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Abkürzungsverzeichnis 

Abb.    =  Abbildung 

A-Mode  =  Amplituden-Modulation 

B-Mode   =  Brightness-Modulation 

END   =  Korneaendothel 

EPI   =  Korneaepithel 

Fa.    =  Firma 

HAK   =  hintere Augenkammer 

IOD   =  Intraokularer Druck (Augeninnendruck) 

K   =  Kornea 

KW   =  Kammerwinkel 

L    =  Vordere Linsenkapsel 

M./Mm   =  Musculus/ Musculi (Muskel/Muskeln) 

mmHg   =  Millimeter-Quecksilbersäule 

MHz    =  Megahertz 

Min.    =  Minute 

M-Mode   =  Motion-Modulation 

MS 222   =  Tricainmethansulfonat (Fischanästhetikum) 

N/n   =  Anzahl 

Nr.    =  Nummer 

OD    =  Oculus dexter, rechtes Auge 

OS    =  Oculus sinister, linkes Auge 

p    =  Signifikanz 

PC    =  personal computer 

S   =  Korneastroma 

Sek.   =  Sekunde 

Tab.   =  Tabelle 

TCG        =  time compensated gain (zeitabhängige Verstärkung) 

VAK   =  Vordere Augenkammer 

VKD   =  Vorderkammerdurchmesser (transversal) 

VKT   =  Vorderkammertiefe (axial) 

W/cm²    =  Watt pro Quadratzentimeter 

ZKD   =  Zentrale Korneadicke 

ρ   =  Korrelationskoeffizient nach Pearson 
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1. Einleitung 

Der innige Kontakt zwischen Fischauge und aquatischer Umwelt stellt hohe Ansprüche an 

die Widerstands- und Regenerationsfähigkeit okularer Strukturen. Gerade in Gefangenschaft 

gehaltene Zierfische sind häufig aufgrund inadäquater Filterleistung oder schlechtem 

Wassermanagement einem erhöhten Keim- und Parasitendruck ausgesetzt. Des Weiteren 

wirken sich pH-Wertschwankungen, überhöhte Ammonium- und Nitritwerte, mangelhafte 

oder exzessive Sauerstoffzufuhr oder fehlerhafte Temperierung des Wassers negativ auf die 

Fisch- und damit verbunden auch auf die Augengesundheit aus (WILLIAMS 2012a).  

Pathologische Augenveränderungen kommen sehr häufig bei Fischen vor, sei es in Form 

eines primären okularen Leidens oder als Folgeerscheinung einer systemischen Erkrankung 

(JURK 2002). Viele systemische Erkrankungen gehen beim Fisch insbesondere mit 

Veränderungen von Kornea, Iris und Linse einher. Eine solche okulare Manifestation stellt oft 

das erste Anzeichen einer schwerwiegenden Erkrankung dar und kann in Hinsicht auf die 

Diagnosestellung sehr hilfreich sein. Eine gesicherte Evaluierung von Augenveränderungen 

ermöglicht dem Tierarzt die umgehende Einleitung einer geeigneten Therapie (WILLIAMS 

und WHITAKER 1997; WHITAKER 2001). 

Die okulare Sonographie als nicht invasive Untersuchungsmethode stellt sowohl in der 

Human-, als auch Kleintier- und Pferdemedizin, eine wertvolle Ergänzung zu den bisher 

gebräuchlichen diagnostischen Untersuchungsverfahren dar (CRONAU 2004; KING 2006; 

GELATT et al. 2008). Ebenso liegen bei Vögeln bereits erste Untersuchungsergebnisse vor, 

die die Eignung der Sonographie als sichere Methode zur Diagnose von Augenerkrankungen 

belegen (KORBEL et al. 2009; STROBEL 2010; DOROBEK 2013; LIEPERT 2013). Um die 

sonographische Evaluierung der Augen auch bei Fischen zu etablieren, ist es erforderlich, 

die physiologische Sonoanatomie zu kennen und anhand gesicherter Referenzwerte das 

Vorliegen pathologischer Veränderungen zu verifizieren. 

Im Rahmen dieser Arbeit soll die Methode der okularen Sonographie auf ihre Eignung zur 

Darstellung der anatomischen Strukturen des vorderen Augensegmentes des Fischauges 

überprüft und ihre Einsatzmöglichkeiten in Hinsicht auf die Evaluierung der Augengesundheit 

von Fischen aufgezeigt werden. Das Ziel soll die Etablierung der okularen Sonographie als 

eine Technik zur reproduzierbaren und routinemäßig durchführbaren Augenuntersuchung bei 

Zierfischen sein.  
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2. Literatur 

2.1 Die Sonographie 

Die Darstellung von biologischen Strukturen mit Hilfe hochfrequenter Schallwellen 

(Ultraschall) wird im deutschsprachigen Raum uneinheitlich als Ultraschalldiagnostik, (Ultra-) 

Sonographie oder Echographie bezeichnet und wurde erstmalig vom Neurologen und 

Militärarzt DUSSIK (1942) in einer Publikation als „Hyperphonographie“ beschrieben. Bis 

Ende der 50er Jahre wurde die Sonographie in vielen verschiedenen humanmedizinischen 

Bereichen eingeführt, Studien von MUNDT und HUGHES (1956) untersuchten erstmalig die 

Einsatzmöglichkeiten des Ultraschalls in der Ophthalmologie. Anfang der 60er Jahre 

erstellten erstmals HOLMES und HOWRY (1963) aussagekräftige Sonogramme von 

abdominalen Organen bei Hund und Katze, aber erst mit Entwicklung der zweidimensionalen 

Echtzeit-Sonographie Anfang der 80er Jahre hielt die abdominale Ultraschalldiagnostik 

Einzug in die Veterinärmedizin. Es sollte mindestens noch 10 Jahre dauern, bis sich die 

Sonographie zu einem Routineverfahren in tierärztlichen Praxen etablieren konnte 

(POULSEN NAUTRUP 1998a; KING 2006).  

2.1.1 Physikalische Grundlagen 

2.1.1.1 Definition des Ultraschalls 

Als Ultraschall bezeichnet man hochfrequente Schallwellen oberhalb des menschlichen 

Hörbereiches, welcher bei ca. 20.000 Hertz endet. Schallwellen sind Schwingungen der 

Materie, beziehungsweise Verdichtungen und Verdünnungen der Materieteilchen, welche 

sich als elastische Wellen in einem Raum ausbreiten (siehe Abbildung 1). Sie pflanzen sich 

in biologischen Medien als periodische Schwankungen der Dichte in Form von longitudinalen 

Wellen mit charakteristischen Ausbreitungsgeschwindigkeiten fort (GLADISCH 1993; 

POULSEN NAUTRUP 1998a). 

Die Schwingungszahl pro Zeiteinheit wird als Frequenz (f) bezeichnet und in Hertz (Hz, 1 Hz 

= 1 Schwingung pro Sekunde) ausgedrückt. In der medizinischen Diagnostik werden meist 

Frequenzen von 1 bis 10, in besonderen Fällen bis 20 Millionen Schwingungen pro Sekunde 

(1 bis 20 MHz) verwendet. Die Ausbreitungs- oder Schallgeschwindigkeit (c) hängt sowohl 
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von der Wellenlänge (λ) als auch der Frequenz (f) ab (GÖTZ 1983; POULSEN NAUTRUP 

1998a). 

 

Abbildung 1:  Schematisierte Darstellung der Ausbreitung einer longitudinalen Schallwelle (aus 
POULSEN NAUTRUP, 1998a) 

Eine Wellenlänge besteht jeweils aus einer Verdichtung (Wellenberg) und einer Verdünnung 

(Wellental) und verhält sich umgekehrt proportional zur Schwingungsfrequenz: kurze Wellen-

längen bedingen hohe Frequenzen und umgekehrt (GÖTZ 1983; POULSEN NAUTRUP 

1998a). 

Es gilt vereinfacht folgende Gleichung:     

c = λ · f 

Darüber hinaus ist die Schallgeschwindigkeit aber auch von der Dichte des durchquerten 

Mediums abhängig. Sie beträgt in Luft ca. 330 m/s, in Wasser ca. 1500 m/s, in Weichgewe-

ben im Mittel 1540 m/s und im Knochen ca. 4000 m/s (BARR 1992; POULSEN NAUTRUP 

1998a). 
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2.1.1.2 Prinzip des diagnostischen Ultraschalls 

Das Prinzip der Ultrasonographie beruht auf der Lotung sogenannter akustischer 

Grenzflächen, an denen zwei Medien unterschiedlichen Schallwiderstandes, welcher auch 

als akustische Impedanz bezeichnet wird, aneinandergrenzen. Akustische und anatomische 

Grenzen stimmen meist überein (GÖTZ 1983).  

An akustischen Grenzflächen werden Ultraschallwellen in Abhängigkeit von der Materie-

dichte und der Schallwellengeschwindigkeit zum Teil reflektiert, während die nicht 

reflektierten Schallwellen ihren Weg im neuen Medium fortsetzen, also transmittieren. Das 

Verhältnis von reflektierter zu transmittierter Schallenergie ist abhängig von der Größe des 

akustischen Impedanzunterschiedes, je unterschiedlicher der Schallwiderstand der benach-

barten Medien, desto mehr Schallwellen werden reflektiert. Die reflektierten Schallwellen, 

auch Echos genannt, können von einem Schallempfänger, welcher sich in modernen 

Ultraschallgeräten zusammen mit der Quelle der Schallwellen in einem Schallkopf befindet, 

detektiert und entsprechend der Schallintensität (Amplitude, J) in ein zweidimensionales 

Ultraschallbild umgewandelt werden (POULSEN NAUTRUP 1998a). 

2.1.1.3 Verhalten von Ultraschallwellen im Gewebe 

Nur senkrecht getroffene Grenzflächen können im Ultraschallbild sicher beurteilt werden, da 

die reflektierten Schallwellen (Echos) im 180° Winkel zu ihrer Quelle zurückgeworfen und 

hier vom Empfänger registriert werden. Treffen die Schallwellen jedoch nicht senkrecht auf 

die Grenzfläche (Winkel α zwischen Grenzfläche und auftreffenden Schallwellen ist < 90°), 

so laufen die Echos nicht um 180°, sondern entsprechend ihres Einfallswinkels (α = β < 90°) 

zurück und erreichen demzufolge nicht in vollem Umfang den Empfänger. Die nicht 

reflektierten Schallwellen pflanzen sich im neuen Medium nach einer Richtungsänderung 

(Brechung) fort (POULSEN NAUTRUP 1998a). Der Brechungswinkel γ wird wiederum vom 

Schallwiderstand des neuen Mediums bestimmt, er vergrößert sich im Vergleich zu α und β 

beim Übertritt in ein Medium mit niedrigerer akustischer Impedanz und verkleinert sich 

entsprechend beim Übertritt in ein Medium mit höherem Schallwiderstand (BYRNE und 

GREEN 2002f) (siehe Abbildung 2). 
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Abbildung 2:  Einfallswinkel der Ultraschallwellen und deren Brechung (aus BYRNE und GREEN, 
2002) 

Treffen Ultraschallwellen auf unregelmäßige, sehr kleine oder geneigte Grenzflächen, die 

nicht im 90° Winkel zur Senkrechten stehen, werden sie in verschiedene Richtungen 

reflektiert, sie werden also gestreut (POULSEN NAUTRUP 1998a). Dieses Phänomen ist in 

biologischen Geweben größtenteils vorherrschend, wobei die Intensität der Streuung mit 

zunehmender Frequenz wächst (GÖTZ 1983).  

Beim Durchtritt der Schallwellen durch die Materie wird zudem ein Teil der Schallenergie in 

Wärme umgewandelt. Diese Art der Absorption steigt ebenfalls mit zunehmender Frequenz 

und ist zudem stark von der Beschaffenheit des Gewebes abhängig. Die Absorption in 

Weichteilgeweben ist gering, die in Knochen oder Verkalkungen hingeben so hoch, dass 

nahezu die gesamte Schallenergie absorbiert wird und hinter dem genannten Gewebe ein 

sogenannter Schallschatten entsteht. Hohe Frequenzen führen zu vermehrter Absorption 

und somit zu einer geringeren Eindringtiefe der Schallwellen (POULSEN NAUTRUP 1998a).  

Schallfrequenz 1 MHz 3,5 MHz 5 MHz 7,5 MHz 10 MHz 15 MHz 
Eindringtiefe 500 mm 150 mm 100 mm 70 mm 50 mm 10 mm 

Tabelle I:  Frequenz und Eindringtiefe in Weichgeweben (POULSEN NAUTRUP, 1998a) 

Die Absorption ist gemeinsam mit der Streuung für die Dämpfung des Ultraschalls im 

Gewebe verantwortlich. Mit steigender Frequenz und höherer Gewebedicke und -dichte 



  Literatur 

10 

 

nimmt die Dämpfung zu. Schallreflektionen aus tieferen Gewebeschichten werden vermehrt 

abgeschwächt und werden somit weniger hell im Ultraschallbild dargestellt (GLADISCH 

1993; BYRNE und GREEN 2002f).  

Treffen Schallwellen auf die Randbereiche stark absorbierender Stoffe, so werden sie in den 

dahinterliegenden Schallschatten hineingebeugt, der Schallschatten divergiert. Mit 

steigender Frequenz (kürzerer Wellenlänge) schwächt sich dieses Phänomen ab. Eine 

Beugung der Schallwellen ist auch an abgerundeten Enden von Organen zu beobachten 

(POULSEN NAUTRUP 1998a). 

2.1.2 Wirkungen von Ultraschall auf biologische Gew ebe 

Es kann, wie oben beschrieben, zwischen mechanischen und thermischen Wirkungen des 

Ultraschalls unterschieden werden. Daneben haben hohe Ultraschallfrequenzen auch 

chemische Auswirkungen auf biologische Gewebe im Sinne verschiedener Oxidations-, 

Reduktions- und Depolymerisationsvorgänge. Die Wirkungen des Ultraschalls sind abhängig 

von der verwendeten Frequenz, der Schallintensität (Schallenergie pro Fläche, Watt pro 

Quadratzentimeter, W/cm²) und der Dauer der Einwirkung (POULSEN NAUTRUP 1998a). 

Durch die Einwirkung von Ultraschall wird das biologische Gewebe zu mechanischen 

Schwingungen angeregt. Infolge der wellenförmigen Teilchenverdichtung (Druckphase) und 

Teilchenverdünnung (Sogphase) kommt es in Flüssigkeiten zur Ausbildung von kleinen 

Hohlräumen (Sogphase), die zum Teil gleich wieder zusammenfallen (Druckphase). Dieses 

Phänomen wird in gasfreien Flüssigkeiten als Kavitation bezeichnet und analog dazu in 

gashaltigen Flüssigkeiten als Pseudokavitation (POULSEN NAUTRUP 1998a). Die 

Hohlräume können bei hohen Schallintensitäten und langer Einwirkdauer zu Störungen der 

Mikrozirkulation mit anschließenden Permeabilitätsstörungen und Gewebszerreißungen 

führen. Die dazu erforderlichen Schallintensitäten werden in der sonographischen Diagnostik 

jedoch nicht erreicht und schädigende Wirkungen sind als unwahrscheinlich anzusehen 

(KAUFMANN et al. 1977; ROTT 1981).  

Verschiedene Studien befassten sich bereits mit den Auswirkungen von Ultraschall unter 

anderem an Geweben wie der Fischhaut und untersuchten hierbei zellschädigende Schall-

intensitäten, Frequenzen und Einwirkzeiten. So konnten FRENKEL et al. (1999) erste 

schädigende Effekte an der Haut von Goldfischen bei einer Schallintensität von 0,5 W/cm² 

mit einer Frequenz von 1 MHz und einer Expositionszeit von 30 Sekunden nachweisen. 

MARTIN et al. (1983) wiesen bei Intensitäten von 0,4 W/cm² und Frequenzen von 0,78 - 3 
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MHz Kavitationsschäden an der Schwanzflosse von Platys nach einer Expositionszeit von 

bis zu 20 Minuten nach. Zudem stellten sie eine Temperaturerhöhung um durchschnittlich 3 

– 4 °C und eine damit verbundene Perfusionssteigerung des beschallten Gewebes fest. Die 

durch Absorption entstehende thermische Wirkung des Ultraschalls wird durch die 

gesteigerte Durchblutung des Gewebes und der damit gewährleisteten Wärmeabfuhr jedoch 

gut vom Körper ausgeglichen und so Schäden vermieden (FLÜCKIGER 1990; DELORME 

und DEBUS 1998; POULSEN NAUTRUP 1998a). 

Den beschriebenen mechanischen und thermischen sowie chemischen Wirkungen (u.a. 

Depolymerisation von Polysacchariden und Proteinen) der im Rahmen der diagnostischen 

Sonographie eingesetzten Ultraschallfrequenzen konnten bisher keine schädigenden Aus-

wirkungen auf biologische Gewebe nachgewiesen werden. Die Ultraschalldiagnostik mit den 

für die Humanmedizin zugelassenen Geräten, deren Intensitäten im Gewebe Durchschnitts-

werte von 10 mW/cm² nicht überschreiten, gilt als sichere und ungefährliche Untersuchungs-

methode (ROTT 1981; FLÜCKIGER 1990; POULSEN NAUTRUP 1998a). Auch die hoch-

frequente ophthalmologische Sonographie arbeitet mit Frequenzen, die um einige Zehner-

potenzen niedriger liegen als diejenigen, die in der Literatur als gewebeschädigend 

beschrieben wurden (LIZZI et al. 1981). Irreversible Schädigungen der Augenstrukturen in 

Form von subkonjunktivalen Blutungen, Synechien, Katarakten, Glaskörperverflüssigungen 

und chorioretinale Läsionen wurden laut Literatur bei Intensitäten von mehr als 2,5 - 3 W/cm² 

und einer Bestrahlungsdauer von mindestens fünf Minuten beobachtet (BAUM 1956; 

PURNELL 1969). BAUM (1964) erkannte, dass die Linse in besonderem Maße anfällig 

gegenüber ultraschallinduzierter Schädigungen ist. Er wies jedoch auch nach, dass eine 

fokussiert einwirkende Schallintensität von 1 W/cm² über den Zeitraum von weniger als drei 

Minuten keine bleibenden Schäden am Auge hinterlässt.  

Internationale Empfehlungen der Food and Drug Administration und des American Institute 

of Ultrasound in Medicine, sowie der Strahlenschutzkommission, legen eine maximale 

Schallintensität von 100 mW/cm² als medizinisch unbedenklichen Höchstwert fest, der von 

modernen Ultraschallgeräten bei weitem nicht erreicht wird (CRONAU 2004; STROBEL 

2010). Die STRAHLENSCHUTZKOMMISSION (1998) empfiehlt jedoch, die Strahlungs-

intensität so gering wie möglich zu halten. 
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2.1.3 Technische Grundlagen 

2.1.3.1 Erzeugung und Detektion der Schallwellen 

Zur Erzeugung und Detektion oben beschriebener Ultraschallwellen bedient man sich des 

piezoelektrischen Effektes, welcher bereits im Jahr 1880 von den Gebrüdern Curie 

beobachtet wurde: Durch Deformation bestimmter Materie wird eine Oberflächenspannung 

erzeugt. Die entstehende Ladung ist direkt proportional zur mechanischen Deformation 

(GÖTZ 1983). Spezielle Kristalle (oder Keramiken, die Quarz, Zirkonate und/oder Titanate 

enthalten) mit den beschriebenen piezoelektrischen Eigenschaften bilden das Herzstück 

eines jeden Ultraschallkopfes. Sie werden durch hochfrequente elektrische Wechselspan-

nung zu Schwingungen angeregt, die als Ultraschallwellen abgegeben werden. Umgekehrt 

erzeugen die vom untersuchten Gewebe reflektierten Schallwellen in den Kristallen eine 

messbare Wechselspannung (umgekehrter oder reziproker piezoelektrischer Effekt) (GÖTZ 

1983; POULSEN NAUTRUP 1998c).  

Heute arbeiten die meisten Ultraschallgeräte nach dem Impuls-Echo-Prinzip, der Schallkopf 

dient gleichzeitig als Sender und Empfänger der Ultraschallwellen. Es werden dabei ca. 300 

– 3000 Sendeimpulse pro Sekunde von jeweils etwa 1 - 2 µs Dauer abgegeben, dazwischen 

registriert der Kristall als Empfänger reflektierte Schallwellenechos. Das Ultraschallgerät 

misst die Dauer bis zum Eintreffen des von einer Grenzfläche reflektierten Echos und 

bestimmt über die Schallgeschwindigkeit die Entfernung der Grenzfläche (POULSEN 

NAUTRUP 1998c; STEIN 1999). Je nach Impedanzunterschied aufeinandertreffender 

Gewebe wird die Grenzfläche in unterschiedlicher Intensität dargestellt. Hohe Impedanz-

unterschiede und senkrecht getroffene Grenzflächen erhöhen den Reflexionsgrad und somit 

die vom Empfänger registrierte Schallintensität, was zu einer helleren Darstellung im 

Ultraschallbild führt (POULSEN NAUTRUP 1998a). Die Bildqualität ist durch die Auflösung 

begrenzt, welche definiert ist als der Mindestabstand zweier Punkte, die im sonographischen 

Bild gerade noch zu unterscheiden sind (GÖTZ 1983). 

2.1.3.2 Schallfeldgeometrie 

Nach Austritt aus dem Schallkopf verlaufen die Ultraschallimpulse, die jeweils aus mehreren 

Ultraschallwellen bestehen, in ihrer lateralen Ausdehnung zunächst parallel bzw. konver-

gierend (Nahfeld), dann divergierend (Fernfeld). Zwischen Nah- und Fernfeld befindet sich 

der sogenannte Fokusbereich, in dem die entstandene Schallkeule eingeschnürt wird (GÖTZ 

1983) (siehe Abbildung 3, S. 17). 
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Die axiale Ausdehnung der Schallimpulse (in Richtung der Schallausbreitung) wird durch die 

Dauer und Länge des jeweiligen Impulses bestimmt und ist in jedem Abstand vom Schallkopf 

gleich (POULSEN NAUTRUP 1998c). Die laterale Ausdehnung variiert jedoch in Abhängig-

keit von der Eindringtiefe und der Form der Ultraschallquelle. Im Nahfeld werden durch 

erhebliche Interferenz und gegenseitige Auslöschung der Schallwellen Grenzflächen mit 

gleicher Reflektionsqualität unterschiedlich echogen abgebildet, was zusammen mit einer 

schlechten lateralen Auflösung (aufgrund der relativ großen Breite des Nahfeldes) zu einer 

suboptimalen Bildgebung in diesem Bereich führt. Hohe Frequenzen und eine kleinere Ultra-

schallquelle verkürzen das wenig erwünschte Nahfeld.  

Dem Nahfeld schließt sich die sog. Fokuszone (Fokusbereich) an, in der die Schallwellen 

gebündelt werden und die Intensität somit erhöht ist. In diesem relativ kurzen Bereich ergibt 

sich die beste laterale Auflösung. Je höher die Frequenz und je größer die Ultraschallquelle, 

umso stärker ist die Einschnürung in der Fokuszone.  

Mit zunehmendem Abstand divergieren die Schallwellen im sogenannten Fernfeld, wodurch 

die laterale Auflösung verschlechtert wird. Je niedriger die Frequenz und je größer die 

Ultraschallquelle gewählt werden, umso geringer zeigt sich die nachteilige Divergenz. Durch 

Erhöhung der Frequenz wird also das Nahfeld verkürzt und die Fokuszone weiter einge-

schnürt, was zu einer besseren Auflösung in schallkopfnahen Bereichen führt, das Fernfeld 

divergiert jedoch weiter und erschwert so die Beurteilung schallkopfferner Bereiche 

(POULSEN NAUTRUP 1998c).  

Die Auflösung im Nahfeld befindlicher Strukturen lässt sich durch den Einsatz einer 

Vorlaufstrecke, welche den Abstand zwischen Schallkopf und abzubildendem Bereich 

vergrößert, erheblich verbessern. Zudem bietet die mechanische Fokussierung der Schall-

wellen mittels sogenannter akustischer Linsen oder einer sphärischen Krümmung der 

Oberfläche der Piezokeramik eine einfache Optimierung des Fokusbereiches. Eine 

elektronische Fokussierung setzt den Einsatz vieler kleiner Piezoelemente voraus, die 

zeitlich versetzt erregt werden und somit die Möglichkeit bieten, mehrere Fokuszonen 

hintereinander einzurichten (POULSEN NAUTRUP 1998c).  
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Abbildung 3:  Schematische Darstellung der Schallkeule, A) Ohne Fokussierung, B) mit mechanischer 
Fokussierung, C) mit elektronischer Fokussierung (aus POULSEN NAUTRUP,1998b) 

2.1.3.3 Auflösungsvermögen 

Wie oben beschrieben, ist das Auflösungsvermögen im Nahfeld größer als im Fernfeld, 

während es im Fokusbereich am größten ist (GÖTZ 1983). Es ist hierbei jedoch noch 

zwischen lateraler und axialer Auflösung zu unterscheiden. Als Auflösungsvermögen eines 

Ultraschallgerätes wird die Fähigkeit verstanden, zwei dicht neben- bzw. hintereinander 

liegende Grenzflächen als deutlich voneinander unterscheidbare Echos auf dem Monitor 

darzustellen. Das axiale Auflösungsvermögen ist abhängig von Dauer und Länge des 

Ultraschallimpulses. Um zwei Grenzflächen noch voneinander unterscheiden zu können, 

müssen diese soweit hintereinander liegen, dass die Reflexionen der ersten Grenzfläche 

abgeschlossen sind, ehe jene der zweiten Grenzfläche die erste erreichen. Das laterale 

Auflösungsvermögen wird bestimmt durch die laterale Ausdehnung des Schallfeldes 

(Schallkeule), welche wiederum von der Schallfrequenz, der Geometrie der Schallquelle 

sowie der Eindringtiefe abhängig ist (POULSEN NAUTRUP 1998c). Die beste laterale 

Auflösung ergibt sich im Zentrum der Schallkeule und wenn diese schmäler als die zu 

untersuchende Struktur ist (GLADISCH 1993). Auch durch die oben beschriebene 

Optimierung der lateralen Auflösung erreicht das laterale Auflösungsvermögen nicht jenes 
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der axialen Auflösung, die im Allgemeinen zwei- bis dreimal so gut ist. Moderne 7,5- bis 15- 

MHz-Schallköpfe besitzen ein maximales axiales Auflösungsvermögen von 0,2 bis 0,1 mm 

bei einer maximalen lateralen Auflösung von 0,6 bis 0,3 mm im Fokusbereich (POULSEN 

NAUTRUP 1998c). 

2.1.3.4 Bildbearbeitung (Processing) 

Die vom Schallkopf (engl. Transducer) ausgesandten und empfangenen Ultraschallwellen 

können vor ihrer Umwandlung in analoge oder digitale Bilder je nach Indikation und 

Untersuchungsbedingungen noch auf verschiedene Weise manipuliert werden (engl. 

preprocessing). So kann beispielsweise die Schallintensität des ausgesandten Ultraschall-

impulses angepasst werden, um die Stärke der Schallechos zu regulieren und so die 

Bildhelligkeit zu beeinflussen. Hierdurch kann eine Überstrahlung echoarmer Strukturen 

vermieden werden (BARR 1992). Zudem können die unvermeidbaren Intensitätsverluste bei 

der Untersuchung schallkopfferner Bereiche mithilfe rechnerischer Korrektur ausgeglichen 

werden. Dieses Verfahren der zeitabhängigen Verstärkung (engl. time compensated gain, 

TCG) verstärkt zeitlich später eintreffende Schallechos und berücksichtigt hierbei eine 

mittlere Schallgeschwindigkeit, Reflexion, Absorption und Streuung der gängigen Gewebe. 

Somit werden Grenzflächen mit identischer Reflexionsqualität unabhängig von ihrer Lage 

zum Schallkopf mit gleicher Helligkeit im Ultraschallbild dargestellt. Zur Untersuchung von 

speziellen Geweben und zur Fokussierung bestimmter Gewebetiefen kann die geräte-

abhängig voreingestellte TCG manuell korrigiert werden. Darüber hinaus kann die Gesamt-

heit der Echos über die Gesamtverstärkung (engl. Gain) in ihrer Helligkeit auf dem Monitor 

korrigiert werden oder es können nur Echos einer bestimmten Reflexionsqualität verstärkt 

und somit interessante Details im Ultraschallbild hervorgehoben werden (POULSEN 

NAUTRUP 1998c). Durch Erhöhung der Gesamtverstärkung werden schwächere Echos 

besser dargestellt, was allerdings den Kontrastumfang mindert und zu Artefakten führen 

kann (BYRNE und GREEN 2002f). Schallintensität, zeitabhängige Verstärkung und Gesamt-

verstärkung sollten so gewählt werden, dass der gesamte Bildbereich unter Ausnutzung aller 

zur Verfügung stehender Graustufen, einschließlich schwarz und weiß, gleichmäßig hell 

dargestellt wird (POULSEN NAUTRUP 1998c). Über die Einstellung des Dynamikbereiches 

lässt sich die Spannbreite zwischen kleinstem und größtem registrierten Echo und somit die 

Anzahl der im Ultraschallbild abgebildeten Graustufen einstellen. Moderne Ultraschallgeräte 

sind in der Lage, Teile von Ultraschallbildern oder zwei ganze Bilder zu addieren und als 

gemeinsames Bild darzustellen (sog. Bildintegration), was die Darstellung kleiner und 

echoarmer Strukturen erleichtert und das Ultraschallbild insgesamt weicher (kontrastärmer) 

erscheinen lässt. Bildkontrast, Helligkeit und Graustufenskala können jedoch auch am 
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bereits auf dem Monitor dargestellten Bild nachträglich manuell verändert werden (engl. 

postprocessing) (POULSEN NAUTRUP 1998c). 

2.1.3.5 Schallköpfe 

Die Eigenschaften des verwendeten Schallkopfes spielen eine entscheidende Rolle bei der 

Darstellung aussagekräftiger Ultraschallbilder. Die Frequenz der ausgesandten Ultraschall-

wellen hängt vom Abstand der Piezoelemente ab und variiert je nach Verwendungszweck 

des Schallkopfes. Je größer der Durchmesser der Piezoelemente, umso besser lässt sich 

der Schallstrahl fokussieren, was zu einer besseren lateralen Auflösung führt, den Schallkopf 

und seine Auflagefläche aber unhandlicher werden lässt. Hochfrequente Schallköpfe 

erreichen eine bessere Auflösung, dringen jedoch durch vermehrte Dämpfung nicht tief ins 

Gewebe ein. Daher werden zur Darstellung oberflächlicher, schallkopfnaher Strukturen, 

beispielsweise bei der Augenuntersuchung, hochfrequente Schallköpfe verwendet und 

gegebenenfalls eine Vorlaufstrecke aus einem schalldurchlässigen Material eingesetzt, um 

die Strukturen von Interesse in der Fokuszone zu positionieren (BARR 1992). 

Man unterscheidet zwei Typen von Schallköpfen (Sonden): Sogenannte Linear- oder 

Parallelschallköpfe mit vielen nebeneinander liegenden Piezoelementen, die in Gruppen 

zusammengefasst abwechselnd aktiviert werden und ein rechteckiges Bild erzeugen, und 

sogenannte Sektorschallköpfe, welche aus einem oder wenigen beweglichen Kristallen 

bestehen und ein fächerförmiges Blickfeld erzeugen. Linearschallköpfe liefern auch schall-

kopfnah ein detailliertes Blickfeld und haben durch eine gute Schallfeldgeometrie eine hohe 

laterale Auflösung, benötigen jedoch eine relativ große Auflagefläche (BARR 1992; 

POULSEN NAUTRUP 1998c). Die erzeugten rechteckigen Ultraschallbilder sind leicht zu 

beurteilen und durch eine abwechselnde Aktivierung der Kristalle wird eine gute 

elektronische Fokussierung möglich (POULSEN NAUTRUP 1998c). Einige Linearschallköpfe 

besitzen eine konvex gekrümmte Ankopplungsfläche mit bogenförmig angeordneten 

Piezoelementen (Konvex-Linearschallkopf), wodurch die Auflagefläche reduziert wird und 

das Blickfeld leicht divergiert, gleichzeitig jedoch das Nahfeld verkürzt und die laterale 

Auflösung schallkopffern herabgesetzt wird. Sektorschallköpfe, die zumeist ein bis acht 

bewegliche Piezoelemente besitzen, erzeugen ein stark divergierendes, trapezförmiges 

Blickfeld, in dem die schallkopfnahen Bildzeilen sehr eng beieinander liegen und das Nahfeld 

schwer beurteilbar wird („Schlüssellocheffekt“). Schallkopffern ergibt sich dagegen ein weites 

Blickfeld, das jedoch leicht verzerrt wirkt. Sektorschallköpfe überzeugen durch ihre kleine 

Auflagefläche und ermöglichen so den Einsatz an kleinen akustischen Fenstern, wie bei-

spielsweise im Zwischenrippenbereich bei der Untersuchung des Herzens. Das dreieckige 



  Literatur 

17 

 

Ultraschallbild ist jedoch schwieriger zu beurteilen und zur Darstellung schallkopfnaher 

Bereiche muss eine Vorlaufstrecke verwendet werden (BARR 1992; POULSEN NAUTRUP 

1998c). 

2.1.4 Bildwiedergabeverfahren 

In der Ultrasonographie wird entsprechend der Aufzeichnungsform auf dem Monitor 

zwischen dem eindimensionalen A-Bild-Verfahren und dem ein- oder zweidimensionalen B-

Bild-Verfahren unterschieden (GÖTZ 1983; POULSEN NAUTRUP 1998c).  

Das A-Bild-Verfahren oder englisch A-Mode (A = Amplitude) gilt als einfachstes Wiedergabe-

verfahren und findet heute nur noch selten Anwendung, beispielsweise im Rahmen bio-

metrischer Messungen in der Ophthalmologie (COLEMAN 1979). Es wird hierbei lediglich ein 

Ultraschallstrahl verwendet, dessen Echos als vertikale Ausschläge auf einer horizontalen 

Linie dargestellt werden (siehe Abbildung 4). Die Höhe eines Ausschlages (Amplitude) ent-

spricht der reflektierten Schallintensität, der Abstand zweier Zacken auf der horizontalen 

Achse entspricht der Entfernung zweier akustischer Grenzflächen (GÖTZ 1983; BARR 1992; 

POULSEN NAUTRUP 1998c). 

Im klassischen B-Bild-Verfahren (B-Mode, B = engl. Brightness = Helligkeit) werden mehrere 

Schallstrahlen verwendet und die Echos von jedem einzelnen Strahl analysiert. Die Echos 

werden entsprechend der Lage der reflektierten Grenzflächen als Punkte an bestimmten 

Positionen auf dem Bildschirm sichtbar. Je stärker die Schallintensität eines Echos, umso 

heller stellt sich der Punkt dar. So entsteht ein zweidimensionales Bild mit unterschiedlichen 

Graustufen, welches sowohl Organgrenzen, als auch Binnenstrukturen detailliert wiedergibt. 

Heutige Ultraschallsysteme bieten bis zu 265 verschiedene Graustufen. Man unterscheidet 

beim B-Bild-Verfahren unter Berücksichtigung der Zeit bis zum Entstehen eines Bildes auf 

dem Monitor zwischen Aufzeichnungs- und Real-Time-Verfahren (BARR 1992; POULSEN 

NAUTRUP 1998c). Ein heute noch gebräuchliches eindimensionales B-Bild-Verfahren in 

real-time (engl. Echtzeit) stellt der TM- oder einfach M-Mode (T = engl. time, M = engl. 

Motion = Bewegung) dar (POULSEN NAUTRUP 1998c).  

Beim M-Bild-Verfahren (M-Mode) wird analog zum A-Bild-Verfahren ein Ultraschallstrahl 

verwendet und seine Echos als Punkte entlang einer vertikalen Linie dargestellt. Die Position 

der Punkte entlang der Y-Achse entspricht der Tiefe der reflektierten Grenzfläche, die 

Helligkeit der jeweiligen Punkte entspricht der Schallintensität. Die Echos auf der Linie 

werden fortlaufend aktualisiert und gleichzeitig auf dem Bildschirm horizontal (auf der X-
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Achse) verschoben, wodurch sich ganze Bewegungsabläufe darstellen lassen. Das Ver-

fahren findet daher überwiegend in der Kardiologie Anwendung (BARR 1992; POULSEN 

NAUTRUP 1998c).  

 

Abbildung 4:  Schematische Darstellung von A-, B- und M-Mode Wiedergabe des Herzens (aus 
BARR, 1992) 

Zu den zweidimensionalen B-Bild-Verfahren zählen das heute veraltete aufzeichnende 

Compound-Verfahren, sowie die Real-Time-Sonographie (POULSEN NAUTRUP 1998c).  

Die Real-Time-Ultraschalluntersuchung stellt die Methode der Wahl der heutigen sono-

graphischen Diagnostik dar. Sie erlaubt die Darstellung von 20 bis 50 und mehr Bildern pro 

Sekunde, wobei die benötigte Anzahl der Bilder (Bildrate) und die Bildaufbauzeit von den zu 

untersuchenden Organstrukturen abhängen. Strukturen ohne Eigenbewegung können mit 

einem langsameren Bildaufbau untersucht werden, welcher eine höhere Zeilendichte erlaubt 

(POULSEN NAUTRUP 1998c). 
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2.1.5 Sonographische Gewebedarstellung 

Das zweidimensionale Sonogramm stellt ein Schnittbild dar, welches die Reflexionen von 

Gewebegrenzflächen wiedergibt und so große Grenzflächen naturgetreu darzustellen 

vermag, während kleine Strukturen in Form von Beugungsmustern auf dem Bildschirm 

erscheinen. Im Ultraschallbild können sowohl Oberfläche, Binnenstruktur, Begrenzung und 

Größe von Organen beurteilt werden, als auch deren topographische Lage und die 

Bewegungsabläufe. Die sonographische Bildgebung beruht auf dem Entstehen von Echos 

und Reflexen an Gewebegrenzen mit Impedanzunterschieden (POULSEN NAUTRUP 

1998b).  

2.1.5.1 Echogenität 

Die Eigenschaft eines Gewebes, beziehungsweise seiner Grenzflächen, Ultraschallwellen zu 

reflektieren und zu streuen, wird als Echogenität bezeichnet. Die drei Parameter Echostärke, 

-größe und –dichte erlauben eine Differenzierung zwischen echofreien oder echoarmen 

(reflexarmen) und echoreichen (echogenen, reflexreichen) Bereichen und somit eine 

detaillierte Darstellung von Gewebestrukturen und Oberflächen (POULSEN NAUTRUP 

1998b). 

Echofreie oder anechogene Gewebe, also alle Gewebe ohne Impedanzsprünge, stellen sich 

im Ultraschallbild als gleichmäßig schwarze Fläche dar. In erster Linie zählen hierzu 

homogene Flüssigkeiten wie Blut, Harn, Galle und Liquor oder krankhafte Körperflüssigkeits-

ansammlungen wie Aszites, Zysten, Ergüsse und frische Hämatome (HOFER 2005).  

Als echoarme oder hypoechogene Strukturen stellen sich Gewebe mit nur wenigen 

Impedanzsprüngen dar. Sie liefern nur schwache Echos oder werden als wenig echodicht 

dargestellt, wie beispielsweise das physiologische Nierenmark oder auch pathologische 

Stauungsödeme in Leber und Bauchspeicheldrüse (POULSEN NAUTRUP 1998b; HOFER 

2005).  

Echoreiche oder stark echogene (auch hyperechogene) Strukturen sind Grenzflächen mit 

hohen Impedanzunterschieden, so wie fibrinöse Arterien- und Organwände, starkes inter-

stitielles Bindegewebe oder Grenzflächen zu Verkalkungen oder gas- und lufthaltigen 

Organen. Zudem stellen sich senkrecht getroffene Grenzflächen als sehr echogen dar, da 

nahezu alle reflektierten Echos den Schallkopf erreichen. Durch eine Totalreflexion können 

oben genannte Grenzflächen einen Schallschatten, also eine komplette Schallauslöschung 
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in den Bereichen direkt hinter der hyperechogenen Struktur, bilden (POULSEN NAUTRUP 

1998b; MANNION 2006).  

Die Verteilung der Echos bestimmt die Homogenität eines Gewebes und führt zu einer 

charakteristischen Textur eines Organs. Gleichmäßig verteilte Echos und somit ein 

homogenes Bild liefert zum Beispiel ein physiologisches Parenchym von Leber oder Milz. 

Inhomogene Echoverteilungen können physiologischerweise von quergestreiften Muskeln 

oder Fett ausgehen, pathologischerweise von Entzündungen, Abszessen und Tumoren 

(POULSEN NAUTRUP 1998b). 

2.1.6 Sonographische Artefakte 

Sonographische Artefakte sind Kunstprodukte am Ultraschallmonitor, die die Interpretation 

eines Ultraschallbildes erheblich beeinträchtigen können (BOGNER 1992). Artefakte können 

zum Verlust von Echostrukturen führen oder gar Strukturen vortäuschen, sie in Helligkeit, 

Form und Größe verändert darstellen oder ihre Position falsch wiedergeben (MEIER 1989; 

FARROW 1996). Die Fehldeutung eines Artefakts ist potentiell an der Entstehung einer 

Fehldiagnose beteiligt. Eine wichtige Grundregel zur Vermeidung von Artefakten ist es, die 

untersuchte Struktur in zwei Ebenen darzustellen. Tritt in einer Ebene eine nicht klar zu 

diagnostizierende Struktur auf, die in der zweiten Ebene nicht reproduzierbar ist, so ist ein 

Artefakt wahrscheinlich (BOGNER 1992). 

2.1.6.1 Rauschen 

Beim störenden Phänomen des sogenannten Rauschens handelt es sich um das Auftreten 

einer Wolke von zahlreichen feinen, gleichmäßig verteilten, hellen Echos bevorzugt in 

oberflächennahen Abschnitten eigentlich echofreier Bereiche (BOGNER 1992). Dieses 

Artefakt tritt meist in Folge einer zu großen schallkopfnahen Verstärkung (Gain) auf und kann 

durch Verringerung der tiefenanhängigen Verstärkung (TCG) unterdrückt werden. In 

seltenen Fällen kommt es auch durch den Betrieb mehrerer Ultraschallgeräte in einem Raum 

oder durch den Einsatz mancher Elektrogeräte zum plötzlichen, oft auf die unteren 

Bildbereiche beschränkten Rauschen (POULSEN NAUTRUP 1998b; BRÜGMANN 1999). 

2.1.6.2 Reverberationen 

Die Entstehung von Wiederholungsechos (Reverberationen) erklärt sich durch die Reflexion 

von Ultraschallwellen zwischen zwei Grenzflächen mit hohen Impedanzunterschieden 

(BOGNER 1992). Wiederholungsechos zeigen sich am Bildschirm als regelmäßige Abfolge 
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streifenförmiger, mit zunehmendem Abstand von Schallkopf schwächer werdender Echos. 

Hierbei kehren besonders starke Echos zum Schallkopf zurück, werden erneut reflektiert und 

dringen wieder in den Körper ein, wodurch sich im Anschluss an die erste, echte Reflexion 

mehrere Echos im gleichen Abstand mit abnehmender Intensität darstellen (BOGNER 1992). 

Ein solches Phänomen tritt beispielsweise auf, wenn der Schallkopf keinen genügenden 

Kontakt zur Ankopplungsfläche hat und sich somit Restluft störend auswirken kann. Auch 

hinter gas- und luftgefüllten Organen wie Magen und Darm kann es statt zu erwarteten 

Schallauslöschungen zu Wiederholungsechos in Form eines „Ring-Down-Phänomens“ 

kommen, indem dünne Membranen durch die Schallwellen in Eigenschwingung versetzt 

werden (BOGNER 1992; LANG 2006). Eine Sonderform stellt die akustische Spiegelung an 

den Grenzflächen Lunge/Zwerchfell und Lunge/Perikard dar, bei welcher sich die hyper-

echogenen Grenzflächen im Bereich von Leber bzw. Herz spiegeln (BRÜGMANN 1999; 

LANG 2006). Die meisten Wiederholungsechos können durch Verringerung der Gesamt-

verstärkung und der TCG beseitigt werden (BARR 1992; POULSEN NAUTRUP 1998b). Eine 

weitere Sonderform des Wiederholungsartefaktes, das „Kometenschweifphänomen“, findet 

man hinter kugelförmigen Strukturen (zum Beispiel hinter der Augenlinse), Gasansammlun-

gen und mehrschichtigen Fremdkörpern, innerhalb derer es zu Mehrfachreflexionen kommt, 

die sich hinter der Struktur als Band zahlreicher Echos mit abnehmender Intensität darstellen 

(BARR 1992; BOGNER 1992; GLADISCH 1993; BYRNE und GREEN 2002a). 

2.1.6.3 Schallauslöschung und Schallverstärkung 

Wie bereits beschrieben, treten hinter Grenzflächen mit besonders großen Impedanzunter-

schieden Schallauslöschungen (Schallschatten) aufgrund der Totalreflexion der Schall-

strahlen auf. Innerhalb dieses sich einheitlich schwarz darstellenden Schallschattens können 

keine weiteren Strukturen sonographisch differenziert werden (MANNION 2006). Das 

Phänomen tritt hinter Knochengewebe oder Verkalkungen, sowie luft- und gasgefüllten 

Strukturen auf (BOGNER 1992). Unvollständige Schallschatten mit leichten Echos finden 

sich auch hinter Konkrementen und Steinen und dienen so dem Nachweis von Gallen-, 

Nieren- und Blasensteinen. In Randbereichen von flüssigkeitsgefüllten Hohlräumen oder an 

abgerundeten Organoberflächen kann durch Brechung ein schmaler, divergierender Schall-

schatten entstehen (BARR 1992; POULSEN NAUTRUP 1998b). 

Distal von flüssigkeitsgefüllten Organen und Strukturen tritt eine relative Schallverstärkung 

auf, da die Ultraschallwellen im zuvor durchlaufenen Gewebe weniger abgeschwächt wurden 

(MANNION 2006). Es kommt somit zu einer diagnostisch gut verwertbaren verstärkten Dar-
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stellung der distalen Gewebestrukturen, die beispielsweise zur Untersuchung der Gebär-

mutter hinter einer gut gefüllten Harnblase genutzt wird (POULSEN NAUTRUP 1998b). 

2.1.6.4 Schichtdickenartefakte 

Am Rand von flüssigkeitsgefüllten Organen können sogenannte Schichtdickenartefakte 

auftreten, die sich als Saum von feinen, unscharf begrenzten Echos mittlerer Echogenität 

darstellen und zum Beispiel zu Fehlinterpretationen von Harn- oder Gallenblasenwand 

führen, da sie die Organwände breiter und unsauber erscheinen lassen (BOGNER 1992). 

Schichtdickenartefakte treten immer dann auf, wenn ein Schallimpuls mit großer lateraler 

Ausdehnung (im Nah- oder Fernfeld der Schallkeule) schräg auf eine Grenzfläche fällt und 

diese mit geringerer und unscharfer Echogenität darstellt. Das Artefakt lässt sich umgehen, 

indem die zu untersuchende Struktur in die Fokuszone gerückt und/oder senkrecht 

angeschallt wird (POULSEN NAUTRUP 1998b). 

2.1.6.5 Verzeichnung 

Für die ophthalmologische Sonographie bedeutsam ist das Phänomen der Verzeichnung, da 

es besonders im Bereich der Linse und des Bulbus auftritt. Durch die stark gekrümmte 

Linsenperipherie werden die Ultraschallwellen nach außen gebrochen (GUTHOFF 1988). 

Zudem kommt es durch die Änderung der Schallgeschwindigkeit, besonders in kataraktösen 

Linsen, zu einem Artefakt, welches sich als schattenhafte Vorwölbung im Bereich des 

Sehnervenaustrittes darstellt und so zu einer scheinbaren Verkürzung des Bulbus führt 

(SUSAL 1987; GUTHOFF 1988). Gerade bei der Verwendung von Sektorschallköpfen 

stellen sich konkave Strukturen durch das Phänomen der Verzeichnung konkaver dar, als sie 

es in vivo wirklich sind, konvexe Oberflächen wie die Linsenvorderfläche wirken dagegen 

flacher (BOGNER 1992).  

2.1.7 Sonographische Untersuchungen an Fischen 

2.1.7.1 Sonographie in der Aquakultur 

Bereits in den 1980er Jahren wurde der praktische Nutzen der Ultraschalluntersuchung in 

der Aquakultur zur Bestimmung von Geschlecht und Reifezustand von norwegischen 

Lachsen beschrieben (REIMERS et al. 1986). Da bei den meisten kommerziell genutzten 

Farmfischen kein eindeutiger äußerlicher Geschlechtsdimorphismus besteht, stellt die 

Bestimmung des Geschlechts und des Reproduktionsstatus das Haupteinsatzgebiet der 

Ultrasonographie bei Fischen dar. Sie ermöglicht eine sichere Geschlechtsbestimmung 
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sowie die Festlegung des richtigen Zeitpunktes zur Milch- und Rogengewinnung und dient 

somit der Produktivitätssteigerung (GODDARD 1995). Zahlreiche Studien überprüften die 

Möglichkeiten und Grenzen der Sonographie und erfassten reproduzierbare Parameter bei 

der Geschlechtsdifferenzierung verschiedener Nutzfischarten, unter anderen beim 

Pazifischen Hering (BONAR et al. 1989), Atlantischen Lachs (MATTSON 1991) und der 

gestreiften Brasse (BLYTHE et al. 1994). Die Bestimmung der Schlachtreife und der Fleisch-

qualität (Filetstärke) sowie das Auffinden von enzystierten Parasitenstadien stellen weitere 

Anwendungsmöglichkeiten der kommerziellen Ultraschalldiagnostik dar (BOYCE 1985; 

BOSWORTH et al. 2001). 

2.1.7.2 Sonographie in der Zierfischmedizin 

Die Ultraschalluntersuchung wird heute auch gezielt in der Zierfischmedizin eingesetzt 

(FRANCIS-FLOYD 1999; GUMPENBERGER 2002; ROBERTS et al. 2009). Eine der ersten 

Studien über medizinisch-diagnostischen Ultraschall wurde von SANDE und POPPE (1995) 

veröffentlicht und befasste sich eingehend mit der Echokardiographie bei atlantischen 

Lachsen. Gegenüber dem Röntgen, welches auch heute noch die Methode der Wahl zur 

Darstellung knöcherner Strukturen und der Schwimmblase darstellt, ermöglicht die Sono-

graphie die Darstellung von Bewegungsabläufen und die genauere Untersuchung der 

radiologisch nur schlecht darstellbaren Abdominalorgane (KRAUSE 2003). Der Fischpatient 

verbleibt für die Ultraschalluntersuchung üblicherweise im Wasser, das eine optimale 

Ankopplung an die Körperoberfläche garantiert und den Einsatz von Kontaktgel oder einer 

zusätzlichen Vorlaufstrecke überflüssig macht. In den meisten Fällen ist es nicht nötig, die 

Fischoberfläche mit dem Schallkopf zu berühren (GODDARD 1995; STETTER 2001a). Die 

Untersuchung kann bei ruhigen oder geschwächten Patienten ohne Anästhesie erfolgen, 

eine Sedation ist jedoch in Hinsicht auf ein möglichst stressfreies Handling anzuraten 

(ROBERTS et al. 2009). Je nach Fischgröße kommen Schallköpfe mit 2,5 MHz (Haie) bis 10 

MHz (kleinere Zierfische) zum Einsatz, wobei nach STOSKOPF (1993a) 7- bis 10-MHz- 

Transducer die beste Auflösung bei der Untersuchung von 0,5 – 1 kg schweren Fischen 

erzielen. Mittels Ultraschall lassen sich beim Fisch besonders gut Herz, Muskulatur, Leber, 

Gallenblase, Gastrointestinaltrakt, Gonaden und Augen untersuchen (STETTER 2001a). Die 

Nieren hingegen können aufgrund der Schallauslöschung durch die Schwimmblase und das 

starke Axialskelett nur schwer eingesehen werden. Die Schwimmblase selbst kann nur beim 

Vorliegen pathologischer Füllungszustände evaluiert werden (STOSKOPF 1993a). Wichtige 

Indikationen für eine sonographische Untersuchung von Fischpatienten sind laut STETTER 

(2001a) Neoplasien, granulomatöse Erkrankungen und pathologische Veränderungen der 

Gonaden, aber auch die Evaluierung von Ausmaß und Ätiologie eines Exophthalmus.  
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Fast zeitgleich befassten sich verschiedene wissenschaftliche Arbeiten gezielt mit der Sono-

graphie am Koikarpfen (Cyprinus carpio). HOEDT (2004) und KRAUSE (2003) stellten 

während ihrer Studien unter anderem die inneren Organe des Koi dar, darunter Herz, Leber, 

Gastrointestinaltrakt, Nieren, Milz und Gonaden. HOEDT (2004) untersuchte zudem das 

Koiauge mit Hilfe eines konvexen 7,5-MHz-Linearschallkopfes und konnte, wie auch zuvor 

STETTER (2001a) bei einem Riesenzackenbarsch, neben Kornea, Linse und Glaskörper vor 

allem die retrobulbären Strukturen darstellen. Für eine detailliertere Darstellung von Iris, 

vorderer Augenkammer und Linse empfiehlt HOEDT (2004) den Einsatz eines für die 

Ophthalmologie konzipierten Ultraschallgerätes mit mindestens einem 10-MHz-Schallkopf 

und die Verwendung einer Vorlaufstrecke. 

2.2 Das Fischauge 

2.2.1 Vergleichende Anatomie und Physiologie  

Als  „typisches“ Fischauge soll in diesem Kapitel das Auge der echten Knochenfische 

(Teleostei), zu denen auch der Koikarpfen (Cyprinus carpio) zählt, in seiner grundlegenden 

Anatomie und Physiologie beschrieben werden. Es sei jedoch darauf hingewiesen, dass 

innerhalb der Teilklasse der Teleostei mit ca. 27.000 rezenten Arten erhebliche anatomische 

Unterschiede je nach Habitat und Lebensweise bestehen. So unterscheiden sich die Augen 

von Süßwasserfischen von denen der Meerwasser- oder Brackwasserfische, Tiefsee-

bewohner oder Vieraugen (Anableps) zeigen ganz spezielle Modifikationen in der Augen-

anatomie und –physiologie (HARGIS 1991; KRÖGER 2012).  

Das Auge der Knochenfische ist dem Auge aller anderen Vertebraten bemerkenswert 

ähnlich, gleichwohl es an die Verhältnisse ihres Lebensraumes unter Wasser angepasst ist 

(ROBERTS und ELLIS 2001; WILLIAMS 2012a). Es stellt nach DUKE-ELDER (1958) das 

am höchsten entwickelte Auge aller Fische dar. 

Die paarigen Augen (Organum visus) liegen bei den meisten Knochenfischen seitlich am 

Schädel (Seitenaugen) und werden dort von verschiedenen Schädelknochen begrenzt, die 

keine eigentliche Augenhöhle bilden, sondern nur einen Raum, in dem der Augapfel (Bulbus 

oculi), in Fettgewebe eingebettet, zu liegen kommt (HARDER 1964). Grundsätzlich zeigen 

Teleostei eine große Divergenz der Augenachsen und sind größtenteils in der Lage, ihre 

Augen unabhängig voneinander zu bewegen und Objekte zu fokussieren (FERNALD 1985). 

Nach WILLIAMS und WHITAKER (1997) verfügen die meisten Fische über ein binokulares 
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Gesichtsfeld, über dessen Funktionsweise aber noch diskutiert wird. Aufgrund des 

unbeweglichen Nackens und der nur rudimentär angelegten Augenmuskeln müssen sie zur 

Vergrößerung ihres Blickfeldes früh die Körperposition verändern (DUKE-ELDER 1958; 

WILCOCK und DUKES 1989; MILLICHAMP 1991). Der Bulbus ist anterior-posterior 

abgeflacht und in seinem anteroposterioren Diameter kürzer als im transversalen 

Durchmesser (JURK 2002). Er  wird von drei Paar Augenmuskeln bewegt, die vom dritten 

Gehirnnerven (Nervus oculomotorius) innerviert werden. Das Knochenfischauge besitzt 

weder echte Augenlider, noch Tränendrüsen (MILLICHAMP 1991; ROBERTS und ELLIS 

2001; WILLIAMS 2012a). Neben Knorpelfischen (z.B. Haien), die echte Augenlider 

aufweisen, besitzen auch einige Knochenfische (z.B. Forellen) eine dünne, durchsichtige 

Membran über dem Auge (STOSKOPF 1993a), analog zur Brille der Schlangen. 

Die fibrinöse weiße Lederhaut (Sklera) bildet zusammen mit der transparenten, gefäßlosen 

Hornhaut (Kornea) die äußerste Schicht des Bulbus (Äußere Augenhaut, Tunica externa 

bulbi). Die äußere Augenhaut ist zur Anpassung an verschiedene Druckverhältnisse unter 

Wasser sehr kräftig ausgeprägt, die Sklera ist mit Knorpel und bei manchen Fischarten sogar 

mit Knochenplatten verstärkt (DUKE-ELDER 1958). Darunter schließt sich die Aderhaut 

(Choroidea) an, deren zahlreiche Gefäße ein subsklerales Kapillarnetz zur Ernährung der 

aufliegenden Retina bilden. Die Choroidea bildet zusammen mit der unbeweglichen Regen-

bogenhaut (Iris) und den Rudimenten des Ziliarkörpers die mittlere Augenhaut, auch Uvea 

oder Tunica media bulbi genannt. Die meisten Knochenfische weisen um den Sehnerven 

(Nervus opticus) eine hufeisenförmige Anhäufung von Gefäßkapillaren auf, von denen, 

ähnlich wie in der Schwimmblase, aktiv Sauerstoff sezerniert wird (WILCOCK und DUKES 

1989; ROBERTS und ELLIS 2001). Als Pendant zum Pecten oculi der Vögel und dem Conus 

papillaris der Reptilien findet sich ebenso bei den meisten Fischen ventral der 

Sehnervenpapille eine in den Glaskörper ragende, wallartige Ausstülpung der Choroidea, der 

Processus falciformis, welcher zahlreiche Gefäße zur Ernährung der Retina führt (JURK 

2002; WILLEKE 2008). Er entsteht durch einen unvollständigen Schluss des Augenbechers 

während der Embryonalentwicklung und kann während der ophthalmologischen Unter-

suchung leicht mit einer Retinaschwellung oder anderen Erkrankungen verwechselt werden. 

Fische ohne deutlichen Processus falciformis, wie beispielsweise der Karpfen, zeigen in der 

gleichen Lokalisation eine Anhäufung von Gefäßkapillaren (NICOL 1989; HARGIS 1991). 

Die innere Augenhaut (Tunica interna bulbi) stellt die Netzhaut (Retina) an der hinteren 

Augenwand dar. Sie beherbergt das lichtempfindliche Nervengewebe, welches wie bei 

anderen Vertebraten aufgebaut ist: mit transparenten nervösen Bestandteilen im innersten 
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Teil, darüber die Stäbchen- und Zapfen-Rezeptorzellschicht mit einer schwarz pigmentierten 

Schicht an der Peripherie (ROBERTS und ELLIS 2001).  

 

Abbildung 5:  Vertikaler Schnitt durch ein typisches Teleostei-Auge (aus WALLS, 1967) 

Eine Besonderheit des Teleosteiauges stellt eine in der Retina vorkommende variable 

Pigmentschicht dar, die die sogenannten retinalen Melanosomen beherbergt und die 

Funktionen des bei Fischen fehlenden Pupillarreflexes, wenn auch um bis zu zwei Stunden 

verzögert, übernimmt (Retinomotorik). Die Melanosomen breiten sich bei vermehrtem Licht-

einfall aus und schützen so die sensiblen Stäbchen vor dem Ausbleichen. Bei wenig Licht 

ziehen sie sich dagegen zurück (DUKE-ELDER 1958; MILLICHAMP 1991; WILLIAMS und 

WHITAKER 1997). Die Iris der Fische ist starr und mit einer weiten, unbeweglichen Pupille 

versehen, um möglichst viel Licht auf die Linse fallen zu lassen. Das Fehlen eines Pupillar-

reflexes wirkt sich kaum negativ aus, da Fische unter Wasser selten starken Spiegelungen 

und schädigenden Lichtreflexen ausgesetzt sind (KRÖGER 2012). 
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Der Innenraum des Augapfels enthält den flüssigkeitsgefüllten Glaskörper (Corpus vitreum), 

sowie die Linse (Lens) und die durch die Iris voneinander getrennte vordere und hintere 

Augenkammer (Camera anterior und posterior bulbi). Vordere und hintere Augenkammer 

sind mit dem Kammerwasser (Humor aquosus) gefüllt, welches nutritive Funktionen für 

Hornhaut und Linse übernimmt (AXENFELD et al. 1980). Nach HARGIS (1991) ist die 

Trennung zwischen vorderer und hinterer Augenkammer durch die Iris bei Knochenfischen 

unvollständig und es findet eine Vermischung von Kammer- und Glaskörperwasser statt. Bei 

Fischen wurde das Kammerwasser, wie die Glaskörperflüssigkeit (Humor vitreus), noch nicht 

im Detail untersucht. Obwohl es in der Viskosität zwischen den Fischarten beträchtliche 

Unterschiede gibt, kann die Flüssigkeit in der Regel mit der höherer Tiere verglichen werden 

(ROBERTS und ELLIS 2001).  

Die sphärische Linse der Fische ragt im Vergleich zur bikonvexen Säuger- oder Vogellinse 

weit in die vordere Augenkammer hinein und berührt beinahe das Korneaendothel, um einen 

maximalen Lichteinfall zu gewährleisten (JURK 2002). Die radiär aufgebaute Linse ist das 

alleinige Brechungselement im Fischauge und ermöglicht ihnen durch zwei lichtbrechende 

Zonen (Cortex und Nucleus) innerhalb einer großen sphärischen Kugel den höchsten 

Brechungsindex (engl. refractive index, RI = 1,69) unter allen Vertebraten (DUKE-ELDER 

1958; JURK 2002; WILLIAMS 2012a). Nach MURACHI et al. (1986) verfügt die Linse des 

Karpfens über einen Brechwert von 145 Dioptrien. Landlebenden Vertebraten stehen als 

lichtbrechende Medien neben der Linse auch die Kornea, das Kammerwasser und der 

Glaskörper zur Verfügung, weil die Luft mit RI = 1 einen niedrigeren Brechungsindex als die 

genannten Medien aufweist. Da jedoch Kammerwasser und Kornea der Fische ungefähr den 

gleichen Brechungsindex wie das umgebende Wasser (RI = 1,33) aufweisen, können diese 

keine lichtbrechende Funktion übernehmen (WILLEKE 2008; KRÖGER 2012). Anders als 

bei Landwirbeltieren wird die Linse nicht von radiär angeordneten Zonulafasern ausgehend 

vom Musculus ciliaris fixiert und zur Akkommodation in ihrer Form verändert, sondern ist 

durch ein starres Epithel in seiner runden Form konstant und wird von zwei kleinen Muskeln 

asymmetrisch dorsal und ventral gehalten (WILCOCK und DUKES 1989; MEYER et al. 

2009). Die Scharfstellung von verschieden weit entfernten Objekten durch Veränderung der 

Brechkraft der Linse (Akkommodation) erfolgt bei Fischen durch eine Verschiebung der 

Linse (nicht durch Verformung wie bei Landwirbeltieren) über den Musculus retractor lentis, 

der kranial des Processus falciformis entspringt und distal des Linsenäquators ansetzt 

(HARDER 1964; WILCOCK und DUKES 1989; MILLICHAMP 1991; STORCH 2009). 

Knochenfische verfügen über einen posterior ansetzenden M. retractor lentis, der die Linse 

nach kaudal zieht, während der anteriore M. protractor lentis der Knorpelfische die Linse 
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nach kranial schiebt (WHITAKER 2001). Dorsal wird die Linse vom Ligamentum 

suspensorium lentis pendelartig gehalten. Der Akkommodationsgrad des Fischauges ist 

nach ROBERTS und ELLIS (2001) als gering anzusehen. Durch den aktiven Rückzug der 

Linse stellt der Knochenfisch von Nah- auf Fernakkommodation um. Die Fischlinse ist also 

im Gegensatz zur Säugerlinse im Ruhezustand auf Nahsicht eingestellt (DUKE-ELDER 

1958; WALLS 1967; NICOL 1989; WILLEKE 2008).  

2.2.2 Anatomie des vorderen Augensegmentes 

Das vordere Augensegment setzt sich zusammen aus Hornhaut, vorderer und hinterer 

Augenkammer, Linse, Regenbogenhaut und Kammerwinkel (AXENFELD et al. 1980). 

2.2.2.1 Kornea und Sklera 

Das Fischauge wird von einer bindegewebigen Kapsel, der weißen Lederhaut (Sklera) 

umgeben, die dem Bulbus seine Festigkeit gibt. Die anteriore Sklera besitzt je nach Lebens-

weise der jeweiligen Fischart knöcherne oder knorpelige Stützelemente und geht im Bereich 

des Limbus in das kräftige Stroma der Hornhaut (Kornea) über. Die Kornea ist, insbesondere 

bei Süßwasserfischen, relativ dick und im anterioren Bereich im Gegensatz zur konvexen 

Kornea anderer Wirbeltiere leicht abgeflacht (NICOL 1989). Sie gleicht in ihrem Brechungs-

index dem Wasser, besitzt also keine lichtbrechenden, fokussierenden Aufgaben wie die 

Hornhaut der Landwirbeltiere (NICOL 1989). Gegenüber Schwankungen des Sauerstoff-

gehaltes im Wasser ist sie sehr empfindlich (WALL 1998). Die Kornea der Knochenfische ist 

wie die terrestrischer Vertebraten aus mehreren Schichten aufgebaut: Die äußerste, 

epidermale Schicht (Konjunktiva) besteht aus einem mehrschichtigen, unverhornten Kornea-

epithel und versorgt die Augenstrukturen mit Feuchtigkeit. Darunter liegt eine dicke äußere 

Basalmembran (Bowman´sche Kapsel), gefolgt von einer dermalen Substantia propria, die 

aus sehr regelmäßig angeordneten, jeweils rechtwinklig gegeneinander versetzten Kollagen-

fibrillen und Proteoglykanen besteht. Diesem in ein tiefes und oberflächliches Stroma 

unterteiltem Bindegewebe schließt sich als letzte Schicht eine dünne innere Basalmembran 

mit Endothelschicht (Descemet´sche Membran) an. Das Korneaendothel verdickt sich 

peripher zum Ligamentum annulare, welches zur vorderen Irisfläche zieht und den Kammer-

winkel weitestgehend ausfüllt. Die Kornea der Knochenfische ist in ihrer Periphere im 

Vergleich zur Hornhaut anderer Vertebraten deutlich stärker ausgeprägt als im Zentrum 

(DUKE-ELDER 1958; NICOL 1989; MILLICHAMP 1991; ROBERTS und ELLIS 2001; 

WHITAKER 2001; ZHAO et al. 2006; MEYER et al. 2009; STORCH 2009; WILLIAMS 

2012a). 
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Abbildung 6:  Typisches Teleostei-Auge im Sagittalschnitt (aus WILLIAMS und WHITAKER 1997) 

2.2.2.2 Vordere Augenkammer 

Die mit Kammerwasser (Humor aquosus) gefüllte, sehr flache vordere Augenkammer 

(Camera anterior bulbi) wird rostral vom Korneaendothel und kaudal von der kreisförmigen 

Iris begrenzt und steht über deren Öffnung (Pupille) mit der hinteren Augenkammer in 

Verbindung (STORCH 2009). 

2.2.2.3 Linse 

Die Linse (Lens) entsteht in ihrer Entwicklung aus einer blasenförmigen Einsenkung der 

Epidermis und besteht daher aus Epithelzellen, die jedoch besonders lang sind und 

Linsenfasern (Fibrae lentis) genannt werden. Eine größtenteils aus PAS-positivem hyalinen 

Kollagen bestehende, anterior verstärkte Linsenkapsel (Capsula lentis) gibt der relativ 

großen Linse der Knochenfische eine starre und kugelige Gestalt (HARGIS 1991). Die Linse 

ist dorsal über das Ligamentum suspensorium lentis aufgehängt und ragt durch die Iris 

hervor weit in die vordere Augenkammer hinein, was einen besonders großen Gesichts-
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winkel (Prinzip der „Fischaugen-Linse“) ermöglicht (WILCOCK und DUKES 1989; ROBERTS 

und ELLIS 2001; STORCH 2009). Ventral des Linsenäquators inseriert der pigmentierte 

Musculus retractor lentis, der die Linse zur Akkommodation nach kaudal zieht. Er wird vom 

parasympathisch beeinflussten, kurzen Ziliarnerven innerviert (NICOL 1989).  

Die Linsensubstanz selbst (Substantia lentis) ist radiär aufgebaut und besteht aus einem 

zentralen Kern (Nucleus lentis) und einer umliegenden Rinde (Cortex lentis) (NICOL 1989). 

Diese wird umgeben von einem äußeren einfachen kubischen Linsenepithel (Epithelium 

lentis), welches mindestens die vorderen vier Fünftel der Linse bedeckt und den hinteren Pol 

ausspart (SCHMALBACH 2000). Vom posterioren Ende des Linsenepithels (engl. nuclear 

bow) ausgehend werden kontinuierlich neue Linsenfasern gebildet, die anterior ziehen und 

sich zwiebelschalenartig um die älteren Fasern des Linsenkerns legen (HARGIS 1991). Die 

Linse stellt einen unelastischen, kristallinen Körper dar, welcher weder Blut- noch Lymph-

gefäße führt und daher ausschließlich vom Kammerwasser ernährt wird. Sie wächst durch 

die Anlagerung sich neu bildender Faserzellen ein Leben lang, wenngleich sich das 

Wachstum mit zunehmendem Alter abschwächt (WILCOCK und DUKES 1989; BJERKÅS 

und BJERKÅS 1996; WHITAKER 2001; WILLEKE 2008). 

 

Abbildung 7:  Typische Teleostei-Linse im Sagittalschnitt (aus HARGIS,1991) 
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2.2.2.4 Iris, Ziliarkörper und hintere Augenkammer 

Die Regenbogenhaut (Iris) besteht aus drei Schichten: eine anteriore, stark pigmentierte 

Ektodermschicht, ein dünnes, stark vaskularisiertes Stroma mit Melaninpigmenten und 

Guanophoren als Teil der choroidalen Argentea (siehe unten) und eine posteriore, meist 

unpigmentierte Schicht (JURK 2002). Die Iris ist über das Ligamentum annulare mit der 

Kornea verbunden und meist unbeweglich. Sie besitzt auch bei hochentwickelten Knochen-

fischen nur spärlich ausgebildete oder gar keine Sphinkter- und Dilatatormuskeln (NICOL 

1989). Die zentrale, rundliche oder asymmetrische Irisöffnung (Pupille) ist bei den meisten 

Teleostei nahezu starr und reagiert nicht wie die Pupille terrestrischer Vertebraten mit einem 

unmittelbaren Pupillarreflex auf einfallendes Licht (NICOL 1989; MILLICHAMP 1991). Somit 

ist es möglich, auch ohne Anwendung eines Mydriatikums die inneren Augenstrukturen intra 

vitam ophthalmologisch einzusehen (BJERKÅS und BJERKÅS 1996). Bei einigen Fischarten 

ist die Pupille in Hauptblickrichtung leicht ausgezogen, um das Blickfeld für den Beutefang zu 

erweitern (STOSKOPF 1993a). Auf der äußeren Schicht der Choroidea findet sich vor allem 

bei Jungfischen eine spiegelnde, silberne bis gelbliche guaninhaltige Zellschicht, die 

Argentea, die einfallende Lichtstrahlen reflektiert und gebündelt von hinten auf die Retina 

projiziert. Die Argentea reicht oft bis auf die Vorderseite der Iris und verleiht ihr eine typische 

schimmernde Färbung, die vermutlich auch der Tarnung dient (DUKE-ELDER 1958; 

WILCOCK und DUKES 1989; MILLICHAMP 1991; WHITAKER 2001).  

Der Ziliarkörper (Corpus ciliare) ist nur rudimentär als doppelte Epithelschicht (Pars ciliaris 

retinae) auf Höhe des Limbus, zwischen Ora serrata und Iris, angelegt. Es finden sich bei 

den meisten Knochenfischen weder Ziliarfortsätze, noch ein Ziliarmuskel (NICOL 1989). 

Über die Kammerwasserproduktion und -drainage ist noch wenig bekannt. Vermutlich wird 

das Kammerwasser im Bereich der inneren Epithelschicht der dorsalen Pars ciliaris retinae 

an der Iriswurzel gebildet, wo sich eine Vielzahl mesenchymaler Zellen finden lassen (NICOL 

1989; WHITAKER 2001; STORCH 2009).  

Die hintere Augenkammer (Camera posterior bulbi) liegt zwischen Iris und vorderer Glas-

körperbegrenzung (Ora serrata) und ist nach HARGIS (1991) bei Fischen nur unvollständig 

durch den Iridokornealwinkel von der vorderen Augenkammer abgegrenzt. 

2.2.2.5 Kammerwinkel 

Als Kammerwinkel oder Iridokornealwinkel (Angulus iridocornealis) wird der Winkel innerhalb 

der vorderen Augenkammer bezeichnet, in welchem Kornea und Iris aufeinandertreffen 

(AXENFELD et al. 1980). Hier findet bei landlebenden Vertebraten die Drainage des zuvor 
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vom Epithel des Ziliarkörpers gebildeten Kammerwassers statt. Ein wirklicher Ziliarkörper in 

Form eines Ringwulstes fehlt den Fischen. Das Kammerwasser wird wie oben beschrieben 

beim Fisch von epithelialen Zellen analog zum Ziliarepithel des Strahlenkörpers an der 

dorsalen Irisbasis innerhalb der hinteren Augenkammer gebildet. Von hier aus fließt es zur 

Ernährung der Linse und des Korneaendothels durch die Pupille in die vordere Augen-

kammer und wird im ventralen Kammerwinkel abgeführt (GRAY et al. 2009). Bei Landwirbel-

tieren wird das Kammerwasser im Kammerwinkel über ein Trabekelwerk und den darin 

liegenden Schlemm´schen Kanal ins Venensystem der Uvea und Sklera abgeführt. Der 

Kammerwinkel der Knochenfische ist dagegen mit einem hypertrophiert erscheinenden 

Ligamentum annulare ausgefüllt, welches Ähnlichkeiten mit dem Ligamentum pectinatum 

anderer Vertebraten aufweist und beim Karpfen aus einer breiten Masse vesikulärer 

Mesenchymzellen besteht (NICOL 1989). Die Bezeichnung Ligamentum (Band) ist jedoch 

laut JURK (2002) eher irreführend, da das Ligamentum annulare weder Kollagen, noch 

Elastin enthält.  

Der genaue Mechanismus der Kammerwasserdrainage und die Funktion des Lig. annulare 

waren lange Zeit unbekannt (WALLS 1967). Nach jüngsten Studien von GRAY et al. (2009) 

am Zebrafisch ist der ventrale Kammerwinkel mit einem Maschenwerk aus endothelialen 

Zellen gefüllt. Dieses endotheliale Maschenwerk lässt sich lichtmikroskopisch in einen 

anterioren Iridokornealkanal, der das Lig. annulare von der Irisbasis trennt, und einen 

posterioren Ziliarkanal, zwischen Irisbasis und Ora serrata gelegen, unterteilen. Beide 

Abflüsse münden in einen Venenplexus in der kranialen Choroidea (siehe Abbildung 8 und 

9). WILCOCK und DUKES (1989) gehen davon aus, dass es im Teleosteiauge aufgrund der 

vorliegenden anatomischen Verhältnisse nicht zur Ausbildung eines Glaukoms durch 

Störung der Kammerwasserdrainage kommen kann. 
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Abbildung 8:  Auge des Zebrafisches (Danio rerio) mit Kammerwinkel (nach GRAY et al. 2009), 
Erläuterungen: VRVs = Retina- und Glaskörpergefäße; NR = Neurale Retina; RPE = retinales 
Pigmentepithel; ON = Nervus opticus; AL = Ligamentum annulare 

 

Abbildung 9:  Auge des Zebrafisches (Danio rerio) mit Kammerwinkel und Kammerwasserfluss (nach 
GRAY et al. 2009), Erläuterungen: NR = Neurale Retina; AL = Ligamentum annulare; 1 = Vordere 
Augenkammer; 2 = Hintere Augenkammer; 3 = Glaskörper 

2.2.3 Pathologie des vorderen Augensegmentes 

Pathologische Augenveränderungen kommen sehr häufig bei Fischen vor, sei es in Form 

eines primären okularen Leidens oder als Folgeerscheinung einer systemischen Erkrankung 

(JURK 2002). Viele systemische Erkrankungen gehen beim Fisch insbesondere mit 

Veränderungen der Konjunktiva, Kornea, Iris oder Linse einher (WILLIAMS und WHITAKER 

1997; WHITAKER 2001). Als häufige Ursachen pathologischer Augenveränderungen bei 
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Fischen werden Entwicklungsstörungen (z.B. durch Teratogene), Mangelernährung, 

umweltbedingter Stress mit Immunsuppression durch schlechte Wasserqualität, Toxine, 

Aggression, Überbesatz, sowie ein erhöhter Infektionsdruck (bakterielle, virale, mykotische, 

parasitäre Infektionen) beschrieben (HARGIS 1991). Während sich primäre Augenver-

änderungen oft auf ein Auge beschränken, manifestieren sich systemische Erkrankungen 

meist in beiden Augen und gehen nicht selten mit weiteren Veränderungen wie Haut- und 

Farbveränderungen oder Polypnoe und ähnlichem einher (WILLIAMS und WHITAKER 

1997). 

2.2.3.1 Erkrankungen der Kornea 

Die genaue Pathophysiologie der Fischhornhaut lässt derzeit noch viele Fragen offen, es ist 

aber davon auszugehen, dass bei Fischen dieselben Reaktionen auf chronische Irritationen 

oder Verletzungen zu finden sind wie bei Säugetieren. Als häufig anzutreffende Ver-

änderungen lassen sich Korneaödeme nach Schädigungen des Endo- oder Epithels der 

Hornhaut nachweisen. Daneben werden erhöhte Mitoseraten bei oberflächlichen Kornea-

läsionen und Pigmentation sowie Einsprossung von Gefäßen bei chronischen Irritationen 

beobachtet (JURK 2002). 

Als nicht-ulcerative Keratitis wird eine oberflächliche Entzündung der Hornhaut bezeichnet, 

die mit einer Trübung der Kornea einhergeht, hervorgerufen durch ein Korneaödem 

(Ansammlung von Wasser mit Schwellung des Hornhautstromas) mit und ohne 

Neuvaskularisation der Hornhaut. Oberflächliche Abschürfungen (Erosionen) des Epithels 

und Schäden des Stromas, die nicht als Einsenkung in der Hornhaut mit bloßem Auge 

erkennbar sind, lassen sich mittels eines Farbstoffes (Fluoreszein oder Bengalrosa) unter 

Blaulicht darstellen (WILLIAMS und WHITAKER 1997). Eine interstitielle Keratitis 

(Entzündung des Stromas und des Endothels der Hornhaut) bei intaktem Epithel lässt sich 

auf diese Weise jedoch nicht darstellen. Sie äußert sich in Hornhauttrübung, Korneaödem, 

zellulärer Infiltration sowie Fibrose und ist oft mit einer Uveitis (Entzündung von Choroidea 

und Iris) assoziiert. Häufige Ursache einer Keratitis stellt die exzessive Einwirkung ultra-

violetter Strahlung auf das Fischauge dar (aktinische Keratopathie oder Photokeratitis), in 

deren Folge es zur Ausbildung tiefer Ulcerationen (Geschwürbildung) und sekundärer mikro-

bieller Infektion kommen kann. Des Weiteren kann ein Mangel an Vitamin A, Thiamin oder 

Riboflavin Keratitiden hervorrufen. Parasitosen, hervorgerufen durch Hautparasiten wie 

Ichthyophthirius, Cryptocaryon, Tetrahymena, Henneguya, Glugea, Lernaea und Angulus 

lassen sich häufig im Zusammenhang mit Entzündungen und Läsionen der Hornhaut bei 

Zierfischen nachweisen (WILLIAMS und WHITAKER 1997; WHITAKER 2001; JURK 2002). 
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Oberflächliche Hornhautläsionen führen beim Fisch aufgrund fehlender Schutzmechanismen 

wie Augenlider und Tränenflüssigkeit und durch einen erhöhten Keimdruck der aquatischen 

Umwelt schnell zu klinisch relevanten Keratitiden und in Folge derer zu schwerwiegenderen 

Augenerkrankungen (WHITAKER 2001). 

Die ulcerative Keratitis ist eine der am häufigsten vorkommenden Augenerkrankungen beim 

Zierfisch und tritt oft infolge physikalischer oder chemischer Schädigungen des Kornea-

epithels auf, beispielsweise nach Traumata durch unsachgemäßes Handling oder Transport, 

innerartliche Aggressionen, parasitäre Infektionen (z.B. durch Trematoden der Gattung 

Neobenedenia) oder toxinreiches Hälterungswasser. Die Hornhautulcera lassen sich wie 

beim Säuger nach Tiefe (oberflächlich oder tief) und Ätiologie einteilen (WILLIAMS und 

WHITAKER 1997; WHITAKER 2001). Klinische Anzeichen einer Hornhautschädigung sind 

das beim Fisch besonders früh auftretende Korneaödem (trübes Auge) sowie ein positiver 

Fluoreszeintest (WILLIAMS 2012a). Bei der sogenannten Descemetozele reicht die Kornea-

läsion so tief, dass es zur Freilegung der Descemet´schen Membran und des Kornea-

endothels kommt. Diese Schichten lassen sich nicht mit Fluoreszein anfärben, ihre 

Schädigung stellt jedoch einen absoluten medizinischen Notfall dar (WILLIAMS und 

WHITAKER 1997; JURK 2002). Aber auch oberflächliche Hornhautschäden bedürfen 

schneller und gezielter Behandlung, da sie das Stroma der Kornea empfänglich gegenüber 

opportunistischen bakteriellen und mykotischen Infektionen machen. Eine Infektion des 

Stromas kann innerhalb von 24 - 48 Stunden durch die Perforation der Kornea zur 

Ausbildung eines Enophthalmus (Einsinken des Bulbus) bzw. Phthysis bulbi (Schrumpfung 

des Bulbus) mit Panophthalmitis (Entzündung des gesamten Bulbus) und Verlust des Auges 

führen (JURK 2002). 

Eine weitere Keratopathie stellt die Ausdünnung und Vorwölbung der zentralen Kornea 

(Keratokonus) oder der gesamten Kornea (Keratoglobus) dar, die mit einer Vergrößerung der 

vorderen Augenkammer einhergeht. Sie ist entweder traumatisch bedingt (chronische 

mechanische Irritationen, Parasitosen) oder Auswirkung einer Mangelernährung und 

schlechter Wasserqualität, kommt aber auch sekundär in Folge von chronischen Ent-

zündungen der inneren Augenstrukturen vor (HARGIS 1991). 

YOSHIMIZU et al. (1988) beschrieben viral induzierte Tumoren des Korneaepithels bei 

verschiedenen Salmonidenarten, die jedoch nur sporadisch auftraten. Daneben wurde 

bereits das Vorkommen von Melanomen und Retinoblastomen bei Fischen nachgewiesen 

(HARGIS 1991). 
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2.2.3.2 Veränderungen in der vorderen und hinteren Augenkammer 

Bei Fischen kommen gelegentlich Blutungen in die vordere Augenkammer (Hyphäma), 

hervorgerufen durch Gefäßrupturen der zahlreichen Irisgefäße, vor. Sie sind zumeist 

traumatisch bedingt oder entstehen im Rahmen von Infektionen bzw. Intoxikationen. Zudem 

werden übermäßige Ansammlungen von weißen (Hypopyon) und roten Blutkörperchen 

(Hyperämien) sowohl in der vorderen, als auch der hinteren Augenkammer, meist infolge 

verschiedener Intoxikationen oder Entzündungen, beobachtet (HARGIS 1991). Vordere und 

hintere Synechien (Verklebungen zwischen Hornhaut und Iris bzw. zwischen Iris und Linse) 

wurden infolge einer chronischen Keratitis oder Uveitis aufgrund anhaltender traumatischer 

Irritationen der Hornhaut, Entzündungen oder osmotischer Imbalanzen nachgewiesen 

(ROBERTS und RODGER 2001). Eine Druckerhöhung des Augeninneren mit Vergrößerung 

der vorderen Augenkammer durch Abflussstörungen des Kammerwassers (Glaukom) wurde 

bisher noch nicht beim Fisch beschrieben (HARGIS 1991). 

2.2.3.3 Erkrankungen der Linse 

Die Linsentrübung (Katarakt) ist nach HARGIS (1991) die häufigste Erkrankung der Fisch-

linse und wurde bei Nutzfischen aufgrund der weltweit steigenden Zahl von Erkrankungen 

bereits sehr genau, zumeist mit dem Ziel einer Ertragsoptimierung in der Aquakultur, unter-

sucht. Betroffene Fische bleiben aufgrund ihres eingeschränkten Visus und der dadurch 

verminderten Futteraufnahme in ihrer Wachstumsrate zurück und die Mortalität nimmt zu 

(WILLIAMS und WHITAKER 1997; JURK 2002). Histologisch lassen sich in kataraktösen 

Fischlinsen die gleichen Veränderungen wie beim Säuger nachweisen: Ödematöse 

Schwellung und Lyse der Linsenfasern mit Hyperplasie sowie intralentikulärer Migration des 

Linsenepithels (JURK 2002). Klinisch äußern sich die genannten pathologischen Ver-

änderungen in einer zunehmenden Trübung der Linse. Die Katarakt kann nach Lokalisation 

(Cataracta capsularis, C. subcapsularis, C. polaris anterior et posterior, C. nuclearis), 

Reifegrad (Cataracta incipiens, C. immatura, C. matura, C. hypermatura) und Ursache 

(kongenital, degenerativ, traumatisch) eingeteilt werden (OFRI 2008) . Man unterscheidet 

zwischen der totalen, die ganze Linse betreffenden Katarakt und der partiellen Katarakt, die 

nur einen Teil von Kapsel, Cortex oder Nucleus betrifft (LIST 2002; CRONAU 2004). Eine 

Katarakt kann angeboren oder erworben sein. Als prädisponierende Faktoren und Ursachen 

einer Katarakt wurden bei verschiedenen Nutzfischen unter anderem Mangelernährung, wie 

ein Mangel an Methionin (COWEY et al. 1992), Zink (KETOLA 1979), Riboflavin, Vitamin A 

und C (COLLINS et al. 1993), exzessive Mineralstoffzufuhr (POSTON et al. 1977), 

osmotische Imbalanzen (SIEZEN 1988), Schwankungen der Wassertemperatur und Erfrie-
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rungen (IWATA 1985), übermäßige Exposition mit UV-Licht (CULLEN et al. 1994) oder 

Toxinen, schlechte Wasserqualität (wie hohe Nitrit- und Ammoniumwerte) (HARGIS und 

ZWERNER 1988), intralentikuläre Parasiten (z.B. Diplostomum Metacercarien) (ASHTON et 

al. 1969), Panophthalmitis und genetische Veranlagung nachgewiesen (WILLIAMS und 

WHITAKER 1997; WALL 1998; JURK 2002). Es ist sehr wahrscheinlich, dass die genannten 

Faktoren auch Einfluss auf die Kataraktbildung bei Zierfischen haben, wenn auch die 

Auswirkungen eines eingeschränkten Visus im Aquarium oder Gartenteich mit ausreichender 

Fütterung und Pflege durch den Fischhalter weniger ins Gewicht fallen. Die Katarakt ist, mit 

Ausnahme der vorübergehenden osmotisch bedingten Linsenschwellung, in den meisten 

Fällen irreversibel (HARGIS 1991; WHITAKER 2001).  

Durch das traumatische Herausreißen der Linse aus ihrer Befestigung (Linsenluxation) oder 

durch die Ruptur der Linsenkapsel (z.B. durch eine toxische Linsenschwellung oder durch 

die Penetration von Parasitenstadien) und dem damit verbundenen Austritt von Linsen-

protein ins Kammer- und Glaskörperwasser kann es zur Ausbildung einer schweren Uveitis 

phakoanaphylactica (Entzündung der mittleren Augenhaut) mit Kornea- oder Sklera-

schädigung und anschließender Phthisis bulbi kommen (WHITAKER 2001). 

Auch das Fehlen einer Linse (Aphakia) wird gelegentlich bei Fischen beobachtet und ist 

zumeist auf eine genetisch bedingte Agenesie zurückzuführen. Wurde dagegen während der 

Embryonalentwicklung eine Linse angelegt und diese beispielsweise aufgrund eines 

Traumas aus ihrer physiologischen Position gelöst und ins hintere Augensegment verlagert, 

spricht man von der sogenannten Pseudo-Aphakia (HARGIS 1991; WILLIAMS und 

WHITAKER 1997). 

2.2.3.4 Erkrankungen der Uvea (Iris, Choroidea und Ziliarkörper) 

Eine Vielzahl intraokularer und systemischer Erkrankungen kann zur Entzündung der 

mittleren Augenhaut (Uveitis) führen. Die Uvea ist aufgrund ihrer starken Durchblutung 

besonders empfänglich für entzündliche Veränderungen. Eine Uveitis entwickelt sich schnell 

zur End- oder Panophthalmitis und kann somit zum Verlust des Auges führen (JURK 2002). 

Klinische Anzeichen einer Uveitis sind meist in der vorderen Augenkammer in Form von 

Hyperämie, Hyphäma, Hypopyon, Korneaödem und Fremdmaterialansammlung im Kammer-

wasser (z.B. Fibrin), sowie in Form von anterioren und posterioren Synechien (entzündliche 

Verklebungen) zu finden. Irishämorrhagien können durch Traumata entstehen oder als Folge 

einer Septikämie auftreten (WILLIAMS et al. 1995a). Das feine Kapillarnetz der Choroidea 

stellt die Eingangspforte zum Augeninneren dar und ist besonders anfällig für vaskuläre 
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Veränderungen infolge Toxin- und Bakteriämien (ROBERTS und RODGER 2001; JURK 

2002). Verschiedene Infektionserreger zeigen eine hohe Affinität zu den Gefäßen der 

Choroidea und lösen häufig eine Uveitis beim Fisch aus (z.B. Myxosporidien wie Myxobilatus 

gasterosteri, Myxobulus couseii und Sphaerospora elegans, Rhabdoviren, Aspergillus 

species, Aeromonas species, Vibrio species., Mykobakterien und Trematoden). Des 

Weiteren werden Uveitiden nach Traumata und infolge schlechter Wasserqualität beobachtet 

(WILLIAMS und WHITAKER 1997; JURK 2002). 

Zudem kommen Tumoren auch in Bereichen der Uvea vor. So wiesen LAHAV und ALBERT 

(1978) beim Goldfisch ein Medulloepitheliom im Bereich des Ziliarepithels nach. Daneben 

werden häufiger noduläre Zubildungen innerhalb der Uvea gefunden, die nach DUKES und 

LAWLER (1975) mit einer Lymphocystis-Infektion assoziiert zu sein scheinen.  

2.2.3.5 Okulare Manifestation systemischer Erkranku ngen 

Ein sehr häufiger Vorstellungsgrund von Fischpatienten in der Tierarztpraxis ist der auch für 

Laien gut erkennbare Exophthalmus. Dieses sogenannte „Pop-Eye“ Syndrom stellt eine sehr 

unspezifische Augenveränderung dar, die, bilateral auftretend, meist auf das Vorliegen einer 

akuten, hochgradigen systemischen Erkrankung hindeutet. Häufigste Ursache stellt eine 

retrobulbäre Raumforderung infolge Gas- oder Flüssigkeitsansammlung (periorbitales Ödem) 

dar und nicht etwa eine Vergrößerung des Bulbus selbst. Oft ist das Pop-Eye-Syndrom 

assoziiert mit einer bakteriellen, viralen, mykotischen oder parasitären Infektion mit Septi-

kämie (ROBERTS und RODGER 2001). Daneben kommen aber auch Neoplasien und 

andere retrobulbäre Raumforderungen, Traumata sowie Sauerstoff- und Stickstoffübersätti-

gung (Gasblasenkrankheit) als Ursache in Frage (HARGIS 1991; WILLIAMS und 

WHITAKER 1997; WHITAKER 2001). Irreversible Schäden wie beispielsweise der Seh-

nervenabriss werden häufig beobachtet und haben den Verlust des Visus zur Folge 

(WHITAKER 2001). 

Ein Enophthalmus hingegen kann bei schwer erkrankten, morbiden Fischen beobachtet 

werden (HARGIS 1991). 

Bakterielle Septikämien führen oft zu schweren Augenveränderungen wie Korneatrübung, 

Uveitis oder Panophthalmitis bis hin zur Bulbusruptur. Häufig nachgewiesen werden hierbei 

Infektionen mit Staphylo- und Streptokokken, Aeromonas, Pseudomonas und Vibrio spezies. 

Mykobakterien und Nocardien, sowie Flavobakterien lösen oft typische noduläre Pan-

ophthalmitiden aus, während Renibacterium salmoninarum insbesondere oberflächliche 
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Keratitiden und entzündliche Bulbusverluste zur Folge hat (WILLIAMS und WHITAKER 

1997). 

Wie bereits beschrieben, führen auch parasitäre Infektionen (vor allem mit Protozoen, 

Myxosporen und Trematoden) zu Erkrankungen von Kornea, Linse und Choroidea in Form 

von Keratitiden, Linsentrübungen und Linsenrupturen sowie Uveitiden. Pilzinfektionen 

kommen meist sekundär nach Immunsuppression oder Hornhautverletzungen vor und 

lassen sich in der Regel gut an wattebauschartigen Auflagerungen auf der Kornea erkennen. 

Auch verschiedene Virusinfektionen, allen voran die Lymphocystis-Infektion, führen zu 

Augenveränderungen, die sich besonders im vorderen Augensegment (Keratitis, Iritis, 

Uveitis) bemerkbar machen (WILLIAMS und WHITAKER 1997). 

2.3 Die ophthalmologische Sonographie 

2.3.1 Indikationen 

Die ophthalmologische Sonographie umfasst die Ultraschalluntersuchung des Augapfels 

(Bulbus) und der Augenhöhle (Orbita) und eignet sich besonders zur Darstellung der 

hinteren Augenstrukturen bei Trübungen des dioptrischen Apparates, die eine herkömmliche 

ophthalmologische Untersuchung einschränken oder gar verhindern. Zudem findet die 

Sonographie Anwendung bei der Evaluierung okularer Tumoren und zur biometrischen 

Ausmessung verschiedener Augenbinnenstrukturen (WILLIAMS et al. 1995c; POULSEN 

NAUTRUP et al. 1998; BYRNE und GREEN 2002c). WHITAKER (2001) und JURK (2002) 

empfehlen auch beim Fisch die okulare B-Mode-Sonographie zur Evaluierung von 

Augenerkrankungen. Wichtige Indikationen sind nach BYRNE und GREEN (2002c) 

Trübungen der intraokularen Medien, zum Beispiel Korneatrübung, Hyphäma, Hypopyon und 

Katarakt. Aber auch bei erhaltener Transparenz können Iris- und Ziliarkörperläsionen, 

Choroidea- und Retinaablösung, Erkrankungen des Nervus opticus oder Entzündungen und 

Vaskularisationsstörungen der Retina und Choroidea, sowie intraokulare Tumoren und 

Fremdkörper, idealerweise unter Zuhilfenahme der Ultrasonographie diagnostiziert werden 

(GUTHOFF und GUTHOFF 1987; WILLIAMS et al. 1995c; BYRNE und GREEN 2002c; 

SCOTTY et al. 2004). Auch zur Untersuchung des retrobulbären Raumes (PURNELL 1969; 

SCHMID 2006) und zur Darstellung lichtoptisch nicht zugänglicher Strukturen wie dem 

Ziliarkörper und dem Kammerwinkel (BERGMANN und GUTHOFF 1994) ist die ophthal-

mologische Sonographie hervorragend geeignet. Weitere Indikationen sind der Nachweis 

okularer Traumata mit und ohne Einblutungen, sowie Linsenluxationen und die Evaluation 
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eines Ex- oder Enophthalmus (WILLIAMS et al. 1995c). Die Biometrie der Augenbinnen-

strukturen ist hilfreich zur Diagnosefindung, zum Beispiel bei Vorliegen einer Mikro- und 

Makrophthalmie, Phthisis bulbi oder eines Glaukoms (GONZALEZ et al. 2001).  

2.3.2 Untersuchungsmethoden und Untersuchungsebenen   

Für die Ultraschalluntersuchung des Auges eignen sich sehr gut spezielle, aus der Human-

ophthalmologie stammende, hochfrequente Ultraschallsysteme, die neben dem üblichen B-

Bild auch ein gutes A-Bild liefern. Daneben können auch veterinärmedizinische, für die 

zweidimensionale kardiale oder abdominale Sonographie konzipierte Systeme mit hoch-

frequenten Schallköpfen mit mindestens 7,5 MHz (besser 10 - 12 und mehr MHz) zum 

Einsatz kommen. Es eignen sich besonders kleine Linearschallköpfe für die Untersuchung 

des Auges, aber auch Sektorsonden können unter Zuhilfenahme einer geeigneten Vorlauf-

strecke verwendet werden (POULSEN NAUTRUP et al. 1998; SCHMID 2006). Um eine 

maximale laterale Auflösung zu erzielen, sind die zu untersuchenden Strukturen im Zentrum 

der Fokuszone darzustellen, welche idealerweise durch eine dynamische Fokussierung 

manuell ausgerichtet werden kann. Zudem sollte das Gain möglichst niedrig eingestellt sein, 

um eine optimale Auflösung der Augenbinnenstrukturen zu erzielen und das Auftreten von 

Artefakten zu minimieren (SCHMID 2006). Als Ankopplungsmedium dienen Methylcellulose 

oder für die ophthalmologische Sonographie bestimmtes Ultraschallgel (POULSEN 

NAUTRUP et al. 1998), welches großzügig auf dem Schallkopf aufgetragen, schon als 

Vorlaufstrecke zur Darstellung des vorderen Augensegmentes dienen kann (WILLIAMS et al. 

1995c). Nach BARR (1992) und PLUMMER et al. (2003) ist es auch möglich, konventio-

nelles Ultraschallgel am Auge anzuwenden, da die meisten handelsüblichen Gels wasser-

löslich und nicht reizend sind. Bei einem direkten Kontakt zwischen Schallkopf und Kornea 

ist im Falle einer Untersuchung am wachen Tier eine Lokalanästhesie von Horn- und Binde-

haut, zum Beispiel mittels lokalanästhetischer Augensalbe oder -tropfen, erforderlich (BARR 

1992; POULSEN NAUTRUP et al. 1998; GONZALEZ et al. 2001). Es sollten immer beide 

Augen sonographisch untersucht werden, da das gesunde Auge als Referenz dienen kann 

(BARR 1992).  

2.3.2.1 Sonographische Untersuchungsverfahren am Au ge 

Man unterscheidet prinzipiell drei verschiedene sonographische Untersuchungsverfahren am 

Auge: Die transpalpebrale Methode, bei welcher der Schallkopf auf dem geschlossenen 

Augenlid positioniert wird, die Kornea-Kontakt-Methode mit direktem Kontakt zwischen 

Schallkopf und Hornhaut und die Untersuchung unter Verwendung einer Vorlaufstrecke. Bei 
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der transpalpebralen Methode werden die Ultraschallwellen durch das Gewebe des Augen-

lides gedämpft, was zu einer schlechteren Auflösung insbesondere schallkopfferner 

Strukturen führt. Zudem lässt sich nicht genau bestimmen, in welcher Position sich der 

Bulbus befindet (WILLIAMS et al. 1995c; BYRNE und GREEN 2002b). Die Methode wird in 

Kombination mit sterilem Ultraschallgel angewandt, wenn schwere Hornhautverletzungen 

das Aufsetzen des Schallkopfes auf die Kornea verbieten (SCHMID 2006).  

Die Kornea-Kontakt-Methode stellt hingegen die Untersuchungsmethode der Wahl dar und 

ermöglicht eine optimale Darstellung des hinteren Augensegmentes und des Retro-

bulbärraumes. Unter Verwendung einer geeigneten Vorlaufstrecke, zum Beispiel in Form von 

reichlich aufgetragenem Ultraschallgel, können auch die Anteile des vorderen Augen-

segmentes hervorragend beurteilt werden (BARR 1992; WILLIAMS et al. 1995c; GONZALEZ 

et al. 2001; BYRNE und GREEN 2002b).  

Da die sonographische Untersuchung von Fischen üblicherweise unter Wasser stattfindet, 

können die schallverstärkenden Eigenschaften des Wasser ausgenützt und die Strecke 

zwischen Schallkopf und Auge beliebig variiert werden. Das Wasser selbst dient als 

Vorlaufstrecke und macht einen direkten Kontakt mit der Kornea und somit eine Lokal-

anästhesie des Fischauges und die Verwendung von Ultraschallgel überflüssig (STOSKOPF 

1993a; GODDARD 1995; STETTER 2001a).  

2.3.2.2 Sonographische Untersuchungsebenen am Auge 

Nach BYRNE und GREEN (2002b) lassen sich zudem drei verschiedene sonographische 

Untersuchungsebenen am Auge unterscheiden: Die axiale, die transversale und die 

longitudinale Untersuchungsebene (siehe Abbildung 10).  

Die am häufigsten in der Veterinärmedizin verwendete axiale Ebene ist leicht am wachen 

Tier zu realisieren und das abgebildete Sonogramm für den Untersucher einfach zu 

interpretieren (GONZALEZ et al. 2001). 
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Abbildung 10:  Sonographische Untersuchungsebenen am Auge; a) axiale, b) transversale und c) 
longitudinale Untersuchungsebene (aus BYRNE und GREEN, 2002b; modifiziert nach STROBEL 
2010) 

Der axiale Scan ist nach BARR (1992) und POULSEN NAUTRUP et al. (1998) die Methode 

der Wahl bei der sonographischen Augenuntersuchung am Tier. Der Schallkopf wird hierbei 

mittig auf der Kornea platziert und die Linse sowie der Nervus opticus zentral im unteren 

Bildbereich dargestellt. Weist die Markierung des Schallkopfes hierbei nach dorsal, handelt 

es sich um eine vertikale, axiale Schallebene. Wird der Schallkopf um 90° nach nasal 

gedreht, ergibt sich die horizontale, axiale Schallebene. Dazwischen kann eine oblique axiale 

Ebene (um 45° gedreht) eingefügt werden (BYRNE und GREEN 2002b). Darüber hinaus 

können durch leichtes Verschieben des Schallkopfes paraxiale Schnittbilder erstellt werden. 

Beim axialen Scan werden die Ultraschallwellen durch die Linse abgeschwächt und es 

kommt leichter zur Artefaktbildung, was die Evaluation des hinteren Augensegmentes 

erschweren kann (POULSEN NAUTRUP et al. 1998; GONZALEZ et al. 2001; BYRNE und 

GREEN 2002b).  

Bei den in der Humanmedizin üblichen longitudinalen und transversalen Ebenen wird der 

Schallkopf nicht direkt auf der Kornea, sondern etwas seitlich auf der Sklera aufgesetzt, 

wodurch die hinteren Augenstrukturen unter Umgehung der Linse dargestellt werden 

können. Beim Transversalscan verläuft die Schnittebene parallel zur Pupille entlang des 

Limbus, sodass ein Bild quer zum Meridian entsteht. Es werden auch hier horizontale, 

vertikale und oblique Ebenen unterschieden. Die Bezeichnung der schrägen Ebenen erfolgt 

nach Uhrzeiten, wobei nicht der Ansatzpunkt des Schallkopfes, sondern der 

„gegenüberliegende“ abgebildete Bereich ausschlaggebend ist. Bei einem Auflegen des 

Schallkopfes auf 6 Uhr entsteht somit ein 12-Uhr-Bild. In der longitudinalen Ebene zeigt die 

Markierung des Schallkopfes in Richtung Kornea und der Schallstrahl läuft entlang des 

Meridians. Die Benennung erfolgt hier anhand des Meridians, entlang dessen der Schall-
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strahl das Auge durchläuft, ein Ansatz auf 6 Uhr führt auch hier zu einem 12-Uhr-Bild 

(BYRNE und GREEN 2002b).  

2.3.3 Sonographische Normalbefunde des vorderen 

Augensegmentes 

Bisher wurden ultrasonographisch die inneren Augenstrukturen in ihrer Gesamtheit beim 

Menschen und bei verschiedenen Säugetieren sowie Vögeln und Reptilien, nicht jedoch bei 

Fischen dargestellt. Bisherige Studien am Fisch befassten sich mit spezifischen Frage-

stellungen, wie zum Beispiel dem Nachweis von Läsionen, die durch die Gasblasenkrank-

heit in Heilbutt-Augen hervorgerufen wurden (WILLIAMS et al. 2007) oder die Bestimmung 

der zentralen Korneadicke beim Koikarpfen (LYNCH et al. 2007).  

HOEDT (2004) gab einen kurzen Überblick über die sonographische Darstellung des 

Fischauges, indem er Kornea, Linse und Glaskörper sowie retrobulbäres Fettgewebe dar-

stellte, verwies jedoch aufgrund ungeeigneter technischer Möglichkeiten auf die Notwendig-

keit weiterer Studien mit höherfrequenten Schallköpfen.  

In der Literatur werden die einzelnen okularen Strukturen im Ultraschallbild sehr einheitlich 

beschrieben. Im Folgenden werden die bisherigen Erkenntnisse über die Darstellbarkeit 

innerer Strukturen des Auges zusammengefasst, die sich unter anderem auf Studien am 

Menschen (GUTHOFF et al. 1999), an Kleintieren wie Hunden und Katzen (COTTRILL et al. 

1989; BARR 1992; POULSEN NAUTRUP et al. 1998; HOFFMANN und KÖSTLIN 2004), 

Pferden (METTENLEITER 1995; LIST 2002; CRONAU 2004; SCOTTY et al. 2004), an 

Nutztieren wie Rindern (POTTER et al. 2008) und Schweinen ((BARTHOLOMEW et al. 

1997), Exoten wie Elefanten (BAPODRA et al. 2010) oder Kamelen (HAMIDZADA und 

OSUOBENI 1999) sowie auf Studien an Vögeln (GUMPENBERGER und KOLM 2006; 

KORBEL et al. 2009; STROBEL 2010; DOROBEK 2013; LIEPERT 2013) und Schlangen 

(HOLLINGSWORTH et al. 2007) beziehen. 

Aufgrund der hohen Impedanzunterschiede der einzelnen Grenzflächen eignet sich das 

Auge hervorragend für die sonographische Untersuchung (DOWNEY et al. 1996). Das 

Ultraschallbild eines Auges gleicht laut CRONAU (2004) einem histologischen Schnitt. Von 

anterior nach posterior lassen sich folgende Strukturen regelmäßig darstellen: Kornea, 

vordere Augenkammer, Iris mit Ziliarkörper, Linse, Glaskörper, sowie die hintere Augenwand 

(wobei die einzelnen Schichten mittels konventioneller Sonographie nicht differenzierbar 
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sind) und der Retrobulbärraum inklusive der knöchernen Begrenzung der Orbita 

(METTENLEITER 1995; POULSEN NAUTRUP et al. 1998).  

2.3.3.1 Kornea 

Innerhalb der leicht konvexen dreischichtigen Kornea präsentieren sich das Epithel mit der 

äußeren Basalmembran und das Endothel mit der Descemet´schen Membran als zwei 

hyperechogene Linien, zwischen denen ein hypo- bis anechogenes Band liegt, welches das 

Hornhautstroma darstellt (COTTRILL et al. 1989; PENNINCK et al. 2001). 

2.3.3.2 Vordere und hintere Augenkammer 

Die vordere Augenkammer stellt sich im physiologischen Zustand gleichmäßig anechogen 

dar. Sie beginnt hinter dem hyperechogenen Korneaendothel und wird posterior von der 

hyperechogenen vorderen Linsenfläche sowie lateral davon von der hyperechogenen Iris 

begrenzt (JURRAT 1994). Die hintere Augenkammer lässt sich nach ROGERS et al. (1986) 

und STROBEL (2010) in vivo nicht gesondert mittels konventioneller Sonographie darstellen. 

HOFFMANN und KÖSTLIN (2004) sowie CRONAU und GERHARDS (2004) beschrieben 

jedoch in ihren Veröffentlichungen auch die Darstellung der hinteren Augenkammer als 

anechogenen Raum zwischen den schwach echogenen Zonulafasern und der hochre-

flektiven Irisrückfläche. 

2.3.3.3 Linse 

Die vordere Linsenfläche stellt sich mit ihren mittleren Anteilen als schmale, konvexe 

hyperechogene Linie dar (JURRAT 1994). Auch die hintere Linsenfläche bildet sich bei 

Vögeln (STROBEL 2010) und Kleintieren (HOFFMANN und KÖSTLIN 2004) als stark hyper-

echogene,  flachkonkave Linie ab. Beim Pferd hingegen ist die hintere Linsenfläche lediglich 

als echogener Fleck am höchsten Punkt der Linsenkrümmung zu finden (METTENLEITER 

1995). Laterale Anteile der Linsenoberfläche bilden sich im axialen Sonogramm nicht ab, da 

sie die Schallwellen zu sehr streuen und beugen, als dass diese wieder vom Schallkopf 

detektiert werden könnten (BARR 1992; POULSEN NAUTRUP et al. 1998; 

GUMPENBERGER und KOLM 2006). Das Linsenstroma selbst stellt sich im physiologischen 

Zustand völlig anechogen dar. Da die Ausbreitungsgeschwindigkeit innerhalb des 

Linsenstromas zunimmt, entstehen hinter der Linse im Glaskörperraum oft störende 

Reverberationsartefakte (BARR 1992; METTENLEITER 1995). Zudem kann durch die eher 

auftreffenden und reflektierten Schallwellen eine Vorwölbung der hinteren Bulbuswand 

vorgetäuscht werden (POULSEN NAUTRUP et al. 1998). 
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2.3.3.4 Iris, Ziliarkörper und Kammerwinkel 

Iris und Ziliarkörper sind oft nicht gegeneinander abzugrenzen und beim Kleintier als v-

förmige, mittel bis stark echogene Struktur hinter der vorderen Augenkammer seitlich auf 

Höhe des Linsenaquators zu finden (POULSEN NAUTRUP et al. 1998). SQUARZONI et al. 

(2010) konnten den Ziliarkörper bei Eulen, ebenso wie CRONAU und GERHARDS (2004) 

beim Pferd, sehr gut differenziert als Struktur von moderater Echogenität seitlich der Linse 

darstellen. Im Zentrum getroffen lässt die Iris im Axialschnitt die anechogene Pupille frei 

(JURRAT 1994), durch die beim Fisch die anterioren Linsenanteile ragen. Der Aufbau der 

Irisbasis inklusive Ziliarkörper, sowie die genaue Beschaffenheit des Kammerwinkels 

konnten durch REESE (1999) und LIST (2002), sowie nach einer neueren Studie von 

DOROBEK (2013) mittels dreidimensionaler Sonographie dargestellt werden.  

2.3.4 Darstellung pathologischer Veränderungen des 

vorderen Augensegmentes  

2.3.4.1 Erkrankungen der Kornea 

Veränderungen der Hornhaut lassen sich im B-Bild unter Verwendung einer geeigneten Vor-

laufstrecke gut differenzieren. Eine Dickenzunahme der Kornea infolge Funktionsstörungen 

des Hornhautepithels oder -endothels mit nachfolgendem Korneaödem kann sehr gut sono-

graphisch erfasst werden (POULSEN NAUTRUP et al. 1998). Milde Keratitiden lassen sich 

nur schwer darstellen, während höhergradige entzündliche Veränderungen der Hornhaut mit 

entsprechender Ödembildung gut als hyperechogene Verdickung des Stomas zu sehen sind 

(METTENLEITER 1995; HOFFMANN 2002; LIST 2002; STROBEL 2010). Durch die Ödema-

tisierung erscheint die Epithellinie unregelmäßig und es kommt durch die Flüssigkeitseinla-

gerungen und Separation der sonst regelmäßigen Kollagenfasern zu einem Reflexivitäts-

anstieg im Ultraschallbild (CRONAU 2004). Hornhautulcera lassen im Sonogramm das 

Korneaepithel punktuell dünner erscheinen, während umliegende Bereiche durch ein 

entzündliches Ödem verdickt wirken (CRONAU und GERHARDS 2004). Das Vorliegen eines 

Keratoglobus äußert sich in einer Erweiterung der Vorderkammertiefe und einer Verdünnung 

von Hornhautstroma und -epithel (BYRNE und GREEN 2002d). 

2.3.4.2 Veränderungen in der vorderen und hinteren Augenkammer 

Sonographisch darstellbare Veränderungen der vorderen Augenkammer betreffen eine 

veränderte Vorderkammertiefe oder den Nachweis eines pathologischen Inhaltes. Eine 
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verminderte Vorderkammertiefe kann als Folge einer Linsenschwellung bei der Kataraktreife 

(intumescente Katarakt) auftreten, eine Tiefenzunahme wird im Rahmen einer Größen-

zunahme des Bulbus (z.B. beim Glaukom) oder bei Mikro- und Aphakie (Verkleinerung oder 

vollständiges Fehlen der Linse) beobachtet (POULSEN NAUTRUP et al. 1998). Eine Blutung 

in die vordere Augenkammer zeigt sich im Sonogramm durch eine vermehrte Echogenität 

des physiologischerweise anechogenen Kammerwassers, in Einzelfällen können Bewe-

gungen der echogenen Strukturen dargestellt werden. Geronnenes Blut stellt sich unter Um-

ständen als Masse mittlerer Echogenität mit Verbindung zur Iris oder Kornea dar und kann 

leicht mit einer Tumormasse verwechselt werden (METTENLEITER 1995; GEVELHOFF 

1996; POULSEN NAUTRUP et al. 1998). Auch ein Hypopyon stellt sich als punktförmige, 

mittel- bis hyperechogene Masse innerhalb der vorderen Augenkammer im Ultraschallbild 

dar (JURRAT 1994). Im Gegensatz hierzu stellt sich Fibrin nicht als zusammenhängende 

Masse dar (WILKIE und GILGER 1997). Eine in die Vorderkammer luxierte Linse (Luxatio 

lentis anterior) bildet sich besonders gut ab, wenn sie kataraktös verändert und damit 

vermehrt echogen ist. Eine unveränderte Linse hingegen ist schwieriger darzustellen, da die 

Schallwellen diese nur punktuell senkrecht treffen und ein Echo hervorrufen. Oft ist jedoch 

eine posteriore Verdrängung von Irisanteilen nachweisbar (POULSEN NAUTRUP et al. 

1998). Vordere und hintere Synechien stellen sich sonographisch in Form einer hyper-

echogenen, verdickten Iris mit Kontakt zur Hornhaut oder zur Linse dar (METTENLEITER 

1995; GEVELHOFF 1996; STROBEL 2010). 

2.3.4.3 Veränderungen der Linse 

Wie oben erwähnt kann der Linsendurchmesser als Folge vermehrter Wasseransammlung 

im Zusammenhang mit der Kataraktentwicklung vergrößert sein. Ein verminderter Linsen-

durchmesser findet sich gelegentlich bei einer Linsenschrumpfung infolge einer hyper-

maturen Katarakt oder bei fehlgebildeter, hypoplastischer Linse (Mikrophakie). Bei der Ver-

messung und Beurteilung des Linsendurchmessers muss die vermehrte Schallausbreitungs-

geschwindigkeit innerhalb der Linsenfasern berücksichtigt werden, durch welche die Linse 

unter Umständen abgeflacht erscheinen kann. Dieser Effekt tritt besonders bei kataraktösen 

Linsen auf (POULSEN NAUTRUP et al. 1998). Optische Trübungen innerhalb der Linse 

stellen im Allgemeinen auch akustische Grenzflächen dar und können somit sehr gut mittels 

Sonographie erfasst werden. Isolierte Trübungen der Linsenrinde oder des Linsenkerns sind 

gut zu differenzieren. Eine unvollständige Trübung (Cataracta incipiens) führt unter Um-

ständen nur zu einer geringgradigen Echogenitätszunahme der Linse. Durch entzündliche 

oder hämorrhagische Auflagerungen sowie durch Trübungen der Linsenkapsel oder der sub-

kapsulären Cortex lässt sich die Linse im zweidimensionalen B-Bild sehr gut mit ihrer ganzen 
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Kontur darstellen (POULSEN NAUTRUP et al. 1998). Verlagerungen der Linse aus ihrer 

anatomischen Position, sei es in Form einer unvollständigen Subluxation oder als komplette 

Loslösung vom Aufhängeapparat, können ebenfalls gut sonographisch dargestellt werden.  

Bei der Subluxation lässt sich in den meisten Fällen im axialen Sonogramm eine Dezen-

trierung der Linse und gelegentlich eine Spaltbildung zwischen Irisrückfläche und Linse 

nachweisen. Die Linse ist bei der Subluxation oft leicht nach kaudal verlagert, wodurch das 

Irisdiaphragma auch im Sonogramm geringgradig trichterförmig erscheint. Man unterscheidet 

bei der vollständigen Linsenluxation zwischen einer Luxatio lentis anterior mit Verlagerung 

der Linse in die vordere Augenkammer und einer Luxatio lentis posterior mit Rückfall der 

Linse in den Glaskörper. Beides lässt sich besonders gut im Falle einer kataraktös verän-

derten Linse darstellen (POULSEN NAUTRUP et al. 1998). Eine Linsenruptur mit Zerreißung 

der Linsenkapsel und Austritt von Linsenmaterial kann sonographisch in Form einer unter-

brochenen echogenen Linsenkapsel und dem Austritt von echogenen Material aus der Linse 

dargestellt werden (CRONAU 2004; STROBEL 2010). 

2.3.4.4 Erkrankungen der Uvea 

Eine Iridozyklitis (Entzündung von Iris und Ziliarkörper) geht meist mit einer Volumenzunah-

me und eventuell auch mit einer veränderten Echogenität von Iris und Ziliarkörper einher. 

Ebenso kommt es im Rahmen von Traumata, Neoplasien und Iriszysten zu echogenen Ver-

änderungen im Bereich der Iris und des Ziliarkörpers (POULSEN NAUTRUP et al. 1998). 

Während sich Tumoren als umschriebene Zubildungen geringer bis mittlerer Echogenität mit 

homogenem Inhalt darstellen, weisen Zysten meist eine echogene Hülle und eine hypo- bis 

anechogene Innenstruktur auf (WILKIE und GILGER 1997; BYRNE und GREEN 2002e). 

Auch im Rahmen einer vorderen Uveitis erscheinen Regenbogenhaut und Ziliarkörper ver-

dickt und hyperechogen, wobei sich auch die Linsenkapsel verschwommen darstellen kann 

(WILLIAMS et al. 1995c; POULSEN NAUTRUP et al. 1998). 

2.3.5 Biometrie 

Die Biometrie beschäftigt sich mit Messungen an Lebewesen und den dazu erforderlichen 

Mess- und Auswerteverfahren und stellt auch für die ophthalmologische Sonographie eine 

Bereicherung dar (HERNÁNDEZ-GUERRA et al. 2007). Am Auge angewendet dient die 

Biometrie der Erkennung und Evaluierung pathologischer Veränderungen wie beispielsweise 

der Linsenluxation, Mikrophthalmie, Makrophthalmie und Phthisis bulbi. Ebenso findet die 

Biometrie in der Human- und Kleintier-, sowie in der Pferdemedizin Anwendung im Vorfeld 

von Katarakt-Operationen mit Implantation künstlicher Linsen. Auch zur Kontrolle von 
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Therapieerfolgen an nicht einsehbaren Augen eignen sich biometrische Messungen sehr gut 

(COTTRILL et al. 1989; PAVLIN et al. 1991; GEVELHOFF 1996; GONZALEZ et al. 2001; 

HERNÁNDEZ-GUERRA et al. 2007).  

2.3.5.1 Messverfahren und Messgenauigkeit 

Verschiedene Autoren untersuchten in ihren biometrischen Studien unter anderem an 

Hunden (WILLIAMS 2004; BOROFFKA et al. 2006), Katzen (GILGER et al. 1998), Pferden 

(PLUMMER et al. 2003), Frettchen (HERNÁNDEZ-GUERRA et al. 2007), Kaninchen (TONI 

et al. 2010), Kamelen (OSUEBENI und HAMIDZADA 1999), Schlangen (HOLLINGSWORTH 

et al. 2007) und Vögeln (LEHMKUHL et al. 2010; SQUARZONI et al. 2010; STROBEL 2010) 

gesunde Augen mittels B-Mode-Sonographie im Sagittalschnitt. Alle Studien wurden mit sehr 

ähnlichen Methoden erstellt. Es wurden beide Augen zumeist in horizontaler und vertikaler 

Ebene via Kornea-Kontakt-Methode untersucht und die einzelnen Messungen mehrmals 

wiederholt. Eine Studie von LYNCH et al. (2007) ermittelte mit Hilfe der sonographischen 

Pachymetrie die zentrale Korneadicke von 33 Koikarpfen und stellte diese in Relation zu 

Körperlänge, Alter, Geschlecht und Korneadiameter der untersuchten Fische.  

In der Literatur wird die Verwendung des A-Mode-Verfahrens zur Vermessung der Augen-

binnenstrukturen gegenüber dem B-Mode-Verfahren zumeist als überlegen bewertet 

(COLEMAN 1979; HAMIDZADA und OSUOBENI 1999). So wiesen HAMIDZADA und 

OSUOBENI (1999) in ihrer Studie an frisch enukleierten Kamelaugen nach, dass im B-Mode 

der Durchmesser von Kornea und vorderer Augenkammer gegenüber dem A-Mode leicht 

überschätzt werden kann, während tiefer liegende Distanzen wie Linsen-, Glaskörper- und 

Bulbusdurchmesser zu niedrig angegeben werden. Hierfür machten sie Artefakte verant-

wortlich, die aufgrund unterschiedlicher Schallausbreitungsgeschwindigkeiten innerhalb der 

verschiedenen Medien des Auges sowie durch Brechung entstehen. Im Gegensatz hierzu 

existieren Studien, die bei der Durchführung biometrischer Messungen am Auge keine 

signifikanten Unterschiede zwischen A- und B-Mode-Verfahren feststellen konnten 

(WLEINSTEIN et al. 1966; COTTRILL et al. 1989; TONI et al. 2010). EL-MAGHRABY et al. 

(1995) empfehlen die Anwendung des B-Mode in der Tiermedizin im Rahmen von 

biometrischen Messungen am Auge, da der Tierarzt im Umgang mit dem zweidimensionalen 

B-Mode vertrauter ist und eine mangelnde Kooperation seitens des Patienten den Einsatz 

des A-Mode oft erschwert. 

Zur Verifizierung der in vivo sonographisch bestimmten Distanzen wurden in einer Studie 

von ROGERS et al. (1986) Messungen auch an frisch enukleierten sowie eingefrorenen 
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Pferdeaugen durchgeführt. Diese Messungen erfolgten sowohl mittels B-Mode-Sonographie, 

als auch direkt mittels Schublehre. Die Studie konnte keine statistisch signifikanten 

Unterschiede zwischen den genannten Verfahren nachweisen. Auch in der Arbeit von 

BARTHOLOMEW et al. (1997), in der enukleierte Schweineaugen untersucht wurden, 

stimmten die sonographischen Messungen mit den anatomischen Gegebenheiten überein. 

Die Frage der Reproduzierbarkeit biometrischer Messungen am Auge untersuchten unter 

anderem BOROFFKA et al. (2006) in Studien am Hund. Hierbei wiederholte ein Untersucher 

mehrmals die gleichen Messungen, die dann auf ihre Varianz hin überprüft wurden. Die 

Streuung der Messergebnisse war besonders groß bei Messung des axialen Linsendurch-

messers sowie bei Bestimmung des Bulbusdurchmessers. 

BOROFFKA et al. (2007) vermaßen sechs okulare Distanzen, von denen vier das vordere 

Augensegment beschreiben und folgende Messpunkte enthalten:  

1. Zentrale Korneadicke (D1): vorderes Korneaepithel bis hinteres Korneaendothel 

2. Vorderkammertiefe (D2): vorderes Korneaendothel bis vordere Linsenkapsel 

3. Linse axial (D3): vordere Linsenkapsel bis hintere Linsenkapsel  

4. Linse transversal (D4): Maximaler Durchmesser des Linsenäquators 

HOLLINGSWORTH et al. (2007) stellten die Sonoanatomie des Schlangenauges dar und 

vermaßen die intraokularen Distanzen im B-Mode bei vier verschiedenen Schlangenspezies 

(siehe Abbildung 11). 

 

Abbildung 11:  Sonoanatomie des Schlangenauges in der Ultraschallbiomikroskopie (aus 
HOLLINGSWORTH et al., 2007); Erklärungen: S = Brille, SSS = Subbrillärer Raum, C = Kornea, AC = 
Vordere Augenkammer, ALC = Vordere Linsenkapsel, PLC = Hintere Linsenkapsel, VC = Glaskörper, 
PP = Posteriorer Pol 



  Literatur 

50 

 

2.3.6 Erste Erfahrungen in der ophthalmologischen B -

Mode-Sonographie bei Fischen 

In einer Studie am Heilbutt (Hippoglossus hippoglossus) untersuchten WILLIAMS et al. 

(2007) erstmals die Möglichkeiten und Grenzen der ophthalmologischen Sonographie an 

anästhesierten Fischen. Ihr Ziel war die Detektion von Gasblasen und choroidalen Zysten im 

hinteren Augensegment und Retrobulbärraum, welche oft bei dieser Fischart zu beobachten 

sind (WILLIAMS et al. 1995a). Sie nutzen hierfür einen 7,5-MHz-Linearschallkopf, der mit 

einer Eindringtiefe von 1 – 4 cm optimal geeignet war, um das hintere Augensegment und 

den Retrobulbärraum von größeren Fischen (> 24 cm Körperlänge) darzustellen. Als Vorlauf-

strecke wurde großzügig aufgetragenes Ultraschallgel (ca. 0,5 cm) genutzt und die Fische 

wurden zur Untersuchung kurz aus dem Wasser gehoben. Um ihre sonographischen 

Befunde zu verifizieren, untersuchten die Autoren auch gesunde und erkrankte enukleierte 

Fischaugen und konnten dabei nachweisen, dass die ophthalmologische Sonographie 

hervorragend geeignet ist, um physiologische Strukturen und pathologische Veränderungen 

im hinteren Augensegment bei Fischen darzustellen.  

 

Abbildung 12:  Links: Kallotiertes linkes Auge eines gesunden Heilbutt (Hippoglossus hippoglossus); 
Rechts: Das gleiche Auge in vivo in axialer Ebene (aus WILLIAMS et al. 2007), Erklärungen des 
Autors: innere schwarze Linie = Retina; mittlere weiße Linie = Choroidea; äußere graue Line = Sklera 

Auch HOEDT (2004) untersuchte bereits im Rahmen seiner Arbeit über die Sonographie am 

Koikarpfen die Augen von anästhesierten Fischen mittels 7,5-MHz-Konvexschallkopf im B-

Mode-Verfahren. Bei ihm verblieben die Fische während der gesamten Untersuchung im 
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Wasser und er verwendete keine zusätzliche Vorlaufstrecke. Er konnte mit seiner Technik 

Strukturen wie Kornea, Linse, Glaskörper und hintere Augenwand grob darstellen, verwies 

jedoch zur detaillierteren Abbildung der okularen Strukturen auf die Notwendigkeit weiterer 

Studien unter Zuhilfenahme höherfrequenter Schallsonden. 

2.4 Anästhesie bei Fischen 

Fast alle Fische neigen bei Annäherung unbekannter Gegenstände oder Personen zur 

Flucht. Die manuelle Fixation eines nicht sedierten Fisches führt zu heftigen Abwehr-

bewegungen seitens des Tieres und in Folge derer oft zu mechanischen Schädigungen der 

empfindlichen Körperoberfläche, sowie zu erheblichem Stress und damit verbunden zu 

Leiden des Tieres. Auch für einfachste diagnostische Maßnahmen ist es also häufig 

notwendig, Fische zu immobilisieren (ROSS 2001; KÖLLE und HENKE 2004; GEIGER 

2007).  

2.4.1 Möglichkeiten der Anästhesie bei Fischen 

Bei den reversiblen chemischen Betäubungsmethoden von Fischen unterscheidet man wie 

bei anderen Tieren zwischen der oralen und parenteralen Applikation von Anästhetika. 

Daneben kann ein Anästhetikum auch über die Atemluft zugeführt werden (Inhalationsnarko-

se) und im Falle von Fischen analog über das Wasser, welches die Kiemen durchströmt 

(Narkosebad). Die orale Applikation eines Anästhetikums ist für Fische aufgrund der unge-

nauen Dosierungsmöglichkeit und der Verflüchtigung des Wirkstoffes ins Umgebungswas-

ser, sowie aufgrund des verzögerten Wirkungseintritts und der oft mangelhaften Akzeptanz 

seitens des Fisches ungeeignet (KÖLLE und HENKE 2004; HOFFMANN 2005). Auch 

parenterale Applikationsformen in Form subkutaner, intramuskulärer, intraperitonealer oder 

intravenöser Injektionen hat sich bei Fischen nicht bewährt, da die Verletzungsgefahr 

während der Injektion zu groß ist und die Methoden meist nicht praktikabel sind (HARMS 

1999). Eine intramuskuläre Injektion erachtet HOFFMANN (2005) sogar als Kunstfehler, da 

der Großteil der Fischmuskulatur aus weißen, wenig durchbluteten Muskelfasern besteht, in 

denen die Resorption insbesondere lipophiler Pharmaka verzögert stattfindet, wodurch das 

Erreichen erforderlicher Wirkstoffspiegel verhindert wird. 

Die Applikation eines Narkotikums über die Kiemen innerhalb eines Narkosebades stellt die 

gebräuchlichste und praktikabelste Methode der Fischnarkose dar. Hierfür wird der Fisch in 

ein Becken mit narkosemittelhaltigem Wasser verbracht, welches er über die Kiemen, analog 
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zur Inhalationsnarkose anderer Heimtiere, aufnimmt. Das Verfahren ist nicht invasiv, die 

Wirkung tritt schnell ein und durch Zugabe von Frischwasser kann die Anästhesietiefe 

variiert werden (STOSKOPF 1993b; HARMS 1999; STETTER 2001b; KÖLLE und HENKE 

2004). Die am häufigsten zur Tauchbadnarkose eingesetzte Substanz ist laut GEIGER 

(2007) das Tricain (auch als Tricainmethansulfonat, Tricainmesilat oder Metacain bezeich-

net). Daneben kommen Lokalanästhetika wie Benzocain in Alkohol gelöst, Hypnotika wie 

Metomidat und Etomidat, verschiedene chemische Verbindungen wie Phenoxyethanol, 

Chloralhydrat, Quinaldinsulfat, Eugenol (Hauptbestandteil des Nelkenöls) und schließlich 

diverse Ketamin-Xylazin-Kombinationen (z.B. die „Hellabrunner Mischung“) zum Einsatz 

(HARMS 1999; GEIGER 2007). Für einen Überblick über die genauen Wirkungen und 

Nebenwirkungen der genannten Anästhetika, sowie für Möglichkeiten der Dosierung und 

Anwendung, sei an dieser Stelle auf die Arbeit von GEIGER (2007) verwiesen. 

In Deutschland ist derzeit kein Tierarzneimittel zur Betäubung von Fischen zugelassen. Nach 

der internationalen VO (EWG) 2377/90 jedoch darf der Wirkstoff Tricainmesilat zur Betäu-

bung von lebensmittelliefernden Fischen eingesetzt werden. Dieser Wirkstoff findet sich in 

einem in Großbritannien hergestellten Präparat namens MS 222, welches jedoch keine EU-

weite Zulassung besitzt. Nach der Kaskadenregelung (§ 56a, Abs. 2) des deutschen Arznei-

mittelgesetzes ist es im Falle eines Therapienotstandes erlaubt, ein in einem anderen EU-

Mitgliedsstaat zugelassenes Arzneimittel anzuwenden. Daher ist es möglich, das MS 222 zur 

Anwendung bei Fischen nach Deutschland zu importieren, die Einfuhr muss jedoch der zu-

ständigen Behörde angezeigt werden (GEIGER 2007). 

2.4.2 Die Tauchbadnarkose unter Verwendung von MS 2 22 

MS 222 (Tricain, Tricainmethansulfonat, Tricainmesilat, Metacain, Ethyl-m-aminobenzoat) ist 

ein bei 20 °C vollständig wasserlösliches weißes Pulver und stellt ein Isomer des Lokal-

anästhetikums Benzocain dar. In Wasser gelöst wird es über die Kiemen rasch durch 

Diffusion aufgenommen, die Metabolisierung findet speziesspezifisch unterschiedlich schnell 

in Leber, Nieren, Blut und Muskulatur statt und die Ausscheidung der Metaboliten erfolgt 

über Nieren und Galle sowie in unveränderter Form über die Kiemen. Der Blutgehalt an 

ungebundenem Tricain erreicht etwa 75 % der Konzentration im Tauchbad und hat eine 

Halbwertszeit von ungefähr acht Stunden. Die Gewebekonzentration verringert sich inner-

halb von 24 Stunden nach Exposition auf nicht messbare Werte (HUNN und ALLEN 1974; 

STOSKOPF 1993b; GEIGER 2007). Hohe nachweisbare Konzentrationen an 

ungebundenem Tricain im ZNS beim Übergang in die tiefe Anästhesiephase führen zum 

Verlust des Gleichgewichts und der lokomotorischen Koordination (GEIGER 2007).  
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Tricain besitzt eine hohe therapeutische Breite bei Fischen und ist in den für die Tauchbad-

narkose verwendeten Konzentrationen ungiftig für den Menschen (KÖLLE und HENKE 

2004). Um den chemischen Stress für die zu narkotisierenden Fische herabzusetzen, 

empfehlen verschiedene Autoren, das saure Tricain beispielsweise mit Natriumbikarbonat zu 

puffern. So lässt sich die Induktionszeit sowie die benötigte Dosis reduzieren (KÖLLE und 

HENKE 2004). Mit steigender Wassertemperatur und der damit verbundenen erhöhten Stoff-

wechselrate der Fische verkürzt sich die Einleitungsphase auf Kosten der therapeutischen 

Breite (SYLVESTER 1975; HARMS und BAKAL 1994; GEIGER 2007). Daneben haben auch 

andere Wasserparameter (pH-Wert, Wasserhärte, Leitfähigkeit, Sauerstoffgehalt) Einfluss 

auf den Verlauf der Narkose (KÖLLE und HENKE 2004). Durch einen verlängerten Aufent-

halt im Narkosebad mit geringer Dosierung kann es zur Kumulation des Betäubungseffektes 

kommen und somit zum Erreichen tiefer Anästhesiestadien (KÖLLE und HENKE 2004). 

Verschiedene innere Faktoren beeinflussen den Verlauf und die Tiefe der Narkose beim 

Fisch. Hierzu zählen neben Spezies, Größe, Alter und Gewicht der Fische auch deren 

Kondition, Fettgehalt, Geschlecht, Stressfaktoren und nicht zuletzt die individuelle Empfind-

lichkeit gegenüber dem Wirkstoff (KÖLLE und HENKE 2004).  

Trotz speziesspezifischer Unterschiede lässt sich die Dosierung für eine Sedation im 

Allgemeinen mit 20 – 50 mg/L Wasser angeben, eine chirurgische Toleranz wird mit 50 - 100 

mg/L erreicht (BROWN 1988). In der Literatur findet man für die Anästhesie von Karpfen 

Dosierungsvorschläge in einer Spannbreite von 20 – 85 mg/L Wasser (ROSS 2001) bis 130 -

600 mg/L Wasser (BONATH 1982). Als Mittelwert aus den in der Literatur beschriebenen 

Dosierungen werden von GEIGER (2007) 70 mg/L Wasser zur Narkose von Koikarpfen 

empfohlen. 

2.4.3 Narkosestadien und Narkoseüberwachung 

Zur Beurteilung der Anästhesietiefe ist auch beim Fisch eine Einteilung in verschiedene 

Narkosestadien hilfreich (STETTER 2001b). Hierzu finden sich in der Literatur zahlreiche 

Protokolle, von denen eines modifiziert nach STOSKOPF (1993b) unten aufgeführt ist. 

BONATH (1982) gibt an, dass die Reaktionen des Gleichgewichtsorgans und die Atmung 

zuverlässige Parameter bei der Beurteilung der Narkosetiefe darstellen, während alle 

übrigen Reaktionen und ihre zeitliche Zuordnung nicht immer eindeutig sind, da sie vom 

Untersucher zum Teil subjektiv bewertet werden. Zusammenfassend wird zumeist von fünf 

Narkosestadien (0 – IV) ausgegangen, von denen die Stadien I und II nochmals unterteilt 

werden (GEIGER 2007). Die meisten Fischspezies durchlaufen die verschiedenen Stadien, 

es werden jedoch beträchtliche Unterschiede je nach Fischart, Narkosemittel und Initialdosis 
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beobachtet (BROWN 1993). Während der Aufwachphase werden die genannten Narkose-

stadien in umgekehrter Reihenfolge durchlaufen, auch wenn die verschiedenen Stadien oft 

nur undeutlich zu differenzieren sind (HARMS 1999). 

 

Tabelle II:  Übersicht Narkosestadien (nach STOSKOPF, 1993b; modifiziert nach GEIGER 2007), 
Erklärungen: ↑ = erhöht, ↑↑ = stark erhöht, ↓ = vermindert, ↓↓ = stark vermindert, + = vorhanden,          
- = nicht vorhanden, AF = Atemfrequenz, R = Reaktion 

Der Narkoseüberwachung bei Fischen kommt ebenso wie jener in anderen Bereichen der 

Tiermedizin große Bedeutung zu. Sie hilft die Anästhesietiefe einzuschätzen und ermöglicht 

ein rasches Eingreifen in den Verlauf der Narkose, wodurch Zwischenfälle vermieden 

werden können. Dabei unterscheidet sich die Beurteilung der Narkosetiefe bei Fischen 

anhand von Reflexen und des klinischen Zustandes erheblich von derjenigen bei höheren 

Wirbeltieren (BONATH 1982; GEIGER 2007). So liefert die Pulsoximetrie beim Fisch nur 

unbefriedigende Ergebnisse, zumal die physiologische Herzfrequenz der meisten Fische 

nicht bekannt ist und Hypoxie sowie Hypotension lediglich Indikatoren für ein tiefes 

Anästhesiestadium darstellen (HARMS 1999; STETTER 2001b; KÖLLE und HENKE 2004; 

GEIGER 2007). Überwachungsmethoden wie Elektrokardiogramm, Herzultraschall und 

Doppler finden nur selten bei wertvollen Einzeltieren oder zu experimentellen Zwecken An-

wendung (KÖLLE und HENKE 2004). 

KÖLLE und HENKE (2004) empfehlen zur Beurteilung der Narkosetiefe die folgenden 

Kriterien heranzuziehen: Kiemendeckelbewegungen, Schwimmvermögen, Gleichgewichts-
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verlust, Seiten- oder Rückenlage, Antwort auf Berührungsreize und Augendrehreflex (Bulbi 

liegen im Toleranzstadium plan und ändern ihrer Lage nicht bei Drehbewegungen des 

Körpers). 

In tiefen Narkosestadien sowie nach Herausheben des Fisches aus dem Narkosebecken 

verringert sich die Kiemendeckelbewegung oft extrem und kann sogar vollständig sistieren. 

Muss der Fisch nicht länger als 1 - 2 Minuten an der Außenluft verbleiben, braucht man 

deswegen keine Maßnahmen zu ergreifen und das Tier wird sich vollständig erholen, sobald 

es in ein Becken mit frischem Wasser überführt wird (BROWN 1993; GEIGER 2007). Setzen 

im Frischwasser nicht innerhalb von 30 - 45 Sekunden wieder Kiemendeckelbewegungen 

ein, kann der Fisch mit geöffneten Maul vorwärts durchs Wasser bewegt werden, um 

sauerstoffreiches Wasser an den Kiemen vorbeizuführen, was durch vermehrte Abgabe des 

Narkotikums meist zum Einsetzen der Spontanatmung führt. Sobald der Fisch selbstständig 

zu atmen beginnt, sollte er, gegen Verletzungen im Fall von Exzitationen geschützt, im 

gedämpftem Licht sich selbst überlassen werden, um äußere Stressfaktoren zu minimieren 

(BONATH 1982; STOSKOPF 1993b; HARMS 1999). 

2.5 Die klinische und ophthalmologische 

Untersuchung von Fischen 

2.5.1 Die klinische Untersuchung 

Die klinische Untersuchung dient der Feststellung von physikalischen Abnormalitäten und 

Verhaltensänderungen und sollte immer im Zusammenhang mit der Anamnese der 

Haltungs- und Fütterungsbedingungen, sowie des Signalements des Fisches gesehen 

werden (LEWBART 2001). 

2.5.1.1 Adspektion 

Zunächst werden im Rahmen der klinischen Untersuchung die Position und das Verhalten 

des Fisches im Wasser beurteilt, danach folgt die Adspektion des Fisches in seiner Gesamt-

heit innerhalb des Wassers (LEWBART 2001). Eine für die Fischspezies untypische Position 

im Wasser, ein seitlich oder dorsal verkippter Fischkörper, verändertes Schwimmverhalten, 

sehr schnelle Kiemendeckelbewegungen und Farbveränderungen, sowie äußerlich erkenn-

bare Läsionen von Haut oder Flossen und Umfangsvermehrungen des Abdomens, wie auch 

Kachexie deuten auf das Vorliegen einer Erkrankung hin (ROBERTS 2009). Auch sind 
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größere Veränderungen der Augen wie Ex- oder Enophthalmus und Hornhauttrübungen 

bereits bei der Adspektion des Tieres im Wasser leicht erkennbar (ROBERTS 2009). Ein 

besonderes Augenmerk sollte auf Farb- und Texturveränderungen von Haut und Schuppen 

gelegt werden: Ödematöse, hämorrhagische, ulcerative sowie farbliche Veränderungen und 

eine vermehrte Schleimbildung der Haut können unter anderem auf eine parasitäre, 

mykotische, virale oder bakterielle Infektion hindeuten. Auch Veränderungen von Flossen-

form, -farbe und -stellung („Flossenklemmen“) zeigen oft das Vorliegen einer Erkrankung an 

(STOSKOPF 1993a; LEWBART 2001; ROBERTS 2009). 

2.5.1.2 Physische Untersuchung und Palpation 

Die direkte physische Untersuchung und Palpation der Fische sollte stets mit Handschuhen 

durchgeführt werden, um die verletzliche Schleimhautoberfläche der Tiere zu schützen 

(LEWBART 2001). Verschiedene Autoren empfehlen zur eingehenden Untersuchung eine 

Allgemeinanästhesie unter Verwendung einer MS-222-Tauchbadnarkose (LEWBART 2001; 

ROBERTS 2009). ROBERTS (2009) empfiehlt eine standardisierte Vorgehensweise bei der 

klinischen Untersuchung einzuhalten, wobei eine Begutachtung des Fisches vom Kopf 

beginnend bis zur Schwanzflosse durchgeführt werden sollte. Hierbei werden Maulhöhle, 

Augen, Nasenlöcher und Kiemen gegebenenfalls unter Zuhilfenahme eines Otoskops einge-

hend untersucht. Es folgt die genaue Untersuchung von Haut und Flossen, wobei ins-

besondere auf offensichtliche Läsionen, aber auch auf Veränderungen des Schleimhautfilms 

(z.B. vermehrte Rauigkeit durch mangelnde Schleimproduktion) und Farbveränderungen 

(z.B. Erytheme oder Trübungen) geachtet wird. Danach folgt die Untersuchung der 

Urogenital- und Afteröffnung, sowie die Palpation und Perkussion des Abdomens zum 

Auffinden intraabdominaler Umfangsvermehrungen und unphysiologischen Flüssigkeitsan-

sammlungen (LEWBART 2001). 

2.5.2 Die ophthalmologische Untersuchung 

2.5.2.1 Allgemeine ophthalmologische Untersuchung 

Eine Überprüfung der Visusfunktion erfolgt bei Fischen, gegenüber der einfachen Prüfung 

des Drohreflexes bei Säugetieren und Menschen, hauptsächlich durch Beurteilung von 

Verhalten und Habitus, da Fische mithilfe anderer, nichtvisueller Sensorien wie dem 

Seitenlinienorgan auf die Annäherung von Objekten reagieren (JURK 2002). Fische mit 

Visusverlust präsentieren sich oft dunkler als ihre Artgenossen, separieren sich von der 

Gruppe und wirken meist lethargisch (JURK 2002). 
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Im Rahmen der allgemeinen Augenuntersuchung werden zunächst die Augen unter Wasser 

mittels einer starken fokalen Lichtquelle auf jegliche Arten von Asymmetrien und auf das 

eventuelle Vorliegen eines periokularen Ödems oder eines Ex-  bzw. Enophthalmus hin 

untersucht (WILLIAMS und WHITAKER 1997; LEWBART 2001; JURK 2002). Zudem sollte 

neben Trübungen von Kornea und Linse auch auf intraokulare Parasiten, Gasblasen, Eiter- 

und Blutansammlungen geachtet werden (ROBERTS 2009).  

2.5.2.2 Spezielle ophthalmologische Untersuchung 

Zur genauen Diagnose pathologischer Veränderungen von Kornea, Iris, Linse, vorderer 

Augenkammer und Glaskörper im Rahmen der speziellen ophthalmologischen Untersuchung 

werden von WHITAKER (2001) und JURK (2002) Distanzuntersuchungen am anästhesierten 

Fisch außerhalb des Wassers, unter Zuhilfenahme eines portablen Ophthalmoskops und 

einer Spaltlampe, empfohlen. Der Einsatz einer Spaltlampe zur systematischen Untersuch-

ung des vorderen Augensegmentes ist laut WHITAKER (2001) beim Fisch gegenüber der 

direkten Ophthalmoskopie vorzuziehen. Zur Darstellung von Läsionen des Korneaepithels 

eignet sich der Einsatz eines Fluoreszeinfarbstoffes (WHITAKER 1993, 2001; ROBERTS 

2009). Der Fundus sollte nach WHITAKER (2001) und JURK (2002) über die indirekte 

Ophthalmoskopie evaluiert werden. Das Fehlen eines Pupillarreflexes wirkt sich bei der 

Untersuchung des hinteren Augensegmentes positiv aus (JURK 2002). JURK (2002) weist 

jedoch darauf hin, dass wenig über die fundoskopische Anatomie bei Fischen bekannt ist. 

Bei größeren Fischen empfehlen WHITAKER (2001) und JURK (2002) eine sonographische 

Untersuchung des Auges im B-Mode mittels eines 10-MHz-Schallkopfes. Zur Messung des 

Augeninnendruckes wird von JURK (2002) die Applanationstonometrie (Tono-Pen®) ange-

wandt. Eine Interpretation der Messergebnisse ist jedoch aufgrund des kleinen Bulbus bei 

Fischen schwierig (MCLAUGHLIN et al. 1996). 

2.6 Die pathologisch-anatomische 

Untersuchung des Auges 

Die pathologisch-anatomische Untersuchung dient der Absicherung klinischer Diagnosen 

und nimmt im Rahmen der Forensik eine zentrale Bedeutung ein. Die wichtigste Voraus-

setzung für eine sichere Beurteilung pathologischer Zustände ist die Darstellung anatomisch-

physiologischer Verhältnisse (RAVELHOFER 1996). 
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2.6.1 Enukleation 

Durch eine fachgerechte Enukleationstechnik werden zum einen vorhandene krankhafte 

Läsionen erhalten und zum anderen präparativ bedingte Artefakte vermieden (SAUNDERS 

und RUBIN 1975). Die Enukleation sollte zügig erfolgen, um autolytische Veränderungen an 

den Bulbi zu vermeiden (RAVELHOFER 1996). Zur Technik der Enukleation finden sich in 

der Literatur zahlreiche Anleitungen, sowohl an Säugetier- (SAUNDERS und RUBIN 1975; 

SLATTER 2008) und Vogelaugen (KORBEL 1994; RAVELHOFER 1996; KERN 2008), als 

auch an Reptilien- (BRETZINGER 1998) und Fischaugen (STOSKOPF 1993b). Im Wesent-

lichen ist bei der Entnahme von Augen für die postmortale Untersuchung darauf zu achten, 

dass die inneren Augenstrukturen möglichst nicht verletzt werden und kein Druck auf die 

Sklera ausgeübt wird, um beispielsweise artifizielle Netzhautablösungen zu vermeiden. Der 

Bulbus wird mittels einer stumpfen Pinzette vorsichtig aus der Orbita hervorgezogen und mit 

Hilfe einer gebogenen Schere werden die extraokularen Muskeln, Gefäße und schließlich 

der Nervus opticus durchtrennt. Für einen größeren Zugang empfiehlt sich hierfür eine 

laterale und temporale Kanthotomie. Das enukleierte Auge wird möglichst vollständig von 

anhaftenden Geweben freipräpariert, um eine fixationsbedingte Verkürzung der Augen-

muskeln und die damit verbundene Schrumpfung des Bulbus zu vermeiden. Um die 

physiologische Krümmung der Hornhaut zu erhalten, wird zehnprozentiges Formalin mittels 

Parazentese im temporalen Limbusbereich in die vordere Augenkammer eingebracht 

(SAUNDERS und RUBIN 1975; KORBEL 1994; RAVELHOFER 1996; BRETZINGER 1998). 

2.6.2 Fixation und Präparation 

Die Fixierung der Augen erfolgt standardisiert in einer zehnprozentigen, gepufferten 

Formalinlösung in etwa zehnfacher Menge des Augengewichtes und nimmt je nach Größe 

der Bulbi maximal eine Dauer von 48 Stunden in Anspruch (RAVELHOFER 1996; 

WERTHER et al. 2011). Wie die Studie von WERTHER et al. (2011) am Vogelauge zeigt, 

sollten die Bulbi nicht zu lange im Formalin gelagert werden, da es nach ca. sechs Monaten 

zu einer vollständigen Retinaablösung kommt. WERTHER et al. (2011) empfehlen daher 

eine Kalottierung der Bulbi spätestens 14 Tage nach Beginn der Formalinfixation. 

Die Kalottierung der Bulbi zur Verifizierung der Ergebnisse einer Ultraschalluntersuchung 

sollte sich in ihrer Schnittführung nach der jeweiligen sonographischen Untersuchungsebene 

richten (STROBEL 2010). KORBEL (1994) und RAVELHOFER (1996) empfehlen beim 

Vogel eine Schnittführung mittels Mikrotommesser von kaudal nach kranial mit Trennung des 

Bulbus in eine kleine dorsotemporale und eine größere ventronasale Hälfte, um eine 
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Verunreinigung des Glaskörpers durch Gewebereste auf der Klinge zu vermeiden und die 

Strukturen des Pecten zu schonen.  
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3. Material und Methoden 

3.1 Zielsetzung 

Ziel dieser Arbeit ist die Evaluierung der Anwendbarkeit der okularen Sonographie zur 

Darstellung physiologischer Strukturen des vorderen Augensegmentes bei Fischen. Um die 

sonographische Untersuchung der Augen auch bei Fischen zu etablieren, ist es erforderlich, 

die physiologische Sonoanatomie zu kennen und anhand gesicherter Referenzwerte das 

Vorliegen pathologischer Veränderungen zu verifizieren. Die vorliegende Arbeit soll am 

Beispiel des Koikarpfens die Möglichkeiten und Grenzen der Ultraschalluntersuchung an 

Fischaugen aufzeigen und einen Beitrag zur Etablierung der okularen Sonographie als eine 

ergänzende Technik zur reproduzierbaren und routinemäßig durchführbaren Augenunter-

suchung bei Zierfischen leisten. Zur Verifizierung werden die erstellten B-Mode-Aufnahmen 

und die biometrischen Messergebnisse mit der zuvor durchgeführten klinischen Augenunter-

suchung und in einigen Fällen auch mit postmortal erstellten Augenpräparaten verglichen.  

3.2 Material 

3.2.1 Versuchstiere 

Für die vorliegende Arbeit wurden im Zeitraum vom 06.08.2012 bis 24.10.2012 die Augen 

von insgesamt 75 subadulten, klinisch gesunden Koikarpfen (Cyprinus carpio) verschie-

denen Alters sonographisch untersucht. Die Tiere stammten alle aus demselben Händler-

betrieb (Koigarden Süd, Inhaber: Herbert Rafalzik, Am Rain 46, 82131 Unterbrunn) und 

wurden unter gleichen Bedingungen gehältert. Bei den untersuchten Fischen handelte es 

sich um zum gewerblichen Verkauf an Privatpersonen gezüchtete Koikarpfen aus Japan, die 

im Haltungsbetrieb bis zum Verkauf zwischengehältert wurden. Die Hälterung erfolgte 

ganzjährig in verschiedenen überdachten, mindestens 20.000 Liter fassenden Schaubecken, 

mit einer jahres- und tageszeitabhängigen Wassertemperatur von 16 – 24 °C, einem pH 

Wert von 7 - 8 und einer elektrischen Leitfähigkeit von 0,4 - 0,6 ms/cm. Die Qualität des 

Wassers entsprach Trinkwasserqualität, der Sauerstoffgehalt lag durchschnittlich bei 8 – 10 

mg/L, die Ammonium- bzw. Nitritwerte stiegen nicht über 0,05 mg/L bzw. 0,5 mg/L. Das 

Hälterungswasser wurde über einen externen Filter erst mechanisch, dann biologisch und 

schließlich physikalisch mittels UV-C Strahlung gereinigt und es fand ein kontinuierlicher 
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Teilwasserwechsel von ca. 33 % pro Woche statt. Die Tiere wurden mit kommerziell 

erhältlichem Pelletfutter für Koikarpfen über einen automatischen Futterspender mehrmals 

täglich gefüttert. Durch tägliche Adspektion des Beckenbesatzes seitens des Besitzers und 

monatliche stichprobenartige mikrobiologische und parasitologische, sowie vierteljährige 

virologische Untersuchungen von Schleimhaut- und Kiemenabstrichen durch den zustän-

digen Bestandstierarzt Dr. Werner Hoedt, bzw. eines beauftragten Untersuchungsinstitutes, 

wurde der klinische Gesundheitszustand der Fische stetig überprüft.  

Zur Ermittlung von Referenzwerten wurden die Fische je nach Körperlänge in drei Gruppen 

unterteilt: Gruppe I umfasste Koi mit einer Körperlänge von ca. 15 - 20 cm (15 - 19,5 cm), 

Gruppe II Koi mit einer Körperlänge von ca. 20 - 25 cm (20 - 24,5 cm) und Gruppe III Koi von 

ca. 25 - 30 cm Körperlänge (25 - 29,5 cm). 

 Gruppe I Gruppe II Gruppe III 

Körperlänge (ca.) 15 - 20 cm 20 - 25 cm 25 - 30 cm 

Gewicht (ca.) 30 - 100 g 100 - 200 g 200 - 400 g 

Alter (ca.)  2,5 Jahre 2,5 - 3 Jahre 3 - 4 Jahre 

Tabelle III:  Einteilung der Fischgruppen 

Für die Darstellung physiologischer Strukturen und zur Erstellung vorläufiger biometrischer 

Referenzwerte wurden ausschließlich klinisch gesunde Koi herangezogen.  

3.2.2 Material für das Narkosebad 

Die Tauchbadnarkose wurde in Anlehnung an die Studie von GEIGER (2007) mit dem unter 

Punkt 2.4.2 beschriebenen Fischanästhetikum MS 222 (Tricainmethansulfonat) in einer 

Dosierung von 70 mg/L Wasser angesetzt. Zur Pufferung des sauren Narkosemittels wurde 

Natriumbikarbonat im gleichen Mengenverhältnis zugesetzt. Die Abmessung der Substanzen 

erfolgte mithilfe der Digitalwaage Sartorius Analytic A200S mit einer Messgenauigkeit von 

0,0001 g. Die zum Ansetzen des Narkosebades verwendeten 20 L Wasser wurden kurz vor 

der Untersuchung frisch aus dem Hälterungsbecken der zu untersuchenden Fische entnom-

men. Das Narkosebad wurde in einem Glasbecken mit ca. 40 L Volumen eingerichtet, ein 

weiteres Becken mit Wasser aus der Koihälterung wurde als Vorbereitungs- bzw. Aufwach-

becken bereitgestellt. Mittels elektronischer Messgeräte wurden permanent Wasser-

temperatur, pH-Wert und elektrische Leitfähigkeit des Narkosetauchbades überprüft. Das 

Aufwachbecken wurde über eine Membranpumpe ständig mit Sauerstoff angereichert. 
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3.2.3 Material für die ophthalmologische Untersuchu ng 

Zur Ermittlung des intraokularen Druckes (IOD) wurde für diese Studie das Tonovet® (Fa. 

Acrivet, Heningsdorf, Deutschland) verwendet. Dieses Tonometer arbeitet nach dem Prinzip 

der Rebound-Tonometrie, welche auf der Erfassung der Bewegungsparameter eines elektro-

magnetisch beschleunigten Prüftipps beruht. Der Prüftipp ist ein 50 mm langer Stift mit 1 mm 

Durchmesser und abgerundeter Plastikspitze sowie einem magnetischen Ende, welcher in 

das Tonometer eingeführt wird und dort von zwei Magnetspulen umgeben ist. Bei Betätigung 

der Messtaste am Schaft des Tonometers wird durch Erzeugung eines Magnetfeldes eine 

Bewegung des Prüftipps in Richtung Korneaoberfläche ausgelöst, wo dieser abprallt und bei 

Rückkehr in die Ausgangsposition eine Spannung erzeugt, die in ihrer Größe abhängig von 

den Bewegungsparametern des Prüftipps ist. Die ermittelten Bewegungsparameter werden 

einem bestimmten IOD zugeordnet und in Millimeter Quecksilbersäule (mmHg) digital ange-

geben (GÜSE 2008). 

Der verwendete Diaskleralkegel wurde zusammen mit dem Otoskop Heine Beta NT 3,5V 

(Fa. Heine, Herrsching, Deutschland) für die einfache, direkte monokulare Untersuchung des 

vorderen und hinteren Augensegmentes verwendet. Durch die hohe Brechkraft der Linse 

wurde dabei ein kleiner Abschnitt des Augenhintergrundes 5 - 7fach vergrößert dargestellt. 

Zur eingehenden Untersuchung des Auges wurde die Handspaltlampe SL 15 (Fa. Kowa, 

Tokio, Japan) verwendet. Sie verfügt über eine spaltförmige bzw. punktförmige Lichtquelle 

mit drei Stufen zur Auswahl der Lichtintensität sowie über einen Blaufilter. Es kann zwischen 

drei verschiedenen Spaltbreiten (0,1 mm, 0,2 mm, 0,8 mm) und einer 12 mm punktförmigen 

Lichtquelle gewählt werden. Die Untersuchung des Auges erfolgte mit einer 10- oder 

16fachen Vergrößerung. 

Um eventuelle Verletzungen der Hornhaut aufzufinden, wurde der Farbstoff Fluoreszein (SE 

Thilo®, Fa. Alcon Pharma GmbH, Wien, Österreich) auf die Kornea aufgetragen. Er lagert 

sich an Hornhautbereichen mit Epitheldefekten an und ist im Blaulicht als neongrün 

fluoreszierende Substanz gut sichtbar. 

3.2.4 Material für die sonographische Untersuchung 

3.2.4.1 Ultraschallgerät 

Das für die Veterinärmedizin entwickelte MyLab™Sat VET der Firma Esaote Biomedica 

Deutschland GmbH (Köln, Deutschland) ist im Laptopformat erhältlich und durch den 
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integriertem Akku unabhängig von äußeren Stromquellen flexibel einsetzbar. Das Gerät 

verfügt über einen 12´´ LCD-Touchscreen-Monitor, einen internen Speicher, sowie zwei 

USB-Anschlüsse. Es erlaubt Untersuchungen im B-Mode-Verfahren, sowie den Einsatz 

eines CFM- bzw. PW-Dopplers. Im B-Mode stellt das Gerät bis zu 256 Graustufenwerte dar. 

Es kann zwischen verschiedenen Eindringtiefen gewählt werden und es besteht die Möglich-

keit, ein bis drei Foci in variabler Tiefe zu setzen. Dem Untersucher stehen alle gängigen 

Möglichkeiten des modernen Preprocessing (Gain, TGC, Dynamik, TEI™, XView etc.) zur 

Verfügung.  

Die Bildbearbeitung erfolgte mithilfe des Bildbearbeitungsprogrammes MyLab™Desk, 

welches vollständig in die MyLab Plattform von Esaote integriert ist und auch auf externen 

Computern installiert werden kann. Es ermöglicht das Archivieren, Editieren und Nachbe-

arbeiten (Postprocessing) von Untersuchungsergebnissen, die mit MyLab Systemen erstellt 

wurden. 

 

Abbildung 13:  Verwendetes Ultraschallgerät MyLab™Sat VET der Fa. Esaote (Köln, Deutschland), 
Aufnahme: R. Korbel 
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3.2.4.2 Ultraschallsonde 

Für die vorliegende Arbeit kam der hochfrequente 22 – 15 MHz Linear-Array-Schallkopf 

SL3116 der Firma Esaote zum Einsatz. Mit einer Auflagefläche von 16 x 4 mm und einer 

geringen Eindringtiefe eignet er sich besonders für den Einsatz im Rahmen ophthal-

mologischer und vaskulärer Untersuchungen sowie für Forschungszwecke. Der Schallkopf 

ist spritzwassergeschützt und kann bis 60 mm tief ins Wasser eingetaucht werden. Er eignet 

sich daher hervorragend zur Untersuchung von Fischaugen innerhalb des Wassers, sofern 

der Kopf des Tieres knapp unter der Wasseroberfläche gehalten wird. Die Verwendung einer 

Vorlaufstrecke wird bei dieser Art der Untersuchung überflüssig, da das Wasser eine 

perfekte Ankopplung an die zu untersuchenden Strukturen ermöglicht. 

 

Abbildung 14:  Verwendeter 22 – 15 MHz Linear-Array-Schallkopf Typ SL3116 der Fa. Esaote, 
Aufnahme: R. Korbel 

Für die Untersuchungen im Rahmen dieser Arbeit wurde der Schallkopf immer mit der 

höchsten Frequenzstufe (22 MHz) betrieben, bei welcher eine maximale Eindringtiefe von 20 

mm erreicht wird. 

3.2.4.3 Verbrauchsmaterialien 

Als Verbrauchsmaterialien wurden Baumwollhandtücher und Einmalhandschuhe für das 

Handling der Fische verwendet, um die Tiere einerseits sicher zu fixieren und andererseits 

die empfindliche Schleimhautschicht bestmöglich zu schützen. Zum Umsetzen der Tiere 

wurde ein Umsetzschlauch für Koi bzw. ein großer Kescher (AB Aqua Medic GmbH, 

Bissendorf, Deutschland) verwendet.  
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3.2.5 Material für die postklinische Dokumentation 

Die fotografische Dokumentation wurde mithilfe der Digitalkamera Nikon 80D (Fa. Nikon, 

Tokio, Japan) und dem Makroobjektiv Nikon AF-S Mikro NIKKOR 60 mm 1:2.8 G ED (Fa. 

Nikon, Tokio, Japan) durchgeführt. Die Kamera wurde, an einem Stativ fixiert, senkrecht über 

dem abzubildenden Präparat positioniert. Zur optimalen Ausleuchtung wurden, wie durch 

KORBEL (1994) beschrieben, zwei Makroblitze an bewegliche Arme montiert und zangen-

förmig auf Höhe des Kameraobjektives auf das Präparat ausgerichtet. Der erste Blitz wurde 

mit der Kamera zusammen ausgelöst, der zweite reagierte mittels Lichtsensor auf den ersten 

Blitz und löste somit leicht zeitverzögert aus. Zur Freistellung des Präparates wurde der 

Bulbus, in einer schwarzen Knetmasse eingebettet, zehn Zentimeter erhöht über einem ein-

farbigen Hintergrund positioniert. Um eine möglichst große Tiefenschärfe zur Darstellung der 

gesamten Ausdehnungstiefe des abzubildenden Objektes zu erreichen, wurde eine mög-

lichst kleine Blendenweite gewählt. Die kallotierten Bulbi wurden zur Vermeidung von Licht-

reflexionen mit Wasser aufgefüllt. Die Durchführung der ophthalmologischen Präparat-

fotografie richtete sich nach Vorlagen aus der Literatur (KORBEL 1990; BENGEL 1994; 

RAVELHOFER 1996). 

3.3 Methoden 

3.3.1 Versuchsdurchführung 

Das Versuchsvorhaben wurde mit Genehmigung der Regierung von Oberbayern durch-

geführt, es wird dort unter dem Aktenzeichen 55.2.1.54-2532-108-11 geführt. Die Unter-

suchungen am lebenden Tier wurden innerhalb des Händlerbetriebes durchgeführt, so dass 

es keine Notwendigkeit bestand, die Fische zu transportieren oder zwischenzuhältern.  

Für die Durchführung der verschiedenen Untersuchungen wurden zwei rechteckige Glas-

becken mit ca. 40 L Volumen verwendet. Beide Becken wurden kurz vor Beginn der Unter-

suchungen mit jeweils 20 L Wasser aus dem Hälterungsbecken der zu untersuchenden Koi 

gefüllt. Ein Becken diente als Vorbereitungs- und Aufwachbecken, das andere als Narkose-

bad. Das Wasser des Aufwachbeckens wurde nach jeder Untersuchung frisch angesetzt, 

das Narkosebad wurde bei Veränderung der Wasserparameter oder bei Nachlassen der 

Narkosewirkung, spätestens jedoch nach jeder fünften Narkose, erneuert. 
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Kurz vor der jeweiligen Untersuchung wurden die Fische einzeln aus den oben 

beschriebenen Hälterungsbecken entnommen und mittels eines Umsetzschlauches in das 

Vorbereitungsbecken umgesetzt. In diesem Becken schwamm der jeweils zu untersuchende 

Fisch während der klinischen und allgemeinen ophthalmologischen Untersuchung und wurde 

nur minimalen Zwangsmaßnahmen, wie etwa das sanfte Heranführen des Körpers an die 

Beckenwand zur Abschätzung der Körperlänge oder das leichte Anheben des Kopfes zur 

genaueren Augenuntersuchung, ausgesetzt. Nach Feststellung eines einwandfreien 

klinischen Gesundheitszustandes durch die Autorin wurde das Tier in das vorbereitete 

Narkosebad überführt (siehe Abbildung 15).  

 

Abbildung 15:  Versuchsaufbau zur sonographischen Augenuntersuchung, Koi unmittelbar nach dem 
Umsetzen ins Narkosebad, Aufnahme: R. Korbel 

Während der Einleitungsphase der Narkose wurde der bereits leicht sedierte Fisch ca. 30 

Sekunden mit dem Kopf aus dem Wasser gehoben, um den Augeninnendruck mittels 

Rückstoßtonometer (Tonovet®) und die Augenbinnenstrukturen mit Hilfe der Spaltlampe zu 

untersuchen. Dieses Vorgehen war nötig, da die Untersuchungen nach eigenen Erfahrungen 

schwer am wachen Tier durchgeführt werden konnten. Nach Eintritt in die tiefe Sedations-

phase (Stadium I. 2.) wurde mit der sonographischen Untersuchung begonnen, für die der 

Fisch nicht aus dem Wasser des Narkosebades entnommen werden musste. Nach Ab-

schluss der Untersuchung wurde der sedierte Koi mittels einer Digitalwaage gewogen und 

seine Körperlänge genau vermessen. Danach wurde er unverzüglich in das kleine Becken 

mit Frischwasser (aus dem Hälterungsbecken) zurückgesetzt, welches über eine Membran-
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pumpe mit zusätzlichem Sauerstoff versorgt wurde. Das Becken wurde abgedunkelt und 

gegen ein eventuelles Auskommen des Fisches während der Exzitationsphase mit einem 

Deckel verschlossen. Nach dem vollständigen Erwachen des Fisches aus der Narkose, 

erkennbar an einer ungestörten Lokomotion und physiologischer Haltung im Wasser, sowie 

einer gleichmäßigen Kiemendeckelbewegung (vergleiche Tabelle II, Punkt 2.4.3), wurde der 

Koi in einen separaten Schwimmkäfig innerhalb seines ursprünglichen Hälterungsbeckens 

überführt, wo er noch über 24 Stunden beobachtet werden konnte. Tabelle IV zeigt eine 

Übersicht über das verwendete Versuchsprotokoll. 

Ergaben sich während der sonographischen Untersuchung Narkosezwischenfälle oder 

wurde ein zu tiefes Narkosestadium erreicht (über das Stadium III hinaus), wurde die 

Untersuchung umgehend abgebrochen und der Fisch in das bereitgestellte Frischwasserbe-

cken umgesetzt. Zeigten sich innerhalb von zwei Minuten keine eigenständigen Kiemen-

deckelbewegungen, wurde der Koi oberhalb des Sauerstoffausströmers mit schnellen 

Bewegungen vorwärts durch das Wasser geschoben, um die Abgabe von Narkosemittel 

über die Kiemen zu beschleunigen und sauerstoffreiches Frischwasser über die Maulöffnung 

an den Kiemen vorbeizuführen. Zudem wurde versucht durch orale Stimulation mit dem 

Zeigefinger den Schluckreflex auszulösen und so die Atmung zu stimulieren. Nach 

Stabilisierung des klinischen Zustandes wurde die Ultraschalluntersuchung zügig innerhalb 

des Frischwasserbeckens zu Ende geführt. Im Falle eines bevorstehenden Erwachens aus 

der Sedation wurde der Fisch wieder in das Narkosebad umgesetzt.  

Um die im Rahmen der Ultraschalluntersuchung ermittelten Ergebnisse zu verifizieren, 

wurden fünf Fische nach der sonographischen Untersuchung mittels einer Überdosis 

Anästhetikum euthanasiert und die Augen nach Enukleation in zehnprozentigem Formalin 

über mindestens 48 Stunden fixiert. Danach wurden die Bulbi analog der verschiedenen 

Schallebenen kalottiert und fotografiert, um später am Computer vergrößert dargestellt und 

vermessen zu werden. 
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Versuchsprotokoll         Datum:…………… 

Fisch Nr.: ……  Gruppe: ….. 

Wasser 

Temperatur:……………………………………………………………………………………………….......................... 

pH:…………………………………………………………………………………………………………………...…...….. 

Leitwert:……………………………………………………………………………………………………..………...…….. 

 

Signalement 

Farbe:……………………………………………………………………………………………………….……….………. 

Länge:………………………………………………………………………..……………………………………………… 

Gewicht:…….……………………….…….………………………………………………………………………………… 

Alter:………………………………………………………………………………………………………………….……… 

Geschlecht:…………………………………………………………………………………………………….…….……… 

 

Klinische Untersuchung 

Körperhaltung u. Position im Wasser:……………………………............................................................................ 

Verhalten:………………………………………………………………………………….…………...…….…..…………. 

Habitus:………………………………….…………………………………………………………………………..…........  

Kondition:….………..……………………………………………………………………………………….….…...……… 

Atemfrequenz:…………………………………………………………………………...:…………….……...…………… 

Augen:……………………………………………………………………………………………………………………….. 

Kiemen:……………………………………………………………………………………………………………………… 

Haut und Schleimhaut:………………………………………………………………………………….…………………. 

Abdomen:…………………………………………………………………………………………………..……………….. 

Flossen:…………………………………………………………………………………………………….……………….. 

Maulhöhle und andere Körperöffnungen:…….………………………………………….………………………………. 

 

Augenuntersuchung 

Augenumgebung:………………………………………………………………………..…………………………………. 
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Tabelle IV:  Versuchsprotokoll der vorliegenden Arbeit 

Kornea:……………………………………………..Fluoreszeinprobe:…..….….…………………………..…………… 

Linse:………………………………………….……………….…………………………………………………………….. 

Pupille:…………………………………………………………..…………………………………………………………… 

Iris:……………………………………….…….……Irisfarbe:……………………………………………………………... 

Vordere Augenkammer:……………………………………………..…………………………………………………….. 

Glaskörper:……………………………………………..…………………………………………………………………… 

Fundus:……………………………………………..……………………………………………………………………….. 

 

IOD wach: 

Rechtes Auge (OD):  Wert 1:……. Wert 2:……. Wert 3:…….      Ø:………… 

Linkes Auge (OS):  Wert 1:.…… Wert 2:……. Wert 3:…….      Ø:………… 

IOD in Narkose: 

Rechtes Auge (OD):  Wert 1:……. Wert 2:……. Wert 3:…….      Ø:………… 

Linkes Auge (OS):  Wert 1:.…… Wert 2:……. Wert 3:…….      Ø:………… 

 

Narkose 

Zeit Überfuhr ins Narkosebecken:……………………………………………………………………..…………………. 

Zeit des Eintritts in tiefe Sedationsphase:…………………………………………………………………...…………… 

Dauer und Verlauf der Aufwachphase:……………………………………………………………..……………………. 

Dauer der Narkose insgesamt:…………...……………………….………………………………………………………. 

Besonderheiten Verlauf Narkose:…………………………………………………………………………...................... 

 

Sonographische Untersuchung 

                                                                            Bild 1                              Bild 2                               Bild 3 

Rechtes Auge (OD) – axial vertikal………………………………………………………..……………………………… 

Rechtes Auge (OD) – axial horizontal……………………………………………………..……………………………... 

Linkes Auge (OS) – axial vertikal…………………………………………………………..……………………………... 

Linkes Auge (OS) – axial horizontal……………………………………………………..……………………………….. 
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3.3.2 Klinische Untersuchung 

Die klinische Untersuchung fand am wachen Fisch innerhalb des Wassers, nach Umsetzen 

in das dafür vorgesehene 40 L Aquarium statt. Der Untersuchungsgang orientierte sich an 

der unter Punkt 2.5.1 beschriebenen Vorgehensweise und wurde immer nach demselben 

Schema durchgeführt. Zunächst wurde der Fisch ohne Manipulation seitens des Unter-

suchers adspektorisch begutachtet, danach folgte eine eingehende physische Untersuchung 

und Palpation mit behandschuhten Händen von kranial nach kaudal. 

3.3.2.1 Adspektion 

Zu Beginn der klinischen Untersuchung wurden folgende Punkte routinemäßig adspektorisch 

untersucht, um den Gesundheitszustand des Koi zu beurteilen: 

• Verhalten des Fisches (arttypisch, aufmerksam, gestresst, lethargisch etc.) 

• Körperhaltung und Position im Wasser (Ablegen am Boden, an der Wasseroberfläche 

stehend, ventral oder seitlich verkippter Körper, Orientierung etc.) 

• Habitus, generelles Erscheinungsbild (arttypisch, akut oder chronisch krank etc.) 

• Kondition (Adipositas, Kachexie) 

• Atemfrequenz (Kiemendeckelbewegungen) 

• Haut (Farbe, Textur, Schleimfilm, Verletzungen, Rötungen, Schuppenbild) 

• Flossen (Rötungen, Flossenläsionen, Flossenränder, Flossenstellung) 

• Augen (Exophthalmus, periorbitales Ödem, Enophthalmus) 

• Körperöffnungen (Maul, Nares, After- und Urogenitalpapille) 

3.3.2.2 Physische Untersuchung und Palpation 

Im Anschluss an die augenscheinliche Untersuchung wurde der Fisch mit behandschuhten 

Händen und unter Zuhilfenahme eines feuchten Baumwollhandtuches leicht unter Wasser 

fixiert und palpatorisch untersucht. Hierbei wurden folgende Körperstrukturen in der aufge-

listeten Reihenfolge eingehend inspiziert: 

• Maulhöhle (Schleimhaut, Farbe, Läsionen) 

• Augen (Trübungen, Fremdinhalte, Läsionen) 

• Kiemen (Farbe, Textur, Läsionen) 

• Haut- und Schleimhaut (Schleimschicht, Schuppen, Färbung, Textur, Läsionen) 

• Flossen (Färbung, Flossenränder, Läsionen) 

• Abdomen (Umfangsvermehrungen, Konsistenz, Perkussion) 
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• Urogenital- und Afterpapille (Rötungen, Schwellungen, Kotkonsistenz) 

Sofern sich durch die klinische Untersuchung kein besonderer Befund erheben ließ, wurde 

eine genaue ophthalmologische Untersuchung durchgeführt. Klinisch auffällige Koi wurden 

nicht in die statistische Auswertung mit einbezogen. 

3.3.3 Ophthalmologische Untersuchung 

Die ophthalmologische Untersuchung wurde in einem abgedunkelten Raum durchgeführt, 

wobei darauf geachtet wurde, den Fisch nach Abschluss der Untersuchungen nicht sofort 

wieder in grelles Licht zu überführen und so der aufgrund des fehlenden Pupillarreflexes sehr 

lichtsensiblen Kornea keinen Schaden zuzufügen. 

3.3.3.1 Allgemeine ophthalmologische Untersuchung 

Zunächst wurden die Augen des Koi unter Wasser auf jegliche Art von Asymmetrien und auf 

das Vorliegen eines periokularen Ödems oder eines Ex-  bzw. Enophthalmus hin untersucht. 

Danach schlossen sich unter Zuhilfenahme der fokalen Lichtquelle eines Diaskleralkegels 

Distanzuntersuchungen im seitlich auffallenden, durchfallenden und reflektierten Licht an, um 

die Strukturen von Kornea, vorderer Augenkammer, Iris und Linse zu beurteilen. Hierbei 

wurde besonders auf Trübungen und Fremdinhalte geachtet (vergleiche Punkt 2.5.2.1). 

3.3.3.2 Spezielle ophthalmologische Untersuchung 

Im Anschluss an die allgemeine Augenuntersuchung wurde der Fisch, sofern die vorherigen 

Untersuchungen keinen besonderen Befund ergaben, in das vorbereitete Narkosebad 

überführt. Nach Erreichen des flachen Sedationsstadiums (vergleiche Punkt 2.4.3) wurde der 

Koi vorsichtig mit dem Kopf aus dem Wasser gehoben, um eine spezielle ophthalmologische 

Untersuchung sowohl des vorderen, als auch des hinteren Augensegmentes, sowie eine 

Messung des Augeninnendruckes durchführen zu können. Die Untersuchung des vorderen 

Augensegmentes erfolgte in zehn- bis sechszehnfacher Vergrößerung mittels Spaltlampe. 

Durch Darstellung der Purkinje-Sansonschen Spiegelbilder konnten Lageveränderungen und 

Trübungen der Linse ausgeschlossen werden.  

Das hintere Augensegment (Glaskörper und hintere Bulbuswand) wurde direkt monokular 

mittels Diaskleralkegel dargestellt, wobei sich durch die Brechkraft der Linse ein kleiner 

Ausschnitt des Augenhintergrundes fünf- bis siebenfach vergrößert abbilden ließ. Wie unter 
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Punkt 2.5.2.2 beschrieben, wurde die Untersuchung des Augenhintergrundes ohne 

Zuhilfenahme eines Mydriatikums durchgeführt. 

Im Anschluss an die Untersuchung mit Spaltlampe und Diaskleralkegel wurde der 

Augeninnendruck (IOD = intraokularer Druck) des linken und rechten Auges mit Hilfe des 

unter Punkt 3.2.3 beschriebenen Rückstoßtonometers Tonovet® bestimmt. Es wurden 

jeweils drei Messungen an beiden Augen durchgeführt und der Mittelwert aus den Mess-

ergebnissen gebildet. Die Messungen wurden nach Abschluss der sonographischen 

Untersuchung nach ca. fünfzehn Minuten am tief sedierten Fisch wiederholt, um eventuelle 

narkosebedingte IOD-Schwankungen nachzuweisen.  

 

Abbildung 16:  Bestimmung des Augeninnendruckes (IOD) am sedierten Koi mittels Tonovet®, 
Aufnahme: R. Korbel 

Zum Ende der ophthalmologischen Untersuchung wurde jeweils ein Tropfen Fluoreszein-

Farbstoff auf die Kornea aufgetragen und durch kurzes Eintauchen des Fischauges ins 

Wasser des Narkosebades überschüssiges Fluoreszein abgewaschen. Unter Zuhilfenahme 

des Blaufilters der Spaltlampe wurden die Augen anschließend genau betrachtet, um 

Anlagerungen des Farbstoffes und somit Läsionen der Hornhaut aufzufinden.  

3.3.4 Sonographische Untersuchung 

3.3.4.1 Vorbereitung und Fixation  

Nach Feststellung eines einwandfreien klinischen Gesundheitsstatus und nach Abschluss 

der ophthalmologischen Untersuchung wurde der zu untersuchende Fisch unter Verwendung 

der unter Punkt 3.2.2 beschriebenen MS-222-Tauchbadnarkose tief sediert. Nach Erreichen 
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des tiefen Sedationsstadiums (I.2.), wurde mit der sonographischen Untersuchung begon-

nen. Hierzu wurde der Fisch von immer derselben untersuchenden Person mit behand-

schuhten Händen und gegebenenfalls unter Zuhilfenahme eines Baumwollhandtuches unter 

Wasser so fixiert, dass der Kopf des Tieres ungefähr zwei Zentimeter unterhalb der Wasser-

oberfläche in aufrechter oder leicht gekippter Position gehalten wurde. Der Fischkörper 

wurde immer mit der linken Hand kaudal der Kiemendeckel fixiert, egal ob das linke oder 

rechte Auge untersucht wurde. Der Kopf des Fisches zeigte somit bei der Untersuchung des 

rechten Auges vom Untersucher weg, bei der des linken Auges zum Untersucher hin. Es 

wurde immer mit der Untersuchung des rechten Auges begonnen. Die schallkopfführende 

rechte Hand der untersuchenden Person stützte sich gegebenenfalls zur Stabilisierung der 

Sondenführung an einer knapp unter die Wasseroberfläche reichenden Stütze (ein her-

kömmliches 250 ml Gefäß) ab. Der Schallkopf wurde je nach Untersuchungsebene auf 0,5 – 

1 cm Entfernung durch Eintauchen in das Narkosebadwasser an das zu untersuchende 

Auge herangeführt und berührte zu keinem Zeitpunkt die Hornhaut des Fisches. Das Wasser 

des Narkosebades diente somit als alleinige Vorlaufstrecke. 

3.3.4.2 Geräteeinstellungen 

Vor Beginn der jeweiligen Untersuchung wurden die Daten des zu untersuchenden Fisches 

in das Ultraschallsystem eingegeben: Zugehörigkeit zur Untersuchungsgruppe (I - III), 

Fischnummer (1 - 25), Alter und Geschlecht (sofern bekannt). Datum und Uhrzeit der Unter-

suchung wurden automatisch vom Gerät erfasst und dokumentiert. Vor Beginn einer Unter-

suchungsreihe wurde die jeweilige Schnittebene (axial-vertikal, axial-horizontal, oblique-

vertikal, oblique-horizontal) und das jeweils zu untersuchende Auge (OD = Oculus dexter für 

das rechte Auge, OS = Oculus sinister für das linke Auge) in einem leeren B-Bild notiert und 

dieses gespeichert, um die nachfolgenden Bilder zuordnen zu können.  

Es wurden im Rahmen des Preprocessing unabhängig vom jeweils untersuchten Fisch bei 

jeder Untersuchung dieselben grundlegenden Geräteeinstellungen verwendet. Sie konnten 

im Gerät gespeichert und so für jede neue Untersuchung aufgerufen werden. Variiert wurden 

je nach untersuchtem Augensegment die Fokustiefe und der Zoom, sowie die zeitabhängige 

Verstärkung (engl. time compensated gain, TCG). Die Gesamtverstärkung (Gain) wurde je 

nach untersuchtem Gewebe zwischen 50 - 60 % eingestellt, so dass sich die einzelnen 

Augenstrukturen deutlich darstellten und leicht voneinander abgrenzbar waren. Anschlie-

ßend wurde das Gain kurzzeitig erhöht, um auch kleinste pathologische Veränderungen 

nicht zu übersehen. Die Eindringtiefe wurde zwischen 5 und 20 mm eingestellt und der 

Fokus auf Höhe der interessierenden Region verschoben.  
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Die Bedienung des Gerätes wurde von immer derselben zweiten untersuchenden Person 

durchgeführt. Durch Absprache mit der den Schallkopf führenden Person war es möglich, 

ohne Unterbrechung der Untersuchung und ohne Lösen der Fixation des Fisches oder 

Absetzen des Schallkopfes die optimalen Geräteeinstellungen für die jeweils untersuchten 

Augenstrukturen zu finden. Zudem bestand keine Gefahr, das Ultraschallgerät durch Spritz-

wasser oder die Bedienung mit nassen Händen zu beschädigen. 

3.3.4.3 Untersuchungsgang und Untersuchungsebenen 

Die sonographische Untersuchung wurde stets am rechten Auge mit der axial-vertikalen 

Schnittebene begonnen. Hierzu wurde der Schallkopf mit der rechten Hand senkrecht bis auf 

wenige Millimeter zentral an die Hornhautoberfläche geführt, ohne diese jedoch direkt zu 

berühren (siehe Abbildung 17). Die Markierung des Schallkopfes zeigte in der vertikalen 

Schnittebene nach dorsal, so dass ein Longitudinalschnitt von dorsal nach ventral durch das 

Auge entstand. Um ein biometrisch aussagekräftiges B-Bild zu erhalten, wurde der Bulbus 

zunächst in seiner Gesamtheit, nahezu den gesamten Bildbereich ausfüllend, im Longi-

tudinalschnitt bei einer Eindringtiefe von 15 mm dargestellt, wobei darauf geachtet wurde, die 

Pupille möglichst in ihrer maximalen Breite und Kornea- bzw. Linsenvorderfläche in ihrer 

Krümmung parallel verlaufend darzustellen. Die TCG wurde so eingestellt, dass sich die 

Korneaschichten, sowie die vordere Linsenkapsel, klar und deutlich, aber nicht zu breit 

überstrahlend darstellten und das Linsenstroma, sowie die vordere Augenkammer und der 

Glaskörper, mit Ausnahme pathologischer Veränderungen, anechogen dargestellt wurden.  

Nach Beendigung der Bildeinstellungen wurde die Eindringtiefe auf 5 - 10 mm verringert und 

gegebenenfalls zusätzlich mit der Zoom-Funktion gearbeitet, um speziell das vordere Augen-

segment zu untersuchen. Es wurden hierbei jeweils mindestens drei Bilder zur späteren bio-

metrischen Vermessung gespeichert. Danach wurde die Eindringtiefe auf 15 mm vergrößert, 

um den gesamten Bulbus im Bild darzustellen und wiederum mindestens drei Bilder zu 

speichern. Zuletzt wurde zur Darstellung der hinteren Augenwand und der retrobulbären 

Strukturen inklusive des Blutflusses die Eindringtiefe auf 20 mm erweitert und drei weitere 

Bilder gespeichert.  

Gleiches Vorgehen wurde anschließend in der axial–horizontalen Schnittebene wiederholt, 

bei welcher die Markierung des Schallkopfes nach nasal ausgerichtet wurde, um einen 

Longitudinalschnitt von nasal nach temporal zu erhalten (siehe Abbildung 18).  
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Abbildung 17:  Sonographische Untersuchung des rechten Auges, axial-vertikale Schnittebene, 
Aufnahme: R. Korbel  

 

Abbildung 18:  Sonographische Untersuchung des rechten Auges, axial-horizontale Schnittebene, 
Aufnahme: R. Korbel 
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Zur Vermessung der hinteren Augenwand und zur Darstellung des Blutflusses kaudal des 

Bulbus war es nötig, den durch die runde Fischlinse gebildeten Schallschatten (siehe Punkt 

2.1.6.2) zu umgehen. Hierzu wurde das Bild aus der axial-horizontalen Schnittebene heraus 

durch Kippen des Schallkopfes nach dorsal und temporal in die transversal-oblique bzw. 

durch seitliches Verschieben entlang der Schallachse in die paraxiale Schnittebene bewegt.  

Analog zum beschriebenen Untersuchungsgang wurde im Anschluss das linke Auge des Koi 

untersucht und dokumentiert. Hierzu wurde der Fisch so gedreht, dass der Kopf zum Unter-

sucher hin zeigte und zur Führung des Schallkopfes wieder die rechte Hand zur Verfügung 

stand. 

3.3.4.4 Nachsorge 

Nach Abschluss der sonographischen Untersuchung wurde der untersuchte Koi aus dem 

Narkosebad in das bereitgestellte Frischwasserbecken überführt, welches abgedunkelt und 

gegen ein mögliches Auskommen des Fisches durch Exzitationen während der Aufwach-

phase abgedeckt wurde. Eine spezielle ophthalmologische Nachsorge war nicht nötig, da die 

Untersuchungen ohne direkten Kontakt mit der Hornhaut durchgeführt wurden. Der Fisch 

wurde jedoch vorsichtshalber zur Kontrolle noch 24 Stunden innerhalb seines Hälterungs-

beckens separiert, um mögliche Folgeschäden durch die Narkose, das Handling oder die 

Untersuchung selbst auszuschließen. 

3.3.4.5 Biometrie 

Das Vermessen der Augenbinnenstrukturen erfolgte anhand gespeicherter Standbilder 

unabhängig von der sonographischen Untersuchung, möglichst zeitnah nach Abschluss der 

Datensammlung, am Computer. Die Auswahl der Bilder erfolgte analog zur Studie von 

STOLZENBERG (2006) nach folgenden Kriterien: Der Ultraschallkopf musste sich in der 

Pupillarebene, das heißt senkrecht zur weitesten Öffnung der Pupille mit Darstellung der 

Reflexschatten der Linse, befinden und die Iris sollte möglichst parallel zur Horizontalen 

liegen. Um die gesammelten Bilder betrachten, bearbeiten und vermessen zu können, wurde 

das von Esaote bereitgestellte Bildbearbeitungsprogramm MyLab™Desk verwendet. Dieses 

Programm bot dem Untersucher neben allen gängigen Möglichkeiten des Postprocessing 

auch sämtliche Funktionen zur Vermessung von B-Mode-Sonogrammen. Die Messungen 

konnten direkt am Bildschirm vorgenommen und innerhalb der Bilder gespeichert werden. 

Folgende Augenbinnenstrukturen wurden im Rahmen dieser Arbeit biometrisch im B-Mode-

Sonogramm untersucht: 
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• Zentrale Korneadicke (ZKD) 

• Axiale Vorderkammertiefe (VKT) 

• Transversaler Vorderkammerdurchmesser (VKD bzw. KW-KW-Abstand) 

• Nasaler, temporaler, dorsaler und ventraler Kammerwinkel 

Die Auswahl der Messparameter, sowie die Platzierung der Messpunkte, erfolgte in Anleh-

nung an verschiedene Studien aus der Humanmedizin, die sich mit der Biometrie des 

vorderen Augensegmentes bzw. der Kammerwinkelmessung beschäftigen (STOLZENBERG 

2006; VIESTENZ et al. 2009; KIRALY und DUNCKER 2012).  

Alle Distanzmessungen wurden sowohl in der axial-vertikalen, als auch in der axial-

horizontalen Schnittebene durchgeführt. Die Ausmessung des nasalen und temporalen 

Kammerwinkels erfolgte im Horizontalschnitt, jene des dorsalen und ventralen Kammer-

winkels im Vertikalschnitt. Die ausgewählten Distanzen und Winkel wurden an jeweils drei 

verschiedenen vertikalen und horizontalen Schnittbildern des rechten und linken Auges 

vermessen. Zudem wurden jeweils drei Messungen des intraokularen Drucks (IOD) beider 

Augen vor und während der Narkose erfasst und statistisch ausgewertet.  

Die Messung der zentralen Korneadicke erfolgte von der äußeren Oberfläche des Hornhaut-

epithels, im Sonogramm als äußere Begrenzung der ersten schallkopfnahen hyperecho-

genen Linie der Kornea sichtbar, bis zur inneren Oberfläche des Hornhautendothels, im 

Sonogramm als äußere Begrenzung der zweiten hyperechogenen Linie der Kornea definiert. 

Die axiale Vorderkammertiefe wurde in der Bulbusmedianen, senkrecht zur Kornea und 

Linsenvorderfläche bestimmt und reichte von der inneren Oberfläche des Hornhautendothels 

bis zur vorderen Linsenkapsel (endotheliale Vorderkammertiefe). 

Der transversale Vorderkammerdurchmesser wurde definiert als Abstand zwischen nasalen 

bzw. dorsalen und temporalen bzw. ventralen Kammerwinkel (KW-KW-Distanz). Er wurde 

auf Höhe des Überganges zwischen Kornea und Sklera (Limbus) als horizontale Gerade 

zwischen dem Korneaendothel am Übergang zur Iris gemessen. 

Der Kammerwinkel (Iridokornealwinkel) wurde durch die sich nähernden Grenzflächen der 

inneren Begrenzung des Korneaendothels und der äußeren Begrenzung der Irisvorderfläche 

definiert. Im axial-horizontalen Schnitt stellten sich links im Bild der nasale Kammerwinkel 

und dementsprechend rechts der temporale Kammerwinkel dar. In der axial-vertikalen 

Schnittebene erschienen links der dorsale und rechts der ventrale Kammerwinkel. Tabelle V 
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und Abbildung 19 bis 23 geben die vermessenen Strukturen des vorderen Augensegmentes 

und deren Messpunkte wieder. 

  
Messpunkt 1 

 

 
Messpunkt 2 

 
 
Zentrale Korneadicke (ZKD, 1) 
 

 
Vorderes Korneaepithel 

 
Hinteres Korneaendothel 
 

Vorderkammertiefe (VKT, 2) Hinteres Korneaendothel Vordere Linsenkapsel 

Vorderkammerdurchmesser (VKD 
oder KW-KW, 3) 

Nasaler bzw. dorsaler 
Kammerwinkel 

Temporaler bzw. 
ventraler  Kammerwinkel 

 
Kammerwinkel (α = nasal bzw. 
dorsal, β = temporal bzw. ventral ) 
 

 
Winkel des Schnittpunktes von hinterem Korneaendo-
thel und Irisvorderfläche 

Tabelle V:  Zusammenfassung der in dieser Arbeit biometrisch erfassten Strukturen des vorderen 
Augensegmentes und deren Messpunkte 

Abbildung 19 zeigt die okularen Messpunkte zur Bestimmung der zentralen Korneadicke 

(ZKD), der Vorderkammertiefe (VKT), sowie des Vorderkammerdurchmessers (VKD). 

 

Abbildung 19:  Platzierung der okularen Messpunkte zur Biometrie des vorderen Augensegmentes; 
Koi (Cyprinus carpio), 22 cm Körperlänge, Alter 2,5 Jahre; Linkes Auge (OS), B-Mode-Sonogramm, 
axial-horizontale Schnittebene, Eindringtiefe von 10 mm; Erklärungen: 1 = zentrale Korneadicke 
(ZKD), 2 = Vorderkammertiefe (VKT), 3 = Vorderkammerdurchmesser (VKD) 

Abbildung 20 verdeutlicht noch einmal speziell die Messung der zentralen Korneadicke und 

der Vorderkammertiefe bei einer Eindringtiefe von 5 mm. 
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Abbildung 20:  Platzierung der okularen Messpunkte zur Biometrie von Kornea und vorderer 
Augenkammertiefe; Koi (Cyprinus carpio), 22 cm Körperlänge, Alter 2,5 Jahre; Rechtes Auge (OD), B-
Mode-Sonogramm, axial-horizontale Schnittebene, Eindringtiefe von 5 mm; Erklärungen: 1 = zentrale 
Korneadicke (ZKD), 2 = Vorderkammertiefe (VKT) 

Die zur biometrischen und statistischen Auswertung heranzuziehenden Messparameter 

wurden in einer hohen Auflösung, kontrastreich und den Bildschirm ausfüllend dargestellt, 

um eine große Messgenauigkeit zu erzielen. War dies im Rahmen der Ultraschalluntersu-

chung nicht im zufriedenstellenden Umfang möglich, wurde das zu evaluierende Sonogramm 

im Nachhinein am Computer durch Veränderung von Helligkeit und Kontrast, sowie durch 

eine entsprechende Vergrößerung der interessanten Bilddetails über die Zoom-Funktion 

optimiert. 

Abbildung 21 und 22 verdeutlichen das Vorgehen bei der Kammerwinkelmessung. Die 

Messung des nasalen und temporalen Kammerwinkels war entsprechend der Ausrichtung 

des Schallkopfes nur im axial-horizontalen Schnitt möglich, jene des dorsalen und ventralen 

Kammerwinkels nur im axial-vertikalen Schnitt. Der Kammerwinkel wurde gemessen, indem 

der Winkel des Schnittpunktes einer parallel zur Irisvorderfläche geführten Geraden und 

einer dem Korneaendothel anliegenden Geraden bestimmt wurde.  
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Abbildung 21 + Abbildung 22:  Platzierung der Messpunkte zur Biometrie des Kammerwinkels; Koi 
(Cyprinus carpio), 22 cm Körperlänge, Alter 2,5 Jahre; Linkes Auge (OD), B-Mode-Sonogramm, axial-
horizontale Schnittebene, Eindringtiefe von 10 mm (Abb.21) bzw. vergrößerte und kontrastierte 
Darstellung (Abb.22); Erklärungen: KW 1 = nasaler Kammerwinkel, KW 2 = temporaler Kammer-
winkel, α/β = erste Gerade entlang der Irisvorderfläche, OLIN = zweite Gerade entlang des Kornea-
endothels   

Abbildung 23 zeigt abschließend noch einmal alle okularen Messpunkte des in axial-
horizontaler Schnittebene untersuchten vorderen Augensegmentes im Überblick. 
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Abbildung 23:  Platzierung der okularen Messpunkte zur Biometrie des vorderen Augensegmentes; 
Koi (Cyprinus carpio), 22 cm Körperlänge, Alter 2,5 Jahre, gleiches Tier wie Abbildung 18; Linkes 
Auge (OS), B-Mode-Sonogramm, axial-horizontale Schnittebene, Eindringtiefe von 10 mm; 
Erklärungen: 1 = zentrale Korneadicke (ZKD), 2 = Vorderkammertiefe (VKT), 3 = Vorderkammer-
durchmesser (VKD), KW 1 = nasaler Kammerwinkel, KW 2 = temporaler Kammerwinkel 

3.3.5 Postklinische Dokumentation 

Zur Verifizierung der sonographischen Untersuchungsergebnisse wurden die Augen von ins-

gesamt fünf gesunden Koi und die krankhaft veränderten Augen von fünf klinisch auffälligen 

Koi, die nicht zu biometrischen Studien, wohl aber zur sonographischen Darstellung patho-

logischer Augenveränderungen herangezogen wurden, auch postmortal untersucht. Hierzu 

wurden die Tiere nach erfolgter sonographischer Untersuchung durch eine Überdosis des 

Anästhetikums MS 222 innerhalb des Narkosetauchbades euthanasiert. Nach Feststellung 

des Todes (Sistieren der sonographisch nachweisbaren Herzaktivitiät) wurden die Bulbi ent-

nommen. Der Augapfel wurde hierzu mittels einer stumpfen Pinzette vorsichtig aus der 

Orbita vorverlagert und mit Hilfe einer gebogenen Schere die extraokularen Muskeln, Gefäße 

und schließlich der Nervus opticus durchtrennt. Das enukleierte Auge wurde anschließend 

möglichst vollständig von anhaftenden Geweben freipräpariert, um eine fixationsbedingte 

Verkürzung der Augenmuskeln und die damit verbundene Schrumpfung des Bulbus zu 

vermeiden. Um die physiologische Krümmung der Hornhaut zu erhalten, wurden ca. 0,1 ml 

zehnprozentiges Formalin mittels Parazentese im temporalen Limbusbereich in die vordere 

Augenkammer eingebracht. Die Fixierung der Augen erfolgte in einer zehnprozentigen, 
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gepufferten Formalinlösung in der zehnfachen Menge des Augengewichtes und nahm je 

nach Größe der Bulbi eine Mindestdauer von 48 Stunden in Anspruch. Im Anschluss wurden 

die Bulbi aus dem Formalin entnommen, mit destilliertem Wasser gespült und analog zu den 

verschiedenen sonographischen Schnittebenen mittels Mikrotommesser von kaudal nach 

kranial kalottiert. Das rechte Auge wurde hierbei mit einer axial-horizontalen Schnittführung 

entlang der Medianen geteilt, das linke Auge in axial-vertikaler Ebene. Da es nach 

RAVELHOFER (1996) durch die Formalinfixierung zu Volumenveränderungen der feinen 

bindegewebigen Augenstrukturen kommen kann, wurden lediglich die Durchmesser von 

Linse, Kornea und Bulbus mittels Rechenschieber vermessen und auf einen genauen 

Vergleich zwischen sonographisch ermittelten Distanzwerten und physikalisch am Präparat 

gemessenen Parametern verzichtet. Nach der Kalottierung wurden die Bulbushälften mit 

isotonischer Kochsalzlösung aufgefüllt und zur fotografischen Dokumentation ca. 10 cm 

erhöht auf einem Plastikstab vor einem einheitlichen Hintergrund positioniert. Senkrecht über 

dem Präparat wurde die Digitalkamera an einem Stativ fixiert und zur Ausleuchtung links und 

rechts auf Höhe des Kameraobjektives zwei Blitzlichter installiert. Der Fokus wurde so 

gewählt, dass sich Kornea und Linse scharf darstellten. Bei der Belichtung wurde darauf 

geachtet, keine störenden Lichtreflexe auf der Wasseroberfläche entstehen zu lassen und 

gleichzeitig alle anatomischen Strukturen gut sichtbar abzubilden. Es wurde versucht, die 

Bulbushälften möglichst formatfüllend darzustellen, ohne dabei die Bildschärfe zu 

vernachlässigen. Abbildung 24 zeigt ein Beispiel-Präparat mit Vergleich zum B-Mode-Sono-

gramm. 

  

Abbildung 24:  Ophthalmologisches Präparat im Vergleich zum B-Mode-Sonogramm, Koi (Cyprinus 
carpio), 23 cm Körperlänge, Alter 2,5 Jahre, Rechtes Auge (OD), axial-vertikale Schnittebene 
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3.3.6 Statistische Auswertung 

Die statistische Auswertung erfolgte zum einen in Zusammenarbeit mit dem statistischen 

Beratungslabor des Institutes für Statistik der Ludwig-Maximilians-Universität München 

(Stablab) und zum anderen unter Verwendung der Statistiksoftware IBM SPSS 21.0.0, sowie 

der Statistikfunktionen von Microsoft Excel 2013. 

Zur Bestimmung der biometrischen Kennwerte für die wichtigsten okularen Strukturen sowie 

zur Einschätzung der Schwankungsbreite und Aussagekraft der Ergebnisse wurden folgende 

Werte bestimmt und entsprechende statistische Tests angewandt:  

• Mittelwert (arithmetisches Mittel) 

• Standardabweichung (σ) 

• Kleinster und größter Wert 

• Konfidenzintervall 

• Variationskoeffizient  

• T- Test für abhängige Variablen 

• Korrelationskoeffizient nach Pearson (ρ) 

Der Mittelwert wurde jeweils aus drei Messungen desselben Messparameters, welcher durch 

einen Untersucher unmittelbar hintereinander an drei verschiedenen Ultraschallbildern 

gemessen wurde, bestimmt. Aus den so gebildeten Mittelwerten wurde wiederum sowohl der 

Mittelwert einer Untersuchungsgruppe (n = 25), als auch der Mittelwert aus allen unter-

suchten Fischen (n = 75) ermittelt. Für die drei Wiederholungsmessungen und alle errech-

neten Mittelwerte einer Gruppe wurden jeweils die Standardabweichung, der kleinste und 

größte Wert, der Variationskoeffizient und das Konfidenzintervall ermittelt, um die Streuung 

der Variablen zu beurteilen. Da alle Messungen vom selben Untersucher durchgeführt 

wurden, können im Rahmen dieser Arbeit nur Aussagen über die Intraobserver-Variabilität 

getroffen werden. Alle Parameter wurden durch die Erstellung eines Histogramms visuell auf 

das Vorliegen einer Normalverteilung hin überprüft. 

Unterschiede zwischen den jeweiligen Messwerten des rechten und linken Auges wurden 

aus anatomischen Gründen nicht angenommen und die Aussage mit Hilfe des T-Tests für 

abhängige Variablen auf die statistische Signifikanz hin überprüft. Der Zusammenhang 

zwischen Körperlänge und okularen Distanzen wurde mithilfe des Korrelationskoeffizienten 

nach Pearson berechnet. Ebenso wurde so der Zusammenhang zwischen intraokularem 

Druck (IOD) und den Messparametern des vorderen Augensegmentes evaluiert. 
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Insgesamt flossen die Werte von 150 Augen in die statistische Untersuchung zur Ermittlung 

von vorläufigen Referenzwerten für die anatomischen Strukturen des vorderen Augen-

segmentes beim Koikarpfen ein. Das Signifikanzniveau wurde auf 5 % festgelegt. Die in ca. 

5 % der Fälle aufgetretenen, offensichtlichen Fehlmessungen wurden an einem anderen Bild 

der Untersuchungsreihe wiederholt und bei ausbleibender Wiederholbarkeit gestrichen. 

Um die verschiedenen Messergebnisse auf ihre Präzision bzw. Reproduzierbarkeit hin zu 

überprüfen, wurden jeweils drei Wiederholungsmessungen eines Parameters an unter-

schiedlichen Ultraschallbildern durchgeführt und von diesen Werten jeweils die Summe und 

das Mittel der Quadrate innerhalb und zwischen den Gruppen mittels dem statistischen 

Verfahren der einfaktoriellen ANOVA ermittelt. Die Wurzel der Mittel der Quadrate innerhalb 

der Gruppen (also innerhalb der drei Wiederholungsmessungen) wurde durch den jeweiligen 

Mittelwert der Parameter dividiert. Das Ergebnis ergab multipliziert mit 100 den jeweiligen 

(intraindividuellen) Variationskoeffizienten eines Parameters während der insgesamt 225 

Wiederholungsmessungen (3 Wiederholungsmessungen bei 75 Fischen). Variationskoeffi-

zienten unter 3 % zeigten eine sehr gute Reproduzierbarkeit an, Messergebnisse mit 

Koeffizienten unter 5 % waren gut reproduzierbar und Variationskoeffizienten über 10 % 

sprachen für eine schlechte Reproduzierbarkeit. 

Um zu überprüfen, ob die Varianz der Ergebnisse durch einen systematischen, also durch 

die Messmethode oder das Messgerät verursachten Fehler oder durch eine zufällige, also 

durch das individuelle Untersuchungsobjekt bedingte Abweichung verursacht wird, kann 

folgende Formel angewandt werden, die angibt, dass sich die Messgrößen mit einer Wahr-

scheinlichkeit von 95 % tatsächlich unterscheiden, wenn die Differenz der Messwerte betrag-

lich größer ist, als der Mindestabstand zwischen zwei Messungen: 

| x1 – x2 | > ΔV  

mit ΔV = 1,96 × √2 × σ = 2,77 × σ 

d.h. | x1 – x2 | > 2,77 × Streuung (x) 

x1 = 1. Messwert, x2 = 2. Messwert 

ΔV = Mindestabstand zwischen zwei Messwerten, um mit 95%iger Sicherheit unabhängig 

von der Messgenauigkeit zu sein 

σ = Standardabweichung bzw. Streuung der Wiederholungsmessungen 

1,96  = Gaußsche Summenfunktion 
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4. Ergebnisse 

4.1 Durchführung 

4.1.1 Dauer und Verlauf der Narkose 

Die Dauer der Narkose war hauptsächlich abhängig von dem für die sonographische 

Untersuchung erforderlichen Zeitaufwand. Die Ultraschalluntersuchung gelang nur während 

des tiefen Sedationsstadiums der Koi, da hier keinerlei Abwehr- und Augenbewegungen 

gezeigt wurden (vergleiche Punkt 2.4.3). 

In das für die sonographischen Untersuchungen erforderliche Sedationsstadium gelangten 

die Tiere nach einer durchschnittlichen Einleitungsphase von 3,5 ± 1,2 Minuten. Während 

der Einleitungsphase wurden die Fische nach kurzer, leichter bis mäßiger Exzitation, meist in 

Form von einer vorübergehenden Tachypnoe und ungerichteten Abwehrbewegungen, 

schnell ruhig und konnten der speziellen ophthalmologischen Untersuchung unterzogen 

werden. Das kurze Herausheben der Tiere aus dem Wasser zur Messung des Augen-

innendruckes mithilfe des Tonovet® hatte keinen erkennbaren negativen Einfluss auf die 

Narkoseeinleitung. Die Einleitungsphase dauerte bei den in Gruppe III untersuchten Koi mit 

3,84 Minuten am längsten, die Dauer der Einleitungsphase von Fischen der Gruppe I und II 

unterschieden sich mit 3,4 Minuten (Gruppe I) bzw. 3,32 Minuten (Gruppe II) nicht be-

deutend. Es ergaben sich während dieser ersten Phase der Narkose keine medizinischen 

Zwischenfälle oder Komplikationen. 

Die tiefe Sedationsphase musste im Durchschnitt 24,4 ± 6,8 Minuten aufrechterhalten 

werden, um die gesamte sonographische Untersuchung des vorderen und hinteren 

Augensegmentes beider Augen in den verschiedenen Schnittebenen und die im Rahmen 

einer anderen Arbeit untersuchte Dopplersonographie des retrobulbären Blutflusses 

(BRANDSTETTER 2014) durchzuführen. Die Sedationsphase der in Gruppe I untersuchten 

Koi dauerte mit durchschnittlich 28,7 ± 6,5 Minuten am längsten, Koi der Gruppe II 

verblieben ca. 23,2 ± 5,6 Minuten in tiefer Sedation und jene der Gruppe III im Mittel 21,2 ± 

6,0 Minuten. Während der tiefen Sedationsphase zeigten die Tiere keine aktive Lokomotion 

und reagierten weder auf taktile, noch optische Reize. Muskeltonus und Gleichgewicht 

blieben unbeeinflusst, die Atemfrequenz war gegenüber jener im Wachzustand leicht 

reduziert, aber gleichmäßig. In einem Fall musste die sonographische Untersuchung gegen 



  Ergebnisse 

86 

 

Ende aufgrund von Exzitationen, Würgereiz und Tachypnoe abgebrochen werden. Der Fisch 

erholte sich innerhalb des Aufwachbeckens jedoch rasch wieder. In wenigen Fällen (n = 6) 

wurde ein zu tiefes Narkosestadium erreicht, was sich durch eine stark herabgesetzte oder 

sistierende Atemtätigkeit über einen Zeitraum von mehr als 60 Sekunden äußerte. Die 

Atemfrequenz entsprechender Koi stabilisierte sich nach unverzüglicher Überfuhr der Tiere 

in das bereitgestellte, belüftete Aufwachbecken schnell wieder und die Untersuchung konnte 

zügig innerhalb des Aufwachbeckens zu Ende geführt werden.  

Die Aufwachphase dauerte im Durchschnitt 4,2 ± 1,8 Minuten, wobei kein nennenswerter 

Unterschied zwischen den drei Untersuchungsgruppen festgestellt werden konnte. Tiere, die 

zum Ende der sonographischen Untersuchung bereits einen beginnenden Verlust des 

Gleichgewichtssinnes (unkoordiniertes Drehen des Fischkörpers) zeigten, benötigten die 

längsten Aufwachzeiten. Ebenso hatte die Wassertemperatur Einfluss auf die Aufwach-

phase. Kältere Temperaturen führten zu geringgradig längeren Aufwachzeiten. Exzitationen 

wurden während der Aufwachphase kaum beobachtet. Die Narkose galt als beendet, wenn 

die Tiere wieder zielgerichtete Schwimmbewegungen und eine normale Atemtätigkeit 

zeigten.  

Insgesamt verlief die Tauchbadnarkose mit MS-222 bis auf die oben genannten Fälle 

komplikationslos, alle Tiere erwachten vollständig aus der Narkose, ohne unmittelbar 

erkennbare negative klinische Auswirkungen und ohne, dass innerhalb von 24 Stunden 

Spätschäden festgestellt werden konnten. Tabelle VI gibt noch einmal einen Überblick über 

die durchschnittliche Dauer der einzelnen Narkosephasen. 

 Dauer der 
Einleitungsphase 

Dauer der tiefen 
Sedationsphase 

Dauer der 
Aufwachphase 

Gruppe I  (n = 25) 3,40 ± 1,33 28,72 ± 6,48 4,60 ± 2,02 

Gruppe II (n = 25) 3,32 ± 1,12 23,24 ± 5,56 3,04 ± 1,00 

Gruppe III (n = 25) 3,84 ± 0,97 21,20 ± 5,98 5,04 ± 1,71 

Gesamtheit (n = 75) 3,50 ± 1,20 24,40 ± 6,80 4,20 ± 1,80 

Tabelle VI:  Durchschnittliche Dauer der Narkosephasen in Minuten (arithmetisches Mittel mit Stan-
dardabweichung), n = Anzahl der untersuchten Koi 
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4.1.2 Dauer und Verlauf der sonographischen 

Untersuchung 

Die durchschnittliche Dauer der sonographischen Untersuchung beider Augen betrug 24,4 

Minuten bei einer Standardabweichung von ± 6,8 Minuten und einem daraus resultierenden  

Variationskoeffizienten von 28 Prozent. Die Untersuchung schloss sowohl die B-Mode-

Darstellung des gesamten Auges in der axial-vertikalen, axial-horizontalen und obliquen 

Schnittebene, als auch die Dopplersonographie des retrobulbären Blutflusses ein, welche 

zusammen mit der Untersuchung des hinteren Augensegmentes in der Arbeit von 

BRANDSTETTER (2014) beschrieben wird. Die Ultraschalluntersuchung dauerte in der 

ersten Untersuchungsgruppe mit durchschnittlich 28,7 Minuten (± 6,5 Minuten) am längsten, 

die Untersuchung von Koi der Gruppe III dauerte dagegen im Mittel nur 21,2 Minuten (± 6 

Minuten). Individuelle Schwankungen der Untersuchungsdauer waren in Gruppe III mit 28 % 

Abweichung, im Vergleich zu 23 % bzw. 24 % der Gruppen II und III, am größten (siehe 

Tabelle VII).  

 
Durchschnitt-
liche Dauer 

(min) 

Standard-
abweichung  
(in Minuten) 

Minimale 
Dauer (min) 

Maximale 
Dauer (min) 

Variations-
koeffizient  
(Prozent) 

Gruppe I   
(n = 25) 28,72 6,48 20 42 23 

Gruppe II  
(n = 25) 23,24 5,56 15 37 24 

Gruppe III  
(n = 25) 21,20 5,98 13 36 28 

Gesamtheit    
(n = 75) 24,40 6,80 13 42 28 

Tabelle VII:  Durchschnittliche Dauer der gesamten sonographischen Untersuchung beider Augen in 
Minuten (arithmetisches Mittel), deren Standardabweichung und der daraus resultierende Variations-
koeffizient, sowie die minimale und maximale Dauer; n = Anzahl der untersuchten Koi 

Die zu Beginn durchgeführte B-Mode-Untersuchung des rechten Auges dauerte im 

Durchschnitt gruppenunabhängig wie die des linken Auges zwischen 6 - 12 Minuten und war 

somit starken individuellen Schwankungen unterworfen. Dauer und Verlauf waren abhängig 

von den Reaktionen des untersuchten Tieres während der Narkose. So hatte die Atemtätig-

keit den größten negativen Einfluss auf die Darstellbarkeit der okularen Strukturen. Auch ein 

verbleibender Augendrehreflex zu Beginn der Narkose erschwerte die sonographische 

Untersuchung.  
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4.2 Sonographische Darstellung des gesunden 

vorderen Augensegmentes 

4.2.1 Darstellung physiologischer Strukturen des Bu lbus 

Der Bulbus präsentierte sich als klar umschriebener, anterior-posterior abgeflachter Hohl-

raum mit überwiegend anechogenem Inhalt. Die Strukturen von Kornea, Linsenvorderfläche 

und Iris waren als hyperechogene, horizontal verlaufende Linien sichtbar. Die Abbildung des 

Augenhintergrundes ließ eine genaue Differenzierung der einzelnen Schichten, insbe-

sondere von Retina und Choroidea, nicht zu. Zudem beeinträchtigte eine starke Schallaus-

löschung distal der vorderen Linsenkapsel die Darstellung des zentralen hinteren Augen-

segmentes im Axialschnitt.  

Abbildung 25 zeigt eine Übersicht über die sonographische Darstellung des gesamten 

Bulbus. Das B-Mode-Sonogramm des vorderen Augensegmentes stellte sich bei allen 150 

untersuchten Koiaugen in seiner Struktur grundsätzlich gleich dar, es zeigten sich lediglich 

geringe individuelle Abweichungen in der Konvexität der Kornea sowie eine mittelgradige 

Varianz in der Tiefe der vorderen Augenkammer (siehe Punkt 4.2.2 und 4.2.3).  
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Abbildung 25:  Sonographischer Normalbefund, Übersicht über den gesamten Bulbus; Koi (Cyprinus 
carpio), 22 cm Körperlänge, Alter 2,5 Jahre; Rechtes Auge (OD), B-Mode-Sonogramm, axial-
horizontale Schnittebene, Eindringtiefe von 15 mm; Erklärungen: 1 = Korneastroma, 2= Vordere 
Augenkammer, 3 = Linse, 4 = Kammerwinkel, 5 = Iris, 6 = Pupille, 7 = Glaskörper, 8 = Choroidea mit 
Retina, 9 = hintere Bulbuswand 

Der Bulbus konnte mit einer Eindringtiefe von 15 mm bei allen untersuchten Fischen in 

seiner Gesamtheit dargestellt werden. Zur detaillierten Darstellung des vorderen Augen-

segmentes wurde meist eine Eindringtiefe von 10 mm gewählt (siehe Abbildung 26). Die 

Bulbi von Koi mit einer Körperlänge von über 30 cm konnten aufgrund der lateralen Dar-

stellungsgrenze des verwendeten Schallkopfes (13 mm) nicht in ihrer Gesamtheit auf dem 

Ultraschallmonitor dargestellt werden. 

 

Abbildung 26:  Sonographischer Normalbefund, Vorderes Augensegment; Koi (Cyprinus carpio), 22 
cm Körperlänge, Alter 2,5 Jahre; Rechtes Auge (OD), B-Mode-Sonogramm, axial-horizontale 
Schnittebene, Eindringtiefe von 10 mm; Erklärungen: 1 = Korneaepithel, 2 = Korneastroma, 3 = 
Korneaendothel, 4 = vordere Augenkammer, 5 = vordere Linsenkapsel, 6 = nasaler Kammerwinkel, 7 
= temporaler Kammerwinkel, 8= Irisvorderfläche 
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4.2.2 Kornea 

Die Kornea präsentierte sich als konvex gebogene Struktur mit einer inneren und einer 

äußeren echogenen Linie, welche sich besonders im zentralen Schallfeld als stark hyper-

echogen darstellten. Die äußere Linie wurde vom Korneaepithel, die innere vom Hornhaut-

endothel gebildet. Dazwischen ließ sich das Hornhautstroma besonders im Zentrum als 

anechogene bis hypoechogene konvexe Linie darstellen. Das Hornhautepithel bildete sich im 

Gegensatz zum Endothel als dünne, mäßig echogene Linie auch in der Peripherie sehr gut 

ab. Das Korneaendothel hingegen war in seinen peripheren Anteilen bis auf den Bereich am 

Übergang zur Sklera nicht darstellbar (siehe Abbildung 27 und 28).  

 

Abbildung 27:  Sonographischer Normalbefund der Kornea; Koi (Cyprinus carpio), 21 cm Körper-
länge, Alter 2,5 Jahre; Linkes Auge (OS), B-Mode-Sonogramm, axial-horizontale Schnittebene, 
Eindringtiefe von 10 mm; Erklärungen: 1 = Zentrale Korneadicke (ZKD = 0,20 mm) 

Durch Schallreflexionen innerhalb der Kornea kam es oft zum Auftreten mehrerer mäßig 

echogener Wiederholungsartefakte (Reverberationen) innerhalb der vorderen Augen-

kammer. Zur biometrischen Erfassung der zentralen Korneadicke (ZKD) wurden die Mess-

punkte jeweils in der Medianen am äußeren Rand der beiden hyperechogenen Linien von 

Korneaendo- und Korneaepithel gesetzt. Es ergaben sich keine signifikanten Unterschiede 

(Mittelwert der Differenzen = 0,0016 mm, p = 0,3889) zwischen der vertikalen und hori-

zontalen Schnittebene. Auch zwischen rechtem und linkem Auge wurde kein signifikanter 

Unterschied ermittelt (p > 0,7) (vergleiche Punkt 4.2.7, Abb. 27 und 28 sowie Tabelle VIII und 

Anhang). 
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 ZKD vertikal 
OD (mm) 

ZKD horizontal 
OD (mm) 

ZKD vertikal 
OS (mm) 

ZKD horizontal 
OS (mm) 

Gruppe I  
(n = 25) 0,18 ± 0,01 0,18 ± 0,01 0,18 ± 0,02 0,18 ± 0,02 

Gruppe II 
(n = 25) 0,20 ± 0,02 0,21 ± 0,02 0,21 ± 0,02 0,21 ± 0,02 

Gruppe III 
(n = 25) 0,21 ± 0,02 0,21 ± 0,02 0,21 ± 0,02 0,21 ± 0,02 

Gesamtheit    
(n = 75) 0,20 ± 0,02 0,20 ± 0,02 0,20 ± 0,02 0,20 ± 0,02 

Tabelle VIII:  Durchschnittliche zentrale Korneadicke (ZKD) des rechten (OD) und linken Auges (OS) 
in Millimetern im axial-vertikalen und axial-horizontalen Schnitt mit Standardabweichung 

 

Abbildung 28:   Sonographischer Normalbefund der Kornea; Koi (Cyprinus carpio), 21 cm Körper-
länge, Alter 2,5 Jahre, gleiches Tier wie Abb. 27; Linkes Auge (OS), B-Mode-Sonogramm, axial-
vertikale Schnittebene, Eindringtiefe von 10 mm; Erklärungen: 1 = Zentrale Korneadicke (ZKD = 0,20 
mm) 

Die ZKD fiel bei den in Gruppe I zusammengefassten Koi mit einer Körperlänge von 15 – 20 

cm mit durchschnittlich 0,18 mm signifikant kleiner aus als bei Fischen der Gruppe II (20 – 25 

cm Körperlänge) und Gruppe III (20 – 30 cm Körperlänge) mit 0,21 mm. Insgesamt betrug 

die ZKD durchschnittlich im Vertikalschnitt 0,2001 ± 0,0210 mm und im Horizontalschnitt 

0,1985 ± 0,0195 mm, wodurch sich ein Variationskoeffizient von ca. ± 10 % ergibt (vergleiche 

Punkt 4.2.7 und Anhang). 
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Abbildung 29 stellt die genaue Schichtung der Kornea im Sonogramm dar und zeigt 

gleichzeitig die Auflösungsgrenzen des verwendeten Schallkopfes bei einer Eindringtiefe von 

5 mm auf. Die Konturen des Epi- und Endothels wirken leicht verschwommen. Es sind para-

median deutlich Wiederholungsartefakte distal der Strukturen des Epi- und Endothels der 

Kornea, sowie distal der vorderen Linsenkapsel zu erkennen, welche durch die starken Im-

pedanzsprünge zwischen den genannten Strukturen und dem Hornhautstroma bzw. dem 

Kammerwasser zustande kamen. 

 

Abbildung 29:  Sonographischer Normalbefund der Kornea; Koi (Cyprinus carpio), 25 cm 
Körperlänge, Alter 3 Jahre; Rechtes Auge (OD), B-Mode-Sonogramm, axial-horizontale Schnittebene, 
Eindringtiefe von 5 mm; Erklärungen: EPI = Korneaepithel, S = Korneastroma, END = Kornea-
endothel, VAK = vordere Augenkammer, L = vordere Linsenkapsel 

Die konvexe Krümmung der Kornea fiel bei den meisten untersuchten Fischen gleich flach 

aus. Einige klinisch augengesunde Tiere (20,7 %) wiesen jedoch beidseits eine reproduzier-

bar stärkere Krümmung der Hornhaut in horizontaler und vertikaler Schnittebene auf 

(vergleiche Abbildung 30 und 31). Eine Assoziation mit der Gruppenzugehörigkeit konnte 

hierbei nicht festgestellt werden.  

Die Symmetrie des Krümmungsverlaufes der Kornea war zudem stark abhängig von der 

genauen Position des Schallkopfes und der Stellung des Bulbus innerhalb seiner knöch-

ernen Umgebung. Bei der überwiegenden Zahl der untersuchten Fische (61,3 %) stellten 

sich im axial-horizontalen Schnitt die temporalen Bulbusanteile einschließlich der Kornea 

gegenüber den nasalen Anteilen augenscheinlich leicht abgeflacht dar (siehe Abbildung 32), 

während in der axial-vertikalen Schnittebene dieses Phänomen der einseitigen Abflachung 

nicht zu beobachten war.  
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Abbildung 30 + Abbildung 31:  Verschiedene Krümmungsradien der Kornea, physiologischer 
Befund; Koi (Cyprinus carpio), 26 cm Körperlänge (Abb.30) bzw. 21 cm (Abb.31); B-Mode-
Sonogramm, OS axial-horizontale Schnittebene (Abb. 30) bzw. OD axial-vertikale Schnittebene (Abb. 
31) Eindringtiefe von 15 mm 
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Abbildung 32:  Unsymmetrischer Krümmungsverlauf der Kornea, physiologischer Befund; Koi 
(Cyprinus carpio), 23,5 cm Körperlänge, Alter 3 Jahre; Linkes Auge (OS), B-Mode-Sonogramm, axial-
horizontale Schnittebene, Eindringtiefe von 15 mm; Temporale Anteile der Kornea (rechts im Bild) 
wirken in ihrem Krümmungsverlauf abgeflacht, bzw. die temporale Bulbushälfte leicht ausgezogen 

4.2.3 Vordere Augenkammer 

Die axiale Tiefe der vorderen Augenkammer wurde definiert als der Raum zwischen dem 

zentralen Korneaendothel und der Linsenvorderfläche (endotheliale Vorderkammertiefe) und 

war im Gegensatz zur zentralen Korneadicke mit Variationskoeffizienten von 22 % - 28 % 

deutlich variabel. Eine offensichtliche Korrelation zwischen der Tiefe der vorderen Augen-

kammer und der Gruppenzugehörigkeit bestand nicht (siehe Tabelle IX, Punkt 4.2.7 und 

Anhang). 

Die vordere Augenkammer stellte sich im physiologischen Zustand völlig anechogen dar und 

die Vorderkammertiefe war im Durchschnitt mit 0,2827 ± 0,08 mm im Vertikalschnitt und 

0,2709 ± 0,065 mm im Horizontalschnitt rund 29 % größer als der Durchmesser der 

zentralen Kornea. Aufgrund ihres geringen Durchmessers wurde die axiale Vorderkammer 
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von Reverberationsartefakten, von der aufliegenden Kornea ausgehend, gerade in den para-

medianen, anterioren Bereichen, überdeckt (siehe Abbildung 33).  

 

Abbildung 33:  Sonographischer Normalbefund, Korneadicke und Vorderkammertiefe; Koi (Cyprinus 
carpio), 25cm Körperlänge, Alter 3 Jahre; Rechtes Auge (OD), B-Mode-Sonogramm, axial-horizontale 
Schnittebene, Eindringtiefe von 5 mm; Erklärungen: K = Korneaendothel, VAK = Vordere Augen-
kammer, L = vordere Linsenkapsel, 1  = zentrale Korneadicke, 2  = Vorderkammertiefe 

Die VKT war bei der zu Beginn einer jeden Untersuchung durchgeführten Ausmessung des 

rechten Auges im axial-vertikalen Schnitt durchschnittlich um 9 % größer als bei den übrigen 

Messungen (siehe Tabelle IX).  

 VKT vertikal 
OD (mm) 

VKT horizontal 
OD (mm) 

VKT vertikal 
OS (mm) 

VKT horizontal 
OS (mm) 

Gruppe I  
(n = 25) 0,29 ± 0,09 0,25 ± 0,04 0,27 ± 0,06 0,26 ± 0,08 

Gruppe II 
(n = 25) 0,28 ± 0,06 0,26 ± 0,06 0,22 ± 0,03 0,24 ± 0,04 

Gruppe III 
(n = 25) 0,33 ± 0,08 0,31 ± 0,07 0,30 ± 0,10 0,31 ± 0,06 

Gesamtheit    
(n = 75) 0,30 ± 0,08 0,27 ± 0,06 0,27 ± 0,07 0,27 ± 0,07 

Tabelle IX:  Durchschnittliche Vorderkammertiefe (VKT) des rechten (OD) und linken Auges (OS) in 
Millimetern im axial-vertikalen und axial-horizontalen Schnitt mit Standardabweichung 
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Periphere Bereiche der vorderen Augenkammer waren nicht von den umliegenden Struk-

turen zu differenzieren. Ebenso gelang die sonographische Abgrenzung des Ligamentum 

annulare, welches bei Fischen den Kammerwinkel ausfüllt, nicht. Es war nicht eindeutig von 

den Strukturen des Korneaendothels und der Iris zu unterscheiden. 

Zur Ausmessung des transversalen Vorderkammerdurchmessers war eine Eindringtiefe von 

10 mm nötig und das Irisdiaphragma musste möglichst horizontal verlaufen. Der Vorder-

kammerdurchmesser (VKD) wurde definiert als Abstand zwischen dem dorsalen bzw. 

nasalen und ventralen bzw. temporalen Kammerwinkel (KW-KW-Abstand). Mit zunehmender 

Fisch- und somit Bulbusgröße wurde der VKD größer gemessen (vergleiche Tabelle X und 

Punkt 4.2.7).  

Der VKD war im axial-horizontalen Schnitt anatomisch bedingt, aufgrund des anterior-

posterior leicht abgeflachten Bulbus, mit durchschnittlich 7,6240 ± 1,0327 mm um 6,9 % 

größer als mit 7,0998 ± 0,9684 mm in der axial-vertikalen Schnittebene (vergleiche Abbild-

ung 34 und 35 sowie Tabelle X, Punkt 4.2.7 und Anhang). 

 

Abbildung 34:  Sonographischer Normalbefund, Okulare Distanzen des vorderen Augensegmentes; 
Koi (Cyprinus carpio), 23,5 cm Körperlänge, Alter 3 Jahre; Linkes Auge (OS), B-Mode-Sonogramm, 
axial-horizontale Schnittebene, Eindringtiefe von 10 mm; Erklärungen: 1 = Zentrale Korneadicke 
(ZKD), 2 = Vorderkammertiefe (VKT), 3 = Vorderkammerdurchmesser (VKD) 
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Abbildung 35:  Sonographischer Normalbefund, Okulare Distanzen des vorderen Augensegmentes; 
Koi (Cyprinus carpio), 23,5 cm Körperlänge, Alter 3 Jahre (gleiches Tier wie Abb. 34); Linkes Auge 
(OS), B-Mode-Sonogramm, axial-vertikale Schnittebene, Eindringtiefe von 10 mm; Erklärungen: 1 = 
Zentrale Korneadicke (ZKD), 2 = Vorderkammertiefe (VKT), 3 = Vorderkammerdurchmesser (VKD) 

 VKD vertikal 
OD (mm) 

VKD horizontal 
OD (mm) 

VKD vertikal 
OS (mm) 

VKD horizontal 
OS (mm) 

Gruppe I  
(n = 25) 6,44 ± 0,76 7,01 ± 0,74 6,43 ± 0,69 6,77 ± 0,68 

Gruppe II 
(n = 25) 6,69 ± 0,55 7,20 ± 0,53 6,76 ± 0,57 7,19 ± 0,45 

Gruppe III 
(n = 25) 8,13 ± 0,57 8,78 ± 0,68 8,16 ± 0,57 8,79 ± 0,57 

Gesamtheit    
(n = 75) 7,08 ± 0,98 7,66 ± 1,03 7,11 ± 0,97 7,59 ± 1,04 

Tabelle X:  Durchschnittlicher Vorderkammerdurchmesser (VKD) des rechten (OD) und linken Auges 
(OS) in Millimetern im axial-vertikalen und axial-horizontalen Schnitt mit Standardabweichung 

Bei 8 % der untersuchten, klinisch augengesunden Fische stellte sich die Vorderkammertiefe 

beider Augen unabhängig von der Schnittebene signifikant größer als durchschnittlich 

gemessen dar. Dabei präsentierte sich die Vorderkammer als anechogener Raum ohne 

pathologischen Inhalt (vergleiche Abbildung 36 und 37). Alle anderen Messparameter waren 

unauffällig. 
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Abbildung 36:  Abweichende Vorderkammertiefe; Koi (Cyprinus carpio), 29 cm Körperlänge, Alter 4 
Jahre; Rechtes Auge (OD), B-Mode-Sonogramm, axial-vertikale Schnittebene, Eindringtiefe von 15 
mm; Erklärungen: 1 = Zentrale Korneadicke (ZKD), 2 = Vorderkammertiefe (VKT), 3 = Vorder-
kammerdurchmesser (VKD) 

 

Abbildung 37:  Abweichende Vorderkammertiefe; Koi (Cyprinus carpio), 29 cm Körperlänge, Alter 4 
Jahre; Rechtes Auge (OD), gleiches Tier wie Abb. 36, B-Mode-Sonogramm, axial-horizontale 
Schnittebene, Eindringtiefe von 15 mm; Erklärungen: 1 = Zentrale Korneadicke (ZKD), 2 = 
Vorderkammertiefe (VKT), 3 = Vorderkammerdurchmesser (VKD) 
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4.2.4 Linse 

Die Linse konnte im B-Mode-Sonogramm in Form ihrer vorderen Linsenkapsel und des an-

echogenen Stromas dargestellt werden. Die vordere Linsenkapsel präsentierte sich in der 

Bulbusmedianen als stark hyperechogene, leicht konvex gebogene Linie hinter dem 

ebenfalls hyperechogenen Korneaendothel und der anechogenen vorderen Augenkammer. 

Dieser stark hyperechogenen Linie folgten zumeist mehrere Wiederholungsartefakte.  

Es konnten weder die laterale Begrenzung der Linse, noch der hintere Linsenpol mit seiner 

hinteren Linsenkapsel im zweidimensionalen B-Bild dargestellt werden. Somit konnten weder 

der transversale, noch der axiale Linsendurchmesser biometrisch erfasst werden. Die trans-

versale Ausdehnung der Linse ließ sich lediglich aufgrund der Ausdehnung des anecho-

genen Stromas auf Höhe der Iris abschätzen (siehe Abbildung 38).  

 

Abbildung 38:  Sonographischer Normalbefund der Linse; Koi (Cyprinus carpio), 22 cm Körperlänge, 
Alter 2,5 Jahre; Linkes Auge (OS), B-Mode-Sonogramm, axial-horizontale Schnittebene, Eindringtiefe 
von 15 mm; Erklärungen: 1 = vordere Linsenkapsel, 2 = Reverberationsartefakt, 3 = Pupillenrand, 4 = 
Iris, 5 = distale Schallauslöschung 
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Die Fischlinse führte aufgrund ihrer starken radiären Schichtung (siehe Abbildung 40) sowie 

der hohen Refraktivität und dem damit verbundenen hohen Impedanzunterschied zum 

umliegenden Gewebe bzw. Kammerwasser zu auffällig starker Artefaktbildung, die die Inter-

pretation des B-Mode-Sonogramms stark beeinflusste. Die vordere Linsenkapsel wirkte im 

B-Bild gegenüber dem anatomischen Präparat leicht abgeflacht. Ein auffälliges, durch die 

Linse hervorgerufenes Artefakt stellte die schattenhafte Vorwölbung paramedianer Anteile 

der hinteren Augenwand in den Glaskörper dar (Laufzeitartefakt oder sog. Verzeichnung), 

wodurch der Glaskörper leicht verkürzt wirkte (siehe Abbildung 39). Dieses Phänomen ließ 

sich dadurch erklären, dass sich die Schallstrahlen innerhalb der Linse schneller fortpflan-

zten, als im umliegenden Kammerwasser. 

Distal der vorderen Linsenkapsel zeigte sich in jedem Fall eine starke Schallauslösung, die 

jegliche Beurteilung darin liegender Strukturen, einschließlich der hinteren Linsenfläche, ver-

hinderte (vergleiche Abbildung 38 - 40). 

 

Abbildung 39:  Sonographischer Normalbefund mit Artefaktbildung; Koi (Cyprinus carpio), 27 cm 
Körperlänge, Alter 4 Jahre; Rechtes Auge (OD), B-Mode-Sonogramm, axial-vertikale Schnittebene, 
Eindringtiefe von 15 mm; Erklärungen: 1 = scheinbare Vorwölbung der hinteren Augenwand 
(Laufzeitartefakt bzw. Verzeichnung), 2 = Vordere Linsenkapsel, 3 = linsenbedingte distale Schall-
auslöschung 
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Im anatomischen Präparat stellte sich die kristalline Linse vollständig rund und absolut starr 

dar. Die Linsensubstanz wies eine deutliche radiäre Schichtung auf (siehe Abbildung 40).  

Das in Abbildung 41 gezeigte Schema beruht auf der physikalischen Ausmessung der Linse 

direkt post mortem nach Entnahme des zuvor sonographisch untersuchten Bulbus. Die Linse 

wies in diesem Fall eines vierjährigen, augengesunden Koi mit einer Körperlänge von 27 cm 

einen axialen, sowie transversalen Durchmesser von 4,8 mm auf. 

 

Abbildung 40:  Makrofotografie des rechten Auges eines vierjährigen, augengesunden Koi (Cyprinus 
carpio), 27 cm Körperlänge, Darstellung der radiären Fischlinse; Aufnahme: R. Korbel 
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Abbildung 41:  Schema zur Ausdehnung und Lage der Linse; Koi (Cyprinus carpio), 27 cm 
Körperlänge, Alter 4 Jahre; Rechtes Auge (OD), B-Mode-Sonogramm, axial-vertikale Schnittebene, 
Eindringtiefe von 15 mm; Erklärungen: A1/1 = Fläche in mm², VOL = Volumen in cm³, D2/2= axialer 
Linsendurchmesser, D3/3 = transversaler Linsendurchmesser 

 

4.2.5 Iris, Pars ciliaris retinae und hintere Augen kammer 

Die Iris präsentierte sich als mäßig bis hyperechogene, relativ breite Struktur beidseits des 

anechogenen Linsenstromas. Im B-Bild stellte sie sich im Axialschnitt in Form zweier 

horizontaler Linien dar, die auf Höhe des Übergangs zwischen Kornea und Sklera (Limbus) 

in den anterioren Bulbus hineinragten und in ihrer Mitte die Pupillenöffnung freigaben, in 

welcher ein Großteil der Linse zum Liegen kam. Die Iris wurde oft aufgrund von Schicht-

dickenartefakten verbreitert dargestellt (siehe Abbildung 42).  

Die Irisvorderfläche erschien nie ganz glatt, sondern wies eine wellenartige, unregelmäßige 

Oberfläche auf. Die dorsal bzw. nasal und ventral bzw. temporal gebildeten Winkel der 

Schnittpunkte von Irisvorderfläche und Korneaendothel stellten die Kammerwinkel und somit 

die laterale Begrenzung der vorderen Augenkammer dar. 
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Abbildung 42:  Sonographischer Normalbefund der Iris; Koi (Cyprinus carpio), 21 cm Körperlänge, 
Alter 2,5 Jahre; Rechtes Auge (OD), B-Mode-Sonogramm, axial-horizontale Schnittebene, 
Eindringtiefe von 15 mm; Erklärungen: 1 = Schichtdickenartefakt, 2 = Iris, 3 = Pupille bzw. Linsen-
stroma, 4 = vordere Augenkammer, 5 = Glaskörper, 6 = Schichtdickenartefakt 

Eine Differenzierung zwischen dem Ziliarepithel der Pars ciliaris retinae und der Aderhaut 

gelang sonographisch nicht.  

Die hintere Augenkammer wurde definiert als anechogener Raum zwischen der Irisrück-

fläche und den linsenfixierenden Strukturen des Musculus retractor lentis (ventral) und des 

Ligamentum suspensorium lentis (dorsal). Die sonographische Darstellung der hinteren 

Augenkammer konnte lediglich bei ca. 65 % der Untersuchungen in der axial-vertikalen 

Schnittebene reproduzierbar erreicht werden, in der axial-horizontaler Schnittebene gelang 

die Darstellung überhaupt nicht.  

Abbildung 43 zeigt in der axial-vertikalen Schnittebene eine hinter der Irisrückfläche von der 

ventralen Bulbusperipherie ausgehende und Richtung Linse verlaufende, breite echogene 

Struktur, die als der zur Akkommodation dienende Musculus retractor lentis angesprochen 

werden konnte. Die Struktur war in der axial-horizontalen Schnittebene nicht aufzufinden. Sie 

konnte nur in ca. 65 % der Fälle im axial-vertikalen Untersuchungsgang dargestellt werden.  



  Ergebnisse 

104 

 

 

Abbildung 43:  Sonographischer Normalbefund: M. retractor lentis und Darstellung der hinteren 
Augenkammer; Koi (Cyprinus carpio), 29 cm Körperlänge, Alter 4 Jahre; Rechtes Auge (OD), B-Mode-
Sonogramm, axial-vertikale Schnittebene, Eindringtiefe von 20 mm; Erklärungen: 1 = Kornea, 2 = 
vordere Linsenkapsel, 3 = Iris 4 = Musculus retractor lentis, 5 = Ligamentum suspensorium lentis,  
Pfeile = HAK = hintere Augenkammer 

Noch seltener, in nur ca. 30 % der Untersuchungen, konnte an der gegenüberliegenden, 

dorsalen Bulbusperipherie (links im Bild) ein schmales echogenes Band sonographisch dar-

gestellt werden, welches ebenso zur Linse zog und dementsprechend dem Ligamentum 

suspensorium lentis zugeordnet wurde (vergleiche Abbildung 44). Auch diese Struktur zeigte 

sich nur in axial-vertikalen Schnittebenen und war nicht immer bei den Wiederholungsmes-

sungen reproduzierbar.  

Zwischen den beschriebenen linsenfixierenden Strukturen und der Irisrückfläche war bei 

Auffinden derselben immer die hintere Augenkammer als anechogener Raum darstellbar. 
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Abbildung 44: Sonographischer Normalbefund: M. retractor lentis, Lig. suspensorium lentis, hintere 
Augenkammer; Koi (Cyprinus carpio), 15 cm Körperlänge, Alter 2 Jahre; Rechtes Auge (OD), B-Mode-
Sonogramm, axial-vertikale Schnittebene, Eindringtiefe von 15 mm; Erklärungen: Pfeil 1 = Anteile des 
ventralen Musculus retractor lentis, Pfeil 2 = Anteile des dorsalen Ligamentum suspensorium lentis, 
Pfeil 3 = hintere Augenkammer, 4 = Iris 

4.2.6 Kammerwinkel 

Der Kammerwinkel als Übergang zwischen Korneaendothel und Irisvorderfläche auf Höhe 

des Limbus konnte sonographisch jeweils als nasaler, dorsaler, temporaler und ventraler 

Winkel dargestellt und ausgemessen werden. Der nasale sowie der temporale Winkel ließen 

sich im axial-horizontalen Schnitt jeweils als linke (nasal) und rechte (temporal), mäßig echo-

gene, spitzwinklige laterale Begrenzung der vorderen Augenkammer darstellen. Bei dorsaler 

Ausrichtung der Markierung des Schallkopfes ließen sich entsprechend im Vertikalschnitt der 

dorsale (links) und ventrale Winkel (rechts) abbilden (siehe Abbildung 45).  
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Abbildung 45:  Sonographischer Normalbefund des Kammerwinkels; Koi (Cyprinus carpio), 26,5 cm 
Körperlänge, Alter 3 Jahre; Rechtes Auge (OD), B-Mode-Sonogramm, axial-vertikale Schnittebene, 
Eindringtiefe von 10 mm (vergrößert dargestellt); Erklärungen: 1 = Korneaendothel, 2 = Irisvorder-
fläche, 3 = dorsaler Kammerwinkel 

Die Winkelmessung erfolgte durch die Platzierung einer ersten Geraden parallel zur 

horizontal verlaufenden Irisvorderfläche und einer zweiten Geraden parallel zum Kornea-

endothel. Der Schnittpunkt beider Geraden bildete den Kammerwinkel und wurde vom 

Computerprogramm als α bzw. β in Grad angegeben. Es war eine exakte Positionierung des 

Schallkopfes innerhalb der Pupillarebene mit einer nahezu horizontal verlaufenden Iris zur 

Winkelmessung nötig. Da die echogene Struktur des Korneaendothels in ihrer Peripherie 

schwer sonographisch zu erfassen war, gelang die Messung des Kammerwinkels nicht an 

jedem B-Bild, sondern lediglich in ca. 70 % der Fälle. Abbildung 46 veranschaulicht die 

Winkelmessung in der axial-vertikalen Schnittebene, Abbildung 47 zeigt den nasalen und 

temporalen Kammerwinkel im Horizontalschnitt.  

Die verschiedenen Kammerwinkel stellten sich im Sonogramm mit durchschnittlich rund 34,3 

bis 37,3 Grad ähnlich dar, der dorsale bzw. nasale Winkel war gruppenunabhängig im 

Durchschnitt um 3,5 % bzw. 8 % größer als der ventrale bzw. temporale Winkel. Die 

Winkelmaße wurden mit Abweichungen von ± 6 - 9 % in Bezug auf alle untersuchten Fische 

gemessen. 
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Abbildung 46:  Winkelmessung des dorsalen und ventralen Kammerwinkels; Koi (Cyprinus carpio), 24 
cm Körperlänge, Alter 3 Jahre; Rechtes Auge (OD), B-Mode-Sonogramm, axial-vertikale 
Schnittebene, Eindringtiefe von 10 mm; Erklärungen: KW 1 (α) = dorsaler Kammerwinkel (39,3°), KW 
2 (β) = ventraler Kammerwinkel (34,0°) 

 

Abbildung 47:  Winkelmessung des nasalen und temporalen Kammerwinkels; Koi (Cyprinus carpio), 
23,5 cm Körperlänge, Alter 3 Jahre; Linkes Auge (OS), B-Mode-Sonogramm, axial-horizontale 
Schnittebene, Eindringtiefe von 10 mm; Erklärungen: KW 1 (α) = nasaler Kammerwinkel (37,3°), KW 2 
(β) = temporaler Kammerwinkel (30,5°) 
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Tabelle XI und XII zeigen die durchschnittlichen Messwerte des dorsalen und ventralen bzw. 

ventralen und temporalen Kammerwinkels des rechten und linken Auges. Die Schwank-

ungen der Messergebnisse innerhalb der einzelnen Gruppen waren nicht signifikant. Es war 

jedoch eine negative Korrelation zwischen der Winkelgröße des ventralen und temporalen 

Kammerwinkels und der Fischgröße erkennbar: Koi mit einer größeren Körperlänge zeigten 

einen flacheren ventralen und temporalen Kammerwinkel als jene mit geringerer Körper-

länge. Es ergaben sich zwischen dem rechten und linken Auge keine statistisch relevanten 

Unterschiede. Weitere Angaben finden sich unter Punkt 4.2.7 und im Anhang. 

 Dorsaler KW 
vertikal OD 

Ventraler KW 
vertikal OD 

Dorsaler KW 
vertikal OS 

Ventraler KW 
vertikal OS 

Gruppe I  
(n = 25) 35,85 ± 1,98 35,90 ± 2,14 35,71 ± 2,68 35,99 ± 2,36 

Gruppe II 
(n = 25) 35,95 ± 2,33 34,58 ± 2,09 37,05 ± 1,81 34,85 ± 2,35 

Gruppe III 
(n = 25) 36,08 ± 2,32 33,66 ± 1,96 35,84 ± 2,57 33,87 ± 1,49 

Gesamtheit    
(n = 75) 35,96 ± 2,19 34,71 ± 2,24 36,20 ± 2,43 34,90 ± 2,25 

Tabelle XI:  Durchschnittliche dorsale und ventrale Kammerwinkel (KW) des rechten (OD) und linken 
Auges (OS) in Grad im axial-vertikalen Schnitt mit Standardabweichung 

 

 Nasaler KW 
horizontal OD 

Temporaler KW 
horizontal OD 

Nasaler KW 
horizontal OS 

Temporaler KW 
horizontal OS 

Gruppe I  
(n = 25) 37,31 ± 2,33 35,47 ± 1,77 37,37 ± 2,49 36,17 ± 2,57 

Gruppe II 
(n = 25) 36,94 ± 1,72 34,26 ± 2,20 37,17 ± 2,42 34,30 ± 2,55 

Gruppe III 
(n = 25) 37,60 ± 2,37 33,63 ± 1,82 37,65 ± 2,73 32,42 ± 2,50 

Gesamtheit    
(n = 75) 37,28 ± 2,15 34,45 ± 2,06 37,40 ± 2,52 34,30 ± 2,94 

Tabelle XII:  Durchschnittliche nasale und temporale Kammerwinkel (KW) des rechten (OD) und linken 
Auges (OS) in Grad im axial-horizontalen Schnitt mit Standardabweichung 
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4.2.7 Biometrische und statistische Auswertung 

Im Rahmen dieser Arbeit wurden alle sonographischen Untersuchungsgänge vom selben 

Untersucher durchgeführt, so dass nur Aussagen über die Intraobserver-Variabilität getroffen 

werden konnten. Die unten aufgeführten Messergebnisse, die als vorläufige Referenzwerte 

angesehen werden können, wurden nicht für das linke und rechte Auge separat angegeben, 

sondern aus 150 untersuchten Augen ermittelt, da nicht anzunehmen war, dass sich das 

linke und rechte Auge anatomisch unterscheiden und diese Vermutung auch statistisch 

bestätigt werden konnte (siehe Punkt 4.2.7.3). Da die Schnittebene zum Teil erhebliche 

Auswirkungen auf die gemessenen Distanzen hatte, wurden die Messwerte sowohl für die 

axial-vertikale, als auch die axial-horizontale Untersuchungsebene ermittelt. Zudem wurde 

zwischen drei Fischgruppen mit verschiedenen Körperlängen unterschieden. 

4.2.7.1 Ergebnisse der biometrischen Messungen 

Die ermittelten Messergebnisse zeigten für alle intraokularen Strukturen des vorderen 

Augensegmentes bei den untersuchten 150 Fischaugen eine hohe Genauigkeit durch gute 

Replizierbarkeit während der Wiederholungsmessungen (vergleiche Punkt 4.2.7.2). Zudem 

gab es eine gute Übereinstimmung zwischen rechten und linken Augen (vergleiche Punkt 

4.2.7.3). Alle Parameter wiesen nach Erstellung eines Histogramms visuell eine Normal-

verteilung auf, wie Abbildung 48 beispielhaft an der ZKD des rechten Auges in der vertikalen 

Schnittebene zeigt. 

Die Variationskoeffizienten lagen, auf alle Parameter mit Ausnahme der VKT bezogen, 

innerhalb der drei Untersuchungsgruppen bei ca. 7 %. Die VKT erwies sich mit bis zu ± 28 % 

Abweichung weit über den Durchschnitt variabel. Die Höhe der Abweichungen und das 

Ausmaß der Streuungen unterschieden sich zwischen den drei Fischgruppen nicht.  
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Abbildung 48:  Histogramm: Normalverteilung der Messwerte für die zentrale Korneadicke (ZKD) des 
rechten Auges (OD) in axial-vertikaler Schnittebene, n = 75 Koi, Mittelwert = 0,20 mm ± 0,02 mm 

 

Die unten aufgeführten durchschnittlichen Messwerte des vorderen Augensegmentes für Koi 

mit einer Körperlänge von 15 - 20 cm (Gruppe I), 20 - 25 cm (Gruppe II) und 25 - 30 cm 

(Gruppe III) gelten für mit MS-222 narkotisierte Tiere, unter Verwendung des Narkose-

badwassers als alleinige Vorlaufstrecke und bei Wassertemperaturen von 16 – 24 °C, einem 

Wasser-pH von 7 - 8 und einer elektrischen Leitfähigkeit des Wassers von ca. 0,3 bis 0,6 

ms/cm. Sie wurden aus 150 klinisch gesunden Koiaugen ermittelt, wobei nicht zwischen 

rechtem und linkem Auge differenziert wurde. Weitere Angaben (Standardfehler, 

Konfidenzintervall, Minimum und Maximum) finden sich im Anhang. 
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Gruppe I 

Körperlänge  
15-20 cm 

 
Gruppe II 

Körperlänge  
20-25 cm 

 

Gruppe III 
Körperlänge  

25-30 cm 

 vertikal horizontal vertikal horizontal vertikal horizontal 
 
ZKD (mm) 
 

0,18 ± 0,02 0,18 ± 0,01 0,21 ± 0,02  0,21 ± 0,02 0,21 ± 0,02 0,21 ± 0,02 

VKT (mm) 0,27 ± 0,08  0,25 ± 0,05 0,25 ± 0,05 0,25 ± 0,05 0,31 ± 0,09 0,31 ± 0,06 

VKD (mm) 6,48 ± 0,72  6,85 ± 0,71 6,72 ± 0,56 7,20 ± 0,49 8,14 ± 0,56 8,79 ± 0,62 

KW dorsal 
(Grad) 

35,78 ± 2,33 36,5 ± 2,14 35,96 ± 2,43 

KW ventral 
(Grad) 

35,94 ± 2,23 34,72 ± 2,20 33,76 ± 1,73 

KW nasal 
(Grad) 

37,34 ± 2,38 37,06 ± 2,08 37,62 ± 2,53 

KW tem-
poral (Grad) 

35,82 ± 2,22 34,28 ± 2,36 33,02 ± 2,25 

Tabelle XIII:  Durchschnittliche Messwerte für die intraokularen Strukturen des vorderen Augenseg-
mentes in Abhängigkeit der Körperlänge in axial-vertikaler und axial-horizontaler Schnittebene (nicht 
bei Kammerwinkeln) mit Standardabweichung, n = 150 Augen  (OD und OS zusammengefasst) 

4.2.7.2 Reproduzierbarkeit und Reliabilität 

Um die Reproduzierbarkeit der Messergebnisse und somit die Reliabilität (Zuverlässigkeit) 

der angewandten Messmethode zu überprüfen, wurden jeweils drei Wiederholungsmessun-

gen desselben Parameters an drei unterschiedlichen Ultraschallbildern durchgeführt und 

hiervon das Mittel und die Summe der Quadrate innerhalb und zwischen den Wieder-

holungsmessungen sowie sich daraus errechnende Variationskoeffizienten ermittelt, welche 

Aussagen über die Intraobserver-Variabilität geben (siehe Punkt 3.3.6 und Anhang).  

Da die Ergebnisse der Wiederholungsmessungen einer Normalverteilung unterlagen, 

konnten die Berechnungen mit dem statistischen Verfahren der einfaktoriellen ANOVA 

erfolgen. Wie in Tabelle XIV ersichtlich, ergaben sich für die überwiegende Zahl der 

ermittelten Parameter gute bis zufriedenstellende Reproduzierbarkeiten. Der Vorderkammer-

durchmesser war mit Variationskoeffizienten von ca. ± 2 – 3 % sogar sehr gut reprodu-

zierbar. Eine deutliche Ausnahme stellten die Wiederholungsmessungen der VKT dar, die 
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mit intraindividuellen Variationskoeffizienten von ca. ± 11 – 15 % über den Durchschnitt 

variabel und somit schlecht reproduzierbar waren. 

Variationskoeffizient der 
Wiederholungsmessungen (n = 225) 

OD_axial_vertikal_ZKD ± 6,98 % 

OD_axial_vertikal_VKT ± 15,66 % 

OD_axial_vertikal_VKD ± 3,01 % 

OD_axial_vertikal_KW_dorsal ± 5,21 % 

OD_axial_vertikal_KW_ventral ± 6,19 % 

OD_axial_horizontal_ZKD ± 7,09 % 

OD_axial_horizontal_VKT ± 11,24 % 

OD_axial_horizontal_VKD ± 2,05 % 

OD_axial_horizontal_KW_nasal ± 4,39 % 

OD_axial_horizontal_KW_temporal ± 5,63 % 

OS_axial_vertikal_ZKD ± 8,86 % 

OS_axial_vertikal_VKT ± 12,78 % 

OS_axial_vertikal_VKD ± 3,07 % 

OS_axial_vertikal_KW_dorsal ± 5,00 % 

OS_axial_vertikal_KW_ventral ± 5,71 % 

OS_axial_horizontal_ZKD ± 6,56 % 

OS_axial_horizontal_VKT ± 13,26 % 

OS_axial_horizontal_VKD ± 2,44 % 

OS_axial_horizontal_KW_nasal ± 4,87 % 

OS_axial_horizontal_KW_temporal ± 6,03 % 

Tabelle XIV:  Variationskoeffizient innerhalb der Wiederholungsmessungen (Intraobserver-Variabilität), 
n = Anzahl der Wiederholungsmessungen insgesamt, bezogen auf 75 Fische 

4.2.7.3 Vergleich der Messergebnisse von linken und  rechten Augen 

Zum Vergleich der Messergebnisse von rechten und linken Augen und zum Beweis der 

Annahme, dass sich keine anatomischen Abweichungen zwischen beiden Augen eines 

Fisches ergeben, konnte aufgrund der Normalverteilung aller Werte der T-Test herange-

zogen werden. Die Mittelwerte der Differenzen zwischen OD- und OS-Messungen lagen bei 

den okularen Distanzen zwischen 0,0008 mm (ZKD) – 0,076 mm (VKD) und bei den 

Kammerwinkeln zwischen 0,11° (KW nasal) – 0,24° (KW dorsal) und sind somit in Bezug auf 
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die Praxisrelevanz zu vernachlässigen. Die Signifikanz bei der Aussage OD = OS lag bei 

allen Parametern mit Ausnahme der VKT und dem VKD im Horizontalschnitt nahe 1, 

wodurch die Hypothese der Gleichheit beider Augen vorzugsweise nicht verworfen wird. Die 

VKT und der VKD(hor) variierten dagegen so stark zwischen linkem und rechtem Auge, dass 

die Hypothese mit einer Irrtumswahrscheinlichkeit von p < 0,001 (VKT) bzw. p < 0,053 

(VKDhor) verworfen werden musste (siehe Tabelle XV). Im Falle des VKDhor ergaben sich 

Messwerte von durchschnittlich 7,66 mm (OD) und 7,59 mm (OS), was auf die größere 

Streuungsbreite der Messergebnisse (hohe Variationskoeffizienten) zurückzuführen und 

daher zu vernachlässigen ist. 

n 
Mittelwert der 
Differenzen 

(mm bzw. Grad) 
Signifikanz 

 

OD-axial-vertikal-ZKD-Durchschnitt & 
OS-axial-vertikal-ZKD Durchschnitt 

75 
 

0,0008 
 

0,7073 
 

OD-axial-vertikal-VKT Durchschnitt & 
OS-axial-vertikal-VKT Durchschnitt 

75 
 

0,0344 
 

0,0005 
 

OD-axial-vertikal-VKD Durchschnitt & 
OS-axial-vertikal-VKD Durchschnitt 

75 
 

-0,0298 
 

0,4814 
 

OD-axial-horizontal-ZKD Durchschnitt & 
OS-axial-horizontal-ZKD Durchschnitt 

75 
 

0,0008 
 

0,6773 
 

OD-axial-horizontal-VKT Durchschnitt & 
OS-axial-horizontal-VKT Durchschnitt 

75 
 

0,0006 
 

0,9310 
 

OD-axial-horizontal-VKD Durchschnitt & 
OS-axial-horizontal-VKD Durchschnitt 

75 0,0756 0,0526 
 

 

 

OD Kammerwinkel dorsal Durchschnitt &    
OS Kammerwinkel dorsal Durchschnitt 

75 -0,2369 0,4364 

OD Kammerwinkel ventral Durchschnitt &    
OS Kammerwinkel ventral Durchschnitt 

75 -0,1902 0,5105 

OD Kammerwinkel nasal Durchschnitt &     
OS Kammerwinkel nasal Durchschnitt 

75 -0,1133 0,7262 

OD Kammerwinkel temporal Durchschnitt & 
OS Kammerwinkel temporal Durchschnitt 

75 0,1578 0,6422 

Tabelle XV:  T-Test: Korrelationen zwischen rechten (OD) und linken Augen (OS), n = Anzahl der 
untersuchten Koi 
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4.2.7.4 Vergleich zwischen vertikaler und horizonta ler Schnittebene 

Während sich die ZKD beider Augen und die VKT des linken Auges kaum in den Messungen 

in axial-vertikaler und axial-horizontaler Schnittebene unterschieden (Mittelwert der 

Differenzen zwischen 0,002 mm - 0,005 mm), war eine deutliche Abweichung zwischen 

vertikaler und horizontaler Messung des VKD erkennbar. Der Mittelwert der Differenzen lag 

hier bei rund 0,6 mm, wobei die horizontale Messung hochsignifikant (p < 0,001) größere 

Werte lieferte, als die vertikale Messung. Eine Ausnahme stellte wieder die VKT des rechten 

Auges dar, die mit einer mittleren Differenz von 0,03 mm signifikant zwischen vertikaler und 

horizontaler Messung variierte. Erklärungen hierzu werden unter Punkt 5.3.4 diskutiert. 

n 
Mittelwert der 
Differenzen  

(mm) 
 

Signifikanz 

 
OD-axial-vertikal-ZKD-Durchschnitt & 
OD-axial-horizontal-ZKD Durchschnitt 75 0,0016 0,3889 

 

OD-axial-vertikal-VKT Durchschnitt & 
OD-axial-horizontal-VKT Durchschnitt 75 0,0287 0,0017 

 

OD-axial-vertikal-VKD Durchschnitt &  
OD-axial-horizontal-VKD Durchschnitt 75 -0,5769 0,0000 

 

OS-axial-vertikal-ZKD Durchschnitt & 
OS-axial-horizontal-ZKD Durchschnitt 75 0,0016 0,5064 

 

OS-axial-vertikal-VKT Durchschnitt & 
OS-axial-horizontal-VKT Durchschnitt 75 -0,0050 0,4770 

 

OS-axial-vertikal-VKD Durchschnitt & 
OS-axial-horizontal-VKD Durchschnitt 75 -0,4716 0,0000 

 

 

 

Tabelle XVI:  T-Test: Korrelationen zwischen vertikaler und horizontaler Schnittebene, n = Anzahl der 
untersuchten Koi 

4.2.7.5 Korrelation zwischen Fischgröße und intraok ularen Strukturen des vorderen 

Augensegmentes 

Es zeigte sich durch Berechnung des Korrelationskoeffizienten nach Pearson bei den 

meisten untersuchten okularen Strukturen des vorderen Augensegmentes ein Zusammen-

hang zwischen der Körperlänge des Fisches und der Größe des Messwertes. Während die 

okularen Distanzen ZKD und VKD mit einer Irrtumswahrscheinlichkeit von p < 0,001 

hochsignifikant positiv mit der Körperlänge der untersuchten Fische korrelierten, war bei der 
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VKT (p > 0,1) sowie dem dorsalen (p = 0,3) und nasalen (p = 0,4) Kammerwinkel keine 

signifikante Korrelation mit der Fischgröße erkennbar. Der ventrale und temporale Kammer-

winkel hingegen wurden mit zunehmender Fischgröße sehr signifikant kleiner (p < 0,002) 

(vergleiche Abbildung 49 und 50).  

Die VKT war interindividuell sehr variabel. Zwar war sie bei den in Gruppe III zusammen-

gefassten Tieren größer als bei den beiden anderen Gruppen, jedoch zeigte sich zwischen 

Gruppe I und II, sowie innerhalb der einzelnen Gruppen keine deutliche Verteilung.  

Am auffälligsten war der Zusammenhang zwischen ausgemessener intraokularer Distanz 

und Fischgröße bei dem Parameter VKD: je größer die Körperlänge eines Fisches war, 

desto größer war auch der VKD in axial-vertikaler und axial-horizontaler Schnittebene 

(Korrelationskoeffizient ρ = 0,755 vertikal bzw. 0,787 horizontal).  

Die ZKD schwankte vor allem interindividuell, aber auch zwischen den Gruppen, wenn gleich 

sich die hochsignifikante Größenabhängigkeit (p < 0,001) im Bereich weniger Zehntel Milli-

meter bewegte (vergleiche Abbildung 49). 

 

Abbildung 49:  Durchschnittliche okulare Distanzen in Bezug zur Körperlänge; x-Achse: Gruppe 1 (15-
20 cm Körperlänge), Gruppe 2 (20-25 cm Körperlänge), Gruppe 3 (25-30 cm Körperlänge); y-Achse: 
Okulare Distanz in mm 
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Abbildung 50 zeigt graphisch auf, dass die Kammerwinkel bei den kleineren Fischen der 

Gruppe I mit Ausnahme des nasalen Kammerwinkels in ihrer Größe ähnlich ausfielen. Mit 

zunehmender Fischgröße zeigte sich eine deutliche Variabilität zwischen den vier Kammer-

winkelgrößen, wobei auffiel, dass der temporale und ventrale Kammerwinkel mit zu-

nehmender Körperlänge der Koi in ihrer Größe sehr signifikant abnahmen (p < 0,002). Im 

Gegensatz hierzu ließ sich zwischen dem dorsalen und nasalen Kammerwinkel und der 

Fischgröße kein Zusammenhang erkennen (p > 0,34). Der nasale Kammerwinkel fiel in allen 

drei Gruppen größer aus als die übrigen Winkel.  

 

Abbildung 50:  Durchschnittliche Kammerwinkelgröße in Bezug zur Körperlänge; x-Achse: Gruppe 1 
(15-20 cm Körperlänge), Gruppe 2 (20-25 cm Körperlänge), Gruppe 3 (25-30 cm Körperlänge);          
y-Achse: Durchschnittlicher Kammerwinkel in Grad 

4.2.7.6 Korrelation zwischen intraokularem Druck (I OD) und intraokularen Strukturen 

des vorderen Augensegmentes 

Der via Tonovet® gemessene intraokulare Druck (IOD) unterschied sich nicht zwischen 

linkem und rechtem Auge (p < 0,001) und korrelierte zumeist leicht negativ mit der Körper-

länge der Koi (Korrelationskoeffizient ρ = - 0,2), obgleich das Signifikanzniveau hier bei 6 % 

und somit über dem festgelegten 5% - Niveau lag.  

Während der Einleitungsphase der Narkose betrug der IOD durchschnittlich 9 ± 2,07 mmHg, 

in tiefer Sedation hingegen nur durchschnittlich 8,17 ± 2,26 mmHg, was einem gemessenen 

Druckabfall von rund 9 % entspricht (Diskussion siehe Punkt 5.2.2).  
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Eine signifikante, leichte negative Korrelation mit dem IOD konnte bei der zentralen Kornea-

dicke (ρ = - 0,211 bei p = 0,01) über alle Messungen hinweg nachgewiesen werden. Auch 

die Vorderkammertiefe zeigte mit ρ = - 0,191 eine leichte negative Korrelation, welche mit p 

= 0,019 ebenso signifikant war. Eine Ausnahme stellten hier die jeweils ersten Messungen 

des IOD am rechten Auge zu Beginn der Sedationsphase dar, bei denen die negative 

Korrelation nicht signifikant ausgeprägt war (p < 0,37). Alle anderen Parameter standen nicht 

mit dem IOD in Zusammenhang. 

4.3 Sonographische Darstellung 

pathologischer Veränderungen  

Im Rahmen dieser Studie wurden die Augen von insgesamt fünf klinisch auffälligen Koi 

sonographisch untersucht, wobei drei Fälle hiervon das vordere Augensegment betrafen. 

Während der klinischen Untersuchungen wurden neben den ophthalmologischen Befunden 

keine weiteren krankhaften Veränderungen festgestellt. Eine manifeste Katarakt konnte im 

Rahmen dieser Arbeit nicht beobachtet werden, ebenso wenig wie Fremdinhalte in der 

vorderen Augenkammer oder eine klinisch manifeste Uveitis. 

4.3.1 Veränderungen der Kornea 

4.3.1.1 Interstitielle Keratitis 

Bei einem adulten, ca. 15 jährigen Koi fiel während der Allgemeinuntersuchung eine beid-

seitig getrübte Hornhaut auf. Während der ophthalmologischen Untersuchung wurde eine 

ausgeprägte, bilaterale Korneatrübung mit beginnender Fibrosierung und Neovaskulari-

sation festgestellt. Der Fluoreszeintest fiel bei beiden Augen negativ aus und es konnten 

keine weiteren okularen Veränderungen festgestellt werden.  

Durch die sonographische Untersuchung konnte eine interstitielle Keratitis mit ausgeprägter 

Dickenzunahme der Kornea diagnostiziert werden. Hierbei stellte sich das Hornhautstroma 

stark verbreitert und hyperechogen dar und konnte auch in seiner Peripherie bis zum 

Übergang in die Sklera dargestellt werden. Dorsal waren die fibrotischen und ödematösen 

Veränderungen am stärksten ausgeprägt (siehe Abbildung 51).  
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Abbildung 51:  Nicht-ulcerative, interstitielle Keratitis; Koi (Cyprinus carpio), 54 cm Körperlänge, Alter 
ca.15 Jahre; Rechtes Auge (OD), B-Mode-Sonogramm, axial-vertikale Schnittebene, Eindringtiefe von 
10 mm; Erklärungen: 1 = Zentrale Korneadicke (ZKD = 0,67 mm), 2 = Vorderkammertiefe (VKT = 1,1 
mm), 3 = Vorderkammerdurchmesser (VKD = 11,4 mm) 

 

Als Ursache der Keratitis wurden chronische mechanische und/oder toxische Irritiationen mit 

sekundärer mikrobieller Infektion angenommen. Differentialdiagnostisch kam ein Mangel an 

Vitamin A, Thiamin oder Riboflavin, sowie exzessive Einwirkung ultravioletter Strahlung in 

Frage.  

Abbildung 52 zeigt das linke Auge des beschriebenen Koi. Dorsal sind deutlich fibrotisch-

verdickte Veränderungen der gesamten Kornea erkennbar, die zu einer unregelmäßigen 

Hornhautoberfläche und einer starken Dickenzunahme mit Transparenzverlust der Kornea 

führten.  
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Abbildung 52:  Nicht-ulcerative, interstitielle Keratitis; Koi (Cyprinus carpio), 54 cm Körperlänge, Alter 
ca. 15 Jahre, gleiches Tier wie Abb. 50; Linkes Auge (OS), B-Mode-Sonogramm, axial-vertikale 
Schnittebene, Eindringtiefe von 10 mm; Erklärungen: 1 = Zentrale Korneadicke (ZKD = 0,72 mm), 2 = 
Vorderkammertiefe (VKT = 1,9 mm), 3 = Vorderkammerdurchmesser (VKD = 11,3 mm) 

 

4.3.1.2 Keratoglobus 

Ein untersuchter Fisch fiel aufgrund eines bilateralen Exophthalmus auf. Der ansonsten 

klinisch unauffällige einjährige Koi zeigte in der Augenuntersuchung eine deutliche Vertief-

ung der vorderen Augenkammer unter Vorwölbung der gesamten Kornea (Keratoglobus).  

Sonographisch konnte eine reduzierte Dicke der Hornhaut festgestellt werden, Kornea-

endothel und -epithel ließen sich nicht voneinander differenzieren. Der intraokulare Druck 

war physiologisch und die vordere Augenkammer stellte sich anechogen dar. Auch die 

hintere Augenkammer, sowie der Glaskörper und der Retrobulbärraum waren sonographisch 

ohne besonderen Befund (siehe Abbildung 53). 
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Abbildung 53:  Keratoglobus; Koi (Cyprinus carpio), 17 cm Körperlänge, Alter 1 Jahr; Linkes Auge 
(OS), B-Mode-Sonogramm, axial-vertikale Schnittebene, Eindringtiefe von 20 mm; Erklärungen: 1 = 
Kornea, 2 = vordere Linsenkapsel, 3 = Iris, , 4  = Lig. suspensorium, 5 = M. retractor lentis, 6 = 
Glaskörper, 7 = Hintere Augenwand, VAK = Vordere Augenkammer, HAK = hintere Augenkammer, 
1(klein) = Vorderkammertiefe (VKT), 2(klein) = Vorderkammerdurchmesser (VKD) 

 

Auffällig war, dass der untersuchte Fisch aus einem Hälterungsbecken mit schlechter 

Wasserqualität (hohe Ammonium- und Nitritwerte) entnommen wurde. Daher wurde der 

Keratoglobus als Auswirkung einer dauerhaft toxinbelasteten aquatischen Umwelt inter-

pretiert, wobei eine genetische Komponente und Fehlentwicklung aufgrund von Mangel-

ernährung und  zehrender Sekundärinfektion nicht ausgeschlossen werden konnte. 
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4.3.2 Veränderungen der vorderen Augenkammer 

Im Rahmen dieser Studie kamen, neben dem oben beschriebenen Keratoglobus, keine 

Veränderungen der vorderen oder hinteren Augenkammer vor.  

Der in 8 % der Untersuchungen auffallend großen Tiefe der vorderen Augenkammer konnte 

keine pathologische Genese nachgewiesen werden.  

4.3.3 Veränderungen der Linse 

Pathologische Veränderungen der Linse wurden im Rahmen dieser Arbeit nicht beobachtet. 

4.3.4 Veränderungen von Iris, hinterer Augenkammer und 

Kammerwinkel 

Es wurden weder klinisch manifeste Entzündungen der Aderhaut (Uveitis), noch 

pathologische Veränderungen der Iris oder des Kammerwinkels im Rahmen dieser Studie 

beobachtet.  
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5. Diskussion 

5.1 Bedeutung der Augengesundheit  

Da die meisten Fischspezies ihre Nahrung visuell auffinden, spielt ein gutes Sehvermögen 

im aquatischen Habitat eine bedeutende Rolle. Ein teilweiser oder kompletter Visusverlust 

hat für das einzelne Individuum fatale Auswirkungen und kann für den Fischbesitzer, insbe-

sondere im Rahmen der Aquakultur und des Zierfischhandels, hohe ökonomische Verluste 

bedeuten (JURK 2002). Blinde Fische nehmen sowohl in der Aquakultur, als auch im 

Aquarium oder Gartenteich geringere Futtermengen auf, was sich in einer niedrigeren 

Wachstumsrate und unter Umständen verminderten Gesundheit und Widerstandsfähigkeit 

äußert. Sie sind häufiger in innerartliche Aggressionen verwickelt und zeigen Fertilitäts-

defizite (WHITAKER 2001).  

Pathologische Augenveränderungen kommen sehr häufig bei Fischen vor, sei es in Form 

eines primären okularen Leidens oder als Folgeerscheinung einer systemischen Erkrankung. 

Sie sind oft die ersten Anzeichen einer schwerwiegenden Grunderkrankung und meist 

Ausdruck von Haltungs- und Fütterungsmängeln. Die Evaluierung von Augenveränderungen 

kann somit in Hinsicht auf die allgemeine Diagnosestellung sehr hilfreich sein (JURK 2002).  

5.2 Material und Methoden 

5.2.1 Auswahl der Versuchstiere und Gruppeneinteilu ng 

Die 75 Versuchstiere wurden nach den unten aufgeführten Gesichtspunkten ausgewählt, um 

möglichst einheitliche Voraussetzungen für die Ultraschalluntersuchung zu schaffen und 

somit reproduzierbare und vergleichbare Untersuchungsergebnisse zu erzielen. Zudem war 

es das Ziel, die Belastung für die Versuchstiere so gering wie möglich zu halten. Die 

Versuchstiere stammten alle aus demselben Händlerbetrieb und wurden unter gleichen 

Bedingungen (Wasserqualität, Gestaltung der Wasserbecken, Fütterungsmanagement, 

Gesundheitsvorsorge) gehältert. Diese Voraussetzung musste unbedingt erfüllt werden, da 

Veränderungen der aquatischen Umwelt erheblichen Einfluss auf die Fischgesundheit haben 

(CECIL 2001; ROBERTS und RODGER 2001; SMITH 2002). Innerhalb der Gruppen 

stammten alle Fische aus derselben Charge und waren somit ca. gleich alt und von gleicher 
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Herkunft. Alle Tiere wurden für klinisch gesund befunden und waren das Handling durch den 

Menschen gewöhnt, wodurch der Stress für die Koi durch etwaiges Umsetzen und Fixieren 

minimal gehalten werden konnte. Ein Transport der Fische war nicht nötig, da alle Unter-

suchungen vor Ort im Betrieb durchgeführt werden konnten. 

Die Einteilung der Versuchstiere nach Körperlänge in drei Gruppen war gerade in Hinblick 

auf die Erstellung möglicher Referenzwerte sinnvoll, da die meisten Messergebnisse einen 

deutlichen Bezug zur Körpergröße aufwiesen. Die Sonoanatomie hingegen stellte sich 

größenunabhängig bei allen untersuchten Fischaugen grundsätzlich gleich dar. Die Auswahl 

der Körpergrößen orientierte sich an eine mögliche Praxisrelevanz der sonographischen 

Augenuntersuchung bei Zierfischen, da erfahrungsgemäß die meisten zur Individualdiagnos-

tik in der Praxis vorgestellten Fische die ausgewählten Körperlängen aufweisen (WEBER 

und INNIS 2007). Gerade in der Koipraxis werden jedoch zum Teil erheblich größere Tiere 

vorgestellt, bei denen das in dieser Arbeit angewandte Material, insbesondere der 

verwendete 22-MHz-Schallkopf, nicht zum Einsatz kommen kann (siehe Punkt 5.2.3.1). Eine 

Einteilung der Fische nach anderen Kriterien, beispielsweise dem Gewicht, erschien nicht 

sinnvoll, da sich der Körperumfang und somit das Gewicht eines Koi je nach Reproduktions-

status und Ernährungszustand, unabhängig von Alter und Entwicklungsstand der Tiere, stark 

unterscheidet (KRAUSE 2003; HOEDT 2004). Es war also nicht zu erwarten, dass das 

Körpergewicht einen Einfluss auf die okulare Entwicklung nehmen würde. 

5.2.2 Material und Methodik der ophthalmologischen 

Untersuchung 

Zur allgemeinen und speziellen Augenuntersuchung waren die verwendeten Gerätschaften 

(Diaskleralkegel, Spaltlampe, Fluoreszeinaugentropfen) völlig ausreichend, um die 

Strukturen des vorderen Augensegmentes eingehend zu untersuchen. Dies wird auch von 

zahlreichen weiteren Autoren bestätigt (WILLIAMS und WHITAKER 1997; WHITAKER 2001; 

JURK 2002; ROBERTS et al. 2009; WILLIAMS 2012b). 

Die Messung des IOD mittels Tonovet®, wie sie bereits von LYNCH et al. (2007) beim Koi 

beschrieben wurde, oder mittels TonoPen®, wie von JURK (2002) empfohlen, muss ange-

sichts mangelnder Erfahrungswerte für den Einsatz am Fischauge kritisch betrachtet werden 

(MCLAUGHLIN et al. 1996). Das Prinzip der Rückstoßtonometrie beruht wie unter Punkt 

3.2.3 beschrieben darauf, dass der Richtung Kornea beschleunigte Prüftipp von der Horn-

hautoberfläche entsprechend dem intraokularen Druck abprallt und die Beschleunigung der 

Rückkehrbewegung vom Gerät gemessen und einem bestimmten IOD zugeordnet wird. Da 
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die Tiefe der vorderen Augenkammer beim Fisch jedoch sehr gering ausfällt, kann nicht aus-

geschlossen werden, dass die Rückwärtsbewegung der Kornea beim Aufprall des Prüftipps 

durch die vordere Linsenfläche gebremst wird. Daher sind nachfolgende Studien mit Schwer-

punkt der okularen Druckmessung am Fisch durch entsprechend geeichte Geräte ange-

bracht.  

Der via Tonovet® im Rahmen dieser Arbeit bei 150 Koiaugen in dreifacher Wiederholung 

gemessene IOD betrug durchschnittlich 9,00 ± 2,07 mmHg (wach) bzw. 8,17 ± 2,26 mmHg 

(in Narkose). Er war mit interindividuellen Variationskoeffizienten von bis zu 25 % sehr 

variabel. Mit einem intraindividuellen Variationskoeffizienten von 11,75 % waren die Wieder-

holungsmessungen nicht ausreichend reproduzierbar, was unter anderem auf fehlende 

Erfahrungen für die fischspezifische Eichung des Gerätes zurückzuführen sein könnte. Der 

durchschnittliche IOD, der in der vorliegenden Studie ermittelt wurde, lag weit über dem 

durchschnittlichen von LYNCH et al. (2007) mit der gleichen Methode ermittelten Wert von 

4,9 mmHg.  

Der unter Punkt 4.2.7.6 beschriebene Druckabfall des IOD während der Narkose um durch-

schnittlich 9 % war vermutlich durch die Messmethode bedingt und lässt sich mit hoher 

Wahrscheinlichkeit durch die sedationsbedingte Relaxation der intraokularen Strukturen und 

die damit verbundene Rückverlagerung der Linse erklären, durch die sich die Vorder-

kammertiefe erhöhte, was die oben beschriebene Elastizität der Kornea verstärkte und somit 

eine geringere Rückstoßbeschleunigung des Prüftipps mit sich brachte. Dies würde auch 

erklären, warum der IOD bei den jeweils ersten Messungen am rechten Auge zu Beginn der 

Sedationsphase noch nicht signifikant sank. Eventuell war der Druckabfall auch Ausdruck 

von osmotischen Veränderungen innerhalb des Narkosetauchbades. Diese Vermutung 

konnte jedoch während der vorliegenden Studie nicht näher untersucht werden. 

Die Durchführung der allgemeinen Augenuntersuchung der Koi innerhalb des Wassers 

erforderte keine besonderen Maßnahmen gegenüber der Augenuntersuchung an Land. Die 

Tiere verhielten sich innerhalb des Wassers ruhig, so dass ihr Habitus und die Interaktion mit 

der Umwelt in Hinblick auf das Sehvermögen gut beurteilt werden konnten. Sie zeigten keine 

Abwehrbewegungen gegenüber der fokalen Lichtquelle des Diaskleralkegels. Ein schädigen-

der Einfluss der kurzzeitigen Beleuchtung der Augen mit dieser Lichtquelle konnte nicht 

beobachtet werden. Die kurze Entnahme des Fisches, bzw. das Herausheben des Kopfes 

während der Einleitungsphase der Narkose hatte keinen erkennbaren negativen Einfluss auf 

den Narkoseverlauf. Eine genaue Evaluierung der Auswirkung auf die Narkoseeinleitungs-

phase durch Zeitmessung der Einleitungsphase mit und ohne Messung des IOD außerhalb 
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des Wassers wurde jedoch im Rahmen dieser Studie nicht durchgeführt und soll späteren 

Arbeiten mit dem Schwerpunkt der Tauchbadnarkose bei Fischen überlassen werden. 

5.2.3 Material und Methodik der sonographischen       

Untersuchung  

5.2.3.1 Ultraschallgerät und Sonde 

Das in dieser Arbeit verwendete portable Ultraschallgerät MyLab™Sat VET der Firma 

Esaote Biomedica Deutschland GmbH (Köln, Deutschland) war in Verbindung mit dem 

hochfrequenten 22 – 15 MHz Linear-Array-Schallkopf SL3116, ebenfalls von der Firma 

Esaote, sehr gut für die ultrasonographische Untersuchung von Fischaugen innerhalb des 

Wassers eines Narkosebades geeignet. Die Versuchstiere konnten vor Ort im Händlerbetrieb 

untersucht werden, wodurch ihnen lange und stressvolle Transportwege zu einer klinischen 

Einrichtung erspart blieben. 

Es war möglich, das Ultraschallgerät flexibel neben dem zur Untersuchung bereitgestellten 

Wasserbecken zu positionieren und der Position des Untersuchers anzupassen. Durch den 

senkrecht in einer stabilen Halterung positionierten Touchscreen-Monitor und dem 

dazugehörigen Zeigestift konnten alle Einstellungen praktisch und schnell während der 

Ultraschalluntersuchung vorgenommen werden, ohne dass die Gefahr gegeben war, das 

Ultraschallgerät durch Spritzwasser zu beschädigen. Die Einstellungsmöglichkeiten im 

Rahmen des Preprocessing garantierten in jedem Fall eine optimale Darstellung des 

jeweiligen B-Mode-Sonogramms. Es wäre jedoch wünschenswert gewesen, dass das Gerät 

neben dem B-Mode noch mit den Funktionen des A-Modes ausgestattet gewesen wäre, da 

dies einen Vergleich zwischen B- und A-Mode im Rahmen der biometrischen Messungen 

ermöglicht hätte. 

Mit einer Auflagefläche von nur 16 x 4 mm und einer geringen Eindringtiefe, sowie einer 

hohen schallkopfnahen Auflösung, eignete sich der verwendete 22-MHz-Linearschallkopf 

besonders für den Einsatz im Rahmen ophthalmologischer Untersuchungen an kleinen bis 

mittelgroßen Fischaugen. Der Schallkopf war spritzwassergeschützt und konnte bis zu 60 

mm tief ins Wasser eingetaucht werden. Er eignete sich daher hervorragend zur Unter-

suchung von Fischaugen innerhalb des Wassers, sofern der Kopf des Tieres knapp unter der 

Wasseroberfläche gehalten wurde und machte so die Verwendung einer zusätzlichen Vor-

laufstrecke überflüssig.  
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Es muss jedoch auch erwähnt werden, dass durch die kleine Auflagefläche des Linear-

schallkopfes nur Fischaugen von Koi bis zu einer Körperlänge von 30 cm in ihrem vollen 

transversalen Durchmesser im Sonogramm dargestellt werden konnten. Für die Unter-

suchung größerer Fische und gerade zur biometrischen Vermessung der Augen dieser 

erwies sich der Schallkopf als nicht tauglich. Hierfür wären eine größere Auflagefläche und 

ein damit verbundenes breiteres Schallfeld von Nöten gewesen. 

Für eine noch detailliertere Darstellung des vorderen Augensegmentes mit einer höheren 

Auflösung und somit insbesondere zur Darstellung des Kammerwinkels und der hinteren 

Augenkammer, wäre der Einsatz eines 50-MHz-Schallkopfes, wie er beispielsweise in der 

Arbeit von HOLLINGSWORTH et al. (2007) bei Schlangen zum Einsatz kam, sinnvoll. Derart 

hochauflösende Techniken werden als Ultraschallbiomikroskopie bezeichnet und haben mit 

großem Erfolg bereits Einzug in die Humanophthalmologie gehalten (PAVLIN et al. 1991; 

FOSTER et al. 2000). Da jedoch im Rahmen der Studie zur okularen Sonographie am Koi-

karpfen der gesamte Bulbus untersucht wurde, musste eine minimale Eindringtiefe von 15 

mm gewährleistet werden, um auch die hintere Augenwand darstellen zu können. Ein höher-

frequenter Schallkopf wäre spätestens hier an seine Grenzen gestoßen. Zudem wurde der 

verwendete Schallkopf auch im Hinblick auf eine mögliche Klinikrelevanz in der Veterinär-

medizin der nahen Zukunft ausgewählt. 

Im Vergleich zum 7,5-MHz-Schallkopf, der von WILLIAMS et al. (2007) zur Untersuchung 

von Augen des Heilbutt (Hippoglossus hippoglossus) genutzt wurde, lieferte der 22-MHz-

Schallkopf von Esaote erwartungsgemäß viel detailreichere B-Mode-Sonogramme und 

ermöglichte eine zufriedenstellende, eingehende und differenzierte Darstellung insbesondere 

des vorderen Augensegmentes. Somit scheinen die Empfehlungen der Literatur von 

verschiedenen Autoren zum Einsatz einer 7,5 – 10 MHz-Sonde für die okulare Sonographie 

am Zierfisch (WILLIAMS und WHITAKER 1997; WHITAKER 2001) überholt. 

5.2.3.2 Versuchsdurchführung 

Für die Ultraschalluntersuchung der Fischaugen wurden immer zwei Personen benötigt, da 

es einem Untersucher allein nicht möglich war, den Fisch mit einer Hand zu fixieren, den 

Schallkopf mit der anderen Hand genau in Position zu halten und gleichzeitig Änderungen 

der Einstellungen am Ultraschallgerät durchzuführen oder Bilder zu speichern. Dieses Vor-

gehen wäre nur durch wiederholtes Lösen der Untersuchungsposition möglich gewesen, was 

zu wesentlich längeren Narkose- und Untersuchungszeiten geführt hätte.  
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Alle Untersuchungen im Rahmen dieser Studie wurden von einer Person durchgeführt. Um 

jedoch genauere Aussagen über die Reliabilität der Untersuchungsergebnisse treffen zu 

können und gerade in Hinblick auf eine mögliche Etablierung der Messergebnisse als 

Referenzwerte für die ophthalmologische Biometrie des Koiauges, wäre es nötig, die Unter-

suchungen durch mehrere Personen durchführen zu lassen und somit auch Aussagen über 

die Interobserver-Variabiliät treffen zu können. 

Die ophthalmologische Sonographie konnte bei Fischen, im Gegensatz zu anderen Tierarten 

wie beispielsweise durch POULSEN NAUTRUP et al. (1998) oder WILLIAMS et al. (1995c) 

beschrieben, nicht ohne hinreichende Sedation erfolgen, da Fische generell bei Annäherung 

unbekannter Gegenstände oder Personen zu teilweise starken Abwehrbewegungen neigen, 

in Folge derer es zu schweren mechanischen Schädigungen der empfindlichen Körper-

oberfläche kommen kann und welche zudem mit erheblichem Stress verbunden sind (ROSS 

2001; KÖLLE und HENKE 2004; GEIGER 2007). Eine Immobilisierung von Fischpatienten 

wird in der Literatur für alle Untersuchungsmethoden, die über eine adspektorische 

Untersuchung hinausgehen, empfohlen und dient hauptsächlich der Stressreduktion des 

Fischpatienten (LEWBART 2001; JURK 2002; ROBERTS et al. 2009).  

Eine Oberflächenanästhesie der Kornea war nicht nötig, da zu keinem Zeitpunkt Kontakt 

zwischen Schallkopf und Hornhaut bestand. 

Die Verwendung einer Vorlaufstrecke war bei der Untersuchung der Fischaugen innerhalb 

des Narkosebades überflüssig, da das Wasser eine perfekte Ankopplung an die zu 

untersuchenden Strukturen ermöglichte. Zudem konnte der Abstand zum Auge beliebig 

variiert werden, um die Strukturen von Interesse in die Fokuszone zu rücken. Dies wirkte 

sich gerade bei der Darstellung des vorderen Augensegmentes positiv aus und stellt einen 

enormen Vorteil gegenüber der Untersuchung mithilfe einer konstanten Vorlaufstrecke, 

beispielsweise in Form von großzügig aufgetragenem Ultraschallgel wie von BARR (1992) 

und WILLIAMS et al. (1995b) empfohlen, dar (siehe auch Punkt 5.3.3.1). Die Vorzüge einer 

Wasservorlaufstrecke werden bereits seit langer Zeit gerade für die Biometrie am mensch-

lichen Auge ausgenutzt (GUTHOFF 1988; HOFFMANN et al. 1998) und wurden auch schon 

auf ihre Eignung in der Tiermedizin, beispielsweise zur Untersuchung von Vogelaugen 

(HUFEN und KORBEL 2009) hin überprüft. Es war zu keinem Zeitpunkt nötig, die Oberfläche 

der Hornhaut zu berühren, was einen überragenden Vorteil gegenüber der sonographischen 

Untersuchung außerhalb des Wassers darstellte. Durch diese Methodik konnte die Verletz-

ungsgefahr des Fischauges durch den Kontakt mit der Schallkopfauflagefläche, sowie eine 

mögliche Artefaktbildung durch den Ankopplungsdruck des Schallkopfes auf den Bulbus 
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vermieden werden. Auch wurde das Sonogramm nicht durch störende Restluft zwischen 

Schallkopf und Hornhaut verfälscht.  

Eine Untersuchung außerhalb des Wassers unter Zuhilfenahme einer Vorlaufstrecke aus 

Ultraschallgel, wie in der Studie von WILLIAMS et al. (2007) durchgeführt, hätte ebenso eine 

vorherige Ruhigstellung des Fisches vorausgesetzt und wäre mit wesentlich größerem 

Aufwand und erhöhtem Verletzungsrisiko für die Tiere einhergegangen. Zudem wären so die 

oben beschriebenen Vorteile in Bezug auf die Artefaktminimierung innerhalb des Wassers 

weggefallen. Generell wird in der Literatur bei Fischen eine Ultraschalluntersuchung 

innerhalb des Wassers empfohlen (GODDARD 1995; STETTER 2001a). 

5.3 Die sonographische Untersuchung 

5.3.1 Untersuchungsdauer 

Mit einer durchschnittlichen Untersuchungsdauer von 24,4 ± 6,8 Minuten konnten das 

vordere und hintere Augensegment beider Augen in vertikaler und horizontaler Ebene, sowie 

der retrobulbäre Blutfluss, mit zufriedenstellenden Ergebnissen untersucht werden. Die 

Ultraschalluntersuchung dauerte in der ersten Untersuchungsgruppe mit durchschnittlich 

28,7 Minuten ± 6,5 Minuten am längsten, da diese Gruppe im Rahmen der Studie zur 

okularen Sonographie am Fischauge als erstes untersucht wurde und dementsprechend 

noch wenig Erfahrungen seitens der Untersucher vorlagen. Die optimale Bildeinstellung und 

Positionierung des Schallkopfes konnten erst nach einiger Übung schnell und sicher 

aufgefunden werden, was sich in durchschnittlich kürzeren Untersuchungszeiten in der 

zweiten und dritten Versuchsgruppe widerspiegelte.  

Die Untersuchungsdauer eines Auges variierte mit 6 - 12 Minuten sehr stark und war 

abhängig von den Reaktionen des untersuchten Tieres während der Narkose. So hatte die 

Atemtätigkeit den größten negativen Einfluss auf die Darstellbarkeit der okularen Strukturen, 

da ausgeprägte und schnelle Kiemendeckelbewegungen zu Bewegungen des Fischkopfes 

und somit zum Verlust der benötigten genauen Schallkopfposition führten. Auch ein 

verbleibender Augendrehreflex zu Beginn der Narkose, welcher zur Rotation des Bulbus 

entgegen der Drehrichtung des Fischkörpers führte, erschwerte die sonographische Unter-

suchung.  

Insgesamt war die Untersuchung des rechten Auges zu Beginn der Narkose zeitaufwändiger 

und schwieriger, da zunächst die individuelle Fixation eines Fisches und die Positionierung 
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des Schallkopfes gefunden werden mussten. War dies gegeben und die Einstellungen am 

Ultraschallgerät an die individuellen Gegebenheiten einer Untersuchung angepasst, konnte 

die Untersuchung zügig durchgeführt werden. Das Umgreifen beim Seitenwechsel zur Unter-

suchung des linken Auges nahm wieder etwas Anpassungszeit in Anspruch, konnte aber 

nach einiger Übung schnell und sicher erfolgen. 

Die Gruppenzugehörigkeit, also die Körpergröße der Koi, nahm insofern Einfluss auf die 

Untersuchungsdauer bzw. den Verlauf der Untersuchung, als dass ein Fisch mit einem 

größerem Körperumfang leichter für den Untersucher zu fixieren und positionieren war. Auch 

führte ein entsprechend größerer Bulbusumfang bei Koi der Gruppe III schneller zu opti-

malen Bildeinstellungen auf dem Monitor. 

Die zum Teil erheblich längeren Untersuchungszeiten bei vereinzelten Fischen entstanden 

zumeist nicht durch verlängerte B-Mode-Untersuchungen, sondern durch eine erschwerte 

Darstellung des retrobulbären Blutflusses via Dopplersonographie.  

Die biometrische Auswertung der Sonogramme erfolgte erst nach Beendigung der Narkose 

anhand gespeicherter Ultraschallbilder und hatte somit keinen Einfluss auf die Untersuch-

ungsdauer. 

5.3.2 Akzeptanz und Verträglichkeit 

Da die sonographische Untersuchung am sedierten Koi stattfand, war die Akzeptanz gegen-

über dem Handling und der Ultraschalluntersuchung sehr gut. Es wurden keinerlei Abwehr-

bewegungen der Tiere während der Fixation beobachtet. Ein Kontakt zwischen Schallkopf 

und Hornhaut war zu keinem Zeitpunkt vorhanden, weshalb eine mechanische Verletzung 

des Fischauges durch die Druckausübung der Ultraschallsonde ausgeschlossen war. Ob die 

verwendete MS-222-Tauchbadnarkose nur zu einer vorübergehenden Muskelrelaxation mit 

Verlust der willkürlichen Bewegung oder zu einer tatsächlichen Hypnose mit Bewusstseins-

verlust führte, kann nach derzeitigem Forschungsstand nicht abschließend geklärt werden 

(GEIGER 2007). Nach Erwachen aus der Narkose zeigten alle Tiere ein arttypisches Ver-

halten und auch 24 Stunden nach der Untersuchung wurden weder Auffälligkeiten bei der 

klinischen Untersuchung, noch im Verhalten der Koi beobachtet. 

Das für die Tiermedizin entwickelte MyLab™Sat VET Ultraschallgerät erfüllte alle Anforder-

ungen der humanmedizinischen Sicherheitsvorschriften und erreichte somit auch mit dem 

hochfrequenten 22-MHz-Schallkopf nicht die von der Food and Drug Administration und vom 

American Institute of Ultrasound in Medicine, sowie von der Strahlenschutzkommission 
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festgelegte maximale Schallintensität von 100 mW/cm² im bestrahlten Gewebe. Wie von der 

STRAHLENSCHUTZKOMMISSION (1998) empfohlen, wurde die Strahlungsintensität und 

die Untersuchungsdauer trotzdem so gering wie möglich gehalten. Eine Temperaturmessung 

innerhalb der okularen Strukturen während und nach der Ultraschalluntersuchung wurde im 

Rahmen dieser Studie nicht durchgeführt. Auch wurde keine sonographische Wieder-

holungsuntersuchung nach einigen Stunden oder Tagen durchgeführt, sodass nicht sicher 

ausgeschlossen werden kann, dass subklinische Mikroläsionen innerhalb des Auges durch 

die Ultraschalluntersuchung entstanden sein könnten. Aufgrund oben aufgeführter Aspekte 

wird dies jedoch als unwahrscheinlich erachtet. 

Abschließend lässt sich zusammenfassen, dass weder die Narkose, noch die Ultraschall-

untersuchung einen klinisch erkennbaren gesundheitsschädigenden Einfluss oder eine un-

verhältnismäßige Stressbelastung für die Tiere darstellte. Durch die Untersuchung innerhalb 

des Wassers und eine minimale Fixation mit behandschuhten, feuchten Händen, wurde die 

empfindliche Körperoberfläche der Tiere bestmöglich geschont. Durch die Narkose wurde 

die Stressbelastung, wie in der Literatur (KÖLLE und HENKE 2004) empfohlen, auf ein Mini-

mum reduziert. 

5.3.3 Darstellung der physiologischen Strukturen 

5.3.3.1 Allgemeine Darstellbarkeit 

Das Fischauge ließ sich innerhalb des Wassers sehr gut sonographisch untersuchen. Die 

ophthalmologische Sonographie bietet sich zur praktikablen und schnellen Überprüfung der 

Augengesundheit gerade bei Fischen an, da sich hier der Bulbus im physiologischen Zu-

stand leicht von seiner knöchernen Umgebung abhebt und sich frei von Augenlidern, durch 

rudimentäre Augenmuskeln kaum beweglich, dem Untersucher uneingeschränkt präsentiert 

(STOSKOPF 1993b). Vorteilhaft wirkt sich zudem die Tatsache aus, dass die meisten Fische 

im Rahmen einer klinischen Untersuchung ohnehin sediert werden müssen (STOSKOPF 

1993a; JURK 2002; KÖLLE und HENKE 2004; ROBERTS 2009). 

Dadurch, dass die Untersuchungen unter Wasser durchgeführt wurden, konnte sowohl auf 

einen direkten Kontakt zwischen Schallkopf und Fischauge, als auch auf die Verwendung 

einer Vorlaufstrecke verzichtet werden, was eine nahezu artefaktfreie Wiedergabe der 

physiologischen Gegebenheiten des Fischauges ermöglichte. Die physiologische Krümmung 

der Hornhaut, sowie die Distanzverhältnisse innerhalb des vorderen Augensegmentes, 

blieben unter Wasser ohne Ausübung von äußerlichem Druck durch den Schallkopf oder 
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Änderungen der Luft- bzw. Wasserdruckverhältnisse absolut konstant. Aus eben diesen 

beschriebenen Gründen empfehlen zahlreiche Autoren, sowohl für die Humanmedizin, als 

auch für die Veterinärmedizin, zur Darstellung des vorderen Augensegmentes und insbe-

sondere für die biometrische Vermessung der intraokularen Strukturen den Einsatz des 

sogenannten Immersionsverfahrens unter Verwendung einer Wasservorlaufstrecke 

(GUTHOFF 1988; HOFFMANN et al. 1998; STOLZENBERG 2006; HARRIS et al. 2008; 

HUFEN und KORBEL 2009; KAUSHIK und PANDAV 2010). 

Durch die starken Impedanzunterschiede der verschiedenen Augenmedien eignet sich das 

B-Mode-Sonogramm hervorragend zur Darstellung des Augeninneren (DOWNEY et al. 

1996). Auch beim Fisch konnten Kornea, vordere Augenkammer und Linsenvorderfläche, 

sowie die Iris mit ihrer Pupillenöffnung, ohne große Mühe in jedem Fall schnell und sicher 

sowohl in der axial-vertikalen, als auch in der axial-horizontalen Schnittebene, dargestellt 

werden. Die Detailerkennbarkeit bei Verwendung des 22-MHz-Schallkopfes war absolut 

ausreichend, um die klinisch relevanten Strukturen des gesamten Fischauges darzustellen 

und zu beurteilen. Bei der sonographischen Darstellung des vorderen Augensegmentes 

mittels 22-MHz-Sonde ergaben sich keine klinisch relevanten Nachteile in der Beurteilbarkeit 

der Strukturen von Kornea, vorderer Augenkammer und Linse beim Koi gegenüber der von 

SHEN et al. (2005) an den Augen von ca. 15 cm großen juvenilen Buntbarschen einge-

setzten Ultraschallbiomikroskopie mittels 50-MHz-Schallkopf. Kammerwinkel und hintere 

Augenkammer hingegen waren bei der Verwendung der 22-MHz-Sonde nicht in jedem 

Ultraschallbild hinreichend genau zu beurteilen, weshalb hierfür der Einsatz der Ultraschall-

biomikroskopie geeigneter erscheint.  

Auch der Glaskörper und die laterale Bulbusbegrenzung wurden bei Fischen bis zu einer 

Körperlänge von 30 cm sonographisch gut erfasst. Die Bulbi größerer Koi konnten aufgrund 

der begrenzten Schallfeldbreite des verwendeten Schallkopfes nicht in ihrem vollen trans-

versalen Durchmesser erfasst werden.  

Mediane Anteile des Glaskörpers und der hinteren Bulbuswand waren aufgrund der unge-

wöhnlich und so in der veterinärmedizinischen Literatur noch nicht beschriebenen starken 

Schallauslöschung durch die sphärische, hoch refraktäre Fischlinse nur eingeschränkt in der 

axialen Schnittebene darstellbar. Diese Artefaktbildung stellte das wohl auffälligste 

Phänomen bei der sonographischen B-Mode-Untersuchung des Fischauges dar. Die 

beschriebene Schallauslöschung erstreckte sich als breites, anechogenes Band  von der 

vorderen Linsenkapsel ausgehend durch das gesamte hintere Augensegment bis zum 

Bildschirmrand. Aufgrund dieses Phänomens empfiehlt sich zur Darstellung der medianen 
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Strukturen des hinteren Augensegmentes die oblique Schnittebene unter Umgehung der 

Linse, wie beispielsweise von BYRNE und GREEN (2002b) beschrieben. Näheres zur Dar-

stellbarkeit des hinteren Augensegmentes beim Koikarpfen findet sich in der Arbeit von 

BRANDSTETTER (2014). 

Insgesamt lässt sich feststellen, dass sich die okularen Strukturen des vorderen Augen-

segmentes mit Ausnahme der beschriebenen Schallauslöschung distal der vorderen Linsen-

kapsel beim Fisch ähnlich darstellen wie bei Landvertebraten und Menschen. Ein auffälliges, 

abweichendes Detail stellte jedoch die in ihrer Tiefe variable, sehr gering ausfallende Vorder-

kammertiefe dar. Wie schon von zahlreichen Autoren in anatomischen Arbeiten beschrieben, 

berührt die Linse des Fisches nahezu das Korneaendothel (WALLS 1967; MILLICHAMP 

1991; STOSKOPF 1993b; WILLIAMS 2012a). Die flache und variable Tiefe der vorderen 

Augenkammer stellt, wie auch das einzigartige Phänomen der Linsenverschiebung entlang 

der axialen Bulbusachse zur Akkommodation, eine in der Tierwelt einmalige Anpassung an 

die Lebensbedingungen unterhalb der Wasseroberfläche dar (WALLS 1967). 

5.3.3.2 Kornea 

Da die Krümmung der Kornea bei Fischen geringer ausfällt als bei Landvertebraten (NICOL 

1989), war in den meisten Fällen, anders als bei Studien an Kleintieren (HOFFMANN 2002) 

oder Vögeln (KORBEL et al. 2009; STROBEL 2010), die Darstellung der gesamten Kornea 

einschließlich ihrer Peripherie, sowie der Übergang zwischen Kornea und Sklera, möglich. 

Korneaendothel und  -epithel ließen sich immer gut als hyperechogene Linien vom Hornhaut-

stroma differenzieren. Das Hornhautstroma fiel im Gegensatz zum Stroma der menschlichen 

Hornhaut (GUTHOFF 1988) relativ dünn aus. Diese Beobachtung konnten bereits ZHAO et 

al. (2006) beim Zebrafisch aufstellen. Sie wiesen via Elektronenmikroskopie nach, dass das 

Stroma der Fischhornhaut lediglich 30 – 40 % der Korneadicke einnimmt, im Gegensatz zu 

den 90 % beim Menschen. Auch die in der Literatur beschriebene periphere Verdickung der 

Kornea (WALLS 1967; NICOL 1989; ROBERTS und ELLIS 2001) konnte im Sonogramm 

dargestellt werden. 

Auffällig war die Tatsache, dass bei rund 60 % der untersuchten Augen die temporalen 

Anteile der Kornea in der axial-horizontalen Schnittebene eine geringere Krümmung als 

nasale Anteile aufwiesen und somit die temporale Peripherie des vorderen Augensegmentes 

leicht abgeflacht wirkte. Verstärkt wurde dieses Phänomen dadurch, dass eine exakte 

Positionierung des Schallkopfes bei der Untersuchung des linken Auges in der axial-

horizontalen Schnittebene dem Untersucher (Rechtshändler) am schwersten fiel. Als Grund 
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hierfür kann aber auch die physiologisch leicht nach temporal geneigte Stellung des Bulbus 

innerhalb seiner knöchernen Umgebung angegeben werden, was in Verbindung mit einer 

ungenauen axialen Ausrichtung des Schallkopfes zu einer geringgradig abgeflachten 

Darstellung der temporalen Bulbusperipherie führte. Anderseits konnte durch postmortale 

Untersuchungen auch an fixierten Augenpräparaten eine leichte temporale Abflachung der 

Bulbusperipherie beobachtet werden. Zudem ergaben die biometrischen Studien, dass der 

temporale Kammerwinkel durchschnittlich 8 % flacher ausfällt als der nasale Winkel, was 

vermuten lässt, dass die temporalen Bulbusanteile anatomisch bedingt tatsächlich leicht 

flacher ausfallen. Dieses anatomische Detail wurde im Sonogramm durch oben erläuterte 

Problematik vermutlich noch verstärkt. Anatomische Beschreibungen hierzu sind bisher nicht 

in der Literatur zu finden. 

5.3.3.3 Vordere Augenkammer 

Die vordere Augenkammer stellte sich überwiegend anechogen dar, wurde jedoch aufgrund 

ihres geringen Durchmessers gerade in paramedianen, anterioren Bereichen von zahl-

reichen Reverberationsartefakten, von der aufliegenden Kornea ausgehend, überdeckt. Die 

Reverberationen der Kornea waren zum Teil schwer von der vorderen Linsenkapsel zu 

differenzieren. Dieses Phänomen wurde bisher noch nicht in der Literatur beschrieben. 

Die Vorderkammertiefe stellte sich bei der zu Beginn einer jeden Untersuchung durch-

geführten Ausmessung des rechten Auges im axial-vertikalen Schnitt im Durchschnitt rund 

10 % größer dar, als bei den übrigen Messungen. Dies ist mit großer Wahrscheinlichkeit 

damit zu erklären, dass die Fische zum Teil zu Beginn der sonographischen Untersuchung 

noch nicht vollständig sediert waren, obwohl sie nach den Bewertungskriterien des üblichen 

Narkoseprotokolls für Fische (BROWN 1993; STETTER 2001b; KÖLLE und HENKE 2004) 

als tief sediert beurteilt wurden. Durch die mangelnde Sedation war die Reaktion auf 

optische Reize noch vorhanden, was zu einer aktiven Akkommodation und somit zum 

Rückzug der Linse entlang der Bulbusachse führte, die sich im Sonogramm als vergrößerte 

Vorderkammertiefe darstellte. Die Problematik der subjektiven Einschätzung des Narkose-

stadiums bei Fischen wurde bereits von GEIGER (2007) und BRETZINGER (2001) aus-

führlich thematisiert. Die Möglichkeiten einer objektiven Beurteilung der Narkosetiefe, 

beispielsweise über Pulsoxymetrie oder Echokardiographie, sind bisher im klinischen Alltag 

nur eingeschränkt einsetzbar, da wenig über die normalen Vitalparameter des Fisches und 

deren Abhängigkeit von Umwelteinflüssen bekannt ist (KÖLLE und HENKE 2004). Die oph-

thalmologische Sonographie mit Darstellung der aktiven Akkommodation würde sich daher 
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auch als weiteres Kriterium zur objektiven Einschätzung der Narkosetiefe bei Zierfischen 

eignen. 

SHEN et al. (2005) vermaßen im Rahmen ihrer Studie zur Form-induzierten Myopia 

(Kurzsichtigkeit) bei Fischen mithilfe der Ultraschallbiomikroskopie im B-Mode-Verfahren die 

endotheliale Vorderkammertiefe bei acht jungen Buntbarschen (Oreochromis niloticus) und 

stellten hierbei unter anderem auch die Beobachtung auf, dass der Abstand zwischen 

Korneaendothel und Linsenvorderfläche je nach Akkommodationsgrad variiert. Dieser 

Vorgang ließe sich durch eine tiefe Narkose unterbinden. Sie wiesen zudem nach, dass das 

visuelle Umfeld eines Fisches, wie bei höheren Vertebraten auch, die Entwicklung des 

Bulbus stark beeinflusst. So stellten sie nach vierwöchiger visueller Ruhigstellung der 

Barsche eine Verlängerung der Bulbusachse und eine Vertiefung der Vorderkammer fest 

und stellten die Vermutung auf, dass dieses Phänomen, entgegen den Beobachtungen an 

Vögeln und Säugern, bei Fischen nicht nur während der Jugendentwicklung, sondern zeit-

lebens zu beobachten sei, da Fische und damit ihre Augen lebenslang je nach Umweltbe-

dingungen weiterwachsen. Eine sonographisch erfasste größere Vorderkammertiefe wäre 

somit geeignet, um mangelhafte Haltungsbedingungen (in völliger Dunkelheit) oder einen 

eingeschränkten Visus beim Fisch nachzuweisen. 

Bei 8 % der untersuchten, klinisch augengesunden Fische stellte sich die Vorderkammertiefe 

beider Augen unabhängig von der Schnittebene und vom Zeitpunkt der Untersuchung größer 

als durchschnittlich gemessen dar. Es konnte jedoch in keinem Fall eine pathologische 

Genese nachgewiesen werden. Als Erklärung käme nach oben genannter Hypothese ein 

eingeschränktes Sehvermögen in Frage. Es ist jedoch ebenso möglich, dass besagte Tiere 

über den gesamten Zeitraum der Untersuchung nicht das tiefe Sedationsstadium erreicht 

hatten und somit ein aktiver Rückzug der Linse durch den Musculus retractor lentis stattfand 

(SHEN et al. 2005). Dies würde auch die vergleichsweise hohe Variabilität der Vorder-

kammertiefe von bis zu  28 % Abweichung erklären. 

Der transversale Durchmesser der vorderen Augenkammer war im axial-horizontalen Schnitt 

des B-Mode-Sonogramms durchschnittlich um rund 6,9 % größer als in der axial-vertikalen 

Schnittebene. Dies ist durch die Anatomie des anterior-posterior leicht abgeflachten Bulbus 

zu erklären, welcher somit im Transversalschnitt länger ausfällt als im Axialschnitt (NICOL 

1989; WHITAKER 2001; JURK 2002). 
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5.3.3.4 Linse 

Die vordere Linsenkapsel stellte sich wie erwartet auch beim Fisch als hyperechogene, 

relativ breite konvex gebogene Linie in der Medianen der vorderen Augenkammer dar, wobei 

sie entlang der anterior-posterioren Bulbusachse im Gegensatz zu anderen Vertebraten 

(BARR 1992; GUTHOFF et al. 1999; GUMPENBERGER und KOLM 2006) sehr weit 

anterior, dicht hinter dem Korneaendothel aufzufinden war und zum Teil von Reverber-

ationen der aufliegenden Hornhaut überdeckt wurde. Dass die laterale Begrenzung der Linse 

im axialen B-Mode-Sonogramm nicht darzustellen ist, wurde bereits hinreichend bei Mensch 

(GUTHOFF et al. 1999) und Tier (POULSEN NAUTRUP et al. 1998; HOFFMANN und 

KÖSTLIN 2004; GUMPENBERGER und KOLM 2006) beschrieben und ist auf die Beugung 

und Streuung der Schallstrahlen an der abgerundeten Linsenperipherie zurückzuführen 

(BARR 1992). Daher erscheint es nicht verwunderlich, dass dieses Phänomen bei der 

sphärischen Fischlinse ebenso zu beobachten war. Im Gegensatz hierzu wurde im Rahmen 

dieser Studie erstmalig gezeigt, dass es beim Fisch nicht möglich ist, die hintere 

Linsenfläche sonographisch darzustellen, wie es beispielsweise bei Vögeln 

(GUMPENBERGER und KOLM 2006; KORBEL et al. 2009; STROBEL 2010) und Reptilien 

(HOLLINGSWORTH et al. 2007), sowie Klein-  (POULSEN NAUTRUP et al. 1998; 

HOFFMANN und KÖSTLIN 2004) und Großtieren (METTENLEITER 1995; CRONAU und 

GERHARDS 2004; POTTER et al. 2008) beschrieben wird.  

Die Fischlinse führte aufgrund ihrer starken radiären Schichtung und ihrer kugeligen Gestalt 

sowie der hohen Refraktivität (HARGIS 1991; WILLEKE 2008; KRÖGER 2012), verbunden 

mit einem hohen Impedanzunterschied zum umliegenden Gewebe bzw. Kammerwasser 

(MANNION 2006), zu einer auffällig starken Artefaktbildung, die die Interpretation des 

axialen B-Mode-Sonogramms stark beeinträchtigte. Während der senkrecht auftreffende 

Schallstrahl vollständig reflektiert wurde, wurden weiter lateral auftreffende Schallwellen von 

den peripheren Anteilen der runden Linsenkapsel gebrochen und innerhalb des mehr-

schichtigen Linsenstromas wiederholt reflektiert, sodass sie nicht wieder den Schallkopf 

erreichten (GUTHOFF 1988; POULSEN NAUTRUP 1998b). Als Folge traten durch das 

Zentrum der Linse keine Schallstrahlen hindurch, was zu einer vollständigen Schall-

auslöschung distal gelegener Bereiche führte (MANNION 2006). Der distal der vorderen 

Linsenkapsel auftretende Schallschatten ließ weder die Darstellung der hinteren Linsen-

fläche, noch die Beurteilung der medianen Bulbusbereiche und der hinteren Augenwand 

einschließlich des Sehnervenkopfes zu. Ein solches Phänomen konnte bisher nur ansatz-

weise bei stark ausgeprägten Katarakten beobachtet werden (SUSAL 1987). 
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5.3.3.5 Iris, Pars ciliaris und hintere Augenkammer  

Die unbewegliche Fischiris ließ sich als breite, stark echogene Struktur sehr gut sonograph-

isch darstellen. Sie war vergleichbar mit der Iris im Sonogramm des Vogel- (STROBEL 2010) 

oder Reptilienauges (HOLLINGSWORTH et al. 2007) und verlief als horizontale Linie in 

Richtung Pupillenrand. Durch zum Teil starke Schichtdickenartefakte durch die breite Iris 

wurde die Darstellung der hinteren Augenkammer teilweise behindert. Die sonographische 

Darstellung der hinteren Augenkammer gelang lediglich bei ca. 65 % der Untersuchungen 

und nur in der axial-vertikalen Schnittebene, da hier die linsenfixierenden Strukturen des 

Musculus retractor lentis und des Ligamentum suspensorium lentis aufzufinden waren. Im 

Gegensatz zu Untersuchungen am Vogel (GUMPENBERGER und KOLM 2006; STROBEL 

2010) und Säuger (ROGERS et al. 1986) mit vergleichbaren Ultraschallsonden, ließ sich die 

hintere Augenkammer bei Auffinden der oben genannten Strukturen beim Fisch meist sehr 

gut darstellen.  

Der bei Fischen zur Akkommodation dienende Musculus retractor lentis wurde, ebenso wie 

das linsenfixierende Ligamentum suspensorium lentis, erstmalig im Rahmen dieser Studie 

sonographisch dargestellt. Dass die Strukturen nur in der axial-vertikalen Schnittebene 

aufzufinden waren, ist mit anatomischen Gesichtspunkten leicht zu erklären (WALLS 1967; 

NICOL 1989). Warum sie jedoch nur in 65 % der Fälle dargestellt werden konnten, ist unklar. 

Vermutlich spielten hierbei sowohl ein mangelhaftes Auflösungsvermögen des Schallkopfes, 

als auch die starke Artefaktbildung zwischen breiter Iris und Glaskörperperipherie eine Rolle. 

5.3.3.6 Kammerwinkel 

Dass der Kammerwinkel nur an rund 70 % der Ultraschallbilder darstellbar war, könnte 

darauf zurückzuführen sein, dass die Struktur des Ligamentum annulare, welches sono-

graphisch nicht von Korneaendothel und Iris differenziert werden konnte, diesen überdeckte 

und somit nur eingeschränkt einsehbar machte. Im Falle der Kammerwinkelinterpretation war 

das Auflösungsvermögen der 22-MHz-Sonde teilweise zu gering, weshalb zur eingehenden 

Untersuchung des Kammerwinkels der Einsatz der Ultraschallbiomikroskopie angezeigt ist. 

Ob für die Kammerwinkelmessung beim Fisch jedoch klinische Indikationen bestehen, bleibt 

angesichts der Tatsache, dass beim Fisch bisher keine Abflussstörungen des Kammer-

wassers mit Ausbildung eines Glaukoms nachgewiesen werden konnten (HARGIS 1991; 

GRAY et al. 2009), fraglich.    

Dorsaler und nasaler Kammerwinkel waren im Durchschnitt um 3,5 % bzw. 8 % größer als 

der ventrale bzw. temporale Winkel und korrelierten nicht mit der Körpergröße der Fische. 
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Ventraler und temporaler Kammerwinkel hingegen fielen mit zunehmender Fischgröße 

flacher aus. Gründe hierfür sind vermutlich im anatomischen Aufbau und in der Entwicklung 

des Fischauges zu suchen, welches zur temporalen und ventralen Peripherie mit zunehm-

endem Alter breiter und somit leicht flacher zu werden scheint. Diese Vermutung konnte 

durch eigene Studien am anatomischen Präparat bestätigt werden. Eine ähnliche Entwick-

lung findet nach NICOL (1989) bereits während der Metamorphose von Fischlarven statt. 

STOSKOPF (1993b) beschreibt, dass bei vielen Fischarten die Iris in Hauptblickrichtung zum 

Beutefang leicht ausgezogen ist. Eventuell verhalten sich andere anatomische Strukturen 

des Fischauges genauso, was erklären könnte, dass der Bulbus beim gründelnden Karpfen 

leicht nach ventral ausgezogen ist. Leider finden sich zu diesem speziellen Thema keine 

weiteren Angaben in der Literatur.  

5.3.4 Biometrie und Statistik 

5.3.4.1 Allgemeines 

In der Literatur wird zumeist das A-Mode-Verfahren zur Vermessung der Augenbinnenstruk-

turen als Goldstandard angegeben (COLEMAN 1979; HAMIDZADA und OSUOBENI 1999), 

da die okulare Distanzen im B-Bild aufgrund unterschiedlicher Schallausbreitungs-

geschwindigkeiten innerhalb der verschiedenen Medien des Auges, sowie durch Brechung 

und Beugung der Schallstrahlen, fehlinterpretiert werden können (HAMIDZADA und 

OSUOBENI 1999). Im Gegensatz hierzu existieren Studien, die bei der Durchführung 

biometrischer Messungen am Auge keine signifikanten Unterschiede zwischen A- und B-

Mode-Verfahren feststellen konnten (COTTRILL et al. 1989; TONI et al. 2010; WLEINSTEIN 

et al. 1966). EL-MAGHRABY et al. (1995) empfehlen sogar im Rahmen von biometrischen 

Messungen am Auge die Anwendung des B-Mode in der Tiermedizin, da der Tierarzt im 

Umgang mit dem zweidimensionalen B-Bild vertrauter ist und eine mangelnde Kooperation 

seitens des Patienten den Einsatz des A-Mode oft erschwert. 

Da bis dato weder Studien zur umfassenden Sonoanatomie des Fischauges, noch Referenz-

werte für die verschiedenen okulare Distanzen existieren, wurde im Rahmen dieser Arbeit 

die Anwendung des übersichtlichen B-Mode-Verfahrens gewählt. Die so erstellten Sono-

gramme ermöglichten erstmals eine umfangreiche Evaluierung der okularen Strukturen des 

vorderen Augensegmentes bei Fischen und sollen hauptsächlich die Grundlage für eine 

praktische Anwendung im Rahmen der Augenuntersuchung liefern. Inwiefern sich die 

biometrischen Messungen im B-Mode-Sonogramm von Untersuchungen im A-Mode 

unterscheiden, soll in nachfolgenden Studien geklärt werden. Ebenso wäre es interessant, 
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die in dieser Arbeit ermittelten Messwerte für die verschiedenen Strukturen des vorderen 

Augensegmentes mittels Ultraschallbiomikroskopie zu überprüfen. Diese Methode wurde 

beispielsweise bereits in der Studie von SHEN et al. (2005) zur Ausmessung der Vorder-

kammertiefe bei Buntbarschen eingesetzt und könnte helfen, die Präzision und Richtigkeit 

der Messmethode mittels 22-MHz-Sonde zu evaluieren. 

Es ist anzunehmen, dass das individuelle Handling der Fische, sowie die genaue Position-

ierung des Schallkopfes, einen gewissen Einfluss auf die gemessenen intraokularen 

Parameter nahmen. Daher sind zur Sicherung verlässlicher Referenzwerte, wie auch von 

BOROFFKA et al. (2006) empfohlen, weitere Studien mit unterschiedlichen Untersuchern zur 

genauen Prüfung der Interobserver-Reliabilität nötig. 

Es war nicht anzunehmen, dass sich das rechte und linke Auge eines Fisches aufgrund der 

Anatomie des Tieres in seiner sonographischen Darstellung unterscheiden würden, eher 

waren auftretende Abweichungen auf die unterschiedliche Fixation des Fisches während 

beider Untersuchungsgänge zurückzuführen. Die Vorderkammertiefe variierte zum Teil so 

stark zwischen den einzelnen Untersuchungen, dass die Werte sogar zwischen linkem und 

rechtem Auge eines untersuchten Koi schwankten. Eine mögliche Erklärung für diese 

Variabilität stellt auch hier der Akkommodationsmechanismus der Fische dar, welcher bereits 

ausführlich diskutiert wurde. Die Abweichung des Vorderkammerdurchmessers zwischen 

linkem und rechtem Auge ist vermutlich durch den vergleichsweise hohen Messwert (im 

Gegensatz zu den übrigen biometrisch erfassten okularen Distanzen) und der damit 

erweiterten Schwankungsbreite (Variationskoeffizienten von 13 bis 14 %) der Ergebnisse zu 

erklären. Da sich die durchschnittliche Differenz zwischen rechtem und linkem Auge beim 

Vorderkammerdurchmesser auf lediglich 0,07 mm belaufen, scheint die klinische Relevanz 

dieser Differenz jedoch vernachlässigbar. 

Die in dieser Arbeit aufgeführten Messwerte für das vordere Augensegment können als 

erste, vorläufige Referenzwerte für die ophthalmologische B-Mode-Sonographie von 

Koikarpfen mit einer Körperlänge von 15 – 30 cm herangezogen werden, wobei die weitere 

Differenzierung der Fischgröße in drei verschiedene Gruppen eine noch genauere Zuteilung 

der Werte zulässt. Gesichert werden können die Ergebnisse jedoch erst durch weitere 

Studien mit unabhängigen Messreihen und verschiedenen Untersuchern. 

5.3.4.2 Kornea 

Durch die starke Reflexion der Schallwellen an der impedanzreichen Hornhaut wurden die 

hyperechogenen Linien von Epi- und Endothel im zentralen Schallstrahl zum Teil stark 



  Diskussion 

139 

 

verbreitert dargestellt und es kam durch Schallreflexionen innerhalb der Kornea und der 

vorderen Augenkammer oft zum Auftreten mehrerer mäßig echogener Wiederholungsarte-

fakte (Reverberationen). Zur biometrischen Erfassung der zentralen Korneadicke wurden die 

Messpunkte daher jeweils am äußeren Rand der beiden hyperechogenen Linien gesetzt. Die 

so ermittelten Messwerte waren gut mit den durch LYNCH et al. (2007) via Pachymetrie bei 

33 augengesunden Koi gemessenen Werten vergleichbar. LYNCH et al. (2007) vermaßen 

insgesamt acht Augen von Koi mit einer Körperlänge von 25 – 30 cm und erhielten einen 

durchschnittlichen Messwert von 0,238 mm für die zentrale Korneadicke. Dieses Ergebnis ist 

mit der durchschnittlichen zentralen Korneadicke von 0,21 mm der Gruppe III, welches im 

Rahmen dieser Arbeit ermittelt wurde, vergleichbar. Da derzeit keine weiteren Studien zur 

Messung der zentralen Korneadicke am lebenden Koikarpfen existieren, wurde jenes 

Messverfahren ausgewählt, welches Ergebnisse lieferte, die mit den bereits vorhandenen 

Messergebnissen von LYNCH et al. (2007) vergleichbar sind. Zudem wurden zur Verifi-

zierung der eigenen Untersuchungsergebnisse die Augen von insgesamt fünf klinisch 

gesunden Koikarpfen post mortem am formalinfixierten Präparat vermessen. Hierbei wurde 

mittels Schublehre eine durchschnittliche zentrale Korneadicke von 0,2 mm ermittelt. Da sich 

die Formalinfixation laut RAVELHOFER (1996) jedoch auf das Volumen der feinen binde-

gewebigen Augenstrukturen auswirken kann, ist ein direkter Vergleich zwischen sono-

graphisch erfasster Distanz und physikalisch am Präparat ausgemessenem Wert nicht 

möglich, wenngleich er als ungefährer Richtwert zur Orientierung dienen kann. 

Durchschnittlich betrug die sonographisch ermittelte zentrale Korneadicke 0,2 mm und wies 

zumeist einen Variationskoeffizienten von ca. ± 10 % auf. Dieser relativ hohe Koeffizient gibt 

jedoch lediglich eine Abweichung von 20 µm an und ist daher in Bezug auf die Klinik-

relevanz zu vernachlässigen. Er ist vermutlich zum einen auf das begrenzte Auflösungs-

vermögen des verwendeten Schallkopfes und zum anderen auf die begrenzte Angabe-

genauigkeit (20 µm) des digitalen Messwerkzeuges im verwendeten MyLab™Desk Bild-

bearbeitungsprogramm zurückzuführen.  

5.3.4.3 Vordere Augenkammer 

Im Rahmen dieser Arbeit wurde bei insgesamt 8 % der biometrisch untersuchten Fische eine 

im Vergleich zum Durchschnitt vertiefte vordere Augenkammer diagnostiziert. Eine patho-

logische Genese konnte jedoch in keinem Fall nachgewiesen werden, so dass davon 

auszugehen ist, dass die Tiefe der vorderen Augenkammer im Vergleich zu den anderen 

vermessenen okularen Diastanzen sehr variabel ist und wahrscheinlich zum Großteil mit 

dem Akkomodationsmechanismus der Fische (aktiver Rückzug der Linse) zu erklären ist. Die 
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Aufstellung eines verlässlichen Referenzwertes für die Tiefe der vorderen Augenkammer 

erscheint daher nicht sinnvoll. Die durchschnittliche Vorderkammertiefe bei der über-

wiegenden Anzahl der untersuchten, narkotisierten Fische lag bei 0,28 mm ± 0,06 bis 0,09 

mm. In diesem relativ umschriebenen Bereich scheint sich demnach die Vorderkammertiefe 

des relaxierten Bulbus zu bewegen. Die Vorderkammertiefe präsentierte sich somit um ca. 

1/3 größer als die zentrale Korneadicke, was als ungefährer Richtwert für einen tief sedierten 

Koi von 15 – 30 cm Körperlänge angesehen werden kann. 

Eine Überprüfung der sonographisch erfassten Vorderkammertiefe des Koiauges war 

aufgrund fehlender Beschreibungen in der Literatur und der schwierigen postmortalen 

Darstellung in dieser Studie nicht möglich. Es gelang nicht, die formalinfixierten Bulbi ohne 

Verschiebung der Linse zu kalottieren, sodass die Vorderkammertiefe am Präparat nicht 

gemessen werden konnte. Eine Alternative würde hier ein Gefrierschnitt durch den 

enukleierten Bulbus liefern. Auf diese Weise konnten beispielsweise SHEN et al. (2005) ihre 

mittels Ultraschallbiomikroskopie ermittelten Werte für die Vorderkammertiefe des Bunt-

barsches erfolgreich bestätigen. 

5.3.4.4 Linse 

Die Linse präsentierte sich im B-Mode-Sonogramm nur in Form ihrer hyperechogen vorderen 

Linsenkapsel, die zur Erfassung der Vorderkammertiefe herangezogen wurde. Das anecho-

gene Stroma, welches sich weder von der anechogenen Vorderkammer, noch vom anecho-

genen Glaskörperraum abzeichnete, konnte biometrisch nicht erfasst werden, weshalb in 

dieser Arbeit keine Abgaben zum transversalen Linsendurchmesser gemacht werden 

konnten. Auch die hintere Linsenkapsel ließ sich aus zuvor erläuterten Gründen nicht wie bei 

Haussäugetieren (POULSEN NAUTRUP et al. 1998; CRONAU und GERHARDS 2004; 

HOFFMANN und KÖSTLIN 2004; BOROFFKA et al. 2007; TONI et al. 2010) und Vögeln 

(GUMPENBERGER und KOLM 2006; KORBEL et al. 2009; STROBEL 2010; DOROBEK 

2013) sowie Reptilien (HOLLINGSWORTH et al. 2007) darstellen, wodurch auch die Angabe 

des axialen Linsendurchmessers nicht möglich war. 

5.3.4.5 Kammerwinkel 

Die Biometrie des Kammerwinkels erwies sich im Rahmen dieser Arbeit als besonders 

aufwendig, da es trotz exakter Positionierung des Schallkopfes senkrecht zum Auge oft 

schwierig war, beide Kammerwinkel einer Schnittebene gleichzeitig, möglichst parallel zur 

Horizontalen, darzustellen. Zudem war die Auflösung des verwendeten Schallkopfes oftmals 

nicht ausreichend, um einen klaren Winkel zwischen Korneaendothel und Irisvorderfläche zu 
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definieren, weshalb die Winkelmessung oftmals mit relativ langen Geraden interpoliert 

werden musste. Um dennoch vergleichbare Ergebnisse zu gewinnen, wurden die Bild-

ausschnitte der Kammerwinkel für diese Arbeit im Nachhinein mithilfe eines Bildbearbei-

tungsprogramms vergrößert, was sich leider oft negativ auf die Detailschärfe auswirkte. Dies 

erklärt auch die relativ große Schwankungsbreite von über 6 % während der Wieder-

holungsmessungen. In der Humanmedizin wird daher heutzutage zumeist die Ultraschall-

biomikroskopie oder Kohärenztomographie zur Kammerwinkelmessung eingesetzt (AL-

FARHAN und ALMUTAIRI 2013). STOLZENBERG (2006) gibt dagegen an, dass die 

Reliabilität der Messmethode in seiner humanmedizinischen Studie zur Kammerwinkelmes-

sung mittels einer 20-MHz-Sonde als gut bis sehr gut zu bewerten ist. Da für die sono-

graphische Darstellung des Kammerwinkels beim Fisch jedoch keinerlei Erfahrungen 

vorliegen, müssen zur Überprüfung der hier angewandten Methode weitere Studien folgen. 

5.3.5 Reproduzierbarkeit und Reliabilität 

Die Reproduzierbarkeit der Ergebnisse während der Wiederholungsmessungen war, mit 

Ausnahme der Vorderkammertiefe, mit Variationskoeffizienten von zumeist ± 2 - 7 % gut bis 

zufriedenstellend. Bei der Vermessung des Vorderkammerdurchmessers war sie mit 2 - 3 % 

Variation sogar sehr gut. Lediglich die Vorderkammertiefe wies eine teilweise ungenügende 

Reliabilität auf. Die in dieser Studie angewandte Messmethode eignet sich somit zur Erfas-

sung von vorläufigen biometrischen Richtwerten für die okularen Strukturen des vorderen 

Augensegmentes bei 15 - 30 cm großen Koikarpfen. Aufgrund der hohen intraindividuellen 

Variabilität der Messergebnisse von 11 – 15 % Abweichung im Falle der Vorderkammertiefe, 

ist die Erstellung von Referenzwerten für diesen Parameter nicht sinnvoll, was nicht auf die 

mangelnde Eignung der Messmethode, sondern viel mehr auf die bereits erwähnten 

physiologischen Akkommodationsvorgänge zurückzuführen ist, die zu Beginn einer Tauch-

badnarkose mit MS 222 zu bestehen scheinen.  

Die Güte der verwendeten Messmethode ist jedoch nicht allein von der Reproduzierbarkeit 

(Präzision) abhängig, sondern auch von der Richtigkeit der ermittelten Ergebnisse, also der 

Übereinstimmung mit bestehenden Referenzwerten. Die Untersuchungen können somit 

präzise, sprich reproduzierbar, aber ungenau sein (ANDERMANN 2007). Bisher existieren 

jedoch, bis auf die Ergebnisse von LYNCH et al. (2007) zur zentralen Korneadicke, keine 

Angaben zu den intraokularen Parametern beim Koikarpfen, weshalb weitere Studien in 

verschiedenen Versuchsreihen und mit unterschiedlichen Untersuchern folgen müssen, um 

endgültige Referenzwerte zu ermitteln. 
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Die Arbeiten von LYNCH et al. (2007), SHEN et al. (2005) und WILLIAMS et al. (2007), 

sowie eigene postklinische Studien (siehe Punkt 5.4.2) zeigen aber bereits auf, dass die 

mittels B-Mode-Sonographie erfassten Parameter des Fischauges durchaus mit den Ergeb-

nissen der Pachymetrie und postmortalen Untersuchung vergleichbar sind. 

5.4 Die postklinische Dokumentation 

5.4.1 Darstellbarkeit der anatomischen Strukturen 

Zur Veranschaulichung der intraokularen Strukturen des Fischauges eignete sich die 

Formalinfixation mit vorheriger Parazentese nach dem Vorbild von RAVELHOFER (1996) 

und WILLIAMS et al. (2007) gut. Die Korneakrümmung blieb auch nach der Kalottierung 

erhalten und zeigte eine leichte temporale Abflachung. Die weiße, bindegewebige Sklera gab 

dem enukleierten Bulbus auch nach der Kalottierung Halt und war gut von der aufliegenden 

schwarzen Choroidea zu differenzieren. Das feine linsenfixierende Ligamentum suspen-

sorium war im Gegensatz zum starken Musculus retractor lentis nicht darstellbar. Vermutlich 

wurde dieses durch die kurzfristige Seitwärtsdrängung der Linse während der Kalottierung 

zerstört. Aus diesem Grund war der Ansatz des M. retractor lentis an der Linsenkapsel 

ebenfalls nicht darzustellen. Die hintere Augenkammer war somit post mortem nicht auf-

findbar. Im anatomischen Präparat präsentierte sich die kristalline Linse vollständig rund und 

absolut starr. Eine mechanische Verformung der radiär aufgebauten Linsensubstanz war 

nicht möglich, ebenso wenig wie eine Kalottierung der Linse in situ.  

Ein Gefrierschnitt des Bulbus, wie er beispielsweise in der Studie von SHEN et al. (2005) 

eingesetzt wurde, würde sich aus oben genannten Gründen zur Darstellung der ana-

tomischen Gegebenheiten des Fischauges noch besser eignen als eine Formalinfixierung, 

zumal diese Methode auch einen Vergleich mit den sonographisch ermittelten Parametern 

zuließe (siehe Punkt 5.4.2). 

Die fotografische Dokumentation nach Vorgaben aus der Vogelheilkunde von KORBEL 

(1990) und RAVELHOFER (1996) eignete sich wie erwartet ebenfalls sehr gut zur Darstel-

lung des Fischauges. 
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5.4.2 Übereinstimmung postklinischer und 

sonographischer Befunde 

Wie oben beschrieben, war es nicht möglich, den Bulbus mitsamt Linse im formalinfixierten 

Zustand unter Erhalt der physiologischen Strukturen zu kalottieren. Die Linse wurde bei der 

Bulbuskalottierung zur Seite verdrängt und befand sich demnach im Präparat nicht mehr in 

situ. Somit war auch eine postmortale Ausmessung der Vorderkammertiefe zum Vergleich 

mit der sonographisch erfassten Distanz nicht möglich. Eine realistische Abmessung gelang 

nur im Falle der konstanten Strukturen von Kornea und Linse. Die hierbei erfassten Werte 

waren sowohl mit den zuvor sonographisch ermittelten Ergebnissen, als auch mit den 

Angaben aus der Studie von LYNCH et al. (2007) zur zentralen Korneadicke, vergleichbar. 

Wie von STROBEL (2010) empfohlen, wurden die Bulbi entlang der jeweiligen sono-

graphischen Schnittebene kalottiert, wodurch ein direkter Vergleich mit dem B-Mode-Sono-

gramm ermöglicht wurde. Wie bereits WILLIAMS et al. (2007) in ihrer Studie feststellten, 

konnten die sonographischen Befunde in der postklinischen Dokumentation bestätigt 

werden. Die während der sonographischen Untersuchung beobachtete Abflachung der 

temporalen Bulbusperipherie konnte auch im anatomischen Präparat dargestellt werden. Die 

durchschnittlich ermittelte zentrale Korneadicke betrug bei der physikalischen Vermessung 

am Präparat ebenso wie bei der biometrischen Vermessung der B-Mode-Sonogramme ca. 

0,20 mm. Genauso fanden sich im Präparat die bei Fischen außergewöhnlich flache vordere 

Augenkammer, sowie die absolut sphärische Linse wieder. Die hintere Augenkammer war 

aufgrund der Zerreißung der linsenfixierenden Strukturen während der Kalottierung nicht 

auffindbar. Die Vermessung der axialen Vorderkammertiefe wurde aufgrund oben genannter 

Gründe nicht für sinnvoll erachtet und daher nicht durchgeführt. Der transversale Vorder-

kammerdurchmesser präsentierte sich in horizontal geschnittenen Bulbi größer als in vertikal 

kalottierten Augen. Die Messwerte des Vorderkammerdurchmessers von ca. 7 mm im 

Vertikalschnitt und 7,5 mm im Horizontalschnitt waren mit den sonographisch ermittelten 

Werten vergleichbar. Die Iris präsentierte sich im Präparat wesentlich dünner als im Sono-

gramm, was die Interpretation der breiten echogenen Strukturen distal der Iris als Schicht-

dickenartefakte bestätigte. Die Kammerwinkel konnten am anatomischen Präparat aufgrund 

der unvermeidbaren Traumatisierung der feinen bindegewebigen Strukturen während der 

Fixierung und Kalottierung nicht vermessen werden. Hierzu würde sich die Erstellung von 

Gefrierschnitten eignen oder eine histologische Untersuchung von Paraffinschnitten, wie in 

der Arbeit von GRAY et al. (2009) geschehen.
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5.5 Möglichkeiten und Grenzen der 

Sonographie am Fischauge 

Die vorliegende Studie zeigt auf, dass die ophthalmologische Sonographie hervorragend zur 

Darstellung der inneren Strukturen und Distanzverhältnisse des vorderen Augensegmentes 

beim Fisch geeignet ist und bestätigt somit den hohen klinischen Nutzwert im Rahmen 

veterinärmedizinischer Ultraschalluntersuchungen am Auge, wie es beispielsweise schon die 

Studie von WILLIAMS et al. (2007) am Heilbutt zeigte. Wie auch vorangegangene Arbeiten 

von GUMPENBERGER und KOLM (2006), STROBEL (2010) und zuletzt jene von 

DOROBEK et al. (2011) und LIEPERT (2013) am Vogelauge zeigten, ist die 

ophthalmologische Sonographie auch an relativ kleinen Augen und an schwierig 

handelbaren Patienten außerhalb der regulären Klein- und Großtierpraxis einsetzbar. So 

ermöglicht sie auch beim Fisch eine schnelle, praktikable und sichere Evaluierung der 

Augengesundheit im Rahmen einer eingehenden ophthalmologischen Untersuchung in 

Allgemeinnarkose. Der standardisierte Einsatz sollte also nicht länger der Klein- 

(HOFFMANN und KÖSTLIN 2004; SCHMID 2006) und Großtiermedizin (METTENLEITER 

1995; CRONAU und GERHARDS 2004) vorbehalten bleiben. Nicht zuletzt bringt die 

ophthalmologische Sonographie auch für die Teichwirtschaft enorme wirtschaftliche Vorteile, 

da sie eine belastbare Überprüfung der Visusfunktion ermöglicht und somit das Auffinden 

geschwächter Individuen erleichtert. Geschwächte Fische nehmen geringere Futtermengen 

auf, was sich in einer niedrigeren Wachstumsrate und verminderten Widerstandsfähigkeit 

äußert. Sie sind häufiger in innerartliche Aggressionen verwickelt und zeigen Fertilitäts-

defizite (WHITAKER 2001). 

Aus der Literatur (WILLIAMS und WHITAKER 1997; ROBERTS und RODGER 2001; JURK 

2002) ist bereits lange bekannt, dass Augenveränderungen bei Fischen sehr häufig und in 

frühen Stadien einer systemischen Erkrankung auftreten, oftmals bevor andere klinische 

Symptome auffallen. Sie gehen beim Fisch insbesondere mit Veränderungen der Kornea, Iris 

oder Linse einher (WILLIAMS und WHITAKER 1997; WHITAKER 2001). Als häufige 

Ursachen werden Entwicklungsstörungen, Mangelernährung, umweltbedingter Stress mit 

Immunsuppression durch schlechte Wasserqualität, Toxine, Aggression, Überbesatz, sowie 

ein erhöhter Infektionsdruck beschrieben (HARGIS 1991).  

Mit Kenntnis der Sonoanatomie des Fischauges hilft die ophthalmologische Ultraschall-

untersuchung dem Tierarzt frühe Stadien von pathologischen Augenveränderungen beim 
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Fisch zu erkennen um somit klinische Erkrankungen frühzeitig behandeln zu können. So 

werden gerade die während einer systemischen Infektion oft zu beobachtenden Wasseran-

sammlungen innerhalb der Kornea (JURK 2002) durch die Ultraschalluntersuchung schnell 

und sicher nachgewiesen, noch bevor es zur Trübung der Hornhaut infolge von Ulcerationen 

oder Neovaskularisation und Fibrose kommt. Sie erleichtert somit eine schnelle und sichere 

Diagnosestellung und die Einleitung einer geeigneten Therapie, auch wenn äußerlich 

erkennbare klinische Anzeichen fehlen. Damit eignet sich die ophthalmologische Sono-

graphie auch hervorragend zur Krankheitsprophylaxe bei Zierfischen, beispielsweise im 

Rahmen einer Ankauf- oder Bestandsuntersuchung, da sie dem geübten Untersucher rasch 

Aufschluss über mögliche Haltungsmängel und systemische Infektionen bietet. Sie ist schnell 

und einfach vor Ort, im Rahmen einer üblichen Allgemeinnarkose während der klinischen 

Untersuchung einsetzbar und bietet so beispielsweise gegenüber der mikrobiologischen 

Untersuchung, die mehrere Tage in Anspruch nimmt, einen großen Vorteil. Darüber hinaus 

eignet sie sich natürlich auch hervorragend zur Untersuchung des Retrobulbärraumes und 

somit zur Evaluierung eines Ex- oder Enophthalmus (WILLIAMS et al. 1995c). Weitere 

Indikationen sind der Nachweis okularer Traumata mit und ohne Einblutungen, sowie 

Linsenluxationen, Mikro- und Makrophthalmie und Phthisis bulbi (GONZALEZ et al. 2001; 

SCHMID 2006). 

Wie oben beschrieben, eröffnet die ophthalmologische Sonographie darüber hinaus völlig 

neue Möglichkeiten der Narkoseüberwachung bei Fischen, da sie aktuelle Aussagen über 

die Narkosetiefe und somit eine mögliche OP-Toleranz bietet. Im Gegensatz zur Echokardio-

graphie, die aufgrund fehlender Kenntnisse zur kardiovaskulären Physiologie des Fisches 

und deren starke Abhängigkeit von äußerlichen Umweltfaktoren nicht zur Beurteilung der 

Narkosetiefe herangezogen werden kann (KÖLLE und HENKE 2004; GEIGER 2007), steht 

der ophthalmologischen Sonographie durch die Ausmessung der Vorderkammertiefe und 

dem damit möglichen Nachweis einer aktiven Akkommodation diese Möglichkeit offen. Es 

müssen jedoch weitere Studien mit dem Schwerpunkt der Korrelation zwischen Vorder-

kammertiefe und Narkosestadium folgen, um diesen Parameter dem üblichen Narkose-

protokoll für Fische (BROWN 1993) hinzufügen zu können. 

Es muss jedoch abschließend auch erwähnt werden, dass sich die heutzutage gebräuch-

lichen 5 – 10 MHz Konvex-Ultraschallsonden, die im Rahmen von Geschlechtsbestimmun-

gen und parasitologischen Untersuchungen in der Aquakultur und Fischmedizin eingesetzt 

werden, kaum zum Einsatz am Fischauge, speziell zur Untersuchung des vorderen 

Augensegmentes, eignen. Diese Tatsache stellte auch HOEDT (2004) in seiner Arbeit am 

Koikarpfen fest. Ihr Auflösungsvermögen ermöglicht zwar eine Beurteilung des Retrobulbär-
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raumes größerer Fische (WILLIAMS et al. 2007) und somit beispielsweise die Evaluierung 

eines Exophthalmus, nicht jedoch eine eingehende Untersuchung des schallkopfnahen 

vorderen Augensegmentes. Dies wird wohl noch einige Zeit den wissenschaftlichen, zumeist 

universitären Einrichtungen mit modernen hochauflösenden Ultraschallgeräten und -sonden 

vorbehalten bleiben. 

Um die Ergebnisse der biometrischen Studien dieser Arbeit auf ihre Reliabilität hin zu 

überprüfen, müssen weitere Ultraschallstudien mit unterschiedlichen Untersuchern folgen. 

Nur so können die ermittelten Referenzwerte für ihren Einsatz im klinischen Alltag verifiziert 

werden. Mit den Erkenntnissen der vorliegenden Arbeit ergeben sich viele neue Frage-

stellungen, wie beispielsweise der oben angesprochene Zusammenhang zwischen Narkose-

stadium und Akkommodationsgrad und deren Einsatzmöglichkeiten im Rahmen der 

Überwachung des Narkosestadiums bei Fischen. Auch wäre es eine interessante Frage-

stellung, ob der Einsatz der Ultraschallbiomikroskopie weitere Vorteile zur Darstellung des 

vorderen Augensegmentes beim Fisch mit sich brächte. Eine Studie zum Vergleich von 

okularen Ultraschallbildern mit Gefrierschnitten von Augenpräparaten würde eine weitere 

Möglichkeit zur Überprüfung der Zuverlässigkeit der ophthalmologischen Sonographie bei 

Fischen ermöglichen. Die wohl interessanteste Frage wird jedoch voraussichtlich noch 

länger ungeklärt bleiben, nämlich ob es wirklich gelingen kann, allein durch den 

ophthalmologischen Ultraschall frühe Stadien systemischer Erkrankungen bei Fischen zu 

erkennen, um deren klinische Manifestation verhüten zu können. 
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6. Zusammenfassung 

Ziel dieser Arbeit war es, die Methode der okularen Sonographie auf ihre Eignung zur Dar-

stellung der anatomischen Strukturen des vorderen Augensegmentes des Fischauges hin zu 

überprüfen und ihre Einsatzmöglichkeiten in Hinsicht auf die Evaluierung der (Augen-) 

Gesundheit von Fischen aufzuzeigen.  

Hierzu wurden die Augen von insgesamt 75 klinisch gesunden Koikarpfen (Cyprinus carpio) 

mit Hilfe eines 22-MHz-Linearschallkopfes und dem Ultraschallgerät MyLab™Sat VET (Fa. 

Esaote) im B-Mode-Sonogramm untersucht und die Sonoanatomie des vorderen Augen-

segmentes in axial-vertikaler und axial-horizontaler Schnittebene dargestellt. Zudem wurden 

die zentrale Korneadicke, die axiale Vorderkammertiefe sowie der transversale Vorder-

kammerdurchmesser und die verschiedenen Kammerwinkel biometrisch erfasst und 

statistisch ausgewertet. Dafür wurden die Koi je nach Körperlänge in drei verschiedene 

Gruppen unterteilt. Darüber hinaus wurde eine Korrelation zwischen den okularen 

Parametern mit der Fischgröße und dem mittels Tonovet® ermittelten intraokularen Druck 

untersucht. 

Die vorliegende Arbeit zeigt, dass sich die okulare Sonographie aufgrund der Anatomie des 

Fischauges zur praktikablen und sicheren Überprüfung der Augengesundheit im Rahmen 

einer ophthalmologischen Untersuchung bei Fischen anbietet. Die Tatsache, dass die Tiere 

zur Ultraschalluntersuchung sediert werden mussten, stellt keinen Nachteil gegenüber 

anderen Methoden dar, da die meisten Fische im Rahmen einer klinischen Untersuchung 

ohnehin sediert werden müssen. Die Ultraschalluntersuchung unter Wasser erforderte 

keinen direkten Kontakt zwischen Schallkopf und Fischauge, wodurch auf die Verwendung 

einer Vorlaufstrecke verzichtet werden konnte, was eine nahezu artefaktfreie Wiedergabe 

der okularen Strukturen und Distanzverhältnisse ermöglichte. Durch die starken Impedanz-

unterschiede der verschiedenen Augenmedien eignete sich gerade das B-Mode-Sonogramm 

hervorragend zur Darstellung des Augeninneren. Die Detailerkennbarkeit bei Verwendung 

eines 22-MHz-Schallkopfes war absolut ausreichend, um die klinisch relevanten Strukturen 

des gesamten Fischauges darzustellen und zu beurteilen. Die Bulbi von Fischen mit einer 

Körperlänge von über 30 cm konnten aufgrund der begrenzten Schallfeldbreite (13 mm) des 

verwendeten Schallkopfes nicht in ihrem vollen transversalen Durchmesser dargestellt 

werden. 
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Eine starke Schallauslöschung durch die sphärische, hoch refraktäre Fischlinse stellte das 

auffälligste Phänomen bei der sonographischen Untersuchung des Fischauges dar und 

verhinderte die Evaluierung des medianen Bulbusbereiches distal der vorderen Linsen-

kapsel, einschließlich der hinteren Linsenfläche. Insgesamt zeigten sich die okularen 

Strukturen des vorderen Augensegmentes mit Ausnahme der beschriebenen Schallaus-

löschung beim Fisch ähnlich wie bei Landvertebraten. Ein auffälliges, abweichendes Detail 

stellte jedoch die in ihrer Tiefe variable, sehr gering ausfallende Vorderkammertiefe dar, die 

bereits in der Literatur beschrieben wurde. Zudem gelangen erstmals die Darstellung der 

linsenfixierenden Strukturen des Fischauges und der Nachweis einer aktiven Akkom-

modation durch Rückzug der Linse.  

Die Erkenntnisse der vorliegenden Arbeit zur sonographischen Erfassung der Variabilität der 

Vorderkammertiefe durch aktive Akkommodationsvorgänge eröffnen völlig neue Möglich-

keiten für die Überwachung der Narkosetiefe bei Fischen. Zudem eignet sich die sonograph-

ische Darstellung des vorderen Augensegmentes, insbesondere die Darstellung von Kornea 

und vorderer Augenkammer, hervorragend zur gezielten Evaluierung früher Stadien 

systemischer Erkrankungen bei Fischen, da diese Strukturen oftmals bereits vor dem Auf-

treten klinischer Symptome sonographisch erfassbare Veränderungen zeigen. Darüber 

hinaus ist die okulare Sonographie beim Fisch, wie bei anderen Tierarten auch, sehr gut 

geeignet, um primäre okulare Leiden, gerade bei Trübung der Augenmedien, zu evaluieren. 

Sie stellt somit in jedem Fall eine praktikable Bereicherung für die veterinärmedizinische 

Betreuung von Zierfischen dar. 
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7. Summary 

This study investigates the suitability of ultrasonography for displaying the anatomy of the 

anterior segment of the fish eye, and for examing the health of fish eyes and the physical 

health of fish in general.  

Therefore, the eyes of 75 healthy koi carps (Cyprinus carpio) were investigated. For this, the 

B-mode sonography was used with a 22 MHz receiving transducer and the MyLab™Sat VET 

ultrasound system (Fa. Esaote). The sonographical anatomy of the anterior segment of the 

fish eye was displayed in axial-vertical and axial-horizontal section plane. In addition, central 

corneal thickness, axial anterior chamber depth, transversal anterior chamber diameter and 

the various iridocorneal angles were biometricaly and statisticaly evaluated. The set of koi 

carps has been divided into three classes in relation to their size. Also, it was investigated 

whether there is a correlation between the ocular values and the sizes of the fish, resp. the 

intraocular pressure.  

This study shows that the ocular sonography is an appropriate method to examine the health 

of fish eyes in the course of an ophthalmologic examination of fish. Since most fish must be 

sedated for an general clinical examination, the necessary sedation for the sonographical 

examination of the eyes represents no disadvantage to other methods. The underwater 

sonographical examination requires no direct contact of the receiving transducer with the fish 

eye. Therefore, no section range is needed, which results in an almost artifact free displaying 

of the ocular structures and distance ratios. Because of the considerable differences of the 

impedances of the different ocular mediums the B-Mode sonography proved to be an 

adequate method for displaying the intraocular structures. The resolution of the 22 MHz 

receiving transducer was good enough to display the clinically relevant structures of the fish 

eyes. However, because of the limited lateral resolution of the transducer it was not possible 

to display the bulbi of fish bigger than 30 cm in their complete transversal expansion.  

The most striking phenomenon was the strong sound cancellation due to the spherical, 

highly refractory lens of the fish eye. This prevented the evaluation of the median bulb 

distally from the anterior lens capsule including the posterior lens surface. With exception of 

this sound cancellation the ocular structure appeared similar to those of tetrapod vertebrates. 

Only the variability and shallowness of the anterior chamber was significantly different from 

the data of tetrapod vertebrates. This fact is already well known and can be found in the 

literature. In addition, it was possible to display the lens fixating structures of fish eyes, and to 

provide evidence for the first time of an active accommodation by retraction of the lens.  
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The results of this study about observing of the variability of the depth of the anterior 

chamber through active accommodation give new possibilities for monitoring the depth of 

anaesthesia of fish. Furthermore, the sonographical examination of the cornea and the 

anterior chamber qualifies for the identification of systemic diseases of fish at an early state. 

These structures often show sonographical detectable changes before the appeareance of 

other clinical symptoms. Moreover, ocular sonography is well suited to detecting primary 

ocular medical conditions of fish, as it does for other animal species. In particular, it is a 

practical method for examing eyes with low permeability. Hence, the sonographical exa-

mination of fish eyes certainly provides a practical enrichment for the veterinary attendance 

of ornamental fish.  
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9.3 Statistische Auswertung 

Zusammenfassung (N = Anzahl der untersuchten Fische , Mittelwert, Median, Standard-
abweichung, Standardfehler, minimale und maximale W erte) je nach Gruppe (1 – 3) 

 

OD-axial-
vertikal-ZKD-
Durchschnitt

OD-axial-
vertikal-VKT 
Durchschnitt

OD-axial-
vertikal-VKD 
Durchschnitt

OS-axial-
vertikal-ZKD 
Durchschnitt

OS-axial-
vertikal-VKT 
Durchschnitt

OS-axial-
vertikal-VKD 
Durchschnitt

N 25,0000 25,0000 25,0000 25,0000 25,0000 25,0000
Mittelwert 0,1819 0,2921 6,4373 0,1844 0,2720 6,4307

Median 0,1833 0,2733 6,5000 0,1833 0,2733 6,4667
Standardabweichung 0,0131 0,0945 0,7604 0,0179 0,0568 0,6935
Standardfehler des 
Mittelwertes 0,0026 0,0189 0,1521 0,0036 0,0114 0,1387

Minimum 0,1500 0,1833 5,3667 0,1367 0,1567 5,3333
Maximum 0,2033 0,5867 8,0667 0,2133 0,4000 7,8000
N 25,0000 25,0000 25,0000 25,0000 25,0000 25,0000
Mittelwert 0,2049 0,2801 6,6893 0,2069 0,2236 6,7560
Median 0,2033 0,2800 6,6000 0,2033 0,2267 6,7333
Standardabweichung 0,0165 0,0578 0,5522 0,0177 0,0288 0,5679

Standardfehler des 
Mittelwertes 0,0033 0,0116 0,1104 0,0035 0,0058 0,1136

Minimum 0,1700 0,1733 6,1000 0,1833 0,1767 5,5333

Maximum 0,2467 0,4233 8,4333 0,2400 0,2833 8,6333
N 25,0000 25,0000 25,0000 25,0000 25,0000 25,0000
Mittelwert 0,2147 0,3275 8,1280 0,2077 0,3011 8,1573
Median 0,2100 0,3133 8,1000 0,2033 0,2733 8,2000
Standardabweichung 0,0154 0,0758 0,5675 0,0213 0,0982 0,5698
Standardfehler des 
Mittelwertes 0,0031 0,0152 0,1135 0,0043 0,0196 0,1140

Minimum 0,1900 0,2333 7,2000 0,1700 0,1767 7,0000
Maximum 0,2500 0,5867 9,1333 0,2667 0,5533 9,1333
N 75,0000 75,0000 75,0000 75,0000 75,0000 75,0000

Mittelwert 0,2005 0,2999 7,0849 0,1997 0,2656 7,1147
Median 0,2000 0,2867 6,8667 0,1967 0,2500 6,9667
Standardabweichung 0,0203 0,0791 0,9762 0,0217 0,0740 0,9668
Standardfehler des 
Mittelwertes 0,0023 0,0091 0,1127 0,0025 0,0085 0,1116

Minimum 0,1500 0,1733 5,3667 0,1367 0,1567 5,3333
Maximum 0,2500 0,5867 9,1333 0,2667 0,5533 9,1333

Zusammenfassung von Fällen

Gruppe
1

2

3

Insgesamt
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OD-axial-
horizontal-

ZKD 
Durchschnitt

OD-axial-
horizontal-VKT 

Durchschnitt

OD-axial-
horizontal-

VKD 
Durchschnitt

OS-axial-
horizontal-

ZKD 
Durchschnitt

OS-axial-
horizontal-VKT 

Durchschnitt

OS-axial-
horizontal-

VKD 
Durchschnitt

N 25,0000 25,0000 25,0000 25,0000 25,0000 25,0000
Mittelwert 0,1837 0,2480 7,0067 0,1800 0,2560 6,7747
Median 0,1833 0,2333 6,9000 0,1767 0,2400 6,8000
Standardabweichung 0,0116 0,0438 0,7376 0,0164 0,0801 0,6787
Standardfehler des 
Mittelwertes 0,0023 0,0088 0,1475 0,0033 0,0160 0,1357

Minimum 0,1633 0,1900 5,9333 0,1500 0,1567 5,5333
Maximum 0,2067 0,3467 8,3000 0,2133 0,5500 7,9667
N 25,0000 25,0000 25,0000 25,0000 25,0000 25,0000
Mittelwert 0,2055 0,2605 7,1973 0,2059 0,2423 7,1947
Median 0,2000 0,2467 7,1667 0,2033 0,2433 7,1000
Standardabweichung 0,0153 0,0582 0,5319 0,0165 0,0352 0,4532
Standardfehler des 
Mittelwertes 0,0031 0,0116 0,1064 0,0033 0,0070 0,0906

Minimum 0,1867 0,1500 6,4333 0,1767 0,1633 6,6333
Maximum 0,2533 0,3833 8,8333 0,2467 0,3500 8,5333
N 25,0000 25,0000 25,0000 25,0000 25,0000 25,0000
Mittelwert 0,2076 0,3051 8,7813 0,2085 0,3135 8,7893
Median 0,2000 0,3000 8,6333 0,2067 0,2933 8,8000
Standardabweichung 0,0173 0,0651 0,6783 0,0161 0,0648 0,5726
Standardfehler des 
Mittelwertes 0,0035 0,0130 0,1357 0,0032 0,0130 0,1145

Minimum 0,1833 0,2133 7,3333 0,1867 0,2267 7,6000
Maximum 0,2400 0,4533 9,9000 0,2467 0,4867 9,7667
N 75,0000 75,0000 75,0000 75,0000 75,0000 75,0000
Mittelwert 0,1989 0,2712 7,6618 0,1981 0,2706 7,5862
Median 0,1967 0,2600 7,4000 0,1967 0,2533 7,3667
Standardabweichung 0,0183 0,0609 1,0290 0,0207 0,0693 1,0419
Standardfehler des 
Mittelwertes 0,0021 0,0070 0,1188 0,0024 0,0080 0,1203

Minimum 0,1633 0,1500 5,9333 0,1500 0,1567 5,5333
Maximum 0,2533 0,4533 9,9000 0,2467 0,5500 9,7667

Insgesamt

Zusammenfassung von Fällen

Gruppe
1

2

3
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OD-axial-
vertikal-

Kammerwinke
l dorsal 

Durchschnitt 
(in Grad)

OD-axial-
vertikal-

Kammerwinke
l ventral 

Durchschnitt 
(in Grad)

OS-axial-
vertikal-

Kammerwinke
l dorsal 

Durchschnitt 
(in Grad)

OS-axial-
vertikal-

Kammerwinke
l ventral 

Durchschnitt 
(in Grad)

N 25,0000 25,0000 25,0000 25,0000
Mittelwert 35,8520 35,9000 35,7053 35,9880

Median 35,6000 36,1000 35,4000 36,1000

Standardabweichung 1,9760 2,1414 2,6777 2,3583

Standardfehler des 
Mittelwertes 0,3952 0,4283 0,5355 0,4717

Minimum 31,9333 32,0000 30,6000 31,2667
Maximum 40,0333 39,3667 40,8000 40,4667
N 25,0000 25,0000 25,0000 25,0000

Mittelwert 35,9480 34,5827 37,0453 34,8520

Median 35,4333 34,2000 36,7667 34,5667

Standardabweichung 2,3264 2,0870 1,8135 2,3479
Standardfehler des 
Mittelwertes 0,4653 0,4174 0,3627 0,4696

Minimum 32,5000 31,6667 32,8000 30,1000
Maximum 40,4333 38,4333 39,7000 39,3667

N 25,0000 25,0000 25,0000 25,0000

Mittelwert 36,0787 33,6560 35,8387 33,8693

Median 36,2000 33,0333 35,6333 34,3667
Standardabweichung 2,3241 1,9628 2,5693 1,4900
Standardfehler des 
Mittelwertes 0,4648 0,3926 0,5139 0,2980

Minimum 31,3333 28,6667 31,1000 30,7333
Maximum 40,0667 37,8667 42,1000 36,0000

N 75,0000 75,0000 75,0000 75,0000

Mittelwert 35,9596 34,7129 36,1964 34,9031
Median 35,6000 34,2667 36,0000 34,7333
Standardabweichung 2,1868 2,2380 2,4292 2,2519
Standardfehler des 
Mittelwertes 0,2525 0,2584 0,2805 0,2600

Minimum 31,3333 28,6667 30,6000 30,1000

Maximum 40,4333 39,3667 42,1000 40,4667

Insgesamt

Zusammenfassung von Fällen

Gruppe
1

2

3
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OD-axial-
horizontal-

Kammerwinke
l nasal 

Durchschnitt 
(in Grad)

OD-axial-
horizontal-

Kammerwinke
l temporal 

Durchschnitt 
(in Grad)

OS-axial-
horizontal-

Kammerwinke
l nasal 

Durchschnitt 
(in Grad)

OS-axial-
horizontal-

Kammerwinke
l temporal 

Durchschnitt 
(in Grad)

N 25,0000 25,0000 25,0000 25,0000
Mittelwert 37,3133 35,4693 37,3733 36,1652

Median 37,7333 36,1000 37,6000 37,0457

Standardabweichung 2,3308 1,7735 2,4854 2,5735

Standardfehler des 
Mittelwertes 0,4662 0,3547 0,4971 0,5147

Minimum 31,1333 31,1333 29,9667 31,2667
Maximum 42,1000 38,0667 42,3667 39,4667
N 25,0000 25,0000 25,0000 25,0000

Mittelwert 36,9413 34,2627 37,1720 34,3000

Median 36,9667 34,1000 37,3000 34,2000

Standardabweichung 1,7220 2,2004 2,4200 2,5531
Standardfehler des 
Mittelwertes 0,3444 0,4401 0,4840 0,5106

Minimum 33,0000 30,3667 32,3333 30,2333
Maximum 40,7667 38,0333 42,3333 38,5000

N 25,0000 25,0000 25,0000 25,0000

Mittelwert 37,5960 33,6280 37,6453 32,4213

Median 37,1000 33,3667 38,0667 31,9333
Standardabweichung 2,3708 1,8152 2,7292 2,4973
Standardfehler des 
Mittelwertes 0,4742 0,3630 0,5458 0,4995

Minimum 33,0667 30,5000 30,7667 27,5667
Maximum 42,2667 36,8333 42,9667 37,4667

N 75,0000 75,0000 75,0000 75,0000

Mittelwert 37,2836 34,4533 37,3969 34,2955
Median 37,1000 34,5333 37,6000 34,1667
Standardabweichung 2,1493 2,0616 2,5212 2,9415
Standardfehler des 
Mittelwertes 0,2482 0,2381 0,2911 0,3397

Minimum 31,1333 30,3667 29,9667 27,5667

Maximum 42,2667 38,0667 42,9667 39,4667

Insgesamt

Zusammenfassung von Fällen

Gruppe
1

2

3
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IOD wach Durchschnitt

IOD Narkose 

Durchschnitt

axial-vertikal-

ZKD-

Durchschnitt

axial-vertikal-

VKT 

Durchschnitt

axial-vertikal-

VKD 

Durchschnitt

axial-vertikal-

Kammerwinkel 

dorsal 

Durchschnitt (in 

Grad)

axial-vertikal-

Kammerwinkel 

ventral 

Durchschnitt (in 

Grad)

axial-horizontal-

ZKD 

Durchschnitt

axial-horizontal-

VKT 

Durchschnitt

axial-horizontal-

VKD 

Durchschnitt

axial-horizontal-

Kammerwinkel 

nasal 

Durchschnitt (in 

Grad)

axial-horizontal-

Kammerwinkel 

temporal 

Durchschnitt (in 

Grad)

N 50,000 50,000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000

Mittelwert 9,193 8,587 0,1831 0,2821 6,4340 35,7787 35,9440 0,1819 0,2520 6,8907 37,3433 35,8173

Median 9,000 8,667 0,1833 0,2733 6,4833 35,5500 36,1000 0,1833 0,2367 6,8500 37,6333 36,3167

Standardabweichung 2,229 1,887 0,0156 0,0778 0,7203 2,3302 2,2298 0,0142 0,0640 0,7112 2,3848 2,2154

Standardfehler des 

Mittelwertes
0,315 0,267 0,0022 0,0110 0,1019 0,3295 0,3153 0,0020 0,0091 0,1006 0,3373 0,3133

Minimum 4,667 4,333 0,1367 0,1567 5,3333 30,6000 31,2667 0,1500 0,1567 5,5333 29,9667 31,1333

Maximum 15,000 13,333 0,2133 0,5867 8,0667 40,8000 40,4667 0,2133 0,5500 8,3000 42,3667 39,4667

N 50,000 50,000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000

Mittelwert 9,287 8,020 0,2059 0,2519 6,7227 36,4967 34,7173 0,2057 0,2514 7,1960 37,0567 34,2813

Median 9,167 8,167 0,2033 0,2417 6,6500 36,4167 34,2500 0,2017 0,2450 7,1500 37,2167 34,1833

Standardabweichung 2,091 2,299 0,0170 0,0535 0,5554 2,1375 2,2027 0,0158 0,0485 0,4891 2,0819 2,3589

Standardfehler des 

Mittelwertes
0,296 0,325 0,0024 0,0076 0,0785 0,3023 0,3115 0,0022 0,0069 0,0692 0,2944 0,3336

Minimum 3,333 4,000 0,1700 0,1733 5,5333 32,5000 30,1000 0,1767 0,1500 6,4333 32,3333 30,2333

Maximum 14,000 14,000 0,2467 0,4233 8,6333 40,4333 39,3667 0,2533 0,3833 8,8333 42,3333 38,5000

N 50,000 50,000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000

Mittelwert 8,513 7,907 0,2112 0,3143 8,1427 35,9587 33,7627 0,2081 0,3093 8,7853 37,6207 33,0247

Median 8,167 7,000 0,2067 0,2833 8,1333 35,6833 33,9500 0,2033 0,2967 8,7000 37,5167 32,7333

Standardabweichung 1,812 2,540 0,0187 0,0878 0,5630 2,4277 1,7280 0,0166 0,0644 0,6212 2,5302 2,2450

Standardfehler des 

Mittelwertes
0,256 0,359 0,0027 0,0124 0,0796 0,3433 0,2444 0,0023 0,0091 0,0879 0,3578 0,3175

Minimum 5,333 4,000 0,1700 0,1767 7,0000 31,1000 28,6667 0,1833 0,2133 7,3333 30,7667 27,5667

Maximum 13,667 14,333 0,2667 0,5867 9,1333 42,1000 37,8667 0,2467 0,4867 9,9000 42,9667 37,4667

N 150,000 150,000 150,0000 150,0000 150,0000 150,0000 150,0000 150,0000 150,0000 150,0000 150,0000 150,0000

Mittelwert 8,998 8,171 0,2001 0,2827 7,0998 36,0780 34,8080 0,1985 0,2709 7,6240 37,3402 34,3744

Median 8,667 8,000 0,2000 0,2733 6,9167 35,8833 34,5167 0,1967 0,2533 7,3833 37,5000 34,3667

Standardabweichung 2,067 2,263 0,0210 0,0782 0,9684 2,3065 2,2394 0,0195 0,0650 1,0327 2,3355 2,5326

Standardfehler des 

Mittelwertes
0,169 0,185 0,0017 0,0064 0,0791 0,1883 0,1828 0,0016 0,0053 0,0843 0,1907 0,2068

Minimum 3,333 4,000 0,1367 0,1567 5,3333 30,6000 28,6667 0,1500 0,1500 5,5333 29,9667 27,5667

Maximum 15,000 14,333 0,2667 0,5867 9,1333 42,1000 40,4667 0,2533 0,5500 9,9000 42,9667 39,4667

Insgesamt

Auswertung der Daten von 150 Augen, ohne Unterscheidung OD/OS. Auswertung auf den Mittelwerten aus den Wiederholungsmessungen.

Zusammenfassung von OD&OS-Daten pro Gruppe

Gruppe

1

2

3
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Vergleich zwischen vertikaler und horizontaler Schn ittebene (T-Test) 

 

 

Mittelwert N
Standardabwe

ichung

Standardfehler 
des 

Mittelwertes
OD-axial-vertikal-ZKD-
Durchschnitt 0,2005 75,0000 0,0203 0,0023

OD-axial-horizontal-ZKD 
Durchschnitt 0,1989 75,0000 0,0183 0,0021

OD-axial-vertikal-VKT 
Durchschnitt 0,2999 75,0000 0,0791 0,0091

OD-axial-horizontal-VKT 
Durchschnitt 0,2712 75,0000 0,0609 0,0070

OD-axial-vertikal-VKD 
Durchschnitt 7,0849 75,0000 0,9762 0,1127

OD-axial-horizontal-VKD 
Durchschnitt 7,6618 75,0000 1,0290 0,1188

OS-axial-vertikal-ZKD 
Durchschnitt 0,1997 75,0000 0,0217 0,0025

OS-axial-horizontal-ZKD 
Durchschnitt 0,1981 75,0000 0,0207 0,0024

OS-axial-vertikal-VKT 
Durchschnitt 0,2656 75,0000 0,0740 0,0085

OS-axial-horizontal-VKT 
Durchschnitt 0,2706 75,0000 0,0693 0,0080

OS-axial-vertikal-VKD 
Durchschnitt 7,1147 75,0000 0,9668 0,1116

OS-axial-horizontal-VKD 
Durchschnitt 7,5862 75,0000 1,0419 0,1203

Paaren 3

Paaren 4

Paaren 5

Paaren 6

Statistik bei gepaarten Stichproben

Paaren 1

Paaren 2
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Untere Obere
Paaren 1 OD-axial-vertikal-ZKD-

Durchschnitt - OD-axial-
horizontal-ZKD 
Durchschnitt

0,0016 0,0155 0,0018 -0,0020 0,0051 0,8668 74,0000 0,3889

Paaren 2 OD-axial-vertikal-VKT 
Durchschnitt - OD-axial-
horizontal-VKT 
Durchschnitt

0,0287 0,0764 0,0088 0,0111 0,0463 3,2525 74,0000 0,0017

Paaren 3 OD-axial-vertikal-VKD 
Durchschnitt - OD-axial-
horizontal-VKD 
Durchschnitt

-0,5769 0,3471 0,0401 -0,6567 -0,4970 -14,3953 74,0000 0,0000

Paaren 4 OS-axial-vertikal-ZKD 
Durchschnitt - OS-axial-
horizontal-ZKD 
Durchschnitt

0,0016 0,0202 0,0023 -0,0031 0,0062 0,6678 74,0000 0,5064

Paaren 5 OS-axial-vertikal-VKT 
Durchschnitt - OS-axial-
horizontal-VKT 
Durchschnitt

-0,0050 0,0608 0,0070 -0,0190 0,0090 -0,7148 74,0000 0,4770

Paaren 6 OS-axial-vertikal-VKD 
Durchschnitt - OS-axial-
horizontal-VKD 
Durchschnitt

-0,4716 0,3364 0,0388 -0,5489 -0,3942 -12,1408 74,0000 0,0000

Test bei gepaarten Stichproben

Gepaarte Differenzen

T df Sig. (2-seitig)Mittelwert
Standardabwe

ichung

Standardfehler 
des 

Mittelwertes

95% Konfidenzintervall der 
Differenz
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Vergleich zwischen rechten und linken Augen (T-Test ) 

 

 

Mittelwert N
Standardabwe

ichung

Standardfehler 
des 

Mittelwertes
OD-axial-vertikal-ZKD-Durchschnitt

0,2005 75,0000 0,0203 0,0023

OS-axial-vertikal-ZKD Durchschnitt
0,1997 75,0000 0,0217 0,0025

OD-axial-vertikal-VKT Durchschnitt
0,2999 75,0000 0,0791 0,0091

OS-axial-vertikal-VKT Durchschnitt
0,2656 75,0000 0,0740 0,0085

OD-axial-vertikal-VKD Durchschnitt
7,0849 75,0000 0,9762 0,1127

OS-axial-vertikal-VKD Durchschnitt
7,1147 75,0000 0,9668 0,1116

OD-axial-horizontal-ZKD Durchschnitt
0,1989 75,0000 0,0183 0,0021

OS-axial-horizontal-ZKD Durchschnitt
0,1981 75,0000 0,0207 0,0024

OD-axial-horizontal-VKT Durchschnitt
0,2712 75,0000 0,0609 0,0070

OS-axial-horizontal-VKT Durchschnitt
0,2706 75,0000 0,0693 0,0080

OD-axial-horizontal-VKD Durchschnitt
7,6618 75,0000 1,0290 0,1188

OS-axial-horizontal-VKD Durchschnitt
7,5862 75,0000 1,0419 0,1203

Paaren 2

Paaren 3

Paaren 4

Paaren 5

Paaren 6

Statistik bei gepaarten Stichproben

Paaren 1

Mittelwert N
Standardabwe

ichung

Standardfehler 
des 

Mittelwertes
OD-axial-vertikal-
Kammerwinkel dorsal 
Durchschnitt (in Grad)

35,9596 75,0000 2,1868 0,2525

OS-axial-vertikal-
Kammerwinkel dorsal 
Durchschnitt (in Grad)

36,1964 75,0000 2,4292 0,2805

OD-axial-vertikal-
Kammerwinkel ventral 
Durchschnitt (in Grad)

34,7129 75,0000 2,2380 0,2584

OS-axial-vertikal-
Kammerwinkel ventral 
Durchschnitt (in Grad)

34,9031 75,0000 2,2519 0,2600

OD-axial-horizontal-
Kammerwinkel nasal 
Durchschnitt (in Grad)

37,2836 75,0000 2,1493 0,2482

OS-axial-horizontal-
Kammerwinkel nasal 
Durchschnitt (in Grad)

37,3969 75,0000 2,5212 0,2911

OD-axial-horizontal-
Kammerwinkel temporal 
Durchschnitt (in Grad)

34,4533 75,0000 2,0616 0,2381

OS-axial-horizontal-
Kammerwinkel temporal 
Durchschnitt (in Grad)

34,2955 75,0000 2,9415 0,3397

Paaren 3

Paaren 4

Statistik bei gepaarten Stichproben

Paaren 1

Paaren 2
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Untere Obere
Paaren 1 OD-axial-vertikal-ZKD-Durchschnitt - OS-

axial-vertikal-ZKD Durchschnitt
0,0008 0,0184 0,0021 -0,0034 0,0050 0,3770 74,0000 0,7073

Paaren 2 OD-axial-vertikal-VKT Durchschnitt - OS-
axial-vertikal-VKT Durchschnitt

0,0344 0,0821 0,0095 0,0155 0,0532 3,6256 74,0000 0,0005

Paaren 3 OD-axial-vertikal-VKD Durchschnitt - OS-
axial-vertikal-VKD Durchschnitt

-0,0298 0,3645 0,0421 -0,1136 0,0541 -0,7076 74,0000 0,4814

Paaren 4 OD-axial-horizontal-ZKD Durchschnitt - OS-
axial-horizontal-ZKD Durchschnitt

0,0008 0,0166 0,0019 -0,0030 0,0046 0,4178 74,0000 0,6773

Paaren 5 OD-axial-horizontal-VKT Durchschnitt - OS-
axial-horizontal-VKT Durchschnitt

0,0006 0,0621 0,0072 -0,0137 0,0149 0,0868 74,0000 0,9310

Paaren 6 OD-axial-horizontal-VKD Durchschnitt - OS-
axial-horizontal-VKD Durchschnitt

0,0756 0,3322 0,0384 -0,0009 0,1520 1,9696 74,0000 0,0526

Test bei gepaarten Stichproben

Gepaarte Differenzen

T df Sig. (2-seitig)Mittelwert
Standardabwe

ichung

Standardfehler 
des 

Mittelwertes

95% Konfidenzintervall der 
Differenz



 
 

A
nhang 

178 

 

Untere Obere
Paaren 1 OD-axial-vertikal-

Kammerwinkel dorsal 
Durchschnitt (in Grad) - 
OS-axial-vertikal-
Kammerwinkel dorsal 
Durchschnitt (in Grad)

-0,2369 2,6214 0,3027 -0,8400 0,3662 -0,7826 74,0000 0,4364

Paaren 2 OD-axial-vertikal-
Kammerwinkel ventral 
Durchschnitt (in Grad) - 
OS-axial-vertikal-
Kammerwinkel ventral 
Durchschnitt (in Grad)

-0,1902 2,4916 0,2877 -0,7635 0,3830 -0,6612 74,0000 0,5105

Paaren 3 OD-axial-horizontal-
Kammerwinkel nasal 
Durchschnitt (in Grad) - 
OS-axial-horizontal-
Kammerwinkel nasal 
Durchschnitt (in Grad)

-0,1133 2,7919 0,3224 -0,7557 0,5290 -0,3515 74,0000 0,7262

Paaren 4 OD-axial-horizontal-
Kammerwinkel temporal 
Durchschnitt (in Grad) - 
OS-axial-horizontal-
Kammerwinkel temporal 
Durchschnitt (in Grad)

0,1578 2,9299 0,3383 -0,5163 0,8319 0,4665 74,0000 0,6422

Gepaarte Differenzen

T df Sig. (2-seitig)Mittelwert
Standardabwe

ichung

Standardfehler 
des 

Mittelwertes

95% Konfidenzintervall der 
Differenz

Test bei gepaarten Stichproben
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Reproduzierbarkeit und Reliabilität 

 

Quadratsu

mme df

Mittel der 

Quadrate

Standardab

weichung 

der Wdh-

Messungen

Mittelwert 

(n=225)

Variationsko

effizient

Zwischen den Gruppen 0,0916 74,0000 0,0012

Innerhalb der Gruppen 0,0294 150,0000 0,0002 0,0140 0,2005 0,0698

Gesamt 0,1210 224,0000

Zwischen den Gruppen 1,3875 74,0000 0,0188

Innerhalb der Gruppen 0,3307 150,0000 0,0022 0,0470 0,2999 0,1566

Gesamt 1,7182 224,0000

Zwischen den Gruppen 211,5753 74,0000 2,8591

Innerhalb der Gruppen 6,8133 150,0000 0,0454 0,2131 7,0849 0,0301

Gesamt 218,3886 224,0000

Zwischen den Gruppen 1061,6553 74,0000 14,3467

Innerhalb der Gruppen 526,1467 150,0000 3,5076 1,8729 35,9596 0,0521

Gesamt 1587,8020 224,0000

Zwischen den Gruppen 1111,8793 74,0000 15,0254

Innerhalb der Gruppen 693,1933 150,0000 4,6213 2,1497 34,7129 0,0619

Gesamt 1805,0726 224,0000

Zwischen den Gruppen 0,0743 74,0000 0,0010

Innerhalb der Gruppen 0,0299 150,0000 0,0002 0,0141 0,1989 0,0709

Gesamt 0,1041 224,0000

Zwischen den Gruppen 0,8224 74,0000 0,0111

Innerhalb der Gruppen 0,1394 150,0000 0,0009 0,0305 0,2712 0,1124

Gesamt 0,9618 224,0000

Zwischen den Gruppen 235,0446 74,0000 3,1763

Innerhalb der Gruppen 3,7067 150,0000 0,0247 0,1572 7,6618 0,0205

Gesamt 238,7513 224,0000

Zwischen den Gruppen 1025,5425 74,0000 13,8587

Innerhalb der Gruppen 401,9467 150,0000 2,6796 1,6370 37,2836 0,0439

Gesamt 1427,4892 224,0000

Zwischen den Gruppen 943,5400 74,0000 12,7505

Innerhalb der Gruppen 563,5400 150,0000 3,7569 1,9383 34,4533 0,0563

Gesamt 1507,0800 224,0000

Zwischen den Gruppen 0,1047 74,0000 0,0014

Innerhalb der Gruppen 0,0470 150,0000 0,0003 0,0177 0,1997 0,0886

Gesamt 0,1517 224,0000

Zwischen den Gruppen 1,2159 74,0000 0,0164

Innerhalb der Gruppen 0,1729 150,0000 0,0012 0,0339 0,2656 0,1278

Gesamt 1,3888 224,0000

Zwischen den Gruppen 207,4949 74,0000 2,8040

Innerhalb der Gruppen 7,1667 150,0000 0,0478 0,2186 7,1147 0,0307

Gesamt 214,6616 224,0000

Zwischen den Gruppen 1310,0705 74,0000 17,7037

Innerhalb der Gruppen 491,9067 150,0000 3,2794 1,8109 36,1964 0,0500

Gesamt 1801,9772 224,0000

Zwischen den Gruppen 1125,7945 74,0000 15,2134

Innerhalb der Gruppen 595,1733 150,0000 3,9678 1,9919 34,9031 0,0571

Gesamt 1720,9678 224,0000

Zwischen den Gruppen 0,0949 74,0000 0,0013

Innerhalb der Gruppen 0,0253 150,0000 0,0002 0,0130 0,1981 0,0656

Gesamt 0,1202 224,0000

Zwischen den Gruppen 1,0677 74,0000 0,0144

Innerhalb der Gruppen 0,1931 150,0000 0,0013 0,0359 0,2706 0,1326

Gesamt 1,2608 224,0000

Zwischen den Gruppen 241,0140 74,0000 3,2569

Innerhalb der Gruppen 5,1333 150,0000 0,0342 0,1850 7,5862 0,0244

Gesamt 246,1473 224,0000

Zwischen den Gruppen 1411,1812 74,0000 19,0700

Innerhalb der Gruppen 497,8467 150,0000 3,3190 1,8218 37,3969 0,0487

Gesamt 1909,0278 224,0000

Zwischen den Gruppen 1905,0371 74,0000 25,7437

Innerhalb der Gruppen 641,1333 150,0000 4,2742 2,0674 34,2760 0,0603

Gesamt 2546,1704 224,0000

OS-axial-horizontal-

Kammerwinkel 

nasal 1 (in Grad)

OS-axial-horizontal-

Kammerwinkel 

temporal 1 (in Grad)

OS-axial-vertikal-

Kammerwinkel 

dorsal 1 (in Grad)

OS-axial-vertikal-

Kammerwinkel 

ventral 1 (in Grad)

OS-axial-horizontal-

ZKD 1 (in mm)

OS-axial-horizontal-

VKT 1 (in mm)

OS-axial-horizontal-

VKD 1 (in mm)

OD-axial-horizontal-

Kammerwinkel 

nasal 1 (in Grad)

OD-axial-horizontal-

Kammerwinkel 

temporal 1 (in Grad)

OS-axial-vertikal-

ZKD 1 (in mm)

OS-axial-vertikal-

VKT 1 (in mm)

OS-axial-vertikal-

VKD 1 (in mm)

OD-axial-vertikal-

Kammerwinkel 

dorsal 1 (in Grad)

OD-axial-vertikal-

Kammerwinkel 

ventral 1 (in Grad)

OD-axial-horizontal-

ZKD 1 (in mm)

OD-axial-horizontal-

VKT 1 (in mm)

OD-axial-horizontal-

VKD 1 (in mm)

Einfaktorielle ANOVA

OD-axial-vertikal-

ZKD 1 (in mm)

OD-axial-vertikal-

VKT 1 (in mm)

OD-axial-vertikal-

VKD 1 (in mm)
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 K
orrelationskoeffizient nach P

earson (rechtes A
uge)

 

  
    

OD-axial-
vertikal-
ZKD-

Durchschn
itt

OD-axial-
vertikal-

VKT 
Durchschn

itt

OD-axial-
vertikal-

VKD 
Durchschn

itt

OD-axial-
vertikal-

Kammerw
inkel 

dorsal 
Durchschn

itt (in 
Grad)

OD-axial-
vertikal-

Kammerw
inkel 

ventral 
Durchschn

itt (in 
Grad)

OD-axial-
horizontal-

ZKD 
Durchschn

itt

OD-axial-
horizontal-

VKT 
Durchschn

itt

OD-axial-
horizontal-

VKD 
Durchschn

itt

OD-axial-
horizontal-
Kammerw
inkel nasal 
Durchschn

itt (in 
Grad)

OD-axial-
horizontal-
Kammerw

inkel 
temporal 

Durchschn
itt (in 
Grad)

.680** ,143 .745** ,044 -.364** .566** .426** .747** ,050 -.326**

,000 ,110 ,000 ,352 ,001 ,000 ,000 ,000 ,335 ,002

75 75 75 75 75 75 75 75 75 75

-,124 -,040 -,130 ,101 ,003 -,134 -.262* -,119 -,005 ,042

,144 ,366 ,134 ,194 ,488 ,126 ,012 ,154 ,484 ,360

75 75 75 75 75 75 75 75 75 75

-.200* -,016 -,154 ,112 ,080 -,139 -,169 -,119 -,061 ,021

,043 ,447 ,093 ,170 ,247 ,118 ,074 ,154 ,303 ,428

75 75 75 75 75 75 75 75 75 75

Korrelatio
n nach 
Pearson
Signifikan
z (1-seitig)

N
Korrelatio
n nach 
Pearson
Signifikan
z (1-seitig)

N
Korrelatio
n nach 
Pearson
Signifikan
z (1-seitig)

N

IOD rechts 
Narkose 
Durchschn
itt

IOD links 
Narkose 
Durchschn
itt

Körperlän
ge (in cm)
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 K
orrelationskoeffizient nach P

earson (linkes A
uge) 

  

  

OS-axial-
vertikal-

ZKD 
Durchschn

itt

OS-axial-
vertikal-

VKT 
Durchschn

itt

OS-axial-
vertikal-

VKD 
Durchschn

itt

OS-axial-
vertikal-

Kammerw
inkel 

dorsal 
Durchschn

itt (in 
Grad)

OS-axial-
vertikal-

Kammerw
inkel 

ventral 
Durchschn

itt (in 
Grad)

OS-axial-
horizontal-

ZKD 
Durchschn

itt

OS-axial-
horizontal-

VKT 
Durchschn

itt

OS-axial-
horizontal-

VKD 
Durchschn

itt

OS-axial-
horizontal-
Kammerw
inkel nasal 
Durchschn

itt (in 
Grad)

OS-axial-
horizontal-
Kammerw

inkel 
temporal 

Durchschn
itt (in 
Grad)

.472** .215* .765** ,077 -.389** .622** .404** .827** -,007 -.505**

,000 ,032 ,000 ,256 ,000 ,000 ,000 ,000 ,476 ,000

75 75 75 75 75 75 75 75 75 75

-.228* -.202* -,177 -,037 -,001 -,181 -.217* -,101 ,091 -,031

,025 ,041 ,064 ,378 ,497 ,060 ,031 ,194 ,220 ,395

75 75 75 75 75 75 75 75 75 75

-.323** -,115 -,185 -,092 ,025 -,171 -,179 -,128 -,015 ,030

,002 ,162 ,056 ,216 ,415 ,071 ,062 ,138 ,448 ,398

75 75 75 75 75 75 75 75 75 75

Korrelatio
n nach 
Pearson
Signifikan
z (1-seitig)

N
Korrelatio
n nach 
Pearson
Signifikan
z (1-seitig)

N
Korrelatio
n nach 
Pearson
Signifikan
z (1-seitig)

N

IOD rechts 
Narkose 
Durchschn
itt

IOD links 
Narkose 
Durchschn
itt

Körperlän
ge (in cm)
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Korrelationskoeffizient nach Pearson (Unabhängig vo n OD und OS) 

 

Körperlänge 
(in cm)

IOD wach 
Durchschnitt

IOD Narkose 
Durchschnitt

Korrelation nach Pearson 1,000 -.204
*

-.187
*

Signifikanz (2-seitig) 0,012 0,022
N 150,000 150,000 150,000
Korrelation nach Pearson -.204

* 1,000 .200
*

Signifikanz (2-seitig) 0,012 0,014
N 150,000 150,000 150,000
Korrelation nach Pearson -.187

*
.200

* 1,000
Signifikanz (2-seitig) 0,022 0,014
N 150,000 150,000 150,000
Korrelation nach Pearson .572

** -0,006 -.211
**

Signifikanz (2-seitig) 0,000 0,940 0,010
N 150,000 150,000 150,000
Korrelation nach Pearson .174

* -0,015 -0,083
Signifikanz (2-seitig) 0,034 0,856 0,312
N 150,000 150,000 150,000
Korrelation nach Pearson .755

**
-.169

*
-.166

*

Signifikanz (2-seitig) 0,000 0,039 0,043
N 150,000 150,000 150,000
Korrelation nach Pearson 0,061 0,038 0,033
Signifikanz (2-seitig) 0,456 0,647 0,685
N 150,000 150,000 150,000
Korrelation nach Pearson -.376

** 0,117 0,038
Signifikanz (2-seitig) 0,000 0,155 0,640
N 150,000 150,000 150,000
Korrelation nach Pearson .594

** -0,031 -0,157
Signifikanz (2-seitig) 0,000 0,708 0,055
N 150,000 150,000 150,000
Korrelation nach Pearson .413

** -0,136 -.191
*

Signifikanz (2-seitig) 0,000 0,097 0,019
N 150,000 150,000 150,000
Korrelation nach Pearson .787

** -0,148 -0,108
Signifikanz (2-seitig) 0,000 0,071 0,190
N 150,000 150,000 150,000
Korrelation nach Pearson 0,019 -0,051 0,015
Signifikanz (2-seitig) 0,817 0,533 0,852
N 150,000 150,000 150,000
Korrelation nach Pearson -.424

** 0,079 -0,006
Signifikanz (2-seitig) 0,000 0,337 0,943
N 150,000 150,000 150,000

axial-horizontal-VKD 
Durchschnitt

axial-horizontal-Kammerwinkel 
nasal Durchschnitt (in Grad)

axial-horizontal-Kammerwinkel 
temporal Durchschnitt (in 
Grad)
*. Die Korrelation ist auf dem Niveau von 0,05 (2-seitig) signifikant.
**. Die Korrelation ist auf dem Niveau von 0,01 (2-seitig) signifikant.

axial-vertikal-VKT Durchschnitt

axial-vertikal-VKD Durchschnitt

axial-vertikal-Kammerwinkel 
dorsal Durchschnitt (in Grad)

axial-vertikal-Kammerwinkel 
ventral Durchschnitt (in Grad)

axial-horizontal-ZKD 
Durchschnitt

axial-horizontal-VKT 
Durchschnitt

Körperlänge (in cm)

IOD wach Durchschnitt

IOD Narkose Durchschnitt

axial-vertikal-ZKD-Durchschnitt
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