
Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität 
München 

 
 
 

Transient tetraploidy as a route to chromosomal 

instability 

 

 

 

vorgelegt von 

Anastasia Yurievna Kuznetsova 

aus Moskau, Russland 

2013  



2 

 

Erklärung 

Die vorliegende Arbeit wurde zwischen October 2008 und Mai 2013 unter Anleitung 

von Frau. Dr. Zuzana Storchova       -      -                                      

              

 

Wesentliche Teile dieser Arbeit sind in folgenden Publikationen veröffentlicht: 

 

Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid 
cells 

Kuffer C, Kuznetsova AY, Zuzana Storchova. Chromosoma.  

DOI 10.1007/s00412-013-0414-0 

  



3 

 

Eidestattliche Erklärung 

Diese Dissertation wurde selbstständig, ohne unerlaubte Hilfe erarbeitet. 

 

Martinsried, am 23.05.13 

Anastasia Kuznetsova 

 

 

 

 

 

 

 

 

 

 

 

 

Dissertation eingereicht am: 23.05.13 

1. Gutachter: Herr Prof. Dr. Stefan Jentsch 

2. Gutachter: Herr Prof. Dr. Peter Becker 

Mündliche Prüfung am: 06.09.13  



4 

 

Table of Contents 

Summary ......................................................................................................................... 7 

Introduction ..................................................................................................................... 8 

1. Tetraploidy: causes and proliferation control. ....................................................... 8 

2. Tetraploid state as an intermediate to aneuploidy, chromosomal instability and 

tumorigenesis. ........................................................................................................... 11 

3. Molecular mechanisms triggering CIN. ............................................................... 15 

3.1. Aneuploid state per se as a trigger of CIN. .................................................. 15 

3.2. Loss of sister chromatid cohesion as a cause of CIN. ................................. 16 

3.3. Alterations in the spindle assembly checkpoint (SAC). ............................... 17 

3.4. Multiple centrosomes and multipolar division. ............................................. 20 

3.5. Alteration in mitotic spindle function. ........................................................... 22 

3.5.1. Defects in kinetochore organization and function. ................................... 22 

3.5.2. Alterations in the mitotic spindle machinery. ............................................ 23 

3.5.2.1. MAPs and their role in MT dynamics ................................................ 26 

3.5.2.2. Kinesins and their role in MT dynamics ............................................ 27 

3.5.3. Defects in mitotic error correction. ........................................................... 32 

3.6. Deregulation of the cell cycle arrest pathways. ........................................... 33 

Aim of This Study .......................................................................................................... 37 

Results .......................................................................................................................... 38 

1. Isolation and characterization of posttetraploid cells. ......................................... 38 

1.1. In vitro evolution of cells after tetraploidization. ........................................... 38 

1.2. Cell cycle and growth characteristics of the posttetraploid cells. ................. 39 

2. Aneuploidy and chromosomal instability of the posttetraploid cells. ................... 41 

2.1. Chromosome numbers in the posttetraploid cells. ....................................... 41 

2.2. Chromosomal instability in the posttetraploid cells. ..................................... 42 

2.3. Chromosome segregation errors in the posttetraploids. .............................. 49 

3. Causes of chromosomal instability in the posttetraploids. .................................. 52 

3.1. Contribution of supernumerary centrosomes to chromosomal instability. ... 52 

3.2. Sister chromatid cohesion in posttetraploids. .............................................. 56 

3.3. Global gene expression changes in the posttetraploids. ............................. 57 

3.3.1. Altered mitotic spindle dynamics. ............................................................. 57 



5 

 

3.3.2. Altered mitotic spindle geometry of posttetraploid cells. .......................... 60 

3.3.3. Other changes potentially causing chromosomal instability. .................... 62 

3.4. Spindle assembly checkpoint alterations in the posttetraploids. .................. 63 

3.5. Tolerance to chromosome missegregation in the posttetraploids. ............... 66 

Discussion ..................................................................................................................... 71 

Tetraploidization drives chromosomal instability independently of the p53 status. .... 71 

Erroneous mitosis is a source of CIN. ........................................................................ 74 

Supernumerary centrosomes are not the sole source of CIN in posttetraploid cells. . 76 

Sister chromatid cohesion is not altered in posttetraploids. ....................................... 78 

Altered levels of mitotic kinesins change the spindle geometry and enhance the 

frequency of segregation errors. ................................................................................ 78 

Increased tolerance to mitotic errors contributes to CIN in posttetraploid cells. ......... 83 

Supplementary Information ........................................................................................... 88 

Materials and Methods ................................................................................................ 101 

1. Materials ........................................................................................................... 101 

1.1. Cell lines. ................................................................................................... 101 

1.2. Primary antibodies. .................................................................................... 101 

1.3. Sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) gel electrophoresis 

and immunoblotting materials. ............................................................................. 102 

1.4. Other materials. ......................................................................................... 103 

2. Methods ............................................................................................................ 103 

2.1. Cryopreservation and cultivation of cells. .................................................. 103 

2.2. Generation of posttetraploid cell lines. ...................................................... 104 

2.3. Determination of non-viable cells in culture. .............................................. 104 

2.4. Protein biochemistry methods. .................................................................. 105 

2.4.1. Cell lysis and protein concentration measurement. ............................... 105 

2.4.2. SDS-PAGE and immunoblotting. ........................................................... 105 

2.5. Microscopy. ............................................................................................... 106 

2.5.1. Live cell imaging. ................................................................................... 106 

2.5.1.1. Live imaging of untreated cells and cells treated with mitotic 

poisons. ........................................................................................................ 106 

2.5.1.2. RNA interference followed by live imaging. .................................... 107 



6 

 

2.5.2. Determination of the chromosome copy number and chromosomal 

structural aberrations in cells. ........................................................................... 107 

2.5.2.1. Chromosome spreads (standard karyotyping). ............................... 107 

2.5.2.2. Fluorescence in situ hybridization (FISH) on centromeric region. ... 108 

2.5.2.3. Whole chromosome multicolor FISH (mFISH) ................................ 108 

2.5.3. Mitotic error analyses in fixed cells. ....................................................... 109 

2.5.3.1. Mitotic abnormalities scoring in anaphase and early telophase. ..... 109 

2.5.3.2. Micronucleation test. ....................................................................... 110 

2.5.4. Immunofluorescent staining. .................................................................. 110 

2.5.4.1. Mitotic spindle staining. ................................................................... 110 

2.5.4.2. Staining for interkinetochore distance, kinetochore distribution 

measurements and high-resolution mitotic error visualization. ...................... 111 

2.5.4.3. Centrosome staining. ...................................................................... 111 

2.6. High-throughput methods. ......................................................................... 112 

2.6.1. Array comparative genomic hybridization (aCGH). ................................ 112 

2.6.2. mRNA microarray-based gene expression analysis. ............................. 112 

2.7. Statistical analysis. .................................................................................... 113 

2.8. Image processing. ..................................................................................... 114 

Figure list ..................................................................................................................... 115 

References .................................................................................................................. 117 

Abbreviations .............................................................................................................. 138 

Acknowledgements ..................................................................................................... 140 

Curriculum Vitae .......................................................................................................... 142 



Summary 

 7 

Summary 

Aneuploidy, defined as alterations in both chromosome number and structure, along 

with chromosomal instability (CIN) are common hallmarks of cancer. Growing 

evidence suggests that aneuploidy and CIN facilitate carcinogenesis in both mice 

and humans. One of the routes to CIN can be via an unstable tetraploid 

intermediate. However, the mechanisms contributing to the development of CIN in 

the post-tetraploid progeny remain elusive.  

I examined the progress of human cells after tetraploidization induced by cytokinesis 

failure in otherwise chromosomally stable and p53-proficient human cells. The post-

tetraploid progeny displayed both complex aneuploidy and CIN manifested by the 

increased frequency of mitotic errors, in particular lagging chromosomes and 

anaphase bridges. I could rule out the presence of multiple centrosomes as the sole 

source of CIN, as the doubled centrosome numbers reduced soon after 

tetraploidization. Instead, I identified downregulation of several mitotic kinesins, in 

particular the kinesin-8 family motor protein Kif18A. Accordingly, the post-tetraploid 

progeny show an altered spindle geometry, which likely allows segregation larger 

DNA amounts and reflects changes in microtubule dynamics. Furthermore, I found 

that the post-tetraploid cells divide in the presence of tensionless attachments. This 

suggests an altered spindle assembly checkpoint response, possibly accompanied 

by a defective mitotic error correction. Finally, posttetraploids arrest less frequently 

after defective mitosis than the progenitor diploid and tetraploid cells. The present 

work shows for the first time that a single tetraploidization event is sufficient to cause 

CIN even in p53-proficient human cells. Importantly, the results outline the possible 

mechanisms that can lead to CIN in the progeny of human tetraploid cells.  
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Introduction 

1. Tetraploidy: causes and proliferation control.  

A whole genome multiplication or polyploidy (for example, three fold – triploidy, four 

fold – tetraploidy, etc.) is currently regarded as one of the driving forces of biological 

diversity. Polyploidization, or paleopolyploidy, was proposed to occur in plant 

evolution (Masterson, 1994) and early in the vertebrate evolution (Van de Peer et al., 

2009). It can provide organisms and their cells with additional genetic material for 

adaptation to changes in the environment (Aleza et al., 2011; Otto and Whitton, 

2000), as well as robustness against lethal mutations and loss of chromosomes. To 

date, polyploidy has been described to frequently occur in plants and fungi (Albertin 

and Marullo, 2012). In animals, polyploidy occurs predominantly in lower forms, such 

as flatworms. However, polyploidy was also reported in some higher forms of 

Animalia, such as African clawed frog (Xenopus laevis), salamanders, salmon; at the 

same time, so far in only one mammalian species red vizcacha rat (Tympanoctomys 

barrerae) and related species (Gallardo et al., 1999).  

Polyploidy can also occur in the tissues of otherwise diploid organisms. For example, 

polyploidization frequently takes place as a part of a developmental and 

differentiation program in human organisms. Prominent examples are human heart 

muscle cells and megakaryocytes, where a single polyploid cell can give rise to 

many thrombocytes. A programmed cytokinesis failure results in polyploidization in 

liver hepatocytes (Guidotti et al., 2003). A large body of evidence suggests that 

polyploidy occurs through endoreplication (i.e. duplication of the genome without 

subsequent cell division) as a stress response mechanism (Lee et al., 2009a). 

In contrast to programmed polyploidization, a duplication of the genome can occur 

aberrantly. Unscheduled polypoidy is, however, poorly tolerated by mammalian 

organisms. In humans, polyploidy is lethal at early embryonic stages and comprises 

around 20% of miscarriages due to chromosomal abnormalities (Storchova and 

Kuffer, 2008), although a few cases of tetraploid live births in humans were reported 

(Nakamura et al., 2003; Stefanova et al., 2010). 
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Three major routes to aberrant polyploidization, well documented for tetraploidy, are 

described up to date, namely, cytokinesis failure, cell-cell fusion and mitotic slippage 

(Figure 1). 

 

Figure 1. Three main routes to aberrant tetraploidy (from Storchova and Kuffer, 2008) 

Cytokinesis failure occurs when the final step in the cell division fails to execute 

properly. This can happen due to perturbations of the spindle elongation or spindle 

positioning (Normand and King, 2010), mutations in the APC (Adenomatous 

Polyposis Coli) tumor suppressor (Caldwell et al., 2007), or telomere dysfunction 

(Pampalona et al., 2012). Another pervasive reason of the cytokinesis failure is 

lagging chromosomes in anaphase that are trapped in a cleavage furrow, thus 

inhibiting furrow progression (Shi and King, 2005). The resulting binucleated 

tetraploid cell contains not only a doubled complement of chromosomes, but also 

doubled number of centrosomes. Similar binucleated cells can be formed after cell-

cell fusion, often as a consequence of virus infections, such as SV40, SARS 

coronavirus, Hepatitis B and C, and other viruses (Duelli and Lazebnik, 2007; Ornitz 

et al., 1987; Storchova and Kuffer, 2008). The slippage from mitosis, caused by 

premature exit from mitosis and G1-phase entry despite uncorrected mitotic errors, 
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can also lead to tetraploidization (Rieder and Maiato, 2004; Storchova and Kuffer, 

2008). In contrast to the first two mechanisms, mitotic slippage results in a 

mononucleated tetraploid cell. Thus, tetraploidization can occur due to various 

mechanisms, such as different types of abortive cell division as well as virus-induced 

cell-cell fusion.  

Since aberrant tetraploidization is poorly tolerated by human organism, it suggests 

the existence of mechanisms restricting further proliferation of spontaneously formed 

tetraploids (Ganem and Pellman, 2007). Initially, tetraploidy was proposed to trigger 

a so-       “     p    y      p    ”, b          b  q                 y       

cytokinesis failure in a p53-dependent manner in mammalian cells (Andreassen et 

al., 2001; Margolis et al., 2003). However, follow-up studies using lower, less toxic 

concentrations of dihydrocytochalasin B (DCB) to induce tetraploidization, proved 

that DNA replication and mitotic entry takes place in tetraploid RPE1-hTERT (retinal 

pigment epithelium cell line) and HDF (human diploid fibroblasts) (Uetake and 

Sluder, 2004; Wong and Stearns, 2005). 

The p53 pathway plays an essential role in the proliferation inhibition of tetraploid 

cells after mitotic slippage (Rieder and Maiato, 2004). In addition, p53-proficient 

DCB-treated and sorted newly formed tetraploid murine cells did not proliferate in 

culture, whereas p53-deficient cells did (Fujiwara et al., 2005). Similarly, absence of 

p53 in the tetraploids was shown to promote subtetraploid aneuploidy (Vitale et al., 

2010). The fact that tetraploid cells, formed through different mechanisms, arrest in a 

p53-dependent manner raised a question of the nature of upstream triggers of this 

arrest. 

Several cellular stresses were proposed to cause p53 activation and cell cycle arrest 

in tetraploids. For example, DNA damage might serve as an upstream activator of 

p53 pathway. In this scenario, lagging chromosomes, frequently produced in mitosis 

in tetraploids, can be damaged during cytokinesis by cleavage furrow-generated 

forces (Janssen et al., 2011) or can be exposed to conflicting forces generated by 

microtubules, emanating from multiple poles and form DNA double-strand breaks 

(DSBs) (Guerrero et al., 2010). Alternatively, defective mitosis in the presence of 

multiple centrosomes can change the cytoskeleton, organization of mitotic spindle 

and centrosome integrity. Presence of multiple centrosomes is often associated with 

centrosomal stress. The stress was shown to trigger p53 activation mediated by 
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p38/MAP stress kinase pathway; the role of p38/MAP pathway in proliferation 

restriction of tetraploids was shown in at least two independent studies (Mikule et al., 

2007; Vitale et al., 2008). Defective spindle assembly checkpoint (SAC) can lead to 

chromosome missegregation and further cause p53-dependent cell cycle arrest 

and/or death, as reported for defects in some of key SAC proteins Bub1 (Budding 

uninhibited by benzimidazoles 1), BubR1 (Budding uninhibited by benzimidazoles-

related 1) and TTK/hMps1 kinase (Huang et al., 2009b; Jeganathan et al., 2007; 

Shin et al., 2003). It is also possible that chromosome missegregation after 

multipolar mitosis that leads to imbalanced gene copy number and protein 

abundance, in turn might cause proteotoxic stress. The proteotoxic stress was 

shown in budding yeast with few additional copies of chromosomes; however, these 

changes were not associated with cell cycle arrest (Oromendia et al., 2012).  Since 

the protein imbalance after chromosome missegregation in multipolar mitosis is 

substantially higher than described in aneuploid yeast, this imbalance can potentially 

impair cell proliferation.  

Complex mitotic spindle organization of tetraploids, i.e. the increased amount of 

chromosomes and centrosomes, impedes the identification of the arrest triggers. 

Moreover, multiple factors functioning either together or independently might cause 

cell cycle arrest. Therefore, the pathways restricting the proliferation of tetraploids, 

as well as the consequences of the escape from the restriction control remain 

enigmatic.  

2. Tetraploid state as an intermediate to aneuploidy, chromosomal 
instability and tumorigenesis. 

The fact that living organisms developed a robust arrest response to erroneous 

tetraploidy suggests that proliferation after tetraploidization can have deleterious 

consequences. In recent years, big attention has been drawn to a role of tetraploidy 

as a potential route to aneuploidy – numerical and structural chromosomal 

abnormalities. Aneuploidy, in turn, shows a strong correlation with tumorigenesis, 

however, the causal relationship is unclear (Gordon et al., 2012; Lengauer et al., 

1998; Matzke et al., 2003; Ricke et al., 2008). The evidence that many tumors 

display near-triploid or near-tetraploid (complex hyperdiploid) aneuploidy suggests, 

that the potential route to the aneuploidy observed in tumors can be a tetraploid 
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intermediate formation followed by chromosome missegregation (Nigg, 2002; 

Shackney et al., 1989; Storchova and Pellman, 2004) (Figure 2).  

 

Figure 2. Tetraploid state as an intermediate to complex numerical aneuploidy. 

The hypothesis is further supported by an important characteristic of aneuploid 

tumors – a frequent presence of multiple centrosomes that can originate after 

cytokinesis failures during tetraploidization. Multiple centrosomes were proposed to 

be a major source of chromosome missegregation and tumorigenesis by Theodor 

Boveri at the beginning of the last century (Boveri, 2008). Subsequent studies 

showed a strong correlation between amplification of centrosome numbers and 

tumorigenesis in majority of cancers (Nigg, 2002). Moreover, tetraploid cells were 

identified in early stages of cervical cancer (Kirkland et al., 1967; Olaharski et al., 

2006)             ,      p                         ’      p      w       w       v  

rise to aneuploids upon p53 inactivation (Galipeau et al., 1996). A mutation in APC 

gene frequently found in colorectal tumors leads to cytokinesis failure followed by 

aneuploidy in vivo (Caldwell et al., 2007). Other described cases providing the 

evidence for tetraploidization in tumors are bladder- (Shackney et al., 1995), breast- 

(Dutrillaux et al., 1991; Shackney and Silverman, 2003) and prostate cancers (Deitch 

et al., 1993; Montgomery et al., 1990), and hyperplastic lesions in the pancreatic 

cancers (Tanaka et al., 1984). Thus, tetraploidy can frequently occur in different 

tumors, in particular during early stages of tumorigenesis. According to the tetraploid 

intermediate model, tetraploidization leading to aneuploidy might eventually facilitate 

tumorigenesis (Storchova and Pellman, 2004). 

Can aneuploid state stemming from tetraploidy per se cause tumor formation? 

Mounting evidence suggests that not every type of aneuploidy can be associated 
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with cell transformation; de novo aneuploidy is more likely to trigger tumorigenesis. 

Trisomic and tetrasomic aneuploids, generated by chromosome transfer, display 

rather an antiproliferative response, manifesting in a slower growth rate and a slow 

growth-related changes in gene expression (Lengauer et al., 1997; Pfau and Amon, 

2012; Sheltzer et al., 2012; Stingele et al., 2012; Williams et al., 2008). Furthermore, 

chromosome gains, occuring during chronic inflammatory processes, such as 

                   D p y    ’             ,                             (Gisselsson, 

2011). Down syndrome (trisomy of chromosome 21) patients, on one hand display 

increased risk of leukaemia, but on the other hand a remarkably lower frequency of 

solid tumors in comparison to the general population (Satge et al., 1998).  

Overall, the trisomic and tetrasomic aneuploids frequently (but not necessarily) 

maintain stable karyotypes, in a stark contrast to karyotypically divergent near-

tetraploid cells observed in most aneuploid cancers. These complex aneuploidies 

are likely linked to tumor formation, hence supporting a role of tetraploidization prior 

to aneuploidy in cell transformation.  

Complex aneuploidy is usually a steady-state manifestation of CIN – dynamic 

changes in the number of the chromosomes during propagation. CIN is the hallmark 

of the majority of solid tumors (Haruki et al., 2001; Lengauer et al., 1997; Yoon et al., 

2002). Clinical studies show that CIN in cancer is associated with resistance to drug 

treatment and poor prognosis (Carter et al., 2006; Duesberg et al., 2000; Walther et 

al., 2008). This can be explained by inherent ability of CIN cells to easily adapt to 

changes in their growth environment (Bakhoum and Compton, 2012). Interestingly, 

the frequency of CIN in non-diploid (near-triploid and near-tetraploid) tumors is 

substantially higher than in near-diploid tumors (Storchova and Kuffer, 2008). A 

possible explanation is that increased ploidy can provide reserves in chromosome 

copy number and decrease a probability of lethal nullisomies (loss of both 

chromosome copies) after chromosome missegregation in CIN cells. Taken together, 

tetraploidization is associated with CIN and tumorigenesis. However, it remains 

unclear what are the mechanisms causing CIN and development of cancer in 

tetraploid cells. 

The role of polyploidization in triggering CIN was shown in budding yeast 

Saccharomyces cerevisiae (Mayer and Aguilera, 1990; Storchova et al., 2006) as 

well as in mammalian cells (Ho et al., 2010; Vitale et al., 2010). In particular, the first 
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direct evidence of the role of unstable tetraploid intermediates in CIN and 

tumorigenesis was demonstrated upon injection of tetraploid p53-deficient murine 

mammary epithelial cells (MMEC) into nude mice (Fujiwara et al., 2005). 

Remarkably, only tetraploid cell injections led to tumors, in contrast to control diploid 

cell injections. The resulting tumors displayed near-tetraploid aneuploidy with 

chromosome gains and losses as well as structural chromosome rearrangements, 

suggesting ongoing CIN (Figure 3). 

 

Figure 3. Tetraploidy facilitates tumorigenesis and CIN (adapted from Fujiwara et al., 2005).  

(a) Tumor indicated by an arrowhead in a nude mouse at the site of injection of tetraploid p53-

deficient MMECs; (b) Representative spectral karyotyping data from one tumor, showing near-

tetraploid chromosome number in a cell, non-reciprocal translocations (t) and dicentric chromosomes 

(dic) indicated by arrowheads;       b   10 μ   

Later study further confirmed the role of tetraploidy in tumorigenesis in mice. Upon 

prolonged passaging in vitro, diploid mouse ovarian surface epithelial cells (MOSEC) 

undergo cytokinesis failure at a high frequency, form tetraploid and subsequently, 

aneuploid cells (Lv et al., 2012). The intraperitoneal injection of aneuploids (late 

passages) into C57BL/6 mice induced tumor formation on the intestinal surface, 

whereas injection of diploids (early passages) did not. Of note, the p53 status in the 

cells from resulting tumors was not investigated. Thus, possible p53 pathway 

deregulation could allow the proliferation in aneuploid state and tumor growth.  

Another study describes the association of Notch pathway deregulation, tetraploidy 

and CIN in meningiomas (Baia et al., 2008). In this study, tetaploidy was induced by 

overexpression of HES1, the downstream effector of Notch signaling. The authors 

show that in contrast to diploid cells, tetraploids display numerical and structural 

abnormalities, as well as prominent features of CIN – multipolar mitoses, nuclear 

blebbing and nuclear bridges, and only a slight increase in spontaneous apoptosis. 
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Similarly to previously discussed study from Lv and colleagues, the authors did not 

investigate the p53 status of the meningiomas, however, they suggest defective 

tetraploidy checkpoint as a cause of observed CIN and proliferation after 

tetraploidization. 

Expression of transcription factor cut homeobox 1 (CUX1) was shown to activate a 

program causing aneuploidy after tetraploidization (Sansregret et al., 2011). Upon 

induction of tetraploidy with transient cytokinesis failure by blebbistatin treatment 

cells, mock-expressing cells underwent predominantly multipolar mitosis and died, 

whereas cells overexpressing CUX1 were shown to undergo predominantly bipolar 

mitosis. In this scenario, the proposed mechanism of action is prolongation of 

mitosis, which allows more time for pair-wise clustering of centrosomes. Observed 

progeny displayed subtetraploid aneuploidy associated with tumorigenesis upon 

injection into mice. Similarly to the studies of Lv and colleagues and Baia and 

colleagues, p53 status of the resulting aneuploid cells was not addressed. Moreover, 

the observed aneuploidy could be attributed to CUX1 overexpression but not 

tetraploidization itself. 

In summary, evidence suggests the oncogenic potential of transient tetraploidy and 

association with complex aneuploidy and CIN. However, little is known about the 

molecular mechanisms underlying the transitions from tetraploidy to CIN. 

3. Molecular mechanisms triggering CIN. 

The mechanisms driving chromosomal instability likely affect both the chromosome 

segregation fidelity as well as the ability to arrest after chromosome missegregation. 

Up to date, different proteins were shown to be associated with whole chromosome 

numerical instability. They function in spindle assembly checkpoint (SAC), formation 

of kinetochore-microtubule interactions, mitotic spindle organization, cytokinesis, 

centrosome number control, sister chromatid cohesion and cell cycle regulation.  

3.1. Aneuploid state per se as a trigger of CIN. 

Up to date, the causal relationship between aneuploidy and CIN remains poorly 

defined. On one hand, gene mutations can trigger CIN, subsequently resulting in 

gros      p    y      “        y       ”  O                ,     p    y            

gene and protein dosage imbalance, which can result for example in imbalance and 
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insufficient functions of the protein machineries involved in chromosome segregation 

and maintenance, thus destabilizing the genome. According to this hypothesis, 

aneuploidy itself can be a catalyst of persistent changes in the karyotype without a 

gene mutation prerequisite (Duesberg and Li, 2003). Moreover, even a slight 

increase in the instability of a newly formed aneuploid might be sufficient to promote 

stronger CIN, if the initial chromosome changes favor chromosome missegregation 

(Anderson et al., 2001; Matzke et al., 2003). 

The possibility that aneuploidy can drive genetic instability was directly tested in 

single chromosome-disomic yeast Saccharomyces cerevisiae strains: approximately 

70% (9 out of 13) disomic strains displayed increased levels of chromosome 

missegregation in comparison to euploid controls (Sheltzer et al., 2011). Another 

study showed that the extent of CIN correlates with a deviation from euploid DNA 

content: haploid (1N) yeast strains were more stable than strains with 1.5 to 2N 

ploidy (Zhu et al., 2012).  

In summary, results suggest that aneuploidy itself at least in budding yeast can 

further promote CIN. Whether similar scenario is taking place in higher eukaryotes 

remains poorly investigated. 

3.2. Loss of sister chromatid cohesion as a cause of CIN.  

A linkage between sister chromatid pairs from the replication until the onset of 

anaphase is maintained by a ring-like cohesin complex, consisting of three main 

subunits Smc1, Smc3, Ssc1/Mcd1 and Scc3 (Michaelis et al., 1997; Tanaka et al., 

2000, for review see Peters and Nishiyama, 2012). Establishment of sister chromatid 

cohesion is essential for tension generation on sister kinetochores and, hence, for 

proper chromosome biorientation in metaphase. Thus, sister chromatid cohesion is 

indispensable for accurate chromosome segregation. Centromere and kinetochore 

dysfunction, and weakened sister chromatid cohesion are common causes 

underlying the chromosome missegregation (Manning et al., 2010; Sonoda et al., 

2001). Mutations in the components of the cohesin complex as well as other 

regulators of sister chromatid cohesion were proposed to be a potential cause of CIN 

in colorectal cancers (Barber et al., 2008). Yet, in overall, these mutations are not 

very frequent in cancers.  
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Deficiency in key components of cohesion complex Ssc1/Mcd1 causes chromosome 

misalignment in metaphase and subsequent chromosome missegregation (Morrison 

et al., 2003). Similarly, Smc1 downregulation leads to higher frequency of 

micronucleation and aneuploidy (Musio et al., 2003). Mutational inactivation of 

another member of cohesin complex STAG2/Scc3 also promotes CIN (Solomon et 

al., 2011). RNAi-mediated depletion, as well as haploinsufficiency of Sgo1 (one of 

the key regulators of cohesion establishment), causes CIN in colorectal cancers 

(Iwaizumi et al., 2009; Yamada et al., 2012). Moreover, mutations, downregulation 

and overexpression of separase, which cleaves cohesins at the onset of anaphase, 

was reported to trigger CIN (Shepard et al., 2007; Wirth et al., 2006; Xu et al., 2011; 

Zhang et al., 2008a). Interestingly, high levels of separase were identified in human 

breast cancer. Cells derived from these tumors displayed premature chromosome 

disjunction and lagging chromosomes (Zhang, Ge et al. 2008). Similarly, depletion of 

securin, a separase inhibitor, also instigates CIN (Jallepalli et al., 2001). Finally, a 

moderate but recurrent cohesion defect associated with CIN was observed in 

tetraploid yeast (Storchova et al., 2006). 

Taken together, the levels of cohesin complex proteins and their cofactors should be 

tightly regulated to ensure chromosome segregation fidelity. However, since cohesin 

complex has been also implicated in several other cellular functions (Dorsett, 2011), 

the mechanistic link between cohesion defects and CIN development remains to be 

investigated.  

3.3. Alterations in the spindle assembly checkpoint (SAC). 

Another mechanism that can contribute to CIN is the defective spindle assembly 

checkpoint (SAC), complex protein machinery that controls proper execution of 

mitotic events and ensures faithful chromosome segregation. SAC arrests or delays 

cell division until all chromosome kinetochores are stably and properly attached to 

the microtubules emanating from the opposite poles of the mitotic spindle. In recent 

years the key components of the SAC have been characterized in great detail (for 

review see Musacchio and Salmon, 2007). One major SAC gene group comprises 

MAD (Mitotic Arrest-Deficient) genes, such as MAD1, MAD2 and MAD3 (BUBR1 in 

humans); another one is BUB (Budding Uninhibited by Benzimidazole) genes, such 

as BUB1 and BUB3. The protein products of SAC genes negatively regulate Cdc20, 

a cofactor of ubiquitin ligase protein complex APC/C (anaphase-promoting 
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complex/cyclosome). The latter mediates the polyubiquitination of its substrates, 

such as cyclin B and securin, subsequently destructed by the 26S proteasome. Upon 

protease-mediated degradation of cyclin B, major mitotic kinase CDK1 is inactivated, 

leading to a rapid onset of anaphase. 

Therefore, by controlling Cdc20 activity, SAC monitors microtubule-kinetochore 

attachments and halts the onset of anaphase until all chromosome pairs are 

attached to respective spindle poles and are under sufficient tension (Figure 4). 

Microtubules emanating from spindle poles grow and stochastically capture the 

kinetochores, hereby, establishing kinetochore-microtubule (KT-MT) attachment. The 

common concept is that even a single chromosome mal-attachment (Figure 4) is 

sufficient to keep SAC active and to prevent anaphase onset (Rieder et al., 1995). 

This delay in mitosis allows chromosome passenger complex (CPC), comprising 

Survivin, Borealin and INCENP (INner CENtromere Protein), and Aurora B kinase to 

facilitate formation of a de novo unattached kinetochore (Vader et al., 2006). An 

unattached kinetochore can be then captured by microtubules from the correct 

spindle pole. However, merotelic attachment (i.e. when at least one of the sister 

chromatids is attached to microtubules from both spindle poles) cannot be detected 

by SAC, because microtubule occupancy of merotelic kinetochores is similar to the 

occupancy in correct amphitelic attachments (Cimini et al., 2001; Cimini et al., 2003). 

Thus, merotelically attached kinetochores are oriented back-to-back and are under 

sufficient tension to prevent SAC activity, leading to chromosome missegregation 

(Thompson and Compton, 2008).  
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Figure 4. Chromosome attachment in mitosis and SAC activation (from Musacchio and 

Salmon, 2007). 

(a) Mad2 levels are high at the unattached kinetochores, moderately high at a kinetochore attached in 

a monotelic chromatid pair, and very low upon establishment of a proper amphitelic attachment. 

Aurora B is activated by a lack of tension on sister kinetochores, upon tension establishment Aurora B 

activity at the sister kinetochores is low. When all KT-MT attachments are amphitelic, the SAC signal 

ceases, separase cleaves cohesins, thus promoting sister chromatid separation in anaphase. (b) 

Examples of proper (amphitelic) and improper (synthelic, merotelic) KT-MT attachments. Monotelic is 

a normal condition during prometaphase before biorientation establishment. 

The defects of SAC machinery due to the mutations or gene deregulations manifest 

itself in mitotic errors and frequently leads to CIN and tumor formation in mice. For 

example, Mad2 haploinsufficiency causes a SAC defect manifested by chromosome 

missegregation and tumorigenesis in mice (Michel et al., 2001). Interestingly, 

aneuploidy is also observed upon Mad2 overexpression (Sotillo et al., 2007), as well 

as Mad1 overexpression (Ryan et al., 2012). Overexpression, downregulation or 

mutation in another SAC protein Bub1 is also associated with CIN (Cahill et al., 

1998; Musio et al., 2003; Ricke et al., 2011). A biallelic mutation in BUB1B gene, 

encoding BubR1 protein causes mosaic variegated aneuploidy (Hanks et al., 2004). 
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This aneuploidy was shown to be associated with CIN and tumorigenesis (Matsuura 

et al., 2000). Taken together, the deregulation or partial inactivation of SAC 

components attenuates SAC and triggers CIN. Notably, complete inactivation of the 

SAC is lethal in different cell lines and homozygous deletion of key checkpoint 

components is embryonic lethal in mice (Thompson et al., 2010).  

Despite the accumulating experimental evidence, the role of the attenuated SAC 

response in the common occurrence of CIN and cancer is largely debated in the 

field. CIN cancer cell lines show rather a robust SAC response to spindle poisons 

(Tighe et al., 2001); moreover, CIN cell lines halt anaphase onset in the presence of 

misaligned chromosomes (Gascoigne and Taylor, 2008). Furthermore, CIN cells 

frequently die during prolonged mitotic block (Brito and Rieder, 2009) and cannot 

survive without functional SAC (Kops et al., 2004). Lastly, analysis of 132 colorectal 

cancer cell lines showed no mutations in SAC genes (Barber et al., 2008). These 

findings support the view that SAC functions normally in the majority of cancer CIN 

cell lines.  

3.4. Multiple centrosomes and multipolar division. 

Aberrant chromosome and centrosome numbers frequently coincide in cancer cells 

(Hardy and Zacharias, 2005). For a long time multiple centrosomes were considered 

to be the major source of CIN in a wide range of human cancers from solid tumors to 

hematological malignancies (Boveri, 2008; Chan, 2011; Lingle et al., 2002; Nigg, 

2002; Salisbury et al., 1999). Several different mechanisms were described to cause 

centrosome amplification (Doxsey, 2001; Ko et al., 2005; Mussman et al., 2000). 

Four main models of centrosome amplification were proposed: centrosome 

overduplication, abortive cell division, cell fusion and de novo centriole formation 

(Nigg, 2002).  

Independently of the origin, centrosome amplification very frequently manifests in 

chromosome missegregation. Multiple centrosomes cause multipolar spindle 

formation in prometaphase. This state is often followed by direct progression to 

anaphase and chromosome division in a multipolar manner causing highly 

imbalanced aneuploidy. The work of David Gisselsson and colleagues provided 

direct evidence for genetic variability and near-random chromosome segregation in 

cells undergoing multipolar division (Gisselsson et al., 2008). Daughter nuclei formed 
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during multipolar division frequently displayed sister chromatid nondisjunction and 

nullisomies. A follow-up study on the Wilms tumor explained the reason for high 

frequency of trisomies in cancer cells (Gisselsson et al., 2010). Cells can progress 

through anaphase in a tripolar manner (the most frequent type of multipolar 

anaphase), when each of the daughter nuclei gets nearly a third of parental DNA 

material. This step is often followed by an asymmetric cytokinesis, resulting in two 

daughter cells, thus generating a trisomy and monosomy in diploid cells. However, in 

tetraploid cells the chromosome distribution in tripolar mitosis increases the 

probability of random segregation. Importantly, multipolar divisions are poorly 

tolerated and the viability of the progeny after multipolar mitoses is low (Ganem et 

al., 2009). This suggests that multipolar divisions might not be the sole source of CIN 

in cells with multiple centrosomes.  

Interestingly, many cancer cells develop an adaptation to suppress multipolar cell 

divisions – clustering of centrosomes. Clustering leads to the reduction of spindle 

pole numbers, in particular, it leads to bipolar spindle formation (Brinkley, 2001; 

Kwon et al., 2008; Murphy, 2003; Quintyne et al., 2005). A stable propagation and 

maintenance of the karyotypes in the presence of multiple clustered centrosomes 

was reported for Drosophila melanogaster S2 cells (Basto et al., 2008); however, 

other reports suggest that centrosome clustering is often associated with 

chromosome missegregation. Cells that form a multipolar intermediate in metaphase 

often display lagging chromosomes in a bipolar anaphase (Ganem et al., 2009; 

Silkworth et al., 2009). The proposed mechanism for formation of lagging 

chromosomes in anaphase is an accumulation of unresolved merotelic kinetochore-

microtubule attachments due to the extra centrosome coalescence at the anaphase 

onset (Figure 5). This mechanism is consistent with the presence of multiple 

centrosomes and proliferation in CIN state, and has been proposed as a possible 

cause of CIN in cells with multiple centrosomes. 

 

Figure 5. Multipolar intermediate formation leads to merotely (from Ganem et al., 2009). 
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Merotelic attachments are formed in a multipolar (here, tripolar) intermediate. They can remain 

unresolved before extra centrosome clustering. Clustering of extra centrosomes promotes additional 

merotelic attachment. If remaining incorrected, merotelically attached chromosomes lag in anaphase 

and cause chromosome missegregation. 

Bipolar division strongly reduces the chances of both lethal nullisomies and newly 

arising complex aneuploidies, thus supporting the proliferation in contrast to 

multipolar division. Clearly, a bipolar spindle is more robust and less missegregation-

prone in the cells with normal centrosome numbers than in the cells with multiple 

clustered centrosomes. This view is supported by a recent work from our laboratory, 

where we show that similar frequency of cell cycle arrest was observed after 

chromosome missegregation in tetraploids in bipolar anaphase, as well as in 

multipolar metaphase followed by bipolar anaphase and by multipolar anaphase 

alone. Our data suggest that the formation of a multipolar intermediate followed by 

bipolar division can trigger cell cycle arrest to similar levels as multipolar division 

(Kuffer et al., 2013). 

Therefore, it is reasonable to speculate that cells that reduced their centrosome 

numbers early after centrosome amplification get a selective growth advantage. This 

view is further supported by the fact that rounds of repeated cytokinesis failure did 

not lead to centrosome amplification in various cell lines (Krzywicka-Racka and 

Sluder, 2011). Likely, centrosome amplification is just a transient condition leading to 

aneuploidy, but cannot be a sole source of CIN due to deleterious consequences of 

multipolar mitosis on the chromosome copy number and associated protein 

imbalance. 

In summary, centrosome amplification causing an increase in merotelic attachment 

formation represents one of the common mechanisms of CIN. However, the fact that 

increased centrosome numbers are not maintained for a long period after formation 

argues against the role of extra centrosomes as the exclusive triggers of CIN.  

3.5. Alteration in mitotic spindle function. 

3.5.1. Defects in kinetochore organization and function. 

Kinetochore-microtubule (KT-MT) attachments are highly dynamic in metaphase, 

                      y by   “      -and-  p    ”           (Mimori-Kiyosue and 

Tsukita, 2003). That means that the plus-ends of microtubules (hereafter MTs) 
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undergo persistent association and dissociation with the kinetochores, therefore 

constantly attempting to establish proper attachments and allowing possible mitotic 

error correction (Nicklas and Ward, 1994).  

Kinetochore consists from inner kinetochore, associated with centromeric DNA, and 

more dynamic outer kinetochore, which is formed around the time of the nuclear 

envelope breakdown (reviewed in Maiato et al., 2004). The innermost part of the 

kinetochore is composed of histone variant CENPA and other CENP proteins 

(reviewed in Musacchio and Salmon, 2007). The outermost part of kinetochore is 

responsible for interaction with the MTs of the spindle; this layer consists of outer 

kinetochore or KNL1 complex/Mis12 complex/Ndc80 complex (KMN) and fibrous 

corona. The corona proteins are generally more labile than other kinetochore 

proteins and the protein content is dependent whether the MTs are anchored to the 

KT or not. Upon establishment of the KT-MT interactions, the amount of SAC 

proteins diminishes and the amount of such as proteins of Ran pathway, APC and 

other proteins involved in proper MT anchoring increases (Joseph et al., 2004; 

Kaplan et al., 2001; Salina et al., 2003; Shah et al., 2004; Tirnauer et al., 2002). 

Alterations in the kinetochore structure cause defects in chromosome attachments, 

and, subsequently, mitotic abnormalities. For example, the dysfunction in Ndc80 

complex manifests itself in the absence of KT-MT attachments, suggesting its 

essential role in establishment of stable attachments (DeLuca et al., 2002; Martin-

Lluesma et al., 2002). Similarly, depletion of Mis12 complex subunits prolongs 

mitosis and leads to defects in chromosome alignment and biorientation (Kline et al., 

2006). Inhibition of an Hsp90 using RNAi triggered delocalization of several key 

kinetochore proteins such as CENP-H, CENP-I, and BUB1 and caused chromosome 

misalignment and aneuploidy (Niikura et al., 2006). Interestingly, RNAi silencing of 

kinetochore-bound MT-associated proteins APC and EB1 was shown to cause 

misalignment of sister kinetochores, anaphase lagging and aneuploidy, without 

affecting the KT-MT binding per se (Draviam et al., 2006). 

In summary, impairment of the kinetochore structure might cause defects in mitotic 

progression and subsequently lead to aneuploidy. 

3.5.2. Alterations in the mitotic spindle machinery. 

In recent years, a growing attention has been drawn to the role of mitotic spindle 
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dynamics in faithful chromosome segregation maintenance. This emerging interest 

can be readily explained by the fact, that mitotic spindle orchestrates virtually all 

chromosome movements in mitosis (Compton, 2000). Thus, high liability and 

dynamicity are prerequisites for the mitotic spindle organization. It is ensured by two 

important mechanisms. First, mitotic MTs display a higher turnover rate than 

interphase MTs and undergo continuous GTP hydrolysis-dependent lengthening and 

shortening, necessary for spindle formation and force generation within the spindle 

(Mitchison and Kirschner, 1984; Saxton et al., 1984). The dynamic instability is 

intrinsic to tubulin itself as was shown by in vitro experiments (Hyman and Karsenti, 

1996). Second, mitotic MTs cross-bridge and slide relatively to adjacent MTs (Figure 

6). Spatial and temporal control of MT dynamics is modulated by many microtubule-

associated proteins (MAPs) and microtubule motor proteins, kinesins and dyneins, 

directly interacting with tubulin subunits. Growing evidence suggests that microtubule 

dynamics in mitosis is not driven by one single protein: instead, a balance of 

synergic and antagonistic forces generated by multiple motors is necessary to drive 

spindle movements.  

 

Figure 6. Spindle pole and chromosome movements during mitosis (adapted from Sharp et al., 

2000). 

MTs and MT motors orchestrate spindle assembly, maintenance and elongation. (a)  Bipolar spindle 

     b y  (b)     p      p          b          ( ) Sp                       p        “+”            

plus-ends of the MTs.  

Mitotic spindle organization begins early in the prophase, when long and relatively 

stable interphase MTs disappear and more numerous short astral MTs begin to 
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nucleate from the duplicated centrosomes, extending their plus-ends outwards. The 

separation of centrosomes is ensured by a two-step mechanism. First, centrosomes 

are aligned by minus-end-directed motors, which pull on MTs and thus align them. 

Second, plus-end-directed MT kinesins (such as kinesin-5) push the spindle poles 

apart as the polar MTs elongate; minus-end-directed dynein, localized to cellular 

cortex, pulls on the asters towards the cortex and thus assists in centering of the MT 

asters (Laan et al., 2012). Subsequently, rapid fluctuation in MT length allows the 

MTs to capture chromosomes as the nuclear envelope (NE) breaks down. 

Establishment of the KT-MT interaction can occur through two possible scenarios. 

Either a kinetochore is captured directly by a plus-end of the MT, or more commonly, 

              b          T’        l side and slides along it towards the plus-end 

assisted by kinesin-14 proteins (Tanaka et al., 2005). Finally, lateral attachment is 

converted to a plus-end attachment and the bound kinetochores are pulled towards 

spindle poles by end-on pulling (depolymerization of the same microtubules). That 

helps to properly orient the chromatid pair, thus enabling capture of the sister 

kinetochore by MTs emanating from the opposite pole. Further, each kinetochore 

becomes attached to more microtubules nucleated from the nearest spindle pole. 

Kinetochore-bound MTs, now termed K-fibers, guide sister chromatid congression to 

the spindle equator. Along congression, chromosomes are oscillating towards and 

away from the spindle poles. This oscillatory behavior is supported by a combined 

pushing action of plus-end directed kinesins (for example, kinesin-8 proteins) and 

tubulin de novo polymerization at the kinetochores, as well as pulling action of 

kinetochore-associated minus-directed dynein and kinesin Kif10/CENP-E (Brown et 

al., 1996). Thus, kinetochores also actively participate in the spindle force generation 

in prometaphase. The opposing forces are balanced upon the alignment of the 

chromosomes at the spindle equator, therefore enabling metaphase plate formation. 

Upon anaphase onset K-fibers shorten and the sister chromatids are pulled to the 

respective poles: this period is termed anaphase A. Depolymerization of the plus-

ends enables pulling of the chromosomes apart and does not require ATP-

dependent motor action at this stage. Additionally, kinetochores induce 

depolymerization of K-  b             p        , ‘   w     p’        b                

following the depolymerizing microtubule end (Pac-Man model) (Liu and Onuchic, 

2006). In anaphase B, polar non-kinetochore MTs elongate and slide along each 
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other with the help of plus-end-directed kinesins (kinesin-5 proteins), thus pushing 

the spindle poles further apart. This movement is strengthened by dynein-mediated 

pulling forces on astral microtubules bound to cell cortex (poleward flux). 

Chromosome separation is followed by telophase and reconstitution of nuclear 

envelope. Cytokinesis, executed by combined action of actin and myosin, finalizes 

cell division. Astral MTs in the spindle midzone play an essential role in guiding a 

cleavage furrow to the former spindle equator by stimulating the cell cortex. 

However, the exact mechanism of cortex stimulation by MTs in cytokinesis remains 

unclear.  

The orchestration of mitosis and cytokinesis requires finely balanced activity of motor 

and non-motor MT-associated proteins, however, it remains enigmatic. An in-depth 

understanding of this machinery can be beneficial for investigation of the 

chromosome segregation and CIN. 

3.5.2.1. MAPs and their role in MT dynamics 

Microtubule associated proteins (MAPs) are non-motor proteins that can directly bind 

to the MTs and regulate their assembly and stability. Destabilization of the MTs can 

occur not only by depolymerization from a MT end, but also through severing 

mechanism that generates an internal break in the MT. This reaction requires an 

activity of the MT severing MAP enzymes, namely fidgetin, katanin, spastin and 

Op18/stathmin (Cassimeris, 2002; Roll-Mecak and McNally, 2010; Roll-Mecak and 

Vale, 2008). In Drosophila melanogaster, severing proteins were described to act in 

a Pac-Man flux. Fidgetin and spastin contribute to MT minus-end depolymerization 

and flux at centrosomes, whereas katanin localizes at the centromeric region and 

stimulates chromosome motility by Pac-Man mechanism (Zhang et al., 2007). 

Inhibition of these factors causes elongation of the MTs. For example, inhibitory 

phosphorylation of katanin, that occurs in allotetraploid Xenopus laevis leads to 

longer spindles in comparison to the related diploid species Xenopus tropicalis 

(Loughlin et al., 2011). Additionally, the absence of spastin was described to cause 

non-disruption of midzone MTs that subsequently manifests in a cytokinesis failure 

(Connell et al., 2009). Overall, the consequences of severing enzymes deregulation 

and/or mutations are currently poorly described. However, given their important role 

in MT destabilization, it is reasonable to speculate, that loss of function of these 
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enzymes can result in increased stability of MTs and thus impair proper KT-MT 

dynamics. 

Many types of up-to-date characterized stabilizing MAPs specifically function at the 

microtubule plus-ends and regulate their stability. In addition, many MAPs can have 

other functions in spindle organization. For example, MAP TPX2 plays an important 

role in MT nucleation and stabilization. Additionally, TPX2 recruits Aurora A, and this 

recruitment is important for proper chromosome alignment to the spindle (Kufer et 

al., 2002). TPX2 conditional knockout and haploinsufficiency have detrimental effects 

on MT nucleation that leads to aberrant mitotic spindle formation and chromosome 

segregation errors. Moreover, TPX2-haploinsufficient mice are prone to developing 

aneuploid adenocarcinomas and lymphomas (Aguirre-Portoles et al., 2012). 

Remarkably, overexpression of TPX2 was described for many tumors and strongly 

correlates with CIN in several human cancers (Asteriti et al., 2010; Carter et al., 

2006). This suggests that tight regulation of TPX2 is essential for maintenance of the 

genome stability.  Overexpression of another MAP XMAP215/ch-Tog is observed in 

liver and colon tumors (chTOG, Colonic Hepatic Tumor Overexpressed Gene) 

(Charrasse et al., 1995). It plays an important role in spindle pole organization and 

spindle MT stabilization by crosslinking K-fibers and dampening MT disassembly 

(Barr and Gergely, 2008; Booth et al., 2011; Gergely et al., 2003). Overall, abundant 

presence of MT-stabilizing proteins in tumors might cause MT over-stabilization 

effect. This defect in MT dynamics might potentially lead to slower disassembly of 

the incorrectly attached MTs at the kinetochore, thus increased rates of chromosome 

missegregation. 

3.5.2.2. Kinesins and their role in MT dynamics 

As described above, many mitotic spindle movements are energy-dependent, thus 

requiring motor proteins that couple ATP hydrolysis and mechanical force, such as 

kinesins. In mammalian cells, the kinesin superfamily comprises around 40 proteins 

that form 14 families (Hirokawa et al., 2009; Lawrence et al., 2004). Typically, 

kinesins are heterotetramers whose motor subunits (heavy chains, KHCs) dimerize 

and bind to two light chains (KLCs), although some variations in structure can be 

present across the superfamily. KHC domains share a high sequence and fold 

homology, consisting of globular domain with an ATP-binding core and MT-
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interacting outer surface (Su et al., 2012), and a short neck domain, binding to KLCs. 

Processive movement of kinesins along the MT utilizes one ATP molecule per step. 

Most kinesins have uni-directional motility and are plus-end-directed, with the 

exception of minus-end-directed members of kinesin-14 family (Ambrose et al., 

2005).  

Kinesins have been implicated in various activities in the cell. For example, in 

interphase, kinesins transport cargo along the MTs, such as organelles and other 

structures. Mitotic kinesins (12 out of around 40 kinesins in total) function in polar 

ejection force generation on chromosome arms, chromosome congression, spindle 

pole separation and cleavage furrow positioning.  

An active MT depolymerization is essential to carry out some of these functions. The 

best characterized to date is the kinesin-13 family of nonmotile depolymerases, 

consisting of three members in mammalian cells: Kif2A, Kif2B and Kif2C/MCAK 

(mitotic centromere-associated kinesin) (Moore and Wordeman, 2004; Wordeman, 

2005). In contrast to other kinesins, kinesin-13 proteins show a different microtubule-

binding pattern: only one molecule out of two binds to adjacent filaments (Mulder et 

al., 2009). This binding, and subsequently the depolymerization function, can be 

inhibited upon the detyrosination of -tubulin, leading to MT stabilization (Peris et al., 

2009). Members of kinesin-13 family have distinct and non-overlapping functions in 

mitosis. Kif2A localizes to the minus-ends of the centrosome MTs and is involved in 

the formation of a bipolar spindle (Ganem and Compton, 2004). Kif2B also localizes 

to centrosomes and the spindle midzone, where it plays role in establishment of 

bipolarity, chromosome movement, and cytokinesis (Manning et al., 2007). 

Furthermore, Kif2B localizes to the kinetochore, where it promotes the correction of 

KT-MT attachment errors specifically in prometaphase acting downstream of Aurora 

B-mediated phosphorylation of the KMN network (Bakhoum et al., 2009b).  

Similarly, another kinesin-13 protein Kif2C/MCAK plays a role in the correction of 

incorrect attachments, but in the later stages of metaphase. Kif2C/MCAK 

kinetochore localization and activity is dependent on the Aurora B phosphorylation 

(Andrews et al., 2004). Depletion of Kif2C/MCAK manifests in slow MT turnover at 

the kinetochores (Wordeman et al., 2007). Moreover, RNAi depletion of either Kif2B 

or Kif2C/MCAK blocks the release of faulty attachments, thus preventing error 
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correction and promoting chromosome missegregation (Bakhoum et al., 2009b). 

Remarkably, overexpression of Kif2B or Kif2C/MCAK suppresses the incidence of 

lagging chromosomes in CIN cell lines, providing compelling evidence that 

stimulation of MT disassembly, at least partially, rescues CIN phenotype (Bakhoum 

et al., 2009b). Further support of this evidence was provided by the finding that KT-

MT attachments in CIN cancer cells are inherently more stable than in normal cells 

(Bakhoum et al., 2009a). Additionally, Kif2C/MCAK helps focusing microtubules at 

aster centers and facilitates asters to bipolar spindles transition in an Aurora A 

kinase-dependent manner (Zhang et al., 2008b). Taken together, kinesin-13 proteins 

represent a family of potent MT depolymerases whose activity is essential for 

efficient KT-MT attachment error correction. 

Another well-characterized family of plus-end directed kinesins essential for mitotic 

progression, is kinesin-8 family: Kif18A, Kif18B and Kif19 in mammals, as well as S. 

cerevisiae homolog Kip3 and S. pombe Klp5 and Klp6 (Lawrence et al., 2004). In 

contrast to kinesins-13, kinesin-8 proteins, such as Kif18A and yeast Kip3, are highly 

processive motors involved in the regulation of the MT length. Importantly, they act 

both as stabilizers and destabilizers of the MTs, depending on the context. For 

example, it was shown that Kif18A could directly depolymerize MTs (Mayr et al., 

2007). Other works report that Kif18A dampens the growth of MT plus-ends by 

slowing down both polymerization and depolymerization of the MT plus-ends (Du et 

al., 2010; Stumpff et al., 2011). Similarly, yeast Kip3 is described to act as a plus-

end-depolymerase for growing astral MTs during spindle positioning, and a stabilizer 

for shrinking MTs (Gupta et al., 2006; Varga et al., 2009).  The integrated effect from 

opposing functions of kinesins-8 is explained by a concentration-threshold model, 

where high velocity and processivity of kinesins-8 leads to accumulation at the plus-

ends and rapid depolymerization of MTs; furthermore, lower concentration of 

kinesins-8 reaches shrinking MTs, thus favoring MT stabilization (Stumpff et al., 

2008; Su et al., 2011). Hence, kinesin-8 members serve as essential regulators of 

MT length in mitosis and the effects of kinesins-8 seem to be concentration-

dependent. 

Reported data demonstrate the presence of excessively long MTs in the cells upon 

kinesin-8 depletion and mitotic spindle elongation (Du et al., 2010; Gandhi et al., 

2004; Goshima et al., 2005; Mayr et al., 2007; Rischitor et al., 2004; Straight et al., 
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1998; West et al., 2001). In parallel to increased spindle length, Kif18A depletion 

impairs chromosome congression to metaphase plate, causes loss of tension on 

sister kinetochores and activates Mad2-dependent SAC response (Mayr et al., 

2007). Further studies revealed an unexpected role for Kif18A in chromosome 

oscillations in mitosis. Kif18A reduces the amplitude of kinetochore oscillations by 

pausing MT growth, thus slowing down poleward movement in anaphase (Stumpff et 

al., 2008). Hence, Kif18A, together with polar ejection forces, promotes chromosome 

alignment in metaphase (Stumpff et al., 2011; Stumpff et al., 2012). Observed 

defects in chromosome alignment upon Kif18A depletion were proposed to be 

mediated by kinesin Kif10/CENP-E (kinesin-7 family). Kif10/CENP-E levels are 

reduced upon Kif18A depletion and re-expression of Kif10/CENP-E rescues the 

chromosome misalignment (Huang et al., 2009a).  

In contrast to mitotic spindle-associated and kinetochore-associated kinesins, a 

subgroup of mitotic kinesins, called chromokinesins, can bind to chromosome arms. 

Some chromokinesins localize to the mitotic spindle as well as to the midzone. A 

well-characterized kinesin-4 family consists of Kif4A and Kif4B in humans; members 

of this family were also identified in other organisms (Lawrence et al., 2004; 

Mazumdar and Misteli, 2005). A representative kinesin Kif4A was shown to be 

essential for the chromosome condensation and faithful chromosome segregation: 

RNAi silencing of Kif4A causes early hypercondensation of chromosomes, 

misalignment of chromosomes, abnormal spindle geometry such as multipolarity and 

unfocused spindles during prometaphase and metaphase. Furthermore, Kif4A 

together with Kif22/Kid (kinesin-10) that agonize and antagonize polar ejection force, 

respectively, and abovementioned Kif18A cooperate in promoting congression of 

bioriented chromosomes. In anaphase, Kif4A depletion leads to MT elongation and 

lagging chromosomes, causing aneuploidy (Mazumdar et al., 2004; Shrestha et al., 

2012; Zhu et al., 2005). A complete loss of Kif4A was also reported to induce 

aneuploidy and tumorigenesis in mice (Mazumdar et al., 2006). At the final stages of 

cell division, Kif4 deficiency manifests in mislocalization of key cytokinesis kinesins 

and CPC proteins and, ultimately, in cytokinesis failure (Kurasawa et al., 2004). 

A plethora of other kinesins was described to be associated with regulation of mitotic 

progression. One of the key kinesins acting in establishment of the spindle pole 

separation is plus-end-directed Kif11/Eg5 kinesin (Sawin et al., 1992). Chemical 
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inhibition of Kif11/Eg5 by monastrol leads to monopolar spindles and thus 

tensionless chromosome attachments (Cochran et al., 2005; Kapoor et al., 2000). 

Moreover, further study on Kif11/Eg5 revealed a role of spindle elongation forces in 

merotelic attachment correction. Partial inhibition of Kif11/Eg5 that reduces spindle 

length decreased anaphase lagging in primary and unstable cancer cell lines, thus 

suggesting that longer spindles might be more merotelic attachment-prone (Choi and 

McCollum, 2012). An important, although non-essential role in establishing spindle 

bipolarity is carried out by Kif15/Hklp2 kinesin that is complementary to Kif11/Eg5. 

An important, although non-essential role in establishing spindle bipolarity is carried 

out by Kif15/Hklp2 kinesin that is complementary to Kif11/Eg5. Presence of 

Kif15/Hklp2 is sufficient to prevent metaphase spindle collapse when Kif11/Eg5 is 

inhibited and to promote spindle elongation (Tanenbaum et al., 2009; Vanneste et 

al., 2009). A minus-end-directed KifC1/HSET opposes Kif11/Eg5 activity and cross-

links MTs (Cai et al., 2009); moreover, KifC1/HSET is essential for centrosome 

clustering function in cells with multiple centrosomes.  Silencing the KifC1/HSET 

leads to centrosome de-clustering and multipolar anaphase (Kwon et al., 2008). It 

also manifests in an increase in lagging chromosomes and abnormal karyotypes, 

suggesting its important role in the genome stability maintenance (Kim and Song, 

2013). Kif22/Kid is involved in the polar ejection force generation on chromosome 

arms; upon inhibition of Kif22/Kid the chromosomes fail to oscillate in metaphase 

(Antonio et al., 2000; Levesque and Compton, 2001). Kif10/CENP-E is important for 

monooriented chromosome gliding along the K-fibers of already bioriented 

chromosomes upon alignment in metaphase (Kapoor et al., 2006). 

Kif23/CHO1/MKLP1 and KLP3A kinesins function in a midzone formation together 

with GTPases and members of CPC (Straight and Field, 2000). 

In conclusion, since MTs play a critical role in cell division, they have been regarded 

as very attractive therapeutic target for cancer treatment for many years. MT 

poisons, such as taxanes (taxol and derivatives) and vinca alkaloids (vinblastine, 

vincristine), demonstrated high clinical efficiency in killing tumor cells. Poisons 

disrupt MTs (vinca alkaloids and nocodazole) or stabilize GDP-bound tubulin 

(taxanes). However, a large body of evidence suggests that the effects of MT 

poisons are strictly concentration-dependent. For example, in high concentrations, 

nocodazole causes mitotic arrest, followed by cyclin B degragation-dependent 
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mitotic slippage or death in mitosis. In contrast to that, at lower concentrations of 

nocodazole mitosis is prolonged, but cells eventually divide with mitotic errors and 

either die in a subsequent cell cycle or further proliferate and accumulate aneuploidy 

(Jordan et al., 1992). Similarly, whereas higher concentration of taxol is efficiently 

killing tumor cells, lower concentrations cause delay in mitosis that subsequently 

leads to formation of aneuploid cells (Ikui et al., 2005). Therefore, a better 

understanding of changes in MT dynamics in tumorigenesis might help to develop 

new strategies for cancer treatment. In this context, kinesins that cooperate with 

each other, dyneins and MAPs in the spindle positioning and chromosome 

movement represent a good target for cancer treatment. This suggestion is further 

supported by the fact that deregulation of many kinesins was identified in different 

cancers. The kinesin expression analysis may play an important role in tumor 

detection, cancer prognosis, and may help to establish novel strategies for cancer 

treatment (Huszar et al., 2009; Yu and Feng, 2010). 

3.5.3. Defects in mitotic error correction. 

Correction of faulty KT-MT attachments is rate-dependent on the release of the 

kinetochore from MTs. Once released, the unattached kinetochore triggers the SAC 

response that in turn provides time for the error correction. The key orchestrator of 

mitotic error correction is a serine-threonine kinase Aurora B. Together with Survivin, 

Borealin and INCENP, Aurora B localizes at the centromeric region and forms a 

Chromosome Passenger Complex (CPC) (Ruchaud et al., 2007).  Common concept 

of Aurora B activity is that it phosphorylates targets localized in the outer kinetochore 

KMN network. The phosphorylation destabilizes faulty attachments and facilitates the 

incorrect attachment release (Cheeseman et al., 2002; Welburn et al., 2010). The 

released kinetochore can be eventually re-captured by the MTs emanating from the 

correct pole. Aurora B phosphorylation of the KMN network creates a gradient of MT 

binding activity. Once a correct KT-MT attachment is established and sister 

chromatids are properly bioriented, kinetochores are pulled out outside of the Aurora 

B activity zone. Hence, the correct KT-MT attachments escape from the zone with 

high Aurora B activity and get stabilized (Liu et al., 2009; Vader et al., 2006).  

Overexpression of Aurora B has been identified in many tumors exhibiting CIN 

(Carter et al., 2006; Lin et al., 2010; Smith et al., 2005; Vischioni et al., 2006).  In 

fact, Aurora B overexpression was shown to trigger tetraploid cell formation; the 
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latter in turn promoted tumorigenesis upon injection into nude mice (Nguyen et al., 

2009). Another study showed that overexpression of Aurora B increases the 

frequency of lagging chromosomes, thus causing near-diploid aneuploidy and CIN 

(Ota et al., 2002). Interestingly, RNAi depletion of Aurora B and INCENP in 

Drosophila melanogaster S2 cells inhibited chromosome alignment at the metaphase 

plate and caused high frequency of lagging in anaphase (Adams et al., 2001). 

Similar chromosome alignment and segregation errors, followed by subsequent 

cytokinesis failures upon Aurora B depletion were also observed in chicken DT40 

cells (Hegarat et al., 2011). Interestingly, a recent study showed that a SAC protein 

Mad2 has a SAC-independent function. CIN cells frequently overexpress Mad2 and 

display lagging in anaphase. Higher levels of Mad2 are responsible for Aurora B 

mislocalization at the centromere in a Cdc20-dependent manner, thus possibly 

leading to defects in mitotic error correction (Kabeche and Compton, 2012). Finally, 

inhibition of Aurora B in human tetraploid cells leads to massive cell death (Marxer et 

al., 2012). Since tetraploids have substantially higher frequency of incorrect KT-MT 

attachments because of increased merotely, it is likely that they have a stronger 

requirement of functional error correction machinery and hence for CPC.  

Depletion of borealin in human cells leads to formation of bipolar spindles associated 

with ectopic microtubule asters and followed by chromosome missegregation 

(Gassmann et al., 2004). However, the role and targets of CPC in chromosome 

segregation as well as the exact mechanisms of CPC-mediated error correction still 

remain to be studied in more detail. 

In summary, alterations in KT-MT error correction machinery and kinetochore 

defects, in particular in Aurora B kinase deregulation is frequently linked to CIN (Giet 

et al., 2005; Katayama et al., 1999). However, the role of Aurora B and CPC proteins 

in carcinogenesis remains elusive, as mutations in this machinery are rather rare in 

cancer.  

3.6. Deregulation of the cell cycle arrest pathways. 

A malfunction of cell cycle regulators (e.g. transcription factors or cyclins) can also 

contribute to CIN and tumorigenesis. One of the central players in the maintenance 

of the genome stability and tumor suppression is p53. Inactivation of p53 due to 

mutations is the most commonly observed alteration in human cancer (Rivlin et al., 
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2011). p53 haploinsufficiency results in Li-Fraumeni syndrome associated with a 

very high predisposition to tumorigenesis (Varley, 2003). Moreover, p53 mutants 

frequently not only lose tumor suppression function but even obtain an oncogenic 

potential (Brosh and Rotter, 2009). However, targeted inactivation of p53 alone is not 

sufficient to promote CIN (Bunz et al., 2002). Instead, CIN was shown to develop 

upon inactivation of both the Mad2- and p53-dependent checkpoints (Burds et al., 

2005). Therefore, p53 loss is not sufficient to promote CIN and requires additional 

changes (for example, on mitotic level) in human cells.  

In turn, p53 proficiency is important for abrogating the proliferation of cells with 

abnormal karyotypes (Andreassen et al., 2001; Donehower et al., 1995; Ganem and 

Pellman, 2007; Livingstone et al., 1992), when missegregation even of a few 

chromosomes triggers p53 accumulation in the nucleus (Thompson and Compton, 

2010). This p53 activation prevents highly missegregating tetraploid cells from 

further proliferation already after the first tetraploid mitosis (Kuffer et al., 2013). Thus, 

it becomes clear why tetraploid progeny has been analyzed mostly in p53-negative 

cells so far (Fujiwara et al., 2005; Lv et al., 2012; Vitale et al., 2010). Interestingly, 

p53-proficient tetraploid cells that escape the arrest fate maintained chromosomal 

stability, suggesting absence of other defects that can contribute to CIN (Ho et al., 

2010). 

The activity of p53 can be attenuated or completely abolished upon overexpression 

of its inhibitors Mdm2 and MdmX that mediate p53 export from the nucleus and 

monoubiquitination for proteasome degradation (Badciong and Haas, 2002; Moll and 

Petrenko, 2003). Overexpression of Mdm2 was reported to facilitate tumorigenesis 

(Wade and Wahl, 2009). Moreover, Mdm2 overexpression in mouse leads to multiple 

centrosomes and multipolarity in mitosis, and, subsequently, CIN exactly as p53 

absence (Carroll et al., 1999). Similarly, Mdm2-overexpressing mice have a higher 

incidence of aberrant karyotypes and develop cancers (Wang et al., 2008b). 

Accordingly, Mdm2 heterozygous murine cells are chromosomally stable (Wang et 

al., 2006). However, lack of MdmX complemented with loss of p53, instead, 

manifests in CIN and even faster tumor development than due to loss of p53 alone 

(Matijasevic et al., 2008). Although it remains enigmatic which effects of Mdm2 and 

MdmX are exerted in a p53-dependent and p53-independent manner, clearly Mdm2 

and MdmX level changes affect chromosome stability. 
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A downstream target of p53, p21, serves as a direct inhibitor of Cdk1 and an 

executor of p53-mediated arrest: activation of p21 even in absence of p53 is 

sufficient to suppress aneuploidy (Barboza et al., 2006). Decrease in p21 levels 

strongly correlates with CIN in high and low grade premalignant liver lesions as well 

as hepatocarcinomas (Lee et al., 2009b), suggesting potential role of p21 

deregulation in the development of liver cancers. 

Other tumor suppressor Rb protein, which is mutated in retinal cancer 

(retinoblastoma) and some other cancers, act as a regulator of E2F family of 

transcription factors. Deregulation of Rb pathway and abnormal activation of E2F 

transcription factors lead to E2F-dependent Mad2 overexpression, causing CIN in 

p53-deficient cells (Hernando et al., 2004; Schvartzman et al., 2011). In addition, 

proper function of Rb is important to limit the proliferation of tetraploid cells 

(Andreassen et al., 2001; Borel et al., 2002). 

Deregulation of cyclins was also reported to promote CIN: for example, steady 

expression of cyclin E, a regulator of Cdk2 (cyclin-dependent kinase 2) leads to 

abnormalities in S-phase, CIN and tumorigenesis (Spruck et al., 1999; Willmarth et 

al., 2004). Notably, in this case the S-phase defect does not manifest in abnormally 

high centrosome numbers that could explain CIN. However, another study reports 

centrosome overamplification upon cyclin E overexpression (Nakayama et al., 2000). 

Continuous expression of another regulator of G1 to S transition cyclin D1 was linked 

to enrichment of the genes of the CIN signature (Casimiro et al., 2012; Casimiro and 

Pestell, 2012).  

Apart from the defects triggered by defects of the above-mentioned cell cycle 

regulators, some other mutations and deregulations associated with aneuploidy and 

CIN were described. The examples include: Notch pathway in meningiomas (Baia et 

al., 2008), tumor suppressors BRCA1 and BRCA2 in breast cancer (Joukov et al., 

2006; Miyoshi et al., 2002; Popova et al., 2012), transcription factor c-Myc (Menssen 

et al., 2007), GTPase Ran-binding protein RanBP1 (Tedeschi et al., 2007), FoxM1 

(Laoukili et al., 2005; Teh et al., 2010), DNA damage response kinase ATM (Shen et 

al., 2005) and many others. For many of them the direct mechanistic link between 

genetic and expression changes and CIN remains unclear. 



Introduction 

 36 

In conclusion, much insight has been gained into the mechanisms driving faithful 

chromosome segregation and the maintenance of the numerical chromosomal 

stability. First, the CIN-associated defects can arise on the mitotic level through 

malfunctions of the mitotic spindle, sister chromatid cohesion, KT-MT attachment 

error correction or the SAC, manifesting as chromosome missegregation. Second, 

attenuated response to chromosome missegregation can allow proliferation of 

abnormal karyotypes. Currently, a large body of clinical evidence suggests that CIN 

is the dominant cause of tumor unresponsiveness to therapy. Thus, targeted 

manipulation of the chromosome segregation machinery and other CIN signature 

genes and pathways can be used for the therapeutic purposes in cancer treatment. 
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Aim of This Study 

Whole chromosome instability (CIN) is a common hallmark of many cancers that is 

associated with a poor clinical prognosis. In recent years, significant advance has 

been made in deciphering the mechanisms leading to persistent chromosome 

missegregation. A route to CIN through a tetraploid intermediate formation has been 

proposed previously. Mounting evidence supports the view that tetraploidy is a 

transient state that results in aneuploidy, CIN, and, eventually, in tumorigenesis, at 

least in p53-deficient cells (Fujiwara et al., 2005; Lv et al., 2012). However, the route 

from tetraploidy to aneuploidy and CIN remains largely elusive. Initially, multiple 

centrosomes were suspected to be the major cause of CIN in tetraploid cells. Yet, 

the fact that multiple rounds of cytokinesis failures do not establish centrosome 

amplification (Krzywicka-Racka and Sluder, 2011) argues against the role of multiple 

centrosomes as the sole source of CIN in tetraploid progeny. 

The aim of my study was to determine which adaptations allow the cell proliferation 

after tetraploidization and what mechanisms contribute to chromosomal instability in 

posttetraploid progeny. Furthermore, I aimed to investigate whether single 

tetraploidization alone is sufficient to trigger CIN and whether it depends on p53 

presence and function in posttetraploid cells. In more detail, my objective was to: 

1. Generate posttetraploid progenies (PTs) after induced cytokinesis failure in stable 

diploid cell lines. 

2. Investigate the chromosome segregation fidelity in the PTs in comparison to 

progenitor diploid and tetraploid (immediately after cytokinesis failure) cell lines. 

3. Assess the contribution of extra centrosomes to CIN in PTs. 

4. Explore further alterations that can be involved in CIN development such as: 

4.1. Changes in the microtubule dynamics and spindle geometry. 

4.2. Alterations in the spindle assembly checkpoint. 

4.3. Defects in the cell cycle arrest after chromosome missegregation. 
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Results 

1. Isolation and characterization of posttetraploid cells. 

1.1. In vitro evolution of cells after tetraploidization. 

In order to investigate the consequences of tetraploidization, two p53-proficient near-

diploid and chromosomally stable cell lines were used: HCT116 and hTERT RPE1. 

HCT116 is a human colorectal carcinoma cell line characterized by microsatellite 

instability (MIN). hTERT RPE1 (hereafter, RPE1) is a retinal pigment epithelium cell 

line immortalized by the expression of human telomerase. To allow chromatin 

visualization, both cell lines stably express histone 2B conjugated to GFP (H2B-

GFP).  

Cytokinesis failure induced by actin inhibitor dihydrocytochalasin (DCD) treatment, 

results in the formation of tetraploid binucleated cells with the frequency of 

binucleation reaching 70-80%. Estimated 600 cells for each cell line were plated by 

limiting dilution on 96-well plates (approximately 0.5 cell/well) and allowed to 

propagate for six weeks (Figure 7).  

 

Figure 7. Generation of the PTs: a schematic depiction of the experimental strategy. 

After six weeks, 72 cell populations that originated from HCT116 and 64 from RPE1 

were recovered. Flow cytometric analysis confirmed a near-tetraploid DNA content in 

eight of the HCT116-derived cell lines and in seven of the RPE1-derived cell lines 

(Figure 8), further referred to as Posttetraploids (HPT – derived from HCT116, RPT – 

derived from RPE1). Low recovery efficiency (approximately, 1%) of the 

posttetraploid progeny is readily explained by the fact that the majority of tetraploid 

cells fail to propagate further because of p53-dependent cell cycle arrest and 

subsequent death (Andreassen et al., 2001; Fujiwara et al., 2005; Kuffer et al., 2013; 

Vitale et al., 2008; Vitale et al., 2010). 
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Figure 8. DNA content profile of HPTs and RPTs 

DNA content profile of HPTs (top row) or RPTs (bottom row) assessed by flow cytometry after 

propidium-iodide staining of DNA. 

This approach allowed me to obtain proliferating near-tetraploid cell populations from 

cells that underwent transient tetraploidization.  

1.2. Cell cycle and growth characteristics of the posttetraploid 

cells. 

To characterize the obtained posttetraploid cells the proliferation and growth 

analyses of the obtained posttetraploid cell lines were carried out. First, I 

characterized the duration of the interphase in posttetraploids. No prominent growth 

defects were observed, as the median interphase duration determined by live cell 

imaging was 18.30 h for HPT1 and 20.95 h for HPT2, similar to the parental diploid 

cell line (19.30 h, Figure 9A).  Previous reports on the duration of mitosis, measured 

as the time from nuclear envelope breakdown (NEBD) to onset of anaphase (OA), 

suggest that mitosis is prolonged in newly formed tetraploid cells due to the 

presence of extra centrosomes and extra chromosomes (Yang et al., 2008). As 

expected, mitosis takes longer in newly generated tetraploids (median 45 min, Figure 

9B). Remarkably, the time in mitosis in PT cell lines was similar to the control 

diploids, with median 27 min for HPT1, 24 min for HPT2 and 24 min for HCT116 

(Figure 9B). 
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Figure 9. The length of interphase and time from NEBD to OA in HCT116 and its derivatives. 

(A) Time in interphase in HCT116 and HPTs measured from the anaphase onset to the next NEBD, 

Tukey range and median are plotted, four experiments. (B) Time in mitosis in diploid and tetraploid 

HCT116 and HPTs measured from NEBD to the anaphase onset, Tukey range and median are 

plotted, four experiments. Numbers above the box and whiskers in both (A) and (B) plots indicate the 

number of cells analyzed.                                               .

Furthermore, the PTs do not accumulate non-proliferating cells, as observed by the 

number of the cells entering at least two mitoses during 96 h of live cell imaging 

(Figure 10A). Moreover, the PTs do not accumulate dead cells as indicated by no 

increase in the percentage of cells with permeabilized membranes (Figure 10B).  

 

Figure 10. Numbers of non-proliferating and dead cells in culture. 

(A) Percentage of proliferating cells evaluated as the number of cells undergoing at least two mitoses 

during timelapse image acquisition, mean and SD of four experiments. (B) Percentage of propidium 

iodide-positive cells in HCT116 and HPTs. Treatment with protein kinase inhibitor staurosporine 

(STS) was used as a positive control for cell death, mean and SEM of two experiments. 
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Taken together, posttetraploid cells do not display prominent changes in the 

interphase and mitosis duration (nuclear envelope to onset of anaphase); nor they 

arrest and die more frequently than progenitor diploid cells.  

2. Aneuploidy and chromosomal instability of the posttetraploid 
cells. 

2.1. Chromosome numbers in the posttetraploid cells.  

Mounting evidence suggests that the progeny of tetraploid cells displays karyotypic 

variability (Fujiwara et al., 2005). To investigate the ploidy status of posttetraploids, I 

implemented standard karyotyping assay. As expected, comparing chromosome 

numbers between HCT116 (HCT116 H2B-GFP cell line used to generate HPTs) and 

a different independent subclone of HCT116 (HCT116 C4) did not reveal any 

substantial differences: median numbers were 44 and 45, respectively. Chromosome 

numbers strongly varied among both HCT116- and RPE1-derived posttetraploids, 

with a prevalence of chromosome loss (Figure 11A, B). Median numbers ranged 

between near-triploid and near-tetraploid (64.0 to 78.0) for HPTs and from diploid to 

near-tetraploid (46.0 to 80.0) for RPTs. HPT5 and HPT7 had median numbers 

reaching triploidy, and median chromosome numbers in RPT4 was diploid. 

Moreover, the RPT4 cells formed two karyotypic populations: near-triploid and near-

diploid.  
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Figure 11. Chromosome numbers in HCT116, RPE1 and their posttetraploid derivatives. 

Distribution of chromosome numbers and median values counted from metaphase spreads of (A) 

HCT116- and (B) RPE1-derived cell lines. Dashed lines mark diploid (2N), triploid (3N) and tetraploid 

(4N) values. The numbers above the scatter bars indicate the medians. (C) Representative 

metaphase chromosome spreads obtained from HCT116 and HPT2. 

Thus, posttetraploid cells display a numerical aneuploidy with variable karyotype 

compositions that are compatible with survival. 

2.2. Chromosomal instability in the posttetraploid cells.  

Next, I aimed to understand whether observed aneuploidy is associated with ongoing 

CIN. The propagation of HPT1 and HPT2 cell lines for additional 12 passages 

showed that median numbers of chromosomes decreased from 75.0 to 67.5 for 

HPT1, and from 78.0 to 63.0 for HPT2; moreover, variability within the population 

remained high (Figure 12).  



Results 

 43 

 

Figure 12. Chromosome number upon propagation for 12 additional passages in 

posttetraploid cells. 

Distribution of chromosome numbers in early passages and 12 passages later (12p), median values 

of two independent experiments, differences are statistically significant (Mann-Whitney test, p<0.05). 

The numbers above the scatter bars indicate the medians. 

This finding was further confirmed by fluorescence in situ hybridization (FISH) on 

four different chromosomes on interphase cells. FISH analysis proved that while the 

chromosome copy numbers remained nearly identical in early and late (after 36 

passages) HCT116 cells, the chromosome copy numbers dramatically differed in 

HPT1 and HPT2 (Figure 13). Notably, I observed a very frequent loss of one copy of 

chromosome 7 in the majority of HPT1 by both FISH analysis and array-comparative 

genomic hybridization (aCGH) (Supplementary Figure 1).  
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Figure 13. Chromosome numbers upon propagation in posttetraploid cells. 

Comparison of chromosome number distribution of chromosomes 1, 3, 7, and 12 in early passages 

and 36 passages later. Mean and SEM of two independent FISH experiments. Numbers on x-axis 

indicate chromosome copy numbers. Insets: representative staining of chromosomes 1 (red) and 7 

(green), DNA stained with DAPI, bar 10 m.   
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Previously reported findings on unstable malignant tumors show that abnormal 

nuclear shapes may serve as markers of ongoing CIN (Gisselsson et al., 2001). This 

feature was also shared in posttetraploids: the cells displayed remarkable changes in 

the nuclear shape such as prominent nuclear blebbing and micronucleation (Figure 

14, Figure 20). 

 

Figure 14. Nuclear blebbing in PTs. 

DNA is stained with Sytox Green. Nuclei with blebbing are marked with white arrowheads. 

Reported data also suggests an increase in structural chromosome aberrations in 

the cells with CIN cells with abnormal nuclear morphology (Gisselsson et al., 2001). 

Thus, I analyzed the frequency of structural chromosome alterations (specifically, 

chromosome translocations) in PT cells using multicolor FISH (Figure 15A). HPT1 

and HPT2 display slight, but statistically insignificant increase in aberration ratio 

assessed as a frequency of all possible translocations per cell (Figure 15B). This 

ratio is calculated as number of chromosomes with translocations normalized to a 

total number of chromosomes identified in a given cell (chromosome spread).  All 

identified aberrations were separated in two groups: constitutive and sporadic. 

Constitutive translocations comprised t(8;16), t(17;18) and t(10;16). First two 

translocations were previously identified in HCT116 using CGH and whole 

chromosome paint approaches (Masramon et al., 2000). Thus, HCT116 2N, 

analyzed in my work, obtained an additional constitutive chromosome translocation 

t(10;16). In addition to constitutive translocations, I observed also sporadic 

translocations. Sporadic translocations occur in some cells of HPT1 and HPT2 cell 

lines, with the frequency not exceeding one sporadic translocation per cell. The 

overall frequency of sporadic translocations is higher in HPTs in comparison with 

HCT116 2N cell lines (73% and 43% of all possible types of translocations in HPT1 

and HPT2, respectively) in comparison to HCT116 2N (25%) (Table 1).  
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Figure 15. Total frequency of chromosomal translocations in HCT116 and its posttetraploid 

derivatives. 

(A) Representative mFISH spreads images. Arrowheads indicate chromosome translocations. (B) 

Quantification of the chromosomal structural alteration frequency in HCT116 and its posttetraploid 

derivatives. Median is plotted; 10 cells were analyzed for each cell line; statistical significance was 

       by     ’             .  
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cell line 
translocatio

n 

cell ID type 
of 

transl
ocatio

n 

1 2 3 4 5 6 7 8 9 10 

HCT116 

t(17;18) 1 1 1   1 1 1 1   1 c 

t(6;17) 1                   s 

t(10;16)   1 1 1 1   1 1 1 1 c 

t(8;16)   1 1 1 1 1 1 1 1   c 

HPT1 

t(1;13) 1                   s 

t(17;18) 2 2 2 2 1 1 2 2 2 4 c 

t(6;16)                   1 s 

t(19;22) 1                   s 

t(5;15)   1                 s 

t(2;13)     1               s 

t(10;18)             1       s 

t(13;18)     1               s 

t(10;16)       1   2 2     1 c 

t(8;16) 1 1   1 1 1 1 2 2   c 

t(14;21)       1             s 

HPT2 

t(8;16) 2 1 1   1 1 2 4 1 3 c 

t(10;16) 2   1 1 1 1 2 4 2 2 c 

t(17;18) 2 1 1 1   1 2 2 3 1 c 

t(14;17)       1             s 

t(3;16)         1           s 

t(5;8)             1       s 

t(10;19)               1     s 

Table 1. Frequency of translocations for individual chromosomes in HCT116 and its 

posttetraploid derivatives. 

Types of translocations: c – constitutive, s – sporadic. Constitutive translocation was defined when 

more than 50% of the cells contained at least one translocation of this type.  

Finally, I assessed the numbers of all individual chromosomes, i.e. analyzed all 

chromosomes and all possible translocations, in HCT116 and its posttetraploid 

derivatives. As expected, in contrast to HCT116, maintaining nearly stable 

karyotype, HPTs displayed an increased rate of CIN and hypotetraploid aneuploidy 

(Figure 16A, B, C). Remarkably, smaller chromosomes are more frequently lost in 

the HPT1 than the large ones, consistent with previous observations in cancer cells 

(Duijf et al., 2012).  
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Figure 16. Chromosome content of HCT116 2N, HPT1 and HPT2 

(A) Left: HCT116 2N, right: representative chromosomes 4, 6, 19 without translocations and 

chromosome translocation t(17;18), (B) HPT1 and (C) HPT2. Total of 10 cells was analyzed for each 

cell line. Median and interquartile range are plotted. 

Taken together, proliferating posttetraploids, originating from survivors of transient 

tetraploidization consist of cells with variable chromosome numbers. This 

demonstrates that various karyotypic compositions are compatible with proliferation. 

The data show that transient tetraploidy triggers CIN in human cells. 
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2.3. Chromosome segregation errors in the posttetraploids. 

To identify the source of chromosomal instability in posttetraploid clones, I analyzed 

occurrence of chromosome segregation errors in posttetraploid cells. First, I 

quantified the frequency of abnormal mitosis in anaphase and telophase in fixed 

cells. 4.7% of all mitoses in HCT116 cells are aberrant, whereas 15.8 % and 15.0 % 

of bipolar anaphases in HPT1 and HPT2, respectively, displayed aberrancies such 

as lagging chromosomes and anaphase bridges (Figure 17).  

 

Figure 17. Lagging chromosomes and anaphase bridges in HCT116 and its posttetraploid 

derivatives. 

(A) Percentage of abnormal mitoses evaluated in fixed images, mean and SD of three experiments. 

The numbers above the bars indicate the number of analyzed cells. (B) Examples of scored mitotic 

                      , b   10 μ   

Second, live cell imaging revealed that 27.1 % of the HCT116 showed abnormalities 

such as lagging chromosomes, micronucleation, anaphase bridges, absence of 

metaphase plate and rare multipolar divisions, while similar aberrations were 

detected in 37.9 % of mitoses in HPT1 and 43.3 % in HPT2 (Figure 18, 

Supplementary Figure 2). This is markedly lower than in newly generated tetraploids 

(the first mitosis after an induced cytokinesis failure), where 86.3 % mitoses display 

some defects (Figure 19).  
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Figure 18. Abnormal mitosis in HCT116 and its posttetraploid derivatives. 

(A) Percentage of erroneous cell divisions evaluated from time-lapse imaging in HCT116. Mean and 

SD of four experiments. The numbers above the bars indicate the number of analyzed cells. (B) 

Lagging chromosomes followed by micronucleus formation, bar 10 μ . Note that mitosis was 

classified as erroneous, if any defect was visible at least in one mitotic timelapse capture. 

Thus, although the frequency of mitotic errors in PTs decreased in comparison to 

newly formed 4Ns, the frequency remains higher than in diploid HCT116, and is 

predominantly due to the lagging chromosomes and anaphase bridges. Frequent 

mitotic errors were also observed in RPT1 and RPT2, with a two-fold and four-fold 

increase, respectively, in comparison to RPE1 (Figure 19). 

Lagging chromosomes are left behind during anaphase and often form so-called 

micronuclei (Figure 18B). As expected, the formation of micronuclei in the HPTs was 

increased as well (Figure 20). 
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Figure 19. Abnormal mitosis in RPE1 and its posttetraploid derivatives. 

Percentage of erroneous cell divisions evaluated by time-lapse imaging; mean and SEM are plotted; 

three experiments in RPE1 and RPT1 and two in RPT2, thus only RPT1 could be statistically 

evaluated. The numbers above the bars indicate the number of analyzed cells.  

 

 

Figure 20. Micronucleation frequency in HCT116 and HPTs.  

Percentage of interphase cells with micronuclei, median and Tukey range of seven independent 

experiments. The numbers above the bars indicate the number of analyzed cells. 

Presence of mitotic errors in posttetraploid cells was further confirmed using high- 

resolution confocal microscopy. Lagging chromosomes and anaphase bridges were 

readily identified as both CREST-positive and CREST-negative (Figure 21). This 

suggests presence of mitotic errors in HPTs involving not only whole chromosome 

missegregation, but also missegregation of broken chromosomes (Supplementary 

Table 1, Supplementary Figure 3). The reason of this phenomenon is, however, 

unclear. It might be attributed, for example, to DNA damage repair defect causing 

chromosome breakage. Subsequently, a piece of chromosome without centromere 

cannot be attached to the MTs. Alternatively these fragments could be a result of 



Results 

 52 

deletion within the centromeric region. As well, these fragments might occur after 

disruption of anaphase bridges. Together, presence of acentric fragments is in a 

concordance with slight increase in structural instability observed as sporadic 

translocations in mFISH analysis that can be attributed to fusion of broken 

chromosome parts (Figure 15, Figure 16, Table 2). 

 

Figure 21. Lagging chromosomes in HCT116 and HPT1. 

Lagging chromosomes in (A) HCT116 and (B), (C) HPT1. Arrowhead in (C) indicates acentric lagging 

chromosomal fragment. Note the presence of anaphase bridges, seen as stretches of DNA between 

the main DNA masses in (C). DNA is visualized with Sytox Green (cyan), MTs are visualized with a-

tubulin antibody (red), centromeres are visualized with CREST antibody (yellow). 

In summary, the progenies of tetraploids accumulate more mitotic errors than diploid 

cells. On the other hand, the frequency of mitotic errors is significantly lower than in 

newly formed tetraploids. These facts support our view that only moderate levels of 

CIN are compatible with extended survival. Moreover, an increase in lagging 

chromosomes and subsequent micronuclei formation suggests that merotelic 

attachments often arise in PT cells.  

3. Causes of chromosomal instability in the posttetraploids. 

A plethora of mechanisms can trigger chromosomal instability. Therefore, I assessed 

several possible mechanisms that can lead to persistent chromosome 

missegregation and accumulation of variable aneuploidy in cells. 

3.1. Contribution of supernumerary centrosomes to chromosomal 

instability. 

Cytokinesis failure that induces formation of binucleated tetraploid cells results in the 

gain of an extra centrosome. A duplication of centrosomes in the following cell cycle 



Results 

 53 

leads to a formation of multipolar spindles causing severe chromosome 

missegregation. Thus, the levels of mitotic errors in PT cells might be elevated due 

to the extra centrosomes.  

In order to assess the contribution of mitotic multipolarity to the CIN in the 

posttetraploids, I followed the posttetraploids and its progenitor diploids and newly 

formed tetraploids through mitosis using timelapse imaging. The timelapse imaging 

revealed that only 4.4 % of HPT1 and 3.3 % of HPT2 cells divided in a multipolar 

manner, in contrast to newly formed tetraploids that form multipolar spindles at a 

high frequency (Figure 22A, B). No multipolar mitosis was observed in the RPT cell 

lines (Figure 22C), oppositely to newly formed tetraploid RPE1 that undergo 

multipolar anaphase in 50.0 % of cases (Kuffer et al., 2013). This demonstrates that 

a bipolar anaphase formation is essential for propagation of cell lines evolved from 

tetraploid intermediates. 

 

Figure 22. Bipolar mitosis in HCT116 and its derivatives. 

(A) Representative images of cells undergoing normal bipolar and      p            , b   10 μ   ( ) 

Percentage of bipolar mitoses in HCT116 and HCT116-derived cells as determined by live cell 

imaging. Mean and SD of four experiments, unpaired Student t-test. (C) Percentage of bipolar 
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mitoses in RPE1 and RPE1-derived cells as determined by live cell imaging. Mean and SD of three 

experiments. The numbers above the bars indicate the number of analyzed cells in all panels. 

Observed bipolar anaphase can be attributed either to centrosome clustering 

(Brinkley, 2001; Kwon et al., 2008; Murphy, 2003; Quintyne et al., 2005) or to 

elimination of extra centrosomes (Krzywicka-Racka and Sluder, 2011). To 

distinguish between these two routes, the centrosome number was assessed by 

                                         γ-tubulin in asynchronous culture (Figure 

23A). The distribution of centrosome numbers in HPTs resembled the distribution in 

HCT116, with the median centrosome number of two (Figure 23B).  The percentage 

of cells with more than two centrosomes was slightly increased in PT cells, as I 

quantified 1.9%, 7.7% and 6.3% for HCT116, HPT1 and HPT2, respectively. In 

contrast, I observed more than two centrosomes in 67.4% of newly generated 

tetraploids; with a median of three centrosomes per cell (Figure 23B). A statistical 

significance of the shift in median centrosome number distribution in all four cell lines 

w            by     ’s median test. Pairwise comparison of HCT116 and HCT116 

4N using this test showed that the shift of the median is statistically significant (p-

value = 0.04). The pairwise comparisons of HCT116 2N and HPT1, and HPT2 

showed no statistically significant shift of median (p-value = 0.38 and p-value = 0.76, 

respectively), as well as comparisons of the HPTs between each other (p-value = 

0.50). Interestingly, the reduction of centrosomes occurs relatively early after 

tetraploidization. As soon as after the first tetraploid mitosis the centrosome number 

distribution profile shifts towards the lower centrosome numbers. This effect is 

observed even more prominently after the second tetraploid mitosis (Supplementary 

Figure 4). Thus, the PT cell lines rapidly lost the extra centrosomes gained during 

tetraploidization.  
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Figure 23. Centrosome numbers in HCT116 and its derivatives. 

(A) Representative images of centrosome visualization by immunostaining, bar 10 m. (B) 

Centrosome numbers in asynchronous cultures. X-axis: the number of centrosomes. Mean and SD of 

three experiments. The numbers above the bars indicate the number of analyzed cells in all panels.  

To further confirm our finding on centrosome numbers and to exclude 

immunostaining scoring artifacts, I used RNAi was used to knock down 

KIFC1/HSET, a kinesin essential for centrosome clustering (Kwon, Godinho et al. 

2008). Knockdown of KIFC1/HSET in HPTs and in control HCT116 did not increase 

the frequency of multipolar mitosis (Figure 24). In contrast, 92 % of the KIFC1/HSET 

RNAi-transfected newly generated tetraploids underwent multipolar mitosis in 

comparison to nearly 33.5 % of multipolar mitoses in mock-transfected tetraploids 

(Figure 24).  

 

Figure 24. Frequency of multipolar mitosis upon RNAi inhibition of KIFC1/HSET. 
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Percentage of bipolar spindles upon inhibition of centrosome clustering by KIFC1/HSET knockdown, 

mean and SEM of two independent experiments. The numbers above the bars indicate the number of 

analyzed.cells.

In conclusion, posttetraploids undergo almost exclusively bipolar mitosis and more 

importantly, centrosome numbers in posttetraploids are similar to those in diploids. 

The data suggest that robust bipolarity is crucial for survival after tetraploidization. 

Moreover, this observation rules out spindle multipolarity as the only source of 

chromosomal instability in PT cell lines. 

3.2. Sister chromatid cohesion in posttetraploids. 

Next, I investigated the possibility that sister chromatid cohesion might be attenuated 

in the posttetraploid cell lines, which in turn results in chromosome missegregation 

and merotelic attachments. Analysis of primary constrictions in mitotic spreads from 

diploid control cells and PT cells did not reveal an elevated frequency of cohesion 

defects. I observed a partial alteration in primary constrictions of at least one 

chromosome within a metaphase spread in 13.0 % cells in HCT116 and 13.9 % in 

both HPT1 and HPT2 (Figure 25A). Furthermore, measurements of interkinetochore 

distance revealed no significant differences between HCT116 and HPT2; the 

measured distance was 1.19±0.19 (mean±SD) for HCT116 and 1.19±0.22 for HPT2 

in fixed cells (Figure 25B). The distance measured in HPT1 was slightly increased 

(1.25±0.19); however, this increase is much lower than the distance usually detected 

in cells with a defect in sister chromatid cohesion – 1.51 ± 0.07 (Manning, Longworth 

et al. 2010). 

 

Figure 25. Sister chromatid cohesion in HCT116 and the posttetraploid cells. 
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(A) Left: cells with primary constriction gaps in at least one chromosome pair, mean and SEM of two 

independent experiments. Right: A representative cell displaying a cohesion defect in one 

chromosome pair. White arrowhead indicates primary constriction gap in separated chromosomes. 

Bar 10 µm. (B) Distance between sister kinetochores in HCT116 and HPTs, Tukey range and median 

are plotted, Mann-Whitney test. Bar 1 µm. The image analysis for panel (B) was carried out by 

Zuzana Storchova, Ph.D. 

In conclusion, sister chromatid cohesion does not appear to play a role in CIN of 

posttetraploid cells.  

3.3. Global gene expression changes in the posttetraploids.  

3.3.1. Altered mitotic spindle dynamics. 

In order to decipher the mechanisms triggering CIN in posttetraploids, I performed a 

global microarray-based gene expression analysis. The aim was to identify the 

recurrent changes on mRNA level that might be associated with CIN. I observed a 

prominent downregulation of several kinesins, many of which were associated with 

the progression through mitosis. Kinesin expression was often downregulated below 

the arbitrarily set cutoff -0.75 (log2 ratio HPT/HCT116), which corresponds to 1.7 fold 

downregulation. The expression of 15 kinesins in HPT1 and 6 in HPT2 was altered 

(out of 38 kinesins); in particular, mitotic kinesins Kif18A and Kif18B, Kif15, Kif24, 

Kif4A and Kif2C were decreased in both analyzed PT cell lines (Figure 26A).  

Furthermore, these mRNA changes are reflected at the protein level that can be 

observed using immunoblotting against Kif18A. mRNA changes were reflected for 

HPT2 but not HPT1 at the Kif15 protein level (Figure 26B). I detected a 

downregulation of Kif18A in seven and of Kif15 in six out of eight analyzed 

posttetraploids (Figure 26B, C). Importantly, cells obtained by prolonged passaging 

of HCT116 2N for 36 additional passages (HCT116 36p) show similar Kif18A and 

Kif15 protein levels as the progenitor HCT116 cells. Moreover, cells obtained by 

single-cell clone purification of HCT116 (HCT116 C4) also retained protein levels of 

Kif18A and Kif15 similar to HCT116. Thus, in vitro evolution of HCT116 by either 

prolonged passaging of HCT116 or evolution from a single HCT116 cell does not 

           yz           ’   v     T                                              

levels might be a consequence of prior tetraploidization. 
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Figure 26. mRNA and protein level analysis of Kif15 and Kif18A in HCT116 and its derivatives. 
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(A) The log2 values of ratio HPT/HCT116 of mRNA abundance changes. Only kinesins with log2 

values below -0.75 cutoff are plotted (fold-change - 1.7).The underscored kinesins are downregulated 

in both HPT1 and HPT2. Note that KIF18B in HPT1 does not pass the criteria for false discovery rate 

(FDR cutoff 0.01). (B) Representative immunoblotting of kinesins Kif15 and, Kif18A in both HCT116 

and RPE1-derived cell lines. Loading control - GAPDH. (C) Immunoblotting quantification. Data was 

normalized first to a respective loading control (GAPDH) and further normalized to a respective diploid 

cell line levels (HCT116 or RPE1), mean and SD. All panels: three independent experiments. 

Notably, observed abundance changes do not occur due to the gene copy 

alterations, as no underrepresentation of the corresponding coding regions was 

identified by aCGH (data not shown).  

Kif18A represents a typical mitotic kinesin with well-described depolymerase activity 

(Mayr et al., 2007). To identify its interaction partners in mitosis I analyzed entries 

referred to as interacting partners of Kif18A in String database of known and 

predicted protein-protein interactions. Kif18A interacts with 16 proteins involved in 

mitotic progression according to STRING database. The interacting partners are: 

BIRC5, KIF2C/MCAK, BUB1B (BUBR1), CDCA8, NDC80, CDC20, CLASP1, 

CENPN, CENPA, CENPE (Figure 27). These factors are playing role in KT-MT 

binding, mitotic error correction and SAC.   

 

Figure 27. Interacting partners of Kif18A. 

Connecting line color as annotated in the database: blue – binding, pink – posttranslational 

modification, black – reaction, purple – catalysis. 

In summary, posttetraploid cells downregulate mitotic kinesins on mRNA level that 

could be confirmed on a protein level for Kif18A. These changes might be 

responsible for altered MT dynamics in mitosis. 
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3.3.2. Altered mitotic spindle geometry of posttetraploid cells. 

Kinesins Kif18A and Kif4A and, to a lesser extent, Kif18B, regulate the dynamics of 

the MT plus-ends and limit the metaphase chromosome oscillations. Slower 

metaphase chromosome oscillations might suggest slower MT dynamics and 

presence of overly stable mitotic MTs. As a consequence, metaphase kinetochore 

distribution might be altered in the PTs. To address this possibility, we visualized the 

centromeres in cells arrested in metaphase. The distribution of the centromere signal 

intensity assessed by CREST antibody immunostaining along the spindle axis 

revealed no significant difference between diploid and PT cell lines (Figure 28A, B, 

Supplementary Figure 5).  

 

Figure 28. Centromere distribution in HCT116 and the posttetraploids. 

(A) Mitotic spindles and centromere distribution in HCT116 and HPTs, bar 5 m. (B) Normalized 

intensity of the CREST signal along the spindle in HCT116 and HPTs; 9 to 11 cells were measured 

for each cell line. The averaged signal intensity is plotted. Schematic inset depicts the line intensity 

measurement strategy. The image analysis was carried out by Zuzana Storchova, Ph.D. 

A large body of evidence suggests that depletion of Kif18A and Kif4A results in 

excessively long MTs, thus causing mitotic spindle elongation. As expected, the 

spindle length in PTs (10.1 µm in HPT1 and 10.5 µm in HPT2) measured as pole-to-

pole distance in metaphase-arrested cells immunostained with -tubulin antibody 

was longer than in HCT116 (median 8.6 µm) (Figure 29A, B - upper left). The 

median width of the spindle (     p          α-tubulin signal at the site of the 

metaphase plate) increased as well, from 7.7 µm in HCT116 to 10.7 µm in both 

analyzed HPTs, likely in order to accommodate the increased chromosome numbers 
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(Figure 29B, upper right). Changes of both length and width of the spindle are 

indicative of longer astral MTs. Notably an increase in the spindle width is higher 

than in the spindle length, resulting in altered width-to-length ratio in cells. This 

altered length-to-width ratio is reflected by a significant change in the spindle angle 

(Figure 29B - bottom right).  

 

Figure 29. Spindle geometry in HCT116 and posttetraploid cells. 

(A) Mitotic spindles and centrosomes in HCT116 and the HPTs, bar 10 m. (B) Measurements of 

spindle length, width and spindle angle. Schematic depicts the parameter measurement strategy. 

Tukey range and median are plotted, Mann-Whitney test. The numbers above the bars indicate the 

number of analyzed cells. 

In conclusion, cells that underwent transient tetraploidy adapted to increased 

numbers of chromosomes by modulating spindle geometry, and this is achieved by, 

among others, changes in expression levels of mitotic kinesins. There is a strong 

reason to speculate that in addition to spindle geometry changes upon deregulation 

of key mitotic kinesins, the MT dynamics are also altered. Downregulation of Kif18A, 

the kinesin with well-characterized MT depolymerase activity, together with 

elongation of mitotic spindle, support the hypothesis that K-fibers are more stable in 

PT cells. As a consequence, KT-MT attachment error correction can be slower in 

PTs than in progenitor diploid cells, leading to chromosome missegregation. 
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3.3.3. Other changes potentially causing chromosomal 

instability. 

In addition, I explored the mRNA levels to identify other changes that can potentially 

contribute to the development of CIN in posttetraploid cell lines. I focused on factors, 

such as mitotic error correction, kinetochore association, microtubule severing, 

microtubule stabilizing, motor functions (kinesins), spindle assembly checkpoint, 

sister chromatid cohesion and cell cycle regulation. Transcription levels of many of 

these factors were altered, but most of the changes were not recurrent in both HPT1 

and HPT2 (Supplementary Table 2). Recurrent changes in these genes are 

described in the Table 2. 

ratio 
HPT1/HCT116 
[log2] 

ratio 
HPT2/HCT116 
[log2] 

recurrent up- 
or 
downregulation 

gene 
name function 

-1.7191 -0.9624 down KNTC1 
Spindle assembly 

checkpoint 

-1.9628 -2.4346 down FIGNL1 Severing MAPs 

-1.4473 -0.8892 down KIF15 

Kinesins 

-0.9071 -1.9064 down KIF18A 

-1.4906 -0.8735 down KIF18B 

-1.2126 -0.8985 down KIF24 

-1.197 -0.7653 down KIF2C 

-1.3506 -0.8004 down KIF4A 

-1.1085 -0.7614 down SMC3 Sister chromatid 
cohesion -1.7025 -1.4203 down ESPL1 

1.26936 2.39047 up CDKN1A Cell cycle regulation 

Table 2. Recurrent changes in the expression levels of factors, described to be associated 

with CIN. 

Log2 of the HPT/HCT116 for every individual gene entry are shown in the table. The median of three 

biological replicates for each gene entry was used. Up-/downregulation – log2 of the ratio is more or 

equals 0.75 (up) or less or equals -0.75 (down). Values that do not satisfy FDR threshold are marked 

in red. 

As seen in Table 2, apart from the mitotic kinesins, the expression of the gene 

KNTC1 (protein Rod) involved in spindle assembly checkpoint and kinetochore 

organization, severing MAP FIGNL1 (protein fidgetin), cohesin SMC3 and separase 

ESPL1 are downregulated as well. The contribution of changes in these factors to 

CIN in posttetraploids remains to be studied in a more detail.  
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3.4. Spindle assembly checkpoint alterations in the 

posttetraploids. 

Knockdown of kinesin KIF18A was reported to induce a loss of tension on sister 

kinetochores and the SAC activation (Mayr et al., 2007). However, the duration of 

mitosis in PT cell lines is similar as in diploids, despite the increased frequency of 

mitotic errors (Figure 9B). Therefore, I hypothesized that the SAC response in PTs 

might be attenuated. In order to test the functionality of SAC, I used an MT 

depolymerizing drug nocodazole, which leads to partial or complete absence of 

microtubules and thus, in turn, to SAC activation. Treatment with a low concentration 

of nocodazole (0.5 ng/ml) resulted in prolonged mitosis measured as time from 

NEBD to the onset of anaphase similarly in all cell lines. The observed duration of 

this period was from 24 min to 159 min for HCT116, 27 min to 141 min for HPT1, 

from 24 min to 162 min for HPT2 (Figure 30A). Moreover, PTs maintained robust 

mitotic arrest in the presence of high concentration of nocodazole (200 ng/ml) that 

leads to a complete microtubule depolymerization and arrests the cells in 

metaphase. The median length of metaphase arrest before slipping out of mitosis 

was 17.3 h in HCT116, 16.0 in HPT1 and 15.9 h in HPT2 (Figure 30B). Thus, the 

SAC response to microtubule depolymerizing drug is not affected in cell lines derived 

from a tetraploid intermediate. 

 

Figure 30. Spindle assembly checkpoint response to nocodazole treatment in HCT116 and 

posttetraploids. 

(A) Time from NEBD to anaphase onset in presence of low concentration of nocodazole, Tukey range 

and median of three independent experiments. (B) Time from NEBD to mitotic slippage in presence of 

high concentration of nocodazole; Tukey range and median of three independent experiments. The 

numbers above the bars indicate the number of analyzed cells in both panels. 
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Second, I examined the SAC response to the lack of tension, mimicked by the 

treatment with VS-83, chemical inhibitor of kinesin Kif11/Eg5 (Muller et al., 2007). 

Inhibition of Kif11/Eg5 leads to the formation of monoaster spindles with intact 

microtubules, thus increasing the frequency of tensionless KT-MT attachments.  

The majority of HCT116 cells (95 %) became arrested in the presence of VS-83 (20 

µM) and exited mitosis without cell division after 14.7 hours, similarly as in response 

to a high nocodazole concentration (Figure 31A red bars, Supplementary Figure 7). 

Remarkably, only a half of HPTs could maintain an extended mitotic arrest that was 

followed by mitotic slippage. 52.6 % of HPT1 and 58 % of HPT2 divided into two 

daughter cells after 7.3 and 9.3 hours, respectively (Figure 31A red bars, 32C, 

Supplementary Figure 6). Similarly, comparison of RPE1 and RPT1 revealed that 

whereas only 18.5 % of RPE1 cells divided in the presence of VS-83 (10 µM), the 

frequency of cell divisions in this condition increased to 47.0 % in RPT1 (Figure 

31D). 

The dividing cells often underwent a highly aberrant mitosis with segregation errors. 

One explanation of the observed phenotype may be that the PT cells are more 

resistant to VS-83 and can form bipolar spindles even in its presence. To test this 

possibility, I fixed the VS-83-treated cells at the time point when the majority of 

 b   v          v                                 DNA     α-tubulin (Figure 31B). 

4.4 % of HCT116 cells formed bipolar spindles (Figure 31A, green bars), which 

corresponds well with the observed percentage of dividing cells (Figure 31A, red 

bars). The frequency of bipolar spindles was 20.8 % in HPT1 and 8.5 % in HPT2 

(Figure 31A, green bars), which is much lower than the frequency of HPT cells 

dividing in the presence of VS-83 (Figure 31A, red bars).  
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Figure 31. Proliferation of HCT116 and HPTs in the presence of VS-83. 

(A) Percentage of cells dividing in the presence of VS-83 (live cell imaging, red bars) and maintaining 

a bipolar spindle in the presence of the inhibitor (immunostaining, green bars), each: mean and SD of 

three experiments, unpaired Student t-test. For representative progression through mitosis see 

Supplementary Figure 7. (B) Spindle geometry in the presence of VS-83 in HCT116 and PTs 

assessed by immunostaining, bar 10 m. Arrowhead indicates a bipolar spindle. (C) The time from 

NEBD to mitotic slippage or cell division in presence of VS-83 (20 µM). Tukey range and median, 

Mann-Whitney test. (D) Percentage of RPE1 and its derivative RPT1 dividing in presence of Eg5 

inhibitor VS-83 (10 µM). Mean and SEM of two experiments are shown. Numbers above the bars 

indicate the number of analyzed cells in all panels. 

In conclusion, these observations demonstrate a specific SAC defect in the PT cells 

that allows an anaphase onset in presence of tensionless attachments. Potentially 

this SAC defect might add into a defective error correction, allowing division despite 

tensionless attachments. 
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3.5. Tolerance to chromosome missegregation in the 

posttetraploids. 

Chromosomal instability post-tetraploidization was reported in most cases in p53-

deficient cells to date (Fujiwara et al., 2005). p53-positive cells that survived 

tetraploidization were shown to be chromosomally stable (Vitale et al., 2010). The 

posttetraploids analyzed in the present work displayed CIN, yet their progenitor cell 

lines were p53-proficient. On one hand the PT cells display an increased frequency 

of abnormal mitoses, and on the other hand, this missegregation is not associated 

with an accumulation of non-proliferating cells (Figure 10A, B).  p53 pathway can be 

activated in response to DNA double-strand breaks (DSB) induced by doxorubicin 

treatment (Figure 32). It suggests that this pathway cannot be completely inactive 

and a complete loss of p53 is not an essential prerequisite for the survival of cells 

with elevated levels of chromosome missegregation. 

 

Figure 32. p53 immunoblotting in HCT116 and its posttetraploid derivatives. 

Diploid p53 -/- HCT116 cells were used as a negative control, DNA-damaging drug doxorubicin (DRB) 

was used as a positive control, α-actinin was used as a loading control. 

Despite this seemingly intact p53 pathway, live cell imaging revealed that only 11.0 

% of HPT1 and 9.8 % of HPT2 cells became arrested after abnormal bipolar mitosis 

(Figure 33A, for fate analysis of single cells see Supplementary Figure 7). In 

contrast, 34.2 % of diploid and 54.1 % of newly formed tetraploid HCT116 cells that 

underwent abnormal bipolar mitosis became arrested or died in the subsequent 

interphase (Figure 33A). There is no statistically significant difference in the 

frequency of arrest after apparently normal mitosis (Figure 33A). Moreover, rare 

incidences of multipolar mitoses in HPT1 led to a cell cycle arrest or death at a 

similar frequency as in tetraploid cells, suggesting that human cells cannot adapt to 

such a severe chromosome misssegregation (Figure 33B). This suggests that only 

moderate chromosome missegregation is compatible with the proliferation, and 
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severe mitotic defects remain lethal. 

 

Figure 33. Cell cycle arrest and death after normal bipolar, abnormal bipolar and multipolar 

mitosis in HCT116 and its derivatives. 

(A) Frequency of cell cycle arrest/cell death after bipolar mitosis with no apparent defects (normal 

mitosis) and with visible defects (abnormal mitosis). Mean and SD of four experiments, unpaired 

Student t-test. Numbers above represent the number of cells with the indicated phenotype. (B) 

Frequency of cell cycle arrest/cell death in response to multipolar mitosis. Mean and SD of four 

experiments. Numbers above indicate the number of cells with indicated phenotype. 

To further support this hypothesis, I induced high levels of chromosome 

missegregation using non-toxic concentration of nocodazole (Figure 34A). In this 

case, proper MT-KT interaction is impaired, thus causing an increase in the 

frequency of lagging chromosomes, micronucleation and anaphase bridges. This 

severe chromosome missegregation subsequently leads to arrest and/or death in the 

following interphase with a high frequency (Figure 34B). This funding further 

supports the idea that posttetrapoids do not adapt to high rates of CIN. 
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Figure 34. Frequency of abnormal mitosis and subsequent cell cycle arrest and/or death in 

interphase in posttetraploids. 

(A) Frequency of abnormal mitotic figures and (B) frequency of cell cycle arrest/death after mitotic 

abnormalities induced by low concentration of nocodazole (0.5 ng/ml). Both: mean and SD of three 

experiments. Numbers above represent the number of cells with the indicated phenotype.  

Taken together, the PT cell lines appear to be more tolerant to errors in bipolar 

chromosome segregation and continue proliferation despite moderate 

missegregation of chromosomes. Importantly, severe chromosome missegregation 

substantially affects cell viability in posttetraploids, implying that only moderate 

chromosome missegregation is compatible with further proliferation. 

The decrease in the frequency of arrest and death after chromosome missegregation 

suggests that alterations in the p53 pathway might be essential to ensure 

proliferation of CIN cells. Previous reports indicate that missegregation of one or few 

chromosomes leads to accumulation of p53 in the nucleus and cell cycle arrest 

(Thompson and Compton, 2010). I investigated the possibility that nuclear p53 

accumulation after abnormal mitosis is impaired in PT clones. To this end, I 

performed a micronucleation test followed by immunostaining with a p53 antibody. 

While nearly 50 % of HCT116 with micronuclei accumulated p53 in the nucleus or in 

the micronucleus, only 25 % of HPT1 and HPT2 cells displayed similar phenotype 

(Figure 35A, B). 
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Figure 35. p53 enrichment in the nucleus after micronucleation in HCT116 and posttetraploids. 

(A) Accumulation of p53 in the major nuclei of cells forming micronuclei in HCT116 and in the PTs. 

Mean and SEM of four experiments. Numbers above indicate the number of total cells with 

micronuclei analyzed per cell line. (B) Examples of p53 accumulation in the nuclei and micronuclei of 

the micronucleating cells, bar 10 m. Yellow and white arrowheads indicate the micronuclei with and 

without p53 enrichment, respectively. 
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Next, we analyzed p53 pathway using transcriptional analysis in posttetraploids. 

Pathway analysis allows identification of the pathways underrepresented or 

overrepresented in the given microarray-based mRNA analysis dataset after 

mapping mRNA of the genes to known pathways. Accordingly, if the mRNAs of 

genes assigned to a certain pathway are underrepresented in the dataset, the 

pathway is classified as downregulated. Using this approach, we observed p53 

pathway deregulation in posttetraploids (Figure 36). In particular, a key p53 inhibitor 

Mdm2 is upregulated that might potentially cause direct p53 inhibition. Accordingly, 

the expression of several genes, regulated by p53 is altered. For example, we 

observed a prominent upregulation of p21. As well, many genes involved in apoptotic 

pathway are upregulated. The p53 pathway deregulation may be at least partially 

responsible for increased tolerance to mitotic errors; however, molecular 

mechanisms leading to this tolerance remain to be investigated.  

 

Figure 36. p53 pathway deregulation in posttetraploids. 

Upregulated genes are marked in red. Image was provided by Milena Dürrbaum. 

Taken together, the PT cell lines can escape a cell cycle arrest after mitotic errors 

more frequently than both HCT116 diploid and tetraploid progenitor cell lines. An 

increased tolerance to chromosome segregation errors is often achieved by 

modifications upstream of p53, suggesting that the activation of the p53 pathway 

after mitotic errors is specifically attenuated in PT cells. 
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Discussion 

A large body of evidence supports the hypothesis that transient tetraploidy leads to 

formation of chromosomally unstable progeny as proposed previously (Shackney et 

al., 1989; Storchova and Pellman, 2004). Hitherto, the molecular mechanisms 

triggering CIN after tetraploidization remained poorly understood. This dissertation 

provides the comprehensive analysis of chromosomally unstable progenies arising 

from individual human tetraploid p53-positive cells. The study outlines the molecular 

mechanisms contributing to the chromosomal instability in posttetraploids. First 

mechanism is downregulation of several mitotic kinesins, in particular, Kif18A, and 

associated changes in spindle geometry allowing erroneous mitosis. Second 

mechanism is increased tolerance to these errors on both mitotic and post-mitotic 

levels. On mitotic level the tolerance manifests itself as cell division despite 

tensionless attachments. On post-mitotic level it is observed as less frequent cell 

cycle arrest and death after mitotic errors. Together, these alterations support the 

propagation of CIN state and might contribute to CIN in cancer. 

Tetraploidization drives chromosomal instability independently of 
the p53 status. 

Multiple lines of evidence suggest that tetraploidy can lead to numerical and 

structural karyotypic variability of the progeny (Kaneko and Knudson, 2000; Levine et 

al., 1991a; Levine et al., 1991b; Reid et al., 1996). This fact was further directly 

shown by several studies (Baia et al., 2008; Fujiwara et al., 2005; Ganem et al., 

2009; Hognas et al., 2012; Lv et al., 2012; Sansregret et al., 2011; Vitale et al., 

2010). The data presented in this study supports the previously reported 

observations. Indeed, after six weeks of propagation in culture, the posttetraploid 

cells displayed a broad variety of karyotypes. Observed karyotypes ranged from 

near-diploidy to near-tetraploidy, as well as median chromosome numbers varied 

between different posttetraploids. Therefore, transient passage through tetraploid 

state leads to variable aneuploidy. 

Previously it was shown that HCT116 cells display variable aneuploidy upon securin 

knockout, but after several passages these cells become chromosomally stable 

(Pfleghaar et al., 2005). Remarkably, in posttetraploids karyotypic variability was not 



Discussion 
 

 72 

eliminated upon further passaging. Even upon propagation for 12 and for 36 

additional passages, the karyotype variability remained high in the posttetraploids in 

contrast to progenitor diploid cells. The observed CIN in posttetraploid cells is not 

accompanied by p53 inactivation: upon induction of DNA damage the p53 levels 

increase. Therefore, this work provides not only the evidence that posttetraploid cells 

can become chromosomally unstable, but also directly shows their p53 proficiency 

(at least in response to DNA damage induction) and nevertheless CIN. This stands 

in contrast to many previous reports describing either early cell cycle arrest and 

death of p53-positive tetraploids (Fujiwara et al., 2005) or proliferation in 

chromosomally stable state after tetraploidization (Ho et al., 2010; Vitale et al., 

2010). However, the results obtained in the present study cannot be directly 

compared with these reports. First, in the two studies murine fibroblasts or mammary 

epithelial cells were used as the progenitor cell line (Fujiwara et al., 2005; Ho et al., 

2010), thus, murine to human cells variations cannot be completely ruled out. 

Second, the method of tetraploid cell generation might be critical for further 

proliferation in posttetraploid state. In the present study, cytokinesis inhibition was 

used as a method to produce tetraploid cells – an alternative to mitotic slippage in 

the presence of high concentrations of MT-depolymerizing drug nocodazole over the 

course of 48 h (Vitale et al., 2010). Potentially, the behavior of posttetraploid progeny 

can vary depending whether mitosis or cytokinesis was affected upon generation of 

tetraploids. This explanation can be supported by an observation that prolonged 

mitotic arrest using antimitotic drugs can cause increased DNA damage and affect 

the karyotype (Dalton et al., 2007) and potentially lead to the selection of the fittest 

cells that survive such an insult as prolonged mitotic block. In contrast to that, 

canonical DNA damage is not increased after cytokinesis failure-based 

tetraploidization (Kuffer et al., 2013). Finally, in the work of Fujiwara and co-authors, 

p53-positive tetraploid cells were analyzed only for a short period of time – for 96 

hours post-formation. As the analysis of the survival of cells after tetraploidization 

has been carried out on population level using flow cytometry and for a short period 

of time (comparing to six weeks post-generation), one cannot completely rule out the 

possibility, that some survivor cells can emerge and give chromosomally unstable 

progenies.   
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A few reports describe aneuploidy and CIN in p53-proficient cells. One report 

describes deregulation of Notch pathway and overexpression of Hes1 as triggers of 

tetraploidy and CIN (Baia et al., 2008); of note, it is possible that not tetraploidization, 

but overexpression of Hes1 per se could trigger CIN. Using our strategy for pathway 

analysis, we could not identify any deregulation of Notch pathway; neither we 

observed deregulation of HES1 gene. Thus, deregulation of Notch pathway does not 

appear to play a role in CIN in posttetraploids in the presented study. In the study 

from Sansregret et al. overexpression of transcription factor CUX1 caused 

aneuploidy in the tetraploid progeny (Sansregret et al., 2011). The authors propose 

that prolongation of mitosis caused by CUX1 overexpression allows longer mitosis 

and a higher chance of extra centrosome clustering. As analyzed posttetraploid cells 

do not possess extra centrosomes, and the mitosis is not prolonged in 

posttetraploids, this scenario cannot take place in posttetraploid cells presented in 

my work. Importantly, in both studies the p53 status of the tetraploid progeny was not 

directly investigated, thus leaving the opportunity of p53 pathway attenuation. In this 

context, our results display evidence that the p53 pathway is not inactivated in 

posttetraploids. 

S   y      D v          ’    b      y showed that p53-negative tetraploid progeny 

arising after cytokinesis failure demonstrated an increase in gross chromosomal 

rearrangements (Fujiwara et al., 2005). The authors report presence of double-

minute chromosomes, dicentric chromosomes and non-reciprocal translocations with 

the median of two rearrangements per cell. The translocations normally form as a 

consequence of chromosome breakage and fusions (Gisselsson et al., 2000). I 

observed that nearly all analyzed posttetraploid cell contained constitutive 

chromosome translocations that were present in the original diploid cell line (only the 

translocations were analyzed in the presented study). The posttetraploids displayed 

some increase in the frequency of sporadic chromosome translocations in 

comparison to diploid cells. Remarkably, this increase was not dramatic: specifically, 

the amount of translocations in posttetraploids did not exceed one sporadic 

translocation per cell, if at all. It is difficult to directly compare the differences in the 

frequency of the chromosomal structural rearrangements between tetraploid cells, 

described in Fujiwara et al. study and possttetraploids, described in my work 

because of several reasons. First, not all aberrations were analyzed in the presented 
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study, second, in Fujiwara et al. study the authors analyzed murine cells, and finally, 

the rearrangements in Fujiwara et al. study were from cells taken from arising tumors 

in contrast to the cells analyzed in my study. However, overall, the frequency of the 

sporadic structural chromosomal aberrations appears to be lower in posttetraploids 

from my work. It might be that p53 presence in posttetraploids is important to prevent 

accumulation of chromosome aberrations, although, the exact mechanisms remain 

understudied. 

A body of evidence suggested that tetraploidization can not only promote CIN, but be 

associated with tumorigenesis (Fujiwara et al., 2005; Lv et al., 2012; reviewed in 

Storchova and Pellman, 2004). Although this study did not address directly whether 

posttetraploids can accelerate tumorigenesis in vivo I identified some features of 

unstable cancer cells that are shared in analyzed posttetraploids. First, similarly as 

many characterized chromosomally unstable cancers (Storchova and Kuffer, 2008), 

analyzed posttetraploids have near-triploid to near-tetraploid karyotype. Second, a 

remarkable feature of tumor cells, that smaller chromosomes are more frequently 

lost in comparison with bigger ones (Duijf et al., 2012), was detected in HPT1 (but 

not HPT2). Third, a prominent nuclear blebbing and micronucleation were observed 

at least in HPTs. This observation is consistent with the data from David Gisselsson 

and colleagues who identified similar abnormalities in several chromosomally 

unstable malignant tissues and suggested that abnormal nuclear shape may indicate 

CIN (Gisselsson et al., 2001). Altogether, posttetraploid progeny shows several 

features of chromosomally unstable cancer cells. 

In summary, my findings show that tetraploidization can lead to CIN in posttetraploid 

progeny in p53 proficient cells. The presence of functional p53 appears not to be 

sufficient to suppress observed CIN, as obtained posttetraploid cells proliferate and 

accumulate aneuploidy despite p53 presence. 

Erroneous mitosis is a source of CIN. 

Defective mitosis is a frequent cause of CIN. Consistently with karyotyping results, 

chromosome missegregation was elevated in posttetraploid cells. In particular, 

posttetraploids display an increase in the frequency of lagging chromosomes. 

Anaphase lagging may serve as an indirect evidence of elevated merotelic 
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attachment frequency (Cimini et al., 2001). Merotelic attachments, when at least one 

sister kinetochore is attached to both spindle poles, are not recognized by the SAC, 

and have been postulated as the major mechanisms of CIN in cancer cells (Cimini et 

al., 2001; reviewed in Gregan et al., 2011). Therefore, an increase in merotely, even 

in presence of functional SAC, will lead to chromosome missegregation and 

aneuploidy. Some evidence suggests that the merotelically attached laggards 

   q     y                “       ”               (Thompson and Compton, 2011). 

However, even if segregated to a proper daughter cell, the former laggards form 

micronuclei that often undergo defective replication and accumulate DNA double-

strand breaks in the subsequent interphase (Crasta et al., 2012). This can potentially 

cause fragmented chromosomes in the following mitosis. Accordingly, chromosomes 

without detectable centromere were observed as a lagging chromosome lacking a 

CREST signal (acentromeric lagging) in the high-resolution analysis of mitotic errors 

(Supplementary Table 2). Of note, the laggards, containing the CREST signal could 

also be chromosome parts containing centromeres and cannot be precisely 

classified as whole chromosome laggards due to the limitations of implemented 

assays. Further study involving both centromere and telomere co-staining is required 

to answer the question whether laggards can be classified as whole chromosome or 

chromosome fragment laggards. Alternatively, lagging chromosomes can originate in 

the same mitosis through a conflict of pulling forces that can potentially break 

double-stranded DNA of the merotelically attached chromosome (Guerrero, Martinez 

et al. 2010) and leave the chromosome parts lagging behind. Taking together, 

increased occurrence of lagging chromosomes in posttetraploids is likely a 

manifestation of an increase in the frequency of merotelic attachments. 

Another mitotic defect prominently observed in posttetraploids, is occurrence of 

anaphase bridges. Numerous reasons can cause anaphase bridging: perturbed DNA 

replication by replication fork barrier or other replication defects (Chan et al., 2009; 

Sofueva et al., 2011), defective homology-directed DNA repair (Acilan et al., 2007; 

Laulier et al., 2011), delayed sister chromatid decatenation (Wang et al., 2008a) or 

telomere dysfunction (van Steensel et al., 1998). Similarly to lagging chromosomes, 

anaphase bridges often break in mitosis and result in micronucleation; these 

micronuclei contain defective nuclear pore complexes and show deregulated gene 

transcription (Hoffelder et al., 2004). Although we did not investigate the contribution 
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of DNA replication and repair defects to the CIN in the posttetraploids, we observed 

downregulation of both DNA replication and repair pathways (Dürrbaum et al, in 

preparation) that might correlate with an increase in mitotic defects in posttetraploids. 

However, the direct mechanistic link and causal relationship between defective 

mitosis and DNA replication and repair in posttetraploids has to be studied in greater 

detail. 

Altogether, a broad variety of mitotic errors can be observed in posttetraploid cell 

lines. Potentially, merotelic kinetochore attachment and defective DNA replication 

may be responsible for persistent chromosome missegregation in these cells.  

Supernumerary centrosomes are not the sole source of CIN in 
posttetraploid cells. 

Supernumerary centrosomes have been since a long time suspected to be the major 

source of CIN (translated and annotated in Boveri, 2008). In fact, cells of many 

unstable cancers, both solid and hematopoetic, contained amplified centrosomes 

(Chan, 2011; Ghadimi et al., 2000; Lingle et al., 2002; Pihan et al., 1998). Mutations 

and deregulation in plethora of both oncogenes and tumor suppressors can cause 

centrosome overamplification in cancers (Fukasawa, 2007). Another straightforward 

route to obtain multiple centrosomes is cytokinesis failure. In the interphase following 

cytokinesis failure both centrosomes get duplicated, thus producing four 

centrosomes causing multipolarity in the next mitosis. Therefore, multiple 

centrosomes were considered to be the most obvious reason to cause aneuploidy in 

the cells after induced tetraploidization.  

Indeed, the fact that formation of multipolar spindle, followed by abnormal mitosis 

and cytokinesis, leads to chromosome segregation errors and severe aneuploidy 

was proposed already by T. Boveri in the beginning of last century (translated and 

annotated in Boveri, 2008). However, multipolar mitosis often results in cell cycle 

arrest and in death of the progeny (Ganem et al., 2009). As expected, we observed 

massive cell cycle arrest and death following early consecutive tetraploid mitoses 

(present study; Kuffer et al., 2013). Accordingly, the cells containing multiple 

centrosomes are eliminated from the total population after several rounds of mitoses. 

We observed that the frequency of multipolar division in posttetraploids was very low 

six week after the transient tetraploidy. Potentially, the reduction in anaphase 



Discussion 
 

 77 

multipolarity is important to reduce the severity of chromosome missegregation and 

maintain nearly normal chromosome complement. 

Many cancer cells with multiple centrosomes develop a strategy to reduce anaphase 

multipolarity by clustering the supernumerary centrosomes (Ganem et al., 2009; 

Kwon et al., 2008; Quintyne et al., 2005; Ring et al., 1982; Saunders, 2005; Silkworth 

et al., 2009). In this case, either all four centrosomes obtained after first tetraploid 

interphase can cluster pairwise thus producing a pseudo-bipolar spindle, or only two 

from four are clustering, thus forming a tripolar spindle. Importantly, even the 

formation of pseudo-bipolar spindle through centrosome clustering does not 

guarantee faithful chromosome segregation. Mounting evidence suggests that 

clustering prior to the anaphase onset can cause merotely and manifest itself in 

frequent occurrence of lagging chromosomes in anaphase (Ganem et al., 2009; 

Silkworth et al., 2009).  

Therefore, it is plausible to speculate that maintaining the extra centrosomes is 

disadvantageous since it affects the genome stability. Cells that have reduced the 

centrosome numbers early might gain growth advantage. Data supporting this view 

were obtained in two laboratories. First, several rounds of induced cytokinesis block 

in proliferating p53-proficient cells does not lead to centrosome amplification 

(Krzywicka-Racka and Sluder, 2011). Second, upon extended passaging tetraploid 

cells lose their extra centrosomes; moreover, loss of the extra centrosomes 

correlated with the decrease in appearance of chromosomes lagging in anaphase 

(Ganem et al., 2009). Accordingly to the above presented data, only minor fraction of 

analyzed posttetraploid cells contained more than two centrosomes. We also 

observed that the amount of total mitotic errors was reduced with the reduction of 

centrosome numbers in posttetraploids in comparison with the newly formed 

tetraploid cells. Strikingly, chromosome missegregation in posttetraploids was not 

completely eliminated, but decreased comparing to the newly formed tetraploids. 

T                            p                D v          ’    b      y  T    

discrepancy can be caused by several reasons. First, in the work from David 

       ’    b      y                       w  p53        w p                       

first tetraploid mitoses in otherwise non-proliferating tetraploid cells; this knockdown 

appeared not to be necessary in our case. The inhibition of p53, even transient, 

might affect chromosome stability. Second, the cells obtained in our laboratory were 



Discussion 
 

 78 

passaged over the course of six weeks to allow growth of a cell population out of 

single individual cell. This potentially can allow achievement of additional changes 

        C N                     ,                  D v          ’    b      y 

generated tetraploids by sequential FACS sorting of a total population after induced 

cytokinesis failure to obtain tetraploids with two centrosomes. Therefore, differences 

in the selection of tetraploid cells can potentially affect the behaviour of the cells after 

tetraploidization. 

In summary, posttetraploid cell lines reduced their centrosome numbers to maintain 

robust spindle bipolarity. Thus, the high levels of chromosome missegregation in 

posttetraploids cannot be attributed solely to the presence of extra centrosomes. 

Sister chromatid cohesion is not altered in posttetraploids. 

Defects in the sister chromatid cohesion can lead to defective chromosome 

segregation and CIN (Barber et al., 2008; Hoque and Ishikawa, 2002; Sonoda et al., 

2001). Interestingly, defects in the sister chromatid cohesion was reported for yeast 

tetraploids (Storchova et al., 2006). Whole transcriptome analysis showed that the 

mRNA levels of one of the subunits of cohesin (Smc3) is consistently decreased in 

both HPTs. Downregulation of Smc3 was reported to contribute to CIN in an 

unexpected manner – affecting centrosome number duplication and causing 

multipolarity (Ghiselli, 2006). This mechanism is unlikely to take place in 

posttetraploids, since we did not observe any substantial centrosome number 

amplification. Downregulation of Smc3 was also reported to cause sister chromatid 

cohesion defect and lead to CIN (Barber et al., 2008). In posttetraploid cells, sister 

chromatid cohesion does not appear to be altered: neither prominent primary 

constriction gaps were observed in these cells, nor the distance between sister 

kinetochores was strongly increased. Possibly, downregulation of Smc3 might limit 

cohesin complex formation and affect establishment of a proper sister chromatid 

cohesion without visible defects using assays implemented in the present work. 

Whether Smc3 downregulation alone is contributing to CIN, and if yes, sufficient to 

trigger CIN, however, remains to be studied in more detail. 

Altered levels of mitotic kinesins change the spindle geometry and 
enhance the frequency of segregation errors. 
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In recent years a great attention has been drawn to the role of altered MT dynamics 

in CIN. Several studies have suggested that increased stabilization of MTs affects 

the KT-MT attachment error correction rate, thus leading to a higher chance of 

persistence of incorrect attachments (Bakhoum et al., 2009a; Bakhoum et al., 

2009b). This scenario can take place upon downregulation of some mitotic kinesins 

with depolymerase function or dampening MT polymerization, thus causing slower 

MT dynamics at the kinetochore (Bakhoum et al., 2009b; Choi and McCollum, 2012; 

Manning et al., 2007). For example, a decrease of Kif2C/MCAK can enhance the 

stabilization of incorrect attachments (Bakhoum et al., 2009a).  Not only excessive 

stabilization of MTs and thus slower KT-MT attachment error correction rate can lead 

to chromosome missegregation, but also high dynamic instability of the KT-MT 

interaction can manifest itself in CIN. The latter has been reported for deletion of 

kinesin Kif10/CENPE in murine cells: chromosome segregation fidelity was 

compromised due to defective KT-MT interactions (Putkey et al., 2002). Similarly, 

loss of centromeric CENP-F leads to unstable MT capture at the kinetochore and 

chromosome missegregation (Bomont et al., 2005). Together, the maintenance of 

proper MT dynamics at the kinetochores appears to be very important for faithful 

chromosome segregation. 

In the presented study, recurrent changes were identified in the expression levels of 

several mitotic kinesins. However, many of the changes of the expression levels 

were not confirmed by immunoblotting for all analyzed kinesins. For example, the 

changes were not confirmed for Kif2C/MCAK and in some posttetraploid cell lines for 

Kif15. Remarkably, a plus-end MT depolymerase kinesin Kif18A is downregulated in 

nearly all analyzed PTs and this was confirmed also by immunoblotting. According to 

the concentration-dependent model of Kif18A action, downregulation of Kif18A can 

lead to a decrease of depolymerization at the MT plus-end. Thus, the rate of KT-MT 

attachment error correction at the kinetochore might be reduced and cause 

subsequent chromosome missegregation. 

RNAi depletion of Kif18A was reported to impair chromosome congression, increase 

the spindle length, decrease the tension on sister kinetochores and activate Mad2-

dependent SAC response (Mayr et al., 2007; Stumpff et al., 2012). The spindle 

length and accordingly, the width, are significantly increased in PT cell lines. 

However, I did not detect any congression defects in posttetraploid cells. Moreover, 
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no SAC activation has been observed, as the time from the nuclear envelope 

breakdown to the onset of anaphase was not increased in the posttetraploids. This 

phenotype might be explained by the fact that Kif18A levels are only moderately 

decreased and the remaining protein amount suffices for proper chromosome 

congression. Alternatively, concurrent changes in levels of other kinesins might 

compensate for the congression defect. For example, the RNAi-mediated depletion 

of Kif18A leads to long spindles and abnormal metaphase plate formation; additional 

co-depletion of Kif4A results in normal chromosome congression, but the spindle 

remains longer (Stumpff, Wagenbach et al. 2012). Accordingly, the levels of both 

Kif18A and Kif4A are partially decreased in HPT1 and HPT2, which might enable the 

increased spindle length without a strong defect of the metaphase plate. 

Remarkably, mRNA levels of Kif18A are slightly higher in HPT1 than in HPT2, and 

conversely, levels of Kif4A are slightly higher in HPT2 than in HPT1. Thus one 

possibility       b                y  q    “      v  ”    b      w                    

leads to the same phenotypic outcome in both HPTs: similar increase in MT length, 

absence of the deffect in metaphase plate formation and similar level of mitotic 

errors.  

The altered spindle geometry – increased spindle width and length – likely helps to 

accommodate higher chromosome numbers of posttetraploid progeny. Eukaryotic 

cells can scale up the spindle length and width to embrace more chromatin, as larger 

chromatin mass leads to an increase in microtubule length and formation of longer 

spindles in vitro (Dinarina et al., 2009). Similarly, the spindle length in allotetraploid 

Xenopus laevis is increased in comparison to its diploid relative Xenopus tropicalis, 

owing to the lower activity of a microtubule-severing protein katanin (Loughlin et al., 

2011). Of note, besides Kif18A and Kif4A that affect spindle length, the transcription 

of a microtubule severing protein fidgetin (FIGNL1) is also decreased in both HPT1 

and HPT2 (Table 2). Although the function of fidgetin in human mitosis is not fully 

understood, its downregulation in posttetraploid cells might have the same effect as 

the inhibition of katanin in tetraploid X. laevis. Thus, downregulation of Kif18A, 

together with Kif4A and potentially FIGNL1, might allow MT elongation and thus 

segregation of larger DNA mass.   

This latter hypothesis is supported by the fact that Kif18A protein levels are 

dramatically reduced already in the newly formed tetraploids. Notably, the decrease 
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in protein levels for Kif18A in newly formed tetraploids is unlikely due to the cell 

death. At the time of the sample collection (24 h from DCD release) the majority of 

cells are in G2 of the interphase after the 1st tetraploid mitosis and almost no cell 

death was observed at that time using live cell imaging. However, as the expression 

of Kif18A gene is cell-cycle regulated and it peaks at G2/M phases (Mayr et al., 

2007; Zhang et al., 2010), it can be that the decrease in Kif18A levels at 24 h after 

the release from DCD can be attributed to observed cell cycle arrest (around 50% of 

the newly formed tetraploids are arrested by this time) and thus absence of Kif18A 

gene expression. To investigate whether the decrease in Kif18A levels in newly 

formed tetraploids is due to lack of the gene expression, it is required to define at 

what cell cycle stage do tetraploid cells arrest: whether the arrest takes place in G1 

after the 1st tetraploid mitosis or further in G2. In the latter case, Kif18A gene should 

already be transcribed and expressed, and the observed levels are thus not 

diminished due to cell cycle arrest-mediated lack of gene expression If that holds 

true, then we can speculate that newly formed tetraploids, because they possess 

double the amount of DNA in comparison to diploids, have a particular requirement 

for increased length and width of the mitotic spindle. In turn, allowing the segregation 

of a larger DNA mass comes at the cost of CIN: newly formed tetraploids and their 

posttetraploid derivatives display chromosome missegregation, albeit to a different 

level. Remarkably, in RPT4, the only one of all PT cell lines where the Kif18A levels 

were not decreased, the chromosome numbers are closer to diploid level (median 

equals 46). Likely, as RPT4 reduced the number of chromosomes, the decreased 

Kif18A levels might no longer be essential for the spindle formation. However, it 

should be noted that the causal relationship remains elusive as the mechanisms of 

Kif18A regulation are not well understood. Together, Kif18A downregulation might be 

sufficient to keep chromosome missegregation in the posttetraploids. Nevertheless, it 

does not exclude additional mechanisms that can further contribute to CIN in 

posttetraploids. 

Interestingly, spindle length does not get accommodated in S. cerevisiae polyploids, 

however, spindle width does (Storchova et al., 2006). Thus, the spindle angle is 

dramatically increased in tetraploid yeast cells in comparison to progenitor haploids. 

This geometry was suggested to be the reason in the erroneous mitosis of yeast 

tetraploids, as it allows a higher frequency of syntelic attachments. In human 
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posttetraploid cells the increase in a spindle length is proportionally lower than the 

corresponding increase in the width. It manifests itself not only in longer MTs, but 

also in in larger spindle angle. Given the multiple KT-MT attachment sites per 

kinetochore in human cells, both syntelic and merotelic attachments can be formed 

with a higher probability in posttetraploid cells. This increase in syntely and merotely 

might contribute to CIN in human posttetraploids, consistently to a proposed model 

in S. cerevisiae. 

A decrease in Kif18A levels can alter the stoichiometry in binding between Kif18A 

and its interaction partners playing important roles in mitosis, such as Survivin 

(BIRC5), Kif2C/MCAK, BubR1, Cdc8, Ndc80, Cdc20, Clasp1, CenpN, CenpA, 

CenpE, even if the levels of the latter are not affected per se. For example, these 

proteins have described roles in chromosome passenger complex, KT-MT 

attachment error correction, mitotic checkpoint, centromere organization. Potentially 

an alteration in the protein-protein interaction stoichiometry between Kif18A and 

these proteins can alter the mitotic progression and cause chromosome 

missegregation; this represents an attractive direction for further investigation.  

Taken together, we propose the following model of microtubule dynamics alteration 

in posttetraploids, associated, in particular, with Kif18A downregulation. The 

microtubule motor activities are specifically modulated in posttetraploid cells likely 

contributing to mitotic progression. First, alterations in mitotic motors change spindle 

geometry to segregate higher chromosome numbers. Second, geometry changes 

are associated with moderate chromosome missegregation. Potentially, Kif18A 

downregulation provides a selective advantage for posttetraploid cell proliferation. In 

this scenario, the proliferation might come at the costs of CIN.  

To further validate this model future research is required. First, it remains unclear 

whether restoration of Kif18A protein levels can restore MT length closer to the 

length in diploid cells (i.e., to shorten the MTs) and if yes, whether this MT length 

change will rescue chromosome missegregation. Second, it remains to be 

understood, what mechanisms cause Kif18A downregulation as early as already in 

newly formed tetraploids and whether increased DNA mass is causal of Kif18A 

downregulation to allow formation of longer MTs. An alternative possibility is that 

Kif18A is decreased due to some other reason independent on larger chromosome 
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mass and this change allows longer spindles and associated chromosome 

segregation errors. Finally, it remains an open question, whether Kif18A 

downregulation alone is responsible for CIN in posttetraploid cells. This possibility is 

rather unlikely, as continual chromosome missegregation triggers chromosome copy 

number imbalance, and likely, imbalance in mitotic regulators, KT and MT proteins. 

In turn, these events can maintain the deregulation of KT-MT dynamics, thus forming 

a positive feedback loop for persistent chromosome missegregation. This model is 

consistent with a previously proposed model that even slightly destabilized aneuploid 

genome can become very labile with time (Matzke et al., 2003). 

Increased tolerance to mitotic errors contributes to CIN in 
posttetraploid cells. 

Malfunction of cell cycle checkpoints may represent a potential source of 

chromosome missegregation and CIN. In particular, defective spindle assembly 

checkpoint (SAC) can lead to aneuploidy (Cahill et al., 1998; Hanks et al., 2004; 

Kops et al., 2005; Michel et al., 2001; Musio et al., 2003; Ryan et al., 2012; Sotillo et 

al., 2007). SAC function can be tested using the mitotic poisons affecting MT 

dynamics. For example, nocodazole in low nanomolar concentrations was reported 

to cause decreased MT turnover (Vasquez et al., 1997) that perturbs KT-MT 

interactions. In turn, the SAC is activated and the time from nuclear envelope 

breakdown to the onset of anaphase is, accordingly, prolonged. I tested the SAC 

response using both low (0.5 ng/ml, nanomolar range) concentration of nocodazole, 

as well as high (200 ng/ml) concentration that arrests cells in metaphase. SAC was 

activated in response to both partial and complete MT depolymerization by 

nocodazole in posttetraploids: the posttetraploid cells prolonged the time in 

metaphase similarly as diploids. Remarkably, chromosome misalignment caused by 

low concentration of nocodazole halt the anaphase progression in both diploids and 

posttetraploids, similarly to previous reports on antimitotic drug effects on the 

majority of CIN cancer cells (Blajeski et al., 2002; Gascoigne and Taylor, 2008; Lee 

et al., 2004). Furthermore, prolonged mitotic arrest response is consistent with 

available data on both MIN and CIN cancer cells, showing a robust SAC activation 

upon treatment with high nocodazole concentration (Tighe et al., 2001).  

Notably, even low concentration of nocodazole treatment is a severe insult to cell 
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fitness and subsequent proliferation. Not only chromosome missegregation 

dramatically increases in both diploids and posttetraploids, but also the majority of 

missegregating posttetraploid cells arrest or die in the following interphase. These 

facts confirm that the effect of nocodazole on posttetraploid cells is very strong and 

is sufficient to affect cell viability. We hypothesized that testing the activation of the 

SAC by the strategy that does not affect MTs dynamics, but still increase the 

frequency of incorrect attachments, might help to reveal possible SAC alterations. 

In order to address this latter possibility, SAC activation was further tested upon 

treatment with Kif11/Eg5 inhibitor VS-83, an analog of monastrol (Mayer et al., 1999) 

that causes monopolar spindle formation. In this scenario, MTs retain their dynamic 

properties, i.e. the depolymerization and polymerization rate are likely not altered. 

Instead, syntelic and merotelic non-bioriented attachments are formed, rendering 

sister chromatids attached to MTs in a tensionless attachment.  The biorientation 

and proper chromosome attachments are not achieved as long as the inhibitor is 

present. Thus, SAC-proficient cells should halt the anaphase onset in this case and 

eventually slip out of mitosis. My data indicates that posttetraploid cells are able to 

progress through mitosis despite the presence of tensionless attachments, i.e. divide 

their chromosomes into two (and sometimes more than two) daughter nuclei. This 

feature was observed in both analyzed HPTs and RPT1. Careful analysis excluded 

the possibility that posttetraploid cells are more resistant to this inhibitor, as the 

bipolar spindle frequency was only slightly increased in posttetraploids in comparison 

to diploids. A few mutually not excluding possibilities can be considered. First 

possibility is that posttetraploids cannot recognize tensionless attachments because 

of a specific defect in SAC. To address this possibility, to date, I analyzed the mRNA 

levels of the SAC genes (~80 entries) and could identify only one recurrent change 

in both HPT1 and HPT2 that could explain the observed phenotype: a strong 

downregulation of a kinetochore-associated mitotic checkpoint protein KNTC1. Its 

inactivation was shown to cause aberrant mitosis in human and D. melanogaster 

cells (Basto et al., 2000; Chan et al., 2000). More data about the SAC protein levels 

and activity in PTs will be required to answer the question of SAC functionality in 

these cells. As cells dividing chromosomes prolong time from NE breakdown to 

onset of anaphase, although this time period is shorter than from NE breakdown to 

mitotic slippage in slipping cells, it suggests a second possibility. The possibility is 
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that SAC might get activated in response to tensionless attachments, but cannot be 

maintained for long. Generally, the possibility of weakened SAC is a matter of a 

debate in the field. Some data supports the view that even a single unattached 

kinetochore is sufficient to activate SAC and to halt the anaphase onset (Rieder et 

al., 1994). Other findings indicate that SAC can be weakened, i.e. cannot be 

maintained for long due to inefficient recruitment and/or mutations in SAC factors 

(Weaver and Cleveland, 2005). Our data about the SAC activation and maintenance 

in posttetraploid cells in response to tensionless attachments rather supports the 

latter view and suggests a specific SAC weakening in the posttetraploids. 

The third considered possibility is that posttetraploids can in fact recognize 

tensionless attachments, but cannot properly correct them. Potentially, inefficient 

error correction at the kinetochore may occur due to insufficient Kif18A and thus 

slower MT depolymerization at the kinetochores.  Finally, the increased frequency of 

division in the presence of tensionless attachments in posttetraploids can be 

associated with cumulative effects of both weakened SAC and defective error 

correction. In this context, downregulation of Kif18A contributes to inefficient error 

correction at the kinetochores and, additionally, weakened SAC allows the division 

despite the malattachments.  Thus, defective SAC in posttetraploids might provide 

an additional explanation to the lack of mitotic arrest, observed by Kif18A RNAi-

mediated depletion alone in the work from Thomas Mayer laboratory (Mayr et al., 

2007), and further proliferation in CIN state.  

The lack of postmitotic arrest in the following G1 can also contribute to increased 

chromosomal instability observed in posttetraploid cell lines.  Both human diploid 

cells as well as the majority of newly formed tetraploid cells enter a permanent p53-

dependent arrest and often die after chromosome missegregation (Andreassen et 

al., 2001; Ganem and Pellman, 2007; Thompson and Compton, 2010; Vitale et al., 

2010). Our observations on diploid and tetraploid cells support these findings (this 

study; Kuffer et al., 2013). However, posttetraploid cells arrest and die with a 

significantly lower frequency after bipolar erroneous mitoses in contrast to their 

progenitor cell lines. These findings indicate that not only the mitosis per se is 

affected in posttetraploids, but also the downstream cell cycle arrest pathways might 

be attenuated.  
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The observed arrest in the progenitor diploid and newly formed tetraploid cell lines is 

mediated through p53 (Kuffer et al., 2013). In interphase following chromosome 

missegregation, phosphorylated p53 gets stabilized and accumulates in the nucleus 

(Thompson and Compton, 2010). I hypothesized that if p53 activation is defective, it 

might fail to accumulate in the nucleus. Indeed, less prominent p53 enrichment in the 

main nuclei after chromosome missegregation was observed in posttetraploids in 

comparison to diploids. The data suggests that the activation of the p53 after mitotic 

errors might be impaired in posttetraploid cells. Furthermore, we identified p53 

pathway deregulation using gene expression data on posttetraploid cells. This 

deregulation may at least partially be responsible for altered response to defective 

mitosis. Taken together, p53 response to chromosome missegregation is attenuated 

in posttetraploids. We propose that cells with attenuated p53 response might 

proliferate better despite chromosome missegregation.   

T             D     C  p   ’    b      y                   p53-dependent cell 

cycle arrest after chromosome missegregation is executed through a downstream 

target of p53 – p21 (Thompson and Compton, 2010). A remarkable increase has 

been observed in the expression levels of the CDKN1A gene encoding p21. 

Although the reasons of this phenomenon are unclear, potential scenario could be 

that the concurrent increase in p21 might allow selective proliferation of only 

moderately missegregating cells. However, the role of p21 deregulation in the 

proliferation of posttetraploids was not directly investigated and requires further 

study. 

A large body of evidence suggests that moderate levels of CIN are better compatible 

with extended survival, in contrast with high CIN levels (Watanabe et al., 2012). Our 

findings are in line with this proposal. In a stark contrast to newly formed tetraploids 

(Fujiwara et al., 2005; Ho et al., 2010; Kuffer et al., 2013), posttetraploid cells reduce 

the levels of chromosome missegregation to a moderate, yet higher than diploids, 

level, and efficiently proliferate. This hypothesis was further corroborated by the 

report that artificial increase in chromosome missegregation can act as an efficient 

strategy in eliminating tumor cells (Janssen et al., 2009). In agreement with this 

report, increasing the chromosome missegregation in posttetraploids by low 

concentrations of nocodazole triggers cell cycle arrest and subsequent death. 
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The presented analysis of progeny arising from individual human tetraploid cells 

suggests that CIN results from alterations in two major mechanisms accordingly to a 

following model. First, downregulation of one of key mitotic kinesins, Kif18A, leads to 

altered spindle geometry to allow segregation of large DNA mass and increased 

rates of chromosome segregation errors. Second, an altered response to defective 

attachments and p53 pathway attenuation allows posttetraploids to tolerate increase 

in chromosome missegregation. The identified changes characterize a route that 

might be relevant for formation of cancer cells with complex near-tri and near-

tetraploid karyotypes. The expression of kinesins in tumor cells is often abnormal, 

and kinesins are becoming an alternative for cancer therapy (Huszar et al., 2009). 

Notably, overexpression of Kif18A was reported to be associated with tumorigenesis, 

particularly colon and breast carcinogenesis (Nagahara et al., 2011; Zhang et al., 

2010). Further research has to be carried out in order to understand whether 

downregulation of Kif18A could also promote tumorigenesis. As Kif18A 

downregulation is linked to abnormal mitotic progression, it is plausible to speculate 

that lack of mitotic arrest (either due to defect in SAC or only partial downregulation 

of Kif18A) allows progression with mitotic errors and accumulation of aneuploidy. 

Further research on the role of microtubule dynamics and motor activity in CIN cells, 

as well as SAC function will be important for the understanding of the role of kinesins 

and contribution of SAC weakening in CIN and tumorigenesis.  
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Supplementary Information 

 

 

Supplementary Figure 1. aCGH of HCT116 and RPE1 and their posttetraploid derivatives. 

aCGH of (A) HCT116, (B) HPT1, (C) HPT2, (C) RPE1 (here aCGH of RPE1 not expressing H2B-GFP 

is shown), (D) RPT1. (B) HPT1 shows deregulation of chromosome 7. A major part of chromosome 6 

is amplified, besides a small amplification present on chromosome X. The graph represents the HPT1 

signal normalized to HCT116 signal (HCT116 was used as a reference control for a CGH 

hybridization) (C) HPT2 shows amplification of major parts of chromosomes 8, 10, 16 and 17 and a 

deletion of the Y chromosome in comparison to the human reference DNA. (E) RPT1 shows 

amplification of major parts of chromosome 10 in comparison to the human reference DNA. X-axis 

indicates the chromosomes, aligned from chromosome 1 to chromosome Y. 
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Supplementary Figure 2. Examples of observed chromosome segregation errors in live cell 

imaging. 

Chromatin is visualized by H2B-GFP, time: hh:mm. White arrowheads indicate errors in bipolar 

mitosis.   
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Supplementary Figure 3. Representative images of mitotic errors in HPTs. 

(A) No mitotic errors; (B), (C) Anaphase bridges; (D) Anaphase bridges and lagging chromosomes. 

Staining: DNA Sytox Green (cyan), MTs -tubulin (red), centromeres (CREST, yellow). 
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Supplementary Figure 4. Reduction in the centrosome numbers after progression through 

several consecutive mitoses in newly formed tetraploid cells. 

Centrosome numbers in the newly formed tetraploid cells. X-axis: the number of centrosomes. 

HCT116 - no treatment, 4N after formation – 4 hours, 4N after the first mitosis – 24 hours, 4N after the 

second mitosis – 48 hours, 4N after the third mitosis – 80 hours after DCD release.   
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Supplementary Figure 5. The chromosome oscillations are unlikely to be altered in the 

posttetraploids. 

Normalized intensity of the CREST signal along the spindle in HCT116 and its posttetraploid 

derivatives, mean of measurements for nine to eleven cells per cell line. The mean intensity line is 

depicted in red; intensity lines for every individual cell are shown in grey. The image analysis was 

carried out by Dr. Zuzana Storchova.  
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Supplementary Figure 6. Posttetraploid cell lines divide in presence of tensionless 

microtubule-kinetochore attachments. 

Cells arresting and dividing in the presence of VS-83 (live cell imaging), time: hh:mm. White 

arrowheads indicate the cells followed on the timelapse tiles. 
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Supplementary Figure 7. Fate analysis of HCT116 and HPTs (one representative experiment 

out of four).   
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cell 
line 

mitotic 
phase 

type of error in anaphase, 
number of observed errors 

presence/absence of 
centromeres in the observed 

error (description) 

HPT1 anaphase lagging chromosome, 2 
3 CREST in the lagging 

chromosomes 

HPT1 anaphase lagging chromosome, 2 

no CREST in the lagging 
chromosomes, 1 CREST in the part 
of DNA that is not in the total mass, 

but does not look like an obvious 
lagging 

HPT1 anaphase anaphase bridge, 1 
stretched CREST signals at both 

ends of the bridge 

HPT1 anaphase lagging chromosome, 2 

no CREST in one lagging 
chromosome, CREST in the other 
lagging, CREST in the part of DNA 
that does not look like an obvious 

lagging 

HPT1 telophase 
lagging chromosome, 1, anaphase 

bridge, 1 
no CREST signal in either of errors 

HPT1 anaphase lagging chromosome, 2 
no CREST in one lagging 

chromosome, CREST in the other 
lagging 

HPT1 anaphase 
lagging chromosome, 3, anaphase 

bridge, 2 

2 CREST signals in one lagging, no 
CREST signals in two other ones, 
non-stretched CREST signals at 

both ends of the 1st bridge, 
stretched CREST signals at both 

ends of the 2nd bridge 

HPT1 anaphase no error 
 

HPT1 
late 

anaphase 
lagging chromosome, 2 

CREST in both lagging 
chromosomes 

HPT1 telophase telophase bridge, 1 
CREST signals at both ends of the 

bridge 

HPT1 anaphase no error 
 

HPT1 anaphase lagging chromosome, 1 
CREST signal in the lagging 

chromosome 

HPT1 
anaphase, 
might be 3 
MTOCs 

lagging chromosome, 4 

3 CREST in the 1st lagging 
chromosome, 3 CREST in 2nd 

lagging chromosome, 1 CREST in 
the 3rd lagging chromosome, no 

CREST in the 4th lagging 
chromosome 

HPT1 
late 

anaphase 
anaphase bridge 

stretched CREST signals at one end 
of the bridge 

HPT1 anaphase 
anaphase bridge, 2, lagging 

chromosome, 1 

non-stretched CREST signals at 
both ends of the 1st bridge, 

stretched CREST signals at both 
ends of the 2nd bridge, no CREST in 

lagging 

HPT1 
anaphase, 
might be 3 

MTOCs 
lagging lateral chromosome, 1 

3 CREST in the lagging 
chromosome 
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HPT1 
late 

anaphase 
anaphase bridge, 1 

2 non-stretched CREST signals at 
both ends (2 on each) of the bridge 

HPT1 anaphase no error 
 

HPT1 
anaphase, 
might be 3 

MTOCs 
lagging chromosome, 6 

~26 CREST signals in all laggings, 
except one lateral lagging, at least 2 

of them are stretched 

HPT1 telophase lagging chromosome, 2 
no CREST in one lagging 

chromosome, CREST in the other 
lagging chromosome 

HPT1 anaphase anaphase bridge, 1 no CREST signal in the bridge 

HCT
116 

anaphase no error 
 

HCT
116 

telophase no error 
 

HCT
116 

anaphase no error 
 

HCT
116 

anaphase no error 
 

HCT
116 

telophase no error 
 

HCT
116 

anaphase no error 
 

HCT
116 

telophase no error 
 

HCT
116 

anaphase no error 
 

HCT
116 

anaphase no error 
 

HCT
116 

anaphase no error 
 

HCT
116 

anaphase no error 
 

HCT
116 

anaphase lagging chromosome, 1 3 CREST signals in the midzone 

HCT
116 

anaphase no error 
 

HCT
116 

telophase lagging chromosome, 2 
CREST in both lagging 

chromosomes 

HCT
116 

anaphase no error 
 

HCT
116 

anaphase no error 
 

HCT
116 

anaphase lagging chromosome, 1 
2 CREST signals in the lagging 

chromosome 

HCT
116 

telophase no error 
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HCT
116 

anaphase anaphase bridge, 1 
non-stretched CREST signals at 

both ends of the bridge 

HCT
116 

anaphase lagging chromosome, 2 
no CREST signals in the lagging 

chromosome 

HCT
116 

telophase no error 
 

HCT
116 

telophase telophase bridge, 1 
stretched CREST signals at both 

ends of the bridge 

HCT
116 

telophase no error 
 

HCT
116 

anaphase no error 
 

HPT2 telophase lagging chromosome, 1 
2 big but faint CREST signals in the 

midzone 

HPT2 anaphase anaphase bridge, 1 
1 CREST in the part of DNA that is 
not in the total mass, but does not 

look like an obvious lagging 

HPT2 telophase anaphase bridge, 1 

non-stretched CREST signals at 
both ends of the bridge, 2 CREST in 
the part of DNA that is not in the total 

mass, but does not look like an 
obvious lagging 

HPT2 telophase no error 
 

HPT2 telophase no error 
 

HPT2 telophase no error 
 

HPT2 anaphase lagging chromosome, 2 
CREST in both lagging 

chromosomes 

HPT2 anaphase no error 
 

HPT2 anaphase no error 
 

HPT2 anaphase anaphase bridge, 2 

non-stretched CREST signals at 
both ends of the 1st bridge, 

stretched CREST signals at both 
ends of the 2nd bridge 

HPT2 telophase no error 
 

HPT2 anaphase lagging chromosome, 1 
1 CREST signal in the lagging 

chromosome 

HPT2 telophase lagging chromosome, 2 
1 CREST signal in the 1st lagging 

chromosome, no CREST in the 2nd 
(lateral) lagging chromosome 

HPT2 anaphase 
anaphase bridge, 1, lagging 

chromosome, 1 

non-stretched CREST signals at 
both ends of the bridge, no CREST 

in the lagging chromosome 

HPT2 anaphase anaphase bridge, 1 
~6 CREST signals in the anaphase 

bridge 

HPT2 telophase telophase bridge, 1 no CREST signal 
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HPT2 anaphase 
anaphase bridge, 1, lagging 

chromosome, 1 

non-stretched CREST signals at 
both ends of the bridge, 2 CREST in 

the lagging chromosome 

HPT2 anaphase no error 
 

Supplementary Table 1. High resolution imaging analysis of mitotic errors observed in HCT116 

and its posttetraploid derivatives. 
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ratio 
HPT1/
HCT11
6 [log2] 

up-
/downre
gulation 

ratio 
HPT2/
HCT11
6 [log2] 

up-
/downre
gulation 

gene names function 

-1.17 down -0.47 
 

aurkb;aurkb-
sv2;AURKB;AIK2;AIM1;ARK2;STK12 

Mitotic error 
correction 

-1.02 down 0.04 
 

CDCA8;PESCRG3 

-0.75 down 0.10 
 

BIRC5;API4;IAP4 

-0.65 
 

-0.36 
 

INCENP 

-1.18 down -0.63 
 

CASC5;KIAA1570;KNL1 

Kinetochore 

-0.63 
 

-0.06 
 

MIS12 

-1.35 down -0.13 
 

CENPA 

-0.35 
 

-0.19 
 

CENPB 

-0.68 
 

-0.43 
 

CENPC1;CENPC;ICEN7;hCG_40345 

-0.48 
 

-0.20 
 

CENPH;ICEN35;hCG_27171 

-1.50 down -0.10 
 

CENPI;FSHPRH1;ICEN19;LRPR1;RP5-
1188J21.1-002;RP5-1188J21.1-003 

-1.31 down -0.69 
 

CENPE 

-0.68 
 

-0.04 
 

ZW10 

-1.03 down -0.16 
 

ZWILCH 

-0.37 
 

-0.06 
 

KATNA1;RP1-12G14.1-004;RP1-12G14.1-005 

Severing MAPs 

-1.96 down -2.43 down FIGNL1 

-0.12 
 

0.47 
 

SPAST;ADPSP;FSP2;KIAA1083;SPG4 

-0.50 
 

-0.35 
 

STMN1;RP1-125I3.5-004;LAP18;OP18;RP1-
125I3.5-006 

-1.08 down -0.58 
 

HCTP4;TPX2;hCG_38821;HCA90;RP11-
243J16.10-002;C20orf1;C20orf2;DIL2;HCA519 

Stabilizing MAPs 
-1.00 down -0.50 

 
CKAP5;KIAA0097 

-0.38 
 

0.96 up GPR142;PGR2;KIF19 

-1.43 down -0.55 
 

KIF11;EG5;KNSL1;TRIP5 

1.24 up 0.73 
 

KIF12;RP11-56P10.3-001;hCG_32518 

Kinesins 

-0.45 
 

-0.03 
 

KIF13A;RBKIN;RP11-500C11.2-003 

0.35 
 

0.81 up KIF13B;GAKIN;KIAA0639 

-1.00 down -0.65 
 

KIF14;KIAA0042 

-1.45 down -0.89 down KIF15;KLP2;KNSL7 

0.25 
 

0.61 
 

KIF16B;C20orf23;KIAA1590;SNX23;RP5-
971B4.1-002 

0.10 
 

-0.51 
 

KIF17;RP11-401M16.8-004;RP11-401M16.8-
009;KIAA1405;KIF3X 

-0.91 down -1.91 down KIF18A;OK/SW-cl.108 

-1.49 down -0.87 down KIF18B 

-0.75 
 

-0.07 
 

KIF1B;KIAA0591;KIAA1448;KIF1Bbeta;RP4-
736L20.1-005 

-0.14 
 

0.49 
 

KIF1C;KIAA0706 

-0.87 down -0.50 
 

KIF20A;RAB6KIFL 

-0.79 down -0.26 
 

KIF20B;KRMP1;MPHOSPH1 

-0.13 
 

0.16 
 

KIF21A;KIAA1708;KIF2;DKFZp779C159 

-0.33 
 

-0.59 
 

KIF21B;RP11-180A14.4-
004;hCG_2027369;KIAA0449 

-1.16 down -0.52 
 

KIF22;KID;KNSL4;hCG_2039829;A-
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328A3.5;OBP-1;OBP-2 

-1.23 down -0.29 
 

KIF23;KNSL5;MKLP1 

-1.21 down -0.90 down KIF24;C9orf48 

-0.74 
 

-0.57 
 

KIF26A;KIAA1236 

0.09 
 

0.69 
 

KIF26B 

0.17 
 

0.03 
 

KIF27 

-0.78 down -0.21 
 

KIF2A;KIF2;KNS2 

-1.20 down -0.77 down 
KIF2C;KNSL6;RP11-269F19.1-004;RP11-

269F19.1-003;RP11-269F19.1-006 

-0.37 
 

-0.15 
 

KIF3A;KIF3 

-0.28 
 

0.14 
 

KIF3B;KIAA0359 

0.46 
 

0.01 
 

KIF3C;hCG_21381;DKFZp686G1646 

-1.35 down -0.80 down KIF4A;KIF4 

0.04 
 

0.28 
 

KIF5A;NKHC1 

-0.08 
 

0.11 
 

KIF5B;KNS;KNS1;KIF5B-ALK 

0.59 
 

-0.45 
 

KIF5C;KIAA0531;NKHC2;Nbla04137;DKFZp566
O183 

-0.17 
 

0.84 up KIF9 

0.36 
 

0.60 
 

KIFAP3;RP1-190I16.1-002;hCG_38009;RP1-
190I16.1-003;KIF3AP;SMAP 

-0.80 down -0.41 
 

KIFC1;DAQB-126H3.5-002;HSET;KNSL2;DASS-
97D12.2-002;XXbac-BPG294E21.2-002 

0.20 
 

0.45 
 

KIFC2;hCG_24018 

-0.83 down -0.19 
 

KIFC3;hCG_1795607;DKFZp686D23201 

0.91 up NA 
 

KIF1A;hCG_32293;ATSV;C2orf20 

-0.91 down -0.31 
 

MAD1L1;tcag7.525;MAD1;TXBP181 

Spindle assembly 
checkpoint 

-1.12 down -0.11 
 

MAD2L1;MAD2;hCG_37351 

-0.48 
 

-0.36 
 

MAD2L2;RP3-330O12.4-007;RP3-330O12.4-
002;RP3-330O12.4-006;RP3-330O12.4-

008;RP3-330O12.4-
005;hCG_24776;MAD2B;REV7 

-0.87 down -0.36 
 

BUB1;BUB1L;hCG_16817 

-1.25 down -0.49 
 

BUB1B;BUBR1;MAD3L;SSK1 

-0.57 
 

0.20 
 

BUB3 

-1.72 down -0.96 down KNTC1;KIAA0166 

-1.29 down -0.03  KNTC2;hCG_38410;NDC80;HEC;HEC1 

0.32 
 

0.32 
 

LOC392748;tcag7.1276;RPS27;RP11-422P24.3-
002;RPS27L;hCG_33491;MPS1;RP11-

422P24.3-
001;hCG_1746747;hCG_1996850;hCG_200124

9 

-0.21 
 

0.05 
 

SMC1A;DXS423E;KIAA0178;SB1.8;SMC1;SMC
1L1;RP6-29D12.1-003;DKFZp686L19178 

Sister chromatid 
cohesion 

-1.11 down -0.76 down SMC3;BAM;BMH;CSPG6;SMC3L1 

-0.25 
 

0.34 
 

ELOVL1;SSC1;CGI-88 

-0.17 
 

0.06 
 

STAG2;RP11-517O1.1-007;RP11-517O1.1-
020;RP11-517O1.1-017;RP11-517O1.1-
011;RP11-517O1.1-014;RP11-517O1.1-
013;RP11-517O1.1-002;RP11-517O1.1-

006;hCG_15646;SA2;DKFZp781H1753;DKFZp6
86P168;DKFZp686C21148;DKFZp686P16143;D

KFZp686I05169 

-1.70 down -1.42 down ESPL1;ESP1;KIAA0165 
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-0.59 
 

-0.84 down TP53;P53;hCG_42016;p53 

Cell cycle regulation 

-0.03 
 

0.06 
 

APC;DP2.5;APC variant protein 

-0.64 
 

-0.07 
 

CCNB1;CCNB 

-0.83 down -0.46 
 

CDC20 

0.19 
 

0.69 
 

MDM2;mdm2;MDM2 isoform N1_40;MDM2 
isoform KB9 

-0.25 
 

-0.37 
 

MDM4;MDMX;RP11-430C7.1-006;RP11-
430C7.1-007;RP11-430C7.1-009 

-0.29 
 

0.25 
 

RB1 

-1.62 down -0.75 
 

BRCA1;RNF53 

-1.42 down -0.68 
 

BRCA2;FACD;FANCD1 

-0.04 
 

-0.20 
 

MYC;hCG_15917;BHLHE39;c-myc 

-0.62 
 

-0.18 
 

RANBP1;hCG_17886 

-1.11 down -0.35 
 

FOXM1;FKHL16;HFH11;MPP2;WIN;hCG_17317
45 

0.74 
 

0.17 
 

CDH1;hCG_28201;CDHE;UVO 

-0.35 
 

0.16 
 

CCND1;BCL1;PRAD1;hCG_2016647;cyclin D1 

-0.85 down -0.70 
 

CCNE1;CCNE 

0.32 
 

0.31 
 

ATM;DKFZp781A0353 

1.27 up 2.39 up 
CDKN1A;CAP20;CDKN1;CIP1;MDA6;PIC1;SDI1

;WAF1;hCG_15367 

Supplementary Table 2. mRNA levels of the CIN-associated genes. 

Ratio HPT/HCT116 [log2] – log2 of the ratio of respective HPT/HCT116 for mRNA data for every 

individual gene entry. The median of three biological replicates for each gene entry was used. Up-

/downregulation – log2 of the ratio is more or equals 0.75 (up) or less or equals -0.75 (down). Note, 

that some genes cannot be classified to the only group (e.g., some entries can be classified in both 

spindle assembly checkpoint  

andakinetochore).
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Materials and Methods 

1. Materials 

1.1. Cell lines. 

HCT116, RPE1-hTERT cell lines and their derivatives were used in the study. 

HCT116 is a human colorectal carcinoma cell line, purchased from ATCC (No. CCL-

247, LGC Standards GMBH, Wesel, Germany). H2B-GFP-expressing HCT116 cell 

line, established by Christian Kuffer, was used in this work. In brief, the cell line was 

generated by lipofection with FugeneHD (Roche, Mannheim, Germany) with pBOS-

H2BGFP construct (BD Pharmingen, Heidelberg, Germany) according to 

            ’  p       ; further, transfected cells were cultured in selection medium 

on blasticidin (6 µg/ml, Alexis Biochemicals, Lausen, Switzerland), individual clones 

were screened for H2B-GFP expression before use in this project. HCT116 cell line 

was also passaged for additional 36 passages (duration of approximately three 

months) in order to obtain late passage HCT116 36p cell line. 2N CP4 cell line was 

established by Silvia Stingele using single-cell purification, followed by a clonal 

expansion of HCT116. RPE1 hTERT is an immortalized by telomerase expression 

human retinal pigment epithelium cell line; hTERT-RPE1, expressing H2B-GFP, 

used in the present work, was a generous gift from Dr. Stephen Taylor (The 

University of Manchester, UK). Throughout the study both HCT116 and RPE1 

hTERT H2B-GFP-expressing cell lines were referred to as HCT116 and RPE1, 

respectively.  

1.2. Primary antibodies. 

The following primary antibodies were used in the study. Table 1 lists the species 

used to obtain antibodies, the respective dilutions and commercial and non-

commercial sources of the antibodies.  

antibody species dilution source catalogue 

number 

anti-p53 mouse 1:1000 
Santa Cruz, 

Heidelberg, Germany 

(DO-1): sc-126 

anti-p53 rabbit 1:500 Cell Signaling, 

Frankfurt am Main, 

#9282 
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Germany 

anti-α-actinin mouse 1:500 Santa Cruz (H-2): sc-17829 

anti-GAPDH goat 1:1000 
Abcam, Cambridge, 

UK 

ab9483 

anti-GAPDH goat 1:1000 

Cell Signaling, 

Frankfurt am Main, 

Germany 

14C10 

     

anti-Kif15 rabbit 1:1000 

Dr. Thomas Mayer, 

University of 

Konstanz, Germany 

- 

anti-Kif18A rabbit 1:500 

Dr. Thomas Mayer, 

University of 

Konstanz, Germany 

- 

anti-α-tubulin mouse 1:500 
Sigma, Taufkirchen, 

Germany 

T6199 

anti-γ-tubulin rabbit 1:1000 Abcam ab84355 

anti-γ-tubulin mouse 1:1000 Abcam ab11316 

anti-CREST human 1:1000 
Immunovision, 

Springdale, USA 

HCT-0100 

Table 3. Primary antibodies used throughout the study. 

1.3. Sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) gel 

electrophoresis and immunoblotting materials. 

Mini-PROTEAN TGX (Tris-Glycine eXtended) 4–15% gradient and Any KD precast 

gels (BioRad, Munich, Germany) were used for the SDS-PAGE. Following buffers 

were used for SDS-PAGE and subsequent immunoblotting: 

 RIPA lysis buffer (pH 7.5): 50 mM HEPES, 150 mM NaCl, 1.5 mM MgCl2, 1 

mM EGTA, 10% glycerol, 1% TritonX-100, 100 mM NaF, 10 mM Na4P2O7, 

protease inhibitor cocktail. 

 Lämmli buffer: 62.5 mM Tris/HCl pH 6.8, 2% (w/v) glycerol, 0.002% (w/v) 

bromphenole blue, 2.5% -mercaptoethanol. 

 Lower SDS buffer (pH 8.8): 1.5 M Tris-HCl, 0.4% (w/v) SDS. 
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 Upper SDS buffer (pH 6.8): 0.5 M Tris-HCl, 0.4% (w/v) SDS. 

 SDS-PAGE running buffer: 25 mM Tris/HCl, 200 mM glycine, 0.1% (w/v) SDS. 

 Immunoblotting transfer buffer: 25 mM Tris/HCl, 1.44% (w/v) glycerol, 20% 

methanol. 

 TBST (pH 7.5): 50 mM Tris, 150 mM NaCl. 

 Blocking buffer: 5% (w/v) skim milk powder, TBST. 

 

1.4. Other materials. 

 20x SSC (pH 7.0): 3 M NaCl, 300 mM C3H5O(COO)3Na3. 

 PBS (pH 7.5): 137 mM NaCl, 2.7 mM KCl, 10 mM Na4HPO4, 2 mM KH2PO4.  

 PBST (pH 7.5): PBS (pH 7.5), 0.1% Tween20. 

 Pepsin solution: 50µl Pepsin, 1ml 1N HCl, 99ml dH2O. 

All other materials are described in the appropriate methods sections. 

2. Methods 

2.1. Cryopreservation and cultivation of cells. 

Cells were preserved in a freezing solution containing 90% fetal calf serum (FCS, 

Gibco, Karlsruhe, Germany) and 10% DMSO as a cryoprotector with minimal cell 

concentration 106 cells/ml. For short term storage, vials containing cells were 

preserved at -80°C in a freezer; long-term preservation was carried out in liquid 

nitrogen. To thaw the cells, the vials were gently agitated for 5 min in a 37°C water 

bath. Further, cells were pelleted, resuspended in a fresh culture medium and plated 

on a 10-cm cell culture plates. Cell culture was established for experimental use after 

two to four days in culture. Both HCT116 and RPE1 cells, and their derivatives were 

            D  b    ’                  (DMEM, Gibco, Karlsruhe, Germany), 

supplemented with heat-inactivated 10% FCS and 1% PenStrep (50 IU/ml penicillin 

and 50 µg/ml streptomycin, PAA, Pasching, Austria) at 37°C in a humidified 

atmosphere with 5% CO2.  

Cell splitting was performed three times per week. In brief, cells were washed with 

PBS, treated with trypsin-EDTA (PAA, Pasching, Austria) for 5 min at 37°C until 

complete detachment from the dish and subsequently dispensed into 1:5-1:10 ratios 

in 10 ml growth medium. Cells in the log-phase of growth (60-75% confluency) were 

used for the experiments. Prior seeding for the experiments, cells were counted on 

Beckman Coulter Z1 cell counter (Beckman Coulter, Munich, Germany) and diluted 
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with a cell culture medium in order to obtain the necessary concentrations. 

Generally, depending on required density and the cell line type (lower cell count 

requirement for RPE1 and higher for HCT116), 25000 or 50000 cells/ml density was 

used for imaging experiments,  

2.2. Generation of posttetraploid cell lines. 

HCT116 and RPE1 cells were treated with 0.75 µM of actomyosin inhibitor 

dihydrocytochalasin D (DCD, Sigma, Taufkirchen, Germany) for 18 hours. Cells were 

then rinsed three times with PBS, harvested and counted, then placed into a drug-

free medium and subcloned by limiting dilution on 96-well plates with the dilution rate 

0.5 cell per well. Tetraploid RPE1 H2B-GFP cells were grown on 96-well plates 

coated with gelatin (Merck Biosciences, Darmstadt, Germany). After six weeks 

expansion in culture, individual subclones were harvested for flow cytometry to 

measure the DNA content. In brief, cells were fixed in 70% ice-cold ethanol and 

stained with the 50 µg/ml of DNA-intercalating reagent propidium iodide (PI, Sigma, 

Taufkirchen, Germany) in a sodium citrate solution containing RNAse A (Sigma, 

Taufkirchen, Germany). The DNA content was measured using BD FACS Calibur 

(Becton Dickinson, Heidelberg, Germany). The stocks of subclones with confirmed 

near-tetraploid DNA content termed posttetraploid derivatives (PTs) were frozen 

down at -80°C and in the liquid nitrogen. To minimize the effect of additional genetic 

variations between PT cell lines, all aneuploid cell lines underwent minimal passages 

and were analyzed at the same passage. 

Late passages of two posttetraploid cell lines (HPT1 and HPT2) were obtained by 

culturing the respective cell lines for 12 (approximately one month) and 36 

(approximately three months) additional passages. 

2.3. Determination of non-viable cells in culture. 

Cells in culture were treated with 50 µg/ml PI in DMEM for 10 minutes, washed with 

PBS, trypsinized and immediately submitted to flow cytometry (FACS Calibur, BD 

Biosciences). All solutions contained PI at the same concentration. The data 

acquisition was carried out using CellQuest Pro (BD Biosciences) software. Data 

was analyzed using FlowJo (Tree Star Inc., Ashland, USA) and Prism software 

(GraphPad Software Inc., La Jolla, USA). 
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2.4. Protein biochemistry methods. 

2.4.1. Cell lysis and protein concentration measurement. 

Pelleted cells were resuspended using RIPA lysis buffer with protease inhibitor 

cocktail (Pefabloc SC, Roth, Karlsruhe, Germany), incubated for 10 min on ice, 

ultrasound sonicated in a waterbath for 15 min; total cell lysate was then spun down 

at 13600 rpm for 10 minutes at 4°C on a table-top microcentrifuge (Eppendorf, 

Hamburg, Germany). Part of the supernatant was transferred to Eppendorf tubes for 

storage at -80°C and part used for downstream applications in immunoblotting. 

Protein concentration was measured in quadruplicates using Bradford dye on 

SmartSpec 3000 spectrophotometer (both, BioRad, Munich, Germany) at 595 nm 

wavelength and the median of the measurements was further used. Subsequently, 

protein levels were adjusted in all samples by adding required volume of lysis buffer, 

resuspended in 4x Lämmli buffer with 2.5% -mercaptoethanol and boiled at 95°C 

for 5 min.  

2.4.2. SDS-PAGE and immunoblotting. 

Processed total cell lysates were separated by SDS-PAGE; protein size was 

estimated using PrecisionPlus All Blue or PrecisionPlus Kaleidoscope protein 

markers (both BioRad, Munich, Germany). Separated proteins were then transferred 

to a methanol-activated polyvinylidene difluoride membrane (PVDF, Roche, 

Mannheim, Germany) using wet transfer Mini-PROTEAN II electrophoresis system 

(BioRad, Munich, Germany). Membranes were blocked in 5% skim milk (Fluka, 

Taufkirchen, Germany) in Tris-buffered saline with 0.05% Tween20 (TBST), 

decorated with respective primary antibodies diluted in blocking solution overnight at 

4°C with gentle agitation. Further, the membranes were rinsed for 30 min with TBST 

with a triple buffer exchange, incubated with HRP-conjugated secondary antibodies 

(R&D Systems), followed by triple TBST wash, chemiluminescence using ECLplus kit 

and detection either on ECL hyperfilm (GE Healthcare), on X-ray hyperfilm processor 

MI-5 (Medical Index, Bad Rappenau, Germany) or using Fujifilm Luminescent Image 

Analyzer (LAS-3000 Lite) system (Fujifilm, Düsseldorf, Germany). Protein band 

quantification was carried out using ImageJ (National Institutes of Health, 

http://rsb.info.nih.gov/ij/). 



  Materials and Methods 

 106 

2.5. Microscopy. 

Long-term live cell timelapse data were recorded on an inverted Zeiss Observer.Z1 

microscope (Visitron Systems) equipped with a humidified chamber (EMBLEM, 

Heidelberg, Germany) at 37°C, 40% humidity and in the atmosphere of 5% CO2 

using CoolSNAP HQ2 camera (Photometrics, Roper Scientific, Ottobrunn, 

Germany); Plan Neofluar 20x, or 10x magnification air objective NA 1.0 (Zeiss, Jena, 

Germany); epifluorescent X-Cite 120 Series lamp (EXFO, Lumen Dynamics Group 

Inc., Mississauga, Canada); using GFP filter and differential interference contrast 

(DIC) in cell culture medium; further referred to as Visitron Systems microscope.  

Imaging of fixed cells was carried out on Marianas SDC system comprising inverted 

Zeiss Observer.Z1 microscope, Plan Apochromat 63x magnification oil objective, 40x 

magnification air objective or 20x magnification air objective, equipped with 

epifluorescent X-Cite 120 Series lamp; 473, 561 and 660 nm lasers (LaserStack, 

Intelligent Imaging Innovations, Inc., Göttingen, Germany); spinning disc head 

(Yokogawa, Herrsching, Germany); CoolSNAP-HQ2 and CoolSNAP-EZ CCD 

cameras (Photometrics, Intelligent Imaging Innovations, Inc., Göttingen, Germany); 

further referred to as 3I microscope. Imaging conditions for each experiment are 

specified in respective method sections. 

2.5.1. Live cell imaging. 

2.5.1.1. Live imaging of untreated cells and cells treated with 

mitotic poisons. 

The cells were seeded on glass-bottomed 96-black well plates two days prior to 

imaging. For SAC analysis, cells were treated with either: a) low (0.5 ng/ml) or high 

concentration of nocodazole (200 ng/ml) (Sigma, Taufkirchen, Germany) or b) high 

concentration of VS-83 (20 µM for HCT116 and 10 µM for RPE1; VS-83 was kindly 

provided by Dr. T. Mayer) prior to imaging. Subsequently, the plate was sealed with 

parafilm to avoid evaporation of the medium and imaged with Visitron Systems 

microscope. Image acquisition was performed with MetaMorph 7.1 software (Meta 

Imaging Series Environment, Molecular Devices, Ismaning, Germany) with GFP (50-

60 ms exposure) and DIC (10 ms exposure). For HCT116 live imaging, a timelapse 

of three minutes was used for duration of 24 hours. Subsequently, the timelapse was 
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changed to nine minutes till the end of imaging equaling 96 hours. RPE1 and its 

derivatives were imaged for 50 hours with three-minute timelapse using 20x air 

objective. For the mitotic slippage analysis in a presence of nocodazole or VS-83, 

cells were imaged for 96 hours with six minute timelapse. Image analysis was 

performed using ImageJ and Slidebook 5 software (Intelligent Imaging Innovations, 

Inc., Göttingen, Germany); statistical analysis was carried out using Prism software. 

2.5.1.2. RNA interference followed by live imaging. 

Kinesin HSET (KIFC1) was depleted by RNAi. Fresh tetraploid cells were generated 

18 hours prior the start of imaging as described in 2.5.1.1. ON-TARGET plus 

SMARTpool KIFC1 siRNA (L-004958-00-0005, Dharmacon, Thermo Scientific, 

Lafayette, USA) and scrambled RNAi as a negative control (Ambion, Dresden, 

Germany) were used at 12 nM concentration. Transfection procedures were 

performed using Oligofectamine (Invitrogen, Karlsruhe, Germany) according to the 

            ’  p        on a glass-bottomed 96-black well plates (Greiner Bio-One, 

Frickenhausen, Germany), two days prior the start of imaging. Cells were visualized 

imaged on a Visitron Systems microscope for 72 hours using MetaMorph 7.1 

software with a six minute timelapse using 10x magnification air objective. The 

polarity of mitosis was assessed using ImageJ software, statistical analysis was 

carried out using Prism software. 

2.5.2. Determination of the chromosome copy number and 

chromosomal structural aberrations in cells. 

2.5.2.1. Chromosome spreads (standard karyotyping). 

Cells were treated with 50 ng/ml of a microtubule-depolymerizing drug, colchicine 

(Serva, Heidelberg, Germany) for 4.5 hours, collected and pelleted using table-top 

centrifuge, swollen in 75 mM KCl (Roth, Karlsruhe, Germany) in a 37°C waterbath 

for 15 minutes, fixed with Carnoy solution with a triple exchange of the 

fixative/centrifuging cycles (ice-cold 75% methanol and 25% acetic acid; both, 

Sigma, Taufkirchen, Germany) and spread on a wet glass slide with a glass Pasteur 

pipette. The slides were subsequently dried on a 42°C heat block (VWR, Darmstadt, 

Germany) covered with wet Kim Wipes paper tissue for approximately 5 minutes and 

stained with Giemsa dye (Fluka, Taufkirchen, Germany) for chromosome 
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visualization. Chromosome spreads were imaged and analyzed on a 3I microscope 

using brightfield and DIC using Slidebook 5 software.  

2.5.2.2. Fluorescence in situ hybridization (FISH) on 

centromeric region. 

Centromeric FISH was carried out using satellite enumeration probes against 

centromeric regions of specific chromosomes (1, 3, 7, and 12) conjugated either to a 

red or a gre         p                              ’  p        (Cy      , 

Cambridge, UK). In brief, cells were processed as described in 2.5.2.1, obtained cell 

suspension was dropped on dry glass slide, dehydrated in ethanol (Sigma, 

Taufkirchen, Germany) concentration series (70%, 85%, 100%), washed with 2x 

SSC, allowed to air dry. Further, cellular DNA was denatured on a hot plate (72°C), 

hybridized overnight with the prewarmed at 37°C probes in hybridization buffer 

(Cytocell, Cambridge, UK) sealed with rubber cement at 37°C in the dark. 

Subsequently, slides were washed in 2xSSC at 75°C, and then briefly rinsed in 

1xSSC at the room temperature and allowed to air dry. DNA was counterstained with 

DAPI (Cytocell, Cambridge, UK), and the cover slips were mounted on slides using 

antifade solution (Cytocell, Cambridge, UK). Images were acquired with the 3I 

microscope using 63x magnification objective with Texas Red, FITC and DAPI filters. 

0.5 µm optical sections in the z-axis were collected and subsequently projected into 

a single z-projection for the analysis. The acquisition and analysis were performed 

by visual inspection by two independent observers using Slidebook 5 software. 

2.5.2.3. Whole chromosome multicolor FISH (mFISH) 

mFISH was carried out in collaboration with Dr. Stefan Müller at the Institute of 

Human Genetics, University Hospital, Ludwig-Maximilians-University, Munich. The 

cell suspension was prepared as described in 2.5.2.1 (colchicine concentration was 

increased to 400 ng/ml). DNA probes (24XCyte Human Multicolor FISH Probe Kit, 

MetaSystems, Altlussheim, Germany) were denatured at 72°C for 7 minutes, then, 

incubated in 37°C water bath for 30 min to pre-anneal probes. Fixed cells were 

dropped on a cleaned slide, allowed to air dry. Metaphase slides were pepsinized in 

order to eliminate cytoplasmic proteins, incubate in a coplin jar for 2 min at 37°C 

(depending on the amount of cytoplasm, time can be increased to 5 min), further, 

rinsed twice for 7 min each time in 1xPBS, dehydrated in 70%, 90%, 100% EtOH 
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series, 3 min each. Finally, the slides were baked at 61.4°C for 1 h on a hot plate. 

Metaphase slides were denatured at 72°C for 1min 30 sec in 70% 

Formamide/2xSSC, pH 7.0, dehydrated in 70% (-20°C), 90% (-20°C), 100% (RT) 

EtOH series, 3 min each. 

Hybridization in situ was carried out as following. 4 µl probe was applied on a slide in 

the drop area, covered with 15x15 mm coverslip, sealed with rubber cement and 

incubated in a dark chamber overnight (~20 h) at 37°C. Subsequently, rubber 

cement was removed, coverslip was removed by soaking the slide in 4XSSCT (4 X 

SSC with 0.2% Tween 20). Slides were washed 3x5min in 0.1xSSC at 62°C, 

incubated in 4xSSCT at RT for 1 min.  

One of the DNA probes was conjugated with biotin, thus required detection with 

streptavidin-Alexa Fluor 488 (Molecular Probes). Each slide was covered with 1ml 

blocking solution (3% BSA/4x SSCT, BSA solution was covered with parafilm on 

metaphase spread to avoid drying) and incubated for 18 min at 37°C, then rinsed in 

4xSSCT at RT, and incubated with the antibody diluted in 1% BSA/4x SSCT (150-

200 µl of antibody working solution was added to slide, covered with 24x50 mm 

coverslip, and incubated in a dark chamber for 45 min at 37°C). Finally, the slides 

were washed twice each time 7 min in 4xSSCT at 42°C, mounted in Vectashield 

Antifade solution (4’,6          -2-phenylindole, Vector laboratories H-1200, 

Axxora/Alexis, Lörrach, Germany) with DAPI and cover with 24x60 mm coverslip 

sealed with a nail polish. 

The spreads were analyzed on the Zeiss Observer.Z1 microscope, Plan Apochromat 

63x magnification oil objective in DAPI, CFP, GFP, Cy3, Texas Red and Cy5 

channels. The analysis was carried out using Adobe Photoshop (Adobe Systems, 

San Jose, USA) for visual inspection of the images; statistical analysis was 

performed using MS Excel (Microsoft) and Prism. 

2.5.3. Mitotic error analyses in fixed cells. 

2.5.3.1. Mitotic abnormalities scoring in anaphase and early 

telophase. 

Cells were grown on glass-bottomed 96-black well plates, briefly washed with PBST, 

fixed with 100% methanol for 10 min at -20°C, washed three times with phosphate-
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buffered saline with 0.05% Tween20 (PBST). DNA was stained with SYTOX Green 

Nucleic Acid dye (Molecular Probes, Invitrogen, Karlsruhe, Germany) with added 

RNAse. Imaging was carried out on Visitron Systems microscope using GFP and 

DIC filters and 20x magnification objective with Slidebook 5. Lagging DNA mass and 

anaphase bridges were scored in anaphases and early telophases by visual 

inspection of the images.  

2.5.3.2. Micronucleation test. 

Cells were seeded on glass-bottomed 96-black well plates two days prior to fixation, 

treated with DCD for 18 hours in order to mark those cells that underwent a single 

mitosis before the fixation. Cells that underwent mitosis during the DCD treatment 

become binucleated, and only they were scored in the analysis. Cells were washed 

with PBS, fixed with 100% methanol for 10 min at -20°C, followed by triple PBS 

wash and stained with DAPI (1 g/ml; Roth, Karlsruhe, Germany). For the p53 

nuclear enrichment staining, the cells were blocked following the fixation using 5% 

FCS/PBS solution with addition of 0.5% TritonX100 (Roth, Karlsruhe, Germany), 

incubated overnight with anti-p53 antibody (1:500, Cell Signaling), washed with 400 

mM NaCl and subsequently twice in PBST, detected with DyLight 594-conjugated 

antibody (all DyLight antibodies: Thermo Fisher Scientific Inc.). DAPI was used as 

DNA counterstain. Cells were finally washed in 400 mM NaCl and twice in PBST. 

Acquisition and analysis were performed using Slidebook 5 with 3I microscope, 20x 

magnification objective. The percentage of binucleated cells containing micronucleus 

as well as p53 status in the nuclei and micronuclei were determined.  

2.5.4. Immunofluorescent staining. 

2.5.4.1. Mitotic spindle staining. 

Cells were grown on glass-bottomed 96-black well plates and treated with MG132 10 

µM (Calbiochem, Darmstadt, Germany) for 3 hours prior fixation. Cells were briefly 

washed with PBS, fixed with 100% methanol for 10 min at -20°C, washed three 

times with PBS, blocked with using 5% FCS/PBS solution with addition of 0.5% 

Triton X100, incubated overnight with anti-α-tubulin (1:500, Sigma) and anti-γ-tubulin 

antibody (1:1000, Santa Cruz), washed with 400 mM NaCl and subsequently twice in 

PBST, detected with DyLight 594- and DyLight 649-conjugated antibodies. DNA was 

stained with SYTOX Green with added RNAse. Cells were finally washed in 400 mM 
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NaCl and twice in PBST. The imaging was carried out on the 3I microscope with 63x 

magnification objective and 0.5 µm optical sections in the z-axis subsequently 

projected into a single z-projection (for spindle parameters measurement), or with 

40x air single optical plane (for VS-83 sensitivity test); 473 nm, 561 nm and 660 nm 

argon lasers were used. Spindle parameter measurements were carried out using 

Slidebook 5; only the cells having both opposite spindle poles present in the same 

optical plane were scored for the spindle parameter measurements. 

2.5.4.2. Staining for interkinetochore distance, kinetochore 

distribution measurements and high-resolution mitotic 

error visualization. 

The cells were processed similarly as described for mitotic spindle 

immunofluorescence and stained with anti-α-tubulin (1:500, Sigma) and anti-CREST 

(1:1000, Immunovision) antibodies visualized by anti-human Alexa Fluor 647 

(1:1000, Invitrogen) and anti-mouse DyLight 594-conjugated secondary antibodies. 

The imaging was carried out on the 3I microscope with 63x magnification oil 

objective with 0.5 µm optical sections in the z- axis using 473 nm, 561 nm and 660 

nm argon lasers and analyzed using Slidebook 5. Interkinetochore distances were 

measured on pairs of sister kinetochores CREST signal within the same optical 

section. Kinetochore distribution measurements were carried out as three 

independent measurements of the line intensity of CREST signal per mitotic cell; the 

signal was corrected for the background intensity and averaged per cell. Mitotic 

errors were analyzed by visual inspection of the 3D captures. 

2.5.4.3. Centrosome staining. 

Cells were seeded two days prior the imaging on glass-bottomed 96-black well 

plates, fixed with 4% formaldehyde (Fluka, Taufkirchen, Germany), followed by 

dehydration with 100% methanol for 10 min at -20°C, blocking in 1% bovine albumin 

in PBS (BSA/PBS) solution and staining with anti-γ-tubulin antibody (1:1000, Abcam) 

detected with DyLight 649-conjugated antibody (Thermo Fisher Scientific Inc.). The 

        “w v ”                                     w y             p           w   

determined previously using live cell imaging of the cells over 96 h. Images were 

acquired with the 3I microscope, 473 nm and 660 nm argon lasers and DIC. The 
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acquisition and analysis were performed using Slidebook 5; 0.5 µm optical sections 

in the z-axis were collected and subsequently projected into a single z-projection. 

2.6. High-throughput methods. 

2.6.1. Array comparative genomic hybridization (aCGH). 

Genomic DNA for aCGH analysis was extracted using a Qiagen Gentra Puregene 

Kit (Qiagen, Hilden, Germany) according to manufacturer´s protocol. gDNA 

concentration and DNA absorbance ratio (260nm/280nm) were recorded for all 

samples using NanoDrop ND-1000 UV-VIS Spectrophotometer (PeqLab, Erlangen, 

Germany). The aCGH analysis was performed by IMGM laboratories GmbH, 

Martinsried, Germany. In short, hybridizations were carried out on Agilent SurePrint 

G3 Human Genome CGH Microarrays 2x400K (HPT1/HCT116) or on Agilent Human 

Genome CGH Microarrays 4x44K (HPT2/internal reference and HCT116/internal 

reference) Agilent Human Genome CGH Microarray in combination with a Two-

Color-based hybridization protocol. The digested gDNA samples were directly 

labeled with exo-Klenow fragments and random primers by incorporation of Cy-5 

 UT  (2’-    y        5’-triphosphate) for the experimental samples and Cy-3 dUTP 

for the reference samples (Genomic DNA Enzymatic Labeling Kit, Agilent 

Technologies) according to IMGM laboratories guidelines. After purification, each 

experimental sample was combined with its respective reference sample, hybridized 

on respective arrays; signals on the microarrays were detected on Scan Control 

8.4.1 Software (Agilent Technologies) on the Agilent DNA Microarray Scanner and 

extracted from the images using Feature Extraction 10.5.1.1 Software (Agilent 

Technologies). Raw microarray data were normalized by background subtraction, 

expected average subtraction and division by estimated variance by IMGM 

laboratories.  Subsequent analysis was carried out on log2 of the ratios 

(HPT1/HCT116 and HPT2/HCT116) using Perseus software (version 1.2.6.16, 

http://maxquant.org/downloads.htm; part of the MaxQuant Software Package) and R 

(http://www.r-project.org/). 

2.6.2. mRNA microarray-based gene expression analysis. 

mRNA was purified using a Qiagen mRNeasy mini kit. Genome-wide expression 

profiling was conducted by IMGM laboratories GmbH. In summary, RNA 

concentration and purity were determined by the NanoDrop ND-1000; RNA integrity 
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was analyzed by capillary electrophoresis on 2100 Bioanalyzer (Agilent Technology). 

Total RNA samples were spiked with in vitro synthesized polyadenlyated transcripts 

(One-Color RNA Spike-In Mix, Agilent Technologies) for internal labeling control. 500 

ng total RNA were used for reverse transcription. Labeled cDNA was hybridized at 

65°C for 17 hours on Agilent SurePrint G3 Human GE Microarray (8x60K) according 

to a One-Color-based hybridization protocol. The microarrays were washed with 

Gene Expression Wash Buffers (Agilent Technologies) and dried in acetonitrile 

(Sigma). The fluorescent signal intensities were detected with an Agilent DNA 

Microarray Scanner and the data was extracted using Feature Extraction 10.5.1 

Software (Agilent Technologies). Raw data were normalized by background 

substraction. Bioinformatics analysis of the microarray data was performed using 

Perseus, R and Excel (MS Office). Log2 ratios HPT/HCT116 were calculated for 

each individual entry. Unpaired Student t-test was performed on signal intensities 

ratios, with correction for multiple testing. Both local and frequent FDR were 

calculated with the fdrtool software package in R; FDR cutoff was set as 0.01. 

Entries not satisfying the FDR cutoff are noted and nevertheless discussed in the 

work.  

The data will be deposited in NCBI's Gene Expression Omnibus database and will 

be accessible through assigned GEO Series accession number (GSE47830) upon 

corresponding manuscript acceptance:  

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=dzqjzayqemioivy&acc=GSE47

830  

Individual candidate analysis was carried out using public STRING database 

(database of known protein interactions, http://string-db.org/). Pathway analysis was 

carried out using KEGG (Kyoto Encyclopedia of Genes and Genomes) database 

(http://www.genome.jp/kegg/kegg1.html). 

2.7. Statistical analysis. 

All statistical analysis was carried out using MS Excel, GraphPad Prism and R. 

Numbers of replicates, individual data points, as well as meaning of statistical error 

bars are specified in the figure legends. The statistical significance of the observed 

differences was verified by an unpaired Student t-test when the Gaussian distribution 

can be assumed; otherwise, by a Mann-Whitney test. The comparison of non-

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=dzqjzayqemioivy&acc=GSE47830
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=dzqjzayqemioivy&acc=GSE47830
http://string-db.org/
http://www.genome.jp/kegg/kegg1.html
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Gaussian distributions where the equal variances could not be assumed was carried 

              ’               

2.8. Image processing. 

Image processing was performed using Slidebook 5, ImageJ, Adobe Photoshop and 

Adobe Illustrator CS2 (Adobe Systems, San Jose, USA). 
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Abbreviations 

APC  adenomatous polyposis coli 

aCGH array comparative genomic hybridization 

APC/C anaphase-promoting complex/cyclosome 

ATCC American type culture collection 

ATP  adenosin triphosphate 

Bub1 budding uninhibited by benzimidazoles 1 

BubR1 budding uninhibited by benzimidazoles-related 1 

CDK1 cyclin-dependent kinase 1 

cDNA complementary DNA 

CIN chromosomal instability 

CPC chromosome passenger complex 

CREST calcinosis, Raynaud's syndrome, esophageal dysmotility, 
sclerodactyly, telangiectasia 

DCB dihydrocytochalasin B 

DCD dihydrocytochalasin D 

DMEM Dulbecco's modified Eagle's medium 

DRB doxorubicin 

DSB double-strand break 

dUTP 2’-    y        5’-triphosphate 

FISH fluorescent in situ hybridization 

GAPDH glyceraldehyde triphosphate dehydrogenase 

gDNA genomic DNA 

GDP guanosin diphosphate 

GFP green fluorescent protein 

GTP  guanosin triphosphate 

H2B histone 2B 

HCT116 human colon cancer cell line 

HPT HCT116-derived posttetraploid cells 

INCENP inner centromere protein 

KHC kinesin heavy chain 

KLC kinesin light chain 

KT kinetochore 

MAD mitotic arrest-deficient 

MAP microtubule-associated protein 

MAP kinase mitogen-activated protein kinase 

mFISH multicolor FISH 

MIN microsatellite instability 

MMEC murine mammary epithelial cells 

MN micronucleus 

MOSEC mouse ovarian surface epithelial cells 

MT microtubule 

NE nuclear envelope 

NEBD nuclear envelope breakdown 

NS not significant 
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PI propidium iodide 

PT posttetraploid cells 

PVDF polyvinylidene difluoride membrane  

RNAi RNA interference 

RPE1 hTERT retinal pigment epithelium cell line 

RPT RPE1-derived posttetraploid cells 

SAC spindle assembly checkpoint  

SD standard deviation 

SEM  standard error of mean 
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