
  

Aus der Augenklinik und Poliklinik der Ludwig-Maximilians-Universität München 

 

 

 

 

 

Vorstand der Augenklinik: Prof. Dr. med. A. Kampik 
 

 

 

 

 

 

Änderung der optischen Aberrationen  

des menschlichen Auges durch 

laser in situ keratomileusis 

 
 

 

 

 

 

 

Dissertation 
zum Erwerb des Doktorgrades der Medizin 

an der medizinischen Fakultät der 
Ludwig-Maximilians-Universität zu München 

 

 

 

vorgelegt von 
Georg Maximilian Spitzlberger 

aus Landshut 
2004 

 

 



  

 
 
 
 
 
 
 

Mit Genehmigung der Medizinischen Fakultät 
der Universität München 

 
 
 
 
 
 
 
 
 
 

Berichterstatter:  Prof. Dr. med. K. Ludwig 
 
 

Mitberichterstatter:  PD Dr. med. A. Leunig 
 
 

Mitbetreuung durch den 
promovierten Mitarbeiter:  Prof. Dr. med. M. Grüterich 

 
 

Dekan:  Prof. Dr. med. Dr. h.c. K. Peter 
 
 

Tag der mündlichen Prüfung: 15.01.2004 
 

 

 

 

 

 

 

 

 



 1 
 

Inhaltsverzeichnis 
1. Problemstellung und Zielsetzung 

1.1. Beeinflussung der optischen Aberrationen des Auges durch die  

LASIK-Prozedur ............................................................................................. 5 

1.2. Abhängigkeit der höheren Aberrationen des Auges vom verwendeten 

Mydriatikum ................................................................................................... 7 

2. Grundlagen 

2.1. LASIK ............................................................................................................. 9 

2.1.1. Entwicklung ......................................................................................... 9 

2.1.2. Prinzip .................................................................................................. 10 

2.1.3. LASIK-Komplikationen ...................................................................... 12 

2.1.3.1.  Intraoperative Komplikationen .................................................. 13 

2.1.3.2.  Frühe postoperative Komplikationen ......................................... 14 

2.1.3.3.  Späte postoperative Komplikationen ......................................... 17 

2.2. Optische Aberrationen .................................................................................... 19 

2.2.1. Einführung ........................................................................................... 19 

2.2.2. Die Wellenfront ................................................................................... 20 

2.2.2.1.  Definition nach der klassischen Optik ....................................... 20 

2.2.2.2.  Definition nach dem Wellenoptik-Prinzip ................................. 22 

2.2.3. Mathematische Herleitung und Definition der Wellenfront ................ 25 

2.2.4. Darstellungsweise einfacher Basis-Zernike-Funktionen ..................... 27 

2.2.5. Kombination zu komplexen Wellenfronten ......................................... 28 

2.2.6. Mathematische Darstellung der komplexen Wellenfront .................... 29 

2.2.7. Berechnung von Sphäre, Zylinder und Achslage aus den  

 Zernike-Koeffizienten der zweiten Ordnung ....................................... 30 

2.2.8. Notationsweise, Bezeichnung und Anordnung der Koeffizienten ....... 30 

2.2.9. Berechnung des RMS-Wertes .............................................................. 32 

2.3. Aberrometrische Messverfahren ..................................................................... 33 

2.3.1. Die Aberrometrie nach dem Tscherning-Prinzip ................................. 33 

2.3.2. Die Aberrometrie nach dem Hartmann-Shack-Prinzip ........................ 34 

2.3.3. Laser-Ray-Tracing …………………………………………………..  37 

2.3.4. Objektive Refraktometrie ..................................................................... 38 

2.4. Klinische Relevanz der Messverfahren .......................................................... 39 

 



 2 
 

3. Material und Methoden 

3.1. Das WaveLight-Aberrometer ......................................................................... 40 

3.1.1. Funktionsweise und Aufbau ................................................................ 40  

3.1.2. Messung ............................................................................................... 41 

3.1.3. Messwerte und Darstellung der Wellenfront ....................................... 42 

3.2. Das Autorefraktometer R-F10 ........................................................................ 45 

3.3. Patientenkollektiv und klinische Daten .......................................................... 46 

3.3.1. LASIK-Patientenkollektiv (Kollektiv I) .............................................. 46 

3.3.2. Durchgeführte Behandlung .................................................................. 46 

3.3.2.1. Der Excimer-Laser ...................................................................... 46 

3.3.2.2. Die LASIK-Prozedur .................................................................. 47 

3.3.3. Begleitende Untersuchungen und Messparameter vor  

 und nach LASIK .................................................................................. 48 

3.4. Probandenkollektiv und klinische Daten ........................................................ 49 

3.4.1. Probanden (Kollektiv II) ...................................................................... 49 

3.4.2. Untersuchung der Abhängigkeit der Aberrationen vom  

 verwendeten Mydriatikum ................................................................... 50 

3.5. Statistische Auswertungsmethoden ................................................................ 50 

3.5.1. Auswertung der Daten des LASIK-Patientenkollektivs ...................... 50 

3.5.2. Auswertung der Daten des Probandenkollektivs ................................. 51 

3.5.3. Statistik-Programm .............................................................................. 51 

3.5.4. Verwendete statistische Tests für die Ergebnisse 4.1. – 4.9. ............... 51 

   

4. Ergebnisse 

4.1. Abhängigkeit von RMS-Werten und Zernike-Koeffizienten von der LASIK-

Prozedur, gemessen bei Pupillenweiten von 4 mm und 6,5 mm .................... 54 

4.2. Abhängigkeit von RMS-Werten und Zernike-Koeffizienten von der 

Pupillenweite, gemessen jeweils vor und nach LASIK .................................. 65 

4.3. Verbleibender sphäro-zylindrischer Fehler nach LASIK und Korrelation  

 des sphärischen Äquivalents vor LASIK mit dem unkorrigiertem Visus  

 nach LASIK ..................................................................................................... 75 

4.4. Korrelation der Zernike-Koeffizienten aller Ordnungen untereinander ......... 76 

4.5. Korrelation des sphärischen Äquivalents vor LASIK zur Differenz  

[nach - vor LASIK] der Aberrationen höherer Ordnung ............................... 80 



 3 
 

4.6. Wellenfrontmessung als Methode zur Bestimmung der  

  objektiven Refraktion ......................................................................................81 

4.7. Vergleich der Visuswerte................................................................................ 83 

4.7.1. Vergleich des unkorrigierten Visus vor vs. nach LASIK .................... 83 

4.7.2. Bestkorrigierter Visus vor vs. unkorrigierter Visus nach LASIK ........ 84 

4.7.3. Korrelation zwischen Visus und höheren Aberrationen nach LASIK.. 85 

4.8. Verteilung der Zernike-Koeffizienten  im Patientenkollektiv vor und nach 

LASIK bei Pupillenweiten von 4 mm und 6,5 mm ........................................ 86 

4.8.1. Niedere Ordnungen (C1– C5) ............................................................... 86 

4.8.2. Höhere Ordnungen (C6 – C14  und C6 – C27) ....................................... 88 

4.9. Probandenkollektiv (Kollektiv II): 

Abhängigkeit der optischen Aberrationen vom verwendeten Mydriatikum .. 93 

 

5. Diskussion 

5.1. Abhängigkeit von RMS-Werten und Zernike-Koeffizienten von der  

  LASIK-Prozedur, gemessen bei Pupillenweiten von 4 mm und 6,5 mm ....... 99 

5.2. Abhängigkeit von RMS-Werten und Zernike-Koeffizienten von der 

Pupillenweite, gemessen jeweils vor und nach LASIK .................................. 101 

5.3. Verbleibender sphäro-zylindrischer Fehler nach LASIK und  

  Korrelation des sphärischen Äquivalents vor LASIK mit dem  

  unkorrigierten Visus nach LASIK .................................................................. 102 

5.4. Korrelation der Zernike-Koeffizienten aller Ordnungen untereinander ......... 103 

5.5. Korrelation des sphärischen Äquivalents vor LASIK zur Differenz  

  [nach – vor LASIK] der Aberrationen höherer Ordnung ................................ 104 

5.6. Wellenfrontmessung als Methode zur Bestimmung der  

  objektiven Refraktion ...................................................................................... 106 

5.7. Korrelation des Visus zu den optischen Aberrationen ................................... 107 

5.8. Verteilung der Zernike-Koeffizienten im Patientenkollektiv  

  vor und nach LASIK bei Pupillenweiten von 4 mm und 6,5 mm ................... 108 

5.9. Einfluss der verwendeten Mydriatika auf die aberrometrischen Ergebnisse .. 109 

 

6. Zusammenfassung ............................................................................................... 112 

7. Verzeichnis der Abbildungen ............................................................................. 114 

8. Verzeichnis der Grafiken .................................................................................... 115 



 4 
 

9. Verzeichnis der Tabellen ..................................................................................... 116 

10. Literaturverzeichnis ............................................................................................ 117 

11. Danksagung .......................................................................................................... 124 

12. Tabellarischer Lebenslauf ................................................................................... 125



 5 
 

1. Problemstellung und Zielsetzung  
1.1. Beeinflussung der optischen Aberrationen des Auges durch die 

LASIK-Prozedur 
 

Die refraktive Chirurgie mit dem Excimer-Laser hat eine 15-jährige erfolgreiche 

Entwicklungsgeschichte zurückgelegt. Andererseits klagen nicht wenige Patienten, an 

deren Augen ein refraktiv-chirurgischer Eingriff vorgenommen wurde, nach sonst 

erfolgreicher Operation über Beeinträchtigung des Sehens. Besonders nachts sei die 

Sehschärfe geringer als mit Sehhilfe vor der Operation. Auch sei die Fähigkeit der 

Kontrastwahrnehmung herabgesetzt. Manche Patienten fühlen sich aber auch durch 

Blenderscheinungen und durch Wahrnehmung von Halos, zum Beispiel um helle 

Lichtquellen, in ihrer gewohnten Lebensqualität gestört.55 Das beeinträchtigte 

Dämmerungssehen sowie die Verschlechterung der bestkorrigierten Sehschärfe können 

als Hinweise darauf gedeutet werden, dass die optischen Eigenschaften der Hornhaut 

durch die LASIK-Behandlung in ihrer Qualität reduziert werden. Ein zwangsläufiger 

Effekt der LASIK ist zum Beispiel bei Korrektur von Kurzsichtigkeit die Umkehr der 

normalen „prolaten“ in eine „oblate“ Krümmung an der Oberfläche.30 Die Hornhaut 

nach LASIK ist in der Mitte, also nahe der optischen Achse, nicht mehr so stark 

gekrümmt wie vorher.  

 
Abbildung 1: 

oben : prolate Hornhautoberfläche, unten: oblate Hornhautoberfläche 

 

Holladay et al. haben auch darauf hingewiesen, dass die wirksame, effektive optische 

Zone kleiner ist als die in die Hornhaut „geschliffene“ optische Zone. Mit zunehmender 

Myopie wird sie noch kleiner.30  

Fan-Paul et al.  behaupten, dass die meisten Patienten nach refraktiver Chirurgie 

unmittelbar nach Behandlung unter Blendempfindlichkeit leiden. Bei den meisten dieser 

Patienten sei dies aber nur eine vorübergehende Erscheinung. Nach 6 bis 12 Monaten 

Heilungszeit nehmen die Beschwerden ab.16  
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In einer Studie mit 683 Augen von Lui et al. traten bei 3 Patienten (0,43%) auf lange 

Sicht Blendungserscheinungen auf.44  

Als Ursache für  diese visuellen Missempfindungen nach refraktiver Chirurgie wird 

unter anderem das Verhältnis der Pupillenweite zur Größe der optischen 

Abtragungszone gesehen. Je größer die Pupillenweite unter der jeweiligen 

Umgebungsbeleuchtung, desto größer sind die vom Patienten angegebenen 

Sehstörungen. Daher sind die Beeinträchtigungen unter skotopischen Bedingungen (bei 

Dämmerung) schwerwiegender als unter photopischen Bedingungen (bei Helligkeit). 

Unter photopischen Bedingungen ist die Pupille klein, sie wirkt wie eine Blende in 

einem Fotoapparat und nur die zentralen, weniger verzerrten  Lichtstrahlen treffen auf 

die Hornhaut.  

Fan-Paul et al sehen auch in einer dezentrierten Ablationszone eine wichtige Ursache 

von Sehstörungen.16  

Nach Lee et al. korreliert auch eine präoperative mittlere Myopie und ein hoher 

Astigmatismus positiv mit subjektiver Sehbeeinträchtigung nach LASIK.39  

Viele Autoren sind der Meinung, dass es aus den oben dargestellten Gründen zu einer 

Zunahme der sogenannten höheren Aberrationen nach LASIK  komme, die für eine 

Verzerrung des betrachteten Bildes verantwortlich sei.27;28;55;57;58;100 Die Natur dieser 

höheren Aberrationen wird im Kapitel 2.2. näher erläutert. 

In dieser Arbeit werden deshalb an einer Patientengruppe des centrum für refraktive 

chirurgie (crt) der Ludwig-Maximilians-Universität München die Zusammenhänge 

zwischen Aberrationen und Visus nach LASIK, die Veränderungen in den einzelnen 

Ordnungen der Aberrationen, die Unterschiede in den Aberrationen im Zusammenhang 

mit der Pupillenweite und andere Zusammenhänge mit den höheren Aberrationen 

analysiert und mit der aktuellen Literatur verglichen.  
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1.2. Abhängigkeit der höheren Aberrationen des Auges vom 
verwendeten Mydriatikum 

 
Die Messung der Aberrationen eines menschlichen Auges wird gewöhnlich unter dem 

Einsatz von pupillenerweiternden Augentropfen (Mydriatika) durchgeführt. Jedoch gibt 

es noch keine Standards, welche Tropfen benutzt werden sollten. Es gibt drei 

verschiedene Wirkstoffgruppen, die zum Einsatz kommen: 

 

1. Sympathomimetika – in dieser Arbeit wurde Neosynephrin-POS® 5% verwendet. 

Bei diesen Augentropfen wird der Ziliarmuskel, der für die Naheinstellung der 

Linse im Auge verantwortlich ist, nicht beeinflusst. 

 

2. Parasympatholytika – in dieser Arbeit wurde Mydriaticum-Stulln® verwendet. 

Diese Augentropfen lähmen in höherer Konzentration den Ziliarmuskel. Die 

Naheinstellung ist nicht mehr möglich. 

 

3. Cycloplegika – in dieser Arbeit wurde Zyklolat-EDO® (10 mg 

Cyclopentolathydrochlorid pro ml) verwendet. Diese Augentropfen lähmen auch 

in geringerer Dosierung den Ziliarmuskel. Die Naheinstellung ist nicht mehr 

möglich. 

 

 

Nach Carkeet et al. ist derzeit noch nicht endgültig geklärt, ob klinisch relevante 

Unterschiede in den Aberrationen auftreten, wenn man die Pupille mit oder ohne 

Cycloplegie erweitert.12 Carkeets Auswertungen zeigten einen signifikanten 

Unterschied in den höheren Aberrationen. Der RMS-Wert der höheren Ordnungen mit 

Phenylephrin ohne Cycloplegie war mit 0,3852 µm signifikant kleiner als unter 

Pupillenerweiterung mit Cyclopentolat-Augentropfen (0,4259 µm). Im Falle einer 

aberrometriegesteuerten LASIK könnte dies zu unterschiedlichen postoperativen 

Ergebnissen führen.12  

Giessler et al. werteten die Ergebnisse der Aberrometrie unter vier unterschiedlichen 

Bedingungen aus: Aberrometrie ohne Mydriatikum unter mesopischen Bedingungen, 

tropicamid-induzierte Mydriasis, phenylephrin-induzierte Mydriasis und cyclopentolat-

induzierte Mydriasis. Dabei wich die vom Aberrometer ermittelte objektive Refraktion 

am geringsten von der subjektiven Refraktion ab. Unter Einsatz von Phenylephrin 
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verschob sich die Refraktion durchschnittlich um 0,19 D in Richtung Hyperopie. 

Tropicamid induzierte 0,35 D weniger Myopie und Cyclopentolat führte zu 0,42 D 

weniger Myopie. Giessler et al. halten daher die Messung unter mesopischen 

Bedingungen bei einer Mindestpupillenweite von 6 mm für am besten  geeignet.25 

Parallel zum Hauptthema dieser Arbeit, der Auswirkung der LASIK-Behandlung auf 

die optischen Aberrationen des Auges, wurde an einem begrenzten Probandenkollektiv 

zusätzlich geprüft, in wieweit unterschiedliche Mydriatika Einfluss auf die 

aberrometrischen Eigenschaften des Auges haben. 

In Kapitel 4.9. werden die Ergebnisse bei der Probandengruppe bei Einsatz von drei 

verschiedenen Mydriatika dargelegt. 
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2. Grundlagen 
2.1. LASIK 

2.1.1. Entwicklung 
 
Die Einführung neuer Technologien und die laufende Verbesserung der bestehenden 

Systeme wie Excimer-Laser oder Mikrokeratome führt dazu, dass sich immer mehr 

Menschen einer refraktiven Behandlung unterziehen. Im Jahre 2001 wurden weltweit 

über eine Million Patienten mit LASIK – laser in situ keratomileusis – behandelt.63 

Auch die Einführung von Eye-Trackern zur LASIK-OP erbrachte deutlich exaktere 

Ergebnisse mit Visusverbesserung und somit subjektiv zufriedenere Patienten.13;51;85;92 

Die LASIK wurde erstmals 1989 von Pallikaris durchgeführt.61 Seit etwa 1993 hat sich 

dieses Verfahren weltweit etabliert. Sie stellt eine weiterentwickelte Form der PRK – 

der photorefraktiven Keratektomie – dar. Im Gegensatz zu dieser PRK wird nicht an der 

Hornhautoberfläche – dem Epithel – , sondern unter einem präparierten Hornhaut-

„deckelchen“ – dem Flap – innerhalb des Hornhautstromas Gewebe abgetragen. Das 

hat den Vorteil, dass die Wundheilung in der Tiefe des Stromas deutlich besser zu 

kontrollieren ist, als die Heilung an der Hornhautoberfläche, wo es zu unkontrollierten 

Epithelwucherungen kommen kann.96 Auch werden dadurch die postoperativen 

Schmerzen nach dem Eingriff deutlich reduziert. Außerdem ist die Zeit der visuellen 

Rehabilitation nach der Operation deutlich kürzer – die vollständige Heilung des 

Epithels nach PRK dauert bis zu 6 Monate.48 Der Patient bemerkt meist schon am Tag 

der LASIK eine Verbesserung des Sehens ohne Sehhilfe. Ein sehr großer Vorteil der 

LASIK ist die vergrößerte optische Zone, die anfangs bei der PRK bei 4 mm lag und bei 

der LASIK je nach Pupillenweite bei Dämmerung auf 6 mm oder größer erhöht wurde. 

Modernste Laser tragen das Stromagewebe mit einer zusätzlichen Übergangszone ab, 

um den steilen Übergang zum normalen, unbehandelten Gewebe zu glätten.48  
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2.1.2. Prinzip 
 

Das LASIK-Verfahren an sich besteht aus drei Teilbereichen: 

 

1. Präparation des Hornhaut-Flaps mit dem Mikrokeratom. Mit diesem Gerät lässt 

sich die Flap-Dicke, die Flap-Größe und der Stoppunkt des Schnitt in weiten 

Bereichen einstellen. Es ist mit zwei unabhängig funktionierenden 

Vakuumpumpen ausgestattet, was bedeutend zur Sicherheit beträgt. 

 
Abbildung 2: 
links: Mikrokeratom „LSK-1“ mit Saugring als Führungsschiene  

rechts: Basiseinheit mit Vakuumpumpe 

 
2. Laserbehandlung mit dem Excimer-Laser im Stroma der Hornhaut bei 

zurückgeklapptem Hornhaut-Flap. Bei myopen Patienten werden zentrale 

Hornhautbereiche abgetragen, um damit eine Abflachung der Hornhaut zu 

erreichen. Der Fokus des Bildes wird infolge der Abnahme der Brechkraft nach 

hinten verlagert. 

Bei hyperopen Augen trägt man peripheres Hornhautstroma ab. Es entsteht 

hierbei eine Aufsteilung der zentralen Hornhaut, die den Fokus infolge Zunahme 

der Brechkraft nach vorne verlagert. 

 
Abbildung 3: 

links: Hornhautabtrag mit dem Excimer-Laser bei Myopie  

rechts: Hornhautabtrag mit dem Excimer-Laser bei Hyperopie 
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Abbildung 4: 
Hornhautabtrag mit dem Excimer-Laser bei weggeklapptem Flap 

 
3. Zurückklappen des Flaps, der sich nach wenigen Minuten festsaugt, so dass in 

den wenigsten Fällen eine Naht erforderlich ist. An der Oberfläche bleibt nur 

eine dünne ringförmige Wunde, die meist schon nach wenigen Stunden 

geschlossen ist. 

 
Abbildung 5: 

Zurückklappen des Flaps nach Laserbehandlung 

 

 

Der Indikationsbereich für LASIK erstreckt sich bei Kurzsichtigen (Myopen) bis 

maximal –10 Dioptrien [D], bei Weitsichtigen (Hyperopen) bis zu +3 D und bei 

Stabsichtigen (Astigmatismus) bis zu etwa 4 D. Die Brechkraft der Augen sollte sich in 

den letzten 12 Monaten nicht verändert haben, was bei den meisten Patienten zwischen 

dem 20. und 30. Lebensjahr der Fall ist. Chronisch rezidivierende 

Hornhauterkrankungen stellen eine Kontraindikation für LASIK dar. Außerdem ist eine 

hinreichend dicke Hornhaut für eine erfolgreiche LASIK-Behandlung notwendig. Um 

die Hornhautstabilität nach LASIK nicht zu gefährden, muss unter dem Flap mindestens 

250µm unbehandeltes Hornhautgewebe verbleiben. Der Flap selbst hat ungefähr eine 



 12 
 

Dicke von 180µm. Nach Munnerlyn et al. sind für die Korrektur von 10 D bei einer 

optischen Zone von 6mm 131µm Hornhautabtrag notwendig.56 Als Faustregel gelten 

15µm Abtrag pro zu korrigierender Dioptrie. 

Da LASIK seit 1989 durchgeführt wird, hat man zwar einen im Vergleich zur PRK mit 

15 Jahren etwas geringeren Erfahrungsbereich, dennoch lassen sich sichere Aussagen 

über den Verlaufszeitraum machen. 

Wie jeder andere chirurgische Eingriff ist aber auch LASIK nicht frei von  

Operationsrisiken. 

 

2.1.3. LASIK-Komplikationen 
 

Duncker teilt die bei LASIK möglichen Komplikationen in die intraoperativen, die 

frühen postoperativen und die späten postoperativen Komplikationen ein.15  

Die intraoperativen sind häufig mikrokeratomassoziiert oder beruhen auf einer gestörten 

Epithelhaftung (Basalmembran-Dystrophie). Auch die Abweichung des Excimer-Lasers 

von der genauen Zentrierung, die entsprechend der optischen Achse des Auges erfolgen 

soll, kann zu Komplikationen führen. 

Eine frühe postoperative Komplikation ist die diffuse lamelläre Keratitis (Sands of 

Sahara syndrome). Selten tritt auch eine Faltenbildung nach Wiederanlegen des Flaps 

auf. Extrem selten wurden auch Infektionen beobachtet, die durch Infiltrate im 

stromalen Bett gekennzeichnet sind. 

Späte postoperative Komplikationen sind Epitheleinwachsungen unter den Flap oder die 

Keratektasie. Es werden aber auch Beeinträchtigungen der Sehschärfe wie Halos oder 

Doppelbilder bei zu kleiner optischer Zone oder bei Myopiebehandlungen von mehr als 

–10 Dioptrien beschrieben. Auch traumatische Ablösungen des Flaps, z.B. bei 

Sportunfällen, kommen vor. 

Die genannten Komplikationen werden nachfolgend näher beschrieben. 
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2.1.3.1. Intraoperative Komplikationen 

 

Die intraoperativen Komplikationen unterteilen sich hauptsächlich in die mikrokeratom-

oder flap-assoziierten und die laserbedingten Komplikationen. 

Tabbara et al. geben an, dass es bei 44% aller intra- und postoperativen Komplikationen 

zu flap-assoziierten Problemen kam.84 Leung et al. sprechen von 5% bis 8,7% der 

Fälle.41 

Das sogenannte buttonhole oder zu deutsch „Knopfloch“, eine ernst zu nehmende 

Komplikation der Flap-Ergzeugung mit möglicher Visusbeeinträchtigung, tritt in 0,7% 

bis 3,1% aller behandelten Patienten auf.17;26;83;99 

Das buttonhole im Flap entsteht, wenn das Keratom zu oberflächlich angesetzt wird und 

den zentralen Epithel-Bowman-Komplex in Mitleidenschaft zieht. Das buttonhole wird 

in das partial-thickness  und in das full-thickness buttonhole eingeteilt.  

Wenn das Keratom am Hornhautscheitel anterior oder direkt durch die Bowman´sche 

Membran schneidet, entsteht ein sog. thin flap mit einer Dicke unter 60 µm.7 Die daraus 

resultierende zentrale Hornhauttrübung mindert die Sehfähigkeit drastisch. Als 

mögliche Ursache wird von Gimbel et al. eine steile Hornhaut mit Keratometerwerten 

von 46,70 Dioptrien angegeben.26 Einer Studie von Leung et al. zufolge besteht schon 

ab Werten von 44,20 Dioptrien ein erhöhtes Risiko.40 Eine andere Hypothese ist die 

erhöhte Rigidität und damit verminderte Schneidbarkeit einer Hornhaut mit hohen 

Keratometerwerten. Außerdem könnte eine schnellere Austrocknung einer steilen 

Hornhaut die Entstehung von buttonholes begünstigen. Andere Gründe wie 

Handhabungsfehler oder Geräteschäden werden ebenfalls diskutiert. 

Andere Flap-Komplikationen wie thin flap, small flap und free cap (Komplettes 

Abtrennen des Flaps) werden von Lui et al. mit 0,73%, 0,43% und 0,58% angegeben.44 

Ein thin flap kann zu einer Faltenbildung der Hornhaut nach LASIK führen. Eine 

Versorgung mit einer therapeutischen Kontaktlinse und eine engmaschige Kontrolle 

kann dies vermindern. 

Ein small flap kann zu einer Minderung des Sehvermögens bei dunkler Umgebung und 

damit großer Pupille führen. 

Ein vollständiges Abtrennen der Hornhaut, der free flap, ist auch eine seltene 

Komplikation. Dann sollte der abgetrennte Flap, der „Lentikel“ wieder aufgelegt 

werden und mit mehreren Nähten fixiert werden. Ein therapeutische Kontaktlinse 
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begünstigt das komplikationslose Wiedereinheilen. Nach etwa 4 Monaten kann wieder 

ein neuer Schnitt präpariert werden und die LASIK durchgeführt werden.  

Der komplette Verlust des vollständig abgetrennten Flaps ist möglich, die Häufigkeit 

eines derartigen Vorfalls wird aber in der Literatur nicht erwähnt. 

Nicht-Mikrokeratom-assoziierte Flap-Komplikationen wie mangelhafte Positionierung 

oder Instabilität des Saugrings geben Gimbel et al. mit 1,3% an.26  

Insgesamt berichten Gimbel et al. von 3,2% intraoperativen Komplikationen.26 Jacobs et 

al. sprechen von nur 0,302%.34  

Die genaue Zentrierung des Excimer-Lasers ist für einen Erfolg hinsichtlich der 

postoperativen Sehschärfe und Sehqualität ein entscheidender Faktor. Moderne 

Lasersysteme mit Eye-Trackern gleichen kleine unwillkürliche Augenbewegungen des 

Patienten selbständig aus und sorgen somit für eine genaue Zentrierung während der 

LASIK-OP. Der Einsatz eines aktiven Eye-Trackers ist allein aber keine Garantie für 

eine erfolgreiche LASIK. Wenn der Patient nicht in der Lage ist, das Auge still zu 

halten und auf einen Lichtpunkt zu fixieren, kann auch ein Eye-Tracker die 

Abweichungnen nicht korrigieren. Eine grobe Justierung des Lasers nur durch den 

Chirurgen ist in den meisten Fällen nicht genau genug.11 Im Falle einer starken 

Dezentrierung der Ablationszone kann es beim Patienten subjektiv zur Wahrnehmung 

von monokularen Doppelbildern und Halos kommen. Eine – eventuell wellenfront-

gesteuerte – Re-LASIK kann hier Abhilfe schaffen.55 

 

2.1.3.2. Frühe postoperative Komplikationen 

 

Die am häufigsten nach LASIK beschriebene frühe postoperative Komplikation ist das 

trockene Auge mit damit verbundenen Schmerzen. Lui et al. geben 6,15% an.44 Albietz 

et al. untersuchten die Fälle von 88 Augen nach LASIK bei Hyperopie. 32% der Augen 

entwickelten ein passager trockenes Auge. Die Ergebnisse waren signifikant mit 

weiblichem Geschlecht, präoperativ trockenem Auge, postoperativ eingeschränkter 

Stabilität des Tränenfilms und prä- und postoperativ vermindertem Tränenvolumen 

assoziiert.1 Toda et al. wiesen nach, dass ein bereits präoperativ trockenes Auge ein 

Risikofaktor für postoperatives schweres Siccasyndrom ist.91 Breil et al. sehen als 

Ursache hierfür eine postoperativ herabgesetzte Hornhautsensibilität infolge 

Durchtrennung der sensorischen Nervenbahnen beim Mikrokeratomschnitt.10 Laut Ang 
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et al. dauern die Symptome des trockenen Auges bis zu einem Jahr. Eine 

Dauerbehandlung mit Tränenersatzmitteln sei in dieser Zeit essentiell.4  

Dies ist in guter Übereinstimmung mit den Ergebnissen von Lee et al., die als Dauer der 

Reinnervation der Hornhaut bis zu ein Jahr angeben.38 

Ein weiteres Problem, das nach LASIK auftreten kann, ist die Bildung von Fältchen im 

wiederangelegten Flap (striae). In der Studie von Lui et al. wird von 4,39% 

microwrinkled flaps und 2,04% dislocated flaps und flap striae berichtet.44 Wie bei 

anderen LASIK-induzierten Komplikationen ist auch hier die sofortige Therapie 

ausschlaggebend für den Erfolg hinsichtlich der bleibenden Sehschärfe. Treten die 

striae innerhalb des ersten postoperativen Tags auf, so sollte der Flap angehoben 

werden und unter Spülen mit Flüssigkeit und Ausstreichen wieder angelegt werden.64;86 

Werden die striae später entdeckt oder bringt wiederholtes manuelles Glätten des Flaps 

keinen Erfolg, so ist der Versuch mit einer therapeutischen Kontaktlinse möglich. Lin et 

al. verwendeten erfolgreich eine RK4-Kontaktlinse.43  

In manchen Fällen kann der Flap mit Nähten wieder geglättet werden.33 

In manchen Behandlungszentren tritt in bis zu 10% aller Behandelten Patienten nach 

LASIK eine diffuse lamelläre Keratitis (Sands of Sahara syndrome, DLK) auf, 

typischerweise ein bis sieben Tage nach der LASIK-Prozedur.8 Klinisch erkennt man 

eine Trübung zwischen wiederangelegtem Flap und Stromabett (interface opacities), 

was eine Herabsetzung der Sehschärfe zur Folge hat. Francesconi et al. untersuchten 69 

Augen von 47 Patienten mit durch Radiäre Keratotomie (RK) induzierter Hyperopie 

nach hyperopiekorrigierender LASIK (H-LASIK). Nur 2 Augen (3%) entwickelten eine 

DLK, wovon aber 1 Auge Epitheleinwachsung und eine Flap-Nekrose erlitt.19 

Eine ähnliche Anzahl von Fällen einer postoperativen DLK ermittelten Asano-Kato et 

al. in ihrer Studie, die 1928 Augen umfasste. 68 Augen (3,5%) zeigten hier eine DLK.5  

Shah et al. berichten in einer retrospektiven Studie von 735 mit LASIK behandelten 

Augen, wovon 680 Augen eine primäre und 55 Augen eine Zweit-LASIK waren. Shah 

erkannte eine signifikante Häufung von Fällen einer DLK bei Augen, die postoperativ 

einen Epitheldefekt aufwiesen: 9 von 16 Augen mit postoperativen Epitheldefekten 

entwickelten eine DLK, wobei von den restlichen Augen nur 17 eine DLK bekamen. 

Das Risiko, eine DLK nach LASIK zu entwickeln ist somit bei Auftreten von 

postoperativen Epitheldefekten 24-fach erhöht.79  

Die diffuse lamelläre Keratitis ist eine nicht-infektiöse Entzündung nach lamellärer 

Hornhautchirurgie, die wahrscheinlich  allergischer oder toxischer Genese ist.2 MacRae 
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et al. berichten von zwei Fällen, bei denen während der LASIK rote Blutzellen auf das 

interface gelangten und sofort abgespült wurden. Trotzdem entwickelte sich bei beiden 

Augen am 1. postoperativen Tag eine DLK.45 

Als eine andere Ursache betrachten Kaufman et al. mikroskopisch kleine Teile der 

Mikro-Keratomklingen (debris), die im interface zwischen Flap und Stroma liegen 

bleiben.37 

Auch eine Atopie wird als Risikofaktor diskutiert.9 

Unter intensiver Behandlung mit hochdosierten lokalen Steroiden wird in den meisten 

Fällen eine komplette Rückbildung der Entzündung, und damit ein Aufklaren der 

Hornhaut und ein Visusanstieg erreicht, ohne dass der Hornhaut-Flap nochmals 

abgehoben werden musste.29 

 

Bei Auftreten einer postoperativen Keratitis ist es überaus wichtig, eine nicht-infektiöse 

von einer infektiösen Erkrankung zu unterscheiden. Die Behandlung einer bakteriellen 

und pilzbedingten Keratitis mit topischen Steroiden hätte fatale Folgen. 

Karp et al. beobachteten eine infektiöse Keratitis am 1. postoperativen Tag bis zu 450 

Tagen nach LASIK. Sie legten Kulturen an und behandelten sofort nach einem 

festgelegten lokalen Antibiotika-Therapieschema. In einigen Fällen musste der Flap 

abgehoben werden und das interface gesäubert und mit Antibiotika behandelt werden. 

Es waren auch komplette Amputationen des Flaps und weitere chirurgische 

Maßnahmen nötig.36 

In der Literatur werden als Erreger häufig nicht-tuberkulöse Mycobakterien 

erwähnt.3;20;22-24;31;60;77  

Aber auch andere Erreger können für das Entstehen einer infektiösen Keratitis 

verantwortlich sein. Ramirez et al. beschreiben einen Fall von Streptococcus 

pneumoniae-induzierter Keratitis. Behandelt wurde mit Vancomycin.65 

Von einem sehr seltenen Fall von Mischinfektion mit einem koagulase-negativem 

Staphylococcus und Aspergillus fumigatus berichten Ritterband et al.66 

Infektionen mit methicillin-resistenten Staphylokokken können auch Ursache einer 

Keratitis werden.67;68 

Das Erregerspektrum umfasst im Grunde genommen alle Bakterien und Pilze, die eine 

Infektion verursachen können.    

Die mikrobielle Keratitis stellt eine ernste postoperative Komplikation dar. Nur eine 

sofortige und geeignete Therapie kann bleibende Schäden mit Visusbeeinträchtigung 
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vermeiden. Da die Keratitis im Stroma lokalisiert ist, ist eine erfolgreiche Behandlung 

mit antibiotischen Augentropfen oftmals schwierig, da oft nicht genügend Wirkstoff ins 

das interface diffundiert. In jedem Fall sollte versucht werden, infektiöses Material zu 

gewinnen und eine mikrobiologische Untersuchung mit Antibiogramm zu veranlassen. 

 

Die epitheliale Basalmembran-Dystrophie stellt einen Risikofaktor für postoperative 

Epithelheilung dar. Dastgheib et al. berichten, dass sich bei 13 von 16 Augen mit 

epithelialer Basalmembran-Dystrophie  während der LASIK eine Ablösung des Epithels 

ereignete. Bei 8 dieser 13 Augen kam es postoperativ zu einem Einwachsen von Epithel 

unter den Flap. Der Flap musste angehoben und das Epithel mittels scraping entfernt 

werden. In 4 Augen kam es sogar zu einem Einschmelzen des Flaps oder zu einer 

Keratolyse. Es wird daher empfohlen bei Patienten mit epithelialer Basalmembran-

Dystrophie keine LASIK durchzuführen.14 

 
Auch das Einwachsen von Epithel unter den Flap wird beschrieben. Nach Wang et al. 

entsteht dies nicht durch Verschleppen von Epithelzellen während des 

Mikrokeratomschnitts, sondern durch aktives Einwachsen von Epithelzellen.97 Eine 

chirurgische Entfernung dieser Epithelzellen ist unbedingt notwendig, um eine 

Eintrübung der Hornhaut und eine Verminderung der Sehschärfe zu verhindern. 

 
 
2.1.3.3. Späte postoperative Komplikationen 

 
Die Wundheilung im stromalen Bett nach LASIK ist eher gering und schreitet langsam 

fort. Die Bildung von Narbengewebe findet hauptsächlich am Rande des Flaps statt. 

Zentral und mittelperipher werden nur wenige neue Kollagenfasern gebildet. Aufgrund 

der fehlenden festen Anhaftung des Flaps auf der Resthornhaut kann die Entstehung 

einer Keratektasie – einer instabilen Hornhaut – begünstigt werden.62 Seiler et al. 

sprechen von einer verminderten biomechanischen Festigkeit der Hornhaut nach 

LASIK. Die Dicke der verbleibenden Hornhaut sollte mindestens noch 250 µm 

betragen. Sonst sei die Gefahr einer mechanischen Instabilität der Kornea zu groß. 

Trotzdem schließt eine Minimaldicke von 250 µm die Entstehung einer Keratektasie 

nicht aus.59  

Seiler berichtet über 3 myope Augen (-10 bis –13,5 Dioptrien), die im Zeitraum von 

1 bis 8 Monaten nach LASIK eine zentrale Zunahme der Steilheit der Hornhaut 
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entwickelten. Diese zeigten eine rapide Progression und wurden als Keratektasie 

interpretiert.74 

Spadea et al. berichten über den Fall eines 49-jährigen Mannes mit einer Myopie von –

23,50 Dioptrien, bei dem eine LASIK durchgeführt wurde. Die Dicke des Flaps betrug 

262 µm und die Dicke des verbleibenden Stromas lag bei 72 µm. Auch dieser Patient 

entwickelte eine massiv progrediente Keratektasie und musste sich letztendlich einer 

perforierenden Keratoplastik unterziehen.81 

Ähnlichkeiten zum Keratokonus sehen Ozadama et al. Der beim Keratokonus zu 

beobachtende Fleischer-Ring – eine zirkuläre Eisenablagerung in der Kornea – trat auch 

bei einer mit LASIK behandelten 23-jährigen Frau mit fortgeschrittener Keratektasie 

auf. Ebenso stellt ein präoperativ vorhandener Keratokonus ein erhebliches Risiko für 

die Entstehung einer Keratektasie und deshalb eine Kontraindikation für LASIK dar.82 

 

Andere Komplikationen nach LASIK sind die Über- und Unterkorrektur. Nach 

Febbraro et al. lassen sich diese refraktiven Fehler allerdings sehr erfolgreich mit einer 

wiederholten LASIK ungefähr 6 Wochen nach der ersten LASIK korrigieren.18 

Spätkomplikationen wie die Wahrnehmung von Halos oder eingeschränktes Sehen bei 

Dämmerung oder Nacht werden auch beschrieben. Sie treten hauptsächlich auf, wenn 

die Pupillenweite unter skotopischen Bedingungen den Durchmesser der Ablationszone 

überschreitet. Aber auch eine Zunahme der höheren Aberrationen nach LASIK wird als 

Ursache für Sehverschlechterung betrachtet. Die Häufigkeit des Auftretens von 

reduzierter Sehqualität kann mit der Höhe der ursprünglichen Fehlsichtigkeit 

zusammenhängen. Mittels wellenfront-gesteuerter LASIK können solche 

Komplikationen eingeschränkt werden. Die Methodik wird weiter unten in dieser Arbeit 

beschrieben. 
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2.2. Optische Aberrationen 

2.2.1. Einführung 
 
Wenn von einem Ausgleich eines refraktiven Fehlers am Auge die Rede ist, denkt man 

im Allgemeinen zuerst an die Anpassung einer Brille oder Kontaktlinse. Mit diesen 

Hilfsmitteln lässt sich die Brechkraft des Auges meist hinreichend genau korrigieren. 

Gewöhnlich werden dabei die Werte der Sphäre und des Zylinders berücksichtigt. 

Damit können die refraktiven Fehler Myopie, Hyperopie und Astigmatismus 

ausgeglichen werden. Nach Anpassung einer bestmöglichen Korrektur geht die 

Mehrzahl der Patienten sicherlich davon aus, mittels dieser Sehhilfe das Maximum an 

Sehschärfe erreicht zu haben. Das trifft jedoch nicht immer zu. Wie schon erwähnt, 

werden bei einer Brille bzw. Kontaktlinse nur die Werte der Sphäre, des Zylinders und 

seiner Achslage berücksichtigt. Es gibt aber noch zusätzliche refraktive Fehler jenseits 

der gewohnten Werte, die als Fehler oder Aberrationen höherer Ordnung bezeichnet 

werden. Normalerweise werden sie vom Fehlsichtigen wie auch vom Normalsichtigen 

nicht bewusst wahrgenommen. Die herkömmliche Sehschärfe wird durch sie nur gering 

beeinträchtigt. Bis vor kurzem konnten sie gar nicht objektiv klinisch gemessen werden 

und an eine Korrektur war nicht zu denken. Folglich waren die Auswirkungen solcher 

Aberrationen auf die Sehfunktion weitgehend unbekannt und man glaubte nicht, durch 

eine Korrektur eine Steigerung der Sehqualität erreichen zu können. Die höheren 

Aberrationen waren bis jetzt irrelevant. 

Im Zeitalter der refraktiven Chirurgie änderte sich dies aber. Es gibt immer wieder 

Patienten, die sich einer Laserkorrektur unterworfen haben, die trotz bester Korrektur 

von Sphäre und Zylinder über eine schlechtere Sehschärfe als vorher mit 

Brillenkorrektur klagen. Dies sei besonders beim Sehen bei Dunkelheit, also mit weiter 

Pupille unter skotopischen Bedingungen, auffällig. Bei diesen Patienten könnte der 

Grund des schlechten Sehens bei großen Fehlern höherer Ordnung liegen. Die refraktive 

Chirurgie hat nicht nur das Potential ungewollte Brechungsfehler zu eliminieren. Durch 

diese Technik können Fehler höherer Ordnung am Auge zusätzlich induziert werden. 

Man musste daher Wege suchen, um diese höheren Aberrationen zu erforschen und 

Mittel finden, um sie zu vermeiden.  

Seit einiger Zeit stehen uns technische Hilfsmittel zur Verfügung, mit denen man diese 

Fehler höherer Ordnung objektiv messen und beurteilen kann. Diese Geräte – 

Aberrometer genannt – arbeiten mit verschiedenen Verfahren, die weiter unten genau 
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beschrieben werden. Allen diesen Geräten gemeinsam ist die Auswertung der 

sogenannten Wellenfront, die aus dem Auge emittiert wird. Bei einem idealen Auge 

würde diese Wellenfront eine plane Fläche darstellen. Nicht-ideale Augen produzieren 

eine Art topografische Karte der gesamten Brechkraft des Auges. 

Auch auf der therapeutischen Seite stehen heute neueste refraktive Laser zur Verfügung, 

die anhand der Werte des Aberrometers ein ideales Hornhautprofil abtragen können und 

somit die Fehler höherer Ordnung möglichst klein halten oder sogar beseitigen können. 

 

2.2.2. Die Wellenfront 
2.2.2.1. Definition nach der klassischen Optik 

 

Der einfachste Weg, die Natur einer Wellenfront zu verstehen, ist das von einem Punkt 

P’ auf der Netzhaut aus dem Auge reflektierte Licht zu untersuchen. Dieser Punkt P’ 

kann beispielsweise durch einen Laserstrahl auf die Netzhaut fokussiert sein. Das 

reflektierte Licht tritt in Strahlen aus dem Auge aus. Bei einem emmetropen Auge ohne 

Brechungsfehler verlaufen diese Lichtstrahlen in der Pupillenebene parallel, wenn das 

Auge auf die Ferne eingestellt ist (d.h. keine Akkomodation). Der Fernpunkt liegt im 

Unendlichen, die resultierende Wellenfront ist plan. Von Vorne betrachtet wäre sie eine 

flache Scheibe mit dem selben Durchmesser wie die Pupille. (s. Abb. 6)  

 
Abbildung 6: 

Die Wellenfront bei einem optisch perfekten (emmetropen) Auge ist plan 

(blaue Linie). Der Fernpunkt P liegt im Unendlichen. 

 

Bei einem optisch nicht perfekten Auge vergleicht man die tatsächliche, unebene 

Wellenfront mit der theoretischen, ebenen Wellenfront. Quantitativ wird der Fehler als 

Distanz zwischen den beiden Wellenfronten angegeben.  
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Abbildung 7: 

Die Wellenfront-Aberration ist definiert als Differenz zwischen 

tatsächlicher und idealer Wellenfront. Für jeden Ort (x,y) in Pupillenebene 

kann ein eindeutiger Wert angegeben werden. 

 

 

Es ergibt sich eine landkartenähnliche Scheibe, die in ihrem Durchmesser dem 

Pupillendurchmesser entspricht. Die Höhen und Tiefen sind mit verschiedenen Farben 

und Helligkeitsunterschieden kodiert. (s. Abb. 7) 

 

Demonstration am myopen Auge 
 

Ein myopes Auge ist im Vergleich zu einem emmetropen Auge relativ zu lang gebaut. 

Wenn ein Objekt in der Ferne fixiert wird, liegt der Brennpunkt vor der Netzhaut. Das 

Bild wird unscharf. Bei Betrachtung eines Gegenstands in der Nähe verschiebt sich der 

Brennpunkt nach hinten in Richtung Netzhaut. Scharfes Sehen ohne zusätzliche 

Akkomodation ist jetzt möglich. Physikalisch-optisch betrachtet wandert mit 

zunehmender Myopie der Fernpunkt P in Richtung Auge. 

Die Lichtstrahlen, die aus dem Auge reflektiert werden verlaufen nicht mehr parallel, 

sondern treffen sich im nähergerückten Fernpunkt P. Die resultierende Wellenfront 

besitzt somit – von vorne betrachtet – eine konische Oberfläche. (s. Abb. 8) 
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Abbildung 8: 

Ein Auge, das nur den Refraktionsfehler Myopie aufweist, besitzt eine von 

vorne betrachtet konische Wellenfront (blaue Linie). 

 
Augen mit Aberrationen ergeben eine unregelmäßig geformte Wellenfront. (s. Abb. 9) 

 

 
Abbildung 9: 

Aufgrund von Refraktionsfehlern höherer Ordnung ergibt sich eine 

Wellenfront, die durch eine unregelmäßige Oberfläche gekennzeichnet ist 

(blaue Linie).  

 

2.2.2.2. Definition nach dem Wellenoptik-Prinzip 

 

Ein Grundbegriff bei der Beschreibung einer Wellenfront ist die optische Weglänge  

oder optical pathlength OPL. Sie ist definiert als die Anzahl der Schwingungen eines 

Lichtstrahls, die stattfinden, wenn sich der Lichtstrahl von einem Ort zum anderen 

ausbreitet. Da die Ausbreitungsgeschwindigkeit von Licht in wässrigen Medien kleiner 

als in Luft ist, ist die Anzahl der Schwingungen im Auge größer als vor dem Auge, 

vorausgesetzt, man geht von der selben zurückgelegten Distanz aus. Die OPL ist somit 

ein Maß für die Anzahl der Schwingungen eines sich ausbreitenden Lichtstrahls. 

Folglich besitzen zwei Lichtstrahlen, die sich von einem Punkt ausbreiten, die selbe 
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Anzahl Schwingungen, falls sie dieselbe OPL haben und falls sie dasselbe Medium 

durchlaufen. Auch treffen dabei die Strahlen mit der selben Phase ein. Jeder Punkt mit 

gleicher Phasenlage und OPL repräsentiert einen Punkt in der Wellenfront. Damit ist 

eine sich von einem Punkt ausbreitende Wellenfront definiert als Orte von Punkten im 

Raum mit identischer OPL und Phasenlage. 

 
Abbildung 10: 

Ideales emmetropes Auge: Alle 3 Lichtstrahlen besitzen die selbe OPL 

und Phasenlage. Da sie alle identische Strecken in den verschiedenen 

Medien (Glaskörper, Linse, Vorderkammer, Hornhaut und Luft) 

zurücklegen, treffen sie alle in einer planen und damit idealen Wellenfront 

ohne Brechungsfehler ein (blaue Linie). 

 

 

 

Um die Aberrationen eines Auges zu beschreiben, vergleicht man die OPL der 

austretenden Lichtstrahlen in der Pupillenebene (Koordinaten x,y) mit dem Hauptstrahl, 

der durch das Pupillenzentrum geht (Koordinaten 0,0). Man nimmt an, dass dieser 

Hauptstrahl nicht durch Brechung im Auge verändert wird, also frei von optischen 

Aberrationen ist. Der Vergleich der verschiedenen OPLs ergibt unterschiedliche 

Differenzwerte. Trägt man diese Differenzwerte in einem zweidimensionalen 

Koordinatengitter auf, so ergibt sich eine Karte der aus dem Auge austretenden 

Wellenfront. Kodiert man diese Werte mit verschiedenen Farben, so entsteht eine 

Höhendarstellung, ähnlich einer Landkarte mit Darstellung von Gebirgen und Tälern. 

Wenn diese Wellenfront nicht plan ist, also wenn die Differenzwerte nicht alle gleich 0 

sind, dann zeigt die Karte die durch die Aberrationen bedingten Abbildungsfehler eines 

Auges. Das bedeutet, dass bei einem idealen Auge ohne Brechungsfehler Lichtstrahlen, 

ausgehend von einem punktförmigen Objekt auf der Netzhaut (z.B. ein durch einen 

Laser erzeugter Lichtpunkt) und  verschiedene Orte in der Pupille passierend, nach 
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gleich vielen Schwingungen an der Netzhaut eintreffen. Sie treten parallel aus dem 

Auge aus und besitzen auch alle dieselbe Phase. Das punktförmige Objekt wird scharf, 

also ohne Brechungsfehler, ideal abgebildet. Wenn dagegen die Lichtstrahlen alle mit 

einer unterschiedlichen Phase ankommen und verschiedene optische Pfadlängen 

besitzen, dann sinkt die optische Güte der Abbildung. Das optische System Auge besitzt 

Aberrationen.  

Am Beispiel eines myopen (kurzsichtigen) Auges ohne zusätzliche Aberrationen lässt 

sich dies demonstrieren: (s. Abb. 11) 

 
Abbildung 11: 

Myopes Auge: (Zu Demonstrationszwecken ist der Bulbus übertrieben 

lang dargestellt).  

Alle drei Strahlen besitzen dieselbe OPL und Phasenlage. Durch die 

verschieden langen Strecken in den verschiedenen Medien (Glaskörper, 

Linse, Vorderkammer, Hornhaut und Luft) und der damit verbundenen 

Unterschiede in der Ausbreitungsgeschwindigkeit, befinden sich die 

Lichtstrahlen mit selber OPL und Phasenlage an unterschiedlichen Orten 

vor oder hinter der idealen und planen Wellenfront (blaue Linie).   

 

Strahlen, die am Pupillenrand ins Auge eintreten (und wieder reflektiert werden) weisen 

eine kürzere OPL auf als der Zentralstrahl, da die zurückgelegte Strecke im Auge kürzer 

ist als die Strecke, die der Zentralstrahl zurücklegt.. Die parallelen Strahlen eines 

beobachteten, entfernten, punktförmigen Gegenstands treffen mit unterschiedlicher OPL 

und Phase auf der Netzhaut auf (und werden ebenso wieder reflektiert). Das 

wahrgenommene Bild ist unscharf. Um diese Unschärfe zu kompensieren, bringt man 

den beobachteten, punktförmigen Gegenstand an den Nahpunkt des Auges. Jetzt tritt die 

Wellenfront nicht mehr plan durch die Pupille ins Auge ein, sondern als konkave 

Wellenfront. Das hat zur Folge, dass der Zentralstrahl zeitlich vor den Randstrahlen 

durch die Pupille tritt. Der Zentralstrahl hat sozusagen einen Vorsprung vor den anderen 
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Strahlen. Dementsprechend treffen alle Strahlen wieder mit der selben OPL und Phase 

auf die Netzhaut. Die Abbildung wird subjektiv als scharf wahrgenommen.  

Um also eine optimale Abbildung auf der Retina zu erhalten, muss die optische Strecke 

(OPL und Phaselage) zwischen jedem Objektpunkt und seiner Abbildung auf jedem 

Pfad durch die Pupille gleich sein. Die Wellenfront-Darstellung als Karte zeigt das 

Ausmaß einer Abweichung von der Idealform an. 

 

2.2.3. Mathematische Herleitung und Definition der Wellenfront 
 
Mathematisch wird die Wellenfront als Reihenentwicklung in der Funktion W(x,y) 

beschrieben. Sie stellt die gewichtete Summe der sogenannten Zernike-Koeffizienten 

dar. Definitionsgemäß ist die Aberration in der Pupillenmitte gleich null (W(0,0)=0). 

Der Wellenfrontfehler eines Auges, das nur den Refraktionsfehler defocus - oder auch 

sphere genannt - besitzt, hat die Formel W(x,y) = 2(x2 + y2) – 1. Grafisch aufgetragen 

entspricht dies einer dreidimensionalen Parabelform. (s. Abb. 13). Neben dieser 

Darstellungsweise durch die Punkte x und y in einem rechtwinkligen, kartesischen 

Koordinatensystem gibt es auch die Möglichkeit, die Funktion mit den polaren 

Koordinaten ρ und θ zu beschreiben. ρ ist die radiale Koordinate in Relation zum 

Pupillenradius mit einem Wertebereich zwischen 0 und 1, wobei 1 gleich dem 

Pupillenradius ist. Die daraus abgeleiteten Zernike-Koeffizienten sind somit 

abhängig vom Pupillenradius! θ stellt die Azimuth-Koordinate – auch Meridian 

genannt – dar, die zwischen 0 und 2π liegt. (π = Kreiszahl Pi = 3,1415...)  

 

Mit den Formeln 

22 yx +=ρ   (1) 

)/(tan 1 xy−=θ  (2) 

)(sin θρ=x   (3) 

)(cos θρ=y   (4)  lassen sich beide Systeme ineinander umrechnen. 
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Abbildung 12: 

Die zwei gebräuchlichen Koordinatensysteme zur Darstellung der 

Wellenfront.  

links: Kartesisches Koordinatensystem  

rechts: Polares Koordinatensystem 

 

In der polaren Darstellungsmethode wird der Astigmatismus (Koeffizient C5, 

astigmatism) als einfache Formel W(ρ,θ) = ρ2 cos(2θ) angegeben. Dreidimensional 

aufgetragen entsteht eine sattelähnliche Form. (s. Abb. 13). 

 

Mode Order Frequency Normalisation Zernike-Polynomial – polare Darstellung W(ρ,θ) =
0 0 0 1 1 
1 1 -1 2 ρ sin (θ) 
2 1 1 2 ρ cos (θ) 
3 2 -2 √6 ρ2 sin (2θ) 
4 2 0 √3 2ρ2 – 1 
5 2 2 √6 ρ2 cos (2θ) 
6 3 -3 √8 ρ3 sin (3θ) 
7 3 -1 √8 (3ρ3 – 2ρ) sin (θ) 
8 3 1 √8 (3ρ3 – 2ρ) cos (θ) 
9 3 3 √8 ρ3 cos (3θ) 
10 4 -4 √10 ρ4 sin (4θ) 
11 4 -2 √10 (4ρ4 – 3ρ2) sin (2θ) 
12 4 0 √5 6ρ4 – 6ρ2 +1 
13 4 2 √10 (4ρ4 – 3ρ2) cos (2θ) 
14 4 4 √10 ρ4 cos (4θ) 
15 5 -5 √12 ρ5 sin (5θ) 
16 5 -3 √12 (5ρ5 – 4ρ3) sin (3θ) 
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17 5 -1 √12 (10ρ5 – 12ρ3 +3ρ) sin (θ) 
18 5 1 √12 (10ρ5 – 12ρ3 +3ρ) cos (θ) 
19 5 3 √12 (5ρ5 – 4ρ3) cos (3θ) 
20 5 5 √12 ρ5 cos (5θ) 
21 6 -6 √14 ρ6 sin (6θ) 
22 6 -4 √14 (6ρ6 – 5ρ4) sin (4θ) 
23 6 -2 √14 (15ρ6 – 20ρ4 +6 ρ2) sin (2θ) 
24 6 0 √7 20ρ6 – 30ρ4 +  12ρ2 – 1 
25 6 2 √14 (15ρ6 – 20ρ4 +6 ρ2) cos (2θ) 
26 6 4 √14 (6ρ6 – 5ρ4) cos (4θ) 
27 6 6 √14 ρ6 cos (6θ) 

 
Tabelle 1: 
Zernike-Basisfunktionen bis zur 6. Ordnung, mit polaren Gleichungen 

 

2.2.4. Darstellungsweise einfacher Basis-Zernike-Funktionen 
 

 
Abbildung 13: 

Dreidimensionale Auftragungsweise einiger einfacher Basis-Zernike-

Funktionen 

 

Werden diese Basis-Zernike-Funktionen mit einem Computer als zwei- oder 

dreidimensionale „Landkarte“ dargestellt, ergeben sich in sich symmetrische Grafiken. 

C4 hat Parabelform, während die Astigmatismus-Koeffizienten C3 und C5 eine 

sattelähnliche Form besitzen.  
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2.2.5. Kombination zu komplexen Wellenfronten 

 
Um nun komplexere Wellenfronten real existierender Augen mathematisch abbilden zu 

können, kombiniert man einfache Wellenfronten.   

 
Abbildung 14: 

Kombination einfacher Basis-Zernike-Funktionen zu komplexen 

Wellenfronten  

 

Dazu benötigt man einen Vorrat verschiedener Basisformen, wie schon einige in 

vorhergehenden Absatz erwähnt wurden.  

Die am häufigsten benutzte Sammlung derartiger Basis-Wellenfronten wurde von 

Zernike eingeführt. Die einzelnen Basisformen werden hier auch Zernike-Terms Z 

genannt. 

 
Abbildung 15: 

Darstellung der Basis-Zernike-Funktionen oder Zernike-Terms als 

Pyramide. Die meridional oder angular frequency  wird hier mit f  

bezeichnet. 
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Die Nummer, die Ordnung, die Meridionalfrequenz, ein Normalisationsfaktor und die 

polare Formel eines jeden Zernike-Terms Z (oder C) bis einschließlich 6. Ordnung sind 

in Tabelle 1 angegeben. 

Der Mittelwert eines jeden Zernike-Terms über die gesamte Pupillenfläche ist null, mit 

Ausnahme von C0 (Pistonterm), der je nach Zweck manipuliert werden darf. Meist dient 

dieser term dazu, die Aberration in Wellenfrontmitte auf Null zu setzen. 

Die Zernike-Terms sind untereinander unabhängig und stehen rechtwinklig zueinander. 

Dies bedeutet, dass bei Multiplikation zweier verschiedener Terms über alle Punkte in 

der Pupillenfläche und Summierung der Ergebnisse das Endergebnis gleich null ist. 

Dies wird durch das Integral ∫ ∫
=

=

=

=

=
πθ

θ

ρ

ρ

θρρ
2

0

1

0

0ddZZ ji  ausgedrückt. 

Um verschiedene Zernike-Terms untereinander vergleichen zu können, müssen sie 

vorher noch mit einem Normalisierungsfaktor multipliziert werden. 

 

2.2.6. Mathematische Darstellung der komplexen Wellenfront 
 

Die mathematische Formel der kombinierten Zernike-Basisfunktionen lautet: 

W(ρ,θ) = ∑ ∑ f
n

f
n ZC  

Sie wird auch als Zernike-Expansion der Wellenfront-Aberration bezeichnet. Den 

Gewichtungsfaktor 
f

nC  nennt man Aberrations-Koeffizient oder Zernike-Koeffizient. 

Die Zernike-Koeffizienten besitzen die Einheit Mikrometer [µm]. Ein positiver Wert 

bedeutet, dass die aus dem Auge reflektierte Wellenfront zeitlich vor dem zentralen 

Wellenfrontanteil in Pupillenmitte eintrifft. Die OPL ist bei positiven Werten also 

kleiner als am Referenzstrahl. Das oben erwähnte Beispiel des rein myopen Auges 

wieder aufgreifend, bedeutet dies, dass die Aberration am Pupillenrand einen positiven 

Wert besitzt. 
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2.2.7. Berechnung von Sphäre, Zylinder und Achslage aus den Zernike-

Koeffizienten der zweiten Ordnung 
 

Wie weiter unten im Ergebnisteil nochmals erwähnt wird, können aus den 3 

Koeffizienten C3, C4 und C5 der 2. Ordnung die Sphäre, der Zylinder und die Achslage 

des Astigmatismus berechnet werden. Verwendet werden hierfür folgende Formeln: 

 

1)  Sphäre =  - 2

2
5

2
34 )()(6234

R
CCC +−

; 

2) Zylinder = - 2

2
5

2
3 )()(64
R

CC +
; 

3) Achslage = 
2

)/(tan 35
1 CC−

;     R = Pupillenradius 

 

2.2.8. Notationsweise, Bezeichnung und Anordnung der Koeffizienten 
 

Nach dem OSA/VSIA-Standard (Optical Society of America) werden die Zernike-

Koeffizienten mit dem Double-Index Schema dargestellt87;88:  
f

nC oder auch 
m
nC   

Nach dieser Konvention wird jeder Koeffizient durch eine radial order n (rechts und 

tiefgestellt) und durch eine meridional frequency m oder auch f (rechts und hochgestellt) 

eindeutig identifiziert. n ist gleichbedeutend mit dem Grad der Ordnung, während m 

oder f gleich der Summe der Sinusschwingungen eines Meridians über 360° (2π) ist. 

Eine andere Notationsweise, wie sie auch im Wavelight-Aberrometer verwendet wird, 

nummeriert die einzelnen Zernike-Koeffizienten beginnend mit C1 bis C27 durch. Die 

Bezeichnung der Zernike-Koeffizienten mit dem Buchstaben Zx ist gleichbedeutend und 

wird ebenso verwendet. Nach Thibos sollte nur noch das double-index Schema 

verwendet werden. Dennoch wird in dieser Arbeit noch die single-index Bezeichnung 

Cx oder Zx benutzt, da beim Wavelight-Aberrometer diese Bezeichnungsvariante zur 

Anwendung kommt. 

In Tabelle 2 wird die pyramidenförmige Anordnung und das Verfahren der 

Umwandlung beider Bezeichnungsvarianten dargestellt. 
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Tabelle 2: 

Umwandlungstabelle single index  zu double index 

 
Negative Werte von m bzw. f bedeuten, dass die Schwingung relativ zur Horizontalen 

sinusförmig ist, während positive Werte relativ zur Horizontalen einen cosinusförmigen 

Zusammenhang implizieren.  

Da jede Zernike-Ordnung n n+1 Koeffizienten beinhaltet, können diese Koeffizienten 

analog der Darstellung der Zernike-Basisfunktionen pyramidenartig dargestellt werden 

(Tabelle 2 und Abbildung 15 und 16). 

 
Abbildung 16: 

pyramidenartige Darstellung der Basis-Zernike-Funktionen 

 

In Abbildung 16 sind noch die Bezeichnungen der einzelnen Zernike-Koeffizienten 

aufgeführt. Die Zernike-Koeffizienten „tip“ und „tilt“ der 1. Ordnung bedeuten einen 

Versatz in der optischen Achse des Auges. „Astigmatism 1 und 2“ und „defocus“ 

werden die Koeffizienten der 2. Ordnung genannt. Die Koeffizienten der höheren 

Ordnungen beginnen mit C6 „trefoil 1“, C7 „coma 1“ und gehen weiter mit „secondary 

coma“, „quadrafoil“ usw.. 
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Wie schon erwähnt beinhalten die Zernike-Koeffizienten der 2. Ordnung die 

herkömmlichen Refraktionswerte der Sphäre und des Zylinders. 

Im Ergebnisteil werden die Koeffizienten C12 und C24 „spherical“ und „secondary 

spherical oder spherical-like“ noch genauer betrachtet.  

 

2.2.9. Berechnung des RMS-Wertes 
 

Eine geeignete Methode, um nicht nur einzelne Zernike-Koeffizienten, sondern ganze 

Zernike-Ordnungen miteinander zu vergleichen, ist die Berechnung des RMS-Wertes 

(root-mean-square). Mit folgender Formel wird dieser Wert berechnet: 

RMSn = 
n

f
n

F
C 2)(

Σ ;  

Fn = Normalisationsfaktor (siehe Tabelle 1 Spalte 4) 

Der RMS-Wert ist vom Betrag immer positiv. 
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2.3. Aberrometrische Messverfahren 

2.3.1. Die Aberrometrie nach dem Tscherning-Prinzip 
 
 
Im Jahre 1894 publizierte M. Tscherning in Psychologie und Physiologie der Sinne 

seine Forschungsergebnisse unter dem Titel „Die monochromatischen Aberrationen des 

menschlichen Auges“93. Er vermutete, dass diese Aberrationen die individuelle 

Sehqualität herabsetzen. Zu seiner Zeit gab es aber noch keine Mittel und Wege, die 

Aberrationen zu korrigieren.  

Um die Aberrationen zu bestimmen, verwandte er eine Linse von +4 Dioptrien Stärke, 

die auf der Oberfläche Gitterlinien mit gleichem Abstand hatte. Während der 

Untersuchung eines Patienten musste dieser auf einen Stern blicken, von dem man 

aufgrund der sehr großen Entfernung annehmen konnte, dass er parallele Strahlenbündel 

aussandte. Der Untersuchte musste daraufhin seine eigenen, subjektiv 

wahrgenommenen Aberrationen skizzieren. Das Prinzip der parallelen Strahlen zur 

Untersuchung der Aberrationen wurde beibehalten. Heutzutage stehen uns aber mit 

Lasern, CCD-Kameras und leistungsfähigen Computern Mittel zur Verfügung, um die 

anfangs subjektive Methode zu objektivieren. 

 
Abbildung 17:  

Funktionsplan eines Aberrometers nach dem Tscherning-Prinzip 

 

Das in dieser Arbeit verwendete Aberrometer „Allegretto Wave Analyzer“ der 

WaveLight Laser Technologie AG basiert auf den Prinzipien nach Tscherning. Damit 

können die refraktiven Fehler eines Auges automatisch mit Hilfe der Wellenfront-

Technologie gemessen werden. Das Prinzip der Messung beruht auf einem Muster von 
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Lichtpunkten, die auf die Netzhaut projiziert werden. Dieses Muster entsteht durch 

parallele Strahlen, die von einem Diodenlaser (λ=660 nm, P0=0,2 mW) erzeugt werden. 

Es wird von einer hochempfindlichen CCD-Kamera (charge-coupled-device) 

aufgenommen. Die Strahlen durchqueren auf ihrem Weg zur Netzhaut verschiedene 

optische Medien mit jeweils verschiedener Brechkraft. Bei einem optisch nicht 

perfekten Auge mit Aberrationen kommt es zu einer Ablenkung der Lichtstrahlen, was 

sich in einer Verzerrung  und Abweichung vom idealen Punktmuster äußert. Die 

Abweichung der einzelnen Punkte ist Ausdruck der Aberrationen eines Auges und wird 

durch die Systemsoftware analysiert. Das Ergebnis ist eine genaue Beschreibung des 

refraktiven Fehlers eines Auges. 

 

 

2.3.2. Die Aberrometrie nach dem Hartmann-Shack-Prinzip 

 
Die Messung der Aberrationen beruht hier auf einem alten Prinzip: 

In Jahre 1619 veröffentlichte der Jesuitenpater und Astronom Christoph Scheiner, 

Professor an der Universität Ingolstadt – der jetzigen Ludwig-Maximilians-Universität 

München - , seine Abhandlung „Oculus hoc est:  fundamentum opticum“.  

 
Abbildung 18:  

Christoph Scheiner, 1573-1650 

 

Darin beschreibt Scheiner ein einfaches Hilfsmittel, um die optische Abbildungsqualität 

eines Auges zu untersuchen: Eine undurchsichtige Scheibe mit zwei kleinen Löchern – 

eines zentral, das andere peripher gelegen. („Scheinersche Scheibe“). Scheiner 

entdeckte, dass ein durch diese Scheibe beobachteter, weit entfernter Lichtpunkt, wie 

etwa ein Stern, auf der Netzhaut zwei Punkte abbildet, wenn das Auge optisch nicht 

perfekt ist. Der Untersuchte nimmt subjektiv auch zwei Lichtpunkte wahr. Bei myopen 



 35 
 

oder hyperopen Augen können diese zwei Lichtpunkte leicht übereinander gebracht 

werden, wenn man Linsen geeigneter Brechkraft vor das Auge bringt.72 

 
Abbildung 19: 

Scheinersche Scheibe: Ametropes Auge mit 2 Abbildungen auf der 

Netzhaut 

 
Im Jahre 1961 modifizierte Smirnov Scheiners Methode, indem er eine feste Lichtquelle 

für den zentralen Referenzstrahl und eine bewegliche Lichtquelle für das äußere Loch 

einsetzte. Die bewegliche Lichtquelle wurde solange in horizontaler und vertikaler 

Richtung bewegt, bis der Untersuchte nur mehr einen Lichtpunkt wahrnahm. Damit 

hatte man erstmals die Möglichkeit, die Aberration eines Auges an einer bestimmten 

Stelle in der Pupillenebene mit ∆x und ∆y zu quantifizieren.80  

Smirnov glaubte aber nicht, dass ein derartiges Aberrometer jemals Einzug in die 

klinische Routine halten könnte, da die Berechnung der Daten viel zu lange dauere: 

 

„…The method applied in the present work of determining the wave aberration 

is quite laborious; although the measurements can be taken in 1-2 hours, the 

calculations take 10-12 hours. […] Therefore, it is unlikely that such detailed 

measurements will ever be adopted by practitioner-ophthalmologists.”  80 

 

 
Abbildung 20:  

Von Smirnov modifizierte Scheinersche Scheibe 
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Bohrt man nun mehrere Löcher in die Scheibe, und betrachtet man die von einem 

Lichtpunkt auf der Netzhaut abgegebenen Lichtstrahlen, dann isoliert jedes Loch in der 

Scheibe einen dünnen Lichtstrahl. An einem Leuchtschirm entsteht somit ein 

Punktmuster. Zur Objektivierung der Aberrationen misst man die Abweichung eines 

jeden Lichtstrahls von seiner idealen, aberrationsfreien Position. Anhand dieser 

Messwerte kann die Wellenfrontfunktion berechnet werden. Dieses Aberrometer wird 

als Hartmann-Screen bezeichnet. 

 
Abbildung 21: 

Hartmann-Screen 

 

Das Hartmann-Shack-Aberrometer besitzt anstelle der modifizierten Scheinerschen 

Scheibe eine Anordnung von kleinsten Linsen.78 Mittels dieser Linsen wird das aus dem 

Auge reflektierte Licht in viele kleine Einzelstrahlen zerlegt, die alle denselben 

Lichtpunkt auf der Netzhaut auf einen CCD-Sensor projizieren. Ein optisch nicht 

perfektes Auge verursacht ein unregelmäßiges Punktemuster auf dem CCD-Sensor. Aus 

diesem Punktemuster kann – analog dem Tscherning-Aberrometer – mit Hilfe von 

komplizierten Gleichungen die Wellenfront berechnet werden. 

Unter Einsatz handelsüblicher, „normaler“ Personalcomputer werden die notwendigen 

Berechnungen innerhalb von wenigen Sekunden bewältigt. Smirnov hatte bei seinen 

Überlegungen sicherlich die rasante Entwicklung der Computer und Software 

unterschätzt. 
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Abbildung 22:  

Hartmann-Shack-Aberrometer 

 

 

2.3.3. Laser-Ray-Tracing 
 

Die Aberrometrie nach dem Laser-Ray-Tracing-Prinzip funktioniert ähnlich dem 

Tscherning- oder Hartmann-Shack-Prinzip. Beim Tscherning- und Hartmann-Shack-

Aberrometer werden alle Lichtpunkte simultan auf die Netzhaut projiziert, während 

beim Laser-Ray-Tracing die Lichtpunkte sequentiell, d.h. nacheinander gesetzt und 

auch nacheinander ausgewertet werden. Es ist möglich, durch alle Punkte in 

Pupillarebene Laserstrahlen zu schicken und auszuwerten. Die sequentielle Darbietung 

der Lichtpunkte hat den großen Vorteil, dass auch Punktmuster von Augen mit sehr 

großen Aberrationen noch richtig ausgewertet werden können. Da die Daten 

nacheinander ankommen, ist die Zuordnung von Laserimpuls zu empfangenem 

Lichtpunkt durch die CCD-Kamera eindeutig. Bei den vorher beschriebenen zwei 

Verfahren ist dies nicht immer möglich. Wenn ein Auge mit großen Aberrationen 

vermessen wird, kann es zu so großen Verzerrungen des Punktmusters kommen, dass 

die Zuordnung von „Originalpunkt“ zu verzerrtem Punkt nicht immer eindeutig ist. Das 

Ergebnis und damit die Zernike-Koeffizienten der einzelnen Ordnungen wären 

verfälscht. 

Augrund der längeren Messdauer ist aber die gute Mitarbeit des Patienten bei der 

Zentrierung äußerst wichtig. Moreno et al. geben die durchschnittliche Messdauer mit 

4 Sekunden an.48    
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Abbildung 23: 

Aberrometer nach dem Laser-Ray-Tracing-Prinzip 

 

 

2.3.4. Objektive Refraktometrie 
 

Die objektive Refraktometrie ist im engeren Sinne keine Methode zur Bestimmung der 

Aberrationen. Dennoch wird dieses Messprinzip beschrieben, da damit die 

Refraktionswerte Sphäre, Zylinder und Zylinderlage bestimmt werden können, die auch 

mittels Aberrometer ermittelt werden können.  

Man unterscheidet manuelle und automatische Refraktometer. In dieser Arbeit wurde 

ein Autorefraktometer eingesetzt. 

Beide Verfahren beruhen auf demselben Prinzip: Es wird eine Prüffigur auf der 

Netzhaut abgebildet und ein Computer versucht durch Vorschalten von geeigneten 

Gläsern in den Strahlengang das von der Netzhaut reflektierte Bild scharf und möglichst 

unverzerrt abzubilden. Der Patient muss hierbei keine Angaben machen, er muss nur 

geradeaus in das Gerät blicken. Am genauesten werden die Refraktionswerte unter dem 

Einfluss von Cyclopentolat, da dadurch die Akkomodation gelähmt wird und somit die 

Gesamtrefraktion des Auges nicht verändert werden kann. 

Am Autorefraktometer werden die Werte der Sphäre, des Zylinders und der 

Zylinderlage ausgegeben. 
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2.4. Klinische Relevanz der Messverfahren 
 

Sowohl das Tscherning-Verfahren als auch das Hartmann-Shack-Prinzip wird von 

verschiedenen Herstellern von Aberrometern eingesetzt. Dabei wird das Hartmann-

Shack-Verfahren häufiger als das Tscherning-Verfahren verwendet. Das Laser-Ray-

Tracing ist eine eher selten verwendete Methode zur Bestimmung der Aberrationen. 

Alle Verfahren habe Vorteile und Nachteile. Mit allen Geräten ist die Bestimmung der 

Aberrationen zuverlässig und reproduzierbar möglich.  

Es kann daher in dieser Arbeit keinem dieser Verfahren ein Vorzug erteilt werden. 

Insgesamt hat die Aberrometrie noch nicht in die tagtägliche klinische Arbeit Einzug 

gehalten. Bisher wird sie nur in der refraktiven Chirurgie angewendet.   

 

Die Bestimmung der objektiven Refraktion mit einem Autorefraktometer ist 

mittlerweile ein Standardverfahren und aus der klinischen Routine nicht mehr 

wegzudenken.  
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3. Material und Methoden 
3.1. Das WaveLight-Aberrometer  

3.1.1. Funktionsweise und Aufbau 
 

 
Abbildung 24:  

Das WaveLight-Aberrometer „Wave-Analyzer“ 

 

Mit Hilfe des Aberrometers „Wave-Analyzer“ der Fa. WaveLight kann die gesamte 

Brechkraft des menschlichen Auges vermessen werden. Alle brechenden Strukturen von 

Hornhautvorderfläche bis zur Netzhaut haben darauf Einfluss. Das Gerät ermöglicht 

eine Messung der niederen und höheren Aberrationen bis zur sechsten Ordnung. Die 

Ausgabe der Daten erfolgt sowohl grafisch mit einigen Auswahlmöglichkeiten, als auch 

als Zahlenwerte. Dabei werden die Zernike-Koeffizienten bis maximal C27 und die 

RMS (root mean square)-Werte angegeben. Das Aberrometer arbeitet nach dem 

Tscherning-Prinzip. 

Beim diesem Tscherning-Aberrometer werden zwei verschiedene Strahlengänge 

untersucht. Zum einen die ins Auge eintretenden Strahlen, zum anderen die aus dem 

Auge reflektierten Lichtstrahlen.  

Das optische System der eingehenden Strahlen besteht im Prinzip aus einem Dioden-

Laser mit der Wellenlänge 660 nm, einer Blendenmaske mit 168 punktförmigen 

Löchern und einer Aberroskoplinse. Ein Kollimator verbreitert den Laserstrahl. 

(s. Abb. 17). Die Blendenmaske erzeugt 168 einzelne Lichtstrahlen, die ein Punktmuster 

erzeugen. Um Reflektionen zu vermeiden, wird ein punktfreies Zentrum verwendet. Der 

Durchmesser des Punktmusters ist an der Hornhautoberfläche 10 mm und der 

Durchmesser des auf die Netzhaut projizierten Abbilds liegt konstant bei 1 mm. Diese 
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Konstanz des Durchmessers wird je nach Auge und Refraktion durch verschiedene 

Aberroskoplinsen erreicht. Die Anzahl der auf die Netzhaut projizierten Punkte ist von 

der Pupillenweite des Untersuchten abhängig. Die Dauer der Belichtung der Netzhaut 

liegt bei etwa 40 ms, wobei die Laserleistung mit 0,2 mW die gesetzlich 

vorgeschriebenen Höchstgrenzen weit unterschreitet. 

 

3.1.2. Messung 
 

Die von der Netzhaut reflektierten Lichtstrahlen werden mit Hilfe des Prinzips der 

indirekten Ophthalmoskopie ausgelesen. Das Punkmuster wird mit einer 

hochempfindlichen CCD-Kamera fotografiert. Das digitale Bild wird dann in einen 

Personal-Computer übertragen. Durch Computeranalyse des reflektierten Punktmusters 

mit der Software der Fa. WaveLight werden die Aberrationen des Auges berechnet. Der 

Computer vergleicht hierbei die Position eines jeden Punktes des untersuchten Auges 

mit der errechneten Idealposition, bei der keine Aberrationen auftreten. Aus den 

resultierenden Abweichungen wird die Wellenfront mit Hilfe komplizierter Polynom-

Gleichungen berechnet. 

 
Abbildung 25:  

links: Auge mit geringen Aberrationen: Das Punktmuster ist annähernd unverzerrt 

rechts: Auge mit großen Aberrationen: Das Punktmuster weist große Verzerrungen auf 

 

Ein entscheidender Punkt der Wellenfrontmessung ist die Zentrierung des Auges. Der 

Patient blickt dazu auf ein Fixations-Target. Die Messung erfüllt die notwendigen 

Kriterien, wenn das kleine Kreuz genau im kleinen Kreis liegt und die Z-Achse ideal 
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eingestellt ist. Dies ist erreicht, wenn das Fadenkreuz, dessen Achsen bei 45 und 135 

Grad liegen auf dem Bildschirm erscheint. Am Aberrometer-Bildschirm kann die 

genaue Zentrierung „online“ beobachtet werden. (s. Abb. 26). Weichen die Werte für X-

Offset, Y-Offset und Z-Offset um mehr als 0,10 mm ab (mündliche Mitteilung Fa. 

WaveLight bei der Einführung in das System), ist das Ergebnis zu ungenau und damit 

nicht zu verwerten. In dieser Arbeit wurden nur Abweichungen unter 0,1 mm toleriert. 

Zusätzlich ist am Bildschirm die Pupillenweite angegeben. 

 

 
Abbildung 26: 

Zentrierungshilfe am WaveLight-Aberrometer 

 

 

3.1.3. Messwerte und Darstellung der Wellenfront 
 

Nach Berechnung der Daten zeigt das Aberrometer die Wellenfront als topografische, 

farblich kodierte Karte an. Es können sowohl die gesamten Ordnungen als auch nur die 

höheren Ordnungen (gesamte Ordnungen ohne 1. und 2. Ordnung) dargestellt werden. 

Auch eine dreidimensionale animierte Darstellung ist möglich.  

Ebenso kann auch das ideale, vom Aberrometer individuell errechnete, 

Abtragungsprofil betrachtet werden, was bei den in dieser Arbeit untersuchten Patienten 

aber nicht verwendet wurde. Alle Patienten unterzogen sich einer konventionellen, 

nicht-wellenfrontgesteuerten LASIK.    
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Abbildung 27: 

Grafische Darstellung der gesamten Aberrationen am WaveLight-Aberrometer 

 
 

 
Abbildung 28: 

Grafische Darstellung nur der höheren Aberrationen am WaveLight-Aberrometer 
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Das WaveLight-Aberrometer präsentiert sowohl die Zernike-Koeffizienten, notiert nach 

nach single-index Schema von C1 bis maximal C27, als auch die RMS-Werte der 

Ordnungen 1 bis 6, sowie die RMS-Werte aller Ordnungen und nur der höheren 

Ordnungen (RMS1 bis RMS6, RMSg und RMSh). 

 
Abbildung 29: 

Präsentation der Zernike-Koeffizienten C1 bis C27, der RMS-Werte, der ermittelten 

Refraktion, der subjektiven Refraktion und anderer Werte 

 
In der Zernike-Darstellung wird auch ein Balkendiagramm mit allen Koeffizienten 

angezeigt, wobei negative Werte nach links und positive Werte nach rechts aufgetragen 

werden. Außerdem wird die vom Aberrometer ermittelte Refraktion, die vom 

Untersucher eingegebene subjektive Refraktion, die prozentuale Verteilung von 

Refraktion, Koma und höheren Ordnungen, und eine farblich kodierte Karte (in 

Abbildung 29 mit allen Ordnungen) dargestellt. Die Maximalwerte auf Abszisse und 

Ordinate entsprechen der Pupillengröße (auf Ebene der exit-pupil) bei Messung. Der 

Menüpunkt „Z-Ordn.“ gestattet es, die maximale darzustellende Zernike-Ordnung 

auszuwählen. Außerdem ist es möglich, bei „OZ“ nachträglich die Größe der optischen 

Zone und damit der Pupille festzulegen. Bei Auswahl einer optischen Zone von 4 [mm] 

werden nur die Zernike-Koeffizienten einschließlich der 4. Ordnung, also bis C14 

angezeigt. 
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3.2. Das Autorefraktometer R-F10 
 

Zur präoperativen Untersuchung der Patienten wurde das Autorefraktometer R-F10 der 

Firma Canon verwendet. Es dient zur objektiven Messung der Brechkraft – also der 

Sphäre, des Zylinders und der Achse des Zylinders – des menschlichen Auges. In 

Gegensatz zur subjektiven Messung ist bei einer objektiven Messung keine aktive 

Mitarbeit des Patienten notwendig. 

Das R-F10 löst auf Tastendruck automatisch sämtliche Messungen für beide Augen aus. 

Sofort nach der Messung, die im Schnitt 20 Sekunden dauert, erfolgt ein Ausdruck der 

ermittelten Refraktionswerte. 

Das R-F10 deckt einen großen Messbereich von sphärisch –30,00 bis +22,00 Dioptrien 

[D] ab. Die angegebene Genauigkeit kann wahlweise auf 0,12 oder 0,25 D eingestellt 

werden. 

Die Zylinderstärke kann von 0,00 bis ±10,00 D vermessen werden. Die Genauigkeit ist 

hier ebenfalls 0,12 oder 0,25 D. 

Die Achse des Zylinders wird zwischen 1° und 180° angegeben. Die Genauigkeit ist 1°. 

Der Pupillenabstand darf maximal 85 mm betragen. Er wird mit einer Genauigkeit von 

1 mm angegeben. 

Die mindestens erforderliche Pupillenweite für eine erfolgreiche Messung liegt bei 

2,5 mm. 

   
Abbildung 30: 

links: Autorefraktor RF-10  

rechts: Ausdruck einer Messung mit dem RF-10 mit Ausgabe der 

gemittelten Werte für Sphäre, Zylinder und Achslage. Die 

Pupillendistanz (PD) wird ebenfalls ausgedruckt. 
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3.3. Patientenkollektiv und klinische Daten 

3.3.1. LASIK-Patientenkollektiv (Kollektiv I) 
 

Bei der Untersuchung wurden 60 Augen von 30 Patienten jeweils vor und nach LASIK 

(Laser in situ keratomileusis) einer Messung mit dem Aberrometer unterzogen. Die 

Follow-Up-Zeit betrug im Mittel 3 Monate (±1 Monat Standardabweichung [SD]). Das 

Durchschnittsalter der Patienten betrug 37 Jahre (± 3,7 Jahre SD). Die älteste Patientin 

war zum LASIK-Zeitpunkt 48, die jüngste war 23 Jahre alt. Es waren 23% der Patienten 

männlich und 77% weiblich. Alle Patienten waren myop. Die präoperative Refraktion 

schwankte von –9,5 bis –1,5 Dioptrien [D] (Mittelwert –4,25 D ± SD 0,25 D) in der 

Sphäre und  von –3,5  bis 0 D (Mittelwert –0,75 D ± SD 0,10 D) im Zylinder. Der 

präoperative Visus ohne Korrektur lag im Mittel bei 0,1 (± 0,1 SD). Der mittlere Visus 

unter bester Korrektur war 0,9 (± 0,2 SD). 

 

3.3.2. Durchgeführte Behandlung 
3.3.2.1. Der Excimer-Laser 

 
Der beim Patientenkollektiv im centrum für refraktive therapie (crt) der Augenklinik 

der Ludwig-Maximilians-Universität München eingesetzte Laser ist ein „Allegretto“-

Excimer-Lasersystem der Fa. WaveLight. Es ist ein Flying- bzw. Scanning-Spot Laser 

mit einem Spotdurchmesser von 1 mm und einer Pulsfrequenz von 220 Hz. Mit diesem 

Laser lassen sich konventionelle und aberrometriegesteuerte LASIK-Behandlungen 

durchführen. In dieser Arbeit wurden nur Daten von Patienten ausgewertet, die sich 

einer konventionellen LASIK unterzogen. Das Lasersystem besitzt  einen sogenannten 

aktiven Eye-Tracker, der auch versehentliche Blickbewegungen während der 

Behandlung erfasst und extrem schnell nachkorrigiert. Der Eye-Tracker ist darauf 

programmiert, immer dem Pupillenzentrum als Bezugspunkt zu folgen. 
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Abbildung 31:  

Der LASIK-Raum mit Excimer-Laser am crt 

 
 
3.3.2.2. Die LASIK-Prozedur 

 

Das LASIK-Verfahren besitzt gegenüber anderen Hornhautlaser-Verfahren einen 

großen Vorteil: Es entsteht keine oberflächliche Wunde der Hornhaut, da nur in den 

mittleren Schichten der Hornhaut, dem Stroma, mit dem Excimer-Laser Gewebe 

abgetragen wird.  

Präoperativ wird der Patient mit 3,75 oder 7,5 mg Dormicum® leicht sediert. Vor der 

eigentlichen Behandlung wird das Auge dann mit anaesthesie-konservierungs-

mittelfreien 1,0%igen Tetracain-Augentropfen örtlich betäubt. Hierauf wird der 

Bindehautsack mit 2%iger Jod-PVP-Lösung gespült. Die Lider und die umgebende 

Haut der Augen werden mit 10%iger Jod-PVP-Lösung sterilisiert. Anschließend werden 

die Lider einschließlich Lidkanten und Wimpern durch eine spezielle Folie abgeklebt. 

Der restliche Bereich wird mit einem sterilen OP-Tuch bedeckt. Hierauf wird ein 

Lidsperrer zwischen die Augenlider eingesetzt, um unwillkürliches Zwinkern des 

Patienten zu verhindern und das Auge während der Behandlung offen zu halten. Mittels 

zweier Ringmarker von 4,0 mm Durchmesser werden die temporale und nasale 

Hornhaut markiert 

Anschließend wird ein Saugring auf das Auge aufgesetzt, um das Auge passiv bewegen 

zu können. Er dient auch als Führungsschiene für das Mikrokeratom „LSK-1“ der 

Firma Moria. Dieses Mikrokeratom präpariert einen kleinen Hornhaut-Flap, der an 

einer Stelle, meist nasal, mit der Resthornhaut verbunden bleibt. Nach Entfernung des 

Mikrokeratoms wird eine ringförmige Chayet-Drainage um den Limbus gelegt. Dann 
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muss der Patient während der Operation kontinuierlich auf ein blinkendes Fixierlicht 

blicken. Der Eye-Tracker gleicht kleine Augenbewegungen automatisch aus. 

Nach Beendigung der Laserbehandlung wird der Flap mit einer Kanüle vorsichtig auf 

das Stromabett zurückgelegt. Unter Spülen mit steriler Flüssigkeit wird der Flap mit 

einer Kanüle und einem kleinen nassen Schwämmchen von nasal nach temporal 

massiert. Dabei wird sichergestellt, dass keine Falten, sogenannte striae, entstehen. 

Nach einigen Minuten Lufttrocknung wird die Hornhaut nochmals auf eventuell 

entstandene striae untersucht und gegebenenfalls nachgeglättet.  

Danach wird das Auge mit einer luftdurchlässigen Augenklappe abgedeckt. 

Der Durchmesser der optischen Zone für den Hornhautabtrag lag im Mittel 6,0 mm. 

Außerdem grenzte an die optische Zone eine Übergangszone („smoothing-out-zone“) 

von durchschnittlich 1,5 mm an, um die Blend- und Halo-Erscheinungen nach LASIK, 

insbesondere bei ungünstigen Lichtverhältnissen und bei Dämmerung und Nacht, zu 

minimieren. 

 

3.3.3. Begleitende Untersuchungen und Messparameter vor und nach 
LASIK 

 
Bei der Voruntersuchung wurde zusätzlich zur subjektiven Refraktion bei voller 

Akkomodationsfähigkeit noch die subjektive Refraktion in Cycloplegie (durch 

Zyklolat-EDO® Augentropfen), die objektive Refraktion unter voller 

Akkomodationsfähigkeit und die objektive Refraktion in Cycloplegie erhoben. Die 

post-operative Nachkontrolle mit Messung der Aberration, Visus-Erhebung, 

Refraktionsbestimmung und Spaltlampen-Kontrolle fand im Mittel nach 3 Monaten 

(± 1 Monat SD) statt. An Tag 1 und Woche 6 wurde eine klinische Nachuntersuchung 

ohne Aberrometrie mit Visus-Erhebung und Spaltlampen-Kontrolle durchgeführt. 

Die Pupillenweite bei Durchführung der Aberrometrie lag unter Cycloplegie bei allen 

Augen mindestens bei 6,5 mm. 

Nach Messung wurden die Zernike-Koeffizienten auf einen kleineren 

Pupillendurchmesser (4 mm)  zurückgerechnet. Dies stellt einen legitimen Schritt dar, 

da bei der Neuberechnung der Werte durch die Aberrometer-Software die äußeren 

Punkte vernachlässigt werden, also nur der zentrale Bereich des von der Netzhaut 

reflektierten Punktmusters in die Berechnung mit eingeht und keine zusätzlichen Punkte 

interpoliert werden müssen. 
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Postoperativ wurden Floxal-EDO® Augentropfen viermal täglich (Antibiotikum) und 

Inflanefran forte®-Augentropfen ebenfalls viermal täglich (Steroid) für mindestens eine 

Woche verordnet. Nach Absetzen dieser Medikation wurden Tränenersatzmittel wie 

Liposic® je nach Bedarf appliziert. 

 

3.4. Probandenkollektiv und klinische Daten 

3.4.1. Probanden (Kollektiv II) 
 
Zusätzlich zu den 60 Patientenaugen wurden auch 6 Augen von 6 augengesunden 

Probanden untersucht. Das  Durchschnittsalter der Probanden lag bei 24 Jahren 

(± 4,3 Jahre SD). Der älteste Proband war 30 Jahre, der jüngste Proband war zur 

Untersuchung 21 Jahre alt. Es waren 4 Probanden männlichen und 2 Probanden 

weiblichen Geschlechts. 3 Probanden waren myop, die 3 anderen emmetrop. Die 

subjektive Refraktion lag im Mittel bei –1,5 D (± 1,5 D SD) in der Sphäre mit einen 

Minimum von –4,5 D und einem Maximum von 0,00 D. Nur ein Proband hatte einen 

Zylinder von –0,25 D bei einer Achse von 180°. Der bestkorrigierte Visus lag bei allen 

Patienten mindestens bei 1,0.  

Die aberrometrische Messung wurde ohne Mydriatikum, mit einem 

Sympathomimetikum (Neosynephrin-POS®), mit einem Parasympatholytikum 

(Mydriatikum-Stulln®) und mit einem Mittel zur Cycloplegie (Zyklolat-EDO®) 

durchgeführt. 

Die Pupillenweite vor Anwendung eines Mydriatikums lag während der Aberrometrie 

mindestens bei 4 mm. Nach Gabe des ersten Mydriatikums (Neosynephrin-POS®) war 

die Pupillenweite mindestens 4,5 mm, nach Mydriatikum-Stulln® und Zyklolat-EDO® 

bei 6 mm oder größer. Die maximale Pupillenweite wurde bei allen Augen schon unter 

Mydriatikum-Stulln® erreicht. Zyklolat-EDO® führte bei keinem Auge zu einer 

weiteren Pupillenerweiterung. 
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3.4.2. Untersuchung der Abhängigkeit der Aberrationen vom 

verwendeten Mydriatikum 
 
Bei allen 6 Augen wurden 4 Messungen mit dem Aberrometer durchgeführt: 

 

• Die erste Messung wurde ohne Anwendung von pupillenerweiternden 

Augentropfen gemacht. 

• Die zweite Messung fand 20 Minuten nach Applikation von zweimal 

Neosynephrin-POS® Augentropfen im Abstand von 10 Minuten statt. 

• Die dritte Messung wurde 20 Minuten nach dreimaliger Anwendung von 

Mydriatikum-Stulln® Augentropfen im Abstand von 10 Minuten durchgeführt. 

• Die vierte Messung erfolgte 20 Minuten nach einmaliger Anwendung von 

Zyklolat-EDO® Augentropfen. 

 

Alle Messungen wurden am selben Tag durchgeführt. 

 
 
3.5. Statistische Auswertungsmethoden 

3.5.1. Auswertung der Daten des LASIK-Patientenkollektivs 
 

Für die statistische Auswertung wurden die Zernike-Koeffizienten für die 

Pupillenweiten 4 mm (C1 bis C14) und 6,5 mm (C1 bis C27) vor und nach LASIK 

verwendet. Die daraus errechneten RMS-Werte wurden ebenfalls statistisch 

ausgewertet.  

Außerdem dienten der präoperative Visus ohne Korrektur und mit bester 

Brillenkorrektur und auch der postoperative Visus ohne Korrektur als Datenbasis. 

Die Refraktionswerte Sphäre, Zylinder und Achslage wurden ebenso statistisch 

ausgewertet.  

Die Augen eines einzelnen Patienten wurden als voneinander unabhängig betrachtet. So 

ergibt sich die Fallzahl von 60 Augen bei 30 Patienten. Dies ist im Einklang mit der 

aktuellen Literatur.32;35;49  
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3.5.2. Auswertung der Daten des Probandenkollektivs 
 

Bei den 6 Probanden-Augen wurden die Zernike-Koeffizienten C1 bis C14 oder, bei 

weiter Pupille bis C27 und die daraus errechneten RMS-Werte verwendet. 

 

 

3.5.3. Statistik-Programm 
 

Sämtliche statistische Auswertungen wurden mit dem Programm SPSS Version 11.5 für 

Windows® (SPSS Inc., Chicago, IL, USA) durchgeführt. In allen Tests wurde p < 0,05 

als signifikant betrachtet.  

Anmerkung: In einigen Tabellen dieser Arbeit ist die Signifikanz „p = 0,000“ 

angegeben. Dies ist eigentlich nicht sinnvoll und programmbedingt.  

Eine Signifikanz „p = 0,000“ bedeutet „p < 0,001“! 

 

3.5.4. Verwendete statistische Tests für die Ergebnisse 4.1. - 4.9. 
 

zu 4.1.: Um die Zahlenwerte vor LASIK mit den jeweiligen Werten nach LASIK zu 

vergleichen, wurde der „T-Test bei gepaarten Stichproben“ benutzt. Die Signifikanz p, 

der Mittelwert und die Standardabweichung werden dabei ausgegeben. 

Zur grafischen Darstellung wurden mit SPSS® Streudiagramme der RMS-Werte und 

einiger Zernike-Koeffizienten erstellt. Auf der Ordinate sind die Werte vor LASIK, auf 

der Abszisse die Werte nach LASIK angegeben. Die Werte vor LASIK sind hellgrau, 

die Werte nach LASIK sind dunkelgrau hinterlegt. Die Gerade stellt die 

Winkelhalbierende im Koordinatensystem dar. Des weiteren veranschaulicht eine 

Fehlerbalkengrafik mit Mittelwert und Standardabweichung vor und nach LASIK die 

Änderung der jeweiligen RMS-Ordnung oder des Zernike-Koeffizienten. 

 

zu 4.2.: Wie in 4.2. wurde auch hier ein „T-Test bei gepaarten Stichproben“ eingesetzt 

und es wurden auch die Signifikanz p, der Mittelwert und die Standardabweichung 

ausgegeben. Zur grafischen Darstellung wurde ein Fehlerbalken-Diagramm der 

Mittelwerte bei 4 mm Pupille vor und nach LASIK im Vergleich mit den Mittelwerten 

bei 6,5 mm Pupille vor und nach LASIK erstellt. Wie bei 4.1. verdeutlicht eine 

Fehlerbalkengrafik die pupillenweiten-abhängige Änderung des jeweiligen Wertes. 
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zu 4.3.: Mit der sphärischen Aberration nach LASIK als Datenbasis wurde eine 

„explorative Datenanalyse“ mit Ausgabe des Mittelwerts durchgeführt.  

Grafisch wurde dies mittels eines Histogramms zur Häufigkeitsverteilung der 

sphärischen Refraktion nach LASIK verdeutlicht. Außerdem ist noch ein Histogramm 

des Visus nach LASIK ohne Korrektur dargestellt. 

 

zu 4.4.: Um die Korrelation der einzelnen Zernike-Koeffizienten untereinander zu 

berechnen wurde der Test „Bivariate Korrelationen nach Pearson“ benutzt. Ausgegeben 

wurden zwei Korrelationsmatrizen – vor und nach LASIK bei einer Pupillenweite von 

4 mm. Darin werden der Korrelationskoeffizient, die Signifikanz p und die Anzahl der 

getesteten Augen aufgeführt.  

 

zu 4.5.: Auch hier kam der Test „Bivariate Korrelationen nach Pearson“ zum Einsatz. 

Dargestellt sind hier wieder der Korrelationskoeffizient und die Signifikanz p. 

 

zu 4.6.: Wie bei 4.5. wurde hier zum Vergleich der einzelnen Refraktionswerte der Test 

„Bivariate Korrelationen nach Pearson“ benutzt. Dargestellt ist die Korrelationsmatrix 

mit Angabe von Signifikanz p, Mittelwert und Standardabweichung. 

 

zu 4.7.: Es wurde eine „explorative Datenanalyse“ mit Ausgabe von Mittelwert und 

Standardabweichung vorgenommen. Die Korelation des Visus nach LASIK zu den 

höheren Aberrationen nach LASIK wurde mit dem Test „Bivariate Korrelationen nach 

Pearson“ berechnet. Dargestellt ist die Korrelationsmatrix mit Angabe von Signifikanz 

p, Mittelwert und Standardabweichung. 

Zur grafischen Darstellung wurden mit SPSS® Streudiagramme analog Punkt 4.2. 

erstellt. 

 

zu 4.8.: Hier sind die Häufigkeitsverteilungen der einzelnen Zernike-Koeffizienten bei 

4 mm und 6,5 mm Pupillenweite vor und nach LASIK angegeben. Die Anordnung 

entspricht der von der OSA empfohlenen Pyramidendarstellung. Es wurde von Autor 

bewusst auf eine Beschriftung mit Zahlenwerten verzichtet. Die eingeblendete 

Normalverteilungskurve soll die annähernde Normalverteilung der Zernike-

Koeffizienten verdeutlichen. 
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Zur rechnerischen Überprüfung der Normalverteilung der Zernike-Koeffizienten wurde 

der nicht-parametrische Kolmogorov-Smirnov-Anpassungstest auf Normalverteilung 

durchgeführt. 

Zusätzlich sind noch vier Fehlerbalkendiagramme der höheren Ordnungen für die 

Pupillenweiten 4 mm und 6,5 mm jeweils vor und nach LASIK vorhanden. Auf der 

Ordinate ist der Mittelwert ±1 Standardabweichung aufgetragen, auf der Abszisse die 

Zernike-Koeffizienten der höheren Ordnungen. 

 

zu 4.9: Mittels „explorativer Datenanalyse“ wurden die Mittelwerte und 

Standardabweichungen errechnet. Mit Hilfe des Tests „Bivariate Korrelationen nach 

Pearson“ wurden die Korrelation und die Signifikanz  p berechnet. Ausgegeben werden 

6 Korrelationstabellen und eine Mittelwerttabelle. 

Vorher wurde der T-Test nach Student ausgeführt. 
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4. Ergebnisse 
4.1. Abhängigkeit von RMS-Werten und Zernike-Koeffizienten von 

der LASIK-Prozedur, gemessen bei Pupillenweiten von 4 mm 
und 6,5 mm 

 

Die Tabelle 3 zeigt die Mittelwerte der RMS-Werte vor und nach LASIK mit 

Standardabweichungen in Klammer für die Ordnungen 1 bis 4, sowie für alle 

Ordnungen gesamt, für die höheren Ordnungen und für die Zernike-Koeffizienten C4 

und C12, die den spherical error repräsentieren. Außerdem ist in Spalte 4 das Verhältnis 

nach zu vor LASIK berechnet. Zahlenwerte größer als 1 deuten auf eine Zunahme der 

Aberrationen hin. In der 5. Spalte ist das Signifikanzniveau der Änderungen vor zu nach 

LASIK dargestellt. Alle Daten beziehen sich auf eine Pupillenweite von 4 mm.  

 

Tabelle 4 zeigt die äquivalenten Werte für eine 6,5 mm weite Pupille. 

Zusätzlich sind hier noch der Zernike-Koeffizient C24, der ebenfalls zum spherical error 

beiträgt und die 5. und 6. Ordnung dargestellt. 

 
Zernike-
Ordnung 

vor LASIK nach LASIK Verhältnis nach/vor p 

1. Ordnung 0,105 (±0,06) 0,141 (±0,10) 1,34 0,015 
2. Ordnung 1,697 (±0,76) 0,373 (±0,37) 0,22 <0,001 
3. Ordnung 0,095 (±0,05) 0,124 (±0,07) 1,31 0,005 
4. Ordnung 0,045 (±0,02) 0,069 (±0,04) 1,53 <0,001 
Gesamte Ordn. 1,706 (±0,76) 0,438 (±0,37) 0,26 <0,001 
Höhere Ordn. 0,108 (±0,05) 0,144 (±0,08) 1,33 0,001 
C4 2,191 (±1,01) 0,207 (±0,51) 0,09 <0,001 
C12 0,014 (±0,03) 0,017 (±0,05) 1,21 0,592 
 

Tabelle 3: 4mm-Pupille, Einheit der Mittelwerte: µm 
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Zernike-
Ordnung 

vor LASIK nach LASIK Verhältnis nach/vor p 

1. Ordnung 0,241 (±0,15) 0,339 (±0,19) 1,41 0,001 
2. Ordnung 2,826 (±1,29) 0,574 (±0,55) 0,20 <0,001 
3. Ordnung 0,167 (±0,08) 0,233 (±0,11) 1,40 <0,001 
4. Ordnung 0,099 (±0,05) 0,145 (±0,07) 1,46 <0,001 
5. Ordnung 0,061 (±0,04) 0,091 (±0,06) 1,49 <0,001 
6. Ordnung 0,045 (±0,03) 0,069 (±0,04) 1,53 <0,001 
Gesamte Ordn. 2,852 (±1,29) 0,770 (±0,55) 0,27 <0,001 
Höhere Ordn. 0,216 (±0,09) 0,306 (±0,13) 1,42 <0,001 
C4 3,633 (±1,67) 0,482 (±0,78) 0,13 <0,001 
C12 0,036 (±0,08) 0,093 (±0,13) 2,58 <0,001 
C24 0,010 (±0,03) 0,005 (±0,05) 0,5 0,012 
C12&C24 0,050 (±0,04) 0,094 (±0,06) 1,88 <0,001 
 

Tabelle 4: 6,5mm-Pupille, Einheit der Mittelwerte: µm 

 

Die höheren Aberrationen (Aberrationen ab der 3. Ordnung) nehmen bei einer 6,5 mm-

Pupille um den Faktor 1,42 zu, während die Zunahme bei kleinerer Pupille 1,33 ist 

(p < 0,001 und p = 0,001). Die größte Zunahme der Aberrationen findet sich in der 

4. Ordnung bei einer 4 mm-Pupille (Faktor 1,53; p < 0,001) und in der 6. Ordnung bei 

großer Pupille (Faktor 1,53; p < 0,001). Den größten Einfluss hat der Koeffizient C12, 

der den spherical error repräsentiert (2,58-fache Zunahme bei großer Pupille). Die 

zweite Komponente des spherical errors, der Koeffizient C24 aus der 6. Ordnung nimmt 

bei einer großen Pupille um den Faktor 0,5 ab. Trotzdem nehmen die Aberrationen der 

6. Ordnung bei großer Pupille insgesamt zu. Die gewichtete Summe aus C12 und C24 

nimmt um den Faktor 1,88 zu (p < 0,001). Diese gewichtete Summe kann mit der RMS-

Formel, erwähnt in Kapitel 2.2.9., berechnet werden. Systembedingt kann C24 bei einer 

kleinen Pupille nicht ausgewertet werden, da das WaveLight-Aberrometer bei einer 

4 mm weiten Pupille die Aberrationen nur bis einschließlich 4. Ordnung berechnet. 

Der Beitrag der 3.Ordnung liegt bei 1,31-fach bei kleiner (p = 0,005) und 1,40 

(p < 0,001) bei großer Pupille.  

Die höchst signifikante Abnahme des Koeffizienten C4, sowohl bei enger als auch bei 

weiter Pupille, mit einem Verhältnis von 0,09 und 0,13 (p < 0,001) nach zu vor LASIK 

war zu erwarten, da C4 die Aberration des defocus darstellt, und damit ein Hauptziel der 

LASIK ist. Defocus bedeutet „nicht im Brennpunkt“, d.h. die Refraktionsfehler Myopie 

und Hyperopie sind die Hauptursachen. 

Alle Ergebnisse sind statistisch signifikant bis höchst signifikant, mit Ausnahme C12 bei 

kleiner Pupille (p = 0,592). 
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Streudiagramme und Fehlerbalkendiagramme mit Mittelwert und 

Standardabweichung der RMS-Werte der 1. bis 4. Ordnung, des Zernike-

Koeffizienten C12, der RMS-Werte aller Ordnungen zusammen und der RMS-

Werte der höheren Ordnungen zusammen. Pupillenweite 4 mm. 

 

Streudiagramm links:  

Auf der Ordinate sind die RMS-Werte vor LASIK, auf der Abszisse die RMS-Werte 

nach LASIK aufgetragen. Die Zahlenwerte tragen die Einheit Mikrometer [µm]. Die 

Gerade entspricht der Winkelhalbierenden im Koordinatensystem. Alle Werte, die auf 

der Geraden liegen, haben sich im Vergleich vor zu nach LASIK nicht geändert. Je 

weiter sie von der Geraden entfernt sind, desto größer ist der Betrag der Änderung. 

Werte links der Geraden (im hellgrauen Teil) haben nach LASIK abgenommen. Werte 

rechts der Geraden (im dunkelgrauen Teil) haben nach LASIK zugenommen. 
 
Fehlerbalkendiagramm rechts: 

Der linke Fehlerbalken repräsentiert den Mittelwert über alle Patientenaugen des 

jeweiligen RMS-Wertes mit Standardabweichung vor LASIK. Der rechte Fehlerbalken 

stellt die Werte nach LASIK dar. Außerdem ist als mittelwert-verbindende Linie noch 

die Änderung des Mittelwerts präsentiert. Je größer die positive Steigung der Geraden, 

desto größer ist die Zunahme des Wertes. 
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Grafik 1 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 1. Ordnung  

 

RMS-Werte der 1. Ordnung  (tip & tilt) 

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 4 mm-Pupille.  

2/3 der behandelten Augen weisen eine Zunahme der Aberrationen nach LASIK auf. 
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Grafik 2 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 2. Ordnung 

 

RMS-Werte der 2. Ordnung (astigmatism & defocus) 

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 4 mm-Pupille.  

Bei allen Augen nehmen die Aberrationen deutlich ab. Dies ist zu erwarten, da in der 

2. Ordnung die durch LASIK zu korrigierenden Brechungsfehler (Myopie oder 

Hyperopie und Astigmatismus) enthalten sind. (C4). 
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Grafik 3 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 3. Ordnung 

 

RMS-Werte der 3. Ordnung  (coma & trefoil) 

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 4 mm-Pupille.  

39 von 60 Augen weisen nach LASIK größere Aberrationen auf. 
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Grafik 4 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 4. Ordnung 

 

RMS-Werte der 4. Ordnung (tetrafoil, astigmatism & spherical error) 

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 4 mm-Pupille.  

54 von 60 Augen besitzen nach LASIK eine größere Aberration. 
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Grafik 5 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm von C12 

 

Zernike-Koeffizient C12 (oder Z12) (spherical error-like)  

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 4 mm Pupille.  

Die Werte sind relativ gleichmäßig um die Gerade verteilt und zeigen keinen 

signifikanten Unterschied (p = 0,592). 
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Grafik 6 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm aller Ordnungen 

 
RMS-Werte aller Ordnungen (1. – 4. Ordnung) 

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 4 mm-Pupille. 

Die Verteilung entspricht fast exakt der Verteilung der Werte der 2. Ordnung, da die 

2. Ordnung ca. um den Faktor 10 größer ist und damit die 1. und die höheren 

Ordnungen wenig Gewicht haben. 
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Grafik 7 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der höheren Ordnungen 

 
RMS-Werte der höheren Ordnungen (3. und 4. Ordnung zusammen) 

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 4 mm-Pupille. 

Bei 40 von 60 Augen nehmen die höheren Aberrationen deutlich zu. 
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Streudiagramme und Fehlerbalkendiagramme mit Mittelwert und 

Standardabweichung der RMS-Werte der 1. bis 6. Ordnung, der gewichteten 

Summe der Zernike-Koeffizienten C12 und C24, der RMS-Werte aller Ordnungen 

zusammen und der RMS-Werte der höheren Ordnungen zusammen.  

Pupillenweite 6,5 mm. 
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Grafik 8 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 1. Ordnung 

 
RMS-Werte der 1. Ordnung (tip & tilt) 

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 6,5 mm-Pupille.  

38 der 60 behandelten Augen weisen eine Zunahme der Aberrationen nach LASIK auf. 
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Grafik 9 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 2. Ordnung 

 

RMS-Werte der 2. Ordnung (astigmatism & defocus) 

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 6,5 mm-Pupille.  

Bei allen Augen nehmen die Aberrationen deutlich ab. Dies ist auch bei weiterer Pupille 

zu erwarten, da in der 2. Ordnung die durch LASIK zu korrigierenden Brechungsfehler 

(Myopie oder Hyperopie und Astigmatismus) enthalten sind. 
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Grafik 10 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 3. Ordnung 

 
RMS-Werte der 3. Ordnung (coma & trefoil) 

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 6,5 mm-Pupille.  

43 von 60 Augen weisen nach LASIK größere Aberrationen auf. 
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Grafik 11 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 4. Ordnung 

 
RMS-Werte der 4. Ordnung (tetrafoil, astigmatism & spherical error) 

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 6,5 mm-Pupille.  

45 von 60 Augen besitzen nach LASIK eine größere Aberration. 
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Grafik 12 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 5. Ordnung 

 
RMS-Werte der 5. Ordnung (secondary coma) 

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 6,5 mm-Pupille.  

46 von 60 Augen besitzen nach LASIK eine größere Aberration. 
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Grafik 13 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 6. Ordnung 

 

RMS-Werte der 6. Ordnung (secondary spherical-like) 

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 6,5 mm-Pupille.  

45 von 60 Augen besitzen nach LASIK eine größere Aberration. Bei 4 Augen bleiben 

die Werte annähernd unverändert 
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Grafik 14 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm C12 und C24 zusammen 

 

Gewichtete Summe der Zernike-Koeffizienten C12 und C24 (spherical error-like)  

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 6,5 mm Pupille.  

Bei 49 von 60 Augen nahmen die Aberrationen nach LASIK zu. 
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Grafik 15 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm aller Ordnungen 

 
RMS-Werte aller Ordnungen 

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 6,5 mm-Pupille. 

Die Verteilung entspricht auch bei weiter Pupille fast exakt der Verteilung der Werte 

der 2. Ordnung. 
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Grafik 16 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der höheren Ordnungen 

 
RMS-Werte der höheren Ordnungen (3. und 4. Ordnung zusammen) 

vor (hellgrau) und nach (dunkelgrau) LASIK bei einer 6,5 mm-Pupille. 

Bei 50 von 60 Augen nehmen die höheren Aberrationen deutlich zu. 
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4.2. Abhängigkeit von RMS-Werten und Zernike-Koeffizienten von 
der Pupillenweite, gemessen jeweils vor und nach LASIK 

 

Tabelle 5 stellt in Spalte 2 und 3 die Mittelwerte der RMS-Werte der in Spalte 1 

angegebenen Ordnungen sowohl für 4 mm als auch für 6,5 mm Pupillenweite vor 

LASIK dar. In Klammer ist die jeweilige Standardabweichung angefügt. In Spalte 4 ist 

der Quotient aus Mittelwert bei 6,5 mm und Mittelwert bei 4 mm aufgelistet (ratio-prä). 

Spalte 5 stellt das Signifikanzniveau p der Änderung dar. 

Tabelle 6 gibt die entsprechenden Daten nach LASIK wieder. 

Die pupillenweiten-abhängige Änderung in der 5. und 6. Ordnung konnte nicht 

berechnet werden, da das WaveLight Aberrometer bei kleiner Pupille die Daten nur bis 

einschließlich der 4. Ordnung ausgibt. 

 

Zernike-Ordnung 4 mm 6,5 mm Verhältnis 6,5/4 mm 
(ratio-prä) p 

1. Ordnung 0,105 (±0,06) 0,241 (±0,15) 2,30 <0,001 
2. Ordnung 1,697 (±0,76) 2,826 (±1,29) 1,67 <0,001 
3. Ordnung 0,095 (±0,05) 0,167 (±0,08) 1,76 <0,001 
4. Ordnung 0,045 (±0,02) 0,099 (±0,05) 2,20 <0,001 
Gesamte Ordn. 1,706 (±0,76) 2,852 (±1,29) 1,67 <0,001 
Höhere Ordn. 0,108 (±0,05) 0,216 (±0,09) 2,00 <0,001 
C4 2,191 (±1,01) 3,633 (±1,67) 1,66 <0,001 
C12 0,014 (±0,03) 0,036 (±0,08) 2,57 0,023 

 

Tabelle 5:  vor LASIK, Einheit der Mittelwerte: µm 

 
 
Zernike-Ordnung 4 mm 6,5 mm Verhältnis 6,5/4 mm 

(ratio-post) p 

1. Ordnung 0,141 (±0,10) 0,339 (±0,19) 2,40 <0,001 
2. Ordnung 0,373 (±0,37) 0,574 (±0,55) 1,54 <0,001 
3. Ordnung 0,124 (±0,07) 0,233 (±0,11) 1,88 <0,001 
4. Ordnung 0,069 (±0,04) 0,145 (±0,07) 2,10 <0,001 
Gesamte Ordn. 0,438 (±0,37) 0,770 (±0,55) 1,76 <0,001 
Höhere Ordn. 0,144 (±0,08) 0,306 (±0,13) 2,13 <0,001 
C4 0,207 (±0,51) 0,482 (±0,78) 2,33 <0,001 
C12 0,017 (±0,05) 0,093 (±0,13) 5,47 <0,001 

 

Tabelle 6: nach LASIK, Einheit der Mittelwerte: µm 
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Die größte Zunahme in Abhängigkeit von der Pupillenweiten-Änderung von 4 mm auf 

6,5 mm erkennt man beim Zernike-Koeffizienten C12 aus der 4. Ordnung. Vor LASIK 

beträgt der Faktor 2,57 (p = 0,023), nach LASIK sogar 5,47 (p < 0,001). Auffällig ist, 

dass für die 4. Ordnung insgesamt – also für C10 bis C14 – die ratio-post kleiner ist als 

die ratio-prä (ratio-post = 2,10 (p < 0,001) und ratio-prä = 2,20 (p < 0,001)). 

Eine kleinere ratio-post liefert auch die gesamte 2. Ordnung mit ratio-post = 1,54 

(p < 0,001) und ratio-prä = 1,67 (p < 0,001). Die ratio-post des Zernike-Koeffizienten 

C4 aus der 2. Ordnung ist aber mit 2,33 (p < 0,001) größer als die ratio-prä mit 1,66 

(p < 0,001). 

Demnach verhalten sich die spherical-like Aberrationen analog. 

Die ratio-prä der 3. Ordnung ist mit 1,76 (p < 0,001) etwas kleiner als die ratio-post mit 

1,88 (p < 0,001). Ähnlich verhält es sich mit der 1. Ordnung: ratio-prä = 2,3 (p < 0,001) 

und ratio-post = 2,4 (p < 0,001). 

Das Verhältnis der Zunahme aller Ordnungen zusammen ist nach LASIK etwas größer 

als vor LASIK (ratio-prä = 1,67 (p < 0,001) und ratio-post = 1,76 (p < 0,001). 

Die ratio-prä der höheren Ordnungen zusammen beträgt 2,00 (p < 0,001). Sie ist 

geringer als die ratio-post mit 2,13 (p < 0,001). 

 

Im Folgenden sind die Streudiagramme der Ordnungen 1 bis 4, aller Ordnungen und der 

höheren Ordnungen jeweils vor und nach LASIK dargestellt. 

Auf der Ordinate sind die RMS-Werte bei kleiner Pupille vor LASIK, auf der Abszisse  

die RMS-Werte bei großer Pupille vor LASIK aufgetragen. RMS-Werte, die sich im 

dunkleren Teil der Grafik befinden, haben daher bei Vergrößerung der Pupille 

zugenommen. Die Achsen sind in der Einheit µm beschriftet. 

 

Das Fehlerbalkendiagramm auf der rechten Seite stellt die Mittelwerte 

± Standardabweichung bei den Pupillenweiten 4 mm und 6,5 mm dar. Je größer die 

positive Steigung der Geraden, desto größer ist die Zunahme des Wertes. 
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Streudiagramme vor LASIK 

 

RMS 1.Ordnung bei 6,5 mm-Pupille vor LASIK
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RMS 1.Ordnung bei 4 und 6,5 mm-Pupillenweite vor LASIK  
Grafik 17 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 1. Ordnung 

 

RMS-Werte der 1. Ordnung vor LASIK: 

Bei 53 von 60 Augen nimmt der Betrag des RMS-Wertes bei Pupillenvergrößerung zu. 
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Grafik 18 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 2. Ordnung 

 

RMS-Werte der 2. Ordnung vor LASIK: 

Bei allen 60 Augen sind die RMS-Werte bei 6,5 mm-Pupille angestiegen. 
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RMS 3.Ordnung bei 6,5 mm-Pupille vor LASIK
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Grafik 19 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 3. Ordnung 

 

RMS-Werte der 3. Ordnung vor LASIK: 

55 von 60 Augen besitzen nach Änderung der Pupillengröße von 4 mm auf 6,5 mm 

höhere RMS-Werte 

 

 

 

RMS 4.Ordnung bei 6,5 mm-Pupille vor LASIK
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Grafik 20 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 4. Ordnung 

 

RMS-Werte der 4. Ordnung vor LASIK: 

45 von 60 Augen erfahren eine Zunahme der RMS-Werte 
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RMS aller Ordnungen bei 6,5 mm-Pupille vor LASIK
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Grafik 21 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm aller Ordnungen 

 

RMS-Werte aller Ordnungen zusammen vor LASIK: 

Aufgrund der Dominanz von C4, der in der 2. Ordnung enthalten ist, nehmen die RMS-

Werte aller Augen zu. 

 
 
 
 

RMS der höheren Ordnungen bei 6,5 mm-Pupille vor LASIK
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Grafik 22 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der höheren Ordnungen 

 

RMS-Werte der höheren Ordnungen zusammen vor LASIK: 

Bei 56 von 60 Augen erkennt man eine Zunahme der RMS-Werte bei 

Pupillenerweiterung. 
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Z12 bei 6,5 mm-Pupille vor LASIK
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Grafik 23 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm von Z12 (oder C12 ) 

 

Zernike-Koeffizient C12 vor LASIK: 

Bei 37 von 60 Augen erkennt man eine Zunahme bei Pupillenerweiterung. 
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Streudiagramme nach LASIK 
 

 

RMS 1.Ordnung bei 6,5 mm-Pupille nach LASIK
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Grafik 24 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 1. Ordnung 

 

RMS-Werte der 1. Ordnung nach LASIK: 

57 von 60 Augen besitzen nach Pupillenerweiterung größere RMS-Werte. 

 
 

 

RMS 2.Ordnung bei 6,5 mm-Pupille nach LASIK
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Grafik 25 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 2. Ordnung 

 

RMS-Werte der 2. Ordnung nach LASIK: 

Bei 52 von 60 Augen nehmen die RMS-Werte zu.  
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RMS 3.Ordnung bei 6,5 mm-Pupille nach LASIK
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Grafik 26 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 3. Ordnung 

 

RMS-Werte der 3. Ordnung nach LASIK: 

57 von 60 Augen besitzen nach Pupillenerweiterung größere RMS-Werte. 

 
 
 
 

RMS 4.Ordnung bei 6,5 mm-Pupille nach LASIK
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Grafik 27 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der 4. Ordnung 

 

RMS-Werte der 4. Ordnung nach LASIK: 

Bei 56 von 60 Augen nimmt der Betrag der RMS-Werte zu. 
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RMS aller Ordnungen bei 6,5 mm-Pupille nach LASIK
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Grafik 28 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm aller Ordnungen 

 

RMS-Werte aller Ordnungen zusammen nach LASIK: 

59 von 60 Augen erfahren eine Zunahme der RMS-Werte nach Pupillenerweiterung. 

 

 

 

RMS der höheren Ordnungen bei 6,5 mm-Pupille nach LASIK
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Grafik 29 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm der höheren Ordnungen 

 

RMS-Werte der höheren Ordnungen zusammen nach LASIK: 

Die RMS-Werte von 59 der 60 Augen nehmen zu. 
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Z12 bei 6,5 mm-Pupille nach LASIK
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Grafik 30 a, b: links: Streudiagramm, rechts: Fehlerbalkendiagramm von C12 

 
Zernike-Koeffizient C12 nach LASIK: 

Bei 4 von 60 Augen erkennt man eine Zunahme bei Pupillenerweiterung. 
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Grafik 31:  

Veränderung der Aberrationen höherer Ordnung als Funktion der 

Pupillenweite jeweils vor und nach LASIK 
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4.3. Verbleibender sphäro-zylindrischer Fehler nach LASIK und 
Korrelation des sphärischen Äquivalents vor LASIK mit dem 
unkorrigiertem Visus nach LASIK 

 
Das Hauptziel des konventionellen LASIK-Verfahrens ist die Reduktion des sphäro-

zylindrischen Fehlers (entspricht den Aberrationen der 2. Ordnung) auf Werte um null 

Dioptrien [D]. Trotz genauer Berechnung des Hornhautabtragungsprofils lag das 

verbleibende, vom Aberrometer ermittelte sphärische Äquivalent bei einem Mittelwert 

von –0,20 D bei einer Standardabweichung von 0,3 D. Die Werte erstreckten sich von –

2,0 D bis +0,25 D. Ausgewertet wurden die Ergebnisse von 55 Augen von 27 Patienten, 

die nach LASIK mindestens eine unkorrigierte Sehschärfe von 0,8 erreichten und 

subjektiv damit zufrieden waren. Die zwei Grafiken unten zeigen die 

Häufigkeitsverteilung des am Aberrometer ermittelten sphärischen Äquivalents vor 

LASIK sowie die Häufigkeitsverteilung des Visus nach LASIK bei n = 55 Augen. 

Die negative Korrelation des sphärischen Äquivalents vor LASIK mit dem 

unkorrigierten Visus nach LASIK zeigte mit r = -0,325 (p = 0,011) ein signifikantes 

Ergebnis. 

An
za

hl
 d

er
 A

ug
en

 n
ac

h 
LA

SI
K

0,50 0,630,40 0,80 1,00 1,20
0

10

20

30

Visus ohne Korrektur  
Grafik 32: Häufigkeitsverteilung des Visus nach LASIK ohne Korrektur 
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Grafik 33 und 34:  
Häufigkeitsverteilung des sphärischen Äquivalents vor und nach LASIK 
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4.4. Korrelation der Zernike-Koeffizienten aller Ordnungen unter-
einander 

 
Korrelationen vor LASIK 

 
Tabelle 7:  

Korrelationsmatrix der Zernike-Koeffizienten aller Ordnungen bei einer 4 mm-Pupille 

vor LASIK; p = 0,000 bedeutet p < 0,001 

 
Positive Korrelationen: 

Die höchste Korrelation mit r = 0,566 (p < 0,001) tritt zwischen den Zernike-

Koeffizienten C2 und C8 auf. 

Die nächsthöhere Korrelation tritt zwischen C1 und C7 mit r = 0,423 bei p = 0,001 auf. 

C3 und C6 korrelieren mit r = 0,330 bei p = 0,010. C1 und C10 korrelieren mit r = 0,315 

bei p = 0,014. Die Korrelation zwischen C4 und C12 beträgt 0,287 bei p = 0,026. 

 
Negative Korrelationen: 
 
Den höchsten Betrag der Korrelation mit r = –0,581 bei p < 0,001 besitzen die Zernike-

Koeffizienten C6 und C7. Eine Korrelation von –0,328 bei p = 0,010 tritt zwischen C3 

und C7 auf. C7 und C12 korrelieren mit r = –0,296 bei p = 0,022. 
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Grafik 35: 
Grafische Darstellung der Korrelationen der Zernike-Koeffizienten aller 

Ordnungen untereinander bei einer Pupillenweite von 4 mm vor LASIK;  

Kreise sind gleichbedeutend mit positiver Korrelation, Quadrate mit 

negativer Korrelation.  
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Korrelationen nach LASIK 
 

 
 

Tabelle 8: 

Korrelationsmatrix der Zernike-Koeffizienten aller Ordnungen bei einer 4 mm-Pupille 

nach LASIK; p = 0,000 bedeutet p < 0,001 

 
Positive Korrelationen: 

Die höchste Korrelation mit r = 0,695 (p < 0,001) tritt zwischen den Zernike-

Koeffizienten C1 und C7 auf. 

Die nächsthöhere Korrelation tritt zwischen C1 und C4 mit r = 0,495 bei p < 0,001 auf. 

C2 und C8 korrelieren mit 0,396 bei p = 0,002. 

 
Negative Korrelationen: 
 
Den höchsten Betrag der Korrelation mit r = –0,436 bei p < 0,001 besitzen die Zernike-

Koeffizienten C3 und C13. C5 und C11 korrelieren ähnlich hoch mit r = –0,434 bei 

p = 0,001.  
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Grafik 36: 

Grafische Darstellung der Korrelationen der Zernike-Koeffizienten aller 

Ordnungen untereinander bei einer Pupillenweite von 4 mm nach LASIK;  

Kreise sind gleichbedeutend mit positiver Korrelation, Quadrate mit 

negativer Korrelation.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



80 
 

4.5. Korrelation des sphärischen Äquivalents vor LASIK zur 
Differenz [nach – vor LASIK] der Aberrationen höherer 
Ordnung  

 

Bei dieser Untersuchung wurde das sphärische Äquivalent der subjektiven Refraktion 

vor LASIK mit der Differenz der höheren Aberrationen korreliert. 

Das sphärische Äquivalent errechnet sich mit der Formel:     Sphäre + ⏐
2

Zylinder
⏐; 

Die Differenz wird aus RMS-Wert nach LASIK minus RMS-Wert vor LASIK gebildet. 

 
Differenz der 
RMS-Werte 
(nach – vor 
LASIK) 

 höhere 
Abberr. 
(4mm 
Pupille) 

höhere 
Abberr. 
(6,5mm 
Pupille) 

3. 
Ordnung 
(4mm 
Pupille) 

4. 
Ordnung 
(4mm 
Pupille) 

3. 
Ordnung 
(6,5mm 
Pupille) 

4. 
Ordnung 
(6,5mm 
Pupille) 

5. 
Ordnung 
(6,5mm 
Pupille) 

6. 
Ordnung 
(6,5mm 
Pupille) 

sphärisches 
Äquivalent vor 
LASIK 

Korrelation -0,207 -0,210 -0,188 -0,174 -0,172 -0,143 -0,125 -0,071

 p 0,113 0,107 0,151 0,183 0,189 0,276 0,340 0,589
 
Tabelle 9:  

Korrelationen des sphärischen Äquivalents zu den RMS-Differenzen 

 

Tabelle 9 zeigt in der zweiten Zeile die Korrelationen des sphärischen Äquivalents mit 

den jeweiligen RMS-Differenzen an. 

In der dritten Zeile ist das Signifikanzniveau p angegeben. 

 

Es zeigen sich keine signifikanten Korrelationen. 
 
 

 N Minimum Maximum Mittelwert Standardabweichung

sphärisches Äquivalent 60 -9,50 -1,0 -3,75 2,0 

höhere Aberr. (4mm) 60 -0,225054 0,305096 0,0365 0,080 

höhere Aberr. (6,5mm) 60 -0,163823 0,404824 0,0900 0,114 

3. Ordnung (4mm) 60 -0,231998 0,264196 0,0286 0,076 

4. Ordnung (4mm) 60 -0,034919 0,176955 0,0245 0,041 

3. Ordnung (6,5mm) 60 -0,226390 0,371010 0,0661 0,118 

4. Ordnung (6,5mm) 60 -0,114640 0,213240 0,0456 0,058 

5. Ordnung (6,5mm) 60 -0,096816 0,280230 0,0305 0,059 

6. Ordnung (6,5mm) 60 -0,098160 0,176790 0,0246 0,044 

 
Tabelle 10:  

Deskriptive Statistik des sphärischen Äquivalents und der RMS-Differenzen 

(Einheit des sphärischen Äquivalents: Dioptrien; Einheit der Aberrationen: µm) 
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4.6. Wellenfrontmessung als Methode zur Bestimmung der 
objektiven Refraktion 

 

Das WaveLight-Aberrometer präsentiert nach erfolgter Messung die Zernike-

Koeffizienten C1 bis C27, also bis zur 6. Ordnung. Die Koeffizienten C3, C4 und C5, die 

die 2. Ordnung darstellen, repräsentieren die sphärozylindrischen Brechungsfehler. C4 

ist der Brechungsfehler defocus, d.h. der Brennpunkt, das scharfe Bild, liegt vor 

(Myopie) oder hinter (Hyperopie) der Netzhaut. Die Koeffizenten C3 und C5 werden als 

horizontales und vertikales Coma bezeichnet. Diese lassen sich in Zylinder und 

Zylinderlage (Achse des Astigmatismus) umrechnen. Mit Hilfe der folgenden Formeln 

werden die Werte der Sphäre, des Zylinders und der Achslage berechnet: 

 

Sphäre = - 2

2
5

2
34 )()(6234

R
CCC +−

; 

 

Zylinder = - 2

2
5

2
3 )()(64
R

CC +
; 

 

Achslage = 
2

)/(tan 35
1 CC−

; 

 

R ist hierbei gleichbedeutend mit dem jeweiligen Pupillenradius. Bei Angabe der 

Zernike-Koeffizienten und des Pupillenradius in Millimetern besitzt das Ergebnis die 

Einheit Dioptrien. Man beachte, dass das Ergebnis das umgekehrte Vorzeichen des 

vorhandenen Brechungsfehlers besitzt. Es werden also die korrigierenden Werte wie bei 

einer Brille angegeben. Mittels dieser Gleichungen ist man also in der Lage, aus den 

Koeffizienten der 2. Ordnung eine objektive Refraktion zu berechnen. Dieser Schritt 

wird beim WaveLight-Aberrometer automatisch durchgeführt. 

Im Folgenden wird untersucht, wie sich die Ergebnisse dreier verschiedener Methoden 

zur Refraktionsbestimmung unterscheiden, und ob es möglich wäre, dieses Aberrometer 

auch zur Bestimmung der objektiven Refraktion zu verwenden. 

 

Sämtliche Messungen wurden bei weitgestellter Pupille und unter 

Akkomodationslähmung mit Cyclopentolat durchgeführt.  
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Die Korrelation der sphärischen Brechungsfehler zwischen subjektiver Refraktion und 

dem Canon-Autorefraktometer RF-10 betrug 0,988 (p < 0,001). Die Korrelation 

zwischen subjektiver Refraktion und Aberrometer lag bei 0,940 (p < 0,001). Zwischen 

den beiden Methoden zur objektiven Refraktionsbestimmung Aberrometer und 

Autorefraktor errechnete sich eine Korrelation von r = 0,951 (p < 0,001).  

Die Korrelation des Zylinders unabhängig von der Achslage war zwischen subjektiver 

Refraktion und Autorefraktometer 0,848 (p < 0,001). Zwischen subjektiver Refraktion 

und Aberrometer lag die Korrelation bei r = 0,806 (p < 0,001). Die zwei objektiven 

Refraktionen korrelierten mit r = 0,885 (p < 0,001) 

 

1
.

60
1
.

60
,988 1
,000 .

60 60

,848 1
,000 .

60 60
,951 ,940 1
,000 ,000 .

60 60 60
,885 ,806 1
,000 ,000 .

60 60 60

Korrelation (Pearson)
Signifikanz
N
Korrelation (Pearson)
Signifikanz
N
Korrelation (Pearson)
Signifikanz
N

Korrelation (Pearson)
Signifikanz
N
Korrelation (Pearson)
Signifikanz
N
Korrelation (Pearson)
Signifikanz
N

Autorefraktor Sphäre

Autorefraktor Zylinder

Subjektive Refraktion
Sphäre

Subjektive Refraktion
Zylinder

Aberrometer Sphäre

Aberrometer Zylinder

Autorefraktor
Sphäre

Autorefraktor
Zylinder

Subjektive
Refraktion

Sphäre

Subjektive
Refraktion
Zylinder

Aberrometer
Sphäre

Aberrometer
Zylinder

 
Tabelle 11:  

Korrelationsmatrix der verschiedenen Refraktionswerte; p = 0,000 bedeutet p < 0,001 
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4.7. Vergleich der Visuswerte 

 Mittelwert (n=60) Standardabweichung
Visus vor LASIK mit bester Korrektur 0,9 0,2 
Visus vor LASIK ohne Korrektur 0,1 0,1 
Visus nach LASIK ohne Korrektur 1,0 0,2 

 

Tabelle 12:  

Mittelwert und Standardabweichung der verschiedenen Visuswerte 

 

Tabelle 12 zeigt die Mittelwerte und Standardabweichungen der drei erhobenen 

Visuswerte 

 

4.7.1. Vergleich des unkorrigierten Visus vor vs. nach LASIK 
 

 
 
Grafik 37: 

Streudiagramm der Visuswerte vor und nach LASIK jeweils ohne 

Korrektur;   

durch rote Kreise markierte Ringe entsprechen identischen Werten  

 

Alle 30 Patienten erfuhren eine Besserung der unkorrigierten Sehschärfe. 51 von 60 

Augen erreichten einen unkorrigierten Visus von mindestens 1,0, wovon bei 15 Augen 

der Visus über 1,0 lag.   
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4.7.2. Bestkorrigierter Visus vor vs. unkorrigierter Visus nach LASIK 

 
 

Grafik 38: 

Streudiagramm der Visuswerte vor LASIK mit Korrektur und der 

Visuswerte nach LASIK ohne Korrektur;   

durch rote Kreise markierte Ringe entsprechen identischen Werten 

 

9 von 60 erreichten nach LASIK ohne Korrektur nicht den bestkorrigierten Visus vor 

LASIK. Jedoch konnte bei diesen 9 Augen mit einer Brillenkorrektur eine Sehschärfe 

von mindestens 0,8 erreicht werden. Bei 28 Augen lag der unkorrigierte Visus nach 

LASIK über dem bestkorrigierten Visus vor LASIK. Die bestkorrigierte Sehschärfe der 

restlichen 23 Augen vor LASIK entsprach der unkorrigierten Sehschärfe nach LASIK.  

 
Alle Patienten waren mit dem Ergebnis der LASIK zufrieden. 
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4.7.3. Korrelation zwischen Visus und höheren Aberrationen nach 
LASIK 

 
 RMSgesamt vor RMS3 nach  RMSgesamt nach 
Visus vor mit Korrektur -0,375
p 0,003
Visus vor ohne Korrektur -0,548
p <0,001
Visus nach ohne Korrektur -0,267 -0,327
p 0,039 0,011

 

Tabelle 13: Signifikante Korrelationen bei einer 4 mm weiten Pupille 

 
 
 RMSgesamt vor  RMS4 nach RMS5 nach RMSgesamt nach 
Visus vor mit Korrektur -0,386  
p 0,002  
Visus vor ohne Korrektur -0,553  
p <0,001  
Visus nach ohne Korrektur -0,279 -0,265 -0,376
p 0,031 0,041 0,003

 

Tabelle 14:  Signifikante Korrelationen bei einer 6,5 mm weiten Pupille;  

Einheit der RMS-Werte: µm 

 
 
Vor LASIK korrelieren nur die gesamten Aberrationen signifikant. Die Korrelation 

Visus vor LASIK ohne Korrektur zu RMSgesamt ist mit –0,548 (p < 0,001) höher als Visus 

vor LASIK mit bester Korrektur zu RMSgesamt (R=-0,375; p = 0,003) bei einer 4 mm 

weiten Pupille. Bei einer 6,5 mm weiten Pupille sind die Korrelationen ähnlich. 

Unter den RMS-Werten der höheren Ordnung korreliert RMS3 nach LASIK bei einer 

4 mm weiten Pupille signifikant mit dem Visus nach LASIK ohne Korrektur. 

Bei einer 6,5 mm weiten Pupille korrelieren RMS4 und RMS5 nach LASIK signifikant 

mit dem Visus nach LASIK ohne Korrektur. 

 

Sämtliche Korrelationen besitzen ein negatives Vorzeichen, was bedeutet, dass 

hohe Aberrationen einen geringeren Visus hervorrufen. 
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4.8. Verteilung der Zernike-Koeffizienten im Patientenkollektiv vor 
und nach LASIK bei Pupillenweiten von 4 mm und 6,5 mm 

 

4.8.1. Niedere Ordnungen (C1 – C5) 

 
4 mm-Pupille: 
 

C1 C2

C3 C4 C5

 
 

Grafik 39: Häufigkeitsverteilungen bei n = 60 Augen vor LASIK (4 mm-

Pupille) 

 
 C1 C2 C3 C4 C5 
Signifikanz p 0,978 0,579 0,324 0,421 0,275 

 
Tabelle 15: Test auf Normalverteilung nach Kolmogorov-Smirnov 

p > 0,05 bedeutet Normalverteilung 

 
 
 

C1 C2

C3 C4 C5

 
 

Grafik 40: Häufigkeitsverteilungen bei n = 60 Augen nach LASIK (4 mm-

Pupille) 

 
 C1 C2 C3 C4 C5 
Signifikanz p 0,231 0,964 0,315 0,014 0,302 

 
Tabelle 16: Test auf Normalverteilung nach Kolmogorov-Smirnov 

p > 0,05 bedeutet Normalverteilung 
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6,5 mm-Pupille: 
 

C1 C2

C3 C4 C5

 
Grafik 41: Häufigkeitsverteilungen bei n = 60 Augen vor LASIK (6,5 mm-

Pupille) 

 
 C1 C2 C3 C4 C5 
Signifikanz p 0,967 0,748 0,236 0,465 0,540 

 
Tabelle 17: Test auf Normalverteilung nach Kolmogorov-Smirnov 

p > 0,05 bedeutet Normalverteilung 

 
 

C1 C2

C3 C4 C5

 
Grafik 42: Häufigkeitsverteilungen bei n = 60 Augen nach LASIK 

(6,5 mm-Pupille) 

 
 C1 C2 C3 C4 C5 
Signifikanz p 0,854 0,983 0,883 0,009 0,649 

 
Tabelle 18: Test auf Normalverteilung nach Kolmogorov-Smirnov 

p > 0,05 bedeutet Normalverteilung 

 
Die vier Histogramme stellen die Verteilung der Zernike-Koeffizienten niederer 

Ordnung dar. Aufgrund der Unübersichtlichkeit wurde bewusst auf eine 

Achsenbeschriftung mit Zahlenangaben verzichtet. Es soll hierbei die – annäherne – 

Normalverteilung sämtlicher Zernike-Koeffizienten aufgezeigt werden. Die 

durchgezogene glockenförmige Kurve in jedem Histogramm stellt die ideale Gaußsche 

Normalverteilung dar.  

Mit Hilfe des nicht-parametrischen Kolmogorov-Smirnov-Anpassungstests auf 

Normalverteilung wurde die Normalverteilung aller Zernike-Koeffizienten niederer 
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Ordnung überprüft. Eine Signifikanz p größer als 0,05 deutet auf Normalverteilung der 

Daten hin. Bis auf den Zernike-Koeffizienten C4 (defocus) bei beiden Pupillenweiten 

nach LASIK sind alle anderen Zernike-Koeffizienten demnach normalverteilt.  

 
 
4.8.2. Höhere Ordnungen (C6 – C14  und C6 – C27) 
 
4 mm-Pupille: 
 

C6

C10 C11 C12 C13 C14

C7 C8 C9

 
 

Grafik 43: Häufigkeitsverteilungen bei n = 60 Augen vor LASIK (4 mm-

Pupille) 

 
 C6 C7 C8 C9 C10 C11 C12 C13 C14 
Signifikanz p 0,905 0,852 0,957 0,715 0,714 0,216 0,813 0,515 0,736 

 
Tabelle 19: Test auf Normalverteilung nach Kolmogorov-Smirnov 

p > 0,05 bedeutet Normalverteilung 

 
 
 

C6

C10 C11 C12 C13 C14

C7 C8 C9

 
 

Grafik 44: Häufigkeitsverteilungen bei n = 60 Augen nach LASIK (4 mm-

Pupille) 

 
 C6 C7 C8 C9 C10 C11 C12 C13 C14 
Signifikanz p 0,444 0,538 0,556 0,939 0,554 0,482 0,951 0,403 0,835

 
Tabelle 20: Test auf Normalverteilung nach Kolmogorov-Smirnov 

p > 0,05 bedeutet Normalverteilung 
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6,5 mm-Pupille: 
 

C6

C10 C11 C12 C13 C14

C15 C16 C17 C18 C19 C20

C21 C22 C23 C24 C25 C26 C27

C7 C8 C9

 
 

Grafik 45: Häufigkeitsverteilungen bei n = 60 Augen vor LASIK (6,5 mm-

Pupille) 

 
 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 
Signifikanz p 0,902 0,817 0,967 0,379 0,772 0,818 0,882 0,954 0,182 0,877 0,619
 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 
Signifikanz p 0,388 0,978 0,757 0,886 0,368 0,453 0,779 0,113 0,509 0,791 0,881

 
Tabelle 21: Test auf Normalverteilung nach Kolmogorov-Smirnov 

p > 0,05 bedeutet Normalverteilung 
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C6

C10 C11 C12 C13 C14

C15 C16 C17 C18 C19 C20

C21 C22 C23 C24 C25 C26 C27

C7 C8 C9

 
 

Grafik 46: Häufigkeitsverteilungen bei n=60 Augen nach LASIK (6,5mm-

Pupille) 

 
 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 
Signifikanz p 0,801 0,857 0,616 0,981 0,456 0,219 0,627 0,971 0,673 0,341 0,822
 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 
Signifikanz p 0,168 0,202 0,767 0,634 0,812 0,989 0,666 0,893 0,621 0,625 0,213

 
Tabelle 22: Test auf Normalverteilung nach Kolmogorov-Smirnov 

p > 0,05 bedeutet Normalverteilung 

 
Die vier Gruppen von Histogrammen stellen die Häufigkeitsverteilung der Zernike-

Koeffizienten höherer Ordnung bei 4 mm und 6,5 mm Pupillenweite, jeweils vor und 

nach LASIK dar. Aufgrund der Unübersichtlichkeit wurde bewusst auch bei den 

höheren Ordnungen auf eine Achsenbeschriftung mit Zahlenangaben verzichtet. Es soll 

hierbei die – annäherne – Normalverteilung sämtlicher Zernike-Koeffizienten 

aufgezeigt werden. Die durchgezogene Kurve in jedem Histogramm stellt die ideale 

Gaußsche Normalverteilung dar.  

Mit Hilfe des nicht-parametrischen Kolmogorov-Smirnov-Anpassungstests auf 

Normalverteilung wurde die Normalverteilung aller Zernike-Koeffizienten höherer 

Ordnung überprüft. Da die Signifikanz p hierbei immer größer als 0,05 ist, kann die 

Normalverteilung der Daten bestätigt werden. 
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Grafik 47 und 48: Fehlerbalkendiagramme der Zernike-Koeffizienten 

niederer Ordnung vor (linkes Diagramm) und nach (rechtes Diagramm) 

LASIK bei einer 4 mm weiten Pupille 
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Grafik 49 und 50: Fehlerbalkendiagramme der Zernike-Koeffizienten 

niederer Ordnung vor (linkes Diagramm) und nach (rechtes Diagramm) 

LASIK bei einer 6,5 mm weiten Pupille 

 

Die vier Fehlerbalkendiagramme oben stellen die Zernike-Koeffizienten niederer 

Ordnung bei Pupillenweiten von 4 mm und 6,5 mm jeweils vor und nach LASIK dar. 

Das kleine Quadrat steht für den Mittelwert des Zernike-Koeffizienten, der 

Fehlerbalken für 1 Standardabweichung. 

Die vier Fehlerbalkendiagramme auf der folgenden Seite stellen die Zernike-

Koeffizienten höherer Ordnung bei Pupillenweiten von 4 mm und 6,5 mm jeweils vor 

und nach LASIK dar. 

Insgesamt nimmt die Streuung der Werte um den Mittelwert nach LASIK deutlich zu. 
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Grafik 51 und 52: Fehlerbalkendiagramme der Zernike-Koeffizienten 

höherer Ordnung vor (linkes Diagramm) und nach (rechtes Diagramm) 

LASIK bei einer 4 mm weiten Pupille 
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Grafik 53 und 54: Fehlerbalkendiagramme der Zernike-Koeffizienten 

höherer Ordnung vor (linkes Diagramm) und nach (rechtes Diagramm) 

LASIK bei einer 6,5 mm weiten Pupille 
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4.9. Probandenkollektiv (Kollektiv II):  
Abhängigkeit der optischen Aberrationen vom  verwendeten 
Mydriatikum 

 
Zernike-
Ordnung 

Ohne 
Mydriatikum 

Nach 
Neosynephrin-

POS® 

Nach 
Mydriatikum 

Stulln® 

Nach Zyklolat 
EDO® 

1. Ordnung 0,110 (±0,05) 0,155 (±0,07) 0,243 (±0,19) 0,215 (±0,17) 
2. Ordnung 0,987 (±0,93) 0,920 (±0,84) 1,163 (±1,04) 1,252 (±1,00) 
3. Ordnung 0,101 (±0,05) 0,116 (±0,03) 0,180 (±0,13) 0,189 (±0,14) 
4. Ordnung 0,064 (±0,04) 0,061 (±0,03) 0,087 (±0,07) 0,063 (±0,01) 
5. Ordnung 0,024 (±0,01) 0,027 (±0,01) 0,029 (±0,03) 0,033 (±0,02) 
6. Ordnung 0,019 (±0,01) 0,020 (±0,01) 0,021 (±0,01) 0,026 (±0,01) 

Gesamte Ordn. 1,034 (±0,89) 0,986 (±0,78) 1,231 (±1,04) 1,306 (±1,00) 
Höhere Ordn. 0,127 (±0,03) 0,137 (±0,03) 0,211 (±0,16) 0,227 (±0,18) 

C4 1,216 (±1,31) 1,130 (±1,19) 1,276 (±1,64) 1,216 (±1,77) 
C12 0,043 (±0,03) 0,024 (±0,05) 0,025 (±0,09) 0,069 (±0,03) 
C24 -0,018 (±0,01) -0,004 (±0,02) -0,026 (±0,03) -0,007 (±0,02) 

 
Tabelle 23:  
Mittelwerte der RMS-Werte der Ordnungen 1 bis 6 sowie der gesamten Ordnungen, der 

höheren Ordnungen und der „spherical-like“-Zernike-Koeffizienten C4, C12 und C24; in 

Klammern ist die Standardabweichung angegeben. Einheit: µm 

 
 
 

 
 

Abbildung 32:  
von links nach rechts: Bild 1: höhere Aberrationen ohne Mydriatikum, Bild 2: mit 

Neosynephrin-POS®, Bild 3: mit Mydriaticum-Stulln® und Bild 4: mit Zyklolat-EDO® 
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Korrelationen: 
 
 Korrelation p 
1. Ordnung 0,633 0,177 
2. Ordnung 0,983 <0,001 
3. Ordnung 0,916 0,010 
4. Ordnung 0,950 0,013 
5. Ordnung -0,071 0,929 
6. Ordnung 0,736 0,264 
Gesamte Ordnungen 0,981 0,001 
Höhere Ordnungen 0,832 0,040 
C4 0,985 <0,001 
C12 0,974 0,005 
C24 0,901 0,099 
 

Tabelle 24: Korrelationen ohne Mydriatikum zu Neosynephrin-POS® 

 
Die Korrelationen zwischen nicht künstlich und mit Neosynephrin-POS® erweiterter 

Pupille sind statistisch signifikant bis höchst signifikant.  

Die höchste Korrelation besitzt der Zernike-Koeffizient C4 (defocus) mit r = 0,985 

(p < 0,001). Die zweite Ordnung, die C4 beinhaltet, korreliert mit r = 0,983 (p < 0,001), 

die gesamten Ordnungen mit r = 0,981 (p = 0,001).  

Die höheren Ordnungen zusammen weisen eine Korrelation von r = 0,832 (p = 0,040) 

auf, wobei hier die 3. und 4. Ordnung mit r = 0,916 (p = 0,010) und r = 0,950 

(p = 0,013) verantwortlich sind. 

Auch der spherical-like Zernike-Koeffizient C12 korreliert mit r = 0,974 (p = 0,005) 

 
 
 Korrelation p 
1. Ordnung 0,158 0,765 
2. Ordnung 0,988 <0,001 
3. Ordnung 0,606 0,203 
4. Ordnung 0,251 0,632 
5. Ordnung 0,806 0,194 
6. Ordnung 0,818 0,182 
Gesamte Ordnungen 0,987 <0,001 
Höhere Ordnungen 0,524 0,286 
C4 0,993 <0,001 
C12 0,479 0,337 
C24 0,943 0,049 
 

Tabelle 25: Korrelationen Neosynephrin-POS® zu Mydriatikum Stulln® 

 
Zwischen Pupillenerweiterung mit Neosynephrin-POS® und Mydriatikum-Stulln® 

erkennt man eine geringere Korrelation. 
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Außer der 2. Ordnung (r = 0,988; p < 0,001), C4 (r = 0,993; p < 0,001) und den 

gesamten Ordnungen zusammen (r = 0,987; p < 0,001) korreliert nur der spherical-like 

Zernike-Koeffizient C24 (r = 0,943; p = 0,049) 

 

 
 Korrelation p 

1. Ordnung 0,846 0,034 
2. Ordnung 0,996 <0,001 
3. Ordnung 0,986 <0,001 
4. Ordnung 0,992 <0,001 
5. Ordnung 0,875 0,023 
6. Ordnung 0,721 0,169 
Gesamte Ordnungen 0,995 <0,001 
Höhere Ordnungen 0,983 <0,001 
C4 0,998 <0,001 
C12 -0,515 0,296 
C24 0,945 0,015 
 

Tabelle 26: Korrelationen Mydriatikum-Stulln® zu Zyklolat-EDO® 

 
Hier korrelieren wieder C4 (r = 0,998; p < 0,001), die 2. Ordnung (r = 0,996; p < 0,001) 

und die gesamten Ordnungen (r = 0,995; p < 0,001). Auch alle höheren Ordnungen 

außer der 6. Ordnung weisen eine statistisch signifikante Korrelation auf (3. Ordnung: 

r = 0,986; p < 0,001; 4. Ordnung: r = 0,992; p < 0,001 und 5. Ordnung: r = 0,875; p = 

0,023). 

Der spherical-like Zernike-Koeffizient C24 korreliert mit r = 0,945 bei  p = 0,015). 

Auch die 1. Ordnung korreliert mit r = 0,846 bei  p = 0,034. 

 
 Korrelation p 

1. Ordnung -0,125 0,813 
2. Ordnung 0,987 <0,001 
3. Ordnung 0,483 0,331 
4. Ordnung 0,191 0,717 
5. Ordnung 0,103 0,897 
6. Ordnung 0,954 0,046 
Gesamte Ordnungen 0,984 <0,001 
Höhere Ordnungen 0,358 0,486 
C4 0,993 <0,001 
C12 0,047 0,929 
C24 0,947 0,049 
 

Tabelle 27: Korrelationen Neosynephrin-POS® zu Zyklolat-EDO® 

 
Zwischen Neosynephrin-POS® und Zyklolat EDO® herrscht wieder eine geringere 

Korrelation. 
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Wie bei jedem Test korrelieren wieder C4 (r = 0,993; p < 0,001), die 2. Ordnung 

(r = 0,987; p < 0,001) und die gesamten Ordnungen (r = 0,984; p < 0,001). 

Desweiteren herrscht bei der 6. Ordnung eine signifikante Korrelation mit r = 0,954 bei 

p = 0,046.  

Der spherical-like Zernike-Koeffizient C24 korreliert mit r = 0,947 bei  p = 0,049). 
 

 Korrelation p 
1. Ordnung 0,547 0,262 
2. Ordnung 0,967 0,002 
3. Ordnung 0,401 0,431 
4. Ordnung 0,419 0,483 
5. Ordnung -0,510 0,490 
6. Ordnung 0,337 0,663 
Gesamte Ordnungen 0,958 0,003 
Höhere Ordnungen 0,012 0,983 
C4 0,975 0,001 
C12 0,767 0,130 
C24 0,921 0,079 
 

Tabelle 28: Korrelationen ohne Mydriatikum zu Mydriatikum-Stulln® 

 
Hierbei findet man nur zwischen C4 (r = 0,975; p = 0,001), der 2. Ordnung (r = 0,967; 

p = 0,002) und den gesamten Ordnungen (r = 0,958; p = 0,003) eine statistisch 

signifikante Korrelation. 

 
 
 

 Korrelation p 
1. Ordnung 0,150 0,777 
2. Ordnung 0,951 0,004 
3. Ordnung 0,278 0,594 
4. Ordnung 0,221 0,721 
5. Ordnung -0,156 0,844 
6. Ordnung 0,515 0,485 
Gesamte Ordnungen 0,938 0,006 
Höhere Ordnungen -0,169 0,749 
C4 0,966 0,002 
C12 0,611 0,273 
C24 0,783 0,217 
 

Tabelle 29: Korrelationen ohne Mydriatikum zu Zyklolat-EDO® 

 
Auch bei diesem Vergleich findet man nur zwischen C4 (r = 0,966; p = 0,002), der 

2. Ordnung (r = 0,951; p = 0,004) und den gesamten Ordnungen (r = 0,938; p = 0,006) 

eine statistisch signifikante Korrelation. 
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Im T-Test nach Student waren alle Vergleiche statistisch höchst signifikant (p < 0,001). 

Alle Werte waren sich unter dem Einfluss der verschiedenen Mydriatika äußerst 

ähnlich. Eine Untersuchung auf Unterschiede der Aberrationen war mit diesem Test 

somit nicht möglich. Daher wurde der Test auf Korrelation durchgeführt. 
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5. Diskussion 
 
Allgemein ist bekannt, dass die höheren Aberrationen nach LASIK zunehmen.47;49;53-

55;57 Es wird behauptet, dass als direkte Folge davon bei einigen Patienten eine teils 

schwerwiegende Verschlechterung des Sehvermögens auftritt. Nach Fan-Paul et al. 

spielen dabei drei Faktoren die entscheidende Rolle: Die Pupillengröße, die Größe der 

Abtragungszone und die genaue Position der Abtragungszone.16 Diese Faktoren haben 

einen entscheidenden Einfluss auf die Änderungen der optischen Aberrationen des 

Auges und damit auf die postoperative Sehqualität. 

Der Betrag der Änderung der optischen Aberrationen und der Vergleich dieser Werte 

mit der Literatur soll im Folgenden erläutert werden. Ein direkter Vergleich unserer 

Ergebnisse mit den Ergebnissen aus der Literatur ist aber nicht ohne Einschränkungen 

möglich. So ist die angewandte Operationsmethode nicht immer die gleiche (PRK und 

LASIK), die Größe der Ablationszone und der Übergangszone ist auch variabel, der 

benutzte Excimer-Laser ist nicht derselbe in allen Studien, nicht immer wurde ein Eye-

Tracker verwendet und es kamen verschiedene Mikrokeratome zum Einsatz. 

Unterschiede in den Patienten- und Probandenkollektiven erschweren auch den 

Vergleich der Studien untereinander. So variiert die Alters- und Geschlechtsverteilung 

in den einzelnen Studien. Die manifeste Refraktion vor refraktiver Chirurgie weist auch 

eine unterschiedliche Schwankungsbreite auf. So wurden in dieser Untersuchung nur 

Daten von myopen Patienten ausgewertet, während bei anderen Studien auch hyperope 

Patienten ins Kollektiv eingeschlossen wurden. 

Nicht zuletzt zeigen sich Unterschiede in der Methode zur Erhebung der Aberrationen. 

Wir verwendeten ein Aberrometer nach dem Tscherning-Prinzip, Seiler et al. benutzten 

ein Hartmann-Shack-Aberrometer, während Moreno et al. das Laser-Ray-Tracing 

bevorzugen. In der Literatur liefern aber die Gerätetypen statistisch ähnliche und 

vergleichbare Werte.50 
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5.1. Abhängigkeit von RMS-Werten und Zernike-Koeffizienten von 
der LASIK-Prozedur, gemessen bei Pupillenweiten von 4 mm 
und 6,5 mm 

 

Die in dieser Arbeit präsentierten Änderungen der höheren Aberrationen im Vergleich 

vor zu nach LASIK sind kleiner als die von Seiler et al.73 und Moreno-Barriuso et al.49 

publizierten Ergebnisse. 

Bei Moreno-Barriuso et al. betrug das Verhältnis des RMS-Wertes der höheren 

Ordnungen insgesamt nach zu vor LASIK bei einer 3 mm weiten Pupille 1,74. In dieser 

Arbeit errechnete sich, bei einer mit 4 mm etwas größeren Pupille, ein Verhältnis oder 

eine ratio post/prä LASIK von nur 1,33. Das Ergebnis ist mit p = 0,001 signifikanter als 

das Ergebnis von Moreno-Barriuso mit p = 0,0212. 

Noch deutlicher ist dieser Unterschied bei einer größeren Pupillenweite. Seilers et al. 

ratio lag bei 4,2 (p < 0,001), während Moreno et al. auf eine ratio von 1,91 (p = 0,0003) 

kamen. Mit 1,42 bei p < 0,001 ist auch hier unsere errechnete ratio kleiner. Seilers et al. 

ratio war auch nur bei großer Pupillenweite statistisch signifikant. Moreno et al. wie 

auch der Autor vorliegender Arbeit fanden das Ergebnis bei beiden Pupillenweiten 

statistisch signifikant. 

Es ist aber zu beachten, dass Seiler et al. auch bei kleiner Pupille 27 Zernike-

Koeffizienten (bis zur 6. Ordnung) zur Verfügung hatten. Moreno et al. sogar 35 (bis 

zur 7. Ordnung). In dieser Arbeit standen aber nur bei einer Pupillenweite von 6,5 mm 

die Zernike-Koeffizienten bis zur 6. Ordnung zur Verfügung, bei kleiner Pupille 

systembedingt nur bis zur 4. Ordnung. 

Die größte Zunahme der Aberrationen fand sich in vorliegenden Messungen in der 

vierten Ordnung bei einer 4 mm-Pupille (ratio post/prä = 1,53 bei p < 0,001) und in der 

sechsten Ordnung bei einer 6,5 mm-Pupille (ratio post/prä = 1,53 bei p < 0,001). Bei 

Seiler et al. verzeichnete die dritte Ordnung mit 4,7 bei p = 0,007 die größte Zunahme 

nach LASIK. Moreno et al. berichten von einer Zunahme in der dritten Ordnung bei 

kleiner Pupille (ratio post/prä = 1,78 bei p = 0,0308) und in der vierten Ordnung bei 

größerer Pupille (ratio post/prä = 2,51 bei p < 0,0001).  

 

Die Zunahme der spherical-like Aberrationen (gewichtete Summe aus C12 und C24) liegt 

bei Moreno et al. mit 7,48 (p = 0,002) bei kleiner Pupille und 3,99 (p < 0,0001) deutlich 

über dem Ergebnis von 1,88 (p < 0,001) bei großer Pupille. Bei kleiner Pupille stand in 

vorliegender Untersuchung C24 systembedingt nicht zur Verfügung.    
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Eine Zunahme der Werte der ersten Ordnung (tip  & tilt) nach LASIK wird in der 

Literatur mit einer Dezentrierung der Abtragungszone in Verbindung gebracht.95 Meine 

ratio von 1,34 (p = 0,015) bei kleiner und 1,41 (p = 0,001) bei großer Pupille spiegelt 

einen „Versatz“ der optischen Zone wieder. Seitz el al. fanden keine signifikante 

Änderung des tilt (p = 0,56)75. Allerdings berechneten sie die Zernike-Koeffizienten 

nicht aus den Daten eines Aberrometers, sondern mit Hilfe eines Hornhauttopographen. 

Es wird diskutiert, dass dieser Versatz auch einen Einfluss auf die Abbildungsqualität 

auf der Retina und damit auf die Sehqualität hat. Mittels computergestützter 

Berechnungen sollte demnach ein ideales Abtragungsprofil möglichst ohne tip und tilt 

errechnet werden.11;42 

 

Auffällig bei den Ergebnissen ist, dass bei beiden Pupillenweiten die zweite Ordnung, 

alle Ordnungen zusammen und besonders der Zernike-Koeffizient C4 eine ratio 

post/prä < 1 aufweisen, was gleichbedeutend mit einer Abnahme ist. Dies lässt sich 

dadurch erklären, dass der Zernike-Koeffizient C4 (defocus) das „Hauptziel“ der LASIK 

ist. Man versucht, den Brennpunkt (focus) des Strahlengangs im Auge wieder auf 

Netzhautebene zu bringen. Deshalb nimmt dieser Koeffizient nach LASIK der myopen 

Patienten so besonders ab. Da C4 in der zweiten Ordnung enthalten ist und die zweite 

Ordnung bei den gesamten Ordnungen das Hauptgewicht besitzt, wirkt sich die ratio 

post/prä auch auf diese Werte aus. 

 

Allen diesen Untersuchungen gemeinsam ist, dass die höheren Aberrationen, also die 

Aberrationen ab der dritten Ordnung, nach der LASIK-Prozedur deutlich größer sind als 

vor LASIK.  

Die teilweise um den Faktor 3 höheren ratios von Seiler et al. sind sehr wahrscheinlich 

durch die durchgeführte chirurgische Technik bedingt. Seilers et al. Daten beruhen auf 

Patienten, die sich einer PRK unterzogen, während Morenos et al. und unsere Patienten 

mit LASIK behandelt wurden.   

Der etwas geringere Unterschied zwischen Morenos et al. und unseren Ergebnissen – 

unsere ratios post/prä sind etwas kleiner als Morenos et al. – könnte sich durch die 

Verwendung von neueren und besseren Geräten wie Excimer-Lasern, Eye-Trackern 

oder Mikrokeratomen erklären lassen. Auch wird am centrum für refraktive chirurgie 

der Ludwig-Maximilians-Universität München genau auf die Kontraindikationen für 
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LASIK geachtet. Nur Patienten, bei denen Ausgangswerte wie Hornhautdicke oder 

Pupillenweite ideale Voraussetzungen besitzen, werden mit LASIK behandelt. 

Die Zunahme der RMS-Werte der höheren Aberrationen lässt sich durch die 

Streudiagramme in Kapitel 3.1. gut verdeutlichen. Auch die Abnahme der RMS-Werte 

der zweiten Ordnung und der gesamten Ordnung erkennt man in den Streudiagrammen 

deutlich. Der Größenordungsunterschied zwischen höheren Aberrationen und der 

zweiten Ordnung um circa eine Zehnerpotenz sieht man beim Vergleich der 

Streudiagramme von 2. Ordnung und dem der gesamten Ordnungen: Sie sind fast 

identisch, die höheren Aberrationen gehen in der 2. Ordnung unter. Daraus lässt sich der 

Schluss ziehen, dass eine Erhöhung der Aberrationen höherer Ordnung nach LASIK 

nicht zwangsläufig mit einer starken Verschlechterung der Sehfähigkeit 

vergesellschaftet sein muss. Falls ein Patient eine Sehverschlechterung bemerkt, dann 

sind es eher diskrete Änderungen unter ungünstigen Lichtverhältnissen, vorrausgesetzt 

es wurden Sphäre und Zylinder gut korrigiert. Die Qualität des Sehens ist unter 

günstiger Beleuchtung – und damit relativ enger Pupille – meist für den Patienten 

zufriedenstellend. 

Die Ergebnisse der Änderung der optischen Aberrationen in Abhängigkeit von der 

Pupillenweite werden im folgenden Kapitel dargestellt. 

 

 

5.2. Abhängigkeit von RMS-Werten und Zernike-Koeffizienten von 
der Pupillenweite, gemessen jeweils vor und nach LASIK 

 

Bei vielen optischen System wie zum Beispiel Fernrohren oder Mikroskopen erhöhen 

sich die optischen Aberrationen höherer Ordnung bei Vergrößerung der „exit pupil“. 

Eine Zunahme dieser höheren Aberrationen bei Erweiterung der Pupille beim 

menschlichen Auge erscheint logisch. Grafik 31 auf Seite 74 zeigt die Änderung der 

Aberrationen höherer Ordnung im Patientenkollektiv dieser Arbeit als Funktion der 

Pupillenweite jeweils vor und nach LASIK. Die Zunahme der Aberrationen war für die 

Ordnungen 1 bis 4, für die gesamten Ordnungen und für die höheren Ordnungen 

zusammen vor und nach LASIK statistisch mit p < 0,001 höchst signifikant. Jedoch war 

das Ausmaß der Änderung nach LASIK in den höheren Aberrationen mit einer ratio-

post von 2,13 größer als die ratio-prä mit 2,00.  

Seilers et al. ratio-prä lag bei 9-fach, die ratio-post bei 13-fach, wobei die Änderung erst 

ab einer Pupillenweite von 6 mm signifikant waren.73 Der Vergleich mit diesen 
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Ergebnissen lässt sich aber nur mit Einschränkungen machen, da Seiler et al. die PRK 

als Operationsmethode verwendeten. Dennoch ist die Zunahme der Aberrationen 

höherer Ordnung bei Vergrößerung der Pupillenweite bei beiden Untersuchungen sehr 

deutlich. Interessanterweise ist in der 4. Ordnung die ratio-prä größer als die ratio-post 

(2,20 und 2,10).  

Die äußerst auffällige Zunahme der Aberrationen des Zernike-Koeffizienten C12, der in 

der 4. Ordnung enthalten ist, mit einer ratio-prä von 2,57 und einer ratio-post von 5,47 

scheint einen großen Beitrag zur Verminderung der Sehqualität nach refraktiver 

Chirurgie zu liefern. Auch Wang et al. beschreiben eine signifikante Abhängigkeit 

dieses Koeffizienten von der Pupillenweite nach LASIK.98 Bei einer 

Pupillenerweiterung von 4 auf 5 mm sei diese Änderung aber nicht so groß wie bei 

einer Erweiterung von 5 auf 6 mm. 

In vorliegender Studie lässt sich das Ergebnis von Wang et al. nicht bestätigen, dass die 

coma-like aberrations größer sind als die spherical-like aberrations. Die Studie 

erbrachte die umgekehrten Ergebnisse. Dies ist im Einklang mit den Ergebnissen von 

Moreno et al., die bei einer 6,5 mm weiten Pupille eine ratio-post von 4 (p < 0,0001) 

und bei einer 3 mm weiten Pupille eine ratio-post von 1,7 (p = 0,02) errechneten.49 

Die Änderung der Aberrationen nach LASIK wurden von Wang et al. nicht untersucht. 

 

Vorliegende Studie bestätigt die Annahme, dass eine weite Pupille eine Zunahme der 

höheren Aberrationen induziert. Die beeinträchtige Sehqualität unter ungünstiger 

Beleuchtung kann damit erklärt werden. 

 

5.3. Verbleibender sphäro-zylindrischer Fehler nach LASIK und 
Korrelation des sphärischen Äquivalents vor LASIK mit dem 
unkorrigierten Visus nach LASIK 

 

Die Reduktion des sphärischen Äquivalents auf null Dioptrien nach LASIK wurde bei 

33 Augen erreicht. Nur bei 5 Augen war das sphärische Äquivalent bei –0,75 D oder 

vom Betrag größer. Diese Augen erreichten unkorrigiert keine Sehschärfe von 0,8. 

Mittels Brillen- oder Kontaktlinsenkorrektur war das Erreichen eines Visus von 1,0 oder 

höher jedoch kein Problem, und alle Patienten waren subjektiv mit dem Ergebnis 

zufrieden. Van Gelder et al.94 sprechen bei einer Über- oder Unterkorrektur von –1,0 D 

von einem suboptimalen Ergebnis, das sich auf die Sehschärfe nach LASIK subjektiv 

auswirkt. Beim Patientenkollektiv des crt war dies nur bei 2 Augen der Fall. Demnach 
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scheint LASIK am crt der Ludwig-Maximilians-Universität ein sicheres refraktiv-

chirurgisches Verfahren zu sein.   

Die mit p = 0,011 signifikante Korrelation (r = -0,325) des sphärischen Äquivalents vor 

LASIK mit dem unkorrigierten Visus nach LASIK bedeutet: je höher der Betrag des 

sphärischen Äquivalents vor LASIK, desto niedriger ist der erreichte unkorrigierte 

Visus nach LASIK. Ein hoher refraktiver Fehler der Sphäre und des Zylinders vor 

LASIK stellt also einen Risikofaktor dafür dar, dass nach LASIK eine weitere, wenn 

auch bei weitem schwächere, Brillenkorrektur von Nöten ist. Da in Kapitel 5.5 

nachgewiesen wurde, dass die Höhe des sphärischen Äquivalents vor LASIK nicht mit 

der absoluten Erhöhung der Aberrationen höherer Ordnung korreliert, muss der Schluss 

gezogen werden, dass der postoperativ reduzierte Visus auf einer unzureichenden 

Korrektur der niederen Aberrationen beruht. Da der verwendete Excimer-Laser aber 

eine äußerst hohe Abtragungsgenauigkeit besitzt, könnten als Ursache für die 

Sehverschlechterung falsche Laserparameter eine Rolle spielen.  

 

5.4. Korrelation der Zernike-Koeffizienten aller Ordnungen 
untereinander 

 

Thibos et al. sprechen von 3 positiven Korrelationen unter den Zernike-Koeffizienten 

von normalen, gutkorrigierten Augen, die nicht mit LASIK oder einem anderem 

refraktiv-chirurgischen Verfahren behandelt wurden.90 Die Korrelationen traten 

zwischen C1 und C7 (r = 0,88), C2 und C8 (r = 0,76) und zwischen C4 und C12 (r = 0,48) 

auf. Exakt dieselben positiven Korrelationen traten in dieser Studie auf, allerdings mit 

etwas geringeren Beträgen, aber hoch bis höchst signifikant. Dem myopen Patientengut 

des crt und Thibos Kollektiv an gesunden Augen liegen somit bei den höheren 

Aberrationen mit hoher Wahrscheinlichkeit dieselben Gesetzmäßigkeiten zugrunde. 

Thibos et al. korrelierten auch die Zernike-Koeffizienten jenseits der 4. Ordnung, 

vorliegende Studie jedoch nur einschließlich der 4. Ordnung. Die einzige in beiden 

Arbeiten übereinstimmende negative Korrelation errechnet sich zwischen C6 und C7. In 

dieser Arbeit lag die Korrelation bei r = –0,581 (p = 0,010), während Thibos et al. über 

eine Korrelation von r = –0,53 berichten.  

Da sowohl bei Thibos et al. als auch bei unseren Studiendaten innerhalb der 1. bis 

4. Ordnung nur diese eine negative Korrelation auftritt, wird die Annahme bestätigt, 

dass zwischen normalsichtigen, gutkorrigierten und myopen prä-lasik Augen 
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hinsichtlich der Verteilung und Höhe der Zernike-Koeffizienten höherer Ordnung 

annähernde Gleichheit herrscht. 

 

Im Vergleich vor zu nach LASIK ist auffällig, dass die symmetrischen positiven 

Korrelationen C1 zu C7 und C2 zu C8 erhalten bleiben. Symmetrie bedeutet hier gleiche 

meridional frequency m. Es korrelieren also die Zernike-Koeffizienten mit selbem m. 

(vgl. Tab.; Seite 31). Die symmetrische positive Korrelation zwischen C3 und C6 war 

nach der LASIK-Prozedur nicht mehr nachzuweisen. Ebenso die positive symmetrische 

Korrelation zwischen C1 und C10 und zwischen C4 und C12.  

Der Wegfall der Korrelation zwischen den Zernike-Koeffizienten C4 und C12 nach 

LASIK kann dadurch erklärt werden, dass C4 höchst signifikant abgenommen hat 

(p < 0,001), während C12 keine signifikante Änderung erfuhr (p = 0,592). Auffällig ist 

mit r = 0,495 bei p < 0,001 die Korrelation zwischen C1 und C4 nach LASIK. Da C1 und 

C2 mit einer dezentrierten Ablationszone in Zusammenhang gebracht werden95, kann 

abgeleitet werden, dass ein hoher Betrag einer Dezentrierung einen höheren Restbetrag 

des defocus (C4), der durch LASIK eigentlich minimiert werden sollte, und der 

spherical-like Aberrationen induziert.53;76 

Die symmetrischen negativen Korrelationen zwischen C3 und C7 und zwischen C7 und 

C12 sind nach LASIK nicht mehr nachweisbar. Es bilden sich aber andere negative 

Korrelationen, bei welchen sich eine spiegelbildliche Verteilung entwickelt (C3 zu C13 

und C5 zu C11). Diese Korrelationen scheinen aber zufallsbedingt zu sein. Es ist keine 

Gesetzmäßigkeit ableitbar. 

 

 

5.5. Korrelation des sphärischen Äquivalents vor LASIK zur 
Differenz [nach – vor LASIK] der Aberrationen höherer 
Ordnung 

 
In der Fachliteratur wird behauptet, dass die Zunahme der höheren Aberrationen nach 

LASIK abhängig von der Höhe des zu korrigierenden Refraktionswertes ist. Um dies 

am Patientenkollektiv des crt zu untersuchen, wurde das sphärische Äquivalent vor 

LASIK mit der Differenz aus RMS der höheren Ordnungen nach minus vor LASIK 

korreliert. Im in dieser Arbeit untersuchten Patientenkollektiv waren keine statistisch 

signifikanten Korrelationen zu erkennen, weder bei 4 mm noch bei 6,5 mm 

Pupillenweite. Oshika et al.58 zeigten eine signifikante Abhängigkeit der postoperativen 
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Höhe der coma-like (r = 0.446, p < 0.001) und der spherical-like (r = 0.348, p < 0.001) 

Aberrationen bei einer 3 mm Pupille und noch höhere Korrelationen bei einer 6 mm 

Pupille (coma-like: r = 0.566, p < 0.001; spherical-like: r = 0.693, p < 0.001). 

Der Vergleich mit unseren Daten ist wiederum nur eingeschränkt möglich, da Oshika 

die Daten eines Videokeratographen verwendete, der nur die Hornhautoberfläche 

vermessen kann, während unsere Daten auf der Brechkraftvermessung aller optischen 

Strukturen des Auges beruht.  

Dass man die Ergebnisse beider Methoden dennoch vergleichen kann, demonstrierten 

Marcos et al.46 in ihrer Untersuchung an 14 myopen Augen. Sie fanden eine hohe 

Korrelation (r = 0.97, p < 0.0001) zwischen den durch LASIK induzierten Aberrationen 

in gesamten optischen System und den Aberrationen an der Hornhautoberfläche. Auch 

in Marcos Patientenkollektiv trat eine größere Zunahme der postoperativen höheren 

Aberrationen relativ zur Höhe des sphärischen Äquivalents vor LASIK auf. 

Auch bei Ninomiya et al.57 nahmen die höheren Aberrationen proportional zum 

präoperativen refraktiven Fehler zu. 

 
Warum gibt es bei unseren Daten keine signifikante Korrelationen? Ein Grund dafür 

könnte die Abtragungsgenauigkeit des verwendeten Excimer-Lasers sein („Allegretto“-

Excimer-Lasersystem der Firma WaveLight). Dieser Excimer-Laser ist für seine äußerst 

hohe Abtragungs-Genauigkeit, besonders bei hohen Myopien, bekannt. 

(Erfahrungswerte des crt). Während andere Excimer-Laser eine proportionale Zunahme 

der höheren Aberrationen, anhängig vom präoperativen Brechungsfehler induzieren57;58, 

könnte ein hoher präoperativer Wert beim Allegretto-Laser gerade einen Vorteil 

darstellen. Das „Grundrauschen“ der Abtragungs-Ungenauigkeit bei anderen 

Excimerlasern, das sich bei höheren Abtragungstiefen summiert, ist beim Allegretto-

Laser somit a priori geringer. Als Hinweis darauf können unsere Korrelationswerte 

dienen, die allesamt ein negatives Vorzeichen besitzen. Ein höheres sphärisches 

Äquivalent vor LASIK induziert somit geringere höhere Aberrationen nach LASIK. 

Allerdings sind die Ergebnisse statistisch nicht signifikant.  

Weitere Untersuchungen, eventuell an einem größeren Patientenkollektiv, sind nötig. 
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5.6. Wellenfrontmessung als Methode zur Bestimmung der 
objektiven Refraktion 

 

Die Korrelation der Brechungsfehler Sphäre und Zylinder waren beim Vergleich 

Subjektive Refraktion – Aberrometer-ermittelte (objektive) Refraktion – 

Autorefraktometer-ermittelte (objektive) Refraktion mit p < 0,001 alle höchst 

signifikant. Dennoch lag die Korrelation zwischen subjektiver Refraktion und 

Autorefraktometer mit r = 0,988 in der Sphäre und mit r = 0,848 im Zylinder etwas 

höher als die Korrelation zwischen subjektiver Refraktion und Aberrometer (r = 0,940 

in der Sphäre und 0, r = 806 im Zylinder).  

Frisch et al. geben eine Korrelation der Sphäre im Vergleich subjektiver Abgleich zu 

Aberrometer von r = 0,92 an. Die Korrelation der Zylinderwerte ist mit r = 0,62 

aufgeführt.21 

 Auffällig ist, dass in beiden Studien und bei beiden Meßmethoden die Korrelation der 

Zylinderwerte geringer ist als die der sphärischen Werte.  

Der Zernike-Koeffizient C4 ist somit für die Geräte „einfacher“ zu bestimmen, als die 

Koeffizienten, die den Zylinder und die Achslage bestimmen – also C3 und C5. Es ist 

aber zu beachten, dass das Autorefraktometer RF-10 keine Werte für die Zernike-

Koeffizienten ausgibt. 

Die Korrelationen in dieser Dissertation, die allesamt über denen von Frisch et al. 

liegen, bekräftigen dessen Behauptung, dass das Aberrometer nach dem Tscherning-

Prinzip geeignet ist, um die objektive Refraktion eines Auges zu vermessen. Jedoch 

wird diese Meßmethode kaum in die klinische Routine Einzug halten, da die Messung 

bei enger Pupille beim Aberrometer schwierig durchzuführen ist, was beim 

Autorefraktor kein Problem darstellt. Außerdem können beim WaveLight-Aberrometer 

bei enger Pupille nur die Ordnungen eins bis vier bestimmt werden. Zu beachten ist 

auch, dass die Berechnung der Werte der Sphäre, des Zylinders und der Zylinderachse 

von der Pupillenweite abhängig ist. (vgl. Kapitel 2.2.3.) Aufgrund der andersartigen 

Meßmethode stellen unterschiedliche Pupillenweiten beim Autorefraktometer keine 

Ursache für ungenaue Refraktionsbestimmungen dar. 

Auch ist der Einsatz des Aberrometers bei trüben Medien, wie zum Beispiel bei 

Katarakt, äußerst schwierig. Meist kann kein klares Netzhautbild dargestellt werden, 

was eine Messung unmöglich macht. Ein Autorefraktometer ist weniger störanfällig 

gegenüber Medientrübungen.  
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Für die Refraktionsermittlung vor LASIK-Behandlungen kann das Aberrometer sinvolle 

Kontrollwerte liefern. Diese ersetzen aber nicht den sorgfältigen subjektiven Abgleich 

der Refraktion. 

 

5.7. Korrelation des Visus zu den optischen Aberrationen 
 

Um die Behauptung27;69 zu untersuchen, dass sich postoperativ höhere Aberrationen auf 

die Sehschärfe auswirken, führten wir eine statistische Korrelation der jeweiligen 

Parameter durch. 

Es zeigte sich bei einer Pupillenweite von 4 mm eine mit p = 0,039 statistisch 

signifikante Korrelation von r = –0,267 zwischen Visus nach LASIK ohne Korrektur und 

den Aberrationen der 3. Ordnung nach LASIK. Vor LASIK war nur eine Korrelation 

mit den gesamten Ordnungen nachzuweisen. Dies erscheint aber sinnvoll, da in den 

gesamten Ordnungen auch die 2. Ordnung enthalten ist, die den Zernike-Koeffizienten 

des C4 (defocus) enthält. Der defocus ist der Betrag der Fehlsichtigkeiten Myopie oder 

Hyperopie. Deshalb kann bei nicht ausreichend korrigiertem Wert – sei es durch Brille 

oder Kontaktlinse vor oder nach LASIK – kein guter Visus erreicht werden. 

 

Bei einer Pupillenweite von 6,5 mm korrelierten die 4. und 5. Ordnung nach LASIK mit 

dem unkorrigierten Visus nach LASIK signifikant. (r = -0,279; p = 0,031 und r =           

-0,265; p = 0,041) 

 

Seiler et al. berechneten die Korrelation zwischen bestkorrigiertem Visus und höheren 

Aberrationen nach LASIK. Das Ergebnis mit r = –0,5 war mit p = 0,02 statistisch 

signifikant.73 Es sei aber zu beachten, dass diese Ergebnisse wiederum nicht direkt 

miteinander verglichen werden können. Zum einen sprechen wir von zwei 

verschiedenen Operationsmethoden, zum anderen wurden die höheren Aberrationen mit 

dem unkorrigierten Visus nach LASIK korreliert. Seilers et al. Berechnungen basieren 

auf dem bestkorrigierten Visus nach LASIK. 

Dennoch ist bei beiden Studien der Zusammenhang zwischen Zunahme der höheren 

Aberrationen nach LASIK mit dem Ergebnis der verminderten Endsehschärfe nach 

LASIK deutlich zu erkennen.   

51 von 60 Augen erreichten nach LASIK einen unkorrigierten Visus von 1,0 oder 

besser. Bei 9 Augen war der bestkorrigierte Visus vor LASIK ohne Korrektur nach 
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LASIK nicht zu erreichen. Dies ist hierbei auf eine Über- oder Unterkorrektur im 

Refraktionswert Sphäre zurückzuführen. Durch eine Wiederholung der LASIK konnte 

aber bei allen Augen der unkorrigierte Visus nach LASIK auf das Niveau vor LASIK 

mit bester Korrektur gebracht werden. Der jeweils unkorrigierte Visus verbesserte sich 

aber bei allen 60 Augen deutlich. 

 

Eine Überprüfung des Dämmerungssehens und der Blendempfindlichkeit nach LASIK 

wurde aufgrund des Fehlens von Daten nicht vorgenommen. 

 
 
5.8. Verteilung der Zernike-Koeffizienten im Patientenkollektiv vor 

und nach LASIK bei Pupillenweiten von 4 mm und 6,5 mm 
 

In Kapitel 4.8. sind die Grafiken der Häufigkeitsverteilung für beide Pupillenweiten 

jeweils vor und nach LASIK dargestellt. Für jeden Zernike-Koeffizienten ist zusätzlich 

die ideale Gaußsche Normalverteilungskurve mit denselben Mittelwerten und 

Varianzen, wie sie der individuelle Zernike-Koeffizient besitzt, („Glockenkurve“) 

eingeblendet. Die niederen Ordnungen (C1 bis C5) sind getrennt von den höheren 

Ordnungen (C6 bis C14 bzw. C27) gruppiert.  

Alle Zernike-Koeffizienten, sowohl vor als auch nach der LASIK-Prozedur, ungeachtet 

der Pupillenweite sind laut Kolmogorov-Smirnov-Test statistisch normalverteilt. 

Eine Ausnahme bildet der Koeffizient C4 (defocus) nach LASIK bei beiden 

Pupillenweiten. Dieser Sachverhalt wird klar, wenn man bedenkt, dass C4 durch LASIK 

gezielt vermindert werden soll. Dies führt zu einer Nicht-Normalverteilung mit einer 

Häufung um die Mittelwerte 0,207 bzw. 0,482 Mikrometer. Bei den Zernike-

Koeffizienten der höheren Ordnungen vor und nach LASIK lässt sich aufgrund der 

Normalverteilungen keine Tendenz zu einem gewissen Wert erkennen. 

Bei Thibos et al.90 waren 30 von 36 untersuchten Koeffizienten normalverteilt. Thibos 

Daten beruhen allerdings nur auf  Augen, die nicht mit einem Verfahren der refraktiven 

Chirurgie behandelt wurden.  

 

Die höheren Aberrationen des Patientenkollektivs werden durch die LASIK-Prozedur 

nicht gesetzmäßig beeinflusst. Wie in Kapitel 5.5. dargelegt, hat auch die Höhe des 

sphärischen Äquivalents vor LASIK keinen Einfluss auf diese Aberrationen.  
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Die Entwicklung der Aberrationen höherer Ordnung nach LASIK ist somit durch Zufall 

oder durch Parameter bestimmt, die nicht in dieser Arbeit untersucht wurden. 

 

5.9. Einfluss der verwendeten Mydriatika auf die aberrometrischen 
Ergebnisse 

 
Im zweiten Abschnitt dieser Dissertation wird am Kollektiv II der Einfluss der 

verschiedenen Mydriatika auf die optischen Aberrationen betrachtet. Insbesondere sollte 

die Abhängigkeit der höheren Aberrationen untersucht werden. 

 

Man erkennt eine Zunahme der Aberrationen höherer Ordnung bei Gabe von 

Mydriatikum-Stulln® und Zyklolat-EDO® Augentropfen, da unter diesen Mydriatika die 

Pupillenweite höher ist als unter mesopischen Bedingungen ohne Mydriatikum und 

unter Neosynephrin-POS® Augentropfen. Dies entspricht den Ergebnissen, die im 

Kapitel 5.2. dargestellt sind. Auch Giessler et al. beobachteten eine Zunahme der 

höheren Aberrationen bei zunehmender Pupillenweite.25 Den Ergebnissen von Carkeet 

et al. zufolge12 besteht ein signifikanter Unterschied von 0,0407 µm in den höheren 

Aberrationen im Vergleich ohne zu mit Cycloplegie (ohne Cycloplegie unter 

Phenylephrin: 0,3852 µm; mit Cycloplegie unter Cyclopentolat: 0,4259 µm). In den 

Ergebnissen dieser Dissertation ergab sich im Mittelwert eine Zunahme von 0,09 µm im 

Vergleich Phenylephrin zu Cyclopentolat. Die Behauptung Carkeets erfährt daher durch 

die Auswertungen in der vorliegenden Studie ein Bestätigung. Die größere Differenz 

der Aberrationen könnte damit erklärt werden, dass die maximale Pupillenweite unter 

Phenylephrin bei 4,5 mm lag und somit der Unterschied in der Pupillenweite zwischen 

beiden Augentropfen mit mindestens 1,5 mm relativ hoch ist. Carkeet et al. geben keine 

Pupillenweiten an. 

 

Die höheren Aberrationen korrelieren nur bei Messung der zwischen Neosynephrin-

POS® und Messung ohne Mydriatikum und zwischen Mydriatikum-Stulln® und 

Zyklolat®. Die Pupillenweite unter Neosynephrin-POS® Augentropfen war bei allen 

Probanden kleiner als bei Verwendung von Mydriatikum-Stulln® oder Zyklolat-EDO® 

Augentropfen. Eine Aberrometrie ohne Pupillenerweiterung oder unter dem Einfluss 

von Neosynephrin-POS® ist aufgrund der kleineren Pupillenweite schwieriger 

durchzuführen als unter dem Einfluss der anderen Mydriatika, die eine weitere Pupille 
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induzieren. Eine weite Pupille ist folglich zwingend nötig, da nur hier am Aberrometer 

eine genaue Messung möglich ist.  

Da die Korrelation der höheren Aberrationen zwischen Mydriatikum-Stulln® und 

Zyklolat-EDO® sehr ähnlich ist, und sich die Pupillenweiten bei allen Probanden hier 

nicht mehr unterscheiden, ist es möglich, zur Aberrometrie anstatt Zyklolat-EDO® auch 

Mydriatikum-Stulln® in der vorher angegebenen Dosierung zu applizieren. Dies kann 

von Vorteil sein, da unter Zyklolat-EDO® in seltenen Fällen vegetative Symptome wie 

Schwindel oder Kreislaufversagen auftreten können. Dies ist besonders bei Kindern der 

Fall. Bei Kindern zählt die LASIK natürlich noch nicht zum Indikationsgebiet für eine 

Aberrometrie, aber in Zukunft könnte sie bei der Bestimmung der objektiven Refraktion 

eine Rolle spielen. (vgl. Kapitel 5.6.). Auch eine Allergie auf Cyclopentolat, die die 

Applikation dieses Wirkstoffes ausschließt, könnte Mydriatikum-Stulln® interessant 

werden lassen.  

Die Gleichwertigkeit beider Mydriatika wird zudem noch dadurch bestätigt, dass bis auf 

die 6. Ordnung und den Zernike-Koeffizienten C12 bei allen anderen Ordnungen eine 

hohe Korrelation herrscht. 

Falls es jedoch keine Kontraindikationen für Cyclopentolat gibt, ist die Gabe von 

Mydriatikum-Stulln® eher als zu aufwendig anzusehen, da im Gegensatz zu 

Cyclopentolat mehrfach getropft werden muss. 

Die hohe Korrelation der 2. Ordnung und des darin enthaltenen Zernike-Koeffizienten 

C4 unter dem Einfluss aller Mydriatika war zu erwarten. Wie in Kapitel 5.6. dargestellt, 

eignet sich das Aberrometer auch als Messinstrument zur Bestimmung der objektiven 

Refraktion. Eine ausbleibende Korrelation der 2. Ordnung, aus der die objektive 

Refraktion errechnet wird, würde die Verwendungsmöglichkeit als Refraktionsmeßgerät 

ausschließen. Die Korrelationen besitzen aber nicht alle den selben Betrag. Die höchste 

Korrelation tritt zwischen Mydriatikum-Stulln® und Cyclopentolat auf. Die niedrige 

Korrelation bei den anderen Auswertungen sind durch die unterschiedlichen, nicht 

maximalen Pupillenweiten bedingt. Die Meßungenauigkeit der objektiven Refraktion, 

hervorgerufen durch die unterschiedlichen Pupillenweiten, wie sie in Kapitel 5.2. 

angenommen wird, erfährt durch die Untersuchungen am Probandenkollektiv eine 

Bestätigung.  

Ein zunehmende Hyperopisierung mit zunehmender Potenz des Mydriatikums, wie sie 

Giessler et al. feststellten25, konnte in dieser Studie nicht beobachtet werden. 
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Um diese Annahmen endgültig bestätigen zu können, müssten die Messungen aber an 

einem größeren Kollektiv wiederholt werden. Außerdem wäre eine genaue Bestimmung 

der subjektiven Refraktion unter dem jeweiligen Mydriatikum, sowie die Messung der 

objektiven Refraktion mit dem Aberrometer und vergleichend mit dem 

Autorefraktometer sinnvoll.  

 

Ein anderer Betrachtungsaspekt der Änderung der höheren Aberrationen ist die 

Gleichmäßigkeit dieser Veränderungen. Die Zunahme der Aberrationen, abhängig von 

verwendeten Mydriatikum, entwickelt sich für jeden Punkt (x,y) der Wellenfront 

annähernd gleichmäßig. Dies ist anhand der Grafik auf Seite 93 gut erkennbar. Die 

„Höhen“ und „Tiefen“ auf der Wellenfrontkarte bleiben bezüglich der Position 

konstant. Nur die Beträge dieser „Höhen“ und „Tiefen“ nimmt zu. Farblich wird diese 

Zunahme der höheren Aberrationen durch Verstärkung der Farbanteile für Rot und 

Violett kodiert. Die Grafik auf Seite 96 ist repräsentativ für alle Probandenaugen. Die 

örtliche Konstanz mit Erhöhung der Beträge war an jedem Probandenauge 

nachzuweisen. 

 
Die Messungen an den 6 Probandenaugen sollten als Basis für ausführlichere 

Untersuchungen betrachtet werden. Trotz der kleinen Probandenzahl kann eine Tendenz 

in der Entwicklung der Aberrationen erkannt werden, die es jedoch weiter zu beweisen 

gilt. 
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6. Zusammenfassung 
 

Als mögliche Ursache für verminderte Sehqualität nach LASIK – laser in situ 

keratomileusis – kommt eine Zunahme optischer Fehler höherer Ordnung 

(Aberrationen) in Frage. 

An einem Patientenkollektiv der Augenklinik der Ludwig-Maximilians-Universität, das 

sich einer LASIK-Behandlung unterzog, wurde die Entwicklung der höheren 

Aberrationen und der Einfluss auf die Sehqualität untersucht. Zur Analyse und 

Quantifizierung dieser Aberrationen kam ein Aberrometer nach dem Tscherning-Prinzip 

(Fa. WaveLight) zum Einsatz. Die Darstellung der Aberrationen erfolgt als 

Aufgliederung in die Zernike-Koeffizienten.  

Die Zunahme der Aberrationen höherer Ordnung nach LASIK war im 

Patientenkollektiv statistisch signifikant. Auch der Einfluss der Pupillenweite (4 vs. 

6,5 mm) auf die höheren Aberrationen und auf die Sehqualität konnte nachgewiesen 

werden. Mit zunehmender Pupillenweite stiegen die höheren Aberrationen nach LASIK 

zusätzlich an. Bei einer 4 mm weiten Pupille korrelierte die 3. Ordnung negativ mit dem 

Visus nach LASIK, während bei einer 6,5 mm weiten Pupille die 4. Ordnung negativ 

korrelierte. 

Die Wahrscheinlichkeit, nach LASIK schlechter zu sehen als vor LASIK mit bester 

Korrektur ist abhängig vom präoperativen refraktiven Fehler. Die Höhe des sphärischen 

Äquivalents vor LASIK korrelierte signifikant mit dem erreichten Visus nach LASIK 

(p = 0,011). Die Zunahme der höheren Aberrationen war bei den untersuchten LASIK-

Patienten dagegen nicht abhängig vom korrigierten Refraktionsfehler. Der etwas 

schlechtere Visus cum correctione nach LASIK beruhte auf einer unzureichenden 

Korrektur der niederen Aberrationen, und damit der Werte Sphäre, Zylinder und 

Zylinderachse. 

Die Verteilung der höheren Zernike-Koeffizienten nach LASIK folgte keiner 

Gesetzmäßigkeit. Die Aberrationen veränderten sich ungerichtet. Nur der Zernike-

Koeffizient C4 strebt nach LASIK gegen null, wie gemäß der angestrebten 

Refraktionskorrektur zu erwarten.  

 

Das Aberrometer ist durch die Analyse der Aberrationen niederer Ordnung geeignet, die 

Refraktion der Augen objektiv refraktiv zu vermessen. Eine hohe Korrelation zwischen 

subjektiver Refraktion, objektiver Refraktion, gemessen mit einem Autorefraktometer, 
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und objektiver Refraktion, gemessen mit dem Aberrometer, wurde nachgewiesen 

(p < 0,001). 

Ein Nebenaspekt der vorliegenden aberrometrischen Untersuchungen war, zu klären, 

welches Mydriatikum am besten für diese Messungen verwendet werden sollte. 

Standardmäßig wird am crt das Mydriatikum Zyklolat-EDO® (Cyclopentolat-

hydrochlorid) eingesetzt. An einem kleinen Probandenkollektiv von 6 Augen wurde 

aufgezeigt, dass prinzipiell auch Tropicamid (Mydriatikum-Stulln®) in einer höheren 

Dosierung geeignet ist, um die Aberrometrie ideal durchzuführen. Die Vermessung 

ohne Pupillenerweiterung oder unter geringer Erweiterung mit Phenylephrin erbrachte 

dagegen keine vergleichbar reliablen Werte.  

Da diese Messungen an sehr wenigen Augen durchgeführt wurden, sollten die 

Ergebnisse aber nur als Basis für weitere Untersuchungen an einem größeren Kollektiv 

betrachtet werden. 
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