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S U MM A R Y  

Fighting metastasis is a major challenge in cancer therapy and novel therapeutic targets and drugs 

are highly appreciated. Resistance of invasive cells to anoikis, a particular type of apoptosis 

induced by loss of cell-extracellular matrix (ECM) contact, is a major prerequisite for their 

metastatic spread. Inducing anoikis in metastatic cancer cells is therefore a promising therapeutic 

approach. 

The vacuolar H+-ATPase (V-ATPase), a proton pump located at the membrane of acidic 

organelles, has recently come to focus as an anti-metastatic cancer target. As V-ATPase inhibitors 

have shown to prevent invasion of tumor cells and are able to induce apoptosis we proposed that 

V-ATPase inhibition induces anoikis related pathways in invasive cancer cells. 

In this study the V-ATPase inhibitor archazolid A was used to investigate the mechanism of 

anoikis induction in various metastatic cancer cells (T24, MDA-MB-231, 4T1, 5637). Therefore, 

cells were forced to stay in a detached status to mimic loss of cell-ECM engagement following 

treatment with archazolid.  

Indeed, anoikis induction by archazolid was characterized by decreased expression of the 

caspase-8 inhibitor c-FLIP and caspase-8 activation, thus triggering the extrinsic apoptotic 

pathway. Interestingly, active integrin β1, which is known to play a major role in anoikis 

induction and resistance, is reduced on the cell surface of archazolid treated cells. Furthermore, a 

diminished phosphorylation of the integrin downstream target focal adhesion kinase could be 

demonstrated. The intrinsic apoptotic pathway was initiated by the pro-apoptotic protein BIM, 

increasing early after treatment. BIM activates cytochrome C release from the mitochondria 

consequently leading to cell death and is described as one major inducer of anoikis in non-

malignant and anoikis sensitive cancer cells.  

Of note, we observed that archazolid also induces mechanisms opposing anoikis such as 

proteasomal degradation of BIM mediated by the pro-survival kinases ERK, c-Src and especially 

Akt at later time points. Moreover, induction of reactive oxygen species (ROS) influences BIM 

removal as well, as moderate levels of ROS have second messenger properties amplifying cell 

survival signals. Thus, to antagonize these anoikis escape strategies a combination of archazolid 

with proteasome or ROS inhibitors amplified cancer cell death synergistically. 

Most importantly, intravenous injection of archazolid treated 4T1-Luc2 mouse breast cancer cells 

in BALB/cByJRj mice resulted in reduced lung metastases in vivo. 
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To summarize this work we propose archazolid as a very potent drug in inducing anoikis 

pathways in metastatic cancer cells even though having learned that detachment together with 

treatment triggers multiple resistance mechanisms opposing cell death.  

Hence, V-ATPase inhibition is not only an interesting option to reduce cancer metastasis but also 

to better understand anoikis resistance and to find choices to fight against it. 

Figure 1: Anoikis, anoikis resistance and actions of archazolid 
A: Detachment induces cell death (anoikis) in non-malignant cells preventing a dysplastic growth of tissue 
cells in other locations, important for tissue homeostasis. Metastatic cancer cells develop anoikis 
resistance to survive in the circulation, which is a prerequisite for tumor metastasis. 
B: Archazolid induces anoikis in malignant cells, thus preventing metastasis.  
C: Archazolid treatment promotes anoikis by downregulation of active integrin on the cell surface, 
attenuating integrin signaling and inducing apoptosis. This is accompanied by mechanisms opposing 
anoikis induction like activation of certain survival signals and repression of apoptotic proteins. 
Nevertheless, anoikis signals outweigh anoikis repressing signals induced by archazolid treatment finally 
leading to cell death and reduced metastasis in vivo. 
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1 INTRODUCTION 

1.1 The V-ATPase as Cancer Target 

1.1.1 Physiological Function and Structure 

Vacuolar H+-ATPases (V-ATPases) are ATP-dependent proton pumps ubiquitously expressed, 

regulating the pH in endomembrane systems like endosomes, lysosomes, the Golgi apparatus and 

secretory vesicles thus affecting receptor-mediated endocytosis, protein degradation, membrane 

fusion and intracellular trafficking (1). Some specialized cell types even express the V-ATPase on 

their plasma membrane for acidification of the extracellular space needed e.g. for renal 

acidification or bone resorption (2,3).  

The V-ATPase is a large multisubunit complex (Figure 2) basically working by a rotary 

mechanism, organized in two major domains (V1 and V0). The V1 domain is located at the 

periphery of the cytoplasmic membrane side responsible for ATP hydrolysis providing energy for 

the rotary movement. It consists of eight different subunits (A-H). The central hexametric ring 

consists of three AB heterodimers building the catalytic site for ATP hydrolysis. Subunits C-H 

form peripheral and central stalks connecting V1 and V0. The central stalk functions as rotor 

transferring the energy of the hydrolysis in a rotation of a ring of proteolipid subunits in the V0 

domain.  

The V0 domain is embedded in the membrane conducting the proton translocation from the 

cytoplasm to the lumen. It consists of six different subunits (a, d, e, c, c´, c´´). The protons are 

translocated by two hemi-channels in the a-subunit and the rotation of the proteolipid ring of 

four c, c´and c´´ subunits. Each proteolipid contains a buried glutamate residue responsible for 

proton binding and transportation. Protons can enter the first hemi-channel in the a-subunit at 

the cytoplasmic side of the membrane and subsequently bind the glutamate residue of one c-

subunit. The proteolipid ring rotates, driven by ATP hydrolysis in the V1 domain thereby 

transporting the H+ to the second hemi-channel releasing the proton to the lumen (2). Although 

the V-ATPase is structurally and mechanically related to the F1F0 ATPase (F-ATPase) of 

mitochondria the V-ATPase cannot synthesize ATP from ADP and phosphate (4,5).  
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1.1.2 Role and Relevance in Cancer Cells 

It has been reported that cancer cells express V-ATPase on their plasma membrane to acidify the 

extracellular space, as low pH is important for invasion and proliferation (6–8).  Expression of V-

ATPase on the plasma membrane of breast cancer cells differs between highly metastatic and 

lowly metastatic cell lines. Cells with a more invasive phenotype had an increased V-ATPase 

expression and proton flux then non-invasive cell lines giving evidence that there is a correlation 

to the metastatic potential (8). It is known that cancer cells secret a variety of enzymes 

responsible for extracellular matrix degradation important for invasion and metastasis. These 

enzymes are most active at lower pH. Therefore, an acidification of the extracellular space is 

favorable for cancer cells (9). On the other hand plasma membrane V-ATPases may play an 

additional role in tumor cell growth and survival. Tumor cells are known to produce more H+ due 

Figure 2: Structure of the vacuolar H+-ATPase 
The V-ATPase is a proton pump responsible for the acidification of intracellular compartments. It is a 
multisubunit complex organized in two major domains (V1 and V0). The V1 domain is responsible for 
ATP hydrolysis to drive the rotary mechanism that translocates the protons in the V0 domain from the 
cytoplasm to the lumen. Protons can enter a hemi-channel in the a-subunit in the V0 domain and bind a 
glutamate residue in one of the c-subunits. By the rotation of the c-subunit ring, driven by ATP 
hydrolysis in the V1 domain, the proton is translocated to the second hemi-channel in the a-subunit 
releasing H+ to the lumen. Illustrated according to the model of Forgac, 2007.   
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to higher glycolytic activity (10). To circumvent cytosolic acidification the pH has to be tightly 

regulated. It has been shown that lactic acid accumulation due to enhanced glycolytic activity 

provokes the upregulation of several transporters including the V-ATPase resulting in a 

dysregulation of the solid tumor milieu favoring progression, invasion and metastasis (11). 

1.1.3 V-ATPase Inhibitors 

V-ATPases were shown to be overexpressed in highly metastatic cancer cells (8,12,13). There is 

also evidence that cancer cell treatment can enhance V-ATPase expression (14), on that account 

V-ATPase inhibitors might serve as potent anti-cancer drugs or sensitizer.  

1.1.3.1 Bafilomycins and Concanamycins 

Bafilomycins and concananmycins belong to the class of plecomacrolides first isolated from 

Streptomyces species already identified in the early 1980s (15–19). Bafilomycin was described as the 

first specific and highly potent V-ATPase inhibitor (18) but later concanamycin proved to have 

even higher specificity and inhibitory effects compared to bafilomycin (19,20).  

For both inhibitors it has been shown that they bind to the c-subunit in the V0 domain (21–24), 

suggesting a rotation block of the proteolipid c-subunit ring relative to the a-subunit or 

additionally preventing conformational changes in c-subunit and thereby inhibiting V-ATPase 

activity (23,25).  

1.1.3.2 Benzolactone Enamides 

A variety of cytotoxic compounds sharing a benzolactone enamide core structure showed V-

ATPase inhibitory potential comparable to plecomacrolides (26). All of them were first isolated 

from a variety of microorganisms such as marine sponges (salicylhalamides), tunicates 

(lobatamides), bacteria (oximidines) or myxobacteria (apicularen, cruentaren) (27).  

Recently, the binding site for apicularen was investigated showing that apicularen binds the c-

subunit in the V0 complex near the binding sites of plecomacrolides suggesting a similar mode of 

inhibition (28). 

1.1.3.3 Indolyls 

These are simplified synthetic structures based on bafilomycin with still active V-ATPase 

inhibitory function, developed after characterization of the key structural elements responsible 

for the biological activity of bafilomycin (29,30). They are widely used for V-ATPase research as 

they can be modified for different biophysical technics and approaches (31–33). 
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1.1.3.4 Archazolid a Macrolactone 

Archazolid is a myxobacterial secondary metabolite, first isolated from Archangium gephyra and 

Cystobacter violaceus (34,35) binding c-subunit in the V0 domain of the V-ATPase and thereby 

inhibiting its activity (36). Archazolid was tested to be a highly specific V-ATPase inhibitor with 

no effect on F-ATPases or Na+/K+-ATPases and an IC50 in the nanomolar range (36). 

Archazolid binds in the equatorial region of the c-subunit rotor in the V0 domain within helix 

four of the c-subunit and not like bafilomycin at the interface between two adjacent c-subunits. 

Still the mode of action is assumed to be the same as for bafilomycin by blocking the rotation of 

the c-ring relative to the a-subunit or shielding the glutamate residue essential for proton binding 

to the c-subunit (37).  

For archazolid A and B a total synthesis was achieved published 2007 and 2009 (38,39) 

Archazolids are composed of a macrocyclic lactone ring with a thiazole side chain (Figure 3)(27).  

In the last few years our group showed that archazolid is affecting motility of invasive cancer cells 

as well as induction of apoptotic cell death (40–42). We therefore hypothesized that archazolid 

might also affect the initial steps of metastatic dissemination which is characterized by the ability 

of invasive tumor cells to survive in a state of detachment from the extracellular matrix (ECM) 

(43).  

 

 

Figure 3: Structure of archazolid 
R= CH3: archazolid A 
R= H: archazolid B 
Structure adapted from Huss et al., 2009 (27) 
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1.2 Anoikis 

Anoikis is a term first introduced by Frisch et al., 1994 describing the phenomenon that cells 

deprived of extracellular-matrix-attachment underwent classical apoptosis. They defined the 

expression anoikis for this occurrence, meaning “the state of being without a home, or homeless; 

Greek” (44). The significant findings of this paper were firstly, that attachment signals are 

mandatory to prevent activation of programmed cell death and that integrins play a crucial role in 

this event. Secondly, that detachment-induced-apoptosis requires the mitochondrial 

permeabilisation as known for the intrinsic apoptotic pathway and thirdly, that sensitivity towards 

anoikis differs significantly between cell types (45).  

Anoikis is a specific type of apoptosis initiated by detachment of cells from their respective ECM. 

This is an important physiological process to maintain tissue homeostasis (46).  

Anoikis is comprised of elements of the intrinsic and extrinsic apoptotic pathway together with 

the loss of survival signals. Vachon (2011) proposed a “four-punch” hypothesis for cell death 

induction by detachment. The first “punch” is the deactivation of integrin downstream signals 

like the focal adhesion kinase (FAK) and/or c-Src kinase and thereby inhibition of the PI3K/Akt 

and Ras/Raf/MEK/ERK survival pathway. As second “punch” he determined the simultaneous 

disassembly of anchoring focal adhesions largely by loss of integrin-mediated adhesion and 

destabilization of the cytoskeleton. The third “punch” is described as the activation of pro-

apoptotic proteins triggering intrinsic apoptosis. The fourth “punch” finally is the induction of 

the extrinsic apoptotic pathway by caspase-8 activation (47).  

1.2.1 Loss of Adhesion-Signaling 

Anoikis is initiated by the disruption of integrin ligation to the ECM. Integrin binding activates 

distinct cell survival signaling cascades comprising downstream players such as FAK, c-Src 

kinase, PI3K/Akt and the extracellular signal-regulated kinase (ERK). Detachment of cells, 

meaning, loss of integrin signaling not only inhibits survival signals but also activates specific 

apoptotic processes (45,47,48). 

The survival cascades activated via integrin ligation inhibit pro-apaptotic players like the Bcl-2 

protein-family members BIM, Bad, Bax as well as several caspases and activate, transcriptionally 

or by direct interactions, anti-apoptotic players like the FLICE-like inhibitory protein (c-FLIP) 

(45,47,49). It has also been demonstrated that production of moderate levels of reactive oxygen 

species (ROS) upon integrin engagement can transduce pro-survival signals protecting from 

anoikis by activating kinases (Figure 4) (50).  
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Consequently, disruption of the integrin signaling inactivates kinase phosphorylation and pro-

survival signal transduction and additionally triggers changes in the cytoskeleton releasing and 

activating pro-apoptotic proteins (47). Also ROS levels drop dramatically when cells are in 

suspension depriving them of the beneficial kinase activating function (50,51).  

 

 

1.2.2 Induction of the Intrinsic and Extrinsic Apoptotic Pathway 

Anoikis, in line with classical apoptosis can follow the extrinsic pathway, triggered by cell surface 

death receptors or the intrinsic pathway driven by activation of pro-apoptotic proteins leading to 

permeabilization of mitochondria (46,52). Activation of caspase-8 is considered as a major player 

of the extrinsic pathway and the activation of pro-apoptotic members of the Bcl-2 family, in 

particular the protein BIM and mitochondrial cytochrome C release are features of the intrinsic 

pathway of anoikis. However, a crosstalk between intrinsic and extrinsic pathways frequently 

occurs (Figure 5) (53–55). 

Figure 4: Integrin signaling upon ECM attachment 
Integrin-ECM interaction recruits and activates several kinases like the focal adhesion kinase (FAK), 
PI3K and c-Src activating downstream Akt, ERK and c-FLIP, leading to the inhibition of pro-apoptotic 
proteins. On the other hand activated Akt and ERK initiate pro-survival and proliferative signaling 
cascades leading to cell growth. 
Figure adapted from Charugi et al., 2008 and Vachon, 2011 
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1.2.3 The Role of BIM in Anoikis Induction 

BIM is thought to be a major inducer of the intrinsic anoikis pathway as it has been reported that 

BIM increases rapidly after detachment of anoikis sensitive cells. Additionally, downregulation of 

BIM by RNA interference (RNAi) inhibited anoikis in these cells. Detachment-induced 

expression of BIM requires integrin β1 detachment, downregulation of EGF receptor and 

inhibition of ERK signaling (48,54). BIM expression and release is tightly regulated. On the one 

hand BIM can be sequestered by the myosin motor complex when cells are ECM-attached (56). 

On the other hand the Akt pathway inhibits BIM gene-transcription and active Akt as well as 

active ERK phosphorylate BIM to be degraded by the proteasome or otherwise removed from 

the cytosol (57,58). 

If BIM is released upon detachment it translocates to the mitochondria leading to cytochrome C 

release by activation of Bax and Bak oligomerization triggering classical apoptotic pathways like 

the apoptosome formation, caspase activation and DNA fragmentation (59,60). 

Figure 5: Detachment induced cell death – anoikis 
Detachment induced cell death is initiated by the loss of integrin-ECM engagement leading to the loss of 
survival signals mediated by FAK, c-Src and the PI3K pathway. Disruption of focal adhesions also leads 
to cytoskeletal instability by loosing the direct ECM-cytoskeletal link. Next, pro-apoptotic proteins like 
BIM are activated, followed by cytochrome C release from the mitochondria. Together with active 
caspase-8 triggered by death receptors or unligated integrins effector caspases are cleaved conducting 
programmed cell death.  
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Detachment triggers BIM release and increase in three ways. Firstly, it is set free from the myosin 

motor complex and accumulates in the cytosol, secondly Akt no longer inhibits BIM expression 

and thirdly attenuated Akt and ERK signaling inhibit proteasomal degradation and sequestration 

of the released BIM, which all together leads to increased BIM occurrence in the cytosol.  

1.2.4 Caspase-8 Induction by Detachment 

Caspase-8 activation as key feature of the extrinsic apoptosis-induction is reported to be involved 

in anoikis. Caspase-8 can induce apoptosis in two ways: High caspase-8 activation is sufficient to 

activate effector caspases leading directly to cell death, as low caspase-8 activation triggers the 

mitochondrial pathway via Bid cleavage. Cleaved Bid indirectly activates effector caspases via 

cytochrome C release. The mode of action of how caspase-8 induces cell death is also cell type 

specific (45,47,55). Caspase-8 is predominantly activated by death receptors binding death ligands 

(tumor necrosis factor-α, FasL, TRAIL) recruiting the Fas-associated death domain protein 

(FADD). FADD together with procaspase-8 form the death inducting signaling complex (DISC) 

resulting in cleavage and thereby activation of caspase-8 (47). Detachment induced apoptosis is 

clearly supported by the induction of caspase-8. There is evidence that caspase-8 can be recruited 

and activated by unligated integrins (61). Additionally, ligand bound integrin can indirectly inhibit 

procaspase-8 cleavage: FAK, c-Src and the MAP-kinase pathway hamper procaspase-8 from 

being activated, either by inhibiting the autoproteolytic activation of procaspase-8 or preventing 

FADD recruitment to form the DISC complex. This is implemented by phosphorylation of 

either the FADD or procaspase-8 or by activation of c-FLIP a known caspase-8 suppressor 

(46,47,62,63).   

1.3 Anoikis Resistance and Metastasis 

Whereas non-tumoral cells respond to loss of cell-matrix contact by induction of anoikis (44,64), 

metastatic cancer cells are resistant. This allows their survival after detachment from the primary 

tumor and their travel through the bloodstream to distant organs (44,64). In other words, anoikis 

resistance is a prerequisite and a hallmark for the metastatic spread of tumor cells (52). Integrin 

signaling has also been connected with chemoresistance as it can reduce drug- and even 

radiation-induced apoptosis (63). 

Inducing anoikis by drugs is a promising option for the treatment of metastatic cancer but calls 

for a profound understanding of the mechanisms underlying anoikis resistance in invasive cancer. 
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Therefore, anoikis resistance mechanisms will be more deeply elucidated in the upcoming 

sections and are summarized in Figure 6. 

1.3.1 Integrin Alterations 

A strategy to evade anoikis is a switch in the integrin repertoire either by modifying integrin 

expression or changing the existing repertoire (56). As integrins are composed of two subunits (α 
and β) and each αβ combination has special binding and signaling properties (65) a switch from 

anoikis-sensitizing integrins to anoikis-suppressing ones is desired. This was described e.g. for 

squamous cell carcinoma as unligated αvβ5 triggered apoptosis whereas αvβ6 activated the 

PI3K/Akt pathway (66). Another example is unligated integrin β3, which can recruit and activate 

c-Src causing tumor cell survival. Therefore targeting cancer with specific integrin antagonists is a 

promising approach in tumor treatment and already tested in Phase II clinical trials (67). Integrins 

are also known to collaborate with growth factor receptors. Integrins can activate growth factor 

receptors in a ligand-independent manner by organizing signaling platforms (63). These signaling 

platforms are cholesterol-enriched membrane microdomains (CEMMs) regulating the localization 

and coupling of effector molecules and are normally internalized following detachment. This is 

mediated by caveolin-1 (Cav1) as Cav1 absence impairs CEMM internalization leading to 

increased signaling through e.g. Ras/Raf/MEK/ERK and PI3K/Akt (68).   

1.3.2 Activation of Pro-Survival Signaling 

To bypass signaling that would lead to anoikis, tumor cells can constitutively activate downstream 

pro-survival pathways (e.g. PI3K/Akt, ERK) by autocrine secretion of growth factors or over-

expression of different receptor tyrosin kinases transducing survival signals (56).  

To circumvent activation of the extrinsic apoptotic pathway malignant cells overexpress c-FLIP, 

an endogenous antagonist of caspase-8 with higher affinity for the DISC (52,55).  

1.3.3 Targeting BIM Induction 

By detachment BIM accumulates in the cytoplasm and translocates to the mitochondria 

triggering cytochrome C release leading to caspase-9 and caspase-3 activation inducing cell death. 

BIM is a key player in anoikis induction in various cancer cells. Therefore, metastasis requires 

attenuation of BIM. This can be achieved again by constitutive activation of Akt and ERK 

responsible for BIM degradation and transcription (69,70). 
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1.3.4 Reactive Oxygen Species 

As mentioned, moderate levels of ROS induced by integrin engagement can activate c-Src kinases 

enhancing survival (50). Elevated ROS levels are often reported in solid tumors and cancer cell 

lines changing the tumor micro-enviroment (52). Oxidative stress in tumor cells is controversially 

discussed: On the one hand elevated ROS levels contribute to anoikis induction as the level of 

ROS was shown to correlate with the extend of cell death (71). On the other hand, elevated ROS 

levels are detected during metastasis with a protective effect as treatment with ROS scavenger 

increased apoptosis (50). If ROS production is beneficial for tumor cells it is probably context 

and level dependent. 

1.3.5 Other Mechanisms  

Anoikis resistance can be achieved through many different actions. One additional survival 

strategy is the induction of autophagy by detachment, a survival mechanism preventing anoikis. It 

has been shown that inhibition of autophagy increased caspase-3 activity in detached cells 

enhancing apoptosis (72). BIM was also suggested to play a role in autophagy by interacting with 

beclin-1 and inhibiting autophagosome formation (73). Autophagy can be used to survive 

unfavorable conditions like hypoxia or nutrition shortage by driving cells in a dormant state, with 

reactivation of metabolism and cell cycle when conditions improve, important for cancer cell 

metastasis. In anoikis resistance the reduced integrin signaling induces autophagy delaying the 

onset of apoptosis by sustaining ATP levels (56,74,75). It has been shown that specific blockage 

of β1 integrins is sufficient to induce autophagy. There are several ways described how ECM 

signaling can influence the autophagy machinery. One proposed mechanism is, that FAK, the 

downstream target of integrin, can indirectly inhibit mTOR. As mTOR is a classical autophagy 

inhibitor, loss of FAK leads to mTOR inhibition activating autophagy (74). 
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Figure 6: Anoikis resistance mechanisms 
Anoikis resistance can be achieved by multiple actions. Cells can change or overexpress their integrin 
repertoire or activate survival kinases ligation independent. Inducing the proteasomal degradation of BIM 
or inhibiting BIM expression is another strategy to avoid cell death. By overexpression of c-FLIP, 
caspase-8 activation is repressed. Additionally, induction of ROS can activate survival kinases.   
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1.4 Aim of the Study 

The cause of death by cancer is mainly not the primary tumor but the development of metastases 

in distinct organs (76). Metastasis is a highly complex process following sequential steps that 

comprise dissociation of cancer cells from the site of origin, their survival and travel in the 

circulation as well as migration and proliferation in distinct target organs (55,75,77). Due to the 

clinical importance there is still the need to better understand the major determinants of 

metastasis and to identify therapeutical targets and pathways suitable for fighting the metastatic 

process.  

Our Group recently introduced the V-ATPase as a promising new anti-metastatic target showing 

that the V-ATPase inhibitor archazolid inhibits cancer cell migration (Figure 7) (40).  

 

 

One prerequisite for cancer cell metastasis is the ability of cancer cells to detach from the solid 

tumor and survive and travel in the bloodstream to form metastasis. Normal tissue cells are 

prevented to detach and colonize elsewhere by a process called anoikis. This is a type of 

apoptotic cell death induced by the loss of cell-to-extracellular matrix connection.  

  

The aim of this study was to investigate the effects of archazolid A on anoikis resistant tumor 

cells and to reveal if anoikis specific pathways are activated due to archazolid treatment.  
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Figure 7: V-ATPase inhibition blocks metastasis 
It was shown that V-ATPase inhibition by archazolid diminishes cancer cell migration and metastasis. 
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2 MATERIALS & METHODS 

2.1 Materials 

2.1.1 Compounds 

Archazolid A was purified and isolated as described previously provided by the group of Rolf 

Müller (35). Concanamycin A was purchased from Enzo Life Science GmbH (Lörrach, 

Germany). Both compounds were solved in DMSO and stored at -20°C.  

2.1.2 Chemicals, Inhibitors, Dyes and Reagents 

Table 1: Inhibitors   

Inhibitor Distributor/Producer  

Bortezomib (proteasome-inhibitor)  
Complete® mini EDTA free 
LY 294002 (Akt-inhibitor) 
MG-132 (proteasome-inhibitor) 
Na3VO4 
NaF 
PD 98059 (ERK-inhibitor) 
Phenylmethylsulfonyl fluoride (PMSF) 
Saracatinib (Src-inhibitor) 

Selleck Chemicals, Munich, Germany 
Roche diagnostics, Penzberg, Germany 
Selleck Chemicals, Munich, Germany 
Selleck Chemicals, Munich, Germany 
ICN Biomedicals, Aurora, OH, USA 
Merck, Darmstadt, Germany 
Selleck Chemicals, Munich, Germany 
Sigma-Aldrich, Taufkirchen, Germany 
Selleck Chemicals, Munich, Germany 

Table 2: Dyes, reagents and chemicals 

Reagent Distributor/Producer  

Accustain® paraformaldehyde (PFA) 
Ac-LETD-AFC (caspase-8) 
Agarose SeaPlaque® (low melting temp.) 
Bovine serum albumin (BSA) 
BCA Protein Assay Reagent (Kit) 
DCFDA (2’,7’-dichlorofluorescin diacetate) 
DMEM (high glucose) 
Dimethylsulfoxid (DMSO) 
EDTA 
EGTA  
Fetal calf serum gold (FCS gold) 
Fibronectin 
FluorSaveTM Reagent mounting medium 

Sigma-Aldrich, Taufkirchen, Germany 
Bachem, Bubendorf, Germany 
Lonza Rockland, ME, USA 
Sigma-Aldrich, Taufkirchen, Germany 
Thermo Fisher Scientific, Schwerte, Germany 
Sigma-Aldrich, Taufkirchen, Germany 
PAA Laboratories, Pasching, Austria 
AppliChem, Darmstadt, Germany 
Carl Roth, Karlsruhe, Germany 
AppliChem, Darmstadt, Germany 
PAA Laboratories, Pasching, Austria 
BD Bioscience, Heidelberg, Germany 
Merck, Darmstadt, Germany 
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Glutamine 
Glycine 
Hoechst (bisBenzimide H33342) 
LysoTracker® dye  
McCoy´s Medium 
Methylcellulose  
MTT (Thiazolyl Blue Tetrazolium Bromide) 
N-Acetyl-L-Cystein (NAC) 
Na-luciferin 
Non-fat dry milk poweder (Blotto)  
Page RulerTM Prestained Protein Ladder 
Penicillin/Streptomycin 100x 
Polyacrylamid (Rotiphorese® Gel A 30%) 
Poly(2-hydroxyethyl methacrylate)  
(Poly-HEMA) 
Propidium Iodide  
Rhodamin-Phalloidin (R415) 
RPMI 1640 
Triton X-100 
Trypsin 
Tween®100 

Sigma-Aldrich, Taufkirchen, Germany 
Sigma-Aldrich, Taufkirchen, Germany 
Sigma-Aldrich, Taufkirchen, Germany 
Moleculare Probes, Darmstadt, Germany 
PAA Laboratories, Pasching, Austria 
Sigma-Aldrich, Taufkirchen, Germany 
Sigma-Aldrich, Taufkirchen, Germany 
Sigma-Aldrich, Taufkirchen, Germany 
Promega Cooperation, Madison, WI, USA 
Carl Roth, Karlsruhe, Germany 
Fermentas, St. Leon-Rot, Germany 
PAA Laboratories, Pasching, Austria 
Carl Roth, Karlsruhe, Germany 
Sigma-Aldrich, Taufkirchen, Germany 
 
Sigma-Aldrich, Taufkirchen, Germany 
Invitrogen, Karlsruhe, Germany 
PAN Biotech, Aidenbach, Germany 
Merck, Darmstadt, Germany 
PAN Biotech, Aidenbach, Germany 
BDH/Prolabo®, Ismaning, Germany 

All other biochemicals, reagents and dyes not listed in Table 2 were purchased either from Sigma-

Aldrich, AppliChem, Carl Roth or Merck.  

2.1.3 Buffer and Media 

Table 3: Commonly used buffers 

Buffer Composition 

PBS (pH 7.4) NaCl (123.2mM), Na2HPO4 (10.4mM), KH2PO4 (3.2mM) in H2O 

PBS+ Ca2+/Mg2+  
(pH 7.4) 

NaCl (136.9mM), KCl (2.7mM), Na2HPO4 (8.1mM), KH2PO4 
(1.5mM), MgCl2 (0.5mM), CaCl2 (0.7mM) in H2O 

DMEM  DMEM high glucose (500ml), FCS gold (50ml), Penicillin 
(10,000U/ml)/Streptomycin (10mg/ml) (5ml) 

RPMI RPMI 1640 (500ml), FCS gold (50ml), Penicillin 
(10,000U/ml)/Streptomycin (10mg/ml) (5ml) 

McCoy´s McCoy´s (500ml), FAC gold (50ml), Glutamine (1.5mM, 5ml), 
Penicillin (10,000U/ml)/Streptomycin (10mg/ml) (5ml) 

Trypsin/EDTA Trypsin (0.05%), EDTA (0.02%) in PBS 

HFS-solution Sodium citrate (0.1%), Triton X-100 (0.1%) in PBS 
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Table 4: Buffers for protein lysis and Western blot analysis 

Buffer Composition 

Phospho-lysis buffer 
(pH 7.5) 

EDTAx2H2O (2mM), NaCl (137mM), Glycerol (10%), 
Na4P2O7x10H2O (2mM), Tris-Base (20mM), Triton X-100 (1%), 
C3H7Na2O6Px5H2O (20mM), NaF (10mM), Na3VO4 (2mM)*, 
PMSF (1mM)*, Complete® mini EDTA free (4mM)*in H2O 

Digitonin lysis buffer** 
(pH 7.2) 

(mito-fractionation) 

Mannitol (210mM), Sucrose (200mM), Hepes (pH 7.2, 10mM), 
Na2EGTA (0.2mM), Succinate (5mM), BSA (0.15%), Digitonin 

(80µg/ml) in H2O 

5X SDS sample buffer 
TrisHCl (pH 6.8) (3.125mM), Glycerol (10ml), SDS (5%), 

DTT (2%), PyroninY (0.025%), in H2O 

Stacking gel 
Polyacrylamid solution (40%), Tris HCl pH 6.8 (125mM), SDS 

(0.1%), TEMED (0.2%), APS (0.1%) in H2O 

Separation gel 12% Polyacrylamid solution (40%), Tris HCl pH 8.8 (375mM), SDS 
(0.1%), TEMED (0.1%), APS (0.05%) in H2O 

Elektrophoresis buffer Tris-Base (4.9mM), Glycine (38mM), SDS (0.1%) in H2O 

Tank buffer 5X Tris-Base (240mM), Glycine (195mM), in H2O 

Tank buffer 1X Tank buffer 5X (20%), Methanol (20%) in H2O 

TBS-T (pH 8.0) Tris-Base (24,76mM), NaCl (189.9mM), Tween 20 (0.1%) in H2O 

* added immediately before usage 

** prepared ≤ 30min before usage 

Table 5: Buffers for caspase activity measurement 

Buffer Composition 

Lysis buffer  MgCl2 (5mM), EGTA (1mM), Triton X-100 (0.1%), HEPES 
(25mM) in H2O 

Buffer B (pH 7.5) HEPES (50mM), Sucrose (1%), CHAPS (0.1%) in H2O 

Substrate solution Ac-LETD-AFC (56.25µM), DTT (0.2%) in Buffer B 
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2.1.4 Antibodies Used for Confocal Microscopy, Western Blot and FACS 
Analysis 

Table 6: Primary antibodies used for immunoblotting 

Antigen Source Dilution In Distributor/Producer 

Actin 
Akt 
Akt pSer473 
BIM 
COX IV 
Cytochrome C 
ERK 
ERK pThr202/Tyr204 
FAK 
FAK pTyr397 
c-FLIP 
Src 
Src pTyr416 
Tubulin beta 
VDAC 

mouse 
rabbit 
mouse 
rabbit 
rabbit 
rabbit 
rabbit  
mouse 
mouse 
rabbit 
rabbit 
mouse 
rabbit 
rabbit 
rabbit 

1:1,000 
1:1,000 
1:1,000 
1:1,000 
1:1,000 
1:1,000 
1:1,000 
1:1,000 
1:1,000 
1:1,000 
1:1,000 
1:1,000 
1:1,000 
1:1,000 
1:1,000 

BSA 1% 
BSA 5% 
Blotto 5% 
BSA 5% 
Blotto 5% 
Blotto 5% 
Blotto 5% 
Blotto 5% 
BSA5 % 
BSA 5% 
BSA 5% 
Blotto 5% 
BSA 5% 
BSA 5% 
BSA 5% 

Merck Millipore (MAB 1501) 
Cell Signaling (9272) 
Cell Signaling (4051) 
Cell Signaling (2819) 
Cell Signaling (4844) 
Cell Signaling (4272) 
Cell Signaling (9102) 
Cell Signaling (9106) 
Santa Cruz (1688) 
Santa Cruz (11765) 
Cell Signaling (8510) 
Cell Signaling (2110) 
Cell Signaling (6943) 
Cell Signaling (2146) 
Cell Signaling (4866) 

Table 7: Secondary antibodies used for immunoblotting  

Antibody Dilution In Distributor/Producer 

Goat-anti-mouse IgG1 HRP  
Goat-anti-mouse IgG HRP 
Goat-anti-rabbit IgG HRP 
Goat-anti-mouse IRDye® 800cw 
Goat-anti-rabbit AlexaFluor® 680 

1:10,000 
1:10,000 
1:10,000 
1:20,000 
1:20,000 

Blotto 1% 
BSA 1% 
Blotto 1% 
Blotto 1% 
Blotto 1% 

Biozol 
Santa Cruz (2005) 
Bio-Rad 
 Li-COR GmbH 
Molecular Probes 

Table 8: Primary and secondary antibodies used for confocal microscopy or FACS analysis 

Antigen/Antibody Dilution Distributor/Producer 

Integrin β1 
Integrin β1 active form (12G10) 
Vinculin 
Goat-anti-mouse AlexaFluor® 488 
Goat-anti-rabbit AlexaFluor® 488 

1:400 
1:400 
1:100 
1:400 
1:400 

Cell Signaling (4706) 
Abcam (30394) 
Santa Cruz (25336) 
Molecular Probes 
Molecular Probes 
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2.2 Methods 

2.2.1 Cell Culture 

The human urinary carcinoma cell line T24 was provided by Dr. B. Mayer (Surgical Clinic, LMU, 

Munich) in 2009 and authenticated in April 2013 by the DSMZ (Braunschweig, Germany) by 

DNA profiling of eight highly polymorph short tandem repeat (STRs) regions. Cells were 

cultured in McCoy´s medium supplemented as described in Table 3 at 37°C and 5% CO2 

(Heraeus, Hanau, Germany). MDA-MB-231 and 5637 cells were purchased from CLS cell lines 

service GmbH (Eppelheim, Germany) in May 2011 and April 2013. CLS authenticates all cell 

lines by DNA profiling via STR-analysis. The mouse breast cancer cell line 4T1-Luc2 was 

purchased from Caliper Life Science (USA) in January 2012. Caliper analyzed the cells by 

IMPACT 1 PCR profiling. 4T1-Luc2 and 5637 cells were maintained in RPMI-1640 medium and 

MDA-MB-231 cells in DMEM (High Glucose) (medium supplements see Table 3).   

2.2.1.1 Passaging and Seeding 

For passaging (1:10, every 3-4 days), growth medium was removed and cells were washed once 

with warm PBS. Cells were detached by incubation with 2ml Trypsin/EDTA for 5min at 37°C 

(75cm2 flask). 7ml stopping-medium containing FCS was added to saturate the Trypsin. Cells 

were centrifuged (1,000rpm, 5min, RT), the pellet resuspended in medium and seeded in a new 

culture flask or well plate. To measure cell concentration and viability the VICELLTM cell viability 

analyzer (Beckman Coulter, Krefeld, Germany) was used.  

2.2.1.2 Freezing and Thawing 

For freezing, cells were harvested and counted as described in the previous section. Per cryovial 

2x106 cells were pipetted, centrifuged (1,000rpm, 5min, RT), resuspended in 900µl freezing-

medium containing 20% FCS and aliquoted in cryovials (900µl per vial). Now 100µl DMSO were 

added to each vial and stored at -20°C for 24h. Afterwards aliquots were moved to -80°C and 

finally stored in liquid nitrogen.  

For thawing, the cryovial was warmed in a water bath to 37°C and the content was immediately 

dissolved in 10ml pre-warmed medium. To remove the remaining DMSO cells were centrifuged 

(1,000rpm, 5min, RT), resuspended in growth medium and transferred in a 25cm2 cell culture 

flask. 
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2.2.2 LysoTracker Staining for Confocal Microscopy 

To stain cells for confocal microscopy 70,000 cells/well were seeded on IBIDI slides (IBIDI, 

Martinsried, Germany) one day before treatment. After the indicated treatment time cells were 

stained with 250µl/well LysoTracker® dye (100nM) and Hoechst (0.05µg/ml, nuclei staining) in 

PBS+ for 30min, 37°C. Subsequently, cells were imaged by confocal microscopy (LSM 510 Meta, 

Zeiss, Oberkochen, Germany) without fixation.  

2.2.3 Cell Adhesion by Impedance Measurements 

The XCELLigenceTM Real-Time Cell Analyzer (RTCA) system (Roche Diagnostics, Mannheim, 

Germany) was used to analyze adherence time of pretreated T24 cells. Therefore 5x103 cells/well 

were seeded in the respective electrode plate (E-Plate 16) after 24h prestimulation. Cell 

impedance was measured and adhesion time analyzed using the manufacturer's software 

(Software RTCA 1.2.1). There, the impedance is expressed as Cell Index (CI) a dimensionless 

parameter based on relative impedance changes. The CI baseline is defined by the electric 

conductance of the medium and increases upon cell-electrode contact while cells adhere to the 

surface. The slopes over the first 4h were analyzed and compared.  

2.2.4 Focal Adhesion Staining for Confocal Microscopy  

T24 cells were seeded in 12-well plates (100,000 cells/well) and treated with archazolid (10nM, 

24h) the day after. To stimulate focal adhesion formation, IBIDI slides (IBIDI, Martinsried, 

Germany) were coated with fibronectin (25µg/ml, 2h, 37°C then 2% BSA in PBS+, 1h, 37°C) 

before adding the cells (40,000 cells/well in 250µl growth medium). After 30min at 37°C 

incubation time cells were washed once with PBS+, fixed with 4% PFA (15min, RT) washed 

again and permeabilized with 0.1% Triton X-100 in PBS (2min, RT). Washed cells were blocked 

for 15min with 2%BSA/PBS+ to block unspecific binding. Thereafter, cells were incubated for 

1h at 4°C with vinculin antibody diluted in 2%BSA/PBS. After three washing steps the 

secondary AlexaFluor® 488 antibody was applied together with rhodamine-phalloidine for F-

actin staining  (1h, dark, RT in 2%BSA/PBS). Again, cells were washed three times with PBS+ 

and embedded in FluorSaveTM Reagent mounting medium and covered with a glass coverslip. 

Images were taken by confocal microscopy (LSM 510 Meta, Zeiss, Oberkochen, Germany).  
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2.2.5 In Vivo Experiments 

Twenty, 4-6 weeks old female BALB/cByJRj mice (Janvier) were housed in individually 

ventilated cages with a 12h day/night cycle and food and water ad libitum. Mice were injected with 

archazolid pretreated (10nM, 24h) or untreated 4T1-Luc2 cells (1x105) via the tail vein. 

Bioluminescence of metastasized cells was monitored at day 8 after cell injection under anesthesia 

(2% isoflurane in oxygen) using the IVIS Lumina system with Living Image software 3.2 (Caliper 

Life Sciences) 15 minutes after intraperitoneal injection of 6mg Na-luciferin (Promega). 

Thereafter mice were sacrificed by cervical dislocation, their lungs harvested, imaged and 

weighted. The total flux/area of the defined region of interest was calculated as 

photon/second/cm2. All in vivo experiments were performed according to the guidelines of the 

German law for protection of animal life and approved by the local ethics committee.  

In vivo experiments were performed by Laura Schreiner and Rebekka Kubisch. 

2.2.6 Colony Formation Assay 

Archazolid treated T24 cells (5x103, 24h) were suspended in a 0.4% agarose-medium mix 

(50%/50%), (low melting temperature agarose, LONZA) and seeded on 6-well-plates precoated 

with 1% agarose. Cells were incubated for 9 days at 37°C to proliferate and form viable 3D 

colonies. Evolved colonies were stained with MTT dye, photographed and analyzed by ImageJ 

1.46r software. On that account an ImageJ-macro was developed to automatize colony-counting 

and -size analysis.  

2.2.6.1 ImageJ Macro 

First, a circle with constant properties (h=966px, w=956px) was cut out of each photographed 

well, only containing stained colonies and no plastic surrounding and pasted in a new file. 

Pictures have to be in grayscale to be processed by this macro, otherwise they should be 

converted first. 

Then the following macro was used on the file converting the photograph in a black and white 

picture were only stained colonies of a size between 2-20px appear black. The “Watershed” 

command was used to split overlaid colonies. At the end the macro releases a table with the 

number and size of all counted colonies. 

 To first adjust and then verify the accuracy of the macro three wells were counted by hand and 

compared to the results of the macro.   
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Table 9: ImageJ macro counting stained colonies from the colony formation assay 

Macro commands (in sequence) Meaning 

run("Subtract Background...", "rolling=50 light"); 
Removes smooth, continuous, bright 
backgrounds behind dark objects based 
on the “rolling ball” algorithm  

run("Sharpen"); Sharpens all objects in the image 

setAutoThreshold("Default"); 
//run("Threshold..."); 
setThreshold(0, 197); 
run("Convert to Mask"); 

All colonies with an intensity over 197 
are selected and converted to a binary 
black and white image, where selected 
colonies appear black 

run("Watershed"); 
If some colonies are merged together 
they can be separated by this command 

run("Analyze Particles...", "size=2-20 
circularity=0.00-1.00 show=Masks display clear 
summarize record"); 

Now the size and number of the particles 
are analyzed and recorded in a table 

2.2.7 Detachment-Induced Anoikis Assay 

T24, MDA-MB-231, 4T1 or 5637 cells (7x104/well) were kept in suspension by using poly-

HEMA (poly(2-hydroxyethyl methacrylate)) coated 24-well plates to prevent adhesion (78,79). 

Poly-HEMA was dissolved as a stock solution in 99% EtOH (120mg/ml). To coat culture dishes 

with poly-HEMA the stock solution was diluted right before use 1:10 with 99% EtOH and 

warmed in a water bath to prevent precipitation. All wells were filled with the solution until the 

bottom was completely covered and dried open under the flow for at least 3h until all EtOH 

evaporated. The growth medium was supplemented with 1% methylcellulose to increase viscosity 

to prevent cell clumping of the floating cells. Here, cells were treated with archazolid right after 

seeding them in poly-HEMA coated wells. Apoptotic death was analyzed as described by 

Nicoletti et al. (80). After the indicated treatment time, cells were harvested, transferred to FACS 

tubes, washed once with ice-cold PBS (600g, 5min, 4°C) and resuspended in HFS- or PBS-

solution containing propidiumiodide. Permeabilized cells stained with propidiumiodide (PI, 

50 µg/µl) were analyzed for their sub-diploid DNA content by flow cytometry (FACSCanto II, 

BD), as DNA fragmentation is characteristic for late apoptosis. Cell death was further analyzed 

by the PI exclusion assay counting PI positive (5µg/µl), non-permeabilized cells by flow 

cytometry. All experiments were analyzed by FlowJo 7.6 software.   



MATERIALS & METHODS  23 

2.2.8 Flow Cytometry Analysis of Cell Surface Integrin

Active integrin β1 on the cell surface was examined using a conformation specific integrin β1 

antibody as for total integrin β1 a not conformation specific one was used. Floating and adherent 

cells were treated with archazolid (10nM, 24h), harvested on ice (adherent cells were trypsinized 

with trypsin/EDTA first), transferred to FACS tubes, washed once with ice-cold PBS (600g, 

5min, 4°C) and incubated with the respective integrin β1 antibody (45min, 4°C in 0.01% 

BSA/PBS). After washing with PBS cells were incubated with a fluorescent secondary antibody 

(45min, 4°C in 0.01% BSA/PBS) and analyzed by flow cytometry. The experiments were 

analyzed by FlowJo 7.6 software. 

2.2.9 Caspase Activity 

After treating cells with archazolid (1nM, 10nM, 48h) the activity of caspase-8 was measured 

using a commercial caspase-8 activity assay (Calbiochem) based on the cleavage of a caspase-8 

specific AFC (7-amino-4-trifluoromethyl coumarin) labeled peptide sequence. Therefore, cells 

were harvested, washed once with ice-cold PBS and lysed by the caspase lysis buffer and stored 

over night at -80°C. The next day, the cell lysat was centrifuged (14,000rpm, 10min, 4°C) to 

sediment cell debris and the supernatant was transferred to a new vial. Protein concentration was 

determined by the BCA assay.  

For measurement 10µl of each sample was pipetted in a non-transparent 96-well plate in 

triplicates. Now, 90µl of the freshly made substrate solution containing the labeled peptide 

sequence was added to each well.  The fluorometric shift over 5h at 37°C was monitored by a 

fluorescent plate reader (SpectraFluorPlus, Tecan, Männedorf, Austria) calculating the relative 

enzyme activity displayed as the relative fluorescence signal (RFU).  

2.2.10 Intracellular ROS Level 

Reactive oxygen species (ROS) were measured by using the 2′, 7′-dichlorofluorescin diacetate dye 

(DCFDA, Sigma-Aldrich), which is a cell-permeable non-fluorescent probe, trapped intracellular 

by de-esterification and fluoresces upon oxidation. Cells were harvested after incubation with the 

indicated substances and stained with 20µM DCFDA for 30min at 37°C, washed once with PBS 

and measured by flow cytometry (excitation 488nm, emission, exitation 535nm, FACSCanto II, 

BD). To exclude dead cells from the ROS measurement cells were double stained with DCFDA 

and PI. Accordingly, cells were stained for 30min with 5µg/ml PI in PBS at 4°C after the 
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DCFDA staining. The ROS scavenger N-Acetyl-L-Cystein (NAC) used in this study was 

previously dissolved in PBS (pH 7.4) before application.  

2.2.11 Western Blot Analysis and Cytosol-Mitochondria Fractionation 

Protein levels were investigated by Western blot analysis. Floating cells were treated with 

archazolid and the listed inhibitors for the indicated timeframes and subsequently lysed with 

phosphor-lysis buffer. Protein concentration was quantified by the bicinchoninic acid (BCA) 

protein assay according to the manufactures instructions. Equal amounts of the proteins were 

separated by SDS-PAGE (100V, 20min then 200V, 42min)(Bio-Rad System, Munich, Germany) 

and transferred onto nitrocellulose membranes by tank blotting (90V for 90min, 4°C). For 

detection of specific proteins, the ECL detection system (Amersham Pharmacia Biotech) or the 

Odyssey Infrared Imaging system version 2.1 (LI-COR Biosiences) was used.  

For cytosol-mitochondria fractionation cells were harvested, incubated with the digitonin-lysis-

buffer (20min, on ice) and centrifuged (10min, 1,300rpm, 4°C). The supernatant was collected 

(cytosolic fraction) and the pellet permeabilized with 0.1% TritonX-100 (15min, on ice) 

(mitochondrial fraction). Both fractions were centrifuged one more time (14,000rpm, 10min, 

4°C) to sediment the cell debris. Mitochondrial and cytosolic fractions were then processed like 

normal Western blot lysates.  

2.2.12 Statistics 

All experiments were performed at least three times in triplicates. All statistic analysis were 

performed using GraphPad Prism 5.0 software. 

One-way ANOVA with Turkey post-test and for two column comparison the unpaired Students 

t-test was performed as significance analysis. Error bars indicate standard errors of the mean 

(SEM).  
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3 RESULTS 

3.1 Effects of Archazolid on Anoikis Resistant Cancer Cells 

Anoikis resistant cancer cells are known to have highly invasive phenotypes (81). To overcome 

detachment induced cell death these cells have to activate several survival mechanisms probably 

influencing their response to chemotherapeutical treatment and enhancing their metastatic 

potential. Survival signals by adhesion are one of the major signaling cascades preventing anoikis 

(49).  

Therefore, adherent and detached cancer cells were investigated and compared concerning their 

anoikis resistance and responses to archazolid treatment.  

First, archazolid-functionality in inhibiting the V-ATPase was investigated in three different cell 

lines by surveying if acidification of intracellular compartments was blocked after archazolid 

treatment.  

Second, the influence of archazolid on adhesion time and manifestation, carried out by 

impedance measurements and confocal staining of adhesion-structures, was observed. 

Third, the impact of archazolid on anchorage independent growth as well as cell death induction 

was analyzed.  
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3.1.1 Alkalization of Lysosomes by Archazolid Treatment

To confirm that archazolid in fact inhibits the V-ATPase activity in our model cells, 

endolysosomal pH was monitored by staining cells with LysoTracker® dye (Figure 9). The dye is 

highly selective for acidic organelles where the fluorophore accumulates staining acid organelles 

red.  

Archazolid is a specific V-ATPase inhibitor functional in the nano-molar range (36). 

The V-ATPase is mostly located in the membrane of acidic organelles like the lysosomes or 

endolysosomes responsible for their acidification.  

Adherent T24 (urinary), MDA-MB-231 (mammary) and 4T1 (mouse mammary) cancer cells were 

treated with different archazolid concentrations (5 and 10nM) for 2h (T24 cells) and 4h (MDA-

MB-231 and 4T1). Thereafter cells were stained with LysoTracker® dye to monitor lysosomal 

pH in living cells using confocal microscopy.  

Figure 9 confirms that acidification of cell organelles is blocked by 5 and 10nM archazolid after 

2-4h of treatment in all investigated cell lines.  

 

Figure 9: Alkalyzation of lysosomes by archazolid treatment 
T24, MDA-MB-231 and 4T1 cells were treated with different archazolid concentrations (5 and 10nM) for 
2h (T24 cells) and 4h (MDA-MB-231 and 4T1). Thereafter cells were stained for 30min at 37°C with 

LysoTracker® dye to monitor lysosomal pH using confocal microscopy.  
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3.1.2 Adhesion Ability is Impaired after Archazolid Treatment

To prove that archazolid treatment has an impact on adhesion and therefore on the adhesion 

signaling cascade, an adhesion assay was performed (Figure 10).  

Adhesion molecules play a central role in anoikis induction and resistance. Anoikis resistant cells 

e.g. can change their integrin repertoire on the cell surface to circumvent integrin mediated death 

(IMD) or constitutively activate pro-survival downstream signals (56).  

Adherent T24 cells pretreated with archazolid (10nM, 24h) were harvested and subsequently 

seeded out for impedance measurements in the XCELLigence system. For this, cells were 

suspended in 200µl medium in E-plate-wells and adhesion time between treated an untreated 

cells was monitored as an increase in impedance, indicated as Cell Index occurring while cells 

adhere to the surface.  

The slopes of three independent experiments were calculated and the relative cell adhesion (%) 

was analyzed (Figure 10B). Figure 10 shows that adhesion time is prolonged after archazolid 

treatment, which suggests an effect of archazolid on cell adhesion.  

If adhesion is altered by archazolid treatment one could assume that there is also an impact on 

the pro-survival signaling cascade. 

Figure 10: Prolonged adhesion time after archazolid treatment. 
Adherent T24 cells were pretreated with archazolid (10nM, 24h) or left untreated.  
The kinetics of cell adhesion was subsequently measured using impedance measurement in the 
XCELLigence system over 4h.  
A: One representative graph out of three independent experiments is shown. 
B: The slopes (Cell Index/Time) of three independent experiments conducted in triplicates were 
calculated and the relative cell adhesion (%) was analyzed were control cells are represented as 100% 
adhesion. Archazolid treated cells show a reduced adhesion compared to control cells. 

      

C
el

l I
nd

ex
 

1 4 2 3 

Time (h) 

0.0 

0.1 

0.2 

0.3 

Control 

Archazolid  

    

 

 
 

    

0

50

100

150

***

  Co           10       
                  Arch. [nM] 

R
el

at
iv

e 
ce

ll 
ad

he
si

on
 (%

) 

    

   

A B



RESULTS  29 

3.1.3 Changes in Focal Adhesion 

Adherent, archazolid treated cells were further analyzed by confocal microscopy to investigate 

changes in the focal adhesions. Therefore, cells were pretreated with archazolid (10nM, 24h) and 

subsequently seeded on fibronectin coated slides for 30min at 37°C. During the adhesion process 

cells develop focal adhesions, which can be stained by an antibody recognizing vinculin, a central 

protein in the focal adhesion plaques, and F-actin by rhodamine-phalloidin. Both proteins co-

localize in focal adhesion shown by the merged picture (Figure 11). 

Archazolid treatment clearly influences focal adhesion formation. Compared to control cells 

there is less vinculin clustering on the cell periphery. After treatment a more regular distribution 

of mature focal adhesions was observed.  

 

Figure 11: Changes in focal adhesions by archazolid treatment 
T24 cells were prestimulated with archazolid (10nM, 24h) or left untreated, then harvested, suspended 
and seeded on fibronectin coated slides for 30min, at 37°C. After 30 min cells will form first focal 
adhesions with the surface. Cells were then fixed, permeabilized and stained for confocal microscopy. 
Control cells show more vinculin clustering on the cell periphery then archazolid treated cells.  
The experiment was conducted three times in triplicates.  
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3.1.4 Archazolid Impairs Anchorage Independent Growth and Induces 
Anoikis in Invasive Cancer Cells 

To show anoikis resistance of the invasive cancer cell lines T24, 5637 (urinary), MDA-MB-231 

and 4T1 cells were grown in an anchorage-independent environment (Figure 12 and Figure 13) 

and subsequently analyzed for cell viability and cell death.  

3.1.4.1 Colony Formation Assay 

T24 cells were embedded in a soft agar layer without contact to ECM components or other cells 

to mimic anchorage independent growth. Untreated cells formed viable colonies after nine days 

of cultivation (Figure 12A, left, below) indicating anoikis resistance.  

Pretreatment of adherent T24 cells with archazolid (1nM, 10nM, 24h) impaired anchorage-

independent growth as shown by a reduction of viable colonies in the soft agar colony formation 

assay (Figure 12A left). Inhibition of colony formation in T24 cells could also be observed by the 

V-ATPase inhibitor concanamycin (Figure 12A right) suggesting a V-ATPase dependent effect. 

To exclude apoptosis to be responsible for the obtained results, adherent, 24h treated cells were 

analyzed for cell death induction. Permeabilized cells were stained with PI to measure the sub-G1 

DNA content as DNA fragmentation occurs during the apoptotic process (Figure 12B).  
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Figure 12: Anchorage independent growth is reduced by archazolid pre-treatment. 
A: T24 cells were pretreated with archazolid (1 and 10nM, 24h), concanamycin (1, 5, and 10nM, 24h) or 
left untreated (Co) and subsequently cultured in a soft agar layer for nine days. Anchorage independent 
growth was analyzed by counting stained colonies (MTT). Bars represent the percentage of colony 
formation compared to control cells. ***P< 0.001, n=3. Lower left: Representative colonies of archazolid 
treated and untreated T24 cells are shown.  
B: Adherent T24 cells were treated with archazolid for 24h (10nM). Apoptotic cell death was investigated 
as described in materials and methods. Bars represent the percentage of apoptotic cells as mean ± SEM 
of three independent experiments conducted in triplicates. 
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3.1.4.2 Analyzing Cell Death Induction in Detached Cells   

To further analyze effects of archazolid on anoikis, cells were kept in a detached status using 

poly-HEMA coated culture dishes and medium supplemented with methylcellulose to prevent 

massive cell aggregation. This setup was used for all further experiments with floating cells.  

Treatment with archazolid (10nM) induced anoikis in detached cancer cell lines T24, 5637 and 

4T1 after 48h and MDA-MB-231 after 72h, respectively (Figure 13). 

 

 

 

 

Figure 13: Induction of anoikis in detached cells by archazolid
Detached T24, 5637 and 4T1 cells were treated with different concentrations of archazolid for 48h and 
analyzed for apoptotic cell death. ***P<0.001, n=3. Detached MDA-MB-231 cells were treated with 
archazolid (10nM) for 72h and apoptotic cells were quantified by flow cytometry as described in materials 
and methods. *P<0.05, n=3. Bars represent the relative induction of apoptosis compared to control cells. 
Bars always represent the mean ± SEM of three independent experiments done in triplicates.  
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3.1.5 Cell Death Induction in Adherent and Floating Cells by Archazolid

To investigate the impact of detachment on cell death induction by archazolid adherent and 

floating cells were treated with archazolid (10nM, 24h or 48h) or left untreated.  

As detachment and thereby loss of survival signals also affects anoikis resistant cells, the basal cell 

death level was expected to be elevated in floating cells (Figure 14). Noteworthy, archazolid did 

neither induce apoptosis in adherent nor floating cells after 24h of treatment compared to the 

respective control cells.  

 

 

Cell death by archazolid did not occur before 48h of treatment.  

To compare the cell death induction of adherent and floating cells independently of the basal cell 

death level, specific apoptosis was calculated as ∗ 100.  

Calculating specific apoptosis, adherent T24 cells show a higher sensitivity towards archazolid 

after 48h then floating cells (Figure 15) pointing to death resistance or chemoresistance 

mechanisms induced by detachment.  
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Figure 15: Adherent T24 cells are 
more sensitive to archazolid then 
floating cells 
Adherent and floating T24 cells were 
treated with archazolid for 48h (1, 2, 10 
and 20nM). Apoptotic cell death was 
investigated as described in materials and 
methods. Bars represent the specific 
apoptotic rate compared to control as 
mean ± SEM of three independent 
experiments done in triplicates. 
***P<0.05. 
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Figure 14: Influence of detachment 
on basal cell death level 
Adherent and floating T24 cells were 
treated with archazolid for 24h (10nM). 
Apoptotic cell death was investigated as 
described in materials and methods. Bars 
represent the percentage of apoptotic 
cells as mean ± SEM of three 
independent experiments conducted in 
triplicates.  
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3.2 Archazolid treated tumor cells lose their metastatic potential iinn  vviivvoo 

The anoikis inducing effect of archazolid was hypothesized to affect the invasive potential of 

tumor cells in vivo. To confirm this hypothesis an in vivo model based on the 4T1-Luc2 mouse 

mammary tumor cell line has been used. These cells are highly metastatic and disseminate quickly 

to the lungs when injected intravenously and are therefore resistant to anoikis as anoikis 

resistance is a precondition for metastasis. 4T1-Luc2 cells are further engineered to express a 

luciferase reporter to enable real time monitoring of developing tumors by live imaging. 

As shown in Figure 16 4T1-Luc2-injected animals formed easily detectable lung metastases, 

however 4T1-Luc2 cells pretreated with archazolid (10nM, 24h) showed a significant reduction of 

lung metastases (Figure 16B, left). Archazolid treated cells did not show signs of apoptosis at the 

time of the intravenous injection (Figure 16B, right).  

In vivo experiments were performed by Laura Schreiner and Rebekka Kubisch. 
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Figure 16: Pretreatment of invasive breast cancer cells with archazolid reduced metastasis in 
mice lungs 
4T1-Luc2 cells were pretreated with archazolid (10nM, 24h) or left untreated and subsequently injected 
(1x105) in the tail vain of 10 BALB/cByJRj mice per group.  
A: At day eight after inoculation lung metastases were monitored by bioluminescence read out by 
dorsoventral and ventrodorsal mice imaging.  
B: Bioluminescence signals were calculated as total flux/area. Pretreated adherent cells were tested for 
apoptotic cell death three times in triplicates. Bars represent the mean ± SEM. *P<0.05, n=10 
Performed by Laura Schreiner and Rebekka Kubisch. 
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3.3 Underlying Mechanisms of Anoikis Induction by Archazolid  

3.3.1 Archazolid Treatment Reduces Active ß1 Integrin on the Cell Surface 
of Detached Cells 

Integrin β1 is a major player responsible for cell adhesion to the ECM. Activated by attachment 

integrin β1 signaling inhibits anoikis and promotes cell survival (82). 

In Figure 10 it has been shown that treatment with archazolid impairs adhesion abilities of T24 

cells after 24h of treatment, suggesting an effect of archazolid on adhesion molecules such as 

integrins.  

Figure 17A shows that the level of active integrin β1 (analyzed by an integrin β1 conformation 

specific antibody) is similar between adherent and detached (24h) T24 cells. However, archazolid 

treated (10nM, 24h), detached cells display a reduction of active integrin β1 compared to 

detached control cells, whereas surface level of total integrin β1 was not affected by archazolid 

treatment (Figure 17B).

 

Figure 17: Archazolid treatment decreases active integrin β1 on the cell surface 

A: Cell surface level of integrin β1 was analyzed by an antibody recognizing only active integrin β1 and 
compared between adherent and detached (24h) T24 cells. No differences in surface level of active 
integrin β1 between adherent and floating cells could be detected. 
B: Levels of total and active integrin β1 on the cell surface of archazolid treated (24h), floating T24 cells 
was investigated by antibody staining and flow cytometry. Active integrin β1 is reduced on the cell surface 
of archazolid treated cells ***P<0.001, n=3 
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3.3.2 FAK Activity is Decreased in Detached Archazolid Treated Cells

The focal adhesion kinase is recruited and activated by integrins binding to their ECM ligands, 

leading to the activation of several downstream survival signals via the PI3K/Akt and the 

Raf/MEK/ERK pathway (47). As the FAK is a major downstream kinase of integrins we were 

interested if activating phosphorylations of the FAK changed due to archazolid treatment. As 

shown in Figure 18A archazolid treated, floating T24 cells showed reduced phosphorylation of 

FAK in the total cell lysate after 24h and 48h of treatment. Noteworthy, control cells detached 

for 24h and 48h show a strong phosphorylation of FAK. 
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Figure 18: Archazolid treatment impairs FAK phosphorylation 
A: The phosphorylation state of FAK after archazolid treatment (24h and 48h, T24 cells) is shown by 
Western blot (B) with the corresponding quantification of three independent experiments.  
*P<0.05, n=3 
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3.3.3 Archazolid Induces Activation of Caspase-8 and Downregulation of 
c-FLIP 

To further reveal the mechanisms of anoikis induction by archazolid, activity of caspase-8 was 

determined. As caspase-8 induction is a known hallmark of anoikis and the extrinsic apoptotic 

pathway, caspase activity was measured in cell lysates using a fluorophore generating substrate for 

caspase-8. Floating T24 and 4T1 cells were stimulated for 48h with different archazolid 

concentrations, displaying a significant increase in caspase-8 activity compared to control cells 

(Figure 19A). TRAIL was used as a positive control.  

Moreover c-FLIP, a well-described inhibitor of caspase-8 (83) which contributes to anoikis 

resistance by overexpression in malignant cells (55) is reduced after 48h of treatment in floating 

T24 cells (Figure 19B).  
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Figure 19: Activation of caspase-8 and reduction of caspase-8 inhibitor c-FLIP 
A: Treated (48h) T24 and 4T1 cells were harvested and the total cell lysate was analysed for caspase-8 
activity. TRAIL as a positive control was applied 1h before activity measurement. Upper panel: 
Evaluation of three indipendent experiments for T24 and 4T1 cells presented as relative fluorescence unit  
per minute (ΔRFU/min). ***P<0.001, n=3. Lower panel: Representative graph of caspase-8 activity 
measurement over 5h (T24 cells) displayed as relative fluorescence unit (RFU).  
B: Left: The level of caspase inhibitor c-FLIP was investigated by Western blot in T24 cells after 
archazolid treatment (48h). Right: Quantification of three independent experiments. *P<0.01 
Bars always represent the mean ± SEM of three independent experiments conducted in triplicates.  
All Western blot experiments show a representative blot out of three independent experiments. 
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3.3.4 Archazolid Treatment Rapidly Induces BIM Translocation to 
Mitochondria Leading to Cytochrome C Release 

As the Bcl-2 Protein BIM is considered to be the major player of the intrinsic mediated anoikis 

pathway (70) we analyzed BIM expression after archazolid treatment. Figure 20A indicates that 

cellular BIM expression is not affected by archazolid treatment for 5h, however BIM is 

translocated and enriched at mitochondria at early time points after archazolid exposure (i.e. 3h 

and 5h, T24 and 4T1 cells). Interestingly, the translocation to mitochondria is observed to be a 

cell type specific effect as MDA-MB-231 cells show a BIM reduction and MCF7 cells an equal 

level for treatment and control.  

BIM localized at the mitochondrial outer membrane is responsible for Bax and Bak activation 

leading to the release of cytochrome C to the cytosol and subsequently to apoptosis (84). A 

decrease of cytochrome C in the mitochondrial fraction of T24 cells was observed after 24h and 

48h of treatment (Figure 20B). Obviously both the intrinsic as well as the extrinsic pathway 

(Figure 19) is activated by archazolid.  
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Figure 20: BIM translocation to 
mitochondria and cytochrome C 
release by archazolid 
A Western blot analysis of BIM 
expression in whole cell lysate of 
untreated and archazolid treated 
T24 cells after 5h. BIM level was 
analyzed in the mitochondrial 
fraction of cells treated with 
archazolid for a few hours (3 and 
5h, T24, 4T1, MDA-MB-231 and 
MCF7 cells). Immunoblotting for 
mitochondrial COX IV and VDAC 
was employed as control for 
protein loading. Quantification of 
multiple independent experiments 
was performed. *P<0.05 
 BIM translocates to the 
mitochondria in T24, and 4T1 
archazolid treated cells. 
B: The mitochondrial cytochrome 
C level after archazolid treatment 
(24h and 48h) is shown by Western 
blot analysis of mitochondrial 
protein of T24 cells. COX IV 
immunoblotting served as loading 
control. 
Cytochrome C decreases in the 
mitochondrial fraction of T24, 
treated cells.  
All blots show a representative blot 
out of three independent 
experiments. 
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3.4 Archazolid Triggers Mechanisms Opposing Anoikis 

Chemoresistance is a major challenge in tumor therapy.  

Anoikis challenges tumor cells to develop elaborated survival strategies leading to anoikis 

resistance. Nevertheless, additional chemoresistance strategies can generate highly metastatic 

cancer phenotypes. Elucidating these strategies can help to develop functional combination 

therapies.  

  

Archazolid treatment triggered survival mechanisms in anoikis resistant cancer cells like a strong 

degradation of the pro-apoptotic protein BIM and a beneficial increase in reactive oxygen 

species, which can function as pro-survival second messengers.  

Therefore, BIM degradation was more deeply investigated and a combinatory approach by using 

drugs inhibiting BIM degradation as well as ROS induction together with archazolid was tested. 

3.4.1 BIM Degradation after Prolonged Treatment 

Sustained exposure of detached cells to archazolid results in a strong reduction of the 

proapoptotic molecule BIM (Figure 21A), which is due to proteasomal degradation shown by the 

use of two proteasome inhibitors (MG-132 and bortezomib) (Figure 21B).  
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Figure 21: BIM degradation after prolonged archazolid treatment and rescue with proteasome 
inhibitors 
A BIM degradation: BIM protein level in whole cell lysate and mitochondrial fraction after prolonged 
treatment with archazolid (24h, 48h) was analyzed by Western blot. Actin, COX IV and β-Tubulin were 
used as loading control.  
B BIM rescue: A combination of archazolid (10nM) with proteasome inhibitor MG-132 (24h) (left) or 
bortezomib (BOR, 48h) (right) was used to investigate changes in BIM protein level by Western blot in 
T24 cells. The combination was applied simultaneously to the cells at time of detachment. Three 
independent experiments were quantified using Image J software. *P<0.05 
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3.4.2 Targeting BIM Degradation by Proteasome Inhibitors to Increase Cell 
Death Induction 

Combination of archazolid with the proteasome inhibitors MG-132 (100nM) and bortezomib 

(5ng/ml) induced significantly higher apoptosis rates synergistically induced in T24 cells 

(Figure 22) and rescued BIM from degradation as shown in Figure 21B. 
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Figure 22: Inhibition of the proteasome triggers archazolid induced anoikis 
Floating T24 cells were either treated with archazolid (10nM, 48h) alone or in combination with the 
proteasome inhibitor MG-132 or bortezomib (BOR) for. Subsequently, apoptosis induction was 
determined as described in materials and methods. ***P<0.001 
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3.4.3 Moderate ROS Induction after Archazolid Treatment as Pro-Survival 
Strategy to Circumvent Anoikis  

Reactive oxygen species are discussed to play a major role in anoikis protection, as they can 

function as second messenger activating pro-survival kinases (50,51,85).  

Intracellular ROS were analyzed by flow cytometry. A fluorescent dye converted by ROS was 

added to the cells for 30min, 37°C.  

Interestingly, archazolid treatment increased ROS level significantly after 16 to 48h (Figure 23 

and Figure 24) compared to floating control cells. Archazolid treated cells reach ROS levels of 

adherent control cells indicating a non-toxic level of ROS, as ROS can also function as second 

messenger activating pro-survival signals also involved in BIM regulation and degradation. This is 

considered one of the anoikis escape strategies used by invasive tumor cells (50,52).  

Figure 23: Beneficial ROS generation by archazolid treatment 
Upper panel: Archazolid induces generation of ROS in T24 cells after 24h and in 4T1 cells after 16h of 
treatment. ROS generation was measured as indicated in materials and methods. Bars represent the mean 
± SEM of three independent experiments conducted in triplicates. ***P<0.001, *P<0.05.  
Lower panel: One representative graph of a simultaneous PI (cell death) and ROS measurement in T24 
cells displayed as dotplot and the corresponding histogram.  
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Inhibition of ROS generation by the antioxidant N-Acetyl-L-Cystein (NAC) (Figure 24A, left) 

rescues BIM from proteasomal degradation induced by archazolid alone (Figure 24B) confirming 

the involvement of ROS in BIM degradation. NAC as well was able to increase cell death in 

combination with archazolid (Figure 24A right) suggesting a role for ROS in anoikis induction 

and inhibition.  

 

 

 

 

 

 

 

Figure 24: BIM rescue by ROS inhibition 
A: Left: Archazolid induces generation of ROS, which can be inhibited by the antioxidant NAC after 48h 
of treatment. ROS generation was measured as indicated in materials and methods. ***P<0.001 
Right: Detached T24 cells were treated with archazolid (5nM) alone or in combination with NAC 
(10mM) for 48h. Induction of apoptosis was measured by PI staining and flow cytometry. **P<0.01  
Bars represent the mean ± SEM of three independent experiments conducted in triplicates.. B: ROS 
generation is involved in BIM degradation by archazolid. Western blot analysis showed that ROS 
scavenger in combination with archazolid (24h) rescued the degradation of BIM. 
One representative blot out of three independent experiments is shown.  
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3.4.4 Kinase-Involvement in Anoikis Resistance

Additionally, kinases involved in anoikis resistance (Akt, ERK, c-Src) were affected by 

detachment of T24 cells showing an early increases of their phosphorylation, whereas 

phosphorylation of c-Src kinase was unchanged. Akt and ERK are therefore mainly responsible 

for activating anoikis resistance after detachment. At a later time point the phosphorylation of 

Akt and ERK decreased again indicating a restored balance of pro-survival and pro-apoptotic 

signaling (Figure 25).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Phosphorylation of Akt and ERK is increased early after detachment but decreased 
again after 24h 
Left: T24 cells were kept in suspension for 6h and 24h and compared to adherent cells. Phosphorylation 
of Akt was analyzed by Western blot. Actin served as loading control. One representative blot out of 
three independent experiments is shown.  
Right: T24 cells were kept in suspension for 3, 5h and 24h in comparison to adherent cells. 
Phosphorylation of ERK and c-Src was analyzed by Western blot. Actin served as loading control. One 
representative blot out of three independent experiments is shown.  
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To further investigate the impact archazolid has on Akt, ERK and c-Src phosphorylation, 

floating, treated T24 cells were examined by Western blot analysis for the indicated 

phosphorylations.   

Treatment of floating cells with archazolid (10nM, 48h) even further increased the 

phosphorylation of Akt compared to untreated control cells. The phosphorylation of ERK (48h) 

and c-Src (48h) did not change due to archazolid treatment (Figure 26), together suggesting 

archazolid induced counter mechanisms. 
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Figure 26: Influence of archazolid treatment on Akt, ERK and c-Src phosphorylation 
Activation of Akt, ERK and c-Src kinases by archazolid treatment was investigated after 48h for Akt and 
ERK and after 24h for c-Src using Western blot analysis of their phosphorylated sites. All Western blot 
experiments show a representative blot out of three independent experiments. For Akt kinase activation 
two independent experiments were quantifies using Imaje J software. 
All experiments were performed with T24 cells. 
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To more deeply elucidate the role of Akt, ERK and c-Src kinases, inhibitors of these proteins 

were used and the effect on apoptosis induction and BIM level was analyzed.  

Employing specific inhibitors (LY 294002 (Akt), PD 98059 (ERK) and Saracatinib (c-Src)) led to 

apoptosis and prevented the decrease of BIM in archazolid treated cells (Figure 27).  
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Figure 27: Inhibition of Akt, ERK and c-Src induces anoikis and rescues BIM 
Left panel: Floating T24 cells were treated with Akt-, ERK-, and c-Src-inhibitors for 48h and apoptotic 
cell death was analyzed. Bars represent the percantage of apoptotic cells of the whole population in mean 
± SEM of three independent experiments conducted in triplicates. ***P<0.001, **P<0.01, *P<0.05. 
Right panel: Application of inhibitors i.e. LY 294002 (Akt), PD 98059 (ERK) or Saracatinib (c-Src) 
together with archazolid were used to analyse changes in BIM protein level. Changes of Akt and ERK 
were investigated after 48h and of c-Src after 24h. 
All Western blot experiments show a representative blot out of three independent experiments. All 
experiments were performed with T24 cells 
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4 DISCUSSION 

This work disclosed that pharmacological inhibition of V-ATPase by archazolid induces anoikis 

in invasive cancer cells, which contributes to the distinct anti-metastatic action of archazolid in 

vivo. Thus we could add important new information regarding the role of V-ATPase in cancer 

dissemination. 

4.1 The V-ATPase in Cancer Cells 

Up to now it has been reported that the abundance of V-ATPase on the plasma membrane of 

tumor cells correlates with their invasiveness. Several well-known V-ATPase inhibitors like 

concanamycin and bafilomycin were shown to lead to growth arrest and cell death induction in a 

variety of tumor cells (2,86,87). Also the newly developed V-ATPase inhibitors salicylihalamide 

(88) and NIK-12192 (89) have demonstrated anti-tumor activity although the exact molecular 

mechanisms of V-ATPase inhibitors leading to inhibition of tumor cell invasion remain to be 

elucidated. Cell surface located V-ATPase is hypothesized to create a proton efflux leading to an 

acidic pericellular microenvironment that promotes the activity of pro-invasive proteases and/or 

rescues tumor cells from intracellular acidification due to increased glycolysis, which can 

otherwise lead to apoptosis (8,90). However, evidence accumulates that the endolysosomal V-

ATPase is important as antitumoral/antimetastatic target. Recent work in our group showed that 

V-ATPase inhibition by archazolid impairs endocytotic traffic of migratory signaling molecules 

such as Rac1 and EGF-R, which is pivotal for directed and polarized cell movements (40). 

Abrogation of endosomal trafficking by V-ATPase inhibition was reported to also have impact 

on tumor growth and apoptosis induction suppressing activation of important signaling 

molecules such as Rab27B or activation of caspase-8 (91,92).  

We showed that V-ATPase inhibition influences anoikis resistance in invasive cancer cells by 

triggering anoikis pathways and impairing survival-receptor signaling. This, presumably by 

inhibition of the endolysosomal V-ATPase, as receptor recycling and autophagy play important 

roles in anoikis induction and resistance. 
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4.2 Relevance of Anoikis in Normal and Malignant Cells 

This work using archazolid as a tool to inhibit V-ATPase provides important information on 

regulation of anoikis and especially anoikis resistance in cancer.  

From a physiological point of view, anoikis is an important mechanism to remove cells, which are 

currently not in their correct location, lacking a correct adhesion and thus guaranteeing tissue 

homeostasis and preventing dysplastic growth. In other words most cell types need proper cell-

cell and cell-matrix interactions to survive. Cell to ECM interactions occur mainly via specific 

integrins and trigger a cascade of pro-survival and proliferative signals (47,52). 

Metastatic cancer cells in contrast to non-malignant tissue cells, do not require adhesion to the 

ECM to survive and proliferate, they are mostly insensitive to anoikis and in fact resistance to 

anoikis is a key regulator for tumor cell invasion and metastasis (52) (Figure 28). Tumor cells use 

various strategies to acquire anoikis resistance such as the constitutive activation of survival 

pathways (PI3K/Akt, MEK/ERK and c-Src family kinases), alteration of the integrin expression 

pattern or generation of oxidative stress and inhibition of apoptotic pathways (50,52,55,93).  

DETACHMENT

ANOIKIS
CELL DEATH

MALIGNANT
CELL

METASTASIS

SURVIVAL IN
THE CIRCULATION

ECM

Figure 28: Anoikis resistance as prerequisite for tumor cell metastasis  
Normal tissue cells are programmed to anoikis when detached from their respective ECM. Malignant 
cells can acquire anoikis resistance by several strategies to survive in the circulation. This is a precondition 
to form metastases in distant tissues or organs. 
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4.3 Anoikis Induction by Archazolid a V-ATPase Inhibitor 

How a V-ATPase inhibitor could possibly affect anoikis induction in invasive cancer cells is a 

challenging issue to solve. It is known that detachment can induce autophagy as a survival 

mechanism preventing anoikis. Inhibition of autophagy increased caspase-3 activity in detached 

cells (72) and BIM was thought to influence autophagy by interacting with beclin-1 and inhibiting 

autophagosome formation (73). It has been shown that integrin β1 inhibition directly correlates 

with autophagy induction suggesting an important role in anoikis (74). V-ATPase inhibition on 

the other hand is known to block late stages of autophagy due to alkalization of lysosomes and 

thereby inhibiting protein degradation in autolysosomes. Archazolid is a very potent V-ATPase 

inhibitor alkalizing cell-compartments within hours as shown in Figure 9. Treatment of different 

adherent cancer cell lines led to reduced lysosome acidification already after 2-4h indicating an 

early stop of protein degradation, depriving anoikis resistant cells of this escape mechanism. 

 V-ATPase inhibition might also affect integrin signaling as integrin activities are dependent on 

fast endocytosis rates and V-ATPase regulates receptor recycling via acidification of endosomes 

and lysosomes (3,94,95). It is known, that block of endosome acidification leads to trafficking 

inhibition probably because of a general block in the formation of carriers important for the 

formation of clathrin-coated-vesicles (CCV) (94). CCV formation is the major endocytotic 

pathway in mammalian cells (96). Also an accumulation of receptors on the cell surface due to 

blocked internalization is a reported effect of V-ATPase inhibition (40,94,97).  

That is why it has been hypothesized that V-ATPase inhibition affects anoikis induction as 

receptor recycling is attenuated consequently influencing membrane receptor signaling. 

In fact, we could show that archazolid induces anoikis in invasive urinary and breast cancer cells. 

Anoikis is provoked by a reduction of active integrin ß1 on the cell surface, an activation of 

caspase-8 and an early translocation of BIM to the mitochondria followed by release of 

cytochrome C. Of note, archazolid treated breast tumor cells injected (i.v.) in mice showed a 

reduced formation of lung metastasis (Figure 16). This study further identified counter 

mechanisms induced by archazolid treatment like a strong proteasomal downregulation of BIM 

provoked by generation of ROS and active pro-survival kinases. 

4.3.1 Impaired Adhesion after Archazolid Treatment  

As integrins function as the main cellular receptors for ECM-cell interactions they are assembled 

in specific adhesive structures like focal adhesions, which directly link the cytoskeleton to the 

ECM. In mature focal adhesions integrins are in an active conformation and constantly ligand-
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bound (98). Integrin-ECM interactions stimulate focal adhesion formation functioning as a 

signaling hub by accumulating multiple kinases and scaffold proteins (99). Hence, impaired 

adhesion as seen by archazolid (Figure 10) pretreatment implies a reduced functionality of focal 

adhesions. This assumption was strengthened as staining of vinculin by a fluorescent antibody 

and visualization by confocal microscopy revealed that archazolid treatment altered vinculin 

incidence and localization (Figure 11). Vinculin is a major structural protein in the focal 

adhesions and often used as focal adhesion marker (100,101). The images showed that after 

treatment vinculin clustering at the periphery of the cells was reduced. Archazolid treated cells 

develop more spike-like focal adhesions, likely to compensate for a reduced functionality proved 

by the adhesion assay. As reduced adhesion ability might trigger enhanced focal adhesion 

formation to level up the output.  

4.3.2 Archazolid Induces Cell Death in Anoikis Resistant Cancer Cells by 
Distinct Activation of Apoptotic Pathways 

In experimental anoikis models, cells are forced to grow anchorage independent, which triggers 

the above-mentioned stress and survival responses leading to a selection of the “fittest” seen by 

an elevated apoptosis level of floating cells compared to adherent ones (Figure 14). There are 

reports that an oncogenic epithelial-mesenchymal transition (EMT) also is characterized by 

anoikis resistance. EMT is a process normally occurring during development forming the primary 

mesenchyme. Epithelial cells undergoing EMT loose the necessity of attachment for their 

survival, acquire more motility, change their morphology and their repertoire of adhesion 

molecules such as E-catherin and additionally silence epithelium-specific genes and activate 

mesenchymal-specific genes. It has been shown that a subgroup of breast cancer cell lines with 

especially invasive properties had mostly mesenchymal gene-expression signatures compared to 

more luminal like cell lines (102–104). Evidently, there is a close relationship between oncogenic 

EMT and acquisition of anoikis resistance. We could demonstrate, that on the one hand cell 

death slightly increases by detachment and on the other hand anoikis resistance is activated by 

Akt and ERK induction (Figure 25). Taking this into account it would be very interesting to 

further investigate if an EMT like process occurs in our cell lines during extended detachment. 

Anoikis resistance is often accompanied by resistance to chemotherapeutics, supported by our 

observation that adherent cancer cells are significantly more sensitive to archazolid then detached 

cells (Figure 15). ECM/integrin signaling can protect cancer cells from drug induced apoptosis by 

activation of the Akt and ERK signaling pathway (63). 
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 The clear effect of archazolid on anchorage independent growth of cancer cells as well as the 

induction of cell death in cells forced to stay detached is thus remarkable (Figure 12 and 

Figure 13). Even more so having learned that archazolid treatment itself potently induces anoikis 

resistance via ROS generation and activation of Akt, which together with constitutive active ERK 

and c-Src leads to the removal of BIM, which will be further discussed in the next sections 

(Figure 23, Figure 26 and Figure 27).  

Obviously, it is important to find out how a compound like archazolid finally achieves anoikis 

induction, meaning, which pathways are involved.  

Anoikis is characterized as an apoptotic cell death executed by features of the intrinsic and 

extrinsic apoptotic pathway and the loss of survival signals by unligated anchorage proteins like 

integrins (75). The extrinsic pathway is initiated by caspase-8 activating effector caspases or 

promoting mitochondrial cytochrome C release (75,105).  

Archazolid evidently uses the extrinsic apoptotic pathway as shown by a downregulation of 

c-FLIP and a distinct caspase-8 activation (Figure 19). Recruitment of caspase-8 and its activation 

has been shown to occur by loss of anchorage to ECM and unligated integrins (53,106). Integrins 

with the β1 subunit in common are the major receptors for ECM components responsible for 

cell-ECM interactions (47). Interestingly, cell surface β1 integrin of cancer cells, floating for 24h 

was still as active as in adherent cells, suggesting an inside-out integrin activation supporting 

anoikis resistance of these cells (107). Importantly, archazolid reduced the amount of active 

integrin β1 on the cell surface leaving the total integrin level constant probably through an altered 

receptor recycling (Figure 17).  

4.3.3 Impacts on the Integrin Downstream Signaling by Archazolid 
Treatment 

In consequence, downstream pro-survival signals like the phosphorylation of one key player in 

anoikis protection, FAK (82) was affected by archazolid treatment (Figure 18). FAK together 

with c-Src then interact with numerous molecules recruiting and activating other pro-survival 

proteins like PI3K/Akt or ERK (46). We observed that T24 cells, shortly after detachment (5h) 

induce anoikis resistance by activating Akt and ERK which decreases when cells were detached 

for 24h suggesting a restored balance between apoptotic and survival players. For c-Src kinase the 

phosphorylation was not changed due to detachment over 3, 5 and 24h compared to adherent 

control cells implying no direct involvement in the immediate anoikis resistance (Figure 25).  
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Unexpectedly, we did not observe inhibitory effects of archazolid on either Akt, ERK or c-Src 

but an activation of Akt which is considered to be part of the counter, pro-survival mechanism 

induced by archazolid (Figure 26). 

4.3.4 BIM: First Activated then Inhibited by Archazolid Treatment  

Anoikis due to the intrinsic pathway is mainly initiated by BIM (108). BIM, a member of the Bcl-

2 family activates Bax and Bak which leads to the permeabilisation of the outer mitochondrial 

membrane and the release of cytochrome C to the cytosol thereby activating a caspase cascade 

inducing cell death (60,84). In fact, BIM has been reviewed as a potential target for tumor therapy 

as BIM promotes anoikis in many tumor cell types and BIM suppression supports metastasis and 

chemoresistance (70). BIM regulation is dependent on cell surface molecules like integrins and 

the epidermal growth factor receptor (EGFR) (54).  

We found that BIM was rapidly translocated to the mitochondria by archazolid treatment 

followed by cytochrome C release (Figure 20) pointing to an involvement of the intrinsic 

apoptotic pathway.  

4.4 Resistance Mechanisms after Archazolid Treatment 

Of note BIM inhibition seems to be also the major factor used by T24 and MCF 7 cells to induce 

resistance to anoikis as BIM gets strongly degraded at a later time of archazolid exposure 

(Figure 21A). In MDA-MB-231 cells, a highly invasive breast cancer cell line, this degradation 

could even be observed shortly after archazolid treatment in detached cells (Figure 20) indicating 

that the ability to control BIM is connected to the metastatic potential. The fact that rescue of 

BIM degradation (Figure 21B) employing proteasome inhibitors MG-132 and bortezomib 

synergistically increased archazolid induced cell death underscores the important role of this BH-

3 only protein in the regulation of anoikis and its failure (Figure 22).  

As kinases such as ERK, Akt and c-Src are known to regulate BIM degradation and expression it 

was tempting to employ specific kinase inhibitors in order to gain further insight in the archazolid 

triggered BIM removal and thus chemoresistance (109). Akt and ERK can both phosphorylate 

BIM to be proteasomal degraded or sequestered, thereby having an immediate effect on BIM 

clearance in the cytosol (58,109). The relevance of these kinases in survival was shown by the fact 

that kinase inhibitors alone at high concentration induce anoikis. Co-stimulation of archazolid 

with moderate concentrations of kinase inhibitors rescued BIM, indicating that cells actively 

block BIM activation by various pathways in response to archazolid treatment (Figure 27). This 



DISCUSSION  57 

further underlines the highly efficient survival and anoikis resistance mechanisms of invasive 

tumor cells and highlights compounds such as archazolid still inducing cell death.  

Additionally, ROS are considered critical players in anoikis resistance. Integrin mediated adhesion 

induces a transient burst of high ROS levels transducing survival signals by activation of c-Src 

kinases. Activated c-Src kinases trans-phosphorylate EGF-receptor ligands, activating ERK and 

PI3K/Akt pathways. Scavenging of ROS in adherent cells leads to BIM induction and cell death 

(50,51). ROS are also recognized as second messenger in cell growth, proliferation, adhesion and 

cell spreading in untransformed cells (110). Induction of ROS in tumor cells is correlated to 

tumor initiation and progression as well as with tumor invasiveness (111). Anoikis sensitive cells 

show decreased ROS levels after detachment correlating with cell death induction (50). Now, we 

discovered that archazolid treatment of floating cells resulted in elevated ROS levels compared to 

untreated cells, but did not exceed the steady state level of ROS in untreated adherent cells 

(Figure 23). Still, cell death was induced by archazolid. This elevated ROS could be a further 

explanation for the prominent removal of BIM protein. We showed, in accordance to Giannoni 

et al. (50) that co-treatment of archazolid with a ROS scavenger led to increased cell death and 

increased BIM levels (Figure 24). Therefore, ROS must play a critical role in resistance to 

archazolid-induced anoikis.  

4.5 Conclusion and Outlook 

This study demonstrates that archazolid induces anoikis in highly invasive tumor cells by 

activation of the extrinsic and intrinsic apoptotic pathway. Anoikis induction is accompanied by 

initiation of highly productive resistance mechanisms especially removal of BIM by activation of 

Akt and induction of ROS. Understanding the mode of actions leading to cell death by 

archazolid treatment and the challenges of counter reactions can help gaining deeper insight in 

anoikis resistance mechanisms, chemoresistance and the metastatic transition of detached tumor 

cells.  

A clear characterization of anoikis resistance mechanisms depending on tumor cell type, drug 

treatment, EMT occurence and metastatic potential is therefore desirable to adjust 

chemotherapies or apply suitable combination drug therapies as metastasis is still the number one 

cause for death by cancer.  

 

 

 



 58 

 

 
 
 
 
 
 
 
 
 
 

REFERENCES  
 

 

 



 59 

 

5 REFERENCES 

 
1.  Forgac M. Structure, function and regulation of the vacuolar (H+)-ATPases. FEBS Lett. 

1998;440:258–63.  
2.  Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. 

Nat. Rev. Mol. Cell Biol. 2007;8:917–29.  
3.  Hinton A, Bond S, Forgac M. V-ATPase functions in normal and disease processes. 

Pflugers Arch. 2009;457:589–98.  
4.  Cross RL, Müller V. The evolution of A-, F-, and V-type ATP synthases and ATPases: 

reversals in function and changes in the H+/ATP coupling ratio. FEBS Lett. 2004;576:1–
4.  

5.  Yoshida M, Muneyuki E, Hisabori T. ATP synthase--a marvellous rotary engine of the 
cell. Nat. Rev. Mol. Cell Biol. 2001;2:669–77.  

6.  Martinez-Zaguilan R, Lynch RM, Martinez GM, Gillies RJ. Vacuolar-type H(+)-ATPases 
are functionally expressed in plasma membranes of human tumor cells. Am. J. Physiol. 
1993;265:C1015–29.  

7.  Sennoune SR, Luo D, Martínez-Zaguilán R. Plasmalemmal vacuolar-type H+-ATPase in 
cancer biology. Cell Biochem. Biophys. 2004;40:185–206.  

8.  Sennoune SR, Bakunts K, Martínez GM, Chua-Tuan JL, Kebir Y, Attaya MN, et al. 
Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: 
distribution and functional activity. Am. J. Physiol. Cell Physiol. 2004;286:C1443–52.  

9.  Pérez-Sayáns M, García A. V-ATPase Inhibitors in Cancer Treatment and Their 
Implication in Multidrug Resistance in Oral Squamous Cell Carcinoma. Curr. Cancer 
Treat. - Nov. Beyond Conv. Approaches. InTech; 2011.  

10.  Gatenby R a, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer. 
2004;4:891–9.  

11.  Barar J, Omidi Y. Dysregulated pH in Tumor Microenvironment Checkmates Cancer 
Therapy. Bioimpacts. 2013;3:149–62.  

12.  Lu Q, Lu S, Huang L, Wang T, Wan Y, Zhou CX, et al. The expression of V-ATPase is 
associated with drug resistance and pathology of non-small-cell lung cancer. Diagn. Pathol. 
Diagnostic Pathology; 2013;8:145.  

13.  Fogarty FM, O’Keeffe J, Zhadanov A, Papkovsky D, Ayllon V, O’Connor R. HRG-1 
enhances cancer cell invasive potential and couples glucose metabolism to 
cytosolic/extracellular pH gradient regulation by the vacuolar-H(+) ATPase. Oncogene. 
2013;  

14.  Torigoe T, Izumi H, Ishiguchi H, Uramoto H, Murakami T, Ise T, et al. Enhanced 
expression of the human vacuolar H+-ATPase c subunit gene (ATP6L) in response to 
anticancer agents. J. Biol. Chem. 2002;277:36534–43.  

15.  Werner G, Hagenmaier H, Drautz H, Baumgartner A, Zähner H. Metabolic products of 
microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics. Production, 
isolation, chemical structure and biological activity. J. Antibiot. (Tokyo). 1984;37:110–7.  

16.  Kinashi H, Someno K, Sakaguchi K. Isolation and characterization of concanamycins A, B 
and C. J. Antibiot. (Tokyo). 1984;37:1333–43.  

17.  Kinashi H, Sakaguchi K, Higashijima T, Miyazawa T. Structures of concanamycins B and 
C. J. Antibiot. (Tokyo). 1982;35:1618–20.  



REFERENCES 60 

18.  Bowman EJ, Siebers A, Altendorf K. Bafilomycins: a class of inhibitors of membrane 
ATPases from microorganisms, animal cells, and plant cells. Proc. Natl. Acad. Sci. U. S. A. 
1988;85:7972–6.  

19.  Dröse S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, Altendorf K. Inhibitory effect of 
modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. 
Biochemistry. 1993;32:3902–6.  

20.  Dröse S, Altendorf K. Bafilomycins and concanamycins as inhibitors of V-ATPases and 
P-ATPases. J. Exp. Biol. 1997;200:1–8.  

21.  Zhang J, Feng Y, Forgac M. Proton conduction and bafilomycin binding by the V0 
domain of the coated vesicle V-ATPase. J. Biol. Chem. 1994;269:23518–23.  

22.  Crider BP, Xie XS, Stone DK. Bafilomycin inhibits proton flow through the H+ channel 
of vacuolar proton pumps. J. Biol. Chem. 1994;269:17379–81.  

23.  Bowman BJ, Bowman EJ. Mutations in subunit C of the vacuolar ATPase confer 
resistance to bafilomycin and identify a conserved antibiotic binding site. J. Biol. Chem. 
2002;277:3965–72.  

24.  Huss M, Ingenhorst G, König S, Gassel M, Dröse S, Zeeck A, et al. Concanamycin A, the 
specific inhibitor of V-ATPases, binds to the V(o) subunit c. J. Biol. Chem. 
2002;277:40544–8.  

25.  Bowman EJ, Graham L a, Stevens TH, Bowman BJ. The bafilomycin/concanamycin 
binding site in subunit c of the V-ATPases from Neurospora crassa and Saccharomyces 
cerevisiae. J. Biol. Chem. 2004;279:33131–8.  

26.  Boyd MR, Farina C, Belfiore P, Gagliardi S, Kim JW, Hayakawa Y, et al. Discovery of a 
novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-
type (H+)-atpases. J. Pharmacol. Exp. Ther. 2001;297:114–20.  

27.  Huss M, Wieczorek H. Inhibitors of V-ATPases: old and new players. J. Exp. Biol. 
2009;212:341–6.  

28.  Osteresch C, Bender T, Grond S, von Zezschwitz P, Kunze B, Jansen R, et al. The 
binding site of the V-ATPase inhibitor apicularen is in the vicinity of those for bafilomycin 
and archazolid. J. Biol. Chem. 2012;287:31866–76.  

29.  Gagliardi S, Nadler G, Consolandi E, Parini C, Morvan M, Legave MN, et al. 5-(5,6-
Dichloro-2-indolyl)-2-methoxy-2,4-pentadienamides: novel and selective inhibitors of the 
vacuolar H+-ATPase of osteoclasts with bone antiresorptive activity. J. Med. Chem. 
1998;41:1568–73.  

30.  Gagliardi S, Gatti PA, Belfiore P, Zocchetti A, Clarke GD, Farina C. Synthesis and 
structure-activity relationships of bafilomycin A1 derivatives as inhibitors of vacuolar H+-
ATPase. J. Med. Chem. 1998;41:1883–93.  

31.  Páli T, Dixon N, Kee TP, Marsh D. Incorporation of the V-ATPase inhibitors 
concanamycin and indole pentadiene in lipid membranes. Spin-label EPR studies. 
Biochim. Biophys. Acta. 2004;1663:14–8.  

32.  Dixon N, Páli T, Kee TP, Marsh D. Spin-labelled vacuolar-ATPase inhibitors in lipid 
membranes. Biochim. Biophys. Acta. 2004;1665:177–83.  

33.  Dixon N, Páli T, Kee TP, Ball S, Harrison MA, Findlay JBC, et al. Interaction of spin-
labeled inhibitors of the vacuolar H+-ATPase with the transmembrane Vo-sector. 
Biophys. J. 2008;94:506–14.  

34.  Reichenbach H, Höfle G. Biologically active secondary metabolites from myxobacteria. 
Biotechnol. Adv. 1993;11:219–77.  

35.  Sasse F, Steinmetz H, Höfle G, Reichenbach H. Archazolids, new cytotoxic macrolactones 
from Archangium gephyra (Myxobacteria). Production, isolation, physico-chemical and 
biological properties. J. Antibiot. (Tokyo). 2003;56:520–5.  

36.  Huss M, Sasse F, Kunze B, Jansen R, Steinmetz H, Ingenhorst G, et al. Archazolid and 
apicularen: novel specific V-ATPase inhibitors. BMC Biochem. 2005;6:13.  



REFERENCES 61 

37.  Bockelmann S, Menche D, Rudolph S, Bender T, Grond S, von Zezschwitz P, et al. 
Archazolid A Binds to the Equatorial Region of the c-Ring of the Vacuolar H+-ATPase. J. 
Biol. Chem. 2010;285:38304–14.  

38.  Roethle PA, Chen IT, Trauner D. Total synthesis of (-)-archazolid B. J. Am. Chem. Soc. 
2007;129:8960–1.  

39.  Menche D, Hassfeld J, Li J, Mayer K, Rudolph S. Modular total synthesis of archazolid A 
and B. J. Org. Chem. 2009;74:7220–9.  

40.  Wiedmann RM, von Schwarzenberg K, Palamidessi A, Schreiner L, Kubisch R, Liebl J, et 
al. The V-ATPase-inhibitor archazolid abrogates tumor metastasis via inhibition of 
endocytic activation of the Rho-GTPase Rac1. Cancer Res. 2012;72:5976–87.  

41.  Von Schwarzenberg K, Wiedmann RM, Oak P, Schulz S, Zischka H, Wanner G, et al. 
Mode of cell death induction by pharmacological vacuolar H+-ATPase (V-ATPase) 
inhibition. J. Biol. Chem. 2013;288:1385–96.  

42.  Von Schwarzenberg K, Lajtos T, Simon L, Müller R, Vereb G, Vollmar AM. V-ATPase 
inhibition overcomes trastuzumab resistance in breast cancer. Mol. Oncol. 2013;  

43.  Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat. Rev. Cancer. 
2006;6:449–58.  

44.  Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. 
Cell Biol. 1994;124:619–26.  

45.  Gilmore AP. Anoikis. Cell Death Differ. 2005;12 Suppl 2:1473–7.  
46.  Chiarugi P, Giannoni E. Anoikis: a necessary death program for anchorage-dependent 

cells. Biochem. Pharmacol. 2008;76:1352–64.  
47.  Vachon PH. Integrin signaling, cell survival, and anoikis: distinctions, differences, and 

differentiation. J. Signal Transduct. 2011;2011:738137.  
48.  Zhan M, Zhao H, Han ZC. Signalling mechanisms of anoikis. Histol. Histopathol. 

2004;19:973–83.  
49.  Grossmann J. Molecular mechanisms of “detachment-induced apoptosis--Anoikis”. 

Apoptosis. 2002;7:247–60.  
50.  Giannoni E, Buricchi F, Grimaldi G, Parri M, Cialdai F, Taddei ML, et al. Redox 

regulation of anoikis: reactive oxygen species as essential mediators of cell survival. Cell 
Death Differ. 2008;15:867–78.  

51.  Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, et al. Reactive oxygen 
species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine 
phosphatase is required for cell adhesion. J. Cell Biol. 2003;161:933–44.  

52.  Kim Y, Koo KH, Sung JY, Yun U, Kim H. Anoikis Resistance  : An Essential Prerequisite 
for Tumor Metastasis. Int. J. Cell Biol. 2012;2012:306879.  

53.  Frisch SM. Caspase-8: fly or die. Cancer Res. 2008;68:4491–3.  
54.  Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J, et al. Integrins and 

EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat. Cell 
Biol. 2003;5:733–40.  

55.  Simpson CD, Anyiwe K, Schimmer AD. Anoikis resistance and tumor metastasis. Cancer 
Lett. 2008;272:177–85.  

56.  Guadamillas MC, Cerezo A, Del Pozo M a. Overcoming anoikis--pathways to anchorage-
independent growth in cancer. J. Cell Sci. 2011;124:3189–97.  

57.  Piñon JD, Labi V, Egle a, Villunger a. Bim and Bmf in tissue homeostasis and malignant 
disease. Oncogene. 2008;27 Suppl 1:S41–52.  

58.  Qi X-J, Wildey GM, Howe PH. Evidence that Ser87 of BimEL is phosphorylated by Akt 
and regulates BimEL apoptotic function. J. Biol. Chem. 2006;281:813–23.  

59.  McConkey DJ, Bondar V. Apoptosis, Senescence, and Cancer. In: Gewirtz DA, Holt SE, 
Grant S, editors. Totowa, NJ: Humana Press; 2007. page 109–22.  



REFERENCES 62 

60.  Kim H, Tu H-C, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, et al. Stepwise activation 
of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol. Cell. 
2009;36:487–99.  

61.  Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh D a. Apoptosis of 
adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell Biol. 
2001;155:459–70.  

62.  Elmore S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 2007;35:495–
516.  

63.  Aoudjit F, Vuori K. Integrin signaling in cancer cell survival and chemoresistance. 
Chemother. Res. Pract. 2012;2012:283181.  

64.  Frisch SM, Screaton RA. Anoikis mechanisms. Curr. Opin. Cell Biol. 2001;13:555–62.  
65.  Giancotti FG. Integrin Signaling. Science. 1999;285:1028–33.  
66.  Bunek J, Kamarajan P, Kapila YL. Anoikis mediators in oral squamous cell carcinoma. 

Oral Dis. 2011;17:355–61.  
67.  Desgrosellier JS, Cheresh D a. Integrins in cancer: biological implications and therapeutic 

opportunities. Nat. Rev. Cancer. 2010;10:9–22.  
68.  Del Pozo M a, Balasubramanian N, Alderson NB, Kiosses WB, Grande-García A, 

Anderson RGW, et al. Phospho-caveolin-1 mediates integrin-regulated membrane domain 
internalization. Nat. Cell Biol. 2005;7:901–8.  

69.  Fukazawa H, Noguchi K, Masumi A, Murakami Y, Uehara Y. BimEL is an important 
determinant for induction of anoikis sensitivity by mitogen-activated protein/extracellular 
signal-regulated kinase kinase inhibitors. Mol. Cancer Ther. 2004;3:1281–8.  

70.  Akiyama T, Dass CR, Choong PFM. Bim-targeted cancer therapy: a link between drug 
action and underlying molecular changes. Mol. Cancer Ther. 2009;8:3173–80.  

71.  Li a. E, Ito H, Rovira II, Kim K-S, Takeda K, Yu Z-Y, et al. A Role for Reactive Oxygen 
Species in Endothelial Cell Anoikis. Circ. Res. 1999;85:304–10.  

72.  Fung C, Lock R, Gao S, Salas E, Debnath J. Induction of autophagy during extracellular 
matrix detachment promotes cell survival. Mol. Biol. Cell. 2008;19:797–806.  

73.  Luo S, Garcia-Arencibia M, Zhao R, Puri C, Toh PPC, Sadiq O, et al. Bim inhibits 
autophagy by recruiting Beclin 1 to microtubules. Mol. Cell. 2012;47:359–70.  

74.  Lock R, Debnath J. Extracellular matrix regulation of autophagy. Curr. Opin. Cell Biol. 
2008;20:583–8.  

75.  Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health 
and diseases. J. Pathol. 2012;226:380–93.  

76.  Weigelt B, Peterse JL, van ’t Veer LJ. Breast cancer metastasis: markers and models. Nat. 
Rev. Cancer. 2005;5:591–602.  

77.  Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific 
colonization. Nat. Rev. Cancer. 2009;9:274–84.  

78.  Fukazawa H, Mizuno S, Uehara Y. A microplate assay for quantitation of anchorage-
independent growth of transformed cells. Anal. Biochem. 1995;228:83–90.  

79.  Fukazawa H, Noguchi K, Murakami Y, Uehara Y. Mitogen-activated protein/extracellular 
signal-regulated kinase kinase (MEK) inhibitors restore anoikis sensitivity in human breast 
cancer cell lines with a constitutively activated extracellular-regulated kinase (ERK) 
pathway. Mol. Cancer Ther. 2002;1:303–9.  

80.  Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method 
for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. 
Immunol. Methods. 1991;139:271–9.  

81.  Chunhacha P, Sriuranpong V, Chanvorachote P. Epithelial-mesenchymal transition 
mediates anoikis resistance and enhances invasion in pleural effusion-derived human lung 
cancer cells. Oncol. Lett. 2013;5:1043–7.  

82.  Frisch SM, Ruoslahti E. Integrins and anoikis. Curr. Opin. Cell Biol. 1997;9:701–6.  



REFERENCES 63 

83.  Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in modulation of 
CD95-induced apoptosis. J. Biol. Chem. 1999;274:1541–8.  

84.  Willis SN, Adams JM. Life in the balance: how BH3-only proteins induce apoptosis. Curr. 
Opin. Cell Biol. 2005;17:617–25.  

85.  Terada LS, Nwariaku FE. Escaping Anoikis through ROS: ANGPTL4 controls integrin 
signaling through Nox1. Cancer Cell. 2011;19:297–9.  

86.  Hinton a., Sennoune SR, Bond S, Fang M, Reuveni M, Sahagian GG, et al. Function of a 
Subunit Isoforms of the V-ATPase in pH Homeostasis and in Vitro Invasion of MDA-
MB231 Human Breast Cancer Cells. J. Biol. Chem. 2009;284:16400–8.  

87.  Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Rey JMG, García-García A. V-
ATPase inhibitors and implication in cancer treatment. Cancer Treat. Rev. 2009;35:707–
13.  

88.  Lebreton S, Jaunbergs J, Roth MG, Ferguson D a, De Brabander JK. Evaluating the 
potential of vacuolar ATPase inhibitors as anticancer agents and multigram synthesis of 
the potent salicylihalamide analog saliphenylhalamide. Bioorg. Med. Chem. Lett. 
2008;18:5879–83.  

89.  Supino R, Petrangolini G, Pratesi G, Tortoreto M, Favini E, Bo LD, et al. Antimetastatic 
effect of a small-molecule vacuolar H+-ATPase inhibitor in in vitro and in vivo preclinical 
studies. J. Pharmacol. Exp. Ther. 2008;324:15–22.  

90.  Sennoune SR, Martinez-Zaguilan R. Plasmalemmal vacuolar H+-ATPases in angiogenesis, 
diabetes and cancer. J. Bioenerg. Biomembr. 2007;39:427–33.  

91.  Han J, Sridevi P, Ramirez M, Ludwig KJ, Wang JYJ. β-Catenin-dependent lysosomal 
targeting of internalized tumor necrosis factor-α suppresses caspase-8 activation in 
apoptosis-resistant colon cancer cells. Mol. Biol. Cell. 2013;24:465–73.  

92.  Hendrix A, Sormunen R, Westbroek W, Lambein K, Denys H, Sys G, et al. Vacuolar H+ 
ATPase expression and activity is required for Rab27B-dependent invasive growth and 
metastasis of breast cancer. Int. J. Cancer. 2013;133:843–54.  

93.  Lee Y-C, Jin J-K, Cheng C-J, Huang C-F, Song JH, Huang M, et al. Targeting 
constitutively activated β1 integrins inhibits prostate cancer metastasis. Mol. Cancer Res. 
2013;11:405–17.  

94.  Kozik P, Hodson N a, Sahlender D a, Simecek N, Soromani C, Wu J, et al. A human 
genome-wide screen for regulators of clathrin-coated vesicle formation reveals an 
unexpected role for the V-ATPase. Nat. Cell Biol. 2013;15:50–60.  

95.  Arjonen A, Alanko J, Veltel S, Ivaska J. Distinct recycling of active and inactive β1 
integrins. Traffic. 2012;13:610–25.  

96.  Kozik P, Francis RW, Seaman MNJ, Robinson MS. A screen for endocytic motifs. Traffic. 
2010;11:843–55.  

97.  Tawfeek H a W, Abou-Samra AB. Important role for the V-type H(+)-ATPase and the 
Golgi apparatus in the recycling of PTH/PTHrP receptor. Am. J. Physiol. Endocrinol. 
Metab. 2004;286:E704–10.  

98.  Ivaska J. Unanchoring integrins in focal adhesions. Nat. Cell Biol. 2012;14:981–3.  
99.  Zhong X, Rescorla FJ. Cell surface adhesion molecules and adhesion-initiated signaling: 

understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell. 
Signal. 2012;24:393–401.  

100.  Huttenlocher A, Horwitz AR. Integrins in cell migration. Cold Spring Harb. Perspect. 
Biol. 2011;3:a005074.  

101.  Sakamoto S, Schwarze S, Kyprianou N. Anoikis Disruption of Focal Adhesion-Akt 
Signaling Impairs Renal Cell Carcinoma. Eur. Urol. European Association of Urology; 
2011;59:734–44.  

102.  Frisch SM, Schaller M, Cieply B. Mechanisms that link the oncogenic epithelial-
mesenchymal transition to suppression of anoikis. J. Cell Sci. 2013;126:21–9.  



REFERENCES 64 

103.  Tsuji T, Ibaragi S, Hu G. Epithelial-mesenchymal transition and cell cooperativity in 
metastasis. Cancer Res. 2009;69:7135–9.  

104.  Blick T, Widodo E, Hugo H, Waltham M, Lenburg ME, Neve RM, et al. Epithelial 
mesenchymal transition traits in human breast cancer cell lines. Clin. Exp. Metastasis. 
2008;25:629–42.  

105.  Wyllie AH. “Where, O death, is thy sting?” A brief review of apoptosis biology. Mol. 
Neurobiol. 2010;42:4–9.  

106.  Marconi A, Atzei P, Panza C, Fila C, Tiberio R, Truzzi F, et al. FLICE/caspase-8 
activation triggers anoikis induced by beta1-integrin blockade in human keratinocytes. J. 
Cell Sci. 2004;117:5815–23.  

107.  Banno A, Ginsberg MH. Integrin activation. Biochem. Soc. Trans. 2008;36:229–34.  
108.  Woods NT, Yamaguchi H, Lee FY, Bhalla KN, Wang H-G. Anoikis, initiated by Mcl-1 

degradation and Bim induction, is deregulated during oncogenesis. Cancer Res. 
2008;67:10744–52.  

109.  Akiyama T, Dass CR, Choong PFM. Bim-targeted cancer therapy  : A link between drug 
action and underlying molecular changes. Mol. Cancer Ther. 2009;3173–80.  

110.  Chiarugi P, Giannoni E. Anchorage-dependent cell growth: tyrosine kinases and 
phosphatases meet redox regulation. Antioxid. Redox Signal. 2005;7:578–92.  

111.  Zhu P, Tan MJ, Huang R-L, Tan CK, Chong HC, Pal M, et al. Angiopoietin-like 4 protein 
elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to 
tumors. Cancer Cell. 2011;19:401–15.  

 
 

 

 

 

 

 



 65 

 

 
 
 
 
 
 
 
 
 
 

APPENDIX  
 

 

 

 

 

 

 



 66 

 

6 APPENDIX 

6.1 List of Abbreviations 

AKT         Protein kinase B 
ANOVA        Analysis of variance between groups 
ARCH         Archazolid A 
ATP         Adenosin-5’-triphosphat 
BCA         Bicinchoninic acid 
BCL-2         B-cell lymphoma 

BIM         Bcl-2 interacting mediator of cell death 
BSA         Bovine Serum Albumine 
CO          Control 
DISC         Death inducing signaling complex 
DMEM:F12       Dulbeccos’s Modified Eagle’s Medium 
DMSO         Dimethyl Sulfoxide 
ECM         Extracellular matrix 
EDTA         Ethylenediaminetetraacetic acid 

EGTA         Ethyleneglycoltetraacetic acid 
ERK         Extracellular signal-regulated kinase 
EtOH         Ethanol 
FACS         Fluorescence activated cell sorter 
FADD         Fas-associated death domain protein 
FAK         Focal adhesion kinase 
FCS         Fetal calf serum 
FLIP         FLICE-like inhibitory protein 

HFS         Hypotonic fluorochrome solution 
MAPK         Mitogen activated protein kinase 
MEK         Mitogen activated protein kinase kinase 
MTOR         mechanistic target of rapamycin 
MTT         Thiazolyl Blue Tetrazolium Bromide 
NAC         N-Acetyl-L-Cysteine 
RAF         Rapidly Accelerated Fibrosarcoma 
RAS         Rat sarcoma 

ROS         Reactive oxygen species 
SDS-PAGE       Sodium dodecyl sulfate – polyacrylamid-gelelectrophorese 
SRC         Sarcoma 
TRAIL         TNF related apoptosis inducing ligand  
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