
DOTTORATO DI RICERCA IN FISICA
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O how much more doth beauty beauteous seem
By that sweet ornament which truth doth give!
The rose looks fair, but fairer we it deem
For that sweet odour which doth in it live;
The canker blooms have full as deep a dye
As the perfumed tincture of the roses,
Hang on such thorns, and play as wantonly,
When summer’s breath their masked buds discloses;
But for their virtue only is their show
They live unwooed, and unrespected fade,
Die to themselves. Sweet roses do not so;
Of their sweet deaths the sweetest odours made;
And so of you, beauteous and lovely youth;
When that shall vade, by verse distils your truth.

W. Shakespeare





Zusammenfassung

In dieser Arbeit untersuchen wir quantalen Transport im Energieraum anhand
zweier Paradebeispiele der Quantenchaostheorie: hoch angeregte Wasserstoff-
atome im Mikrowellenfeld, und gekickte Atome, die das Modellsystem des δ-
gekickten Rotors simulieren. Beide Systeme unterliegen aufgrund des äußeren,
zeitlich periodischen Antriebs einer komplexen Zeitentwicklung. Insbesonde-
re werden zwei Quantenphenomäne untersucht, die kein klassisches Analogon
besitzen: die Unterdrückung klassischer Diffusion, bekannt unter dem Schlag-
wort dynamischer Lokalisierung, und die Quantenresonanzen als dynamisches
Regime, das sich durch beschleunigten Transport im δ-gekickten Rotor aus-
zeichnet.
Der erste Teil der Arbeit belegt auf neue Weise die quantitative Analogie
zwischen dem Energietransport in stark getriebenen, hoch angeregten Ato-
men und dem Teilchentransport im Anderson-lokalisierten Festkörper. Eine
umfassende numerische Analyse der atomaren Ionisationsraten zeigt in Über-
einstimmung mit der Lokalisierungstheorie nach Anderson, dass die Raten-
verteilungen einem universellen Potenzgesetz unterliegen. Dies wird sowohl
für ein eindimensionales Modell als auch für das reale dreidimensionale Atom
demonstriert. Außerdem werden die Konsequenzen aus der universellen Ver-
teilung der Ionisationsraten für die asymptotische Zeitabhängigkeit der Über-
lebenswahrscheinlichkeit der Atome diskutiert.
Der zweite Teil der Arbeit klärt den Einfluss von Dekohärenz – induziert durch
Spontanemission – auf die kürzlich im Experiment mit δ-gekickten Atomen be-
obachteten Quantenresonanzen. Wir leiten Skalierungsgesetze ab, die auf einer
quasiklassischen Näherung der Quantendynamik beruhen und die Form von
Resonanzpeaks beschreiben, welche in der mittleren Energie eines atomaren
Ensembles im Experiment beobachtet wurden. Unsere analytischen Resulta-
te stimmen mit numerischen Rechnungen ausgezeichnet überein und erklären
die zunächst überraschenden experimentellen Befunde. Darüberhinaus weisen
sie den Weg zur Untersuchung des wechselseitig konkurrierenden Einflusses
von Dekohärenz und Chaos auf die Stabilität der quantenmechanischen Zeit-
entwicklung gekickter Atome. Die Stabilität lässt sich mittels des Überlapps
zweier anfänglich gleicher, aber unterschiedlich propagierter Zustände charak-
terisieren. Dieser Überlapp, bekannt als ”Fidelity“, wird hier für eine experi-
mentell realisierbare Situation untersucht.



Riassunto

In questa tesi viene studiato il trasporto quantistico nello spazio dell’energia
di due sistemi modello della teoria del caos quantistico: atomi di idrogeno
altamente eccitati sottoposti ad un campo di micro-onde ed atomi calciati
che simulano il modello “δ-kicked rotor”. Entrambi questi sistemi presentano
una evoluzione dinamica complessa, derivante dall’interazione con una forza
periodica esterna. In particolare vengono studiati due fenomeni quantistici
che non hanno una controparte classica: la soppressione della diffusione clas-
sica, conosciuta come localizzazione dinamica, e le risonanze quantistiche come
regime dinamico del trasporto amplificato.
La prima parte della tesi fornisce un nuovo supporto all’analogia quantitiva fra
il trasporto di energia in idrogeno altamente eccitato sottoposto a un campo
elettromagnetico intenso, ed il trasporto di particelle in solidi con localiz-
zazione di Anderson. Un’analisi numerica completa dei rate di ionizzazione
atomica mostra che questi obbediscono ad una distribuzione universale con-
forme ad una legge algebrica, in accordo con la teoria della localizzazione di
Anderson. Questo risultato viene dimostrato sia per il modello unidimen-
sionale che per l’atomo reale in tre dimensioni. Vengono inoltre discusse le
ripercussioni della distribuzione universale dei rate di ionizzazione sul decadi-
mento della probabilità di sopravvivenza asintotica degli atomi.
La seconda parte della tesi chiarisce l’effetto della decoerenza – causata
dall’emissione spontanea – nelle risonanze quantistiche che sono state osser-
vate in un esperimento recente con atomi calciati. Vengono derivate due leggi
di scala basate sull’approssimazione quasi classica dell’ evoluzione quantistica.
Queste leggi descrivono la forma dei picchi di risonanza nell’energia di un in-
sieme sperimentale di atomi calciati. I risultati analitici ottenuti sono in per-
fetto accordo con simulazioni numeriche e motivano osservazioni sperimentali
initialmente inspiegati. Aprono inoltre possibilità di studio sull’effetto com-
petitivo della decoerenza e del caos sulla stabilità dell’ evoluzione quantistica
degli atomi calciati. La stabilità si può caratterizzare tramite la sovrappo-
sizione di due stati initialmente uquali, però soggetti ad evoluzioni temporali
differenti. Questa sovrapposizione, detta fidelity, viene studiata per una situ-
azione sperimentale realizzabile.



Abstract

This thesis investigates quantum transport in the energy space of two paradigm
systems of quantum chaos theory. These are highly excited hydrogen atoms
subject to a microwave field, and kicked atoms which mimic the δ−kicked ro-
tor model. Both of these systems show a complex dynamical evolution arising
from the interaction with an external time-periodic driving force. In particu-
lar two quantum phenomena, which have no counterpart on the classical level,
are studied: the suppression of classical diffusion, known as dynamical local-
isation, and quantum resonances as a regime of enhanced transport for the
δ−kicked rotor.
The first part of the thesis provides new support for the quantitative analogy
between energy transport in strongly driven highly excited atoms and particle
transport in Anderson-localised solids. A comprehensive numerical analysis of
the atomic ionisation rates shows that they obey a universal power-law distri-
bution, in agreement with Anderson localisation theory. This is demonstrated
for a one-dimensional model as well as for the real three-dimensional atom.
We also discuss the implications of the universal decay-rate distributions for
the asymptotic time-decay of the survival probability of the atoms.
The second part of the thesis clarifies the effect of decoherence, induced by
spontaneous emission, on the quantum resonances which have been observed
in a recent experiment with δ−kicked atoms. Scaling laws are derived, based
on a quasi-classical approximation of the quantum evolution. These laws de-
scribe the shape of the resonance peaks in the mean energy of an experimental
ensemble of kicked atoms. Our analytical results match perfectly numerical
computations and explain the initially surprising experimental observations.
Furthermore, they open the door to the study of the competing effects of deco-
herence and chaos on the stability of the time evolution of kicked atoms. This
stability may be characterised by the overlap of two identical initial states
which are subject to different time evolutions. This overlap, called fidelity, is
investigated in an experimentally accessible situation.



Resumen

En este trabajo se investiga el fenómeno de transporte cuántico en el espacio de
enerǵıa de dos sistemas paradigmáticos de la teoŕıa del caos cuántico: por un
lado, estados altamente excitados de átomos de hidrógeno en un campo de mi-
croondas, y por otro lado átomos golpeados que simulan el modelo “δ−kicked
rotor”. Los dos sistemas presentan una dinámica compleja proveniente de la
interacción con una fuerza externa periódica en el tiempo. En particular son
estudiados dos fenómenos cuánticos sin contraparte clásica: la supresión de
difusión clásica, conocido como localización dinámica, y resonancias cuánticas
como un régimen dinámico de transporte amplificado.
La primera parte de esta tesis proporciona una nueva demostración de la ana-
loǵıa entre el transporte de enerǵıa en átomos altamente excitados sometidos
a campos electromagnéticos intensos y el transporte de part́ıculas en sólidos
localizados de Anderson. Un análisis numérico detallado de las ratas de io-
nización atómica muestra que éstas obedecen una distribución universal con-
forme a una ley algebraica, lo cual está de acuerdo con la teoŕıa de localización
de Anderson. Esto es demostrado tanto para un modelo unidimensional como
para átomos reales tridimensionales. Se discuten también las implicaciones de
las distribuciones universales de las ratas de ionización para el decaimiento
asintótico en el tiempo de las probabilidades de sobrevivencia de los átomos.
La segunda parte de la tesis clarifica el efecto de decoherencia por emisión
espontánea en las resonacias cuánticas observadas en un experimento reciente
con átomos golpeados. Leyes de escalamiento son deducidas, basadas en una
aproximación cuasiclásica de la evolución cuántica, las cuales describen la
forma de los picos resonantes en la enerǵıa media de un ensamble experimen-
tal de átomos golpeados. Nuestros resultados anaĺıticos encajan perfectamente
con sendos cálculos numéricos y explican observaciones experimentales que ini-
cialmente fueron sorprendentes. Mas aún, abren las puertas para el estudio de
los efectos competentes de decoherencia y caos en la estabilidad de la evolución
temporal de átomos golpeados. Esta estabilidad puede ser caracterizada por
el sobrelapamiento de dos estados iniciales idénticos, pero a la vez con distin-
tas evoluciones en el tiempo. Este sobrelapamiento es llamado fidelidad y es
investigado para una situación accesible experimentalmente.
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Chapter 1

Introduction

1.1 Quantum chaos and experiments

Continuous development of knowledge unavoidably leads to specialisation and
differentiation. This process in science tends to separate the specialties, and
often pushes them so far apart that researchers working in one branch have a
hard time in keeping their interest in the main questions of even related fields.
A methodological integration is desirable to overcome language problems be-
tween different communities, and inter-disciplinarity between various branches
in science (not only physics) in turn may foster new development. P. W. Ander-
son [1] noticed about 30 years ago that the study of complex systems – where
at each level of complexity new and interesting phenomena emerge – offers a
variety of connections between different branches of physics, chemistry, biology,
and increasingly also economics and computer science [2, 3].
The field of “quantum chaos” which sprouted a few years later [4–6] is an ex-
cellent example of a fruitful merger of ideas originating from many branches
of physics. For the investigation of complex dynamical systems, classical and
quantum physics were brought together. In particular, concepts from nuclear,
atomic, molecular physics, nonlinear systems theory and statistics serve in the
inter-disciplinary study of quantum systems which show signatures of classical
chaos. Although a vast amount of effort has been undertaken in theoretical and
numerical investigations on the quantum mechanical analogues of classically
chaotic systems [7–10], clean experimental studies of quantal manifestations of
classical chaos had been rather restricted up to the mid 1980ies [11–18].
The only early experimental contribution, which in turn motivated the develop-
ment of quantum chaos, came from nuclear physics, supplying a huge data-
base of nuclear energy spectra [19]. Their statistical characterisation, without
knowledge of exact solutions of the quantum many body scattering problem in
heavy nuclei, is possible through the meanwhile well-established Random Ma-
trix Theory [9, 17, 20, 21], which nowadays is used in many other branches of
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2 Chapter 1. Introduction

physics [22, 23].
Several time-independent systems with (Hamiltonian) classically chaotic ana-
logues were studied afterwards. The spectral properties of highly-excited Ryd-
berg atoms subject to a strong magnetic field [24, 25] have been extensively
investigated providing insight into the influence of classical dynamics on the
corresponding quantum problem. This conservative system of perturbed Ryd-
berg atoms with a large density of states, whose classical dynamics is highly
chaotic, is a real complex system for which the experimentally measured spec-
tra were found to match perfectly with quantum mechanical ab initio calcu-
lations [12, 24–29]. More recently, also Rydberg states in crossed electric and
magnetic (static) fields have been studied [14,30–34]. Rydberg atoms in crossed
fields may eventually provide an atomic realisation (with dominantly chaotic
dynamics) of cross sections exhibiting Ericson fluctuations [30]. The latter are
well-known in nuclear (chaotic) scattering [35–37].
A fashionable and direct way to illustrate wave functions as well as to study
plenty of energy levels (up to very high energies) is offered by billiard sys-
tems [17, 18], where either particles (e.g. electrons) or light rays scatter off
hard walls. Light-ray billiards, which are relevant, for instance, to the develop-
ment of small micro-laser cavities [38,39], are toy models for the study of wave
chaos [17,40–42]. There one resorts to the analogy between the two-dimensional
Helmholtz equation for the electric field modes and the stationary Schrödinger
equation [17].
All the above mentioned systems are governed by a time-independent Hamil-
tonian. In this thesis deceptively simple quantum systems are investigated
which show a variety of complex transport phenomena induced by an external
time-dependent driving force. The driving pumps energy into the unperturbed
system and may turn even one-dimensional systems chaotic on the classical
level, while for time-independent, autonomous problems at least two degrees
of freedom are necessary for the occurrence of chaos [43–45]. If one is able to
control well the external forces and to isolate the composite systems from ad-
ditional noise sources, such time-dependent, low-dimensional systems are good
candidates for the experimental and theoretical study of quantum chaos.

1.2 Quantum transport in periodically driven
atomic systems

The interest in simple Hamiltonian systems with periodic time dependence
was boosted by the ionisation experiments performed by Bayfield and Koch
in 1974 [4]. An efficient multi-photon (the ionisation potential of the atomic
initial state exceeded 70 times the photon energy) ionisation of atomic hydro-
gen Rydberg states subject to microwave fields was observed, and the highly
non-perturbative nature of the process could be successfully explained by a
classical diffusion process in energy space [46–49]. A great experimental break-
through for the study of quantum transport in momentum or energy space was
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then the demonstration of “dynamical localisation” in microwave-driven Ryd-
berg atoms [13, 50–53], and later also in cold atoms subject to pulsed standing
waves [54, 55]. This phenomenon had been predicted theoretically [6, 56–60],
and its explanation flourished by summoning concepts of nonlinear dynamics
and of solid state physics [61, 62] in an inter-disciplinary manner.
Modern day experiments are able to control essentially isolated atoms with
high precision. In this thesis we focus on two periodically driven atomic sys-
tems which are accessible to state-of-the-art experiments under large control of
parameters, and thus of the underlying classical dynamical regimes. While the
first part of the thesis is devoted to the above mentioned ionisation of highly ex-
cited hydrogen Rydberg atoms, the second part concentrates on a model system
which has found a reliable experimental realisation in the last decade, namely
the δ−kicked rotor – a standard model in quantum chaology [6, 9, 17, 63, 64].
Both of these Hamiltonian systems are conceptually rather simple at first glance.
The kicked rotor is a free pendulum which is subject to time periodic kicks.
Hydrogen is the simplest existing atom. However, the external driving force
induces a complicated, yet deterministic dynamical evolution on the classical
as well as on the quantum level. The experimental realisations of these two
systems can to a great deal be viewed as isolated from possible noise sources
which makes them experimentally “clean”, and permits a direct comparison be-
tween theoretical and experimental results. Thus, there is no need for further
assumptions or simplifications, which may be necessary, for instance, when
models of mesoscopic chaotic systems are studied [18, 65–70]. In particular,
Rydberg states are experimentally controllable up to very high quantum num-
bers [11, 16, 71–74]. This provides a large density of states and, hence, may
allow for an approximate description by semiclassical methods (see, e.g. [75–77]
and references therein).
Transport is by definition the change of location, i.e. the time evolution within
a given system in an appropriate parameter space. In physical problems one
may have in mind the phase space flow of classical densities [78] or temperature
equilibration in configuration space. In our systems of interest, transport oc-
curs classically also in phase space [78], but the essential coordinate is energy.
While mesoscopic transport typically occurs as a flow of charge carriers in real
(configuration) space, driven systems can exchange energy with the external
field and the natural view of transport must focus on momentum or energy
space. The reader should keep in mind the ionisation of atoms where the initial
bound state is coupled to the atomic continuum through the energy absorption
from the external microwave field. This is a real-life example of an open quan-
tum system. The δ-kicked rotor has no continuum, yet its energy is unbounded
from above (apart from unavoidable cutoffs in experiments or numerical com-
putations). Therefore, we investigate transport in energy space, induced by the
periodic driving force, on a microscopic scale of single atoms – both in external
(centre-of-mass motion of kicked cold atoms) and internal (electronic excitation
in Rydberg atoms) degrees of freedom.
Although this thesis focuses on quantum effects which do not have classical ana-
logues, the knowledge of the classical evolution (obeying mixed regular-chaotic
dynamics) and the use of semiclassical methods provide a deeper insight into
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the physical mechanisms, which are otherwise difficult to extract from purely
quantum data (e.g. the quantum spectrum). In the first part of the thesis, well-
developed concepts of nonlinear systems theory help us to understand effects
lying beyond the analogy between the Anderson [9, 17, 79, 80] and the driven
hydrogen problem. (Semi-)classical tools are extensively used in the second
part of the thesis when the quantum resonances for δ-kicked atoms are studied.
Our detailed mathematical and numerical analysis of the quantum resonances
occurring with δ-kicked atoms is motivated by recent, equally puzzling and
inspiring experimental results [81–83].

1.2.1 Anderson localisation and decay-rate statistics

The initially surprising observation of efficient multi-photon ionisation in
periodically driven hydrogen atoms [4] had been explained by the classical
analysis of the dynamics of the periodically driven Kepler problem [46]. Such
analysis was supported later by quantum calculations [84–87]. However, for
driving frequencies larger than the ones used in the early experiments [4, 5],
the quantum evolution starts to deviate substantially from the classical
prediction [50, 51]. The classical diffusive motion is then suppressed by
quantum interference effects. They set in at frequencies at which the driving
field is able to resonantly couple – by a one-photon transition – unperturbed
eigenstates of the atom in the vicinity of the initial state. This effect was
qualitatively predicted by an appropriate one-dimensional description of the
microwave-driven hydrogen problem using an approach very analogous to the
δ-kicked rotor. To emphasise its dynamical origin as well as its affinity to the
problem of Anderson localisation [79, 88, 89] the corresponding formalism was
baptised dynamical localisation theory [59, 60].
Anderson localisation occurs, for instance, in disordered solids and implies an
exponential localisation of the charge carriers’ wave functions in configuration
space [79, 80, 88, 89]. As illustrated in figure 1.1, the quantity of interest is
the transmission of a (quasi-)particle across a random potential, at a given
injection energy. At the potential humps, the particle can be either reflected or
transmitted with randomly distributed amplitudes, and a quantitative analysis
– formalising the transmission problem by a transfer matrix approach [9, 80] –
shows the existence of exponentially localised eigenfunctions along the solid-
state lattice. The characteristic length scale, over which the eigenfunctions
spread, is given by the localisation length ξ. The measured conductance across
the sample depends critically on the ratio of ξ/L, L being the length of the
sample. This ratio determines the population of the last lattice site at the edge
of the sample, and hence the probability flux to the lead.
The sketched scenario can be exported to the problem of energy absorption in
periodically driven systems. While a formal mapping to the Anderson model
is readily possible for the δ-kicked rotor, its application to the excitation and
ionisation dynamics of atomic Rydberg states under microwave driving is not
straightforward. However, both periodically driven problems can be formu-
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Fig. 1.1: The Anderson scenario imported into the atomic realm: an initial popula-
tion of the bound state |φ0〉 is transported to the atomic continuum in energy space,
much in the same way as a particle is transmitted across a disordered potential in
one-dimensional configuration space (dashed horizontal line). While the particle can
be either reflected or transmitted at each potential hump, with random probability
amplitudes, in the atomic problem, absorptions/emissions of photons from/into the
microwave field of frequency ω lead to transmission into the atomic continuum (indi-
cated by a chain of arrows). The “atomic sample length” L corresponds to the ionisa-
tion potential of |φ0〉, measured in multiples of the photon energy ω. The one-photon
transitions are slightly detuned from the unperturbed hydrogen levels. The resulting
fluctuations in the coupling matrix elements mimic the intrinsic disorder present in the
Anderson model.

lated within the Floquet description (see chapter 2.4). In this way, the more
complicated Rydberg system may be mapped onto the δ-kicked rotor locally
in energy space [59, 60]. Doing so, the effect of dynamical localisation was
predicted. The random features of disordered transport manifest on the atomic
scale in the complex dynamical phase evolution of a large number of states,
which constitute the time-dependent electronic wave packet.
In the Rydberg regime, a high density of states is guaranteed since the
energy splittings lie in the microwave frequency domain. Consequently, many
states will be efficiently coupled by the external driving through subsequent,
near-resonant one photon absorption and emission processes. The anharmonic
hydrogen spectrum necessarily leads to detunings of the one-photon transitions
sketched in figure 1.1. Therefore, the coupling matrix elements fluctuate in
a (pseudo-)random manner [9, 87, 90] what mimics the intrinsic disorder of
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quantum threshold
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(quantum � classical)

Fig. 1.2: Sketch of the scaled classical and quantum ionisation threshold F0(10%) ≡
F (10%)n4

0 vs. scaled frequency ω0 ≡ ωn3
0 for microwave driven hydrogen Rydberg

atoms, from theoretical predictions [50, 59, 60, 94] and experiments [11, 50, 51]. Above
ω0 � 1 the quantum threshold (full line) is considerably higher than the corresponding
classical one (dashed): this is the regime of dynamical localisation. For ω0 < 1, classical
and quantum predictions approximately agree. The measured quantum thresholds are
the central experimental evidence for Anderson localisation affecting the ionisation
dynamics of driven Rydberg states (for alkali atoms the situation is very similar, with
proper account for the locally reduced level spacing induced by non-vanishing quantum
defects [95–99]).

the Anderson model [87, 91]. The atomic ionisation scenario is then a perfect
analogue of particle transport in the Anderson problem. It consists of the
transport of electronic population, initially prepared in a well-defined bound
state |φ0〉, towards the atomic continuum.
Anderson localisation manifests itself via the exponential decay of wave
functions – in the configuration space of disordered solids, and in the energy
space of periodically driven systems – and the experimentally accessible
signature of localisation is the leakage (decay or ionisation) out of the sample.
The characterisation of the latter is the main topic of the first part of this
thesis. The measurable quantity in the experiments with Rydberg atoms
is the ionisation probability, for given field amplitude F , frequency ω, and
interaction time t. The microscopic transport problem can, therefore, be
studied by measuring the macroscopic probability of ionisation, whereby
signatures of complex nonlinear dynamics show up in the local structures of
the ionisation signal [11,92,93]. While dynamical localisation has been directly
measurable only in kicked-atom experiments (where it manifests itself through
exponentially decreasing momentum distributions), the central experimental
result for driven Rydberg states is the increase of the ionisation threshold with
the scaled frequency ω0 = ωn3

0 [13, 50, 51]. ω0 corresponds to the microwave
frequency ω expressed in units of the Kepler frequency of the unperturbed
electron 1/n3

0. More precisely, the quantity extracted in the experiments is the
field amplitude F0(10%) ≡ F (10%)n4

0, rescaled to the strength of the Coulomb
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potential, at which 10% of the atoms ionise when launched from the initial
state with principal quantum number n0. The increase of F0(10%) with n0,
at fixed F , ω, and interaction time t, contradicts classical asymptotic (i.e.
t → ∞) estimates, which predict ionisation thresholds systematically lower
than those measured in experiments [60, 72, 87,100–102].
The field threshold F0(10%) behaviour as a function of ω0 is sketched in
figure 1.2. The quantum suppression of classically chaotic diffusion in the
regime ω0 > 1 is explained by dynamical localisation theory. Yet, the fun-
damental dependence of F0(10%) on ω0 provides only a rather indirect proof
of Anderson/dynamical localisation in the atomic ionisation process. One
may imagine other mechanisms which stabilise the atom against ionisation,
such as semiclassical stabilisation effects [87, 103, 104]. These may be caused,
for instance, by barriers in classical phase space, which hinder the quantum
transport. Remnants of broken tori or even chains of nonlinear resonance
islands are possible candidates for such processes [72, 77, 105–107]. Moreover,
also purely classical calculations predict a raise of F0(10%) with increasing ω0,
for finite interaction times t [50, 72].
An accurate theoretical treatment of microwave driven one-electron Rydberg
states has become available in the last decade, along with the necessary com-
puter power for the numerical diagonalisation of the exact problem [95, 108].
Clear support for the hypothesis that Anderson localisation is indeed re-
sponsible for the F0(10%) threshold behaviour comes from the fact that
the amplitudes F0(10%) show a universal scaling, for many atomic species
investigated. This has been shown by heavy numerical calculations [95–98]
which are very helpful to correctly interpret experiment data [13, 99].
In this thesis, however, we pursue a different course, which goes beyond the
threshold scaling, to investigate whether there exist additional, and more
direct signatures of Anderson localisation.

Universal statistics of decay rates

The scenario sketched in figure 1.1 indicates that the atomic ionisation process
depends on the initially prepared electronic population, i.e. on the initial state
|φ0〉. One possible route to obtain a characterisation of the problem indepen-
dently of |φ0〉 is to focus on the quantum spectrum of the atom in the microwave
field. The latter is independent of the initial state, and only determined by the
field parameters F and ω. Since we aim at the transport to the atomic contin-
uum, the natural quantity for the comparison with Anderson models are the
decay rates or the complex poles of the spectrum. They determine the decay
of the eigenstates in the field, but may locally depend strongly on the field
parameters [109–113]. Precisely for that reason, we perform a comprehensive
numerical analysis of the statistical properties of the decay rates, and confront
our results with predictions from Anderson-localised solid-state models.
Even beyond this direct comparison of the spectral properties of the microwave-
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driven Rydberg atom and Anderson models, the decay-rate statistics is corre-
lated with the long-time behaviour of the atomic survival probability. The
latter also depends on the initial state of the atom, and one question to clarify
is how the decay-rate distributions and the properties of |φ0〉 conspire to deter-
mine the time-dependence of the survival probability. The survival probability
in a microwave field has been extensively studied for real three-dimensional
hydrogen as well as for alkali Rydberg states in numerical [95, 114] and lab-
oratory experiments [73, 114]. The survival probability was found to decay
asymptotically algebraically in time [95, 114]. Yet, different decay exponents
have been extracted which depend on the initial atomic state, and on the field
parameters [95,114]. These findings contradict recent predictions of a universal
power-law decay for the survival probability [115].
The key point of our analysis is that the survival probability is determined by
both, the set of decay rates of the individual eigenstates, and the projection of
the specific atomic initial state on the eigenbasis of the full problem. Thereby
the rates encode the global spectral information, while the projection contains
the local distribution of the initial state in energy space. The clear separation
of these two issues allows us to clarify the above mentioned contradiction, and
to show that the universality only restricts to the decay-rates statistics.
Moreover, the spectral properties of driven hydrogen Rydberg states may
in turn be related to the rich underlying classical phase-space structure
[112,113,116]. Our statistical analysis of the ionisation rates, therefore, provides
not only a direct comparison to Anderson models but also an interpretation of
the statistics by means of the phase-space localisation of the corresponding
eigenstates. Doing so, different mechanisms which determine the statistical dis-
tribution of the decay rates can be discriminated. The thorough understanding
of the decay-rate statistics and their mutual impact on the transport mecha-
nisms in the regime of dynamical localisation ω0 > 1 in figure 1.2, is the goal
of the first part of this thesis.

1.2.2 Quantum resonances with δ-kicked atoms

While the first part focuses on the regime of dynamical/Anderson localisation,
for which the energy absorption from the external driving is suppressed, the
second part of this thesis is devoted to a dynamical regime for which quantum
transport is enhanced with respect to the classical analogue. Such enhanced
energy absorption, known as quantum resonance, occurs for the δ-kicked model
at specific driving frequencies [64, 117, 118]. It leads to an unbounded energy
growth of the rotor, which is quadratic in time, and it arises from a perfectly
frequency-matched driving [64, 117, 118].
The δ-kicked rotor is a quantum pendulum with a potential which is pulsed on
and off periodically in time [6, 9, 17, 63, 64, 80]. The potential depends on the
excursion angle of the rotor. The model is sketched in figure 1.3, together with
the train of periodic δ-like kicks. The experimental realisation of the δ-kicked
rotor model builds on the tools of quantum and atom optics. Atoms provide a
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)θF=g(t) sin(

θ

|g(t)|
τ

time t

Fig. 1.3: Periodically kicked quantum pendulum, where the kicking force F (t) is peri-
odic in time (with period τ) and in the angle variable θ.

multiple of allowed electronic transitions such that their internal structure can
be used to impart momentum on them, and to trap, cool, guide, and also diffract
or reflect them by means of optical light fields [119–122]. Techniques which make
it possible to manipulate atomic dynamics in a well-defined way, and which pro-
vide coherent matter wave sources are of high relevance for active research such
as in atomic interferometry [123], for Bose-Einstein condensation [124–126],
atom lasers [127–130], and in atomic lithography [131]. Integrated versions
of these techniques may be used even to guide atoms along microstructures
(“atomic chips”) [132–134]. Although the experimental methods of atom optics
are quite standard in modern laboratories, similar high precision manipulations
of atoms appeared impossible when the quantum version of the δ-kicked ro-
tor model was studied for the first time [6].
The quantum resonances are very sensitive to variations in the driving fre-
quency, which determines the resonance conditions [64, 117, 118]. Moreover,
the quadratic energy growth of a resonantly driven rotor makes it necessary
that a large energy window is accessible in experiments. Therefore, it is not
surprising that experimental imperfections may lead to deviations from the
predictions obtained for the idealised δ-kicked rotor model. Some systematic
differences between the model and the experimental realisation can be easily
understood. First, the experiments always work with a large number of atoms
whose centre-of-mass evolves quantum mechanically. Hence, the experiments
necessarily average over many realisations rather than working with one single
rotor. Second, the atoms move essentially along a straight line, which is defined
by the kicking potential. This leads to an additional freedom which needs to be
introduced when mapping the problem of kicked atoms onto the rotor model
which in turn moves on a circle (cf. figure 1.3). These two effects, together
with experimental imperfections are important when one wants to compare ex-
perimental results with theoretical predictions.
In this thesis, a formalism for the exact treatment of an incoherent ensemble of
kicked-particles which move on a line is developed, which takes care of the two
above mentioned systematic differences. In particular, we include in our theory
the effect of decoherence on the quantum resonant motion of δ-kicked particles.
The decoherence is introduced in a controlled way in the experiments by allow-
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ing the atoms to emit spontaneously during the time evolution, and hence to
randomly change their centre-of-mass momentum. Several experimental obser-
vations at quantum resonance conditions [81–83,135] which do not match with
the standard theory of the δ-kicked rotor will be clarified by taking care of the
above stated differences between ideal rotors and their experimental counter-
parts.
Both parts of the thesis are devoted to the investigation of quantum transport
for systems with a complex time evolution. Quantum chaos theory [7–10,17] is
concerned with quantitative measures for the complexity of quantum dynamics.
For instance, the classical definition of chaos in dynamical systems – the ex-
treme sensitivity to the choice of initial conditions in phase space, characterised
by an exponential divergence of phase space trajectories that were initially in
close proximity – is not operable for a quantum system. In a bound quantum
problem, unitarity guarantees that the overlap of two wave packets remains
constant for all times. Since the notion of trajectories is meaningless in the
quantum world [136], the sensitivity cannot be characterised by an exponential
divergence [43–45], having in mind the finite resolution given by the uncertainty
principle, in other words by the Planck constant. However, one may substitute
“sensitivity to initial conditions” by “sensitivity to changes in the Hamiltonian”,
an idea which goes back to the early days of quantum chaos [137,138]. Instead
of comparing two trajectories which start in close proximity in phase space, one
may compare the time evolution of identical initial states which are propagated
by slightly different Hamiltonians. A measure for the sensitivity of quantum dy-
namics is then the overlap of two such states [138–140]. This overlap is dubbed
“quantum fidelity” (see e.g. [141] and references therein), and it can in principle
be accessed experimentally for the δ-kicked particle evolution [142, 143]. How
the fidelity behaves when quantum resonance conditions are met for an experi-
mental ensemble of kicked atoms will be addressed after the tools to handle the
kicked atoms’ dynamics have been developed.

The wish of a deeper understanding of the two time-dependent quantum trans-
port problems introduced in this section is the central motivation for the fol-
lowing two parts of this thesis. While the first part closely links the solid-state
concept of Anderson localisation to the decay properties of microwave-driven
hydrogen Rydberg states, the second part reconciles experimental observations
with the here developed theory for δ-kicked atoms at quantum resonance.

1.3 Outline of the thesis

Chapter 2 preludes with the necessary prerequisites for the theoretical descrip-
tion of periodically driven atoms. The experimental realisation of the δ-kicked
rotor and its relevant features for the observation of the quantum resonances
are outlined.
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Part I

In Chapter 3 the statistical distributions of the decay rates of periodically
driven Rydberg atoms are presented and analysed. Their implications on the
time-decay of the survival probability of the atoms are emphasised. The chap-
ter concludes with a discussion of possible experimental tests of the analogy
between transport in driven Rydberg atoms and disordered solid states.

Part II

In chapter 4 analytical formulas for the experimental observables at quantum-
resonance conditions are confronted with experimental and numerical data.
While section 4.2 restricts to the absence of noise, section 4.3 presents an an-
alytic theory for the stochastic dynamics, where external noise is modelled
according to the effects of spontaneous emission.

In chapter 5 we derive a scaling law in absence and in presence of decoherence
(sections 5.2 and 5.3), respectively, that describes the shape of the resonance
peaks observed in the mean energy of an atomic ensemble. The derivation is
based on a quasi-classical approximation (of the quantum evolution) which was
introduced in [144, 145].

Chapter 6 applies the machinery derived in the previous two chapters to the
study of quantum fidelity, i.e. the overlap of two initially identical but dis-
tinctly evolved quantum states. Results at quantum-resonance conditions are
presented, together with preliminary investigations of the time decay of fidelity
at small detunings from quantum resonance.

Chapter 7 concludes the thesis with a brief summary of the obtained results
and some comments on the direction of future investigations concerning quan-
tum transport in periodically driven systems.

The appendices contain mathematical facts and formulas used in the second
part; apart from the last one which collects the author’s publications on the
topics discussed in this thesis.





Chapter 2

Theoretical and experimental
preliminaries

In this chapter we lay the foundations for the presentation and discussions of the
central results of this thesis. The atomic systems which we will study in more
detail in the following chapters are introduced. We define the basic notations
and give the necessary theoretical background. In particular, the differences
between kicked atoms in experiments and the abstract δ-kicked rotor model,
including relevant experimental imperfections, are discussed.

2.1 Periodicity in time, position, and momentum

Verily I say unto thee. That this night, before the cock crow, thou
shalt deny me thrice.

Mt 26,34

2.1.1 Floquet theory

In the subsequent chapters, quantum transport in energy or momentum space
is analysed for two open, non-autonomous systems. Both of these systems are
subject to a time-periodic external driving force. This particular time depen-
dence allows one to reduce the problems to stationary eigenvalue problems in
an extended Hilbert space. More precisely, the Floquet theorem [146–149] guar-
antees the following: for a time periodic Hamiltonian Ĥ(t + T ) = Ĥ(t), with

13
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period T , we can write any solution of the Schrödinger equation in the form

|ψ(t)〉 =
∑

ε

cεe
− i εt |ε(t)〉,

with |ε(t)〉 = |ε(t + T )〉, (2.1)

where cε ∈ C are time-independent expansion coefficients. The generalised
eigenstates |ε(t)〉 and the corresponding eigenvalues ε (the “quasi-energies”)
solve the stationary eigenvalue problem

Ĥ |ε(t)〉 = ε |ε(t)〉 (2.2)

for Ĥ ≡ Ĥ(t) − i∂t. Ĥ acts in the extended Hilbert space of square-integrable,
time-periodic functions L2

H ⊗L2(Tω), where Tω ≡ R/TZis the unit circle [150].
The spectrum of the Floquet Hamiltonian Ĥ is periodic in energy with period
ω = 2π/T . Therefore, one may restrict to a single Floquet zone of width
�ω in energy when calculating the quasi-energies ε. This is of great use for the
diagonalisation of the Floquet problem of microwave-driven Rydberg states (see
section 2.4.1 below). For the latter atomic system, the time-periodic eigenstates
|ε(t)〉 are expanded in a Fourier series

|ε(t)〉 =
∞∑

m=−∞
e− imωt |εm〉 , (2.3)

with time-independent components |εm〉. This expansion allows us to recast
the corresponding eigenvalue problem into a time-independent one, with the
prize to pay that the matrix dimension is given by the product of the “usual”
eigenbasis expansion and the dimension of the Fourier space. In theory, one
has to deal with an infinite dimensional matrix. In practice, it can be suitably
reduced to finite size, which must be sufficiently large to guarantee numerical
convergence [95, 108, 113].
Since the Floquet states |ε(t)〉 form an orthogonal basis at any time t, the time
evolution operator can be expanded in the periodic basis functions [151]

Û(t2, t1) =
∑

ε

e−
i
�

ε(t2−t1) |ε(t2)〉〈ε(t1)| (t1, t2 ∈ R) . (2.4)

In particular, the periodicity carries over to the evolution operator: Û(t2 +
T, t1 + T ) = Û(t2, t1), or Û(t + mT, t) = Û(t, t)m, for any integer m [152]. The
latter relation for Û is essential for the analytical and numerical treatment of
the δ-kicked rotor problem. It means that the time evolution is reduced to a
sequential application of the “Floquet operator” Û ≡ Û(t + T, t) to the initial
state of the rotor.

2.1.2 Bloch theory in position space

In the experimental realisation of the δ-kicked rotor (see section 2.3), atoms
move in a one-dimensional periodic potential in position space. Alike the Flo-
quet theorem in the time domain, the Bloch theorem [153, 154] allows one to
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reduce the problem to functions which are periodic in position. Explicitly, for
Ĥ(x, p) = Ĥ(x + a, p), we write any solution of the Schrödinger equation as a
superposition of Bloch states exp( iβx)ψβ(x):

ψ(x) =
∫

β

dβ e iβxψβ(x),

with ψβ(x + a) = ψβ(x) . (2.5)

β is an arbitrary index which can be taken in [0, 2π/a), because of ψ(x + a) =
exp( iβa)ψ(x) and the periodicity of the phase exp( iβa). The periodic Hamil-
tonian Ĥ(x, p) = Ĥ(x+a, p) only couples eigenstates of the momentum operator
with eigenvalues separated by integer multiplies of 2π/a. For fixed β, such states
form a momentum ladder with p = β + 2πm/a (m ∈Z) and constant spacings
2π/a. Expressing p in units of 2π/a, the fractional part of momentum therefore
equals the “quasi-momentum” β = p mod(2π/a). For a free particle with unit
mass, the solution of the Schrödinger equation is a plane wave with wave vector
kw, and the eigenenergies follow the dispersion relation E(kw) = �

2k2
w/2. The

Bloch theory guarantees that generic∗ x-periodic potentials lead to similar ex-
tended solutions with a continuous dependence of the energies on momentum.
The precise form of the dispersion relation is determined by the potential. The
Bloch-state solutions (2.5) allow one to restrict the problem to a single Brillouin
zone of widths 2π/a in momentum, and the corresponding reduced zone scheme
leads to the definition of continuous energy bands [153–155].
In section 2.2.3, we will expand the solutions of the δ−kicked problem in Bloch
waves of the form (2.5). In the peculiar case of the quantum resonances, yet
another periodicity occurs, now in momentum space – besides the periodicity in
time (Floquet theorem) and in position space (Bloch theorem). Then the mo-
mentum eigenstates of the Floquet operator are extended in momentum space.
Details will be explained below, after the δ-kicked rotor has been introduced.

2.2 The δ-kicked rotor

2.2.1 The model

In the sequel, we refer to the δ-kicked rotor as the quantum analogue of the
famous Standard Map [43, 156] (also known as Chirikov-Taylor Map). The
Standard Map is a two-dimensional (in phase space) Hamiltonian toy model
which became important because of its simplicity and the possibility to use it
as a local approximation of more complicated systems [43, 59, 156]. It provides
a wide range of regular and chaotic types of behaviour which made it a natural

∗Exceptional cases are, e.g. an infinite chain of potential wells of finite widths and infinite
height; then no tunnelling coupling between neighbouring sites is allowed. Or the so-called
anti-resonance of the δ-kicked rotor with infinitely degenerate eigenvalues, i.e. with an energy
band of zero width [64].
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subject of investigation when studying the quantum-classical correspondence
[6, 63, 106]. The Standard Map reads in dimensionless action-angle coordinates
[43]

pj+1 = pj + k′ sin(θj+1) (2.6)
θj+1 = θj + τ ′pj mod(2π) , (2.7)

with the kicking strength k′, the kicking period τ ′, and pj, θj the angular mo-
mentum and rotation angle just before the (j+1)th kick†. The motion described
by the map may be viewed as a free evolution in-between the integer times t = j
and t = j +1 (equation (2.7)) followed by a momentum shift (kick) occurring at
t = j + 1 (equation (2.6)). The Standard Map can be quantised [6] (with some
freedom in the order of free evolution and kick [64]) and the state evolution
from one kick to immediately after the next kick is determined by the unitary
Floquet operator [6, 63, 64]

Û = e−
i
�

k′ cos(θ̂)e− i τ ′�P̂2/2 . (2.8)

Û describes a free evolution given by e− i τ ′
�P̂2/2, followed by the kick oper-

ator e−
i
�

k′ cos(θ̂). The time-dependent Hamiltonian of the quantum δ-kicked
rotor may be written as

Ĥ(t′) =
�2P̂ 2

2
+ k′ cos(θ̂)

+∞∑
m=−∞

δ(t′ − mτ ′) , (2.9)

where θ̂, P̂ are the angle and the angular momentum operator, respectively.
After introducing the rescaled variables k ≡ k′/� and τ ≡ �τ ′, t ≡ �t′, the
Hamiltonian divided by �2 reads

Ĥ(t) =
P̂ 2

2
+ k cos(θ̂)

+∞∑
m=−∞

δ(t − mτ) . (2.10)

Both parameters k and τ are necessary in the quantum version of the rotor. The
semiclassical limit corresponds to k → ∞, τ → 0, for fixed classical stochasticity
parameter K = kτ = const. [63, 64, 80]. The latter constraint expresses that
the classical dynamics is unchanged, while �→ 0. The δ function in (2.9-2.10)
makes P̂ 2/2 negligible at the kick, and thus ensures that the free evolution and
the kicking part factorise in the Floquet operator (2.8). The iterated applica-
tion of Û yields the dynamics of the rotor in the discrete time given by the kick
counter m ∈Z. We denote |ψ〉 the state vector of the rotor, and ψ(θ) = 〈θ |ψ〉,
ψ(p) = 〈p|ψ〉 the wave functions in the angle and in the momentum represen-
tation, respectively. The δ-kicked rotor describes a free quantum pendulum
which is kicked periodically with an angle dependent strength k cos θ, c.f. fig-
ure 1.3. Since the rotor moves on a circle, the periodic boundary condition
ψ(θ + 2π) = ψ(θ) enforces that only integer angular momenta p = n ∈ Zare
allowed.

†The map may be rescaled such that it only depends on the stochasticity parameter K =
k′τ ′, however, this scaling does not carry over to the quantised map.
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2.2.2 Quantum resonances

For the δ-kicked rotor model, the evolution operator is naturally decomposed in
a free motion plus an instantaneous application of a kick, and the system evolves
freely over the kicking period with phases that are identical to the unperturbed
eigenenergies n2/2 (n ∈ Z). If the timing is such that after one period (for
the fundamental resonances τ = 4π�, � a positive integer) the time evolution
shows an exact revival without phase mismatch, then exp(− iτn2/2) = 1 for all
n ∈Z. Hence, at these “quantum resonances”, the application of m kicks with
a strength k is equivalent to the application of one single kick with strength
mk. If we deal with kicked particles which move along a straight line, not like a
rotor on a circle, then the momentum p may take any value in R. We can split
p = n +β in an integer part [p] = n ∈Z, and a fractional part {p} = β ∈ [0, 1).
The free evolution part of the Floquet operator then reads

e− i τ
2
(n+β)2 = e− i τ

2
(n2+2nβ+β2) . (2.11)

The phase exp(− i τβ2/2) is independent of n, and therefore always cancels
when computing quantum expectations. We neglect it in the following. The
kick operator can be expanded in the momentum basis [157]:

e− ik cos(θ̂) =
∞∑

n=−∞
(− i )nJn(k)e inθ̂ , (2.12)

where Jn is the Bessel function of first kind and order n [157]. Thus, the kick
does not depend on the fractional part β, which, in fact, is a constant of motion.
For τ = 2π� (� ∈ N),

e− i τ
2
(n2+2nβ) = 1 , (2.13)

if β = 0 (usual rotor with periodic boundary conditions) and � = 2, or in gen-
eral, if β = 1/2+j/� mod(1), with j = 0, 1, .., �−1. The additional, “adjustable”
parameter β allows one to obtain the above mentioned conditions for the funda-
mental quantum resonances for all kicking periods τ = 2π�. These are the values
at which quantum resonances have been observed in experiments [81–83, 135],
and which we will study in detail in the second part of this thesis. Using a
plane wave ψ(0, θ) = exp(− in0θ)/

√
2π (n0 ∈ Z) as initial state, it is easily

derived that the rotor wave packet spreads ballistically if (2.13) is fulfilled, i.e.
the mean value of its energy grows quadratically in time. The rotor’s energy is
computed [6]:

E(t) ≡ 〈ψ(t, θ)| − 1
2

∂2

∂θ2
|ψ(t, θ)〉 = − 1

4π

∫ 2π

0

dθ ψ∗(t, θ)
∂2

∂θ2
ψ(t, θ)

=
k2t2

4
+

n2
0

2
, (2.14)

with ψ(t, θ) = exp (− ikt cos(θ)) ψ(0, θ) from (2.8) and (2.13). Other choices of
the initial state may lead to additional terms growing linearly in time t, which is
to be understood here as an integer that counts the number of kicks. Moreover,
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if the free part of the Floquet operator equals the identity, we immediately see
that the quasi-energy spectrum (see section 2.1.1) is continuous. It is given by
ε(θ) = k cos(θ). This follows from

Û = e− ik cos(θ̂) ≡ e− iε(θ) , (2.15)

where all values ε(θ) are allowed quasi-energies. For k ≥ 1, the eigenvalues of
Û cover the whole unit circle in the complex plane. The continuous spectrum
originates from a translational invariance of Û in momentum space. To make
this clearer, we recall that the δ-kicked rotor problem can be mapped onto a
one-dimensional tight-binding model of the form [61–63, 80]:

(W0 + Tm)um +
∑
r �=0

Wm−rur = 0 . (2.16)

um (m ∈ Z) are the Fourier coefficients of 1/2[ψ+(θ, t) + ψ−(θ, t)] =
1/2[1 + exp ( ik cos(θ))]ψ−(θ, t), where ψ∓ are the time-periodic Floquet
states just before and after the δ−kick. We denoted the on-site potential
Tm = tan(ετ/2 − τm2/4), and the non-diagonal (“hopping”) terms Wr =
−1/(2π)

∫ 2π
0 dθ exp(− irθ) tan (k cos(θ)/2). A detailed derivation of (2.16) may

be found in the literature on quantum chaos [9, 10, 17]. For irrational τ/4π‡,
(2.16) corresponds to a one-dimensional disordered tight-binding model with
pseudorandom numbers Tm [90]. Therefore, the δ-kicked rotor is mapped onto
a standard Anderson problem with disorder, whereby the sites m are identified
with integer angular momenta. It was confirmed numerically, that the quasi-
energy eigenstates are localised around some lattice site nj, and they decay
exponentially away from that site with a characteristic localisation length ξ,
i.e.

u(j)
n ∝ e

− |n−nj |
ξ . (2.17)

A general wave packet also decays exponentially after some initial expansion
period tbreak which is estimated to be tbreak ∼ k2 ∼ ξ [64, 106, 109].
For the opposite case, τ/4π = s/q (s, q mutually prime integers), the on-site po-
tentials Tm form a periodic sequence in m. Then the corresponding eigenstates
of (2.16) are Bloch states of the form:

ψε(θ0)(n) = e iθ0nψθ0
(n),

with ψθ0
(n + q) = ψθ0

(n) . (2.18)

The “quasi-positions” θ0 can be chosen within the interval [0, 2π/q). Therefore,
the δ-kicked rotor at quantum resonance is thrice periodic, in time, position
space, and also in momentum space.
With the phase β in (2.11), an additional constraint on β for the occurrence
of quantum resonances is generally given by β = m/2s, with 0 ≤ m < 2s an
integer [64].
The higher-order quantum resonances, i.e. q > 1, support continuous energy

‡With a little caveat reported in [158]!
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bands whose widths are believed to decay exponentially with increasing q [64].
Therefore, these resonances are much harder to resolve than the fundamental
ones. This may be a good reason why only the resonances at τ = 2π�, with
� = 1, 2, 3, have been detected in experimental realisations using atoms moving
on a line [81–83, 159], that is, with the additional freedom β ∈ [0, 1) [145, 160].

2.2.3 Particle vs. rotor: Bloch theory for kicked atoms

Multi enim sunt vocati, pauci vero electi.

Mt 20,16

The periodic boundary conditions for the wave function enforce a discrete lad-
der of integer (angular) momenta for the rotor, while for a kicked atom also
fractional parts of momenta are allowed. The value of these fractional parts
are crucial what concerns the quantum resonances, and refined resonance con-
ditions depending on them have been stated in the previous section.
The link between the kicked atom in the experiment, which will be described
in section 2.3.2, and the idealised kicked rotor is generated by the spatial pe-
riodicity of the potential. The latter periodicity of the driving only allows for
transitions (induced by (2.12)) between momenta that differ by integer mul-
tiples. Formally speaking, the Floquet operator (2.8) commutes with spatial
translations by multiples of 2π, and Bloch theory (section 2.1.2) enforces con-
servation of quasi-momentum β, which corresponds to the fractional part of
momentum p.
For a sharply defined quasi-momentum, the wave function of the particle is
a Bloch wave, of the form exp( i βx)ψβ(x), with ψβ(x) a 2π−periodic func-
tion. The general particle wave packet is obtained by superposing Bloch waves
parametrised by the continuous variable β:

ψ(x) =
∫ 1

0
dβ e iβxψβ(x), (2.19)

where we can restrict to the Bloch zone θ ≡ x mod(2π). The simple, yet
important observation is now that the Fourier transform of ψ(x), for fixed β,
corresponds to the Fourier transform of ψβ(x):

ψ(n + β) =
1√
2π

∫
dxe− inxe− iβxψ(x) = ψβ(n) . (2.20)

With (2.20) we have in turn

ψβ(θ) =
1√
2π

∑
n

ψ(n + β) e inθ =
1√
2π

∑
n

ψβ(n) e inθ , (2.21)
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which is the Fourier series of the 2π-periodic function ψβ(θ). For modelling an
experimental initial atomic ensemble, we will later use the special case when the
initial state of the particle is a plane wave with momentum p0 = n0 +β0, where
β0 = {p0} and n0 = [p0] are the fractional and integer part of p0, respectively,
i.e. ψ(p) = δ(β − β0)δn,n0 . The wave function in this case reads

ψβ(θ) =
1√
2π

δ(β − β0)e in0θ . (2.22)

For any given β, ψβ(θ) may be thought of as the wave function of a rotor with
angular coordinate θ, henceforth baptised β−rotor. We denote the correspond-
ing state of the rotor by |ψβ〉. From (2.8) and (2.21), it follows that |ψβ〉
evolves into Ûβ |ψβ〉, with the Floquet operator

Ûβ = e− ik cos(θ̂) e− i τ
2
(N̂+β)2, (2.23)

where N̂ is the angular momentum operator, in the θ−representation: N̂ =
−id/dθ, acting on the Hilbert space of wave functions with periodic boundary
conditions in θ. The Floquet operator (2.23) differs from the Floquet opera-
tor of the standard δ-kicked rotor [6, 63, 64, 80, 106] by the additional phase β.
This phase may be regarded as an external Aharonov-Bohm flux threading the
rotor [161], which, for instance, induces strong fluctuations when studying the
parametric dependence of survival probabilities [162–164].
The difference between rotors’ and a particles’ dynamics owing to the presence
of a continuum of quasi-momenta is indeed crucial for the observation of quan-
tum resonances in experiments as well as in numerical simulations. Nearly all
quasi-momenta involved in a particle’s wave packet (2.19) do not show resonant
motion, as long as the initial momentum distribution is not prepared in very
specific, narrow ranges of quasi-momenta [145, 160]. As stated in section 2.2.2,
the occurrence of quantum resonances at τ = 2π� (� ∈ N) requires also that
β = 1/2 + j/� mod(1), with j = 0, 1, .., �− 1. Only if both conditions on τ and
β are fulfilled, the Floquet operator commutes with translations in momentum
space by multiples of q = 1, 2, respectively. Note that even if τ = 2π� (� ∈ N),
the number of resonantly driven β-rotors is a set of measure zero in the contin-
uum [0, 1). Therefore, only a tiny fraction of atoms from the initial Gaussian
momentum distributions in the experiments reported in [81–83, 159] does obey
the second condition on β.

2.3 Experimental realisation of the kicked rotor
model

2.3.1 Experimental setup

The quantum system studied in the laboratory to implement the kicked ro-
tor dynamics is a dilute ensemble of laser-cooled alkali atoms (sodium, cae-
sium). Following release from an atomic (magneto-optical) trap [121, 122, 165]
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T

kL

k

|e〉
|g〉

Fig. 2.1: Sketch of the experimental setup used to impart momentum by a standing
wave (kL) on laser cooled atoms (dots); the zoomed view shows the internal two level
structure of the atoms with ground state |g〉 and excited state |e〉. The cooling beams
(kT) may also be applied to induce spontaneous emission (see section 2.3.3).

these atoms (typically ∼ 106 [15, 83, 166]) are exposed to a spatially periodic
potential applied by a standing wave of laser light. To create the standing
wave, the output of a tunable laser is retro-reflected by a mirror and the two
resulting beams are aligned so as to counter-propagate. Figure 2.1 sketches
the experimental setup. The beam intensity is controlled by a switch (in prac-
tice an acousto-optical modulator [167]) that allows the beam to be pulsed.
This provides a pulsed, spatially periodic potential. Crucial for experiments
with long interaction times with the standing wave is that the atoms are “cold”
coming from a trapped and cooled dilute ensemble with a small initial spread in
momentum. Following application of the standing wave, the atoms are allowed
to expand freely. Then their spatial distribution is measured, and knowing the
time of free expansion the atoms’ momentum distribution (immediately after
the application of the standing wave) can be calculated [135].
The dynamics of a system subject to a time-varying potential, as provided by
the pulsed standing wave, approximates that of the δ-kicked rotor. An initial
Maxwell-Boltzmann, i.e. Gaussian, distribution of atomic momenta becomes
exponential in form for τ/4π irrational, and k > 1. The exponential distri-
bution sets in after an interaction time t larger than the “break time” tbreak

(the time at which the quantum nature of the system begins to manifest). This
led to the first direct observation of dynamical localisation [54, 168, 169]. From
the momentum distributions measured in the experiments one can immediately
calculate the average kinetic energy of the atoms as function of the number of
applied pulses. In the regime of dynamical localisation, the energy does not
show a linear growth with the number of pulses as predicted by a classical dif-
fusion argument [63,156], it rather saturates after the break time. In particular,
in these cold atom experiments momentum distributions and mean energies can
be resolved experimentally for very short times up to the break time tbreak, and
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thus in the transition regime when dynamical localisation starts to manifest.
Hence, the experimentally observed behaviour demonstrates the quantum sup-
pression of classical diffusion more directly than in experiments with driven
Rydberg atoms. There, the only accessible signal is the ionisation yield of the
atoms, and short-time observations are limited by the signal-to-noise ratio, and
the finite switching time of the microwave field [11, 53].
To allow for a better comparison with experimental literature, we use labora-
tory units in the subsequent section. There we will show that, under suitable
conditions, it is possible to ignore the internal electronic structure of the atoms,
and treat them as point particles [170]. The “reduced” atomic dynamics is in-
duced by an effective centre-of-mass Hamiltonian, which in laboratory units
reads

Ĥ(t) =
P̂ 2

2M
+ V0 cos(2kLX̂)f(t, Tp) . (2.24)

M denotes the atomic mass, kL the wave number of the kicking laser, V0 the po-
tential amplitude (proportional to the laser intensity), and f(t, Tp) its modula-
tion. In a restricted momentum region, indeed a periodic δ-like time-dependence
can be mimicked f(t, Tp) �

∑+∞
l=−∞ δ(t − lTp), with the kicking period Tp.

Hence, (2.24) governs the dynamics of a δ-kicked particle. To arrive at the
form of the Hamiltonian (2.10) we have to rescale momentum in units of 2�kL,
position in units of (2kL)−1, mass in units of M . Energy is then given in units
of (2�kL)2/M , time in units of M/�(2kL)2, and the reduced Planck constant
equals unity. In particular we obtain for the kicking period τ = �Tp(2kL)2/M ,
and for the kicking strength k = V0Tdur, where Tdur is the finite width in time
of individual pulses. This procedure leads to the Hamiltonian (2.10) with the
slight, but crucial difference that X̂ is an unbounded operator and its eigenval-
ues are not to be taken mod(2π), as the angular coordinate of the conventional
δ-kicked rotor. This problem has been addressed in section 2.2.3, and it is very
important for the understanding of the experiments which work with atoms on
a line rather than with rotors on a circle!

2.3.2 Derivation of the effective Hamiltonian

To derive (2.24) for the experimental realisation, we essentially follow standard
arguments in atom optics as provided, for instance, in [122, 135, 171], where a
more detailed and contextual description may be found.
To capture the main features of the problem one usually considers a two-level
atom moving in a standing wave of light:


E(X̂, t) = 
zE0 cos(kLX̂)
(
e iωLt + e− iωLt

)
≡ 
E−(X̂, t) + 
E+(X̂, t) , (2.25)

with the amplitude E0 of the wave, 
z the unit vector in z direction, and ωL the
laser frequency. Time t has to be understood as a continuous variable in this
section. The free evolution of the atoms is determined by the Hamiltonian

ĤA =
P̂ 2

2M
+ �ω0 |e〉〈e| , (2.26)
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where P̂ denotes the (external) centre-of-mass momentum of the atom, and |e〉
the internal excited state. ω0 is the frequency of the atomic transition with
the zero point of the internal energy chosen at the ground state level, which is
denoted by |g〉, c.f. figure 2.1. The atom-field interaction and its impact on the
centre-of-mass motion of the particle is derived using several approximations,
called dipole, rotating-wave, and adiabatic approximation, respectively, which
we briefly describe in the following.
The dipole approximation states that the field amplitude varies little over the
atomic dimensions, an often used and valid assumption for atoms in the ground
state and for optical wavelengths, as well as for Rydberg states in the microwave
regime (see section 2.4.1). For near-resonant driving |ωL − ω0| � ωL + ω0, we
may neglect fast rotating terms of the form exp(± i (ωL + ω0)t). This results in
the atom-field interaction Hamiltonian:

ĤAF = − 
̂d+ · 
E+ − 
̂d− · 
E−

=
�Ω
2
(
σ̂+e− iωLt + σ̂−e iωLt

)
cos(kLX̂) . (2.27)

The atomic dipole operator splits up into two components 
̂d ≡ 
̂d+ + 
̂d− ≡
(σ̂+ + σ̂−)〈e| 
d |g〉, where 
d is the vectorial dipole moment, and the operator
nature is carried by σ̂− = |g〉〈e| and σ̂+ = |e〉〈g| . Ω ≡ −2〈e| dz |g〉E0/� is
the Rabi frequency with the dipole matrix element in z direction 〈e| dz |g〉, and
quantifies the coupling between the atom and the external laser field [172].
To simplify the equations of motion, one usually transforms to the rotating
frame of the laser field by defining the atomic excited state |ẽ〉 ≡ exp( iωLt) |e〉
and the stationary field amplitudes Ẽ± ≡ exp(± i ωLt)E±. Notice that |ẽ〉 is
also an eigenstate of the internal component of ĤA, and in the rotating frame
the internal energy equals −�∆L, ∆L ≡ ωL − ω0. Therefore, we arrive at the
following complete Hamiltonian including the internal and external degrees of
freedom:

ˆ̃H =
P̂ 2

2M
− �∆L |ẽ〉〈ẽ| −

ˆ̃

d+ · 
̃E+ −

ˆ̃

d− · 
̃E−

=
P̂ 2

2M
− �∆L |ẽ〉〈ẽ| +

�Ω
2

(
ˆ̃σ+ + ˆ̃σ−

)
cos(kLX̂) . (2.28)

We decompose the atomic state vector |ψ〉 explicitly into a product of inter-
nal and external states, the latter describing the centre-of-mass motion of the
atoms:

|ψ(t)〉 = |g〉 ⊗ |ψg(t)〉+ |ẽ〉 ⊗ |ψe(t)〉 . (2.29)

Separating the equations of motion induced by H̃ into the coefficients of |e〉
and |g〉, we obtain the coupled pair of equations:

i�∂t |ψe〉 =
P̂ 2

2M
|ψe〉 +

(
�Ω
2

cos(kLX̂)
)

|ψg〉 − �∆L |ψe〉 , (2.30)

i�∂t |ψg〉 =
P̂ 2

2M
|ψg〉+

(
�Ω
2

cos(kLX̂)
)

|ψe〉 . (2.31)
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We attempt to solve (2.30-2.31) for the centre-of-mass motion of the atom,
which occurs on a much slower timescale than those of the internal motion.
Therefore, for |∆L| � Ω, we may assume that the internal motion damps in-
stantaneously, i.e. ∂t |ψe〉 = 0, such that the excited state probability amplitude
follows adiabatically that of the ground state:(

�∆L − P̂ 2

2M

)
|ψe〉

(2.30)
� �Ω

2
cos(kLX̂) |ψg〉 . (2.32)

Inserting this approximation into (2.31) gives

i�∂t |ψg〉 �
P̂ 2

2M
|ψg〉 +

�Ω2

4∆L
cos2(kLX̂) |ψg〉 , (2.33)

where we neglect the centre-of-mass energy term on the left-hand side of (2.32).
We already assumed that |∆L| is large, and, therefore, we may also suppose that
�|∆L| � |P̂ 2|/2M . For ∆L = −30 GHz [82] and caesium atoms this constraint
corresponds to p/(2�kL) � 800 in momentum p. Since such large momenta
cannot be reached in experiments because of other reasons (see next section and
[15,83,135,173]), the assumption �|∆L| � |P̂ 2|/2M is well justified. Moreover,
|∆L| � ωL + ω0, and the rotating wave approximation is still applicable [15,
83, 135, 173]. Then we obtain the Hamiltonian that describes the dynamics of
a point particle in a sinusoidal potential:

Ĥ =
P̂ 2

2M
+
�Ω2

4∆L
cos2(kLX̂) =

P̂ 2

2M
+
�Ω2

8∆L

(
1 + cos(2kLX̂)

)
, (2.34)

where the constant component in the potential can be dropped, to arrive at the
final form

Ĥ =
P̂ 2

2M
+ V0 cos(2kLX̂) , with V0 ≡ �Ω2

8∆L
. (2.35)

The position dependent centre-of-mass potential in (2.35) arises from the posi-
tion dependent shift of the atomic energy levels by virtue of the interaction with
the standing wave (ac Stark shift) [172]. From the spatially periodic structure
of Ĥ with period λL/2 = π/kL, we obtain now a clear physical interpretation
of the fact that the kicking part of the Floquet operator (2.8) couples only
momenta differing by integers [64] (see sections 2.2.2 and 2.2.3). The discrete
ladder structure in momentum is imposed by coherent elastic scattering of pho-
tons from the standing wave: if the atom absorbs a photon that was travelling
in one direction and re-emits it into the counter-propagating mode, the atom
will recoil and change its momentum by twice the photon momentum �kL

§.
If the standing wave is now pulsed in the form of a regularly-spaced sequence
in time with period Tp, (2.35) may provide a reasonable approximation to the
ideal δ-kicked rotor dynamics induced by (2.10). To this end, the pulse width
τdur = Tdur�(2kL)2/M must be sufficiently short such that the distance travelled
by an atom over Tdur is small compared with the spatial period of the standing
wave λL/2, i.e. Tdur ≤ λLM/(2p), with the atomic momentum p.

§The exchanged momentum must be in either direction of the two counter-propagating
waves because of energy and momentum conservation.
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2.3.3 Experimental imperfections

Finite pulse width

The most important experimental constraint, when one wants to mimic an ide-
alised δ−kicked system, is given by the fact that experimental pulses used to
provide the kicking potential are always of some finite width τdur in time. From
the above arguments (see end of last section) it should be clear that the experi-
mental dynamics fails to approximate ideal kicks for fixed τdur, in particular, at
large atomic momenta. The experimental realisation is the better the larger the
mass of the used atomic species. For this reason caesium, the heaviest stable
alkali atom, is nowadays used in experiments [174]. The effect of non-δ-like
pulses has been studied extensively by Raizen and co-workers in experiments
as well as in numerical simulations [15, 169, 173, 174]. Together with theoreti-
cal work [175] these results show that the effective potential (kicking strength)
is substantially smaller in the region of large momenta (keff � 0.75kmax at
p/(2�kL) = ±80 as compared to the centre n = 0, for Tdur � 300 nsec [173]).
Physically, if the atom is too fast it will start to average over the potential lead-
ing to smaller coupling, or, more precisely, the applied pulse (with a certain
shape in time) enforces a window function in momentum space depending on
the exact pulse shape. For large momenta this effect induces classical and quan-
tum localisation [174–176]. In this region beyond some momentum value nref,
the classical phase space is filled by impenetrable barriers (tori), which sur-
vive small perturbations according to the Kolmogorov-Arnold-Moser (KAM)
theorem [43–45, 177]. For smooth pulses, the momentum nref is inversely pro-
portional to the duration of the pulse τdur, with a pre-factor which depends on
the shape of the pulse [175]. Assuming a square pulse shape we obtain, for
instance, keff � 2kmax sin(nτdur/2)/(nτdur) [169, 173, 178], the window function
being the Fourier transform of the pulse.

Other problems

There are many more experimental difficulties which are faced when an idealised
one-dimensional δ-kicked particle dynamics [171,173] should be simulated. For
our purposes relevant problems are addressed briefly in the following.
A severe systematic restriction, connected to the discussion of the finite pulse
width, originates from the experimental determination of the atoms’ momen-
tum distribution. The latter is obtained by counting particles in some rela-
tively small momentum interval centred around p = 0. Especially in the wings
of the momentum distribution, the signal is weak, calling for an experimental
threshold which decides whether to reject the counts or not. Practically two
thresholds are applied: i) momenta are only counted in some fixed window,
and ii) a “dark count” threshold that discriminates the signal from background
noise. For the kicked-rotor experiments reported in [82, 83], the effective mo-
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mentum window was chosen −40 < p/(2�kL) < +40 (in most recent data
−60 < p/(2�kL) < +60 [159]), and the value of the signal was set to zero for
less than 20 counts [83, 135]. These two relevant thresholds are highlighted
in figure 4.10 where experimental and theoretical momentum distributions are
compared.
The atomic density (� 1011 atoms/cm3 in [173]) must be small enough to avoid
considerable atom-atom collisions which would spoil the model of independent,
structure-less point particles used in the derivation of the effective Hamiltonian
(2.35). Based on measurements of collision cross sections for caesium [179],
the collision probability is estimated in [173] as 2%/msec. Considering kicking
times t � 50 × Tp, with typical Tp � 20 . . .70 µsec [81–83], this corresponds to
a maximal probability of 7% that one collision occurs during the experiment.
Intensity fluctuations in the laser beam producing the standing wave should
be kept as small as possible to avoid what is known as amplitude noise
[173, 180, 181]. Moreover, since the atoms are initially prepared in a three-
dimensional momentum distribution they are not always centred at the spot
of the laser. The laser itself has a transverse Gaussian profile what leads to a
potential which is the weaker the farther the atoms are away from the centre
of the beam. Both of these two independent effects induce a variation of the
kicking strength, which is experienced by the atoms [135, 182].
In particular, when additional momentum is imparted on the atoms by allow-
ing them to emit spontaneously in all directions, the particles may move away
from the spot of the laser beam. In the experimental situations of [81–83], the
transverse spreading (i.e. the deviation from the one-dimensionality of the mo-
tion) produced by SE events is smaller than the spread of the initial momentum
distribution in the transverse plane to the kicking axis.
The problem of spontaneous emission is for itself worthwhile to investigate:
atoms are never two-level systems what makes a treatment necessary which
includes the distribution of the atomic population over various sublevels, and
also the process of dissipation by spontaneous emission. In the far-detuned
case, assumed when deriving the effective Hamiltonian (2.35), the probability
of absorbing a photon from the standing wave and emitting it in the vacuum
mode is small. A good approximation for the steady-state scattering rate as a
result of spontaneous emission (SE) is obtained by Rsc � γSE|ψe|2, where γSE is
the line width of the excited level with population |ψe|2. Using (2.32), we may
estimate |ψe|2 � Ω2/(4∆2

L) cos2(kLx) (assuming that only the ground state is
significantly populated, i.e. |ψg| � 1, and �|∆L| � |P̂ 2|/2M as used above).
This leads to Rsc � γSEΩ2/(8∆2

L) � 1 for γSE, Ω � |∆L| after averaging the
cosine. For the experiments performed by d’Arcy and co-workers, the mean
number of SE events undergone by each atom due to one far-detuned standing
wave pulse is estimated to be nSE � RscTp � 2 × 10−3 [83, 135].
Apart from the unwanted effect described above, SE, indeed, provides a con-
trollable way of adding noise to the evolution of the atoms [82,83,176,182–184].
To this end, SE is introduced most flexibly by an additional laser, which is
independent of the standing wave (for instance, by the beams used to prepare
and cool the atoms before the kicks are applied [82, 83], cf. figure 2.1). The
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induced mean number of events can be scanned by varying the intensity (thus
the Rabi frequency Ω), the interaction time or the applied detuning from the in-
ternal atomic transition [172]. The stochastic time evolution of kicked atoms in
presence of SE at quantum resonance is theoretically modelled in section 4.3.2.

2.4 Quantum chaos and microwave-driven Rydberg
states

2.4.1 Atomic hydrogen in a microwave field

Like the δ-kicked rotor also the second atomic system which we want to inves-
tigate is time-periodic: hydrogen Rydberg atoms exposed to a monochromatic
electromagnetic field. A numerically exact method to treat this problem with a
minimum of (irrelevant) approximations has been developed by Buchleitner and
Delande [108, 112, 113, 185], and recently a refined version using large parallel
supercomputers has been successfully applied to describe other non-hydrogenic
one-electron Rydberg states [95–98].
The highly excited Rydberg electron moves in three-dimensional configuration
space in presence of the combined potential of the nucleus and the external
time-periodic field. The driving force further excites the electron and eventu-
ally may ionise it. Therefore, a complete theoretical treatment must account
for the one-electron dynamics within the Coulomb potential, and the spectrum
of the atom dressed by the (classical [172]) field, including the coupling to the
atomic continuum. The parameter space consists of the quantum numbers of
the unperturbed initial electronic state |φ0〉 = |n0 �0 m0〉, the amplitude F ,
the angular frequency ω of the field, and the interaction time t between atom
and field. n0 denotes the principal quantum number of the initial state, �0 and
m0 its angular momentum and the projection of the latter onto the field axis,
respectively.
In this thesis, we restrict to linearly polarised microwave fields, and assume that
the field is constant in space over the atomic dimensions (dipole approximation).
We neglect the for our parameter values (n0 � 1, F � 1/n4

0, ω � 1/n3
0) irrele-

vant relativistic, spin and QED effects, and further assume an infinite mass of
the nucleus [108]. In atomic units, the Hamiltonian may be written in several
gauges [149, 186]:

H =
1
2

p 2 + V (r) + 
r · 
F cos(ωt) , length gauge (2.36)

H =
1
2

p 2 + V (r)− 
p · 
F

ω
sin(ωt) , velocity gauge (2.37)

with the Coulomb potential V (r) = −1/|
r|. Since the spectral properties are
not affected by the choice of gauge, we have the freedom to choose the most
appropriate one for our particular purposes. The numerical calculations use,
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for faster convergence, the representation in the velocity gauge [108, 187, 188].
The Floquet theorem allows one to reduce the time-dependent problem given
by either of the Hamiltonians (2.36-2.37) to a stationary eigenvalue problem.
Using (2.36) and (2.3), the eigenvalue problem (2.2) is recast into a coupled set
of time-independent equations:(

1
2

̂p 2 + V (r̂) − mω − ε

)
|εm〉 = −1

2

̂r · 
F ( |εm+1〉 + |εm−1〉) (m ∈Z) .

(2.38)

The additional quantum number m counts the number of photons exchanged
between the atom and the dressing field [149].
The tridiagonal form of (2.38) in m is reminiscent of the structure of the tight-
binding model which is used to describe particle transport in condensed-matter
physics [153,154,189]. The tight-binding description encountered below in equa-
tion (2.16) is exact for the δ-kicked rotor, whereas (2.38) still contains the mo-
mentum and position operators, and hence leads to a more complicated matrix
structure [95,113]. A tight-binding model will serve in section 3.1.3 to relate our
results on the ionisation probability of the atom to predictions for Anderson-
localised solids. We emphasise again, (2.38) explicitly contains the coupling
between “nearest neighbour” states |εm〉 in energy space. For vanishing field
amplitude F → 0, the equations decouple, and any Fourier component |εm〉 is
a solution of the Schrödinger equation with energy eigenvalue ε + mω of the
dressed state. With increasing F , the external field starts to couple the differ-
ent photon channels labelled by m, as depicted in figure 2.2, and we have to
solve the full Floquet problem (2.38) in order to obtain the dressed states of
the atom.
Since m runs from −∞ to +∞, the dipole term couples all bound states of
the field-free Hamiltonian to the atomic continuum. The spectrum of (2.38)
no longer separates into two orthogonal subspaces (discrete bound states and
continuum), but all bound states turn into resonance states embedded in the
atomic continuum [108,150,190]. The projection of a resonances state onto a fi-
nite volume in coordinate space decays with a finite rate Γε. The corresponding
eigenvalue problem (2.38) can then be solved only for complex quasi-energies
ε = Re(ε) − Γε/2, because of the non-unitarity of the problem induced by the
projection. Precisely the decay rates Γε determine the experimentally measured
ionisation yield of the driven Rydberg atom.
To extract the complex quasi-energies ε, we use a complex scaling transfor-
mation [150, 190–195], which allows us to separate the resonance states from
the continuous part of the spectrum also for the driven atom. The method of
complex scaling is perfectly suited for the present problem of (typically slowly)
decaying states, which are non-square-integrable solutions of (2.38). The com-
plex scaling transformation rotates the continuous spectrum away from the real
axis into the lower half of the complex plane, and thus uncovers the resonance
poles of the metastable states of the atom in the field. The energies ε of these
resonance states do not depend on the complex rotation angle, which must be
sufficiently large to really uncover all the resonance poles [150,190,193]. A typ-
ical spectrum is plotted in figure 3.8; it illustrates the rotated continuum, and
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Fig. 2.2: Illustration of the tight-binding structure of equation (2.38) in the photon
index m, which labels the number of “dressing” photons: The external microwave
field couples the bound states of atomic hydrogen (horizontal lines) through the dipole
operator 
̂r to the atomic continuum (dark areas).

the resonances between the real axis and the continuum.
The complex dilated eigenvalue problem (2.38) is represented in a real Stur-
mian basis, such that a block-tridiagonal complex symmetric, sparse banded
matrix [108,113] can be diagonalised numerically. The diagonalisation supplies
the quasi-energies ε, thus also the ionisation rates Γε, and the associated eigen-
basis of the microwave driven atom [113, 185]. Therefore we have everything
at hand for the investigation of the quantum probability transport from an ini-
tially bound state |φ0〉 to the atomic continuum.
In section 3.1.3, we are interested in the behaviour of the survival probability of
the atom in the microwave field. Psurv(t), i.e. the probability to find the atom
in a bound state after an atom-field interaction time t = t2 − t1, is given by the
projection of the propagated initial state |φ0〉 = |n0 �0 m0〉 onto the subspace
of all bound states |χ〉:

Psurv(t) =
∑
χ

∣∣∣〈χ| Û(t2, t1) |φ0〉
∣∣∣2 , (2.39)

where Û is the time-evolution operator (cf. (2.4)), generated by the Hamiltonian
(2.36-2.37). Û(t2, t1) propagates the wave function from time t1 to time t2 when
the field interaction is switched on and off, respectively. After averaging the
initial and final time t1 and t2 over one field cycle T = 2π/ω, respectively, while
keeping the total interaction time t = t2 − t1 fixed¶, (2.39) can be shown to

¶The averaging over one field cycle physically represents a phase average for the external
field, whose phase – when the atoms start or stop to interact with the microwave – is effectively
averaged in state-of-the-art experiments [11, 108].



30 Chapter 2. Theoretical and experimental preliminaries

yield [108, 113]

Psurv(t) =
∑

ε

e−Γεtwε . (2.40)

The weight factors wε ≡
∑

m |〈εm |φ0〉|2 are the expansion coefficients of the
initial wave packet in the Floquet eigenbasis‖. The sum (2.40) runs over the
entire spectrum within one Floquet zone of width ω in energy.

2.4.2 Quantum-classical correspondence

As mentioned in the introduction, the experimental findings by Bayfield and
Koch on hydrogen Rydberg atoms [4] fostered the understanding of the classical-
quantum correspondence of classically chaotic systems. In [4] a very efficient,
multi-photon ionisation was reported for field intensities lower than the inten-
sity necessary for a static electric field to ionise the atoms. As evident from
figure 1.2, the threshold value F0(10%) ≡ F (10%)n4

0 at which 10% of the atoms
ionise, can be reproduced by classical calculations for microwave frequencies
less then the classical Kepler frequency, i.e. ω < 1/n3

0 [11, 94, 100]. For the
range ω ≥ 1/n3

0, the behaviour of F0(10%) is best explained by dynamical lo-
calisation theory [59,60]. The scaling used in figure 1.2 is the natural scaling of
the classical Hamiltonian equations induced by (2.36-2.37). Indeed, the classi-
cal equations of motions are invariant under the transformations highlighted in
table 2.1 [25, 46].


r → 
r/n2
0 
p → 
pn0 t → t/n3

0


F → 
F0 ≡ 
Fn4
0 ω → ω0 ≡ ωn3

0 H → Hn2
0

Tab. 2.1: Scale transformations which leave the classical Hamiltonian dynamics of peri-
odically driven hydrogen Rydberg states unchanged. n0 is identified with the principal
quantum number of the initial atomic state.

These scaled variables are the basis for the comparison of the classical and the
quantum evolution along the lines of the correspondence principle. The clas-
sical scale invariance induces an effective Planck constant �eff ≡ �/n0 through
the quantum commutator relation for position and momentum operators:

i� = [
̂r, 
̂p] →
[


̂r

n2
0

, 
̂pn0

]
= i

�

n0
. (2.41)

‖The weights are actually wε =
P

m〈εm|φ0〉2, i.e. complex numbers without the absolute
square, since the eigenstates are solutions of a complex symmetric, non-Hermitian eigenvalue
problem [108,113,185]. Here we use a simplified notation to avoid such technical complications.
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Precisely this dependence on the initial principal quantum number n0 – which
corresponds to the classical action variable – makes highly excited Rydberg
states ideal objects for the study of the manifestations of mixed regular-chaotic
classical dynamics in quantum mechanics. The finite �eff contains the infor-
mation on the initial state, and the quantum system is able to resolve classi-
cal phase-space structures the better, the larger n0. Indeed, Floquet states
mainly concentrated on either regular regions, e.g. nonlinear resonance is-
lands, or chaotic components of the classical phase space have been identi-
fied [77, 87, 93, 100,112, 113]; see figure 3.11 on page 47 for typical phase-space
plots of one-dimensional periodically driven hydrogen.

In the following chapter, we focus on the parameter regime ω0 > 1 to search
for further unambiguous signatures of dynamical/Anderson localisation in peri-
odically driven Rydberg atoms. The phase-space localisation properties of the
quantum states will turn out to be essential for the statistical analysis of the
ionisation rates Γε [116].





Part I:

Signatures of Anderson localisation
in the multiphoton ionization of
hydrogen Rydberg atoms

Ein historisches Kriterium für die Eigenart der Prinzipien kann
auch darin bestehen, daß immer wieder in der Geschichte des
philosophischen und naturwissenschaftlichen Erkennens der
Versuch hervortritt, ihnen die höchste Form der ,,Universalität”
zuzusprechen, d.h. sie in irgendeiner Form mit dem allgemeinen
Kausalsatz selbst zu identifizieren oder aus ihm unmittelbar
abzuleiten. Es zeigt sich hierbei stets von neuem, daß und warum
eine solche Ableitung nicht gelingen kann – aber die Tendenz zu
ihr bleibt nichtsdestoweniger fortbestehen.

E. Cassierer, in [196]





Chapter 3

Driven Rydberg atoms as an
open quantum system

The survival probability (2.40), and hence the thresholds for the field strength
F0(10%) ≡ F (10%)n4

0, at which 10% of the atoms ionise owing to the interac-
tion with the external driving (cf. figure 1.2), convolutes the spectral (global)
information provided by the decay rates as well as the local information about
the initial conditions (i.e. the initial state n0). The latter is contained in the
weight factors wε in (2.40). To circumvent the mixing of the global spectral
properties and of the local expansion coefficients, the straightforward way to
proceed is to analyse the ionisation rates Γε of the Floquet problem. This al-
lows us to identify unambiguous signatures of dynamical/Anderson localisation
in the decay-rate distribution ρ(Γε) [116].

A clear indicator for Anderson localisation in transmission problems (i.e. in
open quantum systems) is indeed provided by the decay-rate distribution of
states exponentially localised within the sample. The distribution of decay
rates obeys a power law ρ(Γ) ∝ Γ−1 [197]. Such a law is easily derived by
assuming that the rates Γ are proportional to the overlap of the corresponding
states with the lattice site at the boundary. The boundary is to be identified
with the lead in a solid-state transmission problem, or the atomic continuum of
driven hydrogen. The tail of the wave functions determines the loss out of the
sample in this simplified picture, which is sketched in figure 3.1. We assume
a sufficiently large number of sites j = 1 . . .L, with L � 1, and uniformly
distributed states along the lattice, i.e. with constant density ρA(j) = 1 in
the limit L → ∞. Then, if we suppose that the following relation is valid:
Γn ∝ |ψΓn(j)|2j=L ∝ exp(−2j/ξ)|j=L, we obtain

ρ(Γn) =
∣∣∣∣dΓn

dj

∣∣∣∣
−1

j=L

∝ e
2j
ξ

∣∣∣
j=L

(
ξ

2

)
∝ 1

Γn
. (3.1)

This follows from the transformation formula for probability densities [198]. L

35
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j=Lj=n

ξ

|ψΓn(j)|2

Fig. 3.1: One-lead Anderson model with exponentially decaying state, which is localised
at the lattice site j = n. On the left we assume a perfectly reflecting wall. The
open right end induces decay out of the sample, and the tail of the wave function
at the boundary j = L determines the loss rate Γn ∝ |ψΓn(j)|2j=L. The localisation
length ξ characterises the width of the wave function. The same model will be used in
section 3.1.3 to examine the time dependence of the survival probabilities.

denotes the index of the last site at the boundary and ξ the localisation length
along the lattice, over which the wave functions are exponentially localised.
Using the above argument, the power law (3.1) was predicted also for dynam-
ically localised, classically chaotic model systems [199]. For one-dimensional
tight-binding models a similar behaviour ρ(Γ) ∝ Γ−α was found whereby the
exponent α � 1 . . .2 turned out to be slightly dependent on the model assump-
tions and on the degree of localisation [197,200]. Very recently, the distribution
of resonance widths in multiple-light scattering systems was also shown to obey
a power law with α � 1 in the localised regime [201]. In the subsequent sec-
tions, the statistics of the decay-rate distribution are elucidated for the atomic
ionisation problem of strongly driven hydrogen Rydberg states.
Generic (physical) Hamiltonian systems are neither completely chaotic nor inte-
grable but show simultaneously both, chaotic and regular motion, which mani-
fests in a mixed classical phase space. Atomic Rydberg states under microwave
driving are paradigmatic real objects to investigate the quantum probability
decay in presence of tunnelling and of quantum localisation phenomena (Ander-
son/dynamical localisation [59,60] and semiclassical localisation in the vicinity
of partial phase-space barriers [104, 105]). In addition to the good agreement
with the predictions for Anderson-localised systems, our statistical analysis of
the distribution of the ionisation rates makes it possible to systematically study
the impact of classical phase-space structures on quantum transport in period-
ically driven Rydberg states.
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3.1 Universal statistics of decay rates

3.1.1 Numerical results

The atomic ionisation process of Rydberg states subject to microwave radia-
tion is mapped onto the Anderson model through the localisation parameter
L = ξ/L [59, 60], where the localisation length ξ is measured in units of the
photon energy ω. Both transport problems are sketched in figure 1.1. Accord-
ing to the theory of dynamical localisation [59, 60], L characterises the degree
of localisation. For L � 1, the electronic wave packet is strongly localised on
the energy axis, while for L > 1 considerable coupling to the atomic continuum
prevails. The sample length L is the ionisation potential of the initial state
|φ0〉 = |n0 �0 m0〉, measured in units of ω:

L =
1
2ω

(
1
n2

0

− 1
n2

c

)
. (3.2)

nc defines the effective ionisation threshold in the experiments [11,13,50] as well
as in numerical calculations using a large but finite basis [108]. Provided that
n0 – identified with the principal action of the classical evolution – is chosen
within the chaotic component of phase space (assuming only tiny remnants of
classically regular motion immerged in the chaotic sea), L measures the exten-
sion of the domain of complex transport along the energy axis.
The mapping onto the original Anderson problem – with sample length L –
implies a distribution of the decay rates ρ(Γ) ∝ Γ−1, in the statistical average
over many realisations of disorder at a fixed value of L � 1. In the atomic
problem, statistically independent realisations of “disorder” with fixed localisa-
tion parameter L are generated by simultaneously varying the field amplitude
F and its frequency ω. We use the following prediction of [59, 60]

L � 6.66F 2n2
0ω

−7
3

(
1 − n2

0

n2
c

)−1

(3.3)

from the original theory on dynamical localisation in periodically driven, one-
dimensional (1D) hydrogen atoms. While this theory, which is based on several
approximations, has no quantitative predictive power, it provides at least a
qualitatively correct picture, in particular when statistical averages are consid-
ered. Possible corrections to (3.3) for the real three-dimensional (3D) atom are
discussed in [59], but (3.3) is assumed to hold qualitatively also for quasi-1D re-
alisations of the initial Rydberg state (so-called extremal parabolic states [71]).
In the sequel, (3.3) is used to guide our choice of the field parameters F, ω for
the statistical analysis of the atomic decay-rate distributions.
Figures 3.2-3.5 show the probability densities of the ionisation rates Γε of a
1D hydrogen model atom exposed to a microwave field. The rates Γε of the
quasi-energies within one Floquet zone are presented. The zones are cen-
tred around the n0 = 40, 70, 100, 140 Rydberg manifolds, respectively, with
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Fig. 3.2: Distribution of the ionisation rates Γε of 1D microwave-driven Rydberg states
of atomic hydrogen, for different values of the localisation parameter L = 0.2 (plusses)
L = 0.25 (diamonds), 0.5 (stars), 1.0 (circles), and 2.0 (pyramids). The distributions
were generated, at fixed L, by sampling the spectra within a Floquet zone of width ω

centred around n0 = 40, over the frequency range ω0 = ωn3
0 = 2.0 . . .2.5. In laboratory

(SI) frequency units ω/2π = 205.63 . . .257.03 GHz, with F chosen accordingly to fix L
(3.3) at the given values. The solid line represents the scaling ρ(Γε) ∝ Γ−0.9

ε .

nc � 2n0. By (3.3), at fixed L, each of these initial quantum numbers corre-
sponds to a different range of field parameters F, ω. In our model, the Rydberg
electron is confined to 1D configuration space z > 0 defined by the polarisation
axis of the field, with the Coulomb singularity at the origin z = 0 [77,108]. The
1D approximation allows to produce vast sets of spectral data on up-to-date
workstations in a reasonable amount of calculation time. Much more computer
power is needed to simulate the full realistic 3D hydrogen atom. Data for the
3D case centred around n0 = 70 (nc = 105, see (3.3)), and for the selected
localisation parameters L = 0.25, 0.5, 1 essentially reproduce the features of the
1D model.
The different values of L = 0.2 . . .2 (1D), and L = 0.25 . . .1 (3D) are realised
by sampling the spectra over frequency ranges ω0 = ωn3

0 = 2 . . .2.5 (1D), and
ω0 = ωn3

0 = 1.854 . . .1.883 (3D), and adjusting F accordingly. Because of the
dramatically enhanced spectral density of the 3D [95] as compared to the 1D
problem – a consequence of the additional angular momentum degree of free-
dom labelled by � – only ten equidistant frequency values are needed to generate
an appropriate statistical sample in the 3D case. The total number of states
contributing to the distributions is approximately 25000 (3D), in contrast to
up to 100000 states for 500 equidistantly chosen frequencies of the 1D model.
Surprisingly enough, only about 5% of the large number of states produce the
same distributions. This shows the high stability of the observed statistics.
Changes occur with increasing number of sample realisations only in the region
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Fig. 3.3: Same as in figure 3.2 for the initial atomic state n0 = 70, corresponding to
the frequency range ω/2π = 38.37 . . .47.96 GHz in laboratory units.
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Fig. 3.4: Same as in figure 3.2 for the initial atomic state n0 = 100, corresponding to
the frequency range ω/2π = 13.16 . . .16.45 GHz in laboratory units.
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Fig. 3.5: Same as in figure 3.2 for the initial atomic state n0 = 140, corresponding to
the frequency range ω/2π = 4.8 . . .6.0 GHz in laboratory units. L = 2.0 is not shown
because of the high cost of numerical calculations at very large quantum numbers
n0 > 100, even in the 1D case.

of very large decay rates Γε > 10−7 a.u. for figure 3.2, down to Γε > 10−9 a.u.
for figure 3.5, because of the few Γε lying in these regions (for L < 1). The
robustness of the distributions (see figure 3.7) is observed either when using
only few, but complete spectra (for instance, about 20− 50 in the 1D case), or
a random choice of the full list of decay rates, sampled over the entire frequency
range.
Our numerical technique using a complex scaling transformation [108, 113] ro-
tates the continuum into the lower half of the complex energy plane. Doing
so, the resonance poles of the resolvent operator are uncovered. The Floquet
spectrum is periodic with period ω, and for the 1D model atom the continuum
threshold has a well defined position on the real energy axis. It corresponds
to the ionisation potential of the initial bound state modulo ω. By rejecting
resonance poles Γε in the vicinity of the threshold, we ensured that no states
from the discretised continuum entered the statistics. Figure 3.8 shows the res-
onance poles in the complex energy plane, together with the rotated continua.
The Floquet zone of width ω contains the poles from which the ρ(Γε) distribu-
tion is built up. Poles close to the thresholds are not considered.
Figure 3.8 also shows poles which are rejected because of yet another criterion
which is based on the values of the overlaps wε with the initial bound state of
the atom. This criterion helps to avoid continuum contributions as well, since
these have tiny weights at the initial bound state with quantum number n0.
For the decay-rate distributions in figures 3.2-3.5, the rejection criterion chosen
was that the overlaps had to be larger than 10−5 for Γε < 10−8 a.u., and larger
than 10−4 for Γε ≥ 10−8 a.u. For smaller values of wε down to 10−8 nearly no
changes in the statistics were observed, apart from the rightmost part in the
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Fig. 3.6: Distribution of the ionisation rates Γε of microwave-driven 3D Rydberg states
of atomic hydrogen, with linear field polarisation along the z axis, and with angular
momentum projection m0 = 0 onto this axis. Localisation parameter are L = 0.25
(diamonds), 0.5 (stars), 1.0 (circles). The distributions were generated, at fixed L, by
sampling the Floquet spectra over the frequency (and corresponding amplitude, F )
range ω0 = 1.854 . . .1.883, or in laboratory frequency units ω/2π = 35.5 . . .36.1 GHz,
within a Floquet zone of width ω centred around n0 = 70. The solid line represents
the power-law scaling ρ(Γε) ∝ Γ−0.9

ε . Data by courtesy of Andreas Krug [116].

distributions, where continuum states will appear if states with wε < 10−4 are
allowed (typically the rightmost two data points corresponding to the largest
rates Γε move to the right). On the other hand, eigenstates situated in the reg-
ular and elliptic region of classical phase space, deeply below the initial state
with principal quantum number n0, are also rejected if the overlap criterion
is too restrictive. The contribution of such regular states is considerable for
large localisation parameter L ≥ 1, while for small L ≤ 0.25, these states have
non-resolvable ionisation rates Γε � 10−15 a.u. Figure 3.9 illustrates the effect
of states attached to regular/elliptic regions, which is discussed in more detail
in the next section 3.1.2.
Since in the 3D calculations the finite numerical basis lifts the degeneracy of
the states in angular momentum [113], it is more difficult to automatically ex-
clude continuum states from the width distributions [95]. Contributions from
the continuum eigenstates can, however, be excluded by the choice of the lowest
allowed overlap value, similar to the procedure in the 1D case. For the distri-
bution plotted in figure 3.6, the criterion was wε > 10−5. When lowering this
threshold down to 10−10 the overall relevant structure of the distribution at
small and intermediate values of Γε is unchanged, while at Γε ≥ 10−7 a.u. new
states appear very much as described above for the 1D case.
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Fig. 3.7: Illustration of the statistical robustness of the ionisation-rate distribution
for the data set L = 0.25, from figure 3.4. Shown are the distributions for a random
selection of decay rates of the full data set (diamonds), 5% (full squares), 10% (plusses),
and for the complete spectra of the first 50 equidistant values of the frequencies ω0 =
2.0 . . .2.05 (dash-dotted). No deviation from the full distribution is observable as long
as the selected set of decay rates Γε contains more than 3000 randomly chosen values.
A similarly robust behaviour is found for all distributions plotted in figures 3.2-3.6.

3.1.2 Discussion of decay-rate distributions

The main observation in figures 3.2-3.6 is that in all cases the decay-rate dis-
tributions obey an algebraic law

ρ(Γε) ∝ Γ−α
ε , (3.4)

with exponent α ≤ 1. For small localisation parameters, both the 1D model
atom (L = 0.2, 0.25) as well as the real atom (L = 0.25) exhibit distributions
ρ(Γε) ∝ Γ−0.9

ε over about six orders of magnitude, from Γε � 10−15 a.u. to
Γε � 10−9 a.u. This result is in good agreement with predictions of the decay in
a disordered solid, where ρ(Γ) ∝ Γ−α, α � 1 . . .2 is predicted in the parameter
domain exp(−L/ξ) � Γ/∆ ≤ 1, ∆ being the mean level spacing [197, 200].
However, as the localisation parameter is increased by systematically increas-
ing F over the entire frequency ranges indicated in the previous section, the
situation becomes more “complex”. We observe a depletion of the probability
densities of small rates, balanced by a decrease of the decay exponent of ρ(Γε)
in an intermediate range depending slightly on the chosen parameters, or on
the chosen initial value of the principal quantum number n0. For n0 = 40 (fig-
ure 3.2) this range is approximately Γε � 10−10 . . .10−7 a.u., for n0 = 70− 140
(1D) (figures 3.3-3.5), and n0 = 70 (3D) Γε � 10−10 . . .10−8 a.u. (figure 3.6).
Such a behaviour is incompatible with the simple assumption of exponentially
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Fig. 3.8: Resonance poles of the resolvent operator for the 1D hydrogen atom. The
spectrum is ω periodic, and the continua are rotated into the lower half of the complex
energy plane. Crosses represent the full spectrum obtained by the numerical diagonal-
isation of the Floquet operator (cf. (2.2) and (2.38)), the circles are the poles used to
build up the distribution ρ(Γε). The regions close to the continuum thresholds (be-
tween the long and short dotted line) are not taken into account. In this way, we ensure
that no continuum states enter the statistics of the decay rates. The spectrum is shown
for F = 2.0901× 10−8 a.u. and ω0 = 2.0 (ω/2π = 205.63 GHz), in the vicinity of the
initial state with quantum number n0 = 40. It corresponds to the distribution plotted
in figure 3.2 for L = 0.2.

localised probability densities along the energy axis owing to dynamical locali-
sation of the Floquet eigenstates over the chaotic component of classical phase
space [115,199]. For large localisation parameters L ≥ 1, a quantitative change
is expected [59,60], from a regime of localised quantum motion with very little
ionisation to diffusive ionisation, similar to the classically predicted diffusion
process. With increasing L, dynamical localisation is gradually destroyed, and
alternative transport mechanisms gain importance. Therefore, deviations from
the predictions based on purely Anderson-like models do not come as a surprise.
For systems with mixed regular-chaotic phase space – like the strongly driven
atomic Rydberg states [11, 112–114] and mesoscopic systems [202] – it is
known that the eigenstates of the corresponding quantum systems can be
classified according to their localisation properties in classical phase space
[102, 112, 113, 202–205]. While dynamical localisation occurs for states situ-
ated in the chaotic domain of phase space (i), eigenstates can be localised also
(ii) on regular or/and elliptic regions, and (iii) along remnants of regular mo-
tion immerged in the chaotic sea. In particular, elliptic regions as well as the
nearly integrable component are rather robust under changes of some control
parameter, such as the field strength in our system [112,113]. Accordingly, the
localisation properties and the decay rates of the associated eigenstates tend to
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Fig. 3.9: Influence of eigenstates with small decay rates (Γε ≤ 10−12 a.u.), and small
overlaps with the initial bound state of the atom. The data set L = 2 from figure 3.4
(pyramids; wε > 10−5) is compared to different choices of the overlap criterion. The
more stringent condition wε > 10−4 (plusses) excludes many states with small ionisa-
tion rates (Γε ≤ 10−12 a.u.) which typically are situated in the regular region of classical
phase space, including states attached to the primary nonlinear resonance island. For
wε > 10−6 (full squares) continuum states with large Γε > 10−7 a.u. appear, and no
change in the distribution is observed any more for wε > 10−7 (dash-dotted) or even
smaller lower bounds for wε. The vicinity of the continuum threshold (cf. previous fig-
ure) is not excluded from the distributions in this plot, and the same overlap criterion
is chosen for the full range in Γε � 5 × 10−15 . . .10−5 a.u.

be less sensitive when F changes, while those eigenstates lying in the chaotic
domain exhibit rapidly increasing rates Γε as the field strength grows. As stated
in the previous section, the decay rates of Floquet states in the chaotic com-
ponent are essentially determined by the localisation parameter L∗. Hence,
deviations from the clean algebraic law ρ(Γε) ∝ Γ−0.9

ε at large values of F are
attributed to the rapid increase of the decay rates of class (i) eigenstates with L.
This corresponds to the effective destruction of dynamical localisation, and the
observed change in the decay exponent for Γε � 10−10 a.u. On the other hand,
class (ii) and (iii) eigenstates move up to intermediate values Γε � 10−10 a.u.,
for the largest L shown in figures 3.2-3.6.
The above classification of eigenstates is supported by a systematic study of
the Floquet eigenstates of the 1D driven hydrogen atom [112,113]†. Figure 3.10

∗This is the expectation for largely averaged quantities such as ρ(Γε). For a single re-
alisation or “sample”, large fluctuations, e.g. in the localisation length or in the ionisation
probability, may occur around the approximate statistical prediction [109, 111, 206–208].

†Nonetheless one must keep in mind that the identification of the decay properties – char-
acterised by the ionisation rates Γε – and the localisation in classical phase space is a statistical
statement, which is true when averaging over the contribution of many individual eigenstates.
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presents generic Floquet eigenstates of the 1D model atom in the Husimi or
Q-function representation [16, 112, 113, 211] in phase space. The above classi-
fication into (i-iii) states is verified by comparing their decay rates with their
position in classical phase space. The latter is shown in figure 3.11 for the dif-
ferent localisation parameters L = 0.25 and L = 2. The phase space is spanned
by action angle variables I, Θ of a 1D harmonic oscillator [112, 212] ‡.
At small values of L < 0.5, the states of class (ii) and (iii) exhibit tiny ion-
isation rates below Γε � 10−13 a.u., or even below the numerical precision
Γε � 10−15 a.u. Therefore, in the regime of strong dynamical localisation, i.e.
for small L ≤ 0.25, ρ(Γε) is dominated by the decay rates of class (i) eigenstates,
lying in the chaotic component of classical phase space. The good agreement of
the algebraic decay law with predictions from Anderson models suggests that
our results are indeed a manifestation of Anderson localisation being at work
in the chaotic ionisation process of microwave-driven Rydberg atoms.
The argument at the beginning of this chapter leading to the power-law of the
rate distribution is based on the proportionality of the decay rates with the
tail of the corresponding eigenstates at the boundary. A similar argument is
possible for states which leak out of a regular region in phase space because
of tunnelling [199]. The assumption needed for ρ(Γ) ∝ Γ−1 is that the decay
rates decrease exponentially along the “lattice” of quantised nearly integrable
tori§, i.e. Γregular ∝ exp(−|j− jmax|/ξeff). This is formulated on tori, where the
integer j denotes the local, and jmax the maximal “excitation” of the quantised
tori within the regular domain. ξeff is an effective “tunnelling length”. Such
a picture is applicable either to elliptic islands or to the regular regions, with
only slightly perturbed tori with respect to the unperturbed hydrogen motion.
The assumption of an exponential behaviour induced by tunnelling is certainly
true on average. However, ξeff may be subject to system specific fluctuations
which depend on the effective Planck constant [213–217]. For the derivation of
the law ρ(Γ) ∝ Γ−1, a sufficiently large number of tori jmax must be present.
This guarantees the necessary limit of many sites on the “lattice” as required
in the Anderson problem. If the density of states is too low, finite size effects
may spoil the above algebraic behaviour.
Our results nicely confirm the power-law prediction for the decay-rate distri-
bution with ρ(Γε) ∝ Γ−0.9

ε in the region Γε ≤ 10−11 a.u. This part of the
distribution is dominated by class (ii) and (iii) states localised along regular
structures of phase space for L = 1 and 2 in figures 3.2-3.6. The derivation
of ρ(Γε) ∝ Γ−1

ε given above for the tunnelling regime, and at the beginning of
this chapter for the Anderson scenario is rather crude. Yet the argument is
valid for generic 1D Anderson models in a regime of small Γ [197]. For large

There do exist states for which the better localised in phase space decay faster (larger Γε)
than those which are more extended in phase space [112]. This reflects the complexity of the
problem [110, 112, 209, 210].

‡These specific variables are chosen because of the representation of the Floquet problem
in a Sturmian basis which is characterised by a scale parameter � n0. The eigenstates are
then naturally represented in a harmonic oscillator basis [112, 113, 212]. The action I may be
mapped in a well defined way to the principal quantum numbers n [112, 113, 212].

§For the 1D as well as the 3D problem, a quantisation procedure à la Einstein-Brillouin-
Keller [8, 16, 44] is possible for regular regions locally in phase space [77].
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Fig. 3.10: Husimi distributions (contour plots) of four resonance eigenfunctions of
the 1D hydrogen atom in a microwave field with amplitude F = 1.073 × 10−9 a.u.,
and frequency ω/2π = 13.16 GHz. For an initial state n0 = 100, the localisation
parameter (3.3) is L = 2. The widths of the resonances are Γε � 1.5× 10−8 (top left),
Γε � 3×10−9 (top right), Γε � 2.6×10−11 (bottom left), Γε � 5×10−14 (bottom right).
These quantum states represent typical eigenstates corresponding to the different Γε

regions in the distribution of figure 3.4 with L = 2. Comparing to the corresponding
classical phase space in figure 3.11(b), we can classify the eigenstates according to their
localisation in the chaotic domain (top left, top right), in the separatrix region (bottom
left), or on the regular part of phase space (bottom right) [113].
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Fig. 3.11: Classical Poincaré surface of section for the 1D microwave-driven hydrogen
atom in harmonic oscillator action angle variables I, Θ [112] for weak (a), and strong
driving (b). The chosen parameters are ω/2π = 13.16 GHz, and F = 3.774×10−10 a.u.

(a), F = 1.073 × 10−9 a.u. (b). For n0 = 100, this corresponds to a localisation
parameter L = 0.2 (a) and 2 (b), respectively.

Γ, the distributions do dependent on the specific models [197,200]. A logarith-
mic correction to the power law ρ(Γ) ∝ Γ−1, based on an additional simplified
semiclassical transport mechanism, is derived in [68]. For the complex quantum
transport in driven Rydberg states an analytical theory does not exist. But we
notice that the universal decay exponent α � 0.9 found in our data matches
surprisingly well with the predictions from Anderson localisation for L ≤ 0.25,
or with the tunnelling model in the delocalised regime, respectively.
To conclude the discussion of the decay-rate distributions we comment on a
slight, but systematic discrepancy between the 3D and the 1D data. While a
clear “knee” like structure develops at intermediate rates, with increasing L in
the 1D model, for the real atom this knee is less pronounced. Let us compare in
more detail the distributions for the localisation parameter L = 1: a change in
the decay exponent occurs in the region Γε � 10−9 . . .5×10−8 a.u. (figure 3.3),
Γε � 10−10 . . .10−8 a.u. (figure 3.4), Γε � 10−11 . . .10−9 a.u. (figure 3.5), and
in the 3D atom at Γε � 10−10 . . .10−8 a.u. (figure 3.6). This regions are domi-
nated by class (i-ii) eigenstates. The observed smoothing of the 3D distribution
with respect to the 1D results arises from the additional angular momentum
degree of freedom. In the same way as transport occurs along the radial degree
of freedom (energy axis in 1D case), also the angular momentum (�−) states
are coupled in the real atom. The third degree of freedom, the projections of
� onto the field axis, is a constant of motion [71, 218], which is fixed for the
spectra plotted in figure 3.6. At small L ≤ 0.25, states largely composed of
high-� contributions have vanishing decay rates. On the other hand, for strong
fields, i.e. L ≥ 1, such contributions do come into play because of the strong
coupling. They manifest in the distributions ρ(Γε) in the range Γε < 10−10 a.u.,
they compensate for the reshuffling of states which are mainly composed of low-
� contribution, from small to intermediate values of Γε. Therefore, the angular
momentum degree of freedom is important for the decay-rate distributions, even
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Fig. 3.12: Expansion coefficients wε of the atomic initial state |φ0〉 = |n0 = 100〉 (1D),
and |n0 = 70, �0 = 0, m0 = 0〉 (3D) in the Floquet eigenstates |ε〉 vs. the associated
decay rates Γε; for 1D L = 0.25 (a), 1 (b) and ω/2π = 13.16 . . .16.45 GHz (500 spectra),
and for 3D (c) with L = 1 and ω/2π = 35.6 GHz (one spectrum). (Qualitatively similar
results are obtained for microwave driven alkali Rydberg states [95].) There is no
definite correlation between the decay rates and wε, apart from the general observation
that with increasing coupling to the atomic continuum (from (a) to (b)), larger Γε

are assigned larger weights, implying faster decay. 3D data by courtesy of Andreas
Krug [116].

if it affects these only slightly.

3.1.3 Algebraic decay of survival probability

The results on the ionisation-rate distributions presented in the preceding sec-
tions show how and to what extent chaotic transport mimics signatures of
disorder, and induces amendments thereof arising from the peculiar structures
of mixed regular-chaotic phase space. The underlying structure of the classical
phase space is a feature of dynamical systems, and it has no counterpart in
disordered solid-state models.
The aim of the present section is condensed in the following question: how do the
observed statistics of the ionisation rates carry over to the survival probability
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of an atom in the driving field? The survival probability or its complement, the
ionisation probability, is the most directly accessible observable in laboratory
experiments. Can one find clear traces of the “universal” decay-rate statistics
ρ(Γε) ∝ Γ−0.9

ε in the survival probability of the atom in the field? The answer
is partly affirmative as we will see in the following. A power-law distribution
of the decay rates means that there is a large number of them distributed over
many orders of magnitude. If many of these “channels” are involved in the
actual decay process an algebraic decay law

Psurv(t) ∝ t−µ (3.5)

is generally expected [114, 219, 220]. For microwave-driven rubidium Rydberg
atoms, experiments have found clear evidence for a power-law with exponent
µ � 1/2 [114]. Corresponding numerical studies for alkali as well as hydro-
gen Rydberg states suggest that asymptotically the power law (3.5) indeed is
generic. However, the strong parameter dependence of the exponent ranging
from µ � 0.5 . . .2 [95] contradicts the prediction of a “universal” time decay for
the survival probability [115].
The survival probability Psurv(t), i.e. the probability to find the atom in a bound
state after an atom-field interaction time t, is given by (2.40). The ionisation
process and the number of strongly contributing decay rates is determined also
by the weights wε. The latter represent the initial condition, and contain local
information on the spectrum to the extent that the initial state |φ0〉 is localised
in energy space (see figure 1.1). Therefore, the question whether a power-law
like (3.5) holds – and if it holds, over what range of interaction times – depends
crucially on the overlaps wε.
Starting from a general form ρ(Γε) ∝ Γ−α

ε , a “universal” time dependence
Psurv(t) ∝ tα−2 has been suggested [115], leaning on the additional assumption
wε ∝ Γε [115, 221, 222]. The proportionality of decay rates and weights allows
an approximate derivation of the survival probability based on the distribution
function ρ(Γε). Provided the density of states is sufficiently high, one may sub-
stitute the contribution of each resonance to Psurv(t) by an integral average over
all possible Γε with their weight function ρ(Γε)¶:

Psurv(t) �
∫ ∞

0
dΓερ(Γε)wεe

−Γεt , (3.6)

what reduces to
Psurv(t) ∝ tα−2 , (3.7)

for wε ∝ Γε, and ρ(Γε) ∝ Γ−α
ε (within the physically relevant window of Γε val-

ues). Whereas ρ(Γε) obeys a nice power law in the dynamically localised regime
(see section 3.1.2), the assumption wε ∝ Γε does not apply for a generic situ-
ation of the ionisation problem. This assumption is justified only if the initial

¶Strictly speaking, ρ(Γε) is already the density averaged over many realisations/spectra,
and for a single spectrum, Psurv(t) is determined by a density distribution of Γε which may be
amended by finite size effects and local fluctuations. For this reason, the distributions shown
in figures 3.2-3.6 collect the decay rates of many spectra.
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Fig. 3.13: Expansion coefficients wj vs. decay rates Γj for initial states prepared at
the sites jinit = 900 (plusses), 999 (circles), 1000 (crosses clustered along the diagonal)
of a 1D Anderson model of sample length L = 1000 (see (3.8) and main text); results
for 10 realisations of the random on-site potential are gathered together. Only in the
special case of the initial state placed right at the edge of the sample, jinit = 1000,
there is a one-to-one relation between decay rates and expansion coefficients!

state |φ0〉 is very close to the boundary of the atomic sample, i.e. to the contin-
uum threshold (see figure 1.1). For a generic choice of the initial state within
the sample, not very close to the last nearly resonantly coupled bound state
below threshold – using the picture of Rydberg levels coupled via multi-photon
chains to the continuum – there is no support for a proportionality wε ∝ Γε.
This is illustrated in figure 3.12, where the distribution of the weights in the
(Γε, wε) plane is shown, on a doubly logarithmic scale, for |φ0〉 = |n0 = 100〉
in 1D (a,b), and |φ0〉 = |n0 = 70 �0 = 0〉 in 3D driven hydrogen (c). wε and Γε

are essentially uncorrelated. This is consistent with the observation that phase
space localisation properties and decay rates of strongly driven Rydberg atoms
are not unambiguously related [112, 113].
To understand better the role of the proportionality of decay rates and weights,
we confront our results for the microwave-driven hydrogen problem with a sim-
ple, 1D Anderson model [116, 197, 221] which is sketched in figure 3.1. This
model easily allows for an arbitrary shift of the initial population inside the
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sample. It is defined by the Schrödinger equation

i
dψj(t)

dt
= Vjψj(t) + ψj+1(t) + ψj−1(t) , (3.8)

where the ψj(t) are the probability amplitudes for a particle to reside at site j
of a 1D sample of length L. The on-site potentials Vj are chosen as a random
sequence of uniformly distributed values ∈ [−1.5, 1.5]. This choice models dis-
order. The coupling to the lead is mediated by requiring absorbing boundary
conditions at the right end, i.e. by adding a small imaginary part − iγ = − i0.31
to VL on the last site j = L. All these choices of parameters are not crucial for
the results collected in figure 3.13. They were made such as to mimic a local-
isation scenario à la Anderson, with significant leakage into the lead at j = L.
The initial excitation is a δ-like wave packet launched at some site within the
sample:

ψj(t = 0) =
{

1, j = jinit

0, otherwise.
(3.9)

We put the initial site systematically closer to the end j = L, and the decay
rates of the eigenstates of the open tight-binding model are calculated by a
diagonalisation routine for symmetric, non-Hermitian matrices (NAG F02GBF
routine).
Figure 3.13 shows that the generic situation met in the ionisation of driven
hydrogen atomic states (figures 3.2-3.6) continuously evolves into one for which
expansion coefficients and decay rates are indeed strongly correlated‖. If the
initial state is placed well inside the sample, expansion coefficients and decay
rates do not show any correlation. However, the distribution in the (Γ, w) plane
collapses onto an almost straight line wj ∝ Γj when the initial state approaches
the open end at site j = L.
It is the latter situation which was modelled in recent numerical calculations
for periodically driven hydrogen atoms additionally subject to an intense static
field. Such a field effectively shifts the energy of the initial state closer to the
atomic continuum by lowering its ionisation potential. The absorbing boundary
conditions used in [115] make contact to the above introduced Anderson model.
Choosing the initial state close to the continuum basically reduces the prob-
lem to a perturbative relation between the decay rates Γj and the expansion
coefficients ωj of the site amplitudes with the lead giving wj ∝ Γj [221]. The
strength of the static field required by [115] to put the threshold in the vicinity
of the initial state (n0 = 60 with nc = 64 [115]) would be of the order of the
microwave amplitude F . In such a situation, the number of quasi-resonantly
coupled states, in the spirit of figure 1.1, is extremely small, what leads a
large localisation parameter L � 3.5 [115]. The sample length (3.2) then is
L < 1 [115], and the limit of many lattice sites necessary for the Anderson sce-
nario is not fulfilled. Therefore, a dynamically localised distribution of the wave

‖The correlation indeed was confirmed numerically by standard tests from section 14.5
and 14.6 of [223]: while for the case j = jinit the tests were positive, the correlation found
otherwise was not significant (as in the case of hydrogen decay rates and weights).
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Fig. 3.14: Survival probability Psurv(t) obtained from equation (2.40) for 1D hydrogen.
Initial states |n0 = 40〉 (a), and |n0 = 100〉 (b); localisation parameters and driving
frequencies as follows: (a) L = 0.2, ω0 = 2 (solid line), ω0 = 2.25 (dashed), ω0 = 2.5
(dash-dotted); (b) L = 0.5, ω0 = 2.5 (dotted), L = 1, ω0 = 2 (solid line), ω0 = 2.5
(long dashed), and L = 2, ω0 = 2 (dash-dotted), ω0 = 2.5 (short dashed).

functions in energy space cannot develop, and the only hope for a decay law
Psurv(t) ∝ t−1 arises from states in the regular region of phase space. After an
initial fast drop of the survival probability, which is induced by the one-photon
transition to the continuum, the regular states might lead to a t−1-decay.
Given the results in figures 3.12 and 3.13, for a general choice of the initial
population, we can no longer expect a universal time decay for the survival
probability Psurv(t) of microwave-driven Rydberg atoms, in spite of the univer-
sal features of the decay-rate distributions ρ(Γε). Psurv(t) is shown in figure 3.14
for the 1D model atom, and in figure 3.15 for real 3D atomic hydrogen. The al-
gebraic decay of Psurv(t) ∝ t−µ is generic, arising from the broad distribution of
wε and Γε over many orders of magnitude. Even for one single realisation of field
parameters, the numerically computed spectrum consists of about 100 . . .200
eigenstates for the 1D, and of approximately 2500 for the 3D case. All these
states are summed in (2.40) to obtain Psurv(t). However, the decay exponent µ
varies considerably from one realisation to the other.
We also averaged the survival probability, for fixed L, over 500 realisations of
the parameters ω, F in the 1D case. The averaging smoothes the fluctuations
which arise from the sensitive dependence on ω, and F [110–112, 208–210]. In
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Fig. 3.15: Survival probability Psurv(t) (2.40) of 3D atomic hydrogen, n0 = 70, m0 =
0, �0 = 0 (solid line), 15 (long dashed), 45 (short dashed), ω0 = 1.856 (ω/2π =
35.6 GHz), L = 1.0 [116]. Different wε-distributions are realised by changing the
angular momentum �0 of the initial atomic state, always leading to near-algebraic
decay (like in 1D), though with distinct (and non-universal) decay exponents. Only
fictitious expansion coefficients wε ≡ Γε/ < Γε > induce asymptotically a “universal”
power-law decay Psurv(t) ∼ t−µ (dash-dotted line), µ � 2 − α � 1.1 (indicated by the
full line). Γε, < Γε >, and α � 0.9 are extracted from the Γε � 10−10 a.u. part of
the L = 1.0 distribution in figure 3.6. The power-law sets in at ton � 104 field cycles.
This time corresponds to the inverse of the maximum Γε up to which ρ(Γε) ∝ Γ−0.9

ε

prevails, i.e. ton � 1010 a.u.

the derivation of (3.7), these fluctuations are effectively averaged as well. The
results are found in figure 3.16, and they show a much smoother decay in time
than the survival probabilities in figure 3.14. Moreover, the averaged curves
have a systematically increasing decay exponent µ with increasing L, and µ is
clearly not determined solely by α as suggested by (3.7).
The “universal” exponent µ = 2 − α (3.7) is observed only in accidental
cases [95], or if we artificially reshuffle the expansion coefficients according to
wε → wε ≡ Γε/〈Γε〉, with 〈Γε〉 being the mean ionisation rate averaged over the
entire Floquet spectrum [116]. In the latter, unrealistic case, illustrated in fig-
ure 3.15, Psurv(t) asymptotically decays with exponent µ � 1.1. This perfectly
matches the prediction µ = 2−α with α = 0.9 for the small Γε � 10−10 a.u. part
of the corresponding distribution ρ(Γε) in figure 3.6. The time ton when the
power-law decay Psurv(t) ∝ t−1.1 sets in corresponds to rates Γε � 10−10 a.u.
Up to these rates ρ(Γε) ∝ Γ−0.9

ε is observed in figure 3.6. In atomic units
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Fig. 3.16: Frequency averaged survival probabilities Psurv(t) of 1D hydrogen. Initial
state |n0 = 100〉, frequency range ω0 = 2.0 . . .2.5, in 500 equidistant steps. Localisation
parameters: L = 0.5 (dotted), L = 1 (solid), L = 2 (dashed). A systematic increase of
the decay exponent with increasing L prevails, and the curves are smoother than the
data for solely one fixed frequency. For better comparison, the dash-dotted line repeats
the survival probability for L = 2 and ω0 = 2.0 from figure 3.14. The thin line shows
a power-law scaling ∝ t−0.9, which, in general, does not match well with the data.

ton � 1010 a.u., which corresponds to � 104 field cycles in figure 3.15. Since
by construction Γε ∝ wε, it is not surprising that the asymptotic decay of
Psurv(t) is solely determined by the contribution of small Γε in ρ(Γε). A similar
expectation for the “real” survival probabilities is bound to be valid at most
approximately, because the weights wε are then not correlated with the decay
rates (see figure 3.12). This leads to a more complex mixture of time-scales
induced by the nature of the prepared initial state of the atom.

To summarise the discussion of the decay properties of strongly driven Rydberg
atoms, we can state that the universal features of the decay-rate statistics (of
classically chaotic quantum transport) generally do not carry over to the time
decay of the survival probability of an initial state prepared at an arbitrary
location in phase space. This observation expresses the essential decorrelation
between the phase space localisation properties of quantum states, and their
asymptotic coupling to the continuum. The ionisation is mediated by both sets,
the ionisation rates and the overlaps wε in (2.40). These two uncorrelated sets
determine only together the decay in an unambiguous manner.
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3.2 Experimental tests

Citius, altius, fortius.
The Olympic motto

Our numerical analysis of the previous section clearly supports the analogy
between transport in Anderson-localised models and the ionisation process in
driven hydrogen Rydberg atoms. An experimental verification of our results
seems feasible. Two experimental options which may quantify the mentioned
analogy beyond the threshold scaling in figure 1.2 are discussed in the following.

3.2.1 Status quo

As stated in the introduction (section 1.2.1), the behaviour of the field thresh-
old, at which a certain percentage of atoms ionises, as a function of the scaled
microwave frequency ω0 = ωn3

0, may not necessarily originate from dynamical
localisation. The experimental results [13, 50, 51] are consistent with the the-
ory of dynamical localisation, but also other mechanism, like the mentioned
semiclassical effects, may stabilise the atom against ionisation for ω0 � 1
[72, 77, 87, 103, 104, 106, 107]. Similarly, the experimental data [114] showing
an algebraic decay of the survival probability of the atoms in the field, is fully
consistent with our findings. In the preceding section, we saw that the slow
power-law decay Psurv(t) ∝ t−µ may be caused by the algebraic decay-rate sta-
tistics ρ(Γε) ∝ Γ−0.9

ε . For L � 0.25, ρ(Γε) was shown to be determined by
Floquet states localised in the chaotic component of phase space. Therefore,
we can interprete the power-law decay of Psurv(t) as a consequence of dynam-
ical localisation (e.g. the data shown in figure 3.14). However, this finding
is again an indirect experimental proof of Anderson localisation. We cannot
predict an exact exponent µ from arguments based on the ionisation-rate dis-
tribution alone. Moreover, also classical model calculations, for systems with
mixed regular-chaotic phase space, show an algebraic decay of the asymptotic
survival probability [219]. The power-law then results from the multiple time
scales involved when trajectories, which are launched in the chaotic component,
get trapped in the vicinity of regular regions in phase space [114, 224–234].

3.2.2 Floquet spectroscopy

To confirm the presented numerical results on the decay-rate distributions in
experiments, one needs to measure a broad range of ionisation widths. Reso-
nance poles in the complex energy plane were studied experimentally for the
wave propagation in microwave cavities [236]. A large number of resonances
was obtained from measuring reflection coefficients vs. the initial excitation
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Fig. 3.17: Photo-absorption cross section from the ground state of three-dimensional
atomic hydrogen to an energy interval between the n = 21 and n = 22 manifolds dressed
by a microwave field of frequency ω � 710 GHz, and amplitude F � 1000 V/cm [235].
The arrow marks a very narrow resonance line corresponding to a Floquet state that is
situated mainly within the primary resonance island of classical phase space [77,235].

energy of such cavities [42, 236, 237].
For beams of Rydberg atoms, which interact with static fields (electric and/or
magnetic), photo-excitation spectra were measured by means of laser spec-
troscopy [26,29,34,71]. From the photo-excitation cross sections one can deduce
the decay rates if the resonance peaks do not overlap. This criterion is typi-
cally fulfilled for the decay rates of hydrogen Rydberg atoms which are subject
to a time-periodic microwave. The distributions in figures 3.2-3.5 show that
Γε � ∆ � n−3

0 , with ∆ the average spacing of the energy levels.
For atoms interacting with a microwave field, the spectrum may be probed by
an additional laser, which excites atoms starting from a low lying state |φ0〉,
e.g. the ground state |n0 = 1〉, to some final highly excited Floquet state.
This method of Floquet spectroscopy has been proposed in [235,238–241]. The
photo-absorption cross section is given by [185, 241]:

σ(Ωprobe) ∝ Im
∑

ε

+∞∑
m=−∞

∣∣∣〈εm| T̂ |φ0〉
∣∣∣2

ε + mω − E0 − Ωprobe

, (3.10)

where |εm〉 are the Floquet states (see section 2.1.1), and T̂ = 
e
̂r the electric
dipole operator, depending on the polarisation 
e of the probe laser. E0 is the
energy of the initial state |φ0〉, which basically does not couple to the microwave
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since the latter is chosen to be negligibly weak, for states with principle quantum
numbers n0 � 1. Scanning σ(Ωprobe) over the energy range ω (of one photon
of the dressing microwave field), a reaction curve as presented in figure 3.17
is obtained. Individual peaks hardly overlap what allows one to extract the
resonance widths. The coupling matrix elements in the numerator of (3.10)
lead to a biased selection of possibly observable resonances. This bias may be
controlled by varying the polarisation of the probe field, and the initial state
|φ0〉 to focus on different parts of the spectrum according to their overlaps
with |φ0〉 [71]. From the data of the 1D and 3D decay-rate statistics, we saw
that the distributions are quite robust with respect to the dimensionality of
the problem, the field parameters at fixed L, and also when selecting only
a fraction of the complete spectra (figure 3.7). Hence, we conclude that the
decay-rate distributions may be constructed from experimental spectra, given
that measurements are performed for a sufficiently large number of realisations,
as done in the numerical “experiments”.

3.2.3 Atomic conductance fluctuations

Further quantitative support for the analogy between transport in energy space
and the conductance across Anderson-localised one-dimensional wires has been
provided recently. In [110] an “atomic conductance” was defined by

g ≡ 1
∆

∑
ε

Γεwε , (3.11)

with the mean level spacing ∆. Comprehensive numerical data [111,208] showed
that g obeys a log-normal distribution∗∗ for localisation parameters L < 1. The
statistics was performed in the same manner as for the decay-rate distributions,
i.e. by varying the field parameters ω and F , while L is kept constant. The
log-normal distribution was predicted for one-dimensional Anderson models in
the localised regime [242–244].
The conductance (3.11) may be interpreted as the “complete” ionisation rate,
defined by the weighted sum over the individual decay rates of the Floquet
states. Therefore, it contains – alike the ionisation probability – the local infor-
mation on the initial state. The statistical distributions of the atomic conduc-
tance indeed show a systematic dependence on the initial principal quantum
number n0. For n0 � 60, finite size effects lead to worse fits of the data with log-
normal distributions. The sample length scales like L ∝ n0 for fixed ω0 = ωn3

0

(cf. (3.2)), and hence L(n0 ≤ 60, ω0 ≥ 2) � 10 is too small to quantitatively
compare the ionisation problem to the Anderson scenario as suggested by fig-
ure 1.1. The decay-rate distribution proved to be rather insensitive to such
finite size effects. For n0 = 40 in figure 3.2, a systematic difference as compared
to the cases n0 ≥ 70 cannot be observed. Consequently, ρ(Γε) is a more direct

∗∗I.e. the logarithm of g is distributed with a Gaussian density. Hence the corresponding
fluctuations are huge, and typically range over several orders of magnitude [111, 208].
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Fig. 3.18: Distribution of the weights wε (see definition after (2.40)) of the spectral
expansion corresponding to the data shown in figures 3.2 and 3.4, respectively; for the
initial states n0 = 40 (a), and n0 = 100 (b), and for the localisation parameters L = 0.2
(plusses), L = 0.5 (stars), and L = 1 (circles). The dash-dotted lines show the scaling
ρw(wε) ∝ w−1.1

ε .

indicator for the analogy to the Anderson problem, because the Floquet spec-
trum does not depend on the initial bound state. In both statistics, ρ(Γε) and of
the atomic conductance g, the signatures of localisation à la Anderson are lost
for too large localisation parameters L � 1. This manifests in the “knee”-like
structure which appears in ρ(Γε), for 10−10 � Γε � 10−8, and in the increasing
deviation of distribution of g from the log-normal one.
In section 3.1.3 the weights wε were found to be uncorrelated with the decay
rates Γε (figure 3.12). Now the wε enter in the definition of the atomic conduc-
tance (3.11), and their statistical behaviour may be extracted from the known
distributions of the conductance ρg(log g) [110, 111, 208] and of the decay rates
ρ(Γε). Figure 3.18 presents numerically obtained distributions ρw(wε) corre-
sponding to the data shown in figures 3.2 and 3.4. We observe that ρw(wε) does
not significantly depend on the initial state. Moreover, there prevails a slight
but systematic dependence on the localisation parameter L: while, for L = 0.2,
ρw(wε) ∝ w−1.1

ε over about 3 orders of magnitude, the distribution changes with
increasing L such that intermediate weights with 10−3 � wε � 10−2 gain more
and more significance. The power-law distribution for the well localised case
L = 0.2 may be motivated in the following way. Assuming that log g and logΓε
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are independent random variables, as implied by figure 3.12, and furthermore
that g ∼ Γεwε it follows [198]:

ρ(logwε) ∼
∫

d logΓε ρΓ,g(logΓε, logwε − logΓε)

=
∫

d logΓε ρΓ(logΓε)ρg(logwε − logΓε)

∼
∫

d logΓε G(logwε − logΓε) ∼ 1 , (3.12)

where ρΓ(logΓε) = ρ(Γε) |dΓε/d logΓε| ∝ 1, for ρ(Γε) ∝ Γ−1
ε . G denotes a

Gaussian probability density, arising from the log-normal distribution of g. This
finally yields

ρw(wε) = ρ(logwε)
∣∣∣∣d logwε

dwε

∣∣∣∣ ∼ 1
wε

, (3.13)

neglecting that g (3.11) has to be summed over the entire spectrum. The sim-
plified assumption g ∼ Γεwε leads, however, to a power-law decay as observed
in 3.18. The above analysis shows that the distribution of the weights are the
same as obtained if Γε ∝ wε, together with ρ(Γε) ∝ Γ−1

ε , is fulfilled, in spite of
the fact that the decay rates and the weights are uncorrelated for our system!
This suggests that there is more information in the system than it is contained
in the statistical distribution of the rates, of the weights, and of the atomic
conductance alone.
What is missing is a clear experimental verification of the numerical results on
the conductance fluctuations! Experiments with rubidium Rydberg atoms were
performed, however, considerable fluctuations have not been detected [245].
The ionisation probability was measured as a function of the scaled frequency,
for fixed interaction time t, and approximately constant field amplitudes. The
latter depend on the frequency in a waveguide or in a microwave cavity, and
must be exactly calibrated. On the other hand, the numerical conductance fluc-
tuations proved to be quite robust with respect to relative uncertainties in the
field strength up to about 5%. Therefore, the experimental data most probably
did not show fluctuations because the scanned frequency range was too small
to observe fluctuations over several orders of magnitude [111].
In the following, we derive a simple estimate for the minimal range in ω over
which strong fluctuations are expected. We start from the atomic transport
scenario sketched in figure 1.1: the ionisation of the initial state is mediated by
a subsequent chain of one-photon transitions connecting resonantly lying levels.
A change in the driving frequency ω may be viewed as a shift of the photonic
ladder of quasi-resonantly coupled states [91], whereby the most sensitive re-
gion is the one closest to the continuum threshold. For small enough changes
of the frequency δω, all states on the ladder remain the same, apart from the
last unperturbed level nex just below threshold. The mean level spacing scales
as ∆ � 1/n3 (for the 1D atom; for the 3D case, and if the field is strong enough
to considerably lift the degeneracy in angular momentum, the scaling is closer
to ∆ � 1/n4). Hence, δω must be larger than n−3

ex such as the last ladder level
does change when varying ω by δω. Simultaneously, ω � 1/2n2

ex, so that we
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Fig. 3.19: Quasi-resonantly coupled states (long horizontal lines) close to the continuum
threshold. The short lines represent the non-coupled unperturbed hydrogen Rydberg
states. nex is the last “ladder” state from which a single one-photon transition leads
to ionisation.

arrive at the estimate for the minimal frequency change, which may produce a
significantly different ionisation scenario, and hence a large variation in the ion-
isation probability or the atomic conductance: δω � (2ω)3/2, or in scale units
δω0 � n

−3/2
0 (2ω0)3/2. For n0 = 100, and the lower bound ω0 = 2, this gives

δω0 � 8 × 10−3. Actual numerical computations of the atomic conductance
show that dramatic fluctuations over several orders of magnitude occur down
to a scale δω0 � 10−3 for n0 = 100 [111, 208]. For decreasing initial quantum
numbers n0 < 100, δω0 becomes systematically larger. Therefore, an exper-
imental investigation must be performed over a frequency range ∆ω0 � δω0

which is sufficiently broad in order to detect atomic conductance fluctuations
(at a resolution of δω0). The precise value of δω0 depends on the atomic species
used in the experiment, as well as on the chosen initial state. The reason is that
the local level spacing depends on the atom (hydrogen, rubidium, etc.), and the
ionisation dynamics depends on the prepared initial state via the overlaps wε

in (2.40). Scanning the frequency in a waveguide is simple, but to keep good
control over the field amplitude calibration to fulfill the constraint of constant
L is experimentally challenging [53, 73, 246].
The extreme fluctuations of the atomic conductance as a function ω are pre-
dicted in a range of microwave amplitudes and frequencies for which the clas-
sical transport is suppressed by dynamical localisation. In different contexts
it was noticed that classical chaos plays an important role in the theory of
quantum scattering, including mesoscopic conductance fluctuations [18,37,247].
Self-similar “fractal” fluctuations have been detected for transmission processes
through mesoscopic nanostructures [248–250]. They were explained based on
a semiclassical theory which is built on the hierarchical structure of mixed
regular-chaotic phase space [67, 68, 251, 252]. Another approach [253] predicts
well defined conditions on the statistical properties of resonance poles which
afford fractal fluctuations, independently of semiclassical arguments: statisti-
cally independent sequences of strongly overlapping resonances, which obey a
power-law ρ(Γ) ∝ Γ−α (α > 0) at small Γ, are proven to be sufficient for the
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appearance of fractal fluctuations.
Microwave-driven hydrogen Rydberg atoms are characterised by (a) mixed
regular-chaotic phase space, as well as by (b) a power-law distribution of the
decay rates. The latter is observed in the regime of dynamical localisation, and
for states in the regular region where tunnelling determines the distribution
(see section 3.1.2). Nonetheless, self-similar structures of the atomic conduc-
tance fluctuations over many orders of magnitude in ω0 are not observed. One
reason is that the resonances are typically non-overlapping, i.e. Γε � ∆, in
the range where a clear power-law ρ(Γε) dominates. For instance, in figure 3.4,
ρ(Γε) ∝ Γ−0.9

ε is obeyed for Γε � 10−15 . . .10−9 a.u., while ∆ � 10−6 a.u. In
addition, the above argument based on the photonic ladder picture provides an
estimate for a lower bound of the frequency variation below which a significant
change in the ionisation signal is not expected. This suggests that a fractal
structure over many scales in the microwave frequency cannot appear.





Part II:

Quantum resonances and the effect
of decoherence in the dynamics of
kicked atoms

Creator Deus mathematica ut archetypos secum ab aeterno
habuit in abstractione simplicissima et divina, ab ipsis etiam
quantitatibus materialiter consideratis.

J. Kepler (see [196])





Chapter 4

Kicked-atom dynamics at
quantum resonance

4.1 Quantum resonances in experiments

In the two periodically driven systems studied in this thesis, the dynamical
evolution may substitute for the intrinsic disorder present in Anderson mod-
els. For the δ-kicked rotor, this can be seen directly from the mapping on
the tight-binding equations (2.16). Experiments with cold and dilute atomic
ensembles, as described in section 2.3, demonstrated the effect of dynamical
localisation that manifests (a) in a stationary momentum distribution, and (b)
in the cessation of the linear growth of energy as a function of time. Both of
these signatures occur after the quantum break time tbreak ∼ k2 [63, 80, 106].
On the other hand, the quantum resonances of the δ-kicked rotor are much more
difficult to access experimentally. A flavour of the experimental limitations has
been provided in section 2.3.3. The expected ballistic motion of the atoms (i.e.
their energy should increase quadratically in time) is fast. This makes reso-
nant atoms escape the experimentally observable, restricted momentum win-
dow on a relatively short time scale. Moreover, while dynamical localisation
is a rather robust phenomenon, the quantum resonances are very sensitive to
slight detunings in the kicking period τ , and, in addition, they depend on the
quasi-momentum β (see end of section 2.2.3).
As a consequence, the correspondence between theoretical expectation and ex-
perimental data is much less convincing in the resonant case than in the localised
one. In the following, three experimental observation are discussed which do
not match directly with the theory of the δ-kicked rotor.

65
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Fig. 4.1: Mean energy (in units of (2�kL)2/M , c.f. (2.24)) vs. the kicking period τ for
an experimental ensemble of kicked atoms, after 30 kicks, and with kicking strength k �
0.8π. (a) no decoherence, mean number of spontaneous emission events per τ : nSE � 0,
(b) nSE � 0.1, (c) nSE � 0.2. The duration of the kicking pulses was τdur = 0.047. The
momentum window used to compute the energies from the momentum distributions
was bounded by ncut = ±40 (solid) [82], or ncut = ±60 (dashed) [159], respectively. The
shown range of τ corresponds in laboratory units to 6.5 . . .210.5 µsec; any signal above
a threshold of 20 counts/atoms in the momentum histogram was included to obtain
the energy, and for each value of τ the energy results from an average over 10 (solid)
and 3 (dashed) repetitions of the experiment, respectively. The vertical fluctuations as
well as the offset with respect to to the numerical data shown in figure 4.6 originates in
various experimental problems (see partly section 2.3.3 or [135, 173]). Comparing the
two data sets for each value of nSE shows quite plainly how sensitive the mean energy
depends on the chosen thresholds and experimental realisations [83,159]. Experimental
data by courtesy of Michael d’Arcy and Gil Summy.
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Linear instead of quadratic growth of mean energy?

The first mystery, what concerns the experimental observation of quantum
resonances, is related to the momentum distribution of the atomic ensemble.
“Ballistic peaks” were reported by Oskay and co-workers [81], arising only from
a tiny fraction of the atoms, which indeed shows a quadratically increasing
energy. This is in contrast to the bulk of the atomic ensemble that is instead
frozen in a rather narrow momentum distribution. In other words, no quadratic
growth in the average energy of the atomic ensemble has been observed at
τ = 2π, 4π in [81], because only a few atoms with the correct quasi-momenta
do follow the resonant motion. The resonant values are β = 1/2, and β = 0, 1/2,
for τ = 2π and τ = 4π, respectively (cf. sections 2.2.2 and 2.2.3).
Quantum resonances occur whenever the kicking period is a rational multiple of
4π. In experiments [82,83,135,159], only at the values τ = 2π, 4π, 6π, a special
behaviour has been found. Figure 4.1(a) shows experimental data of the mean
energy of a large atomic ensemble (∼ 106 atoms [83, 135]) as a function of the
kicking period τ . The quantum resonances correspond to the tiny peaks at the
above mentioned values of τ . Only the dashed curve clearly resolves the peak
at τ = 2π. In the present and the next chapter, we are interested in a detailed
understanding of these resonance peaks.

Higher-order quantum resonances?

The overall global structure, apart from signal-to-noise fluctuations, in the
mean energy vs. τ is well understood. Time-dependent correlations between
subsequent kicks of the δ-kicked rotor evolution induce an effective diffusion
constant Deff � k2 sin2 (τ/2) [57, 227, 254–256], and the mean energy saturates
after the quantum break time, i.e. for t > tbreak ∼ Deff [6, 56, 63, 64, 80, 256],
for all irrational values τ/4π. The fine peaks in the experimental data on top
of this global structure do change from one experimental run to the other,
and hence no higher-order resonances are visible. We suspect that the higher
resonances are too sensitive in order to be resolved by the experiments, because
their quasi-energy spectra ε(θ) have a much smaller bandwidth than (2.15) for
the fundamental resonances [64]. This means that they manifest clearly only
after a relatively long evolution time, which is larger than the typical times of
the published experimental data t � 30 kicks [81–83,135,159]. In addition, the
widths in τ of the higher-order resonance peaks are expected to be even smaller
than the ones visible at fundamental resonances τ = 2π, 4π, 6π.

Enhancement of resonance peaks by decoherence?

The third puzzle occurs when adding noise that destroys the phase coherence
in-between the imparted kicks. The noise is introduced in a controlled way
by forcing the atoms to emit spontaneously in the presence of an additional
laser which is near-resonant to an internal electronic transition of the atoms.
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This laser may induce a transition, followed by spontaneous emission (SE). The
spontaneously emitted photon can depart in an arbitrary direction in position
space [211], and the whole process results in a random shift of the centre-of-
mass momentum of the atom.
The additional laser beams are switched on immediately after each kick, for a
duration τSE � 0.067τ [82, 83, 135]. The mean number nSE of SE events per
atom and per kicking period was varied between nSE � 0 . . .0.2. The surprising
experimental result was that decoherence led to a stabilisation and an enhance-
ment of the resonance peaks in the mean energy vs. τ . Instead of destroying
the peaks, decoherence helps them to form as can be seen in figure 4.1, for
nSE � 0.1 in (b), and nSE � 0.2 in (c). Qualitatively, we may understand this
enhancement effect in the following way. SE events shift the atomic centre-of-
mass momenta, as a result of the photon recoil imparted along the relevant axis
defined by the kicking potential. These random shifts destroy the conservation
of quasi-momenta, see section 2.2.3. Therefore, SE amends the dynamics in a
much more intriguing manner than other types of noise (e.g. amplitude noise
as random, time-dependent, but spatially uniform fluctuations in the kicking
strength k [180,181]) that do preserve the discrete momentum ladder structure.
The latter roots in the spatial periodicity of the kicking potential. Since the
quantum resonance conditions depend on quasi-momentum (see end of section
2.2.3), SE shuffles atoms in and out of the resonant motion. That this reshuf-
fling actually leads to an enhancement of the mean energy peaks originates
from the form of the full atomic momentum distributions and the experimental
imperfections discussed in section 2.3.3.

Our goal is to clarify the above mentioned experimental observations, and to
identify quantitatively the physical origin of these puzzles. To this end, we
analyse in mathematical detail two characteristic quantities of the dynamical
evolution of an atomic ensemble: the momentum distribution of the atoms
and their average energy. The particle dynamics is studied at the fundamental
quantum resonances τ = 2π� (� ∈ N), both in the absence of decoherence,
and when external noise is added in the form of SE. The last section of this
chapter then tries to reconcile our analytical and numerical results with the
experimental findings that inspired the present work.

4.2 Noise-free quantum resonant behaviour

With the help of the Bloch decomposition (2.19), we can first restrict to study
the dynamics of a single β−rotor with fixed quasi-momentum β, and average
over all quasi-momenta at the end to obtain the experimental observables. At
quantum resonance with kicking period τ = 2π� (� ∈ N), the wave function
of an individual β−rotor can be explicitly derived for all times t. With some
mathematical gymnastics, we then obtain the momentum distributions and the
average energy of an ensemble of β−rotors from the exact wave functions.
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Given a fixed β ∈ [0, 1), the Floquet operator (2.23), at τ = 2π� (� > 0 integer),
reads

Ûβ = e− ik cos(θ̂) e− iξN̂ e− iπ
β2
, (4.1)

where we used the identity exp(− i πn2�) = exp(− i πn�), and we defined
ξ ≡ π�(2β ± 1) mod(2π) to be taken in [−π, π). The n-independent phase
exp(− i π�β2) is neglected in the following, since it always cancels when com-
puting quantum expectations. The second operator on the right-hand side of
(4.1) will be denoted R̂(ξ). In the θ−representation it acts as a translation [155]
according to:

(R̂(ξ)ψβ)(θ) = ψβ(θ − ξ) . (4.2)

The state of the β−rotor after the t−th kick is then given by the iterated
application of (4.1), where R̂(ξ) only shifts the angle coordinate at each stage:

(Û t
βψβ)(θ) = e− ikF(θ,ξ,t)ψβ(θ − tξ) , (4.3)

with

F(θ, ξ, t) =
t−1∑
s=0

cos(θ − sξ) = |Wt| cos (θ + arg(Wt)) , (4.4)

where

Wt = Wt(ξ) ≡
t−1∑
s=0

e− i sξ . (4.5)

We denote by n the eigenvalues of the angular momentum N̂ . Then, in the
N̂ representation, the state (4.3) reads (after changing variable from θ to
θ+arg(Wt)):

〈n |Û t
βψβ〉 = e in arg(Wt)

∫ 2π

0

dθ√
2π

e− inθ− ik|Wt | cos(θ)ψβ(θ − tξ − arg(Wt)) . (4.6)

If the initial state of the particle is a plane wave (2.22) of momentum p0 =
n0 + β0, ξ takes the constant value ξ0 = π�(2β0 ± 1) mod(2π). Substituting
(2.22) in (4.6), and computing the integral by means of formula (F.1), the
momentum distribution for the β0−rotor at time t is:

P (n, t|n0, β0) = J2
n−n0

(k|Wt|) , (4.7)

where Jn(.) is the Bessel function of first kind and order n. Using the identity
(F.2), and Jn(.) = (−)nJ−n(.) together with

∑
n J2

n(.) = 1 [157] one computes
the expectation value of p2 (or of the energy by dividing by 2):

p2(n0, β0, t) =
∑
n

(n + β0)2P (n, t|n0, β0)

=
∑
m

(m + n0 + β0)2J2
m (k|Wt|)

=
∑
m

m2J2
m (k|Wt|) +

∑
m

(n0 + β0)2J2
m (k|Wt|)

= (n0 + β0)2 +
1
2
k2|Wt|2 . (4.8)



70 Chapter 4. Kicked-atom dynamics at quantum resonance

Already at this stage, we arrived at a very important result. The momen-
tum distribution or its second moment, the mean energy, is determined by the
function Wt. In the noise free case, Wt is completely deterministic, and one
must average solely over all initial conditions n0, β0 to obtain the experimen-
tal observables. As will be shown section 4.3, decoherence turns the function
Wt into a stochastic process, whose behaviour again completely determines the
momentum distribution and the mean energy of the atomic ensemble. With-
out noise, and for the resonant quasi-momenta, β = 1/2 + j/� mod(1), with
j = 0, 1, .., �− 1, and ξ = 0, the function Wt = t, i.e. all terms in (4.5) add
up “in phase”. For non-resonant β and irrational ξ/2π, the terms in (4.5) add
up to a quasi-periodic “walk” in the complex plane. The periodicity is perfect
for rational ξ/2π. Now for t → ∞, the effect of noise, which randomly changes
quasi-momentum, and hence ξ, leads to a random walk in the complex plane
given by the summation of the phases in (4.5). The resulting asymptotic mo-
mentum distribution will be derived in section 4.3.4.
Explicit computation of the geometric series (4.5) yields if ξ0 �= 0:

|Wt| =
∣∣∣∣e− iξ0t − 1
e− iξ0 − 1

∣∣∣∣ =

∣∣∣∣∣e− iξ0(t−1)/2e− iξ0t/2 − e iξ0t/2

e− i ξ0/2 − e iξ0/2

∣∣∣∣∣ =
∣∣∣∣sin(tξ0/2)
sin(ξ0/2)

∣∣∣∣ .

(4.9)

As stated above, for ξ0 = 0 one obtains |Wt| = t. Then the distribution (4.7)
spreads linearly in time, and the average kinetic energy increases like k2t2/4.
ξ0 = 0 corresponds to the resonant values of quasi-momentum β0 = 1/2 + j/�
mod(1), j = 0, 1, .., � − 1. For any other value of β, the distribution changes
in time in a quasi-periodic manner. It oscillates in time with the approximate
period πξ−1

0 , inverse to the detuning of β0 from the nearest resonant value. At
any time t, the distribution is negligibly small at |n−n0| > k| csc(ξ0/2)| > k|Wt|,
since the Bessel functions decay faster than exponentially in this case [157,257].

4.2.1 Momentum distributions

With the conditional distribution (4.7), we can derive the average momentum
distribution of an atomic ensemble for a given initial momentum distribution
of the atoms. The latter is given by the experimental realisation, and in the
following we map it to a distribution for the β−rotors with β ∈ [0, 1).

Incoherent ensemble of atoms

If the initial state of the particle is a wave packet, then it is a coherent su-
perposition of continuously many plane waves with different quasi-momenta,
which are non-resonant except for a finite set of values β0 = 1/2+ j/� mod(1),
j = 0, 1, .., � − 1. It can then be proven that the asymptotic growth of en-
ergy in time is proportional to k2t/4 [145]. Here we consider the case when
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the initial atomic ensemble is an incoherent mixture of plane waves. Numeri-
cal simulations based on such choices of an initial state have shown satisfactory
agreement with experimental data [83,176]. The initial momentum distribution
shall be described by a density f(p). We can equivalently consider an ensemble
of β−rotors, with β distributed in [0, 1) with the density

f0(β) =
+∞∑

n=−∞
f(n + β). (4.10)

In the case when f(p) is Gaussian with standard deviation σ (a reasonable
assumption for the experiments reported in [81–83]), the Poisson summation
formula [258, 259] yields

f0(β) =
∞∑

m=−∞
f(m)e i2πmβ

= f(0) + f(1)e i2πβ + f(−1)e− i 2πβ + O(|m| ≥ 2)

= 1 + 2e−2π2σ2
cos(2πβ) + O(e−8π2σ2

) . (4.11)

Here f denotes the Fourier transform of the density f . For σ > 1, that is
relevant for the experiments referred to in section 4.1∗, it is practically indistin-
guishable from the uniform distribution f0(β) = 1. Each β−rotor is described
by a statistical state, which attaches the probability f0(β)−1f(n + β) to the
momentum eigenstate |n〉.
The momentum distribution P (p, t) of the particle at time t is obtained as fol-
lows. For any given β0 ∈ [0, 1), averaging (4.7) over the different n0 of the ini-
tial distribution yields the momentum distribution P̄ (n, t|β0) for the β0−rotor.
Weighted by f0(β0), this is the same as the momentum distribution P (p, t) of
the particle over the ladder p = n+β0 (β0 fixed, n variable). The on-ladder dis-
tributions corresponding to different β0 combine like a jigsaw puzzle in building
the global momentum distribution for the particle. The result is a complicated
function of p which is plotted after t = 50 kicks in figure 4.2. The distribution
oscillates on the scale 1/t, which follows from the ξ0− dependence of (4.7) and
(4.9). Nevertheless, on average, this distribution evolves into a steady-state
distribution. This may be shown either by time-averaging [160], or by coarse-
graining. In the following section, we present the latter approach in detail, and
derive the steady-state distribution that is obtained in the asymptotic limit
t → ∞.

Coarse-grained distribution

Because of the above mentioned complicated local (i.e. within intervals n <
p < n+1) structure of the momentum distribution as a function of p, it is hard

∗Recently, kicked rotor dynamics showing the influence of timing noise (random fluctua-
tions in the kicking period) on dynamical localisation have been reported with σ < 1 [166].
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Fig. 4.2: The momentum distribution of an ensemble of 50 particles, with an initial
Gaussian distribution of p0 = n0 + β0 (for the experimentally reported standard devi-
ation σ � 2.7 [82, 83, 135]). Plotted as dots are the individual β0−rotor distributions
|ψβ0

(t, n)|2 (over the corresponding, distinct integer momentum ladders n = [p]) vs.
p = n + β0; after t = 50 kicks, k = 0.8π, τ = 2π. The β0−rotors with the small-
est detuning from the resonant quasi-momenta follow the resonant motion for longer
times, an example is presented by the solid line. The ones with larger detunings stop
following the resonant acceleration, after some time t � 50, see dashed line for such a
case. For comparison, the dotted line shows the normalised coarse-grained distribution
of a larger ensemble taken from figure 4.3.

to characterise the distribution, and apart from the global structure, it is not
useful for the comparison with experimental data. One way of removing the fast
oscillations is replacing P (p, t) in each interval n < p < n+1 by its integral Pn(t)
over that interval. This corresponds to using a bin size 2�kL (c.f. (2.24)) for the
observed distributions, which is also the typical resolution in the determination
of the momentum distributions in the experiments reported in [82,83,159,260].
Assuming f(p) to be coarse-grained itself, the new distribution is approximately
computed in the form:

Pn(t) =
∑
m

Mn−m(t)f(m), (4.12)

where

Mn(t) =
∫ 1

0
dβ J2

n (k|Wt|) . (4.13)
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Substituting variables and noting that J2
n is an even function of its argument

we may rewrite

Mn(t) =
∫ π


−π


dξ

2π�
J2

n

(
k

∣∣∣∣sin
(

tξ

2

)
csc

(
ξ

2

)∣∣∣∣
)

=
∫ π

−π

dx

2π
J2

n (k sin(tx) csc(x))

y=xt
=

∫ π

−π

dy

(2π)2

t−1∑
r=0

2π

t
J2

n

(
k sin(y) csc

(
y

t
+

2πr

t

))
, (4.14)

where in the last step we used the periodicity of the sine. In the limit when
t → ∞ and 2πr/t → α, the sum over r approximates the integral over α, and
(4.14) converges to

M∗
n =

1
(2π)2

∫ π

−π
dy

∫ 2π

0
dα J2

n (k sin(y) csc(α)) . (4.15)

The steady-state coarse-grained distribution P ∗
n is then obtained by replacing

(4.15) in (4.12). We do not know if the double integral may be computed in
closed form. In appendix A the following (non-optimal) estimate is derived, for
the wings of the momentum distribution, valid for any integer N > k:

∑
|n|≥N

M∗
n ≤ 2

(
ke

16

) 2N
2N+1

N
1−2N
1+2N

(
2 +

1
N

)
. (4.16)

Using this estimate it is easy to compute that for k > 1 the total probability
carried by states |n| > 4k is not larger than � 0.31. Therefore, at large kicking
strength k, the distribution is rather narrow as compared to the exponentially
localised distribution which is observed far from resonance, because the width
of the latter scales like k2 [63, 64, 106]. In appendix A it is further proven that
the distribution (4.15) has the following large-|n| asymptotics:

M∗
n ∼ 4k

π3n2
as |n| → ∞ . (4.17)

Such an algebraic decay ∝ 1/n2 carries over to the coarse-grained momentum
distribution P ∗

n whenever the initial momentum distribution f(p) is fast decay-
ing (e.g. like a Gaussian):

Pn(t) → P ∗
n ∼

∑
m

4k

π3(n − m)2
f(m) as |n| → ∞ . (4.18)

The convergence of the coarse-grained distributions to the steady-state distri-
bution is illustrated in figure 4.3, where the evolution of statistical ensembles
of particles with an initial Gaussian momentum distribution was numerically
simulated. The central part of the distribution quite early stabilises in the final
form of a narrow peak of width ∼ k. Away from this peak, the algebraic tail
∝ n−2 develops over larger and larger momentum ranges as time increases in
the wake of two symmetric, tiny “ballistic peaks” that move away linearly in
time. The fall of the distribution is quite steep past such peaks. This is easily
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Fig. 4.3: Evolution of coarse-grained momentum distributions (4.12) at quantum res-
onance with τ = 2π, and kicking strength k = 0.8π, for an ensemble of 104 atoms,
without decoherence. The initial momentum distribution is centred Gaussian, with
root-mean-square deviation σ � 2.7. (a) Distributions for t = 30 (solid lines), t = 50
(dotted), t = 100 (dashed), t = 200 (dash-dotted). (b) Doubly logarithmic plot of the
distribution at t = 1000 (solid line), compared to the asymptotic formula 4k/(π3n2)
(dash-dotted line) (4.17). No cutoffs are used, so the distributions characterise the
ideal behaviour of an ensemble of δ-kicked particles.

understood from the first equation in (4.14): since | sin(tx) csc(x)| ≤ πt/2, at
n > πkt/2 the integrand decays faster than exponentially [157, 257]. The dis-
tribution in figure 4.3 (b) has stabilised to the limit distribution over a broad
momentum range. Apart from the far tail, where the moving peak structure
is still apparent, the distribution follows the asymptotic decay (4.17) already
for |n| � 15. Hence, using (4.17), the total probability on states |n| > 40 is
∼ 8 × 10−3.
From the above analysis, we obtain that all moments of p of order ≥ 1 diverge
as t → ∞, in spite of the onset of the stationary distribution, owing to the slow
algebraic decay (4.18) of the latter. For the case of the second moment, which
is (apart from a factor 2) just the mean energy of the ensemble, the growth is
actually linear in time, as we shall presently show.
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4.2.2 Average kinetic energy

The mean kinetic energy of an ensemble of rotors at time t is obtained by
averaging (4.8) over the initial momentum distribution. In the following, the
expectations obtained by averaging over a classical (incoherent) ensemble will
be denoted E{.}, while quantum expectations of the energy of one individual
β-rotor will be denoted Ē. The mean energy then reads

E{Ē(t)} = E{Ē(0)}+
k2

4

∫ 1

0
dβf0(β)

sin2(tπ�(β − 1/2))
sin2(π�(β − 1/2))

. (4.19)

As t → ∞, the fraction in the integrand, multiplied by �/t, tends to a periodic
δ function of (β − 1/2) with period 1/�. Thus (4.19) has the following t → ∞
asymptotics:

E{Ē(t)} ∼ E{Ē(0)}+
k2t

4�


−1∑
j=0

f0(β(j)) , (4.20)

where β(j) = 1/2 + j/� mod(1) are the resonant quasi-momenta. In the case
when f0(β) ≡ 1, i.e. the initial quasi-momentum distribution is uniform in
[0, 1), this formula is exact for all times t (by (F.13)):

E{Ē(t)} = E{Ē(0)}+
k2t

4
. (4.21)

With (4.11), (4.21) is practically exact at all times for an initial Gaussian dis-
tribution with width σ > 1 around the origin. Such a distribution corresponds
to the initial momentum distribution in the experiments reported in [81–83].
Higher-order energy moments may be likewise computed. For large but finite t,
we observe from figure 4.3(a) that the n−2 decay of the distribution is truncated
at n ∼ kt, since the speed in momentum of the resonant rotors is determined
by square root of (2.14). Consequently, the variance of energy increases like
t3. The increase of other moments may also be estimated in this way. Higher
moments are important for the comparison with the noisy evolution, which we
will discuss in the following section.

4.3 Destruction of quantum resonances by decoher-
ence

One major incentive for the present analysis was the rather counter-intuitive
experimental observation that, for a given interaction time, the mean energy
was found to increase when spontaneous emission (SE) was added, with
respect to the absence of external dissipative noise (see figure 4.1 and [82, 83]).
The function (4.5) provides some intuition about what will happen when the
quasi-momenta are reshuffled in a random manner by SE events. By virtue of
the randomisation of the phases ξ (4.5) will turn into a random process, whose
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statistics determine the long time asymptotics of the momentum distribution.
The statistical assumptions which we use to model the stochastic δ-kicked par-
ticle evolution are a compromise between physical adherence and mathematical
convenience. By comparing our results with more realistic numerical simu-
lations we demonstrate that their validity does not crucially depend on our
technical assumptions. In the following analysis we neglect the delay between
absorptions and subsequent SEs. We hence assume that the atom undergoes
random momentum changes by virtue of SE at a discrete sequence of random
times. Both the SE times and the corresponding momentum changes are
modelled by classical random variables, independent of the centre-of-mass
motion of the atom. This assumption is reasonable as long as the mean number
of SEs nSE is relatively small; otherwise, the atoms may, in the average, be
slowed down or cooled – a velocity-dependent effect, which cannot be accounted
for under this assumption. On the other hand, at the high field intensity of a
quasi-resonant laser beam, which is required for large nSE, stimulated emission
would prevail. Stimulated emission would induce biased momentum changes
along the axis of the SE inducing laser, and hence act in a similar way as the
kicking pulses.
The statistical atom dynamics may be studied by investigating the stochastic
Hilbert-space evolution of the atomic state vector [176, 184, 261–264]†. More
specifically, we assume an initial incoherent mixture of plane waves with a
distribution f(p0). We further assume that all the variables describing SE
events are given and fixed. Their specification defines a realisation of the
random SE events. Then we compute the deterministic evolution of the
atomic state vectors up to time t. The quantum probability distribution of
an observable in the final state depends on the chosen realisation and on the
initial state as well; averaging over both yields the final statistical distribution
for that observable.
We will see that the dissipative influence of SE on the centre-of-mass motion
is typically small and can be described independently from the effect on the
phase evolution in (4.5). These two effects of the coupling to the environment
are separated by a stochastic gauge transformation, which is introduced in the
next section.

4.3.1 Stochastic gauge

This section shows that, although the random SE events destroy the true quasi-
momentum conservation, the problem can be formulated in an appropriate
gauge for which momentum is not affected by SE. This formally implies the
conservation of quasi-momentum, while the random momentum shifts are in-

†This approach was first implemented for the study of randomised δ-kicked rotor dynamics
in [265]. Please note that in references [176, 184] SE occurs usually during the kicking pulse
while in our model – corresponding to the experiments of [82,83] – SE is induced by a second,
independent light field applied after each kick.
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corporated as additional time-dependent phases in the Floquet operator. Let
|ψ(t)〉 be the state vector of the atom immediately after the t−th kick. Let
the integer νt denote the number of SEs during the subsequent SE-inducing
window. Such events are assumed instantaneous. Denote sj−1 the delay (in
physical time) of the j−th event with respect to the (j − 1)−th one, and dj

the momentum change of the atom induced by the j−th SE. For notational
convenience a 0−th fictitious SE is assumed to occur immediately after the
t−th kick, and a (νt + 1)-th one immediately before the (t + 1)-th kick, with
d0 = dνt+1 = 0.
The state vector immediately after the (t+1)−th kick is, apart from an inessen-
tial phase factor,

|ψ(t + 1)〉 = Ŝ(δt)e− ik cos(X̂)e− iτ (P̂+χt)2/2|ψ(t)〉 , (4.22)

where:

χt =
νt∑

j=1

sj

τ

j∑
k=0

dk , δt =
νt∑

j=0

dj , Ŝ(.) = e i (.)X̂ . (4.23)

Note that the first and the second operator on the right-hand side of (4.22)
commute because both only depend on X̂ . In addition, the translation operator
Ŝ has the property Ŝ(α+µ) = Ŝ(α)Ŝ(µ). The conservation of quasi-momentum
is broken by the operator Ŝ(δt), which shifts the momentum ladders of the
Bloch decomposition (2.19). However, conservation of quasi-momentum may
be restored by means of the substitution:

|ψ(t)〉 = Ŝ(δ0 + δ1 + ... + δt−1)|ψ̃(t)〉 (4.24)

which is a time-dependent, momentum shifting gauge transform; the resulting
gauge will be termed the stochastic gauge in the following. Replacing (4.24) in
(4.22), and using

e− iτ (P̂+α)2/2Ŝ(γ) = Ŝ(γ)e− iτ (P̂+α+γ)2/2 ,

one finds:

|ψ(t + 1)〉 = Ŝ(δt)e− ik cos(X̂)e− i τ (P̂+χt)2/2Ŝ(δ0 + δ1 + ... + δt−1)|ψ̃(t)〉

= Ŝ(δ0 + δ1 + ... + δt)e− ik cos(X̂)e
− iτ

�
P̂+χt+

t−1P
s=0

δs

�2

/2
|ψ̃(t)〉

= Ŝ(δ0 + δ1 + ... + δt)|ψ̃(t + 1)〉 . (4.25)

Therefore, in the stochastic gauge the state is propagated in the following man-
ner:

|ψ̃(t + 1)〉 = e− ik cos(X̂)e
− iτ

�
P̂+χt+

t−1P
s=0

δs

�2

/2
|ψ̃(t)〉 . (4.26)

This evolution does preserve quasi-momentum (in the same way as does (2.8) by
(2.12)), and the reduction to β−rotor dynamics may be performed as described
in section 2.2.3, leading to

|ψ̃β(t + 1)〉 = Ûβ(t)|ψ̃β(t)〉 ; Ûβ(t) = e− ik cos(θ̂)e− iτ (N̂+ηt)2/2 , (4.27)
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where

ηt = β + χt +
t−1∑
s=0

δs . (4.28)

In this way the stochastic evolution (4.23) has been separated in two parts.
One of these is described in (4.24) by the operator Ŝ; the other is the evolution
(4.27) in the stochastic gauge. The former is just a translation (in momentum)
by the total momentum imparted by SE during the considered time. It is the
latter part that encodes the stochastic phase evolution.

4.3.2 Theoretical model for randomised dynamics

In experiments, SE occurred at random times within SE-inducing time windows,
and there is one such window immediately after each kick. We shall say that
a “SE event” occurs at the integer time t, whenever at least one SE occurs in
the window following the t−th kick. In this way, the number of SEs may be
larger than the number of SE events. The probability of a SE event is denoted
pSE. The assumptions (S1-3) below build on the separation of different time
scales. The experimental time window for SE, τSE = 0.067τ = 0.424, for τ = 2π
(or 4.5 µsec in [82, 83]), is on the one hand very large compared to the time
scales given by the Rabi frequency of the atomic transition and by the inverse
SE damping rate [82,83]. On the other hand, τSE is very small compared to the
kicking period. It is therefore reasonable to neglect memory effects inherent to
SE processes [266]. A complete randomisation of quasi-momentum after each
SE-inducing cycle occurs when the mean number of SEs per period is large,
nSE � 1: then effective averaging leads to quasi-independent ηt in (4.28). If
nSE is small, then complete randomisation requires that the distribution of the
momentum shifts δt mod(1) is uniform in [0, 1). On the other hand, δt is the
sum of a random number of momentum changes owing to single SEs. If these
are assumed independent and identically distributed, then each of them has to
be uniformly distributed in some interval of integer width. The assumption for
the following analysis are now specified as follows:

(S1) SE events occurring at different times are statistically independent. Hence,
the random variables δt (t = 0, 1, 2, ...) specifying the total (projected onto the
axis of the kicking potential) momentum change produced by SE in the t−th
kicking period (equation (4.23)) are independent, identically distributed random
variables.

(S2) The finite duration of the SE-operating windows is negligibly small com-
pared to the kicking period. Hence, sνt ≈ τ while sj ≈ 0 for j < νt, so that
χt ≈ δt in (4.23), and ηt ≈ β0 +

∑t
s=0 δs in (4.28). Different SEs may occur

in the same kicking period, each separately contributing to the total momen-
tum change δt recorded in that period; nevertheless, their separation in time is
neglected.
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(S3) The occurrence of a SE event results in total randomisation of the quasi-
momentum. Given assumption (S2), this is equivalent to assuming that the
conditional distribution of the variable δt mod(1), given that a SE event occurs
at time t, is uniform in [0, 1) (in units of two photon recoils, see section 2.3.1).
We further assume a zero mean for the distribution of δt. While no further
specification is needed for the formal elaborations below, in numerical simula-
tions we shall in fact use a uniform conditional distribution in [−1/2, 1/2] (in
units of two photon recoils).

(S4) As in the SE-free case (section 4.2.1), we assume the initial statistical
ensemble to be an incoherent mixture of plane waves.

With (S1-3) we derive now the equivalent of (4.7) in the presence of SE. (S4) is
used when computing the average kinetic energy and the asymptotic momentum
distributions of an atomic ensemble (section 4.3.3 and 4.3.4).
Let SE events occur after t0 ≡ 0 at integer waiting times t1 = ∆0, t2 = ∆0 +
∆1, . . . , tj = tj−1 +∆j−1, ... . The variables ∆j (j ≥ 0) are integer, independent
random variables. Under assumption (S1) they are distributed on the positive
integers n with probabilities:

ρ(n) = pSE(1− pSE)n−1 for n > 0 , ρ(0) = 0 , (4.29)

where pSE is the probability that at least one SE takes place in one kicking
period. For all integers t > 0 we define Nt ≡ max{j : tj ≤ t}, the number of
SE events occurring not later than time t, and N0 = 0. The integer random
variables Nt, t ≥ 0 define a Bernoulli process‡ [267].
After such preliminaries, we set out to study the evolution in the stochastic
gauge, as defined by equations (4.27). The quasi-momentum β of a β−rotor is
constant in time, and for each rotor η0 = β (SE events are allowed immediately
after kicks, and no kick occurs at t = 0). In the stochastic gauge, the random
propagator from time 0 to time t for the β−rotor is given by the ordered product

ÛS,β(t) =
t−1∏
s=0

Ûβ(s) . (4.30)

The subscript S on the left-hand side refers to the stochastic gauge. The one-
step propagators Ûβ(t) are defined in equation (4.27). Note that the Ûβ(t)
depend on the time elapsed between s = 0 and s = t − 1 through the accu-
mulated shifts in ηt (4.28). Similar to what was done in section 4.2.1 at exact
resonance τ = 2π� one may write (cf. equation (4.1)):

Ûβ(t) = e− ik cos(θ̂)e− iξtN̂ ≡ e− ik cos(θ̂)R̂(ξt) , (4.31)

where ξt = π�(2ηt±1). R̂(ξs) again acts as a translation in the θ-representation.
Although ηt is not restricted in the interval [0, 1) in equation (4.27), the reso-
nance condition allows for ξt to be taken in [−π, π) in (4.31). Under assumption

‡This process must not be confused with the continuous Poisson process [267] that may be
used for the SEs occurring within one and the same kicking period; see section 4.3.5.
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(S2), ξt has a constant value ξ̃j in [−π, π) in-between t = tj and t = tj+1, such
that

ξ̃j ≡ π�(2β0 ± 1) + π�(2ηj ± 1) mod(2π) = ξ0 + 2π�

j∑
m=0

δm mod(2π) , (4.32)

where δm is the total momentum imparted by the m−th SE event. Hence,
ξt = ξ̃Nt in-between the t−th kick and the (t + 1)−th one. A realisation of the
SE events is assigned by specifying the values of all the SE random variables
just defined, which we collectively denote by the shorthand notations δ for the
random momentum shifts and ∆ for the random times of SE events. Once the
final observation time t and the realisation are fixed, for notational convenience
we re-define ∆Nt−1 = t − tNt−1 . Replacing (4.32) in (4.31), and then in (4.30),
we get

ÛS,β(t) =
t−1∏
s=0

(
e− ik cos(θ̂)R̂(ξ̃Ns)

)
. (4.33)

By repeated use of

e− ik cos θ̂R̂(ξ) = R̂(ξ)e− ik cos(θ̂+ξ) ,

all the translation operator are shuffled to the left in (4.33). Then the evolution
operator up to time t (4.30) may be rewritten in the form:

ÛS,β(t) = R̂
(
ξ0 + ξ̃N1 + . . . + ξ̃Nt−1

)
e− ikF(θ̂,δ,∆,t) , (4.34)

where we defined

F(θ̂, δ, ∆, t) ≡
t−1∑
s=0

cos

(
θ̂ +

s∑
r=0

ξ̃Nr

)
. (4.35)

F(θ̂, δ, ∆, t) contains all the shifts in the angle variable in the sum within the
cosine. Alike in (4.6) it solely represents a phase in the θ−representation, with
the important difference that F(θ̂, δ, ∆, t) depends on the random variables ξ̃Nr

(0 ≤ r < t). To arrive at the analogue expression of (4.7) in the case without
SE, we next define γj =

∑j−1
m=0 ∆mξ̃m. Replacing s in (4.35) by s = tj + l with

j = Ns, and summing over j, l separately, we obtain

F(θ̂, δ, ∆, t) =
Nt−1∑
j=0

∆j−1∑
l=0

cos(θ̂ + γj + lξ̃j) . (4.36)

With the definitions

zj =
∆j−1∑
r=0

e iγj+i rξ̃j ; Zm =
m∑

j=0

zj ; Wt = ZNt−1 , (4.37)

we finally arrive at

F(θ̂, δ, ∆, t) = |Wt| cos
(
θ̂ + arg(Wt)

)
.
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Note that Wt here differs from Wt in equation (4.4). Wt is now a random
process, which itself depends on the realisation of the random variables (δ, ∆).
The latter encode the random momentum shifts and the random times of SE
events, respectively. By (S4), the initial state of the atom is assumed to have a
definite initial momentum, i.e. to be a plane wave of momentum p0 = n0 + β0.
Given a realisation (δ, ∆), we operate on the corresponding rotor state (2.22)
with the propagator (4.34). The (random) state of the rotor at time t is given,
in the momentum representation, by:

〈n |ÛS,β0(t)ψβ0〉 = e iϕt

∫ 2π

0

dθ

2π
e− i (n−n0)θ− ik|Wt| cos(θ) ,

ϕt = (n − n0)arg(Wt) − nγN(t−1) . (4.38)

The distribution of momenta n at time t is

P (n, t|n0, β0, δ, ∆) = J2
n−n0

(k|Wt|). (4.39)

This is formally identical to (4.7), but now Wt depends on the initial quasi-
momentum β0 and on the realisation of the SE events as well. It is a sto-
chastic process and the random state (4.38) performs a random walk in the
rotor’s Hilbert space. Computation of statistical averages requires averaging
over the SE random variables (δ, ∆), and for an initial atomic ensemble also
over the initial momenta p0 = n0+β0. Under our assumptions all such variables
are classical random variables. Expectations (respectively, conditional expec-
tations) obtained by averaging over such classical variables are denoted E{.}
(respectively, E{.|.}). For instance, E{.|p0} stands for the average over the SE
variables alone, given the value of p0, or equivalently of n0 and β0 (alternatively
ξ0 = π�(2β0 ± 1)).
The large−t behaviour of the stochastic process Wt that drives the stochastic
rotor evolution is ruled by the large m behaviour of the process Zm (4.37). The
properties of the latter process are completely determined by the assumptions
(S2) and (S3). Together with equation (4.32) assumption (S3) entails that the
ξ̃j are mutually independent random variables, uniformly distributed in [−π, π)
(with the possible exception of ξ0, whose distribution is defined by the ini-
tial ensemble). This fact has the following consequences, which are derived in
the next section and in appendix B: the complex variables zj, zk are indepen-
dent whenever |j − k| ≥ 2. Moreover zj , zk are pairwise uncorrelated whenever
j + k > 1:

E{zjz
∗
k|∆} = δjk∆j , E{zjzk|∆} = 0 . (4.40)

These properties of the zj allow us to compute the expectations and higher
moments of the random process |Wt|. Furthermore, this shows that the process
Zm is a random walk in the complex plane, which originates from the sum-
mation of random phase terms in (4.37). Equivalently, the distribution of Zm

approaches an isotropic Gaussian distribution in the complex plane as m → ∞
(see appendix B). On account of the properties of the Bernoulli process, the
process Wt at large t has quite similar features: in appendix C we show that as
t → ∞, the distribution of |Wt| approaches an isotropic Gaussian distribution
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in the complex plane centred at 0.
The random walk property manifests in a linear growth of the mean energy in
time t, as well as in a Gaussian momentum distribution for large t [160]. The
asymptotic momentum distribution will be derived in section 4.3.4 below. In
the next section, we will proof that the mean energy indeed increases almost
alike without SE (4.21), for a uniform initial distribution of quasi-momentum,
i.e. for f0(β0) = 1:

E{Ē(t)} = E{Ē(0)}+
1
4
k2t +

1
2
D(t − 1). (4.41)

The additional term D(t − 1)/2 arises from the “heating” effect of SE events,
which do not only change quasi-momentum, but also the integer part of mo-
mentum. In experiments, this heating is typically very small, and its diffusion
constant D depends on the mean number of SEs per kicking period (see sec-
tion 4.3.5). We conclude that the growth of the mean energy is but weakly
affected by SE, in contrast to what is observed in the experiments, cf. fig-
ure 4.1. This discrepancy between the experimental data and the theoretical
prediction will be discussed in detail in section 4.3.6. In the sequel, a more
general expression than (4.41) is proven rigorously for an arbitrary initial mo-
mentum distribution.

4.3.3 Average kinetic energy

The statistical moments of the random process Wt may be explicitly computed
at all t. For instance,

E
{
|Wt|2 | ∆

}
=

Nt−1∑
j,k=0

E {zjz
∗
k | ∆} (4.42)

is calculated by using the relations (4.40), which are proven in the following.
We denote:

αj = e i ξ̃j , ϕj =
∆j−1∑
r=0

αr
j ,

so that

zjz
∗
k = e i(γj−γk)

∆j−1∑
r=0

∆k−1∑
s=0

αr
jα

−s
j

= e
i

�
j−1P
m=0

∆m ξ̃m−
k−1P
l=0

∆l ξ̃l

�
ϕjϕ

∗
k

= ϕjϕ
∗
k

j−1∏
l=0

α∆l
l

k−1∏
m=0

α−∆m
m . (4.43)

Let j > k, j + k > 1. Then j > 1, and the first product has the factor
α

∆j−1

j−1 . Hence (4.43) depends on ξ̃j−1 via this factor alone (if j �= k + 1), or via
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this factor multiplied by ϕ∗
j−1 (if j = k + 1), leading to a factor e i ξ̃j−1(∆j−1−l)

with l ≤ ∆j−1 − 1. In both cases averaging over the uniformly distributed
random variable ξ̃j−1 yields zero (by (4.32) and assumption (S3) ξ̃j−1 is indeed
uniformly distributed whenever j > 1). The case j < k then follows by complex
conjugation in (4.43). For combinations of the form zjzk, we observe from (4.43)
that the factors dependent on αj,m can never cancel each other, and therefore
they average to zero. This proves the second claim made in (4.40).
If, on the other hand, j = k, then

|zj|2 =


∆j−1∑

r=0

αr
j




2

=
sin2(ξ̃j∆j/2)
sin2(ξ̃j/2)

, (4.44)

similarly to (4.9). This gives for the expectation

E{|zj|2|∆} =

π∫
−π

dP (ξ̃j)
sin2(ξ̃j∆j/2)
sin2(ξ̃j/2)

, (4.45)

where dP (ξ̃j) is the distribution of ξj. For j > 0, this distribution is uni-
form: dP (ξ̃j) = dξ̃j/(2π), and the integral is computed according to (F.13):
E{|zj|2|∆} = ∆j. For j = 0, we define

E{|z0|2|∆} = M(∆0) ≡
π∫

−π

dP (ξ0)
sin2(ξ0∆0/2)
sin2(ξ0/2)

(4.46)

where

dP (ξ0) = (2π�)−1dξ0

l−1∑
j=0

f0(βj) , βj ≡
ξ0

2π�
+

1
2

+
j

l
mod(1) (4.47)

is the distribution of ξ0, and f0 is the probability density of the initial quasi-
momentum (4.10).
With these results (4.42) becomes

Nt−1∑
j=0

E
{
|zj|2|∆

}
+ 2χ(Nt−1) Re (E{z1z

∗
0 |∆}) , (4.48)

where χ(.) is the characteristic function of the strictly positive integers. For the
last term one obtains from (4.37) by averaging over the uniformly distributed
ξ̃1

z1z
∗
0 =

∆1−1∑
s=0

e isξ̃1e i∆0ξ0

∆0−1∑
r=0

e− i rξ0
average ξ̃1−→ e isξ̃1

∣∣∣
s=0

∆0∑
r=1

e irξ0 , (4.49)

and hence:

E{z1z
∗
0 |∆} = N (∆0) ≡

∆0∑
r=1

π∫
−π

dP (ξ0)e irξ0 . (4.50)
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The variables ∆j were defined such that
∑Nt−1

j=0 ∆j = t; hence, with the help of
(4.46) and (4.50) we find:

E
{
|Wt|2 | ∆

}
= M(∆0) +

Nt−1∑
j=1

∆j + ∆0 − ∆0 + 2χ(Nt−1) ReN (∆0)

= M(∆0)− ∆0 + t + 2χ(Nt−1) ReN (∆0) . (4.51)

To obtain the mean energy of an atomic ensemble subject to SE, we must
average over the random SE times ∆. The special case when no event happens
up to time t, i.e. ∆0 = t if t1 > t (with t1 the time of the first SE event), implies
Nt−1 = 0, and this gives

E
{
|Wt|2 | ∆

}
= M(t) . (4.52)

In general, Nt−1 = 0 is equivalent to t1 ≥ t, and t1 is distributed according
to (4.29). Therefore, using that the probability for t1 ≤ t is given by qt

SE =
(1 − pSE)t, and its compliment by 1− qt

SE the mean energy equals:

E
{
|Wt|2

}
= qt

SEM(t) + t(1 − qt
SE) + C(t, pSE) (4.53)

where

C(t, pSE) =
t∑

n=1

ρ(n)[M(n)− n + 2ReN (n)] . (4.54)

In the case of a uniform initial quasi-momentum distribution, M(t) = t by
(F.13) and (4.50) vanishes, hence also C(t, pSE) = 0, and

E{|Wt|2} = t , (4.55)

like in the case without SE.
With a smooth initial quasi-momentum distribution (4.10) it follows from the
definitions (4.46) and (4.50) of M and N that

|C(t, pSE)| ≤
∣∣∣∣∣

t∑
n=1

ρ(n)M(n) + 2ReN (n) +
t∑

n=1

nρ(n)

∣∣∣∣∣
≤ 3(δf0)

t∑
n=1

nρ(n) , (4.56)

where (δf0) is the maximum of |f0(β) − 1| in [0, 1). In the last step, we used
for (4.50) the upper bound∣∣∣∣∣∣

∆0∑
r=1

π∫
−π

dP (ξ0)e irξ0

∣∣∣∣∣∣ ≤ (δf0)

∣∣∣∣∣
∆0∑
r=1

e irξ0

∣∣∣∣∣ ≤ (δf0)

∣∣∣∣∣
∆0−1∑
r=0

e irξ0

∣∣∣∣∣ ≤ (δf0)∆0 .

With a non-uniform initial quasi-momentum distribution, letting pSE → 0 at
fixed t causes the second and the third term on the right-hand side of (4.53)
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to vanish. If instead t → ∞ at fixed pSE > 0, then the second and the first
term on the right-hand side approach t and zero respectively, exponentially
fast; the third term remains bounded according to (4.56). So the result which
is obtained with a uniform quasi-momentum distribution is always approached
asymptotically.
Assuming that the initial state and the SE realisation are given, and denoting
δ̃t =

∑t−1
s=0 δs, the quantum expectation of the energy of the atom at time t may

be written as:

Ē(t) =
1
2

∫
dp p2|〈p|ψ(t)〉|2 =

1
2

∫
dp (p + δ̃t)2|〈p|ψ̃(t)〉|2

=
1
2

∫
dp p2|〈p|ψ̃(t)〉|2 +

1
2
δ̃2
t + δ̃t

∫
dp p|〈p|ψ̃(t)〉|2 , (4.57)

where (4.24) was used. This expression has to be averaged over the initial
statistical ensemble and over all SE realisations. Then the standard random
walk result (applicable because of the assumptions (S1-3)) is

E{δ̃2
t } = D(t − 1) , E{δ̃t} = 0 , (4.58)

where D = E{δ2
t } is the mean square momentum change per period owing to

spontaneous emission. For an initial plane wave (2.22) of momentum p0 =
n0 + β0, with the help of (4.39) one finds∫

dp p|〈p|ψ̃(t)〉|2 =
∑
n

∫ 1

0

dβ (n + β)|〈n|ψ̃β(t)〉|2

=
∑
n

(n + β0)J2
n−n0

(k|Wt|)

=
∑
m

(m + n0 + β0)J2
m(k|Wt|) = n0 + β0. (4.59)

where Jn(.) = (−)nJ−n(.) and
∑

n J2
n(.) = 1 [157] were used. Similarly,∫

dp p2|〈p|ψ̃(t)〉|2 =
∑
n

(n + β0)2J2
n−n0

(k|Wt|) , (4.60)

whence, using (F.2),∫
dp p2|〈p|ψ̃(t)〉|2 =

1
2
k2|Wt|2 + (n0 + β0)2. (4.61)

Replacing (4.59) in (4.57), the expectation of the last term in (4.57) vanishes
by virtue of (4.58). The expectation of (4.61) is found with the help of (4.53).
Thus the final result for the mean energy is

E{Ē(t) − Ē(0)} =
1
4
k2[t(1− qt

SE) + M(t)qt
SE + C(t, pSE)] +

1
2
D(t − 1). (4.62)

(4.62) reduces to the SE-free one equation (4.19) for qSE = 1. The term on
the right-hand side which includes k2 as a factor is the mean energy in the
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stochastic gauge. With a uniform quasi-momentum distribution, (4.62) reduces
to (4.41), which is identical to the result obtained in the SE-free case, except
for the last term in (4.62). However, a similar, albeit cumbersome computation
of higher-order moments would reveal sharp differences, which reflect totally
different ways of the spreading of the momentum distribution in the two cases.
While, in the noise free case, the second moment of energy, for instance, in-
creases with t3 in time (see discussion after (4.21)), it would grow like t2 in the
asymptotic limit where a Gaussian momentum distribution develops (see next
section).
Under assumption (S3), the quasi-momentum distribution of the atoms is im-
mediately turned uniform by the first SE event. The time scale for uniformisa-
tion of the quasi-momentum distribution is then tc = −1/ ln(1 − pSE). Equa-
tion (4.62) shows that for t � tc the growth of energy is linear with the coeffi-
cient k2/4 + D/2, like in the case of a uniform quasi-momentum distribution.
On the other hand, since C(t, pSE) is bounded in time, for (δf0)tc � t � tc

§

the growth of energy is dominated by the term M(t), which is the same as in
the SE-free, non-uniform case.

4.3.4 Asymptotic momentum distribution

In this section we assume an initial momentum distribution with n0 = 0. For
initial distributions with values n0 �= 0, we may average the final result over
the initial integer grid points similarly as done in (4.12). We denote P (p, t) the
momentum distribution at time t, and show that, as t → ∞, P (p, t) approaches
a Gaussian distribution with mean value 0; in the sense that, for an arbitrary
smooth function φ(p),

lim
t→∞

〈φ〉t ≡ lim
t→∞

∫
dp P (p, t)φ

(
p√
t

)
= lim

t→∞

√
t

∫
dp P

(
p
√

t, t
)

φ(p)

=
∫

dp φ(p)GD+k2/2(p) (4.63)

where Gσ2(p) denotes the normal distribution with zero mean and variance
σ2. To this end we compute by applying the stochastic gauge (4.24), with
δ̃t =

∑t−1
s=0 δs as defined in the previous section:

〈φ〉t = E
{∫

dp |〈p|ψ(t)〉|2φ
(

p√
t

)}

= E
{∫

dp |〈p|ψ̃(t)〉|2φ
(

p + δ̃t√
t

)}

(4.39)
= E

{∑
n

J2
n(k|Wt|)φ

(
n + β0 + δ̃t√

t

)}
. (4.64)

§Note that for a distribution f0(β0) close to uniform, (δf0) � 0.
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For t � 1 one may neglect corrections of order 1/
√

t, hence β0/
√

t in the
argument of the smooth function φ, so

〈φ〉t ≈ E
{∑

n

J2
n (k|Wt|)φ

(
n + [δ̃t]√

t

)}
, (4.65)

where [.] denotes the integer part. Asymptotically as t → ∞, the statistics of Wt

are determined by the fractional parts of sums of many δs (cf. (4.32) and (4.37)).
Such sums of a large number of independent terms have a broad distribution,
so their integer and fractional parts tend to be independent of each other as
the number of terms in the sums diverges. The squared Bessel functions and
the function φ in the last equation may then be separately averaged. Denoting

φt(p) ≡ E
{

φ

(
p + [δ̃t]√

t

)}
(4.66)

we may write

〈φ〉t ≈
∑
n

E
{
J2

n (k|Wt|)
}

φt

(
n√
t

)
. (4.67)

As shown in appendix C, the distribution of ρ = |Wt| is asymptotically at large
t given by dFt(ρ) = 2t−1ρdρ exp(−ρ2/t). Consequently,

〈φ〉t ≈
∫ ∞

0
dFt(ρ)

∑
n

J2
n(kρ)φt

(
n√
t

)

= 2
∫ ∞

0

dx xe−x2
∑
n

J2
n(kx

√
t)φt

(
n√
t

)
. (4.68)

The integral over ρ is a classical expectation, but the sum over n is a quantum
expectation instead. With (2.12) it may be formally written as

It(kx) ≡
∑
n

J2
n

(
kx

√
t
)

φt

(
n√
t

)
= 〈0|K̂†φt(t−1/2N̂ )K̂|0〉 , (4.69)

where
K̂ = e− ikx

√
t cos(θ̂) . (4.70)

If we regard t−1/2 as the Planck constant, then t → ∞ is equivalent to a
classical limit. In that limit t−1/2N̂ corresponds to (angular) momentum p,
and K̂ corresponds to p → p + kx sin(θ), by comparison with (2.6) and (2.8).
Therefore, the “classical” limit (t → ∞) for the momentum distribution in the
state K̂ |0〉 is given by the distribution of kx sin(θ), with θ uniformly distributed
in [0, 2π]. Replacing the quantum expectation (4.69) by the average over the
related classical distribution yields

lim
t→∞

It(kx) =
∫ π

−π

dθ

2π
φ∞(kx sin θ)

p=kx sin(θ)
= 2

∫ kx

−kx

dp

2π

φ∞(p)√
k2x2 − p2

. (4.71)
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Substituting this in (4.68), interchanging the integrals, and computing the in-
tegral over x gives

lim
t→∞

〈φ〉t = 2
∫ ∞

0
dx xe−x2

I∞(kx) =
2
π

∫ ∞

−∞
dp φ∞(p)

∫ ∞

|p|/k
dx

xe−x2√
k2x2 − p2

y2=(kx)2−p2

=
1
kπ

∫
dp φ∞(p)e−

p2

k2

∫
dy

e−y

√
y

=
Γ
(

1
2

)
kπ

∫
dp φ∞(p)e−

p2

k2

=
1

k
√

π

∫
dp φ∞(p)e−

p2

k2 , (4.72)

with the Γ function Γ(1/2) =
√

π [268]. On the other hand, from the definition
(4.66) it follows that

φ∞(p) =
∫

dp′ φ(p − p′)GD(p′) , (4.73)

where GD is the limit (t → ∞) normal distribution of δ̃t/
√

t. Recalling (4.72)
and the definition of 〈φ〉t given in (4.63), we immediately obtain the result
claimed there. Hence, P (p, t) is asymptotically equivalent to a Gaussian with
zero mean and variance k2t/2 + Dt. Being just the leading term in the asymp-
totic approximation as t → ∞, this misses those terms in the exact result (4.62)
which are bounded in time. The way (4.72) was derived from (4.67) shows that
decoherence turns the dynamics classical by causing the effective Planck con-
stant to decrease with time. An exact derivation of (4.72) from (4.67), which
does not refer to the semiclassical argument from above, is obtained by starting
from (4.68), and replacing φt

(
n/

√
t
)

by its Fourier transform φt(u):

φt

(
n√
t

)
=

1√
2π

∫
du φt(u)e inu

√
t . (4.74)

Using the Bessel function identity (F.5),

〈φ〉t =
1√
2π

∫ ∞

0
dFt(ρ)

∫
du φt(u)J0

(
2kρ sin

(
u

2
√

t

))
x=ρ/

√
t

=
2√
2π

∫ ∞

0
dx xe−x2

∫
du φt(u)J0

(
2kx

√
t sin

(
u

2
√

t

))
. (4.75)

With (F.9) this yields in the limit t → ∞

〈φ〉∞ =
2√
2π

∫ ∞

0

dx xe−x2

∫
du φ∞(u)J0(kxu) . (4.76)

Substitution of
φ∞(u) =

1√
2π

∫
dp φ∞(p)e− ipu (4.77)

and of (F.6) yields

〈φ〉∞ =
1√
π2

∫ ∞

0
dx xe−x2

∫ 1

−1
dy

1√
1 − y2

2πδ(p− kxy) , (4.78)
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and finally

〈φ〉∞ =
2
π

∫ ∞

0
dx xe−x2

∫ kx

−kx
dp

φ∞(p)√
k2x2 − p2

. (4.79)

Interchanging integrals, we obtain the same result as above (equation (4.72))
by different means.

4.3.5 Theoretical model vs. numerical results

In the preceding sections, we derived the mean energy growth and the asymp-
totic momentum distribution for an ensemble of δ-kicked atoms in the presence
of SE. Our theoretical model was based on the assumptions (S1-S3) stated in
section 4.3.2. We now test the result thus obtained by a direct comparison to
numerical simulations that mimic a more realistic stochastic evolution of the
initial states.
In general, for a single transition in a three-dimensional atom, the probability
distribution of momentum shifts produced by SEs is not isotropic [269]. This
in particular implies that the distribution of single SE, projected momentum
shifts δp is not uniform. In the case when the SE-inducing beam is orthogonal
to the kicking direction, it has the parabolic form:

P0(δp) =

{
C
(

9
8 − 3(δp)2

2

)
, |δp| ≤ kT

2kL

0 , otherwise,
(4.80)

where C is a normalisation constant, and 
kT ⊥ 
kL are the (assumed to be or-
thogonal) wave vectors of the SE-inducing light and of the kicking light, respec-
tively. This distribution is derived for a situation where SE from a ∆m = ±1
atomic transition is induced by circularly polarised light [269]. The allowed
change in momentum δp is restricted within the interval [−kT/2kL, kT/2kL],
with kT/2kL � 1/2 (resulting in C � 1) in [82, 83]. With a non-uniform
distribution such as (4.80) a correlation in time may be established between
quasi-momenta in different periods of the evolution. The mean momentum
change as a result of absorption followed by SE is �
kT for a single SE-inducing
beam with wave vector 
kT. Our assumption of zero mean (along the kicking
direction) is justified either when 
kT ⊥ 
kL, or when the experimental arrange-
ment uses two or more appropriately directed beams, whereby the atoms may
be excited with equal probability. In such cases, the distribution of the pro-
jected δp is more complicated (and closer to uniformity) than (4.80). Since the
experiments use a large ensemble of caesium atoms, and SEs involve several
hyperfine sublevels [83, 135], the assumption of a nearly uniform distribution
of momentum changes seems, however, most appropriate. We shall nonethe-
less use (4.80) as a term of comparison in “type (II) simulations” (see below)
in order to test the effects of deviations from uniformity. Such numerical data
demonstrate that our assumption of a uniform distribution in an exactly integer
interval of allowed momentum changes does not affect the results, for experi-
mentally relevant times at least.
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Fig. 4.4: Average energy vs. time t at exact resonance τ = 2π for the same ensemble of
atoms as in figure 4.3, for k = 0.8π, in the presence of SE events simulated in different
ways as described in the text: (a) type (I) simulation: a random number of SEs occur
immediately after kicks, each causing a momentum change δp uniformly distributed in
[−1/2, 1/2]. (b) type (II): SE times are Poisson-distributed in a window τSE = 0.067τ ,
with free evolution in-between them; δp is distributed as in (a). (c) type (III): SE times
as in (a), but δp has the parabolic distribution (4.80) with kL/2kT � 0.476. Rates of
spontaneous emission pSE = 0.05 (solid), pSE = 0.1 (circles), pSE = 0.2 (plusses). The
theoretical prediction (see text) for the coefficient of linear growth Ddec is approximately
1.59, whereas the data lead to Ddec ≈ 1.58− 1.60 except in (b) for pSE = 0.05 where it
takes the value 1.55 (strong fluctuations arising from a too small statistical sample at
this smallest SE rate). The insets zoom into the region close to t = 200. No momentum
cutoffs are used.
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For the uniform distribution of δp in the interval [−1/2, 1/2], 〈δp2〉 = 1/12,
so the coefficient D in (4.58) is D = nSE/12. With the distribution (4.80)
〈δp2〉 = 3/40, and D = nSE3/40. In the theoretical model based on assumption
(S2) the distribution of the random times at which single SEs occur within one
kicking period is totally irrelevant, so pSE and nSE enter as independent para-
meters. They have to be related to each other in order to make contact with
experiments. A seemingly natural way assumes a Poisson distribution for the
SEs occurring within one operating window, at least for not too large pSE. In
that case, pSE = 1 − exp(−nSE).
We have performed numerical simulations of three types: for type (I) we used
all assumptions (S1-3), whereas for type (II-III) the assumptions (S2) and (S3)
were replaced by more realistic ones. Type (II) allowed for free evolution in-
between successive SEs occurring in the same kicking period. For type (III) the
distribution (4.80) of δp was used. Type (I) simulations serve as a demonstra-
tion of the theoretical exact results, and much more as a term of comparison
with type (II-III) simulations. The essential agreement between the three types
demonstrates that our theoretical conclusions remain valid, under less strin-
gent premises. Both types of numerical results were obtained by independently
evolving rotors in a given initial Gaussian ensemble, and by incoherently av-
eraging the final results. Random SE events were simulated as follows. After
choosing values for τSE and pSE = 1− exp(−nSE), random SE times were gener-
ated in each kicking period from a Poisson distribution with the characteristic
time τSE/nSE within the time window (tτ, tτ + τSE). To each random time a
random momentum jump was associated, from the chosen distribution (uni-
form or parabolic). In type (I) simulations, such jumps were added to the
quasi-momentum the rotor had at (integer) time t. The integer part of the
result determined a corresponding shift in the computational basis of angular
momentum eigenstates (i.e. if the sum of quasi-momentum and the shift ex-
ceeded one or was negative then ψβ(n) → ψβ(n±1), respectively, with integers
n). The fractional part was used as quasi-momentum for a full one-period free
rotor evolution. In all cases the computational basis of momentum eigenstates
was chosen as large as possible in order to model as faithfully as possible the
ideal models analysed in previous sections.
Figures 4.4 shows a long-time plot for different rates pSE = 0.05 . . .0.2, and for
the two cases: type (I) with SEs happening immediately after the kicks (a), and
type (II) with SEs within a finite time window (τSE = 0.067τ = 0.424 [83]) (b).
For pSE = 0.2 data is given in figure 4.4 (c) for the parabolic distribution (4.80),
i.e. for the type (III) model. The energy growth is in all cases linear with the
predicted slope Ddec � k2/4 + D/2, as discussed above (see equation (4.62)).
Figure 4.5 presents the coarse-grained momentum distributions Pn(t) (see sec-
tion 4.2.1) defined as the probability that the momentum p of an atom at time
t lies in [n, n + 1) (in units of two photon recoils). They are computed for
τ = 2π and different SE rates; SE events are modelled after type (I-III). With
added decoherence, the distribution keeps spreading as a whole all the time,
looking more and more Gaussian-like while it flattens out. Apart from sta-
tistically induced fluctuations in the wings of the distributions no significant
difference between the different simulations (figures 4.4-4.5) is detectable, and
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Fig. 4.5: Evolution in time of coarse-grained momentum distributions for the same
initial ensemble as in figure 4.3, and for k = 0.8, in the presence of SE. (a) pSE = 0.1,
(b) pSE = 0.2, (c) pSE = 0.8, for t = 30, t = 50, and t = 200. The SE events
are simulated in different ways. Solid lines were computed like in (a) in the previous
figure; diamonds, circles and squares, like in (b); plusses and crosses, like in (c) there.
Differences in the wings, in particular at t = 200, where Pn(t) � 10−7, are attributed
to the finite statistical sample in the simulation of the SE events. For strong noise
in (c), the momentum distributions are already similar to a Gaussian distribution as
predicted for t → ∞ in section 4.3.4.
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our conclusions from the preceding sections remain valid in all cases. We con-
clude that the results obtained in the present work are not very sensitive to
assumptions (S1-3) that made the analytical treatment possible. In the sequel,
the analytical and numerical findings presented in this chapter are confronted
with the experimental results of [82, 83, 135]. In particular, the puzzle about
the observed enhancement of the quantum resonance peaks when adding SE
will be resolved [159].

4.3.6 Reconciliation with experimental observations

Omnis actio et omnis mutatio est de contrario in contrarium.

G. Bruno, La cena de le ceneri

In the presence of decoherence induced by spontaneous emission, experimen-
tally measured energies at fixed observation time tobs were found to exhibit
resonance peaks near the resonant values τ = 2π, 4π, 6π that were higher than
in the SE-free case (figure 4.1). On the other hand, our analytical analysis
(equations (4.21) and (4.62)), together with numerical data (figures 4.4 and
4.6), predicts in both cases, with and without added noise by SE, a linear in-
crease of the average energy as a function of time, and in addition with an
almost negligible difference in the pre-factor for the experimentally used para-
meters (D/2 � 0.2/24, for the data in figure 4.1). Such observations may have
been suggestive of an enhancement of quantum resonances owing to decoher-
ence: however, such a phenomenon has no match in the theory developed in the
previous sections. This paradox will be resolved in this section. It will be shown
that certain restrictions, that are unavoidably present in real experiments, de-
press the ideal resonant behaviour in a way that is most severe in the absence
of SE. So the explanation rather lies with the experimentally measured, SE-free
peaks being lower with respect to the ideal case, than with the SE ones being
higher. The most important experimental features not taken into account in
the foregoing theoretical analysis have been mentioned already in section 2.3.3:

(EXI) experimental kicks are not δ−like. The ideal model is then only valid as
long as the distance travelled by the atoms over the finite duration τdur of the
kick is much smaller than the spatial period of the potential (Tdur = 0.5 µsec
in [82, 83]). In dimensionless units of (2.10) τdur = Tdur�(2kL)2/M � 0.047. At
large momenta this requirement is violated, and the atomic motion starts av-
eraging over the potential, while the small momentum regime is practically not
affected by the replacement of the δ−function by a pulse of finite width. The
resulting dependence of the kicking strength on momentum destroys the trans-
lational invariance in momentum space required for quantum resonant motion.
At large momenta, the effect of the finite pulse width induces a momentum
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Fig. 4.6: Mean energy (in units of (2�kL)2/M , c.f. (2.24)) vs. kicking period τ after
t = 30 kicks, and for a type (I) simulation starting with an ensemble of 105 δ−kicked
atoms, with Gaussian initial momentum distribution (σ � 2.7) and k = 0.8π. (a) no
decoherence pSE = 0, (b) pSE = 0.1, (c) pSE = 0.2. The shown range of τ corresponds
in laboratory units to 21.2 . . .254.7 µsec (a,c), and to 10.1 . . .254.7 µsec (b). The peaks
appear lower in (a) because the used computational grid in τ had a too low resolution to
hit the value τ = 2π, 4π, . . . exactly, while the peaks in (b,c) are broader and therefore
less sensitive. (The sensitivity decreases with increasing pSE, see section 5.3.)

boundary which we denoted nref in section 2.3.3. The atom dynamics mimics
the ideal lowest-order resonances for a (possibly long) while [175], but not the
higher-order ones whose period (in momentum) is not very small compared to
nref [64,117,118]. This is an additional reason preventing experimental detection
of high-order resonances, no matter how long the observation time (cf. discus-
sion in section 4.1). Figure 4.7 shows a simulation for an ensemble of rotors,
with a rectangular pulse shape of width τp. This does not include the smooth
switching on/off of pulses, as described e.g. in [180]; no substantial difference
is however expected in the dynamics on relatively small time scales. In each
kicking interval the rotors freely evolved over a physical time τ − τdur. During
the remaining time τp they evolved according to the pendulum Hamiltonian
(N̂ + β)2/2 + k cos(θ̂). The latter evolution was computed by a Trotter-Kato
discretisation [270] of the Floquet operator (this split-operator method [16] is
equivalent to replacing the pulse by a thick sequence of δ−subkicks).
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Fig. 4.7: Coarse-grained momentum distributions for the same initial ensemble as in
figure 4.3 and without SE, for k = 0.8π and τ = 2π. The ideal case of δ−kicks (solid
line) is compared to the case of rectangular pulses with τdur = 0.047 (open circles).
Times are t = 10 (a), 30 (b), 50 (c), 200 (d).

(EXII) The experimental signal-to-noise ratio allows only a finite reliable in-
terval of momenta to be observed; in [83] this border was ncut = 40 (data with
counteracted gravity; in most recent data ncut = 60 [159]). Momenta with
n > ncut are not included in the mean energy data of [83], cf. figure 4.10.
Therefore, the theoretical momentum distributions have to be appropriately
weighted prior to the computation of the mean energy and to the comparison
with experimental data. The crudest way is cutting the theoretical distributions
beyond ncut and renormalising the probability to 1.

The effect of (EXI) and (EXII) on the ideal behaviour discussed in the previous
section is easily understood in qualitative terms. We start with the SE-free
case. The resonant growth of energy is stopped as soon as the ballistic peak in
the tail approaches the closest of the two borders that are the effective cutoffs:
(EXI) nref and (EXII) ncut. If this happens earlier than the observation time,
then the resonance peak is significantly depressed in comparison to the ideal
case. We shall presently argue that such depression mainly arises from the cut-
off (EXII) for the experimental data in [83, 135].
In the case of a rectangular pulse, nref is not a precisely defined quantity because
of the slow decay of the Fourier harmonics of the pulse. It has to be meant
in an effective sense. We hence resort to numerical simulations. In figures 4.7
numerically computed momentum distributions are compared with those ob-
tained in the ideal δ-kicked rotor case; according to such data, the effective nref

should be located in the momentum range 70 − 120. The second cutoff ncut
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Fig. 4.8: Effect of finite pulse width and of momentum cutoff on the growth of the
mean energy for the same initial ensemble as in figures 4.3 and 4.7, for kicking strength
k = 0.8π and period τ = 2π, without SE (a) and with pSE = 0.2 (b). Solid lines are
for the ideal δ−kicks and no momentum cutoff; dashed lines for rectangular pulses, no
cutoff; dash-dotted lines for rectangular pulses and momentum cutoff at ncut = 40. In
(a) the energy is significantly depressed by the cutoff after t > 20, not so in (b).

is simulated by not counting momenta higher than ncut when calculating ener-
gies (the computational basis of momentum eigenstates is however much larger
than ncut). Following experimental parameters [83,135] we choose ncut = 40, the
distributions are renormalised to unity after disregarding states with momenta
larger/smaller than n = ±40. In figures 4.8 the effect of this cutoff on the
growth of the mean energy is shown. In the presence of ncut the deviation from
the ideal case appears somewhat earlier, as expected from ncut < nref; more-
over, the deviation at t � 20 is strongly enhanced in the presence of ncut (and
in the absence of SE). As shown in figures 4.9 (a), the momentum distributions
including both cutoffs (EXI) and (EXII) are stable in time, not moving at all in
the centre around n = 0. The slight enhancement at |n| � 15−40 as compared
to the case without cutoffs (shown in figures 4.7) is only due to nref which to
some extent acts like a reflecting boundary. The ballistic peak, however, which
moves in momentum like n ∼ πkt/2 (see discussion after (4.18)) is lost already
after about t � 40/k � 16 kicks, cf. figure 4.8. The peak is then beyond the
cutoff (EXII). The estimated loss after about 16 kicks is consistent with the
saturation of the mean energy vs. time at quantum resonance which has been
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Fig. 4.9: Evolution of coarse-grained momentum distribution for the same ensemble as
in figures 4.3 and 4.7, for τ = 2π and k = 0.8π, with rectangular pulses (τdur = 0.047)
and momentum cutoff at ncut = 40. The distributions are renormalised within the
shown momentum window. (a) pSE = 0, (b) pSE = 0.1, (c) pSE = 0.2, (d) pSE = 0.8,
after t = 10 (solid lines), t = 50 (dashed), t = 200 (dash-dotted).

observed in [82, 135], for t > 15, in the experimental results as well as in the
theoretical modelling (figure 4 in [82]).
The dependence of the mean energy on the kicking period τ is strongly influ-
enced by the cutoffs at exact resonance. This dependence in the absence of
SE, with rectangular pulses and cutoff at ncut is shown in figure 4.11(a). By
comparing to figure 4.6(a) (ideal case without cutoffs), we directly see that the
only substantial difference is at resonant values τ = 2π, 4π, 6π: cutoffs lead
to lower resonance peaks. When the cutoff (EXII) ncut = 40 is applied in the
ideal case of δ−kicks, no differences can be detected from the results plotted
in figure 4.11(a), again confirming that cutoff (EXII) is the crucial one. The
resonance peaks are smaller, because the resonant growth of energy stops, as
soon as the ballistically moving rotors hit the boundary (cf. figure 4.8). Then
the mean energy very quickly falls below its ideal value (after about 16 kicks in
the plotted case), as can be seen in figure 4.8.
Added SE totally changes this picture. The energy growth originates now in the
overall broadening of the distribution, and not just in the ballistic peaks in the
tail, as can be seen comparing the various parts of figure 4.5, where kicks are
δ−like, and no cutoff is present. The distributions with weak SE are broader
in the tails as compared to those with strong SE; the latter are however flat-
ter in the centre, which is why they have roughly the same root-mean-square
deviation. As already commented, in the SE-free case the quasi-momentum is
constant in time, and atoms with quasi-momenta close to 1/2 travel faster, thus
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producing the long tails and the ballistic peaks at their edges. In the presence
of SE, no atom may persist a long time in the fast-travelling quasi-momentum
range, whence it is removed the sooner, the larger pSE. Therefore with SE,
the cutoffs are “felt” much later by the evolving distribution (figures 4.5 and
4.9). Whereas the cutoffs still prevent observation of the fastest atoms, they do
not significantly affect the growth of energy until large times. Even then, the
momentum distribution normalised within |n| < ncut approaches the flat distri-
bution in |n| < ncut (figure 4.9(b,c,d)), which has a limit value for the second
moment significantly higher than the SE-free steady-state distribution in the
presence of the cutoff. Figure 4.10 compares the ideal momentum distributions
which are taken from figures 4.3(a) and 4.5(a) to recent experimental results at
t = 30 kicks. Note that the numerical simulation shows the “ballistic” wings of
the distributions at pSE = 0, which are swamped by the noise background in the
experimental data. Nonetheless, both experimental and theoretical data agree
very well in the central (stationary) part of the distribution. The same is true
for the case with SE where we chose pSE = 0.1 (nSE = − ln(1 − pSE) � 0.105)
which compares best to the experimental data for which nSE � 0.14±0.04 [159]
is estimated. The latter estimate is rather rough and depends on several absorp-
tion processes in the experimental setup, and on fluctuations in the intensity of
the SE inducing laser [159,260]. SE occurs not only in the direction of the kicks
(cf. discussion in section 4.3.5). Hence, we cannot exclude a possible enhance-
ment of the effect that different atoms may also experience different intensities
of the kicking pulses (see section 2.3.3). The atoms are then subject to a range
of kicking strengths which has not been taken into account numerically. Those
atoms which do experience a low intensity yield an enhanced population near
to zero momentum which might look like a numerical distribution in which the
SE rate is lower.
In contrast to the SE-free case, the dependence of the mean energy on the kick-
ing period τ after 30 kicks is but slightly affected by the cutoffs when SE is
present. This is shown in figure 4.11 (b,c), to be compared to figure 4.6(b,c).
In the experiments (see figure 4.1 here, and figure 2 in [82], figure 6 in [83]),
the peaks for all cases (a-c) are still smaller than in our figure 4.11, which
can be explained by the extreme sensitivity of the energy at exact resonance
to all sort of perturbations besides those included in our present analysis, and
also by difficulties in experimentally tuning to the exactly resonant values of τ .
Additional experimental restrictions, e.g. the experienced fluctuations of the
potential depth and the resulting averaging over slightly different experimental
realisations [83, 135, 182], may lead to a further reduction of the peak, espe-
cially in the case without decoherence which is most sensitive to any kind of
disturbance.

Our analytical results of this chapter are exclusively obtained for the exact
resonance condition in the kicking period τ = 2π� (� ∈ N). The experimental
and, in particular, the numerical data of the mean energy vs. τ also show that
the widths of the resonance peaks changes systematically when SE is introduced
(cf. figures 4.1 and 4.6). The shape of these peaks is responsible also for
their experimentally observed stabilisation with increasing noise. An analytical
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Fig. 4.10: Coarse-grained momentum distributions at quantum resonance τ = 2π (type
(I) simulations) from figures 4.3(a) and 4.5(a) (dotted), as compared to experimental
data [159] (full lines), for pSE = 0 (a) and pSE = 0.1 (nSE = − ln(1 − pSE) � 0.105),
experimental estimate nSE � 0.14 ± 0.04 (b); kicking strength k = 0.8π, at t = 30
kicks. The arrows mark the ballistic wings in the case without SE. The dashed line in
(a) shows the steady-state distribution (for t = 1000) taken from figure 4.3(b). The
dash-dotted lines show the signal threshold and momentum cuts (ncut = 60) imposed
on the experimental data when calculating mean energies as plotted in figure 4.1.
The asymmetry in the experimental distribution around n = 0 is caused by the non-
ideal compensation of gravity which acts in the direction of the standing wave, in the
experimental realisation [82,83,135,159].
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Fig. 4.11: Numerical simulation of the mean energy as a function of the kicking period
τ for the same ensemble of SE and the same initial distribution of atoms as in figure 4.6,
after 30 kicks, and with kicking strength k = 0.8π. (a) no decoherence pSE = 0, (b)
pSE = 0.1, (c) pSE = 0.2. The width of the rectangular pulse is τdur = 0.047 and
ncut = 40, as for the experimental data [82,83] shown in figure 4.1.

theory for arbitrary irrational τ/2π does not exist, but in the next chapter we
develop an approximate description for the vicinity of the resonance peaks for
τ = 2π� + ε, with |ε| � 1.



Chapter 5

Dynamics near to quantum
resonance

In the previous chapter, we derived analytical results for the momentum dis-
tribution and the average kinetic energy of an initial atomic ensemble, and
compared them to numerical simulations and the experimental data. In the fol-
lowing, we go beyond the case of the exact resonance condition for the kicking
period τ , and study the vicinity and, in particular, the shape of the resonance
peaks, which are observed in the mean energy after a fixed observation time
tobs. For irrational values of τ/(4π), dynamical localisation sets in (cf. section
2.2.2), that is, on increasing tobs beyond a break-time tbreak, the observed en-
ergy values should not increase any more∗. If tobs is significantly larger than
tbreak, a scan of the measured energy vs. the kicking period τ yields plots alike
in figure 4.1(a), and figure 4.6(a). In 4.6(a) peaks are clearly observed at the
resonant values τ = 2π, 4π, 6π. For continuity reasons, the resonance peaks
have a width, determined by the finite value of tobs. In the ideal case, they
would shrink on increasing tobs, and further, narrower peaks associated with
higher-order resonances would appear for large tobs. In this chapter, we derive
a description of the structure of the peaks around τ = 2π� (� ∈ N), based on
a finite time, small-ε asymptotics, where τ = 2π� + ε. This technique was in-
troduced in [144, 145], and partially anticipated in [271, 272], where the special
role of the combination k|ε| of the two parameters k, the kicking strength, and
ε, the detuning from the resonance, was first realised.
In particular, we find that the width of the resonance peak scales like (kt 2

obs)
−1,

so that, at large tobs, the peak is much narrower than the naive expectation
∝ 1/tobs. Such sharp sub-Fourier resonances reflect the high sensitivity of the
quantum-chaotic δ−kicked rotor with respect to slight variations in the detun-

∗Unbounded growth was also proven for a dense set of close-to-commensurate values of
τ [158]. Extremely long times are however required to resolve such arithmetic subtleties.
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ing from resonance, and they may be relevant for high-resolution experiments†.

5.1 ε−quasi-classical approximation

The most elementary classical resonances are met when a system, such as an
oscillator, is driven by a force that is periodic in time with frequency equal to
the natural frequency of the system. In linear systems, a classical resonance
leads to unbounded energy absorption, e.g. for a resonantly driven harmonic
oscillator (see, for instance, section 1.6a in [44]). For nonlinear systems, how-
ever, this is typically not the case because the unperturbed frequencies depend
on the system’s energy, so the system is rapidly driven off resonance by the ini-
tially resonant excitation itself. Similarly, for a quantum system the resonant
excitation is eventually stopped owing to the anharmonicity of the unperturbed
spectrum.
The quantum resonances of the δ-kicked rotor are rare examples of unbounded
excitation in the deep quantum regime. For instance, the experimental and nu-
merical data presented in the previous chapter were obtained for τ ∝ � = O(1),
and k ∝ �

−1 = O(1), cf. section 2.2.2 for the definition of the parameters k
and τ in the quantum model. As discussed there, the quantum resonances arise
for particular kicking periods which are commensurable with 4π. They have no
direct counterpart in the corresponding classical system, and are totally unre-
lated to resonances of the classical rotor‡.
In the following, we present a quasi-classical analysis of the quantum resonances
of the δ-kicked particle and their vicinity. This seemingly self-contradictory task
is accomplished by establishing a direct correspondence between the quantum
resonances and the classical nonlinear resonances of a related model. This
classical system is not obtained in the conventional classical limit of vanishing
Planck constant � ∝ τ → 0, but rather in the limit when the detuning ε from
the resonant periods τ = 2π� (� ∈ N) approaches zero. In our quasi-classical
approximation, the role of Planck’s constant is played by the detuning ε from
exact resonance in the kicking period τ . This approximation allows us to de-
scribe the near-to-resonant quantum motion in terms of a Standard Map [156],
which is different in parameter values from the one that is obtained in the con-
ventional classical limit of the δ-kicked rotor, i.e. when the real effective Planck
constant τ → 0, and k → ∞ simultaneously [63]. The quantum resonances of
the δ-kicked rotor then correspond to the primary nonlinear resonance of this

†In a similar context, the sub-Fourier sensitivity of the kicked-rotor dynamics on periodicity
conditions was used to sharply discriminate dynamical localisation from diffusive quantum
transport [273].

‡There do exist classical accelerator modes of the δ-kicked rotor that lead to ballistic
motion [43]. E.g., for kτ = 2π, and (p0 = 0, θ0 = π/2), it is easily checked from (2.6) and
(2.7) that momentum grows linearly in time pt = 2πt. However, these modes are of a different
nature, and occur for very specific initial values (p0, θ0), while the quantum resonances do
not depend on the initial conditions [43], if there is no additional degree of freedom, like the
quasi-momentum β for the kicked particles.
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quasi-classical Standard Map. The stable elliptic island associated with the
nonlinear resonance [43–45] accounts for the structure of the resonance peak in
the quantum mean energy vs. τ curves (see figures 4.1 and 4.6).
To derive the quasi-classical approximation [145, 160], we rescale the kicking
strength k = k̃/|ε|, and define

Î = |ε|N̂ = − i |ε| d

dθ
. (5.1)

The free evolution part of the Floquet operator for the β−rotor (2.23) may be
rewritten as follows:

e− i τ
2
(n+β)2 = e− iπ
n2

e− i ε
2
n2

e− iτnβe− i τ
2
β2

= e
− iπ
 I

|ε| e
− i sign(ε) I2

2|ε| e
− i τβ I

|ε| e− i τ
2
β2

, (5.2)

where the last factor does not depend on I and may be dropped. Similarly, we
obtain for the kick operator in (2.23)

e− ik cos(θ̂) = e
− i

|ε| k̃ cos(θ̂)
, (5.3)

and then the Floquet operator reads

Ûβ(t) = e
− i

|ε| k̃ cos(θ̂)
e
− i

|ε| Ĥβ , (5.4)

with
Ĥβ(Î , t) =

1
2
sign(ε)Î2 + Î(π� + τβ) . (5.5)

If |ε| is regarded as the Planck constant, then (5.1) together with (5.4) is the
formal quantisation of either of the following classical maps:

It+1 = It + k̃ sin(θt+1) , θt+1 = θt ± It + π� + τβ mod(2π) (5.6)

where ± has to be chosen according to the sign of ε. We stress that “classical”
here is not related to the τ ∝ �→ 0 limit but to the limit ε → 0 instead. The
small−|ε| asymptotics of the quantum β−rotor is thus equivalent to a quasi-
classical approximation based on the “classical” dynamics (5.6), that will be
termed ε-classical in the following. Changing variables to J = ±I + π� + τβ,
ϑ = θ + π(1− sign(ε))/2 turns the maps (5.6) into a single Standard Map (c.f.
(2.6-2.7)), independent of the value of β:

Jt+1 = Jt + k̃ sin(ϑt+1) (5.7)
ϑt+1 = ϑt + Jt . (5.8)

This will be called the ε-classical Standard Map (εSM) in what follows. In
figure 5.1(a) quantum energy curves vs. τ in a neighbourhood of τ = 2π are
compared with energy curves computed using the ε−classical map (5.6).
For any given particle in the initial ensemble, the map (5.6) with β equal to
the quasi-momentum of the particle was used to compute a set of trajectories
started at I = n0|ε| with homogeneously distributed θ0 ∈ [0, 2π). The final
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Fig. 5.1: (a) shows the mean energy vs. kicking period τ , after t = 30 kicks, and
for kicking strength k = 0.8π; magnification near the quantum resonance τ = 2π.
Quantum data taken from figure 4.6(a) (for better comparison repeated in the lower
panel (b)) (solid lines) are compared with the mean energies of an ensemble of 106

ε−classical atoms (circles) with the same initial momentum distribution, evolving under
the ε−classical dynamics (5.6). The value of τ corresponding to the small peak on the
right of the resonant spike is marked by an arrow for reference to figures 5.4 and 5.6.

energies ε−2I2
t /2 at t = tobs of the individual trajectories were averaged over

θ0, β, n0 with the appropriate weights. This is equivalent to using the εSM in
all cases, with different initial ensembles J0 = const. = ±n0|ε| + π� + τβ0. As
β0 is varied, such ensembles sweep the full unit cell of the εSM, so sampling
different β0’s amounts to probing different regions of the ε−classical phase space
as illustrated in figure 5.2. The average energy 〈Et〉 = ε−2〈I2

t 〉/2 is plotted vs.
τ = 2π + ε in figure 5.1(a), along with results of the corresponding quantal
computations. The main qualitative features emerging of figure 5.1 are: (i)
on a gross scale the curves are shaped in the form of a basin with a high,
narrow spike in the centre, closely flanked by a much smaller peak on either
side. (ii) quantum and ε−classical curves nicely agree at small |ε|, in particular
the structure of the spike is the same. Their behaviour at large |ε|, i.e. for
τ � 6.6 and τ � 6 is qualitatively similar but quantitatively different (see figure
5.8 in section 5.2.2). This overall qualitative behaviour may be explained in ε-
classical terms, and an approximate scaling law for the t, k, ε dependence of the
mean energy close to resonance can be obtained, as shown in the next section.
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Fig. 5.2: Poincaré surface of sections for the map (5.6), and k = 0.8π, ε = 0.05, β = 0
(a), β = 0.35 (b), β = 0.4 (c), β = 0.5 (d). Plotted are the true momenta p = I/|ε|
to emphasise the much larger contribution to the mean energy from the (nonlinear)
resonant zone for β � 1/2, whose width is approximately given by δp � 4

√
k/|ε|. For

β = 0.5, the period-1 fixed point of the map (5.6) is close to 0 (in fact at p = −1/2), so
all trajectories launched at p0 = β, move along the island, leading to large excursions
in p. As β decreases to 0, the period-1 fixed point [43] moves away from p = 0, and
is not hit by trajectories started at p0 = β (n0 = 0). The trajectories in (b) and at
p ≤ 8, θ = 0 in (c) are rotational orbits, corresponding to the regular regions outside
the primary resonance island in figure 5.3 (right panels). (a) contains a higher-order
period-2 resonance embedded in the otherwise rotational motion. In the coordinates
of the map (5.6), the effective Planck cell 2πε � 0.314 is larger than the area of the
period-2 islands, which is estimated by kε � 0.126 (see [43]). Higher-order resonances
are neglected in our analysis since they affect much smaller regions in phase space than
the dominant primary island (in (d)). The full phase space in the coordinates of the
εSM is shown in the next figure (right panels).
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5.2 Classical scaling theory for quantum resonances

5.2.1 ε−quasi-classical analysis of the resonance peaks

The ε−classical standard map is different from the map obtained in the classical
limit proper τ ∝ � → 0 of the kicked rotor. In particular, if τk > 1, then the
classical and the ε-classical dynamics are at sharp variance whenever k̃ < 1.
In the former unbounded diffusion occurs, while in the latter the dynamics is
quasi-integrable instead. In this quasi-integrable system, the ε−classical tra-
jectories remain trapped forever in-between impenetrable phase space barriers,
which survive small perturbations according to the Kolmogorov-Arnold-Moser
(KAM) theorem [43–45, 177]. It is exactly the deep changes which occur in
the ε−classical phase space (cf. figure 5.3) as τ is varied at constant k that
account for the energy vs. τ dependence at fixed time t = tobs. In the following
discussion, we assume for simplicity an initially flat distribution of p0 ∈ [0, 1);
then I0 = 0, and J0 = π�+τβ0 with β0 uniformly distributed in [0, 1). Without
loss of generality we also consider � = 1. Hence if |ε| � 1 then J0 is uniformly
distributed over one period (in action) (π, 3π) of the εSM.
Since Jt = ±It + π + τβ, and I0 = 0, the mean energy of the rotor at time t is:

〈Et,ε〉 = ε−2〈I2
t 〉/2 =

〈
(δJt)2

〉
2ε2

, δJt = Jt − J0 .

The exact quantum resonance ε = 0 corresponds to the integrable limit of the
εSM, where δJt = 0. However, 〈Et,ε〉 is scaled by ε−2, so in order to compute it
at ε = 0 one has to compute δJt at first order in ε. This is done by substituting
the 0-th ε-order of (5.8), i.e. ϑt � ϑ0, into (5.7). This leads to

δJt = |ε|k
t−1∑
s=0

sin(θ0 + J0s) + r(ε, t) (5.9)

where r(ε, t) = O(ε) as ε → 0 at any fixed t. The energy at time t is found
from (5.9) by taking squares, averaging over θ0, J0, dividing by 2|ε|2, and finally
letting ε → 0:

〈Et,ε〉 =
1

8π2

∫ 2π

0
dθ0

∫ 3π

π
dJ0

(δJt)2

ε2

ε→0−→ k2

8π2

∫ 2π

0
dθ0

∫ 3π

π
dJ0

(
t−1∑
s=0

sin(θ0 + J0s)

)2

(4.9)
=

k2

8π

∫ 3π

π
dJ0

sin2(J0t/2)
sin2(J0/2)

. (5.10)

With the help of (F.13), this calculation yields:

〈Et,0〉 =
k2

4
t . (5.11)
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The small contribution of the initial quasi-momentum in the atom’s energy
was neglected. Apart from that, (5.11) is the same result as was found by the
exact quantum mechanical calculation performed at ε = 0 in section 4.2.2 for
the case of a uniform quasi-momentum distribution. Thus the ε-quasi-classical
approximation reproduces the quantum behaviour at exact quantum resonance.
The integral over J0 in (5.10) collects contributions from all the invariant curves
J0 = const. of the εSM at ε = 0. Of these, the one at J0 = 2π leads to quadratic
energy growth because it consists of (period 1) fixed points [43]. This is called
a classical nonlinear resonance. It is responsible for the linear growth of energy
(5.11), because the main contribution to the integral in (5.10) comes from a
small interval ∼ 2π/t of actions around J0 = 2π. Note that J0 = 2π corresponds
to β0 = 1/2, the quantum resonant value of quasi-momentum. It is hence seen
that the ε−quasi-classical approximation explains the quantum resonances of
the kicked rotor in terms of the classical resonances of the Standard Map.
In the sequel, we estimate 〈Et,ε〉 for |ε| > 0, where the dynamics is maximally
distorted (with respect to the ε = 0 one) for J0 in the vicinity of the elliptic
fixed points [43] of the εSM, i.e. of the 2nπ, in the very region which is mostly
responsible for the linear growth of energy at ε = 0. Being formed of period-
1 fixed points, the J0 = 2nπ, ε = 0 invariant curves break at |ε| > 0 as
described by the Poincaré-Birkhoff theorem [43]. The motion is then strongly
distorted inside regions of size (in action) δJres astride J = 2nπ. Such regions
are termed the primary resonances of the εSM, and a well-known estimate
is δJres ≈ 4(k|ε|)1/2 [43]. Inside these resonances, the approximation (5.9)
fails quite quickly, so their contribution 〈Et,ε〉res to the mean energy has to be
estimated differently. The dynamical situation is illustrated in figure 5.3 by
Poincaré surface of sections for the dynamics induced by (5.7-5.8).
In the remaining part of the ε−classical phase space the motion mostly follows
KAM invariant curves [43–45], slightly deformed with respect to the ε = 0
ones, still with the same rotation angles (see figure 5.3). The contribution of
such invariant curves to the mean energy is therefore roughly similar to that
considered in the integral (5.10), provided J0 is therein meant as the rotation
angle§. On such grounds, in order to roughly estimate 〈Et,ε〉 we remove from
the integral (5.10) the contribution of the resonant action interval near J0 = 2π,
and replace it by 〈Et,ε〉res:

〈Et,ε〉 ∼
k2

4
t − Φ(t) + 〈Et,ε〉res , (5.12)

where

Φ(t) =
k2

8π

∫ δJres/2

−δJres/2
dJ ′ sin2(tJ ′/2)

sin2(J ′/2)
, (5.13)

and J ′ is the deviation from the resonant value 2π. The contribution 〈Et,ε〉res
may be estimated by means of the pendulum approximation [43, 44]. The pen-

§Higher resonances appear near all values of J0 commensurate to 2π. At small |ε| such
higher-order resonances affect regions of phase space that are negligibly small with respect to
the primary resonance, see figures 5.2 and 5.3. The higher resonances are altogether ignored
in the present discussion. Also note that structures that are small compared to the “Planck
constant” |ε| are irrelevant for the purposes of the ε−classical approximation.
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Fig. 5.3: Poincaré surface of sections for the Standard Map (5.7-5.8), and k = 0.8π,
ε = 0.01 (a), ε = 0.1 (b). As ε increases, the invariant curves (right panels) become more
and more distorted, and the contribution of trajectories around the primary resonance
island (left panels), with a width of δJres ≈ 4(k|ε|)1/2, to the energy must be calculated
separately (see equation (5.12)). The black boxes in the right panels represent the
Planck cell 2π|ε|. In the coordinates of (5.7-5.8) sweeping β from 0 to 1 is equivalent
to scanning J0 from π to 3π, with the primary resonance island centred at J0 = 2π.
The four plots (a-d) in the previous figure effectively correspond to a scan from J0 � π

(figure 5.2(a)) upwards to J0 � 2π (figure 5.2(d)).

dulum Hamiltonian emerges from the Fourier analysis of the kick perturbation:
|ε|k cos(ϑ)

∑
m δ(t−m) = |ε|k

∑
m cos(ϑ−2πmt) (note that for the εSM (5.7-5.8)

the kicking period is 1). In the time average, higher Fourier components may
be neglected near the εSM resonance [43, 44], and the motion is thus described
(in continuous time) by the following pendulum Hamiltonian in the canonical
coordinates J ′, ϑ:

Hres =
1
2
(J ′)2 + |ε|k cos(ϑ) . (5.14)

The resonance width δJres is estimated by the separation (in action) between
the separatrices of the pendulum motion. The period of the small pendulum
oscillations is 2πtres where tres = (k|ε|)−1/2 [43,44], so we use tres as a character-
istic time scale for the elliptic motion in the resonant zone. One may altogether
remove |ε| from the Hamilton equations, by scaling momentum and time by
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Fig. 5.4: The function G (5.16) vs. the scaled time variable t/tres. It increases quadrat-
ically as the momentum of a harmonic oscillator for short times, then the continuum of
frequencies of different periods of the nonlinear pendulum motion leads to dephasing,
and G saturates with damped oscillations for large argument t/tres � 1. The arrow
marks the position of the “horn” in figures 5.1 and 5.6.

factors (k|ε|)−1/2 = 4/δJres, (k|ε|)1/2 = 1/tres respectively. Therefore,

〈(δJt)2〉 = 〈(J ′
t − J ′

0)
2〉 ∼ k|ε|G(t

√
k|ε|) , (5.15)

for an ensemble of orbits started inside the resonant zone, where G(.) is a
parameter-free function, whose explicit expression involves elliptic integrals [44].
G(.) represents the average energy contribution from trajectories in the primary
island of the εSM, i.e.

G(t
√

k|ε|) � 1
8π

∫ 2π

0
dθ

∫ 2

−2
dJ ′

0 J ′
(
t
√

k|ε|, θ0, J
′
0

)2
. (5.16)

Hence, this function results from averaging over nonlinear pendulum motions
with a continuum of different periods, so it saturates to a constant value when
its argument � 1. At small values (� 1) of the argument, it behaves quadrat-
ically. This behaviour is illustrated in figure 5.4, where G is plotted vs. the
scaled variable t/tres. The contribution to the total energy is then obtained on
multiplying (5.15) by |ε|−2δJres/(4π), because only a fraction ∼ δJres/(2π) of
the initial ensemble is trapped in the resonant zone. As a result

〈Et,ε〉res ∼
δJres

4π

〈
(δJt)2

〉
2ε2

∼ k2

πk
√
|ε|

G
(
t
√

k|ε|
)

. (5.17)

When δJres is small, sin2(J ′/2) may be replaced by J ′2/4 in the integrand in
(5.13), leading to

Φ(t) ∼ k2

4
t Φ0(t

√
k|ε|)
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Fig. 5.5: Mean energy (in units of (2�kL)2/M , c.f. (2.24)) vs. the kicking period τ � 2π

(a), and τ � 4π (b), after t = 20 (solid), t = 30 (dotted), t = 50 (dashed), t = 100
(circles connected by dash-dotted line) kicks; for an ensemble of 105 δ−kicked atoms
with Gaussian initial momentum distribution (σ � 2.7) and kicking strength k = 0.8π.

with

Φ0(x) ≡ 2
π

∫ x

0
ds

sin2(s)
s2

.

Replacing in (5.12), we obtain the central result of this chapter:

R(t, k, ε) ≡ 〈Et,ε〉
〈Et,0〉

∼ H(x) ≡ 1 − Φ0(x) +
4

πx
G(x) ,

x = t
√

k|ε| = t/tres . (5.18)

Hence R(t, k, ε) depends on t, k, ε only through the scaling variable x = t/tres.
This is natural, since the main ingredient in the derivation of (5.18) is the
pendulum motion around the nonlinear island of the εSM. The pendulum dy-
namics for (5.14) is governed by a single parameter which is the coupling
strength k|ε|, or the frequency of small oscillations around the elliptic fixed
point ωres(k|ε|) ≡

√
k|ε|, respectively [43, 44].

Because of (5.18) the width in ε of the resonance peak scales like (kt2)−1. This
implies that for fixed k, the width of the resonance peak shrinks very quickly
in time, as illustrated in figure 5.5 for an experimental relevant ensemble of
β-rotors.
The scaling law (5.18) is demonstrated by numerical data shown in figure 5.6.
The function H(x) was calculated numerically; in particular, G(x) was com-
puted by a standard Runge-Kutta integration of the pendulum dynamics (5.14).
The scaling function H(x) decays proportional to x−1 at large x, because so
do 1 − Φ0(x) and 4G(x)/(πx); the latter owing to the saturation of G. From
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figure 5.6 it is seen that Φ0 is quite slowly varying at x > 4. The structures ob-
served in that region are then due to G(x), which describes the resonant island.
Figure 5.4 shows that G(x) saturates via a chain of oscillations of decreasing
amplitude around the asymptotic value. These give rise to three local maxima
in the graph of x−1G(x), followed by a chain of gentle oscillations in the tail.
The first and most pronounced maximum lies in the small-x region, and is not
resolved by the scaling function H(x), apparently because it is effaced by the
rapid decay of 1 − Φ0(x). The subsequent maximum and its symmetric part-
ner at ε < 0 are instead resolved and precisely correspond to the “horns”, the
right-hand one of which is marked by the arrow in figures 5.1(a) and 5.4. The
oscillations in the tail of x−1G(x) are also well reproduced in the tail of H(x).
The scaling law shows that at given k, t the energy curve 〈Et,ε〉 vs. ε decays pro-
portional to |ε|−1/2 past the “horns”. As t increases the horns rise higher while
moving closer and closer to τ = 2π , because they are located at a constant
value of x = t

√
k|ε|. Thus an overall |ε|−1/2 dependence eventually develops

(cf. figures 5.1 and 5.6).
In the case when the smooth initial momentum distribution includes values
n0 �= 0 and/or is appreciably non-uniform in quasi-momentum, the statistical
weights of the various phase-space regions are different. Scaling in the single
variable t/tres still holds, but the scaling functions Φ0 and G may be differ-
ent. For a Gaussian initial distribution with mean square deviation σ � 2.7,
as used in the experiments reported in [82, 83, 135, 159], a scaling like in fig-
ure 5.6 was found numerically. The initial energy, which is negligible in
the case of p0 ∈ [0, 1), must be subtracted such that the scaling holds, i.e.(
〈Et,ε〉 − 〈p2

0/2〉
)
/〈Et,0〉 obeys the scaling law (5.18), as shown in figure 5.7 for

a Gaussian initial momentum distribution.
Our analysis shows that the structure of the resonant peak is essentially deter-
mined by the primary resonant island of the εSM. It neglects higher-harmonics
resonances of the εSM, higher-order islands, and especially the growth of the
stochastic layer surrounding the primary resonance. Such structures grow with
|ε| and are expected to introduce deviations from the scaling law (5.18). Hence
this analysis is valid only if |ε| is sufficiently small, such that k|ε|cr � 1. On tres-
passing the threshold for global chaotic motion k|ε|cr ≈ 1, the critical regime
of the εSM is entered. No isolating KAM curve survives [43], so the energy
curve rises in time for |ε| > |ε|cr (see figure 5.8). Estimating the mean energy at
relatively short times and below the threshold for global chaos in the εSM, i.e.
|ε|k < 4.5 [43], is difficult, because unbounded, non-homogeneous diffusion and
elliptic motion inside residual stable islands coexist. The increase of the curve
with |ε| at constant t is a result of the decreasing size of the latter islands, and
of the rapid increase of the diffusion coefficient (proportional to (|ε| − |ε|cr)γ,
γ � 3 at large enough t [225, 274]).
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Fig. 5.6: Demonstrating the scaling (5.18) of the resonant peak, in a right neighbour-
hood of τ = 2π. Open circles correspond to different values of the parameters ε, k, t,
randomly generated in the ranges 1 < t < 200, 0.001 < ε < 0.1, 0.1 < k < 50 with the
constraint 0.01 < kε < 0.2. In each case an ensemble of 2 × 106 ε−classical rotors was
used to numerically compute the scaled energy R(t, k, ε) (5.18), with a uniform dis-
tribution of initial momenta in [0, 1) and a uniform distribution of initial θ in [0, 2π).
Full squares present quantum data for k = 0.8π, t = 50 and t = 200. The solid line
through the data is the scaling function H(x) of (5.18) obtained by direct numerical
computation of the functions Φ0(x) and G(x). The dashed line represents the function
Φ0(x); the dash-dotted line has slope −1 and emphasises the x−1 decay described in
the text. The arrow marks the value of the scaled detuning x which corresponds to the
arrow in figure 5.1.
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Fig. 5.7: Same as figure 5.6 for Gaussian initial momentum distribution with mean
square deviation σ � 2.7 (open circles, crosses), similar to experimental initial distrib-
ution in [82,83,135,159]. The circles present ε-classical data where the initial energy of
an individual atom was subtracted before computing the average energy value, while
the crosses show ε-classical data where the mean initial energy was subtracted from the
average energy value of the atomic ensemble after some fixed time t. The latter is the
experimentally accessible method, and no difference between the two methods can be
observed what concerns the scaling of the data. The solid line is the scaling function
H(x) from (5.18).

5.2.2 Validity of the ε−quasi-classical approximation

The ε−quasi-classical approximation is exact at all times for ε = 0, as shown
above. At nonzero ε, it is valid for not too large times t, and it is in the long
run spoiled by quantum, non ε-classical effects. At |ε| < |ε|cr the ε-classical
motion is bounded by KAM curves, so the main quantum mechanism leading
to non-ε-classical behaviour is tunnelling across the regular regions. Estimating
the related time scales is a non-trivial problem, because the 2π-periodicity in
action of the ε-classical phase space may enhance tunnelling, and even result
in delocalisation, depending on the degree of commensuration between 2π and
the “Planck constant” |ε|. For instance, if |ε|/2π is rational, then the quan-
tum motion will be ballistic asymptotically in time. This is just the ordinary
quantum resonance of the quantum kicked rotor (see section 2.2.2). In order
that one such resonance with |ε| = 4πs/q exists at |ε| less than some |ε0|, it is
necessary that q > 4π/|ε0|. It will show up after a time roughly estimated by
|ε| times the inverse bandwidth. The bandwidth is estimated to decrease faster
than exponentially at large q [64,118], so one may infer that the time of validity
of the ε-quasi-classical approximation is at least exponentially increasing with
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Fig. 5.8: Same as figure 5.1, however plotted in a broader window in τ around the
quantum resonance peak at τ = 2π. For larger detuning |ε| > 0.25, the ε-classical ap-
proximation (circles and thin line) leads to larger energies than the quantum simulation
(thick solid line). At |ε| > 0.25 classical diffusion occurs, and the classical curves rise
as a function of time t, while the quantum energies basically remain unchanged (for
not too large times for which higher-order quantum resonances may be important).

1/|ε| as the exact resonance at ε = 0 is approached.
At |ε| > |ε|cr the ε−classical motion is unbounded, and the difference between
ε-classical and quantal energy curves vs. τ is basically set by various quantum
localisation effects, including localisation by cantori close to the |ε|cr [275,276].
As a consequence, if t is large enough, then the ε-classical curve lies much
higher than the quantum one (cf. figure 5.8). Nevertheless the latter still
rises with |ε| at constant t, because of the growth of the localisation length
∼ Deff � k2 sin2 (τ/2) [57, 227, 254–256], with τ = 2π� + ε (� ∈ N).

5.3 Classical scaling in presence of decoherence

The scaling law (5.18) derived in the previous section shows that the only rel-
evant time scale for the evolution of the quantum motion sufficiently near to
τ = 2π� (� ∈ N) is given by tres = 1/

√
k|ε|. If we allow for a noisy time evolu-

tion as discussed in section 4.3, an additional time scale comes into play that
characterises the strength of the noise [277]. In the following, we indeed find
an equivalent of the scaling law (5.18) in the presence of noise, which is based
on the two time scales tres and tc, where tc is the mean waiting time between
two spontaneous emission (SE) events.
The ε−quasi-classical approximation introduced in section 5.1 for the study of
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the coherent nearly resonant quantum motion may be adapted to include SE,
because the effects of SE were modelled by a totally classical noise. In the
stochastic gauge (section 4.3.1), the ε−classical approximation may be imple-
mented in the β−rotor propagators (4.27) much in the same way as in sec-
tion 5.1. The resulting ε−classical map corresponding to (5.6) is:

It+1 = It + k̃ sin(θt+1) , θt+1 = θt ± It + π� + τηt . (5.19)

We now exploit assumption (S2) of section 4.3.2 and write ηt = β + δ̃t, where
δ̃t =

∑t
s=1 δs is the total momentum imparted by SE up to time t. In order to

turn off the stochastic gauge, we need to recover the accumulated SE momentum
change, hence we change variables to I∗t = It + |ε|δ̃t. The momentum of the
atom at time t is then |ε|−1I∗t + β, where β is the initial quasi-momentum.
Denoting η∗

t = ηt + εβ/(2π�), and changing variables from (It, ηt) to (I∗t , η∗
t ) in

5.19, we obtain the following map:

I∗t+1 = I∗t + |ε|δt+1 + k̃ sin(θt+1) ,

θt+1 = θt ± I∗t + π� + 2π�η∗
t ,

η∗
t+1 = η∗

t + δt+1 ,

η∗
0 =

τβ

2π�
. (5.20)

The δt are independent random variables, whose distribution is determined by
the statistics of SE.
Numerical simulations of such noisy ε−classical maps are shown in figure 5.9,
and very well match with the quantal computations at small |ε|. Under the
substitution Jt = ±I∗t +π�+2π�η∗

t , the map (5.20) reduces to a noisy εSM, which
differs from the εSM by a random shift τδt of the action J at each step. We
assume an initially uniform quasi-momentum distribution. At any SE time tj,
the distribution of the ensemble in the phase space of the εSM is reshuffled by the
random action change. Under the assumption of homogeneous distribution of
single SEs in an interval of integer length (assumption (S3) in section 4.3.2), the
resulting distribution of Jmod(2π) is approximately homogeneous over the unit
cell of the εSM. Such randomisation may be assumed to wash out correlations
between the past and the subsequent random dynamics. Hence the scaling
(5.18) may be used to write the energy at time t as

〈Et,ε〉 ∼
k2

4

〈Nt−1∑
j=0

∆j H(∆j/tres)

〉
+

1
2
D′nSEt , (5.21)

where 〈.〉 stands for the average over all the Bernoulli realisations of the times of
SE events, according to the discussion after (4.29). nSE is the average number of
SE per period, and D′ = nSE

−1〈δ2
t 〉 is the mean square momentum imparted by

a single SE. For an individual realisation, (5.21) states that the energy is given
by the sum of the SE-free scaling function H of the evolutions over time intervals
∆j. The SE resets the evolution after each event at times ∆j, apart from the
momentum shift contained in the second term in (5.21). If tc is sufficiently large
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Fig. 5.9: Analogue of figure 5.1(a), with the same initial ensemble, for k = 0.8π, in
the presence of SE. Results of full quantum calculations (circles) and of ε−classical
ones (solid lines) in the presence of SE are compared near the resonance τ = 2π, for
different times and different rates of SE: (a) pSE = 0.1, t = 30, (b) pSE = 0.1, t = 50,
(c) pSE = 0.2, t = 30, and (d) pSE = 0.2, t = 50. The quantum simulation was type (I)
(see section 4.3.5), while the ε−classical simulations used the map (5.20).

compared to 1, one may replace the Bernoulli process by the continuous time
Poisson process with the characteristic time tc = −1/(ln(1 − pSE)) = 1/nSE.
This process has the delays ∆ distributed with the density t−1

c exp(−∆/tc).
Its statistics reduces to that of the unit Poisson process (with tc = 1) by just
rescaling all times by the factor 1/tc. This entails

〈
Nt−1∑
j=0

∆j H(∆j/tres)

〉
≈ 4tcQ(t/tc, tc/tres) , (5.22)

where

Q(u, v) ≡ 1
4

〈N1
u∑

j=0

∆1
j H(∆1

jv)

〉
. (5.23)

The superscript 1 specifies that the average is now over the realisations of the
unit Poisson process: each realisation has the continuous time interval [0, u]
divided in subintervals ∆1

j by a random number N 1
u of Poisson events. We are
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hence led to the following scaling law:

〈Et,ε〉 ∼ D′ t

2tc
+ k2tcQ(

t

tc
,

tc
tres

) (5.24)

or, equivalently,

2〈Et,ε〉 − D′t/tc
2k2tc

∼ Q(u, v) , u = t/tc , v = tc/tres . (5.25)

The scaling function Q(u, v) may be explicitely written in terms of the function
H(x) as reported in appendix D:

4Q(u, v) = uH(uv)e−u +
∫ u

0

dx e−xxH(xv)(2 + u − x) . (5.26)

Limiting behaviours of the scaling function Q(u, v) immediately follow from this
equation, or from (5.23) itself. On one hand, for u = t/tc � 1 the right-hand
side in (5.23) is a sum of a large number ∼ t/tc of terms. In that limit, such
terms are quite weakly correlated and may be independently averaged, leading
to:

u � 1 : Q(u, v) ∼ 1
4
u

∫ ∞

0

dx H(vx)xe−x . (5.27)

On the other hand, for t/tc � 1, the sum reduces to the single term j = 0, with
∆1

0 = t/tc; hence

u � 1 : Q(u, v) ∼ 1
4
uH(uv) . (5.28)

In particular, (5.28) shows that (5.24) coincides with (5.18) in the SE-free limit
tc → ∞. In the opposite limit, (5.27) shows that, if k is fixed, then the width
in ε of the resonant spike will not shrink any more with time when t � tc,
and its width thereafter scales like (t2ck)−1. The spike is therefore erased (that
is, it is absorbed in the background) in the strong noise limit tc ∼ 1. In the
latter limit, the method developed above breaks down, because on average after
each kick a SE event happens, which does not let the time evolution recover for
some time interval. The result is then a completely random motion which does
not depend on the system specific dynamics, and hence not on the value of the
kicking period τ .
The spreading of the resonance peaks with increasing noise, as can be seen
nicely in figure 5.9, explains why they are more stable and easier to observe
experimentally than in the case without noise. Together with the results of
the last chapter, this resolves now the puzzles put forward by the experimental
data in figure 4.1 or in [82, 83, 135]. An intuitive argument for the spreading
of the resonance peaks is that for a fixed value of ε, due to SE there is an en-
hanced chance to find a quasi-momentum β, such that the free evolution part
of the Floquet operator is approximately the identity. This is the condition for
quantum resonant motion at τ = 2π� (� ∈ N), as discussed in section 2.2.2.
Numerical simulations in figure 5.10 satisfactorily support the scaling law (5.24).
Data were obtained in a similar manner as for the case without SE; however,
one of the parameters u, v is varied, while keeping fixed either the other para-
meter or the ratio u/v. The theoretical scaling function Q(u, v) was calculated



118 Chapter 5. Dynamics near to quantum resonance

0 5 10 15u
0

1

2

3

0 5 10 15v
0

0.5

1

Q
(u

,v
)

0 1 2 3 4 5v
0.2

0.7

1.2

1.7

(a)

(b)

(c)

Fig. 5.10: Demonstrating the scaling law (5.24) in a right neighbourhood of τ = 2π. In
(a), (b) the quantity on the left-hand side of (5.25) is plotted vs. one of the parameters
u = t/tc or v = tc/tres while keeping the other fixed: (a) v = 2, (b) u = 4. In (c) the
ratio u/v = 4 is fixed. Open symbols correspond to different values of the parameters
t, tc, k, ε, randomly generated in the ranges 1 < t < 200, 5 < tc < 60, 0.001 < ε < 0.1,
0.1 < k < 20, with the constraints 0.001 < kε < 0.2 and tc

√
kε = 2 in (a), t/tc = 4 in

(b), t = 4t2c
√

kε in (c). In each case an ensemble of 2×106 ε−classical rotors was used,
with a uniform distribution of initial momenta in [0, 1) and a uniform distribution
of initial θ in [0, 2π). The random momentum shifts at each step of the ε−classical
evolution (5.20) were generated from the uniform distribution in [−1/2, 1/2]. Full
squares represent quantum data for k = 0.8π, and ε = 0.01 in (a), ε = 0.05 in (c), and
t = 50 and t = 100 in (b). The solid lines correspond to the theoretical formula (5.26).
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numerically using in (5.26) the function H(x) computed as described in sec-
tion 5.2.
If f0(β0) is smooth but not uniform, the scaling in absence of SE of the
form (5.18) holds but with a different scaling function H as explained in sec-
tion 5.2. Therefore the arguments of the present section leading to (5.24) should
hold also in this case.





Chapter 6

Decay of fidelity for δ−kicked
atoms

What a fuss people make about fidelity!

O. Wilde, The picture of Dorian Gray

In the previous two chapters, a powerful machinery was developed for a compre-
hensive understanding of the dynamics of δ-kicked atoms, at the fundamental
quantum resonances and in their vicinity.
In the present chapter, the theory of chapter 4 as well as the ε−quasi-classical
approximation of chapter 5 are applied to calculate and/or estimate the over-
lap of two initially identical states which are subject to two distinct evolutions.
The overlap function, the “quantum fidelity”, is studied at exact resonance
conditions (with kicking period τ = 2π�, � ∈ N), and for small detunings ε at
τ = 2π� + ε. In contrast to the derivation of the momentum distributions, and
their second moment, the average energies, the fidelity depends crucially on the
phases of the evolved wave functions. In section 6.2.2 the destruction of coher-
ence by added decoherence – in form of spontaneous emission (SE) – builds on
the stochastic wave function (4.38), and the method developed in section 4.3 is
a useful tool to calculate the evolution of wave packets, including their phases.

6.1 Stability of quantum dynamics and experimental
proposal

When discussing the atomic conductance fluctuations (section 3.2.3), a charac-
teristic feature emanating from classical chaos displayed: the extreme sensitivity

121
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with respect to changes of the system’s parameters [109–111, 140, 278]. In the
case of the atomic conductance the control parameter was the driving frequency.
How can one quantify the sensitivity with respect to parameter variation, i.e.
to changes in the Hamiltonian?
A measure for the stability of quantum dynamics was introduced in [138]: the
overlap of two initially identical quantum states which are exposed to two differ-
ent time evolutions [138–140]. The overlap, or the quantum fidelity, is defined
as

F (t) =
∣∣∣〈ψ|e iĤδt/�e− iĤ0t/�|ψ〉

∣∣∣2 (6.1)

where Ĥ0, and Ĥδ = Ĥ0 + δV̂ represent the Hamiltonians of a reference sys-
tem and of its slightly perturbed variant, respectively, with the perturbation
parameter δ. The decay of fidelity in time was studied for classically chaotic
quantum systems, usually for relatively small perturbations δ � 1. Depending
on the strength of the perturbation, several regimes of Gaussian and exponen-
tial decay were identified [279–283]. For a classically quasi-regular system, a
power-law decay has been found [284]. The quantum-classical correspondence,
however, is still subject of some controversy [141].
For an initial statistical mixture of pure states |ψn〉, appearing with probabili-
ties ρn, the fidelity may be defined in terms of the statistical density operator
ρ̂ =

∑
n

ρn|ψn〉〈ψn| [155, 285]:

F (t) =
∣∣∣Tr

{
ρ̂Û δ

−tÛt

}∣∣∣2 . (6.2)

Ût and Û δ
t represent the evolution operators corresponding to the Hamiltonians

Ĥ0 and Ĥδ, respectively. This definition will be used below when dealing with
incoherent initial ensembles of momentum states (see equation (6.7) and (E.8)).
An experiment which accesses the fidelity for the δ−kicked oscillator was pro-
posed in [286, 287], and investigations with δ−kicked atoms were reported
in [143, 288]. The experiment is based on the actual sublevel structure of the
atoms’ ground and excited state which are used to induce the kicking potential
(see section 2.3.2). Before the relevant dynamics starts, two ground state sub-
levels are equally populated, and couple differently to the external driving be-
cause of the different detuning with respect to the transition to the correspond-
ing excited level (V0 ∝ 1/∆L in (2.35)). The splitting of the populations and the
reversal after the dynamical evolution is performed by a Ramsey-type interfer-
ometer technique [172,289]. In the absence of coherence-destroying spontaneous
emission, the contrast of the measured interference fringes is related to the over-
lap of two initially identical states evolved under different Hamiltonians. The
difference occurs in the coupling parameter, the kicking strength.
The experimental setup is illustrated in figure 6.1: caesium atoms are initially
prepared in the hyperfine level F = 3, mF = 0 of the 62S1/2 ground state. The
first microwave (Ramsey) pulse creates an equal superposition of the atom’s
internal states, F = 3, mF = 0 and F = 4, mF = 0. Now the atoms are ex-
posed to the δ−kicked evolution, before a second Ramsey pulse reshuffles the
population of the two relevant ground state levels. The phase delay between



6.1. Stability of quantum dynamics and experimental proposal 123

k2

1k

k2

1k

���
���
���
���

���
���
���
���

particle dynamics

first Ramsey pulse second Ramsey pulsephase shift

time

measurement

t

TRamsey

SE

kicked

Fig. 6.1: Scheme of the experimental setup of [135, 143, 288]. Each atom is prepared
in the upper state (left), then a π/2 Ramsey pulse is applied before the time evolution
starts (kicked-particle dynamics with/without gravity) for a coherent superposition of
the upper (with corresponding kicking strength k = k2) and lower (k = k1) level.
The dynamics lasts for a time interval t, afterwards a second π/2 Ramsey pulse (with
time delay to the first one TRamsey) is applied which reshuffles the population in the
upper and lower level according to the value of the Ramsey phase. We allow additional
spontaneous emission (SE) events to happen during the time interval t in our scheme.

the two Ramsey pulses, which determines the final population of the levels, is
experimentally tunable [288]. Finally, the (centre-of-mass) momentum distrib-
ution of one of the ground state levels is measured – corresponding to a state
projection onto this level. From the experimental signal, the overlap of the two
distinctly evolved states may be extracted as an average over all atoms used in
the experiment.
To increase the efficiency of the experiment, when focusing on certain dynamical
regimes, and, in particular, to minimise the effect of averaging, the actual pro-
posal [135, 143, 288] was to use a variant of the δ−kicked atom dynamics. This
variant is subject to an additional linear potential which is provided by grav-
ity. The constant field modifies the dynamics considerably because it alters the
phases of the states accumulated between consecutive kicks. Very robust quan-
tum accelerator modes have been observed in specific parameter ranges around
the quantum resonances [83,290,291] discussed in the previous chapters. Using
a slightly amended ε−quasi-classical approximation with respect to to the one
presented in chapter 5, a large number of these modes could be identified [144]
and measured [288]. Apart from the last section 6.4, where preliminary results
on the quantum fidelity in the “δ−kicked accelerator” are reported, we restrict
to the conventional δ−kicked particle dynamics at the fundamental quantum
resonances (τ = 2π�, � ∈ N) and in their vicinity.
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6.2 Fidelity at quantum resonance

6.2.1 Dynamical stability in absence of noise

Before the discussion of the fidelity, which will be defined in equation (6.7) in a
form useful for our purposes, we show how to extract it from the data obtained
by experiments [143, 288]. The following arguments are based on the intuitive
interferometric picture suggested by figure 6.1. A more elegant presentation of
(6.3-6.7) may be found in appendix E.
Let us assume we start the experiment at time T = 0. One π/2 Ramsey
pulse [172, 289, 292] acts on the upper atomic level |2〉 → (|1〉 + |2〉)/

√
2, and

on the lower level |1〉 → (|1〉 − |2〉)/
√

2, respectively. E1, E2 are the energies
of the atomic levels (� ≡ 1 is assumed). After a time delay TRamsey, the second
pulse produces the transformations |2〉 → (exp( iφ)|1〉 + |2〉)/

√
2, |1〉 → (|1〉 −

exp(− iφ)|2〉)/
√

2, with φ being a controllable phase of the Ramsey pulse source
[172,288,292]. The rotor states are expanded in the momentum basis, where the
expansion coefficients between the two pulses are different for the two arms of
the interferometer, because of the two different time evolutions, characterised by
k1 and k2, respectively. In the sequel, ψβ(t, n, k1,2) denotes the time-dependent
wave function of a β-rotor in the momentum representation (the bar in (2.20)
is dropped; the integer t denotes the number of applied kicks). Initially, a
momentum distribution is prepared in the level |2〉, and the free evolution after
the first Ramsey pulse leads to

T = 0 :
∑
n0

ψβ(n0) |n0〉 ⊗ |2〉 → 1√
2

∑
n0

ψβ(n0) |n0〉 ⊗ ( |1〉+ |2〉)

0 < T < TKR :
1√
2

∑
n0

ψβ(n0) |n0〉 ⊗
(
e− iE1T |1〉+ e− iE2T |2〉

)
.

At time T = TKR (corresponding to t = 0) the kicked-particle evolution starts
with the kick counter t. The kicks effectively act only on the external centre-of-
mass motion, not on the electronic degrees of freedom (see section 2.3.2), and
hence the state vector up to the second Ramsey pulse reads

TKR < T < TRamsey :
1√
2

∑
n

ψβ(t, n, k1) |n〉 ⊗ e− iE1T |1〉+ ψβ(t, n, k2) |n〉 ⊗ e− iE2T |2〉 .

At time T ≥ TRamsey the distribution is reshuffled according to the above men-
tioned rule

|ψβ,end(t,n)〉 =
1
2
e− iE1T

[
|1〉

(
ψβ(t, n, k1) + ψβ(t, n, k2)e− iφRamsey

)
+

e− iE2T |2〉
(
−e iφRamseyψβ(t, n, k1) + ψβ(t, n, k2)

)]
. (6.3)

The Ramsey phase φRamsey ≡ (E2−E1)TRamsey−φ describes the phase difference
accumulated between the pulse source and the internal atomic phase evolution
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in the time interval TRamsey [172,292]. We now assume that the projection onto a
specific momentum state and onto the lower internal level |1〉 is measured. We
average incoherently over a given initial momentum distribution of independent
β−rotors. The probability of finding the atom in a momentum eigenstate with
eigenvalue p � n (i.e. a coarse-grained integer value, see section 4.2.1) depends
on the number of applied kicks t, and on the two kicking strengths k1 and k2:

Pn(t, k1, k2) =
1
4

∫
dβf0(β)

[
|ψβ(t, n, k1)|2 + |ψβ(t, n, k2)|2

]
+

1
2

∣∣∣∣
∫

dβf0(β)ψ∗
β(t, n, k1)ψβ(t, n, k2)

∣∣∣∣
× cos

(
φ

(n)
k1,k2

+ φRamsey

)
, (6.4)

where φ
(n)
k1,k2

is the phase of the interference term, i.e.

∫
dβf0(β)ψ∗

β(t, n, k1)ψβ(t, n, k2)

=
∣∣∣∫ dβf0(β)ψ∗

β(t, n, k1)ψβ(t, n, k2)
∣∣∣ e iφ

(n)
k1,k2 . (6.5)

The initial momentum distribution (typically Gaussian with σ � 2.7 [83]) im-
plies an ensemble of β−rotors with density f0(β) (see section 4.2.1). The third
(interference) term in equation (6.4) is responsible for the appearance of oscilla-
tory fringes in the visibility. The latter is defined by the difference between the
maximum and minimum of the experimental signal as a function of the Ram-
sey phase, for all other parameters fixed [288]. We denote the amplitude of the
modulation in Pn(t, k1, k2) by A(k1, k2, n) = |

∫
dβf0(β)ψ∗

β(t, n, k1)ψβ(t, n, k2)|.
In [288]

O(k1, k2) =
+∞∑

n=−∞
A(k1, k2, n)2 (6.6)

was identified as the “quantum stability measure of Peres” [138]. For reasons
of proper normalisation∗, the quantity O(k1, k2) is problematic, because of the
absolute square taken before the average over all momenta. In the following,
we define the quantum fidelity as

F (t, k1, k2) ≡
∣∣∣∣∣

+∞∑
n=−∞

∫
dβf0(β)ψ∗

β(t, n, k1)ψβ(t, n, k2)

∣∣∣∣∣
2

. (6.7)

In our definition, the absolute square is taken after all averages, and it coincides
with the standard definition (6.2) of fidelity involving ensemble averages (see
appendix E). In the experiment, only (6.4) is directly accessible, and therefore
only A(k1, k2, n). However, from the form of (6.4) is is clear that scanning the
Ramsey phase over a sufficiently wide range (maximally over an interval of 2π)
it should be possible to reconstruct the unknown phase φ

(n)
k1,k2

, and hence to

∗For identical evolutions in the two “arms” of the Ramsey interferometer, the fidelity as
defined in (6.7) keeps the value 1 for all times.



126 Chapter 6. Decay of fidelity for δ−kicked atoms

access the fidelity (6.7).
To compute the fidelity (6.7) we must calculate the product of two states of the
form (4.6), for two different values of the kicking strength, and then sum over
all integer momenta n:

+∞∑
n=−∞

ψ∗
β(t, n, k2)ψβ(t, n, k1)

=
+∞∑

n=−∞

1
(2π)2

∫ 2π

0
dζ

∫ 2π

0
dθe− in(θ−ζ)− i (k1 cos(θ)−k2 cos(ζ))|Wt|

=
1
2π

∫ 2π

0
dθe− i (k1−k2) cos(θ))|Wt| , (6.8)

where we used |ψβ(θ − tξ − arg(Wt))|2 = 1/(2π) for the special case when the
initial state of the particle is a plane wave with momentum p0 = n0 + β (cf.
equation (2.22)). With (F.1) the overlap (6.8) reads

+∞∑
n=−∞

ψ∗
β(t, n, k2)ψβ(t, n, k1) = J0 (|Wt|(k2 − k1)) , (6.9)

leading to the result for the fidelity of one individual β-rotor:

Fβ(t) =

∣∣∣∣∣
+∞∑

n=−∞
ψ∗

β(t, n, k2)ψβ(t, n, k1)

∣∣∣∣∣
2

= J2
0 (|Wt|(k2 − k1)) . (6.10)

For ∆k ≡ k1 − k2 = 0, this gives Fβ = Fβ(t) = 1. For the resonant values of
quasi-momentum βres = 1/2 + j/� mod(1), with j = 0, 1, .., �− 1, |Wt| = t, and
we can use the asymptotic expansion formula (F.8). The fidelity for large times
at quantum resonance is then:

Fβres(t) �
2

πt∆k
cos2

(
t∆k − π

4

)
. (6.11)

This shows that the fidelity falls off like 1/t for the resonantly driven rotors. A
numerical computation of the quantum evolution (figure 6.2) agrees with this
asymptotic result already at times t ≥ 2. The situation is less clear for general
values of the quasi-momentum, because (6.10) sensitively depends on β through
Wt in (4.9). Another particular case is given for β = 0 or ξ0 = π:

Fβ=0(t) = J2
0

(∣∣∣sin(t
π

2

)∣∣∣ (k2 − k1)
)

, (6.12)

which at t = 1 depends only on the difference ∆k of the two kicking strengths.
Then (6.12) can be made arbitrarily small by choosing ∆k � z0, where z0 � 2.40
is the first zero of J0.
To compute the full fidelity

F (t, k1, k2) =
∣∣∣∣
∫ 1

0
dβJ0 (|Wt|(k2 − k1))

∣∣∣∣
2

, (6.13)
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Fig. 6.2: Numerically computed evolution of one resonant β-rotor for τ = 2π, and initial
momentum p0 = β = 1/2. The corresponding fidelity Fβ=1/2(t, k1 = 0.8π, k2 = 0.6π)
vs. time t is shown (circles) together with the asymptotic formula (6.11) (solid line).
The dot-dashed line indicates the 1/t decay.

for a uniform distribution of quasi-momenta with f0(β) ≡ 1, we must perform
the average over the different quasi-momenta, i.e.∫ 1

0
dβJ0 (|Wt|(k2 − k1)) =

∫ π

−π

dx

2π
J0 (∆k sin(tx) csc(x))

=
∫ π

−π

dx

4π2

t−1∑
r=0

2π

t
J0

(
∆k sin(x) csc(xt−1 + 2πrt−1)

)
. (6.14)

As shown in section 4.2.1, in the limit when t → ∞ and 2πr/t → α, the sum
over r approximates the integral over α, and (6.14) converges to

∫ 1

0
dβJ0 (|Wt|(k2 − k1))

→ 1
(2π)2

∫ π

−π
dx

∫ 2π

0
dα J0 (∆k sin(x) csc(α)) . (6.15)

With (F.4) we obtain the final result for the asymptotic value of the fidelity:

F ∗(∆k) ≡ 1
(2π)2

(∫ 2π

0
dα J2

0

(
∆k csc(α)

2

))2

. (6.16)

The dependence on ∆k of the formula (6.16) is shown in figure 6.3 together
with explicit numerical calculations. There are local maxima, which means
that the asymptotic fidelity F ∗ does not fall off monotonically as a function of
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Fig. 6.3: Asymptotic fidelity at quantum resonance (6.16) vs. ∆k (solid line), compared
with numerical data obtained by evolving ensembles of 104 β−rotors with uniform
initial momentum distribution in [0, 1), and τ = 2π (open squares). The data is shown
for all ∆k at t = 50, when it typically has reached its asymptotic value (see figure 6.4).

the perturbation, which is given by ∆k. Note that a finite saturation value F ∗

is always reached, i.e. the fidelity at exact quantum resonances τ = 2π� always
saturates, where the saturation time may depend on the choice of k1, k2.
In figure 6.4 numerical data for the fidelity F (t, ∆k) is presented for various
values of the difference ∆k between the two kicking amplitudes. Experimentally
feasible should be values of ∆k/k � 0.05 . . .0.5 [260], and the results reported
in [288] were obtained for k1 � 0.8π and k2 � 0.6π (the laser amplitude depends
on the position of the atoms with respect to the beam centre; this introduces
some spread in the kicking strength, cf. section 2.3.3). The latter values are
used as a guidance in the following discussions. The minima in figure 6.4 are
given by the minima of (6.13). Differentiating with respect to ∆k gives

dF

d(∆k)
= −

{∫ 1

0
dβJ0 (|Wt|∆k)

}∫ 1

0
dβJ1 (|Wt|∆k) |Wt| . (6.17)

For t � 1, |Wt|2/t approaches δ(β − 1/2) (see (4.19)), and hence, we approxi-
mately obtain:

dF

d(∆k)
∼ −

{∫ 1

0

dβJ0 (|Wt|∆k)
}

J1 (t∆k) . (6.18)

Without loss of generality we restricted to τ = 2π, with only one resonant value
βres = 1/2 (for τ = 2π�, we obtain the same result for all � > 0, see section
4.2.2). Therefore, the first zero of the Bessel function J1(z) (z = z1 � 3.83)
is responsible for the minimum in figure 6.4. This is demonstrated by plotting
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Fig. 6.4: Numerically computed fidelity (6.13) at quantum resonance (τ = 2π) vs.
t∆k, with reference kicking strength k1 = 0.8π and fixed ∆k = 0.6283 (squares) 1.257
(circles) and 1.885 (diamonds), and the same initial ensemble as in figure 6.3. The
position of the minima corresponds to the time tmin � 3.83/∆k (marked by the arrow).
The fidelity saturates for times t � 25 at a constant value, which is indicated by the
horizontal lines.

F (t, ∆k) vs. t∆k. On the other hand,
∫ 1
0 dβJ0 (|Wt|∆k) = 0, hence fidelity

zero, was found numerically only at t � 1.31 with fixed t∆k = z1, what is
excluded for integer kick counters t.

6.2.2 Fidelity in presence of decoherence

We start with the scenario in which SE can happen only in one of the two “arms”
of the Ramsey interferometer (figure 6.1). SE is induced by an additional near
resonant (to one interferometer path, i.e. the k1 arm) laser, which is switched
on for a time τSE immediately after each kick. As described in section 4.3,
the additional laser induces transitions to the excited state of the atom from
which it may decay spontaneously, leading to random momentum shifts. If a
SE event happens, we in principal know along which path of the interferometer
the atom went, and a measurement of the emitted photon would correspond to
a which-path detection [211]. This information destroys the coherence of the
Ramsey evolution [172], and the fidelity is expected to decay exponentially. For
calculating the fidelity of a state subject to SE with the “deterministic” state
(4.6) the phases ϕt ≡ n arg(Wt) in (4.6) are substituted by random processes
(in the case without SE the phases cancelled because they do not depend on the
kicking strength). If now a SE event happens, we must perform an ensemble
average over the randomised phase ϕt in the state (4.38) subject to SE, what
gives zero. The probability that up to time t no event occurs is given by
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Fig. 6.5: Fidelity vs. number of applied kicks t at τ = 2π, for the same ini-
tial ensemble as in figure 6.3, and with added spontaneous emission (type (I) sim-
ulation, cf. section 4.3.5) in only the k1-arm of the Ramsey interferometer (fig-
ure 6.1); kicking strenghts: k1 = 0.8π, k2 = 0.6π (circles), k2 = 0.75π (crosses),
and for an event probability per kick pSE = 0.2. The decay exponent (solid line)
2/tc = 0.45 � −2 ln(1−pSE) = 0.446 is independent of ∆k. The horizontal offset of the
two curves arises from the initial, ∆k-dependent drop of fidelity (see previous figure),
and is not a feature of noise.

(1 − pSE)t, with the event probability per kick pSE. Hence, we estimate

F (t, k1, k2) ∝ e−2t/tc with tc ≡ − 1
ln(1 − pSE)

, (6.19)

for t � tc, what is in excellent agreement with numerical data for pSE = 0.2
in figure 6.5, and for pSE = 0.05 . . .0.8 in figure 6.6. It shall be emphasised
that the fidelity decays at a rate 2/tc which does not depend on the difference
∆k, which on the other hand characterises the “separation” of the two distinct
evolutions. For a finite number of β−rotors and a finite number of SE events,
the phase average over exp( i ϕt) does give a typically small, but finite value
〈exp( iϕt)〉 = 1/Ntot

∑Ntot
j=0 exp( iϕ(j)

t ) � N
−1/2
tot , and Ntot can be estimated by

Nrott/tc, for independent realisation of ϕ
(j)
t . In figure 6.6(a), the estimate for

the statistical error is 1/(Nrott/tc) � 1.7× 10−5 which agrees with the data for
t ≥ 30.
If SE occurs in both arms of the Ramsey interferometer, our model [160] which
builds on the stochastic wave function (4.38) cannot be used directly because
possible SE entangles the time evolutions between the Ramsey pulses. Only for
the special case, when in both arms the SE rates pSE are identical, i.e. both
arms experience the same random process (which leads to the cancelling of the
phases responsible for the fast exponential decay (6.19)), we obtain an estimate
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Fig. 6.6: Same as previous figure 6.5 for k1 = 0.8π, k2 = 0.6π, and pSE = 0 (full line),
pSE = 0.05 (squares), pSE = 0.1 (circles), pSE = 0.2 (diamonds), pSE = 0.8 (plusses).
The slopes (dash-dotted) follow the prediction (6.19): 1/tc = 0.05 (pSE = 0.05), 1/tc =
0.1 (pSE = 0.1), 1/tc = 0.23 (pSE = 0.2), 1/tc = 3.2 (pSE = 0.8).

for t → ∞. In appendix C, the random process ρ ≡ |Wt| is shown to obey the
distribution 2ρ exp(−ρ2/t)/t for t → ∞, which it does not depend on quasi-
momentum. Then we may average (6.13) over the random process to obtain
the asymptotic (t → ∞) result:

F (t, k1, k2) ∼ 〈J2
0 (∆kρ)〉SE =

2
t

∫
dρ ρe−

ρ2

t J2
0 (ρ∆k)

y=ρ2/t
=

∫
dy e−yJ2

0

(√
yt∆k

)
= J0

(
i
t∆k2

2

)
e−

t∆k2

2

(F.8)−→ 1
∆k

√
πt

, (6.20)

where we used the integral formula (F.12). Hence, for this special case, we
expect the fidelity to decay algebraically, i.e. much slower than the exponential
decay (6.19).
Up to now all results focused on the regime of the fundamental quantum res-
onances τ = 2π� (� ∈ N). In the next section we use the ε-quasi-classical
approximation introduced in chapter 5 to investigate the fidelity in the vicinity
of the quantum resonances.



132 Chapter 6. Decay of fidelity for δ−kicked atoms

0 200 400 600 800 1000
0.001

0.01

0.1

1
F

(t
)

0 0.10.20.30.40.50.60.70.8
0

0.001

0.002

0.003

0.004

0.005

F
ou

rie
r 

tr
an

sf
or

m
 

0 200 400 600 800 1000

t

0.1

1

0 0.10.20.30.40.50.60.70.8

ω
0

0.0005

0.001

0.0015

0.002

(a)

(c)

(b)

(d)
T

small

Fig. 6.7: Numerical simulations of the fidelity (6.7) as a function of the applied number
of kicks t, for an ensemble of 104 atoms with initial uniform momentum distribution
in [0, 1); parameters are k1 = 0.8π, k2 = 0.6π and τ = 2π + ε with ε = 0.1 (a),
and ε = 0.025 (c). The corresponding Fourier transforms are shown in (b) and (d),
respectively. The peaks in (b,d) show essentially a constant spacing, which is related
to the lowest frequency ∆ωsmall in the data (a,c), with ∆ωsmall = 2π/Tsmall � 0.066 for
ε = 0.1, and ∆ωsmall � 0.033 for ε = 0.025. The highest frequencies � 0.63 are related
to a period Tfast ∼ 10 which occurs for short times t < 100 in the fidelity oscillations
(a,c), c.f. figure 6.8(a). The arrows in (b,d) mark the position of ω = ∆ωsmall, but
the peaks are not resolved, only in (b) there is a tiny trace of the Fourier peak at the
lowest frequency which is predicted by the estimate (6.21).
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6.3 Fidelity near to quantum resonance

For computing the fidelity as defined in (6.7), one must calculate the scalar
product of two wave functions. In general, these are not known analytically
for the δ−kicked particle dynamics. An exception are the quantum resonances
studied in the previous sections. For kicking periods τ = 2π + ε with finite
ε �= 0, generally a direct calculation of (6.7) is not possible. However, we can
restrict to the ε-quasi-classical model introduced in chapter 5. Figure 6.7(a,c)
shows data for the fidelity of an atomic ensemble (uniform initial momentum
distribution in [0, 1)) for τ = 2π + ε. We observe characteristic fluctuations
which we study by calculating the Fourier spectrum of the signal in the fre-
quency domain, see figure 6.7(b,d). For large times, the lowest frequency in the
Fourier spectrum dominates. The latter is related to the difference of the two
characteristic frequencies of the nonlinear resonance of the the ε-quasi-classical
phase space. In section 5.2.1 the important role of the characteristic time scale
tres = (|ε|k)−1/2 ≡ 1/ωres was pointed out. It determines the motion for the
quantum system for sufficiently small detunings ε. Since two different kicking
strengths have to be compared this corresponds to compare the motion of two
ε-classical systems with slightly different tres. In the harmonic approximation,
the basic frequency is defined by the beating frequency, i.e. the difference of
the two fixed-point frequencies:

∆ωsmall = ωres,1 − ωres,2 =
√
|ε|(

√
k1 −

√
k2) . (6.21)

The dominant fidelity oscillations for large times t > 100 are indeed determined
by ∆ωsmall as one can see in figure 6.7. Table 6.1 collects values of ∆ωsmall ob-
tained from figure 6.7 and similar cases, showing the correspondence between
the estimate (6.21) and the numerical simulations.

ε ωres,1 ωres,2 ∆ωsmall Tsmall = 2π/∆ωsmall T data
small

0.025 0.2507 0.2171 0.0336 187 190
0.05 0.3545 0.3070 0.0475 132 130
0.075 0.4342 0.3760 0.0582 108 105
0.1 0.5013 0.4342 0.0671 94 � 100

Tab. 6.1: Table of periods of fidelity oscillations (cf. equation (6.21)) for k1 =
0.8π, k2 = 0.6π and τ = 2π + ε, and for large times t > 100. Presented are the esti-
mated periods Tsmall, and the mean periods T data

small obtained from the data in figure 6.7,
and from similar simulations for ε = 0.05, 0.075.

At small times 10 < t < 100, we observe in figure 6.8(a) (similar for data in
figure 6.7(c)) oscillations with a varying amplitude for increasing time. How-
ever, we do not know yet, how different harmonics or frequencies conspire in
the fidelity oscillations in the region 10 < t < 100.
Taking only rotors close to the resonant value of quasi-momentum β = 1/2, i.e.
in the range β ∈ [0.4, 0.6], we observe that the highest frequencies dominate
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Fig. 6.8: (a) reproduces data from figure 6.7(a) to show the short time behaviour on
a log-log scale. (b) shows fidelity as in (a) but with the restriction β ∈ [0.4, 0.6] (solid
line), and β �∈ [0.4, 0.6] (dashed). While the resonant values of quasi-momentum lead
to fast oscillations with periods corresponding to the maximum frequencies observed in
the Fourier spectrum (figure 6.7), the non-resonant ones show a fidelity decay without
oscillations. The curve in (a) results from the average over all β ∈ [0, 1), c.f. definition
of fidelity in (6.7).

in the fidelity oscillations, while for non-resonant β �∈ [0.4, 0.6] the fidelity de-
cays without considerable oscillations (see figure 6.8). The maximum frequency
ωmax � 0.62 in figure 6.7 seems to be universal for all studied ε = 0.05 . . .0.1,
and its origin is still to be clarified.

6.4 Fidelity with quantum accelerator modes

Since the quantum accelerator modes mentioned in section 6.1 provide a use-
ful tool to prepare atoms in a certain region in momentum space or even in
phase space [135,143,145,288], we present some preliminary results on the the-
oretically more complicated problem with added linear field. The quantum
accelerator modes are found in the vicinity of the fundamental quantum res-
onances studied in this thesis, i.e. for kicking periods τ = 2π� + ε (� ∈ N).
Therefore, a similar qualitative analysis as in the previous section may be used
to describe the behaviour of the fidelity as a function of time, and the parame-
ters k1, k2, ε, η – where η characterises the linear constant potential (the gravity
in appropriate units [145]). The accelerator modes are explained by the islands
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Fig. 6.9: Poincaré surface of sections determined by the map (6.22) for τ = 5.86,
k = 0.5π (upper left), k = 0.6π (upper right), k = 0.75π (lower left), k = 0.8π (lower
right). The gravity parameter is chosen η = 0.01579τ (corresponding to the gravity
acceleration in laboratory units [145]). The size and the position of the main island,
corresponding to the accelerator mode (1,0) [145], depends on k [145]. Higher-order
modes, represented by the island chains around the main (large) islands, are neglected
in our discussion. This is partly justified by the large value of the effective Planck
constant 2π|ε|.

of stability in the phase space of an appropriate ε−classical map, which can be
reduced to a two-dimensional map defined on the 2-torus yielding for negative
ε [145]:

Jt+1 = Jt + k̃ sin(ϑt+1) − τη

ϑt+1 = ϑt − Jt . (6.22)

This map is the analogue of (5.7-5.8) with the additional term τη (remember
that k̃ = |ε|k).
Figure 6.9 shows typical phase-space plots generated by iterating (6.22). The
islands support the accelerator modes much in the same manner as the non-
linear resonances support the quantum resonances in chapter 5. The fidelity
is obtained by numerical calculations of the quantum evolution of an ensemble
of β−rotors subject to the δ−kicked accelerator. It is presented in figure 6.10
as a function of time t. As in the previous section, we observe characteris-
tic fluctuations which are related to the structure of the ε-classical phase space.
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Fig. 6.10: Numerical simulation of the fidelity vs. the number of applied kicks t for the
quantum evolution of the δ−kicked accelerator. The initial momentum distribution was
chosen as in figure 6.7, parameters are τ = 5.86, η = 0.01579τ , k1 = 0.8π, k2 = 0.75π

(solid line), k2 = 0.7π (dotted), k2 = 0.65π (dashed), k2 = 0.6π (thin line), k2 = 0.5π

(dot-dashed). The thin dashed lines show the overall exponential decay in the regime
of not too large times.

The fixed-point frequencies ωFP1 and ωFP2 (corresponding to ωres in the previous
section) are not directly related to the oscillations observed in figure 6.10. How-
ever, a stability analysis around the elliptic fixed point (whose position depends
on k, see figure 6.9) like in the case without gravity (6.21) must be amended
by the relative shift of the island centres of the main accelerator modes visible
in figure 6.9. In [145] it was shown that the velocity of the modes is indepen-
dent of the kicking strength, which is the only difference in the two dynamical
situations that we compare in the present discussion. A crude estimate for the
frequencies of oscillations is given by

ωacc � |ωFP1 − ωFP2|+ ∆ϑFP , (6.23)

where ∆ϑFP is the distance in the angle coordinate of the corresponding island
centres. This shift of the frequency can be a understood in the following way:
for the elliptic motion in one island the trajectory is ahead, whereas for the
elliptic motion in the other island the trajectory is behind, so they get closer
to each other and rephase after a shorter period than in the case when both
islands lie concentric†. The shift, which we estimate by ∆ϑFP, depends on the
precise geometry of the two islands, and the overlapping area. A better esti-
mate can certainly be derived for a specific island configuration. The periods

†In the fidelity, one of the distinctly evolved states enters in complex conjugated form,
hence the phase has a different sign with respect to the second state; therefore one trajectory
is ahead while the second, corresponding one lacks behind in the classical picture.
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Fig. 6.11: Upper left: fidelity vs. number of kicks t, for τ = 5.86, k1 = 0.8π, k2 = π,
and a prepared initial coherent state centred at J0 = 0, ϑ0 = 0.5 with a spread in
the angle coordinate of d = 0.1 (dash-dotted), J0 = 0, ϑ0 = 0.5, d = 1 (dotted),
J0 = 0, ϑ0 = −3, d = 1 (solid) (the evolution is averaged over 100 quasi-momenta
uniformly distributed in [0, 1)). Lower left: Fidelity for same parameters but with
uniform initial ensemble of 104 plane wave β−rotors with p0 = β0 ∈ [0, 1) (like in
figure 6.10). The slope (dashed) is 0.03, and it is determined by the states having strong
overlap with the chaotic component of ε−classical phase space plotted for k1 = 0.8π in
the upper right, and for k2 = π in the lower right panel. The effective Planck constant
2π|ε| � 2.66 is indicated by the square.

won by the numerical data from figure 6.10 compare well (yet not perfectly)
with the prediction from (6.23).
To further investigate the overall decay of the fidelity vs. time we focus on a case

where the islands are as large as possible for the given values τ = 5.86, k � 0.8π,
namely k1 = 0.8π and k2 = π in figure 6.11. The fidelity shows beating aris-
ing from several frequencies. On the other hand, the decay can be shown to
originate solely from the chaotic motion in ε−classical phase space. Launching
a coherent state wave packet [16, 211] centred at either the ε−classical island
or in the chaotic sea, we observe that in the first case, the oscillations are
dominated by one frequency only, and after some short decay the mean value
saturates (probably decaying further owing to tunnelling, see short discussion
below), while the fidelity decays exponentially for much longer times in the
latter case. We thus conclude that the initial decay of the fidelity is governed
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by states in the chaotic component of ε−classical phase space and/or by states
sitting only partly at the accelerator mode island. These states get lost for the
accelerator mode, possibly on different time scales, but much faster than states
sitting mainly within the island. The latter can only escape via tunnelling out
of the island which is a much slower process, and we assume that the fidelity
decay after the first stage – after the plateau sets in – is indeed determined by
such tunnelling processes. The tunnelling regime is very interesting from the
theoretical point of view, however, in the experimental setup we referred to in
section 6.1, this long-time regime (t ≥ 100) is hardly attainable.
The slope of the initial fidelity decay is by a factor of 6 smaller than the Lya-
punov exponent [43] calculated for the map (6.22). Therefore, we assume that
the quantum coarse-graining of the phase space dynamics smears out the fast
decay to arrive at a much smaller decay rate than expected by purely ε−classical
means. Note that to observe the structure (clear exponential decay amended by
more or less well-defined oscillations) in the fidelity in figures 6.10 and 6.11, it is
necessary to average over some finite (possibly small) interval of quasi-momenta
around the values which support the accelerator mode [145].
Calculating the fidelity in a window in momentum space around the origin n = 0
(not counting the contributions from outside the window), the overall decay in
the initial stage is not affected, as can be seen from figure 6.12. However, the
oscillations with frequencies estimated by (6.23) are destroyed as soon as the
accelerator part of the momentum distribution is outside the window. This
stresses again the role of the nonlinear island in ε−classical phase space, cor-
responding to the accelerator mode, which is responsible for the fluctuations.
We also used a window in momentum around the accelerator mode peak in
the momentum distribution. The window is moving with the peak at a speed
τη/|ε| [145], and its effect is that there no longer prevails a clear initial expo-
nential decay. Only the second stage occurs earlier, with exponential decay but
much smaller slope (which is the same as for the data without any window, see
figure 6.12). The latter decay is amended by fast oscillations, which are seen
for all cases plotted in figure 6.10 using a window around the accelerator mode
peak. The frequency of these fast oscillations is close to the two individual
fixed point frequencies ωFP1 or ωFP2, but so far we have no explanation for its
occurrence yet.

The presented results on the the fidelity in presence of the additional linear
potential await a proper theoretical analysis. Such a treatment should include
the mentioned problems of determining the decay slopes in both exponential
regimes, and the development of a semiclassical theory for the tunnelling out
of the accelerator mode island in ε−classical phase space.
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Fig. 6.12: Fidelity vs. number of applied kicks t for τ = 5.86, k1 = 0.8π, k2 = 0.6π:
data from figure 6.10 (thick solid) compared with data when the sum in momentum
n extends only over a finite window in equation (6.7), −30 < n < 30 (dashed) and
nacc − 30 < n < nacc + 30 (dotted). The centre of the accelerator mode peak in
the momentum distribution nacc moves with the velocity τη/|ε|, which is independent
of k [145]. The thin solid line shows data like the dotted line for restricted initial
momenta p0 = β0 ∈ [0.49, 0.51]. While the cutoff around zero momentum destroys the
oscillations as soon as the accelerated peak has reached the boundary (at t � 22), the
overall exponential decay (up to t � 100) is the same as in the data without cutoff.
The window around the accelerator mode peak has a completely different effect: it
leads to a huge drop in the fidelity because of probability loss for t � tloss � 16 (dotted
line), and what remains decays with the same slope (dot-dashed) as the thick solid line
for t � 100, probably related to tunnelling. Puzzling are the fast oscillations of the
dotted curve for t � 25; their amplitude is increased using only a small range of initial
quasi-momenta around the one supporting the accelerator mode (thin solid line).





Chapter 7

Résumé

7.1 Summary of results

In this thesis transport in energy or momentum space, arising from the energy
absorption from an external time periodic driving force, is studied focusing on
quantum effects relevant on the atomic scale.

The first part of the thesis presents novel quantitative support for the hypothe-
sis that the energy transport in periodically driven hydrogen Rydberg atoms is
determined by dynamical localisation. The latter implies the quantum suppres-
sion of classical diffusion, and is based on the mechanism of Anderson locali-
sation [61, 88, 89]. The distributions of ionisation rates of the driven Rydberg
states allow for a clear identification of signatures of Anderson localisation. In
the statistical average, the ionisation rates Γε follow a universal algebraic dis-
tribution ρ(Γε) ∝ Γ−0.9

ε (cf. section 3.1). This result is in good agreement
with quasi-one-dimensional Anderson models [197]. The corresponding eigen-
states are dominantly located in the chaotic component of phase space, which
is exactly the domain where dynamical localisation suppresses the transport
to the atomic continuum [60]. In addition to the identification of Anderson
localisation through the ionisation-rate statistics, the latter provide evidence
for other mechanisms hindering quantum transport such as tunnelling out of
the regular regions in phase space. We were able to separate dynamical lo-
calisation and localisation induced by regular phase-space structures by inves-
tigating the localisation properties of the Floquet eigenstates in phase space.
Driven Rydberg atoms are real systems perfectly suited for the investigation
of the mixed regular-chaotic phase-space dynamics, and the classical-quantum
correspondence is essential for a clear understanding of the underlying physical
phenomena.
Our statistical analysis of the decay rates may be experimentally verified by
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spectroscopic techniques similar to the ones extensively used in measuring the
(dc) Stark spectrum of Rydberg atoms [71].
In contrast to recent predictions [115], the ionisation probability as a function of
time does not behave universally – in spite of the universal decay-rate statistics.
The more or less algebraic, but highly non-universal decay arises from the local
property of the expansion coefficients in (2.40) contrary to the global spectral
information carried by the ionisation rates. Since the latter and the correspond-
ing coefficients are essentially uncorrelated (see figure 3.12), the universality in
ρ(Γε) does not imply universality in the ionisation or survival probability as a
function of time. Experiments with rubidium Rydberg states [114] as well as
extensive numerical simulations on lithium and rubidium Rydberg atoms [95]
support our results on hydrogen.

In the second part of this thesis, we have clarified several experimental findings
on the quantum resonant dynamics of atoms subject to time periodic δ−like
pulses. Thereby the particle nature of the atoms, which move on a line, and
not on a circle as assumed for the kicked-rotor model, plays a crucial role. The
atoms in the experiment are non-interacting, and thus they are modelled in our
theory as a classical ensemble of quantum particles.
The puzzling enhancement of resonance peaks in the mean energy (of the atomic
ensemble) vs. the kicking period [82, 83] is identified as an experimental arte-
fact [159]. The latter arises from cutoffs which inevitably impair the quan-
tum resonant motion in absence of decoherence by spontaneous emission. Our
analytical results show that the mean energy increases in both cases – with
and without spontaneous emission – linearly with the number of kicking pulses
(equations (4.20) and (4.62)).
However, the momentum distributions of the atomic ensemble behave com-
pletely differently in the two cases: without decoherence the main contribution
to the energy growth originates from a tiny fraction of resonantly driven atoms
(the residual ones are strongly localised around the initial momenta close to
zero). On the other hand, the energy increase in presence of spontaneous emis-
sion emerges because the momentum distribution spreads as a whole. Deco-
herence acts as expected and destroys the coherent dynamics, what makes the
distribution become Gaussian in the asymptotic limit of large times, character-
istic of a diffusive random walk in momentum space.
Based on a quasi-classical approximation, we have derived a scaling law for the
resonance peaks in the mean energy in the absence and presence of decoher-
ence. From these scaling laws (equations (5.18) and (5.25)) the widths of the
peaks as function of the detuning from the resonance follow, including their
time dependence. The experimentally observed stabilisation of the peaks by
adding a small amount of noise corresponds to their broadening arising from
the reshuffling of atoms in and out of the resonance conditions. This enhances
the probability of following the resonant motion, also for small detunings from
the exact resonant kicking period. The presented scaling allows the experimen-
talist to collect data from different parameter ranges, and average them in order
to enhance the experimental resolution.
Our treatment of the spontaneous emission by a quantum Monte Carlo method,
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or equivalently by a random walk in the rotor’s Hilbert space, not only permits
an exact analysis of the kicked atoms’ dynamics in presence of noise but also
shows that periodically kicked atoms provide an interesting system for the study
of decoherence. Most recent experiments [142] make it possible to compare two
slightly distinct time evolutions, and to study the influence of the underlying dy-
namical regime on the overlap function of two initially identical but differently
evolved wave packets. Using the results derived at the exact quantum reso-
nance conditions as well as the quasi-classical approximation which describes
the system close to the resonances, the overlap function, i.e. the fidelity, has
been investigated. In the absence of decoherence, the fidelity characterises the
stability of the quantum motion subject to slight perturbations. Varying the
dynamical regime (e.g. quantum resonant, dynamically localised, or dynamics
with added linear potential) alters the time dependence of fidelity. Since the
δ-kicked rotor affords a variety of dynamical scenarios building on its mixed
classical phase space, its atom optical realisation provides an exciting system
to study the influence of decoherence and noise competing with classical chaos
or its quantum manifestations [293, 294]. Our preliminary results support the
intuition that the fidelity offers a route for the quantitative study of the destruc-
tion of quantum coherences via its behaviour on time and on the underlying
dynamics.

7.2 Future perspectives

This thesis describes the dynamics of atomic degrees of freedom which are
directly accessible to experiments: electronic states in driven Rydberg atoms
and external centre-of-mass motion in kicked atoms. The presented discussions
gathered tools of classical and quantum transport theory to describe experimen-
tal systems prepared and controlled by quantum and atom optical techniques.
New experimental methods are offered by cooling atoms even below the tem-
peratures as used so far for the kicked-particle experiments [55, 81, 83, 135,143,
166, 174, 184, 290]. The coherent atomic ensemble of a Bose-Einstein conden-
sate [124–126, 295] may be used to prepare very well defined initial conditions,
for instance, initial momentum distributions of atoms. It is possible to reach
spreads in momentum of p0 = β0 ≤ 0.05 (in units of two photon recoils), which
are sufficiently small to strongly populate atoms in the conditions required for
the quantum-resonances (see section 2.2.3). The “ballistic” peaks in the mo-
mentum distribution may be clearly visible in such an experiment if in addition
the problem of finite-pulse widths in the kicks is minimised (cf. section 4.3.6).
Moreover, one may hope to observe higher-order quantum resonances which
have not been unambiguously resolved in experiments yet [159]. To observe
them it is necessary to guarantee a high resolution in the kicking period as well
as a large population of the quasi-momenta near to the corresponding resonant
values [64].
The influence of the atom-atom interaction in the coherent Bose-Einstein con-
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densate [124] on the dynamical evolution is certainly an exciting problem to
investigate. The particle nature (as compared to the rotor moving on a circle)
is important for the quantum resonances but also for initial coherent super-
positions of momentum eigenstates what concerns the kicked-atoms’ dynamics
in presence of an additional linear potential. The effect of interferences on
the quantum accelerator modes occurring when such an additional potential is
present is partly discussed in [145], and a more complete theoretical understand-
ing together with an experimental exploration of coherent ensemble dynamics
would be of great interest.
The presented quasi-classical approximation not only allows one to grasp the
main features of the kicked-atom dynamics near to the fundamental quantum
resonances. It offers a new tool for the study of quantum effects in the quasi-
classical limit of small detunings from the resonant kicking period. In sec-
tion 6.4, the decay of fidelity was partly related to the chaotic component,
and to tunnelling out of the main nonlinear island in the quasi-classical phase
space. As the latter is typically nicely separated in a regular island, corre-
sponding to the quantum accelerator mode [145], and a chaotic motion, the
quasi-classical approximation provides an ideal playground for the investiga-
tion of tunnelling phenomena, such as dynamical [296–299] or chaos-assisted
tunnelling [210, 216, 217, 235, 300, 301]. On the experimental side, these are
challenging perspectives since very well-defined initial conditions are an essen-
tial prerequisite to observe relatively weak signals such as tunnelling oscilla-
tions [297, 298].

The noisy transport problem in microwave-driven atomic Rydberg states has
been explored in several experiments with focus on the destruction of dynam-
ical localisation [13, 52, 53, 72]. The influence of spontaneous emission on one-
dimensional Rydberg wave packets, which otherwise show no or little dispersion
owing to very weak decay to the continuum, was investigated [77,302,303]. Such
studies may be extended to a comprehensive analysis of the survival probabil-
ities, as studied in section 3.1.3. These are certainly affected by noise arising
from spontaneous emission, in particular for the large interaction times plotted,
for instance, in figure 3.15.
A merger of the two systems studied in this thesis, which can also be re-
alised experimentally [304, 305], is provided by periodically δ−kicked Rydberg
atoms [306, 307]. Here, the kicking pulses excite the internal electronic degrees
of freedom in the same way as for monochromatically driven Rydberg states
(as opposed to our δ−kicked rotor realisation, where the atoms’ centre-of-mass
motion is affected). In addition, the δ−kicks contain all harmonics of the basic
frequency ω = 2π/τ , with the kicking period τ . Therefore, many decay channels
to the atomic continuum, including direct one-photon ionisation, are present.
Recent results [308, 309] show analogies to the Rydberg problem discussed in
this thesis, and in particular, fluctuations in the ionisation probabilities which
are reminiscent of the atomic conductance fluctuations mentioned in section
3.2.3. Moreover, since direct one or few-photon ionisation is possible, very large
decay rates appear besides the rates connected to multi-photon transport. This
implies that parametric fractal fluctuations in the survival probability or in an
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analogue of the atomic conductance (3.11) may be observable in an experimen-
tally accessible situation.
The presented new aspects of the analogy between periodically-driven Rydberg
states and Anderson-localised solids may also be investigated in more complex
systems than one-electron problems. More precisely, one may study systems
in which more (strongly coupled) degrees of freedom are present. Can one
identify transport mechanisms similar to the ones discussed in this thesis also
for systems such as the driven three-body helium problem [76, 310, 311]? The
additional particle-particle interaction offers new perspectives in the analogy
between atomic problems with many degrees of freedom and many-body solid
state systems.





Appendix A

Analysis of the Steady State
Distribution (4.15)

A.1 Proof of estimate (4.16)

From (4.15) it follows that

∑
|n|≥N

M∗
n(t) =

1
2π2

∫ π

−π
dx

∫ π/2

−π/2
dα

∑
|n|≥N

J2
n(z)

with z ≡ k sin(x) csc(α) , (A.1)

for any positive integer N . In A.2 we show that∑
|n|≥N

J2
n(z) ≤ 2

( ez

2N

)2N
. (A.2)

With this inequality, we derive an upper bound for the sum in the inner integral
in (A.1) when |α| > ε/2, for 0 < ε < π. If |α| does not fulfill this condition,
we use the upper bound 1 for

∑∞
n=∞ J2

n ≤ 1 (cf. F.3), and that by (A.1) leads
to the first term on the right in (A.3). Noting that |z| < k| csc(α)| < πk/(2ε)
whenever π/2 > |α| > ε, one obtains altogether

∑
|n|≥N

M∗
n(t) ≤ ε

π
+ 2
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kπe

4Nε

)2N

. (A.3)

We now minimise the right-hand side by requiring

1
π
− 4N

(
kπe
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)
ε−2N−1 = 0 . (A.4)

Solving for ε, we obtain

ε =
ekπ

4N

(
16N 2

ek

) 1
2N+1

(A.5)
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(which is indeed not larger than π whenever N > k×1.03 . . .). Replacing (A.5)
in (A.3) yields the estimate (4.16):

∑
|n|≥N

M∗
n ≤ 2

(
ke

16

) 2N
2N+1

N
1−2N
2N+1

(
2 +

1
N

)
. (A.6)

A.2 Proof of inequality (A.2)

Using twice the bound (F.7) and the power series expansion of Bessel functions
[157],

∞∑
n=0

J2
n(z)enr ≤

∞∑
n=0

(
|z|er/2

2

)2n
1

(n!)2
= J0( i |z|er/2) ≤ e|z|e

r/2
, (A.7)

for any real r. It follows that
∞∑

n=N

J2
n(z) ≤ e−Nre|z|e

r/2
. (A.8)

Inequality (A.2) follows upon optimising, i.e. minimising, with respect to r
what gives r = 2 ln(2N/|z|). Then

e−Nre|z|e
r/2
∣∣∣
r=2 ln(2N/|z|)

=
(

|z|
2N

)
e2N ,

and since z ∈ R, and taking into account a factor of two for the equivalent of
(A.8) with negative n, the inequality (A.2) follows.

A.3 Proof of the asymptotic formula (4.17)

For z ∈ [−1, 1] we define:

f(z) ≡ 1
2π

∫ π/2

−π/2
dα J2

0 (kz csc(α)) for z �= 0 ; f(0) =
1
2

. (A.9)

The integrand in (A.9) is meant = 0 for α = 0, z �= 0. Using the integral
identity (F.3) for Bessel functions, (4.15) may be rewritten as:

M∗
n =

1
π

∫ 2π

0
dx cos(2nx)f(sin(x)) , (A.10)

so, for |n| > 0, M∗
n is the 2n−th coefficient in the cosine expansion of f(sin(x)).

The function f(z) is differentiable in [−1, 1] \ {0}. It will be presently shown
that

f ′(0+) = lim
z→0+

f ′(z) = −4k

π2
�= 0 .
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Since f(z) is an even function, it will follow that its first derivative is discon-
tinuous at z = 0. We choose ε > 0 and write

f(z) = fε(z) + gε(z) , fε(z) ≡ 1
2π

∫ ε

−ε

dα J2
0 (kz csc(α)) . (A.11)

Then gε is differentiable around 0, with g′ε(0) = 0. Hence, f ′(0+) = f ′
ε(0+).

Next we note that if z > 0,

f ′
ε(z) = π−1z−1

∫ ε

−ε
dα F (kz csc(α)) ,

where F (x) ≡ xJ0(x)J ′
0(x). Noting that

| csc(α) − α−1| < c1α

for 0 < |α| < π/2 and some numerical constant c1, one easily finds
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= −2kπ−1

∫ ∞

kz/ε
du u−1J0(u)J1(u) + O(ε) , (A.12)

where J ′
0(z) = −J1(z) was used. Letting z → 0+ and thereafter ε → 0+ we

obtain:

f ′(0+) = lim
ε→0+

f ′
ε(0+) = −2kπ−1

∫ ∞

0
du u−1J0(u)J1(u) = −4k

π2
.

The integral was computed by using (F.6) and then formula 11.4.36 in [157].

Next we recall from (A.10)

f(sinx) =
1
2
M∗

0 +
∞∑

n=1

M∗
n cos(2nx) .

According to the above analysis, the derivative of this function jumps by −8k/π2

at x = jπ (j any integer). Hence the second derivative has the singular part
−8kπ−2

∑
j δ(x − jπ), leading to the asymptotic value −16kπ−3 for the coeffi-

cients in its cosine expansion. This yields

M∗
n ∼ 4k

π3n2
as n → ∞ . (A.13)
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Statistics of the process Zm

B.1 Independence of the variables zj

We show that, for any integers n, m, (m > n), the variables (zn, ..., zm) are
independent of the variables (z0, ..., zk) whenever k ≤ n− 2. It suffices to show
that (zn, ..., zm) are independent of (ξ̃0, ..., ξ̃k, ∆0, ...∆k). To see this, let f be
an arbitrary (Borel) function of m − n + 1 complex variables, and consider

Mk ≡ E{f(zn, ..., zm)|ξ̃0, ..., ξ̃k, ∆0, ..., ∆k}. (B.1)

Looking at (4.37), and recalling that the ξ̃j are mutually independent, one
notes that (zn, ..., zm) depend on ξ̃j, ∆j (0 ≤ j ≤ k) through the factor
exp( i

∑k
0 ξ̃j∆j), hence only through

∑k
j=0 ξ̃j∆j mod(2π). Therefore, (B.1)

is a function of the variable µk ≡
∑k

0 ξ̃j∆j mod(2π) alone, i.e. Mk = Mk(µk).
Furthermore, since k + 1 < n,

Mk(µk) =
∫

dP (ξ̃k+1, ∆k+1) Mk+1(µk+1)

=
∫

dP (ξ̃k+1, ∆k+1) Mk+1(µk + ξ̃k+1∆k+1) (B.2)

because ξ̃k+1, ∆k+1 are independent of past variables; here dP (., .) is their joint
distribution. Now ξ̃k+1 is independent of the integer ∆k+1, and it is uniformly
distributed in [−π, π). Then the integral does not depend on µk, so

E{f(zn, ..., zm)|ξ̃0, ..., ξ̃k, ∆0, ..., ∆k} = E{f(zn, ..., zm)},

what proves the announced independence property.
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B.2 Central Limit property

The properties of the process Zm allow to conclude that its distribution is
asymptotically Gaussian, thanks to known results about the Central Limit
Theorem for weakly dependent sequences [312]. Isotropy of the limit Gaussian
distribution follows from computing the mean square displacement along an
arbitrary direction θ in N steps, i.e.

E


Re2


 N∑

j=0

e− i θzj






since
Re(e−iθZN ) = Re(ZN) cos(θ) + Im(ZN) sin(θ) .

Using E{zjz
∗
k|∆} = δjk∆j for any j, k ≥ 0 such that j + k > 1 (see (4.40) and

section 4.3.3), the result is independent of θ, hence the limit distribution is
isotropic in the complex plane.



Appendix C

Asymptotic distribution of the
process |Wt|

We show that as t → ∞, the distribution of |Wt| approaches a Gaussian distri-
bution in the complex plane centred at 0. To this end we assume for simplicity
that Wt and Zm (4.37) are real; the argument carries through by replicating it
for the real and the imaginary parts separately. We define W̃t = Wt/

√
t, and

prove that the characteristic function [259, 267] of W̃t, i.e.

Φ(W̃t) ≡ E
{
e iyW̃t

}
, (C.1)

is a Gaussian for t → ∞. From the definition of the process Nt after equation
(4.29), it follows that Nt → ∞ for t → ∞ with probability 1 if pSE > 0. The
previous appendix shows further that the conditional distribution of ZNt , at
given Nt, is asymptotically Gaussian as Nt → ∞ with variance ∝ Nt. Therefore,
one obtains

E
{

e iyW̃t

∣∣∣Nt

}
= E

{
e

i
yZNt√

t

∣∣∣∣Nt

}
t→∞−→ c1e

− c2y2Nt
t , (C.2)

with constants c1, c2. To obtain Φ(W̃t) we must average (C.2) over the distrib-
ution of Nt which is Bernoullian (see its definition after (4.29)). Consequently,

Φ(W̃t) ∼ c1E
{

e−
c2y2Nt

t

}

= c1

t∑
m=0

t!
m!(t− m)!

(
pSEe−

c2y2

t

)m

(1 − pSE)t−m . (C.3)

With the binomial formula (F.10), this gives

Φ(W̃t) ∼ c1

(
1 − pSE

(
1 − e−

c2y2

t

))t

∼ c1

(
1 − pSEc2y

2

t

)t
t→∞−→ c1e

−pSEc2y2
, (C.4)
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where (F.11) was used. Since the Fourier transform of a Gaussian is again
a Gaussian with inverse variance, it follows that asymptotically W̃t obeys a
Gaussian distribution with variance ∝ 1, hence also Wt with variance ∝ t. From
the discussion in section 4.3.3, i.e. with (4.55) which is in all cases approached
for t → ∞, the variance is exactly t. This finally tells us that ρ = |Wt| is
asymptotically distributed with a density dFt(ρ) = 2t−1ρdρ exp(−ρ2/t), i.e. a
two-dimensional isotropic Gaussian in the complex plane.



Appendix D

Derivation of equation (5.26)

Let ∆1
j , (j = 0, 1, ...) be real nonnegative, independent random variables ex-

ponentially distributed with E{∆1
j} = 1. For j a nonnegative integer denote

sj =
∑j

k=0 ∆k, and s−1 ≡ 0. For given u > 0 let N 1
u ≡ max{j : sj < u}. We

shall compute the expectation of the random variable

fu ≡
N1

u∑
j=0

f(∆1
j) + f(u − sN1

u
) , (D.1)

where f(x) is a given nonrandom function; the sum in equation (5.23) is of this
form, with f(x) = xH(xv). We write fu =

∑∞
j=0 fu,j , where

fu,j ≡ χ(u − sj−1)[χ(u − sj−1 − ∆1
j )f(∆1

j) +

+ χ(∆1
j + sj−1 − u)f(u − sj−1)] , (D.2)

and χ(.) is the unit step function. Then, denoting G(x) =
∫ x
0 dsf(s)e−s,

E{fu,j |sj−1} = χ(r)[G(r) + f(r)e−r] , r = u − sj−1 . (D.3)

Therefore,

E{fu} =
∞∑

j=0

E{E{fu,j |sj−1}} = G(u) + f(u)e−u +

+
∞∑

j=1

∫ u

0
dPj(x)

[
G(u− x) + f(u − x)ex−u

]
, (D.4)

where dPj(x) = dx e−xxj−1/(j − 1)! is the distribution of sj−1 for j > 0.
Summing over j and replacing the definition of G(x) we finally obtain

E{fu} = 2
∫ u

0
dx e−xf(x) + f(u)e−u +

∫ u

0
dx e−xf(x)(u− x) . (D.5)

Equation (5.26) in the text is obtained on substituting f(x) = xH(xv).
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Appendix E

Extraction of fidelity from
Ramsey fringes

Let us consider a two-level atom. The state space is H ⊗ C 2 where H is the
state space of a point particle on a line. The states are then represented by
spinors (ψ1, ψ2) where ψ1,2 ∈ H represent the internal levels of the atom. E1, E2

are the energies of the levels (� ≡ 1 is assumed). Applying to the atomic
transition between these levels two successive π/2 Ramsey pulses at a frequency
ωRA � E2 − E1, one has a Ramsey separated field interferometer [172, 289,
292], see figure 6.1. We denote with φ the phase of the Ramsey pulse source.
For notational convenience, we assume that there is no time delay between
the Ramsey pulses and the start and the end of the kicked-particle evolution,
respectively. A Ramsey pulse then produces the following instantaneous change
of the state vector (φ = 0 for the first pulse at time 0):(

ψ1

ψ2

)
→ 1√

2

(
1 e iφ

−e− iφ 1

)(
ψ1

ψ2

)
≡ R̂φ

(
ψ1

ψ2

)
. (E.1)

The evolution operator from time 0 to time t which includes the kicked-particle
dynamics then reads

Ût,φ ≡ R̂φ Ŵt R̂0 ,

where

Ŵt =


 e− iE1tÛ1,t 0

0 e− iE2tÛ2,t


 . (E.2)

Û1,2,t are the kicked-particle evolution operators in the upper and in the lower
atomic level, respectively. With the initial state ψ1 = 0 , ψ2 = ψ, the state after
the final Ramsey pulse then reads

ψ1,φ(t) =
1
2
e− iE1t(Û1,t + e− iφRamseyÛ2,t)ψ

ψ2,φ(t) =
1
2
e− iE2t(−Û1,te

iφRamsey + Û2,t)ψ , (E.3)
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with the phase φRamsey ≡ (E2 − E1)t − φ. The momentum distribution in the
lower state ψ1 is given by

P1(p, t, φRamsey) =
1
4

∣∣∣〈p|Û1,tψ〉
∣∣∣2 +

1
4

∣∣∣〈p|Û2,tψ〉
∣∣∣2

+
1
2
Re

{
e− iφRamsey〈Û1,tψ|p〉〈p|Û2,tψ〉

}
. (E.4)

Integrating over p, the total probability in the lower level is obtained:

P1(t, φRamsey) =
1
2

[
1 + Re

{
e− iφRamsey〈Û1,tψ|Û2,tψ〉

}]
. (E.5)

We now consider the case when the initial pure state ψ (of atomic motion) is
replaced by a mixture which is described by the following statistical density
operator

ρ̂ =
∑
n

ρn|ψn〉〈ψn| .

The final population in the lower level is then

P 1(t, φRamsey) =
1
2
{1 + G(t, φRamsey)} , (E.6)

with

G(t, φRamsey) ≡
∑
n

ρnRe
{
e− iφRamsey〈Û1,tψn|Û2,tψn〉

}
≡

√
F (t) cos(φ′′) , (E.7)

where, at fixed time t, φ′′ differs from φRamsey, as well as from φ by a constant
shift, and

F (t) =

∣∣∣∣∣
∑
n

ρn〈Û1,tψn|Û2,tψn〉
∣∣∣∣∣
2

=

∣∣∣∣∣
∑
n

ρn〈ψn|Û−1
1,t Û2,tψn〉

∣∣∣∣∣
2

=
∣∣∣Tr

{
ρ̂Û−1

1,t Û2,t

}∣∣∣2 (E.8)

is the fidelity, cf. equation (6.2). From equation (E.6) and subsequent ones, we
see that the fidelity is equal to the difference between the maximum and the
minimum values taken by P 1(t, φ) while the original phase φ varies in [0, 2π).
We arrive at the conclusion that the fidelity is accessible in principle by an
experimental setup as used in [142], cf. figure 6.1. Equation (E.8) coincides
with the fidelity defined in (6.7) when identifying |ψn〉 with the β−rotor states
|ψβ〉 (cf. sections 2.2.3 and 4.2.1).



Appendix F

Some formulas used in Part II

The following formulas involving Bessel functions are used in part II of this
thesis and previous appendices; these are taken from [157] or derived from
formulas there (we give the corresponding numbers from [157] in []):

1
2π

∫ α+2π

α
dθ e iz cos θe− inθ = inJn(z) [9.1.21] (F.1)

∞∑
n=−∞

n2 J2
n(x) =

1
2
x2 [9.1.76] (F.2)

∫ 2π

0
dx J2

n(b sin(x)) =
∫ 2π

0
dx cos(2nx)J2

0(b sin(x)) [11.4.7/8] (F.3)∫ π

−π
dx J2n(2z sin(x)) = 2πJ2

n(z) [11.4.7] (F.4)∑
n

J2
n(z)e int = J0 (2z sin(t/2)) [11.4.8] (F.5)

J0(z) =
1
π

∫ 1

−1
dx

cos(zx)√
1 − x2

[9.1.18] (F.6)

|Jn(z)| ≤ 1
n!

∣∣∣z
2

∣∣∣|n| eIm(z) [9.1.62] (F.7)

J0(z)
|z|→∞−→

√
2
πz

cos(z − π/4) [9.2.1] . (F.8)

From [157], we further collect:

sin(x)
x

x→0−→ 1 [4.3.74] (F.9)

(a + b)m =
m∑

k=0

m!
k!(m− k)!

akbm−k [3.1.1] (F.10)

(
1 +

x

n

)n n→∞−→ ex [4.2.21] . (F.11)
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In section 6.2.2 we used an integral for the Bessel function J0 adapted from
[6.615] in [257]: ∫ ∞

0
dy e−ayJ2

0 (2b
√

y) =
1
a
J0

(
i
2b2

a

)
e−

2b2

a . (F.12)

The following integral is used, for instance, when calculating the average energy
in section 4.2.2: ∫ 2π

0

dx
sin2(tx)
sin2(x)

= 2πt . (F.13)



Appendix G

Publications

Publications of the author related to the topics covered in this thesis:

• A classical scaling theory of quantum resonances
Sandro Wimberger, Italo Guarneri, and Shmuel Fishman
to appear in Phys. Rev. Lett.

• Decoherence as a probe of coherent quantum dynamics
Michael B. d’Arcy, Rachel M. Godun, Gil S. Summy, Italo Guarneri,
Sandro Wimberger, Shmuel Fishman, and Andreas Buchleitner
to appear in Phys. Rev. E.

• Decay, interference, and chaos: How simple atoms mimic disorder
Andreas Krug, Sandro Wimberger, and Andreas Buchleitner
Eur. Phys. J. D, 26, 21 (2003).

• Quantum resonances and decoherence for δ-kicked atoms
Sandro Wimberger, Italo Guarneri, and Shmuel Fishman
Nonlinearity 16, 1381 (2003).

• Decay rates and survival probabilities in open quantum systems
Sandro Wimberger, Andreas Krug, and Andreas Buchleitner
Phys. Rev. Lett. 89, 263601 (2002).

• Signatures of Anderson localization in the ionization rates of periodically
driven Rydberg states
Sandro Wimberger and Andreas Buchleitner
J. Phys. A 34, 7181 (2001).
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[247] R. Blümel and U. Smilansky, Classical irregular scattering and its
quantum-mechanical implications, Phys. Rev. Lett. 60, 477 (1988).

[248] H. Hegger, B. Huckestein, K. Hecker, M. Janssen, A. Freimuth, G.
Reckziegel, and R. Tuzinski, Fractal Conductance Fluctuations in Gold
Nanowires, Phys. Rev. Lett. 77, 3885 (1996).

[249] A. P. Micolich, R. P. Taylor, R. Newbury, J. P. Bird, R. Wirtz, D. P.
Dettmann, Y. Aoyagi, and T. Sugano, Geometry-induced fractal behaviour
in a semiconductor billiard, J. Phys. Condens. Matter 10, 1339 (1998).

[250] E. Louis and J. A. Vergés, Self-similar magnetoconductance fluctuations
in quantum dots, Phys. Rev. B 61, 13014 (2000).

[251] R. Ketzmerick, Fractal conductance fluctuations in generic chaotic cavi-
ties, Phys. Rev. B 54, 10841 (1996).

[252] A. S. Sachrajda, R. Ketzmerick, C. Gould, Y. Feng, P. J. Kelly, A. De-
lage, and Z. Wasilewski, Fractal Conductance Fluctuations in a Soft-Wall
Stadium and a Sinai Billiard, Phys. Rev. Lett. 80, 1948 (1998).

[253] I. Guarneri and M. Terraneo, Fractal fluctuations in quantum integrable
scattering, Phys. Rev. E 65, 015203(R) (2002).



178 Bibliography

[254] D. L. Shepelyansky, Dynamical stochasticity in nonlinear quantum sys-
tems, Theor. Mat. Fiz. 49, 117 (1981).

[255] B. V. Chirikov and D. L. Shepelyansky, Correlation properties of dynam-
ical chaos in Hamiltonian systems, Physica D 13, 395 (1984).

[256] D. L. Shepelyansky, Localization of diffusive excitation in multi-level sys-
tems, Physica D 28, 103 (1987).

[257] S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products
(Academic Press, New York, 1994).

[258] P. M. Morse and H. Feshbach, Methods of theoretical physics, Vol. I of
International series in pure and applied physics (McGraw-Hill, New York,
1953).

[259] W. Feller, An introduction to probability theory and its applications (Wi-
ley, New York, 1971), Vol. II.

[260] M. B. d’Arcy and G. S. Summy, private communication.

[261] H.-P. Breuer and F. Petruccione, The theory of open quantum systems
(Oxford Univ. Press, Oxford, 2002).

[262] P. Goetsch and R. Graham, Decoherence by spontaneous emission in
atomic-momentum transfer experiments, Phys. Rev. A 54, 5345 (1996).

[263] R. Graham and S. Miyazaki, Dynamical localization of atomic de Broglie
waves: The influence of spontaneous emission, Phys. Rev. A 53, 2683
(1996).

[264] A. R. Kolovsky, A. V. Ponomarev, and H. J. Korsch, Damped Bloch oscil-
lations of cold atoms in optical lattices, Phys. Rev. A 66, 053405 (2002).

[265] I. Guarneri, Energy growth in a randomly kicked quantum rotor,
Lett. Nuovo Cim. 40, 171 (1984).

[266] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon
Interactions, Basic Processes and Applications (John Wiley & Sons, New
York, 1992).

[267] Y. G. Sinai, Probability theory, Springer textbook (Springer-Verlag, Berlin,
1992).

[268] I. N. Bronstejn and K. A. Semendjaev, Handbook of mathematics
(Springer-Verlag, Berlin, 1998).

[269] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cam-
bridge Univ. Press, Cambridge, 1997).

[270] M. Reed and B. Simon, Functional analysis, Vol. I of Methods of modern
mathematical physics (Academic Press, San Diego, 1980).



Bibliography 179

[271] V. V. Sokolov, O. V. Zhirov, D. Alonso, and G. Casati, Quantum Reso-
nances of the Kicked Rotor and the SU(q) Group, Phys. Rev. Lett. 84,
3566 (2000).

[272] V. V. Sokolov, O. V. Zhirov, D. Alonso, and G. Casati, Quantum Reso-
nances and regularity islands in quantum maps, Phys. Rev. E 61, 5057
(2000).

[273] P. Szriftgiser, J. Ringot, D. Delande, and J. C. Garreau, Observation of
Sub-Fourier Resonances in a Quantum-Chaotic System, Phys. Rev. Lett.
89, 224101 (2002).

[274] I. Dana and S. Fishman, Diffusion in the standard map, Physica D 17,
63 (1985).

[275] D. R. Grempel, S. Fishman, and R. E. Prange, Constant Scaling at Sto-
chastic Transitions of Dynamical Systems, Phys. Rev. Lett. 53, 1212
(1984).

[276] S. Fishman, D. R. Grempel, and R. E. Prange, The Temporal Crossover
from Classical to Quantal Behavior Near Dynamical Critical Points, Phys.
Rev. A 36, 289 (1987).

[277] E. Ott, T. M. Antonsen, and J. D. Hanson, Effect of Noise on Time-
Dependent Quantum Chaos, Phys. Rev. Lett. 53, 2187 (1984).

[278] R. Schack and C. M. Caves, Information-theoretic characterization of
quantum chaos, Phys. Rev. E 53, 3257 (1996).

[279] P. Jacquod, P. G. Silvestrov, and C. W. J. Beenakker, Golden rule de-
cay Lyapunov decay of the quantum Loschmist echo, Phys. Rev. E 64,
055203(R) (2001).

[280] N. R. Cerruti and S. Tomsovic, Sensitivity of Wave Field Evolution
and Manifold Stability in Chaotic Systems, Phys. Rev. Lett. 88, 054103
(2002).

[281] G. Benenti and G. Casati, Quantum-classical correspondence in perturbed
chaotic systmes, Phys. Rev. E 65, 066205 (2002).

[282] D. A. Wisniacki and D. Cohen, Quantum irreversibility, perturbation in-
dependent decay, and the parametric theory of the local density of states,
Phys. Rev. E 66, 046209 (2002).

[283] J. Vanicek and E. J. Heller, Semiclassical evaluation of fidelity in
the Fermi-golden-rule and Lyapunov regimes, 2003, preprint: quant-
ph/0302192.

[284] P. Jacquod, I. Adagideli, and C. W. J. Beenakker, Anomalous power law
of quantum reversibility for classically regular dynamics, Europhys. Lett.
61, 729 (2003).



180 Bibliography

[285] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information (Cambridge Univ. Press, Cambridge, 2000).

[286] S. A. Gardiner, J. I. Cirac, and P. Zoller, Quantum Chaos in an Ion Trap:
The Delta-Kicked Harmonic Oscillator, Phys. Rev. Lett. 79, 4790 (1997).

[287] S. A. Gardiner, J. I. Cirac, and P. Zoller, Erratum: Quantum Chaos in
an Ion Trap: The Delta-Kicked Harmonic Oscillator [Phys. Rev. Lett. 79,
4790 (1997)], Phys. Rev. Lett. 80, 2968 (1998).

[288] S. Schlunk, M. B. d’Arcy, S. A. Gardiner, and G. S. Summy, Experimental
Observation of High-Order Quantum Accelerator Modes, Phys. Rev. Lett.
90, 124102 (2003).

[289] N. F. Ramsey, Molecular beams (Oxford Univ. Press, Oxford, 1986).

[290] M. K. Oberthaler, R. M. Godun, M. B. d’Arcy, G. S. Summy, and K.
Burnett, Observation of Quantum Accelerator Modes, Phys. Rev. Lett.
83, 4447 (1999).

[291] R. M. Godun, M. B. d’Arcy, M. K. Oberthaler, G. S. Summy, and K. Bur-
nett, Quantum accelerator modes: A tool for atom optics, Phys. Rev. A
62, 013411 (2000).

[292] J. M. Raimond, M. Brune, and S. Haroche, Colloquium: Manip-
ulating quantum entanglement with atoms and photons in a cavity,
Rev. Mod. Phys. 73, 565 (2001).

[293] N. Friedman, A. Kaplan, and N. Davidson, Dark optical traps for cold
atoms, Adv. At. Mol. Opt. Phys. 48, 99 (2003).

[294] A. R. R. de Carvalho, Caos, descoerência, proteção de estados e a
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