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Summary 

Reversible phosphorylation of LHCII, the light-harvesting complex of photosystem II 

(PSII), controls its migration between the two photosystems (state transitions), and serves to adapt 

the photosynthetic machinery of plants and green algae to short-term changes in ambient light 

conditions. The thylakoid kinase STN7 is required for LHCII phosphorylation and state 

transitions in vascular plants. Here, the effects of different light conditions and chemical inhibitors 

on the abundance of STN7 transcripts and their products were analyzed. These analyses were 

performed in wild-type Arabidopsis thaliana plants, in several photosynthetic mutants, and in 

lines overexpressing STN7 (oeSTN7) or expressing mutant variants of STN7 carrying single or 

double cysteine-serine exchanges. It was found that accumulation of the STN7 protein is also 

controlled at the level of transcript abundance. Under certain conditions, exposure to high light or 

far-red light treatment, the relative decreases in LHCII phosphorylation is accompanied by a 

decrease in STN7 abundance. Nevertheless, inhibitor experiments showed that redox control of 

LHCII kinase activity persists in oeSTN7 plants. STN7 dimers were predominantly found in 

oeSTN7 plants and in lines with single cysteine-serine exchanges, indicating that dimerization 

involves disulphide bridges. Transient STN7 dimerization might be required for STN7 activity, 

and the altered dimerization behavior of oeSTN7 plants might be responsible for the unusually 

high phosphorylation of LHCII in the dark found in this genotype. Furthermore, indications for a 

direct interaction of STN7 with thioredoxins are provided, which does not depend on the N-

terminal cystein motive.  

The homologous protein kinase STN8 facilitates the phosphorylation of PSII core proteins, 

which was described to be involved in PSII repair cycle, supercomplex stability and macroscopic 

membrane folding. Here, the effect of increased PSII core phosphorylation in a line 

overexpressing STN8 (oeSTN8) was analyzed and an impact on supercomplex formation and 

membrane structure was observed. The STN8 protein levels in wild-type plants were shown not to 

vary depending on lighting conditions. Moreover, evidence for a tight association of STN7 and 

STN8 with large multisubunit complexes within the thylakoid membrane is given. 
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Zusammenfassung 

Pflanzen und Grünalgen passen ihre Photosynthese-Maschinerie kurzfristigen Änderungen 

der Lichtbedingungen an, indem sie einen Teil der Lichtsammelkomplexe des Photosystems II 

(LHCII) zwischen den Photosystemen relokalisieren (State Transitions) und dadurch deren 

unterschiedliche Anregung ausgleichen. Dieser Prozess wird durch reversible LHCII-

Phosphorylierung gesteuert, welche in Gefäßpflanzen durch die Thylakoidkinase STN7 vermittelt 

wird. In dieser Arbeit wurden die Auswirkungen von unterschiedlichen Lichtbedingungen und 

chemischen Inhibitoren auf die Abundanz der STN7-Transkripte und deren Produkte analysiert. 

Hierfür wurden Wildtyp-Pflanzen von Arabidopsis thaliana, verschiedene 

Photosynthesemutanten, STN7 Überexprimierer (oeSTN7) und STN7-Mutanten, bei denen ein 

oder zwei Cystein-Reste gegen Serine ausgetauscht wurden, untersucht. Dabei wurde festgestellt, 

dass die Akkumulation von STN7-Proteinen auch auf Transkriptebene kontrolliert wird. Unter 

bestimmten Lichtbedigungen, wie starkem Licht oder Dunkelrot, wird der relative Rückgang der 

LHCII-Phosphorylierung von einer Abnahme der STN7-Proteinmenge begleitet. Trotzdem 

zeigten Experimente mit Inhibitoren, dass die LHCII-Kinaseaktivität in oeSTN7-Pflanzen noch 

immer der Redox-Kontrolle unterworfen ist. STN7-Dimere konnten besonders deutlich in oeSTN7 

und in Mutanten, bei denen ein Cystein-Rest ausgetauscht wurde, nachgewiesen werden. Dies 

deutet darauf hin, dass bei der Dimerisierung Disulfidbrücken involviert sind. Eine transiente 

STN7-Dimerisierung könnte essenziell für die Aktivität der STN7-Kinase sein und ein 

verändertes Dimerisationsverhalten in oeSTN7-Pflanzen für die übermäßig starke LHCII-

Phosphorylierung im Dunklen verantwortlich sein könnte. Darüber hinaus werden Hinweise für 

eine direkte Wechselwirkung zwischen STN7 und Thioredoxin präsentiert, welche nicht vom N-

terminalen Cysteinmotiv abhängig ist.  

Die homologe Proteinkinase STN8 ermöglicht die Phosphorylierung der PSII-Kernproteine, 

welche vermutlich ein Rolle beim PSII-Reparaturzyklus, bei der Stabilität von Superkomplexen 

und bei der makroskopischen Membranfaltung spielt. Hier wurden Auswirkungen einer erhöhten 

PSII-Kernphosphorylierung in einer STN8 überexprimierenden Linie auf die Formation von 

Superkomplexen und Membranstrukturen beobachtet. Zudem wurden Hinweise auf eine 

Assoziierung der STN7- und STN8-Kinase mit großen Komplexen der Thylakoid-Membran 

gefunden. 
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1 Introduction 

1.1 Photosynthesis, the chloroplast and linear electron flow (LEF) 

Photosynthesis is the process that enables organisms to convert sun energy into stable 

organic compounds, which are essential to sustain heterotrophic life. It is a reduction-oxidation 

(redox) process in which water (or rarely H2S) serves as electron source and carbon dioxide as 

electron acceptor. As side product of this elementary process free oxygen is released to the 

atmosphere, which is vital to all respiration-dependent life. A major challenge for 

photoautotrophic organisms is the coordination of the absorption of sunlight, energy conversion, 

transfer of electrons and multistep enzymatic pathways (Buchanan et al. 2002). 

In eukaryotes the compartment for all photosynthetic processes is the chloroplast, a 

specialized plastid with chlorophyll-binding membrane proteins. Like mitochondria this organelle 

has arisen from an endosymbiotic event. Thereby, an ancestral cyanobacterium was integrated 

into a non-photosynthetic eukaryotic host cell. During evolution most of the genes of the 

endosymbiont were transferred to the nucleus of the host cell, whereas just a small set of genes 

was retained by the organelle. Thus, an import system had to evolve, that allowed for proteins 

synthesized in the cytosol to be reimported into the organelle. For the coordination of inter- and 

intra-organelle communication, as well as for optimization of metabolic processes, new genes, 

specific for eukaryotes, developed (Buchanan et al. 2002; Hohmann-Marriott and Blankenship 

2011). 

These processes were also accompanied by structural differentiation of the new organelle. 

The modern chloroplast of higher plants is surrounded by two membranes, named the outer and 

the inner envelope. Its internal membrane, the chlorophyll-containing thylakoid membrane, 

represents the site of photosynthesis (Lodish et al. 2000), which constitutes a continuum and 

encases an internal compartment called thylakoid lumen. Structurally the thylakoid membrane can 

be subdivided into grana, grana margins and stroma lamellae (Figure 1). Grana thylakoids are 

stacks of appressed membranes, whose highly curved non-appressed margins constitute an own 

domain (Anderson 1989). Stroma lamellae represent the unstacked membrane fraction, which is 

therefore in closer contact to the stroma, the semi-fluid matrix surrounding the thylakoids. This 

system of thylakoid membranes contains membrane proteins that incorporate light-absorbing 

pigments, such as chlorophylls, and large multiprotein complexes, which enable the conversion of 
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represents a mobile carrier protein and donates its electrons to the PSI reaction center (P700). 

Similar to PSII, this chlorophyll-containing complex uses light energy to reduce ferredoxin. In 

the last step of the light reaction the ferredoxin-NADP+ reductase generates NADPH at the 

stromal side. Concomitantly to the PQH2 turnover at the Cyt b6f complex protons are transported 

into the thylakoids lumen (Q-cycle) leading to its acidification. The resulting proton gradient 

between lumen and stroma is the energy source that is exploited for the phosphorylation of 

adenosine-diphosphate (ADP) to energy-rich adenosine-triphosphate (ATP) by the ATP synthase. 

The second phase of photosynthesis, the Calvin cycle, is taking place in the stroma. Here the high 

energy product ATP und the reducing compound NADPH are consumed during CO2 fixation 

(Buchanan et al. 2002).  

1.2 Alternative electron pathways act beside LEF 

Beside the linear electron flow (LEF) outlined above (1.1), two cyclic electron pathways 

(CEFs) around PSI were described, which reinject electrons to the plastoquinone (PQ) pool. 

The ferredoxin-dependent reduction of plastoquinone is facilitated by the PGRL1/PGR5 

proteins if the preferred NADP+-reduction pathway is inhibited. Thus, this cyclic pathway is 

promoted under HL conditions, when the NADP+/NADPH pool is highly reduced, or after dark-

acclimation, when the Calvin-Benson-cycle is not yet activated (Breyton et al. 2006; DalCorso et 

al. 2008; Joliot and Joliot 2005).  

The second route of CEF depends on the plastidial NADPH-dehydrogenase (NDH), which 

enables the reduction of the PQ pool by stromal NADPH (Shikanai 2007). This NDH-dependent 

PQ reduction occurs also without PSI involvement, for example during heat stress in the dark 

(Sazanov et al. 1998). The light-independent oxidation of the PQ pool involves a plastid terminal 

plastoquinone oxidase (PTOX) or the PSII subunit cytochrome b559 (Bondarava et al. 2003; 

Casano et al. 2000; Pospisil 2011; Rumeau et al. 2007; Schwenkert et al. 2006; Shinopoulos and 

Brudvig 2012). These non-photochemical electron pathways contribute to the observation that up 

to one fourth of the PQ pool stays in a reduced state in the dark (Kruk and Karpinski 2006; Toth 

et al. 2007). Thereby a tight correlation with the metabolic state of the chloroplast is evident (Hou 

et al. 2003). Moreover, it is suggested that CEF fine-tunes the ATP/NADPH ratio by increasing 

ATP production (Eberhard et al. 2008). 
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1.3 Involvement of cysteines in photosynthetic processes 

Many plastidic processes are regulated via the formation and reduction of disulfide bonds of 

cysteine-residue-containing proteins. Due to changes of the stromal redox state by varying light 

and metabolic conditions, the thiol-redox state and consequently the activity of those proteins are 

affected (Buchanan and Balmer 2005). Also a trans-thylakoid thiol-reducing pathway has been 

described, which is supposed to transfer redox state information of the stroma to the lumen. The 

two components identified of this pathway are the CcdA protein, which belongs to the 

DsbD/DipZ family of membrane polytopic proteins, and Hcf164, actually involved in Cyt b6f 

assembly. CcdA was proposed to play a role in the transfer of thiol-reducing equivalents from the 

stroma to the lumen (Page et al. 2004) and the transmembrane protein Hcf164 comprises a 

thioredoxin domain with disulfide-reductase activity on the luminal side of the thylakoid 

membrane (Lemeille and Rochaix 2010; Lennartz et al. 2001; Motohashi and Hisabori 2006).  

Important mediators of redox regulation are members of the thioredoxin (TRX) family 

(Motohashi et al. 2001), of which at least five distinct families are described until today. In plants 

f- and m-types of chloroplastic TRXs were identified, which were shown to target up to 90 

potential substrates (Lemaire et al. 2007). TRXs are disulfide oxidoreductases of about 12 kDa 

and are characterized by highly conserved cysteine (CxxC-) motives (Cain et al. 2009). These 

motives are involved in the thiol-disulfide interchange reaction, which is the underlying 

mechanism for regulation via thioredoxin (Buchanan and Balmer 2005). Enzymes of the Calvin- 

Benson-cycle and the pentose phosphate pathway, as well as the ATP synthase are activated by 

reduction via thioredoxin after onset of light (Kohzuma et al. 2012; Marri et al. 2009). Also the 

activity of the RuBisCo-activase (Zhang et al. 2001) and the deactivation of the LHCII kinase 

STN7 under strong light intensities is supposed to be regulated by the ferredoxin-thioredoxin 

pathway (Lemeille and Rochaix 2010; Martinsuo et al. 2003; Puthiyaveetil 2011; Rintamaki et al. 

2000). However, CxxC motives are also known to be ligands of metal ions in metalloproteins like 

transcription factors or iron-storage proteins (Frauer et al. 2011; Leon et al. 2003). Also 

photosynthesis involves indispensable thiol-redox regulation and coordination of co-factors by 

cysteines. For example iron-sulfur-clusters can be found in ferredoxin, photosystem I or the 

Rieske-protein of the Cyt b6f complex (Droux et al. 1987; Jagannathan and Golbeck 2009; Yang 

et al. 2012). Cysteines that are not arranged in an obvious motive within the amino acid sequence 

can as well play a decisive role in thiol-dependent processes. 
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1.4 Measurement of photosynthetic parameters  

Light energy absorbed by the plant is used for photochemical processes in the thylakoid 

membrane; however, generally not all of it is consumed by conversion into electron transport. 

Depending on the light condition and the operation state of the photosynthetic machinery, light 

energy is partially converted to heat or quenched by fluorescence emission. This chlorophyll a 

fluorescence can be measured by a pulse-amplitude-modulation (PAM) fluorometer, which 

provides information about the state of PSII, including the effective photosynthesis rate, the 

reduction state of electron acceptors, and the extent of heat dissipation (Schreiber 2004). In 

contrast, the state of PSI can be assessed via its absorbance behavior in the near-infrared (peaking 

at 810-840 nm), which is changing with the redox state of the P700 reaction center (Klughammer 

and Schreiber 2008).  

1.5 Protein phosphorylation in chloroplasts  

Reversible phosphorylation is a major post-translational modification and occurs on more 

than 30 % of all eukaryotic proteins (Olsen et al. 2006), modulating their conformation, activity, 

stability and localization. In eukaryotes mainly serine (Ser), threonine (Thr) or tyrosine (Tyr) 

residues become phosphorylated (Laugesen et al. 2004); however, in the course of the two-

component signaling pathway also histidine and aspartate residues are involved (Saito 2001). For 

chloroplastidic proteins predominantly reversible phosphorylation of serine and threonine residues 

was detected regulating several cellular reactions, like starch metabolism (Tetlow et al. 2004), 

plastidic transcription (Baginsky et al. 1997; Kleffmann et al. 2007), thylakoid ultrastructure 

formation (Fristedt et al. 2009), NDH complex activity (Lascano et al. 2003), photosynthetic light 

reaction and LHCII mobility (Haldrup et al. 1999; Vener et al. 1998; Wollman 2001). 

1.6  Adaptation of photosynthesis to changing light conditions 

Land plants are sessile organisms that are bound to their habitat. They therefore have to 

cope with changing environmental conditions. Thus, in order to survive and remain competitive, 

photosynthetic organisms have developed a suite of mechanisms to deal with changes in water 

and nutrient supply, and variations in light and temperature. The incidence of sunlight is subject to 

fluctuations in quality and quantity to which plants react with acclimation responses including 

modulation of thylakoid ultrastructure (Fristedt et al. 2009, Pfeiffer and Krupinska 2005) and 

reorganization of photosynthetic complexes (Kanervo et al. 2005; Walters 2005). Within minutes 
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photosynthetic organisms are able to respond to changing light conditions by reorganization of 

reversible association of the reaction centers of the photosystems with a fraction of the light 

harvesting complexes of PSII (LHCII). This short-term light acclimation response involves 

phosphorylation of the LHCII proteins and is called state transitions, which facilitate the 

adjustment of photosystem I and II excitation (Kanervo et al. 2005; Walters 2005). By 

comparison, long-term changes in light quality are compensated by stoichiometric changes of 

PSII and PSI based on adjustment of gene expression (Pfannschmidt et al. 2003). However, for 

both mechanisms the redox state of the PQ pool was shown to be relevant (Puthiyaveetil et al. 

2012). 

If the photosynthetic machinery is excited above its capacity under high light (HL) 

intensities, the plant is unable to transform its excess of energy into controlled photochemical 

operation, which increases the generation of harmful reactive oxygen species (ROS). The plant is 

able to respond with mechanisms promoting the non-photochemical quenching (NPQ) of the 

incident light energy (Puthiyaveetil et al. 2012). This NPQ comprises the enhanced turnover of 

PSII reaction centers D1 (photoinhibition) (Aro et al. 2005; Fristedt et al. 2009; Tikkanen et al. 

2008a), the qE mechanism (Ruban et al. 2012), and as a minor component state transitions (qT) 

(Tikkanen and Aro 2012). The fast damage and repair of D1 protein prevents the generation of 

uncontrolled electron transmission and thus the photodamage of further components by lowering 

excitation pressure on PSII (Aro et al. 2005). The qE mechanism is regulated by luminal pH 

affecting PSBS protonation, which triggers the binding of xanthophylls to chlorophyll antenna 

resulting in heat dissipation instead of photoreduction at the PSII (Ruban et al. 2012). Finally, part 

of the spectrum of possibilities is as well a long-term acclimation of the photosynthetic machinery 

to HL intensities (Tikkanen et al. 2006). 

1.6.1 Long term response (LTR) 

Preferential excitation of PSI or PSII for a longer time period is answered by photosynthetic 

organisms with stoichiometric changes of the amounts of their photosystems to escape imbalances 

in energy distribution within hours or days. In this long-term acclimation process the abundance 

of reaction centers and light-harvesting proteins is adjusted on the transcriptional level, which is 

reflected by changes in the chlorophyll a and b ratio and changes in grana stack formation 

(Dietzel et al. 2008; Fujita 1997; Melis 1991; Pfannschmidt et al. 2001). Thereby, the redox state 

of the PQ pool serves as the ultimate signal for LTR initiation, which is directly affected by 
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unequal excitation of the reaction centers. Continuous oxidation of the PQ pool due to preferential 

PSI stimulation leads to transcriptional down-regulation of the psaAB operon coding for the PSI 

reaction center core proteins (Dietzel et al. 2008; Fey et al. 2005). Bonardi et al. (2005) revealed 

for the LHCII protein kinase STN7 a function as key sensor or signal transducer for both state 

transitions and the LTR. The assumption of a regulatory coupling of both processes (Allen 1995; 

Allen and Pfannschmidt 2000; Pursiheimo et al. 2001) was supported by analysis of a STN7 

knock-out mutant of A. thaliana (stn7), which was shown to be deficient in both pathways 

(Bonardi et al. 2005). However, Pesaresi et al. (2009) could show that state transitions per se are 

not essential for the LTR. Recently, an alternative model was suggested based on the chloroplast 

sensor kinase (CSK), and its partners the plastid transcription kinase (PTK) and the chloroplast 

sigma factor 1 (SIG1) (Puthiyaveetil et al. 2012). CSK is a modified two-component sensor 

kinase of endosymbiotic origin, which would similar to STN7 sense the redox state of the PQ pool 

in order to adjust photosystem stoichiometry. In this case, oxidized PQ would serve as the 

signaling trigger. This pathway would proceed distinctly from the state transition mechanism, 

because the latter depends on the presence of reduced plastoquinone (PQH2) (Puthiyaveetil et al. 

2012). 

1.6.2 State transitions 

PSII is organized in large super- and megacomplexes containing several PSII cores with a 

variable number of LHCIIs being attached. In plants dimeric PSII is surrounded by two to four 

LHCII trimers composed of combinations of LHCB1, LHCB2 and LHCB3. Those are connected 

to PSII via the monomeric minor antenna proteins LHCB4, LHCB5 and LHCB6, also called 

CP29, CP26, CP24, respectively (Caffarri et al. 2004; Dekker and Boekema 2005; van Oort et al. 

2010; Yakushevska et al. 2003). The short-term response (state transitions) describes the 

reversible translocation of a mobile fraction of LHCII between PSII and PSI in order to balance 

excitation energy by modulating the antennae cross-sections of the two photosystems (Figure 2) 

(Allen 1992; Wollman 2001). This process proceeds within minutes and is controlled by 

reversible phosphorylation of the LHCII proteins LHCB1, LHCB2 and CP29 (Tokutsu et al. 

2009), which depends on the presence of the protein kinase STT7 in C. reinhardtii (Depege et al. 

2003; Lemeille et al. 2009). With a mobile LHCII fraction up to 80 % Chlamydomonas 

reinhardtii (C. reinhardtii) is an ideal model system for studying state transitions (Delosme et al. 

1996; Finazzi et al. 2002). In flowering plants the fraction of mobile antenna proteins that are 
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The major regulatory signals are supposed to originate from the redox state of the PQ pool, 

which directly affects the binding of plastoquinol to the Qo site of the Cyt b6f complex and 

thereby activates the LHCII kinase. That is to say, a chemical reduction of the PQ by moderate 

PSII specific light (state 2 conditions) promotes LHCII phosphorylation and therefore its 

dissociation from PSII and transfer to PSI in the stroma lamellae (Bonardi et al. 2005). On the 

contrary, oxidation of the PQ pool by PSI specific light (state 1 conditions), like far-red light, 

results in dephosphorylation of LHCII and its detachment from PSI and binding to PSII in the 

grana (Figure 2).  

This simplified traditional model was challenged by results from thylakoid sub-fractionation 

experiments, chlorophyll fluorescence measurements and phosphorylation assays, which helped 

to elaborate a revised state transition model (Tikkanen et al. 2008b). It is generally accepted, that 

phosphorylation of LHCII leads to repulsion effects between proteins complexes due to the 

additional negative charges of the phosphate groups. The tightly appressed thylakoid layers in the 

grana stacks visible in state 1 relax during state 2 conditions and thereby facilitate the movement 

of protein complexes. Possibly, these repulsion forces also mediate the movement of pLHCII-

PSII complexes towards stroma lamellae, where they participate in heat dissipation. However, 

substantial amounts of pLHCII-PSII stay in central regions of the grana stacks. Furthermore, 

phosphorylation of LHCII seems to attract PSI-LHCI complexes towards grana stacks, which 

enables the energy transfer from LHCII to PSI upon formation of PSII-pLHCII-PSI complexes in 

the grana margins (Tikkanen et al. 2008b). 

The regulation of state transitions is not only limited to changes in light quality, but also 

light quantity affects LHCII phosphorylation. In dark-adapted plants, a state-1-like situation is 

restored, owing to their predominantly oxidized PQ pool. Contrarily, state 2 is promoted in plants 

exposed to white light intensities below the growth light level, to which they were acclimated 

(Bonardi et al. 2005). Remarkably, already at growth light conditions plants exhibit a substantial 

amount of pLHCII bound to PSI. However, an increase in light intensity to high light (HL) leads 

to a displacement of LHCII from PSI, which represents a relatively fast way to remove excitation 

pressure from PSI in order to balance the system (Grieco et al. 2012; Hou et al. 2003; Tikkanen et 

al. 2010; Tikkanen et al. 2006). In this way, state transitions represent a protective mechanism 

against over-excitation of PSI and concomitantly against the generation of deleterious reactive 

oxygen species (ROS) at PSI under fluctuating light intensities (Grieco et al. 2012). Although HL 

intensities actually cause a strong reduction of the PQ pool, the dephosphorylation of pLHCII is 
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promoted, which reveals a mechanism for feedback down-regulation of STN7 activity, overriding 

the stimulating effect of PQ reduction. In this case, the deactivation mechanism most likely 

depends on the redox state of the stromal ferredoxin-thioredoxin system, which becomes strongly 

reduced under HL (Lemeille and Rochaix 2010; Martinsuo et al. 2003; Puthiyaveetil 2011; 

Rintamaki et al. 2000). Aberrant from far-red light (FR), low light (LL) or dark (D) conditions an 

energy transfer from dephosphorylated LHCII to the PSII reaction centers would be 

counterproductive under HL since down-regulation of PSII activity is triggered upon light excess. 

Consequently, it was shown that LHCIIs can form aggregates in the thylakoid membrane that 

allow quenching of excess light energy via heat dissipation (Iwai et al. 2010; Tikkanen et al. 

2011; Tikkanen et al. 2010).  

Not only changes in light but also temperature conditions (Nellaepalli et al. 2012; 

Nellaepalli et al. 2011) and the cellular metabolism affect state transitions in A. thaliana (Hou et 

al. 2003; Tikkanen et al. 2010). Furthermore, feeding experiments with NADPH or glucose in the 

dark could trigger LHCII phosphorylation, implying a feedback effect of the metabolic state of 

the chloroplasts stroma on state transitions (Hou et al. 2003; Tikkanen et al. 2010). This tight 

connection suggests that state transitions are not restricted to balance the excitation of PSII and 

PSI but could as well play a role in obtaining a suitable NADPH/ATP ratio for CO2 fixation by 

coordinating the light reactions with carbon metabolism (Burrows et al. 1998; Tikkanen et al. 

2006). In C. reinhardtii, state transitions were even supposed to be primarily responsible for ATP 

homeostasis by regulating the CEF/LEF ratio which clearly increases upon state-2 transition 

(Finazzi et al. 2002). Low levels of ATP or anaerobiosis combined with dark conditions lead to 

the influx of electrons from the NADPH to the PQ pool, promoting LHCII phosphorylation, 

whereupon cyclic electron flow generates a proton gradient which drives ATP production (Bulté 

et al. 1990; Burrows et al. 1998; Endo et al. 1999). Hence, whereas STT7 mutants exhibit no 

growth defect, the lack of state transitions was shown to become critical in respiration-deficient 

mutants of C. reinhardtii (Cardol et al. 2009; Fleischmann et al. 1999). 

A. thaliana mutants deficient in state transitions do not exhibit obvious defects in fitness and 

development under normal controlled growth conditions (Bonardi et al. 2005; Lunde et al. 2000; 

Tikkanen et al. 2006), even though the knock-out of STN7 leads to severe changes in gene 

expression (Bonardi et al. 2005; Pesaresi et al. 2009; Pfannschmidt et al. 2003) and accumulation 

of various thylakoid proteins (Tikkanen et al. 2006). Pesaresi et al. could show in 2009 that state 

transitions play a significant physiological role in flowering plants that suffer from a disturbance 
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in LEF. A severe growth phenotype of stn7 mutants could as well be provoked by exposure to 

fluctuating light intensities, which was explained by a disturbance in the redox homeostasis of the 

PQ pool (Bellafiore et al. 2005; Tikkanen et al. 2010). Furthermore, in field trials under natural 

environmental conditions a true fitness relevance of STN7 could be demonstrated. Despite the 

lack of a visible growth phenotype, A. thaliana stn7 and stn7 stn8 double mutants showed 

reduced seed production compared to wild type (WT) plants (Frenkel et al. 2007). Surprisingly, a 

knock-out mutant of the LHCII phosphatase, tap38-1, constantly trapped in state 2, rather shows 

an increased growth rate under continuous LL conditions (Pribil et al. 2010).  

1.6.3 The LHCII kinases STN7 and STT7 

Fluorescence yield changes during state transitions in C. reinhardtii served for the screening 

of mutants deficient in this LHCII antenna dislocation. This approach allowed for the 

identification of STT7, the Ser-Thr protein kinase responsible for LHCII phosphorylation. In A. 

thaliana two homologs of STT7 exist, the Ser-Thr protein kinases STN7 and STN8. 

Immunological analyses of the respective single and double mutants revealed a partial substrate 

overlap of STN7 and STN8 protein kinases (Bonardi et al. 2005), with LHCII phosphorylation 

being almost exclusively performed by STN7. stn8 mutant plants are not affected in state 

transitions but show a significant reduction in light induced PSII core protein (CP43, D1, D2) 

phosphorylation (see 1.6.6), although a considerable level of phosphorylation of the PSII core 

proteins D1 und CP43 is still detectable (Bonardi et al. 2005; Tikkanen et al. 2010; Tikkanen et al. 

2008a). This residual phosphorylation was ascribed to STN7 activity as no thylakoid 

phosphorylation was detected in the stn7 stn8 double mutant (Bellafiore et al. 2005; Bonardi et al. 

2005; Vainonen et al. 2005). Lemeille et al. (2010) proposed a consensus motif for STT7/STN7 

target sites upon which further potential target proteins were identified. Putative substrate 

candidates like ATP-synthase subunits, proteins involved in chlorophyll biosynthesis and in 

synthesis of photosynthetic proteins, like PSBB and PSAB, have to be independently verified 

(Lemeille et al. 2010). 

For both STN7 and STT7 it was not yet unequivocally clarified whether LHCII is the direct 

substrate or is phosphorylated by means of a kinase cascade. Co-immunoprecipitation 

experiments with HA-tagged STT7 suggested an association of STT7 with LHCII antenna; 

however, no difference could be observed between state 1 and 2 conditions for most interactions 

(Lemeille et al. 2009). Thus, STT7 and LHCII could interact directly or be part of a multiprotein 
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complex including further kinases. In C. reinhardtii, the state-2-dependent phosphorylation of a 

homologous protein kinase of STT7 named STL1 requires STT7. This suggests the existence of a 

protein kinase cascade; however, despite a significant homology to STN8, the function of STL1 is 

largely unknown (Depege et al. 2003; Lemeille et al. 2010). STT7 itself becomes phosphorylated 

under state 2 conditions at serine residue 533 (Ser 553). The adjacent amino acid residues of this 

phosphorylation site differ from the consensus motif of proteins phosphorylated in a STT7-

dependent manner, supporting the idea of a kinase cascade. Interestingly, the exchange of the 

respective phosphorylation site did not affect STT7 kinase activity (Lemeille et al. 2010). 

Although the amino acid sequence around Ser 533 is not conserved between STT7 and STN7, 

STN7 becomes equally phosphorylated at its C-terminus. Recently it was shown that the 

phosphorylation of STN7 itself is also not affecting its activity but affects its turnover on protein 

level. Mimicking a permanent phosphorylation of STN7 at 4 potential phosphorylation sites 

prevented a decrease of STN7 protein level under state 1 conditions, which was observed for the 

wild type (Willig et al. 2011). Whether STN7 regulates its turnover by autophosphorylation 

remains to be clarified (Willig et al. 2011). Also in C. reinhardtii the protein levels of STT7 

directly correlate with LHCII phosphorylation activity and were suggested to be controlled on the 

post-translational level (Lemeille et al. 2009; Willig et al. 2011).  

Topology studies on STT7 in C. reinhardtii propose a local separation of the C-terminal 

stroma-exposed catalytic kinase domain from its lumen-located N-terminus by a single alpha-

helical transmembrane domain (Lemeille et al. 2009). The N-terminus contains two conserved 

cysteine residues that are essential for STT7 activity, and was shown to be relevant for the 

interaction of STT7 with the Rieske protein PETC (Lemeille et al. 2009). A homologous N-

terminal cysteine motive (Cys 65 and Cys 70) is present in STN7 of A. thaliana (Lemeille et al. 

2009; Puthiyaveetil 2011). The latter possesses a further stromal cysteine motive (Cys 187 and 

Cys 191) in the ATP-binding domain, which is widely conserved beyond land plants and even 

appears in the STT7 homolog of Ostreococcus, a genus of the green algae. However this motive is 

missing in C. reinhardtii STT7, which in turn contains further cysteine residues within the kinase 

domain (Puthiyaveetil 2011). It was proposed that the luminal cysteine motif could be the site of 

PQH2-dependent activation, whereas the conserved stromal CxxxC motif might account for the 

thioredoxin-dependent feedback down-regulation of STN7 activity in flowering plants under HL 

conditions (Martinsuo et al. 2003; Puthiyaveetil 2011; Rintamaki et al. 2000). This implies that 

the redox signal of the ferredoxin-thioredoxin pathway is not transferred to the lumen via the 
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1.6.4 Activation of the STN7/STT7 kinase by the Cyt b6f complex 

The Cyt b6f complex was identified as the sensor and signal transducer for the redox state 

of the PQ pool and thus is responsible for the control of LHCII phosphorylation. Consequently, 

state transitions are not triggered in the absence of a functional Cyt b6f complex even if the PQ 

pool is strongly reduced due to a block in LEF, as shown for C. reinhardtii (Lemaire et al. 1986; 

Wollman and Lemaire 1988) and higher plants (Bennett et al. 1988; Coughlan 1988; Gal et al. 

1987). For both, the state of the plastoquinone-binding site Qo of the Cyt b6f complex could be 

determined as being crucial for the regulation of LHCII kinase activity (Vener et al. 1997; Zito et 

al. 1999). Despite the plethora of data, the exact mechanism of STN7/STT7 activation is still 

under debate. It was proposed that the iron-sulfur-containing Rieske protein of the Cyt b6f 

complex located in the lumen plays a decisive role. This protein was shown to undergo 

conformational changes depending on the ligand-binding situation at the Qo site, which are 

thought to involve a reorganization of the Cyt b6f complex (Breyton 2000; Finazzi et al. 2001). 

This, together with the observation that subunit V (PETO) of the Cyt b6f complex is 

phosphorylated under state 2 conditions even if C. reinhardtii is blocked in state 1, gave rise to a 

two-step model, which suggests how phosphorylation of LHCII at the stromal side of the 

thylakoid membrane can be activated by the binding of PQH2 at the rather luminal Qo site 

(Figure 4) (Finazzi et al. 2001; Hamel et al. 2000; Wollman 2001). In the first step of the model, 

binding of PQH2 to the Qo pocket shifts the Rieske protein towards the Qo site in the membrane 

(proximal position) and thereby activates the LHCII kinase to phosphorylate subunit V of the Cyt 

b6f complex. The subsequent oxidation of PQH2 leads to the transition of the Rieske protein to its 

distal position away from the membrane, leading to the release of STT7/STN7 from Cyt b6f 

complex and its interaction with LHCII. This model suggests the necessity of at least a transient 

interaction of the LHCII kinase with the Cyt b6f complex in order to “read” the activation mode 

of the complex. Two decades ago direct physical interaction between the LHCII kinase and the 

Cyt b6f complex was proven based on detection of kinase activity in purified Cyt b6f fractions of 

higher plants (Gal et al. 1990). Interestingly, similar indications for this interaction were obtained 

for C. reinhardtii by co-immunoprecipitation of STT7 with the Rieske protein of the Cyt b6f 

complex, which prevailed under both state 1 and state 2 conditions (Lemeille et al. 2009). 

The turnover rate of PQH2 in the Qo site should not be a limiting factor for kinase 

activation since mutants with decreased rate of electron transfer activity displayed no phenotype 

in LHCII phosphorylation (de Vitry et al. 2004; Yan and Cramer 2003). Moreover, de Lacroix de 
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(Vainonen et al. 2005). There are contradictory reports on reduced phosphorylation of CP43 in the 

stn8 mutant except for the clear decrease after exposure to high light, thus under conditions that 

lead to inhibition of STN7 (Bonardi et al. 2005; Tikkanen et al. 2008a; Vainonen et al. 2005). The 

STN8-dependent phosphorylation of PSBH at residue Thr-4 was shown to require both, light and 

preceding phosphorylation at residue Thr-2, whereas the latter is also light-independently 

phosphorylated in stn7 stn8 plants (Fristedt et al. 2009; Vainonen et al. 2005; Vener et al. 2001). 

A simultaneous knock-out of STN7 and STN8 leads to a loss of thylakoid phosphorylation on the 

level of Western blot detection (Bonardi et al. 2005; Tikkanen et al. 2008a). However, via MS and 

immunoblot analyses, Fristedt et al. (2009) were able to detect residual light-independent D2 

phosphorylation at residue Thr-1 in stn7 stn8 plants corresponding to less than 10 % of the wild-

type level. Contrarily, the N-terminal phosphorylation of the D1 and CP43 proteins of PSII was 

confirmed to be completely absent in stn7 stn8 mutants (Bonardi et al. 2005; Fristedt et al. 2009; 

Tikkanen et al. 2008a).  

These results demonstrate that STN7 and STN8 seem to show a certain degree of overlap 

regarding their substrate specificities, while having distinct main substrates. With the double 

knock-out of STN7/STN8 showing an overadditive effect on thylakoid phosphorylation, a parallel 

rather than a serial action of STN7 and STN8 can be assumed (Bonardi et al. 2005).  

Lately, the chloroplast PP2C-type protein phosphatase, PHOTOSYSTEM II CORE 

PHOSPHATASE (PBCP), was shown to be essential for efficient PSII core protein 

dephosphorylation. Plants lacking PBCP exhibit an altered phenotype in thylakoid folding, while 

its overexpression affects state transitions (Samol et al. 2012). Thus, there is indication for 

substrate overlap with the LHCII phosphatase TAP38, similar to the kinases STN7 and STN8. 

Interestingly, the calcium-sensing receptor CaS was shown to be phosphorylated by STN8, but to 

be dephosphorylated by TAP38. This again illustrates the complex interplay of the major 

thylakoid protein kinases and phosphatases (Pribil et al. 2010; Vainonen et al. 2008).  

Furthermore, Reiland et al. (2011) identified additional substrates of STN8 by an approach 

combining affinity chromatography and mass spectrometry. This extended substrate set of STN8 

includes the calcium-sensing receptor CaS, the large subunit of RuBisCo (LSU), the minor PSII 

antenna protein CP29 , an ATP synthase family protein and the PGR5-like protein 1 A (PGRL1-

A), a protein essential of CEF (DalCorso et al. 2008; Reiland et al. 2011). The differential 

phosphorylation of PGRL1-A in stn8 mutant plants was demonstrated to result in a faster switch 

between CEF and LEF during dark-light transitions (Reiland et al. 2011).  
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1.6.6 Function of PSII core protein phosphorylation 

Compared to LHCII phosphorylation, the function of reversible PSII core protein 

phosphorylation is less clear. Since an increase of the number of damaged PSII reaction centers 

(D1) upon a rise in light intensity is accompanied by the phosphorylation of PSII core proteins, an 

involvement in D1 turnover during photo-inhibition of PSII was proposed (Baena-Gonzalez et al. 

1999). An early model on D1 turnover stated, that the phosphorylated version of damaged D1 is 

resistant to proteolysis (Koivuniemi et al. 1995). However, it is able to move laterally from grana 

to stroma lamellae, where it becomes dephosphorylated, degraded and replaced by newly 

synthesized D1 (Rintamaki et al. 1996). A successive study of Bonardi et al. in 2005, making use 

of the stn mutant collection in A. thaliana, indicated that STN8-mediated phosphorylation of D1 

per se is not crucial for D1 turnover and PSII repair. Here, PSII inactivation under high light 

intensities (2000 µmol photons m−2s−1) was just slightly increased in stn8 and stn7 stn8 and was 

also not reflected in changes in the rate of HL-induced D1 degradation, which remained at wild-

type level during pulse-chase experiments (Bonardi et al. 2005). These findings challenged the 

previous view of the physiological significance of D1 phosphorylation (Baena-Gonzalez et al. 

1999).  

However, later studies in rice again provided evidence for a higher susceptibility to 

photoinhibition due to a lack of STN8 (Nath et al. 2007). Moreover, Tikkanen et al. (2008a) 

revealed a retardation of D1 degradation in the stn8 and stn7 stn8 mutants by applying less intense 

high light. It was claimed that a photon fluence rate of 1000 µmol m−2s−1 allows WT plants to 

balance PSII operation on a steady state level, while under these light conditions PSII repair in the 

stn7 stn8 mutant is too slow to keep up with the occurring inhibition rate (Tikkanen et al. 2008a). 

Tikkanen et al. (2008a) explain this discrepancy between WT and stn8 and stn7 stn8 mutants by 

difficulties in the disassembly of PSII supercomplexes, leading to a less efficient exchange of 

damaged D1 between grana and stroma lamella due to changes in its migration behavior.  

In a more recent study by Fristedt et al. (2009) the observed delay of D1 degradation in stn8 

and stn7 stn8 plants was confirmed, even at 2000 µmol m−2s−1. However, differences in the 

distribution of PSII monomers, dimers or supercomplexes could not be detected by Blue-native 

gel electrophoresis (Fristedt et al. 2009). Instead, gravity-driven sedimentation of isolated 

thylakoids and transmission electron microscopy demonstrated an enhancement in the size and 

density of stacked thylakoid membranes (grana) in stn7 stn8 and stn8, which is supposed to 

influence the lateral diffusion of proteins including photo-damaged D1 and the bulky FtsH 
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complex (Fristedt et al. 2009). The latter is responsible for D1 degradation (Adam et al. 2006; 

Nixon et al. 2005) and was reported to be spatially kept away from PSII in STN8-deficient 

mutants by its relocation from the dense grana to the stroma lamella and grana margins (Fristedt 

et al. 2009). In summary, phosphorylation of PSII core proteins modulates macroscopic 

rearrangements of the entire network of thylakoid membranes and affects lateral movement of 

proteins in the membrane. But is the reduced PSII core phosphorylation in stn8 mutants fitness-

relevant for A. thaliana plants? Photosynthetic electron flow, measured on the basis of chlorophyll 

fluorescence, was not altered in stn8 mutants (Bonardi et al. 2005). Also the growth rate and 

timing of seed germination in the greenhouse of all stn mutants was equal to wild type (Bonardi et 

al. 2005) and introducing the stn8 mutation into pete2-1.1, psad1-1 and psae1-3 did not 

exacerbate the phenotype of the single mutants (Pesaresi et al. 2009). Merely the seed production 

of the double mutant stn7 stn8 under natural field conditions was more strongly affected than for 

stn7 single mutants, whereas seed yields of stn8 mutants were similar to wild-type plants (Frenkel 

et al. 2007).  

1.7 Aims of this work 

 Apart from Willig et al. (2011) using STN7 antibodies, this work is the first study applying 

specific antibodies against STN7 and STN8 of higher plants (A. thaliana). By means of 

immunoblotting, information about the topology and exact localization of STN7 and STN8 was 

obtained, as well as about the light and redox dependency of their accumulation on protein level. 

A correlation between the latter and STN7 transcription was addressed by real-time PCR. 

Furthermore, this work is an approach to gain insights into the regulatory redox-dependent 

mechanisms acting on STN7. To this end, STN7 mutants expressing Cys-Ser exchange variants 

were examined with respect to their activity and dimerization behavior. Moreover, overexpressor 

lines of STN7 and STN8 were generated to examine the effect of increased thylakoid 

phosphorylation on associated processes and photosynthetic properties. 
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2 Materials and Methods 

2.1 Plant material 

The Arabidopsis thaliana L. (A. thaliana) ecotype Columbia-0, used in this study as wild 

type (WT), was obtained from NASC (Nottingham Arabidopsis Stock Centre; accession number 

N1092). Previously described mutant lines employed in this study were stn7-1, stn8-1, stn7 stn8 

(Bonardi et al. 2005), hcf136 (Meurer et al. 1998), psad1-1 (Ihnatowicz et al. 2004), psad1-1 

psad2-1 (Ihnatowicz et al. 2004), atpd-1 (Maiwald et al. 2003), petc-1 (Maiwald et al. 2003), 

psae1-3 (Ihnatowicz et al. 2007), psal-1 (Pesaresi et al. 2009) and tap38-1 (Pribil et al. 2010). 

2.1.1 Gateway cloning and generation of transgenic A. thaliana lines 

Transgenic lines generated in this study included the overexpressor (oeSTN7) and low-

expressor (leSTN7) of STN7. To generate oeSTN7 and leSTN7, full-length STN7 CDS was cloned 

into the plant vector pLeela, which is a derivative of pJawohl3-RNAi (GenBank Accession No. 

AF404854) containing a GATEWAY cassette introduced into the HpaI site, using the primers 

Stn7_attB1_forward (5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTCTATGGCTACAAT 

ATCTCCGGG) and Stn7_attB2_reverse_stop (5’- GGGGACCACTTTGTACAAGAAAGCTGG 

GTTTCACTCCTCTCTGGGGATCCAT). The STN7-pLeela construct containing a double 

Cauliflower Mosaic Virus (CMV) 35S promoter was introduced into stn7-1 via the floral-dip 

method (Clough and Bent 1998). Plants were selected based on their BASTA resistance, 

segregation analysis was performed, and independent lines carrying a single T-DNA insertion 

locus were identified. Single representative lines either overexpressing the STN7 kinase (oeSTN7) 

or expressing about 30 % of the WT amount (leSTN7) were identified by Western analysis 

employing a STN7-specific antibody (epitope antibodies described in 2.6). The STN8 

overexpressing lines (oeSTN8) were generated analogous to oeSTN7 by applying the primers 

Stn8_attB1_ACC_f (GGGGACAAGTTTGTACAAAAAAGCAGGCTCTACCATGGCCTCTCT 

TCTCTCTC) and Stn8_attB2_Stop_r (GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAC 

TTGCTGAAACTGAGCTT) in order to clone full-length CDS of STN8 into the vector pLeela. 

2.1.2 Site-directed mutagenesis and generation of cysteine exchange mutants of A. 

thaliana 

To generate lines expressing STN7C→S:65, STN7C→S:70 or STN7C→S:65+70, point mutations 

leading to the replacement of Cys 65 and/or of Cys 70 by Ser were introduced by site-directed 
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mutagenesis (QuikChange II Site-Directed Mutagenesis Kit) into the STN7-pLeela construct 

mentioned in paragraph 2.1.1. Transformation of stn7-1 plants, selection, segregation and 

insertion analysis were performed as described in paragraph 2.1.1. Furthermore STN7C→S:65 and 

STN7C→S:70 were crossed to obtain lines expressing both STN7 variants (65 x 70 and 70 x 65). 

2.1.3 Generation of A. thaliana lines expressing GFP-tagged STN7 

In order to obtain plants expressing WT or Cys-Ser exchange variants of STN7 fused C-

terminal to the green fluorescent protein (GFP), the coding sequences of the corresponding mutant 

STN7 variants (without stop codon) were cloned into the plant expression vector pB7FWG2, 

placing them under the control of the CMV 35S promoter. To this end, the Gateway Cloning 

strategy was applied using the primer combination Stn7_attB1_forward (as above) and 

Stn7_attB2_reverse (5’- GGGGACCACTTTGTACAAGAAAGCTGGGTACTCCTCTCTGGGG 

ATCCAT). Transformation of the pB7FWG2 vector into WT (Col-0) and stn7-1 plants, selection, 

segregation and insertion analysis were performed as described in paragraph 2.1.1. 

2.2 Growth conditions and light treatments 

If not stated otherwise, plants were grown under controlled conditions in a growth chamber 

on an 8 h/16 h day-night regime providing 100 µmol photons m-2s-1 during the light phase 

(standard lighting conditions) and in all experiments, 6-week-old plants were used. For 

experiments with the mutants hcf136, petc-1, psad1-1 psad2-1, atpd-1, psal-1, psad1-1 and psae1-

3, plants were grown on 1 x MS medium including vitamins (Duchefa®) at 50 µmol photons m-2 

s-1. To study the effects of altered light conditions, plants were adapted to different light 

conditions specified as follows: 18 h dark adaptation (D), adaptation to low light at 60-80 µmol 

photons m-2s-1 (LL), high light at 800-1,200 µmol photons m-2s-1 (HL) or very high light at 1,800 

µmol photons m-2s-1 (VHL). HL and VHL conditions were generated by an Osram Powerstar 

HQIBT-D/400W lamp. Far-red light (FR) was emitted by LEDs at a wavelength of 740 nm at an 

intensity of 3.0 µmol photons m-2s-1. Alternating long-term light adaptations to PSI- and PSII-

light were performed essentially as described previously (Wagner et al. 2008). In brief, 3-week-

old plants were transferred from climate chamber conditions to one of the PS specific lights. 

Plants were kept for 6 days under the same light or were switch after 4 days to the other light for 

further 2 days until material was snap frozen in liquid nitrogen. PSI light (15 µmol m-2s-1) was 

generated by a medium red foil (Lee Filters, 027 Medium Red, transmittance 50 % at 650 nm) 

clamped over red fluorescent lamps of Osram, 39 W. PSII light (15 µmol m-2s-1) was generated by 
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an orange foil (Lee Filters, 405 Orange, transmittance 50 % at 560 nm) clamped over white 

fluorescent lamps of Osram, 39 W.  

2.3 cDNA synthesis and real-time PCR 

Total leaf RNA was extracted following the protocol of the RNeasy Plant Mini Kit 

(QIAGEN). 2 mg of total RNA was used to prepare cDNA by applying the iScript cDNA 

Synthesis kit (Bio-Rad) according to the manufacturer’s instructions. cDNA was diluted 1:20 with 

water and 4 µl of the dilution were employed for 20 µl reactions with iQ SYBR Green Supermix 

(Bio-Rad) in real-time PCR analysis. An intitial denaturation step at 95 °C for 3 min preceded the 

cycling. Furthermore, the PCR program comprised 40 cycles with denaturation at 95 °C for 10 s, 

annealing at 55 °C for 30 s, and elongation 72 °C for 10 s. Subsequently a melting curve was 

performed. The iQ5 Multi-Color Real-Time pPCR Detection System (Bio-Rad) was used for 

monitoring the reactions. For the amplification of STN7, the primers Stn7_forward (5’-

CTGATTTGAGAGTGGGAATTAACTAC) and Stn7_reverse (5’-GGAAGATGAGGCCAATG 

CTATAG) were employed. UBIQUITIN and CYTOCHROME B5 were amplified as internal 

controls, using Ubiquitin_forward (5′-GGAAAAAGGTCTGACCGACA), Ubiquitin reverse (5′-

CTGTTCACGGAACCCAATTC), Cytochrome_B5_forward (5’-CGACACTGCAAGGGACAT 

GA) and Cytochrome_B5_reverse (5’-ACGTATGTCCTAGTTGCTGGAACA) as primer pairs. 

All reactions were performed in triplicate with at least two biological replicates. 

2.4 Isolation of total protein 

Total protein extracts were prepared from 6-week-old leaves according to Haldrup et al. 

(1999). About 0.1 g of leaf material was homogenized in 200 µl solubilization buffer (100 mM 

Tris pH 8.0, 50 mM EDTA pH 8.0, 0.25 M NaCl, 1 mM DTT, 0.7 % SDS) and heated to 65 °C 

for 10 min. Samples were centrifuged for 10 min at 10,000 g to remove insoluble debris and 

protein concentration in the supernatant was determined by the amido black assay as described by 

Schaffner and Weissmann (1973). The ubiquitous protein ACTIN was used as a loading control. 

2.5 Isolation of thylakoid membranes 

Thylakoids were isolated in a modified procedure based on Bassi et al. (1995). In brief, leaf 

material of A. thaliana plants was homogenized in ice cold isolation buffer (0.4 M sorbitol, 0.1 M 

Tricine-KOH pH 7.8, 0.5 % milk powder, 20 mM NaF), filtered through 2 layers of Miracloth 

(Calbiochem) and centrifuged at 1,500 g for 10 min at 4 °C. The membrane pellet was 
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resuspended in ice cold resuspension buffer (20 mM HEPES-KOH pH 7.5, 10 mM EDTA, 20 

mM NaF) followed by a centrifugation step at 10,000 g for 10 min at 4 °C after 10 min of 

incubation on ice. Thylakoids were resuspended in TMK buffer (10 mM Tris-HCl pH 6.8, 10 mM 

MgCl2, 20 mM KCl, 20 mM NaF). The chlorophyll concentration was determined in aqueous 80 

% acetone according to Porra (2002). 

2.6 Antibodies and immunoblot analysis 

If not state otherwise, antibodies raised against specific epitopes of STN7 and STN8 were 

used for western blot analysis in this study. The peptides CKKVKVGVRGAEEFG of STN8 and 

LQELREKEPRKKANAQ, located at the C-terminus of STN7, served as antigens during the 

immunization process of the antibody production in rabbit (BioGenes GmbH, Berlin, Germany). 

Antibodies against the mature full-length of STN7 and STN8 were generated as described below 

(see 2.6.1). Immunoblot (Western blot) analyses with these antibodies as well as 

phosphothreonine-specific antibodies (Cell Signaling Technology, Inc., Boston, USA) and 

polyclonal antibodies raised against ACTIN (Dianova, Germany), GFP (Chromotek, Germany), 

LSU, PSAC, PSAB , PSBO, PSAE, LHCB2, LHCA3 (all Agrisera, Sweden) were performed as 

described (Ihnatowicz et al. 2008). 

2.6.1 Generation of polyclonal STN7 and STN8 antibodies  

The coding sequences of STN7 and STN8 without predicted cTP were cloned into the 

pProExHTa vector (Invitrogen) using the primers mSTN7_ EcoRI _ATG_f (5’- 

AAAGAATTCATGGCTCAATTGATCGAT-3’) and Stn7_Sph1_Stop_r (5’- AAAGCATGCCC 

TAGAGCTCCTCTCTGGGGATC-3’) or mStn8_BamHI_ATG_f (5’-CCAGGATCCGATGAGA 

TGCAGTTTTTCTCCG-3’) and Stn8_PstI_stop_r (5’-ATGCTGCAGTCACTTGCTGAAACTG 

AGCTTTG-3’), respectively, providing a N-terminal His-Tag for both kinases. These constructs 

were used to transform the E.coli strain BL21-CodonPlus® (DE3)-RIPL (Stratagene) in order to 

express large amounts of the recombinant proteins. Heterologous expression was induced with 1 

mM IPTG and bacterial cells were harvested after 3 h incubation at 37 °C. Proteins were 

identified in the inclusion bodies fraction, which could be purified by an appropriate protocol 

described in 2.7. GuanidinHCL was used to denature purified inclusion bodies and His-tagged 

STN7 and STN8 protein was purified via Ni-NTA columns according to a batch purification 

protocol under denaturing conditions (Expressionist, Qiagen). The purified STN7 and STN8 

proteins were loaded on SDS-PAGE, cut from the gel and sent to Prof. Dr. Roberto Barbato 
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(Alessandria, Italy) and Dr. Paolo Pesaresi (Milan, Italy), who kindly took over the injections and 

maintenance of rabbits to generate polyclonal antibodies. 

2.7 Purification of inclusion bodies 

500 ml of E. coli cells expressing either recombinant STN7 or STN8 in inclusion bodies 

were harvested by centrifugation at 3,000 g for 20 min. The cell pellet was resuspended in 30 ml 

resuspension buffer (50 mM HEPES pH 7.5, 50 mM NaCl), cells were broken open using a 

French press and the insoluble fraction was again pelleted (50,000 g, 10 min). The inclusion 

bodies pellet was washed in subsequent steps with 200 ml detergent buffer 1 (20 mM Tris-HCl 

pH 7.5, 1 mM DTT, 0.5 % Triton X-100, 200 mM NaCl), 300 ml detergent buffer 2 (20 mM-Tris 

HCl pH 7.5, 1 mM DTT, 0.5 % Triton X-100) and 300 ml Tris buffer (50 mM Tris-HCl pH 8.0, 1 

mM DTT). After each resuspension step including 5 min incubation in the respective buffer, the 

inclusion bodies were collected by centrifugation (50,000 g, 10 min). Finally the inclusion bodies 

were pelleted and snap frozen in liquid nitrogen to be stored at - 80 °C or directly used for further 

purification via Ni-NTA according to the batch purification protocol under denaturing conditions 

mentioned above (chapter 2.6.1). 

2.8 Coomassie staining of PVDF membrane blots 

Proteins on PVDF membranes were stained for 2 min with 0.1 % Coomassie brilliant blue 

R-250 dissolved in 50 % methanol before or after immunoblot analysis. Blots were washed with 

50 % methanol until background staining disappeared and protein bands became clearly visible. 

Complete destaining was achieved by washing several times with 100 % methanol. 

2.9 PAGE analyses  

2.9.1 BN- and 2D-PAGE 

For Blue-native polyacrylamide gel electrophoresis (BN-PAGE), samples of freshly isolated 

thylakoids corresponding to 50 µg Chl were resuspended in solubilization buffer (750 mM ε-

aminocaproic acid, 50 mM Bis-Tris pH 7.0, 5 mM EDTA pH 7.0, 50 mM NaCl) and were 

solubilized for 60 min with 1.5 % (w/v) digitonin or for 10 min with n-dodecyl--D-maltoside (β-

DM) (Sigma) on ice (Pribil et al. 2010). Solubilized thylakoids were separated from the insoluble 

material by centrifuging at 13,100 g and 4 °C at either 70 min or 10 min, respectively. After 

supplementing with 5 % Coomassie brilliant blue G-250 in 750 mM ε-aminocaproic acid, the 

solubilized material was fractionated by non-denaturing BN-PAGE (4-12 %) at 4 °C as outlined 
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in Heinemeyer et al. (2004). For the second dimension, a single lane of the BN gel was incubated 

in 2x Laemmli buffer with 100 mM DTT for 30 min and then placed on top of a SDS gel followed 

by electrophoresis (two-dimensional (2D) BN/SDS-PAGE) (Schottkowski et al. 2009a; 

Schottkowski et al. 2009b). 

2.9.2 SDS-PAGE and non-reducing SDS-PAGE 

Standard 12 % SDS-PAGE was performed according to Laemmli (1970) if not indicated 

otherwise. To run a non-reducing SDS-PAGE, reducing agents (like DTT) were omitted in the 

loading dye and samples were not cooked if not stated otherwise.  

2.9.3 Diagonal-PAGE 

For diagonal SDS-PAGE, thylakoid samples were divided into two aliquots, and either 200 

mM diamide or 100 mM DTT was added for 30 min at room temperature. Afterwards thylakoids 

were collected by centrifugation (10,000 g; 10 min) and supplemented with Laemmli buffer 

without reducing agents. Protein amounts corresponding to 20 µg Chl were separated on non-

reducing 12 % acrylamide gels as described (Laemmli 1970). For the second dimension of the 

diagonal-PAGE, these lanes were excised and incubated in Laemmli buffer in the presence of 100 

mM DTT for 30 min at room temperature. Electrophoresis in the second dimension was 

performed on denaturing SDS-PA gels as described before (Pesaresi et al. 2001). 

2.10 Thylakoid fractionation after state 1 and 2 adaptation 

Plants were acclimated to either state 1 or state 2 light (Pribil et al. 2010) and thylakoid 

fractionation was performed as previously described (Shapiguzov et al. 2010). Briefly, isolated 

thylakoids at a concentration of 0,6 mg of chlorophyll/mL were solubilized with 1 % digitonin for 

5 min followed by stepwise centrifugation of supernatants. Pellets collected after centrifugation at 

10,000 g, 40,000 g and 150,000 g represent fractions of enriched grana, margins and stroma 

lamellae, respectively. The protein samples were analysed by SDS-PAGE and Western blotting. 

2.11 Sucrose gradient fractionation of thylakoid protein complexes  

To prepare sucrose gradients 11 ml of 0.4 M sucrose, 20 mM Tricine-NaOH (pH 7.5), 0.06 

% β-DM were three times frozen and subsequently thawed at 4 °C. The gradient was underlayed 

with a cushion of 1 ml of  60 % (w/v) sucrose . Thylakoids, prepared from LL exposed plants 

were washed twice with 5 mM EDTA (pH 7.8) and diluted to a final chlorophyll concentration of 

2 mg/mL. Solubilization with β-DM at a final concentration of 1 % was performed on ice for 10 
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min and followed by centrifugation (16,000 g, 5 min, 4 °C). The supernatant was loaded on 

sucrose gradients and centrifuged at 132,000 g for 21 h at 4 °C in a swing-out rotor (Beckman SW 

40). Gradients were divided into 16 fractions, separated on a 15 % SDS-PAGE and analysed by 

Western blot. 

2.12 Chloroplast isolation and fractionation into stroma and thylakoids 

Chloroplasts were isolated from A. thaliana leaves as described (Aronsson and Jarvis 2002). 

To obtain thylakoid and stroma fractions, chloroplasts were ruptured by adding 10 volumes of 

lysis buffer (20 mM HEPES-KOH pH 7.5, 10 mM EDTA) incubated on ice for 30 min. After 

centifugation for 30 min at 42,000 g and 4 °C the collected supernatant and pellet represented the 

stroma and thylakoid fractions, respectively. 

2.13 Salt washes of thylakoid membranes  

Salt washes of thylakoid membranes were basically performed according to Karnauchov et 

al. (1997). To this end, freshly isolated thylakoids at a chlorophyll concentration of 0.5 mg/mL 

were incubated for 30 min on ice in HS buffer (0.1 M sucrose, 10 mM HEPES-NaOH pH 8.0) or 

HS buffer containing 2 mM NaCl, 2 M NaBr, 2 M NaSCN, 0.1 M Na2CO3 or 0.1 M NaOH, 

respectively. After addition of two volumes of HS buffer the samples were centrifuged at 13,100 g 

for 15min at 4 °C. Subsequently, proteins of the pellet fraction were directly solubilized in 

Laemmli buffer, whereas the supernatant was first precipitated in 80 % acetone. 

2.14 Chlorophyll fluorescence analyses 

2.14.1 Measurement of light curves 

Steady-state photosynthetic parameters were measured under increasing light intensities of 

actinic red light (22, 37, 53, 95, 216, 513, 825, 1,287 and 1,952 µmol photons m-2s-1) with the 

Dual-PAM 100 system (Walz GmbH, Effeltrich, Germany) in the Dual PAM mode, according to 

the manufacturer’s instructions and using standard settings. Plants were dark-adapted for 10 min 

prior to measurements and allowed to adapt for 5 min to the respective light intensities. Five 

plants of each genotype were analysed for each measurement. 

2.14.2 Measurement of light induction 

Effects of varying light intensities on photosynthetic parameters during light induction were 

monitored using different levels of actinic light (22, 94 and 339 µmol photons m-2s-1). Plants were 
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dark-adapted for 10 min prior to measurements, and subsequently exposed for 5 or 6 min 40 s to 

actinic light and if indicated followed by 100 s of dark-relaxation as reported before (Munekage et 

al. 2002). Saturating light flashes (5,000 µmol photons m-2s-1; 800 ms) were applied at 20-s 

intervals during the light-dark phases. Five plants of each genotype were analysed for each 

measurement, and three independent measurements were performed. 

2.14.3 State Transition measurements via PAM fluorometry 

State transitions were measured by pulse-amplitude modulation fluorometry (PAM) as 

described (Pribil et al. 2010; Ruban and Johnson 2009). The quenching of Chl fluorescence due to 

state transitions (qT) was calculated using the equation qT= (Fm1 - Fm2)/Fm2 (Jensen et al. 

2000). 

2.14.4 PSII inactivation induced by high light 

Photoinhibition of photosystem II (PSII) was induced over a period of 10 h by means of the 

Imaging PAM System (Heinz Walz GmbH) exposing leaves to blue light alternating every two 

minutes between HL (1,250 µmol photons m-2s-1) and LL (10 µmol photons m-2s-1). Maximal PSII 

quantum yield, Fv/Fm = (Fm - Fo)/Fm, was determined every 60 min after the LL phase and 

additional 5 min dark-adaptation. 

2.14.5 77 K fluorescence emission spectroscopy 

Leaves adapted to different light conditions were snap frozen in liquid nitrogen and grinded 

in buffer containing 50 mM HEPES-KOH pH 7.5, 100 mM sorbitol, 10 mM MgCl2, and 20 mM 

NaF. Samples were filtrated through a nylon mesh, centrifuged 10 min at 3,000 g and resuspended 

to a final chlorophyll concentration of 10 µg/mL (Tikkanen et al. 2006). Thylakoid suspensions 

were transferred to small glass tubes and frozen with liquid nitrogen. Pigments were excited at 

475 nm and 77 K fluorescence emission spectra between 600 and 800 nm were recorded using a 

Spex Fluorolog mod.1 fluorometer (Spex Industries, Texas, USA). Spectra were normalized 

relative to the PSII peak around 685 nm. Of each genotype and light condition more than 5 

independent measurements were conducted.  

2.14.6 Determination of the PQ redox state in the dark 

In order to determine the redox state of the PQ pool in dark-adapted plants, two OJIP 

transients were recorded for each leaf with the Dual-PAM 100 system (Walz GmbH, Effeltrich, 

Germany), basically as described (Toth et al. 2007). Briefly, after 3 h of dark adaptation plant 
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leaves were directly exposed for 300 ms to a saturating red-light flash of 3000 µmol photons m-2s–

1. The measured transient provides the fluorescence values for a fully reduced PQ pool, Fm, and 

for the current PQ redox state in dark-adapted plants, FJ, as a plateau after about 3 ms. In order to 

obtain the minimal FJ value of a completely oxidized PQ-pool (FJ-ox), a second transient was 

recorded 5 min after the first one. This time a 10 s FR saturation pulse (intensity level 20) was 

applied until 10 ms before the measurement. The fraction of reduced PQ is equivalent to (FJ – FJ–

ox)/(Fm – FJ–ox).  

2.15 Non-radioactive in-vitro phosphorylation assays 

Thylakoids were isolated from plants pre-treated with far-red light, and resuspended in 

phosphorylation buffer (20 mM Tris-HCl pH 7.5; 5 mM MgCl2; 1 mM MnCl2 and 20 mM NaF) to 

a concentration of 0.4 mg/mL Chl. Subsequently 3-(3,4-dichlorophenyl)-1,1-dimethylurea 

(DCMU), 2,5-dibromo-6-methyl-3-isopropyl-1,4-benzoquinone (DBMIB), dithiothreitol (DTT), 

N-ethylmaleimide (NEM), tetramethyl-p-benzoquinone (duroquinone) or tetramethyl-p-

hydroquinone (duroquinol) was added to the samples on ice. Prior to addition, DTT was dissolved 

in H2O, DCMU, DBMIB and NEM in ethanol and duroquinone in an 1:1 mixture of ethanol-

ethylene glycol. Duroquinol was prepared from duroquinone according to Izawa and Pan (1978). 

In-vitro phosphorylation was started by addition of 25 µM ATP and the samples were transferred 

to LL (60 µmol photons m-2s-1) or darkness for 30 min. Reactions were stopped by adding 120 µl 

of reducing Laemmli buffer. Protein separation and immunodetection were performed as 

described above. 

2.16 Radioactive in-vitro 33P-phosphorylation 

Thylakoids of dark-adapted wild-type and oeSTN7 plants were isolated and resuspended in 

phosphorylation buffer (20 mM Tris-HCl 7.5, 5 mM MgCl2, 1 mM MnCl2, 25 µM ATP and 10 

mM NaF). In-vitro phosphorylation in thylakoids corresponding to 1 µg chlorophyll per sample 

was determined in the presence of 33P-labeled ATP (10 µCi) in the time-course of 30 min. The 

reaction was performed in the dark with or without 20 mM Na-dithionite and under 20 µmol m-2 

s-1 white light. Samples were taken at time points of 0 min (right after 33P-ATP was added), 5 min, 

15 min and 30 min, supplemented with Laemmli-buffer, separated on SDS-PAGE and analysed 

with a phosphor-imager (Typhoon). Coomassie staining was performed to verify equal loading. 
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2.17 Pull-down of GFP-tagged proteins 

GFP-tagged proteins were pulled down using the GFP-Trap®-A (Chromotek) according to 

manufacturer’s instructions. Thylakoids were resuspended in dilution buffer (20 mM Tris-HCl pH 

7.5; 150 mM NaCl; 0.5 mM EDTA) to a Chl concentration of 100 µg/µl, and solubilized for 10 

min on ice in the presence of 1 % (w/v) β-DM. After centrifugation (13,100 g, 20 min, 4 °C) the 

supernatant was applied to 100 µl of equilibrated GFP-Trap® beads and topped up to 500 µl with 

dilution buffer. After 2 h of incubation at 4 °C, three washes with 500 µl dilution buffer (incl. 0.22 

% [w/v] β-DM) each were performed, followed by the elution of proteins with 100 µl Laemmli 

buffer. 

2.18 Redox titration of STN7 protein in thylakoid membranes 

Thylakoid proteins were isolated and equilibrated on ice for 3 h with various 

[DTTred]/[DTTox] ratios of redox buffers (100 mM MOPS pH 7.0, 330 mM sorbitol). Reactions 

were solubilized with 2 % SDS and subsequently separated by non-reducing 15 % SDS-PAGE. 

After transfer of proteins to PVDF membrane, reduced and oxidized forms of STN7 were detected 

by immunoblot analysis. 

2.19 TRX affinity purification 

The affinity purification was basically performed as described by Motohashi et al. (2001). 

His-tagged recΔTRX-f (-m) was expressed in E. coli and purified by Ni-NTA resin according to 

the Qiagen protocol for native protein purification (Expressionist, Qiagen), without eluting resin-

bound proteins. 1 mg Chl of isolated thylakoid membranes was solubilized with 1.5 % digitonin 

in 50 mM Tris-HCl pH 8.0 for 60 min. After centrifugation at 16,100 g for 70 min the supernatant 

was incubated with the TRX-coupled resin (~5 mg TRX/ml ) for 60 min at RT. The column was 

washed three times with washing buffer (50 mM Tris-HCl pH 8.0, 200 mM NaCl, 0.2 % 

digitonin) and proteins trapped by thioredoxin were eluted by applying 10 mM DTT. Samples 

were analyzed by Western blot, using STN7 specific antibodies. 

2.20 Mobility shift assay of TRX  

For the TRX mobility shift assay, 10 µg thylakoids were solubilized with 0.2 % deoxycholic 

acid (DOC) incubated with 25 µg of recombinant TRX-f (recΔTRX-f) for 30 min in 100 mM 

MOPS pH 7.0 and 330 mM sorbitol at RT. Untreated thylakoids (in 0.2 % DOC buffer) served as 



Materials and Methods  29 

 
 

a control. Subsequently, protein mixtures were subjected to non-reducing SDS-PAGE and 

immunoblotting. 

2.21 Protease treatments of thylakoids 

2.21.1 Trypsin digest 

Intact isolated thylakoids were resuspended in trypsin buffer (0.1 M sucrose, 10 mM 

HEPES pH 8.0). Prior to trypsination thylakoid membranes were either sonicated for 6 times 30 s 

on ice (Branson Sonifier B12, Danbury, USA) or left untreated. Trypsin was applied for 10 min 

on ice at a final concentration of 10 µg/mL. The reaction was stopped after 10 min on ice by 

adding trypsin inhibitors (Sigma, United states). Prior to separation on SDS-PAGE proteins were 

cooked for 2 min at 95 °C.  

2.21.2 Thermolysin digest 

Intact isolated thylakoids were resuspended in thermolysin buffer (0.1 M sorbitol, 5 mM 

MgCl2, 10 mM NaCl, 20 mM KCl, 30 mM Tricine-KOH pH 8.0, 5 mM CaCl2). In order to 

rupture thylakoids an aliquot of thylakoid membranes was solubilized for 10 min with 1.5 % β-

DM. Digestion with 0.1 mg/mL thermolysin was stopped after 30 min incubation on ice by adding 

50 mM EDTA. Proteins were precipitated with acetone (7 times the sample volume) for 15 min at 

20 °C and washed twice with ice-cold acetone. Prior to separation on SDS-PAGE proteins were 

cooked for 2 min at 95 °C. 

2.21.3 Protein protection assay 

Intact thylakoids were prepared and resuspended in 0.1 M sorbitol, 5 mM MgCl2, 10 mM 

NaCl, 20 mM KCl, 30 mM Tricine-KOH (pH 8.0) and 5 mM CaCl2. Thylakoid membranes were 

either sonicated for 6 times 30 sec on ice (Branson Sonifier B12, Danbury, USA) or left untreated. 

Both thylakoid preparations (chlorophyll concentration 50 µg/ml) were incubated with 0.1 mg/mL 

thermolysin at room temperature. After 0, 1, 2, 5, 10, 15 and 20 min of incubation volumes 

corresponding to 5 µg of chlorophyll were withdrawn from the assay and proteolysis was stopped 

by adding 50 mM EDTA (pH 8.0). Membranes were precipitated with acetone (7 times the 

sample volume) for 15 min at -20 °C and washed two more times with ice-cold acetone. The 

protein samples were analyzed by SDS-PAGE and Western blotting (DalCorso et al. 2008). 
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2.22 TEM analysis of thylakoid membranes ultrastructure 

In order to observe effects of differential phosphorylation on thylakoid ultrastructure 

transmission electron microscopy was performed in cooperation with AG Wanner (LMU 

Munich). Plants were grown for 4 weeks in the climate chamber under a 12 h/12 h day/night 

regime. 1.5 h after the inition of the light phase the sixth real rosette leaf was sliced and fixed for 

1 h with 2.5 % glutaraldehyde (1,5-pentandial) in fixation buffer (75 mM cacodylic acid, 2 mM 

MgCl2 pH 7.0). The material was washed with buffer, incubated for 2 h with 1 % osmium 

tetroxide in fixation buffer and again washed with fixation buffer and finally with destilled water. 

Samples were dehydrated by stepwise increase of aceton concentration, embeded in resin and cut 

with a microtome after complete polymerisation. Micrographs of the sections were taken with an 

EM-912 electron microscope (Zeiss) equipped with an integrated OMEGA energy filter operated 

in the zero-loss mode. 
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To clarify whether the predicted transmembrane domains (TMDs) of the STN kinases 

(Vainonen et al. 2005) truly represent TMDs or the kinases are just extrinsically attached to the 

thylakoid membrane, WT thylakoids were washed with alkaline buffers or chaotropic agents. In 

this assay both kinases, STN7 and STN8, showed a extraction behavior similar to PETC (Figure 

7 b), which contains a single hydrophobic domain and associates to the membrane predominantly 

via electrostatic interactions (Karnauchov et al. 1997). This result indicates that the STN kinases 

constitute integral membrane proteins as suggested before (Lemeille et al. 2009; Vainonen et al. 

2005). 

3.3.2 The STN kinases form part of high molecular supercomplexes 

To define the localization of the kinases more precisely, WT thylakoids were solubilized 

with β-DM, separated on BN-PAGE and subsequently resolved in a second dimension via SDS-

PAGE. Both STN7 and STN8 specific antibodies gave signals across the entire molecular weight 

range, from high molecular supercomplexes down to the free protein fraction (Figure 8 a). This 

suggests that the STN kinases associate rather stably with various protein complexes of varying 

molecular weight. 

In a further approach thylakoid proteins were separated by ultracentrifugation on a linear 

sucrose gradient after β-DM solubilization. Gradient fractions were collected and subjected to 

immunoblot analysis. Again, STN7 and STN8 were both identified in the fractions of high 

molecular weight complexes (Figure 8 b). These results are in line with Lemeille et al. (2009), 

who showed that STT7 associates with a large molecular weight complex, indicating that none of 

the kinases occurs as a monomeric polypeptide but rather in association with other proteins.  

3.3.3 STN8 and STN7 are located in different subfractions of the thylakoid membrane 

Fractionations of thylakoids isolated after PSI-specific light (PSI light) or PSII-specific light 

(PSII light) exposure by slight digitonin solubilization and differential centrifugation revealed an 

enrichment of STN8 in the fraction containing grana lamellae, whereas STN7 was mainly present 

in the stroma lamellae fraction (Figure 8 c). The observed distribution pattern under state 1 and 

state 2 conditions was basically unaltered for both kinases (Figure 8 c). These data indicate that 

the main fraction of STN8 kinase resides close to its substrate, the subunits of photosystem II in 

the grana stacks. For a large proportion of STN7 the localization coincided with TAP38/PPH1 in 

the stroma lamellae like shown by Shapiguzov et al. in (2010). 
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seems to be a prerequisite for STN8 accumulation in the thylakoid membrane potentially due to a 

scaffold function of PSII for STN8 (Figure 9). Moreover, a strong decrease in STN8 levels was 

also observed in psad1-1 psad2-1 plants. 

3.3.5 Protease treatments of thylakoid membranes suggest an association of STN7 with 

other proteins 

For the single transmembrane helix protein STT7, the N-terminus comprising a potential 

redox-sensitive cysteine motive was reported to be located in the lumen, while its C-terminus 

containing the ATP-binding domain is directed to the stromal side (Lemeille et al. 2009). To 

unravel the orientation of STN7 in the thylakoid membrane of A. thaliana a protease protection 

assay was performed. To this end, isolated WT thylakoids were either left untreated or sonicated 

to partially destroy the membrane integrity and generate about 50 % inside-out vesicles. 

Subsequently, a thermolysin treatment time-course was performed and protein digestion patterns 

of STN7, PSBO and PSAE were monitored by Western blot analysis (Figure 10 a). PSAE served 

as a representative of stromal exposed proteins. While rapidly digested in intact thylakoids, 

extrinsic stroma proteins are partially protected from thermolysin after sonication due to inside-

out vesicle formation (DalCorso et al. 2008). In contrast, luminal thylakoid proteins, like PSBO, 

are more rapidly degraded by proteases after sonication. According to these expectations the 

tryptic digest patterns of the very C-terminal domain of STN7, specifically recognized by the 

STN7 antibody, behaved rather contradictory (Figure 10 a). In intact thylakoid membranes STN7 

seemed to be protected from quantitative degradation. More precisely, the major part of STN7 

(except for ~ 5 kDa), including the antibody- and ATP-binding site, was retained despite 165 

predicted thermolysin cleavage sites. However, sonication led to a higher susceptibility of STN7 

(respectively its antibody binding site) to proteolytic degradation (Figure 10 a).  

Proteolytic assays were further performed on thylakoids of WT, stn7-1 and lines expressing 

STN7 fused C-terminal to GFP in the stn7-1 mutant background. STN7-GFP showed the same 

thermolysin-dependent degradation pattern as native STN7 (Figure 10 b). These results support 

the idea that STN7 is degraded starting from its very C-terminus. Preceding solubilization of 

thylakoids with 2 % β-DM facilitates digestion of the whole protein (Figure 10 b). 
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(Figure 10 a). A loss of the protective complex subunits led to a faster proteolytic digest of at 

least the epitope containing part of STN7.  

3.3.6 Trypsination patterns of STN8 allow to estimate its topology and propose a potential 

association with other proteins 

Similar to STN7, the STN8 kinase contains a predicted single transmembrane domain close 

to its N-terminus (Vainonen et al. 2005). To elucidate the topology of STN8, thylakoids of 

oeSTN8 plants were treated with trypsin and analyzed by Western blot using STN8-specific 

antibodies recognizing either a specific epitope or the full-length protein (Figure 11). After 

tryptic digest of intact thylakoids a stable STN8 fragment of ~ 34 kDa was detected with both 

STN8-specific antibodies, while the signal of the mature STN8 protein (49.9 kDa) disappeared. 

This STN8 fragment, as well as an additional fragment of ~16.5 kDa, seemed to be firmly 

associated with the thylakoid membrane, suggesting that both fragments contain the predicted 

transmembrane helix (Figure 11). The antibody raised against the mature STN8 protein allowed 

for the detection of additional small fragments below 16.5 kDa, which most likely represent N-

terminal fragments excluding the epitope region of the peptide-specific antibody. This allows the 

assumption that tryptic degradation occurs predominantly at the very C-terminus of STN8. Thus, 

the very C-terminal part of STN8 of about 15 kDa seems to be most sensitive to tryptic cleavage, 

while the remaining sequence appears to be protected from degradation. Similar to STN7 this 

could be explained by STN8 being shielded by putative interaction partners against proteolytic 

degradation (see Figure 10). Sonication of the thylakoid membranes prior to trypsin treatment 

partially protected the mature STN8 protein from degradation by the formation of inside-out 

vesicles (Figure 11). These data support the favored model of a stroma exposed C-terminus 

containing the ATP-binding domain. At the same time the relatively stable 34 kDa fragment was 

more prone to degradation after sonication, possibly due to the disruption of a potential protein 

complex protecting STN8 from being digested. 
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are regulated at the post-translational level in a manner that is dependent on light quality (Willig 

et al. 2011).  

It should be noted, that the protein level of TAP38 in stn7-1 was as well significantly 

reduced, while oeSTN7 showed at the most a slight upregulation of TAP38 (Figure 15 b lower 

panel). These observations allow to consider also a direct mutual influence of the counterplayers 

STN7 and TAP38 on protein level. As well changes in the protein phosphorylation state in tap38-

1 might account for the observed differences in STN7 protein levels in addition to the changes of 

the PQ redox state. 

3.4.3 PSII and a functional cytochrome b6f complex are required for accumulation of 

STN7 

In the stn7-1 mutant the stability of the major thylakoid multiprotein complexes was not 

noticeably affected (Bonardi et al. 2005). To test the converse - whether STN7 accumulation 

depends on the presence of any of the major thylakoid protein complexes - immunoblot analyses 

were performed on total leaf proteins from photosynthetic mutants lacking either PSII (hcf136) or 

PSI (psad1-1 psad2-1) or devoid of a functional Cyt b6f (petc-1). While psad1-1 psad2-1 plants 

accumulated more STN7 than WT, only minuscule amounts of STN7 were detected in the hcf136 

and petc-1 mutants (Figure 15 c). Because this depletion at the protein level could result either 

from destabilization and increased degradation of the STN7 protein or from down-regulation of 

the expression of the STN7 gene, levels of STN7 mRNA were quantified by real-time RT-PCR. A 

strong reduction in STN7 transcript accumulation was detected in both hcf136 and petc-1 plants 

(Figure 15 d), indicating that, in the absence of either PSII or a functional Cyt b6f, a signal is sent 

to the nucleus that down-regulates expression of the STN7 gene. This, for the first time identified 

correlation of decrease in STN7 transcript and STN7 protein levels in hcf136 and petc-1 plants, 

together with the observation that STN7 transcript and STN7 protein levels increase in psad1-1 

psad2-1 lines (Figure 15 c, d) and decrease during exposure to HL (Figure 12 b, c), stongly 

suggests for the first time that the expression of STN7 might be additionally regulated at the level 

of transcript abundance. 

3.4.4 Elevated STN7 levels enhance LHCII phosphorylation and PSI-LHCI-pLHCII 

complex formation under certain light conditions 

To compare the STN7 activities of WT, stn7-1, tap38-1 and oeSTN7 lines, plants were kept 

in darkness for 18 h, then exposed for 2 h to LL, followed by either 60 min of HL (800 µmol 
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photons m-2s-1) or 20 min of FR treatment. Subsequently, thylakoid preparations were fractionated 

by SDS-PAGE and the phosphorylation pattern of thylakoid proteins was analyzed by 

immunolabeling with phosphothreonine-specific antibodies. Phosphorylated LHCII (pLHCII) was 

detected in LL-adapted WT and oeSTN7 plants, as well as in D- and HL-adapted oeSTN7 plants 

(Figure 16 a). The persistently higher STN7 levels seen in oeSTN7 plants during the HL time-

course experiment (see Figure 12 b) were accompanied by greater residual LHCII 

phosphorylation relative to WT plants (Figure 17 a). However, by exposure to very intense light 

(VHL; 1800 µmol m-2s-1), LHCII phosphorylation could be almost completely suppressed even in 

oeSTN7 plants (Figure 17 b). In tap38-1, which served as control, LHCII phosphorylation was 

detected under all light conditions as described before (Pribil et al. 2010).  

To exclude that the strongly enhanced LHCII phosphorylation of oeSTN7 plants in the dark 

compared to LL is solely due to increased STN7 protein levels, thylakoids of WT and oeSTN7 

were treated with FR and then exposed to LL or D for 30 min. The protein levels in oeSTN7 were 

not elevated in the dark compared to LL (Figure 18). Moreover, the STN7 protein levels in both 

WT and oeSTN7 lines increased immediately upon transfer from FR to LL and D.  

To assess the effect of enhanced LHCII phosphorylation on the extent of formation of the 

PSI-LHCI-pLHCII supercomplex (Pesaresi et al. 2009; Pribil et al. 2010), thylakoid samples 

were solubilized with digitonin, and then analysed by BN-PAGE. The PSI-LHCI-pLHCII 

supercomplex was detectable in tap38-1 mutant plants under all conditions as described (Pribil et 

al. 2010) - in LL-adapted WT and oeSTN7 plants, and also in D- and HL-adapted oeSTN7 plants 

(Figure 16 b). This indicates that, in oeSTN7 plants, LHCII phosphorylation persists in the dark, 

and to a somewhat reduced extent also under HL conditions, which results in the formation of the 

PSI-LHCI-pLHCII supercomplex under these conditions. However, treatment with VHL (Figure 

17 b) or FR light (Figure 16 a) could dephosphorylate LHCII almost completely and, in turn, 

cause dissociation of the PSI-LHCI-pLHCII supercomplex even in oeSTN7 plants.  

The observation of strongly increased PSI-LHCI-pLHCII supercomplex formation in 

oeSTN7 compared to WT in the dark was additionally confirmed by 77 K measurements (Figure 

16 c). Moreover, the extent of state 2 in dark-adapted oeSTN7 plants seemed to be significantly 

increased compared to oeSTN7 plants in the middle of the light phase. 
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However, the kinetics of state transitions do seem to be altered in oeSTN7 plants. Notably, 

the switch from FR- to red-light exposure led to a faster fall in steady-state Chl a fluorescence in 

oeSTN7 plants than was seen in WT plants (Figure 19). The lower Fm value observed in oeSTN7 

is likely to result from greater LHCII phosphorylation, and hence increased detachment of LHCII 

from PSII, even in the dark. 

To further investigate differences in the kinetics of state transitions, oeSTN7 and WT 

plants were shifted from state 1 to state 2 conditions and vice versa, and the timing of LHCII 

phosphorylation was observed at high resolution (Figure 20 a, b). To this end, leaf material was 

collected at various times, and LHCII phosphorylation was detected by Western blot analysis. 

Because dark-adapted oeSTN7 plants, in contrast to WT, are trapped in state 2 (Figure 16 a, b), 

FR treatment had to be employed to drive WT and oeSTN7 plants into state 1 (with LHCII 

dephosphorylated). After induction of state 1, plants were exposed to LL for up to 30 min (Figure 

20 a). Initially (2 min of LL exposure), the rate of LHCII phosphorylation increased slightly faster 

in oeSTN7 than in WT. However, after about 6 min of LL, oeSTN7 and WT plants displayed 

similar maximum levels of LHCII phosphorylation, and after 30 min similar steady-state pLHCII 

levels were reached in both genotypes. This implies that, even after the reduction of STN7 

amounts by FR treatment (see Figure 12 a), the levels still present in WT plants are sufficient to 

facilitate LHCII phosphorylation. Moreover, the higher level of STN7 available in oeSTN7 did not 

markedly enhance LHCII phosphorylation and so accelerate the transition from state 1 to state 2. 

On the contrary, when the transition from state 2 to state 1 was studied by exposing the two 

genotypes to LL for state 2 adaptation (LHCII phosphorylated), followed by time-resolved FR 

light exposure, this transition was found to be markedly delayed in oeSTN7 plants (Figure 20 b). 

After exposure to FR for 6 min, LHCII was completely dephosphorylated in WT plants, whereas 

substantial levels of pLHCII were still detectable in oeSTN7 plants. Only after prolonged FR 

treatment could oeSTN7 be quantitatively transferred into state 1. 

To further investigate the phosphorylation of LHCII in dark-adapted oeSTN7 plants 

(Figure 16 a), WT and oeSTN7 plants were exposed to FR and then placed to darkness (Figure 

20 c). In WT and oeSTN7 plants, LHCII was completely dephosphorylated after exposure to FR 

light for 40 min. But whereas WT plants remained dephosphorylated when transferred to the dark, 

oeSTN7 plants showed very strong de-novo phosphorylation of LHCII (Figure 20 c), which was 

associated with the formation of the PSI-LHCI-pLHCII complex, as shown by 77 K 

measurements (Figure 20 d). 
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emission spectra of WT (lines: black to grey) and oeSTN7 (lines: red to yellow) plants transferred to the dark for 15 

min and 30 min, after 40 min of FR treatment. Excitation wavelength was 475 nm. Spectra were normalized with 

respect to the peak at 685 nm. Each spectrum represents the average of at least five individual recordings. 

3.4.6 The PQ redox state of oeSTN7 in the dark is not aberrant from WT 

A possibility to explain the strong LHCII phosphorylation of oeSTN7 in the dark could be 

the presence of a significantly reduced PQ pool even in the absence of light. To investigate the 

redox state of the PQ pool in the dark, we performed a non-invasive assay based on the 

polyphasic fluorescence rise (OJIP-transient) upon the onset of saturating light (Figure 21) as 

described by Toth et al. (2007). 

WT and oeSTN7 plants were dark-adapted and Chl a fluorescence was recorded during a 

saturation pulse. The FJ value, defined by the plateau after ~3 ms of illumination, was shown to 

depend on the availability of oxidized PQ molecules bound to the QB site. This value is close to 

Fm if the PQ pool is highly reduced, but much lower in dark-adapted WT plants, which exhibit 

just a partially reduced PQ pool.  Pre-oxidation of the PQ pool by FR illumination just before the 

saturating light flash provided the minimal FJ (FJ-ox) value in a second transient. Based on the 

equation (FJ – FJ–ox)/(Fm – FJ–ox) the fraction of reduced PQ can be calculated. Recordings of 20 

individual plants identified an average reduced PQ fraction of 15.8 % (± 2.15 %) for WT and 14.4 

% (± 2.69 %) for oeSTN7. Therefore, no significant differences of the PQ redox state in the dark 

could be observed between WT and oeSTN7. Figure 21 depicts representative charts of OJIP-

transients of WT and oeSTN7.  

3.4.7 Increased STN7 levels result in a more highly oxidized PQ pool and a higher PSI 

quantum yield upon light induction 

To further define the effects of altered LHCII phosphorylation on photosynthesis, Chl a 

fluorescence and absorption parameters were determined for WT, oeSTN7, stn7-1 and tap38-1 

plants during dark-light transitions. To this end, dark-adapted plants were exposed to LL for 5 

min, followed by 100 s in darkness (Figure 22 a, b). After return into the light, the effective 

quantum yield of PSII (ΦII) in oeSTN7 and tap38-1 plants was very similar and clearly higher than 

in the other genotypes (Figure 22 a).  
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the two genotypes. Moreover, this enhanced oxidation of the PQ pool under low and moderate 

illumination might significantly contribute to the observed lower LHCII-phosphorylation in 

oeSTN7 compared to WT. 

3.4.8 LHCII phosphorylation of oeSTN7 plants in the dark depends on stromal factors  

To assess whether the STN7 activity that persists in oeSTN7 lines in the dark is, as in WT 

plants, triggered by the redox state of the PQ pool, in particular by the binding of PQH2 to the Qo 

site of the Cyt b6f complex (Vener et al. 1997; Zito et al. 1999), experiments were performed with 

inhibitors of photosynthetic electron flow. Immediately after LHCII dephosphorylation by FR 

light, DBMIB and DCMU were infiltrated into detached leaves, and the leaves were then exposed 

to LL or placed in the dark. STN7 activity was analysed by immunodetection of pLHCII. DBMIB 

competes with PQH2 for the Qo site of the Cyt b6f complex (Vener et al. 1997). The infiltration of 

leaves with 200 µM DBMIB strongly reduced LHCII phosphorylation in oeSTN7 in the dark and 

under LL, but did not completely inhibit de-novo LHCII phosphorylation as in WT (Figure 25 a). 

DCMU blocks electron transfer from the PSII acceptor side to PQ, resulting in efficient oxidation 

of the PQ pool upon illumination (Vener et al. 1997). Infiltration with DCMU resulted in 

quantitative inhibition of LHCII phosphorylation under LL in both genotypes (Figure 25 b). 

To eliminate effects of stromal components, an in-vitro phosphorylation assay using isolated 

thylakoids in the presence of phosphorylation-promoting reagents was employed as described 

previously (Rintamaki et al. 2000) (Figure 25 c). Unlike the case in intact leaves, the elevated 

level of STN7 protein present in isolated thylakoids of oeSTN7 plants led to greater LHCII 

phosphorylation under LL conditions than in WT (Figure 25 c). Possible explanations for this are 

the inhibition of TAP38/PPH1-mediated LHCII dephosphorylation activity by the NaF in the in-

vitro assay, and the absence of stroma-located mechanisms for adjusting STN7 kinase activity. 

The inhibition of LHCII phosphorylation by DCMU occurred with almost equal efficiency in 

extracts from oeSTN7 and WT plants (Figure 26 a). However, DBMIB was less effective in 

inhibiting in-vitro LHCII phosphorylation of oeSTN7 thylakoids and only the addition of high 

DBMIB concentrations (≥ 40 µM) led to a significant inhibition of LHCII phosphorylation 

(Figure 26 b). 
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restored by reducing the PQ pool through the addition of duroquinol (Figure 25 c), which is able 

to directly reduce plastoquinone to plastoquinol (White et al. 1978). To this end, oeSTN7 and WT 

thylakoids were spiked with increasing amounts of duroquinol, and LHCII phosphorylation was 

monitored after 20 min of incubation in the dark (Figure 25 c). LHCII phosphorylation in oeSTN7 

thylakoids was much more pronounced than in WT and was initiated at lower duroquinol 

concentrations (0.1 µM). 

Additionally, the time-course of de-novo LHCII phosphorylation in the dark was 

investigated by in-vitro [33P]-labeling assays. To this end thylakoids were isolated from dark-

adapted plants, which still display a partially reduced PQ pool compared to the FR treated plants 

used during the afore described in-vitro assays. De-novo thylakoid phosphorylation of WT and 

oeSTN7 plants was assessed in the presence of 33P-labeled ATP over a time period of 30 min, 

while protein dephosphorylation was inhibited by the addition of NaF (Figure 27). As expected, 

the WT LHCII phosphorylation rate under LL conditions was higher than in the dark and further 

increased when thylakoids were treated with the agent dithionite, which is efficiently reducing the 

PQ pool in the dark. While LHCII de-novo phosphorylation in the dark gradually increased over 

time, LL led to a rapid reduction of the PQ pool and de-novo LHCII phosphorylation showed 

saturation already after 15 min (Figure 27). The addition of dithionite led to a strong increase in 

LHCII phosphorylation already after 5 min which remained rather constant in the following time-

course. For oeSTN7 thylakoids, all three conditions resulted in stronger de-novo LHCII 

phosphorylation compared to WT, again indicating that an elevated STN7 protein level relatively 

increases the LHCII phosphorylation efficiency in vitro, independent from the reduction level of 

the PQ pool. Note, that in contrast to afore described non-radioactive assays, here a significant 

phosphorylation of LHCII was detected in the dark. However, this observation can be explained 

by the methods increased detection sensitivity and by using dark-adapted plant material, which 

contained a certain reduced fraction of PQ. 
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of disulphide bridges, DTT and NEM were applied, which reduce and block cysteine residues 

respectively. By adding DTT and NEM to WT and oeSTN7 thylakoids, STN7 activity could be 

drastically decreased in the two genotypes, although oeSTN7 thylakoids with their constitutively 

higher levels of STN7 were more resistant to complete inactivation (Figure 26 c). 

In summary, these observations suggest that STN7 is activated by the same mechanisms in 

WT and oeSTN7 plants. The activity of STN7 that remains in plants kept in the dark appears to 

depend on the re-reduction of the PQ pool by a stromal electron source. Moreover, dynamic 

disulphide bridge formation and reduction are required to maintain STN7 kinase activity. 

3.4.9 The N-terminal cysteine residues of STN7 are essential for its activity 

Like STT7, the STN7 kinase contains a potential thioredoxin motif (CxxxxC) at its N-

terminus. This motif is thought to represent a regulatory, redox-sensitive domain that is crucial for 

STN7 kinase activity (Lemeille et al. 2009). To address this issue, cysteine-exchange variants of 

STN7 were generated, in which one or both N-terminal cysteine residues have been replaced by 

serine (STN7C→S:65, STN7C→S:70 and STN7C→S:65+70), and these were introduced by stable 

transformation into the stn7-1 genetic background under control of the 35S promoter. The 

mutated variants accumulated in the transgenic lines, albeit in lesser amounts than STN7 in WT 

(Figure 28). However, each of the cysteine replacements was associated with an almost complete 

loss of LHCII kinase activity, and concomitant loss of LHCII phosphorylation and PSI-LHCI-

pLHCII supercomplex formation (Figure 28). The possibility that the reduction in STN7 protein 

levels in the transgenic cystein exchange lines might account for the marked drop in LHCII 

phosphorylation compared to WT can be excluded, as leSTN7 plants accumulate similar decreased 

amounts of STN7 but show substantial LHCII phosphorylation activity (Figure 30 b). Compared 

to stn7-1, the Cys-Ser exchange lines retained a slightly higher degree of residual LHCII 

phosphorylation under LL (Figure 28 and 30 b). 
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would migrate left-hand side of the diagonal, or right-hand if undergoing intramolecular 

disulphide bridge formation (Winger et al. 2007). As a control, thylakoid proteins were reduced 

with DTT prior to electrophoresis in the first dimension. This resulted in a single signal for STN7 

on the respective diagonal (Figure 29 a). When thylakoid proteins were treated with the oxidizing 

agent diamide before separation in the first dimension, STN7 also migrated well left-hand and 

right-hand side of the diagonal, which indicates the formation of both inter- and intramolecular 

disulphide bridges by STN7 (Figure 29 a). 

To possibly visualize these intermolecular interactions of STN7 via non-reducing one-

dimensional PAGE, WT plants were afore exposed to different light conditions (FR, LL, HL, or 

D) or treated with chemicals like DCMU and DBMIB known to inhibit STN7 kinase activity. 

However, none of these conditions allowed for the identification of a dimeric or multimeric state 

of STN7 (Figure 29 b). Even the addition of diamide to WT thylakoids in order to stabilize 

potential intermolecular interactions prior to solubilization in loading buffer could not support 

STN7 dimer formation and/or recognition. Interestingly, a clear negative effect of diamide on 

STN7 monomer amounts could be observed. One explanation could be that STN7 is dispersed to 

multiple high molecular interactions if diamide was added (Figure 29 b).  

Supporting the idea of STN7 dimer formation, a ~110-kDa signal corresponding to the size 

of a STN7 dimer could be detected in oeSTN7 plants (Figure 29 c, 30 b). In oeSTN7 plants 

exposed to FR light the amount of the putative STN7 dimer was lower than that seen under LL 

conditions, however, the monomer/dimer ratio remained largely constant (Figure 29 c). 

To reduce the risk of disintegration or degradation of the putative STN7 dimer during 

thylakoid isolation, the reactivation or inhibition of the kinase was induced after thylakoid 

isolation right before separation on non-reducing SDS-PAGE (first dimension). To this end, 

assays similar to the in-vitro phosphorylation assays described in Figure 26 were performed using 

thylakoids isolated from FR-adapted plants (WT and oeSTN7) (Figure 29 d). However, none of 

the applied light conditions (FR, LL, HL, or D) or attempts to chemically manipulate STN7 

kinase activity (DCMU or DBMIB) led to a visual formation of STN7 dimers in WT thylakoids 

(Figure 29 d). In thylakoids of oeSTN7 plants the same conditions did neither significantly alter 

the abundance of the detectable putative STN7 dimer nor the observed STN7 monomer/dimer 

ratio (Figure 29 d). 
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FR for 10 min. Furthermore, 20 µM of DCMU or 200 µM of DBMIB solutions were infiltrated into detached leaves 

prior to LL treatment. Isolated thylakoids were then either treated with 200 mM diamide before separation via non-

reducing SDS-PAGE or left untreated (w/o). Proteins were transferred to PVDF membrane and immunodecorated 

with STN7- or LHCA3-specific antibodies. For STN7 20 µg and for LHCA3 3 µg of chlorophyll were loaded. c 

STN7 dimer formation in oeSTN7 under low light (LL; 60 µmol photons m-2s-1) and FR conditions. oeSTN7 plants 

were exposed for 30 min to FR and subsequently transferred to LL for 30 min. Thylakoids were subjected to Western 

blot analysis using antibodies raised against STN7, as well as phosphothreonine (pThr) or LHCA3 after SDS-PAGE. 

For STN7 20 µg, for P-Thr 1 µg and for LHCA3 3 µg of chlorophyll were loaded d Thylakoids of FR-adapted WT 

and oeSTN7 plants were resuspended in phosphorylation buffer and exposed to FR, D, or LL (60 µmol photons m-2s-

1) for 10 min. Additionally, LL samples were spiked with 50 µM DBMIB or 5 µM DCMU during light exposure. All 

samples were analyzed by Western blot applying STN7- or LHCA3-specific antibodies. For STN7 20 µg and for 

LHCA3 3 µg of chlorophyll were loaded. e Visualization of STN7 dimers. Isolated thylakoids of LL-adapted WT and 

STN7C→S:70 plants corresponding to 20 µg of Chlorophyll were mixed with non-reducing loading buffer and heated 

for 5 min at 75 °C prior to separation via SDS-PAGE. Proteins were transferred to PVDF membrane and 

immunodecorated with STN7-specific antibodies. 

 

In the course of this work a method to detect the putative STN7 dimer (110-kDa) in the first 

dimension, even as a faint band in WT thylakoids, was developed. To this end, thylakoids were 

solubilized in non-reducing loading buffer, followed by a heating step for 5 min at 75 °C, before 

performing non-reducing SDS-PAGE (Figure 29 e). Possibly, other proteins covering the dimer 

region undergo conformational changes or become degraded by this heat treatment and thereby 

lay bare the STN7 dimer. Further analyses applying this method will be subject to future work. 

3.4.11 The two N-terminal Cys residues of STN7 are involved in STN7 dimerization 

Most attempts to detect STN7 dimers in WT plants by one-dimensional PAGE analysis, 

even under oxidizing conditions (diamide treatment), failed. However, in the lines expressing 

STN7 variants with single Cys-Ser exchanges (STN7C→S:65 and STN7C→S:70), the putative STN7 

dimers, could be detected (Figure 30 a). The STN7 dimers appeared under both normal and 

oxidizing conditions (diamide treatment), and disappeared under reducing conditions (DTT 

treatment). 

Similar to oeSTN7 (Figure 29 c), STN7C→S:70 plants exposed to different light conditions 

showed a significant variation in the total abundance of the mutant STN7, but the STN7 

monomer/dimer ratio remained largely constant (Figure 30 c).  
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phosphothreonine-specific antibody (pThr). The section of the Coomassie brilliant blue-stained (CBB) PVDF 

membrane displaying the LHCII signal is shown as a loading control. c Dimerization of STN7C→S:70 in planta under 

different light conditions. After 18 h of adaptation to darkness (D), plants were transferred for 120 min to low light 

(LL, 60 µmol photons m-2s-1) followed by exposure to high light (HL, 800 µmol photons m-2s-1) or far-red light (FR) 

for a further 120 min. STN7 dimers and monomers were detected as in panel b, and loading was controlled by 

staining with Coomassie brilliant blue (CBB). Protein amounts equivalent to 15 µg of Chl were loaded. 

 

In the double Cys-Ser exchange mutant (STN7C→S:65+70), formation of the putative STN7 

dimers was suppressed, indicating that stable formation of putative STN7 dimers by each of the 

two STN7 variants with single Cys-Ser exchanges involves Cys-65/Cys-65 and Cys-70/Cys-70 

disulphide bridges (Figure 30 a). To clarify whether LHCII activity could be restored if cells 

were given the opportunity to form Cys-65/Cys-70 disulphide bridges, both types of Cys-Ser 

variants (STN7C→S:65 and STN7C→S:70) were co-expressed in planta. However, no recovery of 

kinase activity was observed (Figure 30 b), indicating that the Cys-Ser exchanges per se are 

incompatible with LHCII kinase activity. 

To determine whether the ~110-kDa signal truly derives from STN7 dimers, A. thaliana 

lines expressing GFP-tagged STN7 Cys-Ser exchange variants were generated (Figure 31 a). In 

order to demonstrate that the GFP-tag does not interfere with dimerization, lines were analysed in 

which the GFP-tagged STN7 Cys-Ser exchange variants were expressed in the stn7-1 mutant 

background. After exposure to oxidizing or reducing conditions and Western analysis employing 

a GFP-specific antibody, the lines expressing STN7-GFP, STN7C→S:65-GFP, STN7C→S:70-GFP and 

STN7C→S:65+70-GFP variants in the stn7-1 background showed the same STN7 monomer/dimer 

pattern as the respective STN7 variants without a GFP-tag, and the expected shifts in molecular 

weight could be observed (compare Figure 31 a with 30 a). In a second step, pull-down assays 

using the GFP-Trap®™ system (Chromotek) were performed with GFP-tagged STN7 Cys-Ser 

exchange variants, which were expressed in the WT background. Strikingly, when lines 

expressing STN7C→S:65-GFP or STN7C→S:70-GFP in the WT background were used, native STN7 

proteins could also be pulled down (Figure 31 b). This allowed us to conclude that 

STN7/STN7C→S:65-GFP and STN7/STN7C→S:70-GFP heterodimers could be formed. As expected, 

for lines expressing STN7C→S:65+70-GFP in the WT background, only GFP-tagged STN7 was 

detected after pull down. In the negative controls (WT and stn7-1) the pull-down assay failed to 

yield any signals detectable by the STN7-specific antibody (Figure 31 b). 
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(Figure 36 a). oeSTN8 plants exhibited a significant increase in PSII core protein phosphorylation 

under all investigated light conditions. While PSII phosphorylation in WT plants is decreased in 

the dark compared to LL, it remains on LL levels in oeSTN8 lines. Even after FR treatment 

residual PSII phosphorylation is exclusively detected in oeSTN8 thylakoids. Under LL solely the 

pCP43 levels are significantly increased compared to WT. However, under STN8 activity 

inducing HL conditions the strongest increase in PSII core protein phosphorylation in oeSTN8 

compared to WT was observed. It is worth mentioning that pLHCII level behaved similar to WT 

throughout the experiment (Figure 36 a). 

Based on experiments with stn8-1 mutant plants, the phosphorylation of thylakoid 

membrane proteins, in particular of the PSII core proteins, was suggested to affect the formation 

of PSII supercomplexes or more precisely the degradation of the latter under HL (Tikkanen et al. 

2008a). To validate these observations, BN-PAGEs of oeSTN8 thylakoids were performed to 

determine the effects of increased PSII phosphorylation on PSII-supercomplex formation after 

exposure to 18 h D, 2 h LL (80 µmol photons m-2s-1) or 2 h HL (1200 µmol photons m-2s-1). 

Although BN-PAGEs after solubilization with 1.5 % digitonin did not reveal significant 

differences between WT and stn8-1, a minor decrease in the amount of PSII supercomplexes in 

oeSTN8 was detected (Figure 36 b left). More pronounced differences in PSII-supercomplex 

accumulation were obtained for the respective lines after solubilization with 1.5 % β-DM. Here, 

WT plants showed again more PSII supercomplexes than oeSTN8 but also fewer PSII 

supercomplexes than stn8-1, which is in accordance to recent findings (Figure 36 b right) 

(Tikkanen et al. 2008a). However, in contrast to Tikkanen et al. (2008a) these differences were 

observed under all three applied light conditions not only under HL.  

Additionally 2D BN/SDS-PAGEs were performed on the HL treated samples to check for 

the distribution of the PSII cores proteins between PSII supercomplexes, dimers and monomers. 

In stn8-1 more D1 (PSBA) accumulation was observed in the very high molecular PSII-

complexes compared to WT, whereas the opposite was the case for oeSTN8 (Figure 36 c). These 

results are in accordance with those obtained by Tikkanen et al. (2008a) for stn7 stn8 mutants. 

However, it has to be noted that under the conditions used in this work the specificity was much 

less pronounced. 
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before. Consequently, for mutants with increased PSII core protein phosphorylation, one would 

expect a higher amount of grana stack layers but in return a shorter diameter of grana stacks. 

Interestingly, oeSTN8 differed from WT (within the standard deviation) by forming longer and 

higher grana stacks. Eventually, these results demonstrate a clear effect of increased STN8 levels 

on the thylakoid ultrastructure. 

Summing up, it can be stated that STN8 levels have a effect on PSII-supercomplex 

formation and thylakoid ultrastructure. However, a clear dosage-dependent correlation cannot be 

deduced. 

3.5.5 Increased STN8 levels result in a slightly higher oxidized PQ pool  

To determine the effects of altered PSII core phosphorylation on photosynthesis, Chl a 

fluorescence and absorption parameters were recorded for WT, oeSTN8, stn8-1 and stn7 stn8 

plants during dark-light transitions (Figure 39, 40). When dark-adapted plants were exposed to 

LL (22 µmol photons m-2s-1) for 6 min, no significant differences in the effective quantum yield 

of PSII (II) were detected between WT and stn8-1, while in oeSTN8 plants II was initially 

higher but eventually converged to WT levels in the course of the measurement (Figure 39 a). 

The parameter 1-qL indicating the excitation pressure of PSII was somewhat lower in oeSTN8 

compared to WT and stn8-1, which corresponds to a more oxidized PQ pool (Figure 39 b). As 

expected, the stn7 stn8 mutant showed higher 1-qL and lower II values than the WT. As oeSTN8 

showed an increased resistance to photoinhibition (Figure 37), one might expect detectable 

aberration in photosynthetic performance under high light intensities already in short-term 

experiments. However, performing II and 1-qL measurements under increasing light intensities 

(5 min intervals) no significant differences could be observed (Figure 39 c, d). Solely the non-

photochemical quenching (NPQ), a photoprotective mechanism (Ruban et al. 2012), showed 

tendencies to be higher for oeSTN8 but also for stn7 stn8 (Figure 39 c).  

To measure the performance of PSI, the photochemical quantum yield of PSI (I), and the 

quantum yield of non-photochemical energy dissipation in PSI due to donor (ND) or acceptor 

(NA) side limitation of WT, oeSTN8, stn7 stn8 and stn8-1 plants were determined by performing 

a light curve with increasing light intensities in 5 min intervals (Figure 40 a, b, c). All three 

determined PSI values of the mutant lines except for stn7 stn8 lay within the standard deviations 

of the WT (Figure 40 a, b, c). However, at lower light intensities up to 216 µmol photons m-2s-1, 

oeSTN8 showed a tendency for higher and stn8-1 for lower I values. 
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4 Discussion 

4.1 STN7 and STN8 are associated with high molecular weight supercomplexes of 

the thylakoid membrane 

With the aid of newly generated STN7 and STN8 specific antibodies, the localization and 

topology of both kinases in the thylakoid membrane could be further resolved. A single 

transmembrane domain of STN8 was predicted for the sequence enclosing the amino acids 32 to 

62. The kinase domain is supposed to face the stroma and a short N-terminal sequence the lumen 

(Vainonen et al. 2005). However, there are ambiguous predictions regarding the potential 

transmembrane helix since several algorithms for TM prediction rather propose a soluble 

character for STN8 (i.e. TMHMM and SOSUI). The analysis of soluble and membrane fractions 

of chloroplasts clarified that STN8 appears solely in the thylakoid membrane fraction (Figure 7 

a). Salt washes of thylakoid membranes further demonstrated a strong membrane integral 

character for both kinases predominantly based on electrostatic interactions (Figure 7 b). Tryptic 

thylakoid digests in combination with STN8 full-length and peptide-specific antibodies supported  

a stromal localization of its C-terminal part. (Figure 11) (Vainonen et al. 2005). By similar means 

a STT7-like topology could be confirmed for STN7 with its C-terminal ATP pocket facing the 

stroma. Regarding the location of the essential N-terminal cysteine motif, a luminal localization 

could not unambiguously be verified within the scope of this work but a situation similar to STT7 

is likely (Lemeille et al. 2009). A way to address this issue could be the generation of STN7 full-

length specific antibodies with increased specificity (Figure 6 b) or transgenic lines with N-

terminal tagged STN7. 

In C. reinhardtii, STT7 is associated under state 1 and state 2 conditions with a high 

molecular weight complex, overlapping with fractions of PSI and Cyt b6f complex in sucrose 

density gradients (Lemeille et al. 2009). In this study the question whether STN7 and STN8 act as 

monomeric enzymes or are associated with other proteins in higher molecular weight complexes 

was addressed by proteolytic assays, 2D BN-/SDS-PAGE and sucrose density gradient 

centrifugation. The presented results on protease treatments suggest that both kinases are 

embedded in a large molecular complex. Thereby, the stroma-exposed C-termini of STN7 and 

STN8 comprising the respective kinase domains seemed to be partially protected by interacting 

proteins (Figure 10, 11). In 2D BN-/SDS-PAGE analyses immune-specific signals of both 

kinases were distributed throughout the gel, suggesting multiple assembly states and association 
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with high molecular weight supercomplexes (Figure 8 a). The presence of multiple assembly 

states of high molecular weight were further supported by data obtained from sucrose density 

gradient centrifugation (Figure 8 b). Thus, there is comprehensive evidence that both STN7 and 

STN8 are not operating as single enzymes but are embedded in complex-structures. 

Interestingly, STN8 does not accumulate in plants lacking PSII complexes (hcf136) (Figure 

9). This PSII-dependent accumulation of STN8 probably reflects the necessity of its close contact 

with the PSII core proteins which at the same time represent the main substrate. In line with these 

findings, STN8 was mainly detected in the grana stacks or grana margins, the same thylakoid 

fractions where PSII accumulates (Figure 8 c). These observations suggest a direct 

phosphorylation of PSII subunits by STN8. Alternatively, a kinase cascade residing in close 

proximity to the PSII complex is conceivable.  

Hou et al. (2003) demonstrated that washing of thylakoids with 2 M NaBr leads to a loss of 

PSII core protein phosphorylation capacity. Contrarily, Figure 7 b shows that after similar 

treatment most of the STN8 protein remains bound to the membrane. Therefore, it is tempting to 

speculate that washes with NaBr do not directly affect STN8 activity, but rather remove kinases 

that are part of a putative PSII core phosphorylation cascade. To obtain more reliable evidence for 

the latter, salt washed thylakoid fractions should be tested in parallel for STN8 activity and 

protein accumulation. 

The inability of mutants devoid of a functional Cyt b6f complex to accumulate STN7 

(Figure 15 c) is in line with studies that detected LHCII phosphorylation activity in purified Cyt 

b6f complexes (Gal et al. 1990). Furthermore, in differential fractionated thylakoids STN7 and the 

Rieske protein (PETC) were both enriched in the stroma lamellae fraction independent of state 1 

or 2 conditions. In C. reinhardtii also STT7 was shown to tightly interact with the Rieske protein 

(Lemeille et al. 2009). The prevailing idea of STN7 activity being dependent on the physical 

interaction between STN7 and the Cyt b6f complex is further supported by the here presented 

results (Figure 8 c). The LHCII phosphatase TAP38/PPH1, sharing the same substrate with 

STN7, was similarly found to be enriched in the stroma lamellae (Shapiguzov et al. 2010). As 

state transitions are believed to predominantly occur in the grana margins (Tikkanen et al. 2008b), 

the tendency for a spatial separation of STN7 from PSII-LHCII would give hints for an 

involvement of a kinase cascade in LHCII phosphorylation. However, differential centrifugation 

is certainly not the ideal method to isolate grana margins in a sufficiently pure manner. Therefore, 

a direct phosphorylation of LHCII by STN7 is still one of the most likely options. Especially 
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under PSII light, when the interplay between TAP38 and STN7 activity leads to a balanced LHCII 

phosphorylation, a localization of both enzymes in close proximity to the phosphorylation sites of 

pLHCII bound to PSI outside the grana stacks is to be expected. Moreover, two running forms of 

STN7 can be detected (Figure 8 c). While the presumably larger one seems to be evenly 

distributed throughout the thylakoid membrane, the lower migrating band accumulates mainly in 

the stroma lamellae and could represent a fraction of STN7 that is involved in its own turnover 

(Willig et al. 2011). 

4.2 Control of STN7 transcript abundance and transient STN7 dimerization are 

involved in the regulation of STN7 activity 

4.2.1 At what level is STN7 abundance regulated? 

In A. thaliana, STN7 protein abundance is regulated in a light-quality dependent manner 

(Willig et al. 2011). Furthermore STT7, the STN7 orthologue in C.  reinhardtii, is subject to 

proteolytic degradation after prolonged exposure to high light levels (Lemeille et al. 2009). Here, 

we have demonstrated that, in addition to concomitant decreases in STN7 mRNA and protein 

levels in A. thaliana plants exposed to either HL or FR (Figure 12 a-d), several mutant lines 

(hcf136, psad1-1 psad2-1, petc-1; Figure 15 c, d) exhibit alterations in STN7 protein abundance 

and corresponding changes in STN7 mRNA levels, relative to WT. This raises the question 

whether or not STN7 protein amounts change primarily as a consequence of alterations in the 

abundance of STN7 mRNA - i.e. via regulation of STN7 abundance at the transcript level. 

Alternatively, they might be mainly due to post-translational control of protein accumulation, as 

suggested previously for STT7/STN7 (Lemeille et al. 2009; Willig et al. 2011), with changes in 

STN7 transcript levels arising from a secondary effect, e.g. being mediated by plastid retrograde 

signalling. Some lines of evidence suggest that the latter scenario applies. Thus, in the Cys-Ser 

exchange line STN7C→S:70, the mutant protein seems to be subject to increased degradation 

despite the fact that STN7 transcript levels increase, possibly as a compensatory response (Figure 

13 a, b). Moreover, it seems also very likely that in mutants without PSII (hcf136) or a functional 

Cyt b6f complex (petc-1), down-regulation of the STN7 protein occurs primarily at the protein 

level, whereas the drop in STN7 transcripts in these genotypes might be mediated by retrograde 

signalling. In this context it is interesting to note that STN7 itself has also been implicated in 

retrograde signalling, as a component of a signal transduction pathway that relays information on 

the redox state of the PQ pool to the nucleus (Bonardi et al. 2005; Pesaresi et al. 2009). It 
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therefore appears possible that STN7 can regulate its own expression at the transcriptional level 

when altered STN7 levels result in changes in retrograde signalling. In the case of the down-

regulation of STN7 transcript and protein levels induced by HL and FR, it cannot be excluded that 

regulation at the transcript level is the driving force behind the observed changes in STN7 protein 

abundance. However, for the oeSTN7 and leSTN7 lines (Figure 13 a, b), it is clear that the altered 

transcript levels are responsible for the alterations in STN7 protein level. In summary, it was not 

only confirmed that STN7 amounts can be regulated at the post-translational level, but also shown 

that modes of regulation at the transcript level are utilized. In other cases, where STN7 protein 

and transcript levels change in a concerted way, it remains to be clarified which is the cause and 

which the consequence. 

4.2.2 At what level is STN7 activity regulated? 

It is clear that the level of LHCII phosphorylation depends on the redox state of the PQ pool 

and, under HL, also on the stromal redox state, i.e. that of the ferredoxin-thioredoxin system. But 

does this allow us to conclude that the activity of the STN7 kinase itself is under redox control? 

No straightforward answer can be given because the abundance of STN7 is also redox dependent 

(Figure 15 a, 12 a, b, 14). Thus, on exposure to HL and FR, both the abundance of STN7 and the 

level of LHCII phosphorylation decrease. The oeSTN7 plants with more STN7 also display, in 

general, more LHCII phosphorylation (Figure 16 a). Moreover, in PSI mutants like psad1-1 and 

psae1-3, both LHCII phosphorylation (Ihnatowicz et al. 2008) and STN7 levels (Figure 15 a) are 

increased. Therefore, it seems possible that under these conditions the intrinsic activity of STN7 is 

not changed, and that the rise in the total activity simply reflects the increase in the number of 

molecules present. Conversely, taking the autophosphorylation of STN7, and its increased 

stability in the phosphorylated state, into account (Willig et al. 2011), it is tempting to speculate 

that the activity of STN7 itself might regulate STN7 protein levels. This hypothesis is supported 

by the behavior of the STN7C→S:70 line, in which levels of the mutant STN7 are low, despite an 

increase in the amount of the corresponding transcript (Figure 13). This could be directly related 

to the lack of LHCII phosphorylation and autophosphorylation activity (Figure 28, 30 b). 

Similarily, leSTN7 expressing very low amounts of STN7 might not reach a certain protein 

threshold level, which is required for efficient self stabilization (Figure 13).  

 The results of this work also clearly show that even when the STN7 kinase is present in 

excess amounts, it is still subject to redox control and can be inactivated when the PQ pool 
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becomes oxidized (Figure 20 b, 25 b, 26 a). The inhibitor experiments suggest that STN7 is 

activated by the same mechanisms in WT and oeSTN7 plants. However, whereas under standard 

lighting conditions WT and oeSTN7 plants exhibited very similar levels of LHCII 

phosphorylation (Figure 16 a, b, 20 a), in-vitro phosphorylation studies of isolated thylakoids 

showed that oeSTN7 accumulated more pLHCII than WT (Figure 25 c, 26). This discrepancy 

between the STN7 activity measured in vitro and in oeSTN7 plants can be explained by assuming 

that, in intact cells, LHCII phosphorylation is modulated by mechanisms that no longer operate in 

our in-vitro assay. Possible modulatory influences might include a compensatory increase in 

TAP38/PPH1 activity, a more highly oxidized PQ pool under illumination (Figure 22 b) or 

enhanced inactivation of STN7 via stromal components in oeSTN7 plants (Rintamaki et al. 2000).  

Based on experiments with HL treated oeSTN7 and WT plants (Figure 16, 17), a 

deactivation of STN7 via the ferredoxin-thioredoxin pathway was suggested to be STN7 dosage 

dependent. Both, the amount of active STN7 kinase and the accumulation of reduced thioredoxin 

in the stroma upon HL exposure, significantly affected the efficiency of STN7 inhibition. The 

increased amounts of activated STN7 in oeSTN7 required stronger light intensities for a 

quantitative deactivation of the same (Figure 16, 17). These results strengthen the hypothesis that 

HL inhibition of STN7 is mediated via a redox-dependent reaction independent of its activation 

via the Cyt b6f complex (Rintamaki et al. 2000). Thus, in contrast to studies of Willig et al. (2011) 

and Lemeille et al. (2009) (Lemeille et al. 2009; Willig et al. 2011), which present equal levels of 

LHCII phosphorylation regardless of the amount of accumulated LHCII kinase, a clear STN7 

abundance effect becomes evident in this study. However, these dosage-effects of STN7 are 

overrided by the redox-dependent adjustment of STN7 activity. 

4.2.3 Why is LHCII phosphorylation in dark-adapted oeSTN7 lines higher than in light-

adapted ones? 

Owing to their increased LHCII phosphorylation and the larger PSI antenna size (Figure 

20), thylakoid electron flow is more efficient in oeSTN7 plants than in either WT or the tap38-1 

mutant, especially at the onset of illumination (Figure 22, 23). Remarkably, in oeSTN7 plants, 

levels of LHCII phosphorylation and PSI-LHCI-pLHCII complex formation reach their maxima 

after incubation in the dark (Figure 16 b, 20 c, d). This raises the question of why STN7 is active 

in the dark. Electron transport processes across the thylakoid membrane, e.g. chlororespiration, 

still occur in the dark (Bondarava et al. 2003; Casano et al. 2000; Pospisil 2011; Rumeau et al. 
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2007; Schwenkert et al. 2006; Shinopoulos and Brudvig 2012). These processes depend on the 

presence of reducing equivalents in the stroma, and lead to light-independent reduction of PQ 

(Rumeau et al. 2007; Shinopoulos and Brudvig 2012) even after complete oxidation of the PQ 

pool by FR treatment. Therefore, the low PQH2/PQ ratio in the dark, which still allows for some 

binding of PQH2 to the Qo site of the Cyt b6f complex, is sufficient to activate STN7 in WT 

plants (Figure 25 a). This is even more true when the kinase is present in high concentrations, as 

given in oeSTN7 plants (Figure 25 a). Among the factors that might account for the enhanced 

LHCII phosphorylation in dark-adapted oeSTN7 plants are the following: an increased amount of 

STN7 leads to (i) a higher reduction rate of PQ, (ii) a lower luminal pH, or (iii) more activated 

STN7 molecules even if the occupancy of the Qo site by PQH2 is not changed compared to WT. 

With regard to the first possibility (i), increased reduction of the PQ pool in the dark (with 

enhanced LHCII phosphorylation) has been achieved by feeding with glucose and NADPH (Hou 

et al. 2003; Rintamaki et al. 2000; Tikkanen et al. 2010) and by application of heat stress 

(Sazanov et al. 1998), suggesting that changing the metabolic state of the chloroplast might allow 

for an altered PQ redox state. Furthermore, the activity of the NDH complex was reported to be 

controlled by reversible phosphorylation of the NDH-F subunit, mediated by a so far unknow 

kinase (Lascano et al. 2003). In this respect, changes in gene expression and thylakoid 

composition due to altered STN7 expression and retrograde signalling (Pesaresi et al. 2009; 

Tikkanen et al. 2006) that could lead to a more reduced PQ pool in the dark were considered. 

However, with the OJIP transient based method to determine the PQ pool redox state in the dark, 

oeSTN7 and WT plants showed no significant differences in the fraction of PQH2 (Figure 21). 

Even though this explanation does not hold for oeSTN7 plants, it is interesting to note that, like 

oeSTN7, a mutant defective in the E subunit of PSI exhibits increased levels of STN7 (Figure 15 

a) and of LHCII phosphorylation (Ihnatowicz et al. 2008) even in the dark (Pesaresi et al. 2002), 

and also shows a marked increase in the reduction state of the PQ pool at least under illumination 

(Varotto et al. 2000). Furthermore, a PSBI knock-out was discussed to disturb the cytochrome 

b559 pathway by preventing the discharging of PQ in the dark (Bondarava et al. 2003; 

Schwenkert et al. 2006). Yet, another explanation could be that the psbi mutant simply 

accumulates more STN7 protein. 

Regarding the second possible factor (ii) mentioned above, a low luminal pH may act to 

stabilize PQH2 in the Qo site, keeping the Cyt b6f complex in an STN7-activating mode in the 

dark, even under conditions where the overall PQ pool is in a relatively more oxidized state 
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(Vener et al. 1997; Zito et al. 1999). In this scenario, the Qo site in oeSTN7 might exhibit a higher 

affinity for the residual PQH2 than in WT, keeping the Cyt b6f complex in a kinase activating 

mode even at a low PQH2/PQ ratio and thereby increasing STN7 activity. Further experiments 

will be needed to clarify whether the luminal pH is actually decreased in oeSTN7 plants and 

whether this contributes to the increase in dark LHCII phosphorylation. In this respect, the 

significantly lower Fm value of dark-adapted oeSTN7 plants relative to Fm2 determined after 

illumination with actinic red light (Figure 19) could be a consequence of NPQ induction in the 

dark due to an increased acidification of the lumen. This correlation between STN7 levels and qE 

is conceivable, since the amount of PSBS, the key enzyme for NPQ (qE) was shown to be altered 

in stn7 mutant plants (Tikkanen et al. 2006). 

Taking the experiments with chemical additives into account, the third possibility (iii) 

seems feasible. In-vitro experiments with duroquinol and dithionite (Figure 25 c, 27) revealed 

that an equal PQH2 reduction by defined amounts of artificial electron donors leads to a 

significantly stronger increase in LHCII phosphorylation in oeSTN7 plants. While the in-vitro 

(Figure 26 b) and in-planta (Figure 25 a) application of DBMIB should equally inhibit the Qo 

sites of the Cyt b6f complex in WT and oeSTN7 plants, LHCII phosphorylation was anyway 

higher in oeSTN7. The same was true for thylakoids of FR-pretreated WT and oeSTN7 plants 

which should both reach a maximal PQH2/PQ ratio upon LL illumination, since stromal electron 

acceptors are missing. However, also here thylakoids of oeSTN7 showed an enhanced de-novo 

LHCII phosphorylation capacity (Figure 26). A straightforward explanation of these findings 

might be the low abundance of the kinase in comparison to Cyt b6f (Gal et al. 1997; Lemeille et 

al. 2009; Wollman 2001). The LHCII Kinase/Cyt b6f ratio was estimated to be around 1:60 (in 

higher plants) (Gal et al. 1997) or 1:20 (in C. reinhardtii) (Lemeille et al. 2009). Thus, an excess 

of STN7 protein compared to WT could lead to a higher occupancy of free STN7-binding sites at 

the Cyt b6f complexes that now contribute to kinase activation in oeSTN7 plants. The Qo site at 

the Cyt b6f complex still seems to be of overriding importance and ultimately decides on the 

activation of STN7 depending on the PQ redox state. The five fold excess of STN7 in oeSTN7 

compared to WT seems to elevate its activation probability, which appears to be high enough to 

outcompete TAP38 activity (Figure 21). The increased STN7 levels also speak in favor of STN7 

dimer formation being potentially required for kinase activation (Figure 29, 30). 

But why is the level of LHCII phosphorylation in oeSTN7 plants decreased in LL compared 

to D (Figure 16 a, 20 c, 25 a) although STN7 protein levels are similar to those found under low 
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light conditions (Figure 18)? An explanation could be seen in the bigger amount of reduced 

stromal components that were shown to inhibit STN7 activity. Upon light exposure state 

transitions seems to be under permanent feedback control by the state of the stromal metabolism. 

Also an enhanced oxidation of the PQ pool under low and moderate illumination (Figure 22 b, d) 

due to an increased formation of PSI-LHCI-pLHCII supercomplexes might account for it. Further 

unknown factors that influence LHCII phosphorylation in the light could be modulated in the 

dark, including TAP38/PPH1 activity, even if the latter was claimed not to be affected by light 

(Elich et al. 1997). The observation that LHCII phosphorylation in the dark seems not to be under 

the same strict regulation as under LL could be an indication for different regulatory mechanisms 

acting on STN7 in land plants and C. reinhardtii. For the latter state transitions play a role in the 

switch between LEF and CEF (Finazzi et al. 1999). Here, the stt7 mutant only shows a phenotype 

in combination with defects in respiration, suggesting a crucial role for state transitions in the 

regulation of the ATP status (Cardol et al. 2009; Fleischmann et al. 1999).   

4.2.4  What is the physiological significance of STN7 dimerization? 

Redox active chemicals like NEM and DTT disturbing any free thiol interaction such as 

cysteine-mediated dimerization prevented STN7 activity (Figure 26 c). An involvement of a 

dimeric state of STT7 in its own regulation in C. reinhardtii was previously mentioned (Lemeille 

and Rochaix 2010). However, in A. thaliana the STN7 dimer in WT plants is very elusive 

regarding its detection by Western blot. Possibly, the dimeric form of STN7 accumulates to a 

substantial amount in planta but gets lost during purification and electrophoresis due to its weak 

stability. Alternatively, the dimer conformation is a transient, short lived state of STN7. In 

oeSTN7 plants, and lines expressing single Cys-Ser exchanges in STN7, dimers are 

unambiguously detectable. When the total level of STN7 changes with variant light conditions, 

the ratio of monomer to dimer forms remains essentially unchanged (Figure 29 c, 30 c). 

Moreover, like for STT7, (Lemeille et al. 2009) replacement of single N-terminal cysteines of 

STN7 virtually abolished kinase activity, and lines expressing STN7C→S:65+70 accumulated only 

STN7 monomers but had equally diminished kinase activity (Figure 28, 30 a, b). Thus, neither 

the dimer nor monomer can be referred to as the active form.  Possibly, under normal conditions 

the two Cys residues might predominantly form an intramolecular disulfide bridge and if one Cys 

residue is removed by mutation, an intermolecular bond is enforced and the STN7 dimer is 

formed. However, also in WT the N-terminal Cys residues of STN7 seem to be directly involved 
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in the formation of redox-sensitive disulfide bridges between two STN7 molecules (Figure 29 a, 

e, 30 a), which might be a prerequisite for its activity, assuming that the Cys residues are not 

essential for the activity of the kinase domain per se. Possibly STN7 dimers normally have a short 

life time, as suggested by the problems to detect them in WT plants. In fact, the transition from 

monomer to dimer and vice versa might represent the hub at which the redox state of PQ pool and 

the total amount of STN7 proteins exert their effects on STN7 activation and activity. Thus, the 

increased STN7 amounts in oeSTN7 might shift the equilibrium between monomers and dimers, 

thereby resulting in the unusually high kinase activity in the dark. It was assumed that an 

interaction of STT7 in C. reinhardtii with the Rieske protein of the Cyt b6f complex is essential 

for kinase activation and involves its N-terminal cysteines (Lemeille et al. 2009). Coming back to 

the kinase activation model via the Cyt b6f complex dipicted in Figure 4 (Finazzi et al. 2001), it 

is tempting to speculate that STN7 is activated as a dimer that then monomerizes upon release 

from the Cyt b6f complex. In this respect, mutation of both N-terminal cysteines would in the first 

place prevent the interaction with the Rieske protein, which is necessary for activating the kinase. 

On the contrary, the stable dimers in the single cystein exchange mutants might get stuck at the 

kinase binding sites of the Cyt b6f complex. The potential interaction of STN7 with an unknown 

protein around the size of the Rieske protein, which was particularly visible in STN7 single 

cystein mutants, supports this idea (Figure 32). 

4.2.5 Is STN7 regulated by thioredoxins? 

The inhibition of STN7 in land plants via the stromal ferredoxin-thioredoxin pathway is 

generally accepted. However, the precise inactivation-site is still subject to speculation. 

Thioredoxins could either directly target the stromal cysteines (Cys 187 and Cys 191) in the ATP 

binding pocket (Puthiyaveetil 2011) (Figure 3) or the redox signal is transferred to the lumen by 

the putative Ccda/Hcf164 pathway addressing the lumen located cysteines Cys 65 and Cys 70 

(Lemeille and Rochaix 2010). So far, physical interaction between STN7 and thioredoxins was 

not experimentally shown. In this study indication for an interaction of STN7 with recombinant 

mutated thioredoxin-f (recΔTRX-f) was presented, independently from the presence of cysteines 

Cys 65 and Cys 70 in the STN7 molecule (Figure 34). This observation supports the idea of a 

STN7 kinase that is targeted at the stromal side by thioredoxins. Further experiments are required 

to obtain a better idea about the involved processes. In this respect the generation of a transgenic 

line expressing STN7 without the stromal CxxxC motif represents the next logical step. It would 
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be interesting to see whether the mutated STN7 variant is less susceptible to HL inhibition. The 

fact that this stromal cysteine motif is not conserved in STT7, and so far no HL-induced inhibition 

was shown for C. reinhardtii (Puthiyaveetil 2011), speaks in favor of this scenario. Surprisingly, 

even though a decrease in STT7 levels was observed upon HL treatment by Lemeille et al. (2009) 

(Lemeille et al. 2009), the same study did not provide any evidence for its HL deactivation but 

refers to older studies about land plants (Rintamaki et al. 2000). Further indirect evidence for the 

formation of an additional cysteine bridge is provided by the redox titration experiment performed 

with both WT and STN7C→S:65+70 thylakoids. DTT reduction of STN7 resulted in a second STN7 

monomer signal on SDS-PA gels, even when the N-terminal cysteine motif was removed (Figure 

33). This suggests the presence of another redox sensitive motif beside the established N-terminal 

one, which could be regulated by thioredoxins. Usually cleavage of a disulfide bond results in a 

slower migration of the reduced protein inside the gel. The fact, that the observed reduced STN7 

signal is rather down- and not up-shifted is uncommon and might be ascribed to the release of a 

yet unknown STN7-bound cofactor.  

4.3 Which physiological effects do variable STN8 protein levels bring about? 

4.3.1 STN8 activity is not regulated via modulation of STN8 protein levels  

STN8 kinase activity was shown to be light-dependent since phosphorylation of Thr-4 of 

PSBH occurs only under illumination (Vener et al. 2001). Even if STN8 activity and as a 

consequence also PSII core phosphorylation is persistent in the dark, it becomes significantly 

increased upon HL treatment (Bonardi et al. 2005; Tikkanen et al. 2010; Vainonen et al. 2005). 

The conserved STN7 cysteine motives that are thought to be involved in thioredoxin-mediated 

down-regulation of STN7 protein levels under HL (Lemeille et al. 2009; Puthiyaveetil 2011; 

Rintamaki et al. 2000) are absent in STN8. Only one of the stromal CxxxC motif cysteines (Cys 

191) is actually conserved in the C. reinhardtii homolog STL1. Thus, in contrast to STN7 which 

is deactivated under HL, STN8 activity is retained or even increased under these lighting 

conditions (Bonardi et al. 2005; Tikkanen et al. 2008a). It is assumed, that similar to STN7, the 

redox state of the PQ pool promotes STN8 activity. However, compared to STN7, the signal 

sensing and regulation of STN8 activity is completely unknown. Since STN8 does not contain any 

obvious redox-sensitive cysteine motives that would allow for a redox-dependent control of its 

activity (Depege et al. 2003), a regulation on the level of protein amounts seemed plausible. 

However, in contrast to STN7 the protein levels of STN8 are not susceptible to light treatments. 
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STN8 protein accumulation was neither changed by light conditions promoting its activity (e.g. 

HL) nor by light conditions leading to STN8 inactivation (e.g. FR) (Figure 35). A further 

possibility to regulate STN8 activity would be via reversible phosphorylation. STL1, the putative 

STN8 homolog in C. reinhardtii was shown to be phosphorylated under state 2 conditions in a 

STT7-dependent manner (Lemeille et al. 2010). However, no significant size-shift of STN8 due to 

changes in its phosphorylation state could be observed on Western blot under any of the 

investigated conditions.  

4.3.2 STN8 protein levels affect PSII core phosphorylation, supercomplex formation and 

thylakoid ultrastructure 

The elevated amounts of STN8 kinase in oeSTN8 result in a significantly increased 

phosphorylation of CP43, D1 and D2 under all applied light conditions (Figure 36 a). Similar to 

oeSTN7 the phosphorylation pattern of WT and oeSTN8 is most equal under LL, suggesting that 

under these conditions a well-balanced phosphorylation of thylakoid proteins is crucial for an 

efficient electron flow through the photosynthetic complexes. The clear decrease in 

phosphorylation under FR illustrates that STN8 activity correlates with the PQ redox state even 

when STN8 is present in excess amounts (Figure 36 a). This dephosphorylation of PSII core 

proteins was suggested to be relevant for the formation of the most efficient form of PSII, the PSII 

supercomplexes (Tikkanen and Aro 2012; Tikkanen et al. 2008a), which as a consequence would 

be strongly promoted under PSI light. In contrast, this effect would be harmful under HL 

intensities when the organism pursues a down-regulation of both photosystems. Thus, under HL 

conditions dephosphorylated LHCII preferentially participates in heat dissipation instead of 

binding to the photosystems and the number of PSII supercomplexes was reported to become 

decreased (Tikkanen et al. 2010; Tikkanen et al. 2008a). These mechanisms play an important 

role in the protection of the photosynthetic machinery from photodamage under HL and are 

accompanied by an increase of PSII core protein phosphorylation, which in turn is supposed to 

facilitate PSII repair (Baena-Gonzalez et al. 1999). However, for stn8 and stn7 stn8 mutants, 

reports of a defect or delay in D1 turnover were contradictory (Bonardi et al. 2005; Fristedt et al. 

2009; Tikkanen et al. 2008a). Here, the question arises whether the higher maximum PSII core 

phosphorylation in oeSTN8 plants (Figure 36 a) could increase the resistance to photoinhibition 

under high light intensities. Indeed, oeSTN8 maintained a slightly higher PSII efficiency after 

long-term exposure to fluctuating HL (Figure 37). This implies that the increased PSII 
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phosphorylation under HL allows for a faster D1 turnover and therewith functional PSII 

complexes. These observations can be explained by two current theories, based either on (i) 

modulation of thylakoid membrane stacking (Fristedt et al. 2009) or (ii) supercomplex formation 

(Tikkanen et al. 2008a). 

(i) The slightly higher resistance of oeSTN8 to photoinhibition could be ascribed to a partial 

destacking of the thylakoid grana due to an increase in negative phosphate groups, which lead to a 

charge-dependent repulsion of the thylakoid membranes. As a consequence, lateral movement of 

damaged and repaired PSII cores and of the involved proteases is facilitated like proposed by 

Fristedt et al. (2009). In fact, compared to WT, slight changes in macroscopic thylakoid 

membrane folding could be observed in oeSTN8 under low light intensities (Figure 38), where 

differences in PSII phosphorylation between oeSTN8 and WT are only marginal (Figure 36 a). 

However, both height and length of the grana stacks was slightly increased (Figure 38), which 

would not favor a faster movement of membrane proteins between grana and stroma thylakoids 

(Fristedt et al. 2009). Interestingly, Fristedt et al. (2009) as well observed a slight increase in 

grana stacking for WT plants exposed to HL compared to LL by TEM analyses. The HL-induced 

PSII phosphorylation might just coincide with grana stacking while actually other HL-induced 

processes are decisive for increased grana stacking that do not require STN8-dependent protein 

phosphorylation. However, the fact that increased PSII core protein phosphorylation in oeSTN8 

already increases grana stacking in the absence of HL (Figure 38) provides evidence that elevated 

PSII phosphorylation mediated by STN8 is indeed responsible for the observed changes in 

thylakoid folding. Recently, Herbstova et al. (2012) could observe a lateral shrinkage of grana 

length and an increased protein mobility in grana stacks in HL treated plants by performing 

confocal laser scanning microscopy (CLSM) and diffusion measurements by the FRAP 

(fluorescence recovery after photobleaching) technique, respectively. These changes in the 

thylakoid network would both be advantageously for the repair of damaged PSII (Herbstova et al. 

2012). Comparative TEM, CLSM and FRAP analyses of D and HL exposed WT and oeSTN8 

plants would help to clarify theses partly conflicting results by making use of the strongly 

enhanced phosphorylation phenotype of oeSTN8 under those light conditions (Figure 36 a). 

Furthermore, an increase in grana stack length in STN8-deficient lines, as detected by Fristedt et 

al. (2009), could be confirmed (Figure 38) (Fristedt et al. 2009). Interestingly, in addition to the 

latter study, also a decrease of the grana stack height was observed. However, for none of the 
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STN8 knock-out mutants (neither stn8 nor stn7 stn8) significant differences in photoinhibition 

compared to wild type could be detected within this study (Figure 37).  

Ultimately, it remains unclear whether STN8-dependent phosphorylation directly affects 

membrane stacking or whether it changes the abundance or functionality of so far unknown 

proteins responsible for thylakoid folding.  

 (ii) Tikkanen et al. (2008a) also observed a delayed D1 degradation in STN8 knock-out 

mutants, which in turn was explained by a retarded disassembly of PSII supercomplexes under 

HL (Tikkanen et al. 2008a). As a consequence, the migration of damaged PSII cores from grana 

to stroma lamellae would be hindered by a lack of PSII core phosphorylation. These differences in 

the ratio between PSII complexes and PSII monomers could not be detected by Fristedt et al. 

(2009) after 3 h of HL treatment. Furthermore, in the absence of lincomycin, differences in the 

PSII monomer/dimer ratio became only evident after prolonged HL-treatment (Tikkanen et al. 

2008a). Interestingly, in this study the direct comparison of supercomplex formation in WT, 

oeSTN8 and stn8-1 revealed an obvious discrepancy between the genotypes already under D and 

LL conditions (Figure 36 b). The high levels of STN8 in oeSTN8 slightly promoted the 

disassembly of PSII complexes, whereas stn8-1 clearly accumulated PSII supercomplexes. Thus, 

prolonged HL treatment or lincomycin infiltration combined with HL seems not to be a 

prerequisite for retarded supercomplex disassembly in stn8-1 plants as claimed by Tikkanen et al. 

(2008a). However, this phenotype was enhanced under HL (Figure 36 b). These observations are 

not sufficient to explain the altered resistance to photoinhibition observed for oeSTN8 but not for 

stn8-1 (Figure 37) as both genotypes exhibit aberrant supercomplex formation. Whether the 

differences in supercomplex formation are a secondary effect due to the modulation of 

macroscopic thylakoid membrane folding remains to be elucidated. Mutant lines with aberrant 

thylakoid ultrastructure but WT-like PSII protein phosphorylation could help to answer this 

question. 

 

4.3.3 STN8 protein levels and PSII core phosphorylation have minor effects on 

photosynthetic performance 

The aberrant phosphorylation of PSII core proteins in oeSTN8 and stn8-1 plants only results 

in minor effects on photosynthetic performance as shown in Figure 39 and 40. A slightly more 

oxidized PQ pool at the beginning of illumination tends to result in higher efficiency of PSII 
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(Figure 39 a, b). This significant difference could be due to the higher PSII core pre-

phosphorylation of oeSTN8 in the dark (Figure 36 a) as it disappears after some minutes of light 

exposure (Figure 39 a, b), like differences in PSII phosphorylation between WT and oeSTN8 are 

as well diminished in the LL (Figure 36 a) (Tikkanen and Aro 2012; Tikkanen et al. 2010). 

Possibly, the enhanced core protein phosphorylation slightly decreases PQ reduction by 

destabilizing PSII supercomplexes (Figure 36 b) (Tikkanen and Aro 2012; Tikkanen et al. 2010). 

An alternative explanation could be that not PSII core protein phosphorylation leads to minor 

changes in photosynthetic performance but the previously reported substrate overlap between 

STN8 and STN7. STN8 seems to support STN7 in LHCII phosphorylation shifting the PAM 

phenotype into the direction of oeSTN7 lines, which possess a more oxidized PQ pool (Figure 22 

b). This as a consequence could lower the reduction pressure of the PQ pool (Figure 39 b). In 

summary, differences in PSII core phosphorylation do not result in significant changes of 

photosynthesis besides affecting its fine tuning. 

4.4 An overlap in substrate specificity of STN7 and STN8 does not correlate with a 

mutual influence on each other’s protein levels 

It was shown that the STN8 homolog named STL1 in C. reinhardtii becomes STT7-

dependently phosphorylated (Lemeille et al. 2010), which supports the idea that STN7 and STN8 

might be part of a kinase cascade (Lemeille and Rochaix 2010). At least a partial substrate overlap 

between the two kinases was demonstrated (Bonardi et al. 2005; Tikkanen et al. 2010; Tikkanen 

et al. 2008a). Even the activity of the LHCII phosphatase TAP38/PPH1 comprises STN8 

substrates (Pribil et al. 2010; Vainonen et al. 2008) while PBCP overexpression affects state 

transitions (Samol et al. 2012). However, despite this complex interplay the knock-out or 

overexpression of one kinase seems not to obviously affect the activity or protein levels of the 

other one (Figure 41 a, b).  
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