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治病必求於本  

- 黄帝内经 

  

 

 

 

 

 

                                                
1 Ubersetzt aus: Muhammad W Schmidt, 2004, Der klassiker des gelben Kaisers zur Inneren 

Medizin, viademica.verlag, Berlin 



TABLE OF CONTENTS 

 I     

TABLE OF CONTENTS 

I.	
   ABSTRACT	
  ...................................................................................................................................	
  1	
  

1.1	
   Pancreatic	
  cancer	
  ............................................................................................................................	
  1	
  
1.2	
   Esophageal	
  cancer	
  ..........................................................................................................................	
  3	
  

II.	
   INTRODUCTION	
  .......................................................................................................................	
  4	
  

2.1	
   Pancreatic	
  cancer	
  ............................................................................................................................	
  4	
  
2.1.1	
   Background	
  of	
  pancreatic	
  cancer	
  .......................................................................................................	
  4	
  
2.1.2	
   Management	
  of	
  pancreatic	
  cancer	
  .....................................................................................................	
  4	
  
2.1.3	
   Gemcitabine	
  induced	
  chemoresistance	
  in	
  pancreatic	
  cancer	
  ................................................	
  5	
  
2.1.4	
   The	
  biology	
  of	
  pancreatic	
  cancer	
  ........................................................................................................	
  6	
  
2.1.5	
   Cancer	
  stem	
  cells	
  in	
  pancreatic	
  cancer	
  ............................................................................................	
  7	
  
2.1.6	
   miRNAs	
  in	
  pancreatic	
  cancer	
  ...............................................................................................................	
  8	
  
2.1.7	
   miRNAs	
  regulated	
  cancer	
  stem	
  cells	
  .................................................................................................	
  9	
  
2.1.8	
   miRNA-­‐based	
  therapeutics	
  ................................................................................................................	
  10	
  
2.1.9	
   Aim	
  of	
  the	
  study	
  ......................................................................................................................................	
  11	
  

2.2	
   Esophageal	
  cancer	
  .......................................................................................................................	
  12	
  
2.2.1	
   Background	
  of	
  esophageal	
  cancer	
  ..................................................................................................	
  12	
  
2.2.2	
   Management	
  of	
  esophageal	
  cancer	
  .................................................................................................	
  13	
  
2.2.3	
   Chemotherapy	
  and	
  chemoresistance	
  in	
  esophageal	
  cancer	
  ................................................	
  14	
  
2.2.4	
   The	
  biology	
  of	
  esophageal	
  cancer	
  ...................................................................................................	
  15	
  
2.2.5	
   Cancer	
  stem	
  cells	
  in	
  esophageal	
  cancer	
  (side	
  population	
  model)	
  ....................................	
  18	
  
2.2.6	
   Aspirin	
  as	
  Wnt	
  signaling	
  inhibitor	
  in	
  esophageal	
  cancer	
  ......................................................	
  19	
  
2.2.7	
   Aim	
  of	
  the	
  study	
  ......................................................................................................................................	
  19	
  

III.	
   MATERIAL	
  AND	
  METHODS	
  ..............................................................................................	
  20	
  

3.1	
   Materials	
  .........................................................................................................................................	
  20	
  
3.1.1	
   Cell	
  lines	
  .....................................................................................................................................................	
  20	
  
3.1.2	
   Reagents	
  .....................................................................................................................................................	
  22	
  
3.1.3	
   Technical	
  equipements	
  ........................................................................................................................	
  22	
  
3.1.4	
   Cell	
  culture	
  materials	
  ............................................................................................................................	
  23	
  
3.1.5	
   Cell	
  culture	
  and	
  frozen	
  medium	
  .......................................................................................................	
  24	
  
3.1.6	
   Materials	
  for	
  cell	
  proliferation	
  and	
  cytotoxity	
  assay	
  ..............................................................	
  25	
  
3.1.7	
   Materials	
  for	
  transfection	
  and	
  real	
  time	
  PCR	
  .............................................................................	
  25	
  
3.1.1	
   Materials	
  for	
  western	
  blot,	
  flow	
  cytometry,	
  Immunofluorescence,	
  and	
  

immunohistochemistry	
  .......................................................................................................................................	
  26	
  



TABLE OF CONTENTS 

 II     

3.1.2	
   Materials	
  for	
  animal	
  experiments	
  ...................................................................................................	
  28	
  
3.1.1	
   Software	
  .....................................................................................................................................................	
  28	
  

3.2	
   Methods	
  ...........................................................................................................................................	
  29	
  
3.2.1	
   Methods	
  of	
  pancreatic	
  cancer	
  ...........................................................................................................	
  29	
  
3.2.2	
   Methods	
  of	
  esophageal	
  cancer	
  ..........................................................................................................	
  33	
  

3.3	
   Experimental	
  setting	
  ..................................................................................................................	
  37	
  
3.3.1	
   Pancreatic	
  cancer	
  ...................................................................................................................................	
  37	
  
3.3.2	
   Esophageal	
  cancer	
  .................................................................................................................................	
  39	
  

IV.	
   RESULTS	
  .................................................................................................................................	
  40	
  

4.1	
   Cancer	
  stem	
  cell	
  target	
  therapy	
  in	
  pancreatic	
  cancer	
  .....................................................	
  40	
  
4.1.1	
   Microarray	
  data	
  validation	
  .................................................................................................................	
  40	
  
4.1.2	
   miR-­‐21	
  and	
  -­‐221	
  antisense	
  therapies	
  in	
  vitro	
  ............................................................................	
  42	
  
4.1.3	
   Overexpression	
  of	
  miR-­‐21	
  and	
  -­‐221	
  in	
  pancreatic	
  adenocarcinoma	
  tumors	
  ..............	
  48	
  
4.1.4	
   The	
  miR-­‐21	
  and	
  -­‐221	
  antisense	
  mono	
  and	
  combined	
  therapies	
  in	
  vivo	
  ........................	
  50	
  
4.1.5	
   Ex	
  vivo	
  analysis	
  of	
  tumor	
  proliferation,	
  apoptosis	
  and	
  angiogenesis	
  under	
  target	
  

therapy	
  in	
  vivo	
  .........................................................................................................................................................	
  52	
  
4.2	
   Characterization	
  and	
  target	
  therapy	
  of	
  cancer	
  stem	
  cells	
  in	
  esophageal	
  cancer	
  ...	
  57	
  
4.2.1	
   Identification	
  of	
  stem	
  like	
  side	
  population	
  in	
  esophageal	
  cancer	
  cell	
  lines	
  ..................	
  57	
  
4.2.2	
   Stem	
  like	
  side	
  population	
  and	
  chemoresistance	
  of	
  esophageal	
  cancer	
  cell	
  lines	
  .......	
  64	
  
4.2.3	
   5-­‐FU	
  induced	
  chemoresistance	
  is	
  associated	
  with	
  EMT	
  .......................................................	
  66	
  
4.2.4	
   Cancer	
  stem	
  cells	
  targeted	
  therapy	
  via	
  Wnt	
  signaling	
  pathway	
  ........................................	
  69	
  

V.	
   DISCUSSION	
  ............................................................................................................................	
  74	
  

5.1	
   Pancreatic	
  cancer	
  .........................................................................................................................	
  74	
  
5.2	
   Esophageal	
  cancer	
  .......................................................................................................................	
  80	
  

VI.	
   SUMMARY	
  ..............................................................................................................................	
  87	
  

VII.	
   ZUSAMMENFASSUNG	
  ........................................................................................................	
  89	
  

REFERENCES	
  ...................................................................................................................................	
  91	
  

ABBREVIATION	
  ...........................................................................................................................	
  103	
  

TABLE	
  OF	
  FIGURES	
  AND	
  TABLES	
  ...........................................................................................	
  105	
  

CURRICULUM	
  VITAE	
  ..................................................................................................................	
  109	
  

ACKNOWLEDGEMENT	
  ...............................................................................................................	
  114	
  



ABSTRACT 

 1     

I. ABSTRACT 

1.1 Pancreatic cancer 

Introduction: Previous studies from our group have identified a small subpopulation in 

pancreatic cancer cells, which are referred to as side population (SP) cells showing stem-like 

properties. These cells were found to induce fast and aggressive tumor formation in nude 

mice. Cultured SP cells were shown to differentiate into daughter SP or non-SP cells and to be 

highly chemoresistant. Furthermore, transcriptomic profiling showed a significant difference 

in the expression of more than 1300 genes in SP cells vs. non-SP cells. This included 

differences in the expression of a series of microRNAs including miR-21 and miR-221. The 

potential role of these microRNAs in SP biology was then investigated. 

Methods: Pancreatic cancer stem cells from the highly metastatic cell line L3.6pl were 

identified and characterized by flow cytometry using Hoechst 33342 dye staining. Gene 

expression was assessed by Affymetrix array analysis and further confirmed by quantitative 

RT-PCR. Antagomir transfection was performed using microRNA-21 and -221 antisense 

oligonucleotides. Tumor cell apoptosis, cell cycle progression, chemoresistance, and 

metastatic potential were quantitated using propidium iodide staining, cytotoxicity assays and 

Boyden chamber assays, respectively. For in vivo studies, SP cells were sorted from L3.6pl 

gemcitabine resistant cells and implanted orthotopically in nude mice with or without 

microRNA-21 and -221 antisense mono- and combination therapies. 

Results: A series of microRNAs including: miR-21, miR-221, miR-211, and miR-30c-2 were 

found significantly up regulated in stem-like SP from L3.6pl cells. In these cells miR-21 and 

miR-221 were shown to be involved in the modulation of expression of more than 200 genes. 

The administration of antagomir-21 and -221 significantly reduced the SP fraction, affected 

L3.6pl cell proliferation, invasion, and chemoresistance against gemcitabine and 5-

Fluorouracil. Combination of antagomir-21 and -221 therapy showed a better inhibitory effect 

on tumor growth than single antagomir treatment, especially, in gemcitabine resistant SP 

induced pancreatic cancer in vivo. 

Conclusion: The results demonstrate the significance of both miR-21 and -221 in the biology 

of stem-like tumor cells in pancreatic cancer. Both microRNAs contribute to biological 

functions of pancreatic cancer including apoptosis, metastasis, and chemoresistance. 
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Antagomir-21 and -221 treatments may be beneficial in overcoming gemcitabine-associated 

chemoresistance in pancreatic cancer in the future. 
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1.2 Esophageal cancer 

Introduction: Dye-effluxing side population (SP) cells are resistant to chemotherapy and are 

thought to resemble cancer stem cells (CSCs). In this study, the relevance of the SP 

subpopulation as potential cancer stem cells in esophageal cancer cell lines and their relation 

to chemotherapy resistance and metastasis were investigated. 

Methods: The SP subpopulation was detected using Hoechst 33342 staining in five 

esophageal cancer cell lines: OE19, OE21, OE33, PT1590, and LN1590. CTx-resistant cell 

lines were then developed after long-term in vitro exposure to 5-FU and cisplatin and 

validated by analysis of resistance markers thymidylate synthase and ERCC1. SP cells 

isolated from OE19 and OE19/5-FUres resistant cells were then analyzed by epithelial-to-

mesenchymal transition (EMT) PCR array for their steady state expression of EMT related 

genes. 

Results: The LN1590 and PT1590 cell lines did not show detectable SP cells, while OE19, 

OE21, and OE33 cells were found to have varying levels of SP cells about 17.1%, 0.8%, and 

8.8%, respectively. Colony formation assays showed significantly higher clonogenic 

capability of the respective SP populations in OE19, OE21, and OE33 cell lines (p< 0.01). In 

vivo subcutaneous injection of the cells showed higher tumorigenicity of SP cells as compared 

to NSP cells from the OE19 cell line. With increasing duration of 5-FU or cisplatin therapy, 

the SP subpopulation increased in PT1590 and LN1590 cell lines. The SP fraction of OE19/5-

FUres showed an increase in EMT related genes as compared to the SP fraction of OE19. 

These included: SNAI2, CALD1, WNT11, MSN, ZEB1, SERPINE1, VCAN, COL3A1, 

ERBB3, TMEFF1, TCF4, ITGA5, TIMP1, GSK3B, ITGAV, BMP1, MMP9, COL5A2, 

FOXC2, MMP3 and NOTCH1 (>4 fold change) while TSPAN13 and IL1RN were 

significantly decreased. 

Conclusion: These results provide evidence that different proportions of SP cells exist in 

esophageal cancer and this subpopulation of cells exhibit stem cell properties. SP cells are 

associated with chemotherapy resistance. Long-term CTx selects for SP cells with an up-

regulated EMT gene profile that might be the source of systemic disease relapse.
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II. INTRODUCTION 

2.1 Pancreatic cancer 

2.1.1 Background of pancreatic cancer 

In pancreatic cancer 95% of cases are represented by pancreatic ductal adenocarcinoma 

arising from the exocrine ductal system. It is the fourth most common cause of cancer death 

across the world (Hariharan et al 2008), and continues to be a major medical challenge in the 

western countries and arises rapidly in developing countries. 

The high mortality rate of this cancer is linked to its propensity for early metastatic spread and 

the intrinsic or ‘acquired’ resistance to radiation and chemotherapy. Approximately 50% of 

patients with pancreatic carcinoma present at the time of diagnosis with liver or lymph node 

metastases at the time of diagnosis and show a median survival time of 6 months. Another 30-

35% of patients present with local regional disease that is considered unresectable, usually 

because of local vascular invasion. Only 15-20% of patients present with resectable disease. 

However, at least 80% of these patients will develop local or distant relapse within 2 years of 

surgery (Hidalgo 2010). 

The etiology of pancreatic cancer remains unknown. Some risk factors such as tobacco use, a 

history of diabetes or chronic pancreatitis and family history of the disease are implicated (Li 

et al 2004). However, the evidence of moderate intake of alcohol, intake of coffee and use of 

aspirin as contributors is limited. Recently, a study on blood type observed an increased risk 

in type A, B or AB as compared with blood type O (Wolpin et al 2009). 

 

2.1.2 Management of pancreatic cancer  

Pancreatic cancer is staged according to the most recent edition of the American Joint 

Committee on Cancer tumor–node–metastasis classification (Edge and Compton 2010).To 

date, surgical resection is still the only potentially curative treatment for early stage patients. 

Depending on the location of the tumor, the operative procedures may involve cephalic 

pancreatoduodenectomy (the Whipple procedure), distal pancreatectomy, or total 

pancreatectomy (Hidalgo 2010). However, even if the tumor is fully resected, the prognosis in 

patients with early pancreatic cancer is disappointing. Some randomized clinical trials show 
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that preoperative (neoadjuvant) treatment and postoperative administration of chemotherapy 

with gemcitabine, fluorouracil or leucovorin improves progression-free and overall survival 

(Evans et al 2008). 85% of PDAC patients are detected at advanced stages, characterized by 

infiltration of proximal lymph nodes and vascular structures, as well as distant metastasis to 

liver or peritoneum. Adjuvant treatment after surgery with both chemotherapy and radiation 

therapy demonstrated improvements in disease-free survival and overall survival rates. 

Whereas gemcitabine or 5-fluorouracil chemotherapy without radiation are the most common 

treatments outside North America, chemoradiation plus systemic chemotherapy is still widely 

used in the Unites States of America (Stathis and Moore 2010). But due to high intrinsic 

resistance of pancreatic cancer to currently available agents, clinical trials have shown that 

gemcitabine alone and gemcitabine-based combination chemotherapy is not likely to achieve 

great success (Heinemann et al 2008, Li et al 2004, Sultana et al 2007). A means to overcome 

gemcitabine-induced chemoresistance is urgently needed. 

 

2.1.3 Gemcitabine induced chemoresistance in pancreatic cancer 

Gemcitabine (C9H11F2N3O4, 2', 2’-difluoro-2'-deoxycytidine, dFdC) is a pyrimidine analog 

with a wide spectrum of antitumor activity (Abbruzzese 1996) (shown in Figure II.1) that is 

applied as a standard drug for cytotoxic therapy of advanced pancreatic cancer. 

Previous studies on the metabolism of gemcitabine have demonstrated that deoxycytidine 

kinases metabolize this agent intracellularly to the active species gemcitabine diphosphate 

(dFdCDP) and gemcitabine triphosphate (dFdCTP). Incorporation of dFdCTP into DNA is 

responsible for the cytotoxic effects of gemcitabine, via inhibition of DNA synthesis, DNA 

repair and ultimately via induction of apoptosis (Bergman et al 2005). Another target of 

gemcitabine is the enzyme ribonucleotide reductase (RNR). The diphosphate analogue binds 

to RNR active site and inactivates the enzyme irreversibly. Once RNR is inhibited, the cell 

cannot produce the deoxyribonucleotides required for DNA replication and repair, and cell 

apoptosis is induced (Cerqueira et al 2007). Moreover, gemcitabine is a radio-sensitizing 

agent, which acts specifically in the S and G1/S phase of the cell cycle. 
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Figure II.1 Structure of gemcitabine 

 

Many forms of pancreatic cancer show initial sensitivity to gemcitabine therapy followed by 

the rapid development of resistance. The tumor’s initial vulnerability and subsequent 

resistance strongly suggests either the preexistence of resistant cell subpopulation or the rapid 

development of resistant cells from the tumor itself or from tumor/stromal alterations (Kim 

and Gallick 2008). Several genetic and/or epigenetic alterations associated with gemcitabine 

transport and metabolism contributed to gemcitabine resistance. For example, alterations in 

the nucleoside transporter-1 (hENT1) as well as deoxycytidine kinase and ribonucleoside 

reductases M1 and M2 have been linked to gemcitabine resistance (Kim and Gallick 2008). 

Transcriptional enhanceosome-HMGA1, tyrosine kinases focal adhesion kinase, c-Src and c-

Met have been all implicated in gemcitabine resistance (Kim and Gallick 2008). In addition, 

the phosphatidylinositol 3-kinase/Akt/mTOR pathway has also been involved in gemcitabine 

resistance (Kagawa et al 2012). 

 

2.1.4 The biology of pancreatic cancer 

Cancer is considered as multistep of successive accumulation of genetic and epigenetic 

mutations. This is also generally accepted in pancreatic cancer. Pancreatic carcinogenesis 

studies have revealed an activation of the KRAS oncogene and inactivation of the tumor 

suppressor genes CDKN2A and SMAD4 in the development of pancreatic cancer (Hidalgo 

2010). Based on microarray technologies, genetic analysis showed identical gene signatures 

involved 12 cancer-related pathways including apoptosis, DNA damage repair, cell cycle 

control, RAS, TGF-β, cell adhesion, Hedgehog, Intergrin, JNK, Wnt/β- catenin, invasion and 

small GTPases (Jones et al 2008). These pathways orchestrate complex gene networks and 

contribute to tumor growth, metastasis and drug resistance. Thus, the genetic basis of 

pancreatic cancer is very complex and heterogeneous. 
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There are at least two models that have emerged to describe the heterogeneity and inherent 

difference in tumor regenerating capacity: The clonal selection model is based on the theory 

which states that the tumor cells acquired mutations which support growth advantages and 

promote selection during tumorigenesis (Nowell 1976). The second, cancer stem cell model, 

suggests that, heterogeneity within primary and metastatic tumors derive from a subgroup of 

cancer cells with stem-cell properties. 

These two models are not mutually exclusive. Cancer stem cells can undergo clonal evolution, 

especially the CSC model displayed good implications for drug resistance and tumor relapse. 

 

2.1.5 Cancer stem cells in pancreatic cancer 

CSCs generally comprise only 1-5% of the total tumor mass and display three defining 

characteristics: 1) they are able to self-renew; 2) they are capable of asymmetric /symmetric 

cell division; 3) they can give rise to more-differentiated cells. These subpopulation cells have 

been identified in different solid malignancies including pancreatic cancer, which represent 

CD44+CD24+ESA+, CD133+, CD133+CXCR4+, c-MethighCD44+, ALDH1+ sub population 

within pancreatic cancer (Bao et al 2010). 

In addition to these makers previously used for the characterization of CSCs, side population 

(SP) cells also express ATP-binding cassette (ABC) transporters, and are thus able to efflux 

the Hoechst 33342 DNA dye can be detected by flow cytometry in many tumor cell lines 

(Goodell et al 1996) (Figure II.2). SP cells often display a complex profile of multidrug 

resistance such as toptecan, doxorubicin, mitoxantrone, daunorubicin and so on. On the other 

hand, SP cells are frequently quiescent without cycling, which may also contribute to their 

resistance to some cell-cycle-specific drugs (Moserle et al 2010). 
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Figure II.2 The SP assay was performed using an established SP detection protocol. Tissue or 
cell line samples were incubated with Hoechst 33342 for 90 min to 120 min at 37 °C with 
agitation in the dark. Debris was excluded. Due to its function of DNA binding, the Hoechst 
dye fluorescence signal can be used to visualize cells in a specific phase of the cell cycle 
(G0/G1, S, and G2/M) by indicating the DNA content per cell. SP cells are recognized as a 
dim tail extending first on the left side of G0/G1 cells toward the lower ‘Hoechst Blue’ signal. 
(Original graph provided by Dr J. Ellwart). 

 

SP cells are thought to model CSC phenotypes in pancreatic cancer (Haraguchi et al 2006b, 

Yao et al 2010, Zhou et al 2008). Side population cells described in different pancreatic 

cancer cell lines have been examined with respect to epithelial to mesenchymal transition 

(EMT), invasion, metastasis and gemcitabine resistance (Kabashima et al 2009, Zhou et al 

2008). In other solid tumor systems it has been shown that small numbers of SP cells are 

capable of inducing tumor formation, whereas a large number of non-SP cells are generally 

needed to achieve the same tumor growth in xenografts (Chiba et al 2006, Ho et al 2007). 

Some groups have linked SP to CSCs in various pancreatic cell lines including: SW1990, 

Capan-2, CFPAC-1 and BxPC-3. They generally found that SP cells contained more cells in 

the G1 phase and fewer cells in the S phase when compared with the non-SP cells and 

exhibited increased tumorigenic ability following in vivo transplantation and increased 

chemoresistance following in vitro exposure to gemcitabine (Yao et al 2010, Zhang et al 

2010). 

 

2.1.6 miRNAs in pancreatic cancer 

MicroRNAs (miRNAs) are, a class of small regulatory noncoding RNAs initially described in 
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Caenorhabditis elegans in 1993 by Lee et al. and Wightman et al. (Lee et al 1993, Wightman 

et al 1993). Increasing evidence has implicated a link between miRNAs and cancer (Calin et 

al 2004). 

MiRNAs usually bind to the 3’ untranslated region (UTR) of target mRNAs through an 

imperfect match to repress the translation and stability of the mRNA, but they have also been 

observed to occasionally switch from repression to the activation of translation (Vasudevan et 

al 2007). The process of miRNAs biogenesis in animal cells is started in the nucleus by RNA 

polymerase II enzyme transcription of a long primary-miRNA (Pri-miRNA) sequence with 

hairpin stem-loop structure. Then Drosha and DGCR8 (DiGeorge syndrome critical region 

gene 8) enzymes process the RNA into an approximately 70-nucleotide hairpin pre-miRNA 

that is then transported into cytoplasm by Exportin-5 and Ran-GTP (Gangaraju and Lin 

2009). In the cytoplasm, the pre-miRNAs are further processed into a short imperfect double 

stranded miRNA duplex and then unwound into a mature miRNA by helicase. The mature 

miRNA will then form complexes with RNA-induced silencing complex (RISC) and 

subsequently regulate gene expression by mRNA degradation or translation repression 

(Gangaraju and Lin 2009). One miRNA may target dozens of genes, while one mRNA can 

also be regulated by multiple miRNAs (Figure II.3). 

 

Figure II.3 Biogenesis and function of miRNAs. Revised from ‘The magic and mystery of 
miR-21’ (Morrisey 2010) and ‘MicroRNAs, cancer and cancer stem cells’ (Zimmerman and 
Wu 2011). 

 

2.1.7 miRNAs regulated cancer stem cells 

MiRNAs are important in regulating normal stem cell and cancer stem cell function 
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(Gangaraju and Lin 2009, Zimmerman and Wu 2011). The earliest study connecting miRNAs 

and cancer stem cells was described in models of breast cancer. The authors enriched 

CD44+CD24-/lo breast CSCs by chemotherapy in nude mice with implanted SKBR3 tumors. 

The authors found that these CSCs also expressed lower levels of let-7, miR-16, miR-107, 

miR-128 and miR-20b as compared to the parental or differentiated cells (Yu et al 2007). In 

addition, representatives of miR-200 family were significantly decreased in both breast CSCs 

and normal mammary stem cells, and the stem cell factor BMI-1was directly modulated by 

miR-200c (Shimono et al 2009). In a brain CSC study, tumor suppressor miR-451 was 

reported to be decreased in CD133+ GBM (glioblastoma) cells, and that miR-128, miR-34, 

miR-199-5p were all involved in brain CSC regulation (Gal et al 2008). In gastrointestinal 

cancers, HCC CSCs identified by an EpCAM+AFP+ marker profile overexpressed the miR-

181 family and several miR-17-92 cluster miRNAs (Ji et al 2009). Another important miRNA 

- miR34a, a transcriptional target of p53, not only regulates the progress of several cancer 

types, but also restrains the biological properties of those CSCs, such as GBM CSCs, prostate 

CSCs, liver CSCs, gastric CSCs and pancreatic CSCs (Liu and Tang 2011). These ‘stem cell 

miRNAs’ interact with CSCs by regulating self-renewal and apoptosis via targeting oncogene 

or tumor suppressors controlled cancer stem cell pathways (DeSano and Xu 2009). Those 

overexpressed miRNAs in CSCs inhibiting tumor suppressor genes and acting as oncogenes, 

are oncogenic miRNAs (oncomiRs); the miRNAs down regulated in CSCs suppress cell 

aggressive process by nature, function as tumor suppressors, are suppressor miRNAs. 

Aberrant miRNAs expression has been implicated in pancreatic cancer. Bloomston et al. and 

Szafranska et al. compared the expression of numerous miRNAs between pancreatic 

adenocarcinoma and pancreatitis, and found overexpression of miR-221 in tumor tissues. In 

addition, miR-103, miR-107, miR-34a, miR-145 were found dysregulated in this disease 

setting (Bloomston et al 2007, Szafranska et al 2007). 

 

2.1.8 miRNA-based therapeutics 

Several critical steps are required in the evaluation of miRNA-based therapeutics: 1) the 

expression level of target miRNAs must be first evaluated in cancerous vs. healthy tissues; 2) 

the functional analysis of the candidate miRNAs must be determined in the specific biological 

setting; 3) an in vivo model should be applied to evaluate the functional significance of the 

specific miRNAs (overexpressed or knockdown) (Kasinski and Slack 2011). 
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2.1.8.1 Antagomirs and mimics 

For oncogenic miRNAs, their overexpression can be reduced using a class of chemically 

engineered, cholesterol-conjugated single-stranded RNA oligonucleotides called 

antagomiRNAs (antogomirs) (Esau 2008). Antagomirs irreversibly bind specific miRNAs and 

inhibit their activity. MiRNAs, down regulated in cancer, can be replaced though the use of 

miRNA mimics, a group of chemically modified small double-stranded RNAs that mimic 

their endogenous miRNAs. In addition, lentiviruses and other similar vector based strategy 

have been used to replace tumor suppressor miRNAs (Nicoloso et al 2009). 

 

2.1.9 Aim of the study 

Previous work from our laboratory identified some miRNAs significantly overexpressed in 

stem-like side population cells as compared to non-side population cells in L3.6pl. 

Accumulating evidence has suggested that these miRNAs are involved in the regulation of 

tumorigenesis in pancreatic cancer but little data concerning the therapeutic efficacy of 

inhibition of about the therapeutic efficacy of inhibition of these oncomirs as cancer stem cell 

regulators is available. To help address this, we applied SP assay as a model to mimic the 

cancer stem cells in pancreatic cancer cell lines. The aim of this study was to evaluate the 

therapeutic potential of inhibiting specific miRNA using antisense oligonucleotides 

(antagomirs) both in vitro and in vivo. 
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2.2 Esophageal cancer 

2.2.1 Background of esophageal cancer 

Cancers arising from the esophagus, including the gastroesophageal junction are defined as 

esophageal cancer. More than 90% of esophageal cancer was classified as squamous cell 

carcinoma (ESCC) and adenocarcinoma (EAC), which represent some of the most aggressive 

digestive tract malignancies showing bad prognosis (Jemal et al 2007) (Figure II.4). On rare 

occasions, melanomas, leiomyosarcomas, carcinoids, and lymphomas may develop in the 

esophagus as well. Approximately 75% of all adenocarcinomas are found in the distal 

esophagus, whereas squamous cell carcinomas are more evenly distributed between the 

middle and lower third. The cervical esophagus is an uncommon site of disease. Although 

ESCC has been responsible for most esophageal cancer worldwide, the incidence of EAC has 

remarkably increased over the past two decades and has supplanted ESCC as the dominant 

phenotype in western countries (Devesa et al 1998). 

The etiologic factors of esophageal cancer are complex (Enzinger and Mayer 2003). Smoking 

is associated with an increased risk of both ESCC and EAC mainly due to the tobacco 

carcinogens, particularly nitrosamines (Wu et al 2001). Chronic irritation and inflammation of 

the esophageal mucosa appears to increase the incidence of ESCC. Substantial alcohol intake 

together with smoking may account for more than 90% of ESCC (Brown et al 2001, Wu et al 

2001). Other irritation factors include achalasia and esophageal diverticula, and frequent 

consumption of extremely hot beverages (Garidou et al 1996). For EAC patients, most of 

them have Barrett’ esophagus or a history of gastroesophageal reflux disease, which leads to a 

high risk of neoplastic transformation(Lagergren et al 1999). Obesity has been implicated 

recently in increased risk for EAC while helicobacter pylori is thought to provide a degree of 

protection against the development of EAC (Zhang et al 2009). In addition, a history of 

radiotherapy to the mediastinum (breast cancer, lymphoma, and other neoplasms) may also 

predisposes patients to both histologic types of esophageal cancer (Ahsan and Neugut 1998). 



INTRODUCTION 

 13     

 

Figure II.4 Histology of esophageal cancer. a) Invasive esophageal squamous cell carcinoma. 
This carcinoma shows features of squamous differentiation, including keratinization and 
intercellular bridges b) Processing esophageal adenocarcinoma, showing junction of benign 
glands in the lower right, Barrett's columnar cell metaplasia with a large goblet cell containing 
blue mucin in the lower center and adenocarcinoma on the left. (According to 
http://emedicine.medscape.com/article/277930-overview#a0101) 

 

2.2.2 Management of esophageal cancer 

Management of patients with esophageal cancer is complex and requires a multidisciplinary 

approach (Enzinger and Mayer 2003). Esophageal resection (esophagectomy) remains a 

crucial part of the treatment for esophageal cancer. Only a minority of patients present with an 

early stage of localized esophageal cancer which is most commonly resected with the use of 

either a right transthoracic or a trans hiatal approach by endoscopic therapies (such as 

endoscopic mucosal resection, radiofrequency ablation, or cryotherapy). The majority of 

patients undergo surgery when lymph node metastases are already present, the 5-year survival 

rate for this disease is quite low (Enzinger and Mayer 2003). Chemotherapy alone or 

combined with radiotherapy has been used before or after surgery in the attempt to improve 

survival. Monochemotherapy has a response rate of 20-30% while combination chemotherapy 

works with response rates of 44-55% (Enzinger et al 1999). The internal and acquired drug 

resistance is main obstacles of current chemotherapy, Alternative forms of systemic treatment 

or a targeted form of treatment (e.g., an antagonist of the epidermal growth factor receptor or 

a cyclooxygenase-2 inhibitor) may merit exploration in overcoming resistance. 
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2.2.3 Chemotherapy and chemoresistance in esophageal cancer 

2.2.3.1 5-fluorouracil (5-FU) 

5-FU remains a widely applied anticancer drug. 5-FU is a heterocyclic aromatic organic 

compound (C4H3FN2O2) with a structure similar to pyrimidine molecules of DNA and RNA; 

it is an analogue of uracil with a fluorine atom at the C-5 position in place of hydrogen 

(Figure II.5). 5-FU interferes with nucleoside metabolism and can be incorporated into RNA 

and DNA, leading to cytotoxicity and cell death (Parker and Cheng 1990). Research has 

indicated that 5-FU exerts its anticancer effects mainly through inhibition of thymidylate 

synthase (TS), which is an essential enzyme for catalyzing the biosynthesis of thymidylate, 

implicating in the regulation of protein synthesis and apoptotic processes (Longley et al 

2003). Dihydropyrimidine dehydrogenase (DPD)-mediated conversion of 5-FU to 

dihydrofluorouracil (DHFU) is the rate-limiting step of 5-FU catabolism in normal and tumor 

cells (He et al 2008, Zhang et al 2008a). 

However, the overall response rate for 5-FU based chemotherapy remains poor, mainly due to 

drug resistance resulting from various causes including alterations in drug influx and efflux, 

enhancement of drug inactivation and mutation of the drug target (Longley and Johnston 

2005). ATP-binding cassette (ABC) transporters are promiscuous transporters of both 

hydrophobic and hydrophilic compounds. ABCC11 referred to as multidrug-resistance-

associated protein 8 plays a key role in 5-FU efflux and is dramatically up regulated in 5-FU 

resistant cancer cell lines. Other ABC transporters such as ABCC3, ABCC4, ABCC5 and 

ABCG2 are also associated with 5-FU efflux induced drug resistance (Zhang et al 2008a). 

Overexpression of TS, increased activity of DPD, methylation of the MLH1 gene, and up-

regulation of anti-apoptotic proteins such as Bcl-2, Bcl-XL have all been reported to lead to 

resistance to 5-FU (Zhang et al 2008a). These reports suggest that multiple factors appear to 

contribute to 5-FU resistance. 

 

Figure II.5 Structure of 5-FU 
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2.2.3.2 Cisplatin 

Cis-Diamminedichloroplatinum (Cisplatin or cis-DDP, cis-PtCl2 (NH3)2) is a widely used 

chemotherapeutic reagent. The structure of cisplatin is shown in Figure II.6, The ligands of 

cisplatin are replaced by water molecules after cisplatin enters the cell and generates 

positively charged aquated species which react with nucleophilic sites on intracellular 

macromolecules to form protein, RNA and DNA adducts. Cisplatin forms approximately 65% 

1,2-d(GpG), 25% 1,2-d(ApG) and 5-10% 1,3-d(GpNpG) intrastrand crosslinks, and a reduced 

percentage of interstrand crosslinks and monofunctional adducts, which result in inhibition of 

DNA replication, RNA transcription, cell cycle arrest at G2 phase, or programmed cell death 

of apoptosis (Kartalou and Essigmann 2001). 

Due to the significant antitumor effect, cisplatin mono or combination therapy have been 

tested in various of cancers, and in particular in treatment of testicular cancer (Einhorn 1990). 

However, the efficacy was still limited because of acquired or intrinsic resistance. The 

mechanism of resistance to cisplatin is not fully understood. It is known that reduced cisplatin 

intracellular accumulation due to decreased uptake or increased efflux, or sulfhydryl 

molecules induced inactivation of cisplatin can cause resistance. Multidrug-resistant- 

associated protein 2 (MRP2/ABCC2) has been identified as a cisplatin efflux transporter and 

is highly expressed in cisplatin resistant cells (Niu et al 2012). The dysregulation of 

oncogenes or tumor suppressor genes have also been implicated in cisplatin-associated 

resistance. The overexpression of c-fos, ERCC1, c-myc and the mutation of H-ras and P53 

were found to be involved in the development of cisplatin resistance (Kartalou and Essigmann 

2001). 

 

Figure II.6 Structure of cisplatin 

 

2.2.4 The biology of esophageal cancer 

As described for pancreatic cancer, esophageal cancer also requires genetic or epigenetic 

changes in the development of the carcinogenesis. Recently, a genome-wide association study 

identified seven susceptibility loci on chromosomes 5q11, 6p21, 10q23, 12q24, and 21q22 for 
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ESCC in Chinese populations. This further implicated the involvement of multiple genetic 

loci and gene-environment interaction in the development of esophageal cancer (Wu et al 

2011). At the genetic level, Cyclooxygenase 2, Bcl-2, p53, p16, p27, cyclin D, retinoblastoma 

protein, epidermal growth factor and its receptor, transforming growth factor-α (TGF-α), 

tumor necrosis- α (TNF-α), erb-b2, E-cadherin, α-catenin and β-catenin are thought to play a 

role in the development of the disease (Enzinger and Mayer 2003). 

COX-2 (also known as PTGS2) is an inducible enzyme that catalyzes prostaglandin synthesis 

and carcinogenesis through several pathways, including those of apoptosis, angiogenesis, 

inflammation, and immune surveillance (Altorki 2004). COX-2 has been shown to 

sequentially increase in metaplastic-dysplastic sequence leading to esophageal 

adenocarcinoma (Brabender et al 2004). Variants in the promoter region of COX-2 have been 

observed to significantly increase the risk of esophageal adenocarcinoma (Reid et al 2010). 

Increased COX-2 expression in esophageal squamous cancer patients was found to be 

significantly correlated at tumor invasion and poor survival (Takatori et al 2008). 

Accumulating evidence has suggested that the use of aspirin and other nonsteroidal anti-

inflammatory drugs to non-selectively inhibit COX-2 may be associated with a lower 

esophageal cancer rate (Bosetti et al 2003, Farrow et al 1998). 

 

2.2.4.1 EMT (epithelial mesenchymal transition) in esophageal cancer 

Promising evidence indicates a crucial role for epithelial mesenchymal transition (EMT) in 

tumor progression, in particular, metastasis (Kalluri and Weinberg 2009). Esophageal cancer 

belongs to the family of epithelial carcinomas, which comprises cohesive epithelial cells 

polarized and tightly connected by E-cadherin-dependent cell-cell junctions, and initially 

separated from the stroma by the basement membrane. Local invasion through the epithelial 

basement membrane is the first stage of metastasis. Epithelial cells lose intercellular junctions 

causing dissociation from surrounding cells, acquire migratory mesenchymal-like 

characteristics and enable to migrate away from the original tissue (Guarino 2007). Once 

established in a new environment, metastatic cells may revert back to a non-metastatic 

phenotype, via a mesenchymal-epithelial transition (Kalluri and Weinberg 2009). Lymph 

node metastasis is common in esophageal cancer since the esophagus characteristically 

receives lymphatic supply networks; also the invasion to liver or other organs are often in 

advanced stage of this disease (Liu et al 2005). 
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The dynamic switch between epithelial and mesenchymal cells can be distinguished by 

expression of a number of classical markers (LaGamba et al 2005). For instance, epithelial 

markers include adherens and tight junction proteins such as E-cadherin and ZO-1, whereas 

mesenchymal markers include the extracellular matrix component-Fibronectin and the 

intermediate filament protein-Vimentin (Zeisberg and Neilson 2009). The mechanisms for 

loss of E-cadherin function include promoter CpG hypermethylation, histone modifications, 

and direct inhibition by zinc finger transcriptional repressors ZEB1, ZEB2, Snail1, and Twist 

(Tellez et al 2011). Repression of E-cadherin has also been reported for late stage of human 

esophageal cancers with particularly aggressive prognosis (Washington et al 1998). Analysis 

of tissue samples from patients with esophageal SCC suggests that Snail is associated with 

repressed E-cadherin expression in primary tumors (Natsugoe et al 2007). By contrast, ESCC 

patients with Vimentin expression can show a significantly higher incidence of lymph node 

metastasis, and is associated with stronger expression of α-SMA expression (Jin et al 2010). 

In addition, evaluation of Twist in esophageal SCC has revealed significantly higher Twist 

expression when compared to non-neoplastic tissue (Yuen et al 2007). Similarly, Slug has 

been shown to be overexpressed in primary esophageal SCC, correlating with depth of tumor 

invasion, lymph node metastasis and poorer clinical outcome (Uchikado et al 2005). EMT 

biology may be linked to the progress of esophageal cancer development. 

 

2.2.4.2 Wnt signaling pathway 

There are several important stem cell-associated signaling systems involved in cancer 

development, including sonic hedgehog, mTOR, TGF-β, Notch, BMP and Wnt signaling. The 

Wnt signaling pathway is a highly conserved ancient pathway controlling proliferation, 

differentiation, motility and apoptosis. Mutations or dysregulated expression of components 

in this pathway have been linked to diverse disease states, in particular cancer (Klaus and 

Birchmeier 2008). There are three well defined Wnt signaling pathways, the canonical 

pathway (Wnt/β-catenin pathway) and two noncanonical pathway (the planar cell polarity 

pathway, the Wnt/Ca2+ pathway and the protein kinase A pathway) (Takahashi-Yanaga and 

Kahn 2010). The Wnt/β-catenin pathway is dependent on the status of β-catenin, a protein 

kept under low cytoplasmic concentration by the destruction complex, which was scaffolded 

by APC (Adenomatous polyposis coli), CK1 (Casein kinase 1), GSK3- β (Glycogen synthase 

kinase 3 β) and Axin2 (Axis inhibition protein 2). In the absence of Wnt signals, the 

membrane receptor complex Fzd (Frizzled) and LRP5/6 (low density lipoprotein receptor 
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related protein 5/6) is not engaged and CK1 and GSK3-β phosphorylate β-catenin, are 

ubiquitinated and targeted for rapid proteasomal degradation (Takahashi-Yanaga and Kahn 

2010). Once Wnt ligands bind to LRP5/6 receptor, the destruction complex is dissolved and 

β-catenin is stabilized in the cytosol and further translocated into nucleus where it converted 

TCF (T cell factor) into a transcriptional activator that will trigger a complex transcriptional 

program. Important Wnt regulators or components that become dysregulated (e.g., by 

mutation, loss of heterozygosity and hypermethylation) may lately be associates with the 

development of malignancies including colorectal cancer, liver cancer, pancreatic cancer, 

mammary cancer and esophageal cancer (Klaus and Birchmeier 2008). 

Dysregulation of Wnt pathway elements have been described in both ESCC and EAC. Several 

histopathology studies have shown accumulated localization of β-catenin in the nucleus in 

adenocarcinoma cells is associated with Barrett’s metaplasia (Moyes et al 2012). Unlike colon 

cancer, mutations of β-catenin, Axin or APC are not frequently in patients with esophageal 

adenocarcinoma. However, loss of heterozygosity in the APC gene was noted in 60% of 

adenocarcinoma arising from Barrett’s metaplasia (Gonzalez et al 1997). 

 

2.2.5 Cancer stem cells in esophageal cancer (side population model) 

As discussed in earlier section on pancreatic cancer, cancer stem cells have been confirmed in 

many types of cancer. However, comparatively little is known about the existence of CSCs in 

esophageal cancer. Haraguchi et al. originally identified CSCs in various gastrointestinal 

cancer cell lines, including 3 squamous cell esophageal cancer lines (TE1, TE2, and TE13), 

using Hoechst 33342 to isolate small fractions of SP cells (about 0.3%-1.4%) (Haraguchi et al 

2006a). Huang et al. detected a SP fraction in SCC cells (EC9706 and EC109). SP cells with 

the strongest dye efflux activity termed ‘Tip’-SP cells showed markedly higher tumorigenicity 

than non-SP cells in vitro and in vivo (Huang et al 2009a). Other groups proposed the 

existence of radio-resistant stem-like cells in esophageal cancer. Che et al. developed a radio-

resistant subtype-Eca109R50Gy cells which show some properties of CSCs (Che et al 2011). 

Zhang et al. found an enrichment of side population cells in radio-resistant esophageal cancer 

cell lines following fractionated irradiation (Zhang et al 2008b). There is conflicting data 

regarding the existence of common CSC surface markers on esophageal cancer cells. 

Grotenhuis et al tested a group of common cancer stem cell markers in Barrett’s esophageal 

adenocarcinoma including CD24, CD29, CD34, CD44, CD133, CD166, EpCAM, β-catenin 
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and ALDH1 by FACs staining, in vivo tumorigenicity and IHC staining in patients tissues. 

And they found that these common CSC markers do not enrich for EA initiating cells 

(Grotenhuis 2010). 

 

2.2.6 Aspirin as Wnt signaling inhibitor in esophageal cancer 

Aspirin, a non- steroidal anti-inflammatory drug (NSAID) is the leading chemoprevention 

candidate for esophageal cancer. NSAIDs inhibit cell growth and induce apoptosis at various 

disease stages, from initiation to progression. Numerous molecular targets have been 

implicated but the antitumor activity of aspirin cannot be attributed wholly to a single target. 

It is likely that aspirin influences several molecular pathways and that the nonspecific nature 

of the effect may be key to cancer prevention (Chan 2012). Aspirin and other NSAIDs inhibit 

the activity of cyclooxygenase, and were further reported that the inhibition of the Wnt/β-

catenin signaling pathway is one of their potential mechanisms of preventive or therapeutic 

action (Boon et al 2004, Dihlmann et al 2001). In colon cancer, increased COX-generated 

PGE2 was shown to suppress β-catenin degradation, resulting in activation of Wnt/β-catenin 

signaling. Therefore, aspirin might provide an easy and effective therapeutic strategy to 

suppression Wnt pathway activated cancer stem cells or stem like subpopulations. 

 

2.2.7 Aim of the study 

My goal was to detect and characterize side population cells in different esophageal cancer 

cell lines. Previous study found that induced resistance to chemo- or radiotherapy could 

increase resistant SP cells. To study this phenomenon, I will isolated the SP subpopulation 

cells from both sensitive and chemotherapy resistant esophageal cancer cell lines and 

investigated their capacity for self-renewal, differentiation, and tumorigenicity as well as their 

potential role in chemotherapy resistance and metastasis. Finally I sought to identify a 

dynamic profile of EMT associated genes in side population cells induced chemoresistance.

 



MATERIALS AND METHODS 

 20     

III. MATERIAL AND METHODS 

3.1 Materials 

3.1.1 Cell lines 

3.1.1.1 Human pancreatic cancer cell line L3.6pl and L3.6pl gemcitabine resistant 

varient-L3.6plGres 

L3.6pl is a highly metastatic cell line variant originally derived from fast- growing variant 

(FG) of human pancreatic cancer cell line COLO375 under several in vivo selection with 

increasing metastatic potential, displayed an aggressive primary tumor growth in nude mice 

with spontaneous liver metastases and lymph nodes metastases. L3.6pl cells produced pro-

angiogenic factors such as VEGF, bFGF and IL-8 and showed a significantly decreased 

expression of E-cadherin and increased collagenase type IV expression in contrast to the 

parental FG cells (Bruns et al 1999). 

L3.6pl was cultured in medium with increasing concentration of gemcitabine, starting at 0.5 

ng/ml and increasing to over 24-month period. The gemcitabine resistant sub-line was 

established and displayed different morphology (Figure III.1) 

 

Figure III.1 Morphology of L3.6pl and L3.6plGres 

 

3.1.1.2 Human esophageal cancer cell lines 

Five different esophageal cell lines were used in this study (Figure III.2). The corresponding 

5-FU or cisplatin resistant cell lines were established after long-term chemotherapy. 

OE19 

The cell line OE19 (also known as JROECL19, ECACC number: 96071721) was established 
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in 1993 from an adenocarcinoma of gastric cardia/esophageal gastric junction of a 72-year-old 

male patient. The tumor was identified as pathological stage III (UICC) and showed moderate 

differentiation. 

OE21 

The cell line OE21 (also known as JROECL21, ECACC number: 96062201) was established 

in 1993 from a squamous carcinoma of mid esophagus of a 74-year-old male patient. The 

tumor was identified as pathological stage IIA (UICC) and showed moderate differentiation. 

OE33 

The cell line OE33 (also known as JROECL33, ECACC number: 96070808) was established 

from the adenocarcinoma of the lower esophagus (Barrett′s metaplasia) of a 73-year-old 

female patient. The tumor was identified as pathological stage IIA (UICC) and showed poor 

differentiation. 

All three cell lines express HLA-A, -B and -C antigens (MHC class I) and ICAM-1 

constitutively. Expression of HLA-DR (MHC class II) can be induced by treatment with 

interferon-gamma. The cells express epithelial cytokeratins and are tumorigenic in nude mice 

(Rockett et al 1997). 

PT1590 and LN1590 

PT1590 and LN1590 are esophageal cancer cell lines established from primary tumors (PT) 

and a lymph node with micro metastasis (LN) from a patient who identified as stage IIB and 

had undergone radical esophagectomy for a poorly differentiated adenocarcinoma of the 

esophagus at the University Medical Center of Hamburg-Eppendorf. LN1590 was generated 

from one of Ber-EP4-positive nodes (later known as EpCAM). Both cell lines are tumorigenic 

in nude mice (Hosch et al 2000). 

 

Figure III.2 Morphology of different esophageal cancer cell lines 
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3.1.2 Reagents 

Medium, buffers, solutions for cell culture 

DMEM (Dulbecco’s Minimal Essential Medium) Invitrogen GmbH, Karlsruhe, Germany 

DMEM/F12 Invitrogen GmbH, Karlsruhe, Germany 

DMSO (Dimethylsulphoxide) Sigma-Aldrich, Steinheim, Germany 
DPBS-buffer Biochrom AG, Berlin, Germany 

EGF (Recombinant human EGF) PeproTech EC, UK 

Fetal bovine serum Biochrom AG, Berlin, Germany 

FGF (Recombinant human basic FGF) PeproTech EC, UK 
Insulin solution (human) Sigma-Aldrich, Steinheim, Germany 

MEM vitamin mixture PAN Biotech, Aidenbach, Germany 

Germany Germany MEM NEAA PAN Biotech, Aidenbach, Germany 
Normocin InvivoGen, San Diego, USA 

Penicillin/Streptomycin 100 ml (10.000 Units Penicillin/mL, 10 mg Streptomycin/ml) 

  PAN Biotech, Aidenbach, Germany 

RPMI 1640 + Glutamax-1 Gibco Invitrogen, Germany 
Trypsin0.05%/EDTA0.02 % in PBS without Ca2+ and Mg2+ 

  PAN Biotech, Aidenbach, Germany 

 Trypan blue (0.4%) Sigma-Aldrich, Steinheim, Germany 
Transferrin Sigma-Aldrich, Steinheim, Germany 

 

3.1.3 Technical equipements 

ABI StepOnePlusTM Applied Biosystems, Foster City, USA 

Automatic Tissue Processors Model 2065/2 MDS Group GmbH, Buseck, Germany 
Automatic pipettes Gilson, Middleton, WI, USA 

Axioskop 40, AxioCam MRc5 Digital fluorescence 

  Carl Zeiss AG, Oberkochen, Germany 
Centrifuges Eppendorf, Germany 

CO2 incubators Heraeus, Rodenbach, Germany 

Digital precision scale KERN & Sohn GmbH, Germany 

FACS Calibur BD, Biosciences, USA 
Freezer -20°C Siemens AG, Germany 

Freezer -80°C Heraeus, Hanau, Germany 
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Fridge 4°C Siemens AG, Germany 

Hand tally counter Carl Roth GmbH, Karlsruhe, Germany 

 Herasafe EN12469 2000 Class II safety cabinet Thermo Fisher Scientific Inc, Germany 
Leica RM2255, Fully Motorized Rotary Microtome 

  Leica Microsystems, Germany 

LSR II flow cytometry BD, Biosciences, USA 
Liquid nitrogen tank MVE, New Prague, MN, USA 

Phase contrast microscopy  Carl Zeiss GmbH, Germany 

Microwave oven Siemens, Germany 

MoFlo high speed sorter DAKO Cytomation, Glostrup, Denmark 
Thermo Scientific Heraeus incubator Thermo Fisher Scientific Inc, Germany 

TECAN GENios Plus ELISA reader TECAN, Salzburg, Austria 

RNA/DNA calculator GeneQuant Pro, GE, USA 

 Vortex IKA Works, Wilmington, NC, USA 

Water bath GFL, Burgwedel, Germany 

 

3.1.4 Cell culture materials 

5 ml coster stripette Corning Inc, New York, USA 

10 ml coster stripette Corning Inc, New York, USA 
25 ml coster stripette Corning Inc, New York, USA 

25 cm2 nunc sterile tissue culture flasks Thermo Fisher Scientific Inc, Denmark 

75 cm2 nunc sterile tissue culture flasks Thermo Fisher Scientific Inc, Denmark 
150 cm2 nunc sterile tissue culture flasks Thermo Fisher Scientific Inc, Denmark 

15 ml Centrifuge tubes TPP, Switzerland 

50 ml polypropylene conical tubes BD Bioscience Europe, Belgium 

6, 12, 24 and 96-well nunc delta surface culture plates  

  Thermo Fisher Scientific Inc, Denmark 

12 and 24-well companion plate notched for use with cell culture insert 

  BD Dicknson Labware, USA 
Cell culture insert 8.0 µm BD Bioscience, NJ, USA 

Lab-Tek™ chamber slides Thermo Fisher Scientific Inc, USA 

Nunc cryotube (2.0 ml) Thermo Fisher Scientific Inc, Germany 

Eppendorf safe-lock tubes (0.6 ml, 1.5 ml, and 2.0 ml) 

  Eppendorf AG, Hamburg, Germany 
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Hemacytometer and cover-slip (Cell counting chambers) 

  Bürker-Türk, Germany 

 

3.1.5 Cell culture and frozen medium  

3.1.5.1 Pancreatic cancer cell lines 

DMEM                                                             plus 10% FCS 

 100 IU/ml Penicillin 

 100 µg/ml Streptomycin 
 2% MEM vitamin mixture 

 2% MEM NEAA 

 

3.1.5.2 Esophageal cancer cell lines  

OE19, OE21 and OE33 

                                                           plus 

 

RPMI 1640+ Glutamax-1                                 plus  10% FCS 

 100 IU/ml Penicillin 
 100 µg/ml Streptomycin 

PT1590 and LN1590 

 

 

RPMI 1640+ Glutamax-1                                 plus 10% FCS 
 100 IU/ml Penicillin 

 100 µg/ml Streptomycin 

 10 ng/ml EGF 

 10 ng/ml FGF 
 10 ng /ml Insulin 

 4 µg/ml Transferrin 

 

1ml Normocin was added to 500 ml normal cell culture media as a ‘routine addition’ to cell 

culture media to prevent mycoplasma, bacterial and fungal contaminations in small or large-

scale animal cell cultures. 

 

3.1.5.3 Cell storage medium 

90% FCS                                                          plus 10% DMSO 
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3.1.5.4 Storage and re-cultivation of the cells 

One to four million cells were stored in cell storage medium per cryotube. The tubes are 

moved to a gradually temperature-decreasing box and then kept in a -80°C freezer. After 72 

hours, the tubes were moved to a liquid nitrogen tank for long-term storage. Before re-

cultivation of the cells, the culture medium was first aspirated into the cell culture flask. The 

frozen tubes were taken out of the liquid nitrogen tank and put into the 37°C water bath 

immediately until complete thawing of the cells. The cells were then added into the cell 

culture flask. After 24 hours culturing in the incubator, the medium was changed to avoid 

toxic effects of the remaining DMSO. 

 

3.1.6 Materials for cell proliferation and cytotoxity assay 

5-FU (Fluorouracil-GRY) GRY-Pharma GmbH, Germany 

Cisplatin (Cis-GRY) GRY-Pharma GmbH, Germany 

 Gemcitabine (Gemzar) Lilly Deutschland GmbH, Germany 

 Cell counting kit-8 (CCK-8) Dojindo Laboratories, Japan 

TACS MTT cell proliferation/viability assay kit R&D systems, Minneapolis, USA 
 

3.1.7 Materials for transfection and real time PCR 

All stars negative control siRNA with or without Alexa fluor 488 modification 

2 GRY-Pharma GmbH,Germany  Qiagen, USA 

Anti-hsa-miR-21-5p (phosphorotioate) Qiagen, USA 

Anti-hsa-miR-221-3p (phosphorotioate) Qiagen, USA 
HiperFect transfection reagent Qiagen, USA 

Hs_Mir-21 miscript primer assay Qiagen, USA 

Hs_Mir-221 miscript primer assay Qiagen, USA 
Hs_RNU6B miscript primer assay Qiagen, USA 

miRNeasy mini kit Qiagen, USA 

miScript reverse transcription kit Qiagen, USA 

miScript SYBR Green PCR kit Qiagen, USA 
QuantiFast SYBR Green PCR kit Qiagen, USA 

RT2 First start kit SuperArray Bioscience, Qiagen, USA 

RT2 Profiler PCR array system SuperArray Bioscience, Qiagen, USA 
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3.1.1 Materials for western blot, flow cytometry, Immunofluorescence, and 

immunohistochemistry 

4% paraformaldehyde Pathology LMU, Germany 

7-AAD BD phamingen, USA 
Albumin from bovine serum (BSA) Sigma-Aldrich, Steinheim, Germany 

Avidin/Biotin blocking kit Vector Laboratories, CA, USA 

BCA protein assay reagent kit Pierce, Rockford, USA 

 Biotinylated secondary antibody Vector Laboratories, CA, USA 
DAPI in mounting medium Vector Laboratories, CA, USA 

DyLight-594- Donkey anti mouse Dianova, Pinole, CA, USA 

ECL western blotting detection system Amersham Biosciences, Germany 
Ethanol 70%, 80%, 96%, 100% CLN GmbH, Niederhummel, Germany 

FCR blocking reagent (human) Miltenyi Biotec GmbH, Germany 

FITC-Donkey anti rabbit Dianova, Pinole, CA, USA 

FITC-Donkey anti mouse Dianova, Pinole, CA, USA 
Hoechst 33342 Sigma-Aldrich, Steinheim, Germany 

Hydrogen peroxide 30% (H2O2) Merck, Darmstadt, Germany 

In situ cell death detection kit (TUNEL assay) Roche, Penzberg, Germany 
Kaiser’s glycerol gelatine Merck, Darmstadt, Germany 

Liquid DAB+ substrate chromogen system Dako, CA, USA 

Mayer’s hemalum solution Merck, Darmstadt, Germany 
Neo-Clear (Xylene substitute) Merck, Darmstadt, Germany 

Normal rabbit serum Vector Laboratories, CA, USA 

Normal goat serum Vector Laboratories, CA, USA 

Propidium iodide BD phamingen, USA 
Restore western blot stripping buffer Pierce, Rockford, USA 

Sodium chloride Merck, Darmstadt, Germany 

Target retrieval solution 10× Dako, CA, USA 
TRIZMA base Sigma-Aldrich, Steinheim, Germany 

TRIZMA hydrochloride Sigma-Aldrich, Steinheim, Germany 

Triton X-100 Sigma-Aldrich, Steinheim, Germany 

Vectastain ABC kit Vector Laboratories, CA, USA 
Verapamilhydrochloride (verapamil) Sigma-Aldrich, Steinheim, Germany 

Flow cytometry tubes BD Bioscience Europe, Belgium 

BD Falcon 5 ml polystyrene round-bottom tubes (REF 352052) 
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BD Falcon 5 ml polystyrene round-bottom tubes with cell strainer cap (REF 352235) 

BD Falcon 5 ml polypropylene round-bottom tubes with cap (REF 352063) 

 
 

Table III.1 Antibodies 

IgG124 kDaSC 25388RabbitHumanSanta CruzZEB1(H-102)

IgG57 kDaSC 7557-RRabbitHumanSanta CruzVimentin (C-20)

IgG135 (36 kDa)ab3145MouseHumanAbcamTS

IgG192 kDa610154MouseHumanBD bioscienceß-catenin

IgG2a42 kDaA5316MouseHumanSigmaß-actin

IgG3κ29 (68 kDa)WH0006591M5MouseHumanSigmaSnail2

IgG29 kDaSC 28199RabbitHumanSanta CruzSnail1 (H-130)

IgG345 and 395 (359 kDa)ab16667RabbitHumanAbcamki67

IgG2b33-36 kDaab2356MouseHumanAbcamERCC1

IgG136 kDa130-080-301MouseHumanMacs miltenyiEpCAM-FITC

IgG35 kDaab71916RabbitHumanAbcamEpCAM

IgG1120 (135 kDa)SC 8426MouseHumanSanta CruzE-cadherin (G-10)

IgG2a39 (43 kDa)FAB170PMouseHumanR&D SystemsCXCR4-FE

IgG39 (43 kDa)ab2074RabbitHumanAbcamCXCR4

IgG141 kDaab32MouseHumanabcamC-myc

IgG118 (26 kDa)ab23894MouseHumanAbcamCD90

IgG182 kDa130-095-195MouseHumanMacs miltenyiCD44-FITC

IgG82 kDaab51037RabbitHumanAbcamCD44

IgG2a82 kDaab6124MouseHumanAbcamCD44

IgG130 kDaab28364RabbitHumanAbcamCD31

IgG88 (140 kDa)ab52971RabbitHumanAbcamCD29

IgG2a35-45 kDa555428MouseHumanBD pharmingenCD24-PE

IgG97 (110 kDa)ab19898RabbitHumanAbcamCD133

IgG195 kDaab44967MouseHumanAbcamCD105

IgG292 kDa05-665MouseHumanMilliporeActive ß-catenin

IgG2b72 kDFAB995AMouseHumanR&D SystemsABCG2-APC

IgG2a72 kDab3380MouseHumanAbcamABCG2

IsotypeMolecular weightCatalogHostSpecificityCompanyAntibody

  
 

Table III.2 Flow cytometry isotypes 
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3.1.2 Materials for animal experiments 

3.1.2.1 Animals 

Bagg-albino/c (Balb/c) nu/nu male mice Charles River, Sulzfeld, Germany 

(8-10 week old, 20-22 g) 

 

 

3.1.2.2 Surgical materials 

BODE Cutasept F Bode Chemie, Hamburg, Germany  
Disposable scalpels Feather Safety Razor Co., Japan 

 Forceps Dosch GmbH, Heidelberg, Germany 

Hypodermic needle (30G) B-Braun, Melsungen, Germany 

Needle holder Dosch GmbH, Heidelberg, Germany 
Normal saline B-Braun, Melsungen, Germany 

Q-tips (cotton applicator) NOBA, Wetter, Germany 

Rotilabo-embedding cassettes Carl Roth GmbH, Karlsruhe, Germany 
Scissors, sharp / blunt Dosch GmbH, Heidelberg, Germany 

Syringe (1 ml, 5 ml) BD PlastipakTM, Madrid, Spain 

3.1.2.3 Medicine 

Growth Factor Reduced (GFR) BD MatrigelTM Matrix, 10ml 

3   BD Biosciences, USA 

 Ketaminhydrochlorid (Ketavet) 100 mg/ml Pfizer Pharmacia GmbH, Germany 

Xylazinhydrochlorid, Xylazin (Rompun) 2% 25 ml 

  Bayer Healthcare, Leverkusen, Germany 
 

3.1.1 Software 

Adobe Acrobat 7.0 Professional Adobe Systems Inc., USA 

Axio Vision 4.4 Carl Zeiss GmbH, Germany 

EndNote X5 (Windows Version X5)  Thomson Reuter, CA, USA 
FlowJo software Treestar Inc., Ashland, USA 

 Graphpad Prism 5.0 GraphPad Software, Inc., USA 

 Image-Pro Plus 5.0 Media Cybernetics, Inc., USA 

Microsoft Office 2003 (Word, Excel, PowerPoint) Microsoft Corporation, USA 

 SoftMax Pro Molecular Devices Corp., USA 
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SPSS Statistics 19 SPSS STATISTICS Inc., USA 

Summit 4.3 software Beckmann coulter GmbH, Germany 

Windows XP Professional Microsoft Corporation, USA 
 

3.2 Methods 

3.2.1 Methods of pancreatic cancer 

3.2.1.1 Cell lines and culture 

The highly metastatic human pancreatic adenocarcinoma cell line L3.6pl was used to develop 

gemcitabine resistant cell lines (L3.6plGres). L3.6pl was cultured in medium with increasing 

concentrations of gemcitabine, starting at 0.5ng/ml up to 7.5 ng/ml. The media was exchanged 

twice a week. Cells were incubated in a humidified incubator (37ºC, 5% CO2). For in vivo 

experiment, L3.6plGres cell lines were prepared on reaching 60-70% confluence for SP 

population isolation. 

 

3.2.1.2 Analysis of SP- and NSP-cell fractions of L3.6pl or L3.6plGres 

SP- and NSP-cell fractions of L3.6pl or L3.6plGres with or without antisense treatment were 

identified or isolated using a modification of the protocol described (Goodell et al 1996). 

Briefly, cells were re-suspended at 37ºC in DMEM containing 2% fetal bovine serum and 

labeled with Hoechst at a concentration of 2.6 µg/ml for 1 hour at 37ºC, 225 µM verapamil 

was applied as a specific SP inhibitor. After staining, the cells were maintained at 4ºC in the 

dark until flow cytometry analysis. Cells were counterstained with 10 µg/ml propidium iodide 

to label dead cells, analyzed or sorted by MoFlo with the Summit 4.3 software. Hoechst dye 

was excited at 355 nm (UV), and the fluorescence was measured at two wavelengths using a 

450/50 nm (blue) band-pass filter and a 670/30 nm (red) long-pass edge filter. Isolated SP 

cells from L3.6pl and L3.6plGres were kept on ice for further application. 

 

3.2.1.3 Antagomirs of miR-21 and miR-221 

Antisense oligonucleotides (ASOs) of miR-21 and miR-221 were purchased as 

phosphorotioate miScript miRNA Inhibitor (Anti-hsa-miR-21-5p or Anti-hsa-miR-221-3p) 
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and transfected into L3.6pl or isolated SP cells by using HiperFect transfection reagent refer 

to the manufacturer’s instructions. All stars negative control siRNA was used as control. 

Transfection efficiency was measured using all stars negative control siRNA with Alexa fluor 

488 modifications. The knockdown effect of ASOs was detected by real time PCR. 

 

3.2.1.4 RNA isolation and miRNA or target gene quantification 

RNA including miRNAs was isolated from in L3.6pl or L3.6plGres or sorted SP and NSP 

fraction as manufacturer described by using miRNeasy kit, 100ng of total RNA were used to 

prepare cDNA fragments for further quantification. The expression of miR-21 and miR-221 

was quantified using the miScript SYBR® Green PCR Kit as the manufacturer's instructions. 

MiRNA expression was related to the RNU6B internal control, the expression of miRNA 

putative target genes CDK6, IRAK3, NRP1, SMAD7, SOCS6, C5ORF41, KLF12, MAPK10, 

EFNA1 and ZBTB41 were predicted by online prediction tools (miRanda, Target Scan and 

PicTar), scored by mirSVR (Table III.3). And they were further detected by QuantiFast 

SYBR Green PCR Kit and normalized by 18S ribosomal RNA. Data were calculated using 

the comparative CT method. 

Table III.3 miRNAs target prediction tools. 

Method Type of method Method availability Resource 

miRanda & mirSVR Complementary Download http://www.microrna.org 

Target Scan Seed Complementary Online search http://www.targetscan.org 

PicTar Thermodynamics N/A http://pictar.mdc-berlin.de/ 
 

 

3.2.1.5 Cell apoptosis analysis 

To determine cell cycle distribution, cells with or without ASOs transfection were collected 

and fixed with cold ethanol at 4oC for 1 hour. Fixed cells were washed and suspended in 1 ml 

of PBS containing 50 µg/ml RNase A and 10 µg/ml propidium iodide. After incubating for 20 

minutes at 37oC, cells were analyzed for DNA content by flow cytometry FACS Calibur. Cell 

cycle distributions were determined using FlowJo software. Sub-G0/G1 was then quantified 

and used as an estimate of the amount of the cells undergoing apoptosis. The cellular debris 

was excluded from the analysis. Experiments were repeated three times. 
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3.2.1.6 Cell viability, proliferation and cytotoxicity assay 

Cell viability can be distinguished by trypan blue staining. The dead cells with membrane 

defects that are not able to exclude the blue dye will display blue under the phase contrast 

microscopy. 10-100 µl of single cell suspension was gently mixed with an equal volume of 

0.4% trypan blue. The calculation is as below: 

Cell number per ml = equality of four blue-regions unstained cell number × 2 × 104 

Cell viability = unstained cells/(unstained+ trypan blue stained cells) × 100% 

Cell proliferation was measured using the CCK-8 kit or TACS MTT cell proliferation and 

viability assay kit used according to the manufacturer’s instructions. Briefly, 8000 cells per 

well plated on a 96-well plate were grown over night, with or without pre-treatment of ASOs 

and further treated for 24 hours with chemotherapeutics (gemcitabine or 5-FU) and analyzed 

afterwards using VersaMax tunable microplate reader and Softmaxpro for data analysis. 

 

3.2.1.7 Transmigration assay 

After transfection with antagomirs, L3.6pl cells were cultured in serum-free medium 24 h 

before the start of the migration assay. 2.5×104 cells/well cells were seeded to the upper 

chamber of the migration assay set. The bottom chamber was filled with 10% FBS medium. 

After 24 hours of incubation, the cells on the upper surface of the filters were completely 

removed by wiping with a cotton swab. The chambers were washed with PBS and fixed with 

4% Paraformaldehyde, then stained and measured by OD450 nm on VersaMax tunable 

microplate reader and further analyzed by Softmaxpro software. 

 

3.2.1.8 Human pancreatic cancer specimens and normal adjunct tissue samples 

All human pancreatic samples were obtained from the department of surgery, Klinikum 

Großhadern, Ludwig-Maximilians-University of Munich. Before surgery, all patients 

provided a written informed consent. Samples were snap-frozen in optimal cutting 

temperature and stored at −80 °C until use. Total RNA including miRNA was isolated as 

described before. The pathological status and follow up of the patients was provided by the 

hospital. The quantitative examination of miRNA expression in those samples follows as 

described above. 
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3.2.1.9 Tumorigenicity assay and Antisense therapy in vivo 

8-10 week-old male athymic BALB/c nu/nu mice were housed and maintained as described 

before. Mice were anesthetized with ketavet (100 mg/kg mouse body weight) and xylazin (5 

mg/kg mouse body weight) followed premedication with atropine sulfate. 106 L3.6plGres cells 

or 105 isolated SP or NSP cells from L3.6plGres (in 40 µl PBS) with or without antisense 

therapy were injected into the sub-capsular region of the pancreas (group detail shown in 

Table III.4, procedure detail shown in Figure III.4). 

After transfection and injection, cell viability was determined the with trypan blue staining in 

order to control the therapeutic efficiency. Orthotopic tumor growth was monitored twice a 

week. On day 35 or 63 after the injection, animals were sacrificed and examined for 

orthotopic tumors, lymph node and hepatic metastases. The tumor volume and weight was 

measured. The presence of tumor was further confirmed by Hematoxylin and Eosin (H&E) 

staining. 

 

3.2.1.10 Immunohistochemistry 

 Hematoxylin and Eosin staining 

All tumors from the in vivo experiments were formaldehyde-fixed and embedded in paraffin. 

Then 3 µm serial sections were generated. Tissues were deparaffinized in xylene, and 

rehydrated in a graded series of ethanol. After 5-8 minutes in Mayers Hematoxylin 

immersion, the sections were washed with warm running water. Then the sections were 

immersed several seconds in Millipore water and stained with 0.1% Eosin solution for 2-5 

minutes. After dehydration with graded series of ethanol, the sections were mounted with 

Kaiser’s glycero gelatine and sealed with coverslips. 

Staining for Ki67, CD31 and TUNEL (The assessment of in situ cell proliferation, 

angiogenesis and apoptosis) 

Tissue sections (4 µm) were deparaffinized in xylene and rehydrated in a graded series of 

ethanol. Endogenous peroxidase was blocked by incubation with 3% hydrogen peroxide 

followed by antigen retrieval using antigen retrieval solution. Endogenous avidin and biotin 

were blocked using the Avidin/Biotin blocking kit. The slides were treated for 20 minutes 

with blocking solution followed by overnight application of anti-Ki67 antibody and anti-

CD31 antibody as primary antibodies. Then biotinylated secondary antibody as well as the 
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ABC reagent for signal amplification was applied. Slides were washed in TBS buffer, stained 

with DAB and counter-stained with hematoxylin and then mounted in Kaisers 

Glycerinegelatine. Apoptotic cells can be detected by terminal deoxynucleotidyl transferase 

(TdT)-mediated dUTP nick end labeling (TUNEL). Fluorescent staining for apoptotic cell 

death was done on paraffin-embedded tissue sections by using the In Situ Cell Death 

Detection kit according to the manufacturer's protocol, with a DAPI nuclear counterstaining. 

After immunohistochemical staining for Ki67 and TUNEL, slides were analyzed at 200x 

magnification under the microscope or fluorescent microscope. Areas presenting the highest 

density of Ki67 positive cells or nuclear TUNEL signals were chosen and captured as 

photographs. These photographs were analyzed by Image-J program. The Ki67 or TUNEL 

index were evaluated in a blinded manner and calculated as Ki67 positive cells (nuclear with 

brown color) or apoptotic cells (nuclear with green fluorescence) divided by all tumor cells in 

one field. Necrotic tumor cells were excluded from the cell count. MVD (Micro vascular 

density) was evaluated by CD31 positive structures that were identified for vessel counts. 

 

3.2.1.11 Statistical analysis 

Statistical evaluation was performed on SPSS 19.0 (Chicago, IL) using the paired student’s t-

test or ANOVA test. Data were expressed as means ± standard error. Differences were 

considered statistically significant at p< 0.05 (p<0.05 marked as ‘*’; p<0.005 marked as ‘**’; 

p<0.0005 marked as ‘***’). GraphPad Prism® 5.0, SPSS 19.0 or Microsoft excel 2007 

softwares were used to generate graphs and tables. 

 

3.2.2 Methods of esophageal cancer 

3.2.2.1 Esophageal cancer cell lines and resistant subtypes 

The human esophageal cancer cells lines OE19, OE21, OE33, PT1590 and LN1590 were kept 

at 37oC under an atmosphere of 5% CO2 and harvested with trypsin-EDTA in their 

exponential growing phase. IC50 of 5-FU and cisplatin were determined by cell cytotoxic 

assay. Resistant cells were cultured in medium with increasing concentrations of 5-FU or 

cisplatin according to the IC50 values (from 10% IC50 up to 5 folds of IC50), respectively. 

Media were changed twice a week. 
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3.2.2.2 Flow cytometry analysis and sorting 

SP cells in esophageal cell lines were stained as described earlier. Cells with or without 

treatment were analyzed with a LSR II flow cytometer equipped with 20-mW, 355 nm UV 

laser. Hoechst fluorescent blue was measured with a 450/50BP and Hoechst fluorescent red 

with a 670/30BP filter. The accordant SP subpopulation was sorted with MoFlo high speed 

sorter. Sorted cells were then used for the following experiments. 

For further analysis cells were kept in the dark and cold blocked with FCR blocking reagent 

15 min and stained with cancer stem cell surface markers 45 min on ice. FITC, PE and APC 

isotype controls were used as negative control. FITC and PE were excited at 488 nm by an 

octagon blue laser, and fluorescence was detected using 530/30 and 675/20 filters, 

respectively. FL4 excitation of APC was at 633 nm, emission was at 660 nm. Dead cells were 

excluded by gating on forward and side scatter and eliminating PI or 7-AAD positive 

population cells. All the FACs data were analyzed on FlowJo software. 

 

3.2.2.3 Cell cytotoxicity assay 

Cell growth curves or inhibition rates following treatment with chemotherapy were 

determined in three separate experiments using the CCK-8 and were expressed as percentage 

of control absorbance. Esophageal cancer cells were seeded as 104 per well in a 96-well plate, 

the accordant chemotherapy was added after 24 hours incubation; the cytotoxicity was 

measured after 48 hours after treatment. For sorting SP and non-SP cells were plated in 96-

well plates at a density of 3000 cells per well and allowed to grow for additional 48h or 72h in 

either drug-free medium or under treatment. The 50% inhibitory concentration (IC50) of cell 

growth for each cell line was then analyzed using VersaMax tunable microplate reader and 

Softmaxpro. 

3.2.2.4 Colony formation assay and soft agar assay 

500 or 1000 sorted SP and non-SP cells were seeded in 500ul 10%FCS RPMI-1640 on 24-

well plate. Media were changed once weekly, after 3-5 weeks colonies (>50 cells) were 

counted. Colonies were fixed in 100% cold methanol and stained with 0.1% crystal violet. For 

soft agar assays a 6-well culture plate was coated with 2 ml bottom agar mixture (DMEM/F12 

with 10% FBS, 0.6% agar). After the bottom layer was solidified 2 ml top agar-medium 

mixture (DMEM/F12 with 10% FBS, 0.3% agar) containing 2000 sorted cells was added, and 
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the plate was incubated at 37°C for 3-5 weeks. Plates were then stained with 0.05% crystal 

violet and the colonies were counted. 

 

3.2.2.5 Immunofluorescence analysis 

After sorting both SP and non-SP cells were plated on Lab-Tek™ chamber slides in normal 

cell culture media at 37°C with 5% CO2. Cells were fixed with 4% paraformaldehyde for 30 

min at room temperature, permeabilized with 0.1% Triton X-100 in blocking serum for 30 

minutes at room temperature, and finally incubated with anti-ABCG2 (dilution 1:200), anti- 

CD133 (dilution 1:200), anti-CD44 (dilution 1:200), anti-CD45 (dilution 1:200), anti-B-

catenin (dilution 1:200) at 4°C overnight. After the cells were stained with a matched FITC or 

DyLight-594 conjugated secondary antibody (dilution 1:200) for 1 hour at room temperature, 

the chamber slides were counterstained with DAPI in mounting medium and visualized by 

digital fluorescence microscopy using the AxioVision Rel. 4.6 software. For further image 

processing and analysis the software Image-pro was used. 

 

3.2.2.6 RT2 Profiler PCR Array System 

The expression of EMT-related genes were examined using the RT2 Profiler EMT PCR array 

(Cat.no. 330231 PAHS-090C, SuperArray Bioscience) including cell surface receptor, 

extracellular matrix, cytoskeletal genes mediating cell adhesion, migration, motility, and 

morphogenesis, genes controlling cell differentiation, development, growth, and proliferation 

as well as signal transduction and transcription factor genes that cause EMT and associated 

processes (Figure III.3). Total RNA of 5x105 sorted SP cells from OE19 or OE19/5FUres was 

isolated by using miRNeasy kit. cDNA was synthesized from 250 ng of RNA using a RT2 

First start kit. PCR was performed with the RT2 profiler PCR array system according to the 

manufacturer's instructions using ABI StepOnePlusTM. The expression levels of different 

mRNAs were normalized using housekeeping genes expression of B2M, HPRT1, GAPDH 

and ACTB. The expression of Wnt target genes were examined using the RT2 profiler Wnt 

signaling targets PCR array (Cat.no. 330231 PAHS-243ZC, SuperArray Bioscience) on 84 

key genes responsive to Wnt signal transduction (Figure III.3). Total RNA of 5x105 cells with 

and without 48h 5 mM aspirin treatment OE19/5FUres were isolated by using miRNeasy kit. 

Transcription and PCR was performed as EMT array. ACTB B2M, GAPDH, HPRT1 and 

RPLPO were housekeeping genes in this panel Data was analyzed by Web-Based PCR Array 
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Data Analysis software (http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php) 

 

 

Figure III.3 Panel of genes of EMT and Wnt target PCR array 

 

3.2.2.7 Western blot analysis 

Cells were directly lysed in RIPA buffer supplemented with protease/phosphatase inhibitors 

or sorted into PBS containing 2% fetal bovine serum on ice re-suspended with lysis buffer. 

Cell lysates were incubated on ice for 10 min and centrifuged at 14000 g at 4°C for 10 min. 

Protein concentrations were measured using the BCA protein assay. Proteins were then 

denatured by boiling for 10 minutes. The different proteins (up to 20 µg) were loaded onto 

sodium dodecyl sulfate-polyacrylamide gels for electrophoresis and then transferred onto 

nitrocellulose membranes. After blocking with 5% milk in TBST the membranes were 

incubated with the respective primary antibody according to the manufacturer’s instructions at 

4°C overnight. After washing with TBST 3 times the membranes were incubated with 

corresponding horseradish peroxidase (HRP)-conjugated secondary antibody at room 

temperature for 1 hour. Following another washing procedure with TBST 3 times the 

detection was performed using the enhanced chemiluminescense system. β-actin was used to 

ensure equal protein loading. 

 

3.2.2.8 Statistical analysis 

Statistical evaluation was referred to the statistical analysis in the part of pancreatic cancer 

study.  
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3.3 Experimental setting 

3.3.1 Pancreatic cancer 

All mice were randomized into the respective experimental groups (as shown in Table III.) 

and carried out according to the schedule of Figure III.4. Orthotopic model of pancreatic 

cancer was established as shown in Figure III.5. 

 

Group Group name Cells Therapy Cells per Mouse 

Group 1 L3.6plGres L3.6plGres No 1x106 

Group 2 L3.6plGres-SP L3.6plGres-SP No 1x105 

Group 3 L3.6plGres-NSP L3.6plGres-NSP No 1x105 

Group 4 all stars L3.6plGres-SP All stars 1x105 

Group 5 miR-21 L3.6plGres-SP Anti-miR-21 1x105 

Group 6 miR-221 L3.6plGres-SP Anti-miR-221 1x105 

Group 7 miR-21+221 L3.6plGres-SP Anti-miR-21+221 1x105 

a

b
Group L3.6plGres-SP all stars miR-21 miR-221 miR-21+221 
Primary Tumor 4/5 4/5 2/4 1/5 0/5 
Metastasis 3/5 2/5 1/4 0/5 0/5 

Group L3.6plGres L3.6plGres-SP L3.6plGres-NSP 
Primary Tumor 5/5 4/5 0/3 
Metastasis 3/5 3/5 0/3 

 

Group 1: Balb/c nu/nu mice injected with L3.6plGres cells (n=5) 

Group 2: Balb/c nu/nu mice injected with SP cells isolated from L3.6plGres cells (n=5) 

Group 3: Balb/c nu/nu mice injected with NSP cells isolated from L3.6plGres cells (n=3) 

Group 4: Balb/c nu/nu mice injected with SP cells isolated from L3.6plGres cells and 

transfected with all stars (n=5) 

Group 5: Balb/c nu/nu mice injected with SP cells isolated from L3.6plGres cells and 

transfected with anti-miR-21 (n=5) (one mouse died after operation procedure) 

Group 6: Balb/c nu/nu mice injected with SP cells isolated from L3.6plGres cells and 

transfected with anti-miR-221 (n=5) 

Group 7: Balb/c nu/nu mice injected with SP cells isolated from L3.6plGres cells and 

transfected with anti-miR-21+221 (n=5) 

Table III.4 Group design of antagomirs therapy of gemcitabine resistant stem like side 
population cells in vivo. 
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Figure III.4 Experimental schedule for the study of antagomirs therapy. Unsorted L3.6plGres 

grows rapidly after one week of orthotopic injection. Sorting work was sequentially done and 
transfected during first 3-5 days. Group 1 L3.6plGres cells induced tumor growth after 7 days 
of cell implantation. SP cells induced palpable tumors one month after injection. Tumor 
growth was monitored twice a week. On day 35, group 1 mice were sacrificed while other 
mice were sacrificed at 63 days after the injection due to moribund control animals. 

 

 

Figure III.5 Orthotopic model of intra-pancreas injection. a) A small left abdominal flank 
incision was made and the spleen was exteriorized. b) 30-gauge needle, 1 ml disposable 
syringe, and a calibrated pushbutton-controlled dispensing device were used to inject the 
tumor cell suspension. c) There should be a fluid bleb without intraperitoneal leakage after a 
successful sub capsular intrapancreatic injection. 
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3.3.2 Esophageal cancer 

All mice were randomized into the respective experimental groups (as shown below) and the 

corresponding subcutaneous model of esophageal cancer was established as shown in Figure 

III.6. 

Group design of sorted subpopulation cells from esophageal cancer cell lines 

Group 1: Balb/c nu/nu mice injected with SP cells isolated from OE19 (n=3) 

Group 2: Balb/c nu/nu mice injected with non-SP cells isolated from OE19 (n=3) 

 

Figure III.6 Subcutaneous model of subpopulation cells. a) A point of right or left or middle 
in back on the skin of mice was chosen for injection. b) 30-gauge needle, 1 ml disposable 
syringe were used to inject cell suspension within 100 µl volume. c) There should be a fluid 
bleb under the skin after a successful subcutaneous injection. 
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IV. RESULTS 

4.1 Cancer stem cell target therapy in pancreatic cancer 

4.1.1 Microarray data validation 

4.1.1.1 miR-21 and miR-221 are significantly up regulated in SP cells from the 

pancreatic cancer cell line L3.6pl 

MiR-21 is one of the first oncomiRs identified. It is encoded on the human chromosome 

17q23.2. MiR-21 has been shown to be overexpressed in hematologic and solid tumors of the 

lung, breast, stomach, prostate, colon, brain, head and neck, esophagus, and pancreas 

(Lujambio and Lowe 2012). MiR-221 is highly homologous with miR-222 and is encoded on 

Xp11.3 of human chromosome. A series of studies have demonstrated the actions of miR-221 

as an oncomiR in various human cancers including: glioblastoma, breast, colon, lung, liver, 

pancreas, prostate, stomach and thyroid papillary cancer (Garofalo et al 2012). 

Our previous analysis found a distinct proportion of SP in L3.6pl cells. In an orthotopic 

xenograft model, L3.6pl-SP cells presented as highly tumorigenic and metastatic compared to 

non-SP cells (NSP). By microarray expression profiling we identified several dysregulated 

miRNAs in L3.6pl-SP as compared to NSP cells: Let-7g was 5.2 fold down regulated while 

miR-221, miR-21, miR-30c-2, and miR-211 were significantly up regulated in L3.6pl-SP 

cells, in particular, miR-21 and miR-221 displayed a fold change of 6.4 and 10.2, respectively 

(Table IV.1). Due to the significant fluctuations in levels of miRNAs seen in the cancer 

samples studied, we choose ultimately to study the role of miR-21 and miR-221 in more 

advanced models of tumor growth. 

RT-PCR results demonstrated significant increased expression of miR-21 with 2.0- and miR-

221 at 7.7-fold in L3.6pl-SP as compared to NSP cells (p<0.05) (Figure IV.1). 

Table IV.1 Mature sequence of human miR-21 and miR-221. 

Table&1&&Fold&change&of&miRNA&expression&&in&SP&comparing&to&NSP&in&L3.6pl&cell&line&

Gene Symbol Title Mature Sequence
Microarray 

Fold Change

MIRN21 MI0000077 Homo sapiens miR-21 stem-loop 5' UAGCUUAUCAGACUGAUGUUGA 6.41

MIRN221 MI0000298 Homo sapiens miR-221 stem-loop 5' AGCUACAUUGUCUGCUGGGUUUC 10.22

Antagomirs Gene Symbol Mature Sequence Microarray Fold 
Change 

Anti-hsa-miR-21-5p MI0000077 Homo sapiens miR-21 stem-loop 5' UAGCUUAUCAGACUGAUGUUGA 6.41 

Anti-hsa-miR-221-3p MI0000298 Homo sapiens miR-221 stem-
loop 5' AGCUACAUUGUCUGCUGGGUUUC 10.22 

Gene Symbol Name Mature Sequence Microarray Fold 
Change 

MIRN21 MI0000077 Homo sapiens miR-21 stem-loop 5' UAGCUUAUCAGACUGAUGUUGA 6.41 

MIRN221 MI0000298 Homo sapiens miR-221 stem-loop 5' AGCUACAUUGUCUGCUGGGUUUC 10.22 

Gene Symbol Name Mature Sequence Microarray Fold 
Change 

MIRN21 MI0000077 Homo sapiens miR-21 stem-loop 5' UAGCUUAUCAGACUGAUGUUGA 6.41 

MIRN221 MI0000298 Homo sapiens miR-221 stem-loop 5' AGCUACAUUGUCUGCUGGGUUUC 10.22 
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Figure IV.1 Relative expression of miR-21 and miR-221 in SP and NSP from L3.6pl. SP and 
NSP cells from pancreatic cancer cell line L3.6pl were isolated. RNU6B was used for 
normalization of expression. miR-21 and -221 are significantly up regulated in SP cells of 
L3.6pl as compared to NSP cells, *p<0.05. 

 

4.1.1.2 miR-21 and miR-221 overexpression is related to gemcitabine resistance 

L3.6pl acquired gemcitabine resistance through step-wise exposure of 0.5 ng/ml to 7.5 ng/ml 

gemcitabine. The IC50 increased from 6.1 ng/ml ± 0.9 to 119.8 ng/ml ± 5.1 together with a 

significant enrichment of SP in L3.6plGres (Figure IV.2). A significant enhancement of SP 

cells was found in L3.6plGres cells (0.9% ± 0.2 vs. 5.4% ± 0.8, p<0.0001) associated with a 

1.8-fold and 2.7-fold increase in the expression of miR-21 and miR-221 in L3.6plGres 

compared to parental L3.6pl cells (both miRNAs, L3.6plGres vs. L3.6pl cells, p<0.05) (Figure 

IV.3) 
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Figure IV.2 Side population proportions in L3.6pl and L3.6plGres. SP levels were increased 
from 0.9% ± 0.2 to 5.4% ± 0.8 (***p<0.0001) when L3.6pl acquired enhanced gemcitabine 
resistance. 

 

Figure IV.3 miR-21 and -221 relative expressions in L3.6pl and L3.6plGres. Both miRNAs 
increased 1.8-fold and 2.7-fold in gemcitabine resistant cells- L3.6plGres as compared to 
parental L3.6pl cells, *p<0.05. 

 

4.1.2 miR-21 and -221 antisense therapies in vitro 

4.1.2.1 miR-21 and -221 antisense therapies reduced the amount of SP L3.6pl cells 

significantly 

The inhibitory effects of ASOs on their respective target miRNAs were then analyzed. 

Following transfection of L3.6pl cells with ASOs directed against miR-21, miR-221 or both 

together, the relative expression of miRNA-21 or -221 was specifically reduced by its 

corresponding antagomir (antagomirs vs. all stars control, p<0.0005). Combined transfection 

with ASOs against miR-21 and miR-221 displayed a more than additive effect on miR-221 

expression than that seen with monotherapy (combined antagomir therapy vs. each 

monotherapy, p<0.0001) (Figure IV.4). 
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Figure IV.4 The effect of antagomirs on miR-21 and miR-221 expression in L3.6pl. The 
expression levels of the target miRNA were assessed after transfection. The combination 
therapy displayed a dramatic synergistic effect on miR-221 expression (antagomirs vs. all 
stars control, ***p<0.0005; combined antagomir therapy vs. each monotherapy, 
***p<0.0001). 

 

L3.6pl cells were transfected with different antagomirs as described above, followed by 

Hoechst33342 staining for detection of the SP proportion. Antagomirs against miR-21 slightly 

reduced the SP content from 5.0% ± 1.8 to 4.7% ± 1.1 while miR-221 substantially decreased 

to 3.0% ± 0.5, respectively (Figure IV.5). The combination therapy of both antagomirs 

showed a significant reduction of the SP population (2.1% ± 0.9), as compared to the control 

group (all stars control vs. anti-miR-21+221, p=0.034). 

 

Figure IV.5 Hoechst 33342 based flow cytometric analysis of SP fraction. Cells were treated 
with control oligos and antisense to miR-21 and -221 with a concentration of 50 nM. 
Antagomirs against miR-21 or miR-221 reduced the SP content from 5.0% ± 1.8 to 4.7% ± 
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1.1 and 3.0% ± 0.5, respectively. The combination therapy of both antagomirs showed a 
significant reduction of the SP proportion (2.1% ± 0.9) compared to the control group (all 
stars control vs. anti-miR-21+221, *p<0.05). 

 

4.1.2.2 The miR-21 and miR-221 antisense therapies inhibited L3.6pl proliferation 

Cytotoxicity of the antagomirs was studied by MTT assay with 48 hours continuous exposure 

of miR-21 and miR-221 ASOs treatment. Monotherapy with anti-miR-21 did not show a 

significant reduction in cell viability compared to control oligos in L3.6pl cells while 

treatment with anti-miR-221 partially inhibited cell viability down to 85.5% ± 21.2. Only the 

combined ASOs therapy had a significant impact on cell viability, which is from 114.2% ± 

31.5 to 53.3% ± 15.2 (all stars control vs. anti-miR-21 + 221, p=0.013) (Figure IV.6). 

 

Figure IV.6 Effect of inhibition of miR-21 and miR-221 on cell proliferation. Cells were 
treated with all stars control oligos and antagomirs against miR-21 and -221 at a concentration 
of 50nM for the duration of 48 hours. Cell viability was detected by MTT assay. Only the 
combined ASOs therapy led to a significant reduction of cell viability (53.3% ± 15.2) as 
compared to all stars control oligos (114.2% ± 31.5) (all stars control vs. anti-miR-21 + 221, 
*p<0.05). 

 

4.1.2.3 Effect of miRNA inhibition on apoptosis 

The effect of anti-miR-21 and/or anti-miR-221 therapy on apoptosis of L3.6pl cells in the 

subG0/G1 phase of cell cycle was examined. The apoptosis rate under all stars, anti-miR-21, 

anti-miR-221 and anti-miR-21+221 are 6.4% ± 2.3, 9.1% ± 5.8, 18.5% ± 8.4 and 36.4% ± 

13.7, respectively. Treatment with anti-miR-221 alone or in combination with anti-miR-21 

resulted in a significantly higher amount of cells in subG0/G1 phase (all stars vs. anti-miR-
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221, p=0.015; all stars vs. anti-miR-21+221, p=0.0018) (Figure IV.7). 

 

Figure IV.7 Effect of inhibition of miR.21 and miR-221 on cell apoptosis. The percentage of 
apoptotic cells following transfection with all stars control, anti-miR-21, anti-miR-221, and 
anti-miR-21+221 are 6.4% ± 2.3, 9.1% ± 5.8, 18.5% ± 8.4 and 36.4% ± 13.7, respectively. 
Treatment with anti-miR-221 alone or in combination with anti-miR-21 resulted in a 
significantly higher amount of cells in sub G0/G1 phase (all stars control vs. anti-miR-221, 
*p<0.05; all stars control vs. anti-miR-21+221, **p<0.005). 

 

4.1.2.4 The miR-21 and miR-221 antisense therapy reduced the migration of L3.6pl 

cells in a Boyden chamber model 

Our previous data indicated a higher metastatic potential of L3.6pl-SP cells as compared to 

NSP cells in an orthotopic nude mouse model (data submitted). The general migratory 

potential of treated cells was then evaluated. Transfection of L3.6pl cells with anti-miR-221 

and anti-miR-21 ASOs therapy led to a strong reduction of cell migration in a Boyden 

chamber assay with OD value from 1.7 ± 0.3 to 0.2 ± 0.3 and 1.0 ± 0.5, respectively, as 

compared to transfection with all stars control oligos. Notably, the combined transfection of 

anti-miR-21 and anti-miR-221 ASOs completely abolished cell migration (OD=0.02 ± 0.02). 

In addition, anti-miR-21 had a significantly stronger inhibiting effect on cell migration than 

anti-miR-221 (Figure IV.8). 
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Figure IV.8 Anti-miR-21 and -221 suppressed the transmigration of L3.6pl by Boyden 
chamber assay. Transfection with anti-miR-21 and anti-miR-221 ASOs led to a reduction of 
cell migration in a Boyden chamber assay from 1.7 ± 0.3 to 0.2 ± 0.3 and 1.0 ± 0.5, 
respectively, as compared to transfection with all stars control oligos. Notably, the combined 
transfection with anti-miR-21 and anti-miR-221 ASOs completely abolished cell migration 
(OD=0.02 ± 0.02) (all stars control vs. anti-miR-21, ***p<0.0005; all stars control vs. anti-
miR-21+221, ***p< 0.0001). In addition, anti-miR-21 had a significantly stronger inhibiting 
effect on cell migration than anti-miR-221. 

 

4.1.2.5 The miR-21 and miR-221 antisense therapy sensitized L3.6pl cells towards 

gemcitabine or 5-FU 

To examine the effects of ASOs on chemotherapy resistance, L3.6pl cells were again 

transfected with ASOs against miR-21 and miR-221 as pre-treatment and followed by 

administration of gemcitabine or 5-FU at the IC50 concentration for 48 hours. The OD value 

following all stars control oligos transfection decreased from 1.4 ± 0.2 to 0.8 ± 0.1 or 0.7 ± 

0.1 with gemcitabine (IC50 =6.1 ng/ml ± 0.9) or 5-FU (IC50 =10 µg/ml ± 2) treatment. When 

combined with anti-miR-21+221, relative cell proliferation after gemcitabine treatment was 

0.5 ± 0.2 (p=0.037), while after 5-FU treatment was 0.2 ± 0.3 (p=0.030) (Figure IV.9). These 

results suggest that suppression of miR-21 and miR-221 combination can sensitize tumor cells 

to anticancer agents. 
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Figure IV.9 Antisense pre-treatment sensitized the anti-proliferative effect of gemcitabine and 
5-FU. The anti-proliferative effect was measured 48 hours after application of chemotherapy. 
The OD value after transfection with all stars control oligos decreased from 1.4 ± 0.2 to 0.8 ± 
0.1 or 0.7 ± 0.1 following gemcitabine or 5-FU treatment, respectively. When combined with 
anti-miR-21+221 ASOs therapy, the measured OD values after treatment with gemcitabine 
and 5-FU were 0.5 ± 0.2 and 0.2 ± 0.3, *p<0.05, respectively. 

 

4.1.2.6 MiR-21 and miR-221 regulate a cohort of putative tumorigenic genes 

To further validate the molecular effects of miR-21 and -221, we analyzed the expression of 

putative target genes of these miRNAs. Both miR-21 and 221 are involved in the expression 

of more than 200 genes, including CDK6, C5ORF41, EFNA1, IRAK3, KLF12, MAPK10, 

NRP1, SMAD7, SOCS6 and ZBTB41. To determine whether down regulation of both 

oncomirs could affect putative target genes L3.6pl cells were transfected with antagomirs. 

The expression of CDK6, KLF12, MAPK10, and C5ORF41 was significantly increased at the 

mRNA level after transfection (Figure IV.10). There is no statistic significance in the 

expression of NRP1 and SMAD7 after either mono- or combined antagomirs transfection. 

However, EFNA1 and ZBTB41 displayed a relatively down regulation under antisense 

therapy. Interestingly, mono-therapy with each antagomir did not lead to a re-expression of 

the target gene IRAK3, however, the transfection with both antagomirs together displayed a 

dramatic overexpression of IRAK3. All genes are putative targets of miR-21 or miR-221 and 

play an important role in cancer related biological processes according to their functions in 

the NCBI gene bank.  
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Figure IV.10 Quantification analysis of the putative target gene expression with antagomirs 
transfection. L3.6pl cells were transfected by antagomirs and detected by SYBR® Green PCR 
methods. GAPDH was used as housekeeping gene control. The expression of CDK6, KLF12, 
MAPK10, and C5ORF41 was significantly increased at the mRNA level after transfection. 
Interestingly, mono-therapy with each antagomir did not lead to a re-expression of the target 
gene IRAK3, while the combined treatment with both antagomirs displayed a dramatic 
overexpression of IRAK3 (antagomirs vs. all stars control, *p<0.05; combined antagomir 
therapy vs. all stars control, #p<0.05). 

 

4.1.3 Overexpression of miR-21 and -221 in pancreatic adenocarcinoma tumors  

To further demonstrate the clinical relevance of miR-21 and -221 in pancreatic cancer, the 

relative expression of both miRNAs was detected by qRT-PCR in paired human tumor and 

adjacent normal tissue samples. The expression of both miRNAs was further correlated to 

demographic and histopathological parameters of the patient collective (Higher amount of 
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miRNA in tumor tissue was defined as high level of this miRNA while lower amount in 

tumor tissue was defined as low level, as compared to adjacent normal pancreas, Table IV.2). 

The expression of miR-21 and -221 was significantly higher in tumor tissues compared to 

corresponding adjacent normal tissues in all paired tissue samples (miR-21, p=0.012; miR-

221, p=0.017) (Figure IV.11). Due to the small sample size, there was no statistically 

significant correlation between the tumor staging, differentiation, metastasis and miRNA 

levels in patients. 

 

Figure IV.11 Comparison of miR-21 and miR-221 expression in 28 paired tumor and normal 
tissues by qRT-PCR. RNU6B as control of normalization of expression. miR-21 and miR-221 
was significantly up-regulated in tumor tissues comparing to the corresponding normal tissues 
of pancreatic adenocarcinoma patients, *p< 0.05. 
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Table IV.2 Association of miR-21 and miR-221 expression with clinic pathologic covariates 

 

 

4.1.4 The miR-21 and -221 antisense mono and combined therapies in vivo 

The anti-tumor effect of antagomir therapy has been previously evaluated in several cancer 

models including breast cancer and liver cancer, but as of yet, not extensively in pancreatic 

cancer. Our results suggest that miR-21 and miR-221 expression may represent a potential 

target for pancreatic tumor therapy in vitro. We then sought to extend our observations to in 

vivo models. To this aim, we transiently transfected resistant side population cells isolated 

from L3.6plGres with anti-miR-21 or anti-miR-221, either alone or in combination or with 

control negative all stars. The viability of the cells after sorting and transfection was examined 

by trypan blue staining. The transfection efficiency was found to range from 85% to 95%. 

L3.6plGres whole population, non-transfected SP and NSP sub population cells, or the four test 

groups of transfected SP cells were orthotopically injected into the pancreas of nude mice. 
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Figure IV.12 Antagomirs therapy suppresses tumorigenicity of stem like SP cells from 
L3.6plGres in vivo. Effect of antisense inhibition on tumor formation ability in pre-treated 
xenograft model. Tumor size was documented twice a week. All stars displayed no significant 
difference on tumorigenicity as compared to no transfected control. Anti-miR221 showed 
better effect and the combination therapy show a best inhibition on tumor growth. 

 

Table IV.3 Tumor weight of mice under different antagomirs therapies 

Group L3.6plGres L3.6plGres-SP all stars miR-21 miR-221 miR-21+221 L3.6plGres-NSP 

Tumor weight (g) 3.0 ± 1.5 3.4 ± 0.6 2.3 ± 0.6 1.0 ± 1.0 0.3 ± 0.2 0.2 ± 0.02 0.2 ± 0.08 
p value 0.67a  -  0.034a 0.088b 0.0002b <0.0001b 0.0003a 
Note: Tumor weight = Mean ± SD; a compared with SP group; b compared with all stars group 

Group L3.6plGres L3.6plGres-SP all stars miR-21 miR-221 miR-21+221 L3.6plGres-NSP 

Primary Tumor 5/5 4/5 4/5 2/4 1/5 0/5 0/3 
Metastasis 3/5 3/5 2/5 1/4 0/5 0/5 0/3 

 

 

As shown in Table IV.3, there was no significant difference in tumor weight of primary 

tumors generated from 1x106 L3.6plGres whole population cell compared to 1x105 L3.6plGres-

SP cells (3.0 g ± 1.5 vs. 3.4 g ± 0.6, p=0.67), demonstrating high tumor initiating capacity of 

SP cells in vivo. Pancreatic tissues (including tumors) from 1x105 L3.6plGres-NSP cells were 

significantly smaller than tumors generated from 1x106 L3.6plGres whole population cells or 

1x105 L3.6plGres-SP cells (L3.6plGres-SP vs. L3.6plGres-NSP: 3.4 g ± 0.6 vs. 0.2 g ± 0.1, 

p=0.0003). In addition, the metastatic activity of 1x105 L3.6plGres-SP cells was found to be 

relatively equivalent to 1x106 L3.6plGres whole population cells. Figure IV.12 and Figure 

IV.13 displayed a significant effect of antisense therapy against miR-21 and miR-221 in 
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L3.6plGres-SP cells, in particular, when used as combined treatment, resulting in a significant 

reduction of primary pancreatic tumor growth in a nude mouse model (all stars control vs. 

anti-miR-21, p=0.088; all stars control vs. anti-miR-221, p=0.0002; all stars control vs. anti-

miR-21+221, p<0.0001). Furthermore, anti-miR-221 as well as the combined therapy led to 

abolishment of detectable liver and lymph node metastases (Table IV.4). 

 

 

Figure IV.13 Tumor growth curves measured after injection of SP cells transfected with either 
all stars control or antagomirs. The tumor size was detected as the longer diameter. 

 

Table IV.4 The incidence of primary pancreatic tumors as well as metastatic spreads. 

Group L3.6plGres L3.6plGres-SP all stars miR-21 miR-221 miR-21+221 L3.6plGres-NSP 

Tumor weight (g) 3.0 ± 1.5 3.4 ± 0.6 2.3 ± 0.6 1.0 ± 1.0 0.3 ± 0.2 0.2 ± 0.02 0.2 ± 0.08 
p value 0.67a  -  0.034a 0.088b 0.0002b <0.0001b 0.0003a 
Note: Tumor weight = Mean ± SD; a compared with SP group; b compared with all stars group 

Group L3.6plGres L3.6plGres-SP all stars miR-21 miR-221 miR-21+221 L3.6plGres-NSP 

Primary Tumor 5/5 4/5 4/5 2/4 1/5 0/5 0/3 
Metastasis 3/5 3/5 2/5 1/4 0/5 0/5 0/3 

 

 

4.1.5 Ex vivo analysis of tumor proliferation, apoptosis and angiogenesis under target 

therapy in vivo 

In addition to histomorphological alterations, we also evaluated the effects of antagomir 

therapy using immunohistochemical staining for anti-Ki67, TUNEL, and anti-CD31 to assess 

effects on tumor cell proliferation, apoptosis, and angiogenesis ex vivo. Representative fields 

are shown in Figure IV.14. Pancreatic tumors generated from L3.6plGres-SP cells or L3.6plGres-

SP cells transfected with all stars control oligos displayed comparably higher Ki67 positivity 

in the tumor tissue (equivalent to pancreatic tumors generated from L3.6plGres whole 

population cells) while tumors following ASOs therapy showed a significant reduced cell 
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proliferation. Data were shown in Figure IV.15. In addition, TUNEL assay showed increased 

apoptosis in pancreatic tumors treated with anti-miR-21, or anti-miR-221, as compared to all 

stars control oligos (Figure IV.16). Finally, CD31 positive structures indicating MVD were 

found to be decreased following ASOs therapy, in particular after anti-miR-221 treatment 

(Figure IV.17). Our results demonstrated that ASOs therapy of pancreatic tumors generated 

from L3.6plGres-SP cells showed reduced tumor growth by inhibiting cell proliferation and 

angiogenesis and by promoting tumor cell apoptosis in vivo. Histomorphological and 

immunohistochemical tissue analysis of tumors generated from L3.6plGres whole population 

versus L3.6plGres-SP cells showed no significant difference in the Ki67 and TUNEL index or 

MVD (Ki67: L3.6plGres vs. L3.6plGres-SP, p=0.35; TUNEL: L3.6plGres vs. L3.6plGres-SP, 

p=0.21; L3.6plGres vs. L3.6plGres-SP, p=0.12). 

These results demonstrate that treatment of gemcitabine resistant SP cells from L3.6plGres with 

antagomirs, especially in combined therapy, abolished tumor growth by inhibiting 

proliferation, angiogenesis and promoted apoptosis.  
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Figure IV.14 Histomorphological and immunohistochemical tissues analysis of cell 
proliferation, apoptosis and angiogenesis using H& E, Ki67, TUNEL and CD31 staining. 
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Figure IV.15 Antisense therapy caused inhibition of L3.6plGres-SP tumor cells proliferation in 
vivo. L3.6plGres-SP vs. all stars control, p=0.47; all stars control vs. miR-21, ***p<0.0001; all 
stars control vs. miR-221, *p<0.05. 

 

  

 

Figure IV.16 Antisense therapy caused apoptosis of L3.6plGres-SP tumor cells in vivo. 
L3.6plGres-SP vs. all stars control, p=0.15; all stars control vs. miR-21, ***p<0.0001; all stars 
control vs. miR-221, ***p<0.0005. 
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Figure IV.17 Antisense therapy caused reduction of MVD in L3.6plGres-SP tumor cells in 
vivo, in particular following therapy with anti-miR-221. All stars control vs. miR-21, 
***p<0.0001; all stars control vs. miR-221, **p<0.005; L3.6plGres-SP vs. all stars control, 
**p<0.005. 
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4.2 Characterization and target therapy of cancer stem cells in esophageal cancer 

4.2.1 Identification of stem like side population in esophageal cancer cell lines 

In parallel with the pancreatic cancer studies detailed above, a general analysis of the biology 

of SP cells in human esophageal cancer was initiated. 

4.2.1.1 Identification of side population cells in human esophageal carcinoma cell lines 

Hoechst 33342 dye staining of esophageal cell lines showed varying levels of SP cells in the 

different esophageal cancer cell lines examined. These were 17.1% ± 3.0, 0.6% ± 0.3 and 

8.8% ± 2.7 in OE19, OE21, and OE33, respectively. The proportion of SP cells was 

significantly diminished to 0.34% ± 0.36, 0.10% ± 0.14, and 0.51% ± 0.43 in responses to 

verapamil treatment (p=0.013, 0.041, and 0.038) (Figure IV.18). Interestingly, PT1590 and 

LN1590 cells showed no detectable amount of SP cells based on the standard protocol. 

 

Figure IV.18 Side population cells exist in different esophageal cancer cell lines. OE19, 
OE21, and OE33 cells were stained with 2.5 µg/ml Hoechst 33342 and analyzed by FACS. 
After blocking the ABC transporters with 225 µM verapamil, the SP fraction was significant 
reduced in OE19 and OE33 and vanished totally in OE21. 

 

4.2.1.2 Side population cells are able to self-renew and differentiate in vitro 

To explore the clonogenic ability of SP and non-SP cells in vitro, colony formation assays 
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were performed. SP cells from OE19, OE21, and OE33 formed more colonies than non-SP 

cells (Figure IV.19). In soft agar assays, we found that OE19-SP cells were found to generate 

visible spheres while OE19-non-SP did not (Figure IV.20). 

Isolated SP and non-SP cells from OE19 were cultured separately under the same conditions 

for 1-3 weeks followed by Hoechst 33342-dye re-analysis. SP cells were able to generate 

extremely higher amount of SP (50.9 % of whole cell population) and lower amount of non-

SP cells. The proportion of the second-generation SP cells was reduced under verapamil 

treatment but displayed a relative resistant to verapamil as compared to first sorting SP cells. 

By contrast, OE19-NSP cells generated only a proportion of 0.86% SP cells and completely 

blocked by verapamil (shown in Figure IV.21). 
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Figure IV.19 Side population cells are able to self-renew in vitro. SP cells in OE19, OE21, 
and OE33 possessed significantly higher clonogenic capacities compared to non-SP cells in 
vitro (*p<0.05). Exemplary pictures of each group are shown in the upper row. 

 

Figure IV.20 Side population cells are able to self-renew in an anchorage independent way. 
OE19-SP cells were able to grow in an anchorage independent manner (right) in a soft agar 
assay (100× magnification; scale bar=200 µm). 

 

Figure IV.21 Side population cells are able to differentiate in vitro. OE19-SP and non-SP cells 
were isolated and cultured separately for 1 week in RPMI medium with 2% FCS. Cells 
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derived from the SP proportion showed re-population with SP content of 50.9%. Cells derived 
from non-SP cells showed a markedly lower re-population rate with a substantially lower 
content of SP (0.86%), which could be totally diminished after verapamil treatment. In OE33 
cells, similar results were obtained (data not shown). 

 

4.2.1.3 Side population cells show higher tumorigenicity in vivo 

OE19 tumor xenografts were established by subcutaneous injection of 1.0×105 SP or non-SP 

cells on the back of Balb/c nu/nu mice. At 63 days after tumor cell injection, all animals were 

sacrificed. The weight of the subcutaneous tumors originating from SP cells was significantly 

higher compared to subcutaneous tumors from non-SP cells (1.0 g ± 0.4 vs. 0.2 g ± 0.3, 

p=0.04), Figure IV.22). 

 

 

Figure IV.22 Side population cells are more tumorigenic in vivo. a) SP or NSP cells were 
injected into the right flank of the nude mice. Tumor growth was monitored until in 2 months 
after implantation. SP cells generated significantly larger tumors than NSP cells. SP cell 
tumor measured 12.0, 13.7, and 7.0 mm (mean of length, width and height) in diameter while 
NSP cell tumors measured 7.0, 1.0, and 0.0 mm, respectively. SP tumors displayed 
significantly higher tumor weight than NSP tumors (1.0 g ± 0.4 vs. 0.2 g ± 0.3, *p<0.05) b) 
Following subcutaneous injection of SP cells in vivo tumor growth started 4 weeks later, the 
diameter was measured and the tumor growth curve was calculated every week. Animals were 
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sacrificed when the largest tumors reached about 15 mm in diameter. 

 

H&E staining was conducted to ensure that each mass was a tumor and not due to a 

connective tissue artifacts. Pathology results confirmed that the tumors formed by SP cells 

were typical human EAC cells similar to those seen using unsorted OE19 cells. The tumors 

grew as a neoplastic columnar-type epithelium with multiple mitotic figures and mucus 

production (Figure IV.23). 

 

Figure IV.23 H&E staining showed the histological characteristics of OE19-SP formed 
esophageal adenocarcinoma. a) 100× magnification, scale bar=200 µm. b) 200× 
magnification, scale bar=100 µm. 

 

4.2.1.4 Intrinsic chemotherapy resistance of SP cells 

As discussed above, SP cells often possess resistance to chemotherapy. After sorting, OE19-

SP and non-SP cells were plated for 24 hours in tissue culture flasks. Following primary 

attachment, the cells were harvested and re-plated in 96-well plates for treatment with 5-FU 

and cisplatin over 48 hours. Following treatment with 5ug/ml 5-FU the cell viability was 

45.1% ± 5.1 of SP versus 33.0% ± 2.5 for non-SP cells. Treatment with 5ug/ml cisplatin led 

to a cell viability of 44.4% ± 6.3 of SP versus 30.8% ± 5.5 of non-SP cells (Figure IV.24). 
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Figure IV.24 Side population cells are chemoresistant. OE19 SP cells were more resistant to 
chemotherapeutic drugs such as a) 5-Fluorouracil and b) cisplatin than corresponding non-SP 
cells. Following treatment with 5 µg/ml 5-FU cell viability was 42.3% ± 1.3 and 33% ± 2.5 in 
SP and non-SP cells, respectively. Treatment with 5 µg/ml cisplatin led to a viability of 48% 
± 0.81 and 30.8% ± 5.5 in SP and non-SP cells, respectively (*p<0.05). 

 

4.2.1.5 Side population cells show higher expression of cancer stem cell associated 

markers 

OE19-SP cells demonstrated significantly higher expression of ABCG2 and CD44 than that 

seen in OE19-non-SP cells (Figure IV.25a). In addition, FACS results displayed higher 

expression of active β-catenin displayed by SP cells (24.4%) than seen in NSP cells (6.6%) 

(Figure IV.25b). Interestingly, we could not detect a clear CD133+ subpopulation either in 

OE19-SP cells, OE19-non-SP cells or in the whole cell population of OE19 (<0.2%) (Data 

were not shown). Fluorescent staining supported this observation showing a stronger staining 

of ABCG2 and CD44 in OE19-SP as compared to OE19-non-SP cells (Figure IV.26). β-

catenin had an accumulated nuclear localization in OE19-SP cells; whereas OE19-non-SP 

showed more cytomembraneous staining which indicated that Wnt signaling is activated in SP 

cells (Figure IV.26). 
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Figure IV.25 Side population cells express cancer stem cells markers. a) Representative flow 
cytometric analysis of ABCG2 and CD44 in OE19 cells and sorted SP and non-SP 
subpopulations showed an enrichment of ABCG2 and CD44 positive cells in SP cells. b) 
Sorted SP cells were detected with 24.4% active-β-catenin positive cells, as compared to 
6.6% active-β- catenin positive cells in non-SP cells. 
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Figure IV.26 Side population cells express cancer stem cells markers. ABCG2 (red), CD44 
(red), and CD45 (green) were localized on cell membrane, whereas β-catenin (red) was 
localized in the nucleus in SP cells as compared to a cytomembraneous staining in non-SP 
cells (400× magnification; scale bar=50 µm). 
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4.2.2 Stem like side population and chemoresistance of esophageal cancer cell lines 

4.2.2.1 Enrichment of side population cells based on acquired resistance to 5-FU or 

cisplatin 

To study the potential association between chemotherapy resistance and enrichment of SP 

cells in the PT1590 and LN1590 cell lines, which lacked an initial stable SP subpopulation, 

each cell line was cultured in medium with increasing concentrations of 5-FU and cisplatin 

starting from 0.1 µg/ml up to 5 µg/ml for more than 10 months. Stable chemotherapy resistant 

cell lines PT1590/5-FUres, PT1590/CDDPres as well as LN1590/5-FUres and LN1590/CDDPres 

were established with significantly higher IC50 values (Table IV.5). Protein levels of 

thymidylate synthase were highly elevated in PT1590/5-FUres and LN1590/5-FUres as 

compared to the sensitive cells (Figure IV.27a). Accordingly, ERCC1 was markedly higher 

expressed in PT1590/CDDPres and LN1590/CDDPres using FACS analysis as compared to the 

respective sensitive cell lines (Figure IV.27b). 

Table IV.5 IC50 values of both sensitive and resistant PT1590 and LN1590 cells. 
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Figure IV.27 Selection of 5-FU and cisplatin resistant cells in PT1590 and LN1590. a) 
Western blot analysis indicates that resistance to 5-FU is attributed to elevation of thymidylate 
synthase activity. b) Cisplatin resistant marker-ERCC1 was detected by flow cytometry and 
has relatively higher expression in cisplatin induced chemotherapy resistant cells (PT1590 vs. 
PT1590/CDDPres: 35.7% ± 0.9	
 vs. 46.4% ± 2.4; LN1590 vs. LN1590/CDDPres: 39.4% ± 1.8 
vs. 52.2% ± 3.5, *p<0.05). 

 

4.2.2.2 Enrichment of side population cells based on acquired resistance to 5-FU or 

cisplatin 

The SP fraction was significantly enriched in both 5-FU and cisplatin resistant cell lines, 

raising from 0.01% to 0.23% and 0.85% in PT1590/5-FUres and PT1590/CDDPres cells, and 

from 0.04% to 2.80% and 1.06% in LN1590/5-FUres and LN1590/CDDPres cells (Figure 

IV.28a and b). With increasing duration of chemotherapy the SP subpopulation was step 

wisely expanded. For example, PT1590/CDDPres showed approximately 0.1% of SP cells 

after 2 months continuous treatment with cisplatin, 0.7% after 4 months and 1.3% of SP cells 

after 8 months of chemotherapy (Figure IV.28c). 
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Figure IV.28 Side population increased after chemotherapy selection in both PT1590 and 
LN1590 cell lines. a) SP amount in PT1590 increased from 0.01% ± 0.01 to 0.22% ± 0.02 and 
0.84% ± 0.04 in 5-FU and cisplatin resistant cells, ***p<0.0001. b) SP amount in LN1590 
increased from 0.04% ± 0.02 to 2.8% ± 0.08 and 1.06% ± 0.05 in 5-FU and cisplatin resistant 
cells, ***p<0.0001. c) With increasing duration of chemotherapy, the SP subpopulation is 
growing from 0.01% up to 0.1%, 0.7%, and 1.3% following 2, 4, and 8 months of therapy, 
respectively. 

 

4.2.3 5-FU induced chemoresistance is associated with EMT 

4.2.3.1 Chemoresiatance and EMT in OE19 

OE19 cells were then continuously cultivated over a 6-12 month period in the presence of 1-

20µg/ml 5-FU. The surviving cells (OE19/5-FUres) resembled spindle–shaped mesenchymal-

like cells that grew differently as compared to sensitive cells, which were packed in tissue 

culture (Figure IV.29). OE19/5-FUres cells demonstrated a significantly higher IC50 value of 

191.9 ± 3.1µg/ml compared to sensitive OE19 cells with an IC50 value of 26.8 ± 0.2 µg/ml 

after 5-FU application for 48 hours (p=0.00017). Since we observed a different morphology 

of OE19/5-FUres cells (with a mesenchymal-like phenotype), Vimentin, which is a type III 
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intermediate filament (IF) protein expressed in mesenchymal cells, was determined in both 

cell lines by immunofluorescent staining and western blot analysis (Figure IV.30). The 

protein level of Vimentin was found to be elevated in OE19/5-FUres cells and predominantly 

expressed at the cell surface. Furthermore, ABCG2/BCRP1, a calcium-sensitive cell surface 

protein excluding the Hoechst dye, conferring resistance to several chemotherapeutic agents 

as previously reported, was significantly elevated in OE19/5-FUres cells with 4.97 ± 1.5 fold 

positive ABCG2 cells compared to sensitive OE19 cells (p=0.0105) (Figure IV.31). 

Immunofluorescent staining for ABCG2 displayed a cytomembraneous expression in OE19/5-

FUres cells (Figure IV.31). In concordance with recent studies describing the presence of the 

ABCG2 transporter highly correlates with the SP phenotype, we could demonstrate a 

significant enhancement of SP cells from 2.18% ± 0.25 in sensitive OE19 cells compared to 

19.74% ± 4.06 in OE19/5-FUres cells (p=0.026) (Figure IV.32). 

 

Figure IV.29 Morphology of sensitive OE19 and OE19/5-FUres cells. (100× magnification; 
scale bar=200 µm). 

 

 

Figure IV.30 Establishment of OE19/5-FUres cell lines: association to a mesenchymal like 
phenotype. a) The mesenchymal marker Vimentin was expressed on the cell surface of 
OE19/5-FUres cells showing a mesenchymal-like phenotype. b) The protein level of Vimentin 
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was elevated in OE19/5-FUres cells. (400× magnification; scale bar=50 µm). 

 

 

Figure IV.31 ABCG2 up regulated in OE19/5-FUres. a) ABCG2 positive cells were 
significantly higher in OE19/5FUres cells (red line) as compared to sensitive OE19 cells (green 
line). b) Immunofluorescent staining for ABCG2 demonstrated a markedly stronger 
cytomembraneous expression in OE19/5FUres cells. (400× magnification; scale bar=50 µm). 

 

 

Figure IV.32 Side population increased significantly in OE19 in response to 5-FU. The 
percentage of SP cells was 2.4% compared to 16.9% in OE19 and OE19/5FUres cells, 
respectively. 

 

4.2.3.2 EMT is associated to chemotherapy resistance in side population cells 

Finally, we investigated whether SP cell induced chemotherapy resistance is associated with 

epithelial-mesenchymal transition. A commercial EMT PCR array (The Human Epithelial to 

Mesenchymal Transition RT² Profiler™ PCR Array) was used to profile the expression of 84 

key genes that either change their expression during EMT, or regulate alterations of EMT 

associated gene expression. SP cells isolated from OE19 and OE19/5-FUres were analyzed as 
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described in materials and methods. The mRNA expression of SLUG (SNAI2), CALD1, 

WNT11, MSN, ZEB1, SERPINE1, VCAN, COL3A1, ERBB3, TMEFF1, TCF4, ITGA5, 

TIMP1, GSK3B, ITGAV, BMP1, MMP9, COL5A2, FOXC2, MMP3, NOTCH1, 

VIMENTIM, MAP1B, FN1, DSC2 and COL1A2 was found to be significantly up-regulated 

in SP cells from OE19/5-FUres cells (>4 fold changes) when compared to expression in the SP 

subpopulation of sensitive OE19 cells. In contrast, a decrease of TSPAN13 and IL1RN 

mRNA expression in OE19/5-FUres-SP cells was found. Key factors of the Wnt, Notch, and 

TGF-β/BMP signaling pathway such as WNT11, NOTCH1, and BMP1 were also 

differentially expressed in OE19/5-FUres-SP cells as compared to the SP subpopulation of 

sensitive OE19 cells (Table IV.6). 

Table IV.6 Side population cells regulate EMT associated genes during chemoresistance. 

 

 

4.2.4 Cancer stem cells targeted therapy via Wnt signaling pathway 

4.2.4.1 Aspirin inhibits SP in esophageal cancer cell lines 

As detailed earlier, Wnt signaling is a key pathway linked to the regulation of CSCs. CSCs 

contribute to drug resistance and are enriched during the process of chemoresistance. Recent 
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reports indicate that the emergence of CSCs occurs in part, as a result of EMT, and 

accumulating evidence suggests that EMT of tumor cells not only causes increased metastasis, 

but also contributes to drug resistance. Aspirin has been described as Wnt signaling inhibitor. 

Therefore, suppression Wnt pathway activated cancer stem cells or stem like subpopulations 

by aspirin might provide an easy and effective therapeutic strategy safely. 

We investigated potential aspirin effects on side population cells in esophageal cell lines 

directly. Treatment with 5 mM aspirin has been previously reported to induce apoptosis in 

CRC cells (Din et al 2004). This concentration of aspirin tested at 24h, 48h and 72h in OE19 

was shown to lead to a reduction in SP cell fraction from the percentage of 19.7 ± 1.0 to 6.9 ± 

1.0, 3.4 ± 0.9 to 1.8 ± 1.4, respectively (Figure IV.33). 

 

Figure IV.33 Aspirin decreased the proportion of side population cells in OE19. Cells after 5 
mM aspirin treatment were collected, counted and further stained with Hoechst 33342 at 2.6 
µg/ml per 106 living cells. 72h incubation generated a SP reduction of 90.8%, ***p<0.0001. 

 

4.2.4.2 Aspirin inhibits cell proliferation, especially on SP subpopulations in esophageal 

cancer cell line 

The effect of aspirin treatment on OE19, sorted OE19-SP, OE19-NSP cell proliferation was 

determined using the MTT assay. Aspirin concentrations lower than 1mM aspirin did not 

affect OE19 cell proliferation. 5 mM aspirin inhibited cell proliferation and showed cell 

viability as high as 107.8%, 89.3%, 72.2% and 72.3% on 6h, 24h, 48h and 72h, while 91.5%, 

57.3%, 29.5% and 21.1% at 10mM and 63.2%, 36.6%, 11.0% and 0.2% (Figure IV.34). This 

indicated the cytoxicity of aspirin on esophageal cell line is time and dose dependent. 
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Figure IV.34 Aspirin affecting cell proliferation is time and dose dependent. There is no 
significant difference between 48h and 72h treatment at the concentration lower than 10 mM. 

 

Aspirin had a significant stronger effect on SP cell proliferation as compared with the NSP 

cells. Cell viability of SP is percentage of 85.5 ± 0.7, 61.5 ± 2.7, and 51.4 ± 2.7 as compared 

to 92.3 ± 4.8, 82.9 ± 10.5 and 59.2 ± 5.3 of NSP under the treatment of aspirin at 2.5 mM, 5 

mM and 10 mM (Figure IV.35). 

 

Figure IV.35 Aspirin decreased SP cell proliferation more than NSP. SP cells are more 
sensitive than NSP with aspirin 24h therapy and display a biggest difference at 5 mM, 
*p<0.05. 

 

4.2.4.3 Aspirin inhibit 5-FU enriched side population cells in esophageal cancer cell 

lines 

OE19 and OE19/5-FUres were treated with 5mM aspirin for 48h and further detected the SP 

proportion by Hoechst 33342 staining. OE19/5-FUres has as high as 40.7% of SP, which can 
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be decreased significantly to lower than 1% of SP. Representative results are shown (Figure 

IV.36). 

 

Figure IV.36 Aspirin decreased chemoresistant SP of OE19 5-FU resistant cell line. Both 
parental OE19 and OE19/5-FUres cells after 48h 5 mM aspirin treatment were collected, 
counted and further stained with Hoechst 33342 at 2.6 µg/ml per 106 living cells. 5-FU 
resistant cells enriched SP and are able to target by aspirin. 

 

4.2.4.4 Aspirin may target the Wnt signaling pathway 

Our previous data showed an activation of Wnt/β-catenin signaling in side population and 

chemoresistant cell lines. We analyzed the dysregulation of this pathway by using Wnt 

signaling target array. OE19/5-FUres was incubated with or without 5mM aspirin for 48h and 

further isolated RNA to detect the gene expression on mRNA level. After normalization with 

housekeeping genes (ACTB B2M, GAPDH, HPRT1 and RPLPO), the relative expression of 

84 key Wnt target genes was analyzed (Table IV.7). SOX2, BMP2, MMP7, NRCAM and 

NTRK2 are dramatically down regulated after aspirin treatment (> 4 fold change); in addition 

COX2, BIRC5, LEF1, DAB2, CCND1 and CD44 were also decreased over 2 fold change. 
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Table IV.7 Aspirin inhibits Wnt target genes associated with 5-FU induced chemoresistance. 
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V. DISCUSSION 

5.1 Pancreatic cancer 

Today gemcitabine is still the standard chemotherapy for patients with locally and/or systemic 

advanced pancreatic cancer. Although clinical trials showed that gemcitabine based single or 

combined chemotherapeutic treatments improved overall and progression free survival in 

patients with advanced pancreatic cancer, still there exist no convincing predictive marker for 

therapy response and patients´ selection (Conroy et al 2011). In particular, gemcitabine 

induced resistance and systemic toxicities leads to limitations regarding its therapeutic 

application. Emerging evidence supports the notion that cancer stem cells (CSC) contribute to 

chemotherapy resistance and tumor progression. Preclinical research results support the fact 

that chemotherapy and/or radiation therapy enrich the proportion of CSCs within different 

cancer cell lines in vitro. For pancreatic cancer Du et al. found that chemo- and radiation 

resistant pancreatic cancer cells express high levels of pancreatic CSCs markers (CD24 and 

CD133) (Du et al 2011). Side population cells are also considered to possess stem cell 

characteristics in many tumors. In our previous studies we identified side population cells as a 

cellular subpopulation of metastatic pancreatic cancer cells demonstrating the ability to self-

renew in vitro with a tumorigenic and metastatic phenotype in vivo (data unpublished). Our in 

vivo results repeatedly revealed the tumor initiating capacity of pancreatic cancer SP cells 

since there was no significant difference in tumor weight of primary tumors generated from 

1x106 L3.6plGres whole population cell compared to 1x105 L3.6plGres-SP cells whereas 

primary pancreatic tumors generated from 1x105 L3.6plGres-NSP cells were significantly 

smaller (Figure IV.12). In addition, the metastatic activity of 1x105 L3.6plGres-SP cells was 

equivalent to 1x106 L3.6plGres whole population cells (Table IV.4). Others recently described 

stem-like properties including self-renewal ability and chemoresistance in BxPC-3-LN highly 

lymphatic metastatic pancreatic cancer cells. BxPC-3-LN cells also expressed higher levels of 

sonic hedgehog and cancer stem cell surface markers (CD133 and CXCR4) compared to the 

parental BxPC-3 cells (Luo et al 2013). 

We further demonstrated a significant enrichment of side population cells in L3.6pl pancreatic 

cancer cells after long-term treatment with increasing concentrations of gemcitabine (Figure 

IV.2). Side population cells are able to efflux chemotherapeutic drugs, which might be one 

explanation of their resistance against anti-cancer therapy (Donnenberg and Donnenberg 

2005, Zhou et al 2001). 
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MiRNAs are a class of conserved small non-coding RNAs that regulate gene expression by 

either repressing the translation or causing degradation of multiple-target mRNAs, so that 

miRNA dysregulation results in profound cellular consequences because individual miRNAs 

can bind to and regulate multiple mRNAs (Ambros 2004, Gregory et al 2005). In normal cells 

multiple miRNAs are responsible for the maintenance of cell homeostasis. Aberrant 

expression of miRNAs has been reported in many cancer related biological processes 

including angiogenesis, metastasis, as well as chemoresistance, EMT, and apoptosis (Esquela-

Kerscher and Slack 2006, Kasinski and Slack 2011, Kuehbacher et al 2008, Nicoloso et al 

2009, Urbich et al 2008). 

In this study, we focused on miR-21 and miR-221 as the most strongly differentially 

expressed miRNAs in pancreatic adenocarcinoma (Lee et al 2007, Moriyama et al 2009, Park 

et al 2009). A significant up regulation of both miRNAs was found in pancreatic cancer SP as 

compared to NSP cells (Table IV.1Figure IV.1). 

MiR-21 increases tumor cell proliferation, migration, and invasion through targeting a series 

of tumor suppressor genes including programmed cell death 4 (PDCD4), phosphatase and 

tensin homolog deleted on chromosome ten (PTEN), tumor suppressor gene tropomyosin 1 

(TPM1) and maspin. MiR-21 can also target the inhibitors of matrix metalloproteinases 

(TIMPs) and RECK (reversion-inducing cysteine-rich protein with Kazal motifs), resulting in 

increased expression of matrix metalloproteinases (MMPs). The miRNAs also regulate 

multiple cellular pathways including the PI3K-protein kinase B (AKT) pathway and mitogen-

activated protein kinase (MAPK)/extracellular signal regulated kinase1/2 (ERK1/2) pathway 

(Krichevsky and Gabriely 2009). In addition, Huang et al. showed that miR-21 expression is 

increased via the MAPK pathway upon stimulation with HER2/neu (Huang et al 2009b). 

Recently, reports have shown that down regulation of miR-21 inhibits the EGFR pathway and 

suppresses the growth of human glioblastoma cells independent of PTEN status (Zhou et al 

2010). Correlations between the overexpression of miR-21 and resistance to anticancer agents 

have been reported (Blower et al 2008). Specifically, inhibition of miR-21 led to increased 

sensitivity to gemcitabine in PDAC and cholangiocarcinoma cells (Meng et al 2006, 

Moriyama et al 2009, Park et al 2009). In colorectal cancer, miR-21 did not affect 

gemcitabine- induced apoptosis in colon cancer cells (Wang et al 2009), whereas is did appear 

to induced resistance to 5-fluorouracil by down regulating human DNA MutS homolog 2 

(hMSH2) (Valeri et al 2010). As one of the most abundant and easily detectable miRNAs, 

several studies have evaluated the potential application of miR-21 as a diagnostic or 
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prognostic biomarker. The expression of miR-21 has been correlated with clinical stage, 

lymph node, and distant metastasis as well as poor prognosis in glioma, colon, breast, tongue 

and esophageal squamous cell cancers (Kimura et al 2010, Li et al 2009a, Schetter et al 2009, 

Yan et al 2008). High miR-21 expression was associated with more aggressive pancreatic 

endocrine tumors, characterized by increased tumor cell proliferation and liver metastasis 

(Roldo et al 2006). 

MiR-221 plays important role in the process of tumor progression by targeting cell cycle 

regulators such as p27/Kip1 and CDKN1C/p57. In addition, it can regulate cell apoptosis by 

inhibiting PUMA and pro-apoptotic protein Bim and modulatong temozolomide response via 

a DNA repair enzyme MGMT (Fornari et al 2008, Galardi et al 2007, Garofalo et al 2012). In 

addition, Di Leva et al discovered a regulating stem-loop within miR-221 and estrogen 

receptor -α (ER-α) (Di Leva et al 2010). They found that miR-221 inhibited the expression of 

ER-α and ER-α enabled to repress miR-221 transcriptional activation. Multiple oncogenic 

signaling pathways (PI3K/AKT, Wnt, ERK, and MAPK signaling pathways) are linked to 

miR-221 through its target genes. These include pathways associated with cell proliferation, 

differentiation, migration and invasion (Garofalo et al 2012). In addition to its role of miR-

221 in cancer development, miR-221 may also play a role in the potential response during 

therapy. For example, miR-221 has a prominent in the acquisition of anti-ER reagent (such as 

tamoxifen) and fulvestrant resistance in breast cancer (Rao et al 2011). Pogribny and 

colleagues identified miR-221 up regulated in cisplatin resistance (Pogribny et al 2010). 

Another study found miR-221 could regulate radiosensitivity by directly modulating of PTEN 

expression (Chun-Zhi et al 2010). Antagomirs (ASOs) have been designed against miRNAs to 

specifically inhibit their expression. Since we identified up regulated expression of specific 

miRNAs in pancreatic cancer stem-like SP compared to NSP cells the aim of this study was to 

evaluate the therapeutic potential of specific miRNA antisense oligonucleotides (ASOs) to 

antagonize SP cell associated stem-like biological functions and thereby to consecutively 

restore chemosensitivity in pancreatic cancer. In L3.6pl whole cell population we observed 

that ASOs against miR-21 and miR-221 indeed influenced cell proliferation, apoptosis, and 

chemotherapy sensitivity (Figure IV.6; Figure IV.7; Figure IV.8; Figure IV.9). The results 

were comparable to the results of Park et al (Park et al 2009). We further confirmed a 

significant overexpression of both miRNAs following gemcitabine induced chemotherapy 

resistance in L3.6plGres pancreatic cancer cells (Figure IV.3). Li et al. reported an 

overexpression of other miRNAs such as miR-200 and let-7 in gemcitabine resistant 

pancreatic cancer cells (Li et al 2009b). The results shown here indicate that the proportion of 
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stem-like side population cells was enriched in gemcitabine resistant pancreatic cancer cells 

(Figure IV.2). Notably, combined ASOs therapy against miR-21 and -221 led to a significant 

reduction of stem like side population and consecutively to a reconstitution of sensitivity to 

either 5-FU or gemcitabine (Figure IV.9). . Kasinski and Slack postulated that a combinatorial 

use of ASOs against different miRNAs could decrease the chance of mutation-induced 

resistance (Kasinski and Slack 2011). 

The metastatic capacity of pancreatic cancer SP cells has been linked to activation of EMT 

(Kabashima et al 2009). Growing evidence demonstrates a potential role of miR-21 in 

regulating embryonic stem cell pathways and biological functions of CSCs especially EMT 

(Bao et al 2011). Recently, Han et al. elucidated a reversal of EMT in a breast CSC model by 

antagomir-induced inhibition of miR-21 (Han et al 2012a, Han et al 2012b). ASOs therapy 

against miR-21 or miR-221 resulted in a significantly reduced transmigration of L3.6pl in 

vitro (Figure IV.8). ASOs therapy substantially lowered the incidence of liver metastases in 

vivo. Intriguingly, combined ASOs therapy led to complete abolishment of detectable 

metastatic lesions. 

Anticancer miRNA-based therapy has the theoretical advantage of targeting multiple 

biological cancer related pathways. In vitro inhibition of miR-21 and -221 in the unselected 

L3.6pl whole cell population affected a series of regulated genes such as IRAK3, C5ORF41, 

KLF12, and MAPK10 (Figure IV.10) involved in transcription activity and interacting with 

important cancer associated biological functions such as proliferation, migration, and 

apoptosis. IRAK3 functions as a key inhibitor of TLR2/NFkB-mediated chronic inflammation 

that is negatively associated with oxidative stress, and obesity-related insulin resistance and 

metabolic syndrome (Hulsmans et al 2012). MAPK10 may function as a tumor-suppressor 

gene by regulating apoptosis (Ying et al 2006). Recently, miR-21 is further identified as both 

a target and a regulator of ERK/NF-κB and JNK/c-Jun and the feedback regulations of miR-

21 and MAPKs via Pdcd4 and Spry1 are involved in arsenite-induced malignant 

transformation of HELF cells (Shen et al 2013). These co-targeted genes by both miR-21 and 

miR-221 and co-regulating pathways such as PI3K/AKT, Wnt, ERK, and MAPK signaling 

pathways and auto-regulatory loops mediated by miR-21 (Garofalo et al 2012, Pan et al 

2010), indicating a potential cross talk between both miRNAs and may help to explain the 

phenomena that inhibition of miR-21 together with miR-221 had a more than additive effect 

on miR-221 expression. 

The direct transfection of antagomirs or negative all stars control oligo into freshly isolated 
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side population cells with a transfection efficiency about 85%-95%. Cell viability after 

transfection just before orthotopic tumor cell injection was higher than 90%. 

Histomorphological and immunohistochemical tissue analysis of primary pancreatic tumors 

following orthotopic injection of ASOs transfected L3.6plGres-SP cells showed a higher level 

of apoptotic cells, and reduced proliferative tumor cells coincident with a decrease in MVD, 

in particular following transfection with anti-miR-221 confirming the anti-angiogenic effect 

of miR-221 inhibition for pancreatic cancer. 

To demonstrate the clinical relevance of miRNAs for pancreatic cancer, we further analyzed 

the expression of miR-21 and miR-221 in human pancreatic cancer and adjacent normal tissue 

samples. Both miRNAs were significantly overexpressed in tumor as compared to the 

corresponding adjacent normal pancreatic tissue (Figure IV.11). Aberration of miR-155 

expression has already been observed in PanIN-2, miR-21 abnormalities in PanIN-3 lesions 

during the multistep progression towards pancreatic cancer (Ryu et al 2011). Aberrant 

miRNA expression may provide diagnostic biomarkers for pancreatic adenocarcinoma in the 

future. 

In summary, both microRNAs are up regulated in pancreatic cancer stem-like SP cells and 

contribute to important biological functions of cancer progression including proliferation, 

apoptosis, migration, and chemotherapy resistance. ASOs therapy against miR-21 and -221 

reduced the proportion of SP cells and effectively suppressed L3.6plGres-SP induced primary 

pancreatic tumor growth and metastasis in vivo. Our data suggest that inhibition of miR-21 

and -221 as future therapeutic strategy for pancreatic cancer is particularly suitable to target 

stem-like subpopulations and further address both miRNAs specific biological function to 

promote tumor progression (Figure V.1). 
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Figure V.1 Systematic study design of pancreatic CSC targeted therapy. Cancer stem cells or 
stem cell like subpopulation cells play important roles in self-renewal, differentiation, chemo 
or radiotherapy induced resistance and metastasis. These cells are regulated by some 
miRNAs, strategic replacement these tumor suppressor miRNAs or targeting oncogenic 
miRNAs are able to diminish CSCs, and sensitizing tumors to chemotherapy, decreasing 
metastasis and leading to systemic CSC targeted therapy. 
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5.2 Esophageal cancer 

More than 90% of esophageal cancers are either squamous cell carcinoma or adenocarcinoma 

(Daly et al 2000). The incidence of esophageal adenocarcinoma located in the distal 

esophagus and gastroesophageal junction is rising and often associated with a history of 

gastroesophageal reflux disease and Barrett's esophagus (Enzinger and Mayer 2003). More 

than two third of patients present with unresectable or metastatic disease at the time of 

diagnosis, most patients with localized disease will develop metastases despite therapy 

(Enzinger and Mayer 2003, Parkin et al 1999). Traditional chemotherapy is based on cisplatin 

and 5-fluorouracil, nowadays, a combination of both chemotherapeutic agents with epirubicin 

or taxane constitutes the most effective treatment option (Cunningham et al 2008, Thallinger 

et al 2011), however, development of resistance to chemotherapy remains a major challenge. 

An understanding of the molecular mechanisms of resistance primarily to 5-FU and cisplatin 

is important to effectively treat esophageal cancer in the future. 

Cancer stem cells are often resistant against chemotherapeutic agents either based on clonal 

selection of drug resistant cancer cells with high tumorigenic potential with respect to lung 

cancer (Levina et al 2008), or caused by elevation of drug transporters that enable the ejection 

of chemotherapeutic agents such as 5-FU and irinotecan (Chikazawa et al 2010, Yu et al 

2007). In the present study we analyzed the function of SP cells for chemotherapy resistance 

and metastasis in esophageal cancer. One key feature to characterize SP cells as stem-cell like 

cells is higher resistance to chemotherapy than the bulk of cancerous cells (resistance to 

apoptosis, expression of certain pumps, including ABCC1, ABCG2 and MDR1, which are the 

principal mediators of multidrug-resistance, quiescent in the absence of specific stimulation 

from the microenvironment). The SP assay constitutes a highly valuable primary purification 

strategy for isolating potential stem/progenitor cells from various tissues or cell lines, 

particularly in the absence of specific cell surface markers (Moserle et al 2010). The results 

presented suggest that SP cells in esophageal cancer indeed mirror the proposed biology of 

cancer stem cells. 

Using Hoechst 33342 dye we detected by FACS analysis different proportions of side 

population cells in 4 esophageal AC and one SCC cell line varying from 0 to nearly 20% 

(Dean et al 2005, Wu and Alman 2008). Side population cells are generally identified based 

on their drug/dye efflux efficiency maintained by the breast cancer resistant protein 1 

Brcp1/ABCG2, a member of ATP-binding cassette (ABC) family (Zhou et al 2001), which 

has been associated with multidrug resistance in diverse malignancies (Donnenberg and 
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Donnenberg 2005). Our results reproducibly demonstrated that OE19 cells contained a larger 

proportion of SP cells displaying intrinsically resistance towards 5-FU (Figure IV.32) and 

cisplatin (data not shown). Shi et al. found SP cells with high resistance to 5-FU, mitomycin, 

and cisplatin in hepatocellular carcinoma cell lines with different metastatic potential 

including HCCLM3, MHCC97H, MHCC97L, and Hep3B cells (Shi et al 2008), while 

Haraguchi et al. evaluated the same tendency of SP cells in Huh7 response to Doxorubicin, 5-

FU, and gemcitabine (Haraguchi et al 2006b). Previous studies have shown the existence of 

even radio-resistant stem like cells in esophageal cancer. Che et al. developed a radio-resistant 

subtype - Eca109R50Gy cells - which show some properties of CSCs (Che et al 2011), while 

Zhang et al. found an enrichment of side population cells in radio-resistant esophageal cancer 

cell lines following fractionated irradiation with high expression of stem cell markers such as 

β-catenin, Oct3/4, and β1-integrin (Zhang et al 2008b). 

To support the hypothesis that the existence of SP cells contributes to chemotherapy 

resistance, we developed 5-FU and cisplatin resistant variants of different cell lines. The 

corresponding resistant cells displayed a significantly higher IC50 value for 5-FU and cisplatin 

cytotoxicity (Table IV.5) and substantially elevated resistant markers such as thymidylate 

synthase and ERCC1 (Figure IV.27). By stepwise elevation of the respective 5-FU and 

cisplatin concentration a SP subpopulation was generated in SP negative PT1590 and LN1590 

cell lines. SP fractions increased with the duration of chemotherapy (Figure IV.28). OE19-SP 

cells showed a higher expression of ABCG2 and CD44 than that seen in OE19-NSP cells 

(Figure IV.26). The importance of ABCG2 for chemotherapy resistance was first 

demonstrated in stem cells derived from ABCG2-deficient mice that were more sensitive to 

the ABCG2 substrate mitoxantrone (Zhou et al 2002). 

Conflicting data has been reported supporting the existence of common CSC surface markers 

on esophageal cancer cells. CD44 is a transmembrane glycoprotein widely used as a surface 

marker for cancer stem cells (Jaggupilli and Elkord 2012). CD44+/CD24− cells were about 

10–60 fold more resistant to chemotherapy in relation to corresponding non-CD44+/CD24− 

cells in breast cancer (Gong et al 2010). The expression of CD44 has been found to correlate 

with a poor prognosis in esophageal SCC according to Chai (Chai et al 2007) and Takayama 

(Takayama et al 2003). Other stem cell associated tumor cell subpopulations also contribute 

to chemotherapy resistance e.g. CD133+ cells are enriched both after cisplatin exposure in 

lung cancer and following gemcitabine therapy in pancreatic cancer. CD133+ cells in 

glioblastoma, lung cancer, and hematopoietic malignancies have been linked to poor 
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prognosis (Mizrak et al 2008). However, increasing evidence suggests that CD133 may not be 

suitable as ideal cancer stem cell marker in HCC and esophageal cancer cell lines or tissues 

(Ma et al 2007). Furthermore, signal transduction pathways such as PI3K/Akt/mTOR and 

Wnt have been generally associated to cancer stem cell survival (Li et al 2003, Martelli et al 

2010). Interestingly, these pathways are often aberrantly regulated in esophageal cancer 

(Hildebrandt et al 2009, Hsu et al 2008). 

Self-renewal and the potential of differentiation are key properties of cancer stem cells and 

manifest the fundamental aspects of tumorigenicity. The SP cells described here were able to 

reproduce both SP and NSP cells with an enrichment of the SP fraction after re-sorting 

compared to the whole cell population (Figure IV.21). SP cells displayed tumorigenic 

capacity both in vitro and in vivo in colony formation assay, soft agar assays, and in a 

subcutaneous in vivo model of esophageal cancer (Figure IV.19; Figure IV.20; Figure IV.22). 

These results are in accordance to previous discoveries found in hepatocellular and brain 

cancer (Haraguchi et al 2006a, Singh et al 2004). 

The metastatic potential of SP cells has been controversial. Chua et al. described SP cells of 

the U87MG glioma cell line that were significantly more invasive than corresponding NSP 

cells (Chua et al 2008), whereas others found that SP cells of glioma or human hepatocellular 

cancer cell lines exhibited a slower migration rate in monolayers as well as Boyden chamber 

migration assays (Weber et al 2010). Interestingly, emerging evidence suggests an association 

between chemotherapy resistance and epithelial mesenchymal transition (EMT) in cancer 

(Rosano et al 2011). EMT and the reciprocal mesenchymal to epithelial transition (MET) are 

linked to tumor metastasis, stem cell differentiation, and development. Brabletz et al. 

identified cells at the invasive front of tumors, a subtype of malignant cells displaying stem 

cell like characteristics that acquired the ability of metastasis through EMT (Brabletz et al 

2005). During EMT, epithelial cells lose their apical and basolateral polarities, break their 

intercellular tight junctions, and degrade basement membrane extracellular matrix 

components to become migratory mensenchymal cells. In human esophageal cancer, changes 

in the expression of EMT key regulators such as Snail, Slug, and Twist play an important role 

in tumorigenesis and progression, and are significantly higher expressed in advanced stages 

and metastatic lesions (Kuo et al 2011, Lee et al 2012, Zhang et al 2011). Tomizawa et al. 

presented some EMT and cancer stem cell markers in specimens of early esophageal 

adenocarcinoma in Barrett´s esophagus at the invading edges of the tumor which abundantly 

express Snail, Slug, and Twist, suggesting that early stage cancers predominantly constitute 
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cells with metastatic potential (Tomizawa et al 2012). 

We observed a mesenchymal like phenotype together with Vimentin overexpression and an 

increasing SP cell fractions during the generation of resistant OE19/5-FUres in vitro (Figure 

IV.30). To evaluate whether SP cell related chemotherapy resistance leads to induction of 

EMT processes in esophageal cancer, we analyzed the expression of EMT associated genes in 

SP cells from both resistant OE19/5-FUres and sensitive OE19 cells via a high through-put 

PCR array. Zhang et al. have shown the relevant role of Slug expression in apoptosis, 

invasion, and metastasis of human esophageal adenocarcinoma cells and its relationship to E-

cadherin and BCL-2 expression in vitro and in vivo (Zhang et al 2011). Here Slug (Snail2) 

was significantly up regulated in OE19/5-FUres SP cells. The EMT activator ZEB1 is linked to 

tumor progression towards metastasis (Peinado et al 2007). Ohashi et al. found that ZEB1 and 

ZEB2 are associated to TGF-β-mediated EMT in cells with EGFR overexpression during 

esophageal carcinogenesis (Ohashi et al 2010). Recently, the ZEB/miR-200 feedback loop has 

been identified as the molecular motor for cellular plasticity in developmental processes and 

for cancer progression towards metastasis (Burk et al 2008, Wellner et al 2009). In resistant 

OE19/5-FUres cells the SP subpopulation showed 8.5 fold up-regulation of ZEB1 as compared 

to the SP subpopulation of sensitive OE19 cells. Interestingly, IL1RN, the interleukin 1 

receptor antagonist, a negative regulator of heterotypic cell-cell adhesion was 4 fold down-

regulated in the SP subpopulation of OE19/5-FUres cells. In addition, genes regulating the Wnt 

pathway such as GSK3B and WNT11 were significantly higher expressed in the SP 

subpopulation of OE19/5-FUres as compared to SP cells of sensitive OE19. Activated β-

catenin has been already demonstrated in the SP as compared to the corresponding NSP 

fraction of sensitive OE19 cells (Figure IV.26). These findings suggest that the application of 

chemotherapy may lead to propagation of stem cell like subpopulations of esophageal cancer 

cells that are not only therapy resistant but also potentially metastatic due to activated EMT 

related pathways. 

Loss of the β-catenin/E-cadherin interaction in immortalized breast epithelium is associated 

with both the epithelial-mesenchymal transition and a CSC-like phenotype (Gupta et al 2009). 

The authors found that CD44+CD24−/low cells displayed an EMT phenotype as characterized 

by the loss of E-cadherin and gain of Vimentin expression. Although activation of the Wnt 

signaling cascade was not formally shown, the dramatic increase in the CD44high CD24low 

population may mark activated Wnt signaling. Therefore, it is interesting to speculate that 

Wnt inhibitors that influence epithelial-mesenchymal transition, may help overcome CSC 
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enhanced drug resistance, and metastatic capacity in a variety of malignancies (Takahashi-

Yanaga and Kahn 2010). 

A number of existing drugs and natural compounds have been identified as inhibitors and/or 

modulators of Wnt/β-catenin signaling pathway (Takahashi-Yanaga and Kahn 2010). Aspirin 

is cheap and easy to handle in clinical application, especially, daily use of aspirin has already 

been considered as an effective cancer prevention strategy. Aspirin or other NASIDs affect 

cell proliferation, angiogenesis and metastasis and induced cell apoptosis in colorectal cancer 

(Ricchi et al 1997, Yao et al 2005). COX-2 elevation was observed in cancer cells and 

correlated with increased prostaglandin PGE2 production (Yoshida et al 2003). PEG2 can 

efficiently prevent β-catenin degradation by interfering with both GSK3-β and Axin2 

function. In an esophageal cancer model, Navtej S et al has shown that either selective or non-

selective COX-2 inhibitors can inhibit inflammation, COX-2 activity, and the development of 

adenocarcinoma induced by reflux (Buttar et al 2002). COX-2 contributes to P-glycoprotein-

mediated multidrug resistance via JNK pathway (Sui et al 2011), which suggested that 

modulation of COX-2 might regulate SP cells associated chemoresistance. In our study, under 

aspirin treatment, we firstly observed a significant inhibition of SP cells that also show 

comparable sensitive to aspirin (Figure IV.35). The reduction was strengthened in SP 

enriched chemoresistant cells that could be associated with decreased COX-2 mRNA 

expression. The cell adhesion protein family member-CD44 regulates growth, survival, 

differentiation and migration and is thereby prone to be involved in tumor progression and 

metastasis. Furthermore, CD44 was identified as CSC marker in various cancer, for instance, 

homing of leukemia cancer stem cells is dependent on CD44 (Jin et al 2006). CD44 

expression is up regulated in esophageal epithelial cells undergoing EMT (Le Bras et al 2011) 

and associated with acquirement of 5-FU resistance in ESCC cell lines (Zhao et al 2011). We 

found higher CD44 expression in OE19-SP cells than OE19-NSP cells, and could be down 

regulated by aspirin in resistant cells (Table IV.7). Other Wnt target genes, growth factors 

such as BMP4 is important in cell development and differentiation, for example, enquired for 

CD133+ CSCs maintenance (Zhang et al 2012). Cell cycle related genes-SOX2, CCND1, 

COX-2 and adhesion or migration genes MMP7, NRCAM were all down regulated under 

aspirin therapy. 

However, it is known that aspirin and other NSAIDs may cause gastrointestinal bleeding and 

heartburn (Huang et al 2010, McQuaid and Laine 2006) and it is possible that patients with 

early symptoms of esophageal, gastric, and other digestive tract neoplasms may selectively 
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avoid using it. There are also some reports suggesting a cytoprotective effect of aspirin, 

suggesting a co-treatment with aspirin might limit the outcome of anticancer therapy (di 

Palma et al 2006). Aspirin function involved in COX2 signaling and crosstalk with Wnt/β-

catenin, mTOR, AMPK, PI3K/AKT, which influenced numerous biological activities 

(Markowitz 2007), therefore is still complicated to clarify its therapeutic effect in cancer. The 

safety use of aspirin as adjuvant therapy for cancer patients is necessary to be further 

developed. 

Taken together, our data provides evidence that 1) SP cells represent a stem cell like 

subpopulation in human esophageal cancer in vivo and in vitro, 2) SP cell biology may 

contribute to intrinsic and acquired chemotherapy resistance to 5-FU and cisplatin, and 3) SP 

cells mediated chemotherapy resistance was associated with changes in EMT regulation in 

esophageal cancer. 4) Aspirin might target SP cells directly by down regulating Wnt/β-catenin 

signaling. 

The results presented suggest that long term application of chemotherapy may create acquired 

resistance in originally chemotherapy sensitive esophageal cancers by enrichment of SP 

related cells and thereby promote disease progression towards distant metastasis. Targeting 

SP cell mediated EMT activation may represent an efficient additional cancer therapy to 

overcome traditional chemotherapy resistance but also prevent disease progression towards 

distant metastases by eradicating the SP subpopulation (Figure V.2). Our results indicate in 

particular the application of Wnt inhibitors to target resistant side populations in esophageal 

cancer. 
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Figure V.2 The involvement of CSC, EMT and Wnt signaling in tumor progression. 
Traditional chemotherapy regresses the tumor size by targeting and killing rapidly dividing 
differentiated tumor cells, which constitute the bulk of the tumor, but fail to eradicate CSC 
populations. These subpopulation cells are thought to play a critical role in drug resistance 
and are associated with the acquisition of the EMT-like phenotype. Recent evidence 
correlated the interaction of Wnt/β-catenin signaling with both EMT and CSC-like phenotype. 
A number of existing drugs and natural compounds have been identified as inhibitors and/or 
modulators of Wnt signaling pathway, which might provide us a simple and safety strategy to 
overcome chemoresistance by eradicating CSC and reversing the EMT phenotype. 
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VI. SUMMARY 

• Earlier studies from our group had identified SP cells from the highly metastatic 

pancreatic cancer cell line L3.6pl showed stem cell-like properties. This subpopulation 

was able to induce fast and aggressive tumor formation in nude mice. Gene expression 

analysis demonstrated a significant difference in microRNA expression of miR-21 and 

miR-221 between SP and non-SP (NSP) subtypes. Knock down of these miRNAs was 

achieved using selective antagomir transfection, which resulted in a significantly 

reduced SP cell fraction with decreased downstream target gene regulation. The 

treated cells showed reduced L3.6pl cell proliferation, invasion, and chemoresistance 

against gemcitabine and 5-Fluorouracil. SP cells from gemcitabine resistant L3.6pl 

cells (L3.6plGres-SP) following miRNA-21 and/or -221 antagomir transfections were 

then orthotopically implanted in nude mice. Combined antagomir therapy significantly 

inhibited primary tumor growth and metastasis as compared to single antagomir 

treatment. These findings suggest that the inhibitions of miR-21 and miR-221 appear 

particularly suitable for the targeting of stem cell-like subpopulations of pancreatic 

tumors. 

 

• In the second part of this study, the biology of SP subpopulations in esophageal cancer 

cell lines and their relation to chemotherapy resistance and metastasis was 

characterized. SP subpopulations were detected in five esophageal cancer cell lines 

OE19, OE21, OE33, PT1590, and LN1590. Chemotherapy-resistant cell lines were 

developed after long-term exposure to 5-FU and cisplatin and validated by analysis of 

their expression of the resistance markers thymidylate synthase and ERCC1. While 

neither LN1590 nor PT1590 cell lines showed detectable SP cells, OE19, OE21, and 

OE33 cells were found to contain varying levels of SP cells. With increasing duration 

of 5-FU or cisplatin therapy SP subpopulations were found to outgrow in the PT1590 

and LN1590 lines. OE19-SP cells displayed significantly higher tumorigenicity than 

OE19-NSP cells following subcutaneous tumor cell injection in vivo. Cancer stem 

cells have been proposed to alter EMT status. The SP fraction of OE19/5- FUres 

showed a dramatic up-regulation of EMT-related genes as compared to the SP fraction 

of OE19.  
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Our results provide evidence that SP cells exhibit stem cell-like properties and are 

associated to chemotherapy resistance. Long-term chemotherapy effectively selects for 

the outgrowth of SP cells, which then show an altered EMT gene profile, as compared 

to the parental cell line. These results suggest that cells similar to these subpopulations 

may be the source of systemic disease relapse. Targeting the EMT associated genes in 

SP cells in esophageal cancer via modulation of Wnt signaling may show efficacy in 

improving sensitivity of the tumors to standard chemotherapy regimens. 
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VII. ZUSAMMENFASSUNG 

• In eigenen Vorarbeiten haben wir in der hoch-metastatischen humanen 

Pankreaskarzinom-Zelllinie L3.6pl die sogenannten ‘side population’ (SP) als 

Zellsubpopulation identifiziert, die Stammzelleigenschaften hat. Diese 

Tumorzellsubpopulation führte zu aggressivem Tumorwachstum im orthotopen 

Nacktmausmodel. Genexpressions-Analysen zeigten einen signifikanten Unterschied 

in der microRNA-Expression insbesondere von miR-21 und miR-221 zwischen SP 

und Non-SP-Zellen. Selektiver knock-down über Antagomir-Transfektion führte zu 

einer signifikanten Abnahme der SP-Subpopulation mit Abnahme der downstream 

induzierten Genexpression. Die transfizierten L3.6pl-Zellen zeigten eine reduzierte 

Proliferationsrate, Invasionsfähigkeit sowie Resistenz gegen Chemotherapie wie 

Gemcitabine und 5-FU. Gemcitabine resistente L3.6pl-SP-Zellen (L3.6plGres-SP) 

wurden dann nach Transfektion mit Antagomirs gegen miR-21 und/oder miR-221 

orthotop ins Pankreas von Nacktmäusen injiziert. Die kombinierte Antagomir-

Transfektion führte zur signifikanten Inhibition des Primärtumorwachstums und der 

Metastasierung im Vergleich zur jeweiligen einzelnen Antagomir-Transfektion. Diese 

Ergebnisse lassen vermuten, dass die Inhibition von miR-21 und miR-221 beim 

Pankreaskarzinom sich insbesondere als gezielte Therapie für Stammzell-ähnliche 

Tumorzellsubpopulationen eignet. 

 

• Der zweite Teil unserer Studien befasste sich mit der Biologie der SP Subpopulationen 

in Ösophaaguskarzinomzellinien und deren Verbindung zu Chemotherapieresistenz 

und Metastasierung. SP subpopulationen wurden in 5 verrschiedenen 

Ösophaguskarzinomzellinien (OE19, OE21, OE33, PT1590 und LN1590) untersucht. 

Des Weiteren wurden chemotherapie-resistente Zellinien durch langzeitige 

Behandlung mit 5-FU und Cisplatin generiert. Zur Validierung der 

Resistenzentwicklung wurden die entsprechenden Resistenzmarker 

Thymidylatsynthase sowie ERCC1 analysiert. Während weder LN1590 noch PT1590 

Zellen primär nachweisbare SP Subpopulationen aufwiesen, enthielten OE19, OE21 

und OE33 Zellen unterschiedliche prozentuale Anteile an SP Subpopulationen. Mit 

zunehmender Behandlungszeit durch 5-FU und Cisplatin ließ sich sogar eine langsam 

ansteigende Anzahl an SP Zellen in den beiden Zellinien PT1590 und LN1590 
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nachweisen. OE19-SP Zellen zeigten eine signifikant höhere Tumorigenität als OE19-

NSP Zellen nach subkutaner Tumorzellinjektion. Des Weiteren hat sich herausgestellt, 

dass Tumorstammzellen den EMT Status verändern. Die SP Subpopulation von 

OE19/5- FUres Zellen zeigte eine dramatische Hochregulierung EMT-relevanter Genen 

verglichen mit der SP Subpopulation von OE19 Zellen. 

Unsere Ergebnisse zeigen, dass SP Zellen Stammzelleigenschaften haben und mit 

Chemotherapie-Resistenz vergesellschaftet sind. Langzeitgabe von Chemotherapie 

führt eindeutig zur Anreicherung von SP Zellen, die veränderte EMT-Genprofile im 

Vergleich zu SP Zellen aus parentalen Zellinien haben. Unsere Ergebnisse lassen die 

Vermutung zu, dass diese Subpopulationen möglicherweise die Quelle für 

Rezidiventwicklung sind. Durch gezielte Therapie der hochregulierten EMT-Gene in 

Ösophaguskarzinom-SP Zellen zum Beispiel durch Modulation des Wnt-

Signaltransduktionsweges könnte die Sensitivität gegenüber Standardchemotherapie 

möglicherweise wiederhergestellt werden. 
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ABBREVIATION 

5-FU, fluorouracil 

ABC, avitin biotin complex 

Balb/C nu/nu, bagg-albino/c nude/nude 

CD, cluster of differentiation 

CDDP, cisplatin 

CDK, cyclin-dependent kinase 

cDNA, complementary desoxyriboic acid 

CFU, colony-forming units 

CT, cycle threshold  

CSCs, cancer stem cells 

CXCR, alpha chemokine receptor 

DAPI, 4’, 6-Diamidin-2-phenyl-Indol 

DMEM, dulbecco's modified eagle medium 

DMSO, dimethyl sulfoxide 

DNA, desoxyribonucleic acid 

FACS, fluorescence activated cell scan 

FCS, fetal calf serum 

EAC, esophageal adenocarcinoma 

ELISA, enzyme-linked immunosorbent assay 

EMT, epithelial to mesenchymal transitions 

ESCC, esophageal squamous cell carcinoma 

HE, hematoxylin and eosin 

HLA-DR, human leukocyte antigens-DR (major histocompatibility complex, MHC class II) 
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HRP, horseradish peroxidase 

hTERT, human telomerase reverse transcriptase 

IFN-β, beta-Interferon 

IL, interleukin 
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