Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Synthese neuer Cisplatin-N-Lost-Konjugate und epigenetisch relevanter C5-modifizierter Cytosin Derivate

> Stefan Schießer aus Augsburg (Deutschland)

> > 2014

<u>Erklärung</u>

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Thomas Carell betreut.

Eidesstattliche Versicherung

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet.

München, 13.03.2014

Stefan Schießer

Dissertation eingereicht am 23.01.2014

- 1. Gutachter: Prof. Dr. Thomas Carell
- 2. Gutachter: Prof. Dr. Wolfgang Beck

Mündliche Prüfung am 13.03.2014

Teile dieser Arbeit wurden bereits publiziert:

 S. Schiesser,[#] B. Hackner,[#] T. Pfaffeneder, M. Müller, C. Hagemeier, M. Truss, T. Carell Angew. Chem., Int. Ed. 2012, 51, 6516–6520.
 Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing.

S. Schiesser,[#] B. Hackner,[#] T. Pfaffeneder, M. Müller, C. Hagemeier, M. Truss, T. Carell *Angew. Chem.* **2012**, *124*, 6622–6626.

Mechanismus und Stammzellaktivität der Decarboxylierung von 5-Carboxycytosin, bestimmt mittels Isotopenverfolgung.

[#]: Diese Autoren haben zu gleichen Teilen beigetragen.

2. <u>S. Schiesser</u>, P. Mayer, T. Carell, W. Beck Z. Naturforsch., B: J. Chem. Sci. 2012, 67b, 849–852.

Molecular and crystal structure of potassium-L-alaninato-dichloridoplatinate(II), K[Pt(L-alaO)Cl₂].

- 3. B. Steigenberger,[#] S. Schiesser,[#] B. Hackner, C. Brandmayr, S. K. Laube, J. Steinbacher, T. Pfaffeneder, T. Carell *Org. Lett.* 2013, *15*, 366–369.
 Synthesis of 5-hydroxymethyl-, 5-formyl-, and 5-carboxycytidine-triphosphates and their incorporation into oligonucleotides by polymerase chain reaction.
 [#]: Diese Autoren haben zu gleichen Teilen beigetragen.
- S. Schiesser,[#] T. Pfaffeneder,[#] K. Sadeghian, B. Hackner, B. Steigenberger, A. S. Schroeder, J. Steinbacher, G. Kashiwazaki, G. Höfner, K. T. Wanner, C. Ochsenfeld, T. Carell *J. Am. Chem. Soc.* 2013, 135, 14593–14599. Deamination, oxidation, and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine.
 - [#]: Diese Autoren haben zu gleichen Teilen beigetragen.

Weitere Publikationen:

- M. Wenninger, D. Fazio, U. Megerle, C. Trindler, <u>S. Schiesser</u>, E. Riedle, T. Carell *ChemBioChem* 2011, *12*, 703–706.
 Flavin-induced DNA photooxidation and charge movement probed by ultrafast transient absorption spectroscopy.
- F. Civril, M. Bennett, M. Moldt, T. Deimling, G. Witte, <u>S. Schiesser</u>, T. Carell, K. P. Hopfner *EMBO Rep.* 2011, *12*, 1127–1134. The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling.
- A. S. Schroeder, J. Steinbacher, B. Steigenberger, F. Gnerlich, <u>S. Schiesser</u>, T. Pfaffeneder, T. Carell *Angew. Chem., Int. Ed.* 2014, *53*, 315–318.
 Synthesis of a DNA promoter segment containing all four epigenetic nucleosides: 5-methyl-, 5-hydroxymethyl-, 5-formyl-, and 5-carboxy-2'-deoxycytidine.

A. S. Schroeder, J. Steinbacher, B. Steigenberger, F. Gnerlich, <u>S. Schiesser</u>, T. Pfaffeneder,
T. Carell *Angew. Chem.* 2014, *126*, 321–324.

Synthese eines DNA-Promotorsegments mit allen vier epigenetischen Nukleosiden: 5-Methyl-, 5-Hydroxymethyl-, 5-Formyl- und 5-Carboxy-2'-Desoxycytidin. Ausgewählt als *Hot Paper*.

Während der Anfertigung der Dissertation wurden folgende Posterbeiträge vorgestellt:

- "Mimicking the FAD reduction in photolyases"
 17th European Symposium on Organic Chemistry ESOC (Juli 2011, Kreta, Griechenland).
- "Covalent linkage of two blockbuster anti-cancer pharmaceuticals"
 Stipendiatentreffen des Fonds der Chemischen Industrie (Februar 2012, München, Deutschland).
- "Covalent linkage of two blockbuster anti-cancer pharmaceuticals"
 Gordon Research Conference: Metals in Medicine (Juni 2012, Andover, New Hampshire, USA).
- "A potential mechanism for 5-methylcytosine demethylation in DNA" EuCheMS (August 2012, Prag, Tschechische Republik).
- 5. "Synthesis of bisfunctional cisplatin conjugates"
 Bayer Symposium des Exzellenzclusters "Center for Integrated Protein Science CIPSM" (Dezember 2012, München, Deutschland).

Danksagungen

Bei Prof. Dr. *Thomas Carell* möchte ich mich für die überaus interessante Themenstellung und die zahlreichen wissenschaftlichen Diskussionen und Anregungen bedanken. Überaus dankbar bin ich auch für seine Unterstützung im Zuge meiner Postdoc-Bewerbung.

Prof. Dr. *Wolfgang Beck* möchte ich für die zahlreichen Diskussionen komplexchemischer Sachverhalte, für die Unterstützung meiner Postdoc-Bewerbung und die Anfertigung des Zweitgutachtens danken.

Dem Prüfungskomitee danke ich für die Begutachtung meiner Dissertation und die Teilnahme an meinem Rigorosum.

Frau *Gärtner* möchte ich für die gewissenhafte Abwicklung aller bürokratischen Aufgaben danken.

Meinen ehemaligen Praktikanten Mario Ellwart, Simon Peschke, Michael Stadlmeier und René Rahimoff danke ich für ihre überaus große Einsatzbereitschaft während ihres Praktikums.

Dr. *Markus Müller* danke ich für die Unterstützung in biologischen Fragestellungen und IT-Problemen. Des Weiteren danke ich ihm für das Korrekturlesen Teile meiner Dissertation.

Simon Geiger, Toni Pfaffeneder, Benjamin Hackner, Andrea Kneuttinger, Sascha Serdjukow, Arne Schröder, Florian Kink, Michael Ehrlich, Moritz Illi und Dr. Sarah Illi danke ich für das schnelle und gewissenhafte Korrekturlesen großer Teile meiner Arbeit.

Der Analytikabteilung der Ludwig-Maximilians-Universität München danke ich für die Vermessung meiner Proben.

Dem Fonds der Chemischen Industrie danke ich für die finanzielle Unterstützung während meiner Promotion in Form eines Stipendiums.

Den ehemaligen und aktuellen Mitgliedern des Arbeitskreises von Prof. Dr. *Thomas Carell* danke ich für die sehr angenehme Arbeitsatmosphäre und den sehr offenen wissenschaftlichen Austausch.

Inhaltsverzeichnis

1 ZusammenfassungV			
2 Summary.		XIII	
3 Einleitung		1	
3.1 DNA	A-bindende Zytostatika als eine äußerst vielversprechende		
The	apiemöglichkeit von Krebserkrankungen	1	
3.1.1	Wirkmechanismus, Resistenzbildung und Toxizität von Cisplatin	2	
3.1.2	Molekularer Mechanismus der zytotoxischen Wirkung von		
	N-Lost-Derivaten		
3.1.3	Anthramycin als höchst spezifischer Binder von Guanin in		
	doppelsträngiger DNA	13	
3.2 Dyn	amik der C ⁵ -Methylierung von Cytosin in DNA	16	
3.2.1	Biologische Bedeutung und Mechanismus der C ⁵ -Methylierung		
	von Cytosin in DNA	16	
3.2.2	Mögliche Mechanismen der aktiven Demethylierung von 5-Methyl-		
	cytosin in DNA		
4 Teil 1: Syn	these neuartiger, antiproliferativer Cisplatin-Derivate		
4.1 Aufg	gabenstellung		
4.2 Synt	hese neuartiger, antiproliferativer Cisplatin-N-Lost-Konjugate		
4.2.1	Untersuchungen zur Synthese eines Cisplatin-N-Lost-Konjugats		
	auf Basis eines κN^2 , κO^1 -Chelatrings		
4.2.2	Synthese eines Cisplatin-N-Lost-Konjugats auf Basis eines $\kappa^2 N^{1,2}$ -		
	Chelatrings		
4.2.3	Synthese und massenspektrometrische Evaluierung der DNA-		
	Addukte eines Cisplatin-N-Lost-Konjugats 24 auf Basis eines		
	$\kappa^2 N^{1,2}$ -Chelatrings und eines Monoethylenglykol- <i>linkers</i>		
4.2.4	Synthese und massenspektrometrische Evaluierung der DNA-		
	Addukte eines Cisplatin-N-Lost-Konjugats 42 auf Basis eines		
	$\kappa^2 N^{1,2}$ -Chelatrings und eines Tetraethylenglykol- <i>linkers</i>		
4.2.5	Evaluierung der biologischen Aktivität der neu dargestellten		
	Cisplatin-N-Lost-Konjugate 24 und 42		
4.3 Unte	ersuchungen zur Synthese eines Cisplatin-Anthramycin-Konjugats		

5	Eval	Evaluierung verschiedener Mechanismen des C ⁵ -C ^{exo} -Bindungsbruchs		
		zur aktiven Demethylierung von 5-Methyl-2'-desoxycytidin	59	
5.1		Aufgabenstellung	59	
	5.2 Nachweis und potentieller Mechanismus der Decarboxylierung von cadC			
		in dsDNA in vitro		
	5.3	Vergleich der Effizienz des C ⁵ -C ^{exo} -Bindungsbruchs der Decarboxy-		
		lierung von cadC mit der Deformylierung von fdC und der Dehydroxy-		
		methylierung von hmdC	73	
5.4		Messung der Geschwindigkeitskonstanten des C ⁵ -C ^{exo} -Bindungs-		
		bruchs, der Deaminierungs- und Oxidationsreaktionen ver-		
	c	schiedener dC-Derivate		
	5.4	+.1 Messung der Geschwindigkeitskonstanten des C ^o -C ^{mo} -Bindungs-	85	
	5	4.2 Massure das Casakwindiskaitekonstantas das Dasminismus von		
	5.4	dC mdC hmdC und fdC	87	
	5	1.3 Massung dar Gasabwindigkaitskanstantan dar Ovidation von mdC		
	5.	hmdC und fdC	90	
	55	Synthese und enzymatischer Einhau eines $[^{15}N_2]$ -cadC- (107) und		
	5.5	eines carbamat-geschützten [$^{15}N_2$ D ₂]-hmdC-Triphosphats (110)	94	
6	Exper	imentalteil	101	
Ũ	61	Material und Methoden	101	
	6.2	Untersuchungen zur Synthese eines Cisplatin-N-Lost Konjugats auf		
	0.2	Basis eines $\kappa N^2 \kappa \Omega^1$ -Chelatrings	112	
	63	Synthese since Cispletin N Lost Konjugate suf Pasis since $x^2 N^{1/2}$ Cholat	112	
	0.5	rings	119	
	6.4	Synthese eines Cisplatin N Lost Konjugats auf Basis eines $\kappa^2 N^{1,2}$ Chelat		
	0.4	rings und eines Monoethylenglykol- <i>linkers</i>	129	
	65	Synthese eines Cisplatin N Lost Konjugats auf Basis eines $k^2 N^{1,2}$ Chelat		
	0.5	rings und eines Tetraethylenglykol- <i>linkers</i>	136	
	6.6	Untersuchungen zur Synthese eines Anthramycin-Liganden	144	
	6.7	Synthese des [¹⁵ Na]-cadC_Phosphoramidits 76	162	
	6.8	Machanismusstudian zur Dasarbayyliarung am Nuklaasid	102	
	6.0	Machanismusstudien zur Debudreurmethylierung und De	175	
	0.9	formylierung am Nukleosid	178	
	6 10	Synthese des $[^{15}N_2]$ -cadC-Trinhognhats 107	19/	
	6.11	Synthese des $[13_2]$ -caue-riphosphats 107	107	
	0.11	synmese ues carbamai-geschutzten [1v2, D2]-mmuC-mpnosphats 110	10/	

7 Abkürzungsverzeichnis193				
8 Literaturverzeichnis				
9 App	endix	247		
9.1	Gemessene OD ₆₀₀ -Werte der Zytotoxizitätstests der Konjugate 24			
	und 42 im Vergleich mit Cisplatin	247		
9.2	Kristallographische Daten von Verbindung 11			
9.3	Kristallographische Daten von Verbindung 64			
9.4	Daten der Quantifizierung des C ⁵ -C ^{exo} -Bindungsbruchs, der De-			
	aminierung und der Oxidation hmdC-, fdC- und cadC-			
	haltiger DNA-Haarnadelstrukturen durch β -Mercaptoethanol/Imidazol-			
	Gemische			
9.5	Daten zur Bestimmung der Geschwindigkeitskonstanten des C5-Cexo-			
	Bindungsbruchs von hmdC, fdC und cadC			
9.6	Daten der Reaktionskinetiken der Deaminierung von dC, mdC, hmdC			
	und fdC und der Oxidation von mdC, hmdC und fdC			

1 Zusammenfassung

Die Bedeutung kovalenter Modifizierungen von Nukleobasen des DNA-Duplex zeigt sich sowohl im herausragenden Erfolg moderner Chemotherapien, als auch in der epigenetischen Genregulation. So werden heutzutage zum Beispiel fast 50% aller Chemotherapiepatienten mit Hilfe eines Cisplatin-Derivats behandelt, das mit der jeweiligen N^7 –Position zweier Guanin-Reste der DNA zu einem 1,2-intrastrang *cross-link* reagiert. Dieses Addukt ist höchstwahrscheinlich die Hauptursache der zytotoxischen Wirkung der Cisplatin-Verbindungen, da der *cross-link* während der DNA-Replikation nicht mehr überlesen werden kann und folglich der programmierte Zelltod (Apoptose) eingeleitet wird. Tumore können jedoch im Laufe der Chemotherapie resistent gegenüber der Cisplatin-Verbindung werden. Dies kann zum Beispiel geschehen, indem spezielle, so genannte *low-fidelity* Polymerasen überexprimiert werden, die den Cisplatin-Schaden überlesen können. Des Weiteren kann eine erhöhte Reparaturaktivität der Tumorzelle zu einem verminderten Erfolg der Cisplatin-basierten Chemotherapie führen.

Durch Einführung zusätzlicher DNA-Schäden nahe des ursprünglichen Cisplatin-Addukts könnte jedoch die lokale Schadensdichte so weit erhöht werden, dass weder *low-fidelity* Polymerasen diese Schäden überlesen, noch eine erhöhte Reparaturaktivität die DNA-Addukte beheben können und folglich die Apoptose eingeleitet wird. Dies könnte zum Beispiel durch die kovalente Verknüpfung zweier zytotoxischer Gruppen, wie zum Beispiel einer Cisplatin- und einer N-Lost-Funktionalität realisiert werden. N-Lost-Derivate reagieren ebenfalls mit der N^7 -Position von Guanin-Resten in DNA, die daraufhin depurinieren, so dass sich abasische Stellen ausbilden.

Folglich wurden im ersten Teil der Dissertation die Konjugate 24 und 42 (Abbildung 1.1 A) mit einem Cisplatin-Fragment (rot) und einer N-Lost-Gruppe (blau), die durch unterschiedlich viele Ethylenglykoleinheiten kovalent miteinander verbunden sind, dargestellt. Hierzu wurde ausgehend von N^{α} -Boc-geschütztem L-Lysinmethylester das partiell geschützte Triamin 14 in 6 Stufen mit einer Gesamtausbeute von 49% dargestellt. Konjugat 24 wurde dann aus Triamin 14 in 6 weiteren Stufen synthetisiert, so dass Zielkomplex 24 in insgesamt 12 Stufen zugänglich ist (Abbildung 1.1 B). Hierbei konnte der Ligand trotz der hochreaktiven und äußerst instabilen N-Lost-Funktionalität durch genaue Kontrolle des pH-Werts während der Komplexierung und durch die extrem schnelle Koordination des 1,2-Bisamins an das Platin(II)-Zentrum erfolgreich koordiniert werden.

Abbildung 1.1: A) Zielmoleküle 24 und 42 mit jeweils einer Cisplatin- und einer N-Lost-Funktionalität, die über eine unterschiedliche Anzahl an Ethylenglykoleinheiten kovalent miteinander verbunden sind. B) Übersicht über die Synthese der Zielmoleküle 24 und 42 über das Triamin 14 als gemeinsame Vorstufe.

Neben Konjugat **24** mit einer Monoethylenglykoleinheit wurde auch Komplex **42** mit einem Tetraethylenglykol-*linker* zwischen der Cisplatin- und der N-Lost-Funktionalität dargestellt. Dies gelang ausgehend vom Triamin **14** in 6 weiteren linearen Stufen mit einer Gesamtausbeute von 16%.

In Umsetzungen mit DNA-Duplexen konnte massenspektrometrisch gezeigt werden, dass sowohl die Cisplatin- als auch die N-Lost-Funktionalität der beiden Konjugate 24 und 42 mit der DNA reagieren können. Hierbei wird in Folge der Reaktion mit dem N-Lost-Derivat die glykosidische Bindung des 2'-Desoxyguanosins gebrochen (Abbildung 1.2).

Abbildung 1.2: Massenspektrometrisch nachgewiesener DNA-Schaden der Konjugate 24 und 42.

Dies bedeutet, dass neben dem Cisplatinschaden in unmittelbarer räumlicher Nähe eine abasische Stelle erzeugt wird, die zu einem Strangbruch führen kann. Hierdurch könnte die lokale Schadensdichte soweit erhöht werden, dass das Addukt von Polymerasen nicht mehr überlesen werden kann und folglich die Apoptose eingeleitet werden muss. Bei Inkubation der Konjugate 24 und 42 mit *E. coli*-Zellen konnte darüber hinaus eine Inhibition der Zellteilung beobachtet werden, die sich in der Elongation der Bakterien zeigt.

Neben der Problematik der intrinsischen oder der im Zuge der Chemotherapie erworbenen Resistenz von Krebszellen gegenüber Cisplatin-Derivaten ist vor allem die äußerst unspezifische Reaktion des Cisplatins mit anderen zellulären Nukleophilen, wie zum Beispiel mit Schwefel-Resten von Proteinen, eine große Herausforderung. Hieraus können schwerwiegende Nebenwirkungen und eine verminderte zytotoxische Wirkung des Cisplatins resultieren. Die unspezifische Reaktion des Cisplatins kann durch DNA-dirigierende Liganden, wie zum Beispiel Interkalatoren oder Binder der kleinen DNA-Furche zum Teil unterdrückt werden. Jedoch besitzen diese Liganden entweder keine Sequenzspezifität oder eine sehr hohe Präferenz für AT-reiche Motive. Dies steht im krassen Gegensatz zur Reaktivität von Cisplatin mit Guanin-Resten der DNA. Um nun Cisplatin nicht nur an DNA zu dirigieren, sondern auch an von Cisplatin präferierte Sequenzen, sollte ein Ligand entwickelt werden, der eine hohe Guanin-Spezifität aufweist. Hierzu erscheint Anthramycin sehr gut geeignet, da dieses auch in Gegenwart von RNA, Lipiden, ssDNA oder Proteinen, äußerst selektiv nur mit Guanin-Resten in dsDNA reagiert und die Reaktion deutlich schneller verläuft als die DNA-Platinierung. Somit sollte Zielmolekül 54 mit einer Anthramycin (blau) und einer Cisplatin-Funktionalität (rot) dargestellt werden (Abbildung 1.3).

Abbildung 1.3: Zielmolekül 54 zum Dirigieren von Cisplatin an Guanin-reiche Sequenzen in dsDNA mit einer Anthramycin- (blau) und einer Cisplatin-Funktionalität (rot).

Hierzu wurde das Triflat **55** nach Literaturverfahren in neun Stufen synthetisiert und an das Stannan **71**, das ausgehend von Triamin **14** in drei Stufen dargestellt werden konnte, gekuppelt. Hiernach konnte mit Natriumborhydrid regioselektiv nur eine der drei Amid-Gruppen zum Carbinolamin **73** (grün) reduziert werden (**Schema 1.1**). Jedoch erwies sich das Carbinolamin als extrem sensitiv, was die erfolgreiche Abspaltung der Schutzgruppen zum freien Liganden **73** unter den untersuchten Bedingungen verhinderte. Folglich müssten zukünftig Schutzgruppen evaluiert werden, die deutlich milder abgespalten werden können.

Schema 1.1: Untersuchungen zur Synthese des freien Liganden 73.

Neben der gerade erläuterten Alkylierung während der Chemotherapie können Nukleobasen auch im Zuge zellulärer Prozesse alkyliert werden. So ist die Methylierung von 2'-Desoxycytidin (dC) zu 5-Methyl-2'-desoxycytidin (mdC), die zum Beispiel bei der genetischen Prägung, der Inaktivierung des X-Chromosoms oder der Stilllegung von Transposonen eine bedeutende Rolle spielt, sehr gut verstanden. Hingegen ist die aktive Demethylierung von mdCzu dC-Resten, die zum Beispiel in der frühen Embryogenese und bei der Keimzellbildung von großer Bedeutung ist, noch nicht vollständig aufgeklärt. Bis vor kurzem wurde vor allem eine Beteiligung der Basen- beziehungsweise der Nukleotidexzisionsreparatur diskutiert, wobei das methylierte Nukleosid entfernt und durch dC ersetzt wird. In den Jahren 2009 beziehungsweise 2011 wurden jedoch 5-Hydroxymethyl-2'-desoxycytidin (hmdC), 5-Formyl-2'-desoxycytidin (fdC) und 5-Carboxy-2'-desoxycytidin (cadC) als epigenetisch relevante Basen entdeckt. Somit rückte die Möglichkeit einer Demethylierung von mdC zu dC über eine Oxidation zu cadC, das im Anschluss zu dC decarboxyliert, in den Fokus (**Abbildung 1.4**). Im zweiten Teil der Dissertation wurde daher aus aktuellem Anlaß untersucht, ob die postulierte Decarboxylierung von cadC- zu dC-Resten in DNA stattfindet.

Abbildung 1.4: Mögliche Mechanismen der aktiven Demethylierung durch Spaltung der C⁵-C^{exo}-Bindung.

Hierzu wurde ein [¹⁵N₂]-markiertes cadC-Phosphoramidit für die DNA-Festphasensynthese entwickelt und in DNA-Oligonukleotide eingebaut (**Schema 1.2**). Die Isotopenmarkierung ist essentiell, um durch Decarboxylierung gebildetes [¹⁵N₂]-dC von natürlich vorhandenem [¹⁴N₂]-dC unterscheiden zu können.

Schema 1.2: Übersicht über die Synthese des [¹⁵N₂]-markierten cadC-Phosphoramidits 76.

Nach Inkubation mit Stammzelllysat konnte in der Tat *in vitro* die Bildung von [¹⁵N₂]-dC massenspektrometrisch nachgewiesen werden, welches nur durch Decarboxylierung von [¹⁵N₂]-cadC entstanden sein kann. Dies ist ein erster Hinweis auf eine tatsächlich stattfindende Decarboxylierung von cadC zu dC in Stammzellen, was einen äußerst atom-ökonomischen Weg zur Demethylierung von mdC darstellen würde. Darüber hinaus sollte im Gegensatz zur Basen- und Nukleotidexzisionsreparatur das Zucker-Phosphat-Rückgrat intakt bleiben, so

dass die Gefahr einer genomischen Instabilität, gerade bei der aktiven Demethylierung d(CpG)-reicher Sequenzen, deutlich verringert sein müsste.

In anschließenden chemischen Untersuchungen an einem DNA-Oligonukleotid konnte gezeigt werden, dass, zumindest unter den untersuchten Bedingungen, eine Absättigung der $C^5=C^6$ -Doppelbindung (Nummerierung siehe Abbildung 1.4) notwendig ist, um die Decarboxylierung zu beobachten. Die Absättigung der $C^5=C^6$ -Doppelbindung könnte durch eine transiente *Michael*-Addition eines Thiols, wie zum Beispiel eines Cystein-Derivats, an der elektrophilen Position 6 erfolgen. Zudem war die Anwesenheit eines Imidazol-Rests essentiell, da die Decarboxylierung bei saurem pH-Wert deutlich schneller verlief als im alkalischen Milieu. Folglich legen diese Untersuchungen die Existenz eines Cystein- und eines Imidazol-Rests zusammen mit sauren Seitenketten im aktiven Zentrum einer potentiellen Decarboxylase nahe. Diese Information liefert wichtige Anhaltspunkte für die gezielte Suche nach dem postulierten Enzym.

In weiteren Studien mit DNA-Haarnadelstrukturen konnte darüber hinaus gezeigt werden, dass bei Inkubation mit einem Thiol/Imidazol-Gemisch sowohl die Dehydroxymethylierung von hmdC als auch die Deformylierung von fdC als alternative Mechanismen der aktiven Demethylierung chemisch möglich sind. Jedoch verläuft die Decarboxylierung um mehr als eine Größenordnung effizienter. Dies zeigt, dass, zumindest aus chemischer Sicht, die Oxidation vom mdC zu cadC, gefolgt von einer Decarboxylierung einen äußerst attraktiven Mechanismus zur aktiven Demethylierung darstellt.

Im nächsten Schritt wurde die Stabilität der 2'-Desoxycytidin-Derivate gegenüber Oxidationsreaktionen und chemischer Deaminierung an Position 4 der Nukleobase zu den entsprechenden 2'-Desoxyuridin-Derivaten untersucht. Diese Untersuchungen sind von entscheidender Bedeutung, um epigenetisch relevante Reaktionen wie Deaminierungen und Oxidationen von unerwünschten Nebenreaktionen, zum Beispiel während der DNA-Isolation und -analyse, zu unterscheiden. Hierbei konnte durch Kinetikmessungen gezeigt werden, dass die chemische Deaminierung der 2'-Desoxycytidin-Derivate unter physiologischen Bedingungen, ohne den Zusatz von katalytisch-aktiven Metallsalzen oder Nukleophilen zu vernachlässigen ist, während die Oxidation von hmdC zu fdC deutlich schneller verläuft.

Für weiterführende biologische Untersuchungen wurden längere DNA-Fragmente synthetisiert, die nicht mehr über die DNA-Festphasensynthese zugänglich sind. Hierzu wurden ein isotopenmarkiertes cadC-Triphosphat und ein isotopenmarkiertes, carbamat-geschütztes hmdC-Triphosphat dargestellt und enzymatisch über Polymerase-Kettenreaktion (PCR) eingebaut (**Abbildung 1.5**). Hierbei ist besonders die Akzeptanz des sterisch anspruchsvollen, geschützten hmdC- und des negativ geladenen cadC-Triphosphats durch die Polymerasen hervorzuheben. Die Carbamat-Schutzgruppe kann nach erfolgter PCR basisch abgespalten werden. Somit bildet diese Methode zusammen mit den chemischen Untersuchungen der neuen epigenetischen Basen die Grundlage für deren weitergehende biologische Untersuchung im Arbeitskreis von Prof. Dr. *Thomas Carell*.

Abbildung 1.5: Dargestellte und mittels PCR eingebaute Triphosphate 107 und 110.

2 Summary

The enormous importance of covalent modifications of nucleobases in DNA is proven by its importance in epigenetic regulations of genes and by the success of modern chemotherapy. Cisplatin, for example, is a chemotherapeutic used in nearly 50% of all antitumor therapies. Its mode of action is generally believed to be based on a nucleophilic crosslinking event of two adjacent 2'-deoxyguanosine residues in DNA via the N^7 -positions. The polymerases of the DNA-replication machinery is stalled by this lesion, causing programmed cell death (apoptosis). The tumor cells, however, can circumvent apoptosis and further proliferate by overexpressing enzymes, such as low fidelity polymerases, which can either repair or simply read over the cisplatin-DNA-lesion. This can lead to an intrinsic or acquired resistance towards cisplatin-based treatment, limiting its clinical success.

This type of resistance mechanism could be prevented by introducing further damage close to the original cisplatin adduct. Since the probability for this cluster of DNA-lesions to be repaired or read over is very small the cell could finally be forced to go into apoptosis. Covalently linking a cisplatin moiety to another cytotoxic functionality, as for example an N-mustard group, could fulfill this purpose. N-mustard derivatives like cisplatin react with guanine moieties in DNA via the N^7 -position, followed by depurination generating an abasic site. Consequently, the first part of this thesis concentrates at the synthesis of the conjugates **24** and **42** (**Figure 2.1 A**) which bear a cisplatin- (red) and an N-mustard-moiety (blue), that are covalently linked by ethylene glycol units of different length.

Figure 2.1: A) Target molecules 24 and 42 bearing a cisplatin- and an N-mustard moiety linked by a different number of ethylenglycol units. B) Overview of the synthesis of key molecules 24 and 42 via a shared triamine 14.

As part of the synthesis a new entry into triamines was developed. Starting from N^{α} -Bocprotected L-lysine methyl ester **2**, triamine **14** was synthesized in 6 steps with an overall yield of 49%. The N-mustard moiety was introduced using a monoethylene glycol linker in 6 subsequent steps (**Figure 2.1 B**). Using this approach conjugate **24** was available in 12 linear steps. In spite of the highly reactive and extremely sensitive N-mustard moiety the ligand can be attached to the platinum(II) center by strictly controlling the pH-value of the solution. The very fast precipitation of the product after complexation further helps to prevent decomposition of the N-mustard group. Conjugate **42** bearing a tetraethylene glycol unit was also synthesized starting from triamine **14** in 6 subsequent steps, resulting in 16% yield over all 12 synthetic steps.

It was confirmed that both the cisplatin- and the N-mustard moiety react with DNA-duplexes. This causes a cisplatin lesion with an abasic site in close proximity (**Figure 2.2**). The depurination is due to the weakening of the glycosidic bond after reaction with the N-mustard. This DNA damage should be much more difficult for the cell to repair or to read over than the classical cisplatin lesion. Furthermore, in studies with *E. coli* cells the inhibition of cell growth by the newly developed conjugates 24 and 42 was proven, which caused the elongation of the bacteria.

Figure 2.2: Induced DNA-damage of conjugates 24 and 42, validated by mass spectrometry.

Besides the challenge of intrinsic or acquired resistance of tumor cells towards cisplatin derivatives the highly unspecific reaction of cisplatin compounds with many cellular nucleophiles other than DNA as for instance sulphur-containing proteins is a very important drawback. This could lead to tremendous side effects and a decreased cytotoxic potential of the drug. Through the covalent linkage of the cisplatin moiety to DNA-targeting ligands such as intercalators or minor-groove binders a higher percentage of DNA-platination may be achieved. However, these molecules possess either no sequence specificity or target the cisplatin moiety to long AT stretches. This is not in line with the preference of cisplatin towards guanine-rich

DNA-motives. In order to target cisplatin not only to DNA, but also to its preferred sequences the natural product anthramycin was thought to be highly attractive, since it reacts exclusively with 2'-deoxyguanosine-residues in dsDNA via their N^2 -position, even in the presence of ssDNA, RNA, proteins etc. Furthermore, its reaction with DNA is by far faster than the reaction of cisplatin with DNA. Consequently, an anthramycin moiety (blue), covalently attached to a cisplatin functionality (red) resulting in key compound **54** was chosen as a synthetic target (**Figure 2.3**).

Figure 2.3: Key molecule 54, intended to target the cisplatin-moiety (red) to guanin-rich sequences through anthramycin (blue).

The key step of the synthesis was a *Stille* cross-coupling between triflate **55**, which was synthesized following literature procedures in 9 steps, and stannane **71**, which was obtained starting from triamine **14** in three subsequent steps (**Scheme 2.1**).

Scheme 2.1: Studies towards the synthesis of the free ligand 73.

The *Stille* cross-coupling was followed by a regioselective reduction of one amide to the corresponding carbinol amine (green) in spite of the presence of two other amide groups in the molecule. However, the deprotection of compound **73** to the free ligand **73** proved to be highly challenging, most likely due to the extremely sensitive carbinol amine functionality, which ultimately leads to decomposition of the compound in all investigated deprotection methodologies. Consequently, a new, more easily cleaved protecting group should be used for future syntheses.

Besides the previously mentioned alkylation of nucleobases in chemotherapy the covalent modification of DNA-nucleobases is also important in naturally occurring, cellular processes. The methylation of 2'-deoxycytidine (dC) to 5-methyl-2'-deoxycytidine (mdC), for example, is an important, well-known nucleobase modification that is involved in many epigenetically important processes, such as genomic imprinting, X-chromosome inactivation and transposon silencing. Whereas the mechanism of dC methylation is well known, the active removal of the methyl-group is still poorly understood (**Figure 2.4**). This active demethylation is for example important in the course of embryonic or germ cell development. Until now, mainly the substitution of the methylated nucleoside by dC via base or nucleotide excision repair is discussed.

Figure 2.4: Possible mechanisms of active demethylation based on the cleavage of the C⁵-C^{exo}-bond.

However, after the discovery that mdC can be enzymatically oxidized to 5-hydroxymethyl-2'deoxycytidine (hmdC), 5-formyl-2'-deoxycytidine (fdC) and 5-carboxy-2'-deoxycytidine (cadC) it has been suggested that active demethylation could occur via oxidation of mdC and subsequent dealkylation to dC. In order to investigate this hypothesis $[^{15}N_2]$ -labeled cadC-phosphoramidite **76** was synthesized (**Scheme 2.2**) and incorporated into DNA oligonucleotides. The isotope label is important to distinguish $[^{15}N_2]$ -dC formed by decarboxylation from naturally occurring $[^{14}N_2]$ -dC in the DNA sequence.

Scheme 2.2: Overview of the synthesis of the [¹⁵N₂]-labeled cadC-phosphoramidite 76.

Incubation with stem cell lysate followed by mass spectrometric analysis indeed showed the presence of $[^{15}N_2]$ -labeled dC, which can only result from decarboxylation of $[^{15}N_2]$ -labeled cadC. This is the first hint for a direct alkyl-removal process, based on the oxidation of mdC to cadC, followed by decarboxylation of cadC to dC. This pathway would ensure a highly atom-economic way to demethylate mdC, without the risk of genomic instability, which might be present in pathways based on base or nucleotide excision repair.

Besides these biological investigations chemical studies were performed to elucidate the mechanism of decarboxylation. Here, it was shown that the saturation of the $C^5=C^6$ double bond of cadC and the presence of imidazole are crucial for fast decarboxylation. For example, the saturation of the $C^5=C^6$ double bond can be obtained by a transient *Michael*-addition of a thiol. Furthermore, the decarboxylation proceeds faster in acidic milieu providing first hints about the active center of a possible decarboxylase.

In the next study the possibility of forming dC from hmdC and fdC was investigated. Indeed treatment of hmdC and fdC-containing DNA-hairpins with a thiol/imidazole solution similar to the conditions above resulted in the formation of dC. However, decarboxylation of cadC is by far faster. This proves, from a chemical point of view, that the decarboxylation of cadC, obtained by oxidation of mdC, could be a highly attractive pathway for the active demethylation of mdC.

In the next step the intrinsic reactivity of dC, mdC, hmdC, fdC and cadC was investigated concerning deamination reactions at position 4 of the nucleobase and oxidation reactions.

These investigations are highly important to help distinguish enzymatic reactions from possible background reactions, for example during DNA isolation and analysis. Through kinetic measurements it could be shown, that the deamination of all investigated nucleosides is a relatively slow process, which, under physiological conditions in absence of catalytically-active metal salts or nucleophiles, should not be feasible to a great extent, whereas the oxidation of hmdC to fdC proceeds considerably faster.

In order to further investigate this process in more complex biological systems a $[^{15}N_2, D_2]$ labeled, carbamate-protected hmdC- and a $[^{15}N_2]$ -labeled cadC-triphosphate were synthesized (**Figure 2.5**) and incorporated into longer DNA-fragments via polymerase chain reaction (PCR). Interestingly, both the bulky carbamate group as well as the negative charge of the cadC triphosphate were accepted by the used enzymes.

Figure 2.5: Synthesized triphosphates 107 and 110 which were incorporated into DNA-fragments utilizing the polymerase chain reaction (PCR).

Consequently, long DNA-fragments containing labeled hmdC and cadC residues are now available for further biological investigations in the group of Prof. Dr. *Thomas Carell*.

3 Einleitung

Im Zuge dieser Dissertation wurden zwei große Themenkomplexe bearbeitet. Zum einen wurden neuartige, zytotoxische Cisplatin-Konjugate dargestellt und biologisch evaluiert. Zum anderen wurden verschiedene Mechanismen der aktiven Demethylierung von 5-Methylcytosin-Resten in DNA untersucht. Bei beiden Themen steht die Alkylierung von Nukleobasen der DNA im Mittelpunkt. Während jedoch durch Cisplatin eine nicht natürlich vorkommende Alkylierung erfolgt und hierdurch ein zytotoxischer Effekt beabsichtigt wird, stellt 5-Methylcytosin eine natürliche, nicht letale Modifikation dar. Beide Themenkomplexe werden nun näher beschrieben, wobei zuerst auf das Cisplatin und weitere DNA-alkylierende Zytostatika eingegangen wird.

3.1 DNA-bindende Zytostatika als eine äußerst vielversprechende Therapiemöglichkeit von Krebserkrankungen

Im Jahr 2011 starben laut dem Statistischen Bundesamt 228.200 Menschen in Deutschland an den Folgen von Krebs. Krebserkrankungen stellen folglich mit 27% aller Todesfälle, nach Tod durch Erkrankungen des Kreislaufsystems (47%), die zweithäufigste Todesursache in Deutschland dar.¹ Ferner schätzt das Robert Koch-Institut die Zahl der Krebsneuerkrankungen im Jahr 2012 auf 490.000, wobei eine kontinuierliche Zunahme der Krebsneuerkrankungen im Laufe der letzten Jahre zu verzeichnen war.² Krebs kann durch Mutationen im Genom hervorgerufen werden.³ So können zum Beispiel durch ionisierende Strahlung oder reaktive Sauerstoffspezies die DNA-Basen auf vielfältigste Art und Weise kovalent modifiziert werden,⁴ was in einer Basenfehlpaarung, und folglich zu einem dauerhaften Verbleib im Genom führen kann.^{5,6} Da Gene Proteine kodieren, kann eine DNA-Mutation die Funktionsweise bestimmter Proteine verändern, was zu einer unkontrollierten Proliferation der Zelle und somit zur Entstehung von Krebs führen kann.³

Eine Möglichkeit, um die unkontrollierte Proliferation zu verhindern ist die Gabe zytotoxischer Verbindungen, wie zum Beispiel Cisplatin-Derivate,^{7,8} N-lost-Verbindungen⁹⁻¹² oder Anthramycin,^{13,14} die im Folgenden genauer beschrieben werden.

3.1.1 Wirkmechanismus, Resistenzbildung und Toxizität von Cisplatin

Das im vorangegangenen Abschnitt erwähnte Cisplatin wird heute bei fast 50% aller Chemotherapien eingesetzt,⁸ wie zum Beispiel bei Prostata-, Gebährmutterhals-, Blasen-, Lungen-, Hoden-, Eierstock-, Mastdarm- und Dickdarmkrebs, sowie bei Kopf-Hals-Karzinomen.⁷

Die Inhibierung der Zellteilung durch Cisplatin wurde erstmals von *Rosenberg et al.* beschrieben, welche die Elongation von *E. coli*-Zellen beobachteten.¹⁵⁻¹⁸ Bis heute ist der genaue Mechanismus, der für die zytotoxische Wirkung des Cisplatins verantwortlich ist, noch nicht vollständig geklärt. Während zum Beispiel durch die Interaktion von Cisplatin mit dem endoplasmatischen Retikulum¹⁹ oder Membranbestandteilen (für einen aktuellen Übersichtsartikel siehe *Rebillard et al.*²⁰) der programmierte Zelltod (Apoptose) eingeleitet werden kann, wird die Bildung von DNA-Addukten als Hauptursache der zytotoxischen Wirkung angesehen. Dies stützt sich zum Beispiel auf den Befund, dass sowohl *E. coli* als auch humane Zellen, bei denen DNA-Reparaturmechanismen blockiert sind, deutlich sensitiver gegenüber Cisplatin sind als Wildtypzellen.²¹⁻²³

Zum Entfalten seiner zytotoxischen Wirkung muss Cisplatin jedoch zuerst in das Cytosol der Zelle gelangen. Hierfür wird sowohl eine passive Diffusion, als auch ein aktiver Transport, zum Beispiel durch den Kupfertransporter Ctr1²⁴⁻²⁶ oder die humanen organischen Kationentransporter hOCTs,^{27,28} diskutiert (für detaillierte Übersichtsartikel zur Aufnahme von Cisplatin in die Zelle siehe *Gateley* und *Howell*,²⁹ oder *Hall et al.*³⁰). Aufgrund der niedrigeren Chloridkonzentration im Cytosol mit 4 mM im Vergleich zum extrazellulären Medium mit 100 mM, ist die Hydrolyse des Cisplatins zum Monoaqua-Komplex nach dessen Eintritt in die Zelle begünstigt und der Wiederaustritt durch die positive Nettoladung des Monoaqua-Komplexes deutlich erschwert.^{31,32} NMR-spektroskopische Untersuchungen konnten zeigen, dass der Monoaqua-Komplex hauptverantwortlich für die Platinierung der DNA ist (**Abbildung 3.1**).^{33,34}

Der Monoaqua-Komplex reagiert mit der DNA,³⁵ präferentiell an der *N*⁷-Position von Guanin-Resten,³⁶ so dass sich das Mono-dG-Addukt ausbildet.³⁷ Aus der Reaktion mit der *N*⁷-Position eines zweiten Guanin-Rests resultiert das Bis-dG-Addukt (**Abbildung 3.2**, links), wobei jedoch noch nicht geklärt ist, ob der Guanin-Rest direkt den zweiten Chlorido-Liganden substituiert^{33,34,38} oder zuerst eine Hydrolyse der Pt-Cl-Bindung erfolgt.³⁷⁻⁴⁰ Insgesamt ist die Bildung des als zytotoxisch angesehenen⁴¹ 1,2-intrastrang-d(GpG)-Addukts^{42,43} im Vergleich zum interstrang *cross-link* deutlich bevorzugt.³⁵ Interessanterweise ist die Reaktion des Monoaqua-Komplexes mit dem 3'-Guanin eines d(GpG)-Motivs präferiert. Dies kann durch die Präassoziation des Monoaqua-Komplexes mit dem d(GpG)-Motiv erklärt werden, da sich hierdurch das *N*⁷-Elektronenpaar des 3'-Guanin-Rests in günstigem Abstand zum Platin-Zentrum befindet.³³ Ferner ist auch die Bildung des Bis-dG-Addukts ausgehend vom 3'-Monoaddukt schneller als vom 5'-Monoaddukt.³⁴

Abbildung 3.1: Generell akzeptierter Wirkmechanismus von Cisplatin. Nach Zellaufnahme erfolgt, aufgrund der geringeren Chloridkonzentration im Cytosol, die Monohydrolyse, bevor Cisplatin zweifach an DNA bindet. Der Cisplatin-Schaden kann von bestimmten Proteinen erkannt und gebunden werden. Wird der Schaden nicht durch die zelluläre Reparaturmaschinerie behoben, kann er zur Einleitung der Apoptose führen.

Abbildung 3.2: Struktur der beiden Hauptaddukte der Reaktion von Cisplatin mit genomischer DNA.

Neben Guanin-Nukleobasen, können auch Adenin-Reste der DNA an der N^7 -Position platiniert werden, so dass sich d(ApG)-Addukte ergeben, wobei interessanterweise nur d(ApG)- Addukte nachgewiesen werden konnten, bei denen sich das Adenin auf der 5'-Seite des Addukts befindet (**Abbildung 3.2**, rechts).³⁵ Dies kann teilweise durch die gerade erläuterte Präassoziation des Cisplatins an die DNA erklärt werden. So begünstigt die Präassoziation wiederum die Platinierung des 3'-Guanin-Rests in einer d(ApG)-Sequenz, während sich im d(GpA)-Motiv wohl das Elektronenpaar der *N*⁷-Position des 3'-Adenins in günstigerer räumlicher Nähe zum Platin-Zentrum befindet, jedoch kein präferierter Reaktionspartner ist, so dass hier die Bildung des Monoaddukts deutlich langsamer erfolgt.³⁸ Darüber hinaus ist auch die Reaktion des Monoaddukts zum d(GpA)-Addukt deutlich langsamer als bei d(ApG)-Sequenzen.⁴⁴

Neben den 1,2-Addukten bilden sich in geringen Mengen auch 1,3-Addukte, bei denen die beiden platinierten Guanin-Reste durch eine beliebige Base voneinander getrennt sind.⁴⁵ Darüber hinaus wurden auch interstrang *cross-links*⁴⁶ und DNA-Protein *cross-links*, wie zum Beispiel mit Myoglobin,⁴⁷ beschrieben. **Tabelle 3.1** gibt eine Übersicht über die Verteilung der einzelnen Cisplatin-Addukte, die jedoch je nach verwendeter Cisplatinkonzentration variieren kann.⁴⁵ Darüber hinaus können die verschiedenen DNA-Addukte, abhängig von der untersuchten Sequenz, unter physiologischen Bedingungen auch ineinander überführt werden. So beobachteten zum Beispiel *Yang et al.* unter bestimmten Bedingungen innerhalb weniger Tage eine Isomerisierung des 1,2-intrastrang-d(GpG)-Addukts in dsDNA zum 1,2-interstrang-d(GG)-Schaden,^{48,49} während *Pérez et al.*⁵⁰ bei anderen DNA-Sequenzen den umgekehrten Prozess nachweisen konnten. Ferner konnten *Malina et al.* zeigen, dass sich bei geeigneter Sequenz das 1,2-intrastrang-d(GpG)-Addukt und das 1,3-intrastrang-d(GpNpG)-Addukt jeweils zu einem gewissen Teil ineinander umwandeln können, wobei der Cisplatin-Schaden sogar von einem Strang des Duplex zum Gegenstrang isomerisiert.⁵¹

Cisplatin Addukt	Häufigkeit [%]
intrastrang-1,2-d(GpG)	65
intrastrang-1,2-d(ApG)	25
intrastrang-1,3-d(GpNpG)	5–10
interstrang-1,2-d(GpG)	2

Tabelle 3.1: Von *Kartalou* und *Essigmann* ermittelte Verteilung der gebildeten Cisplatin-DNA-Addukte *in vitro*.⁵²

Die Struktur des intrastrang-1,2-d(GpG)-Addukts ist eingehend untersucht worden (Abbildung 3.3). So konnte durch denaturierende Gelelektrophorese die Destabilisierung des Duplexes durch das 1,2-d(GpG)-Addukt nachgewiesen werden.⁵³ CD-Spektroskopische Messungen zeigen ferner die Ausbildung von Bereichen mit einem erhöhten Anteil an A-Konformation,⁵⁴ was auch durch die Röntgenstrukturuntersuchung eines 1,2-intrastrangd(GpG)-Addukts in dsDNA bestätigt wurde.⁵⁵ Des Weiteren konnte, je nach betrachteter Sequenz und Analysenmethode, ein Knick von 39–80° in Richtung der großen Furche und eine partielle Entwindung des Duplex um etwa 21° nachgewiesen werden (exemplarisch in Abbildung 3.3 gezeigt), wobei die Integrität der Watson-Crick-Wasserstoffbrücken-Bindungen NMR-spektroskopisch und kristallographisch belegt werden konnte.^{55,56} Für einen Übersichtsartikel über die Struktur diverser Cisplatin-DNA-Addukte siehe *Jamieson* und *Lippard*.⁵⁷

Abbildung 3.3: Von *Gelasco* und *Lippard*⁵⁸ erhaltene NMR-Struktur des intrastrang-1,2-d(GpG)-Addukts von Cisplatin. PDB-Nummer: 1A84.

Das 1,2-d(GpG)-Addukt kann von sogenannten HMG-Proteinen gebunden werden,⁵⁹⁻⁶¹ was zu einer Erhöhung des durch den Cisplatin-Schaden hervorgerufenen DNA-Knicks auf bis zu 90° führen kann.⁶² Ferner können die an die DNA gebundenen HMG-Proteine das DNA-Addukt abschirmen und hierdurch eine effiziente Reparatur verhindern.⁶³ So konnte *Brown et al.* zum Beispiel belegen, dass Zellen, bei denen das HMG-Protein Ixr1 inaktiviert ist deutlich unempfindlicher gegenüber Cisplatin sind.⁶⁴ Darüber hinaus konnten *Treiber et al.* zeigen, dass der intrastrang-1,2-d(GpG)-Schaden eine sehr hohe Affinität zum Transkriptionsfaktor hUBF besitzt und folglich mit der eigentlichen Promotorsequenz um die Bindung von hUBF in Konkurrenz stehen könnte.⁶⁵ Dies legt die Vermutung nahe, dass neben der Inhibierung der

DNA-Replikation und -Transkription durch den Cisplatin-Schaden auch das Rekrutieren von Proteinen, die sonst nicht an den Schaden gebunden werden, zur Induktion der Apoptose, beitragen könnte (für einen Übersichtsartikel über die biologischen Effekte bestimmter Cisplatin-Addukte siehe *Jamieson* und *Lippard*⁵⁷ beziehungsweise *Wang* und *Lippard*⁶⁶).

Die oben erwähnte Tatsache, dass Zellen mit blockiertem Reparatursystem deutlich sensitiver gegenüber Cisplatin sind²¹⁻²³ belegt, dass Cisplatin-geschädigte DNA repariert werden kann, wobei der Nukleotidexzisionsreparatur hierbei besondere Bedeutung zukommt.⁶⁷⁻⁶⁹ Durch eine Erhöhung der DNA-Reparaturaktivität können Zellen jedoch intrinsisch resistent sein oder im Laufe der Chemotherapie resistent gegenüber Cisplatin werden. So verglichen beispielsweise Bredford et al. SUSA-Hodenkrebszellen mit den deutlich unempfindlicheren RT112-Zellen eines Blasentumors und stellten hierbei eine deutlich effizientere Reparatur des 1,2-intrastrang-d(GpG)-Schadens in den Blasentumorzellen fest.⁷⁰ Ferner konnten Eastman und Schulte mit dem radioaktiv-markiertem Cisplatin-Analoga [PtCl2(en)] zeigen, dass Cisplatin-unempfindliche Leukämiezellen bis zu viermal schneller den 1,2-intrastrangentsprechenden d(GpG)-Schaden reparieren können als die Cisplatin-sensitiven Leukämiezellen.⁷¹ Des Weiteren erzeugten Masuda et al. durch schrittweise Cisplatin-Exposition von Eierstockkrebszellen Cisplatin-resistente Varianten, und konnten nachweisen, dass diese eine zweifach effizientere DNA-Reparatur aufwiesen.⁷²

Neben der Möglichkeit der erhöhten DNA-Reparaturaktivität gibt es auch Hinweise, dass Krebszellen durch die Überexpression bestimmter Polymerasen unempfindlicher gegenüber Cisplatin werden können.^{73,74} Hierbei handelt es sich vor allem um sogenannte *low-fidelity*-Polymerasen, die aufgrund ihres größeren aktiven Zentrums auch über etwas sperrigere DNA-Addukte hinweg replizieren, sie also überlesen können, so dass die Apoptose nicht mehr eingeleitet werden muss.^{75,76} So konnten *Hoffmann et al.* belegen, dass der 1,2-intrastrang-d(GpG)-Schaden von der Polymerase β *in vitro* überlesen werden kann.⁷³ Ferner zeigten *Sanchar et al.*, dass das 1,2-intrastrang-d(GpG)-Addukt *in vivo* auf zweierlei Wege überlesen werden kann. Während durch die Kombination von Polymerase ζ und Polymerase η korrekterweise zweimal dC gegenüber dem Addukt eingebaut wird, führt das Zusammenspiel von Polymerase ζ und Polymerase κ zu einem erhöhten Einbau falscher Nukleotide.⁷⁷ Hierdurch könnte nicht nur die Wirksamkeit des Cisplatins herabgesetzt werden, sondern auch die Mutagenität des Tumors erhöht werden. Hinweise auf eine potentielle Relevanz des Überlesens von Cisplatin-DNA-Addukten für die Ausbildung von Cisplatin-Resistenzen konnte von *Mamenta et al.* gefunden werden. Sie zeigten, dass in Cisplatin-resistenten

humanen 2008- und A2780-Eierstockkrebszellen, Cisplatin-geschädigte DNA um bis zu 4.5-mal effizienter überlesen werden kann als in Cisplatin-sensitiven Zellen.⁷⁸

Neben den gerade diskutierten Mechanismen der Cisplatin-Resistenz sind auch die verminderte Zellaufnahme von Cisplatin, ein erhöhter Zellefflux oder Veränderungen in der Expression regulatorischer Proteine, wie etwa Protoonkogene, im Rahmen der Resistenzproblematik zu nennen. Ferner kann durch die Überexpression thiolhaltiger Proteine, wie zum Beispiel Metallothionein oder Glutathion, durch deren Koordination mit Cisplatin dieses weitgehend entgiftet werden (für Übersichtsartikel über Mechanismen der Cisplatin-Resistenz siehe zum Beispiel *Zamble* und *Lippard*,⁷⁴ beziehungsweise *Chu*⁶⁹).

Als Folge des gerade diskutierten Auftretens von Resistenzen während der Chemotherapie muss häufig die verabreichte Cisplatin-Dosis erhöht werden, um die gleiche zytotoxische Wirkung zu erzielen. Während klinisch oft mindestens eine zweifach höhere Dosis notwendig ist, wurde in bestimmten Zellkulturen sogar die Notwendigkeit einer 50–100-fach höheren Konzentration beschrieben.⁷⁹ Jedoch ist die verabreichbare Dosis im Patienten aufgrund der massiven Nebenwirkungen begrenzt. So stellt meistens die Nephrotoxizität die größte Limitierung der maximal verabreichbaren Dosis an Cisplatin dar (für einen aktuellen Übersichtsartikel über Nephrotoxizität von Cisplatin siehe *Miller et al.*⁸⁰). Ebenso kann Übelkeit, Brechreiz und das Auftreten von Durchfall mit Erhöhung der Cisplatin-Dosis zunehmen.^{81,82} Ferner wurden Sehnerverkrankungen, Knochenmarksdepression, Ototoxizität und ein Taubheitsgefühl in den Händen mit Cisplatin in Verbindung gebracht.⁸¹

Im Zuge der eben beschriebenen immensen Probleme der Cisplatin-Resistenz und Toxizität wurden unter anderem Oxaliplatin und Carboplatin entwickelt (**Abbildung 3.4**).⁸³⁻⁸⁶ Während Oxaliplatin in einigen Cisplatin-resistenten Tumoren aktiv ist (siehe zum Beispiel *Rixe et al.*⁸⁷ und *Tashiro et al.*⁸⁸), ist Carboplatin weniger toxisch als Cisplatin (siehe zum Beispiel *Calvert et al.*⁸⁹).

Abbildung 3.4: Strukturformeln von Oxaliplatin und Carboplatin.

3.1.2 Molekularer Mechanismus der zytotoxischen Wirkung von N-Lost-Derivaten

Neben den gerade erläuterten Platin(II)-Derivaten ist Cyclophosphamid (**Abbildung 3.5**) eines der am häufigsten verwendeten Zytostatika. So wird Cyclophosphamid zum Beispiel klinisch bei der Behandlung von Lymphomen, multipler Myelome, Hirn-, Lungen-, Blasen-, Gebährmutterhals-, Brust- und Gebährmuttertumoren eingesetzt (für Übersichtsartikel zum klinischen Einsatz von Cyclophosphamid siehe zum Beispiel *Emadi et al.*¹⁰ und *Colvin*⁹).^{11,12} Hierbei wird generell das Racemat der beiden konfigurationsstabilen⁹⁰ Enantiomere (Stereo-zentrum am Phosphor) eingesetzt, da beide Enantiomere eine sehr ähnliche zytotoxische Wirkung hervorrufen.⁹¹⁻⁹³ Cyclophosphamid ist jedoch nur das *prodrug*,⁹⁴⁻⁹⁶ das erst zu den eigentlich zytotoxischen Verbindungen *phosphoramide mustard* und *nornitrogen mustard* metabolisiert werden muss (für einen Übersichtsartikel über den Metabolismus von Cyclophosphamid siehe *Zhang et al.*⁹⁷).⁹⁸⁻¹⁰⁰ Hierzu wird Cyclophosphamid in der Leber⁹⁶ von Oxidasen^{101,102} zum 4-Hydroxy-Cyclophosphamid hydroxyliert.¹⁰³ Die hieraus resultierende Konfiguration an Position 4 ist bis heute nicht bekannt, dürfte jedoch biologisch auch nicht relevant sein, da beide Diastereomere über das Imino-Cyclophosphamid¹⁰⁴ im Gleichgewicht stehen (**Abbildung 3.5**).^{92,105,106}

Abbildung 3.5: Metabolische Aktivierung des Cyclophosphamids zum zytotoxischen *phosphoramide mustard*. Auf die Erwähnung nicht-zytotoxischer Nebenprodukte wie zum Beispiel 4-Keto-Cyclophosphamid^{107,108} wurde der Übersichtlichkeit halber verzichtet.

Untersuchungen von zum Beispiel *Powers* und *Sladek*¹⁰⁹ beziehungsweise *Domeyer* und *Sladek*¹¹⁰ legen nahe, dass 4-Hydroxy-Cyclophosphamid, die im Blut zirkulierende Substanz darstellt, die nachfolgend in die Zielzelle eindringt. Hier eliminiert das mit 4-Hydroxy-Cyclophosphamid im Gleichgewicht befindliche Aldo-Phosphamid,^{105,111} Acrolein,¹¹² so dass sich *phosphoramide mustard*¹⁰⁰ ausbildet.

Phosphoramide mustard wird für den Großteil der zytotoxischen Wirkung von Cyclophosphamid verantwortlich gemacht.^{100,113} Jedoch kann die Phosphor-Stickstoff-Bindung hydrolysieren, so dass weitere zytotoxische Verbindungen, wie zum Beispiel *nornitrogen mustard*, entstehen, wobei das Ausmaß ihrer Bildung noch kontrovers diskutiert wird (siehe zum Beispiel *Cox* und *Levin*¹¹⁴, *Hohorst et al.*¹¹⁵ oder *Jardine et al.*¹¹⁶). Der genaue Mechanismus der Hydrolyse der Phosphor-Stickstoff-Bindung des *phosphoramide mustards* ist jedoch noch nicht vollständig geklärt (**Abbildung 3.6**). Während *Engle et al.* und *Watson et al.* zumindest bei saurem pH-Wert (pH <4.5) die direkte Hydrolyse der Phosphor-Stickstoff-Bindung unter Bildung des *nornitrogen mustards* postulieren, (**Abbildung 3.6**, Weg a),¹¹⁷⁻¹¹⁹ deuten Überlegungen zum pK_a-Wert des *phosphoramide mustards*¹²⁰ auf eine, der Hydrolyse der Phosphor-Stickstoff-Bindung vorangehende Abspaltung von Ammoniak hin (**Abbildung 3.6**, Weg b).¹²¹

Abbildung 3.6: Diskutierte Wege zur Hydrolyse der P-N-Bindung des *phosphoramide mustards*. Neben der Hydrolyse zum *nornitrogen mustard* (Weg a und b, saurer pH-Wert) wird auch die vorherige Ausbildung des Aziridinium-Ions mit darauf folgender Hydrolyse der P-N-Bindung zu 2-Chlorethylaziridin diskutiert (Weg c, neutraler und basischer pH-Wert).

Des Weiteren wird bei neutralem und basischem pH-Wert die Hydrolyse der Phosphor-Stickstoff-Bindung auf der Stufe des Aziridinium-Ions, zum ebenfalls zytotoxischem 2-Chlorethylaziridin^{122,123} diskutiert (**Abbildung 3.6**, Weg c). Die somit gebildeten N-Lost-Derivate *phosphoramide mustard* und *nornitrogen mustard* sind äußerst reaktive Verbindungen, die mit einer Vielzahl von Nukleophilen abreagieren können. Hierbei konnten *Colvin et al.* belegen, dass die Substitution der Chlorid-Reste sowohl beim *phosphoramide-* als auch beim *nornitrogen mustard* nicht über eine direkte S_N2-Reaktion ver-läuft, sondern sich zuerst durch intramolekulare Substitution eines Chlorids durch das freie Elektronenpaar des Stickstoffs das hochreaktive Aziridinium-Ion ausbildet, das daraufhin als Elektrophil nukleophil angegriffen wird (**Abbildung 3.7**).¹¹³ Dieser Mechanismus erklärt auch die höhere Reaktivität des *phosphoramide mustards* im Vergleich zum *nornitrogen mustard*,^{113,124} da letzterer durch Deprotonierung in das stabilere, weil ungeladene,^{113,121} Chlorethylaziridin übergehen kann,¹²⁵ was im Falle des *phosphoramide-mustards* aufgrund der Tetrasubstitution des Stickstoffs nicht möglich ist.¹²¹

Abbildung 3.7: Alkylierung von Nukleophilen durch *phosphoramide-mustard* über einen Aziridinium-Ion-Mechanismus. Die Alkylierung durch den *nornitrogen mustard* verläuft analog.¹¹³ Nach *Engle et al.* könnte der Ausbildung des Aziridinium-Ions die Deprotonierung des Phosphorsäure-Rests vorausgehen.¹¹⁷ Exemplarisch ist ein negativ geladenes Nukleophil (Nu⁻) aufgezeigt.

Die extrem hohe Reaktivität des *phosphoramide* und des *nornitrogen mustard* lässt sich zum Beispiel an den Halbwertszeiten der Hydrolyse der Chlorid-Reste erkennen. So zeigten *Hemminki et al.*, dass die Monohydrolyse des *nornitrogen mustards* mit einer Halbwertszeit von nur 20 min (bei 37 °C und pH 7.4) verläuft.¹²⁶ *Watson et al.* konnten ferner die Bildung des Aziridinium-Ions ausgehend von *phosphoramide mustard* mit einer Halbwertszeit von 14 min (bei 38 °C und pH 7.4) beziffern.^{118,119}

Neben Wasser als Nukleophil können analog zu den im vorherigen Kapitel erläuterten Platin(II)-Derivaten, der *phosphoramide-* beziehungsweise der *nornitrogen mustard* mit DNA reagieren, so dass sich DNA-*cross-links* ausbilden, die für die Zytotoxizität der N-Lost-Derivate als entscheidend angesehen werden.^{127,128} So konnte zum Beispiel die beobachtete zytotoxische Wirkung von *phosphoramide mustard* in verschieden sensitiven L1210-Leukämie-Zelllinien von Mäusen mit der Anzahl an *cross-links* korreliert werden.¹²⁹ Hierbei erfolgt, analog zu den Platin(II)-Derivaten, die Reaktion mit der *N*⁷-Position des Guanins als präferierte Nukleobase der DNA.^{127,130} Folglich konnten *Mehta et al.* durch Behandlung von 2'-Desoxyguanosin mit *phosphoramide mustard* massenspektrometrisch die Bildung des
*N*⁷-Monoaddukts nachweisen (**PM-dG-Cl**, **Abbildung 3.8**).¹³¹ Ferner konnte in Rattenembryos, denen 4-Hydroperoxy-Cyclophosphamid, als eine Vorstufe von *phosphoramide mustard*, zugegeben wurde, nach saurer Hydrolyse der DNA das Monoaddukt **NOR-Gua-Cl** (**Abbildung 3.8**) detektiert werden.¹³² Bei analogen *in vitro* Untersuchungen mit Rinderthymus-DNA konnte zusätzlich **NOR-Gua-OH** detektiert werden.¹³³ Hierbei ist jeweils nicht geklärt, ob der *phosphoramide mustard* zuerst mit der DNA reagiert und anschließend die Phosphor-Stickstoff-Bindung hydrolysiert, oder ob der *nornitrogen mustard* direkt mit dem Guanin-Rest abreagiert.¹³⁴ Des Weiteren konnte in obigen Untersuchungen das Bisaddukt **Gua-NOR-Gua** detektiert werden,^{132,134} das nach *Bauer* und *Povirk* sowohl aus einem intrastrang als auch aus einem interstrang *cross-link* resultieren kann.¹³⁵

Abbildung 3.8: Nachgewiesene DNA-Addukte des *phosphoramide mustards*. NOR-Gua-Cl, NOR-Gua-OH und Gua-NOR-Gua wurden auch bei der Umsetzung des *nornitrogen mustards* mit Rinderthymus-DNA detektiert.^{130,136}

Interessanterweise wird bei der Ausbildung des interstrang *cross-links* der 1,3-interstrang *cross-link* gegenüber dem 1,2-interstrang *cross-link* präferiert,^{137,138} was entropische und kinetische Gründe haben könnte.¹³⁹ Untersuchungen von zum Beispiel *Erickson et al.* legen nahe, dass der interstrang *cross-link* für einen Großteil der Zytotoxizität verantwortlich ist (für weitere Hinweise auf die Zytotoxizität des interstrang *cross-links* siehe die Zusammenfassung von *Sladek*¹⁴⁰).¹⁴¹

Neben der N^7 -Alkylierung wurden auch durch N-Lost generierte DNA-Protein *cross-links*¹⁴² und die Reaktion des *phosphoramide mustards* mit einem Phosphodiester des Zucker-Phosphat-Rückgrats der DNA beschrieben.¹⁴³ So konnten *Maccubbin et al.* sowohl bei Untersuchungen mit 2'-Desoxyguanosin-3'-Monophosphat¹⁴⁴ und Rinderthymus-DNA als auch *in vivo* die Bildung des **NOR-Phosphataddukts** belegen. Zumindest bei den Umsetzungen mit Rinderthymus-DNA *in vitro* scheint sogar die Bildung dieses Addukts im Vergleich zur N^7 -Alkylierung von Guanin-Resten bevorzugt zu sein.¹⁴⁵

Durch die gerade erläuterte Reaktion des N-Lost mit der N^7 -Position von Guanin-Resten resultiert jedoch eine positive Ladung auf dem Stickstoff an Position 7, was, vor allem im sauren Milieu, eine Depurinierung und einen hieraus resultierenden Strangbruch zur Folge haben kann (**Abbildung 3.9**).^{146,147}

Abbildung 3.9: Depurinierung von N^7 -alkylierten Guanin-Derivaten. R₁ gibt den N-Lost-spezifischen Rest an. R₂ = Cl, OH.

Während bei sauren pH-Werten die oben erläuterten DNA-Addukte vornehmlich depurinieren, kann bei neutralen und alkalischen pH-Werten die Spaltung des Imidazol-Rings erfolgen.^{136,148} Hierbei greift ein Hydroxid-Ion an Position 8 des Guanin-Rests an, worauf die Ringspaltung erfolgt (**Abbildung 3.10**).

Abbildung 3.10: Spaltung des Imidazol-Rings von N^7 -alkylierten Guanin-Derivaten. R₁ gibt den N-Lostspezifischen Rest an. R₂ = Cl, OH.

Brookes und *Lawely* konnten hierbei zeigen, dass bei einer Vielzahl von Guanin-Derivaten, die sowohl an *N*⁷ als auch an *N*⁹ alkyliert sind, die Ringöffnung in der Weise erfolgt, dass die hierbei gebildete Formamido-Gruppe an Position 5 des Pyrimidin-Rings gebunden ist.¹⁴⁹ *Kallama* und *Hemminki* bestimmten die entsprechenden Halbwertszeiten zu 6.8 h für das **PM-dG-Cl-**Addukt (bei 37 °C und pH 8.8) und 3.6 h (bei 25 °C und pH 8.5) für das entsprechende Addukt des *N*-Methyl-bis(2-chlorethyl)amins.¹⁴⁷

Somit könnte neben der Ausbildung von 1,3-interstrang *cross-links* zusätzlich die mit der N^7 -Alkylierung von Guanin-Resten durch die N-Lost-Derivate eingeführte genomische Instabilität für die Zytotoxizität der N-Lost-Derivate verantwortlich sein.^{131,146}

3.1.3 Anthramycin als höchst spezifischer Binder von Guanin in doppelsträngiger DNA

Neben den im vorherigen Kapitel erläuterten, nur synthetisch zugänglichen Platin(II)- und N-Lost-Derivaten können auch Naturstoffe, wie zum Beispiel das aus *Streptomyces refuineus* var. *thermotolerans* isolierte Anthramycin (**Abbildung 3.11**), zytotoxisch wirken.^{13,14}

Abbildung 3.11: Wirkmechanismus von Anthramycin. In der von *Kopka et al.* kristallisierten DNA-Sequenz bindet Anthramycin mit 11*S*-Stereochemie,¹⁵⁰ wobei dies nach *Kizu et al.* nicht für alle DNA-Sequenzen generalisiert werden kann.¹⁵¹

Anthramycin besitzt ein Pyrrolo[2,1-c][1,4]benzodiazepin-Grundgerüst.¹⁵² Es entfaltet seine zytotoxische Wirkung analog zu den Cisplatin und N-Lost-Derivaten durch die Bindung an DNA. So waren zum Beispiel bei Untersuchungen von *Stefanović in vivo* nur Anthramycin-Derivate in Sarkom-180 und *Ehrlich* Karzinom-Zellen biologisch aktiv, die auch an DNA binden konnten.¹⁵³ Hierbei reagiert Anthramycin, im Gegensatz zu Cisplatin und den N-Lost-Derivaten, mit extrem hoher Selektivität mit doppelsträngiger DNA, während RNA, Proteine oder einzelsträngige DNA in einem deutlich geringeren Ausmaß gebunden werden.¹⁵³⁻¹⁵⁶ *Hurley et al.* konnten zeigen, dass Anthramycin im Vergleich zu RNA eine über 20-mal höhere Bindungspräferenz an DNA besitzt, während Proteine sogar 100-mal schlechter gebunden werden.¹⁵⁵ Dies müsste nach *Hurley et al.* auf die Ausbildung mehrerer Wasserstoffbrückenbindungen zwischen Anthramycin und Resten in der kleinen Furche der DNA zurückzuführen sein.^{150,157}

Des Weiteren zeigt die Kristallstruktur des Anthramycin-11-methylethers, dass das Molekül rechtsgängig um etwa 35° entlang der Phenol-Pyrrolin-Molekülachse gekrümmt ist (für eine weitere Kristallstruktur des Anthramycin-11-methylethers siehe *Arora*¹⁵⁸).^{157,159} Dies führt dazu, dass Anthramycin nahezu perfekt in die kleine Furche der ebenfalls rechtsgängigen, und physiologisch am häufigsten vorkommenden, B-DNA passt (**Abbildung 3.12**),¹⁵⁰ was auch die biologische Inaktivität des 11a*R*-Isomeren begründet.¹⁶⁰

Abbildung 3.12: Ausschnitt aus der Kristallstruktur des Anthramycin-DNA-Schadens.¹⁵⁰

Zur Alkylierung der DNA wird zuerst Wasser eliminiert, so dass sich das korrespondierende Imin ausbildet.¹⁶¹ Analog zu den Cisplatin- und N-Lost-Derivaten reagiert auch Anthramycin mit den Guanin-Resten der DNA, wobei jedoch nicht wie bei den Cisplatin- und N-Lost-Verbindungen die *N*⁷-Position, sondern die exozyklische Amino-Gruppe des Guanins an Position 2¹⁶² nukleophil das Imin, beziehungsweise das wahrscheinlich vorher durch Protonierung gebildete Iminium-Ion,¹⁶⁰ angreift. Hierdurch bildet sich das, unter physiologischen Bedingungen außerordentlich stabile,¹⁵⁴ Anthramycin-DNA-Addukt,^{155,161} das sowohl röntgenkristallographisch¹⁵⁰ als auch NMR-spektroskopisch¹⁶³ charakterisiert werden konnte. Interessanterweise wird hierbei die Konformation der DNA im Vergleich zum oben erläuterten Cisplatin-DNA-Addukt deutlich weniger verzerrt.^{157,162}

Hertzberg et al. konnten zeigen, dass Anthramycin präferentiell an Purin-dG-Purin-Motive bindet, während Pyrimidin-dG-Pyrimidin-Sequenzen deutlich weniger stark alkyliert werden.¹⁶⁴ Dies kann durch das im Vergleich zu Pyrimidin-dG-Pyrimidin-Motiven bessere *stacking*, den kleineren *twist angle* und die höhere konformationelle Flexibilität von Purin-dG-Purin-Sequenzen begründet werden.^{150,151,165}

Das Anthramycin-DNA-Addukt interferiert mit allen biochemischen Prozessen, die an Nukleinsäuren stattfinden. Interessanterweise ist der Einfluß auf die Proteinbiosynthese gering, was sehr erstaunlich ist (siehe zum Beispiel *Kohn et al.*,¹⁵⁶ *Kann* und *Kohn*¹⁶⁶ oder *Bates et al.*¹⁶⁷).

3.2 Dynamik der C⁵-Methylierung von Cytosin in DNA

Neben der in den vorangegangenen Abschnitten erläuterten zytotoxischen Alkylierungen von DNA, zum Beispiel durch N-Lost-Derivate, sind auch essentielle, von der Zelle bewusst eingeführte DNA-Alkylierungen bekannt (siehe zum Beispiel *Li et al.*¹⁶⁸). Ein Beispiel hierfür ist die Methylierung von 2'-Desoxycytidin-Resten (dC) an Position 5 der Nukleobase¹⁶⁹ in DNA zu 5-Methyl-2'-desoxycytidin (mdC)¹⁷⁰⁻¹⁷² durch C^5 -Methyltransferasen,¹⁷³⁻¹⁷⁵ auf die im Folgenden näher eingegangen wird.

3.2.1 Biologische Bedeutung und Mechanismus der C⁵-Methylierung von Cytosin in DNA

Das gerade angesprochene 5-Methyl-2'-desoxycytidin (mdC) wurde zuerst im Tuberkelbazillus¹⁷¹ und später auch in Eukaryonten nachgewiesen.¹⁷⁰⁻¹⁷² Hierbei befindet sich bei Eukarvonten mdC fast ausschließlich in d(CpG)-reichen DNA-Sequenzen (sogenannten CpG-Inseln),¹⁷⁶ die nach Antequera und Bird, Larsen et al. und Saxonov et al. etwa in 57-72% der Promotorsequenzen aller Gene gefunden werden.¹⁷⁷⁻¹⁷⁹ Dies zeigt schon die bedeutende Rolle der C⁵-Cytosin-Methylierung bei der Regulation der Genexpression^{180,181} auf (siehe zum Beispiel Bird und Southern¹⁸² und McGhee und Ginder¹⁸³). So konnten zum Beispiel Dawid et al. zeigen, dass transkribierte DNA in vivo im Frosch Xenopus laevis deutlich weniger mdC enthält als nicht-transkribierte DNA.¹⁸⁴ Hierbei findet die Repression der Genexpression nach mehreren Mechanismen statt. Zum einen können bestimmte Transkriptionsfaktoren nach Methylierung der DNA nicht mehr binden, oder es binden mdC erkennende Proteine, die die Transkription reprimieren (siehe zum Beispiel Klose und Bird¹⁸⁵). Ferner kann die DNA-Methylierung die Deacetylierung von Histonen einleiten, was zu einer Chromatinkondensation führen kann (für einen Übersichtsartikel siehe zum Beispiel Hermann et al.¹⁸⁶ beziehungsweise Jeltsch¹⁸⁷). Neben der Repression der Genexpression spielt die C^5 -Methylierung von Cytosin-Resten zum Beispiel bei der genomischen Prägung (siehe zum Beipiel Reik et al.¹⁸⁸ und Swain et al.¹⁸⁹), der Stilllegung von Transposonen (für Übersichtsartikel siehe *Jeltsch*¹⁸⁷ beziehungsweise *Reik*¹⁹⁰). der X-Chromosom-Inaktivierung¹⁹¹ und der Zelldifferenzierung¹⁹² eine Rolle.

Der Mechanismus der Methylierung ist im Folgenden exemplarisch für die bakterielle Methyltransferase M.*Hha*.I gezeigt,¹⁹³ wobei er jedoch auch für die Methyltransferasen der

Säugetiere¹⁹⁴ gültig ist (**Abbildung 3.13**). Hierbei wird der dC-Rest aus dem Duplexkontext der DNA herausgedreht (sogenannter *flipping* Mechanismus)^{193,195} und daraufhin an Position 6 (Nummerierung siehe **Abbildung 3.13**) der Nukleobase von einem Cystein-Rest des Enzyms nukleophil angegriffen.^{196,197} Dies dürfte durch die Protonierung des endozyklischen Stickstoffs an Position 3 durch einen Glutaminsäure-Rest des Enzyms begünstigt sein.^{193,195,198} Hierdurch ist die Position 5 der Nukleobase nun nukleophil genug, um eine Methyl-Gruppe von *S*-Adenosylmethionin (**SAM**) zu übernehmen (für einen Übersichtsartikel zum Mechanismus von Methyltransferasen siehe *Jeltsch*¹⁸⁷).¹⁹⁷

Abbildung 3.13: Genereller Mechanismus der C⁵-Methylierung durch C⁵-Cystein-Methyltransferasen, basierend auf der Struktur der Methyltransferase M.*Hha*I im Komplex mit DNA.^{193,199,200} Reproduziert nach *Jeltsch*.¹⁸⁷ Es sind jeweils die relevanten Aminosäure-Reste des Enzyms dargestellt. Die beteiligten Elektronenpaare sind der Übersichtlichkeit halber größtenteils nicht eingezeichnet. Für die Bedeutung von Ad und R siehe eingefärbte Molekülbereiche des SAM.

Der Cystein-Rest des Enzyms wird durch eine darauf folgende β-Eliminierung wieder freigesetzt, wobei die Identität der hierfür notwendigen Base bis heute nicht vollständig geklärt ist.²⁰¹ So wird zum Beispiel die Beteiligung von Wasser, das durch die Seitenketten des Enzyms und des Zucker-Phosphat-Rückgrats des DNA-Duplex aktiviert werden könnte, diskutiert.¹⁹³

In Säugetieren sind bis heute drei aktive C^5 -Cytosin-Methyltransferasen bekannt (Dnmt1,^{173,174,202} Dnmt3a¹⁷⁵ und Dnmt3b¹⁷⁵), wobei jede Methyltransferase noch in mehreren Isoformen auftreten kann (siehe hierzu die Übersichtsartikel von *Zurkowska et al.*²⁰¹ beziehungsweise *Cheng* und *Blumenthal*²⁰³). Dnmt1 zeigt hierbei eine Bindungspräferenz für hemimethylierte DNA, wie sie nach der DNA-Replikation vorliegt, so dass die Hauptfunktion

von Dnmt1 die Methylierung des durch die DNA-Replikation neugenerierten Tochter-DNA-Strangs sein dürfte (sogenannte maintenance Methyltransferase).^{204,205} Dnmt3a und Dnmt3b zeigen hingegen keine Präferenz gegenüber dem Methylierungsstatus des DNA-Strangs,¹⁷⁵ weswegen sie als de novo Methyltransferasen angesehen werden (für einen Übersichtsartikel siehe Hermann et al.¹⁸⁶).²⁰⁶ Neuere Untersuchungen legen jedoch ein deutlich komplexeres Zusammenspiel von Dnmt1, 3a und 3b zur de novo und maintenance Methylierung nahe. So kann zum Beispiel methylierte DNA an Dnmt1 binden, was zu einer allosterischen Aktivierung des Enzyms führt.²⁰⁷ Dies resultiert in einer gleicheffizienten Methylierung von hemiund unmethylierter DNA, weswegen auch eine Rolle von Dnmt1 in der de novo Methylierung diskutiert wird (siehe zum Beispiel Jeltsch¹⁸⁷). Hingegen konnten Chen et al. zeigen, dass zumindest in bestimmten embryonalen Stammzellen im Zuge mehrerer Zellteilungen bei fehlendem Dnmt3a und Dnmt3b das Ausmaß der Methylierung mancher DNA-Sequenzen trotz unveränderter Dnmt1-Expression abnimmt. Durch Zugabe von Plasmiden, die bestimmte Dnmt3a- und Dnmt3b-Isoformen codierten, konnte der ursprüngliche Methylierungsstatus wiederhergestellt werden, was auf eine Beteiligung von Dnmt3a und 3b bei der Methylierung von hemimethylierter DNA schließen lässt.²⁰⁸ Für eine weiterführende Diskussion zur Beteiligung von Dnmt1, 3a und 3b an der de novo und maintenance Methylierung siehe den Übersichtsartikel von Jones und Liang.²⁰⁹

3.2.2 Mögliche Mechanismen der aktiven Demethylierung von 5-Methylcytosin in DNA

Neben der gerade erläuterten C⁵-Cytosin-Methylierung in DNA, zum Beispiel zur Repression der Genexpression (siehe zum Beispiel *Bird* und *Southern*¹⁸² und *McGhee* und *Ginder*¹⁸³), ist jedoch auch die Demethylierung von mdC in DNA biologisch von entscheidender Bedeutung. So nimmt zum Beispiel der mdC-Gehalt des maternalen Genoms im Zuge mehrerer Zellteilungen sukzessive ab (rote Linie, **Abbildung 3.14**), was durch eine fehlende *maintenance* Methylierung nach erfolgter DNA-Replikation erklärt werden kann (passive Demethylierung^{210,211}).²¹² Außerdem konnten *Kafri et al.* zeigen, dass die von ihnen untersuchten mdC-Reste, die nur in Spermazellen methyliert vorliegen, in der befruchteten Eizelle deutlich schneller nicht mehr zu detektieren sind, als DNA-Sequenzen, die sowohl in der Sperma- als auch in der Eizelle methyliert vorliegen.²¹³ Dieses im Vergleich zum maternalen Genom rasche Absinken des mdC-Gehalts konnten *Oswald et al.* und *Mayer et al.* erklären, indem sie zeigten, dass der Rückgang des mdC-Gehalts des paternalen Genoms in der Mausembryogenese vornehmlich nicht replikations-assoziiert ist, sondern die Methylgruppen aktiv,²¹⁴ zum Beispiel durch spezielle Enzyme, entfernt werden.^{211,215}

Entwicklungsstadium

Abbildung 3.14: Veränderung des mdC-Gehalts während der Embryogenese. 4–8 h nach der Befruchtung von Eizellen der Maus wird mdC aus dem paternalen Genom weitgehend aktiv entfernt (blaue Linie), während der mdC-Gehalt des maternalen Genoms eher durch die fehlende *maintenance* Methylierung neugenerierter Tochter-DNA-Stränge passiv gesenkt wird (rote Linie). Untersuchungen von *Monk et al.* zeigen, dass das paternale Genom von Spermien in Mäusen deutlich mehr mdC enthält als das entsprechende maternale Genom in Eizellen,²¹⁶ während *Mayer et al.*²¹⁷ zeigen konnten, dass kurz nach der Befruchtung das maternale Genom in Eizellen der Maus zum Teil *de novo* methyliert wird. Beide Vorgänge sind der Einfachheit halber nicht dargestellt. Das Absinken des mdC-Gehalts ist nach *Wossidlo et al.*²¹⁸ und *Iqbal et al.*²¹⁹ mit einem Anstieg des Gehalts an 5-Hydroxymethyl-2'-desoxycytidin (hmdC, *vide infra*) verbunden.

Die Funktion der Demethylierung des maternalen und paternalen Genoms ist bis heute noch nicht vollständig geklärt.²²⁰ Es wird vermutet, dass durch den Prozeß die DNA-Methylierungen entfernt werden, die während der elterlichen Keimzellbildung zur epigenetischen Prägung des Genoms eingeführt wurden.²²¹ Ferner könnte durch die Demethylierung sicher gestellt werden, dass die bisher gebildeten Zellen totipotente Stammzellen werden, also zu einem vollfunktionsfähigen Organismus ausdifferenzieren können.²²¹ Nach erfolgter Demethylierung werden gezielt bestimmte Sequenzbereiche beider Genome wieder *de novo* methyliert (gelbe Linie), was zum Beispiel nach *Monk et al.* mit der Ausdifferenzierung in die verschiedenen Keimblätter des Embryos (Ektoderm, Endoderm und Mesoderm) im Laufe der weiteren embryonalen Entwicklung in Zusammenhang stehen könnte.²¹⁶

Neben der gerade erläuterten Embryogenese ist auch während der Bildung der Urkeimzellen eine genetische Reprogrammierung zu beobachten, wobei es wiederum Hinweise auf eine Beteiligung aktiver Demethylierung gibt.^{222,223} Diese Reprogrammierung könnte zum Beispiel für die Neuausrichtung der genomischen Prägung der Tochterzelle von Bedeutung sein, da Methyl-Reste von mdC entfernt werden könnten, die während dem Leben der beiden Elternteile aufgrund von Umwelteinflüssen eingeführt wurden (für Übersichtsartikel siehe zum Beispiel *Reik et al.*²²¹ oder *Morgan et al.*²²²). Neuere Erkenntnisse zeigen des Weiteren, dass die aktive DNA-Demethylierung spezifischer Genloci aufgrund bestimmter Signale auch in adulten, ausdifferenzierten Geweben und Krebszellen^{224,225} von Bedeutung ist. So wurde zum Beispiel die Demethylierung von DNA in Neuronen beschrieben.^{226,227} *Bruniquel* und *Schwartz* wiesen des Weiteren die aktive Demethylierung bestimmter DNA-Sequenzen in Immunzellen nach.²²⁸ Somit dürfte das Zusammenspiel der DNA-Methylierung und Demethylierung auch in der dynamischen, signalinduzierten Genregulation spezifischer Genloci von Bedeutung sein.²²⁰

Der Mechanismus und die beteiligten Enzyme der aktiven Demethylierung sind bis heute nicht vollständig aufgeklärt.²²² So zeigten Bhattacharya et al., dass das Protein MBD2b mdC-Reste in dsDNA demethylieren kann,²²⁹ wobei mechanistisch die enzymatische Oxidation von mdC zu 5-Hydroxymethyl-2'-desoxycytidin (hmdC) mit anschließender Eliminierung von Formaldehyd vorgeschlagen wurde.²³⁰ Jedoch konnten Ng et al. zeigen, dass MBD2b Teil eines, die Genexpression reprimierenden, Proteinkomplexes ist, was kontraintuitiv zum normalerweise aktivierenden Effekt der Demethylierung ist,²³¹ so dass die direkte Demethylierung von mdC-Resten der DNA durch MBD2b fragwürdig erscheint. Eine direkte Demethylierung von mdC-Resten ist auch aus chemischer Sicht, aufgrund der potentiell sehr schwer zu brechenden C⁵-C^{exo}-Bindung eher unwahrscheinlich, so dass Mechanismen gesucht wurden, bei denen das Nukleosid vollständig entfernt und dC eingebaut wird, ohne Notwendigkeit eines C-C-Bindungsbruchs. So berichteten Weiss et al. Hinweise, dass mdC-Reste in DNA zusammen mit dem benachbarten dG des d(CpG)-Motivs als Dinukleotid ausgeschnitten werden können.²³² Des Weiteren konnten Razin et al. zeigen, dass in Friend Erythroleukämiezellen während der, mit der Ausdifferenzierung einhergehenden aktiven Demethylierung, zugegebenes, isotopenmarkiertes 2'-Desoxycytidin eingebaut wird, während isotopenmarkiertes 2'-Desoxyadenosin nicht inkorporiert wurde,²³³ was auf eine Beteiligung der Basenexzisionsreparatur (BER) an der aktiven Demethylierung schließen lässt. So können die in Eizellen exprimierten Deaminasen Aid1 und Apobec1 in vitro in DNA mC zu T deaminieren (Abbildung **3.15**, blaue Pfeile),^{234,235} das durch die Glykosylasen Thymin-DNA-Glykosylase (TDG)^{235,236} oder MDB4,²³⁷ die spezifisch das fehlerhafte dT in dT:dG Fehlpaarungen entfernen können, ausgeschnitten wird (Abbildung 3.15, cyane Pfeile).

Abbildung 3.15: Übersicht über bis heute beschriebene, auf BER-basierende potentielle Mechanismen der aktiven Demethylierung (oben) und die von *Liutkevičiūtė et al.* nachgewiesene Methyltransferasen-induzierte Dehydroxymethylierung von hmC in DNA und die potentielle Deformylierung von fC und Decarboxylierung von caC zu C (unten). Zusätzlich hierzu wurde die direkte Exzision von mC beschrieben,²³⁸⁻²⁴⁵ die jedoch in der Literatur kontrovers diskutiert wird (siehe zum Beispiel *Wu* und *Zhang*²²⁰).

Weitere Untersuchungen deuten ebenfalls auf die Beteiligung von Aid bei der aktiven Demethylierung hin (siehe zum Beispiel *Popp et al.*²⁴⁶ und *Bhutani et al.*²⁴⁷), jedoch konnten *Bransteitter et al.* zeigen, dass mdC-Reste von Aid *in vitro* in einzelsträngiger DNA, zumindest unter den von ihnen untersuchten Bedingungen, um eine Größenordnung langsamer deaminiert werden als dC-Reste.²³⁴ Des Weiteren legen zum Beispiel Untersuchungen von *Morgan et al.* und *Bransteitter et al.* nahe, dass Aid nur 5-Methylcytosin-Reste in einzelsträngigen DNA-Bereichen deaminieren kann.^{234,235} Diese Untersuchungen sprechen somit gegen eine effiziente und selektive Deaminierung von mdC in Anwesenheit von dC in dsDNA im Zuge einer aktiven Demethylierung.

Weitere potentielle Mechanismen (siehe zum Beispiel *Ito et al.*,²⁴⁸ *Zhu*²⁴⁹ oder *Bhutani et al.*²⁵⁰) der aktiven Demethylierung basieren auf der Entdeckung, dass hmdC,²⁵¹⁻²⁵³ fdC,^{254,255}

die bisher nur als oxidative Schäden von mdC angesehen wurden (siehe zum Beispiel Wagner et al.²⁵⁶ und Bienvenu et al.²⁵⁷), und cadC^{255,258} durch die Oxidation von mdC durch die Enzyme Tet 1-3 (ten-eleven translocation)^{251,252,255,258} gebildet werden können (Abbildung 3.15, rote Pfeile). So kann sowohl die Nukleobase fC²⁵⁹⁻²⁶² als auch caC,^{258,259,261} nicht jedoch hmC,²⁶⁰ durch TDG aus DNA-Duplexen ausgeschnitten werden (Abbildung 3.15, cyane Pfeile). Weiterführende Untersuchungen von zum Beispiel Shen et al. legen nahe, dass die Tetvermittelte Oxidation von mdC, gefolgt von einer TDG-abhängigen BER (Abbildung 3.15, grüne Pfeile) ein Mechanismus der aktiven Demethylierung darstellen könnte.²⁶³ Ferner konnten Guo et al. zeigen, dass die aktive Demethylierung der von ihnen untersuchten Sequenzen durch die Anwesenheit von Proteinen der Tet und Aid/Apobec-Familie beschleunigt werden kann, woraus geschlossen wurde, dass mC zu hmC oxidiert und daraufhin zu hmU deaminiert wird,²⁶⁴ das dann zum Beispiel durch das Zusammenspiel der Glykosylasen SMUG1,²⁶⁵⁻²⁶⁷ TDG (siehe zum Beispiel Cortellino et al.²⁶⁸), MBD4²⁶⁹ oder hNEIL1 (siehe zum Beispiel Zhang et al.²⁷⁰) mit BER durch dC ersetzt werden könnte. Dem gegenüber stehen Untersuchungen von Nabel et al. und Ragman et al., die aufzeigen, dass zumindest die von ihnen untersuchten Enzyme der Aid/Apobec-Familie hmdC nur äußerst ineffizient zu hmdU deaminieren.^{271,272}

Durch die Tet-vermittelte Oxidation von mdC zu hmdC, fdC beziehungsweise cadC sind jedoch noch weitere Mechanismen der aktiven Demethylierung denkbar, da hierdurch der Methyl-Rest in eine mögliche Abgangsgruppe (Formaldehyd bei hmdC, Ameisensäure bei fdC oder Kohlenstoffdioxid bei cadC) überführt wurde. Folglich könnte neben den gerade besprochenen potentiellen Demethylierungswegen mit Beteiligung von BER nun auch der direkte C⁵-C^{exo}-Bindungsbruch möglich sein. So konnten *Liutkevičiūtė et al.* bei Inkubation von hmdC-haltiger DNA mit einer mutierten C^5 -Cytosin-Methyltransferase *in vitro* die Bildung von dC durch Dehydroxymethylierung nachweisen (**Abbildung 3.15**, unten).²⁷³ Eine entsprechende Deformylierung von fdC- beziehungsweise Decarboxylierung von cadChaltiger DNA wurde bis heute nicht beschrieben²⁷⁴ (für eine weiterführende Diskussion verschiedenster potentieller Mechanismen der aktiven Demethylierung siehe *Wu* und *Zhang*²²⁰).

4 Teil 1: Synthese neuartiger, antiproliferativer Cisplatin-Derivate

Wie in der Einleitung erwähnt, wurden im Zuge dieser Dissertation zwei Themenkomplexe bearbeitet. Zuerst werden die Ergebnisse zur Synthese und biologischen Evaluierung neuartiger, zytotoxischer Cisplatin-Konjugate dargestellt. Die Untersuchungen verschiedener Mechanismen der aktiven Demethylierung von 5-Methylcytosin in DNA werden in Kapitel 5 besprochen.

4.1 Aufgabenstellung Teil 1

Die in der Einleitung erläuterte mögliche Resistenzbildung während der Chemotherapie kann den Heilungserfolg der Patienten deutlich limitieren. So sprechen zum Beispiel 70% der behandelten Eierstocktumore auf eine Cisplatin-basierte Therapie an, jedoch beträgt die Überlebensrate der Patienten nach 5 Jahren nur 5-10%, was hauptsächlich den, sich im Laufe der Chemotherapie entwickelnden, Resistenzen geschuldet ist.^{79,275} Ferner liegt zum Beispiel auch die Rückfallrate beim kleinzelligen Lungenkrebs bei 95%.²⁷⁶ Somit kommt der Darstellung neuer Cisplatin-Derivate zur Bekämpfung der Resistenzeffekte eine immense Bedeutung zu. Wie in der Einleitung erwähnt sind zwei häufige Mechanismen der Resistenzbildung die erhöhte Reparaturaktivität (siehe zum Beispiel Bedford et al.,⁷⁰ Masuda et al.⁷² oder Eastman und Schulte⁷¹) und das Überlesen des Cisplatin-Schadens durch sogenannte low-fidelity Polymerasen (siehe zum Beispiel Mamenta et al.⁷⁸). Durch die kovalente Verknüpfung zweier unterschiedlicher zytotoxischer Funktionalitäten könnte jedoch ein DNA-Schaden generiert werden, der weder von der zellulären Reparaturmaschinerie behoben, noch durch low-fidelity Polymerasen überlesen werden kann, so dass die Zelle zur Einleitung der Apoptose gezwungen wäre. So konnten Khokhar et al. zeigen, dass ein Cisplatin-Derivat mit zwei 2-Chlorethylamin-Liganden in L1210 Leukämiezellen der Maus und in humanen A2780 Gebährmuttertumorzellen in vitro eine mit Cisplatin vergleichbare Zytotoxizität besitzt, jedoch in Cisplatin-resistenten L1210 Leukämiezellen der Maus nicht aktiv ist.²⁷⁷ Ferner konnten Connors et al. sogar zeigen, dass dieser Komplex in Mäusen mit ADJ/PC6A-Tumoren eine geringere Zytotoxizität besitzt als Cisplatin.²⁷⁸ Ein ähnliches Phänomen wurde von Lee et al. bei Koordination von *N,N'*-bis(2-chlorethyl)ethylendiamin an ein Platin(II)-Zentrum beschrieben.²⁷⁹ Dieser Mangel an zytotoxischer Aktivität in Cisplatin-resistenten Zelllinien und *in vivo* könnte darin begründet sein, dass der 2-Chlorethylamin-Rest direkt über das freie Elektronenpaar des Stickstoffs an das Platin(II)-Zentrum koordiniert wurde.²⁷⁹ Somit dürfte kein freies Elektronenpaar am Stickstoff mehr verfügbar sein, so dass nach *Ukraintsev et al.*, zumindest unter physiologischen Bedingungen, das für die Zytotoxizität essentielle¹¹³ Aziridinium-Ion nicht mehr gebildet werden kann.²⁸⁰

Daher soll im Rahmen dieser Dissertation eine Cisplatin- (rot) mit einer N-Lost-Funktionalität (blau) kovalent verknüpft werden, wobei die beiden zytotoxischen Gruppen durch verschieden lange *linker* voneinander getrennt sein sollen. Dies könnte zusätzlich eine eventuell benötigte Flexibilität der beiden zytotoxischen Gruppen zur Bindung an die DNA gewährleisten (**Abbildung 4.1**).

Abbildung 4.1: Zielmolekül und potentieller Mechanismus zur Umgehung von Cisplatin-Resistenzen. Durch kovalente Verknüpfung einer Cisplatin- mit einer N-Lost-Funktionalität, soll eine Erhöhung der lokalen Schadensdichte an der DNA erzeugt werden, die zur Einleitung der Apoptose führen könnte.

Aufgrund der erläuterten Resistenzbildung muss oft die dem Patienten verabreichte Cisplatin-Dosis deutlich erhöht werden.⁷⁹ Dies kann jedoch zu schwerwiegenden Nebenwirkungen führen,⁸¹ wobei hierfür unter anderem die sehr unspezifische Reaktion des Cisplatins, beziehungsweise dessen Monoaqua-Derivats, mit einer Vielzahl an zellulären Nukleophilen, wie zum Bespiel Cystein- und Methionin-Resten²⁸¹⁻²⁸⁵ oder Bestandteilen der Lipiddoppelschicht,²⁸⁶ verantwortlich gemacht werden kann. So bindet nur etwa 1% des verabreichten Cisplatins an DNA,⁸ und die Platinierung Schwefel-haltiger Proteine könnte eine Ursache für die beobachtete Nephrotoxizität von Cisplatin sein, die die maximal einsetzbare Cisplatin-Dosis am stärksten limitiert.^{287,288} Somit ist die kovalente Verknüpfung von Cisplatin mit einer selektiv an DNA dirigierenden Funktionalität von größtem Interesse. Hierzu wurden in der Literatur sogenannte *carrier*-Liganden, wie zum Beispiel Interkalatoren oder Moleküle, die an die kleine DNA-Furche binden verwendet (für Übersichtsartikel siehe zum Beispiel *Denny*,²⁸⁹ *Reddy et al.*²⁹⁰ und *Sondhi et al.*²⁹¹). Jedoch besitzen interkalierende Verbindungen generell keine Sequenzspezifität, während Substanzen, die an die kleine Furche binden, wie Distamycin A, Netropsin und Lexitropsine, hauptsächlich spezifisch für d(ApT)-reiche Motive sind (siehe zum Beispiel *Goodsell*²⁹²). Dies steht im Gegensatz zur präferentiellen Bindung des Cisplatins an Guanin-Reste.³⁵ Hingegen bindet Anthramycin höchst selektiv an Purin-flankierte (Guanin oder Adenin) Guanin-Reste in dsDNA,¹⁶⁴ wobei die Reaktion deutlich schneller als die Platinierung von dsDNA mit Cisplatin ist.^{34,39,155} So haben nach zwanzig minütiger Inkubation von Rinderthymus-DNA bei 23 °C bereits etwa 80% der potentiellen Bindungsstellen mit Anthramycin reagiert,¹⁵³ während die Platinierung von DNA bei 37 °C mit einer Halbwertszeit von ungefähr 1.9 Stunden verläuft.³⁹ Somit könnte durch die kovalente Verknüpfung einer Cisplatin-Funktionalität mit einem Anthramycin-Rest das Cisplatin-Derivat äußerst selektiv nicht nur zur DNA, sondern darüber hinaus an von Cisplatin bevorzugte Guanin-reiche Sequenzen dirigiert werden (**Abbildung 4.2**). Des Weiteren könnte das Cisplatin-Anthramycin-Konjugat sogar, aufgrund der schnelleren Reaktion des Anthramycins mit DNA bei sauren pH-Werten, wie sie zum Beispiel in Tumorgeweben vorgefunden werden,^{293,294} eine gewissen Selektivität gegenüber Krebszellen besitzen.^{154,155,161,295}

Abbildung 4.2: Zielmolekül und beabsichtigte, selektive DNA-Bindung. Durch die kovalente Verknüpfung von Cisplatin und Anthramycin könnte Cisplatin selektiv an die von Cisplatin präferierten dG-reichen DNA-Sequenzen (hellrot) dirigiert und hierdurch die teilweise für die Nebenwirkungen verantwortliche Platinierungen von RNA, Proteinen, Lipiden oder anderen zellulären Nukleophilen minimiert werden.

4.2 Synthese neuartiger, antiproliferativer Cisplatin-N-Lost-Konjugate

Wie im obigen Kapitel ausgeführt, sollten bifunktionale Konjugate mit einer Cisplatin- und einer N-Lost-Funktionalität synthetisiert werden. Durch die kovalente Verknüpfung dieser unterschiedlichen Zytostatika könnten neuartige DNA-Schäden generiert werden, mit denen eine Erhöhung der lokalen Schadensdichte erreicht werden sollte, die zur Einleitung der Apoptose in Cisplatin-resistenten Krebszellen führen könnte. Bei der Auswahl der N-Lost-Funktionalität musste die Stabilität der einzelnen N-Lost-Derivate berücksichtigt werden. So hydrolysiert die P-N-Bindung des *phosphoramide mustards* extrem schnell.¹²⁶ Untersuchungen von *Hemminki* legen unter physiologischen Bedingungen eine Halbwertszeit von unter zwei Stunden nahe.²⁹⁶ Damit wäre die kovalente Verknüpfung eines *phosphoramide mustard*-Derivat als N-Lost-Funktionalität gewählt. Somit wird ein bidentater Ligand, mit für das Platin(II)-Zentrum geeigneten Koordinationsstellen und einem Amin, das die N-Lost-Funktionalität trägt, benötigt.

4.2.1 Untersuchungen zur Synthese eines Cisplatin-N-Lost-Konjugats auf Basis eines κN^2 , κO^1 -Chelatrings

Aufgrund seiner sehr leichten Zugänglichkeit wurde zuerst L-Lysin als Adapter einer Cisplatin- und einer N-Lost-Funktionalität untersucht. Dieses Vorhaben stützt sich auf Untersuchungen von *Altman et al.*, die zeigen konnten, dass sich beim Umsatz von L-Lysin mit einer Platin(II)-Vorstufe ein Platin(II)-Komplex mit einem (*N*,*O*)-Chelatfünfring bildet, wobei die α -Amino- und die Carboxy-Gruppe zur Koordination an das Platin(II)-Zentrum dienen.²⁹⁷ Ferner wurde keine Isomerisierung zu einem (*N*,*N*)-Chelatring unter Beteiligung der ε -Amino-Gruppe beobachtet,²⁹⁷ so dass sich diese zur Einführung der N-Lost-Funktionalität anbieten würde. Somit wurde L-Lysin als Adapter einer Cisplatin- und einer N-Lost-Funktionalität evaluiert.

Hierzu wurde das kommerziell erhältliche L-Lysin-Derivat **1** Boc-geschützt (**Schema 4.1**). Die Benzoyloxycarbonyl-Gruppe (Z-Gruppe) von **2** wurde hydrogenolytisch zum freien Amin **3** abgespalten, worauf die β -Hydroxyethyl-Funktionalitäten analog einer Methode von *Igarashi et al.*²⁹⁸ mit 2-Bromethanol und Ethyldi(*iso*-propyl)amin (DIPEA) als Base eingeführt wurden. Hierbei konnte die Reaktionszeit von 14 Tagen weder durch Erhitzen der Reaktionslösung, noch durch die Verwendung von Oxiran nach *Price et al.*²⁹⁹ oder anderer Basen (*N*-Methylmorpholin, Pyridin, DABCO) verkürzt werden. Mesylieren der Hydroxy-Gruppen des Bisalkohols **4** nach *Springer et al.*³⁰⁰ mit Mesylchlorid und anschließender *in situ* Substitution durch das während der Reaktion freiwerdende Chlorid ergab den hochsensitiven N-Lost **5**, der mit halbkonzentrierter Salzsäure zur freien Aminosäure **6** entschützt wurde. Aufgrund der außerordentlich großen Labilität des N-Lost-Rests (siehe auch **Ab-bildung 4.3**) und der sehr polaren Aminosäure-Funktionalität, war hierbei die Verwendung des Methylesters und der Boc-Gruppen essentiell, um eine vollständige Entschützung ohne Bildung von nichtflüchtigen Nebenprodukten zu gewährleisten und somit eine potentiell sehr schwierige Aufreinigung zu umgehen.

Schema 4.1: Untersuchungen zur Synthese eines Cisplatin-N-Lost-Konjugats auf Basis eines κN^2 , κO^1 -Chelatrings mit der Reaktionssequenz Chlorierung/Komplexierung. Reagenzien und Bedingungen: a) Boc₂O, TEA, DMF, RT, 25 h, 97%; b) 10% Pd/C/H₂ (1 bar), HOAc, MeOH, RT, 2.5 h, 100%; c) BrCH₂CH₂OH, DIPEA, DMF, RT, 14 d, 61%; d) Ms-Cl, TEA, DCM, 0 °C \rightarrow RT, 21 h, 58%; e) 6 N HCl, 70 °C, 3.5 h, 75%.

Die Umsetzung des freien Liganden 6 mit Kaliumtetrachloridoplatinat(II) wurde in deuteriertem Wasser durchgeführt, um den Reaktionsverlauf NMR-spektroskopisch verfolgen zu können. Zur Koordination des Liganden 6 an das Platin(II)-Zentrum, muss die α -Ammonium-Gruppe durch Zugabe von Base zum freien Amin deprotoniert werden, was jedoch ebenfalls zur teilweisen Deprotonierung der etwas basischeren tertiären ϵ -Amino-Gruppe führen könnte. Letztere könnte daraufhin die Hydrolyse des Chlorid-Rests durch die Ausbildung eines Aziridinium-Ions einleiten.^{113,118,119,123} Deshalb wurde die Koordination idealerweise bei leicht saurem pH-Wert von etwa 6.0 durchgeführt. Durch die Freisetzung von HCl im Zuge der Komplexierung sinkt der pH-Wert im Laufe der Reaktion auf 2.5 ab. Aus diesem Grund muss dieser durch Zugabe von Base stets wieder auf pH 6.0 eingestellt werden. Abbildung 4.3 zeigt das ¹⁹⁵Pt-NMR und das ¹³C-NMR-Spektrum nach einer Reaktionszeit von 3.5 Tagen bei 50 °C.

Abbildung 4.3: Analytik der Reaktionsmischung des freien Liganden 6 mit K₂PtCl₄ in D₂O (pH 2.5–6.0) bei 50 °C (A, B und C) beziehungsweise RT (D) nach 3.5 d. A) ¹⁹⁵Pt-NMR-Spektrum; **B**) Relevanter Ausschnitt des zu A) korrespondierenden ¹³C-NMR-Spektrums bei pH 2.5 auf MeOH (δ = 49.5 ppm) referenziert; **C**) Vergleich der in der Reaktionslösung gefundenen Verschiebungen der Kohlenstoffsignale mit denen des synthetisierte Komplexes 7, Die Nummerierung der Kohlenstoffatome ist analog zu B; **D**) ESI-MS-Spektrum einer analogen Reaktion bei Raumtemperatur wobei ein möglicher Protonierungszustand representativ abgebildet ist.

Im ¹⁹⁵Pt-NMR-Spektrum (Abbildung 4.3 A) ist neben noch vorhandenem K₂PtCl₄ als eingesetztem Platin(II)-Vorläufer ($\delta = -1617 \text{ ppm}$)^{301,302} ein Signal bei $\delta = -1640 \text{ ppm}$ zu erkennen, das indikativ für ein Pt^{II}Cl₂-Zentrum ist, das zusätzlich an eine Amino- und eine Carboxy-Gruppe koordiniert ist.^{303,304} Jedoch lässt das Signal bei $\delta = -1940$ ppm auf die Existenz einer Pt^{II}Cl₃-Spezies, an die eine Amino-Gruppe gebunden ist,³⁰⁵ und somit eine noch unvollständige Koordination schließen. Das ¹³C-NMR-Spektrum (Abbildung 4.3 B) belegt ebenfalls die Anwesenheit mehrerer Spezies und deutet auf die Bildung des zweifach hydrolysierten Komplexes 7 hin (siehe rote Signale). Besonders indikativ ist hierfür das Signal bei 55.9 ppm (Abbildung 4.3 C), welches exakt mit der Verschiebung des Hydroxymethyl-Kohlenstoffs von Komplex 7 (Synthese siehe Schema 4.2) übereinstimmt. Im freien Liganden 6 besitzt das Kohlenstoffatom der CH₂Cl-Gruppe zum Vergleich eine chemische Verschiebung von 37.8 ppm. Die Bildung des Komplexes 8 konnte weder massenspektrometrisch, noch im ¹³C-NMR-Spektrum eindeutig nachgewiesen werden. Bei Durchführung der Reaktion bei Raumtemperatur konnte im ¹⁹⁵Pt-NMR-Spektrum keine Koordination des freien Liganden 6 an das Platin(II)-Zentrum nachgewiesen werden, wobei massenspektrometrisch jedoch schon die partielle Hydrolyse des Liganden 6 zu detektieren war (Abbildung 4.3 D). Dies legt den Schluß nahe, dass die Hydrolyse der Chlorid-Funktionalitäten schneller abläuft als die Ausbildung des (N,O)-Chelatrings. Somit steht die Labilität der Chlorid-Reste einer sauberen Reaktionsführung entgegen und würde, wie Abbildung **4.3 B** erahnen lässt, vermutlich zu komplexen Produktgemischen führen, deren Aufreinigung durch die limitierten Möglichkeiten der Isolierung von Komplexen und der labilen N-Lost-Funktionalität als nicht praktikabel erschien.

Daher sollte im nächsten Ansatz die Komplexierung vor der Einführung der hochlabilen Chlorid-Reste erfolgen (**Schema 4.2**). Ausgehend von Bisalkohol **4** wurde zuerst die Boc-Gruppe zum Amin **9** und daraufhin der Methylester sauer abgespalten, um den freien Ligand **10** zu erhalten. Zur Komplexierung des *N*,*O*-Liganden **10** an das Platin(II)-Zentrum wurde die Verwendung von K₂PtCl₄ (in D₂O) und [PtCl₂(DMSO)₂]³⁰⁶ (in CD₃OD) evaluiert, wobei die erste Reaktionsführung eine deutlich sauberere Komplexierung zu **7** ergab. Analog zur Reaktion mit Ligand **6** nahm der pH-Wert im Laufe der Reaktion ab, so dass dieser mehrmals durch Zugabe einer NaOD-Lösung auf pH 6.0 nachjustiert werden musste, um ein vollständiges Abreagieren des Liganden zu gewährleisten.

Die Bildung des Komplexes 7 ergibt sich aus dem ¹⁹⁵Pt-NMR-Spektrum (δ = -1637 ppm), welches indikativ ist für ein Pt^{II}Cl₂-Zentrum, an das eine Amino- und eine Carboxy-Gruppe gebunden ist.^{303,304} Das wird durch hochaufgelöste Massenspektrometrie bestätigt (**Abbil**-

dung 4.4 A und B). Des Weiteren wurde im Zuge der Dissertation die Modellverbindung Kalium-L-alaninatodichloridoplatinat(II) (11)³⁰⁷ synthetisiert und röntgenkristallographisch charakterisiert (**Abbildung 4.4 C**).³⁰⁸ Die hieraus ermittelten *CIS*-Werte (charakteristische Tieffeldverschiebungen von Atomen in Nähe zur Koordinationsstelle) im ¹³C-NMR-Spektrum des Modellkomplexes 11 stimmen mit den in Komplex 7 ermittelten *CIS*-Werten sehr gut überein (**Abbildung 4.4 D**). Ferner wurden sehr ähnliche *CIS*-Werte beim analogen Platin(II)-L-Ornithin-Komplex berichtet,³⁰⁹ so dass die Identität des Komplex 7 eindeutig belegt ist.

Schema 4.2: Untersuchungen zur Synthese eines Cisplatin-N-Lost-Konjugats auf Basis eines κN^2 , κO^1 -Chelatrings mit der Reaktionssequenz Komplexierung/Chlorierung. Reagenzien und Bedingungen: a) BF₃·OEt₂, DCM, RT, 4 h, 84%; b) 6 N HCl, 120 °C, 20 h, 87%; c) K₂PtCl₄, D₂O, pH 2.5–6.0, 50 °C, 4 d.

Zur vollständigen Komplexierung des Liganden **10** musste jedoch K₂PtCl₄ im leichten Überschuss zugegeben werden. Dieses konnte aber nicht vollständig vom Produkt **7** abgetrennt werden.

Für die Einführung der beiden Chlorid-Reste der N-Lost-Funktionalität zu Komplex **12** wurden verschiedenste Strategien evaluiert (SO₂Cl₂ nach *Price et al.*²⁹⁹; SO₂Cl₂ mit DMF; PPh₃, CCl₄ nach *Pors et al.*³¹⁰). Hierbei konnte nur bei der Behandlung des Komplexes **7** mit Sulfurylchlorid in DMF die Bildung einer alkylierenden Verbindung mittels der für Alkylanzien typischen Färbung des Dünnschichtchromatogramms mit einer 4-(4-Nitrobenzyl)pyridin-Lösung³¹¹ nachgewiesen werden. Jedoch deuteten das ¹⁹⁵Pt-NMR- und das ¹³C-NMR-Spektrum auf die Bildung mehrerer Produkte hin, dem auch durch Veränderung der Reaktionsbedingungen (0.5–8 Äq. DMF, –10–100 °C, DMF, DCM und 1,4-Dioxan als Lösemittel) nicht entgegengewirkt werden konnte. Die Isolierung der alkylierenden Spezies war mit Hilfe diverser Aufreinigungsmethoden (Ionenaustausch- und Umkehrphasen-

chromatographie) nicht möglich, was wahrscheinlich in ihrer enorm hohen Reaktivität begründet liegt.

Abbildung 4.4: Analytik zur Charakterisierung des Komplexes 7. Gemessenes (A) und berechnetes (B) hochaufgelöstes ESI-Massenspektrum des monoanionischen Komplexanteils von 7, die grünen Linien verdeutlichen die Zugehörigkeit der hochaufgelösten Masse zum entsprechenden Signal; C) ORTEP-Abbildung der Kristallstruktur von Komplex 11, jede Kaliumlage ist zu 25% besetzt, die Röntgenstruktur ist unter der CCDC-Nummer 881403 im *Cambridge Crystallographic Data Centre* hinterlegt; D) Vergleich der *CIS*-Werte der monoanionischen Komplexanteile von 11 und 7.

4.2.2 Synthese eines Cisplatin-N-Lost-Konjugats auf Basis eines $\kappa^2 N^{1,2}$ -Chelatrings

Wie in Kapitel 4.2.1 ausgeführt war die, vor allem für die Koordination der Carboxy-Gruppe scheinbar essentielle, hohe Reaktionstemperatur (50 °C) und lange Reaktionszeit (3.5 Tage) inkompatibel mit der Sensitivität der Chlorid-Reste der N-Lost-Funktionalität. Somit war die Verknüpfung der N-Lost- und der Cisplatin-Funktionalität über einen (N,O)-Chelatring, zumindest unter den untersuchten Bedingungen, ungeeignet. Aus diesem Grund sollte im Folgenden der Carboxy-Rest durch eine Gruppe ersetzt werden, die eine deutlich schnellere Koordination an das Platin(II)-Zentrum unter milderen Bedingungen erlaubt. Untersuchungen zur Komplexierung von Ethylendiamin mit K2PtCl4 analog zu Kemp et al.312 zeigten, dass schon nach wenigen Minuten Rühren bei Raumtemperatur ohne Zugabe zusätzlicher Base das Produkt [PtCl₂(en)₂] (13) elementaranalysenrein präzipitiert. Durch die folglich extrem schnelle Koordination eines Bisamin-Liganden sollte somit die benötigte Reaktionszeit und -temperatur deutlich herabgesetzt werden können, so dass die Wahrscheinlichkeit einer Hydrolyse der N-Lost-Funktionalität gesenkt werden kann. Des Weiteren sollte die sofortige Präzipitation des Komplexes Zersetzungsreaktionen nach erfolgter Komplexierung verhindern. Deshalb wurde nun Triamin 14 über eine neu entwickelte Triamin-Synthese dargestellt (Schema 4.3).

Hierzu wurde *N*^u-Boc-*N*^e-Z-geschützter L-Lysinmethylester **2** mit Lithiumborhydrid zum Lysinol **15** reduziert. Hierauf folgte eine *Gabriel*-Synthese unter *Mitsunobu*-Bedingungen wobei durch Verwendung von Di-*tert*-butylazodicarboxylat (DBAD) nach *Pei et al.*³¹³ anstelle von Di-*iso*-propylazodicarboxylat die Ausbeute von 46% auf 81% nahezu verdoppelt werden konnte. Phthalimid **16** wurde durch Behandlung mit Hydrazin beziehungsweise Methylamin zum freien Amin **17** umgesetzt, wobei die Verwendung von Methylamin hierbei deutlich höhere Ausbeuten ergab. Die Boc-Schützung der neu eingeführten Amino-Funktionalität erwies sich als erstaunlich schwierig. So ergab eine zur Boc-Schützung von Amin **2** analoge Reaktionsführung das geschützte Triamin **18** nur in einer Ausbeute von 22%, wobei auch durch Zugabe von DMAP keine Verbesserung zu verzeichnen war. Ohne Verwendung von TEA als Base konnte die Ausbeute auf 63% gesteigert werden, wobei jedoch erst der Wechsel zu einem wässrigen Reaktionsmedium und der Verwendung der anorganischen Base KOAc bis-Boc-geschütztes Triamin **18** in einer exzellenten Ausbeute von 100% ergab. Hydrogenolytische Abspaltung der Z-Gruppe ergab Triamin **14**. Durch diese

Reaktionssequenz war Schlüsselverbindung **14** in nur 6 Stufen und einer guten Gesamtausbeute von 49% aus geschütztem L-Lysin **2** darstellbar.

Schema 4.3: Synthese eines Cisplatin-N-Lost-Konjugats auf Basis einer $\kappa^2 N^{1,2}$ -Koordination. Reagenzien und Bedingungen: a) LiBH₄, THF/DCM, 0 °C → RT, 2 d, 96%; b) PPh₃, DBAD, Phthalimid, PhMe, 80 °C, 8 h, 81%; c) 33%iges MeNH₂, EtOH, RT, 1 d, 74%; d) Boc₂O, KOAc, H₂O, MeCN, RT, 3.5 h, 100%; e) 10% Pd/C/H₂ (1 bar), HOAc, MeOH, RT, 6.5 h, 88%; f) BrCH₂CH₂OH, DIPEA, DMF, RT, 11 d, 54%; g) Ms-Cl, TEA, 0 °C → RT, 15.5 h, 86%; h) 6 N HCl, 70 °C, 15.5 h, 86%; i) K₂PtCl₄, H₂O, pH 1.0 → 8.0, RT, 30 s, 30%.

Die Einführung der β -Hydroxyethyl-Funktionalitäten zum Bisalkohol **19** und die Chlorierung der Hydroxy-Gruppen zum hochsensitiven N-Lost-Derivat **20** erfolgte analog zu den in **Schema 4.1** und **Schema 4.2** durchgeführten Synthesen. Die Boc-Schutzgruppen wurden durch saure Hydrolyse abgespalten, so dass der fertige Ligand **21** erhalten wurde. Wie in Kapitel 4.2.1 erläutert, müssen zur Koordination an das Platin(II)-Zentrum die freien Elektronenpaare der Amino-Gruppen an Position 1 und 2 für eine Komplexierung verfügbar sein, also unprotoniert vorliegen. Das kann jedoch zur teilweisen Aktivierung der hochreaktiven N-Lost-Funktionalität führen. Zur Ermittlung des für die N-Lost-Gruppe tolerierbaren pH-Bereichs wurde daher die Stabilität des Liganden **21** in Abhängigkeit vom pH-Wert

untersucht (**Abbildung 4.5**). So haben sich bei pH <4.5, bedingt durch die Protonierung der Amino-Gruppe der N-Lost-Funktionalität, auch nach 1.5 h bei Raumtemperatur noch keine Zersetzungsprodukte gebildet. Bei pH 6.5 zeigte sich nach 1.5 h bei Raumtemperatur schon neben den Ligandsignalen (rot) Zersetzungsreaktionen (blau). Insbesonders nimmt die relative Intensität des <u>CH</u>₂Cl-Kohlenstoffs (Nummer 8 in **Abbildung 4.5**) ab, was auf das Abreagieren der N-Lost-Funktionalität hinweist. Dieser Befund erklärt auch die im vorherigen Kapitel beobachtete Hydrolyse des Liganden 6 nach 3.5 Tagen bei 50 °C und pH 2.5–6.0 (**Abbildung 4.3**). Bei pH 11.0 kann schon nach 10 min Rühren bei Raumtemperatur eine vollständige Zersetzung des Liganden beobachtet werden. Diese Resultate machen die Notwendigkeit einer extrem schnellen Koordination der Diamin-Funktionalität bei schwach saurem pH-Wert deutlich, um die Integrität der sensitiven Chlorid-Funktionalitäten zu gewährleisten.

Abbildung 4.5: Untersuchung der Stabilität des N-Lost-Liganden **21** bei verschiedenen pH-Werten mittels ¹³C-NMR-Spektroskopie. Zur Übersichtlichkeit wurde die Ordinate nicht mit abgebildet.

Somit wurde zur Komplexierung K₂PtCl₄ und der Ligand **21** in Wasser im äquimolaren Verhältnis (0.6 M) vorgelegt. Aufgrund der Tatsache, dass der Ligand **21** wegen der sauren Boc-Entschützung, als Trihydrochlorid isoliert wurde, wies diese Lösung einen pH-Wert von 1 auf. Durch Zutropfen einer 1 M NaOH-Lösung wurde der pH-Wert schrittweise erhöht, wobei bei pH 8.0 schlagartig ein voluminöser Feststoff ausfiel. Die Bildung des Komplexes **22**

Abbildung 4.6: Analytik zur Charakterisierung des Cisplatin-N-Lost-Konjugats 22. Gemessenes (A) und berechnetes (B) hochaufgelöstes ESI-Massenspektrum des Molekül-Ions von 22 als einfach positiv geladenes Protonen-Addukt, die grünen Linien verdeutlichen die Zugehörigkeit der hochaufgelösten Masse zum entsprechenden Signal; C) Ferninfrarotspektrum des Gemisches aus 2×22 , 1×23 mit $8 \times H_2O$; D) Dreikerniger Komplex 23, die berechneten Elementaranalysen für reines 22: HCl beziehungsweise eines Gemisches aus 2×22 , 1×23 mit $8 \times H_2O$ und die gemessene Elementaranalyse.

Des Weiteren konnte durch Ferninfrarotspektroskopie die Anwesenheit der Pt-Cl-Schwingung nachgewiesen werden (**Abbildung 4.6 C**). Somit konnte durch die extrem schnelle Koordination des Bisamin-Liganden (Reaktionszeit 30 s) und die präzise Kontrolle des pH-Werts, der hochsensitive N-Lost-Ligand an das Platin(II)-Zentrum koordiniert werden. Hierbei wurde

deprotoniertes Amin sofort von PtCl4²⁻ abgefangen und der gebildete Komplex präzipitierte augenblicklich. Dadurch wurde eine Hydrolyse nach erfolgter Komplexierung, trotz der am Ende der Reaktion leicht basischen Bedingungen, verhindert. Die gemessene Elementaranalyse wich jedoch von den erwarteten Werten ab, was zum Beispiel durch die gleichzeitige Bildung des dreikernigen Komplexes **23** erklärt werden könnte (**Abbildung 4.6 D**). Die Bildung des Komplexes **23** konnte trotz Variation der Stöchiometrien und Konzentrationen, sowie Permutation der Zugabe der Edukte oder Verwendung von [PtCl₂(DMSO)₂]³⁰⁶ als Platin(II)-Vorstufe nicht verhindert werden. So wurden interessanterweise, sowohl bei äquimolarer Reaktionsführung als auch bei Verwendung eines vierfachen Überschusses an Ligand **21**, die Komplexe **22** und **23** im exakt gleichen Verhältnis von 2:1 gebildet.

Aufgrund der Tatsache, dass jeweils noch intakter Ligand 21 im Filtrat nachgewiesen werden konnte, scheint somit das Platin(II)-Zentrum das tertiäre Amin des Komplexes 22 als Koordinationsstelle gegenüber der 1,2-Diamin-Funktionalität des freien Liganden 21 zu präferieren. Des Weiteren konnte die Existenz eines Platinkomplexes mit unkomplexierten 1,2-Diamin-Funktionalitäten im Filtrat mittels ¹⁹⁵Pt-NMR-Spektroskopie ausgeschlossen werden. Dies deutet stark daraufhin, dass die Koordination von K2PtCl4 an das tertiäre Amin des Komplexes 22 erst durch die Präorganisation in einer der Präzipitation vorausgehenden Assoziation mehrerer Komplexe 22 in Lösung begünstigt wird. Nach Di Pasqua et al. könnten eben solche Assoziate in millimolaren Cisplatin-Lösungen (die Konzentration des Komplexes 22 kurz vor der Präzipitation sollte zum Vergleich etwa 90 mM betragen), begünstigt durch intermolekulare N-H···Cl-Wasserstoffbrückenbindungen, vorhanden sein.³¹⁴ Durch diese Präorganisation könnte die entropische Bevorzugung einer Chelatisierung der 1,2-Diamin-Funktionalität³¹⁵ gegenüber der Ausbildung eines dreikernigen Komplexes über eine PtCl₂-Einheit verringert sein, so dass sich Komplex 23 ausbilden kann. Folglich sollte nun versucht werden, durch kleine Modifikationen des Liganden, wie zum Beispiel durch den Einbau einer Ethylenglykoleinheit zwischen der N-Lost- und der Cisplatin-Funktionalität, die Präorganisation bereits gebildeter Komplexe zu stören und hierdurch die Bildung von dreikernigen Strukturen zu verhindern. Ferner sollte durch den Einbau der Ethylenglykoleinheiten die Wasserlöslichkeit der resultierenden Komplexe erhöht und somit eine eventuell notwendige Aufreinigung erleichtert werden.

4.2.3 Synthese und massenspektrometrische Evaluierung der DNA-Addukte eines Cisplatin-N-Lost-Konjugats auf Basis eines $\kappa^2 N^{1,2}$ -Chelatrings und eines Monoethylenglykol-*linkers*

Somit sollte im Folgenden der zu Verbindung 22 analoge Komplex 24, mit einer Ethylenglykoleinheit als kovalenten Verknüpfung der Cisplatin- und der N-Lost-Funktionalität, dargestellt werden. Hierzu wurde zuerst 2-(2'-(Aminoethoxy)ethanol (25) nach einer Methode von *Boyce et al.*³¹⁶ Z-geschützt (Schema 4.4). Die Oxidation der primären Alkohol-Gruppe von Verbindung 26 zur Säure 27 erfolgte nach einer Vorschrift von *Zhang et al.*³¹⁷ mit Hilfe von 2,2,6,6-Tetramethylpiperidin-1-oxyl (TEMPO) und Di(acetoxy)iodbenzol als Kooxidans.

Schema 4.4: Synthese eines Cisplatin-N-Lost Konjugats auf Basis einer $\kappa^2 N^{1,2}$ -Koordination und einer Ethylenglykoleinheit. Reagenzien und Bedingungen: a) Z-Cl, NaOH, THF, 0 °C, 8 h, 60%; b) PhI(OAc)₂, TEMPO, H₂O, MeCN, RT, 2 d, 94%; c) 14, EDC·HCl, 0 °C \rightarrow 45 °C, 4 d, 39%; d) 10% Pd/C/H₂ (1 bar), HOAc, MeOH, RT, 5 h, 86%; e) BrCH₂CH₂OH, DIPEA, DMF, RT, 8 d, 43%; f) Ms-Cl, TEA, 0 °C \rightarrow RT, 16 h, 46%; g) TFA, DCM, RT, 2 h, 89%; h) K₂PtCl₄, D₂O, pH 1.0 \rightarrow 8.0, 30 s, RT, 67%.

Diese Vorgehensweise ergab im Vergleich zur Jones-Oxidation nach Pajk und Pečar³¹⁸ deutlich höhere Ausbeuten an Säure 27. Hieran wurde das im vorangegangenen Kapitel dargestellte, bis-Boc-geschützte Triamin 14 mittels 1-Ethyl-3-(3'-dimethylaminopropyl)carbodiimid (EDC) als Aktivator gekuppelt, so dass Amid 28 erhalten wurde. Eine zu Schema 4.3 analoge Reaktionssequenz aus Z-Entschützung zum freien Amin 29, gefolgt von der Einführung der β-Hydroxyethyl-Funktionalitäten zum Bisalkohol 30 und der Chlorierung der Alkohol-Gruppen ergab das hochsensitive N-Lost-Derivat 31. Zur darauf folgenden Boc-Entschützung sollten mildere Bedingungen als zur Synthese in Schema 4.3 (Rühren in halbkonzentrierter Salzsäure bei 70 °C für 15.5 h) entwickelt werden, da bei erhöhten Temperaturen sowohl die Amid- als auch die Ether-Funktionalität sauer gespalten werden sollte.³¹⁹⁻³²² Durch Rühren von 31 in Trifluoressigsäure (TFA) bei Raumtemperatur konnte schon nach 2 h der freie Ligand 32 ohne weitere Aufreinigung in sehr guter Ausbeute erhalten werden. Die Komplexierung des freien Liganden 32 mit K₂PtCl₄ durch Erhöhung des pH-Werts ergab das Cisplatin-N-Lost-Konjugat 24 in guten Ausbeuten. Hierbei zeigte sich die Verwendung der Platin(II)-Vorstufe im deutlichen Unterschuss als essentiell, um deren Kopräzipitation zu verhindern. Das gemessene Isotopenmuster im Massenspektrum (Abbildung 4.7 und 4.8) und die mittels Ferninfrarotspektroskopie nachgewiesene Pt-Cl-Schwingung (siehe Experimentalteil) belegen eindeutig die Identität des Komplexes 24.

Abbildung 4.7: Gemessenes (A) und berechnetes (B) hochaufgelöstes ESI-Massenspektrum des einfach positiv geladenen Protonen-Addukts des Komplexes 24 als Quasimolekül-Ion. Die grünen Linien verdeutlichen die Zugehörigkeit der hochaufgelösten Masse zum entsprechenden Signal. Die überlagerten Signale des Na⁺-Addukts des monohydrolysierten Komplexes (vergleiche Abbildung 4.8) sind der Deutlichkeit halber nicht abgebildet.

Außerdem stimmten die Werte der gemessenen Elementaranalyse nun perfekt mit den von Komplex **24** erwarteten Werten überein, so dass die Bildung eines dreikernigen Komplexes ausgeschlossen werden konnte. Dieser Befund war im Einklang mit der Arbeitshypothese, dass durch eine kleine Variation des Liganden, die Bildung eines dreikernigen Komplexes verhindert werden könnte. Durch diese Reaktionssequenz ist es erstmals gelungen, eine Cisplatin-Funktionalität mit einem hochsensitiven aliphatischen N-Lost-Derivat über einen *linker* kovalent zu verknüpfen und elementaranalysenrein zu isolieren.

Aufgrund der geringen Löslichkeit des Komplexes 24 in Wasser musste der Komplex zwei Stunden bei Raumtemperatur in Wasser gerührt werden, um ein ausreichend intensives ESI-Spektrum zu erhalten, was schon zu einer massiven Zersetzung führte (Abbildung 4.8). So konnte neben dem Komplex 24, schon das monohydrolysierte Produkt 33 detektiert werden, wobei aufgrund der schnelleren Hydrolyse der N-Lost-Funktionalität¹¹⁹ im Vergleich zur Cisplatin-Gruppe, 32, 33, 39, 323-326 zumindest größtenteils der N-Lost-Rest hydrolysiert vorliegen müsste. Durch Eliminierung von HCl aus Komplex 24 zu Komplex 34 beziehungsweise Ausbildung des Aziridinium-Ions 35 kann das Isotopenmuster bei m/z = 586.1071 u erklärt werden. Das Isotopenmuster bei m/z = 568.1410 u könnte zum einen durch Hydrolyse des Komplexes 34 (beziehungsweise des isobaren Aziridinium-Ions 35) zu 36 (beziehungsweise dessen Aziridinium-Ions) oder zum anderen, ausgehend von Komplex 33, durch Bildung des Morpholin-Derivats 37 durch intramolekulare Substitution des Chlorid-Rests der N-Lost-Funktionalität durch die β-Hydroxyethyl-Gruppe erklärt werden. Durch zweifache HCl-Eliminierung aus Komplex 24 zu Komplex 38 oder einfacher HCl-Eliminierung und Ausbildung eines zu **36** analogen Aziridinium-Ions könnte das Isotopenmuster bei m/z = 549.1286 u gedeutet werden. Das Isotopenmuster bei m/z = 532.1641 u weist auf die Hydrolyse eines Chlorido-Liganden gepaart mit zweifacher HCl-Eliminierung zu Komplex 39, beziehungsweise einfacher HCl-Eliminierung und Ausbildung eines zu 35 analogen Aziridinium-Ions hin.

Anschließend wurde die Reaktivität des Cisplatin-N-Lost-Konjugats bei einer Umsetzung mit doppelsträngiger DNA analysiert. Hierbei wurden DNA-Duplexe untersucht, die sowohl ein d(GpG)- (grün) als auch ein d(GpApC)-Motiv (blau) beinhalten. Das Erstere ist die bevorzugte Sequenz für den intrastrang d(GpG)-Cisplatin-Schaden,^{35,327-329} während der *nitrogen mustard* (*N*-Methyl-bis(2-chlorethyl)amin) präferentiell 1,3-interstrang *cross-links* ausbildet.^{137,138,330,331} Diese beiden Sequenzmotive waren in den Studien durch unterschiedlich viele d(AT)-Basenpaare (rot) voneinander getrennt, um gleichzeitig auch die Spannweite des Cisplatin-N-Lost-Konjugats zu ermitteln (**Tabelle 4.1**).

Abbildung 4.8: Hochaufgelöstes ESI-Spektrum des Komplexes 24 nach zweistündigem Rühren in Wasser bei Raumtemperatur. Die angegebenen Strukturen zeigen jeweils die Protonierung und Hydrolyse der chemisch plausibelsten Position. Die Hydrolyse am Platin(II)-Zentrum in Verbindung 39 könnte auch *trans* zum Amin des primären Kohlenstoffs erfolgt sein. Anstelle der gezeigten Eliminierung zum Alken könnten die jeweiligen Isotopenmuster auch durch die Bildung eines zu 35 analogen Aziridinium-Ions erklärt werden.

Für die Experimente wurde der Komplex **24** zu einer Lösung des jeweiligen DNA-Duplex in einem schwach nukleophilen Puffer (NaOAc, pH 7.4) gegeben und 2 Tage bei 37 °C inkubiert. Nach Entfernen des Wassers *in vacuo* wurde das Produktgemisch ohne weitere Aufreinigung enzymatisch verdaut. Hierzu wurden unterschiedlichste Bedingungen evaluiert (verschiedene Nukleasen, Phosphatasen, Inkubationszeiten und -temperaturen), wobei sich die Methode von *Pillaire et al.*³³² mit den Modifikationen nach *Reiβner*³³³ als am effizientesten herausstellte. Hierbei wurde zuerst durch zweistündige Behandlung der DNA mit Nuklease P1 bei 37 °C die DNA in 5'-Monophosphate gespalten, die durch darauf folgendes zweistündiges Inkubieren mit *Antarctic Phosphatase* bei 37 °C zu den entsprechenden Nukleosiden verdaut wurden.

Tabelle 4.1: Sequenzen der untersuchten DNA-Duplexe. Während Cisplatin d(GpG)-Sequenzen bevorzugt (grün), reagiert *nitrogen mustard* präferentiell mit Guanin-Resten in 1,3-Relation (blau). Diese beiden Motive waren durch eine unterschiedliche Anzahl an d(AT)-Basenpaaren (rot) voneinander getrennt, um die Spannweite des Konjugats **24** zu ermitteln.

Duplex 1	5'-d(AAA TTT TTA GGA GAC TTA TAT ATA TAT)-3'
	3'-d(TTT AAA AAT CCT CTG AAT ATA TAT ATA)-5'
Duplex 2	5'-d(AAA TTT TTA GGA AGA CTT ATA TAT ATA)-3'
	3'-d(TTT AAA AAT CCT TCT GAA TAT ATA TAT)-5'
Duplex 3	5'-d(AAA TTT TTA GGA AAG ACT TAT ATA TAT)-3'
	3'-d(TTT AAA AAT CCT TTC TGA ATA TAT ATA)-5'
Duplex 4	5'-d(AAA TTT TTA GGA ATA AGA CTT ATA TAT)-3'
	3'-d(TTT AAA AAT CCT TAT TCT GAA TAT ATA)-5'
Duplex 5	5'-d(AAA TTT TTA <u>GG</u> A ATA TAA <u>G</u> AC TTA TAT)-3'
	3'-d(TTT AAA AAT CCT TAT ATT CTG AAT ATA)-5'
Duplex 6	5'-d(AAA TTT TTA <u>GGA ATA TAT AAG</u> ACT TAT)-3'
	3'-d(TTT AAA AAT CCT TAT ATA TTC TGA ATA)-5'

Diese Nukleosidmischung wurde mittels LC-ESI-HR-MS (siehe Experimentalteil) analysiert. Hierbei konnte anhand des charakteristischen Isotopenmusters die Bildung einer Vielzahl von DNA-Addukten nachgewiesen werden. Eine Auswahl an Isotopenmustern ist in **Abbildung 4.9** und **4.10** gezeigt.

So entspricht das Isotopenmuster bei m/z = 555.6784 u (z = 2) wohl einem d(GpG)-Dinukleotid, das mit zwei der vier elektrophilen Positionen des Konjugats **24** abreagierte, wobei die restlichen zwei zytotoxischen Funktionalitäten hydrolysiert sind (**Abbildung 4.9**).

Abbildung 4.9: Ausschnitt des Massenspektrums der LC-ESI-HR-MS-Analyse der Reaktion von Komplex 24 mit dsDNA (links) und das berechnete Isotopenmuster (rechts) des Molekül-Ions des plausibelsten DNA-Schadens 40 (unten). Die grünen Linien verdeutlichen die Zugehörigkeit der hochaufgelösten Masse zum entsprechenden Signal. Es ist zu beachten, dass die Massen bei einer Retentionszeit von 11.5–12.2 min mit z = 2 beobachtet wurden.

Die Zuordnung des Isotopenmusters zur plausibelsten Struktur wurde aufgrund folgender Annahmen getroffen. Die deutlich schnellere Hydrolyse des *nitrogen mustards*³⁰² im Vergleich zu Cisplatin^{32,33,39,302,323-326} legt nahe, dass beide β -Chlorethyl-Reste hydrolysiert vorliegen und somit die Bindung des Konjugats **24** an das d(GpG)-Dinukleotid über die Cisplatin-Funktionalität erfolgt ist. Dies wird durch die Tatsache gestützt, dass beide glykosidischen Bindungen des Addukts noch intakt sind, da aliphatische N-Lost-Verbindungen wohl höchst selektiv mit DNA zu *N*⁷-Lost-Guanin-Addukten reagieren,^{127,130,131,136,334,335} diese jedoch dann schnell depurinieren ($\tau_{1/2}$ = 0.65 h bei 27 °C, pH 7.4 für das *N*⁷-Addukt des 2'-Desoxyguanosins mit *nitrogen mustard*).¹⁴⁷ Das Addukt **40** müsste somit den zur klassischen Cisplatin Reaktivität analogen d(GpG)-Schaden darstellen.^{35,42,43,328,336,337} Die geringen Abweichungen der Intensitäten zwischen den gemessenen und den berechneten Signalen müssten durch die Auftrennung der isotopen Addukte durch die HPLC bedingt sein, die der Massendetektion vorangeschalteten war.

Das Isotopenmuster bei m/z = 622.1942 u (z = 2) kann durch ein DNA-Addukt erklärt werden, das aus einem intakten d(GpG)-Dinukleotid, der Nukleobase Guanin und dem monohydrolysierten Konjugat bestehen könnte (**Abbildung 4.10**).

Abbildung 4.10: Ausschnitt des Massenspektrums der LC-ESI-HR-MS-Analyse der Reaktion von Komplex 24 mit dsDNA (links) und das berechnete Isotopenmuster (rechts) des Molekül-Ions des plausibelsten DNA-Schadens 41 (unten). Die grüne Linie verdeutlicht die Zugehörigkeit der hochaufgelösten Masse zum entsprechenden Signal. Es ist zu beachten, dass die Massen bei einer Retentionszeit von 26.3–26.8 min mit z = 2 beobachtet wurden.

Analoge Überlegungen zum Addukt **40** lassen darauf schließen, dass wiederum das Konjugat **24** über die beiden zytotoxischen Positionen der Cisplatin-Funktionalität an das d(GpG)-Motiv gebunden haben müsste. Zusätzlich sollte ein reaktiver Rest der N-Lost-Gruppe mit einem weiteren 2'-Desoxyguanosin-Rest der DNA reagiert haben, welcher daraufhin (oder während des Verdaus beziehungsweise der LC-ESI-HR-MS-Analyse) depurinierte. Der zweite Rest der N-Lost-Gruppe dürfte wiederum hydrolysiert vorliegen, so dass sich folglich die Bildung von Addukt **41** ergeben sollte. Das Addukt **41** konnte ebenfalls in DNA-Duplexen nachgewiesen werden, deren d(GpG)- und d(GpApC)-Motive durch bis zu fünf AT-Basenpaare voneinander getrennt sind, so dass die Bildung des Schadens nicht durch eine zu enge Sequenzspezifität limitiert zu sein scheint.

Dies zeigt, dass sowohl die Cisplatin- als auch die N-Lost-Funktionalität des Konjugats **24** an DNA-Duplexe binden kann, so dass in unmittelbarer Nähe eines sterisch höchst anspruchsvollen Cisplatin-Schadens eine abasische Stelle generiert werden dürfte, die zu einem Strangbruch führen könnte.^{131,146,338} Somit ist eindrucksvoll bestätigt, dass durch die kovalente Verknüpfung zweier unterschiedlicher Zytostatika ein neuartiges Adduktspektrum generiert werden kann, das die Reparaturmaschinerie von Tumorzellen vor deutlich größere Probleme stellen sollte, als der klassische d(GpG)-Cisplatin-Schaden allein.

4.2.4 Synthese und massenspektrometrische Evaluierung der DNA-Addukte eines Cisplatin-N-Lost-Konjugats auf Basis eines $\kappa^2 N^{1,2}$ -Chelatrings und eines Tetraethylenglykol-*linkers*

Im Folgenden sollte nun untersucht werden, ob durch geringfügige Modifikation des Liganden das nachgewiesene Adduktspektrum erweitert werden kann. Hat zum Beispiel bereits eine zytotoxische Funktionalität des Cisplatin-N-Lost-Konjugats an die DNA gebunden, so könnte durch eine flexiblere Verknüpfung der N-Lost- und der Cisplatin-Funktionalität das Abreagieren der zweiten zytotoxischen Gruppe deutlich erleichtert werden. Um diese Hypothese zu überprüfen, wurde Komplex **42** mit vier Ethylenglykoleinheiten, teilweise in Zusammenarbeit mit Dr. *Milan Vrabel* (Arbeitskreis Prof. Dr. *Thomas Carell*), dargestellt (**Schema 4.5**). Hierzu wurde Tetraethylenglykol **43** zum Monotosylat **44** umgesetzt, wobei die geringe Ausbeute von 37% auf die potentielle Bildung des Bistosylats oder eines zyklischen Produkts durch intramolekulare Substitution des Tosyl-Rests durch den terminalen Alkohol, zurückzuführen sein könnte.³³⁹ Der Tosyl-Rest wurde zum Azid **45** substituiert,³⁴⁰ welches durch eine *Staudinger*-Reduktion³⁴¹ und Z-Schützung³⁴² des neugenerierten Amins zu Verbindung **46** umgesetzt wurde.

Schema 4.5: Synthese eines Cisplatin-N-Lost-Konjugats auf Basis einer $\kappa^2 N^{1,2}$ -Koordination und vier Ethylenglykoleinheiten. Reagenzien und Bedingungen: a)Ts-Cl, TEA, THF, 0 °C → RT, 22 h, 37%; b) NaN₃, MeCN, 90 °C, 17 h, quant.; c) PPh₃, H₂O, THF; d) Z-Cl, Na₂CO₃, H₂O, THF, 0 °C → RT, 16 h, 72% über zwei Stufen; e) 1. Triphosgen, Aktivkohle, Et₂O, 0 °C → RT, 16.5 h; 2. **14**, NaOH, THF, 0 °C → RT, 21 h, 88%; f) 10% Pd/C/H₂ (1 bar), HOAc, MeOH, RT, 5 h, 93%; g) BrCH₂CH₂OH, DIPEA, DMF, RT, 4.5 d; h) Ms-Cl, TEA, 0 °C → RT, 9 h, 40% über zwei Stufen; i) TFA, DCM, RT, 2.5 h, 100%; j) K₂PtCl₄, D₂O, pH 1.0 → 8.0, RT, 30 s, 97%.

Aufgrund der moderaten Ausbeute (39%) und der benötigten langen Reaktionszeit (4 Tage) der Amidkupplung (Säure 27 zu Amid 28) zur Synthese des Komplexes 24, (Schema 4.4), sollte die Kupplung des Alkohols 46 an das bis-Boc-geschützte Triamin 14 durch eine Carbamat-Funktionalität evaluiert werden. Hierzu wurde Verbindung 46 zuerst mit Triphosgen zum entsprechenden Trichlormethylcarbonat umgesetzt, das ohne weitere Aufreinigung in das Carbamat 47 überführt wurde. Hierbei konnte tatsächlich eine im Vergleich zur Amidkupplung von Schema 4.4 mehr als doppelt so hohe Ausbeute von 88% erhalten werden. Dies legt für zukünftige Konjugate die Verknüpfung der Cisplatin- und der N-Lost-Funktionalität durch eine Carbamat-Gruppe anstelle einer Amidbindung nahe. Die Abspaltung der Z-Gruppe zum freien Amin **48**, die Einführung der Hydroxyethyl-Funktionalitäten und deren Chlorierung zum Dichlorid **49** erfolgte analog zu **Schema 4.4**, wobei jedoch im Vergleich zur Darstellung des Komplexes **24** kürzere Reaktionszeiten und höhere Ausbeuten zu verzeichnen waren. Die Boc-Entschützung zum freien Liganden **50** konnte wiederum äußerst mild durch Behandlung mit TFA bei Raumtemperatur erzielt werden. Durch pH-Wert induzierte Komplexierung mit K₂PtCl₄ analog zur Synthese des Konjugats **24** konnte der Komplex **42** in exzellenter Ausbeute elementaranalysenrein erhalten werden. Die exakte Übereinstimmung der Werte der gemessenen Elementaranalyse mit den berechneten Werten, die Anwesenheit der Pt-Cl-Schwingung im Ferninfrarotbereich (siehe Experimentalteil) und das gemessene Isotopenmuster (**Abbildung 4.11**) belegen eindeutig die Identität des Komplexes **42**. Zur Anfertigung des ESI-HR-MS-Spektrums musste hierbei wiederum Komplex **42** h bei Raumtemperatur gerührt werden, um genügend Produkt für ein ausreichend intensives ESI-Spektrum zu lösen, wobei ebenfalls die zu **Abbildung 4.8** analoge Zersetzungsreaktionen beobachtet wurden (Daten nicht gezeigt).

Abbildung 4.11: Gemessenes (A) und berechnetes (B) hochaufgelöstes ESI-Massenspektrum des einfach positiv geladenen Protonen-Addukts des Komplexes 42 als Quasimolekül-Ion. Die grünen Linien verdeutlichen die Zugehörigkeit der hochaufgelösten Masse zum entsprechenden Signal.

Komplex 42 wurde daraufhin analog zu Komplex 24 mit den in **Tabelle 4.1** genannten DNA-Duplexen umgesetzt und das erhaltene Produktgemisch mittels LC-ESI-HR-MS analysiert. Eine Auswahl der erhaltenen Isotopenmuster sind in **Abbildung 4.12**, **4.13** und **4.14** gezeigt. Hierbei müssten wiederum die geringfügigen Abweichungen der Intensitäten zwischen den
gemessenen und den berechneten Signalen durch die Auftrennung der isotopen Addukte durch die der Massendetektion vorangeschalteten HPLC (Gradient siehe Experimentalteil) bedingt sein.

Das Isotopenmuster bei m/z = 614.7066 u (z = 2) konnte einem Addukt zugeordnet werden, bei dem ein d(GpG)-Dinukleotid zweifach an Komplex **42** gebunden ist und die restlichen zwei elektrophilen Positionen hydrolysiert sind.

Abbildung 4.12: Ausschnitt des Massenspektrums der LC-ESI-HR-MS-Analyse der Reaktion von Komplex 42 mit dsDNA (links) und das berechnete Isotopenmuster (rechts) des Molekül-Ions des plausibelsten DNA-Schadens 51 (unten). Es ist zu beachten, dass die Massen (z = 2) bei einer Retentionszeit von 30.7–30.9 min beobachtet wurden.

Analoge Überlegungen zu **Abbildung 4.9** legen die Bildung des zu Verbindung **40** analogen Produkts **51** nahe (**Abbildung 4.12**).

Des Weiteren wurde das Isotopenmuster bei m/z = 681.2272 u (z = 2) durch ähnliche Überlegungen im Vergleich zu Abbildung 4.10 dem zu Addukt 41 analogen Produkt 52 zugeordnet (Abbildung 4.13).

Abbildung 4.13: Ausschnitt des Massenspektrums der LC-ESI-HR-MS-Analyse der Reaktion von Komplex 42 mit dsDNA (links) und das berechnete Isotopenmuster (rechts) des Molekül-Ions des plausibelsten DNA-Schadens 52 (unten). Die grüne Linie verdeutlicht die Zugehörigkeit der hochaufgelösten Masse zum entsprechenden Signal. Es ist zu beachten, dass die Massen bei einer Retentionszeit von 31.6–32.0 min mit z = 2 beobachtet wurden.

Addukt **52** konnte sogar beim Umsatz mit **Duplex 5**, dessen d(GpG) und d(GpNpC)-Motiv 9 d(AT)-Basenpaare voneinander entfernt sind, noch nachgewiesen werden. Das zeigt, dass das Cisplatin-N-Lost-Konjugat **42** sehr flexibel ist, was eine gewollte Reduktion der Sequenz-spezifität nach sich ziehen sollte.

Zusätzlich zu den zu Komplex 24 analogen DNA-Addukten wurde ferner ein Isotopenmuster bei m/z = 516.6997 u (z = 2) beobachtet. Dieses wurde einem monohydrolysierten Komplex zugeordnet, dessen restliche drei elektrophilen Reste an 2'-Desoxyguanosin und Guanin gebunden sind (Abbildung 4.14).

Abbildung 4.14: Ausschnitt des Massenspektrums der LC-ESI-HR-MS-Analyse der Reaktion von Komplex 42 mit dsDNA (links) und das berechnete Isotopenmuster (rechts) des Molekül-Ions des plausibelsten DNA-Schadens 53 (unten). Die grünen Linien verdeutlichen die Zugehörigkeit der hochaufgelösten Masse zum entsprechenden Signal. Es ist zu beachten, dass die Massen bei einer Retentionszeit von 28.9–29.2 min beobachtet wurden.

Aufgrund der stattgefundenen Depurinierung auf dem Weg zu Verbindung **53**, müsste, analog zu Addukt **41** und **52**, ein Arm der N-Lost-Funktionalität des Konjugats **42** an die N^7 -Position eines 2'-Desoxyguanosins des DNA-Duplex gebunden haben, woraufhin die glykosidische

Bindung gespalten wird. Im Gegensatz hierzu müsste das nicht depurinierte 2'-Desoxyguanosin an seiner N^7 -Position an das Platin(II)-Zentrum gebunden sein.

Aufgrund der oben erwähnten deutlich schnelleren Hydrolyse von N-Lost-Derivaten³⁰² im Vergleich zu Cisplatin,^{32,33,39,302,323-326} glauben wir, dass die Monohydrolyse zunächst am zweiten Arm der N-Lost-Funktionalität erfolgt, so dass der zweite Chlorido-Ligand des Platin(II)-Zentrums ebenfalls an die DNA koordiniert. Die N^7 -Position des Guanins ist jedoch durch die Reaktion mit der N-Lost-Funktionalität bereits besetzt, so dass nun die Koordiniation an der N^9 -Position nach der Depurinierung erfolgt. *Ali et al.*³⁴³ konnten in der Tat zeigen, dass Cisplatin-Derivate im Fall von N^7 -Methylguanin präferentiell an die N^9 -Position koordinieren. Wir erklären daher das Isotopenmuster mit dem Vorliegen des Addukts **53**, was nahelegt, dass durch eine flexiblere kovalente Verknüpfung der Cisplatin- und der N-Lost-Funktionalität das nachgewiesene Adduktspektrum in der Tat erweitert werden kann.

Somit sollte durch Reaktion des Konjugats **42** mit DNA gleichzeitig eine Vielzahl sehr unterschiedlicher DNA-Schäden generiert werden. Es ist unwahrscheinlich, dass jeder einzelne dieser DNA-Schäden von der zellulären Reparaturmaschinerie vollständig repariert werden kann. Daher sollten die neuen Substanzen im Vergleich zu Cisplatin deutlich cytotoxischer sein.

4.2.5 Evaluierung der biologischen Aktivität der neu dargestellten Cisplatin-N-Lost-Konjugate 24 und 42

Im Folgenden sollte die Zytotoxizität der neu dargestellten Cisplatin-N-Lost-Konjugate 24 und 42 in *E. coli*-Zellen untersucht und mit Cisplatin verglichen werden (Abbildung 4.15). Hierzu wurde M9-Minimalmedium mit 1% Glukose als Kohlenstoffquelle verwendet, um Nebenreaktionen der Cisplatin- und N-Lost-Funktionalitäten mit Bestandteilen des Mediums zu minimieren. Nach Animpfen von M9-Minimalmedium mit einer BL21(DE3)-*E. coli*-Kultur, wurde 12.5 h bei 37 °C inkubiert. Hieraus wurden pro Ansatz 100 µL entnommen, frisches M9-Minimalmedium mit 1% Glukose zugegeben (4 mL Endvolumen) und bei 37 °C inkubiert. In regelmäßigen Zeitintervallen wurde die optische Dichte bei 600 nm OD₆₀₀ bestimmt und beim Übergang der Zellen von der *lag*-Phase in das exponentielle Wachstum wurde entweder Cisplatin, Komplex 24 oder Komplex 42 jeweils in DMSO (Endkonzentration der Komplexe jeweils 20 µM, Endkonzentration DMSO 1%) zugegeben. Als Negativkontrolle wurde die entsprechende Menge DMSO zugegeben. Die OD₆₀₀-Werte wurden in regelmäßigen Abständen bestimmt, wobei jeder OD₆₀₀-Wert dreimal gemessen und zwei biologische Replikate angefertigt wurden.

Abbildung 4.15: Gemessene OD₆₀₀-Werte der Inkubation von BL21(DE3)-*E. coli*-Zellen in M9-Minimalmedium mit 1% Glukose bei 37 °C in Anwesenheit von Cisplatin (grün), DMSO alleine (blau), Komplex 24 (rot) und 42 (schwarz). Gemessen wurden zwei biologische Replikate. Die Zugabe der Komplexe beziehungsweise DMSO als Negativkontrolle wurde bei Übergang der Zellen von der *lag*-Phase in das exponentielle Wachstum durchgeführt. Der Fehlerbalken gibt die Standardabweichung dreier Messwerte an.

Hierbei zeigte sich, dass durch Zugabe von Cisplatin (grüne Linie) das Bakterienwachstum etwas langsamer im Vergleich zur Negativkontrolle (blaue Linie) verlief und die Gesamtbakterienmenge in der stationären Phase etwas geringer war als in der Negativkontrolle. Konjugat 24 und 42 zeigten einen zu einander sehr ähnlichen Effekt auf das Bakterienwachstum, wobei die Bakterien ebenfalls etwas langsamer als in der Negativkontrolle, jedoch schneller als bei der Inkubation mit Cisplatin proliferierten. Die Zelldichte in der stationären Phase entsprach bei Inkubation mit den Konjugaten 24 und 42 der Negativkontrolle.

Aufgrund der Tatsache, dass durch Messung der OD₆₀₀-Werte lediglich eine Aussage über die Zelldichte möglich ist, wurde des Weiteren die Form der Bakterien konfokalmikroskopisch untersucht (**Abbildung 4.16**).

Hierbei zeigte sich nach 9.5-stündiger Inkubation der Bakterien in Anwesenheit von Cisplatin, die von *Rosenberg et al.* beobachtete¹⁵⁻¹⁷ Elongation einiger *E. coli*-Zellen auf die bis zu siebenfache Länge, in Folge der Inhibierung der Zellteilung durch das Zytostatikum. Bei Inkubation der Bakterien mit den beiden Konjugaten **24** und **42** konnte ebenfalls eine deutliche Elongation der Zellen auf die bis zu vierfache Länge festgestellt werden. Somit sind die synthetisierten Verbindungen eindeutig zytotoxisch aktiv. Jedoch haben die Substanzen

im Vergleich zu Cisplatin eine etwas geringere Wirkung, was durch eine potentiell schnelle Abreaktion der N-Lost-Funktionalität der Konjugate mit zellulären Nukleophilen bedingt sein könnte. Dadurch könnten die Platinkomplexe **24** und **42** vielleicht die DNA im Zellkern weniger gut erreichen und ihre Wirkung entfalten.

Abbildung 4.16: 64-fach vergrößerte konfokalmikroskopische Aufnahmen der BL21(DE3)-*E. coli*-Zellen nach 9.5-stündiger Inkubation bei 37 °C in Anwesenheit von Cisplatin (oben links), DMSO alleine (oben rechts), Komplex 24 (unten links) und 42 (unten rechts).

Zusammengefasst konnte somit durch die kovalente Verknüpfung einer N-Lost- mit einer Cisplatin-Funktionalität die Teilung einiger BL21(DE3)-*E. coli* Zellen inhibiert werden, wobei der Effekt jedoch im Vergleich zu Cisplatin etwas geringer zu sein scheint.

4.3 Untersuchungen zur Synthese eines Cisplatin-Anthramycin-Konjugats

In den vorangegangenen Kapiteln wurde, anhand von Untersuchungen mit dsDNA, gezeigt, dass durch kovalente Verknüpfung eines N-Lost- mit einer Cisplatin-Funktionalität verschiedenste DNA-Schäden generiert und folglich das Adduktspektrum von Cisplatin deutlich erweitert werden kann, was bei der Behandlung Cisplatin-resistenter Krebszellen ein entscheidender Vorteil sein könnte. Neben der Herausforderung der Resistenzbildung ist ein weiterer großer Nachteil der Cisplatin-basierten Chemotherapie dessen zu unspezifische Reaktion mit einer Vielzahl an zellulären Nukleophilen. Dies kann dazu führen, dass Cisplatin schon vor Erreichen der DNA, als eigentliches Zielmolekül, mit anderen Nukleophilen reagiert hat, was die zytotoxische Wirkung deutlich herabsetzen kann. Somit sollte im Folgenden, wie in der Aufgabenstellung erläutert, das Cisplatin-Anthramycin-Konjugat **54** dargestellt werden, um Cisplatin äußerst selektiv nicht nur zur DNA, sondern darüber hinaus zu von Cisplatin präferierten Guanin-reichen Sequenzen zu dirigieren (**Abbildung 4.17**).

Abbildung 4.17: Retrosynthese des Cisplatin-Anthramycin-Konjugats 54.

Zielmolekül **54** sollte durch eine Heck-Kupplung des literaturbekannten Triflats **55**³⁴⁴ mit Alken **56** analog der Anthramycin-Synthese von *Pena* und *Stille* zugänglich gemacht werden (**Abbildung 4.17**). Die Synthese des Triflats **55** ist in **Schema 4.6** dargestellt. Ausgehend vom tetrasubstituierten Benzol **57** wurden zuerst die Hydroxy- und Carboxy-Reste benzylisch zu Verbindung **58** geschützt und der Benzylester daraufhin zur Säure **59** verseift.³⁴⁴ Diese Zweistufensequenz zur Darstellung des Benzylesters **59** war notwendig, da die Reaktion von **57** mit einem Äquivalent Benzylbromid keine selektive Schützung des Alkohols in Anwesenheit der Säure-Gruppe ergab. Nach Überführung der Carboxy-Funktionalität in das korrespondierende Säurechlorid, wurde dieses mit dem, ausgehend vom L-Prolin-Derivat **60** in einer Stufe nach *Heindl et al.*³⁴⁵ dargestelltem, *trans*-4-Hydroxy-L-prolinethylester **61** zum Amid **62** umgesetzt.

Schema 4.6: Synthese des Anthramycin-Bausteins 55. Reagenzien und Bedingungen: a) BnBr, DMF, K₂CO₃, 80 °C, 2 d, 99%; b) KOH, THF, MeOH, H₂O, RT, 22 h, 85%; c) 1. (COCl)₂, DMF, DCM, 55 °C, 40 min; 2. 61, TEA, THF, 0°C, 1.5 h, 91%; d) 1. Na₂S₂O₄, THF, H₂O, RT, 6 d; 2. HCl, THF, H₂O, 60 °C, 9 d, 61%; e) BF₃·OEt₂, TFA, RT, 30 min, 66%; f) 1. C₆H₅CH(OMe)₂, 180 °C, 38 h; 2. HCl, THF, H₂O, RT, 6 h, 61%; g) PCC, HOAc, DCM, RT, 6 h, 87% oder DMP, DMSO, RT, 3 d, 67%; h) Tf₂O, Py, DCM, RT, 6.5 h, 81%; i) SOCl₂, EtOH, 95 °C, 4 h, 95%.

Reduktion der Nitro-Gruppe in **62** mit Natriumdithionit, gefolgt vom säurekatalysierten Ringschluss ergab Pyrrolo[2,1-c][1,4]benzodiazepin **63**.³⁴⁴ Im Folgenden musste nun die Benzyl-Schutzgruppe durch einen Benzyliden-Rest ersetzt werden (Begründung *vide infra*). Zur Abspaltung der Benzyl-Schutzgruppe verwendeten *Pena* und *Stille* hydrogenolytische Bedingungen bei erhöhtem Druck mit einer Reaktionszeit von 5 h.³⁴⁴ Durch Verwendung von BF₃·OEt₂ in TFA konnte jedoch die Reaktionszeit auf ein Zehntel reduziert und der experimentelle Aufwand deutlich verringert werden, so dass Alkohol **64** bequem erhalten wurde. Die perfekte Übereinstimmung des gemessenen Drehwerts von $[\alpha]^{22}_{D} = +430^{\circ}$ (*c* 0.0030, MeOH) mit der Literatur³⁴⁴ ($[\alpha]^{23}_{D} = +431^{\circ}$ (*c* 0.0056, MeOH) bestätigt, dass diese erstmals in der Synthese von Anthramycin-Derivaten verwendeten Bedingungen mit der sensitiven Position 11a kompatibel sind.

Zur weiteren Charakterisierung von Alkohol **64** wurde eine Kristallstruktur angefertigt (**Abbildung 4.18**). Verbindung **65** wurde mit Benzaldehyddimethylacetal zum Benzyliden **65** umgesetzt.³⁴⁴ Durch Verwendung von PCC anstelle der *Swern*-Oxidation nach *Pena* und *Stille*³⁴⁴ konnte Keton **66** in einer deutlich erhöhten Ausbeute von 87% (Literatur: 70%) erhalten werden. Durch anschließende Umsetzung mit Triflatanhydrid wurde Verbindung **55**

erhalten.³⁴⁴ Somit wurde der erste Kopplungsbaustein in acht linearen Stufen mit einer Gesamtausbeute von 14% erhalten.

Abbildung 4.18: Kristallstruktur des freien Alkohols 64 als Monohydrat.

Der zweiten Kupplungspartner 56 wurde ausgehend vom dem im Kapitel 4.2.2 dargestellten bis-Boc-geschützten Triamin 14 durch Amidierung mit Acrylsäure synthetisiert (Schema **4.7** A). Hierbei konnten durch Verwendung von EDC-Cl als Kupplungsreagenz deutlich höhere Ausbeuten erzielt werden, als durch Umsetzen von 14 mit Acrylsäurechlorid nach de Macédo et al.³⁴⁶ Die anschließende Heck-Kupplung erwies sich jedoch als nicht trivial. So wurde bei der Umsetzung des Triflats 55 mit Alken 56 und [Pd(MeCN)Cl₂] sowie DABCO nach Pena und Stille³⁴⁴ beziehungsweise mit [Pd(PPh₃)₂Cl₂] und TEA nach Scott et al.³⁴⁷ kein Kupplungsprodukt 67 erhalten. Bei letzterer Reaktionsführung konnte stattdessen die Bildung von 1,11a-Didehydro-66, das Produkt einer Saegusa-Ito-ähnlichen Oxidation, massenspektrometrisch (HRMS (ESI–): ber. für $C_{20}H_{14}N_2O_4^-$ [*M*–H]⁻: 345.0881 u, gef.: 345.0879 u) nachgewiesen werden, was die zukünftige Verwendung von Palladium(0)-Katalysatoren nahelegte. Jedoch konnte durch Verwendung von [Pd2(dba)3] ebenfalls keine Kupplung erzielt werden. Deshalb wurde im Folgenden eine Stille-Kupplung evaluiert. Hierzu wurde Propinsäuremethylester 68 radikalisch mit Bu₃SnH und AIBN als Aktivator umgesetzt,³⁴⁸ wobei neben dem gewünschten (E)-Stannan 69 auch das (Z)-Isomer (E/Z = 1:1.3) gebildet wurde, das jedoch chromatographisch abgetrennt werden konnte. Verseifung des Methylesters zur freien Säure 70 und Amidierung mit Triamin 14 mit Hilfe von EDC-Cl ergab Stannan 71 (Schema 4.7 B). Die Stille-Kupplung zwischen Stannan 71 mit Triflat 55 ergab Kupplungsprodukt 67 in 12% Ausbeute, wobei auch destannyliertes Alken 56 isoliert werden konnte (Tabelle 4.2, Eintrag 1).³⁴⁴ Bei Zugabe von Kupfer und Fluorid nach Mee et al.³⁴⁹ wurde hauptsächlich Destannylierung beobachtet (Tabelle 4.2, Eintrag 2). Erst durch Wechsel des Lösemittels zu DMSO und Zugabe von LiCl und CuCl nach Han et al.³⁵⁰ konnte die Ausbeute des Kupplungsprodukts auf 25% erhöht werden (Tabelle 4.2, Eintrag 3). Bei Durchführung

der Reaktion bei Raumtemperatur konnte schließlich die Ausbeute mit 67% nahezu verdreifacht werden (**Tabelle 4.2**, Eintrag **4**).

Schema 4.7: A) Untersuchungen zur Heckkupplung des Alkens 56 mit dem Triflat 55. B) Synthese des Stannans 71 für die *Stille*-Kupplung. Reagenzien und Bedingungen: a) Acrylsäure, EDC-Cl, 4-Methoxyphenol, CHCl₃, 0 °C → RT, 3.5 h, 65%; b) Bu₃SnH, AIBN, C₆H₆, 95 °C, 23 h, 77%, E/Z = 1:1.3; c) NaOH, H₂O, 1,4-Dioxan, 75 °C, 3 h, 95%; d) 14, EDC-Cl, 4-Methoxyphenol, CHCl₃, 0 °C → RT, 3 d, 72%.

Tabelle 4.2: Evaluierung verschiedener Additive, Lösemittel und Reaktionstemperaturen zur Optimierung der *Stille*-Kupplung von Triflat **56** und Stannan **72**. Als Katalysator wurde jeweils Pd(PPh₃)₄ verwendet.

Nummer	Additive	Lösemittel	Temperatur	isolierte Ausbeute
1	LiCl	THF	65 °C	12% 67 23% 56
2	CuI/CsF	DMF	40 °C	3% 67 71% 56
3	CuCl/LiCl	DMSO	60 °C	25% 67
4	CuCl/LiCl	DMSO	RT	67% 67

Nach erfolgreicher Kupplung des Anthramycin- und des Triamin-Fragments konnte, trotz der Anwesenheit zweier weiterer Amid-Funktionalitäten, durch Reaktion mit NaBH₄ selektiv nur der Carbamoyl-Kohlenstoff an Position 11 zum korrespondierenden Carbinolamin **72** reduziert werden (**Schema 4.8**). Hierbei ist nach *Thurston* und *Bose*³⁵¹ die elektronenziehende Benzyliden-Gruppe essentiell, was den in **Schema 4.6** vollzogenen Schutzgruppenwechsel von Benzyl auf Benzyliden rechtfertigt. Aufgrund der nicht nachweisbaren Kopplung der Protonen an Position 11 und 11a, sollte der Dihedralwinkel beider Protonen bei etwa 90° liegen, was die in **Schema 4.8** angegebene Stereochemie an C11 belegt.³⁴⁴

Anschließend sollten die Benzyliden- und Boc-Schutzgruppen gleichzeitig durch Säurebehandlung zum freien Liganden **73** abgespalten werden. Für die Boc-Entschützung wurden aber deutlich saurere Bedingungen benötigt als für die Benzyliden-Abspaltung nach *Pena* und *Stille*³⁴⁴ mit methanolischer Salzsäure. Jedoch führte die Behandlung des Carbinolamins **72** unter verschiedenen sauren Bedingungen (TFA, BF₃·OEt₂, HCl in Et₂O/1,4-Dioxan) nur zur vollständigen Zersetzung des Edukts (**Schema 4.8**).

Schema 4.8: Untersuchungen zur Fertigstellung des Anthramycin-Liganden durch eine Reduktions/Entschützungssequenz. Reagenzien und Bedingung: a) NaBH₄, THF, -30 °C, 39 h, 36% (54% b r.s m.). b r.s.m. = basierend auf rückgewonnenem Startmaterial.

Höchstwahrscheinlich wird durch saure Behandlung von **72** zuerst die elektronenziehende Benzyliden-Gruppe sauer abgespalten, wodurch das Carbinolamin deutlich reaktiver werden müsste, was zu der beobachteten Zersetzung führen könnte. Somit sollten im Folgenden die Boc-Schutzgruppen bei gleichzeitigem Erhalt des Benzyliden-Rests abgespalten werden. Dies sollte nach *Li et al.*³⁵² durch Behandlung mit H₃PO₄ oder thermisch durch Erhitzen in Ph₂O nach *Wasserman et al.*³⁵³ möglich sein. Jedoch führten abermals beide Ansätze nur zur Zersetzung des Edukts. Somit scheint die Carbinolamin-Funktionalität für die benötigten harschen Bedingungen zur Boc-Abspaltung zu sensitiv zu sein, so dass im Folgenden die Abspaltung der Boc-Gruppen vor der Reduktion zum Carbinolamin durchgeführt wurde (**Schema 4.9**).

Schema 4.9: Untersuchungen zur Fertigstellung des Anthramycin-Liganden durch eine Entschützungs/Reduktions/Entschützungssequenz. Reagenzien und Bedingung: a) HCl, Et₂O, 1,4-Dioxan, 3 d, RT, 91%.

Durch Behandlung des Kupplungsprodukts **71** mit Salzsäure in Et₂O/1,4-Dioxan konnte das freie Bisamin **74** in exzellenter Ausbeute isoliert werden. Zwar konnte in einer zu **Schema 4.8** analogen Behandlung von **74** mit NaBH₄ die erfolgreiche Reduktion massenspektrometrisch nachgewiesen werden (HRMS (ESI+): ber. für $C_{29}H_{36}N_5O_4^+$ [*M*+H]⁺: 518.2762 u, gef.: 518.2767 u), jedoch konnte aufgrund der extremen Labilität des Carbinolamins **75**, dieses nicht isoliert werden. Darüber hinaus konnten bei Untersuchungen zur Komplexierung des, im Vergleich zum Carbinolamin, deutlich stabileren Bisamins **74** mit diversen Platin(II)-Vorstufen (K₂PtCl₄, K₂[Pt(ox)₂],³⁵⁴ [PtCl₂(DMSO)₂]³⁰⁶) kein entsprechender Platin(II)-Komplex sauber isoliert werden. Daraufhin wurde auf eine Fortführung der Synthese eines Cisplatin-Anthramycin-Konjugats im Zuge dieser Dissertation verzichtet.

5 Evaluierung verschiedener Mechanismen des C⁵-C^{exo}-Bindungsbruchs zur aktiven Demethylierung von 5-Methyl-2'-desoxycytidin

5.1 Aufgabenstellung

Wie in Kapitel 3.2.2 erläutert sinkt nach der Befruchtung der Eizelle der mdC-Gehalt der DNA,²¹³ wobei vor allem im paternalen Genom Belege für eine aktive Demethylierung^{215,217} gefunden wurden. Hierdurch wird eine Zelle generiert, die in jeden beliebigen Zelltyp ausdifferenzieren kann (totipotente Stammzelle, für einen Übersichtsartikel siehe Reik et al.²²¹). Die hierbei postulierten Mechanismen der aktiven Demethylierung basieren fast ausschließlich auf der Basenexzisionsreparatur (BER),^{233,235,246,247,264} wobei jedoch Liutkevičiūtė et al. zeigen konnten, dass hmdC-Reste in DNA direkt, ohne Beteiligung von BER, zu dC dehydroxymethyliert werden können.²⁷³ Dieser direkte C⁵-C^{exo}-Bindungsbruch ist insofern sehr attraktiv, da im Gegensatz zur BER³⁵⁵ weder eine abasische Stelle generiert, ³⁵⁶ noch das Zucker-Phosphat-Rückgrat gespalten werden muss,^{357,358} was gerade bei der aktiven Demethylierung von mdC-reichen Sequenzen die Gefahr der genomischen Instabilität deutlich reduzieren sollte.³⁵⁹ Ferner wird bei der Dehydroxymethylierung nur das gewünschte C1-Fragment abgespalten und nicht das gesamte Nukleosid ausgebaut und durch ein neues ersetzt. Ein Vergleich von hmdC, fdC und cadC zeigt jedoch, dass cadC aus chemischer Sicht für den C5-Cexo-Bindungsbruch am geeignetsten sein sollte, da hier anstelle von Formaldehyd Kohlenstoffdioxid als generell deutlich günstigere Abgangsgruppe entsteht. Ein ähnlicher Mechanismus wird von Bakterien zur Demethylierung von T verwendet. Hier wird analog zu mdC-Resten in DNA die Nukleobase T durch die Thymin-7-hydroxylase (T7H) zu 5-Carboxyuracil (caU, Isoorotat) oxidiert und daraufhin durch die Isoorotat-Decarboxylase (IDCase)³⁶⁰ durch Abspalten von Kohlenstoffdioxid decarboxyliert (siehe zum Beispiel Shaffer et al.³⁶¹). Diesen Überlegungen zufolge sollte die Existenz einer Decarboxylierung von cadC zu dC in DNA in Stammzellen massenspektrometrisch untersucht werden (Abbildung 5.1). Bei einem positiven Ergebnis sollte ein plausibler Mechanismus erarbeitet und die Effizienz des C⁵-C^{exo}-Bindungsbruchs als Basis einer Decarboxylierung mit der Dehydroxymethylierung²⁷³ und einer potentiell stattfindenden Deformylierung^{362,363} verglichen werden. Aus diesen Untersuchungen sollte die chemische Plausibilität für die Existenz einer Dehydroxymethylase, Deformylase oder Decarboxylase^{187,220,250,255} abgeleitet werden. Wir erhofften uns ferner wichtige Hinweise auf potentielle, für die Katalyse des C⁵-C^{exo}-Bindungsbruchs relevante Seitenreste, was nachfolgend die Suche nach der Decarboxylase erleichtern könnte.

Abbildung 5.1: Vergleich der zu untersuchenden Decarboxylierung von cadC zu dC in DNA (oben) mit der durch die Isoorotat-Decarboxylase-katalysierten Decarboxylierung³⁶⁰ von caU zu U. cadC^{255,258} und caU³⁶¹ werden ebenfalls analog durch Oxidation der exozyklischen Methylgruppe von mdC beziehungsweise T gebildet.

Des Weiteren sollten die chemischen Grundlagen für weiterführende biologische Untersuchungen der neuen epigenetischen Basen im Arbeitskreis von Prof. Dr. *Thomas Carell* gelegt werden. Hierzu sollte zuerst die "intrinsische" Reaktivität von dC, mdC, hmdC, fdC und cadC bezüglich eines C⁵-C^{exo}-Bindungsbruchs beziehungsweise von Deaminierungs- und Oxidationsreaktionen eruiert werden. Diese Untersuchungen sind für das Entwerfen zukünftiger biologischer Untersuchungen von essentieller Bedeutung. Zum Beispiel könnten so enzymatische Reaktionen von Hintergrundreaktionen, beispielsweise während der Probenpräparation, unterschieden werden.³⁶⁴

Für biologische Experimente sollten darüberhinaus isotopenmarkierte hmdC und cadC-Triphosphate dargestellt werden. Damit sollten längere DNA-Fragmente, die nicht mehr effizient durch DNA-Festphasensynthese erhalten werden können, zugänglich gemacht werden (**Abbildung 5.2**).

Abbildung 5.2: Darzustellendes cadC-Triphosphat und dessen Einbau in DNA-Fragmente mittels der Polymerasen-Kettenreaktion (PCR). Die Isotopenmarkierung ist nicht eingezeichnet. Die blau, grün und gelben Striche symbolisieren dA, dG und dT-Reste des DNA-Fragments. Analog sollten auch isotopenmarkierte, hmdChaltige DNA-Fragmente zugänglich gemacht werden.

5.2 Nachweis und potentieller Mechanismus der Decarboxylierung von cadC in dsDNA *in vitro*

Wie in der vorangegangenen Aufgabenstellung erläutert, sollte massenspektrometrisch untersucht werden, ob Stammzellen 5-Carboxy-2'-desoxycytidin (cadC) zu 2'-Desoxycytidin (dC) decarboxylieren können. Das geplante Experiment ist in **Abbildung 5.3** aufgezeigt.

Abbildung 5.3: Geplantes Isotopenverfolgungsexperiment zum Nachweis der Decarboxylierung von cadC- zu dC-Resten in dsDNA durch Stammzellkernextrakt. Nach Inkubation eines $[^{15}N_2]$ -cadC-haltigen dsDNA-Konstrukts mit Stammzellkernextrakt von Mäuseembryonen (mES) wird die dsDNA mittels einer Biotin-Streptavidin-Interaktion isoliert, enzymatisch zu den Nukleosiden verdaut und per LC-ESI-HR-MS die Bildung von $[^{15}N_2]$ -dC untersucht.

Ein cadC-haltiger DNA-Duplex sollte mit Stammzellkernextrakt inkubiert und mit Hilfe einer Biotin-Streptavidin-Interaktion reisoliert werden (durchgeführt von *Benjamin Hackner*, Arbeitskreis Prof. Dr. *Thomas Carell*). Nach enzymatischem Verdau sollte mittels hochaufgelöster Massenspektrometrie die Bildung von dC, als Produkt der Decarboxylierung von cadC, belegt werden (durchgeführt von *Toni Pfaffeneder*, Arbeitskreis Prof. Dr. *Thomas Carell*). Jedoch dürfte hierbei ein zu großer dC-Hintergrund den eindeutigen Nachweis der Decarboxylierung massiv stören. Ferner könnte zum Beispiel während der Biotin-Streptavidin-Aufreinigung neben dem gewünschten Oligo-2'-desoxynukleotid (ODN) durch unspezifische Interaktionen auch genomische DNA aus den Stammzellkernextrakten koisoliert werden. Da auch die verwendete DNA bereits eine Vielzahl an dC-Resten beinhaltet (siehe zum Beispiel die Sequenz der epigenetisch wichtigen Ecat1-³⁶⁵ oder Oct4-Promotoren³⁶⁶), ist ein potentieller Anstieg der Menge an dC nur schwer nachweisbar. Aus diesem Grund sollten Oligo-2'-desoxynukleotide mit [¹⁵N₂]-markiertem cadC synthetisiert werden, da hierbei durch Decarboxylierung [¹⁵N₂]-markiertes dC gebildet wird, das aufgrund der extrem geringen natürlichen Häufigkeit von [¹⁵N₂]-dC (0.004%), selbst auf einem hohen dC-Hintergrund per hochauflösender Massenspektrometrie zweifelsfrei detektierbar sein müsste.

Deshalb wurde im Zuge dieser Dissertation die Darstellung des für die DNA-Festphasensynthese benötigten [¹⁵N₂]-cadC Phosphoramidits 76, teilweise in Zusammenarbeit mit *Toni* Pfaffeneder (Arbeitskreis Prof. Dr. Thomas Carell) entwickelt (Schema 5.1).³⁶⁷ Hierzu wurde [¹⁵N₂]-markierter Harnstoff 77 und Propinsäure nach *Nui et al.* zum [¹⁵N₂]-markierten Uracil 78 umgesetzt.³⁶⁸ Durch Behandlung mit TMS-Cl und HMDS gefolgt von der in situ Glykosylierung an Hoffers Chlorzucker 79,³⁶⁹ der nach Dierckx et al. ausgehen von 2'-Desoxy-D-ribose in drei Stufen dargestellt wurde,³⁷⁰ konnte das 2'-Desoxyuridin-Derivat 80 isoliert werden.^{371,372} Hierbei konnte das in EtOAc gut lösliche α–Anomer von dem in EtOAc schlecht löslichen β-Anomer 80 durch einfache Filtration selektiv abgetrennt werden. Nach elektrophiler Iodierung mit LiI und Ce(NH₄)₂(NO₃)₆ (CAN)³⁷³ zum 2'-Desoxyuridin-Derivat 81 wurde die N^4 -Amino-Gruppe durch Aktivierung mit 1H-1,2,4-Triazol und POCl₃ und darauf folgender nukleophiler Substitution mit Ammoniak eingeführt,³⁷⁴ so dass das 2'-Desoxycytidin-Derivat 82 erhalten wurde. Hiernach wurden die Toluoyl-Schutzgruppen durch TBS-Reste zu Verbindung 83 ersetzt, um eine effiziente Kreuzkupplungsreaktion zum cadC-Derivat 84 zu ermöglichen.³⁷⁵ Die Schützung der N⁴-Amino-Gruppe erfolgt bei dC-Derivaten meistens durch entsprechende Benz- oder Acetamide (siehe zum Beispiel Münzel et al. 375,376). Jedoch wurde bei Zugabe von Benzoylchlorid in Pyridin ein Gemisch aus Edukt, mono- und bisbenzoyliertem Produkt erhalten. Deshalb wurde untersucht, ob die exozyklische Amino-Gruppe bisbenzoylisch geschützt werden kann, wodurch die Reaktionsführung deutlich vereinfacht werden könnte. Die N^4 -Position wurde folglich als Bisbenzimid 85 geschützt und mit Hilfe von HF zum Nukleosid 86 TBS-entschützt. Der 5'-Hydroxy-Rest wurde selektiv zu Verbindung 87 DMT-geschützt. Zuletzt wurde die äußerst oxidationsempfindliche Phosphoramidit-Funktionalität an der 3'-Hydroxy-Gruppe durch Umsetzen mit Bis[di(isopropyl)amin]-*O*-β-cyanethoxyphosphin **88** und Di(*iso*-propyl)ammoniumtetrazolid **89** nach Standardbedingungen³⁷⁷ eingeführt.

Schema 5.1: Synthese des [¹⁵N₂]-markierten-cadC-Phosphoramidits 76. Reagenzien und Bedingungen: a) Propinsäure, Polyphosphorsäure, 95 °C, 22 h, 39%; b) 1. TMS-Cl, HMDS, 60 °C, 1.5 h; 2. *Hoffers* Chlorzucker 79, CHCl₃, RT, 15 h, 53%; c) LiI, CAN, 80 °C, 75 min, 94%; d) 1. 1*H*-1,2,4-Triazol, POCl₃, TEA, MeCN, 0 °C → 30 °C, 17 h; 2. NH₄OH, 1,4-Dioxan, 30 °C, 15 min, 84%; e) 1. K₂CO₃, MeOH, 40 °C, 15 h; 2. TBS-Cl, Imidazol, Pyridin, 40 °C, 4 d, 83%; f) CO (3.5 bar), [PdCl₂(MeCN)₂], DIPEA, MeOH, 60 °C, 17 h, 67%; g) Bz-Cl, Pyridin, 0 °C → RT, 20.5 h, 81%; h) HF · Pyridin, Pyridin, EtOAc, RT, 14 h, 77%; i) DMT-Cl, Pyridin, 3 Å Molsieb, RT, 16.5 h, 63%; j) **88**, **89**, DCM, RT, 17 h, quant.

Durch diese Reaktionssequenz konnte das $[^{15}N_2]$ -cadC-Phosphoramidit **76** in zehn linearen Stufen erhalten werden.

Das dargestellte [${}^{15}N_2$]-markierte cadC-Phosphoramidit **76** wurde anschließend mittels DNA-Festphasensynthese in zwei zueinander komplementäre Oligo-2'-desoxynukleotide eingebaut, wobei ein Sequenzabschnitt des epigenetisch relevanten Ecat1-Promotors gewählt wurde (**Tabelle 5.1**, siehe zum Beispiel *Ficz et al.*³⁶⁵).

Tabelle 5.1: Synthetisierte, zueinander komplementäre Oligo-2'-desoxynukleotide mit [$^{15}N_2$]-markiertem cadC-Resten zur Untersuchung der potentiellen Decarboxylierung von cadC zu dC in Stammzellkernextrakt. Die Sonderbasen [$^{15}N_2$]-cadC (rot) und 5-Octadiinyl-dU (**Y**) (blau) sind farblich hervorgehoben.

ODN 1	5'-d(CCT TTC CGA AGG GAC GTT GAC <u>caC</u> GG ATG C <u>Y</u> C)-3'
ODN 2	5'-d(GAG CAT CCG GTC AAC GTC CCT TcaCG GAA AGG)-3'

Das Phosphoramidit 76 erzielte durchschnittlich eine Kupplungseffizienz von 98%. Dies verdeutlicht, dass die Ausbeute der DNA-Synthese nicht durch die im Vergleich zum Benzamid sterisch etwas anspruchsvollere Bisbenzimid-Schutzgruppe an der N⁴-Position verringert wurde. Des Weiteren konnte die Bisbenzimid-Schutzgruppe auch gemeinsam mit dem Träger durch Behandlung und den anderen Schutzgruppen mit einer NaOH-Lösung (Methanol/Wasser 4:1) vollständig abgespalten werden, so dass die Schützung der exozyklischen Amino-Gruppe als Imid generell eine gute Alternative zu den Standard-Amid-Schutzgruppen darstellen könnte. Zur leichteren Abtrennung der in geringen Mengen vorkommenden Produkte von Strangabbrüchen (siehe Abbildung 5.4 A) wurde die 5'-DMT-Gruppe erst nach erfolgter HPLC-Aufreinigung abgespalten. Bei einer 200 nmol-Synthese konnten jeweils 80 nmol an ODN 1 und ODN 2 isoliert werden.

Zur Einführung der Biotin-Funktionalität wurde neben dem isotopenmarkierten cadC-Phosphoramidit **76** auch das 5-Octadiinyl-dU-Phosphoramidit **90** (**Schema 5.2**) während der DNA-Festphasensynthese von **ODN 1** eingebaut, welches aus dem TBS-geschützten-IdU **91** nach *Gierlich et al.*³⁷⁸ in vier Stufen zugängliche war. Nach HPLC-Aufreinigung und DMT-Abspaltung wurde nachfolgend das Biotin-Azid **92** mittels Cu(I)-katalysierter^{379,380} *click*-Chemie eingeführt.^{378,381} Nach erneuter HPLC-Aufreinigung (**Abbildung 5.4 A**) wurde das Biotin-modifizierte Oligo-2'-desoxynukleotid mit einer Ausbeute von 36% isoliert. Die DNA wurde per MALDI-TOF (**Abbildung 5.4 B**) und LC-ESI-HR-MS-Analyse des enzymatischen Verdaus charakterisiert (**Abbildung 5.4 C**). Hierzu wurde das Oligo-2'-desoxynukleotid (200 pmol) zuerst per Dialyse entsalzt und daraufhin mit Nuklease S1 das Zucker-Phosphat-Rückgrat gespalten. Die erhaltenen Nukleosidmonophosphate wurden schließlich mit *Antarctic Phosphatase* und *Snake Venom* Phosphodiesterase I zu den entsprechenden Nukleosiden verdaut. Dieses Nukleosidgemisch wurde per LC-ESI-HR-MS analysiert.

Abbildung 5.4: Charakterisierung des ODN 1 mit [${}^{15}N_2$]-markiertem cadC und Biotin-modifizierten Alkin-dU. A) Roh-UV-HPL-Chromatogramm nach Abspaltung des Trägers und der Schutzgruppen mit 5'-DMT (Gradient $0\% \rightarrow 50\%$ Puffer B in 45 min, Fluss 5 mL/min), Einschub: Roh-HPL-Chromatogramm nach *click*-Reaktion mit dem Biotin-Azid (ohne 5'-DMT, Gradient $0\% \rightarrow 30\%$ Puffer B in 45 min, Fluss 5 mL/min); B) Zu A gehöriges MALDI-TOF-Spektrum nach erfolgter Click-Reaktion und HPLC-Aufreinigung; C) UV-Chromatogramm der LC-ESI-HR-MS-Analyse des verdauten ODN 1. Einschub links: Vergrößerung des [${}^{15}N_2$]-cadC-Signals. Einschub rechts: Vergrößerung des Signals des Biotin-modifizierten Alkin-dUs. X = CH₂-NH-CO-C₃H₆. Die weiteren Massen betragen (z = 1): dC: ber.: 228.0979, gef.: 228.0979; dG: ber.: 268.1040, gef.: 268.1040; dA: ber.: 252.1091, gef.: 252.1088; dT: ber.: 243.0975, gef.: 243.0975. Auf eine Angabe der Retentionszeiten wurde der Übersichtlichkeit halber verzichtet.

Abbildung 5.4 C belegt, dass neben den kanonischen Nukleosiden (dC, dG, dA und dT) auch [¹⁵N₂]-markiertes cadC und das Biotin-modifizierte Alkin-dU im DNA-Strang vorhanden sind.

Schema 5.2: Synthese des 5-Octadiinyl-2'-desoxyuridin-Phosphoramidits 90 nach *Gierlich et al.*³⁷⁸ (links) und das, nach erfolgter DNA-Festphasensynthese, modifizierte Biotin-Azid 92 (rechts).

Die synthetisierten, zueinander komplementären Oligo-2'-desoxynukleotide **ODN 1** und **ODN 2** wurden von *Benjamin Hackner* (Arbeitskreis Prof. Dr. *Thomas Carell*) im Zuge seiner Promotion hybridisiert, mit Kernextrakt aus embryonalen Mausstammzellen beziehungsweise Kernextrakt aus Nichtstammzellen^{382,383} (HEK-Zellen als Negativkontrolle) umgesetzt, verdaut und per LC-ESI-HR-MS (Entwicklung der LC-ESI-HR-MS-Methode von *Toni Pfaffeneder*, Arbeitskreis Prof. Dr. *Thomas Carell*) analysiert (Abbildung 5.5).

Bei den Umsetzungen zeigte sich, dass sowohl bei Inkubation des DNA-Duplex in Puffer als auch mit HEK-Zellkernextrakt, bei einer Auflösung R = 60000, die natürliche Isotopologverteilung von 2'-Desoxycytidin mit [$^{13}C_2$], [^{18}O] (*m/z* = 230.1014 u) und [^{15}N , ^{13}C] detektierbar (m/z = 230.0983 u) ist. Insbesonders ist kein Signal für natürlich vorkommendes [¹⁵N₂]-dC detektierbar (Abbildung 5.5 links), selbst wenn deutlich größere DNA-Mengen verdaut werden (2.5 nmol als Negativkontrolle im Vergleich zu 0.9 nmol bei Inkubation mit Kernextrakt aus Mausstammzellen). Wird hingegen der Duplex mit Kernextrakt aus embryonalen Mausstammzellen inkubiert und daraufhin analysiert (Abbildung 5.5 rechts), so ist deutlich ein zusätzliches Signal bei m/z = 230.0913 u zu erkennen (grün). Dieses Signal wurde bei der Retentionszeit von dC detektiert und stimmt sehr gut mit der berechneten exakten Masse des Protonen-Addukts des Molekül-Ions von [¹⁵N₂]-dC überein (m/z = 230.0920 u), das nur aus der Decarboxylierung von [¹⁵N₂]-markiertem cadC resultieren kann. Diese Untersuchungen legen die Schlussfolgerung nahe, dass Kernextrakt aus embryonalen Mausstammzellen in der Lage ist cadC- zu dC-Reste in dsDNA zu decarboxylieren. Dies liefert den ersten Hinweis für die Existenz einer aktiven Demethylierung basierend auf der Oxidation von 5-Methyl-2'-desoxycytidin (mdC) zu cadC und anschließender Decarboxylierung zu dC. Hierdurch könnte auf eine sehr atomökonomische Art und Weise schließlich die Methylgruppe von mdC durch Abspaltung des C1-Körpers Kohlenstoffdioxid aus cadC entfernt werden, ohne dass, wie in der Basenexzisionsreparatur, sowohl die Nukleobase, als auch die 2'-Desoxyribose ausgebaut

werden muss. Ferner wird durch die Decarboxylierung weder eine, wie in der Basenexzisionsreparatur notwendige, potentiell mutagene, abasische Stelle generiert,³⁵⁶ noch erfolgt eine Spaltung des Zucker-Phosphat-Rückgrats,^{355,357,358} was, gerade bei der Demethylierung mdCreicher Sequenzen, die Gefahr der genomischen Instabilität während der epigenetischen Umprogrammierung deutlich reduzieren könnte.³⁵⁹

Abbildung 5.5: Massenspektren der LC-ESI-HR-MS-Analyse der Inkubation des synthetisierten [$^{15}N_2$]-cadChaltigen DNA-Duplex mit Kernextrakt von HEK-Zellen (links) beziehungsweise embryonalen Mausstammzellen (rechts). Die Retentionszeiten sind in min angegeben. Die Auflösung R betrug 60000. Für experimentelle und messtechnische Details siehe *Schiesser et al.*³⁶⁷

Im Folgenden sollte nun ein möglicher Mechanismus der gerade beschriebenen Decarboxylierung von cadC ermittelt werden, wobei dies, aufgrund der meist vielfältigeren und einfacheren Synthese- und Analytikmethoden (wie zum Beispiel NMR-Spektroskopie), zuerst auf der Stufe des bis-TBS-geschützten Nukleosids erfolgen sollte. Hierzu wurde ausgehend von kommerziell erhältlichem 5-Iod-dC das bis-TBS-geschützte 5-Methyloxycarbonyl-2'-desoxycytidin **93** nach *Münzel et al.*³⁷⁵ dargestellt. Durch alkalische Behandlung des Nukleosids **93** wurde der Methylester zur freien Säure **94** verseift. Hierbei konnte jedoch keine spontane Decarboxylierung zum bis-TBS-geschützten dC **95** nachgewiesen werden (**Schema 5.3** oben). Dies könnte darin begründet sein, dass im Zuge der direkten Decarboxylierung zumindest intermediär ein, durch die elektronenschiebende Amino-Gruppe, destabilisiertes Carbanion (siehe zum Beispiel Verbindung **96**) gebildet werden müsste. Dies könnte jedoch durch eine vorgeschaltete Absättigung (Reduktion) der C⁵=C⁶-Doppelbindung vermieden werden, wobei sogar ein, durch die allylische Position, stabilisiertes Carbanion generiert werden würde.

Schema 5.3: Evaluierung eines Decarboxylierungs-Mechanismus von cadC zu dC durch Reduktion der $C^5=C^6$ -Doppelbindung. Reagenzien und Bedingungen: a) LiOH, MeCN/H₂O, RT, 18 h, 92%; b) NaBH₄, MeOH, RT, 20 min, 98%; c) LiOH, MeCN/H₂O, RT, 2 h, 10%; d) DDQ, 1,4-Dioxan, RT, 25 h, 52%.

Somit wurde im Folgenden untersucht, ob durch die Reaktionssequenz Absättigung der $C^5=C^6$ -Doppelbindung/Decarboxylierung/Regenerierung der $C^5=C^6$ -Doppelbindung die Decarboxylierung von **93** stattfinden kann. Hierzu wurde die $C^5=C^6$ -Doppelbindung des bis-TBS-Methylesters **93** mit NaBH₄ zum Dihydro-cadC-Derivat **97** umgesetzt. Interessanterweise konnte NMR-spektroskopisch festgestellt werden, dass die verbleibende Doppelbindung die Konjugation zum Carbonyl-Kohlenstoff des Esters im Vergleich zur Konjugation zum Carbonyl-Kohlenstoff der Harnstoff-Funktionalität bevorzugt (**Schema 5.3** unten). Durch alkalische Behandlung des 3,5-Dihydro-cadC-methylesters **97** konnte in der Tat nach zweistündigem Rühren bei Raumtemperatur schon 10% Decarboxylierung zum 5,6-DihydrodC-Derivat **98** nachgewiesen werden. Im Vergleich hierzu konnte bei alkalischer Behandlung des Methylesters **93**, mit intakter C⁵=C⁶-Doppelbindung, nach 18 h nur die Esterverseifung beobachtet werden. Dies belegt, dass die Absättigung der C⁵=C⁶-Doppelbindung die Decarboxylierung deutlich beschleunigt. Darüber hinaus erfolgte die Decarboxylierung bei gesättigter C⁵-C⁶-Bindung außerordentlich schnell, da die Intermediate **99** und **100**, mit schon gesättigter C⁵-C⁶-Bindung, aber noch nicht erfolgter Decarboxylierung, weder massenspektrometrisch noch NMR-spektroskopisch nachgewiesen werden konnten. Diese sehr schnelle Decarboxylierung könnte zum einen durch die Tautomerisierung des Enamins **99** zur β-Iminocarbonsäure **100** begünstigt sein, da letztere oft im Vergleich zu den korrespondierenden Enaminen und Ketonen deutlich schneller decarboxylieren (siehe zum Beispiel *Guthrie* und *Jordan*³⁸⁴). Zusätzlich könnte die Decarboxylierung über einen meist begünstigten, sechsgliedrigen Übergangszustand verlaufen (vergleiche Pfeile in Verbindung **100**). Durch Oxidation der Dihydro-Verbindung **98** mit DDQ wurde schließlich bis-TBS-geschütztes dC erhalten, dessen Identität durch Vergleich mit unabhängig synthetisiertem bis-TBS-geschütztem dC^{385,386} eindeutig belegt wurde. Diese Untersuchungen zeigen folglich, dass die Decarboxylierung durch die Reaktionssequenz Absättigung (Reduktion) der C⁵=C⁶-Doppelbindung/spontane Decarboxylierung/Regenerierung der C⁵=C⁶-Doppelbindung (durch Oxidation) im Vergleich zur Decarboxylierung mit intakter C⁵=C⁶-Doppelbindung deutlich beschleunigt werden kann.

Im Folgenden sollte nun untersucht werden, ob im Gegensatz zur gerade beschriebenen "permanenten" Absättigung der C⁵=C⁶-Doppelbindung durch Reduktion mit NaBH₄, auch eine transiente Absättigung der C⁵=C⁶-Doppelbindung für die Decarboxylierung ausreichend sein kann. Dies könnte zum Beispiel in Anlehnung an den Mechanismus der C⁵-Cytosin-Methyltransferasen,^{193,194} durch eine *Michael*-Addition eines Nukleophils an Position 6 des Heterozyklus realisiert werden, wobei nach erfolgter Decarboxylierung das Nukleophil unter Regenerierung der C⁵=C⁶-Doppelbindung wieder eliminieren könnte. Biologisch relevant sind hierbei vor allem O-Nukleophile (zum Beispiel Tyrosin), N-Nukleophile (zum Beispiel Lysin) und S-Nukleophile (zum Beispiel Cystein). Somit wurde bis-TBS-geschütztes cadC 94 in O-, N- und S-Nukleophilen (Phenol, Hexylamin und Oktanthiol) bei 50 °C gerührt, wobei auch nach mehreren Tagen keine Decarboxylierung beobachtet werden konnte. Erst bei Zugabe von Imidazol, das in Form von Histidin-Resten häufig in aktiven Zentren von Enzymen zu finden ist, konnte nach eintägigem Rühren in Oktanthiol tatsächlich die Bildung von bis-TBSgeschütztem dC 95 nachgewiesen werden (Schema 5.4). Interessanterweise konnte bei analoger Umsetzung mit Imidazol alleine oder mit einer Kombination aus Phenol beziehungsweise Hexylamin mit Imidazol keine Decarboxylierung beobachtet werden. Nur Oktanthiol und Imidazol zusammen führten zu einer Decarboxylierung unter den untersuchten Reaktionsbedingungen.

Mechanistisch dürfte hierbei Oktanthiol das *Michael*-System der Nukleobase an Position 6 angreifen, wodurch die $C^5=C^6$ -Doppelbindung transient abgesättigt wird und die Decarboxylierung erfolgt. Gleichzeitig mit der Decarboxylierung (graue Pfeile in **Schema 5.4**) oder in einem separaten zweiten Schritt (schwarze Pfeile in **Schema 5.4**) könnte Oktanthiol wieder eliminieren wodurch die C⁵=C⁶-Doppelbindung regeneriert wird. Imidazol dürfte hierbei als Katalysator fungieren, da zum Beispiel *Chan et al.* zeigen konnten, dass Verbindungen mit einer Amidin-Funktionalität, die *Michael*-Addition von Thiolen katalysieren können.³⁸⁷ Ferner könnte Imidazol die Decarboxylierung katalysieren, da zum Beispiel *Thalji et al.* nachweisen konnten, dass β-Iminocarbonsäuren in Anwesenheit von Aminen deutlich schneller decarboxylieren.³⁸⁸ Des Weiteren könnte Imidazol die Tautomerisierung der Amino-Gruppe an Position 4 zur Imino-Funktionalität katalysieren.

Schema 5.4: Evaluierung eines Decarboxylierungs-Mechanismus von cadC zu dC durch eine transiente *Michael*-Addition von S-Nukleophilen. Reagenzien und Bedingung: a) Oktanthiol, Imidazol, 50 °C, 20 h, 55%.

Eine transiente Absättigung der C⁵=C⁶-Doppelbindung mittels eines nukleophilen Angriffs auf das *Michael*-System an Position 6 der Nukleobase kann somit zu einer Decarboxylierung führen. Eine potentielle Decarboxylase könnte über solch einen Mechanismus funktionieren, da mit Cystein- als auch Histidin-Resten sowohl ein nukleophiles Thiol als auch ein Imidazol-Rest im aktiven Zentrum eines Enzyms vorhanden sein könnten. Zur Simulation einer potentiellen Enzymreaktion, wurde folglich die Decarboxylierung von caC-Resten in DNA durch Aminosäuren untersucht. So wurde **ODN 2** mit verschiedenen Aminosäure-Derivaten inkubiert, enzymatisch verdaut und per LC-ESI-HR-MS analysiert (**Abbildung 5.6 A**). Hierzu wurden N^{α} -geschützte Aminosäuren verwendet, da die Aminogruppen der Proteinseitenketten auch acyliert vorliegen. Die freie Säuregruppe musste jedoch aufgrund der ansonsten zu geringen Löslichkeit in Wasser beibehalten werden. Analog zu oben erläuterten Studien mit Oktanthiol konnte bei alleiniger Inkubation von **ODN 2** mit L- N^{α} -Acetylcystein kein [¹⁵N₂]-dC detektiert werden (**Abbildung 5.6 B** links).

Abbildung 5.6: Evaluierung eines Decarboxylierungs-Mechanismus von cadC zu dC durch eine transiente *Michael*-Addition von Aminosäure-Derivaten. A) ODN 2 wurde mit Aminosäure-Derivaten bei pH 6.0 inkubiert, isoliert, enzymatisch verdaut und per LC-ESI-HR-MS analysiert; B) Bei Inkubation mit N^{α} -Acetylcystein bei pH 6.0 konnte keine Bildung von [¹⁵N₂]-dC nachgewiesen werden (links), während in Kombination mit N^{α} -Boc-histidin (bei pH 6.0) die Decarboxylierung detektiert werden konnte (rechts). Die Retentionszeiten sind in min angegeben. Die Auflösung R betrug 60000. Für experimentelle und messtechnische Details siehe *Schiesser et al.*³⁶⁷

Bei gleichzeitiger Inkubation mit L- N^{α} -Acetylcystein und N^{α} -Boc-geschütztem L-Histidin konnte hingegen ein Signal für [¹⁵N₂]-dC nachgewiesen werden (**Abbildung 5.6 B** rechts). Hierfür waren jedoch hohe Konzentrationen an Aminosäure-Derivaten notwendig (0.5 M L- N^{α} -Acetylcystein, 0.2 M N^{α} -Boc-L-histidin), die im zellulären Medium eher unwahrscheinlich sind. In aktiven Zentren von Enzymen können jedoch, aufgrund des sehr kleinen Volumens von oft <10nm³,³⁸⁹ hohe effektive molare Konzentrationen realisiert werden. So entspricht zum Beispiel ein Aminosäurerest in einem Volumen von 10 nm³ einer Konzentration von 1.7 M. Dies zeigt, dass die Decarboxylierung von cadC in DNA durch das Zusammenspiel eines Cystein- und eines Histidin-Rests erfolgen kann, was erste Rückschlüsse auf das aktive Zentrum einer potentiell existierenden Decarboxylase zulässt.

Interessanterweise ist die in der Einleitung erläuterte Einführung der Methyl-Gruppe an Position 5 von dC in DNA sehr ähnlich zu dem hier postulierten Mechanismus der aktiven Demethylierung. So erfolgt die Methylierung ebenfalls über den Angriff eines Cystein-Rests an Position 6 der Nukleobase, wodurch die $C^5=C^6$ -Doppelbindung transient abgesättigt wird. Anstelle der Decarboxylierung findet hier die Methylierung an Position 5 statt, die analog zu oben von der Regenerierung der $C^5=C^6$ -Doppelbindung durch Eliminierung des Cystein-Rests gefolgt ist (für einen Übersichtsartikel zum Mechanismus der DNA-Methylierung durch Dnmts siehe *Jeltsch*¹⁸⁷). Dies könnte darauf hindeuten, dass sowohl die DNA-Methylierung als auch die aktive Demethylierung nach einem sehr ähnlichen Mechanismus verlaufen und damit die beteiligten Enzyme sehr eng miteinander verknüpft sein könnten, was die Identifizierung der potentiellen Decarboxylase erheblich vereinfachen könnte.

5.3 Vergleich der Effizienz des C⁵-C^{exo}-Bindungsbruchs der Decarboxylierung von cadC mit der Deformylierung von fdC und der Dehydroxymethylierung von hmdC

Im vorangegangenen Kapitel konnte ein Hinweis gefunden werden, dass Kernextrakte aus Mausstammzellen caC in dsDNA zu C decarboxylieren können. Ferner wurde gezeigt, dass hierbei die zumindest transiente Absättigung der C⁵=C⁶-Doppelbindung von hoher Bedeutung zu sein scheint, so dass die Decarboxylierung durch die Reaktionssequenz Absättigung der C⁵-C⁶-Doppelbindung/spontane Decarboxylierung/Regenerierung der C⁵=C⁶-Doppelbindung mechanistisch erklärt werden kann. Neben der Decarboxylierung von caC in DNA könnte jedoch auch die Dehydroxymethylierung von hmC (siehe zum Beispiel den Übersichtsartikel von *Wu* und *Zhang*²²⁰) beziehungsweise die Deformylierung von fC zur Spaltung der C⁵-C^{exo}-Bindung biologisch relevant sein. So konnten *Liutkevičiūtė et al.* zeigen, dass *in vitro* eine C^5 -Methyltransferasen-Mutante auch die Dehydroxymethylierung von hmdC zu dC, potentiell wiederum durch die Absättigung der C⁵=C⁶-Doppelbindung, katalysieren kann (**Schema 5.5**).²⁷³

Schema 5.5: Möglicher Mechanismus einer Dehydroxymethylierung von hmdC-Derivaten. Nach Addition eines Nukleophils NuH an Position 6 der Nukleobase könnte analog zur Decarboxylierung nach Tautomerisierung zum Imin ein sechsgliedrigen Übergangszustand formuliert werden (schwarze Pfeile), wobei daraufhin das Nukleophil eliminiert und die C⁵=C⁶-Doppelbindung regeneriert wird. Alternativ könnte die Dehydroxymethylierung auch zu einer gleichzeitigen Eliminierung des Nukleophils führen (graue Pfeile).

Die Dehydroxymethylierung von hmdC durch Absättigung der C⁵=C⁶-Doppelbindung wurde ferner von *Hamm et al.* und *Zhang* und *Wu* postuliert.^{220,230}

Des Weiteren wäre eine Deformylierung von fdC³⁶³ durch Hydratisieren der Formyl-Gruppe, gefolgt von einer zu cadC analogen Reaktionssequenz denkbar (**Schema 5.6**).³⁶² So wird die Deformylierung von fdC nach Angriff von Bisulfit an Position 6 der Nukleobase im Zuge der Bisulfitsequenzierung erklärt (siehe zum Beispiel *Kriukienė et al.*³⁹⁰ und *Booth et al.*³⁶²). Folglich sollte nun untersucht werden, welcher der drei Mechanismen (Dehydroxymethylierung, Deformylierung und Decarboxylierung) am besten geeignet ist, um den C⁵-C^{exo}-Bindungsbruch am effizientesten durchzuführen. Deshalb sollte im Folgenden analog zu **Schema 5.3** untersucht werden, inwieweit die Absättigung der C⁵=C⁶-Doppelbindung eine potentielle C⁵-C^{exo}-Bindungsspaltung (Dehydroxymethylierung von hmdC- beziehungsweise Deformylierung von fdC-Derivaten) begünstigt. Hierzu wurde bis-TBS-geschütztes fdC **101** und hmdC **102** ausgehend von 5-Iod-dC nach *Münzel et al.* dargestellt.^{375,376} Die C⁵=C⁶-Doppelbindung des bis-TBS-geschützten hmdC-Derivats **102**, des bis-TBS-geschützten fdC-Derivats **101** und des schon im vorherigen Kapitel dargestellten bis-TBS-geschützten cadC-Derivats **94** wurde jeweils mit Wasserstoff unter Verwendung des *Pearlman*-Katalysators gesättigt.

Schema 5.6: Möglicher Mechanismus der Deformylierung von fdC-Derivaten nach Hydratisierung der Formyl-Gruppe. Nach Addition eines Nukleophils (NuH) an Position 6 der Nukleobase und Hydratisierung der Formyl-Funktionalität könnte analog zur Decarboxylierung nach Tautomerisierung zum Imin ein sechsgliedrigen Übergangszustand formuliert werden (schwarze Pfeile), wobei daraufhin das Nukleophil eliminiert und die $C^5=C^6$ -Doppelbindung regeneriert wird. Alternativ könnte die Deformylierung auch zu einer gleichzeitigen Eliminierung des Nukleophils führen (graue Pfeile). Alternativ zur Hydratisierung wäre auch der Angriff des Nukleophils an der Formyl-Gruppe denkbar (aus Gründen der Übersichtlichkeit nicht abgebildet).³⁶²

Hierbei erfolgt analog zu **Schema 5.3** die sofortige Decarboxylierung der cadC-Verbindung **94** zum 5,6-Dihydro-dC-Derivat **98** in 98%iger Ausbeute, ohne dass massenspektrometrisch oder per NMR-Spektroskopie das 3,6-Dihydro-cadC-Intermediat detektiert werden konnte (**Abbildung 5.7**). Dies unterstreicht nochmals die immens hohe Triebkraft der Decarboxylierung von cadC bei gesättigter C⁵-C⁶-Bindung. Im Gegensatz hierzu konnte bei der analogen Reduktion des fdC-Derivats **101**, neben 19% bereits deformyliertem Produkt **98**, sehr wohl auch die 3,5-Dihydro-fdC-Verbindung **103** mit einer Ausbeute von 40% isoliert werden. Interessanterweise ist hierbei die verbleibende Doppelbindung analog zum cadC-Derivat **97** nicht zum Kohlenstoff der Harnstoff-Funktionalität, sondern zum Aldehyd-Kohlenstoff konjugiert. Somit kann durch Sättigung der C⁵=C⁶-Doppelbindung wohl eine Deformylierung erfolgen, die jedoch bei weitem nicht so schnell verläuft wie beim entsprechenden cadC-Derivat. Die analoge Umsetzung des bis-TBS-geschützten hmdC-Derivats **102** führte in 66%iger Ausbeute zu einem Gemisch zweier Diastereomere **104**, die sich in der Konfiguration an C⁵ unterscheiden. Eine Dehydroxymethylierung konnte hierbei nicht nachgewiesen werden.

Abbildung 5.7: Untersuchungen zur Stabilität der Dihydro-Derivate von hmdC, fdC und cadC. Reagenzien und Bedingungen: a) Pd(OH)₂/C/H₂ (1 bar), MeOH, RT, 4 h (für 94), 10.5 h (für 101), 9 h (für 102).

Eine ähnliche Reaktivitätsabstufung wurde auch bei der Umsetzung von 101, 102 und 94 mit einem β -Mercaptoethanol/Imidazol-Gemisch ähnlich zu Schema 5.4 gefunden (Abbildung 5.8).

Abbildung 5.8: Vergleich des C⁵-C^{exo}-Bindungsbruchs von bis-TBS-geschütztem hmdC, fdC und cadC in einer Thiol/Imidazol-Mischung. Reagenzien und Bedingung: a) 0.12 mM Nukleosid, 90% β -Mercaptoethanol, 0.35 mM Imidazol, 50 °C, 24 h.

Die Umsetzung von cadC-Derivat 94 ergab 51% Decarboxylierung, während eine analoge Umsetzung mit der fdC-Verbindung 101 eine um eine Größenordnung geringere De-

formylierung von 4% ergab. Bei der Reaktion von β -Mercaptoethanol mit dem hmdC-Derivat **102** konnte nach eintägiger Reaktionszeit nur das Edukt reisoliert werden, ohne Hinweise auf eine Dehydroxymethylierung (**Abbildung 5.8**). Die Bildung eines potentiell störenden, stabilen Thiovollacetals unter Beteiligung der Formyl-Gruppe von **101** konnte nicht beobachtet werden.

Im Folgenden sollte untersucht werden, ob die gerade ermittelte Reaktivitätsabfolge der C^5 - C^{exo} -Bindungsspaltung (cadC > fdC > hmdC) auch in doppelsträngiger DNA gefunden werden kann (Arbeitsablauf siehe **Abbildung 5.9**).

Abbildung 5.9: Vorgehensweise zur Quantifizierung des C⁵-C^{exo}-Bindungsbruchs, der Deaminierung zu den 2'-Desoxyuridin-Derivaten und der Oxidation von hmdC zu fdC und von fdC zu cadC in DNA-Haarnadelstrukturen in Anwesenheit eines β -Mercaptoethanol/Imidazol-Gemisches. Die kanonischen Nukleoside (außer dC) und isotopenmarkierten Standards sind aus Gründen der Übersichtlichkeit nicht abgebildet. β -ME = β -Mercaptoethanol, Im = Imidazol.

Gleichzeitig wurde untersucht, ob die C⁵-C^{exo}-Bindungsspaltung auch die bevorzugte Reaktion der Nukleobase nach Absättigung der C⁵=C⁶-Doppelbindung darstellt, was grundlegend für eine aktive Demethylierung über einen C⁵-C^{exo}-Bindungsbruch ist. Aus diesem Grund wurde auch eine potentiell stattfindende Deaminierung an Position 4 zu den entsprechenden 2'-Desoxyuridin-Derivaten und die Oxidation von hmdC zu fdC beziehungsweise von fdC zu cadC (siehe zum Beispiel *Wagner* und *Cadet*²⁵⁶ oder *Bienvenu et al.*²⁵⁷) untersucht. Ferner wurden verschiedene Thiol-Konzentrationen, Temperaturen, pH-Werte und Sequenzen untersucht, um zu eruieren, ob die beobachtete Reaktivität der Nukleoside für mehrere unterschiedliche Bedingungen gültig ist.

Jeweils eines der hmdC-, fdC oder cadC-Phosphoramidite^{375,376} wurde vierfach mittels DNA-Festphasensynthese in einen biologisch relevanten d(CpG)-Kontext selbstkomplementärer DNA-Haarnadelstrukturen eingebaut (Sequenzen siehe **Abbildung 5.9**). DNA-Haarnadelstrukturen bieten hierbei die Möglichkeit doppelsträngige DNA-Bereiche zu erhalten, ohne lange DNA-Stränge synthetisieren zu müssen. Die synthetisierten DNA-Haarnadelstrukturen wurden per MALDI-TOF-Massenspektrometrie charakterisiert (Daten nicht gezeigt). Die Schmelzpunkte der drei Haarnadelstrukturen lagen sowohl bei pH 5.0 als auch bei pH 7.4 über 74 °C, so dass bei den im Folgenden durchgeführten Untersuchungen bei 37 °C und 50 °C von stabilen DNA-Duplexen ausgegangen werden kann (**Tabelle 5.2**).

Tabelle 5.2: Mittels UV-Vis-Spektroskopie ermittelte Schmelzpunkte der DNA-Haarnadelstrukturen **ODN 3**–**ODN 5** bei pH 5.0 und pH 7.4. Für die genaue Durchführung der Messungen und deren Analyse siehe Kapitel 6.1 "Material und Methoden".

	Т _М (рН 5.0) [°С]	Т _М (рН 7.4) [°С]
ODN 3	76.4	78.6
ODN 4	74.8	76.6
ODN 5	75.2	77.0

Die Umsetzungen der DNA-Haarnadelstrukturen wurden anstatt mit Aminosäure-Derivaten mit β -Mercaptoethanol/Imidazol-Mischungen durchgeführt, da diese während der Probenisolation deutlich leichter abzutrennen waren. Die nach der Inkubation erhaltene DNA wurde enzymatisch verdaut und das resultierende Nukleosidgemisch per UHPLC-MS/MS-Massenspektrometrie an einem Triplequadrupol-Massenspektrometer analysiert. *Toni Pfaffeneder* (Arbeitskreis Prof. Dr. *Thomas Carell*) konnte hierbei mit der während seiner Promotion entwickelten Methode der Quantifizierung verschiedenster dC- und dU-Derivate mittels Isotopenverdünnung alle Reaktionsprodukte in einem analytischen Lauf parallel quantifizieren. Hierzu wurde vor dem enzymatischen Verdau der DNA eine genau definierte Menge eines isotopenmarkierten Standards des jeweiligen zu quantifizierenden Nukleosids zugegeben (*spiking*).³⁹¹ Durch Vergleich der Integrale der Massensignale des zu analysierenden Nukleosids und seines isotopenmarkierten Standards kann daraufhin die Menge an gebildetem Nukleosid ermittelt werden. Durch dieses Vorgehen können Unregelmäßigkeiten bei der Ionisierung der Nukleoside, zum Beispiel durch Ionensuppressionseffekte der Probenmatrix oder technische Schwankungen, korrigiert werden.³⁹²⁻³⁹⁵

Zur Ermittlung der optimalen Reaktionsbedingungen für die Analyse des C⁵-C^{exo}-Bindungsbruchs wurde zuerst die Decarboxylierung der DNA-Haarnadel **ODN 5** bei verschiedenen pH-Werten, Temperaturen und Konzentrationen an β -Mercaptoethanol und Imidazol untersucht (**Abbildung 5.10 A**). Hierzu wurde **ODN 5** wie in **Abbildung 5.9** gezeigt behandelt und analysiert. Die Identität des jeweiligen Nukleosids wurde durch die charakteristische Retentionszeit und das typische Fragmentierungsmuster ermittelt (siehe hierzu *Schiesser et al.*³⁹⁴) Die Mengen an detektierten Nukleosiden wurden auf das ebenfalls quantifizierte 2'-Desoxythymidin (dT) normiert. Die Rohdaten der Quantifizierung und die Berechnungen der Nukleosidmengen sind im Appendix aufgeführt.

So sind nach zweitägiger Inkubation von **ODN 5** in 80%igem β -Mercaptoethanol (in Anwesenheit von Imidazol) bei 50 °C schon 28% der cadC-Reste decarboxyliert (**Abbildung** 5.10 A).

Abbildung 5.10: Vergleich des C⁵-C^{exo}-Bindungsbruchs von hmdC- (ODN 3), fdC- (ODN 4) und cadC (ODN 5)-haltigen Haarnadelstrukturen. A) Quantifizierung der Decarboxylierung von caC-Resten in ODN 5 bei verschiedenen Konzentrationen von β -Mercaptoethanol und Imidazol in Abhängigkeit vom pH-Wert und der Temperatur, B) Vergleich des C⁵-C^{exo}-Bindungsbruchs von hmdC- (ODN 3), fdC- (ODN 4) und cadC (ODN 5)-haltigen Haarnadelstrukturen bei verschiedenen Konzentrationen an β -Mercaptoethanol und Imidazol bei 50 °C und pH 5.0. Alle Messpunkte im grau unterlegten Bereich befinden sich unter der unteren Quantifizierungsgrenze und können somit nicht für eine weitere Diskussion herangezogen werden. Rot: Decarboxylierung von cadC zu dC, grün: Deformylierung von fdC zu dC, blau: Dehydroxymethylierung von hmdC zu dC.

Die Abnahme der Decarboxylierung bei geringer werdender Konzentration an β -Mercaptoethanol belegt erneut, dass es sich hierbei um eine Thiol-induzierte Reaktion handelt. Durch Senken der Temperatur auf 37 °C ist eine um den Faktor vier geringere Decarboxylierung von 7% zu beobachten, wobei diese wiederum mit sinkender Thiolkonzentration abnimmt. Bei einem erhöhten pH-Wert von pH 7.4 ist eine deutlich geringere Decarboxylierung zu verzeichnen als bei den analogen Umsetzungen bei pH 5.0. Dies weist auf einen Protonen-katalysierten Mechanismus der Decarboxylierung hin, was zum Beispiel durch eine mittels Protonierung der Nukleobase begünstigte *Michael*-Addition des Thiols erklärt werden könnte. Somit kann spekuliert werden, dass sich im aktiven Zentrum einer potentiellen Decarboxylase neben einem Cystein- und einem Histidin-Rest auch Aminosäuren mit sauren Seitenketten befinden könnten, wie zum Beispiel der Glutaminsäure der in Kapitel 3.2.1 erläuterten Kristallstruktur eines DNA-Duplex mit der *C*⁶-Cytosin-Methyltransferase *Hha*I (siehe **Abbildung** 3.13).

Somit wurde für den folgenden Vergleich der C⁵-C^{exo}-Bindungsspaltung von hmdC-, fdCund cadC-haltigen DNA-Haarnadelstrukturen 2 Tage bei 50 °C und pH 5.0 inkubiert, um einen ausreichend großen Umsatz zu erzielen (Abbildung 5.10 B). Hierbei kann nach zweitägiger Inkubation des fdC-haltigen ODN 4 in 80% β-Mercaptoethanol (in Anwesenheit von Imidazol) die Bildung von 2.5% dC nachgewiesen werden, so dass die Deformylierung unter diesen Bedingungen analog zu den Nukleosidstudien in Abbildung 5.8 um mehr als eine Größenordnung weniger effizient ist als die Decarboxylierung von cadC-Resten. Darüber hinaus dürfte die tatsächliche Deformylierung sogar noch etwas geringer sein, da unter diesen Bedingungen durch Oxidation von fdC 7.0% cadC gebildet wurde (vide infra), das durch Decarboxylierung ebenfalls zu dC reagiert. Die Deformylierung könnte jedoch durch eine potentiell präferierte Reaktion des β-Mercaptoethanols mit der Formyl-Gruppe anstelle der Position 6 des fdCs unter Ausbildung eines Thiovollacetal unterdrückt werden. Folglich wurde der Thiovollacetal-Standard 105 ausgehend von O^{3'}, O^{5'}-Bis(*tert*-butyldimethylsilyl)-5-formyl-2'desoxycytidin,³⁷⁵ dargestellt (Schema 5.7). Mit Hilfe der hiermit ermittelten Retentionszeit und des Fragmentierungsmusters konnte in allen durchgeführten Umsetzungen von fdChaltigen Haarnadelstrukturen mit
ß-Mercaptoethanol (und Imidazol) die Bildung des Thiovollacetals massenspektrometrisch ausgeschlossen werden, so dass die Deformylierung nicht durch die Bildung des Thiovollacetals behindert wurde. Bei Erhöhung des pH-Werts auf pH 7.4 oder Vermindern der Temperatur auf 37 °C konnte keine Deformylierung mehr beobachtet werden.

Schema 5.7: Synthese des Thiovollacetals **105**. Reagenzien und Bedingung: a) $HC(OEt)_3$, TBABr₃, β -Mercaptoethanol, RT, 4.5 h, 46%. TBABr₃ = Tetrabutylammoniumtribromid.

Bei zweitägiger Inkubation des hmdC-haltigen **ODN 3** in 80% β-Mercaptoethanol konnte nur 0.5% dC nachgewiesen werden, was die Dehydroxymethylierung als Reaktionsweg zum C⁵-C^{exo}-Bindungsbruch als am wenigsten geeignet erscheinen lässt. Wiederum müsste die tatsächliche Dehydroxymethylierung etwas geringer sein, da durch Oxidation von hmdC 19.3% fdC (*vide infra*) und 1.6% cadC (*vide infra*) gebildet wurden, die ebenfalls zu dC reagieren können. Deutlich höhere Ausbeuten an Dehydroxymethylierung konnten jedoch von *Liutkevičiūtė et al.* bei Verwendung von speziellen Methyltransferasen, beziehungsweise durch *Privat* und *Sowers* unter photohydratisierenden Bedingungen erhalten werden.^{273,396} Bei Erhöhung des pH-Werts auf pH 7.4 oder Vermindern der Temperatur auf 37 °C konnte auch bei Inkubation in 80%igem β-Mercaptoethanol (in Anwesenheit von Imidazol) keine Dehydroxymethylierung detektiert werden. Somit konnten die bei den Nukleosid-Untersuchung gefundene Reaktivitätsabfolge (cadC > fdC > hmdC), zumindest unter den untersuchten Bedingungen, auch in doppelsträngiger DNA wiedergefunden werden.

Im Folgenden wurde nun untersucht, ob diese gefundene Reaktivitätsabfolge auch in einem nicht d(CpG)-Kontext vorhanden ist. Zusätzlich sollte der C⁵-C^{exo}-Bindungsbruch mit einer potentiell stattfindenden Deaminierung an Position 4 der Nukleobase verglichen werden. Hierzu wurden zusätzlich Haarnadelstrukturen synthetisiert, die hmdC- (**ODN 6**), fdC- (**ODN 7**) und cadC-Reste (**ODN 8**) in einem nicht d(CpG)-Kontext (d(CpNpG), N = A oder T) beinhalten (**Abbildung 5.11 A**). **ODN 2–ODN 8** wurden wiederum in 80%igem β -Mercaptoethanol (in Anwesenheit von Imidazol) 2 Tage bei 50 °C inkubiert, reisoliert und per Isotopenverdünnungsmethode analysiert (**Abbildung 5.11 B**). Hierbei ist zu erkennen, dass die Reaktivitätsabfolge (cadC > fdC > hmdC), zumindest bei den untersuchten Sequenzen und Bedingungen, unabhängig davon ist, ob sich die hmdC-, fdC- oder cadC-Reste in einem d(CpG)-Kontext befinden, wobei jeweils der C⁵-C^{exo} Bindungsbruch im d(CpNpG)-Kontext etwas effizienter verläuft.

Teil 2 - Vergleich der Effizienz des C⁵-C^{exo}-Bindungsbruchs der Decarboxylierung von cadC mit der Deformylierung von fdC und der Dehydroxymethylierung von hmdC

Abbildung 5.11: Vergleich des C⁵-C^{exo}-Bindungsbruchs und der Deaminierung an Position 4 der Nukleobase von hmdC-, fdC- und cadC-haltigen DNA-Haarnadelstrukturen in Abhängigkeit vom Sequenzkontext. A) Synthetisierte DNA-Haarnadelstrukturen mit d(CpG)-Kontext (ODN 3, ODN 4, ODN 5) und nicht-d(CpG)-Kontext (d(CpNpG), ODN 6, ODN 7, ODN 8); B) Quantifizierung des C⁵-C^{exo}-Bindungsbruchs und der Deaminierung an Position 4 in ODN 3–ODN 8. Jeder Wert ist der Mittelwert dreier voneinander unabhängiger Messungen. Die Fehlerbalken geben die experimentellen Standardabweichungen an.

Interessanterweise konnte sowohl bei hmdC- als bei auch fdC-haltigen Haarnadelstrukturen die jeweiligen Deaminierungsprodukte hmdU (0.30% im d(CpG)- und 0.39% im d(CpNpG)-Kontext) beziehungsweise fdU (0.14% im d(CpG)- und 0.23% im d(CpNpG)-Kontext) nachgewiesen werden, wobei jedoch deutlich mehr C⁵-C^{exo}-Bindungsbruch detektiert werden konnte. Die Deaminierung von cadC zu cadU konnte nicht detektiert werden, da anscheinend der nukleophile Angriff von Wasser auf die Position 4 der Nukleobase durch die negativgeladene Carboxy-Gruppe zu stark erschwert ist.

Somit zeigen diese Untersuchungen, dass durch den Angriff des Thiols an Position 6 der Nukleobase die Position 5 im Vergleich zur Position 4 deutlich stärker aktiviert wird, so dass der C⁵-C^{exo}-Bindungsbruch gegenüber der Deaminierung als deutlich bevorzugte Reaktion von cadC-Resten in dsDNA beobachtet wurde (38% cadC noch intaktes cadC wurden reisoliert). Die fehlenden 34% könnten zumindest zum Teil auf eine Zersetzung der DNA unter den verwendeten sauren Bedingungen, zum Beispiel durch eine Depyrimidierung, erklärt werden.
Bei Inkubation der DNA-Haarnadelstrukturen bei 50 °C und pH 5.0 fiel eine sehr hohe Oxidation von hmdC- zum fdC in **ODN 3** auf (19.3%), während die Oxidation des fdC- zum cadC-Rest in **ODN 4** nur 7.0% betrug (**Abbildung 5.12 A**). Hierbei nahm die Menge an oxidiertem Produkt wiederum jeweils mit sinkender Thiolkonzentration ab.

Abbildung 5.12: Untersuchungen zur Oxidation von hmdC, fdC und dG bei Inkubation von ODN 3 und ODN 4 in 80% β -Mercaptoethanol (in Anwesenheit von Imidazol) bei 50 °C und pH 5.0 (blau). A) Quantifizierte Ausbeute (linke Ordinate) der Oxidation von hmdC zu fdC (blau), fdC zu cadC (grün) und dG zu 8-oxo-dG (schwarz, alle drei linke Ordinate) und Massenintegral des C^{exo}-Thiol-Addukts 106 (orange, rechte Ordinate). Durch Decarboxylierung von cadC beziehungsweise Deformylierung von fdC könnten die gemessenen Werte um absolut 0.5–2.5% unter dem tatsächlichem Niveau liegen; B) Mittels Massenspektrometrie nachgewiesenes C^{exo}-Thiol-Addukt 106, R = CH₂CH₂OH.

Des Weiteren ändert sich im Vergleich hierzu die Menge an 8-oxo-dG, einem oft verwendeten Marker für reaktive Sauerstoffspezies, (siehe zum Beispiel *Ravanat et al.*,³⁶⁴ beziehungsweise *Helbock et al.*³⁹⁷), das sich durch Oxidation von dG-Resten in **ODN 3** bildet, nur unwesentlich, was auf eine parallel stattfindende Thiol-induzierte Oxidation von hmdC zu fdC hindeutet. Ferner konnte das von der *Klimašauskas*-Gruppe beschriebene C^{exo}-Thiol-Addukt³⁹⁸ **106** massenspektrometrisch nachgewiesen werden (**Abbildung 5.12 B**). Ein analoges 5-Methylensulfonat-Addukt wurde auch von *Hayatsu* und *Shiragami* bei Behandlung der Nukleobase hmC mit Bisulfit nachgewiesen.³⁹⁹

Somit konnte durch Umsetzungen von hmdC-, fdC- und cadC-Nukleosiden und hmdC-, fdCund cadC-haltiger DNA-Haarnadelstrukturen gezeigt werden, dass die Decarboxylierung von cadC, unter den untersuchten Bedingungen, in Anwesenheit von Thiolen deutlich effizienter verläuft, als die Deformylierung von fdC- und die Dehydroxymethylierung von hmdC-Resten. Ferner ist der C⁵-C^{exo}-Bindungsbruch bei allen drei Nukleosiden gegenüber einer Deaminierung an Position 4 der Nukleobase bevorzugt. Aufgrund der Tatsache, dass *Ito et al.* zeigen konnten, dass die enzymatische Oxidation von hmdC zu fdC nur geringfügig schneller ist als die Oxidation von fdC zu cadC,²⁵⁵ legen obige Untersuchungen nahe, dass die Oxidation von hmdC zu cadC in DNA durch die Tet-Enzyme, gefolgt von der äußerst effizienten Decarboxylierung aus chemischer Sicht eine sehr attraktive Alternative zur Basenexzisionsreparatur im Zuge der aktiven Demethylierung von mdC darstellt. Biologisch gesehen könnte die Decarboxylierung ebenfalls gegenüber der Deformylierung beziehungsweise der Dehydroxymethylierung präferiert sein, da hierbei nur Kohlendioxid als Nebenprodukt gebildet werden dürfte. Dies ist eine der Zelle, zum Beispiel aus dem Energiestoffwechsel, bekannte Verbindung, während im Zuge der Deformylierung und Dehydroxymethylierung die ätzend wirkende Ameisensäure beziehungsweise das toxische und hochreaktive Formaldehyd als potentiell problematischere Nebenprodukte generiert werden.

5.4 Messung der Geschwindigkeitskonstanten des C⁵-C^{exo}-Bindungsbruchs, der Deaminierungs- und Oxidationsreaktionen verschiedener dC-Derivate

Neben den gerade erläuterten Untersuchungen zur Reaktivität der neuen Nukleobasen in Gegenwart von Thiolen, wurde im Folgenden die intrinsische Reaktivität und deren Reaktionsraten von dC, mdC, hmdC, fdC und cadC bezüglich des C⁵-C^{exo}-Bindungsbruchs, der Deaminierung an Position 4 der Nukleobase und der Oxidation in reinem Puffer ohne Zugabe spezieller Nukleophile (außer Wasser und Acetat des Puffers) in Abwesenheit von Thiolen untersucht.³⁹⁴ Diese Untersuchungen sind von immenser Bedeutung, um enzymatisch bedingte Reaktionen, wie zum Beispiel den C⁵-C^{exo}-Bindungsbruch oder Deaminierungen, von Nebenreaktionen während der Probenpräparation und -analyse unterscheiden zu können.³⁶⁴ Hierzu wurde ein vereinfachter experimenteller Ansatz gewählt, bei dem 10 mM Nukleosid-Lösungen in 18 mM Natriumphosphat-Puffer (pH 7.4) bei verschiedenen Temperaturen inkubiert und nach bestimmten Zeitintervallen Proben und die Nukleosidmischung mittels der oben erwähnten Isotopenverdünnungsmethode³⁹⁴ massenspektrometrisch analysiert. Durch diese Vorgehensweise konnte mit einer Nukleosid-Lösung gleichzeitig die Kinetik des C⁵-C^{exo}-Bindungsbruchs, der Deaminierung an Position 4 der Nukleobase und der Oxidationsreaktionen quantifiziert werden. Hierbei wurden von jedem Messpunkt drei voneinander unabhängige Messungen angefertigt. Die Menge der gebildeten Reaktionsprodukte wurde auf die ebenfalls quantifizierte Menge des zurückgewonnenen Edukts normiert. Hierdurch konnten kleine Schwankungen bei der Probenentnahme sowie die geringfügige Verdunstung des Wassers während der Reaktion berücksichtigt werden.³⁹⁴

5.4.1 Messung der Geschwindigkeitskonstanten des C⁵-C^{exo}-Bindungsbruchs von hmdC, fdC und cadC

Zunächst wurde der C⁵-C^{exo}-Bindungsbruch von hmdC, fdC und cadC analysiert. Hierzu wurde der natürliche Logarithmus der normierten Menge an gebildetem dC gegen die Zeit aufgetragen. Hierbei ergab sich eine Gerade, was auf eine Reaktion erster, beziehungsweise pseudo-erster Ordnung hinweist (**Abbildung 5.13**).^{400,401}

Abbildung 5.13: Graph zur Bestimmung der Geschwindigkeitskonstanten k des C⁵-C^{exo}-Bindungsbruchs von hmdC (blau), fdC (grün) und cadC (rot) bei 80 °C. n_t ist der normalisierte Mittelwert der Stoffmenge des entsprechenden Nukleosids nach dem Zeitintervall t, n_{∞} ist 100 pmol. Die zugehörigen Bestimmtheitsmaße (R^2) und Geradengleichungen sind in **Tabelle 9.47** des Appendix angegeben.

Zur Ermittlung der Geschwindigkeitskonstanten wurde folgende Geradengleichung zugrunde gelegt:

$\ln\left[\left(n_0-n_\infty\right)/\left(n_{\rm t}-n_\infty\right)\right]=kt$

Gleichung (1)

Hierbei entspricht die Geschwindigkeitskonstante *k* (**Tabelle 5.3**) der Steigung der Geraden.^{400,401} Hierbei ist n_t der normalisierte Mittelwert der Stoffmenge des entsprechenden Nukleosids nach dem Zeitintervall *t* und $n_{\infty} = 100$ pmol, da für jeden Messpunkt ein Probenvolumen entnommen wurde, das 100 pmol an eingesetztem Edukt entsprach.

Tabelle 5.3: Ermittelte Geschwindigkeitskonstanten k des C⁵-C^{exo}-Bindungsbruchs von hmdC, fdC und cadC bei 80 °C. Die Fehler wurden durch lineare Regression mit Hilfe von ORIGIN 6.0 bestimmt.

	<i>k</i> 80 °C [s ⁻¹]	
hmdC \rightarrow dC	$1.3\pm0.2 \times 10^{-9}$	
fdC → dC	$7.3 \pm 1.1 \times 10^{-9}$	
$cadC \rightarrow dC$	$6.9 \pm 0.7 \times 10^{-9}$	

Hierbei ist, analog zu den im vorangegangenen Kapitel durchgeführten Untersuchungen mit den Thiol/Imidazol-Mischungen, die Dehydroxymethylierung deutlich langsamer als die Deformylierung und die Decarboxylierung. Interessanterweise verlaufen die Deformylierung und die Decarboxylierung in etwa gleich schnell. Dies könnte damit zusammenhängen, dass Wasser, das generell ein schwächeres Nukleophil als Thiole ist, die C⁵=C⁶-Doppelbindung des deprotonierten cadC deutlich schlechter absättigen kann als die C⁵=C⁶-Doppelbindung des fdC mit der elektronenziehenden Formyl-Gruppe. Des Weiteren könnte die Hydratbildung des fdC Wasser im Vergleich zu 80%igen β-Mercaptoethanol-Lösungen bevorzugt sein. Jedoch sind die ermittelten Geschwindigkeitskonstanten von $1.3-7.3 \times 10^{-9}$ s⁻¹ bei 80 °C insgesamt sehr klein, was zeigt, dass der C⁵-C^{exo}-Bindungsbruch in Wasser bei pH 7.4 extrem langsam verläuft. Dies verdeutlicht nochmals die Notwendigkeit einer Katalyse, zum Beispiel durch die im vorangegangenen Kapitel erläuterte Michael-Addition eines Thiols an Position 6 der Nukleobase, auf. Bei 60 °C konnte kein linearer Zusammenhang zwischen der Reaktionszeit und ln $[(n_0 - n_\infty) / (n_t - n_\infty)]$ beobachtet werden (Daten nicht gezeigt). Somit ist mit den erhaltenen Messdaten keine Extrapolation der Geschwindigkeitskonstanten auf 37 °C möglich. Eine direkte Messung der Geschwindigkeitskonstanten bei 37 °C ist unter den gewählten Reaktionsbedingungen nicht praktikabel, da die Reaktionen äußerst langsam verlaufen, so dass auf eine Bestimmung der Geschwindigkeitskonstanten des C⁵-C^{exo}-Bindungsbruchs bei 37 °C verzichtet wurde.

5.4.2 Messung der Geschwindigkeitskonstanten der Deaminierung von dC, mdC, hmdC und fdC

Neben dem C⁵-C^{exo}-Bindungsbruch wurde nun die Deaminierung von dC zu dU, mdC zu dT, hmdC zu hmdU und fdC zu fdU analog zu obiger Analyse des C⁵-C^{exo}-Bindungsbruchs bei den Temperaturen 60.0, 67.5, 75.0 und 82.5 °C untersucht (**Abbildung 5.14**).

Abbildung 5.14: Graph zur Bestimmung der Geschwindigkeitskonstanten k der Deaminierung von dC zu dU (schwarz), mdC zu dT (cyan), hmdC zu hmdU (blau) und fdC zu fdU (grün) bei vier verschiedenen Temperaturen. n_t ist der normalisierte Mittelwert der Stoffmenge des entsprechenden Nukleosids nach dem Zeitintervall t, n_{∞} ist 100 pmol. Die zugehörigen Bestimmtheitsmaße (R^2) und Geradengleichungen sind in Tabelle 9.84 des Appendix angegeben.

Hierbei konnte die Deaminierung von dC, mdC, hmdC und fdC nachgewiesen werden. Die Reaktion von cadC zu cadU konnte nicht detektiert werden, was auch daran liegen könnte, dass cadU in der verwendeten massenspektrometrischen Methode deutlich schwieriger zu detektieren ist. Bei Auftragung von ln $[(n_0 - n_\infty) / (n_t - n_\infty)]$ gegen die Reaktionszeit t konnte wiederum ein linearer Zusammenhang festgestellt werden, was auf eine Reaktion pseudoerster Ordnung hindeutet, da die Konzentration von Wasser als konstant zu betrachten ist. Die ermittelten Geschwindigkeitskonstanten *k* der Deaminierung bei den jeweiligen Temperaturen sind in **Tabelle 5.4.** aufgeführt.

Tabelle 5.4: Berechnete Geschwindigkeitskonstanten k der Deaminierung von dC, mdC, hmdC und fdC bei 60.0 °C, 67.5 °C, 75.0 °C und 82.5 °C. Die Fehler wurden durch lineare Regression mit Hilfe von ORIGIN 6.0 bestimmt.

	<i>k</i> 60.0 ℃ [s ⁻¹]	k67.5 °C [s⁻¹]	<i>k</i> 75.0 ℃ [s ⁻¹]	<i>k</i> 82.5 °C [s ⁻¹]
$dC \rightarrow dU$	$1.8 \pm 0.1 \times 10^{-8}$	$3.9 \pm 0.2 \times 10^{-8}$	$9.4{\pm}0.4 \times 10^{-8}$	$2.1 \pm 0.2 \times 10^{-7}$
mdC → dT	$1.3\pm0.1 \times 10^{-8}$	$2.8 \pm 0.2 \times 10^{-8}$	$6.5 \pm 0.4 \times 10^{-8}$	$1.4 \pm 0.1 \times 10^{-7}$
hmdC → hmdU	$0.9{\pm}1.3 \times 10^{-8}$	$2.3 \pm 0.2 \times 10^{-8}$	5.6±1.1 × 10 ⁻⁸	$1.0\pm0.1 \times 10^{-7}$
fdC → fdU	$1.8\pm0.2 \times 10^{-8}$	$3.9 \pm 0.8 \times 10^{-8}$	$8.4{\pm}1.4 \times 10^{-8}$	$1.9 \pm 0.3 \times 10^{-7}$

Zur Ermittlung der Geschwindigkeitskonstanten bei 37 °C wurden die in **Tabelle 5.4** gezeigten Geschwindigkeitskonstanten auf 37.0 °C extrapoliert. Die Grundlage hierfür bildet die Arrhenius-Gleichung

$$\ln(k) = -E_A/R \times T^{-1} + \ln(A)$$

Gleichung (2)

Hierbei ist k die Geschwindigkeitskonstante, *R* die allgemeine Gaskonstante und *A* der Präexponentialfaktor.^{400,401} Somit ergibt sich bei Auftragung des natürlichen Logarithmus der Geschwindigkeitskonstanten der verschiedenen Temperaturen gegen den Kehrwert der jeweiligen Temperatur eine Gerade, woraus die Geschwindigkeitskonstante bei 37 °C ermittelt werden kann (**Abbildung 5.15**). Aus der Steigung der Geraden ergibt sich die Aktivierungsenergie E_A (**Tabelle 5.5**).

Abbildung 5.15: Graph zur Extrapolation der Geschwindigkeitskonstanten k und zur Ermittlung der Aktivierungsenergien der Deaminierung von dC (schwarz), mdC (cyan), hmdC (blau) und fdC (grün) auf T = 37 °C. Die zugehörigen Bestimmtheitsmaße (R^2) und Geradengleichungen sind in **Tabelle 9.86** des Appendix angegeben.

Tabelle 5.5: Extrapolierte Geschwindigkeitskonstanten k bei 37 °C und Aktivierungsenergien E_A der Deaminierung von dC, mdC, hmdC und fdC. Die Fehler wurden durch lineare Regression mit Hilfe von ORIGIN 6.0 bestimmt.

	k _{37.0} ∘ _C [s ⁻¹]	E _A [kJ mol ⁻¹]
dC → dU	$9.4{\pm}0.5 \times 10^{-10}$	108.7±1.9
mdC → dT	$7.8 \pm 0.3 \times 10^{-10}$	105.0±2.5
hmdC → hmdU	$5.8 \pm 0.8 \times 10^{-10}$	104.8±3.9
fdC → fdU	$12\pm0.2 \times 10^{-10}$	102.2±2.4

Hierbei sind die Reaktionsgeschwindigkeiten der Deaminierung von dC, mdC, hmdC oder fdC klein und unterscheiden sich maximal um den Faktor 2 voneinander. Die ermittelte Deaminierungsrate der exozyklischen Aminogruppe des Nukleosids dC ist erwartungsgemäß etwas größer als die von *Frederico et al.* an Einzelstrang-DNA bestimmte Kinetik $(k_{37.0} \text{ c} = 1 \times 10^{-10} \text{ s}^{-1})$.⁴⁰² Die Deaminierungen in DNA-Duplexen sollten nochmals deutlich langsamer verlaufen (vergleiche dC-Deaminierung in dsDNA mit $k_{37.0} \text{ c} = 7 \times 10^{-13} \text{ s}^{-1})$,^{402,403} so dass die spontane, nicht enzym-induzierte Deaminierung von dC, mdC, hmdC und fdC unter physiologischen Bedingungen als auch bei der DNA-Isolation und –analyse, zumindest in reinen Puffern ohne Zusätze von katalytisch-aktiven Metallsalzen oder Nukleophilen, zu vernachlässigen sein müsste.

5.4.3 Messung der Geschwindigkeitskonstanten der Oxidation von mdC, hmdC und fdC

Im Kapitel 5.3. wurde gezeigt, dass hmC in DNA-Haarnadelstrukturen relativ leicht zu fC oxidiert werden können, was aufzeigt, dass die Oxidation des exozyklischen Kohlenstoffs eine potentiell störende Nebenreaktion sein könnte. Aus diesem Grund wurde im Folgenden die Oxidation von mdC, hmdC und fdC untersucht.

Zuerst wurde die Oxidation von mdC betrachtet. *Bienvenu et al.* konnten hierbei zeigen, dass, zumindest bei Verwendung eines Photosensibilisators, die Oxidation von mdC über ein Hydroperoxymethyl-Radikal verläuft. Dieses zerfällt daraufhin entweder in hmdC oder fdC.²⁵⁷ In den im Zuge der Dissertation durchgeführten Studien konnte jedoch nur die Bildung von hmdC und keine Zunahme von fdC detektiert werden. Die Auswertung der Oxidation von mdC zu hmdC ist in **Abbildung 5.16** und **Tabelle 5.6** gezeigt.

Abbildung 5.16: Graphische Auftragung der Bildung von hmdC aus mdC gegen die Reaktionszeit. n_t ist der normalisierte Mittelwert der Stoffmenge des entsprechenden Nukleosids nach dem Zeitintervall t, n_{∞} ist 100 pmol. Die zugehörigen Bestimmtheitsmaße (R^2) und Geradengleichungen sind in Tabelle 9.97 des Appendix angegeben.

Tabelle 5.6: Berechnete Geschwindigkeitskonstanten k der Oxidation von hmdC zu fdC bei 60.0 °C und 80.0 °C. Die Fehler wurden durch lineare Regression mit Hilfe von ORIGIN 6.0 bestimmt.

	k _{60.0} ∘ _C [s ⁻¹]	k _{80.0} ∘ _C [s ⁻¹]
mdC → hmdC	$4.7 \pm 0.6 \times 10^{-11}$	$1.9 \pm 0.2 \times 10^{-10}$

Hierbei verläuft die Oxidation von mdC zu hmdC unter den gewählten Bedingungen außerordentlich langsam, so dass auf eine exakte Bestimmung der Geschwindigkeitskonstanten bei 37 °C und der Aktivierungsenergie verzichtet wurde.

Die Analyse der Daten zur Oxidation von hmdC zu fdC ist in Abbildung 5.17 gezeigt.

Abbildung 5.17: Graph zur Bestimmung der Geschwindigkeitskonstanten der Oxidation von hmdC zu fdC (blau) und fdC zu cadC (grün) bei vier verschiedenen Temperaturen. n_t ist der normalisierte Mittelwert der Stoffmenge von fdC nach dem Zeitintervall t, n_{∞} ist 100 pmol. Die zugehörigen Bestimmtheitsmaße (R^2) und Geradengleichungen sind in **Tabelle 9.98** des Appendix angegeben.

Hierbei ist wiederum ein linearer Zusammenhang zu erkennen, so dass eine Reaktion erster, beziehungsweise pseudo-erster Ordnung angenommen wurde. Die analog zu oben bestimmten Geschwindigkeitskonstanten bei 60.0 °C, 67.5 °C, 75.0 °C und 80.0 °C sind in Tabelle 5.7 aufgelistet.

Tabelle 5.7: Berechnete Geschwindigkeitskonstanten *k* der Oxidation von hmdC zu fdC bei 60.0 °C, 67.5 °C, 75.0 °C und 82.5 °C. Die Fehler wurden durch lineare Regression mit Hilfe von ORIGIN 6.0 bestimmt.

	<i>k</i> _{60.0} °C [s ⁻¹]	<i>k</i> _{67.5} ∘ _C [s ⁻¹]	<i>k</i> _{75.0} ∘ _C [s ⁻¹]	<i>k</i> _{80.0} ∘ _C [s ⁻¹]
hmdC → fdC	$2.2 \pm 0.2 \times 10^{-8}$	$2.7{\pm}0.2 \times 10^{-8}$	$3.2{\pm}0.2 \times 10^{-8}$	$3.4 \pm 0.3 \times 10^{-8}$

Die Auftragung des natürlichen Logarithmus der Geschwindigkeitskonstanten gegen T^1 zur Extrapolation auf 37 °C ist in **Abbildung 5.18** gezeigt.

Abbildung 5.18: Graph zur Extrapolation der Geschwindigkeitskonstanten der Oxidation von hmdC zu fdC auf T = 37 °C und zur Bestimmung der Aktivierungsenergie. Das zugehörige Bestimmtheitsmaß (R^2) und die zugehörige Geradengleichung sind in **Tabelle 9.100** des Appendix angegeben.

Somit konnte eine Geschwindigkeitskonstante für die Oxidation von hmdC zu fdC bei 37 °C von $1.3\pm0.1 \times 10^{-8}$ s⁻¹; ($E_A = 20.8\pm2.2$ kJ mol⁻¹) ermittelt werden. Diese ist im Vergleich zur Oxidation von mdC deutlich größer was auf die zusätzliche Stabilisierung des benzylischen Radikals durch das Sauerstoff-Atom in hmdC zurückzuführen sein könnte. Des Weiteren ist die Oxidationsrate von hmdC im Vergleich zu den Geschwindigkeitskonstanten der Deaminierungsreaktionen (**Tabelle 5.5**) um eine Größenordnung größer, so dass die Oxidation von hmdC zu fdC bei der Behandlung biologischer Proben mehr beachtet werden muss, als die Deaminierung an Position 4 der Nukleobasen.

Die Analyse der Oxidation von fdC zu cadC ist in Abbildung 5.19 dargestellt.

Abbildung 5.19: Graph der Oxidation von fdC zu cadC bei vier verschiedenen Temperaturen. n_t ist der normalisierte Mittelwert der Stoffmenge von cadC nach dem Zeitintervall t, n_{∞} ist 100 pmol. Die Messpunkte zeigen teilweise einen deutlich unlinearen Zusammenhang (gestrichelte Gerade).

Hierbei zeigt sich, dass die Oxidation von fdC zu cadC zwar schneller ist als die Oxidation von mdC zu hmdC, jedoch deutlich langsamer verläuft als die Oxidation von hmdC zu fdC. Die ermittelten Messwerte weichen hierbei zum Teil von einem linearen Zusammenhang ab. Dies könnte zum Beispiel auf eine komplexere Reaktionskinetik hindeuten, deren Analyse jedoch über die Intention dieser Untersuchungen hinausgeht, so dass eine weitere Analyse im Rahmen dieser Arbeit nicht mehr durchgeführt wurde.

5.5 Synthese und enzymatischer Einbau eines [¹⁵N₂]-cadC-(107) und eines carbamat-geschützten [¹⁵N₂, D₂]-hmdC-Triphosphats (110)

In Kapitel 5.2 wurde die Synthese des [¹⁵N₂]-markierten cadC-Phosphoramidits beschrieben, womit Oligo-2'-desoxynukleotide per DNA-Festphasensynthese dargestellt werden können. Hierbei beträgt erfahrungsgemäß die Kupplungseffizienz pro Standardbase durchschnittlich 98%. Somit würde jedoch zum Beispiel die Ausbeute der Synthese eines 150mers bei nur etwa 5% liegen, wobei darüber hinaus die Kupplungseffizienz mit länger werdenden DNA-Strängen erfahrungsgemäß aufgrund des zunehmenden sterischen Anspruchs der einzelnen Stränge auf der räumlich begrenzten Oberfläche der festen Phase abnimmt. Somit sind längere DNA-Fragmente durch Festphasensynthese nicht mehr effizient zugänglich. Aus diesem Grund wird für längere DNA-Sequenzen häufig die Polymerase-Kettenreaktion (PCR) verwendet (siehe zum Beispiel *Jäger et al.*,⁴⁰⁴ *Kuwahara et al.*⁴⁰⁵ oder *Shoji et al.*,⁴⁰⁶ **Abbildung 5.20**).

Abbildung 5.20: Prinzip der Polymerase-Kettenreaktion. Der DNA-Duplex wird durch kurzes Erhitzen (meist auf 94 °C) denaturiert und daraufhin die Temperatur verringert (meist auf 40–60 °C), so dass der *primer* binden kann. Die Elongation des *primers* erfolgt mit einer thermostabilen Polymerase (meist bei 72 °C), wonach der Zyklus von neuem beginnt. Für einen Übersichtsartikel siehe *Canene-Adams*.⁴⁰⁷

Hierbei wird das Nukleosid als Triphosphat benötigt, das, nach Aufschmelzen des Duplex und *annealing* des *primers*, mit Hilfe von Polymerasen enzymatisch in DNA-Stränge eingebaut wird.

Um nun längere DNA-Fragmente mit [¹⁵N₂]-markierten cadC-Resten zugänglich zu machen, wurde im Folgenden die Synthese des entsprechenden cadC-Triphosphats **107** entwickelt (**Schema 5.8**).⁴⁰⁸ Hierzu wurde das Nukleosid **84** TBS-entschützt und der erhaltene Methylester **108** zur freien Säure **109** verseift. Die Triphosphat-Funktionalität wurde nach einer Methode von *Ludwig* und *Eckstein*⁴⁰⁹ mit der Modifizierung nach *Caton-Williams et al.*⁴¹⁰ zum Nukleotid **107** eingeführt, das nach HPLC-Aufreinigung als Tetrakis(triethylammonium)-Salz isoliert wurde. Hierbei konnte eine für Triphosphatsynthesen an Nukleosiden sehr gute Ausbeute von 7% erzielt werden.

Schema 5.8: Synthese des [$^{15}N_2$]-markierten cadC-Triphosphats (107). Reagenzien und Bedingungen: a) HF·Pyridin, Pyridin, EtOAc, RT, 42 h, 32%; b) LiOH, H₂O/MeCN, RT, 1 d, 47%; c) 1. (Bu₃N)₂H₂P₂O₇, 2-Chlor-1,3,2-benzodioxaphosphorin-4-on, Bu₃N, DMF, RT, 20 h; 2. I₂, RT, 2 h, 7%.

Der enzymatische Einbau des Triphosphats 107 wurde von Benjamin Hackner und Caterina Brandmayr (beide Arbeitskreis Prof. Dr. Thomas Carell) im Zuge ihrer Promotion erfolgreich durchgeführt. Im Laufe dieser Promotionen erschienen zwei Berichte über die Synthese von unmarkiertem cadC-Triphosphat durch Oxidation von unmarkiertem fdC-Triphosphat.^{362,411} Zusätzlich zu langen [¹⁵N₂]-markierten cadC-enthaltenen DNA-Strängen sollten DNA-Fragmente mit [¹⁵N₂, D₂]-markierten hmdC-Resten für weiterführende biologische Studien im Arbeitskreis von Prof. Dr. Thomas Carell zugänglich gemacht werden. Unmarkiertes hmdC-Triphosphat ist kommerziell erhältlich und wird generell durch Phosphorylierung von hmdC-Monophosphat dargestellt, das aus natürlichen Quellen isoliert wird (siehe zum Beispiel Fleischman et al.,⁴¹² Imae und Okazaki⁴¹³ oder Koerner et al.⁴¹⁴). Diese Vorgehensweise erlaubt jedoch keine gezielte Einführung einer Isotopenmarkierungen, so dass ein synthetischer Zugang zu [¹⁵N₂, D]-markiertem hmdC-Triphosphat **110** entwickelt wurde. So wurde bis-TBS-geschütztes 5-Iod-dC 83 in einer carbonylierenden Kreuzkupplungsreaktion nach Münzel et al.^{375,376} umgesetzt. Die Palladiumspezies wurde hierbei mit Deuterid zum [¹⁵N₂, D]markierten fdC-Derivat 111 abgefangen (Schema 5.9). Die Formyl-Gruppe wurde mit Natriumbordeuterid unter Luche-Bedingungen zum [¹⁵N₂, D₂]-markierten hmdC-Derivat 112

reduziert, wodurch auch die zweite Deuteriummarkierung eingeführt wurde. Die hierdurch generierte benzylische Hydroxy-Gruppe dürfte reaktiver als die 5'-Alkohol-Funktionalität sein, wodurch eine effiziente Einführung des Triphosphat-Rests an der 5'-Position und die darauf folgende Aufreinigung deutlich erschwert werden dürfte. Aus diesem Grund wurde folglich die benzylische Hydroxy-Funktionalität nach *Münzel et al.* carbamat-geschützt.³⁷⁶ Die Carbamat-Schutzgruppe sollte einen geringeren sterischen Anspruch haben als die von *Tardy-Planechaud et al.* verwendete β -Cyanethyl-Gruppe,⁴¹⁵ was mit einer verbesserten Inkorporation durch DNA-Polymerasen einhergehen sollte. TBS-Entschützung des Carbamats **113** zum Nukleosid **114** und Einführung der Triphosphat-Gruppe analog zu **Schema 5.8** ergab das Nukleotid **110**.

Schema 5.9: Synthese des carbamat-geschützten, [$^{15}N_2$, D₂]-markierten hmdC-Triphosphats (110). Reagenzien und Bedingungen: a) Pd₂(dba)₃·CHCl₃, PPh₃, Bu₃SnD, [D₈]-Toluol, CO (3.5 bar), 60 °C, 16 h, 64%; b) NaBD₄, CeCl₃, CD₃OD, RT, 35 min, 40%; c) *p*-NO₂-C₆H₄OCOCl, DIPEA, THF, RT, 21 h, 74%; d) HF·Pyridin, Pyridin, EtOAc, RT, 39 h, 91%; e) 1. (Bu₃N)₂H₂P₂O₇, 2-Chlor-1,3,2-benzodioxaphosphorin-4-on, Bu₃N, DMF, RT, 3 h; 2. I₂, RT, 2 h, 1%.

Zur Evaluierung des Einbaus des carbamat-geschützten, [¹⁵N₂, D₂]-markierten hmdC-Triphosphats (**110**) diente das PGL3_pOct4_eGFP-Plasmid³⁶⁶ als Templat. Die *primer* wurden so gewählt, dass ein 150 bp Ausschnitt der Oct4-Promotorsequenz amplifiziert wurde. Hierzu wurden alle kanonischen Triphosphate zugegeben außer dCTP, an dessen Stelle das hmdC-Triphosphat **110** 73-fach eingebaut wurde. Es wurden die *KOD XL-*, *Phusion-* und *Taq-*Polymerasen untersucht und die Ergebnisse mit unmarkiertem, kommerziell erhältlichem hmdC-Triphosphat verglichen. Das erhaltene Agarosegel ist in **Abbildung 5.21** dargestellt. Hierbei zeigt sich, sowohl die PCR mit der *KOD XL*- als auch mit der *Phusion*-Polymerase eine Bande bei 150 bp ergab, was den enzymatischen Einbau des Triphosphats **110** eindeutig belegt (**Abbildung 5.21 A**, Spur 3 und 5). Hierbei ist die Intensität der beiden Banden im Vergleich zum ungeschützten und unmarkiertem hmdC-Triphosphat (Spur 2 und 4) etwas schwächer, was auf eine geringere DNA-Menge und damit auf einen etwas langsameren Einbau schließen lässt.

Abbildung 5.21: Agarosegel-Bilder zur Kontrolle des enzymatischen Einbaus des carbamat-geschützten, [¹⁵N₂, D₂]-markierten hmdC-Triphosphats (**110**). **A**) Evaluierung der Inkorporation mit Hilfe verschiedener Polymerasen. Spur 1: Marker (mit zugehöriger Basenpaaranzahl links); Spur 2: kommerziell erhältliches hmdC-Triphosphat, *KOD XL*-Polymerase; Spur 3: **110**, *KOD XL*-Polymerase; Spur 4: kommerziell erhältliches hmdC-Triphosphat, *Phusion*-Polymerase; Spur 5: **110**, *Phusion*-Polymerase; Spur 6: kommerziell erhältliches hmdC-Triphosphat, *Taq*-Polymerase; Spur 7: **110**, *Taq*-Polymerase; **B**) Kontrollen zum selektiven Einbau des Triphosphats **110**. Spur 1: Marker (mit zugehöriger Basenpaaranzahl links); Spur 2: **110**, *KOD XL*-Polymerase mit Oct4-Templat; Spur 3: **110**, *KOD XL*-Polymerase ohne Oct4-Templat; Spur 4: *KOD XL*-Polymerase mit Oct4-Templat aber ohne **110**.

Der Vergleich der Spuren 3 und 5 zeigt, dass die *KOD XL*-Polymerase das Triphosphat **110** etwas effizienter einbaut als die *Phusion*-Polymerase. Interessanterweise kann die *Taq*-Polymerase das kommerziell erhältliche hmdC-Triphosphat einbauen (Spur 6), während das geschützte und markierte Triphosphat **110**, zumindest unter den untersuchten Verbindungen, kein Substrat darzustellen scheint (Spur 7). Dies zeigt, dass die Carbamat-Schutzgruppe zu einem sterisch etwas anspruchsvolleren Triphosphat führt, beziehungsweise das carbamat-geschützte hmdC-Triphosphat ein etwas schlechteres Substrat für die untersuchten Polymerase das darstellt. **Abbildung 5.21 B** zeigt das Agarosegel der PCR mit der *KOD XL*-Polymerase bei Abwesenheit des Oct4-Templats (Spur 3) oder des hmdC-Triphosphats (Spur 4). In beiden

Fällen wurde kein PCR-Produkt gebildet, was den unspezifischen Einbau von anderen Triphosphaten anstelle des hmdC-Triphosphats **110** in **Abbildung 5.21** A ausschließt.

Nach erfolgreichem Einbau des carbamat-geschützten, [$^{15}N_2$, D₂]-markierten Triphosphats **110**, wurde die Abspaltung der Carbamat-Schutzgruppe zum freien hmdC-Rest untersucht. Hierzu wurde ein PCR-Ansatz in 0.1 M NaOH (50 µL in MeOH/Bidestwasser 4:1) bei 23 °C inkubiert.^{375,376} Nach Aufreinigung mittels eines *Nucleo Spin[®] kits (Macherey-Nagel)* wurde die erhaltene DNA enzymatisch verdaut. Eine zweidimensionale Überlagerung der erhaltenen Massenspektren der kanonischen Nukleoside, hmdC und des carbamat-geschützten Nukleosids **114** nach einstündiger, alkalischer Inkubation ist in **Abbildung 5.22** dargestellt.

Abbildung 5.22: LC-ESI-HR-MS-Analyse der Entschützung von DNA-Fragmenten mit carbamat-geschützten, [$^{15}N_2$, D₂]-markierten hmdC-Resten. Der abgebildete Massenbereich ist das Intervall der exakten Masse ± 0.0060 u.

Hierbei konnte neben den kanonischen Nukleosiden dC (aus den *primern*), dG, dA und dT auch das entschützte [¹⁵N₂, D₂]-hmdC-Nukleosid nachgewiesen werden. Im Gegensatz hierzu konnte noch carbamat-geschütztes Nukleosid **114**, das gemäß dem grau abgebildetem Referenzspektrum eine Retentionszeit von 28.9 min besitzt, nicht mehr nachgewiesen werden. Dies belegt die vollständige Abspaltung der Carbamat-Gruppe nach einstündiger, alkalischer Inkubation.

Folglich konnten mit dem [¹⁵N₂]-markierten cadC- und dem carbamat-geschützten, [¹⁵N₂, D₂]markierten hmdC-Nukleotid zwei neue Triphosphate dargestellt werden, die erfolgreich per PCR in DNA eingebaut werden können. Interessanterweise akzeptiert hierbei die Polymerase sowohl die negative Ladung der Carboxy-Funktionalität, als auch die Carbamat-Schutzgruppe. Letztere kann effizient durch Behandlung mit NaOH abgespalten werden. Somit stehen nun lange DNA-Fragmente mit markierten hmdC- und cadC-Resten für weiterführende biologische Untersuchungen zu Verfügung.

6 **Experimentalteil**

6.1 Material und Methoden

Agarose-Gelelektrophorese: Zur Kontrolle der Polymerase-Kettenreaktion wurden 16 μ L der Reaktionslösung mit 4 μ L eines 5 × Ladepuffers (*New England BioLabs*) versetzt und mit Hilfe eines 1.5% igen Agarose-Gels (750 mg Agarose, 50 mL 1 × TAE-Puffer (4.86 g Tris-(hydroxymethyl)aminomethan, 0.744 g Na₂EDTA·2H₂O, 57.1 mL HOAc), 8 μ L Ethidiumbromid) in einer Gelapparatur von *PreQlab* mit einer *Power Pak basic* Spannungsquelle von *BioRad* (90 V) mit 0.5 × TAE Laufpuffer 30 min entwickelt. Zur Visualisierung wurde ein *Raytest Image Documentation Analysis imager* verwendet.

Autoklav: Zur Generierung steriler Puffer und Medien wurde ein *Vakulab 3000* der Firma *Systec* verwendet.

Chemikalien: Die verwendeten Chemikalien wurden von den Firmen *Sigma Aldrich*, *Bachem*, *ABCR*, *Acros organics*, *Fluka* und *TCI Europe* bezogen. Wasser wurde, falls nicht anders angegeben in destillierter Form aus der Hausleitung bezogen. Die Lösungen zum Waschen der synthetisierten Verbindungen waren wässrig und mit dem jeweils angegebenen Salz gesättigt. Die Lösemittel zur Extraktion und Säulenchromatographie waren von technischer Qualität und wurden vor ihrer Verwendung mittels Destillation aufgereinigt. 4 Å Molsieb zum Trocknen von Lösemittel wurde von *VWR* bezogen.

click-Reaktion des Biotinazids 92 mit Alkin-modifizierter DNA nach einem Protokoll von *Harder*:⁴¹⁶ ODN 1 (8.72 nmol) wurde in Bidestwasser (10 μ L) vorgelegt und eine 0.1 M Lösung des Biotin-Azids 92 (*Baseclick*) in DMSO//BuOH 3:1 (0.87 μ L, 87 nmol, 10.0 Äq.) und eine Lösung, die 50 mM CuBr und 100 mM Tris[(1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl]amin (TBTA) in DMSO//BuOH 3:1 enthielt (3.48 μ L, 174 nmol CuBr, 19.7 Äq.; 348 nmol TBTA, 39.4 Äq.) zugegeben und 4 h bei 30 °C und 1250 rpm inkubiert. Nach Zugabe einer 0.3 M NaOAc-Lösung (50 μ L) und EtOH (1 mL) wurde die DNA 1 h bei –20 °C gefällt, 15 min bei 13000 rpm und 4 °C zentrifugiert, mit 75%igem EtOH (1 × 1 mL)

gewaschen und mittels HPLC aufgereinigt.

Druckautoklav: Zur Generierung einer Kohlenmonoxidatmosphäre von 3.5 bar wurde der *Miniclave*-Glas-Druckreaktor mit einem Borosilikat-Glas 3.3 Einsatz der Firma *Büchi Glas Uster AG* verwendet.

DNA-Festphasensynthese: DNA-Oligonukleotide wurden mittels CE-Phosphoramidit-Chemie an einem LV-Polystyrol-Trägermaterial (Beladung 21 µmol/g) von Glen Research oder Link Technologies mit einem ABI 394 DNA synthesizer (Applied Biosystems) hergestellt. Die Phosphoramidite von dA (Bz-dA), dC (Bz-dC), dG (iBu-dG) und dT wurden von Glen Research oder Link Technologies bezogen. Trockenes Acetonitril (Rotidry, \geq 99.9%, < 10 ppm Wasser) war von Roth. Die Phosphoramidite wurden mittels Standard-Phosphoramidit-Chemie mit Benzylthiotetrazol (BTT) als Aktivator, der nach Welz et al. hergestellt wurde,⁴¹⁷ gekuppelt (200 nmol Maßstab). Folgende Konzentrationen wurden hierbei verwendet: 0.1 M Phosphoramidit in MeCN (10 ppm H₂O, 3 µmol pro Kupplung), Aktivator: 0.25 M BTT in MeCN (< 10 ppm H₂O), Capping: Ac₂O (20%), 2,6-Lutidin (30%) in MeCN (< 10 ppm H₂O), 3% Detritylierung: Dichloressigsäure Oxidation: in DCM, 25 mМ Iod in 2,6-Lutidin/MeCN/H₂O (6/65/30). Natürliche Phosphoramidite wurden 45 s lang gekuppelt, während bei selbst dargestellten Phosphoramiditen die Kupplungszeit auf 165 s verlängert wurde, um optimale Ausbeuten zu erzielen. Zur verbesserten Aufreinigung der Oligo-2'desoxynukleotide wurde die 5'-DMT-Gruppe nicht abgespalten (DMT on Synthese). Die Abspaltung vom Trägermaterial und das Entfernen der Schutzgruppen der DNA-Basen erfolgte nach einem modifizierten Protokoll von Münzel et al.³⁷⁶ durch zweitägige Inkubation in einer 0.4 M NaOH-Lösung in Wasser/Methanol 1:4 (1 mL) bei 27 °C und 1250 rpm. Nach Zugabe von 0.6 mL einer 1 M Triethylammoniumacetat-Lösung (pH 7.0) und Abzentrifugation des Trägers, wurden die Oligo-2'-desoxynukleotide per HPLC (siehe unten) aufgereinigt. Die vereinigten Fraktionen wurden bis zur Trockne eingeengt. Die Abspaltung der terminalen DMT-Gruppe erfolgte mittels Inkubation in einer wässrigen 2%igen HOAc-Lösung (100 µL) bei 23 °C für 30 min (1250 rpm), gefolgt von einer EtOH-Fällung (Zugabe von 100 µL H₂O, 60 µL 3 M NaOAc und 1.6 mL EtOH, -20 °C, 30 min) und einer zweiten HPLC-Aufreinigung. Die Konzentration der synthetisierten Oligo-2'-desoxynukleotide wurde mittels UV/Vis-Spektroskopie bei 260 nm (Nanodrop ND-1000 von PreQlab) bestimmt und mittels der Extinktionsfaktoren der jeweiligen Basen korrigiert (dA: 15 L/(mmol·cm), dC: 7 L/(mmol·cm), dG: 12 L/(mmol·cm) und dT: 8 L/(mmol·cm), hmdC: 9 L/(mmol·cm), fdC: 11 L/(mmol·cm), cadC: 7 L/(mmol·cm).³⁹⁴ Die Charakterisierung der Oligo-2'-desoxynukleo-tide erfolgte mittels MALDI-TOF-Massenspektrometrie.

Doppelt destilliertes Wasser: Für biochemische Untersuchungen und zur Herstellung flüssiger Phasen für die HPLC wurde doppelt destilliertes Wasser (Bidestwasser) mit Hilfe einer *Milli-Q*_{Plus}-Anlage mit einer $QPAK^{\otimes 2}$ Kartusche erzeugt.

Dünnschichtchromatographie (DC): Es wurden die Fertigplatten Kieselgel F254 von Merck verwendet. Aromatische Verbindungen wurden mittels einer UV-Lampe (254 nm und 366 nm), Aminoverbindungen mit einer Ninhydrin-Lösung (0.3 g Ninhydrin, 3 mL Eisessig in 100 mL n-Butanol) und Nukleobasen mit Hilfe einer Anisaldehyd-Lösung (12.25 mL 4-Anisaldehyd, 4.9 mL HOAc, 17.15 mL H₂SO₄ (konz.) in 465 mL EtOH) sichtbar gemacht. Alkylierende Verbindungen konnten mit einer 4-(4-Nitrobenzyl)pyridin-Lösung (NBP) (DC-Platte mit einer 5% igen NBP-Lösung (in Aceton) versetzt, 5 min auf 100 °C erhitzt und mit einer 5% igen methanolischen Kaliumhydroxid-Lösung angefärbt)^{311,418} und Alkohole mit Lösung, die 10% Schwefelsäure, 120 g (NH4)6M07O24 · 24 H2O einer und 5 g (NH₄)₂Ce(NO₃)₆ (in 800 mL Wasser) enthielt, detektiert werden. Alle Lösungen wurden unter Lichtausschluss aufbewahrt. Für extrem polare Verbindungen wurden keine Rf-Werte ermittelt.

Elementaranalyse: Elementaranalysen wurden vom mikroanalytischen Labor der Ludwig-Maximilians-Universität München, Department Chemie (Haus F), mit Hilfe eines *Vario MICRO cube* von *Elementar* (CHN-Analyse) erstellt. Für die Chlor-Gehaltsbestimmung nach der Kolbenverbrennungsmethode von Schöniger^{419,420} wurde ein *Titrando 888* von *Metrohm* mit einer *Ag-Titrode* (Metallelektrode) verwendet.

Enzymatische Inkorporation des Triphosphats 110: Zur Ermittlung der optimalen Bedingungen für die Inkorporation des Triphosphats **110** mittels PCR, wurde dessen Einbau in das PGL3_pOct4_eGFP-Plasmid³⁶⁶ (von Prof. Dr. *Heinrich Leonhart*, Ludwig-Maximilians-Universität München zu Verfügung gestellt), das einen Ausschnitt der Oct4-Promotorsequenz beinhaltet, untersucht. Folgende *primer* wurden hierbei verwendet, so dass

ein 150 bp langes DNA-Fragment amplifiziert wurde:

Forward primer: 5'-d(TCC CGT CCT AAG GGT TGT CCT GTC)-3'

Reverse primer: 5'-d(ACC CTC TAG CCT TGA CCT CTG GC)-3'

Hierzu wurden 20 µL einer Lösung, die 2 ng Oct4-Templat, 0.2 mM der jeweiligen Nukleosidtriphosphate (dA-, dG- und dT-Triphosphate wurden von *New England BioLabs* bezogen), 0.5 µM beider *primer (Metabion)*, 1 U thermostabile inorganische Pyrophosphatase (*New England BioLabs*) und 1 U der entsprechenden Polymerase (*KOD XL* von *Novagen*, *Taq-* und *Phusion-*Polymerase von *New England BioLabs*) im vom jeweiligen Anbieter der Polymerasen empfohlenen Puffer nach folgendem Schema mit Hilfe eines *Mastercycler personal (Eppendorf*) inkubiert:

Schritt 1:	95 °C	2 min
Schritt 2:	95 °C	15 s
Schritt 3:	65 °C	15 s
Schritt 4:	72 °C	20 s

Schritt 2-4 30mal wiederholen

Schritt 5:	72 °C	10 min
------------	-------	--------

Das somit erhaltene PCR-Fragment wurde mit Hilfe eines Nucleo Spin[®] Kits (Macherey-Nagel) aufgereinigt und mittels Agarosegelelektrophorese analysiert.

Enzymatischer Verdau der [¹⁵N₂]-markiertes cadC enthaltenen Oligo-2'-desoxynukleotide: 200 pmol DNA wurden 3 h mittels einem 0.025 µm VSWP Membranfilter von Millipore entsaltz. Das Lösemittel wurde *in vacuo* entfernt und frisches Bidestwasser (82.6 µL) zugegeben. Hierzu wurde eine Zink-Lösung (1 mM, 6.2 µL) und Nuklease S₁ (20 U/µL, 2 µL) zugegeben und 3 h bei 37 °C inkubiert. Nach Zugabe einer EDTA-Lösung (1 mM, 7.2 µL), *Antarctic Phosphatase* (1U/µL, 1 µL) und *Snake Venom* Phosphodiesterase I (0.1 U/µL, 1 µL) wurde weitere 3 h bei 37 °C inkubiert. Nach 15-minütiger Zentrifugation bei 13400 rpm wurde das erhaltene Nukleosidgemisch mittels LC-ESI-HR-MS analysiert. Für Details zum verwendeten Puffersystem, HPLC-Gradienten und weitere messtechnische Details siehe das SI-Material von *Schiesser et al.*³⁶⁷ **Gefriertrockung:** Zur Entfernung von Wasser und Acetonitril wurde eine *Alpha 2-4 LD plus* Lyophille von *Christ* verwendet.

Hochleistungsflüssigkeitschromatographie (HPLC): Analytische Umkehrphasen-HPL-Chromatogramme von DNA, Triphosphaten und Nukleosiden wurden an einer *Waters*-Anlage (*alliance 2695* mit *Photodiode Array Detector 2996*) mit einer *VP 250/10 Nucleodur 100-5 C18 eC*-Säule beziehungsweise einer *CC 250/4 Nucleosil N 120-3* C18-Säule von *Machery-Nagel* aufgenommen. Als flüssige Phase wurde eine 0.1 M, wässrige Triethylammoniumacetat-Lösung (Puffer A), der zur Elution eine 0.1 M wässrige Triethylammoniumacetat-Lösung mit 80% Acetonitril (Puffer B) schrittweise zugesetzt wurde, verwendet. Der Fluss betrug 0.5 mL/min. Zur präparativen Umkehrphasen-HPLC von DNA und Triphosphaten wurde eine *Waters*-Anlage (*1525EF* mit einem *2487 UV*-Detektor), eine *CC 250/4 Nucleosil 120-3 C18*-Säule, beziehungsweise eine *VP 250/10 Nucleodur 100-5 C18eC*-Säule von *Machery-Nagel* und das oben erwähnte Puffersystem als flüssige Phase verwendet (Fluss 5 mL/min). Nukleoside wurden präparativ mittels einer *VP 250/32 Nuceosil 100-7 C18*-Säule von *Machery-Nagel* (Fluss 15 mL/min) mit H₂O/MeCN als flüssige Phase aufgereinigt.

Infrarotspektroskopie (IR): IR-Spektren wurden an einem *Spectrum BX* FT-IR System von *Perkin Elmer* mit einem *DuraSamplIR II* Messkopf von *Smiths* und einer Diamant-ATR (*Attenuated Total Reflection*) Einheit ohne weitere Präparation der Proben aufgenommen. FIR-Messungen wurden von der Schwingungsspektroskopie-Abteilung der Ludwig-Maximilians-Universität München, Department Chemie (Haus D) Hilfe eines Polyethylen-Presslings durchgeführt. Hierfür wurde ein *Bruker IFS 66v/s* Spektrometer verwendet. Die Wellenzahlen wurden in cm⁻¹ angegeben. Die Intensität der Signale wurden mit s (stark), m (medium), w (schwach) konkretisiert. Die Bezeichnung br steht für sehr breite Signale. Pro Bande ist jeweils eine Auswahl an möglichen Schwingungen, die nach *Becker*⁴²¹ und *Hesse, Meier, Zeeh*⁴²² zugeordnet wurden, angegeben.

Inkubation: Zur Inkubation von Proben mit einem Volumen <2 mL wurde ein *Thermomixer comfort* von *Eppendorf* verwendet. Zur Inkubation von *E. coli*-Zellen wurde ein *Incubator IS* von *MS Laborgeräte GmbH* verwendet.

Inkubation von DNA-Haarnadelstrukturen mit ß-Mercaptoethanol/Imidazol-Gemischen: Eine Lösung aus ODN 3-ODN 8 (50 µM) und NaCl (1 M) wurde zum Hybridisieren 5 min auf 95 °C erhitzt und daraufhin mit Hilfe eines Eppendorf Mastercycler schrittweise auf Raumtemperatur abgekühlt (Gradient 1 °C/min). 1 µL dieser Lösung wurde zu 9 μL einer 12 M β-Mercaptoethanol (entspricht einer 90%igen Lösung), 1 M Imidazol Lösung des entsprechenden pH-Werts gegeben, so dass eine 80 Vol%ige Thiol-Lösung erhalten wurde. Zum Erstellen von Lösungen mit geringerer Thiol- und Imidazolkonzentration wurde das Volumen der 12 M β-Mercaptoethanol, 1 M Imidazol-Lösung vor Zugabe zur DNA-Lösung mit Wasser des entsprechenden pH-Werts auf die gewünschte Konzentration verdünnt. Die somit erhaltenen Lösungen wurde 2 d bei 50 °C mit Hilfe eines Mastercycler personal (Eppendorf) mit einem beheizbaren Deckel (95 °C) inkubiert. Nach Entfernen des Lösemittels in vacuo wurden 10 µL Bidestwasser zugegeben. 5 µL dieser Lösung wurden 1 h auf einem 0.025 µm Membranfilter (Millipore) entsalzt, danach erneut das Lösemittel in vacuo entfernt und die DNA verdaut. Hierzu wurden eine wässrige ZnSO₄-Lösung (74 µM, 32.5 µL) die Antarctic Phosphatase (5.2 U), Nuklease S₁ (84 U) und eine definierte Menge des isotopenmarkierten Standards enthielt (184.0 pmol [D₃]-dT, 2.951 pmol [¹⁵N₂]-dC, 25.51 pmol [¹⁵N₂, D₂]-hmdC, 12.15 pmol [¹⁵N₂]-fdC, 16.13 pmol [¹⁵N₂]-cadC, 966.1 fmol [¹⁵N₂]-dU, 480.3 fmol [D₂]-hmdU, 567.4 fmol [¹⁵N₂]-fdU und 90.72 fmol [¹⁵N₂]-8-oxo-dG) zugegeben. Diese Lösung wurde 3 h bei 37 °C inkubiert. Nach Zugabe einer 0.35 mM [Na]2-EDTA-Lösung (7.5 µL), die Snake Venom Phosphodiesterase I (0.1 U) enthielt, wurde nochmals 3 h bei 37 °C inkubiert. Die Proben wurden daraufhin bis zur Messung bei -20 °C aufbewahrt. Unmittelbar vor der Messung wurden die Proben mit einer AcroPrepTM Advance 96 Filterplatte (0.45 µm Supor[®], Pall Life Sciences) filtriert und mittels UHPLC-MS/MS analysiert, wobei das Injektionsvolumen 10 µL betrug und die Proben bis zur Injektion auf 10 °C gekühlt wurden. Für weitere messtechnische Details siehe Schiesser et al.³⁹⁴

Kernresonanzspektroskopie (NMR): ³¹P-NMR-Spektren und ¹H-NMR-Spektren (200 MHz) wurden an einem *Varian Oxford 200* aufgenommen. ¹³C-NMR-, ¹⁵N-NMR- und ¹H-NMR-Spektren (300, 400 und 600 MHz) wurden von der NMR-Abteilung der Ludwig-Maximilians-Universität München, Department Chemie (Haus F), an einem *Bruker ARX 300, Varian Inova 400* und an einem *Bruker ARX 600* gemessen. ¹⁹⁵Pt-NMR-Spektren wurden von der NMR-Abteilung der Ludwig-Maximilians-Universität München, Department Chemie (Haus D) an einem *Jeol EX-400* beziehungsweise einem *Jeol eclipse 400* (beide 85.8 MHz) mit K₂[Pt(CN)₆] ($\delta = -3866$)⁴²³ als externen Standard vermessen.^{424,425 13}C- und ¹⁵N-NMR-

Spektren wurden ¹H-entkoppelt aufgenommen. Für magnetisch äquivalente Kohlenstoff-Atome wurde kein Integral angegeben. Die chemischen Verschiebungen wurden relativ zum Lösemittel als internen Standard aufgezeichnet. Das Signal des jeweiligen Lösemittels wurde zum Eichen der chemischen Verschiebungen verwendet. Die Multiplizitäten der Signale wurden als s (Singulett), d (Dublett), t (Triplett), q (Quartett), qi (Quintuplett), m (Multiplett) und deren Kombinationen angegeben. Die Bezeichnung br steht für sehr breite Signale. CAr steht für aromatische Kohlenstoffkerne. Die Kopplungskonstanten wurden jeweils als ihr Betrag angegeben. Die Differenzierung zwischen ¹³C,¹¹⁹Sn und ¹³C,¹¹⁷Sn-Kopplungen beruht auf der Relation $J(^{13}C,^{119}Sn) = 1.047 \times J(^{13}C,^{117}Sn).^{426}$ Zur Aufnahme der NMR-Spektren der DMT-geschützten Verbindung **87** wurde das CDCl₃ zuvor über basischem Aluminiumoxid filtriert. Das [D₆]-Aceton zur Aufnahme der NMR-Spektren des Phosphoramidits **76** wurde zuvor durch drei *freeze*, *pump*, *thaw* Zyklen entgast.

Kinetikmessungen: 10 µM wässrige Nukleosid-Lösungen in 18 mM Natriumphosphatpuffer (pH 7.4), die jeweils ein dC-Derivat (dC, mdC, hmdC, fdC und cadC) enthielten, wurden bei den angegebenen Temperaturen mit Hilfe eines Mastercycler personal (Eppendorf) mit beheizbarem Deckel (95 °C) inkubiert. Zu den angegebenen Zeitpunkten wurde die Reaktionslösung auf Raumtemperatur abgekühlt, indem die Lösung 5 min auf Eis und 15 min bei Raumtemperatur inkubiert wurde. 10 µL (100 pmol) der Reaktionslösung wurden entnommen und eine Lösung der jeweiligen isotopenmarkierten Standards (15 µL) zugegeben. Hierbei wurden Reaktionen von dC mit 22.13 pmol [¹⁵N₂]-dC und 966.1 fmol [¹⁵N₂]-dU; Reaktionen von mdC mit 25.51 pmol [D₃]-mdC, 510.3 fmol [¹⁵N₂, D₂]-hmdC, 607.6 fmol [¹⁵N₂]-fdC und 736.1 fmol [D₃]-dT; Reaktionen von hmdC mit 737.8 fmol [¹⁵N₂]dC, 25.52 pmol [¹⁵N₂, D₂]-hmdC, 607.6 fmol [¹⁵N₂]-fdC, 430.1 fmol [¹⁵N₂]-cadC und 480.3 fmol [D₂]-hmdU; Reaktionen von fdC mit 737.8 fmol [¹⁵N₂]-dC, 30.38 pmol [¹⁵N₂]fdC, 430.1 fmol [¹⁵N₂]-cadC und 567.4 fmol [¹⁵N₂]-fdU und Reaktionen von cadC mit 737.8 fmol [¹⁵N₂]-dC und 21.51 pmol [¹⁵N₂]-cadC quantifiziert. Die Proben wurden daraufhin bis zur Messung bei -20 °C aufbewahrt. Unmittelbar vor der Messung wurden die Proben mit einer AcroPrepTM Advance 96 Filterplatte (0.45 µm Supor[®], Pall Life Sciences) filtriert und mittels UHPLC-MS/MS analysiert, wobei das Injektionsvolumen 10 µL betrug und die Proben bis zur Injektion auf 10 °C gekühlt wurden. Für weitere messtechnische Details siehe Schiesser et al. 394

Konfokalmikroskopie: Zur Konfokalmikroskopie wurde ein *Leica TCS SPE* mit *CTR 4000* Einheit verwendet. Bei 64-facher Vergrößerung wurde Immersionsöl (*AppliChem*) verwendet.

Lösemittel: Synthesen von Phosphoramiditen und Umsetzungen unter Beteiligung von Metallverbindungen wurden unter Argon-Atmosphäre durchgeführt, während für alle anderen Synthesen Stickstoff als Schutzgas verwendet wurde. Die jeweiligen Lösemittel (< 50 ppm Wasser) wurden von *Sigma-Aldrich* bezogen. Zur Extraktion und Säulenchromatorgaphie wurden Lösemittel von technischer Qualität verwendet, die vorher destillativ aufgereinigt wurden.

Massenspektrometrie (MS): ESI- und EI-Massenspektren wurden von der Analytik-Abteilung der Ludwig-Maximilians-Universität München, Department Chemie (Haus F), angefertigt, wobei für ESI-Massenspektren ein *Finnigan LTQ FTICR* verwendet wurde, während die EI-Spektren an einem *MAT CH 7a* von *Varian* gemessen wurden. Die Zuordnung bezieht sich, falls nicht anders angegeben, auf das natürlich am häufigsten vorkommende Isotop. Bei Chlor- und Zinnhaltigen Verbindungen sind jeweils die signifikanten Signale (relative Häufigkeit >50%) angegeben. Die Massenspektren platinhaltiger Verbindungen sind im Kapitel "Ergebnisse und Diskussion" und im Anhang abgebildet. Für MALDI-Spektren wurde ein *Bruker Autoflex II* Spektrometer mit *time-of-flight* Detektor verwendet. Als Matrix diente eine 3-Hydroxypicolinsäure-Matrix (25 mg 3-Hydroxypicolinsäure, 5 mg Ammoniumcitrat, 5 μL 15-Krone-5 in 0.5 mL bidestilliertem Wasser), wobei die Proben vorher mit einem 0.025 μm *VSWP Membranfilter* von *Millipore* 20 min lang gegen bidestilliertes Wasser entsalzt wurden.

Massenspektrometrie verdauter DNA: Niederaufgelöste LC-MS/MS-Messungen verdauter DNA wurden von *Toni Pfaffeneder* (Arbeitskreis Prof. Dr. *Thomas Carell*, Ludwig-Maximilians-Universität München) an einem *Agilent* 6490 Triple Quadrupol Massenspektrometer unter Verwendung der, von *Brückl et al.*⁴²⁷ ausgearbeiteten, Isotopenverdünnungsmethode vermessen. Hierzu wurde die entsprechende Menge an Isotopenstandards vor dem Verdau zugegeben. Nach erfolgtem Verdau wurde die Lösung mittels einer *AcroPrep*TM *Advance* 96 Filterplatte (0.45 μm *Supor*[®], *Pall Life Sciences*) filtriert. Für das verwendete Puffersystem, HPLC-Gradient und weitere messtechnische Details siehe das SI-Material von *Schiesser et al.*³⁹⁴ Hochaufgelöste LC-MS-Messungen wurden von *Benjamin Hackner* (Arbeitskreis Prof. Dr. *Thomas Carell*, Ludwig-Maximilians-Universität München) an einer *Thermo Finnigan* LTQ Orbitrap XL, die an eine *Dionex Ultimate* 3000 HPLC angeschlossen war, mit einer *Uptisphere120-3HDO* (3 μ m, 2.1 mm × 15 mm) Säule (*Interchim*) durchgeführt. Für das verwendete Puffersystem, HPLC-Gradient und weitere messtechnische Details siehe das SI-Material von *Schiesser et al.*³⁶⁷

Nummerierung: Die Nummerierungen der Pyrrolo[2,1-c][1,4]benzodiazepin Derivate ist analog zu *Leimgruber et al.*¹⁴ Nukleobasen wurden nach IUPAC nummeriert.

OD-Messungen: Zur Messung der optischen Dichte von Bakterien bei 600 nm wurde ein *BioPhotometer (Eppendorf)* und 1 mL Einmalküvetten (*VWR*) verwendet.

pH-Meter: Zum Einstellen von pH-Werten wurde ein *MP 220* von *Mettler Toledo* verwendet, das vor jeder Messreihe durch Lösungen von pH 7.0 und 4.0 geeicht wurde.

Platinierung von DNA-Duplexen und Charakterisierung des Produktgemisches: Eine gesättigte Lösung des jeweiligen Komplexes und DNA-Duplex (DNA-Endkonzentration 5 μ M) in einem 45 mM NaOAc-Puffer (Endvolumen 774 μ L) wurde 2 Tage bei 37 °C und 1400 rpm inkubiert. Nach Entfernen des Wassers wurde doppelt destilliertes Wasser (78.6 μ L), Verdaupuffer (1.0 M NH4OAc, 0.1 M MgCl₂, 0.1 M CaCl₂, 1.0 mM ZnSO₄; pH 5.5, 10.4 μ L) und Nuklease P1 aus *Penicillium citrinum* (*Sigma-Aldrich*, 2.2 U/ μ L, 2.4 μ L) zugegeben und 2 h bei 37 °C inkubiert. Nach Zugabe von *Antarctic Phosphatase* (*New England Biolabs*, 5.2 μ L, 1 U/ μ L) wurde erneut 2 h bei 37 °C inkubiert. Nach 10-minütiger Zentrifugation bei 134000 rpm wurde der Überstand abgenommen und der LC-ESI-Massenspektrometrie zugeführt.

Polarimetrie: Der Drehwert der Verbindung **64** wurden an einem Polarimeter der Firma *Krüss Optics* in einer 5 cm langen Glasküvette gemessen. Hierzu wurden 10 unabhängige Messungen bei der angegebener Konzentration (in M) und Temperatur gemittelt und in $\times 10^{-1}$ cm²g⁻¹ angegeben.

Röntgenstrukturanalyse: Einkristalle wurden von der Analytik-Abteilung der Ludwig-Maximilians-Universität München, Department Chemie (Haus D) mit MoK_α-Strahlung bei 200 K vermessen. Hierzu wurden ein *Nonius Kappa CCD* der Firma *Bruker*, ein *Bruker D8Quest* beziehungsweise das *XCalibur3* von *Oxford* verwendet. Die Kristallstrukturen wurden von Dr. *P. Mayer* (Arbeitskreis Prof. Dr. *Peter Klüfers*) gelöst.

Rotationsverdampfer: Zum Entfernen der Lösemittel *in vacuo* wurde der Rotationsverdampfer *Laborta 4000* von *Heidolph* verwendet, wobei die Temperatur des Wasserbades, falls nicht anders angegeben, 40 °C betrug.

Säulenchromatographie: Hierfür wurde die *Flash*-Methode verwendet. Als stationäre Phase diente Kieselgel 60 (Korngröße 0.063–0.200 mm) von *Merck*. Zur Aufreinigung des Phosphoramidits 76 wurde das Kieselgel zuvor mit Pyridin deaktiviert.

Spritzenpumpe: Zur kontinuierlichen Zugabe von Lösungen zu Reaktionsgemischen wurde eine Spritzenpumpe von *KD Scientific* verwendet.

Umsetzungen von ODN 2 mit Aminosäure-Derivaten: Eine Lösung (Gesamtvolumen 10 μ L, pH 6.0), die 10 μ M an ODN 2 und 0.53 M an N^{α} -Acetyl-L-cystein (und eventuell 0.22 M an N^{α} -Boc-L-histidin) war, wurde 17.5 h bei 50 °C mit Hilfe eines *Mastercycler personal (Eppendorf)* mit beheizbarem Deckel (105 °C) inkubiert. Nach Abkühlen auf Raumtemperatur wurde die DNA durch Zugabe einer 3 M NaOAc-Lösung (50 μ L) und EtOH (1 mL) 1 h bei –20 °C gefällt, 15 min bei 13400 rpm und 4 °C zentrifugiert und mit 75% igem, 4 °C kaltem EtOH (1 × 1 mL) gewaschen. Zum enzymatischen Verdau wurde Bidestwasser (24.2 μ L), eine 1 mM Zink-Lösung (3.1 μ L) und Nuklease S₁ (20 U/ μ L, 2 μ L) zugegeben und 1.5 h bei 37 °C inkubiert. Hiernach wurde eine 1 mM EDAT-Lösung (3.7 μ L), *Antarctic Phosphatase* (1 U/ μ L, 1 μ L) und *Snake Venom* Phosphodiesterase I (0.1 U/ μ L, 1 μ L) zugegeben und weitere 1.5 h bei 37 °C inkubiert. Nach Zentrifugation bei 13400 rpm für 10 min wurden 30 μ L der erhaltenen Nukleosid-Lösung LC-ESI-HR-MS-analytisch untersucht.

UV-Vis-Spektroskopie: Zur Messung der Schmelzpunkte der DNA-Haarnadelstrukturen wurde ein *JASCO V-650 Spectrophotometer* mit einem *JASCO* Peltier-Element verwendet. Hierzu wurde eine Lösung (Gesamtvolumen 234 µL), die 1.0 M DNA, 0.10 M NaCl und 10 mM Natriumphosphat-Puffer pH 5.0 (beziehungsweise pH 7.4) enthielt in einer Quarzglas-küvette (*Hellma*) von 10 °C auf 90 °C erhitzt (Gradient 1 °C/min), wieder abgekühlt und hierbei die Absorption bei 260 nm gemessen (Referenzmessung bei 339 nm). Um Schwankungen der Absorption bei 260 nm durch Verdampfung des Wassers zu verhindern, wurde die Lösung mit 400 µL Dimethylpolysiloxan-Öl (*Sigma-Aldrich*) überschichtet. Der Schmelzpunkt wurde durch Subtraktion der jeweiligen UV-Absorptionen bei 339 nm, Mittelung der beiden Kurven und Prozessierung mit einer Glättungsfunktion mit Hilfe des Programms ORIGIN[®] 6.0 erhalten. Der Schmelzpunkt entspricht der Nullstelle der zweiten Ableitung des Graphen.

Zentrifuge: Zum Sedimentieren diente eine MiniSpin-Zentrifuge (Eppendorf).

Zytotoxizitätstests: Zur Untersuchung der zytotoxischen Wirkung der neu dargestellten Konjungate 24 und 42 im Vergleich zu Cisplatin wurden BL21(DE3)-E. coli-Zellen (New England BioLabs) verwendet. Eine Probe dieser Zellen in einer Glycerol-Stocklösung wurde auf einer LB-Platte (0.31 g Casein-Pepton, 0.15 g Hefe-Extrakt, 0.15 g NaCl, 0.45 g Agar Agar Kobe 1, 30 mL doppelt destilliertes Wasser) ausplatiert und über Nacht bei 37 °C inkubiert. 4 mL M9-Minimalmedium (8.69 g Na₂HPO₄· 2H₂O, 3 g KH₂PO₄, 0.5 g NaCl, 1 g NH₄Cl in 988 mL doppelt destilliertem Wasser autoklaviert, dann Zugabe der Mikronährstoffe: 1 mL 1 M MgSO4, 0.1 mL 1 M CaCl2, 10 µL 0.3 mM (NH4)6M07O24, 10 µL 40 mM H3BO3, 10 µL 3 mM CoCl₂, 10 µL 1 mM CuSO₄, 10 µL 1 mM ZnSO₄, 200 µL 5 mM FeSO₄, die Lösungen mit den Mikronährstoffen wurden mit Hilfe eines Spritzenvorsatzfilter mit einer 20 µm Celluloseacetatmembran von Millipore sterilfiltriert) mit 1% Glukose wurde mit einer Kolonie der LB-Platte angeimpft und 12.5 h bei 37 °C inkubiert (20 rpm). Hieraus wurde 100 µL zu 3.9 mL frischem M9-Minimalmedium mit 1% Glukose zugegeben, bei 37 °C inkubiert und in regelmässigen Zeitintervallen die OD₆₀₀ von 10:1-Verdünnungen gemessen. Beim Übergang der Zellen von der lag-Phase ins exponentielle Wachstum wurden die Komplexe in DMSO (molekularbiologisch rein, Sigma-Aldrich) angelöst (Endkonzentration Komplexe 20 µM, Endkonzentration DMSO 1%) zugegeben. Als Negativkontrolle wurde DMSO alleine zugegeben. Die OD600 wurde weiterhin in regelmässigen Zeitintervallen gemessen, bis sich die Bakterien in der stationären Phasen befanden.

6.2 Untersuchungen zur Synthese eines Cisplatin-N-Lost Konjugats auf Basis eines κN²,κO¹-Chelatrings

 N^{6} -(Benzyloxycarbonyl)- N^{2} -(*tert*-butyloxycarbonyl)-L-lysinmethylester (2)

Zu einer Lösung aus N^{6} -(Benzyloxycarbonyl)-L-lysinmethylester Hydrochlorid (1) (22.28 g, 67.35 mmol, 1.0 Äq.) und Triethylamin (23.4 mL, 168 mmol, 2.5 Äq.) in DMF (743 mL) wurde eine Lösung aus Di-(*tert*-butyl)dicarbonat (15.8 mL, 73.8 mmol, 1.1 Äq.), Triethylamin (14.0 mL, 100 mmol, 1.5 Äq.) in DMF (247 mL) zugegeben und die erhaltene Reaktionslösung 25 h bei Raumtemperatur gerührt. Nach Zugabe einer 20%igen NaCl-Lösung (297 mL) und H₂O (450 mL) wurde mit EtOAc (3 × 740 mL) extrahiert, über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt. Säulenchromatographische Aufreinigung (CHCl₃/MeOH 60:1 + 0.44% 7 N NH₃ in MeOH) ergab **2** als blassgelbes Öl (25.85 g, 65.53 mmol, 97%).

 $R_{\rm f} = 0.57$ (CHCl₃/MeOH 5:1 + 0.44% 7 N NH₃ in MeOH).

¹**H-NMR** (400 MHz, CD₃CN, ppm): $\delta = 7.39-7.29$ (m, 5H, $5 \times C_{Ar}\underline{H}$), 5.62 (s br, 2H, $2 \times N\underline{H}$), 5.05 (s, 2H, C<u>H</u>₂-O), 4.09–4.04 (m, 1H, NH-C<u>H</u>), 3.66 (s, 3H, O-C<u>H</u>₃), 3.11–3.06 (m, 2H, N-C<u>H</u>₂), 1.77–1.69 (m, 1H, C<u>H</u>₂-CH), 1.65–1.55 (m, 1H, C<u>H</u>₂-CH), 1.52–1.42 (m, 2H, NH-CH₂-C<u>H</u>₂), 1.40 (s, 9H, $3 \times C$ -C<u>H</u>₃), 1.38–1.30 (m, 2H, CH-CH₂-C<u>H</u>₂).

¹³C-NMR (101 MHz, CD₃CN, ppm): $\delta = 174.2$ (CH-<u>C</u>O), 157.4 (O<u>C</u>-OCH₂), 156.6 (O<u>C</u>-O-C), 138.3 (<u>CAr</u>-CH₂), 129.4 (<u>CAr</u>H), 128.7 (<u>CAr</u>H), 128.6 (<u>CAr</u>H), 79.8 (<u>C</u>-CH₃), 66.6 (<u>C</u>H₂-O), 54.6 (<u>C</u>H-CO), 52.5 (O-<u>C</u>H₃), 41.0 (NH-<u>C</u>H₂), 31.9 (<u>C</u>H₂-CH), 30.1 (NH-CH₂-<u>C</u>H₂), 28.5 (C-<u>C</u>H₃), 23.4 (CH-CH₂-<u>C</u>H₂).

HRMS (ESI+): ber. für C₂₀H₃₀N₂NaO₆⁺ $[M + Na]^+$: 417.1996, gef.: 417.1994.

IR (ATR): \tilde{v} (cm⁻¹) = 3357 (w, -N-H, -O-H), 2948 (m, -C-H), 2867 (m, -C-H), 2678 (m), 1737 (s, -C=O), 1708 (s), 1509 (m, -N-H), 1438 (m, -CH₂, -CH₃), 1416 (w, -CH₂, -CH₃), 1366 (m, -C-N, -CH₃), 1210 (m, -C-N, -C-O-C), 1162 (s, -C-N, -C-O-C), 1028 (m, -C-N, -C-O-C), 876 (m), 779 (m), 734 (m, =C-H), 659 (m).

N^2 -(*tert*-Butyloxycarbonyl)- O^1 -methyl-L-lysiniumacetat (3)

Zu einer Lösung aus N^6 -(Benzyloxycarbonyl)- N^2 -(*tert*-butyloxycarbonyl)-L-lysinmethylester (**2**) (4.97 g, 12.6 mmol, 1.0 Äq.) und HOAc (2.5 mL, 44 mmol, 3.5 Äq.) in MeOH (136 mL) wurde 10% Pd/C (1.55 g, 1.46 mmol, 0.1 Äq.) zugegeben und 2.5 h bei Raumtemperatur und 1 bar H₂ gerührt. Nach Filtration und Entfernen des Lösemittels *in vacuo* wurde Verbindung **3** als farbloses Öl erhalten (4.04 g, 12.6 mmol, 100%).

 $R_{f} = 0.05$ (CHCl₃/MeOH 10:1 + 0.44% 7 N NH₃ in MeOH).

¹**H-NMR** (400 MHz, CD₃OD, ppm): $\delta = 4.11$ (dd, J = 9.1, 4.9 Hz, 1H, NH-C<u>H</u>), 3.72 (s, 3H, COO-C<u>H₃</u>), 2.91 (t, ³*J*_{H,H} = 7.7 Hz, 2H, N-C<u>H₂</u>), 1.95 (s, 3H, C<u>H₃</u>-COO), 1.85–1.78 (m, 1H, C<u>H</u>₂-CH), 1.72–1.63 (m, 3H, 1 × C<u>H</u>₂-CH, NH-CH₂-C<u>H₂</u>), 1.51–1.42 (m, 2H, CH-CH₂-C<u>H₂</u>) 1.44 (s, 9H, 3 × C-C<u>H₃</u>).

¹³C-NMR (101 MHz, CD₃OD, ppm): $\delta = 177.6$ (CH₃-<u>C</u>OO), 174.7 (CH-<u>C</u>O), 158.2 (O<u>C</u>-O-C), 80.7 (<u>C</u>-CH₃), 54.8 (<u>C</u>H-CO), 52.7 (O-<u>C</u>H₃), 40.4 (NH₂-<u>C</u>H₂), 32.1 (<u>C</u>H₂-CH), 28.7 (C-<u>C</u>H₃), 28.1 (NH-CH₂-<u>C</u>H₂), 23.9 (CH-CH₂-<u>C</u>H₂), 22.4 (<u>C</u>H₃-COO).

HRMS (ESI+): ber. für $C_{12}H_{25}N_2O_4^+$ [*M* – HOAc + H]⁺: 261.1809, gef.: 261.1808.

IR (ATR): \tilde{v} (cm⁻¹) = 3344 (w, -N-H, -O-H), 2934 (m br, -C-H), 2871 (m br, -C-H, -CH₃), 2594 (m br), 1706 (s, -C=O), 1513 (s, -N-H), 1437 (s, -CH₂, -CH₃), 1392 (s, -CO), 1366 (s, -C-N, -CH₃), 1246 (s, -C-N, -C-O-C), 1162 (s, -C-N, -C-O-C), 1048 (m, -C-N, -C-O-C), 1011 (m), 876 (m), 736 (m), 659 (m).

N^6 -Bis(2-hydroxyethyl)- N^2 -(*tert*-butyloxycarbonyl)-L-lysinmethylester (4)

Eine Lösung aus N^2 -(*tert*-Butyloxycarbonyl)- O^1 -methyl-L-lysiniumacetat (**3**) (7.43 g, 23.2 mmol, 1.0 Äq.), 95% iges 2-Bromethanol (18.0 mL, 240 mmol, 10.4 Äq.), DIPEA (53.0 mL, 300 mmol, 12.9 Äq.) in DMF (350 mL) wurde 14 d bei Raumtemperatur gerührt.

Nach Zugabe von H₂O (218 mL) wurde mit DCM (2 × 113 mL) extrahiert, über Na₂SO₄ getrocknet und das Lösemittel *in vacuo* entfernt. Nach säulenchromatographischer Aufreinigung (DCM/MeOH 20:1 \rightarrow 5:1 + jeweils 0.44% 7 N NH₃ in MeOH) wurde **4** als blassgelbes Öl erhalten (4.93 g, 14.2 mmol, 61%).

 $R_{\rm f} = 0.26$ (CHCl₃/MeOH 5:1 + 0.44% 7 N NH₃ in MeOH).

¹**H-NMR** (200 MHz, CD₃OD, ppm): $\delta = 4.13-4.06$ (m, 1H, C<u>H</u>), 3.71 (s, 3H, O-C<u>H₃</u>), 3.61 (t, ${}^{3}J_{\rm H,H} = 5.9$ Hz, 4H, 2 × C<u>H₂</u>-OH), 2.65 (t, ${}^{3}J_{\rm H,H} = 5.9$ Hz, 4H, 2 × C<u>H₂</u>-CH₂-OH), 2.59–2.52 (m, 2H, N-C<u>H₂</u>-CH₂-CH₂-CH₂), 1.82–1.29 (m, 6H, C<u>H₂-CH₂-CH₂-CH), 1.44 (s, 9H, 3 × C-C<u>H₃</u>).</u>

¹³C-NMR (101 MHz, CD₃OD, ppm): $\delta = 175.1$ (CH-<u>C</u>O), 158.2 (O<u>C</u>-O-C), 80.6 (<u>C</u>-CH₃), 60.7 (<u>C</u>H₂-O), 57.6 (N-<u>C</u>H₂-CH₂-OH), 55.9 (N-<u>C</u>H₂-CH₂-CH₂), 55.0 (<u>C</u>H), 52.6 (O-<u>C</u>H₃), 32.6 (<u>C</u>H₂-CH), 28.8 (C-<u>C</u>H₃), 27.4 (<u>C</u>H₂-CH₂-CH₂-CH), 24.7 (<u>C</u>H₂-CH₂-CH).

HRMS (ESI+): ber. für $C_{16}H_{33}N_2O_6^+[M + H]^+$: 349.2333, gef.: 349.2332.

IR (ATR): \tilde{v} (cm⁻¹) = 3340 (w, -N-H), 2976 (w, -C-H), 2951 (w, -C-H), 1691 (s, -C=O), 1520 (m, -N-H), 1455 (m, -CH₂, -CH₃), 1438 (w, -CH₂, -CH₃), 1366 (m), 1246 (m, -C-N, -C-O-C), 1214 (m, -C-N, -C-O-C), 1160 (s, -C-N, -C-O-C), 1020 (m, -C-N, -C-O-C).

 N^6 -Bis(2-chlorethyl)- N^2 -(*tert*-butyloxycarbonyl)-L-lysinmethylester (5)

Zu einer Lösung aus N^6 -Bis(2-hydroxyethyl)- N^2 -(*tert*-butyloxycarbonyl)-L-lysinmethylester (4) (0.580 g, 1.66 mmol, 1.0 Äq.) und TEA (0.92 mL, 6.6 mmol, 4.0 Äq.) in DCM (16.4 mL) wurde Methansulfonsäurechlorid (0.38 mL, 4.9 mmol, 3.0 Äq.) tropfenweise bei 0 °C zugegeben und die erhaltene Reaktionslösung 21 h bei Raumtemperatur gerührt. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (EtOAc) wurde **5** als bräunliches Öl erhalten (0.37 g, 0.96 mmol, 58%).

 $R_f = 0.21$ (iso-Hexan/EtOAc 5:1).

¹**H-NMR** (400 MHz, CD₃OD, ppm): $\delta = 4.12-4.08$ (m, 1H, C<u>H</u>), 3.71 (s, 3H, O-C<u>H₃</u>), 3.55 (t, ³*J*_{H,H} = 7.0 Hz, 4H, 2 × C<u>H₂</u>-Cl), 2.87 (t, ³*J*_{H,H} = 7.0 Hz, 4H, 2 × C<u>H₂</u>-CH₂-Cl), 2.59 (t, ³*J*_{H,H} = 6.9 Hz, 2H, N-C<u>H₂</u>-CH₂-CH₂), 1.83-1.75 (m, 1H, C<u>H</u>₂-CH), 1.70-1.60 (m, 1H, C<u>H</u>₂-

CH), 1.53–1.38 (m, 4H, C<u>H</u>₂-C<u>H</u>₂-CH₂-CH), 1.44 (s, 9H, 3 × C-C<u>H</u>₃).

¹³**C-NMR** (101 MHz, CD₃OD, ppm): $\delta = 175.1$ (CH-<u>C</u>O), 158.2 (O<u>C</u>-O-C), 80.6 (<u>C</u>-CH₃), 57.6 (N-<u>C</u>H₂-CH₂-Cl), 55.5 (N-<u>C</u>H₂-CH₂-CH₂), 55.0 (<u>C</u>H), 52.6 (O-<u>C</u>H₃), 42.9 (<u>C</u>H₂-Cl), 32.5 (<u>C</u>H₂-CH), 28.8 (C-<u>C</u>H₃), 28.1 (N-CH₂-<u>C</u>H₂-CH₂), 24.4 (<u>C</u>H₂-CH₂-CH).

HRMS (ESI–): ber. für C₁₆H₃₀³⁵Cl₃N₂O₄⁻ [M + Cl]⁻: 419.1277 (100%), gef.: 419.1275 (100%). ber. für C₁₆H₃₀³⁵Cl₂³⁷ClN₂O₄⁻ [M + Cl]⁻: 421.2147 (64%), gef.: 421.1246 (66%).

IR (ATR): \tilde{v} (cm⁻¹) = 3392 (w, -N-H), 2951 (w, -C-H), 2864 (w), 1740 (m, -C=O), 1706 (s, -C=O), 1506 (m, -N-H), 1436 (m, -CH₂, -CH₃), 1365 (m), 1249 (m, -C-N, -C-O-C), 1212 (m, -C-N, -C-O-C), 1160 (s, -C-N, -C-O-C), 1047 (m, -C-N, -C-O-C), 1015 (m), 778 (w, C-Cl), 728 (m, C-Cl).

Eine Lösung aus N^6 -Bis(2-chlorethyl)- N^2 -(*tert*-butyloxycarbonyl)-L-lysinmethylester (**5**) (77 mg, 0.20 mmol, 1.0 Äq.) in 6 N Salzsäure (0.80 mL) wurde 3.5 h bei 70 °C gerührt. Nach Abkühlen auf Raumtemperatur und Entfernen des Lösemittels *in vacuo* bei 50 °C wurde H₂O (2.5 mL) und Aktivkohle (59 mg) zugegeben, abfiltriert und das Lösemittel *in vacuo* entfernt, so dass **6** als farbloser Feststoff erhalten wurde (52 mg, 0.15 mmol, 75%).

¹**H-NMR** (400 MHz, D₂O, pH 2.5, ppm): $\delta = 4.08$ (t, ³*J*_{H,H} = 6.3 Hz, 1H, C<u>H</u>), 4.01 (t, ³*J*_{H,H} = 5.9 Hz, 4H, 2 × C<u>H</u>₂-Cl), 3.74 (t, ³*J*_{H,H} = 5.9 Hz, 4H, 2 × CH2-CH₂-Cl), 3.42–3.38 (m, 2H, N-C<u>H</u>₂-CH₂-CH₂), 2.11–1.95 (m, 2H, C<u>H</u>₂-CH), 1.92–1.84 (m, 2H, C<u>H</u>₂-CH₂-CH₂-CH), 1.66–1.47 (m, 2H, C<u>H</u>₂-CH₂-CH).

¹³**C-NMR** (101 MHz, D₂O + 0.7% MeOH, pH 2.5, ppm): δ = 172.3 (<u>C</u>O), 54.9 (N-<u>C</u>H₂-CH₂-CH₂-Cl), 53.9 (N-<u>C</u>H₂-CH₂-CH₂), 53.1 (<u>C</u>H), 37.8 (<u>C</u>H₂-Cl), 29.8 (<u>C</u>H₂-CH), 22.9 (N-CH₂-<u>C</u>H₂-CH₂), 22.1 (<u>C</u>H₂-CH₂-CH).

HRMS (ESI-): ber. für C₁₀H₂₀³⁵Cl₃N₂O₂⁻ $[M - 2HCl + Cl]^{-}$: 305.0596 (100%), gef.: 305.0600 (100%). ber. für C₁₀H₂₀³⁵Cl₂³⁷ClN₂O₂⁻ $[M - 2HCl + Cl]^{-}$: 307.0566 (96%), gef.: 307.0571 (94%).

Schmelzpunkt: Aufgrund der sehr hohen Hygroskopie von 6 konnte kein Schmelzpunkt gemessen werden.

IR (ATR): \tilde{v} (cm⁻¹) = 3356 (w, -N-H, -O-H), 2870 (s, -C-H, -O-H), 2615 (s), 1732 (m, -C=O), 1598 (m, -N-H, -CO, -NH₃⁺), 1503 (m), 1444 (s, -CH₂), 1416 (m, -CH₂), 1206 (s, -C-N), 1125 (m, -C-N), 735 (m, C-Cl), 661 (s, C-Cl).

N^6 -Bis(2-hydroxyethyl)-L-lysinmethylester (9)

Zu einer Suspension von N^6 -Bis(2-hydroxyethyl)- N^2 -(*tert*-butyloxycarbonyl)-L-lysinmethylester (4) (2.51 g, 7.20 mmol, 1.0 Äq.) und 4 Å Molsieb in DCM (68 mL) wurde bei 0 °C eine Lösung aus BF₃·OEt₂ (4.40 mL, 35.7 mmol, 3.5 Äq.) in DCM (40 mL) innerhalb von 30 min unter Argon zugetropft und 4 h bei Raumtemperatur gerührt. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (CHCl₃/MeOH 10:1 \rightarrow 5:1 + jeweils 7 N NH₃ in MeOH) wurde **9** als blassgelbes Öl erhalten (1.51 g, 6.08 mmol, 84%).

 $R_{f} = 0.18$ (MeOH + 0.44% 7 N NH₃ in MeOH).

¹**H-NMR** (600 MHz, CD₃OD, ppm): $\delta = 3.73$ (s, 3H, O-C<u>H₃</u>), 3.65 (t, ³*J*_{H,H}= 5.8 Hz, 4H, 2 × C<u>H₂</u>-OH), 3.50 (dd, ³*J*_{H,H}= 7.0, 5.9 Hz, 1H, C<u>H</u>), 2.77 (t, ³*J*_{H,H}= 5.8 Hz, 4H, 2 × C<u>H₂</u>-CH₂-OH), 2.69–2.67 (m, 2H, N-C<u>H₂</u>-CH₂-CH₂), 1.79–1.73 (m, 1H, C<u>H</u>₂-CH), 1.68–1.62 (m, 1H, C<u>H</u>₂-CH), 1.58–1.33 (m, 2H, N-CH₂-C<u>H₂</u>-CH₂), 1.42–1.36 (m, 2H, CH-CH₂-C<u>H₂</u>).

¹³C-NMR (151 MHz, CD₃OD, ppm): $\delta = 176.7$ (<u>C</u>O), 60.0 (<u>C</u>H₂-O), 57.4 (N-<u>C</u>H₂-CH₂-CH₂-OH), 55.7 (N-<u>C</u>H₂-CH₂-CH₂), 55.0 (<u>C</u>H), 52.6 (O-<u>C</u>H₃), 35.1 (<u>C</u>H₂-CH), 27.1 (<u>C</u>H₂-CH₂-CH₂-CH₂-CH₂-CH), CH), 24.2 (<u>C</u>H₂-CH₂-CH).

HRMS (ESI+): ber. für
$$C_{11}H_{25}N_2O_4^+[M + H]^+$$
: 249.1809, gef.: 249.1808.

*N*⁶-Bis(2-hydroxyethyl)-L-lysin Dihydrochlorid (10)

Eine Lösung aus N^6 -Bis(2-hydroxyethyl)-L-lysinmethylester (**9**) (0.17 g, 0.69 mmol, 1.0 Äq.) in 6 N Salzsäure (7.5 mL) wurde 20 h bei 120 °C gerührt. Nach Abkühlen auf Raumtemperatur wurde das Lösemittel *in vacuo* bei 50 °C entfernt. Nach Zugabe von H₂O (8 mL) und Aktivkohle (192 mg) wurde abfiltriert und das Lösemittel *in vacuo* bei 50 °C entfernt, so dass **10** als farbloser, hygroskopischer Feststoff erhalten wurde (0.18 g, 0.60 mmol, 87%).

¹**H-NMR** (400 MHz, D₂O, pH 2.5, ppm): $\delta = 4.08$ (t, ${}^{3}J_{\text{H,H}} = 6.1$ Hz, 1H, C<u>H</u>), 3.93 (t, ${}^{3}J_{\text{H,H}} = 5.0$ Hz, 4H, 2 × C<u>H₂</u>-OH), 3.46–3.39 (m, 4H, 2 × C<u>H₂</u>-CH₂-OH), 3.34–3.30 (m, 2H, N-C<u>H₂</u>-CH₂-CH₂), 2.09–1.92 (m, 2H, C<u>H₂</u>-CH), 1.87–1.79 (m, 2H, N-CH₂-C<u>H₂</u>-CH₂), 1.60–1.45 (m, 2H, CH-CH₂-C<u>H₂</u>).

¹³**C-NMR** (101 MHz, D₂O + 0.7% MeOH, pH 2.5, ppm): δ = 173.8 (<u>C</u>O), 55.4 (<u>C</u>H₂-O), 54.9 (N-<u>C</u>H₂-CH₂-OH), 54.1 (<u>C</u>H), 53.4 (N-<u>C</u>H₂-CH₂-CH₂), 29.8 (<u>C</u>H₂-CH), 22.7 (<u>C</u>H₂-CH₂-CH₂-CH₂-CH), 21.7 (<u>C</u>H₂-CH₂-CH).

HRMS (ESI+): ber. für $C_{10}H_{23}N_2O_4^+[M-2HCl+H]^+$: 235.1652, gef.: 235.1650.

Schmelzpunkt: Aufgrund der sehr hohen Hygroskopie von 10 konnte kein Schmelzpunkt gemessen werden.

IR (ATR): \tilde{v} (cm⁻¹) = 3344 (w br, -N-H, -O-H), 2954 (w, -C-H), 2399 (s), 1730 (s, -C=O), 1406 (s), 1061 (s, -C-N, -C-O-C), 1024 (m, -C-N, -C-O-C), 917 (-O-H···O).

Zu einer Lösung aus N^6 -Bis(2-hydroxyethyl)-L-lysin Dihydrochlorid (10) (24 mg, 78 µmol, 1.0 Äq.) in D₂O (0.5 mL) wurde K₂PtCl₄ (43 mg, 0.10 mmol, 1.3 Äq.) zugegeben, die erhaltene tiefrote Reaktionslösung mit 7.3 M NaOD (50 µL, 0.37 mmol, 4.7 Äq.) auf pH 7.5 eingestellt und 4 d bei 50 °C unter Argon-Atmosphäre gerührt, wobei der pH-Wert im Laufe der Reaktion sukzessive abnahm. Nach 21 h, 43 h, 50 h, 68 h und 74 h wurde durch Zugabe von 0.23 mL, 0.17 mL, 0.10 mL, 0.08 mL beziehungsweise 0.13 mL einer 0.2 M NaOD-Lösung der pH von 2.5 auf pH 6 nachjustiert. Nach Abkühlen auf Raumtemperatur, Filtration und Entfernen des Lösemittels *in vacuo* wurde ein leicht rosafarbenes Gemisch aus 7, K₂PtCl₄, NaOD, NaCl, KOD und KCl erhalten, woraus 7 nicht vollständig abgetrennt werden konnte.

¹**H-NMR** (200 MHz, D₂O, pH 2.5, ppm): $\delta = 4.05$ (t, ${}^{3}J_{H,H} = 5.0$ Hz, 4H, C<u>H</u>₂-OH), 3.74 (t, $J_{H,H} = 5.5$ Hz, 1H, C<u>H</u>), 3.55 (t, ${}^{3}J_{H,H} = 5.0$ Hz, 4H, 2 × C<u>H</u>₂-CH₂-OH), 3.53–3.44 (m, 2H, N-C<u>H</u>₂-CH₂-CH₂-CH₂), 2.07–1.66 (m, 6H, N-CH₂-C<u>H₂-CH₂-CH₂).</u>

¹³C-NMR (101 MHz, D₂O, pH 2.5 + 0.7% MeOH, ppm): δ = 190.4 (<u>C</u>O), 58.7 (<u>C</u>H), 55.9 (<u>C</u>H₂-O), 55.4 (N-<u>C</u>H₂-CH₂-OH), 54.0 (N-<u>C</u>H₂-CH₂-CH₂), 32.2 (<u>C</u>H₂-CH), 23.3 (<u>C</u>H₂-CH₂-CH₂-CH), 22.2 (<u>C</u>H₂-CH₂-CH).

¹⁹⁵**Pt-NMR** (85.5 MHz, D₂O, pH 2.5, ppm): $\delta = -1637$.

HRMS (ESI+): Das berechnete und gefundene ESI-Spektrum ist in Abbildung 4.4 gezeigt.

Auf die Messung des Schmelzpunktes und des IR-Spektrums wurde aufgrund der noch vorhandenen Verunreinigungen verzichtet.
Kalium-L-alaninatodichloridoplatinat(II) (11)

Eine Lösung aus K₂PtCl₄ (0.12 g, 0.29 mmol, 1.5 Äq.) und L-Alanin (18 mg, 0.20 mmol, 1.0 Äq.) in D₂O (1.3 mL) wurde 3 h bei 120 °C gerührt. Der erhaltene Komplex wurde nicht weiter aufgereinigt, sondern mittels NMR-Spektroskopie und Röntgenkristallographie charakterisiert. Farblose Kristalle konnten durch Inkubation der Reaktionslösung bei 4 °C über Nacht erhalten werden.

¹**H-NMR** (400 MHz, D₂O, ppm): δ = 4.11 (q, ³*J*_{H,H} = 7.2 Hz, 1H, C<u>H</u>), 1.57 (d, ³*J*_{H,H} = 7.2 Hz, 3H, C<u>H</u>₃).

¹³C-NMR (101 MHz, D₂O + 0.7% MeOH, ppm): δ = 191.0 (<u>C</u>O), 55.1 (<u>C</u>H), 18.4 (<u>C</u>H₃).

6.3 Synthese eines Cisplatin-N-Lost Konjugats auf Basis eines $\kappa^2 N^{1,2}$ -Chelatrings

[PtCl₂(en)₂] (13)³¹²

Komplex **13** wurde nach *Kemp et al.* dargestellt.³¹² Hierzu wurde eine Lösung aus K₂PtCl₄ (0.28 g, 0.67 mmol, 1.0 Äq.) und Ethylendiamin (45 μ L, 0.67 mmol, 1.0 Äq.) in D₂O (2.7 mL) bei Raumtemperatur gerührt, wobei nach wenigen Minuten ein Feststoff präzipitierte. Nach 45 min wurde der Feststoff abfiltriert, so dass **13** als gelber Feststoff erhalten wurde (0.11 g, 0.34 mmol, 51%).

Elementaranalyse: ber. für C₂H₈Cl₂N₂Pt: 7.37% C, 2.47% H, 21.74% Cl, 8.59% N; gef.: 7.23% C, 2.41% H, 21.73% Cl, 8.51% N.

¹⁹⁵**Pt-NMR** (85.8 MHz, [D₆]-DMSO, ppm): $\delta = -2331$.

Schmelzpunkt: >265 °C (Zersetzung).

IR (ATR): \tilde{v} (cm⁻¹) = 3281 (m, -NH₂), 3209 (m, -NH₂), 1568 (s, -NH₂), 1470 (w, -CH₂), 1452 (w, -CH₂), 1368 (w, -CH₂), 1288 (w, -CH₂), 1195 (m), 1160 (w), 1130 (s, -NH₂), 1053 (m, -C-N), 994 (w, -C-C), 938 (w), 762 (s, -NH₂).

FIR (PE): \tilde{v} (cm⁻¹) = 569 (m), 548 (w, Pt-N), 467 (m, Pt-N), 332 (m), 311 (s br, Pt-Cl), 201 (m), 140 (m).

Die Zuordnung der IR-Banden erfolgte nach Berg et al.⁴²⁸

*N*⁶-Benzyloxycarbonyl-*N*²-*tert*-butyloxycarbonyl-L-lysinol (15)

Zu einer Lösung aus N^6 -(Benzyloxycarbonyl)- N^2 -(*tert*-butyloxycarbonyl)-L-lysinmethylester (2) (2.25 g, 5.70 mmol, 1.0 Äq.) in einer THF/DCM-Mischung (4 mL/20 mL) wurde eine Lösung aus 2 M LiBH₄ in THF (4.0 mL, 8.0 mmol, 1.4 Äq.) bei 0 °C zugetropft und die erhaltene Reaktionslösung 2 d bei Raumtemperatur gerührt. Nach Beendigung der Reaktion durch Zugabe einer gesättigten NH₄Cl-Lösung (20 mL) wurde die organische Phase *in vacuo* entfernt, die wässrige Phase mit EtOAc (2 × 44 mL) extrahiert und über MgSO₄ getrocknet. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (*iso*-Hexan/EtOAc 2:1 → 1:1 + jeweils 0.44% 7 N NH₃ in MeOH) wurde **15** als farbloses Pulver erhalten (2.00 g, 5.46 mmol, 96%).

 $R_{f} = 0.22$ (*i*so-Hexan/EtOAc 1:1).

¹**H-NMR** (400 MHz, CD₃CN, ppm): $\delta = 7.39-7.29$ (m, 5H, 5 × C_{Ar}<u>H</u>), 5.62 (s br, 1H, N<u>H</u>-CH₂), 5.13 (d br, ³*J*_{H,H} = 5.4 Hz, 1H, N<u>H</u>-CH), 5.04 (s, 2H, C<u>H₂</u>-O-CO), 3.50–3.41 (m, 1H, C<u>H</u>), 3.41–3.38 (m, 2H, C<u>H₂</u>-OH), 3.11–3.06 (m, 2H, NH-C<u>H₂</u>), 2.84 (t, ³*J*_{H,H} = 5.2 Hz, 1H, O<u>H</u>), 1.55–1.24 (m, 6H, C<u>H₂</u>-C<u>H₂</u>-CH), 1.40 (s, 9H, 3 × C<u>H₃</u>).

¹³C-NMR (101 MHz, CD₃CN, ppm): $\delta = 157.4$ (O<u>C</u>-OCH₂), 157.0 (O<u>C</u>-O-C), 138.5 (<u>C_{Ar}</u>-CH₂), 129.4 (<u>C_{Ar}</u>H), 128.7 (<u>C_{Ar}</u>H), 128.6 (<u>C_{Ar}</u>H), 79.1 (<u>C</u>-CH₃), 66.6 (C<u>H₂</u>-O-CO), 65.2 (<u>C</u>H₂-OH), 53.3 (<u>C</u>H-CH₂), 41.3 (NH-<u>C</u>H₂), 31.6 (CH₂-<u>C</u>H₂-CH), 30.4 (<u>C</u>H₂-CH₂-CH₂-CH), 28.6 (<u>C</u>H₃), 23.7 (NH-CH₂-<u>C</u>H₂).

HRMS (ESI+): ber. für $C_{19}H_{31}N_2O_5^+[M + H]^+$: 367.2227, gef.: 367.2227.

Schmelzintervall: 69–71 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3339 (s, -N-H, -O-H), 2942 (w, -C-H), 1694 (s, -C=O), 1682 (s, -C=O), 1531 (s, -N-H), 1454 (w, -CH₂, -CH₃), 1366 (m), 1288 (m, -C-N, -C-O-C), 1246 (m, -C-N, -C-O-C), 1171 (m, -C-N, -C-O-C), 1024 (m).

(2S)-N-[6-Benzyloxycarbamoyl-2-tert-butyloxycarbamoyl)hex-1-yl]phthalimid (16)

Methode A (Umsetzung mit Di-*iso*-propylazodicarboxylat): Eine Lösung aus N^6 -Benzyloxycarbonyl- N^2 -*tert*-butyloxycarbonyl-L-lysinol (15) (0.10 g, 0.28 mmol, 1.0 Äq.), Triphenylphosphin (0.12 g, 0.45 mmol, 1.6 Äq.), Phthalimid (57 mg, 0.39 mmol, 1.4 Äq.) und 94%iges Di-*iso*-propylazodicarboxylat (90 µL, 0.43 mmol, 1.5 Äq.) in Toluol (0.78 mL) wurden 29 h bei 85 °C unter Lichtausschluss gerührt. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (*iso*-Hexan/EtOAc 2:1 \rightarrow 1:1) wurde **16** als gelber Feststoff erhalten (63 mg, 0.13 mmol, 46%).

Methode B (Umsetzung mit Di-*tert*-butylazodicarboxylat): Eine Lösung aus *N*⁶-Benzyloxycarbonyl-*N*²-*tert*-butyloxycarbonyl-L-lysinol (15) (40 g, 0.08 mol, 1.0 Äq.) in Toluol (295 mL) wurde mit Triphenylphosphin (46 g, 0.17 mol, 2.1 Äq.), Di-*tert*-butylazodicarboxylat (38 g, 0.17 mmol, 1.5 Äq.) und Phthalimid (22 g, 0.15 mmol, 1.1 Äq.) versetzt und die erhaltene gelbe Reaktionslösung 8 h bei 80 °C unter Lichtausschluß gerührt. Nach Zugabe von weiterem Triphenylphosphin (15 g, 0.06 mol, 0.8 Äq.) und Di-*tert*-butylazodicarboxylat (12.8 g, 55.6 mmol, 0.7 Äq.) wurde weitere 2 h bei 80 °C gerührt. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (*iso*-Hexan/EtOAc 2:1 → 1:1) wurde **16** als gelber Feststoff erhalten (44.21 g, 89.21 mmol, 81%).

 $R_f = 0.19$ (iso-Hexan/EtOAc 2:1).

¹**H-NMR** (400 MHz, CD₃CN, ppm): $\delta = 7.83-7.74$ (m, 4H, CO-C-C<u>H</u>-C<u>H</u>-C<u>H</u>-C<u>H</u>), 7.39–7.28 (m, 5H, CH₂-C-C<u>H</u>-C<u>H</u>-C<u>H</u>-C<u>H</u>-C<u>H</u>), 5.63 (s br, 1H, N<u>H</u>-CH₂), 5.13 (d br, ³*J*_{H,H} = 9.2 Hz, 1H, N<u>H</u>-CH), 5.04 (s, 2H, C<u>H₂</u>-O), 3.88–3.76 (m, 1H, C<u>H</u>), 3.59–3.57 (m, 2H, C<u>H₂</u>-N), 3.08 (q, ³*J*_{H,H} = 6.5 Hz, 2H, NH-C<u>H₂</u>), 1.56–1.31 (m, 6H, C<u>H₂-C<u>H</u>₂-C<u>H</u>₂-CH), 1.16 (s, 9H, 3 × C<u>H₃</u>).</u>

¹³C-NMR (101 MHz, CD₃CN, ppm): $\delta = 169.3$ (C-<u>C</u>O-N), 157.3 (O<u>C</u>-OCH₂), 156.7 (O<u>C</u>-O-C), 138.4 (<u>CAr</u>-CH₂), 134.9 (CO-C-CH-<u>C</u>H), 133.1 (CO-<u>C</u>), 130.2 (<u>CAr</u>H), 128.7 (<u>CAr</u>H), 128.5 (<u>CAr</u>H), 123.7 (C-<u>C</u>H), 79.1 (<u>C</u>-CH₃), 66.6 (C<u>H₂</u>-O), 50.3 (<u>C</u>H-CH₂), 43.3 (<u>C</u>H₂-N), 41.1 (NH-<u>C</u>H₂), 32.3 (CH₂-<u>C</u>H₂-CH), 30.2 (<u>C</u>H₂-CH₂-CH₂-CH), 28.3 (<u>C</u>H₃), 23.7 (NH-CH₂-CH₂-CH₂).

HRMS (ESI+): ber. für C₂₇H₃₃N₃NaO₆⁺ $[M + Na]^+$: 518.2262, gef.: 518.2261.

Schmelzintervall: 116–117 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3350 (w, -N-H), 2936 (w, -C-H), 1707 (s, -C=O), 1684 (s, -C=O), 1526 (m, -N-H), 1394 (m), 1366 (m), 1247 (m, -C-N, -C-O-C), 1169 (m, -C-N, -C-O-C), 1023 (m, -C-O-C), 722 (s), 712 (s, =C-H), 696 (m, =C-H).

(2S)-N⁶-Benzyloxycarbonyl-N²-(*tert*-butyloxycarbonyl)hexan-1,2,6-triamin (17)

Methode A (Phthalimid-Spaltung mit Hydrazin): Zu von (2*S*)-*N*-[6-Benzyloxycarbamoyl-2-*tert*-butyloxycarbamoyl)hex-1-yl]-phthalimid (16) (45 mg, 90 µmol, 1.0 Äq.) wurde eine Lösung aus Hydrazinmonohydrat (22 µL, 0.57 mmol, 4.5 Äq.) in MeOH (0.14 mL) und DCM (0.14 mL) zugegeben und 3.5 h bei Raumtemperatur gerührt. Zur nun farblosen Suspension wurde zur Vernichtung von überschüssigem Hydrazin Benzaldehyd (40 µL, 0.39 mmol, 4.3 Äq.) zugegeben und weitere 1.5 h bei Raumtemperatur gerührt. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (CHCl₃/MeOH 40:1 \rightarrow 5:1 + jeweils 0.44% 7 N NH₃ in MeOH) wurde 17 als farbloses, viskoses Öl erhalten (18.3 mg, 50.1 µmol, 56%).

Methode B (Phthalimid-Spaltung mit Methylamin): Eine Lösung aus (2*S*)-*N*-[6-Benzyloxycarbamoyl-2-*tert*-butyloxycarbamoyl)hex-1-yl]phthalimid (16) (51 mg, 0.10 mmol, 1.0 Äq.) in einer 33% igen Methylamin-Lösung in Ethanol (1.5 mL) wurde 1 d bei Raumtemperatur gerührt. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (CHCl₃/MeOH 40:1 \rightarrow 5:1 + jeweils 0.44% 7 N NH₃ in MeOH) wurde 17 als farbloses, viskoses Öl erhalten (27 mg, 74 µmol, 74%).

 $R_{f} = 0.16$ (CHCl₃/MeOH 5:1 + 0.44% 7 N NH₃ in MeOH).

¹**H-NMR** (200 MHz, CD₃CN, ppm): $\delta = 7.50-7.41$ (m, 5H, $5 \times C_{Ar}\underline{H}$), 5.78 (s br, 1H, N<u>H</u>-

CH₂), 5.33 (d br, ${}^{3}J_{H,H}$ = 6.9 Hz, 1H, N<u>H</u>-CH), 5.15 (s, 2H, C<u>H₂</u>-O), 3.56–3.43 (m, 1H, C<u>H</u>), 3.19 (dd, ${}^{3}J_{H,H}$ = 12.6, 6.6 Hz, 2H, HN-C<u>H₂</u>), 2.79–2.61 (m, 2H, NH₂-C<u>H₂</u>), 1.64–1.36 (m, 8H, C<u>H₂-CH₂-CH₂-CH</u>, N<u>H₂</u>), 1.51 (s, 9H, 3 × C<u>H₃</u>).

¹³**C-NMR** (101 MHz, CD₃CN, ppm): $\delta = 157.3$ (O<u>C</u>-OCH₂), 157.0 (O<u>C</u>-O-C), 138.5 (<u>C_{Ar}</u>-CH₂), 129.4 (<u>C_{Ar}</u>H), 128.7 (<u>C_{Ar}</u>H), 128.6 (<u>C_{Ar}</u>H), 79.0 (<u>C</u>-CH₃), 66.6 (<u>C</u>H₂-O), 53.6 (<u>C</u>H-CH₂), 46.4 (<u>C</u>H₂-NH₂), 41.3 (NH-<u>C</u>H₂), 32.7 (<u>C</u>H₂), 30.4 (<u>C</u>H₂), 28.6 (<u>C</u>H₃), 23.7 (NH-CH₂-CH₂).

HRMS (ESI+): ber. für C₁₉H₃₂N₃O₄⁺ $[M + H]^+$: 366.2387, gef.: 366.2387.

IR (ATR): \tilde{v} (cm⁻¹) = 3350 (w, -N-H), 2975 (w, -N-H), 2935 (w, -C-H), 2864 (w, -C-H), 1684 (s, -C=O), 1522 (s, -N-H), 1454 (m, -CH₂, -CH₃), 1365 (m), 1247 (s, -C-N, -C-O-C), 1167 (s, -C-N, -C-O-C), 1139 (m, -C-N, -C-O-C), 1015 (m), 735 (m, =C-H), 696 (s, =C-H).

(2S)-N⁶-Benzyloxycarbonyl-N¹,N²-bis(*tert*-butyloxycarbonyl)hexan-1,2,6-triamin (18)

Zu einer Lösung aus (2*S*)-*N*⁶-Benzyloxycarbonyl-*N*²-(*tert*-butyloxycarbonyl)hexan-1,2,6-triamin (17) (19.0 g, 51.9 mmol, 1.0 Äq.) in MeCN (258 mL) wurde Di-*tert*-butyldicarbonat (83 mL, 0.39 mmol, 7.5 Äq.) in einer wässrigen 30%igen KOAc-Lösung (183 mL) zugegeben und die erhaltene Reaktionslösung 3.5 d bei Raumtemperatur gerührt. Nach Zugabe von EtOAc (660 mL) wurde die organische Phase mit einer 5%igen NaHCO₃-Lösung (656 mL) und H₂O (656 mL) gewaschen. Die wässrige Phase wurde mit EtOAc (2 × 656 mL) reextrahiert und das Lösemittel der vereinigten organischen Phasen *in vacuo* entfernt. Nach säulenchromatographischer Aufreinigung (CHCl₃/MeOH 150:1 + 0.44% 7 N NH₃ in MeOH) wurde **18** als farbloser Feststoff erhalten (24.2 g, 52.0 mmol, 100%).

 $R_{\rm f} = 0.35$ (CHCl₃/MeOH 10:1 + 0.44% 7 N NH₃ in MeOH).

¹**H-NMR** (300 MHz, CDCl₃, ppm): $\delta = 7.36-7.29$ (m, 5H, 5 × C_{Ar}<u>H</u>), 5.08 (s, 2H, C<u>H</u>₂-O), 4.91 (d br, ³*J*_{H,H}=15.5 Hz, 1H, CH-N<u>H</u>), 4.71 (s br, 1H, N<u>H</u>), 3.63–3.54 (s br, 1H, C<u>H</u>), 3.21–3.13 (m, 4H, HN-C<u>H</u>₂-CH, NH-C<u>H</u>₂-CH₂), 1.44–1.35 (m, 6H, C<u>H</u>₂-C<u>H</u>₂-C<u>H</u>₂-CH), 1.42 (s, 9H, 3 × C<u>H</u>₃), 1.42 (s, 9H, 3 × C<u>H</u>₃).

¹³C-NMR (151 MHz, CDCl₃, ppm): δ = 156.6 (O<u>C</u>-OCH₂), 156.5 (O<u>C</u>-O-C), 156.2 (O<u>C</u>-O-C), 136.6 (<u>CAr</u>-CH₂), 128.5 (<u>CAr</u>H), 128.1 (<u>CAr</u>H), 128.0 (<u>CAr</u>H), 79.4 (<u>C</u>-CH₃), 79.3

(<u>C</u>-CH₃), 66.6 (C<u>H</u>₂-O), 51.2 (<u>C</u>H-CH₂), 44.6 (<u>C</u>H₂-NH), 40.1 (NH-<u>C</u>H₂), 32.3 (NH-CH₂-<u>C</u>H₂), 29.6 (<u>C</u>H₂-CH₂-CH), 28.4 (<u>C</u>H₃), 28.4 (<u>C</u>H₃), 22.7 (NH-CH₂-CH₂-<u>C</u>H₂).

HRMS (ESI+): ber. für C₂₄H₃₉N₃NaO₆⁺ $[M + Na]^+$: 488.2731, gef.: 488.2730.

Schmelzintervall: 102–104 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3360 (m, -N-H), 2936 (w, -C-H), 1693 (s, -C=O), 1680 (s, -C=O), 1526 (s, -N-H), 1249 (m, -C-O-C, -N-H), 1165 (m, -C-O-C, -N-H).

(2S)-N¹,N²-Bis(*tert*-butyloxycarbonyl)hexan-1,2,6-triamin (14)

Zu einer Lösung aus (2*S*)-*N*⁶-Benzyloxycarbonyl-*N*¹,*N*²-bis(*tert*-butyloxycarbonyl)hexan-1,2,6-triamin (**18**) (2.63 g, 5.65 mmol, 1.0 Äq.) und HOAc (1.10 mL, 19.2 mmol, 3.4 Äq.) in MeOH (408 mL) wurde 10% Pd/C (0.66 g, 0.62 mmol, 0.1 Äq.) zugegeben und 6.5 h bei Raumtemperatur und 1 bar H₂ gerührt. Nach Filtration und Entfernen des Lösemittels *in vacuo* wurde säulenchromatographisch aufgereinigt (CHCl₃/MeOH 15:1 \rightarrow 5:1 + jeweils 0.44% 7 N NH₃ in MeOH). Zum Entfernen der restlichen Essigsäure wurde **14** in DCM (574 mL) gelöst, mit einer 28%igen NH₄OH-Lösung (2 × 56 mL) gewaschen, über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt, so dass **14** als farbloses Pulver erhalten wurde (1.66 g, 5.01 mmol, 88%).

 $R_{f} = 0.09$ (CHCl₃/MeOH 5:1 + 0.44% 7 N NH₃ in MeOH).

¹**H-NMR** (400 MHz, CD₃CN, ppm): $\delta = 3.51-3.44$ (m, 1H, C<u>H</u>), 3.04 (dd, ²*J*_{H,H} = 13.8 Hz, ³*J*_{H,H} = 4.8 Hz, 1H, HN-C<u>H</u>₂), 2.95–2.89 (m, 1H, HN-C<u>H</u>₂), 2.61 (t, ³*J*_{H,H} = 7.3 Hz, 2H, H₂N-C<u>H₂</u>), 1.47–1.25 (m, 6H, C<u>H₂-CH₂-CH</u>₂-CH), 1.36 (s, 18H, 6 × C<u>H₃</u>).

¹³C-NMR (101 MHz, CD₃CN, ppm): $\delta = 157.9$ (<u>C</u>O), 157.7 (<u>C</u>O), 80.0 (<u>C</u>-CH₃), 79.9 (<u>C</u>-CH₃), 51.5 (<u>C</u>H), 44.9 (<u>C</u>H₂-NH), 41.2 (NH₂-<u>C</u>H₂), 32.6 (CH₂-CH₂-CH), 31.3 (<u>C</u>H₂-CH₂-NH₂), 28.6 (<u>C</u>H₃), 28.6 (<u>C</u>H₃), 23.5 (<u>C</u>H₂-CH₂-CH).

HRMS (ESI+): ber. für $C_{16}H_{34}N_3O_4^+[M + H]^+$: 332.2544, gef.: 332.2543.

Schmelzpunkt: 98 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3361 (w, -N-H), 2975 (w, -C-H), 2934 (w, -C-H), 1681 (s, -C=O), 1523 (s, -N-H), 1444 (w), 1366 (m), 1323 (m), 1247 (m, -C-O-C, -N-H), 1160 (m, -C-O-C, -N-H),

1040 (w, -C-O-C, -N-H), 884 (w), 780 (w).

(2S)-N⁶-Bis(2-hydroxyethyl)-N¹,N²-bis(*tert*-butyloxycarbonyl)hexan-1,2,6-triamin (19)

Eine Lösung aus (2S)- N^1 , N^2 -Bis(*tert*-butyloxycarbonyl)hexan-1,2,6-triamin (14) (3.07 g, 9.26 mmol, 1.0 Äq.), 2-Bromethanol (6.80 mL, 95.9 mmol, 10.4 Äq.) und DIPEA (16.6 mL, 95.3 mmol, 10.3 Äq.) in DMF (152 mL) wurde 11 d bei Raumtemperatur gerührt, wobei nach 7 d nochmals 2-Bromethanol (3.40 mL, 48.0 mmol, 5.2 Äq.) und DIPEA (8.30 mL, 47.7 mmol, 5.2 Äq.) zugegeben wurde. Nach Zugabe von H₂O (86 mL) wurde mit DCM (4 × 95 mL) extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt. Nach säulenchromatographischer Aufreinigung (CHCl₃/MeOH 40:1 → 5:1 + jeweils 0.44% 7 N NH₃ in MeOH) wurde 19 als gelbes Öl erhalten (2.10 g, 5.01 mmol, 54%).

 $R_{f} = 0.54$ (MeOH + 0.44% 7 N NH₃ in MeOH).

¹**H-NMR** (400 MHz, CD₃OD, ppm): $\delta = 3.61$ (t, ${}^{3}J_{\text{H,H}} = 5.9$ Hz, 4H, 2 × C<u>H</u>₂-OH), 3.57–3.52 (m, 1H, HN-C<u>H</u>), 3.10 (dd, ${}^{2}J_{\text{H,H}} = 13.8$ Hz, ${}^{3}J_{\text{H,H}} = 5.3$ Hz, 1H, HN-C<u>H</u>₂), 2.98 (dd, ${}^{2}J_{\text{H,H}} = 13.8$ Hz, ${}^{3}J_{\text{H,H}} = 7.6$ Hz, 1H, HN-C<u>H</u>₂), 2.65 (t, ${}^{3}J_{\text{H,H}} = 5.9$ Hz, 4H, 2 × C<u>H</u>₂-CH₂-OH), 2.55 (t, ${}^{3}J_{\text{H,H}} = 7.6$ Hz, 2H, N-C<u>H</u>₂), 1.59–1.28 (m, 6H, C<u>H</u>₂-C<u>H</u>₂-C<u>H</u>₂-CH), 1.44 (s, 9H, 3 × C<u>H</u>₃), 1.43 (s, 9H, 3 × C<u>H</u>₃).

¹³**C-NMR** (101 MHz, CD₃OD, ppm): δ = 158.7 (CH₂-NH-<u>C</u>O), 158.4 (CH-NH-<u>C</u>O), 80.1 (<u>C</u>-CH₃), 80.0 (<u>C</u>-CH₃), 60.7 (<u>C</u>H₂-OH), 57.6 (<u>C</u>H₂-CH₂-OH), 56.1 (N-<u>C</u>H₂), 52.1 (<u>C</u>H), 45.6 (<u>C</u>H₂-NH), 33.4 (CH₂-C<u>H₂-CH), 28.9 (<u>C</u>H₃), 28.8 (<u>C</u>H₃), 27.6 (<u>C</u>H₂), 24.8 (<u>C</u>H₂).</u>

HRMS (ESI+): ber. für C₂₀H₄₂N₃O₆⁺ $[M + H]^+$: 420.3068, gef.: 420.3068.

IR (ATR): \tilde{v} (cm⁻¹) = 3356 (m br, -N-H, -O-H), 2934 (s, -C-H), 2869 (s, -C-H), 2607 (m), 1706 (s br, -C=O), 1599 (m, -N-H), 1512 (s, -N-H), 1446 (s, -CH₂, -CH₃), 1366 (s), 1210 (s, -C-O-C, -N-H), 1163 (s, -C-O-C, -N-H), 1039 (m, -C-O-C, -N-H), 876 (m), 779 (m), 735 (m), 659 (s).

 $(2S)-N^6$ -Bis(2-chlorethyl)- N^1 , N^2 -bis(*tert*-butyloxycarbonyl)hexan-1,2,6-triamin (20)

Zu einer Lösung aus (2S)- N^6 -Bis(2-hydroxyethyl)- N^1 , N^2 -bis(tert-butyloxycarbonyl)hexan-1,2,6-triamin (**19**) (0.24 g, 0.58 mmol, 1.0 Äq.) und TEA (0.32 mL, 2.3 mmol, 4.0 Äq.) in DCM (5.7 mL) wurde bei 0 °C Methansulfonsäurechlorid (0.13 mL, 1.7 mmol, 2.9 Äq.) zugetropft und die erhaltene, blassgelbe Reaktionslösung 15.5 h bei Raumtemperatur gerührt. Nach säulenchromatographischer Aufreinigung (EtOAc) wurde **20** als farbloser Feststoff erhalten (0.27 g, 0.50 mmol, 86%).

 $R_{\rm f} = 0.82 \, ({\rm EtOAc}).$

¹**H-NMR** (400 MHz, CD₃OD, ppm): $\delta = 6.46$ (t br, ${}^{3}J_{\text{H,H}} = 5.5$ Hz, 1H, CH₂-N<u>H</u>), 6.28 (d br, ${}^{3}J_{\text{H,H}} = 8.9$ Hz, 1H, CH-N<u>H</u>), 3.62–3.51 (m, 5H, 2 × C<u>H₂</u>-Cl, HN-C<u>H</u>), 3.14–3.08 (m, 1H, HN-C<u>H</u>₂), 3.02–2.95 (m, 1H, HN-C<u>H</u>₂), 2.87 (t, ${}^{3}J_{\text{H,H}} = 7.0$ Hz, 4H, 2 × C<u>H₂</u>-CH₂-Cl), 2.58 (t, ${}^{3}J_{\text{H,H}} = 7.0$ Hz, 2H, N-C<u>H₂), 1.51–1.32 (m, 6H, CH₂-CH₂-CH₂-CH), 1.44 (s, 9H, 3 × C<u>H₃), 1.44 (s, 9H, 3 × CH₃).</u></u>

¹³C-NMR (101 MHz, CD₃OD, ppm): $\delta = 158.7$ (CH₂-NH-<u>C</u>O), 158.4 (CH-NH-<u>C</u>O), 80.1 (<u>C</u>-CH₃), 80.0 (<u>C</u>-CH₃), 57.6 (<u>C</u>H₂-CH₂-Cl), 55.7 (N-<u>C</u>H₂-CH₂-CH₂), 52.1 (<u>C</u>H), 45.6 (<u>C</u>H₂-NH), 42.7 (<u>C</u>H₂-Cl), 33.3 (CH₂-C<u>H₂-CH), 28.9 (<u>C</u>H₃), 28.8 (<u>C</u>H₃), 24.5 (N-CH₂-<u>C</u>H₂-CH₂), 20.9 (CH-CH₂-<u>C</u>H₂).</u>

HRMS (ESI+): ber. für C₂₀H₄₀³⁵Cl₂N₃O₄⁺ $[M + H]^+$: 456.2390 (100%), gef.: 456.2393 (100%). ber. für C₂₀H₄₀³⁵Cl³⁷ClN₃O₄⁺ $[M + H]^+$: 458.2361 (64%), gef.: 458.2365 (63%).

Schmelzintervall: 88–90 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3394 (m), 3363 (m br, -N-H), 2931 (s, -C-H), 2870 (s, -C-H), 2617 (m), 1734 (s br, -C=O), 1690 (s, -C=O), 1599 (m, -N-H), 1516 (s, -N-H), 1442 (s, -CH₂, -CH₃), 1366 (m), 1210 (s, -C-O-C, -N-H), 1169 (s, -C-O-C, -N-H), 1024 (m, -C-O-C, -N-H), 724 (m, -C-Cl), 661 (s, -C-Cl), 636 (s, -C-Cl), 608 (s, -C-Cl).

(2S)-N⁶-Bis(2-chlorethyl)hexan-1,2,6-triammoniumtrihydrochlorid (21)

Eine Lösung aus (2S)- N^6 -Bis(2-chlorethyl)- N^1 , N^2 -bis(tert-butyloxycarbonyl)hexan-1,2,6-triamin (**20**) (0.81 g, 1.8 mmol, 1.0 Äq.) in 6 N Salzsäure (7.0 mL) wurde 3.5 h bei 70 °C gerührt. Nach Entfernen des Lösemittels *in vacuo* bei 60 °C wurde H₂O (22 mL) und Aktivkohle (520 mg) zugegeben, abfiltriert und erneut das Lösemittel *in vacuo* bei 60 °C entfernt, so dass **21** als blassgelber Feststoff erhalten wurde (0.62 g, 1.7 mmol, 96%).

¹**H-NMR** (400 MHz, D₂O, pH 2.0, ppm): $\delta = 4.03$ (t, ³*J*_{H,H} = 5.9 Hz, 4H, 2 × C<u>**H**</u>₂-Cl), 3.76 (t, ³*J*_{H,H} = 5.9 Hz, 4H, 2 × C<u>**H**</u>₂-CH₂-Cl), 3.70 (qi, ³*J*_{H,H} = 6.4 Hz, 1H, C<u>**H**</u>), 3.45–3.38 (m, 4H, H₂N-C<u>**H**</u>₂, N-C<u>**H**</u>₂), 1.96–1.81 (m, 4H, C<u>**H**</u>₂-CH₂-CH), 1.65–1.51 (m, 2H, CH₂-C<u>**H**</u>₂-CH₂-CH).

¹³C-NMR (101 MHz, D₂O, pH 2.0, ppm): $\delta = 54.8$ (<u>C</u>H₂-CH₂-Cl), 53.8 (N-<u>C</u>H₂-CH₂-CH₂), 49.8 (<u>C</u>H), 41.2 (H₂N-<u>C</u>H₂), 37.7 (<u>C</u>H₂-Cl), 30.2 (CH₂-C<u>H₂</u>-CH), 23.0 (N-CH₂-<u>C</u>H₂-CH₂), 22.0 (CH-CH₂-<u>C</u>H₂).

HRMS (ESI+): ber. für C₁₀H₂₄³⁵Cl₂N₃⁺ $[M - 3HCl + H]^+$: 256.1342 (100%), gef.: 256.1342 (100%). ber. für C₁₀H₂₄³⁵Cl³⁷ClN₃⁺ $[M - 3HCl + H]^+$: 258.1313 (64%), gef.: 258.1313 (67%).

Schmelzintervall: Aufgrund der extrem hohen Hygroskopie konnte kein Schmelzpunkt gemessen werden.

IR (ATR): \tilde{v} (cm⁻¹) = 3382 (m br, -N-H), 2924 (s br, -C-H), 2875 (s br, -C-H), 2360 (s), 2342 (s), 1606 (m, -N-H), 1508 (m, -N-H), 1456 (m, -CH₂, -CH₃), 1039 (w), 937 (w), 719 (m, -C-Cl), 668 (s, C-Cl), 655 (s, C-Cl).

$[(2S)-N^6-Bis(2-chlorethyl)-hexan-1,2,6-triamin-\kappa^2 N^{1,2}] dichloridoplatin(II)$

Monohydrochlorid (22)

Zu einer Lösung aus (2*S*)-*N*⁶-Bis(2-chlorethyl)hexan-1,2,6-triammoniumtrihydrochlorid (**21**) (58 mg, 0.16 mmol, 1.0 Äq.) und K₂PtCl₄ (65 mg, 0.16 mmol, 1.0 Äq.) in H₂O (0.27 mL) wurde tropfenweise innerhalb von 30 s eine 1 M NaOH-Lösung (0.25 mL) zugesetzt, so dass der pH-Wert von 1.0 auf pH 8.0 anstieg und ein rosafarbener Feststoff präzipitierte. Nach Filtration und Waschen des Feststoffs mit H₂O (6 mL) ergab sich **22**·HCl (52 mg, 26 µmol, 16%), das noch den dreikernigen Komplex Bis{[(5*S*)-*N*⁶-Bis(2-chlorethyl)hexan-1,2,6-triamin- κN^1 , κN^2]dichloridoplatin(II)}- κN^6 , N^6 '-dichloridoplatin(II) **23** im Verhältnis **22**:**23** = 2:1 und 8 Kristallwasser-Moleküle enthielt.

Elementaranalyse: ber. für 2 × 22 · HCl, 1 × 23, 8 × H₂O: 18.68% C, 4.31% H, 6.54% N, 27.57% Cl; gef.: 18.60% C, 4.07% H, 6.51% N, 27.83% Cl.

HRMS (ESI+): Das berechnete und gefundene ESI-Spektrum ist in Abbildung 4.6 gezeigt.

Schmelzpunkt: >265 °C (Zersetzung).

IR (ATR): \tilde{v} (cm⁻¹) = 3458 (w, -N-H), 2996 (s, -C-H), 2947 (s, -C-H), 1582 (m, -N-H), 1449 (s, -CH₂), 1304 (w, -C-N), 1174 (w, -C-N), 1035 (m, -C-N), 762 (w, -C-Cl), 732 (w, -C-Cl).

FIR (PE): \tilde{v} (cm⁻¹) = 321 (s br, Pt-Cl), 331 (s br, Pt-Cl).

6.4 Synthese eines Cisplatin-N-Lost-Konjugats auf Basis eines $\kappa^2 N^{1,2}$ -Chelatrings und eines Monoethylenglykol-*linkers*

2-(2'-(Benzyloxycarbamoyl)ethoxy)ethanol (26)

26 wurde nach *Boyce et al.*³¹⁶ dargestellt. Hierzu wurde zu einer Lösung aus 2-(2'-(Aminoethoxy)ethanol (**25**) (4.08 g, 38.0 mmol, 1.0 Äq.) in 0.8 M NaOH (96 mL) eine Lösung aus Z-Cl (7.00 mL, 49.0 mmol, 1.3 Äq.) in THF (10 mL) bei 0 °C innerhalb von 15 min zugetropft und 8 h bei 0 °C gerührt, wobei nach 4.5 h nochmals Z-Cl (3.50 mL, 24.5 mmol, 0.6 Äq.) zugegeben wurde. Nach Zugabe von 1 M Salzsäure (32 mL) bei 0 °C, wurde mit EtOAc (3 × 250 mL) extrahiert, die vereinigten organsichen Phasen über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt. Säulenchromatographische Aufreinigung (DCM/EtOAc 1:1) ergab **26** als farbloses Öl (5.44 g, 22.7 mmol, 60%).

 $R_{f} = 0.26$ (DCM/EtOAc 1:1).

¹**H-NMR** (200 MHz, CD₃Cl, ppm): $\delta = 7.38-7.33$ (m, 5H, $5 \times C_{Ar}\underline{H}$), 5.23 (s br, 1H, N<u>H</u>), 5.11 (s, 2H, C<u>H</u>₂-C_{Ar}), 3.73–3.70 (m, 2H, C<u>H</u>₂-OH), 3.58–3.54 (m, 4H, C<u>H</u>₂-O-C<u>H</u>₂), 3.44–3.36 (m, 2H, HN-C<u>H</u>₂), 2.21 (s br, 1H, O<u>H</u>).

¹³C-NMR (75 MHz, CDCl₃, ppm): $\delta = 156.5$ (<u>C</u>O), 136.5 (CH₂-<u>C_{Ar}</u>), 128.5 (<u>C_{Ar}</u>), 128.1 (<u>C_{Ar}</u>), 128.1(<u>C_{Ar}</u>), 72.2 (<u>C</u>H₂-CH₂-OH), 70.1 (HN-CH₂-<u>C</u>H₂), 66.8 (C_{Ar}-<u>C</u>H₂), 61.7 (<u>C</u>H₂-OH), 40.9 (HN-<u>C</u>H₂).

HRMS (ESI+): ber. für C₁₂H₁₇N₃NaO₄⁺ $[M + Na]^+$: 262.1050, gef.: 262.1048.

IR (ATR): \tilde{v} (cm⁻¹) = 3334 (w, -N-H, -O-H), 2943 (w, -C-H), 1695 (s, -C=O), 1528 (s, -N-H), 1455 (m, -CH₂), 1429 (m, -CH₂), 1237 (s, -C-O-C, -N-H), 1131 (s, -C-O-C, -N-H), 1026 (s, -C-O-C), 737 (m, =C-H), 691 (s, =C-H), 675 (m).

2-(2'-(Benzyloxycarbamoyl)ethoxy)essigsäure (27)

27 wurde nach *Zhang et al.*³¹⁷ dargestellt. Hierzu wurde eine Lösung aus 2-(2'-(Benzyloxy-carbamoyl)ethoxy)ethanol (26) (607 mg, 2.54 mmol, 1.0 Äq.) Di(acetoxy)iodbenzol (0.98 g,

3.0 mmol, 1.2 Äq.) und 2,2,6,6-Tetramethylpiperidin-1-oxyl (24 mg, 0.15 mmol, 0.1 Äq.) in H₂O/MeCN (5.1 mL/25.5 mL) 2 d bei Raumtemperatur gerührt, wobei nach 1 d erneut Di-(acetoxy)iodbenzol (0.98 g, 3.0 mmol, 1.2 Äq.) und 2,2,6,6-Tetramethylpiperidin-1-oxyl (24 mg, 0.15 mmol, 0.1 Äq.) zugegeben wurde. Nach Zugabe von H₂O (15 mL), 96%iger H₂SO₄ (1.5 mL) und Ameisensäure (4 mL) wurde mit DCM (3×60 mL) extrahiert, über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt. Nach säulenchromatographischer Aufreinigung (DCM/MeOH 50:1 \rightarrow 5:1 + jeweils 0.44% Ameisensäure) wurde **27** als gelbes Öl erhalten (602 mg, 2.38 mmol, 94%).

 $R_{f} = 0.03$ (DCM/MeOH 5:1 + 0.44% Ameisensäure).

¹**H-NMR** (200 MHz, CD₃Cl, ppm): $\delta = 8.14$ (s br, 1H, COO<u>H</u>), 7.37–7.34 (m, 5H, 5 × C_{Ar}<u>H</u>), 5.49 (t br, ${}^{3}J_{H,H} = 6.1$ Hz, 1H, N<u>H</u>), 5.10 (s, 2H, C<u>H</u>₂-C_{Ar}), 4.11 (s, 2H, C<u>H</u>₂-CO), 3.62 (t, ${}^{3}J_{H,H} = 4.7$ Hz, 2H, HN-CH₂-C<u>H</u>₂), 3.45–3.38 (m, 2H, HN-C<u>H</u>₂-CH₂).

¹³C-NMR (101 MHz, CDCl₃, ppm): $\delta = 174.4$ (<u>C</u>OOH), 156.8 (N-<u>C</u>O), 136.4 (CH₂-<u>C_{Ar}</u>), 128.5 (<u>C_{Ar}</u>), 128.1 (<u>C_{Ar}</u>), 128.1 (<u>C_{Ar}</u>), 70.6 (HN-CH₂-<u>C</u>H₂), 68.2 (<u>C</u>H₂-CO), 66.8 (C_{Ar}-<u>C</u>H₂), 40.7 (HN-<u>C</u>H₂).

HRMS (ESI–): ber. für $C_{12}H_{14}NO_5^{-}[M-H]^{-}$: 252.0877, gef.: 252.0879.

IR (ATR): \tilde{v} (cm⁻¹) = 3334 (w, -N-H, -O-H), 2943 (w, -C-H), 1695 (s, -C=O), 1528 (s, -N-H), 1455 (m, -CH₂), 1429 (m, -CH₂), 1237 (s, -C-N, -C-O-C), 1131 (s, -C-N, -C-O-C), 1026 (s, -C-O-C), 737 (m, =C-H), 691 (s, =C-H), 675 (m).

Zu einer Lösung aus $(2S)-N^1,N^2$ -Bis(*tert*-butyloxycarbonyl)hexan-1,2,6-triamin (14) (1.69 g, 5.10 mmol, 1.0 Äq.), 2-(2'-(Benzyloxycarbamoyl)ethoxy)essigsäure (27) (1.69 g, 6.67 mmol, 1.3 Äq.) und 4-Methoxyphenol (0.39 g, 3.1 mmol, 0.6 Äq.) in CHCl₃ (167 mL) wurde eine Lösung aus EDC·HCl (1.16 g, 6.05 mmol, 1.2 Äq.) in CHCl₃ (70 mL) bei 0 °C zugetropft und 4.5 d bei 45 °C gerührt. Nach 1 d, wurde nochmals 4-Methoxyphenol (0.39 g, 3.1 mmol, 0.6 Äq.) und EDC·HCl (1.16 g, 6.05 mmol, 1.2 Äq.) und nach 2 d und 3 d jeweils 4-Methoxyphenol (130 mg, 1.05 mmol, 0.2 Äq.) und EDC·HCl (388 mg, 2.02 mmol, 0.4 Äq.)

zugegeben, um ein vollständiges Abreagieren der Reaktanten zu erzielen. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (DCM/MeOH $60:1 \rightarrow 20:1 + \text{jeweils } 0.44\% 7 \text{ N NH}_3 \text{ in MeOH}$) konnte **28** als blassgelbes Öl erhalten werden (1.13 g, 1.99 mmol, 39%).

 $R_{\rm f} = 0.32$ (EtOAc).

¹**H-NMR** (400 MHz, CD₃Cl, ppm): $\delta = 7.37-7.29$ (m, 5H, $5 \times C_{Ar}\underline{H}$), 6.75 (s br, 1H, CH₂-CO-N<u>H</u>), 5.53 (s br, 1H, CH-CH₂-N<u>H</u>), 5.10 (s, 2H, C<u>H₂-C_{Ar}), 4.80 (s br, 1H, N<u>H</u>-CH₂-CH₂-CH₂), 4.70 (s br, 1H, CH-N<u>H</u>), 3.94 (s, 2H, C<u>H₂-CO), 3.60–3.53 (m, 3H, HN-CH₂-C<u>H₂-O</u>, C<u>H</u>), 3.42–3.41 (m, 2H, HN-C<u>H₂-CH), 3.29–3.19 (m, 2H, HN-C<u>H₂-CH₂-CH₂), 3.09 (s br, 2H, N-C<u>H₂-CH₂-CH₂-O), 1.54–1.34 (m, 6H, C<u>H₂-CH₂-CH</u>₂-CH), 1.43 (s, 9H, $3 \times C\underline{H_3}$), 1.42 (s, 9H, $3 \times C\underline{H_3}$).</u></u></u></u></u>

¹³**C-NMR** (101 MHz, CDCl₃, ppm): $\delta = 169.3$ (CH₂- $\underline{C}O$), 156.7 (NH- $\underline{C}O$ -C), 156.6 (NH- $\underline{C}O$ -C), 156.1 ($\underline{C}O$), 136.4 (CH₂- $\underline{C}A_{r}$), 128.5 ($\underline{C}A_{r}$), 128.2 ($\underline{C}A_{r}$), 128.2 ($\underline{C}A_{r}$), 79.4 (\underline{C} -CH₃), 79.4 (\underline{C} -CH₃), 79.4 (\underline{C} -CH₃), 70.7 (HN-CH₂- \underline{C} H₂-O), 70.4 (\underline{C} H₂-CO), 66.8 (C_{Ar}- \underline{C} H₂), 51.3 (\underline{C} H), 44.1 (HN- \underline{C} H₂-CH₂-O), 40.9 (CH- \underline{C} H₂-NH), 38.0 (HN- \underline{C} H₂-CH₂-CH₂), 31.9 (CH₂- \underline{C} H₂-CH), 29.0 (CH₂- \underline{C} H₂-CH₂-NH), 28.4 (\underline{C} H₃), 28.4 (\underline{C} H₃), 22.6 (\underline{C} H₂-CH₂-CH).

HRMS (ESI+): ber. für $C_{28}H_{46}N_4NaO_8^+[M + Na]^+$: 589.3208, gef.: 589.3204.

IR (ATR): \tilde{v} (cm⁻¹) = 3349 (w, -N-H), 2935 (w, -C-H), 1681 (s, -C=O), 1524 (s, -N-H), 1456 (w, -CH₂), 1365 (m), 1247 (s, -C-N, -C-O-C), 1163 (s, -C-N, -C-O-C), 1044 (s, -C-N, -C-O-C), 732 (m, =C-H), 696 (m, =C-H).

(5''S)-N-[N^{5"},N^{6"}-Bis(*tert*-butyloxycarbonyl)hexan-5'',6''-diamin-1''-yl]-2-(2'aminoethoxy)acetamid (29)

Zu einer Lösung aus (5''S)-*N*-[$N^{5''}$, $N^{6''}$ -Bis(*tert*-butyloxycarbonyl)hexan-5'',6''-diamin-1''-yl]-2-[2'-(benzyloxycarbamoyl)ethoxy]acetamid (**28**) (1.06 g, 1.87 mmol, 1.0 Äq.) und HOAc (0.39 mL, 6.8 mmol, 3.6 Äq.) in MeOH (20 mL) wurde 10% Pd/C (0.24 g, 0.23 mmol, 0.1 Äq.) zugegeben und 5 h bei Raumtemperatur und 1 bar H₂ gerührt. Nach Filtration wurde das Lösemittel *in vacuo* entfernt. Nach Zugabe von DCM (300 mL) wurde mit einer 28% igen NH4OH-Lösung (2 × 13 mL) gewaschen, über MgSO4 getrocknet und das Lösemittel *in* *vacuo* entfernt. Nach säulenchromatographischer Aufreinigung (DCM/MeOH 60:1 \rightarrow 5:1 + jeweils 0.44% 7 N NH₃ in MeOH) wurde **29** als blassgelbes Öl erhalten (0.69 g, 1.6 mmol, 86%).

 $R_{\rm f} = 0.20$ (DCM/MeOH 5:1 + 0.44% 7 N NH₃ in MeOH).

¹**H-NMR** (600 MHz, CD₃OD, ppm): $\delta = 4.04$ (s, 2H, C<u>H</u>₂-CO), 3.75–3.73 (m, 2H, H₂N-CH₂-C<u>H</u>₂), 3.57–3.53 (m, 1H, C<u>H</u>), 3.27–3.21 (m, 2H, HN-C<u>H</u>₂-CH₂-CH₂), 3.19–3.17 (m, 2H, H₂N-C<u>H</u>₂), 3.11 (dd, ²*J*_{H,H}= 13.8 Hz, ³*J*_{H,H}= 5.1 Hz, 1H, CH-C<u>H</u>₂-NH), 2.97 (dd, ²*J*_{H,H}= 13.7 Hz, ³*J*_{H,H}= 7.8 Hz, 1H, CH-C<u>H</u>₂-NH), 1.58–1.29 (m, 6H, C<u>H</u>₂-C<u>H</u>₂-C<u>H</u>₂-CH), 1.44 (s, 9H, 3 × C<u>H</u>₃), 1.43 (s, 9H, 3 × C<u>H</u>₃).

¹³C-NMR (101 MHz, CD₃OD, ppm): $\delta = 172.4$ (CH₂-<u>C</u>O), 158.7 (NH-<u>C</u>O-C), 158.4 (NH-<u>C</u>O-C), 80.1 (<u>C</u>-CH₃), 80.0 (<u>C</u>-CH₃), 73.5 (H₂N-CH₂-<u>C</u>H₂-O), 71.2 (<u>C</u>H₂-CO), 52.2 (<u>C</u>H), 45.5 (CH-<u>C</u>H₂-NH), 42.0 (H₂N-<u>C</u>H₂), 39.8 (HN-<u>C</u>H₂-CH₂-CH₂), 33.1 (CH₂-C<u>H₂-CH), 30.4 (CH₂-<u>C</u>H₂-CH₂-NH), 28.9 (<u>C</u>H₃), 28.8 (<u>C</u>H₃), 24.4 (<u>C</u>H₂-CH₂-CH).</u>

HRMS (ESI+): ber. für C₂₀H₄₁N₄O₆⁺ $[M + H]^+$: 433.3021, gef.: 433.3017.

IR (ATR): \tilde{v} (cm⁻¹) = 3326 (w, -N-H), 2976 (w, -C-H), 2932 (w, -C-H), 2866 (w, -C-H), 1673 (s, -C=O), 1520 (m, -N-H), 1455 (w, -CH₂), 1391 (w), 1365 (m), 1346 (w, -C-N, -C-O-C), 1274 (w, -C-N, -C-O-C), 1247 (m, -C-N, -C-O-C), 1164 (s, -C-N, -C-O-C), 1125 (m, -C-N, -C-O-C), 1071 (w, -C-N, -C-O-C), 982 (w), 885 (w), 865 (w).

(5''S)-N-[N^{5"},N^{6"}-Bis(*tert*-butyloxycarbonyl)hexan-5'',6''-diamin-1''-yl]-2-{[N',N'-bis(βhydroxyethyl)]-2'-aminoethoxy}acetamid (30)

Eine Lösung aus (5"*S*)-*N*-[$N^{5"}$, $N^{6"}$ -Bis(*tert*-butyloxycarbonyl)hexan-5",6"-diamin-1"-yl]-2-(2'aminoethoxy)acetamid (**29**) (90 mg, 0.21 mmol, 1.0 Äq.), DIPEA (0.37 mL, 2.1 mmol, 10.1 Äq.) und 2-Bromethanol (0.15 mL, 2.1 mmol, 10.1 Äq.) in DMF (3.42 mL) wurde 8 d bei Raumtemperatur gerührt, wobei nach 3 d nochmals DIPEA (0.19 mL, 1.1 mmol, 5.2 Äq.) und 2-Bromethanol (80 µL, 1.1 mmol, 5.2 Äq.) zugegeben wurde, um ein vollständiges Abreagieren von **29** zu erzielen. Nach Zugabe von H₂O (41 mL) wurde mit DCM (2 × 41 mL) extrahiert, über Na₂SO₄ getrocknet und das Lösemittel *in vacuo* entfernt. Nach säulenchromatographischer Aufreinigung (DCM/MeOH 20:1 \rightarrow MeOH + jeweils 0.44% 7 N NH₃ in MeOH) wurde **30** als farbloses Öl erhalten (47 mg, 90 µmol, 43%).

 $R_{\rm f} = 0.39$ (DCM/MeOH 5:1 + 0.44% 7 N NH₃ in MeOH).

¹**H-NMR** (200 MHz, CD₃OD, ppm): $\delta = 6.53$ (s br, 1H, N<u>H</u>), 6.36 (d, ³*J*_{H,H}=9.0 Hz, 1H, N<u>H</u>-CH), 4.00 (s, 2H, C<u>H</u>₂-CO), 3.75–3.67 (m, 6H, N-CH₂-C<u>H</u>₂-O, 2 × C<u>H</u>₂-OH), 3.60–3.49 (m, 1H, C<u>H</u>), 3.24 (t, ³*J*_{H,H}=6.8 Hz, 2H, HN-C<u>H</u>₂-CH₂-CH₂), 3.09–2.93 (m, 8H, N-C<u>H</u>₂-CH₂-O, CH-C<u>H</u>₂-NH, 2 × C<u>H</u>₂-CH₂-OH), 1.59–1.32 (m, 6H, C<u>H</u>₂-C<u>H</u>₂-CH), 1.44 (s, 18H, 6 × C<u>H</u>₃).

¹³C-NMR (101 MHz, CD₃OD, ppm): $\delta = 172.4$ (CH₂- \underline{C} O), 160.7 (NH- \underline{C} O-C), 158.7 (NH- \underline{C} O-C), 80.1 (\underline{C} -CH₃), 80.0 (\underline{C} -CH₃), 71.1 (\underline{C} H₂-CO), 69.7 (N-CH₂- \underline{C} H₂-O-CH₂), 59.5 (\underline{C} H₂-OH), 58.0 (\underline{C} H₂), 55.4 (\underline{C} H₂), 52.1 (\underline{C} H), 45.5 (\underline{C} H₂), 39.9 (HN- \underline{C} H₂-CH₂-CH₂), 33.1 (\underline{C} H₂), 30.3 (\underline{C} H₂), 28.9 (\underline{C} H₃), 28.4 (\underline{C} H₃), 24.4 (\underline{C} H₂-CH₂-CH).

HRMS (ESI+): ber. für C₂₄H₄₉N₄O₈⁺ $[M + H]^+$: 521.3545, gef.: 521.3549.

IR (ATR): \tilde{v} (cm⁻¹) = 3333 (m br, -N-H, -O-H), 2975 (w, -C-H), 2930 (w, -C-H), 2866 (w, -C-H), 1676 (s, -C=O), 1525 (m, -N-H), 1449 (m, -CH₂), 1414 (m, -CH₂), 1392 (m), 1365 (s), 1276 (m, -C-N, -C-O-C), 1250 (m, -C-N, -C-O-C), 1165 (s, -C-N, -C-O-C), 1127 (m, -C-N, -C-O-C), 1074 (m, -C-N, -C-O-C), 1040 (m, -C-N, -C-O-C), 882 (w), 863 (w).

(5''S)-N-[N^{5"},N^{6"}-Bis(*tert*-butyloxycarbonyl)hexan-5'',6''-diamin-1''-yl]-2-{[N',N'-bis(βchlorethyl)]-2'-aminoethoxy}acetamid (31)

Zu einer Lösung aus (5''S)-*N*-[$N^{5''}$, $N^{6''}$ -Bis(*tert*-butyloxycarbonyl)hexan-5'',6''-diamin-1''-yl]-2-{[N',N'-bis(β -hydroxyethyl)]-2'-aminoethoxy}acetamid (**30**) (47 mg, 90 μ mol, 1.0 Äq.) und TEA (50 μ L, 0.36 mmol, 4.0 Äq.) in DCM (0.9 mL) wurde Methansulfonsäurechlorid (20 μ L, 0.26 mmol, 2.9 Äq.) bei 0 °C zugetropft und die erhaltene blassgelbe Reaktionslösung 16 h bei Raumtemperatur gerührt. Nach säulenchromatographischer Aufreinigung (EtOAc) wurde **31** als farbloses Öl erhalten (23 mg, 41 μ mol, 46%).

$R_{\rm f} = 0.69 \, ({\rm EtOAc}).$

¹**H-NMR** (200 MHz, CDCl₃, ppm): $\delta = 6.85$ (s br, 1H, N<u>H</u>), 4.89 (s br, 1H, N<u>H</u>), 4.69 (d, ³*J*_{H,H} = 8.8 Hz, 1H, N<u>H</u>-CH), 3.96 (s, 2H, C<u>H</u>₂-CO), 3.58–3.51 (m, 7H, N-CH₂-C<u>H</u>₂-O-CH₂, 2 × C<u>H</u>₂-Cl, C<u>H</u>), 3.33–3.23 (m, 2H, HN-C<u>H</u>₂-CH₂-CH₂), 3.18–3.13 (m, 2H, CH-C<u>H</u>₂-NH), 2.97 (t, ³*J*_{H,H} = 6.1 Hz, 4H, 2 × C<u>H</u>₂-CH₂-Cl), 2.86–2.81 (m, 2H, N-C<u>H</u>₂-CH₂-O), 1.57–1.31 (m, 6H, C<u>H</u>₂-C<u>H</u>₂-C<u>H</u>₂-CH), 1.43 (s, 18H, 6 × C<u>H</u>₃).

¹³**C-NMR** (151 MHz, CDCl₃, ppm): δ = 169.6 (CH₂-<u>C</u>O), 156.5 (NH-<u>C</u>O-C), 156.2 (NH-<u>C</u>O-C), 79.3 (<u>C</u>-CH₃), 79.3 (<u>C</u>-CH₃), 70.5 (<u>C</u>H₂-CO), 70.4 (N-CH₂-<u>C</u>H₂-O-CH₂), 57.1 (<u>C</u>H₂-CH₂-CH₂-Cl), 54.3 (N-<u>C</u>H₂-CH₂-O), 51.2 (<u>C</u>H), 44.8 (CH-<u>C</u>H₂-NH), 42.0 (<u>C</u>H₂-Cl), 38.4 (N-<u>C</u>H₂-CH₂-CH₂-CH₂), 32.4 (CH-<u>C</u>H₂-CH₂), 29.5 (NH-CH₂-<u>C</u>H₂-CH₂), 28.4 (<u>C</u>H₃), 28.4 (<u>C</u>H₃), 23.0 (<u>C</u>H₂-CH₂-CH₂-CH).

```
HRMS (ESI+): ber. für C<sub>24</sub>H<sub>46</sub><sup>35</sup>Cl<sub>2</sub>N<sub>4</sub>NaO<sub>6</sub><sup>+</sup> [M + Na]^+: 579.2687 (100%), gef.: 579.2684 (100%).
ber. für C<sub>24</sub>H<sub>46</sub><sup>35</sup>Cl<sup>37</sup>ClN<sub>4</sub>NaO<sub>6</sub><sup>+</sup> [M+Na]^+: 581.2658 (64%), gef.: 581.2625 (65%).
```

IR (ATR): \tilde{v} (cm⁻¹) = 3328 (m br, -N-H), 2975 (w, -C-H), 2933 (w, -C-H), 2865 (w, -C-H), 1694 (s, -C=O), 1668 (w, -C=O), 1519 (m, -N-H), 1454 (m, -CH₂), 1391 (m), 1365 (m), 1247 (s, -C-N, -C-O-C), 1165 (s, -C-N, -C-O-C), 1121 (m, -C-N, -C-O-C), 1072 (m, -C-N, -C-O-C), 866 (w), 731 (m, C-Cl), 657 (m, C-Cl).

```
(5''S)-N-(5'',6''-Diaminohexan-1''-yl)-2-{[N',N'-bis(β-chlorethyl)]-2'-
aminoethoxy}acetamid (als Tris(trifluoressigsäure)-Salz) (32)
```


Eine Lösung aus (5''S)-*N*-[$N^{5''}$, $N^{6''}$ -Bis(*tert*-butyloxycarbonyl)hexan-5'',6''-diamin]-2-{[N',N'-bis(β -chlorethyl)]-2'-aminoethoxy}acetamid (**31**) (0.10 g, 0.19 mmol, 1.0 Äq.) und TFA (0.36 mL, 4.7 mmol, 24.7 Äq.) in DCM (2.44 mL) wurde 2 h bei Raumtemperatur gerührt. Nach erneuter Zugabe von TFA (0.12 mL, 1.6 mmol, 8.3 Äq.) wurde eine weitere Stunde bei Raumtemperatur gerührt. Nach Entfernen des Lösemittels *in vacuo* wurde **32** als blassgelbes

Öl erhalten (0.12 g, 0.17 mmol, 89%).

¹**H-NMR** (200 MHz, D₂O, ppm): $\delta = 4.07$ (s, 2H, C<u>H₂</u>-CO), 3.98–3.88 (m, 6H, N-CH₂-C<u>H₂</u>-O-CH₂, 2 × C<u>H₂</u>-Cl), 3.76–3.71 (m, 4H, 2 × C<u>H₂</u>-CH₂-Cl), 3.63–3.49 (m, 3H, N-C<u>H₂</u>-CH₂-O-CH₂, C<u>H</u>), 3.28–3.16 (m, 4H, C<u>H₂</u>-NH₂, CH₂-CH₂-CH₂-NH), 1.78–1.64 (m, 2H, CH₂-CH₂-CH₂-CH), 1.60–1.32 (m, 4H, C<u>H₂-CH₂-CH₂-CH)</u>.

¹³C-NMR (101 MHz, D₂O + 0.7% MeOH, pH 2.5, ppm): δ = 172.2 (CH₂-<u>C</u>O), 163.5 (q, ²*J*_{C,F} = 35.4 Hz, <u>C</u>OOH), 117.0 (q, ¹*J*_{C,F} = 291.8 Hz, <u>C</u>F₃), 70.0 (<u>C</u>H₂-CO), 64.8 (N-CH₂-<u>C</u>H₂-O), 55.5 (<u>C</u>H₂-CH₂-Cl), 54.0 (N-<u>C</u>H₂-CH₂-O-CH₂), 50.0 (<u>C</u>H), 41.3 (<u>C</u>H₂-NH₂), 39.1 (HN-<u>C</u>H₂-CH₂-CH₂), 37.7 (<u>C</u>H₂-Cl), 30.3 (CH-<u>C</u>H₂-CH₂), 28.7 (NH-CH₂-<u>C</u>H₂-CH₂), 22.2 (<u>C</u>H₂-CH₂-CH).

HRMS (ESI+): ber. für $C_{14}H_{31}^{35}Cl_2N_4O_2^+$ $[M-3TFA+H]^+$: 357.1819 (100%), gef.: 357.1819 (100%). ber. für $C_{14}H_{31}^{35}Cl^{37}ClN_4O_2^+$ $[M-3TFA+H]^+$: 359.1790 (64%), gef.: 359.1788 (65%).

IR (ATR): \tilde{v} (cm⁻¹) = 3314 (m br, -N-H), 2946 (w, -C-H), 1666 (s, -C=O), 1550 (w, -C=O), 1431 (w, -CH₂), 1192 (s, -C-N, -C-O-C), 1179 (s, -C-N, -C-O-C), 1126 (s, -C-N, -C-O-C), 835 (m), 798 (m, C-Cl), 721 (m, C-Cl).

{{(5''S)-N-(Hexan-5'',6''-diamin)-2-{[N',N'-bis(β -chlorethyl)]-2'-aminoethoxy}acetamid- $\kappa^2 N^{5'',6''}$ }dichloridoplatin(II) (24)

Zu einer Lösung aus Triamin **32** (0.12 g, 0.17 mmol, 1.0 Äq.) und K₂PtCl₄ (16 mg, 39 μ mol, 0.2 Äq.) in D₂O (1.23 mL) wurde tropfenweise eine 1 M NaOD-Lösung (0.3 mL) zugesetzt, so dass der pH-Wert von 1.0 auf pH 8.0 anstieg und sich ein blassrosafarbener Feststoff ausbildete. Nach Filtration und Waschen des Feststoffs mit D₂O (6 mL) wurde **24** als blassrosafarbener Feststoff erhalten (16 mg, 26 μ mol, 67%).

Elementaranalyse: ber. für C14H30Cl4N4O2Pt: 26.98% C, 4.85% H, 8.99% N; gef.: 27.11%

C, 5.11% H, 8.76% N.

HRMS (ESI+): Das berechnete und gefundene ESI-Spektrum ist in Abbildung 4.7 gezeigt.

Schmelzpunkt: >280 °C (Zersetzung).

IR (ATR): \tilde{v} (cm⁻¹) = 2934 (m br, -C-H), 1650 (s, -C=O), 1542 (m, -N-H), 1457 (m, -CH₂), 1438 (m, -CH₂), 1262 (w, -C-N, -C-O-C), 1119 (s, -C-N, -C-O-C), 1038 (m, -C-N, -C-O-C), 779 (m, C-Cl).

FIR (PE): \tilde{v} (cm⁻¹) = 322 (s br, Pt-Cl).

6.5 Synthese eines Cisplatin-N-Lost-Konjugats auf Basis eines $\kappa^2 N^{1,2}$ -Chelatrings und eines Tetraethylenglykol-*linkers*

Tosylat 44 wurde nach einer modifizierten Vorschrift von *Sashiwa et al.* dargestellt.³³⁹ Hierzu wurde eine Lösung aus Tetraethylenglykol (43) (33 g, 0.17 mol, 1.0 Äq.) und Triethylamin (118.3 mL, 88.89 mmol, 1.9 Äq.) in THF (18 mL) 10 min bei 0 °C gerührt. Nach tropfenweiser Zugabe einer Lösung aus *p*-Tosylchlorid (32 g, 0.17 mol, 1.0 Äq.) in THF (44 mL) wurde die farblose Suspension 22 h bei Raumtemperatur gerührt. Nach Zugabe von 2 M Salzsäure (150 mL) wurde die Reaktionslösung mit DCM (4 × 150 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt. Säulenchromatographische Aufreinigung (*iso*-Hexan/EtOAc 3:1 → EtOAc → EtOAc/MeOH 95:5 → 9:1) ergab 44 als farbloses Öl (21.9 g, 62.9 mmol, 37%).

 $R_{\rm f} = 0.24$ (EtOAc).

¹**H-NMR** (200 MHz, CDCl₃, ppm): $\delta = 7.82-7.77$ (m, 2H, 2 × S-C-C<u>H</u>), 7.36–7.31 (m, 2H, 2 × CH₃-C-C<u>H</u>), 4.18–4.14 (m, 2H, S-O-C<u>H₂</u>), 3.73–3.57 (m, 14H, 7 × C<u>H₂</u>), 2.44 (s, 3H, C<u>H₃</u>), 2.12 (s, 1H, O<u>H</u>).

¹³C-NMR (101 MHz, CDCl₃, ppm): $\delta = 144.8$ (CH₃-<u>C</u>), 132.9 (S-<u>C</u>), 129.8 (CH₃-C-<u>C</u>H), 127.9 (<u>C</u>H-C-S), 72.4 (<u>C</u>H₂), 70.7 (<u>C</u>H₂), 70.6 (<u>C</u>H₂), 70.4 (<u>C</u>H₂), 70.3 (<u>C</u>H₂), 69.2 (S-O-<u>C</u>H₂), 68.7 (S-O-CH₂-<u>C</u>H₂), 61.7 (<u>C</u>H₂-OH), 21.6 (<u>C</u>H₃). **HRMS** (ESI+): ber. für C₁₅H₂₄NaO₆S⁺ $[M + Na]^+$: 371.1135, gef.: 371.1134.

IR (ATR): \tilde{v} (cm⁻¹) = 3432 (w br, -O-H), 2871 (w, -C-H), 1598 (m, Ringschwingung), 1452 (w, -CH₂), 1351 (m, -SO₂), 1189 (s, -C-O-C, -SO₂O-), 1174 (s, -C-O-C), 1095 (s, -C-O-C), 1068 (s, -C-O-C), 1010 (m, -C-O), 917 (s), 816 (s, =C-H), 774 (m, -C-S), 662 (s, -C-S).

11-Azid-3,6,9-trioxaundecanol (45)

N₃,0,0,0,0H

Azid **45** wurde nach *Kasuga et al.* dargestellt.³⁴⁰ Hierzu wurde eine Lösung aus 11-Tosyl-3,6,9-trioxaundecanol (**44**) (8.83 g, 25.4 mol, 1.0 Äq.) und Natriumazid (2.50 g, 38.5 mmol, 1.5 Äq.) in MeCN (71 mL) 17 h bei 90 °C gerührt. Nach Zugabe von H₂O (50 mL) wurde mit DCM (4×100 mL) extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt, so dass **45** als gelbbraunes Öl erhalten wurde (5.80 g, 26.5 mmol, quant.).

 $R_{\rm f} = 0.24$ (EtOAc).

¹**H-NMR** (400 MHz, CDCl₃, ppm): $\delta = 3.76-3.71$ (m, 2H, C<u>H</u>₂-OH), 3.68-3.65 (m, 10H, $5 \times C$ <u>H</u>₂), 3.63-3.59 (m, 2H, C<u>H</u>₂-CH₂-OH), 3.40-3.38 (m, 2H, N₃-C<u>H</u>₂), 2.42 (s br, 1H, O<u>H</u>).

¹³C-NMR (101 MHz, CDCl₃, ppm): δ = 72.4 (<u>C</u>H₂-CH₂-OH), 70.7 (<u>C</u>H₂), 70.6 (<u>C</u>H₂), 70.5 (<u>C</u>H₂), 70.3 (<u>C</u>H₂-O-CH₂-CH₂-OH), 70.0 (<u>C</u>H₂-CH₂-N₃), 61.7 (<u>C</u>H₂-OH), 50.6 (<u>C</u>H₂-N₃).

HRMS (EI+): ber. für C₈H₁₇N₃NaO₄⁺ $[M + Na]^+$: 242.1111, gef.: 242.1111.

IR (ATR): \tilde{v} (cm⁻¹) = 3433 (w br, -O-H), 2869 (m, -C-H), 2098 (m, -N=N=N), 1452 (w, -CH₂), 1348 (m, -C-N), 1296 (m, -C-N, -C-O-C), 1285 (m, -C-N, -C-O-C), 1250 (m, -C-N, -C-O-C), 1116 (s, -C-N, -C-O-C), 1101 (s, -C-N, -C-O-C), 1065 (s, -C-N, -C-O-C), 934 (m), 886 (m), 851 (m), 832 (m).

12-Benzyloxycarbonyl-12-amino-3,6,9-trioxadodecanol (46)^{341,342}

CbzHN 0 0

Azid **45** wurde unter Staudingerbedingungen nach *Besenius et al.* reduziert.³⁴¹ Hierzu wurde eine Lösung aus 11-Azid-3,6,9-trioxaundecanol **(45)** (5.59 g, 25.5 mol, 1.0 Äq.), Triphenylphosphin (7.50 g, 28.6 mmol, 1.1 Äq.) und H₂O (0.70 mL, 39 mmol, 1.5 Äq.) in THF (38 mL) 22.5 h bei Raumtemperatur gerührt. Nach Entfernen des Lösemittels *in vacuo*, wurde ein farbloser Feststoff erhalten, der neben dem gewünschten Amin noch Triphenylphosphin und Triphenylphosphinoxid enthielt. Die Verunreinigungen konnten bei der anschließenden Reaktion abgetrennt werden.

Die Einführung der Z-Schutzgruppe erfolgte nach *Jalisatgi et al.*³⁴² Hierzu wurde Natriumcarbonat (4.05 g, 38.2 mmol, 1.5 Äq.), H₂O (45 mL) und THF (5 mL) zugegeben und eine Lösung aus 95% igem Z-Cl (4.60 mL, 30.6 mmol, 1.2 Äq.) in THF (45 mL) bei 0 °C zugetropft. Nach Rühren bei Raumtemperatur für 16 h wurde THF *in vacuo* entfernt und das Produkt mit DCM (3 × 210 mL) extrahiert. Trocknung der vereinigten organischen Phasen über MgSO₄, Entfernen des Lösemittels *in vacuo* und säulenchromatographische Aufreinigung (*iso*-Hexan/EtOAc 1:5 → EtOAc → EtOAc/MeOH 10:1 → 5:1) ergab **46** als blassgelbes Öl (6.05 g, 18.5 mmol, 72% über zwei Stufen).

$R_{\rm f} = 0.22$ (EtOAc).

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 7.36-7.32$ (m, 4H, 2 × C<u>H</u>-C<u>H</u>-C), 7.30–7.27 (m, 1H, C<u>H</u>-CH-CH-C), 6.02 (s br, 1H, N<u>H</u>), 5.09 (s, 2H, C<u>H</u>₂-OCO), 3.66–3.66 (m, 4H, 2 × C<u>H</u>₂), 3.63–3.62 (m, 4H, 2 × C<u>H</u>₂), 3.60–3.57 (m, 4H, 2 × C<u>H</u>₂), 3.54 (t, ³*J*_{H,H}= 4.9 Hz, 2H, NH-CH₂-C<u>H</u>₂), 3.38 (t, ³*J*_{H,H}= 4.9 Hz, 2H, NH-C<u>H</u>₂) 2.88 (s br, 1H, O<u>H</u>).

¹³C-NMR (151 MHz, CDCl₃, ppm): 156.6 (<u>C</u>O), 136.7 (CH₂-<u>C_{Ar}</u>), 128.4 (<u>C_{Ar}</u>), 127.9 (<u>C_{Ar}</u>), 127.9 (<u>C_{Ar}</u>), 72.5 (<u>C</u>H₂), 70.5 (<u>C</u>H₂), 70.3 (<u>C</u>H₂), 70.2 (<u>C</u>H₂), 70.1 (<u>C</u>H₂), 70.0 (<u>C</u>H₂), 66.4 (<u>C</u>H₂-OCO), 61.5 (<u>C</u>H₂), 40.8 (NH-<u>C</u>H₂).

HRMS (ESI+): ber. für C₁₆H₂₅NNaO₆⁺ $[M + Na]^+$: 350.1574, gef.: 350.1572.

IR (ATR): \tilde{v} (cm⁻¹) = 3332 (w, -N-H, -O-H), 2870 (m, -C-H), 1700 (s, -C=O), 1532 (m, -N-H), 1455 (m, -CH₂), 1349 (m, -C-N), 1249 (s, -C-N, -C-O-C), 1120 (m, -C-N, -C-O-C), 1097 (s, -C-N, -C-O-C), (s, -C-N, -C-O-C), 1026 (s, -C-O-C), 934 (m), 887 (m), 739 (m, =C-H), 697 (s, =C-H).

(5*S*)-[*N*,⁵*N*⁶-Bis(*tert*-butyloxycarbonyl)-5,6-diamino]hexancarbaminsäure-2'-(10''benzyloxycarbonyl-10''-aza-1'',4'',7''-trioxadecyl)ethylester (47)

98% iges Triphosgen (2.27 g, 8.40 mmol, 0.5 Äq.) und Aktivkohle (206 mg) in Et₂O (124 mL) wurden 1.5 h bei Raumtemperatur gerührt. Hiernach wurde eine Lösung aus 12-Benzyloxycarbonyl-12-amino-3,6,9-trioxadodecanol (46) (5.48 g, 16.7 mmol, 1.0 Äq.) in Et₂O (56 mL) bei 0 °C tropfenweise zugegeben und 16.5 h bei Raumtemperatur gerührt. Nach Abfiltrieren der Aktivkohle, Entfernen des Lösemittels *in vacuo* und Lösen in THF (33 mL) wurde diese Lösung zu (2*S*)-*N*,¹*N*²-Bis(*tert*-butyloxycarbonyl)hex-1,2,6-triylamin (14) (3.65 g, 11.0 mmol, 0.7 Äq.) in THF (33 mL) und 1 M NaOH (54 mL) bei 0 °C zugetropft und 21 h bei Raumtemperatur gerührt. Daraufhin wurde mit 2 M Salzsäure (21 mL) auf pH 8 eingestellt, mit EtOAc (2 × 530 mL) extrahiert und die vereinigten organischen Phasen mit einer gesättigten NaCl-Lösung (1 × 266 mL) gewaschen, über Na₂SO₄ getrocknet und das Lösemittel *in vacuo* entfernt. Säulenchromatographische Aufreinigung (*iso*-Hexan/EtOAc 1:10 → EtOAc/MeOH 5:1) ergab 47 als farbloses Öl (6.61 g, 9.65 mmol, 88%).

 $R_{\rm f} = 0.42$ (EtOAc).

¹**H-NMR** (200 MHz, CDCl₃, ppm): $\delta = 7.36-7.30$ (m, 5H, $5 \times C_{Ar}\underline{H}$), 6.47 (s br, 1H, N<u>H</u>), 5.09 (s, 2H, C_{Ar}-C<u>H</u>₂), 4.98 (s br, 1H, N<u>H</u>), 4.92 (s br, 1H, N<u>H</u>), 4.74 (d br, ³*J*_{H,H} = 6.1 Hz, 1H, <u>H</u>N-CH), 4.17 (t br, ³*J*_{H,H} = 4.3 Hz, 2H, CH₂-C<u>H₂</u>-OCO), 3.62–3.53 (m, 13H, C<u>H</u>, $6 \times C\underline{H}_2$), 3.40–3.38 (m, 2H, C<u>H</u>₂), 3.16–3.08 (m, 4H, $2 \times C\underline{H}_2$), 1.51–1.34 (m, 6H, NH-CH₂-C<u>H₂-CH₂-CH₂-C<u>H₂</u>), 1.42 (s, 18H, $6 \times C\underline{H}_3$).</u>

¹³C-NMR (101 MHz, CDCl₃, ppm): $\delta = 156.5$ (CH₂-CH₂-O-<u>C</u>O, C_{Ar}-CH₂-O-<u>C</u>O), 156.2 (2 × NH-<u>C</u>O-C), 136.6 (CH₂-<u>C_{Ar}</u>), 128.4 (<u>C_{Ar}</u>), 128.1 (<u>C_{Ar}</u>), 128.0 (<u>C_{Ar}</u>), 79.3 (2 × <u>C</u>-CH₃), 70.5 (<u>C</u>H₂), 70.4 (2 × <u>C</u>H₂), 70.2 (<u>C</u>H₂), 70.0 (<u>C</u>H₂), 69.6 (<u>C</u>H₂), 66.6 (C_{Ar}-<u>C</u>H₂), 63.8 (CH₂-C<u>H₂</u>-O-CO), 51.2 (<u>C</u>H), 44.6 (<u>C</u>H₂), 40.8 (C<u>H₂</u>), 40.5 (<u>C</u>H₂), 32.3 (CH₂-C<u>H₂</u>-CH), 29.6 (NH-CH₂-<u>C</u>H₂-CH₂), 28.3 (<u>C</u>H₃), 28.3 (<u>C</u>H₃), 22.8 (<u>C</u>H₂-CH₂-CH).

HRMS (ESI+): ber. für C₃₃H₆₀N₅O₁₁⁺ $[M + NH_4]^+$: 702.4284, gef.: 702.4273.

IR (ATR): \tilde{v} (cm⁻¹) = 3335 (w, -N-H), 2974 (w, -C-H), 2933 (w, -C-H), 2869 (w, -C-H), 1690 (s, -C=O), 1519 (m, -N-H), 1455 (m, -CH₂), 1365 (m), 1245 (s, -C-N, -C-O-C), 1163 (s, -C-N, -C-O-C), 1103 (m, -C-N, -C-O-C), 1042 (m, -C-O-C), 865 (w), 777 (m), 737 (m, =C-H), 698

(m, =C-H).

(5*S*)-[*N*,⁵*N*⁶-Bis(*tert*-butyloxycarbonyl)-5,6-diamino]hexancarbaminsäure-2'-(10''-amino-1'',4'',7''-trioxadecyl)ethylester (48)

Zu einer Lösung aus (5S)-[N, $5N^6$ -Bis(*tert*-butyloxycarbonyl)-5,6-diamino]hexancarbaminsäure-2'-(10"-benzyloxycarbonyl-10"-aza-1",4",7"-trioxadecyl)ethylester (47) (6.42 g, 9.37 mmol, 1.0 Äq.) und Eisessig (1.56 mL, 27.3 mmol, 2.9 Äq.) in MeOH (134 mL) wurde 10% Pd/C (1.12 g, 1.05 mmol, 0.1 Äq.) zugegeben und 5 h bei Raumtemperatur und 1 bar H₂ gerührt. Nach Filtration und Entfernen des Lösemittels *in vacuo* wurde 48 als Acetat-Salz erhalten. Zur Generierung der freien Base wurde das farblose Öl in DCM (1.0 L) gelöst, mit 28%iger NH4OH-Lösung (2 × 340 mL) und einer gesättigten NaCl-Lösung (1 × 101 mL) gewaschen und die NaCl-Phase mit DCM (1 × 1.0 L) reextrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösemittel *in vacuo* entfernt, so dass 48 als farbloses Öl erhalten wurde (4.81 g, 8.74 mmol, 93%).

 $R_{f} = 0.34$ (DCM/MeOH 10:1 + 0.44% 7 N NH₃ in MeOH).

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 5.27$ (s br, 1H, N<u>H</u>), 4.93 (s br, 1H, N<u>H</u>), 4.74 (s br, 1H, N<u>H</u>), 4.20–4.19 (m, 2H, C<u>H</u>₂-OCO), 3.67–3.61 (m, 11H, C<u>H</u>, 5 × C<u>H</u>₂), 3.52–3.50 (m, 2H, NH₂-CH₂-C<u>H</u>₂), 3.16–3.13 (m, 4H, NH-C<u>H</u>₂-CH₂-CH₂, CH-C<u>H</u>₂-NH), 2.86–2.84 (m, 2H, NH₂-C<u>H</u>₂), 1.53–1.35 (m, 6H, NH-CH₂-C<u>H</u>₂-C<u>H</u>₂), 1.42 (s, 18H, 6 × C<u>H</u>₃).

¹³C-NMR (151 MHz, CDCl₃, ppm): $\delta = 156.6$ (CH₂-O-<u>C</u>O), 156.2 (NH-<u>C</u>O-C), 156.2 (NH-<u>C</u>O-C), 79.3 (<u>C</u>-CH₃), 79.3 (<u>C</u>-CH₃), 73.3 (NH₂-CH₂-<u>C</u>H₂), 70.6 (<u>C</u>H₂), 70.5 (<u>C</u>H₂), 70.5 (<u>C</u>H₂), 70.2 (<u>C</u>H₂-CH₂-O-CO), 63.8 (CH₂-C<u>H₂-O-CO), 51.2 (<u>C</u>H), 44.7 (NH-<u>C</u>H₂-CH₂ oder NH-<u>C</u>H₂-CH), 41.7 (NH₂-C<u>H₂), 40.5 (NH-<u>C</u>H₂-CH₂ oder NH-<u>C</u>H₂-CH), 32.3 (CH₂-C<u>H₂-CH oder NH-CH₂-<u>C</u>H₂-CH₂), 29.7 (CH₂-C<u>H₂-CH oder NH-CH₂-<u>C</u>H₂-CH₂), 28.4 (<u>C</u>H₃), 28.4 (<u>C</u>H₃), 22.8 (<u>C</u>H₂-CH₂-CH).</u></u></u></u>

HRMS (ESI+): ber. für $C_{25}H_{51}N_4O_9^+[M+H]^+$: 551.3651, gef.: 551.3643.

IR (ATR): \tilde{v} (cm⁻¹) = 3334 (w, -N-H), 2974 (w, -C-H), 2933 (w, -C-H), 2866 (w, -C-H), 1687 (s, -C=O), 1522 (m, -N-H), 1458 (m, -CH₂), 1365 (m), 1247 (s, -C-N, -C-O-C), 1165 (s, -C-N, -C-O-C), 1103 (m, -C-N, -C-O-C), 1070 (m, -C-N, -C-O-C), 922 (m), 866 (m), 778 (m), 730

(s, =C-H).

(5*S*)-[*N*,⁵*N*⁶-Bis(*tert*-butyloxycarbonyl)-5,6-diamino]hexancarbaminsäure-2'-{10''-[*N*',*N*'bis(β-chlorethyl)amino]-1'',4'',7''-trioxadecyl}ethylester (49)

Eine Lösung aus (5*S*)-[*N*,⁵*N*⁶-Bis(*tert*-butyloxycarbonyl)-5,6-diamino]hexancarbaminsäure-2'-(10"-amino-1",4",7"-trioxadecyl)ethylester (**48**) (2.05 g, 3.72 mmol, 1.0 Äq.), DIPEA (6.38 mL, 15.3 mmol, 4.1 Äq.) und 2-Bromethanol (2.67 mL, 37.7 mmol, 10.1 Äq.) in DMF (114 mL) wurde 4.5 d bei Raumtemperatur gerührt, wobei nach 2 d und 4 d jeweils erneut DIPEA (3.19 mL, 7.66 mmol, 2.1 Äq.) und 2-Bromethanol (1.34 mL, 18.8 mmol, 5.1 Äq.) zugegeben wurden, um ein vollständiges Abreagieren von **48** zu gewährleisten. Nach Zugabe einer gesättigten NaCl-Lösung (623 mL) wurde mit DCM (2 × 623 mL) extrahiert, über Na₂SO₄ getrocknet und das Lösemittel *in vacuo* entfernt. Säulenchromatographische Aufreinigung (DCM/MeOH 20:1 → 5:1 + jeweils 0.44% 7 N NH₃ in MeOH) ergab ein blassgelbes Öl, das neben dem Bisalkohol noch DIPEA enthielt, das in der folgenden Reaktion erfolgreich abgetrennt werden konnte.

Zu einer Lösung aus unaufgereinigten Bisalkohol in DCM (53 mL) wurde TEA (2.08 mL, 14.9 mmol, 4.0 Äq.) und Methansulfonsäurechlorid (0.69 mL, 8.9 mmol, 2.4 Äq.) zugegeben, 19 h bei Raumtemperatur gerührt und daraufhin direkt säulenchromatographisch aufgereinigt (EtOAc). **49** wurde als blassgelbes Öl erhalten (1.01 g, 1.49 mmol, 40% über zwei Stufen).

 $R_{\rm f} = 0.54$ (EtOAc).

¹**H-NMR** (200 MHz, CDCl₃, ppm): $\delta = 4.92$ (s br, 1H, N<u>H</u>), 4.90 (s br, 1H, N<u>H</u>), 4.70 (d br, ³*J*_{H,H}= 7.5 Hz, 1H, CH-N<u>H</u>), 4.21–4.17 (m, 2H, C<u>H</u>₂-OCO), 3.68–3.48 (m, 17H, C<u>H</u>, $2 \times C$ <u>H</u>₂-Cl, C<u>H</u>, $6 \times C$ <u>H</u>₂), 3.18–3.09 (m, 4H, NH-C<u>H</u>₂-CH₂-CH₂, CH-C<u>H</u>₂-NH), 2.95 (t, ³*J*_{H,H}= 7.1 Hz, 4H, $2 \times C$ <u>H</u>₂-CH₂-Cl), 2.82 (t, ³*J*_{H,H}= 5.7 Hz, 2H, N-C<u>H</u>₂-CH₂-O), 1.51–1.36 (m, 6H, NH-CH₂-C<u>H</u>₂-C<u>H</u>₂-C<u>H</u>₂), 1.41 (s, 18H, $6 \times C$ <u>H</u>₃).

¹³C-NMR (151 MHz, CDCl₃, ppm): $\delta = 156.5$ (NH-<u>C</u>O-C), 156.5 (CH₂-O-<u>C</u>O), 156.2 (NH-<u>C</u>O-C), 79.3 (<u>C</u>-CH₃), 79.3 (<u>C</u>-CH₃), 70.6 (<u>C</u>H₂), 70.6 (<u>C</u>H₂), 70.5 (<u>C</u>H₂), 70.5 (<u>C</u>H₂), 70.2 (<u>C</u>H₂), 69.6 (N-CH₂-<u>C</u>H₂-O), 63.8 (CH₂-C<u>H₂</u>-O-CO), 57.1 (<u>C</u>H₂-CH₂-Cl), 54.2 (N-<u>C</u>H₂-

CH₂-O), 51.2 (<u>C</u>H), 44.6 (NH-<u>C</u>H₂-CH₂ oder NH-<u>C</u>H₂-CH), 42.1 (<u>C</u>H₂-Cl), 40.5 (NH-<u>C</u>H₂-CH₂ oder NH-<u>C</u>H₂-CH), 32.4 (CH₂-C<u>H₂</u>-CH oder NH-CH₂-<u>C</u>H₂-CH₂), 29.7 (CH₂-C<u>H₂</u>-CH oder NH-CH₂-<u>C</u>H₂-CH₂), 28.4 (<u>C</u>H₃), 28.3 (<u>C</u>H₃), 22.8 (<u>C</u>H₂-CH₂-CH).

HRMS (ESI+): ber. für C₂₉H₅₇N₄O₉³⁵Cl₂⁺ $[M + H]^+$: 675.3497 (100%), gef.: 675.3488 (100%). ber. für C₂₉H₅₇N₄O₉³⁵Cl³⁷Cl⁺ $[M + H]^+$: 677.3468 (64%), gef.: 677.3460 (65%).

IR (ATR): \tilde{v} (cm⁻¹) = 3341 (w, -N-H), 2931 (w, -C-H), 2866 (w, -C-H), 1691 (s, -C=O), 1518 (s, -N-H), 1454 (m, -CH₂), 1391 (w), 1364 (m), 1245 (s, -C-N, -C-O-C), 1165 (s, -C-N, -C-O-C), 1108 (s, -C-N, -C-O-C), 866 (m), 778 (m, C-Cl), 730 (m, C-Cl).

(5*S*)-5,6-Diaminohexancarbaminsäure-2'-{10''-[*N*',*N*'-bis(β-chlorethyl)amino]-1'',4'',7''trioxadecyl}ethylester (als Tris(trifluoressigsäure)-Salz) (50)

Zu einer Lösung aus (5S)- $[N, N^6$ -Bis(*tert*-butyloxycarbonyl)-5,6-diamino]hexancarbaminsäure-2'- $\{10''-[N',N'-bis(\beta-chlorethyl)amino]-1'',4'',7''-trioxadecyl\}$ ethylester (**49**) (0.21 g, 0.30 mmol, 1.0 Äq.) in DCM (3.4 mL) wurde TFA (0.51 mL, 6.7 mmol, 22.2 Äq.) zugegeben und 2.5 h bei Raumtemperatur gerührt, wobei nach 2 h erneut TFA (0.21 mL, 2.7 mmol, 9.1 Äq.) zugegeben wurde, um eine vollständige Entschützung zu gewährleisten. Nach Entfernen des Lösemittels *in vacuo* wurde **50** als farbloses Öl erhalten (0.25 g, 0.30 mmol, 100%).

¹**H-NMR** (200 MHz, D₂O, ppm): $\delta = 4.25-4.23$ (m, 2H, C<u>H₂</u>-OCO), 4.07–4.03 (m, 4H, 2 × C<u>H₂</u>-Cl), 3.97–3.94 (m, 2H, N-CH₂-C<u>H₂</u>-O), 3.84–3.74 (m, 14H, 2 × C<u>H₂</u>-CH₂-CH₂-Cl, 5 × C<u>H₂</u>), 3.67–3.65 (m, 3H, N-C<u>H₂</u>-CH₂-O, C<u>H</u>), 3.38–3.36 (m, 2H, CH-C<u>H₂</u>-NH), 3.18 (t, ³*J*_{H,H} = 6.7 Hz, 2H, NH-C<u>H₂</u>-CH₂), 1.90–1.73 (m, 4H, NH-CH₂-C<u>H₂-CH₂-CH₂), 1.63–1.42 (m, 2H, C<u>H₂-CH₂-CH</u>).</u>

¹³C-NMR (101 MHz, D₂O + 0.7% MeOH, pH 2.5, ppm): 163.5 (q, ${}^{2}J_{C,F}$ = 35.4 Hz, <u>C</u>OOH), 159.1 (<u>C</u>O), 117.0 (q, ${}^{1}J_{C,F}$ = 291.8 Hz, <u>C</u>F₃), 70.4 (<u>C</u>H₂), 70.3 (<u>C</u>H₂), 70.2 (<u>C</u>H₂), 70.2 (<u>C</u>H₂), 69.6 (<u>C</u>H₂), 64.7 (<u>C</u>H₂-O-CO), 64.2 (N-CH₂-<u>C</u>H₂-O), 55.6 (<u>C</u>H₂-CH₂-Cl), 54.1 (N-<u>C</u>H₂-CH₂-O), 50.0 (<u>C</u>H), 41.3 (NH₂-<u>C</u>H₂), 40.5 (NH-<u>C</u>H₂-CH₂), 37.8 (<u>C</u>H₂-Cl), 30.3 (CH₂-

C<u>H</u>₂-CH), 29.1 (NH-CH₂-<u>C</u>H₂-CH₂), 22.0 (<u>C</u>H₂-CH₂-CH).

HRMS (ESI+): ber. für C₁₉H₄₀N₄NaO₅³⁵Cl₂⁺ $[M - 3TFA + Na]^+$: 497.2268 (100%), gef.: 497.2265 (100%). ber. für C₁₉H₄₀N₄NaO₅³⁵Cl³⁷Cl⁺ $[M - 3TFA + Na]^+$: 499.2239 (64%), gef.: 499.2235 (65%).

IR (ATR): \tilde{v} (cm⁻¹) = 3333 (w, -N-H), 2932 (w, -C-H), 2874 (w, -C-H), 1670 (s, -C=O), 1539 (s, -N-H), 1457 (w, -CH₂), 1430 (w, -CH₂), 1260 (s, -C-N, -C-O-C, -C-F), 1179 (s, -C-N, -C-O-C, -C-F), 1128 (s, -C-N, -C-O-C, -C-F), 836 (m), 799 (m, C-Cl), 721 (s, C-Cl).

{{(5*S*)-[Hexan-5,6-diamin]carbaminsäure-2'-{10''-[*N'*,*N'*-bis(β -chlorethyl)amino]-1'',4'',7''-trioxadecyl}ethylester- $\kappa^2 N^{5,6}$ }dichloridoplatin(II) (42)

Eine Lösung aus Triamin **50** (96 mg, 0.12 mmol, 1.0 Äq.) und K₂PtCl₄ (13 mg, 31 μ mol, 0.3 Äq.) in D₂O (0.86 mL) wurde tropfenweise mit einer 1 M NaOD-Lösung (0.20 mL) auf pH 8 eingestellt, wobei ein blassrosafarbener Niederschlag gebildet wurde. Dieser wurde abfiltriert und mit D₂O gewaschen, so dass **42** als blassgelber Feststoff erhalten wurde (22 mg, 30 μ mol, 97%).

Elementaranalyse: ber. für C₁₉H₄₀Cl₄N₄O₅Pt: 30.78% C, 5.44% H, 7.56% N; gef.: 30.85% C, 5.35% H, 7.26% N.

HRMS (ESI+): Das berechnete und gefundene ESI-Spektrum ist in Abbildung 4.11 gezeigt.

Schmelzpunkt: >240 °C (Zersetzung).

IR (ATR): \tilde{v} (cm⁻¹) = 2918 (m, -C-H), 2850 (m, -C-H, -CH₂), 1687 (m, -C=O), 1540 (m, -N-H), 1456 (m, -CH₂), 1258 (m, -C-N, -C-O-C), 1099 (s, -C-N, -C-O-C, C-Cl), 1038 (s, -C-N, -C-O-C, C-Cl), 799 (m, C-Cl), 720 (m, C-Cl).

FIR (PE): \tilde{v} (cm⁻¹) = 322 (s br, Pt-Cl), 332 (s br, Pt-Cl).

6.6 Untersuchungen zur Synthese eines Anthramycin-Liganden

Verbindungen 57–59 und 62–55 wurden nach Pena und Stille³⁴⁴ dargestellt.

4-Methyl-3-benzyloxy-2-nitrobenzoesäurebenzylester (58)³⁴⁴

Zu einer orange-farbigen Lösung aus 4-Methyl-3-hydroxy-2-nitrobenzoesäure (**57**) (15.1 g, 76.5 mmol, 1.0 Äq.) und Benzylbromid (18 mL, 0.15 mol, 2.0 Äq.) in DMF (170 mL) wurde K_2CO_3 (23 g, 0.16 mol, 2.1 Äq.) zugegeben und 2 d bei 80 °C gerührt. Nach Zugabe von H₂O (290 mL) wurde mit EtOAc (9 × 240 mL und 6 × 360 mL) extrahiert, über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt, so dass **58** als blassgelber Feststoff erhalten wurde (28.5 g, 75.6 mmol, 99%).

 $R_{f} = 0.51$ (*iso*-Hexan/EtOAc 3:1).

¹**H-NMR** (600 MHz, CDCl₃, ppm): δ = 7.76 (d, ³*J*_{H,H} = 8.0 Hz, 1H, C<u>H</u>-C-CO), 7.43–7.34 (m, 11H, CH₃-C-C<u>H</u>, 10 × C_{Ar}<u>H</u>), 5.33 (s, 2H, CO₂-C<u>H₂</u>), 4.97 (s, 2H, C_{Ar}-O-C<u>H₂</u>), 2.40 (s, 3H, C<u>H₃</u>).

¹³C-NMR (151 MHz, CDCl₃, ppm): $\delta = 162.6 (\underline{C}O_2)$, 148.5 ($\underline{C}Ar-O$), 146.2 ($\underline{C}-NO_2$), 139.7 (CH₃- \underline{C}), 135.6 (C-O-CH₂- \underline{C}), 134.9 (CO₂-CH₂- \underline{C}), 132.3 (CH₃-C- \underline{C} H), 128.6 (2 × C \underline{H}), 128.6 (C \underline{H}),128.5 (C \underline{H}), 128.4 (C \underline{H}), 128.2 (C \underline{H}), 126.4 (\underline{C} H-C-CO), 121.3 (\underline{C} -CO₂), 77.1 (C-O- \underline{C} H₂), 67.9 (CO₂- \underline{C} H₂), 16.8 (\underline{C} H₃).

HRMS (ESI+): ber. für $C_{22}H_{23}N_2O_5^+[M + NH_4]^+$: 395.1601, gef.: 395.1601.

Schmelzpunkt: 94 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 1718 (s, -C=O), 1542 (s, -NO₂), 1368 (m, -CH₃), 1278 (s, -C-O-C, -NO₂), 1264 (s, -C-O-C, -NO₂), 1178 (m, -C-O-C), 1020 (m, -C-O-C), 985 (s), 760 (m, =C-H), 750 (s), 696 (s).

4-Methyl-3-benzyloxy-2-nitrobenzoesäure (59)³⁴⁴

Zu einer gelben Suspension von 4-Methyl-3-benzyloxy-2-nitrobenzoesäurebenzylester (**58**) (26.8 g, 71.0 mmol, 1.0 Äq.) in THF (343 mL), MeOH (354 mL) und H₂O (236 mL) wurde KOH (20 g, 0.35 mol, 4.9 Äq.) zugegeben und 22 h bei Raumtemperatur gerührt. Nach Zugabe von 2 M Salzsäure (214 mL) wurde mit CHCl₃ (4×700 mL) extrahiert, über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt. Nach Umkristallisation in CHCl₃ (37 mL) wurde **59** als gelber Feststoff erhalten (17.4 g, 60.6 mmol, 85%).

 $R_{f} = 0.17 (DCM/MeOH 5:1).$

¹**H-NMR** (300 MHz, CDCl₃, ppm): $\delta = 7.83$ (d, ${}^{3}J_{\text{H,H}} = 8.0$ Hz, 1H, C<u>H</u>-C-CO), 7.44–7.36 (m, 6H, CH₃-C-C<u>H</u>, 5 × C_{Ar}<u>H</u>), 4.98 (s, 2H, O-C<u>H₂</u>), 2.42 (s, 3H, C<u>H₃</u>).

¹³C-NMR (75.5 MHz, CDCl₃, ppm): $\delta = 167.6$ (<u>C</u>O₂), 148.7 (<u>C</u>Ar-O), 146.4 (<u>C</u>-NO₂), 141.0 (CH₃-<u>C</u>), 135.6 (CH₂-<u>C</u>), 132.4 (CH₃-C-<u>C</u>H), 128.7 (C<u>H</u>), 128.7 (C<u>H</u>), 128.2 (C<u>H</u>), 127.0 (<u>C</u>H-C-CO), 120.0 (<u>C</u>-CO₂), 77.3 (C-O-<u>C</u>H₂), 16.9 (<u>C</u>H₃).

HRMS (ESI–): ber. für $C_{15}H_{12}NO_5^{-}[M-H]^{-}$: 286.0721, gef.: 286.0716.

Schmelzintervall: 174–175 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 1686 (m, -C=O), 1603 (w, Ringschwingung), 1541 (m, -NO₂), 1432 (m, -CH₃, -CH₂), 1363 (m, -CO), 1303 (m, -NO₂), 1286 (s, -C-O-C, -NO₂), 1261 (m, -C-O-C, -NO₂), 1237 (s, -C-O-C, -NO₂), 983 (m), 917 (m), 897 (m), 840 (m), 751 (s, =C-H), 694 (s).

trans-4-Hydroxy-L-prolinethylester-hydrochlorid (61)³⁴⁵

Ethylester **61** wurde nach *Heindl et al.*³⁴⁵ dargestellt. Hierzu wurde zu *trans*-4-Hydroxy-Lprolin (**60**) (8.0 g, 0.06 mol, 1.0 Äq.) in EtOH (80 mL) Thionylchlorid (8.0 mL, 0.07 mol, 1.1 Äq.) gegeben, worauf die Suspension aufklarte. Nach Rühren bei 95 °C für 4 h wurde auf Raumtemperatur abgekühlt, Et₂O (40 mL) zugegeben, der daraufhin ausfallende Feststoff abfiltriert und mit Et₂O (120 mL) gewaschen, so dass **61** als farbloser Feststoff erhalten wurde (11.4 g, 58.1 mmol, 95%).

 $R_{\rm f} = 0.30 \; ({\rm DCM/MeOH} \; 5:1).$

¹**H-NMR** (400 MHz, CD₃OD, ppm): $\delta = 4.61-4.57$ (m, 2H, C<u>H</u>-CO, C<u>H</u>-OH), 4.32 (qd, ³*J*_{H,H} = 7.1 Hz, *J*_{H,H} = 0.5 Hz, 2H, C<u>H</u>₂-CH₃), 3.45 (dd, ²*J*_{H,H} = 12.1 Hz, ³*J*_{H,H} = 3.7 Hz, 1H, NH-C<u>H</u>₂), 3.33–3.30 (m, 1H, NH-C<u>H</u>₂), 2.46–2.40 (m, 1H, NH-CH-C<u>H</u>₂), 2.23–2.16 (m, 1H, NH-CH-C<u>H</u>₂), 1.33 (t, ³*J*_{H,H} = 7.1 Hz, 3H, C<u>H</u>₃).

¹³**C-NMR** (101 MHz, CD₃OD, ppm): $\delta = 170.2$ (<u>C</u>O), 70.7 (<u>C</u>H-OH), 64.0 (O-<u>C</u>H₂), 59.5 (NH-<u>C</u>H), 55.1 (NH-<u>C</u>H₂), 38.7 (CH-<u>C</u>H₂-CH), 14.4 (<u>C</u>H₃).

HRMS (ESI+): ber. für $C_7H_{14}NO_3^+[M+H]^+$: 160.0968, gef.: 160.0969.

Schmelzintervall: 150–151 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3312 (m, -N-H, -O-H), 2954 (w, -C-H), 2861 (w, -C-H), 2698 (m), 2597 (m), 1732 (s, -C=O), 1593 (w, -N-H), 1274 (s, -C-N, -C-O-C), 1209 (s, -C-N, -C-O-C), 1180 (s, -C-N, -C-O-C), 1076 (s, -C-N, -C-O-C), 1045 (s, -C-N, -C-O-C), 1028 (s, -C-N, -C-O-C), 956 (s), 917 (m), 866 (m), 857 (m).

N-(3-Benzyloxy-4-methyl-2-nitrobenzoyl)-trans-4-hydroxy-L-prolinethylester (62)³⁴⁴

Zu einer Lösung aus 4-Methyl-3-benzyloxy-2-nitrobenzoesäure (**59**) (24.2 g, 84.4 mmol, 1.0 Äq.) in DCM (695 mL) wurde DMF (1.67 mL, 21.6 mmol, 0.3 Äq.) und Oxalylchlorid (10.5 mL, 0.124 mmol, 1.5 Äq.) zugegeben und die gelbe Lösung 40 min bei 55 °C gerührt, wobei eine starke Gasentwicklung zu beobachten war. Das Lösemittel wurde *in vacuo* entfernt und THF (1.0 L) zugegeben. Eine Lösung aus *trans*-4-Hydroxy-L-prolinethylester-hydrochloride (**61**) (20 g, 0.10 mmol, 1.2 Äq.) und TEA (30 mL, 0.21 mol, 2.5 Äq.) in THF (850 mL) wurde bei 0 °C zugegeben und die Suspension 1.5 h bei 0 °C gerührt. Nach Zugabe einer gesättigten NaHCO₃-Lösung (550 mL) wurde mit EtOAc (4×1.1 L) extrahiert, das Lösemittel über MgSO4 getrocknet und *in vacuo* entfernt. Säulenchromatographische Aufreinigung (EtOAc) ergab **62** als gelben Feststoff (32.8 g, 76.4 mmol, 91%).

 $R_{\rm f} = 0.54$ (EtOAc).

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 7.43-7.32$ (m, 6H, CH₃-C-C<u>H</u>, $5 \times C_{Ar}$ <u>H</u>), 7.17 (d, ³*J*_{H,H} = 7.8 Hz, 1H, C<u>H</u>-C-CO), 5.09 (d, ²*J*_{H,H} = 10.6 Hz, 1H, O-C<u>H</u>₂-CA_r), 4.96 (d, ²*J*_{H,H} = 10.6 Hz, 1H, O-C<u>H</u>₂-CA_r), 4.76 (t, *J*_{H,H} = 8.3 Hz, 1H, C<u>H</u>-CO), 4.49–4.47 (m, 1H, C<u>H</u>-OH), 4.32 (qd, ³*J*_{H,H} = 7.1 Hz, ⁵*J*_{H,H} = 2.9 Hz, 2H, C<u>H</u>₂-CH₃), 3.67 (dd, ²*J*_{H,H} = 11.4 Hz, ³*J*_{H,H} = 4.0 Hz, 1H, N-C<u>H</u>₂), 3.40 (dd, ²*J*_{H,H} = 11.4 Hz, ³*J*_{H,H} = 1.8 Hz, 1H, N-C<u>H</u>₂), 2.43–2.39 (m, 1H, N-CH-C<u>H</u>₂), 2.38 (s, 3H, CAr-C<u>H</u>₃), 2.24 (d, ²*J*_{H,H} = 4.2 Hz, 1H, O<u>H</u>), 2.16–2.11 (m, 1H, N-CH-C<u>H</u>₂), 1.30 (t, ³*J*_{H,H} = 7.1 Hz, 3H, C<u>H</u>₃).

¹³C-NMR (151 MHz, CDCl₃, ppm): δ = 171.6 (<u>C</u>O₂), 165.5 (<u>C</u>ON), 149.3 (<u>C</u>Ar-O), 143.4 (<u>C</u>NO₂), 136.0 (CH₃-<u>C</u>), 135.8 (CH₂-<u>C</u>), 133.9 (CH₃-C-<u>C</u>H), 130.0 (<u>C</u>-CON), 128.6 (C<u>H</u>), 128.6 (C<u>H</u>), 128.3 (C<u>H</u>), 122.6 (<u>C</u>H-C-CO), 76.7 (C-O-<u>C</u>H₂), 70.2 (<u>C</u>H-OH), 61.5 (O-<u>C</u>H₂), 57.4 (N-<u>C</u>H), 57.3 (N-<u>C</u>H₂), 38.0 (CH-<u>C</u>H₂-CH), 16.5 (CAr-<u>C</u>H₃), 14.1 (CH₂-<u>C</u>H₃).

HRMS (ESI+): ber. für C₂₂H₂₅N₂O₇⁺ $[M + H]^+$: 429.1656, gef.: 429.1654.

Schmelzintervall: 126–127 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3491 (w, -N-H, -O-H), 2943 (w, -C-H), 1737 (s, -C=O), 1627 (s, -C=O), 1534 (s, -N-H, -NO₂), 1434 (s, -CH₂, -CH₃), 1358 (m), 1192 (s, -C-N, -C-O-C), 1081 (s, -C-N, -C-O-C), 1087 (s, -C-N, -C-O-C), 1041 (s, -C-N, -C-O-C), 963 (m), 951 (m), 748 (m, =C-H), 704 (m).

(2*R*,11a*S*)-Hydroxy-8-methyl-9-benzyloxy-2,3,5,10,11,11a-hexahydro-5,11-dioxo-1*H*pyrrolo[2,1-c][1,4]benzodiazepin (63)³⁴⁴

Zu einer Lösung aus *N*-(3-Benzyloxy-4-methyl-2-nitrobenzoyl)-*trans*-4-hydroxy-L-prolinethylester (**62**) (50 g, 0.11 mmol, 1.0 Äq.) in THF (1.5 L) und H₂O (980 mL) wurde Na₂S₂O₄ (99 g, 0.57 mmol, 5.2 Äq.) zugegeben und 6 d bei Raumtemperatur gerührt. Nach Zugabe von H₂O (600 mL) wurde mit CHCl₃ (1.5 L) extrahiert, erneut H₂O (300 mL) zugegeben und abermals mit CHCl₃ (3×1.5 L) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt. Nach Zugabe von THF (370 mL) und H₂O (640 mL) wurde 2 M Salzsäure (5.70 mL, 11.4 mmol, 0.1 Äq.) zugegeben und 9 d bei 60 °C gerührt, wobei das Rohprodukt als farbloser Feststoff auskristallisierte. Nach Filtration und Umkristallisation in MeOH wurde **63** als farbloser Feststoff erhalten (23.8 g, 67.5 mmol, 61%).

 $R_{\rm f} = 0.24$ (EtOAc).

¹**H-NMR** (200 MHz, CDCl₃, ppm): $\delta = 7.72$ (s br, 1H, N<u>H</u>), 7.68–7.63 (m, 1H, C<u>H</u>-C-CO), 7.40–7.28 (m, 5H, 5 × C_{Ar}<u>H</u>), 7.13–7.07 (m, 1H, CH₃-C-C<u>H</u>), 4.95 (d, ²*J*_{H,H} = 11.2 Hz, 1H, O-C<u>H</u>₂-C_{Ar}), 4.85 (d, ²*J*_{H,H} = 11.2 Hz, 1H, O-C<u>H</u>₂-C_{Ar}), 4.62–4.56 (m, 1H, C<u>H</u>-OH), 3.97–3.97 (m, 1H, CO-C<u>H</u>), 3.92–3.87 (m, 1H, N-C<u>H</u>₂), 3.62 (dd, ²*J*_{H,H} = 12.9 Hz, ³*J*_{H,H} = 4.4 Hz, 1H, N-C<u>H</u>₂), 2.90–2.77 (m, 1H, CO-CH-C<u>H</u>₂), 2.43 (s, 3H, C<u>H</u>₃), 2.14–2.00 (m, 1H, CO-CH-C<u>H</u>₂), 1.91 (s, 1H, O<u>H</u>).

¹³C-NMR (151 MHz, CDCl₃, ppm): $\delta = 169.4$ (<u>C</u>O-NH), 165.6 (<u>C</u>O-N), 145.8 (<u>C</u>Ar-O), 135.5 (O-CH₂-<u>C</u>), 135.4 (<u>C</u>Ar), 129.6 (<u>C</u>Ar), 129.0 (C-<u>C</u>H-CH oder C-CH-<u>C</u>H-CH), 128.9 (C-<u>C</u>H-CH oder C-CH-<u>C</u>H-CH), 128.8 (C-CH-CH-<u>C</u>H), 127.4 (CH₃-C-<u>C</u>H), 126.4 (<u>C</u>H-C-CO), 124.8 (<u>C</u>Ar), 75.4 (C-O-<u>C</u>H₂), 68.9 (<u>C</u>H-OH), 55.3 (CO-<u>C</u>H), 54.4 (N-<u>C</u>H₂), 34.7 (CO-CH-<u>C</u>H₂), 16.6 (<u>C</u>H₃).

HRMS (ESI–): ber. für $C_{20}H_{19}N_2O_4^{-}[M - H]^{-}$: 351.1350, gef.: 351.1346.

Schmelzintervall: 245–246 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3365 (w, -N-H, -O-H), 1683 (s, -C=O), 1627 (s, -C=C-, -N-H), 1614 (s, Ringschwingung, -N-H), 1435 (s, -CH₂, -CH₃), 1388 (m, -CH₃), 1352 (m, -C-N), 1231 (m, -C-N, -C-O-C), 1072 (s, -C-N, -C-O-C), 990 (m), 972 (m), 955 (m), 919 (m), 828 (m), 753 (s, =C-H), 736 (m, =C-H), 700 (s).

(2*R*,11a*S*)-Hydroxy-8-methyl-9-hydroxy-2,3,5,10,11,11a-hexahydro-5,11-dioxo-1*H*pyrrolo[2,1-c][1,4]benzodiazepin (64)

Zu einer Lösung aus **63** (3.87 g, 11.0 mmol, 1.0 Äq.) in TFA (290 mL) wurde BF₃·OEt₂ (14 mL, 0.11 mmol, 10.0 Äq.) zugegeben und 30 min bei Raumtemperatur gerührt, wobei die anfänglich klare Lösung in einer gelben Suspension resultierte. Nach Zugabe von MeOH (530 mL) klarte die Suspension unter starker Wärmeentwicklung auf. Anschließend wurde das Lösemittel wurde *in vacuo* entfernt. Säulenchromatographische Aufreinigung

(CHCl₃/MeOH 20:1 \rightarrow 5:1) gefolgt von Umkristallisation in MeOH (38 mL) ergab **64** als farblosen Feststoff (1.92 g, 7.30 mmol, 66%).

 $R_{f} = 0.46$ (CHCl₃/MeOH 5:1).

¹**H-NMR** (400 MHz, CD₃OD, ppm): $\delta = 7.31$ (dd, ³*J*_{H,H} = 8.1 Hz, *J*_{H,H} = 0.3 Hz, 1H, C<u>H</u>-C-CO), 7.06–7.04 (m, 1H, CH₃-C-C<u>H</u>), 4.64 (s br, 2H, 2 × O<u>H</u>), 4.52–4.47 (m, 1H, C<u>H</u>-OH), 4.27 (dd, ³*J*_{H,H} = 7.9, 5.5 Hz, 1H, CO-C<u>H</u>), 3.77 (ddd, ²*J*_{H,H} = 12.4 Hz, *J*_{H,H} = 3.9, 1.3 Hz, 1H, N-C<u>H</u>2), 3.62 (dd, ²*J*_{H,H} = 12.4 Hz, *J*_{H,H} = 4.9 Hz, 1H, N-C<u>H</u>2), 2.88–2.82 (m, 1H, CO-CH-C<u>H</u>2), 2.30 (dd, ⁴*J*_{H,H} = 0.6 Hz, ⁵*J*_{H,H} = 0.3 Hz, 3H, C<u>H</u>3), 2.12–2.05 (m, 1H, CO-CH-C<u>H</u>2).

¹³**C-NMR** (101 MHz, CD₃OD, ppm): $\delta = 171.9$ (<u>C</u>O-NH), 168.5 (<u>C</u>O-N), 146.8 (<u>C</u>-OH), 130.7 (HO-C-<u>C</u>-NH), 128.1 (CH₃-C-<u>C</u>H), 126.5 (<u>C</u>-CO), 126.2 (<u>C</u>-CH₃), 122.1 (<u>C</u>H-C-CO), 69.5 (<u>C</u>H-OH), 57.2 (CO-<u>C</u>H), 55.1 (N-<u>C</u>H₂), 35.4 (CO-CH-<u>C</u>H₂), 16.9 (<u>C</u>H₃).

HRMS (ESI+): ber. für C₁₃H₁₅N₂O₄⁺ $[M + H]^+$: 263.1026, gef.: 263.1028.

Schmelzpunkt: >260 °C (Zersetzung).

IR (ATR): \tilde{v} (cm⁻¹) = 3449 (w, -N-H, -O-H), 3365 (m, -N-H, -O-H), 2915 (w, -C-H), 2609 (w), 2361 (w), 2339 (w), 1686 (s, -C=O), 1604 (s, Ringschwingung, -N-H), 1561 (s, -N-H), 1462 (s, -CH₂, -CH₃), 1450 (s, -CH₂, -CH₃), 1379 (m, CH₃), 1369 (m, CH₃), 1263 (m, -C-N, -C-O-C), 1225 (s, -C-N, -C-O-C), 1095 (s, -C-N, -C-O-C), 1042 (s, -C-N, -C-O-C), 1026 (s, -C-N, -C-O-C), 908 (m), 833 (s), 766 (s, =C-H), 662 (m).

Drehwert: $[\alpha]^{22}_{D} = +430^{\circ}$ (*c* 0.003, MeOH).

(2*R*,11a*S*)-*N*¹⁰,*O*⁹-Benzyliden-9-dihydroxy-8-methyl-2,3,5,10,11,11a-hexahydro-5,11dioxo-1*H*-pyrrolo[2,1-c][1,4]benzodiazepin (65)³⁴⁴

Eine Lösung aus **64** (4.48 g, 17.1 mmol, 1.0 Äq.) in Benzaldehyddimethylacetal (51 mL) wurde 38 h bei 180 °C gerührt und daraufhin zu einer Lösung aus konzentrierter Salzsäure (0.95 mL, 11 mmol, 0.7 Äq.) in einer Mischung aus THF (347 mL) und H₂O (343 mL) gegeben und weitere 6 h bei Raumtemperatur gerührt. Nach Extraktion mit CHCl₃ (3×680 mL) wurden die vereinigten organischen Phasen mit einer gesättigten NaCl-Lösung

 $(1 \times 340 \text{ mL})$ gewaschen, über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt. Säulenchromatographische Aufreinigung (EtOAc) ergab **65** als blassgelben Feststoff (3.67 g, 10.5 mmol, 61%).

 $R_{\rm f} = 0.50 \, ({\rm EtOAc}).$

¹**H-NMR** (400 MHz, CDCl₃, ppm): $\delta = 7.43-7.34$ (m, 6H, C<u>H</u>-C-CO, 5 × C_{Ar}<u>H</u>), 7.30 (s, 1H, O-C<u>H</u>-N), 6.98 (dd, ³*J*_{H,H} = 8.2 Hz, ⁴*J*_{H,H} = 0.7 Hz, 1H, CH₃-C-C<u>H</u>), 4.57–4.53 (m, 1H, C<u>H</u>-O), 4.38 (t, ³*J*_{H,H} = 7.8 Hz, 1H, CO-C<u>H</u>), 4.27 (dt, ²*J*_{H,H} = 12.8 Hz, *J*_{H,H} = 2.2 Hz, 1H, N-C<u>H</u>₂), 3.50 (dd, ²*J*_{H,H} = 12.7 Hz, *J*_{H,H} = 3.9 Hz, 1H, N-C<u>H</u>₂), 2.84–2.78 (m, 1H, CO-CH-C<u>H</u>₂), 2.60 (s br, 1H, O<u>H</u>), 2.56–2.34 (m, 1H, CO-CH-C<u>H</u>₂), 2.32 (s, 3H, C<u>H₃</u>).

¹³C-NMR (101 MHz, CDCl₃, ppm): $\delta = 169.4$ (CH-<u>C</u>O), 166.3 (C-<u>C</u>O), 148.5 (<u>C</u>-O-CH), 136.7 (O-CH-<u>C</u>), 129.8 (C-CH-<u>C</u>H-CH oder C-CH-CH-<u>C</u>H), 128.8 (<u>C</u>H-C-CO), 127.4 (CH₃-C-<u>C</u>H), 126.2 (<u>C</u>_{Ar}), 125.7 (C-<u>C</u>H-CH-CH), 123.5 (<u>C</u>_{Ar}), 121.9 (C-CH-<u>C</u>H-CH oder C-CH-CH), 118.1 (<u>C</u>-CH₃), 94.1 (O-<u>C</u>H-N), 68.5 (<u>C</u>H-OH), 57.7 (CO-<u>C</u>H), 54.8 (N-<u>C</u>H₂), 35.7 (CO-CH-<u>C</u>H₂), 14.9 (<u>C</u>H₃).

HRMS (ESI+): ber. für $C_{20}H_{19}N_2O_4^+[M+H]^+$: 351.1339, gef.: 351.1338.

Schmelzintervall: 103–104 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3377 (m, -O-H), 2920 (w, -C-H), 1687 (s, -C=O), 1624 (s, -N-H), 1589 (m, Ringschwingung), 1457 (s, -CH₂, -CH₃), 1438 (s, -CH₂, -CH₃), 1372 (m, CH₃), 1258 (s, -C-N, -C-O-C), 1238 (s, -C-N, -C-O-C), 1177 (m, -C-N, -C-O-C), 1118 (m, -C-N, -C-O-C), 972 (w), 762 (m, =C-H), 696 (m).

(2*R*,11a*S*)-*N*¹⁰,*O*⁹-Benzyliden-9-hydroxy-8-methyl-2,3,5,10,11,11a-hexahydro-2,5,11trioxo-1*H*-pyrrolo[2,1-c][1,4]benzodiazepin (66)

Methode A (Oxidation mit Dess-Martin Periodinan): Zu einer Lösung aus 65 (41 mg, 0.12 mmol, 1.0 Äq.) in DMSO (1.2 mL) wurde Dess-Martin Periodinan (64 mg, 0.15 mmol, 1.3 Äq.) zugegeben und die gelbe Lösung 3 d bei Raumtemperatur gerührt. Nach säulen-

chromatographischer Aufreinigung (EtOAc) wurde **66** als gelber Feststoff erhalten (27 mg, 78 µmol, 67%).

Methode B (Oxidation mit Pyridiuniumchlorchromat): Zu einer Lösung aus **65** (40 mg, 0.12 mmol, 1.0 Äq.) in DCM (1.6 mL) wurde 4 Å Molsieb, Eisessig (0.01 mL, 0.17 mmol, 1.5 Äq.) und 98% iges Pyridiniumchlorchromat (38 mg, 0.17 mmol, 1.5 Äq.) zugegeben und die erhaltene schwarze Suspension 6 h bei Raumtemperatur gerührt. Säulenchromatographische Aufreinigung (EtOAc) ergab **66** als gelben Feststoff (37 mg, 0.10 mmol, 87%).

 $R_{f} = 0.15$ (*iso*-Hexan/EtOAc 2:1).

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 7.51$ (d, ³*J*_{H,H} = 8.2 Hz, 1H, C<u>H</u>-C-CO), 7.43–7.41 (m, 2H, 2 × O-CH-C-C<u>H</u>), 7.39–7.35 (m, 3H, 2 × C-CH-C<u>H</u>-CH, C-CH-CH-C<u>H</u>), 7.33 (s, 1H, O-C<u>H</u>-N), 7.07–7.06 (m, 1H, CH₃-C-C<u>H</u>), 4.65 (dd, ²*J*_{H,H} = 10.7, 4.3 Hz, 1H, CO-C<u>H</u>), 4.48 (d, ²*J*_{H,H} = 20.2 Hz, 1H, N-C<u>H</u>2), 3.85 (d, ²*J*_{H,H} = 20.2 Hz, 1H, N-C<u>H</u>2), 3.67–3.63 (m, 1H, CO-CH-C<u>H</u>2), 2.92 (ddd, ²*J*_{H,H} = 19.8 Hz, ³*J*_{H,H} = 10.7 Hz, ⁴*J*_{H,H} = 1.2 Hz, 1H, CO-CH-C<u>H</u>2), 2.36 (s, 3H, C<u>H</u>₃).

¹³C-NMR (151 MHz, CDCl₃, ppm): $\delta = 206.6$ (CH₂-<u>C</u>O), 168.1 (CH-<u>C</u>O), 165.9 (C-<u>C</u>O), 148.7 (<u>C</u>-O-CH), 136.4 (O-CH-<u>C</u>), 130.0 (C-CH-<u>C</u>H-CH oder C-CH-CH-<u>C</u>H), 128.9 (C-CH-<u>C</u>H-CH oder C-CH-CH-<u>C</u>H), 127.9 (CH₃-C-<u>C</u>H), 125.9 (C-<u>C</u>H-CH-CH), 126.2 (<u>C</u>Ar), 124.3 (<u>C</u>Ar), 122.1 (<u>C</u>H-C-CO), 117.5 (<u>C</u>-CH₃), 94.5 (O-<u>C</u>H-N), 56.2 (CO-<u>C</u>H), 53.2 (N-<u>C</u>H₂), 37.1 (CO-CH-<u>C</u>H₂), 14.9 (<u>C</u>H₃).

HRMS (ESI–): ber. für C₂₀H₁₆³⁵ClN₂O₄⁻ [M + Cl]⁻: 383.0804 (100%), gef.: 383.0800 (100%).

ber. für C₂₀H₁₆³⁷ClN₂O₄⁻ [M + Cl]⁻: 385.0774 (32%), gef.: 385.0771 (26%).

Schmelzintervall: 200–201 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 1761 (s, -C=O), 1695 (s, -C=O), 1694 (s, -C=O), 1684 (s, -C=O), 1635 (s, -N-H), 1456 (s, -CH₂, -CH₃), 1436 (s, -CH₂, -CH₃), 1374 (m, CH₃), 1256 (s, -C-N, -C-O-C), 1236 (m, -C-N, -C-O-C), 1184 (m, -C-N, -C-O-C), 1119 (m, -C-N, -C-O-C).

(2*R*,11a*S*)-*N*¹⁰,*O*⁹-Benzyliden-9-hydroxy-8-methyl-5,10,11,11a-tetrahydro-5,11-dioxo-1*H*-pyrrolo[2,1-c][1,4]benzodiazepin-2-trifluormethansulfonsäureester (55)

Zu einer stark rührenden Lösung aus **66** (0.20 g, 0.57 mmol, 1.0 Äq.) in DCM (7.8 mL) und Pyridin (0.12 mL, 1.5 mmol, 2.6 Äq.) wurde Triflatanhydrid (0.22 mL, 1.3 mmol, 2.3 Äq.) zugegeben und 6.5 h bei Raumtemperatur gerührt. Säulenchromatographische Aufreinigung (DCM) ergab **55** als farbloses Pulver (0.20 g, 0.46 mmol, 81%).

 $R_f = 0.43$ (iso-Hexan/EtOAc 2:1).

¹**H-NMR** (200 MHz, CDCl₃, ppm): $\delta = 7.50$ (d, ³*J*_{H,H} = 8.2 Hz, 1H, C<u>H</u>-C-CO), 7.42–7.39 (m, 5H, 5 × C_{Ar}<u>H</u>), 7.35 (s, 1H, O-C<u>H</u>-N), 7.16–7.14 (m, 1H, C<u>H</u>=C-O-SO₂), 7.06 (d, ³*J*_{H,H} = 8.2 Hz, 1H, CH₃-C-C<u>H</u>), 4.72 (dd, ³*J*_{H,H} = 12.0, 5.3 Hz, 1H, CO-C<u>H</u>), 3.95 (ddd, ²*J*_{H,H} = 16.7 Hz, ³*J*_{H,H} = 5.1 Hz, ⁴*J*_{H,H} = 1.4 Hz, 1H, CO-CH-C<u>H</u>₂), 3.29 (ddd, ²*J*_{H,H} = 16.7 Hz, ³*J*_{H,H} = 11.9 Hz, ⁴*J*_{H,H} = 2.2 Hz, 1H, CO-CH-C<u>H</u>₂), 2.36 (s, 3H, C<u>H₃</u>).

¹³C-NMR (151 MHz, CDCl₃, ppm): δ = 166.8 (CH-<u>C</u>O), 163.2 (C-<u>C</u>O), 148.9 (<u>C</u>-O-CH), 137.0 (<u>C</u>-O-S), 136.2 (O-CH-<u>C</u>), 130.1 (C-CH-<u>C</u>H-CH oder C-CH-CH-<u>C</u>H), 128.9 (C-<u>C</u>H-CH-CH), 128.0 (CH₃-C-<u>C</u>H), 125.7 (C-<u>C</u>H-CH-CH, <u>C</u>_{Ar}), 124.8 (<u>C</u>_{Ar}), 122.3 (<u>C</u>H-C-CO), 120.3 (<u>C</u>H=C-O-SO₂), 118.5 (q, ¹*J*_{C,F} = 320.3 Hz, <u>C</u>F₃), 116.7 (<u>C</u>-CH₃), 94.5 (O-<u>C</u>H-N), 57.7 (CO-<u>C</u>H), 31.3 (CO-CH-<u>C</u>H₂), 15.0 (<u>C</u>H₃).

HRMS (ESI–): ber. für C₂₂H₁₅³⁵ClF₃N₂O₄S⁻ [M + Cl]⁻: 515.0297 (100%), gef.: 515.0287 (100%). ber. für C₂₂H₁₅³⁵ClF₃N₂O₄S⁻ [M + Cl]⁻: 517.0267 (32%), gef.: 517.0257 (31%).

Schmelzintervall: 80–84 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3357 (m br), 2927 (w, -C-H), 2616 (w br), 1734 (m, -C=O), 1697 (m, -N-H), 1641 (m, -C=O), 1594 (w, Ringschwingung), 1500 (w, Ringschwingung), 1455 (m, -CH₂, -CH₃), 1426 (s, -CH₂, -CH₃), 1397 (m, CH₃), 1374 (m, CH₃), 1248 (m, -C-N, -C-O-C, C-F), 1207 (s, -C-N, -C-O-C, -SO₂, C-F), 1176 (s, -C-N, -C-O-C, -SO₂, C-F), 1129 (s, -C-N, -C-O-C, -SO₂, C-F), 947 (w), 910 (m), 827 (s), 730 (m, =C-H, -C-S), 605 (m, -C-S).

N-[$N^{5'}$, $N^{6'}$ -Bis(*tert*-butyloxycarbonyl)hexan-5',6'-diamin-1'-yl]propenamid (56)

Zu einer Lösung aus (2S)-N, ${}^{1}N^{2}$ -Bis(*tert*-butyloxycarbonyl)hexan-1,2,6-triamin (14) (40 mg, 0.12 mmol, 1.0 Äq.), Acrylsäure (0.1 mL, 0.15 mmol, 1.3 Äq.) und 4-Methoxyphenol (9.0 mg, 72 µmol, 0.6 Äq.) in CHCl₃ (6.0 mL) wurde eine Lösung aus EDC·HCl (28 mg, 0.15 mmol, 1.3 Äq.) in CHCl₃ (1.5 mL) bei 0 °C zugetropft und 3.5 h bei Raumtemperatur gerührt. Nach Zugabe von CHCl₃ (30 mL) wurde mit einem 0.5 M HEPES-Puffer (pH 7.8, 5 × 15 mL) gewaschen und das Lösemittel *in vacuo* entfernt. Nach säulenchromatographischer Aufreinigung (Toluol/EtOAc 1:2 + 0.44% 7 N NH₃ in MeOH) wurde **56** als farbloser Feststoff (30 mg, 78 µmol, 65%) erhalten.

 $R_{f} = 0.70$ (EtOAc + 0.44% 7 N NH₃ in MeOH).

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 6.28$ (dd, ${}^{3}J_{\text{H,H}} = 17.0$ Hz, ${}^{2}J_{\text{H,H}} = 1.5$ Hz, 1H, $=C\underline{\mathbf{H}}_{2}$), 6.14–6.07 (m, 2H, C<u>H</u>-CO, N<u>H</u>), 5.62 (dd, ${}^{3}J_{\text{H,H}} = 10.3$ Hz, ${}^{2}J_{\text{H,H}} = 1.5$ Hz, 1H, $=C\underline{\mathbf{H}}_{2}$), 4.92 (t br, ${}^{3}J_{\text{H,H}} = 5.4$ Hz, 1H, N<u>H</u>-CH₂), 4.78 (d br, ${}^{3}J_{\text{H,H}} = 6.1$ Hz, 1H, N<u>H</u>-CH), 3.59–3.59 (m, 1H, NH-C<u>H</u>), 3.37–3.28 (m, 2H, HN-C<u>H₂</u>-CH₂), 3.17–3.17 (m, 2H, NH-C<u>H₂</u>-CH), 1.56–1.53 (m, 2H, CH-C<u>H₂</u>-CH₂), 1.48–1.42 (m, 4H, 2 × C<u>H₂</u>), 1.42 (s, 18H, 6 × C-C<u>H₃</u>).

¹³C-NMR (151 MHz, CDCl₃, ppm): δ = 165.7 (CH-<u>C</u>O), 156.7 (NH-<u>C</u>O-C), 156.2 (NH-<u>C</u>O-C), 131.0 (<u>C</u>H-CO), 126.1 (=<u>C</u>H₂), 79.5 (<u>C</u>-CH₃), 79.4 (<u>C</u>-CH₃), 51.2 (NH-<u>C</u>H), 44.2 (CH-<u>C</u>H₂-NH), 38.7 (NH-<u>C</u>H₂-CH₂), 32.1 (C<u>H₂</u>), 28.9 (C<u>H₂</u>), 28.4 (<u>C</u>H₃), 28.4 (<u>C</u>H₃), 22.6 (CH-CH₂-<u>C</u>H₂).

HRMS (ESI+): ber. für C₁₉H₃₅N₃NaO₅⁺ $[M + Na]^+$: 408.2469, gef.: 408.2466.

Schmelzintervall: 126–128 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3349 (m, -N-H), 2978 (w, -C-H), 2970 (w, -C-H), 2937 (w, -C-H), 2864 (w, -C-H), 1682 (s, -C=O), 1656 (m, -C=O, -C=C), 1624 (w, -C=O), 1524 (s, -N-H), 1366 (w), 1325 (w, -C-N), 1274 (w, -N-H, -C-O-C, -C-N), 1249 (m, -N-H, -C-O-C, -C-N), 1163 (s, -N-H, -C-O-C, -C-N), 1078 (w, -C-N, -C-O-C, -N-H), 1065 (w, -C-N, -C-O-C, -N-H), 986 (w).

(*E*)-3-Tributylstannylpropensäuremethylester 69³⁴⁸ und (*Z*)-3-Tributylstannylpropensäuremethylester³⁴⁸

Das Stannan 69 wurde nach *Bew et al.*³⁴⁸ dargestellt. Hierzu wurde eine Lösung aus Propionsäuremethylester (0.55 mL, 6.2 mmol, 1.4 Äq.), 96% iges Bu₃SnH (1.38 mL, 4.55 mmol, 1.0 Äq.), und 2,2'-Azobis(2-methylpropionitril) (0.10 g, 0.62 mmol, 0.1 Äq.) in Benzol (30 mL) 23 h bei 95 °C gerührt, wobei nach 18 h erneut 2,2'-Azobis(2-methylpropionitril) (0.10 g, 0.62 mmol, 0.1 Äq.) zugegeben wurde, um ein vollständiges Abreagieren des Propionsäuremethylester zu gewährleisten. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (*iso*-Hexan \rightarrow *iso*-Hexan/Toluol 1:1) wurde neben dem gewünschten (*E*)-3-Tributylstannylmethylacrylat (584 mg, 1.55 mmol, 34%) auch (*Z*)-3-Tributylstannylmethylacrylat (732 mg, 1.95 mmol, 43%) jeweils als farblose Flüssigkeit erhalten.

Analytik (*E*)-3-Tributylstannylpropensäuremethylester (69):

$R_{\rm f} = 0.20$ (*iso*-Hexan).

¹**H-NMR** (400 MHz, C₆D₆, ppm): $\delta = 8.04$ (d, ³*J*_{H,H} = 19.4 Hz, 1H, Sn-Satelliten: ²*J*_{H,119Sn} = 63.0 Hz, ²*J*_{H,117Sn} = 60.2 Hz, Sn-C<u>H</u>), 6.58 (d, ³*J*_{H,H} = 19.4 Hz, 1H, Sn-Satelliten: ³*J*_{H,Sn} = 55.8 Hz, ³*J*_{H,117Sn} = 53.4 Hz, C<u>H</u>-CO), 3.44 (s, 3H, O-C<u>H</u>₃), 1.55–1.36 (m, 6H, $3 \times C$ <u>H</u>₂-CH₃), 1.31–1.22 (m, 6H, $3 \times C$ <u>H</u>₂-CH₂-CH₃), 0.99–0.80 (m, 15H, $3 \times C$ <u>H</u>₂-CH₂-CH₂-CH₂-CH₃).

Die Sn-Satelliten der übrigen Signale konnten aufgrund der Multiplizitäten der Signale nicht ermittelt werden.

¹³C-NMR (101 MHz, C₆D₆, ppm): $\delta = 164.8$ (<u>C</u>O), 151.8 (Sn-<u>C</u>H), 137.1 (<u>C</u>H-CO), 51.1 (O-C<u>H</u>₃), 29.3 (Sn-Satelliten: ²*J*_{C,Sn} = 21.1 Hz, <u>C</u>H₂-CH₂-CH₃), 27.6 (Sn-Satelliten: ³*J*_{C,119Sn} = 59.1 Hz, ³*J*_{C,117Sn} = 56.5 Hz, <u>C</u>H₂-CH₃), 13.8 (CH₂-<u>C</u>H₃), 9.8 (Sn-Satelliten: ¹*J*_{C,119Sn} = 362.4 Hz, ¹*J*_{C,117Sn} = 346.3 Hz, Sn-<u>C</u>H₂).

Weder ein EI+/- noch ein ESI+/- konnte von Stannan 69 erhalten werden.
IR (ATR): \tilde{v} (cm⁻¹) = 2956 (s, -C-H), 2924 (s, -C-H, -CH₂), 2872 (m, -C-H), 2852 (m, -C-H, -CH₂), 1726 (s, -C=O), 1463 (w, -CH₂, -CH₃), 1433 (w, -CH₂, -CH₃), 1261 (m, -C-O-C), 1208 (s, -C-O-C), 1156 (m, -C-O-C), 997 (m).

Analytik (Z)-3-Tributylstannylpropensäuremethylester:

 $R_{\rm f} = 0.51$ (*iso*-Hexan).

¹**H-NMR** (400 MHz, C₆D₆, ppm): $\delta = 7.08$ (d, ³*J*_{H,H} = 12.7 Hz, 1H, Sn-Satelliten: ³*J*_{H,119Sn} = 61.2 Hz, ³*J*_{H,117Sn} = 58.5 Hz, C<u>H</u>-CO), 6.79 (d, ³*J*_{H,H} = 12.7 Hz, 1H, Sn-Satelliten: ²*J*_{H,119Sn} = 114.9 Hz, ²*J*_{H,117Sn} = 109.8 Hz, Sn-C<u>H</u>), 3.33 (s, 3H, O-C<u>H</u>₃), 1.75–1.55 (m, 6H, 3 × CH₂-C<u>H₂</u>-CH₃), 1.43–1.34 (m, 6H, 3 × C<u>H₂</u>-CH₂-CH₃), 1.25–1.07 (m, 6H, 3 × C<u>H₂</u>-CH₂-CH₂-CH₃), 0.94 (t, ³*J*_{H,H} = 7.3 Hz, 9H 3 × CH₂-C<u>H₃</u>).

Die Sn-Satelliten der übrigen Signale konnten aufgrund der Multiplizitäten der Signale nicht ermittelt werden.

¹³C-NMR (101 MHz, C₆D₆, ppm): $\delta = 168.4$ (<u>C</u>O), 157.6 (<u>C</u>H-CO), 135.2 (Sn-<u>C</u>H), 51.2 (O-C<u>H</u>₃), 29.7 (Sn-Satelliten: ²*J*_{C,Sn} = 21.4 Hz, <u>C</u>H₂-CH₂-CH₃), 27.8 (Sn-Satelliten: ³*J*_{C,119Sn} = 56.7 Hz, ³*J*_{C,117Sn} = 54.2 Hz, CH₂-<u>C</u>H₂-CH₃), 14.0 (CH₂-<u>C</u>H₃), 11.5 (Sn-Satelliten: ¹*J*_{C,119Sn} = 349.2 Hz, ¹*J*_{C,117Sn} = 333.7 Hz, Sn-<u>C</u>H₂).

Weder ein EI+/- noch ein ESI+/- konnte von Stannan 69 erhalten werden.

IR (ATR): \tilde{v} (cm⁻¹) = 2954 (s, -C-H), 2920 (s, -C-H, -CH₂), 2872 (m, -C-H), 2853 (m, -C-H, -CH₂), 1716 (s, -C=O), 1457 (w, -CH₂, -CH₃), 1435 (w, -CH₂, -CH₃), 1340 (s, -C-O-C), 1208 (s, -C-O-C), 1182 (m, -C-O-C), 1003 (w), 822 (m).

(E)-3-Tributylstannylpropensäure (70)

Eine Lösung aus (*E*)-3-Tributylstannylpropensäuremethylester (**69**) (5.64 g, 15.0 mmol, 1.0 Äq.) in einer Mischung aus 1,4-Dioxan (34 mL) und 10%iger Natronlauge (34 mL) wurde 3 h bei 75 °C gerührt. Nach Abkühlen auf Raumtemperatur wurde 1 M Salzsäure (49 mL) zugegeben und mit EtOAc (4×140 mL) extrahiert. Zur wässrigen Phase wurde erneut eine 1 M Salzsäure-Lösung (25 mL) zugegeben und erneut mit EtOAc (3×140 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet und das Lösemittel *in vacuo*

entfernt. Säulenchromatographische Aufreinigung (Toluol/EtOAc 5:1 + 0.44% Ameisensäure) ergab **70** als farblose Flüssigkeit (5.12 g, 14.2 mmol, 95%).

 $R_f = 0.41$ (Toluol/EtOAc 5:1 + 0.44% Ameisensäure).

¹**H-NMR** (300 MHz, CDCl₃, ppm): $\delta = 7.91$ (d, ${}^{3}J_{\text{H,H}} = 19.4$ Hz, 1H, Sn-Satelliten: ${}^{2}J_{\text{H},119\text{Sn}} = 58.4$ Hz, ${}^{2}J_{\text{H},117\text{Sn}} = 56.0$ Hz, Sn-C<u>H</u>), 6.32 (d, ${}^{3}J_{\text{H,H}} = 19.4$ Hz, 1H, Sn-Satelliten: ${}^{3}J_{\text{H},119\text{Sn}} = 53.4$ Hz, ${}^{3}J_{\text{H},117\text{Sn}} = 51.0$ Hz, C<u>H</u>-CO), 1.65–1.25 (m, 12H, 3 × C<u>H₂</u>-C<u>H₂</u>-CH₃), 0.87–1.10 (m, 15H, 3 × C<u>H₂</u>-CH₂-CH₂-CH₃).

Die Sn-Satelliten der übrigen Signale konnten aufgrund der Multiplizitäten der Signale nicht ermittelt werden.

¹³C-NMR (75.5 MHz, CDCl₃, ppm): $\delta = 169.4$ (<u>C</u>O), 156.5 (Sn-<u>C</u>H), 135.6 (<u>C</u>H-CO), 28.9 (Sn-Satelliten: ²*J*_{C,Sn} = 21.6 Hz, <u>C</u>H₂-CH₂-CH₃), 27.2 (Sn-Satelliten: ³*J*_{C,119Sn} = 57.1 Hz, ³*J*_{C,117Sn} = 54.6 Hz, <u>C</u>H₂-CH₃), 13.6 (CH₂-<u>C</u>H₃), 9.7 (Sn-Satelliten: ¹*J*_{C,119Sn} = 351.3 Hz, ¹*J*_{C,117Sn} = 335.7 Hz, Sn-<u>C</u>H₂).

HRMS (ESI–): ber. für C₁₅H₂₉O₂¹²⁰Sn⁻ $[M - H]^-$: 361.1184 (100%), gef.: 361.1195 (100%). ber. für C₁₅H₂₉O₂¹¹⁸Sn⁻ $[M - H]^-$: 359.1178 (74%), gef.: 359.1189 (74%). ber. für C₁₅H₂₉O₂¹¹⁶Sn⁻ $[M - H]^-$: 357.1180 (45%), gef.: 357.1191 (44%).

IR (ATR): \tilde{v} (cm⁻¹) = 2956 (s, -C-H), 2921 (s, -C-H, -CH₂), 2872 (m, -C-H), 2852 (m, -C-H, -CH₂), 1686 (s, -C=O), 1591 (w, -CO), 1464 (w, -CH₂, -CH₃), 1410 (w, -CH₂, -CH₃), 1289 (m), 1248 (s), 997 (m).

(5'S)-(E)-N-[N^{5'},N^{6'}-Bis(*tert*-butyloxycarbonyl)hexan-5',6'-diamin-1'-yl]-3-(tributylstannyl)propenamid (71)

Zu einer Lösung aus (*E*)-3-Tributylstannylpropensäure (**70**) (6.80 g, 18.8 mmol, 1.2 Äq.), (2S)-N, $^{1}N^{2}$ -Bis(*tert*-butyloxycarbonyl)hexan-1,2,6-triamin (**14**) (5.24 g, 15.8 mmol, 1.0 Äq.) und 4-Methoxyphenol (1.20 g, 9.67 mmol, 0.6 Äq.) in CHCl₃ (561 mL) wurde eine Lösung aus EDC·HCl (3.59 g, 18.7 mmol, 1.2 Äq.) in CHCl₃ (212 mL) bei 0 °C zugetropft und 3 d bei 45 °C gerührt, wobei nach 1 d und 2 d jeweils erneut (*E*)-3-Tributylstannylpropensäure (**70**) (3.75 g, 10.4 mmol, 0.7 Äq.), EDC·HCl (2.73 g, 14.2 mmol, 0.9 Äq.) und 4-Methoxyphenol (605 mg, 4.87 mmol, 0.3 Äq.) zugegeben wurde, um ein vollständiges Abreagieren des

Amins zu gewährleisten. Nach Abkühlen auf Raumtemperatur wurde mit einem 0.5 M HEPES-Puffer (pH 7.8, $3 \times 600 \text{ mL}$) gewaschen und das Lösemittel *in vacuo* entfernt. Nach säulenchromatographischer Aufreinigung (Toluol/EtOAc 4:1 + 0.44% 7 N NH₃ in MeOH) wurde **71** als farbloser Feststoff (7.70 g, 11.4 mmol, 72%) erhalten.

 $R_{f} = 0.60$ (Toluol/EtOAc 1:1).

¹**H-NMR** (400 MHz, CDCl₃, ppm): $\delta = 7.47$ (d, ${}^{3}J_{H,H} = 19.1$ Hz, 1H, Sn-Satelliten: ${}^{2}J_{H,119Sn} = 62.9$ Hz, ${}^{2}J_{H,117Sn} = 60.1$ Hz, Sn-C<u>H</u>), 6.25 (d, ${}^{3}J_{H,H} = 19.1$ Hz, 1H, Sn-Satelliten: ${}^{3}J_{H,119Sn} = 56.8$ Hz, ${}^{3}J_{H,117Sn} = 54.4$ Hz, C<u>H</u>-CO), 5.91 (s br, 1H, N<u>H</u>-CH₂-CH₂), 4.89 (t br, ${}^{3}J_{H,H} = 5.5$ Hz, 1H, N<u>H</u>-CH₂-CH), 4.72 (d br, ${}^{3}J_{H,H} = 7.7$ Hz, 1H, N<u>H</u>-CH), 3.62–3.57 (m, 1H, NH-C<u>H</u>), 3.34–3.29 (m, 2H, HN-C<u>H</u>₂-CH₂), 3.18–3.16 (m, 2H, NH-C<u>H</u>₂-CH), 1.57–1.43 (m, 12H, C<u>H₂-C<u>H</u>₂-C<u>H</u>₂-CH, 3 × C<u>H</u>₂-CH₃), 1.43 (s, 18H, 6 × C-C<u>H₃), 1.34–1.25 (m, 6H, 3 × Sn-CH₂-C<u>H₂), 0.96–0.92 (m, 6H, 3 × Sn-C<u>H₂), 0.88 (t, ${}^{3}J_{H,H} = 7.3$ Hz, 9H, 3 × CH₂-C<u>H₃).</u></u></u></u></u>

Die Sn-Satelliten der übrigen Signale konnten aufgrund der Multiplizitäten der Signale nicht ermittelt werden.

¹³C-NMR (101 MHz, CDCl₃, ppm): $\delta = 164.8$ (CH-<u>C</u>O), 156.6 (NH-<u>C</u>O-C), 156.2 (NH-<u>C</u>O-C), 145.2 (Sn-<u>C</u>H), 139.2 (<u>C</u>H-CO), 79.4 (<u>C</u>-CH₃), 79.3 (<u>C</u>-CH₃), 51.2 (NH-<u>C</u>H), 44.3 (CH-<u>C</u>H₂-NH), 38.9 (NH-<u>C</u>H₂-CH₂), 32.2 (C<u>H₂</u>), 29.2 (C<u>H₂</u>), 29.0 (Sn-Satelliten: ²*J*_{C,Sn} = 21.1 Hz, <u>C</u>H₂-CH₂-CH₃), 28.4 (C-<u>C</u>H₃), 27.4 (Sn-Satelliten: ³*J*_{C,119Sn} = 57.3 Hz, ³*J*_{C,117Sn} = 54.8 Hz, <u>C</u>H₂-CH₃), 22.8 (CH-CH₂-<u>C</u>H₂), 13.6 (CH₂-C<u>H₃), 9.6 (Sn-Satelliten: ¹*J*_{C,119Sn} = 349.3 Hz, ¹*J*_{C,117Sn} = 333.8 Hz, Sn-<u>C</u>H₂).</u>

HRMS (ESI–): ber. für C₃₁H₆₁ClN₃O₅¹²⁰Sn⁻ [M + Cl]⁻: 710.3316 (100%), gef.: 710.3338 (100%). ber. für C₃₁H₆₁ClN₃O₅¹¹⁸Sn⁻ [M + Cl]⁻: 708.3310 (74%), gef.: 708.3333 (66%). ber. für C₃₁H₆₁ClN₃O₅¹¹⁶Sn⁻ [M + Cl]⁻: 706.3312 (45%), gef.: 706.3339 (28%).

Schmelzpunkt: 99 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3344 (m, -N-H), 2956 (s, -C-H), 2924 (s, -C-H), 2872 (m, -C-H), 2855 (m, -C-H), 1718 (w, -C=O), 1681 (s, -C=O), 1640 (m, -C=C), 1527 (s, -N-H), 1456 (w, -CH₂, -CH₃), 1367 (m), 1340 (m, -C-N), 1326 (m, -C-N), 1251 (m, -N-H, -C-O-C, -C-N), 1166 (m, -N-H, -C-O-C, -C-N), 1073 (w, -N-H, -C-O-C, -C-N), 1041 (w, -C-N), 996 (w).

 $(2R,5'S,11aS)-(E)-N^{10},O^{9}-Benzyliden-9-hydroxy-8-methyl-5,10,11,11a-tetrahydro-5,11-dioxo-1H-pyrrolo[2,1-c][1,4]benzodiazepin-2-{N-[N^{5'},N^{6'}-bis(tert-butyloxycarbonyl)-hexan-5',6'-diamin-1'-yl]}acrylamid (67)$

LiCl (626 mg, 14.8 mmol, 10.1 Äq.) wurde über Nacht im Sandbad ausgeheitzt. Nach Zugabe von CuCl (754 mg, 7.62 mmol, 5.2 Äq.), (5'S)-(E)-N-[$N^{5'}$, $N^{6'}$ -Bis(*tert*-butyloxycarbonyl)he-xan-5',6'-diamin-1'-yl]-3-(tributylstannyl)propenamid (71) (1.19 g, 1.77 mmol, 1.2 Äq.), Stannan 55 (0.70 g, 1.46 mmol, 1.0 Äq.) und Tetrakis(triphenylphosphin)palladium(0) (0.45 g, 0.39 mmol, 0.3 Äq.) und dreimal entgastem DMSO (16 mL) wurde unter Argon-Atmosphäre 5 h bei Raumtemperatur gerührt. Nach Zugabe einer gesättigten NaCl-Lösung (307 mL) und einer 28%igen NH4OH-Lösung (6.3 mL) wurde mit EtOAc (4 × 260 mL) extrahiert, über MgSO4 getrocknet und das Lösemittel *in vacuo* entfernt. Säulenchromato-graphische Aufreinigung (*iso*-Hexan/EtOAc 2:3 → 1:5) ergab 67 als blassgelben Feststoff (0.73 g, 1.02 mmol, 70%).

 $R_{f} = 0.47$ (iso-Hexan/EtOAc 5:1).

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 7.48$ (d, ³*J*_{H,H} = 8.3 Hz, 1H, C<u>H</u>-C-CO), 7.42 (d, ³*J*_{H,H} = 15.3 Hz, 1H, C<u>H</u>=CH-CO), 7.40–7.39 (m, 2H, 2 × C_{Ar}<u>H</u>), 7.36–7.34 (m, 4H, O-C<u>H</u>-N, 3 × C_{Ar}<u>H</u>), 7.26 (s, 1H, C<u>H</u>=C-CH=CH-CO), 7.03 (d, ³*J*_{H,H} = 8.2 Hz, 1H, CH₃-C-C<u>H</u>), 6.21 (s br, 1H, N<u>H</u>), 5.83 (d, ³*J*_{H,H} = 15.2 Hz, 1H, CH=C<u>H</u>-CO), 4.93 (s br, 1H, N<u>H</u>), 4.80 (s br, 1H, N<u>H</u>), 4.71 (dd, ³*J*_{H,H} = 11.6, 4.7 Hz, 1H, CO-C<u>H</u>-CH₂), 3.75 (dd, ²*J*_{H,H} = 16.2 Hz, ³*J*_{H,H} = 4.3 Hz, 1H, CO-CH-C<u>H</u>₂), 3.62–3.58 (m, 1H, NH-C<u>H</u>), 3.34–3.31 (m, 2H, HN-C<u>H₂-CH₂), 3.17 (d, ³*J*_{H,H} = 5.4 Hz, 2H, NH-C<u>H₂-CH</u>), 3.05 (dd, ²*J*_{H,H} = 15.9 Hz, ³*J*_{H,H} = 11.8 Hz, 1H, CO-CH-C<u>H</u>₂), 2.34 (s, 3H, CH-C-C<u>H</u>₃), 1.59–1.56 (m, 2H, C<u>H</u>₂), 1.47–1.37 (m, 4H, 2 × C<u>H₂), 1.43 (s, 9H, 3 × C-C<u>H</u>₃), 1.43 (s, 9H, 3 × C-C<u>H</u>₃).</u></u>

¹³C-NMR (151 MHz, CDCl₃, ppm): $\delta = 167.9$ (CH₂-CH-<u>C</u>O), 165.8 (CH=CH-<u>C</u>O), 162.4 (C-<u>C</u>O), 156.7 (NH-<u>C</u>O-C), 156.3 (NH-<u>C</u>O-C), 148.8 (<u>C</u>-O-CH), 136.4 (O-CH-<u>C</u>), 133.1 (<u>C</u>H=CH-CO), 131.8 (<u>C</u>H=C-CH=CH-CO), 129.9 (<u>C</u>Ar), 128.8 (<u>C</u>Ar), 127.8 (CH₃-C-<u>C</u>H), 125.9 (<u>C</u>Ar), 125.7 (<u>C</u>Ar), 124.4 (O-C-<u>C</u>-N), 122.7 (<u>C</u>-CH=CH-CO), 122.2 (<u>C</u>H-C-CO), 121.5 (CH=<u>C</u>H-CO), 117.5 (<u>C</u>-CO), 94.4 (O-<u>C</u>H-N), 79.5 (<u>C</u>-CH₃), 79.4 (<u>C</u>-CH₃), 59.0 (CO-<u>C</u>H-

CH₂), 51.2 (NH-<u>C</u>H), 44.2 (CH-<u>C</u>H₂-NH), 38.9 (NH-<u>C</u>H₂-CH₂), 32.1 (C<u>H₂</u>), 30.7 (CO-CH-<u>C</u>H₂), 29.0 (C<u>H₂</u>), 28.4 (O-C-<u>C</u>H₃), 28.4 (O-C-<u>C</u>H₃), 22.7 (CH-CH₂-<u>C</u>H₂), 15.0 (CH-C-<u>C</u>H₃). **HRMS** (ESI+): ber. für C₃₉H₄₉N₅NaO₈⁺ [*M* + Na]⁺: 738.3473, gef.: 738.3475.

Schmelzintervall: 148–150 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3336 (w br, -N-H), 2974 (w, -C-H), 2930 (w, -C-H), 2968 (w, -C-H), 1690 (s, -C=O, -N-H), 1640 (s, -C=C), 1517 (m, -N-H), 1500 (m, Ringschwingung), 1455 (m, -CH₂, -CH₃), 1391 (m, CH₃), 1365 (s, CH₃), 1255 (s, -C-N, -C-O-C), 1230 (s, -C-N, -C-O-C), 1166 (s, -C-N, -C-O-C), 1148 (s, -C-N, -C-O-C), 1119 (m, -C-N, -C-O-C), 1071 (m, -C-N, -C-O-C), 973 (m, =C-H), 836 (m), 760 (m, =C-H), 731 (m, =C-H), 714 (m), 696 (m).

(2*R*,5'*S*,11*S*,11a*S*)-(*E*)-*N*¹⁰,*O*⁹-Benzyliden-9,11-dihydroxy-8-methyl-5,10,11,11atetrahydro-5-oxo-1*H*-pyrrolo[2,1-c][1,4]benzodiazepin-2-{*N*-[*N*^{5'},*N*^{6'}-bis(*tert*butyloxycarbonyl)hexan-5',6'-diamin-1'-yl]}acrylamid (72)

Zu einer Lösung aus 67 (88.0 mg, 0.12 mmol, 1.0 Äq.) in THF (9.5 mL) wurde eine 0.04 M Lösung aus LiBH₄ in THF (3.1 mL, 0.12 mmol, 1.0 Äq.) bei -30 °C zugegeben und 39 h bei -30 °C gerührt, wobei nach 27 h nochmals eine 0.04 M Lösung aus LiBH₄ in THF (1.0 mL, 0.04 mmol, 0.3 Äq.) zugegeben wurde. Nach Zugabe einer gesättigten NH₄Cl-Lösung (18 mL) wurde das THF *in vacuo* entfernt, H₂O zugegeben (6 mL), mit EtOAc (3 × 52 mL) extrahiert, über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt. Säulenchromatographische Aufreinigung (*iso*-Hexan/EtOAc 1:20 → EtOAc) ergab 72 als farblosen Festtsoff (31 mg, 43 µmol, 36%, 54% b.r.s.m.).

 $R_{f} = 0.87 \text{ (CHCl}_{3}\text{/MeOH 5:1)}.$

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 7.54-7.53$ (m, 2H, 2 × O-CH-C-C<u>H</u>), 7.43–7.40 (m, 4H, C-CH-C<u>H</u>-C<u>H</u>-C<u>H</u>, C<u>H</u>=C-CH=CH-CO), 7.34 (d, ³*J*_{H,H}=15.3 Hz, 1H, C<u>H</u>=CH-CO), 7.29 (d, ³*J*_{H,H}=8.3 Hz, 1H, C<u>H</u>-C-CO), 6.61 (d, ³*J*_{H,H}=8.4 Hz, 1H, CH₃-C-C<u>H</u>), 6.55 (s, 1H, O-C<u>H</u>-N), 6.14 (s br, 1H, N<u>H</u>), 5.66 (d, ³*J*_{H,H}=15.3 Hz, 1H, CH=C<u>H</u>-CO), 4.91 (s br, 1H, N<u>H</u>), 4.82 (s, 1H, C<u>H</u>-OH), 4.77 (s br, 1H, N<u>H</u>), 4.25 (dd, ³*J*_{H,H}=11.3, 4.9 Hz, 1H, CO-C<u>H</u>-

CH₂), 3.59–3.55 (m, 1H, NH-C<u>H</u>), 3.45 (s br, 1H, O<u>H</u>), 3.30–3.26 (m, 2H, NH-C<u>H₂</u>), 3.18– 3.13 (m, 2H, HN-C<u>H₂</u>), 3.09 (dd, ${}^{2}J_{H,H}$ = 15.8 Hz, ${}^{3}J_{H,H}$ = 11.6 Hz, 1H, CO-CH-C<u>H₂</u>), 2.90 (dd, ${}^{2}J_{H,H}$ = 15.6 Hz, ${}^{3}J_{H,H}$ = 4.7 Hz, 1H, CO-CH-C<u>H₂</u>), 2.20 (s, 3H, CH-C-C<u>H₃</u>), 1.53–1.50 (m, 2H, C<u>H₂</u>), 1.42–1.38 (m, 4H, 2 × C<u>H₂</u>), 1.42 (s, 9H, 3 × C-C<u>H₃</u>), 1.42 (s, 9H, 3 × C-C<u>H₃</u>). 1³C-NMR (151 MHz, CDCl₃, ppm): δ = 166.1 (CH=CH-<u>C</u>O), 164.0 (C-<u>C</u>O), 156.7 (NH-<u>C</u>O-C), 156.2 (NH-<u>C</u>O-C), 147.6 (<u>C</u>-O-CH), 138.3 (O-CH-<u>C</u>), 134.3 (C-CH-<u>C</u>H-CH oder O-C-<u>C</u>-N), 134.2 (C-CH-<u>C</u>H-CH oder O-C-<u>C</u>-N), 134.2 (C-CH-<u>C</u>H-CH oder O-C-<u>C</u>-N), 133.4 (<u>C</u>H=CH-CO), 130.3 (C-CH-CH-<u>C</u>H), 128.9 (<u>C</u>H=C-CH=CH-CO), 127.1 (C-<u>C</u>H-CH-CH), 122.5 (<u>C</u>-CH=CH-CO), 122.0 (CH₃-C-<u>C</u>H), 121.8 (<u>C</u>-CO), 121.5 (<u>C</u>H-C-CO), 120.5 (CH=<u>C</u>H-CO), 111.3 (CH₃-<u>C</u>-CH), 100.5 (O-<u>C</u>H-N), 86.2 (<u>C</u>H-OH), 79.5 (<u>C</u>-CH₃), 79.4 (<u>C</u>-CH₃), 59.6 (CO-<u>C</u>H-CH₂), 51.3 (NH-<u>C</u>H), 44.2 (CH-<u>C</u>H₂-NH), 38.9 (NH-<u>C</u>H₂-CH₂), 33.2 (CO-CH-<u>C</u>H₂), 32.1 (C<u>H₂), 29.1 (C<u>H₂)</u>, 28.4 (O-C-<u>C</u>H₃), 22.8 (CH-CH₂-<u>C</u>H₂), 14.8 (CH-C-<u>C</u>H₃).</u>

HRMS (ESI+): ber. für C₃₉H₅₁N₅NaO₈⁺ $[M + Na]^+$: 740.3630, gef.: 740.3624.

Schmelzintervall: 100–102 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3328 (w br, -N-H, -O-H), 2962 (w, -C-H), 2927 (w, -C-H), 2855 (w, -C-H), 1689 (m, -C=O), 1614 (m, Ringschwingung, -N-H), 1520 (m, -N-H), 1490 (w, Ringschwingung), 1456 (w, -CH₂, -CH₃), 1411 (m, CH₃), 1391 (m, CH₃), 1365 (m, CH₃), 1260 (s, -C-N, -C-O-C), 1231 (m, -C-N, -C-O-C), 1167 (s, -C-N, -C-O-C), 1089 (s, -C-N, -C-O-C), 1076 (s, -C-N, -C-O-C), 1018 (s, -C-N, -C-O-C), 799 (s), 697 (m), 608 (m).

 $(2R,5'S,11S,11aS)-(E)-N^{10},O^9$ -Benzyliden-9,11-dihydroxy-8-methyl-5,10,11,11atetrahydro-5-oxo-1*H*-pyrrolo[2,1-c][1,4]benzodiazepin-2-{*N*-[*N*^{5'},*N*^{6'}-hexan-5',6'-diamin-1'-yl]}acrylamid (als Dihydrochlorid) (74)

Zu einer Lösung aus **67** (0.40 g, 0.56 mmol, 1.0 Äq.) in 1,4-Dioxan (6.8 mL) wurde 2 M Salzsäure in Et₂O (1.5 mL) zugegeben und 3 d bei Raumtemperatur gerührt, wobei nach1 d und 2 d erneut 2 M Salzsäure in Et₂O (0.73 mL beziehungsweise 0.30 mL) zugegeben wurde,

um eine vollständige Entschützung zu gewährleisten. Das ausgefallene Produkt wurde abfiltriert und mit eiskaltem Et₂O (7 mL) und eiskaltem 1,4-Dioxan (42 mL) gewaschen, so dass 74 als gelber Feststoff erhalten wurde (0.30 g, 0.51 mmol, 91%).

 $R_{f} = 0.56$ (7 N NH₃ in MeOH).

¹**H-NMR** (600 MHz, [D₇]-DMF, ppm): $\delta = 9.23$ (s br, 6H, 2 × NH₃), 8.30 (t br, ³*J*_{H,H} = 5.6 Hz, 1H, N<u>H</u>), 7.51–7.49 (m, 2H, 2 × C<u>H</u>), 7.47 (s, 1H, O-C<u>H</u>-N), 7.45–7.41 (m, 5H, 5 × C<u>H</u>), 7.38–7.38 (m, 1H, C<u>H</u>), 7.15 (d, ³*J*_{H,H}=8.3 Hz, 1H, CH₃-C-C<u>H</u>), 6.21 (d, ³*J*_{H,H}=15.4 Hz, 1H, CH=C<u>H</u>-CO), 5.21 (dd, ³*J*_{H,H}=11.5, 4.4 Hz, 1H, CO-C<u>H</u>-CH₂), 3.83– 3.80 (m, 1H, NH-C<u>H</u>), 3.64–3.61 (m, 1H, CO-CH-C<u>H</u>₂), 3.51–3.49 (m, 2H, NH-C<u>H₂</u> oder NH₂-C<u>H₂), 3.32–3.24 (m, 2H, NH-C<u>H₂</u> oder NH₂-C<u>H₂), 3.16 (dd, ²*J*_{H,H}=16.2 Hz, ³*J*_{H,H}=11.4 Hz, 1H, CO-CH-C<u>H</u>₂), 2.33 (s, 3H, CH-C-C<u>H₃), 1.99–1.91 (m, 2H, C<u>H₂), 1.65–</u> 1.55 (m, 4H, 2 × C<u>H₂).</u></u></u></u>

¹³C-NMR (151 MHz, [D7]-DMF, ppm): $\delta = 169.3$ (CH₂-CH-<u>C</u>O), 166.0 (CH=CH-<u>C</u>O), 162.5 (C-<u>C</u>O), 149.3 (<u>C</u>-O-CH), 138.1 (O-CH-<u>C</u>), 132.4 (<u>C</u>H), 132.0 (<u>C</u>H), 130.3 (<u>C</u>H), 129.4 (<u>C</u>H), 127.7 (CH₃-C-<u>C</u>H), 127.2 (<u>C</u>H-C-CO), 126.4 (<u>C</u>H), 124.0 (<u>C</u>H), 123.7 (<u>C</u>H), 123.3 (<u>C</u>H), 122.1 (<u>C</u>H), 118.3 (CH₃-<u>C</u>-CH), 95.2 (O-<u>C</u>H-N), 59.4 (CO-<u>C</u>H-CH₂), 50.5 (NH₂-<u>C</u>H), 41.9 (NH₂-<u>C</u>H₂), 38.9 (NH-<u>C</u>H₂), 30.9 (CO-CH-<u>C</u>H₂), 30.6 (<u>C</u>H₂), 29.2 (<u>C</u>H₂), 22.8 (NH-CH₂-CH₂), 14.7 (CH-C-<u>C</u>H₃).

HRMS (ESI+): ber. für C₂₉H₃₄N₅O₄⁺ $[M + H]^+$: 516.2600, gef.: 516.2609.

Schmelzpunkt: >255 °C (Zersetzung).

IR (ATR): \tilde{v} (cm⁻¹) = 2919 (m, -C-H), 2866 (m, -C-H), 2360 (w), 2340 (w), 1684 (m, -C=O, -NH₃⁺), 1635 (s, -C=O, -C=C, -NH₃⁺), 1591 (m, Ringschwingung, -N-H), 1498 (m, Ringschwingung), 1455 (s, -CH₂, -CH₃), 1438 (s, -CH₂, -CH₃), 1394 (s, CH₃), 1384 (s, CH₃), 1373 (s, CH₃), 1350 (s, -C-N), 1257 (s, -C-N, -C-O-C), 1229 (s, -C-N, -C-O-C), 1196 (s, -C-N, -C-O-C), 1145 (s, -C-N, -C-O-C), 1118 (m, -C-N, -C-O-C), 1029 (m, -C-N, -C-O-C), 969 (m, =C-H), 834 (m), 826 (m, =C-H), 826 (m, =C-H), 759 (s, =C-H), 731 (s, =C-H), 714 (s, =C-H), 693 (s, =C-H).

6.7 Synthese des [¹⁵N₂]-cadC-Phosphoramidits 76

[¹⁵N₂]-Uracil (78)

Diese Verbindung wurde nach einer leicht modifizierten Methode von *Nui et al.*³⁶⁸ dargestellt. Zu ¹⁵N₂-Harnstoff (77) (2.60 g, 41.9 mmol, 1.0 Äq.) in Polyphosphorsäure (77 g) wurde Propinsäure (2.60 mL, 42.2 mmol, 1.0 Äq.) zugegeben. Die Reaktionslösung wurde 22 h bei 95 °C gerührt. Nach Abkühlen auf Raumtemperatur wurde H₂O zugegeben (56 mL) und das Produkt über Nacht bei –20 °C präzipitiert. Nach Filtration und Waschen des Rückstands mit eiskaltem H₂O (170 mL) wurde **78** als blassbrauner Feststoff erhalten (1.88 g, 16.5 mmol, 39%).

 $\mathbf{R}_{f} = 0.38$ (DCM/MeOH 4:1).

¹**H-NMR** (400 MHz, [D₆]-DMSO, ppm): $\delta = 10.99$ (d, ¹*J*_{H,N} = 89.9 Hz, 1H, CO-N<u>H</u>-CO), 10.81 (dd, ¹*J*_{H,N} = 95.4 Hz, ³*J*_{H,H} = 5.5 Hz, 1H, CO-N<u>H</u>-CH), 7.37 (ddd, ³*J*_{H,H} = 7.6 Hz, ³*J*_{H,H} = 5.7 Hz, ²*J*_{H,N} = 3.5 Hz, 1H, NH-C<u>H</u>), 5.47–5.43 (m, 1H, C<u>H</u>-CO).

¹³**C-NMR** (101 MHz, [D₆]-DMSO, ppm): $\delta = 164.4$ (dd, ${}^{1}J_{C,N} = 8.9$ Hz, ${}^{3}J_{C,N} = 0.6$ Hz, CH-<u>C</u>O-NH), 151.5 (dd, ${}^{1}J_{C,N} = 18.6$ Hz, ${}^{1}J_{C,N} = 16.4$ Hz, NH-<u>C</u>O-NH), 142.2 (d, ${}^{1}J_{C,N} = 11.0$ Hz, NH-<u>C</u>H=CH), 100.3 (d, ${}^{2}J_{C,N} = 6.3$ Hz, CH=<u>C</u>H-CO).

¹⁵N-NMR (40 MHz, [D₆]-DMSO, ppm): $\delta = -223.1$ (d, ² $J_{N,N} = 2.7$ Hz), -248.4 (d, ² $J_{N,N} = 2.6$ Hz).

HRMS (EI+): ber. für C₄H₄¹⁵N₂O₂⁺ $[M + H]^+$: 114.0208, gef.: 114.0207.

Schmelzintervall: 323–325 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3080 (w, =C-H), 2916 (w), 2156 (m), 2003 (m), 1973 (m), 1956 (m), 1716 (s, -C=O), 1660 (s, -C=O, -C=C), 1411 (m), 1229 (m, -C-N), 820 (s), 755 (s, -C=H).

$O^{3'}, O^{5'}$ -Bistoluoyl-2'-desoxy-[¹⁵N₂]-uridin (80)

Eine Suspension von [¹⁵N₂]-Uracil (**78**) (1.76 g, 15.4 mmol, 1.0 Äq.) in HMDS (43 mL) wurde mit TMS-Cl (8.40 mL, 66.2 mmol, 4.3 Äq.) versetzt und 1.5 h bei 60 °C gerührt. Nach Entfernen des Lösemittels *in vacuo* wurde CHCl₃ (43 mL) und Hoffers Chlorzucker (**79**)³⁷⁰ (7.06 g, 18.2 mmol, 1.2 Äq.) zugegeben und 15 h bei Raumtemperatur gerührt. Nach Zugabe von DCM (477 mL) wurde mit einer gesättigten NH₄Cl-Lösung (2×477 mL) gewaschen und das Lösemittel *in vacuo* entfernt. Nach Coevaporation mit EtOAc (2×97 mL) wurde eiskaltes EtOAc (42 mL) zugegeben, abfiltriert und mit eiskaltem EtOAc (1×20 mL) gewaschen, so dass **80** als farbloser Feststoff erhalten wurde (3.84 g, 8.23 mmol, 53%).

 $R_{f} = 0.34 \text{ (DCM/MeOH 19:1)}.$

¹**H-NMR** (400 MHz, CDCl₃, ppm): $\delta = 8.83$ (dt, ¹*J*_{H,N} = 91.0 Hz, ³*J*_{H,N} = 4.0 Hz, 1H, N<u>H</u>), 7.92 (dd, ³*J*_{H,H} = 19.4 Hz, ⁴*J*_{H,N} = 8.3 Hz, 4H, 4 × CO-C-C<u>H</u>), 7.53 (dd, ³*J*_{H,H} = 8.2 Hz, ²*J*_{H,N} = 2.0 Hz, 1H, N-C<u>H</u>=C), 7.28–7.25 (m, 4H, 4 × CH₃-C-C<u>H</u>), 6.40 (dd, ³*J*_{H,H} = 8.0, 5.9 Hz, 1H, N-C<u>H</u>-O), 5.62–5.57 (m, 2H, CO-C<u>H</u>, O-C<u>H</u>), 4.73 (dd, ²*J*_{H,H} = 12.3 Hz, ³*J*_{H,H} = 3.2 Hz, 1H, O-C<u>H</u>₂), 4.67 (dd, ²*J*_{H,H} = 12.3 Hz, ³*J*_{H,H} = 3.5 Hz, 1H, O-C<u>H</u>₂), 4.55–4.52 (m, 1H, C<u>H</u>-CH₂-O), 2.74 (ddd, ²*J*_{H,H} = 14.3 Hz, ³*J*_{H,H} = 5.6 Hz, *J* = 1.4 Hz, 1H, C<u>H</u>₂-CH-O), 2.43 (s, 3H, C<u>H</u>₃), 2.42 (s, 3H, C<u>H</u>₃), 2.34–2.26 (m, 1H, C<u>H</u>₂-CH-O).

¹³C-NMR (101 MHz, CDCl₃, ppm): $\delta = 166.0$ (<u>C</u>O-O), 166.0 (<u>C</u>O-O), 162.7 (d, ¹*J*_{C,N} = 9.3 Hz, <u>C</u>O-CH), 150.0 (dd, ¹*J*_{C,N} = 19.2, 18.3 Hz, N-<u>C</u>O-N), 144.6 (CH₃-<u>C</u>), 144.6 (CH₃-<u>C</u>), 138.8 (d, ¹*J*_{C,N} = 12.6 Hz, N-<u>C</u>H), 129.8 (<u>C</u>H-C-CO), 129.5 (<u>C</u>H-C-CO), 129.4 (CH₃-C-<u>C</u>H), 129.3 (CH₃-C-<u>C</u>H), 126.5 (<u>C</u>-CO), 126.2 (<u>C</u>-CO), 102.9 (d, ²*J*_{C,N} = 7.0 Hz, <u>C</u>H-CO), 85.4 (d, ¹*J*_{C,N} = 12.7 Hz, N-<u>C</u>H-CH₂), 83.0 (<u>C</u>H-CH₂-O), 74.6 (CH-<u>C</u>H-O), 64.0 (<u>C</u>H₂-O), 38.3 (O-CH-<u>C</u>H₂), 21.7 (<u>C</u>H₃), 21.7 (<u>C</u>H₃).

¹⁵N-NMR (40 MHz, CDCl₃, ppm): $\delta = -224.6$ (d, ²*J*_{N,N} = 3.0 Hz), -236.6 (d, ²*J*_{N,N} = 3.0 Hz).

HRMS (ESI+): ber. für C₂₅H₂₅¹⁵N₂O₇⁺ $[M + H]^+$: 467.1597, gef.: 467.1598.

Schmelzintervall: 214-215 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 2156 (w), 1710 (s, -C=O), 1682 (m, -C=O), 1450 (m, -CH₂, -CH₃),

1365 (m, -C-N), 1278 (s, -C-N, -C-O-C), 1122 (m, -C-O-C), 1041 (m, -C-O-C), 803 (w), 765 (s, =C-H).

$O^{3'}$, $O^{5'}$ -Bistoluoyl-5-iod-2'-desoxy-[¹⁵N₂]-uridin (81)

LiI (1.77 g, 13.2 mmol, 1.2 Äq.) und Cer(IV)-ammoniumnitrat (11.6 g, 21.2 mmol, 2.0 Äq.) wurden jeweils über Nacht bei 100 °C unter Hochvakuum getrocknet. Hierzu wurde eine Lösung aus $O^{3'}, O^{5'}$ -Bistoluoyl-2'-desoxy-[¹⁵N₂]-uridin (**80**) (4.98 g, 10.7 mmol, 1.0 Äq.) in MeCN (172 mL) zugegeben und 75 min bei 80 °C gerührt. Nach Abkühlen auf Raumtemperatur wurde EtOAc (1.2 L), H₂O (36 mL) und eine eiskalte, gesättigte NaCl-Lösung (246 mL) zugegeben, mit DCM (4×364 mL) extrahiert und die vereinigten organischen Phasen mit eiskalter, gesättigter NaCl-Lösung (2×235 mL) gewaschen und über MgSO4 getrocknet. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (DCM/MeOH 60:1) wurde **81** als farbloses Pulver erhalten (5.96 g, 10.06 mmol, 94%).

 $R_{\rm f} = 0.26$ (DCM/MeOH 20:1).

¹**H-NMR** (200 MHz, CDCl₃, ppm): $\delta = 8.64$ (d, ¹*J*_{H,N} = 91.3 Hz, 1H, N<u>H</u>), 7.97–7.91 (m, 5H, 4 × CO-C-C<u>H</u>, N-C<u>H</u>), 7.29–7.25 (m, 4H, 4 × CH₃-C-C<u>H</u>), 6.40–6.33 (m, 1H, N-C<u>H</u>-O), 5.63–5.59 (m, 1H, O-C<u>H</u>-N), 4.73 (d, ³*J*_{H,H} = 2.8 Hz, 1H, O-C<u>H</u>₂), 4.59–4.55 (m, 1H, C<u>H</u>-CH₂-O), 2.77 (dd, ²*J*_{H,H} = 14.2 Hz, ³*J*_{H,H} = 5.5, Hz, 1H, C<u>H</u>₂-CH-O), 2.43 (s, 3H, C<u>H</u>₃), 2.42 (s, 3H, C<u>H</u>₃), 2.38–2.19 (m, 1H, C<u>H</u>₂-CH-O).

¹³C-NMR (101 MHz, CDCl₃, ppm): $\delta = 166.1$ (<u>C</u>O-O), 166.0 (<u>C</u>O-O), 159.8 (d, ¹*J*_{C,N} = 10.3 Hz, <u>C</u>O-CI), 149.8 (t, ¹*J*_{C,N} = 18.3 Hz, N-<u>C</u>O-N), 144.6 (CH₃-<u>C</u>), 144.5 (CH₃-<u>C</u>), 143.5 (d, ¹*J*_{C,N} = 11.8 Hz, N-<u>C</u>H), 129.8 (<u>C</u>H-C-CO), 129.7 (<u>C</u>H-C-CO), 129.5 (CH₃-C-<u>C</u>H), 129.3 (CH₃-C-<u>C</u>H), 126.4 (<u>C</u>-CO), 126.2 (<u>C</u>-CO), 85.8 (d, ¹*J*_{C,N} = 12.2 Hz, N-<u>C</u>H-CH₂), 83.4 (<u>C</u>H-CH₂-O), 74.9 (CH-<u>C</u>H-O), 68.9 (d, ²*J*_{C,N} = 9.1 Hz, <u>C</u>I-CO), 64.1 (<u>C</u>H₂-O), 38.7 (O-CH-<u>C</u>H₂), 21.8 (<u>C</u>H₃), 21.7 (<u>C</u>H₃).

¹⁵N-NMR (41 MHz, CDCl₃, ppm): $\delta = -228.2, -229.8$.

HRMS (ESI+): ber. für C₂₅H₂₄I¹⁵N₂O₇⁺ $[M + H]^+$: 593.0563, gef.: 593.0570.

Schmelzintervall: 196–197 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3644 (w), 2472 (w), 2142 (s), 2004 (s), 1973 (s), 1681 (m, -C=O), 1446 (m, -CH₂, -CH₃), 1255 (w, -C-N, -C-O-C), 700 (w, -C-I).

5-Iod- $O^{3'}, O^{5'}$ -bistoluoyl-2'-desoxy($N^1, N^{3-15}N_2$)cytidin (82)

Eine Lösung aus 1*H*-1,2,4-Triazol (528 mg, 7.64 mmol, 9.1 Äq.) in MeCN (16.5 mL) wurde mit POCl₃ (0.17 mL, 1.82 mmol, 2.2 Äq.) bei 0 °C versetzt, wobei schlagartig ein farbloser Feststoff ausfiel. Nach zehnminütigem Rühren bei 0 °C wurde trockenes TEA (1.08 mL, 7.75 mmol, 9.2 Äq.) bei 0 °C zugetropft und weitere 20 min bei 0 °C gerührt. Nach Zugabe von $O^{3'}, O^{5'}$ -Bis(toluoyl)-5-iod-2'-desoxy-[¹⁵N₂]-uridin (**81**) (500 mg, 0.84 mmol, 1.0 Äq.) wurde 17 h bei 30 °C gerührt. Die Lösung wurde mit Triethylamin (0.67 mL, 4.81 mmol, 5.7 Äq.) und H₂O (0.17 mL, 9.4 mmol, 11.2 Äq.) versetzt, 10 min bei 30 °C gerührt, DCM (117 mL) zugegeben und mit einer eiskalten 1:1 Mischung aus einer gesättigten NaCl und einer gesättigten NaHCO₃-Lösung (1 × 33 mL) gewaschen und das Lösemittel *in vacuo* entfernt. Nach Zugabe von 1,4-Dioxan (20 mL) und einer 28% NH₄OH-Lösung (3.3 mL, 26.37 mmol, 31.4 Äq.) wurde die gelbe Lösung 15 min bei 30 °C gerührt. Nach Versetzen der Reaktionslösung mit einer eiskalten, gesättigten NH₄Cl-Lösung (26 mL), Extraktion mit DCM (2 × 26 mL), Trocknen des Lösemittels über MgSO₄, Entfernen des Lösemittels *in vacuo* und säulenchromatographiser Aufreinigung (DCM/MeOH 60:1) wurde **82** als farbloser Feststoff erhalten (418 mg, 0.71 mmol, 84%).

 $R_{\rm f} = 0.26 \; ({\rm DCM/MeOH} \; 20.1).$

¹**H-NMR** (200 MHz, CDCl₃, ppm): $\delta = 7.97-7.89$ (m, 4H, 4 × CO-C-C<u>H</u>), 7.27–7.24 (m, 4H, 4 × CH₃-C-C<u>H</u>), 6.39–6.34 (m, 1H, N-C<u>H</u>-O), 5.59 (dt, J = 6.4, 1.3 Hz, 1H, O-C<u>H</u>-CH), 4.75 (dd, ²J = 12.2 Hz, ³J = 3.0 Hz, 1H, O-C<u>H</u>₂), 4.68 (dd, ²J = 12.3 Hz, ³J = 3.4 Hz, 1H, O-C<u>H</u>₂), 4.60–4.58 (m, 1H, C<u>H</u>-CH₂-O), 2.96 (dd, ²J = 14.3 Hz, ³J = 5.3 Hz, 1H, C<u>H</u>₂-CH-O), 2.43 (s, 3H, C<u>H</u>₃), 2.41 (s, 3H, C<u>H</u>₃), 2.23–2.12 (m, 1H, C<u>H</u>₂-CH-O).

¹³C-NMR (75 MHz, CDCl₃, ppm): $\delta = 166.1$ (<u>C</u>O-O), 166.1 (<u>C</u>O-O), 163.5 (dd, ¹*J*_{C,N}= 5.8 Hz, ¹*J*_{C,N}= 1.4 Hz, <u>C</u>O-CI), 154.4 (dd, ¹*J*_{C,N}= 19.3 Hz, ¹*J*_{C,N}= 8.0 Hz, N-<u>C</u>O-N), 146.1 (d, ¹*J*_{C,N}= 12.3 Hz, N-<u>C</u>H), 144.5 (CH₃-<u>C</u>), 144.4 (CH₃-<u>C</u>), 129.8 (<u>C</u>H-C-CO), 129.7 (<u>C</u>H-C-CO), 129.6 (CH₃-C-<u>C</u>H), 129.3 (CH₃-C-<u>C</u>H), 126.5 (<u>C</u>-CO), 126.3 (<u>C</u>-CO), 87.1 (d, ¹*J*_{C,N}= 11.3 Hz, N-<u>C</u>H-CH₂), 83.6 (<u>C</u>H-CH₂-O), 75.3 (CH-<u>C</u>H-O), 64.2 (<u>C</u>H₂-O), 56.0 (d, ²*J*_{C,N}= 2.1 Hz, <u>C</u>I-CO), 39.5 (O-CH-<u>C</u>H₂), 21.7 (<u>C</u>H₃), 21.7 (<u>C</u>H₃). ¹⁵N-NMR (41 MHz, CDCl₃, ppm): $\delta = -169.4, -215.6$.

HRMS (ESI+): ber. für C₂₅H₂₅IN¹⁵N₂O₆⁺ $[M + H]^+$: 592.0723, gef.: 592.0726.

Schmelzintervall: 144–148 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3644 (w), 2473 (w), 2155 (m), 2004 (m), 1722 (m, -C=O), 1609 (m, Ringschwingung, -N-H), 1268 (s, -C-N, -C-O-C), 1097 (m, -C-O-C), 950 (w), 763 (s, C-I, =C-H).

 $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-iod-2'-desoxy($N^1, N^3-^{15}N_2$)cytidin (83)

Eine Suspension aus 5-Iod- $O^{3'}$, $O^{5'}$ -bistoluoyl-2'-desoxy(N^1 , $N^{3-15}N_2$)cytidin (82) (2.84 g, 4.80 mmol, 1.0 Äq.) und Kaliumcarbonat (3.41 g, 24.7 mmol, 5.1 Äq.) in MeOH (496 mL) wurde 15 h bei 40 °C gerührt. Nach Entfernen des Lösemittels *in vacuo* wurde DMF (77 mL), Pyridin (116 mL), Imidazol (2.03 g, 29.8 mmol, 6.2 Äq.) und TBS-Cl (4.46 g, 29.6 mmol, 6.2 Äq.) zugegeben und bei 40 °C gerührt. Nach 15 h und 67 h wurden jeweils erneut Imidazol (2.03 g, 29.8 mmol, 6.2 Äq.) und TBS-Cl (4.46 g, 29.6 mmol, 6.2 Äq.) zugegeben. Nach insgesamt viertägigem Rühren bei 40 °C wurde Eis (265 g) und eine gesättigte NaHCO₃-Lösung (386 mL) zugegeben und mit EtOAc (3 × 386 mL) extrahiert. Die vereinigten organischen Phasen wurden mit einer gesättigten NH4Cl-Lösung gewaschen (1 × 386 mL), das Lösemittel über MgSO4 getrocknet und *in vacuo* entfernt und das Produkt säulenchromatographisch aufgereinigt (DCM/MeOH 60:1 \rightarrow 5:1), so dass **83** als blassgelber Festtstoff erhalten wurde (2.31 g, 3.96 mmol, 83%).

 $R_{\rm f} = 0.51 (\rm DCM/MeOH/H_2O/28\% NH_4OH 9:1:0.1:0.1).$

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 8.22$ (s br, 1H, N<u>H</u>₂), 8.06 (d, ²*J*_{H,N} = 0.9 Hz, 1H, N-C<u>H</u>=C), 6.24–6.21 (m, 1H, N-C<u>H</u>-O), 5.57 (s br, 1H, N<u>H</u>₂), 4.35–4.34 (m, 1H, C<u>H</u>-O-Si), 3.98 (q, ³*J*_{H,H}= 2.7 Hz, 1H, C<u>H</u>-CH₂-O), 3.88 (dd, ²*J*_{H,H}= 11.4 Hz, ³*J*_{H,H}= 2.7 Hz, 1H, C<u>H</u>₂-O-Si), 3.75 (dd, ²*J*_{H,H}= 11.4 Hz, ³*J*_{H,H}= 2.6 Hz, 1H, C<u>H</u>₂-O-Si), 2.45 (dddd, ²*J*_{H,H}= 13.3 Hz, ³*J*_{H,H}= 5.9, 3.0 Hz, *J* = 1.3 Hz, 1H, N-CH-C<u>H</u>₂), 1.97–1.93 (m, 1H, N-CH-C<u>H</u>₂), 0.93 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.88 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.14 (s, 3H, Si-C<u>H</u>₃), 0.12 (s, 3H, Si-C<u>H</u>₃), 0.07 (s, 3H, Si-C<u>H</u>₃), 0.06 (s, 3H, Si-C<u>H</u>₃).

¹³C-NMR (151 MHz, CDCl₃, ppm): $\delta = 163.6$ (d, ¹*J*_{C,N}= 6.0 Hz, <u>C</u>-NH₂), 154.6 (dd, ¹*J*_{C,N}= 11.9, 8.5 Hz, <u>C</u>O-N), 146.6 (d, ¹*J*_{C,N}= 12.4 Hz, <u>C</u>H=C), 88.2 (<u>C</u>H-CH₂-O), 86.8 (d, ¹*J*_{C,N}= 10.6 Hz, N-<u>C</u>H-O), 72.2 (<u>C</u>H-O-Si), 62.8 (<u>C</u>H₂-O-Si), 55.9 (d, ²*J*_{C,N}= 2.0 Hz, <u>C</u>I), 42.6 (N-CH-<u>C</u>H₂), 26.1 (Si-C-<u>C</u>H₃), 25.7 (Si-C-<u>C</u>H₃), 18.5 (Si-<u>C</u>), 18.0 (Si-<u>C</u>), -4.6 (Si-<u>C</u>H₃), -4.9 (Si-<u>C</u>H₃), -5.2 (Si-<u>C</u>H₃), -5.3 (Si-<u>C</u>H₃).

¹⁵N-NMR (41 MHz, CDCl₃, ppm): $\delta = -174.2, -212.6$.

HRMS (ESI+): ber. für C₂₁H₄₁IN¹⁵N₂O₄Si₂⁺ $[M + H]^+$: 584.1615, gef.: 584.1618.

Schmelzintervall: 195–196 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3643 (w), 2850 (w, -C-H), 2517 (w), 2172 (s), 2004 (s), 1650 (s, -C=O, -C=C, -N-H, -C=N), 1470 (m, -CH₂, -CH₃), 1271 (m, -C-N, -C-O-C), 1094 (m, -C-N, -C-O-C, -Si-OC), 836 (m, C-I, =C-H, -Si-OC), 775 (m, C-I, =C-H, -OSi-C).

$O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-methyloxycarbonyl-2'-desoxy($N^1, N^{3-15}N_2$)cytidin (84)

Zu $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-iod-2'-desoxy($N^1, N^{3-15}N$)cytidin (**83**) (0.20 g, 0.34 mmol, 1.0 Äq.), Bis(acetonitril)palladium(II)-chlorid (20.0 mg, 0.08 mmol, 0.2 Äq.) und N, N-Di(*iso*-propyl)ethylamin (0.24 mL, 1.4 mmol, 4.1 Äq.) wurde entgastes MeOH (drei *freeze, pump, thaw* Zyklen, 8 mL) zugegeben. Die Suspension wurde 17 h bei 3.5 bar CO und 60 °C gerührt. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (EtOAc) wurde **84** als farbloses Pulver erhalten (0.12 g, 0.23 mmol, 67%).

$R_{f} = 0.11$ (*iso*-Hexan/EtOAc 1:1).

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 8.64$ (s, 1H, N-C<u>H</u>=C), 7.94 (s br, 1H, N<u>H</u>₂), 6.19– 6.17 (m, 2H, N<u>H</u>₂, N-C<u>H</u>-O), 4.35 (dt, ³*J*_{H,H}= 6.0, 2.5 Hz, 1H, C<u>H</u>-O-Si), 4.06 (q, ³*J*_{H,H}= 2.9 Hz, 1H, C<u>H</u>-CH₂-O), 3.85 (dd, ²*J*_{H,H}= 11.3 Hz, ³*J*_{H,H}= 3.1 Hz, 1H, C<u>H</u>₂-O-Si), 3.82 (s, 3H, O-C<u>H</u>₃), 3.77 (dd, ²*J*_{H,H}= 11.3 Hz, ³*J*_{H,H}= 3.1 Hz, 1H, C<u>H</u>₂-O-Si), 2.62 (dddd, ²*J*_{H,H}= 13.5 Hz, ³*J*_{H,H}= 5.9, 2.4 Hz, *J*= 1.1 Hz, 1H, N-CH-C<u>H</u>₂), 1.99–1.94 (m, 1H, O-CH-C<u>H</u>₂), 0.89 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.87 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.08 (s, 3H, Si-C<u>H</u>₃), 0.07 (s, 3H, Si-C<u>H</u>₃), 0.06 (s, 3H, Si-C<u>H</u>₃), 0.06 (s, 3H, Si-C<u>H</u>₃).

¹³C-NMR (151 MHz, CDCl₃, ppm): $\delta = 165.3$ (<u>C</u>O-O), 163.6 (d, ¹*J*_{C,N}= 6.1 Hz, <u>C</u>-NH₂), 154.1 (dd, ¹*J*_{C,N}= 10.0, 7.7 Hz, <u>C</u>O-N), 147.6 (d, ¹*J*_{C,N}= 13.9 Hz, <u>C</u>H=C), 95.0 (d, ²*J*_{C,N}= 1.7 Hz, <u>C</u>=CO), 88.8 (<u>C</u>H-CH₂-O), 87.9 (d, ¹*J*_{C,N}= 10.2 Hz, N-<u>C</u>H-O), 72.7 (<u>C</u>H-O-Si), 63.1 (<u>C</u>H₂-O-Si), 51.9 (O<u>C</u>H₃), 42.9 (N-CH-<u>C</u>H₂), 25.8 (Si-C-<u>C</u>H₃), 25.8 (Si-C-<u>C</u>H₃), 18.3 (Si-<u>C</u>), 18.0 (Si-<u>C</u>), -4.6 (Si-<u>C</u>H₃), -4.9 (Si-<u>C</u>H₃), -5.6 (Si-<u>C</u>H₃), -5.7 (Si-<u>C</u>H₃).

¹⁵N-NMR (40 MHz, CDCl₃, ppm): $\delta = -172.7, -211.4$.

HRMS (EI+): ber. für C₂₂H₄₀N¹⁵N₂O₆Si₂⁺ $[M - CH_3]^+$: 500.2391, gef.: 500.2391.

Schmelzintervall: 203–204 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3409 (w), 2952 (w, -C-H), 2928 (w, -C-H), 1709 (m, -C=O), 1667 (m, -C=O, -C=C, -C=N), 1496 (m, Ringschwingung), 1321 (m), 1257 (s, -C-N, -C-O-C), 1087 (s, -C-O-C, -Si-OC), 1064 (s, -C-O-C, -Si-OC), 1013 (s, -C-O-C, -Si-OC), 831 (s, =C-H, -Si-OC), 789 (s, -OSi-C), 775 (s, =C-H, -OSi-C).

 N^4 , N^4 -Dibenzoyl- $O^{3'}$, $O^{5'}$ -bis(*tert*-Butyldimethylsilyl)-5-methyloxycarbonyl-2'-desoxy-(N^1 , N^3 - $^{15}N_2$)cytidin (85)

Zu einer Lösung aus $O^{3'}, O^{5'}$ -Bis(*O-tert*-butyldimethylsilyl)-5-methyloxycarbonyl-2'-desoxy(N^1, N^3 -¹⁵N)cytidin (**84**) (1.07 g, 2.07 mmol, 1.0 Äq.) in Pyridin (29 mL) wurde Benzoylchlorid (3.30 mL, 28.4 mmol, 13.7 Äq.) bei 0 °C zugegeben und die erhaltene Reaktionslösung 1.5 h bei 0 °C und weitere 19 h bei Raumtemperatur gerührt. Nach Zugabe von Eis (34 g) und einer gesättigten NaHCO₃-Lösung (441 mL) wurde mit EtOAc (1×441 mL) extrahiert und die vereinigten organischen Phasen mit einer gesättigten NH₄Cl-Lösung (1×441 mL) gewaschen. Nach Trocknung des Lösemittels über MgSO₄, Entfernung des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (*iso*-Hexan/EtOAc 4:1) wurde **85** als farbloser Feststoff erhalten (1.21 g, 1.67 mmol, 81%).

 $R_{f} = 0.19$ (*iso*-Hexan/EtOAc 4:1).

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 8.88$ (s, 1H, N-C<u>H</u>=C), 7.87–7.85 (m, 4H, 4 × CO-C-CH-C<u>H</u>), 7.51–7.48 (m, 2H, 2 × CO-C-CH-CH-C<u>H</u>), 7.40–7.37 (m, 4H, 4 × C-C<u>H</u>), 6.08–6.06 (m, 1H, N-C<u>H</u>-O), 4.37–4.35 (m, 1H, C<u>H</u>-O-Si), 4.12 (dd, ³*J*_{H,H} = 5.3 Hz, ³*J*_{H,H} = 2.8 Hz, 1H, C<u>H</u>-CH₂-O), 3.88 (dd, ²*J*_{H,H}=11.4 Hz, ³*J*_{H,H}=3.1 Hz, 1H, C<u>H</u>₂-O-Si), 3.78 (dd, ²*J*_{H,H}=11.4 Hz, ³*J*_{H,H}=2.9 Hz, 1H, C<u>H</u>₂-O-Si), 3.72 (s, 3H, O-C<u>H</u>₃), 2.67–2.64 (m, 1H, O-CH-C<u>H₂), 2.02–1.97 (m, 1H, O-CH-C<u>H₂), 0.88 (s, 18H, 6 × Si-C-CH₃), 0.09 (s, 3H, Si-C<u>H₃), 0.08 (s, 3H, Si-C<u>H₃), 0.07 (s, 3H, Si-C<u>H₃)</u>.</u></u></u></u>

¹³C-NMR (151 MHz, CDCl₃, ppm): $\delta = 172.4$ (N-<u>C</u>O), 164.0 (d, ¹*J*_{C,N}= 6.9 Hz, <u>C</u>-NH₂), 162.6 (<u>C</u>O-O), 153.1 (dd, ¹*J*_{C,N}= 10.6, 4.6 Hz, N-<u>C</u>O-N), 149.2 (d, ¹*J*_{C,N}= 13.8 Hz, <u>C</u>H=C), 134.1 (<u>C</u>-CH), 132.9 (C-CH-CH-<u>C</u>H), 129.3 (C-CH-<u>C</u>H), 128.8 (C-<u>C</u>H-CH), 103.9 (d, ²*J*_{C,N}= 1.5 Hz, <u>C</u>=CO), 89.5 (<u>C</u>H-CH₂-O), 89.0 (d, ¹*J*_{C,N}= 9.0 Hz, N-<u>C</u>H-CH₂), 72.9 (<u>C</u>H-O-Si), 63.1 (<u>C</u>H₂-O-Si), 52.4 (O<u>C</u>H₃), 42.6 (N-CH-<u>C</u>H₂), 25.9 (Si-C-<u>C</u>H₃), 25.7 (Si-C-<u>C</u>H₃), 18.3 (Si-<u>C</u>), 18.0 (Si-<u>C</u>), -4.6 (Si-<u>C</u>H₃), -4.9 (Si-<u>C</u>H₃), -5.5 (Si-<u>C</u>H₃), -5.6 (Si-<u>C</u>H₃).

¹⁵N-NMR (40 MHz, CDCl₃, ppm): $\delta = -112.3, -202.0.$

HRMS (ESI+): ber. für C₃₇H₅₁N¹⁵N₂NaO₈Si₂⁺ $[M + Na]^+$: 746.3048, gef.: 746.3046.

Schmelzintervall: 84–85 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 2953 (w, -C-H), 2929 (w, -C-H), 2857 (w, -C-H), 1683 (s, -C=O, -C=N), 1615 (w, -N-H), 1495 (m, Ringschwingung), 1277 (m, -C-N), 1242 (s, -C-N), 1107 (s, -C-O-C, -Si-OC), 1079 (s, -C-O-C, -Si-OC), 831 (s, =C-H, -Si-OC), 776 (s, =C-H, -OSi-C), 700 (s, =C-H, -OSi-C), 676 (s, -OSi-C).

 N^4 , N^4 -Dibenzoyl-5-methyloxycarbonyl-2'-desoxy(N^1 , N^3 - $^{15}N_2$)cytidin (86)

Zu einer Lösung aus N^4 , N^4 -Dibenzoyl- $O^{3'}$, $O^{5'}$ -bis(*tert*-Butyldimethylsilyl)-5-methyloxycarbonyl-2'-desoxy(N^1 , $N^{3-15}N_2$)cytidin (**85**) (1.12 g, 1.54 mmol, 1.0 Äq.) und Pyridin (0.59 mL, 7.2 mmol, 4.6 Äq.) in EtOAc (25 mL) wurde 70% iges HF-Pyridin (0.61 mL, 6.8 mmol, 4.4 Äq.) zugegeben und 14 h bei Raumtemperatur gerührt. Nach Zugabe von Methoxytrimethylsilan (7.30 mL, 52.9 mmol, 34.3 Äq.) und weiterem Rühren bei Raumtemperatur für 40 min wurde das Lösemittel *in vacuo* entfernt. Nach säulenchromatographischer Aufreinigung (CHCl₃/MeOH 50:1 \rightarrow 40:1 \rightarrow 20:1) wurde **86** als farbloser Feststoff erhalten (0.59 g, 1.2 mmol, 77%).

 $R_{f} = 0.70 (DCM/MeOH 5:1).$

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 9.33$ (s, 1H, N-C<u>H</u>=C), 7.84–7.82 (m, 4H, 4 × CO-C-CH-C<u>H</u>), 7.51–7.49 (m, 2H, 2 × CO-C-CH-CH-C<u>H</u>), 7.39–7.37 (m, 4H, 4 × C-C<u>H</u>), 6.07–6.05 (m, 1H, N-C<u>H</u>-O), 4.42 (dd, ³*J*_{H,H} = 10.8, 5.6 Hz, 1H, C<u>H</u>-OH), 4.04–4.02 (m, 1H, C<u>H</u>-CH₂-O), 3.91 (dd, ²*J*_{H,H} = 12.1 Hz, ³*J*_{H,H} = 2.9 Hz, 1H, C<u>H</u>₂-OH), 3.80 (dd, ²*J*_{H,H} = 12.1 Hz, ³*J*_{H,H} = 2.6 Hz, 1H, C<u>H</u>₂-OH), 3.66 (s, 3H, O-C<u>H</u>₃), 3.39 (s br, 2H, 2 × O<u>H</u>), 2.53–2.49 (m, 1H, O-CH-C<u>H</u>₂), 2.23–1.19 (m, 1H, O-CH-C<u>H</u>₂).

¹³C-NMR (151 MHz, CDCl₃, ppm): $\delta =172.7$ (N-<u>C</u>O), 164.0 (d, ¹ $J_{C,N}=7.0$ Hz, <u>C</u>-NH₂), 162.8 (<u>C</u>O-O), 153.6 (dd, ¹ $J_{C,N}=10.9$, 4.8 Hz, N-<u>C</u>O-N), 151.0 (d, ¹ $J_{C,N}=13.6$ Hz, <u>C</u>H=C), 133.7 (<u>C</u>-CH), 133.2 (C-CH-CH-<u>C</u>H), 129.4 (C-CH-<u>C</u>H), 128.9 (C-<u>C</u>H-CH), 104.4 (d, ² $J_{C,N}=1.4$ Hz, <u>C</u>=CO), 88.5 (d, ¹ $J_{C,N}=8.2$ Hz, N-<u>C</u>H-CH₂), 87.8 (<u>C</u>H-CH₂-O), 69.7 (<u>C</u>H-OH), 61.1 (<u>C</u>H₂-OH), 52.5 (O<u>C</u>H₃), 41.4 (N-CH-<u>C</u>H₂).

¹⁵N-NMR (40 MHz, CDCl₃, ppm): $\delta = -114.2, -199.8$.

HRMS (ESI+): ber. für C₂₅H₂₄N¹⁵N₂O₈⁺ $[M + H]^+$: 496.1499, gef.: 496.1500.

Schmelzintervall: 128–130 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3398 (w, -O-H), 1666 (s, -C=O, -C=C, -C=N), 1612 (m, Ringschwingung, -N-H), 1498 (s, Ringschwingung), 1241 (s, -C-N, -C-O-C), 1195 (m, -C-N, -C-O-C), 1176 (m, -C-N, -C-O-C), 1092 (s, -C-N, -C-O-C), 750 (s, =C-H), 703 (s, =C-H), 666 (s).

$N^4, N^4-\text{Dibenzoyl-5-methyloxycarbonyl-} O^{5'}-(\text{dimethoxytrityl})-2'-\text{desoxy}(N^1, N^{3-15}\text{N}_2)-2'-\text{desoxy}(N^2, N^3-15)) = 0$

Zu einer Lösung aus N^4 , N^4 -Dibenzoyl-5-methyloxycarbonyl-2'-desoxy(N^1 , N^3 - $^{15}N_2$)cytidin (**86**) (0.34 g, 0.69 mmol, 1.0 Äq.) in Pyridin (9.3 mL) wurde 3 Å Molsieb und DMT-Cl (0.21 g, 0.62 mmol, 0.9 Äq.) zugegeben und die erhaltene gelbe Lösung für 16.5 h bei Raumtemperatur gerührt. Nach Zugabe von MeOH (12 mL) wurde vom Molsieb abfiltriert, das Lösemittels *in vacuo* entfernt und der Rückstand säulenchromatographisch aufgereinigt (*iso*-Hexan/EtOAc 1:1), so dass **87** als blassgelber Schaum erhalten wurde (0.31 g, 0.39 mmol, 63%).

 $R_{f} = 0.15$ (*iso*-Hexan/EtOAc 1:1).

¹**H-NMR** (200 MHz, CDCl₃, ppm): $\delta = 9.15$ (s, 1H, N-C<u>H</u>=C), 7.88–7.84 (m, 4H, 4 × CO-C-CH-C<u>H</u>), 7.54–7.23 (m, 15H, 2 × CO-C-CH-CH-C<u>H</u>, 4 × CO-C-C<u>H</u>, 4 × C-C-C<u>H</u>-CH-CH-C-O, 2 × C-C-C<u>H</u>-C<u>H</u>-CH, C-C-CH-CH-C<u>H</u>), 6.85 (d, ³*J*_{H,H} = 8.8 Hz, 4H, 4 × C-C-CH-C<u>H</u>-C-O), 6.10 (t, ³*J*_{H,H} = 6.0 Hz, 1H, N-C<u>H</u>-O), 4.38 (dd, ³*J*_{H,H} = 9.7, 4.9 Hz, 1H, C<u>H</u>-OH), 4.14–4.08 (m, 1H, C<u>H</u>-CH₂-O), 3.78 (s, 6H, 2 × C_{Ar}-OC<u>H₃</u>), 3.60 (dd, ²*J*_{H,H} = 10.7 Hz, ³*J*_{H,H} = 3.0 Hz, 1H, C<u>H</u>₂-O), 3.28 (dd, ²*J*_{H,H} = 10.8 Hz, ³*J*_{H,H} = 3.1 Hz, 1H, C<u>H</u>₂-O), 3.07 (s, 3H, CO-OC<u>H₃</u>), 2.68–2.55 (m, 1H, O-CH-C<u>H</u>₂), 2.41 (s br, 1H, O<u>H</u>), 2.29–2.16 (m, 1H, O-CH-C<u>H</u>₂).

¹³C-NMR (101 MHz, CDCl₃, ppm): $\delta =172.4$ (N-<u>C</u>O), 164.3 (dd, ¹*J*_{C,N} = 6.9 Hz, ³*J*_{C,N} = 1.3 Hz, <u>C</u>-NH₂), 162.2 (d, ²*J*_{C,N} = 1.5 Hz, <u>C</u>O-O), 158.6 (<u>C</u>-OCH₃), 158.6 (<u>C</u>-OCH₃), 153.2 (dd, ¹*J*_{C,N} = 10.6, 4.6 Hz, N-<u>C</u>O-N), 149.1 (d, ¹*J*_{C,N} = 13.7 Hz, <u>C</u>H=C), 144.3 (<u>C</u>-C-CH-CH-CH), 135.6 (<u>C</u>-C-CH-CH-C), 135.4 (<u>C</u>-C-CH-CH-C), 134.1 (CO-<u>C</u>-CH), 132.9 (CO-C-CH-CH-<u>C</u>H), 130.0 (C-C-<u>C</u>H-CH-C), 129.9 (C-C-<u>C</u>H-CH-C), 129.4 (CO-C-CH-<u>C</u>H), 128.7 (<u>CA</u>_rH), 128.0 (<u>CA</u>_rH), 127.9 (C-C-CH-<u>C</u>H-CH), 127.0 (C-C-CH-CH-<u>C</u>H), 113.1 (<u>C</u>H-C-OCH₃), 113.1 (<u>C</u>H-C-OCH₃), 104.1 (dd, ²*J*_{C,N} = 2.0, 0.7 Hz, <u>C</u>=CO), 88.0 (d, ¹*J*_{C,N} = 8.8 Hz, N-<u>C</u>H-O), 86.9 (<u>C</u>H-CH₂-O), 86.6 (O-<u>C</u>-C), 70.4 (<u>C</u>H-OH), 62.3 (<u>C</u>H₂-OH), 55.2 (CH-C-O<u>C</u>H₃), 51.8 (CO-O<u>C</u>H₃), 41.7 (N-CH-<u>C</u>H₂).

¹⁵N-NMR (40 MHz, CDCl₃, ppm): $\delta = -112.0, -202.3$.

HRMS (ESI-): ber. für C₄₆H₄₀N¹⁵N₂O₁₀⁻ $[M - H]^{-}$: 796.2660, gef.: 796.2660.

Schmelzintervall: 132–134 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 1681 (m, -C=O, -C=N), 1608 (m, Ringschwingung, -N-H), 1496 (m, Ringschwingung), 1304 (m, -C-N, -C-O-C), 1276 (m, -C-N, -C-O-C), 1244 (m, -C-N, -C-O-C), 1175 (m, -C-N, -C-O-C), 1116 (m, -C-N, -C-O-C), 1094 (m, -C-N, -C-O-C), 1030 (m, -C-N, -C-O-C), 827 (m, =C-H), 790 (m, =C-H), 777 (m, =C-H), 727 (m, =C-H), 699 (s, =C-H).

N^4 , N^4 -Dibenzoyl- $O^{3'}$ -[di(*iso*-propylamin)-O- β -cyanethoxyphosphino]- $O^{5'}$ -(dimethoxytrityl)-5-methyloxycarbonyl-2'-desoxy(N^1 , N^3 -¹⁵N₂)cytidin (76)

Zu einer Lösung aus N^4 , N^4 -Dibenzoyl-5-carboxymethyl- $O^{5'}$ -(dimethoxytrityl)-2'-desoxy(N^1 , N^3 -¹⁵N₂)cytidin (**87**) (50 mg, 63 µmol, 1.0 Äq.) in dreimal entgastem DCM (1.3 mL) wurde Di(*iso*-propyl)ammoniumtetrazolid (**89**) (6.0 mg, 35 µmol, 0.6 Äq.) und Bis[di(*iso*propyl)amin]-O- β -cyanethoxyphosphin (**88**) (25 µL, 79 µmol, 1.3 Äq.) zugegeben und die gelbe Lösung für 17 h bei Raumtemperatur unter Argon-Atmosphäre gerührt. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (DCM/MeOH 200:1 + 1% Pyridin) wurde **76** als farbloser Schaum der zwei Diastereomere erhalten (73 mg, 73 µmol, quant.).

 $R_{\rm f} = 0.26$ (DCM/MeOH 200:1 + 1% Pyridin).

¹**H-NMR** (200 MHz, [D₆]-Aceton, ppm): $\delta = 9.21$ (s, 1H, N-C<u>H</u>=C), 9.21 (s, 1H, N-C<u>H</u>=C), 7.94–7.88 (m, 8H, 8 × CO-C-CH-C<u>H</u>), 7.64–7.26 (m, 30H, 4 × CO-C-CH-CH-C<u>H</u>, 8 × CO-C-C<u>H</u>-CH-C-O, 4 × C-C-C<u>H</u>-CH, 2 × C-C-CH-CH-C<u>H</u>), 6.96–6.90 (m, 8H, 4 × C-C-CH-C<u>H</u>-C-O), 6.09 (t, J = 5.1 Hz, 2H, N-C<u>H</u>-O), 4.71–4.56 (m, 2H, 2 × C<u>H</u>-O), 4.34–4.26 (m, 2H, 2 × C<u>H</u>-CH₂-OC), 3.80 (s, 6H, 2 × C_{Ar}-OC<u>H₃</u>), 3.80 (s, 6H, 2 × C_{Ar}-OC<u>H₃</u>), 3.72–3.52 (m, 8H, 2 × P-O-C<u>H₂</u>, 2 × N-C<u>H</u> oder 2 × C<u>H</u>₂-CN), 3.44–3.33 (m, 2H, C<u>H₂-O),</u>

3.07 (s, 3H, CO-OC<u>H</u>₃), 3.07 (s, 3H, CO-OC<u>H</u>₃), 2.77–2.42 (m, 8H, $2 \times CH_2$ -CH, $2 \times N$ -C<u>H</u> oder $2 \times CH_2$ -CN), 1.19–1.03 (m, 24H, $8 \times CH$ -C<u>H</u>₃).

³¹**P-NMR** (81 MHz, [D₆]-Aceton, ppm): δ = 149.7, 149.4.

HRMS (ESI+): ber. für C₅₅H₅₈N₃¹⁵N₂NaO₁₁P⁺ $[M + H]^+$: 1020.3709, gef.: 1020.3710.

Aufgrund der extrem schnellen Oxidation des Phosphor(III) wurde auf die Messung des ¹³C-NMR-, ¹⁵N-NMR-, IR-Spektrums oder Schmelzpunkt vermessen werden. Eine weitere Charakterisierung von **76** erfolgte durch den Einbau mittels DNA-Festphasensynthese und deren Charakterisierung.

6.8 Mechanismusstudien zur Decarboxylierung am Nukleosid

 $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-carboxy-2'-desoxycytidin (94)

Eine Lösung aus $O^{3'}$, $O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-methyloxycarbonyl-2'-desoxycytidin (**93**)³⁷⁵ (1.5 g, 2.9 mmol, 1.0 Äq.) und LiOH (825 mg, 34.5 mmol, 11.8 Äq.) in MeCN (236 mL) und H₂O (45 mL) wurde 18 h bei Raumtemperatur gerührt. Nach Zugabe einer gesättigten NaHCO₃-Lösung (180 mL) und Salzsäure (2 M ,75 mL) wurde mit Et₂O (1 × 450 mL) extrahiert. Nach Einstellen der wässrigen Phase auf pH 1 mit 2 M Salzsäure (105 mL) wurde nochmals mit Et₂O (2 × 450 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt, so dass **94** als farbloser Feststoff erhalten wurde (1.34 g, 2.68 mmol, 92%).

 $R_{\rm f} = 0.70 \; ({\rm DCM/MeOH} \; 5:1 + 0.44\% \; {\rm HCOOH}).$

¹**H-NMR** (600 MHz, CDCl₃ + 0.44% HCOOH, ppm): $\delta = 9.03$ (s br, 1H, COO<u>H</u>), 8.87 (s, 1H, N-C<u>H</u>=C), 6.16 (dd, ³*J*_{H,H} = 7,1, 6.1 Hz, 1H, O-C<u>H</u>-N), 4.39–4.38 (m, 1H, Si-O-C<u>H</u>), 4.16–4.11 (m, 1H, Si-O-CH₂-C<u>H</u>), 3.88 (dd, ²*J*_{H,H} = 11.5 Hz, ³*J*_{H,H} = 2.9 Hz, 1H, Si-O-C<u>H</u>₂), 3.78 (dd, ²*J*_{H,H} = 11.5 Hz, ³*J*_{H,H} = 2.9 Hz, 1H, Si-O-C<u>H</u>₂), 2.53 (ddd, ²*J*_{H,H} = 13.4 Hz,

 ${}^{3}J_{\text{H,H}}$ = 5.8, 2.1 Hz, 1H, N-CH-C<u>H</u>₂), 2.08–2.03 (m, 1H, N-CH-C<u>H</u>₂), 0.89 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.86 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.09 (s, 3H, Si-C<u>H</u>₃), 0.08 (s, 3H, Si-C<u>H</u>₃), 0.07 (s, 3H, Si-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃).

¹³**C-NMR** (151 MHz, CDCl₃ + 0.44% HCOOH, ppm): δ = 167.5 (<u>C</u>OOH), 160.5 (<u>C</u>-NH₂), 149.8 (<u>C</u>O-N), 149.4 (N-<u>C</u>H=C), 96.4 (<u>C</u>-CO), 89.6 (CH-CH₂-O), 88.4 (N-<u>C</u>H-CH₂), 72.9 (<u>C</u>H-O-Si), 63.0 (<u>C</u>H₂-O-Si), 42.6 (<u>C</u>H₂-CH-O), 25.8 (Si-C-<u>C</u>H₃), 25.7 (Si-C-<u>C</u>H₃), 18.3 (Si-<u>C</u>H₃), 18.0 (Si-<u>C</u>H₃), -4.7 (Si-<u>C</u>H₃), -4.9 (Si-<u>C</u>H₃), -5.6 (Si-<u>C</u>H₃), -5.7 (Si-<u>C</u>H₃).

HRMS (ESI+): ber. für C₂₂H₄₂N₃O₆Si₂⁺ $[M + H]^+$: 500.2607, gef.: 500.2603.

Schmelzpunkt: > 210°C (Zersetzung).

IR (ATR): \tilde{v} (cm⁻¹) = 2929 (m, -C-H, -O-H), 2857 (m, -C-H, -O-H), 1733 (m, -C=O), 1691 (m, -C=O, -C-N), 1540 (w, -N-H), 1472 (w, -CH₂, -CH₃), 1419 (w, -CH₂, -CH₃), 1362 (m, -C-N, -CO), 1253 (m, -C-N, -C-O-C), 1078 (m, -C-N, -C-O-C, -Si-OC), 1030 (m, -C-N, -C-O-C, -Si-OC), 832 (s, =C-H, -Si-OC), 805 (s, =C-H, -Si-OC), 775 (s, =C-H, -OSi-C).

O^{3'}, O^{5'}-Bis(tert-butyldimethylsilyl)-5-methyloxycarbonyl-2'-desoxy-3,6-dihydrocytidin

Zu einer Lösung aus $O^{3'}$, $O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-methyloxycarbonyl-2'-desoxycytidin (**93**)³⁷⁵ (50 mg, 97 µmol, 1.0 Äq.) in MeOH (5.0 mL) wurde NaBH₄ (3.6 mg, 95 µmol, 1.0 Äq.) zugegeben, wobei eine Gasentwicklung einsetzte. Nach Rühren bei Raumtemperatur für 20 min, wurde eine gesättigte NH₄Cl-Lösung (33 mL) zugesetzt und mit EtOAc (1 × 33 mL) extrahiert. Die organische Phase wurde mit einer gesättigten NH₄Cl-Lösung (2 × 30 mL) gewaschen, über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt, so dass **97** als farbloser Feststoff erhalten wurde (49 mg, 95 µmol, 98%).

 $R_{f} = 0.45$ (*iso*-Hexan/EtOAc 1:1).

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 9.39$ (s br, 1H, N<u>H</u>), 6.31 (s br, 2H, N<u>H</u>₂), 6.27 (dd, ³*J*_{H,H} = 8.0, 6.2 Hz, 1H, O-C<u>H</u>-N), 4.39 (dt, ³*J*_{H,H} = 6.3, 3.2 Hz, 1H, Si-O-C<u>H</u>), 4.02 (d, ${}^{2}J_{H,H} = 12.5 \text{ Hz}, 1\text{H}, \text{N-C}\underline{\mathbf{H}}_{2}), 3.91 \text{ (d, } {}^{2}J_{H,H} = 12.6 \text{ Hz}, 1\text{H}, \text{N-C}\underline{\mathbf{H}}_{2}), 3.77-3.75 \text{ (m, 1H, C}\underline{\mathbf{H}}_{-}$ CH₂-O-Si), 3.72–3.68 (m, 2H, Si-O-C $\underline{\mathbf{H}}_{2}$), 3.66 (s, 3H, O-C $\underline{\mathbf{H}}_{3}$), 2.13 (ddd, ${}^{2}J_{H,H} = 13.2 \text{ Hz},$ ${}^{3}J_{H,H} = 7.9, 6.3 \text{ Hz}, 1\text{H}, \text{O-CH-C}\underline{\mathbf{H}}_{2}\text{-CH-N}), 1.87 \text{ (ddd, } {}^{2}J_{H,H} = 13.0 \text{ Hz}, {}^{3}J_{H,H} = 6.1, 3.3 \text{ Hz},$ 1H, O-CH-C $\underline{\mathbf{H}}_{2}\text{-CH-N}$), 0.90 (s, 9H, 3 × Si-C-C $\underline{\mathbf{H}}_{3}$), 0.89 (s, 9H, 3 × Si-C-C $\underline{\mathbf{H}}_{3}$), 0.08 (s, 3H, Si-C $\underline{\mathbf{H}}_{3}$), 0.07 (s, 3H, Si-C $\underline{\mathbf{H}}_{3}$), 0.07 (s, 3H, Si-C $\underline{\mathbf{H}}_{3}$), 0.06 (s, 3H, Si-C $\underline{\mathbf{H}}_{3}$).

¹³C-NMR (151 MHz, CDCl₃, ppm): $\delta = 167.8$ (<u>C</u>O-O), 154.6 (<u>C</u>O-N), 151.4 (<u>C</u>-NH₂), 85.9 (<u>C</u>H-CH₂-O), 83.3 (N-<u>C</u>H-CH₂), 71.9 (<u>C</u>H-O-Si), 70.5 (<u>C</u>-CO-OCH₃), 62.8 (<u>C</u>H₂-O-Si), 50.4 (O<u>C</u>H₃), 37.6 (N-<u>C</u>H₂), 36.1 (<u>C</u>H₂-CH-N), 25.9 (Si-C-<u>C</u>H₃), 25.8 (Si-C-<u>C</u>H₃), 18.4 (Si-<u>C</u>H₃), 18.0 (Si-<u>C</u>H₃), -4.7 (Si-<u>C</u>H₃), -4.8 (Si-<u>C</u>H₃), -5.5 (Si-<u>C</u>H₃), -5.6 (Si-<u>C</u>H₃).

HRMS (ESI+): ber. für $C_{23}H_{46}N_3O_6Si_2^+[M+H]^+$: 516.2920, gef.: 516.2915.

Schmelzintervall: 62–64 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3422 (w, -N-H), 3311 (w, -N-H), 2952 (w, -C-H), 2929 (w, -C-H), 2857 (w, -C-H), 1682 (m, -C=O), 1629 (m, -C=C, -N-H), 1554 (m, -N-H), 1462 (m, -CH₂, -CH₃), 1435 (m, -CH₂, -CH₃), 1335 (m, -C-N), 1252 (m, -C-N, -C-O-C), 1098 (s, -C-N, -C-O-C, -Si-OC), 1025 (m, -C-O-C, -Si-OC), 832 (s, -Si-OC), 774 (s, -OSi-C).

O^{3'},O^{5'}-Bis(*tert*-butyldimethylsilyl)-2'-desoxy-5,6-dihydrocytidin (98)

Methode A (Verseifung von 97): Eine Lösung aus $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5methyloxycarbonyl-2'-desoxy-3,6-dihydrocytidin (97) (2.16 g, 4.19 mmol, 1.0 Äq.) und LiOH (1.22 g, 50.9 mmol, 12.2 Äq.) in MeCN (173 mL) und H₂O (52 mL) wurde 2 h bei Raumtemperatur gerührt. Nach Zugabe einer gesättigten NaHCO₃-Lösung (387 mL) und Salzsäure (2 M,221 mL) wurde mit Et₂O extrahiert (3 × 450 mL), die vereinigten organischen Phasen über MgSO₄ getrocknet und das Lösemittel *in vacuo* entfernt. Nach säulenchromatographischer Aufreinigung (DCM/MeOH 50:1 \rightarrow 5:1) wurde 98 als farbloser Feststoff erhalten (0.18 g, 0.40 mmol, 10%).

Methode B (Hydrogenolyse von 94): Zu einer Lösung aus $O^{3'}$, $O^{5'}$ -Bis(*tert*-butyldimethyl-silyl)-5-carboxy-2'-desoxycytidin (94) (30 mg, 60 μ mol, 1.0 Äq.) in MeOH (9.4 mL) wurde

20% iges Pd(OH)₂/C (48 mg, 68 μmol, 1.1 Äq.) zugegeben und 4 h bei Raumtemperatur und 1 bar H₂-Druck gerührt. Nach Filtration und Entfernen des Lösemittels *in vacuo* wurde **98** als farbloser Feststoff erhalten (27 mg, 59 μmol, 98%).

 $R_{f} = 0.15$ (DCM/MeOH 10:1).

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 7.98$ (s, br, 2H, N<u>H</u>₂), 6.35–6.33 (m, 1H, O-C<u>H</u>-N), 4.34–4.31 (m, 1H, Si-O-C<u>H</u>), 3.74 (q,³*J*_{H,H} = 3.3 Hz, 1H, Si-O-CH₂-C<u>H</u>), 3.68 (dd, ³*J*_{H,H} = 3.4, *J* = 1.1 Hz, 2H, C<u>H</u>₂-O), 3.54 (dt, ²*J*_{H,H} = 12.1 Hz, ³*J*_{H,H} = 6.0 Hz, 1H, N-C<u>H</u>₂), 3.18 (ddd, ²*J*_{H,H} = 12.1, ³*J*_{H,H} = 10.0, 4.8 Hz, 1H, N-C<u>H</u>₂), 2.64–2.51 (m, 2H, N-CH₂-C<u>H</u>₂), 1.95–1.92 (m, 2H, O-CH-C<u>H</u>₂-CH-N), 0.89 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.87 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.06 (s, 3H, Si-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃), 0.04 (s, 3H, Si-C<u>H</u>₃).

¹³C-NMR (151 MHz, CDCl₃, ppm): $\delta = 164.6$ (<u>C</u>-NH₂), 156.2 (<u>C</u>O-N), 85.9 (CH-CH₂-O), 83.9 (N-<u>C</u>H-CH₂), 71.9 (<u>C</u>H-O-Si), 62.9 (<u>C</u>H₂-O-Si), 37.4 (<u>C</u>H₂-CH-N), 35.6 (N-<u>C</u>H₂), 28.5 (N-CH₂-<u>C</u>H₂), 25.9 (Si-C-<u>C</u>H₃), 25.8 (Si-C-<u>C</u>H₃), 18.3 (Si-<u>C</u>H₃), 18.0 (Si-<u>C</u>H₃), -4.7 (Si-<u>C</u>H₃), -4.8 (Si-<u>C</u>H₃), -5.4 (Si-<u>C</u>H₃), -5.6 (Si-<u>C</u>H₃).

HRMS (ESI+): ber. für $C_{21}H_{44}N_3O_4Si_2^+[M+H]^+$: 458.2865, gef.: 458.2862.

Schmelzintervall: 179–180 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 2954 (m, -C-H), 2929 (m, -C-H), 2857 (m, -C-H), 1631 (m, -C=O), 1552 (m, -N-H), 1472 (m, -CH₂, -CH₃), 1416 (m, -CH₂, -CH₃), 1298 (m, -C-N, -C-O-C), 1252 (s, -C-N, -C-O-C), 1090 (s, -C-N, -C-O-C, -Si-OC), 1033 (m, -C-N, -C-O-C, -Si-OC), 1005 (m), 831 (s, -Si-OC), 774 (s, -OSi-C).

O^{3'},O^{5'}-Bis(*tert*-butyldimethylsilyl)-2'-desoxycytidin (95)

Methode A (Oxidation von 98): Zu einer Lösung aus $O^{3'}$, $O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-2'desoxy-5,6-dihydrocytidin (98) (50 mg, 0.11 mmol, 1.0 Äq.) in 1,4-Dioxan (3 mL) wurde 2,3-Dichlor-5,6-dicyan-1,4-benzochinon (76 mg, 0.33 mmol, 3.0 Äq.) zugegeben und 25 h bei Raumtemperatur gerührt. Nach Entfernen des Lösemittels *in vacuo* und säulenchromato-

graphischer Aufreinigung (DCM/MeOH 15:1) wurde **95** als farbloser Feststoff erhalten (26 mg, 57 μmol, 52%).

Methode B (Umsetzung von $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-carboxy-2'-desoxycytidin (94) mit Oktanthiol und Imidazol): Zu einer Lösung aus $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-carboxy-2'-desoxycytidin (94) (30 mg, 60 µmol, 1.0 Äq.) in Oktanthiol (0.5 mL) wurde Imidazol (12 mg, 0.18 mmol, 3.0 Äq.) zugegeben und die erhaltene blassgelbe Lösung 20 h bei 50 °C gerührt. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (DCM/MeOH 30:1 \rightarrow 20:1 \rightarrow 5:1) wurde 95 als farbloser Feststoff erhalten (15 mg, 33 µmol, 55%).

Methode C (TBS-Schützung von 2'-Desoxycytidin): Zur Identifikation des Produkts aus Methode A und B wurde 2'-Desoxycytidin als Referenz nach einer kombinierten Synthese von *Ogilvie*³⁸⁵ und *Sekine et al.*³⁸⁶ TBS-geschützt.⁴²⁹ Hierzu wurde zu einer Lösung aus 2'-Desoxycytidin (500 mg, 2.20 mmol, 1.0 Äq.), in DMF (1.8 mL) und Pyridin (2.6 mL) TBS-Cl (996 mg, 6.61 mmol, 3.0 Äq.) und Imidazol (450 mg, 6.61 mmol, 3.0 Äq.) bei 0 °C zugegeben und 21.5 h bei Raumtemperatur gerührt. Nach Zugabe von Eis (9 g) und einer gesättigten NaHCO₃-Lösung (11 mL) wurde mit EtOAc extrahiert (3 × 11 mL) und die vereinigten organischen Phasen mit einer gesättigten NH4Cl-Lösung (28 mL) gewaschen. Nach Trocknung über MgSO₄, Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (DCM/MeOH 50:1 → 20:1) wurde **95** als farbloser Feststoff erhalten (738 mg, 1.62 mmol, 74%).

 $R_{f} = 0.48 \text{ (DCM/MeOH 10:1)}.$

¹**H-NMR** (300 MHz, CDCl₃, ppm): $\delta = 7.96$ (d, ${}^{3}J_{\text{H,H}} = 7.4$ Hz, 1H, N-C<u>H</u>-CH), 6.25 (dd, ${}^{3}J_{\text{H,H}} = 6.3$, 5.2 Hz, 1H, O-C<u>H</u>-N), 5.66 (d, ${}^{3}J_{\text{H,H}} = 7.4$ Hz, 1H, N-CH-C<u>H</u>), 4.39–4.33 (m, 1H, Si-O-C<u>H</u>), 3.93–3.86 (m, 2H, Si-O-C<u>H</u>₂, C<u>H</u>-CH₂-OSi), 3.78–3.73 (m, 1H, Si-O-C<u>H</u>₂), 2.40 (ddd, ${}^{2}J_{\text{H,H}} = 13.3$ Hz, ${}^{3}J_{\text{H,H}} = 6.4$, 5.6 Hz, 1H, N-CH-C<u>H</u>₂), 2.06 (ddd, ${}^{2}J_{\text{H,H}} = 13.4$ Hz, ${}^{3}J_{\text{H,H}} = 6.4$, 5.2 Hz, 1H, N-CH-C<u>H</u>₂), 0.91 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.87 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.10 (s, 3H, Si-C<u>H</u>₃), 0.09 (s, 3H, Si-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃).

¹³C-NMR (75 MHz, CDCl₃, ppm): $\delta = 165.6$ (<u>C</u>-NH₂), 155.8 (<u>C</u>O-N), 141.3 (N-<u>C</u>H-CH), 93.7 (N-CH-<u>C</u>H), 87.3 (CH-CH₂-O), 85.9 (N-<u>C</u>H-CH₂), 70.3 (<u>C</u>H-O-Si), 62.0 (<u>C</u>H₂-O-Si), 42.2 (<u>C</u>H₂-CH-O), 25.9 (Si-C-<u>C</u>H₃), 25.7 (Si-C-<u>C</u>H₃), 18.3 (Si-<u>C</u>H₃), 17.9 (Si-<u>C</u>H₃), -4.6 (Si-<u>C</u>H₃), -4.9 (Si-<u>C</u>H₃), -5.5 (Si-<u>C</u>H₃), -5.5 (Si-<u>C</u>H₃).

HRMS (ESI+): ber. für $C_{21}H_{42}N_3O_4Si_2^+[M+H]^+$: 456.2708, gef.: 456.2713.

Schmelzintervall: 99–102 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 2954 (m, -C-H), 2929 (m, -C-H), 2857 (m, -C-H), 1625 (m, -C=O, -N-H), 1486 (m, Ringschwingung), 1472 (m, -CH₂, -CH₃), 1252 (s, -C-N, -C-O-C), 1112 (s, -C-N, -C-O-C, -Si-OC), 833 (s, =C-H, -Si-OC), 775 (s, =C-H, -OSi-C).

6.9 Mechanismusstudien zur Dehydroxymethylierung und Deformylierung am Nukleosid

O^{3'},*O*^{5'}-Bis(*tert*-butyldimethylsilyl)-5-formyl-2'-desoxy-3,6-dihydrocytidin (103) und *O*^{3'},*O*^{5'}-Bis(*tert*-butyldimethylsilyl)-2'-desoxy-5,6-dihydrouridin

Methode A (Reduktion von TBS-geschütztem fdC mit NaBH4): Zu einer Lösung aus $O^{3'}, O^{5'}$ -(*tert*-Butyldimethylsilyl)-5-formyl-2'-desoxycytidin³⁷⁵ (0.10 g, 0.21 mmol, 1.0 Äq.) in MeOH (6.8 mL) wurde bei 0 °C 98% iges NaBH4 (9.9 mg, 0.26 mmol, 1.2 Äq.) zugegeben, wobei eine Gasentwicklung eintrat. Die Reaktionslösung wurde 23 min bei 0 °C gerührt, währenddessen sich die Lösung langsam schwarz färbte. Nach Zugabe einer gesättigten NH4Cl-Lösung (68 mL), wurde mit EtOAc (2 × 68 mL) extrahiert und die vereinigten organischen Phasen mit einer gesättigten NH4Cl-Lösung (1 × 64 mL) gewaschen. Nach Trocknung der organischen Phase über MgSO4, Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (DCM/MeOH 60:1 \rightarrow 40:1) konnte, neben 49% hmdC, **104** als farbloser Feststoff erhalten (40 mg, 82 µmol, 39%).

Methode B (Reduktion von TBS-geschütztem fdC mit Pd(OH)₂): Eine Suspension von $O^{3'}, O^{5'}$ -(*tert*-Butyldimethylsilyl)-5-formyl-2'-desoxycytidin³⁷⁵ (0.10 g, 0.21 mmol, 1.0 Äq.) und 20% Pd(OH)₂/C (0.17 g, 0.24 mmol, 1.1 Äq.) in MeOH (32 mL) wurde 10.5 h bei Raumtemperatur und 1 bar H₂ gerührt. Nach Filtration, Entfernen des Lösemittels *in vacuo* und säu-

lenchromatographischer Aufreinigung (DCM/MeOH 150:1 \rightarrow 40:1) wurde **103** als farbloser Feststoff erhalten (40 mg, 82 µmol, 39%). Des Weiteren konnte das Edukt (11 mg, 23 µmol, 10%), das deformylierte Produkt **98** (17 mg, 37 µmol, 18%) und das deformylierte und deaminierte Produkt $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-2'-desoxy-5,6-dihydrouridin (7 mg, 15 µmol, 7%) isoliert werden.

Analytik O^{3'}, O^{5'}-Bis(tert-butyldimethylsilyl)-5-formyl-2'-desoxy-3,6-dihydrocytidin

(103):

 $R_{f} = 0.35$ (DCM/MeOH 10:1).

¹**H-NMR** (200 MHz, CDCl₃, ppm): $\delta = 9.46$ (s br, 1H, N<u>H</u>), 8.93 (s, 1H, C<u>H</u>O), 6.27 (dd, ³*J*_{H,H} = 8.2, 6.1 Hz, 1H, O-C<u>H</u>-N), 4.38 (q, ³*J*_{H,H} = 3.0 Hz, 1H, Si-O-C<u>H</u>), 4.18 (d, ²*J*_{H,H} = 12.3 Hz, 1H, NC<u>H</u>₂), 3.93 (d, ²*J*_{H,H} = 12.3 Hz, 1H, NC<u>H</u>₂), 3.83–3.78 (m, 1H, O-CH-C<u>H</u>-CH₂-O), 3.72 (d, *J* = 3.3 Hz, 2H, O-C<u>H₂</u>), 2.19–2.05 (m, 1H, N-CH-C<u>H</u>₂), 1.91 (ddd, ²*J*_{H,H} = 13.1 Hz, ³*J*_{H,H} = 6.1, 3.1 Hz, 1H, N-CH-C<u>H</u>₂), 0.91 (s, 9H, 3 × Si-C-C<u>H₃</u>), 0.89 (s, 9H, 3× Si-C-C<u>H₃</u>), 0.08 (s, 3H, Si-C<u>H₃</u>), 0.08 (s, 3H, Si-C<u>H₃</u>), 0.08 (s, 3H, Si-C<u>H₃</u>), 0.07 (s, 3H, Si-C<u>H₃</u>).

¹³C-NMR (151 MHz, CDCl₃, ppm): δ = 182.8 (<u>C</u>HO), 153.7 (<u>C</u>O-N), 153.6 (<u>C</u>-NH₂), 86.3 (<u>C</u>H-CH₂-O), 84.7 (<u>C</u>-CHO), 83.6 (N-<u>C</u>H-CH₂), 72.0 (<u>C</u>H-O-Si), 63.0 (<u>C</u>H₂-O-Si), 38.0 (N-<u>C</u>H₂), 36.7 (<u>C</u>H₂-CH-N), 25.9 (Si-C-<u>C</u>H₃), 25.8 (Si-C-<u>C</u>H₃), 18.4 (Si-<u>C</u>H₃), 18.0 (Si-<u>C</u>H₃), -4.6 (Si-<u>C</u>H₃), -4.8 (Si-<u>C</u>H₃), -5.3 (Si-<u>C</u>H₃), -5.5 (Si-<u>C</u>H₃).

HRMS (ESI+): ber. für C₂₃H₄₃N₃NaO₅Si₂⁺ $[M + Na]^+$: 508.2633, gef.: 508.2628.

Schmelzpunkt: 182 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3186 (w, -N-H), 2953 (w, -C-H), 2929 (w, -C-H), 2857 (w, -C-H), 1688 (m, -C=O, -C=N), 1655 (m, -C=O, -C=C, -C=N), 1527 (s, -N-H), 1472 (m, -CH₂, -CH₃), 1366 (m, -C-N), 1251 (m, -C-N, -C-O-C), 1067 (s, -C-N, -C-O-C, -Si-OC), 1026 (m, -C-O-C, -Si-OC), 832 (s, -Si-OC), 774 (s, -OSi-C).

Analytik: $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-2'-desoxy-5,6-dihydrouridin:

 $R_{f} = 0.47 (DCM/MeOH 10:1).$

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 7.50$ (s br, 1H, N<u>H</u>), 6.28 (t, ${}^{3}J_{\text{H,H}} = 7.0$ Hz, 1H, O-C<u>H</u>-N), 4.37–4.35 (m, 1H, Si-O-C<u>H</u>), 3.79 (q, ${}^{3}J_{\text{H,H}} = 3.1$ Hz, 1H, Si-O-CH₂-C<u>H</u>), 3.75–3.64 (m, 3H, C<u>H₂-O, 1 × N-C<u>H</u>₂), 3.31 (ddd, ${}^{2}J_{\text{H,H}} = 14.6$ Hz, ${}^{3}J_{\text{H,H}} = 9.6$, 4.9 Hz, 1H, 1 × N-C<u>H</u>₂), 2.68–2.55 (m, 2H, N-CH₂-C<u>H₂</u>), 2.00 (d, ${}^{3}J_{\text{H,H}} = 7.0$ Hz, 1H, N-CH-C<u>H</u>₂), 1.98 (d,</u>

 ${}^{3}J_{\text{H,H}}$ = 7.0 Hz, 1H, N-CH-C<u>H</u>₂), 0.90 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.89 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.07 (s, 3H, Si-C<u>H</u>₃), 0.07 (s, 6H, 2 × Si-C<u>H</u>₃), 0.06 (s, 3H, Si-C<u>H</u>₃).

¹³**C-NMR** (151 MHz, CDCl₃, ppm): $\delta = 169.6$ (<u>C</u>O-CH₂), 152.0 (<u>C</u>O-N), 86.4 (CH-CH₂-O-Si), 83.9 (N-<u>C</u>H-CH₂), 71.9 (<u>C</u>H-O-Si), 62.9 (<u>C</u>H₂-O-Si), 37.7 (<u>C</u>H₂-CH-N), 35.3 (N-<u>C</u>H₂), 31.1 (N-CH₂-<u>C</u>H₂), 25.8 (Si-C-<u>C</u>H₃), 25.8 (Si-C-<u>C</u>H₃), 18.3 (Si-<u>C</u>H₃), 18.0 (Si-<u>C</u>H₃), -4.7 (Si-<u>C</u>H₃), -4.8 (Si-<u>C</u>H₃), -5.5 (Si-<u>C</u>H₃), -5.6 (Si-<u>C</u>H₃).

HRMS (ESI+): ber. für C₂₁H₄₂N₂NaO₅Si₂⁺ $[M + Na]^+$: 481.2524, gef.: 481.2522.

Schmelzintervall: 65–67 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 2954 (m, -C-H), 2929 (m, -C-H), 2857 (m, -C-H), 1699 (m, -C=O), 1629 (m, Ringschwingung, -C=C, -C=N), 1554 (m, -N-H), 1472 (m, -CH₂, -CH₃), 1419 (m, -CH₂, -CH₃), 1252 (m, -C-N, -C-O-C), 1092 (s, -C-N, -C-O-C, -Si-OC), 1032 (m, -C-N, -C-O-C, -Si-OC), 1005 (m), 831 (s, =C-H, -Si-OC), 813 (m, =C-H, -Si-OC), 774 (s, =C-H, -OSi-C).

 $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-hydroxymethyl-2'-desoxy-5,6-dihydrocytidin (104) und $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-hydroxymethyl-2'-desoxy-5,6-dihydrouridin

Eine Suspension von $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-hydroxymethyl-2'-desoxycytidin³⁷⁶ (0.10 g, 0.21 mmol, 1.0 Äq.) und 20% Pd(OH)₂/C (0.17 g, 0.24 mmol, 1.1 Äq.) in MeOH (32 mL) wurde 9 h bei Raumtemperatur und 1 bar H₂ gerührt. Nach Filtration, Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (DCM/MeOH 50:1 \rightarrow 5:1) wurde ein Gemisch der zwei Diastereomere (1.4:1.0) als farbloser Feststoff erhalten (66 mg, 0.14 mmol, 67%). Des Weiteren wurde das Edukt als farbloser Feststoff (5 mg, 0.01 mmol, 5%) isoliert und das Deaminierungsprodukt $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5hydroxymethyl-2'-desoxy-5,6-dihydrouridin (**104**) in Spuren nachgewiesen.

Analytik O^{3'}, O^{5'}-Bis(tert-butyldimethylsilyl)-5-hydroxymethyl-2'-desoxy-5,6-cytidin

(104):

 R_{f} (Diastereomer 1) = 0.11 (DCM/MeOH 10:1).

 R_{f} (Diastereomer 2) = 0.11 (DCM/MeOH 10:1).

¹**H-NMR** (Diastereomer 1, 600 MHz, CDCl₃, ppm): $\delta = 6.34$ (dd, ${}^{3}J_{\text{H,H}} = 8.3$, 6.3 Hz, 1H, N-C<u>H</u>-O), 4.30–4.29 (m, 1H, C<u>H</u>-O-Si), 3.76–3.61 (m, 5H, CH-C<u>H</u>₂-OH, C<u>H</u>-C<u>H</u>₂-O-Si), 3.47 (dd, ${}^{2}J_{\text{H,H}} = 12.3$ Hz, ${}^{3}J_{\text{H,H}} = 2.3$ Hz, 1H, N-C<u>H</u>₂), 3.20 (dd, ${}^{2}J_{\text{H,H}} = 12.4$ Hz, ${}^{3}J_{\text{H,H}} = 4.2$ Hz, 1H, N-C<u>H</u>₂), 2.97–2.93 (m, 1H, C-C<u>H</u>), 1.97–1.86 (m, 2H, C<u>H</u>₂-CH-O), 0.88 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.87 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.06 (s, 3H, Si-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃).

¹**H-NMR** (Diastereomer 2, 600 MHz, CDCl₃, ppm): $\delta = 6.34-6.31$ (m, 1H, N-C<u>H</u>-O), 4.30–4.29 (m, 1H, C<u>H</u>-O-Si), 3.76–3.61 (m, 5H, CH-C<u>H</u>₂-OH, C<u>H</u>-C<u>H</u>₂-O-Si), 3.39–3.36 (m, 1H, N-C<u>H</u>₂), 3.12 (dd, ²*J*_{H,H} = 12.6 Hz, ³*J*_{H,H} = 5.9 Hz, 1H, N-C<u>H</u>₂), 2.90–2.89 (m, 1H, C-C<u>H</u>), 1.97–1.86 (m, 2H, C<u>H</u>₂-CH-O), 0.88 (s, 9H, Si-C-C<u>H</u>₃), 0.87 (s, 9H, Si-C-C<u>H</u>₃), 0.06 (s, 3H, Si-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃).

¹³C-NMR (Diastereomer 1, 151 MHz, CDCl₃, ppm): $\delta = 169.8$ (<u>C</u>-NH₂), 158.4 (<u>C</u>O-N), 86.0 (<u>C</u>H-CH₂-O), 84.0 (N-<u>C</u>H-O), 72.4 (<u>C</u>H-O-Si), 63.3 (<u>C</u>H₂-O-Si), 61.3 (<u>C</u>H₂-OH), 39.1 (<u>C</u>H-CH₂-OH), 37.3 (<u>C</u>H₂-CH-O), 36.9 (<u>C</u>H₂-N), 25.9 (Si-C-<u>C</u>H₃), 25.8 (Si-C-<u>C</u>H₃), 18.3 (Si-<u>C</u>), 18.0 (Si-<u>C</u>), -4.6 (Si-<u>C</u>H₃), -4.8 (Si-<u>C</u>H₃), -5.4 (Si-<u>C</u>H₃), -5.6 (Si-<u>C</u>H₃).

¹³C-NMR (Diastereomer 2, 151 MHz, CDCl₃, ppm): $\delta = 169.4$ (<u>C</u>-NH₂), 158.1 (<u>C</u>O-N), 86.0 (<u>C</u>H-CH₂-O), 84.0 (N-<u>C</u>H-O), 72.1 (<u>C</u>H-O-Si), 63.2 (<u>C</u>H₂-O-Si), 60.8 (<u>C</u>H₂-OH), 38.8 (<u>C</u>H-CH₂-OH), 37.6 (<u>C</u>H₂-CH-O), 37.0 (<u>C</u>H₂-N), 25.9 (Si-C-<u>C</u>H₃), 25.8 (Si-C-<u>C</u>H₃), 18.4 (Si-<u>C</u>), 18.0 (Si-<u>C</u>), -4.6 (Si-<u>C</u>H₃), -4.8 (Si-<u>C</u>H₃), -5.3 (Si-<u>C</u>H₃), -5.5 (Si-<u>C</u>H₃).

HRMS (ESI+): ber. für $C_{22}H_{46}N_3O_5Si_2^+[M+H]^+$: 488.2971, gef.: 488.2966.

Schmelzintervall (Diastereomer 1/Diastereomer 2 = 1.0:1.4): 83–85 °C.

IR (Diastereomer 1/Diastereomer 2 = 1.0:1.4, ATR): \tilde{v} (cm⁻¹) = 3199 (w br, -N-H, -O-H), 2952 (m, -C-H), 2927 (m, -C-H), 2856 (m, -C-H), 1695 (m, -C=O, -C=N), 1621 (m, -C=O, -N-H), 1557 (m, -N-H), 1471 (m, -CH₂, -CH₃), 1462 (m, -CH₂, -CH₃), 1422 (m, -CH₂, -CH₃), 1252 (s, -C-N, -C-O-C), 1083 (s, -C-N, -C-O-C, -Si-OC), 1024 (m, -C-N, -C-O-C, -Si-OC), 831 (s, -Si-OC), 774 (s, -OSi-C).

Analytik O^{3'}, O^{5'}-Bis(*tert*-butyldimethylsilyl)-5-hydroxymethyl-2'-desoxy-5,6-dihydro-

uridin:

 R_f (Diastereomer 1) = 0.34 (DCM/MeOH 10:1).

 R_f (Diastereomer 2) = 0.34 (DCM/MeOH 10:1).

¹**H-NMR** (Diastereomer 1/Diastereomer 2 = 1:1, 600 MHz, CDCl₃, ppm): δ = 7.78 (s, 1H, N<u>H</u>), 7.69 (s, 1H, N<u>H</u>), 6.33 (dd, ³*J*_{H,H} = 8.7, 6.1 Hz, 1H, N-C<u>H</u>-O), 6.26 (dd, ³*J*_{H,H} = 8.4, 6.0 Hz, 1H, N-C<u>H</u>-O), 4.34–4.32 (m, 2H, 2 × C<u>H</u>-O-Si), 4.01–3.98 (m, 1H, C<u>H</u>₂-OH), 3.87–3.66 (m, 11H, 1 × C<u>H</u>₂-OH, 1 × N-C<u>H</u>₂, C<u>H</u>-C<u>H</u>₂-O-Si, 1 × N-C<u>H</u>₂, C<u>H</u>₂-OH, C<u>H</u>-C<u>H</u>₂-O-Si), 3.38 (d, ²*J*_{H,H} = 13.1 Hz, ³*J*_{H,H} = 5.0 Hz, 1H, N-C<u>H</u>₂), 3.27 (t, ²*J*_{H,H} = 12.1 Hz, ³*J*_{H,H} = 12.1 Hz, 1H, N-C<u>H</u>₂), 3.11 (t br, ³*J*_{H,H} = 6.7 Hz, 1H, O<u>H</u>), 2.81–2.77 (m, 1H, CO-C<u>H</u>), 2.74–2.70 (m, 1H, CO-C<u>H</u>), 2.53 (s br, 1H, O<u>H</u>), 2.02–1.91 (m, 4H, 2 × C<u>H</u>₂-CH-N), 0.89 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.89 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.88 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.87 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃).

¹³C-NMR (Diastereomer 1/Diastereomer 2 = 1:1, 151 MHz, CDCl₃, ppm): δ = 171.7 (<u>C</u>O-C), 171.2 (<u>C</u>O-C), 152.0 (<u>C</u>O-N), 151.4 (<u>C</u>O-N), 86.5 (<u>C</u>H-CH₂-O), 86.4 (<u>C</u>H-CH₂-O), 84.1 (N-<u>C</u>H-O), 84.0 (N-<u>C</u>H-O), 72.4 (<u>C</u>H-O-Si), 72.2 (<u>C</u>H-O-Si), 63.2 (<u>C</u>H₂-O-Si), 63.0 (<u>C</u>H₂-O-Si), 60.1 (<u>C</u>H₂-OH), 59.6 (<u>C</u>H₂-OH), 43.3 (<u>C</u>H-CH₂-OH), 42.5 (<u>C</u>H-CH₂-OH), 37.7 (<u>C</u>H₂-CH-N oder <u>C</u>H₂-N), 37.2 (<u>C</u>H₂-CH-N oder <u>C</u>H₂-N), 37.2 (<u>C</u>H₂-CH-N oder <u>C</u>H₂-N), 25.9 (Si-C-<u>C</u>H₃), 25.9 (Si-C-<u>C</u>H₃), 25.8 (Si-C-<u>C</u>H₃), 25.7 (Si-C-<u>C</u>H₃), 18.4 (Si-<u>C</u>), 18.4 (Si-<u>C</u>), 18.0 (Si-<u>C</u>), 18.0 (Si-<u>C</u>), 18.0 (Si-<u>C</u>H₃), -5.5 (Si-<u>C</u>H₃), -5.6 (Si-<u>C</u>H₃).

HRMS (ESI+): ber. für C₂₂H₄₄N₂NaO₆Si₂⁺[*M*+Na]⁺: 511.2630, gef.: 511.2625.

IR (Diastereomer 1/Diastereomer 2 = 1:1, ATR): \tilde{v} (cm⁻¹) = 3422 (w br, -N-H, -O-H), 3220 (w br, -N-H, -O-H), 3083 (w br), 2952 (m, -C-H), 2927 (m, -C-H), 2856 (m, -C-H), 1697 (m, -C=O, -C=N), 1472 (m, -CH₂, -CH₃), 1442 (m, -CH₂, -CH₃), 1251 (s, -C-N, -C-O-C), 1081 (s, -C-N, -C-O-C, -Si-OC), 1025 (m, -C-N, -C-O-C, -Si-OC), 831 (s, -Si-OC), 813 (m, -Si-OC), 774 (s, -OSi-C).

5-[Bis-(β-hydroxyethylsulfanyl)methyl]-2'-desoxycytidin (105)

Eine Lösung aus $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-formyl-2'-desoxycytidin³⁷⁵ (50 mg, 0.10 mmol, 1.0 Äq.), Triethylorthoformiat (0.16 mL, 0.96 mmol, 9.6 Äq.) und Tetrabutylammoniumtribromid (41 mg, 85 µmol, 0.9 Äq.) in 2-Mercaptoethanol (0.25 mL, 3.6 mmol, 35.6 Äq.) wurde 4.5 h bei Raumtemperatur gerührt. Die blassgelbe Reaktionslösung wurde mit einer gesättigten NaHSO₄-Lösung (1 mL) auf pH 7.5 eingestellt und mit EtOAc (2 × 10 mL) extrahiert. Nach säulenchromatographischer Aufreinigung (DCM/MeOH 70:1 → 7 N NH₃ in MeOH) und Umkehrphasen-HPLC (0% → 15% MeCN in 45 min, Fluss 15 mL) wurde **105** als farbloser Feststoff erhalten (18 mg, 46 µmol, 46%).

 $R_{f} = 0.45$ (DCM/7 N NH₃ in MeOH 5:1).

 $R_f = 40.1 \text{ min } (0\% \rightarrow 15\% \text{ MeCN in } 45 \text{ min, Fluss } 15 \text{ mL/min}).$

¹**H-NMR** (600 MHz, CD₃OD, ppm): $\delta = 8.39$ (d, J = 0.6 Hz, 1H, N-C<u>H</u>=C), 6.28 (t, ³*J*_{H,H} = 6.4 Hz, 1H, N-C<u>H</u>-O), 5.19 (d, J = 0.5 Hz, 1H, C<u>H</u>-S), 4.38 (dt, ³*J*_{H,H} = 6.2, 3.6 Hz, 1H, C<u>H</u>-O), 3.97 (q, ³*J*_{H,H} = 3.7 Hz, 1H, C<u>H</u>-CH₂-O), 3.83–3.69 (m, 6H, CH-C<u>H₂-O), 2 × C<u>H</u>₂-OH), 2.84–2.78 (m, 2H, 2 × S-C<u>H</u>₂), 2.70–2.65 (m, 2H, 2 × S-C<u>H</u>₂), 2.41 (ddd, ²*J*_{H,H} = 13.6 Hz, ³*J*_{H,H} = 6.2, 3.9 Hz, 1H, C<u>H</u>₂-CH-O), 2.19–2.14 (m, 1H, C<u>H</u>₂-CH-O).</u>

¹³C-NMR (101 MHz, CD₃OD, ppm): $\delta = 165.1$ (<u>C</u>-NH₂), 157.6 (<u>C</u>O-N), 142.3 (N-<u>C</u>H-C), 106.5 (<u>C</u>-CH-S), 89.1 (<u>C</u>H-CH₂-O), 88.0 (N-<u>C</u>H-O), 72.3 (<u>C</u>H-O), 63.0 (<u>C</u>H₂), 62.8 (<u>C</u>H₂), 62.8 (<u>C</u>H₂), 48.4 (<u>C</u>H-S), 42.3 (<u>C</u>H₂-CH-N), 35.9 (S-<u>C</u>H₂), 35.8 (S-<u>C</u>H₂).

HRMS (ESI–): ber. für $C_{14}H_{22}N_3O_6S_2^{-}[M-H]^{-}$: 392.0956, gef.: 392.0959.

Schmelzpunkt: >300 °C (Zersetzung).

IR (ATR): \tilde{v} (cm⁻¹) = 3286 (w, -N-H, -O-H), 1650 (m, -C=O, -N-H, -C=N), 1479 (m, Ringschwingung), 1067 (s, -C-O-C, -N-H), 958 (m), 790 (m, =C-H).

6.10 Synthese des [¹⁵N₂]-cadC-Triphosphats 107

5-Methyloxycarbonyl-2'-desoxy(N¹,N³⁻¹⁵N₂)cytidin (108)

Zu einer Lösung aus $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-methyloxycarbonyl-2'-desoxy(N^1, N^3 -¹⁵N₂)cytidin (**84**) (0.10 g, 0.19 mmol, 1.0 Äq.) in EtOAc (6.3 mL) und Pyridin (80 µL, 1.0 mmol, 5.3 Äq.) wurde 70%iges HF-Pyridin (80 µL, 0.89 mmol, 4.7 Äq.) zugegeben und 22 h bei Raumtemperatur gerührt. Nach erneuter Zugabe von 70%iges HF-Pyridin (50 µL, 0.55 mmol, 2.9 Äq.) und Pyridin (50 µL, 0.62 mmol, 3.2 Äq.) wurde für weitere 20 h bei Raumtemperatur gerührt. Nach Zugabe von Methoxytrimethylsilan (1.55 mL, 11.2 mmol, 58.0 Äq.) wurde 30 min bei Raumtemperatur gerührt, der farblose Niederschlag durch Zentrifugation abgetrennt und mittels Umkehrphasen-HPLC (0% \rightarrow 70% MeCN in H₂O in 45 min) aufgereinigt, so dass **108** als farbloses Pulver erhalten wurde (17.8 mg, 61.5 µmol, 32%).

 $R_{f} = 0.45 \text{ (DCM/MeOH 5:1)}.$

 $R_f = 23.7 \text{ min} (0\% \rightarrow 70\% \text{ MeCN in 45 min, Fluss 15 mL/min}).$

¹**H-NMR** (200 MHz, D₂O, ppm): $\delta = 8.96$ (s, 1H, N-C<u>H</u>=C), 6.16 (t, ³*J*_{H,H}= 5.8 Hz, 1H, N-C<u>H</u>-O), 4.45–4.36 (m, 1H, C<u>H</u>-OH), 4.08–4.02 (m, 1H, C<u>H</u>-CH₂-OH), 3.94–3.71 (m, 2H, C<u>H</u>₂-OH), 3.83 (s, 3H, O-C<u>H</u>₃), 2.58–2.43 (m, 1H, O-CH-C<u>H</u>₂), 2.41–2.26 (m, 1H, O-CH-C<u>H</u>₂).

¹³C-NMR (101 MHz, D₂O, ppm): $\delta = 166.0$ (d, ${}^{3}J_{C,N} = 1.6$ Hz, O-<u>C</u>O), 163.5 (dd, ${}^{1}J_{C,N} = 6.2$ Hz, ${}^{3}J_{H,H} = 1.4$ Hz, <u>C</u>-NH₂), 155.8 (dd, ${}^{1}J_{C,N} = 11.8$, 8.3 Hz, <u>C</u>O-N), 148.8 (d, ${}^{1}J_{C,N} = 14.0$ Hz, <u>C</u>H=C), 96.8 (d, ${}^{2}J_{C,N} = 1.0$ Hz, <u>C</u>-CO), 86.9 (d, ${}^{1}J_{C,N} = 9.7$ Hz, N-<u>C</u>H-CH₂), 86.7 (<u>C</u>H-CH₂-O), 69.2 (<u>C</u>H-OH), 60.1 (<u>C</u>H₂-OH), 52.3 (O<u>C</u>H₃), 39.9 (O-<u>C</u>H-CH₂).

¹⁵N-NMR (40 MHz, D₂O, ppm): $\delta = -179.7, -212.1$.

HRMS (ESI+): ber. für $C_{11}H_{16}N^{15}N_2O_6^+[M+H]^+$: 288.0974, gef.: 288.0977.

Schmelzintervall: 169–171 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3346 (w, -N-H, -O-H), 2546 (w), 1713 (m, -C=O), 1635 (s, -C=C, -C=N, -N-H), 1480 (m, Ringschwingung), 1321 (s, -C-O-C, -N-H), 1241 (m, -C-O-C, -N-H), 1097 (s, -C-O-C, -N-H), 1063 (s, -C-O-C, -N-H), 787 (s).

5-Carboxy-2'-desoxy(N^1 , N^3 -¹⁵N₂)cytidin (109)

Eine Lösung aus 5-Methyloxycarbonyl-2'-desoxy(N^1 , N^3 - $^{15}N_2$)cytidin (**108**) (25 mg, 86 µmol, 1.0 Äq.) und LiOH (25 mg, 1.0 mmol, 12.0 Äq.) in MeCN (7.0 mL) und H₂O (1.3 mL) wurde 1 d bei Raumtemperatur gerührt. Nach Zugabe von 2 M Salzsäure (0.5 mL) auf pH 4.0 wurde der farblose Niederschlag durch Zentrifugation isoliert, so dass **109** als farbloses Pulver erhalten wurde (11 mg, 40 µmol, 47%).

¹**H-NMR** (400 MHz, D₂O, ppm): $\delta = 8.79$ (s, 1H, N-C<u>H</u>=C), 6.29 (dt, ${}^{3}J_{\text{H,H}} = 6.5$ Hz, ${}^{2}J_{\text{H,N}} = 1.3$ Hz, 1H, N-C<u>H</u>-O), 4.53–4.49 (m, 1H, C<u>H</u>-OH), 4.17–4.14 (m, 1H, C<u>H</u>-CH₂-O), 3.92 (dd, ${}^{2}J_{\text{H,H}} = 12.4$ Hz, ${}^{3}J_{\text{H,H}} = 3.5$ Hz, 1H, C<u>H₂-O), 3.83 (dd, ${}^{2}J_{\text{H,H}} = 12.5$ Hz, ${}^{3}J_{\text{H,H}} = 5.3$ Hz, 1H, C<u>H</u>₂-O), 2.59–2.53 (m, 1H, N-CH-C<u>H</u>₂), 2.46–2.38 (m, 1H, N-CH-C<u>H</u>₂).</u>

¹³**C-NMR** (101 MHz, D₂O, ppm): $\delta = 168.0$ (<u>C</u>O-O), 159.8 (d, ¹*J*_{C,N} = 13.3 Hz, <u>C</u>-NH₂), 150.0 (N-<u>C</u>O), 148.0 (d, ¹*J*_{C,N} = 13.1 Hz, <u>C</u>H=C), 101.3 (<u>C</u>-CO), 87.2 (<u>C</u>H-CH₂-O), 86.9 (d, ¹*J*_{C,N} = 10.2 Hz, N-<u>C</u>H-CH₂), 70.1 (<u>C</u>H-OH), 60.8 (<u>C</u>H₂-OH), 39.5 (O-<u>C</u>H-CH₂).

Das Aufspaltungsmuster des N-<u>C</u>=O-Kohlenstoffs war, aufgrund der geringen Intensität des Signals, nicht ermittelbar.

¹⁵N-NMR (41 MHz, [D₆]-DMSO, ppm): $\delta = -171.6, -212.1$.

HRMS (ESI+): ber. für $C_{10}H_{14}N^{15}N_2O_6^+[M+H]^+$: 274.0818, gef.: 274.0818.

Schmelzpunkt: >250 °C (Zersetzung).

IR (ATR): \tilde{v} (cm⁻¹) = 3402 (m, -N-H, -O-H), 3274 (br m, -N-H, -O-H), 1661 (s, -C=O, -C=N), 1627 (m, -N-H), 1448 (m, -CH₂), 1291 (m, -C-N, -C-O-C), 1202 (m, -C-N, -C-O-C), 1093 (s, -C-N, -C-O-C), 1003 (s), 816 (m, =C-H).

$\label{eq:solution} 5-Carboxy-2'-desoxy (N^1, N^3-{}^{15}\mathrm{N}_2) cytidin-5'-triphosphat (als Tetrakis (triethylammonium-triphosphat)) and the solution of th$

Eine Lösung aus Bis(tributylammonium)pyrophosphat (43 mg, 78 µmol, 2.0 Äq.) in DMF (0.15 mL) und Triethylamin (0.20 mL) wurde zu 2-Chlor-1,3,2-benzodioxaphosphorin-4-on (16 mg, 78 µmol, 2.0 Äq.) in DMF (0.11 mL) gegeben und 30 min bei Raumtemperatur gerührt. Hiernach wurde 5-Carboxy-2'-desoxy(N^1 , N^3 - $^{15}N_2$)cytidin (109) (11 mg, 39 µmol, 1.0 Äq.) zugegeben und weitere 20 h bei Raumtemperatur gerührt. Nach Zugabe von Iod (35 mg, 0.15 mmol, 3.6 Äq.) in Pyridin (1.08 mL) und H₂O (0.12 mL) wurde weitere 2 h bei Raumtemperatur gerührt und durch Zugabe einer 3 M NaOAc-Lösung (0.65 mL) und EtOH (12 mL) das Produkt 1 h bei -80 °C gefällt. Nach Aufreinigung mittels Umkehrphasen-HPLC (0% \rightarrow 6% Puffer B in 45 min, Fluss 5 mL/min) wurde der farblose Feststoff 107 als Tetrakis(triethylammonium)-Salz erhalten (2.3 mg, 2.5 µmol, 7%).

 $R_{\rm f} = 17.1 \text{ min } (0\% \rightarrow 5\% \text{ Puffer B in 45 min, Fluss 5 mL/min}).$

¹**H-NMR** (400 MHz, D₂O, ppm): $\delta = 8.44$ (t, ²*J*_{H,N} = 1.3 Hz, 1H, N-C<u>H</u>=C), 6.29 (t, ³*J*_{H,N} = 6.7 Hz, 1H, N-C<u>H</u>-O), 4.65–4.61 (m, 1H, C<u>H</u>-OH), 4.29–4.20 (m, 3H, C<u>H</u>-C<u>H₂</u>-O), 3.23 (q, ³*J*_{H,H} = 7.3 Hz, 24H, 12 × N-C<u>H₂</u>), 2.51–2.36 (m, 2H, N-CH-C<u>H</u>₂), 1.31 (t, ³*J*_{H,H} = 7.3 Hz, 36H, 12× C<u>H₃</u>).

³¹**P-NMR** (162 MHz, D₂O, ppm): $\delta = -11.4$ (d, ${}^{2}J_{P,P} = 19.9$ Hz), -12.3 (d, ${}^{2}J_{P,P} = 19.8$ Hz), -23.4 (t, ${}^{2}J_{P,P} = 19.8$ Hz, P_β).

HRMS (ESI+): ber. für C₁₀H₁₅N¹⁵N₂O₁₅P₃⁺ $[M + H]^+$: 511.9662, gef.: 511.9661.

Aufgrund der geringen isolierten Mengen, die jedoch für eine Vielzahl von PCR-Ansätzen ausreichte, und der Hydrolyselabilität des Triphosphat-Rests wurde auf eine Messung des Schmelzpunkts, sowie der ¹³C-NMR-, ¹⁵N-NMR und IR-Spektren verzichtet. Eine weitere Charakterisierung erfolgte durch den enzymatischen Einbau von **107** mittels PCR und der Analyse der erhaltenen DNA-Stränge.

6.11 Synthese des carbamat-geschützten [¹⁵N₂, D₂]-hmdC-Triphosphats 110

 $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-deuteroformyl-2'-desoxy($N^1, N^{3-15}N_2$)cytidin (111)

 $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-iod-2'-desoxy($N^1, N^{3-15}N_2$)cytidin (83) (0.20 g, 0.34 mmol, 1.0 Äq.), Pd₂(dba)₃·CHCl₃ (56 mg, 54 µmol, 0.2 Äq.) und Triphenylphosphin (85 mg, 0.32 mmol, 0.9 Äq.) wurden in [D₈]-Toluol (8.7 mL) gelöst und die Suspension bei 60 °C und 3.5 bar CO-Druck gerührt. Hierzu wurde eine Lösung aus Tributylzinndeuterid (0.18 mL, 0.68 mmol, 2.0 Äq.) in [D₈]-Toluol (0.82 mL) mit 0.1 mL/h zugetropft und nach beendeter Zugabe weitere 14 h bei 60 °C und 3.5 bar CO gerührt. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (*iso*-Hexan/EtOAc 1:1) wurde 111 als oranger Feststoff erhalten (0.11 g, 0.22 mmol, 64%).

 $R_{f} = 0.34$ (*iso*-Hexan/EtOAc 1:1).

¹**H-NMR** (300 MHz, CDCl₃, ppm): $\delta = 8.54$ (s, 1H, N-C<u>H</u>=C), 8.18 (s br, 1H, N<u>H</u>₂), 6.40 (s br, 1H, N<u>H</u>₂), 6.21 (dt, ³*J*_{H,H} = 6.2 Hz, ²*J*_{H,N} = 0.9 Hz, 1H, N-C<u>H</u>-O), 4.36–4.34 (m, 1H, C<u>H</u>-O-Si), 4.04 (dd, ³*J*_{H,H} = 5.9 Hz, ³*J*_{H,H} = 2.6 Hz, 1H, C<u>H</u>-CH₂-O), 3.95 (dd, ²*J*_{H,H} = 11.6 Hz, ³*J*_{H,H} = 2.6 Hz, 1H, C<u>H</u>₂-O-Si), 3.78 (dd, ²*J*_{H,H} = 11.6 Hz, ³*J*_{H,H} = 2.5 Hz, 1H, C<u>H</u>₂-O-Si), 2.64–2.59 (m, 1H, N-CH-C<u>H</u>₂), 2.07 (dt, ³*J*_{H,H} = 6.2 Hz, ³*J*_{H,H} = 2.6 Hz, 1H, N-CH-C<u>H</u>₂), 0.90 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.89 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.10 (s, 3H, Si-C<u>H</u>₃), 0.09 (s, 3H, Si-C<u>H</u>₃), 0.06 (s, 3H, Si-C<u>H</u>₃).

¹³C-NMR (151 MHz, CDCl₃, ppm): δ =186.8 (t, ¹*J*_{C,D} = 26.6 Hz, <u>C</u>OD), 162.7 (d, ¹*J*_{C,N} = 5.9 Hz, <u>C</u>-NH₂), 153.3 (dd, ¹*J*_{C,N} = 9.4, 7.2 Hz, <u>C</u>O-N), 153.0 (d, ¹*J*_{C,N} = 14.1 Hz, <u>C</u>H=C), 104.8 (<u>C</u>=CO), 88.6 (O-<u>C</u>H-CH₂-O), 87.7 (d, ¹*J*_{C,N} = 9.5 Hz, N-<u>C</u>H-O), 71.5 (<u>C</u>H-O-Si), 62.6 (<u>C</u>H₂-O-Si), 42.9 (N-CH-<u>C</u>H₂), 25.9 (Si-C-<u>C</u>H₃), 25.7 (Si-C-<u>C</u>H₃), 18.4 (Si-<u>C</u>), 18.0 (Si-<u>C</u>), -4.5 (Si-<u>C</u>H₃), -4.9 (Si-<u>C</u>H₃), -5.3 (Si-<u>C</u>H₃), -5.3 (Si-<u>C</u>H₃).

¹⁵N-NMR (40 MHz, CDCl₃, ppm): $\delta = -172.7, -207.3$.

HRMS (ESI+): ber. für $C_{22}H_{41}DN^{15}N_2O_5Si_2^+[M+H]^+$: 487.2660, gef.: 487.2661.

Schmelzintervall: 137–139 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3366 (w, -N-H), 2954 (m, -C-H), 2927 (m, -C-H, -CH₂), 2857 (m, -C-H, -CH₂), 1639 (s, -C=O, -C=C, -N-H, -C=N), 1504 (m, Ringschwingung), 1471 (m, -CH₂, -CH₃), 1462 (m, -CH₂), 1251 (m, -C-N, -C-O-C), 1084 (s, -C-N, -C-O-C, -Si-OC), 829 (s, =C-H), 775 (s, =C-H, -OSi-C).

$O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-dideuterohydroxymethyl-2'-desoxy($N^1, N^{3-15}N_2$)cytidin (112)

Zu einer Lösung aus $O^{3'}$, $O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-deuteroformyl-2'-desoxy(N^1 , $N^{3-15}N_2$)cytidin (**111**) (77 mg, 0.16 mmol, 1.0 Äq.) in CD₃OD (5.3 mL) wurde Natriumbordeuterid (7.5 mg, 0.18 mmol, 1.1 Äq.) und Cer(III)-chlorid (0.12 g, 0.49 mmol, 3.0 Äq.) zugegeben. Nachdem 35-minütigem Rühren der orangen Reaktionslösung bei Raumtemperatur, wurde die Reaktion durch Zugabe einer gesättigten NH₄Cl-Lösung (53 mL) beendet. Nach Extraktion mit EtOAc (2 × 53 mL) wurde die organische Phase mit einer gesättigten NH₄Cl-Lösung (2 × 53 mL) gewaschen, über Magnesiumsulfat getrocknet und das Lösemitteln *in vacuo* entfernt. Nach säulenchromatographischer Aufreinigung (DCM/MeOH 20:1) wurde **112** als farbloser Feststoff erhalten (31 mg, 63 µmol, 40%).

 $R_{\rm f} = 0.12$ (DCM/MeOH 20:1).

¹**H-NMR** (600 MHz, CDCl₃, ppm): $\delta = 7.59$ (d, ²*J*_{H,N}=1.1 Hz, 1H, N-C<u>H</u>=C), 6.12 (t, ³*J*_{H,H} = 6.4 Hz, 1H, N-C<u>H</u>-O), 4.30 (dd, *J* = 6.6 Hz, ³*J*_{H,H} = 3.5 Hz, 1H, C<u>H</u>-O-Si), 3.91 (q, ³*J*_{H,H} = 3.1 Hz, 1H, C<u>H</u>-CH₂-O), 3.82 (dd, ²*J*_{H,H} = 11.2 Hz, ³*J*_{H,H} = 3.2 Hz, 1H, C<u>H</u>₂-O-Si), 3.72 (dd, ²*J*_{H,H} = 11.2 Hz, ³*J*_{H,H} = 3.0 Hz, 1H, C<u>H</u>₂-O-Si), 2.40–2.36 (m, 1H, N-CH-C<u>H</u>₂), 1.96–1.91 (m, 1H, N-CH-C<u>H</u>₂), 0.89 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.87 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.08 (s, 3H, Si-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃), 0.05 (s, 3H, Si-C<u>H</u>₃).

¹³C-NMR (151 MHz, CDCl₃, ppm): $\delta = 165.3$ (d, ${}^{1}J_{C,N} = 0.7$ Hz, <u>C</u>-NH₂), 156.3 (dd, ${}^{1}J_{C,N} = 12.6$, 8.1 Hz, <u>C</u>O-N), 138.5 (d, ${}^{1}J_{C,N} = 13.2$ Hz, <u>C</u>H=C), 105.9 (d, ${}^{2}J_{C,N} = 0.7$ Hz, <u>C</u>-

CD₂), 87.8 (O-<u>C</u>H-CH₂-O), 86.2 (d, ${}^{1}J_{C,N}$ = 11.2 Hz, N-<u>C</u>H-O), 71.7 (<u>C</u>H-O-Si), 62.7 (<u>C</u>H₂-O-Si), 58.8 (s br, <u>C</u>D₂), 42.2 (N-CH-<u>C</u>H₂), 25.9 (Si-C-<u>C</u>H₃), 25.8 (Si-C-<u>C</u>H₃), 18.4 (Si-<u>C</u>), 18.0 (Si-<u>C</u>), -4.6 (Si-<u>C</u>H₃), -4.9 (Si-<u>C</u>H₃), -5.3 (Si-<u>C</u>H₃), -5.4 (Si-<u>C</u>H₃).

¹⁵N-NMR (40 MHz, CDCl₃, ppm): $\delta = -173.6, -223.3$.

HRMS (ESI+): ber. für $C_{22}H_{42}D_2N^{15}N_2O_5Si_2^+[M+H]^+$: 490.2880, gef.: 490.2878.

Schmelzintervall: 95–97 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 3202 (w, -N-H), 2928 (w, -C-H), 2856 (w, -C-H), 1657 (m, -C=O, -C=C, -N-H, -C=N), 1604 (m, Ringschwingung), 1471 (m, -CH₂, -CH₃), 1253 (m, -C-N), 1075 (m, -C-O-C, -Si-OC), 1029 (m, -C-O-C, -Si-OC), 832 (s, =C-H), 775 (s, =C-H, -OSi-C).

$O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-4,5-{6''-dideutero(1'',3''-[3''H,6''D]oxazin-2-on)}-2'desoxy($N^1, N^3-^{15}N_2$)cytidin (113)

Zu einer Lösung aus $O^{3'}, O^{5'}$ -Bis(*tert*-butyldimethylsilyl)-5-dideuterohydroxymethyl-2'-desoxy(N^1, N^3 -¹⁵N₂)cytidin (**112**) (23 mg, 47 µmol, 1.0 Äq.) in THF (9.3 mL) wurden 4-Nitrophenylchlorformiat (11 mg, 56 µmol, 1.1 Äq.) und DIPEA (17 µL, 0.11 mmol, 2.4 Äq.) zugegeben und die erhaltene Reaktionslösung 17 h bei Raumtemperatur gerührt. Nach erneuter Zugabe von 4-Nitrophenylchlorformiat (2.1 mg, 10 µmol, 0.2 Äq.) und DIPEA (3 µL, 0.02 mmol, 0.4 Äq.) wurde weitere 4 h gerührt. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (DCM/MeOH 100:1 → 80:1) wurde **113** als farbloser Feststoff erhalten (18 mg, 35 µmol, 74%).

 $R_{f} = 0.51 (DCM/MeOH 10:1).$

¹**H-NMR** (200 MHz, CDCl₃, ppm): $\delta = 8.16$ (s, 1H, N-C<u>H</u>=C), 6.20 (t, ${}^{3}J_{\text{H,H}} = 5.9$ Hz, 1H, N-C<u>H</u>-O), 4.35–4.29 (m, 1H, C<u>H</u>-O-Si), 3.99–3.89 (m, 2H, C<u>H</u>-CH₂-O, C<u>H</u>₂-O-Si), 3.75 (dd, ${}^{2}J_{\text{H,H}} = 11.3$ Hz, J = 1.7 Hz, 1H, C<u>H</u>₂-O-Si), 2.61–2.48 (m, 1H, N-CH-C<u>H</u>₂), 2.10–1.96 (m, 1H, N-CH-C<u>H</u>₂), 0.89 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.86 (s, 9H, 3 × Si-C-C<u>H</u>₃), 0.09 (s, 3H, Si-

CH₃), 0.08 (s, 3H, Si-CH₃), 0.05 (s, 3H, Si-CH₃), 0.04 (s, 3H, Si-CH₃).

¹³**C-NMR** (100 MHz, CDCl₃, ppm): $\delta = 159.7$ (d, ¹*J*_{C,N} = 6.9 Hz, <u>C</u>-NH), 154.6 (dd, ¹*J*_{C,N} = 11.9, 6.2 Hz, N-<u>C</u>O), 149.9 (d, ³*J*_{C,N} = 2.8 Hz, O-<u>C</u>O), 138.7 (d, ¹*J*_{C,N} = 13.6 Hz, <u>C</u>H=C), 96.1 (<u>C</u>-CD₂), 88.5 (O-<u>C</u>H-CH₂-O), 87.7 (d, ¹*J*_{C,N} = 9.8 Hz, N-<u>C</u>H-O), 71.4 (<u>C</u>H-O-Si), 64.5 (qi, ¹*J*_{C,D} = 23.3 Hz, <u>C</u>D₂), 62.6 (<u>C</u>H₂-O-Si), 42.8 (N-CH-<u>C</u>H₂), 26.1 (Si-C-<u>C</u>H₃), 25.9 (Si-C-<u>C</u>H₃), 18.6 (Si-<u>C</u>), 18.3 (Si-<u>C</u>), -4.3 (Si-<u>C</u>H₃), -4.7 (Si-<u>C</u>H₃), -5.1 (Si-<u>C</u>H₃),

-5.2 (Si-<u>C</u>H₃).

¹⁵N-NMR (40 MHz, CDCl₃, ppm): $\delta = -152.7, -210.2$.

HRMS (ESI+): ber. für C₂₃H₄₀D₂N¹⁵N₂O₆Si₂⁺ $[M + H]^+$: 516.2671, gef.: 516.2668.

Schmelzintervall: 92–94 °C.

IR (ATR): \tilde{v} (cm⁻¹) = 2952 (w, -CH, -CH₂, -CH₃), 2928 (w, -CH, -CH₂, -CH₃), 2855 (w, -CH, -CH₂, -CH₃), 1757 (m, -C=O), 1658 (m, -C=O, -C=C, -C=N), 1553 (m, -N-H), 1471 (m, -CH₂, -CH₃), 1253 (m, -C-N, -C-O-C), 1112 (m, -C-O-C), 1064 (m, -C-O-C, -Si-OC), 1028 (m, -C-O-C, -Si-OC), 832 (s, =C-H), 774 (s, =C-H, -OSi-C).

5-Dideutero-4,5-(1,3-[3*H*,6*D*]oxazin-2-on)-2'-desoxy(*N*¹,*N*³-¹⁵N₂)cytidin (114)

Zu einer Lösung aus Verbindung **113** (0.30 g, 0.58 mmol, 1.0 Äq.) in EtOAc (19 mL) wurde Pyridin (226 μ L, 2.79 mmol, 4.8 Äq.) und 70%iges HF-Pyridin (234 μ L, 8.70 mmol, 15.0 Äq.) zugegeben und 19 h bei Raumtemperatur gerührt. Nach erneuter Zugabe von Pyridin (226 μ L, 2.79 mmol, 4.8 Äq.) und 70%iges HF-Pyridin (234 μ L, 8.70 mmol, 15.0 Äq.) wurde für weitere 20 h bei Raumtemperatur gerührt. Zum Beenden der Reaktion wurde Methoxytrimethylsilan (6.30 mL, 45.7 mmol, 78.8 Äq.) zugegeben und für 30 min bei Raumtemperatur gerührt. Nach Entfernen des Lösemittels *in vacuo* und säulenchromatographischer Aufreinigung (DCM/MeOH 10:1 \rightarrow 5:1) wurde **114** als farbloser Feststoff erhalten (0.15 g, 0.53 mmol, 91%).
$R_{f} = 0.36 (DCM/MeOH 5:1).$

¹**H-NMR** (200 MHz, CD₃OD, ppm): $\delta = 8.39$ (s, 1H, N-C<u>H</u>=C), 6.20 (dt, ³*J*_{H,H}= 6.2, 1.3 Hz, 1H, N-C<u>H</u>-O), 4.36 (dt, ³*J*_{H,H}= 6.2, 3.9 Hz, 1H, C<u>H</u>-OH), 4.03–3.97 (m, 1H, C<u>H</u>-CH₂-O), 3.89–3.70 (m, 2H, C<u>H₂-OH), 2.56–2.43 (m, 1H, N-CH-C<u>H</u>₂), 2.23–2.09 (m, 1H, N-CH-C<u>H</u>₂).</u>

¹³C-NMR (151 MHz, [D₆]-DMSO, ppm): $\delta = 160.1$ (dd, ${}^{1}J_{C,N} = 6.8$ Hz, ${}^{3}J_{C,N} = 1.7$ Hz, <u>C</u>-NH), 154.3 (dd, ${}^{1}J_{C,N} = 11.3$, 5.5 Hz, N-<u>C</u>O), 150.6 (d, ${}^{3}J_{C,N} = 3.1$ Hz, O-<u>C</u>O), 138.8 (d, ${}^{1}J_{C,N} = 13.2$ Hz, <u>C</u>H=C), 96.7 (<u>C</u>-CD₂), 87.9 (CH-<u>C</u>H-CH₂-O), 86.1 (d, ${}^{1}J_{C,N} = 10.3$ Hz, N-<u>C</u>H-O), 70.0 (O-<u>C</u>H), 63.7 (qi, ${}^{1}J_{C,D} = 23.1$ Hz, CD₂), 61.0 (<u>C</u>H₂-OH), 40.7 (N-CH-<u>C</u>H₂).

¹⁵N-NMR (40 MHz, [D₆]-DMSO, ppm): $\delta = -153.0, -213.0.$

HRMS (ESI–): ber. für $C_{11}H_{10}D_2N^{15}N_2O_6^{-}[M-H]^{-}$: 286.0796, gef.: 286.0800.

Schmelzpunkt: >200 °C (Zersetzung).

IR (ATR): \tilde{v} (cm⁻¹) = 3361 (w, -O-H), 3270 (w, -O-H), 3161 (w, -N-H), 1749 (m, -C=O), 1667 (s, -C=O, -C=C, -C=N), 1627 (s, Ringschwingung, -N-H), 1557 (m, -N-H), 1476 (m, Ringschwingung), 1282 (s, -C-N, -C-O-C), 1268 (s, -C-N, -C-O-C), 1101 (s, -C-O-C), 1082 (s, -C-O-C), 1067 (s, -C-O-C), 1060 (s, -C-O-C), 794 (s, =C-H), 775 (s, =C-H).

5-Dideutero-4,5-(1,3-[3H,6D]oxazin-2-on)-2'-desoxy(N^1 , N^3 - $^{15}N_2$)cytidin-5'-triphosphat (110)

Eine Lösung aus Bis(tributylammonium)pyrophosphat (0.15 g, 0.27 mmol, 2.7 Äq.) in DMF (0.52 mL) und Tributylamin (0.67 mL) wurde zu einer Lösung aus 2-Chlor-1,3,2benzodioxaphosphorin-4-on (54 mg, 0.26 mmol, 2.6 Äq.) in DMF (0.37 mL) zugegeben und für 30 min bei Raumtemperatur gerührt. Hiernach wurde 5-Dideutero-4,5-(1,3-[3H,6D]oxazin-2-on)-2'-desoxy-(N^1,N^3 -¹⁵N₂)-cytidin (**114**) (30 mg, 0.10 mmol, 1.0 Äq.) zugegeben und 3 h bei Raumtemperatur gerührt. Nach Zugabe von Iod (70 mg, 0.27 mmol, 2.7 Äq.) in Pyridin/H₂O 10:1 (2.4 mL) und Rühren bei Raumtemperatur für 2 h wurde das Produkt nach Zugabe einer 3 M NaOAc-Lösung (1.37 mL) und EtOH (26 mL) bei $-80 \degree$ C über Nacht gefällt. Nach Aufreinigung mittels Umkehrphasen-HPLC (0% \rightarrow 15% Puffer B in 45 min, Fluss 5 mL/min) wurde **110** als farbloser Feststoff erhalten (0.37 mg, 0.70 µmol, 1%).

 $R_{\rm f} = 7.1 \text{ min } (0\% \rightarrow 15\% \text{ Puffer B in 45 min, Fluss 5 mL/min}).$

¹**H-NMR** (400 MHz, D₂O, ppm): $\delta = 8.44$ (d, ²*J*_{H,N} = 0.9 Hz, 1H, N-C<u>H</u>=C), 6.29 (t, *J* = 6.3 Hz, 1H, N-C<u>H</u>-O), 4.70–4.66 (m, 1H, C<u>H</u>-OH), 4.32–4.25 (m, 3H, C<u>H</u>-C<u>H</u>₂-O), 2.62–2.55 (m, 1H, N-CH-C<u>H</u>₂), 2.43–2.36 (m, 1H, N-CH-C<u>H</u>₂).

³¹**P-NMR** (162 MHz, D₂O, ppm): $\delta = -7.5$ (br), -11.6 (d, ${}^{2}J_{P,P} = 20.1$ Hz), -22.6 (t, ${}^{2}J_{P,P} = 20.4$ Hz, P_β).

¹⁵N-NMR (40 MHz, D₂O, ppm): $\delta = -160.5, -210.3$.

HRMS (ESI–): ber. für C₁₁H₁₃D₂N¹⁵N₂P₃O₁₅⁻ $[M - H]^{-}$: 525.9786, gef.: 525.9789.

Aufgrund der sehr geringen isolierten Menge, die jedoch für eine Vielzahl von PCR-Ansätzen ausreichte, und der Hydrolyselabilität des Triphosphat-Rests wurde auf eine Aufnahme eines ¹³C-NMR- und IR-Spektrums, sowie der Messung des Schmelzpunkts verzichtet. Eine weitere Charakterisierung von **110** erfolgte durch den enzymatischen Einbau mittels PCR und der Analyse der erhaltenen DNA-Stränge.

7 Abkürzungsverzeichnis

AIBN	2,2'-Azobis(2-methylpropionitril)
Äq.	Äquivalente
Aid	activation induced cytidine deaminase
Apobec	Apolipoprotein mRNA-editing catalytic polypeptide
ATR	Attenuated Total Reflection
au	Willkürliche Einheit (engl. arbitrary unit)
AUC	Fläche unter der Kurve (engl. area under the curve)
BER	Basenexzisionsreparatur
ber.	berechnet
Boc	tert-Butyloxycarbonyl
bp	Basenpaar (engl. base pair)
br	breit (Signale bei NMR-Spektroskopie beziehungsweise IR-Spek- troskopie)
b.r.s.m.	basierend auf rückgewonnenem Startmaterial
BTT	Benzylthiotetrazol (Aktivator der DNA-Festphasensynthese)
Bz	Benzoyl-Rest
cadC	5-Carboxy-2'-desoxycytidin
cadU	5-Carboxy-2'-desoxyuridin
caU	5-Carboxyuracil
CAN	Cer(IV)-ammoniumnitrat Ce(NH4)2(NO3)6
CD	Circulardichroismus
CE	Cyanethyl-Rest (Schutzgruppe der Phosphoramidite)
CIS	charakteristische Verschiebung von Atomen in Nachbarschaft zur Koordinationsstelle (engl. <i>coordination induced shift</i>)
crt1	Kupfertransporter 1 (engl. copper transporter 1)

d	Duplett (Signale bei NMR-Spektroskopie)
dA	2'-Desoxyadenosin
DABCO	1,4-Diazabicyclo[2.2.2]octan
dba	Dibenzylidenaceton
DBAD	Di- <i>tert</i> -butylazodicarboxylat
DC	Dünnschichtchromatographie
dC	2'-Desoxycytidin
DCM	Dichlormethan
dCTP	2'-Desoxycytidin-Triphosphat
dG	2'-Desoxyguanosin
DIPEA	Ethyldi(iso-propyl)amin
DMAP	N,N-Dimethylaminopyridin
DMP	Dess-Martin-Periodinan
DMT	3,3'-Dimethoxytrityl-Rest
DMF	N,N-Dimethylformamid
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure (engl. deoxyribonucleic acid)
DDQ	2,3-Dichlor-5,6-dicyan-1,4-benzochinon
Dnmt	DNA Nukleotidmethyltransferase
dsDNA	Doppelsträngige DNA
dT	2'-Desoxythymidin
dU	2'-Desoxyuridin
Ea	Aktivierungsenergie
Ecat1	Embryonic Stem Cell Associated Transcript 1
EDC	1-Ethyl-3-(3'-dimethylaminopropyl)carbodiimid
EDTA	Ethylendiamintetraacetat
EI	Elektroionisation (Ionisierungsmethode für die Massenspektrometrie)

en	Ethylendiamin
ESI	Elektrosprayionisation (Ionisierungsmethode für Massenspektrometrie)
Et	Ethyl-Rest
fdC	5-Formyl-2'-desoxycytidin
fdU	5-Formyl-2'-desoxyuridin
FIR	Ferninfrarotspektroskopie (400–10 cm ⁻¹)
gef.	gefunden
Gua	Guanin
HEK-Zellen	menschliche embryonale Nierenzellen (engl. human embryonic kidney)
hmdC	5-Hydroxymethyl-2'-desoxycytidin
hmdU	5-Hydroxymethyl-2'-desoxyuridin
HMG	high-mobility group (Protein)
<i>i</i> Bu	iso-Butyl-Rest
IUPAC	Internationale Union für reine und angewandte Chemie (engl. International Union of Pure and Applied Chemistry)
IR	Infrarotspektroskopie
HEPES	2-(4'-(2'-Hydroxyethyl)-1'-piperazinyl)ethansulfonsäure
hmC	5-Hydroxymethylcytosin
HMDS	Hexamethyldisilazan
hmdC	5-Hydroxymethyl-2'-desoxycytidin
hmU	5-Hydroxymethyluracil
hNEIL	humanes nei endonuclease VIII-like
hUBF	human upstream binding factor
HOAc	Essigsäure
hOCT	humaner organischer Kationentransporter (engl. human organic cation transporter)

HPLC	Hochleistungsflüssigkeitschromatographie (engl. <i>high performance liquid chromatography</i>)
HR	hochaufgelöst (engl. high resolution)
HSQC	Heteronuclear Single Quantum Coherence (2D-NMR-Methode)
IDCase	Isoorotat-Decarboxylase
Ixr1	intrastrand cross-link recognition protein 1
konz.	konzentriert
LB	lysogeny broth (Vollmedium)
LC	Flüssigchromatographie (engl. liquid chromatography)
m	medium (Signale bei IR-Spektroskopie)
m	Multiplett (Signale bei NMR-Spektroskopie)
MALDI-TOF	<i>matrix assisted laser desorption ionization</i> Massenspektrometer mit <i>time of flight</i> Detektor
MBD	Methyl-CpG-bindende Domäne
mC	5-Methylcytosin
mdC	5-Methyl-2'-desoxycytidin
MeCN	Acetonitril
mES	embryonale Stammzellen der Maus (engl. murine embryonic stem cells)
HhaI	Haemophilus haemolyticus
MS	Massenspektrometrie
Ms	Mesyl-Rest
NBP	4-(4-Nitrobenzyl)pyridin-Lösung
NMR	Kernresonanzspektroskopie (engl. nulcear magnetic resonance)
NOR	nornitrogen mustard-Rest
Nu	Nukleophil
Oct4	Octamer binding transcription factor 4
OD	Optische Dichte

8-oxo-dG	8-Oxo-7,8-dihydro-2'-desoxyguanosin
PCC	Pyridiniumchlorochromat
PCR	Polymerase-Kettenreaktion (engl. polymerase chain reaction)
PDB	Proteindatenbank
PE	Polyethylen (Trägermaterial in der Ferninfrarotspektroskopie)
PM	phosphoramide mustard-Rest
ppm	parts per million
Ру	Pyridin
q	Quartett (Signale bei NMR-Spektroskopie)
qi	Quintett (Signale bei NMR-Spektroskopie)
quant.	quantitativer Umsatz
$R_{ m f}$	Retentionsfakor (Dünnschichtchromatographie)
RNA	Ribonukleinsäure (engl. ribonucleic acid)
rpm	Umdrehungen pro Minute (engl. rounds per minute)
S	stark (Signale bei IR-Spektroskopie)
S	Singulett (Signale bei NMR-Spektroskopie)
SAH	S-Adenosylhomocystein
SAM	S-Adenosylmethionin
SD	Standardabweichung (engl. standard deviation)
SMUG	single-strand selective monofunctional uracil DNA N-glycosylase
Т	Temperatur
Т	Thymin
t	Zeit (engl. <i>time</i>)
t	Triplett (Signale bei NMR-Spektroskopie)
TAE	Tris(hydroxymethyl)aminomethan, Acetat, EDTA (Puffer für die Gelelektrophorese)
TBABr ₃	Tetrabutylammoniumtribromid

TBS	tert-butyldimethylsilyl-Rest
TBTA	Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amin
TDG	Thymin-DNA-Glykosylase
TEA	Triethylamin
TEMPO	2,2,6,6-Tetramethylpiperidin-1-oxyl
Tet	ten-eleven translocation
Tf	Triflat-Rest
TFA	Trifluoressigsäure (engl. trifuoroacetic acid)
TMS	Trimethylsilyl-Rest
Т7Н	Thymin-7-Hydroxylase
THF	Tetrahydrofuran
Тм	Schmelzpunkt
Tol	Toluoyl-Rest
Ts	Tosyl-Rest (<i>p</i> -Toluolsulfonyl)
U	Units (Einheit für Enzymmengen)
UV-Vis	Licht der Wellenlänge 10–750 nm
UHPLC	Ultrahochleistungsflüssigkeitschromatographie (engl. ultra high perfor- mance liquid chromatography
W	schwach (engl. weak) (Signale bei IR-Spektroskopie)
Z	Benzyloxycarbonyl-Rest

8 Literaturverzeichnis

- Statistisches Bundesamt Deutschland, *Gesundheit Todesursachen in Deutschland*,
 2011, Fachserie 12, Reihe 14, S. 2019 und S. 2011.
- 2 Robert Koch-Institut, *Krebs in Deutschland*, **2012**.
- 3 Müller, W. E. G. *Chemotherapie von Tumoren Biochemische Grundlagen*, 1. Aufl., Verlag Chemie, Weinheim, **1975**, S. 35–45.
- 4 Cadet, J.; Douki, T.; Gasparutto, D.; Ravanat, J.-L.; Wagner, J. R. in *Radical and radical ion reactivity in nucleic acid chemistry*, 1. Aufl. (Hrsg.: Greenberg, M.), Wiley and Sons Inc., Hoboken (NJ), **2009**, Kapitel 2 und 3.
- Kuchino, Y.; Mori, F.; Kasai, H.; Inoue, H.; Iwai, S.; Miura, K.; Ohtsuka, E.; Nishimura, S. *Nature* 1987, *327*, 77–79.
 Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues.
- 6 Grollman, A. P.; Moriya, M. *Trends Genet.* **1993**, *9*, 246–249. Mutagenesis by 8-oxoguanine: an enemy within.
- Durant, J. R.; Williams, S. D.; Einhorn, L. H.; Seeber, S.; Scheulen, M. E.; Schilcher, R. B.; Higi, M.; Niederle, N.; Mouratidou, D.; Bierbaum, W. C.; Schmidt, C. G. in *Cisplatin current status and new developments*, 1. Aufl. (Hrsg.: Prestayko, A. W.; Crooke, S. T.; Carter, S. K.), Academic Press, New York, London, Toronto, Sydney, San Francisco, **1980**, Sektion II.
- 8 Galanski, M.; Jakupec, M. A.; Keppler, B. K. *Curr. Med. Chem.* **2005**, *12*, 2075–2094. Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches.
- 9 Colvin, O. M. *Curr. Pharm. Des.* 1999, *5*, 555–560.An overview of cyclophosphamide development and clinical applications.
- 10 Emadi, A.; Jones, R. J.; Brodsky, R. A. *Nat. Rev. Clin. Oncol.* **2009**, *6*, 638–647. Cyclophosphamide and cancer: golden anniversary.

- 11 Francisco, A. P.; de Jesus Perry, M.; Moreira, R.; Mendes, E. in Anticancer Therapeutics, 1. Aufl. (Hrsg. Missailidis, S.), Wiley-Blackwell, Oxford, Hoboken (NJ), 2008, S. 137.
- 12 Pratt, W. B.; Ruddon, R. W.; Ensminger, W. D.; Maybaum, J. *The anticancer drugs*, 2. Aufl., Oxford University Press, New York, Oxford, **1994**, S.120.
- Grunberg, E.; Prince, H. N.; Titsworth, E.; Beskid, G.; Tendler, M. D. *Chemotherapia* 1966, *11*, 249–260.
 Chemotherapeutic properties of anthramycin.
- Leimgruber, W.; Stefanović, V.; Schenker, F.; Karr, A.; Berger, J. J. Am. Chem. Soc. 1965, 87, 5791–5793.
 Isolation and characterization of anthramycin, a new antitumor antibiotic.
- Rosenberg, B. *Platinum Met. Rev.* 1971, *15*, 42–51.Some biological effects of platinum compounds.
- Rosenberg, B.; Renshaw, E.; Van Camp, L.; Hartwick, J.; Drobník, J. J. Bacteriol.
 1967, 93, 716–722.
 Platinum-induced filamentous growth in *Escherichia coli*.
- Rosenberg, B.; Van Camp, L.; Krigas, T. *Nature* 1965, 205, 698–699.
 Inhibition of cell division in *Escherichia coli* by electrolysis products from a platinum electrode.
- Rosenberg, B.; Van Camp, L. *Cancer Res.* 1970, *30*, 1799–1802.
 The successful regression of large solid sarcoma 180 tumors by platinum compounds.
- Mandic, A.; Hansson, J.; Linder, S.; Shoshan, M. C. J. Biol. Chem. 2003, 278, 9100–9106.
 Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling.
- 20 Rebillard, A.; Lagadic-Gossmann, D.; Dimanche-Boitrel, M.-T. *Curr. Med. Chem.*2008, 15, 2656–2663.
 Cisplatin cytotoxicity: DNA and plasma membrane targets.

- Beck, D. J.; Brubaker, R. R. J. Bacteriol. 1973, 116, 1247–1252.
 Effect of *cis*-platinum(II)diamminodichloride on wild type and deoxyribonucleic acid repair-deficient mutants of *Escherichia coli*.
- Drobník, J.; Urbánková, M.; Krekulová, A. Mutat. Res., Fundam. Mol. Mech. Mutagen. 1973, 17, 13–20.
 The effect of *cis*-dichlorodiammineplatinum(II) on *Escherichia coli* B the role of fil, exr and hcr markers.
- Fraval, H. N. A.; Rawlings, C. J.; Roberts, J. J. Mutat. Res., Fundam. Mol. Mech. Mutagen. 1978, 51, 121–132.
 Increased sensitivity of UV-repair-deficient human cells to DNA bound platinum products which unlike thymine dimers are not recognized by an endonuclease extracted from Micrococcus luteus.
- Ishida, S.; Lee, J.; Thiele, D. J.; Herskowitz, I. *Proc. Natl. Acad. Sci. U. S. A.* 2002, *99*, 14298–14302.
 Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals.
- Lin, X.; Okuda, T.; Holzer, A.; Howell, S. B. *Mol. Pharmacol.* 2002, *62*, 1154–1159.
 The copper transporter CTR1 regulates cisplatin uptake in *Saccharomyces cerevisiae*.
- Holzer, A. K.; Samimi, G.; Katano, K.; Naerdemann, W.; Lin, X.; Safaei, R.; Howell, S. B. *Mol. Pharmacol.* 2004, *66*, 817–823.
 The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells.
- Ciarimboli, G.; Ludwig, T.; Lang, D.; Pavenstädt, H.; Koepsell, H.; Piechota, H.-J.;
 Haier, J.; Jaehde, U.; Zisowsky, J.; Schlatter, E. *Am. J. Pathol.* 2005, *167*, 1477–1484.
 Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2.
- Endo, T.; Kimura, O.; Sakata, M. *Toxicology* 2000, *146*, 187–195.Carrier-mediated uptake of cisplatin by the OK renal epithelial cell line.
- 29 Gately, D. P.; Howell, S. B. *Br. J. Cancer* **1993**, *67*, 1171–1176. Cellular accumulation of the anticancer agent cisplatin: a review.

- Hall, M. D.; Okabe, M.; Shen, D.-W.; Liang, X.-J.; Gottesman, M. M. Annu. Rev. Pharmacol. Toxicol. 2008, 48, 495–535.
 The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy.
- 31 LeRoy, A. F.; Lutz, R. T.; Dedrick, R. L. *Cancer Treatment Rep.* **1979**, *63*, 59–71. Pharmacokinetic study of *cis*-dichlorodiammineplatinum(II) (DDP) in the beagle dog: thermodynamic and kinetic behavior of DDP in a biologic millieu.
- Miller, S. E.; House, D. A. *Inorg. Chim. Acta* 1990, *173*, 53–60.
 The hydrolysis products of *cis*-dichlorodiammineplatinum(II) 3. Hydrolysis kinetics at physiological pH.
- 33 Davies, M. S.; Berners-Price, S. J.; Hambley, T. W. *Inorg. Chem.* 2000, *39*, 5603–5613.
 Slowing of cisplatin aquation in the presence of DNA but not in the presence of phosphate: improved understanding of sequence selectivity and the roles of monoaquated and diaquated species in the binding of cisplatin to DNA.
- Sadler, P. J.; Barnham, K. J.; Berners-Price, S. J.; Frey, U. Chem. Eur. J. 1996, 2, 1283–1291.
 Kinetic analysis of the steruvise relatingtion of single, and double strended CC align.

Kinetic analysis of the stepwise platination of single- and double-stranded GG oligonucleotides with cisplatin and *cis*-[PtCl(H₂O)(NH₃)₂]⁺.

- Eastman, A. *Biochemistry* 1983, 22, 3927–3933.
 Characterization of the adducts produced in DNA by *cis*-diamminedichloroplatinum(II) and *cis*-dichloro(ethylenediamine)platinum(II).
- Eastman, A. *Biochemistry* 1982, *21*, 6732–6736.
 Separation and characterization of products resulting from the reaction of *cis*-diamminedichloroplatinum(II) with deoxyribonucleosides.
- Schaller, W.; Reisner, H.; Holler, E. *Biochemistry* 1987, *26*, 943–950.
 Kinetic investigation of the DNA platination reaction: evidence for a transient adduct between deoxyribonucleic acid and *cis*-platinum(II).
- Hambley, T. W. J. Chem. Soc., Dalton Trans. 2001, 2711–2718.Platinum binding to DNA: structural controls and consequences.

- Bancroft, D. P.; Lepre, C. A.; Lippard, S. J. J. Am. Chem. Soc. 1990, 112, 6860–6871.
 Platinum-195 NMR kinetic and mechanistic studies of *cis-* and *trans-*diamminedichloroplatinum(II) binding to DNA.
- Barnham, K. J.; Berners-Price, S. J.; Frenkiel, T. A.; Frey, U.; Sadler, P. J. Angew. Chem., Int. Ed. 1995, 34, 1874–1877.
 Platination pathways for reactions of cisplatin with GG single-stranded and double-stranded decanucleotides.
 Barnham, K. J.; Berners-Price, S. J.; Frenkiel, T. A.; Frey, U.; Sadler, P. J. Angew.

Chem. **1995**, *107*, 2040–2043. Platinierungsmechanismen für Reaktionen von Cisplatin mit GG-Einzelstrang- und -Doppelstrang-Decanucleotiden.

- Cramer, R. E.; Dahlstrom, P. L.; Seu, M. J. T.; Norton, T.; Kashiwagi, M. *Inorg. Chem.* 1980, *19*, 148–154.
 Crystal and molecular structure of *cis*-[Pt(NH₃)₂(Guo)₂]Cl_{3/2}(ClO₄)_{1/2}·7H₂O and anticancer activity of *cis*-[Pt(NH₃)₂(Puo)₂]Cl₂ complexes.
- Kelman, A. D.; Buchbinder, M. *Biochimie* 1978, *60*, 893–899.
 Platinum-DNA crosslinking: platinum antitumor drug interactions with native lambda bacteriophage DNA studied using a restriction endonuclease.
- Royer-Pokora, B.; Gordon, L. K.; Haseltine, W. A. *Nucleic Acids Res.* 1981, *9*, 4595–4609.
 Use of exonuclease III to determine the site of stable lesions in defined sequences of DNA: the cyclobutane pyrimidine dimer and *cis* and *trans* dichlorodiammine platinum II examples.
- 44 Davies, M. S.; Berners-Price, S. J.; Hambley, T. W. J. Am. Chem. Soc. 1998, 120, 11380–11390.
 Rates of platination of AG and GA containing double-stranded oligonucleotides: insights into why cisplatin binds to GG and AG but not GA sequences in DNA.
- 45 Fichtinger-Schepman, A. M. J.; Lohmant, P. H. M.; Reedjik, J. *Nucleic Acids Res.* 1982, 10, 5345–5356.
 Detection and quantification of adducts formed upon interaction of diamminedichloroplatinum (II) with DNA, by anion-exchange chromatography after enzymatic degradation.

- Eastman, A. *Pharmac. Ther.* 1987, *34*, 155–166.
 The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes.
- 47 Peleg-Shulman, T.; Najajreh, Y.; Gibson, D. *J. Inorg. Biochem.* **2002**, *91*, 306–311. Interactions of cisplatin and transplatin with proteins: Comparison of binding kinetics, binding sites and reactivity of the Pt-protein adducts of cisplatin and transplatin to-wards biological nucleophiles.
- Yang, D.; van Boom, S. S. G. E.; Reedijk, J.; van Boom, J. H.; Wang, A. H.-J. *Biochemistry* 1995, *34*, 12912–12920.
 Structure and isomerization of an intrastrand cisplatin-cross-linked octamer DNA duplex by NMR analysis.
- 49 Yang, D.; Wang, A. H.-J. *Prog. Biophys. Molec. Biol.* 1996, *66*, 81–111.Structural studies of interactions between anticancer platinum drugs and DNA.
- Pérez, C.; Leng, M.; Malinge, J.-M. *Nucleic Acids Res.* 1997, 25, 896–903.
 Rearrangement of interstrand cross-links into intrastrand cross-links in *cis*-diammine-dichloroplatinum(II)-modified DNA.
- Malina, J.; Natile, G.; Brabec, V. *Chem. Eur. J.* 2013, *19*, 11984–11991.
 Spontaneous translocation of antitumor oxaliplatin, its enantiomeric analogue, and cisplatin from one strand to another in double-helical DNA.
- Kartalou, M.; Essigmann, J. M. Mutat. Res., Fundam. Mol. Mech. Mutagen. 2001, 478, 1–21.
 Recognition of cisplatin adducts by cellular proteins.
- 53 Naser, L. J.; Pinto, A. L.; Lippard, S. J.; Essigmann, J. M. *Biochemistry* 1988, 27, 4357–4367.
 Chemical and biological studies of the major DNA adduct of cis-diamminedichloroplatinum(II), *cis*[Pt(NH₃)₂{d(GpG)}], built into a specific site in a viral genome.
- Poklar, N.; Pilch, D. S.; Lippard, S. J.; Redding, E. A.; Dunham, S. U.; Breslauer, K. J. *Proc. Natl. Acad. Sci. U. S. A.* 1996, *93*, 7606–7611.
 Influence of cisplatin intrastrand crosslinking on the conformation, thermal stability, and energetics of a 20-mer DNA duplex.

- Takahara, P. M.; Rosenzweig, A. C.; Frederick, C. A.; Lippard, S. J. *Nature* 1995, 377, 649–652.
 Crystal structure of double-stranded DNA containing the major adduct of the anti-cancer drug cisplatin.
- den Hartog, J. H. J.; Altona, C.; van Boom, J. H.; van der Marel, G. A.; Haasnoot, C.
 A. G.; Reedijk, J. J. Biomol. Struct. Dyn. 1985, 2, 1137–1155.
 cis-Diamminedichloroplatinum(II) induced distortion of a single and double stranded deoxydecanucleosidenonaphosphate studied by nuclear magnetic resonance.
- 57 Jamieson, E. R.; Lippard, S. J. *Chem. Rev.* **1999**, *99*, 2467–2498. Structure, recognition, and processing of cisplatin–DNA adducts.
- Gelasco, A.; Lippard, S. J. *Biochemistry* 1998, *37*, 9230–9239.
 NMR solution structure of a DNA dodecamer duplex containing a *cis*-diammineplatinum(II) d(GpG) intrastrand cross-link, the major adduct of the anticancer drug cisplatin.
- 59 Pil, P. M.; Lippard, S. J. Science 1992, 256, 234–237.
 Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin.
- Bruhn, S. L.; Pil, P. M.; Essigmann, J. M.; Housman, D. E.; J. Lippard, S. *Proc. Natl. Acad. Sci. U. S. A.* 1992, *89*, 2307–2311.
 Isolation and characterization of human cDNA clones encoding a high mobility group box protein that recognizes structural distortions to DNA caused by binding of the anticancer agent cisplatin.
- Hughes, E. N.; Engelsberg, B. N.; Billings, P. C. J. Biol. Chem. 1992, 267, 13520–13527.
 Purification of nuclear proteins that bind to cisplatin-damaged DNA. Identity with high mobility group proteins 1 and 2.
- 62 Chow, C. S.; Whitehead, J. P.; Lippard, S. J. *Biochemistry* **1994**, *33*, 15124–15130. HMG domain proteins induce sharp bends in cisplatin-modified DNA.

- Huang, J.-C.; Zamble, D. B.; Reardon, J. T.; Lippard, S. J.; Sancar, A. *Proc. Natl. Acad. Sci. U. S. A.* 1994, *91*, 10394–10398.
 HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease.
- Brown, S. J.; Kellett, P. J.; Lippard, S. J. *Science* 1993, *261*, 603–605.
 Ixr1, a yeast protein that binds to platinated DNA and confers sensitivity to cisplatin.
- 65 Treiber, D. K.; Zhai, X.; Jantzen, H. M.; Essigmann, J. M. *Proc. Natl. Acad. Sci. U. S. A.* 1994, *91*, 5672–5676.
 Cisplatin-DNA adducts are molecular decoys for the ribosomal RNA transcription factor hUBF (human upstream binding factor).
- 66 Wang, D.; Lippard, S. J. *Nat. Rev. Drug Discovery* **2005**, *4*, 307–320. Cellular processing of platinum anticancer drugs.
- Hansson, J.; D.Wood, R. *Nucleic Acids Res.* 1989, *17*, 8073–8091.
 Repair synthesis by human cell extracts in DNA damaged by *cis-* and *trans-*diamminedichloroplatinum(II).
- Beck, D. J.; Popoff, S.; Sancar, A.; Rupp, W. D. *Nucleic Acids Res.* 1985, *13*, 7395–7412.
 Reactions of the UVRABC excision nuclease with DNA damaged by diamminedichloroplatinum(II).
- 69 Chu, G. *J. Biol. Chem.* **1994**, *14*, 787–790. Cellular Responses to Cisplatin.
- Bedford, P.; Fichtinger-Schepman, A. M. J.; Shellard, S. A.; Walker, M. C.; Masters, J. R. W.; Hill, B. T. *Cancer Res.* 1988, 48, 3019–3024.
 Differential repair of platinum-DNA adducts in human bladder and testicular tumor continuous cell lines.
- Eastman, A.; Schulte, N. *Biochemistry* 1988, 27, 4730–4734.
 Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II).

- Masuda, H.; Ozols, R. F.; Lai, G.-M.; Fojo, A.; Rothenberg, M.; Hamilton, T. C. *Cancer Res.* 1988, 48, 5713–5716.
 Increased DNA repair as a mechanism of acquired resistance to *cis*-diamminedichloroplatinum(II) in human ovarian cancer cell lines.
- Hoffmann, J. S.; Pillaire, M. J.; Maga, G.; Podust, V.; Hübscher, U.; Villani, G. *Proc. Natl. Acad. Sci. U. S. A.* 1995, *92*, 5356–5360.
 DNA polymerase beta bypasses *in vitro* a single d(GpG)-cisplatin adduct placed on codon 13 of the HRAS gene.
- Zamble, D. B.; Lippard, S. J. *Trends Biochem. Sci.* 1995, *20*, 435–439.Cisplatin and DNA repair in cancer chemotherapy.
- Alt, A.; Lammens, K.; Chiocchini, C.; Lammens, A.; Pieck, J. C.; Kuch, D.; Hopfner, K.-P.; Carell, T. *Science* 2007, *318*, 967–970.
 Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase η.
- 76 Reißner, T.; Schneider, S.; Schorr, S.; Carell, T. Angew. Chem., Int. Ed. 2010, 49, 3077–3080.

Crystal structure of a cisplatin-(1,3-GTG) cross-link within DNA polymerase η .

Reißner, T.; Schneider, S.; Schorr, S.; Carell, T. *Angew. Chem.* **2010**, *122*, 3142–3145. Kristallstruktur eines Cisplatin-(1,3-GTG)-Schadens im Komplex mit DNA-Polymerase η.

- Shachar, S.; Ziv, O.; Avkin, S.; Adar, S.; Wittschieben, J.; Reißner, T.; Chaney, S.;
 Friedberg, E. C.; Wang, Z.; Carell, T.; Geacintov, N.; Livneh, Z. *EMBO J.* 2009, 28, 383–393.
 Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals.
- Mamenta, E. L.; Poina, E. E.; Kaufmann, W. K.; Delmastro, D. A.; Grady, H. L.; Chaney, S. G. *Cancer Res.* 1994, 54, 3500–3505.
 Enhanced replicative bypass of platinum-DNA adducts in cisplatin-resistant human ovarian carcinoma cell lines.
- 79 Siddik, Z. H. *Oncogene* 2003, *22*, 7265–7279.Cisplatin: mode of cytotoxic action and molecular basis of resistance.

- 80 Miller, R. P.; Tadagavadi, R. K.; Reeves, G. R. W. B. *Toxins* **2010**, *2*, 2490–2518. Mechanisms of cisplatin nephrotoxicity.
- Wiltshaw, E. *Biochimie* 1978, *60*, 925–929.
 A review of clinical experience with *cis*-platinum diammine dichloride : 1972–1978.
- Kelland, L. *Nat. Rev. Cancer* 2007, *7*, 573–584.The resurgence of platinum-based cancer chemotherapy.
- Kidani, Y.; Inagaki, K. J. Med. Chem. 1978, 21, 1315–1318.
 Antitumor activity of 1,2-diaminocyclohexaneplatinum complexes against Sarcoma-180 ascites form.
- Saito, R.; Kidani, Y. *Chem. Lett.* 1976, *5*, 123–126.
 Preparative separation of *cis-* and *trans-*1,2-diaminocyclohexane mixture by means of the selective nickel(II) complex formation.
- Kidani, Y.; Noji, M.; Tashiro, T. *Jpn. J. Cancer Res.* 1980, *71*, 637–643.
 Antitumor activity of platinum (II) complexes of 1,2-diamino-cyclohexane isomers.
- 86 Cleare, M. J.; Hoeschele, J. D. *Bioinorg. Chem.* 1973, *2*, 187–210.
 Studies on the antitumor activity of group VIII transition metal complexes. Part I. Platinum (II) complexes.
- Rixe, O.; Ortuzar, W.; Alvarez, M.; Parker, R.; Reed, E.; Paull, K.; Fojo, T. *Biochem. Pharmacol.* 1996, *52*, 1855–1865.
 Oxaliplatin, tetraplatin, cisplatin, and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the national cancer institute's anticancer drug screen panel.
- Tashiro, T.; Kawada, Y.; Sakurai, Y.; Kidani, Y. *Biomed. Pharmacother.* 1989, 43, 251–260.
 Antitumor activity of a new platinum complex, oxalato (trans-L-1,2-diaminocyclohexane)platinum (II): new experimental data.
- Calvert, A. H.; Harland, S. J.; Newell, D. R.; Siddik, Z. H.; Jones, A. C.; McElwain, T. J.; Raju, S.; Wiltshaw, E.; Smith, I. E.; Baker, J. M.; Peckham, M. J.; Harrap, K. R. *Cancer Chemother. Pharmacol.* 1989, *9*, 140–147.
 Early clinical studies with *cis*-diammine-1,1-cyclobutane dicarboxylate platinum II.

- Zon, G. *Tetrahedron Lett.* 1975, *36*, 3139–3142.
 Cyclophosphamide stereochemistry. I. Synthesis and configurational stability of diastereomeric cyclophosphamide derivatives.
- 91 Cox, P. J.; Farmer, P. B.; Jarman, M.; Jones, M. *Biochem. Pharmacol.* 1976, 25, 993–996.
 Observations on the differential metabolism and biological activity of the optical isomers of cyclophosphamide.
- 92 Zon, G. *Prog. Med. Chem.* **1982**, *19*, 205–246. Cyclophosphamide analogues.
- 93 Tsui, F.-P.; Brandt, J. A.; Zon, G. *Biochem. Pharmacol.* 1979, *28*, 367–374.
 Effects of enantiomeric homogeneity on the *in vitro* metabolism and *in vivo* anticancer activity of (+)- and (-)-cyclophosphamide.
- 94 Arnold, A.; Bourseaux, F. *Angew. Chem.* 1958, 70, 539–544.
 Synthese und Abbau cytostatisch wirksamer cyclischer *N*-Phosphamidester des Bis-(β-chloräthyl)-amins.
- Brock, N. Arzneimittel-Forsch. 1958, 8, 1–9.
 Zur pharmakologischen Charakterisierung zyklischer N-Lost-Phosphamidester als Krebs-Chemotherapeutika.
- Foley, G. E.; Friedman, O. M.; Drolet, B. P. *Cancer Res.* 1961, *21*, 57–63.
 Studies on the mechanism of action of cytoxan evidence of activation *in vivo* and *in vitro*.
- P7 Zhang, J.; Tian, Q.; Chan, S. Y.; Li, S. C.; Zhou, S.; Duan, W.; Zhu, Y.-Z. *Drug Metab. Rev.* 2005, *37*, 611–703.
 Metabolism and transport of oxazaphosphorines and the clinical implications.
- Fenselau, C.; Kan, M.-N.; Billets, S.; Colvin, M. *Cancer Res.* 1975, *35*, 1453–1457.
 Identification of phosphorodiamidic acid mustard as a human metabolite of cyclophosphamide.
- 99 Colvin, M.; Padgett, C. A.; Fenselau, C. *Cancer Res.* 1973, *33*, 915–918.A biologically active metabolite of cyclophosphamide.

- Connors, T. A.; Cox, P. J.; Farmer, P. B.; Foster, A. B.; Jarman, M. *Biochem. Pharmacol.* 1974, 23, 115–129.
 Some studies of the active intermediates formed in the microsomal metabolism of cyclophosphamide and isophosphamide.
- Cohen, J. L.; Jao, J. Y. J. Pharmacol. Exp. Ther. 1970, 174, 206–210.
 Enzymatic basis of cyclophosphamide activation by hepatic microsomes of the rat.
- 102 Brock, N.; Hohorst, H. J. *Arzneimittel-Forsch.* **1963**, *13*, 1021–1031. Über die Aktivierung von Cyclophosphamid *in vivo* und *in vitro*.
- Struck, R. F.; Kirk, M. C.; Mellett, L. B.; El Dareer, S.; Hill, D. L. *Mol. Pharmacol.* 1971, 7, 519–529.
 Urinary metabolites of the antitumor agent cyclophosphamide.
- Fenselau, C.; Lehman, J. P.; Myles, A.; Brandt, J.; Yost, G. S.; Friedman, O. M.;
 Colvin, O. M. *Drug Metab. Dispos.* 1982, *10*, 636–640.
 Iminocyclophosphamide as a chemically reactive metabolite of cyclophosphamide.
- Borch, R. F.; Hoye, T. R.; Swanson, T. A. J. Med. Chem. 1984, 27, 490–494.
 In situ preparation and fate of cis-4-hydroxycyclophosphamide and aldophosphamide: proton and phosphorus-31 NMR evidence for equilibration of cis- and trans-4-hydroxycyclophosphamide with aldophosphamide and its hydrate in aqueous solution.
- 106 Borch, R. F.; Millard, J. A. *J. Med. Chem.* **1987**, *30*, 427–431. The mechanism of activation of 4-hydroxycyclophosphamide.
- Hill, D. L.; Kirk, M. C.; Struck, R. F. J. Am. Chem. Soc. 1970, 92, 3207–3208.
 Isolation and identification of 4-ketocyclophosphamide, a possible active form of the antitumor agent cyclophosphamide.
- Sladek, N. E. *Cancer Res.* 1973, *33*, 1150–1158.
 Bioassay and relative cytotoxic potency of cyclophosphamide metabolites generated *in vitro* and *in vivo*.
- Powers, J. F.; Sladek, N. E. *Cancer Res.* 1983, 43, 1101–1106.
 Cytotoxic activity relative to 4-hydroxycyclophosphamide and phosphoramide mustard concentrations in the plasma of cyclophosphamide-treated rats

- 110 Domeyer, B. E.; Sladek, N. E. *Cancer Res.* 1980, 40, 174–180.Kinetics of cyclophosphamide biotransformation *in vivo*.
- 111 Fenselau, C.; Kan, M.-N. N.; Rao, S. S.; Myles, A.; Friedman, O. M.; Colvin, M. *Cancer Res.* 1977, *37*, 2538–2543.
 Identification of aldophosphamide as a metabolite of cyclophosphamide *in vitro* and *in vivo* in humans.
- Alarcon, R. A.; Meienhofer, J. *Nature (London), New Biol.* 1971, 233, 250–252.
 Formation of the cytotoxic aldehyde acrolein during *in vitro* degradation of cyclophosphamide.
- 113 Colvin, M.; Brundrett, R. B.; Kan, M.-N. N.; Jardine, I.; Fenselau, C. *Cancer Res.*1976, *36*, 1121–1126.
 Alkylating properties of phosphoramide mustard.
- 114 Cox, P. J.; Levin, L. *Biochem. Pharmacol.* 1975, *24*, 1233–1235.Novel metabolic products of cyclophosphamide in human urine.
- Hohorst, H. J.; Ziemann, A.; Brock, N. *Arzneimittel-Forsch.* 1965, *15*, 432–434.Alkylierende Substanzen in Serum und Urin nach Injektion von Cyclophosphamid.
- Jardine, I.; Fenselau, C.; Appler, M.; Kan, M.-N.; Brundrett, R. B.; Colvin, M. *Cancer Res.* 1978, *38*, 408–415.
 Quantitation by gas chromatography-chemical ionization mass spectrometry of cyclophosphamide, phosphoramide mustard, and nornitrogen mustard in the plasma and urine of patients receiving cyclophosphamide therapy.
- Engle, T. W.; Zon, G.; Egan, W. J. Med. Chem. 1979, 22, 897–899.
 Phosphorus-31 NMR investigations of phosphoramide mustard: evaluation of pH control over the rate of intramolecular cyclization to an aziridinium ion and the hydrolysis of this reactive alkylator.
- Engle, T. W.; Zon, G.; Egan, W. J. Med. Chem. 1982, 25, 1347–1357.
 Phosphorus-31 NMR kinetic studies of the intra- and intermolecular alkylation chemistry of phosphoramide mustard and cognate N-phosphorylated derivatives of N,N-bis(2-chloroethyl)amine.

- 119 Watson, E.; Dea, P.; Chan, K. K. *J. Pharm. Sci.* **1985**, *74*, 1283–1292. Kinetics of phosphoramide mustard hydrolysis in aqueous solution.
- Gamcsik, M. P.; Ludeman, S. M.; Shulman-Roskes, E. M.; McLennan, I. J.; Colvin, M. E.; Colvin, O. M. J. Med. Chem. 1993, 36, 3636–3645.
 Protonation of phosphoramide mustard and other phosphoramides.
- Shulman-Roskes, E. M.; Noe, D. A.; Gamcsik, M. P.; Marlow, A. L.; Hilton, J.; Hausheer, F. H.; Colvin, O. M.; Ludeman, S. M. *J. Med. Chem.* 1998, *41*, 515–529.
 The partitioning of phosphoramide mustard and its aziridinium ions among alkylation and P–N bond hydrolysis reactions.
- Rauen, H. M.; Norpoth, K. *Klin. Wochenschr.* 1968, 46, 272–275.
 Ein flüchtiges Alkylans in der Exhalationsluft nach Verabreichung von Endoxan[®].
- Lu, H.; Chan, K. K. J. Chromatogr., Biomed. Appl. 1996, 678, 219–225.
 Gas chromatographic-mass spectrometric assay for N-2-chloroethylaziridine, a volatile cytotoxic metabolite of cyclophosphamide, in rat plasma.
- Struck, R. F.; Kirk, M. C.; Witt, M. H.; Laster Jr., W. R. *Biomed. Mass Spectrom*. 1975, *2*, 46–52.
 Isolation and mass spectral identification of blood metabolites of cyclophosphamide: evidence for phosphoramide mustard as the biologically active metabolite.
- Friedman, O. M.; Boger, E. *Anal. Chem.* 1961, *33*, 906–910.
 Colorimetric estimation of nitrogen mustards in aqueous media. Hydrolytic behavior of bis-(β-chloroethyl)amine, nor HN2.
- Hemminki, K.; Alhonen, A.; Linkola, E.; Hesso, A. *Arch. Toxicol.* 1987, *61*, 126–130.
 Kinetics of hydrolysis *in vitro* of nornitrogen mustard, a metabolite of phosphoramide mustard and cyclophosphamide.
- Brookes, P.; Lawley, P. D. *Biochem. J.* 1961, *80*, 496–503.The reaction of mono- and di-functional alkylating agents with nucleic acids.
- Murane, J. P.; Byfield, J. E. *Chem.-Biol. Interact.* 1981, *38*, 75–86.
 Irreparable DNA cross-links and mammalian cell lethality with bifunctional alkylating agents.

- Hilton, J. *Biochem. Pharmacol.* 1984, *33*, 1867–1872.
 Deoxyribonucleic acid crosslinking by 4-hydroperoxycyclophosphamide in cyclophosphamide-sensitive and -resistant L1210 cells.
- 130 Doskočil, J.; Šormová, Z. *Collect. Czech. Chem. Commun.* **1965**, *30*, 481–491. The reaction of DNA with mustards. II. The reaction kinetics.
- Mehta, J. R.; Przybylski, M.; Ludlum, D. B. *Cancer Res.* 1980, 40, 4183–4186.Alkylation of guanosine and deoxyguanosine by phosphoramide mustard.
- Mirkes, P. E.; Brown, N. A.; Kajbaf, M.; Lamb, J. H.; Farmer, P. B.; Naylor, S. *Chem. Res. Toxicol.* 1992, *5*, 382–385.
 Identification of cyclophosphamide-DNA adducts in rat embryos exposed *in vitro* to 4-hydroperoxycyclophosphamide.
- Cushnir, J. R.; Naylor, S.; Lamb, J. H.; Farmer, P. B.; Brown, N. A.; Mirkes, P. E. *Rapid Commun. Mass Spectrom.* 1990, *4*, 410–414.
 Identification of phosphoramide mustard/DNA adducts using tandem mass spectrometry.
- Benson, A. J.; Martin, C. N.; Garner, R. C. *Biochem. Pharmacol.* 1988, 37, 2979–2985.
 N-(2-hydroxyethyl)-N-[2-(7-guaninyl)ethyl]amine, the putative major DNA adduct of cyclophosphamide *in vitro* and *in vivo* in the rat.
- Bauer, G. B.; Povirk, L. F. *Nucleic Acids Res.* 1997, 25, 1211–1218.
 Specificity and kinetics of interstrand and intrastrand bifunctional alkylation by nitrogen mustards at a G-G-C sequence.
- Hemminiki, K. *Chem.-Biol. Interact.* 1987, *61*, 75–88.DNA-binding products of nornitrogen mustard, a metabolite of cyclophosphamide.
- Ojwang, J. O.; Grueneberg, D. A.; Loechler, E. L. *Cancer Res.* 1989, 49, 6529–6537.
 Synthesis of a duplex oligonucleotide containing a nitrogen mustard interstrand DNA-DNA cross-link
- Millard, J. T.; Raucher, S.; Hopkins, P. B. J. Am. Chem. Soc. 1990, 112, 2459–2460.
 Mechlorethamine cross-links deoxyguanosine residues at 5'-GNC sequences in duplex DNA fragments.

- Dong, Q.; Barsky, D.; Colvin, M. E.; Melius, C. F.; Ludeman, S. M.; Moravek, J. F.; Colvin, M.; Bigner, D. D.; Modrich, P.; Friedman, H. S. *Proc. Natl. Acad. Sci. U. S. A.* 1995, *92*, 12170–12174.
 A structural basis for a phosphoramide mustard-induced DNA interstrand cross-link at 5'-d(GAC).
- 140 Sladek, N. E. *Pharmac. Ther.* **1988**, *37*, 301–355. Metabolism of oxazaphosphorines.
- Erickson, L. C.; Ramonas, L. M.; Zaharko, D. S.; Kohn, K. W. *Cancer Res.* 1980, 40, 4216–4220.
 Cytotoxicity and DNA cross-linking activity of 4-sulfidocyclophosphamides in mouse leukemia cells *in vitro*.
- Thomas, C. B.; Kohn, K. W.; Bonner, W. M. *Biochemistry* 1978, *17*, 3954–3958.
 Characterization of DNA protein cross-links formed by treatment of L-1210 cells and nuclei with (2-chloroethyl)methylamine (N-mustard).
- Lindemann, H.; Habers, E. *Arzneimittel-Forsch.* 1980, *30*, 2075-2080.
 Interaction of the three alkylating drugs, cyclophosphamide, ifosfamide and trofosfamide with DNA and DNA-constituents *in vitro*.
- Maccubbin, A. E.; Caballes, L.; Chheda, G. B.; Struck, R. F.; Gurtoo, H. L. *Biochem. Biophys. Res. Commun.* 1989, *163*, 843–850.
 Formation of a phosphoramide mustard-nucleotide adduct that is not by alkylation at the N7 position of guanine.
- Maccubbin, A. E.; Caballes, L.; Riordan, J. M.; Huang, D. H.; Gurtoo, H. L. *Cancer Res.* 1991, *51*, 886-892.
 A cyclophosphamide/DNA phosphoester adduct formed *in vitro* and *in vivo*.
- Lett, J. T.; Parkins, G. M.; Alexander, P. Arch. Biochem. Biophys. 1962, 97, 80–93.Physicochemical changes produced in DNA after alkylation.
- Kallama, S.; Hemminki, K. *Chem.-Biol. Interact.* 1986, 57, 85–96.
 Stabilities of 7-alkylguanosines and 7-deoxyguanosines formed by phosphoramide mustard and nitrogen mustard.

- Chetsanga, C. J.; Polidori, G.; Mainwaring, M. *Cancer Res.* 1982, 42, 2616–2621.
 Analysis and excision of ring-opened phosphoramide mustard-deoxyguanine adducts in DNA.
- 149 Brookes, P.; Lawely, P. D. *J. Chem. Soc.* **1961**, 3923–3928. The alkylation of guanosine and guanylic acid.
- Kopka, M. L.; Goodsell, D. S.; Baikalov, I.; Grzeskowiak, K.; Cascio, D.; Dickerson, R. E. *Biochemistry* 1994, *33*, 13593–13610.
 Crystal structure of a covalent DNA-drug adduct: anthramycin bound to C-C-A-A-C-G-T-T-G-G and a molecular explanation of specificity.
- Kizu, R.; Draves, P. H.; Hurley, L. H. *Biochemistry* 1993, *32*, 8712–8722.
 Correlation of DNA sequence specificity of anthramycin and tomaymycin with reaction kinetics and bending of DNA.
- 152 Leimgruber, W.; Batcho, A. D.; Schenker, F. J. Am. Chem. Soc. **1965**, 87, 5793–5795. The structure of anthramycin.
- Stefanović, V. *Biochem. Pharmacol.* 1968, *17*, 315–323.
 Spectrophotometric studies of the interaction of anthramycin with deoxyribonucleic acid.
- 154 Kohn, K. W.; Spears, C. L. *J. Mol. Biol.* **1970**, *51*, 551–572. Reaction of anthramycin with deoxyribonucleic acid.
- Hurley, L. H.; Gairola, C.; Zmijewski, M. *Biochim. Biophys. Acta, Nucleic Acids Protein Synth.* 1977, 475, 521–535.
 Pyrrolo(1,4)benzodiazepine antitumor antibiotics In vitro interaction of anthramycin, sibiromycin and tomaymycin with DNA using specifically radiolabelled molecules.
- Kohn, K. W.; Bono Jr., V. H.; Kann Jr., H. E. *Biochim. Biophys. Acta, Nucleic Acids Protein Synth.* 1968, 155, 121–129.
 Anthramycin, a new type of DNA-inhibiting antibiotic: reaction with DNA and effect on nucleic acid synthesis in mouse leukemia cells.
- Hurley, L. H.; Petrusek, R. L. *Nature* 1979, *282*, 529–531.Proposed structure of the anthramycin–DNA adduct.

- Arora, S. K. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1979, B35, 2945–2948.
 Structural investigations of mode of action of drugs. II. Molecular structure of anthramycin methyl ether monohydrate.
- 159 Mostad, A.; Rømming, C.; Storm, B. *Acta Chem. Scand., Ser. B* **1978**, *32*, 639–645. Structure of the DNA complexing agent anthramycin.
- Hurley, L. H.; Reck, T.; Thurston, D. E.; Langley, D. R. *Chem. Res. Toxicol.* 1988, *1*, 258–268.
 Pyrrolo[1,4]benzodiazepine antitumor antibiotics: relationship of DNA alkylation and sequence specificity to the biological activity of natural and synthetic compounds.
- Lown, J. W.; Joshua, A. V. *Biochem. Pharmacol.* 1979, 28, 2017–2026.
 Molecular mechanism of binding of pyrrolo(1,4)benzodiazepine antitumour agents to deoxyribonucleic acid: anthramycin and tomaymycin.
- Petrusek, R. L.; Anderson, G. L.; Garner, T. F.; Fannin, Q. L.; Kaplan, D. J.; Zimmer, S. G.; Hurley, L. H. *Biochemistry* 1981, 20, 1111–1119.
 Pyrrolo[1,4]benzodiazepine antibiotics. Proposed structures and characteristics of the *in vitro* deoxyribonucleic acid adducts of anthramycin, tomaymycin, sibiromycin, and neothramycins A and B.
- Graves, D. E.; Pattaroni, C.; Krishnan, B. S.; Ostrander, J. M.; Hurley, L. H.; Krugh, T. R. *J. Biol. Chem.* 1984, 259, 8202–8209.
 The reaction of anthramycin with DNA. Proton and carbon nuclear magnetic resonance studies on the structure of the anthramycin-DNA adduct.
- 164 Hertzberg, R. P.; Hecht, S. M.; Reynolds, V. L.; Molineux, I. J.; Hurley, L. H. *Biochemistry* 1986, 25, 1249–1258.
 DNA sequence specificity of the pyrrolo[1,4]benzodiazepine antitumor antibiotics. Methidiumpropyl-EDTA-iron(II) footprinting analysis of DNA binding sites for anthramycin and related drugs.
- 165 Zakrzewska, K.; Pullman, B. *Biomol. Struct. Dyn.* 1986, *4*, 127–136.A theoretical investigation of the sequence specificity in the binding of the antitumor drug anthramycin to DNA.

- Kann Jr., H. E.; Kohn, K. W. J. Cell. Physiol. 1972, 79, 331–342.
 Effects of anthramycin and actinomycin on RNA synthesis patterns in L1210 cells.
- Bates, H. M.; Kuenzig, W.; Watson, W. B. *Cancer Res.* 1969, *29*, 2195–2205.
 Studies on the mechanism of action of anthramycin methyl ether, a new antitumor antibiotic.
- Li, E.; Bestor, T. H.; Jaenisch, R. *Cell* 1992, *69*, 915–926.
 Targeted mutation of the DNA methyltransferase gene results in embryonic lethality.
- Scarano, E.; Iaccarino, M.; Grippo, P.; Winckelmans, D. J. Mol. Biol. 1965, 14, 603–607.
 On methylation of DNA during development of the sea urchin embryo.
- Hotchkiss, R. D. J. Biol. Chem. 1948, 175, 315–332.
 The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography.
- Johnson, T. B.; Coghill, R. D. J. Am. Chem. Soc. 1925, 47, 2838–2844.
 Researches on pyrimidines. C111. The discovery of 5-methylcytosine in tuberculinic acid, the nucleic acid of the tubercle bacullis.
- Wyatt, G. R. *Nature* 1950, *166*, 237–238.Occurence of 5-methyl-cytosine in nucleic acids.
- Bestor, T. H.; Ingram, V. M. *Proc. Natl. Acad. Sci. U. S. A.* 1983, *80*, 5559–5563.
 Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA.
- Bestor, T. H.; Ingram, V. M. *Proc. Natl. Acad. Sci. U. S. A.* 1985, *82*, 2674–2678.
 Growth-dependent expression of multiple species of DNA methyltransferase in murine erythroleukemia cells.
- Okano, M.; Xie, S.; Li, E. *Nat. Genet.* 1998, *19*, 219–220.
 Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases.

- 176 Doskočil, J.; Šorm, F. *Biochim. Biophys. Acta, Nucleic Acids Protein Synth.* 1962, 55, 953–959.
 Distribution of 5-methylcytosine in pyrimidine sequences of deoxyribonucleic acids.
- 177 Antequera, F.; Bird, A. *Proc. Natl. Acad. Sci. U. S. A.* **1993**, *90*, 11995–11999. Number of CpG islands and genes in human and mouse.
- 178 Larsen, F.; Gundersen, G.; Lopez, R.; Prydz, H. *Genomics* 1992, *13*, 1095–1107.CpG islands as gene markers in the human genome.
- Saxonov, S.; Berg, P.; Brutlag, D. L. *Proc. Natl. Acad. Sci. U. S. A.* 2006, *103*, 1412–1417.
 A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters.
- 180 Riggs, A. D. *Cytogenet. Cell Genet.* 1975, *14*, 9–25.X inactivation, differentiation, and DNA methylation.
- Holliday, R.; Pugh, J. E. *Science* 1975, *187*, 226–232.DNA modification mechanisms and gene activity during development.
- Bird, A. P.; Southern, E. M. J. Mol. Biol. 1978, 118, 27–47.
 Use of restriction enzymes to study eukaryotic DNA methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis.
- McGhee, J. D.; Ginder, G. D. *Nature* 1979, *280*, 419–420.Specific DNA methylation sites in the vicinity of the chicken β-globin genes.
- Dawid, I. B.; Brown, D. D.; Reeder, R. H. J. Mol. Biol. 1970, 51, 341–346.
 Composition and structure of chromosomal and amplified ribosomal DNA's of *Xenopus laevis*.
- 185 Klose, R. J.; Bird, A. P. *Trends Biochem. Sci.* **2006**, *31*, 89–97. Genomic DNA methylation: the mark and its mediators.
- Hermann, A.; Gowher, H.; Jeltsch, A. *Cell. Mol. Life Sci.* 2004, *61*, 2571–2587.Biochemistry and biology of mammalian DNA methyltransferases.

- Jeltsch, A. *ChemBioChem* 2002, *3*, 274–293.
 Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases.
- Reik, W.; Collick, A.; Norris, M. L.; Barton, S. C.; Surani, M. A. *Nature* 1987, 328.
 248–251, Genomic imprinting determines methylation of parental alleles in transgenic mice.
- Swain, J. L.; Stewart, T. A.; Leder, P. *Cell* 1987, *50*, 719–727.
 Parental legacy determines methylation and expression of an autosomal transgene: A molecular mechanism for parental imprinting.
- Reik, W. *Nature* 2007, *447*, 425–432.Stability and flexibility of epigenetic gene regulation in mammalian development.
- Mohandas, T.; Sparkes, R. S.; Shapiro, L. J. *Science* 1981, *211*, 393–396.
 Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation.
- Jones, P. A.; Taylor, S. M. *Cell* 1980, *20*, 85–93.Cellular differentiation, cytidine analogs and DNA methylation.
- O'Gara, M.; Klimašauskas, S.; Roberts, R. J.; Cheng, X. J. Mol. Biol. 1996, 261, 634–645.
 Enzymatic C5-cytosine methylation of DNA: mechanistic implications of new crystal structures for *Hha*I methyltransferase-DNA-adoHcy complexes.
- Flynn, J.; Reich, N. *Biochemistry* 1998, 37, 15162–15169.
 Murine DNA (cytosine-5-)-methyltransferase: steady-state and substrate trapping analyses of the kinetic mechanism.
- Klimašauskas, S.; Kumar, S.; Roberts, R. J.; Cheng, X. Cell 1994, 76, 357–369.
 Hhal methyltransferase flips its target base out of the DNA helix.
- 196 Wu, J. C.; Santi, D. V. J. Biol. Chem. 1987, 262, 4778–4786.Kinetic and catalytic mechanism of *Hha*I methyltransferase.

- Santi, D. V.; Garrett, C. E.; Barr, P. J. *Cell* 1983, 33, 9–10.On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs.
- Chen, L.; MacMillan, A. M.; Verdine, G. L. J. Am. Chem. Soc. 1993, 115, 5318–5319.
 Mutational separation of DNA binding from catalysis in a DNA cytosine methyltransferase.
- Kumar, S.; Cheng, X.; Klimašauskas, S.; Mi, S.;. Posfai, J.; Roberts, R. J.; Wilson, G. G. *Nucleic Acids Res.* 1994, 22, 1–10.
 The DNA (cytosine-5) methyltransferase.
- Sheikhnejad, G.; Brank, A.; Christman, J. K.; Goddard, A.; Alvarez, E.; Ford Jr., H.; Marquez, V. E.; Marasco, C. J.; Sufrin, J. R.; O'Gara, M.; Cheng, X. J. Mol. Biol. 1999, 285, 2021–2034.
 Mechanism of inhibition of DNA (cytosine C5)-methyltransferase by oligodeoxynucleotides containing 5,6-dihydro-5-azacytosine.
- Jurkowska, R. Z.; Jurkowski, T. P.; Jeltsch, A. *ChemBioChem* 2011, *12*, 206–222.
 Structure and function of mammalian DNA methyltransferases.
- 202 Bester, T. H. *Gene* **1988**, *74*, 9–12. Cloning of a mammalian DNA methyltransferase.
- 203 Cheng, X.; Blumenthal, R. M. *Structure* **2008**, *16*, 341–350. Mammalian DNA methyltransferases: a structural perspective.
- 204 Gruenbaum, Y.; Cedar, H.; Razin, A. *Nature* **1982**, *295*, 620–622. Substrate and sequence specificity of a eukaryotic DNA methylase.
- 205 Goyal, R.; Reinhardt, R.; Jeltsch, A. *Nucleic Acids Res.* **2006**, *34*, 1182–1188. Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase.
- Okano, M.; Bell, D. W.; Haber, D. A.; Li, E. *Cell* 1999, 99, 247–257.
 DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.

- Bacolla, A.; Pradhan, S.; Roberts, R. J.; Wells, R. D. J. Biol. Chem. 1999, 274, 33011–33019.
 Recombinant human DNA (cytosine-5) methyltransferase: II. Steady-state kinetics reveal allosteric activation by methylated DNA.
- 208 Chen, T.; Ueda, Y.; Dodge, J. E.; Wang, Z.; Li, E. *Mol. Cell. Biol.* 2003, 23, 5594–5605.
 Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b.
- 209 Jones, P. A.; Liang, G. *Nat. Rev. Genet.* **2009**, *10*, 805–811. Rethinking how DNA methylation patterns are maintained.
- Howlett, S. K.; Reik, W. *Development* 1991, *113*, 119–127.
 Methylation levels of maternal and paternal genomes during preimplantation development.
- Rougier, N.; Bourc'his, D.; Gomes, D. M.; Niveleau, A.; Plachot, M.; Pàldi, A.;
 Viegas-Péquignot, E. *Genes Dev.* 1998, *12*, 2108–2113.
 Chromosome methylation patterns during mammalian preimplantation development.
- Carlson, L. L.; Page, A. W.; Bestor, T. H. *Genes Dev.* 1992, *6*, 2536–2541.
 Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting.
- 213 Kafri, T.; Ariel, M.; Brandeis, M.; Shemer, R.; Urvan, L.; McCarrey, J.; Cedar, H.; Razin, A. *Genes Dev.* 1992, *6*, 705–714.
 Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line.
- Kafri, T.; Gao, X.; Razin, A. *Proc. Natl. Acad. Sci. U. S. A.* 1993, *90*, 10558–10562.
 Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo.
- Oswald, J.; Engemann, S.; Lane, N.; Mayer, W.; A. Olek; Fundele, R.; Dean, W.;
 Reik, W.; Walter, J. *Curr. Biol.* 2000, *10*, 475–478.
 Active demethylation of the paternal genome in the mouse zygote.

- Monk, M.; Boubelik, M.; Lehnert, S. *Development* 1987, 99, 371–382.
 Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development.
- 217 Mayer, W.; Niveleau, A.; Walter, J.; Fundele, R.; Haaf, T. *Nature* **2000**, *403*, 501–502. Demethylation of the zygotic paternal genome.
- Wossidlo, M.; Nakamura, T.; Lepikhov, K.; Marques, C. J.; Zakhartchenko, V.; Boiani, M.; Arand, J.; Nakano, T.; Reik, W.; Walter, J. *Nat. Commun.* 2011, 2, doi: 10.1038/ncomms1240.
 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming.
- Iqbal, K.; Jin, S.-G.; Pfeifer, G. P.; Szabó, P. E. *Proc. Natl. Acad. Sci. U. S. A.* 2011, *108*, 3642–3647.
 Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine.
- Wu, S. C.; Zhang, Y. *Nat. Rev. Mol. Cell Biol.* 2010, *11*, 607–620.Active DNA demethylation: many roads lead to Rome.
- 221 Reik, W.; Dean, W.; Walter, J. *Science* **2001**, *293*, 1089–1093. Epigenetic reprogramming in mammalian development.
- Morgan, H. D.; Santos, F.; Green, K.; Dean, W.; Reik, W. *Hum. Mol. Genet.* 2005, *14*, R47–R58.
 Epigenetic reprogramming in mammals.
- Lee, J.; Inoue, K.; Ono, R.; Ogonuki, N.; Kohda, T.; Kaneko-Ishino, T.; Ogura, A.; Ishino, A. *Development* 2002, *129*, 1807–1817.
 Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells
- Métivier, R.; Gallais, R.; Tiffoche, C.; LePéron, C.; Jurkowska, R. Z.; Carmouche, R. P.; Ibberson, D.; Barath, P.; Demay, F.; Reid, G.; Benes, V.; Jeltsch, A.; Gannon, F.; Salbert, G. *Nature* 2008, 452, 45–50.
 Cyclical DNA methylation of a transcriptionally active promoter.

- Kangaspeska, S.; Stride, B.; Métivier, R.; Polycarpou-Schwarz, M.; Ibberson, D.;
 Carmouche, R. P.; Benes, V.; Gannon, F.; Reid, G. *Nature* 2008, 452, 112–115.
 Transient cyclical methylation of promoter DNA.
- Ma, D. K.; Jang, M.-H.; Guo, J. U.; Kitabatake, Y.; Chang, M.-I.; Pow-anpongkul, N.;
 Flavell, R. A.; Lu, B.; Ming, G.-I.; Song, H. *Science* 2009, *323*, 1074–1077.
 Neuronal activity–induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis.
- Martinowich, K.; Hattori, D.; Wu, H.; Fouse, S.; He, F.; Hu, Y.; Fan, G.; E. Sun, Y. *Science* 2003, *302*, 890–893.
 DNA methylation–related chromatin remodeling in activity-dependent Bdnf gene regulation.
- Bruniquel, D.; Schwartz, R. H. *Nat. Immunol.* 2003, *4*, 235–240.
 Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process.
- Bhattacharya, S. K.; Ramchandani, S.; Cervoni, N.; Szyf, M. *Nature* 1999, *397*, 579–583.
 A mammalian protein with specific demethylase activity for mCpG DNA.
- Hamm, S.; Just, G.; Lacoste, N.; Moitessier, N.; Szyf, M.; Mamer, O. *Bioorg. Med. Chem. Lett.* 2008, *18*, 1046–1049.
 On the mechanism of demethylation of 5-methylcytosine in DNA.
- Ng, H.-H.; Zhang, Y.; Hendrich, B.; Johnson, C. A.; Turner, B. M.; Erdjument-Bromage, H.; Tempst, P.; Reinberg, D.; Bird, A. *Nat. Genet.* 1999, 23, 58–61.
 MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex.
- Weiss, A.; Keshet, I.; Razin, A.; Cedar, H. *Cell* 1996, *86*, 709–718.DNA demethylation *in vitro*: involvement of RNA.
- Razin, A.; Szyf, M.; Kafri, T.; Roll, M.; Giloh, H.; Scarpa, S.; Carotti, D.; Cantoni, G. L. *Proc. Natl. Acad. Sci. U. S. A.* 1986, *83*, 2827–2831.
 Replacement of 5-methylcytosine by cytosine: a possible mechanism for transient DNA demethylation during differentiation.

- Bransteitter, R.; Pham, P.; Scharff, M. D.; Goodman, M. F. *Proc. Natl. Acad. Sci. U. S. A.* 2003, *100*, 4102–4107.
 Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase.
- Morgan, H. D.; Dean, W.; Coker, H. A.; Reik, W.; Petersen-Mahrt, S. K. J. Biol. Chem. 2004, 279, 52353–52360.
 Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues.
- Wiebauer, K.; Jiricny, J. *Nature* 1989, *339*, 234–236. *In vitro* correction of G·T mispairs to G·C pairs in nuclear extracts from human cells.
- Hendrich, B.; Hardeland, U.; Ng, H.-H.; Jiricny, J.; Bird, A. *Nature* 1999, 401, 301–304.
 The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites.
- Jost, J. P. *Proc. Natl. Acad. Sci. U. S. A.* 1993, *90*, 4684–4688.
 Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine.
- 239 Frémont, M.; Siegmann, M.; Gaulis, S.; Matthies, R.; Hess, D.; Jost, J.-P. *Nucleic Acids Res.* 1997, 25, 2375–2380.
 Demethylation of DNA by purified chick embryo 5-methylcytosine-DNA glycosylase requires both protein and RNA.
- Jost, J.-P.; Siegmann, M.; Sun, L.; Leung, R. J. Biol. Chem. 1995, 270, 9734–9739.
 Mechanisms of DNA demethylation in chicken embryos: purification and properties of a 5-methylcytosine-DNA-glycosylase.
- Zhu, B.; Benjamin, D.; Zheng, Y.; Angliker, H.; Thiry, S.; Siegmann, M.; Jost, J.-P. *Proc. Natl. Acad. Sci. U. S. A.* 2001, *98*, 5031–5036.
 Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene.
- Vairapandi, M.; Duker, N. J. *Nucleic Acids Res.* 1993, *21*, 5323–5327.Enzymic removal of 5-methylcytosine from DNA by a human DNA-glycosylase.

- Zhu, B.; Zheng, Y.; Hess, D.; Angliker, H.; Schwarz, S.; Siegmann, M.; Thiry, S.; Jost, J.-P. *Proc. Natl. Acad. Sci. U. S. A.* 2000, *97*, 5135–5139.
 5-Methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex.
- Zhu, B.; Zheng, Y.; Angliker, H.; Schwarz, S.; Thiry, S.; Siegmann, M.; Jost, J.-P. *Nucleic Acids Res.* 2000, *28*, 4157–4165.
 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence.
- Jost, J.-P.; Schwarz, S.; Hess, D.; Angliker, H.; Fuller-Pace, F. V.; Stahl, H.; Thiry, S.; Siegmann, M. *Nucleic Acids Res.* 1999, *27*, 3245–3252.
 A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein-RNA complex of 5-MeC-DNA glycosylase.
- Popp, C.; Dean, W.; Feng, S.; Cokus, S. J.; Andrews, S.; Pellegrini, M.; Jacobsen, S. E.; Reik, W. *Nature* 2010, *463*, 1101–1105.
 Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency.
- Bhutani, N.; Brady, J. J.; Damian, M.; Sacco, A.; Corbel, S. Y.; Blau, H. M. *Nature* 2010, *463*, 1042–1047.
 Reprogramming towards pluripotency requires AID-dependent DNA demethylation.
- Ito, S.; D'Alessio, A. C.; Taranova, O. V.; Hong, K.; Sowers, L. C.; Zhang, Y. *Nature* 2010, *466*, 1129–1135.
 Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification.
- Zhu, J.-K. *Annu. Rev. Genet.* 2009, *43*, 143–166.Active DNA demethylation mediated by DNA glycosylases.
- Bhutani, N.; Burns, D. M.; Blau, H. M. Cell 2011, 146, 866–872.DNA demethylation dynamics.
- 251 Kriaucionis, S.; Heintz, N. Science 2009, 324, 929–930.
 The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain.

- 252 Tahiliani, M.; Koh, K. P.; Shen, Y.; Pastor, W. A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L. M.; Liu, D. R.; Aravind, L.; Rao, A. *Science* 2009, *324*, 930–935. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.
- Penn, N. W.; Suwalski, R.; O'Riley, C.; Bojanowski, K.; Yura, R. *Biochem. J.* 1972, *126*, 781–790.
 The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid.
- Pfaffeneder, T.; Hackner, B.; Truss, M.; Münzel, M.; Müller, M.; Deiml, C. A.;
 Hagemeier, C.; Carell, T. *Angew. Chem., Int. Ed.* 2011, *50*, 7008–7012.
 The discovery of 5-formylcytosine in embryonic stem cell DNA.

Pfaffeneder, T.; Hackner, B.; Truss, M.; Münzel, M.; Müller, M.; Deiml, C. A.; Hagemeier, C.; Carell, T. *Angew. Chem.* **2011**, *123*, 7146–7150. The discovery of 5-formylcytosine in embryonic stem cell DNA.

- Ito, S.; Shen, L.; Dai, Q.; Wu, S. C.; Collins, L. B.; Swenberg, J. A.; He, C.; Zhang, Y. *Science* 2011, *333*, 1300–1303.
 Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxyl-cytosine.
- Wagner, J. R.; Cadet, J. Acc. Chem. Res. 2010, 43, 564–571.
 Oxidation reactions of cytosine DNA components by hydroxyl radical and oneelectron oxidants in aerated aqueous solutions.
- Bienvenu, C.; Wagner, J. R.; Cadet, J. J. Am. Chem. Soc. 1996, 118, 11406–11411.
 Photosensitized oxidation of 5-methyl-2'-deoxycytidine by 2-methyl-1,4-naphthoquinone: characterization of 5-(hydroperoxymethyl)-2'-deoxycytidine and stable methyl group oxidation products.
- He, Y.-F.; Li, B.-Z.; Li, Z.; Liu, P.; Wang, Y.; Tang, Q.; Ding, J.; Jia, Y.; Chen, Z.; Li, L.; Sun, Y.; Li, X.; Dai, Q.; Song, C.-X.; Zhang, K.; He, C.; Xu, G.-L. *Science* 2011, *333*, 1303–1307.
 Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.
- Zhang, L.; Lu, X.; Lu, J.; Liang, H.; Dai, Q.; Xu, G.-L.; Luo, C.; Jiang, H.; He, C. *Nat. Chem. Biol.* 2012, *8*, 328–330.
 Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA.
- Maiti, A.; Drohat, A. C. *J. Biol. Chem.* 2011, 286, 35334–35338.
 Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites.
- Maiti, A.; Michelson, A. Z.; Armwood, C. J.; Lee, J. K.; Drohat, A. C. J. Am. Chem. Soc. 2011, 135, 15813–15822.
 Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxyl-cytosine from DNA.
- Raiber, E.-A.; Beraldi, D.; Ficz, G.; Burgess, H. E.; Branco, M. R.; Murat, P.; Oxley, D.; Booth, M. J.; Reik, W.; Balasubramanian, S. *Genome Biol.* 2012, *13*, R69–R80.
 Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase.
- Shen, L.; Wu, H.; Diep, D.; Yamaguchi, S.; D'Alessio, A. C.; Fung, H.-L.; Zhang, K.;
 Zhang, Y. *Cell* 2013, *153*, 692–706.
 Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics.
- Guo, J. U.; Su, Y.; Zhong, C.; Ming, G.-l.; Song, H. *Cell* 2011, *145*, 423–434.
 Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain.
- Boorstein, R. J.; Cummings Jr., A.; Marenstein, D. R.; Chan, M. K.; Ma, Y.; Neubert, T. A.; Brown, S. M.; Teebor, G. W. *J. Biol. Chem.* 2001, 276, 41991–41997.
 Definitive identification of mammalian 5-hydroxymethyluracil DNA *N*-glycosylase activity as SMUG1.
- Hollstein, M. C.; Brooks, P.; Linn, S.; Ames, B. N. *Proc. Natl. Acad. Sci. U. S. A.* **1984**, *81*, 4003–4007.
 Hydroxymethyluracil DNA glycosylase in mammalian cells.
- Masaoka, A.; Matsubara, M.; Hasegawa, R.; Tanaka, T.; Kurisu, S.; Terato, H.; Ohyama, Y.; Karino, N.; Matsuda, A.; Ide, H. *Biochemistry* 2003, *42*, 5003–5012.
 Mammalian 5-formyluracil–DNA glycosylase. 2. Role of SMUG1 uracil–DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions.

268 Cortellino, S.; Xu, J.; Sannai, M.; Moore, R.; Caretti, E.; Cigliano, A.; Le Coz, M.; Devarajan, K.; Wessels, A.; Soprano, D.; Abramowitz, L. K.; Bartolomei, M. S.; Rambow, F.; Bassi, M. R.; Bruno, T.; Fanciulli, M.; Renner, C.; Klein-Szanto, A. J.; Matsumoto, Y.; Kobi, D.; Davidson, I.; Alberti, C.; Larue, L.; Bellacosa, A. *Cell* 2011, *146*, 67–79.
Thymine DNA glycosylase is essential for active DNA demethylation by linked de

Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair.

- Moréra, S.; Grin, I.; Vigouroux, A.; Couvé, S.; Henriot, V.; Saparbaev, M.; Ishchenko, A. A. *Nucleic Acids Res.* 2012, *40*, 9917–9926.
 Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA.
- Zhang, Q.-M.; Yonekura, S.-I.; Takao, M.; Yasui, A.; Sugiyama, H.; Yonei, S. DNA Repair 2005, 4, 71–79.
 DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the hNEIL1 and hNTH1 enzymes in human cells.
- Nabel, C. S.; Jia, H.; Ye, Y.; Shen, L.; Goldschmidt, H. L.; Stivers, J. T.; Zhang, Y.; Kohli, R. M. *Nat. Chem. Biol.* 2012, *8*, 751–758.
 AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation.
- 272 Rangam, G.; Schmitz, K.-M.; Cobb, A. J. A.; Petersen-Mahrt, S. K. *PloS One* 2012, 7, e43279, doi: 43210.41371/journal.pone.0043279.
 AID enzymatic activity is inversely proportional to the size of cytosine C5 orbital cloud.
- 273 Liutkevičiūtė, Z.; Lukinavicius, G.; Masevicius, V.; Daujotyte, D.; Klimašauskas, S. *Nat. Chem. Biol.* 2009, *5*, 400–402.
 Cytosine-5-methyltransferases add aldehydes to DNA.
- Ladwein, K. I.; Jung, M. Angew. Chem., Int. Ed. 2011, 50, 12143–12145.
 Oxidized cytosine metabolites offer a fresh perspective for active DNA demethylation.
 Ladwein, K. I.; Jung, M. Angew. Chem. 2011, 123, 12347–12349.
 Oxidierte Cytosin-Derivate der Schlüssel zur aktiven DNA-Demethylierung?
- 275 Giaccone, G. *Drugs* 2000, *59 (Suppl4)*, 9–17.Clinical perspectives on platinum resistance.

- 276 Ozols, R. F. *Cancer Treatment Rev.* **1991**, *18 (SupplA)*, 77–83. Ovarian cancer: new clinical approaches.
- Khokhar, A. R.; Xu, Q.; Newman, R. A.; Kido, Y.; Siddik, Z. H. J. Inorg. Biochem. 1992, 45, 211–219.
 Synthesis, characterization, and antitumor activity of new chloroethylamine platinum complexes.
- 278 Connors, T. A.; Jones, M.; Ross, W. C. J.; Braddock, P. D.; Khokhar, A. R.; Tobe, M. L. *Chem.-Biol. Interact.* 1972, *5*, 415–424.
 New platinum complexes with anti-tumour activity.
- 279 Lee, K.-I.; Tashiro, T.; Noji, M. *Chem. Pharm. Bull.* 1994, *42*, 702–703.
 Platinum and palladium complexes containing ethylenediamine derivatives as carrier ligands and their antitumor activity.
- 280 Ukraintsev, V. B.; Yakovlev, A. V.; Kukushkin, Y. N. *Russ. J. Gen. Chem.* 1987, *57*, 858–859.
 Synthesis and properties of 2-chloroethylamine Pt(II) complexes.
- Dedon, P. C.; Borch, R. F. *Biochem. Pharmacol.* 1987, *36*, 1955–1964.
 Characterization of the reactions of platinum antitumor agents with biologic and nonbiologic sulfur-containing nucleophiles.
- Heudi, O.; Cailleux, A.; Allain, P. J. Inorg. Biochem. 1998, 71, 61–69.
 Kinetic studies of the reactivity between cisplatin and its monoaquo species with L-methionine.
- Norman, R. E.; Ranford, J. D.; Sadler, P. J. *Inorg. Chem.* 1992, *31*, 877–888.
 Studies of platinum(II) methionine complexes: metabolites of cisplatin.
- El-Khateeb, M.; Appleton, T. G.; Gahan, L. R.; Charles, B. G.; Berners-Price, S. J.; Bolton, A.-M. *J. Inorg. Biochem.* 1999, 77, 13–21.
 Reactions of cisplatin hydrolytes with methionine, cysteine, and plasma ultrafiltrate studied by a combination of HPLC and NMR techniques.
- Riley, C. M.; Sternson, L. A.; Repta, A. J. *Anal. Biochem.* 1982, *124*, 167–179.
 Assessment of cisplatin reactivity with peptides and proteins using reverse-phase high-performance liquid chromatography and flameless atomic absorption spectroscopy.

- Speelmans, G.; Staffhorst, R. W. H. M.; Versluis, K.; Reedijk, J.; de Kruijff, B. *Biochemistry* 1997, 36, 10545–10550.
 Cisplatin Complexes with Phosphatidylserine in Membranes.
- 287 Corden, B. J. *Inorg. Chim. Acta* 1987, *137*, 125–130.
 Reaction of platinum(II) antitumor agents with sulfhydral compounds and the implications for nephrotoxicity.
- Reedijk, J. *Chem. Rev.* 1999, 99, 2499–2510.
 Why does cisplatin reach guanine-N⁷ with competing S-donor ligands available in the cell?
- Denny, W. A. *Curr. Med. Chem.* 2001, *8*, 533–544.DNA minor groove alkylating agents.
- 290 Reddy, B. S. P.; Sharma, S. K.; Lown, J. W. *Curr. Med. Chem.* **2001**, *8*, 475–508. Recent developments in sequence selective minor groove DNA effectors.
- 291 Sondhi, S. M.; Reddy, B. S. P.; Lown, J. W. *Curr. Med. Chem.* **1997**, *4*, 313–358. Lexitropsin conjugates: action on DNA targets.
- 292 Goodsell, D. S. *Curr. Med. Chem.* **2001**, *8*, 509–516. Sequence recognition of DNA by lexitropsins.
- Zhu, L.; Smith, P. P.; Boyes, S. G. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1062–1067.
 pH-Responsive polymers for imaging acidic biological environments in tumors.
- Zhang, X.; Lin, Y.; Gillies, R. J. J. Nucl. Med. 2010, 51, 1167–1170.Tumor pH and its measurement.
- Kohn, K. W.; Glaubiger, D.; Spears, C. L. *Biochim. Biophys. Acta, Nucleic Acids Protein Synth.* 1974, 361, 288–302.
 The reaction of anthramycin with DNA: II. Studies of kinetics and mechanism.
- Hemminki, K. *Cancer Res.* 1985, 45, 4237–4243.Binding of metabolites of cyclophosphamide to DNA in a rat liver microsomal system and *in vivo* in mice.

- Altman, J.; Wilchek, M.; Warshawsky, A. *Inorg. Chim. Acta* 1985, *107*, 165–168.
 Platinum(II) complexes with 2,4-diaminobutyric acid, ornithine, lysine and 4,5-diaminovaleric acid.
- Igarashi, Y.; Yanagisawa, E.; Ohshima, T.; Takeda, S.; Aburada, M.; Miyamoto, K.-i. *Chem. Pharm. Bull.* 2007, 55, 328–333.
 Synthesis and evaluation of carbamate prodrugs of a phenolic compound.
- 299 Price, C. C.; Kabas, G.; Nakata, I. *J. Med. Chem.* **1965**, *8*, 650–655. Some amino and ammonio nitrogen mustard analogs.
- Springer, C. J.; Antoniw, P.; Bagshawe, K. D.; Searle, F.; Bisset, G. M. F.; Jarman, M. *J. Med. Chem.* 1990, 33, 677–681.
 Novel prodrugs which are activated to cytotoxic alkylating agents by carboxypeptidase G2.
- Milanesio, M.; Monti, E.; Gariboldi, M. B.; Gabano, E.; Osella, M. R. D. *Inorg. Chim. Acta* 2008, *361*, 2803–2814.
 Trend in cytotoxic activity of a series of *cis*-[APtCl₂] (A = ethylenediamine ethylated at different positions) complexes
- 302 Kerrison, S. J. S.; Sadler, P. J. *J. Chem. Soc., Dalton Trans.* **1982**, 2363–2369. The *trans* influence in platinum chemistry. A platinum-195 nuclear magnetic resonance study of [¹⁵N]nitrito-, chloro-, and bromo-platinum-(II) and -(IV) complexes
- 303 Sandman, K. E.; Fuhrmann, P.; Lippard, S. J. J. Biol. Inorg. Chem. 1998, 3, 74–80.
 A mechanism-based, solution-phase method for screening combinatorial mixtures of potential platinum anticancer drugs.
- Ziegler, C. J.; Sandman, K. E.; Liang, C. H.; Lippard, S. J. J. Biol. Inorg. Chem. 1999, 4, 402–411.
 Toxicity of platinum(II) amino acid (N,O) complexes parallels their binding to DNA as measured in a new solid phase assay involving a fluorescent HMG1 protein construct readout.
- Watabe, M.; Kai, M.; Goto, K.; Ohmuro, H.; Furukawa, S.; Chikaraishi, N.; Takayama, T.; Koike, Y. J. Inorg. Biochem. 2003, 97, 240–248.
 Preparation of platinum(II) complexes with L-serine using KI. X-ray crystal structure, HPLC and ¹⁹⁵Pt NMR spectra.

- Price, J. H.; Williamson, A. N.; Schramm, R. F.; Wayland, B. B. *Inorg. Chem.* 1972, *11*, 1280–1284.
 Palladium(II) and platinum(II) alkyl sulfoxide complexes. Examples of sulfur-bonded, mixed sulfur- and oxygen-bonded, and totally oxygen-bonded complexes.
- 307 Ley, H.; Ficken, K. *Ber. Dtsch. Chem. Ges.* **1912**, *45*, 377–382. Über innere Komplexsalze des Platins und Chroms.
- 308 Schiesser, S.; Mayer, P.; Carell, T.; Beck, W. Z. Naturforsch., B: J. Chem. Sci. 2012, 67b, 849–852.
 Molecular and crystal structure of potassium-L-alaninato-dichloridoplatinate(II), K[Pt(L-alaO)Cl₂].
- 309 Via, L. D.; Gia, O.; Magno, S. M.; Dolmella, A.; Marton, D.; Noto, V. D. *Inorg. Chim. Acta* 2006, 359, 4197–4206.
 Synthesis, characterization and biological activity of platinum(II) complexes with Land D-ornithine ligands.
- Pors, K.; Paniwnyk, Z.; Ruparelia, K. C.; Teesdale-Spittle, P. H.; Hartley, J. A.; Kelland, L. R.; Patterson, L. H. *J. Med. Chem.* 2004, 47, 1856–1859.
 Synthesis and biological evaluation of novel chloroethylaminoanthraquinones with potent cytotoxic activity against cisplatin-resistant tumor cells.
- Bystein, J.; Rosenthal, R. W.; Ess, R. J. Anal. Chem. (Washington, DC, U. S.) 1955, 27, 1435–1439.
 Use of γ-(4-nitrobenzyl)pyridine as analytical reagent for ethylenimines and alkylating agents.
- Kemp, S.; Wheate, N. J.; Buck, D. P.; Nikac, M.; Collins, J. G.; Aldrich-Wright, J. R. *J. Inorg. Biochem.* 2007, *101*, 1049–1058.
 The effect of ancillary ligand chirality and phenanthroline functional group substitution on the cytotoxicity of platinum(II)-based metallointercalators.

- Pei, Z.; Li, X.; Longenecker, K.; von Geldern, T. W.; Wiedeman, P. E.; Lubben, T. H.; Zinker, B. A.; Stewart, K.; Ballaron, S. J.; Stashko, M. A.; Mika, A. K.; Beno, D. W. A.; Long, M.; Wells, H.; Kempf-Grote, A. J.; Madar, D. J.; McDermott, T. S.; Bhagavatula, L.; Fickes, M. G.; Pireh, D.; Solomon, L. R.; Lake, M. R.; Edalji, R.; Fry, E. H.; Sham, H. L.; Trevillyan, J. M. *J. Med. Chem.* 2006, *49*, 3520–3535. Discovery, structure–activity relationship, and pharmacological evaluation of (5-substituted-pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidines as potent dipeptidyl peptidase IV inhibitors.
- Di Pasqua, A. J.; Kerwood, D. J.; Shi, Y.; Goodismana, J.; Dabrowiak, J. C. J. Chem. Soc., Dalton Trans. 2011, 40, 4821–4825.
 Stability of carboplatin and oxaliplatin in their infusion solutions is due to self-association.
- 315 Martell, A. E. *Adv. Chem. Ser.* **1967**, *62*, 272–294. The chelate effect.
- Boyce, J. P.; Brown, M. E.; Chin, W.; Fitzner, J. N.; Paxton, R. J.; Shen, M.; Stevens, T.; Wolfson, M. F.; Wright, C. D. *Bioconjugate Chem.* 2008, *19*, 1775–1783.
 Identification of 14-3-3ζ by chemical affinity with salicylanilide inhibitors of interleukin-12p40 production.
- Zhang, X.-X.; Prata, C. A. H.; Luo, D.; McIntosh, T. J.; Barthélémy, P.; Grinstaff, M. W. *Bioconjugate Chem.* 2010, *21*, 988–993.
 The effect of charge-reversal amphiphile spacer composition on DNA and siRNA delivery.
- 318 Pajk, S.; Pečar, S. *Tetrahedron* 2009, 65, 659–665.Synthesis of novel amphiphilic spin probes with the paramagnetic doxyl group in the polar region.
- Anderson, M. W.; Jones, R. C. F.; Saunders, J. J. Chem. Soc., Perkin Trans. 1 1986, 205–209.
 Dihydroimidazoles in synthesis: C-alkylation of 1-benzyl-2-(α-lithioalkyl)-4,5-di-hydroimidazoles and a synthesis of alkanoic acids.
- Garmaiser, L.; McKay, S. F. J. Am. Chem. Soc. 1958, 80, 3332–3334.Amino acids. VI. Preparation and chemistry of ı-carbalkoxyalkyl isothiocyanates.

Vaillancourt, V. A.; Larsen, S. D.; Tanis, S. P.; Burr, J. E.; Connell, M. A.; Cudahy, M. M.; Evans, B. R.; Fisher, P. V.; May, P. D.; Meglasson, M. D.; Robinson, D. D.; Stevens, F. C.; Tucker, J. A.; Vidmar, T. J.; Yu, J. H. J. Med. Chem. 2001, 44, 1231–1248.

Synthesis and biological activity of aminoguanidine and diaminoguanidine analogues of the antidiabetic/antiobesity agent 3-guanidinopropionic acid.

- Greene, T. W.; Wutts, P. G. M. *Protective groups in organic synthesis*, 3. Aufl., John Wiley and Sons Inc., New York, Chichester, Weinheim, Brisbane, Toronto, Singapore, 1999, S. 59.
- Reishus, J. W.; Martin Jr., D. S. J. Am. Chem. Soc. 1961, 83, 2457–2462.
 cis-Dichlorodiammineplatinum(II). Acid hydrolysis and isotopic exchange of the chloride ligands.
- Miller, S. E.; House, D. A. *Inorg. Chim. Acta* 1989, *161*, 131–137.
 The hydrolysis products of *cis*-diamminedichloroplatinum(II). I. The kinetics of formation and anation of the *cis*-diammine(aqua)chloroplatinum(II) cation in acidic aqueous solution.
- Miller, S. E.; House, D. A. *Inorg. Chim. Acta* 1989, *166*, 189–197.
 The hydrolysis products of *cis*-dichlorodiammineplatinum(II) 2. The kinetics of formation and anation of the *cis*-diamminedi(aqua)platinum(II) cation.
- Miller, S. E.; Gerard, K. J.; House, D. A. *Inorg. Chim. Acta* 1991, *190*, 135–144.
 The hydrolysis products of *cis*-diamminedichloroplatinum(II) 6. A kinetic comparison of the *cis* and *trans*-isomers and other *cis*-di(amine)di(chloro)platinum(II) compounds.
- 327 Cohen, G. L.; Ledner, J. A.; Bauer, W. R.; Ushay, H. M.; Caravana, C.; Lippard, S. J. *J. Am. Chem. Soc.* 1980, *102*, 2487–2488.
 Sequence dependent binding of *cis*-dichlorodiammineplatinum(II) to DNA.
- Stoke, P. J.; Kelmax, A. D.; Stinex, F. M.; Bhargava, M. M.; Halvorson, H. O. J. Mol. Biol. 1976, 104, 793–801.
 Resolution of α, β and γ DNA of Saccharomyces cerevisiae with the antitumor drug cis-Pt(NH₃)₂Cl₂. Evidence for preferential drug binding by GpG sequences of DNA.

- 329 Fichtinger-Schepman, A. M. J.; van der Veer, J. L.; den Hartog, J. H. J.; Lohman, P. H. M.; Reedijk, J. *Biochemistry* 1985, 24, 707–713.
 Adducts of the antitumor drug *cis*-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation.
- 330 Struck, R. F.; Davis Jr., R. L.; Berardini, M. D.; Loechler, E. L. *Cancer Chemother. Pharmacol.* 2000, 45, 59–62.
 DNA guanine-guanine crosslinking sequence specificity of isophosphoramide mustard, the alkylating metabolite of the clinical antitumor agent ifosfamide.
- 331 Hopkins, P. B.; Millard, J. T.; Woo, J.; Weidner, M. F.; Kirchner, J. J.; Sigurdsson, S. T.; Raucher, S. *Tetrahedron* 1991, *47*, 2475–2489.
 Sequence preferences of DNA interstrand cross-linking agents: importance of minimal DNA structural reorganization in the cross-linking reactions of mechlorethamine, cisplatin, and mitomycin C.
- Pillaire, M.-J.; Villani, G.; Hoffmann, J.-S.; Mazard, A.-M.; Defais, M. *Nucleic Acids Res.* 1992, *41*, 6473–6479.
 Characterization and localization of *cis*-diamminedichloro-platinum(II) adducts on a purified oligonucleotide containing the codons 12 and 13 of H-ras proto-oncogene.
- Reißner, T., Dissertation, Ludwig-Maximilians-Universität München, 2010.Das Verhalten des Cisplatin 1,3-d(GpTpG) Schadens während der Replikation.
- 334 Vu, V. T.; Fenselau, C. C. J. Am. Chem. Soc. 1981, 103, 7362–7364.
 Identification of three alkylated nucleotide adducts from the reaction of guanosine 5'-monophosphate with phosphoramide mustard.
- Kallama, S.; Hemminiki, K. *Acta Pharmacol. Toxicol.* 1984, 54, 214–220.
 Alkylation of guanosine by phosphoramide mustard, chloromethine hydrochloride and chlorambucil.
- Tullius, T. D.; Lippard, S. J. J. Am. Chem. Soc. 1981, 103, 4620–4622.
 cis-Diamminedichloroplatinum(II) binds in a unique manner to oligo(dG)·oligo(dC) sequences in DNA a new assay using exonuclease III.
- Ushay, H. M.; Tullis, T. D.; Lippard, S. J. *Biochemistry* 1981, 20, 3744–3748.
 Inhibition of the BamHI cleavage and unwinding of pBR322 deoxyribonucleic acid by the antitumor drug *cis*-dichlorodiammineplatinum(II).

- 338 Brown, D. M.; Todd, A. R. in *The nucleic acids*, Aufl. 1 (Hrsg.: Chargaff, E.; Davidson, J. N.), Academic Press Inc., New York, **1955**, S. 444.
- Sashiwa, H.; Shigemasa, Y.; Roy, R. *Carbohydr. Polym.* 2002, 49, 195–205.
 Chemical modification of chitosan 11: chitosan–dendrimer hybrid as a tree like molecule.
- Kasuga, Y.; Ito, M.; Onoda, W.; Nakamura, Y.; Inokuma, S.; Matsuda, T.; Nishimura, J. *Heterocycles* 2009, *78*, 983–997.
 Kinetic study on Huisgen reaction catalyzed by copper(I): triazol formation from water-soluble alkyne and alkyl azide.
- Besenius, P.; Cormack, P. A. G.; Ludlow, R. F.; Otto, S.; Sherrington, D. C. *Chem. Commun. (Cambridge, U. K.)* 2008, 2809–2811.
 Polymer-supported cationic templates for molecular recognition of anionic hosts in water.
- Jalisatgi, S. S.; Kulkarni, V. S.; Tang, B.; Houston, Z. H.; Lee Jr., M. W.; Hawthorne, M. F. J. Am. Chem. Soc. 2011, 133, 12382–12385.
 A convenient route to diversely substituted icosahedral closomer nanoscaffolds.
- Ali, M. S.; Longoria Jr., E.; Ely, T. O.; Whitmire, K. H.; Khokhar, A. R. *Polyhedron* 2006, 25, 2065–2071.
 Homopiperazine Pt(II) adducts with DNA bases and nucleosides: crystal structure of [PtII(homopiperazine)(9-ethylguanine)₂](NO₃)₂.
- Pena, M. R.; Stille, J. K. J. Am. Chem. Soc. 1989, 111, 5417–5424.A total synthesis of anthramycin. Application of palladium-catalyzed coupling reactions for the attachment of the acrylic side chain.
- Heindl, C.; Hübner, H.; Gmeiner, P. *Tetrahedron: Asymmetry* 2003, 14, 3141–3152.
 Ex-chiral pool synthesis and receptor binding studies of 4-substituted prolinol derivatives.
- 346 de Macédo, P.; Marrano, C.; Keillor, J. W. *Bioorg. Med. Chem.* **2002**, *10*, 355–360. Synthesis of dipeptide-bound epoxides and α , β -unsaturated amides as potential irreversible transglutaminase inhibitors.

- Scott, W. J.; Pena, M. R.; Sward, K.; Stoessel, S. J.; Stille, J. K. J. Org. Chem. 1985, 50, 2302–2308.
 Palladium-catalyzed olefination of vinyl triflates.
- 348 Bew, S. P.; Sweeney, J. B. *Synlett* **1991**, *2*, 109–110. Hydrostannation of acetylenic acid derivatives.
- Mee, S. P. H.; Lee, V.; Baldwin, J. E. Angew. Chem., Int. Ed. 2004, 43, 1132–1136.
 Stille coupling made easier—The synergic effect of copper(I) salts and the fluoride ion.

Mee, S. P. H.; Lee, V.; Baldwin, J. E. *Angew. Chem.* **2004**, *116*, 1152–1156. Stille coupling made easier—The synergic effect of copper(I) salts and the fluoride ion.

- Han, X.; Stoltz, B. M.; Corey, E. J. J. Am. Chem. Soc. 1999, 121, 7600–7605.
 Cuprous chloride accelerated Stille reactions. A general and effective coupling system for sterically congested substrates and for enantioselective synthesis.
- 351 Thurston, D. E.; Bose, D. S. *Chem. Rev.* 1994, *94*, 433–465.Synthesis of DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepines.
- Li, B.; Berliner, M.; Buzon, R.; Chiu, C. K.-F.; Colgan, S. T.; Kaneko, T.; Keene, N.; Kissel, W.; Le, T.; Leeman, K. R.; Marquez, B.; Morris, R.; Newell, L.; Wunderwald, S.; Witt, M.; Weaver, J.; Zhang, Z.; Zhang, Z. J. Org. Chem. 2006, 71, 9045–9050. Aqueous phosphoric acid as a mild reagent for deprotection of *tert*-butyl carbamates, esters, and ethers.
- Wasserman, H. H.; Berger, G. D.; Cho, K. R. *Tetrahedron Lett.* 1982, 23, 465–468.
 Transamidation reactions using β-lactams. The synthesis of homaline.
- 354 Krogmann, K.; Dodell, P. *Chem. Ber.* **1966**, *99*, 3402–3407. Über die "Isomerie" der Dioxalatoplatinate - 1. Die Salze.
- 355 Kress, C.; Thomassin, H.; Grange, T. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11112–11117.
 Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks.

- Loeb, L. A.; Preston, B. D. *Annu. Rev. Genet.* 1986, 20, 201–230.Mutagenesis by apurinic/apyrimidinic sites.
- Farzaneh, F.; Zalin, R.; Brill, D.; Shall, S. *Nature* 1982, *300*, 362–366.
 DNA strand breaks and ADP-ribosyl transferase activation during cell differentiation
- Johnstone, A. P.; Williams, G. T. *Nature* 1982, *300*, 368–370.
 Role of DNA breaks and ADP-ribosyl transferase activity in eukaryotic differentiation demonstrated in human lymphocytes.
- Kress, C.; Thomassin, H.; Grange, T. *FEBS Lett.* 2001, 494, 135–140.
 Local DNA demethylation in vertebrates: how could it be performed and targeted?
- Palmatier, R. D.; McCroskey, R. P.; Abbott, M. T. J. Biol. Chem. 1970, 245, 6706–6710.
 The enzymatic conversion of uracil 5-carboxylic acid to uracil and carbon dioxide.
- 361 Shaffer, P. M.; Hsu, C. A.; Abbott, M. T. *J. Bacteriol.* **1975**, *121*, 648–655. Metabolism of pyrimidine deoxyribonucleosides in *Neurospora crassa*.
- Booth, M. J.; Branco, M. R.; Ficz, G.; Oxley, D.; Krueger, F.; Reik, W.;
 Balasubramanian, S. *Science* 2012, *336*, 934–937.
 Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution.
- 363 Globisch, D.; Münzel, M.; Müller, M.; Michalakis, S.; Wagner, M.; Koch, S.; Brückl, T.; Biel. M.: Carell, T. PloS One 2010. 5. e15367. doi: 15310.11371/journal.pone.0015367. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates.
- Ravanat, J.-L.; Douki, T.; Duez, P.; Gremaud, E.; Herbert, K.; Hofer, T.; Lasserre, L.;
 Saint-Pierre, C.; Favier, A.; Cadet, J. *Carcinogenesis* 2002, 23, 1911–1918.
 Cellular background level of 8-oxo-7,8-dihydro-2'-deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up.

- Ficz, G.; Branco, M. R.; Seisenberger, S.; Santos, F.; Krueger, F.; Hore, T. A.; Marques, C. J.; Andrews, S.; Reik, W. *Nature* 2011, 473, 398–402.
 Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.
- Bultmann, S.; Morbitzer, R.; Schmidt, C. S.; Thanisch, K.; Spada, F.; Elsaesser, J.;
 Lahaye, T.; Leonhardt, H. *Nucleic Acids Res.* 2012, 40, 5368–5377.
 Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers.
- 367 Schiesser, S.; Hackner, B.; Pfaffeneder, T.; Müller, M.; Hagemeier, C.; Truss, M.; Carell, T. *Angew. Chem., Int. Ed.* 2012, *51*, 6516–6520.
 Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing.

Schiesser, S.; Hackner, B.; Pfaffeneder, T.; Müller, M.; Hagemeier, C.; Truss, M.; Carell, T. *Angew. Chem.* **2012**, *124*, 6622–6626. Mechanismus und Stammzellaktivität der Decarboxylierung von 5-Carboxycytosin, bestimmt mittels Isotopenverfolgung.

- Nui, C.-H. Anal. Biochem. 1984, 139, 404–407.
 Synthesis of [4-¹⁵NH₂]- and [1,3-¹⁵N₂]cytidine derivatives for use in NMR-monitored binding tests.
- 369 Hoffer, M. Chem. Ber. 1960, 93, 2777–2781.α-Thymidin.
- 370 Dierckx, A.; Miannay, F.-A.; Gaied, N. B.; Preus, S.; Björck, M.; Brown, T.; Wilhelmsson, L. M. *Chem.-Eur. J.* 2012, *18*, 5987–5997.
 Quadracyclic adenine: a non-perturbing fluorescent adenine analogue.
- Pathak, T.; Bazin, H.; Chattopadhyaya, J. *Tetrahedron* 1986, *42*, 5427–5441.
 Synthesis of 2'-deoxy-2'(S)-deuterio and 2'-deoxy-2' (R)-deuterio-β-D-nucleosides.
- Hedge, R. P.; Brush, C. K.; Harris, C. M.; Harris, T. M. J. Org. Chem. 1991, 56, 1553–1564.
 Synthesis of 1- and 1,2,2'-deuteriated deoxyribose and incorporation into deoxyribonucleosides.

- 373 Asakura, J.-i.; Robins, M. J. *J. Org. Chem.* **1990**, *55*, 4928–4933. Cerium(IV)-mediated halogenation at C-5 of uracil derivatives.
- Matsuda, A.; Takenuki, K.; Tanaka, M.; Sasaki, T.; Uedat, T. J. Med. Chem. 1991, 34, 812–819.
 Nucleosides and nucleotides. 97. Synthesis of new broad spectrum antineoplastic nucleosides, 2'-deoxy-2'-methylidenecytidine (DMDC) and its derivatives.
- Münzel, M.; Lischke, U.; Stathis, D.; Pfaffeneder, T.; Gnerlich, F. A.; Deiml, C. A.; Koch, S. A.; Karaghiosoff, K.; Carell, T. *Chem.-Eur. J.* 2011, *17*, 13782–13788.
 Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxy-methylcytosine, 5-formylcytosine and 5-carboxylcytosine.
- Münzel, M.; Globisch, D.; Trindler, C.; Carell, T. Org. Lett. 2010, 12, 5671–5673.
 Efficient synthesis of 5-hydroxymethylcytosine containing DNA.
- Bannwarth, W.; Trzeciak, A. *Helv. Chim. Acta* 1987, 70, 175–186.A simple and effective chemical phosphorylation procedure for biomolecules.
- Gierlich, J.; Burley, G. A.; Gramlich, P. M. E.; Hammond, D. M.; Carell, T. *Org. Lett.*2006, *8*, 3639–3642.
 Click chemistry as a reliable method for the high-density postsynthetic functionalization of alkyne-modified DNA.
- Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–2021.
 Click chemistry: diverse chemical function from a few good reactions.
 Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. 2001, 113, 2056–2075.
 Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen.
- Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064.
 Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.

- Gramlich, P. M. E.; Wirges, C. T.; Manetto, A.; Carell, T. Angew. Chem., Int. Ed. 2008, 47, 8350–8358.
 Postsynthetic DNA modification through the copper-catalyzed azide–alkyne cyclo-addition reaction.
 Gramlich, P. M. E.; Wirges, C. T.; Manetto, A.; Carell, T. Angew. Chem. 2008, 120, 8478–8487.
 Postsynthetische DNA-Modifizierung mithilfe der kupferkatalysierten Azid-Alkin-Cycloaddition.
- 382 Dignam, J. D. *Method. Enzymol.* 1990, *182*, 194–203.Preparation of extracts from higher eukaryotes.
- 383 Dignam, J. D.; Lebovitz, R. M.; Roeder, R. G. Nucleic Acids Res. 1983, 11, 1475–1489.
 Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei.
- Guthrie, J. P.; Jordan, F. J. Am. Chem. Soc. 1972, 94, 9136–9141.
 Amine-catalyzed decarboxylation of acetoacetic acid. The rate constant for decarboxylation of a β-imino acid.
- 385 Ogilvie, K. K. *Can. J. Chem.* 1973, *51*, 3799–3807.
 The *tert*-butyldimethylsilyl group as a protecting group in deoxynucleosides.
- Sekine, M.; Masuda, N.; Hata, T. *Tetrahedron* 1985, *41*, 5445–5453.
 Introduction of the 4,4'4'-tris(benzoyloxy)trityl group into the exo amino groups of deoxyribonucleosides and its properties.
- 387 Chan, J. W.; Hoyle, C. E.; Lowe, A. B.; Bowman, M. *Macromolecules* 2010, 43, 6381–6388.
 Nucleophile-initiated thiol-Michael reactions: effect of organocatalyst, thiol, and ene.
- 388 Thalji, N. K.; Crowe, W. E.; Waldrop, G. L. J. Org. Chem. 2009, 74, 144–152. Kinetic mechanism and structural requirements of the amine-catalyzed decarboxylation of oxaloacetic acid.
- Laskowski, R. A.; Luscombe, N. M.; Swindells, M. B.; Thornton, J. M. *Protein Sci.* 1996, *5*, 2438–2452.
 Protein clefts in molecular recognition and function.

- Kriukienė, E.; Liutkevičiūtė, Z.; Klimašauskas, S. *Chem. Soc. Rev.* 2012, *41*, 6916–6930.
 5-Hydroxymethylcytosine the elusive epigenetic mark in mammalian DNA.
- 391 Pfaffeneder, T., Dissertation, Ludwig-Maximilians-Universität München, 2014 (vsl.).
- Liu, S.; Wang, J.; Su, Y.; Guerrero, C.; Zeng, Y.; Mitra, D.; Brooks, P. J.; Fisher, D. E.; Song, H.; Wang, Y. *Nucleic Acids Res.* 2013, *41*, 6421–6429.
 Quantitative assessment of Tet-induced oxidation products of 5-methylcytosine in cellular and tissue DNA.
- Münzel, M.; Globisch, D.; Brückl, T.; Wagner, M.; Welzmiller, V.; Michalakis, S.;
 Müller, M.; Biel, M.; Carell, T. *Angew. Chem., Int. Ed.* 2010, *49*, 5375–5377.
 Quantification of the sixth DNA base hydroxymethylcytosine in the brain.
 Münzel, M.; Globisch, D.; Brückl, T.; Wagner, M.; Welzmiller, V.; Michalakis, S.;
 Müller, M.; Biel, M.; Carell, T. *Angew. Chem.* 2010, *122*, 5503–5505.
 Quantitative Bestimmung der sechsten DNA-Base Hydroxymethylcytosin im Gehirn
- Schiesser, S.; Pfaffeneder, T.; Sadeghian, K.; Hackner, B.; Steigenberger, B.;
 Schröder, A. S.; Steinbacher, J.; Kashiwazaki, G.; Höfner, G.; Wanner, K. T.;
 Ochsenfeld, C.; Carell, T. J. Am. Chem. Soc. 2013, 135, 14593–14599.
 Deamination, oxidation and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxycytosine.
- Taghizadeh, K.; McFaline, J. L.; Pang, B.; Sullivan, M.; Dong, M.; Plummer, E.; Dedon, P. C. *Nat. Protoc.* 2008, *3*, 1287–1298.
 Quantification of DNA damage products resulting from deamination, oxidation and reaction with products of lipid peroxidation by liquid chromatography isotope dilution tandem mass spectrometry.
- 396 Privat, E.; Sowers, L. C. *Chem. Res. Toxicol.* 1996, *9*, 745–750.Photochemical deamination and demethylation of 5-methylcytosine.
- Helbock, H. J.; Beckman, K. B.; Ames, B. N. *Methods Enzymol.* 1999, 300, 156–166.
 8-Hydroxydeoxyguanosine and 8-hydroxyguanine as biomarkers of oxidative DNA damage.

Liutkevičiūtė, Z.; Kriukienė, E.; Grigaitytė, I.; Masevičius, V.; Klimašauskas, S. *Angew. Chem., Int. Ed.* 2011, 50, 2090–2093.
Methyltransferase-directed derivatization of 5-hydroxymethylcytosine in DNA.
Liutkevičiūtė, Z.; Kriukienė, E.; Grigaitytė, I.; Masevičius, V.; Klimašauskas, S. *Angew. Chem.* 2011, 123, 2138–2141.

Methyltransferase-directed derivatization of 5-hydroxymethylcytosine in DNA.

- Hayatsu, H.; Shiragami, M. *Biochemistry* 1979, 18, 632–637.
 Reaction of bisulfite with the 5-hydroxymethyl group in pyrimidines and in phage DNAs.
- 400 Atkins, P. W.; de Paula, J. *Physikalische Chemie*, 4. Aufl., Wiley VCH, Weinheim, **2004**, S. 878–889.
- 401 McQuarrie, D. A.; Simon, J. D., *Physical Chemistry A Molecular Approach*, 1. Aufl., University Science Books, Sausalito (Kalifornien), **1997**, S. 1054–1062.
- 402 Frederico, L. A.; Kunkel, T. A.; Shaw, B. R. *Biochemistry* 1990, *29*, 2532–2537.
 A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy.
- 403 Shen, J.-C.; Rideout III, W. M.; Jones, P. A. *Nucleic Acids Res.* **1994**, *22*, 972–976. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA.
- Jäger, S.; Rasched, G.; Kornreich-Leshem, H.; Engeser, M.; Thum, O.; Famulok, M. J. Am. Chem. Soc. 2005, 127, 15071–15082.
 Versatile toolbox for variable DNA functionalization at high density.
- Kuwahara, M.; Nagashima, J.-i.; Hasegawa, M.; Tamura, T.; Kitagata, R.; Hanawa, K.; Hososhima, S.-i.; Kasamatsu, T.; Ozaki, H.; Sawai, H. *Nucleic Acids Res.* 2006, 34, 5383–5394.
 Systematic characterization of 2'-deoxynucleoside- 5'-triphosphate analogs as substrates for DNA polymerases by polymerase chain reaction and kinetic studies on enzymatic production of modified DNA.
- Shoji, A.; Hasegawa, T.; Kuwahara, M.; Ozaki, H.; Sawai, H. *Bioorg. Med. Chem. Lett.* 2007, *17*, 776–779.
 Chemico-enzymatic synthesis of a new fluorescent-labeled DNA by PCR with a thymidine nucleotide analogue bearing an acridone derivative.

- 407 Canene-Adams, K. in *Methods in Enzymology General PCR*, 1. Aufl. (Hrsg. Lorsch, J.), Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapur, Sydney, Tokyo, 2013, S. 291–298.
- Steigenberger, B.; Schiesser, S.; Hackner, B.; Brandmayr, C.; Laube, S. K.;
 Steinbacher, J.; Pfaffeneder, T.; Carell, T. *Org. Lett.* 2013, *15*, 366–369.
 Synthesis of 5-hydroxymethyl-, 5-formyl-, and 5-carboxycytidine-triphosphates and their incorporation into oligonucleotides by polymerase chain reaction.
- Ludwig, J.; Eckstein, F. J. Org. Chem. 1989, 54, 631–635.
 Rapid and efficient synthesis of nucleoside 5'-0-(1-thiotriphosphates), 5'-triphosphates and 2',3'-cyclophosphorothioates using 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-one.
- 410 Caton-Williams, J.; Smith, M.; Carrasco, N.; Huang, Z. Org. Lett. 2011, 13, 4156–4159.
 Protection-free one-pot synthesis of 2'-deoxynucleoside 5'-triphosphates and DNA polymerization.
- 411 Kore, A. R.; Yang, B.; Srinivasan, B. *Tetrahedron Lett.* **2013**, *54*, 5325–5327. Concise synthesis of 5-methyl-, 5-formyl, and 5-carboxy analogues of 2'-deoxy-cytidine-5'-triphosphate.
- 412 Fleischman, R. A.; Cambell, J. L.; Richardson, C. C. J. Biol. Chem. 1976, 251, 1561– 1570.
 Modification and restriction of T-even bacteriophages. In vitro degradation of deoxyribonucleic acid containing 5-hydroxymethylctosine.
- 413 Imae, Y.; Okazaki, R. J. Virol. 1976, 19, 435–445.
 Replication of bacteriophage T4 DNA *in vitro*. I. Basic properties of the system.
- 414 Koerner, J. F.; Smith, M. S.; Buchan, J. M. J. Am. Chem. Soc. 1959, 81, 2594–2595.
 A deoxycytidine triphosphate splitting enzyme and the synthesis of the deoxyribosenucleic acid of T2 bacteriophage.
- 415 Tardy-Planechaud, S.; Fujimoto, J.; Lin, S. S.; Sowers, L. C. *Nucleic Acids Res.* 1997, 25, 553–558.
 Solid phase synthesis and restriction endonuclease cleavage of oligodeoxynucleotides containing 5-(hydroxymethyl)-cytosine.

- 416 Harder, J., Arbeitskreis Prof. Dr. Thomas Carell, Ludwig-Maximilians-Universität München, persönliches Gespräch.
- Welz, R.; Müller, S. *Tetrahedron Lett.* 2002, *43*, 795–797.
 5-(Benzylmercapto)-1*H*-tetrazole as activator for 2'-*O*-TBDMS phosphoramidite building blocks in RNA synthesis.
- Kwon, C.-H.; Moon, K.-Y.; Baturay, N.; Shirota, F. N. J. Med. Chem. 1991, 34, 588–592.
 Chemically stable, lipophilic prodrugs of phosphoramide mustard as potential anti-cancer agents.
- 419 Schöniger, W. *Mikrochim. Acta* 1955, *43*, 123–129.
 Eine mikroanalytische Schnellbestimmung von Halogen in organischen Substanzen.
- Schöniger, W. *Mikrochim. Acta* 1956, 44, 869–876.
 Die mikroanalytische Schnellbestimmung von Halogenen und Schwefel in organischen Verbindungen.
- Becker, H. G. O.; Beckert, R.; Domschke, G.; Fanghänel, E.; Habicher, W. D.; Metz,
 P.; Pavel, D.; Schwertlick, K. *Organikum*, 21. Aufl., VCH, Weinheim, 2001, S. 92–94.
- 422 Hesse, M.; Meier, H.; Zeeh, B. Spektroskopische Methoden in der organischen Chemie, 7. Aufl., Thieme, Stuttgart, **2005**, S. 36–68.
- 423 Brown, C.; Heaton, B. T.; Sabounchei, J. *J. Organomet. Chem.* **1977**, *142*, 413–421. Oxidative addition reactions of [Pt(CN)4]^{2–}; a ¹³C and ¹⁹⁵Pt NMR study.
- 424 Pregosin, P. S. *Coord. Chem. Rev.* **1982**, *44*, 247–291. Platinum-195 nuclear magnetic resonance.
- 425 Pregosin, P. S. in *Transition Metal Nuclear Magnetic Resonance*, 1. Aufl. (Hrsg. Pregosin, P. S.), Elsevier, Amsterdam, Oxford, New York, Tokyo, **1991**, S. 216–263.
- 426 Kalinowski, H.-O.; Berger, S.; Braun, S. ¹³C-NMR-Spektroskopie, 1. Aufl., Thieme, Stuttgart, New York, **1984**, S. 543.

Brückl, T.; Globisch, D.; Wagner, M.; Müller, M.; Carell, T. *Angew. Chem., Int. Ed.* 2009, *48*, 7932–7934.
Parallel Isotope-Based Quantification of Modified tRNA Nucleosides.
Brückl, T.; Globisch, D.; Wagner, M.; Müller, M.; Carell, T. *Angew. Chem.* 2009, *121*, 8074–8077.
Parallele isotopenbasierte Quantifizierung modifizierter tRNA-Nucleoside.

Paranele isolopendasierte Quantifizierung modifizierter tRINA-Nucleoside.

- 428 Berg, R. W.; Rasmussen, K. *Spectrochim. Acta, Part A* **1973**, *29a*, 319–327. Infrared and far infrared spectra of dihalo(ethylenediamine) palladium(II) and platinum(II)
- 429 Münzel, M., Dissertation, Ludwig-Maximilians-Universität München, **2011**. Synthesis of natural DNA modifications and their detection in DNA - identification and total synthesis of a novel photolesion.

9 Appendix

9.1 Gemessene OD₆₀₀-Werte der Zytotoxizitätstests der Konjugate 24 und 42 im Vergleich mit Cisplatin

Tabelle 9.1: Gemessene OD₆₀₀-Werte des ersten biologischen Replikats der Inkubation von BL21(DE3) *E. coli*-Zellen in M9-Minimalmedium mit 1% Glukose (4 mL Gesamtvolumen) und Cisplatin. Nach 215 min wurde Cisplatin in DMSO (Endkonzentration Cisplatin 20 μ M, Endkonzentration DMSO 1%) zugegeben. Zu jedem Zeitpunkt wurden 100 μ L entnommen und auf 1 mL mit M9-Minimalmedium mit 1% Glukose verdünnt und dreimal gemessen. Zur Berechnung des Mittelwerts wurde die 10:1-Verdünnung berücksichtigt.

Inkubationszeit	Messung	Messung	Messung	Mittel-	Standard-
[min]	1	2	3	wert	abweichung
0	0.004	0.006	0.005	0.050	0.010
55	0.009	0.008	0.001	0.060	0.044
95	0.017	0.017	0.017	0.170	0.000
125	0.024	0.023	0.022	0.230	0.010
165	0.038	0.038	0.035	0.370	0.017
215	0.063	0.064	0.062	0.630	0.010
265	0.091	0.091	0.089	0.903	0.012
315	0.123	0.123	0.124	1.23	0.006
360	0.177	0.178	0.179	1.78	0.010
390	0.217	0.219	0.221	2.19	0.020
430	0.273	0.275	0.276	2.75	0.015
465	0.312	0.310	0.312	3.11	0.012
510	0.357	0.358	0.360	3.58	0.015
555	0.355	0.357	0.353	3.55	0.020
590	0.369	0.371	0.370	3.70	0.010
710	0.384	0.389	0.389	3.87	0.029
830	0.390	0.387	0.391	3.89	0.021

Tabelle 9.2: Gemessene OD₆₀₀-Werte des ersten biologischen Replikats der Inkubation von BL21(DE3) *E. coli*-Zellen in M9-Minimalmedium mit 1% Glukose (4 mL Gesamtvolumen) und Konjugat **24**. Nach 215 min wurde Konjugat **24** in DMSO (Endkonzentration Cisplatin 20 μ M, Endkonzentration DMSO 1%) zugegeben. Zu jedem Zeitpunkt wurden 100 μ L entnommen und auf 1 mL mit M9-Minimalmedium mit 1% Glukose verdünnt und dreimal gemessen. Zur Berechnung des Mittelwerts wurde die 10:1-Verdünnung berücksichtigt.

Inkubationszeit	Messung	Messung	Messung	Mittel-	Standard-
[min]	1	2	3	wert	abweichung
0	0.005	0.002	0.003	0.033	0.015
55	0.007	0.006	0.008	0.070	0.010
95	0.018	0.018	0.018	0.180	0.000
125	0.023	0.023	0.021	0.223	0.012
165	0.038	0.038	0.036	0.373	0.012
215	0.066	0.067	0.064	0.657	0.015
265	0.096	0.094	0.098	0.960	0.020
315	0.151	0.147	0.147	1.48	0.023
360	0.230	0.232	0.232	2.31	0.012
390	0.283	0.284	0.284	2.84	0.006
430	0.350	0.350	0.349	3.50	0.006
465	0.392	0.393	0.392	3.92	0.006
510	0.402	0.401	0.400	4.01	0.010
555	0.409	0.410	0.413	4.11	0.021
590	0.419	0.418	0.419	4.19	0.006
710	0.424	0.430	0.426	4.27	0.031
830	0.437	0.441	0.438	4.39	0.021

Tabelle 9.3: Gemessene OD_{600} -Werte des ersten biologischen Replikats der Inkubation von BL21(DE3) *E. coli*-Zellen in M9-Minimalmedium mit 1% Glukose (4 mL Gesamtvolumen) und Konjugat **42**. Nach 215 min wurde Konjugat **42** in DMSO (Endkonzentration Cisplatin 20 μ M, Endkonzentration DMSO 1%) zugegeben. Zu jedem Zeitpunkt wurden 100 μ L entnommen und auf 1 mL mit M9-Minimalmedium mit 1% Glukose verdünnt und dreimal gemessen. Zur Berechnung des Mittelwerts wurde die 10:1-Verdünnung berücksichtigt.

Inkubationszeit	Messung	Messung	Messung	Mittel-	Standard-
[min]	1	2	3	wert	abweichung
0	0.004	0.008	0.006	0.060	0.020
55	0.010	0.008	0.008	0.087	0.012
95	0.018	0.017	0.016	0.170	0.010
125	0.023	0.023	0.021	0.223	0.012
165	0.036	0.036	0.036	0.360	0.000
215	0.061	0.062	0.063	0.620	0.010
265	0.098	0.098	0.095	0.970	0.017
315	0.151	0.152	0.154	1.52	0.015
360	0.225	0.225	0.223	2.24	0.012
390	0.271	0.273	0.271	2.72	0.012
430	0.341	0.340	0.343	3.41	0.015
465	0.388	0.389	0.391	3.89	0.015

510	0.406	0.405	0.407	4.06	0.010
555	0.406	0.407	0.407	4.07	0.006
590	0.419	0.419	0.416	4.18	0.017
710	0.426	0.427	0.429	4.27	0.015
830	0.438	0.440	0.439	4.39	0.010

Tabelle 9.4: Gemessene OD_{600} -Werte des ersten biologischen Replikats der Inkubation von BL21(DE3) *E. coli*-Zellen in M9-Minimalmedium mit 1% Glukose (4 mL Gesamtvolumen und DMSO (Negativkontrolle). Nach 215 min DMSO (Endkonzentration 1%) zugegeben. Zu jedem Zeitpunkt wurden 100 µL entnommen und auf 1 mL mit M9-Minimalmedium mit 1% Glukose verdünnt und dreimal gemessen. Zur Berechnung des Mittelwerts wurde die 10:1-Verdünnung berücksichtigt.

Inkubationszeit	Messung	Messung	Messung	Mittel-	Standard-
[min]	1	2	3	wert	abweichung
0	0.004	0.005	0.006	0.050	0.010
55	0.008	0.009	0.008	0.083	0.006
95	0.019	0.018	0.017	0.180	0.010
125	0.025	0.024	0.024	0.243	0.006
165	0.037	0.037	0.036	0.367	0.006
215	0.066	0.067	0.065	0.660	0.010
265	0.117	0.117	0.117	1.17	0.000
315	0.188	0.186	0.186	1.87	0.012
360	0.289	0.290	0.287	2.89	0.015
390	0.352	0.352	0.352	3.52	0.000
430	0.400	0.400	0.400	4.00	0.000
465	0.397	0.398	0.396	3.97	0.010
510	0.413	0.414	0.411	4.13	0.015
555	0.409	0.413	0.418	4.13	0.045
590	0.419	0.419	0.419	4.19	0.000
710	0.436	0.439	0.439	4.38	0.017
830	0.444	0.444	0.443	4.44	0.006

Tabelle 9.5: Gemessene OD_{600} -Werte des zweiten biologischen Replikats der Inkubation von BL21(DE3) *E. coli*-Zellen in M9-Minimalmedium mit 1% Glukose (4 mL Gesamtvolumen) und Cisplatin. Nach 215 min wurde Cisplatin in DMSO (Endkonzentration Cisplatin 20 μ M, Endkonzentration DMSO 1%) zugegeben. Zu jedem Zeitpunkt wurden 100 μ L entnommen und auf 1 mL mit M9-Minimalmedium mit 1% Glukose verdünnt und dreimal gemessen. Zur Berechnung des Mittelwerts wurde die 10:1-Verdünnung berücksichtigt.

Inkubationszeit	Messung	Messung	Messung	Mittel-	Standard-
[min]	1	2	3	wert	abweichung
0	0.004	0.007	0.006	0.057	0.015
55	0.013	0.012	0.008	0.110	0.026
95	0.019	0.016	0.016	0.170	0.017
125	0.024	0.025	0.022	0.237	0.015
165	0.039	0.039	0.037	0.383	0.012
215	0.067	0.067	0.065	0.663	0.012

265	0.091	0.087	0.087	0.883	0.023
315	0.116	0.116	0.114	1.15	0.012
360	0.163	0.166	0.165	1.65	0.015
390	0.201	0.202	0.205	2.03	0.021
430	0.263	0.263	0.267	2.64	0.023
465	0.318	0.320	0.319	3.19	0.010
510	0.358	0.357	0.358	3.58	0.006
555	0.373	0.373	0.375	3.74	0.012
590	0.385	0.385	0.379	3.83	0.035
710	0.392	0.391	0.390	3.91	0.010
830	0.397	0.396	0.399	3.97	0.015

Tabelle 9.6: Gemessene OD₆₀₀-Werte des zweiten biologischen Replikats der Inkubation von BL21(DE3) *E. coli*-Zellen in M9-Minimalmedium mit 1% Glukose (4 mL Gesamtvolumen) und Konjugat **24**. Nach 215 min wurde Konjugat **24** in DMSO (Endkonzentration Cisplatin 20 μ M, Endkonzentration DMSO 1%) zugegeben. Zu jedem Zeitpunkt wurden 100 μ L entnommen und auf 1 mL mit M9-Minimalmedium mit 1% Glukose verdünnt und dreimal gemessen. Zur Berechnung des Mittelwerts wurde die 10:1-Verdünnung berücksichtigt.

Inkubationszeit	Messung	Messung	Messung	Mittel-	Standard-
[min]	1	2	3	wert	abweichung
0	0.007	0.006	0.007	0.067	0.006
55	0.012	0.009	0.010	0.103	0.015
95	0.016	0.017	0.018	0.170	0.010
125	0.025	0.025	0.024	0.247	0.006
165	0.038	0.039	0.037	0.380	0.010
215	0.067	0.067	0.066	0.667	0.006
265	0.107	0.102	0.100	1.03	0.036
315	0.152	0.152	0.151	1.52	0.006
360	0.221	0.219	0.222	2.21	0.015
390	0.300	0.299	0.299	2.99	0.006
430	0.369	0.368	0.369	3.69	0.006
465	0.403	0.403	0.404	4.03	0.006
510	0.413	0.414	0.415	4.14	0.010
555	0.420	0.420	0.420	4.20	0.000
590	0.421	0.421	0.422	4.21	0.006
710	0.438	0.439	0.439	4.39	0.006
830	0.439	0.436	0.434	4.36	0.025

Tabelle 9.7: Gemessene OD₆₀₀-Werte des zweiten biologischen Replikats der Inkubation von BL21(DE3) *E. coli*-Zellen in M9-Minimalmedium mit 1% Glukose (4 mL Gesamtvolumen) und Konjugat **42**. Nach 215 min wurde Konjugat **42** in DMSO (Endkonzentration Cisplatin 20 μ M, Endkonzentration DMSO 1%) zugegeben. Zu jedem Zeitpunkt wurden 100 μ L entnommen und auf 1 mL mit M9-Minimalmedium mit 1% Glukose verdünnt und dreimal gemessen. Zur Berechnung des Mittelwerts wurde die 10:1-Verdünnung berücksichtigt.

Inkubationszeit	Messung	Messung	Messung	Mittel-	Standard-
[min]	1	2	3	wert	abweichung
0	0.005	0.006	0.003	0.047	0.015
55	0.007	0.008	0.008	0.077	0.006
95	0.017	0.019	0.018	0.180	0.010
125	0.023	0.024	0.022	0.230	0.010
165	0.038	0.038	0.036	0.373	0.012
215	0.067	0.070	0.068	0.683	0.015
265	0.106	0.105	0.103	1.05	0.015
315	0.138	0.138	0.138	1.38	0.000
360	0.201	0.203	0.207	2.04	0.031
390	0.261	0.261	0.263	2.62	0.012
430	0.337	0.339	0.337	3.38	0.012
465	0.393	0.394	0.395	3.94	0.010
510	0.419	0.421	0.419	4.20	0.012
555	0.423	0.420	0.420	4.21	0.017
590	0.422	0.418	0.418	4.19	0.023
710	0.436	0.436	0.440	4.37	0.023
830	0.437	0.440	0.441	4.39	0.021

Tabelle 9.8: Gemessene OD₆₀₀-Werte des zweiten biologischen Replikats der Inkubation von BL21(DE3) *E. coli*-Zellen in M9-Minimalmedium mit 1% Glukose (4 mL Gesamtvolumen) und DMSO (Negativkontrolle). Nach 215 min DMSO (Endkonzentration 1%) zugegeben. Zu jedem Zeitpunkt wurden 100 μ L entnommen und auf 1 mL mit M9-Minimalmedium mit 1% Glukose verdünnt und dreimal gemessen. Zur Berechnung des Mittelwerts wurde die 10:1-Verdünnung berücksichtigt.

Inkubationszeit	Messung	Messung	Messung	Mittel-	Standard-
[min]	1	2	3	wert	abweichung
0	0.003	0.006	0.004	0.043	0.015
55	0.010	0.009	0.008	0.090	0.010
95	0.016	0.016	0.017	0.163	0.006
125	0.023	0.024	0.022	0.230	0.010
165	0.037	0.035	0.034	0.353	0.015
215	0.066	0.065	0.065	0.653	0.006
265	0.114	0.112	0.111	1.12	0015
315	0.179	0.181	0.178	1.79	0.015
360	0.284	0.281	0.278	2.81	0.030
390	0.335	0.336	0.339	3.37	0.021
430	0.401	0.400	0.400	4.00	0.006
465	0.404	0.404	0.406	4.05	0.012

510	0.425	0.424	0.428	4.26	0.021
555	0.395	0.397	0.398	3.97	0.015
590	0.421	0.421	0.428	4.23	0.040
710	0.441	0.439	0.439	4.40	0.012
830	0.446	0.448	0.443	4.46	0.025

9.2 Kristallographische Daten von Verbindung 11

Abbildung 9.1: Kristallstruktur von Komplex 11. Die Kalium-Kationen sind über 4 Lagen, mit einer jeweiligen Besetzungswahrscheinlichkeit von 25%, fehlgeordnet.

Allgemeine Daten:

CCDC 881403
C ₃ H ₆ Cl ₂ KNO ₂ P
393.167
712
$0.21 \times 0.06 \times 0.05$
173(2)
MoKα (0.71073 Å)
orthorombisch

Raumgruppe	P222
Abmessungen der Einheitszelle	a = 7.17910(10) Å
	b = 9.0902(2) Å
	c = 12.8246(2) Å
	$\alpha = 90^{\circ}$
	$\beta = 90^{\circ}$
	$\gamma = 90^{\circ}$
	$V = 836.93(3) \text{ Å}^3$
Ζ	4
Berechnete Dichte [g cm ⁻³]	3.12035(11)
$\mu [mm^{-1}]$	17.841
Absorptionskorrektur	multi-scan
Bereich des Transmissionsfaktors	0.1306 - 0.2780
Aufgenommene Reflexe	21579
R _{int}	0.0405
Mittelwert $\sigma(I)$ [I]	0.0188
θ-Bereich der Datensammlung	3.18–27.57
Beobachtete Reflexe	1911
<i>x,y</i> (Wichtung)	0.0187, 1.0754
Wasserstoffverfeinerung	constr
Flackparameter	-0.020(11)
Reflexe in Verfeinerung	1948
Parameter	95
Beschränkungen	0
$R(F_{\rm obs})$	0.0167
$R_{ m w}(F^2)$	0.0411
S	1.124
shift/error _{max}	0.001
max Elektronendichte [eÅ ⁻³]	0.573
min Elektronendichte [eÅ ⁻³]	-1.934

Atom	X	У	Z	U (eq)
Pt1	0.74514(2)	0.53619(1)	0.75730(1)	0.0156(1)
K1	1/2	1/2	1/2	0.0186(5)
K2	1	1/2	1/2	0.0187(5)
K3	1/2	0	1/2	0.0249(6)
K4	1	1	1/2	0.0258(6)
Cl1	0.7496(2)	0.72652(8)	0.63659(6)	0.0202(2)
Cl2	0.7377(2)	0.69268(9)	0.89683(6)	0.0276(3)
01	0.7463(6)	0.3838(2)	0.64177(17)	0.0178(6)
02	0.7532(5)	0.1436(2)	0.61471(18)	0.0238(7)
N1	0.7405(8)	0.3559(3)	0.8487(2)	0.0251(9)
C1	0.7642(6)	0.2485(3)	0.6741(2)	0.0163(8)
C2	0.8097(5)	0.2273(4)	0.7895(3)	0.0210(11)
C3	0.7421(9)	0.0839(4)	0.8341(3)	0.0388(13)

Tabelle 9.9: Atomkoordinaten und äquivalente, isotrope Versetzungsparameter U(eq) in Å² für 11.

Tabelle 9.10: Position der Wasserstoffatome und isotrope Versetzungsparameter U(eq) in Å² für 11.

Atom	X	У	Z	U (eq)
H1A	0.81410	0.37090	0.90640	0.0300
H1B	0.62070	0.33840	0.87110	0.0300
H2	0.94850	0.22740	0.79590	0.0250
H3A	0.78300	0.00270	0.78920	0.0580
H3B	0.60570	0.08480	0.83770	0.0580
H3C	0.79350	0.07060	0.90420	0.0580

Tabelle 9.11: (An)isotrope Versetzungsparameter U(eq) in Å² für 11.

Atom	U(1,1)	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
	oder U					
Pt1	0.0215(1)	0.0143(1)	0.0110(1)	0.0001(1)	-0.0002(1)	-0.0029(1)
K1	0.0172(7)	0.0233(11)	0.0152(10)	0	0	0
K2	0.0187(7)	0.0210(11)	0.0165(10)	0	0	0
K3	0.0194(7)	0.0260(12)	0.0292(12)	0	0	0
K4	0.0199(7)	0.0257(12)	0.0319(12)	0	0	0
Cl1	0.0275(4)	0.0165(4)	0.0165(4)	0.0026(3)	-0.0014(7)	-0.0006(5)
Cl2	0.0477(6)	0.0206(4)	0.0146(4)	-0.0037(3)	0.0035(7)	-0.0055(6)
01	0.0242(12)	0.0163(10)	0.0130(10)	-0.0018(8)	-0.0036(17)	-0.0017(17)
02	0.0303(13)	0.0184(11)	0.0226(12)	-0.0038(9)	0.0002(17)	-0.0009(16)
N1	0.042(2)	0.0205(14)	0.0128(13)	0.0010(11)	-0.002(2)	-0.004(2)
C1	0.0157(15)	0.0165(14)	0.0167(15)	0.0026(11)	0.0026(19)	-0.0005(17)
C2	0.027(2)	0.0173(18)	0.0186(18)	0.0015(15)	-0.0005(15)	-0.0008(14)
C3	0.068(3)	0.0185(18)	0.030(2)	0.0038(15)	0.007(3)	-0.007(3)

Pt1-Cl1	2.3218(8)
Pt1-Cl2	2.2866(8)
Pt1-01	2.028(2)
Pt1-N1	2.015(3)
K1-Cl1	3.2434(10)
K1-01	2.747(3)
K1-Cl1 d	3.2434(10)
K1-O1 d	2.747(3)
K1-Cl1 g	3.2434(10)
K1-O1_g	2.747(3)
K1-Cl1 h	3.2434(10)
K1-O1 h	2.747(3)
K2-Cl1	3.2465(10)
K2-O1	2.782(3)
K2-Cl1_e	3.2465(10)
K2-O1 e	2.782(3)
K2-Cl1 g	3.2465(10)
K2-O1 g	2.782(3)
K2-Cl1 j	3.2465(10)
K2-O1 j	2.782(3)

	Tabelle 9.12:	Bindungslängen	in Å	für	11.
--	---------------	----------------	------	-----	-----

K3-O2	2.678(3)
К3-О2 с	2.678(3)
K3-O2 f	2.678(3)
K3-O2 h	2.678(3)
K4-O2_b	2.647(3)
K4-O2 e	2.647(3)
K4-O2 g	2.647(3)
K4-O2 k	2.647(3)
01-C1	1.304(3)
O2-C1	1.223(3)
N1-C2	1.480(5)
N1-H1B	0.9200
N1-H1A	0.9200
C1-C2	1.528(5)
C2-C3	1.504(5)
С2-Н2	1.0000
С3-Н3А	0.9800
С3-Н3В	0.9800
С3-Н3С	0.9800

Tabelle 9.13:	Bindungswinkel	in	° für	11.
---------------	----------------	----	-------	-----

Cl1_Pt1_Cl2	93 36(3)
	01.25(6)
CII-PtI-OI	91.25(6)
Cl1-Pt1-N1	173.75(8)
Cl2-Pt1-O1	175.28(6)
Cl2-Pt1-N1	92.89(8)
01-Pt1-N1	82.50(9)
Cl1-K1-O1	62.04(5)
Cl1-K1-Cl1_d	114.62(2)
Cl1-K1-O1 d	75.76(7)
Cl1-K1-Cl1 g	112.93(3)
Cl1-K1-O1 g	75.98(6)
Cl1-K1-Cl1 h	101.18(2)
Cl1-K1-O1_h	163.16(5)
Cl1 d-K1-O1	75.76(7)
01-K1-O1 d	97.13(9)
Cl1 g-K1-O1	75.98(6)
01-K1-01 g	99.88(10)
Cl1_h-K1-O1	163.16(5)
01-K1-01 h	134.78(6)
Cl1 d-K1-O1 d	62.04(5)
Cl1 d-K1-Cl1 g	101.18(2)
Cl1 d-K1-O1 g	163.16(5)

Cl1 g-K1-O1 g	62.04(5)
Cl1 g-K1-Cl1 h	114.62(2)
Cl1_g-K1-O1_h	75.76(7)
Cl1 h-K1-O1 g	75.76(7)
01 g-K1-O1 h	97.13(9)
Cl1 h-K1-O1 h	62.04(5)
Cl1-K2-O1	61.68(5)
Cl1-K2-Cl1_e	114.69(2)
Cl1-K2-O1 e	76.65(7)
Cl1-K2-Cl1 g	112.76(3)
Cl1-K2-O1 g	75.48(6)
Cl1-K2-Cl1 j	101.27(2)
Cl1-K2-O1_j	162.94(5)
Cl1 e-K2-O1	76.65(7)
01-K2-01 e	98.38(9)
Cl1 g-K2-O1	75.48(6)
01-K2-01 g	98.20(10)
Cl1_j-K2-O1	162.94(5)
01-K2-01 j	135.37(6)
Cl1 e-K2-O1 e	61.68(5)
Cl1 e-K2-Cl1 g	101.27(2)
Cl1 e-K2-O1 g	162.94(5)

Cl1 d-K1-Cl1 h	112.93(3)
Cl1 d-K1-O1 h	75 98(6)
Cl1 g-K1-O1 d	163 16(5)
01 d-K1-01 g	134 78(6)
Cl1 h-K1-O1 d	75.98(6)
01 d- K1-01 h	99.88(11)
Cl1 σ-K2-O1 σ	61 68(5)
$\frac{\text{Cl1 g-K2-Cl1 g}}{\text{Cl1 g-K2-Cl1 i}}$	114.69(2)
$\frac{\text{Cl1 g-K2-Cl1 j}}{\text{Cl1 g-K2-Cl1 j}}$	76.65(7)
$CII \underline{g} K2 OI \underline{j}$	70.03(7)
CII j-K2-OI g	/6.65(/)
01 g-K2-O1 j	98.38(9)
Cl1 j-K2-O1 j	61.68(5)
O2-K3-O2 c	113.36(8)
O2-K3-O2_f	94.51(9)
O2-K3-O2 h	121.66(7)
O2 c-K3-O2 f	121.66(7)
O2 c-K3-O2 h	94.51(9)
O2 f-K3-O2 h	113.36(8)
O2_b-K4-O2_e	112.48(8)
O2 b-K4-O2 g	95.97(9)
O2 b-K4-O2 k	120.91(7)
O2 e-K4-O2 g	120.91(7)
O2 e-K4-O2 k	95.97(9)
O2 g-K4-O2 k	112.48(8)
Pt1-Cl1-K1	83.07(3)
Pt1-Cl1-K2	83.96(3)
K1-Cl1-K2	67.16(1)
Pt1-O1-K1	102.60(11)
Pt1-O1-K2	102.75(11)
Pt1-O1-C1	114.35(18)
K1-O1-K2	80.96(6)
K1-O1-C1	129.5(3)

Cl1 e-K2-Cl1 j	112.76(3)
Cl1 e-K2-O1 j	75.48(6)
Cl1 g-K2-O1 e	162.94(5)
01_e-K2-O1_g	135.37(6)
Cl1 j-K2-O1 e	75.48(6)
01 e-K2-O1 j	98.20(10)
K2-O1-C1	120.1(3)
K3-O2-C1	140.0(3)
K3-O2-K4_a	84.76(6)
K4 a-O2-C1	133.4(3)
Pt1-N1-C2	109.8(2)
Pt1-N1-H1B	110.00
C2-N1-H1A	110.00
C2-N1-H1B	110.00
H1A-N1-H1B	108.00
Pt1-N1-H1A	110.00
01-C1-O2	122.1(3)
O1-C1-C2	116.6(3)
O2-C1-C2	121.3(3)
N1-C2-C3	112.4(3)
C1-C2-C3	114.1(3)
N1-C2-C1	109.0(3)
N1-C2-H2	107.00
С1-С2-Н2	107.00
С3-С2-Н2	107.00
С2-С3-НЗА	109.00
С2-С3-Н3В	109.00
С2-С3-Н3С	110.00
НЗА-СЗ-НЗВ	109.00
НЗА-СЗ-НЗС	109.00
НЗВ-СЗ-НЗС	110.00

 Tabelle 9.14:
 Torsionswinkel in ° für 11.

Cl2-Pt1-Cl1-K1	-145.00(4)
O1-Pt1-Cl1-K2	-33.69(12)
Cl1-Pt1-O1-K2	41.30(10)
N1-Pt1-O1-K1	137.7(2)
N1-Pt1-O1-C1	-7.1(4)
O1-Pt1-N1-C2	20.9(3)
Cl1 d-K1-Cl1-Pt1	28.84(4)
Cl1 g-K1-Cl1-Pt1	-86.34(3)
Cl1 h-K1-Cl1-Pt1	150.66(3)
Cl1 d-K1-Cl1-K2	115.17(3)

O1-Pt1-Cl1-K1	33.96(12)
Cl1-Pt1-O1-K1	-42.13(11)
Cl1-Pt1-O1-C1	173.1(3)
N1-Pt1-O1-K2	-138.9(2)
Cl2-Pt1-N1-C2	-160.1(3)
O1-K1-Cl1-Pt1	-27.83(8)
O1 d-K1-Cl1-Pt1	78.41(5)
O1 g-K1-Cl1-Pt1	-137.26(7)
01-K1-Cl1-K2	58.51(8)
O1 d-K1-Cl1-K2	164.75(5)

Cl1 g-K1-Cl1-K2	0.00(5)		
Cl1 h-K1-Cl1-K2	-123.00(2)		
01 g-K1-O1-Pt1	101.16(12)		
Cl1-K1-O1-K2	-68.23(5)		
O1 d-K1-O1-K2	-137.93(6)		
O1 g-K1-O1-K2	0.00(7)		
Cl1-K1-O1-C1	170.0(3)		
01 d-K1-O1-C1	100.3(3)		
Cl1_d-K1-O1-Pt1	-95.49(12)		
01 h-K1-O1-C1	-11.3(4)		
O1 g-K1-O1-C1	-121.8(3)		
O1 g-K2-Cl1-Pt1 135.22(7)			
Cl1 g-K2-Cl1-Pt1 85.01(3)			
01_e-K2-Cl1-K1	-165.00(5)		
O1 g-K2-Cl1-K1	50.21(7)		
Cl1 j-K2-Cl1-Pt1 -151.93(3			
Cl1 e-K2-Cl1-K1	-115.22(3)		
Cl1 e-K2-O1-Pt1 95.58(12)			
Cl1_g-K2-O1-Pt1 -158.81(13			
01 j-K2-O1-Pt1	148.19(11)		
Cl1 e-K2-O1-K1	-163.44(5)		
Cl1 g-K2-O1-K1	-57.83(4)		
01 j-K2-01-K1	-110.83(12)		
Cl1 e-K2-O1-C1	-32.7(2)		
Cl1 g-K2-O1-C1	72.9(2)		
01 j-K2-01-C1	19.9(3)		
O2 h-K3-O2-C1 43.6(3)			
K1-O1-C1-O2 41.2(6)			
K2-O1-C1-C2 114.2(3)			
Pt1-O1-C1-O2 174.3(3)			
K3-O2-C1O1 –69.8(5)			
K4 a-O2-C1-O1	89.0(5)		
Pt1-N1-C2-C1	-29.7(4)		
O1-C1-C2-N1 25.9(5)			
O2-C1-C2-N1	-157.2(4)		

Pt1.Pt1 d	3.5807(2)
Pt1.H2 e	3.1100
K1.K2 l	3.5896(1)
K1.K3	4.5451(1)
K1.K3 b	4.5451(1)
K1.K3 b	4.5451(1)
K1.K2 m	3.5896(1)
K1.K3 b	4.5451(1)
K1.K3 n	4.5451(1)
K2.K1 o	3.5896(1)

01 g-K1-Cl1-K2	-50.92(7)		
Cl1 g-K1-O1-Pt1	158.88(13)		
O1 h-K1-O1-Pt1	-148.34(11)		
Cl1_d-K1-O1-K2	163.36(5)		
Cl1 g-K1-O1-K2	57.72(4)		
O1 h-K1-O1-K2	110.50(12)		
Cl1 d-K1-O1-C1	41.6(3)		
Cl1-K1-O1-Pt1	32.92(9)		
01_d-K1-O1-Pt1	-36.77(14)		
Cl1 g-K1-O1-C1	-64.1(3)		
Cl1 e-K2-Cl1-Pt1	-30.22(4)		
O1 e-K2-Cl1-Pt1 -80.00(5)			
O1-K2-Cl1-Pt1 27.34(8)			
Cl1_g-K2-Cl1-K1 0.00(3)			
Cl1 j-K2-Cl1-K1	123.06(2)		
O1-K2-Cl1-K1 -100.98(12			
Cl1-K2-O1-Pt1	68.57(5)		
O1 e-K2-O1-Pt1 37.44(14)			
O1_g-K2-O1-Pt1 -100.98(12			
Cl1-K2-O1-K1	68.57(5)		
O1 e-K2-O1-K1	138.42(6)		
O1 g-K2-O1-K1	0.00(6)		
Cl1-K2-O1-C1	-160.7(3)		
O1 e-K2-O1-C1	-90.9(3)		
O1 g-K2-O1-C1	130.7(3)		
O2 f-K3-O2-C1	164.7(3)		
O2 c-K3-O2-C1	-67.9(3)		
K2-O1-C1-O2	-62.8(5)		
K1-O1-C1-C2 -141.8(3)			
Pt1-O1-C1-C2	-8.7(5)		
K3-O2-C1-C2	113.4(4)		
K4 a-O2-C1-C2	-87.8(4)		
Pt1-N1-C2-C3	-157.3(3)		
01-C1-C2-C3	152.4(4)		
02-C1-C2-C3	-30.6(6)		

K4.K2	4.5451(1)
K4.K2 b	4.5451(1)
K4.K3 s	3.5896(1)
K4.Cl1	3.5327(10)
K4.Cl1 j	3.5327(10)
K4.K2 t	4.5451(1)
K4.Cl1 t	3.5327(10)
K4.Cl1 u	3.5327(10)
K4.K2 u	4.5451(1)
K4.K3 p	3.5896(1)

K2.K4 a	4.5451(1)
K2.K4	4.5451(1)
K2.K4 a	4.5451(1)
K2.K1_p	3.5896(1)
K2.K4 a	4.5451(1)
K2.K4 a	4.5451(1)
K3.K1 a	4.5451(1)
K3.K1	4.5451(1)
K3.K4_q	3.5896(1)
K3.Cl1 a	3.5298(10)
K3.K1 a	4.5451(1)
K3.Cl1 d	3.5298(10)
K3.K1 a	4.5451(1)
K3.K4_m	3.5896(1)
K3.Cl1 g	3.5298(10)
K3.K1 r	4.5451(1)
K3.K4 r	3.5896(1)
K3.Cl1 r	3.5298(10)
Cl2.Cl1	3.3527(11)
Cl2.N1	3.123(3)
Cl2.C2 e	3.603(4)
Cl2.N1 v	3.293(3)
Cl1.H2 e	3.0100
Cl2.H1A	2.9800
Cl2.H1B d	2.6100
Cl2.H2 e	2.7000
Pt1.Pt1 d	3.5807(2)
Pt1.H2 e	3.1100
K1.K2_l	3.5896(1)
K1.K3	4.5451(1)
K1.K3 b	4.5451(1)
K1.K3 b	4.5451(1)
K1.K2 m	3.5896(1)
K1.K3_b	4.5451(1)
K1.K3 n	4.5451(1)

K4.K3 n	3.5896(1)
K4.K2 b	4.5451(1)
K4.H3A g	4.0200
K4.H3A_b	4.0200
K4.H3A e	4.0200
K4.H3A k	4.0200
Cl1.K1	3.2434(10)
Cl1.K2	3.2465(10)
Cl1.K3_b	3.5298(10)
Cl1.K4	3.5327(10)
Cl1.Cl2	3.3527(11)
Cl1.01	3.116(2)
Cl1.K3 b	3.5298(10)
Cl1.C1_e	3.531(5)
Cl1.K3 n	3.5298(10)
Cl1.K3 b	3.5298(10)
Cl1.O2 g	3.432(2)
Cl2.C3 b	3.646(4)
N1.Cl2_v	3.293(3)
C2.Cl2 e	3.603(4)
C3.Cl2 a	3.646(4)
С3.Н3В с	2.9300
H1A.Cl2 v	2.6500
H1B.H3B	2.3500
H1B.Cl2 d	2.6100
H1B.Cl2 v	3.1100
K4.K2	4.5451(1)
K4.K2 b	4.5451(1)
K4.K3_s	3.5896(1)
K4.Cl1	3.5327(10)
K4.Cl1 j	3.5327(10)
K4.K2 t	4.5451(1)
K4.Cl1 t	3.5327(10)
K4.Cl1_u	3.5327(10)
K4.K2 u	4.5451(1)

9.3 Kristallographische Daten von Verbindung 64

Abbildung 9.2: Kristallstruktur von Verbindung 64.

Allgemeine Daten:

- Empirische Formel Molekulargewicht [g mol⁻¹] Kristallgröße [mm] Temperatur [K] Strahlungsart
- Kristallsystem
- Raumgruppe

Ζ

Abmessungen der Einheitszelle

Berechnete Dichte [g cm⁻³]

C13H16N2O5
280.277
$0.52 \times 0.20 \times 0.05$
173(2)
MoKα (0.71073 Å)
orthorombisch
P212121
a = 4.6946(3) Å
b = 7.1380(4) Å
c = 38.093(5) Å
$\alpha = 90^{\circ}$
$\beta = 90^{\circ}$
$\gamma = 90^{\circ}$
1276.5(2) Å ³
4
1.4584(2)

$\mu [\mathrm{mm}^{-1}]$	0.113
Absorptionskorrektur	multi-scan
Bereich des Transmissionsfaktors	0.96907-1.00000
Aufgenommene Reflexe	4852
R _{int}	0.0343
Mittelwert $\sigma(l)$ [I]	0.0486
θ-Bereich der Datensammlung	4.37-26.31
Beobachtete Reflexe	1243
<i>x</i> , <i>y</i> (Wichtung)	0.0380, 0
Wasserstoffverfeinerung	mixed
Flackparameter	0.1(17)
Reflexe in Verfeinerung	1561
Parameter	202
Beschränkungen	0
$R(F_{obs})$	0.0406
$R_{ m w}(F^2)$	0.0775
S	1.030
shift/error _{max}	0.001
max Elektronendichte [eÅ ⁻³]	0.186
min Elektronendichte [eÅ ⁻³]	-0.196

Tabelle 9.16: Atomkoordinaten un	nd äquivalente,	isotrope V	Versetzungsparameter	U(eq) in Å ² für 64
----------------------------------	-----------------	------------	----------------------	--------------------------------

Atom	X	У	Z	U (eq)
01	0.6775(5)	0.6873(3)	0.56018(5)	0.0351(7)
02	0.8326(4)	-0.0952(2)	0.61221(5)	0.0311(7)
03	0.6899(4)	0.0363(3)	0.71894(5)	0.0281(7)
04	1.2455(4)	0.5579(2)	0.65591(5)	0.0265(6)
05	0.5081(5)	0.1723(3)	0.78068(6)	0.0340(7)
N1	0.9602(5)	0.4867(3)	0.61063(6)	0.0214(7)
N2	0.9222(5)	0.1350(3)	0.65029(6)	0.0196(7)
C1	0.6020(5)	0.5053(4)	0.56614(7)	0.0230(8)
C2	0.4001(5)	0.4268(4)	0.54408(7)	0.0234(8)
C3	0.3226(6)	0.2410(4)	0.54956(7)	0.0262(9)
C4	0.4496(6)	0.1337(4)	0.57513(7)	0.0230(8)
C5	0.6618(5)	0.2085(4)	0.59650(7)	0.0193(8)
C6	0.7371(5)	0.3977(4)	0.59231(6)	0.0184(8)
C7	0.8103(5)	0.0732(3)	0.62014(7)	0.0204(8)
C8	1.0533(6)	0.0077(3)	0.67584(7)	0.0249(9)
C9	0.9729(6)	0.0946(4)	0.71057(7)	0.0231(8)

C10	0.9863(6)	0.3031(4)	0.70296(7)	0.0243(8)
C11	0.8789(6)	0.3243(3)	0.66521(7)	0.0191(8)
C12	1.0448(6)	0.4664(3)	0.64417(7)	0.0191(8)
C13	0.2701(7)	0.5438(4)	0.51543(7)	0.0368(10)

Tabelle 9.17: Position der Wasserstoffatome und isotrope Versetzungsparameter U(eq) in Å² für 64.

Atom	X	У	Z	U (eq)
H1	0.733(7)	0.760(5)	0.5792(9)	0.062(11)
N3	0.650(7)	0.083(5)	0.7399(9)	0.053(11)
H3A	0.17840	0.18690	0.53530	0.0310
H4	0.39200	0.00720	0.57820	0.0280
H8A	1.26270	0.00320	0.67290	0.0300
H8B	0.97520	-0.12060	0.67370	0.0300
H9	1.11020	0.05850	0.72950	0.0280
H10A	1.18410	0.34990	0.70510	0.0290
H10B	0.86340	0.37370	0.71940	0.0290
H11	0.67170	0.35680	0.66520	0.0230
H13A	0.19080	0.65870	0.52560	0.0550
H13B	0.11810	0.47270	0.50390	0.0550
H13C	0.41680	0.57630	0.49820	0.0550
H71	1.059(5)	0.572(4)	0.6003(7)	0.023(8)
H51	0.439(7)	0.278(5)	0.7828(8)	0.051(11)
H52	0.594(8)	0.138(5)	0.8025(10)	0.083(14)

 $\label{eq:constraint} \textbf{Tabelle 9.18:} \ (An) isotrope \ Versetzungsparameter \ U(eq) \ in \ \mathring{A}^2 \ f\ ir \ \textbf{64}.$

Atom	U(1,1) oder U	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
01	0.0671(15)	0.0178(10)	0.0205(11)	-0.0009(9)	-0.0104(11)	-0.0019(11)
02	0.0492(13)	0.0137(9)	0.0305(12)	-0.0063(9)	-0.0096(10)	0.0019(9)
03	0.0300(11)	0.0302(11)	0.0240(12)	-0.0043(10)	-0.0002(10)	-0.0091(9)
04	0.0284(10)	0.0236(10)	0.0276(11)	-0.0023(9)	-0.0085(8)	-0.0061(9)
N1	0.0261(13)	0.0174(12)	0.0207(12)	0.0023(10)	-0.0034(11)	-0.0060(10)
N2	0.0264(13)	0.0121(10)	0.0202(12)	-0.0008(9)	-0.0050(10)	0.0032(9)
C1	0.0305(16)	0.0174(13)	0.0212(15)	-0.0023(12)	-0.0003(12)	0.0033(11)
C2	0.0281(16)	0.0269(14)	0.0152(14)	-0.0055(13)	-0.0050(12)	0.0084(12)
C3	0.0252(14)	0.0315(16)	0.0218(15)	-0.0117(13)	-0.0059(13)	0.0004(13)
C4	0.0237(14)	0.0192(14)	0.0262(16)	-0.0049(12)	-0.0004(13)	0.0002(12)
C5	0.0205(14)	0.0186(13)	0.0187(14)	-0.0058(12)	0.0007(12)	0.0030(12)
C6	0.0197(14)	0.0210(14)	0.0145(14)	-0.0044(11)	-0.0008(11)	0.0016(11)
C7	0.0207(14)	0.0192(13)	0.0213(15)	-0.0043(12)	-0.0015(12)	-0.0014(12)
C8	0.0302(16)	0.0189(14)	0.0256(15)	0.0052(13)	-0.0048(13)	0.0052(12)
C9	0.0244(15)	0.0234(14)	0.0216(15)	0.0022(12)	-0.0067(12)	-0.0043(12)
C10	0.0323(16)	0.0226(13)	0.0179(14)	-0.0007(12)	-0.0061(13)	-0.0026(13)
C11	0.0222(15)	0.0153(13)	0.0198(14)	-0.0036(12)	-0.0030(11)	0.0004(11)
C12	$0.\overline{0214(14)}$	0.0138(13)	0.0221(15)	-0.0024(11)	-0.0034(12)	0.0056(11)
C13	0.047(2)	0.0381(17)	0.0253(17)	-0.0041(15)	-0.0109(14)	0.0077(16)

O5 0.0480(14) 0.0253(12) 0.0287(12) -0.0028(10) -0.0081(11) 0.0112(10)

1.366(4)
1.244(3)
1.428(3)
1.231(3)
0.93(4)
0.89(3)
0.96(4)
0.83(4)
1.346(4)
1.410(3)
1.467(3)
1.480(3)
1.338(3)
0.86(3)
1.409(4)
1.385(4)
1.391(4)
1.504(4)
1.375(4)

Tabelle 9.19: Bindungslängen in Å für 64.

Tabelle 9.20:	Bindungswinkel in	° für 64 .
---------------	-------------------	-------------------

С1-О1-Н1	118(2)
С9-О3-Н3	107(2)
Н51-О5-Н52	108(3)
C6-N1-C12	129.8(2)
C7-N2-C11	125.2(2)
C8-N2-C11	111.6(2)
C7-N2-C8	122.0(2)
C1-C2-C3	118.3(2)
C3-C2-C13	122.2(2)
C2-C3-C4	121.6(3)
C3-C4-C5	120.7(3)
C6-C5-C7	124.9(2)
C4-C5-C6	118.8(2)
C4-C5-C7	116.0(2)
N1-C6-C1	116.0(2)
N1-C6-C5	124.3(2)
C1-C6-C5	119.4(2)
O2-C7-N2	119.6(2)
N2-C7-C5	119.2(2)
O2-C7-C5	121.2(2)
N2-C8-C9	$1\overline{02.8(2)}$
O3-C9-C10	111.5(2)

C4-C5	1.393(4)
C5-C7	1.493(4)
C5-C6	1.405(4)
C8-C9	1.509(4)
C9-C10	1.518(4)
C10-C11	1.531(4)
C11-C12	1.509(4)
С3-НЗА	0.9500
C4-H4	0.9500
C8-H8B	0.9900
C8-H8A	0.9900
С9-Н9	1.0000
C10-H10B	0.9900
C10-H10A	0.9900
C11-H11	1.0000
С13-Н13С	0.9800
С13-Н13А	0.9800
C13-H13B	0.9800

O3-C9-C8	108.0(2)
C8-C9-C10	103.0(2)
C9-C10-C11	105.2(2)
N2-C11-C10	103.0(2)
C10-C11-C12	113.3(2)
N2-C11-C12	109.8(2)
O4-C12-C11	124.0(2)
N2-C8-H8B	111.00
С9-С8-Н8А	111.00
С9-С8-Н8В	111.00
H8A-C8-H8B	109.00
N2-C8-H8A	111.00
О3-С9-Н9	111.00
С8-С9-Н9	111.00
С10-С9-Н9	111.00
C9-C10-H10B	111.00
С11-С10-Н10А	111.00
С11-С10-Н10В	111.00
H10A-C10-H10B	109.00
С9-С10-Н10А	111.00
N2-C11-H11	110.00
С10-С11-Н11	110.00
C6-N1-H71	119.5(17)
-------------	-----------
C12-N1-H71	110.6(18)
C2-C1-C6	121.1(3)
O1-C1-C2	117.5(2)
O1-C1-C6	121.3(2)
C1-C2-C13	119.6(3)
С12-С11-Н11	110.00
С2-С13-Н13С	109.00

Tabelle 9.21: Torsionswinkel in Å für 64.

147.5(3)
-179.5(2)
-4.6(4)
-171.4(2)
-144.4(2)
166.2(2)
-1.7(3)
179.4(2)
3.3(4)
-2.6(4)
173.4(2)
-2.7(4)
0.0(4)
-172.4(2)
-1.6(4)
172.5(2)
-152.4(2)
33.4(4)
-36.2(3)
36.1(3)
-139.9(2)
64.3(3)
178.9(2)

O4-C12-N1	120.9(2)
N1-C12-C11	115.1(2)
С2-С3-НЗА	119.00
С4-С3-Н3А	119.00
С3-С4-Н4	120.00
С5-С4-Н4	120.00
Н13А-С13-Н13С	109.00
H13A-C13-H13B	110.00

C12-N1-C6-C5	-38.2(4)
C6-N1-C12-C11	1.2(4)
C8-N2-C7-C5	175.7(2)
C11-N2-C7-C5	8.9(4)
C11-N2-C8-C9	24.0(3)
C7-N2-C11-C12	-72.8(3)
C8-N2-C11-C12	119.3(2)
O1-C1-C2-C13	-1.2(4)
C6-C1-C2-C13	-177.3(2)
O1-C1-C6-C5	-177.1(2)
C2-C1-C6-C5	-1.2(4)
C13-C2-C3-C4	177.9(3)
C3-C4-C5-C6	2.2(4)
C4-C5-C6-N1	-175.7(2)
C7-C5-C6-N1	-1.6(4)
C4-C5-C7-O2	27.9(4)
C6-C5-C7-O2	-146.3(3)
N2-C8-C9-O3	81.9(2)
O3-C9-C10-C11	-79.5(3)
C9-C10-C11-N2	-21.4(3)
N2-C11-C12-O4	-115.0(3)
C10-C11-C12-O4	-0.5(4)

Tabelle 9.22: Kontaktabstände in Å für 64.

O1.O2 a	2.621(3)
O1.N1	2.740(3)
O1.C4 a	3.409(4)
O1.C13 b	3.420(4)
O2.N1 c	3.045(3)
O2.O1 c	2.621(3)
03.05	2.684(3)
O3.C9 d	3.407(3)
O3.C8 d	3.416(3)
O3.O5 e	2.760(3)

O4.H52 f	1.85(4)
O4.H8B a	2.7100
O4.H11 b	2.4900
O5.H10B p	2.7500
O5.H9 d	2.8200
O5.H10A j	2.7700
O5.H3	1.81(3)
N1.C3 b	3.374(4)
N1.01	2.740(3)
N1.O2 a	3.045(3)

O3.N2	2.920(3)
04.05 f	2.800(3)
05.03	2.684(3)
05.04 j	2.800(3)
05.03 0	2.760(3)
O1.H13A	2.6500
O1.H13C	2.7700
O1.H13A b	2.7500
O1.H7 1	2,49(3)
O1.H4 a	2.7400
O2.H71 c	2.64(3)
02.H1 c	1 69(3)
O2.H8B	2 4400
02.H4	2,5500
03.H9 d	2 7600
03 H8A d	2 6700
03.H51 e	1.94(4)
O4 H10A	2 4100
C2.H71 d	2.87(3)
$C3 H13R \sigma$	2.07(3)
C4 H1 c	2.9000 2.99(4)
C5 H11	2.99(4)
C6 H11	2.0200
C7 H1 c	2.0100 2.75(4)
C9 H51 e	2.79(1)
C12.H52 f	2.92(4)
H1.C4 a	2.99(4)
H1.O2 a	1.69(3)
H1.N1	2.53(3)
H1.H71	2.19(4)
H1.C7 a	2.75(4)
H1.H4 a	2.3800
H3.H9 d	2.5700
H3.O5	1.81(3)
H3.H10B	2.4300
H3.H51	2.36(5)
H3.H52	2.43(5)
H3.H51 e	2.38(5)
H3A.H13B	2.3800
H3A.H13C h	2.5800
H4.01 c	2.7400
H4.H1 c	2.3800
H4.O2	2.5500
H8A.O3 b	2.6700
H8B.04 c	2.7100
H8B.O2	2.4400
H52.H10A j	2.3200
H71.01	2.49(3)

N1.N2	2.935(3)
N1.C2 b	3.298(3)
N2.O3	2.920(3)
N2.N1	2.935(3)
N1.H1	2.53(3)
C2.N1 d	3.298(3)
C3.C5 d	3.588(4)
C3.C6 d	3.385(4)
C3.N1 d	3.374(4)
C4.C7 d	3.483(4)
C4.01 c	3 409(4)
C5.C3 b	3.588(4)
C6.C3 b	3 385(4)
C7.C4 b	3 483(4)
C8.O3 b	3 416(3)
C9 O3 h	3407(3)
C13 O1 d	3420(4)
C1 H71 d	2.90(2)
H9 H10R i	2.3500
H9 H3 h	2.5500
H9 O3 h	2.3700
H9 O5 j	2.7000
H10A O4	2.8200
H10A.05 f	2.4100
H10A.U5 I	2.7700
H10A,1152 1	2.3200
HIOD.IIS	2.4500
HIND.05 K	2.7500
	2.3300
H11 C5	2.4700
	2.8200
	2.8100
	2.7300
ПІЗА.01	2.0300
III3A.III3C_III	2.4000
	2.9000
<u>НІЗВ.Н</u> ЗА	2.3800
	2.7700
HI3C.H3A g	2.5800
HI3C.HI3A_II	2.4600
H51.H3 0	2.38(5)
H51.C9 0	2.99(3)
H51.H3	2.36(5)
H51.03 0	1.94(4)
H52.H3	2.43(5)
H52.04 j	1.85(4)
H52.CI2 j	2.92(4)
H71.C1 b	2.90(2)
H71.C2 b	2.87(3)

H71.O2 a 2.64(3)

H71.H1 2.19(4)

9.4 Daten der Quantifizierung des C⁵-C^{exo}-Bindungsbruchs, der Deaminierung und der Oxidation hmdC-, fdC- und cadChaltiger DNA-Haarnadelstrukturen durch β-Mercaptoethanol/Imidazol-Gemische

Für alle Tabellen gilt: *A* ist die Fläche unter der Kurve (AUC) des entsprechenden Signals. * bezeichnet die isotopenmarkierte Verbindung, die als interner Standard zugegeben wurde. Die Menge *n* an Nukleosid wurde aus dem Verhälntnis der AUC des unmarkierten Nukleosids und des zugegebenen internen Standards, unter Berücksichtigung der Eichgeraden (siehe *Schiesser et al.*³⁹⁴), berechnet. Die ermittelten Mengen des Reaktionsprodukts wurden auf die ermittelte Menge an dT normiert (Ausbeute in %). Als *blank* wurde das β -Mercaptoethanol/Imidazol-Gemisch ohne DNA analog behandelt und das entsprechende Oligo-2'-desoxynukleotid vor dem DNA-Verdau zugegeben.

Tabelle 9.23: Quantifizierung der Oxidation von hmdC	2 zu fdC und cadC in der DNA-Haarnadelstruktur 1 in
verschieden konzentrierten	Mischungen bei pH 5.0 und 50 °C.

<i>c</i> (β-Mercapto- ethanol) [%]	$A_{ m dT}/A_{ m dT^*}$	n _{dT} [pmol]	$A_{ m hmdC}/A_{ m hmdC}*$	n _{hmdC} [pmol]	$A_{ m fdC}/A_{ m fdC}*$	n _{fdC} [pmol]	Ausbeute an fdC [%]
80	0.9326	171.9	1.434	38.89	1.153	16.38	19.07
60	1.321	243.5	3.260	88.46	0.2106	3.008	2.470
40	1.455	268.1	3.394	92.09	0.0577	0.8371	0.6244
20	1.444	266.2	3.851	104.5	0.0273	0.4049	0.3043
15	1.706	314.5	4.435	120.3	0.0794	1.145	0.7280
10	2.145	395.4	5.305	144.0	0.1069	1.536	0.7767

Tabelle 9.24: Detektion von 5-((2"-Hydroxyethyl)thio)methyl-dC als Addukt von hmdC und Quantifizierung der Oxidation von dG zu 8-oxo-dG in der DNA-Haarnadelstruktur 1 in verschieden konzentrierten β -Mercapto-ethanol/Imidazol-Mischungen bei pH 5.0 und 50 °C.

<i>c</i> (β-Mercapto- ethanol) [%]	A5-((2''-Hydroxyethyl)thio)methyl-dC	A8-oxo-dG/ A8-oxo-dG*	n _{8-oxo-dG} [pmol]	Ausbeute an 8-oxo-dG [%]
80	1.02×10^{7}	12.05	1.168	1.360
60	1.06×10^{7}	1.753	0.170	0.1397
40	5.31×10^{6}	0.8768	0.085	0.0635
20	1.12×10^{6}	1.076	0.1045	0.0785

Appendix – Daten der Quantifizierung des C-C-Bindungsbruchs, der Deaminierung und der Oxidation hmdC-, fdC- und cadC-haltiger DNA-Haarnadelstrukturen durch β-Mercaptoethanol/Imidazol-Gemische

15	6.89×10^{5}	1.258	0.1221	0.0777
10	4.40×10^{5}	1.910	0.1854	0.0938

Tabelle 9.25: Quantifizierung der Oxidation von fdC zu cadC in der DNA-Haarnadelstruktur 2 in verschieden konzentrierten β -Mercaptoethanol/Imidazol-Mischungen bei pH 5.0 und 50 °C.

<i>c</i> (β-Mercaptoethanol) [%]	A _{dT} / AdT*	n _{dT} [pmol]	A _{cadC} / A _{cadC} *	n _{cadC} [pmol]	Ausbeute an cadC [%]
80	0.2116	38.88	0.1006	1.385	7.123
60	0.7446	137.2	0.1018	1.401	2.042
40	0.6897	127.1	0.0473	0.6579	1.036
20	0.6370	117.3	0.0285	0.4028	0.6865
15	0.7293	134.4	0.0409	0.5716	0.8509
10	0.7240	133.4	0.0425	0.5926	0.8885

Tabelle 9.26: Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von hmdC zu dC in der DNA-Haarnadelstruktur 1 in verschieden konzentrierten β -Mercaptoethanol/Imidazol-Mischungen bei pH 5.0 und 50 °C. Ausbeuten <0.15% sind unterhalb des unteren Quantifizierungslimits.

<i>c</i> (β-Mercaptoethanol) [%]	$A_{ m dT}/A_{ m dT^*}$	n _{dT} [pmol]	$A_{ m dC}/A_{ m dC}*$	n _{dC} [pmol]	Ausbeute an dC [%]
80	0.9326	171.9	0.1514	0.4652	0.5414
60	1.321	243.5	0.0787	0.2324	0.1909
40	1.454	268.1	0.0764	0.2250	0.1678
20	1.385	255.4	0.0861	0.2560	0.2005
15	1.706	314.5	0.0724	0.2123	0.1350
10	2.145	395.4	0.1000	0.3006	0.1520
5	1.850	341.0	0.0746	0.2192	0.1286
0	1.784	328.9	0.0678	0.1977	0.1202

Tabelle 9.27: Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von fdC zu dC in der DNA-Haarnadelstruktur 2 in verschieden konzentrierten β -Mercaptoethanol/Imidazol-Mischungen bei pH 5.0 und 50 °C. Ausbeuten <0.36% sind unterhalb des unteren Quantifizierungslimits.

<i>c</i> (β-Mercaptoethanol) [%]	$A_{ m dT}/A_{ m dT^*}$	n _{dT} [pmol]	$A_{ m dC}/A_{ m dC}*$	n _{dC} [pmol]	Ausbeute an dC [%]
80	0.2116	38.88	0.1753	0.5415	2.786
60	0.7446	137.2	0.2268	0.7065	1.030
40	0.6897	127.1	0.1293	0.3944	0.6208
20	0.6370	117.3	0.0727	0.2132	0.3633
15	0.7293	134.4	0.0776	0.2291	0.3410
10	0.7240	133.4	0.0646	0.1872	0.2807
5	0.6793	125.1	0.1170	0.3549	0.5671
0	0.7561	139.3	0.0694	0.2028	0.2911

<i>c</i> (β-Mercaptoethanol) [%]	A _{dT} / A _{dT*}	n _{dT} [pmol]	A _{dC} / A _{dC*}	n _{dC} [pmol]	Ausbeute an dC [%]
80	0.7810	143.9	6.355	20.32	28.24
60	1.250	230.3	5.349	17.10	14.85
40	1.276	235.1	2.999	9.576	8.145
20	1.414	260.7	0.9074	2.884	2.213
15	1.756	323.8	0.9878	3.142	1.941
10	1.851	341.2	0.4745	1.499	0.8786
5	1.706	314.4	0.2234	0.6953	0.4423
0	1.572	289.8	0.0809	0.2395	0.1653

Tabelle 9.28: Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von cadC zu dC in der DNA-Haarnadelstruktur 3 in verschieden konzentrierten β -Mercaptoethanol/Imidazol-Mischungen bei pH 5.0 und 50 °C.

Tabelle 9.29: Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von cadC zu dC in der DNA-Haarnadelstruktur 3 in verschieden konzentrierten β -Mercaptoethanol/Imidazol-Mischungen bei pH 5.0 und 37 °C.

<i>c</i> (β-Mercaptoethanol) [%]	А _{dT} / А _{dT*}	n _{dT} [pmol]	Adc/ Adc*	n _{dC} [pmol]	Ausbeute an dC [%]
80	1.623	299.3	3.225	10.30	6.883
60	1.397	257.5	0.9114	2.897	2.250
40	1.414	260.7	0.4006	1.262	0.9684
20	1.429	263.4	0.1554	0.4779	0.3629
10	1.902	350.6	0.2083	0.6473	0.3693

Tabelle 9.30: Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von cadC zu dC in der DNA-Haarnadelstruktur 3 in verschieden konzentrierten β -Mercaptoethanol/Imidazol-Mischungen bei pH 7.4 und 50 °C. Ausbeuten <0.16% sind unterhalb des unteren Quantifizierungslimits.

<i>c</i> (β-Mercaptoethanol) [%]	A _{dT} / A _{dT*}	n _{dT} [pmol]	$A_{ m dC}/A_{ m dC}*$	n _{dC} [pmol]	Ausbeute an dC [%]
80	1.254	231.1	0.7616	2.418	2.092
60	1.198	220.8	0.7717	2.450	2.220
40	0.8226	151.6	0.7376	2.341	3.089
20	1.588	292.8	0.2513	0.7849	0.5361
10	1.454	268.0	0.0711	0.2083	0.1554

Tabelle 9.31: Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von cadC zu dC in der DNA-Haarnadelstruktur 3 in verschieden konzentrierten β -Mercaptoethanol/Imidazol-Mischungen bei pH 7.4 und 37 °C. Ausbeuten <0.16% sind unterhalb des unteren Quantifizierungslimits.

<i>c</i> (β-Mercaptoethanol) [%]	A _{dT} / A _{dT*}	n _{dT} [pmol]	$A_{ m dC}/A_{ m dC}*$	n _{dC} [pmol]	Ausbeute an [%]
80	1.802	332.2	0.4435	1.400	0.8428
60	1.541	284.1	0.2580	0.8061	0.5675
40	2.005	369.6	0.1347	0.4117	0.2228

Appendix – Daten der Quantifizierung des C-C-Bindungsbruchs, der Deaminierung und der Oxidation hmdC-, fdC- und cadC-haltiger DNA-Haarnadelstrukturen durch β-Mercaptoethanol/Imidazol-Gemische

20	1.672	308.2	0.0748	0.2199	0.1427
10	1.776	327.4	0.4019	1.267	0.7738

Tabelle 9.32: Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von hmdC zu dC und der Deaminierung von hmdC zu hmdU in den DNA-Haarnadelstrukturen **ODN 1** und **ODN 4** in einer 80%igen β -Mercaptoethanol-Lösung in Anwesenheit von Imidazol bei pH 5.0 und 50 °C. Jede Messung wurde dreimal durchgeführt.

	Adt/ Adt*	n _{dT} [pmol]	$A_{ m dC}/A_{ m dC}*$	n _{dC} [pmol]	Ausbeute an dC [%]	$A_{ m hmdU}/A_{ m hmdU}*$	<i>n</i> hmdU [pmol]	Ausbeute an hmdU [%]
ODN 1	0.9084	167.4	0.1473	0.4520	0.5400	0.9360	0.2320	0.2771
ODN 1	1.182	217.9	0.1903	0.5894	0.5410	1.397	0.3529	0.3239
ODN 1	0.9326	171.9	0.1514	0.4652	0.5414	1.034	0.2577	0.2999
ODN 4	0.2299	42.26	0.1131	0.3425	1.621	0.4049	0.0927	0.4386
ODN 4	0.7571	139.5	0.1868	0.5785	0.8294	1.080	0.2697	0.3866
ODN 4	0.8385	154.5	0.1685	0.5197	0.6727	1.095	0.2736	0.3542

Tabelle 9.33: Mittelwerte und Standardabweichungen (SD) der Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von hmdC zu dC und der Deaminierung von hmdC zu hmdU in den DNA-Haarnadelstrukturen **ODN 1** und **ODN 4** in einer 80%igen β -Mercaptoethanol-Lösung in Anwesenheit von Imidazol bei pH 5.0 und 50 °C.

	Mittelwert der	SD	Mittelwert der	SD
	Ausbeute an	Ausbeute	Ausbeute an	Ausbeute
	dC	an dC	hmdU	an hmdU
	[%]	[%]	[%]	[%]
ODN 1	0.5408	0.0007	0.3003	0.0234
ODN 4	1.041	0.5082	0.3931	0.0426

Tabelle 9.34: Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von fdC zu dC und der Deaminierung von fdC zu fdU in den DNA-Haarnadelstrukturen **ODN 2** und **ODN 5** in einer 80%igen β -Mercaptoethanol-Lösung in Anwesenheit von Imidazol bei pH 5.0 und 50 °C. Jede Messung wurde zwei- beziehungsweise dreimal durchgeführt.

	A _{dT} / A _{dT*}	n _{dT} [pmol]	$A_{ m dC}/A_{ m dC}*$	n _{dC} [pmol]	Ausbeute an dC [%]	$A_{ m fdU}/A_{ m fdU}*$	n _{fdU} [pmol]	Ausbeute an fdC [%]
ODN 2	0.5927	109.2	0.1296	0.3974	2.294	1.252	0.0633	0.1160
ODN 2	0.2116	38.88	0.0572	0.1753	2.786	0.5415	0.0316	0.1626
ODN 5	0.2898	53.30	0.2745	0.8589	3.223	0.2144	0.1004	0.3769
ODN 5	0.4387	80.76	0.3570	1.123	2.781	0.2369	0.1103	0.2732
ODN 5	0.2880	52.96	0.3890	1.225	4.627	0.2253	0.1052	0.3973

Table 9.35: Mittelwerte und Standardabweichungen (SD) der Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von fdC zu dC und der Deaminierung von fdC zu fdU in den DNA-Haarnadelstrukturen **ODN 2** und **ODN 5** in einer 80%igen β -Mercaptoethanol-Lösung in Anwesenheit von Imidazol bei pH 5.0 und 50 °C.

	Mittelwert der Ausbeute an dC [%]	SD Ausbeute an dC [%]	Mittelwert der Ausbeute an fdU [%]	SD Ausbeute an fdU [%]
ODN 2	2.540	0.3478	0.1393	0.0329
ODN 5	3.544	0.9641	0.3491	0.0666

Tabelle 9.36: Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von cadC zu dC in den DNA-Haarnadelstrukturen **ODN 3** und **ODN 6** in einer 80%igen β -Mercaptoethanol-Lösung in Anwesenheit von Imidazol bei pH 5.0 und 50 °C. Die Deaminierung von cadC zu cadU konnte nicht detektiert werden.

	A _{dT} / A _{dT*}	n _{dT} [pmol]	$A_{ m dC}/A_{ m dC}*$	n _{dC} [pmol]	Ausbeute an dC [%]
ODN 3	0.5671	104.4	4.989	15.94	30.53
ODN 3	0.6504	119.8	5.664	18.10	30.22
ODN 3	0.7810	143.9	6.355	20.32	28.24
ODN 6	0.3797	69.89	3.400	10.86	31.08
ODN 6	0.5791	106.7	5.856	18.72	35.10
ODN 6	0.5183	95.44	5.189	16.58	34.75

Tabelle 9.37: Mittelwerte und Standardabweichungen (SD) der Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von cadC zu dC in den DNA-Haarnadelstrukturen **ODN 3** und **ODN 6** in einer 80%igen β -Mercaptoethanol-Lösung in Anwesenheit von Imidazol bei pH 5.0 und 50 °C.

	Mittelwert der Ausbeute an dC [%]	SD Ausbeute an dC [%]
ODN 3	29.66	1.246
ODN 6	33.64	2.227

9.5 Daten zur Bestimmung der Geschwindigkeitskonstanten des C⁵-C^{exo}-Bindungsbruchs von hmdC, fdC und cadC

Für alle Tabellen gilt: A ist die Fläche unter der Kurve (AUC) des entsprechenden Signals. * bezeichnet die isotopenmarkierte Verbindung, die als interner Standard zugegeben wurde. Die Menge n an Nukleosid wurde aus dem Verhälntnis der AUC des unmarkierten Nukleosids und des zugegebenen internen Standards, unter Berücksichtigung der Eichgeraden (siehe *Schiesser et al.*³⁹⁴), berechnet. Die Menge des jeweils quantifizierten Reaktionsprodukts wurde auf die ebenfalls ermittelte Menge des Edukts normiert, um die geringfügige Verdunstung des Wassers im Zuge der Reaktion und technische Schwankungen zu berücksichtigen.

Zeit [h]	$A_{ m hmdC}/A_{ m hmdC}*$	n _{hmdC} [pmol]	$A_{ m dC}/A_{ m dC^*}$	n _{dC} [pmol]
0	3.113	84.46	0.0130	0.0056
0	3.167	85.93	0.0133	0.0058
0	3.197	86.75	0.0136	0.0060
12	3.282	89.06	0.0143	0.0066
12	3.264	88.56	0.0134	0.0059
12	3.242	87.98	0.3262	0.2561
23.5	3.319	90.05	0.0148	0.0070
23.5	3.362	91.22	0.0150	0.0072
23.5	3.378	91.66	0.0143	0.0066
35	3.499	94.93	0.0146	0.0068
35	3.392	92.03	0.0150	0.0071
35	3.473	94.23	0.0145	0.0068
46.5	3.616	98.11	0.0153	0.0074
46.5	3.552	96.36	0.0146	0.0069
46.5	3.624	98.32	0.0151	0.0073
58	3.926	106.5	0.0164	0.0083
58	3.914	106.2	0.0163	0.0082
58	4.094	111.1	0.0161	0.0081

Tabelle 9.38: Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von hmdC zu dC bei 60.0 °C.

Tabelle 9.39: Quantifizierung des C^5 - C^{exo} -Bindungsbruchs von hmdC zu dC bei 80.0 °C.

Zeit [h]	$A_{ m hmdC}/A_{ m hmdC}*$	n _{hmdC} [pmol]	AdC/ AdC*	n _{dC} [pmol]
0	3.203	86.90	0.0136	0.0061
0	3.149	85.45	0.0132	0.0057
0	3.257	88.36	0.0134	0.0058

12	3.426	92.95	0.0196	0.0109
12	3.336	90.51	0.0211	0.0121
12	3.620	98.23	0.0201	0.0112
23.5	3.913	106.2	0.0282	0.0177
23.5	3.800	103.1	0.0269	0.0167
23.5	3.824	103.8	0.0278	0.0174
35	4.492	121.9	0.0381	0.0256
35	4.406	119.6	0.0402	0.0273
35	4.374	118.7	0.0381	0.0257
46.5	6.297	170.9	0.0604	0.0435
46.5	6.216	168.7	0.0605	0.0435
46.5	5.955	161.6	0.0610	0.0440

Appendix – Daten zur Bestimmung der Geschwindigkeitskonstanten des C⁵-C^{exo}-Bindungsbruchs von hmdC, fdC und cadC

Tabelle 9.40: Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von fdC zu dC bei 60.0 °C.

Zeit	$A_{\rm fdC}/$	<i>n</i> _{fdC}	$A_{\rm dC}/$	<i>n</i> _{dC}
[h]	$A_{ m fdC^*}$	[pmol]	$A_{ m dC}*$	[pmol]
0	3.148	111.8	0.0133	0.0058
0	2.987	106.1	0.0130	0.0056
0	3.023	107.4	0.0128	0.0054
12	3.086	109.6	0.0305	0.0196
12	3.153	112.0	0.0245	0.0147
12	3.137	111.4	0.0256	0.0156
23.5	3.323	118.0	0.0373	0.0250
23.5	3.320	117.9	0.0338	0.0222
23.5	3.202	113.7	0.0325	0.0212
35	3.488	123.9	0.0447	0.0309
35	3.442	122.2	0.0427	0.0293
35	3.435	122.0	0.0392	0.0265
46.5	3.627	128.8	0.0535	0.0379
46.5	3.618	128.5	0.0477	0.0333
46.5	3.475	123.4	0.0461	0.0320
58	4.101	145.6	0.0639	0.0463
58	3.923	139.3	0.0579	0.0415
58	3.978	141.3	0.0570	0.0408

Tabelle 9.41: Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von fdC zu dC bei 80.0 °C.

Zeit [h]	$A_{ m fdC}/A_{ m fdC}*$	n _{fdC} [pmol]	$A_{ m dC}/A_{ m dC^*}$	n _{dC} [pmol]
0	2.743	97.42	0.0135	0.0059
0	2.845	101.0	0.0134	0.0059
0	3.013	107.0	0.0133	0.0058
12	3.523	125.1	0.0704	0.0514
12	3.185	113.1	0.0700	0.0512
12	3.125	111.0	0.0686	0.0500

Appendix – Daten zur Bestimmung der Geschwindigkeitskonstanten des C5-Cexo-Bindungsbruchs von hu	mdC,
fdC und cadC	

23.5	3.514	124.8	0.1171	0.0888
23.5	3.458	122.8	0.1143	0.0866
23.5	3.467	123.1	0.1132	0.0857
35	4.001	142.1	0.1784	0.1379
35	3.986	141.5	0.1705	0.1315
35	3.874	137.5	0.1727	0.1333
46.5	5.416	192.3	0.3026	0.2373
46.5	4.901	174.0	0.2765	0.2164
46.5	5.084	180.5	0.3002	0.2353

Tabelle 9.42. Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von cadC zu dC bei 60.0 °C.

Zeit [h]	A _{cadC} / A _{cadC} *	n _{cadC} [pmol]	$A_{ m dC}/A_{ m dC}*$	n _{dC} [pmol]
0	4.788	86.98	0.3579	0.2815
0	4.740	86.11	0.3542	0.2785
0	4.755	86.39	0.3546	0.2788
12	4.853	88.18	0.3727	0.2933
12	4.913	89.26	0.3819	0.3006
12	4.881	88.68	0.3828	0.3014
23.5	4.945	89.85	0.3927	0.3093
23.5	5.010	91.03	0.3893	0.3066
23.5	4.989	90.64	0.4031	0.3176
35	5.221	94.85	0.4198	0.3310
35	5.105	92.75	0.4089	0.3223
35	5.018	91.17	0.4126	0.3252
46.5	5.296	96.22	0.4285	0.3379
46.5	5.469	99.36	0.4382	0.3457
46.5	5.247	95.32	0.4269	0.3367
58	5.921	107.6	0.4775	0.3771
58	5.951	108.1	0.4900	0.3871
58	6.0729	110.33	0.4946	0.3908

Tabelle 9.43: Quantifizierung des C⁵-C^{exo}-Bindungsbruchs von cadC zu dC bei 80.0 °C.

Zeit [h]	$A_{ m cadC}/A_{ m cadC}*$	n _{cadC} [pmol]	$A_{ m dC}/A_{ m dC^*}$	n _{dC} [pmol]
0	4.802	87.23	0.3623	0.2850
0	4.783	86.90	0.3657	0.2877
0	4.814	87.46	0.3785	0.2979
12	5.213	94.70	0.4355	0.3435
12	5.136	93.32	0.4324	0.3411
12	5.265	95.66	0.4385	0.3459
23.5	5.842	106.1	0.5317	0.4205
23.5	5.678	103.2	0.5244	0.4147
23.5	5.893	107.1	0.5369	0.4247
35	6.906	125.5	0.6489	0.5143

Appendix – Daten zur Bestimmung der Geschwindigkeitskonstanten des C⁵-C^{exo}-Bindungsbruchs von hmdC, fdC und cadC

35	6.818	123.9	0.6621	0.5248
35	6.976	126.7	0.6639	0.5262
46.5	9.828	178.5	0.9977	0.7933
46.5	9.639	175.1	0.9945	0.7907
46.5	10.01	181.9	1.026	0.8162

Tabelle 9.44: Mittelwerte und Standardabweichungen der normalisierten Menge an durch C⁵-C^{exo}-Bindungsbruch von hmdC gebildeten dC bei 80.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{dC}/n_{hmdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{dC} /n _{hmdC}	Standardabweichung von n _{dC} /n _{hmdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$2.01 imes 10^{-6}$	0
12	5.39×10^{-5}	$1.03 imes 10^{-5}$	5.39×10^{-5}
23.5	0.97×10^{-4}	$2.89 imes 10^{-6}$	9.78×10^{-5}
35	1.50×10^{-4}	$9.17 imes 10^{-6}$	1.51×10^{-4}
46.5	1.94×10^{-4}	9.39×10^{-6}	1.94×10^{-4}

Table 9.45: Mittelwerte und Standardabweichungen der normalisierten Menge an durch C⁵-C^{exo}-Bindungsbruch von fdC gebildeten dC bei 80.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{dC}/n_{fdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{dC} /n _{fdC}	Standardabweichung von n _{dC} /n _{fdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	3.63×10^{-6}	0
12	3.80×10^{-4}	$2.33 imes 10^{-5}$	3.80×10^{-4}
23.5	6.47×10^{-4}	$7.81 imes 10^{-5}$	6.47×10^{-4}
35	8.99×10^{-4}	$2.35 imes 10^{-5}$	8.99×10^{-4}
46.5	1.21×10^{-3}	3.79×10^{-5}	1.20×10^{-3}

Tabelle 9.46: Mittelwerte und Standardabweichungen der normalisierten Menge an durch C⁵-C^{exo}-Bindungsbruch von cadC gebildeten dC bei 80.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{dC}/n_{cadC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{dC} /n _{cadC}	Standardabweichung von n _{dC} /n _{cadC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$7.16 imes 10^{-5}$	0
12	3.00×10^{-4}	$1.98 imes 10^{-5}$	3.06×10^{-4}
23.5	6.50×10^{-4}	$3.20 imes 10^{-5}$	6.57×10^{-4}
35	8.30×10^{-4}	$6.99 imes 10^{-5}$	8.38×10^{-4}
46.5	1.15×10^{-3}	3.64×10^{-5}	1.16×10^{-3}

Reaktion	Bestimmtheitsmaß R ²	Geradengleichung
hmdC \rightarrow dC	0.9995	$y = 4.17805 \times 10^{-6} \text{ x} + 1.49031 \times 10^{-6}$
fdC → dC	0.9978	$y = 2.52342 \times 10^{-5} \text{ x} + 3.55494 \times 10^{-5}$
$cadC \rightarrow dC$	0.9965	$y = 2.45745 \times 10^{-5} x + 1.7007 \times 10^{-5}$

Tabelle 9.47: Mit Hilfe von ORIGIN[®] 6.0 ermittelte Bestimmtheitsmaße R^2 und Geradengleichungen des C⁵-C^{exo}-Bindungsbruchs bei 80.0 °C und pH 7.4.

9.6 Daten der Reaktionskinetiken der Deaminierung von dC, mdC, hmdC und fdC und der Oxidation von mdC, hmdC und fdC

Tabelle 9.48: Quantifizierung der Deaminierung von dC zu dU bei 60.0 °C.

Zeit [h]	A _{dC} / A _{dC*}	n _{dC} [pmol]	A _{dU} / A _{dU*}	n _{dU} [pmol]
0	4.281	102.6	0.0417	0.0858
0	4.047	96.99	0.0283	0.0628
0	4.429	106.1	0.0291	0.0642
11.5	4.368	104.7	0.0847	0.1596
11.5	4.184	100.3	0.0597	0.1167
11.5	4.673	112.0	0.1039	0.1927
24	4.492	107.7	0.1174	0.2159
24	4.204	100.7	0.1137	0.2095
24	4.664	111.8	0.1627	0.2936
36	4.664	111.8	0.1784	0.3207
36	4.450	106.7	0.1773	0.3187
36	4.825	115.7	0.1978	0.3539
48	4.950	118.6	0.2532	0.4491
48	4.586	109.9	0.1978	0.3539
48	5.151	123.5	0.2511	0.4457
60	5.451	130.7	0.3117	0.5496
60	5.199	124.6	0.3059	0.5398
60	5.662	135.7	0.3122	0.5505

Tabelle 9.49: Quantifizierung der Deaminierung von dC zu dU bei 67.5 °C.

Zeit [h]	$A_{ m dC}/A_{ m dC}*$	n _{dC} [pmol]	A _{dU} / A _{dU*}	n _{dU} [pmol]
0	4.306	103.2	0.0296	0.0650
0	4.445	106.5	0.0147	0.0393
0	4.521	108.4	0.0300	0.0657

Appendix -	- Daten der	Reaktionskinetiken	der	Deaminierung	von dC,	mdC,	hmdC	und fd	C und	der	Oxidation
			von	mdC, hmdC ur	nd fdC						

11.5	4.586	109.9	0.1120	0.2066
11.5	4.710	112.9	0.1266	0.2317
11.5	4.751	113.9	0.1544	0.2794
24	4.741	113.6	0.2425	0.4308
24	4.887	117.1	0.2742	0.4852
24	4.872	116.8	0.2401	0.4268
36	5.052	121.1	0.3507	0.6167
36	5.089	122.0	0.4518	0.7905
36	5.256	126.0	0.3549	0.6239
48	5.611	134.5	0.5985	1.0425
48	5.368	128.7	0.5465	0.9531
48	5.917	141.9	0.5756	1.003
60	5.881	141.0	0.7532	1.308
60	6.143	147.3	0.6923	1.204
60	6.028	144.5	0.7599	1.320

Tabelle 9.50: Quantifizierung der Deaminierung von dC zu dU bei 75.0 °C.

Zeit [h]	$A_{ m dC}/A_{ m dC}*$	n _{dC} [pmol]	A _{dU} / A _{dU*}	n _{dU} [pmol]
0	4.451	106.7	0.0708	0.1357
0	4.249	101.8	0.0154	0.0406
0	4.391	105.2	0.0226	0.0530
11.5	4.744	113.7	0.3212	0.5661
11.5	4.546	109.0	0.2904	0.5130
11.5	4.618	110.7	0.2570	0.4557
24	4.984	119.5	0.6145	1.070
24	4.913	117.8	0.5097	0.8900
24	5.080	121.8	0.5970	1.040
36	5.744	137.7	1.037	1.796
36	5.373	128.8	0.8923	1.547
36	5.624	134.8	1.0034	1.738
48	7.235	173.5	1.733	2.991
48	6.778	162.5	1.566	2.704
48	6.951	166.7	1.492	2.578
60	3.557	85.21	0.9872	1.710
60	3.476	83.28	0.9838	1.705
60	3.311	79.32	0.9946	1.723

Tabelle 9.51: Quantifizierung der Deaminierung von dC zu dU bei 82.5 °C.

Zeit [h]	A _{dC} / A _{dC*}	n _{dC} [pmol]	A _{dU} / A _{dU*}	n _{dU} [pmol]
0	4.376	104.9	0.0311	0.0676
0	4.513	108.2	0.0279	0.0621
0	4.636	111.1	0.0347	0.0737
11.5	4.830	115.8	0.5649	0.9847

Appendix – Daten der Reaktionskinetiken der Deaminierung von dC, mdC, hmdC und fdC und der Oxidation von mdC, hmdC und fdC

11.5	5.009	120.1	0.6051	1.054
11.5	4.972	119.2	0.6007	1.046
24	5.395	129.3	1.460	2.523
24	5.587	133.9	1.453	2.511
24	5.608	134.4	1.518	2.622
36	6.481	155.4	2.520	4.345
36	5.613	134.6	2.041	3.520
36	6.981	167.4	2.323	4.006
48	8.314	199.4	4.186	7.207
48	9.979	239.4	5.088	8.757
48	8.786	210.7	4.640	7.987

Tabelle 9.52: Quantifizierung der Deaminierung von mdC zu dT bei 60.0 °C.

Zeit [h]	$A_{ m mdC}/$ $A_{ m mdC}*$	n _{mdC} [pmol]	$A_{ m dT}/A_{ m dT^{\star}}$	n _{dT} [pmol]
0	4.789	162.7	0.3248	0.2390
0	4.402	149.6	0.3051	0.2245
0	4.684	159.1	0.2991	0.2200
11.5	4.674	158.8	0.4413	0.3250
11.5	4.654	158.1	0.4499	0.3313
11.5	4.616	156.8	0.4749	0.3498
24	4.931	167.5	0.5881	0.4333
24	4.750	161.4	0.5739	0.4228
24	4.918	167.1	0.5872	0.4327
36	5.326	180.9	0.7157	0.5274
36	4.860	165.1	0.6883	0.5072
36	5.058	171.8	0.6871	0.5063
48	5.360	182.1	0.8471	0.6243
48	5.101	173.3	0.8262	0.6089
48	5.387	183.0	0.8430	0.6213
60	6.041	205.2	1.141	0.8409
60	5.633	191.4	1.134	0.8359
60	5.829	198.0	1.085	0.7996

Tabelle 9.53: Quantifizierung der Deaminierung von mdC zu dT bei 67.5 °C.

Zeit [h]	$A_{ m mdC}/A_{ m mdC}*$	n _{mdC} [pmol]	A _{dT} / A _{dT*}	n _{dT} [pmol]
0	4.528	153.8	0.2918	0.2147
0	4.507	153.1	0.3138	0.2309
0	4.641	157.7	0.3260	0.2399
11.5	4.638	157.6	0.6478	0.4773
11.5	4.688	159.3	0.5917	0.4359
11.5	4.886	166.0	0.5983	0.4408
24	4.953	168.3	0.8877	0.6543

Appendix -	– Daten der Re	aktionskinetiken	der	Deaminierung	von dC,	mdC,	hmdC	und fd	C und	der (Oxidation
			von	mdC, hmdC ur	nd fdC						

24	5.045	171.4	0.8468	0.6242
24	5.137	174.5	0.9067	0.6683
36	5.329	181.0	1.122	0.8275
36	5.404	183.6	1.127	0.8306
36	5.387	183.0	1.152	0.8491
48	5.623	191.0	1.566	1.155
48	5.968	202.7	1.674	1.234
48	5.865	199.2	1.605	1.184
60	6.214	211.1	2.130	1.571
60	5.923	201.2	2.182	1.610
60	6.306	214.2	1.971	1.453

Tabelle 9.54: Quantifizierung der Deaminierung von mdC zu dT bei 75.0 °C.

Zeit [h]	$A_{ m mdC}/$ $A_{ m mdC}*$	n _{mdC} [pmol]	$A_{ m dT}/A_{ m dT^{\star}}$	n _{dT} [pmol]
0	4.669	158.6	0.3251	0.2393
0	4.526	153.8	0.3263	0.2402
0	4.709	160.0	0.2793	0.2055
11.5	4.999	169.8	1.020	0.7515
11.5	4.910	166.8	1.018	0.7506
11.5	5.123	174.1	1.025	0.7555
24	5.187	176.2	1.479	1.090
24	5.270	179.0	1.789	1.319
24	5.510	187.2	1.567	1.156
36	5.772	196.1	2.424	1.788
36	5.989	203.5	2.653	1.957
36	5.998	203.7	2.485	1.832
48	7.128	242.1	3.769	2.780
48	7.390	251.0	4.107	3.030
48	7.134	242.3	4.127	3.044
60	4.123	140.1	2.993	2.207
60	3.489	118.6	2.495	1.840
60	4.081	138.7	3.071	2.265

Tabelle 9.55: Quantifizierung der Deaminierung von mdC zu dT bei 82.5 °C.

Zeit [h]	$A_{ m mdC}/ A_{ m mdC} imes$	n _{mdC} [pmol]	$A_{ m dT}/A_{ m dT^{\star}}$	n _{dT} [pmol]
0	4.593	156.1	0.3266	0.2403
0	4.611	156.7	0.3152	0.2320
0	4.523	153.7	0.3207	0.2360
11.5	5.042	171.3	1.767	1.303
11.5	5.002	169.9	2.025	1.493
11.5	5.149	174.9	1.812	1.336
24	5.720	194.3	3.306	2.438

Appendix – Daten der Reaktionskinetiken der Deaminierung von dC, mdC, hmdC und fdC und der Oxidation von mdC, hmdC und fdC

24	5.704	193.8	3.552	2.620
24	5.685	193.1	3.376	2.490
36	6.885	233.9	5.723	4.221
36	7.077	240.4	6.291	4.641
36	6.712	228.0	6.555	4.835
48	9.074	308.2	10.34	7.628
48	9.279	315.1	10.22	7.538
48	8.826	299.7	10.09	7.447

Tabelle 9.56: Quantifizierung der Oxidation von mdC zu hmdC bei 60.0 °C.

Zeit [h]	$A_{ m mdC}/$ $A_{ m mdC}*$	n _{mdC} [pmol]	$A_{ m hmdC}/$ $A_{ m hmdC}*$	n _{hmdC} [pmol]
0	4.573	155.3	0.0112	0.0054
0	4.454	151.2	0.0109	0.0052
0	4.702	159.7	0.0115	0.0056
12	4.825	163.8	0.0121	0.0059
12	4.595	156.0	0.0127	0.0062
12	4.709	159.9	0.0117	0.0057
23.5	5.031	170.8	0.0134	0.0066
23.5	4.853	164.8	0.0127	0.0062
23.5	4.785	162.5	0.0125	0.0061
35	5.207	176.8	0.0143	0.0071
35	5.025	170.6	0.0146	0.0072
35	4.768	161.9	0.0134	0.0066
46.5	5.336	181.2	0.0159	0.0079
46.5	5.278	179.2	0.0153	0.0076
46.5	5.304	180.1	0.0152	0.0076

Tabelle 9.57: Quantifizierung der Oxidation von mdC zu hmdC bei 80.0 °C.

Zeit [h]	$A_{ m mdC}/ A_{ m mdC}*$	n _{mdC} [pmol]	$A_{ m hmdC}/ A_{ m hmdC} imes$	n _{hmdC} [pmol]
0	1.969	66.86	0.0061	0.0026
0	2.054	69.76	0.0066	0.0029
0	2.304	78.22	0.0069	0.0031
12	4.641	157.6	0.0114	0.0055
12	4.474	151.9	0.0111	0.0053
12	4.826	163.9	0.0115	0.0055
23.5	5.681	192.9	0.0164	0.0082
23.5	4.968	168.7	0.0148	0.0074
23.5	5.006	170.0	0.0156	0.0078
35	5.605	190.3	0.0179	0.0090
35	5.493	186.5	0.0191	0.0097
35	5.690	193.2	0.0198	0.0101
46.5	6.366	216.1	0.0232	0.0119
46.5	6.615	224.6	0.0242	0.0124
46.5	6.301	213.9	0.0256	0.0132

Zeit [h]	$A_{ m hmdC}/A_{ m hmdC}*$	n _{hmdC} [pmol]	$A_{ m fdC}/A_{ m fdC}*$	n _{fdC} [pmol]	$A_{ m hmdU}/A_{ m hmdU}*$	n _{hmdU} [pmol]
0	3.266	88.63	0.1240	0.0889	1.010	0.2514
0	3.295	89.40	0.1291	0.0925	1.031	0.2569
0	3.489	94.66	0.1307	0.0936	1.024	0.2551
11.5	3.369	91.41	0.2050	0.1464	1.114	0.2787
11.5	3.392	92.02	0.1916	0.1369	1.116	0.2791
11.5	3.335	90.48	0.2147	0.1533	1.164	0.2918
24	3.547	96.25	0.2857	0.2037	1.357	0.3423
24	3.665	99.44	0.2946	0.2100	1.316	0.3315
24	3558	96.53	0.3094	0.2205	1.582	0.4014
36	3.569	96.85	0.3702	0.2637	1.553	0.3939
36	3.588	97.35	0.3531	0.2515	1.592	0.4040
36	3.717	100.9	0.4045	0.2880	1.678	0.4266
48	3.772	102.4	0.4562	0.3248	1.854	1.854
48	3.877	105.2	0.4468	0.3181	1.740	1.740
48	3.861	104.8	0.5039	0.3586	1.820	1.820
60	4.112	111.6	0.6031	0.4291	2.058	0.5263
60	4.209	114.2	0.5560	0.3956	2.140	0.5476
60	4.228	114.7	0.6683	0.4753	2.016	0.5152

Tabelle 9.58: Quantifizierung der Deaminierung von hmdC zu hmdU und der Oxidation von hmdU zu fdC bei 60.0 °C.

Tabelle 9.59: Quantifizierung der Deaminierung von hmdC zu hmdU und der Oxidation von hmdU zu fdC bei 67.5 °C.

Zeit [h]	$A_{ m hmdC}/$ $A_{ m hmdC}*$	n _{hmdC} [pmol]	$A_{ m fdC}/A_{ m fdC}*$	n _{fdC} [pmol]	$A_{ m hmdU}/A_{ m hmdU}*$	n _{hmdU} [pmol]
0	3.255	88.31	0.1219	0.0874	0.8955	0.2213
0	3.417	92.71	0.1318	0.0945	1.015	0.2527
0	3.283	89.09	0.1469	0.1052	0.9535	0.2365
11.5	3.393	92.07	0.2824	0.2013	1.435	0.3629
11.5	3.415	92.66	0.3013	0.2148	1.419	0.3585
11.5	3.392	92.03	0.3559	0.2535	1.215	0.3051
24	3.612	98.01	0.4188	0.2982	1.673	0.4251
24	3.478	94.36	0.4362	0.3106	1.677	0.4262
24	3.496	94.87	0.5355	0.3811	1.744	0.4439
36	3.797	103.0	0.5298	0.3770	2.197	0.5628
36	3.8468	104.4	0.6011	0.4276	2.279	0.5841
36	3.7689	102.3	0.7424	0.5279	2.211	0.5663
48	4.150	112.6	0.7288	0.5182	2.655	0.6828
48	4.265	115.7	0.8037	0.5715	2.881	0.7420
48	4.199	114.0	1.007	0.7155	2.687	0.6911
60	4.712	127.9	0.9892	0.7032	3.708	0.9588
60	4.553	123.6	1.033	0.7342	3.545	0.9162
60	4.538	123.1	1.285	0.9129	3.523	0.9103

Zeit [h]	$A_{ m hmdC}/A_{ m hmdC}*$	n _{hmdC} [pmol]	$A_{ m fdC}/A_{ m fdC}*$	n _{fdC} [pmol]	$A_{ m hmdU}/A_{ m hmdU}*$	n _{hmdU} [pmol]
0	3.290	89.28	0.1287	0.0923	0.9406	0.2332
0	3.295	89.39	0.1303	0.0934	0.8981	0.2220
0	3.332	90.41	0.1464	0.1048	0.8958	0.2214
11.5	3.443	93.42	0.2932	0.2090	1.821	0.4640
11.5	3.649	99.01	0.3163	0.2254	1.922	0.4904
11.5	3.577	97.04	0.4491	0.3197	1.816	0.4628
24	3.830	103.9	0.4496	0.3200	2.765	0.7115
24	3.852	104.5	0.5421	0.3857	2.864	0.7375
24	3.898	105.8	0.7140	0.5078	2.839	0.7311
36	4.227	114.7	0.6484	0.4612	4.128	1.069
36	5.024	136.3	0.9085	0.6458	9.334	2.434
36	4.285	116.3	1.012	0.7195	4.136	1.071
48	4.971	134.9	0.9144	0.6500	5.874	1.527
48	5.205	141.3	1.253	0.8902	6.510	1.694
48	5.276	143.2	1.456	1.0347	5.923	1.540
60	3.044	82.59	0.6076	0.4322	3.936	1.019
60	2.900	78.67	0.7671	0.5454	3.761	0.9727
60	2.840	77.05	0.9384	0.6671	3.817	0.9876

Tabelle 9.60: Quantifizierung der Deaminierung von hmdC zu hmdU und der Oxidation von hmdU zu fdC bei 75.0 °C.

 Tabelle 9.61: Quantifizierung der Deaminierung von hmdC zu hmdU bei 82.5 °C.

Zeit [h]	$A_{ m hmdC}/ A_{ m hmdC}*$	n _{hmdC} [pmol]	$A_{ m hmdU}/A_{ m hmdU}*$	<i>n</i> hmdU [pmol]
0	3.449	93.57	1.074	0.2682
0	3.339	90.61	1.017	0.2531
0	3.311	89.84	0.9627	0.2390
11.5	3.688	100.1	2.792	0.7186
11.5	3.617	98.15	2.763	0.7110
11.5	3.677	99.76	2.727	0.7016
24	4.251	115.4	5.439	1.413
24	4.095	111.1	5.342	1.387
24	4.202	114.0	5.295	1.375
36	4.350	118.0	4.100	1.062
36	4.981	135.2	8.985	2.343
36	4.990	135.4	8.442	2.200
48	6.299	170.9	13.47	3.520
48	6.444	174.8	14.36	3.752
48	6.427	174.4	14.10	3.685

Zeit [h]	$A_{ m hmdC}/A_{ m hmdC}*$	n _{hmdC} [pmol]	$A_{ m fdC}/A_{ m fdC}*$	n _{fdC} [pmol]
0	3.203	86.90	0.1261	0.0904
0	3.149	85.45	0.1350	0.0967
0	3.257	88.36	0.1357	0.0972
12	3.426	92.95	0.3389	0.2415
12	3.336	90.51	0.3623	0.2581
12	3.620	98.23	0.3819	0.2720
23.5	3.913	106.2	0.5395	0.3839
23.5	3.800	103.1	0.5508	0.3919
23.5	3.824	103.8	0.6629	0.4715
35	4.492	121.9	0.7604	0.5407
35	4.406	119.6	0.8502	0.6044
35	4.374	118.7	0.9515	0.6764
46.5	6.297	170.9	1.333	0.9470
46.5	6.216	168.7	1.565	1.112
46.5	5.955	161.6	1.556	1.105

Tabelle 9.62: Quantifizierung der Oxidation von hmdC zu fdC bei 80.0 °C.

Tabelle 9.63: Quantifizierung der Deaminierung von fdC zu fdU und der Oxidation von fdC zu cadC bei 60.0 °C.

Zeit [h]	$A_{ m fdC}/A_{ m fdC}*$	n _{fdC} [pmol]	$A_{ m cadC}/$ $A_{ m cadC}*$	n _{cadC} [pmol]	A _{fdU} / A _{fdU*}	n _{fdU} [pmol]
0	2.817	100.03	0.0514	0.0191	0.0136	0.0714
0	2.895	102.8	0.0451	0.0168	0.0158	0.0723
0	2.794	99.22	0.0541	0.0200	0.0106	0.0700
11.5	2.851	101.2	0.0977	0.0359	0.2237	0.1634
11.5	2.898	102.9	0.0902	0.0332	0.2222	0.1627
11.5	2.838	100.8	0.0926	0.0340	0.2255	0.1642
24	3.012	107.0	0.1195	0.0438	0.4198	0.2493
24	2.947	104.6	0.1181	0.0433	0.4284	0.2531
24	2.883	102.4	0.1130	0.0414	0.3994	0.2403
36	3.023	107.3	0.1452	0.0531	0.5911	0.3243
36	3.073	109.1	0.1327	0.0486	0.5841	0.3213
36	3.032	107.7	0.1196	0.0438	0.5868	0.3225
48	3.233	114.8	0.1596	0.0584	0.8131	0.4216
48	3.195	113.5	0.1601	0.0585	0.7809	0.4075
48	3.080	109.4	0.1395	0.0511	0.7732	0.4041
60	3.528	125.3	0.1768	0.0646	1.027	0.5153
60	3.455	122.7	0.1800	0.0658	0.9481	0.4808
60	3.262	115.8	0.1594	0.0583	0.9564	0.4844

Zeit [h]	$A_{ m fdC}/A_{ m fdC}*$	n _{fdC} [pmol]	A _{cadC} / A _{cadC} *	n _{cadC} [pmol]	$A_{ m fdU}/\ A_{ m fdU} *$	n _{fdU} [pmol]
0	2.806	99.66	0.0415	0.0154	0.0172	0.0729
0	2.789	99.03	0.0387	0.0144	0.0148	0.0719
0	2.807	99.67	0.0360	0.0134	0.0150	0.0720
11.5	2.845	101.0	0.0928	0.0341	0.4943	0.2819
11.5	2.866	101.8	0.0949	0.0348	0.4879	0.2791
11.5	2.829	100.5	0.0896	0.0329	0.5310	0.2980
24	2.919	103.7	0.1140	0.0418	0.8733	0.4480
24	2.889	102.6	0.2522	0.0920	0.8269	0.4277
24	2.977	105.7	0.1147	0.0421	0.8492	0.4374
36	3.056	108.5	0.1336	0.0489	1.187	0.5852
36	3.027	107.5	0.1312	0.0480	1.178	0.5813
36	3.052	108.4	0.1386	0.0507	1.137	0.5636
48	3.358	119.2	0.1542	0.0564	1.597	0.7648
48	3.225	114.5	0.1528	0.0559	1.578	0.7565
48	3.262	115.8	0.1557	0.0569	1.578	0.7567
60	3.295	117.0	0.1654	0.0605	1.992	0.9380
60	3.488	123.9	0.1811	0.0662	1.929	0.9103
60	3.379	112.0	0.1803	0.0659	1.956	0.9221

Tabelle 9.64: Quantifizierung der Deaminierung von fdC zu fdU und der Oxidation von fdC zu cadC bei 67.5 °C.

Tabelle 9.65: Quantifizierung der Deaminierung von fdC zu fdU und der Oxidation von fdC zu cadC bei 75.0 °C.

Zeit [h]	$A_{ m fdC}/A_{ m fdC}*$	n _{fdC} [pmol]	$A_{ m cadC}/A_{ m cadC}*$	n _{cadC} [pmol]	A _{fdU} / A _{fdU*}	n _{fdU} [pmol]
0	2.873	102.0	0.0397	0.0148	0.0114	0.0704
0	2.755	97.85	0.0392	0.0146	0.0281	0.0777
0	2.790	99.06	0.0461	0.0171	0.0150	0.0720
11.5	2.842	100.9	0.1393	0.0510	1.072	0.5349
11.5	2.819	100.1	0.0971	0.0356	1.027	0.5152
11.5	2.811	99.83	0.1292	0.0473	1.031	0.5170
24	2.858	101.5	0.1701	0.0622	1.677	0.7998
24	2.869	101.9	0.1294	0.0474	1.792	0.8506
24	2.851	101.3	0.1583	0.0579	1.775	0.8429
36	3.055	108.5	0.2133	0.0778	2.497	1.159
36	3.022	107.3	0.1592	0.0582	2.380	1.108
36	3.040	108.0	0.1982	0.0724	2.564	1.189
48	3.365	119.5	0.2601	0.0949	3.486	1.593
48	3.439	122.1	0.2093	0.0764	3.435	1.570
48	3.423	121.5	0.2523	0.0920	3.464	1.583
60	1.656	58.83	0.1643	0.0601	2.060	0.9678
60	1.718	61.02	0.1226	0.0449	2.338	1.090
60	1.758	62.44	0.1465	0.0536	2.318	1.081

Zeit [h]	$A_{ m fdC}/A_{ m fdC}*$	n _{fdC} [pmol]	$A_{ m fdU}/A_{ m fdU*}$	n _{fdU} [pmol]
0	2.836	100.7	0.0141	0.0716
0	2.853	101.3	0.0147	0.0718
0	2.815	99.95	0.0127	0.0710
11.5	2.629	93.37	2.106	0.9880
11.5	2.569	91.23	2.028	0.9539
11.5	2.662	94.52	2.047	0.9623
24	2.543	90.30	3.478	1.589
24	2.461	87.39	3.297	1.510
24	2.583	91.72	3.347	1.532
36	2.761	98.04	4.790	2.164
36	2.611	92.71	4.558	2.062
36	2.862	101.6	5.129	2.313
48	3.042	108.0	6.994	3.129
48	3.081	109.4	7.358	3.289
48	2.926	103.9	6.436	2.885

Tabelle 9.66: Quantifizierung der Deaminierung von fdC zu fdU bei 82.5 °C.

 Tabelle 9.67: Quantifizierung der Oxidation von fdC zu cadC bei 80.0 °C.

Zeit [h]	$A_{ m fdC}/A_{ m fdC}*$	n _{fdC} [pmol]	A _{cadC} / A _{cadC} *	n _{cadC} [pmol]
0	2.743	97.42	0.0348	0.0130
0	2.845	101.0	0.0442	0.0164
0	3.013	107.0	0.0326	0.0122
12	3.523	125.1	0.1218	0.0446
12	3.185	113.1	0.1376	0.0504
12	3.125	111.0	0.1049	0.0385
23.5	3.514	124.8	0.1438	0.0526
23.5	3.458	122.8	0.1705	0.0623
23.5	3.467	123.1	0.1329	0.0487
35	4.001	142.1	0.2009	0.0734
35	3.986	141.5	0.2301	0.0840
35	3.874	137.5	0.1791	0.0654
46.5	5.416	192.3	0.3042	0.1109
46.5	4.901	174.0	0.3206	0.1168
46.5	5.084	180.5	0.2666	0.0972

Tabelle 9.68: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Deaminierung von dC
gebildeten dU bei 60.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten
ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der ist der Mittelwert von n_{dU}/n_{dC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{dU} /n _{dC}	Standardabweichung von nau/nac	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$1.23 imes 10^{-4}$	0
11.5	7.74×10^{-4}	$2.82 imes 10^{-4}$	7.75×10^{-4}
24	1.54×10^{-3}	$3.39 imes 10^{-4}$	1.54×10^{-3}
36	2.28×10^{-3}	$9.67 imes 10^{-5}$	2.28×10^{-3}
48	2.84×10^{-3}	$2.89 imes 10^{-4}$	2.85×10^{-3}
60	3.50×10^{-3}	$1.38 imes 10^{-4}$	3.51×10^{-3}

Tabelle 9.69: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Deaminierung von dC gebildeten dU bei 67.5 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der ist der Mittelwert von n_{dU}/n_{dC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{dU} /n _{dC}	Standardabweichung von n _{dU} /n _{dC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$1.44 imes 10^{-4}$	0
11.5	1.59×10^{-3}	$2.94 imes 10^{-4}$	1.60×10^{-3}
24	3.33×10^{-3}	2.52×10^{-4}	3.33×10^{-3}
36	4.97×10^{-3}	$8.45 imes 10^{-4}$	4.99×10^{-3}
48	6.87×10^{-3}	3.39×10^{-4}	6.90×10^{-3}
60	8.33×10^{-3}	$6.00 imes 10^{-4}$	8.37×10^{-3}

Tabelle 9.70: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Deaminierung von dC gebildetes dU bei 75.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{dU}/n_{dC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{dU} /n _{dC}	Standardabweichung von n _{dU} /n _{dC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$4.77 imes 10^{-4}$	0
11.5	3.88×10^{-3}	$4.40 imes10^{-4}$	3.89×10^{-3}
24	7.63×10^{-3}	$7.18 imes 10^{-4}$	7.66×10^{-3}
36	1.19×10^{-2}	$5.57 imes 10^{-4}$	1.20×10^{-2}
48	1.57×10^{-2}	9.01×10^{-4}	1.59×10^{-2}
60	2.00×10^{-2}	8.61 × 10 ⁻⁴	2.02×10^{-2}

Tabelle 9.71: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Deaminierung von dC gebildeten dU bei 82.5 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{dU}/n_{dC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{dU} /n _{dC}	Standardabweichung von nau/nac	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$4.69 imes 10^{-5}$	0
11.5	8.06×10^{-3}	$1.57 imes 10^{-4}$	8.10×10^{-3}
24	1.86×10^{-2}	$4.38 imes10^{-4}$	1.88×10^{-2}
36	2.54×10^{-2}	2.02×10^{-3}	2.57×10^{-2}
48	3.63×10^{-2}	9.17×10^{-4}	3.69×10^{-2}

Tabelle 9.72: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Deaminierung von mdC gebildeten dT bei 60.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{mdC}/n_{dT} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{dT} /n _{mdC}	Standardabweichung von <i>n</i> dT/ <i>n</i> mdC	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	6.11 × 10 ⁻⁵	0
11.5	6.73×10^{-4}	$9.53 imes 10^{-5}$	6.74×10^{-4}
24	1.15×10^{-3}	$1.85 imes 10^{-5}$	1.15×10^{-3}
36	1.53×10^{-3}	$8.27 imes 10^{-5}$	1.53×10^{-3}
48	2.00×10^{-3}	6.10×10^{-5}	2.00×10^{-3}
60	2.72×10^{-3}	1.76×10^{-4}	2.73×10^{-3}

Tabelle 9.73: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Deaminierung von mdC gebildeten dT bei 67.5 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{mdC}/n_{dT} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{dT} /n _{mdC}	Standardabweichung von n _{dT} /n _{mdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	6.91 × 10 ⁻⁵	0
11.5	1.33×10^{-3}	1.96×10^{-4}	1.34×10^{-3}
24	2.31×10^{-3}	$1.29 imes 10^{-4}$	2.32×10^{-3}
36	3.10×10^{-3}	5.81×10^{-5}	3.11×10^{-3}
48	4.55×10^{-3}	$7.64 imes 10^{-5}$	4.57×10^{-3}
60	5.93 × 10 ⁻³	6.08×10^{-4}	5.96×10^{-3}

Tabelle 9.74: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Deaminierung von mdC gebildeten dT bei 75.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{mdC}/n_{dT} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{dT} /n _{mdC}	Standardabweichung von n _{dT} /n _{mdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$1.47 imes 10^{-4}$	0
11.5	2.97×10^{-3}	$8.00 imes 10^{-5}$	2.98×10^{-3}
24	5.13 × 10 ⁻³	6.86×10^{-4}	5.15×10^{-3}

Appendix – Daten der Reaktionskinetiken der Deaminierung von dC, mdC, hmdC und fdC und der Oxidation von mdC, hmdC und fdC

36	7.79×10^{-3}	$3.29 imes 10^{-4}$	7.83×10^{-3}
48	1.06×10^{-2}	$5.40 imes 10^{-4}$	1.07×10^{-2}
60	1.44×10^{-2}	4.22×10^{-4}	1.45×10^{-2}

Tabelle 9.75: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Deaminierung von mdC gebildeten dT bei 82.5 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{mdC}/n_{dT} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{dT} /n _{mdC}	Standardabweichung von n _{dT} /n _{mdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$3.31 imes 10^{-5}$	0
11.5	6.49×10^{-3}	$6.73 imes 10^{-4}$	6.52×10^{-3}
24	1.15×10^{-2}	4.93×10^{-4}	1.16×10^{-2}
36	1.80×10^{-2}	$1.59 imes 10^{-3}$	1.82×10^{-2}
48	2.30×10^{-2}	$5.10 imes 10^{-4}$	2.33×10^{-2}

Tabelle 9.76: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Deaminierung von hmdC gebildeten hmdU bei 60.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{hmdU}/n_{hmdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von <i>n</i> hmdU [/] <i>n</i> hmdC	Standardabweichung von n _{hmdU} /n _{hmdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$9.43 imes 10^{-5}$	0
11.5	3.01×10^{-4}	1.06×10^{-4}	3.01×10^{-4}
24	8.81×10^{-4}	$5.52 imes 10^{-5}$	8.84×10^{-4}
36	1.35×10^{-3}	8.16×10^{-5}	1.35×10^{-3}
48	1.62×10^{-3}	$2.05 imes 10^{-4}$	1.62×10^{-3}
60	1.87×10^{-3}	1.57×10^{-4}	1.87×10^{-3}

Tabelle 9.77: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Deaminierung von hmdC gebildeten hmdU bei 67.5 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{hmdU}/n_{hmdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{hmdU} /n _{hmdC}	Standardabweichung von n _{hmdU} /n _{hmdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$1.12 imes 10^{-4}$	0
11.5	1.08×10^{-3}	$3.43 imes 10^{-4}$	1.08×10^{-3}
24	1.88×10^{-3}	$1.71 imes 10^{-4}$	1.89×10^{-3}
36	2.90×10^{-3}	6.71×10^{5}	2.92×10^{-3}
48	3.55×10^{-3}	$2.01 imes 10^{-4}$	3.57×10^{-3}
60	4.81×10^{-3}	$5.59 imes 10^{-5}$	4.83×10^{-3}

Tabelle 9.78: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Deaminierung von hmdC gebildeten hmdU bei 75.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeits-konstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von $n_{\text{hmdU}}/n_{\text{hmdC}}$ zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von <i>n</i> hmdU/ <i>n</i> hmdC	Standardabweichung von n _{hmdU} /n _{hmdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$8.57 imes 10^{-5}$	0
11.5	2.38×10^{-3}	1.11×10^{-4}	2.39×10^{-3}
24	4.42×10^{-3}	$1.07 imes 10^{-4}$	4.44×10^{-3}
36	6.75×10^{-3}	$7.65 imes 10^{-5}$	9.69×10^{-3}
48	8.84×10^{-3}	$6.19 imes 10^{-4}$	8.90×10^{-3}
60	9.99 × 10 ⁻³	$2.70 imes 10^{-4}$	1.01×10^{-2}

Tabelle 9.79: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Deaminierung von hmdC gebildeten hmdU bei 82.5 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert $n_{\text{hmdU}}/n_{\text{hmdC}}$ zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von <i>n</i> _{hmdU} / <i>n</i> _{hmdC}	Standardabweichung von n _{hmdU} /n _{hmdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$1.05 imes 10^{-4}$	0
11.5	4.38×10^{-3}	$1.09 imes 10^{-4}$	4.40×10^{-3}
24	9.49×10^{-3}	2.12×10^{-4}	9.56 × 10 ⁻³
36	1.40×10^{-2}	$7.65 imes 10^{-4}$	1.15×10^{-2}
48	1.83×10^{-2}	$4.35 imes 10^{-4}$	1.85×10^{-2}

Tabelle 9.80: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Deaminierung von fdC gebildeten fdU bei 60.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{fdU}/n_{fdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{fdU} /n _{fdC}	Standardabweichung von n _{fdU} /n _{fdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$5.13 imes 10^{-6}$	0
11.5	9.01×10^{-4}	2.42×10^{-5}	9.02×10^{-4}
24	1.66×10^{-3}	$4.63 imes 10^{-5}$	1.66×10^{-3}
36	2.28×10^{-3}	3.91×10^{-5}	2.28×10^{-3}
48	2.95×10^{-3}	$5.42 imes 10^{-5}$	2.95×10^{-3}
60	3.36×10^{-3}	1.37×10^{-4}	3.37×10^{-3}

Tabelle 9.81: Mittelwert und Standardabweichung der normalisierten Menge an durch Deaminierung von fdC gebildeten fdU bei 67.5 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{fdU}/n_{fdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{fdU} /n _{fdC}	Standardabweichung von n _{fdU} /n _{fdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$4.89 imes 10^{-6}$	0
11.5	2.11×10^{-3}	$1.18 imes 10^{-4}$	2.11×10^{-3}
24	3.48×10^{-3}	9.82×10^{-5}	3.49×10^{-3}

Appendix – Daten der Reaktionskinetiken der Deaminierung von dC, mdC, hmdC und fdC und der Oxidation von mdC, hmdC und fdC

36	4.61×10^{-3}	1.16×10^{-4}	4.62×10^{-3}
48	5.79×10^{-3}	9.67 × 10 ⁻⁵	5.81×10^{-3}
60	6.96×10^{-3}	3.33×10^{-4}	6.99×10^{-3}

Tabelle 9.82: Mittelwert und Standardabweichung der normalisierten Menge an durch Deaminierung von fdC gebildeten fdU bei 75.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{fdU}/n_{fdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{fdU} /n _{fdC}	Standardabweichung von n _{fdU} /n _{fdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$5.27 imes 10^{-5}$	0
11.5	4.47×10^{-3}	$8.11 imes 10^{-5}$	4.48×10^{-3}
24	7.45×10^{-3}	$2.65 imes 10^{-4}$	7.48×10^{-3}
36	1.01×10^{-2}	$2.29 imes 10^{-4}$	1.02×10^{-2}
48	1.23×10^{-2}	2.40×10^{-4}	1.24×10^{-2}
60	1.65×10^{-2}	$7.09 imes 10^{-4}$	1.66×10^{-2}

Tabelle 9.83: Mittelwert und Standardabweichung der normalisierten Menge an durch Deaminierung von fdC gebildeten fdU bei 82.5 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{fdU}/n_{fdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von	Standardabweich ung von	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	$\frac{n_{\rm fdU}}{n_{\rm fdC}}$	1000000000000000000000000000000000000	0
11.5	9.70×10^{-3}	2.05×10^{-4}	9.75 × 10 ⁻³
24	1.65×10^{-2}	4.57×10^{-4}	1.66×10^{-2}
36	2.16×10^{-2}	3.56×10^{-4}	2.19×10^{-2}
48	2.82×10^{-2}	1.15×10^{-3}	2.86×10^{-2}

Tabelle 9.84: Mit Hilfe von ORIGIN[®] 6.0 ermittelte Bestimmtheitsmaße R^2 und Geradengleichungen des Graphen der Deaminierung von dC, mdC, hmdC und fdC.

Reaktion	Temperatur [°C]	Bestimmtheits- maß R ²	Geradengleichung
dC → dU	60.0	0.9978	$y = 5.89944 \times 10^{-5} \text{ x} + 6.56993 \times 10^{-5}$
dC → dU	67.5	0.9998	$y = 1.41066 \times 10^{-4} \text{ x} - 1.03247 \times 10^{-5}$
dC → dU	75.0	0.9998	$y = 3.3016 \times 10^{-4} \text{ x} - 1.13814 \times 10^{-6}$
dC → dU	82.5	0.9989	$y = 7.34897 \times 10^{-4} \text{ x} - 1.97238 \times 10^{-5}$
mdC → dT	60.0	0.9909	$y = 4.12683 \times 10^{-5} \text{ x} + 1.35455 \times 10^{-4}$
mdC → dT	67.5	0.9958	$y = 9.13478 \times 10^{-5} \text{ x} - 1.56265 \times 10^{-5}$
mdC → dT	75.0	0.9963	$y = 2.2872 \times 10^{-4} x + 2.27499 \times 10^{-4}$
mdC → dT	82.5	0.9996	$y = 4.82077 \times 10^{-4} x + 1.64584 \times 10^{-6}$
hmdC → hmdU	60.0	0.9881	$y = 3.4428 \times 10^{-5} x + 2.33921 \times 10^{-5}$

Appendix – Daten der Reaktionskinetiken der Deaminierung von dC, mdC, hmdC und fdC und der Oxidation von mdC, hmdC und fdC

hmdC → hmdU	67.5	0.9993	$y = 7.98926 \times 10^{-5} \text{ x} + 5.22682 \times 10^{-6}$
hmdC → hmdU	75.0	0.9976	$y = 1.80685 \times 10^{-4} x + 1.27125 \times 10^{-4}$
hmdC → hmdU	82.5	0.9997	$y = 3.86935 \times 10^{-4} \text{ x} - 1.30514 \times 10^{-5}$
fdC → fdU	60.0	0.9961	$y = 6.40342 \times 10^{-5} \text{ x} + 6.16821 \times 10^{-6}$
fdC → fdU	67.5	0.9955	$y = 1.26479 \times 10^{-4} x + 1.46195 \times 10^{-6}$
fdC → fdU	75.0	0.9832-4	$y = 2.83593 \times 10^{-4} x + 2.95769 \times 10^{-4}$
fdC → fdU	82.5	0.9901	$y = 5.66279 \times 10^{-4} x + 1.67000 \times 10^{-3}$

Tabelle 9.85: Tabelle zur Extrapolation der Geschwindigkeitskonstanten der Deaminierungsreaktionen auf T = 37.0 °C.

Temperatur <i>T</i> [K]	1/ <i>T</i> [K ⁻¹]	$dC \rightarrow dU \\ \ln(k_{\rm T})$	$mdC \rightarrow dT$ $ln(k_{\rm T})$	$hmdC \rightarrow hmdU \\ ln(k_{\rm T})$	$fdC \rightarrow fdU \\ ln(k_{\rm T})$
333.15	3.00×10^{-3}	-17.86	-18.14	-18.50	-17.81
340.65	2.94×10^{-3}	-17.05	-17.40	-17.60	-17.07
348.15	2.87×10^{-3}	-16.18	-16.55	-16.77	-16.29
355.65	2.81×10^{-3}	-15.38	-15.76	-16.04	-15.47

Tabelle 9.86: Mit Hilfe von $ORIGIN^{\mathbb{R}}$ 6.0 ermittelte Bestimmtheitsmaße R^2 und Geradengleichungen des Graphen zur Extrapolation der Geschwinsigkeitskonstanten der Deaminierung.

Reaktion	Bestimmtheitsmaß R ²	Geradengleichung
dC → dU	-0.99973	y = -13113.57915 x +21.49831
mdC → dT	-0.99921	y = -12604.48382 x +19.67358
hmdC → hmdU	-0.99963	y = -12966.83026 x +20.46177
fdC → fdU	-0.99910	y = -12302.68123 x +19.09886

Tabelle 9.87: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Oxidation von mdC gebildeten hmdC bei 60.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von $n_{\text{hmdC}}/n_{\text{mdC}}$ zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{hmdC} /n _{mdC}	Standardabweichung von <i>n</i> hmdC/ <i>n</i> mdC	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	2.86×10^{-7}	0
12	2.35×10^{-6}	$2.43 imes 10^{-6}$	2.35×10^{-6}
23.5	3.19×10^{-6}	5.28×10^{-7}	3.19 × 10 ⁻⁶
35	6.27×10^{-6}	$1.23 imes 10^{-6}$	6.27×10^{-6}
46.5	8.07 × 10 ⁻⁶	9.36 × 10 ⁻⁷	8.07×10^{-6}
58	9.81 × 10 ⁻⁶	$1.16 imes 10^{-6}$	9.81 × 10 ⁻⁶

Tabelle 9.88: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Oxidation von mdC
gebildeten hmdC bei 80.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskon-
stanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert von n_{hmdC}/n_{mdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{hmdC} /n _{mdC}	Standardabweichung von n _{hmdC} /n _{mdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$7.02 imes 10^{-7}$	0
12	9.43×10^{-6}	$1.61 imes 10^{-6}$	9.43×10^{-6}
23.5	1.59×10^{-6}	$2.61 imes 10^{-6}$	1.59×10^{-5}
35	2.28×10^{-5}	0.00	2.28×10^{-5}
46.5	2.88×10^{-5}	0.00	2.88×10^{-5}

Tabelle 9.89: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Oxidation von hmdC gebildeten fdC bei 60.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert n_{fdC}/n_{hmdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{fdC} /n _{hmdC}	Standardabweichung von <i>n</i> fdC/ <i>n</i> hmdC	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	3.17×10^{-5}	0
12	1.06×10^{-3}	3.62×10^{-4}	1.06×10^{-3}
23.5	1.83×10^{-3}	$2.53 imes 10^{-4}$	1.83×10^{-3}
35	2.60×10^{-3}	$3.86 imes 10^{-4}$	2.60×10^{-3}
46.5	3.45×10^{-3}	$5.46 imes 10^{-4}$	3.46×10^{-3}
58	4.23×10^{-3}	$7.04 imes 10^{-4}$	4.24×10^{-3}

Tabelle 9.90: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Oxidation von hmdC gebildeten fdC bei 67.5 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert n_{fdC}/n_{hmdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{fdC} /n _{hmdC}	Standardabweichung von n _{fdC} /n _{hmdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$1.03 imes 10^{-4}$	0
11.5	1.36×10^{-3}	$2.97 imes10^{-4}$	1.36×10^{-3}
24	2.39×10^{-3}	$5.06 imes 10^{-4}$	2.39×10^{-3}
36	3.24×10^{-3}	$7.73 imes 10^{-4}$	3.25×10^{-3}
48	4.21×10^{-3}	$8.88 imes10^{-4}$	4.22×10^{-3}
60	5.22×10^{-3}	1.00×10^{-3}	5.24×10^{-3}

Tabelle 9.91: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Oxidation von hmdC gebildeten fdC bei 75.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert n_{fdC}/n_{hmdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{fdC} /n _{hmdC}	Standardabweichung von n _{fdC} /n _{hmdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$6.98 imes 10^{-5}$	0
11.5	1.52×10^{-3}	5.99×10^{-4}	1.53×10^{-3}
24	2.78×10^{-3}	8.73×10^{-4}	2.78×10^{-3}

Appendix – Daten der Reaktionskinetiken der Deaminierung von dC, mdC, hmdC und fdC und der Oxidation von mdC, hmdC und fdC

36	3.90×10^{-3}	1.10×10^{-3}	3.91×10^{-3}
48	5.04×10^{-3}	1.21×10^{-3}	5.06×10^{-3}
60	5.86×10^{-3}	1.71×10^{-3}	5.89×10^{-3}

Tabelle 9.92: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Oxidation von hmdC gebildeten fdC bei 80.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert n_{fdC}/n_{hmdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{fdC} /n _{hmdC}	Standardabweichung von n _{fdC} /n _{hmdC}	$\ln[(n_0-n_\infty)/(n_t-n_\infty)]$
0	0	$4.65 imes 10^{-5}$	0
12	1.65×10^{-3}	1.29×10^{-4}	1.65×10^{-3}
23.5	2.90×10^{-3}	$4.91 imes 10^{-4}$	2.90×10^{-3}
35	3.97×10^{-3}	$6.32 imes 10^{-4}$	3.99×10^{-3}
46.5	5.23×10^{-3}	$6.89 imes 10^{-4}$	5.25×10^{-3}

Tabelle 9.93: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Oxidation von fdC gebildeten cadC bei 60.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert n_{cadC}/n_{fdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{cadC} /n _{fdC}	Standardabweichung von n _{cadC} /n _{fdC}
0	0	1.99×10^{-5}
11.5	1.53×10^{-4}	$1.60 imes 10^{-5}$
24	2.24×10^{-4}	4.41×10^{-6}
36	2.64×10^{-4}	4.41×10^{-5}
48	3.12×10^{-4}	2.65×10^{-5}
60	3.33×10^{-4}	$1.66 imes 10^{-5}$

Tabelle 9.94: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Oxidation von fdC gebildeten cadC bei 67.5 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert n_{cadC}/n_{fdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{cadC} /n _{fdC}	Standardabweichung von n _{cadC} /n _{fdC}
0	0	1.01×10^{-5}
11.5	1.91×10^{-4}	$7.43 imes 10^{-6}$
24	2.55×10^{-4}	$3.80 imes 10^{-6}$
36	3.10×10^{-4}	1.13×10^{-5}
48	3.39×10^{-4}	$9.78 imes 10^{-6}$
60	3.88×10^{-4}	1.61 × 10 ⁻⁵

Tabelle 9.95: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Oxidation von fdC
gebildeten cadC bei 75.0 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskon-
stanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert n_{cadC}/n_{fdC} zur jeweiligen Zeit t.

Zeit	Mittelwert von	Standardabweichung von
[h]	$n_{\rm cadC}/n_{\rm fdC}$	$n_{\rm cadC}/n_{\rm fdC}$
0	0	1.49×10^{-5}
11.5	2.89×10^{-4}	7.86×10^{-5}
24	4.36×10^{-4}	2.87×10^{-5}
36	4.88×10^{-4}	9.07×10^{-5}
48	5.70×10^{-4}	8.86×10^{-5}
60	6.41 × 10 ⁻⁴	1.43×10^{-4}

Tabelle 9.96: Mittelwerte und Standardabweichungen der normalisierten Menge an durch Oxidation von fdC gebildeten cadC bei 82.5 °C. Der natürliche Logarithmus wurde zur Bestimmung der Geschwindigkeitskonstanten ermittelt. $n_0=0$ pmol, $n_{\infty}=100$ pmol, n_t ist der Mittelwert n_{cadC}/n_{fdC} zur jeweiligen Zeit t.

Zeit [h]	Mittelwert von n _{cadC} /n _{fdC}	Standardabweichung von n _{cadC} /n _{fdC}
0	0	7.61 × 10 ⁻⁶
11.5	4.48×10^{-4}	7.46×10^{-5}
24	6.42×10^{-4}	1.22×10^{-4}
36	$8.48 imes 10^{-4}$	1.18×10^{-4}
48	1.09×10^{-3}	$1.58 imes 10^{-4}$

Table 9.97. Mit Hilfe von ORIGIN[®] 6.0 ermittelte Bestimmtheitsmaße R^2 und Geradengleichungen der Oxidation von mdC zu hmdC bei 60 °C und 80 °C.

Reaktion	<i>Т</i> [°С]	Bestimmtheits- maß R ²	Geradengleichung
mdC → hmdC	60.0	0.9937	$y = 1.71034 \times 10^{-7} \text{ x} - 4.02097 \times 10^{-8}$
mdC → hmdC	80.0	0.9970	$y = 6.12599 \times 10^{-7} \text{ x} + 1.06002 \times 10^{-6}$

Table 9.98. Mit Hilfe von $ORIGIN^{\textcircled{R}}$ 6.0 ermittelte Bestimmtheitsmaße R^2 und Geradengleichungen der Oxidation von hmdC zu fdC bei vier verschiedenen Temperaturen und pH 7.4.

Reaktion	<i>Т</i> [°С]	Bestimmtheits- maß R ²	Geradengleichung
hmdC → fdC	60.0	0.9991	$y = 7.20891 \times 10^{-5} x + 9.88194 \times 10^{-5}$
hmdC → fdC	67.5	0.9984	$y = 8.88895 \times 10^{-5} \text{ x} + 1.55662 \times 10^{-4}$
hmdC → fdC	75.0	0.9968	$y = 1.02523 \times 10^{-4} \text{ x} + 2.15271 \times 10^{-4}$
hmdC → fdC	80.0	0.9977	$y = 1.10755 \times 10^{-4} \text{ x} + 1.67271 \times 10^{-4}$

Temperatur <i>T</i> [K]	1/ <i>T</i> [K ⁻¹]	$\ln(k_{\rm T})$
333.15	3.00×10 ⁻³	-17.63
340.65	2.94×10 ⁻³	-17.42
348.15	2.87×10 ⁻³	-17.27
353.15	2.83×10 ⁻³	-17.20

Table 9.99: Tabelle zur Extrapolation der Geschwindigkeitskonstanten von hmdC zu fdC auf T = 37.0 °C.

Tabelle 9.100: Mit Hilfe von ORIGIN[®] 6.0 ermittelte Bestimmtheitsmaße R^2 und Geradengleichung des Graphs zur Extrapolation der Geschwindigkeitskonstante der Oxidation von hmdC zu fdC auf T = 37 °C.

Reaktion	<i>T</i> [°C]	Bestimmtheits- maß R ²
hmdC → fdC	0.9878	y = -2402.03231 x - 10.3968