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Summary

Recent technological advances have made it possible taumeezarious parameters of biological
processes in a genome-wide manner. While traditional mtdebiology focusses on individual
processes using targeted experiments (reductionisticoapp), the field of systems biology
utilizes high-throughput experiments to determine théestd a complete system such as a
cell at once (holistic approach). Systems biology is noyaalrried out in wet-lab, but for the
most part also requires tailored computational methodgh#froughput experiments are able
to produce massive amounts of data, that are often too canfiglea human to comprehend
directly, that are affected by substantial noise, i.e. camaneasurement variation, and that are
often subject to considerable bias, i.e. systematic devisof the measurement from the truth.
Thus, computer science and statistical methods are negdesa proper analysis of raw data
from such large-scale experiments.

The goal of systems biology is to understand a whole systarh as a cell in a quantitative
manner. Thus, the computational part does not end with amgyaw data but also involves
visualization, statistical analyses, integration ancnotetation. One example for these four
computational tasks is as follows: Processes in biologigstems are often modeled as networks,
for instance, gene regulatory networks (GRNSs) that repiteide interactions of transcription
factors (TFs) and their target genes. Experiments can gedvoth, the identity and wiring of
all constituent parts of the network as well as parametexsaiow to describe the processes in
the system in a quantative manner. A network provides agstidorward way to visualize the
state and processes of a whole system, its statistical @salgn reveal interesting properties
of biological systems, it is able to integrate several detgagrom various experiments and
simulations of the network can aid to interpret the data.

In recent years, microRNAs emerged as important contrisutogene regulation in eukaryotes,
breaking the traditional dogma of molecular biology, whBi¢A is transcribed to RNA which
is subsequently translated into proteins. MicroRNAs aralsRNAs that are not translated but
functional as RNAs: They are able to target specific messeRbAs (MRNA) and typically
lead to their downregulation. Thus, in addition to TFs, mRNAs also play important roles in
GRNs. Interestingly, not only animal genomes includinghtbeman genome encode microRNAS,
but microRNAs are also encoded by several pathogens sudhuasy.

In this work | developed several computational systemsogipimethods and applied them to
high-throughout experimental data in the context of a mtogoout herpes viral microRNASs.
Three methods, ALPS, PARma and REA, are designed for the/sisabdf certain types of
raw data, namely short RNA-seq, PAR-CLIP and RIP-Chip degapectively. All of theses
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experiments are widely used and my methods are publiclyladblaion the internet and can
be utilized by the research community to analyze new dataBet these methods | developed
non-trivial statistical methods (e.g. the EM algorithm kieplain in PARma) and implemented
and adapted algorithms from traditional computer sciemcelaoinformatics (e.g. alignment of
pattern matrices in ALPS).

| applied these novel methods to data measured by our cdapepartners in the herpes virus
project. l.a., | discovered and investigated an importapeat of microRNA-mediated regulation:
MicroRNAs recognize their targets in a context-dependeatmer. The widespread impact of
context on regulation is widely accepted for transcripdiaregulation, and only few examples
are known for microRNA-mediated regulation. By integrgtirarious herpes-related datasets, |
could show that context-dependency is not restricted tosfeamples but is a widespread feature
in post-transcriptional regulation mediated by microRNKsportantly, this is true for both, for
human host microRNAs as well as for viral microRNAs.

Furthermore, | considered additional aspects in the datsured in the context of the herpes
virus project: Alternative splicing has been shown to be gomezontributor to protein diversity.
Splicing is tightly regulated and possibly important inugrinfection. Mass spectrometry is able
to measure peptides quantitatively genome-wide in higbethphput. However, no method was
available to detect splicing patterns in mass spectrongtg, which was one of the datasets
that has been meausred in the project. Thus, | investigatether mass spectrometry offers the
opportunity to identify cases of differential splicing er¢je-scale.

Finally, | also focussed on networks in systems biologyeesdly on their simulation. To be
able to simulate networks for the prediction of the behaefa@ystems is one of the central goals
in computational systems biology. In my diploma thesis Medeped a comprehensive modeling
platform (PNMA, the Petri net modeling application), thretble to simulate biological systems
in various ways. For highly detailed simulations, | furtlteveloped FERN, a framework for
stochastic simulation that is not only integrated in PNMAt blso available stand-alone or as
plugins for the widely used software tools Cytoscape or@zdigner.

In systems biology, the major bottleneck is computatiomalsis, not the generation of data.
Experiments become cheaper every year and the throughpudigersity of data increases
accordingly. Thus, developing new methods and usable aoétwools is essential for further
progress. The methods | have developed in this work are aisteghis direction but it is
apparent, that more effort must be devoted to keep up withrtassive amounts of data that
is being produced and will be produced in the future.



Zusammenfassung

Der technische Fortschritt in den letzten Jahren hat elioliig dass vielerlei Parameter

von biologischen Prozessen genomweit gemessen werderekolVahrend die traditionelle

Molekularbiologie sich mit Hilfe gezielter Experimentefandividuelle Prozesse konzentriert

(reduktionistischer Ansatz), verwendet das Feld der Sylsiglogie Hochdurchsatz-Experimente
um den Zustand eines vollstandigen Systems wie einer Zefleinmal zu bestimmen (holistis-

cher Ansatz). Dabei besteht Systembiologie nicht nur abstaabeit, sondern benotigt zu einem
grol3en Teil auch speziell zurechtgeschnittene compugtrngte Methoden. Hochdurchsatz-
Experimente kdnnen riesige Mengen an Daten produziereiche oft zu komplex sind um von

einem Menschen direkt verstanden zu werden, welche baelrigt sind von substantiellem

Rauschen, das heifl3t zufalliger Messvariation, und wetdhbetrachtlichem Bias unterliegen,

also systematischen Abweichungen der Messungen von dgchdichen GrofRe. Daher sind
informatische und statistische Methoden notwendig fiakeajeeignete Analyse der Rohdaten
eines grol3 angelegten systembiologischen Experiments.

Das Ziel der Systembiologoe ist ein ganzen System wie eirlle Z®e quantitativer Weise
zu verstehen. Daher endet der computergestutzte Teit mihder Analyse der Rohdaten,
sondern beinhaltet ebenfalls Visualisierung, statieBs&nalyse, Integration und Interpretation.
Ein Beispiel dieser vier rechnergestutzten Aufgaben i&t folgt: Prozesse in biologischen
Systemen werden oft in Netzwerken modelliert. Zum Beispietden in genregulatorischen
Netzwerken (GRNs) die Interaktionen zwischen Transkoipgfaktoren (TFs) und deren Ziel-
genen reprasentiert. Mit Experimenten kann man sowohld#ietitat und die Vernetzung aller
Bestandteile des Netzwerkes messen, wie auch die Paraméteenen man die Prozesse des
Systems in quantitativer Weise beschreiben kann. Mit Hilfges Netzwerkes kann man auf
einfache und direkte Weise den Zustand und die Prozesseganeen Systems visualisieren, die
statistische Analyse des Netzwerks kann interessant@&saften eines biologischen Systems
aufdecken, es bietet die Moglichkeit, verschiedene exprtelle Daten zu integrieren und seine
Simulation kann bei der Interpretation der Daten helfen.

Erst vor wenigen Jahren stelle sich heraus, dass sogenamnteRNAs die Genregula-
tion in Eukaryonten mafigeblich beeinflussen. Das steht imeWprich zum traditionellen
Dogma der Molekularbiologie, bei dem die genetische Inftron aus der DNA in RNA
transkribiert wird, welche anschlieRend in Proteine ti@rest wird. MicroRNAs hingegen
sind kurze RNAs, welche nicht translatiert werden, sonddsnRNAs funktional sind. Sie
konnen spezifische messenger RNAs (MRNAS) binden unemfitenn typischerweise zu deren
Inhibition. Zusatzlich zu Transkriptionsfaktoren sgielalso microRNAs eine wichtige Rolle
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in GRNs. Interessanterweise enkodieren nicht nur tieeiseBnome, das menschliche Genom
eingeschlossen, microRNAs, sondern viele Pathogene wien\@xprimieren ihre eigenen
microRNASs in infizierten Wirtszellen.

In dieser Arbeit habe ich mehrere computergestutzte Mkgthdur die Anwendung in der

Systembiologie entwickelt und auf Hochdurchsatz-Dategearendet, die im Kontext eines
Projektes Uber herpesvirale microRNAs vermessen wurbeei. Methoden, ALPS, PARmMa

und REA, habe ich fur die Analyse von bestimmten Typen vohd&ten entworfen, namlich
jeweils short RNA-seq, PAR-CLIP und RIP-Chip. All diese Exrmente sind weit verbreitet
im Einsatz und meine Methoden sind im Internet offentli@rfiigbar und kdnnen von der
Forschungsgemeinschaft zur Analyse der Rohdaten der ligareiExperimente verwendet
werden. Fur diese Methoden entwickelte ich nicht-triziatatistische Methoden (z.B. den
EM Algorithmus kmerExplain in PARma) und implementierteduadaptierte Algorithmen

aus der traditionellen Informatik wie auch aus der Bioinfatik (z.B. Sequenzalignment der
Mustermatrizen in ALPS).

Ich wendete diese neuen Methoden auf Daten an, die von ung&eperationspartner im

Herpesviren Projekt gemessenen wurden. Dabei entdeckteedorschte ich unter anderem
einen wichtigen Aspekt der Regulation durch microRNAs: idRRNAs erkennen ihre Targets
in kontext-abhangiger Weise. Die weitverbreiteten Aukwumgen von Kontext ist weithin

akzeptiert fur transkriptionelle Regulation und es sing mvenige Beispiele von kontext-

spezifischer microRNA gesteuerte Regulation bekannt.ninéd# mehrere Herpes-relevante
Datensatze integriert analysiert habe, konnte ich zeigass Kontext-Abhangigkeit nicht nur
auf ein paar Beispiele beschrankt ist, sondern dass eda#lbezin weitverbreitetes Merkmal

der post-transkriptionellen Regulation gesteuert duratroRNAs ist, dass Zielgene kontext-
abhangig erkannt werden. Das gilt sowohl fur die mensblein microRNAs der Wirtszelle wie

auch fur die exogenen viralen microRNAS.

Desweiteren habe ich zusatzliche Aspekte der Daten dgsesMaren-Projektes betrachtet: Es
wurde gezeigt, dass alternatives Spleilien mal3geblich marditat von Proteinen beitragt.

Spleil3en ist streng reguliert und moglicherweise wichigy der Virusinfektion. Massen-

spektrometrie kann Peptide genomweit in quantitativers@/enessen. Allerdings stand keine
Methode zur Verfugung, um Splei3-Muster in Massenspeh#toe-Daten, wie sie im Pro-

jekt gemessen wurden, zu detektieren. Aus diesem Grund icabantersucht, ob es mit

Massenspektrometrie-Daten moglich ist, Falle von afiBven Spleilen im grol3en Umfang zu
identifizieren.

Letztendlich habe ich mich auch auf systembiologische Weitize und im Speziellen auf deren
Simulation konzentriert. Netzwerke simulieren zu konnen das Verhalten von Systemen
vorherzusagen ist eines der zentralen Ziele der rechriétges Systembiologie. Bereits in
meiner Diplomarbeit habe dafirr ich eine umfassende Midplatform (PNMA, the Petri net
modelling application) entwickelt. Damit ist es moglidtologische Systeme auf vielerlei Arten
zu simulieren. Fur sehr detailierte Simulationen habeletn FERN entwickelt, ein Framework
zur stochastischen Simulation, welches nicht nur in PNM#egnert ist, sondern auch als
eigenstandige Software wie auch also Plugin fur die veefixeiteten Programme Cytoscape und
CellDesigner verfugbar ist.
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Der Engpass in der Systembiologie ist mehr und mehr die ergestitzte Analyse der
Daten und nicht deren Generierung. Experimente werders jéaler gunstiger und der Durch-
satz und die Diversitat der Daten wachst dementsprecheatier is es fur den weiteren
wissenschaftlichen Fortschritt essentiell, neue Methoded benutzbare Softwarepakete zu
entwickeln. Die Methoden, die ich in dieser Arbeit entwiltkeabe, stellen einen Schritt in diese
Richtung dar, aber es ist offensichtlich, dass mehr Angtregen aufgewendet werden mussen,
um Schritt halten zu kdnnen mit den riesigen Mengen an Déieeproduziert werden und in der
Zukunft noch produziert werden.
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Chapter 1

Introduction

1.1 Systems biology

The advent of high-throughput technologies has revoligenh biological research and has
heavily contributed to the increasing importance of thalfaflsystems biology3telling 2004
Westerhoff and Palsspr2004 Kitano, 2002 Ideker et al. 2001, Ideker and Lauffenburger
2003. Instead of focussing on single or few biological entitsegkh as genes or proteins, high-
throughput methods allow to investigate a complex biolalgggstem such as a cell or cell culture
in its entirety.

In the top-down approach of systems biolotgeker and Lauffenburge2003, so-called omics
experiments are applied, which are based on these highghput technologies and measure
a certain type of data in a genome-wide manner. These omigsriexents include, but are
not limited to, genomics measuring the DNA sequence of cetepjenomes including intra-
or inter-species variatiorLander et al. 2001, Venter et al. 2001 Lindblad-Toh et al. 2011
Consortium?20124, transcriptomics measuring the identity and quantityxgressed messenger
RNAs (mMRNAs) and non-coding RNAS1IERNASs) [Schena et al1995 Mortazavi et al. 2008,
proteomics measuring the expression and modifications atepis ©Ong and Mann 2005
Cox and Mann2007, metabolomics measuring concentrations of metabolNgshjolson and
Wilson, 2003 German et a).2005, interactomics measuring all interactions between mdéc
[Schwikowski et al.200Q Rual et al, 200§ and many more.

The goal of systems biology is to integrate all these omicasueements in order to understand
and characterize processes that are important in the systeler consideration in a holistic
manner Sauer et al.2007 Noble 200§. Naturally, due to the massive amount of data from
such experiments, bioinformatics plays an irreplaceatlie in systems biologygcholz et al.
2012 Likic et al., 2010.

In this work, | developed computational methods for the gsialof high-throughput experiments
and applied them to data measured in the context of a prdjectt&erpes viruses with a focus on
post-transcriptional regulation by microRNAs. In thisffichapter, | give a pragmatic overview
of the methods by classifying them into a typical workflow ystems biology and, after an
introduction of microRNAs, | describe the impact of the psepd approaches on analyzing
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microRNA related experiments in general. A brief introdoctof herpes virus biology concludes
this chapter. In the second chapter, | briefly describe tlpe®mental techniques and datasets
used in this work, followed by an overview about how all deyad methods have been applied
to the data. Then, | describe all methods and results of thlyses in detail in the subsequent
chapters. | conclude this work with an outlook and futureed@wments.

1.1.1 Atypical systems biology workflow

The output of a high-throughput experiments is a certaie tfdata, which by itself is not to be
mistaken for information about or understanding of a sys&imnformatics is needed to extract
information and, further on, to interpret the data in oraeunderstand the system. Making the
distinction between information and understanding, the ob bioinformatics is twofold: First,
the raw data coming from a high-throughput experiment mesttalyzed. For instance, data may
consist of short sequencing reads or fluorescence intesi$itm a microarray. Computational
methods must be applied to extract useful information, @xgexpression value per gene in a
transcriptomics study, and often these values can be gegsena tabular format. Such tables
often contain thousands of rows that represent entitiek ascgenes and dozens of columns
representing different pieces of information or differstattistics about the data.

Due to the complexity of this massive amount of informatibms often impossible to quickly
come to an understanding of the system. This is the secokddadioinformatics: Provide
tools and methods to interpret such per-entity values inctirgext of the system. Such tools
and methods may be as simple as overrepresentation arf&8yesiting et al, 2004 or gene set
enrichment Subramanian et al2009, or they may make use of more sophisticated methods
integrating multiple datasets or existing knowled@emfsortium 2012h Gerstein et a).2012.

In systems biology, such advanced methods are of uttermgstriance since the goal is to
understand a complex biological system as a whole withalhiierdependencies and not only
to investigate individual components.

Thus, a typical workflow in top-down systems biology can bedsvided into four steps (see also
Figurel.1): First, a biological system, for instance a cell cultusesiibjected to several sample
preparation steps, e.g. to isolateRNA in form of cDNA. Then, the actual high-throughput
measurement takes place, for instance RNA-seq, where theesee of millions of isolated
MRNA fragments is determined. After this second step, furthekkwakes place in front of a
computer instead of in the laboratory: As indicated abolve,raw data must be analyzed, for
instance by mapping the RNA-seq reads to known genes andutmgper-gene expression
values by counting sequenced reads. Finally, these peragdnes can be further analyzed and
interpreted depending on the intention of the study. Of seuthis workflow makes no claim
to be complete and depending on the nature and goal of a dtuther wet-lab validations or
high-throughput measurements may be neceséoytdzavi et al. 200§.

1.1.2 Bioinformatics in systems biology

There are several issues associated with both major cotiqnéhbsteps, raw data analysis and
downstream interpretation, which | have approached invtioik.
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First, while most omics experiments are based on commonthiglughput technologies, there
is a huge variety of differing sample preparation steps.sTlewen if the raw data may be of
the same kind for various experiments, the demands on thgsaanethods may be highly
diverse. For instance, currently a multitude of omics expents are based on next generation
sequencing NGS), e.g. DNA resequencing in genomic€dnsortium 20124, RNA-seq in
transcriptomics Mortazavi et al. 200§ or CLIP-seq in interactomicgJhi et al, 2009 Konig

et al, 2010 Hafner et al.2010. For all these experiments, the raw data consists of muliof
short sequencing reads, ranging from 35 nucleotidgdq more than 10@t. Thus, the first step
of data analysis is similar for most experiments, i.e. tgrathese reads to a reference sequence
such as the genome or transcriptome. However, further datgsas is often highly diverse: DNA
resequencing usually has the goal to detect single nudke@olymorphisms§NPs) or copy
number variations@NVs) and further analysis therefore includes the detectiosigiificant
mismatches or coverage differences with respect to thergeffdonsortium20124. In contrast,
RNA-seq is designed to quantify athRNAs in a sample and, thus, methods must be applied
to properly estimatenRNA abundance or identify significantly differentially expseds genes
[Mortazavi et al. 2008 Anders and Huber201d. Moreover, for CLIP-seq experiments, RNA
is crosslinked to proteins, the protein of interest is ismdausing immunoprecipitationH) and
digested fragments crosslinked to this proteins are segad@hi et al, 2009. Thus, in order to
identify themRNA binding sites of the protein, locations must be found wheaayrsequencing
reads have been aligned to. Furthermore, several modiinssiiave been developed for the CLIP
protocol Konig et al, 201Q Hafner et al. 2014, which lead to additional characteristics in the
data for the identification of bona-fide binding sites. Fa@tamce, in PAR-CLIPHafner et al.
2010, the usage of the uridine analogue 4-thio-urididslf) and a certain wavelength of the
laser used for crosslinking leads to so-called T to C comvess since crosslinkedsU is read
as a C and not as a T during cDNA synthesis. Thus, even if ra malty be similar across a
multitude of experiments such as sequencing experimgresjaized experimental assays such
as CLIP-seq require specialized analysis methods anddsnngy special features of variants of
such assays, e.g. PAR-CLIP, may yield more or more relialbbemation. In chaptet, | describe
an analysis method | developed that addresses this impsare. PARma utilizes characteristic
features of PAR-CLIP data and thereby outperforms exisjmgroaches in identifying reliable
microRNA/target interactionErhard et al[20134.

Second, in some cases, existing methods for one kind of iexeets may be directly applicable
to another kind of experiment to a certain extent, but they meglect bias that does not affect

Figure 1.1(following page) Systems biology workflow. Starting from a biological systesither
in-vitro or in-vivo, samples are prepared and subjectedhayh-throughout platform (Wet-lab
work). After that, raw data from the experiment must be aredly which often results in a table
with biological entities in rows (e.g. genes) and variousdsi of data in columns. The final step
is to interpret these tables, for instance by statisticalyas (1), functional analysis (lI), network
analysis (lll) or simulation of a network model (1V). Oftenterpreting these tables leads to new
hypothesis for new experiments, i.e. further wet-lab work.
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the type of experiment which the methods have been origid@éigned for. For instance, RIP-
Chip, another interactomics experiment type, utilizesroacrays, which are widely applied to
MRNA quantification in transcriptomics. In RIP-Chip, RNA bindiproteins RBPs) are co-
immunoprecipitated with their associatedRNAs and the abundance of isolat@RNA is then
compared to the total abundance of the sanRNA in full cell lysate or the isolate from a
controllP using an unspecific antibody¢nenbaum et gl200d. This is very similar to standard
differential expressiondE) analysis using microarrays, where total RNA in one conditis
compared to total RNA in another conditiddiller and Tang[2009. While in DE, the ratio
between conditions corresponds to the expression foldgehdor a RIP-Chip experiment, the
ratio expresses the enrichment ofaRNA in thelP fraction. Consequently, in previous studies,
transcriptomics data analysis methods have directly bpphea to RIP-Chip dataMlukherjee
et al, 2009 Hendrickson et al.2008 Karginov et al, 2007 Stoecklin et al.2008 Landthaler
et al, 2008 Dolken et al, 2010. However, differing efficiencies of th& that are generally
observed in RIP-Chip experiments introduces severe basntiust be accounted for before
further analyzing RIP-Chip data. This is topic of chapseaind has been published Erhard

et al.[20134.

Third, there may be information present in high-throughgata that is not considered by
existing analysis tools and awaits uncovering by spe@édlimethods. This information can be
subcategorized into (a) additional characteristics ofahtities that were originally intended to
be measured and (b) features of additional entities tha¢ wet in the focus of the original
experimental design. An example of additional charadiesiss described in chaptds and
published inErhard et al.[2013[: By inspecting the distribution ofP enrichments of all
MRNASs, it is possible to test whether efRNA is significantly targeted by dRBP by computing
false discovery rated~PRs). Importantly, thi=DR does not correspond to the reproducibility
of the enrichment but assesses whether the magnitude ofntighment is high enough to
speak of a functionally relevant enrichment. Thereforis ifhhcomplementary to other methods
to computeFDRs that are computed by considering replicate measuremeigtspy using t
statistics Mukherjee et al.2009 or moderated t statistic$lendrickson et al200§, and assess
the reproducibility of the enrichment. Thus, tROR as computed by our method represents
an additional property of a set of genes that is hidden in @ia dnd can be uncovered by
specialized analysis methods. Furthermore, as indicdiedea an experiment may also yield
additional data about entities that were not originalleinded to be measured by the assay’s
design. For instance, the goal of small RNA-seq experiments profile the expression of a
certain kind ofncRNAs, namely microRNAs (see below). However, in such an expsriimot
only microRNAs are sequenced, but a variety of other knowhuarknownncRNAs orncRNA
fragments. Usually, these are discarded and excluded fuotinefr analysis. However, we have
shown that relative positions and lengths of these fragem@otvide information for the important
task of classification aicRNAs [Erhard and Zimmer201Q, which is described in chaptér
Fourth, even if information has been extracted from the expental data properly, i.e. if proper
per-entity values are available, specialized downstreaatyais methods may be necessary to
answer specialized biological questions. For instandeyradtive splicing is one of the key
contributors to the diversity of gene products observedrfost multi-cellular organismd¥ang
and Burge 2008. Importantly, the alternative splicing pattern may behhgdiverse across
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different conditions such as cell types and finding diff¢iedly spliced genes is therefore a
hot topic in current RNA-seq researcRi¢hard et al. 201Q Trapnell et al. 2013. However,
differential splicing ofmRNAs only has functional impact if the corresponding trangsrgre
translated into proteins. Therefore, we sought to iderdifferential splicing on protein level
using stable isotope labelling of amino acids in cell c@t{@ILAC) based high-throughput
liquid chromatography tandem mass spectromdiy-1S/MS) data. In comparison to RNA-
seq datal.C-MS/MS data is more sparse, i.e. there are usually only few peptasured per
transcript in comparison to transcripts that are ofteryfativered by sequencing reads. Thus, we
investigated, how and to what extdr€-MS/MS data can nevertheless be used to reliably find
cases of differentially spliced gendsrhard and ZimmeR013, which is described in chapt@r
Fifth, the variety of available omics experiments leads tgreawing demand of methods to
integrate different datasets, which is not a trivial task. iRstance, in such experiments, distinct
entities may be primarily measured: While most microarnaygasure expression of genes by
using probesets directed against 3’-untranslated redidm&s) (that are often common to all
transcript isoforms), RNA-seq can be used to directly meas@nscript abundances, CLIP-
seq identifies binding sites arfBILAC basedLC-MS/MS measures fold changes of peptides.
It is of great importance to integrate all these measuresnpraperly for many reasons. For
instance, since high-throughput experiments are affebjedoise, i.e. random measurement
errors, and bias, i.e. a systematic deviation from the trutterpretations based on such
data must be validated. This is often done by targeted exjeets that are more reliable
but not applicable in large-scale, or, alternatively, byliadnal independent high-throughput
experiments. In some cases, considering additional Hghughput experiments may be the
better choice to confirm interpretations: In chapdrpresent our analysis of the widespread
context-dependence of microRNA-mediated regulationsTduntext-dependence has already
been shown for few examples by using targeted experimerdsiekier, without large-scale
experiments, it is impossible to judge whether these aeeaareptions or if context-dependence
is a general feature of microRNA-mediated regulation. Thnesintegrated multiple datasets to
confirm this hypothesis of widespread context-dependeheei@oRNA-mediated regulation
[Erhard et al.20134, namely RIP-Chip experiments of the microRNA containing/Rinduced
silencing complex RISC), AGO-PAR-CLIP, microarray experiments fonRNA steady-state
levels and half-lives based on metabolic labeling &HAC basedLC-MS/MS experiments
for protein expression levels.

Finally, as indicated above, simple overrepresentatioalyars of the set of differentially
expressed genes among predefined gene Begstling et al, 2004 or gene set enrichment
analysis on continuous data such as all fold chang@sRINAs [Subramanian et al2009 may
provide a first handle to interpret the information from altgroughput experiment. However,
they fall far too short for a mechanistic understanding ofessses or a whole system. Therefore,
a widely used approach in computational systems biology imaodel a biological system as
a network or graph: For instance, the interplay betweenaitrdoutors of gene regulation is
commonly called gene regulatory netwoi®RN). Here, each node of the network represents
a certain gene and a node A is connected to a node B, if the gedeqt of A regulates the
expression of B. If detailed information, e.g. coming fronultiple high-throughput datasets,
is available about a system, such a network-based modelecamulated Jaeger et al2004
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Segal et a].2008 Erhard 2008. Hence, a valid model should be able to explain or reproduee

data of the system. In my diploma thedistiard 2008, | started the development of PNMA, the
Petri net modeling application, which is a comprehensiveefing tool for systems biology. In

chapter8, | describe a further development of PNMA, the integratibmethods for stochastic

simulation (FERNErhard et al[2009).

1.2 MicroRNAs

Only in recent years, it has become apparent that gene temguia not only carried out by
transcription factorsT(Fs), i.e. during transcription, but that there is also anotégulatory layer
that controls expression levels of genes post-transonptly. MicroRNAs (often also referred to
as miRNAs or miRs) are small, 20-24 long RNA molecules that have emerged as important
mediators of post-transcriptional gene regulatiBartel 2004 He and Hannon2004 Bartel
2009 Ghildiyal and Zamore2009 Pasquinelli2013. They can be found in all kingdoms of
life, most prominently in metazoanBésquinelli et a.200Q Wheeler et al.2009 and in plants
[Jones-Rhoades et #2004, but also in virusesKincaid and Sullivan2012 and bacteriaZhao

et al, 2007. Additionally, microRNA like molecules have also beenntiéed in fungi [Lee

et al, 2010.

1.2.1 Discovery of microRNAs in C. elegans

More than 20 years ago, a genetic screen identified a gewets Icalledin-4 that takes part
in the control of larval development in the nematode Caemualiis elegans. Loss-of-function
of lin-4 leads to abnormal development due to early reguygboograms repeating themselves
in later stages of developmermbros 1989. At that time, it was a major surprise that this
genetic locus did not encode a protein but gave rise to twdlSRNA molecules that are
partly complementary to multiple sites in the 3FR of lin-14, another gene implicated in
developmental processes. These RNAs are conserved inptautigmatode species and they
were shown to decrease LIN-14 protein levels without aiffganRNA levels [Lee et al, 1993
Wightman et al.1993.

First, this was not believed to be a widespread mechanigartg¢l 2004, but years later, let7,
anothemcRNA implicated in developmental processes of C. elegans waslftaube conserved
throughout the metazoan cladBgsquinelli et al.2000. Up until now, hundreds of these
NcRNAs, which were later termethicroRNAs were cloned and sequencddafos-Quintana
et al, 2001 Landgraf et al.2007. Due to the advent dIGS, microRNAs can now be sequenced
on large-scale anNGS is commonly applied to discover new microRNAs and to profieirt
expression levels in various cell-types and conditideré¢zikov et al.2006 Morin et al, 2008
Witten et al, 2010. In particular, the centralized microRNA repository mi&& [Griffiths-
Jones 2004, version 19, lists 25,141 mature microRNAs from 193 spgcfer instance 370
in C. elegans, 422 in the fruit fly Drosophila melanogast@81 in mouse and 2,042 in human.
Almost at the same time, a cellular mechanism called RNAfietence RNAIi) was discovered
in C.eleganskHire et al, 1998. The uptake of exogenous double-stranded RNA molecuéstsle
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to a knock-down of complementargRNAs. This gene silencing is mediated by another class
of NcRNAs called siRNAs. The discovery &NAi lead to the development of potent research
tools also for mammalian cell lineElbashir et al.2001 and was awarded a nobel price in 2006.
Later, it became clear that sSiRNAs and microRNAs share lpagts of their maturation pathway
as well as their effector complex call®ISC[Bartel 2004 Kim et al., 20094.

1.2.2 MicroRNA biogenesis

Canonical mammalian microRNAs are transcribed by RNA p@gase I, often as clusters of
many microRNAs on the same primary transcript. After traipsion, short hairpin structures
called pre-microRNAs of- 65 ntlength are cleaved out of the primary transcript by tNage 111
Drosha, which are subsequently tranported out of the nadiuthe nuclear export factor
exportin 5. In a second processing step, the hairpin loopeaved from the pre-microRNA
by another RNase lll, Dicer, which is in complex with Argot@afAGO). Finally, one strand
of the remaining duplex, the mature microRNA, residesAi50O1-4 and the RNA induced
silencing complexRISC) is assembled, whereas the other strand is rapidly degiaeedwed
in Bartel[2004; Kim et al. [20098). This canonical biogenesis pathway is widely conserved
and orthologs of Drosha,Dicer a#d50 can be found in mouse, flies and nematodes.
Intriguingly, there are many alternative roads that candken by microRNAs: Most promi-
nently, many microRNAs are not transcribed from their owimairy transcripts but are located
in introns of protein codingnRNAs. The processing of these so-calledtrons may be very
similar to canonical microRNAs, i.e. Drosha cleaves befarafter splicing is complete and
the hairpin enters the canonical pathway. Alternativelytnons may mature without Dicer:
The spliceosome may directly produce pre-microRNAs, oitamfdhl nucleotides upstream or
downstream of the hairpin may be trimmed by 5’ or 3’ exonusésaKim et al, 2009h Ruby
et al, 2007 Ladewig et al.2013.

Moreover, various other alternatives of the canonical \wathhave been identified including
microRNAs that circumvent Drosha and/or Dicer processingtilizing tRNaseZ Bogerd et al.
2014, the integrator complexGazalla et al.2011 or AGO [Cheloufi et al.201Q Yang et al,
2010 Cifuentes et al.2010d or microRNAs that are derived from othecRNAs such as tRNAs
[Haussecker et al2010 or snoRNAs Ender et al.2008 Taft et al, 2009.

In addition to microRNAs, several othercRNAs have been identified and implicated in
regulation, most prominently piRNAs and endo-siRNAs thiaére parts of the microRNA
biogenesis pathway or are similar in their regulatory magms [Ghildiyal and Zamorg2009
Kim et al,, 20094.

1.2.3 Regulatory mechanisms of microRNAs

As indicated above, microRNAs are important contributargpost-transcriptional regulation.
The canonical model of microRNA action is that microRNAsageize binding sites in the
3-UTR of a targetmRNA by the so-called seed (microRNA bases 2-7 or 2-8), Ri8C

which is associated with the microRNA, then downregulateggin expression by inhibiting
translation or inducingnRNA degradation Bartel 2009. The notion of a microRNA seed
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was first postulated by results from high-throughput expents, wherenRNA expression
was meausured differentially for cells overexpressing dage microRNA as compared to
control cells lacking this microRNA using microarraysr et al., 2005 Grimson et al.2007.
The importance of the seed was later corrobated by higHetsio three-dimensional crystal
structures 0AGO microRNA complexes, which showed that the seed bases arerg@xposed
in contrast to the other microRNA bas&chirle and MacRae&012.

However, the existence of a seed site within aUFR, i.e. a sequence that is reverse
complementary to a microRNA seed, is neither sufficient rewessary for target recognition:
If every hexamer seed site, i.e. complementary to basesfZa7nacroRNA, could indeed be
targeted by a microRNA, then a microRNA would have targeisstbout every 4 kilobase]

by chance or in about every fourth transcript (assuming ann®4aJTR length of 1000nt).
Moreover, since there are about 1,300 distinct human sesustated in miRBase version 19
[Griffiths-Jones 2004, every 3'UTR would be fully covered by seed sites by expectation.
This is not the case and there are several lines of eviderggesting that additional factors
such as target site locatiosfimson et al. 2007, additional basepairing at the microRNA
3’ end [Brennecke et al.2009, target site accessibilityKertesz et al.2007 or other factors
such as RNA binding proteindgcobsen et al201J or microRNA and mRNA copy numbers
[Ben-Moshe et al2017 play important roles in distinguishing functional targ#es from non-
functional seed sites. In addition, not even the most géeeedl site (microRNA positions 2-7) is
necessary for seed binding: It has been shown that GU wohlillein the seed-seed site duplex
may not necessarily destroy efficient regulatibidiano and Hobert200§ and that microRNA
target recognition may also be mediated by other parts ahibeoRNA than the canonical seed
and lead to target downregulatioBHin et al, 2010. Furthermore, this canonical model is also
challenged from another direction by recent studies, snateonly 3'-UTR sites seem lead to
efficient regulation, but also sites located in protein ogdiequenceday et al, 2008 Duursma
et al, 2008 Reczko et al.2012 Hausser et 812013.

The canonical model introduced above dictates that tamgeeip expression is downregulated
upon binding of the microRNA. Various mechanistic explamad for this downregulation have
been proposed, including endonucleolytic cleavage (gicby AGO2, deadenylation and/or
decapping followed by rapithRNA degradation, deadenylation leading to diminish@&@NA
circularization, inhibition of translation initiation alongation, co-translational degradation of
the growing peptide chain or sequestering the targ@NA to P-bodies (reviewed iBulalio et al.
[2008; Pasquinell[2013). Some of these modes of action have been challengezgk 2009,
and even if unifying models have been proposBgufanovic et al. 2017, recent large-scale
studies still report varying estimates about the relatimpartance of the various mechanisms
[Guo et al, 2010 Djuranovic et al. 2012 Bazzini et al, 2012 Mishima et al, 2012. To make
things even more complicated, there is increasing evidémtemicroRNAs are not only able
to downregulate their targets but also that they may leachtapegulation either directly or
indirectly (reviewed irVasudevari2013).

Another important mechanistic aspect of microRNA-mediategulation is the magnitude of
the impact on protein levels. Early examples indicated thetroRNAs act in a switch-like
manner: For instance, the seminal work on the regulatiorild$14 by lin-4 showed a complete
abrogation of LIN-14 protein levels in lin-4 wildtype indduals as comparted to lin-4 mutants
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[Lee et al, 1993 Wightman et al.1993. Also, another nematode microRNA, Isy-6, has been
shown to be decisive for the cell fate of the receptor neuABE left and ASE rightJohnston
and Hobert 2003. However, later high-throughput experiments indicatbdt tmicroRNAs
generally lead to mild but widespread repression of geneesspon Lim et al,, 2005 Grimson

et al, 2007 Baek et al.2008 Selbach et al2008. A recent study revealed that the magnitude
of the effect of microRNAs is dose-dependent ranging frord mapression for highly expressed
genes to a switch-like behavior fotRNAs expressed below a certain threshdiikher;ji et al,
2011.

1.2.4 Biological function of microRNAs

As indicated above, microRNAs give rise to a whole layer afiggeegulation in addition to
transcriptional regulation byFs. From a functional point of view, microRNAs share many
aspects withTFs: For instance, in both cases there is a many-to-many oe#dtip between
regulator and target genes, i.e. a microRNA as well 8$-aisually regulates multiple target
genes and each gene may be regulated by multiple microRNAgekhsas TFs. In addition,
the expression of both microRNAs afdrs is thightly regulated itself, givin rise to intricate
regulatory networksHobert 200§.

MicroRNAs have important functions in development. Mosbrpmently, the regulation of
LIN-14 by the microRNA lin-4, which gave rise to the discoyaf microRNAs, is essential
for normal larval development in C. elegarlseg et al, 1993 Wightman et al. 1993 and
regulation of COG-1 by the microRNA Isy-6 determines légit assymetry of C. elegans
taste receptor neurondghnston and Hober2003. Further examples of such essential roles
of microRNAs in developmental processes can be fountVienholds and PlasterR2005.

In addition, high-throughput experiments showed that oRiMAs are differentially expressed
during differentiation of embryonic stem cell81prin et al, 2009 and exhibit tissue specificity
in general Landgraf et al.2007 Sayed and Abdellati2011. Thus, microRNAs are implicated
in the regulatory networks that determine differentiagoents and cell fatd\Jey and Srivastava
2014.

There is also evidence that microRNAs play important ralesvolution, similarly toTFs [Chen
and Rajewsky2007. Some microRNAs show extreme patterns of evolutionaryseovation,
e.g. let7 is conserved from human to worm corresponding tagenof more then 600 million
years Pasquinelli et a).200Q Wheeler et al.2009, and microRNA families have been added
to the regulatory repertoire especially of higher orgamismithout frequent substitutions or
secondary loss¥heeler et al.2009. Importantly, tissue specific expression of those micréRN
families is maintained over evolutiohristodoulou et al.2010d. Thus, microRNAs may have
essential functions in speciation and may contribute tororagolution and the development of
tissues and complex body plans. Intriguingly, the divgreit microRNAs in the human brain
as compared to our closest evolutionary relatives, chimgesy suggests that they may even
have contributed to the evolutionary development of highrain functions found in humans
[Berezikov et al.2004.

Another functional aspect of microRNAs concerns diseasearl overwhelming amount of
studies it has been shown that microRNA related alteratoasssociated with diverse types of
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cancer (e.g. reviewed iRarazi et al[2011)). Interestingly, different cancer types show different
and specific expression patterns of microRNAs, and, thus,aRNAS are promising candidates
for prognostic and diagnostic markers for cand@aljin and Crocg2006 Witten et al, 2010
Farazi et al.2011].

Furthermore, the initial hypothesis for the main functidnRINAI was defence against viral
infection [Jeang2013. This has been confirmed in plants,insects and nematodesylience
in mammals is still lacking Kincaid and Sullivan 2013. Intriguingly, viruses also exploit
the RNAI machinery for pro-viral purposes, either by regualg host microRNAs or encoding
their own microRNAs Kincaid and Sullivan2012. Since the discovery of microRNAs in
Epstein-Barr virusBV), a human herpes virus, Bfeffer et al[2004, microRNAs have been
identified in the genomes of various viruses, where the Isevpeses comprise the class with
the highest number of known microRNAs. Similarly to the nongiof host proteins by several
viral proteins, there are a few microRNAs that share seedesergs with host microRNAs, but
most viral microRNAs do now show homology to any host micréRincaid and Sullivan
2013. Functional understanding of viral microRNA function tfldacking, but the few existing
examples indicate functions in preventing apoptosis, imenevasion and regulation of viral
genesKincaid and Sullivan2013.

1.2.5 Bioinformatics for microRNAs

Computational approaches related to microRNA biology cargfouped into two categories
[Mendes et a).2009: microRNA gene identifiation and microRNA target ident#imn.

For the identification of microRNA genes, i.e. loci on the gere that give rise to functional
mature microRNAs, mainly three criteria have been use@&nofombined and using machine
learning (reviewed inMendes et al[2009). First, since known pre-microRNAs exhibit a
characteristic secondary structure, i.e. a hairpin-d®5 nt, secondary structure predictions or
features derived from the minimal free energy structuré ssscnumber and size of internal loops
or the free energy have been shown to be potent charaatsffistimicroRNA gene finding. Later,
a mechanistic explanation for the necessity of the hairpucttire has been found, since both the
microprocessor complex and Dicer have structural requergmfor their substratesipn et al,
2006 MacRae et a).2007. Specifically, the microprocessor complex can only clealvairpin
loops of a certain length and internal loop composition amckDrecognizes specific double
stranded structures. Second, many microRNAs are broadisereed Pasquinelli et a).2000Q
Wheeler et al.2009 and highly specific conservation patterns across the psectairpin have
been found $tark et al. 2007. Consequently, evolutionary conservation of hairpirustures
have been shown to be a potent filter for true microRNA geBé&rk et al. 2007. And finally,
microRNA obviously have to be expressed to be functional andsequentlyNGS has been
utilized to identify novel microRNAsBerezikov et al.2006 Morin et al, 2008 Witten et al,
2014.

Each of these criteria entails certain shortcomings: Asrilesd above, not all microRNAs and
regulatory small RNAs in general are processed by Droskaf2ind, thus, a hairpin secondary
structure may not be necessary. Also, not all microRNAs areserved and evolutionary late
microRNAS are not less interesting than widely conservessonhus, a method to find regulatory
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small RNA without relying on secondary structure or conagon may be of great benefit. In
addition, only a relatively small fraction (one to two thirof typical deep sequencing data of
small RNAs corresponds to microRNA rea@efezikov et al.2006 Morin et al, 2008 Witten

et al, 2010 and the function of the remaining part is largely unknoww aisually ignored in
analyses. Therefore, we developed ALPS (see ch&uded ref. Erhard and Zimmer201Q),
which is a method to classifgcRNAs with respect to similar deep sequencing read patterns.
ALPS can be used to identify unannotated regions in the gertbat shows similar read patterns
as microRNAs or other regulatory RNAs without relying on@eaary structure predictions or
conservation. Furthermore, it can be used to cluster alesgechcRNAs according to their read
pattern.

The second category for microRNA related computationak@gghes is the identification of
microRNA targets. This can either be done by means of predicby analyzing experimental
data or combinations thereof. Since the discovery of miblAR a plethora of microRNA target
prediction methods has been proposed (e.g. reviewed in[fdfemas et aJ.2010 Sethupathy
et al, 2006 Ritchie et al, 2009 Mendes et aJ.2009). In principle, prediction methods first
identify a set of possible sites (e.g. by identifying seddsgiand then apply certain filtering
criteria such as target site locatiddrimson et al.2007, additional basepairing at the microRNA
3’ end [Brennecke et 312009, target site accessibilityertesz et al.2007 or microRNA and
MRNA copy numbersBen-Moshe et a].2017. Often, these additional criteria are integrated
into the prediction using machine learning techniqugst¢l et al, 2010 Sturm et al. 2010.
However, in general predicted targets of microRNAs are reanaed highly reliableRitchie

et al, 2009 Thomas et a).2010, indicating that important criteria for finding true miéRdlA
targets are currently still missed.

As a remedy to those unreliable predictions, several exygrial high-throughput techniques
have been proposed to discover microRNA targets, eithexdbas expression profiling upon
microRNA overexpression or knock-dowhiin et al,, 2005 Grimson et al.2007, Baek et al.
2008 Selbach et al2008, or based on biochemical isolation RfISCin association with target
transcripts (RIP-Chip/RIP-seq, see refdukherjee et al[2009; Hendrickson et al[200§;
Karginov et al.[2007; Stoecklin et al[2008; Landthaler et al[2009) or target sites (AGO-
CLIP, see refsChi et al.[2009; Konig et al.[2010; Hafner et al[2010). In order to extract
bone-fide target or target sites from such kind of data, cdatjmnal methods are necessary for
proper analysis. In chaptebsand4 | describe methods that | developed to analyze RIP-Chip and
AGO-CLIP data, respectivelErhard et al.2013hba).

Apart from methods that belong to the two categories intceduoyMendes et al[2009 (see
above), | developed further computational methods thatedaged to microRNA biology. First,
microRNAs andncRNAs in general have been implicated in the regulation of adi@raly
spliced transcripts. There are examples of indirect reguleof alternative splicing either by
microRNAs targeting splicing factors such aBTB by miR-133 during muscle development
[Boutz et al, 2007, PTBP1 by miR-124 during brain developmemdkeyev et al. 2007

or CELF proteins by miR-23 during heart developmeialgotra et al. 201J or by target
sites located on alternative exonay et al, 2008 Duursma et a).2008 Yang et al, 2012.
Additionally small RNAs may even be directly contributing tegulation of splicing, e.g. by
blocking splice sites, the branch point or other regulatgments important for differential
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splicing [Khanna and Stamn2010. Thus, a systems biology approach to analyze differential
spliced genes in large-scale is to examine appropriate-thigitughput data for indications of
exons that behave differently than other exons from the ggene in terms of quantification fold
changes. There are several methods already available férdely data Richard et al.201Q
Trapnell et al. 2013, however, ultimately, differential splicing only matseon protein level.
Thus, | investigated, to which extent high-throughflitAC based mass spectrometry can be
used to infer differential splicinggrhard and ZimmerR2013, which is described in chapt&t

Second, an important aspect of transcriptional regulaisocontext-dependence: One of the
most striking results from the ENCODE proje&@dnsortium 20128 is that the binding of
transcription factorsTFs) does not only depend on the presence offtRebut also on other,
context-dependent factors and that this is a general feafliFs-mediated regulatiomhurman
etal, 2012 Neph et al.2012l. Context-dependent regulation leads to a complex regiirthe
cells regulatory network dependent on the cont@srfstein et a) 2012. Whether or not context-
dependence is also a general feature of post-transcrgbtiegulation mediated by microRNAs
has not been investigated so far in large-scale. Thus,diated several high-throughput datasets
measured for the same system and found strong evidence foleapread context-dependence
of microRNA-mediated gene regulation (see chaptend ref.Erhard et al[20134).

Finally, the ultimate goal in systems biology is a predietinderstanding of a whole system.
This predictive understanding can be achieved if a detailedel of a system can be constructed,
which is able to accurately predict its behavior. Such a misadgten based on a network or graph
and predictions are made by means of simulation. Two comypemaust be established for the
simulation of such a network involving microRNA-mediategjulation: a mathematical model
that desribes the regulatory mechanisms of microRNAs aadh#twork itself including the
information which microRNAs target whiamRNAs and parameter values for the mathematical
model. Since mechanistic aspects of microRNA-mediatedlagign is still under heavy debate
[Djuranovic et al. 2011 Eulalio et al, 2008 Guo et al, 2010 Kozak 2008 Mishima et al,
2013, mathematically modeling these meachanisms is stilsmifancy although a few attempts
have already been madehanin and Vinciottj 2008 Morozova et al.2012 Eduati et al,2012.
However, due to various high-throughput methods that aneamommonly applied in microRNA
research, a multitude of target information and parametkres will be readily available in the
near future. Bioinformatic tools will be necessary to copthwall these data and to be able to
establish useful models for microRNA-mediated regulatidrus, already in my Diploma thesis,
| started the development of PNMA, a comprehensive modgdiatform that is based on a
general graph based model, Petri N&Msifatg 1989, and is highly flexible in the mathematical
model that is used for simulation: In my diploma thesis, egrated Fuzzy logic into PNMA
to describe the mathematics for interactions, which is heilaéwhen only rough knowledge
is available about the simulation parameters. However,where detailed data is available,
more detailed simulations are possible. Therefore, | nategl FERN Erhard et al.200§ into
PNMA, which is a framework for stochastic simulation of masson kinetics. This is described
in chapter8.
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1.3 Herpes viruses

Herpes viruses are double-stranded DNA viruses that areragty widespread among the
human population and other mammals. There are severaksgéeit can infect a wide range of
host organisms. They have in common a relatively large tigeaome of 124-23Rb and their
characteristic hallmark is their ability for life-long mstence in a latent form. Usually herpes
viruses do not cause life-threatening diseases but sorecgspray contribute to cancerogenesis
in immune suppressed patienknjpe et al, 2007.

Mature herpesvirus virions vary in size from 120 to as mucdG@snm. The virions are composed
of the core containing the genome, an icosahedric capsltddiwiral proteins, the tegument
containing several viral proteins and an envelope with up®@0 glycoproteinsKnipe et al,
2007. According to the NCBI taxonomy database (accessed 1&13)2 51 genomes from the
family herpesviridaeare sequenced, including all eight known human herpesestuderpes
virus genomes contain 70-200 protein coding genes, of willatore genes are conserved across
the whole family. Most viral genes do not contain any intramgerlapping genes are common
within the genomes and many proteins are multifunctionbkiifassociated functions include
DNA replication, packaging of viral genomes, viral reptioa, immune evasion, establishment
of latency Knipe et al, 2007.

Importantly, all herpes viruses excluding Varicella-&vstirus VZV) [Umbach et al.2009
encode a set of microRNASs. In contrast to viral proteinshwaifew exceptions, viral microRNAs
are not conserved across species but are believed to finfilas purposesKincaid and Sullivan
20172.

1.3.1 Phylogeny

Based on their protein sequences 702 herpes viruses as#fiethsto the ordeherpesvirales
according to the NCBI taxonomy database (accessed 152.2@¢ Figurel.2). The order
comprises three familiefierpesviridaethat includes mammalian, avian and reptilian viruses,
alloherpesviridaencluding fish and amphibian viruses amélacoherpesviridathat consists of

a single herpes virus infecting a certain oyster spe@asison et al.2009.

There is no protein conserved within the order herpes\ardlat is not also found in other viruses
apart from herpes viruseBavison et al.2009, but 40 genes are conserved within the family
herpesviridae. In addition, the genomic organizationggly conserved. Thus, it is believed that
there was a common ancestor of those herpes viruses that\altentained ancestral variants of
those 40 geneKnipe et al, 2007.

The family herpesviridae consists of three subfamilieg #ipha-, beta- and gammaher-
pesvirinae. Generally, alphaherpesvirinae are neuriataopd have relatively short reproductive
cycles, whereas betaherpesvirinae have a broad range toddilssand slow reproduction. The
gammaherpesvirinae mainly infect lymphocytes. Each suibjais further split into several
genera, each of which consists of several herpes virusespdduman specific herpes viruses
can be found in all three subfamilies: Herpes Simplex virugd$V1) and Herpes Simplex
virus 2 HSV?2) belong to the alphaherpesvirinae together WithV. The betaherpesvirinae
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SPECIES

HSV1 '
Alphaherpesvirinae I HSV2|

VZV l

Herpesviridae I :

HCMV l

Herpesviridae Alloherpesviridae I Betaherpesvirinae l HIV6

HHV7 l

: EBV|
Gammaherpesvirinae I KSHV'

Malacoherpesviridae I

Figure 1.2: Phylogeny of herpes viruses. All herpes virumesclassified into the order her-

pesvirales. The family herpesviridae contains all mamamalierpes viruses, alloherpesviridae
include fish and amphibian viruses (omitted here) and makgpesviridae consist of a single

virus infecting oysters. The subfamilies are further suigi#id into genera which are also omitted
here. Only the human herpes viruses are included.

include the Human Cytomegaloviru$¢iCMV) and Human Herpes viruses 6 and 7. The
human gammaherpesvirinae &BV and Kaposi’'s Sarcoma-associated HerpesvikKisHV).
Many of those have close relatives that infect other mananalpecies, for instance Murine
CytomegalovirusNMICMV), which is closely related t6lCMV, infects mice and also belongs
to the betaherpesvirinae. Betwed@MV andMCMV, 70 proteins are conservelijipe et al,
2007).

1.3.2 Life cycle, symptoms and prevalence

As indicated above, herpes viruses are characterized bynwaes of infection: In latency, the
viral genome remains in circular form in the nucleus of thetloell, where only a small subset
of genes including microRNAs is expressed. It is able totreaie, often upon cellular stress and
to transition into a lytic phase, where the virus replicd®& and creates its structural proteins.
Mature virions are then assembled in the cytoplasm untihitst cell bursts,thereby releasing
the viral progenyKnipe et al, 2007.

Thus, herpes viruses are able to cause life-long infectrogeneral. Some species cause certain
clinical symptoms upon primary infection, e gZV causes chickenpox upon infection during
childhood and often shingles upon infection of adults. ©Otherpes viruses cause frequently
recurring symptoms such as cold soresHV1. Infection by other herpes virus species may
also stay completely unnoticed, e.g. typically IEMV. In immunosupressed patients, however,
herpes viruses are associated with cancer.
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Due to their effective strategy of latent infections, hergguses have relatively high prevalence
in the human population in general. For instan88% of the human population is infected
with HSV1 and more than 90% are infected wiEBV, which is relatively uniform across
demographic parameters such as sex, ethnicity or progp€8HV, which is often occurring
in AIDS patients and not only associated with its namesakpoKigs sarcoma but also with
primary effusion lymphoma and Castleman’s disease, odcless then 5% in Northern america
and europe but has a prevalence of more than 90% in africa.

1.3.3 Viral microRNAs

An intriguing feature of most herpes viruses is that theyoeleanot only protein coding genes on
their genome but also microRNAPfeffer et al, 2004 Kincaid and Sullivan2013. In general,
they are highly conserved across strains from the samesgealies but interestingly not between
different speciesQullen 201Q Kincaid and Sullivan2012. There are notable exceptions for
closely related herpes viruses, e.g. 22 of theEBY/ microRNAs are conserved in the related
Rhesus monkey Lymphocryptovirus CV), but none of the known human specific herpes virus
microRNASs is conserved in any other human specific virus drigmtly, this is in sharp contrast
to several widely conserved herpes viral core proteingréstingly, even though microRNAs
are not conserved by their sequence, their genomic lotializés similar among most herpes
viruses, which indicates that a common ancestor may alrkady encoded microRNAs. Thus,
microRNAs may be a causative agent for viral speciatKin¢aid and Sullivan2013.

Most of the human herpes viruses encode dozens of microRNées Tablel.l), with the
exception ofVZV [Umbach et al.2009. An explanation for the lack of microRNAs iWZV

is still missing. It is possible, although unlikely, thatetlexpression levels of existingZV
microRNAs is below the detection limit of the sequencingemments olUmbach et al[2009,

but it it could also be tha¥ZV microRNAs are only expressed during lytic infection, whish
difficult to establish in cell culturelmbach et al.2009.

Functions of viral microRNAs are largely unknown, but thegrtiipate in immune evasion,
avoidance of apoptosis and maintenance of late@eyfl¢n 2006 2010 Kincaid and Sullivan
2013. For instance, even if respective microRNAs are not homols, three different human
herpes viruseHCMV ,EBV andKSHV) have been shown to target the pro-apoptotic host gene
BclAF1 [Kincaid and Sullivan2013. Utilizing microRNAs instead ofl Fs for regulation may
be highly beneficial for the virus: In contrast to proteingsitmRNAS are invisible to the immune
surveillance systenullen 2006 2010.

In addition to microRNAs encoded on their own genome, heyreses may also exploit host
microRNAs for their purposes. For instance BBV infected cell lines, the human microRNA
hsa-miR-155, which is implicated in cellular processeshsag apoptosis and proliferation, is
highly induced Speck and Ganen201Q Cullen 2010. Intriguingly, while the related gamma
herpes virukKSHV does not induce hsa-miR-155 expression upon infectiokshs-miR-K12-
11 is a so-called seed homologue of this host microRNA, t.ghares the same seed sequence
and should thus recognize similar targets.

Due to their only relatively recent discovery, there are ynapen questions regarding herpes-
viral microRNAs, as indicated above. These include, butnatdimited to, which microRNAs
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Table 1.1: Experimentally discovered microRNAs of human
herpes viruses (according to miRBa&siffiths-Jones2004

version 19).

Virus | Family | pre-microRNAs| mature microRNAs
HSV1 « 17 26

HSV2 « 18 24

VzZV « 0 0

HCMV | 3 11 17

HH6 3 4 8

HH7® | 3 : :

KSHVZ] ~ 13 25

EBV v 25 44

! No experimental data is available for Human herpesvirusn7, i
contrast tovVZV, where several cell lines where considered but no

microRNA was found

2 Often, only 12 KSHV pre-microRNAs are accounted for, sinskwk
miR-K12-10a and kshv-miR-K12-10b are highly similar.

are encoded by herpes viruses and when are they expressatlamhthe targets of those

microRNAs and of dysregulated host microRNAs; and what i lbiological function of
these microRNA/target interactions. The purpose of oujggtd®athogenic role of miRNASs in
herpesvirus infectionwhich has been funded by the German BundesministeriunBifdung

und Forschung in the context of the NGFN-plus programmeo iapproach these questions

with a combination of high-throughput methods, bioinfotiteand wet-lab validation. In the

context of this project, diverse high-throughput datasate been generated by our collaboration
partners, and the herein presented method have been degdlm@nswer specific questions

using these high-throughput datasets. In the next chdpidl,give a short overview about the

experiments that have been performed and indicate how thleoche were applied to answer

specific questions.
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Chapter 2

Datasets

2.1 Primer on experimental techniques

Omics experiment rely on high-throughput technologiestalpce massive amounts of data that
are relevant for the biological system under considerafibe most widely used high-throughput
technologies, which were also used in the context of our N@Fdject, are DNA microarrays,
NGS and mass spectrometry. Depending on the nature of the saalieare subjected to one
of those technologies, various kinds of data can be obtaiRedinstanceNGS has heavily
contributed to the success of the ENCODE proj@mrsortium 20121 and allowed to produce
genome-wide data for multiple cell lines of DNase hyperdgmessites [Thurman et al.2013, of
footprints of DNA binding proteindNleph et al.20121, of transcription start sites and full length
transcripts of protein coding genes ameRNAs [Djebali et al, 2012, of chromatin modification
sites [Arvey et al, 2017, binding sites of specifidFs [Landt et al, 2013 and many more
[Consortium 20124.

2.1.1 Microarrays, metabolic labeling and RIP-Chip

Before NGS became available, DNA microarrays (also called DNA chipsyevthe method-
of-choice, when the identity and quantity of DNA or RNA malées had to be determined. In
principle, a DNA microarray consists of a huge amount of DNAlges immobilized on a solid
surface, where each of the probes is designed to be reverggdamentary to a specific known
DNA sequence. For instance, the GeneChip Human Exon ST Aroay Affymetrix contain
more than 5.5 Million probes directed against more than lidfilexons or putative exons. In the
basic experimental protocol, first DNA or RNA is isolatedrfréhe sample, followed by cDNA
synthesis (only for RNA). The DNA is labeled using fluoreszeedyes and then hybridized to
the microarray. After washing, the microarray is scanned [aser, in essence producing a large
table containing fluorescence intensity information focte@robe as the data outpudliller
and Tang2009. The probe determines the identity of the DNA or RNA fragmevhereas its
fluorescence signal intensity corresponds to the fragmabtindance in the sample. Introduced
by Schena et a[.1999, the number of publications that are based on microarréy egploded
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in the years after and is further growinigiller and Tang 2009. It is widely applied to profile
expression levels omMRNAs in various conditionsHisen et al. 1998 and for SNP or CNV
detection in individual genome&fesham et al2008 Miller and Tang 2009.

By using several modifications or different sample prepamnaechniques, microarrays can also
be used to measure additional kinds of data. For instancendtabolically labeling newly
transcribed RNA by the uridine analogdsU, it is possible to biochemically separate newly
transcribed from preexisting RNADplken et al, 2008. These RNA fractions, as well as total
RNA can be measured using microarrays, which allows to sanabusly study RNA synthesis
and decay. The absolute RNA half-life can be computed eitiyeconsidering the ratio of
preexisting to total RNA or the ratio of newly transcribedttdal RNA [Dolken et al, 2003

by

t1/2 = —tIHQ/IHé (21)
Ao

4
Y (1 i A_O) (2.2)

Here, A, is the measured amount of total RNA, and A} the amount of preexisting and newly
transcribed RNA after labeling for time The RNA half-life is closely related to the RNA
decay rate\ = In2/t,,, and, thus, an extremely interesting parameter in microRblated
research. Consequently, | considered microarray measutsrabtained after metabolic labeling
to investigate whether context-dependent microRNA/targeractions have context-dependent
influence on RNA decay rates (sBehard et al[2013¢ and chapteb).

Another application of microarrays is RIP-ChimMiikherjee et al.2009 Hendrickson et al.
2008 Karginov et al, 2007, Stoecklin et al.2008 Landthaler et a).2008 Dolken et al, 2010.
Here, in the sample preparation, RNA binding proteiRBPs) are immunoprecipitated using
specific antibodies and co-immunoprecipitated RNA is pedlifiAs a control, this is repeated
using an unspecific antibody or total RNA is used. Then, bo#ctions are measured on
microarrays. For each gene, an enrichment value can theorbeuted:

e = — (2.3)

Ay is the amount of RNA in the specifl fraction, whereasi. is the amount of control RNA.
In generial, binding partners of tHRBP have high enrichment values antRNAs that is not
bound by theRBP should have low enrichment values. Furthermore, theselengnt values are
guantitative: Higher values indicate, that @RNA is a stronger target of theBP, i.e. a large
fraction of all expressedhRNAs is bound by thdRBP. However, it is not straight-forward to
decide on a cutoff on these enrichment values to define a selialble targets. Furthermore, the
IP in the sample preparation does not always work with the sdfitéeacy, which introduces
bias not existing in standard microarray experiments. Bibih decision of a meaningful cutoff
and proper normalization acounting for this bias in destiimErhard et al[2013K and is topic
of chapterb.
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Importantly, the effector complex of microRNA-mediateduation, a constituent part of the

RNA induced silencing compleX{SC is an AGO protein, for which antibodies are available.
Thus, RIP-Chip can also be used to determine microRNA target a consequence, | also
considered RIP-Chip measurements of RISC to investigateegttdependent microRNA/target

interactions (se&rhard et al[20134 and chapteb).

2.1.2 Sequencing, sSRNA-seq and PAR-CLIP

In recent yeardNGShas started to outstrip microarrays. The major disadvamégiicroarrays

is that the sequence of all RNAs or DNAs to be interogated rbastnown beforehand, and
the millions of probes on a current microarray are still faag from fully covering a complex
mammalian genome and transcriptome. Sequencing in gaaéha process of determining the
sequence of DNA (or RNA). The first generation of sequencexs based on the technology
developed bySanger and Coulsofil975 and was for instance used to determine the full
sequence of several genomes including the human genloamel¢r et al. 2001 Venter et al.
2001]. Several technologies are counted amongr&e generatiorof sequencers that emerged
in the last decade (e.g. review Byller et al.[2009; Mardis[2008; Ozsolak and Milo$2011)).

In comparison to microarrays, iNGS experiments, the identity of DNA fragments is not
determined by their hybridization to complementary probesby directly determining their
sequences and the abundance is not quantified by the fluncesireensity of the labeling dye
but by counting the number of observed sequences. Thusypieat data output of alNGS
experiment is a huge file containing millions of sequenctesnacompanied by per-base quality
scores. For instance, the four libraries of our PAR-CLIPezkpent (see below) were sequenced
using a single lane on a lllumina Genome Analyzer lIx andded| 120 million sequencing reads,
each 50 base pairs long.

One specific omics experiment that is based\§BS is short RNA profiling Pritchard et al.
2017. Here, short RNAs, i.e. of length about 20-@tare specifically selected from cell lysates
using gel purification and subjectedNitsS. Such datasets can be used for the discovery of novel
microRNAs Berezikov et al.2006 Morin et al, 2008 Friedlander et al2008 and to profile the
expression levels of all known microRNAE&lin and Croce2006 Witten et al, 2010 Farazi

et al, 2011. As we and others have noticed, however, there are not oidgoRNAS that are
sequenced, but also many otimeRNAs [Erhard and Zimmer201Q Langenberger et al2012.

In particular, | developed a method that allows to compacedassifyncRNAs with respect to
their pattern of sequencing reads from MBS experiment, which is described in chapger

NGS is not only about to replace microarrays in standard expanisrsuch as expression
profiling of mRNAs or short RNAs, but also the above mentioned microarraydbassays
have been adapted to uN& S instead, for instance to determingRNA half lifes [Windhager

et al, 2012 Rabani et al.20117] or binding partners oRBPs [Zhao et al.2010. However,NGS
has capabilities that exceed those of microarrays. Inqaat, by using sequencing, it is not
only possible to identify target genes BBPs, but also to determine the specific target sites
with basepair resolution. This is done by so-called crokslig and immunoprecipitatiotoLIP)
experimentsChi et al, 2009 Konig et al, 201Q Hafner et al. 2010: Irradition of cells using
UV light with a specific wavelength crosslinks proteins to &N.e. covalent bonds between
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RNA bases and amino acids are formed. Then, the RNA is digesteymatically such that
a small footprint of a few dozent remains crosslinked to aRBPs. TheRBP of interest is
then isolated usingP and the protein is digested. Thus, footprints of RBP remain, which
correspond to binding sites and are sequenced W8 Importantly, due to these crosslinks,
the efficiency of co-immunopurifying target sites is muchgher than without crosslinking in
RIP-Chip. Unfortunately, there is also a counteractingeaspn most CLIP protocols, since
the cDNA synthesis, which is necessary befbli®S is hindered by amino acid residues still
crosslinked to the RNA. One of the speci@dIP protocols, iCLIP Konig et al, 2017 has a
very promising solution for this issue: Only a single reeetsanscription primer is used and
cDNA synthesis stops at the crosslinking site. This end e tigated to the other end of the
primer, i.e. the cDNA is circularized. Then, the circular®is cut within the primer yielding
a single-stranded, linear DNA molecule suitable for PCR sagliencing.

Another recent modification @LIP is Photoactivatable-Ribonucleoside-Enhanced Crosalink
and ImmunoprecipitationFAR-CLIP), which has been used by various groups to identify
microRNA binding sites Hafner et al. 2010 Gottwein et al. 2011 Lipchina et al, 20171,
Kishore et al. 2011, Skalsky et al.2012. For PAR-CLIP, cells are labeled usingsU, which

is specifically and efficiently crosslinked at a differentwet@ngth than used in the original CLIP
protocol. Specifically means that effectively only incormted4sUand not other nucleosides get
crosslinked, and efficiently means that cells can be irtadiasing less energy than in normal
CLIP experiments. Importantly, crosslinkddU is not read as uridine during cDNA synthesis
but as cytidine. Thus, after aligning sequencing reads ¢oréffierence sequence (genome or
transcriptome), characteristic T to C mismatches can bergéd in true binding sites. These
mismatches constitute a powerful feature to identify trireling sites Corcoran et aJ.2011;
Erhard et al. 20134. In addition to the identification of true binding sites,r fAGO-PAR-
CLIP experiments there is another important task in the datdysis: Determine the specific
microRNAs that binds to each of the identified target sites.this task, these conversions can
also be exploited (in addition to other features of PAR-CHHRa), since conversions occur at
specific positions relative to the microRNA seed skEehard et al.20134. How these feature
can be utilized to accurately identify true binding sited #me correct microRNA binding there
is described in chaptek.

2.1.3 LC-MS/MS and SILAC

Both technologies, DNA microarrays amNGS are able to interogate RNA or DNA. For other
domains of biological molecules, namely proteins and nwditgs, a different technology has
been established: mass spectromedyg and Mann2005 Cox and Mann2007. In particular,

to identify and quantify proteins, a widely used platfornliggiid chromatography tandem mass
spectrometry I(C-MS/MS) based on stable isotope labelling of amino acids in celtucel

(SILAC). Here, proteins of a sample are isolated and digested ieptiges. These are then
injected into a high resolution tandem mass spectrometeg @schromatographic column. In
principle, a mass spectrometer is able to measure the mafssesy molecules simultaneously
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in a quantitative way. Thus, a mass spectrum is a list of masses with associateasities.
Tandemmass spectrometers are able to measure two kinds of madsaspércst, masses and
intensities of all peptides in the mass spectrometer aerm@ted, followed by one or multiple
secondary measurements. For each of these secondary ereasts (called tandem mass
spectra), one peptide is selected, fragmented by colligittman inert gas and peptide fragments
are measured. Thus, the output of a typic&-MS/MS experiment consists of thousands of
primary mass spectra and tens of thousands of tandem madsasf@ox and Mann 2008
Michalski et al, 2011].

In general, tandem mass spectra are used to identify pegggieencesGox and Mann2008
Cox et al, 2011. After the collision induced fragmentation, the most atbant fragments are
prefixes and suffixes of the original peptide. Based on mdésreices of these fragments,
both the identity of amino acids as well as their sequencebeamferred Cox et al, 2011].
This inference is often done by comparing the measured rsptectheoretical spectra computed
from sequences of known peptides. A decoy peptide appr@acfian used to assess the false
discovery rate EDR) [Elias and Gygi2007: Experimental spectra are not only compared to
computed spectra of real peptides but also of decoy peptdpgandomized or reversed peptide
sequences. Obviously, all identified decoy peptides areneaus identifications. Thus, the
fraction of identified decoy peptides should correspontiédtaction of erroneous identifications
of real peptides. In a typical mass spectrometry experid@+@&0% of all measured tandem mass
spectra can be assigned withFDR of 1% [Cox et al, 2011, Michalski et al, 2011].

The primary mass spectra are used to quantify peptidag and Mann2005 Cox and Mann
2009. This is often done after metabolic labelin§ILAC): To compare protein levels in two
cell cultures, one of them is grown on a medium with heavyoiges of the amino acids Arginine
and Lysine, which are then incorporated into proteins. Thpeateins are isolated from both
cell cultures and mixed. This protein mix is digested usimgp$in, which specifically cleaves
after Arginine or Lysine. Hence, each tryptic peptide afrarnh the C-terminal peptide contains
either an Arginine or Lysine and thus, the source cell calfreach peptide molecule can be
determined by its mass. Since the heavy isotope does notratphysico-chemical properties of
the peptide, both, the light and the heavy peptide elutesegdime time from the chromatographic
column. Therefore, in the primary mass spectra, peptids pa¢ observed that are characterized
by a mass shift corresponding to the mass difference of theldd amino acid. The ratio of
the intensities of peptide pairs then corresponds to théigeejold change between the two
cell cultures. Importantly, it is also possible to compdreeé cell cultures at once using two
different heavy isotopesJox and Mann200§ and systems are available to perfo8tLAC in
vivo [Zanivan et al.2012.

2.2 Celllines and available datasets

Studies about human herpes viruses are usually conducteevitto systems using stable cell
lines [Knipe et al, 2007. Often, such cell lines are established after extractiomftumor tissue

To be precise, the mass over charge ratio of ions is measured.
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Table 2.1: Datasets for the cell lines DG75-eGFP, DG75281d BCBL1. The numbers denote
replicate measurements.

Experiment | Parameters | Publication | Comments

Microarray MRNA levels [Dolken et al, 2014

Microarray @sU) MRNA half lives [Dolken et al, 2019 | Labeling time 60 min
LC-MS/MS Protein levels [Erhard et al.2013d | SILAC triple labeling
RIP-Chip microRNA targets [Dolken et al, 2010 | Ago2 specific antibody
PAR-CLIP? microRNA target sites [Erhard et al.2013ac] | Ago2 specific antibody

! No PAR-CLIP was performed for DG75-10/12

(e.g. described bBen-Bassat et a]l1977; Renne et al[1994), or are immortalized by infection
with EBV (e.g. inSkalsky et al[2017). Our NGFN-plus projecPathogenic role of miRNAs in
herpesvirus infectiofocussed on a few cell lines that where either infected byeaifip herpes
virus or not. To allow an integrative approach, several Hlgloughput experiments have been
performed in the same cell lines (see chap)er

2.2.1 KSHJV related cell lines

The main system of cell lines used in this work consists ddtuell lines, DG75-eGFP, DG75-
10/12 and BCBL1. DG75 is a relatively old B-cell line that iB¥ and KSHV negative and has
been extracted from a patient with primary abdominal lymphadBen-Bassat et gl1977. This
cell line has been transduced with a lentiviral vector eithgressing enhanced green fluoresent
protein €GFP or 10 of the 12KSHV microRNAs? that are encoded within an intron of the
Kaposin genelDolken et al, 201J. BCBL1 is anEBV negative B-cell line extracted from a
patient with body-cavity based lymphoma that is latentlieated withKSHV [Renne et a].
1994.

Various high-throughput experiments have been conduatedhiese three cell lines by our
collaboration partners in the NGFN-plus project, namelgnzarray measurements of total,
newly transcribed and preexisting RNA (see abo##) AC based_.C-MS/MS, AGO-RIP-Chip
and AGO-PAR-CLIP (excluding DG75-10/12; see also t&blg. | analyzed these datasets using
the methods | developed (see chaptesand7) or already available methodBdlken et al,
2008 Cox and Mann2009 and integrated them in order to investigate the widespoeadext-
dependence of microRNA-mediated regulation (see chd&)tdfor the same analysis, | also
integrated publicly available PAR-CLIP data froBottwein et al[201]], where othelKSHV
positive B-cell lines were measured (BC1 and BC3). For tladugion of the accuracy of PARma,

| also considered our PAR-CLIP data setin DG75 and BCBL1 dsag¢he BC1 and BC3 data
from Gottwein et al[2017].

2The missing microRNASs are kshv-mir-K12-10 and kshv-mir2Ki2
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Figure 2.1: Proteomics data for DG75-eGFP,DG75-10/12 a@BIA.. In figure2.13 the gene
log, fold change correlations are shown for all pairs of repésa® he values in the upper triangle
represent the Pearson correleation coefficient for theentise pair of replicates. All genes with
at least two measured peptides were considered. Threeendept biological replicates have
been measured (repl-3), two of which have been repeateddiffiénent collision techniques
(CID, collision induced dissociation; HCD, higher-enempflisional dissociation) and therefore
represent technical replicates. The overal correlatidogfold changes between replicates was
about 0.9, which indicates a very good reproducibility &f &xperiments. Figur2. 1billustrates
the sparseness with respect to peptide coverage of the passmsnetry data. For each gene,
the number of identified peptides was divided by the numbesxohs. Thus, this cumulative
distribution shows how many genes have at least a specifiage@umber of peptides per exon.
In particular, for only about 15% of all identified genes, @adt half of the exons contain an
identified peptide on average and for about 50% of all ger@¥, dr less of the exons contain
a peptide on average. This average number of peptides pelbexomes even lower when only
repeatedly measured peptides are considered, which agetanpfor a reliably identifiation of
differential splicing.

In addition to the context-dependence of microRNA/targétriactions, | also investigated the
effect of herpes viruses, and their microRNAs in particuter alternative splicing patterns of
host genes. To this end, | considered ti@&MS/MS data measured for the three cell lines (see
table 2.1). First, | investigated, to which exterBILAC bases mass spectrometry data can be
used to identify genes that are differentially spliced oot@in level (see chaptérandErhard
and Zimmer{2013). Unfortunately, even if the quality of the data was quiteod (see Figure
2.19 and the experiment yielded a deep coverage of the protedtheaegpect to the number
of proteins (peptides mapping to 5247 Ensembl genes couideogified with anFDR of 1%),

no promising candidates for differential splicing couldfoand in the data. The main reason
for that is probaly the low peptide coverage per protein (Sgere2.1b). Of course, in order
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to reliably identify differentially spliced genes, pe@gimust be identified that distinguish the
differential isoforms. Thus, due to the sparseness of thesarements interesting canidates of
differential splicing may have been missed and therefbeeguestion about differential splicing
in these cell lines cannot be answered by the mass spectyoex@eriments alone (see chapter
7 andErhard and Zimmef2012).

2.2.2 EBV related cell lines

At the time | developed REAHrhard et al[2013l; see also chaptes), which is a method to
analyze RIP-Chip data, no matching PAR-CLIP data was adaileor comparison in BCBLL1.
However, inDolken et al.[2010, RIP-Chip was not only performed for DG75-eGFP, DG75-
10/12 and BCBL1, but also for three other B-cell lines, BLB141/B95.8 and Jijoye. All of
these are derived from Burkitt's lymphoma patients and aheeherpes virus negative (BL41),
infected by EBV (Jijoye) or infected by the EBV strain BO5h&t lost several of its microRNAs
(BL41/B95.8). Importantly, HITS-CLIP data was publiclyahable for Jijoye from another lab
[Riley et al, 20124, which | used for evaluations of REA.

2.2.3 VZV related cell lines

| developed ALPS originally to analyze sRNA-seq data meastorVZV infected MeWo cells,
which is a melanoma derived skin cell line. The purpose &f $hildy was to investigate whether
VZV indeed does not possess any microRNAsUmbach et al[2009, primary cells from
trigeminal ganglia, i.e. nerve tissue, were extracted fdareased patients that did not show any
signs of virus reactivation. Thus, these cells represeoitdygthe latent stage ofZV infection.
Even if in these cells, no microRNAs could be fouMEZV could nevertheless possess its own
microRNASs, for instance only expressed during lytic infect Thus, skin cells were infected
with VZV, which represent the natural host cells for lytic infectmd exhibit the clinical
symptoms ofVZV (chickenpox and shingles). Short RNAs from cells infectgdlie v-Oka
strain ofVZV, as well as from mock-infected and uninfected cells were théebjected titNGS

by our collaboration partners. Unfortunately, by closgexion of the sequencing data, | found
out that something must have gone wrong with the experim&equencing reads were too
short (see Figur.2) for all libraries and almost no reads could be reliably nmeapio thevVZV
genome (data not shown).

In the following chapters, all methods that | introduced \abare presented in detail. Each
of these chapters has already been published in a peewsxVipurnal or is submitted for
publication. As a preface for each chapter, | briefly statedtatus of the publications as well
as my contributions.
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Figure 2.2: Read length distribution of the VZV sRNA-seq exments. The number of reads

per million reads in the library is shown for the three exprmmts performed (Ohpi, uninfected;

mock, mock-infected; v-Oka, infected). In all experimemi®st read lengths are in the range of
14 to 19, in contrast to usual microRNA sequencing experts@here most reads are typically
about 23 bases lon@grezikov et al.2006 Morin et al, 2008 Friedlander et a].2008 Witten

et al, 2010, indicating severe experimental problems.
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Chapter 3

Classification of ncRNAs using position and
size information in deep sequencing data

Motivation: As indicated in sectior2.2.3 one of the still unresolved questions regarding
microRNAs and herpes viruses is whethé&fV does or does not encode and express its
own microRNAs. All other herpes viruses apart frfadV have been found to express own
microRNAs (see above), however, studies specificallytigagiang possiblevZV microRNAs in
latently infected cell lines have failed so far to identifyydUmbach et al.2009. Thus, our
collaboration partners considered a different systemeétibn of the melanoma derived MeWo
cell line. Importantly, other then previous studies, MeVetl knes represent cell types where
VZVexhibits lytic infections and its clinical symptoms (cleickox and shingles). However, these
experiments did not yield any results due to problems wigHitiraries that were submitted for
sequencing (see secti@r?.3. Nevertheless, while analyzing the MeWo sequencing catafar
comparison, data from a published short RNA sequencing/gtddrin et al., 200§, | noticed
that sequencing reads do not only come from microRNA lodialso from tRNAs, snoRNA,
snRNAs and many oth@rcRNAclasses. Intriguingly, reads seemed to exhibit class fipeci
patterns with respect to relative start positions and lésgtThus, | systematically investigated
to which extent these patterns can be used to distingquiBiNAclasses and to discover putative
NcRNA that exhibit similar patterns to regulatory RNAs such asraRNAs. Notably, this idea
has subsequently also been picked up by otHeaagenberger et al2013.

Publication: This chapter has been published in BioinformatiEsg{ard and Zimmer201q and

| presented this work at the European Conference on ComputtBiology (ECCB) 2010 in
Ghent, Belgium in the proceedings track. Here, | adaptedeieut and made minor corrections
to the text.

My contribution: | came up with the idea and the method, implemented the methoded out
evaluations and wrote the paper.

Contribution of co-authors: Ralf Zimmer supervised the work and helped to revise the
manuscript
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3.1 Abstract

3.1.1 Motivation

Small non-coding RNAs (ncRNASs) play important roles in wais cellular functions in all clades
of life. With next generation sequencing techniques, ithesome possible to study ncRNAs in a
high-throughput manner and by using specialized algosthaRNA classes such as microRNAs
can be detected in deep sequencing data. Typically, sudioaetre targeted to a certain class
of ncRNA. Many methods rely on RNA secondary structure motgat, which is not always
accurate and not all ncRNA classes have are characterizadcbynmon secondary structure.
Unbiased classification methods for ncRNAs could be immbrta improve accuracy and to
detect new ncRNA classes in sequencing data.

3.1.2 Results

Here, we present a scoring system called ALPS (alignmenatém matrices score) that uses
primary information from a deep sequencing experimentthe relative positions and lengths
of reads, to classify ncRNAs. ALPS makes no further asswmpte.g. about common structural
properties in the ncRNA class and is nevertheless able ttifgencRNA classes with high
accuracy. Since ALPS is not designed to recognize a cerass of nCRNA, it can be used to
detect novel ncRNA classes, as long as these unknown ncRaMesahcharacteristic pattern of
deep sequencing read lengths and positions. We evaluaseanmg system on publicly available
deep sequencing data and show that it is able to classify kmmRNAs with high sensitivity
and specificity.

3.1.3 Avalilability

Calculated pattern matrices of the datasets hESC and EBvailalde at the project website
http://www.bio.ifi.Imu.de/ALPS. An implementation of tliescribed method is available upon
request from the authors.

3.2 Introduction

Next generation sequencing platforms such as Solexatigymbi Solid or 454/Roche are
extensively used to sequence small RNAs of roughly 14-36ength at astonishing rates
in various organismsMorin et al, 2008 Babiarz et al. 2008 Czech et al. 2008 Rathjen
et al, 2009 Kato et al, 2009. For instance, they are used to determine expression gsofil
of microRNAs, 20-24 nt long RNA molecules, that have emergekcent years as important
post-transcriptional regulators in all known multicedlubrganisms and that are known to play
roles in development, tumorigenesis and viral infecti@arfel 2004. Besides microRNAs
other small non-coding RNA (ncRNA) classes such as piRN&ayin et al, 2001}, snoRNAs
[Bachellerie et a].2002 or scaRNAs (Gerard et al.2010 have been investigated. Only recently,
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454 sequencing revealed the existence of 16 nt long RNAgtbex termed unusual small RNA
or usRNAS) in cells infected with KSHW et al., 2009. usRNAs are derived from both virus
and host cell and are associated with the RNA induced siignmymplex (RISC). Advances in
throughput, accuracy and the ability to sequence longetsreall not only lead to more and
more precise detection of already known ncRNA classes,|batta the discovery of new types.
It is therefore of great interest to develop methods for igatiic classification of ncCRNA using
deep sequencing data.

Most ncRNAs have very specific structural properties thaehmseen used to classify theWill

et al, 2007, e.g. tRNAs possess a cloverleaf structure, whereas RiPoprecursors form
stable hairpins. However, these methods rely on the piediof RNA secondary structure and
even for short molecules the current RNA secondary stractoergy model is not always able
to predict the native structur®pwell and Eddy 2004 Doshi et al, 2004. For instance, the
predicted optimal secondary structure of 43 out of 579 neumiicroRNA precursors in miRbase
[Griffiths-Jones et al2009 is not an unbranched hairpin (data not shown). This can paed
by the fact that the minimal free energy structure is not sagaely the native one due to unknown
modifications or kinetic effectd{iggs and Morgan1999. In the case of de-novo prediction of
e.g. microRNAs, the exact pre-microRNA sequence is not knangriori. Even if the hairpin can
be predicted for the pre-microRNA sequence, it could beugied, if a few bases upstream or
downstream are appended or removed from this sequencesf@rermultiple windows around
a putative microRNA are folded or a local folding tool suchRa$ALfold [ Hofacker et al.2004

is used. This however necessarily leads to an increasezlgalsitive rate since many genomic
sequences that do not encode microRNAs can fold into stapihs Bentwich 2005.

In addition, secondary structure prediction is very s@resito the exact range that is used for
prediction. A microRNA hairpin that can correctly be praditif one uses the correct genomic
range, could be disrupted if a few bases upstream or dovamstod the microRNA precursor
are included for prediction. Furthermore, according taptons, many genomic sequences can
fold into stable hairpinsBentwich 2009 which makes methods using structural features alone
guite unspecific.

Deep sequencing offers additional criteria to distingumsRNA classes. A typical experimental
setup is to determine the content of small ncRNA in a cell urgetain conditions. Therefore,
only intervals on the genome are considered, where enougleseing reads have been aligned
to. The specific number of reads depends on the tradeoff ketwensitivity and specificity.
If the experiment aims to identify a special class of ncRN#secialized algorithms can be
applied that detect specific features of that ncRNA clasedas biological knowledge. E.g.
in microRNA biogenesis, one strand of the precursor is pegteally included into RISC (the
mature microRNA) and the other is rapidly degraded (micréRdtar). Considering this bias
together with structural microRNA properties can dranalyjancrease specificity of microRNA
detection, as shown befor®lprin et al, 2008 Friedlander et a|2008§.

microRNAS recognize their targets by their seed reg®rihson et al.2007 and, due to their
biogenesis, have specific lengtidgcRae et a).2007. Both features of microRNAs should
be detectable in an excess of deep sequencing reads that@laggspecific genomic position
and have a specific length. However, this is not always the fsmicroRNAs in large scale
experiments (e.g.Morin et al, 2008). The read start position of many microRNAs follow a
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narrow distribution that is often skewed towards the mididR3’ end and read lengths are often
variable (see also Figufe1b). Such alternative mature microRNA forms are often refitceas
isomiRs Morin et al, 200§.

In addition to positioning and lengths of reads, distandegads aligned in close proximity of
other reads also carry information about ncRNA classes@stlifor animals, the microRNA star
should be detectable at a distance of roughly 40 nt to themnaticroRNA [Friedlander et aJ.
2008. Distance information also helps to distinguish microRNiFom degradation products of
other abundant RNA species such as tRNAs or snRNAs (seedR3dl)r And, most importantly,
using this information can help to classify novel ncRNA oRINAs that do not possess a
characteristic secondary structure.

In this paper, we show how to exploit position and length deleait read patterns to classify
ncRNAs. We make no further assumptions about structuraloéimer class specific properties
and only consider primary information from the alignmentdafep sequencing reads on the
genome. Our method ALPS allows to detect microRNAs and dthewn ncRNA classes with
high accuracy and due to its unbiased nature, it also pre\ad#raight-forward way to discover
and classify novel ncRNAs. Our approach is complementamxisting methods that rely on
structural properties and we expect that their combinaith our approach allows to increase
their sensitivity and specificity.

3.3 Approach

The starting point for ALPS is the output of a short read adigfe.g. Bowtie Langmead et al.
2009 or BWA [Li et al., 2009) consisting of the positions in the genome, where deepessrng
reads have been aligned to. Then, intervals are identifieddusyering these positions such that
(1) each interval contains at leastreads, (2) there is no consecutive part of length within

an interval, that is not covered by a read and#{(®ucleotides downstream and upstream are
not covered by a read. The classification problem of ncRNAsgudeep sequencing data then
is to assign a class label, emgicroRNA,tRNA,snoRNA ta each of these intervals. For a well-
annotated organism such as human, mouse or yeast suchallats dre already available for
many of these intervals in public databases. Then, clastsl&dr the intervals without annotation
can be predicted based on similarity to intervals with kn@mnotation, which is often called
(semi-) supervised learning. If no or only very few annatas are available for the organism in
question, intervals can still be clustered in an unsupediasanner. Both approaches need a way
to calculate the similarity between two intervals.

ALPS is such a similarity score computed by an alignment eirtbo called pattern matrices.
These contain the information about the positions and fengt aligned reads. Since we cannot
assume, that all exact distances between aligned readsnagsaepresentative for an ncRNA
class, we allow gaps in ALPS. For instance, to respect thartis of the mature microRNA and
their corresponding microRNA star, our algorithm must bevedd to align the start positions of
the two mature microRNAs as well as the start positions ofwieemicroRNA stars, even if the
loops of the two percursor microRNAs have different lendte® also Figurd.2).
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Figure 3.1: Typical position and length dependent patteatrices for a tRNA, a microRNA and

a snRNA. Frequencies of reads starting at position (x axid)dd length (y axis) are visualized
in different shades of gray. Note that both the snRNA and Ri¢A could easily be mistaken

for a microRNA, if only the most abundant read is conside@@phical respresentations for all
pattern matrices are available on the project website.

Usually, for many intervals, annotations are already awdd in public databases and these can
be used to classify unknown - so far not annotated - intesiatdar to them. Generally, ALPS
similarities are not biased towards a special class of nciN#Ace they are only based on the
primary data from the deep sequencing experiment. Thexeimed as a distance measure for
any unsupervised clustering, the similarity of patternrnas (ALP score) will find groups of
NcRNAs, that exhibit similar distributions (with respeactrelative position and length) of deep
sequencing reads. If such a distribution is characterstian unknown class of ncRNAs, the
clustering based on our score should be able to detect it.

In this paper, the focus is not on the detection of unknowssea and hierarchies of ncRNAs but
on the detection of already known ncRNA classes to demdedtna usefulness of our scoring
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system. Based on annotations retrieved from mirB&flths-Jones et al.2008, gtRNAdb
[Chan and Lowg2009, Ensembl and Refseq, we identify intervals of known ncRN&sses
in published deep sequencing data and benchmark our sceystgm based on its ability to
reassign an interval to its correct class, after its classllaas been removed.

3.4 Methods

To identify the set of interval§ and their corresponding pattern matrices, we iterate dwer t
sorted read alignments and add a read (r,72) to the current interval = (i, i) as long as
15 > r1 — t, wherer; andr, are genomic start and end afrespectively, andis a user-defined
tolerance (we use = 50 throughout the paper). Since we do these iterations penubsome
and per strand, each interval spans reads that mapped tdarand ef a single chromosome in
close proximity to each other and reads of two differentriveits are either on different strands or
chromosomes or more thamt apart from each other. An entiy!|[, i] of thepattern matrix\V

of interval I is the number of reads of lengtlstarting at position in this interval. Positions are
according to the strand direction, i.eijfandi, are genomic start and end of an interval on the -
strand and a read= (r, r») falls into that interval, it contributes to the enth/ [ry —ry, io — 73]

of the pattern matrix. Since we want to compare pattern oerior similarity regarding bias of
read start positions and lengths frequencies and we haespect that two ncRNAs of the same
class can be expressed at different levels, we normalizesttern matrix:

N[,

B Zl/,i/ Nl[llv i/]
To quantify the similarity of two intervalg, J € Z, we consider their normalized pattern matrices
N' and N’ as sequences of column vect¢rs’ [, i])i=1..11| and(NJ[o,j])j:HJ‘ and compute
their optimal alignment. Here we adopt the notation, thiat i] is theith column vector of matrix
A. Thus, a column vector is the length distribution of deepuseging reads, that start at a certain
position within the interval. Note, that this distributisinormalized to the proportion of reads

that start at this position. The similarity sca$é’(i, ;) for aligning position: in interval I to
positionj in interval J is computed according to

ST, ) = (N'[e,i)T @ M @ N7[e, j] (3.2)

whereM is aL x L matrix (L is the maximal read length). In the simplest case, the itlemtatrix

M = id; is used and® is the usual matrix multiplication. Then the similarity seas basically
just the scalar product of the corresponding column vectéosvever, since nCRNA classes are
usually not defined by a specific length but by a narrow distitim of lengths, it is reasonable to
reward not only exact length matches but also small difieesrand to penalize large deviations
of peaks in the length distributions. Therefore, we use aimatl = H** derived from the
sigmoidal function:

NT[1,4] (3.1)

Hi, j]"* = WP —j]) (3.3)
2k

Wi@) = 1= N ok

(3.4)
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This matrix rewards differences in read lengths, as londiasabsolute difference is at most
and penalizes all deviations of more thanThe parametek describes the steepness of rewards
and penalties. The standard sum-product matrix multipioacan also be replaced by a sum-
min matrix multiplication. IfM = id, is used and the two column vectors are considered as
functions, this score can be geometrically interpretedhag tommon integral. Again, a hill
function derived matrix7** can be used to respect length distributions (after negatitrées in

the matrix have been removed). The ALPS similarity, i.e.dpgmal alignment score of the two
intervals/ and.J then is:

S(1,J) = max{ S SME g+ Y gl (3.5)
(i,5)eA neG(A)
gn) = o+e-n (3.6)

The maximum in equatioB.5is over all possible alignmentd of the intervals/ and J and
G(A) is the set of all gaps in alignmert. Note that the affine gap cost functi@ub penalizes
many short gaps more then few long gaps, which is importarddo similarity scoring. We can
calculates(I, J) efficiently using the algorithm ofGotoh 1983 in time O(|/| - | /| - L) after

a preprocessing of the scoring functidnin time O(|.J| - L?). The preprocessing involves the
computations of the second matrix multiplicatibh® N”[e, j] for all j € [1;].J]].

The score in equatioB.5 corresponds to an optimal global alignment. However, we alaa
define other variants of ALPS similarity: The optimal fredisfalso often called semi-global)
alignment scoré/ (1, J) is given as in equatioB.5 by replacingG(A) by G/(A), that contains
all gaps fromG(A) but the longer of the two leading gaps and the longer of thettaiting
gaps. Similarly, for the optimal local alignment scos&/, J), G'(A) is used instead of/(A),
that contains all but both leading and both trailing gapss T$equivalent to the usual definition
of local alignment, i.e. the optimal global alignment of tsobsequences. Note, that we can
compute the optimal local and freeshift alignments effitjensing a modified version of the
Gotoh algorithm, as suggested Brith and Watermari981.

Thus, a scoring system for pairwise ALPS similarities candbscribed by the 5-tupl§ =
(M, ®,0,e,mode), wherelM is the matrix andv the operator for the calculation of the column
vector similarity, respectively;, e are the gap open and gap extend parameters for the affine gap
cost function andnode is the alignment mode (global, local or freeshift).

We compute the pairwise ALPS similaritiéél, J) for all intervals7, J € Z™ that contain
at leastm reads with tolerance given a scoring syster. Then we assign a class to each of
the intervals by using annotations from mirBa&iffiths-Jones et al2008, gtRNAdb [Chan
and Lowe 2009, Ensembl and RefSeq. For intervals with multiple assigaedotations, we
prioritize annotations according to tat8el and we combine similar annotations. All intervals
annotated with4 are thus partitioned into a clustét'. We define the inner and outer similarity
scores of clasgl as the sets

Dmrer(A) = {5(1,0)|I,J € C4} (3.7)
Dever(A) = {5(1, )| € C4,J ¢ C*} (3.8)
Using their respective distribution3™"*"( A) and P°“*"(A), we can estimate the ability of

to separated from all other classes. This means, by using general opditioz techniques such
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Table 3.1: Annotations from mirBase, gtRNAdb, Ensembl art8Rq, ordered by their priority
used for the initial class assignment. Similar annotatiares combined and the number of
respective intervals in the two datasets used for benchngaik given.

Origin Annotation Combined hESC EB
mirBase/Ensembl  microRNA microRNA 103 101
Ensembl microRNApseudogene microRNA
gtRNAdb/Ensembl tRNA tRNA 158 99
Ensembl tRNApseudogene tRNA
Ensembl MttRNA tRNA
Ensembl MttRNA_pseudogene tRNA
Ensembl rRNA rRNA 43 27
Ensembl rRNApseudogene rRNA
Ensembl MtrRNA rRNA
Ensembl SNRNA SNRNA 13 12
Ensembl snRNApseudogene SNRNA
Ensembl SnoRNA SnoRNA 10 6
Ensembl snoRNApseudogene SNORNA
Ensembl misdRNA miscRNA 94 85
Ensembl misdRNA_pseudogene misBNA
Ensembl lincRNA misdRNA
Ensembl SCRNA mMis&RNA
Ensembl scRNApseudogene misRNA
Ensembl pseudogene MiRNA
RefSeq CDS mis&NA
RefSeq INTRON misdRNA
RefSeq UTR misdRNA
RefSeq 3FLANK miscRNA
RefSeq 5FLANK miscRNA

unknown unknown 80 56

as simple grid search, genetic algorithms or specializethogls such as VALPZien et al,
2000, we can optimizeS for many purposes, e.g. a median based hierarchical dlugttrat

is supposed to separate all classes equally well would re@uscoring system, that maximizes
>~ 4 mediarf P™mer) — mediar{ PoT).

Here we use onlyP°“*¢"( A) to test the null hypothesis, that an intervalvithout annotation is
not from class4. We calculate an empirical p-value for eadli, J), J € C4 from the right tail
of Poutr( A) and combine each of thegé”| p-values using Fisher's methoBigher 197(. We

then select the class with the smallest p-value.
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Figure 3.2: Freeshift alignment of hsa-mir-99b and hsai8B. Pattern matrix frequencies are
visualized in different shades of gray and white areas spoed to unaligned parts of the
matrices. Note that with the gap cost function3r2a the microRNA star start positions on
the right parts of the matrices are correctly aligned, waedightly altered parameters3i2b
erroneously move the necessary gap to the end, where it genalized.

3.5 Results

We applied our method to previously published Solexa setjngrdata of human embryonic
stem cells Morin et al, 2008, where small RNAs of human embryonic stem cells (hESC) and
embryoid body cells (EB) have been sequenced. We used Btwikgn the trimmed reads to
the human genome (hg19) obtained from the UCSC genome braseallowed no mismatches
but did not restrict the number of loci a read can be alignedidentified intervals as described
in the methods sectiont = 50, m = 1000) and assigned them to the classes in table We
determined the normalized pattern matrices (see projdusitesfor graphical visualizations) and
computed all pairwise ALPS similarities for various scgraystems.

First, we checked which choices of gap parameters makeretites in the alignments of
intervals. We considered the intervals of hsa-mir-99b asathir-185, that are both 5’ donors
(i.e. the mature microRNA originates from the 5’ arm of theqursor), are expressed at similar
levels (1892 and 2148 reads in EB, respectively) and haverdift loop lengths. Thus, a
correct alignment must introduce a gap between the positbthe mature microRNA and the
microRNA star in the sequence of column vectors of mir-186i¢lw has the shorter loop). If
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Figure 3.3: Inner and outer score distributions for micré®NThe EB dataset is used and shown
are scores for freeshift alignments with= —0.05, e = —0.01. In all cases, the inner and outer
distributions are significantly different, although notwoletely separated.

we calculate the optimal freeshift alignment using the miditrix 77! and min-product matrix
multiplication, gap parameters of = —0.005 ande
correct alignment (see Figu®2). We emphasize, that meaningful ranges of gap parameters
are highly dependent on the other parameters and that atgdparameter optimization could

resolve these ranges.

—0.001 are indeed able to produce a

A second theoretical consideration can be made by examitiiaginner and outer score
distributions (see Figur8.3). When the sum-min and the sum-product operator is used with
the same matrix (the identity matrix), scores of the formegurally tend to be higher than scores
of the later. If the identity matrix is replaced B! or %!, scores also tend to increase. For all
parameter choices, it is apparent that inner and outer seweesignificantly different, but their
distributions are not completely separated. The outerildigton describes all ALPS similarities
between pairs of intervals, one annotated as microRNA, tiher aot annotated as microRNA.



3.5 Results 39

However, mirBase is not complete, and as a consequencepdssible that the outer score
distribution contains microRNA-microRNA scores, whicleplain the elongated right tail of
all Pevter The inner distribution consists of all pairwise ALPS sianities of two intervals both
annotated as microRNA. Especially when usivig= id;,, many scores tend to be small, since
only exact agreements in length are rewarded, and two maticr®@RNAs may have differing
sizes. In addition, microRNA may be 5’ donors or 3’ donors othbmature and microRNA star
are expressed at very similar levels. As a consequériee:” does not only contain overall high
scores, but also scores indicating differing subclasses.

However, all these parameter choices are able to separateRNAs from other ncRNAs, when
we use all scores for classification. Using any aggregatestita fails in many cases: If the
maximal scores is used, a true microRNA may be too similarntangerval with unknown
annotation, which is in fact a still unknown microRNA, leadito a misclassification. If one
uses the minimum, the inner scoring is hampered by subslaskerefore, using all scores and
a statistically robust method to combine them (such as Fsshethod) is necessary for reliable
classification.

In order to assess whether ALPS is able to classify ncRNAl8lj we applied the following
procedure: Each annotated interyalas removed from its clustér* and the described method
was used to determine the class/ofSince we did not restrict the number of loci a read could
align to, and many of the abundant ncRNAs are present in pheltopies in the human genome,
we considered only scoreg/, J) where the genomic sequences/oand ./ did not contain
common subsequences of length10, i.e. no deep sequencing read has been counted in both
intervals/ and J. For all other scores, p-values were calculated and cordbasedescribed.
We then calculated recall and precision for each claseparately as the number of intervals
correctly assigned divided by the number of intervals o@dliy belonging toC4 (recall) and
divided by the number of intervals assignedt6 (precision), respectively.

As indicated above, we tried various parameter combinatiorclassify ncRNAs. Since there
are only very few unique snRNAs, snoRNAs and rRNAs, we onlystiiered microRNAs and
tRNAs for evaluation. Except for some obviously too extrgpaeameter combinations (e.g. too
negative gap parameters for global alignments), the ¢lestson performance was remarkably
stable with recall values of up to 98% at a precision of 60%icroRNAs (see Figur8.4).
These relatively low precision values in the microRNA clase the question, whether our
scoring tends to classify too many intervals as microRNAsweler, the classasmknownand
miscRNAare not excluded from our analyses, and nearly all of thevate additionally assigned
to the class microRNA originate fromnknownand miscRNAwhose pattern matrix indeed is
very similar to that of microRNAs. We predicted the secogdsdructures of the corresponding
sequences using RNAfoldHpfacker et al. 1994 and some of them are indeed predicted to
be able to fold into hairpins. Whether these reads reallyespond to mature microRNAs, are
degradation products or otherwise processed RNAs mudistdlucidated, however.

Here, we applied our method only to abundant ncRNAs. Thiahgtient to the method as we
have to estimate the distribution of read lengths per posior an ncRNA gene, which is only
possible, if enough reads have been sequenced. Due torfdetvedopment of current sequencing
techniques, it will be possible to achieve more and more esecjng depth at lower costs and
therefore, also low abundant ncRNAs will be representedimygh sequencing reads.
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Figure 3.4: Evaluation for the scoring systéii*!, sum-min —0.01, —0.005, freeshify. The
recall for a class is the number of intervals correctly assibdivided by the number of intervals
originally belonging to this class and the precision is thenber of intervals correctly assigned
divided by the number of intervals assigned to the class.

3.6 Discussion

Deep sequencing reads of ncRNAs follow very specific padteegarding their length and
positions with respect to their genes. Classes of ncRNAsdafmed by their function and
biogenesis and often share a common structure. Each of taseontribute to a biased
distribution of reads on the ncRNA gene:

e Regulatory RNAs such as microRNAs, piRNAs or siRNAs aredsw&d to recognize their
targets by a short complementary region (seed). Thereiara, proper function, the cell
has to take care that the seed of these RNA classes is nadshiitd, as a consequence,
a wealth of deep sequencing reads starting at specific posishould be detectable. This
can be observed in the pattern matrices computed for higiuginput sequencing data.
The consideration of reads starting at adjacent positibossto distinguish these ncRNA
classes from degradation products of other abundant specie

e The specific pattern observed for longer ncRNAs like tRNAg (Bigure3.13 can possibly
be explained by their degradation: Cleavage by RNAses cabidsed towards certain
parts of the tRNA, which leads in the case of the cloverleaficstired tRNAs to a
pattern of tRNA halves or quarter3hompson and ParkeR009. Although some of
these degradation products can be mistaken for e.g. a nizkaRie to similar length,
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the consideration of longer intervals and the distancewdsmt such subintervals can
be used to separate these classes of ncRNAs. It has beervaahstrat degradation
products of tRNAs are associated with RIS€aussecker et a010, which could explain
microRNA-like read patterns of tRNAs. In spite of that, ALBSable to separate these
tRNAs from microRNAs.

e Patterns generated by microRNA biogenesis are obvious Valod&img at graphical repre-
sentations of pattern matrices. In addition to the matureralNA and the microRNA
star, additional reads are present for some intervals.elbaa either be explained by
degradation products or by additional drosha productdshtnat been observed previously
[Shi et al, 2009.

Itis currently unclear which classes of ncRNAs exhibit eléeristic patterns of deep sequencing
reads, but the points discussed above indicate that inytredbncRNA classes defined by a
common function or biogenesis should have such a patterslamad therefore be amenable to
classification by ALPS.

As indicated in Figure3.2, exact distances between the start positions e.g. of therenat
microRNA and the microRNA star within such patterns are n@tdiand in plants, the microRNA
hairpin is longer and even more variable than in animalsowiihg gaps in the alignment
therefore enables ALPS to compute reasonable similarttsesdor ncRNA classes, where such
distances are highly variable. It is furthermore importardllow affine gap cost functions since
linear gap costs tend to disrupt correct alignments. Gaarnpaters can be adjusted, such that
single alignments become correct (e.g. as in Fi@u@e However, we observed that classification
accuracy in our test datasets is not heavily influenced bypgaameters. This is a consequence
of the strong signal of the mature microRNA read that conteb in many cases enough score
to the ALPS similarity to separate microRNAs from non-mRMAs. Thus, for classification
of ncRNAs exhibiting such dissimilar patterns as in our &=t results are very robust and
independent of the scoring system, i.e., a single reasersduring system can be used for
classification of all ncRNAs in such a case.

If patterns for ncRNA classes are not as distinct as for thea®NAs and tRNAs in our test
set, gap parameters and the matkixcan be tuned for proper classification. We described an
approach to evaluate parameter sets based on the inner grdsoare distributions and we
note that already available methods to optimize other algmt based scoring systems e.g. for
homology modelling and of protein (structure) alignment daectly be applied to ALPS.

We emphasize, that ALPS similarities should be calculatdgxperiment and comparisons
across different datasets, generated in different labis different protocols or even different
sequencing plattforms, should be performed with care.driilo datasets we used for validation,
pattern matrices were highly concordant for intervals olesin both datasets. However, it is
not clear how much technical bias is introduced into patteatrices, i.e. pattern components,
that are not due to biology but introduced by technical feect€omparing pattern matrices of
different protocols or sequencing techniques is subjeduither studies.
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3.7 Conclusion and Outlook

We developed an alignment based method, that allows to ifpdiné similarity of ncRNAs
solely based on primary deep sequencing data by considiengpsition and length dependent
patterns of reads aligned to short intervals on the genorh®SAsimilarity rewards matching
positions of reads of similar length in the two intervalsdh be computed efficiently and can be
used to classify intervals of unknown function in variousygjeone of which we have presented
here.

ALPS only considers data, that is available by a deep setqupmxperiment and makes no
further assumption about the common secondary structua@ oicRNA class. Such a scoring
system is important not only because the RNA secondarytstei@rediction is not always
accurate, but also because some ncRNA classes may not everaheommon secondary
structure. As long as members of a class share a similarpaiteead lengths and positions,
our method is able to detect it. For instance, there is no odeivailable to accurately detect
usRNAs Li et al., 2009 in deep sequencing data in an automated manner. Since usRINA
associated with RISC and their importance in post-trapsonal regulation has been shown, it
is of great importance to provide a tool for their detecti®mce they are characterized by their
short length and fixed positions, ALPS similarity can be exgeé to identify them accurately in
a deep sequencing experiment.

Our method can be used to support other, e.g. structure bastiods for the discovery of
(specific) ncRNA classes by incorporating our similaritpiss into the respective probabilistic
model or machine learning scheme. As discussed, paramatensr scoring system can be
finetuned in favor of any class of ncRNAs. In addition, if rdadgths and positioning is also
characteristic for subclasses, our scoring can be usea¢dveethis hierarchy and for instance
divide the class of microRNAs into the subclasses of 5’ andidsiors.

It has been suggested, that microRNAs are modified after ratagn Morin et al, 2008.
These modifications are detectable in a deep sequencingirgme, and if they are specific
for microRNAs, incorporating them into a scoring systemwtdurther boost the identification
of microRNAs. This can easily be incorporated into the caliton of the similarity score by
extending the column vectors and defining appropriate oefi/. Even structural information
could be integrated the same way.

We have shown that only considering positions and lengthdeep sequencing reads already
allows to accurately identify abundant microRNAs and tRNAsa large-scale dataset. Our
scoring system was not biased towards the identificationspegific class of ncCRNAs and as a
consequence, we expect it not only to be useful for the dieason of known ncRNA types, but
also for novel classes, as long as they exhibit a charattepesttern of deep sequencing reads.



Chapter 4

PARmMa: identification of microRNA target
sites iIn AGO-PAR-CLIP data

Motivation: The main idea of ALPS scores described in the previous chegpte specifically
exploit features of aligned sequencing reads and to findlainioci on the genome with
respect to these features. Here, this idea is reused andapmakfurther: Instead of computing
similarities between pairs of loci, a general model of sewileg read features is built and all
loci are classified with respect to the similarity to this rebohstead of computing all pairwise
similarities. Furthermore, while the goal of ALPS scoresuwaclassifyncRNA in regular short
RNA-seq data, PARma analyzes PAR-CLIP data in order toiigemicroRNA target sites as
well as the microRNAs that target each site. Thus, due to iffereht nature of the data, the
features used in PARma are different from the features inSALFRirthermore, based on close
inspection of PAR-CLIP data using the data viewer descritedw, it was straight-forward to
build a general model instead of all pairwise comparisons/did microRNA target sites, while
for short RNA-seq data, general models for the varinaBRNAclasses seemed not feasable. |
applied PARma to new PAR-CLIP data generated by our collatimm partners as well as to
published datasets. The results of these analyses arerpessi|en chaptepb.

Publication: This chapter has been published in Genome Biol&ghérd et al, 20134. Here,
| adapted the layout and made minor corrections to the text.

My contribution: | came up with the idea and the method, implemented the methoded out
evaluations and wrote the paper.

Contribution of co-authors. Lukas Jaskiewicz performed PAR-CLIP experiments. Laxi&dn
contributed ideas and helped to revise the manuscript. Ratimer supervised the work and
helped to revise the manuscript
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4.1 Abstract

AGO-PAR-CLIP is a high-throughput method to identify targées of microRNAs based on
immunoprecipitation (IP) of the RNA induced silencing cdexp(RISC) and deep sequencing
Argonaute (Ago)-protected RNA fragments crosslinked t@Athis approach provides clusters
of reads spanning 30-50 nucleotides containing the micRBINding sites. The identity of the
microRNA binding in each cluster is a priori not clear and s revealed by matching the
correct microRNA seed sequence to the cluster sequencehvgmot a trivial task.

Specific characteristics of PAR-CLIP data can be utilizeditb this problem, most notably,
frequent T to C conversions that are indicative for cro&stig sites. We utilize these and
additional features to accurately determine the seed@ite method, PARma, consists of two
main components: A generative model incorporates PAR-CGifexcific features to compute
likely seed site positions and the novel pattern discovasykmerExplain estimates seed activity
probabilites based on the likelihood inferred by the model.

The final PAR-CLIP model is in agreement with known bindingotmenisms of microRNAs and
with structural knowledge of AGO and many active k-mers egpond to seeds of expressed
microRNAs. Based on the analysis of differential PAR-CLERalfrom both a publicly available
dataset as well as from a new dataset, we show that PARma s atgurate than existing
approaches in terms of correct seed assignments.

PARma is freely available from the project website httpwiwbio.ifi.Imu.de/PARmMa.

4.2 Introduction

MicroRNAs have emerged as important post-transcripticeglators in all known multicellular
organisms. These 20-24 nucleotide (nt) long RNA moleculey poles in development,
tumorigenesis and viral infectiorBartel 2004. Generally, they bind to 3' UTRs of their
target transcripts inhibiting translation or inducing detpation of the target mRNABartel
2009. Neither the exact mode of binding nor the mechanisms ofrdtlegulation are completely
understood and are under heavy debBjerfanovic et al.2011;, Eulalio et al, 2008 Guo et al,
2010 Kozak 2008 Mishima et al, 2017. It is believed that microRNAs recognize their target
sites using only a small portion of bases at their 5’ end dahe seed\Vee et al.2012 and that
other factors such as additional base pairing at the 3’ Bad¢l 2009, target site accessibility
[Kertesz et al. 2007, target site location, AU content around the target sitatigbute to
recognition [Grimson et al.2007. These factors, as well as evolutionary conservation rgieta
sites (in case of conserved microRNAs) have been used tacptadget sites of microRNAs
[Friedman et a).2008 Krek et al, 2005. However, all known prediction methods are hampered
by a huge number of false positives and false negatiRéshie et al, 2009. Recently, several
high-throughput assays have been developed which allowratecidentification of microRNA
targets (reviewed imfhomson et al[2011]).

Immunoprecipitation (IP) of the Argonaute (AGO) proteihetmajor component of the RNA
induced silencing complex (RISC), allows the identificatad microRNA mediated recruitment
of hundreds of different transcripts to the RISC. Target MRNf microRNAS co-precipitate
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with AGO and can thus be identified either using microarr@®/&{Chip) or Next-Generation-
Sequencing (RIP-seqEpsow et al.2007 Beitzinger et al. 2007 Hendrickson et al.2008
Karginov et al, 2007 Landthaler et a).2008 Dolken et al, 201J. However, these RIP
experiments only give information about target genes orscepts and neither about the precise
location of target sites nor the actual microRNA targetimgse sites. As a remedy to that, novel
techniques including HITS-CLIP, iCLIP and PAR-CLIP haveshedeveloped. Before the IP,
RNA is cross-linked to proteins using UV light, which allowsen to determine the precise
location of the target site by deep sequencing of crosedriRNA after digestion of non-cross-
linked RNA [Chi et al, 2009 Konig et al, 2010 Hafner et al.2010. Still, the actual microRNA
binding at these sites have to be determined.

Both techniques, RIP and CLIP, need specialized bioinfticvamalysis methods. RIP is very
similar to standard gene expression experiments and,dabduanced analysis methods are readily
available. In addition to these standard approaches, icentgaper, we described additional
algorithms which need to be employed to consider and copeté characteristic features of
RIP data Erhard et al.2013H. In contrast, CLIP data are more complex: First, short seging
reads must be aligned to the genome or transcriptome andctbstered Chi et al, 2009
Konig et al, 201Q Hafner et al. 2010. True target sites have to be idenfied among all clusters
and the specific microRNA targeting each site has to be deatednDepending on the exact
experimental protocol, true target sites may look quitémtsive: While for HITS-CLIP, narrow
peaks in the read coverage are expect®d gt al, 2009, iICLIP clusters show specific read start
positions Konig et al, 2010 and PAR-CLIP clusters are characterized by T to C convassio
[Hafner et al. 2010. Here, we focus on PAR-CLIP, a technique that has been ugea\eral
groups to identify microRNA target sitesiafner et al. 201Q Gottwein et al. 2011, Lipchina

et al, 2011 Skalsky et al.2012.

In their original PAR-Clip paper, Hafner et aHafner et al.201(J used several manually chosen
parameters to define target sites (e.g. at least two distomstersion positions per cluster and at
least 5 sequencing reads). They recognized that the regiwnsdream of the main conversion
site is enriched for sequences complementary to the sed¢dp ekpressed microRNAs.
PARalyzer is a software package specifically designed tme&tNA binding sites from PAR-
CLIP data. Reads are first clustered and filtered using sipdeameters as Hafner et al. Then,
conversion and non-conversion distributions are comployezbunting the respective events and
employing kernel density estimation along each clustdrpAsitions with a higher conversion
than non-conversion density are considered target siteswamounding sequences are submitted
to a standard motif discovery tool that uses linear regoess determine microRNA seed sites
enriched among clusters with many conversion evedisdoran et a).2011].

There are several open points in PAR-CLIP data analysist,Hilis unclear which microRNAs
should be taken as starting point for searching seed site8R:CLIP clusters. In all published
studies, the top N microRNAs according to microRNA read ¢sumthe PAR-CLIP experiment
or an additional experiment are taken. However, read cquntsde a potentially strongly biased
estimate of microRNA expression leveRdabe et al 2011 Linsen et al.2009. In addition, it

is unclear how many miRNAs should be used. Finally, it mayb®sufficient to only consider
known microRNAs: First, there are indications that there mwany still unknown microRNAs
[Ladewig et al.2012 and second, not only microRNAs (as defined by their matongtathway)
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may be associated with AGO and used for target recognitiotnthere may be other pathways
that lead to the incorporation of small RNAs into RIS@aussecker et al201Q Cheloufi et al.
2010 Yang et al, 2010 Cifuentes et a).201Q Taft et al, 2009.

Second, the specific information given by the PAR-CLIP expent is only partially exploited:
In the PAR-CLIP protocol, RNase T1 is used to digest RNA, Wwhiteaves specifically after
guanine Pace et al.1991]. This information could be used to exclude seed sites spgmead
start or end positions under the assumption that theseas#esrotected from digestion by the
microRNA. Also, it is known that positions in the mRNA bourml the microRNA cannot be
efficiently cross-linked and thus, seed sites spanning ssdioking site could also be excluded
[Hafner et al. 2010. Currently, there is no method available that directlysue information
from RNase cleavage sites or conversion sites for the disgaM motifs or the assignment of
seed sites.

Third, there is no scoring system available that has beemdstrated to reliably identify clusters
or assigned microRNAs.

Here, we present a method to address these aspects: PARksasgpanations for the presence
of each identified PAR-CLIP cluster. Here, an explanatiankat long sequence (k-mer) within
a cluster that corresponds to the seed of the microRNA binttiis site. PARma explains each
PAR-CLIP cluster by a k-mer that is (a) explaining multiplesters with high probability and (b)
matching a generative model for the experimental datatfieedata observed in the experiment
is likely to be generated by a microRNA binding at the deteedi position). The determined
k-mer can identify respective microRNA families that areiccterized by a seed matching the
k-mer. The model is able to score each k-mer in a cluster doupto the observed conversions
and RNase cleavage sites. Parameters as well as k-meryaptigbabilities are estimated in
an iterative manner. The model assigns the most probabdeteseePAR-CLIP cluster, to score
clusters according to the confidence of being a true microfRget site and also to score the
confidence of the assignment of the correct seed.

Differential PAR-CLIP data are used to evaluate our meth@dsen paired PAR-CLIP datasets
with microRNAs that are known to be present only in dataseté ot in B are analyzed, target
sites (PAR-CLIP clusters) of these microRNAs should onlypbesent in dataset A. We used
our own PAR-CLIP datasets of the two B-cell lines DG75 and BCBof which only the latter
is infected with Kaposi’'s sarcoma-associated herpesyK&HV), a herpesvirus encoding 25
mature microRNASs. In this data, we expect the viral microRN#d hence its targets only to
be present in the infected cell line. We also repeated oduatians using a published dataset
of Epstein-Barr-Virus (EBV; encoding 44 mature microRNA®)sitive and negative cell lines
[Gottwein et al, 2017].

4.3 Results

4.3.1 PARmMa overview

We developed a complete workflow for the analysis of PAR-CH#®a (see Figurd.l). The
main steps are (a) mapping of the sequencing reads to reéesequences, (b) detection of read
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Figure 4.1: PARma overview. The PARma workflow starts wite thw data from PAR-CLIP
experiments (replicates or different conditions), i.evesal fastq files containing sequencing
reads. First, we utilize Bowtid_gngmead et al2009 to align these reads to multiple reference
sequences such as the human genome and transcriptomd gewoanes resulting in several sam
files, one for each fastq file and reference sequence. Sefooredch read from each experiment
we identify all optimal alignments in terms of mismatchespsidering T to C conversions as
matches, and map transcriptomic reads that span splicequado the genome. Third, possible
target sites of microRNAs are identified by clustering relrds all datasets simultaneously.
The clusters including additional annotations such as theler of conversions and cleavages
per position are written to separate files for each experinmehividually. The cluster detection
implements a splitting procedure to identify target siteghwverlapping reads and is able to
handle target sites that span splice junctions. Fourtledoh dataset, the core PARma component
estimates a generative model for the data and k-mer acpuitiyabilities using kmerExplain in
an iterative manner (see also Figdr8). Fifth, the models and the activity probabilities are used
to score clusters and to assign the most probable microRAWEeT sites with various annotations
such as gene ids are written to tabular files that can be fuatieyzed and visualized.
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clusters corresponding to target sites, (c) estimating@deftbat represents characteristic features
of PAR-CLIP data and microRNA (seed) activities and (d) tinalfiassignment of microRNAs
to target sites and their scoring using the derived modethEtmore, we developed a tailored,
web-based visualization for PAR-CLIP data, that helpedurind the development of PARma
and can be used to manually investigate specific target(skesFiguret.?).

The central idea of PARma is that microRNAs binding a targetwsill generate specific data in
a PAR-CLIP experiment (conversion positions and RNAse Ehwdge sites, see Figute?a).
Thus, given experimental data and a model representing tieagures, it is possible to infer
the binding site that has generated these data with the s$tigfkelihood. Additionally, given
the experimental data and the correct binding sites, itragtt-forward to infer the model
parameters. Thus, we are facing a chicken-or-egg dilemmae Iknew the binding sites we
could infer the model, and if we knew the model, we could irtfer binding sites. In PARma,
this is resolved using an iterative procedure (see FiguBe We start by computing statistically
overrepresented k-mers in clusters and take these a$ @stimates for the correct binding sites.
Then, we infer model parameters and iteratively refine aifreges until convergence.

During these iterations, seed activity probabilities atneated, corresponding to the likelihood-
weighted number of target sites. Importantly, it is possiblbut not necessary - to specify
an a-priory set of allowed microRNAs. This is a highly deleafeature since in general it is
unknown, which microRNAs are active in an experiment andréael count of the microRNAs
themselves in the PAR-CLIP experiment or an external sexjugrexperiment is only a weak
proxy for their activity, as shown below.

In the final output of PARma, for each cluster the most probakkd is assigned together with
a cluster score (Cscore) and a microRNA assignment scores¢it&). The Cscore indicates
how well the observed data (conversions and RNase cleavteg &t the model without
considering the k-mer probability and therefore indicatdsether an observed clusters is indeed
a true microRNA target site. The MAscore corresponds to tmdidence of the assignment, i.e.
whether there are other active k-mers in the cluster thatraktch the observed data well.

4.3.2 Cluster detection

After read mapping (see Methods), the first main step of PARRGIata analysis is to identify
clusters of reads corresponding to target sites. Overalluse a similar procedure as has been
used previously with a few but important modifications:

First, PARma is able to search for clusters using multiplaskts simultaneously. This not
only increases sensitivity, but also provides a straightvhrd way for a differential analysis
of target sites, since it is not necessary to identify c@oesling clusters from different
experiments afterwards. During the cluster identificgt@usters are determined for all datasets
simultaneously, and each cluster is quantified for eachsdata

Second, the original definition of PAR-CLIP clusters (iaget sites) byHafner et al.[201(Q
involved a single linkage clustering of overlapping readswever, we observed several cases
where such a procedure tends to link multiple target sitiesarsingle cluster due to few spurious
reads that connect two obviously distinct clusters (seer€id.4a for an example). Such cases
are relatively frequent (see Figudedb) and may be of special interest: For instance, there are
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Figure 4.2: PAR-CLIP data viewer. From top to bottom bothegarshow conservation scores
(branch lengths of 7-mers as describedAniedman et al[2008 and the widely used phyloP
[Pollard et al. 2010 and phastConsYiepel et al. 2003 scores, all computed for the 46-way
vertebrate multiple alignment obtained from the UCSC gembmowser Dreszer et a).2013),

the read coverage in each experiment and the genomic sexjokcdlcster. Below the sequence,
SNP positions according to the 1000 genomes project areatedl in red (here only in Figure
4.2a) and the actual sequencing reads are shown as black baeadbrof the experiments.
Mismatches are color-coded as in the genomic sequence doghee. in both clusters, there
are T to C conversions only). The height of the bar directlgregponds to the read count in
the PAR-CLIP experiment up to a count of 15 reads and more iBareads are indicated in
white. Ensembl genes and transcripts are shown below tlus rigeere only in Figurel.2a),
together with PAR-CLIP clusters in yellow and seed site@ssients in blue. In Figurd.2a

an experimentally validated targets site of hsa-miR-15h 3’UTR of DMTF1 is shown. It
illustrates the characteristic features of many validgasifes (see main text). Interestingly, there
is also a known SNP (red box) in proximity to the seed siteufég.2b depicts an intergenic
(i.e. there are no Ensembl genes or transcripts) clustedtdes not show these characteristics.
Additionally, it does not contain a microRNA seed site noy amerrepresented 7-mer according
to PARma. The validated cluster has Cscore and MAscor@9, whereas for the intergenic
cluster, both scores are 0.
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Cluster scores
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k-mer activitie
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estimate parameters

probabilities

k-mers

Figure 4.3: lllustration of the PARma procedure. PARma igemative algorithm that repeatedly
executes three steps: Based on a current model of PAR-Claiacteristics (left; see also Figure
4.6), scores are computed for each position in each clusteresgipg the likelihood that the
cluster is explained by the activity of the k-mer at this piosi (top right; see also Figu#.7).
These scores are fed into kmerExplain as prior probabikbg;h then estimates k-mer activity
probabilities using an EM algorithm (bottom). These k-metivéties in conjunction with data
from the PAR-CLIP experiment (T to C conversions, RNasewga sites) are used to estimate
the parameters of the PAR-CLIP model. We start this proeedyrrunning kmerExplain on
uniform scores and end it as soon as the model converges.
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Figure 4.4: Overlapping PAR-CLIP clusters. In Figdrda two target sites are shown that would
fall into the same cluster by the definitionidafner et al[201Q only because in the two DG75
replicates as well as in the second BCBL1 replicate a fewaanietads from the right target site
overlap the left target site. Our cluster definition splltseads into two overlapping clusters (see
the yellow boxes on the bottom. PARma rates both clusteits hwgh Cscores> 0.6 and> 0.9

for the left and right cluster, respectively) and assigresKISHV microRNA kshv-miR-K12-7
to the left and the human microRNA hsa-miR-519 to the rigbstr with MAscores> 0.9 in
both cases. There is additional evidence that both assigisraee correct, since the left cluster
has reads only in KSHV positive cell lines (BCBL1, BC1 and B@®ereas the right cluster
contains reads in all experiments. Figdrdb illustrates that there are hundreds of such cases in
both experiments.

cases known, where viral microRNAs bind to sites in closgimeorhood to target sites of human
microRNAs [Nachmani et a.2010. Missing individual clusters due to overlapping reads igou

be detrimental to such an analysis. Thus, we devised a clygiing procedure, that is able to
effectively detect such cases.

And third, we align PAR-CLIP reads to the transcriptome alt agethe genome. Transcriptomic
reads are then mapped to genomic coordinates and may tfeepetmluce spliced reads. These
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are properly respected during cluster detection, i.e. PARnable to detect target sites spanning
exon-exon junctions. In previous studies about AGO-PARFCHata Hafner et al. 201Q
Gottwein et al. 201% Lipchina et al, 2011 Skalsky et al.2013, this has not been considered,
probably missing several highly interesting target sitadeed, in the datasets we analyzed,
22.4% of all clusters in the coding region of transcriptsmspglice junctions (about 6% of all
clusters).

4.3.3 Generative model

The novel feature in PAR-CLIP (in comparison to other CLIBtpcols) is the usage of the
uridine analogue 4-thiouridine which is not read as U but alsiftlhg cDNA synthesis following
its cross-linking to proteindafner et al.2014. Thus, T to C mismatches of aligned sequencing
reads are characteristic for cross-linked sites and, filwergfor contacts of the examined protein
with RNA. Since RNase T1 is used in the PAR-CLIP protocol, ekhcleaves specifically
downstream of guanine, it is of importance where sequerreiads start and end. It is important
to note that in most cases, the RNase products are shortetit@aumber of sequencing cycles
(36 for the data ofGottwein et al.[201] and 50 for our data). Therefore, in these cases the
complete RNA fragments are known.

Visual inspection of these features for known target sifesicroRNAs using our PAR-CLIP
data browser (see Figu#e?) showed several characteristics of these targets sitegahzeyond
the characteristics of individual PAR-CLIP sequencingdeeésee Figurd.2a): In most cases,
there is a main cross-linking site and 60% of all conversions in the cluster belong to this
site, a fact that has been recognized befétaffier et al. 2010. In addition, this main cross-
linking site tends to lie in the center of most sequencinglseand T sites upstream tend to
be cross-linked more often than T sites downstream of tha site. Another well-established
feature is the position of seed sites preferentially doveash of the main cross-linking site.
Finally, in addition to these main cross-linking sites,rthare main RNase cleavage sites with
specific locations, one-10 to ~20 nt upstream of the seed site, the other usually immegliatel
downstream of the seed site. While the upstream cleavag®ftén skips several G sites, the
downstream site is in most cases immediately after the next G

To formaly represent these features, we developed threpéamtient probabilistic models, the
conversion model and the upstream and downstream cleavadelsn Given the position of a
seed site and the positions of uridines or guanosines, ctxgplg, each model is able to predict
where and how many conversions or cleavages, respectwelyld be generated by a PAR-
CLIP experiment. By comparing the predicted to the measdata, we compute a likelihood for
each possible seed position within a cluster. Specifictily,conversion model would generate
many conversions directly upstream of the seed positiore(gihere is a uridine), and almost
no conversions within the seed. Thus, such a position waddive a high score only if this is
indeed observed in the experiment.

Model parameters, e.g. how many conversions are expectesht uridine within a cluster,
are directly learned from the data in a per-experiment mamsiag robust parameter estimation
techniques. Doing this for each dataset individually isam@nt, since experimental conditions
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may be slightly different between experiments, potentildading to slightly different data per
cluster.

4.3.4 KmerExplain

KmerExplain optimizes a probabilistic model that requitkat each target site is targetted
by a single microRNA family, i.e. each cluster must be expmdi by a single k-mer (i.e.
microRNA seed). There are two conditions for the explairkager implicated by the model:
First, its position in the cluster has to match the genesd®#R-CLIP model, i.e. the given data
(conversions and cleavages) are likely to be generated égdaraatching to this positions. And,
second, the k-mer is likely to be active, i.e. there are mastances where this k-mer explains a
cluster. The model is fitted with an EM algorithm.

4.3.5 Seed activities

We applied PARma to a previously published PAR-CLIP datasesisting of two replicates
for each of the two B-cell lines BC3 and BC1, as well as to ound®AR-CLIP data of two
replicates for each of the two B-cell lines DG75 and BCBLXsEiwe analyzed the correlation
of microRNA expression as measured by its PAR-CLIP read tcand its activity as measured
by the number of assigned target sites.

Even if it is true that the top 100 expressed microRNAs mayarp> 50% of the clusters
by a 6-mer seed, the overall correlation between the micoRRpression and the number of
corresponding target sites is poor (see Figlu®. This is a general observation, independent
of how microRNAs have been assigned to the clusters (a yasfaiptions have been explored:
all or a random seed site in the complete cluster, the firstrandom seed inside the cluster
but downstream of the main cross-linking sites, using tiped@® 100 or 200 microRNAs, 6-mer
or 7-mer seeds). The poor correlation may be a consequersgmoéncing artefacts known to
substantially bias expression estimates of microRNRadbe et al2011; Linsen et al.2009.

In addition, we and others proposed that not only microRNAsy ranter the RISC pathway,
but there may be other maturation pathways producing snméf Riolecules that could act
analogously to microRNAs in RISGHaussecker et al201Q Cheloufi et al.201Q Yang et al,
201Q Cifuentes et a).201Q Taft et al, 2009 Ladewig et al. 2012 Erhard and Zimmer201Q
Maute et al. 2013. Furthermore, even if only the 7-mer seeds of the top 40 oRbIAs are
used and seed sites are only considered when downstream ofaim cross-linking site, there
are hundreds of clusters where two or more seeds match. d&itgsthis issue becomes more
severe, if more than 40 microRNAs or all seed sites whithedaster are used (see Figu#eSo
and4.5d).

Taken together, these facts suggest to abandon the paradigmking the top N expressed
microRNAs as candidate regulators for PAR-CLIP clustefger&fore, we designed PARma to
identify k-mers among all possibl&® k-mers that are explaining multiple clusters with high
probability. Furthermore, they need not only to explaintiple clusters, but their positions must
be in agreement with the model that is learned from the da#dl ofusters.
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Figure 4.5: Correlation of microRNA expression to the numbkassigned clusters. Here,
microRNAs have been assigned to a cluster, when they are gqentop 200 expressed
microRNAs and match the first seed site downstream of the w@raiss-linking site. Neither
in the BCBL1 PAR-CLIP data (Figurd.5a) nor in the BC3 PAR-CLIP data (Figude5c) any
correlation is recognizable. FigufeSb and Figured. & illustrate how many 7-mer seeds match
to clusters, when the top 40,100 und 200 microRNAs are censithind when seeds are searched
in the whole clusterdll) and only downstream of the main cross-linking sitenk). Even the
strictest assignment (top 40 xlink) leads to a considerableunt of about 1000 ambiguous
clusters in both datasets and at the same time to about 808signad clusters. The fraction
of unassigned clusters drops below 50% when the top 200 RidAcseeds are searched in the
whole cluster but with the cost of having thousands of amiiglassignments.
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Figure 4.6: PARma model for replicate A of the DG75 experimdime conversion model in
red represents the conditional propensity that a base gets-tinked given there is a uridine at
the corresponding position. Note that the propensity i§ &nbwn up to a constant factor and
arbitrarily scaled to a mode of 1. The blue and green linastitate the 3’ and 5’ cleavage models,
respectively. These correspond to the conditional praibalsithat the RNase T1 cleavage site is
at a certain position or closer to the seed site given tha¢tisea guanine. The model shows that
the observations made for a few visually inspected valaitgeget sites are also true globally for
many clusters.

4.3.6 Inferred models

Next, we analyzed the generative model that is estimatedA®nta. In Figure4.6, the model
for replicate A of DG75 is illustrated. It indeed reflects thkove mentioned observations:
The conversion model indicates the expected ratios of ¢siores around the seed site for all
positions where a T is located: For instance, if there is a madiately upstream of the seed site
and a T immediately downstream, the expected ratio of ceiwes is about 10:1. Furthermore,
the first position in the seed site also seems to get croksdiwith relatively high frequency (for
an example see also Figutea).

The models from Figurd.6 are in agreement with knowledge about microRNA target recog
tion [Bartel 2009: A canonical microRNA binding site consists of a seed sdamplementary
to the microRNA seed (bases 2 to 7 or 2 to 8), often base 1 issmjepaf an A and often there
is additional basepairing of the microRNA 3’ end after a driwdp. Thus, the seed site itself
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may be protected from cross-linking by the seed, bases inatedyl upstream of the seed are
accessible and further upstream bases may also be protgctad microRNA 3’ end to some
extent.

Furthermore, the model also agrees with known structufarimation of AGO2 Bchirle and
MacRae 2012: MicroRNA bases 2 to 6 are solvent exposed and there is andiskink
separating bases 6 and 7, which may be resolved by confamelianges of AGOSchirle
and MacRag2013. These conformation changes may be a reason for the miatigh cross-
linking probability of the first position of the seed site. @ther explanation is that PARma may
find several instances of 7-mer-m8 seed sites (pairing adsado 8) as well as 7-mer-Al seed
sites (pairing of bases 2 to 7 plus an A opposite of base 1)fiidtdase of the identified k-mer
may therefore be opposite of base 7 or 8 of the microRNA, dretefore, may or may not be
accessible for cross-linking.

As described above, all three submodels can be used to ceramaore for each possible seed
site position within a cluster. The conversion score (segiféi4.7a for the cluster in Figure
4.2a) indicates that either immediately upstream or downstrehthe main cross-linking site
are likely positions for a seed site: The downstream pasisoobvious, the upstream position
however is also probable, since further upstream thereTsthat could get cross-linked. Figures
4.70 and4.7c illustrate that the seed position is restricted to a sneatl pf the cluster due to the
clear 5’ and 3’ RNase cleavage sites. In addition, based ®@eshimate of kmerExplain, the k-
mer TGCTGCT(see Figuret.7d) is highly active and indeed corresponds to the 7-mer-refl se
site of the in B-cells highly expressed miR-15/16 family.nde, PARma is able to predict the
corresponding position with high confidence, which is irtlae experimentally confirmed target
site of miR-15aKiriakidou et al, 2004.

Although the PAR-CLIP protocol is rather stringent and tipugvides reasonably pure AGO
complexes, other RNA-protein interactions of co-purifiedtpins or abundant cellular proteins
may be responsible for cross-linked and protein-proteBdd fragments, giving rise to non-
AGO PAR-CLIP clusters. The model we developed also allomsmating a cluster score
(Cscore) indicating the likelihood by which a given clustatually represents a microRNA
binding site, i.e. how well the observed data (conversiomsRINase cleavage sites) fit the model
without considering the k-mer probability. The microRNA@gment score (MAscore) indicates
whether there are other overrepresented k-mers in theecltngtt also match the observed data
well. The experimentally confirmed target site in Figdr2a has Cscore and MAscore of 0.9608
and 0.9777, respectively, whereas the cluster in FiguZe has a Cscore of 0, indicating that
there is no position where conversions and RNase cleavageagiree.

4.3.7 Evaluation using differential PAR-CLIP

We evaluated PARma against PARalyzer and the standardagime of assigning seeds of the
top N microRNAs (forN=40, 100 and 200) when they are in the clustdngten or downstream
of the main cross-linking sitex{ink) and either assigning every seedll) or a randonithe
first seed (forcluster and xlink, respectively), when there are multiple seeds presenttteor
evaluation, we exploit a unique feature of the datasets wé:us our own data, only the cell line
BCBL1 and not DG75 is infected by Kaposi's sarcoma-assediaerpesvirus (KSHV), which
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Figure 4.7: Model scores for the cluster in Figdr@a. Each Figure shows how well one of the
submodels of PARma matches when aligned to the 7-mer thitg atahe corresponding position.
For instance in Figurd.7a, the maximal value belongs to the 7-mMT&@CTGCTand indicates
that all observed and not observed T to C conversions matghwell, when TGCTGCT is
the microRNA seed site. A microRNA targeting the seed GR&CATTG(corresponding to the
secondary peak upstream of TGCTGCT) is also likely to leaithé¢oobserved conversion. The
cleavage scores in Figurds/b and4.7c indicate how likely the observed RNase T1 cleavages
are, given the seed site is at the corresponding positiothh 8domodels would allow seed sites
to start within a small window of about 10 bases and indida& the secondary peak frofn/a

is unlikely to correspond to the true microRNA seed site. deev, they agree with the primary
peak of the conversion scores. Finally, the k-mer activigres in Figure4.7d indicate how
many other PAR-CLIP clusters are likely to be explained g/ ¢brresponding k-mer and also
points to the 7-mefGCTGCT This is indeed the 7mer-m8 seed site for miR-15a, which has
been experimentally validated to target this cluskarigkidou et al, 2004.

encodes 25 mature microRNAs, some of which are highly espeesn BCBL1 Dolken et al,
2014d. Thus, PAR-CLIP clusters that are assigned to one of the K8HktroRNAs must not be
present in DG75 and we can use the number of KSHV assigned®AR-<clusters in DG75 as a
measure of assignment accuracy. Although both cell [in€8 &hd BC1 in the PAR-CLIP data
from Gottwein et al[201]] are infected by KSHV, only BC1 is coinfected by Epstein-Bdirus
(EBV), which encodes 44 mature microRNAs. Hence, PAR-CLLBters that are assigned to
one of the EBV microRNAs must not be present in BC1.

With respect to exclusive sites, PARma is more accurate #iaother methods including
PARalyzer independent of the dataset used for evaluatiea Fsgures4.8a and4.8d). More

than 70% of all clusters, where PARma assigned a KSHV or EBM@RNA, only have reads
in BCBL1 or BC1, respectively. This number drops to about 50%en any seed match of
a KSHV microRNA in a cluster is taken as evidence for a KSH\gearsite all.cluster) or

PARalyzer is used. When a seed match immediatly downstré#me onain cross-linking site is
used first.xlink), the accuracy is almost as high as for PARma, but is heaegeddent on both
dataset and the number of microRNAs used. Additionally, PAR accuracy is significantly
higher when it is run starting with all 16,384 7-mers (PARnregtead of microRNA 7-mer
seeds only (PARmaiR). This suggests, that in several cases, there are sé&&HV/EBV
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Figure 4.8: Evaluation using differential PAR-CLIP. KSHMaroRNA target sites should only
have reads in KSHV infected cell lines (Figure8a-c) and EBV microRNA target sites should
be exclusive to EBV infected cell lines (Figurdsad-f). PARma assigned KSHV microRNA
target sites show a higher fraction of exclusive sites tHhather methods (Figure4.8a4.8d;
see main text for a description of all other methods) and PARam without constraining to
known microRNA seeds yielded a higher fraction of exclusites than PARma using seeds
as prior. Figuregl.8 and4.8 show the log fold changes (control/infected) of PAR-CLéRad
counts for clusters assigned to KSHV and EBV microRNAs, eetipely. The log fold change of
exclusive clusters (i.e. clusters that have no reads in bie@xperiments) has been setto -10 or
10. PARma does not only have the largest fraction of exatusliwsters in both datasets (compare
the left ends of Figure4.8b and4.8e to Figurest.8a and4.8d, respectively) but also the smallest
fraction of KSHV or EBV clusters that have more reads in thédK/Sr EBV negative cell line.
The dependency of scores on the accuracy is shown in FiguBeand4.8. In both datasets and
for both scores, accuracy increases when more and more towmgclusters are removed. As a
reference, the accuracies of the other assignment methedsdicated with the same colors as
in Figures4.8o and4.8e.
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microRNAs in a non-exclusive cluster but there are also rotwerrepresented 7-mers that
explain the conversions and RNase cleavage sites better.

We noticed that often, random reads are scattered acrosssseg transcripts in all experiments.
Thus, a true KSHV microRNA target site may get random readhénKSHV negative cell
line (DG75) and therefore, may not be exclusively preseB@BL1. Therefore, we considered
the number of PAR-CLIP reads in each KSHV or EBV microRNA gsed cluster and plotted
their log fold change of DG75/BCBL1 or BC3/BC1, respectwédee Figure<.80 and4.8e).
Independent on the fold change cutoff, PARma consistedintifies more KSHV or EBV
microRNA clusters that have less reads in DG75 than in BCBLInoBC3 than in BC1,
respectively. Specifically, less than 5% of KSHV clusterdnmore reads in DG75 thanin BCBL1
for PARma assignments, which drops to below 90% for the aithsignments.

In order to evaluate the computed Cscores and MAscores (&tbokllls section), we sorted
clusters according to Cscore or MAscore and computed thaidra of BCBL1 and BC1
exclusive sites for KSHV and EBV microRNA assigned clustezspectively. For both datasets
the accuracy increases, when more and more of the low sodtistgrs or clusters with multiple
possible microRNAs are removed, achieving accuracies @ 80more (see Figure$.8c and
4.8).

4.3.8 Validation against RIP-Chip data

To further validate target sites and target site assignsniiatt are only found by PARma, and
to invalidate target sites that have not been detected byniRABut by other methods, we
considered RIP-Chip data that we measured for the cell D@85 and BCBL1 Dolken et al,
2010. In a RIP-Chip experiment, the amount of an RNA co-immurmgjpitated using an anti-
AGO2 antibody is compared to RNA from a control-IP using marays. Thus, it measures the
recruitment of an mMRNA to Ago2-complexes in a quantitatiag\and is an alternative technique
to PAR-CLIP to determine microRNA targets. Using propeedatalysis method&fhard et al.
20134, the differential enrichment of mMRNAs with RISC can be cartgal between BCBL1 and
DG75, which indicates, whether an mRNA is stronger assediaith RISC in BCBL1 than in
DG75. On average, this must be the case for targets of KSHYORNAS.

Thus, we determined all genes that contain a KSHV microRNgetasite according to PARma
and Paralyzerl(oth), that contain a KSHV microRNA target site according to PA&Rand no
KSHV microRNA target site according to Paralyz&ARma only and that contain a KSHV
microRNA target site according to Paralyzer onBafalyzer only and compared it to genes
without KSHV microRNA target sitempne see Figuret.9a). ThebothandPARmMa onlygenes
showed significantly elevated differential RIP-Chip ehrient valuesy < 2 x 10~* and

p < 2 x 1077, respectively, one-sided Kolmogorov-Smirnov test), velasParalyzer onlyand
nonegenes were indistinguishable from background. Thus, basé¢ke RIP-Chip data, PARma
effectively gets rid of false positive target sites detddig Paralyzer, and, in addition, picks up
false negatives not detected by Paralyzer. We also repteteshme analysis for other methods
replacing Paralyzer with similar results (see Figdiéb).
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Figure 4.9: Validation against RIP-Chip. Figute€8a shows the distribution of differential RIP-
Chip enrichments (PC2 scores) of BCBL1 and DG75 for differsets of PAR-CLIP targets.
Higher values indicate a stronger enrichment of a gene wWiSCRn BCBL1 than in DG75,
and, therefore, a set of KSHV microRNA targets should havglg-shifted distribution of PC2
scores. Genes that have been identified by PARma as well alyRarto be KSHV microRNA
targets indeed show such a shift, as well as genes that hiveesn found by PARma and not by
Paralyzer (PARma only). In contrast, genes that are no¢tsugf KSHV microRNAs according
to both PARma and Paralyzer do not show a shift. Interestirggnes found exclusively by
Paralyzer and not by PARma are not shifted as well. We regdhis analysis for all other
methods, as illustrated in Figude. The p-values for the comparisons of PARma to all other
methods indicate that PARma not only outperforms Paralyatall other methods as well.

4.4 Discussion

4.4.1 PAR-CLIP clusters

In this paper, we present a in-depth investigation of sded 81 PAR-CLIP clusters. The standard
approach to assign microRNAs in all so far published PARFCEtudies Hafner et al. 201Q
Gottwein etal.201Z Lipchina et al, 2011, Skalsky et al.2013 was to select the top N expressed
microRNAs and identify seed sites in the respective PARFCtlLsters. However, it is not clear,
how N must be chosen: For small N, only a small fraction of tetss can be assigned and
for larger N, cluster assignments get more and more ambgyuewrthermore, independent on
the choice of N or the exact way of searching for seeds, midfoBxpression correlates only
poorly with the number of clusters. Also, there are multgtiedies reporting small RNAs other
than microRNAs that are associated with the RISC. Thus gitnseadvantageous to remove the
restriction of searching for a predefined set of seeds.
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PARma can be used for both searching for a predefined set d$ seel for an unconstrained
search for all possible k-mers. In both cases, the assigeedssfulfill two conditions in
each cluster: First, the observed T to C conversions and ®Nl@avage sites relative to the
seed position match a model derived from all clusters andrgkcthe seed site sequence is
overrepresented. As illustrated in Figute8, the unrestricted search is even more accurate in
terms of assigning KSHV or EBV microRNAs to clusters that exelusively present in KSHV
or EBV infected cells, respectively.

We propose that the general approach of PARma can also bed@dpplother kinds of CLIP
data. For instance, for iCLIP dat&$nig et al, 2010, reads in valid target sites should start
immediately after cross-linking sites. These specifictgtasitions could be incorporated into
an iCLIP model instead of the PAR-CLIP model of conversiond RNase T1 cleavage sites.
However, how effective it is to exploit these charactecstf ICLIP data remains to be seen
when more and more iCLIP data becomes available.

Clusters from a CLIP experiment are not necessarily trudibgsites of the protein of interest:
Neither the immunoprecipitation (IP) step nor the gel sefan are 100% specific and thus,
there may be artefacts of other RNA binding proteins (RBP4) distinct microRNA seeds are
considered and matched to such clusters, more than 20% oh#pecific clusters are expected
to contain at least one seed match by chance (assuming aagewduster length of 30 bp and
a seed length of 6). This increases to almost 70%, when 20@RINA seeds are considered.
Thus, we expect that there is a considerable amount of falsiiye microRNA target sites in
current PAR-CLIP datasets. Finding a reliable way of sapdiusters in order to filter such false
positives is therefore of great importance.

To our knowledge, PARma is the first method to provide a sgmsystem that has been proven to
improve accuracy upon filtering. The rationale for that @tttinere is no reason why unspecific
clusters should match our PAR-CLIP model. Indeed, Cscar@gronic clusters, which likely
are the result of unspecific IPs of other RBPs, are significdoiver than Cscores of 3'-UTR
clusters (data not shown) in both AGO-PAR-CLIP datasetschvis in agreement with known
mechanisms of microRNAs. Furthermore, even if unspecitistekrs may match the PAR-CLIP
model by chance and contain active k-mers by chance, it ikalplthat these k-mers occur
at a position that matches the model. Thus, both Cscore anschta are expected to improve
accuracy (see also Figude8c and4.8f).

4.42 PARmMa

For the conversion model used in PARma, we assume that bné&sg events are independent
from each other. This means that given an uridine at a cepiasition relative to the seed site,
the probability that a cross-linking event takes place andeiquenced at this position is not
dependent on the location of other uridines. This assumptiay be wrong, if one of the other
uridines is already cross-linked. However, the probabihit two cross-links can occur in close
vicinity to each other is very low, since the incorporatiaterof 4-thiouridine (4sU) is only about
1/40 and only 4sU gets cross-linked with high frequency atviavelength used in PAR-CLIP
[Hafner et al.2010. In addition, the reverse transcriptase (RT) is known todiker inefficient
in reading through the peptide chain still cross-linkedhte 4sU-residue (which is responsible
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for the U to C transition). Therefore, it becomes ratherketli that the RT reads through two
cross-links in a single RNA fragment.

Note also, that the model for conversions is not simply yilsumming all cross-linking events
for each position globally over all clusters. Such a procedwould be heavily influenced by a
few clusters that have thousands of reads in comparisoretm#ny clusters having only a few
dozen reads. In contrast, our parameter estimation fordineetsion model does not only exploit
all clusters, but is also robust against outlier clustersifing robust regression and quadratic
programming. Robustness in the parameter estimation isngortant issue especially in the
initial iterations. This is because seeds are not yet asdigiith high confidence leading to many
outliers.

PARmMa does not necessarily assign seed sites directly di@ans of cross-linking sites. When
the next uridine upstream of a true seed site is several otigés away, it may still get cross-
linked. In such a case, PARma may still find another k-mereslds the cross-linking site,
dependent on the sequences, on other cross-linking evettts same cluster and on the RNase
cleavage sites. However, PARma will report a low MAscore¢sithe other position will score
similarly well.

PARma can be run for different values lof The smallest reliable seed used in the literature is
microRNA bases 2-7Bartel 2009 Kertesz et al.2007 Grimson et al.2007 Friedman et aJ.
2008 Krek et al, 2005. However, we noticed that PARma with = 6 resulted in slightly
worse accuracies for both our data sets in comparisdn=07 (data not shown). This may be
a consequence from the fact that random 6-mers are expecteztar every 4096 bases, and
thus, every~100 clusters (median length of clusters is 47). When at [E2@tmicroRNAs with
different 6-mer seeds are considered, every single clugteld on average have a seed match by
chance. Thus, kmerExplain may have difficulties to reliaract the signal of overrepresented
6-mers.

By the requirement that only a single k-mer is enough to er@acluster, kmerExplain is able
to avoid overrepresented partial k-mer€onsider the 7-mer-Al seed site UCGUCGA that is
explaining hundreds of clusters. Obviously, the sequerBE&CGAG is expected to be present
in i of these clusters and is thus highly overrepresented indhection of all clusters. This
overrepresented partial k-mer may also occur in additichedters, i.e. without the leading U.
Even if it is not overrepresented by itself but only due to aertapping k-mer that is truly
overrepresented, all additional occurences may be mistéikkethe seed site of a targeting
microRNA not because the microRNA is active but only becanfsthe overlap to an active
microRNA seed. Obviously, kmerExplain avoids such oveesented partial k-mers by the
requirement that only a single k-mer can explain a cluster.

4.4.3 Comparison to PARalyzer

PARalyzer is a software package specifically designed fer ahalysis of PAR-CLIP data
[Corcoran et a).2011]. It utilizes kernel density estimation to estimate the haioility of
interaction along each cluster based on the normalized atsnbf conversions and non-
conversions at each position. There are two main diffeetwéhe basic approach frolafner
et al. [201Q: First, an interaction site is called when the estimatedsdg of conversions is
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greater than the estimated density of non-conversionsadsof using the main cross-linking
site for all clusters, which are filtered by certain criter@end second, due to the kernel, the
neighborhood of uridine sites is incorporated dependenarmrarbitrarily chosen bandwidth
parameter. It is unclear whether this approach is able éztfkly filter out unspecific clusters. In
addition, the pattern discovery module does not incoratta¢ information of cross-linking or
RNase cleavage positions and is, thus, unable to resolves@ré ambiguous seed matches.
Furthermore, the PARalyzer pipeline does not include nutho handle spliced reads and,
therefore, all studies that have used PARalyZaorforan et a).2011 Gottwein et al. 2011
Skalsky et al. 2013 may have missed all target sites that span exon-exon pmgtiln the
datasets we analyzed, 22.4% of all clusters in the codingpmegf transcripts span splice
junctions (about 6% of all clusters).

4.4.4 Differential PAR-CLIP

In order to evaluate PARma, we directly compared the numbBAR-CLIP sequencing reads
from multiple experiments mapped to each individual clusBur evaluation is based on the
following consideration: When a cluster represents a vaidet site of a KSHV microRNA,
for instance, AGO should not be associated with it in KSHVaieg cells and, therefore, the
corresponding PAR-CLIP experiment should not yield sequrgnreads mapping to this cluster
(exclusive clusters).

While this is true for~ 80% of all clusters assigned to a KSHV or EBV microRNA in both o
the respective datasets when PARma is used (see Figuteand4.8e), there is a considerable
number of clusters, where this is not true. There may be akweasons for these: First, there
is a considerable amount of background in the data, i.e.esaxpg reads that are not due to
specific cross-linking to AGO and indeed, almost all clusteave a positive log2 fold change
of PAR-CLIP reads, which may be a consequence of backgr&ewbnd, a target site could be
targeted by multiple microRNAs. This is very probable foeddromologous viral microRNAs
(e.g. kshv-miR-K12-11 has the same seed as hsa-miR-156dy also come from strongly
overlapping target sites. Accuracy increases when chluster filtered by MAscore (see Figure
4.8c and4.8f), which also indicates ambiguous assignments. Thirdstehs may not be valid
target sites and just by chance contain seeds of KSHV or EBY¥aRINAs, respectively, since
accuracy also increases when clusters are filtered by Cscore

It would be of great benefit to be able to convert our scores talse discovery rate as a
statistically meaningful measure. This could be done ifdtveas a way to determine how many
of the non exclusive clusters are still valid KSHV or EBV tetgites. However, it is difficult
to estimate the background, which is dependent on transeqgession, on other RNA binding
proteins that target these transcripts and probably on mmeomg factors. Additionally, the extent
of overlapping or truly ambiguous target sites is uncleartltermore, the presence of reads is
subject to stochastic sampling effects due to the relagtiseiall numbers of reads. Thus, it is
currently not possible to estimate reliable false discpvates based on differential PAR-CLIP.
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Conclusion

In this paper we presented PARma, a method to analyze PAR-@atia. Clusters are defined in a
similar way as beforeHafner et al.201Q Corcoran et a).2011]. The main purpose of PARma is
a) to define reliable microRNA target sites and b) to iderttiy microRNA responsible for each
identified target site. Therefore, two scores are compUtee Cscore assesses the likelihood that
a cluster is a valid microRNA target site and the MAscoreegponds to the confidence that the
assigned microRNA is the true regulator.

PARma utilizes features specific to PAR-CLIP data to deteenseed sites: The positions of
cross-linking sites and missing cross-linkings as welllaavage sites of RNase T1 relative to
seed sites are learned and incorporated into a generatigelmithis model is used to guide a
novel pattern discovery tool, kmerExplain, that estimaies/ity probabilies for k-mers.

Our method can be used to discover active k-mers in an uribragener, i.e. without assuming
a set of admissible k-mers such as the top N microRNA seedsh Egported active k-mer
nevertheless has two properties: It explains severalasigtnd the positions where it occurs
match the model of PAR-CLIP data learned from all targessite

Using differential PAR-CLIP data, we have shown that PARsabre accurate than existing
methods and that both Cscore and MAscore are useful measua clusters.

45 Methods

45.1 Data

The data fromGottwein et al.[201] has been downloaded from GEO (accession number:
GSE32113). DG75 and BCBL1 PAR-CLIP experiments have beeforpeed as described
[Kishore et al, 2011 Jaskiewicz et al.2013. Briefly, a total of3 * 108 cells per replicate were
grown and treated with 4-thiouridine (Sigma) for 14 hoursdficoncentration 100M). Cells
were pelleted and washed in cold PBS. Aliquote$ of10” cells were resuspended in 5 ml of
cold PBS, placed in a 15 cm petri dish and irradiated at 365 iitimn 100 mJ twice on ice, with

30 s break in between. Crosslinked cells were collectedeteel and snap-frozen. PAR-CLIP
was performed using 11A9 anti-Ago2 monoclonal antiboByidel et al. 200§. PAR-CLIP
sequencing data have been deposited at GEO (accessionm@G&ie13909).

4.5.2 Raw data processing and cluster definition

The deep sequencing data have been processed using arsmgipeline consisting of adapter
trimming, read mapping against genomes and transcriptomtgrating all mappings and
cluster identification as well as filtering.
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Read mapping

The 3’ sequencing adapter sequence are trimmed from eacdkrsggg read using a specially
tailored sequence alignment variant that alignes a prefithefadapter sequence to a suffix
of each sequencing read. After that, equal sequences daps®d and mapped to the human
genome (hgl19), the KSHV genome (NID9333.1), the EBV genome (N@9334.1) and the
human transcriptome (Ensembl v60) using Bowtie versio2.0.JLangmead et al2009. For
each collapsed read, all mappings for an experiment are dbkgcted and the best in terms
of mismatches is written to a single BED file for each expenmecluding information about
the read count (number of sequences before collapsingiit@atches of each alignment and
the number of alignments after mapping transcriptome aignts to the genome. Here, T to
C conversions are not counted as mismatches, since thex@eeted due to the experimental
protocol.

Cluster identification

All BED files are then simultaneously scanned chromosoméibgroosome in a strand specific
manner and overlapping reads are clustered. We use onlywetitbut mismatches (except for T
to C conversions). Clusters are then filtered accordingndai criteria as beforeHafner et al.
201Q Corcoran et al.2011: read count at least 5, at least 3 distinct read speciest&kiare
guantified using the count of the main cross-linking siteéeAtlustering, normalization factors
are computed such that the median fold change to a referepeeiment (we took the one with
the most reads) is 1. Then, in a second pass, all clustersra@/ed where all experiments have
less than 10 normalized read counts.

We also implemented three additional options: First, itiewn that two target sites may overlap.
Especially for viral microRNAs, several of such cases amkm[Nachmani et aJ.2010. Thus,
we split each cluster: Only reads spanning the main crogsaly site are used and the criteria
from above are checked. Then, the main cross-linking sita@femaining reads is determined.
This is repeated as long as all criteria are fulfilled.

Second, since target sites may span splice junctions andapped reads to the transcriptome,
we can also identify spliced PAR-CLIP clusters. Howeverewlllowing for spliced reads, the
definition of a cluster is not straight-forward: For instanfor a 3’ end of an exon, there may be
reads starting in the exon and ending in the neighboringmnénd reads that connect this exon
to various other exons. We resolve such inconsistenciegsiyr&dmoving all exon-intron reads
and then by removing reads to exons with fewer reads, if Isacgs

Third, since target sites may be wider than the maximal sszpidength, we extend all
untrimmed reads up to the next RNase T1 cleavage site (iex.thE next G). This is important
because in the following, we specifically use these cleasdgs in our generative model.

Visualization

In order to visualize PAR-CLIP data apropriately, we depeld a specialized web-based
visualization tool (see Figuré.2). Other than the widely used genome browsers from UCSC
or Ensembl, our viewer offers specialized visualizatiooiddor PAR-CLIP data: We visualize
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several evolutionary conservation scores, including kdonanch lengths that have been used for
microRNA target predictionHriedman et a).2008, sequence read coverage, SNPs, the actual
reads with indicated conversions, conversion densitiasstripts and PAR-CLIP clusters. Other
than genome browsers, our viewer is able to shrink introrssdata dependent way (i.e. if there
are no reads mapped to an intron, is is not visualized in goallee exons but shrunked to a
few pixels). This is a major advantage to showing everytimrgcale when visualizing transcript
related data, since usually the long introns are often nottefest in contrast to the short exons.

453 PARmMa

The result of our preprocessing, which is very similar tovpyes work Hafner et al. 2010
Corcoran et a).2011], is a set of clusterk. Each clustel. € L is characterized by its sequence
s(L), its conversion profileonv;, and two vectorstart; andendy,. convy, is a vector containing
for each position withinZ, the number of conversions, whered@srt; andend; contain for
each position the number of reads starting and ending tresectively. Furthermore, we define
T(L) = {i € {1..|s(L)|}|s(L); = T} as the set of possible conversion sites &fd) = {i
{1..|s(L)|}|s(L); = G} as the set of possible RNase T1 cleavage sites.

Model fitting

The PARmMa model consists of three submodels, incorporatiiogC conversion data, 5° RNase
cleavage data and 3' RNase cleavage data, respectivelycdiersion model assigns each
positioni relative to the seed site a cross-linking probabilitynk(i). Then, the cross-linking
scores,;, for a seed position in clusterL can be computed as

> convp(k) - xlink(j — k)
soilL ) = keT(L)
xlink\ 4+, J) = Z Con,UL(k). Z xlmk(j—k)
keT (L) keT (L)

This is essentially the normalized dot product of two vextdrhe first vector contains the
observed conversion counts for all conversion positioms,second contains the cross-linking
probabilities for these positions. Thusy.x(L,j) = 1 if and only if the observed conversions
exactly meet the expected cross-links and approaches 0 thkesbserved counts differ from
the expected. Note thatlink must only be known up to a constant factor. This allows us to
fit the model without making any further assumptions: Givetuaent estimatg of the seed
position for each cluste, we first estimate the rati#; ; for each pair of model positiorisand

[ by collecting all clusterd. with j — k € T (L) andj — [ € T'(L). Then we use robust linear
regression to fit a line through the origin given the valuesv;, (; — 1) andconvy (j — k) of all
collected clusterd.. The slope of this line then is a robust estimate?pf. Given the estimates
of Ry, for all £ < [, we obtain the final estimate efink by minimizing
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subject toxlink(j) > 0 andX;zlink(j) = 1 using quadratic programming. Note that the final
constraint arbitrarily fixes the above mentioned constaciiofr and is necessary to get a unique
solution.

The 3' RNase cleavage model assignes each positielative to the seed site the cumulative
probabilityc3(i), that the RNase cleavage siteds. Given a cluster., let G(L) = {k, ..., k,}
with k;_; < k;. Then, the downstream cleavage SCQLg,,.s:-cam fOr @ seed position in cluster

L can be computed as

> endp(k;) - p(k;)

i€l.n

L.j) =
Sdownstream( vj) Z endL(kz‘)

i€l.n

p(ko) = ¢3(j — ko)
p(ki) = e3(j — ki) —c3(j — ki1)

Note that we use cumulative probabilities here: In conttastross-linking positions, RNase
cleavage sites are not independent: For instance, letecligthave two consecutive G 5 bp
downstream of the true seed siteSEED=NNNNNGG.). and clusterL, only one G 6 bp
downstream of its true seed siteSEED=NNNNNNG.). The second G in; is at the same
position relative to the seed site as the single G4inThe RNase may have enough room to cut
after the first G inL; and thus, all reads ih; may end 5 bp downstream of the seed site. In
clusterL,, all reads will end 6 bp downstream of the seed site. Thusntipg on where other
G sites are located, read end probabilities will differ.ngscumulative probabilities in the model
and computing the probabilities depending on G locatioosifcumulative probabilities is able
to alleviate this problem:3 is estimated by using the current estimaies the seed position for
each cluster.. The cumulative probability then is the number of times atpwsis upstream of
the main RNase cleavage site divided by the number of clister

The 5’ RNase cleavage model is formulated analogously t@timeodel. The final score for a
positionj in clusterL; then is calculated as the product of the three submodelscore

pi,j - leink(Li7j> : 3downstream<Li7j> : Supstream(Liuj)

KmerExplain

Given a set of sequenc&s = {5, ..., S,} and scorey; ; for each positionj in clusterL;,
kmerExplain estimates k-mer activity probabilities useng EM algorithm for the following
probabilistic model: We assume that each sequence is deddyg only a single k-mer. Then,
the probability of generating a sequerttéy a k-mer at itgjth position is

P(S)j) = asi - [J(1 — ase)

c#j

Here,a, is the activity probability of k-mex andS’ denotes thegth k-mer inS. The likelihood
of Sthenis
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P(S) = HP(Si) = HZP(SU)]%,J‘

i=1 i=1 j
Thus, we have to estimate, for all k-mersz under hidden parametejgactive k-mer position
in S;). In the E-step we compute the valugs given the current estimates af as
i = i P(Silj)
Y epicP(Sile)

The valuesy, ; represent current estimates of the probabiltyj|.S;). The estimator fory, then
is (M-step;d,—, is the Kronecker deltai,—, = 1 & = = y):

12
x = — i"a_j 41

Proof: The conditional expected value of the log likelihood angbastial derivative with respect
to o, are:

E = > g;logP(Si])) (4.2)
i,J
= Z ¢i.jlog <a55 : H(l — a55)> 4.3)
i,J c#j
oK 1 1
o Oy 1—a,
Q. = Z dij - 512522' (45)
i,J
Qz = Z qij - (1 - 533:53) (4-6)
i,J

Respecting tha®), + @z = n, setting &.4) to zero and solving fot, yields equation4.1). [

Final assignment and integration

The output of the final iteration consists of scopgsfor each positiory in clusterL; as well as
¢;.;» which are estimates of the probabili}(;|.5;). The first is a quantity indicating how well
the experimental data fits the model, wrayk-mer at positionj has generated clustéf. The
latter also incorporates the k-mer activity probabilitg (ihow well does the experimental data
fit the model, when the given k-mer at positiphas generated clustéf). Furthermore, for each
clusterL; we get the most probable k-mer generating this cluster atipog; = argmax{g; ; }

We use these quantities to compute confidence scores forckasthar (Cscore) and each k-mer
assignment (MAscore):
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Cscorgi) = p;g, 4.7)
MAscorg(i) = —=9— (4.8)
> Ui

We integrate multiple experiments (either replicates efshme condition or multiple conditions)
by first running PARma for each experiment individually ahdr taking the generating k-mer
by computing a weighted sum over all; from all experiments (weighted by the respective read
count in the cluster) and taking the maximum. The Cscore ithéime weighted sum of thg, ,,
values and the MAscore the maximal MAscore of all experirmathis position.

4.6 Software availability

PARma is published under the GNU General Public License B anthe project website
http://www.bio.ifi.Imu.de/PARmMa.
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Chapter 5

RIP-chip enrichment analysis

Motivation: In the previous chapter | presented a method to accurateintitly microRNA
targets in PAR-CLIP data. PAR-CLIP is a relatively new expental technique to discover
microRNA targets and involves several experimental stegisnhay potentially fail (see section
2.1.2. RIP-Chip is a more established method, it involves lepsm@mental steps with the cost of
only identifying target genes instead of target sites. Renmore, it inherently involves a control
experiment and, thus, RIP-Chip provides quantitative mesamsents of microRNA targets (i.e.
how many copies of an mRNA are bound by RISC). In any caseCRi[Pand PAR-CLIP both
provide different aspects of microRNA targets and, theggfcomplement each other. Thus, it
is not only important to analyse PAR-CLIP data properly asatided in the previous chapter,
but also to handle RIP-Chip data in an appropriate way. Oultadmoration partners generated
several RIP-Chip dataset®plken et al, 2017, and based on observations made from these
data, | developed analysis methods that address seversssassociated with RIP-Chip data,
as described in this chapter. Equally to PARma, these mstivede also applied to the available
datasets for the analyses presented in the next chapter.

Publication: This chapter has been published in BioinformatiEsHard et al, 20134. Here, |
adapted the layout and made minor corrections to the text.

My contribution: | came up with the ideas and the methods, implemented theodhethrried
out evaluations and wrote the paper.

Contribution of co-authors: Lars Dolken provided RIP-Chip data and helped to revise the
manuscript. Ralf Zimmer supervised the work and helpedviseghe manuscript
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5.1 Abstract

5.1.1 Motivation

RIP-chip is a high-throughput method to identify mRNAs tha¢ targeted by RNA binding
proteins. The protein of interest is immunoprecipitated #me identity and relative amount
of mMRNA associated with it is measured on microarrays. Evea variety of methods is
available to analyze microarray data, e.g. to detect @iffeally regulated genes, the additional
experimental steps in RIP-chip require specialized methétkre, we focus on two aspects
of RIP-chip data: First, the efficiency of the immunopret@pon step performed in the RIP-
chip protocol varies in between different experimentsadtricing bias not existing in standard
microarray experiments. This requires an additional ndimaigon step to compare different
samples and even technical replicates. Second, in cotdrstsindard differential gene expression
experiments, the distribution of measurements is not nbia exploit this fact to define a set
of biologically relevant genes in a statistically meaniurgbay.

5.1.2 Results

Here, we propose two methods to analyse RIP-chip data: Weltfteimeasurement distribution
as a gaussian mixture distribution, which allows us to campalse discovery rates (FDRS)
for any cutoff. Thus, cutoffs can be chosen for any desiredRFBurthermore, we use
principal component analysis to determine the normabrafiactors necessary to remove
immunoprecipitation bias. Both methods are evaluated argelRIP-chip dataset measuring
targets of Ago2, the major component of the microRNA guidéARnduced silencing complex
(RISC). Using published HITS-CLIP experiments performethwhe same cell line as used
for RIP-chip, we show that the mixture modelling approactaigsecessary step to remove
background, that computed FDRs are valid and that the addithormalization is a necessary
step to make experiments comparable.

5.1.3 Availability

An R implementation of REA is available on the project webiittp://www.bio.ifi.Imu.de/REA)
and as supplementary data file.

5.2 Introduction

Gene expression is a highly complex process that is coatrah multiple levels by various
proteins and RNAs. Various experimental protocols have les&éablished to measure expression
levels of MRNASs or proteins, targets of transcription fastor post-transcriptional regulators
and many other parameters of gene expression in a genoneervadner. Each step of such a
high-throughput experiment may introduce systematicrsrfioias) or random variation (noise)
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Figure 5.1: Measurement distributions for our Ago2 RIPpcbkperiment. Boxplots for the
intensity distributions of the measured microarrays dbsdrin the Methods section are shown
in Figure5.1a Altough the intensity distributions of the various arrays properly normalized
using RMA, the enrichment distributions are significantiffedtent from each other (see Figure
5.1b. This is a consequence of differing IP efficiencies and nhestaccounted for when
analyzing the respective data.

into the generated data and specialized methods are ngcesdaal with particular kind of bias
and noise and to answer specific questions using high-thpuiglata.

The most widely used high-throughput experiments are basexicroarrays or next generation
sequencing (NGS) and are designed to measure the amourtroRAIAS in one or multiple
conditions Malone and Oliver201]]. Based on the raw intensities from a microarray experiment
or the sequencing reads from an NGS experiment, severajitmaalsteps are taken, including
normalization, summarization and statistical evaluafiGentleman 2005. There is a vast
amount of literature describing various methods fulfillithgse steps to identify differentially
regulated genedrk et al. 2003 Fundel et al.2008 Marioni et al, 2008 Wang et al. 2009
Irizarry et al, 2004.

Chromatin immunoprecipitation followed by microarray Bsés or next generation sequencing
(ChIP-chip/ChlP-seq) can determine the targets of DNA ibigghroteins and has successfully
been applied to a wide range of transcription factors anidtyeés [Ren et al. 200Q Johnson
et al, 2007 Birney et al, 2007. In addition to the above mentioned analysis methods sacgs
for microarray and NGS data, it has been recognized thatiaddi methods are necessary to
successfully determine target sites on the genome anddhuasiety of methods is described in
the literature Zhu et al, 201Q Ho et al, 2011, Park 2009.
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In recent years it has become apparent that transcripti@tallation is only one part of
the machinery carrying out gene regulation. RNA bindingt@rs (RBPs) and RNA binding
ribonucleoproteins (RNPs) play important roles and arpamsible for splicing, RNA editing,
regulation of translation and RNA degradatiaiften and Ule 2011 Nishikura 2006 Bartel
2009. These processes are highly regulated by sequence-spaaidiing of RBPs or RNPs to
the mRNA. MicroRNAs are small 20-24 nt long RNA moleculesatthave emerged in recent
years as important post-transcriptional regulators vein all known multicellular organisms.
They play important roles in development, tumorigenesikwaral infection. They act by guiding
the RNA induced silencing complex (RISC) to mRNAs by bindiagheir 3’'UTRs in a sequence
specific manner, which leads to inhibition of translatiorRINA degradationBartel 2009.

A powerful experimental high-throughput technique to detargets of RNA binding proteins
or ribonucleoproteins such as RISC is based on immunoptaign (IP) of the RBP or RNP
with associated mRNAs followed by microarray or NGS measar@ (RIP-chip/RIP-seq)
[Mukherjee et al. 2009 Hendrickson et al.2008 Karginov et al, 2007 Stoecklin et al.
2008 Landthaler et a).2008. Targets of the RBP/RNP are enriched in the RIP experiment
in comparison to a control measurement using an unspecifiooaly or total RNA. Novel
techniques including HITS-CLIP, iCLIP and PAR-CLIP alsalude crosslinking of the protein
to the mRNA followed by digestion of the unprotected mRNA mder to determine the precise
location of the target sitedhi et al, 2009 Konig et al, 2010 Hafner et al.2010.

The main question in a RIP-chip experiment is to determiree gét of target genes of the
immunoprecipitated protein. A basic answer is a sortedolistnrichment valueshat can be
computed for each gene by dividing the intensity value inlthdraction microarray by the
intensity in the control microarray. This is very similargtandard differential gene expression
(DE) experiments: Here, differentially regulated geneasloa determined by a sorted listfoid
changescomputed for each gene by dividing the intensity in conditho by the intensity in
condition B. Consequently, RIP-chip data is often analyasitig standard methods borrowed
from the DE setup such as fold chang&tdecklin et al. 2009, t statistics Mukherjee et al.
2009 or moderated t statisticéendrickson et a] 2009.

However, as indicated above, additional experimentalsstegy introduce additional bias: In
contrast to log fold change distributions of DE experimeiag enrichment distributions of
RIP-chip experiments are not normal but typically have hexasight tails (Mukherjee et al.
[2009; Dolken et al.[2010, see also Figur®.1). This is an indication that RIP-chip is able
to separate true targets from the background very effigiehiitre, we exploit these skewed
distributions to estimate the biological significance ofige Note that this is different from the
statistical significance usually computed for DE experitagwhere p-values are related to the
reproducibility of the measurements and not to biologiedvance.

The above mentioned question about the set of target genasRiP-chip experiment only
considers a single condition, in contrast to a DE experimidontvever, especially for RISC-
IP experiments, an additional question is to determinesgifitial microRNA targets between
two or several conditions. For instance, if these cond#@recontrol andtransfected microRNA
[Hendrickson et a).2009, differential targets would be targets of the transfeat@droRNA,

if there areuninfectedandvirus infectedcells, differential targets would include targets of viral
microRNAs Dolken et al,2010. The answer to this question can be given by genes that ai® mo
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enriched in condition A than in condition B, either by chawstwo cutoffs on the corresponding
enrichment values (i.e. at least x fold enriched in A and astydold enriched in B) Dolken

et al, 2010, by computingdifferential enrichment valueas the ratio of the two enrichment
values Hendrickson et al2008 or by a mixture of both approachekdrginov et al, 2007.

All answers to this question necessarily have to compaielanent values (i.e. ratios of intensi-
ties) of the conditions. However, IP efficiencies may varinsen independent experiments, and
it is important to account for this bias when comparing dmment values. Obviously, the same
problem exists for the summarization of replicate measerga(see Figures.1and5.6).

Here, we develop a suite of methods to properly analyze Rip-datasets, which take care
of the unique properties of such data introduced by the IRtFive use a gaussian mixture
model approach to find statistically meaningfull cutoffséarichment values. We show that this
approach can be used to filter unexpressed genes, thatwvsalbocompute false discovery rates
(FDRs) for sets of biological significant genes and that inisact a necessary step to make
experiments comparable to each other. We also addressdhkepr of differing IP efficiencies
by introducing a principal component analysis (PCA) basedhaod to normalize enrichment
distributions in a data dependent manner. We use publiciladle HITS-CLIP data measured
for the same cell linesHiley et al, 20124 as standard-of-truth for evaluation and show that the
proposed methods provide significant improvements for tiadysis of RIP-chip data.

5.3 Methods

5.3.1 Data processing

The RIP-chip data for this paper has been taken from our stfidyerpes viral RISC-IP
experiments Dolken et al, 2010. Since the publications of the original study, additional
replicates have been measured and all chips including theomes have been processed as
described Dolken et al, 2010. Briefly, RNA from Ago2-IPs and either BrdU-IPs or total
RNA has been measured on Affymetrix GeneST arrays and alblede have been normalized
using RMA [Irizarry et al, 2003, log, enrichment values have been computed by subtracting
the control-IP/total RNA log intensity from the Ago2-IP lagtensity for each probeset and
each replicate experiment. Then, probesets have been thapssembl genes by using the
annotation derived from Biomart. HITS-CLIP clusters (ibéggh confidence microRNA target
sites) used to evaluate the mixture model approach for théree Jijoye has been downloaded
from the supplementary data Riley et al.[20124. We also repeated the same analysis using
PAR-CLIP data for Jijoye that has been measured and anabzelkscribed itHafner et al.
[201Q in the lab of Markus Landthaler at the MDC Berlin (will be dighed elsewhere).

5.3.2 Mixture model fitting

Gaussian mixture models for sets of log enrichment value§tted using the Mclust package in
R [Fraley and Raftery2003. Z-scores for each gene can then be computed using the toarid
distribution:
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6(9) — [bg
Ubg

zscore(g) = (5.1)
Here,e(g) is the log enrichment of gene gy, ando,, are the mean and standard deviation of the
background component of the gaussian mixture model (whilalways take as the component
with the smaller mean). The false discovery rate (FDR) foutaf€ c is defined as the expected
fraction of background geneg with e(g,) > c under all geneg with e(g) > c:

FDR(e) = =Wl g (5.2)

[{gle(g) > c}|
cdfyg 1s the cumulative distribution function of the backgrouminponent of the mixture model
and|BG| the expected number of background genes (estimated by tttarsmmodel). This is
mathematically equivalent the Benjamini-Hochberg migtig@sting correctiongenjamini and
Hochberg 1991 for the onesided p-values derived from the z-score&it) (multiplied with the
expected fraction of background genes.
For the running window approach (see sectoh ), we first selected a window af genes with
the smallest Ago2-IP intensities and fitted the mixture nh@iitst window). Then we removed
thes genes with smallest Ago2-1P intensities and added thes&xtallest still unselected genes
and again fitted a mixture model. This step was repeatedthetivindow reached the top Ago2-
IP intensities. For the analyses we chase- 1000 ands = 20.
We use two metrics to evaluate the fit of background and takigeibutions:

d(bg,t) = Ht — Hbg (5.3)
Ubg
skew(E) = —logio(ksp(E,—F)) (5.4)

bg andt are the background and target components of the mixture Incepectively,E is

the set of log enrichment values used to fit the mixture model &rg(E, —F) is the p-value

of the Kolmogorov-Smirnov test comparing the distributafn® to the distribution of negated
enrichment values E. Thus, the distance scotébg, t) measures the distance of the background
and target distributions with respect to the width of thekgmound distribution, whereas the
asymetry scorekew(F) measures the skewness of the distribution without the nedd &
mixture model.

5.3.3 PCA

Principal component analysis is performed using the fencprcomp in R. When there are
k experiments/replicates and, therefatdpg, enrichment values per gene, PCA is applied to
the k-dimensional space of genes. The first principal comporsetita direction of the greatest
variance, and is used to compute the summary enrichmenrg ¥gjyi of gene g by taking the
dot product of the replicate measurement z-scoteg), ..., 2x(g)) and the direction of the first
principal componenPC'1 :
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elg) = (z1(9), .-, z(9)) - PC1 (5.5)

The geometrical interpretation of this weighted averagbefeplicate enrichment values is that
the dot product does an orthogonal projection ofitlitmensional poing onto the first principal
component and measures the distance to the origin.

Itis not necessary to center the points before PCA, sincearfeon PCA on the z-scores derived
from the mixture modelling approach (séel)) the point cloud is naturally centered at the means
of the background distributions and centering at the oyerahn may not be appropriate. Also,
we perform PCA only on targets (as defined by an FDR of 1%). iBmecessary, because if the
number of background genes is much higher than the numbarggttgenes, stochasticity in the
background could mask the effects in the target genes to sataat.

Differential targets will deviate from this vector in a sgecdirection: E.g., if we have two
replicates of two conditions A and B and, therefore, an émient vector(z,,, za,, 26, , 26, )
any gene that is target specifically in A has greater enrictirime A than in B: z,, and z,,

is greater than,, andz,,. Thus, if there are enough differential targets, the sequittipal
component will point into the direction of the deviationstlbéir enrichment vectors. Therefore,
the summarized differential enrichment valéigg) can be computed similarly to the overall
summary enrichment value in equatiérb by taking the dot product of the z-score vector
(z1(9), ..., zx(g)) and the direction of the second principal componear :

ea(g) = (z1(9), ..., z1(g)) - PC2 (5.6)

Note that both the enrichment valdgy) and the differential enrichment valag(g) incorporate
a linear normalization that removes bias due to differingffitiencies.

5.4 Results

5.4.1 Selectrelevant genes

The first step in our analysis of RIP-chip data is the filteriginexpressed genes. On modern
microarrays such as the Affymetrix GeneST arrays used fodata, probesets against all known
human genes are available. Even if virtually all probesetgemon-zero intensities, we can
expect that only a fraction of all genes is expressed in aifp@ondition. We noticed that
the asymmetry of the log enrichment distribution is not obskele over the whole range of
IP intensities (see Figures2aand S2). For low intensity genes, the distribution indeeik$o
normal, which is expected for a set of genes that is not or simot expressed. Therefore, we
employed a running window approach for fitting the mixturedelqsee Methods) and evaluated
each window with respect to the distance of the two companehthe fitted model and the
extent of asymmetry (see Figu#ke7). At intensity valuesx 5 a significant increase in both
scores was observable. We chose to use all genes above msitintutoff whered(bg,t) > 1
andskew(F) > 2, i.e. where the means of the two mixture components are sitdee standard
deviation away from each other and where the asymmetry begsignificant with p-value 0.01.
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Figure 5.2: Selecting expressed genes. FiguBashows a density scatterplot of the joldP
intensities against the lggnrichment values of all genes for the first Jijoye RIP-clejplicate.

In Figures5.2band5.2¢ the distance and asymmetry scores are plotted for all wwsdor
replicate one and three of the DG75-eGFP experiment. &gdrtom intensity values of 5, the
distribution seems to be a mixture of two normal distribnsdn contrast to the first replicate, the
third does not show the expected behavior of the mixture @fck@round and target distribution
which was a consequence of poor RNA quality in this experiniEme running window mixture
models for the three vertical lines indicated in FigGr2aand5.2bare shown in FigureS.2d-f.

In each plot, the observed distribution in black togethehwhe mixture components (green and
red, respectively, densities scaled to their estimatettitnas) is shown. For quality control, the
sum of both scaled component distributions is shown in bdugedl as the remaining distribution
after subtracting the fitted background from the obserumati@s dashed red line. Note that the
observed distribution itself is normal for the low integsitindow in Figure5.2d but starting
from intensity values ok 5, the distribution is indeed a mixture of two normal disttibuas.

We performed this running window approach for all previgysliblised RIP-chip experiments
from Dolken et al.[2010 as well as for two additional replicates of the control citle
DG75-eGFP and the EBV infected cell line Jijoye, respettiveor the additional DG75-eGFP
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Figure 5.3: Background subtraction is necessary. Figrdgaand 5.3b show the enrichment
distributions of expressed genes in the four Jijoye RIP-chplicates. Raw enrichment values
indicate that the IPs of replicates three and four were mificeemt based on the number of genes
enriched more than two fold (see corresponding inset).rAfeekground subtraction however,
replicates one and two show a larger fraction of enrichedegeReplicates one and two have
significantly better correspondence to the HITS-CLIP expent performed in Jijoye, which
shows the need for background subtraction.

replicates, the microarrays showed poor RNA quality andyapgour running window approach
to these bad quality experiments indeed did not yield a mextaodel (see Figurg.29. Thus we
can apply our method also for filtering poor quality expenmtsdrom a dataset and we excluded
the two additional DG75-eGFP replicates from further asesyaccordingly.

We also noticed that the background distribution is not thenes over the whole spectrum
of intensity values. Therefore, we computed z-scores foh ggene using mean and standard
deviations obtained from the running window approach. Tifisery similar to well known
nonlinear normalization technique¥gng et al, 2003, with the difference that the model for
normalization is not fitted to all data but only to the backgrd.

5.4.2 Determining microRNA targets

Computing z-scores from the raw enrichment values baseleofitted background distribution
can be interpreted as a subtraction of this background. thatethe background here does not
consist of the unexpressed genes, but of the expressed thatrgeted genes. This background
subtraction step can have a great effect: For the four Jidfpechip replicates, we observe that
without subtraction, it seems that the IPs of replicatesdrand four were more efficient than
of the other two replicates, since there are more geneshetimore than two fold, for instance
(see Figures.3aand5.3b). However, after background subtraction replicates omktan show

a larger fraction of enriched genes.

Obviously, if an IP was more efficient than another, its irgthcanking of genes will better
predict a gold standard of microRNA targets. HITS-CLIP isexperimental technique that
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is able to identify target sites of microRNAs with high comdiite Chi et al, 2009. Thus,
using the publicly available HITS-CLIP data for JijoyRiley et al, 20123 we can construct

a gold standard by taking all genes as true targets that hdeasin HITS-CLIP target sites.
Independent on the choice af replicates one and two induce rankings that are in better
agreement with HITS-CLIP data (see Fig&8&cfor n = 1), and thus, background subtraction

IS a necessary step. We also repeated this analysis ushmgus®e, unpublished PAR-CLIP data
for Jijoye (~ 14.000 sites om- 5500 genes, will be published elsewhere) leading to the same
conclusions (data not shown).

Furthermore, we propose that the fitted background digtabiallows to compute valid false
discovery rates (FDRs) for microRNA targets. For a cutpthe FDR is defined as the expected
fraction of nontarget genes. Obviously, a nontarget geneldicontain less HITS-CLIP target
sites than target genes on average. If we compute the aveuageer of HITS-CLIP target sites
per gene for the set of targets defined by cutafin the RIP-chip data, the dependence on the
corresponding FDR should thus be linear with a negativessIbpr instance, if the FDR is twice
as high, we expect twice as many nontarget genes. Theréferayerage number of HITS-CLIP
target sites per gene should decrease by a factor that iadepeon the true average number of
HITS-CLIP targets sites per target gene and nontarget gemell four replicates the plot of the
FDR against the fraction of HITS-CLIP target sites per garreughly a straight line (see Figure
5.4) and even if the enrichment/z-score distributions areeqgifferent, the slopes and intercepts
of linear fits to all four plots are very similar to each otheeé Figure.5).

This also allows us to estimate the average number of HITER@rget sites per target gene and
nontarget gene by taking the value of the linear fit at FDR=0f% BRDR=100%, respectively.
Based on the RIP-chip data as a reference, we can estimatelffa-CLIP producesz 0.8
target sites per expressed target gene=and target sites per nontarget gene (see Figuse

5.4.3 Taking replicates into account

As indicated above, IP efficiencies between replicate exparts may be very different from
each other. These differences introduce bias into suchesetzand no RIP-chip study known to
us has properly accounted for that. Note that our mixtureehapproach also cannot remove this
bias from RIP-chip data. The problem becomes obvious wherisually inspect scatterplots
across replicate enrichment values/z-scores.

For replicates one and two of our Jijoye RIP-chip data, thenral@ud of target genes roughly
scatters around the main diagonal in Figbréa whereas for the comparison of replicates one
and three, the diagonal is quite far away from the main clétigufe5.6b). The canonical way
for summarizing replicates is to take the unweighted meath@fenrichment values/z-scores.
This can geometrically be interpreted as an orthogonakptigin onto the diagonal vectar=
(0.25,0.25,0.25,0.25) and measuring the distance of the projected point to thénofTdus, all
four-dimensional points lying on any hyperplane orthoda@oa would get the same summary
value. Such a hyperplane would not cut the main cloud of taggees in the scatter plot of
replicates one and three orthogonally, which is only a cgnsece of different IP efficiencies.
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Figure 5.4: Computed FDRs are valid. The false discovemysraf the four Jijoye replicates
are plotted against the average number of HITS-Clip clagter gene. All four show a roughly
linear behavior suggesting that the FDR is valid. Furtheembnear fits to each of the plots
are very similar to each other, despite of quite differestare distributions (see Figu&e3h),
which allows us to estimate the average number of HITS-@ligdt sites per RIP-chip target and
background gene (see main text for further details).
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Figure 5.5: Average number of HITS-Clip target sites per-Bhip background and target gene.
The linear fits at FDR=0% and FDR=100% in Fig&r.& are estimates for the number of HITS-
Clip target sites in RIP-chip target genes and backgroumégerespectively. Even if the IP
efficiencies were quite different (see Figii.4), the estimates of 2.8 target sites per expressed
target gene angt 1.7 per expressed background gene are remarkably similar.

However, the first principal component of this point cloudimies such orthogonal hyperplanes
and we use the components of the corresponding rotatiomvectompute a weighted mean
accounting for all linear effects of differing IP efficiersi.

We can evaluate this additional step again by using the HOL8? data as reference. We consider
the differences between each normalized summary valuerendarresponding unnormalized
value. The difference for HITS-CLIP sites containing gersestatistically significantly greater
than for other genesp(< 10~!4, Kolmogorov-Smirnov test, see Figuke6d, and the more
HITS-CLIP targets sites are found for a gene, the more pnooediis its positive change.

5.4.4 Determining differential microRNA targets

In order to find differential microRNA targets, experimemtsdifferent conditions must be

compared, i.e. genes must be identified, that are more eariclone condition in comparison to
the other. Obviously, a similar problem as in the summanpopabf replicates plays a role: How
can we account for differing IP efficiencies if we comparerfoeplicates of the EBV infected

cell line Jijoye to the two replicates of the control celdiDG75-eGFP?

We can extend our method for summarizing replicates to tfferdntial problem: The first

principal component corresponds to the direction of gstatariance, which is the direction
of common targets under the assumption that there are enougimon targets (both are B
cell lines). Differential microRNA targets exclusive tgayie should have positive enrichment
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Figure 5.6: Differing IP efficiencies require normalizatibefore computing summary values.
In contrast to replicates one and two of the Jijoye RIP-clipeements, where IP efficiencies
are very similar (see Figurg.6g, replicate three is different (see Figusech). Normalizing
replicates using the first principal component (PC1) sigaiftly improves the summary z-
score with respect to HITS-CLIP data as reference: Therdifilee of the normalized score to
the unnormalized score is significantly greater for gendbh WiTS-CLIP target sites (colored
distributions) in comparison to all differences (blacktdi®zition). The improvementis even more
pronounced for genes with multiple HITS-CLIP target sitese(Figure.69.

values in the Jijoye RIP-chip replicates and smaller valn€3G75-eGFP. These targets induce
variance into the corresponding direction of the six-disienal space, such that the second
principal component corresponds to the IP efficiency noadldirection of differential targets
(see Figuré.73.

In order to compare the PC2 normalized differential enriehtrvalues to the unnormalized
differential enrichment (i.e. subtract the enrichment me&d DG75-eGFP from the mean of
Jijoye), we exploit the fact that microRNAs are able to dozgulate expression of target mMRNAs
[Bartel 2009 Guo et al, 2013 and that mRNA levels were measured as well in the RIP-chip
experiment:z fold downregulated genes get consistently and signifigamtiher scores after
normalization as compared to all other genes, independetiteochoice ofr (see Figures.7).
Thus, after normalization, significantly more RIP-chipgets are downregulated than without
normalization (independent on the particular thresholddut define RIP-chip targets and
downregulated genes).

5.5 Discussion

A similar approach to our gaussian mixture modelling (GMM)shalready been used in
[Mukherjee et al.2009, however, GMM was applied to summarized enrichment vahues

log odds ratios (LOD scores) were computed as the ratio aftbescaled mixture components.
LOD scores were then used in two different ways: First, theyeadirectly subjected to gene
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Figure 5.7: Differing IP efficiencies require normalizatioefore computing differential targets.
The second principal component in Fig&r&ais able to discover the experimental structure. Its
loadings can be used as weights to compute a differentialenent value that is normalized for
different IP efficiencies, in contrast to the standard wagudftracting the mean log enrichment
in DG75-eGFP from the mean log enrichment in Jijoye (comeasing to weights indicated

in red). The difference distribution of the normalized dr#ntial enrichment values and the
unnormalized ones is shown in Figl& h Differential targets are expected to be downregulated,
and indeed, the difference is significantly greater tharkgpaomind for downregulated genes. As
illustrated in Figures.7¢ this effect is more pronounced the higher the downregarias.

set enrichment analysis (GSEASUbramanian et al2009, where they have no advantage over
directly using enrichment values (since the weighted Kgorov-Smirnov statistic used for
GSEA is non-parametric and only sensitive to the rankinghef genes). Second, the authors
used a cutoff of LOD-0 in order to define a set of targets. However, choosing a fchasfed
on the LOD is still arbitrary and not statistically meanialgin contrast to our false discovery
rates. If we used the LOD to define a cutoff, we would get FDRgireg from5% to 15% in our
experimental dataset.

We could show that our refined mixture modelling approach dea®ral advantages: First, it
allows us to filter unexpressed genes. When comparing twdittons (e.g. virus infected cells
expressing viral microRNAs vs. non-infected cells) expras of a gene targeted by cellular
microRNAs below the detection limit of the microarray in obat not the other cell line
would result in the misinterpretation of this to be a targethe viral microRNAs. Second, for
experiments with poor IP efficiency, we observed extremelyrglistance and asymmetry scores
over the whole intensity range and could remove these bddtatgs from further analyses.
Third, it helps to compare experiments to each other (sag&tgy3¢ and finally, we can compute
valid FDRs.

Furthermore, the comparison of the RIP-chip FDRs to HIT3FCHata revealed important
properties of both the RIP-chip and HITS-CLIP techniquesthBare designed to identify
microRNA targets and naturally, they agree significantly(2.2 x 10~!¢, Kolmogorov-Smirnov

test), a fact that is also reflected in the negative slope efittear fit to the FDR against sites
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per gene plot. However, the agreement is not perfect and weate an average number of
~ 0.8 HITS-CLIP target sites per RIP-chip target gene andvof.2 per RIP-chip nontarget
gene. Even if HITS-CLIP target sites may be erroneous an@€he techniques may implicate
additional biasKonig et al, 201Q Kishore et al.2011], we expect that not all of the 0.2 sites
per background gene are true errors: Such inconsistenag®edue to differing experimental
steps (e.g. different antibodies used for IP) or due to wifiees the Jijoye cell cultures have
accumulated in the two laboratories since the cell line lenkestablished. Also, since HITS-
CLIP does not control for target mRNA abundance, it may finees®l weak sites on highly
expressed genes that are biologically irrelevant (i.e.cootributing significantly to regulation
of its expression). Such a gene should not be enriched in&RPexperiment and could explain
many cases of HITS-CLIP sites on background genes. Thusjie@elP techniques have several
advantages (e.g. they are able to identify target sitesansof target genes), RIP-chip is still a
useful complementary method.

The second, novel method introduced in this paper is to useipal components to normalize
for different IP efficiencies. Evaluation using HITS-CLIRtd or the differential expression
of target genes shows that the normalization improves tesignificantly. The normalization
proposed can only account for linear bias between expetsné&his very lenient normalization
appears to be sufficient, since affine offsets are alreadgvedby the mixture model approach
and nonlinear effects are not recognizable in a visual ictspe

Our proposed methods do not include a way to compute statisiignificance, e.g. like a t-test
for standard differential gene expression experiment. él@n this can be accomplished in a
straight-forward way, since all available tests coulddiebe used after our linear normalization
has been applied to a dataset.

5.6 Conclusion

In this paper we presented methods we developed to analyRehbd data. In comparison

to standard differential gene expression experimentsatititional immunoprecipitation step

introduces special requirements for the data analyist,Firs use gaussian mixture modelling
(GMM) to determine biologically significant target genesgdasecond, we use a linear nor-
malization technique based on principal component araligsiremove bias introduced by
the immunoprecipitation. The evaluation of both methodsigisndependent data showed a
significant improvement in comparison to standard appresichhe background of not enriched
genes can be removed, valid FDRs can be calculated and theacalility of both replicates and

differential experiments is improved.
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Chapter 6

Widespread context-dependency of
microRNA-mediated regulation

Motivation: In the previous two chapters, | introduced two methods fav data analysis
of PAR-CLIP and RIP-Chip data, respectively. As indicatedhe introduction (see section
1.1.1), raw data analysis is an important step in systems biology eonverts raw data from
an experiment to biological information. However, in ordeunderstand a biological system as
a whole, this information must be interpreted. In this clesptdescribe how microRNA related
data can be interpreted with respect to different cellulantexts. There were two specific reasons
that lead me to consider this specific aspect of microRNAmatetiregulation: First, one of the
first questions that came up when the PAR-CLIP data from ollatwaration partners became
aVvailable was how big the overlap between our dataset amdhan already publisheKSHV
related PAR-CLIP dataset igjottwein et al. 2011. This question originally was about data
guality and sounds quite easy to answer at first. Howeveaahit is not, which has to do with
the way how an overlap should be defined for PAR-CLIP datasetsvhat the implications are
of any size of overlap. Second, during that time, the mairspted the ENCODE project was
published in several papers in Nature, Genome Research ambiBe Biology and one of the
most intriguing results was that transcriptional regulatiis heavily dependent on the cellular
context. So the main question was, whether and to whichtetktisns also true for microRNA-
mediated regulation. Importantly, in our project, variodatasets have been generated that
allowed me to investigate and resolve this question.

Publication: This chapter has been submitted for publicatid&rhard et al, 20134. Here,
| adapted the layout and restructured parts of the text tarporate important parts of the
Supplementary material of the submitted manuscript intbd¢hapter.

My contribution: | analyzed PAR-CLIP, RIP-Chip and mass spectrometry dathaame up
with the idea of context-dependency of PAR-CLIP targessltearried out all computational
and statistical analyses, produced plots and wrote the pape

Contribution of co-authors. Lukasz Jaskiewicz and Mihaela Zavolan performed PAR-CLIP
experiments, Georg Malterer, Diana Lieber andrgen Haas provided SILAC measurements,
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Lars Dolken provided RIP-Chip and 4sU-tagging datasets and ltetpeevise the manuscript.
Ralf Zimmer supervised the work and helped to revise the staip.
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6.1 Abstract

Gene expression is regulated in a context-dependenttypal-specific manner. Condition-
specific transcription is dependent on the presence ofdrigti®n factors (TFs) that can activate
or inhibit its target genes (global context). Additionattiars such as chromatin structure,
histone or DNA modifications also influence the activity ofliidual target genes (individual
context). The role of the global and individual context fasptranscriptional regulation has
not systematically been investigated on a large-scale aipadorly understood. Here we show
that global and individual context-dependency is a peweatature of microRNA-mediated
regulation. Our comprehensive and highly consistent eéatkem several high-throughput
technologies (PAR-CLIP, RIP-Chip, 4sU-tagging and SILA®dvides strong evidence that
context-dependent microRNA target sites (CDTS) are asuénetjand functionally relevant as
constitutive target sites (CTS). Furthermore, we founddludal context to be insufficient to
explain the CDTS and that RNA binding proteins provide imdiiial context that is an equally
important factor. Our results demonstrate that similar Eeriiediated regulation, global and
individual context-dependency are prevalent in microRMAdiated gene regulation implying
a much more complex post-transcriptional regulatory ndtwihan currently known. The
necessary tools to unravel post-transcriptional reguiatand mechanisms need to be much more
involved and much more data will be needed for particular tygles and cellular conditions
to understand microRNA-mediated regulation and the cardtegendent post-transcriptional
regulatory network.

6.2 Introduction

Regulation of gene expression is highly context-speciftee ENCODE project@onsortium
2012h provided convincing evidence that whether or not a spetiéiascription factor (TF)
binds to a specific binding site (TFBS) is not only dependenhe sequence of the binding site
but also on its chromatin staté/png et al. 20123, on DNA methylation Wang et al. 20123,

on other DNA binding factorsfanez-Cuna et al2013 and numerous additional factors, which
are difficult to measure and predict. All these factors foha so-calleccellular contextthat
influences the expression level of genes.

Gene expression is not only regulated at the level of trgptsmn but also post-transcriptionally
in various ways of which regulation mediated by microRNAsie of the most prevalenHp
and Hannon2004. MicroRNAs are 20-24 nt long non-coding RNAs that have bémamd in
animals and plants. They play a pivotal role in developnmiemorigenesis, the immune system
and during viral infections (for a review s&artel[2004). Within the RNA induced silencing
complex (RISC), microRNAs are responsible for target redtogn by binding to target sites,
often located in the 3'-UTR of mRNAs. This is predominantlgdmted by the so-called seed
region (nucleotides 2-8 of the microRNA). In general, RISQses downregulation of the target
MRNA either by inhibiting translation or promoting degréida [Bartel 2009. Neither the exact
mode of binding nor the mechanisms of downregulation areptetely understooddjuranovic
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et al, 2012, Eulalio et al, 2008 Guo et al, 2010 Kozak 2008 Mishima et al, 2012 Meijer
etal, 2013.

Computational prediction of microRNA targets is a difficalisk [Thomas et a). 2010
Sethupathy et 812006 Ritchie et al, 2009. This is a consequence of the low specificity of seed
matches alone: There are several lines of evidence suggését additional factors such as target
site location (srimson et al.2007, additional basepairing at the microRNA 3’ erBrennecke
et al, 2003, target site accessibilityertesz et al.2007, other RNA binding proteinsJacobsen
etal, 2010, microRNA and mRNA copy numberBgn-Moshe et a]2013, additional unknown
factors or interplay between any of these play importargsah distinguishing functional from
non-functional target sites. Interestingly, several esthadditional factors are not static but may
change dynamically: For instance, dependent on which RMWibg proteins are expressed at
what level in a given cell-type, RISC may or may not bind at dgaie binding site. Similarly
to transcription factors, microRNAs are therefore likedyeixhibit their regulatory function in a
context-dependent manner.

Several examples of context-specific microRNA-mediategulagion can be found in the
literature (for a review sePasquinelli2012). Bhattacharyya et a[2004 identified the RNA
binding protein HUR as a derepressor for miR-122 regulatiotime CAT-1 mRNA. In normal
hepatocarcinoma cells CAT-1 is repressed by a miR-122ttaitgan its 3'-UTR. Under different
stress conditions, HuR is released from the nucleus inteyteplasm which abolishes CAT-1
repression. The exact mechanism however remains uncteeguingly, HUR has also been
implicated in activating a target site of the microRNA letrthe 3’-UTR of MYC [Kim et al,
20094 which indicates that HuR can both induce and prevent mibl&Rnediated regulation.
In addition to HUR, DND1 Kedde et al.2007 and Pumilio-1 Kedde et al.201QJ have also
been identified to influence microRNA regulation. There mayokher RNA binding proteins
that interfere with or facilitate microRNA/target intetamns.

These examples illustrate that the presence of a functitargkt site is not sufficient for
regulation. It may be active under certain conditions but-finctional in a different context.
Presently, our knowledge about context-dependent micfoRlgdiated regulation is based on
few examples and the underlying molecular mechanisms amypanderstood.

By immunoprecipitation of microRNA/target complexes @simonoclonal antibodies to RISC
components followed by high-throughput sequencing of ttaégmn-protected microRNA target
sites, the complete targetome of cellular and viral micréRINas become accessible. More than
10,000 putative microRNA binding sites, so called clustars obtained in a single HITS-CLIP
(high-throughput sequencing of RNA isolated by crosshigkimmunoprecipitation) or PAR-
CLIP (photoactivated ribonucleotide-enhanced crosslmkmmunoprecipitation) experiment.
Although the annotation of the responsible microRNA to amiified cluster still leaves room
for improvement, more than 75% of microRNA target interaaes can be correctly annotated
thereby allowing in-depth analyses of microRNA regulatoetworks {Gottwein et al. 2011
Skalsky et al.2012 Haecker et a).2012 Riley et al, 20121.

To study context specific microRNA-mediated regulation, ge@erated Ago2-PAR-CLIP data
from two human B-cell lines. In addition, we re-analyzed t&oently published sets of Ago2-
PAR-CLIP data from two different human B-cell line&¢ttwein et al. 2011. These four
cell lines represent different stages of B-cell developnaer are either infected by Kaposi’'s
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sarcoma-associated herpesvirus (KSHV), co-infected i B&HV and Epstein-Barr-Virus
(EBV) or not infected. Thus, each cell line provides a disticontext for microRNA-mediated
regulation. All datasets were re-analyzed using a new #lgorcalled PARmakrhard et al.
20134. PARma considers the topology of the microRNA/targetriattéion and the position of
UV-light induced cross-links in more detail than statetloé-art methods and provides quality
control scores for both, the identification of microRNA tatrgite clusters and for the annotation
of the interacting microRNA to these sites. For two of themar fcell lines, we generated three
additional data sets including RIP-Chip, 4sU-taggingxel RNA half-lives and large-scale
SILAC-based proteomics. This allowed us to comprehengiaablyze the effect of context-
dependent microRNA/target interactions on the recruitroéthe target mMRNAS to Argonaute-2
complexes, on target RNA stability and on target proteirelevBy considering viral as well
as host microRNAs, we investigated both microRNA/targétriactions that coevolved within
a species as well as interactions of an exogenous microRNAemdogenous target sites. The
results provide compelling evidence that context-depeaglef microRNA-mediated regulation
is not restricted to a few examples but is a widespread anergkieature of post-transcriptional
regulation mediated by both cellular and viral microRNAs.

6.3 Results

6.3.1 Differential analysis of PAR-CLIP data

To comprehensively study regulation of cellular gene esgicn by both cellular and Kaposi’'s
sarcoma-associated herpesvirus (KSHV)-encoded micraRMWa applied Ago2-PAR-CLIP to
two human B-cell lines, the body cavity based lymphoma d¢e# BCBL1, which is latently
infected with KSHYV, and the Burkitt lymphoma cell line DG7&hich is KSHV negative.
Applying PARma Erhard et al.20134 with stringent criteria (see the Methods), we identified
15,577 clusters, 12,333 of which mapped to known transc(fisembl v60).

In order to assess the quality of the PAR-CLIP datasets, vgé domputed the positional
distribution of all target sites in mRNAs (Figufelg. Target sites of viral microRNAs shared
the well described features of cellular microRNA targeesitThey preferentially bind to the
3’ untranslated region (3’-UTR) and rarely to the 5’-UTR ddriscripts Grimson et al.2007,
Hafner et al. 2010. Within the 3'-UTR, target sites tend to accumulate at tbe)beginning,
i.e. immediately after the stop codon, and at the transemgk, i.e. immediately upstream of
the poly-A tail [Grimson et al.2007. We furthermore checked the accuracy of the microRNA
assignment to target sites by confirming that virtually nadse mapped to KSHV microRNA
target sites in the KSHV negative cell line DG75 (a featurat tis not used by PARma to
assign microRNAs; see Figug1lbh. The few instances with random reads in DG75 may
nevertheless be bona-fide KSHV microRNA target sites: As bb&eoved random reads spread
across a multitude of transcripts at low frequency, theads@resumably result from infrequent
unspecific immunoprecipitates or insufficient removal otkgaound total RNA rather than
microRNA-specific signatures. This is further supportedabsignificantly lower frequency of
T to C conversions and lower consistency across replicatabése reads (Figu@lb).
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Figure 6.1: Validation of PAR-CLIP experiments. In Figuelag the distribution of relative
positions of target sites on mMRNAs is shown. The x-axis regmes the average length of 5’
untranslated regions (5’'UTR), of the coding regions (CD®) af the 3’ untranslated regions of
all transcripts with at least one PAR-CLIP cluster. Eachdraipt was divided into 60 bins and
the relative frequency of target sites falling into eachibishown on the y-axis. The data clearly
illustrate the preferences of target site in the 3'UTR as parad to CDS and 5’UTR. Viral
microRNAs have the same preferences as cellular microRNABigure 6.1bthe normalized
number of reads in each cluster (rows) for each of the inddgr@nPAR-CLIP experiments
(columns) is shown for KSHV microRNA target sites in the f&R&R-CLIP libraries. KSHV
negative cell lines (columns 1 and 2) almost exclusivelyehaw reads, whereas for KSHV
positive cell lines, dozens to hundreds of reads are obdgmetarget site. Replicates are highly
correlated indicating high reproducibility. The additsdrannotations on the left side indicate
the part of the transcript, where a cluster is located (a@abgUTR; yellow: coding; green: 3'-
UTR; gray: not located on known mRNA) and the expression ettanscript in all experiments
(red, at least 2-fold lower expression than the mean exjoresslue for this transcript across
all experiments; light red, at least 1.4-fold lower expr@sshan the mean; light blue, at least
1.4-fold higher expression; blue, at least 2-fold highgarezsion).

We further validated our PAR-CLIP dataset using publishegd dor the same cell lines: (i) PAR-
CLIP targets are highly consistent with RIP-Chip dddélken et al[2010, Figures6.2a and b),

(i) KSHV microRNA targets are selectively enriched in BCBRnd not DG75 in the RIP-Chip
experiments (compare Figurég2a and b) and (iif) PAR-CLIP target sites lead to a measurable
reduction of target mRNA half-lives (Figu&2g.

To be able to perform a more in-depth analysis on KSHV micraRatgets in human B-cells, we
also included recently published PAR-CLIP data from twoitioldal B-cell lines, namely BC1
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Figure 6.2: Comparison of PAR-CLIP experiments with avddadatasets. Figure®.2aand
6.2b show the log RIP-Chip enrichment distributions of mMRNAs only contamitarget sites
of cellular microRNAs, only containing KSHV microRNA targsites and containing target
sites from both cellular and KSHV microRNAs in the uninfettll line DG75 and the KSHV
positive cell line BCBL1, respectively. KSHV targets areiened in BCBL1 but not in DG75.
In Figure6.2¢ the mRNA half-life ratios are shown for the same sets of gersein Figures.2a
and b. The half-life of mMRNAs with KSHV target sites is sigo#ntly reduced in BCBL1.
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Figure 6.3: Comparison of PAR-CLIP datasets. Fighu@aillustrates the number of target sites
observed only in individual cell lines (outermost labeledtles), in two cell lines (circles on
the edges between cell lines) and in all three cell linestéeetircle), for KSHV microRNA
target sites. Relatively few target sites appear to be eativmultiple cell lines. Figurés.3b
summarizes all pairwise overlaps for all clusters in alladats. The Jaccard index)(is the
number of clusters in the intersection divided by the totainber of clusters in any of the
two experiments. Jaccard indices of about 70% for all repdianeasurements indicate high
reproducibility, whereas comparisons across cell linesstelatively low overlap { < 40%)
(see also Figuré.4).

and BC3 [Gottwein et al,2011]. We re-analyzed all datasets using PARma, which yielde@Z8L
clusters, 16,425 of which mapped to known transcriptsigaingly, the overlaps of targets sites
of both ubiquitously expressed cellular and KSHV microRN#ere surprisingly small (Figure
6.3band6.39. Such extreme differences of called target sites may beaaegperimental bias
or context-dependency, i.e. a major fraction of microRNAyéa sites is only active in some of
the cell lines considered.

6.3.2 Technical bias

When analyzing high-throughput data obtained from expenits performed in different lab-

oratories a certain extent of differences in between givata dsets can be expected. In
our case, distinct clusters of target sites may also be comesees of erroneously assigned
microRNAS, bias introduced by differing sample preparatizethods or insufficient sequencing
depth/sequencing library complexity.

Differing sample preparation methods are the most likelyseaof bias and differences in

microRNA targets obtained by PAR-CLIP data. As such, the $&N#sed to trim the Argonaute-

2 protected microRNA target sequences has recently beemstoobe a major source of bias
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Figure 6.4: Correlations of PAR-CLIP cluster quantificasoFigure6.4ashows the normalized
guantifications of all target sites of kshv-miR-K12-4-3pascatter plot. Quantifications are
highly correlated. In Figur&.4h the distributions for all microRNAs of Spearmans(non-
parametric correlation coefficient) are shown for each ipts€omparison of KSHV positive
cell lines. Replicate correlations are drastically higtiean between experiment correlations,
indicating context specific microRNA targeting.

[Kishore et al. 2011. Other sources may include differing immunoprecipitatefficiencies,
RNAse treatment times, sequencing adapters or any othght slariation in the PAR-CLIP
protocol which may all result in a target site to be identifiedne experiment but not in another.
Such bias could be controlled for, if PAR-CLIP data for onenmre cell lines were available
that haven been measured in multiple labs. And only conisigéne high correlation of replicate
measurements does exclude such technical bias. Nevaghale can, to some extent, use the
inverse argument: BC1 and BC3 were analyzed in the same Iab tiee same protocol. Thus,
if technical bias was responsible for poor correlation axausive sites and not context-specific
microRNA targeting, the correlation between BC1 and BC3usthbde as high as for replicate
experiments of either cell line. As illustrated in Figwetlh this is not the case. However, the
correlations between BCBL1 and BC3 are even lower than i€ 1 and BC3, for instance.
There may be two reasons for that: Either BC1 and BC3 are moréasto each other than
BCBL1 and BC3 with respect to their cellular context for noiRNA-mediated regulation or
between-lab comparison of PAR-CLIP target sites is inda#idenced by technical bias to some
extent. But nevertheless, technical bias cannot explamnetatively low correlations between
BC1 and BC3 which provides first evidence that the observiéerdnces may indeed not only
be due to technical bias.
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Insufficient saturation of PAR-CLIP libraries or sequemgcdepth may result in seemingly cell-
type specific and thus context dependent microRNA/targetacstions may also be a reason
for our observations: If only a small fraction of target sit®as detected (either due to poor
immunoprecipitation efficiency or insufficient sequencaepth), sampling effects would play
a severe role: Only due to limited sampling, a cluster mayvgey few or no reads in one
sample and many reads in another, even if the target siteisgdy associated with a microRNA
in both experiments. Considering only a single experiming, cannot be excluded by simply
counting reads and computing statistical significance uad®aive probabilistic model: There
are many sequences that are identified multiple times, whyhhave two reasons: Either there
was only a single RNA molecule of this sequence in the libiamg the amplification before
sequencing gave rise to these multiply sequenced readsdiimd) insufficient saturation), or
there were multiple copies of such an RNA already in the ip@articularly for PAR-CLIP data,
the latter is highly probable, since RNase T1, which is usede PAR-CLIP protocol, cleaves in
a sequence-specific way downstream of guanosipasq et a).199]. Since the target mMRNA
seems highly accessible for cleavage outside of the micfofaiget site, the number of possible
distinct sequencing reads for a cluster is highly constchirlowever, when we consider replicate
measurements of targets sites for a specific microRNA, et €3 (see Figuré.43, we observe
that they are highly correlated (median> 0.77 across all microRNAs for all replicate pairs,
see Figures.4b). Therefore, all sequencing data utilized in this metahaiswere found to be
of sufficient saturation not to inflict major bias to our arsay

6.3.3 Context-dependent target sites of KSHV microRNAs

Since technical bias cannot explain the differences oftiled target sites across cell lines, we
analyzed the possibility of context-dependency in micréRNediated regulation. Intriguingly,
when we considered all target sites of a single microRNAges no clear correlation of target
sites across cell lines (Figurés4and6.5). Instead, distinct clusters of target sites emerged, for
instance severdshv-miR-K12-4-3parget sites that appear to be active in BCBL1 only and not
in BC1 or BC3. This suggests that context-dependent mic/RNdiated regulation may be
substantially more important than generally expecteré&stingly, the cellular context leading
to these clusters of target sites is not solely determinethBNA levels, which are indicated
on the left side of the heatmap in Figuseb. Otherwise, one would expect significantly higher
MRNA levels for BCBL1 specific target sites in BCBL1 than in B@d BC3, for instance.
Additionally, there are target sites that are missing in BCBnd active in BC1 or BC3. Thus,
not all target sites exclusively active in BCBL1 can be ekpd by a higher expression or activity
of the respective microRNA or mRNA.

Taken together, our differential analysis of PAR-CLIP dsiggests that microRNA-mediated
regulation is substantially and generally dependent orcétlellar context. To experimentally
test this hypothesis, we employed three sets of additiaghHiroughput methods to investigate
the consequences of context-dependent microRNA-mediatgdation. First, using RIP-Chip
we tested whether context-dependent microRNA/targetantmns, as found in the PAR-CLIP
data, had a measurable impact on the recruitment of thettarig@dlA to RISC in their specific
context only. And second, using microarray-based trapsamics, including metabolic labeling
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Figure 6.5: miR-K12-4-3p heatmap.The PAR-CLIP read heptfoatarget sites of the KSHV
microRNA miR-K12-4-3p is shown (see Figu6elb for more information about PAR-CLIP
read heatmaps). Between KSHYV positive cell lines, thereisarrelation but there are distinct
clusters of target sites. No obvious dependency betweeateckiand mRNA expression level is
observable.

of RNA, and SILAC-based proteomics experiments, we testeetier such context-dependent
microRNA/target interactions also have a measurable itgpamRNA half-lives and on mRNA
as well as protein levels of their targets in their specifictest only. All these experiments were
performed by comparing DG75 to BCBL1. We selected all KSH\¢nmiRNAS that showed a
KSHYV specific activity pattern, i.e. where the set of targetsswas depleted of reads in DG75
and included reproducible target sites of all three KSHVitpascell lines (Figures.6).
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Figure 6.6: Context dependent target sites of KSHV microRNFne differential analysis of all
sets of considered KSHV microRNAs is shown. None of the tasijes has a significant amount
of reads in the uninfected control cell line DG75. The topdluorresponds to constitutive target
sites that are active in all three KHSV positive cell line£ 162), the middle third are target
sites exclusively active in BC1 or BC3 and not in BCBLil+€ 151) and the bottom third shows
BCBL1 exclusive active target sites & 151).

Context-dependent microRNA targets are associated with FBC in a context-dependent
manner

First, we looked at the recruitment of the mRNA targets osth&ESHV microRNAs to Ago2-
complexes. We recently employed RIP-Chip to identify KSHMIeEBV microRNA targets
in human B-cells Dolken et al, 2010. Since then, we performed two additional RIP-Chip
replicates of the KSHV-positive cell line BCBL1 to performnzore solid statistical analysis
[Erhard et al.20134.
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Figure 6.7: KSHV PAR-CLIP targets in RIP-Chip data. FigGréashows differential RIP-Chip
enrichment scores (PC2 scores; positive values indicgieehienrichment in BCBL1 than in
DG75). Generally, KSHV microRNA targets active in BCBL1 aignificantly shifted towards
higher values as compared to all other genes with any PARR@rpet site, in contrast to KSHV
target sites exclusively active in BC1 or BC3 and not in BCBEigure 6.7b illustrates this
further: The enrichment of genes with any KSHYV site, with astdutive or a BCBL1 exclusive
site over genes with BC1/BC3 exclusive sites among all genteésPC2 score> 2 is about 2-fold
in all cases.

3C1/BC3 exclusi

Data were normalized using principal component analysidessribed Erhard et al. 20134
and differential enrichment values were computed for BCBhil DG75 as the second principal
component (PC2), indicating whether an mRNA is strongeo@ated with RISC in BCBL1
in comparison to DG75. All PAR-CLIP target sites were mapfmedenes and genes with any
KSHYV target site in BCBL1, with a constitutive target siteath KSHV positive cell lines and
with exclusive sites in BCBL1 or BC1/BC3 were compared to#ier genes with any PAR-CLIP
target site as background (Figu®3,6.8and6.9).

The differential RIP-Chip enrichment was significantlyfedd towards higher values for genes
with BCBL1 exclusive sites in comparison to the backgroupd< 0.0007, Kolmogorov-
Smirnov test), indicating that BCBL1 exclusive target sitedeed lead to a stronger association
of the target mRNA in BCBL1 to RISC. This was also true for ddntive KSHV target sites
(p < 0.009) as well as for all KSHV target sites active in BCBLA & 3 - 10~%). Moreover,
BC1/BC3 specific target sites, which were not active in BCBWeére indistinguishable from
the background (Figuré.73. In particular, all genes with active KSHV microRNA targstes

in BCBL1 showed a 2-fold enrichment of genes that are sigamtiy (PC2 score> 2) more
associated with RISC in BCBL1 than in DG75 over backgrounaegeln contrast, genes with
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KSHV microRNA target sites that are exclusively active inB&@ BC3 and not in BCBL1 are
indistinguishable from background genes (Figbreb).

This provides strong evidence that a major fraction of thel$nicroRNA target sites identified
by PAR-CLIP exclusively in BC1/BC3 and not in BCBL1 do not nedd a strong recruitment
of their target mMRNA to RISC in BCBL1, i.e. are indeed cortdgpendent target sites. Context-
dependent microRNA/target interactions as defined by riffeal analysis of PAR-CLIP data
can thus be confirmed using an independent RIP-Chip expetime

Target mMRNA stability is affected in a context-dependent maner

Next, we analyzed context-dependent effects of the KSHYoRBIAs on target RNA stability.
Since microRNAs can induce destabilization of the mRNA saipts Bartel 2009, microR-
NA/target interactions that are active in BCBL1 should éase the target mRNA half-life in
BCBL1 as compared to DG75. Target sites inactive in BCBLH (@anly active in BC1/BC3) in
contrast should not decrease mRNA half-life.

Previously, we applied metabolic labeling of newly traised RNA followed by microarray
analysis to separate newly synthesized and pre-existirig[R¥Iken et al, 2008. We computed
RNA half-lives based on the ratios of newly synthesized talt&NA for both DG75 and BCBL1
[Dolken et al, 2010 and considered the differences in target mRNA half-livesbetween
BCBL1 and DG75.

Intriguingly, the mRNA half-life of KSHV microRNA targetiBCBL1 was decreased by about
20 minutesy < 3-107°) on average, whereas for KSHV microRNA targets not actinB@BL1,

no significant decrease was observed (FiguBg. Furthermore, the half-life difference values
of BCBL1 exclusive target genes were significantly smaltemt half-life difference values of
BC1 or BC3 exclusive target genes € 0.008, Wilcoxon rank sum test; Figuré.8b). Thus,
context-dependent microRNA/target interactions havergract on mRNA stability in a context-
dependent manner.

Interestingly, constitutive KSHV microRNA target sitesosfed an even stronger decrease in the
mRNA half-life than for context-dependent target sites35 minutes on average, < 107°).

A possible explanation is that constitutive microRNA/&trgnteractions are less susceptible
to the cellular context resulting in more substantial tagygpression. Therefore, constitutive
interactions likely represent the most important targetste virus.

Protein levels are differentially regulated for context-cependent microRNA targets

We now asked whether context-dependent microRNA targetslao reflected in steady-state
MRNA or protein levels in two different contexts. It is impant to note that protein levels
in a cell depend on multiple factors, including protein Halés and microRNA independent
post-transcriptional regulation, most of which are welict#bed to have a substantially greater
impact on protein levels than generally exerted by microRNFherefore, targets of the viral
microRNAs may not necessarily show differential expressioetween DG75 and BCBL1
on protein or mRNA levels)olken et al, 2017J. Especially viral microRNAs are likely to
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Figure 6.8: KSHV PAR-CLIP targets in mRNA half-life datagkire6.8ashows the distributions
of half-life differences between BCBL1 and DG75 for all geneith PAR-CLIP target sites.
Thus, positive values indicate a longer mRNA half-life in BIC1 than in DG75. Genes with
KSHV microRNA targets active in BCBLL1 tend to have shortelf-haes in BCBL1 than in
DG75. This is highly significant for all BCBL1 target genesvesll as the constitutive targets
but not for BCBL1 specific targets, even if their half-lifeaa average about 20 minutes shorter
in BCBL1 than in DG75. However, KSHV microRNA targets tha¢ amactive in BCBL1 do not
show any shift in their half-lives. As illustrated in FiguBe8h the difference between targets
active exclusively in BCBL1 is statistically significantlijfferent from targets active exclusively
in BC1 or BC3, when their ranks among all PAR-CLIP targetscamesidered.

counteract the cellular response to infecti@ullen 2011 Kincaid and Sullivan2012 which is
reflected by the fact that KSHV microRNAs target several oetligenespolken et al, 2010.

Indeed, when mRNA or protein levels were considered indi@ily, no significant shift in
expression fold changes was observed for any set of microRigets (Figure$.9). Thus,
in spite of the fact that mMRNA half-lives are significantlycdeased by KSHV microRNAs, there
is no observable effect on steady-state levels of neith@dAsRhor proteins. However, if protein
fold changes are normalized to mRNA fold changes, a smaéithtistically significant difference
can be observed between BCBL1 specific targets and BC1/BE€Gfgptargets f < 0.01,
Wilcoxon rank sum test; Figuré.9d). Since this normalization effectively removes all effect
of MRNA levels and half-lives, this indicates that KSHV n@BRNAs not only have an impact on
MRNA half-life in a context-dependent manner, but also ow Ineany proteins are produced
per mRNA molecule. Constitutive targets of KSHV microRNAl chot show this pattern,
presumably because of their strong impact on mRNA halsli@gure6.8).
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Figure 6.9: KSHV PAR-CLIP targets in expression data. Feg.9aand6.9b show the fold
change distributions of mMRNAs and proteins between BCBLA G 75, respectively. When
the log fold changes of mMRNAs and proteins are consideredithhlly, no significant shift
for any set of context-specific microRNA targets is obseredrigure6.9¢ genes are scattered
according to their mRNA logfold changes between BCBL1 and DG75 on the x-axis and to their
protein log fold changes on the y-axis. Target sites active in BCBL1 apfzebe shifted towards
the bottom-right. These sites correspond to genes whodeiprievel fold change between
BCBL1 and DG75 is lower than expected from the mRNA level uirg$.9dshows the ranks of
protein fold changes normalized to their mRNA levels forgahe sets considered. Normalized
protein fold changes are significantly lower for genes wiBB 1 specific target sites than for
genes with target sites inactive in BCBLA € 0.01, Wilcoxon rank sum test).



6.3 Results 103

Cellular context dependent

gRE73 Ml

mRNA part
DG75_A
DG75_B
BCBL1_B
BCBL1_A

Figure 6.10: Context-dependent target interactions ofdrumicroRNAs. The differential PAR-
CLIP analysis for all target sits of cellular microRNAs isualized. The top part corresponds to
BCBL1 specific target sites of constitutively expressedutal microRNAs (o = 184) whereas
the bottom half represents target sites exclusively aati@G75 and not in BCBL1+{ = 137).
Importantly, all these patterns of context-dependencyhaylely reproducible across replicates.

Taken together, RIP-Chip data, RNA half-life data as welh@&NA and protein expression
data provides good evidence that a substantial amount of \K8KtroRNA target sites as

found by differential analysis of PAR-CLIP data is indeedtaxt-dependent which leads to
a differential association with RISC and results in cont#apendent functional impact on target
gene expression.

6.3.4 Context-dependent target sites of cellular microRNA

We next selected context-dependent microRNA/target asteans that are either active in
BCBL1 or DG75 but not in both. Thus, we first selected all miRINAS that are not differentially
expressed between BCBL1 and DG%5 @-fold) and are reliably detected in the PAR-CLIP
experiments (at least 100 reads in all four datasets). Eurtbre, all microRNAs had to have at
least 20 target sites as identified by a 7-mer seed by PARmalehitified microRNAs showed a
clear pattern of context-dependency in their target didlesig the same criteria as in the analysis
of KSHV microRNAs, context-dependent target sites werenaeffi( Figures.10).

Again, context-dependent microRNA/target interactiossdafined by the differential PAR-
CLIP analysis resulted in highly significant differentiasaciation with RISC (Figuré.113.
Specifically, context-dependent targets are more thanid2dariched in significantly differ-
entially RISC-associated mRNAs (PC2 scaore 2) for both cellular contexts. Furthermore,
target MRNA half-lives are again significantly lowered bg ttontext-dependent activity of the
microRNA/target interactiong(< 0.0002, Wilcoxon rank sum test; Figur@.110. Thus, as in



104 6. Widespread context-dependency of microRNA-mediaderegulation

RIP-chip PC2 BCBL1/DG75 Half-life difference

1.0
1.0

—| M expected
W DG75 exclusive
B BCBL1 exclusive

0.8
0.8

0.6
umber of target sites (normalized)
0.6

cumulative frequency
04

0.4
I

mulative ni

0.2

- s - T DG75 exclusive sites — BCBL1 exclusive sites
- o W all p=NA p = 0.00011 (Wilcoxon’s test)
it B DG75 exclusive p=5.24e-05 ey
——————— = : B BCBL1 exclusive p=0.000701 24,
T f T T T T T T T T T T

-4 -2 0 2 4 6 0.0 0.2 0.4 0.6 0.8 10

0.0
L

RIP-chip PC2 BCBL1/DG75 Half-life difference rank

(@) (b)

Figure 6.11: Cellular PAR-CLIP targets in RIP-Chip and mRNalf-life data. Figure6.11a
shows the distributions of the differential RIP-Chip s®es compared to all genes with any
PAR-CLIP target sites (see also Figue&g. Both, targets exclusively active in DG75 as well
as in BCBL1 are significantly shifted towards stronger asdmn with RISC in their respective
context. The vertical lines indicate a threshold for stigmifferentially RISC-associated genes.
In both cases, the respective context-dependent targets@re than 2-fold enriched over the
background genes (abow0% of background genes in comparison to 20% of the target
genes in both cases. In Figuéellh the rank distribution of half-life differences for both
sets of context-dependent targets is shown (see also Fig8ioe BCBL1 specific targets are
significantly shifted towards lower half-life differencanks in comparison to DG75 specific
targets indicative for effects of context-dependent nikidd/target interactions in the respective
context only.

the analysis of KSHV microRNAs, context-dependent targessof cellular microRNAs also
lead to differential RISC-association and have functiomgdact on target mRNA half-lives in a
context-dependent manner.

The analysis of steady-state expression levels revealtzhamattern of context-dependent tar-
gets: Both sets of context-dependent targets are cleaftgdin comparison to the background
with respect to both mRNA and protein fold changes (Fig@wd®aand6.12h. Specifically,
genes tend to have higher expression in the context whemitteRNA/target interactions are
active.

Importantly, this is not solely due to a completely abrodabepression in the non-active context,
since proteins are detected for almost half of all conteeshdent targets in both cell lines and
in more than two thirds of the cases, the fold change is smialde 2-fold (Figures.129. Thus,

it is not the absence or presence of target mMRNAs that leaohiext-dependency of target sites.
Rather, this indicates a complex dependency of the tartgeasiivity on the exact target mRNA
expression levels. However, there may be a subpopulatithinlboth sets of context-dependent
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Figure 6.12: Cellular PAR-CLIP targets in expression détare the distributions of mRNA
and protein fold changes between BCBL1 and DG75 for cordependent targets of cellular
microRNAs are shown, as compared to the background of alegewnth any PAR-CLIP
target site. Clearly, based on mRNA as well as on proteindewentext-dependent targets are
higher expressed in their target context. This indicatasttie target mMRNA expression directly
contributes to the cellular context of microRNA-mediategulation. As depicted in Figure
6.12¢ this is not solely due to a complete absence of gene expressthe non-target context,
as proteins are detected for all these genes in half of thess@asd more than two thirds are only
slightly differentially regulated< 2-fold). Figure6.12dshows a scatterplot of the microarray
intensity measurements for all genes with a PAR-CLIP tasget

targets, where a missing activity of a target site may beasmptl by the complete absence of the
target mMRNA (Figureés.129.
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Table 6.1: Identified motifs by MERCI. We searched for motif§lanking sequences (+/- 80
bp) of context-dependent seed sites not explained by diftexl mMRNA levels. These motif
searches were done in a discriminative manner, i.e. by congpapositive set to a negative set of
sequences. E.g. BCBL1 exclusive sites of cellular microRK2ellular BCBL1) were compared
to DG75 exclusive target sites of cellular microRNAs (CeilDG75). For each comparison, the
identified motifs only occurred in the positive set and nahi@ negative set.

Positive set with motif | Negative set with motif || Min occurrences Motif count
Cellular BCBL1| 94/107 | Cellular DG75 0/76 7 29
Cellular DG75 65/76 | Cellular BCBL1| 0/107 5 25
Viral BCBL1 83/100 | Viral BC1/BC3 0/99 6 29
Viral BC1/BC3 74/99 | Viral BCBL1 0/100 6 20

6.3.5 mMRNA levels and flanking sequence motifs explain contedependent
microRNA/target interactions

Thus, we analyzed to which extent mMRNA expression levelsritnre to the cellular context and
whether there are other factors that are necessary to expiwvidespread context-dependency
of target sites. First, we tested whether the target mRNA&I|l&v the only contributor that
constitutes the cellular context for microRNA-mediatedgeegulation.

Read counts are not only subject to biological variance kad # a substantial amount of
sampling noise since many clusters only have a few dozersrdadcompare PAR-CLIP read
count fold changes with mRNA fold changes in a more robustmasrit is therefore important
to estimate the extent of this sampling noise. We used a ptpnlbased estimate of variance
using a conditional gamma distribution (see Methods). &pmoach is similar to recent methods
to estimate significance of differential expression in RBEG dataAnders and Huber201Q
Robinson et a).2010.

If this noise model is applied to the comparison of mRNA folthoge corrected PAR-CLIP
target sites, more than 50% of all context-dependent taites, i.e. at least 14% of all target
sites of the selected set of cellular microRNAs, cannot h#agxed as judged by the P-value
distribution (Figures.13. This means that in these cases, the PAR-CLIP read couitfi@nge is
significantly higher than expected from the correspondiRiNA fold change and this difference
also cannot be explained by sampling noise inherent to lmwtdata such as PAR-CLIP. Thus,
target site activities are not simply linearly dependentd®NA levels.

Furthermore, as illustrated in FiguBel3h there are several instances where the target gene is not
differentially expressed (i.e. datapoints around 0 on tRNA log, fold change axis) but where
the target sites show:a 16-fold elevated activity. In these cases, mMRNA expressionatlearly
cannot explain target site activity. Thus, other factomstabute to context-specific microRNA
function.

RNA binding proteins (RBPs) likely constitute such addiacontributors. Thus, we performed
a motif search in regions flanking context-dependent tasiges (seed site +/- 80 bp). For motif
discovery we used MERCMens et al. 2011, which is based on efficiently enumerating all
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Figure 6.13: Comparison of mRNA fold changes to PAR-CLIRIreaunt fold changes. Figure
6.13ashows a scatterplot comparing mRNA fold changes to PAR-CG&#el count fold changes
of all target sites of the cellular microRNAs analyzed. Hoe PAR-CLIP data, a pseudocount
of 1 was used. Green dots represent target sites that camplaened by the mRNA fold change
while respecting sampling noise of the read counts, wheyesagge and red dots correspond to
significant outliers < 0.05 andp < 0.01, respectively). The P-value distribution in Figure
6.13cof all these target sites suggests that at least 14.9% (3@nices witlp < 0.01 of overall
2436 target sites after subtraction of baseline indicatethe horizontal line) of all differential
target site activities cannot be explained by the mRNA fdildrige and sampling noise. Figures
6.13band 6.13d llustrate this for the context-dependent microRNA/targeeractions only.
Here, more than 50% of all sites cannot be explained by mRMaélde
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Figure 6.14: Role of sequence motifs for context-depentdeget sites. Figuré.14ashows the
fraction of context-dependent target sites that contaeream number of discriminative k-mers.
Only target sites that cannot be explained by mRNA levelewsed. A k-mer is discriminative
if it occurs n times in the positive set (e.g. cellular BCBL1 exclusiveesitin red) and does
not occur in the corresponding negative set (e.g. cellula7® exclusive sites, see Talel).
We sorted discriminative k-mers according to their numbevazurrences in decreasing order
and chose a cutoff fon based on our randomization experiments (FigeuEp). In all cases,
between 75% and 90% of all context-dependent target sitebeaxplained by a discriminative
k-mer. In Figure6.14h putative explanations for the full sets of context-demamdarget sites
are illustrated. On average, more than 90% can be explayedher differential mMRNA levels
or the presence of a discriminative k-mer.

discriminative k-mers of two sets of sequences. Speciicak searched for k-mers that do not
occur in the negative set and occur at leasimes in the positive set and we only considered
target sites from mRNAs that are not differentially expesss was chosen according to the total
number of sequences in the positive set. MERCI identifie@@®mers when we compared
target sites of cellular microRNAs exclusively present @H._1 to those exclusively present in
DG75 and target sites of viral microRNAs exclusively prase®CBL1 to those in BC1/BC3 or
vice versa (Tabl&.1and Figures.143. These discriminative k-mers occur in 75%-90% percent
of all context-dependent target sites that cannot be exgdiaby the mRNA level and as few
as 5 motifs already can explain 30%-40% of all sites. In @stirdiscriminative k-mers found
by chance in randomized sequences only occur in a conslgdoater number of sequences
(Figure6.15. Thus, these motifs are likely candidates of binding fibedRBPs contributing to
context-dependent recognition of target sites by microRNA
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Figure 6.15: Motif randomization results. For each congmarj positive and negative labels were
randomly permuted 1000 times. MERCI was run on each randaimirstance and the number
of sequences containing ardiscriminative k-mer was counted farbetween 5 and 10. A k-mer

is n-discriminative, if it occurs in at leastsequences in the positive set and does not occur in the
negative set. We plotted the distributions of the fractiohexplained sequences and compared
them to the actual fractions in the true positive and negat@ts (points in the plots).

In summary, from all context-dependent target sites ifieatiby PAR-CLIP and validated by
RIP-Chip experiments, 4sU tagging based mRNA half-liva$ mRNA and protein expression
measurements, more than 90% can either be explained byedifial mMRNA levels or by the
presence of a putative RBP binding motif (Figé.é4h.
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Figure 6.16: Conservation of target sites. Distributiond@nch lengths of target sites are
illustrated in Figure6.16a(see main text for a definition of branch lengths). Shadeibnsg
indicate the maximal branch lengths of target sites comskem primates, in primates and
rodents, in mammals and in vertebrates. All cellular mid¥éR considered here are conserved in
vertebrates. Constitutive target sites of these microRai&ssignificantly more conserveg €
0.00304, two-sided Kolmogorov-Smirnov test) than context-demerdarget sites. Moreover,
neither context-dependent nor constitutive target sifegral microRNAs show evidence for
evolutionary conservation. Figuéel6bshows that these patterns are not due to different overall
3’-UTR conservation levels of target mMRNAs. Branch lengtlese computed for all 7-mers in
each 3'-UTR and the distribution of the rank of the seed (radizad between 0 and 1) among
all corresponding 3’-UTR branch lengths was considered.

6.3.6 Context-dependent target sites are less conservedathconstitutive
sites

Finally, we asked whether context-dependent target sées distinct evolutionary conservation
patterns as compared to constitutive target sites. Faligwihe approach oFriedman et al.
[2009, for each target site we computed the branch length aloagttylogenetic tree of 46
vertebrates by summing all branches where the seed of @cis$tlly conserved in the genome-
wide multiple alignment of 46 vertebrate species. The drdangth thus incorporates both the
evolutionary age as well as the loss of a target site in spduigages. Specifically, a target site
that emerged in the last common ancestor of primates anatsydnd has not been lost in any
primate or rodent lineage has a branch length of 2.342 (shaigas in Figuré.16).

Intriguingly, constitutive target sites of conserved gkl microRNAs are significantly stronger
conserved than context-dependent sifes<(0.003, two-sided Kolmogorov-Smirnov test). For
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instance, while more than 80% of constitutive sites are exesl beyond the last common
ancestor of primates and rodents, only about 65% of comtepéndent sites are conserved
beyond this clade. 20% of context-dependent sites even shemgnature of recent evolution
within the primate lineage. Importantly, this does not i@ftbe overall conservation level of the
respective 3'-UTRs, but is specific to the seed sites (Figutéh.

Target sites of viral microRNAs, independent whether theycantext-dependent or constitutive,
show patterns of much weaker conservation. This can be teghexs there are no conserved viral
microRNAs and as pathogenicity of KSHV may rather inducetp@sselection of its microRNA
target sites on host mRNAs.

6.4 Discussion

In this study, we analyzed PAR-CLIP data from four human B-oees, three of which are
infected with Kaposi’'s sarcoma-associated herpesvird&H¥), using an improved computa-
tional approach to identify target sites of both cellulad asiral microRNAs (PARmakErhard

et al. [20134). The overlap in target sites between the four cell lines warprisingly low
(about 40%)), indicating a large set of context-dependestoRNA/target interactions. Three
additional sets of high-throughput data (RIP-Chip, 4sggtag-derived RNA half-lives and
SILAC proteomics data) supported this observation: Cdnatependent microRNA targets are
associated with RISC in a context-dependent manner anddraeasurable functional impact on
their targets in a context-dependent manner. This was wedéor the targets of both, cellular and
viral microRNAs. The latter offered an important controtlasy were exclusively observed in the
cells expressing the viral microRNAs. Thus, we propose alager of complexity in microRNA
targeting: Depending on the cellular context, specific oiRiMA/target interactions may be active
or not, even if both microRNA and target mMRNA are expressadhérmore, we could show that
the evolutionary conservation differs between contextethelent and constitutive target sites,
indicating that selective pressure may be different fotexirdependent and constitutive target
sites or that they have different evolutionary ages.

6.4.1 Contributors to the cellular context

Cellular context may be formed directly by the quantitieexéroRNAs and mRNAs: Dependent
on the exact copy numbers of microRNAs and mRNAs in each adilicate regulatory
mechanisms may emerge leading to highly complex pattenmegjofation Mukherji et al, 2011.
Furthermore, due to the many-to-many relationship of r&gu$ and targets, microRNAs and
MRNAs are embedded in a highly complex regulatory netwséttabert 2008. Our analyses
indicate that the quantities of microRNAs and target mRN&Adirect contributors to the cellular
context. However, based on our results, more than 50% ofikrwed context-dependent
microRNA/target interactions cannot be explained by nié¥é or mRNA levels and, therefore,
are likely dependent on indirect factors.

The presence of RNA binding proteins (RBPs) may preventaRbBlA binding to nearby sites
[Bhattacharyya et gl2004 or also induce bindingKim et al., 20094. In a recent study the
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whole RNA binding proteome of a cell line was examined by RBRP coupled to high
resolution mass spectrometidltz et al, 2013. This study revealed two important aspects of
RBPs: First, in a single cell type, about 800 different RB&s e identified. This unexpectedly
high number of RBPs allows for highly complex combinatoraddscompetitive or activating
RBP-microRNA interactions. And second, crosslinking @égemere observed for almost 30%
of all uridines in 3'-UTRs, suggesting that mRNAs are brgacthvered by RBPs. Indeed, we
could identify a handful of sequence motifs that are ablexfuan a large fraction of context-
dependent target sites, indicating that RBPs may play itapbroles in shaping the cellular
context for microRNA-mediated regulation.

Thus, there is an intriguing analogy of the transcriptioaatl post-transcriptional layer of
regulation: DNA, which is the material for transcriptiorragulation, is covered by histones,
transcription factors and other DNA binding proteins and domposition and dynamics of
these proteins contribute to the cellular contebfisortium 20128. This cellular context
determines to which extent a certain transcription factan bind to a specific target site
and exert its regulatory role. Context-dependent regolatetworks may differ dramatically
across different cell types or conditionddph et al. 20124. Similarly, mRNAs, which are
the units for post-transcriptional regulation, are codeby RBPs, and we argue that their
composition and dynamics contribute to a cellular contexiniicroRNA-mediated regulation.
Additionally, factors other than these covering proteirgg/rfurther shape the cellular context for
both, transcriptional and post-transcriptional regolatiFor transcriptional regulation, distinct
modifications of chromatin or the DNA may also determine eahtFurthermore, chromosomal
conformations may place distal binding sites of transmipfactors to promotors of different
genes in three-dimensional space and may therefore alsodwetant.

6.4.2 Other contributors

MRNAs may even provide more opportunities for context-deleat regulation: While DNA
usually is restricted to a single cellular compartment, rtiaeleus, the life cycle of mRNAs
may span multiple compartments and subcompartments. Eflidar localization may itself
be regulated and depending on the localization, mMRNAs mayabeslated or not. For instance,
sequestering of MRNAs to P-bodies by microRNAs leads to acedl translation and mRNA
decay Pasquinelli 2013. Furthermore, the single stranded mRNA gives rise to cempl
secondary and tertiary structures, and it has been showrthtbaaccessibility of target sites
determines whether microRNAs can bind to the mRNA or Ketfesz et al.2007. Interestingly,
the conformation of RNAs is highly flexible and may be reslthjpea context-dependent way:
Kedde et al[2010 have shown that the activation of the RNA binding proteimfio-1 induces

a local change in a hairpin structure of the 3'-UTR of the p27idur suppressor mRNA. Upon
Pumilio-1 activation, an inaccessible binding site of n3Rt/miR-222 is opened for binding,
leading to an efficient repression of p27.

In addition, RISC is a highly modular protein compldxdhn et al. 2013. Therefore, proteins
that interact with RISC may influence the effects of microRtdfget interactions: For instance,
the NHL family protein LIN41 has been found to suppress letAdl miR-124 activity by
ubiquitilation of AGO2 Rybak et al.2009 and several other NHL proteins have been implicated
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in the regulation of RISC activityHasquinelli 2013. In addition to ubiquitilation, AGO?2 is
susceptible for several other types of modification inahlgdhydroxylation Qi et al, 200§,
phosphorylationRuidel et al.2011] and poly(ADP)-ribosylationl[eung et al.2011].

Another layer of complexity in microRNA-mediated regudatiis induced by mutual microRNA-
target regulation. Very strong microRNA binding sites in mRNA [Franco-Zorrilla et al.
2007, a pseudogenedazalla et al.2010, a non-coding RNA Cesana et al2017] or viral
RNAs [Marcinowski et al. 2013 may sequester RISCs containing a specific microRNA acting
as a microRNA sponge. It has also been hypothesized thatitteRINA target sites in a cell
as a whole allow for crosstalk between expressed transagiping rise to an intricate post-
transcriptional regulatory network based on mutually cetimg microRNA/target interactions
[Salmena et al.201]]. The complexity of such a regulatory network is further arithed by
the nonlinearity of the regulatory outcome of a microRNAg& interaction Mukherji et al,
2017: Depending on the exact copy numbers of microRNA and mRNA thie affinity of the
microRNA for the target site, protein expression may beegittompletely abolished or only
fine-tuned.

It has been suggested that sequestering of RISCs by thessigmef transcripts containing one
or multiple strong target sites for a specific microRNA mayegeess its targeté-fanco-Zorrilla

et al, 2007 Cazalla et al.201Q Cesana et gl2011 Marcinowski et al. 2013. Thus, such
microRNA sponges may also be important contributors to grilar context for microRNA-
mediated regulation. In such a setting, weak target sitesldidisappear first. By comparing
binding energies for our set of context-dependent tar¢es sive tested whether such effects play
a role in our datasets. However, we could not identify anyraR&NA where exclusive binding
sites had significantly different binding energies thanstibative target sites (data not shown).
This may be due to deficiencies of the current RNA energy mimdeéscribe microRNA/target
duplexes, or because microRNA sponges do not play an immgaxaée for our cell lines. And
indeed, all of the selected cellular microRNAs exhibit &rgites that are exclusive in DG75 and
other target sites exclusively present in BCBL1, which wionibt be expected if a microRNA
sponge is active in one of these cell lines.

6.4.3 Functional considerations of context-dependent regation

Based on results from concurrent research on transcrgdti@yulation Consortium 2012k
Wang et al. 2012ha; Yanez-Cuna et gl.2013, context-dependency in post-transcriptional
regulation should not come as a surprise: It is known thastraption factors bind to their target
sites in a context-dependent manner. Therefore, conapeasttiency of regulatory mechanisms
presumably is beneficial in an evolutionary sense, and thi widespread phenomenon for
transcriptional regulation. Here, we argue that evoluéilso has invented this additional layer of
complexity for microRNA-mediated regulation as well.

One evolutionary benefit of the additional layer of compigkly context-dependent microRNA/-
target interaction may be the greater flexibility in reguat Modulating the expression level of
a microRNA would alter the regulation of hundreds of targetd therefore potentially influence
a multitude of cellular processes. In contrast, using cdardependent regulation, for instance
by activating or inactivating an RNA binding protein (RBBjnaller groups of targets could be



114 6. Widespread context-dependency of microRNA-mediaderegulation

activated or inactived in a much more focused manner. Thebgmatorics that unfolds when
multiple RBPs, multiple target sites or other factors cioiie to the overall regulation provides
opportunities for evolutionary forces to achieve the dabexpression levels for individual genes.
Our analysis of target sites of constitutively expressdidiiee microRNAs revealed that a large
fraction of context-dependent targets may be due to indodeNA levels. For instance, a gene
may get transcribed at high rates in BCBL1 as compared to D@&a8ing to elevated mRNA
levels. At the same time, microRNA target sites are morevadti BCBL1 than in DG75,
leading to an induced degradation as compared to DG75. by, this dependency between
microRNA and mRNA is not necessarily linear, as pointed dagva. Thus, these constitutive
microRNAs seem to limit the expression levels of their tanggRNAs: If targets have high
enough expression levels, they become subject to microRMArated regulation thus providing
an upper bound for the target mRNA levels.

6.4.4 Consequences of context-dependency

The differential analysis of a collection of high-qualigrde-scale experiments for microRNA
target site discovery indicates that context-dependertaRINA targeting is not restricted
to a few examples, but is a widespread phenomenon and a Hdearare of microRNA
mediated regulation. This has significant consequencdmtbrcomputational and experimental
approaches for microRNA target discovery.

MicroRNA target prediction algorithms may not as bad asrtfeputation Thomas et aJ.201Q
Sethupathy et al2006 Ritchie et al, 2009: False positive as well as false negative predictions
simply may be due to a wrong context used when evaluatingrégigiions. Thus, none of the
apparently inconsistent evaluations of microRNA targedpmtion algorithms may be wrong:
Each of these was evaluated on a different cellular contekt@nsequently, differing prediction
methods seemed more accurate than others. However, tHemprobmicroRNA target prediction
may be defined in an incorrect way and as long as predictiohadstdo not incorporate the
cellular context, predicted targets are of limited use. s[twe expect that future development
of microRNA target prediction methods will mainly depend iategrating features of cellular
context into the prediction algorithms. Such an approacbbigously heavily dependent on
progress in unraveling contributing factors to the cellglantext.

Another consequence of a general context-dependency edbRWA targeting is that experi-
mental assays for microRNA target discovery and validatust be interpreted with care. In
various studies, either a single or a pool of microRNAs hanleansfected into a cell line and
gene expression has been measured genome-wide either miRiiA level using microarrays
or RNA-seq Lim et al, 2005 Linsley et al, 2007 Grimson et al.2007 He et al, 2007 Xu

et al, 2010 or on the protein level using mass spectrome8glpach et al.2008 Baek et al.
2009 differentially for transfected and control cells. In atidn to the well-known problem
of secondary regulationT et al, 2009 Naeem et a).2011], there are several reasons why
downregulated genes should not generally be taken as thef satgets for the transfected
microRNA: First, they may be targets exclusively active lre tcell line investigated in the
study. Second, the transfected microRNA may have copy ntsrditelevels never occurring
in physiological conditions. And third, the transfectidself may lead to an altered cellular
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context, e.g. by the induction of cellular stress pathwayso, further conclusions drawn from
such experiments, e.g. that microRNAs generally lead t@spdead but only modest regulation
should be revisited: This may only be true in the context efakperiment, which is not a cellular
context that evolved naturally but has been forced ontoldicelartificially. Furthermore, later
studies revealed that the particular outcome or strengtbgflation is dependent on the exact
MRNA and microRNA copy number#qukherji et al, 2011].

Also, the most widely used validation assay for microRNAg&s is based on fluorescence
reporter genes that are fused to target 3'-UTRs and coftetiesl with the microRNA into a
particular cell line usually lacking this microRNAK[riakidou et al, 2004 Gottwein et al.
2017. Obviously, not only is the microRNA-target pair introdeetinto a non-natural context
and probably expressed at non-physiological conditiontsalso the microRNA target site itself
is expressed in a non-natural context, i.e. the 3'-UTR ofsaciu gene. Thus, both outcomes of
such an experiment may not hold for the microRNA target padean different conditions, i.e. if
the reporter assay does not confirm regulation, the targetgly still be highly functional in the
right context and if the reporter assay validates regutatiois may not be true for the context
under consideration. In conclusion, while luciferase gsgaovide good evidence that a certain
gene can be regulated by a given microRNA it does not allowdaiyns about whether this
interaction is of relevance in the biological context okirgst.

Consortium-driven endeavors to unravel context-depertdemscriptional regulation have been
started years ago, as soon as the human genome project Inanisdesd Consortium 20124.
Context-dependent transcription factor binding sitesehasen determined in an overwhelming
variety of conditions and it is one of the most intriguinguks of the ENCODE project that
context-dependency is one of the key features of transanigitregulation.

Here, we show that context-dependency is also an importtorf in post-transcriptional
regulation. We propose that a similar approach as for trgstgmal regulation must also be
taken for microRNA-mediated regulation and that a lot ofiaddal experiments are necessary
to further investigate both, microRNA targets specific taae contexts and key contributors
that determine cellular context.

6.5 Methods

6.5.1 Celllines

DG75-eGFP and BCBL1 were cultured in RPMI medium supplestentith 10% fetal calf
serum and pen/strep.

6.5.2 PAR-CLIP and sequencing

PAR-CLIP on DG75 and BCBL1 were performed by the Zavolan tatmyy as described
[Kishore et al, 2011 Jaskiewicz et al.2013. Briefly, a total of3 * 108 cells per replicate were
grown and treated with 4-thiouridine (Sigma) for 14 hoursdficoncentration 100 uM). Cells
were pelleted and washed in cold PBS. Aliquotsef 107 cells were resuspended in 5 ml of
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cold PBS, placed in a 15 cm petri dish and irradiated at 365 iitin 00 mJ twice on ice, with
30 s break in between. Cross-linked cells were collecteliktpd and snap-frozen. PAR-CLIP
was performed using 11A9 anti-Ago2 monoclonal antibdrlizdel et al.200g. The PAR-CLIP
sequencing data for BC1 and BC3 fro@dttwein et al. 2011 have been downloaded from
GEO (accession number: GSE32113). We applied PAREnkagrd et al.20134 to the whole
collection of all PAR-CLIP datasets as described.

6.5.3 SILAC-based proteomics

SILAC and LC-MS/MS were performed as described in the Marbodatory at MPI for
Biochemistry in Munich. The raw files from the mass spectri@mbave been analyzed using
MaxQuant (version 1.2.2.5Tox and Mann2009§ using standard parameters against all human
proteins from Ensembl (v60).

6.5.4 RIP-Chip analysis

For the RISC-IPsj x 10% cells were taken for each replicate and processed as psiyiou
described Dolken et al, 201Q using 6ug of purified monoclonal hAgo2 antibody{hAgoZ2;
11A9) or monoclonal BrdU-antibody (Abcam; used as control)

6.5.5 RNA half-life measurements by 4sU-tagging

The RNA half-life data for DG75 and BCBL1 have been publispeeviously Polken et al,
2010. In brief, newly transcribed RNA was labeled for 1h by adpit0Q:M 4sU to the cell
culture medium. Total RNA was prepared using Trizol and gavenscribed RNA was purified
as described)olken et al, 200§. Three replicates of newly transcribed, total and prdexgs
RNA were measured.

6.5.6 PARmMa

PARma is specifically designed to accurately determineetasges and to determine which
microRNA is responsible for each target site and is desdribe separate papegifhard et al.
20134. Briefly, it estimates seed activity probabilities and gaameters of a generative model
for the PAR-CLIP data simultaneously in an iterative manfidre model and probabilities
are then used to accurately determine the seed positiomvatth PAR-CLIP cluster, and to
compute a cluster confidence score (C-score) and a microR¥s$ranent confidence score
(MA-score). The C-score can be used to exclude false pesifiwsters (i.e. clusters that do
not correspond to a target site of any microRNA), whereasvtAescore can be used to judge
whether the assigned microRNA is indeed targeting a givien si

The PAR-CLIP expression value for each cluster is compute@dch experiment by counting
the reads overlapping the main crosslinking siehfard et al.20134. For proper comparison
across experiments, the expression values for all cluatersormalized using the same strategy
as in Anders and Hubef201(Q, i.e. by dividing each count value by the geometric mean
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Figure 6.17: PAR-CLIP read count correlation with expressiThe mRNA expression fold
change is scattered against the PAR-CLIP read count folehgghaReplicate counts were
summed and a pseudocount of 1 was used to circumvent divisiarero. In red and blue,
context-dependent target sites of cellular microRNAs hms.

across experiment and taking the median of all these vatoes & specific experiment as the
normalization factor for this experiment.

To analyze the positional distribution, we subdivided eaahscript into 60 bins and counted the
number of target sites of cellular, EBV and KSHV microRNAspectively, belonging to each
bin. In order to compare cellular and viral frequencies,rthmber of target sites within each bin
was divided by the total number of cellular, EBV or KSHV targees, respectively.
Context-dependent target sites were determined by agmphfiingent cutoffs: More than 10
normalized reads in all replicates in the active contextlasd than 5 in all other experiments.

6.5.7 Correcting for sampling noise

In order to estimate the contribution of MRNA levels to thdutar context for microRNA-
mediated regulation, we firstinspected the correlatiowbeh the mRNA fold changes and PAR-
CLIP read fold changes (see Figd7). Replicate counts were summed and a pseudocount of
1 was used to circumvent division by zero. These fold chamgas correlated to some extent,
but there were also many exclusive (i.e. context-depentingiet sites present, that did not show
any or only a very modest mRNA fold change. In order to propestimate the fraction of non-
correlated target sites and to handle the sampling noideedbtv-count data and pseudocounts,
we took the following approach:

First, we estimated the variance of PAR-CLIP fold changeseflaon replicate experiments.
Because the number of replicates was extremely low= 2), no reliable estimates can be
compute in a target site-wise manner, and, thus, we took alggn based approach similar
to methods that estimate significance of differential egpi@n in RNA-seq dataAnders and
Huber, 201Q Robinson et a).2010. Since the variance is not equal for strong target sites and
weak target site (as measured by the number of PAR-CLIP yeagg<o sampling noise, variance
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was estimated conditional on the target site strength. Tfegreach target site, we checked,
whether the mRNA fold change was within a critical region eBreed by significance levels of
1% and 5%.

To estimate read count fold change variances, we considbeedbsolute difference of read
counts from replicate measurements (see Figufe). For a given target site strength (as
measured by the geometric mean of read counts across teplicéhe distribution of these
absolute differences resembled a gamma distribution byaVimspection. Thus, by using a
running window approach, we estimated the distributionlsfcdute read count differences by
fitting a gamma distribution to each window of 1000 targetsialong the target site strength
(i.e. the red line in Figuré.18) using thditdistr function from the R package MASS. We plotted
the rate and shape parameters of the gamma distributiorntexs fiir different windows along
the target site strength (see Fig@d 89 and noticed that the shape parameter was relatively
constant and the rate parameter increased linearly in lageswith the target site strength. For
robustness of the fits, we therefore computed the mediaregiaametef across all windows
and computed a robust linear fit for the rate paramel¥rg against the logarithmized target
sites strengths. Thus, our model describes the absolute read count differeha target site
with strengths (i.e. the geometric mean of read counts across all expetghéy a gamma
distribution with rate and shape paramet&(s) andS.

This conditional gamma distribution allows us to compueedistribution of absolute read count
differences for a given target site strength. As illusiateFigure6.18d this conditional gamma
distribution nicely reflects the variances for replicateasi@ements.
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Figure 6.18: Conditional gamma distribution fit. In Figu&48aand6.18h the correlation of
replicate PAR-CLIP read counts are shown in log scale fox3&5 and BCBL1 experiments,
respectively (using a pseudocount of 1). The red line indkéhe main diagonal. Deviations
from the diagonal are obviously larger for weak targetsgivettom left), indicative for sampling
noise inherent to low count data such as PAR-CLIP. Figaf8c shows the fitted gamma
distribution parameters against the target site strer@itliers from the conditional model are
indicated in gray (see Methods). In Figuel8dthe p-value distribution of the gamma model
applied to replicate measurements is shown. It closelymbges a uniform distribution, which
indicates that our model accurately resembles the obsdexgdtions in replicate measurements.
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Chapter 7

Detection of outlier peptides

Motivation: While the previous chapters mainly focussed on viral miblAR their classi-
fication and targets, this chapter concentrates on posséflect of viruses and potentially
of microRNAs, their impact on splicing patterns. To inwgsie alternative splicing patterns
on large-scale, several methods have been proposed for feijAtata Richard et al, 201Q
Trapnell et al, 2013. However, the effect of splicing only plays a role on proté&vel and
considering the mRNA is only a proxy to proteins. Thus, Idstigated whether and to which
extent shotgun mass spectrometry data can be used for théfickgtion of splicing patterns.
In particular, |1 focussed on differential splicing, i.e. @aplicing patterns that are different
between two conditions. In order to develop a method to ifjedifferential splicing and for
its evaluation, | considered a publicly available high-éjtiadataset which | preprocessed using
MaxQuant, which is a recent and widely used analysis soéviar raw LC-MS/MSdata [Cox
and Mann 2008. This is described in this chapter. | also applied this nogtk to the mass
spectrometry data generated by our collaboration partparisich, however, did not yield any
promising candidates for further experiments (see se@i@ri).

Publication: An abstract of this chapter has been presented and publisheéde German
Conference on Bioinformatics (GCB) 2011 in Weihenstepfammany Erhard and Zimmer
2017. Subsequently, a full paper has been published in the JdwhProteomics Erhard and
Zimmer 2013. Here, | adapted the layout and made minor corrections ®text.

My contribution: | came up with the method and the evaluations, implementadnitthod,
carried out evaluations and wrote the paper.

Contribution of co-authors: Ralf Zimmer supervised the work and helped to revise the
manuscript
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7.1 Abstract

Quantitative high-throughput mass spectrometry has becamestablished tool to measure
relative gene expression proteome-wide. The output of smcaxperiment usually consists of
a list of expression ratios (fold changes) for several thadsproteins between two conditions.
However, we observed that individual peptide fold changay show a significantly different
behavior than other peptides from the same protein andibsgtdifferences cannot be explained
by imprecise measurements.

Such outlier peptides can be the consequence of severaitatfmisidentifications, misquan-
tifications) or biological (post-translational modifiaats, differential regulation of isoforms)
reasons. We developed a method to detect outlier peptidesas spectrometry data which is
able to delineate imprecise measurements from real optiatides with high accuracy when the
true difference is as small as 1.4 fold.

We applied our method to experimental data and investig#teddifferent technical and
biological effects that result in outlier peptides. Our hoat will assist future research to reduce
technical bias and can help to identify genes with diffaediyt requlated protein isoforms in
high throughput mass spectrometry data.

7.2 Introduction

Mass spectrometry (MS) based proteomics has become a cortoobrior a wide range
of biological research area8dek et al. 2008 Cox and Mann 2007 Huttlin et al, 201Q
Schwanhausser et aR011;, Selbach et al.200§. In a shotgun experiment, proteins from a
complex sample are digested into peptides (e.g. using iiypdhose mass-to-charge ratios are
then measured in a first round of MS after ionization. Metetadlly (e.g. SILAC) or chemically
(e.g. iCAT) introduced heavy amino acids can be used asdabetlistinguish peptides in a
mixture of samples in the same MS ru@rig and Mann2005. Measurement intensities are
related to peptide abundances and can therefore be usedduntiftcation. These MS spectra
alone do not provide a reliable way to identify peptide seges in a complex sample since mass
alone is not a reliable discriminator for peptid€oJinge and BennetR007. Therefore, tandem
mass spectrometers are able to select one or several pea#$§ gean for further fragmentation
followed by a second round of MS (MS$pectra). The most abundant fragments produced are
so-called b and y ions, which are the result of fragmentabietween the amino and hydroxy
groups of two consecutive amino acids and correspond thuetixes and suffixes of the original
peptide. It has been shown that these’Bectra provide enough information to identify peptide
sequences.

Primary data analysis is usually done by integrated aralyigielines, e.g. TPHR<Eller et al,
2009, TOPP Bertsch et al.201] or MaxQuant Cox and Mann 2008. In modern high-
resolution LC-MS/MS settings, data analysis generallysesia of the two crucial steps peptide
identification and quantification.

For peptide identification, experimental MSpectra are compared to theoretically computed
spectra from peptides derived from a protein sequence asg¢alSeveral methods to score
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experimental to theoretical spectra have been developgdr@navailable either as commercial
software such as Mascd®érkins et al.1999 or SequestYates et al.1999 or as open source
tools such as X!TandemCfaig and Beavis2004 or Andromeda Cox et al, 2011. Such
methods typically report a candidate list of possible sagas for each MSspectrum with
one or several associated scores. False discovery raté®) (dh be calculated using a decoy
database approach: For each protein in the database, @a@pseaversed protein is created and
also used for database search. For a given score cutoff(dRetlken is equal to the fraction of
decoy identifications above this cuto@ipta and Pevzng2009 Kall et al., 2008.

Generally, there are two types of quantification: For an kiteguantification, the concentrations
of all proteins within a single sample must be determineceneas for relative quantification the
concentration ratio (the fold change) between two or momepdas is the quantity of interest.
We concentrate on relative quantification here, since iteisnded much more accurate than
absolute quantificationdng and Mann2005. The most widely used relative quantification
techniques rely on the intensities in the MS spectra. Thisetther be done within a single MS
run after samples have been labeled or across runs in affaleedxperiment and involves finding
intensities that belong to the same peptide in the two sanalproper way to compute the ratio
of all corresponding intensities and normalization. Afteptide fold changes are available, they
are assembled into protein quantifications. This is usutdhe for so called protein groups that
contain those proteins from the database that share theitpajbtheir peptides [Nesvizhskii
and Aebersold2005. The output of such workflows therefore consists of a ligh@itein groups
together with identification statistics and a summarizéatiree quantification.

When looking at individual peptide fold changes of typicatithroughput mass spectrometry
experiments, it becomes clear that in several cases, pspsieem to exhibit a different fold
change than other peptides from the same protein (see tantesFigure.l). There are several
possible explanations for such situations, including:

1. Measurement imprecision: Repeated independent measnte of the same quantity
(i.e. peptide fold change) are subject to noise. The vagiafcthe seven independent
measurements of the left most peptide in FigtuEfor instance are most likely the effect
of noise.

2. Ambiguous peptides: The sequence of the left most peptiale not be unique to this
protein and its true fold change in the sample should bernmgdrate between all matching
proteins.

3. Wrong identification: An M&spectrum may erroneously be assigned to a given peptide
and the measured fold change therefore belongs to a peptitiesf different protein.

4. Wrong quantification: There may be certain propertiesepitiodles that introduce bias into
guantification and the normalization of the quantificatitgoathm may not have corrected
for that. For instance, if a peptide of an abundant protemhlmionized easily, saturation
effects may lead to underestimated fold changes.

5. Differentially regulated post-translational modificais (PTMs): It is known that post-
translational modifications such as phosphorylations &by regulated and may be
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Figure 7.1. Example MS peptide quantifications for a genéh gigveral isoforms. Shown
are guantitative mass spectrometry measurements for the igbll in a SILAC experiment
as produced by MaxQuant using standard parameters. On phdop fold changes of all
guantifications for this gene are shown. For each event, esdbiwn on top of the respective
peptide and multiple measurements for the same peptiddavensn increasing order. For the
left most peptide, that spans an exon-exon junction, itersemeasurements are shown twice
(above both exons). On the bottom the gene structure aogptdiEnsembl is shown: The first
line corresponds to the gene with all its exons and alteraaplice donors and acceptors (black
lines) and the remaining lines represent the four trantcuth coding parts in dark gray. For
clarity, exons are shown in scale whereas introns are shruttka fixed size. All shown peptides
uniquely map to these locations.

differential in the conditions under consideration. If yrthe unmodified version of a
peptide has been identified and the modification has beemuipted, the unmodified
peptide will have a fold change that is different from thegésid change.

6. Differential regulation of isoforms: Most eukaryotic rges can give rise to multiple
isoforms, either by alternative splicing, alternativenBeription start sites or combinations
of these. Alternative peptides, i.e. peptides that are adtqf all isoforms of a gene are
expected to show different fold changes, if respectiveoisut are differentially regulated.

Depending on the summarization strategy the protein folhgk for the gene in Figuré.l
would either be around 2-fold down regulated or not regdlgtehen using the median of all
measurements or the median of all peptide medians, regelgtiln either case, defining a
protein fold change may not be appropriate since the sitmagiobviously more complex. Thus,
a method to detect such situations would be of great benefivauld allow to investigate such
situations further.

A first attempt into that direction was made iRdrshed et al.2011], where the correlation
coefficient of intensities of peptide from the same genessmultiple conditions was used as
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a distance measure for peptides. Hierarchical clusteragtiven used to either exclude outlier
peptides (that are uncorrelated to all other peptides) grdap genes in order to infer isoforms.
However, the correlation coefficient is useless when only tenditions are investigated as
in standard SILAC experiments. Also, since it directly cargs the XIC of peptides between
conditions to compute the correlation coefficient, it carmake use of more sophisticated ways
to compute intensity ratios as for instance implemented ax®Quant Cox and Mann2008§.
Furthermore, excluding peptides that are uncorrelated wtleer peptides from the same gene
may not always be appropriate, since such a peptide may th@ne specific to an isoform
(e.g. ifitis located on a cassette exon).

Our goal in this study was to provide a method that is able tea@utlier peptides in standard
SILAC experiments. The proposed method was rigoroushetesh in-silico simulated data,
where it could detect outlier peptides with high performa@s measured by an AUE 0.8)
when the true difference was as small as 1.4 fold. The secoaldxas to investigate reasons for
outlier peptides in experimental data: Given we have idetthi set of genes like in Figuiel,
determine which of the reasons from above play a role in #tis s

7.3 Materials and methods

7.3.1 Data processing

Experimental data taken fronl€px and Mann2008 has been downloaded from ProteomeCom-
mons Tranche, where EGF stimulated HelLa cells were compareahtrol cells using SILAC.
Data has been analyzed using MaxQu&w{ and Mann2009 version 1.2.0.18 (June 2011)
against all proteins downloaded from Ensembl v60 (Novenf#t0). Default parameters
have been used: Oxidatation (M) and Acetylation (N-term)vadable modifications and
Carbamidomethylation(C) as fixed modification, reversetidep as decoy database, matching
between runs in a 2min rt window. For all further analyses,use all unique peptides from
evidence.txt (produced by MaxQuant) that contains quaatitn events of all identified (and
matched) SILAC pairs at a FDR of 1% (according to a decoy de@lapproach). To determine
uniguely matching peptides, peptide sequences from evédtt have been mapped to the
human genome using position information obtained via Efgdéromart, and only uniquely
matching peptides have been retained. Gene definitionshalg® been taken from Ensembl,
with the modification that overlapping genes have been @tadtto gene clusters using single
linkage (i.e. a peptide mapped to the genome always belaengsingle gene cluster). We will
refer to these gene clusters as genes in the following. lerai@ perform statistical tests on
guantifications, we furthermore discard all peptides i§ ldg®n 3 independent measurements are
available.

7.3.2 Detecting outlier peptides

The goal of our method is to distinguish measurement nos@ fother reasons that lead to
peptide fold changes that are different from other measenesnfrom the same gene. This



126 7. Detection of outlier peptides

is based on an important property of typical mass spectmyngdperiments: Many peptides
are identified and quantified multiple times because exparimhave been done in replicates,
because peptides may have been measured in multiple get $dhich may have been used
for a fractionation step before mass spectrometry) or intiplalcharge states. Since all these
guantifications are technically independent from eachrptie can use them to estimate the
guantitive precision. The goal then is to determine peptttiat are different from other peptides
from the same gene and where this difference cannot be aerpldy a high quantification
variance.

The most basic algorithm first computes all peptide and geltechange$; and g, by taking
the mean or median of all corresponding measured fold clsafigpen, genes are ranked by their
maximal absolute peptide-from-gene deviation

dr, = max{|gr — p;| | peptidei uniquely belongs to gene}

Unfortunately, there are two caveats in such a procedurst, ki is difficult to determine a
reasonable cutoff without performing permutation tests second, it inherently assumes that
variance due to noise is equal for all peptides in the data$es is certainly not true, since the
signal-to-noise ratio depends on the expression level eha g

Therefore, we also adapted a classical ANOVA procedureekoh gene, we fit the linar model
F;; = g +p; + €; to all log, fold changes of a given gene, whefrg is thejth log, fold change

of a repeatedly measured peptide of the gengthe gene fold changg; is the residual peptide
fold change and;; is the noise in measuremeit;. Residual peptide fold changes that are
significantly different from0 indicate that this peptide behaves differently from otheptgles
from the same gene. Therefore, genes can be ranked usingvidlagfrom an F test or by
n? = % from ANOVA (whereS'S, is the within peptide sum-of-squares afid, is the within
gene sdm-of-squares), a classical measure for effectGa#ipa and Nouri200d.

The ANOVA model estimates noise levels gene-by-gene aretetbre, deals with different
signal-to-noise ratios across genes. Unfortunately, tgeatto-noise ratio could not only
depend on expression levels of genes, but also on propsp@esfic to peptides (e.g. ionization
efficiency). The ANOVA model however assumes equal variauress peptides. We therefore
also adapted the heteroscedastic ANOVA frdfnighnamoorthy et al.2007, which can deal
with different variances.

Thus, we propose five methods to rank genes: Mean distanddeaidn distance corresponding
to ranking by the maximal peptide-from-gene deviation, ARCF test p-value and ANOVA
n? using the classical ANOVA approach and the heteroscedAstioVA p-value. For further
analyses, we define the outlier peptide of a significant gertbeapeptide that has the greatest
absolute difference between its logld change median and the lpofpld change median of the
gene. Note that there may be multiple peptides that havectwahges differing from the gene
fold change but for simplicity we only used a single peptide gene.

7.3.3 In-silico data generation

For the experimental data, no standard of thruth is knoven,there is no knowledge about
differentially regulated isoforms between stimulated aohtrol HeLa cells. Therefore, we
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simulated mass spectrometry data in-silico which allonetbyprovide a controlled environment
for a rigorous evaluation of our method. Instead of attengpto simulate the physical events in
a mass spectrometer, we chose to directly generate pepiaeifications, which is the type of
measurement our method works on. We use experimental degd@ta processing) to estimate
model parameters for the simulation and, therefore, thelsted data has the same properties
as experimental data. As a consequence, evaluation résustisnulated data should also apply
to experimental data.

We proceed as follows: We consider each Ensembl gene wiglastt two isoforms. First we draw
the number of measured peptides for a gene and distribige geptides across all isoforms. We
discard these peptides and repeat this step if there is rdfisgeeptide, i.e. a peptide that is not
present in at least one isoform. Then we set the isoformflold changesf, and f; depending
on whether we want to generate a positive or a negative exarfpt positive examples, we set
fo=0andf, = f > 0, for negative ones we s¢t = f; = 0. Then, for each peptide, we
draw the number of measurementsnd the variance? based on the empirical distributions
obtained from the experimental datalog, fold changes fop are drawn according t& (y, o%),
wherey = I“;g%ﬁfl wherel; is an indicator variable for peptigeto be contained in isoform

1. Thereforeyu is either fy, f; or their arithmetic mean, depending on the location of thaide
(unique to isoform 0, unique to isoform 1 or on a shared exon).

Thus, we can generat® positive examples for a defined fold change vajfuand NV negative
examples. Each positive example represents a gene that requdated transcriptionally but
have isoform proportions differing by a factor 6f(e.g. by differential regulation of alternative
splicing). Negative examples represent genes that areegodated at all. Our methods are
able to compute a score for each gene and therefore, we catheseN positive andV
negative examples to evaluate their accuracy using ROGsufsince the number of peptides
and measurements per peptide and the quanification noisavus diccording to distributions
from experimental data, and only the isoform fold changketghce is set by hand, results from
this in-silico evaluation can be expected to apply to expental data also.

7.4 Results and Discussion

In a typical high-throughput quantitative mass spectroynexperiment, hundreds of thousands
of precursor ion measurements can be used for peptide §oatdin. Usually, a single peptide
is detected and quantified multiple times either due to lgickl or technical replicates or to
repeated measurements within a single replicate in difterigarge states, different gel slices etc.
(see Figurer.2for the SILAC data from Cox and Mann2008). As introduced above, there are
several reasons why peptides may have been measured vighngjffold changes even if they
are products of tryptic digestion of the same protein.

If we assume a complete protein database, excluding amimsgueptides is straight-forward (see
Methods). And even if the database is not complete, theili&getl that an outlier peptide also
occurs in another unknown but expressed protein is nedgigible want to emphasize that we
only treat peptides matching to multiple genomic locatiassmbiguous. For instance, peptides



128 7. Detection of outlier peptides

Histogram of measurements per peptide

Frequency
3000 4000 5000
|

2000

1000

0
L

[ T T T T I
0 20 40 60 80 100

Measurements per peptide

Figure 7.2: Number of measurements per peptide. The figuessh histogram for uniquely
matching peptides for a dataset taken fr@o% and Mann2008 and processed using MaxQuant
with default parameters (see Materials and Methods forildgtaDverall, 265000 peptide
meausurements out of 344000 are shown in the histogram.|&atycall counts> 100 have
been set to 100.

coming from constitutive exons of an alternatively spligashe (which occur multiple times in
our protein database) are still unique by our definition.

Thus, the main focus of our algorithm is to distinguish ndisen other reasons for outlier
peptides. In order to rigorously test the accuracy of thgpsed methods, we applied them on
in-silico generated data for which we know the true situatibhis allowed us to circumvent the
problem of missing gold standards. We furthermore appliedatgorithm to real data in order to
delineate which reasons other than noise can lead to opédj&ides.

7.4.1 Teston in-silico generated data

We simulated peptide quantification datasets for seveua told change differenceg (see
Methods) and for all methods proposed and evaluated themy B C curves and the AUROC
(see Figurer.3). According to the AUROC scores in Figure3g all methods seem to behave
very similar across the whole range of true fold changes.Miheking at individual ROC curves
however, we note that their performance at different scateffs is quite different: Gene-wise
variance estimation seems to perform much better at highifgpy score cutoffs, whereas
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experiment-wide variance estimation has higher sensitati lower cutoffs (see also Figures
7.3cand7.30. For all further analyses, high specificity is importamiglave will therefore use an
ANOVA procedure in the following, which also allows us to cpate a statistically sound cutoff.
As can be seen in Figuie3d, for a p-value cutoff of 0.01, the heteroscedastic ANOVAipens
superior independent of the true fold change differencetlnsl we propose this method as the
method of choice.

We note that the fold changes reported in Figdu@aalready account for the fact that the fold
change difference between a specific peptide and a constipgptide is expected to be smaller
than the isoform fold change, so the peptide fold changeithahough to detect significant
differences between peptides is actually even lower thaww@log scale.

We acknowledge that testing a method on in-silico generdsgd can lead to overoptimistic
conclusions: If the model that generates the data is oveisied, an oversimplified method’s
performance would be overestimated. One main goal of ouretnisdo test for influence of
in-gene heteroscedasticity of quantifications. Since oadehgenerates unequal variances in
a realistic way by using the variance distribution obtaibgdreal data, our generated data is
affected by heteroscedasticity to the same extent as expetal data. There are two possible
outcomes of our evaluation: If the standard ANOVA would peri equal or even superior to the
heteroscedastic ANOVA, then heteroscedasticity is nongwortant factor and respecting it is
not justified due to a greater power of the standard ANOVA ilm@abscedastic situtation.
However, we observe that a test that respects possible ahegiances performs better than
tests that assumes homoscedasticity and thus we can ceritlatiheteroscedasticity indeed
plays an important role in such kind of data and that it is fiera to use our heteroscedastic
ANOVA for real data. Furthermore, we observe that we are thttetect differentially regulated
isoforms reasonably well (as judged by an AUQ).8) if their fold change is as small asl.4
fold (i.e. the log fold change is 0.5), if we observe at least one specific peytid. a peptide
that is not part of one of the differential isoforms).

7.4.2 Outlier peptides in real data

We applied our method based on the heteroscedastic ANOVAxperinental data taken
from [Cox and Mann200§. As can be seen in Figuré.4, there are several genes that have
significantly different peptides and their fold change nilisition is as expected by our in-
silico data analysis: The majority of genes shows &.3 log, fold change which matches the
performance measured by our ROC analysis (see Figadye

We next made an attempt to reveal why these peptides showl atliahge that is different from
the gene fold change. For the following analyses, we usediacofrected) p-value cutoff of
1% in order to get a reasonable large set of peptides thatlisrgiched with real differential
peptides. By setting this cutoff, from the 3314 genes, weaektd 257 peptides (we will refer
to them as outlier peptides). We extracted a backgroundf 4356 peptides from genes with a
p-value of> 0.5.

First, we checked whether there is an indication of misidieations within our outlier peptides.
To this end, we checked whether there was a second best atanttidhe list of identifications for
the corresponding MSspectrum and extracted its score if another candidatedeeptas found.
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Figure 7.3: Evaluation on in-silico generated data. Foessvrue fold changeg ranging from
0.1 to 2, 1000 positive and 1000 negative examples have been geddsste Methods). Genes
were then ranked according to the five proposed methods ai@ de@res together with their
area under the ROC curve (AUROC) were computed. Showh3ais the AUROC value for
all computed ROC curves and all proposed method<.8bthe ROC curve forf = 0.5 is
shown. Figure§.3cand7.3dshow the true positive rates for a fixed false positive rate. band
0.01, respectively, and emphasize the superiority of th©¥~N procedures in comparison to the
simple methods at high specificity cutoffs.

This revealed that the outlier peptides have statisticafinificantly more additional candidate
peptides than expected by our background peptiges- (0.0073, Fisher’s exact test on the
number of peptides that have only single candidate spectra.0018, Kolmogorov-Smirnov
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Figure 7.4: Heteroscedastic ANOVA applied to the experitalestata. Shown is the distribution
of all p-values in7.4aand in7.4bthe log, distribution of all significant peptides. For clarity, in
7.4k all values> 1 have been set to 1.

test on the fraction of quantification events for a peptid@ritaadditional candidates; see also
Figure7.59.

This means that even if all these peptides have been indepgyndientified multiple times, there
is evidence that in several cases, all these independentificegtions erroneously are assigned to
the same peptide. A reason for that could be that some pspitidee proteome are very similar
to each other, either directly in their sequence or witheespo additional unknown properties
that lead to a similar fragmentation pattern. This is alsedly reflected in the scores of the
peptide candidates: An Andromeda score i®g,,(p) of a p-valuep testing the Null hypothesis
that a peptide does not belong to a given?\Bectrum. There are several cases where multiple
candidates have a scarel0 and if we assume that only a single peptide species has besarth
for fragmentation, all but one of these scores are overastidh It is a-priori not clear, if the top
candidate necessarily is always the correct one.

We also noted that sometimes there were extreme outliensnvilie independent quantification
events of a peptide as judged by an interquartile range (IQ&ance of> 1.5. When we
performed similar tests on these IQR outliers comparedIltquantifications within the IQR,
we also observe statistically significant more additiomaldidates than expected by background
(p < 107%, Fisher's exact test on the number of quantification evems have additional
candidatesp < 10—, Kolmogorov-Smirnov test on the ratio of second score tdot score,
see also Figuré.5b).

Then, we tested whether there is bias with respect to sepeyalco-chemical properties. These
properties have been taken fromddllick et al, 2007, where they have been used to predict
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Figure 7.5: Evidence for misidentifications in outlier gdps. Figurer.5ashows the distributions
of the fraction of spectra that have multiple candidatestdlier and background peptides. E.g.
a peptide where 5 out of 10 measurements have additionaidzdageptides would be counted
with the value 0.5. For instance, about 55% of the backgrqeptides have a value ef 0.5

in comparison to about 45% for outlier peptides, which isaistically significant difference
according to a Kolmogorov-Smirnov test. In Figurebb the distributions of the fraction of
second to best candidate score for outlier measurementsakground measurements. Here,
outliers are not defined by the ANOVA but by an interquartdege distance of 1.5. E.g.

if there is a peptide with 10 measurements, we can calcutaenterquartile range as the
difference between (sorted) measurements 2 and 9. If tferefiice between measurements 1
and 2 or 9 and 10 arg 1.5r then they are deemed outliers, respectively. Such outhave
better second candidates than all other measurements.

proteotypic peptides. Each of these properties allows toprde a score for a given peptide
sequence. For each property, we computed scores for aleoptptides and all background
peptides and compared the score distributions by a Wilcéann-Whitney test. The p-value
distribution of these tests shown in Figui& clearly shows that most of these physico-chemical
properties are significantly different between outlier jgs and background peptides. This
means that the normalization used by MaxQuant is not abletect for bias introduced by
these properties. It should however be noted, that sevEtiase properties are not independent,
for instance there are several properties that try to meakydrophobicity. One interesting
example (which is directly related to hydrophobicity) ie ttriking difference in retention times
(p < 107, Wilcoxon test). This analysis shows that there are morkeoyteptides with short
retention time than expected, which is probably only duettihical bias that should be removed
by further normalization.
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Figure 7.6: Evidence for misquantifications in outlier pégs. Shown is an histogram of the
p-values of all physico-chemical properties tested idaand the cumulative distributions of
retention times for outlier peptides and background pegtid7.6h See text for details.

Another possible explanation for misquantification is sation, which means that for extremely
abundant peptides, reported intensities may be unde@siiin\When, for instance, two peptides
from the same protein have differing ionization efficiescieomputed fold changes may be
different due to this saturation effect. And indeed, outieptides have higher intensities than
expected by backgroung & 10~!3, Kolmogorov-Smirnov test), which indicates that satumati
is another effect that should be removed by proper norntadiza

We also made an attempt to test for differential post-tetimial modifications. Allowing
phosphorylation as a variable modification during peptabntification in Andromeda yielded
only very few results and the correctness of these idertiica should be doubted (data not
shown). This however was expected since in the dataset wie pisesphopeptides have not been
enriched experimentally. However, the absence of reliml@ytifiable phosphopeptides does not
prove their absence in the sample: If without enrichmenpthesphopeptides abundance in the
mass spectrometer is lower than the unmodified peptidellibat be selected for fragmentation
and MS. Thus, we downloaded known phosphopeptides from a pubdichilable database
[Bodenmiller et al.2008 and tested whether there is an overlap of these peptideowitoutlier
peptides. Even if there was only a small number of phosphajespdetected in our experiment
and it is not clear if they are also phosphorylated here,etlvens a weak but statistically
significant overlap{ = 0.034, Fisher’'s exact test). This means that differential PTMeed
seem to be present in our dataset and that they can be detisatgdur method.

Finally, we tried to find evidence for differentially regtagal isoforms in our dataset. To this end,
we classified each peptide location as alternative or dotise location. Due to the sparseness
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Figure 7.7: Evidence for saturation in our dataset. Theidigions for summed intensities for
all detected peaks is shown for outlier peptides and for ¢packnd peptides.

of the identified peptides, it is impossible to infer whicbfisrms are expressed in our data and
therefore we cannot restrict the transcripts to expressesdripts. Thus, we classify based on
the full Ensembl annotations: A constitutive peptide istaared in all Ensembl transcripts of the
corresponding gene and an peptide is characterized alterifathere is at least one transcript
that does not contain the peptide. Surprisingly, we foundnallsbut statistically significant
enrichment of outlier peptides among constitutive loasi¢p = 0.0086, Fisher’s exact test),
which supposedly suggests that background and not outietiqes are parts of differentially
regulated isoforms. However, we noted that the exon lerdgfir{ied as the number of nucleotides
in a gene, that is part of at least one Ensembl exon) is signifi¢larger for our outlier peptides
than for our background peptides & 10~'¢, Kolmogorov-Smirnov test). Thus, we removed
this bias from the analysis by sampling peptides from oukgamind set according to the exon
length distribution of our outlier peptides. When we applg same test as without sampling,
outlier peptides are now enriched among alternative lonaflhis enrichment is however not
statistically significant){ = 0.3, Fisher’s exact test), which is either a consequence ofrtiedl s
numbers or indeed true: Probably in our dataset, diffeséméigulation of isoforms is not as
widespread as all the other effects, in which case a statsér the whole set of outliers is not
expected to yield significant results.



7.4 Results and Discussion 135

7.4.3 Discussion

Our results demonstrate that all effects introduced befoag be present in the set of outlier
peptides. Our main future goal is to be able to distinguistwben these effects: Errors
(misidentifications and misquantifications) could be reliby improving both identification
algorithms and normalization methods. Detecting outlieptiwles can help to do that: For
instance, if an identification algorithm has to choose betweultiple candidate peptides for
a spectrum, it could use the outlier score as an additioitation to do so. It also seems as if the
normalization in MaxQuant, that accounts for intensitggieed amino acids and different protein
load [Cox and Mann2008§, is not able to remove all bias from the data.

Post transcriptional modifications (PTMs) have receivettaasing interest in recent years
[Huttlin et al, 2010 Olsen et al.2014. Usually, specific steps during sample preparation are
made to enrich modified peptides such that they can readifiebected and identified. We have
shown that even without these enrichment steps, diffeaeR@iMs are in principle detectable in

a standard MS experiment, even if peaks corresponding tmtukfied version of a peptide are
not selected for fragmentation. Our outlier peptide scarelme used to generate hypotheses for
finding differential PTMs.

Alternative isoforms, which are consequences of altevadtanscription start sites, alternative
splicing or alternative end-of-transcription sites (omdmnations of these), are widespread in
higher organismsHan et al.200§ and it is known that they are highly regulated in developtnen
[Chawla et al.2009 Cooper 2005 Lynch, 2004, between different tissue¥\ang et al. 200§
and in diseaseCooper et al.2009 Grosso et aJ.2008. Experimental techniques to detect
differentially regulated isoforms usually only consideoforms on the mRNA leveHan et al.
2008 Wang et al. 2008. However, it is known that not all produced transcriptsegise to
an equal number of proteins, so the ultimate test for diffeaé regulation of isoforms must be
performed on the protein level.

Finding differentially regulated isoforms is thus probalihe most interesting application of
our method, even if we were not able to reliably find cases & dhtaset we used. To our
knowledge, there is no established method available thathma ability to detect differential
isoforms on proteome level in a high-throughput manner.e3other effects can be excluded for
an outlier peptide, quantitative mass spectrometry coenesthis purpose: The only explanation
that remains for outlier peptides then is indeed diffeanmggulation of isoforms. Furthermore,
we can expect that in the future, the number of identifiedigdeptwill increase due to technical
progress and due to improved computational meth@its[and Mann2008. Even if there
certainly are peptides that are not detectable in massrepeeters, the number of peptides
that can nowadays be identifed is orders of magnitude lolan tvhat is actually quantifiable
in modern mass spectrometeidi¢halski et al, 2011). Due to technical and computational
advances, we expect that in the near future, the proteirragedyy peptides will provide a more
complete picture. This will also help to distinguish ditfetially regulated isoforms from the
other effects, since then, regularly more than one quathipiptide will be specific for isoforms.
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7.5 Conclusion

In modern quantitative high throughput mass spectrome#ita,dthe final analysis step is
to compute protein fold changes for all identified proteilms.most cases, this seems to be
straight-forward as long as a robust statistic is used topcdenthe protein fold change
from all individual quantifications. However, when havinglaser look at individual peptide
guantifications, it becomes evident that protein fold clesngre not always a proper way to
summarize measurements. In many cases there are peptlesdlsignificantly different from
other peptides of the same gene. This could be because thiegseptem from alternative
isoforms of a gene and because respective isoforms areettiffally regulated in the conditions
under consideration. We propose a method that is able tetdaieh differential regulation of
isoforms.

However, we found several effects that could confound thislamation of the quantifica-
tions in real data: misidentifications, misquantificati@rsl post-translational modifications.
Unfortunately, it is a-priori not clear which of these eteplays a role for a gene. Thus, in
order to reliably detect differentially regulated isof@rand distinguish it from these effects,
additional data is necessary. If for instance RNA-seq dasaailable for the same cells used for
mass spectrometry, it could provide additional evidencelitberentially regulated isoforms by
sequencing reads that support these isoforms either gfizgity or even quantitatively.

This study also revealed that the normalization currendlgduis not sufficient to remove all
technical bias. For instance, we have shown that the retetithe (either directly or something
that is correlated with it) affects quantification and fetimormalization is necessary to remove
this bias. Our method is able to provide peptides that areglly affected by such a bias which
can help in the development of further normalization steps.

In a modern mass spectrometer, only a limited number of@lbdptides detectable in MS spectra
is selected for fragmentation and M8Vichalski et al, 2011]. In order to find differentially
regulated isoforms, it would be beneficial to increase thelmer of identified peptides: Usually
there is more than one peptide specific to a single isoforrmuftiple specific peptides are
detected and measured, all other effects as described &lecoene less probable. Due to the
increasing throughput and decreasing scan times, we exipacsuch kind of data will be
available soon and our method could then even better be wssgstematically search for
differentially regulated isoforms.



Chapter 8

FERN - Stochastic Simulation and
Evaluation of Reaction Networks

Motivation: The previous chapters were either about raw data analysiagters3-5) or the
interpretation of systems biology data with respect to gjpeesearch questions, namely context-
dependence of microRNA-mediated regulation in chaptand differential splicing in chapter
7. In this chapter, | complete the workflow described in theorhiiction (see sectioh.1.1) by
describing a software package for stochastic simulatiohiofogical networks. In my diploma
thesis, | developed the Petri Net Modelling application A, a comprehensive modelling
platform for biological networks, which provides a highlgxible system for simulations of such
networks and originally provided methods to simulate nektwaising Fuzzy logic systems that
are powerful when experimental data is sparse and noisy.Vdetailed experimental data is
available, a system can be modeled in more detail and mosegléetsimulations are possible.
A widely used, highly detailed model is based on stochasticlation, where reactions of
individual molecules are considered. Thus, | developedva liarary for stochastic simulation,
which I integrated into PNMA, but which is also available fbe widely used software packages
Cytoscape and Celldesigner.

Publication: FERN has been published in BMC BioinformatiEstjard et al, 200§ and in this
extended form as a book chapter by Springerhard et al, 2010. Here, | adapted the layout
and made minor corrections to the text of the book chapter.

My contribution: | developed and implemented the software, carried out ev@s, drafted
the paper and wrote the extensions for the book chapter text.

Contribution of co-authors: Caroline Friedel helped to draft the original manuscriptalR
Zimmer supervised the work and helped to revise the mampiscri
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8.1 Abstract

Stochastic simulation can be used to analyze the develapohd&mological systems over time
and the stochastic nature of these processes. Most aeagatijrams for stochastic simulation,
however, are limited in that they either a) do not providertiest efficient simulation algorithms
and are difficult to extend, b) cannot be easily integrated ather applications or c¢) do not
allow to monitor and intervene during the simulation pracesan easy and intuitive way. Thus,
in order to use stochastic simulation in innovative higelanodeling and analysis approaches
more flexible tools are necessary. FERN (Framework for Eatedn of Reaction Networks) is a
Java framework for the efficient simulation of chemical teatnetworks. It is subdivided into
three layers for network representation, stochastic sitrar and visualization of the simulation
results each of which can be easily extended. It providesiefii and accurate state-of-the-
art stochastic simulation algorithms for well-mixed cheatisystems and a powerful observer
system, which makes it possible to track and control the kitimn progress on every level. To
illustrate how FERN can be easily integrated into otheresystbiology applications, plugins to
Cytoscape and CellDesigner are included. These pluging ntgsossible to run simulations
and to observe the simulation progress in a reaction netwonleal-time from within the
Cytoscape or CellDesigner environment. FERN addresseascehangs of currently available
stochastic simulation programs in several ways. Firstravigles a broad range of efficient and
accurate algorithms both for exact and approximate stticresulation and a simple interface
for extending to new algorithms. FERN'’s implementations eonsiderably faster than the C
implementations of gillespie2 or the Java implementatadnSBJava. Second, it can be used in a
straightforward way both as a stand-alone program andnuienw systems biology applications.
Finally, complex scenarios requiring intervention duriihg simulation progress can be modelled
easily with FERN.

8.2 Background

Traditionally, wet-lab experiments were focused on dégoeg the function of individual genes or
proteins. With the advent of high-throughput technologsgstem-level approaches have become
common, which make it possible to identify the interactibesween the individual elements of
the cell. Here, mathematical models are crucial in undedstgy these biological systems. In
particular, the simulation of the dynamics of these canaliga and predict quantitative aspects
of the system such as gene expression in regulatory networgignal amplification in signal
transduction networksSzallasi et al.2004.

The most common approach to modeling dynamics is via ordidifflerential equations (ODES)
which describe deterministically how the system evolvethwime (see e.g.Glodong et al.
2007 Shimoni et al.2007 Calzone et a.2007). Since the simulation of ODEs is deterministic,
successive simulations starting from the same initial ¢ants lead to the same results. Many
aspects of biological systems are not deterministic, whau lead to quite different outcomes
for the same initial conditions. In addition, when small rhers of molecules are involved,
concentrations of the involved molecules cannot be constti® be continuous, which is one of
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the fundamental assumptions for ODE models. To address fiteblems, stochastic simulation
algorithms (SSAs) have been developed.

SSAs operate on reaction networks, graph structures camgathe molecular species and
reactions as vertices and their wiring as edges. Theseaorawmtworks are introduced in the
following in terms of the more general framework of Petrimet

8.2.1 Petrinets

Petri nets Muratg 1989 are a well-established framework for modeling concurrgygtems.
They do not only provide a variety of analysis tools for bgitmal networks Reddy et al.
1993 but are also able to simulate their dynamic behaviour inrduitive way. Furthermore,
they provide a straight-forward graphical representatishich makes it possible to model
biological networks interactively and to observe or evemtad simulations. The reaction
networks proposed by Gillespie in his original wofEBillespie 1974 are a special case of Petri
nets and are also often called Stochastic Petri nets (SPNgGikespie did not use the Petri net
nomenclature, his original notations are given in paresgbén the following definition:

Definition 1. A Petri net (reaction network) is a 5-tupleN = (P, T, F, W, M) :

e Pis afinite set of places (molecular species)

T is a finite set of transitions (reactions)

PNT =10

FC(PxT)U(T x P)isasetof arcs
e W (PxT)U(T x P)—{0,1,2,3,...} is a weight function (stoichiometry)
e My: P —{0,1,2,3,...} is the initial marking of tokens (molecule population)

Thus, a Petri net is a bipartite graph composed of two type®dés: placesK) and transitions
(T"), connected by directed edges called afck Arcs from a place to a transitiont are called
input arcsof ¢. p is than callednput placeof ¢. Arcs from transitiont to placep are output
arcsof ¢t andp is anoutput placeof ¢. Places are marked with a number of tokens according
to the marking) and each ar¢ has an associated positive integer weight/f). Note that
W(f)=0&f¢&F.

A transitiont is enabled, ifM (p) > W (p, t) for each input arc, i.e. each input place is marked
with at least as many tokens as the input arc weight requitesfiring of an enabled transition

t updates markings of connected places: The marking of eath placep; is set toM (p;) —

W (p;, t) and each output plage is updated with the valug/(p,) + W (¢, p,). This means that

a firing transition removes tokens from each input place @l &okens to each output place.
The graphical representation of a Petri net is shown in [Eifuk Places are depicted as circles,
transitions as rectangles. Furthermore, the firing of thadition and the update of tokens is
shown.
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From this intuitive definition, a simple mathematical dgstoon of the state and of a firing
transition can be derived: If the ordering &f = {p1, ps, ..., p,} IS Clear, thecurrent stateof
a Petri net can be described by a vector (s, ..., s,) wheres, = M(p;). Furthermore, each
transitiont; can be described bystate change vectar, with components

vij = Wi(ti, p;) — Wi(pj, ts) (8.1)

Hence,S +v; is the state after firing transitian In Figure8.1, the places ar& =(H,,0,,Water)
and the initial state vector iS = (3,1,1). Firing of the transition with state change vector
v =(-2,-1,2) results in the stat§ + v = (1,0, 3).

A simulationof a Petri net is a sequence of firilg arbitrary transitions. Each firing updates
the state vectof* 2 S*+! according to the state change vector of the firing transitjoihe
resulting sequence of state vectsts ..., SV is calledtrajectory. The order of firing transitions

is determined by &ring rule. A generic simulation algorithm is given in Listirg@y1

while (there is an enabl ed transition) {
t = choose an enabl ed transition according to firing rule
firet

}

Listing 8.1: Generic Petri net simulation

As indicated above, a single token on a placepresents a single molecule of the molecular
specie®. A firing transition represents the occurrence of a chemezadtion. As a consequence,
a trajectory fully describes the temporal dynamics of a muakr model. Thus, to simulate a
biological system according to stochastic chemical kasetan appropriate firing rule must be
derived.

8.2.2 Stochastic chemical kinetics

For our purpose, we assume a well-mixed system with a honeagesrdistribution of molecules
in a fixed volume at a constant temperature. In this case, mangeactive molecular collisions
will occur until eventually some colliding molecules rea8ince we assume a well-mixed
system, it is not necessary to track positions and velaoitfendividual molecules and only the
amount of each molecular species and their reactive amilésin the system must be considered.
The amount of each molecule is stored as the number of tokemtiseorespective place in the
model and a reactive collision corresponds to a firing ttaonsi

Each state; of a trajectory is thus considered as random variable andres$a time;. Hence,
P(S;,t;) is the probability of having stat&; at time¢,. For each reactiom; there exists a
propensity functiom, such that;(S)dt is the probability that there occurs a reactive molecular
collision of input molecules of reaction; in the next infinitesimal time intervdl, ¢ + dt)
[Gillespie 1992. Then the probability of having stat€ at time¢ given the initial state5, at

to IS given by the chemial master equation (CME):
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Table 8.1: Mass action propensity functions for basic eastc is the respective reaction rate
constant. Note, that the propensity function only depemd$sanput places and not on its output
places.

Reaction Propensity function
- O
C
- O
- O
SlOl—> € X 5
- O
s, 1 __ O
.. , 1 O C X S1 X S9
- O
SIOZ—>_ O ¢ x 2xel)
|| |T|
a S t‘So,to Zaj ’Uj,t‘So,to ZCL] S t‘So,to) (82)

This equation describes the time evolution of the probighdf having stateS at timet for
fixed initial conditions. In order to get t8, either one of théT'| reactions has to fire in the last
infinitesimal time interval or none. If reactignfires, the system must be in stéte- v; before
the firing (this is the first sum in the CME). If none of tHE| reactions fires, the system must
already be in staté (second sum). For a more elaborate description of the CMEGilespie
1992.

The CME fully describes the stochastic dynamics of a sysfetinei propensity functions for
each transition in the model is given. The most prominennfof propensity function comes
from mass action kineticHillespie 197§. See Table3.1

Note that any higher order reaction can be built by compasiege zero-, first- and second-order
functions. For example, the mass reaction propensity iomet of the reaction in Figur8.1is
a(8) = ¢ x SLLBURITD o« §(0,).

From the deflnmon of the propensity function, thext-reaction density functiaran be derived,
which gives the probability that a specific reaction is thgtrie occur in an infinitesimal time
interval 7

pi(T,j|S,t) = a;(S) exp(—a(S)T) (8.3)
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O,

(a) Petri net before firing transitiant is enabled  (b) Petri net after the firings is no longer
enabled

Figure 8.1: A Petri net and the firing of a transition. The Redt represents the chemical formula
2H, + O, — 2H,0. Tokens are shown as filled circles and arc markings as nuamber

whereS is the current state vector,the time interval and.(S) = Zm

=1
propensity functions in the system. ’
A stochastic firing rule which fires transitions accordingtlds density function generates
trajectories that have the same probability distributisthee chemical master equatidaipson
and Bruck 2000. Usually the CME cannot be solved analytically or numdhgabut by
sampling a large enough number of SSA trajectories, it caadproximated to an arbitrary
precision.
The previous assumptions of constant volume and temperedur be relaxed in this framework.
To incorporate changing volume or temperature, the prapeiusictions are not only dependent
on the current stat8 but also on the current temperature and volume (&lesjon and Bruck
2000 for detalils).
If many reactions can fire without changing propensity fiorg significantly, the Langevin
method [Gillespie 2001 can be used to describe the stochastic process in a consmanner
in contrast to the discrete form of SSAs. If infinitely larg@lecular populations are assumed,
the Langevin method can in turn be approximated by reactitsequations, which are a kind of
ODEs. Since a trajectory from an SSA run is a sample of the GN=average of a large sample
of stochastic trajectories resembles the solution of thpaetive ODE.

a;(S) the sum of all

8.2.3 Stochastic simulation methods

The firing rule introduced in the previous section can be enmnted in various ways. Exact
methods generate random pairsj) according to equatiorB(3), adjust the state vector by the
respective state change vectgrand advance the timeto ¢t 4+ 7. Then the propensity functions
are recalculated to allow generating the next random pa& Esgure8.2).

First reaction method

The most basic method for drawing random pairsj) according to equation8(3) is to
generate tentative reaction timedor each reactiom; according to an exponential distribution
with parametem;(.S) [Gillespie 197§. This can be done by using the inversion method, i.e.
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Figure 8.2: This figure shows the flow of one simulation step.t@e left-hand side the flow
for the original Gillespie algorithm can be seen. On thetriggind side, we illustrate how the
different steps are modified by the Gibson-Bruck, enhandkelspie and tau-leaping algorithms.

Here, U(0,1) denotes the uniform distribution on the range of 0 to 1 apdthe reaction
propensity for reactiop.

generate a uniformly distributed number between 0 and 1 for each reaction and calculate

7 = a;(S)"'In(u; ). Then the first reaction = argmin, 7; is determined andr;, i) is taken
as next pair (for a proof that this generates trajectoriesrating to the CME, seedillespie

1974). Each firing thus requires generatifig exponentially distributed random numbers and a

linear search to determine the first reaction.
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Direct method

In order to draw the paifr, j) by the direct methodGillespie 1976, the joint probability 8.3
is rewritted to

p(rlS.0) = w10 % Gl 5.0 8.

YIS = a(S)exp(~a(S)7) 85
(S

Hins. = 2 8

wherea(S) = Y11, a;(S) is defined as above. Henceis exponentially distributed with param-

etera(S), while j is distributed according to the discrete probabilit%g%) and independent of
7. The reactionj can be determined by generating a uniformly distributedioam number.
between 0 and 1 and then computing the smallestich thatZ?,:1 ay(S) > ua(S). Thus,
each firing requires the generation of a single exponeytiditributed random number and one
uniformly distributed number, which is a substantial imgment compared to the first reaction
method. Efficiently finding the smallegis crucial to the performance of this method. Gillespie
originally proposed a linear search method, which was lateroved by Cao et al.2004 to a
binary search method using a reordering of the propensities

Next reaction method

24 years after the publication of the original SSA, Gibsod &nuck proposed some clever
improvements of the first reaction method. It uses a priajugue to reuse previously unused
tentative reaction times and a dependency graph for eftigieppdating only those propensity
functions, that have changed since the last firing. By udiege additional data structures, it is
possible to (assymptotically) generate only a single egpaally distributed number per firing
[Gibson and Bruck200(d. However, it has been suggested that the next reactionadeth
actually less efficient than improved versions of the dimaethod Cao et al. 2004 due to
the cost of mainting the data structures.

Composition/Rejection method

Generating a random number from a discrete probabilityidigion is not only a problem for
SSAs but have also been encountered in other fields. Slepaly [Siepoy et al.200§ used a
method previously described iDgvroye 1984 to improve the direct method. If the minimum
and maximum of the propensity funtions is bounded (whichvalal assumption in biological
networks), it is possible to generatén expected constant time. This means that finding the next
firing reaction does not depend on the number of reactionsare:. If the reaction network is
sparse (not too many propensity functions have to be upd@dtedfiring a reaction), it becomes
possible to simulate networks with tens of thousands oftiaas
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Tau-leaping methods

The direct and next-reaction methods are exact methods.iibans reaction propensities are
updated after each reaction. Recently, Gilles@dl¢spie 2001 proposed an approximative
method,tau-leaping which performs all reactions in a certain intervabefore updating the
propensity functions (they ’leap’ over a time interval).€Tinterval sizer is chosen such that the
propensity functions remain almost constant in this irdkand reactions may fire multiple times.
This, however, can sometimes lead to negative populatimhaga consequence, this method has
been improved later by Cao et aC4o et al.2005a 2004 to avoid this problem. The modified
tau-leaping algorithm automatically switches to the exX&8A for a few steps if the choice of
7 becomes too small. This allows for efficient simulation,exsally when huge quantities of
molecules are present in the system. If the interval is angseh that the propensity function
remain almost constant, the CME can accurately be appraedrizy the tau-leaping method.

Hybrid methods

Both exact and tau-leaping methods cannot be used to effic@mulate models with multiple
scales in molecule numbers or reaction rates. Exact metredso inefficient to simulate many
fast reactions and high molecule concentrations. On ther bidind, the presence of low molecule
concentrations and slow reactions in the systems will gffely lead to smallr values for the
tau-leaping methods and thus make them behave as the exdwdseTo circumvent these
problems, hybrid methods have been developed, which ipartite system into fast and slow
reactions. The slow reactions are then generally simulated) the exact SSA. The fast reactions
are solved either deterministically or with the Langevinatpn [Cao et al.2005h Chiam et al.
2006 Harris and Clancy200q§ or simulated with tau-leaping methodddrris and Clancy2006
Puchalka and KierzeR004. Alternatively, the model is simplified such that the effetthe fast
reactions is incorporated in the simulation of the slow tieas, e.g. using quasi-steady-state
assumptions, without actually firing the fast reactioRag and Arkin 2003 Cao et al.2005h
Salis and Kaznessi2005 Cao et al.2005¢ Goutsias2005 Samant and Vlache2005 Samant

et al, 2007.

8.3 Implementation

The early implementations of SSAs (e.g. the one Gillesppp@sed in Gillespig 1974) in the
late 70’s were quite inflexible, since they used hardcodadtien networks, i.e. the source code
itself contained the definitions &f andV' = {vy,...,v,} and it was not possible to change it
without editing the source code and recompiling it. With #dvent of modern programming
languages like C++ or Java, more flexible implementatione lh@en developed.

Flexible in this context has several meanings. First, ibsadutely necessary to allow loading of
reaction networks, i.e. the implementation should be abledd a reaction network stored in a
file and simulate it. Second, the user should be able to obsmreven control the simulation
process in various ways. As indicated above, there arerdiftemethods for different fields
of applications and using the best suited algorithm is edul@r simulation efficiency. As a
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consequence, implementations have to include the varigasithms and should provide an
easy way to add new methods, since even 32 years after th83rspaper, there is still room
for improvement §lepoy et al.2008§.

8.3.1 Other implementations

Several implementations of stochastic simulation alparg are available, e.g. COPAH$ops

et al, 2004, Dizzy [Ramsey et al.2005 using the SSA implementations of the ISBJava
library, gillespie2 Gillespie et al. 200§, STOCKS Kierzek 2002, StochKit [Li et al., 2007,
and BioNetS Adalsteinsson et gl2004. In general, these programs were designed as stand-
alone programs and, as a consequence, the user is limitdee tlunctionalities of the user
interface. This makes it difficult to use the implementagiohthe SSAs within other programs.
Furthermore, most of these programs provide only one impigation of an exact SSA method,
which is not always fast enough for the specific needs of @alctystems biology applications.
Users cannot easily add faster SSAs such as e.g. the apatertau-leaping procedure or new
hybrid algorithms to the programs.

The StochKit software and ISBJava library provide theseefamu-leaping algorithms and the
latter was also designed to be used within other systemedyigirograms. The output of the
corresponding SSA implementations, however, is limitetheomolecule concentrations. More
flexible implementations are necessary to simulate combigk-level models and integrate
stochastic simulation algorithms in new and innovativelysisa and modeling tools. Two
examples which illustrate the need for more flexible tooéstae visualization of the simulation
progress directly in a network and the simulation of cellvgito and division. With current
simulation tools, it is not possible to implement these twareples without having to change
the code of the actual simulation algorithms considerably.

8.3.2 FERN

FERN [Erhard et al.200§ is a Java framework for modeling and simulating biologgatems,
which provides all types of state—of-the-art simulatiogasithms (exact, approximate and
hybrid) and has been designed to be easily extendable to mesv With the help of the observer
programming patterngamma et aJ.2004, the simulation progress can be monitored on every
level and modifications to the systems can be introducedhgwimulations in an intuitive
way. Even with these additional functionalities, the inmpéntation is faster than the respective
ISBJava implementation. Results can be visualized easity reetworks can be loaded from
different sources. Contrary to ISBJava, FERN supports thsetrourrent version of SBML, a
widely used file format for exchanging biological networkséutka et al. 2003, and allows
arbitrary rate law definitions. FERN is primarily intendeslalibrary which can be included in
other Java applications to simulate reaction networks. é¥®w various user interfaces are also
provided by the FERN distribution, which allow to use it watlt writing a single line of Java
code. The most basic user interface included in the FERNilaligion is a command-line tool,
which can be used to generate time courses for given specesgiven reaction network from
the unix shell or windows terminal. Additionally, by expiioig the plugin architectures of the
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[[ /[o] ] Network [ Evolution ] [ ]J
([ Exact SSA ] Simulator [ Tau-Leaping ] [ ]]
([ IntervaIObserver] Observer [ LeapObserver ] [ ]
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Figure 8.3: The figure illustrates the overall design of FERM three layers. Each layer is
represented by one interface or abstract class: InteNat@orkand abstract class&mulator

andObserver

systems biology programs Cytosca@hannon et al2003 and CellDesignerfFunahashi et al.
2003, graphical interfaces to FERN are provided as well, whicikenit possible for the user

to design reaction networks visually, simulate them, e¢ate courses and even to observe the

simulation process in real time on the graphical representa
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8.3.3 Implementation details

FERN is an object oriented library implemented in Java (s&&_Uliagram in Figure8.3).
Although it consists of more than 100 classes and interfanest classes are implementations
of one of three major interfaces and abstract classes:

1. The interfacéNetworkprovides the network structure of the model.

2. The abstract clasSimulatorperforms simulations on letwork It additionally calls the
registered observers during the simulation run.

3. The abstract clas®bservertraces the simulation progress and creates the simulation
output.

A simple simulation can be performed in only five lines of coolee line for each of: loading a
network file, creating a simulator, creating and registgan observer, running the simulations
and printing the results. More complex examples for usinRREcan be found in the FERN
distribution. In the following, the three layers of FERN aescribed in more detail.

Networks

The interfaceNetwork describes the network’s structure, i.e. the reactions aediss in the
networks. Furthermore, the network stores basic inforondtke species names and their initial
molecule numbers. For the simulation more information isessary, which is stored in three
additional classes:

e The AmountManagecontrols the amount of each molecular species during theseaaf
a simulation.

e The AnnotationManagecan store additional annotations for the network, its sgseand
reactions.

e The PropensityCalculatorcalculates the propensity functions for the reactions kg th
specified kinetic laws.

There are three types of implementations of \etworkinterface:
e Readersvhich can read network data from files (e.g. FernMLNetwoBlV& Network)

e Decoratorswhich redirect method calls to existing network classeg. (EytoscapeNet-
workWrapper)

e Evolution algorithmsawvhich generate networks according to certain network nsoged.
AutocatalyticNetwork)
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For each network, stochastic simulations can be performiéd all implemented simulation
algorithms using all implemented observers.

An interesting example of network decorators and a perfbcwsase for the flexibility

of the FERN architecture are the modification networks. €hae implementations of the
Network interface, take an existing network instance and create diflred version of it.

For instance, thd&keversibleNetworklass creates a reverse reaction for each reaction of the
input network. Here, the power of object oriented softwagsigin is exploited in two ways:
First, the ReversibleNetworkan take any instance implementing tNetwork interface, e.g.

a network loaded from the file systedrefnMLNetworl, a network obtained from Cytoscape
(CytoscapeNetworkWrappeor even another modifier network. Second, the modifier n¢wo
itself is an implementation dfletworkand can hence be used like every other network, e.g. for
simulation. This scheme is often callddcorator patterfGamma et aJ.2004.

Import and export of networks

FERN supports two formats for loading and exporting netwotke SBML format Hucka

et al, 2003 as well as the simpler but also XML based FernML format. Feading and
writing the SBML format, FERN uses the Java bindings of thé@aty (libSBML) available at
http://www.sbml.org. Thus, it can be easily adapted to newetbpments of the SBML format.
From the model loaded by libSBML from the SBML file, a FERMBMLNetworkis created
using the list of compartments, species, reactions, pasmand events in the model. Events
have to be registered with a simulator by 8BMLNetworkf they are to be triggered during the
simulation. Triggering of events is handled by specific obses.

Currently, theSBMLNetworlkclass uses only the features of SBML necessary for the stionla
of the network. It supports MathML to define complex reactimechanisms but not rules,
constraints or function definitions. If these features arquired they can be incorporated
easily by extending the SBMLNetwork class and loading tHfea&ures from the SBML model
created by libSBML. Since many systems biology applicasupport SBML (e.g. CellDesigner
[Funahashi et 312003), the SBML format can be used as an interchange format leet\Ww&RN
and these other applications.

SBML is a powerful format which can provide lots of informati about a model. In contrast,
FernML stores only the topology of the reaction networkjaml annotations and the simulation
parameters. This results in a much more simplified input &rilore complex aspects, such as
volume change due to cell growth and division, can then beateddin Java using the FERN
library in a straightforward way. As a consequence, arbifraomplex models can be designed
on the level of Java code.

Since FernML supports only the mass action reaction ratateans used by Gillespi€illespie
1974, the propensities can be recalculated at each step efficlgna few arithmetic operations.
SBML uses MathML to store the kinetics of a reaction. Thiswal for more complex reaction
mechanisms and is particularly useful if the model canndb@ulated exclusively with first
or higher order rate equations. To evaluate MathML expoessiFERN creates expression trees
from them, which have to be evaluated every time a properssdgiculated. Since this is one of
the essential steps of SSAs, the simulation of an SBML né&twoFERN can be significantly
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slower than the simulation of the same network as a FernMlvort Thus, if only simple

reaction rate equations are used, an SBML network shoulabeected to a FernML network
using the provided conversion methods before performiagimulation.

FERN is not restricted to the input formats currently avaga Any new input format can be
easily included by implementing thdetworkinterface or extending thAbstractNetworkimpl

class.

Simulation algorithms

FERN provides implementations for four exact stochastiwusation algorithms, three state-of-
the-art tau leaping procedures (sé€&llespie 2001 Cao et al. 2006) and a hybrid method
combining SSA and tau-leapin@({ichalka and Kierzek004. The exact SSAs implemented
include the original direct method of Gillespi&illespie 1974, the next reaction method of
Gibson and BruckGibson and Bruck200Q, the Composition/Reaction metho8Igpoy et al.
2004 and an enhanced version of the direct method. This enhaneélibd uses the dependency
graph technique of the next reaction method to only updaeptbpensity functions that are
affected by the firing of a reaction. Apart from this improwemt it is identical to the direct
method. As indicated inGao et al. 2004, this simple enhancement is sufficient to make the
direct method faster than the next reaction method in megica

The tau-leaping algorithms are all based on the modifieddaping procedure proposed by Cao
et al. [Cao et al. 20054, which avoids the problem of negative populations obsgree the
original tau-leaping procedure. This method switches texact SSA (in our implementations
the enhanced Gillespie) for a few steps if the selectbdcomes too small. The three implemen-
tations differ only in the way the error is bounded (s€a¢ et al. 2004 for details). The error

is bounded either by the sum of all propensity functiofeu(_eapingAbsoluteBoundSimulator
the relative changes in the individual propensity funddi@fauLeapingRelativeBoundSimulafor
or the relative changes in the molecular populatidrasi_eapingSpeciesPopulationBoundSimu-
lator).

Furthermore, FERN implements the hybrid method by Puchahd Kierzek Puchalka and
Kierzek 2004, which partitions the system during the simulation intovglreactions, which
involve only small molecule numbers, and fast reactionsclvimvolve large molecule numbers.
The slow reactions are then simulated using an exact SSAewhel fast reactions are simulated
with tau-leaping. This algorithm was chosen over other laybrethods for two reasons. First,
it uses only stochastic simulation algorithms, i.e. exad8A%nd tau-leaping, and no further
assumptions such as quasi-steady state. Second, theopargtof the system is performed
dynamically according to the state of the system and updafid each reaction step. Our
implementation of the hybrid method uses our more efficienttaeced Gillespie algorithm
instead of the Gibson and Bruck algorithm used by Puchalkbkiarzek. On the model of
LacZ and LacY gene expression by Kierzékdrzek 2003, the hybrid method speeds up the
runtime by a factor of about 100 compared to the enhancedspik algorithm.

Future developments of the algorithms can easily be indutte FERN by extending one of the
SSA implementations or the origin@imulatorclass. In the same way, ODE solvers or simulators
for spatial models, which are not provided by FERN, can begrated.
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Observer system

FERN uses observer&pmma et al.2004 to trace the simulation progress and react to events.
For this purpose, each observer has to implement functibidwvdescribe its response at specific
time points of the simulations. Such responses may ocdueredtt the beginning or the end of a
simulation, before each step, after a reaction is fired omvéheertain time is reached. In order
to be notified of these events, observers have to be regisigtie the simulator.

Observer implementations are provided for tracing the mdénumbers for some species in
arbitrary intervals, for recording the firings of reactipfte computing distributions of molecule
numbers at a certain time over many simulation runs as wédirasany other purposes. Several
observers can be registered for a simulation at the sameatith@nost of them can also handle
repeated simulation runs, e.g. to create average curvasreecontaining all trajectories for
the individual simulation runs.

In general, the observers use gnuplot to present theitsegirice gnuplot is installed on a system
and accessible e.g. via the path variable Gimeiplotclass makes it possible to easily create plots
and retrieve them abnageobjects, save them as files or present and update them onlime i
window. Plots can be customized using appropriate gnuplmincands.

Stochastics

An important feature of FERN is that random number genemaschandled by the singleton
classStochasticsAccordingly, only one instance of this class is instaetiaturing a FERN
run and all calls for random numbers are referred to thisamst. This has several advantages.
First, the underlying random number generator can easitgflaced if faster and better random
number generators are developed. Currently, the Mersewrstef implementation of the Colt
Project is used (http://dsd.Ibl.gevhoschek/colt/). Second, by setting the seed value for the
random number generator explicitly, the simulation can bd@deterministic and e.g. interesting
trajectories can be reproduced. Third, it is possible tontdbie number of random number
generations necessary for different implementations &sS8vhich is particularly interesting

to figure out why some algorithm is inefficient for some apgiion.

8.3.4 Accuracy and runtime performance of FERN

To test the accuracy of the implemented stochastic sinmmatigorithms we used the Discrete
Stochastic Models Test Suite (DSMTE&Mans et a].2007. This test suite provides 36 stochastic
models in the SBML format which have been solved either ditaljy or numerically. To test
the implementation of a stochastic simulation algorithimuwations have to be performed a
large number of times (in general 10,000 times) for eachviddal model. The test is failed for
a model if the distribution of the results is statisticallgrsficantly different from the known
underlying distribution.

The exact simulation algorithms passed 94.4% of the DSMTS8etsoErhard et al. 2009,
which is significantly better than the performance of othaplementations. The reference
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implementation of one of the authors of DSMTS, gillespi&lIespie et al. 2004 for instance
passes only 80.6% of the tests.

Even though FERN is implemented in Java, which is often ctgirto be less efficient than
C, FERN'’s original gillespie algorithm is significantly tas than the C implementation of
gillespie2. FERN was also compared to the SSA implememtaifolSBJava using the EGF
signaling pathway by Lee et alL¢e et al, 200G, which contains 39 molecular species and 19
reversible and 12 irreversible reactions. Our results ghaithe implementations of the original
Gillespie and Gibson-Bruck algorithm of FERN are always enefficient for the FernML
network than the implementations provided by ISBJava (&ails about runtime performance,
see to Erhard et al.20089).

Furthermore, the enhanced implementation of the Gillegg®rithm provided by FERN
outperforms any of the exact methods provided by ISBJavas $hows that the powerful
observer system of FERN does not come at the cost of a reducdgitne performance. In
contrast, observers may rather help to avoid the execufiamiwecessary code. Accordingly,
FERN is a useful library for stochastic simulation even & tibserver tools are not used.

8.4 Using FERN

8.4.1 Command line tool

FERN can directly be used from command line by calling on&eftart scripts. This is currently
supported for windows (start.bat), linux/unix/mac os ifss&) and cygwin (startygwin.sh).
They all call the main method of the clafesn.Starf which is able to simulate networks with
different algorithms and record time courses of molecylacges. Usually, these time courses are
written to stdout in tab separated format, to enable an eagepsing by downstream programs.
In addition, the command line tool of FERN is able to direcifgate plots of time courses using
the freely available software gnuplot.

In the following, some examples are shown for using the conthiae tool to simulate the EGF
signaling pathway by Lee et aL¢e et al, 2004, which is included in the FERN distribution as
a FernML network (examples/mapk.xml) and an SBML networa(eples/maplsbml.xml).

The most basic simulation run can be started by typing

start.sh exanpl es/ mapk. xm 800 10

This will simulate the pathway for a time of 800 seconds ardiré the amount of each of the 39
molecular species every 10 seconds. The recorded timeec@mwgitten to stdout, which gives
a total of 81 lines of 40 columns each containing the time enftfst column and the molecule
number of the i'th molecule in the i'th column (the molecudpecies are numbered according to
their occurrence in the xml file):

0.0 680. 0 100.0 0.0 0.0 0.0

800. 0 580.0 0.0 2.0 0.0 12.0
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In the model, the molecular specidf)x, E'1x, E2x, E3*, E4x, E5* represent the receptor
signaling complex EGF.EGFR2Grb2.SOB0k) and the phosphorylated forms of the kinases
Ras, Raf, MEK, ERK and EIk K1 x —FEb5x). Since these are the constituent parts of the
phosphorylation cascade and therefore particularly estarg, it is possible to specify the
molecular species to observe using the -s parameter.

The output then will only have seven columns: the time andatheunt of these six molecular
species (now the species are numbered according to theirreace in the command). In order
to create a plot, thmteractiveflag can be used.
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Figure 8.4: Trajectories of the EGF signalling pathway bg ke¢al. Lee et al, 2004. After 100
SSA runs, the average of all trajectories strongly reseshle time course of the ODE model.

A window containing the time course plot (see Fig8td) will pop up once the simulation has
finished. It is possible to save the plot in various formatsligking onto the window. Lee et

al. used ODEs to model the pathway, so their plots looked anmother than the time course
created by SSAs, which is a random sample according to the.@M&der to create muliple

time courses, use the -n parameter. The full command then is:

start.sh exanpl es/ mapk. xm 800 10 -i -n 100 \
-s EO+ Elx E2* E3* E4x Eb5+

Now, the plot is updated after every simulation run. The nmores are averaged, the more similar
are the results to the ODE model inele et al, 2004 as the CME is better approximated.

8.4.2 Basic usage of FERN

Apart from the the command line, Java programmers can usésERlvanced functionalities
by writing only a few lines of code. A network can be loaded sirale line of Java code (line 1
in Listing 8.2). Then it can be simulated usingsamulatorinstance (lines 4 and 9).

The parameteg00.0 is the time duration for simulation, i.e. the reaction natwis simulated
from ¢, = 0 with Sy =the initial amounts taken from mapk.xml to timg = 800. Simulation
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results, however, are not reported yet (and not even redprdmce noObserveris registered

at the simulator. ThémountintervalObserveran be used to create time courses of molecular
populations (lines 5 and 6).

When the simulation is started afterwards, the observardscthe amounts of the phospho-
rylated kinases (see above) at time poits= 0,¢;, = 10,¢;, = 20, ...,t,, = 800. If the line
sim.start(800.0js placed inside a for loop (line 8), the observer will recalldhe runs. However,
these results are still not reported to the user.

This is done by lines 11-16. These create a plot of the avdrage courses as well as the tab
separated output known from the command line tool.

1 Network net = new Fer nM_.Net wor k( new Fi | e(" mapk. xm ")) ;

2 Net wor kTool s. dunpNet wor k( net, new PrintWiter(Systemout));

3

4 Simulator sim= new G || espi eEnhanced(net) ;

5 Ampunt | nt erval Gbserver anpbunt = new Anount | nt er val Cbserver(si m 10, "
EO*", "Elx", "E2*","E3+", "E4x" K "E5+");

6 simaddObserver (anount);

-

8 for (int i=0; i<100; i++)

9 simstart(800.0);

11 GnhuPl ot gp = new GhuPl ot ();
12 gp.setVisible(true);
13 anount.t oGnupl ot (gp);

14 gp.plot();

16 Systemout.println(gp.toString());
Listing 8.2: Complete listing of the example

Although this example only performs the same simulatiotnassommand line tool, it illustrates
the structure and modularity of a FERN program for the usewaiheunexperienced Java
programmers.

Additional examples are included in the FERN distributiorthe packagéern.examplewhich
can be used as a starting point for own projects. Besides 8iegle class examples, the FERN
distribution includes more sophisticated applicationg®functionalities, which are described
in the following.

8.4.3 Cytoscape plugin for stochastic simulation

Cytoscape$hannon et 812003 is a software platform for visualizing and integratingwetks
with an emphasis on biological data. It provides a flexiblegpt architecture, which can be used
to enrich the platform with additional methods. We used fhisctionality to create a plugin
which uses FERN to simulate networks loaded into Cytoscape Figure8.5). This plugin
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makes it possible to track the simulation progress diremtiyhe network. Furthermore, it shows
how FERN can be easily integrated into other applicatiorsslaow the observer system can be
used to visualize more than just the changes in molecule atsnb

EQE}
£2)
@
@ FERN plugin - X
G
©)
[
R
J{ |

Figure 8.5: EGF signalling pathway loaded into Cytoscaperé€htly, a simulation is performed
and visualized directly on the graphical representaticgh@hetwork: The transitioh+ R — C'
(the dark colored diamond in the lower left corner) is cutigefiring.

Each network readable by Cytoscape can be used for simuliagigdhe plugin if it consists of
two distinct types of nodes, namely reactions and molecpacies. Furthermore, the initial
amount of each molecular species and the reaction ratea@eatffor each reaction are required.
These parameters and the node type (species or reaction)ecasad from arbitrary node
attributes specified in Cytoscape. Additionally, the plugrovides access to FernML files in
both directions. Thus every Cytoscape network can be sa/€drmML, and every FernML file
can be loaded into Cytoscape.

Simulations can be performed with every stochastic simanatlgorithm provided by FERN
and the simulation progress can be visualized directly emgtwork. Reaction nodes flash up
whenever the corresponding reaction is fired and the speoiss are colored according to their
molecule numbers. Furthermore, simulations can be rurairtiae, which causes the algorithms
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to pause between two reaction events according to the siealtiane. In addition, time series of
molecular species can be created using gnuplot.

The implementation of the Cytoscape plugin is straightBov A central plugin class integrates
FERN into the Cytoscape platform by creating a menu itemad $he plugin and to load the
user interface. Apart from the classes defining the usenfate, only a few additional classes are
necessary. The most important ones are a wrapper classhmapling theNetworkinterface to
map the Cytoscape network structure to FERN an@hserverclass to make the visualization
possible. Additionally, FERN provides its owfisual Stylgwhich defines how nodes and edges
are colored and shaped in Cytoscape) to guarantee a prepéaydof the network and to handle
the flashing and recoloring of reaction and species nodgsectively.

The Cytoscape plugin was also adapted as a plugin to CelibessiFunahashi et /2003,
which now offers a plugin functionality with the recent viers4.0 beta.

8.4.4 Simulation of cell growth and division using observes

The Cytoscape plugin is one example how observers can beaadk the simulation progress
at various levels. Another example which illustrates theeptal of the observer system is the
simulation of the LacZ model described by Kierzek et Kiefzek et al, 2001, Kierzek 2002
and based on experimental results by Kennell and Riezikamnrell and Riezmarl977.

This model requires the simulation of cell division. Afteacl cell division, the stochastic
simulation is continued with one promotor molecule and #tleo molecule numbers divided
by 2. RNA polymerase and ribosome molecules are assumedaneapproximately constant
with natural variations. For this purpose, the number o$¢h@olecules has to be adjusted after
each simulation step by drawing from normal distributidasrthermore, cell growth leads to a
linear volume change.

With existing stochastic simulation programs, this modei,an general, only be simulated by
changing the code of the actual simulation algorithms. 2oyntto that, the model can be easily
simulated with FERN by simply defining a cell growth obsenksfore each simulation step,
the observer checks if a generation has been completeds iktthe case, all molecule numbers
are adjusted as described before. In any case, the voluméssimjusted to account for either
cell division or cell growth, and the RNA polymerase and sbime molecule numbers are set
randomly.

This approximation was also used by Kierzek et al. and asstimagcell volume does not change
during a simulation step. To perform an exact simulationadfisne change, propensity functions
would have to be defined which handle the cell volume as aifumof time. However, since the
volume change during one reaction is extremely small, tfierdnces between the approximate
and exact results should be negligible.

Using the cell growth observer, we simulated the LacZ modih whe enhanced Gillespie
algorithm. Our results for the concentration of the LacZteim clearly show the periodic
oscillation in the protein numbers due to cell growth andsion (see Figurd.6). From these
results, we can estimate the rate of LacZ protein synthésia imeatr fit to the increasing LacZ
concentrations during the first generation. Here, we obthinrate of protein synthesis of 2%,
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Figure 8.6: Average results of 1,000 simulations are sh@wthie LacZ protein over ten bacterial
generations (black). After each generation ( 35 min) thelmemmolecules for each species was
divided by 2 to simulate cell division. The gray line showdreeér fit to the increasing LacZ
concentration during the first generation. This yields a odtprotein synthesis of 21'.
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which is close to the 22! obtained by Kierzek et alKjierzek 2007 and the 20! reported by
Kennell and RiezmarKennell and Riezmaril977.

8.5 Discussion

In this chapter, we presented FERN, a Java framework for fimydand simulating biological
reaction networks. We showed, that FERN improves on imphati®ns in terms of runtime
efficiency and flexibility and that it provides a comprehgasand easy to use framework for
fast, accurate and flexible stochastic simulation to Javaldpers. It provides state-of-the-art
stochastic simulation algorithms, efficient represeatetiof networks with several input and
output options and various ways of tracing and visualizingu$ation data.

It is possible to do reasonable simulations with FERN in fivstlines of Java code. Each of the
five steps can be expanded to cover more complex scenaricsranthtions can be controlled
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at different levels. For instance, to simulate cell groveth,observer can be modified to change
the volume of the simulation space. Alternatively, an ies¢ing subnetwork can be selected on
which simulations can then be run.

Compared with the ISBJava library, FERN has several adgastdirst, FERN is more flexible
than ISBJava and offers more functions for tracking and-aaéng with simulations. Second, in
contrast to ISBJava, it implements the composition/regaanethod for large networks, a hybrid
algorithm as well as the most current tau-leaping methodshwiesolve the problem of negative
concentrations. Furthermore, its stochastic simulatigorahms are significantly faster than the
ISBJava implementations. Finally, it supports the curkamsion of SBML and allows arbitrary
rate laws.

FERN can be easily integrated into other applications ngakgfunctionalities available within
different environments. We have illustrated this by impésting FERN plugins to Cytoscape
and CellDesigner. With only few additional classes, theoSgape plugin enables the users to
follow the simulation progress directly on the network. Shias made possible by the powerful
observer system of FERN, which is one of its major advantagespared to other available
simulation programs. In addition, we currently develop PAl{Retri Net Modeling Application),

a software platform for modeling, simulation and parametgimization of biological networks
based on Petri nets (http://www.bio.ifi.Imu.de/PNMA). Is@ includes a FERN plugin for
stochastic simulation and offers many more specializedtfonalities regegarding Petri nets
and their simulation than Cytoscape or CellDesigner.

Thus, the plugins and the command line tool make it possibéxploit FERN’s functionalities
without writing Java code. Although some available stothasmulation programs offer a few
specialized features not yet supported by FERN such asime-delayed dynamics, none of
them offer such a wide range of features and can be extendehifeatures as easily as FERN.
Therefore we provide FERN as a useful tool for biochemicbhngk analysis or the development
of new analysis methods or applications.
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Conclusion and outlook

In this work | developed several methods to analyze andpreghigh-throughput data from
systems biology experiments. As pointed out in the previchegpters for specific examples,
it is highly important to properly analyze the raw data froocts experiments. Otherwise,
interesting findings may be missed or, which is even worsstakes made in the raw data
analysis, e.g. not recognizing certain bias, may lead tagiaterpretations. Furthermore, it
becomes more and more apparent that the major bottlenec&nongcs research is not the
generation of data but their computational analyis, imggion, visualization and integration
[Green and GuyeR011]]. For instance, the ENCODE proje&@énsortium20121 has generated
and is still generating unprecedented and massive amotidéga Even if various papers have
been published jointly in Nature, Genome Research and Gerigiology in September 2012,
there is probably still much to be found in the ENCODE datal laypotheses published by the
participants of the ENCODE project must be challenged. @aipputational methods and tools
give the opportunity to handle such data.

| applied the methods | developed to data that was obtainéldeircontext of a project about
herpes viruses with a focus on post-transcriptional reguidy microRNAs. ALPS (see chapter
3 and Erhard and Zimmef201Q), PARma (see chaptet and Erhard et al.[20133) and
REA (see chapteb andErhard et al[2013) are methods for the raw data analysis of short
RNA-seq, PAR-CLIP and RIP-Chip experiments, respectivaly of these experiment types
are widely used in biological research and implementat@m8LPS, PARma and REA are
publicly available on the institute’s website and can bedulg the research community to
identify regulatory RNA in short RNA-seq experiments or todfitheir targets by PAR-CLIP
or RIP-Chip experiments.

These methods or ideas thereof may also help to answer@dlijuestions that have not been
addressed so far. For instance, since regulat@iNAs are also sequenced in a PAR-CLIP
experiment, it may be of interest to apply ALPS to PAR-CLIRadia order to identify novel
regulatoryncRNAs that is also utilized byRISC to recognize targets. Furthermore, the ALPS
scoring system could be extended to also consider PAR-Ch#lPacteristic features, i.e. Tto C
conversions.

Furthermore, ideas from PARma could also be used to analyes types of experiments, for
instance Digital genomic footprintind>GF) [Neph et al. 2012H. Roughly, in comparison to
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CLIP-seq, which measures data of microRNA-mediated reéigmaDGF can be seen as the
equivalent experiment for data of transcription factff-mediated regulation. IDGF, binding
sites of all activeTFs are obtained in a genome-wide manner, which is similar ttP&eq
experiments, where binding sites of microRNAs are measured genome-wide manner: In
both cases, there are two tasks for bioinformatics, thetiiieation of the binding sites and of
the regulator that has bound to each of the sites. Impoytamtiile the characteristic features
of PAR-CLIP data are uniform for each microRNErhard et al.20133, DGFtarget sites may
exhibit quite distinct but highly specific patterns in tB&F data depending on th&F that
has bound thereNeph et al. 2012. Thus, PARma cannot be directly applied D&F data,
but extending PARma to respect these distint patterns meyythalistinguishTFs with high
accuracy.

FERN (see chapte8 and [Erhard et al.2008) is a software package for stochastic simulation
of Petri nets. The simulation of biological networks willdmene more and more important in the
future due to the massive amounts of data that is being peatand tools such as FERN will
be important to model and check the measurements by siml&ERN is also freely available
on the internet as stand-alone library, as a plugin for @#pe and for CellDesigner, and also
embedded in our in-house modelling applications PNMA.

The detection of outlier peptides (see chaptend Erhard and Zimme[2012) is a first step
towards finding differentially spliced genes in proteomdzta. Considering transcript level
expression instead of gene level expression is a necegsariosvards understanding eukaryotic
gene regulation and technological advances in mass spestinp and their analysis methods
will help to uncover splicing patterns on proteins in a geeemde manner. Furthermore,
NcRNAs have been implicated in the regulation of splicing and tintegrating microRNA
related experimental data, e.g. target sites obtained B-@RIP, and experiments measuring
splicing patterns will be an important topic in the future.

The most intriguing finding in this work is that microRNA-mated regulation is dependent on
the context and that context-dependence is not restrictedféw examples but a widespread
feature for microRNAs. Future experiments and researcht fogsis on the identification of
contributors to this context. For instance, there are direseveral studies available that try to
identify binding sites either of specific RNA binding proteilLebedeva et al2017 or of all
RNA binding proteins at oncégltz et al, 2017. However, such experiments must be conducted
for multiple contexts in conjunction with experiments thatasure microRNA targets. Thus, not
only anEncyclopedia of DNA Elemenis necessary to understand the human genome, but also
anEncyclopedia of RNA Elements

So far, high-throughput data has mainly played a role indo@siearch. However, falling prices
are currently initiating a new age for high-throughput expents such ablGS: They are more
and more applied in a clinical setting, opening up compjatelv opportunities for personalized
medicine Biesecker et al.2012. Thus, the development of analysis software that cannigt on
be used by specially trained bioinformaticians but also lnyical personal will also play an
important role in the future.

Currently, we may not yet be in the position to understandrapiete system such as a single
cell or a whole organism in a quantitative manner, but higioughput technologies give us
the opportunity for big steps towards a quantitative urtdexding. It is in the responsibility of
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computational biology to take these steps by providing wathand tools for the analysis and
interpretation of high-throughput data.
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nt nucleotides

NGS next generation sequencing

SNP single nucleotide polymorphism

CNV copy number variation

MRNA messenger RNA

NcRNA non-coding RNA

IP immunoprecipitation

4sU 4-thio-uridine

RBP RNA binding protein

FDR false discovery rate

DE differential expression

FDR false discovery rate

LC-MS/MS liquid chromatography tandem mass spectrometry
SILAC stable isotope labelling of amino acids in cell culture
UTR untranslated region

RISC RNA induced silencing complex

GRN gene regulatory network

TF transcription factor

RNAI RNA interference

AGO Argonaute
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kb kilobases

EBV Epstein-Barr virus

HSV1 Herpes Simplex virus 1

HSV2 Herpes Simplex virus 2

HCMV Human Cytomegalovirus

MCMV Murine Cytomegalovirus

KSHV Kaposi's Sarcoma-associated Herpesvirus
VZV Varicella-Zoster Virus

rLCV Rhesus monkey Lymphocryptovirus

CLIP crosslinking and immunoprecipitation
PAR-CLIP Photoactivatable-Ribonucleoside-Enhanced Crosslgimd Immunoprecipitation
eGFP enhanced green fluoresent protein

DGF Digital genomic footprinting
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