
Dissertation zur Erlangung des Doktorgrades 

der Fakultät für Chemie und Pharmazie 

der Ludwig-Maximilians-Universität München 

 

  

 

 

Regulation of the Cytosolic Stress Response:  

Identification of Positive and Negative Modulators 

by a Genome-Wide RNA Interference Screen 

 

 

 

 

 

  

vorgelegt von 

Christian Frank Löw 

aus Rotenburg, Deutschland 

 

2014



 

Erklärung 

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. 

November 2011 von Herrn Prof. F. Ulrich Hartl betreut. 

 

 

 

Eidesstattliche Versicherung 

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. 

 

München, am 27.01.2014 

 

 

 

       

         

 

 

 

 

 

 

 

Dissertation eingereicht am 27.01.2014 

1. Gutachter Prof. Dr. F. Ulrich Hartl 

2. Gutachter PD Dr. Dietmar E. Martin  

Mündliche Prüfung am 18.03.2014 

 



 

Acknowledgement 

I want to thank Prof. Dr. F. Ulrich Hartl for the opportunity to conduct my PhD research in his 

department at the Max Planck Institute of Biochemistry (MPIB). This work has benefited 

greatly from numerous valuable discussions, his intellectual support and scientific 

enthusiasm. I also would like to thank Dr. Manajit Hayer-Hartl for her constant advice and 

suggestions, especially during the publication process of our paper. 

 

I also want to thank my supervisor, Dr. Swasti Raychaudhuri, for all the things I have learned 

from him over the last years and for the correction of this thesis. I am very grateful to have 

met him and that we can share so many unforgettable moments inside and outside of the lab.  

 

I am also very grateful to all collaborators within and outside the department. I sincerely 

acknowledge Dr. Roman Körner for his mass spectrometry expertise and Dr. Stefan Pinkert 

for his assistance during the bioinformatic analysis of the interaction networks. I also would 

like to thank Prof. Dr. Frank Buchholz and his group for providing us with the esiRNA 

library. 

 

I also want to thank all other members of Ulrich´s group for creating such a nice environment 

and all the things we have experienced in the last years. Thank you to Evelyn Frey-Royston, 

Darija Pompino, Silke Leuze-Bütün, and Andrea Obermayr-Rauter for their administrative 

support as well as Verena Marcus, Nadine Wischnewski, Ana Jungclaus, Romy Lange, 

Elisabeth Schreil, Emmanuel Burghardt, Albert Ries, Peter Nagy, Andreas Scaia, and Bernd 

Grampp for their invaluable technical support. 

 

I also would like to thank PD Dr. Dietmar E. Martin for being the co-referee of this thesis and 

of course the other members of my PhD committee: Prof. Dr. Walter Neupert, Prof. Dr. Dieter 

Edbauer, Prof. Dr. Roland Beckmann, and Prof. Dr. Karl-Peter Hopfner.  

 

Sigrun Polier I want to thank for correcting this thesis and her continuous support and love. 

 

Mein herzlichster Dank gilt natürlich auch meinen Eltern Cornelia und Wilfried Löw sowie 

meinem Bruder Marc für ihren Rückhalt und ihre uneingeschränkte Unterstützung in allen 

Lebenslagen. Ihnen möchte ich diese Arbeit widmen.  



Table of Contents  I 

Table of Contents 
 

 

1 Summary ............................................................................................................................ 1 

2 Introduction ........................................................................................................................ 3 

2.1 Proteostasis .................................................................................................................. 3 

2.2 Protein folding ............................................................................................................. 4 

2.2.1 Folding versus aggregation .................................................................................. 4 

2.2.2 Protein folding in vivo and the concept of molecular chaperones ........................ 7 

2.2.3 Major chaperone classes ....................................................................................... 8 

2.3 Protein degradation systems ...................................................................................... 15 

2.3.1 The ubiquitin-proteasome system ...................................................................... 15 

2.3.2 Autophagy .......................................................................................................... 20 

2.3.3 Interconnection between protein degradation pathways .................................... 22 

2.4 Stress-responsive pathways in proteostasis ............................................................... 23 

2.4.1 Challengers of proteostasis ................................................................................. 23 

2.4.2 The cytosolic stress response ............................................................................. 25 

2.4.3 Organelle-specific stress response pathways ..................................................... 31 

2.5 Integration of the proteostasis network and its relation to aging and disease ........... 34 

2.6 Aim of the study ........................................................................................................ 37 

3 Material and methods ....................................................................................................... 39 

3.1 Chemicals and biochemicals ..................................................................................... 39 

3.2 Antibodies .................................................................................................................. 43 

3.3 Media and buffers ...................................................................................................... 44 

3.3.1 Media .................................................................................................................. 44 

3.3.2 Buffers and standard solutions ........................................................................... 44 

3.4 Materials and instruments .......................................................................................... 47 



Table of Contents  II 

3.5 Marker, kits, and enzymes ......................................................................................... 52 

3.5.1 Marker and loading dyes .................................................................................... 52 

3.5.2 Kits ..................................................................................................................... 52 

3.5.3 Enzymes ............................................................................................................. 52 

3.6 Strains and vectors ..................................................................................................... 53 

3.6.1 Bacterial strains .................................................................................................. 53 

3.6.2 Vectors ............................................................................................................... 53 

3.7 Molecular biological methods ................................................................................... 53 

3.7.1 DNA analytical methods .................................................................................... 53 

3.7.2 Purification of plasmid DNA and DNA fragments ............................................ 54 

3.7.3 Generation of expression constructs .................................................................. 55 

3.7.4 Polymerase chain reaction .................................................................................. 55 

3.7.5 Restriction endonuclease digestion and DNA ligation ...................................... 58 

3.7.6 Preparation and transformation of competent E. coli DH5α cells...................... 58 

3.8 Protein biochemical methods ..................................................................................... 59 

3.8.1 Protein quantification ......................................................................................... 59 

3.8.2 Preparation of cell extracts ................................................................................. 59 

3.8.3 SDS-PAGE ......................................................................................................... 59 

3.8.4 Western blotting ................................................................................................. 60 

3.9 Cell biological methods ............................................................................................. 61 

3.9.1 Basic cell culture techniques .............................................................................. 61 

3.9.2 Manipulation of cultured cells ............................................................................ 61 

3.9.3 Cell biological assays ......................................................................................... 63 

3.10 Genome-scale esiRNA screen ................................................................................... 66 

3.10.1 Genome-scale esiRNA screening protocol ........................................................ 66 

3.10.2 Computational and bioinformatic analysis ......................................................... 67 

3.11 Mass spectrometry (MS) ........................................................................................... 67 

3.11.1 SILAC medium and sample preparation ............................................................ 67 



Table of Contents  III 

3.11.2 SDS-PAGE ......................................................................................................... 68 

3.11.3 LC-MS/MS ......................................................................................................... 68 

4 Results .............................................................................................................................. 70 

4.1 Generation and validation of luciferase reporter cell line ......................................... 70 

4.2 Genome-scale RNAi screen for modulators of the heat-shock response .................. 73 

4.3 Biochemical validation of Hsp70 mRNA level after thermal stress.......................... 76 

4.4 Overview of the screening results and functional validation .................................... 78 

4.4.1 Influence of HSR modulators on cellular proteostasis ....................................... 80 

4.4.2 Influence of HSR modulators on formation of nuclear stress bodies................. 81 

4.5 Positive modulators of the HSR ................................................................................ 84 

4.5.1 Regulation of the HSR by multiple nuclear proteins ......................................... 84 

4.5.2 HSR modulators in the cytosol and organelles .................................................. 85 

4.5.3 Role of the cell membrane in stress sensing....................................................... 86 

4.6 Negative modulators of the HSR ............................................................................... 86 

4.7 Nuclear protein network regulating the HSR ............................................................ 87 

4.8 Specific role of EP300 in HSF1 regulation ............................................................... 89 

4.9 Reorganization of the nuclear proteome during heat stress ....................................... 94 

4.10 Role of the proteasome in attenuation of the HSR .................................................. 100 

4.11 HSR regulation after heat-shock and other stresses ................................................ 106 

5 Discussion ...................................................................................................................... 110 

5.1 Identification of novel HSR modulators .................................................................. 111 

5.2 Role of EP300 in regulating the HSR ...................................................................... 112 

5.3 Reorganization of the nuclear proteome during heat stress ..................................... 113 

5.4 Attenuation of the HSR by the proteasome ............................................................. 115 

5.5 Comparing the regulatory networks of heat-shock and other proteotoxic stresses . 115 

5.6 Implications of the HSR in aging and disease ......................................................... 117 

6 References ...................................................................................................................... 119 

7 Appendices ..................................................................................................................... 140 



Table of Contents  IV 

7.1 Tables ....................................................................................................................... 140 

7.2 List of abbreviations ................................................................................................ 168 

 



1 Summary   1 

1 Summary 

The cytosolic stress response, also known as the heat-shock response (HSR), is one of the 

major defense mechanisms activated by cells to maintain the integrity of the cellular proteome 

under proteotoxic environmental conditions. It is characterized by the increased synthesis of 

heat-shock proteins (Hsps), mainly molecular chaperones and proteases which prevent the 

aggregation of misfolded proteins and mediate their refolding or degradation. It is generally 

accepted that the induction of the HSR is coordinated by the heat-shock transcription factor 1 

(HSF1). However, many mechanistic aspects of the HSF1 regulation remain unclear.  

In the present study, a genome-wide RNA interference screen was combined with an 

extensive biochemical analysis and quantitative proteomics to better understand the regulation 

of the HSR upon thermal stress. In the screening experiments novel positive and negative 

modulators of the stress response were identified, including proteins involved in chromatin 

remodeling, transcription, mRNA splicing, DNA damage repair, and proteolytic degradation. 

The diversity of the identified regulators suggests that induction and attenuation of the HSR 

integrate signals from different cellular pathways and are rather multi-factorial processes than 

single gene/protein events. The modulator proteins are localized in multiple cellular 

compartments with the majority having their primary location in the nucleus. A protein-

protein interaction analysis revealed a HSR regulatory network, with chromatin modifiers and 

nuclear protein quality control components occupying hub positions. These observations are 

supported by quantitative proteomics experiments, which showed specific stress-induced 

reorganizations of the nuclear proteome, including the transient accumulation of chaperones 

and proteasomal subunits. 

The histone acetyltransferase EP300 was shown to specifically control the cellular 

level of HSF1 by stabilizing it against proteasomal turnover under normal conditions. 

Moreover, the ubiquitin-proteasome system (UPS) was found to participate in the attenuation 

of the HSR by degrading stress-activated, hyperphosphorylated HSF1. Since HSF1 competes 

with stress-denatured proteins for access to the proteasome, the extent of cellular protein 

damage modulates the rate of HSR attenuation.   

In addition to thermal stress, various other proteotoxic stresses are known to induce 

the HSR such as the proteasome inhibitor MG132 and the triterpenoid celastrol, which 

activates HSF1 by an unknown mechanism. Therefore, the networks regulating HSF1 

activation upon thermal stress, proteasome inhibition and celastrol treatment were compared 

in this study. Whereas there is a large overlap between the sets of regulatory factors activated 
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after heat stress and proteasomal impairment, HSF1 activation after celastrol treatment seems 

to bypass the HSR regulatory network to a large extent. Nevertheless, comparison of the 

regulatory networks under different proteotoxic conditions revealed a set of HSR core 

components, including factors involved in chromatin remodeling, DNA damage repair, RNA 

transport, transcription, and ion transport. The various cellular functions and localizations of 

these core components reinforce the multifaceted nature of the HSR regulation. 

The results obtained in this study can help to identify potential targets for the 

pharmacologic manipulation of the HSR in the treatment of aggregate deposition diseases and 

cancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 Introduction   3 

2 Introduction 

In order to survive and reproduce, living organisms need to adapt to their specific habitat, in 

which they have to cope with a variety of adverse environmental conditions, which challenge 

the integrity of the cellular proteome. Protein homeostasis (proteostasis) – a balanced state of 

all protein components – is a prerequisite for cellular health and survival. A complex quality 

control network has evolved in cells and organisms to maintain proteostasis in the face of 

acute and chronic proteotoxicity. Imbalances in proteostasis result in the activation of 

universal and highly conserved stress response pathways; including the cytosolic stress 

response, leading to the transient expression of heat-shock proteins (Hsps), mainly molecular 

chaperones and proteases (Anckar and Sistonen 2011, Gidalevitz et al. 2011, Neef et al. 

2011). Whereas chaperones either prevent the aggregation of misfolded proteins or assist in 

their refolding, proteases mediate their degradation, finally restoring proteostasis (Frydman 

2001, Hartl et al. 2011).  

2.1 Proteostasis 

Proteostasis refers to the global control of protein biogenesis, folding, trafficking, 

aggregation, disaggregation, and degradation. Despite all environmental and intrinsic 

challenges, proteostasis ensures successful development and aging of cells or organisms by 

minimizing homeostasis perturbations that might cause disease. The proteostasis network 

maintains the cellular proteome in a stable and functional state and governs the “life of 

proteins” from birth to death (Balch et al. 2008).  

The integrated network achieving proteostasis (Figure 2-1) comprises several hundreds 

of proteins, including molecular chaperones and their respective co-chaperones (see chapter 

2.2.3), the ubiquitin-proteasome system (UPS), and the autophagy machinery (see chapter 

2.3). While chaperones assist in the de novo folding, refolding, or disaggregation of proteins, 

the proteasomal and autophagic systems contribute to the proteolytic degradation of 

irreversibly misfolded proteins (Balch et al. 2008, Powers et al. 2009, Hartl et al. 2011). The 

capacity of the proteostasis network is adjusted by multiple interconnected stress-inducible 

signaling pathways, including the cytosolic stress response (Westerheide and Morimoto 

2005), the unfolded protein response (UPR) of the endoplasmic reticulum (Ron and Walter 

2007, Buchberger et al. 2010), and the mitochondrial UPR (Ryan and Hoogenraad 2007, 
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Haynes and Ron 2010). Furthermore, signaling pathways coupling ribosome biogenesis to the 

translational capacity are integrated (Hartl et al. 2011). These signaling pathways and their 

interconnection are discussed in chapter 2.4. Persistent imbalances in proteostasis have been 

linked with numerous pathological conditions, including neurodegeneration, cancer, type-2 

diabetes, and cardiovascular diseases. It has been suggested that the manifestation of many of 

these diseases is related to an age-dependent decline of the cellular proteostasis capacity 

(Morimoto 2008, Powers et al. 2009, Ben-Zvi et al. 2009, David et al. 2010, Gupta et al. 

2011).  

2.2 Protein folding 

Proteins are the most abundant, versatile, and conformationally complex biological 

marcomolecules and have important functions in virtually all biological processes. Protein 

biosynthesis takes place at the ribosomes, where linear chains up to several thousand amino 

acids are produced. For protein functionality these chains need to adopt their ‘native 

conformations’ – a few closely related specific three-dimensional structures (Bartlett and 

Radford 2009). 

2.2.1 Folding versus aggregation 

One main challenge in protein folding is the requirement of a stable, well defined native state 

on the one hand while still retaining conformational flexibility necessary for protein function 

on the other hand. Consequently, most native proteins show only marginal thermodynamic 

stabilization compared to their unfolded states under physiological conditions (Pace et al. 

1981, DePristo et al. 2005). Other proteins inherently lack any three-dimensional structure 

and need to assemble with binding partners or ligands to acquire stability (Demchenko 2001, 

Park and Marqusee 2005, Dunker et al. 2008). Besides this, targeting of a protein to a specific 

subcellular compartment may enhance protein stability (Deshaies et al. 1988).  

Pioneering work in the field of protein folding revealed that the primary sequence of a 

polypeptide chain contains all information necessary to specify its three-dimensional structure 

(Anfinsen 1973). Due to its high degrees of freedom and the astronomical number of possible 

conformations an unfolded polypeptide chain can adopt, the folding by a random sampling of 

all possibilities would occur on a biological unrealistic time scale (Levinthal 1968). However, 

the cooperation of many weak and non-covalent interactions between different amino acid 



2 Introduction   5 

residues confines the accessible conformational space, thereby reducing the number of 

possible intermediates and transition states. In aqueous solution the main driving force for 

protein folding is the sequestration of non-polar residues in a hydrophobic core and the 

exposition of charged or polar amino acid side chains on the solvent-facing protein surface. In 

the current understanding, each protein explores a unique funnel-shaped potential energy 

landscape (Figure 2-2) during its folding process in which the number of accessible 

configurations decreases alongside with the energy (Wolynes et al. 1995, Dill and Chan 

1997). Although the energy landscape may be rugged, with some local, non-native energy 

minima, in which partially folded intermediates may become kinetically trapped, the funnel-

shaped energy surface suggests a deep energy minimum for the native state.  

The folding of small single domain proteins (less than 100 amino acids) occurs on a 

sub-second time scale and can be best described by the nucleation condensation model, in 

which the secondary and tertiary structures form upon a general collapse around a diffuse 

 

Figure 2-1: Protein homeostasis (proteostasis) network. 

Cells integrate different components of the proteostasis network such as molecular chaperones and protein 

degradation machineries to maintain the cellular proteome in a functional and stable state. Whereas chaperones 

assist in the de novo folding of proteins and remodeling of misfolded proteins, proteases mediate their 

degradation. This enables cells to resist multiple intrinsic and extrinsic forces challenging proteome stability. 

Imbalances in proteostasis are associated with numerous pathological conditions such as neurodegeneration and 

cancer (adapted from Gidalevitz et al. 2011).  
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nucleus. In this two-state mechanism, only two species are populated - the unfolded and the 

native state. The energy landscape is relatively smooth without any substantial kinetic traps 

(Kim and Baldwin 1982, Ptitsyn 1998, Jackson 1998, Fersht 2000, Daggett and Fersht 2003). 

For proteins larger than 100 amino acids (~90% of all cellular proteins), it is assumed that 

folding occurs via the transient population of folding intermediates, which emerge from a 

rapid hydrophobic collapse of the polypeptide chain into a compact globular, non-native 

conformation (Brockwell and Radford 2007, Bartlett and Radford 2009). These molten 

globule states can either represent on-pathway folding intermediates towards the native state 

or kinetically stable but misfolded species which populate local, non-native energy minima in 

the rugged folding energy landscape (Figure 2-2) (Ptitsyn et al. 1990, Onuchic and Wolynes 

2004, Jahn and Radford 2005, Lindberg and Oliveberg 2007, Vabulas et al. 2010). An 

increasing complexity in the domain structure of the protein results in a higher tendency to 

form misfolded intermediates (Netzer and Hartl 1997, Wright et al. 2005).  

Proteins with non-native conformation are prone to aggregation due to the exposition 

of hydrophobic amino acid residues or even of unstructured regions of the polypeptide 

backbone (Eichner et al. 2011). A high concentration of non-native protein species further 

increases the likelihood of intermolecular interactions leading to protein aggregation. 

Hydrophobic forces drive the formation of amorphous aggregates which lack long-range order 

and that finally restructure and assemble in definite fibrillar amyloids (Figure 2-2). The 

amorphous, less ordered, soluble oligomeric intermediates are thought to serve as aggregation 

nuclei. These intermediate states are highly toxic for eukaryotic cells (Haass and Selkoe 2007) 

and are supposed to play important roles in neurodegenerative disorders and other 

pathological conditions (Chiti and Dobson 2006). It was shown that the toxicity of the 

transition states correlates with the exposure of hydrophobic surfaces (Bolognesi et al. 2010). 

These surfaces interfere deleteriously with other proteins and membranes, thereby promoting 

aberrant protein interactions and deregulation of the cellular stress response (Olzscha et al. 

2011). The reorganization of the amorphous aggregates into insoluble fibrillar amyloids may 

present a cellular protection mechanism. The amyloids are characterized by a well-defined 

cross-β structure, in which β-strands run perpendicular to the long axis of the fibril (Sunde 

and Blake 1997, Tycko 2004). Under denaturing conditions or when the native state is 

destabilized (low pH, high temperature or amino acid substitutions), many proteins become 

capable of forming these thermodynamically very stable fibrils. Although the insoluble fibrils 

share a common structure, the soluble precursor proteins do not have any sequence similarity 
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and are structurally very diverse, suggesting that formation of amyloids is an inherent 

property of the polypeptide chain (Dobson 2003). 

 

2.2.2 Protein folding in vivo and the concept of molecular chaperones 

Not only in vitro but also in vivo, the aggregation propensity of polypeptide chains is 

influenced by their local concentration. Compared to in vitro folding and refolding in dilute 

solutions, the folding in the cellular environment is challenged by the high concentration of 

proteins, nucleic acids and other macromolecules (up to 300-400 g/l). The so-called 

macromolecular crowding or, more precisely, the excluded volume effect refers to the fact 

that a significant proportion of the cell interior is occupied by macromolecules and, therefore, 

 

Figure 2-2: Free energy landscape of protein folding and aggregation. 

Scheme of the multiple conformations explored by polypeptide chains as they move along the funnel-shaped 

energy surface towards their native state via intramolecular (green) contacts. Molecular chaperones may assist 

kinetically trapped folding intermediates or partially folded states to cross free energy barriers to reach their 

native conformation (Lin et al. 2008, Sharma et al. 2008, Chakraborty et al. 2010). The formation of amorphous 

aggregates, toxic oligomers, and highly ordered amyloid fibrils (red) is due to intermolecular contacts between 

intermediates that accumulate during the folding process or upon destabilization of the native state. Chaperones 

normally prevent these interactions (adapted from Hartl et al. 2011).  
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unavailable to other molecules. The increased effective protein concentration enhances non-

native intra- and intermolecular contacts resulting in an increased probability of misfolding 

and aggregation (Zimmerman and Trach 1991, Ellis 2001, Hartl and Hayer-Hartl 2002, Ellis 

and Minton 2006). Additionally, the translation of proteins at polyribosomes increases the 

probability of aggregation due to a high local concentration of nascent chains. Since the 

dimensions of the ribosomal exit tunnel do not allow folding beyond the formation of α-

helical elements (Woolhead et al. 2004, Lu and Deutsch 2005), the entire sequence of a 

protein or at least a protein domain (on average 50-300 amino acids) has to emerge from the 

ribosome for its folding. In eukaryotes, the increased average protein length and reduced 

translation speed are further challenges for proper protein folding because protein synthesis 

takes longer than in prokaryotes leading to a prolonged exposure of nascent chains in partially 

folded, aggregation-sensitive states (Vabulas et al. 2010).  

In living organisms, aggregation is minimized by different means. First, polypeptide 

sequences that favor folding over aggregation were selected by evolutionary pressure, 

resulting in a significantly reduced aggregation propensity of protein coding sequences as 

compared to random polypeptide sequences (Dobson 2004, Jahn and Radford 2008). 

Secondly, organisms try to create an environment supporting protein folding by the tight 

regulation of internal parameters, such as pH or temperature. Furthermore, cells invest in a 

complex proteostasis network consisting of molecular chaperones, for de novo folding or 

refolding, and proteolytic systems like the ubiquitin-proteasome system or the autophagy 

machinery, assisting in degradation and removal of terminally misfolded proteins (Balch et al. 

2008, Glickman and Ciechanover 2002, Hartl and Hayer-Hartl 2002). The individual 

components of the network will be described in the following chapters.  

2.2.3 Major chaperone classes 

A molecular chaperone is defined as a protein that interacts with, stabilizes or helps another 

protein to acquire its functionally active state, without being part of the final structure. 

Molecular chaperones are of major importance in a multitude of cellular processes. They are 

involved in de novo folding of proteins, refolding of stress-denatured proteins, and 

disaggregation of at least some forms of aggregates. Moreover, they can contribute to the 

assembly of oligomeric complexes, assist in protein trafficking, and proteolytic degradation 

(Ellis and Hemmingsen 1989, Gething and Sambrook 1992, Parsell et al. 1994, Hartl and 

Hayer-Hartl 2009). Although different classes of structurally unrelated chaperones are known, 

chaperones are generally referred to as stress or heat-shock proteins (Hsps), because their 
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expression is increased under conditions of conformational stress. In general, chaperones 

increase the efficiency of the folding process rather indirectly by blocking competing 

reactions such as aggregation. They do not contribute any conformational information to the 

folding process and in most cases do not accelerate individual folding steps. An acceleration 

of protein folding can be promoted by proteins which contain either peptidyl-prolyl isomerase 

activity, increasing the rate of cis-trans isomerizations, or protein disulfide isomerase activity, 

playing important roles in the formation and reorganization of disulfide bonds (Fischer and 

Bang 1985, Wilkinson and Gilbert 2004, Appenzeller-Herzog and Ellgaard 2008). According 

to the molecular weight, chaperones are organized in five protein families: the small heat-

shock proteins (sHsps), which lack any ATPase activity, and the ATPases Hsp100, Hsp90, 

Hsp70, and the chaperonins (Hsp60s). Chaperones, which are broadly involved in de novo 

folding and refolding (e.g. Hsp70s, Hsp90, and Hsp60s), reversibly bind to exposed 

hydrophobic sequences and promote folding through ATP-regulated binding and release 

cycles (Schiene and Fischer 2000, Dobson 2003, Vabulas et al. 2010, Hartl et al. 2011).  

In all three kingdoms of life, the different classes of molecular chaperones form an 

interconnected network following the same principles of organization (Figure 2-3). As the 

growing polypeptide emerges from the ribosome, it is bound by ribosome-associated 

chaperones resulting in the stabilization of the nascent chain and the initialization of the 

folding process. If de novo folding intermediates require additional assistance, they are passed 

on to the downstream machinery such as the cytosolic Hsp70/40 and the Hsp60 protein 

families which complete the folding process. In the following sections the main classes of 

molecular chaperones will be discussed.  

2.2.3.1 Ribosome-associated Chaperones 

In eukaryotes, the folding of a polypeptide can occur co-translationally. However, since 

incomplete nascent chains are unable to adopt stable conformations, folding can only start 

when at least the polypeptide making up a protein subdomain has been synthesized (Cabrita et 

al. 2009, Eichmann et al. 2010). Due to the relatively slow translation speed (4-20 amino 

acids s
-1

) growing nascent chains are exposed in a partially folded, aggregation-sensitive state 

during their synthesis. To guide initial folding events and protect growing polypeptides from 

misfolding and aggregation, some chaperones directly bind to the large ribosomal subunit in 

close proximity to the protein exit site. Whereas de novo folding in bacteria is supported by a 

chaperone called trigger factor (TF), eukaryotic cells possess two kinds of ribosome-

associated systems, the ribosome-associated complex (RAC) and the nascent polypeptide-

associated complex (NAC). In Saccharomyces cerevisiae, RAC is formed by the Hsp70 
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homologs Ssb1/2p, Ssz1p, and the Hsp40 chaperone zuotin. Mammalian RAC (mRAC) 

consists of the zuotin-like Mpp11 and the Ssz1p homolog Hsp70L1 but lacks a Ssb-like 

protein (Hundley et al. 2005, Otto et al. 2005, Preissler and Deuerling 2012). While NAC 

forms a homodimer in archaea, the eukaryotic heterodimer is highly conserved from yeast to 

humans (Pech et al. 2010).  

Among the ribosome-associated chaperones, TF is best studied. The 48 kDa 

eubacterial protein consists of an N-terminal ribosome-binding domain, a peptidyl-prolyl cis-

trans isomerase (PPI) domain, and a C-terminal domain, necessary and sufficient for its 

chaperone activity (Merz et al. 2006). According to the crystal structure, the carboxy-terminal 

domain is positioned in the center of the molecule (Ferbitz et al. 2004). With its two 

protruding arms, the C-terminal domain is the major binding region for hydrophobic 

Figure 2-3: Pro- and eukaryotic cytosolic chaperone pathways. 

In bacteria (left panel), the majority of nascent chains (~70%) rapidly adopt their native conformation without 

any further chaperone assistance after interaction with trigger factor (TF). Larger proteins are subsequently 

bound by the bacterial Hsp70 machinery (DnaK/DnaJ/GrpE) and fold upon ATP-dependent cycles of binding 

and release. Around 10% of the polypeptides need to be transferred to the chaperonin system GroEL-GroES for 

proper folding. Dashed arrows indicate that the pathway is not well established. In eukaryotes (right panel), the 

ribosome bound nascent chain-associated complex (NAC) generally interact with emerging polypeptides and the 

majority of proteins folds without further assistance. Around 20% of the synthesized chains are folded after 

interaction with the ribosome-associated complex (RAC) and the Hsp70/40 machinery. The Hsp-organizing 

protein (HOP) transfers a subset of  these proteins to the downstream Hsp90 system for folding. About 10% of 

the polypeptide chains are passed on to chaperonin TRiC in an Hsp70 and prefoldin (PFD) dependent process. 

PFD is known to interact with certain TRiC substrates, including actin and tubulin (adapted from Hartl et al. 

2011).  
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elements. The amino-terminal domain mediates the binding of TF to the ribosomal protein 

L23. (Kramer et al. 2002, Kaiser et al. 2006, Merz et al. 2006, Lakshmipathy et al. 2007). 

Whereas ribosome binding induces conformational changes in TF that are a prerequisite for 

the capturing of emerging polypeptides, the hydrophobicity of the nascent chain determines 

the dwell time of TF on the ribosome (Baram et al. 2005, Schlunzen et al. 2005, Kaiser et al. 

2006). After the chain is released from the ribosome, the TF-nascent chain complex 

dissociates independently of ATP (Hesterkamp et al. 1996). The nascent chain is either folded 

without further assistance or transferred to downstream chaperoning systems such as the 

bacterial Hsp70 system DnaK/DnaJ/GrpE. TF does not actively assist protein folding by ATP-

driven cycles of nascent chain binding and release but functions rather indirectly by shielding 

hydrophobic stretches, thereby preventing misfolding and aggregation (Young et al. 2004). 

2.2.3.2 The Hsp70 system 

Hsp70s, the most versatile class of chaperones, are key components of the chaperone network 

and are expressed in eubacteria, eukaryotes, some archaea, as well as in eukaryotic organelles 

like mitochondria and the endoplasmic reticulum (Hartl and Hayer-Hartl 2002). Members of 

this family actively participate in polypeptide folding through ATP-dependent cycles of 

protein binding and release. Two different forms of Hsp70 molecules exist in the cytosol of 

higher eukaryotes: constitutively expressed Hsp70s (Hsc70) and stress-inducible ones (Hsp70, 

Chang et al. 2007). Hsp70s function together with co-chaperones of the Hsp40 family and 

various nucleotide exchange factors (NEFs) that regulate the ATP-dependent reaction cycle 

(Hartl et al. 2011). All Hsp70s share a similar domain architecture, consisting of an N-

terminal ATPase and a C-terminal substrate binding domain, which is composed of an α-

helical lid segment and a β-sandwich domain (Zhu et al. 1996). 

During the reaction cycle, an unfolded or partially folded substrate protein is delivered 

to ATP-bound Hsp70 by one of the numerous Hsp40 cofactors (Langer et al. 1992, Kampinga 

and Craig 2010). The β-sandwich domain of Hsp70 specifically binds to hydrophobic seven-

residue segments which occur on average every 50-100 residues in proteins (Rudiger et al. 

1997). The Hsp40 molecule stimulates ATP hydrolysis by Hsp70, thus leading to lid closure 

and stable peptide binding. NEF binding catalyzes ADP dissociation and subsequent binding 

of ATP results in lid opening and substrate release, thereby completing the reaction cycle.  

The exact mechanism by which Hsp70 mediates protein folding and prevents 

aggregation is not clear yet (Mayer and Bukau 2005). According to the kinetic partitioning 

model, Hsp70 binding shields hydrophobic segments in substrate proteins, thereby hindering 

misfolding and aggregation. Upon release, fast-folding molecules or domains adopt their 
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native conformation by burying hydrophobic residues, whereas slower folding molecules will 

rebind to Hsp70. (Re)binding of substrates to Hsp70 may also help remodeling of kinetically 

trapped folding intermediates by overcoming free energy barriers of the folding process 

(Sharma et al. 2010). Proteins that are unable to fold after Hsp70 cycling may be transferred 

to further downstream chaperone systems, such as the chaperonins or Hsp90 (Langer et al. 

1992, Kerner et al. 2005).  

With its well-established role in de novo protein folding Hsp70 represents a key 

component of the proteostasis network. Drosophila studies revealed that increased Hsp70 

levels can prevent toxic protein aggregation (Auluck et al. 2002) Moreover, interaction of 

Hsp70 with CHIP (Carboxyl-terminus of Hsc70 Interacting Protein), an U-box containing 

ubiquitin ligase, targets misfolded proteins to the proteasome, thus linking chaperone function 

with the proteolytic degradation of misfolded proteins (Ballinger et al. 1999, Luders et al. 

2000, Petrucelli et al. 2004, Arndt et al. 2010). 

2.2.3.3 The chaperonins 

The chaperonins are a conserved class of large double-ring complexes with a molecular mass 

of approximately 800 kDa. They can be divided into two different subgroups. Group I 

chaperonins, also known as Hsp60s, are present in bacteria (GroEL) as well as in organelles 

of endosymbiotic origin – chloroplasts and mitochondria. They are built of two 

homoheptameric rings and functionally cooperate with their Hsp10 cofactors (bacterial 

GroES), which serve as a seven-membered detachable lid for the cavity, thereby creating a 

folding cage for encapsulated polypeptide substrates. The group II chaperonins in archaea 

(thermosome) and the eukaryotic cytosol (TRiC/CCT) are composed of octa- or nonameric 

rings formed by up to eight different subunits. In contrast to group I chaperonins, members of 

the second group possess a built-in lid and function independently of GroES-like co-

chaperones. Likewise Hsp70s, substrate binding and release of chaperonins is regulated by 

ATP. However, the mechanism by which these two classes of chaperones promote protein 

folding differ essentially. In general, chaperonins assist folding of non-native substrates by (i) 

protein encapsulation and isolation to prevent aggregation, and by (ii) restriction of the 

conformational space (confinement) to avoid the formation of kinetically trapped 

intermediates. Although it was shown that chaperonins function as passive aggregation-

prevention devices (Brinker et al. 2001, Apetri and Horwich 2008), other studies imply that 

protein encapsulation can substantially accelerate protein folding (Brinker et al. 2001, Tang et 

al. 2006, Chakraborty et al. 2010).  
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Among the different chaperonins from all kingdoms of life, the bacterial group I 

GroEL-GroES system is best studied. The reaction cycle generally follows a postitive intra- 

but a negative inter-ring allostery (Horovitz 2005). The characteristic GroEL double-ring is 

formed of fourteen identical 57 kDa subunits, each consisting of an equatorial ATPase 

domain, an intermediate hinge domain, and an apical substrate-binding domain. The 

interaction with substrate proteins (up to 60 kDa in size) is mediated by hydrophobic amino 

acid residues in the apical domain (Hartl and Hayer-Hartl 2002). The ATP-regulated binding 

of the homoheptameric GroES ring encapsulates the substrate and induces an extensive 

conformational change in GroEL resulting in the formation of a highly hydrophilic cage with 

a net-negatively-charged inner wall (Xu et al. 1997, Horwich and Fenton 2009). During the 

time of ATP hydrolysis (10-15 s) in the GroES-bound GroEL heptamer, the so-called cis-ring, 

the protein is free to fold. After ATP binding to the opposite ring, the trans-ring, and GroES 

dissociation from the cis-ring, the protein substrate leaves the cavity. Substrates that have not 

reached their final conformation yet may rebind to GroEL for additional folding cycles. 

2.2.3.4 The Hsp90 system 

Hsp90 is a highly abundant molecular chaperone found in the cytoplasm, ER and 

mitochondria of all branches of eukaryotes as well as eubacteria (Young et al. 2004, Chen et 

al. 2006). It functions downstream of the Hsp70 system in the stabilization and final structural 

maturation of many signal-transducing molecules such as regulatory kinases and transcription 

factors including steroid hormone receptors. The Hsp90 client proteins participate in cell-

cycle progression, protein trafficking and secretion, telomere maintenance, tumorigenesis, and 

targeted protein degradation – thereby establishing the role of Hsp90 as a hub in protein 

homeostasis (Pearl and Prodromou 2006, Taipale et al. 2010, Hartl et al. 2011). Furthermore, 

Hsp90 is thought to be important during developmental processes and in evolution. Under 

normal conditions, Hsp90 is thought to buffer the phenotypic manifestation of genetic 

variation. However, when the buffering capacity of Hsp90 is environmentally challenged, 

new traits might appear in some individuals (Rutherford and Lindquist 1998, Taipale et al. 

2010). In addition, a new role for Hsp90 in chromatin remodeling has emerged in recent 

years. In Drosophila it has been shown that Hsp90 and several co-chaperones are involved in 

stress-induced chromatin inactivation (Ruden and Lu 2008).  

Hsp90 functions as a dimer with each monomer consisting of an N-terminal ATPase 

domain (ND), a middle domain for client binding (MD) and a C-terminal homo-dimerization 

domain (CD). As for many other chaperones, the Hsp90 reaction cycle is ATP-dependent. 

ATP binding induces closure of the so-called ATP lid in the NDs, domain dimerization, and 
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formation of a closed Hsp90 conformation (molecular clamp) in which the individual 

monomers are twisted around each other. After ATP hydrolysis, the N-terminal domains 

dissociate (open state) and another cycle can be initiated (Pearl and Prodromou 2006, 

Wandinger et al. 2008). Client protein loading and the Hsp90 reaction cycle are regulated by 

various cofactors, of which tetratricopeptide repeat (TPR) domain containing proteins 

represent a major group. For example, the Hsp-organizing protein (HOP) bridges Hsp70 and 

Hsp90 chaperones, thereby providing a physical link for substrate transfer from the Hsp70 

complex to Hsp90. HOP also inhibits the N-terminal dimerization and thus ATP hydrolysis. 

Other well-known cofactors of Hsp90 are CDC37, AHA1, p23, and CHIP. Whereas the co-

chaperone CDC37 inhibits the ATPase activity of Hsp90, AHA1 functions as an activator. 

p23 is known to stabilize the dimerized form of Hsp90 (Jackson 2013). Similar to its 

interactions with Hsp70, CHIP can bind the C-terminal domain of Hsp90 and causes the 

targeting of at least some proteins for proteasomal degradation (Ballinger et al. 1999, Xu et 

al. 2002, McClellan et al. 2005). Despite all research on Hsp90, little is known about the 

molecular basis for client recognition and the mechanism by which Hsp90 mediates 

conformational changes in client proteins (Wandinger et al. 2008, Taipale et al. 2010).  

2.2.3.5 Hsp100 chaperones and small heat-shock proteins 

Hsp100 chaperones are members of the AAA+ ATPase superfamily (ATPases associated with 

various cellular activities). Their unfoldase activity is strictly dependent on the AAA domain, 

which binds and hydrolyses ATP. Furthermore, the AAA domain mediates the 

oligomerization to barrel shaped hexameric rings with a central pore. By association with 

either a peptidase or a chaperone system, Hsp100 chaperones contribute to the degradation or 

refolding of misfolded proteins, respectively. The prokaryotic Hsp100/Clp family has been 

studied best. Proteins tagged for degradation are recognized by AAA+ proteins (e.g. ClpA) 

that cooperate with the ClpP peptidase via a conserved P-element. Conserved aromatic 

residues at the central pore of the AAA+ proteins bind and release the substrate in a 

nucleotide dependent manner, thereby generating a mechanical force and threading the 

substrate into the proteolytic chamber of the protease. In contrast to ClpA, AAA+ proteins 

that do not contain the conserved P-element (e.g. ClpB) do not associate with peptidases such 

as ClpP but rather with other chaperones (e.g. Hsp70/DnaK) to resolubilize aggregated 

proteins. In this bi-chaperone disaggregation system Hsp70 controls the interaction of 

misfolded substrates with ClpB. The ATP-driven threading activity of the AAA+ protein is 

thought to loosen single unfolded polypeptide chains from the aggregate. After translocation, 
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the polypeptide is likely to be transferred to the Hsp70 system for proper folding (Liberek et 

al. 2008, Mogk et al. 2008, Haslberger et al. 2008, Zolkiewski et al. 2012).  

Small heat-shock proteins (sHsps) are a ubiquitous and conserved but rather 

heterogeneous family of ATP-independent chaperones with strong anti-aggregation 

properties. Their molecular weight ranges from 15 to 30 kDa. They display chaperone 

function in vitro and have been shown to exert cytoprotective functions under conditions of 

oxidative stress. Furthermore, they interfere with apoptotic proteins and are involved in 

cytoskeletal organization. sHsps form dynamic oligomeric structures ranging from 12 up to 50 

individual subunits. A temperature dependent activation of oligomeric sHsps results in their 

binding to partially unfolded protein intermediates. Co-aggregation of destabilized proteins 

with sHsps increases the efficiency of resolubilization and refolding by the Hsp100/Hsp70 

system (Liberek et al. 2008). The 10 human sHsps (HSPB1-HSPB10) share a highly 

conserved amino acid sequence of 80-90 residues at their C-termini, the so-called α-crystallin 

domain. Interestingly, sHsps show a highly tissue-specific expression pattern. (Jakob et al. 

1993, Haslbeck 2002, Brownell et al. 2012, Garrido et al. 2012).  

2.3 Protein degradation systems 

Besides the sophisticated cellular chaperone network, proteolytic systems such as the 

ubiquitin-proteasome system or autophagy machinery (Figure 2-4 and Figure 2-5) are key 

components of the proteostasis network and are responsible for the degradation of either 

terminally misfolded or short-lived and regulatory proteins. Whereas the UPS is mainly 

involved in the degradation of short-lived proteins, the autophagic pathway is responsible for 

the degradation of long-lived polypeptides, protein aggregates and cytoplasmic organelles 

(Rubinsztein 2006).  

2.3.1 The ubiquitin-proteasome system 

In eukaryotes, the UPS is one of the critical components in maintaining the cellular protein 

homeostasis. Furthermore, it plays an important role in a large variety of other processes 

which include cell cycle regulation, differentiation and development, DNA repair, the 

modulation of nuclear hormone receptors, and the regulation of the immune and inflammatory 

response (Ciechanover et al. 2000, Nawaz and O'Malley 2004). The UPS represents a highly 

specific and tightly regulated pathway of intracellular protein degradation. In general, the 
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degradation of a protein by the UPS involves two consecutive steps: (i) covalent modification 

of substrate proteins with multiple ubiquitin molecules and (ii) degradation of the tagged 

proteins by the 26S proteasome (Ciechanover et al. 2000, Glickman and Ciechanover 2002). 

 

Figure 2-4: The ubiquitin-proteasome pathway (UPS). 

The degradation of a target protein by the UPS involves its tagging with multiple ubiquitin molecules and the 

successive proteolysis via the 26S proteasome. The ubiquitin moiety (Ub) is activated in an ATP-dependent 

reaction and forms a high-energy thiol ester with the E1 Ub-activating enzyme (I). After transfer to the E2 Ub-

conjugating enzyme (II), Ub is covalently bound to a lysine residue in the target protein. This process is 

ameliorated by specific E3 Ub-protein ligases which bridge the E2 enzymes with the UPS substrates (III-V). 

Monoubiquitination is known to be involved in the regulation of many cellular processes such as endocytosis, 

DNA repair and transcriptional regulation. The re-entering of a monoubiquitinated substrate at step III results in 

its polyubiquitination (VI) and the subsequent degradation by the 26S proteasome (VII). Specialized 

deubiquitinating enzymes (DUBs) assist in the recycling of the Ub moieties (VIII). 
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2.3.1.1 Ubiquitin and the ubiquitin conjugating machinery 

Ubiquitin is a highly conserved regulatory polypeptide consisting of 76 amino acids. It has 

been found in almost all tissues of eukaryotic cells but is absent in eubacteria and archaea. In 

mammals, ubiquitin is encoded by four different genes. It is either expressed as a single copy 

fused to the ribosomal proteins S27a and L40 or as a polyubiquitin precursor molecule 

encoded by ubb and ubc (Kimura and Tanaka 2010).  

Ubiquitination is a reversible and highly versatile post-translational modification of 

cellular proteins, in which the C-terminal glycine residue of ubiquitin (G76) is conjugated via 

its carboxyl group to the ε-amino group of an internal lysine residue in the substrate protein. 

The conjugation of ubiquitin to the N-terminal α-amino group of a protein or to other amino 

acids such as threonine, cysteine, or serine has also been reported but rarely occurs (Hershko 

et al. 1984, Glickman and Ciechanover 2002, Cadwell and Coscoy 2005, Wang et al. 2007). 

The ubiquitination of a substrate protein is a multi-step process which involves numerous 

enzymes (Figure 2-4). The first step, ubiquitin activation, is an ATP-driven process in which 

the ubiquitin moiety forms a high-energy thiol ester bond with the active site cysteine residue 

of the ubiquitin-activating enzyme E1. A ubiquitin-conjugation enzyme (UBC), E2, then 

transfers the activated ubiquitin via another high-energy thiol ester bond to the target protein, 

which is recognized by a member of the E3 ubiquitin-protein ligase family. Moreover, it has 

been shown that efficient polyubiquitination may require an additional conjugation factor 

termed E4 polyubiquitin ligase (Hershko et al. 1983, Koegl et al. 1999, Glickman and 

Ciechanover 2002, Chitra et al. 2012).  The human genome encodes two E1 enzymes, 30-40 

UBCs and more than 600 ubiquitin-protein ligases (Komander 2009). The latter ones can be 

further divided into three different groups. While RING finger E3 ligases catalyze a direct 

conjugation of ubiquitin to the substrate protein, HECT domain-containing E3 ligases transfer 

the ubiquitin moiety via a third high-energy thiol ester intermediate between ubiquitin and the 

E3 ligase itself. Members of the third group, the U-box proteins, perform polyubiquitination. 

They contain a conserved 70 amino acid domain, the so-called U-box, which mediates the 

interaction with ubiquitin-conjugated substrates. Some U-box proteins have been shown to 

function as E4 polyubiquitin ligases (Koegl et al. 1999, Hatakeyama et al. 2001, Hatakeyama 

et al. 2004). 

Several forms of ubiquitination can be distinguished. Whereas the attachment of one 

ubiquitin molecule, monoubiquitination, is known to be involved in cellular processes such as 

endocystosis, histone regulation, DNA repair, transcriptional regulation, and general protein 

localization, the attachment of several ubiquitin polypeptides, polyubiquitination, primarily 
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targets a protein for proteasomal degradation (Schnell and Hicke 2003, Mukhopadhyay and 

Riezman 2007, Woelk et al. 2007). Polyubiquitination is achieved by the successive addition 

of further ubiquitin molecules to one of the seven internal lysine residues of the previously 

added ubiquitin (Glickman and Ciechanover 2002). As all lysine residues were shown to be 

ubiquitinated in vivo, a great variety of ubiquitin-dependent modifications exist. The two best-

studied examples are the linkage of multiple ubiquitin moieties to lysine residue 48 and 63. 

While polyubiquitination at lysine residue 48 targets a substrate protein for proteasomal 

degradation (Hershko and Ciechanover 1998), the modification at residue 63 generates a non-

proteolytic signal comparable to monoubiquitination. Furthermore, polyubiquitination at 

lysine 63 plays a major role in autophagy (Tan et al. 2008, Komander 2009). For details see 

chapter 2.3.2. 

2.3.1.2 Ubiquitin-like proteins  

Besides ubiquitin, several other proteins are known to be conjugated to polypeptides as post-

translational modifications. The family of ubiquitin-like proteins (UBLs) contains a growing 

number of molecules such as small ubiquitin-like modifier (SUMO), neuronal-precursor-cell-

expressed developmentally downregulated protein-8 (NEDD8), human leukocyte antigen F-

associated (FAT10), autophagy-related gene 8 (ATG8, also known as LC3), and ATG12 as 

well as ubiquitin-like protein-5 (UBL5). Although they show only modest sequence similarity 

to ubiquitin, they are structurally closely related. The enzymatic cascade that conjugates 

UBLs to their substrates is comparable to the ubiquitin machinery, involving activation, 

conjugation and ligation of the different UBLs. Substrates modified by UBLs are generally 

not targeted for proteasomal degradation, but rather regulate a diverse set of cellular processes 

including transcription and translation, nuclear transport, DNA repair, and autophagy 

(Welchman et al. 2005, van der Veen and Ploegh 2012). However, conjugation of FAT10 has 

been shown to promote proteasomal degradation (Hipp et al. 2005).  

2.3.1.3 The 26S proteasome and proteasomal degradation 

Proteasomes are large, multi-subunit proteases found in all eukaryotes and archaea as well as 

in some bacteria. They play a major role in cellular protein turnover. The process of 

proteasomal degradation includes recognition, unfolding, and degradation of specifically 

tagged proteins into small peptides. Whereas eukaryotic and archaeal proteasomes share a 

common structure, the 20S core particle, bacteria express a much simpler homolog, the so-

called heat-shock locus V (Glickman and Ciechanover 2002, Maupin-Furlow et al. 2000, 

Valas and Bourne 2008). 
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The structure of the eukaryotic proteasome holoenzyme (26S proteasome) can be 

divided in two subcomplexes: one catalytically active 20S core particle (CP) and two identical 

19S regulatory particles (RPs). The 20S core particle is composed of four stacked rings that 

form a barrel-shaped structure. The two outer rings contain seven highly homologous α-

subunits each, the two inner rings consist of similarly conserved β-subunits, leading to the 

overall α7β7β7α7 structure of the CP. Three of the seven β-subunits, namely subunits 1, 2, and 

5, display threonine peptidase active sites with caspase-like, trypsin-like, and chymotrypsin-

like activity, respectively. The combination of these different activities enables the 

proteasome to cleave substrate peptide bonds behind any amino acid, generating short 

peptides with a median length of seven to nine amino acids. To protect cellular proteins from 

non-specific degradation, the catalytic sites face the inside of the cavity and can only be 

accessed through a narrow gate at the end of the barrel which is formed by the N-termini of 

the α-subunits (Dick et al. 1998, Kisselev et al. 1999, Groll et al. 2000, Orlowski and Wilk 

2000, Bedford et al. 2010). The access to the proteolytic chamber is tightly controlled by the 

19S regulatory particle, which generally sits on both sides of the CP and is involved in 

substrate recognition, unfolding, and translocation. The structure of the RP reveals two 

distinct multi-subunit subcomplexes, called base and lid. The base is formed of six 

homologous AAA+-ATPase subunits (Rpt1-6) and four non-ATPase subunits, Rpn1, Rpn2, 

Rpn10, and Rpn13. The latter two function as ubiquitin receptors with at least four K48-

linked ubiquitin moieties being necessary for efficient substrate recognition. Following the 

initial recognition, interactions of substrate proteins with the remaining base subunits are 

likely to occur. The ATPase activity of the Rpt subunits couples ATP hydrolysis with the 

unfolding of substrate proteins and their threading into the catalytic cavity. Furthermore, the 

direct interaction of the ATPase subunits with the α-rings mediates the opening of the CP 

gate. The lid of the regulatory particle is composed of eight non-ATPase subunits and exhibits 

deubiquitination activity via Rpn11. The recovery of the ubiquitin moieties is further assisted 

by specialized deubiquitinating enzymes (DUBs) (Lupas et al. 1997, Wilkinson 1997, 

Glickman et al. 1998, Thrower et al. 2000, Verma et al. 2002, Smith et al. 2007, Bedford et 

al. 2010, Sakata et al. 2012).  

Although the most prominent role of the proteasome is the degradation of 

polyubiquitinated protein substrates, there is a growing list of molecules which undergo 

ubiquitin-independent proteolysis. The best-studied examples are the proteasomal activation 

of the transcription factor NF-κB, the “default” degradation of proteins with inherently 

unstructured regions, and proteolysis of the enzyme ornithine decarboxylase (ODC). For the 
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cell cycle regulator p53 a ubiquitin-dependent as well as a ubiquitin-independent degradation 

mechanism is known (Rape and Jentsch 2002, Zhang et al. 2003, Asher and Shaul 2005, 

Asher et al. 2006). The same holds true for the hypoxia-inducible factor 1 α (HIF1α), a stress-

responsive transcription factor regulating the cellular response to hypoxia. The primary 

degradation mechanism of HIF1α involves its hydroxylation, subsequent polyubiquitination 

by VHL (von Hippel-Lindau) and degradation via the 26S proteasome. However, histone 

deacetylase inhibitors have been shown to mediate HIF1α degradation in a ubiquitin-

independent way (Kong et al. 2006, Geng et al. 2012). 

2.3.2 Autophagy 

The autophagic pathway is a basic and highly conserved mechanism for the bulk degradation 

of cytoplasmic components and organelles by the lysosomal machinery and plays an 

important role in the cellular adaptation to changing environmental conditions. Three forms of 

autophagy have been described, which differ in the mechanism by which the substrates enter 

the degradation pathway: macroautophagy, microautophagy, and chaperone-mediated 

autophagy (CMA, Figure 2-5). While macroautophagy involves the formation of double-

membrane-bound structures known as autophagosomes, cellular components are directly 

incorporated into lysosomes during microautophagy and CMA (Yorimitsu and Klionsky 

2005, Rubinsztein 2006, Cheung and Ip 2009, Shaid et al. 2013). 

Among the different types, macroautophagy is best studied and likely to be 

responsible for the majority of autophagy-related degradation (Mortimore and Poso 1987). In 

the initial step, cytoplasmic organelles and proteins are surrounded by lunate double-

membrane structures, the phagophores, which then subsequently close to fully sequester the 

cytosolic content, forming so-called autophagosomes. Recent data suggest that the 

endoplasmic reticulum (ER), the Golgi complex, and endosomes are potential sources for 

membrane generation (Tooze and Yoshimori 2010). Afterwards, autophagosomes undergo a 

stepwise maturation resulting in their fusion with lysosomes and the formation of 

autolysosomes. Finally, the cytoplasmic content is degraded by acidic lysosomal hydrolases. 

Overall, the biogenesis of the autolysosome is regulated by approximately 30 autophagy-

related genes (ATG), among which several UBLs are found. Autophagic cargos can either be 

sequestered by bulk engulfment or by a process termed selective autophagy, in which the 

inward facing membrane of the phagophore/autophagosome is lined with specific autophagy 

receptors facilitating a highly selective degradation of large protein aggregates and cellular 
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organelles. (Mizushima et al. 2002, Kang et al. 2011, Mizushima et al. 2011, van der Veen 

and Ploegh 2012, Shaid et al. 2013).   

 

Figure 2-5: The autophagy system. 

Different forms of ubiquitin conjugation and the interaction of misfolded proteins with the co-chaperones Bag1 

(BCL-associated athanogene 1) or Bag3 link between proteasomal and autophagic degradation. K48-linked 

ubiquitin molecules and interaction with Bag1 generally target proteins for degradation by the proteasome. 

Under certain conditions (e.g. proteotoxic stress) the remodeling of polyubiquitin chains by DUBs and E3 

ligases like CHIP or Parkin lead to the formation of K63-linked ubiquitin chains. Recognition of these chains by 

the ubiquitin-binding domains of p62/NBR1 or HDAC6 and interaction with Bag3 either induce the formation 

of inclusion bodies or directly target aggregated proteins to the aggresome. Aggresomes are intracellular 

deposits of misfolded proteins and can be degraded via the proteasome as well as autophagy. For autophagic 

degradation, p62/NBR1 interact with the selective autophagy marker LC3 (light chain 3), thereby targeting 

protein aggregates to the emerging semicircle-shaped double-membrane-bound phagophores. After subsequent 

membrane closure the so-called autophagosomes fuse with lysosomes leading to the degradation of aggregates 

in autolysosomes. This process is known as selective autophagy or macroautophagy. During microautophagy 

misfolded proteins or cellular organelles are directly incorporated into lysosomes. The chaperone-mediated 

autophagy (CMA) involves the recognition of misfolded proteins by chaperone complexes, binding to the 

specific receptor LAMP2A (lysosome-associated membrane protein 2A), and translocation into the lysosome 

(adapted from Cheung and Ip 2009 and Shaid et al. 2013). 
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In principal, microautophagy resembles macroautophagy in the direct sequestration of 

cytosolic contents, but cargos are directly incorporated into lysosomes instead of 

autophagosomes (Cheung and Ip 2009). The third autophagic pathway, the CMA, differs from 

the former two in several aspects. CMA substrates are predominantly soluble cytosolic 

proteins carrying a common KFERQ-like targeting motif which is recognized by the HSC70 

chaperone complex. After binding to a specific receptor, the lysosome-associated membrane 

protein 2A (LAMP2A), substrates are directly translocated into the lysosome for degradation 

(Massey et al. 2006, Rubinsztein 2006).  

2.3.3 Interconnection between protein degradation pathways  

The UPS and the autophagy machinery are two complementary and distinct cellular 

degradation systems. However, a growing body of evidence suggests that there are several 

molecular links between the two pathways. While a proteins half-life is determined by the N-

end rule and the possible occurrence of a PEST-degradation signal, its ubiquitination pattern 

determines if it is targeted for proteasomal or autophagic degradation. It has been shown that 

CHIP, a U-box containing ubiquitin-ligating enzyme, which targets a broad range of proteins 

for proteasomal degradation, is also able to promote the formation of K63-linked 

polyubiquitin chains, thus enabling degradation by the autophagic machinery. Similar 

observations have been made for other ubiquitin-ligation enzymes like Parkin, leading to the 

conclusion that there is a group of dual-function E3 ligases targeting proteins either for 

proteasomal or autophagic clearance mechanisms (Zhang et al. 2005, Olzmann et al. 2007, 

Shaid et al. 2013). 

Additionally, the relative activity of the two degradation systems partly influences the 

way of substrate protein degradation. It has been shown that autophagy is induced upon UPS 

impairment and that a microtubule-associated deacetylase, HDAC6, is an essential molecular 

link in this compensatory reaction (Varshavsky 1997, Johnston et al. 1998, Iwata et al. 2005, 

Pandey et al. 2007, Komander 2009). Furthermore, activation of the autophagic machinery 

can protect cells from death induced by proteasomal inhibitors (Kawaguchi et al. 2011, 

Benbrook and Long 2012). On the other hand, inhibition of autophagy leads to an increase in 

levels of proteasome substrates (Korolchuk et al. 2009).  

The protein levels of the co-chaperones Bag1 (BCL-2-associated athanogene 1) and 

Bag3 provide another regulatory intersection of these two degradative pathways. Whereas 

Bag1, highly expressed in young cells, promotes protein degradation by the proteasomal 

machinery, the increased Bag3 level in aged cells leads to a more intensive usage of the 
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macroautophagic system for turnover of polyubiquitinated proteins. Furthermore, it has been 

demonstrated that the Bag3-associated increase in autophagy is dependent on the ubiquitin-

binding protein p62/SQSTM1. Together with NBR1 (neighbor of breast cancer), p62 binds 

K63-ubiquitinated protein aggregates and targets them to the emerging phagophore through 

an interaction with the autophagy specific light chain 3 (LC3) modifier, thereby acting as a 

selective autophagy receptor (Pankiv et al. 2007, Gamerdinger et al. 2009, Kirkin et al. 2009). 

2.4 Stress-responsive pathways in proteostasis 

Under normal conditions, the proteostasis network, composed of molecular chaperones as 

well as the proteolytic degradation machinery, is able to ensure the stability and functionality 

of the cellular proteome (see chapters 2.2.3 and 2.3). However, only limited information is 

available regarding the percentage of chaperones actually engaged in protein maintenance and 

it remains to be elucidated if cells possess a reserve chaperoning capacity (Morimoto 2008). 

An excess folding capacity could buffer unexpected changes in the protein flux but would 

require a reservoir of freely available chaperones, thereby representing a waste of cellular 

resources. It is more likely that the proteostasis capacity of a cell is titrated closely to the 

folding requirements at a given time. A prerequisite for this are highly robust stress-inducible 

pathways that respond rapidly to any imbalances in proteostasis by mounting an appropriate 

protective cellular response (Morimoto 2008, Gidalevitz et al. 2011). These defense 

mechanisms include general protection pathways like the cytosolic stress response as well as 

organelle-specific stress responses such as the unfolded protein response of the ER or the 

mitochondria and the nuclear DNA damage response (Zhou and Elledge 2000, Westerheide 

and Morimoto 2005, Ron and Walter 2007, Buchberger et al. 2010, Ryan and Hoogenraad 

2007, Haynes and Ron 2010).  

2.4.1 Challengers of proteostasis 

All cells and tissues are constantly challenged by numerous adverse environmental or intrinsic 

conditions that might lead to an imbalance in proteostasis. These stress-inducing signals 

include a wide range of acute and chronic perturbations of the physiological state and can be 

grouped into four categories: environmental stress, pathophysiological stress, protein 

conformational diseases as well as cell growth and development (Morimoto 1998, Morimoto 

2008). The first group, environmental stress, mainly includes classical physical stressors such 
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as elevated temperature, oxidative stress, heavy metal ions, UV radiation, and the 

incorporation of amino acid analogues. Group two refers to the changes of the physiological 

state due to fever, inflammation, various infections, and tissue injuries. The protein 

conformational disease category summarizes the more chronic insults like cancer, 

neurodegenerative diseases, and aging. For the latter two the accumulation of misfolded 

proteins is a constant challenge to the proteostasis system. Moreover, cell growth and 

development represent intrinsic challenges for the cellular homeostasis (Figure 2-6). To 

restore the balance, all stress-inducing signals mentioned above result in the activation of 

heat-shock transcription factor 1 (HSF1) and consequently in an increased expression of heat-

shock genes including molecular chaperones and other components of the protein quality 

control machinery. The inability to restore proteostasis might lead to disease and even cell 

death (Morimoto 1998, Hartl et al. 2011). 

 

Figure 2-6: Inducers of the cytosolic stress response. 

Stress inducing conditions can be grouped into four major categories: Three classes of environmental and 

physiological stresses (environmental stress, pathophysiological state, protein conformation disease) and a 

fourth class that summarizes intrinsic stimuli during cell growth and development. All conditions are known to 

result in an increased expression of Hsps in response to the stress-dependent activation of heat-shock 

transcription factor 1 (HSF1) and its binding to specific heat-shock elements (HSE) in the promotor regions of 

the Hsps (adapted from Morimoto 2008).   
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2.4.2 The cytosolic stress response 

Cultured cells as well as whole organisms respond to conditions of proteotoxic stress with the 

activation of a universal and highly conserved pathway, the cytosolic stress response. This 

cytoprotective mechanism, also known as the heat-shock response (HSR), results in the 

transient expression of Hsps to ensure stress adaptation, recovery, and survival (Lindquist 

1986, Wu 1995, Morimoto 1998, Anckar and Sistonen 2011). The gene induction occurs 

nearly instantaneously and is proportional to the intensity, duration, and type of stress 

(Abravaya et al. 1991, Gasch et al. 2000, Hahn et al. 2004). Although the magnitude of the 

HSR is mainly regulated at the transcriptional level, other post-transcriptional regulatory 

mechanisms such as stress-induced changes in mRNA stability or alterations in the translation 

efficiency are known (Banerji et al. 1984, Theodorakis and Morimoto 1987). While the HSR 

in isolated cells is triggered by protein damage in each cell individually, in metazoans, the 

HSR is also subject to cell non-autonomous signaling by mechanisms of endocrine 

communication between different tissues and organs (Prahlad et al. 2008, Gidalevitz et al. 

2011, van Oosten-Hawle et al. 2013).  

Commonly, the cytosolic stress response is stimulated by heat stress (Tissieres et al. 

1974, Lewis et al. 1975, Spradling et al. 1977). Remarkably, a few degrees temperature 

increase is sufficient for dramatic changes in key cellular structures and activities, apparently 

due to the metastable nature of many proteins in the physiological temperature range (Figure 

2-7). Beyond the (partial) unfolding of individual proteins, mild heat stress already leads to 

the reorganization of the actin cytoskeleton into stress fibers. Severe heat stress results in a 

broad collapse of the cytoskeletal network including intermediate and actin-containing 

filaments as well as microtubules. However, the temperature-induced changes may vary with 

cell type and organism. Furthermore, rod-shaped structures of densely packed actin filaments 

are formed in the nucleus (Welch and Suhan 1985, Rivera et al. 2004). Intracellular transport 

processes are disrupted, organelles such as mitochondria lose their correct subcellular 

localization, and the Golgi complex as well as the ER undergo fragmentation. A reduced 

number of mitochondria and the uncoupling of the oxidative phosphorylation result in a 

strong decline in the cellular ATP level (Welch and Suhan 1985, Patriarca and Maresca 1990, 

Richter et al. 2010).  

The enhanced expression of Hsps is accompanied by a significant decrease in 

transcript levels of constitutively expressed genes and a global decrease in translation (Murray 

et al. 2004). The chromatin in the nucleus condenses and the nucleoli disperse (Nickells et al. 

1988). Non-translating mRNAs and translation initiation factors are stored in cytoplasmic 
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stress granules (Nover et al. 1989, Buchan and Parker 2009). Moreover, heat-shock leads to 

an arrest in ribosome biogenesis due to changes in the organization and composition of the 

nucleoli. They swell and deposits of incorrectly processed ribosomal RNAs and aggregated 

ribosomal proteins become visible (Welch and Suhan 1986, Boulon et al. 2010). Stress-

induced changes in the membrane morphology including an altered protein to lipid ratio as 

well as a general increase in membrane fluidity are also observed after thermal insults. As a 

consequence of the increased membrane permeability, the cytosolic pH drops and the ion 

homeostasis is disturbed (Kruuv et al. 1983, Balogh et al. 2005, Vigh et al. 2007, Richter et 

al. 2010). 

Induction of the HSR is mediated by heat-shock transcription factors (HSFs). Whereas 

invertebrates such as yeast, Caenorhabditis elegans, and Drosophila melanogaster possess 

 

Figure 2-7: Cell physiological changes induced by thermal stress. 

Eukaryotic cells grown at physiological temperature (left) and after exposure to heat stress (right) are compared. 

Temperature increase does not only result in the unfolding and aggregation of individual proteins but also leads 

to the reorganization of actin filaments into stress fibers (purple) and the collapse of intermediate filaments 

(blue). The ER (light grey) and the Golgi complex (white-grey gradient) undergo fragmentation. The number of 

lysosomes (light green) and mitochondria (green) decrease. The nucleoli (grey) swell and deposits of incorrectly 

processed ribosomal RNAs and aggregated ribosomal proteins become visible. The global decrease in 

translation is accompanied by the formation of cytoplasmic stress granules (yellow). Temperature-dependent 

changes in the membrane morphology (brown) lead to increased membrane fluidity as well as permeability. In 

summary, the different effects result in a transient cell cycle arrest and stop of proliferation (adapted from 

Richter et al. 2010).   
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only one HSF, four distinct but related HSFs have been found in vertebrates, HSF1-4, with 

HSF1 being the master regulator of the cytosolic stress response (Pirkkala et al. 2001, 

Trinklein et al. 2004, Anckar and Sistonen 2011). HSR induction is abolished in HSF1- 

deficient cells or organism and cannot be rescued by the other HSFs. After a short description 

of HSF2-4, the current knowledge regarding HSF1 will be discussed in greater detail.  

Upon proteasomal inhibition, simultaneous activation of HSF1 and HSF2 as well as 

formation of DNA-binding-competent HSF1/HSF2 heterotrimers have been described, 

suggesting a modulatory role of HSF2 in the expression of selected heat-shock genes. 

(Mathew et al. 1998, Pirkkala et al. 2000, Loison et al. 2006, Ostling et al. 2007). An HSF1-

dependent DNA binding of HSF1/HSF2 heterotrimers is also known to be involved in the 

regulation of satellite III DNA transcription in nuclear stress bodies, although the function of 

this process remains to be elucidated (Sandqvist et al. 2009, Vabulas et al. 2010). 

Furthermore, HSF2 is associated with the development of the brain and reproductive organs 

(Kallio et al. 2002, Wang et al. 2004, Chang et al. 2006). Recently, HSF3, which is mainly 

present in avian species, has been shown to activate the transcription of non-classical Hsps in 

mouse fibroblasts (Fujimoto et al. 2010). HSF4 plays a role in the development and 

maintenance of lens cells and mutations are associated with cataract formation (Bu et al. 

2002, Fujimoto et al. 2004).  

Because of its conserved role in the transcriptional activation of the cytosolic stress 

response, HSF1 represents the best-studied member of the HSF family. It is constitutively 

expressed in almost all cell types and tissues (Anckar and Sistonen 2011). The HSF1-

mediated stress-inducible synthesis of Hsps is required for thermotolerance acquisition and 

protection against heat-inducible apoptosis (McMillan et al. 1998). Furthermore, HSF1 is 

involved in protecting cells from various pathophysiological conditions including 

neurodegeneration and other degenerative diseases (Fujimoto et al. 2005, Cohen et al. 2006, 

Tanaka et al. 2007), lifespan extension in C. elegans (Hsu et al. 2003) as well as development 

and maintenance of neuronal tissues (Santos and Saraiva 2004, Homma et al. 2007). Besides 

promoting Hsp gene expression, HSF1 drives transcriptional programs to support malignant 

transformation, cancer cell survival, and proliferation (Mendillo et al. 2012). It has been 

shown that HSF1-deficient cells are highly resistant to tumorigenesis driven by mutations of 

the RAS oncogene or the tumor suppressor p53 (Dai et al. 2007). 

HSF1 is a ~60 kDa protein consisting of an N-terminal DNA-binding domain (DBD), 

a bipartite heptad repeat oligomerization domain, a regulatory domain (RD), and a C-terminal  



2 Introduction   28 

trans-activation domain (TAD) (Figure 2-8). The helix-turn-helix motif containing DBD is the 

best-conserved region within the HSF family and represents the only functional domain for 

which structural data are available (Littlefield and Nelson 1999, Anckar and Sistonen 2011). 

The oligomerization domain (HR-A/B) can be further divided into two subdomains, each 

containing an amphiphilic helix with the hydrophobic heptad repeats HR-A and HR-B. 

Interactions between the HR-A/B domains result in the formation of a triple-stranded coiled-

coil structure, thereby regulating HSF1 trimerization. A third hydrophobic heptad repeat 

domain, HR-C, is located between the RD and the TAD and is thought to avoid spontaneous 

trimerization of HSF1 by folding back to the HR-A/B domain, thus keeping HSF1 in an 

inactive state (Peteranderl and Nelson 1992, Peteranderl et al. 1999). Oligomerization of 

HSF1 and its subsequent binding to extended repeats of the nGAAn consensus sequence in 

the promotor regions of target genes, the so-called heat-shock elements (HSEs), are induced 

by proteotoxic stress. Although monomeric HSF1 has been shown to interact with HSEs as 

 

Figure 2-8: Domain structure of human HSF1. 

The human HSF1 consists of an N-terminal DNA-binding domain (DBD), three hydrophobic heptad repeat 

domains (HR-A/B/C), a regulatory domain (RD), and a C-terminal transactivation domain (TAD). 

Intermolecular contacts between the oligomerization domains HR-A/B result in the trimerization of HSF1 and 

are negatively regulated by intramolecular contacts between HR-A/B and HR-C. The RD exerts negative 

control over the trans-activating capacity of HSF1. Under conditions of proteotoxic stress, HSF1 trimerizes, 

accumulates in the nucleus, is post-translationally modified, and drives the transcription of heat-shock-

responsive genes by binding to inverted nGAAn repeats in the promotor regions of target genes (adapted from 

Anckar and Sistonen 2011). 
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well, trimerization increases its DNA-binding affinity by several orders of magnitude. The 

RD, which is located between the heptad repeat domains HR-A/B and HR-C, is proposed to 

exert negative control over the TAD in the absence of protein damage. The RD was shown to 

be target of multiple post-translational modifications, including phosphorylation, sumoylation, 

and acetylation, all modulating the transcriptional activity of HSF1. The TAD is located at the 

very C-terminus of HSF1 and is involved in both transcriptional initiation and elongation 

(Anckar and Sistonen 2011).  

Stress-dependent transcriptional regulation by HSF1 is a multi-step process that is 

only partially understood. Under basal conditions, inactive HSF1 monomers are 

predominately located in the nucleus due to a potent bipartite nuclear localization signal, but 

HSF1 shuttling between the nucleus and cytosol has been reported. Thermal stress results in 

the inactivation of HSF1 export leading to its further nuclear accumulation (Mercier et al. 

1999, Vujanac et al. 2005, Anckar and Sistonen 2011). Although the exact mechanism 

underlying HSF1 activation remains unclear, different models have been proposed (Figure 

2-9). According to the chaperone displacement theory, the repressed monomeric state of 

HSF1 is thought to be stabilized by transient interactions with chaperones including Hsp90, 

Hsp70, and their cofactors (Abravaya et al. 1992, Shi et al. 1998, Zou et al. 1998). 

Phosphorylation at serine residues 303 and 307 further contributes to HSF1 repression (Neef 

et al. 2011). In response to proteotoxic stress, HSF1 is thought to get displaced from Hsp90 

and other co-chaperones, which bind to misfolded proteins instead (Anckar and Sistonen 

2011). Free HSF1 trimerizes and acquires HSE-binding competence (Pelham 1982). In 

contrast to Hsp90, Hsp70 and Hsp40 can remain associated with HSF1 even under stress 

conditions (Abravaya et al. 1992). To become trans-activation competent, HSF1 requires 

extensive post-translational modification (PTM). Trimer formation is accompanied by 

phosphorylation of multiple serine residues, mainly localized in the regulatory domain. 

However, the functional significance of most of these phosphorylation events is still unclear 

(Anckar and Sistonen 2011, Neef et al. 2011). PTM are also known to be involved in the 

repression of HSF1-dependent trans-activation. Sumoylation at lysine residue 298, for 

example, follows phosphorylation of serine 303 and has an inhibitory effect on HSF1 

(Hietakangas et al. 2003). Acetylation of the DBD at lysine 80 has been reported to reduce the 

dwell time of HSF1 on DNA and mediates HSR attenuation. In turn, deacetylation of HSF1 

by the deacetylase sirtuin 1 (SIRT1) results in a prolonged binding to HSEs (Westerheide et 

al. 2009). Once activated, HSF1 drives the expression of Hsps, which assist in reducing the 

cellular load of misfolded proteins either by refolding or degradation. When proteotoxicity is 
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overcome, cells are left with an increased pool of freely available chaperones. Rebinding of 

these chaperones to HSF1 is thought to result in the attenuation of the HSR. 

Although the existence of an inhibitory HSF1/multichaperone complex is well 

established, the high molar excess of intracellular chaperones over HSF1 complicates a fine-

tuned regulation of HSF1 and is unlikely to be the only regulatory mechanism  (Shamovsky 

and Nudler 2008). Several other models for HSF1 regulation have been proposed (Figure 

2-9). The RNA thermometer model postulates the participation of a ribonuleoprotein complex 

 

Figure 2-9: Proposed activation mechanisms for HSF1. 

(A) In the chaperone displacement model, a transient interaction of monomeric HSF1 with chaperone 

complexes, predominantly Hsp90, represses its activity. Proteotoxic conditions lead to the accumulation of non-

native proteins which displace HSF1 from the chaperones. HSF1 is free to trimerize and drives the transcription 

of heat-shock-responsive genes. (B) According to the RNA thermometer theory, a complex of the heat-sensing 

RNA molecule HSR-1 and the translation elongation factor eEF1A stimulates HSF1 activity. (C) The intrinsic 

response model proposes a built-in ability of HSF1 to directly sense various kinds of stresses. In vitro studies 

revealed that HSF1 trimerizes upon exposure to such proteotoxic conditions. (D) In the nematode 

Caenorhabditis elegans, an additional level of cell non-autonomous HSR regulation was shown. Animals 

deficient in the thermosensory AFD neurons fail to induce the HSR in somatic cells. The mechanism of how 

AFD neurons influence somatic HSF1 activity is far from being understood (adapted from Anckar and Sistonen 

2011). 
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consisting of the heat-sensing RNA HSR-1 (heat-shock RNA-1) and the translation elongation 

factor eEF1A in the regulation of HSF1 activity. As eEF1A is also known to be involved in 

the organization of the cytoskeleton, the general shutdown of protein biogenesis and the 

collapse of the cytoskeleton are linked to HSF1 activation (Shamovsky et al. 2006, 

Shamovsky and Nudler 2008, Anckar and Sistonen 2011). Furthermore, HSF1 possesses an 

intrinsic ability to directly sense different forms of proteotoxic conditions including increased 

calcium concentrations, thermal and oxidative stress. Purified HSF1 has been shown to 

undergo trimerization upon exposure to such conditions (Mosser et al. 1990, Goodson and 

Sarge 1995, Zhong et al. 1998). Additionally, a cell non-autonomous HSF1 regulation has 

been described in the nematode C. elegans. Thermosensory AFD neurons and their 

successional postsynaptic cells influence the HSR in somatic cells and regulate the 

temperature-dependent behavior of the worm. Although it was shown that HSF1 appears to be 

a downstream target of these neurons, the mechanistic details of this process remain to be 

uncovered (Prahlad et al. 2008, Anckar and Sistonen 2011).  

2.4.3 Organelle-specific stress response pathways 

As discussed in chapter 2.4.1, proteotoxic conditions lead to the activation of the HSR, the 

main stress response of the cytosol. In eukaryotic cells, individual compartments vary in their 

susceptibility to protein damage. Cells have developed compartment-specific protein quality 

control strategies to counteract the accumulation of non-native proteins. In the following 

sections, the unfolded protein responses of the ER and mitochondria will be discussed (Figure 

2-10). 

The ER is the organelle in which proteins are folded and post-translationally modified 

before they are secreted, integrated into membranes, or delivered to other compartments of the 

endomembrane system. The ER exerts major quality control function for almost all signaling 

proteins involved in the communication of cells with their environment. Whereas properly 

folded proteins advance from the ER, misassembled proteins are targeted for proteasomal 

degradation in a process called ER-associated degradation (ERAD). Proteotoxic conditions, 

which disturb ER homeostasis and lead to an increased load of misfolded proteins, trigger 

conserved stress-signaling pathways commonly known as the unfolded protein response 

(UPR). Activation of the UPR results in the upregulation of ER chaperones, expansion of the 

ER membrane system, pausing of translation, and an increased degradation of misfolded 

proteins. If cells fail to re-establish ER homeostasis, they undergo apoptosis (Ron and Walter 

2007, Walter and Ron 2011, Kourtis and Tavernarakis 2011). The UPR is mediated by three 
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classes of transmembrane sensors, each representing an individual branch of the response: 

inositol requiring enzyme 1 (IRE1), PKR-like ER kinase (PERK), and the activating 

transcription factor 6 (ATF6) (Figure 2-10). Similar to the inactivation of HSF1 through 

interaction with Hsp90, the transmembrane receptors are repressed through the binding to the 

ER Hsp70 chaperone BiP/GRP78 (Ig-binding protein/glucose-regulated protein 78). The 

accumulation of un- and misfolded proteins leads to the displacement of BiP/GRP78 from the 

receptors and their subsequent activation (Zhang and Kaufman 2006). While IRE1 is the most 

conserved branch of the UPR and the only one in lower eukaryotes, metazoans have 

additionally developed the PERK and ATF6 branches (Walter and Ron 2011). 

 

Figure 2-10: General and organelle-specific stress responses. 

Exposure of the cell to proteotoxic stress and the subsequent accumulation of misfolded and aggregated protein 

species lead to the induction of general as well as organelle-specific stress response pathways. The activation of 

the cytosolic HSR involves the oligomerization and translocation of HSF1 to the nucleus, where it drives the 

transcription of Hsps. Stressful conditions in the ER result in the activation the UPR. The protein folding 

conditions in the organelle are monitored by three families of signal transducers, namely PERK, ATF6, and 

IRE1. Activation of each receptor leads to the production of transcription factors that drive the expression of 

UPR target genes. IRE1 and PERK also reduce the load of proteins entering the ER by the degradation of ER 

bound mRNAs or inhibition of general translation, respectively. Mitochondrial stress induces an organelle-

specific UPR leading to an increased expression of the mitochondrial quality control machinery (adapted from 

Walter and Ron 2011). 
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ATF6 is a transcription factor initially localized in the ER membrane. After the 

accumulation of misfolded proteins, ATF6 is activated and translocates to the Golgi 

apparatus, where two proteases, S1P and S2P, cleave its luminal and cytosolic domains from 

the transmembrane part (Figure 2-10). The 50 kDa cytosolic N-terminal fragment, ATF6N, 

enters the nucleus and drives the transcription of UPR target genes, including BiP and the ER 

Hsp90 GRP94 (Yoshida et al. 1998, Haze et al. 1999, Ye et al. 2000).  

The second branch of the UPR is controlled by the ER-resident transmembrane kinase 

PERK. Upon activation, PERK oligomerizes, undergoes auto-phosphorylation, and 

phosphorylates the α-subunit of translation initiation factor 2, eIF2 (Figure 2-10). This 

phosphorylation inactivates eIF2 and inhibits translation in response to ER stress. The overall 

decrease in translation reduces the ER protein folding load (Harding et al. 1999). 

Furthermore, the reduced eIF2 activity results in the preferred translation of a specific subset 

of mRNAs carrying particular motifs in their 5’-untranslated regions (5’-UTR) such as 

upstream open reading frames (uORF) and internal ribosomal entry sites (IRES, Dang Do et 

al. 2009). The transcription factor ATF4 is one of them and in turn drives the transcription of 

CHOP and GADD34. Whereas CHOP controls the transcription of genes involved in 

apoptosis, GADD34 is part of a protein phosphatase complex regulating the 

dephosphorylation of eIF2α. Thus, GADD34 participates in a negative feedback loop which 

restores translation (Novoa et al. 2001, Walter and Ron 2011).  

The third branch of the UPR is regulated by the bifunctional transmembrane 

kinase/endoribonuclease IRE1. Oligomerization and auto-phosphorylation of IRE1 lead to the 

activation of its ribonuclease activity. Active IRE1 splices the pre-mRNA coding for the 

UPR-specific transcription factor XBP1, which enhances the expression of ER chaperones 

and ERAD components. Furthermore, IRE1 is involved in a process called RIDD (regulated 

IRE1-dependent decay) to degrade ER-bound mRNAs and reduce the ER protein folding load 

(Yoshida et al. 2001, Lee et al. 2003, Hollien and Weissman 2006, Walter and Ron 2011). 

The mitochondrial UPR represents another example for an organelle-specific stress-

responsive pathway and results in an increased resistance to oxidative damage. It activates the 

transcription of nuclear-encoded mitochondrial quality control genes in response to 

perturbations of the protein homeostasis within the organelle. In eukaryotes, mitochondria are 

involved in many important processes including the regulation of apoptosis. Therefore, the 

mitochondrial matrix contains its own protein quality control machinery consisting of 

molecular chaperones as well as proteases, including chaperonin 60 (Cpn60/Hsp60), 

chaperonin 10 (Cpn10/Hsp10), mtHsp70, mtGrpE, mtDnaJ, and the mitochondrial ClpP 
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protease. These proteins ensure the maintenance of the mitochondrial proteome by assisting in 

the import, refolding, aggregation prevention, and degradation of proteins encoded by the 

nuclear genome and mitochondrial DNA (mtDNA). The upregulation of the mitochondrial 

stress response machinery involves the transcription factors CHOP and C/EBPβ (Zhao et al. 

2002, Haynes and Ron 2010, Kourtis and Tavernarakis 2011). Interestingly, CHOP activation 

results in the upregulation of different target genes in ER and mitochondrial UPR and further 

research will be needed to identify factors providing specificity to the two responses (Kourtis 

and Tavernarakis 2011).  

2.5 Integration of the proteostasis network and its relation to 

aging and disease 

As previously discussed, cells and organisms invest in a complex network to maintain protein 

homeostasis. The individual modules of this proteostasis network do not function in an 

isolated manner but are rather interconnected via multiple hubs coordinating the various 

components (Hartl et al. 2011, Kourtis and Tavernarakis 2011).  

The conserved serine/threonine kinase target of rapamycin (TOR) represents one of 

these intersections and is part of a signaling pathway linking cellular growth, metabolism, and 

translation control with environmental cues (Gingras et al. 2004, Wullschleger et al. 2006). 

The mammalian target of rapamycin complex 1 (mTORC1) was shown to stimulate cell 

growth by enhancing translation through the phosphorylation of ribosomal protein S6 kinase 

(S6K) and the eukaryotic initiation factor 4E (eIF-4E). mTORC1 also inhibits autophagy 

when nutrients are plentiful and is involved in the regulation of ribosome biogenesis by 

promoting pre-rRNA synthesis (Mayer and Grummt 2006, Chan 2009, Boulon et al. 2010). 

Moreover, mTORC1 is able to sense the chaperone availability in cells, thereby linking 

protein quality and protein quantity control (Qian et al. 2010). Recently, it has been shown 

that mTORC1 also plays a role in the regulation of the HSR by direct phosphorylation of 

HSF1 on serine 326, a key residue for its transcriptional activation (Chou et al. 2012). 

Furthermore, mTOR is involved in the progression of neurodegenerative diseases, as its 

inhibition induces autophagy and reduces toxic effects of polyglutamine expansions in fly and 

mouse models of Huntington’s disease (Ravikumar et al. 2004). 

Sirtuins, a family of highly conserved NAD
+
-dependent protein deacetylases, also play 

a major role in the regulation of the proteostasis network. Initially discovered in yeast, they 
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were identified to mediate chromatin silencing. Sir2, the best-studied member of the sirtuins, 

has been shown to promote longevity in yeast, nematodes, and flies through caloric 

restriction, thus linking the metabolic status of a cell to aging (Rine and Herskowitz 1987, 

Kaeberlein et al. 1999, Rogina and Helfand 2004). The sirtuin-mediated lifespan increase of 

C. elegans has been shown to be dependent on a member of the forkhead transcription factor 

(FOXO) family, DAF-16 (Lin et al. 1997, Brunet et al. 2004). However, the role of sirtuins in 

the life span regulation of worms and flies is controversial and still a matter of debate (Burnett 

et al. 2011). The mammalian genome encodes seven sirtuins with SIRT1 being the ortholog 

of yeast Sir2. There is a growing body of evidence that SIRT1 directly couples the cellular 

energy metabolism to the chromatin structure and the regulation of gene expression by 

deacetylation of histones and several transcription factors (Li 2013). Some of these 

transcription factors are key players in cellular stress-responsive pathways. For example, 

SIRT1-mediated deacetylation of HSF1 prolongs its binding to the HSEs in the promotor 

regions of target genes, thus establishing a role for SIRT1 in protein homeostasis and the 

HSR. (Westerheide et al. 2009). Moreover, SIRT1 is known to regulate the activity of 

FOXO3. Mammalian FOXO transcription factors mediate the cellular response to oxidative 

stress and are involved in further biological processes such as aging. Sirtuins also play a role 

in the onset of neurodegenerative diseases. Whereas a decreased sirtuin level in C. elegans 

accelerates the age-dependent aggregation of α-synuclein, flies and mice show the opposing 

effects, namely that a reduced sirtuin activity promotes survival of neuronal cells in a 

Huntingtin’s disease model and delays the onset of prion disease, respectively (Chen et al. 

2008, Pallos et al. 2008, van Ham et al. 2008). Activation of sirtuins leads to the clearance of 

toxic oligomeric intermediates by the cellular protein degradation machinery as it has been 

shown that sirtuins promote the degradation of the amyloidogenic Aβ peptide via the UPS and 

autophagy (Marambaud et al. 2005, Lee et al. 2008).  

The insulin/insulin-like growth factor 1 (IGF-1) pathway represents another hub in the 

proteostasis network. It connects the regulation of stress resistance with the aging process 

(Douglas and Dillin 2010). The C. elegans tyrosine kinase DAF-2, a homolog of the 

mammalian insulin/IGF-1 receptor, is activated by the binding of insulin-like molecules and 

initializes a signaling cascade including the phosphatidylinositol-3 kinase AGE-1, which 

ultimately results in the repression of the forkhead transcription factor DAF-16 (Dorman et al. 

1995, Lin et al. 1997, Rincon et al. 2005). Any changes in the insulin/IGF-1 pathway leading 

to the derepression of DAF-16 such as mutations of daf-2 or age-1 increase the stress 

resistance of C. elegans and extend its life span (Cohen et al. 2006). Furthermore, it has been 
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shown that the life-prolonging function of the nematode HSF1 is also controlled by the 

insulin/IGF-1 pathway (Kenyon et al. 1993, Morimoto 2008). Together with DAF-16, HSF1 

drives the expression of specific stress-responsive target genes, including sHsps, which 

promote longevity (Hsu et al. 2003). Modifications of the insulin/IGF-1 pathway have also 

been demonstrated to be involved in the onset of neurodegenerative diseases since reduced 

signaling causes a dramatic delay of toxicity associated with polyglutamine expansions as 

well as amyloidogenic Aβ-peptides (Morley et al. 2002, Cohen et al. 2006). Taken together, 

these data suggest that the insulin/IGF-1 signaling pathway plays a key role in life-span 

determination and amelioration of aggregation-associated proteotoxicity by regulating HSF1, 

DAF-16, and the subsequent expression of molecular chaperones and other anti-aging genes  

(Cohen et al. 2006).  

The protein degradation machinery is another key determinant in maintaining the 

cellular protein homeostasis. The clearance of terminally misfolded proteins is tightly 

regulated and dysregulation is related to the pathogenesis of several human diseases including 

Parkinson's, Alzheimer's, Huntington’s, and Prion diseases as well as amyotrophic lateral 

sclerosis and breast cancer (Ciechanover and Brundin 2003, Ohta and Fukuda 2004, Cheung 

and Ip 2009). However, only limited information is available concerning the linkage of the 

impaired proteolytic machinery with the pathogenesis of these diseases. It remains to be seen 

if the reduced degradation capacity is the primary cause or the secondary consequence of 

disease progression (Ciechanover and Brundin 2003). For example, it has been shown that the 

expression of aggregation-prone proteins causes an almost complete inhibition of the UPS by 

protein aggregates (Bence et al. 2001). Inhibition of the proteasome represents a major 

challenge of the proteostasis network which leads to the accumulation of ubiquitinated 

proteins and an increased expression of Hsps in an HSF1-dependent manner (Pirkkala et al. 

2000). It is likely that HSF1 plays an additional role in degradation of ubiquitinated proteins 

as HSF1-deficient mice show a reduced ability to degrade ubiquitinated proteins and 

accumulate polyglutamine aggregates in a Huntington’s model (Homma et al. 2007). 

Moreover, recent findings suggest a role of HSF1 in the negative regulation of autophagy 

(Dokladny et al. 2013). 

The aging process represents a major challenge for cellular proteostasis and can 

generally be explained with a decline of the cellular quality control mechanisms and 

decreased capacity of the protein degradation machinery. Aging cells and organisms show an 

increased expression level of Hsps even in the absence of environmental challenges 

suggesting that aging is an intrinsic stress signal (Kourtis and Tavernarakis 2011). Although 
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an age-dependent decline in proteasomal degradation has been shown by several groups, the 

ubiquitination machinery is not affected to the same extent (Conconi et al. 1996, Shibatani et 

al. 1996, Ponnappan et al. 1999, Carrard et al. 2002). The reduced degradation capacity can 

be explained with a decrease in the expression of proteasomal subunits during aging and 

increasing oxidative stress that further enhances dysfunction of the proteasome (Bulteau et al. 

2002, Carrard et al. 2002). The important role of protein degradation systems in the complex 

proteostasis network is further demonstrated by the fact that reduced degradation is 

accompanied by the activation of the HSR and the UPR of the endoplasmic reticulum 

(Kisselev and Goldberg 2001, Kourtis and Tavernarakis 2011).   

2.6 Aim of the study 

When facing proteotoxic environmental conditions, cells and organisms respond with the 

activation of the HSR to ensure stress adaptation, recovery, and survival. The HSF1-

dependent transient expression of stress proteins, predominantly molecular chaperones, is a 

key feature of this cytoprotective mechanism. Although the function of HSF1 as the master 

regulator of the HSR is well established and has been described in cell culture models as well 

as at the organismal level, the understanding of how proteotoxic stimuli are sensed by cells 

and organisms and how this results in the activation of HSF1 is far from complete. The 

question if different stresses are detected by distinct molecular sensors or if there is a common 

basis for stress recognition also remains to be solved (Anckar and Sistonen 2011). 

Furthermore, it has been shown that the HSR plays an important role in the aging process as 

well as in the progression of several human pathologies including neurodegenerative disorders 

and cancer. Whereas an (age-dependent) decline in the cellular proteostasis capacity leads to 

aberrant protein folding and aggregation, tumor cells generally express increased levels of 

chaperones compared to untransformed cells due to their higher dependence on chaperones 

(Dai et al. 2007, Ben-Zvi et al. 2009, Powers et al. 2009, Neef et al. 2011).  

The goal of the present study was to elucidate the mechanisms underlying the stress-

dependent activation of HSF1 and to define the cellular networks that regulate the HSR. 

Understanding the activation of the HSR is medically relevant as it counteracts the 

accumulation of disease associated protein aggregates. This knowledge would open the 

possibility to pharmacologically modulate the HSR, thereby boosting cellular proteostasis and 

offering a possible strategy to mitigate various degenerative conditions associated with 
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neurodegeneration and the aging process. On the other hand, inhibition of the HSR is 

considered beneficial in cancer and may lead to the development of new therapeutic anti-

cancer strategies.  
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3 Material and methods 

3.1 Chemicals and biochemicals 

Biochrom AG (Berlin, Germany):  

• Dulbecco's MEM (w 3.7 g/l NaHCO3, w 4.5 g/l D-Glucose)  

 

BioMol (Hamburg, Germany): 

• MG132 

• Withaferin A 

 

Biozym Scientific GmbH (Hessisch Oldendorf, Germany): 

• Agarose 

 

Cambridge Isotope Laboratories (Tewksbury, USA): 

• Arginine-13C6 

• Arginine-13C6,15N4 

• Lysine-13C6,15N2 

• Lysine-4,4,5,5-d4 

 

Dako (Glostrup, Denmark): 

• Fluorescent Mounting Medium 

 

Difco (Heidelberg, Germany): 

• Bacto Tryptone 

• Bacto Yeast Extract 

 

Enzo® Life Sciences (Lörrach, Germany): 

• 17-AAG 

• 17-DMAG 
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Gibco (Paisley, UK): 

• 0.05% Trypsin-EDTA 

• L-Glutamine 200 mM (100x) 

• Opti-MEM® I Reduced Serum Medium 

• PBS pH 7.2 

• Penicillin-streptomycin (10.000 units/ml Pen, 10.000 µg/ml Strep) 

 

Invitrogen (Karlsruhe, Germany): 

• Blasticidin S HCl 

• Colloidal blue 

• DAPI 

• LDS sample buffer 

• Lipofectamine 

• Lipofectamine Plus Reagent 

• Lipofectamine RNAiMAX 

• NuPAGE 4-12% Bis-Tris gradient gel 

• SYBR® Safe DNA gel stain 

 

Life Technologies (Paisley, UK): 

• Dynabeads His-tag isolation and pull-down beads 

 

Merck (Darmstadt, Germany): 

• 3-Methyladenine 

• Celastrol, Celastrus scandens   

• DCIC 

• Disodium EDTA 

• EDTA (Titriplex III) 

• InSolution
TM

 Epoxomicin, Synthetic 

• Lactacystin, Synthetic 

• Magnesium chloride 

• Magnesium sulfate 

• Paraformaldehyde 

• Tween 20 
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Metabion (Martinsried, Germany): 

• dNTP Set 100 mM 

 

Millipore (Schwalbach, Germany): 

• Luminata Classico Western HRP substrate 

 

New England BioLabs® (Frankfurt am Main, Germany): 

• BSA 

• NEBuffer 4 

 

PerkinElmer (Waltham, USA): 

• EasyTag™ L-[35S]-methionine 

 

Pierce Biotechnology (Bonn, Germany): 

• EGS 

 

PAA (Cölbe, Germany): 

• G418 sulfate 

• Customized DMEM for SILAC 

• Dialyzed FCS for SILAC 

 

Roche Applied Science (Basel, Switzerland): 

• Nonidet P-40 (NP40) 

• Protease inhibitor cocktail tablets, complete-Mini, EDTA-free 

 

Roth (Karlsruhe, Germany): 

• Agar-Agar 

• Ampicillin 

• Calcium chloride 

• Glucose 

• Glycine 

• HEPES 

• Imidazole 
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Saliter (Obergünzburg, Germany): 

• Milk powder 

 

Serva (Heidelberg, Germany): 

• Acrylamide 

• Coomassie Blue R250 

• SDS 

 

Sigma (Steinheim, Germany): 

• Ammonium persulfate 

• Arachidonic acid 

• Arginine 

• Boric acid 

• Cycloheximide 

• DMSO 

• Kanamycin 

• Lysine 

• MOPS 

• MTT 

• Potassium phosphate monobasic 

• Puromycin dihydrochloride from Streptomyces alboniger 

• Rubidium chloride 

• Sodium deoxycholate 

• TEMED 

• Trizma® base 

• β-Mercaptoethanol 

 

USB (Cambridge, USA): 

• Sodium phosphate, dibasic 

 

VWR (Darmstadt, Germany): 

• Glycerol 

• Guanidinium hydrochloride 



3 Material and methods   43 

• Manganese(II) chloride 

• Potassium chloride 

• Potassium acetate 

• Sodium chloride 

• Sodium hydroxide 

3.2 Antibodies 

Abcam (Cambridge, UK): 

• Mouse anti-EP300, dilution 1:1000 

• Rabbit anti-lamin B1, dilution 1:400 for microscopy, 1:1000 for WB 

• Rat anti-HSF1, dilution 1:2000 for WB 

 

Cell signaling (Danvers, USA): 

• Rabbit anti-HSF1, dilution 1:500 for microscopy 

 

Dianova (Hamburg, Germany): 

• Cy3
TM

-conjugated AffiniPure goat anti-rabbit IgG, dilution 1:200 

 

Millipore (Schwalbach, Germany): 

• Mouse anti-GAPDH, dilution 1:3000 

• Mouse anti-Renilla luciferase, dilution 1:1000 

 

Promega (Mannheim, Germany): 

• Goat anti-firefly luciferase, dilution 1:2000 

 

Sigma (Steinheim, Germany): 

• Anti-Goat IgG (whole molecule)-Peroxidase antibody, dilution 1:4000 

• Anti-Mouse IgG (whole molecule)-Peroxidase antibody, dilution 1:4000 

• Anti-Rat IgG (whole molecule)-Peroxidase antibody, dilution 1:4000 

• Mouse anti-α-tubulin, dilution 1:200 for microscopy, 1:1000 for WB 
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3.3 Media and buffers 

3.3.1 Media 

Bacterial media were prepared with deionized water (electrical resistance 18.2 MΩ·cm) and 

autoclaved after preparation. 

 

LB medium: 10 g/l Bacto Tryptone 

 5 g/l Bacto Yeast Extract 

 10 g/l NaCl 

 

Solid LB medium: 10 g/l Bacto Tryptone 

 5 g/l Bacto Yeast Extract 

 10 g/l NaCl 

 15 g/l Agar-Agar 

 

 100 µg/ml Ampicillin or 50 µg/ml Kanamycin added 

 for antibiotics selection 

 

SOB medium: 20 g/l Bacto Tryptone 

 5 g/l Bacto Yeast Extract 

 10 mM NaCl 

 2.5 mM KCl 

 10 mM MgCl2 

 10 mM MgSO4 

 

SOC medium: SOB medium with 20 mM glucose 

3.3.2 Buffers and standard solutions 

Buffers were prepared with deionized water (electrical resistance 18.2 MΩ·cm). 

 

Antibiotic solutions (1000x):  100 mg/ml Ampicillin 

 50 mg/ml Kanamycin 
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Blocking buffer: 5% (w/v) Milk powder in TBST 

 

Coomassie destaining solution:  10% (v/v) Ethanol 

 10% (v/v) Acetic acid 

 

Coomassie staining solution:  0.1% (w/v) Serva Coomassie Blue R250 

 40% (v/v) Ethanol 

 10% (v/v) Acetic acid 

 

HSF1 cross-linking buffer: 50 mM HEPES pH 7.8 

 150 mM NaCl 

 1% (v/v) NP-40 

 0.25% Sodium deoxycholate 

 1 mM EDTA 

 1 tablet protease inhibitor cocktail per 10 ml (Roche) 

 

His-Ubi pull-down lysis buffer: 6 M Guanidinium-HCl 

 0.1 M HEPES  

 5 mM Imidazole 

 

 pH adjusted to 7.4 

 

His-Ubi pull-down wash buffer: 300 mM NaCl 

 50 mM Tris-HCl 

 20 mM Imidazole 

 1% (v/v) NP-40 

 

 pH adjusted to 7.6 
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PBS (10x): 1.37 M NaCl 

 27 mM KCl 

 100 mM Na2HPO4 

 18 mM KH2PO4 

 

 pH adjusted to 7.4 

 

RF1: 100 mM RbCl2 

 50 mM MnCl2 

 30 mM Potassium acetate 

 10 mM CaCl2 

 15% (w/v) Glycerol 

  

 pH adjusted to 5.8 with 0.2 M acetic acid 

 

RF2: 10 mM RbCl2 

 10 mM MOPS 

 75 mM CaCl2 

 15% (w/v) Glycerol 

 

 pH adjusted to 6.8 with 1 M NaOH 

 

RIPA lysis buffer: 50 mM Tris-HCl, pH 7.8 

 150 mM NaCl 

 1% (v/v) NP-40 

 0.25% Sodium deoxycholate 

 1 mM EDTA 

 1 tablet protease inhibitor cocktail per 10 ml (Roche) 

 

SDS-loading buffer: 62.5 mM Tris-HCl, pH 6.8 

 10% (v/v) Glycerol 

 2% (w/v) SDS 

 5% (v/v) β-mercaptoehanol 

 0.2 % (w/v) bromphenolblue 
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SDS-running buffer (5x): 125 mM Tris-HCl 

 960 mM Glycine 

 0.5% (w/v) SDS 

 

Stripping buffer: 2% (w/v) SDS 

 62.5 mM Tris-HCl, pH 6.8   

 100 mM β-mercaptoehanol 

  

TBE (5x): 0.89 M Tris-HCl 

 0.89 M Boric acid 

 20 mM Na2EDTA 

 

TBS (10x): 100 mM Tris-HCl, pH 7.5 

 1.54 M NaCl 

 

TBST: 10 mM Tris-HCl, pH 7.5 

 0.154 M NaCl 

 0.1% (v/v) Tween 20 

 

Towbin Buffer: 25 mM Tris 

 192 mM Glycine 

 1.25 mM SDS 

 20% (v/v) Methanol 

3.4 Materials and instruments 

Applied Biosystems (Paisley, UK):  

• Gene Amp PCR System 2400 

 

BD BioCoatTM Cellware (San Jose, USA): 

• Poly-L-lysine 12 mm coverslips 

 

 



3 Material and methods   48 

BD Falcon (San Jose, USA): 

• 100 mm tissue culture dish 

• 6-well plates 

• 12-well plates 

• 48-well plates 

• 96-well plates 

 

Beckman Coulter GmbH (Krefeld, Germany): 

• Centrifuge GS-6R 

• DU640 UV/VIS Spectrophotometer  

 

Biometra (Göttingen, Germany):  

• T3 Thermocycler 

 

Bio-Rad (München, Germany): 

• Mini Protean® Tetra Cell (SDS gel) 

• Mini ProteanTM II (WB) 

• Mini Trans-Blot® Module  

• Power supply Power Pac Basic 300 

 

Biotek (Bad Friedrichshall, Germany):  

• Microplate reader Synergy HT 

 

Costar (Tewksbury, USA):  

• 24-well plates 

• Stripette (5 ml, 10 ml, 25 ml) 

 

Dr. Maisch GmbH (Ammerbuch-Entringen, Germany): 

• Reprosil-Pur C18-AQ 

 

Drummond Scientific (Broomall, USA):  

• Pipet-Aid XP 
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EG&G Berthold (Bad Wildbad, Germany): 

• Luminometer Lumat LB9507 

 

Eppendorf (Hamburg, Germany): 

• Centrifuge 5415C, 5415R 

• Thermomixer comfort 

• Pipettes 

• 1.5 ml tubes 

• 2 ml tubes 

• Tips 

 

Fisher Scientific (Schwerte, Germany): 

• Accumet Basic pH meter 

 

Forma Scientific (Waltham, USA): 

• CO2 Water Jacketed Incubator 

 

Fuji/Raytest (Straubenhardt, Germany):  

• Fuji LAS3000 

• Gel imaging software AIDA (version 4.15.025) 

 

Greiner (Frickenhausen, Germany):  

• 550 ml tissue culture flask 

• Cryo.sTM freezing tube 

 

Heidolph (Schwabach, Germany): 

• Heatable magnetic stirrer 

• Shaker Duomax 1030 

 

Heraeus Instruments (Hanau, Germany):  

• Cell culture hood 

• Microbiological Incubator Function Line B12 
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Invitrogen (Karlsruhe, Germany): 

• Safe Imager
TM

 2.0 Blue Light Transilluminator 

 

Josef Peske GmbH & Co KG (Karlsruhe, Germany): 

• 1.5 ml tubes 

• 2 ml tubes 

 

LG (Seoul, South Korea):  

• Microwave Wavedom 

 

Melter Toledo (Gießen, Germany):  

• Balances (AB265-S, FACT) 

 

Millipore (Schwalbach, Germany): 

• Millex-SV syringe filter unit, 0.22 µm 

• Millipore Milli Q Plus PF water purification system 

• Scepter
TM

 Handheld Automated Cell Counter 

• Scepter
TM

 Sensors 60 µm 

 

MWG Biotech AG (Göttingen, Germany):  

• Gel documentation system 

 

Nalgene (Steinheim, Germany): 

• Cryo 1°C Freezing Container 

 

Nunc (Roskilde, Denmark):  

• Aluminium Seal Tape for 96-well plates 

 

Qiagen (Hilden, Germany): 

• QIAshredder columns 

 

Sarstedt (Nümbrecht, Germany):  

• 15 ml tubes 

• 50 ml tubes 
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• Filter tips 

• Pipettes 

• Serological pipette, 1 ml 

• Tube, 5ml, 75x12 mm 

 

Schott (Mainz, Germany): 

• Laboratory glass ware 

 

Scientific Industries (Bohemia, USA): 

• Vortex-Genie® 2 

 

Sorensen
TM

 BioScience, Inc. (Salt Lake City, USA): 

• Safe Seal Microcentrifuge Tubes (0.65 ml, 1.7 ml) 

 

Störktronic (Stuttgart, Germany):  

• Heating block 

 

Thermo Scientific (Waltham, USA):  

• LTQ-Orbitrap mass spectrometer 

• Microscopy slides 

• Nanodrop 1000 Spectrophotometer 

• Orbital shaker 

 

Waters (Milford, USA): 

• nanoACQUITY HPLC system 

 

Whatman
TM

 (Dassel, Germany): 

• Nitrocellulose membrane 

• Chromatography Paper 3MM Chr 

 

Zeiss (Jena, Germany): 

• Axiovert 200M fluorescence microscope 
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3.5 Marker, kits, and enzymes 

3.5.1 Marker and loading dyes 

Fermentas (St. Leon-Rot, Germany): 

• 6x DNA Loading Dye 

• GeneRulerTM 100bp DNA Ladder 

• GeneRulerTM 1kb DNA Ladder 

• PageRulerTM Prestained Protein Ladder 

3.5.2 Kits 

Bio-Rad (München, Germany): 

• iScript
TM

 cDNA Synthesis Kit 

 

Pierce Biotechnology (Bonn, Germany): 

• NE-PER® Nuclear and Cytoplasmic Extraction Reagents 

 

Promega (Mannheim, Germany): 

• Dual-GloTM Luciferase Assay System 

• Luciferase Assay System 

• Proteasome-Glo
TM

 Chymotrypsin-Like Assay 

• PureYield
TM

 Plasmid Midiprep System 

• Renilla Luciferase Assay System 

• Wizard® Plus SV Miniprep DNA Purifiaction System 

• Wizard® SV Gel and PCR Clean Up-System 

 

Qiagen (Hilden, Germany): 

• EndoFree® Plasmid Maxi Kit 

• RNeasy Mini Kit 

3.5.3 Enzymes 

New England BioLabs® (Frankfurt am Main, Germany): 

• ApaI 
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• CIP 

• FseI 

• SmaI 

• T4 DNA ligase 

• XhoI 

 

Promega (Mannheim, Germany): 

• Pfu DNA Polymerase 

3.6 Strains and vectors 

3.6.1 Bacterial strains 

Invitrogen (Karlsruhe, Germany): 

• E. coli DH5α 

3.6.2 Vectors 

Invitrogen (Karlsruhe, Germany): 

• pUB/Bsd 

 

Promega (Mannheim, Germany): 

• pCI-neo 

• phRL-TK 

3.7 Molecular biological methods 

3.7.1 DNA analytical methods 

3.7.1.1 DNA quantification 

DNA concentrations were determined by UV spectroscopy using the NanoDrop 1000. DNA 

solutions were measured directly and DNA-free water served as a reference. The absorbance ratio 
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260/280 nm for pure DNA should be approximately 1.85. Deviations from this value indicate 

quality deficiencies caused by impurities such as RNA or protein. 

3.7.1.2 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to separate DNA fragments according to their molecular 

weight (Helling et al. 1974). Agarose was melted by heating and gels ranging from a 

concentration of 0.8 to 2% (w/v) were prepared in 1x TBE buffer supplemented with 1:5000 

SYBR® Safe DNA gel stain. Before electrophoresis, 6x loading dye was added to the 

samples. Gels were run at a constant voltage of 120 V for 15 to 20 min in 1x TBE. The DNA 

was visualized using Safe Imager
TM

 2.0 Blue Light Transilluminator and a gel documentation 

system. 

3.7.1.3 DNA sequencing 

Sequencing of nucleic acids was performed by the Core Facility of the MPI for Biochemistry 

in Martinsried. 300 ng plasmid DNA was mixed with 5 pmol sequencing primer (primers are 

listed in Table 3-1) and 2.5 µl of a pre-mixed PCR solution in a final volume of 10 µl. The 

chromatograms were analyzed using the program Chromas (Technelysium Pty Ltd, C. 

McCarthy, Griffith University, Australia) and comparative sequence alignment was 

performed with the MultAlin analysis program (Corpet, 1988; http://bioinfo.genopole-

toulouse.prd.fr/multalin/multalin.html).  

Table 3-1: Sequencing primers. 

Primer Sequence

CMV-forward 5’-CGCAAATGGGCGGTAGGCGTG-3’

T7-forward 5’-TAATACGACTCAGTATAGGG-3’

pUB-forward 5’-GAGCCTATGGAAAAACGCCAG-3’

pCI-neo-forward 5’-GCACCTATTGGTCTTACTG-3’  

3.7.2 Purification of plasmid DNA and DNA fragments 

Anion-exchange-based chromatography methods were used for purification of plasmid DNA 

from E. coli cultures or DNA fragments after gel electrophoresis. For isolation of plasmid 

DNA the Wizard® Plus SV Miniprep DNA Purification System, the PureYield
TM

 Plasmid 

Midiprep System and the EndoFree® Plasmid Maxi Kit were used according to the 

manufacturer’s protocol, respectively. Isolation of DNA fragments after PCR or digestion was 

performed by using Wizard® SV Gel and PCR Clean Up-System according to the 

manufacturer’s recommendations. 
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3.7.3 Generation of expression constructs 

To generate the CMV-Rluc construct, the Renilla luciferase gene was PCR-amplified out of 

the phRL-TK vector and subcloned into the pCI-neo vector using SmaI and XhoI restriction 

enzymes. To generate the construct HSPA1A-Fluc, the HSF1-dependent HSPA1A promoter 

followed by the Fluc gene was amplified from plasmid HSP70-Luc (a kind gift from Dr. H 

Wagner) and cloned into the pUB/Bsd vector using ApaI and FseI restriction enzymes. 

Generation of the CMV-Fluc and FlucDM-GFP expression constructs was previously 

described (Gupta et al. 2011). pCMV-HSF1-Flag (plasmid 1932) and pCl-His-hUbi (plasmid 

31815) were procured from Addgene (Knauf et al. 1996, Young et al. 2011).  

3.7.4 Polymerase chain reaction 

The polymerase chain reaction (PCR) was utilized to amplify DNA (Mullis et al. 1986). 

3.7.4.1 PCR for cloning 

For amplification of the Rluc gene and HSPA1A-Fluc from vector DNA, the Pfu polymerase 

was used. The compositions of the PCR mixtures can be found in Table 3-2, the cycling 

conditions are summarized in Table 3-3. The primers are listed in Table 3-4. The PCR 

products were separated by 0.8% agarose gel electrophoresis for 20 min at 120 V, excised, 

and purified (see 3.7.2). 

Table 3-2: PCR mixture. 

Solution components Volume Final concentration

Pfu  10x Rxn. Buffer                  

(w/20 mM MgSO4)
2.5  µl 1x

Pfu  DNA Polymerase 0.5 µl

Primers (10 µM) 1 µl each 0.4 µM each

dNTPs (5 mM each) 1 µl 100 µM each

Template DNA                         

(200 ng/µl)
1µl

ddH2O 18 µl

Total volume 25 µl  
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Table 3-3: Thermal cycling conditions.  

Step Purpose Temperature Duration

1
Initial 

denaturation
95°C 5 min

2
Cycle 

denaturation
95°C 45 s

3 Primer annealing 55°C 45 s

4 Primer elongation 72°C 2 min

5 Final extension 72°C 20 min

6 Cooling 4°C ∞

35 cycles

 

Table 3-4: Cloning primers. 

Primer Sequence Tm

CMV-Rluc-forward 5’-ACGCCTCGAGATGGCTTCCAAGGTGTACGA-3’ 75°C

CMV-Rluc-reverse 5’-ACGCCCCGGGTTACTGCTCGTTCTTCAGCACG-3’ 79°C

HSPA1A-Fluc-forward 5’-ACGCGGGCCCTGGAGAGTTCTGAGCAGG-3’ 78°C

HSPA1A-Fluc-reverse 5’-ACGCGGCCGGCCTTACAATTTGGACTTTCC-3’ 75°C

 

3.7.4.2 Reverse transcriptase-PCR 

The expression levels of endogenous transcripts were accessed by semiquantitative reverse 

transcriptase-PCR (RT-PCR) (Marone et al. 2001). HeLa cells were transfected with esiRNA 

in 6- or 12-well format as described in chapter 3.9.2.3. 72 h later, total RNA was prepared 

using RNeasy® Mini Kit according to the manufacturer’s protocol. Briefly, the cells were 

washed twice with PBS, trypsinized and pelleted at 14,000 rpm. The pellet was disrupted by 

adding 350 µl RLT buffer. The lysate was transferred directly into a QIAshredder spin 

column placed in 2 ml collection tube and centrifuged for 2 min at 14,000 rpm. 350 µl of 70% 

ethanol were added to the homogenized lysate, mixed, transferred to an RNeasy spin column, 

and centrifuged for 15 s at 14,000 rpm. The column was washed once with 700 µl RW1 

buffer, twice with 500 µl RPE buffer and each time centrifuged for 15 s at 14,000 rpm. After 

the last washing step, the column was transferred to a new 2 ml collection tube and 

centrifuged again for 1 min at 14,000 rpm. Total RNA was eluted from the column by adding 

30 µl of RNase-free water and centrifugation for 1 min at 14,000 rpm. RNA was stored 

at -80°C. RNA concentration was measured with a Nanodrop 1000 spectrophotometer. For 

cDNA synthesis, the iScript
TM

 cDNA Synthesis Kit was used according to the manufacturer’s 
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protocol. 500 ng total RNA were mixed with 4 µl 5x iScript reaction mix and 1 µl iScript 

reverse transcriptase and nuclease-free water was added to a final volume of 20 µl. The 

complete reaction mix was incubated for 5 min at 25°C followed by 30 min at 42°C. The 

reverse transcriptase was inactivated at 85°C for 5 min. The polymerase chain reaction was 

performed using Pfu DNA polymerase. PCR mixtures and thermal cycling conditions are 

summarized in Table 3-5 and Table 3-6. Primers are listed in Table 3-7 (Westerheide et al. 

2009). PCR products were analyzed by 2% agarose gel electrophoresis (15 min at a constant 

voltage of 120 V). 

Table 3-5: RT-PCR mixture. 

Solution components Volume Final concentration

Pfu  10x Rxn. Buffer                  

(w/20mM MgSO4)
2.5  µl 1x

Pfu  DNA Polymerase 0.5 µl

Forward primer (10µM) 1 µl 0.4 µM

Reverse Primer (10µM) 1 µl 0.4 µM

dNTPs (5mM each) 1 µl 50 µM each

cDNA 2µl

ddH2O 17 µl

Total volume 25 µl  

Table 3-6: Thermal cycling conditions RT-PCR.  

Fluc, GAPDH, 

HSPA1A, Rluc
HSF1

1
Initial 

denaturation
94°C 94°C 3 min

2
Cycle 

denaturation
94°C 94°C 30 s

3 Primer annealing 55°C 61°C 30 s

4 Primer elongation 72°C 72°C 30 s

5 Cooling 4°C 4°C ∞

Duration

25-30 

cycles

Step Purpose

Temperature
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Table 3-7: RT-PCR primers. 

Primer Sequence Tm

Fluc-forward 5’-TTGTTTCCAAAAAGGGGTTG-3’ 55°C

Fluc-reverse 5’-CATCGACTGAAATCCCTGGT-3’ 59°C

GAPDH-forward 5’-CCACTCCTCCACCTTTGAC-3’ 59°C

GAPDH-reverse 5’-ACCCTGTTGCTGTAGCCA-3’ 56°C

HSF1-forward 5’-CCTGATGCTGAACGACAGTG-3’ 65°C

HSF1-reverse 5’-GTAGAGGCTGGAGCTGCTGT-3’ 63°C

HSPA1A-forward 5’-AGAGCCGAGCCGACAGAG-3’ 61°C

HSPA1A-reverse 5’-CACCTTGCCGTGTTGGAA-3’ 56°C

Rluc-forward 5’-CCTGATCAAGAGCGAAGAGG-3’ 61°C

Rluc-reverse 5’-GTAGGCAGCGAACTCCTCAG-3’ 63°C  

3.7.5 Restriction endonuclease digestion and DNA ligation 

pCI-neo vector (1.5 µg) and Rluc insert were sequentially digested using the restriction 

enzymes SmaI and XhoI. First, vector and insert were digested with SmaI at 25°C for 2 h, 

then XhoI was added, and mixtures were kept at 37°C for 2 h. pUB/Bsd vector (1.5 µg) and 

the HSPA1A-Fluc insert were digested first with ApaI for 2  h at 25°C, followed by 2 h FseI 

digestion at 37°C. All digestions were performed with 1 µl of each enzyme in NEBuffer 4 

supplemented with 0.1 mg/ml BSA. Digestion products were separated by agarose gel 

electrophoresis and purified (see 3.7.1.2 and 3.7.2). 

For ligation, a three-fold molar excess of the insert was mixed with the corresponding 

vector and 300 U of T4 DNA ligase in a final volume of 15 µl. Ligation mixtures were 

incubated at 16°C for 1 h followed by heat deactivation of the ligase at 65°C for 10 min. 

Complete mixtures were used for transformation into DH5α cells. 

3.7.6 Preparation and transformation of competent E. coli DH5α cells 

To prepare chemically competent E. coli DH5α cells (Hanahan 1983), 10 ml SOB were 

inoculated with one bacterial colony and grown at 30°C over night. The next day, 50 ml of 

fresh SOB medium were inoculated with 0.5 ml of the pre-culture and grown at 30°C to an 

OD550 of 0.48. Next, cells were cooled on ice for 15 min, pelleted at 4°C (2500 rpm for 

15 min) using a Beckman GS-6R, and resuspended in 16 ml of pre-chilled buffer RF1. Then, 

the cells were incubated on ice for 15 min, centrifuged again, and resuspended in 4 ml of 

buffer RF2. After 15 min on ice, 50 µl aliquots of the cells were transferred to pre-chilled 

1.5 ml tubes and stored at -80°C. 
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Transformation of chemically competent E. coli cells was either performed with 15 µl 

ligation mixture or 100 ng plasmid DNA. Cells were thawed on ice and the DNA was added. 

After 20 min incubation on ice, the mixture was heat-shocked at 42°C for 90 s and chilled on 

ice for 5 min. Then, 1 ml of SOC medium was added and cells were incubated in a shaker for 

1 h at 37°C and 300 rpm. 200 µl of the mixture were plated on selective LB agar plates and 

incubated over night at 37°C.  

3.8 Protein biochemical methods 

3.8.1 Protein quantification 

Protein concentrations of the RIPA soluble lysate as well as the nuclear and cytoplasmic 

extracts were measured colorimetrically using the Bio-Rad protein assay reagent according to the 

manufacturer's recommendations (Bradford 1976). 5µl of a 1:9 dilution of the protein extracts 

were mixed with 795 µl ddH20 and 200 µl Bradford solution. The mixture was mixed briefly 

and the absorption was measured at 595 nm using a spectrophotometer (Beckman). 

3.8.2 Preparation of cell extracts 

To prepare whole cell extracts for western blotting, cells were washed with PBS, trypsinized 

and pelleted at 5,000 g for 1 min at RT. The pellet was washed twice with PBS and boiled in 

SDS sample buffer at 95°C for 1 h. To prepare soluble cell fractions, cells were trypsinized 

and washed twice with PBS. Cells were then pelleted, resuspended in RIPA lysis buffer (Ong 

and Mann 2006) and mixed at regular intervals while incubating for 40 min on ice. After that, 

the crude cell lysate was centrifuged at 16,000 g for 30 min at 4°C. The supernatant fraction 

was used for analysis. 

3.8.3 SDS-PAGE 

For cell extract analysis, samples were separated by discontinuous Tris-glycine sodium 

dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) according to their 

electrophoretic mobility (Laemmli 1970). The compositions of the resolving and stacking gels 

are shown in Table 3-8. 
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Table 3-8: Compositions of resolving and stacking gels. 

Solution 

components
10% resolving gel 12% resolving gel 5% stacking gel

H2O 5.9 ml 4.9 ml 5.5 ml

30% Acrylamide/ 

0.8% bis-

acrylamide

5 ml 6 ml 1.3 ml

1.5 M Tris              

(pH 8.8)
3.8 ml 3.8 ml -

0.5 M Tris             

(pH 6.8)
- - 1 ml

10% SDS 150 µl 150 µl 80 µl

10% APS 150 µl 150 µl 80 µl

TEMED 6 µl 6 µl 8 µl  

 

Directly after casting, the resolving gel was covered with a layer of isopropanol. Before 

loading, the samples were boiled in SDS loading buffer for 10 min at 95°C and spun briefly 

for 5 s at 14,000 rpm. Electrophoresis was performed at a constant voltage of 150 V in SDS-

running buffer using Mini Protean® Tetra Cell.  

3.8.4 Western blotting 

For western blotting (Towbin et al. 1979), protein extracts were separated by SDS-PAGE and 

transferred to a nitrocellulose membrane by tank blotting. Wet transfer was performed in 

Towbin buffer at a constant current of 300 mA for 90 min using Mini Protean
TM

 II and Mini 

Trans-Blot Module. The membrane was blocked in 5% milk powder in TBST for 1 h at room 

temperature. Incubation with the primary antibody (dilutions see chapter 3.2) was performed 

over-night at 4°C. Afterwards, blots were washed three times in TBST for 5 min each and 

incubated with a horseradish peroxidase-conjugated (HRP) secondary antibody (dilutions see 

chapter 3.2) for 2 h at room temperature. For immunodetection, the membranes were covered 

with the Luminata Classico Western HRP substrate. Signals were detected and documented 

with the densitometry system Fuji-LAS3000. If needed, membranes were stripped at 70°C for 

40 min, followed by a second round of antibody detection.  
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3.9 Cell biological methods 

3.9.1 Basic cell culture techniques 

3.9.1.1 Culturing, passaging, and counting of mammalian cells 

HeLa and HEK293T cells were maintained in Dulbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin and 

1% L-glutamine at 37°C in an atmosphere of 5% CO2. Experiments were performed in 96-, 

48-, 24-, 12-, or 6-well format. To avoid senescence, cells were subcultured before reaching 

100% confluence. Adherent HeLa cultures and semi-adherent HEK293T lines needed to be 

detached by using 0.05% trypsin-EDTA. Cells were rinsed once in PBS, trypsinized and taken 

up in culture medium. For maintenance, cells were seeded in a ratio 1:10 or cultured in multi-

well tissue culture plates for experiments. The cell number was determined by either using a 

Neubauer counting chamber or with the Scepter
TM

 Handheld Automated Cell Counter. 

3.9.1.2 Cryopreservation of cells 

HeLa and HEK293T cells were grown to a confluence of 80-90%, washed once with PBS, 

trypsinized and taken up in culture medium. Cells were pelleted for 5 min at 1000 rpm using a 

Beckman GS-6R centrifuge. The supernatant was removed and the pellet was resuspended in 

culture medium supplemented with additional 10% DMSO and 30% FBS to minimize cell 

damage (Morris 1995). 1.5 ml of the cell solution was transferred to a sterile freezing tube, 

stored in a cryo freezing container at -80°C for 24 h, and subsequently transferred to liquid 

nitrogen (Mazur 1984). 

3.9.2 Manipulation of cultured cells 

3.9.2.1 Transient transfection of mammalian cells 

Transfection of HeLa and HEK293T cells was performed with Lipofectamine and PLUS 

reagent according to the manufacturer’s protocol. DNA and PLUS reagent were mixed in 

Opti-MEM and incubated for 15 min at room temperature. In between, Lipofectamine was 

diluted in Opti-MEM. After incubation, the pre-complex DNA was combined with the 

Lipofectamine mixture and incubated for further 15 min at room temperature. The growth 

medium of the cells was replaced by Opti-MEM, the transfection mix was added, and 

incubated for 3 h in a CO2 incubator at 37°C. Finally, antibiotic-free DMEM was added and 
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cells were grown over-night. The amounts of plasmid DNA, Lipofectamine, PLUS reagent, 

Opti-MEM, and growth medium used for the different culture vessels are summarized in 

Table 3-9. 

Table 3-9: Composition of transfection mixtures. 

Culture 

vessel
DNA

Dilution 

Medium        

(Opti-MEM)

Lipofectamine 

(in µl Opti-

MEM)

PLUS reagent 

(in µl Opti-

MEM)

Vol. of 

plating 

medium 

(DMEM)

Number       

of cells

100 mm 3 µg 2 ml 12 µl (250) 8 µl (250) 5 ml 1.5x10
6

6-well 1.5 µg 1 ml 6 µl (250) 3 µl (250) 2 ml 4x10
5

12-well 1 µg 1 ml 4 µl (150) 2 µl (150) 1 ml 2x10
5

 

3.9.2.2 Generation of stably transfected cell lines 

To generate the luciferase reporter cell line (iFluc-Rluc), HeLa cells were transfected with 

HSPA1A-Fluc and CMV-Rluc constructs using Lipofectamine and PLUS reagent. One day 

after transfection, 10,000 cells were seeded in a 100 mm dish and selected with 5 µg/ml 

Blasticidin S HCl and 400 µg/ml G-418 sulfate. Culture medium was replaced every 3 days. 

Colonies that formed after 2-3 weeks were separated inside a cell culture hood using an 

inverted microscope and a 200 µl pipette. Each colony was transferred to a single well of a 

96-well plate and grown further. Subsequently, the colonies were transferred into 48- and 24-

well plates, ultimately into 100 mm dishes. After having a sufficient number of cells, 

individual colonies were tested for their luciferase expression. The same protocol was 

followed to generate HEK293T cells stably expressing FlucDM-GFP. After transfection, the 

cells were selected with 500 µg/ml G-418 sulfate. 

3.9.2.3 Reverse esiRNA transfection 

Reverse esiRNA transfections were performed with Lipofectamine RNAiMAX according to 

the manufacturer’s protocol. EsiRNA was diluted in Opti-MEM (in the experimental culture 

vessel), mixed with Lipofectamine RNAiMAX, and incubate for 20 min at room temperature. 

In between, the cells were trypsinized, resuspended in antibiotic-free DMEM, and added to 

the RNAi-Lipofectamine duplex. After rocking the culture vessels back and forth, the cells 

were incubated in a CO2 incubator for 48-72 h.  The amounts of esiRNA, Lipofectamine, 

Opti-MEM, and growth medium used for the different culture vessels are summarized in 

Table 3-10. 
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Table 3-10: Composition of reverse esiRNA transfection mixtures. 

Culture vessel
Dilution Medium 

(Opti-MEM)
esiRNA

Lipofectamine 

RNAiMAX

Plating 

medium 

(DMEM)

Number of 

cells

384-well 20 µl 15 ng 0.1 µl 50 µl 3000

96-well 25 µl 30 ng 0.3 µl 75 µl 7500

12-well 200 µl 300 ng 2 µl 1 ml 50000

6-well 500 µl 750 ng 5 µl 2.5 ml 175000

100 mm 2 ml 1750 ng 25 µl 8 ml 750000

 

3.9.3 Cell biological assays 

3.9.3.1 Cell viability assay 

Cell viability was measured using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) assay (Mosmann 1983). The yellow MTT is reduced to purple 

formazan via NAD(P)H-dependent oxidoreductase enzymes in living cells and can thus be 

used to quantify cell viability. One day prior to the experiment, 15,000 HeLa cells were 

cultured in 96-well format. The next day, cells were heat-stressed at 43°C or treated with 5 

µM celastrol or MG132 for 8 h. 20 µl of a 5 mg/ml MTT solution in PBS were added to each 

well, followed by incubation at 37°C for 3 h. The growth medium was removed and the 

formazan crystals were dissolved in 200 µl DMSO. Absorbance at 550 nm was measured 

using the BIOTEK Synergy HT plate reader. All measurements were normalized to DMSO- 

treated control cells.  

3.9.3.2 Measuring luciferase activities 

Luciferase activities were measured using the Dual-Glo
TM

 Luciferase Assay System 

according to the manufacturer’s protocol. To assay Fluc activity in 96-well format, 50 µl of 

Dual-Glo
TM

 Luciferase Reagent were added to each well. After 10 min of incubation in the 

dark, Fluc luminescence was recorded using a Lumat luminometer (acquisition time 2 s). 

Then 50 µl Dual-Glo
TM

 Stop & Glo® Reagent diluted 1:100 in Dual-Glo
TM

 Stop & Glo® 

buffer were added to each well and after 10 min of incubation in the dark, Rluc luminescence 

was measured. For analysis, Fluc:Rluc ratios were calculated. 
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3.9.3.3 Refolding of Fluc and Rluc 

To assay the refolding kinetics of Fluc and Rluc, HeLa cells were transfected with CMV-Fluc 

or CMV-Rluc constructs in 100 mm dish format. 24 h later, 150,000 cells were seeded into 

each well of a 24-well plate. Next day, the growth medium was replaced by DMEM 

containing 5 mM CHX 20 min before starting the assay. For luciferase unfolding, cells were 

heat-stressed for 30 min at 45°C. Transfer to 37°C allowed refolding. Cell lysates were 

prepared in 100 µl RIPA buffer at different time points and Fluc and Rluc activities were 

measured using Luciferase Assay System and Renilla Luciferase Assay System. 10 µl of 

RIPA soluble lysate were mixed with an equal volume of the respective assay buffer and 

luminescence was recorded. The remaining cell lysate was centrifuged at 14,000 rpm for 

30 min at 4°C and luciferase protein level was determined from the supernatant fraction by 

western blotting with anti-Fluc and anti-Rluc antibodies, respectively. Band intensities were 

quantified by densitometry using AIDA. To determine specific luciferase activities, luciferase 

luminescence values were divided by band intensities. 

3.9.3.4 His-ubiquitin pull-down assay 

Cells (two 6-wells/pull-down) were transfected with FLAG-HSF1 and/or His-ubiquitin and 

heat-stressed for 2 h at 43°C in presence of 5 µM MG132, followed by recovery for 2 h at 

37°C. Cells were washed with ice-cold PBS, trypsinized, pelleted at 14,000 rpm, and lysed in 

1 ml pull-down lysis buffer. Dynabeads His-tag isolation and pull-down beads were 

equilibrated with pull-down lysis buffer, 50 µl were added to each cell lysate, and incubated 

at room temperature for 15 min on a rotating wheel. Magnetic beads were collected using 

Dynal Magnetic Particle Concentrator, washed twice with 400 µl pull-down lysis buffer and 

four times with 400 µl pull-down wash buffer. Elution was performed by boiling the beads in 

40 µl 2x SDS-PAGE loading buffer supplemented with 300 mM imidazole for 15 min. 

Samples were separated on a NuPAGE 4-12% Bis-Tris gel and HSF1 was visualized by 

western blotting. 

3.9.3.5 HSF1 cross-linking 

Cells were lysed in cross-linking buffer. 100 µg of HeLa cell extract were cross-linked with 

1 mM ethylene-glycol-bis(succinimidyl succinate) (EGS) by incubation for 30 min at room 

temperature. Cross-linking reactions were quenched by addition of 75 mM glycine and 

analyzed on NuPAGE 4-12% Bis-Tris gel. Cross-linked HSF1 products were visualized by  

western blot analysis. 



3 Material and methods   65 

3.9.3.6 Radioactive protein labeling 

HeLa cells were transfected in 12-well format. 48 h later, cells were washed first with PBS, 

then with pre-warmed FCS-free, methionine-reduced DMEM (DMEM minus). Labeling was 

initiated by adding 50 µCi/ml 
35

S-Met (EasyTag™ L-[35S]-methionine) in DMEM minus. 

15 min later, labeling was stopped by discarding the radioactive medium and applying cold 

PBS. The cells were lysed in SDS-PAGE loading buffer, boiled for 15 min and separated on a 

NuPAGE 4-12% Bis-Tris gel followed by Coomassie blue staining and autoradiography. 

3.9.3.7 Formation of nuclear stress bodies 

HeLa cells were transfected with esiRNA in 12-well format (chapter 3.9.2.3) and grown on 

poly-L-lysine-coated cover slips. 71 h after transfection, the cells were heat-stressed for 1 h at 

43°C and fixed with 4% paraformaldehyde for 15 min at room temperature. Cells were rinsed 

three times in PBS for 5 min each, covered with ice-cold methanol, incubated for 10 min 

at -20°C and rinsed in PBS for 5 min again. Unspecific antibody binding was blocked by 

incubating the cells for 60 min in 5% milk powder dissolved in PBS. Primary antibody 

incubation with rabbit-α-HSF1 antibody (dilution 1:500 in PBS) was performed at 4°C over- 

night. The next day, cells were washed three times in PBS for 5 min each and incubated at 

room temperature with a secondary goat-α-rabbit-cy3 antibody (dilution 1:200 in PBS) for 2 h 

in the dark. Then, cells were rinsed in PBS for 5 min and the DNA was stained for 1 min 

using 500 nM DAPI. Cover slips were rinsed five times in PBS and mounted on microscopy 

slides. Fluorescence microscopy is described in chapter 3.9.3.9. For analysis, cells showing 

the formation of nuclear stress bodies were counted and normalized to the total number of 

cells. 

3.9.3.8 FlucDM-GFP aggregation assay 

HEK293T cells stably expressing the proteostasis sensor protein FlucDM-GFP were 

transfected with esiRNA in 12-well format (chapter 3.9.2.3) and grown on poly-L-lysine 

coated cover slips. 70 h after transfection, the cells were heat-stressed for 2 h at 43°C and 

fixed with 4% paraformaldehyde for 15 min at room temperature. Washing, blocking, DAPI 

staining, and mounting were performed as described in chapter 3.9.3.7. GFP fluorescence was 

recorded (see chapter 3.9.3.9) and cells showing the formation of green fluorescent foci were 

counted and normalized to the total number of cells. 
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3.9.3.9 Fluorescence microscopy 

Fluorescence imaging was performed on a Zeiss Axiovert 200M fluorescence microscope 

equipped with a Zeiss Axiocam HRM camera. The following filter sets were used to capture 

the images: for DAPI, filter set 1 (beam splitter FT395, excitation filter BP365/12, emission 

filter LP397); for GFP, filter set 38 (beam splitter FT580, excitation filter BP470/40, emission 

filter BP525/50); and for cy3, filter set15 (beam splitter FT495, excitation filter BP546/12, 

emission filter LP590). Images were taken using Axiovision Rel 4.7 software. Size, 

brightness, and contrast of the images were adjusted by Adobe Photoshop CS3. 

3.9.3.10 Proteasome activity assay 

The chymotrypsin-like activity of the proteasome was measured using the Proteasome-Glo™ 

Chymotrypsin-Like Assay kit according to the manufacturer’s protocol. Nuclear, cytoplasmic, 

and RIPA soluble cell extracts were prepared from control and heat-stressed cells (with and 

without recovery) as described in chapter 3.11.1 and 3.8.2. 20 µg of protein extracts were 

mixed with 40 µl Proteasome-Glo™ reagent, incubated for 15 min at room temperature, and 

luminescence was recorded.  

3.10 Genome-scale esiRNA screen 

The genome-scale esiRNA screen was performed at the High-Throughput Technology 

Development Studio (TDS) of the Max Planck Institute of Molecular Cell Biology and 

Genetics (Pfotenhauerstr. 108, 01307 Dresden). 

3.10.1 Genome-scale esiRNA screening protocol 

The esiRNA library was designed and synthesized as described previously (Kittler et al. 2005, 

Kittler et al. 2007). For cell-based screening, 15 ng esiRNA in 5 µl nuclease-free water were 

mixed with 5 µl Opti-MEM containing 0.1 µl Lipofectamine RNAiMAX in 384-well format 

(Eppendorf) using an automated pipetting system (TeMo equipped with a 384-well head, 

Tecan). After incubating for 20 min at room temperature, 3000 iFluc-Rluc cells in 40 µl 

DMEM were added to the RNAi-Lipofectamine duplex using a WellMate dispensing system 

(Matrix) and incubated at 37°C in a 5% CO2 incubator. 66 h after transfection, cells were 

exposed to HS by placing them in a CO2 incubator for 2 h at 43°C, followed by a recovery 

period of 4 h at 37°C. Afterwards the medium was aspirated to a final volume of 20 µl (Tecan 



3 Material and methods   67 

384Powerwasher) followed by addition of 20 µl of Dual-Glo
TM

 Luciferase Reagent to each 

well (WellMate). After incubation for 10 min in the dark, Fluc activities were measured with 

a 384-well plate luminometer (Envision, Perkin Elmer). Following the initial measurement, 

20 µl of Dual-Glo
TM

 Stop & Glo® reagent diluted 1:100 (v/v) in Dual-Glo
TM

 Stop & Glo® 

buffer were added to each well. After 10 min of incubation in the dark, Rluc activities were 

measured. 

3.10.2 Computational and bioinformatic analysis 

To generate protein interaction networks, the Uniprot ID mapping service was used to 

translate the ENSEMBL gene identifiers of the found HSR modulators to reviewed 

UniProtKB Accessions. Interaction data were downloaded from BioGRID database, release: 

3.1.90 (Stark et al. 2011) and networks were prepared using Cytoscape version 3.0.1. 100,000 

random protein networks were used to calculate network statistics. The “One Sample t-test” 

was performed in R to calculate the randomness of the network (http://www.R-project.org/). 

All p-values are < 2.2e
-16

. Statistics were calculated with the help of Dr. S. Pinkert (MPI of 

Biochemistry, Martinsried).  

3.11 Mass spectrometry (MS) 

3.11.1 SILAC medium and sample preparation 

Arginine- and lysine-free DMEM was supplemented with 10% dialyzed FCS, 100 IU/ml 

penicillin G, 100 µg/ml streptomycin sulfate, 2 mM L-glutamine, and non-essential amino 

acid cocktail. To prepare light (L), medium (M), and heavy (H) media for SILAC labeling of 

cells, the following amino acids were added: for L, Arg0 and Lys0 (arginine and lysine); for 

M, Arg6 and Lys4 (arginine-13C6 and lysine-4,4,5,5-d4); for H, Arg10 and Lys8 (arginine-

13C6,15N4 and lysine-13C6,15N2). 

10
6
 SILAC-labeled HeLa cells were treated as indicated in the figure (Figure 4-18), 

trypsinized, and harvested in PBS. Cells were counted, equal numbers of L-, M-, and H-

labeled cells were mixed, and protein extracts were prepared. 

Nuclear and cytoplasmic extracts were prepared using the NE-PER Nuclear and 

Cytoplasmic Extraction Kit following the manufacturer’s instructions. Briefly, 2x10
6
 cells 

were suspended in 200 µl of ice-cold CER I, mixed for 15 s, and incubated on ice for 10 min. 

After the addition of 11 µl of ice-cold CER II, tubes were mixed for 5 s, and incubated on ice 
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for 1 min. Subsequently, tubes were mixed and centrifuged at 16,000 g for 5 min at 4°C. The 

supernatant fractions contained the cytoplasmic proteins. Pellets were washed twice with cold 

PBS, resuspended in 100 µl ice-cold NER, and incubated on ice for 40 min with mixing 

intervals of 10 min. Tubes were centrifuged at 16,000 g for 10 min at 4°C. The supernatant 

fractions, containing the nuclear proteins, were transferred to pre-chilled tubes.  

3.11.2 SDS-PAGE 

Prior to SDS-PAGE, samples were mixed with 10% (v/v) LDS sample buffer and 2% β-

mercaptoethanol. After heating at 70°C for 10 min, samples were separated on NuPAGE 4-

12% Bis-Tris gels. Gels were fixed and stained with Colloidal blue. Preparation of gel slices, 

reduction, alkylation, and in-gel protein digestion were carried out as described by 

Shevchenko (Shevchenko et al. 1996). Finally, peptides were desalted, filtered, and enriched 

according to Rappsilber (Rappsilber et al. 2003).  

3.11.3 LC-MS/MS 

Peptides eluted from desalting tips were dissolved in 5% (v/v) formic acid, followed by 5 min 

of sonication. Samples were analyzed on a nanoACQUITY HPLC system (Waters) coupled to 

a LTQ-Orbitrap mass spectrometer (Thermo). Peptides were separated on home-made spray-

columns (ID 75 µm, 20 cm long, 8 µm tip opening) packed with 1.9 µm C18 particles using a 

stepwise 150 min gradient between buffer A (0.2% formic acid in water) and buffer B (0.2% 

formic acid in acetonitrile). Samples were loaded onto the column with the nanoACQUITY 

autosampler at a flow rate of 0.5 µl/min. No trap column was used. The HPLC flow rate was 

set to 0.2 µl per min during analysis. MS/MS analysis was performed with standard settings 

using cycles of 1 high resolution (60000 FWHM) MS scan followed by eight MS/MS scans of 

the eight most intense ions with charge states of 2 or higher. 

3.11.3.1 Analysis of MS data 

MaxQuant (version 1.1.1.36) was used for protein identification and SILAC-based 

quantitation. Default settings were used, except that the “keep low-scoring versions of 

identified peptides” option was disabled to increase the confidence of quantitation. The 

human sequences of UNIPROT (version 2011-02-14) were used as database for protein 

identification. MaxQuant used a decoy version of the specified UNIPROT database to adjust 

the false discovery rates for proteins and peptides below 1%.  
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Proteins with normalized ratios > 1.657584 or < 0.625 (1/1.6) in at least two out of 

three independent replicate experiments were considered as enriched or depleted, 

respectively. The probability of incorrect assignment of a protein as being enriched or 

depleted was determined to be smaller than 1% in control experiments (data not shown). In 

these control experiments, equal amounts of H- and L-labeled cells were mixed after HS, 

lysed and analyzed as described. The number of proteins with normalized ratios > 1.657584 

or < 0.625 (1/1.6) in at least two out of three replicates was determined to be smaller than 1%. 

Due to limitation of the biochemical separation protocol, mitochondrial proteins contaminated 

the nuclear proteome (Boisvert et al. 2010). These contaminant mitochondrial proteins were 

removed from the list before bioinformatic analysis of nuclear proteins. 
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4 Results 

4.1 Generation and validation of luciferase reporter cell line 

In order to conduct a genome-scale RNAi screen for modulators of the HSR, a HeLa reporter 

cell line (iFluc-Rluc) was generated stably expressing firefly luciferase (Fluc) under the 

control of the human HSPA1A (hsp70.1) promoter (Figure 4-1A). Under conditions of 

proteotoxic stress, HSF1 binds to this promotor and induces Fluc expression (Williams et al. 

1989, Westerheide et al. 2004, Calamini et al. 2012). Any change in the stress-induced Fluc 

expression upon down-regulation of a particular gene can be explained either by an alteration 

in HSF1-mediated transcription or by a non-specific effect (e.g. cell death). To address this 

problem, a second construct, coding for the unrelated luciferase protein from Renilla 

reniformis (Rluc) under the control of the CMV promoter, was stably introduced into the 

reporter cell line (Figure 4-1A). CMV is an HSF1-independent and constitutive promoter, 

resulting in stable Rluc expression under normal as well as stress conditions (Figure 4-1B). 

Rluc differs from Fluc in terms of substrate and reaction mechanism and can therefore be 

assayed orthogonally (Figure 4-1A), providing a measure for cell viability. Rluc activity was 

used to normalize the activity of Fluc to identify only HSF1 specific events. Fluc expression 

was expected to be low under normal conditions and to be strongly increased relative to Rluc 

upon exposure to stress (Figure 4-1A). The down-regulation of potential positive or negative 

HSR modulators was supposed to inhibit or enhance the expression of Fluc, respectively.  

The iFluc-Rluc cell line was extensively tested in terms of optimal stress-induced 

reporter expression and reproducibility with different physical and small molecule activators 

of the HSR (Figure 4-1B and Figure 4-2). The validation experiments revealed that heat stress 

(HS) at 43°C for 2 h followed by a 2-4 h recovery period at 37°C resulted in a high and 

reproducible Fluc expression and a strong increase in the Fluc:Rluc activity ratio (up to 50-

fold). Longer exposure to elevated temperatures caused substantial cell death and a reduced 

Fluc:Rluc ratio (Figure 4-1C). Both luciferase reporters are thermo-labile enzymes and are 

known to be deactivated by thermal stress (Liu et al. 1997, Baggett et al. 2004, Gupta et al. 

2011). Heat shock at 45°C resulted in the rapid loss of their enzymatic activities which were 

retrieved with similar kinetics upon shift to normal growth temperature (Figure 4-1D). This 

result excludes any influence of the luciferase refolding kinetics on the proper estimation of
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their relative expression. Amongst the selection of pharmacologically active small molecule 

modulators of the HSR, which have been described in the literature and were tested in the 

iFluc-Rluc cell line, only the proteasome inhibitor MG132 and celastrol, a modifier of 

reactive thiol groups, lead to a ~ 20-fold increase of the Fluc:Rluc ratio. Treatment of the 

 

Figure 4-1: Design and characterization of iFluc-Rluc cell line. 

(A) Scheme of the reporter constructs and bioluminescent reactions. Left: HSPA1A-Fluc and CMV-Rluc 

construct. Right: Expected reporter activities with and without stress. Bottom: Bioluminescent reactions 

catalyzed by Fluc and Rluc. (B) Rluc and GAPDH mRNA levels in the iFluc-Rluc cell line after heat-shock and 

recovery. Cells were heat-stressed for 2 h at 43°C (+HS) followed by recovery at 37°C for 2h (Recovery) or kept 

at 37°C throughout the experiment (-HS). Total RNA was prepared and Rluc and GAPDH mRNA levels were 

estimated by RT-PCR. (C) Time course of Fluc:Rluc activity ratio (black) and cell viability (red) in the iFluc-

Rluc cell line after thermal stress. Cells were heat-stressed at 43°C for the indicated time spans. Reporter 

activities and cell viability were measured after a 2 h recovery period at 37°C. Standard deviations were derived 

from at least three independent experiments (D) Refolding kinetics of Fluc and Rluc in HeLa cells. Cells were 

transfected with CMV-Fluc and CMV-Rluc constructs. 24 h after transfection, cells were heat-stressed at 45°C 

for 30 min and recovered at 37°C. Specific luciferase activities were measured at the indicated time points after 

heat stress. Standard deviations were derived from at least three independent experiments. 



4 Results   72 

iFluc-Rluc cells with 17-DMAG (17-Dimethylaminoethylamino-17-demethoxy-

geldanamycin), Arachidonate, DCIC (3,4-Dichloroisocoumarin), Lactacystin, Puromycin 

(Westerheide and Morimoto 2005), and Withaferin A (Kaileh et al. 2007) failed to induce 

Fluc expression (Figure 4-2). 

As a “proof-of-principle” experiment and to demonstrate the HSF1-dependence of 

Fluc expression, iFluc-Rluc cells were transfected with an endoribonuclease-prepared short 

interfering RNA (esiRNA) (Kittler et al. 2005) targeting HSF1, with control esiRNA targeting 

EGFP, or were treated with transfection reagent only (Figure 4-3A). 68 h after the 

transfection, cells were either exposed to thermal stress at 43°C, followed by a 2 h recovery 

period at 37°C (+HS), or maintained at 37°C throughout the experiment (-HS). The increased 

Fluc:Rluc activity ratio after heat stress reflects that HSR induction is neither affected by 

treatment with transfection reagent only nor by transfection with control esiRNA. Down-

 

Figure 4-2: Validation of screening condition. 

Fluc:Rluc activity ratios in the iFluc-Rluc cell line after exposure to different stress inducers. Cells were treated 

with Celastrol, MG132, Withaferin A, Arachidonate, DCIC (3,4-Dichloro-isocoumarin), Lactacystin, 17-DMAG 

(17-Dimethylaminoethylamino-17-demethoxygeldanamycin), and Puromycin at the indicated concentrations for 

8 h. Standard deviations were derived from at least three independent experiments. 
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regulation of HSF1, on the other hand, strongly inhibited the induction of the stress response. 

The results were confirmed at mRNA level (Figure 4-3B). While control treatment of iFluc-

Rluc cells did not interfere with the stress-dependent increase in Fluc mRNA level, down-

regulation of HSF1 inhibited the induction of Fluc. A similar effect was observed for Hsp70, 

an endogenous target of HSF1. Rluc mRNA levels were neither affected by thermal stress nor 

by HSF1 down-regulation. Furthermore, the reduced HSF1 mRNA level upon down-

regulation clearly demonstrates the efficiency of the used esiRNA. 

4.2 Genome-scale RNAi screen for modulators of the heat-shock 

response 

The primary RNAi screen was performed in technical duplicate in a 384-well plate format. 

Individual primary esiRNAs targeting over 15,000 human genes were transfected in the iFluc-

Rluc cell line and the Fluc:Rluc activity ratios were used as read-out (Figure 4-4A and B). 

Design and synthesis of the esiRNA library have been previously described (Kittler et al. 

2005, Kittler et al. 2007) and a detailed screening protocol can be found in chapter 3.10. 

Figure 4-3: Establishment of screening principle. 

(A) Fluc:Rluc activity ratios after esiRNA treatment in the iFluc-Rluc cell line. Cells were transfected with 

esiRNA targeting HSF1, control esiRNA targeting EGFP, or just treated with transfection reagent (no esiRNA). 

After 68 h, cells were heat-stressed for 2 h at 43°C followed by recovery at 37°C for 2 h (+HS). Non-stressed 

control cells were kept at 37°C (-HS). Standard deviations were derived from at least three independent 

experiments. (B) mRNA levels of HSF1, Hsp70, Fluc, Rluc, and GAPDH after esiRNA treatment of iFluc-Rluc 

cells. Cells were transfected similarly as described in (A). After 70 h, cells were exposed to HS for 2 hr at 43°C 

(+HS) or maintained at 37°C (-HS).  mRNA levels were estimated by RT-PCR. 
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For normalization purposes and the verification of the transfection efficiency, several 

controls were included on each plate. Four wells were transfected with non-specific esiRNA 

targeting EGFP (negative control) and three wells with HSF1 esiRNA (positive control), 

respectively. Z scores, representing the deviation of individual Fluc:Rluc activity ratios from 

the mean of the negative control wells in units of standard deviation, were calculated for each 

down-regulation (Boutros et al. 2004, Malo et al. 2006). To allow a uniform analysis of 

results from separate plates and to analyze them in a cooperative way, the mean z score of 

positive control wells on every plate was set to a fixed value (-6). Consequently, z scores of 

experimental wells were normalized with respect to the positive control on the same plate. 

Henceforward, the normalized z scores of all plates were analyzed together. The primary 

Figure 4-4: Summary of genome-scale RNAi screening. 

(A) Flowchart describing different steps of the screen. The numbers of positive and negative modulators found at 

every step are indicated. (B) Z score distribution of the primary screening results. Z scores > 2 and < -2.5 are 

shown in red and black, respectively. (C and D) Z score distributions from the first and second validation 

screens. Positive and negative modulators are shown in black and red, respectively. 

 



4 Results   75 

screen results were analyzed by following a low stringency protocol in order to minimize the 

chances of excluding false-negatives. But at the same time, this protocol increased the 

possibility of including false-positives. A gene was considered as a potential positive 

modulator of the HSR in case the normalized z scores were smaller than -2.5 for each of the 

respective duplicates. In case the two particular z scores showed values greater than +2, the 

respective gene was scored as a negative modulator of HSR. A distribution plot summarizing 

the results of the primary screen is shown in Figure 4-4B. The stringency of the results was 

increased considering Rluc activity values from each well as an indicator of overall cellular 

health. Results were not included in the further evaluation process, in case the mean Rluc 

activity ratio of experimental to control wells fell out of the range of 0.75-1.25. The mean 

Fluc activity ratio of experimental to control wells was an additional criterion for 

consideration as a modulator of the HSR. It was set to be below 0.8 for a positive HSR 

modulator and above 1.2 for a negative modulator, respectively. These selection criteria 

allowed the identification of 705 positive modulators of the HSR, for which the Fluc:Rluc 

activity ratio was significantly reduced upon down-regulation. Down-regulation of 287 genes 

enhanced the Fluc:Rluc activity ratio significantly, suggesting a potential role as negative 

modulators of the HSR (Figure 4-4A and B).  

To identify the strongest modulators of the HSR, the primary screen was repeated for 

this set of candidates using the same esiRNAs but more stringent criteria. The reliability of 

the results was increased by the performance of three independent experiments. For technical 

reasons, down-regulation of 10 positive and 2 negative modulators from the primary 

candidate list could not be repeated. To nominate the strongest candidates for further 

validation, a high stringency protocol was followed only considering genes whose down-

regulations resulted in z scores smaller than -3 or greater than +3 in all three biological 

replicates. Thereby, the number of validated positive and negative HSR modulators could be 

reduced to 116 and 54, respectively (Figure 4-4A and C).  

For the next round of validation, a secondary set of esiRNAs was prepared, targeting 

an independent region of the same transcript. In total, 151 (104 positive and 47 negative 

modulators) were tested in triplicate during the secondary validation screen. For 19 genes no 

high-quality secondary esiRNA could be designed. With selection criteria of z scores smaller 

than -2 or greater than +2 in two out of three experiments, the results for 55 positive and 14 

negative modulators were confirmed (Figure 4-4A and D; Table 7-1 and Table 7-2). 
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4.3 Biochemical validation of Hsp70 mRNA level after thermal 

stress 

In order to validate whether the positive modulators identified in the screen are implicated in 

endogenous HSR, RT-PCR experiments were performed for a representative set of 

 

Figure 4-5: Hsp70 mRNA levels in HeLa cells with down-regulation of different HSR modulators. 

(A) HeLa cells were transfected with esiRNA targeting positive HSR modulators. 70 h after transfection, cells 

were heat-stressed for 2 h at 43°C and total RNA was prepared. Hsp70 and GAPDH mRNA levels were 

estimated by RT-PCR. (B) Quantification of (A). Hsp70 mRNA levels were estimated using AIDA, normalized 

to corresponding GAPDH mRNA levels and plotted. Standard deviations from at least three independent 

experiments are shown. (C) HeLa cells were transfected with esiRNA targeting negative HSR modulators. 66 h 

after transfection cells were heat-stressed for 2 h at 43°C followed by recovery for 4 h at 37°C and total RNA 

was prepared. Hsp70 and GAPDH mRNA levels were estimated by RT-PCR. (D) Quantification of (C). Hsp70 

mRNA levels were estimated using AIDA, normalized to corresponding GAPDH mRNA levels and plotted. 

Standard deviations from at least three independent experiments are shown.  
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modulators to confirm that down-regulation of the particular genes interfered with the 

induction of endogenous Hsp70 mRNA transcription upon HS. Indeed, when cells were 

thermally stressed, the Hsp70 mRNA level was reduced for several positive modulator down-

regulations (Figure 4-5A and B; Table 7-1). The validation of the several chromatin modifiers 

was of special interest, because the screening experiment was performed in a stable cell line 

with the reporter genes being integrated into “unknown” regions of the chromosomes. Thus, 

the chromatin modifiers identified could be merely specific for reporter expression and do not 

represent a universal requirement for HSR induction. However, the induction of endogenous 

Hsp70 mRNA level was decreased upon down-regulation of EP300, SRCAP, and CREBBP, 

establishing their role in the HSR regulation (Figure 4-5A).  

A reduction of the Hsp70 mRNA level could not be confirmed for all positive 

modulators tested, including the small ribosomal subunit protein RPS25 as well as several 

subunits of the cytosolic chaperonin TRiC/CCT (Figure 4-6; Table 7-1). Since the folding of 

Fluc is dependent on chaperones such as Hsp70, Hsp90, and TRiC/CCT (Schroder et al. 1993, 

Frydman et al. 1994) down-regulation of the corresponding genes may have interfered with 

Fluc maturation rather than induction of the HSR. Furthermore, the Hsp70-Hsp90 organizing 

protein Hop (STIP1) and CCT6A were also shown not to be involved in regulation of the 

HSR (data not shown). The genes, whose down-regulation failed to reduce Hsp70 mRNA 

level in RT-PCR validation, were removed from the list of HSR modulators.  

In contrast to the reduced Hsp70 mRNA level observed immediately upon HS after 

down-regulation of positive HSR modulators (Figure 4-5A and B; Table 7-1), down-

regulation of negative HSR modulators generally did not increase the level of Hsp70 mRNA 

but rather delayed the return to the normal Hsp70 mRNA level during stress recovery (Figure 

4-5C and D; Table 7-2).  

 

Figure 4-6: Hsp70 mRNA levels in HeLa cells with down-regulation of positive modulators of Fluc 

activity that do not interfere with HSR induction. 

HeLa cells were transfected with esiRNA targeting different modulators categorized as positive HSR 

modulators according to the esiRNA screen. 70 h after transfection, cells were heat-stressed for 2 h at 43°C and 

total RNA was prepared. Hsp70 and GAPDH mRNA levels were estimated by RT-PCR. 
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After these validation experiments, the number of positive modulators was reduced to 

50 and the number of negative modulators remained unchanged (Table 7-1 and Table 7-2).  

4.4 Overview of the screening results and functional validation 

The primary localization of the modulator proteins, as found in the HPRD (Prasad et al. 2009) 

database and by literature research, revealed that the regulation of the HSR relies on the 

integration of signals generated in several cellular processes and compartments (Figure 4-7).  

 

Figure 4-7: Primary localization of the HSR modulators. 

The HSR modulators are grouped according to their primary cellular localization and function. Positive 

modulators are shown in black, negative modulators in red. Genes whose down-regulation failed to reduce the 

induction of the endogenous Hsp70 mRNA level after thermal stress as evaluated by RT-PCR are excluded 

(layout adapted from Olzscha et al. 2011). 
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Figure 4-8: FlucDM-GFP aggregation propensity upon HSR modulator down-regulation. 

HEK293T cells stably expressing FlucDM-GFP were transfected with control esiRNA targeting Rluc or 

esiRNAs targeting different HSR modulators. 70 h after transfection, cells were heat-stressed at 43°C for 2 h, 

fixed and micrographed. Representative images indicating FlucDM-GFP (green) and DAPI (blue) are shown. 

Scale bar: 10 µm. 
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Approximately 40% of the HSR modulators (24 positive and 2 negative modulators) are 

primarily localized in the nucleus, including proteins involved in chromatin remodeling, 

transcription, mRNA splicing, and DNA damage repair. 18 modulators (~ 30% of total) are 

cytosolic (or cytosolic and nuclear), including several proteasome subunits identified as 

negative modulators. Furthermore, several modulators are also localized in the plasma 

membrane and in organelles such as mitochondria, ER, and lysosomes. 12 proteins 

(11 positive and 1 negative HSR modulator) are poorly described. Sequence analysis of these  

proteins by WoLF PSORT (Horton et al. 2007) revealed that LONRF2 and MACROD2 might 

be nuclear and TTTY9A as well as ENSG00000197865 extracellular proteins. According to 

TMHMM, a membrane protein topology prediction method (Krogh et al. 2001), 

ENSG00000197865, TMEM239, TTTY9A, and VN1R4 contain predicted transmembrane 

segments. 

4.4.1 Influence of HSR modulators on cellular proteostasis 

An alteration in HSR induction is expected to influence cellular proteostasis under stress 

conditions. To explore their functional significance in proteostasis maintenance, several HSR 

modulators from each functional category were down-regulated in a HEK293T cell line stably 

expressing the proteostasis sensor protein FlucDM-GFP (Gupta et al. 2011). The Fluc reporter 

protein is destabilized by the introduction of two mutations, which render the protein 

 

Figure 4-9:  FlucDM-GFP aggregation propensity upon HSR modulator down-regulation. 

Quantification of FlucDM-GFP aggregate formation. For each down-regulation, the percentage of cells with 

FlucDM-GFP aggregates was determined and plotted. Positive modulators are shown in black, negative 

modulators in red, control is shown in grey. Standard deviations for counting from at least three different fields 

of view are indicated. 
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aggregation-sensitive. When thermally stressed for 2 h at 43°C, approximately 30% of the cell 

population formed visible FlucDM-GFP aggregates. Down-regulation of the positive HSR 

modulators strongly increased the formation of FlucDM-GFP aggregates, indicating a reduced  

Hsp expression during stress and a compromised proteostasis (Figure 4-8 and Figure 4-9). In 

contrast, down-regulation of the negative modulator DAP3 did not result in increased 

aggregation, suggesting that the enhanced stress response observed under these conditions is 

functionally relevant. Down-regulation of the proteasome components PSMA7, PSMB6, and 

PSMD11 did not suppress FlucDM-GFP aggregation, confirming that proteasome inhibition 

results in an increased formation of reporter inclusions (Gupta et al. 2011). In addition, these 

observations in HEK293T cells confirmed that the HSR modulators found in the screen were 

not only specific for HeLa cells. 

4.4.2 Influence of HSR modulators on formation of nuclear stress bodies 

Activation of the HSR results in the formation of nuclear stress bodies (nSB), which represent 

transcription sites of non-coding satellite-III RNA. During stress, HSF1 rapidly localizes to 

these dynamic structures by binding to pericentric tandem repeats of satellite III sequences. 

nSB are found in human and primate cells, but are absent in rodent cells. Their functional 

significance is unknown. However, since non-coding RNAs play important roles in 

heterochromatin assembly, nSB may be sites for specific chromatin remodeling processes 

during stress (Jolly et al. 1997, Jolly and Lakhotia 2006, Biamonti and Vourc'h 2010). The 

satellite-III transcripts are known to recruit splicing and other pre-mRNA processing factors 

to nSB suggesting a role in RNA maturation (Denegri et al. 2001, Metz et al. 2004). Recently, 

it was also shown that the formation of nSB may represent an evolutionary aspect of HSF1 

regulation in vivo (Morton and Lamitina 2013).  

To check, whether the identified HSR modulators influence the formation of nSB, a 

representative set was down-regulated and the percentage of cells showing nSB formation 

after thermal stress was determined. Surprisingly, most down-regulations had no influence on 

percentage of cells containing nSB. This may indicate that these HSR modulators are not 

required for nSB formation. However, the down-regulation of the acetyltransferase EP300, 

the splicing factor SF3B1, and the transcription factor GTF3C3, all identified as positive 

modulators in the screen, caused a significant reduction in the percentage of cells with nSB 

(Figure 4-10 and Figure 4-11A). The reduced nSB formation upon SF3B1 down-regulation 

may be consistent with a regulatory relationship between the movement of splicing machinery 

to nSB and HSF1 activation. Interestingly, down-regulation of the proteasome components
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Figure 4-10: nSB formation upon HSR modulator down-regulation. 

HeLa cells were transfected with control esiRNA targeting Rluc or esiRNAs targeting different HSR 

modulators. 71 h after transfection, cells were heat-stressed at 43°C for 1 h, fixed, stained with rabbit anti-HSF1 

antibody, and micrographed. Representative images indicating HSF1 in red are shown. Scale bar: 10 µm. 
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PSMA7, PSMB6, and PSMD11 but not other negative HSR modulators (DAP3 and NAGA7),  

also reduced the accumulation of HSF1 in nSB. Instead, HSF1 was diffusely distributed in the 

nucleus, possibly excluded only from the nucleoli (Figure 4-10 and Figure 4-11A). Reduced 

nSB formation was also observed upon proteasome inhibition with MG132 for 7 hours prior 

to heat-shock, but not when treatment began 15 min before thermal stress (Figure 4-11B). 

These results suggest that changes in the nuclear environment due to long-term proteasome 

inhibition interfere with nSB formation. The dependence of HSF1 recruitment to nSB on 

 

Figure 4-11: nSB formation upon HSR modulator down-regulation and proteasome impairment. 

(A) Formation of nuclear stress bodies (nSB) in HSR modulator down-regulated cells upon heat stress. 

Quantification of nSB formation. For each down-regulation, the percentage of cells with nSB was determined 

and plotted. Averages and standard deviations are derived from counting of at least three different fields of 

view. (B) nSB formation upon MG132 treatment. HeLa cells were treated with 5 µM MG132 for the indicated 

time spans and heat-stressed at 43°C for 1 h. Cells were fixed, stained with rabbit anti-HSF1 antibody, and the 

percentage of cells with nSB was determined. Standard deviations from at least three independent experiments 

are shown. 
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proteasome function was surprising as proteasome impairment enhanced the HSR (Figure 

4-7).  

In summary, these results suggest that nSB formation and HSR induction differ 

mechanistically and nSB may rather have a role in buffering the magnitude of the response. 

4.5 Positive modulators of the HSR 

4.5.1 Regulation of the HSR by multiple nuclear proteins 

Most of the identified positive HSR modulators are localized in the nucleus, including five 

histone acetyltransferases, four histone methyltransferases/demethylases and one nucleosome 

assembly factor. This finding underscores the importance of chromatin landscape  

reorganization during HSR regulation (Figure 4-5 and Figure 4-7; Table 7-1; Petesch and Lis 

2008). EP300 and the closely related CREB-binding protein (CREBBP) are transcriptional 

co-activators and histone acetyltransferases that couple chromatin remodeling to transcription 

factor recognition. The Snf2-related CREBBP activator protein (SRCAP) has 

acetyltransferase as well as ATP-dependent helicase activity and is known to interact with 

CREBBP and EP300 (Johnston et al. 1999). DPY30 is a subunit of a methyltransferase 

complex with lysine 4 methylation activity on histone H3, resulting in transcriptional 

activation (Takahashi et al. 2011). It functionally interacts with the retinoblastoma binding 

protein, RBBP5 (Cho et al. 2007). The trimethylation-specific histone demethylase KDM4A 

is associated with transcriptional repression and specifically demethylates lysine 9 and 36 on 

H3, but not lysine 4. A loss of KDM4A activity results in the down-regulation of the 

longevity-associated Hsp22 in Drosophila (Lorbeck et al. 2010). KDM3B has also been 

shown to demethylate lysine residue 9 on histone H3 (Kim et al. 2012). 

The three modulators involved in DNA repair include ATMIN as well as the ATPases 

SMC3 and SMC6 (structural maintenance of chromosomes). ATMIN is a regulator of the 

phosphatidylinositol kinase-related cell cycle check point kinase ATM (Ataxia teleangiectasia 

mutated), which is activated in response to DNA double strand breaks to halt cell cycle 

progression and promote DNA repair. Complex formation of ATMIN and ATM is required 

for ATM signaling in response to chromatin remodeling and oxidative stress (Kanu and 

Behrens 2007, Kanu et al. 2010). SMC3 and SMC6 are involved in DNA repair and 

chromosomal organization (Carter and Sjogren 2012, Sun et al. 2013). 
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Three core components of the mRNA splicing machinery were among the identified 

positive HSR modulators. This finding is surprising, scince splicing is generally inhibited 

during thermal stress (Biamonti and Caceres 2009). Notably, a few specific pre-mRNAs 

undergo maturation during HS and the identified splicing proteins might participate in such 

specific splicing events (Ninomiya et al. 2011). However, down-regulation of SF3B1, SMU1, 

and SNRPF lowered the mRNA as well as the protein level of HSF1 (Figure 4-12), thereby 

explaining the reduced HSF1 reporter activity in the screen. 

The identified RNA transport proteins are likely to be required for the transport of 

newly synthesized mRNAs from the nucleus to the cytoplasm under stress conditions. The 

NTF2-like export factor 1 (NXT1) is known to mediate the transport of Hsp70 mRNA as a 

heterodimeric complex with NXF1 (Katahira 2009), down-regulation of which was toxic and 

therefore excluded from the screening analysis. The identification of NXT1 suggests that this 

protein may not be specific for Hsp70 mRNA but is more generally involved in nuclear export 

of nascent mRNAs upon heat stress.  

 

Figure 4-12: HSF1 mRNA and protein levels in HeLa cells with down-regulation of splicing factors. 

(A) HeLa cells were transfected with esiRNA targeting a set of three splicing factors identified as positive HSR 

modulators in the screen. Total RNA was prepared 72 h after transfection and HSF1 and GAPDH mRNA levels 

were estimated by RT-PCR. (B) Cells were treated similarly as described in (A) and HSF1 as well as GAPDH 

protein levels of the whole cell extracts were determined by western blotting. 

 

4.5.2 HSR modulators in the cytosol and organelles 

The positive modulators in the cytoplasm include AZIN1, SYNC, and MYBPC2 and connect 

the HSR to polyamine synthesis and the cytoskeleton (Figure 4-7). AZIN1 is an inhibitor of 

the ornithine decarboxylase (ODC) antizyme. The latter destabilizes ODC and mediates its 

degradation at high polyamine levels. ODC itself catalyzes the rate-limiting step in the 

polyamine biosynthesis. Thus, down-regulation of AZIN1 is expected to enhance ODC 

degradation (Kramer et al. 2001). Interestingly, down-regulation of ODC antizyme caused a 

strong increase in the Fluc:Rluc ratio upon heat stress, but was not considered as a negative 

HSR modulator in the screen due to the increase in the absolute Rluc activity. Syncoilin 
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(SYNC) is a member of the intermediate filament family and connects the cytoskeleton to the 

extracellular matrix via interaction with the dystrophin-associated protein complex. Loss of 

SYNC activity might disrupt the intermediate filament network (Poon et al. 2002). The 

second cytoskeleton HSR modulator, the myosin binding protein MYBPC2, plays a structural 

role and is of particular importance in the striatal muscle (Weber et al. 1993). 

The screen also identified several positive HSR modulators localized within 

subcellular compartments such as mitochondria, ER, and other endomembrane systems. The 

mitochondrial enzyme protoporphyrinogen oxidase (PPOX) catalyzes a critical oxidation step 

in the heme biosynthesis. Therefore it might contribute to cellular protection under condition 

of oxidative stress caused by ROS (Shinjyo and Kita 2007). Furthermore, mitochondrial 

oxidative stress has been shown to induce the HSR (Barrett et al. 2004).  

4.5.3 Role of the cell membrane in stress sensing 

The identification of several multi-pass membrane proteins as positive HSR modulators 

strongly suggests a role of the cell membrane in HSR regulation. The putative cell surface 

receptors PAQR5, SSTR1, and TM7SF3 function as G-protein coupled receptors (GPCRs) 

and may be involved in stress sensing and intercellular communication. SSTR1 is one of the 

five receptors for the paracrine peptide hormone somatostatin. Interestingly, ligand-

independent activation of GPCRs upon membrane fluidization has been reported 

(Chachisvilis et al. 2006). This is consistent with the finding that membrane hyperfluidization 

stress induces the HSR (Balogh et al. 2005). Moreover, the potassium channel KCND1 was 

found among the HSR regulator proteins in the membrane. This confirms the role of 

membrane potassium channels in the HSR (Saad and Hahn 1992). A role of the membrane in 

the HSR is further supported by the identification of thrombospondin 1 (THBS1) as a positive 

modulator. THBS1 is an adhesive glycoprotein that mediates intercellular and cell to matrix 

interactions. It belongs to the family of thrombospondins (TPSs), which are known to regulate 

tissue genesis and remodeling. 

4.6 Negative modulators of the HSR 

Most of the identified negative HSR modulators are components of the UPS including six 

subunits of the 20S proteasome core complex, one subunit of the 19S regulatory particle, 

PSMD11, as well as two other UPS components, RBX1 and NPLOC4 (Figure 4-7). In 
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general, down-regulation of negative modulators did not increase the level of Hsp70 mRNA 

observed immediately upon HS but rather delayed the return to normal mRNA levels during 

recovery at 37°C (Figure 4-5; Table 7-2). Proteasomes are large, multi-subunit proteases, 

mainly involved in protein turnover and are localized in the cytoplasm and the nucleus 

(Glickman and Ciechanover 2002). The role of the proteasome in the regulation of the HSR 

will be discussed in chapter 4.10. The ring-box protein RBX1 is an E3 ubiquitin protein ligase 

known to interact with cullin proteins, the largest family of E3 ubiquitin ligases. Together, 

these proteins play an important role in ubiquitination processes necessary for cell cycle 

progression (Wei and Sun 2010). 

Mitochondrial proapoptotic death-associated protein 3 (DAP3) is a subunit of the 

mitochondrial ribosome. It is known to interact with Hsp90 and its identification as a negative 

HSR modulator suggests a regulatory interplay between mitochondrial and cytosolic 

proteostasis machineries (Hulkko et al. 2000). The lysosomal enzyme N-acetyl 

galactosaminidase (NAGA) is involved in the cleavage of glycosphingolipids and glyco-

peptide conjugates. Its identification as a negative modulator may point to a link between the 

clearance of membrane components with attenuation of the HSR. Notably, glycosphingolipids 

occur only in the outer leaflet of the cell membrane where they may participate in sensing 

thermal stress (Dickson et al. 1997). The nuclear cyclin K (CCNK) plays a role in regulating 

the cell cycle or apoptosis (Mori et al. 2002). Through their activation of cyclin-dependent 

kinases (CDK) and the subsequent phosphorylation of the C-terminal domain (CTD) of the 

large subunit of RNA polymerase II, cyclins may also participate in transcriptional regulation 

(Baek et al. 2007). 

4.7 Nuclear protein network regulating the HSR 

To analyze the interactions of the HSR modulators and their interconnections, the BioGRID 

interaction database was used (Stark et al. 2011). 59 of the 64 identified modulators have 

valid UniProt accession numbers and were included in the analysis, in which only 

experimentally determined physical interactions were considered. The analysis revealed a 

network including 30 positive and 13 negative HSR modulators that interact with each other 

either directly or via other proteins (Figure 4-13; Table 7-3). 31 of these modulators are either 

localized exclusively in the nucleus (24 proteins) or shuttle between the nucleus and 

cytoplasm (7 proteins). The number of proteins connected in this network (449) is 
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Figure 4-13: Network of HSR modulators. 

Largest connected component analysis of physical interactions between the HSR modulators based on 

interactions retrieved from the BioGRID database. Ubiquitin (UBC, P0CG48) with all its interactions was 

deleted from the network for clarity. Bold black lines indicate direct interactions between the HSR modulators 

identified in the screen. See also Table 7-3. 
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significantly greater than observed on average with randomly chosen proteins (80; p < 2.2 x 

10 
-16

, statistics were calculated with the help of Dr. S. Pinkert).  

A central element of the HSR modulator network is formed by chromatin modifying 

factors. For example, the EP300/CREBBP histone acetyltransferase complex is found to 

interact directly with SRCAP (Snf2-related CREBBP activator protein) and via 15 different 

proteins with HSF1 (Figure 4-13; Table 7-3), most of which function as transcriptional co-

activators and histone deacetylases. Moreover, HSF1 interacts to two further histone 

acetyltransferases, TAF12 and TAF5L, via TAF9 and TBP. Since TAF12 and TAF5L are 

subunits of the PCAF histone acetylase complex, this further supports the notion that HSF1 

cooperates closely with chromatin modifiers. The DPY30-RBBP5 complex (see chapter 4.5.1) 

interacts via other proteins with EP300/CREBBP as well as with the E3 ubiquitin protein 

ligase RBX1, a negative HSR modulator. Via several other proteins, RBX1 is connected to 

EP300/CREBBP and the proteasome network (Figure 4-13; Table 7-3), suggesting a possible 

functional link between chromatin modification and protein degradation upon heat stress. 

Interestingly, RBX1 is also connected to HSF1 via BTRC, HSPA1A, HSPA8, and PLK1. The 

SUMO proteins SUMO1 and SUMO2 connect HSF1 with the splicing factor SF3B1, a 

positive HSR modulator found in the screen. SF3B1 is connected via 13 proteins with 

SNRPF, another splicing protein and positive HSR modulator. Moreover, SF3B1 indirectly 

interacts with the chromatin modifying factors EP300/CREBBP and ATRX as well as with 

different proteasome subunits (Table 7-3). The positive HSR modulator ATRX is connected 

to HSF1 via SUMO2 and DAXX.  

Interestingly, 63 proteins of the HSR network (marked in blue in Figure 4-13; Table 

7-3) interact directly with at least five of the identified HSR modulators, but were not found in 

the screen. Their functional analysis confirms that survival during stress relies on a complex 

interplay of cellular key processes, including chromatin modification, splicing, apoptosis, cell 

communication, and the UPS. Most of the processes in which the HSR modulators and their 

interactors participate are nuclear and either linked with EP300/CREBBP or the UPS (Figure 

4-13), suggesting important roles of these complexes in HSR regulation. 

4.8 Specific role of EP300 in HSF1 regulation 

One central hub of the HSR modulator interaction network is formed by the chromatin 

modifying histone acetylase complex EP300/CREBBP (Figure 4-13). Interestingly, 
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overexpression of EP300 has been reported to result in the acetylation of nine lysine residues 

of exogenously expressed HSF1. Subsequent deacetylation of HSF1 by SIRT1 has been 

 

Figure 4-14: Chromatin modifiers and their influence on the steady state level of HSF1. 

(A) HSF1 protein level in HeLa cells upon down-regulation of chromatin modifiers. Left: HeLa cells were 

transfected with control esiRNA targeting EGFP or esiRNAs targeting different chromatin modifiers. After 

48 h, whole cell extracts were prepared and endogenous HSF1 and GAPDH levels were detected by western 

blotting. Efficiency of EP300 down-regulation was also determined by western blotting. Right: Quantification 

of HSF1 level. HSF1 protein levels were estimated by densitometry using AIDA, normalized to the 

corresponding GAPDH levels, and plotted. Standard deviations are derived from at least three independent 

experiments. (B) HSF1 protein level in EP300 down-regulated HEK293T cells. Left: HEK293T cells were 

transfected with control esiRNA targeting EGFP or esiRNA targeting EP300. After 48 h, whole cell extracts 

were prepared and endogenous EP300, HSF1, and GAPDH levels were detected by western blotting. Right: 

Quantification of HSF1 level. HSF1 protein levels were estimated by densitometry using AIDA, normalized to 

corresponding GAPDH levels, and plotted. Standard deviations from at least three independent experiments are 

shown. 
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shown to prolong the dwell time of HSF1 on heat shock elements, thereby decelerating the 

attenuation of the HSR (Westerheide et al. 2009, Raynes et al. 2013).  

Accordingly, down-regulation of EP300 would be expected to increase the magnitude 

of the HSR by reducing HSF1 acetylation and thus delaying attenuation. However, EP300 and 

several other histone acetyltransferases were surprisingly identified as positive HSR 

modulators in the screen. This suggests a more complex role of these factors in HSR 

regulation.  

 

Figure 4-15: Effects of EP300 down-regulation on HSF1 transcription and overall translation.  

(A) HSF1 mRNA level after EP300 down-regulation. HeLa cells were transfected with esiRNA targeting EGFP, 

HSF1, or EP300 and total RNA was prepared 48 h later. HSF1 and GAPDH mRNA levels were determined by 

RT-PCR. (B) Overall translation efficiency in EP300 down-regulated cells. HeLa cells were transfected with 

esiRNA targeting EGFP or EP300 and nascent peptides were labeled with 
35

S-Met after 48 h. Cells were divided 

and whole cell extract (total), RIPA soluble (soluble), and RIPA insoluble (pellet) fractions were prepared. Equal 

amounts of cell extract from control and EP300 down-regulated cells were separated by SDS-PAGE and 

radiographed. (C) Quantification of overall translation efficiency in whole cell extracts from (B) using AIDA. 

Standard deviations from at least three independent experiments are shown.  
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To explore the effect of EP300 on HSF1, first, the down-regulation efficiency of 

EP300 was checked. Western blot experiments confrimed a reduction of the EP300 level by 

~ 95% (Figure 4-14A). Strikingly, the HSF1 steady-state level was reduced in the same cells 

by almost 70% (Figure 4-14A). The effect on the level of HSF1 was specific for EP300 as it 

was not observed upon down-regulation of several other positive HSR modulators, including 

the closely related histone acetylase CREBBP, the histone demethylase KDM3B, or the 

nucleosome assembly factor ATRX (Figure 4-14A). Down-regulation of EP300 in HEK293T 

confirmed the results for HeLa cells. The levels of EP300 and HSF1 were reduced by 95% 

and 40%, respectively (Figure 4-14B).  

Since EP300 is a chromatin modifying histone acetyltransferase, the observed effect 

could be due to a reduced HSF1 transcript level. However, no change in the HSF1 mRNA 

level was detected in RT-PCR experiments (Figure 4-15A). Overall translation efficiency was 

 

Figure 4-16: Effects of EP300 down-regulation on HSF1 degradation. 

(A) Down-regulation of EP300 results in degradation of HSF1 in HEK293T cells. HEK293T cells were 

transfected with control esiRNA targeting EGFP or esiRNA targeting EP300. After 48 h, cells were treated with 

5 mM CHX for 4h with or without MG132 (5 µM) and whole cell lysates were prepared. After separation by 

SDS-PAGE, HSF1, and GAPDH protein levels were detected by western blotting. (B) Quantification of HSF1 

level. HSF1 protein levels were estimated by densitometry using AIDA, normalized to the corresponding 

GAPDH levels, and plotted. Standard deviations from at least three independent experiments are shown.  
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also not effected by down-regulation of EP300 as shown by labeling nascent peptides with 

35
S-methionine in a pulse chase experiment (Figures 15B and C). These findings suggest an 

either direct or indirect role of EP300 in the regulation of HSF1 protein turnover. Indeed, a 

cycloheximide (CHX) chase experiment revealed rapid degradation of endogenous HSF1 in 

HEK293T cells upon EP300 down-regulation (Figure 4-16A and B). Proteasome inhibition by 

 

Figure 4-17: Implication of EP300 down-regulation on stress-activated HSF1. 

(A)  High molecular weight oligomer of HSF1 formed during HS is destabilized upon EP300 down-regulation. 

HeLa cells were transfected with control esiRNA targeting EGFP (left) or esiRNA targeting EP300 (right). 

After 48 h, cells were heat-stressed at 43°C for 2 h followed by recovery at 37°C for the times indicated. RIPA 

soluble fractions were prepared and 100 µg of cell extract in cross-linking buffer was treated with 1 mM EGS 

for 30 min at room temperature. Cross-linking was stopped by addition of 3 mM glycine. Cross-linked samples 

were separated by SDS-PAGE and blotted with anti-HSF1 antibody. (B) Quantification of cross-linked HSF1 

oligomers at ~ 300 kDa (dashed rectangle) (Sarge et al. 1993) using AIDA. Amounts present immediately after 

HS were set to 100%. Standard deviations represent are derived from at least 3 three independent experiments 
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 MG132 stabilized HSF1, indicating a role of the proteasome in HSF1 turnover. The HSF1 

double band after 4 h MG132 treatment is due to stress-induced hyper-phosphorylation of 

HSF1and will be further discussed in chapter 4.10. 

Down-regulation of EP300 may affect the stability of HSF1 in many ways. However, 

it is most likely that the stability is affected either directly due to loss of HSF1 acetylation or 

indirectly due to a reduced accessibility of chromatin for HSF1 binding caused by a decreased 

histone acetylation in the absence of EP300. Trimerization of HSF1 upon HS is a prerequisite 

for chromatin binding and HSF1 transcriptional activity (Anckar and Sistonen 2011). 

Formation of HSF1 oligomers can be visualized by SDS-PAGE after chemical cross-linking 

with EGS (Sarge et al. 1993). Treatment of HeLa cell extract with 1 mM EGS resulted in 

HSF1 bands at ~ 70 kDa and ~ 200 kDa, representing the monomer and possibly a dimer 

(Figure 4-17A). In cells treated with control esiRNA, HSF1 complexes migrating at 

~ 300 kDa, consistent with trimers or tetramers, accumulated upon HS and then decayed 

during recovery over a period of 1-2 h (Figure 4-17A left panel and B). The HS-induced 

oligomer formation was also observed upon EP300 down-regulation but showed a 

substantially faster decay during recovery from HS, indicating a destabilization of the active 

form of HSF1 upon EP300 down-regulation (Figure 4-17A right panel and Figure 4-16B). 

Taken together, these results suggest that EP300 might be an important regulator of the in 

vivo stability of HSF1, both of the steady state and the transcriptionally active state.  

4.9 Reorganization of the nuclear proteome during heat stress 

Several nuclear proteins and the proteasome complex were identified as potent modulators of 

the HSR in the screen. Since these proteins regulate the HSR via chromatin remodeling, RNA 

metabolism and splicing, mRNA transport, transcription as well as protein degradation, a re- 

arrangement of the nuclear proteome during heat stress seems likely. Hence, quantitative 

proteomics experiments with SILAC (stable isotope labeling by amino acids in cell culture; 

Ong and Mann 2006) were performed to analyze the changes in the nuclear proteome 

immediately after HS as well as after recovery and to better understand the link between UPS 

and the nuclear HSR network. 
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Nuclear and cytoplasmic protein extracts of HeLa cells were prepared and checked for 

their purity (Figure 4-18A and B). While microscopy experiments confirmed the expected 

localization of the cytoplasmic marker protein α-tubulin and the nuclear marker lamin B1 

(Figure 4-18A), proper separation of the cytoplasmic and the nuclear fraction was proven by 

western blot analysis (Figure 4-18). For SILAC experiments, cells were labeled with three 

different pairs of arginine and lysine amino acid isotopes and grown at 37°C, heat-stressed for 

2 h at 43°C, or heat-stressed for 2 h followed by a 2 h recovery period at 37°C (Figure 

4-18C).  

Approximately 4000 proteins could be quantified in the nuclear extracts, including 36 

proteins identified as HSR modulators (Figure 4-7) and 212 additional proteins identified as 

components of the nuclear HSR network (Figure 4-13; Table 7-3). Immediately after thermal 

stress, a highly specific set of 32 proteins was significantly enriched in the nucleus (Figure 

 

Figure 4-18: Separation of cytoplasmic and nuclear protein fraction, SILAC scheme. 

(A) HeLa cells were grown on coverslips, fixed, and stained with anti-α-tubulin (green, cytoplasmic marker) 

and anti-lamin B1 (red, nuclear marker) antibodies. DNA was stained with DAPI (blue). Representative images 

are shown. Scale bar: 10 µm. (B) Cytoplasmic and nuclear extract HeLa cell extracts were prepared and equal 

amounts (50 µg) were separated by SDS-PAGE. Western blotting was performed using antibodies recognizing 

α-tubulin and lamin B1. (C) Experimental scheme of SILAC experiments performed to identify the 

reorganization of the nuclear proteome during thermal stress (+HS, 43°C for 2 h) and recovery (Recovery, 43°C 

for 2 h followed by 2 h at 37°C) compared to control cells (-HS, 37°C). HeLa cells were cultured in light (Arg0, 

Lys0), medium (Arg6, Lys4) as well as heavy (Arg10, Lys8) medium and treated as indicated in the figure. 

Equal numbers of cells were mixed, nuclear extract was prepared, and analyzed by LC-MS/MS. 
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4-19; Table 7-4). These proteins include several HSR modulators such as HSF1, PSMA1, 

PSMB3, PSMB5, and PSMB6 as well as multiple chaperone or co-chaperone proteins and 

most of the remaining 20S proteasome subunits (chapter 4.7; Figure 4-19 and Figure 4-20C). 

Among the enriched chaperone components, two stress-inducible Hsp70s (HSPA1A, HSPA6; 

Pelham 1984) and the constitutively expressed Hsc70 (HSPA8) were found. Numerous Hsp70 

co-chaperones (BAG5, DNAJA1, DNAJA4, DNAJB1, DNAJB4, DNAJC7, ST13, STIP1) 

were enriched as well (Figure 4-19; Table 7-4). Furthermore, ten subunits of the 20S 

proteasome core complex were significantly enriched in the nucleus after heat stress. 

Components of the 19S regulatory particle were also enriched, albeit to a lesser extent (Figure 

4-19 and Figure 4-20A). A protein interaction analysis of the enriched proteins revealed a 

network, which connects the Hsp70 and Hsp90 chaperone systems with the proteasome 

(Figure 4-20B). This suggests a cooperation of these systems in the removal of heat-denatured 

proteins. The presence of RPS27A among the enriched proteins is of particular interest, 

because this protein is expressed as a fusion of ubiquitin at the N-terminus and ribosomal 

protein S27A at the C-terminus. This finding further emphasizes the importance of protein 

degradation in the nucleus after thermal stress.  

 

Figure 4-19: Nuclear proteome during HS and after recovery. 

Heatmap showing the relative enrichment of proteins in the nucleus during HS and after recovery. Color scheme 

indicates fold enrichment. The asterisk marks HSR modulators identified in the screen. 
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As discussed above, the nuclear proteome was substantially enriched with proteins of 

the quality control machinery immediately after heat stress. However, this effect was partially 

reversed after two hours of recovery. 34 proteins showed a significant enrichment in the 

nucleus after recovery, but HSF1 and the subunits of the 20S core particle were no longer 

enriched (Figure 4-19; Table 7-5). In contrast, several chaperones and co-chaperones 

(HSPA1A, HSPA6, DNAJA4, DNAJB1, DNAJB4, and DNAJC7) remained enriched in the 

nucleus during the recovery period. In addition, a variety of factors involved in nuclear 

architecture (LMNB2), transcription (FOSL2, JUN), RNA transport (NXT1), and RNA 

splicing (SNRPB) were enriched in the nucleus during recovery. Notably, several enriched 

proteins contain disordered regions longer than 30 residues as predicted by DISOPRED (e.g. 

ACTN4, C19orf21, COIL, CORO1B, CREB1, EFHD2, ENAH, FOSL2, JUN, LMNB2, 

RALA, SNRPB, TOR1AIP1). Three regulatory components of the actin/myosin cytoskeletal 

machinery were found to be enriched during recovery: the actin binding proteins actinin 4 

(ACTN4) and coronin 1B (CORO1B) as well as myosin regulatory light chain 9 (MYL9). 

This supports the notion that the actin/myosin machinery adopts nuclear roles in transcription 

and nuclear architecture and may thus be important for the reorganization of the nuclear 

morphology after stress (Bettinger et al. 2004). However, one cannot completely exclude the 

possibility that the identification of these three components in nuclear extracts is due to 

contamination, since the actin cytoskeleton is affected during heat-shock.  

A large number of proteins (237) were found to be depleted from the nucleus after 

heat stress and the number increased to 358 upon two hours of recovery (Table 7-6 and Table 

7-7). GO analysis by Ontologizer revealed that during heat stress mostly pre-ribosome 

proteins, ribonucleoprotein biogenesis factors, DNA damage-responsive proteins, and proteins 

involved in tRNA transcription were depleted. During recovery, tRNA transcription factors as 

well as proteins involved in nucleic acid metabolism made up a high percentage of the 

proteins depleted from the nucleus. We also found several HSR modulators (Figure 4-13) to 

be depleted in the nuclear proteome during and after stress. Thus, BIRC6 (protein 

degradation), the mitochondrial protein DAP3, GTF3C3 (tRNA transcription), HNRNPH2 

(RNA metabolism), and KDM3B (histone methyltransferase) were depleted after two hours of 

thermal stress as well as after the recovery period (Figure 4-20C). These factors could 

possibly participate in the early phase of HSR induction but are no longer required during 

sustained stress and recovery and their removal from the nucleus might play a role in HSR 

attenuation. Whereas ATRX (nucleosome assembly) was merely depleted after heat stress, 

SMC6 (DNA repair) was only depleted during recovery (Figure 4-20C). 
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To confirm the SILAC results regarding the nuclear enrichment of the proteasome, 

biochemical validation experiments were performed. Western blot experiments with HeLa 

cells cultivated at 37°C showed that the proteasomal core complex subunits PSMA5, PSMA6, 

 

Figure 4-20: Proteasomal enrichment in the nucleus during heat stress and network analysis of nuclear 

proteome. 

(A) Schematic representation of the proteasome illustrating the relative enrichment of individual subunits in the  

nucleus during HS as identified in the SILAC experiment. Color scheme indicates fold enrichment of the 

proteasomal subunits in the nucleus; grey: subunit not identified. (B) Interaction network of the nuclear enriched 

chaperones (blue) and proteasome components (dark yellow) during thermal stress. The network is created and 

analyzed as in Figure 4-13. One of the central nodes of the chaperone network, Hsp90 (HSP90AA1 and 

HSP90AB1), is also shown. (C) Changes in the abundance of components of the nuclear HSR regulatory 

network (Figure 4-13) during and after thermal stress. 44 out of 241 HSR network components identified in the 

nuclear extracts by proteomics changed in abundance during HS or recovery, or both. A protein was considered 

depleted when its abundance was reduced < 0.63-fold and enriched, when its abundance increased more than 

1.6-fold compared to the nuclear fraction of control cells. Proteins shown in red font are HSR modulators 

identified in the esiRNA screen. 
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and PSMB6 were mainly cytosolic, albeit a significant fraction was also present in the 

nucleus. Thermal stress resulted in a nuclear enrichment of these subunits (Figure 4-21A), 

which was reversed during recovery. To prove that the enrichment is of functional 

importance, proteasomal activity was determined for the cytoplasmic and the nuclear protein 

fractions as well as for the RIPA soluble lysate. These experiments revealed a significant 

increase in the proteasomal activity of the nuclear fraction directly after HS (Figure 4-21B). 

Taken together, the results of the quantitative proteomics experiments and the 

biochemical validation indicate an extensive reorganization of the nuclear proteome upon heat 

stress and during recovery. Amongst other proteins, several HSR modulators are affected by 

this reorganization, with the proteasome being a particularly important example. 

 

 

Figure 4-21: Biochemical and functional validation of proteasomal enrichment in the nucleus after 

thermal stress. 

(A) Western blot experiments analyzing the localization of proteasomal subunits in control cells, heat-stressed 

cells and cells exposed to heat shock and subsequent recovery. HeLa cells were grown at 37°C and then treated 

as indicated (HS: 43°C for 2 h; Recovery: 43°C for 2 h followed by 2 h at 37°C). RIPA soluble, cytoplasmic and 

nuclear extracts were prepared. Equal protein amounts (50 µg) were separated by SDS-PAGE and PSMA5, 

PSMA6, PSMB6, GAPDH (cytoplasmic marker), and lamin B1 (nuclear marker) levels were determined by 

western blotting. (B) Proteolytic activity after HS. HeLa cells were heat-stressed for 2 h at 43°C (+HS) or kept at 

37°C throughout the experiment (-HS). RIPA soluble, cytoplasmic, and nuclear extracts were prepared and equal 

protein amounts (20 µg) were assayed for their chymotrypsin-like proteolytic activity. Standard deviations of at 

least three independent experiments are shown. 
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4.10  Role of the proteasome in attenuation of the HSR 

Several proteasomal subunits were identified as negative modulators of the HSR in the 

screening experiments. Their individual down-regulation was found to strongly amplify the 

HSR when Fluc:RLuc activity ratios were measured four hours after thermal stress (Figure 

4-22A). Moreover, the HSR was induced in iFluc-Rluc cells upon treatment with the 

proteasome inhibitor MG132 (Figure 4-2 and Figure 4-22A). The magnitude of this response 

was amplified approximately six-fold when the MG132 treated cells were additionally 

thermally stressed (Figure 4-22B).  

 

Down-regulation of proteasomal subunits has been previously reported to decrease 

protein degradation (Wang et al. 2009). Accordingly, down-regulation of PSMA7 was 

accompanied by a functionally relevant partial inhibition of proteasome activity, as judged by  

the accumulation of ubiquitin-GFP (GFPu), a reporter protein that is normally rapidly 

degraded by the proteasome (Bence et al. 2001). Total proteasome inhibition with MG132 

resulted in an even stronger accumulation (Figure 4-23A and B). According to the results 

from the proteomics experiments described in chapter 4.9, the accumulation of proteasome 

complexes in the nucleus occurred transiently during HS and coincided with the accumulation

 

Figure 4-22: Proteasomal impairment in combination with thermal stress. 

(A) Normalized Fluc:Rluc activity ratios from the second validation screen upon proteasomal subunit down-

regulation. Standard deviations are derived from at least three independent experiments. (B) Induction of the 

HSR after thermal stress in combination with proteasome inhibition. iFluc-Rluc cells were treated with 0.1% 

DMSO (control) or 5 µM MG132. One hour after MG132 addition, cells were heat-stressed for 2 h at 43°C 

followed by a recovery of 2 h (+HS) or kept at 37°C throughout the experiment (-HS). Fluc and Rluc activities 

were measured and normalized Fluc:Rluc activity ratios were plotted. Standard deviations from at least three 

independent experiments are shown. 
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Figure 4-23: Protein degradation upon proteasomal impairment. 

(A) Representative microscopy images of HEK293T cells stably expressing highly proteasome-dependent 

destabilized GFPu (GFP destabilized by the CL-1 degron). Cells were grown on coverslips and either transfected 

with control esiRNA targeting Rluc or PSMA7 esiRNA or were treated with 5 µM MG132 for 8 h. Green 

fluorescence indicates GFPu distribution. Scale bar: 10 µm. (B) Western blot showing CHX chase of GFPu. 

Cells were treated similarly as described in (A) and 5mM CHX was added to the cells as indicated in the figure. 

60 min after CHX addition whole protein extract was prepared, separated by SDS-PAGE, and analyzed via 

western blotting. 

 

 of HSF1 (Figure 4-19). There are two possible explanations for the enhancement of the HSR 

upon proteasome inhibition. In a rather indirect mechanism, proteasomal impairment results 

in the accumulation of heat-denatured proteins, thereby increasing the strength of HSF1 

activation and/or proteasome inhibition delays the deactivation of HSF1. The attenuation of 

the HSR was measured by time course experiments, in which Hsp70 mRNA levels were 

determined by RT-PCR. Down-regulation of PSMA7 did not increase the peak level of Hsp70 

mRNA during HS, but rather delayed the return to normal Hsp70 mRNA levels by about four 

hours (Figure 4-24A and B). This suggests a role of the proteasome during the attenuation 

phase of the HSR. According to the current model of HSF1 regulation, proteasome inhibition 

in combination with thermal stress increases misfolding of proteins and induces dissociation 

of HSF1 from Hsp90 (Shi et al. 1998, Morimoto 2008). The load of misfolded proteins 
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increases chaperone occupancy, thereby delaying rebinding of HSF1 to chaperones and 

consequently HSF1 attenuation.  

The delay in HSR attenuation upon proteasomal impairment could also be explained 

by a more direct role of the UPS in HSF1 deactivation or degradation. Little is known about 

the turnover of HSF1 from literature (Neef et al. 2011). However, Figure 4-16 already 

suggests a role of the proteasome in HSF1 turnover. To further validate the involvement of 

the UPS, CHX chase experiments were performed in the presence and absence of proteasome 

inhibitors. In HeLa cells, HSF1 was degraded with a half-time of approximately five hours in 

the absence of thermal stress and HSF1 was stabilized upon proteasome inhibition with 

MG132 or the more specific inhibitor epoxomicin (Figure 4-25A). Importantly, HS was found 

to accelerate the degradation of HSF1 approximately twice, resulting in a half-time of ~ 2.5 

hours. Again, addition of MG132 or epoxomicin resulted in a stabilization of HSF1 (Figure 

4-25A). To confirm the proteasome-dependent degradation of HSF1, the ubiquitination status 

of HSF1 was checked. Attempts to pull-down endogenous HSF1 with His-tagged ubiquitin 

failed, presumably due to the low amounts of endogenous HSF1 protein. However, in cells 

over-expressing His6-tagged ubiquitin together with Flag-tagged HSF1, a ladder of 

polyubiquitylated HSF1 was detected upon thermal stress and proteasome inhibition (Figure 

4-25B). Interestingly, overexpression of His6-ubiquitin resulted in reduced cellular HSF1 

levels, further supporting the notion of a UPS-regulated HSF1 degradation (Figure 4-25B).  

 

Figure 4-24: HSR attenuation after proteasomal subunit down-regulation. 

(A) Hsp70 mRNA level upon PSMA7 down-regulation. HeLa cells were transfected with esiRNAs targeting 

either EGFP (control) or PSMA7. 70 hours after transfection, cells were heat-stressed (HS) for 2 h at 43°C 

followed by a recovery period as indicated in the figure. Total RNA was prepared and Hsp70 mRNA level was 

determined by RT-PCR. Representative agarose gel images are shown. (B) Quantification of (A). Hsp70 mRNA 

levels were quantified from the band intensities using AIDA, normalized with GAPDH and plotted against time. 

Standard deviations from at least three independent experiments are shown. 
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Upon proteotoxic stress, HSF1 has been shown to undergo inducible phosphorylation 

necessary for its transcriptional activity. The phosphorylation leads to a slower migrating 

HSF1 band in SDS-PAGE (Holmberg et al. 2001). Accordingly, thermal stress resulted in an 

upshift of the HSF1 band by ~ 2 kDa (Figure 4-26A). CHX chase experiments revealed that 

upshifted (active) HSF1 was not dephosphorylated to the faster migrating band during 

recovery, but was degraded (Figure 4-26A left panel). Upshifted HSF1 was markedly 

stabilized by proteasome inhibition (Figure 4-26A right panel). Treatment with calf intestinal 

phosphatase confirmed that the upshift of HSF1 is at least partly due to phosphorylation, as 

dephosphorylation caused down-shift of HSF1, both of the transcriptionally active species and 

of the HSF1 species present before HS (Figure 4-26B).  

.  

 

Figure 4-25: CHX chase and ubiquitination of HSF1. 

(A) HSF1 protein level in CHX chase experiments in presence and absence of the proteasome inhibitors 

MG132 or epoxomicin; with (solid lines) or without (dashed lines) heat stress for 2 h at 43°C. 5 mM CHX and 

0.1% DMSO, 5 µM MG132, or 10 µM epoxomicin were added to the HeLa cells immediately after thermal 

stress or to non-stressed cells. Whole cell extracts were prepared at the indicated time points, separated by SDS-

PAGE, and analyzed by western blotting. HSF1 protein levels were quantified from band intensities using 

AIDA, normalized against corresponding GAPDH levels, and plotted against time. Standard deviations from at 

least three independent experiments are shown. (B) HeLa cells were transfected as described in the figure. 24 h 

later, 5 µM MG132 were added to the cell culture medium and cells were heat-stressed at 43°C for 2 h followed 

by 2 h recovery period at 37°C. Cells were lysed and His-ubiquitin pull-down was performed using Dynaloads 

His-Tag isolation beads. Input and IP samples were separated by SDS-PAGE and blotted with anti-HSF1 

antibody. 
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Figure 4-26: Stress-dependent upshift of HSF1. 

(A) Representative western blots showing stress-activated HSF1 in CHX chase experiment. HeLa cells were 

heat-stressed for 2 h at 43°C and CHX chase was performed in presence and absence of MG132. 5 mM CHX 

and 0.1% DMSO (left) or 5 µM MG132 (right) were added to the cells immediately after thermal stress. Whole 

cell extracts were prepared at the indicated time points, separated by SDS-PAGE, and analyzed by western 

blotting using anti-HSF1 and anti-GAPDH antibodies. (B) Dephosphorylation of HSF1. 75 µg of RIPA soluble 

cell extract from heat-stressed (1 h at 43°C) and control HeLa cells were incubated with 20 U calf intestinal 

phosphatase (CIP) for 90 min at 37°C. The reaction was stopped by boiling in SDS loading buffer. Samples were 

separated by SDS-PAGE and blotted against HSF1. 

 

Apart from proteasomal degradation, it might be conceivable that HSF1 is also 

degraded by another cellular proteolytic pathway, autophagy. To test this, CHX chase 

experiments were performed in the presence and absence of the autophagy inhibitor 

3-methyladenine (3-MA). However, the addition of 3-MA did not slow down or inhibit the 

degradation of HSF1, but resulted in a slightly faster degradation in stressed as well as non-

stressed cells (Figure 4-27).  

 To check whether degradation of active HSF1 requires the rebinding to chaperones 

such as Hsp90, CHX chase experiments were performed in the presence and absence of the 

Hsp90 inhibitor 17-AAG, which is known to cause dissociation of HSF1 from Hsp90 (Zou et 

al. 1998). Inhibition of Hsp90 immediately after HS had no significant effect on HSF1 

turnover (Figure 4-28A), although 17-AAG treatment for two hours effectively induced the 

HSR as shown by an increase in the level of Hsp70 mRNA (Figure 4-28B). This result 

suggests that rebinding to Hsp90 is not a prerequisite for the proteasomal removal of active 

HSF1. 
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Taken together, the results in this chapter show that stress-activated HSF1 in particular 

undergoes rapid proteasomal degradation during HSR attenuation with kinetics similar or 

faster than the decay of the HSR. 

 

Figure 4-27:  CHX chase of HSF1 upon autophagy inhibition. 

HSF1 protein levels in stressed (43°C for 2 h) and non-stressed cells in presence and absence of the autophagy 

inhibitor 3-MA. 5 mM CHX and 0.1% DMSO or 10 mM 3-MA were added to HeLa cells immediately after 

thermal stress or to non-stressed cells. Whole cell extracts were prepared 2 h later, separated by SDS-PAGE, 

and analyzed by western blotting using anti-HSF1 and anti-GAPDH antibodies. HSF1 protein levels were 

quantified from band intensities using AIDA and normalized against corresponding GAPDH levels. HSF1 

amounts of non-treated control cells before CHX addition were set to 100% (data not shown). Standard 

deviations from at least three independent experiments are shown. 

 

Figure 4-28:  CHX chase of HSF1 upon Hsp90 inhibition. 

(A)  HSF1 protein levels in stressed (43°C for 2 h) and non-stressed cells in presence and absence of the Hsp90 

inhibitor 17-AAG. 5 mM CHX and 0.1% DMSO or 5 µM 17-AAG were added to HeLa cells immediately after 

thermal stress or to non-stressed cells. Whole cell extracts were prepared 2 h later, separated by SDS-PAGE, and 

analyzed by western blotting using anti-HSF1 and anti-GAPDH antibodies. HSF1 protein levels were quantified 

from band intensities using AIDA and normalized against corresponding GAPDH levels. HSF1 amounts of non-

treated control cells before CHX addition were set to 100% (data not shown). Standard deviations from at least 

three independent experiments are shown. (B) Hsp70 mRNA level after 17-AAG treatment. HeLa cells were 

treated with 0.1% DMSO or 5 µM 17-AAG for 2 h, total RNA was prepared, and Hsp70 mRNA level was 

determined by RT-PCR. A representative agarose gel image is shown. 
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4.11  HSR regulation after heat-shock and other stresses 

In addition to heat stress, various other stresses are known to induce the HSR. However, only 

little information is available on HSR regulation under stress conditions other than 

 

Figure 4-29: Comparison of the HSR induction by HS, MG132, and celastrol. 

 (A) Fluc:Rluc activity ratios in the iFluc-Rluc cell line after thermal stress (2 h at 43°C, 2 h at 37°C) or 

treatment with 5 µM MG132 or celastrol for 8 h, respectively. Fluc:Rluc activity ratios were normalized to 

DMSO treated control cells. Standard deviations were derived from at least three independent experiments. (B) 

Cell viability after different stresses. HeLa cells were either heat shocked for 2 h at 43°C followed by a recovery 

period of 2 h at 37°C or treated with 5 µM MG132 or celastrol for 8 h, respectively. Cell viability was 

normalized to DMSO treated control cells. Standard deviations were derived from at least three independent 

experiments. (C) Formation of nSB in HeLa cells after thermal stress (1 h at 43°C) or treatment with 5 µM 

MG132 or celastrol for 8 h, respectively. After the treatment, cells were fixed, stained with rabbit anti-HSF1 

antibody, and micrographed. Representative images indicating HSF1 in red are shown. Scale bar: 10 µm. (D) 

Quantification of (C). The percentage of cells with nSB formation was determined and plotted. Averages and 

standard deviations of countings from at least three different experiments are shown. 

 



4 Results   107 

hyperthermia (Anckar and Sistonen 2011). Since the nature of proteotoxicity might influence 

the mode of HSR regulation, the overlap of the regulatory networks involved in stress 

adaption upon thermal stress and other proteotoxic conditions was determined. The iFluc-

Rluc cell line was well-responsive to the proteasome inhibitor MG132 and celastrol, a 

modifier of reactive thiol groups (Figure 4-2 and Figure 4-29A). However, compared to 

thermal stress, both agents activated the HSR more mildly as evidenced by the Fluc:Rluc 

activity (Figure 4-29A). MTT assays with HeLa cells revealed that treatment with the 

stressors also had a different effect on cell viability. Whereas thermal stress and treatment 

with MG132 only led to a slight reduction in cell viability, treatment with celastrol caused 

substantial toxicity (Figure 4-1 and Figure 4-29B). Furthermore, the stressors induced nSB 

formation to different extends. As already shown in Figure 4-11B, treatment with MG132 

only led to nSB formation in approximately 20% of the cells. However, nSB were found in 

the vast majority of cells following thermal stress and treatment with celastrol (Figure 4-29C 

and D). 

In summary, these results suggest differences in the cellular stress response dependent 

on the nature of proteotoxicity. Therefore, it is conceivable that the network participating in 

HSR regulation also varies with the stressor.  

To test this hypothesis, the positive HSR modulators found in the screen were down-

regulated in the iFluc-Rluc cell line. 64 h later, cells were treated with either 5 µM MG132 or 

celastrol for 8 h, respectively, and Fluc:Rluc activity ratios were determined. Notably, for 

approximately 90% of the modulators, down-regulation also inhibited HSR induction upon 

MG132 treatment (Figure 4-30A and B; Table 7-8). Only six HSR modulators (BEX1, 

ENSG00000197865, MYBPC2, SYT4, TMEM239, and VN1R4) were apparently not 

required for the HSR induction by proteasome inhibition (Table 7-8). BEX1 is an X-

chromosomal gene and links neurotrophin signaling to the cell cycle, thereby connecting 

external signals to the cellular status (Vilar et al. 2006). SYT4 is present in the Golgi 

apparatus and may play a role in cellular plasticity during heat stress (Ibata et al. 2000). 

MYBPC2 is a cytoskeletal protein and TMEM239 as well as VN1R4 are putative 

transmembrane proteins which might be involved in sensing HS and transmitting the signal to 

HSF1. The large overlap between factors participating in HSR regulation upon thermal stress 

and MG132 treatment is particularly remarkable when one considers that induction by 

MG132 is much slower than that by HS (Figure 4-29A).  

In contrast, down-regulation of only 46% of the positive modulators found in the 

screen affected HSR induction after celastrol treatment, indicating that celastrol can either
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bypass some HSR regulatory pathways or only activates specific HSR regulatory pathways. 

Specifically, down-regulation of most of the HSR modulators encoding transmembrane 

proteins, histone acetyl- and methyltranferases as well as proteins involved in RNA transport 

and transcription did not interfere with HSF1 activation (Figure 4-30B). For example, 

celastrol-dependent HSR induction no longer required CREBBP and EP300, two histone 

acetyltransferases, but was still dependent on SRCAP and TAF12, two other histone 

acetyltransferases. This indicates that even modulators belonging to the same group may work 

in different pathways to regulate HSR induction. Down-regulation of splicing factors in 

combination with celastrol treatment caused substantial cell death and the luciferase reporter 

activity could not be measured. Celastrol is suggested to modify reactive thiol groups (Trott et 

 

Figure 4-30: HSR modulators in MG132 and celastrol induced stress. 

(A and B) Positive HSR modulators found in the screen were down-regulated in the iFluc-Rluc cell line in 96-

well format by esiRNA transfection. 64 h after transfection, cells were treated for 8 h with 5 µM MG132 or 

5 µM celastrol, luciferase reporter activities were measured, and Fluc:Rluc activity ratios were calculated. 

Experiments were repeated three times. Only gene down-regulations with similar phenotypes in two out of three 

experiments were considered. (A) Number of gene down-regulations reducing reporter activity after each 

treatment and their overlap are shown in a Venn diagram. First number is the sum of modulators in each group, 

the second number in brackets indicates the number of modulators unique to each group. Red color represents 

the group of modulators whose down-regulation only affects the HSR induction upon thermal stress, light blue 

represents the overlap between heat shock and MG132 induction, light green the overlap between heat stress and 

celastrol treatment, and dark green the overlap between all three stresses. (B) Summary of HSR-modulator 

distribution showing their differential inducibility and functional classes. Color code as in (A). Core components 

of the HSR, i.e. gene down-regulations affecting induction of the stress response by all three stresses, are labeled 

on the right-hand side. 
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al. 2008) and these groups are known to be involved in many enzymatic processes with 

various biological functions (Chapman et al. 1997, Klomsiri et al. 2011). Inactivation of these 

cysteine containing proteins is supposed to cause cellular toxicity. Indeed, celastrol treatment 

is more toxic as compared to thermal stress and proteasome impairment by MG132 (Figure 

4-29B). As a result, sensing an emergency situation, cells might bypass several steps of the 

normal HSR activation.  

The down-regulation of 21 positive modulators impaired the activation of the HSR 

under all three stress conditions tested. These include the histone actetyltransferases SRCAP 

and TAF12, the histone methyltransferase RBBP5, the nucleosome assembly factor ATRX, 

DNA damage repair proteins SMC3, SMC6 and ATMIN, RNA transport protein HNRNPH2, 

the transcription factors HSF1 and ZNF226, antizyme inhibitor AZIN1, the secretory proteins 

DPAGT1 and AOAH, UBCc (ubiquitin-conjugating enzyme E2, catalytic) domain containing 

protein BIRC6, glycoprotein THBS1, and 5 uncharacterized proteins (Figure 4-30B). The 

potassium channel KCND1 is the only membrane protein present in this set, indicating a 

possible importance of potassium transport in stress response signaling. All these factors form 

a core set of proteins required for regulation of the HSR. 
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5 Discussion 

Health and survival of living organisms are dependent on the integrity of the cellular 

proteome. Thus, protein homeostasis or proteostasis is crucial for successful development, 

cellular health, and normal aging. The cellular network maintaining proteostasis comprises 

proteins which are involved in protein synthesis, folding, and trafficking as well as in the 

proteolytic degradation of irreversibly misfolded proteins. Persistent imbalances in 

proteostasis are associated with disease and even cell death. The capacities of the cellular 

quality control machinery under normal (non-stress) conditions are not sufficient to maintain 

proteostasis during proteotoxic insults. Thus, upon stress, multiple interconnected stress-

inducible signaling pathways are induced, including the HSR. A key feature of this highly 

conserved cytoprotective mechanism is the increased synthesis of Hsps, which assist in the re-

establishment of proteostasis. The transcriptional activation of the HSR is coordinated by 

HSF1. According to the current model of HSR regulation, the activity state of HSF1 is 

regulated by its binding to molecular chaperones including members of the Hsp70, Hsp40, 

and Hsp90 families. A key role in HSF1 activation is its displacement from Hsp90 by 

misfolded proteins, which accumulate upon stress. Furthermore, oligomerization and 

numerous post-translational modifications are a prerequisite for HSF1 to become trans-

activation competent. Although the role of HSF1 in the regulation of the HSR is well 

established, many aspects of the mechanisms by which HSF1 is activated remain unclear.   

In the present study, a systemic approach was taken to better understand the cellular 

events during thermal stress. In a genome-scale RNA interference screen in HeLa cells, novel 

protein modulators of the cytosolic HSR were identified. For several of those proteins 

additional HSR-unrelated functions had been described previously. The results strongly 

suggest that the HSR integrates signals from multiple cellular locations and processes to 

ensure proteostasis under stress conditions (Figure 4-7) and that its induction and attenuation 

is rather a multi-factorial process than a single gene/protein event. While most of the 

identified HSR modulators exert their functions in the nucleus, we also detected novel 

regulatory factors in the cytoplasm, endomembrane system, mitochondria, and plasma 

membrane (Figure 4-7). The nuclear machineries of chromatin modifiers and protein quality 

control were shown to play a central role in the regulation of the HSR. Importantly, we could 

show that HSF1 is degraded via the UPS. Thus, the proteasome is directly involved in the 

attenuation of the HSR. Interestingly, activated HSF1 is degraded more rapidly than inactive 

one. Unexpectedly, the histone acetyltransferase EP300 was found to regulate the magnitude 
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of the HSR by stabilizing HSF1 against proteasomal degradation. The special roles of EP300 

and the UPS in HSR regulation will be discussed in greater detail in chapters 5.2 and 5.4.  

5.1 Identification of novel HSR modulators 

Our screen led to the identification of 50 positive and 14 negative HSR modulators, which 

form a highly interconnected network (Figure 4-13), demonstrating that stress response 

regulation relies on the integration of multiple intra- and extracellular signals. Approximately 

40% of the identified regulatory proteins are primarily localized in the nucleus, strongly 

suggesting an important role of nuclear processes in HSR regulation (Figure 4-7). For 

example, three transcription factors (GTF3C3, POLR2G, ZNF226) were identified apart from 

HSF1. They positively modulate the HSR and may exert their functions in cooperation with 

HSF1. It is conceivable that these transcription factors are involved in the recruitment of 

HSF1 to HSEs, but also to transcription sites other than the classical heat shock promoters. 

This would be consistent with recent findings that HSF1 regulates HSE-independent 

transcriptional programs supporting cell survival and tumorigenesis (Mendillo et al. 2012, 

Santagata et al. 2013). Furthermore, we identified two novel nucleo-cytoplasmic transport 

proteins, HNRNPH2 and NIF3L1, which likely mediate mRNA export during HS along with 

the known factor NXT1. These components may cooperate with splicing factors which in 

addition to their splicing functions also participate in the proper translocation of mRNA 

(Hocine et al. 2010).  

 Moreover, several multi-spanning membrane proteins were identified as positive HSR 

modulators, including putative G-protein coupled cell surface receptors. This supports the 

notion that not only the heat-induced increase in membrane fluidity (Balogh et al. 2005) but 

also membrane proteins are involved in signaling cascades that participate in HSF1 activation. 

These membrane proteins may be involved in stress sensing and communicating the stress 

status between cells (Prahlad et al. 2008, van Oosten-Hawle et al. 2013). The identification of 

KCND1 as positive HSR modulator reconfirmed the importance of membrane potassium 

channels in HSR. The activation of these voltage-dependent channels may be an early event in 

HSR initiation (Saad and Hahn 1992).  

Elevated temperatures are known to be associated with a change in mitochondrial 

morphology and localization (Collier et al. 1993, Funk et al. 1999). The resulting respiratory 

deficiencies as well as the generation of oxidative stress have been shown to result in an 
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increased expression of Hsps (Barrett et al. 2004, Kuzmin et al. 2004, Rikhvanov et al. 2005). 

The identified mitochondrial positive HSR modulator, PPOX, might contribute to cellular 

protection, since heme biosynthesis was suggested to be beneficial under condition of 

oxidative stress caused by ROS (Shinjyo and Kita 2007).  

The absence of kinases and major chaperone components (e.g. Hsp70 or Hsp90) 

among the identified HSR modulators is notable. Phosphorylation of HSF1 is a prerequisite 

for its transcriptional activity and multiple kinases appear to be involved (Anckar and 

Sistonen 2011), suggesting a functional redundancy. Similarly, the participation of multiple 

chaperone systems in HSF1 regulation and the high abundance of these factors may have 

prevented the identification of these components as significant hits in the screen. The 

identification of three subunits of the cytosolic chaperonin TRiC/CCT and the Hsp70-Hsp90 

organizing protein Hop is most likely due to the chaperone-dependent folding of the Fluc 

reporter protein, as their down-regulation did not prevent the increased transcription of Hsp70 

mRNA upon HS. 

5.2 Role of EP300 in regulating the HSR 

Major re-arrangements of the chromatin landscape in response to elevated temperatures have 

already been demonstrated in the early 1960s, when Ferruccio Ritossa published his 

observations on the heat-induced puffing pattern in the polytene chromosomes of Drosophila 

larvae (Ritossa 1962). During the following decades, the high transcriptional activity in these 

puffs could be correlated to the expression of heat-shock proteins (Tissieres et al. 1974, 

Lindquist 1986). Our screen revealed the participation of multiple chromatin modifiers, 

centering on the EP300/CREBBP histone acetyltransferase complex and the Snf2-related 

CREBBP activator protein, SRCAP, in the activation of HSF1. Two other positive HSR 

modulators, the histone methyltransferases RBPP5 and DPY30, are also connected to 

EP300/CREBBP (Figure 4-13). Taken together, the abundance of histone modifiers among 

the HSR modulators confirm the significance of chromatin remodeling to initiate HSR 

(Sullivan et al. 2001).  

Importantly, overexpression of EP300 has been shown to acetylate nine lysine residues 

of HSF1 including K80 in the DNA binding domain and several other lysine residues close to 

and within the heptad repeat oligomerization domain. Deacetylation of HSF1 by SIRT1 

prolongs the dwell time of HSF1 on heat shock elements (Westerheide et al. 2009, Raynes et 
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al. 2013). Surprisingly, we observed that the down-regulation of EP300 destabilizes HSF1 

and induces its proteasomal degradation (Figure 4-14, Figure 4-16 and Figure 5-1  and ). 

This effect is specific for EP300 and is not seen for down-regulations of the closely related 

acetyltransferase CREBBP or other chromatin modifiers (Figure 4-14). The destabilization of 

HSF1 in the absence of EP300 already occurs under normal growth conditions and is likely to 

be caused by reduced HSF1 acetylation at lysine residues other than K80 (data not shown; 

Figure 5-1  to ). In this context it is notable that acetylation of lysine residues is known to 

interfere with ubiquitination and may also modulate conformational protein stability by 

removing positively charged residues (Caron et al. 2005). In addition to HSF1 

acetyltransferase activity, EP300 also exerts histone acetyltransferase activity which may be 

necessary for altering the chromatin structure prior to transcription (Ogryzko et al. 1996).  

Therefore, it is conceivable that the down-regulation of EP300 can result in lower chromatin 

accessibility for HSF1. This may have an additional destabilizing effect on HSF1, particularly 

upon stress. Interestingly, HIF1α, the transcription factor regulating the cellular response to 

hypoxic conditions, was also shown to be destabilized in the absence of EP300. Moreover, 

EP300-mediated acetylation protected HIF1α against proteasomal degradation (Geng et al. 

2012). Down-regulation of the deacetylase SIRT1 resulted in a reduced transcriptional 

activity of HIF1α due to hyper-acetylation (Laemmle et al. 2012).  

Based on these findings, we propose a model for the regulation of HSR activation and 

attenuation, in which the increasing acetylation of HSF1 by EP300 functions as a timing 

mechanism (Figure 5-1). The initial acetylation of HSF1 by EP300 protects HSF1 against 

proteasomal degradation and together with other post-translational modifications, including 

phosphorylations and deacetylation of K80 (Westerheide et al. 2009), HSF1 becomes 

competent for DNA binding (Figure 5-1 ). Once bound to chromatin, the number of 

acetylated lysine residues increases (Figure 5-1 ). Eventually, acetylation of the regulatory 

lysine residues weakens DNA binding, thereby initiating HSR attenuation (Figure 5-1  and 

). The cooperated deacetylation of HSF1 by SIRT1 serves as a fine-tuning mechanism in 

HSR regulation (Figure 5-1  to ).  

5.3 Reorganization of the nuclear proteome during heat stress 

The nuclear proteome is known to undergo substantial changes during various forms of stress, 

including a nuclear enrichment of the proteasome in response to DNA damage and glucose



5 Discussion   114 

starvation (Ogiso et al. 2002,  Boisvert et al. 2010, Boulon et al. 2010). Furthermore, it was 

shown that thermal stress can induce proteasomal protein degradation (Medicherla and 

Goldberg 2008). The quantitative proteomics experiments (Figure 4-18 and Figure 4-19) 

performed in this study and further biochemical validation (Figure 4-21) revealed that the 

nuclear proteome becomes substantially enriched with proteins of the quality control 

machinery in response to thermal stress. These proteins include mainly subunits of the 26S 

proteasome, HSF1, and multiple chaperones and co-chaperones. This may reflect the attempt 

of the cell to prevent the accumulation of potentially dangerous destabilized proteins in the 

nucleus. The proteasome system is likely to cooperate in this process with multiple Hsp70 and 

Hsp40 chaperones, which is consistent with earlier observations that Hsp70 accumulates in 

the nucleus and nucleolus during HS (Pelham 1984). Remarkably, two stress inducible 

Hsp70s, the constitutively expressed Hsc70, and at least five different J-domain proteins 

 

Figure 5-1: Model of nuclear pathways involved in HSR regulation. 

The activation and attenuation of HSF1 requires the integration of intra- and extracellular stress signals. In the 

absence of stress, HSF1 is maintained in an inactive, monomeric state by the chaperones Hsp70/Hsp90 and is 

mainly localized in the nucleus and partially in the cytosol. HS and other protein conformational stresses result 

in the accumulation of misfolded proteins and the displacement of HSF1 from Hsp70/Hsp90. HSF1 

oligomerizes, undergoes post-translational modifications (e.g. phosphorylation and acetylation), and triggers the 

HSR. Increasing acetylation of HSF1 by EP300 functions as a timer for the induction as well as attenuation of 

the HSR. This occurs in close cooperation with the deacetylase SIRT1. EP300 down-regulation results in 

destabilization of HSF1 and premature degradation by the proteasome. Activated HSF1 is normally degraded by 

the proteasome during the attenuation phase of the HSR. Ac, acetylation (green: stabilizing acetylation, orange: 

HSF1 inactivating acetylation); P, phosphorylation; Ub, ubiquitin. See Discussion for details of the proposed 

model. 
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(Hsp40s) accumulate in the nuclear fraction upon HS, suggesting an important role of 

chaperones in the protein refolding, aggregation prevention, and proteasomal degradation. 

The presence of Hsp40s among the enriched proteins is consistent with recent findings that 

the yeast Hsp40, Sis1p, and its mammalian homolog DnaJB1 have a specific role in the 

degradation of misfolded proteins in the nucleus (Park et al. 2013). 

5.4 Attenuation of the HSR by the proteasome 

The inactivation of HSF1 is thought to be the result of its rebinding to Hsp90 as soon as 

sufficient free Hsp90 is available during stress recovery (Zou et al. 1998, Bharadwaj et al. 

1999) (Figure 7, ). However, direct evidence for this attractive model is limited. The finding 

that active, i.e. hyper-phosphorylated, HSF1 is degraded by the proteasome (Figure 4-25) 

suggests an alternative (or parallel) mechanism for attenuation of the HSR (Figure 5-1, ). 

The Hsp90-independent degradation of active HSF1 (Figure 4-28) further supports this 

model. Moreover, the reduced half-life of transcriptionally competent HSF1 under conditions 

of proteotoxic stress compared to HSF1 in absence of thermal stress, implies that post-

translational modifications associated with the activation of HSF1, such as phosphorylation 

and acetylation, control its proteasomal clearance. Accumulating stress-denatured proteins 

would generally compete with HSF1 for ubiquitination and subsequent proteasomal 

degradation. This would delay the clearance of HSF1, thereby slowing down the attenuation 

of the HSR until proteome balance has been restored. Thus, the degradation of active HSF1 

by the proteasome would directly link the extent of protein damage to the quality control 

capacity required for the re-establishment of proteostasis. Whereas HSF1 rebinding to 

chaperones like Hsp70/90 may contribute to attenuation, it is also conceivable that these 

chaperones mainly interact with newly synthesized HSF1. This may support the folding of 

HSF1 to a state primed for activation under conditions of proteotoxic stress. 

5.5  Comparing the regulatory networks of heat-shock and other 

proteotoxic stresses 

Up to now, most of the published studies investigating the function of HSF1 used a 

temperature upshift to induce its transcriptional activity. However, it is conceivable that HSF1 
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activation may differ mechanistically in response to different proteotoxic stresses (Anckar and 

Sistonen 2011). To address this question we determined the overlap of the HSF1 regulatory 

networks upon thermal stress, proteasome inhibition, and treatment with celastrol, a modifier 

of reactive thiol groups. The comparison revealed a large overlap between the factors that 

regulate HSF1 activation upon thermal stress and proteasome inhibition. This may reflect an 

overlapping impact of the stresses on the cellular proteome. It was shown that the increased 

load of misfolded or aberrant proteins following heat stress can impair the UPS activity 

(Salomons et al. 2009), thereby mimicking proteasomal inhibition upon treatment with 

MG132. However, six HSR modulators were not required for the HSR induction by 

proteasomal impairment (Figure 4-30). Physical stress, such as heat-shock, is known to cause 

extensive cellular damage, particularly to membranous structures (Nickells et al. 1988). The 

heat-shock specific factors are mainly membrane-associated or play a role in cellular 

plasticity and as such, they might be involved in sensing cell morphological changes during 

thermal stress and transmitting the signal to HSF1.  

Unexpectedly, only 46% of the positive HSR modulators were required for the 

activation of HSF1 by celastrol (Figure 4-30). After down-regulation of several histone 

acetyl- and methyltranferases, membrane proteins, RNA transport, and transcription factors, 

cells were still able to properly induce the HSR. Surprisingly, even the absence of EP300 with 

its direct regulatory effect on HSF1 stability did not interfere with HSR induction. This might 

be explained by the different nature of proteotoxicity. In contrast to the more general effects 

on the cellular proteome induced by heat stress or proteasome inhibition, celastrol effects 

specific processes by modifying reactive thiol groups of multiple enzymes (Chapman et al. 

1997, Klomsiri et al. 2011). Loss of these enzymatic functions may explain the higher cellular 

toxicity of celastrol (Figure 4-29B). To cope with the resulting emergency situation, cells 

seem to bypass the HSR regulatory network to a large extent. The comparably low overlap of 

positive modulator proteins identified after thermal stress and celastrol treatment (Figure 

4-30) strongly suggests a difference in HSR regulation dependent on the formal stress.  

Apart from that, comparison of the overlap of the regulatory networks under different 

stress conditions enabled us to identify core components of the HSR (Figure 4-30). This core 

set comprises 21 proteins with various cellular functions and localizations, including factors 

involved in chromatin remodeling, DNA damage repair, RNA transport, transcription, and ion 

transport. Although the specific functions of these modulator proteins remain to be elucidated, 

it strengthens the hypothesis that the regulation of the HSR is a multi-factorial process.    
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5.6 Implications of the HSR in aging and disease 

The cytosolic stress response ensures proteostasis under a variety of proteotoxic conditions 

and represents the primary defense of mammalian cells against the accumulation of 

potentially toxic protein species in the cytoplasm and nucleus. Imbalances in proteostasis are 

associated with numerous neurodegenerative diseases including Alzheimer’s, Huntington’s, 

and Parkinson’s, all of which are characterized by the accumulation of specific proteins in 

inclusions or aggregates (Douglas and Dillin 2010). The manifestation of these late-onset 

diseases has been linked to an age-dependent, gradual decline of the cellular proteostasis 

capacity, which may be partly explained by an impaired ability of the cells to induce the HSR 

in response to the accumulation of aberrant proteins (Morimoto 2008, Powers et al. 2009, 

Ben-Zvi et al. 2009, David et al. 2010). Moreover, an age-related decrease in the 

transcriptional activity of HSF1 was shown in rat hepatocytes (Heydari et al. 2000). 

Considering the extensive participation of chromatin modifiers in regulating the HSR, age-

related modifications of the chromatin structure may contribute to this decline (Dimauro and 

David 2009). Indeed, down-regulation of cbp-1, the C. elegans ortholog of EP300, blocks the 

lifespan extension normally afforded by calorie restriction (Zhang et al. 2009). The 

observation that the histone acetyltransferase activities of EP300 and CREBBP are high in the 

brain and liver of fetal and newborn mice and are attenuated in liver, muscle, and testes with 

age further emphasizes the role of chromatin modifiers as positive modulators of the HSR (Li 

et al. 2002). It is notable that stability of the transcription factor HIF1α, which is involved in 

lifespan extension of C. elegans and suppression of proteotoxicity (Mehta et al. 2009), is also 

controlled by EP300-mediated acetylation (see chapter 5.2).  

While restoring the cellular proteostasis capacity by boosting the HSR is considered 

beneficial in delaying the manifestation of age-related degenerative diseases (Powers et al. 

2009, Neef et al. 2011), an increased HSR activity is a major hallmark of cancer (Dai et al. 

2007). The resulting higher level of Hsps has been implicated in several steps of 

tumorigenesis including the resistance to cell death, inhibition of replicative senescence, and 

the induction of angiogenesis (Ciocca et al. 2013). Although a potential drawback for the 

treatment of neurodegenerative diseases, the dependency of cancerous cells on the HSF1/Hsp 

system is already exploited for the development of anti-cancer drugs. 

Understanding the molecular mechanisms of HSR induction and attenuation can help 

to identify potential targets for the pharmacologic manipulation of the stress response. In this 

study we identified several key molecular components involved in HSR regulation, which 
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may be beneficial for the future treatment of aggregate deposition diseases and cancer. 

Whereas the positive modulators may be explored as potential targets in correcting the 

overshooting stress response in cancer cells, the negative modulators offer opportunities to 

activate the HSR. This might mitigate various degenerative conditions associated with 

neurodegeneration and the aging process. However, the complexity of the integrated network 

regulating cellular proteostasis complicates the development of therapeutic strategies because 

manipulating one branch of the network may affect others. In this context, especially the 

identification of several proteins with unknown function as stress response modulators seems 

promising, as they might specifically participate in HSR regulation without contributing to 

other important cellular processes. Another challenge in the treatment of HSR de-regulations 

is to only target cells showing a disease phenotype while minimizing deleterious effects on 

normal cells. To finally succeed in developing new pharmacological approaches, it will be 

essential to understand how the identified HSR modulators are organized and integrated at the 

organismal level.  
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7 Appendices 

7.1 Tables 

Table 7-1: Positive HSR modulators 

Ensembl ID Gene Symbol Full Name 
Hsp70 mRNA level       

(% of control) 

ENSG00000005339 CREBBP CREB binding protein 11±8 

ENSG00000064115 TM7SF3 transmembrane 7 superfamily member 3 not tested 

ENSG00000066135 KDM4A lysine (K)-specific demethylase 4A not tested 

ENSG00000080603 SRCAP Snf2-related CREBBP activator protein 13±9 

ENSG00000085224 ATRX alpha thalassemia/mental retardation 

syndrome X-linked 

8 

ENSG00000086967 MYBPC2 myosin binding protein C, fast type not tested 

ENSG00000100393 EP300 E1A binding protein p300 8±5 

ENSG00000102057 KCND1 potassium voltage-gated channel, Shal-

related subfamily, member 1 

6 

ENSG00000108055 SMC3 structural maintenance of chromosomes 

3 

not tested 

ENSG00000115524 SF3B1 splicing factor 3b, subunit 1, 155kDa 50±29 

ENSG00000115760 BIRC6 baculoviral IAP repeat containing 6 not tested 

ENSG00000117222 RBBP5 retinoblastoma binding protein 5 23 

ENSG00000118181 RPS25 ribosomal protein S25 no reduction 

ENSG00000118990 GLRXP3 glutaredoxin (thioltransferase) 

pseudogene 3 

not tested 

ENSG00000119041 GTF3C3 general transcription factor IIIC, 

polypeptide 3, 102kDa 

7 

ENSG00000120656 TAF12 TAF12 RNA polymerase II, TATA box 

binding protein (TBP)-associated factor, 

20kDa 

not tested 

ENSG00000120733 KDM3B lysine (K)-specific demethylase 3B 15 

ENSG00000122692 SMU1 smu-1 suppressor of mec-8 and unc-52 

homolog (C. elegans) 

58±20 

ENSG00000124143 C20orf95 

(ARHGAP40) 

Rho GTPase activating protein 40 not tested 

ENSG00000126945 HNRNPH2 heterogeneous nuclear 

ribonucleoprotein H2 (H') 

14 

ENSG00000131009 AC007379.2 

(TTTY9A) 

testis-specific transcript, Y-linked 9A 

(non-protein coding) 

not tested 

ENSG00000132661 NXT1 NTF2-like export factor 1 7 

ENSG00000132872 SYT4 synaptotagmin IV not tested 

ENSG00000133169 BEX1 brain expressed, X-linked 1 not tested 

ENSG00000135801 TAF5L TAF5-like RNA polymerase II, 

p300/CBP-associated factor (PCAF)-

associated factor, 65kDa 

not tested 

ENSG00000136250 AOAH acyloxyacyl hydrolase (neutrophil) 50 

ENSG00000137801 THBS1 thrombospondin 1 not tested 

ENSG00000137819 PAQR5 progestin and adipoQ receptor family 

member V 

not tested 

ENSG00000139343 SNRPF small nuclear ribonucleoprotein 

polypeptide F 

77±22 

ENSG00000139874 SSTR1 somatostatin receptor 1 29 
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Ensembl ID Gene Symbol Full Name 
Hsp70 mRNA level       

(% of control) 

ENSG00000143224 PPOX protoporphyrinogen oxidase not tested 

ENSG00000146731 CCT6A chaperonin containing TCP1, subunit 

6A (zeta 1) 

no reduction 

ENSG00000155096 AZIN1 antizyme inhibitor 1 49 

ENSG00000156261 CCT8 chaperonin containing TCP1, subunit 8 

(theta) 

no reduction 

ENSG00000162520 SYNC syncoilin, intermediate filament protein not tested 

ENSG00000162961 DPY30 dpy-30 homolog (C. elegans) not tested 

ENSG00000163029 SMC6 structural maintenance of chromosomes 

6 

not tested 

ENSG00000163468 CCT3 chaperonin containing TCP1, subunit 3 

(gamma) 

no reduction 

ENSG00000163749 CCDC158 coiled-coil domain containing 158 not tested 

ENSG00000166454 ATMIN ATM interactor 70 

ENSG00000167279 AP001267.4-2 Not known 7 

ENSG00000167380 ZNF226 zinc finger protein 226 not tested 

ENSG00000168002 POLR2G polymerase (RNA) II (DNA directed) 

polypeptide G 

not tested 

ENSG00000168439 AP005668.2 

(STIP1) 

stress-induced-phosphoprotein 1 no reduction 

ENSG00000170500 LONRF2 LON peptidase N-terminal domain and 

ring finger 2 

88 

ENSG00000172264 C20orf133 

(MACROD2) 

MACRO domain containing 2 not tested 

ENSG00000172269 DPAGT1 dolichyl-phosphate (UDP-N-

acetylglucosamine) N-

acetylglucosaminephosphotransferase 1 

(GlcNAc-1-P transferase) 

not tested 

ENSG00000173705 SUSD5 sushi domain containing 5 36 

ENSG00000174677 VN1R4 vomeronasal 1 receptor 4 not tested 

ENSG00000184374 COLEC10 collectin sub-family member 10 (C-type 

lectin) 

57 

ENSG00000185122 HSF1 heat-shock transcription factor 1 16±4 

ENSG00000187715 KLHDC6 

(KBTBD12) 

kelch repeat and BTB (POZ) domain 

containing 12 

not tested 

ENSG00000196290 NIF3L1 NIF3 NGG1 interacting factor 3-like 1 

(S. pombe) 

not tested 

ENSG00000197865   Not known not tested 

ENSG00000198326 C20orf141 

(TMEM239) 

transmembrane protein 239 not tested 

 

 

Table 7-2: Negative HSR modulators 

Ensembl ID Gene Symbol Full Name 
Hsp70 mRNA level       

(% of control) 

ENSG00000090061 CCNK cyclin K  not tested 

ENSG00000100387 RBX1 ring-box 1, E3 ubiquitin protein ligase 397±268 

ENSG00000100804 PSMB5 proteasome (prosome, macropain) 

subunit, beta type, 5 

 not tested 

ENSG00000101182 PSMA7 proteasome (prosome, macropain) 

subunit, alpha type, 7 

230 
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Ensembl ID Gene Symbol Full Name 
Hsp70 mRNA level       

(% of control) 

ENSG00000107882 SUFU suppressor of fused homolog 

(Drosophila) 

 not tested 

ENSG00000108294 PSMB3 proteasome (prosome, macropain) 

subunit, beta type, 3 

328±119 

ENSG00000108671 PSMD11 proteasome (prosome, macropain) 26S 

subunit, non-ATPase, 11 

240 

ENSG00000129084 PSMA1 proteasome (prosome, macropain) 

subunit, alpha type, 1 

 not tested 

ENSG00000132676 DAP3 death associated protein 3  not tested 

ENSG00000142507 PSMB6 proteasome (prosome, macropain) 

subunit, beta type, 6 

671±245 

ENSG00000143106 PSMA5 proteasome (prosome, macropain) 

subunit, alpha type, 5 

 not tested 

ENSG00000182446 NPLOC4 nuclear protein localization 4 homolog 

(S. cerevisiae) 

 not tested 

ENSG00000184624 ZNF72P zinc finger protein 72, pseudogene  not tested 

ENSG00000198951 NAGA N-acetylgalactosaminidase, alpha  not tested 

 

 

Table 7-3: Components of largest connected interaction network of HSR 

modulators are listed. Positive and negative HSR modulators are 

highlighted in grey and red, respectively. Proteins forming network nodes 

interacting with 5 or more HSR modulators are highlighted in blue.   

Uniprot Gene symbol Group 
Number of 

interactions 

Q00613 HSF1 pos_mod_HSR 35 

Q09472 EP300 pos_mod_HSR 191 

Q92793 CREBBP pos_mod_HSR 164 

O75533 SF3B1 pos_mod_HSR 51 

Q9UQE7 SMC3 pos_mod_HSR 31 

P55795 HNRNPH2 pos_mod_HSR 30 

Q15291 RBBP5 pos_mod_HSR 30 

P62306 SNRPF pos_mod_HSR 28 

Q9GZT8 NIF3L1 pos_mod_HSR 24 

Q2TAY7 SMU1 pos_mod_HSR 20 

Q9Y5Q9 GTF3C3 pos_mod_HSR 15 

Q16514 TAF12 pos_mod_HSR 13 

O75529 TAF5L pos_mod_HSR 12 

P46100 ATRX pos_mod_HSR 12 

O75164 KDM4A pos_mod_HSR 11 
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Uniprot Gene symbol Group 
Number of 

interactions 

Q9C005 DPY30 pos_mod_HSR 11 

Q6ZRS2 SRCAP pos_mod_HSR 9 

P62487 POLR2G pos_mod_HSR 7 

Q7LBC6 KDM3B pos_mod_HSR 6 

P07996 THBS1 pos_mod_HSR 5 

Q9NR09 BIRC6 pos_mod_HSR 4 

O14977 AZIN1 pos_mod_HSR 3 

P50336 PPOX pos_mod_HSR 3 

A1Z1Q3 MACROD2 pos_mod_HSR 2 

Q9NYT6 ZNF226 pos_mod_HSR 2 

Q96SB8 SMC6 pos_mod_HSR 2 

Q9NS93 TM7SF3 pos_mod_HSR 1 

Q9HBH7 BEX1 pos_mod_HSR 1 

Q9H3H5 DPAGT1 pos_mod_HSR 1 

Q14324 MYBPC2 pos_mod_HSR 1 

P28066 PSMA5 neg_mod_HSR 78 

P25786 PSMA1 neg_mod_HSR 73 

O14818 PSMA7 neg_mod_HSR 72 

O00231 PSMD11 neg_mod_HSR 65 

P28074 PSMB5 neg_mod_HSR 61 

P49720 PSMB3 neg_mod_HSR 60 

P62877 RBX1 neg_mod_HSR 51 

P28072 PSMB6 neg_mod_HSR 50 

Q8TAT6 NPLOC4 neg_mod_HSR 20 

P51398 DAP3 neg_mod_HSR 11 

O75909 CCNK neg_mod_HSR 9 

P17050 NAGA neg_mod_HSR 2 

Q9UMX1 SUFU neg_mod_HSR 2 

Q15004 KIAA0101 node 12 

Q15717 ELAVL1 node 12 

P01106 MYC node 11 

Q13616 CUL1 node 10 

P53350 PLK1 node 9 

P25788 PSMA3 node 9 

Q13618 CUL3 node 9 

P02751 FN1 node 8 

P61956 SUMO2 node 8 

P03372 ESR1 node 8 

P25787 PSMA2 node 8 

P62195 PSMC5 node 8 

P55036 PSMD4 node 8 

P60900 PSMA6 node 8 

P54725 RAD23A node 8 

P20618 PSMB1 node 7 

O43242 PSMD3 node 7 

Q99460 PSMD1 node 7 

P48556 PSMD8 node 7 
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Uniprot Gene symbol Group 
Number of 

interactions 

Q13200 PSMD2 node 7 

P25789 PSMA4 node 7 

P62191 PSMC1 node 7 

O00232 PSMD12 node 7 

P35998 PSMC2 node 7 

Q9UNM6 PSMD13 node 7 

Q15008 PSMD6 node 7 

P17980 PSMC3 node 7 

Q99436 PSMB7 node 7 

P62333 PSMC6 node 7 

P49721 PSMB2 node 7 

Q15051 IQCB1 node 7 

Q92905 COPS5 node 7 

Q9Y5K5 UCHL5 node 7 

P51665 PSMD7 node 7 

P28070 PSMB4 node 7 

P43686 PSMC4 node 7 

P05067 APP node 6 

Q9UQL6 HDAC5 node 6 

Q8TAA3 PSMA8 node 6 

Q9Y244 POMP node 6 

Q14318 FKBP8 node 6 

P09661 SNRPA1 node 6 

O00487 PSMD14 node 6 

Q15843 NEDD8 node 6 

P24941 CDK2 node 6 

Q9BQ83 SLX1A node 6 

P28062 PSMB8 node 6 

P55072 VCP node 6 

P63165 SUMO1 node 6 

P10275 AR node 5 

P04637 TP53 node 5 

P40337 VHL node 5 

Q6ZW49 PAXIP1 node 5 

Q9UL46 PSME2 node 5 

P24928 POLR2A node 5 

P20226 TBP node 5 

Q14686 NCOA6 node 5 

Q16695 HIST3H3 node 5 

Q7L5N1 COPS6 node 5 

Q13620 CUL4B node 5 

Q86VP6 CAND1 node 5 

P61289 PSME3 node 5 

Q16665 HIF1A node 5 

P62805 HIST1H4A other 4 

Q92831 KAT2B other 4 

Q00987 MDM2 other 4 
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Uniprot Gene symbol Group 
Number of 

interactions 

P40306 PSMB10 other 4 

Q9Y2T2 AP3M1 other 4 

P68431 HIST1H3A other 4 

O75376 NCOR1 other 4 

P38398 BRCA1 other 4 

P84022 SMAD3 other 4 

P33176 KIF5B other 4 

Q9NRC8 SIRT7 other 4 

O15379 HDAC3 other 4 

Q99814 EPAS1 other 4 

Q15797 SMAD1 other 4 

Q13547 HDAC1 other 4 

P13612 ITGA4 other 4 

P35228 NOS2 other 4 

Q13617 CUL2 other 4 

Q06323 PSME1 other 4 

Q92769 HDAC2 other 4 

P19320 VCAM1 other 4 

O15205 UBD other 4 

P28065 PSMB9 other 4 

P10242 MYB other 4 

Q12834 CDC20 other 3 

Q00403 GTF2B other 3 

P78345 RPP38 other 3 

P24864 CCNE1 other 3 

Q71DI3 HIST2H3A other 3 

P17844 DDX5 other 3 

O75368 SH3BGRL other 3 

P40763 STAT3 other 3 

P25208 NFYB other 3 

P10646 TFPI other 3 

Q15834 CCDC85B other 3 

Q9Y297 BTRC other 3 

Q93009 USP7 other 3 

Q9H4G0 EPB41L1 other 3 

P06454 PTMA other 3 

Q8TCJ0 FBXO25 other 3 

P68400 CSNK2A1 other 3 

Q9NRD1 FBXO6 other 3 

P61964 WDR5 other 3 

Q13363 CTBP1 other 3 

Q92993 KAT5 other 3 

P17676 CEBPB other 3 

O15350 TP73 other 3 

P67809 YBX1 other 3 

Q16401 PSMD5 other 3 

Q9BT73 PSMG3 other 3 



7 Appendices   146 

Uniprot Gene symbol Group 
Number of 

interactions 

Q14498 RBM39 other 3 

P20810 CAST other 3 

Q86X55 CARM1 other 3 

P63104 YWHAZ other 3 

P42224 STAT1 other 3 

P18848 ATF4 other 3 

P08670 VIM other 3 

P04150 NR3C1 other 3 

P38936 CDKN1A other 3 

Q15796 SMAD2 other 3 

Q9Y3Q8 TSC22D4 other 3 

P12956 XRCC6 other 3 

Q9Y5U4 INSIG2 other 3 

Q9UHV2 SERTAD1 other 3 

P38919 EIF4A3 other 3 

Q16594 TAF9 other 3 

Q92731 ESR2 other 3 

Q14997 PSME4 other 3 

Q8TAD8 SNIP1 other 3 

Q9UER7 DAXX other 3 

Q15459 SF3A1 other 3 

Q92466 DDB2 other 3 

Q8IYB3 SRRM1 other 3 

P07900 HSP90AA1 other 3 

Q6P2Q9 PRPF8 other 3 

P54274 TERF1 other 3 

P06400 RB1 other 3 

Q53H96 PYCRL other 3 

Q9Y3D8 TAF9 other 3 

Q9Y6Q9 NCOA3 other 3 

Q99717 SMAD5 other 3 

P84243 H3F3A other 3 

O15265 ATXN7 other 3 

P15172 MYOD1 other 3 

Q16531 DDB1 other 3 

Q13243 SRSF5 other 3 

P31749 AKT1 other 2 

Q8N3Y1 FBXW8 other 2 

P10276 RARA other 2 

P41182 BCL6 other 2 

Q99081 TCF12 other 2 

Q14566 MCM6 other 2 

Q13123 IK other 2 

O60381 HBP1 other 2 

P10914 IRF1 other 2 

P60896 SHFM1 other 2 

P37231 PPARG other 2 
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Uniprot Gene symbol Group 
Number of 

interactions 

Q9UBL3 ASH2L other 2 

Q9Y618 NCOR2 other 2 

Q9BXP5 SRRT other 2 

Q01094 E2F1 other 2 

P10071 GLI3 other 2 

P35659 DEK other 2 

Q05086 UBE3A other 2 

Q13131 PRKAA1 other 2 

P52272 HNRNPM other 2 

O95400 CD2BP2 other 2 

O75177 SS18L1 other 2 

P20823 HNF1A other 2 

Q8WUA4 GTF3C2 other 2 

Q96MF7 NSMCE2 other 2 

P21246 PTN other 2 

Q12772 SREBF2 other 2 

Q13216 ERCC8 other 2 

P23511 NFYA other 2 

P51610 HCFC1 other 2 

P14618 PKM other 2 

P28482 MAPK1 other 2 

P51858 HDGF other 2 

Q93034 CUL5 other 2 

O43918 AIRE other 2 

P08047 SP1 other 2 

P62736 ACTA2 other 2 

P01100 FOS other 2 

P42768 WAS other 2 

P15407 FOSL1 other 2 

P17483 HOXB4 other 2 

Q14653 IRF3 other 2 

Q99683 MAP3K5 other 2 

Q96PK6 RBM14 other 2 

Q9Y5Q8 GTF3C5 other 2 

Q96RS0 TGS1 other 2 

Q9UHX1 PUF60 other 2 

Q16891 IMMT other 2 

Q15527 SURF2 other 2 

Q7L2J0 MEPCE other 2 

P22415 USF1 other 2 

P50402 EMD other 2 

P14921 ETS1 other 2 

Q07666 KHDRBS1 other 2 

Q13950 RUNX2 other 2 

Q92995 USP13 other 2 

Q9UQ35 SRRM2 other 2 

P53992 SEC24C other 2 
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Uniprot Gene symbol Group 
Number of 

interactions 

Q07869 PPARA other 2 

P16871 IL7R other 2 

P42574 CASP3 other 2 

Q02447 SP3 other 2 

P68363 TUBA1B other 2 

P54578 USP14 other 2 

P35520 CBS other 2 

P49336 CDK8 other 2 

Q9Y3R0 GRIP1 other 2 

O94953 KDM4B other 2 

P17275 JUNB other 2 

O95600 KLF8 other 2 

Q9HCE7 SMURF1 other 2 

P11142 HSPA8 other 2 

Q8N5Z5 KCTD17 other 2 

Q13568 IRF5 other 2 

Q13569 TDG other 2 

Q9BUJ2 HNRNPUL1 other 2 

P13569 CFTR other 2 

Q01844 EWSR1 other 2 

Q92985 IRF7 other 2 

Q9Y620 RAD54B other 2 

Q9BRP4 PAAF1 other 2 

Q12962 TAF10 other 2 

O15360 FANCA other 2 

P43364 MAGEA11 other 2 

P62993 GRB2 other 2 

O43809 NUDT21 other 2 

P18146 EGR1 other 2 

P46531 NOTCH1 other 2 

Q13309 SKP2 other 2 

Q14676 MDC1 other 2 

O60216 RAD21 other 2 

Q99961 SH3GL1 other 2 

Q96KM6 ZNF512B other 2 

Q16236 NFE2L2 other 2 

Q12789 GTF3C1 other 2 

P04406 GAPDH other 2 

P20962 PTMS other 2 

Q14814 MEF2D other 2 

Q15788 NCOA1 other 2 

Q9UMX0 UBQLN1 other 2 

P49841 GSK3B other 2 

Q9BRQ0 PYGO2 other 2 

P78406 RAE1 other 2 

O95359 TACC2 other 2 

Q10570 CPSF1 other 2 
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Uniprot Gene symbol Group 
Number of 

interactions 

Q9Y6X2 PIAS3 other 2 

Q15020 SART3 other 2 

Q99966 CITED1 other 2 

Q99967 CITED2 other 2 

P42226 STAT6 other 2 

Q92794 KAT6A other 2 

P25490 YY1 other 2 

Q96PN7 TRERF1 other 2 

Q05516 ZBTB16 other 2 

Q14683 SMC1A other 2 

Q9UL17 TBX21 other 2 

Q86UW6 N4BP2 other 2 

Q8TAF3 WDR48 other 2 

Q9UM63 PLAGL1 other 2 

Q9Y265 RUVBL1 other 2 

Q9UKT8 FBXW2 other 2 

O75528 TADA3 other 2 

Q86TI2 DPP9 other 2 

Q9H7U1 CCSER2 other 2 

Q9Y3C4 TPRKB other 2 

P05412 JUN other 2 

Q01196 RUNX1 other 2 

Q9UK99 FBXO3 other 2 

P12830 CDH1 other 2 

O43390 HNRNPR other 2 

Q8IXW5 RPAP2 other 2 

P09874 PARP1 other 2 

Q00839 HNRNPU other 2 

Q15650 TRIP4 other 2 

Q14872 MTF1 other 2 

Q9UBP6 METTL1 other 2 

Q9UJX3 ANAPC7 other 2 

Q13887 KLF5 other 2 

Q03164 MLL other 2 

Q12933 TRAF2 other 2 

O00762 UBE2C other 2 

Q92841 DDX17 other 2 

P68036 UBE2L3 other 2 

Q15910 EZH2 other 2 

Q13330 MTA1 other 2 

Q9Y5V3 MAGED1 other 2 

Q99743 NPAS2 other 2 

O60260 PARK2 other 2 

P62316 SNRPD2 other 2 

O60318 MCM3AP other 2 

Q96GG9 DCUN1D1 other 2 

Q13526 PIN1 other 2 



7 Appendices   150 

Uniprot Gene symbol Group 
Number of 

interactions 

Q16778 HIST2H2BE other 2 

P15336 ATF2 other 2 

P52948 NUP98 other 2 

Q8WWY3 PRPF31 other 2 

P29590 PML other 2 

P28358 HOXD10 other 2 

Q92922 SMARCC1 other 2 

P35222 CTNNB1 other 2 

P35558 PCK1 other 2 

Q7Z6G3 NECAB2 other 2 

P54252 ATXN3 other 2 

P54257 HAP1 other 2 

P52630 STAT2 other 2 

P23443 RPS6KB1 other 2 

P00747 PLG other 2 

P12931 SRC other 2 

P61326 MAGOH other 2 

Q96GF1 RNF185 other 2 

P54105 CLNS1A other 2 

P16220 CREB1 other 2 

P15036 ETS2 other 2 

P25054 APC other 2 

Q9NQG5 RPRD1B other 2 

O43852 CALU other 2 

O75486 SUPT3H other 2 

P15923 TCF3 other 2 

O60664 PLIN3 other 2 

Q99929 ASCL2 other 2 

O43524 FOXO3 other 2 

Q99728 BARD1 other 2 

O94888 UBXN7 other 2 

P16104 H2AFX other 2 

Q15596 NCOA2 other 2 

Q15287 RNPS1 other 2 

P61244 MAX other 2 

Q13619 CUL4A other 2 

Q12906 ILF3 other 2 

Q93052 LPP other 2 

Q9UK53 ING1 other 2 

O75582 RPS6KA5 other 2 

Q96P16 RPRD1A other 2 

Q92585 MAML1 other 2 

Q9H4L7 SMARCAD1 other 2 

P10827 THRA other 2 

P54727 RAD23B other 2 

O95456 PSMG1 other 2 

O95073 FSBP other 2 
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Uniprot Gene symbol Group 
Number of 

interactions 

P06401 PGR other 2 

P34947 GRK5 other 2 

Q6NZY4 ZCCHC8 other 2 

P38432 COIL other 2 

Q96EB6 SIRT1 other 2 

Q07955 SRSF1 other 2 

Q04206 RELA other 2 

O15111 CHUK other 2 

Q00653 NFKB2 other 2 

Q9H2X6 HIPK2 other 2 

P07437 TUBB other 2 

Q01658 DR1 other 2 

P24385 CCND1 other 2 

P08107 HSPA1A other 2 

Q9Y3D3 MRPS16 other 2 

P25963 NFKBIA other 2 

Q13042 CDC16 other 2 

P04004 VTN other 2 

O96006 ZBED1 other 2 

Q13469 NFATC2 other 2 

O43474 KLF4 other 2 

P11473 VDR other 2 

P36956 SREBF1 other 2 

Q15428 SF3A2 other 2 

P49588 AARS other 2 

Q15554 TERF2 other 2 

Q9UBK2 PPARGC1A other 2 

Q9Y2Y9 KLF13 other 2 

P35869 AHR other 2 

P52292 KPNA2 other 2 

O00422 SAP18 other 2 

P23246 SFPQ other 2 

P52701 MSH6 other 2 

P26447 S100A4 other 2 

Q04864 REL other 2 

P49366 DHPS other 2 

P19012 KRT15 other 2 

P11441 UBL4A other 2 

P61457 PCBD1 other 2 

P51531 SMARCA2 other 2 

P51532 SMARCA4 other 2 

P50750 CDK9 other 2 

O15047 SETD1A other 2 

P51668 UBE2D1 other 2 

Q9UKA1 FBXL5 other 2 

Q12824 SMARCB1 other 2 

Q15393 SF3B3 other 2 
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Uniprot Gene symbol Group 
Number of 

interactions 

P10244 MYBL2 other 2 

O75444 MAF other 2 

P09016 HOXD4 other 2 

Q02246 CNTN2 other 2 

Q8IZL8 PELP1 other 2 

Q13485 SMAD4 other 2 

P32121 ARRB2 other 2 

P53539 FOSB other 2 

Q9UJX4 ANAPC5 other 2 

Q9UJX6 ANAPC2 other 2 

P62158 CALM1 other 2 

 

 

Table 7-4: Proteins enriched >1.66 fold in the nuclear fraction of HeLa cells 

upon HS at 43°C for 2 h. 

Uniprot 
Median log2 

change 
Gene Protein 

Q8N584 4,1213 TTC39C Tetratricopeptide repeat protein 39C 

Q00613 2,533 HSF1 Heat shock factor protein 1 

P50135 2,0166 HNMT Histamine N-methyltransferase 

P25685 1,818 DNAJB1 DnaJ homolog subfamily B member 1 

Q99615 1,815 DNAJC7 DnaJ homolog subfamily C member 7 

Q9UL15 1,5455 BAG5 BAG family molecular chaperone regulator 5 

Q9UNZ2 1,1642 NSFL1C NSFL1 cofactor p47 

Q8WW22 1,1519 DNAJA4 DnaJ homolog subfamily A member 4 

Q5VT25 1,1304 CDC42BPA Serine/threonine-protein kinase MRCK alpha 

Q7Z4L5 1,1132 TTC21B Tetratricopeptide repeat protein 21B 

P08107 1,0532 HSPA1A Heat shock 70 kDa protein 1A/1B 

P17066 1,0464 HSPA6 Heat shock 70 kDa protein 6 

Q9UDY4 1,0386 DNAJB4 DnaJ homolog subfamily B member 4 

P31689 0,9847 DNAJA1 DnaJ homolog subfamily A member 1 

P11142 0,965 HSPA8 Heat shock cognate 71 kDa protein 

Q9UNN5 0,9437 FAF1 FAS-associated factor 1 

P50502 0,9143 ST13 Hsc70-interacting protein 

P62979 0,907 RPS27A Ubiquitin-40S ribosomal protein S27a 

P28074 0,8755 PSMB5 Proteasome subunit beta type-5 

Q02535 0,8609 ID3 DNA-binding protein inhibitor ID-3 

P25786 0,8565 PSMA1 Proteasome subunit alpha type-1 

P31948 0,8535 STIP1 Stress-induced-phosphoprotein 1 

O43396 0,8498 TXNL1 Thioredoxin-like protein 1 

P49720 0,8488 PSMB3 Proteasome subunit beta type-3 

P25788 0,8486 PSMA3 Proteasome subunit alpha type-3 

P28070 0,8419 PSMB4 Proteasome subunit beta type-4 

P28072 0,8408 PSMB6 Proteasome subunit beta type-6 

Q8NEF9 0,8041 SRFBP1 Serum response factor-binding protein 1 



7 Appendices   153 

Uniprot 
Median log2 

change 
Gene Protein 

P20618 0,8009 PSMB1 Proteasome subunit beta type-1 

P25787 0,7813 PSMA2 Proteasome subunit alpha type-2 

Q99436 0,7735 PSMB7 Proteasome subunit beta type-7 

P60900 0,7659 PSMA6 Proteasome subunit alpha type-6 

 

 

Table 7-5: Proteins enriched (>1.66 fold) in nucleus with heat shock at 43°C 

for 2 h followed by a recovery at 37°C for 2 h. 

Uniprot 
Median log2 

change 
Gene Protein 

Q86UN6 5,3723 AKAP14 A-kinase anchor protein 14 

Q86X83 4,297 COMMD2 COMM domain-containing protein 2 

P05412 2,6584 JUN Transcription factor AP-1 

P25685 2,6125 DNAJB1 DnaJ homolog subfamily B member 1 

O14974 1,7233 PPP1R12A Protein phosphatase 1 regulatory subunit 12A 

Q8N584 1,7142 TTC39C Tetratricopeptide repeat protein 39C 

Q9UDY4 1,5774 DNAJB4 DnaJ homolog subfamily B member 4 

Q8IXM6 1,5232 NRM Nurim 

O43829 1,3988 ZFP161 Zinc finger protein 161 homolog 

P08107 1,2987 HSPA1A Heat shock 70 kDa protein 1A/1B 

P17066 1,2782 HSPA6 Heat shock 70 kDa protein 6 

P15408 1,1808 FOSL2 Fos-related antigen 2 

Q03252 1,0116 LMNB2 Lamin-B2 

Q9UKK6 0,9761 NXT1 NTF2-related export protein 1 

Q8N8S7 0,9545 ENAH Protein enabled homolog 

Q02040 0,9522 AKAP17A A-kinase anchor protein 17A 

P24844 0,9291 MYL9 Myosin regulatory light polypeptide 9 

Q8WW22 0,8597 DNAJA4 DnaJ homolog subfamily A member 4 

P46782 0,8502 RPS5 40S ribosomal protein S5 

Q7Z460 0,841 CLASP1 CLIP-associating protein 1 

Q5JTV8 0,8358 TOR1AIP1 Torsin-1A-interacting protein 1 

Q5VT25 0,8251 CDC42BPA Serine/threonine-protein kinase MRCK alpha 

P11233 0,8141 RALA Ras-related protein Ral-A 

P16220 0,8047 CREB1 Cyclic AMP-responsive element-binding protein 1 

P38432 0,799 COIL Coilin 

Q9UKA9 0,7915 PTBP2 Polypyrimidine tract-binding protein 2 

Q9BR76 0,7725 CORO1B Coronin-1B 

Q8IVT2 0,7715 C19orf21 Uncharacterized protein C19orf21 

Q96NC0 0,7529 ZMAT2 Zinc finger matrin-type protein 2 

O43707 0,7487 ACTN4 Alpha-actinin-4 

P14678 0,7421 SNRPB Small nuclear ribonucleoprotein-associated proteins 

B and B' 

Q96C19 0,7333 EFHD2 EF-hand domain-containing protein D2 

Q99615 0,7303 DNAJC7 DnaJ homolog subfamily C member 7 

O14979 0,7302 HNRPDL Heterogeneous nuclear ribonucleoprotein D-like 
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Table 7-6: Proteins depleted (< 0.63 fold) in nucleus with heat shock at 43°C 

for 2 h. 

Uniprot 
Median log2 

change 
Gene Protein 

Q4L235 -7,3267 AASDH Acyl-CoA synthetase family member 4 

Q8IW75 -7,0581 SERPINA12 Serpin A12 

P31146 -6,91 CORO1A Coronin-1A 

Q9NWX6 -6,1421 THG1L Probable tRNA(His) guanylyltransferase 

Q9Y520 -5,9581 PRRC2C Protein PRRC2C 

Q5VZL5 -5,7475 ZMYM4 Zinc finger MYM-type protein 4 

P35030 -5,713 PRSS3 Trypsin-3 

Q6TDU7 -5,6626 CASC1 Cancer susceptibility candidate protein 1 

Q8WVJ2 -5,4294 NUDCD2 NudC domain-containing protein 2 

O95376 -4,3924 ARIH2 E3 ubiquitin-protein ligase ARIH2 

Q8NHM4 -4,0748 TRY6 Putative trypsin-6 

P06746 -3,9379 POLB DNA polymerase beta 

O75152 -3,6159 ZC3H11A Zinc finger CCCH domain-containing protein 11A 

Q08378 -3,565 GOLGA3 Golgin subfamily A member 3 

Q9C0B1 -3,5483 FTO Alpha-ketoglutarate-dependent dioxygenase FTO 

P11532 -3,3472 DMD Dystrophin 

Q5VWI1 -3,2705 TCERG1L Transcription elongation regulator 1-like protein 

A2RRP1 -2,9821 NBAS Neuroblastoma-amplified sequence 

Q8NEV9 -2,8801 IL27 Interleukin-27 subunit alpha 

P05109 -2,7637 S100A8 Protein S100-A8 

P49761 -2,7016 CLK3 Dual specificity protein kinase CLK3 

Q9BVK6 -2,6393 TMED9 Transmembrane emp24 domain-containing protein 9 

P81605 -2,6331 DCD Dermcidin 

Q8N3E9 -2,3998 PLCD3 1-phosphatidylinositol 4,5-bisphosphate  

phosphodiesterase delta-3 

Q8NFT6 -2,3342 DBF4B Protein DBF4 homolog B 

Q15397 -2,2165 KIAA0020 Pumilio domain-containing protein KIAA0020 

Q9NWY4 -2,2079 C4orf27 UPF0609 protein C4orf27 

P55795 -2,2028 HNRNPH2 Heterogeneous nuclear ribonucleoprotein H2 

P38432 -2,1675 COIL Coilin 

Q13309 -2,1137 SKP2 S-phase kinase-associated protein 2 

Q14690 -2,056 PDCD11 Protein RRP5 homolog 

O60942 -2,0387 RNGTT mRNA-capping enzyme 

Q13085 -2,0232 ACACA Acetyl-CoA carboxylase 1 

Q9BWT3 -1,9982 PAPOLG Poly(A) polymerase gamma 

Q86T24 -1,9486 ZBTB33 Transcriptional regulator Kaiso 

P61626 -1,9425 LYZ Lysozyme C 

O43829 -1,8952 ZFP161 Zinc finger protein 161 homolog 

Q9BZE4 -1,8471 GTPBP4 Nucleolar GTP-binding protein 1 

Q5T4S7 -1,7935 UBR4 E3 ubiquitin-protein ligase UBR4 

Q8N137 -1,7615 CNTROB Centrobin 

P54277 -1,7566 PMS1 PMS1 protein homolog 1 

Q5T9A4 -1,7551 ATAD3B ATPase family AAA domain-containing protein 3B 

Q13148 -1,7278 TARDBP TAR DNA-binding protein 43 

P58107 -1,683 EPPK1 Epiplakin 
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Uniprot 
Median log2 

change 
Gene Protein 

P30154 -1,6517 PPP2R1B Serine/threonine-protein phosphatase 2A 65 kDa  

regulatory subunit A beta isoform 

P46939 -1,6207 UTRN Utrophin 

Q96PK6 -1,6201 RBM14 RNA-binding protein 14 

Q13601 -1,6145 KRR1 KRR1 small subunit processome component  

homolog 

Q9Y5Q9 -1,6122 GTF3C3 General transcription factor 3C polypeptide 3 

Q9BVP2 -1,6104 GNL3 Guanine nucleotide-binding protein-like 3 

P10412 -1,6041 HIST1H1E Histone H1.4 

Q9HAZ1 -1,5868 CLK4 Dual specificity protein kinase CLK4 

Q9HCF4 -1,5739 RNF213 E3 ubiquitin-protein ligase RNF213 

Q8IXT5 -1,5684 RBM12B RNA-binding protein 12B 

Q16270 -1,5638 IGFBP7 Insulin-like growth factor-binding protein 7 

Q8IWR0 -1,5466 ZC3H7A Zinc finger CCCH domain-containing protein 7A 

Q14865 -1,5369 ARID5B AT-rich interactive domain-containing protein 5B 

Q9NP50 -1,4897 FAM60A Protein FAM60A 

Q14191 -1,476 WRN Werner syndrome ATP-dependent helicase 

Q13322 -1,4695 GRB10 Growth factor receptor-bound protein 10 

Q5T5X7 -1,466 BEND3 BEN domain-containing protein 3 

Q9Y5T4 -1,4476 DNAJC15 DnaJ homolog subfamily C member 15 

Q9Y5Q8 -1,4441 GTF3C5 General transcription factor 3C polypeptide 5 

Q9NRZ9 -1,4196 HELLS Lymphoid-specific helicase 

Q96SZ6 -1,412 CDK5RAP1 CDK5 regulatory subunit-associated protein 1 

Q8WUU5 -1,3914 GATAD1 GATA zinc finger domain-containing protein 1 

Q9Y5J1 -1,3615 UTP18 U3 small nucleolar RNA-associated protein 18  

homolog 

O43427 -1,354 FIBP Acidic fibroblast growth factor intracellular-binding  

protein 

Q5C9Z4 -1,3512 NOM1 Nucleolar MIF4G domain-containing protein 1 

Q8NEJ9 -1,3443 NGDN Neuroguidin 

P15924 -1,3435 DSP Desmoplakin 

O94906 -1,3267 PRPF6 Pre-mRNA-processing factor 6 

P40692 -1,3219 MLH1 DNA mismatch repair protein Mlh1 

Q08380 -1,3214 LGALS3BP Galectin-3-binding protein 

Q9NRR4 -1,3179 DROSHA Ribonuclease 3 

P00374 -1,3033 DHFR Dihydrofolate reductase 

Q8N9N5 -1,3032 BANP Protein BANP 

Q9NVN8 -1,2815 GNL3L Guanine nucleotide-binding protein-like 3-like  

protein 

Q9UHL9 -1,2785 GTF2IRD1 General transcription factor II-I repeat domain- 

containing protein 1 

P46100 -1,2523 ATRX Transcriptional regulator ATRX 

Q08043 -1,2415 ACTN3 Alpha-actinin-3 

P07093 -1,2408 SERPINE2 Glia-derived nexin 

Q9NV31 -1,2357 IMP3 U3 small nucleolar ribonucleoprotein protein IMP3 

P80723 -1,2285 BASP1 Brain acid soluble protein 1 

Q3L8U1 -1,2244 CHD9 Chromodomain-helicase-DNA-binding protein 9 

P51692 -1,2149 STAT5B Signal transducer and activator of transcription 5B 

Q7Z6Z7 -1,2105 HUWE1 E3 ubiquitin-protein ligase HUWE1 

Q12802 -1,2043 AKAP13 A-kinase anchor protein 13 

Q6DKI1 -1,2015 RPL7L1 60S ribosomal protein L7-like 1 
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Uniprot 
Median log2 

change 
Gene Protein 

O43159 -1,201 RRP8 Ribosomal RNA-processing protein 8 

Q9HCK8 -1,1974 CHD8 Chromodomain-helicase-DNA-binding protein 8 

Q9P0W2 -1,1936 HMG20B SWI/SNF-related matrix-associated actin-dependent 

regulator of chromatin subfamily E member 1- 

related 

Q13506 -1,1874 NAB1 NGFI-A-binding protein 1 

Q12789 -1,1863 GTF3C1 General transcription factor 3C polypeptide 1 

Q8IVF2 -1,1833 AHNAK2 Protein AHNAK2 

P56182 -1,1818 RRP1 Ribosomal RNA processing protein 1 homolog A 

Q9Y2R4 -1,1634 DDX52 Probable ATP-dependent RNA helicase DDX52 

Q86U38 -1,1598 C14orf21 Nucleolar protein 9 

P17480 -1,1349 UBTF Nucleolar transcription factor 1 

Q6ZRQ5 -1,1324 MMS22L Protein MMS22-like 

Q9BSC4 -1,1279 NOL10 Nucleolar protein 10 

Q9H6W3 -1,1258 NO66 Bifunctional lysine-specific demethylase and  

histidyl-hydroxylase NO66 

P52895 -1,1224 AKR1C2 Aldo-keto reductase family 1 member C2 

Q9H8M2 -1,1161 BRD9 Bromodomain-containing protein 9 

Q96HA7 -1,1123 TONSL Tonsoku-like protein 

Q9HBL8 -1,0933 NMRAL1 NmrA-like family domain-containing protein 1 

Q8N5A5 -1,0928 ZGPAT Zinc finger CCCH-type with G patch domain- 

containing protein 

Q99519 -1,0922 NEU1 Sialidase-1 

Q99986 -1,0919 VRK1 Serine/threonine-protein kinase VRK1 

Q8N6T7 -1,0872 SIRT6 NAD-dependent protein deacetylase sirtuin-6 

Q14149 -1,0862 MORC3 MORC family CW-type zinc finger protein 3 

Q63HN8 -1,0796 RNF213 E3 ubiquitin-protein ligase RNF213 

Q9UJZ1 -1,0791 STOML2 Protein AATF 

Q9NY61 -1,0791 AATF Stomatin-like protein 2 

P43243 -1,0772 MATR3 Matrin-3 

Q9H981 -1,0763 ACTR8 Actin-related protein 8 

O00257 -1,0739 CBX4 E3 SUMO-protein ligase CBX4 

Q9Y4X0 -1,0738 AMMECR1 AMME syndrome candidate gene 1 protein 

Q9BQG0 -1,0733 MYBBP1A Myb-binding protein 1A 

O95239 -1,0675 KIF4A Chromosome-associated kinesin KIF4A 

Q969X6 -1,0633 CIRH1A Cirhin 

Q9BWF3 -1,0566 RBM4 RNA-binding protein 4 

Q9BXW9 -1,0519 FANCD2 Fanconi anemia group D2 protein 

O95900 -1,0512 TRUB2 Probable tRNA pseudouridine synthase 2 

Q96EK9 -1,0503 KTI12 Protein KTI12 homolog 

Q9H8H2 -1,0433 DDX31 Probable ATP-dependent RNA helicase DDX31 

Q9HCD6 -1,0433 TANC2 Protein TANC2 

Q5EBL8 -1,0427 PDZD11 PDZ domain-containing protein 11 

Q13421 -1,0423 MSLN Mesothelin 

O00541 -1,0381 PES1 Pescadillo homolog 

Q5T0N5 -1,0188 FNBP1L Formin-binding protein 1-like 

Q7Z2E3 -1,008 APTX Aprataxin 

P06858 -1,0054 LPL Lipoprotein lipase 

Q2KHR3 -1,0051 QSER1 Glutamine and serine-rich protein 1 

Q9UNX4 -0,9993 WDR3 WD repeat-containing protein 3 
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Median log2 

change 
Gene Protein 

Q8IUH3 -0,9902 RBM45 RNA-binding protein 45 

Q9H0U9 -0,9882 TSPYL1 Testis-specific Y-encoded-like protein 1 

Q9NZM5 -0,9882 GLTSCR2 Glioma tumor suppressor candidate region gene 2  

protein 

Q9Y4C2 -0,9881 FAM115A Protein FAM115A 

O15270 -0,9856 SPTLC2 Serine palmitoyltransferase 2 

Q8IY37 -0,9852 DHX37 Probable ATP-dependent RNA helicase DHX37 

P31269 -0,9757 HOXA9 Homeobox protein Hox-A9 

Q9H6R4 -0,9748 NOL6 Nucleolar protein 6 

P21127 -0,9739 CDK11B Cyclin-dependent kinase 11B 

Q8WUA4 -0,9692 GTF3C2 General transcription factor 3C polypeptide 2 

Q9Y3A4 -0,9632 RRP7A Ribosomal RNA-processing protein 7 homolog A 

P47914 -0,9616 RPL29 60S ribosomal protein L29 

P04062 -0,9593 GBA Glucosylceramidase 

O75592 -0,9481 MYCBP2 Probable E3 ubiquitin-protein ligase MYCBP2 

P52945 -0,9481 PDX1 Pancreas/duodenum homeobox protein 1 

Q14807 -0,9442 KIF22 Kinesin-like protein KIF22 

Q9BQ39 -0,9327 DDX50 ATP-dependent RNA helicase DDX50 

Q9H4L4 -0,9295 SENP3 Sentrin-specific protease 3 

Q16850 -0,9281 CYP51A1 Lanosterol 14-alpha demethylase 

Q15269 -0,9277 PWP2 Periodic tryptophan protein 2 homolog 

Q96T88 -0,9249 UHRF1 E3 ubiquitin-protein ligase UHRF1 

Q5SY16 -0,9225 NOL9 Polynucleotide 5'-hydroxyl-kinase NOL9 

Q9UBW7 -0,9223 ZMYM2 Zinc finger MYM-type protein 2 

Q9Y613 -0,9216 FHOD1 FH1/FH2 domain-containing protein 1 

Q9UNF1 -0,9206 MAGED2 Melanoma-associated antigen D2 

Q9UL42 -0,9162 PNMA2 Paraneoplastic antigen Ma2 

Q8N2U0 -0,9144 C17orf61 Transmembrane protein 256 

Q7LBC6 -0,9117 KDM3B Lysine-specific demethylase 3B 

Q8N726 -0,9108 CDKN2A Cyclin-dependent kinase inhibitor 2A, isoform 4 

Q5JTH9 -0,9103 RRP12 RRP12-like protein 

Q9UH99 -0,9086 SUN2 SUN domain-containing protein 2 

Q86UV5 -0,9045 USP48 Ubiquitin carboxyl-terminal hydrolase 48 

Q15061 -0,8996 WDR43 WD repeat-containing protein 43 

Q5VZF2 -0,8961 MBNL2 Muscleblind-like protein 2 

P98160 -0,896 HSPG2 Basement membrane-specific heparan sulfate  

proteoglycan core protein 

O75367 -0,8955 H2AFY Core histone macro-H2A.1 

P16989 -0,8934 CSDA DNA-binding protein A 

P78347 -0,8925 GTF2I General transcription factor II-I 

Q14257 -0,8879 RCN2 Reticulocalbin-2 

Q9UM00 -0,8866 TMCO1 Transmembrane and coiled-coil domain-containing  

protein 1 

O15379 -0,88 HDAC3 Histone deacetylase 3 

Q27J81 -0,875 INF2 Inverted formin-2 

P98179 -0,8724 RBM3 Putative RNA-binding protein 3 

P25490 -0,8621 YY1 Transcriptional repressor protein YY1 

O43663 -0,8614 PRC1 Protein regulator of cytokinesis 1 

P27816 -0,8598 MAP4 Microtubule-associated protein 4 

Q9NR09 -0,8563 BIRC6 Baculoviral IAP repeat-containing protein 6 
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Q6P6C2 -0,853 ALKBH5 RNA demethylase ALKBH5 

Q12788 -0,8521 TBL3 Transducin beta-like protein 3 

P18887 -0,8511 XRCC1 DNA repair protein XRCC1 

Q96T37 -0,8503 RBM15 Putative RNA-binding protein 15 

Q9H0D6 -0,8452 XRN2 5'-3' exoribonuclease 2 

Q96T60 -0,8446 PNKP Bifunctional polynucleotide phosphatase/kinase 

Q9NQ55 -0,8388 PPAN Suppressor of SWI4 1 homolog 

P52272 -0,8339 HNRNPM Heterogeneous nuclear ribonucleoprotein M 

O60287 -0,8338 URB1 Nucleolar pre-ribosomal-associated protein 1 

Q9Y314 -0,8317 NOSIP Nitric oxide synthase-interacting protein 

Q69YL0 -0,827   Uncharacterized protein DKFZp762I1415 

Q9Y4P3 -0,8198 TBL2 Transducin beta-like protein 2 

Q13242 -0,8179 SRSF9 Serine/arginine-rich splicing factor 9 

Q9BTE7 -0,8177 DCUN1D5 DCN1-like protein 5 

Q4VC44 -0,8152 FLYWCH1 FLYWCH-type zinc finger-containing protein 1 

P49005 -0,8112 POLD2 DNA polymerase delta subunit 2 

Q08945 -0,8096 SSRP1 FACT complex subunit SSRP1 

Q9H019 -0,8035 FAM54B Protein FAM54B 

Q9C0C2 -0,7991 TNKS1BP1 182 kDa tankyrase-1-binding protein 

Q99996 -0,7984 AKAP9 A-kinase anchor protein 9 

Q9H3P2 -0,7972 WHSC2 Negative elongation factor A 

O43286 -0,7933 B4GALT5 Beta-1,4-galactosyltransferase 5 

Q15582 -0,7894 TGFBI Transforming growth factor-beta-induced protein ig- 

h3 

Q8NFJ5 -0,7894 GPRC5A Retinoic acid-induced protein 3 

Q15014 -0,7893 MORF4L2 Mortality factor 4-like protein 2 

O95229 -0,786 ZWINT ZW10 interactor 

P42677 -0,7854 RPS27 40S ribosomal protein S27 

Q13356 -0,7845 PPIL2 Peptidyl-prolyl cis-trans isomerase-like 2 

Q9Y6X9 -0,7831 MORC2 MORC family CW-type zinc finger protein 2 

P50750 -0,7823 CDK9 Cyclin-dependent kinase 9 

Q92989 -0,782 CLP1 Polyribonucleotide 5'-hydroxyl-kinase Clp1 

P33552 -0,7806 CKS2 Cyclin-dependent kinases regulatory subunit 2 

Q8NI36 -0,7788 WDR36 WD repeat-containing protein 36 

P78563 -0,7783 ADARB1 Double-stranded RNA-specific editase 1 

O95453 -0,7752 PARN Poly(A)-specific ribonuclease PARN 

Q9UBU8 -0,7736 MORF4L1 Mortality factor 4-like protein 1 

Q71UM5 -0,7721 RPS27L 40S ribosomal protein S27-like 

Q15125 -0,7718 EBP 3-beta-hydroxysteroid-Delta(8),Delta(7)-isomerase 

Q13895 -0,7658 BYSL Bystin 

Q6RFH5 -0,7627 WDR74 WD repeat-containing protein 74 

Q9Y2H6 -0,7618 FNDC3A Fibronectin type-III domain-containing protein 3A 

Q9BZK7 -0,7585 TBL1XR1 F-box-like/WD repeat-containing protein TBL1XR1 

Q9NY93 -0,7533 DDX56 Probable ATP-dependent RNA helicase DDX56 

Q9Y4W2 -0,7514 LAS1L Ribosomal biogenesis protein LAS1L 

Q9BRJ6 -0,7504 C7orf50 Uncharacterized protein C7orf50 

Q9NX40 -0,7472 OCIAD1 OCIA domain-containing protein 1 

Q02818 -0,7459 NUCB1 Nucleobindin-1 

Q8WV22 -0,7434 NSMCE1 Non-structural maintenance of chromosomes  

element 1 homolog 
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Q08J23 -0,7426 NSUN2 tRNA (cytosine(34)-C(5))-methyltransferase 

O95714 -0,7392 HERC2 E3 ubiquitin-protein ligase HERC2 

O75695 -0,7368 RP2 Protein XRP2 

Q9UJV9 -0,7367 DDX41 Probable ATP-dependent RNA helicase DDX41 

Q9NRP0 -0,7352 OSTC Oligosaccharyltransferase complex subunit OSTC 

Q9NZJ4 -0,7327 SACS Sacsin 

Q9BZL1 -0,7319 UBL5 Ubiquitin-like protein 5 

 

 

Table 7-7: Proteins depleted (< 0.63 fold) in nucleus with heat shock at 43°C 

for 2 h followed by a recovery at 37°C for 2 h. 

Uniprot 
Median log2 

change 
Gene Protein 

Q8IW75 -7.2876 SERPINA12 Serpin A12 

Q4L235 -6.9119 AASDH Acyl-CoA synthetase family member 4 

P31146 -6.51 CORO1A Coronin-1A 

P35030 -6.3101 PRSS3 Trypsin-3 

Q5VZL5 -5.8957 ZMYM4 Zinc finger MYM-type protein 4 

O95376 -5.1743 ARIH2 E3 ubiquitin-protein ligase ARIH2 

Q6TDU7 -4.9749 CASC1 Cancer susceptibility candidate protein 1 

Q9Y520 -4.8937 PRRC2C Protein PRRC2C 

Q8WVJ2 -4.5038 NUDCD2 NudC domain-containing protein 2 

P11532 -4.4455 DMD Dystrophin 

Q9C0B1 -4.2165 FTO Alpha-ketoglutarate-dependent dioxygenase FTO 

Q5VWI1 -4.0508 TCERG1L Transcription elongation regulator 1-like protein 

Q8NHM4 -3.9354 TRY6 Putative trypsin-6 

P61626 -3.6849 LYZ Lysozyme C 

Q08378 -3.5313 GOLGA3 Golgin subfamily A member 3 

Q8N3E9 -3.4169 PLCD3 1-phosphatidylinositol-4,5-bisphosphate  

phosphodiesterase delta-3 

A2RRP1 -3.0119 NBAS Neuroblastoma-amplified sequence 

Q8NEV9 -2.9763 IL27 Interleukin-27 subunit alpha 

P05109 -2.9679 S100A8 Protein S100-A8 

Q08554 -2.8217 DSC1 Desmocollin-1 

Q8NFT6 -2.7278 DBF4B Protein DBF4 homolog B 

P81605 -2.6421 DCD Dermcidin 

O75152 -2.5318 ZC3H11A Zinc finger CCCH domain-containing protein 11A 

P06746 -2.4882 POLB DNA polymerase beta 

Q02413 -2.3504 DSG1 Desmoglein-1 

Q9BVK6 -2.316 TMED9 Transmembrane emp24 domain-containing protein 9 

Q8N137 -2.264 CNTROB Centrobin 

P58107 -2.0673 EPPK1 Epiplakin 

Q6P4H8 -1.981 FAM173B Protein FAM173B 

Q86TJ2 -1.9137 TADA2B Transcriptional adapter 2-beta 

P52895 -1.8703 AKR1C2 Aldo-keto reductase family 1 member C2 

Q14149 -1.8629 MORC3 MORC family CW-type zinc finger protein 3 

Q08499 -1.8068 PDE4D cAMP-specific 3',5'-cyclic phosphodiesterase 4D 
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Q12802 -1.8052 AKAP13 A-kinase anchor protein 13 

Q99590 -1.7637 SCAF11 Protein SCAF11 

Q8IWE2 -1.7223 FAM114A1 Protein NOXP20 

P19971 -1.718 TYMP Thymidine phosphorylase 

O60343 -1.7051 TBC1D4 TBC1 domain family member 4 

Q96SZ6 -1.6742 CDK5RAP1 CDK5 regulatory subunit-associated protein 1 

Q27J81 -1.6226 INF2 Inverted formin-2 

Q12904 -1.6187 AIMP1 Aminoacyl tRNA synthase complex-interacting  

multifunctional protein 1 

Q9H0D6 -1.6045 XRN2 5'-3' exoribonuclease 2 

Q9UHL9 -1.5909 GTF2IRD1 General transcription factor II-I repeat domain- 

containing protein 1 

Q8IY21 -1.578 DDX60 Probable ATP-dependent RNA helicase DDX60 

Q9Y2G8 -1.5582 DNAJC16 DnaJ homolog subfamily C member 16 

Q5SW96 -1.5569 LDLRAP1 Low density lipoprotein receptor adapter protein 1 

A0FGR8 -1.5563 ESYT2 Extended synaptotagmin-2 

Q92616 -1.528 GCN1L1 Translational activator GCN1 

Q14191 -1.523 WRN Werner syndrome ATP-dependent helicase 

Q6IA86 -1.5218 ELP2 Elongator complex protein 2 

Q86T24 -1.4698 ZBTB33 Transcriptional regulator Kaiso 

O60942 -1.4532 RNGTT mRNA-capping enzyme 

Q8TF05 -1.4501 PPP4R1 Serine/threonine-protein phosphatase 4 regulatory  

subunit 1 

Q96C90 -1.4477 PPP1R14B Protein phosphatase 1 regulatory subunit 14B 

O94906 -1.4276 PRPF6 Pre-mRNA-processing factor 6 

Q6Y7W6 -1.4272 GIGYF2 PERQ amino acid-rich with GYF domain-containing 

protein 2 

Q14C86 -1.4064 GAPVD1 GTPase-activating protein and VPS9 domain- 

containing protein 1 

Q96M27 -1.4061 PRRC1 Protein PRRC1 

P08195 -1.3974 SLC3A2 4F2 cell-surface antigen heavy chain 

O75153 -1.3952 KIAA0664 Protein KIAA0664 

Q9P260 -1.3943 KIAA1468 LisH domain and HEAT repeat-containing protein  

KIAA1468 

P51692 -1.3671 STAT5B Signal transducer and activator of transcription 5B 

O43852 -1.3549 CALU Calumenin 

P80723 -1.3521 BASP1 Brain acid soluble protein 1 

Q9HAU0 -1.3401 PLEKHA5 Pleckstrin homology domain-containing family A  

member 5 

Q5T9A4 -1.3362 ATAD3B ATPase family AAA domain-containing protein 3B 

O14578 -1.336 CIT Citron Rho-interacting kinase 

P04114 -1.3358 APOB Apolipoprotein B-100 

Q9NSV4 -1.3273 DIAPH3 Protein diaphanous homolog 3 

Q9H2M9 -1.3264 RAB3GAP2 Rab3 GTPase-activating protein non-catalytic  

subunit 

O15357 -1.3246 INPPL1 Phosphatidylinositol-3,4,5-trisphosphate 5- 

phosphatase 2 

Q9NRZ9 -1.3201 HELLS Lymphoid-specific helicase 

P30154 -1.3193 PPP2R1B Serine/threonine-protein phosphatase 2A 65 kDa  

regulatory subunit A beta isoform 

Q6KC79 -1.3146 NIPBL Nipped-B-like protein 

Q8IWR0 -1.3047 ZC3H7A Zinc finger CCCH domain-containing protein 7A 
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O00443 -1.2934 PIK3C2A Phosphatidylinositol-4-phosphate 3-kinase C2  

domain-containing subunit alpha 

P46939 -1.287 UTRN Utrophin 

Q9NWY4 -1.2852 C4orf27 UPF0609 protein C4orf27 

Q13309 -1.2636 SKP2 S-phase kinase-associated protein 2 

Q96TA1 -1.2524 FAM129B Niban-like protein 1 

Q9NT62 -1.2515 ATG3 Ubiquitin-like-conjugating enzyme ATG3 

Q8IWZ3 -1.2507 ANKHD1 Ankyrin repeat and KH domain-containing protein 1 

Q9HCF4 -1.244 KIAA1618 Protein ALO17 

Q07960 -1.2428 ARHGAP1 Rho GTPase-activating protein 1 

Q8TEX9 -1.2427 IPO4 Importin-4 

P63313 -1.2372 TMSB10 Thymosin beta-10 

Q13144 -1.237 EIF2B5 Translation initiation factor eIF-2B subunit epsilon 

Q63HN8 -1.236 RNF213 RING finger protein 213 

A0MZ66 -1.2335 KIAA1598 Shootin-1 

P40692 -1.2297 MLH1 DNA mismatch repair protein Mlh1 

Q8IX01 -1.2295 SUGP2 SURP and G-patch domain-containing protein 2 

Q96RT1 -1.2263 ERBB2IP Protein LAP2 

Q15418 -1.2247 RPS6KA1 Ribosomal protein S6 kinase alpha-1 

P16949 -1.2216 STMN1 Stathmin 

Q9NR09 -1.2174 BIRC6 Baculoviral IAP repeat-containing protein 6 

P27708 -1.215 CAD CAD protein 

Q9NP79 -1.212 VTA1 Vacuolar protein sorting-associated protein VTA1  

homolog 

P06454 -1.2088 PTMA Prothymosin alpha 

P17858 -1.2081 PFKL 6-phosphofructokinase, liver type 

Q6NUM9 -1.2079 RETSAT All-trans-retinol 13,14-reductase 

O94979 -1.1991 SEC31A Protein transport protein Sec31A 

Q9H173 -1.1975 SIL1 Nucleotide exchange factor SIL1 

Q02818 -1.1921 NUCB1 Nucleobindin-1 

Q8N5G0 -1.1911 C4orf52 Uncharacterized protein C4orf52 

Q69YL0 -1.19   Uncharacterized protein DKFZp762I1415 

Q5T5X7 -1.1861 BEND3 BEN domain-containing protein 3 

Q15293 -1.1826 RCN1 Reticulocalbin-1 

O75592 -1.18 MYCBP2 Probable E3 ubiquitin-protein ligase MYCBP2 

Q99735 -1.1772 MGST2 Microsomal glutathione S-transferase 2 

Q9Y678 -1.1725 COPG Coatomer subunit gamma 

O76094 -1.1694 SRP72 Signal recognition particle 72 kDa protein 

Q9H981 -1.1691 ACTR8 Actin-related protein 8 

Q07864 -1.1671 POLE DNA polymerase epsilon catalytic subunit A 

O94905 -1.1663 ERLIN2 Erlin-2 

Q6XQN6 -1.1661 NAPRT1 Nicotinate phosphoribosyltransferase 

Q14254 -1.166 FLOT2 Flotillin-2 

Q08J23 -1.1576 NSUN2 tRNA (cytosine(34)-C(5))-methyltransferase 

Q8IZ83 -1.1548 ALDH16A1 Aldehyde dehydrogenase family 16 member A1 

P47712 -1.1542 PLA2G4A Cytosolic phospholipase A2 

Q3L8U1 -1.1537 CHD9 Chromodomain-helicase-DNA-binding protein 9 

Q9BXB4 -1.1514 OSBPL11 Oxysterol-binding protein-related protein 11 

Q13177 -1.1482 PAK2 Serine/threonine-protein kinase PAK 2 

O75477 -1.1462 ERLIN1 Erlin-1 
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Q9NV35 -1.1421 NUDT15 Probable 8-oxo-dGTP diphosphatase NUDT15 

Q9NZM1 -1.137 MYOF Myoferlin 

Q9C0C9 -1.1309 UBE2O Ubiquitin-conjugating enzyme E2 O 

O75787 -1.13 ATP6AP2 Renin receptor 

Q9UBW7 -1.1298 ZMYM2 Zinc finger MYM-type protein 2 

Q6UW78 -1.1242 C11orf83 UPF0723 protein C11orf83 

Q12789 -1.1232 GTF3C1 General transcription factor 3C polypeptide 1 

Q13322 -1.1232 GRB10 Growth factor receptor-bound protein 10 

Q96IR7 -1.1227 HPDL 4-hydroxyphenylpyruvate dioxygenase-like protein 

Q99519 -1.1227 NEU1 Sialidase-1 

P49321 -1.1107 NASP Nuclear autoantigenic sperm protein 

Q9H6W3 -1.1107 NO66 Lysine-specific demethylase NO66 

Q5T447 -1.1104 HECTD3 E3 ubiquitin-protein ligase HECTD3 

Q14186 -1.1038 TFDP1 Transcription factor Dp-1 

Q6P2E9 -1.0931 EDC4 Enhancer of mRNA-decapping protein 4 

Q9BYN0 -1.0904 SRXN1 Sulfiredoxin-1 

P29034 -1.0869 S100A2 Protein S100-A2 

Q9BSL1 -1.0868 UBAC1 Ubiquitin-associated domain-containing protein 1 

O75717 -1.0867 WDHD1 WD repeat and HMG-box DNA-binding protein 1 

Q13395 -1.0866 TARBP1 Probable methyltransferase TARBP1 

P00533 -1.0862 EGFR Epidermal growth factor receptor 

Q9UNF1 -1.0846 MAGED2 Melanoma-associated antigen D2 

Q9UMX0 -1.0829 UBQLN1 Ubiquilin-1 

Q9HCD6 -1.0808 TANC2 Protein TANC2 

Q13310 -1.0794 PABPC4 Polyadenylate-binding protein 4 

Q5VYK3 -1.0755 ECM29 Proteasome-associated protein ECM29 homolog 

A8MW06 -1.0751 TMSL3 Thymosin beta-4-like protein 3 

Q9NPI6 -1.0731 DCP1A mRNA-decapping enzyme 1A 

Q00577 -1.0709 PURA Transcriptional activator protein Pur-alpha 

Q14195 -1.0704 DPYSL3 Dihydropyrimidinase-related protein 3 

O60287 -1.0628 URB1 Nucleolar pre-ribosomal-associated protein 1 

Q93008 -1.0599 USP9X Probable ubiquitin carboxyl-terminal hydrolase  

FAF-X 

P42224 -1.0565 STAT1 Signal transducer and activator of transcription 1- 

alpha/beta 

Q15058 -1.0534 KIF14 Kinesin-like protein KIF14 

P16989 -1.0525 CSDA DNA-binding protein A 

Q14166 -1.051 TTLL12 Tubulin--tyrosine ligase-like protein 12 

P61421 -1.0505 ATP6V0D1 V-type proton ATPase subunit d 1 

Q96SU4 -1.0498 OSBPL9 Oxysterol-binding protein-related protein 9 

Q9H019 -1.0482 FAM54B Protein FAM54B 

Q5T1M5 -1.0462 FKBP15 FK506-binding protein 15 

O96006 -1.0425 ZBED1 Zinc finger BED domain-containing protein 1 

O94915 -1.0387 FRYL Protein furry homolog-like 

A5YKK6 -1.036 CNOT1 CCR4-NOT transcription complex subunit 1 

Q9H8Y8 -1.0335 GORASP2 Golgi reassembly-stacking protein 2 

Q15021 -1.0216 NCAPD2 Condensin complex subunit 1 

Q13043 -1.0068 STK4 Serine/threonine-protein kinase 4 

O60664 -1.0065 PLIN3 Perilipin-3 

P10588 -1.0055 NR2F6 Nuclear receptor subfamily 2 group F member 6 
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Q9ULX3 -1.004 NOB1 RNA-binding protein NOB1 

P20585 -1.0028 MSH3 DNA mismatch repair protein Msh3 

Q99614 -1.0011 TTC1 Tetratricopeptide repeat protein 1 

P52735 -0.9973 VAV2 Guanine nucleotide exchange factor VAV2 

O15031 -0.9937 PLXNB2 Plexin-B2 

P54132 -0.9933 BLM Bloom syndrome protein 

P46459 -0.9929 NSF Vesicle-fusing ATPase 

Q6PJG6 -0.9929 BRAT1 BRCA1-associated ATM activator 1 

Q99575 -0.9906 POP1 Ribonucleases P/MRP protein subunit POP1 

P27816 -0.987 MAP4 Microtubule-associated protein 4 

Q14573 -0.9842 ITPR3 Inositol 1,4,5-trisphosphate receptor type 3 

Q8WTV0 -0.9827 SCARB1 Scavenger receptor class B member 1 

Q5T0N5 -0.9797 FNBP1L Formin-binding protein 1-like 

Q9BXW9 -0.9776 FANCD2 Fanconi anemia group D2 protein 

O95466 -0.9771 FMNL1 Formin-like protein 1 

O95239 -0.9765 KIF4A Chromosome-associated kinesin KIF4A 

Q5VZK9 -0.9755 LRRC16A Leucine-rich repeat-containing protein 16A 

Q8IY37 -0.9723 DHX37 Probable ATP-dependent RNA helicase DHX37 

Q9NRR4 -0.9721 DROSHA Ribonuclease 3 

P49366 -0.9709 DHPS Deoxyhypusine synthase 

Q96PU4 -0.9698 UHRF2 E3 ubiquitin-protein ligase UHRF2 

O14920 -0.9691 IKBKB Inhibitor of nuclear factor kappa-B kinase subunit  

beta 

P22059 -0.9688 OSBP Oxysterol-binding protein 1 

Q8IWB7 -0.9669 WDFY1 WD repeat and FYVE domain-containing protein 1 

Q9H4I3 -0.9658 TRABD TraB domain-containing protein 

Q6NW34 -0.9619 C3orf17 Uncharacterized protein C3orf17 

P53384 -0.9603 NUBP1 Cytosolic Fe-S cluster assembly factor NUBP1 

Q9Y2H6 -0.9596 FNDC3A Fibronectin type-III domain-containing protein 3A 

O43681 -0.9595 ASNA1 ATPase ASNA1 

Q8N5A5 -0.9592 ZGPAT Zinc finger CCCH-type with G patch domain- 

containing protein 

Q14376 -0.9582 GALE UDP-glucose 4-epimerase 

Q9H6T3 -0.9558 RPAP3 RNA polymerase II-associated protein 3 

Q5VT79 -0.955 ANXA8L2 Annexin A8-like protein 2 

Q04637 -0.953 EIF4G1 Eukaryotic translation initiation factor 4 gamma 1 

Q9NUQ8 -0.9503 ABCF3 ATP-binding cassette sub-family F member 3 

P21127 -0.9486 CDK11B Cyclin-dependent kinase 11B 

Q9UHB4 -0.9448 NDOR1 NADPH-dependent diflavin oxidoreductase 1 

P06858 -0.944 LPL Lipoprotein lipase 

Q9UGJ1 -0.9434 TUBGCP4 Gamma-tubulin complex component 4 

O43264 -0.9361 ZW10 Centromere/kinetochore protein zw10 homolog 

Q9C0C2 -0.9359 TNKS1BP1 182 kDa tankyrase-1-binding protein 

Q9UPU5 -0.9354 USP24 Ubiquitin carboxyl-terminal hydrolase 24 

Q9HCK8 -0.9348 CHD8 Chromodomain-helicase-DNA-binding protein 8 

O75376 -0.9335 NCOR1 Nuclear receptor corepressor 1 

Q4G0J3 -0.9299 LARP7 La-related protein 7 

P10114 -0.9292 RAP2A Ras-related protein Rap-2a 

Q9UI12 -0.9268 ATP6V1H V-type proton ATPase subunit H 

Q9H8Y5 -0.9259 ANKZF1 Ankyrin repeat and zinc finger domain-containing  
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Q9UKK3 -0.9242 PARP4 Poly [ADP-ribose] polymerase 4 

P51812 -0.9232 RPS6KA3 Ribosomal protein S6 kinase alpha-3 

Q06210 -0.9223 GFPT1 Glucosamine--fructose-6-phosphate  

aminotransferase [isomerizing] 1 

P42356 -0.9217 PI4KA Phosphatidylinositol 4-kinase alpha 

P35221 -0.9208 CTNNA1 Catenin alpha-1 

P49005 -0.9205 POLD2 DNA polymerase delta subunit 2 

P40121 -0.9193 CAPG Macrophage-capping protein 

Q12765 -0.9191 SCRN1 Secernin-1 

O75955 -0.9189 FLOT1 Flotillin-1 

Q6FI81 -0.9188 CIAPIN1 Anamorsin 

Q9BQE3 -0.9116 TUBA1C Tubulin alpha-1C chain 

Q9NRP0 -0.9112 OSTC Oligosaccharyltransferase complex subunit OSTC 

Q14558 -0.9103 PRPSAP1 Phosphoribosyl pyrophosphate synthase-associated 

protein 1 

Q9Y5Q9 -0.9102 GTF3C3 General transcription factor 3C polypeptide 3 

O14981 -0.91 BTAF1 TATA-binding protein-associated factor 172 

Q8N3C0 -0.9074 ASCC3 Activating signal cointegrator 1 complex subunit 3 

Q06323 -0.9071 PSME1 Proteasome activator complex subunit 1 

Q9Y5Q8 -0.9028 GTF3C5 General transcription factor 3C polypeptide 5 

Q7Z6Z7 -0.9026 HUWE1 E3 ubiquitin-protein ligase HUWE1 

Q99536 -0.9024 VAT1 Synaptic vesicle membrane protein VAT-1 homolog 

P17174 -0.8956 GOT1 Aspartate aminotransferase, cytoplasmic 

P16083 -0.8928 NQO2 Ribosyldihydronicotinamide dehydrogenase  

[quinone] 

Q5T6F2 -0.8927 UBAP2 Ubiquitin-associated protein 2 

P05161 -0.8926 ISG15 Ubiquitin-like protein ISG15 

Q13576 -0.8925 IQGAP2 Ras GTPase-activating-like protein IQGAP2 

P55786 -0.8915 NPEPPS Puromycin-sensitive aminopeptidase 

Q13601 -0.8899 KRR1 KRR1 small subunit processome component  

homolog 

P35520 -0.8895 CBS Cystathionine beta-synthase 

P29373 -0.8888 CRABP2 Cellular retinoic acid-binding protein 2 

Q8IVD9 -0.8862 NUDCD3 NudC domain-containing protein 3 

O43399 -0.8859 TPD52L2 Tumor protein D54 

Q96SB8 -0.8829 SMC6 Structural maintenance of chromosomes protein 6 

P47914 -0.8807 RPL29 60S ribosomal protein L29 

Q16850 -0.8779 CYP51A1 Lanosterol 14-alpha demethylase 

P20645 -0.8772 M6PR Cation-dependent mannose-6-phosphate receptor 

O95373 -0.8763 IPO7 Importin-7 

Q9UBB9 -0.8755 TFIP11 Tuftelin-interacting protein 11 

Q13228 -0.873 SELENBP1 Selenium-binding protein 1 

Q9H832 -0.8721 UBE2Z Ubiquitin-conjugating enzyme E2 Z 

Q96PZ0 -0.868 PUS7 Pseudouridylate synthase 7 homolog 

Q8NFF5 -0.8678 FLAD1 FAD synthase 

P62891 -0.8675 RPL39 60S ribosomal protein L39 

Q08380 -0.866 LGALS3BP Galectin-3-binding protein 

P50995 -0.8659 ANXA11 Annexin A11 

Q15654 -0.8658 TRIP6 Thyroid receptor-interacting protein 6 

A1X283 -0.8653 SH3PXD2B SH3 and PX domain-containing protein 2B 



7 Appendices   165 

Uniprot 
Median log2 

change 
Gene Protein 

O14972 -0.8636 DSCR3 Down syndrome critical region protein 3 

O75925 -0.8623 PIAS1 E3 SUMO-protein ligase PIAS1 

Q8N543 -0.8621 OGFOD1 2-oxoglutarate and iron-dependent oxygenase  

domain-containing protein 1 

O95336 -0.8607 PGLS 6-phosphogluconolactonase 

Q96CT7 -0.858 CCDC124 Coiled-coil domain-containing protein 124 

Q8IYD1 -0.8557 GSPT2 Eukaryotic peptide chain release factor GTP-binding 

subunit ERF3B 

A6NDU8 -0.8536 C5orf51 UPF0600 protein C5orf51 

P62861 -0.8473 FAU 40S ribosomal protein S30 

Q9P003 -0.8467 CNIH4 Protein cornichon homolog 4 

Q5T2E6 -0.8458 C10orf76 UPF0668 protein C10orf76 

Q9NR46 -0.8449 SH3GLB2 Endophilin-B2 

O14880 -0.8432 MGST3 Microsomal glutathione S-transferase 3 

P49915 -0.8431 GMPS GMP synthase [glutamine-hydrolyzing] 

Q96EK9 -0.8427 KTI12 Protein KTI12 homolog 

P52756 -0.8422 RBM5 RNA-binding protein 5 

Q9BZX2 -0.8413 UCK2 Uridine-cytidine kinase 2 

P46926 -0.8409 GNPDA1 Glucosamine-6-phosphate isomerase 1 

P08237 -0.8407 PFKM 6-phosphofructokinase, muscle type 

Q12797 -0.8391 ASPH Aspartyl/asparaginyl beta-hydroxylase 

Q9BWT3 -0.8387 PAPOLG Poly(A) polymerase gamma 

P07093 -0.8384 SERPINE2 Glia-derived nexin 

Q8TCE6 -0.8377 FAM45A Protein FAM45A 

Q6ZMR3 -0.837 LDHAL6A L-lactate dehydrogenase A-like 6A 

P07741 -0.835 APRT Adenine phosphoribosyltransferase 

P53634 -0.8334 CTSC Dipeptidyl peptidase 1 

P42330 -0.8249 AKR1C3 Aldo-keto reductase family 1 member C3 

Q9H0W9 -0.8231 C11orf54 Ester hydrolase C11orf54 

Q5VW32 -0.8201 BROX BRO1 domain-containing protein BROX 

Q9UBF2 -0.8193 COPG2 Coatomer subunit gamma-2 

Q9NXG2 -0.8191 THUMPD1 THUMP domain-containing protein 1 

Q96AY3 -0.8182 FKBP10 Peptidyl-prolyl cis-trans isomerase FKBP10 

P30508 -0.8144 HLA-C HLA class I histocompatibility antigen, Cw-12 alpha 

chain 

Q8N6L1 -0.8132 KRTCAP2 Keratinocyte-associated protein 2 

Q96FW1 -0.8124 OTUB1 Ubiquitin thioesterase OTUB1 

Q9H4A4 -0.8115 RNPEP Aminopeptidase B 

P49770 -0.8112 EIF2B2 Translation initiation factor eIF-2B subunit beta 

P31153 -0.8074 MAT2A S-adenosylmethionine synthase isoform type-2 

P21266 -0.8066 GSTM3 Glutathione S-transferase Mu 3 

Q7Z4G4 -0.8058 TRMT11 tRNA (guanine(10)-N2)-methyltransferase homolog 

Q53EL6 -0.8057 PDCD4 Programmed cell death protein 4 

Q15126 -0.8056 PMVK Phosphomevalonate kinase 

Q86TG7 -0.8055 PEG10 Retrotransposon-derived protein PEG10 

Q13885 -0.8029 TUBB2A Tubulin beta-2A chain 

Q14315 -0.8028 FLNC Filamin-C 

Q5K651 -0.8006 SAMD9 Sterile alpha motif domain-containing protein 9 

P01891 -0.7996 HLA-A HLA class I histocompatibility antigen, A-68 alpha 

chain 

P32004 -0.7977 L1CAM Neural cell adhesion molecule L1 
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Q8IY67 -0.7976 RAVER1 Ribonucleoprotein PTB-binding 1 

O60256 -0.7974 PRPSAP2 Phosphoribosyl pyrophosphate synthase-associated  

protein 2 

Q86Y56 -0.7927 HEATR2 HEAT repeat-containing protein 2 

Q9Y3A4 -0.7915 RRP7A Ribosomal RNA-processing protein 7 homolog A 

P55795 -0.7901 HNRNPH2 Heterogeneous nuclear ribonucleoprotein H2 

P08243 -0.7899 ASNS Asparagine synthetase [glutamine-hydrolyzing] 

P13798 -0.7886 APEH Acylamino-acid-releasing enzyme 

Q9Y4R8 -0.7882 TELO2 Telomere length regulation protein TEL2 homolog 

P30740 -0.7872 SERPINB1 Leukocyte elastase inhibitor 

P46109 -0.7869 CRKL Crk-like protein 

Q08379 -0.7852 GOLGA2 Golgin subfamily A member 2 

Q9NR45 -0.7847 NANS Sialic acid synthase 

P12955 -0.7814 PEPD Xaa-Pro dipeptidase 

Q99733 -0.7812 NAP1L4 Nucleosome assembly protein 1-like 4 

P30520 -0.7806 ADSS Adenylosuccinate synthetase isozyme 2 

P23526 -0.7748 AHCY Adenosylhomocysteinase 

Q7LBC6 -0.7747 KDM3B Lysine-specific demethylase 3B 

Q9Y490 -0.7728 TLN1 Talin-1 

P22102 -0.7677 GART Trifunctional purine biosynthetic protein adenosine-

 

Q9H0B6 -0.7669 KLC2 Kinesin light chain 2 

O75165 -0.763 DNAJC13 DnaJ homolog subfamily C member 13 

Q96IJ6 -0.7623 GMPPA Mannose-1-phosphate guanyltransferase alpha 

Q5PRF9 -0.7622 SAMD4B Protein Smaug homolog 2 

Q7Z417 -0.7619 NUFIP2 Nuclear fragile X mental retardation-interacting  

protein 2 

Q9NQW7 -0.7593 XPNPEP1 Xaa-Pro aminopeptidase 1 

O00425 -0.7571 IGF2BP3 Insulin-like growth factor 2 mRNA-binding protein 

 

P61960 -0.7546 UFM1 Ubiquitin-fold modifier 1 

Q99829 -0.7545 CPNE1 Copine-1 

Q96PK6 -0.7533 RBM14 RNA-binding protein 14 

Q99538 -0.7524 LGMN Legumain 

P42694 -0.7522 HELZ Probable helicase with zinc finger domain 

P98160 -0.7519 HSPG2 Basement membrane-specific heparan sulfate  

proteoglycan core protein 

O75962 -0.7513 TRIO Triple functional domain protein 

Q14643 -0.7485 ITPR1 Inositol 1,4,5-trisphosphate receptor type 1 

Q15386 -0.7481 UBE3C Ubiquitin-protein ligase E3C 

P68366 -0.7476 TUBA4A Tubulin alpha-4A chain 

Q9BTT0 -0.7436 ANP32E Acidic leucine-rich nuclear phosphoprotein 32  

family member E 

Q9Y5Y2 -0.7413 NUBP2 Cytosolic Fe-S cluster assembly factor NUBP2 

Q01628 -0.7404 IFITM3 Interferon-induced transmembrane protein 3 

O60826 -0.7401 CCDC22 Coiled-coil domain-containing protein 22 

Q9NRL2 -0.7391 BAZ1A Bromodomain adjacent to zinc finger domain protein 

1A 

P52701 -0.7353 MSH6 DNA mismatch repair protein Msh6 

Q13630 -0.7345 TSTA3 GDP-L-fucose synthase 

P07814 -0.7339 EPRS Bifunctional glutamate/proline--tRNA ligase 
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P14174 -0.7317 MIF Macrophage migration inhibitory factor 

P08133 -0.7312 ANXA6 Annexin A6 

 

 

Table 7-8: HSR induction upon down-regulation of positive HSR 

modulators after thermal stress, proteasome inhibition, and celastrol 

treatment. 

Ensembl ID Gene symbol 

2 h 37°C, 4 h 37°C  8 h 5 µM MG132 8 h 5 µM celastrol 

z score z score z score 

A B C A B C A B C 

ENSG00000005339 CREBBP -4,7 -2,7 -1,3 -1,5 -5,8 -5,8 -3,6 -0,5 -0,6 

ENSG00000064115 TM7SF3 -4,2 -4,3 -2,9 -4,3 -3,8 -1,5 18,4 3,0 3,5 

ENSG00000066135 KDM4A -3,4 -3,8 -4,1 -5,7 -5,6 -4,8 -3,4 13,8 15,7 

ENSG00000080603 SRCAP -4,8 -3,3 -3,5 -5,7 -4,1 -4,0 -5,3 -6,0 -6,4 

ENSG00000085224 ATRX -4,2 -4,9 -4,6 -6,0 -8,7 -6,2 -7,4 -10,2 -11,6 

ENSG00000086967 MYBPC2 -1,7 -2,4 -2,0 -2,4 -0,1 -0,4 4,5 2,9 4,0 

ENSG00000100393 EP300 -6,7 -6,9 -7,4 -5,7 -3,2 -1,5 -1,1 -4,4 -1,4 

ENSG00000102057 KCND1 -2,3 -2,8 -3,0 -4,6 -7,1 -1,9 -2,6 -2,5 -2,9 

ENSG00000108055 SMC3 -2,7 -2,8 -1,9 -5,6 -6,3 -5,1 -1,4 -8,8 -10,0 

ENSG00000115524 SF3B1 -4,1 -4,9 -5,6 -5,8 -6,3 -5,5 5,8 22,4 25,6 

ENSG00000115760 BIRC6 -4,9 -4,7 -3,7 -2,6 -5,5 0,1 1,4 -3,5 -4,0 

ENSG00000117222 RBBP5 -5,2 -4,5 -4,8 -6,1 -7,2 -6,1 -7,2 -14,4 -16,4 

ENSG00000118990 GLRXP3 -4,4 -4,6 -4,4 -5,8 -2,7 -5,7 15,5 28,2 32,2 

ENSG00000119041 GTF3C3 -3,1 -2,5 -1,1 -5,0 -5,3 -3,4 2,6 -0,5 -0,6 

ENSG00000120656 TAF12 -5,8 -5,7 -4,7 -3,6 -3,4 -5,2 3,8 -3,9 -4,4 

ENSG00000120733 KDM3B -5,8 -5,7 -5,4 -3,0 -1,4 -2,1 -0,6 30,6 34,9 

ENSG00000122692 SMU1 -4,8 -4,2 -2,7 -4,3 -4,4 -4,4 6,2 14,5 16,5 

ENSG00000124143 ARHGAP40 -5,6 -3,4 -3,7 -4,8 -3,3 -0,7 -4,8 -3,5 -4,0 

ENSG00000126945 HNRNPH2 -4,9 -3,3 -3,8 -4,9 -3,0 0,0 -1,4 -3,4 -3,8 

ENSG00000131009 TTTY9A -4,0 -2,1 0,5 -5,0 -4,5 -2,0 13,8 -6,1 -7,0 

ENSG00000132661 NXT1 -4,8 -5,6 -4,2 -5,0 -4,7 -4,1 -4,8 7,6 8,6 

ENSG00000132872 SYT4 -2,7 -3,1 -2,7 1,3 -6,5 -1,5 -7,1 -8,5 -9,7 

ENSG00000133169 BEX1 -2,4 -2,0 -1,3 -2,9 0,0 0,1 -11,1 -2,2 -0,9 

ENSG00000135801 TAF5L -4,6 -4,7 -3,0 -5,0 -5,0 -3,8 4,0 4,2 4,8 

ENSG00000136250 AOAH -3,3 -3,2 -3,0 -4,7 -6,4 -2,8 -5,9 -7,0 -8,0 

ENSG00000137801 THBS1 -2,0 -3,4 -2,0 -4,0 -7,4 -4,2 -1,0 -3,0 -3,5 

ENSG00000137819 PAQR5 -4,9 14,3 -3,4 -1,6 -6,2 -2,3 7,2 -1,6 -1,9 

ENSG00000139343 SNRPF -7,5 -7,0 -6,0 -6,3 -6,4 -5,4 0,8 3,3 3,8 

ENSG00000139874 SSTR1 -4,0 -2,6 -3,2 -2,9 -7,5 -3,8 -0,7 -1,6 -1,8 

ENSG00000143224 PPOX -4,3 -4,9 -2,5 -4,4 -5,1 0,3 -1,6 2,9 3,3 

ENSG00000155096 AZIN1 -3,7 -3,1 -3,0 -2,5 -5,0 -2,8 0,3 -4,8 -5,4 

ENSG00000162520 SYNC -4,7 -3,6 -2,6 -4,9 -3,4 -0,8 -5,5 13,8 15,7 

ENSG00000162961 DPY30 -3,3 -1,6 -2,3 -5,8 -6,1 -3,8 9,3 0,9 1,0 

ENSG00000163029 SMC6 -3,3 -3,0 -3,7 -2,3 -6,0 0,9 -4,1 -5,6 -6,4 
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Ensembl ID Gene symbol 

2 h 37°C, 4 h 37°C  8 h 5 µM MG132 8 h 5 µM celastrol 

z score z score z score 

A B C A B C A B C 

ENSG00000163749 CCDC158 -4,4 -4,7 -4,6 -0,2 -7,1 -2,6 -5,1 -7,0 -8,0 

ENSG00000166454 ATMIN -3,6 -3,4 -2,3 -5,1 -6,4 -1,6 -7,5 -12,0 -13,6 

ENSG00000167279   -3,1 -3,4 -1,6 -3,9 -3,2 -0,9 -12,6 -3,1 -2,0 

ENSG00000167380 ZNF226 -3,0 -3,0 -1,9 -4,9 -6,0 -1,4 -2,7 -2,9 -3,3 

ENSG00000168002 POLR2G -4,9 -2,5 -4,1 -5,1 -2,4 -0,8 19,5 5,3 6,1 

ENSG00000170500 LONRF2 -4,1 -1,8 -2,9 -4,7 -6,3 -2,9 -8,9 -12,8 -14,6 

ENSG00000172264 MACROD2 -4,2 -4,0 -3,1 -4,0 -6,5 -1,5 2,8 9,4 10,7 

ENSG00000172269 DPAGT1 -2,7 -2,5 -1,2 -4,4 -5,2 -2,2 -5,1 -4,8 -5,5 

ENSG00000173705 SUSD5 -4,4 -3,4 -2,4 -4,7 -4,4 -2,8 8,0 -0,6 -0,7 

ENSG00000174677 VN1R4 -0,5 -3,2 -2,1 3,4 1,1 -0,2 12,8 5,6 1,7 

ENSG00000184374 COLEC10 -3,4 -4,0 -1,1 -4,6 -3,6 -3,1 27,8 38,5 43,9 

ENSG00000185122 HSF1 -6,3 -5,3 -5,3 -4,8 -7,1 -2,6 -6,0 -6,2 -7,1 

ENSG00000187715 KBTBD12 -2,1 -3,5 -3,4 -4,9 -6,3 -1,9 20,6 -1,9 -2,1 

ENSG00000196290 NIF3L1 -1,9 -2,5 -2,5 -3,2 -2,8 -4,4 -0,4 -0,5 -0,6 

ENSG00000197865   -4,7 -4,4 -4,9 -2,2 -1,2 -1,3 -0,4 -1,7 0,8 

ENSG00000198326 TMEM239 -2,4 -1,9 -2,6 2,1 6,7 5,4 -2,1 2,7 2,4 

7.2 List of abbreviations 

°C degree Centigrade 

µl microliter 

µM micromolar 

µm micrometer 

17-AAG 17-(Allylamino)-17-desmethoxygeldanamycin 

17-DMAG 17-[2-(Dimethylamino)ethyl]amino-17-desmethoxygeldanamycin 

3-MA 3-methyladenine 

AAA ATPases associated with various cellular activities 

ADP adenosine 5'-diphosphat 

AMP adenosine 5'-monophosphat 

APS ammonium persulfate 

ATF6 activating transcription factor 6 

ATG autophagy-related gene 

ATP adenosine 5'-triphosphat 

Bag BCL-2-associated athanogene 

BiP/GRP78 Ig-binding protein/glucose-regulated protein 78 

Bis-Tris bis(2-hydroxyethyl)-amino-tris(hydroxymethyl)-methane 

bp base pairs 

BSA bovine serum albumin 

C. elegans Caenorhnbditis elegans 

CaCl2 calcium chloride 

CCT chaperonin-containing t-complex polypeptide 1 

CD C-terminal domain 

cDNA complementary DNA 

CHIP carboxyl-terminus of heat-shock cognate70 interacting protein 
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CHX cycloheximide 

CIP calf intestinal alkaline phosphatase 

Clp caseinolytic protease 

CMA chaperone-mediated autophagy 

CMV cytomegalovirus 

CP core particle 

CREB cAMP-responsive element binding protein 

CREBBP CREB binding protein 

Cy3 cyanine 3 

Da Dalton 

DAPI 4',6-diamidino-2-phenyl-indole, dihydrochloride 

DBD DNA binding domain 

DCIC 3,4-dichloroisocoumarin 

DMEM Dulbecco’s Modified Eagle’s medium  

DMSO dimethyl sulfoxide 

DNA desoxyribonucleic acid 

DnaJ bacterial Hsp40 chaperone 

DnaJ bacterial Hsp40 chaperone 

DnaK bacterial Hsp70 chaperone 

dNTPs desoxyribonucleotides 

E.coli Escherichia coli 

ECL enhanced chemiluminescence 

EDTA Ethylenediaminetetraacetic acid 

EGFP enhanced green fluorescent protein 

EGS Ethylene-glycol-bis(succinimidyl succinate) 

eIF eukaryotic initiation factor 

EP300 E1A binding protein p300 

ER endoplasmic reticulum 

ERAD ER-associated degradation 

esiRNA endoribonuclease-prepared siRNA 

EtOH ethanol 

FAT antigen-F associated transcript 

FBS fetal bovine serum  

FCS fetal calf serum 

Fluc firefly luciferase 

FOXO forkhead transcription factor 

g gram, earth's gravitational force  

G418 Geneticin 418 

GAPDH glyceraldehyde 3-phosphate dehydrogenase 

GPCR G-protein coupled receptor 

GroEL large growthE gene product 

GroES small growthE gene product 

Grp glucose-regulated protein 

GrpE Growth P-like protein 

h hour 

HCl hydrochloride 

HDAC histone deacetylase 

HEK293T human embryonic kidney 293T cells 

HeLa cervical cancer cell line derived from Henrietta Lacks 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HIP Hsp70 interacting protein 
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HOP Hsp organizing protein 

HR heptad repeat 

HRP horseradish peroxidase 

HRPD Human Resorce Reference Database 

HS heat-shock 

Hsc heat-shock cognate 

HSE heat-shock element 

HSF heat-shock transcription factor 

HSF1  heat-shock transcription factor 1 

Hsp heat-shock protein 

HSR heat-shock response 

HSR-1 heat-shock RNA-1 

IGF-1 insulin-like growth factor 1 

IgG immunoglobulin G 

IP immunoprecipitation 

IRE1 inositol requiring enzyme 1 

IRES internal ribosome entry site 

k kilo 

K lysine 

KAc potassium acetate 

KCl potassium chloride 

kDa kilo Dalton 

KH2PO4 potassium phosphate monobasic 

l liter 

LAMP2A lysosome-associated membrane protein 2A 

LB Luria Bertani 

LC3 microtubule-associated protein1 light chain 3 

LC-MS liquid chromatography-mass spectrometry 

M molar 

m meter, milli 

MD middle domain 

MeOH methanol 

MgCl2 magnesium chloride 

MgSO4 magnesium sulfate 

min minute 

ml milliliter 

mM millimolar 

MnCl2 Manganese(II) chloride 

MOPS 3-(N-morpholino)propanesulfonic acid 

mRAC mammalian ribosome-associated complex 

MS mass spectrometry 

mTOR mammalian target of rapamycin 

mTORC1 mammalian target of rapamycin complex 1 

MTT thaizolyl blue tetrazolium bromide 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

MW molecular weight 

n nano 

Na2HPO4 sodium phosphate, dibasic 

NAC nascent chain-associated complex 

NaCl sodium chloride 
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NBD nucleotide binding domain 

NBR neighbor of breast cancer 

ND N-terminal domain 

NEDD neuronal-precursor-cell-expressed developmentally downregulated protein 

NEF nucleotide exchange factor 

NLS nuclear localization signal 

nM nanomolar 

NP40 Nonidet P40 

nSB nuclear stress body 

OD optical density 

ODC ornithine decarboxylase 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate buffered saline 

PCR polymerase chain reation 

PERK PKR-like ER kinase 

PFD prefoldin 

Pfu Pyrococcus furiosus 

pH potentia hydrogenii 

pmol picomol 

PPI peptidyl-prolyl cis-trans isomerase 

PTM  post-translational modification 

RAC ribosome-associated complex 

RbCl2 rubidium chloride 

RD regulatory domain 

RIDD regulated IRE1-dependent decay 

Rluc Renilla luciferase 

RNA ribonucleic acid 

RNAi ribonucleic acid interference 

ROS reactive oxygen species 

RP regulatory particle 

rpm revolutions per minute 

Rpn regulatory particle non-ATPase 

Rpt regulatory particle ATPase 

RT room temperature 

RT-PCR reverse transcription polymerase chain reaction 

s second 

S Svedberg 

SDS sodium dodecylsulfate 

sHsp small heat-shock protein 

SILAC stable isotope labeling by amino acids in cell culture 

Sir sirtuin 

SIRT1 sirtuin 1 

SRCAP Snf2-related CREBBP activator protein 

SUMO small ubiquitin-like modifier 

TAD trans-activation domain 

TBE Tris-borate-EDTA 

TBS Tris buffered saline 

TEMED  N,N,N',N'-tetramethylethylenediamine 

TF trigger factor 

TOR target of rapamycin 

TPR tetratricopeptide repeat 
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TriC tailless complex peptide 1 (TCP1) ring complex 

Tris tris(hydroxymethyl)aminomethane 

UBC ubiquitin-conjugation enzyme 

UBL ubiquitin-like protein 

uORF upstream open reading frame 

UPR unfolded protein response 

UPS ubiquitin-proteasome system  

UTR untranslated region 

UV ultraviolet 

v/v volume per volume 

VHL von Hippel-Lindau 

w/v weight per volume 

  

 


