for the full version of the analysis (equations (2.4)), at R = 0.5Reff , Reff

and 2Reff . The resulting histograms for the subsample ‘MG’ are presented in Figure 2.10.
Comparing with circular speed estimations at a single radius (in particular, at the sweet
point) this method gives a biased result ∆opt(Reff) = (1.0 ± 1.3)% and noticebly larger
RMS (at Reff RMS = 7.8%).
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Figure 2.10: Distribution of galaxies from the subsample ‘MG’ (galaxies with σ(Reff) > 150
km s−1 when merging and oblate galaxies seen along the rotation axis are excluded).
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2.4.5 Circular speed from X-ray data

Another way to measure the mass of galaxies comes from the analysis of the hot X-ray
gas in galaxies. By measuring the gas number density n and the temperature T profiles
from X-ray observations one can find the total mass assuming that the gas is in the hydro-
static equilibrium (HE) (e.g. Mathews, 1978; Forman, Jones and Tucker, 1985). Assuming
spherical symmetry, the equation of HE can be written

−1

ρ

dP

dr
=

dΦ

dr
=

V 2
c

r
=

GM

r2
, (2.11)

where P = nkT is the gas pressure (n is the gas number density), ρ = µmpn is the gas
density (mp is the proton mass), Φ is the gravitational potential, Vc is a circular velocity
and M is the total mass of the galaxy. In simulations the mean atomic weight µ is assumed
to be equal to 0.58. Strictly speaking, assuming the HE one neglects possible non-thermal
contribution to the pressure, which can be due to presence of (i) turbulence in the thermal
gas, (ii) cosmic rays and magnetic fields (e.g. Churazov et al., 2008).

To estimate deviations from HE, the so called mass bias, we took a subsample of the
most massive galaxies with M > 6.5 · 1012M⊙. X-ray properties of low mass galaxies in
the sample are influenced by gravitational softening in the central 3-4 kpc and are strongly
dominated by cold and dense clumps in center. Moreover, we know from observations that
only the most massive galaxies have massive X-ray atmospheres (e.g. O’Sullivan et al.,
2001).

The typical profiles of the gas density and temperature extracted from simulations
are shown in Figure 2.11. We used the median value of the electron density ne and T
determined in each spherical shell, so that we are free of cold dense clumps contamination
(Zhuravleva et al., 2012). Calculated pressure and circular velocity (equation 2.11) are also
shown in Figure 2.11. The spurious feature of simulations is that in the central 3-4 kpc
cold and dense clumps are strongly dominating. Even using the median value does not
remove these clumps, causing strong increase of density and drop of temperature in the
center. These clumps are moving ballistically and are not in the HE.

Deviations from HE ∆X =
Vc − V true

c

V true
c

were calculated at Reff (cyan histogram in Figure

2.12) and 2Reff (black histogram in Figure 2.12). The average over the subsample value of
the deviation at Reff is ∆X = (−3.0±1.3)% and RMS=4.4%. At 2Reff ∆X = (−4.0±1.1)%,

RMS = 3.8 %. The average value of
V 2
true − V 2

x

V 2
true

over Reff < R < 2Reff is 6.8 %.

To calculate averaged ratio of kinetic energy and thermal energy
Ekin

Etherm

on Reff < R <

2Reff one should exclude cold dense clumps since their contribution to the kinetic energy can
be significant. The procedure to exclude clumps is described in Zhuravleva et al. (2012).
In brief, in each radial shell, we exclude particles with density exceeding the median value
by more that 2 standard deviations. An example of initial and diffuse projected densities

is shown in Figure 2.13. Calculated mean ratio of
Ekin

Etherm

for diffuse component is 4.4 %,



36 2. Simple recipe for estimating galaxy masses

Figure 2.11: Profiles of hot gas electron number density, temperature, pressure and circular
velocity of simulated galaxy. Dotted vertical curves show the upper and lower limits on
R. Vc plot: solid and dashed curves show mass from HE and total mass from simulations
respectively.
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Figure 2.12: Distribution of galaxies according to their deviations of estimated circular
speed from the true value at Reff (shown in cyan) and at 2Reff (shown in black). Circular
speed is derived using the hydrostatic equilibrium equation for the hot gas. The sample
consists of 12 galaxies.

which is close to the bias in mass from HE.

2.5 Testing the method on simulated galaxy clusters

The simple method for mass determination of elliptical galaxies from optical data is not
restricted to analysis of stellar profiles. Planetary nebulae and globular clusters can also
be used as tracers. Moreover, it can be applied to galaxy clusters for which we can use a
spatial distribution and velocity dispersion of individual galaxies to get a reliable mass (or
circular speed) estimate. To test the method we have applied it to a sample of simulated
galaxy clusters from Dolag et al. (2009). Extracted light profile (number of galaxies per
unit area) and line-of-sight velocity dispersion profile have much more scatter than those
for the elliptical galaxies due to smaller number of tracers. So it is reasonable to use the
simplified version of the analysis (equations (2.6)).

Figure 2.14 illustrates an example of applying the method to a simulated galaxy cluster.
The projected number density I(R) and the line-of-sight velocity dispersion profiles are
shown in Figure 2.14, panel A and panel B, respectively. Using equations (2.6) we have
computed V iso

c , V rad
c and V circ

c and found a point Rsweet of their intersection at which we
estimate the circular speed and calculated the deviation ∆opt.

Figure 2.15 shows the histograms of the deviation ∆opt for two cases: when number of
galaxies (subhalos) is large, e.g. Nsubhalos > 100 (Figure 2.15 , upper panel), and when the
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Figure 2.13: Projected number density of hot gas in simulated galaxy. Left: initial density,
right: density with excluded clumps.
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Figure 2.14: Circular speed estimation in the simulated galaxy cluster. The projected
number density of galaxies and the line-of-sight velocity dispersion profiles are shown in
panels (A) and (B), respectively (data are shown as red triangles, interpolated curves - as
black solid lines). The slope of the surface brightness α is shown in panel (C) as a red solid
line. Circular speed profiles for isotropic orbits of galaxies (blue solid line), pure radial
(green dash-dotted) and pure circular (magenta dashed) orbits as well as the true circular
speed (black thick curve) are shown in panel (D) for the simplified version of the analysis
(equations (2.6)).
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Figure 2.15: The fraction of galaxy clusters as a function of the deviation ∆opt for two
cases: rich (panel A) and small clusters (panel B).
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Table 2.1: Summary of the methods discussed.

A G M MG
∆, RMS, ∆, RMS, ∆, RMS, ∆, RMS,
% % % % % % % %

full analysis, Rsweet -1.8 8.6 -1.2 6.8 0.2 7.7 0.0 5.4
full analysis, Reff -2.0 8.6 -2.4 5.9 -0.6 8.5 -1.0 5.1
simplified analysis, Rsweet -5.9 9.6 -5.8 7.4 -3.3 9.2 -4.0 6.4
simplified analysis, Reff -4.3 8.9 -4.6 6.6 -2.7 8.7 -3.0 5.8
Φtrue = κ · Φopt + const, eq.(2.4) 3.7 8.7 2.9 7.1 1.2 6.7 1.2 5.1
Φtrue = κ · Φopt + const, eq.(2.6) 7.5 10.1 6.7 8.2 4.4 7.8 4.5 5.9
aperture dispersions, Reff -1.4 10.3 -1.5 9.2 1.1 9.2 1.0 7.8

Reff 2Reff

∆,% RMS,% ∆,% RMS,%
X-ray -3.0 4.4 -4.0 3.8

number of galaxies does not exceed 50 (Figure 2.15 , lower panel).
When averaged over a sample the deviation is close to zero which allows one to use

the method for mass determination of even small clusters with ∼ 30 − 50 data points
available and for cross-calibration of other mass determination methods (X-ray analysis,
weak lensing, etc).

2.6 Discussion

In Table 3.3 we summarize the bias and accuracy of all methods discussed above. The
sample of simulated galaxies was divided into 4 subsamples: the whole sample without
exceptions (‘A’), the subsample ‘G’(‘good’) for which merging and oblate galaxies observed
along the rotation axis are excluded, the subsample ‘M’ of massive galaxies with σ(Reff) >
150 km s−1, and the subsample ‘MG’ of massive galaxies when merging and oblate galaxies
seen along the rotation axis are excluded. For estimations of the potential the bias and the
RMS are nearly twice large as those for the circular speed estimations. To avoid possible
confusion all values in the table are associated with Vc - estimations.

In case of the subsample ‘MG’ the estimation of the circular speed at the sweet point
with help of equations (2.4) gives the unbiased result (∆opt ≃ 0%) and reasonable accuracy
(RMS ≃ 5 − 6%). To test whether the unbiased average is not just a coincidence we have
performed a ‘Jack knife’ test. The resulting average for randomly chosen subsamples is
less than 1%. The subsample ‘MG’ consists of 106 objects and the statistical uncertainty
in this case is about 0.9%.

For the subsample ‘M’ of massive galaxies (127 objects, 26 of them (13.3%) are oblate,
3 of them (2.4%) are with ongoing merger activity) we also got almost the unbiased average
(∆opt = (0.2 ± 1.2)%). From an observational point of view merging objects can be easily
excluded while information on the ‘oblateness’ of galaxies may not be available. If we
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exclude merging galaxies from the subsample ‘M’ we get the average value of the deviation
∆opt = −0.7%, RMS = 5.9%. So the result is almost unbiased. But if run the ‘Jack knife’
tests we get on average slightly underestimated values of the circular speed with

∣

∣∆opt

∣

∣ less
than 1.5 %.

The method is not restricted to nearby galaxies, it also allows to recover the circular
speed for high-redshift ellipticals. The circular speed estimate averaged over the subsample
of massive and slowly or non-rotating simulated objests (mergers are excluded) at z = 1
is ∆opt = (−0.3 ± 1.1)% with RMS = 6.0 %, at z = 2 the average deviation is ∆opt =
(0.9± 2.2)% and RMS = 8.0 %. So the Vc-estimates are also almost unbiased with modest
scatter of 6 − 8% as in case of subsample ‘MG’ at z = 0.

While derivation of equations (2.4) and (2.6) is based on the assumption of the loga-
rithmic form of the gravitational potential we have shown that the circular speed estimate
at the sweet point is still reasonable even if true circular velocity is not flat.

The case of slowly changing Vc with radius can be illustrated by the following example.
If we assume that Vc varies with radius as a power law along with other quantities I(R) ∝
R−α, σ2

p ∝ R−γ, β = const we end up with the following relation between Vc and σp (from
Jeans equation):

V 2
c (R) = σ2

p(R) · 1 + α + γ − 2β

(1 − β · α+γ
1+α+γ

)
· Γ[α

2
] · Γ[1+α+γ

2
]

Γ[1+α
2

] · Γ[α+γ
2

]
, (2.12)

where Γ[x] is the gamma function. This relation is insensitive to the anisotropy parameter
β when α + γ = 2. One can hope therefore that for slopes slowly varying with radius
the sweet point will be located at the radius where this condition is met. Substituting
α + γ = 2 in equation (2.12) yields the relation between Vc and σp which coincides with
equation (2.5) for isotropic orbits for α = 2. Deviations of α from 2 by 10% cause modest
∼ 3% variations in Vc.

Simulated galaxies are of course more complicated than the above example. For our
sample we have investigated possible correlations between the deviation ∆opt of the esti-
mated Vc from the true one and local (at Rsweet) slopes of the velocity d lnV true

c /d ln r,
surface brightness α = −d ln I(R)/d lnR and velocity dispersion γ = −d ln σ2/d lnR pro-
files. There is no obvious correlation between ∆opt and α or γ. We do see a weak linear
trend in ∆opt and d lnV true

c /d ln r, although it is much smaller than the scatter in ∆opt.
Most of the galaxies in the sample Vc(R) slowly declines with radius near Rsweet (see Fig-
ure 2.1). However, even after subtracting this trend, the RMS-scatter in ∆opt is reduced
from 5.4% to 5.0%, i.e. only by 0.4%.

Comparable results are obtained using
∫ [

V iso
c

]2
/r dr over [0.5Reff , 3Reff ] as an estima-

tor of the gravitational potential.
The simplified version of the analysis (equations (2.6)) at the sweet point gives almost

the same result as at the effective radius. So if one has no enough data to calculate all
necessary for applying equations (2.4) derivatives it makes sense to derive V iso

c from the first
formula of (2.6) and use V iso

c (Reff) as an estimation of the circular speed. The quality of
such approach depends on the ‘quality’ of the sample. In case of non-interacting and almost
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Figure 2.16: Distribution of high-redshift galaxies from the subsample ‘MG’ (massive
galaxies with σ(Reff) > 150 km s−1 when merging and oblate galaxies observed along
the rotation axis are excluded) according to their circular speed deviations. Deviations are
calculated at Rsweet (panels (A), (C)) and at Reff (panels (B), (D)).
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spherical galaxies the RMS is about 7% and the bias is about (−4± 1.1)%. Assuming flat
projected velocity dispersion profile leads to the underestimation of the circular speed. If
data on the line-of-sight velocity dispersion allow to estimate the overall trend ∆σ/∆R it
may reduce the bias.

In general we can expect the sweet point to be not far from the radius R2 where
−d ln I(R)/d lnR ≃ 2. Indeed for a smooth surface brightness profile which gradually
steepers with radius an integral

∫

I(R)RdR diverges at low or high limits for −d ln I(R)/d lnR
greater or lower than 2 respectively. Therefore one can hope that at the radius R2 the con-
tributions to the integral of R < R2 and R > R2 to be comparable and R2 ∼ Reff . Thus,
Rsweet ∼ Reff . E.g. for a Sérsic model with index n (Graham and Driver (2005))

−d ln I(R)

d lnR
≃ 2

(

R

Reff

)1/n

and it can be easily seen that the sweet point for the circular speed estimation is of
order of the effective radius. Moreover, as it was shown in Churazov et al. (2010) (Table 4)
for Sérsic models the stellar anisotropy is close to minimal at about 0.5Reff and this radius
can be used as the sweet point for the circular speed determination.

We have tested the statement that Rsweet ∼ R2 ∼ Reff on the sample of the simulated
objects. If the slope of the surface brightness profile is close to −2 over some range of radii
or α = −d ln I(R)/d lnR is not monotonic then there is an ambiguity in selecting Rsweet

and R2. To avoid this ambiguity we have smoothed I(R) and σ(R) using the width of the
window function ∆I = ∆σ = 1.0. As a result α(R) has become monotonic for majority
of objects and newly determined R̃sweet, R̃2 follow the relationship R̃sweet ∼ R̃2 ∼ Reff .
However, a significant smoothing of data leads to a bias in estimating the circular speed
∆opt ≃ −2% at both R̃sweet and R̃2.

2.7 Conclusions

Being an important issue, the total mass estimation for elliptical galaxies is often quite
difficult, especially for galaxies at high redshift. We used a large sample of cosmological
zoom simulations of individual galaxies to test a simple and robust procedure (see equations
(2.4), (2.6)) based on the surface brightness and velocity dispersion profiles to estimate the
circular speed and therefore the total mass of a massive galaxy. The method is very simple
and it does not require any assumptions on the stellar anisotropy profile. For massive
ellipticals without significant rotation at redshifts z = 0 − 2 it gives an unbiased estimate
of the circular speed (the bias ∆opt(Rsweet) is less than 1%) with 5-6% scatter. Therefore this
method is suitable for the analyze of large samples of galaxies with limited observational
data at low and high redshifts. The method works best for the most massive ellipticals
(σ(Reff) > 200 km s−1), which in the present simulations have almost isothermal circular
velocity profiles over broad range of radii.

The method should be applied with caution to merging galaxies where the circular
speed can be significantly overestimated. For rotating galaxies seen along the rotation axis
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the procedure gives substantially underestimated Vc.
The best estimate of the circular speed is obtained at a sweet point Rsweet where the

sensitivity of the recovered circular speed to the stellar anisotropy is expected to be minimal
(see section 2.2). The Rsweet is expected to be not far from the projected radius where the
surface brightness declines approximately as I ∝ R−2. This radius is in turn close (within
factor of 2) to the effective radius Reff of the galaxy. Our tests have shown that the accuracy
(RMS scatter) of the circular speed estimates at 0.5 − 2 Reff is 5 − 7% for most massive
ellipticals.

An even simpler method - based on the aperture velocity dispersion (equations (2.9),
(2.10)) - is found to be less accurate, although the results are still reasonable. For exam-
ple, for massive galaxies without significant rotation the sample averaged deviation of the
circular speed at the effective radius is ∆opt(Reff) = (1.0 ± 1.3)% with RMS ≃ 8%. Other
flavors of the circular speed estimates are described in Section 2.4.4.

Using the same simulated set we have also tested the accuracy of the circular speed
estimate from the hydrostatic equilibrium equation for the hot gas in massive ellipticals.
We found a negative bias at the level of 3 − 4% and the scatter of ≃ 5%. The presence of
bias is caused by the residual gas motions.

The method is not restricted to elliptical galaxies. It can also be applied to galaxy
clusters. For galaxy clusters it is reasonable to use the simplified version of the analysis
(equation (2.6)) as the number of tracers (and, as a consequence, the number of data
points) is much smaller than in the case of galaxies. The recovered circular speed estimate
remains almost unbiased for poor as well as rich galaxy clusters with a reasonable scatter,
e.g. RMS = 11.3% for objects containing 25-30 tracer particles and rms reduces to 6.4%
when more than 100 tracers available.

Given it’s simplicity, small bias and modest scatter the method can be applied for quick
mass estimations for large samples of elliptical galaxies and galaxy clusters especially when
the comprehensive study of each individual object is not justified.
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Peletier R. F., Sarzi M., van den Bosch R. C. E., van de Ven G. 2006, MNRAS, 366,
1126

Cappellari M., Emsellem E., Bacon R., Bureau M., Davies R.L., de Zeeuw P.T., Falcón-
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Chapter 3

Stellar kinematics of X-ray bright
massive elliptical galaxies

Mon.Not.R.Astron.Soc., submitted
N.Lyskova, E.Churazov, A.Moiseev, O.Silchenko, I.Zhuravleva

Abstract.
We discuss a simple and fast method for estimating masses of early-type galaxies from

optical data and compare the results with X-ray derived masses. The optical method relies
only on the most basic observables such as the surface brightness I(R) and the line-of-
sight velocity dispersion σp(R) profiles and provides an anisotropy-independent estimate
of the circular speed Vc of the galaxy. The mass-orbit degeneracy is effectively overcome
by evaluating Vc at a characteristic radius Rsweet defined from local properties of observed
profiles without making apriori assumptions on the global radial distribution of mass, trac-
ers and/or orbital anisotropy. The sweet radius Rsweet is expected to lie close to R2 where
the surface brightness declines as R−2. For monotonically steepening profiles Rsweet and R2

should be not far from the effective radius Reff . We apply the method to a sample of five
X-ray bright elliptical galaxies observed with the 6-m telescope of the Special Astrophysical
Observatory of the Russian Academy of Sciences (SAO RAS). We then compare the optical
Vc-estimate with the X-ray derived value obtained from Chandra data under the assump-
tion of the hydrostatic equilibrium, and discuss possible constraints on the non-thermal
pressure in the hot gas and configuration of stellar orbits. We find that when averaged over
the sample the ratio of the optical Vc-estimate to the X-ray one is equal to ≈ 0.98 with
11% scatter, i.e. there is no evidence for the large non-thermal pressure contribution in the
gas at ∼ Rsweet. From analysis of the Lick indices Hβ, Mgb, Fe5270 and Fe5335, we derive
the ages, chemical abundance, stellar mass-to-light ratios, what allows us to calculate the
mass of the stellar component within the sweet radius. We conclude that a typical fraction
of dark matter inside Rsweet in the sample galaxies is ∼ 50% for the Salpeter IMF and
∼ 70% for the Kroupa IMF.



50 3. X-ray bright elliptical galaxies

3.1 Introduction

Being the most massive galaxies in the local Universe, giant elliptical galaxies provide
a natural laboratory to study galaxy formation, assembly and evolution processes. The
current paradigm of galaxy formation is the hierarchical scenario which suggests that early-
type galaxies have complex merging histories of assembling most of the mass through
accretion of small galaxies with rare major merger events (e.g. de Lucia and Blaizot, 2007;
Naab et al., 2007). Accurate mass determinations and disentangling a luminous and dark
matter components at different redshifts are the key steps towards a consistent theory for
elliptical galaxies formation.

Determining the mass profile of early-type galaxies is a notoriously difficult problem as
there are no dynamical tracers with the known intrinsic shape and structure of orbits, so
that circular velocity curves of elliptical galaxies cannot be measured directly. A number of
methods are in use for constraining the mass of early-type galaxies and the shape of dark
matter halos, each having its own set of assumptions and limitations. Comparison of the
mass profiles obtained from different independent techniques is necessary to get reliable
estimates. It also helps to control the systematic uncertainties, inherent in all methods, as
well as leads to interesting constraints on properties of elliptical galaxies.

One of the mass estimation techniques comes from X-ray observations of extended
hot X-ray-emitting coronae of massive elliptical galaxies. It is a powerful tool to probe
the mass distribution over several decades in radius: from ∼ 0.1Reff out to ∼ 10Reff .
In this approach spherical symmetry of a galaxy and hydrostatic equilibrium of the gas
are commonly assumed. While the spherical symmetry approximation introduces only
a small bias, if any (e.g. Piffaretti et al., 2003; Buote and Humphrey, 2012c), validity of
the hydrostatic equilibrium assumption is the subject of debate. When one is able to
quantify deviations from hydrostatic equilibrium, it allows to estimate (although indirectly)
pressure of the non-thermal gas motions. Most simulations suggest that in relaxed systems
hydrostatic approximation works well, with non-thermal support at the level of 5% to
35% of the total gas pressure (e.g. Nagai, Vikhlinin and Kravtsov, 2007). When X-ray
observations are combined with, for instance, optical data on the stellar kinematics, then
comparison between the X-ray gravitating mass profile and the optical mass allows one to
estimate the magnitude of the non-thermal motions of the hot gas, to constrain the mass-
to-light ratio, to disentagle stellar and dark matter contributions to the total gravitating
mass profile and to characterize the distribution of stellar orbits.

Although elliptical galaxies suffer from a lack of ‘ideal’ traces like disc rotation curves
in spiral galaxies and there is an inherent degeneracy between anisotropy and mass, studies
of stellar kinematics and dynamics provide the tools for measuring the gravitating mass
profile with sufficient accuracy (up to ∼ 15%, Thomas 2010). Methods based on the
Schwarschild modeling of stellar orbits in axisymmetric (or even triaxial) potentials are
considered to be the state-of-the-art techniques in this field. The most sophisticated ap-
proaches operate with full information on the line-of-sight velocity distribution including
higher-order moments. The orbit-based methods allow to infer not only the total mass
profile, but also to measure the dark matter content, derive mass-to-light ratios and get
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the distribution function of stellar orbits. Among the drawbacks of these methods are the
high computational cost and the necessity to have high-quality observational data. So only
nearby elliptical galaxies can be studied by means of Schwarschild modelling, and for a
large sample of objects, especially with noisy photometric and/or kinematical data, such
an approach is not justified.

In this paper we discuss a simple approach for estimating the mass from the stellar
kinematics (Churazov et al., 2010; Lyskova et al., 2012) that relies only on the most basic
observables such as the surface brightness and line-of-sight velocity dispersion profiles.
By design the method is simple and fast and has a modest scatter (∆Vc/Vc ∼ 5 − 10%,
Lyskova et al. 2012). This makes it suitable for large samples of elliptical galaxies even
with limited and/or noisy observational data. Of course, the method is not intended to
replace a thorough investigation of each indvidual galaxy.

We apply the method to a small and rather arbitrarily selected sample of massive
elliptical galaxies located at the centers of groups and clusters, and bright in X-rays. The
surface brightness and projected velocity dispersion profiles up to several effective radii
have been measured with optical long-slit spectroscopic facilities on the 6-m telescope of
the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS).
Using publicly available Chandra data we also derive the X-ray mass profile and compare
it with simple optical estimates.

The paper is organized as follows. In Section 3.2, we provide a brief description of the
method. We apply it to real elliptical galaxies in Section 3.3, starting with the illustration
of the method on the example of the extensively studied giant elliptical galaxy M87 in
Section 3.3.1. Details on the observations of the sample of early-type galaxies are presented
in Section 3.3.2. We derive circular speed estimates from optical and X-ray analyses and
estimate stellar contrubutions in Sections 3.3.3-3.3.6. Results are summarized in Section
3.4, and Section 3.5 contains conclusions.

3.2 Description and justification of the method

Recent studies of massive elliptical galaxies based on different approaches (stellar dynami-
cal methods, weak and strong lensing, hydrostatic mass modeling, and their combinations)
suggest that the gravitational potential Φ(r) is close to isothermal (e.g. Gerhard et al.,
2001; Treu et al., 2006; Koopmans et al., 2006; Fukazawa et al., 2006; Churazov et al.,
2010). For a singular isothermal sphere the gravitational potential can be written as
Φ(r) = V 2

c ln(r), the circular velocity curve is flat, Vc(r) = const, and the mass profile
scales as M(r) ∝ r. So if the total gravitational potential of the galaxy is indeed isother-
mal, it can be characterized with a single parameter - the circular speed Vc. Therefore
to the first approximation it is sufficient to determine Vc at any radius and the task is to
identify the radius at which the circular speed can be measured most accurately.

Stars in early-type galaxies can be considered as a collisionless system immersed in a
gravitational field. Let us consider a spherical galaxy in the equilibrium state. Stars in
such systems obey the Jeans equations which in the spherical coordinates (r, θ, φ) can be
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simply written as

d

dr
jσ2

r + 2
β

r
jσ2

r = −j
dΦ

dr
= −j

GM(r)

r
, (3.1)

where j(r)1 is the stellar number density, σr(r) is the radial velocity dispersion (weighted

by luminosity), β(r) = 1 −
σ2
φ + σ2

θ

2σ2
r

is the stellar anisotropy parameter, M(r) is the total

mass profile2. The anisotropy β(r) reflects the distribution of stellar orbits. If all stars in
a galaxy are on circular orbits, then β → −∞, for pure radial orbits β = 1, and β = 0 for
isotropic distribution of orbits.

We can link the unobservable quantites j(r), β(r) and σr(r) with observable ones -
a surface brightness I(R) and a line-of-sight velocity dispersion σp(R) profiles - via the
following equations:

I(R) = 2

∫

∞

R

j(r)r dr√
r2 −R2

, (3.2)

σ2
p(R) · I(R) = 2

∫

∞

R

j(r)σ2
r(r)

(

1 − R2

r2
β(r)

)

r dr√
r2 −R2

. (3.3)

Nevertheless, the set of equations (3.1)-(3.3) is not closed. An inherent mass-anisotropy
degeneracy does not allow us to solve it for the mass M(r) and anisotropy β(r) profiles
simultaneously. Traditionally the degeneracy is overcome by assuming some parametric
form of the mass or anisotropy profiles and fitting the resulting models to the observed I(R)
and σp(R). However, both M(r) and β(r) are still poorly constrained from observational
data alone (i.e., I(R) and σp(R)) without resorting to the state-of-the-art modeling or
adding detailed information on the line profiles. Here we discuss a technique that allows
to estimate the mass of a galaxy without apriori parametrization of M(r) and/or β(r).

Assuming the logarithmic (isothermal) form of the gravitational potential Φ(r) =
V 2
c ln(r)+ const one can solve analytically the spherical Jeans equation coupled with equa-

tions (3.2)-(3.3) for three types of tracers’ orbits - isotropic (β = 0), radial (β = 1) and
circular (β → −∞). Note that for a typical stellar distribution j(r) the projected velocity
dispersion profile σp(R) behaves differently depending on the value of β. In case of pure
radial stellar orbits σp(R) rapidly declines with the projected radius R, for the isotropic
distribution of orbits σp(R) declines much slower and, finally, σp(R) increases with R for
the circular orbits (e.g. Richstone and Tremaine, 1984; Churazov et al., 2010, Figure 3).
So there is an ‘optimal radius’ where the projected velocity dispersion profiles for differ-
ent values of anisotropy (almost) intersect each other. The existence of such a radius is
discussed in Richstone and Tremaine (1984), Gerhard (1993). The method based on this
observation is presented in detail in Churazov et al. (2010) and Lyskova et al. (2012).

It is practical to express the circular speed in terms of the observable surface brightness
and line-of-sight velocity dispersion profiles. For the logarithmic form of the gravitational

1Throughout this paper we denote a projected 2D radius as R and a 3D radius as r.
2Here we treat stars as test particles in the gravitational field Φ(r).
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potential Φ(r) = V 2
c ln(r) the circular velocity Vc profiles for isotropic, radial and circular

orbits are given by Churazov et al. (2010):

V iso
c = σp(R)

√

1 + α + γ

V circ
c = σp(R)

√

2
1 + α + γ

α
(3.4)

V rad
c = σp(R)

√

(α + γ)2 + δ − 1,

where

α ≡ −d ln I(R)

d lnR
, γ ≡ −

d ln σ2
p

d lnR
, δ ≡

d2 ln[I(R)σ2
p]

d(lnR)2
. (3.5)

Often the subdominant terms γ and δ can be neglected, i.e. the dispersion profile is
assumed to be flat and the curvature of I(R) to be small, and equations (3.4) are simplified
to:

V iso
c = σp

√
α + 1

V circ
c = σp

√

2
α + 1

α
(3.6)

V rad
c = σp

√
α2 − 1.

Let us call a ‘sweet spot’ Rsweet the radius at which all three curves V iso
c (R), V circ

c (R)
and V rad

c (R) are very close to each other. At this radius the circular speed uncertainty due
to the unknown stellar anisotropy is minimal. From the equations (3.6) it is clear that for
α = 2 the relation between Vc and σp is the same for all types of orbits. So in the general
case the sweet spot is expected to be located not far from the radius R2 where the surface
brightness declines as R−2 which is in turn close to the half-light radius Reff (see also
Wolf et al. 2010). If I(R) ∝ R−2 over some range of radii [R1, R2], then the Vc-estimates
based on equations (3.4) or (3.6) should work well over the whole range [R1, R2].

While the derivation of equations (3.4), (3.6) relies on the assumption of a flat circular
velocity profile, it works well even in case of slowly varying Vc(r). Lyskova et al. (2012)
have tested the method on a sample of cosmological simulations of elliptical galaxies from
Oser et al. (2010) and have shown that the circular speed can be recovered to a reasonable
accuracy. The rms-scatter in the circular velocity estimate has been found to be 5.4% for
present-day simulated massive elliptical galaxies without signs of significant rotation, while
the sample averaged bias is less than 1%.

3.2.1 Rotation of galaxies.

Elliptical galaxies can be divided into two broad families: (1) normal ellipticals, which
show significant rotation, tend to be flattened and have an oblate-spheroidal shape; and
(2) giant ellipticals, which are almost non-rotating, less flattened and tend to be triaxial
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Figure 3.1: The fraction of galaxies (in %) as a function of deviation ∆opt =
(

V iso
c − V true

c

)

/V true
c for the sample of simulated galaxies with σp(Reff) > 150 km s−1.

Each galaxy is analysed for a set of random projections. For each projection the values
of I(R), σp(R) and Vrot(R) are calculated. The resulting Vc-estimates for all possible in-
clination angles for each galaxy are averaged. The black histogram in the upper panel
results from ‘traditional’ analysis of I(R) and σp(R) profiles measured along a slit that is
aligned with a major axis of a galaxy without taking into account Vrot(R). In this case the
Vc-estimate when averaged over the sample is biased low. The bias could be compensated

when considering Vrms(R) =
√

σp(R) + Vrot(R) instead of σp(R) in equations (3.4), which

is shown in the middle panel. The histogram in the lower panel shows Vc-estimates, when
profiles along major and minor axes are available and Vrms is used. The averaged over
the sample estimate is almost unbiased, the distribution looks roughly symmetric and the
rms-scatter is moderate.
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(e.g. Kormendy et al., 2009; Emsellem et al., 2007). Strictly speaking, the method in its
original form is applicable only to non-rotating spherical galaxies, i.e. to no real ellipticals.
Nevertheless, as tests on simulated galaxies show, the method still allows to recover the
circular speed for massive elliptical galaxies without signs of significant rotation. For
galaxies with rotational support the value of Vc derived from the observed σp(R) using
equations (3.4) or (3.6) will be likely underestimated. Can we reduce a bias arising from
rotation to extend the method on fast-rotating elliptical galaxies?

Let us consider a disk rotating with the velocity Ṽrot(R). When observed at an incli-
nation angle i, where i = 0◦ corresponds to a face-on projection, the observed rotation
velocity along an apparent major axis is simply Vrot(R) = Ṽrot(R) sin i. After averaging
over different inclination angles 0 ≤ i ≤ π/2 we get

〈V 2
rot〉 =

∫ π/2

0

V 2
rot cos i di =

∫ π/2

0

Ṽ 2
rot sin2 i cos i di =

1

3
Ṽ 2
rot. (3.7)

Thus the true rotation velocity is
√

3 times larger than the sample averaged observed
velocity. This relation is similar to the relation between the simple Vc-estimate and the
observed projected velocity dispersion near the sweet point (eq. 3.6, α = 2). As the
conversion coefficient at the sweet point does not (strongly) depend on the unknown con-
figuration of stellar orbits, one can use the quantity V 2

rms(R) = σ2
p(R)+V 2

rot(R) (rms-speed),
where Vrot(R) is the observed rotation velocity, instead of σp(R) in equation (3.4) or (3.6)
to estimate the circular speed of a sample of galaxies that includes also fast rotators. It
is clear that for oblate rotating galaxies the Vc inferred from Vrms is overestimated for the
edge-on view and underestimated when the disk is viewed face-on. But after averaging
over different inclination angles the bias disappears. The conjecture on using Vrms instead
of σp(R) in equation (3.4) or (3.6) has been further tested on a sample of resimulated
galaxies from the high-resolution cosmological simulations of Oser et al. (2010). The sam-
ple includes both fast and slow rotators in a proportion that is generally consistent with
findings of ATLAS3d project (Emsellem et al., 2007, 2011; Naab et al., 2013).

First, for each simulated galaxy in the sample we measure the surface brighness, pro-
jected velocity dispersion and rotational velocity profiles along the apparent major axis of
the galaxy, mimicing long-slit observations. Then we estimate the circular speed in two

ways: 1) using information about σp(R) (eq. 3.4) and 2) using Vrms(R) =
√

σ2
p(R) + V 2

rot(R)

instead of σp(R). As a next step we calculate the average deviation ∆opt of the estimated

circular speed from the true one V true
c (r) =

√

GM(< r)/r, after averaging over all possible
inclination angles. We consider only galaxies with the value of the projected velocity dis-
persion at the effective radius σp(Reff) greater than 150 km s−1 (when the galaxy is viewed
edge-on). The sample consists of 26 objects. The results of the analysis are presented in
the form of histograms (fraction of galaxies versus deviation of the Vc-estimate from the
true value) in Figure 3.1. In the upper panel of Figure 3.1 we show the histogram for the
case when rotation is neglected. On average Vc is underestimated by ∆opt = −4.3%. If we

substitute σp(R) with Vrms(R) =
√

σ2
p(R) + V 2

rot(R) then we get almost unbiased (within
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statistical errors) estimate of the circular speed with rms-scatter of ≈ 6% (the middle
panel of Figure 3.1). While for oblate ellipticals observations along the major axis carry
all information needed for simple mass estimation, for triaxial galaxies rotation along the
apparent minor axis might be significant. In a case when information is available along

major and minor axes of a galaxy, using V 2
rms =

I1V
2
rms,1 + I2V

2
rms,2

I1 + I2
makes the distribution

of ∆opt = (Vc − V true
c )/V true

c more symmetric than for the ‘one slit’ case and reduces the
rms-scatter down to 4.6% (lower panel of Figure 3.1). Note, that for the sample con-
sisting of oblate rotating galaxies only there is no sense to use the weighted rms-speed

V 2
rms =

I1V
2
rms,1 + I2V

2
rms,2

I1 + I2
as it leads to the underestimated value of Vc (compare the av-

eraged deviations in the middle and lower panels). But for the sample containing also
triaxial halos this approach helps to reduce the scatter and does not strongly bias the
Vc-estimate. At least, for our sample of 26 simulated objects the bias is not significant,
i.e., ∆opt < RMS/

√
N .

3.2.2 An algorithm for estimating Vc

Based on the results of Lyskova et al. (2012) and the arguments presented in the previous
section, the following algorithm has been developed:

1. Calculate the logarithmic derivatives α, γ and δ from the observed surface brighness
I(R) and line-of-sight velocity dispersion σp(R) profiles using equations (3.5).

2. Calculate the circular speed Vc(R) for isotropic, radial and circular stellar orbits using
equations (3.4) in the case of reliable data (full analysis) or equations (3.6) in the
case of poor or noisy observational data (simplified analysis). For rotating galaxies
use Vrms(R) instead of σp(R) in equations (3.4) or (3.6).

3. Estimate Vc as V iso
c (Rsweet) at the sweet spot Rsweet - the radius at which all three

curves V iso
c (R), V circ

c (R) and V rad
c (R) are maximally close to each other. At Rsweet the

sensitivity of the method to the anisotropy parameter β is believed to be minimal so
the estimation of the circular speed at this particular point is not affected much by
the unknown distribution of stellar orbits.

3.3 Analysis

3.3.1 M87, revisited. Illustration of the Method

In this section we illustrate all the steps of the described algorithm on one massive galaxy
- M87 (NGC4486). M87 is a nearby (16.1 Mpc) giant elliptical galaxy, luminous in X-rays.
It’s mass profile has been investigated in detail by a variety of methods. A technique analo-
gous to the one described in Section 3.2.2 has already been applied to M87 (Churazov et al.,
2010). However, new data on stellar kinematics warrant a reanalysis of the data.
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Since the 1960s M87 has been extensively explored and there is a large amount of
observational data. We focus here on a recent work by Murphy et al. (2011) (hereafter
‘M11’), who estimated M87’s mass profile from axisymmetric orbit-based modeling and
compared the resulting total enclosed mass profile with other mass estimates available in
the literature.

Schwarzschild modeling (Schwarzschild, 1979) is considered to be a state-of-the-art
method for dynamical investigation of nearby galaxies which allows one to recover masses
and orbital anisotropies with ∼ 15% accuracy (Thomas et al., 2005). This technique con-
sists in analysis of the three-dimensional orbital structure of a stellar system in an assumed
gravitational potential and representation of the observed photometric and kinematic data
by a superposition of constructed orbits. The system is assumed to be in dynamical equi-
librium and as a rule to be viewed edge-on (e.g. Gebhardt et al., 2000, 2003; Thomas et al.,
2004, 2005).

We assume that the mass and circular speed profiles for M87 derived in M11 are accurate
and unbiased (as significant inherent systematic uncertainties are not expected to be in
dynamical models (e.g. Thomas et al., 2007)) and compare our simple estimates with these
curves.

For the analysis we use the same set of data as in M11. Namely, the stellar surface
brightness profile comes from Kormendy et al. (2009) (the V-band photometry), the stellar
kinematic data come from the publicly available SAURON data set (Emsellem et al., 2004)
and from M11 (VIRUS-P instrument).

We first compute the auxiliary coefficients α, γ and δ (eq. 3.5) from the smoothed
I(R) and σp(R) profiles (the smoothing procedure is described in Churazov et al. 2010).
The profiles I(R) and σp(R) for M87 are shown in Figure 3.2, panels (A) and (B). The
stellar surface density from Kormendy et al. (2009) is shown as red squares. The velocity
dispersion measurements from SAURON and VIRUS-P are shown as red circles and black
squares, respectively. When smoothing the projected velocity dispersion profile, we use
only SAURON data in the radial range R . 8′′, both SAURON and VIRUS-P between
8′′ ≤ R ≤ 16′′ and only VIRUS-P for R ≥ 16′′ as is done in M11. The logarithmic
derivatives are shown in panel (C). Note that α ≈ 2 in the range 100′′ ≤ R ≤ 600′′. In this
radial range we expect a weak dependence on the anisotropy parameter β and the isotropic
curcular velocity curve to be a good representation of the true circular speed profile. Using
equations (3.4) we calculate Vc(R) for an isotropic distibution of stellar orbits (shown in
blue), for pure radial and pure circular orbits (in green and magenta, correspondingly).
These three curves intersect each other at the sweet spot Rsweet ≈ 115′′ where we estimate
V opt
c (Rsweet) ≡ V iso

c (Rsweet) ≈ 510.8 km s−1. The relative error of this estimate at Rsweet

with respect to the circular speed V M
c (Rsweet) from M11 (Figure 3.2, panel (D), solid black

line) is equal to ∆ =
(

V opt
c − V M

c

)

/V M
c = 4.3%. Within expected uncertainties3 our simple

estimate at the sweet point agrees well with the circular speed obtained from Schwarzschild
modeling.

35.4% was found in Lyskova et al. (2012) for a sample of simulated massive slowly rotating simulated
galaxies
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Figure 3.2: Circular speed estimate of M87. The stellar surface brightness and the line-of-
sight velocity dispersion profiles are shown in panels (A) and (B) correspondingly. Data
are represented as points and smoothed curves used to compute the auxilary coefficients
α, γ, δ as black solid lines. The logarithmic derivatives α, γ,−δ and α + γ (eq. 3.5) are
shown in panel (C) in red, blue, green and black, respectively. Circular velocity curves for
isotropic orbits of stars (in blue), pure radial (green) and pure circular (magenta) orbits
as well as the circular speed (in black) derived in M11 are presented in panel (D).
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Figure 3.3: Comparison of the simple circular speed estimates for M87 with Vc-profiles
inferred from the state-of-the-art modeling. The solid line shows the best-fitting model
of M11, the dashed line - the Vc-profile from GT09. V iso

c resulting from the same set of
data (mainly, stellar kinematic and photometry) as used in M11 is shown as a blue solid
line. The dashed blue line is V iso

c -profile derived from GC data as used in GT09. The red
circle and the red triangle represent our simple Vc-estimates derived on the basis of same
data sets used in M11 and in GT09, respectively. Shown in grey are X-ray Vc-profiles from
Chandra and XMM data with errorbars. Vc-estimates from recent works (Deason et al.
2012 and Strader et al. 2011) are shown as purple and magenta dots with errorbars.
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The method under consideration is not only simple and fast in implementation, the
resulting estimate does not strongly depend on the quality of observational data. To
demonstrate this we apply the analysis to the set of data used in the state-of-the-art
modeling of M87 by Gebhardt and Thomas (2009) (hereafter ‘GT09’). GT09 as well as
M11 derive the mass profile of M87 employing basically the same axisymmetric orbit-based
dynamical models. The only difference is the observational data used. GT09 use stellar
kinematic data from SAURON (Emsellem et al., 2004) and from van der Marel (1994) at
R . 40′′. At larger radii GT09 use the surface density profile from McLaughlin (1999) for
the globular clusters (GC) and individual globular cluster velocities reported in Côté et al.
(2001). For this data set our analysis results in Vc = 535.6 km s−1 at Rsweet = 245.5′′. This
estimate is basically based only on the GC data. It is about 21% smaller than the circular
speed derived by GT09 but it agrees well (∆ = 3.8%) with the rotation curve from M11.
Figure 3.3 shows the circular speed profiles resulting from different methods. The profiles
derived from detailed dynamical modeling of M11 and GT09 are shown as black solid and
dashed lines, respectively. The simple estimates derived in this work are shown as a red
circle (based on the set of data used in M11 ) and a red triangle (from data used in GT09).
The grey shaded region represents the result of the X-ray analysis of available archive
XMM and Chandra data. The X-ray data are deprojected assuming spherical symmetry
to derive gas density and temperature profiles (see Section 3.3.3 for more detail). Using
derived profiles and the hydrostatic equilibrium equation the mass profile is derived. The
width of the shaded area is determined mainly by systematic deviations of Vc(R) derived
under an assumption of a fixed or free metal abundances (see details in Section 3.3.3)
rather than statistical variations. The dark grey shaded region is based on XMM data
only. The discrepancy between the profiles from dynamical modeling and from X-ray
analysis can be explained by the contribution of a gas non-thermal pressure to the total
pressure (Churazov et al., 2008). A wiggle in the X-ray-based Vc(R) at R ∼ 200′′ is due to
a quasi spherical shock generated by the supermassive black hole at the center of M87.

If we compare the optical circular speed estimate for M87 at the sweet spot with the

X-ray based one at the same radius, we get
V opt
c

V X
c

≈ 1.1, what implies ∼ 20% non-thermal

pressure support. It should be noted, however, that the sweet radius happens to lie in
the vicinity of the shock front (Forman et al., 2007) and the X-ray circular speed might
be underestimated in the region of a ‘dip’. Previously, the comparison of the X-ray data
on M87 with the analysis of the optical data in Romanowsky and Kochanek (2001) and
GT09 has been done in Churazov et al. (2008) and Churazov et al. (2010) respectively. In
the first case (Romanowsky and Kochanek 2001 + X-Rays) no evidence for non-thermal
pressure in excess of ∼10% of the thermal pressure was found, while the comparison with
GT09 results yielded a large non-thermal component of order 50%. This discrepancy can
be traced to the difference in the optical data. With new data and analysis of M11 this
discrepancy largely goes away. Note also, that in Churazov et al. (2008, 2010) the circular
speed estimate ∼ 440 km s−1 was derived from X-rays via fitting the gravitational potential
by Φ(R) = V 2

c ln r + const in the broad radial range from 0.1′ to 5′.



3.3 Analysis 61

Table 3.1: Sample of elliptical galaxies. The columns are: (1) - common name of the
galaxy; (2) - redshift from the NASA/IPAC Extragalactic Database; (3) - adopted distance;
(4) - central velocity dispersion from HyperLeda; (5) - hydrogen column density from
(Dickey and Lockman, 1990).

Name z D, Mpc σc, km s−1 NH , 1020 cm−2

(1) (2) (3) (4) (5)
NGC 708 0.016195 68.3 229.8 ± 9.7 5.37
NGC 1129 0.017325 73.1 329.5 ± 15.1 9.81
NGC 1550 0.012389 52.1 308.0 ± 6.2 11.5
NGC 4125 0.004523 23.9 226.8 ± 6.9 1.84
UGC 3957 0.034120 145.9 331.1 ± 35.1 4.63

Table 3.2: Log of the observations

Galaxy Slit PA Date Slit width Sp. range Sp. resol. Exp. time Seeing
(deg) (arcsec) (rA) (rA) (min) (arcsec)

NGC 708 -4 05.10.2011 1.0 4840–5610 2.2 180 1.1–1.2
215 03.10.2011 1.0 4840–5610 2.2 185 1.4–3.5

NGC 1129 166 21.10.2012 0.5 4080–5810 3.0 180 1.2–1.4
256 15.10.2012 0.5 4080–5810 3.0 180 1.4–1.5

NGC 1550 116 09.12.2012 1.0 3700–7200 5.1 180 1.5–1.6
206 16-17.10.2012 0.5 4080–5810 3.0 180 1.3–1.6

NGC 4125 175 14.04.2013 1.0 4840–5610 2.2 160 1.2–1.3
265 19.10.2012 0.5 4080–5810 3.0 200 1.6–1.7

UGC 3957 287 03.11.2010 1.0 4415–6015 2.2 180 1.1–1.5

3.3.2 Observations and data reduction

The spectroscopic observations at the prime focus of the SAO RAS 6-m telescope were
made with the multi-mode focal reducer SCORPIO (Afanasiev and Moiseev, 2005) and its
new version SCORPIO-2 (Afanasiev and Moiseev, 2011). When operated in the long-slit
mode, both devices have same slit 6 arcmin in height with a scale of 0.36 arcsec per pixel.
However, with a similar spectral resolution SCORPIO-2 provides twice larger spectral
range. The CCDs employed were an EEV 42-40 in the SCORPIO and E2V 42-90 in the
SCORPIO-2.

Table 3.1 lists the target galaxies and Table 3.2 gives the log of observations: the
position angles of the spectrograph slit for each galaxy, the observing date, the slit width,
spectral range, spectral resolution (estimated by the mean FWHM of air glow lines), total
exposure Texp, and seeing. Usually we observed targets with two slit positions: along
photometric major and minor axes. The exceptions are NGC 708 (the second slit was
placed along the dust lane crossed galaxy nucleus) and UGC 3957 where observations only
along major axis have been performed.
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The data reduction were made in a standard way using the IDL-based software package
developed at the SAO RAS (Afanasiev and Moiseev, 2005). The measurements of the
distribution of line-of-sight velocities Vrot and stellar velocity dispersion σp were carried out
by cross-correlating the spectra of galaxies with the spectra of the template star observed
on the same nights. The measurement technique has already been described in our previous
papers (Moiseev, 2001; Sil’chenko, Moiseev A. V. and Shulga, 2010). We observed several
template stars belonging to the spectral types III G8 - III K5 and also twilling light sky (i.e.
solar spectrum). For the final measurements, we selected a template giving a maximum
correlation coefficient. During the stellar kinematics parameters estimation we applied
logarithmic binning along the slit to provide a sufficient signal-to-noise ratio (S/N > 15−20
per bin in each pixel). Also in each beam we calculated the surface brightness I(R) as
an integral intensity of stellar continuum at the range 5040 − 5140 rArA. The Figure 3.4
shows the results of our spectral observations together with V -band images of the galaxies
taken at the same nights in the direct image mode of SCORPIO and SCORPIO-2.

3.3.3 Circular speed from X-ray data.

Using publicly available Chandra data we have derived the circular speed profiles for galax-
ies in our sample under the assumption of the hydrostatic equilibrium. We follow the
procedure of the data analysis described in Churazov et al. (2010). Here we only outline
the major steps.

First, in each observation we follow the reduction procedure described in Vikhlinin et al.
(2005), i.e. filter out high background periods and apply the latest calibration corrections
to the detected X-ray photons, and determine the background intensity.

As a next step we apply a non-parametric deprojection procedure described in Churazov et al.
(2003, 2008). In brief, the observed X-ray spectra in concentric annuli are modeled as a
linear combination of spectra in spherical shells; the two sequences of spectra are related
by a matrix describing the projection of the shells into annuli. To account for the pro-
jected contribution of the emission from the gas at large distances from the center (i.e., at
distances larger than the radial size rmax of the region well covered by actual observations)
one has to make an explicit assumption about the gas density/temperature profile. We
assume that at all energies the gas volume emissivity at r > rmax declines as a power law
with radius. The slope of this power law is estimated based on the observed surface bright-
ness profile at r . rmax. Since we assume that the same power law shape is applicable to
all energy bands, effectively this assumption implies constant spectral shape and therefore
the isothermality of the gas outside rmax. The contribution of these layers is added to
the projection matrix with the normalization as an additional free parameter. The final
projection matrix is inverted and the shells’ spectra are explicitly calculated by applying
this inverted matrix to the data in narrow energy channels.

The resulting spectra are approximated in XSPEC (Arnaud, 1996) with the Astrophys-
ical Plasma Emission Code (APEC) one-temperature optically thin plasma emission model
(Smith et al., 2001). The redshift z (from the NASA/IPAC Extragalactic Database – NED)
and the line-of-sight column density of neutral hydrogen NH (Dickey and Lockman, 1990)
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Figure 3.4: The results of the SAO RAS 6-m telescope observations. Left: V -band image in
logarithmic grey-scale and positions of the spectrograph slits. Middle: the distributions of
stellar continuum surface brightness, line-of-sight velocities and velocity dispersion of stars
along major axis. The dotted lines mark the position of nucleus and accepted systemic
velocity. In the case of NGC 1129 at r ≈ 20 − 30 arcsec the slit crosses the companion
galaxy. Right: the same for the second slit position.
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Figure 3.4: (continue)
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Figure 3.4: (continue)

have been fixed at the values given in Table 3.1. For each shell we determine the emission
measure (and therefore gas density) and the gas temperature. These quantities are needed
to evaluate the mass profile through the hydrostatic equilibrium equation. For cool (sub-
keV) temperatures and approximately solar abundance of heavy elements, line emission
provides a substantial fraction of the 0.5-2 keV flux. With spectral resolution of current
X-ray missions the contributions of continuum and lines are difficult to disentangle. As a
result the emission measure and abundance are anti-correlated, which can lead to a large
scatter in the best-fit emission measures. As an interim (not entirely satisfactory) solution,
we fix the abundance at 0.5 solar for all shells, using the default XSPEC abundance table
of Anders & Grevesse (1989). We return to this issue below.

Knowledge of the gas number density n and temperature T in each shell allows us to
evaluate the M(R) or Vc(R) profile by using the hydrostatic equilibrium equation:

−1

ρ

dP

dr
=

dΦ

dr
=

V 2
c

r
=

GM

r2
, (3.8)

where P = nkT is the gas pressure, ρ = µmpn is the gas density (mp is the proton
mass). The mean atomic weight µ is assumed to be equal to 0.61.

The resulting circular speed profiles V x
c (r) for all galaxies in our sample are shown as

black thick lines with errobars represented as black shaded regions in lower panels of Figure
3.6. One should keep in mind that in assuming hydrostatic equilibrium one neglects possible
non-thermal contribution to the pressure, arising from turbulence in the thermal gas, cos-
mic rays, magnetic fields and non-radiating relativic protons (e.g., Churazov et al., 2008).
So comparing optical and X-ray estimates of the circular speed may provide constraints on
the contribution of the non-thermal particles to the gas pressure. High-resolution cosmo-
logical simulations of galaxy clusters suggest that the gas motions contribute ∼ 5% of the
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total pressure support at the center and up to ∼ 15 − 20% at r500 in relaxed systems (e.g.
Lau, Kravtsov, Nagai, 2009; Zhuravleva et al., 2013). Recent studies on combining X-ray
mass measurements and sophisticated stellar dynamical methods imply up to ∼ 50% non-
thermal support (e.g. Shen and Gebhardt 2010, Rusli et al. 2011, GT09), although the
uncertaintes in model assumptions may be significant (Buote and Humphrey, 2012). As
our simple method provides a mass-estimate that is robust and largely insensitive to the
orbital anisotropy at the sweet point, we interpret the offset at Rsweet between the X-ray
and optical measurements as a signature of deviations from hydrostatic equilibrium. In
particular, the ratio fnt = (Mopt−MX)/Mopt provides an estimate of the fractional contri-
bution of the nonthermal pressure to the total pressure, provided that this fraction does
not vary with radius. In this approximation MX,c(r) = MX(r)/(1 − fnt) is an estimate of
the mass at other radii.

As the gas pressure is assumed to be isotropic, mismatch between the corrected X-ray
circular speed V X,c

c and the isotropic one V iso
c derived from the Jeans equation may give a

clue regarding the orbital structure of the galaxy. E.g., at small radii V X,c
c > V iso

c would
suggest more circular orbits, while at larger radii this would correspond to more radial
orbits. Of course, the reliability of such analogy strongly depends on the derived V X

c and
V iso
c .

We now illustrate the impact of our assumption of a flat abundance profile Z = 0.5Z⊙

and estimate arising errors on the inferred circular speed.

At low temperatures (. 2 keV) metal abundances derived from X-ray spectra with
the limited energy resolution of current X-ray missions suffer from the ambiguity of disen-
tangling line emission and continuum. While derived circular velocity is weakly sensitive
to the particular value of metallicity in the spectral models, it can be significantly af-
fected by the radial variations of the heavy-element abundance (e.g. Johnson et al., 2009;
Churazov et al., 2010).

Since abundance measurements can be biased (e.g. Buote, 2000) we tried to make a
conservative estimate of the varying abundance profile impact by setting by hand several
model metallicity profiles and fitting the deprojected data again, leaving the normalization
and temperature as free parameters.

As an example, we show in Figure 3.5 the derived density, temperature and circular
speed profiles4 for NGC 0708. The estimated statistical errorbars come from 1000 Monte
Carlo simulations. Here we consider 3 models: (i) flat abundance profile Z = 0.5Z⊙ (shown
in red), (ii) fit to the deprojected abundance with a ‘dip’ at the center (in blue) and (iii)
physically motivated model (in green), where the metal abundance rises to the galaxy
center as is generally expected for elliptical galaxies (e.g. Humphrey and Buote, 2006).
Compared to the flat abundance profile, the metallicity monotonically increasing towards
the center leads to the flattening of the gas density profile and lowering the final circular
speed estimate. In contrast, the decreasing to the center Z(r) ‘boosts’ inferred V X

c , as is

4As eq. (3.8) requares differentiation, to calculate derivatives we smooth density, temperature and
pressure profiles following the procedure described in Churazov et al. (2010). The typical value of the
smoothing width is ∼ 0.55.
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Figure 3.5: The effect of the abundance gradient on the calculated circular speed profile.
Panel (A) shows the deprojected temperature for NGC 0708, panel (B) - assumed models
for the metallicity, panel (C) - gas density profiles and panel (D) - resulting circular velocity
curves with 1σ errors from 1000 Monte Carlo realizations. The vertical dotted lines indicate
a region of interest where both optical and X-ray data are available. The arrows show the
spread in circular speed estimates coming from different abundance profiles.
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clearly seen from Figure 3.5.
Other galaxies in our sample show only monotonical increase of the deprojected metal

abundance to the center, so the spread in final V X
c -esimates is smaller. The circular velocity

profiles corresponding to the flat abundance (thick solid black lines) and 1σ-errors from
1000 Monte Carlo simulations (black shaded area enclosed by two thin black lines) are
shown in Figure 3.6.

3.3.4 Optical Rotation Curves

All observed galaxies in the sample are quite massive, close to spherical and slowly rotating
(except maybe NGC 4125). This makes them suitable for our analysis. According to
the algorithm for estimating the circular speed described in Section 3.2.2 we perfom the
following steps:

1. First, given the surface brightness Ii, projected velocity dispersion σpi with its errors
Σσi and rotational velocity Vroti with its errors Σroti along two slits (i = 1, 2) we
construct the average profiles

I =
I1 + I2

2
; (3.9)

σ2
p =

I1σ
2
p1/Σ2

σ1 + I2σ
2
p2/Σ2

σ2

I1/Σ2
σ2 + I2/Σ2

σ2

. (3.10)

If rotation velocity along the slit Vroti is not negligible, then instead of σp we use Vrms

defined as

V 2
rms =

I1V
2
rms1/Σ2

rms1 + I2V
2
rms2/Σ2

rms2

I1/Σ2
rms1 + I2/Σ2

rms2

, (3.11)

where Σ2
rmsi = Σ2

σi + Σ2
roti ; Σroti are the errorbars assigned to rotation velocity mea-

surements.

2. Then we calculate the logarithmic derivatives α, γ and δ from the derived profiles
using equations (3.5).

3. Next, we compute the circular speed Vc(R) for isotropic, radial and circular stellar
orbits using equations (3.4) in case of reliable data (full analysis) or equations (3.6)
in case noisy or systematics affected observational line-of-sight velocity dispersion
profile (simplified analysis). As discussed above, for rotating galaxies one should use
Vrms(R) instead of σp(R) in equations (3.4) or (3.6).

4. V iso
c (Rsweet) is taken as a final estimate of Vc at the sweet spot Rsweet - the radius

at which all three curves V iso
c (R), V circ

c (R) and V rad
c (R) are maximally close to each
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Table 3.3: Vc-estimates for our sample of elliptical galaxies derived from optical and X-ray
analyses. The columns are: (1) - common name of the galaxy; (2) - sweet radius; (3) -
optical Vc-estimate at Rsweet; (4) - Vc-estimate at Rsweet from X-ray, in parentheses are
presented the conservative error estimates ; (5) - gas temperature at Rsweet.

Name Rsweet,arcsec V iso
c , km s−1 V X

c , km s−1 kT, keV
(1) (2) (3) (4) (5)
NGC 708 63.1 371+53

−53 437+4
−4 (−31) 1.7

NGC 1129 45.7 444+31
−44 464+20

−25 3.0

NGC 1550 30.9 382+12
−19 383+5

−6 (−29) 1.2

NGC 4125 44.7 375+45
−36 322+7

−9 (−18) 0.5

UGC 3957 14.8 476+43
−43 518+45

−66
(+47) 2.2

other. At Rsweet the sensitivity of the method to the anisotropy parameter β is
expected to be minimal so the estimation of the circular speed at this particular
point is not affected much by the unknown distribution of stellar orbits. In case of

the simplified version of the analysis Rsweet ≡ R2, where α = −d ln I(R)

d lnR
= 2.

5. Finally, we compare derived Vc-estimates with the X-ray circular speed at the same
radius. Table 3.3 summarizes the results, providing both optical and X-ray circular
speed estimates as well as the temperature of the hot gas at Rsweet. The scatter in
optical Vc arises from differences in observed I(R) and σp(R) along two slits or from
measurement errors of σp(R) when information is available along one slit only. Errors
for X-ray derived Vc comes from 1000 Monte Carlo realizations. In parentheses we
present the conservative estimate of errors for the case of radially varying metallicity.

In Figure 3.6 we present results of the analysis. The logarithmic slope of the surface
brightness profile for each galaxy in our sample is shown in panel A. Thin red lines corre-
spond to slopes measured along the individual slits, while the thick lines show the average
profiles (eq. 3.9). The shaded area indicates the scatter in profiles arising from different
slits (when available). The derived profiles for V iso

c , V circ
c and V rad

c are shown in panel B
in blue, magenta and green correspondingly. Again, the thin lines represent the Vc-curves
resulting from measurements along each individual slit, while the thick lines demonstrate
the average profiles coming from equations (3.9)-(3.11). If information is available along
two slits, then the shaded regions (paleblue for V iso

c , plum for V circ
c and palegreen for V rad

c )
show the scatter between these slits, in a case when profiles are measured along one slit
only, the shaded regions indicate the measurements errors of σp(R). The circular speed
profiles derived from Chandra data are overplotted with errorbars in black. Stellar contri-
bution to the circular velocity derived for the Salpeter and Kroupa IMF is shown in yellow
(see Section 3.3.6).
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3.3.5 Comments on individual galaxies.

• NGC0708

NGC 0708 (Figure 3.6, upper left corner) is a cD galaxy located at the center of
Abell 262 galaxy cluster. The surface brightness and the projected velocity dispersion
profiles are available for two slit positions oriented at P.A. = −4◦ and at P.A. = 215◦.
The surface brightness profile along the slit at P.A. = −4◦ declines very slowly, the
logarithmic slope α = −d ln I(R)/d lnR does not exceed 1.5 in observed range of
radii leading to a diverging total stellar mass. Such a behaviour may be a result of
influence of cluster gravitational potential. So for our analysis we use information
along the slit at P.A. = 215◦ only. The projected velocity dispersion is close to being
flat at R . 30′′ and gets systematics affected at larger radii. So we use the simplified
version of the analysis. Results of our analysis are presented in the upper left corner
of Figure 3.6. The surface brightness slope (for the slit at P.A. = 215 circ) is shown in
panel A, derived circular velocity profiles different types of orbits are plotted in panel
B. The shaded areas indicate uncertaintes in derived V iso

c (paleblue), V circ
c (plum) and

V rad
c (palegreen), coming from measurement errors of σp(R). The sweet radius where

the sensitivity of the method to the anisotropy is minimal is located at 63′′, i.e slightly
beyond the range of radii where optical data are available. Although the reliability
of such the estimate is unclear the extrapolated V iso

c lies quiet close to the circular
speed curve derived from X-ray analysis.

• NGC1129

NGC 1129 is a giant elliptical galaxy located in the center of a poor cluster AWM 7.
In Figure 3.6 (upper right) are shown results of optical and X-ray analyses. Before
estimating the circular speed from optical data we have excluded regions where the
surface brightness profile seems to be contaminated by projection of companions.
The exclusion is done on the basis of visual inspection. So we consider the surface
brightness profile along the slit positioned at P.A. = 166◦ in radial range from −55′′

till 41′′ and in case of P.A. = 256◦ slit - at R ≤ 0′′. The projected velocity dispersion
profile looks nearly flat at R . 20′′ and is getting noisy at R & 20′′, so we assume
σp(R) ≡ const = 257 km s−1 (the surface brigness weighted average value). Optical
V iso
c -estimate in the sweet region (which is coincident with a range of radii where

α ≈ 2) is consistent with the circular speed derived from hydrostatic equilibrium of
hot gas in the galaxy. Moreover, V iso

c and V X
c agree within errorbars over the range

of radii where both optical and X-ray data are available. It should be noted that
NGC1129 shows significant minor axis rotation, indicating a triaxial intrinsic shape
of the galaxy.

• NGC1550

NGC 1550 is a S0 galaxy lying at the center of a luminous galaxy group. The
surface brightness and the projected velocity dispersion profiles are available for two
slit positions oriented at P.A. = 116◦ and at P.A. = 206◦. Rotation velocity is
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Figure 3.6: Panel A - the surface brightness slope α = d ln I(R)/d lnR. Panel B - circular
velocity profiles for isotropic (blue lines and paleblue shaded area), pure radial (green lines
and palegreen shaded area) and pure circular (magenta lines and plum shaded area) orbits.
The Vc(R) derived from Chandra data under the assumption of hydrostatic equilibrium
is shown as the black thick line. The shaded area shows statistical errorbars for the flat
and varying with radius metallicity. For NGC 708 arrows are the same as in Figure 3.5
and indicate the conservative lower and upper limits on X-ray circular speed coming from
radial variations of metal abundance. The right arrow (the shortest one) is located at the
optical sweet radius. The stellar contribution to the circular speed profile is presented in
yellow (see Section 3.3.6). Location of Rslit

eff defined from the de Vaucouleurs fit to the
long-slit surface brightness profile is marked with the dotted line.
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Figure 3.6: (continue)

consistent with zero. The profiles do not have any peculiar features so we use all
available information to estimate the circular speed. The results of our analysis are
shown in Figure 3.6, left side of a middle panel. Note that the circular velocity
corresponding to the isotropic distribution of stellar orbits is nearly constant over
the whole available range of radii and it coincides within errorbars with the X-ray
circular speed profile. This fact could indicate that the gravitional potential of NGC
1550 is close to isothermal and the galaxy is dynamically relaxed with hot gas being
in hydristatic equilibrium.

• NGC4125

NGC4125 (Figure 3.6, middle right side) is a E6 galaxy located at the center of
NGC 4125 group of galaxies. It is the only galaxy in our sample with significant
rotation. To take the rotation into account we use Vrms(R) =

√

σp(R)2 + Vrot(R)2

instead of σp(R) in equations (3.4). The isotropic circular speed V iso
c slightly exceeds

V X
c over the whole range of radii where the optical observations are available what

may indicate the the non-thermal pressure support at the level of fnt ≈ 36% at the
sweet point.

• UGC3957

UGC3957 (Figure 3.6, lower panel) is an elliptical galaxy at the center of UGC 03957
group. It has been observed using only one slit positioned at P.A. = 287◦. As in
case with NGC 0708 shaded areas indicate uncertaintes in derived Vc-profiles, arising
from measurement errors of σp(R). At the sweet point Vc-estimate from optical data
agrees with X-ray derived one. The discrepancy between optical Vc(R) and X-ray
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V X
c (R) may indicate that at r & 20′′ anisotropy parameter β > 0 if the hydrostatic

equilibrium approximation is valid.

3.3.6 Stellar populations: properties, mass-to-light ratios, con-
tributions to the total mass

By using the same SCORPIO/BTA long-slit spectral data, we have calculated Lick indices
Hβ, Mgb, Fe5270, and Fe5335 along the slit, to derive the ages and chemical abundances
which are in turn used to estimate mass-to-light ratios of the stellar component varying
along the radius and to calculate properly the mass contributed by the stellar component
within the radius Rsweet. Our approach to the Lick index calibrations can be found in
Baes et al. (2007).

Our spectral data are rather deep and have provided the profiles of high-precision Lick
indices up to 1.1–2.2 effective radii from the center in four galaxies of five. Figure 3.7
presents the comparison of the major-axis Lick index profiles in NGC 4125 according to
our measurements with those by Pu et al. (2010) obtained at the 9.2m Hobby-Eberly tele-
scope. The agreement is rather good, and the index point-to-point scatters are comparable.
Figure 3.8 compares our data for NGC 708 with the data from Wegner et al. (2012) at two
slit positions (we don’t compare Hβ measurements near the center because we have not
been able to correct them properly for the emission contamination). This time our data
are much more precise, and the Lick index profiles are much more extended that the data
by Wegner et al. (2012) obtained at the 2.4m Hiltner Telescope.

We have confronted our Lick index measurements along the radii in the galaxies under
consideration to the Simple Stellar Population (SSP) models by Thomas et al. (2003) which
allow to vary magnesium-to-iron ratio. Indeed, giant elliptical galaxies are known to be
magnesium-overabundant (Trager et al., 2000) so it must be taken into account when age
diagnostics are applied. By confronting 〈Fe〉 ≡ (Fe5270+Fe5335)/2 vs Mgb, we have found
that indeed in four galaxies [Mg/Fe]= +0.3 being constant along the radius, while only in
NGC 4125 [Mg/Fe]= +0.1 with slightly different behaviour along the major and the minor
axes: in the latter cross-section, at large radii the [Mg/Fe] comes to +0.3. This difference,
together with the fast rotation along the major axis, gives an evidence for an embedded
stellar disc in NGC 4125; so we would prefer to give more weight to the stellar mass-to-
light ratio profile along the minor axis (see below). The estimates of the SSP-equivalent
(mean, star luminosity-weighted) ages made by confronting the Hβ index to the complex
metal-line index [MgFe] indicate mostly old stellar population, older than 8 Gyr, beyond
the very centers of the galaxies; however the stellar nuclei of UGC 3957, NGC 1129, and
NGC 1550 may be as young as 5 Gyr old (in NGC 708 we cannot estimate the age of the
nuclear stellar population because of the very strong gaseous emission contaminating the
Hβ index).

Figure 3.9 presents the metallicity radial variations in five ellipticals. The metallicity
values [Z/H] are plotted against normalized radius, R/Reff , taking into account different
values of Reff along the major and the minor axes. The centers of all galaxies demonstrate
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Figure 3.7: The comparison of the Lick index profiles along the major axis in NGC 4125,
according to our data and to the data by Pu et al. (2010).
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Table 3.4: Metallicity gradient within and beyond the half effective radius.

Galaxy ∆[Z/H]/∆ logR, dex per dex (R < 0.5Reff) ∆[Z/H]/∆ logR, dex per dex (R > 0.5Reff)
NGC 0708 maj. axis −0.74 ± 0.07 0?
NGC 0708 PA = −4 −0.45 ± 0.11 0?
NGC 1129 maj. axis −0.41 ± 0.07 the same?
NGC 1129 min. axis −0.50 ± 0.15 the same?
NGC 1550 min. axis −0.69 ± 0.04 the same?
NGC 4125 min. axis −0.52 ± 0.05 −0.27 ± 0.18
UGC 3957 – −2.07 ± 0.33
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Figure 3.8: The comparison of the Lick index profiles in NGC 708, according to our data
and to the data by Wegner et al. (2012), in two slit orientation.

supersolar metallicity, which is even beyond the model grid of Thomas et al. (2003) in
the most massive and luminous galaxy, UGC 3957; however in the outer parts the stellar
metallicity drops below the solar value everywhere. The metallicity gradients in our sample
ellipticals are negative and can be estimated mostly as from –0.4 to –0.7 dex per dex. In
NGC 4125 and NGC 1550 the outer metallicity profiles along the major axes go on above
the minor-axis profiles that reveals once more the probable presence of the discs aligned
with the major axes, formed in some dissipative events including heavy-element enrichment.
We have estimated the metallicity gradients in the spheroids within 0.5Reff , R < 0.5Reff

and beyond 0.5Reff , R > 0.5Reff (Table 3.4), because earlier we have found breaks of the
metallicity gradients just near this radius in another sample of elliptical galaxies studied
with the long-slit spectroscopy of the SCORPIO/BTA (Baes et al., 2007). Now we have
found breaks between steep metallicity gradients and nearly zero ones at 0.5Reff in two
galaxies having the lower mass – in NGC 0708 and NGC 4125. In massive NGC 1129,
NGC 1550, and UGC 3957 the outer metallicity gradients look as steep as the inner ones.
Perhaps, for these galaxies we have not reached the radius of break because in the central
Coma cluster galaxy NGC 4889 the metallicity gradient break is found at R = 1.2Reff

(Coccato et al., 2010); perhaps the position of break radius correlates with the mass of
a galaxy. However, the inner metallicity gradients in our galaxies (and the outer one in
UGC 3957) are all steeper than –0.3 dex per dex; it means that these inner parts of the
elliptical galaxies under consideration could not be formed by major merger (Kobayashi,
2004).

Radial variations of the stellar population mass-to-light ratio in this case reflect mostly
the variations of the metallicity. We have calculated M/L(V )(R) in every galaxy by using
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Figure 3.9: The radial variations of the stellar population metallicity along the radius in
five elliptical galaxies under consideration; in NGC 1129 both cross-sections are united
since they give coincident dependencies.
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Figure 3.10: The variations of the stellar population mass-to-light ratios along the radius
in five elliptical galaxies under consideration; in NGC 1129 both cross-sections are united
since they give coincident dependencies.
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Table 3.5: Stellar masses and the fraction of dark matter (DM) within Rsweet for Kroupa
(K) and Salpeter (S) IMF.

Galaxy Vc (K), km s−1 % of DM Vc (S), km s−1 % of DM
NGC 0708 133 87 188 74
NGC 1129 215 76 303 54
NGC 1550 190 75 268 51
NGC 4125 256 53 361 7
UGC 3957 244 74 344 48

the recent model grid BASTI by Percival et al. (2009); the [Mg/Fe], [Z/H], and ages found
from the Lick indices above have been substituted into the BASTI tables. The radial profile
of M/L(V ) for every galaxy is shown in Figure 3.10. The models BASTI are calculated
for the Kroupa IMF; if we prefer the classic Salpeter one, all the M/L(V ) values should
be increased by a factor of 2 (Bell et al., 2003).

We have approximated the profiles of Figure 3.10 by smooth logarithmic curves and
have used the dependencies derived to transform the surface brightness profiles (this time,
the surface brightness profiles obtained from the isophote analysis, with the corresponding
azimuthally averaged values of Reff) into surface mass density profiles (Figure 3.11). Our
aim was to estimate, though under very simple assumptions, the stellar mass which is
contained within the radii Rsweet, to compare it with the dynamical masses derived in
previous subsections. The profiles of Figure 3.11 were then deprojected with the formulae
invented by Kholopov (1949), and after that we have integrated the volume mass density
profiles up to Rsweet under the assumption of spherical symmetry. It is obvious that the
assumption of spherical symmetry is very rude for our objects, especially for NGC 708 and
NGC 4125, and the fact that the surface mass density profiles are not going to infinity but
are cut at arbitrary radii provides only lower limits of the stellar mass estimates, however
some feeling of the dark matter fraction within the optical borders of the giant elliptical
galaxies can be obtained.

As we can see in Table 3.5, there is a range of dark mass presence among our small
sample. In particular, NGC 4125 may hold all its dynamical mass mainly in stars. However,
if we refer to the Salpeter IMF, a typical fraction of dark matter within Rsweet is ∼ 50%.
For the Kroupa IMF the sample averaged fraction is ∼ 70%.

3.4 Discussion

We discuss one simple and fast, but nevertheless reliable method for estimating masses
of early-type galaxies from the stellar surface brightness and the line-of-sight velocity dis-
persion profiles only. The method is based on the ansatz that the relation between the
projected velocity dispersion and the circular speed is almost insensitive to the anisotropy
of stellar orbits at a characteristic radius Rsweet where derived circular speed profiles for
isotropic distribution of stars, pure circular and pure radial stellar orbits are close to each
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Figure 3.11: The radial profiles of the surface mass density along the radius in five elliptical
galaxies under consideration.
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Table 3.6: Ellipticity and effective radius for the sample galaxies. The columns are: (1)
- galaxy name; (2) - ellipticity; (3) - effective radius defined from the de Vaucouleurs fit
to the ellipse-averaged surface brightness profile; (4) - effective radius defined from the de
Vaucouleurs fit to the average surface brightness profile (eq. 3.9).

Name Ellipticity Reff , arcsec Rav
eff , arcsecc

(1) (2) (3) (4)
NGC 708 0.45 63.5 ± 1.5 49.6
NGC 1129 0.22 86.7 ± 2.4 77.6
NGC 1550 0.11 25.7 ± 0.7 17.5
NGC 4125 0.46 56.4 ± 0.4 38.8
UGC 3957 0.1 33.9 ± 0.8 14.4

other. Rsweet lies close to the radius R2 where the surface brightness I(R) declines as
R−2, which is in turn not far from the effective radius of the galaxy Reff . Although the
method allows to estimate mass within some particular radius only (or in radial range
where I(R) ∝∼ R−2), it does not require any apriori parametrization of mass or anisotropy
profiles and the resulting estimate does not depend significantly on the quality of data.
The method has already been tested on a sample of 65 simulated galaxies drawn from cos-
mological simulations by Oser et al. (2010) in Lyskova et al. (2012). When averaged over
the subsample of massive (σp(Reff) > 150 km s−1) slowly rotating galaxies the recovered
circular speed is almost unbiased (∆opt < 1%) with modest scatter (RMS = 5.4 %). Note
that in Lyskova et al. (2012) the surface brightness and the line-of-sight velocity disper-
sion profiles were calculated in a set of logarithmic concentric annuli around the center of
the simulated galaxy. In this paper we (i) mimic the long-slit observations by computing
the profiles along the slits, and also (ii) extend our analysis to rotating elliptical galaxies

by considering Vrms(R) =
√

σ2
p(R) + V 2

rot(R) instead of σp(R) in equations (3.4) or (3.6),

where Vrot(R) is the observed rotational velocity. Tests have been performed on the sample
of massive simulated galaxies (σp(Reff) > 150 km s−1, edge-on view) that includes both
fast and slow rotators in proportion close to the observed one reported by ATLAS3d team
(Emsellem et al., 2007). We find that the circular speed recovered from I(R) and σp(R)
measured along the slit aligned with the apparent major axis of the galaxy is on average
underestimated by 4 − 5% and the RMS-scatter is about 6%. The bias almost vanishes

when σp(R) in equations (3.4) is substituted with Vrms(R) =
√

σ2
p(R) + V 2

rot(R) and the

RMS-scatter remains the same. If profiles are measured along apparent major and mi-
nor axes of the galaxy then we can reduce the scatter arising from trixiality of elliptical
galaxies. Indeed, in this case the RMS-scatter is reduced down to 5%.

X-ray circular speed profiles for all galaxies are inferred under an assumption of constant
metallicity (Z = 0.5Z⊙), although the errorbars are estimated in a conservative way,
allowing for the abundance gradients. If the abundance steadily increases to the galaxy
center, then the assumption of the flat metallicity profile would lead to overestimated
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circular velocity. The decreasing at small radii abundance would imply instead that V X
c

is underestimated. Abundance measurements for low temperature (. 1.5 keV) systems
remains among the most important uncertainties in X-ray determination of the circular
speed of elliptical galaxies. For hotter systems the impact of abundance is much less severe.
For instance, the conservative estimate for NGC0708 suggests that the circular speed may
be over-/underestimated as much as 25-30 % (at R . 30 − 40′′).

The inferred circular speed estimates from optical data and from X-ray for all galaxies in
our sample agree with each other remarkably well, especially for NGC 1550 and NGC 1129,
indicating the relaxed dynamical state of these galaxies, close to isotropic distribution of
stellar orbits within 1-2 effective radii and that hot gas in these objects is in the hydrostatic
equilibrium. The only rotating galaxy in our sample, NGC 4125, is also the only galaxy with
non-negligible nonthermal pressure support (at the level of ≈ 36%). For UGC 3957 both
X-ray and optical methods give the same (within errorbars) result at the sweet point and
at larger radii we observe that V X

c (R) > V iso
c (R) what may be interpreted as the radially

biased stellar velocity anisotropy. NGC 708 is the most difficult galaxy for interpretation.
At R . 30′′ where optical data are quite reliable V X

c (R) lies below V iso
c (R). Then at

30′′ & R & 60′′ these two curves are roughly consistent with each other. At the sweet spot
which is located slightly beyond the radial range with available optical data the X-ray mass
estimate exceeds the optical one by ∼ 40% although the reliability of the V iso

c at this radius
is under question and errorbars are quite large. The average ratio between the optical V iso

c

and V X
c at the sweet spot is equal to 0.98 with ≈ 0.11 rms-scatter5. Given the scatter,

this result indicates that on average the non-thermal contribution to the total gas pressure
is consistent with zero. Two galaxies - NGC 4125 and NGC 0708 - that have the lowest

central velocity dispersions and are showing the largest deviation of

〈

V iso
c

V X
c

〉

from the mean

value, appear to be especially prone to abundance uncertainties in X-ray analysis. Low
temperature of NGC 4125 (T ≈ 0.5 keV) does not allow to disentangle reliably continuum
and emission lines. In its turn, NGC 0708 has higher temperature at the sweet radius
(≈ 1.7 keV) but shows significant abundance gradients, what leads to large spread in the
resulting circular velocity curves. If we exclude these two galaxies, then the average ratio

is

〈

V iso
c

V X
c

〉

≈ 0.96 with RMS ≈ 0.03. This scatter is comparable to the expected value of

5.4% coming from the analysis of a sample of simulated massive elliptical galaxies without
significant rotation (Lyskova et al. 2012).

It should be mentioned that for our analysis we deliberately use the surface brightness
profiles measured along the slit rather than ellipse-averaged radial profiles. On one hand,
I(R) along specific PA could be affected by local inhomogeneities in brightness and the
signal-to-noise ratio is smaller compared to azimuthally-averaged profiles. On the other
hand, analysing the projected velocity dispersion and surface brightness profiles measured
in the same way seems to be more self-consistent and justified. Moreover, we aim to

5x =

∑

x

N
± RMS√

N
, RMS =

√∑
(x−x)2

N
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demonstrate perfomance of our simple mass estimator using the most basic observables,
thus on purpose neglecting all possible complications. Apart from using the original surface
brightness distribution along the specific PA, we also simplify the analysis by neglecting
departures from spherical symmetry (see eq. 3.9-3.11). If we take into account information
on ellipse-averaged radial profiles and ellipticity of a given galaxy, we will get the Vc-
estimate similar to the reported one (within errorbars), although the averaged surface
profiles are slightly shallower that original ones pushing Rsweet towards larger radii where
kinematics is getting less reliable.

The full version of analysis, i.e. equations (3.4), is recommended to use when the
projected velocity dispersion profile is reliable over the radial range of interest. As the
circular speed V rad

c (R) recovered for pure radial orbits depends on the second derivative

δ =
d2 ln[I(R)σ2

p(R)]

d(lnR)2
, it relies on the quality of σp(R). If the dispersion profile is noisy and

does not decline steeply, then R2 - the radius where α = d ln I(R)/d lnR = 2 - can be used

as the sweet spot. For our sample of galaxies the average ratio

〈

V iso
c (Rsweet)

V iso
c (R2)

〉

of circular

speed estimates calculated from equations (3.4) at Rsweet and at R2 is equal to 1.03 with
RMS = 0.022. When the observational data do not allow to use the full analysis, then
the circular speed can be estimated using the simplified analysis (eq. 3.6). The average

ratio

〈

V iso
c (Rsweet)

V iso,s
c (R2)

〉

equals to 1.05 with RMS = 0.022, where V iso,s
c is calculated using

equations (3.6).
As expected the sweet radius is found to lie close to R2 and also not too far from the

effective radius Reff of a galaxy (effective radii used here, Rav
eff , are listed in Table 3.6).

For our sample the average ratio

〈

Rsweet

R2

〉

≈ 1.14 with rms-scatter RMS ≈ 16%, while
〈

Rsweet

Rav
eff

〉

≈ 1.23 with RMS ≈ 30% scatter. It should be noted that the value of the

effective radius strongly depends on a measurement techique. Reff could vary significantly
depending on (i) whether it is measured with or without extrapolation of data, (ii) paramet-
ric form of the stellar distribution profile used to fit the data, (iii) radial range used to fit,
for instance, the Sérsic profile, (iv) quality of photometric data (see, e.g., Kormendy et al.,
2009; Cappellari et al., 2013). In contrast with the simple mass estimator proposed by
(Wolf et al., 2010) our estimator is not tied to the effective radius. The sweet spot is
defined from local properties of I(R) and σp(R) or even from I(R) alone.

3.5 Conclusion

We discuss a simple mass estimator that allows one to estimate the circular speed Vc from
local properties of the surface brightness and the line-of -sight kinematics at a characteristic
radius where the Vc-estimate is largely insensitive to the unknown anisotropy of stellar
orbits. Although the method is designed for non-rotating spherical galaxies, we extend it
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also to mildly rotating axisymmetric and slowly-rotating triaxial ones, substituting σp(R)

in equation 3.4 or 3.6 with Vrms(R) =
√

σ2
p(R) + V 2

rot(R), where Vrot(R) is the rotational

velocity. Tests on the sample of massive simulated galaxies show that the recovered from
I(R) and σp(R) measured along apparent major and minor axes of the galaxy circular
speed is almost unbiased with the RMS-scatter of ∼ 5%.

We apply the method to M87 and compare our simple mass estimate with circular speed
profiles derived from X-rays and the state-of-the-art Schwarzschild modeling, thus revisiting
the results of Churazov et al. (2008, 2010). At the sweet radius Rsweet = 115′′ we derive
V opt
c = 511 km s−1, that agrees well with the circular speed obtained in Murphy et al.

(2011). After comparing the optical Vc-estimate with the X-ray derived one, we conclude
that at the sweet radius the non-thermal contribution to the total gas pressure is ∼ 20%.
The true value of the non-thermal contribution in M87 could be even lower, since X-ray
data near the sweet radius are affected by the shock (Forman et al., 2007).

We observe a sample of five X-ray bright elliptical galaxies with the 6-m telescope
of the SAO RAS and measure the surface brightness, line-of-sight velocity and velocity
dispersion distribution of stars up to two effective radii along one or two slits. We apply
our simple method to estimate the circular speed and compare it with the circular speed
measurements based on the X-ray analysis of Chandra data. We conclude that optical and
X-ray Vc-estimates agree with each other remarkably well implying the sample averaged
non-thermal pressure support of ∼ 4% ± 20% , i.e. to be consistent with zero.

From deep long-slit spectral data obtained with SCORPIO/BTA we derive high-precision
Lick indices profiles out to ∼ 2 effective radii, which in turn used to estimate the radial
variations of the stellar population mass-to-light ratios and the dark matter fraction within
Rsweet, typical value of the latter is ∼ 50% for the Salpeter IMF and ∼ 70% for the Kroupa
IMF.
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Côté P., McLaughlin D.E., Hanes D.A., Bridges T.J., Geisler D., Merritt D., Hesser J.E.,
Harris G.L.H., Lee M.G. 2001, ApJ, 559, 828

de Lucia G., Blaizot J. 2007, MNRAS, 375, 2

Dickey J. M., Lockman F. J. 1990, ARAA, 28,215



86 BIBLIOGRAPHY

Emsellem E., Cappellari M., Peletier R. F., McDermid R. M., Bacon R., Bureau M.,
Copin Y., Davies R. L., Krajnović D., Kuntschner H., Miller B.W., de Zeeuw P.T. 2004,
MNRAS, 352, 721
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Chapter 4

Performance of simple mass
estimators for elliptical galaxies

in prep.
N.Lyskova, E.Churazov, S. Tremaine, J. Thomas, T. Naab

Abstract. We compare performance of theoretical simple mass estimators of elliptical
galaxies relying on the most basic observables, namely, the surface brightness and velocity
dispersion profiles, without invoking computationally expensive detailed modeling. These
methods recover the mass at a special radius where the mass estimate is expected to be
almost insensitive to the anisotropy of stellar orbits. One method (Wolf et al. 2010) uses
the total luminosity-weighted velocity dispersion and evaluates the mass at a deprojected
half-light radius r1/2, i.e. depends on the global galaxy properties. Another approach
(Churazov et al. 2010) relies on the local properties and estimates the mass at a radius R2

where the surface brightness declines as R−2. Hereafter we refer to these two methods as
‘global’ and ‘local’ methods.

We performed tests on analytical models, simulated galaxies and real elliptical galaxies
which have already been modeled by the Schwarzschild orbit-superposition technique. The
tests show that both estimators recover an almost unbiased circular speed estimate (when
averaged over a sample) with a modest RMS-scatter (. 10%). Tests on analytical models
and simulated galaxies indicate that the local estimator has a smaller RMS-scatter than
the global one. We show, that the projected velocity dispersion at R2 could serve as a
good proxy for the virial galaxy mass. For simulated galaxies the total halomass scales

with σp(R2) as Mvir

[

M⊙h
−1
]

≈ 6 · 1012

(

σp(R2)

200 km s−1

)4

with RMS-scatter ≈ 40%.
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4.1 Introduction

Being one of the basic properties, the galaxy massed play a key role in our understanding
of formation and evolution of these objects. While observations of disc rotation curves al-
lows one to determine spiral galaxy masses directly, the situation with early-type galaxies
is more problematic due to lack of mass tracers on known orbits. Approaches of different
level of sophistication and generality have been developed for mass determination of ellip-
tical galaxies. Dynamical modeling using the orbit superposition Schwarzschild method is
considered to be the state-of-the-art technique that allows one to recover the galaxy grav-
itational potential and an orbital structure with an accuracy of . 15% (Thomas et al.,
2005). Schwarzschild modeling is now widely used for mass measurements of supermassive
black holes, for determination of total mass profile and its decomposition into luminous
and dark matter components as well as for constraining the orbital structure. As such
approach requires high quality observational data on the line-of-sight velocity moments
(namely, the third an the fourth order Gauss-Hermite moments), it can be applied only to
nearby galaxies. Moreover, numerical experiments show that due to intrinsic degeneracies
not all the model parameters can be uniquely constrained even from the best-available
integral-field stellar kinematics (e.g., van den Bosch and van de Ven, 2009).

Large astronomical surveys are extremely important for galaxy studies as they facilitate
a number of statistical investigations of galaxy properties. Galaxy mass determination at
different redshifts is a critical ingredient for galaxy formation studies and for tracing the
assembly of galaxy mass over time. For large surveys containing information on galaxy
photometry and kinematics usage of detailed dynamical modeling could be not practi-
cal/justified especially in a case of poor and/or noisy observational data. It is desirable
to have simple and robust techniques based on the most basic observables that provide an
unbiased mass estimate with a modest scatter.

There have been recently suggested two simple mass estimation methods (Churazov et al.
2010 and Wolf et al. 2010) which evaluate mass at a special radius from the surface bright-
ness and projected velocity dispersion profiles without involving detailed modeling. Al-
though these approaches allow one to recover mass at some particular radius only and do
not recover the mass distribution with radius, these estimates could be used (i) to esti-
mate non-thermal contribution to the total gas pressure when compared with X-ray mass
estimate at the same radius; (ii) to derive a slope of the mass profile when combined with
the mass estimate from strong lensing; (iii) as a virial mass proxy.

The central thesis of this work is to compare a performance of simple mass estimators
on analytical models, simulated galaxies and real elliptical galaxies that have been already
studied in detail with the state-of-the-art Schwarzschild method. The paper is organized
as follows. In section 4.2, we provide a brief description of the simple mass estimators. We
present results of the tests of these methods on analytical models and a sample of simulated
galaxies in section 4.3 and on real elliptical galaxies - in section 4.4. A possibility to use
simple estimates as a proxy for a virial mass is discussed in section 4.5. A summary on
the bias and accuracy of the methods and conclusions are given in section 4.6.
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4.2 Mass approximation formulae.

Observational constraints on a stellar surface brightness and line-of-sight velocity dispersion
profiles of galaxies are the basis of various dynamical modeling techniques of different
level of the sophistication and generality. Unfortunately, all available dynamical methods
suffer from the common problem - even the best-available kinematics and photometry are
unable to uniquely resolve degeneracies for all the model parameters. The key degeneracies
are (i) the degeneracy between the unknown total mass profile and velocity anisotropy β
(Binney and Tremaine, 2008) and (ii) the deprojection of the surface brightness profile
I(R) into a three-dimensional stellar number/mass density even for axisymmetric bodies
(e.g., Rybicki, 1987; Gerhard and Binney, 1996).

The (scalar) virial theorem provides the straightforward way to estimate mass (or cir-
cular velocity) of an elliptical galaxy satisfying two assumptions. Namely, for a closed sta-
tionary spherical system in an isothermal gravitational potential Φ(r) = V 2

c ln(r) + const
a circular velocity Vc is related to the average (luminosity-weighted) line-of-sight velocity
dispersion as

V 2
c = 3

〈

σ2
p

〉

= 3

∫

∞

0
σ2
p(R)I(R)RdR

∫

∞

0
I(R)RdR

. (4.1)

The mass is then equal to M(< r) = rV 2
c /G, where G is the gravitational constant.

Apart from the simplicity the main advantage of this approach is its rigorous independence
from the velocity anisotropy. However, in practice, observed galaxies are not guaranteed (i)
to have spectroscopic data over the full extent of the systems, (ii) be closed, (iii) spherically
symmetric and/or (iv) to have the isothermal gravitational potential.

To weaken some of these assumptions it is common to use the spherical Jeans equation
which relates the velocity anisotropy parameter β, a volume number density of stars j(r)
and a radial velocity dispersion σr(r):

d

dr
jσ2

r + 2
β

r
jσ2

r = −j
dΦ

dr
, (4.2)

where β(r) = 1 − σ2
θ/σ

2
r for the spherically symmetric case (σθ(r) is the tangential

velocity dispersion).
In principle, one can derive M(< r) from the Jeans equation linking 3D quantities j(r)

and σr(r) to the observable surface brightness I(R) and projected velocity dispersion σp(R)
via

I(R) = 2

∫

∞

R

jr dr√
r2 −R2

, (4.3)

σ2
p(R)I(R) = 2

∫

∞

R

(

1 − R2

r2
β

)

jσ2
rr dr√

r2 −R2
(4.4)

for any given anisotropy profile.
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Unfortunately observational data alone do not allow one to constrain β(r) without in-
voking sophisticated detailed modeling. From considering relation (4.4) one might expect
to find some characteristic radius Rchar where uncertainty in a circular speed estimate
arising from the unknown anisotropy is minimal, thus mitigating the mass-anisotropy de-
generacy. The existence of such the radius is first noted in Richstone and Tremaine (1984).
In this case the mass estimator can be expressed in the following form:

V 2
c (Rchar) = kσ2

p, (4.5)

where k is a coefficient that relates observed velocity dispersion to the circular speed
at some radius Rchar.

This idea is the basis of the simple dynamical mass scaling relations discussed in detail
by Churazov et al. (2010) and Wolf et al. (2010). In the paper we concentrate on these
two simple mass estimator and test their performance.

4.2.1 Local estimator.

The Churazov et al. estimator is derived from the stationary non-streaming spherical
Jeans equation under an assumption of the logarithmic form of the gravitational potential
Φ(r) = V 2

c ln(r) + const. In this case circular speed profiles can be analytically derived for
isotropic (assuming β = 0), radial (β = 1) and circular (β → −∞) stellar orbits:

V iso
c (r) = σp(R)

√

1 + α + γ

V circ
c (r) = σp(R)

√

2
1 + α + γ

α
(4.6)

V rad
c (r) = σp(R)

√

(α + γ)2 + δ − 1,

where

α ≡ −d ln I(R)

d lnR
, γ ≡ −

d ln σ2
p

d lnR
, δ ≡

d2 ln[I(R)σ2
p]

d(lnR)2
. (4.7)

The characteristic radius - Rchar = Rsweet - where the circular speed estimate is expected
to be largely insensitive to β is defined as a point of intersection of V iso

c , V circ
c and V rad

c , i.e.
where circular speed estimates for different β give similar values. As seen from equations
above, Rsweet depends only on the local properties of the observed surface brightness I(R)
and projected velocity dispersion σp(R) profiles.

For massive elliptical galaxies the spatial variation of σp(R) is typically much smaller
compared to those of I(R), i.e. γ ≪ α and δ ≪ α. In this case equations (4.6) can be
simplified to:

V iso
c = σp(R)

√
α + 1

V circ
c = σp(R)

√

2
α + 1

α
(4.8)
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V rad
c = σp(R)

√
α2 − 1.

Note, that for α = 2 the relation between the circular speed and the observed velocity
dispersion (eq. 4.8) does not depend on the anisotropy parameter (Gerhard , 1993), i.e.
for the simplified case of nearly flat projected velocity dispersion profile the characteristic
radius Rchar = R2 where the surface brightness declines as R−2. For the general case Rsweet

is expected to lie not far from R2 which is in turn close to the 2D half-light radius R1/2.
So three quantities can be used as the circular speed estimates: (i) Vc(Rsweet) - Vc-estimate
from eq. (4.6) at Rsweet, (ii) Vc(R2) - Vc-estimate from eq. (4.6) at R2 and (iii) V s

c (R2) -
simplified Vc-estimate from eq. (4.8) at R2.

4.2.2 Global estimator.

The mass estimator suggested by Wolf et al. (2010) is derived from the spherical Jeans
equation combined with the scalar virial theorem under an assumption of a fairly flat
line-of-sight velocity dispersion profile σp(R). Wolf et al. show that the mass uncertainty
arising from the unknown anisotropy of stellar orbits β is minimized at the radius r3 where
the 3D stellar density profile j(r) decays as r−3. Within this radius the galaxy mass can be
inferred from the luminosity-weighted average of the observed projected velocity dispersion
profile

〈

σ2
p

〉

:

M(r3) = 3G−1
〈

σ2
p

〉

r3, (4.9)

As discussed in Wolf et al. (2010), for a wide range of stellar distributions (e.g. for
exponential, Gaussian, King, Sérsic profiles) r3 is close to a 3D half-light radius r1/2, which
is in turn approximately equal to 4/3R1/2, where R1/2 is a projected half-light radius. The
mass approximation formula can be expressed as

M1/2 ≃ 3G−1
〈

σ2
p

〉

r1/2 ≃ 4G−1
〈

σ2
p

〉

R1/2, (4.10)

or in terms of the circular speed

V 2
c

(

4

3
R1/2

)

≃ 3
〈

σ2
p

〉

. (4.11)

This theoretical mass estimator is derived for galaxies that (i) are spherical, (ii) non-
rotating, (iii) have spatially resolved kinematics over the entire galaxy and (iv) the pro-
jected velocity dispersion does not vary with radius.

Although both Churazov et al. and Wolf et al. mass scaling relations are based on
the spherical Jeans equation and allow to determine total mass enclosed within a sphere
of some characteristic radius Rchar only, at which the mass estimate is not sensitive to the
anisotropy, the final equations and expressions for Rchar look quite different. The crucial
difference between these mass estimators is the following: the Churazov et al. Vc-estimate
depends only on local properties of the observed profiles (σp(R) and log-slopes of I(R) and
σp(R)), while Wolf et al. formula requires averaging of the velocity dispersion over entire
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extent of the galaxy and determination of the projected half-light radius, i.e. depends
on the global galaxy properties. It should be noted that although R1/2 is one of the
most basic galaxy characteristics, it is not always uniquely determined from observations
(see, e.g., Cappellari et al. 2013 for discussion). R1/2 is sensitive to (i) quality and depth
of photometric data, (ii) used radial range, (iii) methodology applied. Even for nearby
galaxies various groups report different values of the effective (half-light) radius. A notable
example is a well-studied massive nearby elliptical galaxy M87 (NGC 4486). On the basis
of high-quality photometric data Kormendy et al. (2009) derive R1/2 ≃ 194′′ for M87, while
Chen et al. (2010) report R1/2 ≃ 107′′ (see also Figure 11 in Chen et al. 2010).

Notice that both estimators give exactly the same characteristic radius and circular
speed estimate for the pure power-law surface brightness profile I(R) ∝ R−α (the 3D
stellar density scales as j(r) ∝ r−α−1) in the isothermal gravitational potential. For this
case the characteristic radius is Rchar = R2 = r3 and the circular speed is well approximated

by Vc =
√

3σp(R2) ≡
√

3
〈

σ2
p

〉

.

Main properties of Churazov et al. and Wolf et al. estimators are summarized in Table
4.1.

4.3 Tests

In order to compare performance of the local and global approaches, we test them on
analytical models, simulated galaxies and real elliptical galaxies, that have already been
analyzed using the-state-of-the art dynamical modeling.

4.3.1 Analytic models.

In the case of analytical models we solve the Jeans equation numerically for an assumed
set of 3D stellar density, anisotropy and circular speed profiles. The 3D stellar density
comes from a deprojected surface brightness profile (assuming spherical symmetry) which
is described by the Sérsic law I(R) = I(R1/2) exp

[

−bn
(

(R/R1/2)
1/n − 1

)]

, where constant

bn is such that Γ(2n) = 2γ(2n, bn). The anisotropy is parametrized as β(r) =
β2r

c + β1r
c
a

rc + rca
,

where c is a concentration parameter and ra is a some characteristic scale length. Since in
real early-type galaxies the distribution of stellar orbits is believed to be close to isotropic
at the center and more radial in outer parts, we vary β1 from −0.7 to 0.0 and β2 - from
0.1 to 0.5. Parameters ra and c range from 0.1R1/2 ≤ ra ≤ 3.2R1/2 and 0.1 ≤ c ≤ 5.1
respectively.

The circular speed dependence on radius is parametrized as V 2
c (r) ∝ V1

r2

r2 + r2c
+

V2
ln(1 + r/rs) − r/(r + rs)

r/rs
to mimic real Vc-profiles. Let us note that it is a simple ana-

lytical representation of the circular velocity and free parameters are chosen to cover the
whole range of observed shapes and to probe different parts of real circular speed profiles



4
.3

T
e
sts

9
5

Table 4.1: Main properties of Churazov et al. and Wolf et al. estimators.

Estimator Assumptions Data Characteristic radius σp k

local dyn. equilibrium log-slope of I(R) Rsweet σp(Rsweet)
√

1 + α(Rsweet) + γ(Rsweet)
sph. symmetry log-slope of σp(R) or R2 or or

no rotation σp(R2)
√

1 + α(R2) + γ(R2)

isothermal Φ(r) or
√

1 + α(R2)

global dyn. equilibrium σp(R) over whole galaxy r3
〈

σ2
p

〉 √
3

sph. symmetry deprojection of I(R) or r1/2
no rotation or determination of R1/2 or 4/3R1/2

flat σp(R)
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Figure 4.1: Typical profiles considered for a sample of analytical models. Upper left: as-
sumed stellar density j(r), anisotropy β(r) and circular speed Vc(r) as functions of R/R1/2,
where R1/2 is a projected half-light radius. Upper right: surface brightness I(R) cor-
responding to the projection of j(r) (under the assumption of spherical symmetry) and
velocity dispersion profile σp(R) from the spherical Jeans equation. Low panel: profiles,
used to get the simple Vc-estimates. Logarithmic slopes of j(r) and I(R) are shown in
the top panel as dark green and purple curves respectively. r3 and R2 are marked as dark
green dashed and purple dotted lines. The simple circular speed estimates are shown as
opened and filled symbols of different colors: the filled dark green square is for the global
Vc-estimate at r3, the filled cyan square - at r1/2 ≈ 4/3R1/2, the open blue square shows
the local estimate at Rsweet and the open purple square - at R2, the open purple star shows
the simplified version of the local estimator (eq. 4.8).
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Figure 4.2: Circular speed estimates for ‘ideal’ model galaxy with surface brightness de-
scribed by Sérsic profile (Sérsic index n = 4), constant anisotropy β = −0.25, flat Vc(r)
(left side) or flat σp(R) (right side). The upper panels show the log-slopes of the 3D stellar
density α3D (in dark green) and of the surface brightness α (in purple), the projected ve-
locity dispersion is plotted in the middle panels, and the true circular speed profile as well
as simple Vc-estimates are shown in the low panels. The symbols in the low panels are the
same as in Figure 4.1.

(rising, roughly flat and decreasing Vc). rs varies from 0 to 90 half-light radius, rc changes
from 0 to 12 half-light radius.

The luminosity-weighted average of the projected velocity dispersion profile is calcu-

lated as
〈

σ2
p

〉

=

∫

I(R)Rσ2
p(R)dR

∫

I(R)RdR
over [0.1R1/2; 10R1/2]. Figure 4.1 illustrates all steps of

the analysis and shows typical profiles considered for analytical models.

Performance in an ideal case.

First we apply the simple estimators to the ideal ‘model’ galaxy, which meets all the as-
sumptions used to derive the formulae: dynamical equilibrium, spherical symmetry, no
streaming motions, constant anisotropy, flat Vc(r) for Churazov et al. formula and con-
stant σp(R) for Wolf et al. estimator. Figure 4.2 demonstrates the typical profiles for the
‘ideal’ galaxy and derived estimates. If the circular speed is assumed to be flat, then the de-
rived projected velocity dispersion should monotonically decrease with radius. For the flat
velocity dispersion profile and constant anisotropy it is possible to infer the circular speed
from a deprojection of σp(R) and I(R) and solving the Jeans equation (Mamon and Boué
2010). As expected both estimators work well when applied to ‘ideal’ galaxies which meet
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all the assumptions. For the flat Vc(r) and decreasing σp(R) Wolf et. al formula slightly
underestimates the true circular speed with typical deviation of ≈ −3%, for constant σp(R)
and growing Vc(r) Churazov et al. approach tends to overestimate the true Vc by ≈ −3%.

Grid of analytical models.

We explore ∼ 30000 analytical models, described by the Sérsic law with Sérsic index 2 <
n < 20, mildly increasing with radius anisotropy profile and circular speed characteristic
for (i) dark-matter dominated dwarf spheroidal galaxies (growing Vc) and (ii) massive
elliptical galaxies (roughly flat and decreasing with radius Vc). However, we do not aim to
explore the whole parameter space, the idea is to understand how sensitive the estimators
are to the assumption of a flat Vc(r) or σp(R) and to the mildly varying anisotropy. The
resulting histograms for the local estimator (upper row) and the global estimator (lower
row) are shown in Figure 4.3. The RMS-scatter for the global estimator is almost twice
larger than for the local one, indicating that the latter is less sensitive to the assumption
of a constant circular velocity, than the Wolf et al. estimator to the assumption of a flat
velocity dispersion.

As the Churazov et al. derivation assumes the isothermal gravitational potential (i.e.
flat Vc(r)) it would be interesting to test how accuracy of the estimator depends on the slope
of the circular speed profile. Indeed, there is a clear correlation between the deviation ∆ of
the estimated circular speed from the true one and the logarithmic slope of the true Vc(r) at

Rsweet: ∆ ≈ k×
(

−d lnV 2
c

d ln r

)

(Figure 4.4, the black histogram shows the average deviation).

The details of the mean correlation between ∆ and −d lnV 2
c

d ln r
depends on the sampling of

the parameter space. However the main trend for the local estimator seems to be rather
universal. For growing/decreasing Vc near Rsweet (which is close to R2) the method tends

to overestimate/underestimate the true value by a factor of ≈ 1 + 0.1

(

−d lnV 2
c

d ln r

)

(order

of magnitude estimate). For flat Vc near Rsweet the local estimator is largely unbiased
when averaged over the parameter space covered by our grid of analytic models. When
deviations are plotted against the logarithmic slope of the projected velocity dispersion

γ = −
d ln σ2

p

d lnR
at Rsweet, a similar pattern is observed. If σp grows with radius in the

vicinity of Rsweet, then the local Vc-estimate overestimates the true circular speed. For flat
or moderately falling observed velocity dispersion profiles Churazov et al. method seems
to recover almost unbiased Vc-estimate.

The global estimator demonstrates more complex dependence on the slope of the cir-
cular speed radial profile, giving a noticeable negative bias for a flat circular speed (for
the flat Vc(r) the observed velocity dispersion might vary significantly with radius). As
expected, Wolf et al. formula works best for roughly flat line-of-sight velocity dispersion
profiles. The global Vc-estimate appears to be significantly overestimated relative to the
true one for σp rapidly increasing with radius (γ . 0.3). Large negative deviations are
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Figure 4.3: The histograms of deviations of simple Vc-estimates from the true value for
the local (upper row) and the global estimators (lower row) for model spherical galaxies,
described by Sérsic surface brightness profile, mildly growing anisotropy, and circular speed
profile that is similar in shape to the observed circular velocity curves. Deviations are

calculated as ∆ =
Vc − V true

c

V true
c

, where estimated Vc and true V true
c are taken at the same

characteristic radius.
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Figure 4.4: Dependence of the error in the Vc estimation on properties of the true Vc(r) and
observed σp(R) profiles. Left: Deviation ∆ of the estimated circular speed from the true

one as a function of a log-slope of the true circular speed −d lnV 2
c

d ln r
taken at a characteristic

radius (Rsweet for the local estimator and r3 for the global one). The histogram shows the
average deviation in a chosen bin of logarithmic slopes. Right: Deviation as a function of

the log-slope of the projected velocity dispersion γ = −
d ln σ2

p

d lnR
at at a characteristic radius.

Only 1000 randomly chosen realizations are shown for clarity.
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present for models with σp(R) showing a bump, i.e. when γ(R) changes a sign.
Figure 4.4 indicates that the local estimator should be applied with cautious to sys-

tems with increasing velocity dispersion profiles and/or to systems that are described by
growing circular speed profiles in the vicinity of R2. As the Wolf et al. estimator relies on
global properties of the galaxies, it works well if the velocity dispersion does not change
significantly with radius over the whole extent of the system. Roughly speaking, Wolf et al.
formula is appropriate for dwarf spheroidal galaxies (see Kowalczyk et al. 2013 who have
tested the global estimator on a sample of simulated dSph) and for a subset of elliptical
galaxies with approximately flat velocity dispersion profile, while Churazov et al. estimator
works for elliptical galaxies in general.

It should be also noted that for large Sérsic indices (n > 8 − 10), typical for massive
ellipticals sitting at the centers of groups or clusters, log-slope of the surface brightness α
is close to 2 over a wide range of radii, and in this radial range the true circular speed is
well described by the isotropic one V iso

c (eq. 4.6).

4.3.2 Tests on simulated galaxies.

From spherical models we now turn to a sample of ‘zoom-in’ cosmological simulations of
individual galaxies (Oser et al. 2010), which span a wide range in mass, 7 × 1011M⊙h

−1 <
Mvir < 2.7 × 1013M⊙h

−1, h = 0.72, where Mvir is the present day virial halo mass.
Those massive simulated galaxies have properties very similar to observed nearby early-
type galaxies as found by ATLAS3d project (Naab et al. 2013).

Churazov et al. estimator has been tested in Lyskova et al. (2012) and we follow the
same analysis procedure. Briefly, we first exclude satellites from the galaxy image and cal-
culate the radial profiles I(R), σp(R) and the true circular speed V true

c (r) =
√

GM(< r)/r
in a set of logarithmic concentric annuli/shells around the halo center. We define Rsweet as
a radius where (V iso

c −V )2 + (V rad
c −V )2 + (V circ

c −V )2, where V = (V iso
c +V rad

c +V circ
c )/3,

is minimal. At Rsweet we take V iso
c as an estimate of the circular speed and calculate a

deviation from the true value at this radius ∆ =
(

V iso
c − V true

c

)

/V true
c . We consider three

Vc-estimates: (i) Vc(Rsweet) = V iso
c (Rsweet) defined from eq. (4.6), (ii) Vc(R2) = V iso

c (R2)
defined from eq. (4.6) and (iii) V s

c (R2) = V iso,s.
c (R2) defined from eq. (4.8).

We apply the estimators to a subsample of massive (σp(R1/2) > 150 km s−1) simulated
galaxies and exclude merging and oblate galaxies seen along the rotation axis.

Figure 4.5 shows the fraction of galaxies versus the deviation ∆ =
(

Vc − V true
c

)

/V true
c

for Churazov et al. Vc-estimator. Left and rights panels of Figure 4.5, demonstrating
the performance of local estimates V

(
c Rsweet) and V s

c (R2), has been already presented in
Lyskova et al. (2012) (Figure 8). Note, that Vc(Rsweet) and Vc(R2) estimates show very
similar results: the average over the sample deviation is close to zero and RMS-scatter
≈ 5 − 6%. So the radius R2, which is uniquely determined from the slope of the surface
brightness profile, can be used instead of Rsweet, which depends also on the log-slope of the

projected velocity dispersion profile −
d ln σ2

p

d lnR
and the second derivative

d2 ln[I(R)σ2
p]

d(lnR)2
.

To test robustness of Wolf et al. estimator on the sample of simulated galaxies we
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Figure 4.5: The histograms of deviations for the local Vc-estimator from the true circular
speed for simulated galaxies. Vc(Rsweet) and Vc(R2) are calculated from equations (4.6)
at Rsweet (radius where V iso

c ≈ V circ
c ≈ V rad

c ) and R2 (where I ∝ R−2) correspondingly.
V s
c (R2) comes from equations (4.8).
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Figure 4.6: The histograms of the deviations for global Vc-estimator from the true circular
speed for simulated galaxies. Deviations are calculated at the following characteristic radii:
(i) r3 (left upper panel), where j(R) ∝ r−3, (ii) 4/3 ‘observational’ effective radius resulting
from the Sérsic fit to the surface brightness over [3rsoft; 0.1Rvir] (right upper panel), (iii)
3D half-light radius r1/2 (left lower panel) and (iv) 4/3 projected half-light radius R1/2

(right lower panel).
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need to compute (i) luminosity-weighted projected velocity dispersion
〈

σ2
p

〉

over some ra-
dial range [Rmin;Rmax], (ii) characteristic radii r3, r1/2 and 4/3R1/2 where anisotropy is
expected to play minor role in circular speed determination. r3 is calculated as a radius
where 3D stellar density declines as r−3, the 3D half-light radius r1/2 and projected half-
light radius R1/2 are computed as a radius of the sphere/circle which contains half of the
3D/projected stellar mass respectively. Since in real observations information on total light
is not available, we also determine an ‘observational’ effective radius Reff coming from the
Sérsic fit I(R) ∝ exp

(

−bn(R/Reff)1/n
)

to the observed surface brightness over a radial
range [R′

min;R′

max]. We choose Rmin = R′

min = 3rsoft, where rsoft ≈ 400 pch−1 is a soft-
ening length used in simulations and 3rsoft is the maximum radius where profiles could
be affected by the softening. Rmax = R′

max = 0.1Rvir, where Rvir is a halo virial radius
(≡ R200, the radius where the spherical overdensity drops below 200 times the critical
density of the Universe).

Figure 4.6 shows the perfomance of Wolf et al. estimator at different radii: (i) r3 (left

upper panel), where α3D = −d ln j(r)
d ln r

= 3, (ii) 4/3× projected effective radius defined from
the Sérsic fit (right upper panel), (iii) 3D half-light radius r1/2 (left lower panel) and (iv)
4/3× 2D half-light radius R1/2 (right lower panel). While the global estimates Vc(r3) and
Vc(r1/2) are almost unbiased (when averaged over the sample of simulated galaxies), the
average deviation of the global Vc (4/3Reff) is ≈ 3− 4%. RMS-scatter for all cases is equal
to ≈ 7− 10%, i.e. slightly larger than for Churazov et al. estimator. As mentioned above,
observed profiles at R < Rmin = 3rsoft could be affected by the softening, and for the
analysis of the Wolf et al. estimator we consider only those simulated galaxies for which
the characteristic radius is larger than 2Rmin = 6rsoft. This selection criteria effectively
keeps only the most massive galaxies in the sample with roughly isothermal gravitational
potential (see Section 3.2 in Lyskova et al. 2012). For those galaxies the virial theorem
states that Vc at any radius is well approximated by 3

〈

σ2
p

〉

and the exact value of the
characteristic radius is not important.

If we vary Rmax and R′

max in reasonable limits, the values of Reff and
〈

σ2
p

〉

for individual
galaxies do change, but not dramatically, and the average deviation ∆ remains practically
the same (∆ . 3 − 5%) with RMS-scatter ≃ 8 − 10%.

Tests on model spherical galaxies (section 4.3.1) show that the deviation ∆ correlates
with the logarithmic slope of the true circular speed. For the sample of simulated galaxies
we also observe similar trend (Figure 4.7), but not as strong as for model spherical galaxies.
The Wolf et al. estimator (at r3) also shows some correlation with the log-slope of V true

c .
No clear correlation between simple estimates and the logarithmic slope of the projected
velocity dispersion is found.

Trends with the virial mass.

In Figure 4.8 we show the deviation of simple estimates from the true circular speed as
a function of virial halo mass Mvir. Dots represent the deviations for individual galaxies

and lines are the least-square linear fits of ∆[%] = a · lg

(

Mvir

1010M⊙h−1

)

+ b. Note, that for
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Figure 4.7: Observed correlations for simulated galaxies. Left: Deviation of the estimated
circular speed for simulated galaxies from the true one as a function of a log-slope of

the true circular speed −d lnV 2
c

d ln r
. Right: Deviation of the estimated circular speed for

simulated galaxies from the true one as a function of a log-slope of the projected velocity

dispersion profile γ = −
d ln σ2

p

d lnR
.
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Figure 4.8: Deviation of the estimated circular speed from the true one as a function of the
virial halo mass (extracted from simulations). The local formula (left side) recovers the
true circular speed for a wide range of the virial masses almost equally well. The global
approach works better for the most massive galaxies in the sample (Mvir & 3 ·1012M⊙h

−1),
than for the less massive galaxies. One can notice that the global estimator at different
characteristic radii probes the different range of virial masses. When using the global
estimator at Rchar =

{

r3, r1/2, 4/3Reff

}

we retain in the sample only the galaxies which
have Rchar > 2Rmin = 6rsoft. As a result 3 panels for Rchar =

{

r3, r1/2, 4/3Reff

}

probe
different subsamples on the low mass end. In addition, the characteristic radii r3 and
r1/2, which are expected to be close to each other for commonly used analytic stellar light
distributions (e.g., for Sérsic models) for simulated galaxies sometimes differ by a factor
∼ 2 − 3.
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Table 4.2: Sample of real elliptical galaxies analyzed using the Schwarzschild modeling (7
Coma galaxies from Thomas et al 2007 and M87 (NGC4486) from Murphy et al. 2011).
The effective radii for the Coma galaxies are taken from Thomas et al. 2007 and the
effective radius of M87 comes from Kormendy et al. 2009

name other common names Reff , arcsec
NGC 4957 GMP 0144 18.4
NGC 4952 GMP 0282 14.1
NGC 4908 GMP 2417 7.1
NGC 4869 GMP 3510 7.6

IC 3947 GMP 3958 3.3
NGC 4827 GMP 5279 13.6
NGC 4807 GMP 5975 6.7
NGC 4486 M87 194.41

the local Vc(R2), Vc(Rsweet) and global Vc(r3) trends with the virial mass are quite weak.
The Wolf et al. formula has been applied only to simulated galaxies with the characteristic
radius Rchar ≥ 2Rmin = 6rsoft, so the probed range of masses is different for different
characteristic radii.

4.4 Comparison of simple mass estimators with a state-

of-the-art analysis.

It is interesting to test simple mass estimators on real elliptical galaxies, which have already
been studied in detail using the state-of-the-art dynamical modeling. A number of such
modelled galaxies is constantly increasing, but the extent of kinematic data for majority of
them is limited to ≈ Reff only. For succesful mass determination with simple estimators it
is desirable to have spatially resolved kinematics at least out to ≈ 1.2−1.5Reff . As a target
sample we use early-type galaxies from the Coma cluster, modelled using the Schwarzschild
orbit superposition method by Thomas et al. (2007), and the giant elliptical galaxy M87
from the Virgo cluster modelled by Murphy et al. (2011). For our purposes we choose only
those galaxies from the Thomas et al. sample where kinematic measurements are available
out to & 1.5Reff and σp(Reff) > Vrot(Reff), where σp and Vrot are the projected velocity
dispersion and rotation velocity measured along the major axis.

Galaxies of our target sample (7 Coma galaxies + M87) are listed in Table 4.2. We use

the surface brightness and a root-mean-square velocity (Vrms(R)′ =
√

σ2
p(R) + V 2

rot(R))

to recover the circular speed of the galaxy via equations (4.6) and (4.11). Figure 4.9
provides an example of the data we use to compare simple Vc-estimators with the results
of the Schwarzschild modeling. The logarithmic slope of the surface brightness profile
(

α = −d ln I(R)

d lnR

)

is shown in the panel A, the radius R2 where α = 2 is marked as a
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Figure 4.9: Panel A: the log-slope of the surface brightness, radius R2 where α = 2 is
marked with the purple dotted line. Panel B: the velocity dispersion and rotational velocity
measurements along the major axis of the galaxy. Panel C: the circular speed curve (in
black) with errorbars (gray-shaded area) derived from the Schwarzschild modeling. The
effective radius is marked as an arraw.
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purple dashed line. Panel B presents the major axis rotational velocity Vrot (blue triangles)
and projected velocity dispersion σp (black triangles) measurements with errorbars (Σrot

and Σσ correspondingly). The rms-velocity with observational errors Σ2
rms = Σ2

rot + Σ2
σ is

shown as red triangles. The interpolated curves (the interpolation procedure is decsribed
in Churazov et al. 2010) for kinematic data are shown as solid lines. Shaded regions shows
the measurement unsertainties. The best-fitting circular speed V Schw

c (r) (black solid line)
coming from the Schwarzschild orbit-superposition technique with 1σ-uncertainties (grey
shaded area) is depicted in Panel C. An arrow marks the effective radius.

For each galaxy we compare simple circular speed estimators with the best-fit circular
velocity. The luminosity-weighted velocity dispersion 〈σp〉 (which is needed for the Wolf et
al. estimator) is averaged over the radial range where the observational data are available.
As some galaxies show a moderate rotation, we test also the slightly modified version
of the Wolf et al. formula where 〈σp〉 is substituted by the average luminosity-weighted
rms-velocity 〈Vrms〉.

The results are presented in Figure 4.10. Panel A shows the rms-velocity and rotation
velocity measured along the major axis of the galaxy. Panel B shows the circular speed
V Schw
c from the dynamical modeling (black curve) with uncertainties (grey shaded region);

plotted in blue is the isotropic circular speed calculated from eq. (4.6) where σp(R) is
replaced with Vrms(R), blue shaded region reflects the uncertainties associated with Vrms-
measurements. Simple Vc-estimates are shown as squares of different color: the blue open
square correponds to the local Vc-estimate at Rsweet, the purple open square - at R2, global
estimates (calculated as

〈

σ2
p

〉

and
〈

V 2
rms

〉

) at 4/3Reff are shown as the brown and orange
filled squares. The effective radius Reff is shown with an arrow, and the radius R2 - as
a purple dashed line. As the ‘true’ (coming from the Schwarzschild modeling) circular
speed and observed line-of-sight velocity dispersion (or rms-velocity) profiles are close to
being flat, both Churazov et al and Wolf et al. estimators are expected to recover the
circular speed reasonably well. Note that galaxies in the chosen subsample do not match
perfectly all the requirement for using the simple mass estimators. Namely, most of them
are flattened and some are mildly rotating. Nevertheless, we see that simple Vc-estimates
agree well with V Schw

c , especially for slowly rotating galaxies (GMP 0144, GMP 3510,
GMP 5279), where simple estimates (local Vc-estimates at Rsweet and R2) almost coincides
with the V Schw

c (r) value. Table 4.3 provides the summary on the comparison of simple
Vc-estimates with the circular velocity from the Schwarzschild modeling. Used forms of
the estimators are listed in the Column (1), the mean deviation ∆̄ from the V Schw

c - in the

Column (2). RMS-scatter around ∆̄ (in Column (3)) is calculated as

√

∑N
i=1(∆i − ∆̄)2

N − 1
.

Column (4) shows an uncertainty Σobs associated with measurement errors. For each galaxy

Σobs is calculated as
√

1 + α + γΣrms (eq. (4.6)). The column (5) lists the average errors
on the best-fit circular speed from the Schwarzschild analysis taken at the corresponding
characteristic radius.



110 4. Performance of simple mass estimators for elliptical galaxies

Figure 4.10: Comparison of simple Vc-estimates with the circular speed (V Schw
c ) coming

from the dynamical modeling. Panel A shows data on the rms-velocity (Vrms =
√

σ2
p + V 2

rot)

profile and rotation velocity Vrot measured along a major axis as well as interpolated curves
used to calculate the logarithmic derivatives. Panel B presents the circular speed resulting
from the Schwarzschild modeling (black thick curve) with error bars (grey shaded region),
the isotropic circular speed V iso

c (in blue) calculated via eq. 4.6 with ‘observational’ error
bars Σobs determined from the measurement uncertainties on Vrms. The circular speed
profiles for pure circular and pure radial orbits are shown as magenta and green curves
correspondingly. The arrow shows and the dotted purple line show the effective radius Reff

and R2 respectively.
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Figure 4.10: (continue)
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Table 4.3: Simple Vc-estimates and Vc from dynamical modeling. The columns are: (1) - the simple Vc-estimator; (2) -
averaged over the sample of 8 galaxies (7 Coma galaxies + M87) deviation of the estimated Vc from V Schw

c resulting from
dynamical modeling; (3) - RMS-scatter around the average deviation; (4) - average observational error at the characteristic
radius normalised to V Schw

c ; (5) - average error on dynamically derived V Schw
c at the characteristic radius. Since the bias

for the local estimators is mostly driven by a single galaxy IC 3947 (the most compact galaxies in the sample), we exclude
this galaxy and provide the results of the analysis of the remaining galaxies in the parenthesis.

estimator ∆̄ =

〈

Vc

V Schw
c

− 1

〉

,% RMS-scatter, % 〈Σobs〉 /V Schw
c ,% 〈ΣSchw〉 /V Schw

c ,%

(1) (2) (3) (4) (5)
Vc(Rsweet) 5.3 (3.2) 6.6 (3.1) ±5.8 (±5.7) +8.1/−4.8 (+8.0/−4.9)

Vc(R2) 3.3 (1.2) 7.5 (4.9) ±6.2 (±6.3) +9.6/−6.4 (+9.7/−6.7)
√

3
〈

σ2
p

〉

at 4/3Reff 2.0 (1.1) 7.4 (7.6) ±5.7 (±5.8) +8.4/−5.4 (+8.4/−5.6)
√

3 〈V 2
rms〉 at 4/3Reff 8.9 (7.3) 7.8 (6.9) ±5.7 (±5.8) +8.4/−5.4 (+8.4/−5.6)
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Table 4.4: Summary table. The columns are: (1) - the simple Vc-estimator; (2) and (3) -
the average deviation ∆̄,% and RMS-scatter for the sample of sumulated galaxies; (4) and
(5) - the average deviation ∆̄,% and RMS-scatter for the sample of real ellitical galaxies.

simulated galaxies real galaxies
estimator ∆̄,% RMS-scatter, % ∆̄,% RMS-scatter, %
(1) (2) (3) (4) (5)
Vc(Rsweet) 0.0 ± 0.8 5.4 5.3 6.6

Vc(R2) −0.7 ± 0.9 5.9 3.3 7.5

Vc(r3) 0.9 ± 1.2 7.1

Vc(r1/2) 0.1 ± 1.6 9.7

Vc(4/3Reff) 3.4 ± 1.7 7.9 2.0 7.4

4.5 Mass proxy.

Our tests on simulated and real elliptical galaxies suggest, that simple estimators could
be helpful for analyzing large surveys. We also test on simulated galaxies whether the
simple circular speed estimates could be used as a proxy for the virial galaxy mass. The
simple estimators by definition are closely related to the projected velocity dispersion: the
local Vc(R2) =

√

1 + α + γ · σp(R2) ≈
√

3σp(R2) (equation 4.6, α = 2, γ ≪ α) and the

global Vc(r3) =
√

3
〈

σ2
p

〉

. Let us plot σp(R2) and
〈

σ2
p

〉

against the virial halo mass for each

individual galaxy to see how well these quantities correlate with each other.

Figure 4.11 shows the virial galaxy mass as a function of the local value of the projected
velocity dispersion R2 (left side) and the luminosity-weighted average velocity dispersion
√

〈

σ2
p

〉

(right side). Color squares depict the velocity dispersion and the virial mass for

individual simulated galaxies (upper panels) and the straight line is the least-square linear
fit to these data points. Deviations from the linear fit are shown on the lower panel.

The virial mass Mvir (in M⊙h
−1) can be approximated by Mvir ≈ 6 · 1012

(

σp(R2)

200 km s−1

)4

with RMS-scatter ≈ 38% or Mvir ≈ 4.5 · 1012





√

〈

σ2
p

〉

200 km s−1





5

with RMS ≈ 37%. The

local σp(R2) has the same scatter as the luminosity-weighted average line-of-sight velocity
dispersion (global estimate).

〈

σ2
p

〉

is expected to serve as a good proxy for the virial halo
mass for our sample of simulated galaxies as majority of them have almost isothermal
gravitational potential which is well approximated by Φ(r) ≈ 3

〈

σ2
p

〉

ln r + const at any
radius according to the virial theorem. Curiously, the relation between supermassive black
hole mass MBH and host-galaxy bulge velocity dispersion MBH ∝ σ4.24 (Gültekin et al.,
2009) has approximately the same scatter (≈ 31%) and the power as Mvir − σp(R2) and
Mvir −

〈

σ2
p

〉

relations.
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Figure 4.11: The virial mass of simulated galaxies as a function of the projected velocity
dispersion at R2 (left) and the luminosity-weighted average velocity dispersion (right).

We also test whether σp(R1/2) and the luminosity-weighted projected velocity dispersion
〈

σ2
p

〉

e
measured within an aperture of radius R1/2 correlate with the virial mass. We

find that the rem-scatter for σp(R1/2) is ≈ 60% and for
〈

σ2
p

〉

e
the scatter is ≈ 50%, i.e.

noticeably lager than for σp(R2) and
〈

σ2
p

〉

.

4.6 Discussions and Conclusions.

We have compared the performance of two simple and fast methods that allow one to
evaluate masses of elliptical galaxies at a special radius where the mass estimate is largely
insensitive to the velocity dispersion anisotropy. Such methods could be useful for mass de-
termination of large samples of galaxies with poor/noisy data when detailed investigation
is not practical. A reliable mass estimate at a single radius could be also used as an ad-
ditional constraint for the Schwarzschild dynamical modeling thus reducing the parameter
space to be explored by dynamical models.

One approach uses local properties of the galaxy - logarithmic slopes of the surface
brightness and velocity dispersion profiles and recovers the mass at a radius where the sur-
face brightness declines as R−2. Another approach uses the total luminosity-weighted
velocity dispersion

〈

σ2
p

〉

and evaluates the mass at a radius where 3D stellar density

j(r) ∝ r−3 which is claimed to be related to deprojected and projected half-light radii
as r3 ≈ r1/2 ≈ R1/2. We test the accuracy and robustness of these simple mass estimators
on analytic models, on a sample of cosmological zoom-simulations of individual elliptical
galaxies and on real elliptical galaxies that have already been analyzed by means of a
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state-of-the-art Schwarzschild approach.
We have found that
(i) for analytic models both methods recover a circular speed that is in good agreement

with the true one. Churazov et al. estimator is found to be less sensitive to the assumptions
under which it has been derived than the Wolf et al. one.

(ii) For massive slowly rotating simulated galaxies Churazov et al. formulae recover
an (almost) unbiased estimate of the circular speed with RMS-scatter ≈ 5 − 6%. Wolf et
al. relation also gives an almost unbiased measurement of Vc at the radius where the 3D
stellar density declines as r−3 with RMS ≈ 7%. At the effective radius Reff defined from
the Sérsic fit to the surface brightness profile the average circular speed estimate is biased
high by 3.4% and RMS-scatter is around 8%. For real elliptical galaxies Reff is subject
to additional uncertainty as it’s determination depends on the radial range used for the
analysis and applied methodology.

(iii) For a sample of eight real elliptical galaxies analyzed with the Schwarzschild ap-
proach both methods show a remarkable agreement with the best-fit circular speed coming
from the dynamical modeling. When averaged over the sample of eight galaxies our simple
estimator overestimates the best-fit dynamical circular speed by 5%. This bias is mostly
driven by a single galaxy (IC 3947) with the smallest Reff in the sample. When this galaxy
is excluded from the sample, the Vc(Rsweet)-estimator gives the circular speed estimate
overestimated on average by 3.2% relative to the V Schw

c with rms-scatter ≈ 3.1%. RMS-
scatter between our simple estimates for different galaxies is ≈ 6.6% which is comparable
to measurement uncertainties. Wolf et al. estimator for the same sample gives mean
deviation ≈ 2% with slightly larger rms-scatter of ≈ 7.4%.

Table 4.4 provides the average deviation and the rms-scatter for different simple esti-
mators resulting from the tests on simulated and real elliptical galaxies.

The projected velocity dispersion value at the radius R2 where the surface brightness
declines as R−2 seems to be a good proxy for the virial galaxy mass. Mvir (in M⊙h

−1) can

be approximated by Mvir ≈ 6 · 1012

(

σp(R2)

200 km s−1

)4

with RMS-scatter ≈ 40%. The scatter

is comparable to the scatter observed when
√

〈

σ2
p

〉

is used as a proxy for the virial halo
mass.
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Chapter 5

Conclusions

The work presented in this thesis aims to investigate and further develop simple mass
estimators for early-type galaxies which could be used for the analysis of large optical
galaxy surveys. Measuring the mass profile of ellipticals is problematic due to the lack of
mass tracers on known orbits. Dynamical orbit superposition modeling is considered to be
the state-of-the-art technique for recovering the mass profiles of early-type galaxies and the
investigation of their properties. However, this approach requires high quality observational
data on the line-of-sight velocity moments and has a high computational cost, therefore,
not practical for the mass determination of large samples of galaxies, especially in the case
of poor and/or noisy observational data. For such a task it is desirable to have simple
and robust methods based on the most basic observables which provides an unbiased mass
estimate with a modest scatter.

The most basic optical observables are surface brightness and projected velocity disper-
sion profiles. Due to the degeneracy between the mass and the anisotropy of stellar orbits,
these observables are not sufficient to unambiguously recover the distribution of mass with
radius. However, at a special (characteristic) radius and under reasonable assumptions the
mass-anisotropy degeneracy can be circumvented without invoking any additional data
and detailed modeling. The existence of the characteristic radius where the mass is min-
imally affected by the unknown anisotropy was emphasized by Richstone and Tremaine
(1984). Two approaches which evaluate mass at this special radius and are claimed to be
weakly dependent on the anisotropy parameter, have been suggested recently (Churazov
et al. 2010 and Wolf et al. 2010). While these approaches do not recover the radial
mass distribution, reliable mass estimates at a single radius could nevertheless be useful (i)
for cross-calibration of other mass determination methods; (ii) for inferring a non-thermal
contribution to the total gas pressure when compared with the X-ray mass estimate at the
same radius; (iii) for determining a dark matter fraction when compared with the luminous
mass estimate; (iv) for deriving the slope of the mass profile when combined with the mass
estimate from strong lensing; (v) and as a virial mass proxy.

The Churazov et al. (‘local’) technique uses local properties: logarithmic slopes of
the surface brightness and velocity dispersion profiles. It estimates the mass at a radius
R2 where the surface brightness declines as R−2 (see also Richstone and Tremaine 1984,
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Gerhard 1993). The radius R2 typically lies not far from the half-light radius. In contrast,
the Wolf et al. 2010 (‘global’) method uses the total luminosity-weighted velocity dispersion
and evaluates the mass at a deprojected half-light radius, i.e. relies on the global properties
of a galaxy.

To test the robustness and accuracy of these methods I applied them to analytical mod-
els, to simulated galaxies and to real early-type galaxies that had been already investigated
in detail by state-of-the-art dynamical modeling.

I explore ∼ 30000 analytical models, described by the Sérsic surface brightness distri-
bution with Sérsic index 2 < n < 20, anisotropy profile β(r) mildly varying with radius and
circular speed profiles typical for dwarf spheroidal galaxies and for elliptical galaxies. Both
simple estimators are found to recover the circular speed (or mass M(< r) = V 2

c r/G) that is
in good agreement with the true circular velocity. The local approach seems to be less sen-
sitive to the assumptions under which it has been derived than the global one. Tests show
that the local method tends to overestimate mass of systems with the growing Vc-profile
(in the vicinity of R2) which are typical for dark-matter-dominated dwarf spheroidals. For
these systems the global approach gives on average a less biased Vc-estimate. For surface
brightness profiles with large Sérsic index (n > 8−10), typical for massive elliptical galaxies
sitting at the centers of groups or clusters, the simple local estimator allows one to recover
the circular speed over a wide range of radii where the log-slope of the surface brightness
α is close to 2.

To relax the assumption of spherical symmetry, I test the methods on a large sample
of cosmological zoom-simulations of individual galaxies which are similar in properties to
nearby early-type galaxies. For slowly rotating simulated galaxies both the local and the
global formulae recover an (almost) unbiased estimate of the circular speed when averaged
over a sample. The local approach is characterized by RMS ≈ 5 − 6%, while the global
estimator has RMS ≈ 7 − 10%. Moreover, for real elliptical galaxies the half-light radius
is subject to additional uncertainty as it’s determination depends on the details of the
analysis.

Tests on simulated galaxies also suggest that the projected velocity dispersion at the
radius R2 seems to be a good proxy for the virial galaxy mass. Mvir (in M⊙h

−1) can be

approximated by Mvir

[

M⊙h
−1
]

≈ 6 · 1012

(

σp(R2)

200 km s−1

)4

with the RMS-scatter ≈ 40%.

The scatter is comparable to the scatter observed when
√

〈

σ2
p

〉

is used as a proxy for the

virial halo mass.

Then I compare the simple estimators with the circular speed profiles derived from
state-of-the-art dynamical modeling on a sample of real early-type galaxies. For this set
of galaxies the simple Vc-estimates are in remarkable agreement with the results of the
Schwarzschild modeling despite the fact that some of the considered galaxies are flattened
and mildly rotating. When averaged over the sample the simple local estimator overesti-
mates the ‘Schwarzschild’ Vc by ≈ 5% with the RMS-scatter ≈ 6 − 7% between different
galaxies. The bias is comparable to observational uncertainties. Moreover, it is mostly
driven by a single galaxy which is found to be the most compact one in the sample. When
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this galaxy is excluded from the sample, the bias reduces to ≈ 3% and the RMS-scatter to
≈ 3%. The global estimator for the same sample gives the mean deviation ≈ 2% with the
slightly larger RMS-scatter of ≈ 7 − 8%.

Given the encouraging results (a small bias and a modest RMS-scatter) of the tests I
apply the local estimator to a sample of X-ray bright elliptical galaxies observed with the 6-
m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences.
I compare the simple optical Vc-estimates with X-ray Vc-profiles derived from the X-ray
analysis of Chandra data under the assumptions of spherical symmetry and hydrostatic
equilibrium of hot gas. The averaged over the sample ratio of the optical Vc-estimate to
the X-ray one is equal to ≈ 0.98 with 11% scatter, i.e. there is no evidence for the large
non-thermal pressure contribution in the gas at the radius which is not far from the half-
light radius. Once the X-ray derived V X

c is corrected for the non-thermal contribution,
the mismatch between the V X

c and the optical circular speed for isotropic dustribution of
stellar orbits V iso

c provides a clue to the orbital configuration of the galaxy. E.g., at small
radii V X

c > V iso
c would suggest more circular stellar orbits, while at larger radii this would

correspond to more radial orbits. For two galaxies (out of five) in our sample there is a clear
indication that at radii larger than the half-light radius stellar orbits become predominantly
radial. Finally, the difference between the optical Vc-estimate at the characteristic radius
and the stellar contribution to the total gravitating mass allows one to calculate a dark-
matter fraction fDM . A typical fDM for our sample of elliptical galaxies is ≈ 50% for
Salpeter IMF and ≈ 70% for Kroupa IMF at the radius which is close the half-light radius.

The simple estimators can also handle globular clusters and/or planetary nebulae pro-
files to recover reliably the mass. Globular clusters and planetary nebulae play a crucial
role in investigation of outer regions of elliptical galaxies. The method is not restricted to
elliptical galaxies. It can also be applied to galaxy clusters where individual galaxies are
user as tracer particles.
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