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2 INTRODUCTION 

2.1 Nucleic acid-based therapies 

Gene therapy offers a wide spectrum of approaches including regulation, repair and 

replacement of genes which directly cure at the molecular genetic origin of the disease. For 

monogenetic diseases like cystic fibrosis [1], severe combined immunodeficiency (SCID) [2] 

and hyperlipidemia [3], the replacement of the defective gene is a successfully used 

approach. Furthermore, the interference on the genetic level is a promising option for 

cancer, which is usually promoted by complex genetic disregulations and still constitutes an 

often incurable disease and one of the main causes of death. 

The first gene transfer in mammalian cells was already documented over 50 years ago [4]. 

Only some years later Rogers and Pfuderer provided evidence of the first viral gene transfer 

in plants [5]. Over the last decades the field of gene therapy expanded tremendously in 

regard to vector diversity as well as the applied type of nucleic acid. 

In addition to the initial strategy of successfully substituting defective genes with the 

corresponding intact gene inserted into plasmid DNA (pDNA), the option of suppressing 

pathogenic genes has emerged as a widely-used tool. Such a blockade is based on specific 

complementary binding of an antisense nucleic acid strand to messenger RNA (mRNA) in the 

RNA-induced silencing complex (RISC), leading to enzymatic mRNA degradation or to steric 

hindrance preventing the translation into the encoded protein. Classical approaches for 

specific gene suppression include the application of single-stranded oligodesoxy-

ribonucleotides (ODNs), whereas RNA interference (RNAi) was discovered as a novel strategy 

for the silencing of a specific gene in nematodes in 1998 by Fire et al. [6]. However, this 

technique was not as effective in mammalian cells, where the initially applied long double-

stranded RNA (dsRNA) with over 30 base pairs (bp) induced immune reactions and cell 

death.  It was only with the direct application of the shorter 21 bp small interfering RNA 

(siRNA) that effective gene silencing was achieved in mammalian cells at the same time 

circumventing immune responses [7]. This finding marks a milestone in the development of 

therapeutic nucleic acids for gene silencing. Another key discovery in the 1990s was the 

existence of genes which instead of encoding for proteins, resulted in the production of 

small RNA molecules, the so-called microRNAs (miRNAs) [8]. These widely found non-coding 
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miRNAs regulate the expression of specific genes by interference with the mRNA, allowing 

for phenotypic fine-tuning [9, 10]. As many miRNA targets were identified to be oncogenes, 

the application of exogenous miRNA provides a promising therapeutic option for cancer. 

Conversely, inhibition of endogenous miRNA by antagomirs [11] is an interesting approach 

for inactivation of miRNAs targeting tumor suppressors (oncomirs). Another exciting concept 

is the application of aptamers, 56-120 nucleotides long single-stranded RNAs, which due to 

their special 3D structure are able to bind to their targets with high specificity and affinity 

[12]. Although preferentially used for diagnostics or targeted delivery, such as for the 

previously described siRNAs [13], aptamers are also applied as therapeutic principle itself. 

The most encouraging example is given by Pegaptanib, an aptamer against the Vascular 

endothelial growth factor (VEGF), that received FDA approval as a therapeutic against age-

related macular degeneration (AMD) in 2004 [14].   

Besides the exploration of different mechanistic approaches for the application of nucleic 

acid-based therapies, a crucial step towards promising therapeutic options was the 

introduction of a variety of chemical modifications leading to a better performance of the 

nucleic acid itself. Accomplished optimizations include the decrease of susceptibility to 

degradation by nucleases present in biological fluids, the avoidance of side effects caused by 

immune reactions or off-target downregulation, as well as the increase of potency [15]. In 

this context the RNA modification of the 2´-OH groups such as the 2´-O-methyl or 2´-fluoro 

became a widely-used strategy. Connecting the 2´-O with the 4´-C via a methylene bridge 

results in the locked nucleic acids (LNAs) adopting a blocked A-conformation, which provides 

a great enhancement in thermostability [16, 17]. Other commonly used backbone 

modifications are phosphorothioate [18] or phosphorodiamidate morpholino oligomers 

(PMOs) [19]. 

Altogether the diversity of natural and chemically modified nucleic acids offers a wide 

spectrum of therapeutic approaches. Nevertheless, these can only lead to success in 

combination with appropriate carrier systems. 

2.2 Synthetic carrier systems for the delivery of nucleic acids 

2.2.1 Features of different therapeutic carrier types 

Inherent properties of nucleic acids like their anionic character, sizes up to the micrometer 

scale and instability in biological fluids emphasize the need for appropriate carrier systems in 
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order to use them as therapeutic principle. Although in more than 40 years of experience 

remarkable progress was made in the field of gene therapy with many approaches entering 

into clinical trials [20], the need for an ideal delivery system in regard to efficiency and 

biocompatibility has yet to be fulfilled. Important prerequisites for effective therapeutic 

application are the successful delivery to the desired site of action and subsequent release 

inside the target cells. The first step in this process is the packaging of the nucleic acid cargo 

into stable nanoparticles to prevent enzymatic degradation in the bloodstream after 

intravenous administration. At the same time particle aggregation and interaction with 

serum components have to be avoided, which can be achieved by appropriate shielding 

components. In this context PEGylation has become a popular strategy [21]. Accumulation at 

the target site can be accomplished via the enhanced permeability and retention effect 

(EPR), which exploits the leaky tumor vasculature and the insufficient lymphatic drainage in 

the tumor tissue for the enrichment of nanoparticles [22]. Besides this passive targeting 

effect, active cell targeting can be achieved through the attachment of specific targeting 

ligands enabeling receptor-mediated endocytosis preferentially into receptor overexpressing 

cells [23]. The next critical step is given by the endosomal escape. The rupture of the 

endosomal membrane can be conducted by lytic carrier domains as they are present in 

lipidic carriers [24], or via the proton sponge effect for carriers with proton buffering 

capacities at the relevant pH range [25]. In some cases, depending on the type of nucleic 

acid (e. g. siRNA), the place of action is reached in the cytosol and therefore the efficient and 

early endosomal escape is an essential demand. For pDNA further transport to the nucleus is 

required representing a further crucial step. In order to overcome all these extra- and 

intracellular barriers, a great variety of carriers with differing chemical and physical 

properties have been used so far. 

The first attempts of gene delivery were performed with viral vectors by exploiting their 

natural property of infecting cells and transferring their genetic information to the host. Due 

to their dynamic alignment to the conditions prevailing in the host, viruses turned out to be 

very efficient carrier systems [26]. However, despite these advantages and the first reported 

complete cure of SCID-X1 by viral gene therapy [2], many drawbacks are known connected 

to the use of viral vectors. These include a limited cargo loading, the elicitation of immune 

responses and most alarming the risk of promoting cancer by insertional mutagenesis [26].  
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In this context in recent times the field of synthetic carriers for gene delivery, which in most 

cases are cationic liposomes, peptides or polymers, has undergone enormous advances. 

Direct complexation of nucleic acids with cationic lipids results in the self-assembly of so-

called lipoplexes [27, 28]. Lipopolyplexes are formed by the addition of liposomes to pre-

formed polyplexes [29], whereas liposomes are characterized by the encapsulation of the 

nucleic acid in uni- or multilamellar lipid bilayers [30]. Nowadays lipid-based carriers 

constitute one of the most advanced fields of nucleic acid delivery by synthetic vectors, with 

several formulations entering into clinical trials [31]

(SNALPS), a carrier system consisting of PEGylated liposomes, showed success as 

therapeutics for liver diseases exploiting the effect of liver accumulation. Ongoing clinical 

trials include for example treatment of hypercholesterolemia or liver cancer [32, 33].  

Besides the lipid-mediated approaches, also polymer-based transfection agents like 

polyethylenimine (PEI) or polylysine (PLL) provided promising results entering into clinical 

trials [34-36]. The first clinical polyplex-mediated gene therapy trial in patients was based on 

an ex vivo approach using adenovirus-enhanced transferrinfection (AVET) [37, 38] for the 

transfection of the Interleukin 2 (IL-2) gene to autologous tumor cells of melanoma patients 

[39, 40]. The IL-2 expressing tumor cells were used as tumor vaccine, stimulating antitumoral 

effects due to immune response activation after intradermal injection [41]. Recently, a 

clinical trial was started to study the first targeted polymer-based siRNA carrier system in 

humans [42]. Based on cyclodextrin, Davis and coworkers designed a nanoparticle carrying 

PEGylation and transferrin ligands [43]. The transferrin receptor is overexpressed in many 

cancer types and therefore constitutes a well-known specific tumor target [44]. By detection 

of a specific mRNA cleavage product in tumor cells the authors provided the first evidence 

for RNAi in humans after systemic application [43]. 

2.2.2 Polydisperse versus precise carrier structures 

Since it was first demonstrated that PLL is capable of condensing DNA into nanosized 

structures in 1975 [45], gene delivery with cationic polymers became an extensively 

explored field. Among the synthetic polymers, PEI has emerged as a gold standard for gene 

delivery due to its high transfection efficiency. However, cytotoxicity and its polydisperse 

character constitute main drawbacks hampering the clinical application. After the first use as 

a gene delivery agent by Jean-Paul Behr and colleagues in 1995 [25], many optimizations 
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have been performed on PEI to improve its physicochemical and biological properties. 

Surface modification of branched PEI (brPEI) with neutral or negative moieties resulted in 

reduction of cytotoxicity [46, 47]. To tackle the problem of polydispersity, the synthesis was 

optimized by the use of sequence-controlled polymerization techniques [48, 49] or by 

additional purification steps like size exclusion chromatography helping to define the MW 

range of polymer-based carriers. Nevertheless, the mentioned techniques still do not 

provide complete sequence control. Up to now many approaches were developed and 

exploited to synthesize precise carriers. For nucleic acid delivery especially two techniques, 

the use of solid-phase synthesis for the development of peptide-based carriers and the 

assembly of dendrimers have gained importance [36, 50, 51]. Dendrimers consist of a core 

molecule and a defined amount of branches, which multiply with increasing generation 

number. Polyamidoamine (PAMAM) and polypropylenimine (PPI) are prominent examples 

for dendrimer-based nucleic acid delivery systems, not only in the original form, but also 

with diverse surface modifications in order to improve their properties [52-54]. Among the 

peptide-based carriers, the cell-penetrating peptides (CPPs) represent a widely used 

platform for the design of nucleic acid delivery systems [55] with encouraging results for 

pDNA [56, 57] as well as for siRNA delivery [58-60]. In the Wagner lab artificial amino acids 

containing the diaminoethane motif were designed for their use in the synthesis of 

sequence-defined carriers for DNA and siRNA delivery [61]. Furthermore, derivatization with 

an amino and carboxylic acid linker of functional domains, like PEG or the targeting ligand 

folic acid, makes them applicable to solid-phase synthesis. Combination with natural amino 

acids allowed the synthesis of a huge library of efficient carriers for DNA and siRNA delivery 

providing multifunctionality and maintaining control of the sequence at each position [62-

70].  

In some cases the applied chemistry comes across limitations for the synthesis of carriers 

with multifunctional domains, e.g. when certain domains are incompatible with specific 

reaction conditions necessary for the assembly of another domain, as it can be the case for 

peptide-oligonucleotide conjugate assembly on solid-phase [71]. Furthermore, already 

existing carriers can turn out not to be optimal for a certain application leading to the need 

for subsequent modification. In this context other approaches for the design of precise 

carriers, in particular specific conjugation techniques allowing the production of covalent 

conjugates, come into use. A widely-utilized method is the conjugation of activated thiols 
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which result in biodegradable disulfide bonds. The activation of one reaction partner with a 

pyridylsulfenyl (Pys) or 3-nitropyridylsulfenyl (Npys) group allows the site-specific 

conjugation provided that only one free thiol group is present in the other reaction partner. 

A more stable bond can be obtained by thioether linkages between free thiols with halogen 

compounds or by Michael-type addition of thiols to maleimides [71]. Click chemistry, first 

defined by Sharpless in 2001 [72], is a further approach which amongst other features is 

characterized by  high selectivity, high yields and simple reaction conditions  making it a 

popular tool for the production of precise carriers. It involves different types of conjugation 

strategies, among which the 1,3-dipolar cycloadditon between alkines and azides forming a 

triazole is one of the most commonly used as it can even be performed in living organisms 

[73]. Click chemisty has, for example, been applied to covalently attach targeting ligands to 

siRNA [69, 74], demonstrating its suitability for the synthesis of precise nucleic acid carriers. 

A different attractive linking strategy is the native chemical ligation (NCL), which was 

primarily developed for the conjugation of peptide fragments in protein synthesis [75]. A 

modification of this approach made it applicable to ligate peptide fragments synthesized 

with 9-fluorenylmethoxycarbonyl solid-phase peptide synthesis (Fmoc-SPPS) [76]. This 

conjugation technique has been recently applied in the Wagner lab for the attachment of 

targeting ligands to already existing cysteine-containing sequence-defined carriers for DNA 

and siRNA delivery (Zhang et al, submitted).  

A rather new approach in precise carrier synthesis is to exploit the unique property of 

nucleic acids to self-assemble into defined nanostructures, which can be used as delivery 

devices for nucleic acids [77]. In contrast to natural nucleic acids, artificial DNA structures of 

specific size and shape can be taken up by cells and show much higher stability to nucleases. 

The easy way of cargo loading by direct integration (e.g. the immunostimulatory CpG motif 

[78]) or hybridization of the therapeutic nucleic acid with the DNA nanostructure turn them 

to attractive tools for nucleic acid delivery. Promising results including prolonged blood 

circulation, tumor accumulation and silencing effect in a mouse model after systemic 

application have been achieved using a DNA tetrahedron loaded with siRNA as well as 

several folic acid ligands with controlled density and orientation [79]. These findings support 

the notion that sequence-control at every single position of the carrier and exact 

determination of modification sites play a key role in optimization of carrier design.  
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2.3 Solid-phase assisted synthesis: an approach to design sequence-defined carriers 

-

-carboxy group of another amino acid. After the 

first peptide bond formation between two amino acids by using acyl chlorides in 1903 [80], 

developments of protecting groups and coupling reagents led to the successful synthesis of 

the hormone oxytocin, consisting of nine amino acids, in 1954 [81]. Nevertheless, the 

peptide synthesis with repeated deprotection and coupling steps as well as intercalating 

purifications still constituted a time-consuming procedure of high effort, until Merrifield 

introduced the principle of solid-phase peptide synthesis (SPPS) in 1963 [82]. Here the step 

by step assembled peptide was attached to resin beads consisting of a chloromethylated 

copolymer of styrene and divinylbenzene, which is completely insoluble in the used solvents 

but allows penetration of the reagents. The main benefit of this method is the addition of 

protected amino acids in high excess that shortens reaction times and drives the coupling 

reaction nearly to completion. By filtration in appropriate reactors, unreacted amino acid 

and coupling reagents can be easily removed. After the complete assembly of the desired 

sequence the peptide can be cleaved from the resin in a final step. Even though during the 

first attempt to synthesize a tetrapeptide the great value of the principle became apparent, 

also the need for optimized protocols to avoid side reactions, hazardous reactants or 

solvents and to improve yields and purities of the obtained peptides was recognized. In 

1972, Carpino et al. [83] presented the 9-fluorenylmethoxycarbonyl (Fmoc) as a base-labile 

protection group for the N-terminus of the peptide, which is stable under the reaction 

conditions during SPPS and constitutes orthogonality to acid-labile side chain protection 

groups. It did not gain much attention until the chemical industry became aware of the 

potential provided by this strategy and made the spectrum of easy producible Fmoc-

protected amino acids commercially available. A further advantage is given by the high UV 

absorption of the fluorene derivatives, which enables monitoring of the reaction process and 

facilitates automation of peptide synthesis. Nowadays, the Fmoc strategy is established as 

the standard procedure for SPPS besides the classical tert-butyloxycarbonyl (Boc) strategy. 

Hartmann et al first used the solid-phase synthesis technique for the assembly of defined 

polyaminoamides (PAAs) by alternating coupling steps of diacids, activated as cyclic 

anhydrides, and diamines [84]. For PAAs with five diamine blocks the monodisperse 

chemical structure could be demonstrated and attachment of functional domains resulted in 
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useful DNA complexation systems [85]. Nevertheless, synthesis of longer PAAs bears the 

potential of cross-linking reactions when adding the diamine to the activated carboxylic acid 

residues (Schaffert, PhD thesis, 2010). In this context, Schaffert et al optimized this strategy 

by combining the diacid (succinic acid) and the diamine (tetraethylene pentamine) in one 

building block [61]. Properly protected with the acid-labile Boc protecting group at the 

secondary amines and the base-labile Fmoc group at the primary terminal amine, the 

resulting artificial amino acid Stp(boc)3-OH was used for the synthesis of a wide spectrum of 

sequence-defined carriers for nucleic acid delivery [63, 66-68, 86]. 

Taking advantage of the SPPS strategy, Mixson and coworkers synthesized highly-branched 

peptides consisting of lysine and histidine and demonstrated their potency for DNA [87] and 

siRNA delivery [88]. Also EHCO, an amphiphilic surfactant containing histidine, cysteine and 

oleoyl tails was synthesized by Lu and colleagues by combination of organic synthesis and 

classical peptide bond formation, both performed on solid-phase [89]. Based on this 

lipopeptide further modification by PEG shielding and attachment of the peptide bombesin 

as a targeting ligand resulted in an efficient siRNA delivery system [90]. 

Andaloussi et al exploited the strategy of SPPS for the assembly of PepFect6, which had 

proven to be an efficient siRNA carrier [58]. The synthesis of the CPP transportan-10 (TP-10) 

as well as the subsequent stearylation and attachment of a chloroquine analog were 

performed on solid-phase thereby ensuring the precise structure of this carrier system. 

All mentioned examples emphasize the suitability of SPPS for the synthesis of synthetic 

vectors for nucleic acid delivery and especially the opportunity for rational design due to 

sequence control at every single position of the assembled molecule. In addition, the 

described studies also reveal that not only classic amino acids can be applied, but also a wide 

diversity of functional domains can be incorporated by the means of solid-phase synthesis. 

2.4 Impact of size on gene carrier properties  

Besides remarkable success in the use of lipidic carriers for nucleic acid delivery, cationic 

polymers have gained great attention among the synthetic vectors. Due to its remarkable 

DNA condensation efficiency PLL has been widely used in delivery systems for DNA [91] and 

for siRNA [92]. Normally synthesized by N-carboxy anhydride polymerization, it is 

commercially available in a wide MW range from 500 Da up to over 200 kDa. Testing PLL of 
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different polymerization degrees (4  224 kDa) for DNA binding and transfection efficiency, 

revealed a clear influence of the MW on its properties as a gene carrier [93]. Whereas the 

maximum DNA binding was found for PLL of intermediate MW (24 kDa), a clear increase of 

transfection efficiency was found with increasing MW up to the MW of 53.7 kDa. Also PEI 

became a commonly used DNA delivery agent due to its great efficiency for nucleic acid 

transfection, but cytotoxicity as well as polydispersity are inherent characteristics of the 

polymer that need to be addressed before its safe therapeutical application. By now, 

evidence has emerged indicating that the cytotoxicity of cationic polymers is often 

correlated with their molecular weight (MW), showing greater cytotoxicity with increasing 

MW [94-96]. Therefore several studies have been performed modifying the original PEI 

structure (22 kDa linear or 25 kDa brPEI) aimed at decreasing the cytotoxicity while 

simultaneously maintaining or even increasing the delivery efficiency. These include the 

conjugation of low molecular weight (LMW) PEI via biodegradable linkages [97-103], the 

attachment of LMW PEI to other polymer backbones [104, 105] or the functionalization of 

the amine groups of the native PEI for the purpose of changing its chemical and thus 

biological properties [46, 106-108]. In contrast to consistent data regarding the cytotoxicity 

dependency on MW, for the transfection efficiency contradictory findings were published. 

Whereas Godbey et al found a correlation of higher gene transfer with increasing MW from 

1.8 to 70 kDa [109], Werth et al could isolate a low MW fraction around 4  10 kDa out of 

the 25 kDa brPEI with enhanced efficiency compared to the original polymer [96]. Comparing 

in vivo gene transfer to the brain of 25, 50 and 800 kDa PEI, Abdallah et al identified the 25 

kDa sample as the most potent one [110]. These opposing findings point out the general 

importance of MW for gene transfer activity, but do not allow general conclusions. In order 

to set up precise correlations it must always be considered which specific MW range has 

been analyzed.  

Based on the artificial amino acid succinyl-tetraethylene pentamine (Stp), PEI analogs have 

recently been designed in order to overcome the already mentioned main disadvantages of 

PEI [61]. Both carriers contain the diaminoethane motif responsible for nucleic acid 

complexation and endosomal buffering. Properly protected (Fmoc/tBoc) Stp is applicable to 

standard Fmoc-based SPPS, thus allowing the synthesis of precise, sequence-defined carriers 

[63, 111] and the controlled variation of size. A simple linear sequence of five Stp units was 

found inactive in gene transfer [111]. This was not surprising as the number of only 16 
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protonatable nitrogens was much smaller than the approximately 500 (±200) protonatable 

nitrogens of standard linear PEI (LPEI). Nevertheless, the general knowledge of the size-

dependency of transfection efficiency and the initial finding that increasing the number of 

Stp units improved DNA binding and gene transfer provided the basis for further evaluations 

of the effect of MW on the properties of the described structures in the course of this thesis.  

2.5 Influence of topology on gene carrier properties 

Cationic polymers have gained more and more interest as synthetic carriers for nucleic acid 

delivery. The importance of carrier topology for the purpose of modulating their biophysical 

properties and biological performance has long been recognized. Differences in biophysical 

characteristics and in the transfection efficiency of brPEI and LPEI have been shown in 

several studies [112, 113]. Wightman et al found a much higher aggregation tendency of 

LPEI in salt-containing solution, but a 10- to 100-fold better transfection efficiency compared 

to brPEI under saltfree conditions [112]. Also Kwok et al found better performance of LPEI 

for DNA delivery [113]. However, LPEI was completely inactive for siRNA transfer, whereas 

brPEI displayed considerable knockdown. These findings are explained based on the 

different PEI structures, resulting in differing basicity of incorporated amines determining 

the nucleic acid condensation ability. A study using PAAs with different branched 

architectures reported an improved DNA compaction ability and buffer capacity, and 

therefore enhanced transfection efficiency with increasing degree of branching [114]. 

Further polymeric carriers that have been extensively investigated for DNA and siRNA 

delivery are the hyperbranched PAMAM dendrimers and their modifications [52, 53, 115, 

116]. The change of topology by using a triethanolamine core instead of commonly used 

diamines provides the dendrimer with increased flexibility and high efficiency for siRNA 

delivery [116]. This modification is based on the finding that partially degraded PAMAM 

shows better flexibility and DNA complexation ability [117]. To gain deeper insight into the 

influence of polymer structure on DNA complexation and polyplex morphology, Tang et al 

compared the DNA interaction and polyplex formation of four polycations, namely PLL, 

intact PAMAM dendrimer, fractured PAMAM dendrimer and PEI [118]. According to the 

measured biophysical properties of the carrier and the corresponding particles formed with 

DNA, the authors concluded that the polymer structure and MW are only minor 

determinants of DNA binding ability, particle size and morphology, but the individual type of 
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polymer greatly influences the aggregation tendency. However, the polymer structure 

greatly impacts on the polymer flexibility and buffer capacity, constituting two parameters 

with distinct effect on the transfection efficiency. 

Several studies have investigated the effect of varying the length of oligoamine moieties in 

polymeric carriers on biophysical properties, buffer capacity and especially nucleic acid 

transfection efficiency [68, 119-121].  Significant effects of the number and type of amines 

and total amine density have been demonstrated. Uchida et al -even 

containing even-numbered ethylenamine side chains [120], emphasizing the number of 

protonatable amines in row. The importance of the spacer length between the amino groups 

was revealed by Lin et al showing that the extension of the ethylene unit to propylene 

reduced the transfection efficiency and increased the toxicity [119], pointing out the 

importance of the spacer length between the amino groups. 

More recently, in order to overcome the main disadvantage of cationic polymers, namely 

their polydispersity and significant toxicity as known for PEI [122-124], novel analogs 

containing defined smaller ethylenimine units were designed [98, 99, 101, 102, 125-127]. For 

example, the diaminoethane motif was introduced into the artificial amino acid Stp [61]. This 

motif was found to be effective for nucleic acid binding and endosomal buffering and thus 

provides the basis for the production of precise, sequence-defined carriers [54, 63, 64, 67, 

68, 111, 128]. The importance of carrier topology was once more emphasized by the finding 

that 3-arm and 4-arm branched or differently shaped structures, which vary in the site of 

fatty acid modification, can differ greatly in terms of DNA binding and transfection efficiency 

[63]. Besides structural changes also the use of oligo(aminoethane) building blocks of 

different length was shown to have considerable influence on the DNA binding 

characteristics and the buffering profile [66]. These findings underline the importance of 

investigating structure-activity relationships by variation of structure as well as of total 

number and type of the amine for the optimization of carrier design.  

2.6 Aim of the thesis  

Gene delivery holds great promise for the treatment of several incurable diseases by directly 

addressing the cause of the dysfunction. Major drawbacks result from the fact that nucleic 
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acids, in contrast to many protein- or peptide-based therapies, have their place of action 

inside the cell and for this reason need an appropriate delivery system. 

Based on the prevailing notion that polymer length is a major determinant of carrier efficacy, 

the first aim of this thesis was to investigate the effect of increasing MW on the properties of 

precise cationic carriers for DNA delivery. More specifically, it had to be explored if an 

exclusive enlargement of the carrier size could compensate for the lack of additional 

functional domains, thus eliminating the commonly recognized requirement for stabilization 

motifs or endosomal release helper domains. For this purpose a small library of linear 

oligo(ethanamino)amides of increasing chain length had to be synthesized in order to 

systemically examine the influence of different MWs on biophysical and biological carrier 

properties. The findings of this study should provide fundamental insights for the design of 

sequence-defined oligo(ethanamino)amide carriers. 

With increasing carrier size, conventional methods for analytical characterization as NMR 

and mass spectrometry (MS) reach their threshold of applicability and can be applied 

adequately only with distinct expertise. This limitation determined a further focus of the 

thesis, namely finding suitable methods for the analytical characterization of precise, 

polycationic oligo(ethanamino)amide carriers. Capillary electrophoresis (CE) and Taylor 

dispersion analysis (TDA) were to be tested in a collaboration project for their application for 

the analysis of oligomers of increasing length, both representing methods of great potential 

for the characterization of charged species of a wide range of MW. 

Besides the concept of size regulation, the modulation of functionality and topology 

constitutes a further promising approach to address the overriding objective of carrier 

optimization. In this context, as the second major aim of the thesis, a new comb-like 

topology was introduced and had to be optimized by subsequent application of different 

functionalities to this novel structural class. These functionalities included domains for DNA 

condensation and polyplex stabilization as well as components for modulating the 

endosomal buffering, all aimed at designing efficient carriers for DNA delivery. The final aim 

of the thesis was to work out the specific impact of carrier topology by directly comparing 

the most relevant carrier properties of these new comb-type structures with the 

corresponding linear ones. By this means the influence of changes in topology on relevant 

biophysical and biological features should be elucidated. 
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3 MATERIALS AND METHODS 

3.1 Chemicals and reagents 

Trityl OH-ChemMatrix resin was obtained from Biotage (Uppsala, Sweden). Allyl alcohol, 

N,N-dimethyl-barbituric acid (N,N-DMBA), 1-hydroxybenzotriazol (HOBt), 

tetrakis(triphenylphosphine)-palladium (Pd(Ph3P)4), triisopropylsilane (TIS), Triton X-100, 

hydrazine monohydrate, 2,2,2-trifluoroethanol (TFE), N-ethylmorpholine (NEM), 3-(4,5-

dimethylthiazol-2-yl) - 2,5 - diphenyltetrazolium bromide (MTT), diethylene triamine (DETA), 

triethylene tetramine (TETA), tetraethylene pentamine (TEPA) and pentaethylene hexamine 

(PEHA) were purchased from Sigma-Aldrich (Munich, Germany); benzotriazol-1-yl-oxy-tris-

pyrrolidino-phosphonium hexafluoro-phosphate (PyBOP), 2-(1H-benzotriazole-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate (HBTU), and microreactors for manual and 

automatic synthesis from MultiSynTech (Witten, Germany). Linear PEI (LPEI, 22kDa average 

MW) was synthesized as described previously [129]. Fmoc-PEG24-OH was obtained from 

Quanta biodesign (Powell, Ohio, USA) and trifluoroacetyl pteroic acid from Niels Clauson-

Kaas A/S (Farum, Denmark). All other amino acids, peptide grade dimethylformamide (DMF), 

peptide grade N-methylpyrrolidone (NMP), diisopropyl-ethylamine (DIPEA) and 

trifluoroacetic acid (TFA) were purchased from Iris Biotech (Marktredwitz, Germany). 

Sephadex G-10 material for size exclusion chromatography was obtained from GE Healthcare 

(Freiburg, Germany). GelRed was purchased from Biotum Inc. (Hayward, USA). Cell culture 

media, antibiotics and fetal calf serum (FCS) were purchased from Invitrogen (Karlsruhe, 

Germany). Plasmid pCMVLuc was produced with the Qiagen Plasmid Giga Kit (Qiagen, 

Hilden, Germany) according to the manufacturer protocol. Cy5-labeling kit for pDNA labeling 

was obtained from Mirus Bio (Madison, WI, USA). Luciferase cell culture lysis buffer and D-

luciferin sodium salt were obtained from Promega (Mannheim, Germany). CellTiter-

Glo®Reagent was purchased from Promega (USA). Solvents and all small molecule reagents 

were bought in high quality from Sigma-Aldrich (Steinheim, Germany), Iris Biotech 

(Marktredwitz, Germany), AppliChem (Darmstadt, Germany) or Merck (Darmstadt, 

Germany), unless otherwise indicated. Water was used as purified, deionized water. 
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3.2 Solid-phase assisted peptide synthesis  general procedures 

3.2.1 Automated peptide synthesis 

The automated microwave peptide synthesis was performed on the Syrowave® system from 

Biotage AB (Uppsala, Sweden) applying the standard Fmoc/tBu protecting group strategy. 

Exact synthesis procedure is described in the sections 3.3 and 3.4. As solid support a 2-

Chlorotrityl Chloride resin or Trityl-ChemMatrix resin was used. All structures were 

synthesized in a 7 to 15 µmol scale using a 2 mL or 5 mL syringe reactor. For automated 

synthesis the resin was pre-swollen for 20 min in NMP and for manual synthesis in DCM.  

3.2.2 Resin loading 

Loading of a Chlorotrityl Chloride resin with Dde-Lys-Fmoc-OH. 0.8 mmol of a chlorotrityl 

chloride resin (516 mg) were pre-swollen in DCM (1 mL/100 mg resin) for 15 min and Dde-

Lys-Fmoc-OH (0.8 eq) and DIPEA (1.6 eq) dissolved in DCM (dried over CaCl2) were added to 

the resin for 3 h. After draining the reaction solvent a mixture of DCM/MeOH/DIPEA 

(80/15/5) was added twice for 15 min. After the removal of the reaction mixture, the resin 

was washed 5 times with DCM (1 mL/100 mg resin). Some resin was separated for 

determination of the resin loading and the remaining resin was treated 3 times for 5, 10 and 

20 min with 20 % piperidine in DMF for removal of the N -Fmoc protection group. 

Deprotection was checked by a positive Kaiser test. Afterwards, the resin was washed 3 

times with DMF and DCM and dried in vacuum.  

Loading of a Chlorotrityl Chloride resin with Fmoc-Cys-Trt-OH. 0.8 mmol of a chlorotrityl 

chloride resin (516 mg) were pre-swollen in DCM (1 mL/100 mg resin) for 15 min. Fmoc-Cys-

Trt-OH (0.4 eq) and DIPEA (0.8 eq) were dissolved in DCM (dried over CaCl2) and added to 

the resin for 45 min to obtain a low loaded resin of 0.1 to 0.3 mmol/g. Subsequent steps 

were performed as described above for the loading of a chlorotrityl chloride resin with Dde-

Lys-Fmoc-OH. 

Loading of ChemMatrix-Trityl resin. 0.5 g ChemMatrix-Trityl-OH resin (0.2 mmol) were 

swollen in 3.3 mL DCM (1 mL/100 mg resin, dried over CaCl2). 67 µL SOCl2 were added to get 

a final concentration of 2 % SOCl2 in DCM. The vessel was shaken over night. Then the resin 

was drained and rinsed with DCM (5 x 3 ml) and 2 % N-ethyl morpholine (NEM) in DCM (3 x 3 

ml). Afterwards Fmoc-Cys(Trt) (0.6 mmol, 3 eq) and NEM (4 eq) dissolved in DCM were 



Materials and Methods  22 

added and the vessel was shaken over night. After addition of 167 µL of a solution of 25 % 

NEM in methanol and shaking for 1 h the resin was drained and rinsed 3 times each with 3 

mL DCM, DMF, methanol and diethyl ether. The resin was dried over night at room 

temperature. Some resin was separated for determination of the resin loading. 

Loading of a Chlorotrityl Chloride resin with Fmoc-Stp-(boc)3-OH. 0.8 mmol of a chlorotrityl 

chloride resin (516 mg) were pre-swollen in DCM (1 mL/100 mg resin) for 15 min and Fmoc-

Stp-(boc)3-OH (0.8 eq) and DIPEA (1.6 eq) dissolved in DCM (dried over CaCl2) were added to 

the resin for 2.5 h. After draining the reaction solvent a mixture of DCM/MeOH/DIPEA 

(80/15/5) was added twice for 15 min. After the removal of the reaction mixture, the resin 

was washed 5 times with DCM (1 mL/100 mg resin). Some resin was separated for 

determination of the resin loading and the remaining resin was treated 3 times for 5, 10 and 

20 min with 20 % piperidine in DMF to remove the N -Fmoc protection group. Deprotection 

was checked by a positive Kaiser test. Afterwards, the resin was washed 3 times with DMF 

and DCM and dried in vacuum. 

Loading of a Chlorotrityl Chloride resin with Fmoc- -Ala-OH. 0.8 mmol of a chlorotrityl 

chloride resin (516 mg) were pre-swollen in DCM (1 mL/100 mg resin) for 15 min. Fmoc- -

Ala-OH (0.4 eq) and DIPEA (0.8 eq) were dissolved in DCM (dried over CaCl2) and added to 

the resin for 45 min. All subsequent steps were performed as described above for the 

loading of a chlorotrityl chloride resin with Fmoc-Stp-(boc)3-OH. 

3.2.3 Determination of the resin loading  Fmoc quantification 

For determination of the resin loading about 10 mg of the resin were separated from the 

main batch and dried under vacuum. An exact amount of resin was then treated with 1 mL 

deprotection solution (20 % piperidine in DMF) for 1 h, diluted in DMF and UV absorption 

was measured at 301 nm. Finally, the resin loading in [mmol/ g] is obtained by the following 

equation:  

resin load [mmol/g] = (A*1000) / (m [mg]*7800*df) with df as dilution factor. 

3.2.4 Kaiser test 

Kaiser test was used for qualitative detection of free amino groups on the resin. For this 

purpose a small amount of resin beads, previously washed 3 times with DMF and 3 times 

with DCM, were transferred to an Eppendorf tube. One drop of each 80 % (w/v) phenol in 
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EtOH, 5 % (w/v) ninhydrin in EtOH and a solution of 0.02 mM KCN in pyridine were added to 

the resin and the tube heated for 4 min at 99 °C. In the absence of free amino groups the 

beads remained colorless and the solution yellow (negative Kaiser Test). The presence of 

free amino groups was indicated by a blue coloration of the resin beads and the solution 

(positive Kaiser test). 

3.2.5 Synthesis of diaminoethane motif-containing building blocks 

The cationic building blocks Stp(boc)3-Fmoc and Sph(boc)4-Fmoc were synthesized as 

described in [61] and [68], respectively. Briefly, the synthesis is based on selective protection 

of the primary amines of TEPA (for Stp(boc)3-Fmoc) or PEHA (for Sph(boc)4-Fmoc) with ethyl 

trifluoroacetate and subsequent Boc-protection of the secondary amines with di-tert butyl 

dicarbonate. Deprotection of the primary amines is done with NaOH. Assymetrical 

functionalization of one amine group with Fmoc-Osu and the other one with succinic 

anhydride results in the desired products that are purified with dry column vaccum 

chromatography (DCVC). 

Synthesis of Boc-protected building block Stp(boc)4-OH 5 
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Synthesis of tfa-tetraboc-TEPA 3 

Tetraethylenepentamine hydrochloride (TEPA*HCl) (1) (22.58 g, 100 mmol, 1 eq, technical 

grade) was dissolved in 400 mL dry MeOH. Following addition of TEA (50.6 g, 5 eq) the 

mixture was stirred for 2 h and cooled down to -78 °C. Ethyl trifluoroacetate (14.2 g, 100 

mmol, 1 eq) was diluted in 50 mL dry MeOH and added dropwise to the cooled mixture over 

45 min. The temperature was then increased to 0 °C and the reaction mixture was stirred for 

1 h. Without intermediate purification step, the remaining amines were protected by di-tert 

butyl dicarbonate. Therefore, first TEA (50.6 g, 500 mmol, 1.25 eq/amine) was added and 

stirred at 0 °C for 20 min. In the next step di-tert-butyl dicarbonate (109.07 g, 500 mmol, 

1.25 eq/amine) was dissolved in 200 ml dry MeOH and added dropwise over 60 min at 0 °C. 

The mixture was stirred over night. 

The organic phase was concentrated to remove MeOH and the residue was dissolved in 

DCM. It was washed 3 times with 100 mL of a saturated NaHCO3 solution and then 3 times 

with H2O. The organic phase was dried over Na2SO4 anhydrous and the solvent was 

evaporated to obtain a yellowish viscous liquid. 

The yellow, oily residue was recrystallized from a minimum amount of about 30 mL boiling 

DCM under reflux. For this purpose precooled n-hexane was added slowly to the boiling 

DCM till clouding was observed at the drop-in site. The crystallization solution was stored 

over night at 4 °C. The microcrystalline residue was filtered, washed 3 times with cooled n-

hexane and dried. Yield 37.4 g (54.5 mmol, 54.5 %). 1H NMR (400 MHz, CDCl3):  1.42 (s, 36H 

CH3 ter-But), 3.3-3.45 (m, 16H, -CH2- Tepa) ppm. 

Synthesis of tetraboc-TEPA 4 

To a suspension of compound 3 (34.25 g, 50 mmol) in EtOH (380 mL) a 3 M aqueous NaOH 

solution (175 mL) was slowly added under stirring and the reaction mixture was heated up to 

40-50 °C until the solution was clear. The reaction mixture was stirred over night. The EtOH 

was evaporated and the aqueous phase was extracted 3 times with 150 mL DCM. The 

organic phase was dried over NaSO4 and the solvent was evaporated, yielding an amorphous 

solid which was dried under high vacuum and stored at 4 °C. Purification was performed by 

DCVC (DCM/ MEOH; 10:0 to 7:3 v/v).  
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Yield: 11 g (18.7 mmol, 37, 3 %). 1H NMR (400 MHz, CDCl3 CH3 ter-But), 3.3-

3.45 (m, 16H, -CH2- Tepa) ppm. 

Synthesis of Stp(boc)4-OH 5 

To a solution of compound 4 (11 g, 18.7 mmol, 1 eq) in THF (200 mL) TEA (2.81 g, 28.05 

mmol, 1.5 eq) was added followed by dropwise addition of succinic anhydride (2.24 g, 22.44 

mmol, 1.2 eq) in THF (50mL) at room temperature over 30 min and overnight stirring. H2O 

(200 mL) was then added to the mixture and stirred for 1 h before THF was subsequently 

evaporated completely under vacuum. For purification H2O (100 mL) and an aqueous 

solution of NaHSO4 (5 % w/v, 200 mL) were added to the reaction mixture and extracted 

with pure DCM (4 x 80 mL). The organic phase was dried with Na2SO4, the solvent was 

concentrated and dried in high vacuum to get a white solid, which was directly used for 

solid-phase peptide synthesis. 

Yield: 11 g (15.95 mmol, 85, 3 %). 1H NMR (400 MHz, CDCl3 CH3 ter-But), 

2.45-2.65 (m, 4H, -CH2- succ), 3.3-3.45 (m, 16H, -CH2- Tepa) ppm. 

Synthesis of Boc-protected building blocks Sdt(boc)2-OH and Stt(boc)3-OH 

The building blocks were synthesized in analogy to the protocol for Stp(boc)4-OH, but using 

DETA (for Sdt(boc)2-OH synthesis) and TETA (for Stt(boc)3-OH synthesis) instead of TEPA. 

(Sdt(boc)2-OH and Stt(boc)3-OH were synthesized by Dr. Naresh Badgujar (LMU, postdoctoral 

fellow). 

Synthesis of Boc-protected building block Sph(boc)5-OH 

Sph(boc)5-OH was synthesized in analogy to the protocol for Stp(boc)4-OH with some 

modifications described in the following. For purification pentaethylene hexamine (PEHA, 

technical grade) was first converted into the hydrochloride salt. For this 40 mL PEHA were 

dissolved in 180 mL MeOH and cooled in an ice-bath. Concentrated HCl was added dropwise 

while stirring and a precipitate formed after the addition of about 60 mL. This was filtered, 

washed with acetone and ether and dried in vacuum. Tfa-pentaboc PEHA was synthesized in 

analogy to the protocol for tfa-tetraboc-TEPA. In the following step, to a suspension of tfa-

pentaboc PEHA (24.87 g, 30 mmol) in EtOH (400 mL) and 50 mL DCM, a 3 M aqueous NaOH 

solution (175 mL) was slowly added under stirring and the reaction mixture was heated up to 
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50-60 °C until the solution was clear. The reaction mixture was further stirred over night, the 

solvent was evaporated and the aqueous phase was extracted 3 times with 200 mL DCM. 

The organic phase was dried over NaSO4 and the solvent was evaporated, yielding an 

amorphous solid which was dried under high vacuum and stored at 4 °C. Purification was 

performed by DCVC (DCM/ MEOH; 10:0 to 7:3 v/v).  

Yield: 11 g (18.7 mmol, 37, 3 %). 1H NMR (400 MHz, CDCl3 CH3 ter-But), 3.3-

3.45 (m, 20H, -CH2- Peha) ppm. 

3.3 Synthesis of linear (ethanamino)amide oligomers 

Two different strategies were initially tested for the oligomer synthesis, namely the 

successive coupling of single Stp units or the stepwise attachment of blocks of 5 Stp units in 

a convergent manner. The convergent strategy was initially used with the aim of saving time 

during the assembly of long sequences, but at room temperature inefficient couplings were 

found to occur. The subsequent application of microwave irradiation during coupling and 

deprotection steps however demonstrated the suitability of both methods under these 

conditions. Using the later established automated synthesis strategy with successive 

couplings was less time-consuming and therefore preferentially used. 

3.3.1 Oligomer assembly with successive couplings 

The oligomers were assembled on a ChemMatrix-Trityl-Fmoc-Trp(boc) resin with a loading 

between 0.2 and 0.3 mmol/g pre-swollen in NMP for 20 min. Until cycle 10 N -Fmoc 

deprotection was performed 3 min at 50 °C with 40 % piperidine in DMF, followed by 3 min 

with 20 % piperidine in DMF at 60°C and 10 min at 50°C. Amino acids (4 eq, 0.2  0.5 M) 

were dissolved in HOBt (4 eq) in NMP, DIPEA (8 eq) was dissolved in NMP and HBTU (4 eq) 

was dissolved in DMF. Single couplings were performed from cycle 1 to 10 for 8 min at 75 °C. 

From cycle 11 on double couplings were performed for 6 minutes at 75 °C. Fmoc-

deprotection was performed as described above for the previous cycles but with an 

additional deprotection step for 5 min at 50 °C with 20 % piperidine in DMF. After each 

deprotection as well as each coupling step the resin was washed 5 times with DMF.  

Cleavage of oligomers from the resin 

Cleavage from the resin was performed by treatment with a cleavage solution containing 

TFA/TIS/H2O (95/2.5/2.5) for 1.5 h. After washing the resin twice with TFA and twice with 
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DCM all solutions were combined, concentrated and precipitated by dropwise addition into 

a mixture of n-hexane and MTBE (1:1) cooled to -20 °C. The pellet after centrifugation was 

dried under nitrogen and dissolved in the buffer for size exclusion containing 10 mM HCl and 

30 % ACN. After purification by size exclusion on a G-10 column the appropriate fractions 

were combined, frozen in liquid nitrogen and lyophilized. 

3.3.2 Oligomer assembly via convergent coupling strategy 

Convergent synthesis of Fmoc-[Stp(boc)3]5-OH and Fmoc-[Stp(boc)3]5- -Ala-OH 

After swelling 500 mg of a Fmoc-Stp(boc)3-OH chlorotrityl resin (loading 0.35 mmol/g) in 

DCM for 20 min, Fmoc-Stp(boc)3-OH (3 eq) and DIPEA (6 eq) dissolved in DCM and 

PyBOP/HOBt (3 eq) dissolved in DMF were added for 2 h. The reaction solvent was drained 

and the resin was washed 3 times with DMF and DCM. If necessary, the coupling was 

repeated with 2 eq of Fmoc-Stp(boc)3-OH until Kaiser test was negative. For removal of the 

Fmoc protecting group, the resin was treated with 20 % piperidine in DMF 3 times for 10 min 

and complete deprotection was monitored with a positive Kaiser test. After washing the 

resin with DMF and DCM the same procedure was repeated 3 times without Fmoc 

deprotection after the last coupling step. Indicating a negative Kaiser test, the resin was 

washed 5 times with DCM and dried in vacuum. 

For the synthesis of Fmoc-[Stp(boc)3]5- -Ala-OH a Fmoc- -Ala-OH chlorotrityl resin (loading 

0.35 mmol/g) was used and the coupling of Fmoc-Stp(boc)3-OH was repeated 5 times as 

described above. 

Cleavage of the convergent building blocks from the resin 

A mixture of 30 % TFE in DCM (1 mL/80 mg resin) was added to the resin and replaced every 

30 to 60 min. The reaction progress was monitored by TLC with a mobile phase of 

CHCl3/MeOH (9/1) containing 1 % HOAc. Cleavage was finished when no absorption was 

detected on a thin layer chromatography plate anymore. All cleavage solutions were 

collected, the solvent evaporated and dried under vacuum. 

Synthesis of [Stp5]8-W with convergent building blocks 

30 mg of the ChemMatrix resin loaded with Fmoc-Trp(boc)-OH (0.262 mmol/g) were pre-

swollen in NMP. Subsequently, the convergent building block Fmoc-Stp(boc3)5-OH (4 eq) and 

DIPEA (8 eq) dissolved in a minimum amount of NMP, and HBTU/HOBt (4 eq) dissolved in a 
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minimum amount of DMF were added for  8 min for the first 4 couplings at 75 °C.  For the 

last 4 couplings the coupling time was elongated to 10 min. Reaction progress was 

monitored by Kaiser test. For Fmoc deprotection the resin was treated twice with a solution 

of 20 % piperidine in DMF for 4 min at 60 °C and again monitored by Kaiser test. After the 

third coupling Fmoc deprotection was performed by several treatments of 5 min with a 

solution containing 20 % piperidine, 2 % DBU and 1 % Triton X-100 in DMF until the UV 

absorption at 301 nm of the deprotection solution was below 0.1.  

Synthesis of [Stp5- 6-W with convergent building blocks 

To 25 mg of the pre-swollen ChemMatrix resin loaded with Fmoc-Trp(boc)-OH (0.22 mmol/g) 

the convergent building block Fmoc-[Stp(boc)3]5- -Ala-OH (2 eq) and DIPEA (4 eq) dissolved 

in NMP and HBTU/HOBt (2 eq) dissolved in DMF were added for  45 min at 60 °C. For Fmoc 

deprotection the resin was treated twice (4 min and 20 min) with a solution of 20 % 

piperidine in DMF at 50 °C. 

3.4 Synthesis of comb structure oligomers 

Two different strategies, a convergent manual and an automated synthesis were 

established. Suitability of both methods was demonstrated (Figure 19), but the less time-

consuming automated synthesis was preferentially used.  

3.4.1 Comb structures synthesis with convergent coupling strategy 

Convergent synthesis of Fmoc-Lys-Stp(boc)4 

After swelling 0.15-0.2 mmol of a Dde-Lys-OH chlorotrityl resin in DCM for 20 min, Stp(boc)4-

OH (4 eq) and DIPEA (8 eq) dissolved in DCM and PyBOP/HOBt (4 eq) dissolved in DMF were 

added for 90 min. The reaction solvent was drained and the resin was washed 3 times with 

DMF and DCM. If necessary, the coupling was repeated until Kaiser test was negative. For 

removal of the N -Dde protection group, the resin was treated with 2 % hydrazine in DMF for 

5 min and the procedure was repeated until the UV absorption of the deprotection solution 

measured at 290 nm was below 0.1. After washing the resin with DMF and DCM, Fmoc-Cl (6 

eq) and DIPEA (12 eq) in DCM were added twice for 30 min. After a negative Kaiser test, the 

resin was washed 5 times with DCM and dried in vacuum. 
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Convergent synthesis of Fmoc-Ala-Lys-[Stp(boc)4]-OH 

After swelling 0.15-0.2 mmol of a Dde-Lys-OH chlorotrityl resin in DCM for 20 min, Stp(boc)4-

OH (4 eq) and DIPEA (8 eq) dissolved in DCM and PyBOP/HOBt (4 eq) dissolved in DMF were 

added for 90 min. The reaction solvent was drained and the resin was washed 3 times with 

DMF and DCM. If necessary, the coupling was repeated until Kaiser test was negative. For 

removal of the N -Dde protection group, the resin was treated with 2 % hydrazine in DMF for 

5 min and repeated until the UV absorption of the deprotection solution measured at 301 

nm was below 0.1. After washing the resin with DMF and DCM, Fmoc-Ala-OH (4 eq) and 

DIPEA (8 eq) dissolved in DCM and PyBOP/HOBt (4 eq) dissolved in DMF were added for 90 

min. After a negative Kaiser test, the resin was washed 5 times with DCM and dried in 

vacuum. 

Convergent synthesis of Fmoc-His(boc)-Lys-[Stp(boc)4]-OH 

The synthesis was performed analogously to the synthesis of Fmoc-Ala-Lys-[Stp(boc)4]-OH 

using Fmoc-His(boc)-OH instead of Fmoc-Ala-OH. 

Cleavage of the convergent building blocks from the resin 

A mixture of 30 % TFE in DCM (1 mL/80 mg resin) was added to the resin and replaced every 

30 to 60 min. The reaction progress was monitored by TLC with a mobile phase of 

CHCl3/MeOH (9/1) containing 1 % HOAc. Cleavage was finished when no UV absorption was 

detected on a thin layer chromatography plate anymore. All cleavage solutions were 

collected, the solvent evaporated and dried under vacuum. 

Comb structure assembly with convergent building blocks 

To the pre-swollen resin loaded with Cys-Trt-OH the convergent building block (4 eq) and 

DIPEA (8 eq) dissolved in a minimum amount of DCM and PyBOP/HOBt (4 eq) dissolved in a 

minimum amount of DMF were added for 90 min and the reaction progress was monitored 

by Kaiser test. The coupling was repeated with new reagents until the Kaiser test was 

negative. For N -Fmoc deprotection the resin was treated with a solution containing 20 % 

piperidine, 2 % DBU and 1 % Triton X-100 in DMF for 5 to 30 min and repeated until the UV 

absorption at 301 nm of the deprotection solution was below 0.1. The coupling and 

deprotection procedure were repeated 8 times and in the final coupling step Boc-Cys-Trt 

was used instead of the convergent building block. 
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3.4.2 Comb structures via backbone assembly and subsequent  

The automated microwave peptide synthesis was performed on the Syrowave® system from 

Biotage AB (Uppsala, Sweden). The backbone was assembled on a ChemMatrix-Trityl-Fmoc-

Cys-Trt resin with a loading of around 0.28 mmol/g pre-swollen in NMP for 20 min. N -Fmoc 

deprotection was performed at 50 °C, twice for 3 min with 40 % piperidine in DMF, followed 

by 5 and 10 min with 20 % piperidine in DMF. Amino acids (4 eq, 0.23 M) were dissolved in 

0.23 M HOBt in NMP, DIPEA (8 eq) was dissolved in NMP and HBTU (4 eq) was dissolved in 

DMF. Double couplings were performed for 8 minutes at 75 °C. After each deprotection and 

coupling step the resin was washed 3 times with DMF. For backbone assembly Fmoc-Lys-

Dde-OH was used as well as Boc-Cys-Trt in the last coupling step. For the backbones 

containing a spacer amino acid, Fmoc-Ala-OH or Fmoc-His-Trt-OH was coupled after every 

lysine. After the backbone assembly the Dde-protecting group was removed by washing the 

resin with 2 % hydrazine in DMF for 5 min and the UV absorbance of the cleavage solution 

was checked at 290 nm. The washing was repeated until the value of absorbance was below 

0.1. 

Cleavage of oligomers from the resin 

To cleave the oligomers from the resin, the latter was treated with a cleavage solution 

containing TFA/TIS/H2O (95/2.5/2.5) for 1.5 h. Afterwards the resin was washed twice with 

TFA and twice with DCM. All the solutions were combined, concentrated and precipitated by 

dropwise addition into a mixture of n-hexane and MTBE (1:1) cooled to -20 °C. The pellet 

after centrifugation was dried under nitrogen and dissolved in the buffer for size exclusion 

consisting of 10 mM HCl and 30 % acetonitrile. After purification by size exclusion on a G-10 

column the product containing fractions were combined, frozen in liquid nitrogen and 

lyophilized. 

3.4.3 Synthesis of a targeted comb structure by the use of the Dde-Alloc orthogonality 

The synthesis of C-K(PEG24-FolA)-[H-K(Stp)]8-C was performed as described in section 3.4.2 

with the following modifications. For the backbone assembly Fmoc-Lys-Alloc-OH was used 

before the last coupling of the terminal Boc-Cys-Trt-OH. The Dde cleavage was performed 

with 10 % hydrazine in DMF in the presence of 200 eq of allyl alcohol per Alloc protection 

group as described in [130]. The comb attachment was done as described in the previous 

section. In the next step the cleavage of the Alloc group was performed as described in 
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[131]. Briefly, Pd(Ph3P)4 (0.1 eq per Alloc group) and N,N-DMBA (5 eq per Alloc group) were 

flushed under argon, protected against light and dissolved together in DCM for 4 min. The 

mixture was transferred to the reaction vessel and stirred for 2 h under argon. The whole 

procedure was repeated up to 4 times until the positive Kaiser test indicated complete 

removal of the Alloc protection group. Finally, the resin was washed 3 times with DCM, 5 

times with 0.2 M DIPEA in DMF and 6 times with DMF. Next, Fmoc-PEG24-OH (4 eq) was 

double-coupled for 30 min at RT and 8 min at 70 °C. Fmoc deprotection was then performed 

5 min at 50 °C and repeated several times until the UV absorption of the piperidine solution 

at 301 nm was below 0.1. Fmoc-Glu-OtBu was coupled according to the protocol of the 

backbone assembly (3.4.2). Trifluoroacetyl pteroic acid was attached as described for the 

PEG coupling. In the last step, before the cleavage of the peptide from the resin according to 

the standard procedure, the trifluoroacetyl group was removed by treating four times for 30 

min with a 50 % (v/v) solution of 1 M aqueous NH3 solution and DMF. 

3.4.4 Synthesis of linear control sequences 

The automated microwave peptide synthesis was performed on the Syrowave® system 

(Biotage AB). The sequences were assembled on a ChemMatrix-Trityl-Fmoc-Cys-Trt resin 

with a loading of around 0.28 mmol/g pre-swollen in NMP for 20 min. N -Fmoc deprotection 

was performed twice for 3 min at 50 °C with 40 % piperidine in DMF, followed by 5 and 10 

min with 20 % piperidine in DMF. Amino acids (4 eq, 0.23 M) were dissolved in 0.23 M HOBt 

in NMP, DIPEA (8 eq) was dissolved in NMP and HBTU (4 eq) was dissolved in DMF. Double 

couplings were performed for 8 min at 75 °C. After each deprotection and after each 

coupling step the resin was washed 3 times with DMF. For backbone assembly Fmoc-Lys-

Boc-OH was used alternating with the spacer amino acids Fmoc-Ala-OH or Fmoc-His(Trt)-OH 

as well as Boc-Cys-Trt in the last coupling step. Cleavage was performed as described above 

for the comb oligomers (3.4.2). 

3.5 Oligomer purification and analytical characterization 

3.5.1 Size exclusion chromatography 

Size exclusion chromatography (SEC) was performed with an Äkta Basic HPLC system (GE 

Healthcare, Freiburg, Germany) using a Sephadex G-10 column (60 cm) and 10 mM HCl 

containing 30 % ACN as eluent at a flow rate of 2 mL/min. Olgiomers were detected by UV 
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absorbance at wavelengths of 214, 220 and 280 nm. All product-containing fractions were 

combined and lyophilized. 

3.5.2 1H-NMR spectroscopy 

1H-NMR spectra were recorded using a Jeol JNMR-GX 400 (400 MHz) or JNMR-GX 500 (500 

MHz) device. Chemical shifts are reported in ppm and refer to the solvent as internal 

standard. Data are reported as s= singulet, d= doublet, t= triplet, m= multiplet; integration 

was done manually. Spectra were analyzed using MestreNova by MestReLab Research. 

3.5.3 Mass spectrometry 

MALDI-TOF-MS was carried out on a Bruker Daltonics Autoflex II system using a saturated 

solution of 2,5-dihydroxy benzoic acid (2,5-DHB) in a 1:1 mixture of H2O/ACN with 0.1% TFA 

as a matrix.  

3.5.4 Analytical reversed phase HPLC 

Analytical reversed phase HPLC (RP-HPLC) was performed using a Waters HPLC System 

containing a P-900 gradient pump system under the control of the Millenium software and a 

Waters SunFire C18 (4.6 x 150 mm) column. The gradient was run from 5 % to 100 % buffer B 

at a flow rate of 1mL/min in 20 min with buffer A containing H2O with 0.1 % TFA and buffer B 

Photodiode array detector. 

3.5.5 Buffer capacity  pH titrations 

The oligomer sample, containing 15 µmol protonatable amines, was diluted in a total volume 

of 3.5 mL NaCl solution (50 mM) and the pH was adjusted to 2.1 by addition of 0.1 M HCl. 

Afterwards, a back titration with 0.05 M NaOH solution was performed with an automatic 

titration system (Titrando 905 from Metrohm, Germany) until pH of 11 was reached. 

Furthermore a titration with 50 mM NaCl was performed and the consumption of NaOH in 

this control titration was substracted from the consumption in the oligomer titrations at the 

corresponding pH values. Percentage of buffer capacity C in a certain pH range (x  y), where 

according to equation (1). 

 (1) 
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3.5.6 Capillary electrophoresis 

Capillary electrophoresis (CE) was performed by our collaboration partners in the laboratory 

of Prof. Hervé Cottet in Montpellier, France. CE analysis was carried out on a P/ACE MDQ CE 

system (Beckman, Fullerton, CA, USA). Hydroxypropylcellulose (HPC) coated capillary of 40.6 

cm 

Prior injection, the capillary was rinsed with water for 10 min and then with the background 

electrolyte for 5 min. Temperature of the capillary cartridge was set at 25 °C. Samples were 

diluted in H2O and injected hydrodynamically at the inlet end of the capillary (20 mbar, 4 s). 

A voltage of +30 kV was applied and data were collected using the Beckman System Gold 

software at 214 nm. As background electrolyte either 10 mM HEPES (pH 7.4), 250 mM HOAc 

-aminocaproic acid (pH 5.7) were used. Electropherograms were 

plotted in electrophoretic mobility scale (P(µep) vs. µep or Abs(214nm) vs. µep) using the 

following equations: 

    (2)
 
 

 (3)
 
 

where µep is the effective mobility, l is the effective capillary length to the detection point, L 

is the total capillary length, V is the applied voltage, tm is the migration time of the solute, 

Abs(tm) is the absorbance at 214 nm, C is a normalization constant (such as the total peak 

area equals one unit). HPC capillary coating: fused silica capillary (Composite Metal Services, 

 in diameter) 

was filled with the polymer solution using a syringe pump at 0.03 mL/h. A stream of N2 gas at 

3 bar was used to remove the excess of HPC solution and maintained during the 

immobilization process of the HPC performed by heating the capillary in a GC oven (GE-14A, 

Shimadzu, France). Temperature program was: 60 °C for 10 min followed by a temperature 

ramp from 60 to 140 °C at 5 °C/min and finally, 140 °C for 20 min. 

3.5.7 Taylor dispersion analysis 

Taylor dispersion analysis (TDA) was performed by our collaboration partners in the 

laboratory of Prof. Hervé Cottet in Montpellier, France. TDA was carried out on a P/ACE 

MDQ CE system (Beckman, Fullerton, CA, USA). UV detection was performed at 214 nm. Rh 

of all samples were determined in various eluents, namely HBG, HCl, NaCl, H3PO4, HOAc and 
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2) 

(equation 4) is obtained by integration of the elution profile. With this parameter the 

molecular diffusion coefficient (D) (equation 5) and the hydrodynamic radius (Rh) (equation 

6) can be calculated as follows: 

    (4) 

     (5) 

   (6) 

In this context, hi is the detector response, td the average elution time at peak apex, Rc the 

capillary radius (in meter), kB the Boltzmann constant, T the absolute temperature (in Kelvin) 

and  the viscosity of the eluent. Uncoated fused silica capillaries were purchased from 

Composite Metal Services (Worcester, UK) with dimensions of 40.6 cm total length (30.3 cm 

 

For PDADMAC coated capillaries, coating was achieved by the following steps. The capillary 

was flushed with 1 M NaOH for 30 min, water for 15 min, 0.2 % PDADMAC solution in water 

for 30 min and finally with water for 15 min. Between the experimental runs, the capillaries 

were purged with water for 3 min followed by 5 min rinsing with the eluent. The coating of 

capillaries with HPC is described in the method section capillary electrophoresis (3.5.6). 

All samples were diluted in the eluent and injected hydrodynamically (35 mbar, 4 s). Under 

these conditions, the ratio of the injected volume to the capillary volume up to the detector 

did not exceed 1 %.  Mobilization pressure of 50 mbar was applied with eluent vials at both 

ends of the capillary. The temperature of the capillary cartridge was set at 25 °C. Data were 

collected using the Beckman System Gold software.  
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3.6 Biophysical analyses 

3.6.1 Polyplex formation 

Polyplexes were prepared by dissolving 200 ng of pDNA and oligomers at indicated nitrogen/ 

phosphate (N/P) ratios each in a total volume of 10 µL HBG buffer. The polycation solution 

was added to the nucleic acid, rapidly mixed and incubated for 30-40 min at RT. 

3.6.2 Agarose gel shift assay  pDNA binding 

For pDNA gel shift assay, a 1 % agarose gel was prepared by dissolving 1.2 g agarose in 120 g 

TBE buffer (trizma base 10.8 g, boric acid 5.5 g, disodium EDTA 0.75 g, in 1 L of water) and 

heating up to 100 °C. After addition of 120 µl GelRed (1000 x) for the detection of the nucleic 

acid, the agarose solution was poured into the electrophoresis chamber. Polyplexes were 

prepared as described in section 3.6.1. To each sample 4 L of loading buffer (prepared from 

6 mL of glycerine, 1.2 mL of 0.5 M EDTA, 2.8 mL of H2O, 0.02 g of bromophenol blue) were 

added before loading into the gel sample pockets. Electrophoresis was performed at 120 V 

for 80 min. 

3.6.3 Ethidium bromide assay  pDNA condensation 

DNA condensation ability was tested using the ethidium bromide (EtBr) assay. The effect of 

stepwise addition of polymer solution to 10 µg pDNA in 1 mL HBG containing 0.4 µg EtBr was 

measured at increasing N/P ratios using a Cary Eclipse spectrophotometer (Varian, Germany) 

at exitation wavelength of 510 nm and emission at 590 nm. Maximal fluorescence intensity 

was set to 100 % for the EtBr solution containing free nucleic acid and fluorescence decrease 

was measured 0.5 min after each addition of polymer aliquot.  

3.6.4 Dynamic light scattering  particle size and zeta potential 

Particle size and zeta potential of polyplexes were measured by dynamic laser-light 

scattering (DLS) using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, U.K.). 5 µg 

of pDNA were used for polyplex formation in 500 µL HEPES pH 7.4. Before measurement 400 

µL HEPES were added. Measurements were performed as triplicates. 
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3.7 Biological evaluation 

3.7.1 Cell culture 

Cell culture experiments were performed in our laboratory by Petra Kos (PhD student, LMU). 

(DMEM), supplemented with 10 % FCS, 4 mM stable glutamine, 100 U/mL penicillin, and 100 

µg/mL streptomycin, at 37 °C in humidified atmosphere containing 5 % CO2 in air. 

Human cervic carcinoma cells KB were grown in folate free RPMI-1640 medium, 

supplemented with 10 % FCS, 4 mM stable glutamine, 100 U/mL penicillin, and 100 µg/mL 

streptomycin, at 37 °C in humidified atmosphere containing 5 % CO2 in air. 

3.7.2 Flow cytometry  cellular association and internalization 

Flow cytometry was performed by Petra Kos (PhD student, LMU). Neuro2A cells were 

seeded into 24-well plates coated with collagen at a density of 50,000 cells per well. After 

24 

-labeled) 

were added to each well and incubated either at 37 °C for internalization, or at 0 °C for 

association studies, both for 1 and 4 h. All experiments were performed in triplicates. 

Subsequently, only for measurement of internalization, polyplexes adhering on the cell 

surface were removed by washing the cells for 15 min with 500 µL PBS, containing 1000 I.U. 

of heparin. Cells were detached with trypsin/EDTA and taken up in PBS with 10 % FCS. 

Cellular uptake was assayed by excitation of Cy5 at 635 nm and detection of emission at 

665 nm. Cells were appropriately gated by forward/sideward scatter and pulse width for 

exclusion of doublets. DAPI (4',6-diamidino-2-phenylindole) was used to discriminate 

analyzed by FlowJo® 7.6.5 flow cytometric analysis software. 

3.7.3 Luciferase assay  gene transfer 

Luciferase assays were performed by Petra Kos (PhD student, LMU). Neuro2A cells were 

seeded in 96-well plates 24 h prior to transfection using 10,000 cells per well. Polyplexes 

were formed in 20 µL HBG with 200 ng luciferase-encoding pCMVLuc plasmid per well and 

the calculated amount of polymer corresponding to the N/P ratio. All experiments were 
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medium containing 10 % FCS. 24 h after transfection, cells we

buffer (25 mM Tris, pH 7.8, 2 mM EDTA, 2 mM DTT, 10 % glycerol, 1 % Triton X-100). 

Luciferase Assay buffer, Promega, Mannheim, Germany) and a Lumat LB9507 luminometer 

(Berthold, Bad Wildbad, Germany). 

3.7.4 MTT assay  metabolic activity 

MTT assays were performed by Petra Kos (PhD student, LMU). Neuro2A cells were seeded 

into 96-well plates at a density of 10,000 cells per well. After 24 h, culture medium was 

at different N/P ratios were added. All experiments were performed in quintuplicates. 24 h 

after transfection, 10 µL of MTT (5 mg/mL) were added to each well reaching a final 

concentration of 0.5 mg MTT/mL. After an incubation time of 2 h, unreacted dye and 

medium were removed. Optical absorbance was determined at 590 nm (reference 

wavelength 630 nm) using a micro plate reader (Spectrafluor Plus, Tecan Austria GmbH). 

3.7.5 CellTiter-Glo® assay  metabolic activity 

CellTiter-Glo®assays were performed by Petra Kos (PhD student, LMU). Neuro2A cells (5,000 

per well) were seeded in 96-well plates. After 24h, medium was removed and replaced by 

fresh medium containing LPEI or the different Stp oligomers at increasing concentrations 

from 0.01 up to 1.0 mg/mL. All experiments were performed in triplicates. After 48h 

incubation, half of the medium was replaced by CellTiter-Glo®Reagent. The luminescent 

signal, which is proportional to the amount of ATP, was measured with a Lumat LB9507 

luminometer (Berthold, Bad Wildbad, Germany). The luminescent signal of untreated cells 

was taken as the 100 % value to determine the relative metabolic activity of the oligomer 

treated cells. 

3.8 Statistics 

Results are presented as mean ± standard deviation (SD). The number of replicates is 

indicated in the corresponding methods section. 
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4 RESULTS 

Among the synthetic carriers, PEI due to its high efficiency is regarded as the common 

standard reagent for pDNA transfection. The diaminoethane motif provides the polymer 

with positive charges at physiological pH and results in a strong binding ability of the 

negatively charged DNA. Furthermore this motif provides the polymer with a high buffer 

capacity in the pH range between 6 and 7.4, which results in the so-

for the good binding and transfection properties, but due to the high amount of positive 

charges and lack of biodegradability also contributes to the cytotoxic effect. This toxicity as a 

main drawback together with its polydispersity impedes the clinical application and points 

out the need of carrier optimization. The demerit of polydispersity could successfully be 

overcome by the application of solid-phase synthesis for the assembly of gene carriers. In 

SPPS, which was first described by Merrifield in 1963 [82], a peptide is elongated step by 

step on a solid support offering the opportunity to produce sequence-defined structures 

(Scheme 1). Adding a high excess of the reagents, which can easily be removed in following 

washing steps, brings the advantage of fast and efficient coupling steps. The outlined 

principle of peptide synthesis on solid-phase was applied here using a variety of natural and 

artificial amino acids (Figure 1). 

 

Scheme 1. Principle of solid-phase peptide synthesis showing resin loading, alternating deprotection 

and coupling steps and the final acidic cleavage from the resin. AA = amino acid 
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Figure 1. a) Structures of protected diaminoethane building blocks of which Stp(boc)3-OH and 

Sph(boc)3-OH were used in the MW study and the additional ones in the study of the comb topology. 

b) Structures of the used protected natural amino acids. c) Structures of the used protecting groups. 
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 The artificial amino acid succinyl-tetraethylene pentamine (Fmoc-Stp(boc3)-OH) was first 

developed by David Schaffert (PhD thesis LMU, 2010) with the aim of making the 

diaminoethane motif applicable to SPPS [61]. For this purpose the secondary amines of 

tetraethylene pentamine are protected with Boc, an acid-labile amine protecting group, and 

one terminal primary amine is protected with Fmoc, a base-labile amine protecting group, 

while to the other terminal amine a succinyl residue is attached. The latter provides the 

building block with a carboxylic linker enabling the coupling to free amino groups on the 

solid support. After incorporation in the peptide and cleavage of the side chain protecting 

groups, one Stp building block provides three protonatable amines enabling nucleic acid 

complexation and endosomal buffering. The Stp building block as well as the Sph building 

block, providing one additional ethylenamine unit, were used in the study of the length 

effect of linear oligo(ethanamino)amides carriers (section 4.1). 

To assess the impact of variation of topology, a further focus of the conducted study 

(sections 4.3 and 4.4), branching points constitute an essential tool. Branching points can be 

introduced by the incorporation of lysine providing two primary amines. Using two 

-N -N amino 

group, allows performing the previously described backbone elongation in a defined 

sequential manner. By alternating amino acid coupling and Fmoc deprotection with 

-N amino groups after the Dde 

deprotection, branched peptides were synthesized for systematic evaluation of topological 

effects. In addition to lysine, other natural amino acids were used in order to obtain specific 

carrier properties (see section 4.3.2).  

4.1 Evaluation of linear oligo(ethanamino)amide carriers of increasing molecular weight 

for pDNA delivery and comparison to linear PEI 

4.1.1 Carrier design and synthesis 

Previous studies have demonstrated the suitability of the artificial amino acid Stp to produce 

sequence-defined carriers for gene delivery via solid-phase assisted synthesis [63, 66, 67, 

86]. Here a small library of linear oligo(ethanamino)amides without additional functional 

domains was generated in order to investigate specifically the length effect on gene carrier 

properties. Linear oligomers consisting of 5, 10, 15, 20, 30 and 40 Stp units were synthesized 

(Table 1). Furthermore a terminal tryptophane was attached at the C-terminus to facilitate 
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analytical characterization. A 30 Stp units long oligomer with terminal cysteine modification 

was synthesized to investigate if polyplex stabilization via disulfide formation, as observed in 

previous studies [63, 132], was beneficial also for these longer sequences. Furthermore, Stp 

was replaced with the Sph building block, which provides one ethylenamine unit more than 

Stp, in order to investigate whether a similar strong enhancement of DNA transfection 

efficiency could be obtained with Sph as observed in four-arm structures in a previous study 

[68]. The exact structures of all oligomers used in this study are displayed in Scheme 2. 

Compound Id Sequence Molecular weight [Da] Protonatable amines 

681 Stp5-W 1561,02 16 

643 Stp10-W 2917,82 31 

644 Stp15-W 4274,61 46 

645 Stp20-W 5650,56 61 

554 Stp30-W 8345,0 91 

555 Stp40-W 11058,59 121 

556 [Stp5- 6-W 8876,51 91 

682 C-Stp30-W-C 8551,29 91 

683 Sph20-W 6492,77 81 

684 Sph30-W 9637,04 121 

Table 1. Sequences of all oligomer structures written from N- to C-terminus and the corresponding 

MWs. 

 

Scheme 2. Overview of all chemical structures used in this study. a) (Stp)5-40-W, b) C-Stp30-W-C, c) 

[(Stp)5- A]6-W, d) (Sph)20,30-W 
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When standard SPPS at room temperature either on a Wang resin or a Tentagel trityl resin 

was used in initial experiments, oligomers of more than 20 Stp units were obtained only in 

low yield and showing deletion sequences (Figure 2 a). These unsatisfactory results were 

obtained using either a consecutive or convergent coupling strategy. For the convergent 

strategy protected blocks of five Stp units were applied in order to reduce the number of 

couplings and thus saving time. Optimizing the syntheses by using a ChemMatrix resin and 

microwave irradiation for coupling and deprotection led to purer products in a shorter 

period of time (Figure 2 b). Both, the convergent and consecutive coupling strategy were 

suitable with the optimized method. As the consecutive method was less time-consuming 

with the automated synthesis this procedure was maintained for the assembly of all 

structures in this study. Chromatograms of the analytical HPLC of LPEI and the two longest 

oligomers Stp30-W are shown in Figure 3. 

 

 Figure 2. Analytical HPLC of the oligomer [Stp5-ßA]6-W synthesized a) manually and b) with 

automated synthesis. HPLC was performed on a RP SunFire C 18 column using a gradient from 5 % to 

100 % buffer B at a flow rate of 1mL/min in 20 min with buffer A containing H2O with 0.1 % TFA and 
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Figure 3. Chromatograms of analytical HPLC runs of a) LPEI, b) Stp30-W and c) Stp40-W. HPLC was 

performed on a RP SunFire C 18 column using a gradient from 5 % to 100 % buffer B at a flow rate of 

1mL/min in 20 min with buffer A containing H2O with 0.1 % TFA and buffer B containing ACN with 0.1 

 

4.1.2 Biophysical characterization: DNA condensation, particle size and buffer capacity 

Testing the pDNA binding characteristics revealed that an increasing number of Stp units 

improved the polyplex stability. Stp5-W was not able to form stable polyplexes even at N/P 

ratio of 24, Stp10-W showed partial DNA binding from N/P 12 to 24, Stp15-W showed 

complete binding at N/P 18 and higher, whereas all polymers with 20 or more Stp units 

exhibited complete DNA binding already at N/P 12 and partial binding at N/P 6 and 3 (Figure 

4). A cysteine-containing oligomer C-Stp30-W-C showed similar good binding characteristics 

in the gel shift assay as the unmodified Stp30-W (Figure S4 a,b). Also a dissociation assay 

with the anionic polymer heparine resulted in polyplex disassembly at all tested heparine 

concentrations for both the unmodified and cysteine-modified oligomer (Figure 5 a,b). The 

improvement of DNA condensation ability through oligomer elongation becomes also clear 

in the EtBr exclusion assay were the decrease in fluorescence, resulting from higher EtBr 

exclusion by polyplex formation after oligomer addition, increases with increasing MW of 

the oligomers (Figure 6). LPEI still displays a higher DNA condensation ability compared to 

the best-performing Stp oligomer. 

Substituting the Stp building block for Sph in the oligomers with 20 and 30 units provided 

one additional ethylenamine unit without significantly changing the binding characteristics 

(Figure 4). -

alanine was incorporated into the Stp30-W oligomer after every fifth Stp unit. Decreased 
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DNA binding ability was observed (Figure 4). Continuous improvement was clearly seen with 

increasing N/P ratio, but even the highest tested N/P ratios of 18 and 24 did not display 

complete binding. 

 

Figure 4. pDNA binding ability of linear Stp and Sph oligomers of increasing molecular weight 

determined by agarose gel shift assay at increasing N/P ratios as indicated. Last panel: effect of 

varied charge density by incorporation of -alanine. 

 

Figure 5 . Polyplex dissociaton analysis using the DNA agarose gel shift assay. Upper panels:  Stp30-W 

and C-Stp30-W-C at different N/P ratios. Lower panels: Dissocation of polyplexes in the agarose gel 

shift assay at N/P 12 of Stp30-W and C-Stp30-W-C treated with 0.1 I.E. heparine (lane 1),  0.2 I.E. 

heparine (lane 2),  0.4 I.E. heparine (lane 3),  TCEP (lane 4) and  0.2 I.E. heparine + TCEP (lane 5).  
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Figure 6. pDNA binding capacity of LPEI and linear Stp oligomers. EtBr exclusion assays with 

increasing N/P ratios obtained by stepwise addition of the oligomer to pDNA solution at pH 7.4. 100% 

value displays fluorescence intensity of DNA and EtBr before the addition of the polymer. 

Determination of particle sizes measured by DLS indicated that with increasing number of 

Stp units the particle size decreased (Table 2). With a size over 1 µm, Stp5-W was the only 

polymer not able to form compact polyplexes with pDNA. For the oligomer with 10 Stp units 

a particle size of around 300 nm was observed, for 15 Stp units 140 nm and for 20 Stp units 

and more the measured particle sizes had values around 100 nm and were therefore similar 

to LPEI polyplexes with 130 nm. Also the cysteine-modified sequence C-Stp30-W-C and the 

Sph-containing sequences Sph20-W and Sph30-W formed DNA polyplexes around 100 nm, 

confirming the similar complexation characteristics observed in the gel shift assay. In 

comparison to Stp30-W, for polyplexes formed using the analo -alanine 

slightly larger complex sizes were detected. For all polyplexes a positive zeta potential 

around 20 mV was measured, except for Stp5-W in consequence of the absence of 

nanosized particles (Table 2). 

Next, the buffer capacity of Stp and Sph oligomers was determined in the biological pH range 

of 5.0 to 7.4 in order to investigate the influence of increasing MW and building block type. 

This interest arose based on the odd-even rule established by Kataoka et al for N-substituted 

polyaspartamides, stating that diaminoethylene substituents containing an even number of 

protonatable amines provided higher buffer capacity and gene transfer activity than odd-

numbered substituents [120]. Accordingly, in the Wagner lab Sph oligomers (4 protonatable 

amines in row) were found to show higher buffer capacities than Stp oligomers (3 

protonatable amines in row) [66]. In the present work, Stp and Sph oligomers of increasing 

MW displayed similar buffer capacities between 15 and 20 % independent of type and 
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number of the used building block (Figure 7), also in the same range as LPEI. This observation 

suggests that the odd-even rule only applies to oligomers below a certain size-threshold. 

 Z-average [nm] PDI Zeta potential [mV] 

LPEI 129,0 ± 2,8 0, 310 26,0 ± 1,2 

Stp5-W 1720,7 ± 62,9 0,549 3,2 ± 0,3 

Stp10-W 331,1 ± 11,8 0,272 18,7 ± 0,3 

Stp15-W 143,8 ± 5,5 0,294 20,2 ± 0,6 

Stp20-W 103,5 ± 4,2 0,286 20,5 ± 0,8 

Stp30-W 98,0 ± 8,6 0,31 19,4 ± 1,9 

Stp40-W 118,4 ± 3,4 0,279 20,6 ± 1,0 

C-Stp30-W-C 87,1 ± 0,9 0, 164 24,6 ± 0,5 

[Stp5- 6-W 127,7 ± 1,2 0, 251 20,4 ± 0,3 

Sph20-W 86,4 ± 8,6 0,353 24,4 ± 4,1 

Sph30-W 70,5 ± 0,6 0,278 26,9 ± 1,6 

Table 2. Particle size (indicated as Z-average), polydispersity index (PDI) and zeta potential of all 

oligomer/pDNA complexes at N/P 12 measured by DLS. 

 

Figure 7. Buffer capacity of Stp and Sph oligomers and LPEI measured in the pH range of 5.0 and 7.4. 

4.1.3 Biological evaluation: Cellular internalization, gene transfer and cytotoxicity 

Cellular uptake studies performed to investigate the influence of the carrier length revealed 

that a certain minimum length of the oligomer is necessary for successful internalization of 

the polyplexes (Figure 8). Accordingly, particles formed with Stp5-W showed a rather weak 

uptake, which was already remarkably enhanced for the Stp10-W polyplexes and further 

improved for Stp15-W (Figure 8 a). Particles formed with oligomers containing more Stp 

units (20 to 40) all showed similar high internalization properties (Figure 8 b). Substituting 

the Stp building block for the Sph building block did not change the extent of internalization 
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(Figure 8 c). Also the cysteine modification did not alter the uptake compared to the 

unmodified Stp30-W (Figure 8). 

 

 

Figure 8. Cellular internalization of Cy5-labeled DNA/oligomer complexes at N/P 12 determined by 

flow cytometry in Neuro2A cells after 4 h at 37 °C. a) Stp5-W = red, Stp10-W = dark blue, Stp15-W = 

light green; b) Stp20-W = orange, Stp30-W = dark green, Stp40-W = light blue; c) Stp20-W = orange, 

Stp30-W = green, Sph20-W = orange dotted, Sph30-W = green dotted; d) Stp30-W = green, C-Stp30-

W-C = purple. X-

with according fluorescence signal after appropriate gating. All incubations were performed in 

standard serum-supplemented culture medium. In the internalization studies, cells were washed for 

15 min with heparin to remove polyplexes on the cell surface (see Materials and Methods). The 

experiments were performed by Petra Kos (PhD thesis LMU, 2014). 

The influence of the oligomer MW on transfection efficiency was examined by luciferase 

pDNA gene transfer to Neuro2A neuroblastoma cells (Figure 9). Whereas the smallest Stp 

oligomer Stp5-W was completely inactive, increasing the number of Stp units led to a 

continuously improving gene transfer. Stp15-W at its highest N/P ratio 24 already exceeded 
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the activity of LPEI at its optimum, non-toxic concentration (N/P 6). Stp30-W displayed the 

highest transfection efficiency of all tested oligomers, outnumbering LPEI 6-fold. An 

additional elongation to 40 Stp units could not further improve pDNA delivery. Altogether 

the results nicely demonstrate a positive impact of increasing MW on transfection efficiency. 

For the best-performing oligomer Stp30-W a cysteine-modified analog was synthesized, 

which led to comparable high luciferase expression levels (Figure 10). Also exchanging the 

Stp building block to Sph, which in previous studies significantly improved gene transfer 

activity of four-arm oligomers [68], could not further increase the transfection efficiency 

(Figure 10). However, a Stp30- -alanine incorporation after every fifth Stp 

unit resulted in a clear decrease of gene transfer activity (Figure 10). 

 

Figure 9. Luciferase gene transfer by LPEI and linear Stp oligomers tested with pCMVLuc pDNA in 

Neuro2A cells at N/P ratios 6, 12 and 24. The experiment was performed by Petra Kos (PhD thesis 

LMU, 2014). 

 

Figure 10. Luciferase gene transfer by LPEI and linear Stp and Sph oligomers tested with pCMVLuc 

pDNA in Neuro2A cells at N/P ratios 6, 12 and 24. The experiment was performed by Petra Kos (PhD 

thesis LMU, 2014). 

As additional biological characteristic we next determined the cytotoxicity of the different 

oligomers by the MTT and CellTiter-Glo® assay. None of the polyplexes formed with 

oligomers or LPEI at optimum N/P ratios showed any significant cytotoxicity detectable by 
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the MTT assay which measures the mitochondrial redox state as a quantification of cell 

viability (Figure 11). When the oligomers were tested as free oligomers at increasing 

concentrations in the CellTiter-Glo® assay measuring intracellular ATP levels, considerable 

differences in cytotoxicity were observed (Figure 12). For cells treated with LPEI already at a 

concentration of 0.2 mg/mL metabolic activity was lost, whereas for Stp40-W, the most toxic 

of the linear Stp oligomers, still 90 % residual metabolic activity could be observed at a 

concentration of 0.4 mg/mL. For the Stp oligomers, toxicity levels were very low; 

nevertheless a clear increase of toxicity was detected with increasing MW. While Stp5-W did 

not show any toxicity at any examined concentration, all oligomers with 20 or more Stp units 

displayed a reduced metabolic activity (below 20 %) at the highest tested concentration of 

1.0 mg/mL. It has to be emphasized that oligomer concentrations as used in optimum 

transfection experiments are around 10 µg/mL. 

 

Figure 11. Metabolic activity determined with the MTT assay in Neuro2A cells of LPEI (N/P 6) and all 

linear Stp and Sph oligomers. The experiment was performed by Petra Kos (PhD thesis LMU, 2014). 

 

Figure 12. Metabolic activity of Neuro2A cells treated with increasing LPEI or oligomer 

concentrations determined by CellTiter-Glo® assay. For untreated cells 100 % metabolic acitivity was 

defined and all other values refer to this value. The experiment was performed by Petra Kos (PhD 

thesis LMU, 2014). 
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4.2 Analytical characterization of oligo(ethanamino)amides by capillary electrophoresis 

and Taylor dispersion analysis 

4.2.1 Determination of the effective mobility of oligo(ethanamino)amides of different 

length by capillary electrophoresis 

Determination of the electrophoretic mobility is of high interest in order to gain information 

about the charge, the size and the hydrodynamic behavior of charged species. Therefore we 

started a collaboration project with the lab of Dr. Laurent Leclercq and Prof. Dr. Hervé 

Cottet, U. Montpellier. Electrophoretic techniques, such as capillary electrophoresis (CE), 

constitute a useful tool for the determination of the effective mobility and for the separation 

of oligomers and polymers. CE is a separation procedure performed in a silica-filled capillary 

tube of a diameter around 50 µm. The instrumental arrangement is shown in Figure 17. 

Separation efficiency is generally controlled by longitudinal diffusion. This explains the 

extraordinary high resolution for macromolecules with low diffusion coefficient and its 

extensive application for analytical characterization of a large variety of small molecules, 

oligomers or polymers. The simplest separation principle using CE is the so-called capillary 

zone electrophoresis (CZE), where the sample is injected as a narrow band dissolved in the 

separation buffer. Each species migrates with its own velocity after application of an electric 

field resulting in separation of the sample components. The electrophoretic mobility µep is 

proportional to the charge of the ion and inversely proportional to the friction coefficient. 

Consequently, in theory, a larger hydrodynamic radius results in a lower electrophoretic 

mobility for a given charge. 

Here, CZE was applied to four representative oligomers of the library, namely Stp10-W, 

Stp20-W, Stp30-W and Stp40-W, to investigate the effect of increasing MW on the 

electrophoretic mobility. At low pH value of 2.7 (in 250 mM HOAc) all oligomers showed a 

high mobility, as it was expected due to the high degree of protonation at this pH (Figure 

13).  
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Figure 13. Electropherograms showing the electrophoretic mobility of the oligomers Stp10-W, Stp20-

W, Stp30-W and Stp40-W recorded in 250 mM acetic acid at pH 2.70. Applied voltage was 30 kV. Y-

axis displays UV absorbance at 214 nm. The experiment was performed by Xiaoyun Jin (PhD student) 

and Dr. Laurent Leclercq from the laboratory of H. Cottet, U. Montpellier. 

Quit -aminocaproic acid. As 

the pH value around 5.7 was much higher and therefore the cationic charge lower, 

decreased electrophoretic mobility was found (Figure 14). Stp10-W shows individual small 

peaks at lower mobilites, likely corresponding to the lower molar masses. For such small 

oligomers, the electrophoretic mobility increases with the molar mass. For larger oligomers 

(20, 30 and 40 Stp units), the mobility decreases with increasing number of Stp units. A 

further increase of the pH value to 7.4 using 10 mM HEPES as electrolyte results in 

conversion of the migration order compared to that obtained at lower pH values (Figure 15), 

likely due to specific effects of the buffer constituents. 

 

Figure 14. Electropherograms of the oligomers Stp10-W, Stp20-W, Stp30-W and Stp40-W recorded in 

-aminocaproic acid at pH 5.70. Applied voltage was 30 kV. Y-axis displays UV absorbance at 

214 nm. The experiment was performed by Xiaoyun Jin (PhD student) and Dr. Laurent Leclercq from 

the laboratory of H. Cottet, U. Montpellier. 
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Figure 15. Electropherograms of the oligomers Stp10-W, Stp20-W, Stp30-W and Stp40-W recorded in 

10mM HEPES at pH 7.4. Applied voltage was 30 kV. Diagram is plotted in the electrophoretic mobility 

scale (P(µep) vs. µep). The experiment was performed by Xiaoyun Jin (PhD student) and Dr. Laurent 

Leclercq from the laboratory of H. Cottet, U. Montpellier. 

In order to obtain size-dependent separation, capillary gel electrophoresis (CGE), which 

means performing CE in a gel network, was applied to the oligomers by addition of 5 % 

dextran solution (500 kDa) to the background electrolyte. In theory, the molecular sieve 

effect of the formed dextran gel should allow faster migration of small molecules and 

retardation of large molecules. The resulting electropherograms show a clear decrease in the 

electrophoretic mobility due to the gel network hindering migration (Figure 16). 

Furthermore, peak broadening can be observed as the migration through the gel provides a 

higher MW-dependent selectivity in the oligomer velocity. To improve the resolution of the 

separation a higher dextran concentration of 10 % was applied, but probable interactions of 

the dextran polymer with the oligomers did not lead to reliable results (data not shown).  
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Figure 16. CGE electropherograms of the oligomers Stp10-W, Stp20-W, Stp30-W and Stp40-W 

recorded in 250 mM acetic acid at pH 2.7. Curve 1 shows the electropherogram in the presence of 

5% dextran and curve 2 the electropherogram without dextran. Applied voltage was 10 kV. Y-axis 

displays UV absorbance at 214 nm. The experiment was performed by Xiaoyun Jin (PhD student) and 

Dr. Laurent Leclercq from the laboratory of H. Cottet, U. Montpellier. 

4.2.2 Determination of the hydrodynamic radius Rh of oligo(ethanamino)amides of 

different length by Taylor dispersion analysis 

The instrument used for CE can also be used to perform Taylor dispersion analysis (TDA) 

(Figure 17). TDA is an absolute method for the determination of the hydrodynamic radius Rh 

based on the dispersion of a sample plug in a laminar flow. The dispersion (over the tube 

cross section) results from the overlay of two phenomena: the dispersive velocity profile as a 

consequence of the laminar flow generated by a small pressure drop between the two 

capillary ends, and the molecular diffusion that redistributes the molecules in the capillary. 

The Taylor dispersion 2) obtained by 

integration of the elution profile. This is recorded via measurement of the UV absorption of 

an UV active solute [133]. With the help of the temporal variance the molecular diffusion 

coefficient (D) and hydrodynamic radius (Rh) can be calculated without any calibration 

(absolute determination, see equations in the methods section 3.5.7). 

In comparison to the commonly used size determination by DLS or SEC, TDA provides several 

advantages. The fact that it constitutes an absolute method for the size determination 

overcomes the need for complex calibration procedures. It can measure molecular sizes 

from angstrom to hundreds of nm, which is a great advantage for the characterization of 

nanomaterials. Moreover, it is considered more meaningful than the Z-average that is 
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derived from DLS measurements since it leads to a weight-averaged particle diameter when 

using weight sensitive detectors (which is the case for the UV absorbing oligomers of this 

work). In the case of bimodal samples, deconvolution of the recorded taylorgram allows the 

determination and quantification of each single population of the sample [134]. As an 

experimental procedure consuming sample volumes of only a few nanoliters, it is applicable 

to a wide spectrum of molecules, which might be available only in small quantities due to 

cost intensive, time-consuming or sophisticated production. TDA has already been used for 

the characterization of small molecules and polymers [133], but also for peptides, proteins 

and liposomes [135, 136]. 

 

Figure 17. Capillary electrophoresis instrument and principle of Taylor dispersion analysis. For the 

Taylor dispersion analysis only pressure (no voltage) is applied. 

Correlation of molecular weight and hydrodynamic radius 

Here, TDA was applied to investigate the correlation of the hydrodynamic radius Rh and the 

oligomer length by analyzing four representative sequences containing 10, 20, 30 or 40 Stp 

units. Figure 18 illustrates a typical example of a taylorgram, displaying the time-dependent 

elution profile of the oligomer, detected by UV absorption. Table 3 displays the average Rh 

values obtained by TDA of the four tested oligomers in two different electrolytes. As 

expected, an increase of the hydrodynamic radius from 0.96 nm up to 1.94 nm with 

increasing oligomer length can be observed for the oligomers ranging from 10 to 30 Stp 
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units. However, a decreased Rh value was detected for the longest oligomer, Stp40-W. A 

further interesting observation was the appearance of two populations of different Rh for 

Stp20-W in both elution buffers and for all other oligomers only in HEPES buffer. Except for 

Stp-10-W, where the large population made up a ratio of 35 % and the smaller population 

65%, for all other oligomers the percentages of species with higher and lower Rh value are 

approximately similar.  

 

Figure 18. Exemplary Taylorgram of Stp30-W recorded in a PDADMAC coated capillary with HBG pH 

7.4 as eluent. Deconvolution allows the detection of two populations with different Rh (Rh1 = 0.55 nm 

(w % = 75), Rh2 = 1.48 nm (w % = 25), Rhav = 0.78 nm). The experiment was performed by Xiaoyun Jin 

(PhD student) and Dr. Laurent Leclercq from the laboratory of H. Cottet, U. Montpellier. 

 
Rh average [nm] 

in 10 mM HEPES 

pH 7,30 

Rh of 2 populations 

Rh [nm] average 

in 250 mM HOAc 

pH 2,68 

Rh of 2 

populations 

Stp10-W 0.96 
1.65 (35 %) 

0.61 (65 %) 
0.87 - 

Stp20-W 1.31 
2.19 (45 %) 

0.54 (55 %) 
1.31 

1.90 (50 %) 

0.68 (50 %) 

Stp30-W 1.94 
2.64 (60 %) 

0.91 (40%) 
1.93 - 

Stp40-W 1.24 
2.19 (45 %) 

0.51 (55 %) 
1.18 - 

Table 3. Hydrodynamic radius Rh of the oligomers Stp10-W, Stp20-W, Stp30-W and Sp40-W 

determined in 10 mM HEPES (pH 7.30) or 250 mM HOAc (pH 2.68) by Taylor dispersion analysis. The 

experiment was performed by Xiaoyun Jin (PhD student) and Dr. Laurent Leclercq from the 

laboratory of H. Cottet, U. Montpellier. 

Effect of pH value and buffer on hydrodynamic radius Rh 

The detected Rh of 0.78 nm of the oligomer Stp30-W (MW 8345.0) in HBG buffer appears 

quite small in comparison to the value of 0.25 nm determined for the small molecule 
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caffeine (MW 194.2). Based on the assumption that a high amount of glucose might disturb 

the measurement, the TDA experiment performed in pure HEPES buffer resulted in a Rh of 

1.94 nm and was therefore more than two-fold higher than in glucose-containing buffer 

(Table 4). TDA experiments with the same oligomer, Stp30-W, in different buffer systems of 

decreasing pH, revealed a simultaneous increase of the hydrodynamic radius up to 3.06 nm 

in 50 mM HCl. 

 HEPES (20mM) 

Glucose (280 mM) 

HEPES 

(10 mM) 

HOAc 

(250 mM) 

HCl 

(10 mM) 

HCl 

(50 mM) 

pH 7.4 7.3 2.68 2.04 1.38 

Rh average 
[nm] 

0.78 1.94 1.93 2.61 3.06 

Rh of 2 

populations 

1.48 (25 %) 

0.55 (75 %) 

2.64 (60 %) 

0.91 (40 %) 
- 

3.45 (60 %) 

1.40 (40 %) 
- 

Table 4. Rh values of the oligomer Stp30-W determined in different buffer solutions and pH values by 

TDA. The experiment was performed by Xiaoyun Jin (PhD student) and Dr. Laurent Leclercq from the 

laboratory of H. Cottet, U. Montpellier. 

4.3 Optimization of comb-like oligomers for pDNA delivery 

4.3.1 Design and synthetic strategy 

The solid-phase assisted synthesis of cationic oligomers using the artificial oligoamino acids 

Stp or Sph has been used to establish polymer libraries including effective carriers for gene 

delivery [63, 68, 111]. In these previous studies the artificial amino acids were incorporated 

into the oligomer backbone, resulting in linear structures or structures with up to five arms 

when branching points were introduced. Here the cationic building blocks were attached to 

-N of an oligolysine backbone producing eight comb-like oligoamine branches (Scheme 

3). Because the terminal amines remain free instead of being part of the subsequent amide 

bond as for the linear shaped oligomers, in these comb oligomers each artificial amino acid 

provides one additional protonatable amine. Besides this benefit a distinct change in carrier 

topology is achieved with the new strategy.   

The carrier assembly was performed in two different ways. First, a convergent approach was 

tested, where a building block was assembled, consisting of lysine protected with Fmoc at 

-N amino group and the Boc-protected cationic building block conjugated to the -N 



Results  57 

amino group (Scheme 3). Coupling these building blocks eight times led to the final comb 

oligomers. 

 

 

Scheme 3. a) Synthesis of the protected building blocks used for the comb structure synthesis with 

the convergent strategy. b)  Structures of the synthesized comb structures. AA = amino acid; exact 

structures are depicted in  

The second synthesis strategy was to assemble the backbone first, using Fmoc-Lys(Dde)-OH. 

In a subsequent step the Dde protection group is cleaved and finally the cationic building 

-N amino groups of the lysines, forming eight branches. 

The convergent coupling strategy at room temperature was quite inefficient due to the large 

size of the building block, which probably led to steric hindrance. After the first three 

coupling steps, the coupling times had to be prolonged tremendously up to 3 h and double 

or triple couplings became necessary. With the aim of solving these problems an automated 

synthesizer was acquired and established for this application. Using this method, double 
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successful synthesis. Analytical data (Figure 19 a-c) and transfection efficiency (Figure 19 d) 

show that both approaches yield suitable products, but as the automated synthesis is much 

less time-consuming, it was preferentially used. 

 

 

 

Figure 19. a) 1H-NMR spectra in D2O of Stp-cmb-0 synthesized with the automatic peptide 

synthesizer. b) 1H-NMR spectra in D2O of Stp-cmb-0 synthesized manually. c) RP-HPLC 

chromatogramm (5 % to 100 % ACN in 20 min) of Stp-cmb-0 synthesized manually and with the 
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peptide synthesizer d) Luciferase gene transfer of Stp-cmb-0 synthesized manually (man) and with 

peptide synthesizer (PS) tested with pCMVLuc in Neuro2A cells. Part d) was performed by Petra Kos 

(PhD thesis LMU, 2014). 

Initial studies of comb structures with four repeating lysine units had shown only low pDNA 

transfection efficiency (Figure 20). Increasing the number to eight branches improved the 

biological performance so that this number was chosen for the design of all subsequent 

comb structures. 

 

Figure 20. Comparison of the activity of comb structures with 4 and 8 Stp-modified lysine units in the 

luciferase gene transfer assay tested with pCMVLuc in Neuro2A cells at N/P ratios 6, 12 and 24. The 

experiment was performed by Petra Kos (PhD thesis LMU, 2014). 

4.3.2 -Ala) 

From previous work in the Wagner Lab [63, 132] it is known that terminal cysteines serve as 

useful carrier modifications. The oxidation of thiol groups leads to disulfide formation during 

polyplex formation and stabilizes the complexes via crosslinking. In the present work comb 

oligomers with 8 branches, one carrying terminal cysteines and another one terminal alanine 

residues as a control, were compared. The higher stability (Figure 21) and transfection 

efficiency (Figure 22) confirms the benefit of cysteines also for the comb structures. 

Therefore, the cysteine-modification was maintained in the course of further carrier 

optimization. 
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Figure 21. Comparison of pDNA binding of the cysteine-modified comb structure C-[K(Stp)]8-C and 

the alanine-modified control structure with and without 30 min TCEP incubation after polyplex 

formation at increasing N/P ratios as indicated. 

To vary the distance between the comb branches, different natural amino acids were 

incorporated in the oligolysine backbone (Scheme 3b). Alanine was used to investigate a 

-alanine, which extends the comb backbone by providing 

one methylene unit more - amino acids and might therefore also change 

the 3D structure of the oligomer. Tryptophane was introduced as an example for an 

aromatic, hydrophobic amino acid, which might be beneficial for polyplex stabilization. 

Histidine was incorporated as a spacer amino acid because the imidazole group with a pKA 

value around 6 is known to contribute to the endosomal escape via the proton sponge effect 

during endosome acidification [137]. 

The introduction of an alanine spacer had a slightly positive effect on transfection efficiency 

but did not greatly influence other biophysical and biological properties compared to the 

-

alanine led to decreased transfection efficiency (Figure 22), most likely due to reduced DNA 

complexation ability (Figure 23). The incorporation of tryptophane or histidine both 

enhanced the transfection efficiency. For further detailed investigations of structure-activity 

relationships by the attachment of diaminoethane building blocks of different length (see 

Chapter 4.3.3) and the direct comparison to linear control sequences (see Chapter 4.4) three 

structures were chosen from the comb structure library. All three structures have terminal 

cysteine modifications, one without spacer amino acid (cmb-0), one with alanine spacer 

(cmb-A) and one with histidine spacer (cmb-H). 
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Figure 22.  Luciferase reporter gene expression after transfection using cysteine- or alanine-modified 

Stp comb structures containing different spacer amino acids tested with pCMVLuc pDNA at N/P 12 in 

Neuro2A cells. The experiment was performed by Petra Kos (PhD thesis LMU, 2014). 

 

Figure 23. Comparison of pDNA binding ability of Stp-cmb-0, Stp-cmb-A and Stp-cmb-  comb 

structures determined by EtBr exclusion assay at increasing N/P ratios. 

4.3.3 Application of building blocks with different number of ethylenamine repeating units 

Carrier synthesis and design 

The previously obtained results emphasized the potential for pDNA delivery of a small library 

of comb structure oligomers with the Stp building block. To provide further confirmation and 

gain new insights in structure-activity relationships, three further building blocks, Sdt, Stt, 

and Sph with differing numbers of amino ethylene units were attached to the oligolysine 

backbone, without spacer, with alanine spacer or histidine spacer (Scheme 3b). A list of all 

structures is presented in Table 5. 
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Building block 
Compound 

Id 
Sequence Code 

Protonatable 

amines 

Sdt comb 

(2 prot N) 

632 C-[K(Sdt)]8-C Sdt-cmb-0 17 

633 C-[A-K(Sdt)]8-C Sdt-cmb-A 17 

634 C-[H-K(Sdt)]8-C Sdt-cmb-H 17 

Stt comb 

(3 prot N) 

635 C-[K(Stt)]8-C Stt-cmb-0 25 

636 C-[A-K(Stt)]8-C Stt-cmb-A 25 

637 C-[H-K(Stt)]8-C Stt-cmb-H 25 

Stp comb 

(4 prot N) 

622 C-[K(Stp)]8-C Stp-cmb-0 33 

551 C-[A-K(Stp)]8-C Stp-cmb-A 33 

552 C-[H-K(Stp)]8-C Stp-cmb-H 33 

Sph comb 

(5 prot N) 

629 C-[K(Sph)]8-C Sph-cmb-0 41 

630 C-[A-K(Sph)]8-C Sph-cmb-A 41 

631 C-[H-K(Sph)]8-C Sph-cmb-H 41 

Stp linear 

(3 prot N) 

625 C-(Stp-K)8-C Stp-lin-0 33 

626 C-(A-Stp-K)8-C Stp-lin-A 33 

628 C-(H-Stp-K)8-C Stp-lin-H 33 

Sph linear 

(4 prot N) 

648 C-(Sph-K)8-C Sph-lin-0 41 

649 C-(A-Sph-K)8-C Sph-lin-A 41 

650 C-(H-Sph-K)8-C Sph-lin-H 41 

Table 5. Sequences of comb and linear structures written from N- to C-terminus and the 

corresponding codes used throughout the text. Cmb= comb, lin= linear, 0= no spacer amino acid, A= 

alanine spacer, H= histidine spacer, prot N= number of protonatable nitrogens per building block.  

Biophysical properties 

Testing the pDNA binding characteristics of the comb oligomers with the agarose gel shift 

assay demonstrated complete pDNA complexation ability at N/P ratio of 6 and higher for all 

oligomers with Stt, Stp and Sph building block (Figure 24). The Sdt oligomers with only two 

protonatable amines per comb unit showed the weakest binding which was complete only at 

N/P 12 and higher.  As exception, the histidine containing Sdt structure, showed complete 

binding already at N/P 3. These findings were verified in the EtBr exclusion assay, where the 

Sdt oligomers showed the lowest fluorescence decrease independent of the spacer (Figure 

25). Stt and Sph oligomers compacted the pDNA to a similar extent, while for the Stp 

sequences an enhanced pDNA condensation ability could be observed. This was less 

pronounced for the structures without spacer molecule.  
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Figure 24.  pDNA binding ability of Sdt, Stt, Stp and Sph comb structures determined by agarose gel 

shift assay at increasing N/P ratios as indicated. 

 

Figure 25. EtBr exclusion assay of DNA polyplexes of Sdt, Stt, Stp and Sph comb structures without 

spacer (a), alanine spacer (b) and histidine spacer (c) at increasing N/P ratios. 

Particle sizes measured with DLS greatly differed depending on the length of the 

ethylenamine building block (Table 6). Oligomers consisting of the shortest, less protonated 

building block formed the biggest DNA particles. Sdt oligomers without spacer formed 

aggregates of about 2 µm. Sdt oligomers with Ala and His spacer formed particles of about 

600 and 400 nm, which are still more than 3- and 2- fold bigger than particles formed with 

structures containing the other building blocks of increasing length. With sizes between 170 

and 260 nm also the Stt oligomers produced DNA particles clearly bigger than the Stp and 

Sph oligomers. For Stp oligomers the smallest particles in a range between 100 and 140 nm 
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were observed. They display the highest zeta potential between 27 and 35 mV (Table 6). 

Overall a tendency of decreasing DNA particle size with increasing number of ethylenamine 

units was observed. 

 Z-average [nm] PDI Zeta potential [mV] 

Sdt-cmb-0 2128,7 ± 147,7 0,861 14,5 ± 0,3 

Sdt-cmb-A 607,7 ± 18,7 0,394 17,9 ± 0,2 

Sdt-cmb-H 444,0 ± 35,3 0,353 16,2 ± 0,6 

Stt-cmb-0 175,3 ± 12,9 0,291 10,0 ± 0,8 

Stt-cmb-A 259,3 ± 3,7 0,184 4,2 ± 0,1 

Stt-cmb-H 255,6 ± 23,2 0,277 12,8 ± 1,2 

Stp-cmb-0 136,4 ± 4,0 0,354 27,8 ± 0,1 

Stp-cmb-A 103,6 ± 8,7 0,309 34,2 ± 0,5 

Stp-cmb-H 102,5 ± 9,8 0,319 28,9 ± 0,5 

Sph-cmb-0 109,5 ± 5,4 0,138 26,0 ± 0,1 

Sph-cmb-A 132,3 ± 3,5 0,244 23,8 ± 0,7 

Sph-cmb-H 167,3 ± 17,6 0,371 18,3 ± 1,5 

Table 6. Particle sizes and zeta potential of Sdt, Stt, Stp and Sph comb structure polyplexes with 

pDNA at N/P ratio 12 obtained by DLS measurement.  

The buffer capacity of the oligomers (Figure 26) was measured by alkalimetric titration at the 

pH range between 5.0 and 7.4. This range represents the physiologically relevant 

acidification from pH 7.4 in the extracellular compartment to pH 5.0 in the endosome. Clear 

differences in the buffer capacity could be found for the comb structures with increasing 

number of protonatable amines. The Sdt oligomers with only two protonatable amines per 

branch exhibited by far the highest buffering capacity (Figure 26 a). Stt oligomers with three 

protonatable amines per branches displayed the lowest buffering capacity for the structures 

without spacer and Ala spacer. Increasing the number to four protonatable amines led to an 

increase in the total buffer capacity between 5.0 and 7.4, whereas a further extension to five 

protonatable amines per branch, which can be found in the Sph structures, resulted in a 

small decrease in the buffer capacity. Regardless of the building block, the histidine 

containing oligomers showed the highest total buffer capacity in the pH range between 5.0 

and 7.4.  

On closer examination of the differential buffer capacities in the relevant pH range, two 

different buffering profiles are revealed (Figure 26 b-d). Sdt and Stp containing oligomers 
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with 2 and 4 protonatable amines per branch have the maximum buffer capacity between 

pH 5.5 and 6.5, while Stt and Sph sequences with 3 or 5 protonatable amines in row exhibit 

their maximum capacity between 6.5 and 7.4 (Figure 26 b, c). Only for the histidine 

containing structures discrepancies from this trend are observed. This was predictable due 

to an additive buffering effect of histidine around the pH of 6 (Figure 26 d). 

 

Figure 26.  Buffer capacity of comb-type oligomers. a) Total buffer capacity of Sdt, Stt, Stp and Sph 

comb structures measured in the pH range of 5.0 and 7.4 b)  d) Differential buffer capacities 

between pH 5.0 and 7.4 b) without spacer, c) with Ala spacer and d) with His spacer. 

Cellular uptake and gene transfer 

The cellular uptake of the comb oligomers with different length of ethylenamine building 

blocks was investigated in Neuro2A cells (Figure 27). Polyplexes formed with Stt, Stp and Sph 

oligomers displayed a similar uptake rate independent of the spacer. In the case of the Sdt 

oligomers without spacer the polyplexes were not internalized by the cells. For the Ala- and 

His- containing Sdt structures only a small subpopulation of cells did not internalize any 

particles. The greater fraction of cells showed similar fluorescence intensities as observed for 

the Stt, Stp and Sph oligomers in the flow cytometric analysis. 
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Figure 27. Cellular uptake of Cy5-labeled DNA/oligomer complexes at N/P 12 determined by flow 

cytometry in Neuro2A cells. Comb-shaped oligomers a) without spacer, b) with Ala spacer and c) with 

His spacer; oligomers containing Sdt = green, Stt =  blue, Stp = yellow and Sph = red. X-axis represents 

signal after appropriate gating. The experiment was performed by Petra Kos (PhD thesis LMU, 2014). 

Initial testings of luciferase pDNA transfection efficiency in Neuro2A cells revealed that the 

Stp-containing comb structures modulate the highest gene transfer among the tested 

building blocks (Figure 28). Histidine-containing oligomers displayed the greatest gene 

transfer efficiency in each group. Except for the Stt oligomers, also the Ala spacer resulted in 

a higher gene expression compared to the structures without spacer. The best performing 

sequence, Stp-cmb-H, at the N/P ratio of 6 exceeded LPEI 26-fold at its most effective, non-

toxic concentration (Figure 29).  

 

Figure 28. Luciferase gene transfer of all Sdt, Stt, Stp and Sph comb structures tested with pCMVLuc 

pDNA in Neuro2A cells. The experiment was performed by Petra Kos (PhD thesis LMU, 2014). 

a) b) c) 
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Figure 29. Comparison of luciferase gene transfer of linear PEI at N/P 6 and Stp-cmb-H at different 

N/P ratios. The experiment was performed by Petra Kos (PhD thesis LMU, 2014). 

To examine cytotoxicity, MTT assays were performed at different N/P ratios in parallel to the 

luciferase assay in Neuro2A cells. The metabolic activity values yielded between 80 and 110 

% after pDNA transfection (Figure 30), indicating that none of the oligomers displayed severe 

toxicity under the tested conditions. 

 

Figure 30. Metabolic activity determined with the MTT assay in Neuro2A cells of a) Sdt, Stt, Stp and 

Sph comb structures and b) Stp and Sph linear structures. The experiment was performed by Petra 

Kos (PhD thesis LMU, 2014). 

4.3.4 Introduction of a functionalization site using the Dde-Alloc orthogonality 

In the present work the orthogonality of the Fmoc- and Dde-protecting group was exploited 

for the assembly of comb-type oligomers. Among all synthesized comb structures, Stp-cmb-

H turned out to be the most effective one for pDNA delivery, clearly exceeding the 

transfection efficiency of LPEI. Nevertheless, thinking ahead towards therapeutical 

applications the need for carrier optimization arises, for example in terms of specific tumor 

targeting. In this context, the extension of the orthogonality by introducing a further 
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protecting group is of great interest. Exploiting this synthetic diversity, as a proof of concept 

a PEG-conjugated folic acid (FolA) targeting ligand was attached to the Stp-cmb-H, 

illustrating the possible options of comb structure functionalization. The resulting structure 

C-K(PEG-FolA)-[H-K(Stp)]8-C (Stp-cmb-H-PEG-FolA) is depicted in (Scheme 4). The 

Allyloxycarbonyl (Alloc) protecting group for amines can be removed by reduction with 

palladium catalysts and therefore does not interfere with the base- or acid-driven protective 

group removal [138]. Whereas the cleavage of Alloc in the presence of Dde can be done 

without any precaution, the Dde cleavage with hydrazine in the presence of Alloc is 

performed in the presence of a high excess of allyl alcohol to prevent the premature 

cleavage [130]. Because the cleavage of the Alloc group is much more time-consuming, this 

protection strategy was chosen only for one lysine, which was used for the attachment of 

the targeting ligand. The eight other lysine residues were protected with Dde and were used 

for the attachment of the diaminoethane building blocks for comb assembly (Scheme 5). In 

addition, for investigation of the folic acid-mediated targeting effect a control sequence 

carrying acetylation instead of the targeting ligand was synthesized analogously. 
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Scheme 4. Structure of the comb structure with targeting ligand synthesized with the Dde-Alloc 

strategy.  

 



Results  69 

 

Scheme 5. Last synthesis steps of the targeted comb structure Stp-cmb-H-PEG-FolA, showing the 

structure of the three orthogonal protecting groups Fmoc, Dde and Alloc and the order of their 

cleavage. 

The NMR spectrum of the targeted comb structure, Stp-cmb-H-PEG-FolA, proves the identity 

and the presence of the PEG-linked Folic acid (Figure 31). Nevertheless, the presence of 

peaks belonging to the Fmoc protecting group, indicate difficulties (incomplete Fmoc 

removal) in the synthesis. Also in the HPLC chromatogram a small fraction of Fmoc-

containing product can be detected for the FolA-targeted oligomer but the chromatogram of 

the control sequence with acetate demonstrates that the applied synthesis conditions are 

suitable to obtain products of a higher level of purity (Figure 32). 

 

Figure 31. 
1H-NMR spectrum of Stp-cmb-H-PEG-FolA in D2O verifying the successful attachment of 

the PEG-FolA ligand. 
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Figure 32. HPLC chromatograms of Stp-cmb-H-PEG-FolA (=FolA) and Stp-cmb-H-PEG-Acetate (=Ac 

ctrl) recorded on a RP SunFire C18 column. 

The successful PEG-shielding is demonstrated by an increase of size of pDNA polyplexes of 

the comb structures with PEG-ligand (FolA and Ac ctrl) compared to the original unmodified 

oligomer, as well as the simultaneous decrease of the zeta potential, measured by DLS 

(Figure 33). Despite the PEGylation, which may hinder the electrostatic binding of the 

oligomer and the nucleic acid to some extent, both PEGylated structures display complete 

DNA binding in the agarose gel shift assay at N/P 6 and higher (Figure 34). Finally, the 

functionality of the FolA-targeted ligand was shown by efficient DNA delivery in FolA 

receptor-overexpressing KB cells. The specific uptake via the FolA receptor can be concluded 

from the lack of gene transfer of the control sequence with PEG-shielding, hampering the 

unspecific uptake (Figure 35). 

 

Figure 33. Size (indicated as Z-average) and zeta potential of FolA (= Stp-cmb-H-PEG-FolA) and Ac ctrl 

(= Stp-cmb-H-PEG-acetate) pDNA polyplexes at N/P 12 determined by DLS. 
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Figure 34. DNA binding of FolA (= Stp-cmb-H-PEG-FolA) and Ac ctrl (= Stp-cmb-H-PEG-acetate) at 

increasing N/P ratios determined by agarose gel shift assay. 

 

Figure 35. Luciferase gene transfer of FolA (= Stp-cmb-H-PEG-FolA) and Ac ctrl (= Stp-cmb-H-PEG-

acetate) pDNA polyplexes tested in FolA-receptor overexpressing KB cells at increasing N/P ratios 

without or with addition of the endolysosomotropic molecule chloroquine (CQ). The experiment was 

performed by Petra Kos (PhD thesis LMU, 2014). 

4.4 Comparison of comb and linear topology of oligomers for pDNA delivery 

The results shown in Chapter 4.3 revealed that the comb topology may provide effective 

carriers for pDNA delivery. In the following, the most promising sequences, which were 

those bearing Stp or Sph branches, were compared to corresponding linear structures 

containing the identical type and numbers of amino acids, but with the Stp or Sph building 

- -amino group 

of the oligomer backbone. Therefore, the total number of protonatable amines remains the 

same in both carrier types, but the lengths of oligomer backbone strongly differ.  

4.4.1 Biophysical characterization: DNA condensation, particle size and buffer capacity 

The pDNA complexation ability of the branched and linear oligomers was examined at 

different N/P ratios using the agarose gel shift assay. While the comb structures showed 

partial DNA binding at N/P 3 and complete binding at N/P 6 and higher (Figure 24) the linear 

Stp and Sph sequences showed already complete DNA binding at N/P 3 (Figure 36). To 

investigate the influence of the N/P ratio on the binding capability in more detail, an EtBr 
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exclusion assay was performed increasing the N/P ratio in steps of 0.5 from N/P 0 to 2 and 

bigger steps up to N/P 12 (Figure 37). Except for the Stp containing structures with Ala 

spacer, all linear structures showed a better DNA condensation ability compared to the 

corresponding comb structures. This effect was less pronounced for the structures with 

histidine spacer (Stp-lin-H vs. Stp-cmb-H). The results are in agreement with the data 

obtained in the gel shift assay and demonstrate an advantageous DNA binding for the linear 

structures. However, both comb- and linear-type structures are able to form stable 

polyplexes with pDNA at N/P ratios higher than 5. 

 

Figure 36. pDNA binding ability of Stp and Sph linear structures determined by agarose gel shift assay 

at increasing N/P ratios as indicated. 

 

Figure 37. EtBr exclusion assay of Stp (a-c) and Sph (d-f) comb structures and corresponding linear 

structures with increasing N/P ratios by stepwise addition of the oligomer to pDNA solution at pH 

7.4. a), d) without spacer b), e) Ala spacer c), f) His spacer 
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Particle size and zeta potential of oligomer/pDNA complexes were determined at N/P 12 by 

DLS (Table 7). The mean sizes of the polyplexes of the Stp comb type structures were about 

100 to 130 nm (Table 6). Polyplex sizes were quite similar for the linear structures with a 

range between 85 and 135 nm. For Sph-containing structures slightly bigger sizes were 

observed, in the range of 100 to 170 nm for the comb structures and 115 to 130 nm for the 

linear structures, but revealing again no significant differing effect of the topology on the 

polyplex size. Independent of the building block, the zeta potential of comb structures 

without spacer or Ala spacer displayed a slightly higher zeta potential than the 

corresponding linear structure. The zeta potential was quite similar for His-containing 

structures (Table 7).  

 Z-average [nm] PDI Zeta potential [mV] 

Stp-lin-0 112,9 ± 12,9 0,359 26,2 ± 0,8 

Stp-lin-A 85,8 ± 3,9 0,226 26,0 ± 0,4 

Stp-lin-H 131,6 ± 3,6 0,314 28,7 ± 0,4 

Sph-lin-0 117,4 ± 12,2 0,195 14,6 ± 3,7 

Sph-lin-A 127,9 ± 4,0 0,276 12,4 ± 0,6 

Sph-lin-H 125,3 ± 3,4 0,313 21,8 ± 0,3 

Table 7. Particle sizes (indicated as Z-average), polydispersity index (PDI) and zeta potential (ZP) of 

oligomer/pDNA complexes at N/P 12 measured by DLS. 

Comparing the differential buffer capacities between pH 5.0 and 7.4 in detail, a clear 

difference in the buffering profiles became obvious (Figure 38). For Stp oligomers with four 

protonatable amines in the comb type and three in the linear type, all comb structures 

displayed the highest buffer capacity between pH 5.0 and 6.5, whereas the maximum buffer 

capacity of the linear oligomers was observed between pH 6.5 and 7.4 (Figure 38 a, b). An 

opposite effect could be observed for the Sph oligomers, where four protonatable amines 

are provided in the linear structures and five in the comb structures. Here the linear 

oligomers demonstrated a clearly higher buffer capacity between pH 5.0 and 6.5, whereas 

the highest buffer capacity of the comb oligomers was observed between pH 6.5 and 7.4 

(Figure 38 d, e). As histidine enhances the buffer capacity at pH 6, an additive effect at this 

pH could be observed for the histidine-containing oligomers, so that the already high buffer 

capacity at this pH was further increased for the Stp comb and Sph linear structures, 
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whereas the Stp linear and Sph comb structures consequently showed a broader buffer 

capacity over the whole pH range from 5.0 to 7.4 (Figure 38 c, f). 

 

Figure 38. Comparison of differential buffer capacities of Stp- and Sph-based comb and linear 

structures between pH 5.0 and 7.4. a) Stp oligomers without spacer, b) Stp oligomers with Ala spacer,  

c) Stp oligomers with His spacer, d) Sph oligomers without spacer, e) Sph oligomers with Ala spacer,  

f) Sph oligomers with His spacer. 

4.4.2 Biological evaluation: Cellular association, intracellular uptake, gene transfer and 

cytotoxicty 

To compare the biological efficiency of the Stp and Sph comb and linear oligomers, the 

cellular association of polyplexes was investigated in Neuro2A cells (Figure 39). After one 

hour at 0 °C, the linear structures displayed a higher amount of polyplexes bound to the 

cells. After four hours of incubation, the cellular association was similar for comb and linear 

structures.  
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Next the intracellular uptake of polyplexes was investigated after four hours at 37 °C (Figure 

40). Interestingly and independent of the ethylene amine building block and the spacer 

amino acid, the comb type structures displayed higher intracellular uptake rates than their 

linear counterparts. Cellular uptake was already higher for the comb structures than the 

linear structures after one hour and approximately 3- to 4-fold higher for the Stp combs and 

5- to 11-fold for the Sph combs after four hours. 

The reasons for the discrepancy between cell association and intracellular uptake, and the 

differing effect of oligomers topology remain unclear. Simple biophysical properties such as 

zeta potential can be ruled out as dominating parameters. In the case of Stp-cmb-A, Sph-

cmb-0 and Sph-cmb-A the zeta potential of the comb structures was higher than for the 

linear structures, which correlates with their enhanced cellular internalization. However, for 

the other examined structure pairs the measured zeta potential was similar but the 

enhanced uptake was still observed. 

 

Figure 39. Cellular association of Cy5-labeled DNA/oligomer complexes at N/P 12 after one or four 

hours with Stp or Sph oligomers determined by flow cytometry in Neuro2A cells. Comb structures are 

displayed with solid lines, linear structures with dotted lines. Without spacer = red, Ala spacer = blue 

and His spacer = green. X-

cell counts with according fluorescence signal after appropriate gating. The experiment was 

performed by Petra Kos (PhD thesis LMU, 2014). 
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Figure 40. Cellular internalization of Cy5-labeled DNA/oligomer complexes at N/P 12 after one or 

four hours with Stp or Sph oligomers determined by flow cytometry in Neuro2A cells. Comb 

structures are displayed with solid lines, linear structures with dotted lines. Without spacer = red, Ala 

spacer = blue and His spacer = green. X-

the number of cell counts with according fluorescence signal after appropriate gating. The 

experiment was performed by Petra Kos (PhD thesis LMU, 2014). 

The oligomers were compared in their pDNA transfection efficiency (Figure 41). For Stp 

oligomers, the gene transfer levels of the comb type oligomers were 7- to up to 340-fold 

higher compared to the linear structures (Figure 41 a). The histidine-containing oligomers 

displayed the greatest gene transfer efficiency. Evaluation of the pDNA transfection 

efficiency of Sph comb and linear structures also revealed some higher gene transfer 

efficiency of the comb type oligomers, but compared to the Stp oligomers this effect was 

less pronounced (Figure 41 b). 
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Figure 41. Luciferase gene transfer by comb versus linear carriers. a) Stp and b) Sph oligomers tested 

with pCMVLuc pDNA in Neuro2A cells at N/P ratios 6, 12 and 24. The experiment was performed by 

Petra Kos (PhD thesis LMU, 2014). 

As already demonstrated for the Stp and Sph comb structures (Figure 30) also the linear 

structures displayed mean values of around 80 to 100 % metabolic aciticty in the MTT assay 

at different N/P ratios indicating no severe cytotoxicity under the tested conditions (Figure 

42). 

 

Figure 42. Metabolic activity determined with the MTT assay in Neuro2A cells of Stp and Sph linear 

structures. The experiment was performed by Petra Kos (PhD thesis LMU, 2014). 
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5 DISCUSSION 

5.1 Evaluation of linear oligo(ethanamino)amide carriers of increasing molecular weight 

for pDNA delivery and comparison to linear PEI 

In the present work optimized microwave-assisted solid-phase supported synthesis and the 

artificial amino acids succinyl-tetraethylene pentamine (Stp) [61] or succinyl-pentaethylene 

hexamine (Sph) [66, 68] were applied for the assembly of well-defined linear peptide-like 

carriers for pDNA delivery. The artificial amino acids as well as the transfection agent PEI [25, 

139-141] contain the diaminoethane motif. This protonatable repeat unit is responsible for 

the favorable transfection properties, mediating electrostatic binding with pDNA and 

additional protonation capacity upon cell entry into endolysosomal compartments [127, 

142-145]. The gold standard linear PEI (LPEI), containing approximately 500 (±200) 

protonatable nitrogens [146], obviously has a far larger average polymer size than previously 

synthesized Stp oligomers. In addition both Stp and Sph oligomers differ from LPEI by an 

amide-bonded succinic acid linker after every fifth or sixth ethanamino unit. To address the 

question whether longer linear Stp or Sph oligomers can mimic LPEI in transfection, the 

effect of increasing the MW of linear oligo(ethanamino)amides on pDNA mediated gene 

transfer and cytotoxicity was investigated. Beyond a critical oligomer size - indeed the 

diaminoethane motif containing building blocks (Stp or Sph) enable efficient gene transfer 

without need for further functional modifications. 

DNA complexation studies using agarose gel shift and EtBr based assays showed improved 

binding characteristics with increasing number of Stp units. In agreement with previous 

studies [111] an oligomer with 5 Stp did not show any pDNA binding. The longer the 

synthesized Stp chain, the better pDNA binding was observed. This polyplex stabilization can 

be attributed to multivalent electrostatic interactions between the pDNA with oligomers 

carrying more positive charges per molecule. Interestingly, comparison of the oligomer 

containing 30 Stp units (MW 8.3 kDa) with the same molecule carrying two terminal 

cysteines for further disulfide-based stabilization did not reveal any differences in polyplex 

stabilization and dissociation. This contrasts previous findings with a wide spectrum of 

smaller oligomers where the cysteine modification displayed an essential contribution to 

polyplex stabilization [63, 132]. Similarly, the effect of substituting Stp for Sph, which 
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resulted in enhanced pDNA complexation in studies using oligomers with lower number of 

building block units [66, 68], was attenuated in the case of the long oligomers with 20 or 30 

Stp (or Sph) units per oligomer. -alanine incorporation, as it was 

implemented in the [Stp5-ßA]6-W oligomer, clearly diminished the pDNA binding ability. This 

finding points out that not only the MW and number of positive charges, but also the charge 

density plays an important role for the electrostatic interaction of the polycation with the 

polyanionic nucleic acid. The results of the binding and polyplex stability assays are in 

accordance with the measurements of the particle sizes, indicating that only at a certain 

length threshold (> 10 Stp units) the Stp oligomers are able to form compact nanosized 

particles with pDNA. 

Endosomal protonation is a key prerequisite for the transfection activity of PEI [25, 139-141]. 

Both the number of protonatable amines in a row in one diaminoethane building block [66] 

as well as the number of repeated building block units might influence the buffering profile. 

Measurement of the buffer capacities of Stp oligomers with increasing length, Sph oligomers 

and LPEI resulted in very similar values of around 15-20 % differential protonation between 

pH 5.0 and 7.4, independent of the molecular weight. Previous findings that Sph analogs 

(with 4 protonatable amines in a row) displayed improved endosomal buffering compared to 

Stp oligomers (with 3 protonatable amines in a row) are most likely only applicable to 

smaller oligomers with lower amount of building block units and might not apply for these 

longer structures with 20 or more units. The gene transfer experiments show a clear 

increase of transfection efficiency with increasing MW. Interestingly, Stp15-W with a MW of 

around 4.3 kDa exceeded the LPEI transfection level but only at the highest tested N/P ratio 

of 24. Stp30-W, containing 91 protonatable nitrogens, displayed a greater gene transfer than 

LPEI already at N/P ratio 3, indicating the excellent capability of these carrier systems for 

pDNA delivery. As Stp40-W achieved similar pDNA transfection levels but did not exceed the 

performance of Stp30-W, we assume that an optimum length was reached at around 30 

units and further elongation does not result in a greater benefit. Also the cysteine-

terminated Stp30-W analog did not further increase luciferase expression levels, confirming 

that for these long Stp oligomers the disulfide bond-mediated polyplex stabilization does not 

provide a benefit. According to the findings that exchanging Stp for Sph did not significantly 

alter the buffering capacity and DNA complexation ability of the oligomers Sph20-W and 

Sp30-W, also the luciferase gene transfer was at the same high level as for the original Stp 
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oligomers. The observation that the Stp30- -alanine incorporation after every 

fifth Stp unit clearly reduced the gene transfer activity, underlines the influence of the 

microstructure of the oligomers, especially the charge density determining the nucleic acid 

binding ability. 

Since the cytotoxicity of the cationic polymer PEI is one of the major concerns for the use as 

a carrier for gene delivery, the comparison between LPEI and the new Stp oligomers is 

particularly relevant. PEI is known to cause toxic effects by versatile mechanisms such as 

cytosolic and mitochondrial membrane damage as well as necrotic-like and apoptotic 

changes [123, 124, 147-149]. The CellTiter®Glo cytotoxicity assay revealed an at least 10-fold 

reduction of toxicity for the transfection-competent Stp oligomers in comparison to the 

commonly used LPEI. Cytotoxicity correlates with MW. Not only the lower MW of Stp30-W, 

but also the succinate spacer between the oligoamine units may contribute to the favorable 

biocompatibility of the Stp oligomers over standard PEIs. In fact, previous work 

demonstrated about 10-fold reduced toxicity of randomly branched PEI 25 kDa upon partial 

amidation with propionic or succinic acid [46].  

5.2 Characterization of oligo(ethanamino)amides by capillary electrophoresis and Taylor 

dispersion analysis 

The application of CE to sequence-defined oligo(ethanamino)amides of increasing length by 

our collaboration partners (Xiaoyun Jin, Dr. Laurent Leclercq, Prof. Dr. Hervé Cottet, U, 

Montpellier) turned out to be a useful tool for the analytical characterization of the 

electrophoretic behavior, providing new insights into charge and size distribution as well as 

possible interactions between the oligomers and their environment.  

Electropherograms in acetic acid show a high electrophoretic mobility for all oligomers, as it 

can be expected due to the high extent of protonation at the low pH. Furthermore, it can be 

recognized that the dependence of mobility on molar mass for evenly charged small 

polyelectrolytes is non monotonous. These results are consistent with previous findings 

revealing that small oligomers (MW < 2000) present a larger range of increasing mobility 

with increasing chain length, whereas charged molecules of intermediate MW (2000  

20000) display a slightly decreased mobility [150]. The increase of mobility with molar mass, 

typical for MWs of < 2000, is due to hydrodynamic coupling. Comparing a dimer and a 

monomer, the charge is multiplied by two while the friction coefficient of the dimer is less 
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than twice the friction coefficient of the monomer. Therefore the mobility that results from 

the ratio of charge to friction increases from monomer to dimer. This is true for oligomers 

with MW of ~1000-2000. For higher MWs, the mobility tends to decrease slowly for two 

reasons. First, there is a screening of the previously described hydrodynamic coupling effect 

by the friction of the counter ions. For that reason the friction coefficient tends to become 

proportional to the MW. The other reason is the occurrence of counter ion condensation, 

this means ion pair formation decreasing the effective charge. For higher molar mass 

(typically above MW 20 000), the mobility is independent of the size since both effective 

charge and friction are proportional to the MW. Cottet et al. showed that a change from 

rod-like to coil conformation accompanies the observation of an intermediate oligomer size 

with maximum mobility and the following slight decrease until a constant mobility is reached 

for oligomers or polymers of high MW [150]. 

-aminocaproic acid. The decreasing 

electrophoretic mobility with increasing oligomer length, observed in both buffer solutions 

(acetic acid and -aminocaproic acid), can be explained by counter ion condensation and 

screening of the hydrodynamic coupling that increases the frictional coefficient. However, 

inversed correlation was observed in HEPES buffer, meaning increased mobility with 

increasing oligomer length. This abnormal behavior might be explained by specific 

interactions of HEPES with the oligomer, which at the applied pH of 7.4 offers both cationic 

charges for electrostatic interactions and unprotonated domains for hydrophobic 

interactions or hydrogen bond formation. Interaction with HEPES seems to be much stronger 

with the smallest oligomers, leading to lower mobilities. 

Application of CGE by addition of dextran was expected to show a size-dependant 

electrophoretic mobility. In a gel of 5 % dextran, the mobility of all oligomers was 

significantly decreased and peak broadening was observed likely due to higher resolution in 

molar mass. The desired effect of better resolution with a higher dextran concentration of 

10 % was not observed because at this high dextran concentration peak broadening occured 

and the results were hardly repeatable. Interactions of the large dextran molecules with the 

oligomers have to be taken into account as possible reasons. Application of other polymers 

for gel formation should be considered in the future to improve the size-based separation of 

the oligomers. 
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The opposing correlations between the electrophoretic mobility and the MW of the analyzed 

oligomers, which were observed in the buffer systems of differing pH values, demonstrate 

the complexity of the possible interactions that can occure between the oligomers and the 

surrounding buffer components. The observed changes of the electrophoretic mobility at 

different pH values allow assumptions on possible conformations, which could be adopted 

by the oligomers in dependence of their protonation status and thus their cationic charge 

density. 

Similar findings were made in TDA, which was used for determination of the hydrodynamic 

radius of the oligomers. First measurements in HBG buffer resulted in quite small Rh values, 

which can be attributed to repulsive interactions with the high concentrated glucose 

lowering the apparent diffusion coefficient. This presumption was verified by much higher 

radius (1.94 nm instead of 0.78 nm for Stp30-W) in HEPES buffer without glucose. The 

expected correlation of increasing hydrodynamic radius with increasing MW could be shown 

for the oligomers with 10, 20 and 30 Stp units, but the longest oligomer with 40 units 

displayed a smaller size, similar to the oligomer consisting of 20 Stp units. This aberration 

could be a consequence of a higher proportion of small impurities in the sample leading to a 

lower average size for the Stp40-W sample. It might be also explained by a conformational 

change at a certain length modifying the size of the oligomer. 

A further interesting aspect in regard to conformational considerations is to set the Rh value, 

determined by TDA experiments, in relation to the contour length, which can be estimated 

with the exact oligomer structure and the length of chemical bonds. The assumption that the 

oligomer Stp30-W has a contour length of around 50 nm, is based on the knowledge of the 

contour length of one diaminoethane unit of polyethylenimine in a semiprotonated state 

(0.29 nm) [127] and the contour length of the amino acid backbone (0.38nm) [151]. In 

relation to the determined diameter of 3.88 nm (determined in HEPES pH 7.3 in TDA) it is 

almost 13-fold larger, which allows the conclusion that the linear oligomers adopt a rather 

coiled form in solution and still leaves the question open, how such a long structure can be 

condensed to such a small diameter. The reason for the appearance of two populations of 

different sizes in some of the buffer solutions also remains unclear but can most likely be 

explained by different conformational assemblies, although to a certain extent polydispersity 

cannot be excluded. 
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Assessing the variation of the hydrodynamic radius at different pH values, an increase of Rh 

values could be observed at acidic pH below 2. This effect is in accordance with the 

knowledge of a conformational change from the entangled gauche conformation in the 

unprotonated and semiprotonated state of PEI, to the stretched, antiperiplanar 

conformation in the fully protonated state, resulting in an increase of the contour length 

from 0.29 nm to 0.38 nm [152]. 

 

Figure 43. Conformational change of the diaminoethane motif in dependence of the protonation 

state. Modified from Wagner [127] and Ziebarth & Wang [153]. 

Although the results obtained by CE and TDA experiments are still in a preliminary state, 

they demonstrate the suitability of these sophisticated techniques to characterize 

oligo(ethanamino)amide carriers and get new insights in their behavior as polycationic 

species. Leclercq et al recently combined TDA and CE for analysis of polyelectrolyte 

complexes [154]. Application of this method for polyplex characterization opens up the 

possibility to determine the charge stoichiometry of the polycationic carrier and the 

polyanionic nucleic acid. In case of polydisperse samples, it could furthermore elucidate 

which population associates preferentially to the DNA and help to quantify the fraction of 

excess free oligomer in the polyplex. The determination of different sizes of disulfide-linked 

di-, oligo- or polymers would present a further interesting aspect, providing deeper insights 

in the physicochemical properties of the polyplexes, which help to further optimize the 

carrier systems. 

5.3 Optimization of comb-like oligomers for pDNA delivery  

Based on the knowledge of structure-activity relationships of an already existing library of 

sequence-defined cationic carriers for pDNA delivery [111], new comb-like structures were 

designed and synthesized by attaching the artificial amino acid Stp to an oligolysine 

backbone and inserting different natural amino acids between the lysines in the backbone 
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(Scheme 3b). Several of the obtained structures containing the spacer amino acids alanine, 

beta-alanine, histidine or tryptophane with or without terminal cysteines were screened for 

DNA transfection efficiency. Based on these results, three structures were chosen for further 

carrier optimization. As previously reported for linear structures [63, 68, 111] also for the 

comb structures the terminal cysteines demonstrated beneficial stabilization of polyplexes 

by means of disulfide formation and were therefore maintained in the synthesis of 

additional structures. The knowledge that histidine enhances endosomal release due to a 

beneficial buffering profile, which could be confirmed by the observed increase of 

transfection efficiency also for the comb structures, led to the selection of a histidine-

containing structure. Corresponding control sequences with an alanine spacer for the 

determination of the specific histidine effect as well as without any spacer molecule, to 

visualize a possible spacer effect, completed the selection. Based on these three backbone 

structures a small library of twelve oligomers was synthesized via attachment of the four 

artificial amino acids Sdt, Stt, Stp and Sph (differing in the numbers of cationizable nitrogens 

from two to five) to the oligolysine backbone. The biophysical properties of the oligomers 

and their performance in biological application were then compared. In analyses of comb 

oligomers with the different oligoamino acid building blocks, the ability of DNA complexation 

was investigated by EtBr assay. The weakest DNA binding was revealed for Sdt oligomers, 

implying that these structures might be the less suitable ones amongst the tested carriers. 

Consistent with the weak DNA binding, pH titrations revealed a less protonated state at pH 

7.4 and therefore potentially less electrostatic interactions with the negatively charged DNA.  

Sdt structures were not able to form small and stable particles. The formation of big 

aggregates of around 2 µm for Sdt-cmb-0 may account for the very low cellular uptake. Also 

polyplexes with Sdt-cmb-A and Sdt-cmb-H displayed rather large particle sizes and only a 

small fraction of cells internalized. Nevertheless, some transfection efficiency was observed 

for the Sdt oligomers in the luciferase assay.  A possible reason might be an improved 

endosomal release based on effective endosomal buffering and protonation. Sdt comb 

oligomers display the highest buffer capacity between pH 5.0 and 7.4 amongst the tested 

oligomers. In contrast, Stt oligomers showed the worst buffering capacity. The particle sizes 

were around 2- fold higher compared to the polyplexes formed with the Stp structures. The 

latter ones resulted in the smallest particles with the highest positive zeta potential. 
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Together with the high buffering capacity the beneficial nanoparticle characteristics mark 

the Stp comb structures as potent carriers for gene delivery.  

The best-performing oligomer in terms of DNA transfection, Stp-cmb-H, was chosen as an 

exemplary structure in order to demonstrate the potential of further functionalization of 

comb-type structures. Taking advantage of the orthogonality of the Dde and Alloc protecting 

-amino groups of the oligolysine backbone can be specifically modified with 

 a proof of this concept a comb structure was 

synthesized resembling Stp-cmb-H but carrying one additional lysine to which a folic acid-

bearing PEG-ligand was attached. Although the complex synthetic procedure requires 

further optimization, the suitability of the strategy and the benefit of the functionalization 

were demonstrated.  

5.4 Comparison of comb and linear topology of oligomers for pDNA delivery 

To investigate which properties can be attributed to the specific comb topology, linear 

control Stp sequences were synthesized and directly compared in terms of biophysical 

properties and biological performance. To further explore to which extent the different 

behavior is a consequence of the topology or an effect of the variation of the protonatable 

ethylenamine building block length, the same comparison was performed with the Sph-

containing comb and linear structures. 

Superior pDNA binding of the histidine-free linear structures was displayed by the EtBr assay, 

whereas for the histidine-containing structures a similar pDNA condensation ability of linear 

and comb structures could be observed, both in case of Stp and Sph based oligomers. A 

possible explanation is that histidine also contributes to the pDNA complexation ability and 

polyplex stabilization of these structures, therefore mitigating the difference in performance 

of comb and linear type. Furthermore, the tests revealed that at N/P 12 the DNA 

condensation was complete for all oligomers, so that this N/P ratio was used for further 

studies aimed at comparing particle size, zeta potential, cellular uptake and association. 

A most prominent distinction of comb and linear structures was found in the buffer capacity 

at the physiological relevant pH range between 5.0 and 7.4. Kataoka et al. proposed the so-

called -

number of protonatable amino ethylene units provide high buffer capacity in this pH range 
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and therefore a high transfection efficiency, while polymers with odd-numbered amino 

ethylene side chains display low buffer capacity and hence also low transfection efficiency. 

This assumption is based on the fact that changes in protonation from pH 7.4 to pH 5.0 occur 

for even-numbered structures, while electrostatic repulsion prohibits further protonation for 

odd-numbered structures, resulting in a lower buffer capacity. This model is confirmed in the 

current study by the comparison of the buffering capacity of Sdt, Stt, Stp and Sph building 

blocks. Sdt and Stp-containing comb structures with even-numbered protonatable amines 

show a higher buffer capacity than the odd-numbered Stt and Sph containing structures. 

Nevertheless, only partial accordance with the hypothetical model can be found in the 

comparison of comb and linear topology. Stp units in the comb sequences provide four 

protonatable amines (even number) and in the linear structures only three (odd number). 

Therefore the total buffer capacity should be higher for the comb structures, while in 

comparison of the Sph combs (five protonatable amines = odd number) with Sph linear 

structures (four protonatable amines = even number) the linear structures were expected to 

provide a higher total buffer capacity. The fact that free amines of the lysine in the linear 

structures result in the same total number of protonatable amines in both structure types 

shows that not the total number, but the intramolecular localization plays a crucial role. In 

both cases, comparing Stp and Sph comb and linear structures, a similar total buffer capacity 

bet -

with regard to the buffering profile. The results clearly demonstrate that an odd number of 

protonatable amines in row leads to a maximum buffer capacity in the pH range from 6.5 to 

7.4 and an even number of protonatable amines results in a maximum buffer capacity at pH 

5.0 to 6.5. Especially the higher buffer capacity from pH 5.0 to 6.5, which corresponds to the 

endosomal pH, may be contributing to an enhanced endosomal release. These findings give 

deeper insight into this phenomenon and contribute to understanding the superior 

performance in gene transfer of structures with higher buffering capacity at the relevant pH 

range. Remarkably, for all types of carriers the histidine-containing sequences displayed the 

highest gene transfer consistent with the general notion that an increased buffer and 

ults in terms of buffer capacity, the Stp 

building block is more beneficial when using it in the comb topology. 
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The comb and linear topology resulted in a further clear difference in regard to cellular 

association and internalization. In the cell association assay performed by incubation at 0 °C 

(to block internalization), after one hour the polyplexes formed with linear structures 

showed an increased cell association compared to the comb structures. After four hours the 

measured cell binding of polyplexes of comb and linear sequences was similar.  Surprisingly, 

all Stp and Sph comb structures displayed an enhanced cellular uptake in comparison to 

their linear counterparts. This trend was observed already at one hour incubation time and 

was clearly visible after four hours. As no remarkable differences could be observed for the 

size and zeta potential of comb and linear structures, these studies clearly demonstrate that 

the uptake process is considerably influenced by the carrier topology. Whether the oligomer 

topology alters the nanoparticle surface exposed in cellular interaction, or whether the 

different free oligomers trigger cell uptake processes in a different manner, remains to be 

investigated. These observations are in agreement with other studies showing that 

nanoparticle shape and surface can have influence on the cellular uptake and binding on the 

cell surface. 

Interestingly, the different transfection efficiencies of oligomers without spacer or with 

alanine spacer indicate that not only the total amount of cationic charges and buffering may 

be important, but also the orientation and distance of the charged domains, which is 

changing the charge density and hence several biophysical properties. 
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6 SUMMARY 

Despite considerable success in the use of viral vectors for gene delivery, limitations in 

connection with the potential for immune reactions and insertional mutagenesis shifted the 

attention towards the application of synthetic carriers with lipids, polymers and peptides as 

most prominent examples. Among the cationic polymers, linear polyethylenimine (LPEI) is 

still a prevalent standard reagent for DNA transfection. A huge number of modifications 

have so far been applied in order to improve the properties of this carrier in terms of 

effectivity and cytotoxicity with partial success, but the eminent drawback of its polydisperse 

nature remains a major concern for a potential use in the clinics.  

In the current doctoral study novel sequence-defined oligo(ethanamino)amide carriers were 

assembled by solid-phase peptide synthesis (SPPS). Artificial oligoamino acids such as 

succinyl-tetraethylene pentamine (Stp) or succinyl-pentaethylene hexamine (Sph) were 

combined with various natural amino acids in defined sequence and topology. The 

monodispersity and precision of the synthesized oligomers allowed the systematic study of 

clear structure-activity relations, such as the effect of increasing MW or backbone topology 

on the most relevant parameters for gene transfer, including pDNA binding, polyplex 

stabilization, cell uptake, endosomal buffering, transfection efficiency and cytotoxicity. 

In the first part the step by step elongation of precise linear oligo(ethanamino)amides 

synthesized via SPPS was carried out. The expectation was that containing only the 

diaminoethane motif but no other functional domains, these oligomers should ideally mimic 

polydispersity and cytotoxicity. Moreover the high gene transfer activity should be 

maintained or even enhanced. The applied strategy demonstrated the influence of 

increasing MW and allowed to determine an optimum carrier length of 30 Stp units 

(representing 90 protonatable nitrogens). This gene carrier based on the diaminoethane 

motif showed six-fold higher transfection efficiency and ten-fold lower cytotoxicity than the 

conventionally used LPEI. 

In the second part of this thesis the effect of topological changes on specific carrier 

properties for pDNA delivery was investigated. By means of SPPS a new comb topology was 

designed, where several different artificial amino acids containing the diaminoethane motif 



Summary  89 

were attached to a lysine backbone. Different spacer amino acids (alanine, beta alanine, 

histidine) were introduced to the lysine backbone and distinct effects could be attributed to 

them. The most profitable modification was the insertion of histidine, which enhanced the 

endosomal buffering due to its protonation of the imidazole group at the physiological 

relevant pH 6. Consequently, the transfection efficiency was significantly increased 

emphasizing the endosomal release as a crucial step among the hurdles of nucleic acid 

delivery. In the next step the most efficient comb oligomers were directly compared to linear 

control sequences to derive more detailed structure-activity relationships and to show the 

explicit effect of the topology. This direct comparison revealed that a change in topology of 

sequence-defined oligoamino acid-based pDNA carriers from linear to comb-like design 

resulted in a distinct change in buffer capacity profile of oligomers and intracellular uptake 

of corresponding pDNA polyplexes. For the Sph oligomers the linear structures showed an 

increased buffer capacity at endosomal pH, but the comb structures displayed a higher 

cellular uptake. These two opposing trends resulted in an only slightly higher transfection 

efficiency of the comb structures. For the Stp oligomers, the comb structures displayed the 

favorable endosomal buffering profile and mediated an enhanced cellular uptake. This 

additive comb benefit contributed to a strongly enhanced efficacy of Stp combs for pDNA 

delivery, determining them as promising candidates for further applications.  

In summary, this doctoral study points out the relevance of two criteria  size and topology  

for the design of oligomer carriers for nucleic acid delivery. The option of designing precise 

sequence-controlled structures offers the opportunity of deriving detailed structure-activity 

relationships. In the future, combining the gained knowledge of the systematic sequence 

variation and modification could allow designing an ideal carrier, comprising most essential 

features  stability during the delivery process, cargo release at the desired place of action 

and biocompatibility  that are crucial for the therapeutical use of synthetic carriers for 

nucleic acid delivery. 
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8 APPENDIX 

8.1 Abbreviatons 

AA   Amino acid 

ACN   Acetonitrile 

Alloc   Allyloxycarbonyl 

AMD   Age-related macular degeneration 

AVET   Adenovirus-enhanced transferrinfection 

boc   Tert- butyloxycarbonyl 

bp   Base pair 

brPEI   Branched polyethylenimine 

CE   Capillary electrophoresis 

cmb   Comb 

CMV   Cytomegalovirus 

CpG   Cytosine phosphatidyl guanine 

CPP   Cell-penetrating peptide 

CQ   Chloroquine 

Da   Dalton 

DAPI   4',6-diamidino-2-phenylindole 

DBU   1,8-diazabicycloundec-7-ene 

DCM   Dichloromethane 

DCVC   Dry column vacuum chromatography 

Dde   N-(1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl) 

DETA   Diethylene triamine 

DHB   Dihydroxy benzoic acid 

DIPEA   Diisopropylethylamine 

DLS   Dynamic light scattering 

DMBA   Dimethyl-barbituric acid 

DMEM   Dulbecco´s modified eagle´s medium 

DMF   Dimethylformamide 

DNA   Deoxyribonucleic acid 

dsRNA   Double-stranded RNA 

EDTA   Ethylenediamine tetraacetic acid 

EHCO N-(1-aminoethyl)iminobis[N-(oleicyl-cyteinyl-histinyl-1-

Aminoethyl)propionamide] 

EPR   Enhanced permeability and retention 

ESI   Electrospray ionization 

EtBr   Ethidium bromide 

EtOH   Ethanol 

FCS   Fetal calf serum 

FDA   Food and Drug Administration 

Fmoc   9-Fluorenylmethyloxycarbonyl 

FolA   Folic acid 

HBG   HEPES buffered glucose 

HBTU 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate 
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HEPES   N-(2-hydroxyethyl)piperazine-N´-(2-ethanesulfonic acid) 

HOAc   Acetic acid 

HOBt   1-hydroxybenzotriazole 

HPC   Hydroxypropylcellulose 

HPLC   High-performance liquid chromatography 

IEX   Ion exchange 

lin   Linear  

LNA   Locked nucleic acid 

LMW   Low molecular weight 

LPEI   Linear polyethylenimine 

Luc   Luciferase 

MALDI-TOF  Matrix assisted laser desorption ionization  time of flight 

MeOH   Methanol 

miRNA   MicroRNA 

mRNA   Messenger RNA 

MS   Mass spectrometry 

MTBE   Tert-butyl methylether 

MTT   Methylthiazolyldiphenyl-tetrazolium bromide 

MW   Molecular weight 

N/P    (protonable) nitrogens/phosphates 

NCL   Native chemical ligation 

NEM   N-ethylmorpholine 

NMP   N-methylpyrrolidone 

NMR   Nuclear magnetic resonance 

Npys   3-nitropyridylsulfenyl 

ODN   Oligodeoxynucleotide 

PAA   Polyamidoamine 

PAMAM  Poly(amidoamine) dendrimer 

PDI   Polydispersity index 

pDNA   Plasmid DNA 

PEG   Polyethylene glycol 

pCMVLuc Plasmid encoding firefly luciferase under the control of CMV promotor 

PEHA   Pentaethylene hexamine 

PEI   Polyethylenimine 

PLL   Poly(L-lysine) 

PMO   Phosphorodiamidate morpholino oligomer 

PPI   Polypropylenimine 

PyBOP   Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate 

Pys   Pyridylsulfenyl 

RISC   RNA-induced silencing complex 

RLU   Relative light units 

RNA   Ribonucleic acid 

RNAi   RNA interference 

RP-HPLC  Reversed phase high-performance liquid chromatography 

RPMI   Cell culture medium developed in the Roswell Park Memorial Institute 

RT   Room temperature 

SCID   Severe combined immunodeficiency 

SD   Standard deviation 
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Sdt   Succinyl-diethylentriamine 

SEC   Size exclusion chromatography 

siRNA   Small interfering RNA 

SNALP   Stabilized nucleic acid lipid particle 

Sph   Succinyl-pentaethylenhexamine 

SPPS   Solid-phase peptide synthesis 

Stp   Succinyl-tetraethylenpentamine 

Stt   Succinyl-triethylentetramine 

TBE   Tris-boric acid-EDTA buffer 

TCEP   Tris(2-carboxyethyl)phosphine 

TDA   Taylor dispersion analysis 

TEA   Triethylamine 

TEPA   Tetraethylene pentamine 

TETA   Triethylene tetramine 

TFA   Trifluoroacetic acid 

TFE   Trifluoroethanol 

THF   Tetrahydrofuran 

TIS   Triisopropylsilane 

TLC   Thin layer chromatography 

TP-10   Transportan-10 

UV   Ultra violett 

VEGF   Vascular endothelial growth factor 

8.2 List of all oligomers 

8.2.1 Long linear oligo(ethanamino)amide carriers 

Compound 

Id 

Sequence Calculated 

molecular weight 

Detected 

molecular weight[a] 

Protonatable 

amines 

681 Stp5-W 1561,02 1566,6[b] 16 

643 Stp10-W 2917,82 2939,7[c] 31 

644 Stp15-W 4274,61 4294,9[c] 46 

645 Stp20-W 5650,56 n.d.[d] 61 

554 Stp30-W 8345,0 n.d.[d] 91 

555 Stp40-W 11058,59 - 121 

556 [Stp5- 6-W 8876,51 - 91 

682 C-Stp30-W-C 8551,29 - 91 

683 Sph20-W 6492,77 - 81 

684 Sph30-W 9637,04 - 121 

[a] determined by MALDI-TOF mass analysis, [b] [M+H]+ [c] [M+Na]+ [d] n.d. = not detectable 
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8.2.2 Comb structure oligomers 

Compound 

Id 

Sequence Code Calculated 

molecular weight  

Protonatable 

amines 

545 C-[K(Stp)]4-C - 1822,43 13 

547 C-[H-K(Stp)]4-C - 2370,98 13 

623 A-[K(Stp)]8-A - 3356,42 25 

627 C- -K(Stp)]8-C Stp-cmb-  3989,18 25 

621 C-[W-K(Stp)]8-C Stp-cmb-W 4910,23 25 

686 A-[H2-K(Stp)]8-A - 5550,65 25 

553 C-[H2-K(Stp)]8-C - 5614,78 25 

687 C-[H2-K(Stp)]12-C - 8340,09 37 

632 C-[K(Sdt)]8-C Sdt-cmb-0 2731,47 17 

633 C-[A-K(Sdt)]8-C Sdt-cmb-A 3300,09 17 

634 C-[H-K(Sdt)]8-C Sdt-cmb-H 3828,58 17 

635 C-[K(Stt)]8-C Stt-cmb-0 3076,01 25 

636 C-[A-K(Stt)]8-C Stt-cmb-A 3644,63 25 

637 C-[H-K(Stt)]8-C Stt-cmb-H 4173,13 25 

622 C-[K(Stp)]8-C Stp-cmb-0 3420,55 33 

551 C-[A-K(Stp)]8-C Stp-cmb-A 3989,18 33 

552 C-[H-K(Stp)]8-C Stp-cmb-H 4517,67 33 

629 C-[K(Sph)]8-C Sph-cmb-0 3765,1 41 

630 C-[A-K(Sph)]8-C Sph-cmb-A 4333,72 41 

631 C-[H-K(Sph)]8-C Sph-cmb-H 4862,21 41 
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8.2.3 Linear control sequences 

Compound 

Id 

Sequence Code Molecular weight 

[g/mol] 

Protonatable 

amines 

625 C-(Stp-K)8-C Stp-lin-0 3420,55 33 

626 C-(A-Stp-K)8-C Stp-lin-A 3989,18 33 

628 C-(H-Stp-K)8-C Stp-lin-H 4517,67 33 

648 C-(Sph-K)8-C Sph-lin-0 3765,1 41 

649 C-(A-Sph-K)8-C Sph-lin-A 4333,72 41 

650 C-(H-Sph-K)8-C Sph-lin-H 4862,21 41 

 

8.3 Analytical data 

8.3.1 NMR spectra 

1H-NMR spectra were recorded either at 400 or 500 MHz in deuterium oxide. 

Id:681             Sequence: Stp5-W 

 

-2.7 (m, 20H, -CO-CH2-CH2-CO-), 2.7 - -3.8 (m, 

80H, -CH2- Tepa), 4.5-4.6 (m, 1H, H tryptophane), 7.1-7.7 (m, 5H aromatic H, tryptophane) 
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Id:643           Sequence: Stp10-W 

 

Id:644           Sequence: Stp15-W 
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Id:645           Sequence: Stp20-W 

 

Id:554           Sequence: Stp30-W 
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Id:555           Sequence: Stp40-W 

 

Id:556               Sequence: [Stp5- 5-W 
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Id:682                Sequence: C-Stp30-W-C 

 

Id:683                      Sequence: Sph20-W 
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Id:684                      Sequence: Sph30-W 

 

 

NMR spectra of Boc-protected diaminoethane motif containing building blocks 
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Id: 545                Sequence: C-[K(Stp)]4-C 

- -2.6 (m, 16H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

-3.6 (m, 64H, -CH2- Tepa), 4.0-

cysteine) 

Id: 626                Sequence: A-[K(Stp)]8-A 

-1.8 (m, 64 , ), 2.4 -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -

), 3.1-3.6 (m, 128H, -CH2- Tepa), 4.0- ) 

Id: 627          Sequence: C- -K(Stp)]8-C 

- -2.6 (m, 48H, -CO-CH2-CH2-CO-, -alanine), 

2.6 - -alanine), 3.1-3.6 (m, 128H, -CH2- Tp), 4.0-4.6 

 

Id: 621           Sequence: C-[W-K(Stp)]8-C 

- -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

-3.6 (m, 128H, -CH2- Tepa), 4.0-4.6 (m, 16H, 

 7.1-7.7 (m, 40H aromatic H, tryptophane) 
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Id: 686          Sequence: A-[H2-K(Stp)]8-A 

-1.8 (m, -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -

-3.6 (m, 128H, -CH2- Tepa), 4.0-

lysine, histidine, alanine) 

Id: 553           Sequence: C-[H2-K(Stp)]8-C 

-1.8 (m, -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

-3.6 (m, 128H, -CH2- Tepa), 4.0-

lysine, cysteine, histidine), 7.3-7.5 (s,16H histidine), 8.6-8.7 (s, 16H histidine) 

Id: 632                Sequence: C-[K(Sdt)]8-C 

- -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

-3.6 (m, 64H, -CH2- Deta), 4.0-

cysteine) 

Id: 633            Sequence: C-[A-K(Sdt)]8-C 

1.0 - -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -

-3.6 (m, 64H, -CH2- Deta), 4.0-

cysteine, alanine) 

Id: 634            Sequence: C-[H-K(Sdt)]8-C 

1.0 - -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

-3.6 (m, 64H, -CH2- Deta), 4.0-

lysine, cysteine, histidine), 7.3-7.5 (s, 8H histidine), 8.6-8.7 (s, 8H histidine) 

Id: 635                 Sequence: C-[K(Stt)]8-C 

1.0 - -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

-3.6 (m, 96H, -CH2- Teta), 4.0-

cysteine) 
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Id: 636             Sequence: C-[A-K(Stt)]8-C 

1.0 - -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -

-3.6 (m, 96H, -CH2- Teta), 4.0-

cysteine, alanine) 

Id: 637             Sequence: C-[H-K(Stt)]8-C 

- -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

-3.6 (m, 96H, -CH2- Teta), 4.0-

lysine, cysteine, histidine), 7.3-7.5 (s, 8H histidine), 8.6-8.7 (s, 8H histidine) 

Id: 622                Sequence: C-[K(Stp)]8-C 

- -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

-3.6 (m, 128H, -CH2- Tepa), 4.0-

cysteine) 

Id: 551            Sequence: C-[A-K(Stp)]8-C 

- -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -

-3.6 (m, 128H, -CH2- Tepa), 4.0-4

lysine, cysteine, alanine) 

Id: 552            Sequence: C-[H-K(Stp)]8-C 

- -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

-3.6 (m, 128H, -CH2- Tepa), 4.0-

lysine, cysteine, histidine), 7.3-7.5 (s, 8H histidine), 8.6-8.7 (s, 8H histidine) 

Id: 629               Sequence: C-[K(Sph)]8-C 

1.0 - -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

steine), 3.1-3.6 (m, 160H, -CH2- Peha), 4.0-

cysteine) 

Id: 630           Sequence: C-[A-K(Sph)]8-C 

1.0 - -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -

1-3.6 (m, 160H, -CH2- Peha), 4.0-

lysine, cysteine, alanine) 
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Id: 631           Sequence: C-[H-K(Sph)]8-C 

1.0 - -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

1-3.6 (m, 160H, -CH2- Peha), 4.0-

lysine, cysteine, histidine), 7.3-7.5 (s, 8H histidine), 8.6-8.7 (s, 8H histidine) 

Id: 625                  Sequence: C-(Stp-K)8-C 

- -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

-3.6 (m, 128H, -CH2- Tepa), 4.0-

cysteine) 

Id: 626              Sequence: C-(A-Stp-K)8-C 

- -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -

3.1 -3.6 (m, 128H, -CH2- Tepa), 4.0-

lysine, cysteine, alanine) 

Id: 628             Sequence: C-(H-Stp-K)8-C 

(ppm): 1.0 - -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

-3.6 (m, 128H, -CH2- Tepa), 4.0-

lysine, cysteine, histidine), 7.3-7.5 (s, 8H imidazole of histidine), 8.6-8.7 (s, 8H histidine) 

Id: 648                 Sequence: C-(Sph-K)8-C 

1.0 - -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

-3.6 (m, 160H, -CH2- Peha), 4.0-

cysteine) 

Id: 649             Sequence: C-(A-Sph-K)8-C 

1.0 - -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -

-3.6 (m, 160H, -CH2- Peha), 4.0-

lysine, cysteine, alanine) 

Id: 650             Sequence: C-(H-Sph-K)8-C 

1.0 - -2.6 (m, 32H, -CO-CH2-CH2-CO-), 2.6 -3.1 (m, 

-3.6 (m, 160H, -CH2- Peha), 4.0-

lysine, cysteine, histidine), 7.3-7.5 (s, 8H histidine), 8.6-8.7 (s, 8H histidine) 
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8.3.2 Additional HPLC chromatograms of long linear Stp and Sph oligo(ethanamino)amides, 

comb structure oligomers and linear control sequences 
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