
Aus der Medizinischen Klinik und Poliklinik der Ludwig-Maximilian-Universität München 

Direktor: Prof. Dr. med. J. Behr 

Sektion Pneumologie Innenstadt und Thorakale Onkologie 

Leiter: Prof. Dr. Rudolf M. Huber 

 

 

 

 

 

 

 

Schedule-dependent Interactions between Pemetrexed and 

Vinorelbine in Human Lung Cancer Cells 

 
 

 

 

 

Dissertation 

zum Erwerb des Doktorgrades der Medizin 

an der Medizinischen Fakultät der 

Ludwig-Maximilian-Universität zu München 

 

 

 

by 

Zhe Wang 

from Heilongjiang, Harbin, China 

2014 

 

 



 2 

 
 
 
 
 
 
 
 
 

With approval of the Medical Faculty 

University of Munich 

 

 

 

 

 

 

 

Berichterstatter:           Prof. Dr. med. Rudolf M. Huber    

 

Mitberichterstatter:  Prof. Dr. Christoph Salat 

Prof. Dr. Volker Heinemann 

Prof. Dr. Fuat Oduncu 

Prof. Dr. Oliver Eickelberg 

 

Dekan:         Prof. Dr. med. Dr. h.c. Maximilian Reiser, FACR, FRCR 

 

Tag der mündlichen Prüfung:           10. 04. 2014 

 

 

 

 



 3 

Abstrakt -Zusammenfasung  
 

Von den durch Krebs verursachten Todesfällen weltweit entfallen die meisten auf 

Lungenkrebs. Trotz Fortschritten und Weiterentwicklungen in der Chirurgie, der 

Chemotherapie und der Radiotherapie über die letzten Jahrzehnte hinweg blieb die Todesrate 

von Lungenkrebs weitgehend unverändert, was hauptsächlich auf die Metastasenbildung der 

Krankheit und Mehrfachresistenzen zurückzuführen ist. Aufgrund der allgemein schlechten 

Prognose werden neue Behandlungsstrategien für Lungenkrebspatienten dringend benötigt. 

 

Das Ziel dieser Studie war es, Interaktionen zwischen Pemetrexed und Vinorelbin für 

menschliche Adenokarzinome mittels verschiedener Chemotherapieschemata zu untersuchen. 

Vinorelbin und Pemetrexed verursachten einen starken dosisabhängigen zytotoxischen Effekt 

sowohl bei HCC als auch bei HCC-res Zellen. Die IC50-Werte von Vin gegenüber HCC bzw. 

HCC-res Zellen betrugen 10.341.12 nM bzw. 9.982.12 nM. Die IC50-Werte von Pem 

gegenüber diesen Zellen betrugen 110.7717.28 nM bzw. 118.8918.77 nM. 

 

Die Anwendung verschiedener Therapieschemata induzierte eine signifikante, zeitabhängige 

Hemmung des Zellwachstums bei unbehandelten HCC und cisplatin-resistenten HCC Zellen. 

Das Therapieschema von Cisplatin→Pemetrexed→Vinorelbin zeigte den stärksten 

inhibitorischen Effekt sowohl bei HCC als auch bei HCC-res Zellen. 

 

Die Anwendung verschiedener Therapieschemata bei HCC und HCC-res Zellen erhöhte den 

Anteil von Apoptose betroffener Zellen, ausgenommen die alleinige Anwendung von 

Vinorelbin. Sowohl bei HCC als auch bei HCC-res Zellen stellte sich 

Cisplatin→Pemetrexed→Vinorelbin als effektivste Kombination zur Herbeiführung der 

Apoptose heraus. 

 

Die Anwendung verschiedener Therapieschemata bei HCC und HCC-res Zellen erhöhte die 

Konzentration von Calcium. Nur die alleinige Anwendung von Vin führte nicht zu einer 

Erhöhung der Calcium Konzentration in HCC Zellen. Der höchste Anstieg von der Calcium 

Konzentration wurde in den mit Cisplatin→Pemetrexed→Vinorelbin behandelten HCC sowie 

auch HCC-res Zellen nachgewiesen. 
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Wir zeigten, dass die sequenzielle Anwendung von Cisplatin, Vinorelbin und Pemetrexed 

einen synergetischen Effekt bei der Hemmung des Zellwachstums, der Herbeiführung von 

Apoptose sowie der  Erhöhung von der Calcium Konzentration gleichwohl in HCC und HCC-

res Zellen ausübt. Die Überfrachtung mit Calcium könnte zur Apoptose führen, was mit dem 

Inhibitionseffekt auf das Zellwachstum von Chemotherapeutika bei Lungenkrebszellen in 

Zusammenhang steht. Es liefert möglicherweise einen Beitrag zur Entwicklung 

chemotherapeutischer Ablaufpläne für Patienten und zur Überwindung von Cisplatin-

Resistenz bei Lungenkrebs. 
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Abstract - Summary 
 

Lung cancer is the leading cause of cancer deaths worldwide. Despite advances and 

progresses in surgery, chemotherapy, and radiotherapy over the last decades, the death rate 

from lung cancer has remained largely unchanged, which is mainly due to metastatic disease 

and multi drug resistance. Because of the overall poor prognosis, new treatment strategies for 

lung cancer patients are urgently needed. The aim of this study was to investigate the 

interactions between pemetrexed and vinorelbine for human adenocarcinoma via various 

chemotherapy schedules. 

 

Vinorelbine and pemetrexed caused a strong dose-dependent cytotoxic effect in both HCC 

and cisplatin resistant HCC (HCC-res) cells. The IC50 values of vinorelbine against HCC and 

HCC-res cells were 10.34±1.12 nM and 9.98±2.12 nM, respectively. The IC50 values of 

Pemetrexed against these cells were 110.77±17.28 nM and 118.89±18.77 nM respectively. 

The application of different therapy schedules induced a significant time dependent cell 

growth inhibition on HCC naïve and cisplatin resistant cells. The therapy scheme of 

cisplatin→pemetrexed→vinorelbine showed the strongest inhibitory effect on both HCC and 

HCC-res cells. 

 

The application of different therapy schedules on HCC and HCC-res cells increased the 

percentage of cells undergoing apoptosis, except the application of vinorelbine alone. In both 

HCC and HCC-res cells, cisplatin→pemetrexed→vinorelbine was found the most effective to 

induce apoptosis. 

 

The application of different therapy schedules on HCC and HCC-res cells increased 

cytoplasma calcium concentration. Only the application of vinorelbine alone failed to increase 

calcium concentration in HCC cells. The most elevated calcium concentration was found in 

the cells treated with cisplatin→pemetrexed→vinorelbine in both HCC and HCC-res cells 

As a conclusion, the sequential application of cisplatin, vinorelbine and pemetrexed has a 

synergistic effect in cell growth inhibition, apoptosis induction, and calcium concentration 

elevation in HCC and HCC-res cells. The calcium overload could lead to apoptosis, which 

was related to the cell growth inhibitory effect of chemotherapeutics in lung cancer cells. It 

might cast a light to develop chemotherapy schedules for patients, and to overcome cisplatin 

resistance in lung cancer. 
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1 INTRODUCTION 
 

1.1 Lung cancer and lung cancer therapy 
 

Lung cancer is the leading cause of cancer deaths worldwide. The two major forms of lung 

cancer are non–small cell lung cancer (NSCLC, about 85% of all lung cancers) and small-cell 

lung cancer (SCLC, about 15%) [1]. Lung cancer causes more deaths than the next three most 

common cancers combined (colon, breast and prostate), accounting for approximately 28% of 

all cancer deaths [2]. The lung cancer five-year survival rate (16.3%) is lower than many other 

leading cancer sites, such as the colon (65.2%), breast (90.0%) and prostate (99.9%), which 

accounts 52.6% for cases detected when the disease is still localized however only 15% of 

lung cancer cases are diagnosed at an early stage [3]. For distant tumors the five-year survival 

rate is only 3.5% and over half of people with lung cancer die within one year of being 

diagnosed [4]. 

Overall, women have an improved outcome compared with men across all ages and 

irrespective of histological subtype. A decrease in the age-adjusted lung cancer-related 

mortality in males has been observed since the 1990s. In females, the rate has reached a 

plateau after a long period of increase between the mid-1960s and 1995 [5]. Whether women 

are more vulnerable to tobacco carcinogens remains controversial. Women smokers are more 

likely than men to develop lung adenocarcinomas, and women who have never smoked are 

more likely to develop lung cancer than men who have never smoked. This difference has 

been attributed to estrogen signaling [6].  

The treatment and prevention of lung cancer are major unmet needs that can be improved by 

further investigation of more effective therapeutic plan with a better understanding of the 

molecular origins and evolution of the disease. 

Despite advances in early detection and standard treatment, NSCLC is often diagnosed at an 

advanced stage with a result in a poor prognosis [7]. Histologically NSCLC can be divided 

into three major subtypes: squamous-cell carcinoma, adenocarcinoma, and large-cell lung 

cancer. Smoking is related to all types of lung cancer but is most strongly linked with SCLC 

and squamous-cell carcinoma; adenocarcinoma is the most common type in patients with no 

smoking history [8]. Small cell lung carcinoma (SCLC) is an aggressive form of lung cancer 



 9 

that is strongly associated with cigarette smoking and has a tendency for early dissemination 

[9]. 

Environmental factors, such as tobacco smoke, and genetic susceptibility interact to influence 

carcinogenesis, as well as other factors including genetic, hormonal, and viral factors. 

Occupational or environmental exposure to second-hand smoke, radon, asbestosis, and 

radiation represent other risk factors [10]. Tissue injury initially occurs in the form of genetic 

and epigenetic changes (e.g. mutations, loss of heterozygosity, and promoter methylation) and 

global transcriptome changes (e.g., inflammation and apoptosis pathways). These changes can 

persist long term and eventually lead to aberrant pathway activation and cellular function, 

such as dysregulated proliferation and apoptosis, to produce premalignant changes, including 

dysplasia and clonal patches. The changes can result in angiogenesis, invasion and early-stage 

cancer, and advanced cancer and metastasis [11].  

Progresses have been made for defining cancer risk, prognosis, and optimal therapy aimed at 

personalized prevention and treatment of lung cancer with the development of molecular 

techniques and biomarkers [12]. Lung cancer is initiated by activation of oncogenes or 

inactivation of tumor suppressor genes. Mutations in the K-ras proto-oncogene are present in 

10–30% of lung adenocarcinomas [13]. The epidermal growth factor receptor (EGFR) 

regulates cell proliferation, apoptosis, angiogenesis, and tumor invasion. Mutations and 

amplification of EGFR are common in NSCLC and provide the basis for treatment with 

EGFR-inhibitors [10]. A variant in the nicotinic acetylcholine receptor was found to be 

associated with nicotine dependence. Other candidates include 5p15.33, 15q25.1, and 6p21.33. 

Spitz et al. identified an association between an intronic SNP in the ACVR1B gene and 

cancer susceptibility in never smokers exposed to second-hand smoke by using a pathway-

based approach and focusing on single-nucleotide polymorphisms (SNP) in inflammatory-

pathway genes [14]. The p53 tumor suppressor gene, located on chromosome 17p, is affected 

in 60-75% of cases. Other genes that are often mutated or amplified are c-MET, NKX2-1, 

LKB1, PIK3CA, and BRAF [15]. There are multiple genetic and epigenetic changes in lung 

cancer, but in some types a specific driving genetic change is found like an activating EGFR 

mutation or and EML4-ALK overexpression. 

Risk models as well as other risk factors could eventually allow the identification of high-risk 

populations that might be good candidates for screening programs. Several randomized 

controlled studies have investigated the relationship between tobacco smoking as a major risk 



 10 

factor and the impact of chest x-ray screening [16]. None of them has shown a reduction in 

lung cancer mortality, although it allows detection of early stage and asymptomatic lung 

cancers. Oken et. al. has recently reported that annual screening with chest X-ray was not 

found to be able to reduce lung cancer mortality as compared with usual care[17]. CT-scan, as 

significantly more sensitive tool than chest X-ray for identifying small and asymptomatic lung 

cancers, was evaluated in The National Lung Screening Trial (NLST). A low dose CT-scan in 

high risk individuals (current smokers with cigarette smoking history of more than 30 pack-

years, and former smokers who quit within the previous 15 years) was carried out. 

Participants who received low-dose CT scans had a 20% lower risk of dying from lung cancer 

than participants who received standard chest X-rays [18]. Several other studies are ongoing 

to validate the clinical benefit of this observation, but many questions remain to be solved in 

terms of frequency, duration, and cost-effectiveness of CT-scan before that evidence 

translates into policy and practice. Rapid progress and availability of whole genome 

sequencing, genome-wide analysis approaches may also uncover more targetable lesions in 

lung cancer, such as the K-Ras proto-oncogene [19]. 

Despite advances and progresses in surgery, chemotherapy, and radiotherapy over the last 

decades, the death rate from lung cancer has remained largely unchanged, which is mainly 

due to metastatic disease. Because of the overall poor prognosis, new treatment strategies for 

lung cancer patients are urgently needed. 

 

1.1.1 Non-small cell lung cancer 
 

NSCLC includes squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. 

NSCLC are frequently resistant to drug therapy and obtaining a complete response is rare. 

Therefore, the drug resistance in patients receiving chemotherapy alone or when combined 

with radiotherapy represents a major problem in cancer treatment of patients with NSCLC [7]. 

While there are several therapeutic options for the management of NSCLC, the disease is 

often not diagnosed until the advanced stage at which point therapy is not curative but to 

extend and improve quality of life (QOL) [20]. In 70% of the cases, patients are diagnosed 

with stage IV amenable only to systemic therapy. Combination chemotherapy is the current 

standard of care for patients with advanced NSCLC. NICE guideline recommended two-drug 

combination chemotherapy with a single third generation drug, such as pemetrexed, docetaxel, 
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gemcitabine, paclitaxel or vinorelbine, plus a platinum (carboplatin or cisplatin) for patients 

with preserved function status; single-agent therapy with a third generation drug should be 

given to the patients unable to tolerant a platinum-based combination [21]. Cisplatin is 

associated with slightly improved response rates, with no overall improvement of survival, 

and a different toxicity profile compared with carboplatin. In two meta analyses cisplatin was 

superior in overall survival in patients with non-squamous histology [22].As a major progress 

in recent years, Bevacizumab, a VEGF monoclonal antibody, has been approved in 

combination with carboplatin and paclitaxel in patients with non-squamous cell carcinoma 

and good performance status, negative for brain metastasis, and without hemoptysis or 

therapeutic anticoagulation [23]. In the FLEX study, cetuximab, an EGFR monoclonal 

antibody, has shown to improve survival in combination with cisplatin and vinorelbine in 

patients positive for EGFR expression identified via immunohistochemistry [10]. High EGFR 

expression has been recently reported as a predictive biomarker of survival benefit from the 

addition of cetuximab in K-Ras mutation in colon cancer [24].  

There is growing evidence indicating that accessory cells, also referred as stromal cells, play 

an essential role in disease progression in various cancers, including lung cancer. Regulated 

migration and homing of stem cells to tissue niches is a critical step during embryonic 

development or tissue repair, but also in cancer (stem-) cell dissemination [25]. A complex 

network of growth factors, cytokines, and chemokines is employed by the tumor cells in order 

to organize the microenvironment. Key players in tumor-microenvironment cross talk are 

mesenchymal stromal cells (MSC), monocyte/macrophage lineage cells, and T lymphocytes, 

along with extracellular matrix and blood vessels. Navab et al. demonstrated that carcinoma-

associated fibroblasts (CAFs) display a greater ability than normal fibroblasts to enhance the 

tumorigenicity in NSCLC [26]. 46 genes were identified overexpressed in CAFs via gene 

profiling, encoding for proteins that are involved in TGF-β signaling, focal adhesion, and the 

MAPK signaling pathway. Cells of monocytes/macrophage lineage are another highly 

important cell type in the tumor microenvironment. Tumor-associated macrophages (TAM) 

support lung cancer progression by inducing cancer cell motility and metastasis, and 

angiogenesis [27]. Among many factors released by TAM, CXCL12 is a prominent mediator 

accounting for TAM accumulation. An animal model recently highlighted the importance of 

peroxisome proliferator-activated receptor-γ (PPARγ) in TAM for promoting NSCLC 

progression and metastasis. Increased numbers of regulatory T cells (Treg) in the tumor 

microenvironment are thought to suppress immune recognition and immune response to the 
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neoplastic cells, thereby promoting tumor progression. NSCLC infiltration by Tregs was 

associated with earlier relapses, especially in patients with node-negative NSCLC [28]. 

 

1.1.2 Small cell lung cancer 
 

SCLC is an aggressive form of lung cancer that is strongly associated with cigarette smoking 

and has a tendency for early dissemination. Although most of the patients respond to 

chemotherapy, motility rate is still 95% of the patients [9]. SCLC accounts 14% of newly 

diagnosed lung cancer cases. The vast majority, more than 95%, of SCLC patients have 

smoking history [29].  

The specific sequence of genetic alteration of SCLC tumorigenesis remains unclear, however 

the genetic and molecular changes have been found to be related to SCLC: 1) Autocrine 

growth loops. Autocrine of gastrin-releasing peptide, neuromedin B, tyrosine kinase receptor 

c-kit have been found to be related to SCLC tumorigenesis. 2) Proto-oncogenes. The 

overexpression of MYC proteins in SCLC lead to more rapid proliferation and loss of 

terminal differentiation. 3) Tumor-suppressor genes. The loss of alleles from the short arm of 

chromosome 3 is the most common deletion of tumor DNA in SCLC, including genes as 

FHIT, RASSFIA, TP53, RB1 and PTEN [8].  

Patients with SCLC typically present with disseminated diseases. Symptoms include local 

ones such as cough, dyspnoea, chest pain, haemoptysis, and hoarseness, and distant ones such 

as weight loss, weakness, anorexia, paraneoplastic symptoms, and fever. SCLC tends to be 

centrally located with hilar masses and hilar and mediastinal adenopathy. Diagnosis is 

typically made by histological analysis of a bronchoscopic biopsy or percutaneous or 

transbronchial aspiration samples [29].  

Combination chemotherapy remains the major treatment for SCLC. The administration of 

four to six cycles etoposide and cisplatin plus chest radiotherapy for patients with good 

performance status and limited stage disease produces a complete-response rate of 80% or 

even higher, median survival excess of 17 months, and 5-year tumor-free of 12-25% [30]. 

Combination chemotherapy remains the focus of treatment for patients with extensive-stage 

diseases, which leads to a complete-response rate of about 20% and median survival of about 

7 months. Changes in combination of chemotherapy medications and schedule of 
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chemotherapy cycle have been investigated. Some trials have shown slight survival benefits 

favoring the regimens with three or four drugs but at the cost of greater toxicity.  The use of 

weekly chemotherapy resulted in greater toxicity with no survival advantage. And neither 

shortened interval between cycles nor maintenance therapy was found to provide consistent 

benefit for the patients treated [9].  

Most patients with small-cell lung cancer relapse within a year of starting treatment. The 

likelihood of response to subsequent therapy can be predicted on the basis of the response to 

previous therapy and the duration of drug-free interval. Patients who did not respond to 

previous therapy or who relapsed within 3 months of completing therapy are judged refractory, 

whereas those who had responded to previous treatment and relapsed 3 months or longer after 

completing such treatment are deemed sensitive. 

 

1.2 Multi-drug resistance  
 

Multidrug resistance (MDR) is defined as a protection of the cells against numerous drugs, 

with different chemical structures and by different intracellular functional mechanisms, like 

Anthracyclines (doxorubicin, daunorubicin, et al.), Epipodophyllotoxins (etoposide, 

teniposide, et al.), Vinca alkaloids (vincristine, vinblastine, et al.), Taxanes (paclitaxel, 

docetaxel, et al.), Kinase inhibitors (imatinib, flavopyridol, et al.) and other preparation 

classes. MDR turns into an extraordinary limitation to cancer chemotherapy. There are 

different mechanisms involved in MDR, including:  

Abnormal expression of membrane protein drug pumps. The ABC transporters ABCB1, 

ABCC1, ABCC2, ABCC3, ABCC4, ABCC5 and ABCG2 have been discovered to be 

implicated in MDR. So far ABCB1 (also known as Pgp) has been found to transport the 

largest number of drugs. The same drug can be a substrate of different ABC transporters 

while ABC transporters have distinct substrate specificities [31, 32].  

Abnormality of intracellular enzyme systems. DNA topoisomerase (Top) is a ribozyme for 

DNA replication and transcription. Down-regulation of Top expression and change in the type 

of expression are important reasons for SCLC resistance to Top inhibitors.  
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Abnormality of cell apoptosis. Apoptosis escape in tumor cells starts from the activation of 

anti-apoptotic pathways via extracellular signals; insensitization of the endogenous cell death 

machinery via resisting apoptotic protein “addiction”; and loss of apoptosis-promoting tumor 

suppressor genes via accumulated mutations. Integrinsplay an important role in inducing cell 

apoptosis and blocking metastasis. In cell adhesion mediated drug resistance, extracelluar 

matrix (ECM) protein can resist apoptotic signals induced by cytotoxic drugs. In more than 

80% SCLC cases, a loss of p53 activity has been found.  

Enhancement of cell repair systems. Studies in recent years show that DNA mismatch repair 

(MMR) plays a very important role in the progression of SCLC chemoresistance. Down-

regulation of MMR gene MLH1 and MSH2 may be associated with the occurrence and MDR 

of lung cancer. There may be a link to silencing of MMR genes induced by acetylation and 

phosphorylation of histones and hypermethylation of promoters. 

The resistance of tumour cells to chemotherapy agents can be caused by a number of cellular 

adaptations, including reduced uptake, inactivation by glutathione and other anti-oxidants, and 

increased levels of DNA repair or DNA tolerance. Chemotherapy agents, including cisplatin, 

pemetrexed, and vinorelbine, are transported in tumour cells via ABC transporters, the over 

activation and/or over expression can result in chemotherapy resistance. Treatment with these 

agents is characterized by resistance, both acquired and intrinsic. For instance, the 

overexpression of cMOAT (MRP2/ABCC2) is associated with decreased formation of 

platinum-DNA adducts and decreased G2-arrest in melanoma cells resistant to cisplatin [33]. 

Pemetrexed gains cell entry via several of ABC transporters, and other mechanisms. The 

resistance to pemetrexed can occur in a number of circumstances, such as catalytic activity or 

expression of FPGS alteration, membrane transport alternation, reducing the availability of 

free antifolate substrate to react with FPGS, increased cellular levels of natural folates, and 

increased activity of γ-glutamyl hydrolase [20]. Vinorelbine is transported via efflux pump 

ABCC10&MRP7 and RLIP76, a non-ABC transporter, to conferring drug accumulation 

defect and resistance in lung cancer cells. Bessho et. al. found the gene expression of 

ABCB1/MRP1 and ABCC10/MRP7 in vinorelbine resistant NSCLC cell lines [34].  
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1.3 New therapeutic strategy  
 

There is a rich drug development pipeline of novel chemotherapeutic agents for lung cancer 

such as amrubicin, SABA, picoplatin, belotecan and vinflunine. Amrubicin is a synthetic 

anthracycline that blocks DNA repair by inhibiting Top I [35-37]. Clinical trials have shown 

that the response rate of combined use of amrubicin and picoplatin is as high as 88%, and the 

median survival is 13.6 months [7]. Picoplatin is a platinum analogue that overcomes 

platinum drug resistance, with lower ototoxicity and nephrotoxicity  than those of other 

platinum drugs [38]. 

Some molecular targeted drugs have entered clinical trials, including matrix metalloproteinase 

(MMP) inhibitors, thalidomide, biological vaccines, and small molecular weight inhibitors 

directed at receptor protein tyrosine kinases such as EGFR, c-Kit and VEGFR [39]. 

Unfortunately, the therapeutic effects are unsatisfactory. MMPs regulate extracellular matrix 

modelling, maintaining cell growth and morphology. Up-regulation of MMP is considered a 

marker for poor prognosis of SCLC [36]. However, some large-scale randomized phase III 

clinical trials suggest that use of MMP inhibitor marimastat and tanomastat as maintenance 

therapy after failing induction therapy did not seem to prolong the survival of NSCLC 

patients [40]. C-Kit protein has been found highly expressed in lung cancer, to stimulate cell 

growth signalling pathways in an autocrine or paracrine manner [41]. Imatinib can inhibit 

activities of c-Kit receptor tyrosine kinase, bcr/ abl fusion protein and platelet-derived growth 

factor receptor (PDGFR) family tyrosine kinase [42]. KIT gene can encode transmembrane 

tyrosine kinase growth factor receptor of the PDGFR family. However, phase II clinical trials 

have shown that imatinib did not prolong progression-free survival (PFS) of sensitivity and 

drug resistance-induced relapse of SCLC patients with high expression of c-Kit [43]. And no 

additional therapeutic effect was observed after treatment on the basis of the platinum plus 

irinotecan schedule. Thalidomide is a multi-target angiogenesis inhibitor, that inhibits 

vascular endothelial growth factor (VEGF), fibroblast growth factor β (FGFβ) and tumor 

necrosis factor α (TNFα), and modify intracellular matrix [44]. Phase III clinical trials using 

thalidomide on the basis of carboplatin+etoposide and using thalidomide for maintenance 

therapy showed satisfactory tolerance and response [45]. Pravastatin also exhibited its 

inhibitory effect on SCLC growth and sensitizing effect on chemotherapeutic agents. Targeted 

mitochondrial apoptosis pathway is an SCLC drug resistance-reversing strategy.  It was found 

in a phase I clinical trial that the Bcl-2 targeted inhibitor Oblimersen relieved 86% of 

untreated ES-SCLC cases [46]. It was found in a pre-clinical study that drug resistance to 
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ABT- 263 in a SCLC cell line and a transplanted tumor model was accompanied with the 

increased concentration of apoptosis-promoting protein Bax, Bim and NOXA [6]. A 

combined use of spindle toxic drugs and apoptosis-targeted inhibitors may produce a 

synergistic pro-apoptotic effect through double inhibition of anti-apoptotic protein Mcl-1 and 

Bcl-xl [47]. It has been demonstrated in SCLC cell line in vitro and NSCLC transplanted 

tumor models that combined use of Bcl-xl targeted inhibitor Navitoclax (ABT-263) and 

spindle toxic drugs could induce apoptosis of tumors cells in mitotic arrest phase [48]. 

 

1.4 Pemetrexed  
 

Pemetrexed (Alimata®) is a multi-targeted antifolate cytotoxic agent approved in Europe and 

US as first line therapy in combination with cisplatin, and as monotherapy after prior 

chemotherapy, or as maintenance monotherapy, for patients with local advanced or metastatic 

non-squamous or predominant non-squamous NSCLC [49]. It is applied in combination with 

cisplatin in patients with malignant pleural mesothelioma, bladder, breast, cervical, colorectal, 

gastric, head and neck, and pancreatic cancers.  

Pemetrexed is a pyrrolo [2, 3-d] pyrimidine-based antifolate and has antineoplastic effects by 

disturbing folate-dependent metabolic processes essential for cellular replication. Pemetrexed 

inhibits thymidylate synthase (TS) and at a lower efficacy for other secondary enzyme targets, 

including glycinamide ribonucleotide formyltransferase, aminoimidazolecarboxamide 

ribonucleotide formyltransferase (AICARFT), and rapamycin pathway, which is responsible 

for the balance of cellular energy metabolism, protein and lipid synthesis and growth) [27]. 

Thymidylate synthase plays an important role in DNA biosynthesis by catalysing the 

methylation of fluorodeoxyuridine monophosphate (dUMP) to deoxythymidine 

monophosphate (dTMP). High TS expression levels correlate with key mechanisms of 

antimetabolite drug resistance. TS expression levels predicted survival in untreated NSCLC 

patients and postoperative recurrence of pulmonary adenocarcinomas. An association of TS 

expression with response to S-1 plus carboplatin in advanced NSCLC was also reported 

recently [50]. 

Pemetrexed gains cellular entry via the reduced folate transporter, the α-folate receptor, and 

proton-coupled folate transporter. Intracellular pemetrexed is polyglutamated to its active 

form by folylpolyglutamate synthetase (FPGS), which results in accumulation of pemetrexed 
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derivatives with greater affinity for its enzyme targets mentioned above than the parent drug 

[20]. Induction of apoptosis, modulation of EGFR and Akt phosphorylation, and alternations 

in the expression of critical tumorigenesis genes involved in the activity of pemetrexed are 

mechanistic contributors to the synergistic interaction.  

Pemetrexed has a steady-state volume of distribution of approximately 16 L. It is 

approximately 81% bound to plasma proteins in vitro. It undergoes minimal hepatic 

metabolism. The total systemic clearance is around 92 ml/min and the plasma elimination 

half-life is 3.5 h in patients with normal renal function. The drug is predominantly eliminated 

unchanged in the urine, with between 70% and 90% of a dose recovered unchanged within 24 

h of administration [51].  

The efficacy of pemetrexed in patients with NSCLC has been demonstrated in several clinical 

trials, in combination with cisplatin as first-line therapy, monotherapy as second-line therapy, 

and as maintenance monotherapy. Pemetrexed plus cisplatin was non-inferior to gemcitabine 

plus cisplatin with median overall survival was 10.3 months with both treatments [52]. But 

pemetrexed did appear to have survival advantages in patients with non-squamous diseases. In 

patients whose disease had not progressed with four cycles of first-line platinum-based 

therapy, median progression-free survival and overall survival times in patients who received 

pemetrexed plus best supportive care were significantly longer than placebo control group. It 

has been suggested in different studies that the treatment paradigm may provide QOL 

advantage for the patients. Most trials that investigated the duration of first-line platinum-

based therapies have received equivalent survival between the shorter and longer therapy 

durations. Immediate maintenance therapy after four cycles of platinum-based therapy is a 

promising approach [50].  

Pemetrexed is generally well tolerated and the tolerability profile is favourable as 

combination therapy with cisplatin and also as monotherapy in patients with advanced 

NSCLC. Adverse events have been reported as neutropenia, skin rash, nausea or vomiting, 

mucositis and diarrhoea. 
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1.5 Vinorelbine 
 

Vinorelbine (Navelbine®) is a semisynthetic vinca alkaloid derivative that demonstrates 

strong antitumor activity in various malignancies. It is indicated as a single agent or in 

combination with cisplatin for the first-line treatment of ambulatory patients with unresectable, 

advanced NSCLC [39]. It is also applied in patients with breast cancer, SCLC, ovarian 

carcinoma, cervical carcinoma, B-cell malignancies, Hodgkin’s disease, and multiple 

myeloma. 

It exerts a cytotoxic effect upon rapidly proliferating tumors through prevention of mitotic 

spindle formation by inhibiting the polymerization of tubulin into microtubules. The vinca 

alkaloids are structurally similar compounds comprised of 2 multiringed units, vindoline and 

catharanthine, with the catharanthine unit being the site of structural modification for 

vinorelbine [53]. The antitumor activity of vinorelbine is thought to be due primarily to 

inhibition of mitosis at metaphase through its interaction with tubulin. It may also interfere 

with amino acid, cyclic AMP, and glutathione metabolism, calmodulin-dependent calcium 

transport ATPase activity, cellular respiration, and nucleic acid and lipid biosynthesis [54]. 

The pharmacokinetic properties of intravenously administered vinorelbine are: after a dose of 

30 mg m–2 i.v. a high initial peak of 5 µmol rapidly decays to about 1 nmol at 2 h. 

Distribution in blood is rapid, with binding of 78% of the drug to platelets and a further 13.5% 

to plasma proteins with only 1.7% left as free drug in the first 2 h after administration. 

Subsequently, binding to plasma proteins is in the order of 70–80% [55]. The drug diffuses 

freely into tissues showing a large volume of distribution and an elimination half-life of 40 h. 

30 minutes after administration, high levels of vinorelbine are found in both normal lung and 

tumour tissue and diffusion out of tumour tissue appears to be slow. The metabolism of 

vinorelbine is principally hepatic and only 11% of the drug is excreted via the renal route, the 

majority being eliminated through faecal excretion [56].  

Vinorelbine is widely utilized in combination chemotherapy for NSCLC. In different clinical 

studies, the cisplatin vinorelbine combination showed a superior response-rate of 30% 

compared to 19% for cisplatin-vindesine and 14% for vinorelbine alone; 1-year survival rates 

were 35%, 27% and 30% respectively. Combined chemotherapy and radiotherapy is a 

common approach in the treatment of NSCLC. Cisplatin-vinorelbine was used as the 

induction regimen in patients with stage III-B disease prior to radical radiotherapy with an 
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objective response of 48%, leading the authors to conclude that this is an effective regimen 

pre-radiotherapy [57].  

 

1.6 Calcium signalling 

 

1.6.1 Calcium channels and pumps 
 

The calcium ion is a ubiquitous cellular signal, which regulates various cellular processes by 

activating or inhibiting cellular signalling pathways and calcium-regulated proteins, such as 

gene transcription, muscle contraction, synaptic transmission, cell proliferation and apoptosis 

[58]. Cells have to shape calcium signals in the dimensions of time, space, and amplitude in 

order to carry out the calcium controlled cell biology activities.  

Calcium channels, pumps and exchangers control the complex and tight regulation of calcium 

homeostasis, which differ in their cellular distribution and their mechanism of transport. A 

strict equilibrium between the ‘on’ and ‘off’ mechanisms in the cells keeps calcium under 

regulation within cellular compartments to achieve the sensitive control of cell signalling 

pathways that can precisely respond to many stimuli. Resting cytoplasm free Ca2+ ([Ca2+]c) is 

maintained at a low level (100nM), with a much higher extracellular Ca2+ concentration of 

1.2 mM [59]. The calcium ‘on’ mechanisms include the plasma membrane (PM) channels, 

which regulate the calcium supply from extracellular space, the endoplasmic reticulum (ER) 

and sarcoplasmic reticulum (SR) channels [60]. An equally set of ‘off’ to remove calcium 

from the cytoplasm includes calcium ATPases on the PM and ER/SR, and additionally to 

exchangers that utilize gradients of ions to provide the energy to transport calcium out of the 

cell, such as Na+/Ca2+ exchange. Mitochondria also play an important role in the regulation of 

cytoplasm calcium. These calcium stores have a low affinity but high-capacity rapid calcium 

uniporter that can significantly reduce cytoplasmic calcium transients and diminish cellular 

responses.  

Within the cell there is a calcium concentration gradient between the cytoplasm and the Ca2+ 

stores. The calcium stores are enriched with calcium binding proteins, such as calsequestrin 

and calreticulin. Ca2+ can be released from the stores by the generation of inositol 1, 4, 5-

trisphosphate (IP3) [61]. IP3 is highly mobile in the cytoplasm and diffuses into the cell 
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interior where it encounters specific IP3 receptors (IP3Rs) on ER/SR. The binding of IP3 

changes the conformation of IP3Rs so that an integral channel is opened, thus allowing the 

Ca2+ in the ER/SR to enter the cytoplasm. IP3Rs are composed of four subunits (1200 kDa), 

encoded by three different genes [46]. The opening of IP3Rs is enhanced by the modest 

increase of Ca2+ concentration (0.5-1 M) whereas higher Ca2+ concentration ( 1 M) 

inhibits the opening. Ryanodine receptors (RyRs) are structurally and functionally analogous 

to IP3Rs, with an approximately twice the conductance and molecular mass of IP3R [62]. 

RyRs are generally actived by the increase of Ca2+ of 1-10 M and inhibited by higher Ca2+ 

concentration of  10 M. They are largely present in excitable cell types [63]. The opening 

of these channels has been shown to be modulated by numerous factors, including 

phosphorylation, adenine nucleotides, thiol reactive compounds, pH level and the Ca2+ load of 

ER/SR [60]. Other than the Ca2+ channels on ER/SR, there are also Ca2+ ATPase pumps 

which actively transport Ca2+ against a concentration gradient, such as the 

sarcoplasmic/endoplasmic reticulum Ca2+ ATPases (SERCAs) pumping Ca2+ into the ER.  

There are mainly three types of calcium entry channels: (1) receptor-operated calcium 

channels (ROCCs), which comprise a range of structurally and functionally diverse channels. 

They are particularly prevalent on secretory cells and at nerve terminals. ROCCs are activated 

by the binding of an agonist to the extracellular domain of the channel [64]. (2) voltage-

operated calcium channels (VOCCs), which are largely employed by excitable cell types such 

as muscle and neuronal cells, where they are activated by depolarisation of the PM. (3) store-

operated calcium channels (SOCCs), which are activated in response to depletion of the 

intracellular calcium stores, either by physiological calcium -mobilising messengers or 

pharmacological agents. SOCCs are the most ubiquitous PM calcium channels. The 

mechanisms of how the SOCCs sense the status of the intracellular pool are unknown. 

 

1.6.2 Calcium and cancer 
 

Since calcium signalling can affect pathways regulating proliferation and apoptosis, 

alterations in calcium channels and pumps could have a causal and promoting role in cancer. 

The location, degree and temporal aspects of changes in cytoplasm calcium concentration 

regulate the pathways relating to tumorigenesis.  
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Alternations in calcium channels and pumps are detected in many cancers. SOCCs as IP3R2 

and IP3R3 were found over expressed in non-small cell lung cancer and gastric cancer 

respectively [24, 65]. Down-regulation of SERCA 2 was discovered in oral cancer [66], colon 

cancer [67], thyroid cancer [68] and lung cancer [67] but up-regulation in colorectal cancer 

[69]. SERCA 3 was found down regulated in colon cancer [70]. Changes in the expression or 

activity of PMCA pumps and transient receptor potential channels, such as TRPM8, TRPM1, 

TRPV1, TRP6, and TRPC6, were also found in several types of cancers [61].      

Calcium is implicated in cellular motility including neurite outgrowth and contraction [58, 71]. 

Calcium, is also a key regulator of signalling pathway important in angiogenesis, since some 

angiogenic stimuli, such as vascular endothelial growth factor, can increase cytoplasm 

calcium concentration by mobilizing calcium  release from the internal calcium stores [72].  

Calcium  can influence genomic stability and cell survival, for example calcium  is a 

modulator of poly (ADP-ribose) polymerase-1 (PARP1) activity, which alters cellular 

metabolism and DNA repair [73]. Calcium  is a key regulator of the cell cycle, and hence 

proliferation, through various different pathways including Ras signalling [74]. Calcium 

signalling is implicated in the cancer cell differentiation process either through the 

extracellular calcium-sensing receptor and/or through changes in intracellular calcium  [75]. 

Calcium can modulate cell-cycle regulators directly, for example by activating the 

transcription of the genes crucial in the G0-G1 transition [76] and for the phosphorylation of 

retinoblastoma protein in late G1 phase [77]. Calcium can also indirectly regulate the 

subcellular localization of the key tumorigenic proteins. Minaguchi et al. found out that the 

nuclear localization of PTEN is regulated by Calcium through a tyrosil phosphorylation-

independent conformational modification in major vault protein [76]. The accumulation of 

excessive calcium  has often been found to link to apoptosis and necrosis by the activation of 

ER/SR and mitochondrial membrane permeabilization [78]. A reduction of ER calcium  

content is associated with resistance to apoptosis [46].  

    

1.6.3 Target calcium in cancer   
 

Calcium channels and pumps with altered expression and/or activity in cancer might represent 

potential biomarkers of disease. Changes in the ER calcium  pump SERCA3 protein 

expression is either reduced or lost in colon carcinomas compared with normal tissue, 
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consistent with a loss of differentiation in cancer cells [79]. The increased apoptotic resistance 

of the malignant neuroendocrine differentiated prostate cells is due to a general alteration in 

calcium homeostasis in which the reduction in SERCA2b has an important role. The reduced 

ER calcium content partially because of the decrease of SERCA2b expression is a probable 

mechanism for apoptotic resistance [80]. These calcium channels and pumps can be used as 

prognostic indicators or can guide treatment by the means of techniques such as microarrays 

in cancers. 

Calcium channels and pumps with altered expression offer the potential not only as biomarker 

for cancer diagnosis but also anticancer therapeutic targets. So modulating the activity of 

calcium channels and pumps that are aberrantly expressed in cancer cells and cancer stem 

cells efficiently might sufficiently interrupt calcium homeostasis to target cancer cells with 

restricted tissue distribution.  

The significance of increased expression of calcium channels and pumps in cancer is directly 

related to the calcium regulated tumorigenic pathways. Many of the calcium channels and 

pumps with altered expression in cancer have a highly restricted tissue distribution, unlike 

many of the ubiquitous potential anticancer drug targets such as cell cycle regulator. 

Therapies based on a target with a limited tissue distribution are less associated with 

generalized toxicity, which is a factor limiting clinical use for agents that have widespread 

expression. For instance, PMCA2 is up-regulated in human breast cancer cell lines, whereas 

its expression is restricted normally to the central nervous system [81].  

The availability of pharmacological calcium channels and pumps inhibitors or activators 

makes it as an outstanding feature of calcium channels or pumps as cancer targets. For 

instance heparin, dantrolene and CPA are inhibitors for IP3R, RyR and SERCA, while 

adenophostin A and suramin are activators for IP3R and RyR (SERCA activator has not been 

discovered) [82-84].  
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2 METHODS AND MATERIALS  
 

2.1 Biological material  

 
Tumor cell lines 

HCC-78: DSMZ no. ACC 563, human non-small cell lung carcinoma. According to the 

histological classification of the original tumor, HCC is defined as adenocarcinoma (Virmani 

et. al., 1998) and characterized as cytokeratin +, cytokeratin-7 +, cytokeratin-8 +, cytokeratin-

17 +, cytokeratin-18 +, cytokeratin-19 +, desmin -, endothel -, EpCAM +, GFAP -, 

neurofilament -, vimentin +.  

HCC-78 cisplatin resistant cell line: generated from HCC-78 cell line via cisplatin treatment 

selection, and maintained with low dose cisplatin in culture. It has been developed by 

continuously exposing cells to gradually increasing doses of cisplatin and use of the limiting 

dilution technique [85].  

 

2.2 Lab material and equipment 
 

2.2.1 Laboratory consumables 
 

 Multi-well dishes: 96-well and 6-well, Cat. 353072, 353935 and 351146, Falcon, BD 

Biosciences Labware, NJ, US. 

 Cell culture dishes: 35 × 10 mm and 100 × 20 mm, Cat. 353001 and 353003, Falcon, 

BD Biosciences Labware, NJ, US. 

 Centrifuge tubes: 15 ml and 50 ml, Cat. 62 554 502 and 227 261, Sarstedt AG & Co., 

Nümbrecht, Germany. 

 Cryotubes: Cryo Vials, Cat. 121 277, Greiner Bio-One GmbH, Frickenhausen, 

Germany.   
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 Filter system: 500 ml, 0.22 µm filter, Cat. 430758, Corning Incorporated, NY, US  

 Slides: 25 × 1.0 × 75 mm, superfrost, Cat. J1800AMNZ, Menzel-Gläser, Mezel GmbH 

& Co KG, Braunschweig, Germany. 

 Cover slides: 24 × 32 mm and 18 × 18 mm, Menzel-Gläser, Mezel GmbH & Co KG, 

Braunschweig, Germany.   

 Counting chamber: 0.1 × 0.0025 mm2, Cat. 63510-10, Neubauer, Brand, Germany.  

 Pipettes: 10 ml, Cat. 47110, Sterilin Ltd. Caerphilly, UK; 25 ml, Cat. 4251, Corning 

Incorporated, US. 

 Tips: 10 µl, 200 µl, 1000 µl, Cat. 70 1115, 70 760 002 and 70 762, Sarstedt AG & Co., 

Nümbrecht, Germany. 

 Culture flasks: 25 cm2, 2 µm vent cap, Cat. 430639, Corning Incorporated, NY, US; 

75 cm2 and 175 cm2, 2 µm vent cap, Cat. 658175 and 660175, Greiner Bio-One 

GmbH, Frickenhausen, Germany.   

 

2.2.2 Lab equipment 
 

 Thermomixer: 5436, Eppendorf-Netheler-Hinz GmbH, Hamburg, Germany. 

 Magnetic stirrer: IkaMag RH, Janke & Kunkel IKA-Labortechnik, Staufen, Germany.  

 Centrifuge: Hettich EBA 12R and Universal 16A, Minnesota, US.   

 Eppendorf pipettes: 0.5-10 µl, 10-100 µl, 20-200 µl, 100-1000 µl, Eppendorf-

Netheler-Hinz GmbH, Hamburg, Germany. 

 Electronic pipette controller: Gilson, Middleton, US.   

 Water bath: Techne TE-10D, Tempunit Gesellschaft für Laborgeräte mbH, Wertheim, 

Germany. 
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2.3 Cell culture 
 

2.3.1 Cell culture medium and supplement 
 

 RPMI 1640: Cat. F1415, Biochrom AG, Berlin, Germany. 

 Trypsin-EDTA: 0.05%/0.02% in D-PBS, Cat. L11-004, PAA Laboratories GmbH, 

Pasching, Austria. 

 Fungizone: amphothericin B, 250 µg/ml, Cat. P11-001, PAA Laboratories GmbH, 

Pasching, Austria. 

 Penstrep: penicillin (10,000 IU/ml) and streptomycin (10,000 IU/ml), Cat. P11-010, 

PAA Laboratories GmbH, Pasching, Austria. 

 L-glutamine: 200 mM, Cat. M11-004, PAA Laboratories GmbH, Pasching, Austria. 

 FBS: REF. 16170-078, Gibco, Darmstadt, Germany. 

 PBS: Phosphate Buffered Saline, without Ca2+ and Mg2+, Cat. H15-002, PAA 

Laboratories GmbH, Pasching, Austria. 

 Ethanol: pure, Pharmacy, Klinikum Grosshadern, Munich, Germany.  

 DMSO:  dimethyl sulfoxide, 5 ×10 ml. Cat. D2650, Sigma-Aldrich, St. Louis, US.  

 Trypan blue: 0.4%, Cat. T8154, Sigma-Aldrich, St. Louis, US.  

 Cisplatin: 1 mg, Pharmacy, Klinikum Grosshadern, Munich, Germany.  

 Pemetrexed: 1 mg, Pharmacy, Klinikum Grosshadern, Munich, Germany.  

 Vinorelbine: 1 mg, Pharmacy, Klinikum Grosshadern, Munich, Germany.  

 

2.3.2 Cell culture equipment 
 

 Laminar airflow: Heraeus, Munich, Germany. 

 Incubator: Heraeus, Munich, Germany. 
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2.3.3 Cell culture medium recipe 
 

 HCC medium 

Final Conc. 

90%                  RPMI 1640 

10%                  FBS heat inactivated 

200 mM            L-glutamine 

10,000 IU/ml    Penstrep 

2.5 µg/ml          Fungizone 

 

2.3.4 Monolayer culture of lung cancer cell line HCC 
 

HCC cells were cultured in 175 cm2 culture flasks with 25 ml medium and cultured in the 37 

°C cell incubator with 5% CO2. Every 2-3 days the culture medium was changed and they 

were split with Trypsin-EDTA solution and incubated in the cell incubator for 5 min when the 

cells were 60-70% confluent. The cells were frozen in liquid nitrogen with 10% DMSO 

culture medium for future use.  

 

2.3.5 Survival curve 
 

HCC cells (1×105) were seeded in 25 cm2 cell culture flask and cultured for 24 h, and 

afterward treated with pemerexed and vinorelbine. For cisplatin treatment, the chemotherapy 

drug was added 3 h before pemetrexed or vinorelbine. The cell viability was evaluated after 

the cells were exposed to the treatment for 24 h, 48 h, 72 h and 96 h by trypan blue exclusion 

cell counting. This approach was chosen because after application of cisplatin to human, a 

relevant plasma concentration of unbound cisplatin (active form) persists for only 3 h [60]. 
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2.4 Apoptosis measurement via flow cytometry  

2.4.1 Material and equipment 

 

 FACSAria II flow cytometer: BD, New Jersey, USA.  

 Alexa Fluor: 350 annexin V conjugate, Cat. A23202, Invitrogen, Darmstadt, Germany. 

 Propidium iodide: 1 mg/ml, Cat. P4170, Sigma-Aldrich, St. Louis, US.     

 

2.4.2 FACS analys 
 

Single-cell suspensions of HCC cells, 1 × 106/ml in 2% FBS RPMI 1640, were treated with 

cisplatin, pemetrexed and vinorelbine according to the schedule for 48 h. The cells were 

harvested after the incubation period and wash in cold PBS. Re-centrifuge the washed cells, 

discard the supernatants, and then resuspend the cells in annexin-binding buffer. Determine 

the cell density and dilute in annexin-binding buffer to ca. 1 × 106 cells/mL, preparing a 

sufficient volume to have 100 μl per assay. Add 5 μl of the annexin V conjugate to each 100 

μl of cell suspension. Incubate the cells at room temperature for 15 minutes. Propidium iodide 

was added with a final concentration of 5 μg/106 cells to discriminate viable and non-viable 

cells before measurements. Cells were analyzed with FACSAria II flow cytometer as soon as 

possible. The population separated into at least two groups: live cells with only a low level of 

fluorescence and apoptotic cells with substantially higher fluorescence intensity. 

  

2.5 Calcium staining 
 

2.5.1 Calcium staining material 
 

 Fura-2 calcium imaging calibration kit: 11 Ca2+ standard buffers premixed with 50µM 

fura-2, Cat. F-6774, Molecular Probes, Invitrogen, Eugene, US. 
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 Fura-2 AM: 50 µg × 20 special packaging, Cat. F14185, Molecular Probes, Invitrogen, 

Eugene, US. 

 

2.5.2 Composition of fluorescent microscope for calcium imaging  
 

 Microscope: Axiovert 200M, SIP 79800, Carl Zeiss AG, Jena, Germany. 

 HBO lamp: 103W/2, short Arc mercury lamp, Osram GmbH, Augsburg, Germany. 

 Objective Fluar: 20 × 0.75, transmission wavelength from 340 nm, Zeiss AG, 

Oberkochen, Germany. 

 Filters: excitation wavelength 340 nm and 380 nm, emission wavelength 510 nm both, 

Cat. 340 AF 15 and 380 AF 15, Laser components GmbH, Olching, Germany. 

 CCD digital camera: AxioCam MRm, Carl Zeiss Vision, Munich, Germany. 

 

2.5.3 Fura-2 calibration curve 
 

A ratio metric measurement method was utilized to determine the dissociation constant (Kd) 

of Fura-2 AM at the staining condition, in order to reduce artifacts from the microscope 

application and to generate the absolute cytoplasm calcium concentration [86].  

With the Fura-2 calcium imaging calibration kit, images of different calcium concentration 

standard solution with Fura-2 AM were acquired, with excitation at 340 nm and 380 nm 

respectively, while the emission was measured at 510 nm, according the protocol offered with 

the kit. With the online Kd calculator (www.probes.com), the Kd of Fura-2 AM was yielded 

as 269 nM [87]. (Figure 1) 
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Figure 1. Fura-2 calcium calibration curve: the Kd of Fura-2 AM was yielded as 269 nM. 

  

A ratio (R) of emission intensities was calculated as the emission intensity at 510 nm from 

340 nm excitation divided by the emission intensity at 510 nm from 380 nm excitation (R = 

F340/F380). According the equation below, the cytoplasm free calcium concentration can be 

obtained from the fluorescence emission intensity ratio: 

 

 

 

2.5.4 Cytoplasm calcium concentration measurement  
 

HCC cells were seeded in cell culture dishes with the same density. After the cells grew 

adherent, Fura-2 AM was applied with a final concentration of 10 µM in 37°C cell incubator 

[Ca2+]free = 
R-Rmin 

Rmax-R 
× × Kd 

F380
max 

F380
min 
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for 90 min. After loading, the cells were incubated another 30 min in PBS (with Ca2+ and 

Mg2+) to allow complete dye deesterification and they were examined with the fluorescent 

microscope.  

Images of the same field were taken at both exciting wavelength 340 nm and 380 nm with the 

image-processing program Axio Vision 4.1 (Carl Zeiss). For each image, ROIs were defined 

in cytoplasm of every single cell, and the average fluorescence of ROIs was measured with 

the image-processing program Scion Image 4.0 (Scion). Cytoplasm calcium concentration 

was calculated as described above.  

 

2.6 Statistics  

 

One-way or two-way ANOVA (combined with pairwise multiple comparisons) were 

performed using Sigma Stat software (Jandel Scientific, Chicago, USA). A p-value of less 

than 0.05 was considered statistically significant. 
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3 RESULTS 
 

3.1 Inhibitory effect of vinorelbine and pemetrexed on cell growth 
 

Adeno lung carcinoma cells HCC and cisplatin resistant cells HCC-res were treated with 

vinorelbine and pemetrexed in a dose range of 0.1 nM up to 10 µM and 1 nM up to 100 µM 

respectively. Both HCC and HCC-res cells showed sensitivity to vinorelbine and pemetrexed. 

Vinorelbine and pemetrexed caused a strong dose-dependent cytotoxic effect in both HCC 

and HCC-res cells.  

In HCC cells, survival was inhibited down to 7.57% after 24 h exposure to vinorelbine at the 

highest concentration, while HCC-res cells to 9.98%. In HCC cells, survival was inhibited 

down to 30.30% after 24 h exposure to pemetrexed at the highest concentration, while HCC-

res cells to 35.42%.  

The IC50 values of vinorelbine against HCC and HCC-res cells were 10.34±1.12 nM and 

9.98±2.12 nM, respectively. The IC50 values of pemetrexed against these cells were 

110.77±17.28 nM and 118.89±18.77 nM respectively. (Figure 2) 
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Figure 2. Inhibitory effect of vinorelbine and pemetrexed on cell growth: HCC and HCC-

res cells were treated with different concentrations of vinorelbine and pemetrexed for 24 h. 

Error bars are not shown for clarity. Both HCC and HCC-res cells showed sensitivity to 

vinorelbine and pemetrexed. Vinorelbine and pemetrexed caused a strong dose-dependent 

cytotoxic effect in both HCC and HCC-res cells.  (n=3)  

 

3.2 Effect of vinorelbine, pemetrexed and different chemotherapy schedule on cell 
growth 

 

HCC cells were treated with different schedule of combination of 1 µM cisplatin, 12 nM  

vinorelbine, and 130 nM pemetrexed respectively and the survival fraction was calculated 

every 24 h for 4 days after treatments. The schedules included single drug treatments (Cis, 

Vin, Pem), double drug combined treatments (Cis→Vin, Cis→Pem, Vin+Pem, Vin→Pem, 

and Pem→Vin), and triple drug combined treatments (Cis→Vin+Pem, Cis→Vin→Pem, 

Cis→Pem→Vin). The survival rate in all treatment groups were calculated with non-

treatment control group.  

In all treated groups, a significant time dependent cell growth inhibition could be shown. In 

HCC cells, the cell number decreased after 24 h treatment, the lowest survival fraction was 



 33 

observed in the group treated with Cis→Pem→Vin at 96 h after the treatment as 

1.17%±0.35%. (n = 3) (Figure 3A)  

 

 

 

 

Figure 3A. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on 

cell growth (all groups) in HCC cells: The schedules included single drug treatments (Cis, 

Vin, Pem), double drug combined treatments (Cis→Vin, Cis→Pem, Vin+Pem, Vin→Pem, 

and Pem→Vin), and triple drug combined treatments (Cis →Vin+Pem, Cis →Vin→Pem, 

Cis→Pem→Vin) for 4 days. In all treated groups, a significant time dependent cell growth 

inhibition could be shown. Error bars are not shown for clarity.  (n=3, * = P<0.05 versus other 

experimental groups) 

 

An additional inhibition effect was shown when the survival fraction in the combination of 

vinorelbine, pemetrexed and cisplatin treated groups were compared with that of cisplatin 

administrated alone.  

The combination of Cis→Vin and Cis→Pem resulted in 12.67±2.51% and 7.28±2.02% 

survival fraction at 96 h after treatment respectively, comparing with exposure alone 

(31.20±6.92% of Vin, 21.57±3.61% of Pem and 26.23±6.22% of Cis).  
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Meanwhile when HCC cells treated with a triple drug schedule, the schedule of 

Cis→Pem→Vin exhibited the strongest inhibitory effect at 96 h after treatment with a 

survival fraction of 1.17%±0.35%. In the groups of Cis→Vin+Pem, and Cis→Vin→Pem, the 

survival fraction at 96 h after treatment were 3.38±1.23% and 3.99±1.07% respectively. (n = 3) 

(Figure 3B)  

 

 

 
 

Figure 3B. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on 

cell growth (groups include cisplatin in the schedule) in HCC cells: HCC cells treated with 

Cis, Cis→Vin, Cis→Pem, Cis→Vin+Pem, Cis→Vin→Pem, Cis→Pem→Vin for 4 days. An 

additional inhibition effect was shown when the survival fraction in the combination of 

vinorelbine, pemetrexed and cisplatin treated groups were compared with that of cisplatin 

administrated alone. Error bars are not shown for clarity.  (n=3, * = P<0.05 versus other 

experimental groups) 

 

Cisplatin resistant HCC cells HCC-res were treated with different schedule of combination of 

cisplatin, vinorelbine, and pemetrexed respectively and the survival fraction was calculated 

every 24 h for 4 days after treatments. The schedules were applied the same as those of HCC 

cells. The survival rate in all treatment groups were calculated with non-treatment control 

group. Cis did not show cell growth inhibitory effect in HCC-res cells.  
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In all other treated groups, a significant time dependent cell growth inhibition could be shown, 

and the cell number decreased after 24 h treatment with the lowest survival fraction observed 

in the group treated with Cis→Pem→Vin at 96 h after the treatment as 2.30%±0.37%. (n = 3) 

(Figure 4A)  

 

 

 
 

 

Figure 4A. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on 

cell growth (all groups) in HCC-res cells: HCC-res cells treated with included single drug 

treatments (Cis, Vin, Pem), double drug combined treatments (Cis→Vin, Cis→Pem, 

Vin+Pem, Vin→Pem, and Pem→Vin), and triple drug combined treatments (Cis→Vin+Pem, 

Cis→Vin→Pem, Cis→Pem→Vin) for 4 days. In the treated groups except Cis treated group, 

a significant time dependent cell growth inhibition could be shown. Error bars are not shown 

for clarity.  (n=3, * = P<0.05 versus other experimental groups) 

 

A significant stronger inhibition effect was shown when the survival fraction in the 

combination of vinorelbine, pemetrexed and cisplatin treated groups were compared with that 

of cisplatin administrated alone or the control group.  
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The combination of Cis→Vin, Cis→Pem resulted in 10.27±2.82% and 14.43±2.62% survival 

fraction at 96 h after treatment respectively, comparing with exposure alone (26.97±7.91% of 

Vin, 15.11±2.68% of Pem and 90.54±3.29% of Cis).  

Meanwhile when HCC cells treated with a triple drug schedule, the schedule of 

Cis→Pem→Vin exhibited the strongest inhibitory effect at 96 h after treatment with a 

survival fraction of 2.30%±0.65%. In the groups of Cis→Vin+Pem, and Cis→Vin→Pem, the 

survival fractions at 96 h after treatment were 4.28±0.33% and 5.48±0.87% respectively. (n = 

3) (Figure 4B)  

 

 
 

 

Figure 4B. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on 

cell growth (groups include cisplatin in the schedule) in HCC-res cells: HCC-res cells 

treated with Cis, Cis→Vin, Cis→Pem, Cis→Vin+Pem, Cis→Vin→Pem, Cis→Pem→Vin for 

4 days. An inhibition effect was shown when the survival fraction in the combination of Vin, 

Pem and Cis treated groups were compared with that of Cis administrated alone. Error bars 

are not shown for clarity.  (n=3, * = P<0.05 versus other experimental groups) 
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3.3 Effect of vinorelbine, pemetrexed and different chemotherapy schedule on 

apoptosis  

 

In order to investigate the effect of 12 nM vinorelbine, 130 nM pemetrexed and combined 

schemes on programmed cell death in HCC cells, different therapy schedule has been applied 

on HCC and HCC-res cells with or without cisplatin treatment. Apoptosis was measured after 

48 h.  

In HCC cells, the percentages of apoptotic cells in all treated groups except vinorelbine 

treated group were significantly higher than that of the control group. Single drug exposure of 

cisplatin, vinorelbine, and pemetrexed resulted in 34.48±7.04%, 20.94±8.75% and 

46.00%±8.62% cell apoptosis respectively.  

Sequential double drug application of Cis→Vin, or Cis→Pem resulted in 32.48±3.65% and 

39.01±3.20% cell apoptosis respectively. Simultaneous exposure of Vin+Pem resulted in 

41.85±3.44% cell apoptosis while sequential application of Vin→Pem or Pem→Vin as 

47.45±5.52% and 54.91±5.97%.  

Most interestingly, in the schemes of triple drug treatments, the highest apoptosis percentage 

was found in Cis→Pem→Vin as 50.28±13.18%, which was comparable to Pem→Vin. (n = 3) 

(Figure 5)  
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Fiure 5. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on 

apoptosis in HCC cells: apoptosis was analysed after the cells were treated with different 

schedule of combination of cisplatin, vinorelbine, and pemetrexed respectively for 24 h. The 

percentages of apoptotic cells in all treated groups except vinorelbine group were significantly 

higher than the control group. (n=3, * = P<0.05 versus other experimental groups) 

 

In HCC-res cells, apoptosis was analysed after the cells were treated with different schedule 

of combination of 1 µM cisplatin, 12 nM vinorelbine, and 130 nM pemetrexed respectively 

for 24 h. Cisplatin treatment showed no effect on apoptosis in HCC-res cells. The percentages 

of apoptotic cells in all other treated groups except vinorelbine were significantly higher than 

that of the control group. Single drug exposure of vinorelbine and pemetrexed resulted in 

23.37±3.07%, and 42.94%±6.85% cell apoptosis respectively.   

Sequential double drug application of Cis→Vin or Cis→Pem resulted in 28.39±5.38% and 

44.00±5.29% cell apoptosis respectively. Simultaneous exposure of Vin+Pem resulted in 

43.65±6.07% cell apoptosis while sequential application of Vin→Pem or Pem→Vin as 

40.31±2.79% and 37.17±10.92%.  

In the schemes of triple drug treatments, the highest apoptosis percentage was found in 

Cis→Pem→Vin as 51.88±9.74%. (n = 3) (Figure 6)  
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Figure 6. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on 

apoptosis in HCC-res cells: apoptosis was analysed after the cells were treated with different 

schedule of combination of cisplatin, vinorelbine, and pemetrexed respectively for 24 h. The 

percentages of apoptotic cells in all treated groups except vinorelbine group were significantly 

higher than the control group. (n=3, * = P<0.05 versus other experimental groups) 

 

3.4 Effect of vinorelbine, pemetrexed and different chemotherapy schedule on 
cytoplasma Ca2+ 

 

Different therapy schedule has been applied on HCC and HCC-res cells with or without 

cisplatin treatment. Cytoplasm free calcium concentration was measured after 48 h.  

In HCC cells, cytoplasm free calcium concentration in all treated groups except vinorelbine 

treated group was significantly elevated than that of the control group. Single drug exposure 

of vinorelbine and pemetrexed resulted in cytoplasm free calcium concentration of 

176.52±86.23 nM and 265.28±67.39 nM respectively.   

Sequential double drug application of Cis→Vin or Cis→Pem resulted in cytoplasm free 

calcium concentration of 256.25±57.86 nM and 377.11±112.81 nM respectively. 

Simultaneous exposure of Vin+Pem resulted in cytoplasm free calcium concentration of 

261.58±68.45 nM while sequential application of Vin→Pem or Pem→Vin as 368.42±92.20 

nM and 277.06±48.39 nM respectively.  

In the schemes of triple drug treatments, the highest cytoplasm free calcium concentration 

was found in Cis→Pem→Vin treated group as 694.05±170.15 nM. (n=3) (Figure 7) 
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Figure 7. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on 

cytoplasm free calcium in HCC cells: Different therapy schedule has been applied on HCC 

cells with or without cisplatin treatment. Cytoplasm free calcium concentration was measured 

after 48 h. Cytoplasm free calcium concentration in all treated groups except vinorelbine 

group was significantly elevated than that of the control group. (n=3, * = P<0.05 versus 

control group) 

 

In the cisplatin resistant HCC-res cells, 1 µM cispatin failed to induce a cytoplasm free 

calcium concentration increase. In HCC-res cells, cytoplasm free calcium concentration in all 

other treated groups except vinorelbine treated group was significantly elevated than that of 

the control group.  

Single drug exposure of vinorelbine and pemetrexed resulted in cytoplasm free calcium 

concentration of 149.48±38.88 nM and 304.77±78.48 nM respectively.   

Sequential double drug application of Cis→Vin or Cis→Pem resulted in cytoplasm free 

calcium concentration of 152.14±42.04 nM and 357.64±42.83 nM respectively. Simultaneous 

exposure of Vin+Pem resulted in cytoplasm free calcium concentration of 274.56±86.14 nM 

while sequential application Vin→Pem or Pem→Vin as 359.85±73.65 nM and 266.32±58.36 

nM respectively.  
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In the schemes of triple drug treatments, the highest cytoplasm free calcium concentration 

was found in Cis→Pem→Vin as 391.19±76.58 nM, which was significantly lower than that 

of treated HCC cells. (n=3) (Figure 8) 

 

 
 

 

Figure 8. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on 

cytoplasm calcium in HCC-res cells: Different therapy schedule has been applied on HCC-

res cells with or without cisplatin treatment. Cytoplasm free calcium concentration was 

measured after 48 h. Cytoplasm free calcium concentration in all treated groups except 

cisplatin and vinorelbine treated groups was significantly elevated than that of the control 

group. (n=3, * = P<0.05 versus control group) 
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4 DISCUSSION 
 

4.1 Schedule-dependent cytotoxic synergism in lung cancer cell lines 
 

Mehta et. al. examined chemotherapeutic combination in breast cancer and found that the 

median time to disease progression and survival was significantly shorter for patients treated 

with any combination of agents, exhibiting either extreme or intermediate in vitro drug 

resistance, in comparison with patients having tumours with low in vitro resistance to both 

drugs [88]. In order to investigate the different effect of therapeutic schedules in adeno lung 

cancer cells, different schemes with vinorelbine and pemetrexed with or without cisplatin 

were applied on adeno lung carcinoma HCC and cisplatin resistant adeno lung carcinoma 

HCC-res cells. 

HCC and HCC-res cells have shown sensitivity to both pemetrexed and vinorelbine. 

Pemetrexed has shown cytotoxic activity in several human cell lines, including lung 

carcinoma cell lines, which agrees with its cell growth inhibitory effect on HCC cell line.  

Animal studies have shown that vinorelbine has favourable antitumor activity on lung cancer 

cells and can induce cellular differentiation. Recently, much interest has been focused on the 

therapeutic efficacy of vinorelbine in NSCLC. Clinical studies demonstrated that vinorelbine 

has antitumor activity in patients with advanced NSCLC as a single agent and in combination 

with other anticancer agents including cisplatin or gemcitabine. Moreover, vinorelbine has 

been proven to improve the patient’s QOL as well as prolong survival of elderly NSCLC 

patients with poor performance status [89].  

The therapeutic scheme as sequential application of pemetrexed and vinorelbine with or 

without cisplatin has shown a synergistic effect in cell growth inhibition, while simultaneous 

exposure of pemetrexed and vinorelbine and converse application sequence, with or without 

cisplatin, did not provide antagonistic or additive effect in cell growth in both HCC and HCC-

res cells. Pemetrexed has been found to induce synchronization of cell cycle events. For 

instance, it was shown in CCRF-CEM lymphocytic leukemia cells that apoptosis was 

preceded by accumulation at the G1/S interface within 12 h of pemetrexed application, after 

which the cell population entered S phase synchronously. Cellular accumulation in the S 

phase may sensitize cells to the cytotoxic effects of other chemotherapeutic drugs. In colon 

carcinoma cell line, the cytotoxicity of gemcitabine was increased significantly with 
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pemetrexed added 24 h previously [20]. Additional synergistic cytotoxicity has been 

demonstrated with pemetrexed in combination with other chemotherapeutics agents in 

NSCLC in vitro and in vivo, including cisplatin, carboplatin, and oxaliplatin. The effect of 

radiotherapy was also found to be enhanced with pemetrexed pre-application. Administration 

of pemetrexed prior to fractionated radiation therapy delayed tumor growth in mice with 

NSCLC xenografts. Schedule dependent cytotoxic effect in NSCLC cell lines has been shown 

with pemetrexed in combination with erlotinib. Synergism was most pronounced with 

exposure to pemetrexed plus erlotinib for 24 h followed by erlotinib for 48 h [90].  

Dan Zhang et al. has investigated in pemetrexed-resistant cell lines, and shown that the cells 

maintained sensitivity to 5-fluorouracil, docetaxel, SN-38, and vinorelbin; however, all of the 

cell lines showed cross-resistance to cisplatin [91].  

  

4.2 Effect of pemetrexed, vinorelbine and combined chemotherapy schedules on the  
calcium homeostasis and apoptosis in lung cancer cell lines  

 

Squamous cell lung carcinomas origin from metaplastic bronchial epithelium and small cell 

lung carcinomas are believed to origin from neuro-epithelial bodies. But the origin of large 

cell carcinomas and adeno carcinomas is less clear [86]. It has been known for a long time 

that calcium signals govern a host of vital cell functions and so are necessary for cell survival. 

More recently, it has become more clear that cellular calcium overload or perturbation of 

intracellular calcium compartmentalization can cause cytotoxicity and trigger apoptosis or 

necrotic cell death [92]. Ca2+-dependent processes are involved with the caspases, the 

mainstream apoptosis executioners, and the interfering with the sequestration of calcium into 

intracellular pools as ER can be sufficient to trigger apoptosis as part of a stress response [93]. 

The earliest link that was found between calcium and apoptosis was that calcium induced a 

typical apoptosis ladder-like DNA fragmentation pattern in isolated thymocytes nuclei 

through the activation of a Ca2+ -and Mg2+ -dependent endonuclease [94]. It has been 

discovered in mouse T-lymphocytes that high-dose pharmacologically raising cytoplasmic 

calcium resulted in apoptosis but low-dose treatment gave a resistant capacity to apoptosis 

[95]. It has been demonstrated that increased cytoplasm free calcium concentration is 

involved in number of cellular event, including apoptotic pathways. The elevation of 

cytoplasm calcium concentration might be the result of calcium entering from extracellular 
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space or calcium being released from intracellular calcium stores. In apoptosis, it results in an 

increase in the mitochondrial calcium concentration, which opens the permeability transition 

pore followed by an efflux of cytochrome C. As a consequence, cytochrome C amplifies the 

calcium release from the ER and activates the intrinsic apoptotic pathway via caspase 9 [96].  

The sequential application of pemetrexed and vinorelbine with or without cisplatin has shown 

a synergistic effect to increase cytoplasm calcium concentration and apoptosis, which 

confirmed the relationship between increase of cytoplasm calcium and apoptosis by cytotoxic 

agents. Recent advances in elucidating the molecular biology of lung carcinogenesis have 

elucidated novel drug targets, and treatments are rapidly evolving into specialized agents that 

hone in on specific aspects of the disease. Of particular interest is blocking tumor growth by 

targeting the physiological processes surrounding angiogenesis, pro-tumorigenic growth 

factor activation, anti-apoptotic cascades and other cancer-promoting signal transduction 

events. The effect of the chemotherapy compounds and combination of these on calcium and 

apoptosis would light up a new perspective in cancer therapy and mechanism of 

tumorigenesis. 

 

4.3 Outlook 
 

Worldwide, lung cancer is the most common cancer in terms of both incidence and mortality 

with the highest rates in Europe and North America. First-line chemotherapy often leads to 

encouraging responses in lung cancer, but during the treatment process, resistance to the 

chemotherapy frequently occurs and ultimately limits the life expectancy of the patient. The 

combination of novel chemotherapeutic schedules might be a solution other than new drug 

development.  

Therefore, the incorporation of new combination of vinorelbin, pemetrexed with cisplatin into 

the therapeutic regimens of adenocarcinoma of the lung casts light into the cancer therapy 

field. A new therapy strategy could be to combine the chemotherapy medication with 

consideration of different cytotoxic mechanisms, in order to destruct tumour. Clinical trials 

could verify these findings. 

As the therapeutic combination of vinorelbin, pemetrexed and cisplatin has not been 

investigated in adeno carcinoma, although it has been utilized in NSCLC treatment and 
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showed promising effect. My findings support the further clinical usage of the chemotherapy 

schemes in lung cancer therapy. The combination with targeted therapy, anti-oncogenic 

molecules as Hedgehog inhibitors, anti-RAS, AKT, or MEK molecules could be also 

beneficial to tumors with more than oncogenic mechanisms involved. A new class of 

therapeutic agents as combination partner could be investigated in the future. 

Moreover, the further research into cytotoxic mechanism in lung cancer and interaction 

between different chemotherapeutics still needs to be done, for instance the molecular 

changes and the cross talk between oncogenic pathways. Since it has been found in our work 

that vinorelbin, pemetrexed, and combination of different schedules influences the 

homeostasis of calcium and apoptosis, as the universe second messenger, the effect of 

cytotoxic agents on calcium signalling was shown. To understand and utilize distinct 

comprehension of calcium signalling and chemotherapy is necessary for the furthermore set 

up of new cancer therapy methods.  
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5 CONCLUSION 
 

In this study, vinorelbine and pemetrexed caused a strong dose-dependent cytotoxic effect in 

both HCC cells (adenocarcinoma of the lung) and HCC-res cells (resistant against cisplatin). 

The IC50 values of vinorelbine against HCC and HCC-res cells were 10.34±1.12 nM and 

9.98±2.12 nM, respectively. The IC50 values of pemetrexed against these cells were 

110.77±17.28 nM and 118.89±18.77 nM respectively. 

The application of different therapy schedule including pemetrexed and vinorelbine with or 

without cisplatin treatment induced a significant time dependent cell growth inhibition on 

HCC naïve and cisplatin resistant cells. The therapy scheme of sequential application of 

Cis→Pem→Vin showed the strongest inhibitory effect on both HCC and HCC-res cells. 

The application of different therapy schedules including pemetrexed and vinorelbine with or 

without cisplatin treatment on HCC naïve and cisplatin resistant cells increased the percentage 

of cells undergoing apoptosis, except application of vinorelbine alone. In both HCC and 

HCC-res cells, sequential application of Cis→Pem→Vin was found the most effective to 

induce apoptosis. 

The application of different therapy schedules including pemetrexed and vinorelbine with or 

without cisplatin treatment on HCC naïve and cisplatin resistant cells increased cytoplasm 

calcium concentration except application of vinorelbine alone failed to increase cytoplasm 

calcium concentration in HCC cells. The most elevated cytoplasm calcium concentration was 

found in the cells treated with sequential application of Cis→Pem→Vin in both HCC and 

HCC-res cells. The calcium overload could lead to apoptosis, which was related to the cell 

growth inhibitory effect of chemotherapeutics in lung cancer cells.  

Sequential application of cisplatin, pemetrexed and vinorelbine has shown a synergistic effect 

in cell growth inhibition, apoptosis induction, and cytoplasm calcium concentration elevation 

in adeno lung carcinoma cells and also cisplatin resistant adeno lung carcinoma cells.  
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APPENDIX I – LIST OF FIGURES 

 
 
Figure 1. Fura-2 calcium calibration curve 

Figure 2. Inhibitory effect of vinorelbine and pemetrexed on cell growth 

Figure 3A. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on cell 

growth (all groups) in HCC cells 

Figure 3B. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on cell 

growth (groups include cisplatin in the schedule) in HCC cells 

Figure 4A. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on cell 

growth (all groups) in HCC-res cells 

Figure 4B. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on cell 

growth (groups include cisplatin in the schedule) in HCC-res cells 

Fiure 5. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on apoptosis 

in HCC cells 

Figure 6. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on apoptosis 

in HCC-res cells 

Figure 7. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on 

cytoplasma Ca2+ in HCC cells 

Figure 8. Effect of vinorelbine, pemetrexed and different chemotherapy schedule on 

cytoplasma Ca2+ in HCC-res cells 
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APPENDIX II - LIST OF ABBREVIATIONS 

 

NSCLC: non-small cell lung cancer 

SCLC: small cell lung cancer 

Cis: cisplatin 

Pem: pemetrexed 

Vin: vinorelbine 

EGFR: epidermal growth factor receptor 

SNP: single-nucleotide polymorphisms 

NLST: National Lung Screening Trial 

QOL: quality of life 

MSC: mesenchymal stromal cells 

CAFs: carcinoma-associated fibroblasts  

TAM: Tumor-associated macrophages 

PPARγ: peroxisome proliferator-activated receptor-γ 

Treg: regulatory T cells 

ABC transporter: ATP-binding cassette transporter 

MDR: multidrug resistance 

Top: topoisomerase 

ECM: extracelluar matrix  

MMR: mismatch repair  

MMP: matrix metalloproteinase  

PDGFR: platelet-derived growth factor receptor 

DISC: death inducing signal complex 

PFS: progression-free survival  

VEGF: vascular endothelial growth factor  

FGFβ: fibroblast growth factor β  

TNFα: tumor necrosis factor α  

TS: thymidylate synthase  

AICARFT: aminoimidazolecarboxamide ribonucleotide formyltransferase  

dUMP: fluorodeoxyuridine monophosphate  

dTMP: deoxythymidine monophosphate 

FPGS: folylpolyglutamate synthetase 

ER: endoplasmic reticulum 



 57 

SR: sarcoplasmic reticulum 

[Ca2+]c: cytoplasm free Ca2+
 

[Ca2+]ER: endoplasmic reticulum Ca2+
 

SOCC: store-operated Ca2+ channel 

VOCC: voltage-operated Ca2+ channel 

ROCC: receptor-operated Ca2+ channel 

IP3: inositol 1, 4, 5-trisphosphate 

IP3R: inositol 1, 4, 5-trisphosphate receptor 

RyR: ryanodine receptor 

SERCA: sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 

PARP1: poly ADP-ribose polymerase-1 

ROI: regions of interest 

CPA: cyclopiazonic acid 

Kd: dissociation constant 

HCC-res: HCC cisplatin resistant cell 

ROI: region of interest 
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