
From

the Institute of Medical Informatics, Biometry and Epidemiology,

Ludwig-Maximilians-University Munich

Chair of Epidemiology: Prof. Dr. Dr. H.-Erich Wichmann (emeritus)

and

the Institute of Genetic Epidemiology,

Helmholtz Zentrum München �

German Research Center for Environmental Health

Director: Prof. Dr. Konstantin Strauch

Genetic and metabolic components

in the regulation of serum urate levels in humans

Thesis

submitted for a doctoral degree in natural sciences at the Faculty of Medicine,

Ludwig-Maximilians-University Munich, Germany

by

Eva Albrecht

from

Munich, Germany

2013



With approval of the Faculty of Medicine of the

Ludwig-Maximilians-University Munich

Supervisor / Examiner: Prof. Dr. Dr. H.-Erich Wichmann
Co-Examiners: Prof. Dr. Thomas Illig

Co-Supervisor: Dr. Christian Gieger
Dean: Prof. Dr. med. Dr. h.c. M. Reiser, FACR, FRCR
Date of oral examination: 13.02.2014



Contents

Abbreviations and de�nitions . . . . . . . . . . . . . . . . . . . . . . . i
List of �gures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction 1
1.1 Serum urate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Genome-wide association studies (GWAS) . . . . . . . . . . . . . . 2
1.3 History of serum urate GWAS . . . . . . . . . . . . . . . . . . . . . 6
1.4 Biological networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Outline of the thesis 9

3 Serum urate GWAS within ENGAGE 10
3.1 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Participating studies . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Serum urate GWAS within GUGC 20
4.1 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Participating studies . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Serum urate genetics in di�erent ancestries 36
5.1 Comparison of di�erent ancestries within GUGC . . . . . . . . . . . 36
5.2 Serum urate GWAS performed in non-Europeans . . . . . . . . . . 40

6 Serum urate GGM 44
6.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Conclusion and outlook 52

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Supplementary information . . . . . . . . . . . . . . . . . . . . . . . . 64
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Curriculum vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Eidesstattliche Versicherung . . . . . . . . . . . . . . . . . . . . . . . . 114

i



Abbreviations and de�nitions

AGEN Asian Genetic Epidemiology Network: Consortium of ge-
netic epidemiological studies among Asian populations.

Allele One of the alternative forms of a → DNA sequence that can exist
at a single → locus.

Base pair Building block of→ DNA:Adenine � Thymine (A�T) orCytosine
� Guanine (C�G).

chr Chromosome: Structures build of → DNA storing the genetic
information.

CR Call rate: Measure of → SNP quality indicating the percentage
of successfully called individuals for this variant.

DNA Deoxyribonucleic acid: Nucleic acid carrying the genetic infor-
mation in the cell; composed of a sequence of nucleotide bases.

EAF E�ect allele frequency: Frequency of the → allele for which
the genetic e�ect is estimated.

ENGAGE European Network for Genetic and Genomic Epidemiol-
ogy: Consortium of genetic epidemiological studies among Euro-
pean populations.

Gene A segment of → DNA coding for transcription.

Genome Entire hereditary information of an individual encoded in the →
DNA including → genes and non-coding sequence.

Genotype The actual → alleles present in a certain individual.

GGM Gaussian graphical model: Network graph based on partial
correlations.

GRAIL Gene Relationships Across Implicated Loci: Tool to exam-
ine relationships between→ genes. Can be used to pick candidate
→ genes for given → SNPs.

GUGC Global Urate Genetics Consortium: Consortium of genetic
epidemiological studies focusing on the genetics of urate.
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GWAS Genome-wide association study: Examination of genetic vari-
ants across the whole → genome to test their associations with a
trait of interest.

HapMap Haplotype Mapping Project: International consortium provid-
ing haplotype maps of the human → genome which are used for
→ imputation.

HWE Hardy-Weinberg equilibrium: Principle describing the distri-
bution of → genotypes in an ideal population.

I2 Measure of heterogeneity in → meta-analyses.

Imputation Process of replacing missing data. In a genetic context it is the
estimation of unmeasured → genotypes.

Intron Intervening region: Non-coding part within a → gene.

kb Kilobase: Measurement of the length of → DNA which counts
→ base pairs. 1kb = 1,000 → base pairs.

KORA Kooperative Gesundheitsforschung in der Region Augs-
burg (Cooperative Health Research in the Region of Augsburg):
Series of population-based epidemiological studies in the South of
Germany.

λ Genetic in�ation factor describing the deviation of the observed
distribution of test statistics from its expected distribution.

LD Linkage disequilibrium: Non-random association of → alleles
at di�erent → loci.

Locus Speci�c location on a chromosome.

MAF Minor allele frequency: Frequency of the→ allele which is less
frequent in the population of interest.

Mb Megabase: Measurement of the length of → DNA which counts
→ base pairs. 1Mb = 1,000,000 → base pairs.

Meta-analysis Statistical approach to combine the e�ect estimates from indepen-
dent studies.

Metabolite Small intermediate molecule of metabolic processes.
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NCBI National Center for Biotechnology Information: Ameri-
can center which provides databases relevant to biotechnology and
biomedicine.

PPI Protein-protein interaction: Physical connection between two
proteins.

Protein Large molecule composed of amino acids, encoded by the sequence
of a → gene.

r2 Squared correlation coe�cient used as a measure for → LD be-
tween two → SNPs.

Recombination
hotspot

Region in the → genome exhibiting an elevated → recombination
rate.

Recombination
rate

Probability that a new combination of→ alleles constitutes which
is di�erent from either parental combination.

SNP Single nucleotide polymorphism: Variation of a single→ base
pair in → DNA.
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Summary

Uric acid is the �nal breakdown product of purine metabolism in humans and
present in the blood as urate. Elevated serum urate levels can cause gout, a painful
in�ammatory arthritis, and are implicated in a number of common diseases such as
cardiovascular disease, metabolic syndrome, and type 2 diabetes. The regulation of
serum urate levels is assumed to result from a complex interplay between genetic,
environmental, and lifestyle factors. The underlying functional biological processes
are still not completely understood.

The present thesis aimed to identify genetic and metabolic factors in the regu-
lation of serum urate levels. Therefore, two di�erent hypothesis-free approaches
were applied. First, two genome-wide association studies were performed in or-
der to identify genetic loci that are involved in the regulation of serum urate levels
within the framework of two huge international consortia. The impact of identi�ed
genetic loci was compared between di�erent ancestries. Second, a metabolic net-
work analysis within a population-based study was performed aiming to describe
the metabolic vicinity of serum urate.

By combining data of approximately 28,000 individuals in a genome-wide associa-
tion study, nine genetic loci were identi�ed to be involved in the regulation of serum
urate levels. The increase of the sample size to a total of approximately 140,000
individuals within a world-wide consortium, combined with a systematic protein-
protein interaction network approach, raised the number of detected genetic loci
to 28. Although serum urate shows distinct sex di�erences, an investigation of the
X chromosome did not provide additional �ndings.

Whereas the �rst identi�ed genes were predominantly involved in urate transport,
none of the later identi�ed genes are obviously involved in its transport but un-
derline the importance of the metabolic control of its production and excretion.
A comparison between results from di�erent ancestries showed that several of the
loci found in Europeans do also play a role in non-Europeans. However, results
from one ancestry cannot directly be transferred to other ancestries as the genetic
architecture at certain loci can vary between ancestries.

In the metabolite network analysis, serum urate was not only connected to the
well-known purine metabolism, but also to a group of essential amino acids and
a group of several steroids. Furthermore, association with uricostatic medication
intake was not only con�ned to purine metabolism but seen for nine metabolites
within the network. The �ndings highlight pathways that are important in the
regulation of serum urate and suggest that amino acids as well as steroid hormones
play a role in its regulation.

The results of both approaches help to better understand the complexity of serum
urate regulation in humans, and may help to advance drug development for the
treatment and prevention of hyperuricemia and gout.
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Zusammenfassung

Harnsäure ist im menschlichen Sto�wechsel das Endprodukt aus dem Abbau von
Purinen. Ein erhöhter Harnsäurespiegel kann zu Gicht, einer schmerzhaften Ge-
lenksentzündung, führen und spielt bei einer Vielzahl häu�ger Erkrankungen, wie
zum Beispiel kardiovaskulären Erkrankungen, dem metabolischen Syndrom und
Typ 2 Diabetes eine Rolle. Man geht davon aus, dass der Harnsäurespiegel in ei-
nem komplexen Zusammenspiel von genetischen Komponenten, Umweltein�üssen
und Lebensstil reguliert wird. Die zugrundeliegenden biologischen Prozesse sind
jedoch bisher nicht vollständig bekannt.

Ziel der vorliegenden Doktorarbeit war es, sowohl genetische Faktoren als auch
Sto�wechselkomponenten zu identi�zieren, die Ein�uss auf die Regulation des
Harnsäurespiegels haben. Dazu wurden zwei hypothesenfreie Ansätze gewählt.
Zum einen wurden in groÿen internationalen Konsortien zwei genomweite Asso-
ziationsstudien durchgeführt, um genetische Ein�ussfaktoren auf die Regulation
des Harnsäurespiegels zu �nden. Der Ein�uss der identi�zierten Regionen wurde
daraufhin zwischen verschiedenen Ethnizitäten verglichen. Des Weiteren wurden
in einer Netzwerkanalyse in einer populationsbasierten Studie metabolische Ein-
�ussfaktoren untersucht.

In der ersten genomweiten Assoziationsstudie konnten mit einer Datengrundla-
ge von mehr als 28 000 Individuen neun genetische Regionen mit Ein�uss auf
die Regulation des Harnsäurespiegels identi�ziert werden. Durch eine Erhöhung
der Fallzahl auf insgesamt etwa 140 000 innerhalb einer weltweiten Kooperation
in Kombination mit einem systematischen Netzwerkansatz basierend auf Protein-
Protein-Interaktionen, konnte die Zahl der identi�zierten genetischen Regionen
auf 28 erhöht werden. Trotz groÿer Geschlechtsunterschiede im Harnsäurespiegel
führte eine Analyse des X-Chromosoms zu keinen zusätzlichen Erkenntnissen.

Während die anfangs gefundenen Gene hauptsächlich am Transport der Harnsäu-
re beteiligt sind, kann keines der später gefundenen Gene mit deren Transport in
Verbindung gebracht werden; vielmehr deuten diese auf Sto�wechselkomponenten
die bei deren Bildung und Ausscheidung eine Rolle zu spielen scheinen. Ein Ver-
gleich der Ergebnisse zwischen Populationen unterschiedlicher Herkunft zeigt, dass
Ergebnisse für Europäer häu�g auch in anderen Populationen Gültigkeit besitzen,
allerdings aufgrund unterschiedlicher genetischer Architektur nicht unbedingt di-
rekt übertragen werden können.

In der Metabolitennetzwerkanalyse wurde die Harnsäure nicht nur mit dem Purin-
sto�wechsel verknüpft, sondern auch mit verschiedenen Aminosäuren und Steroi-
den. Auch die Wirkung von harnsäuresenkenden Medikamenten war nicht auf die
Purine beschränkt, sondern zeigte Auswirkung auf neun Metaboliten im Netzwerk.
Die Ergebnisse zeigen Zusammenhänge in der Regulation des Harnsäurespiegels
und legen nahe, dass sowohl Aminosäuren als auch Steroide eine Rolle spielen.

Die Ergebnisse beider Ansätze helfen, die komplexen Mechanismen in der Regula-
tion der Harnsäure im Menschen besser zu verstehen und werden möglicherweise
in der Entwicklung von Medikamenten zur Behandlung und Prävention von Gicht
Anwendung �nden.
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1 Introduction

1 Introduction

1.1 Serum urate

Uric acid results from the oxidation of purines. In humans, it is the �nal breakdown
product of purine metabolism, due to an inactivation of the urate oxidase gene
during evolution59. It is renally excreted. Figure 1 illustrates the pathway via
guanine, xanthosine, or hypoxanthine to xanthine and uric acid.

guanine

guanosine inosine adenosine

hypoxanthine

xanthine uric acid

GMP IMP AMP

xanthine             
oxidase

xanthine 
oxidase

XMP

xanthosine

Figure 1: Purine metabolism. The �gure illustrates fundamental pathways
resulting in uric acid as an end product of purine catabolism in humans from
guanosine monophosphate (GMP), xanthosine monophosphate (XMP), inosine
monophosphate (IMP), and adenosine monophosphate (AMP).

In the blood, 98% of uric acid is present as urate. Serum urate concentrations
are determined by a balance between its production and its disposal, regulated by
a complex interplay between genetic, environmental, and lifestyle factors such as
diet and alcohol consumption31. Nevertheless, the underlying functional biological
processes of its regulation are still not completely understood.

Serum urate levels are known to substantially di�er between sexes with higher
levels in men compared to women. In the 14 studies of European ancestry which
were analysed in chapter 3 mean levels ranged from 2.69 mg/dl to 5.48 mg/dl in
females and from 3.44 mg/dl to 6.33 mg/dl in males41.

Hyperuricemia, the presence of unusually high serum urate levels, leads to tissue
depositions of urate crystals causing gout67, a painful in�ammatory arthritis. In
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1 Introduction

developed countries, the prevalence of gout is remarkably high with estimated
3.9% among US adults (8.3 million individuals)87, predominantly men. Besides,
hyperuricemia is known to be implicated in cardiovascular disease and mortality
and a wide range of cardiovascular risk factors, including hypertension, coronary
artery disease, and kidney disease22,23. Moreover, elevated serum urate levels have
been shown to be associated with obesity and insulin resistance, and consequently
with metabolic syndrome and type 2 diabetes16,23. On the other hand, extreme low
serum urate levels have been observed in multiple sclerosis patients74 and patients
with Parkinson's disease10.

The heritability of serum urate is estimated to be 40�70%58,78,84, proving the im-
portance of its genetic determinants. Until now, several studies have aimed to
identify genes that are involved in the regulation of serum urate. Whereas a pre-
ceding linkage study on serum urate concentrations revealed no signi�cant �nd-
ings84, the hypothesis-free approach of genome-wide association studies (GWAS)
was very successful. An overview of all GWAS undertaken until now can be found
in section 1.3.

1.2 Genome-wide association studies (GWAS)

In the human genome, approximately 3.3 billion single nucleotide pairs of deoxyri-
bonucleic acid (DNA) are distributed across 22 autosomal chromosome pairs and
one pair of sex chromosomes. DNA is composed of four nucleotide bases: adenine
(A), cytosine (C), guanine (G) and thymine (T). The two strands of DNA are con-
nected by hydrogen bonds between adenine and thymine, or cytosine and guanine,
forming the characteristic double helix structure. A simpli�ed representation of
DNA is shown in Figure 2.

2



1 Introduction

cell

nucleus

chromosome

DNA

G

CT

A

A

T

base pairs

Figure 2: Simpli�ed representation of DNA showing its characteristic double
helix structure and composition of the four nucleotide bases adenine (A), cytosine
(C), guanine (G), and thymine (T).

The genetic information of each individual is stored in the order of its base pairs.
For any two human beings, this linear sequence is identical for approximately 99.9%
of nucleotide pairs. Nevertheless, there are positions where the base pairs can vary
between humans, making every human being unique. Variations at one single
base pair are called single nucleotide polymorphisms (SNPs) and are illustrated
in Figure 3. 90% of the genetic variation can be explained by SNPs. Variants

... A T C C G T C G A A T ...

... A T C C G C C G A A T ...

... T A G G C A G C T T A ...

... T A G G C G G C T T A ...

... T A G G C G G C T T A ...

... T A G G C G G C T T A ...

... A T C C G C C G A A T ...

... A T C C G C C G A A T ...

Person 1 maternal 
chromosome
paternal 
chromosome

Person 2 maternal 
chromosome

paternal 
chromosome

Figure 3: Schematic representation of a SNP.

at a locus, a speci�c location on a chromosome, are called alleles. An individual
can either be homozygous at a DNA locus, meaning he/she carries the same allele
on both chromosome copies (as Person 2 in Figure 3), or heterozygous, if the two
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1 Introduction

alleles are di�erent (as for Person 1 in Figure 3). The frequency of the less frequent
allele across a population is called minor allele frequency (MAF). Alleles at two
neighbouring loci are often associated, resulting in a complex structure of linkage
disequilibrium (LD) between SNPs. The measurement for LD between two SNPs
used in this thesis is the squared correlation coe�cient (r2).

Over the past few decades, a series of molecular biological laboratory techniques
have been developed to sequence DNA segments as well as to genotype SNPs.
Micro-array based platforms, provided by companies like A�ymetrix and Illumina,
facilitate high-throughput genotyping for hundreds of thousands of SNPs, and en-
able us to systematically investigate SNPs in the entire human genome. In GWAS,
disease phenotypes of interest are tested for their association with all available
SNPs in order to detect genomic regions being associated with the phenotype. A
priori, no hypothesis about the location of associated regions is made. Detected
SNPs may not be causally involved but associated to the phenotype due to their
vicinity to functional variants. Ideally, detected variants are located within or
close to genes, and provide therefore insights into biological processes in�uencing
the phenotype.

The association between a quantitative phenotype Y and each SNP is typically
tested by a linear regression model with an optional adjustment for n covariates
such as sex, age, and other factors which are known to in�uence the phenotype as
well.

Y = β0 + β1Cov1 + ...+ βnCovn + βSNPSNP

Within this linear regression model the SNP can be coded in three di�erent ways
as shown in Table 2.

Table 2: SNP coding: Di�erent coding possibilities, exemplarily for an A/C SNP
with respect to C (typically the minor allele). In this case C is named coded allele.

A/A A/C C/C
0 1 1 dominant coding
0 0 1 recessive coding
0 1 2 additive coding

The dominant coding assumes that the presence of one (minor) allele has the same
e�ect on the phenotype as the presence of two (minor) alleles. The recessive coding
assumes that only the presence of two (minor) alleles show an e�ect whereas no
e�ect is seen for the presence of one allele in comparison to the presence of two
other (major) alleles. The additive coding assumes that the presence of two (minor)
alleles has a two-fold e�ect in comparison to the presence of one (minor) allele.
The additive coding is the most commonly used SNP coding as the experience in
GWAS has shown that this assumption is valid in most cases.

In case of a dichotomous phenotype like a diseases status, the linear model is
replaced by a logistic regression model.

4



1 Introduction

In order to avoid false positive results due to bad genotyping quality SNPs are typ-
ically checked for a number of quality criteria: They should show a high call rate,
meaning they could successfully be measured in all or a large number of individu-
als of the study. Furthermore, they are typically checked for the Hardy-Weinberg
Equilibrium (HWE), which describes the theoretical distribution of genotypes in
an ideal population. Deviations from the HWE may hint to problems during
genotype calling. SNPs with bad quality are typically excluded from the analysis.

As the hypothesis-free approach of GWAS considers several hundreds of thousands
or even millions of SNPs, and one statistical test is conducted for each SNP, it is
necessary to correct the statistical signi�cance level for multiple testing. The sim-
plest and most conservative method to correct for multiple testing is the so-called
Bonferroni correction which divides the statistical signi�cance level by the number
of statistical tests performed. Due to the complex LD structure of the human
genome, it is thought to be su�cient to correct for only one million independent
tests19,61 even if approximately 2.5 million tests are performed (see below). This
results in a genome-wide signi�cance level of 5×10−8 using a Bonferroni correction
at a 5% level. The application of this signi�cance level is the common approach
in GWAS so far. In order to reach this signi�cance level, huge sample sizes are
necessary to detect associations of moderate e�ect sizes.

To investigate possible in�ation of the test statistics, it is suggested to calculate
the in�ation factor λ in a GWAS3. The λ value describes the in�ation of the
observed distribution of test statistics across all analysed SNPs with respect to the
expected χ2

1 distribution. Such in�ation is possibly observed in case of population
strati�cation in one study. A value of one corresponds to no in�ation. For values
above one the standard errors of all SNP e�ect estimates are typically corrected for
this in�ation in order to avoid an in�uence on the test statistics due to population
strati�cation3.

In most studies, several thousand genotyped individuals are available. Sample
sizes at such range are only su�cient to detect very large e�ects. Therefore, data
of several studies can be combined in meta-analyses in order to increase sample
sizes and power. As several studies usually use di�erent genotyping platforms,
the list of genotyped SNPs di�ers between studies. In order to generate the same
data basis across studies, missing genotypes are imputed by use of the known LD
structure between SNPs48,53. Until now, mainly data from the HapMap project
(http://www.hapmap.org) was used as a reference for imputation, containing
approximately 2.5 million SNPs. Lately, data from the 1000 Genomes Project
(http://www.1000genomes.org) containing approximately 30 million SNPs got
available and will be used for imputation in future GWAS. Commonly used impu-
tation software are IMPUTE36,54 and MACH49.

All imputation programs provide measures for the imputation quality of each im-
puted SNP scaled from zero (bad) to one (high). It is recommended to exclude
SNPs with bad imputation quality from the analysis63. Commonly used cut-o�s
are 0.3 for the quality measure provided by IMPUTE and 0.4 for the quality
measure provided by MACH. Furthermore, the HWE can also be considered as a

5
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1 Introduction

quality criterion for imputed SNPs, and SNPs with deviations from the HWE can
be excluded.

GWAS results from all single studies are meta-analysed meaning that e�ect esti-
mates for each analysed SNP are combined between studies. Herein, the e�ects
are either weighted by the sample sizes of each study or by the inverse variance of
each estimate14. The inverse variance method gives more weight to studies with
more accurate e�ect estimates and therefore indirectly accounts for the study size.
Estimates can be combined with �xed or random e�ects. Fixed e�ect are only
recommended if e�ects between studies do not show heterogeneity. As a measure
of heterogeneity the I2 measure is commonly used32. It describes the percentage
of total variation across all studies due to heterogeneity rather than chance. For
a formal statistical testing Cochran's heterogeneity test can be applied12.

GWAS have proven to be a powerful tool in the detection of genetic loci that are
associated with complex diseases. According to the National Human Genome Re-
search Institute (NHGRI) GWACatalog (http://www.genome.gov/gwastudies)34,
1,467 publications have reported 8,123 SNPs to be associated with various traits
until December 2012.

1.3 History of serum urate GWAS

The �rst GWAS on serum urate levels were performed in 2007 and 2008 by Li
et al. in a Sardinian population47, Wallace et al. in an English population77, Vi-
tart et al. in a Croatian isolate76, and Döring et al. in the German Cooperative
Health Research in the Region of Augsburg (KORA) F3 study18. (See section
6.1 for details about the KORA study.) All four GWAS reported on variants in
the SLC2A9 gene to be associated with serum urate and provided evidence for
their �ndings by replication in independent studies. The proportion of variance
explained by the reported variants was remarkably high with about 1.2% in men
and 6% in women18. To this time, the encoded protein SLC2A9 (GLUT9) was
thought to be a glucose transporter. Following up the GWAS approaches, func-
tional characterisations initiated by the GWAS showed that SLC2A9 also acts as
a urate transporter8,76.

Also in 2008, Dehghan et al.15 performed a larger GWAS, combining American
and Dutch samples, and identi�ed two additional genomic regions at ABCG2 and
SLC17A3. The identi�ed variants also showed direction consistency in their asso-
ciation with gout.

In 2009, we performed a GWAS within the European Network for Genetic and
Genomic Epidemiology (ENGAGE) consortium as published in Kolz et al.41. This
analysis is one part of this doctoral thesis. It is described in detail in chapter 3. We
combined data of 14 independent studies, totalling 28,141 individuals of European
descent. We were able to identify nine independent variants in or near SLC2A9,
ABCG2, SLC17A1, SLC22A11, SLC22A12, SLC16A9, GCKR, LRRC16A, and
PDZK1 as described in chapter 3.

In parallel to the ENGAGE analysis, mainly US American studies, organized in
the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE)
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consortium performed a GWAS on serum urate levels published in Yang et al.
in 201085. They were able to replicate SLC2A9, ABCG2, SLC17A1, SLC22A11,
GCKR, and PDZK1 of the regions published in Kolz et al. and additionally re-
ported on two novel regions in our near INHBC and RREB1.

After the publication of the results within ENGAGE and CHARGE independent
from each other, we organized the fusion of both consortia forming the Global Urate
Genetics Consortium (GUGC) and additionally invited new joiners to participate
in this big e�ort. With a discovery sample size of more than 110,000 individuals of
European descent, we were able to identify multiple novel regions as published in
Köttgen et al. in 201245. This analysis represents the second part of this doctoral
thesis and is described in detail in chapter 4.

In the meantime, Sulem et al. published the �rst whole-genome sequencing anal-
ysis investigating on serum urate in 201171. They imputed 15,506 Icelanders
with serum urate measurement based on 457 whole-genome sequenced individuals.
Whereas genome-wide association studies until now analysed up to approximately
2.5 million genotyped and imputed SNPs, Sulem et al. could test 16 million se-
quenced SNPs for their association with serum urate and gout. In addition to the
replication of the previously known loci SLC2A9, ABCG2, SLC17A1, SLC22A11,
GCKR, INHBC, RREB1, and SLC16A9, they detected one low-frequency variant
in ALDH16A1, which was not shown to be associated with serum urate before.

The studies mentioned here are based on individuals of European descent. Sev-
eral additional studies conducted serum urate GWAS in individuals of African
American or Asian ancestry. A comparison between �ndings in Europeans and
non-Europeans is given in chapter 5.

1.4 Biological networks

Networks are systems whose structure can be illustrated graphically and are named
graphs in a mathematical context. In other words, networks are used to represent
linked data structures. Topologically, the basic elements of a network are nodes
and relationships between nodes are represented by edges. Networks are often
used to describe and visualize biological systems in an abstract way. In biological
networks nodes may be genes (see chapter 4), proteins, metabolites (see chapter 6),
or any other elements whose interactions shall be illustrated. Those interactions
can be known a priori, for instance stored in data bases, or can be calculated from
data as for instance in Gaussian Graphical Models (GGMs). GGMs have lately
been suggested as a means to reconstruct pathways in metabolomics data44.

Gaussian graphical models (GGMs)

In the present thesis, a GGM was constructed to describe underlying interconnec-
tions in a set of measured metabolites. The most intuitive way to assess statistical
association between metabolites would be to calculate Pearson's correlation coef-
�cient for all pairs of metabolites. However, this has the drawback that it cannot
distinguish between direct and indirect correlations. The idea in the GGM is to
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construct networks based on partial correlation coe�cients instead. This means
that the correlation between two metabolites is estimated by conditioning on all
other available metabolites. Table 3 illustrates the advantage of using partial cor-
relation in a situation where B and C are both correlated with A and therefore
indirectly correlated with each other.

Table 3: Comparison of Pearson and partial correlation in a situation where
B and C are both correlated with A and therefore indirectly correlated (simulated
data).

Pearson Partial
correlation correlation

A�B 0.807 0.643

A
B

C

A�C 0.782 0.588

B�C 0.638 0.018

In the example shown in Table 3 the Pearson correlation coe�cient detects high
correlation between B and C because of the shared in�uence of A. On the other
hand, the partial correlation coe�cient gives no hint of a correlation between B
and C as it is able to di�erentiate between direct and indirect associations in the
data. Networks constructed by GGMs on metabolomics data have been shown to
be able to reconstruct metabolic reaction pathways43,44.
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2 Outline of the thesis

This thesis aimed to identify novel genetic determinants playing a role in the
regulation of serum urate levels, as well as to describe the metabolic vicinity of
serum urate in a metabolite network. The thesis contains four parts:

Genetic determinants in the regulation of serum urate levels were investigated by
GWAS (see section 1.2) within large consortia. Chapter 3 contains a meta-analysis
of GWAS on serum urate levels performed in a total of 28,141 participants of
European descent. In order to account for potential sex di�erences, the analysis
was additionally strati�ed by sex.

To increase power a second meta-analysis of GWAS on serum urate levels was
performed in a larger consortium and is described in chapter 4. The study contains
a total of 110,347 individuals in the discovery step and 32,813 individuals in the
replication step. In order to select genomic regions for replication which did not
reach the signi�cance level in the discovery step a systematic network approach
was invented. To address the pronounced sex di�erences a sex-strati�ed analysis
was performed as well as an analysis of the X chromosome.

Both GWAS described in chapter 3 and chapter 4 were conducted in individu-
als of European ancestry and those �ndings may not be relevant to individuals of
non-European ancestry. Therefore, chapter 5 provides a comparison of �ndings be-
tween di�erent ancestries. First, all genomic regions found in the above-mentioned
GWAS were investigated for their impact in samples of Indian, African American,
and Japanese ancestry. Second, �ndings from GWAS on serum urate levels per-
formed in non-Europeans were compared to the results within our European study.

Despite the success of the GWAS approaches in describing the genetic background
of serum urate, a detailed functional understanding of the underlying biological
processes in the regulation of serum urate levels is still lacking. The detection and
functional characterization of such pathways is crucial to improve the management
and treatment of patients with hyperuricemia and gout. Chapter 6 contains a study
that aimed to describe the metabolic vicinity of serum urate. We examined the
metabolic neighbourhood of serum urate by constructing a GGM (see section 1.4)
around serum urate. Additionally, we analysed sex di�erences and the in�uence
of urate lowering medication for all metabolites within the generated network.

9
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3 Serum urate GWAS within ENGAGE

3.1 Material and methods

3.1.1 Participating studies

In this GWAS on serum urate, 14 discovery studies with a combined sample size
of 28,141 individuals (thereof 12,328 men and 15,813 women) were involved. All
study participants were of European descent. A list of all participating studies is
given in Table 4 together with sample sizes and distributions of age and serum
urate levels.

Table 4: List of ENGAGE studies. Serum urate levels are given in mg/dl.

Sample Females Age Serum urate
Study size % mean (range) mean (sd)
BRIGHT 1,743 60.4 56.9 (21�85) 5.39 (1.44)
CoLaus 5,411 53.0 53.4 (35�75) 5.27 (1.42)
CROATIA 774 58.7 56.6 (18�93) 5.27 (1.53)
Health 2000 2,212 50.8 50.4 (30�75) 3.06 (0.77)
KORA F3 1,644 50.6 62.5 (35�79) 5.21 (1.36)
KORA S4 1,814 51.3 56.4 (45�69) 5.40 (1.44)
MICROS 1,086 56.6 45.3 (18�88) 5.33 (1.53)
NSPHS 655 52.8 47.0 (14�91) 5.38 (1.42)
ORCADES 715 53.7 53.6 (17�98) 5.29 (1.34)
PROCARDIS 1,203 19.0 61.1 (37�82) 6.17 (1.44)
SardiNIA 4,305 56.2 43.6 (14�101) 4.32 (1.48)
SHIP 4,087 50.7 49.8 (21�80) 4.39 (1.43)
SSAGA 379 100 46.7 (30�83) 4.82 (1.25)
TwinsUK 2,113 100 47.2 (18�79) 4.49 (1.07)

For each study, genotypes from a genome-wide SNP chip were available and im-
puted to up to approximately 2.5 million SNPs using HapMap II CEU (build 35
or 36) as a reference panel. Quality control before imputation was conducted in
each study separately. Imputation was performed using Impute54 or MACH49 in
all studies. Study-speci�c details on genotyping platforms, imputation methods,
and quality control are given in supplementary Table S1. Due to di�erent qual-
ity control and imputation strategies at a study level, speci�c sample sizes vary
slightly per SNP.

Informed consent was obtained from all participants and the studies were approved
by the local ethics committees. A detailed description of study designs is provided
as a supplementary text (Text S1) in Kolz et al.41

3.1.2 Statistical analysis

In each study, SNP associations with serum urate levels were computed by a
study-speci�c analyst and result �les of each study were shared in order to enable
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the meta-analysis of the results afterwards. On a study level, serum urate levels
were adjusted for age and sex and transformed to Z-scores in order to account
for variabilities in serum urate levels between studies (see Table 4). Associations
between Z-transformed serum urate levels and all 2.5 million SNPs were tested by
linear regression models. SNP e�ects were assumed to be additive. Additionally,
the analysis was performed strati�ed between men and women. Z-scores were
calculated in each stratum separately.

The analysis in KORA F4 was performed using SNPTEST54. SNPTEST can
consider the probabilities of imputed genotypes and therefore allows to account
for the uncertainty introduced by the genotype imputation. Details of the software
used for all study-speci�c association analyses are given in supplementary Table S1.

Prior to the meta-analysis, rare SNPs (MAF ≤ 0.01) and SNPs with low impu-
tation quality (≤ 0.4 for MACH or ≤ 0.3 for IMPUTE) were excluded from the
datasets of all studies in addition to the study-speci�c quality control �lters to
ensure high-quality data and to �lter out false positive results. Furthermore, the
in�ation factor λ was calculated in all studies as provided in supplementary Table
S1. All study-speci�c standard errors were genomic control corrected for their
in�ation factor λ (if λ > 1).

The meta-analyses of all genome-wide scans were performed using an inverse-
variance weighted �xed e�ects model in the software metal79. In total, 2,493,963
SNPs, distributed across the 22 autosomes, were analysed. The overall in�ation
factor after the meta-analysis was λ = 1.028. As this value is close to one which
gives no hint of in�ated test statistics, no further correction of the meta-analysed
results was applied.

SNPs reaching a signi�cance level of 5×10−8 were considered to be signi�cant. All
regions reaching the genome-wide signi�cance level of 5×10−8 were visualized in
regional association plots (see Figure 5), showing − log10 p-values for all SNPs in
the region. The LD between the SNP with the smallest p-value (index SNP) and
all other SNPs in the region is shown according to the indicated color scheme.
Recombination rates in the region are given by the light blue line. Peaks indicate
recombination hotspots. Locations of genes are given by green arrows, pointing
into the direction of transcription.

Regions where SNPs with noticeable low LD to the index SNP showed genome-
wide signi�cant associations as well were tested for independent signals. Therefore,
all SNPs with the lowest p-value (index SNPs) of possible independent loci were
combined in a multiple SNP model and resulting beta estimates were compared
to those of the single SNP models.

Sex di�erences were tested by means of the test statistic (βw − βm)/
√
se2w + se2m

which approximately follows a standard normal distribution.

The percentage of the variance of serum urate that is explained by one SNP was
calculated based on its e�ect estimates (β) and its e�ect allele frequencies (EAF)
by 2 × EAF × (1 − EAF) × (β2/var). The phenotypic variance var is equal to 1
as the analysis was performed using Z-transformed serum urate levels.
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To further characterize the identi�ed variants, we analysed their association with
a panel of 163 metabolites measured in 2,020 randomly selected individuals of the
KORA F4 survey. The metabolite panel was measured by the AbsoluteIDQ kit
(Biocrates Life Sciences AG, Innsbruck, Austria), containing 14 amino acids, one
sugar, 41 acylcarnitines, 15 sphingolipids, and 92 glycerophospholipids. Detailed
information about metabolite measurements is provided in Kolz et al.41. Genotype
information was available for 1,814 of these individuals. Associations between
the nine identi�ed index SNPs and all available metabolite concentrations in µM
were tested using the same linear regression models as in the genome-wide scan,
adjusting for age and sex. Associations were considered signi�cant for p-values
below 3.4×10−4, corresponding to a Bonferroni correction for (9 × 163 =) 1,467
independent tests. Metabolites showing a signi�cant association with one of the
SNPs were tested for their association with serum urate levels in mg/dl by a
univariate regression model without further transformation or adjustment.

For the creation of Manhattan plots and regional association plots, as well as
for the testing for sex di�erences, the calculation of explained variances, and the
metabolite regression analysis, the statistical software R (www.r-project.org)
was used.

3.2 Results

In a meta-analysis of 14 genome-wide scans, totalling 28,141 individuals of Euro-
pean ancestry, 954 SNPs reached the genome-wide signi�cance level of 5×10−8.
Those SNPs were distributed across seven genetic regions. Figure 4A shows the
association results for all 2,493,963 analysed SNPs. At two of the regions two in-
dependent signals could be identi�ed, resulting in a total of nine independent
loci. Figure 5 shows regional association plots for all nine identi�ed loci or-
dered by their chromosomal position. The strongest association was found for
rs734553 (p=5.2×10−201), which is an intronic SNP in SLC2A9 (see Figure 5C).
The SLC2A9 locus had been identi�ed in previous GWAS15,18,47,76,77. Also, the
second strongest signal in ABCG2 (rs2231142, p=3.1×10−26, see Figure 5D) had
been shown before in Dehghan et al.15 In the same study, one signal for SCL17A3
had been found. Our analysis identi�ed the same genomic region (see Figure
5F). However, the SNP with the smallest p-value (index SNP) in this region is
intronic to the SLC17A1 gene (rs1183201, p=3.0×10−14), which is harbouring
SCL17A3. The index SNP identi�ed in this analysis, rs1183201, is in high LD
with the previously reported rs1165205 (r2=0.97). Furthermore, an independent
signal was found within an intron of LRRC16A (rs742132, p=8.5×10−9), about
200 kb away from SLC17A1 (see Figure 5E). Novel identi�ed loci are in or near
SLC22A11 (rs17300741, p=6.7×10−14, see Figure 5H), SCL22A12 (rs505802,
p=2.0×10−9, see Figure 5I), GCKR (rs780094, p=1.4×10−9, see Figure 5B),
PDZK1 (rs12129861, p=2.7×10−9, see Figure 5A), and SLC16A9 (rs12356193,
p=1.1×10−8, see Figure 5G). The highest amount of variance in serum urate levels
was explained by SLC2A9 with 3.53%, followed by ABCG2 with 0.57%. Taken
together, all nine loci explained 5.22% of the variance in serum urate levels in our
data.
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Figure 4:Manhattan plots of ENGAGE GWAS. Results of the meta-analysis
are plotted as − log10 p-values, ordered by their chromosomal position in A) the
overall analysis, B) women only, and C) men only. Previously known loci are
coloured in blue whereas all novel identi�ed loci are coloured in red. The grey
dashed line indicates the signi�cance level at 5×10−8. The plots are truncated
at p=1×10−30. The smallest p-values are 5.2×10−201 in the overall analysis,
2.4×10−196 in women, and 1.1×10−41 in men.
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Figure 5: Regional association plots of nine ENGAGE loci.
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In the sex strati�ed analysis among 15,813 women and 12,328 men, which is shown
in Figure 4B for women and Figure 4C for men, no further regions reached the
genome-wide signi�cance level. Table 5 shows the association results for all nine
index SNPs in the overall analysis as well as in the sex strati�ed analysis.

Table 5: Association results within ENGAGE. Association results are shown
for the SNP with the smallest p-value (index SNP) in the overall analysis, even if
there was a SNP with a smaller p-value in the sex strati�ed analysis at this locus.
The �rst allele is the e�ect allele. Positions are given for NCBI build 36.

SNP Chr
Gene Position Sample Alleles EAF N Beta p-value
rs12129861 chr 1 overall G/A 0.54 25,627 0.062 2.68×10−9

PDZK1 144437046 women 13,739 0.047 9.10×10−4

men 11,888 0.080 3.68×10−7

rs780094 chr 2 overall T/C 0.42 27,991 0.052 1.40×10−9

GCKR 27594741 women 15,736 0.055 3.11×10−7

men 12,255 0.050 3.05×10−4

rs734553 chr 4 overall T/G 0.77 27,817 0.315 5.22×10−201

SLC2A9 9532102 women 15,639 0.397 1.05×10−192

men 12,178 0.220 1.13×10−41

rs2231142 chr 4 overall T/G 0.11 23,622 0.173 3.10×10−26

ABCG2 89271347 women 13298 0.138 1.13×10−10

men 10,324 0.221 2.25×10−18

rs742132 chr 6 overall A/G 0.70 27,923 0.054 8.50×10−9

LRRC16A 25715550 women 15,688 0.048 8.14×10−5

men 12,235 0.062 2.68×10−5

rs1183201 chr 6 overall T/A 0.52 27,908 0.062 3.04×10−14

SLC17A1 25931423 women 15,702 0.055 4.48×10−8

men 12,206 0.076 2.52×10−8

rs12356193 chr 10 overall A/G 0.83 23,559 0.078 1.07×10−8

SLC16A9 61083359 women 13,244 0.073 3.29×10−5

men 10,315 0.089 3.57×10−5

rs17300741 chr 11 overall A/G 0.51 27,727 0.062 6.68×10−14

SLC22A11 64088038 women 15607 0.060 3.60×10−9

men 12,120 0.066 1.50×10−6

rs505802 chr 11 overall C/T 0.30 27,967 0.056 2.04×10−9

SLC22A12 64113648 women 15,735 0.047 1.02×10−4

men 12,232 0.073 7.22×10−7

In a comparison of men- and women-speci�c estimates, the e�ect at SLC2A9
showed a signi�cant sex di�erence after a Bonferroni correction for nine inde-
pendent tests (p=3.8×10−17), whereas ABCG2 showed a sex di�erence which is
only signi�cant at a nominal signi�cance level of 0.05 (p=0.013). SLC2A9 showed
a stronger e�ect in women, whereas ABCG2 showed a stronger e�ect in men. For
the remaining seven loci no sex di�erences were found.
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By analysing the association of the nine identi�ed variants with a panel of 163
metabolites, we found rs12356193 within SLC16A9 to be signi�cantly associ-
ated with DL-carnitine concentrations (β=23.58, p=4.0×10−26) and propionyl-
L-carnitine concentrations (β=20.06, p=5.0×10−8) after correction for multiple
testing. In turn, DL-carnitine concentrations (β=0.06, p=1.4×10−57) as well
as propionyl-L-carnitine concentrations (β=1.78, p=8.1×10−54) were associated
with serum urate levels, forming a triangle between SNP, metabolites, and serum
urate levels. The relationships are illustrated in Figure 6.
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Figure 6: Serum urate � SLC16A9 � metabolite triangle illustrating the
relationship between serum urate, SLC16A9, and DL-carnitine and propionyl-L-
carnitine respectively.
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3.3 Discussion

We identi�ed nine independent genetic loci being signi�cantly associated with
serum urate levels in a GWAS containing 28,141 individuals. Five of these loci
were novel at this time (SLC22A11, SCL22A12, GCKR, PDZK1, SLC16A9 ).

Many of the identi�ed loci harbour genes that encode urate transporters: The
SLC22A12 gene encodes URAT1 which was the �rst characterized urate trans-
porter20. SLC2A9 encodes SLC2A9 (GLUT9) which is involved in renal urate
re-absorption8,76 and was characterized as a urate transporter after the �rst se-
ries of serum urate GWAS. Later it was shown that homozygous loss-of-function
mutations of GLUT9 cause a total defect of uric acid absorption, leading to se-
vere renal hypouricemia17. The ABC transporter ABCG2, encoded by ABCG2,
has been shown to operate as a urate transporter contributing to the excretion of
urate via the kidney, and several mutations of ABCG2 were shown to reduce its
function55,80,81. SLC17A1 encodes NPT1 which can transport urate as well and is
likely involved in urate excretion39. SLC22A11 encodes for OAT4 which operates
as a urate transporter as well30. PDZK1 is known to in�uence urate transport
indirectly as the urate transporters URAT1, NPT1, and OAT4 are known to bind
to PDZK12,57. Those �ndings strongly support the hypothesis that transport pro-
teins are playing a major role in the regulation of serum urate levels.

The index SNP rs12356193 on chromosome 10 is located within SLC16A9 which
encodes for MCT9. We saw an association between rs12356193 and two of the
investigated metabolites, namely DL-carnitine and propionyl-L-carnitine, which
in turn were associated with serum urate levels, forming a triangle between SNP,
metabolites, and serum urate levels. After the publication of these results, the
predicted function of SLC16A9 (MTC9) as a carnitine e�ux transporter was ex-
perimentally validated70.

For the remaining genes the function is less clear. The independent signal 200 kb
away from SLC17A1 on chromosome 6 contains LRRC16A and SCGN. The closest
gene to rs780094, the SNP with the strongest association signal on chromosome 2,
is GCKR. However the region contains a number of genes and the GWAS approach
cannot distinguish which of the genes in the region is functionally involved in the
regulation of serum urate levels.

The relationship between urate and other metabolites is more precisely investi-
gated in chapter 6 where a metabolite network was constructed based on a panel
of metabolites measured by Metabolon Inc.21 The Metabolon panel covers more
broadly several di�erent classes of metabolites as described in chapter 6 whereas
the Biocrates panel which was used in this chapter's analysis mainly contains glyc-
erophospholipids.

Two of the detected regions show gender di�erences. This observation is line with
previous �ndings18 and not surprising as serum urate levels are known to vary
between men and women (see section 1.1).

During the analysis of a GWAS meta-analysis, a number of decisions concerning
statistical model, adjustment for covariates, quality control and �ltering of single
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study results, and the statistical approach in the meta-analysis have to be made.
It is important to carefully choose the most appropriate approaches in each situa-
tion in order to avoid false positive results. The results of the serum urate GWAS
presented herein were published without a formal replication which is usually ex-
pected in the �eld. Nevertheless the later publications of Yang et al.85 and Köttgen
et al.45 con�rmed that all �ndings were no false positive results, underpinning the
validity of the approach used here.

Taken together we identi�ed nine genetic loci highlighting biological pathways
that are involved in the regulation of serum urate levels. The �ndings suggest
that transport proteins are playing a major role and point towards novel potential
targets for the treatment and prevention of hyperuricemia and gout.

With 5.22% of the variance, we explain a comparably large proportion of pheno-
typic variation in comparison to GWAS of other traits. Nevertheless, the estimated
heritability of about 40�70%58,78,84 for serum urate levels suggests that additional
loci remain to be identi�ed. The extension of this analysis to a sample size of more
than 110,000 individuals of European descent in the discovery step is described in
chapter 4.
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My work presented in this chapter is also published in

Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, Mangino M, Al-
brecht E, Wallace C, Farrall M, Johansson A, Nyholt DR, Aulchenko Y, Beck-
mann JS, Bergmann S, Bochud M, Brown M, Campbell H; EUROSPAN Consor-
tium, Connell J, Dominiczak A, Homuth G, Lamina C, McCarthy MI; ENGAGE
Consortium, Meitinger T, Mooser V, Munroe P, Nauck M, Peden J, Prokisch H,
Salo P, Salomaa V, Samani NJ, Schlessinger D, Uda M, Völker U, Waeber G, Wa-
terworth D, Wang-Sattler R, Wright AF, Adamski J, Whit�eld JB, Gyllensten U,
Wilson JF, Rudan I, Pramstaller P, Watkins H; PROCARDIS Consortium, Doer-
ing A, Wichmann HE; KORA Study, Spector TD, Peltonen L, Völzke H, Nagaraja
R, Vollenweider P, Caul�eld M; WTCCC, Illig T, Gieger C. Meta-analysis of
28,141 individuals identi�es common variants within �ve new loci that
in�uence uric acid concentrations. PLoS Genet. 2009 Jun;5(6):e1000504.
Epub 2009 Jun 5.

My detailed contribution in this project was as follows:

I was the analyst of the KORA F4 study performing the GWAS and independency
analysis at a study level. Furthermore, I was the analyst conducting the meta-
analysis of all genome-wide scans.
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4 Serum urate GWAS within GUGC

4.1 Material and methods

4.1.1 Participating studies

This GWAS on serum urate involved 48 discovery studies, totalling 110,347 indi-
viduals (49,825 men and 60,522 women) of European descent. In the replication
stage, we included 12 studies with in silico genotype information, totalling 18,821
individuals (8,993 men and 9,828 women) and three studies with de novo genotyp-
ing, providing 13,992 individuals (6,153 men and 7,839 women). Speci�c sample
sizes varied slightly per SNP. Sample sizes and study characteristics in terms of
sex, age, and serum urate distributions are provided in Table 6 for all discovery
studies and in Table 7 for all replication studies. Detailed information about in-
dividual study designs, population details, and serum urate measurements can be
found in supplementary Table S2.

Table 6: List of GUGC discovery studies. Serum urate levels are given in
mg/dl.

Sample Females Age Serum urate
Study size % mean (sd) mean (sd)
AGES Reykjavik Study 3,219 58.0 76.4 (5.5) 5.97 (1.62)
Amish 1,139 48.1 49.8 (16.8) 4.20 (1.10)
ARIC 9,049 52.9 54.3 (5.7) 5.94 (1.50)
ASPS 845 43.2 65.2 (8.0) 5.32 (1.42)
AUSTWIN 11,520 59.5 39.2 (17.2) 4.85 (1.32)
BLSA 521 47.8 70.6 (14.1) 5.21 (1.49)
BRIGHT 1,743 60.4 56.9 (10.3) 5.39 (1.44)
CARDIA 1,713 53.4 25.5 (3.3) 5.33 (1.37)
CHS 3,252 60.9 72.3 (5.4) 5.50 (1.44)
CoLaus 5,409 52.9 53.4 (10.7) 5.27 (1.42)
CROATIA-KORCULA 895 63.9 56.2 (14.0) 4.92 (1.29)
CROATIA-SPLIT 490 57.9 49.0 (14.6) 4.80 (1.38)
CROATIA-VIS 912 57.7 56.4 (15.5) 5.23 (1.59)
DESIR 716 75.1 50.2 (8.2) 3.86 (0.92)
EPIC-Norfolk cohort 1,835 54.3 59.3 (9.0) 4.99 (1.37)
ERF 889 60.7 49.6 (15.2) 5.52 (1.56)
Estonian Biobank 931 50.8 39.4 (15.6) 4.95 (1.36)
Family Heart Study (FamHS) 3,837 52.4 52.1 (13.7) 5.42 (1.47)
FHS 7,699 53.1 37.9 (9.4) 5.34 (1.51)
Health 2000 2,069 50.9 50.6 (11.0) 5.17 (1.29)
InCHIANTI 1,205 55.5 68.2 (15.5) 5.08 (1.43)
INCIPE 940 52.6 61.2 (11.5) 5.50 (1.45)
INGI-Carlantino 432 61.3 49.9 (16.5) 4.90 (1.41)
INGI-CILENTO 859 55.2 52.5 (19.4) 4.60 (1.59)
INGI-FVG 1,018 61.6 48.2 (19.7) 5.55 (1.57)
INGI-Val Borbera 1,658 55.8 54.7 (18.3) 5.02 (1.28)
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KORA F3 1,643 50.5 62.5 (10.1) 5.21 (1.36)
KORA F4 1,814 51.3 60.9 (8.9) 5.37 (1.45)
LBC1936 769 47.7 72.5 (0.7) 5.51 (1.47)
LifeLines 3,343 59.2 55.5 (9.9) 5.04 (1.25)
LOLIPOP-EW-A 587 12.9 54.3 (10.4) 5.62 (1.32)
LOLIPOP-EW-P 650 0 55.7 (9.1) 5.75 (1.35)
LOLIPOP-EW610 924 26.9 55.9 (9.8) 5.30 (1.45)
LURIC 963 27.8 62.0 (10.6) 5.04 (1.68)
MICROS 1,236 56.8 45.0 (16.8) 5.31 (1.42)
NESDA 1,731 67.9 42.3 (12.5) 4.37 (1.17)
NSPHS 655 52.8 47.0 (20.7) 5.38 (1.42)
ORCADES 888 54.6 53.5 (15.7) 4.98 (1.20)
PREVEND 3,785 48.9 49.6 (12.4) 5.12 (1.34)
PROCARDIS 3,742 24.4 62.1 (7.0) 6.10 (1.46)
RS-I 4,274 61.6 70.1 (9.0) 5.41 (1.37)
RS-II 2,123 54.4 64.8 (8.0) 5.25 (1.28)
SardiNIA 4,694 56.3 43.3 (17.6) 4.32 (1.48)
SHIP 4,067 50.7 49.7 (16.3) 4.90 (1.40)
SOCCS 1,105 50.0 51.0 (5.7) 4.60 (1.25)
Sorbs 896 59.6 47.2 (16.3) 5.80 (1.64)
TwinsUK 3,640 100 48.1 (12.9) 4.49 (1.07)
Young Finns Study 2,023 54.7 37.7 (5.0) 4.74 (1.27)

In each discovery study, genotypes from a standard genotyping platform were
available and imputed to up to approximately 2.5 million SNPs using HapMap II
CEU as a reference. Study-speci�c details on genotyping platforms, imputation
methods, and quality control for discovery and in silico studies are provided in
supplementary Table S3.

4.1.2 Statistical analysis

Analysis at the study level

SNP associations in each study were computed by a study-speci�c analyst and
result �les of each study were shared for subsequent meta-analysis. In each dis-
covery study, SNP associations with serum urate levels were analysed by linear
regression models, assuming the SNP e�ect to be additive. Unlike the analysis
in the ENGAGE GWAS, each cohort used the raw serum urate values, measured
in mg/dl. Adjustment for age and sex was made within the linear model, as well
as for study-speci�c covariates where appropriate, such as adjustment for study
center, population strati�cation, or family structure. The analysis was done for
the overall sample as well as strati�ed by sex. All analyses accounted for the
uncertainty introduced by the genotype imputation by using the expected allele
dosages. In the replication studies, the same models were applied as in the dis-
covery studies. Details of the software used for study-speci�c association analyses
are given in supplementary Table S3.
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Table 7: List of GUGC replication studies. Serum urate levels are given in
mg/dl.

Sample Females Age Serum urate
Study size % mean (sd) mean (sd)
in silico replication
EPIC cases 793 58.4 59.3 (8.8) 5.51 (1.53)
GHS I 2,995 48.5 55.9 (10.9) 4.83 (1.47)
GHS II 1,179 50.0 55.1 (10.9) 4.75 (1.47)
GSK cases 819 66.3 50.9 (13.7) 5.00 (1.40)
GSK controls 851 67.7 51.9 (13.2) 4.99 (1.34)
Hunter Community Study 1,088 51.1 65.9 (7.4) 5.37 (1.34)
Lifelines replication 5,031 56.1 43.2 (9.1) 4.85 (1.21)
LURIC replication GZ 804 34.0 59.0 (12.0) 5.00 (1.70)
LURIC replication HD 1,156 29.8 64.9 (9.2) 5.20 (1.70)
MARS cases 636 52.7 48.4 (14.0) 5.19 (1.29)
OGP-Talana 1,039 55.9 50.9 (19.1) 4.59 (1.64)
SAPALDIA asthmatics 570 52.5 51.3 (11.3) 5.31 (1.49)
SAPALDIA non-asthmatics 874 50.1 52.9 (11.1) 5.25 (1.46)
SHIP-Trend 986 56.2 50.1 (13.7) 4.79 (1.25)
de novo replication
HYPEST 751 63.5 57.8 (9.8) 5.79 (1.50)
KORA S2 3,685 49.0 49.6 (14.1) 4.93 (1.47)
OGP (Ogliastra) 9,556 56.1 49.6 (17.9) 4.36 (1.48)

Quality control and meta-analysis

Before meta-analysis, all study-speci�c genome-wide association results underwent
extensive and standardized quality control procedures. All �les were checked for
completeness and all variables were checked for plausibility of their descriptive
statistics, supported by the gwasqc function of the GWAtoolbox package26 in R
(www.r-project.org). As a positive control, the e�ect direction and size, as well
as the p-value of rs16890979 in SLC2A9 was compared between all studies, as the
known in�uence of SLC2A9 is strong enough to be seen in moderate sample sizes.
In addition to the study-speci�c quality control �lters, we excluded SNPs being
monomorphic in the respective study and corrected study-speci�c results by their
in�ation factor λ if λ > 1.

The meta-analysis of all genome-wide scans was performed using an inverse-variance
weighted �xed e�ects model in metal79, for the overall, men-, and women-speci�c
scans separately. All meta-analyses were double-checked by an independent ana-
lyst. After the meta-analysis we removed all SNPs that were not available in at
least 75% of the overall sample size, which lead to a total number of 2,450,547
analysed genotyped or imputed autosomal SNPs. The genomic in�ation factor λ
was 1.07 in the overall analysis, 1.08 in the women-speci�c analysis, and 1.03 in
the men-speci�c analysis. We applied a second genomic control correction. In line
with the ENGAGE GWAS, the commonly used genome-wide signi�cance level of
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5×10−8 was applied. Additionally, SNPs reaching p-values below 1×10−6 were
followed-up in the replication analysis. To investigate the detected regions for po-
tential independent signals, an independency analysis was performed as described
in Köttgen et al.45 The heterogeneity between studies was investigated by the I2

measure32. The calculation of explained variances is described in Köttgen et al.45

Replication

In the replication analysis, results of all in silico and de novo studies were meta-
analysed in metal79 applying inverse-variance weighting and �xed e�ect modelling
as for the discovery cohorts. Afterwards, the results from the discovery step and
from the replication step were meta-analysed using the same approach. A SNP
was considered as replicated if its q-value69 was below 0.05 in the replication step.
Unlike the well-known p-value, the q-value is a measure of signi�cance in terms
of the false discovery rate rather than the false positive rate. Given the limited
power in the replication step, we decided to apply this more liberal approach.
SNPs that had not reached the genome-wide signi�cance level in the discovery
phase, additionally had to reach the genome-wide signi�cance level after combining
discovery and replication results.

Metabolite lookup

All detected loci were checked for their associations with a set of 276 metabolites
and 37,179 metabolite ratios in 1,768 individuals of the KORA F4 study. Asso-
ciation results of the metabolite panel with approximately 2.5 million HapMap II
SNPs is provided at http://metabolomics.helmholtz-muenchen.de/gwa/ and
described elsewhere70. We searched the database for all associations between the
index SNPs and one of the metabolites or metabolite ratios with p-values below
5×10−6.

X chromosome analysis

In addition to the analysis of all autosomal chromosomes, we analysed the X
chromosome in a subset of studies. Imputed data was available in 19 of the dis-
covery studies (AGES, ARIC, CHS, CoLaus, EPIC-Norfolk cohort, ERF, Esto-
nian Biobank, FHS, INCIPE, INGI-CILENTO, INGI380 Val Borbera, KORA F3,
KORA F4, LBC1936, NESDA, RS-I, RS-II, SardiNIA, SHIP). Six additional stud-
ies contributed data for genotyped SNPs only (Amish, AUSTWIN, BLSA, InCHI-
ANTI, INGI-Carlantino, INGI-FVG). Imputation was performed using MACH49

or IMPUTE54 with HapMapII as a reference panel. Linear regression models for
the SNP associations were calculated in the same way as for autosomal SNPs, with
men coded as homozygous in the non-pseudoautosomal region. Quality checks
and meta-analysis were performed analogous to the autosomal analysis. After the
meta-analysis, we additionally applied a MAF �lter of 5%, as well as a p-value
�lter of 5×10−8 for Cochran's heterogeneity test due to the higher observed het-
erogeneity compared to the autosomal SNPs. In total, 54,926 SNPs were analysed
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in up to 72,026 individuals in the overall analysis, 52,897 SNPs in 39,212 women,
and 55,210 SNPs in 31,086 men.

Network analysis

In order to trace possible underlying biological processes, as well as to detect
additionally involved genes in a systematic approach, we performed a network
analysis following up the GWAS analysis. In a �rst step, all independent index
SNPs, not only at a genome-wide signi�cance level, but with p-values below the
suggestive signi�cance level of 1×10−6 in the overall GWAS, were assigned to a
gene. This step was done using GRAIL64. For rs1493664, no gene could be assigned
by GRAIL, thus, we selected LUZP2 which is the closest gene to this locus. For
the resulting list of 37 genes, which we named �seed genes� in the network, we
searched for known protein-protein interactions (PPI) in the STRING database72.
We allowed PPIs which were veri�ed in databases or experiments but did not use
text mining as an additional option. For 31 of the genes, PPIs with other genes
were known. No PPIs could be found for TMEM171, MUSTN1, C17orf82, STC1,
SLC16A9, and LUZP2. All known interactions in a 1-, 2-, and 3-neighbourhood
were assigned to a network graph. The complete graphs are available at http:

//www.gwas.eu/gugc. Sub-networks are visualized in Supplementary Figures 8
and 9 of Köttgen et al.45

For the systematic approach, we further investigated all genes assigned to the
1-neighbourhood network. The 1-neighbourhood network included 814 genes in
addition to the 31 seed genes. For each of the 814 genes identi�ed by the network,
we de�ned a window extending in 110 kb upstream and 40 kb downstream direction
of the gene as suggested before66 and searched for the SNP with the smallest p-
value in the results of the serum urate GWAS within this region. The resulting SNP
list contained 735 SNPs since 33 windows contained no such SNP and because some
of the SNPs were selected for multiple windows. Of those 735 SNPs, 27 passed
a Bonferroni corrected signi�cance level of α=0.05/735=6.80×10−5. Of those,
we removed SNPs located within a 1 Mb-wide window around each seed gene (or
2.5 Mb-wide for the HLA locus) and SNPs in high LD with other SNPs in the list.
This resulted in a list of 17 independent SNPs. These 17 SNPs were followed up
in the replication step in addition to the SNPs discovered by the GWAS directly.
The strategy of the systematic network approach is summarised in Figure 7.

In order to address the question how the network approach performs in comparison
to a random selection of SNPs, we compared the 17 network SNPs to randomly
selected SNP sets of 17 SNPs within the same p-value range. There were 2,210
SNPs with p-values between 6.8×10−5 and 1×10−6 in our screen. After exclusion
of the already investigated regions, these could be grouped into 115 independent
loci using the same clumping algorithm as for the genome-wide signi�cant SNPs
as described in Köttgen et al.45 From the 115 independent loci, the SNPs with the
smallest p-value per locus were used to randomly select 100,000 sets of 17 SNPs.
Afterwards the rank-sums of the p-values from the 100,000 SNP sets were compared
to the rank-sum of the p-values of the 17 network SNPs. For this comparison p-
values for the 115 SNPs were taken from the meta-analysis results combining all
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SNP1 ... SNP37 37 index SNPs identi�ed in serum urate GWAS with
p-values < 1×10−6.

gene1 ... gene37 Assignment of most likely gene underlying the asso-
ciation using GRAIL (seed genes).

Connecting genes if direct interactions between corre-
sponding proteins are known or if they operate in the
same processes according to STRING database re-
sulting in a network of 845 genes.

genen1 ... genen814 814 genes identi�ed by network analysis.

SNPn1 ... SNPn735 Selection of the SNP with lowest p-value within 110 kb
upstream and 40 kb downstream of each gene from the
serum urate GWAS results.

SNPn1 ... SNPn17 17 SNPs having a p-value below a Bonferroni-corrected
signi�cance level of 6.80×10−5 and not in neighbourhood
or LD of/with others.

Figure 7: Strategy of systematic network approach.

in silico replication studies.

4.2 Results

In a meta-analysis of 48 genome-wide scans, totalling 110,347 individuals of Eu-
ropean descent, 2,201 SNPs showed an association with serum urate concentra-
tions at the genome-wide signi�cance level of 5×10−8. Those SNPs are dis-
tributed across 26 independent loci and located in or near SLC2A9, ABCG2,
SLC17A1, GCKR, SLC22A11, PDZK1, SLC16A9, INHBC, RREB1, HNF4G,
SFMBT1, TRIM46, OVOL1, IGF1R, VEGFA, A1CF, BAZ1B, UBE2Q2, ATXN2,
NRXN2, TMEM171, HLF, BCAS3, ORC4L, INHBB, and NFAT5. Of those 26
loci SLC22A11 and NRXN2 are two independent signals within the same re-
gion. 380 further SNPs reached a suggestive signi�cance level of 1×10−6, compris-
ing eleven additional independent genetic loci near STC1, MAF, ADPGK, INSR,
USP2, DACH1, QRICH2, FGF5, B4GALT1, LUZP2, and PRKAG2. In the sex
strati�ed analysis, no additional region reached the genome-wide signi�cance level.
However, �ve additional regions reached the suggestive signi�cance level for women
near HNF1A, DAB2, MC4R, FRK, and ANKRD55, and one additional region for
men near HLA-DRB5. The GWAS results of the overall, as well as of the sex

25



4 Serum urate GWAS within GUGC

strati�ed analyses are visualized as truncated Manhattan plots in Figure 8. The
37 regions from the overall analysis as well as the six regions from the sex-strati�ed
analysis which reached at least a suggestive signi�cance level of 1×10−6, are shown
as regional association plots in supplementary Figure S1. Association results for
the best SNP of each region (index SNP) are shown in Table 8.
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Figure 8:Manhattan plots of GUGC GWAS. Results of the meta-analysis are
plotted as − log10 p-values ordered by their chromosomal position in A) the overall
analysis, B) women only, and C) men only. Previously known loci are coloured in
blue whereas all novel identi�ed loci are coloured in red. Replicated loci identi�ed
by the network analysis are coloured in orange. The grey dashed line indicates the
signi�cance level at 5×10−8. The plots are truncated at 1×10−30.
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4 Serum urate GWAS within GUGC

Within the network analysis, 17 additional loci showing p-values between 1×10−6

and 6.8×10−5 were selected (see section 4.1.2) and are presented in Table 8 as well.
Together with one SNP identi�ed in a candidate gene approach, as described in
Köttgen et al.45 and shown in Table 8, the 37 SNPs from the overall analysis, the
6 SNPs from the sex strati�ed analysis and the 17 SNPs from the network analysis
were followed up in the replication analysis including up to 32,813 individuals
of European descent. Of those 61 SNPs, 28 could be replicated, including the
ten previously known regions near PDZK1, GCKR, SLC2A9, ABCG2, RREB1,
SLC17A1, SLC16A9, SLC22A11, NRXN2, and INHBC, as well as 16 novel regions
from the overall analysis near TRIM46, INHBB, SFMBT1, TMEM171, VEGFA,
BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5,
MAF, and HLF, and two regions of the network analysis near ACVR1B/ACVRL1,
and B3GNT4. All replicated loci are coloured in Figure 8 and marked in Table 8.

From the network approach, two genes out of 17 were replicated. One can raise
the question if 2 out of 17 is better than chance. From the classical approach 26
out of 44 SNPs were replicated, but from those 26 which were replicated, 23 were
already genome-wide signi�cant in the discovery step. To address this question
we compared the ranksum of the 17 network SNPs to the ranksums of randomly
selected sets of 17 SNPs within the same p-value range. A comparison of those
ranksums in the in silico data showed that 8% of the random SNP sets had a
lower rank-sum compared to the network SNP set. This gives the hint that the
network approach performs well in the selection of SNPs. Figure 9 shows the p-
value distribution of the selected network SNPs in comparison to all SNPs within
the same p-value range.

The ALDH16A1 region, which was previously reported to be associated with
serum urate levels in a whole-genome sequencing analysis71 is shown in Figure
10. The smallest p-value in a ±250 kb window around ALDH16A1 was observed
for rs2288481 (p=5.8×10−3).

In the analysis of the X chromosome which was performed in a subset of studies
totalling up to 72,026 individuals, none of the SNPs reached the genome-wide
signi�cance level of 5×10−8 or the suggestive signi�cance level of 1×10−6. The
same remained true when the analysis was strati�ed by sex. Within the two
candidate regions of PRPS1 65 and HPRT1 83 the smallest p-value within a±250 kb
window around PRPS1, was nominally signi�cant with p=2.9×10−2 (rs5962404).
The smallest p-value within a ±250 kb window around HPRT1 was p=7.3×10−2

for rs4830303. Results are shown in Figure 11.

In the investigation of all index SNPs for their association with a panel of serum
glutamyl metabolites, not surprisingly, rs12498742 within SLC2A9 showed a sig-
ni�cant association with serum urate (p=1.6×10−17) which was one of the mea-
sured metabolites. Due to the reduced sample size compared to the GWAS meta-
analysis no other SNP showed a signi�cant association with serum urate in this
dataset. None of the additionally measured metabolites was associated with one of
the SNPs directly. Nevertheless two SNPs showed associations with metabolite ra-
tios: rs729761 (VEGFA) was associated with gamma-glutamylglutamate/ pyroglu-
tamylglycine (p=4.2×10−7), and rs653178 (ATXN2 ) was associated with gamma-
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4 Serum urate GWAS within GUGC

Figure 9: Quantile-quantile plot comparing network SNPs to SNPs in same
p-value range. Observed p-values are plotted against p-values expected by chance.
The 17 network SNPs are coloured in blue whereas the 115 SNPs with the lowest
p-value of all independent regions within the same p-value range are coloured in
black. Observed p-values were taken from the meta-analysis combining all in silico
studies.
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Figure 10: Regional association plot of the ALDH16A1 region in GUGC.
Results of the meta-analysis are plotted as − log10 p-values ordered by their chro-
mosomal position in a ±250 kb window around ALDH16A1. Positions are given
for NCBI build 36. The grey vertical line corresponds to the position of the rare
variant identi�ed by Sulem et al.71: chr19:54660818.

glutamylleucine/ valine (p=4.1×10−8), as well as with gamma-glutamylleucine/
glucose (p=8.0×10−7).
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4 Serum urate GWAS within GUGC

Figure 11: X chromosomal Manhattan plot showing − log10 p-values for all
SNPs analysed on the X chromosome ordered by their chromosomal position. Re-
sults are shown for A) the overall analysis, B) men only, and C) women only. The
locations of the two candidate gene regions PRPS1 (left) and HPRT1 (right) are
coloured in green. The plot is taken from Köttgen et al.45

4.3 Discussion

With a total sample size of more than 110,000 individuals in the discovery GWAS,
and a replication analysis including approximately 30,000 individuals, we have
conducted the largest GWAS on serum urate levels until now. All regions known
from previous GWAS could be replicated in this analysis. Within the ENGAGE
GWAS, as described in chapter 3, LRRC16A17 was found to be an indepen-
dent signal from SLC17A1. This independency could not be con�rmed within
the GUGC data. Nevertheless two independent signals could be con�rmed in the
SLC22A11 region, however, the closest gene to the second signal is NRXN2 in the
GUGC analysis instead of SLC22A12 in the ENGAGE analysis.

Furthermore, we identi�ed 18 novel regions, 16 of which in the common GWAS
approach, and two additional in a systematic network approach. In total, 28
independent loci were identi�ed and replicated. In relation to the discovery step,
the sample size in the replication step is modest. Therefore, the failed replication of
some of the genes, such as ORC4L, OVOL1, or BCAS3, which show genome-wide
signi�cant associations in the discovery step, could be due to a lack of power.

While previously identi�ed genes are mainly involved in urate transport, none of
the novel identi�ed genes is known to act as a urate transporter or to be involved in
urate transport indirectly. Several of the novel genes are encoding for transcription
and growth factors and are therefore more likely connected to metabolic control
of serum urate production and excretion. Interestingly, �ve of the replicated loci
(GCKR, VEGFA, STC1, ATXN2, and UBE2Q2 ) and two of the loci which could
not be replicated (DACH1 and BCAS3 ), have been shown to be associated with
chronic kidney disease before46. Two of them, GCKR and ATXN2, are known for
their pleiotropic e�ect, as they showed associations in a broad number of GWAS
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with various traits (http://www.genome.gov/gwastudies)34.

Recently, Sulem et al.71 reported in a whole-genome sequencing analysis, that rare
variants within the ALDH16A1 region are associated with serum urate levels. In
our analysis, no signal was found within this region although the region contains
several analysed SNPs. The conducted GWAS was based on HapMap II data
mainly focusing on common variants, and may therefore fail to detect the in�uence
of rare variants. This could also be the reason why we could not �nd any strong
signal on the X chromosome despite two known candidate regions.

We applied a systematic network approach to select 17 genes within a p-value
range between 1×10−6 and 6.80×10−5. Two of the genes could be veri�ed in the
replication analysis and would have been missed in the GWAS approach alone.
The systematic network approach provides a helpful strategy to select additional
loci for replication which did not reach genome-wide signi�cance in the discovery
step. Furthermore, one clear advantage of the network approach is that it helps
bringing the detected genes into a biological context as described in the text and
in Supplementary Figures 8 and 9 of Köttgen et al.45 The novel idea of selecting
loci with p-values below 5×10−8 for replication by means of the systematic strat-
egy of the network approach can be applied in future investigations. While the
GWAS approach does not use any prior knowledge, the network approach incor-
porates prior biological knowledge in a systematic way and eases the biological
interpretation of the �ndings.

In the related publication, the detected loci from the GWAS approach described
in this thesis were followed up by a detailed characterization45. It could be shown
that all urate-increasing alleles were positively associated with the risk of gout
by investigating the e�ects in an additionally performed GWAS on gout. For
SLC2A9, GCKR, and IGF1R associations with the fractional excretion of uric
acid were shown. In pathway approaches, the �ndings were linked to glucose-
metabolism, and the network analyses implicate the inhibins-activins signalling
pathways to be involved in urate control.

Taken together, we identi�ed 28 loci that are associated to serum urate levels in
the largest GWAS on this topic to date. The �ndings are biologically plausible
and highlight the importance of metabolic control in serum urate production and
excretion.
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My work presented in this chapter is also published in

Köttgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, Pistis G,
Ruggiero D, O'Seaghdha CM, Haller T, Yang Q, Tanaka T, Johnson AD, Kutalik Z,
Smith AV, Shi J, Struchalin M, Middelberg RP, Brown MJ, Ga�o AL, Pirastu N, Li G,
Hayward C, Zemunik T, Hu�man J, Yengo L, Zhao JH, Demirkan A, Feitosa MF, Liu X,
Malerba G, Lopez LM, van der Harst P, Li X, Kleber ME, Hicks AA, Nolte IM, Johansson
A, Murgia F, Wild SH, Bakker SJ, Peden JF, Dehghan A, Steri M, Tenesa A, Lagou V,
Salo P, Mangino M, Rose LM, Lehtimäki T, Woodward OM, Okada Y, Tin A, Müller
C, Oldmeadow C, Putku M, Czamara D, Kraft P, Frogheri L, Thun GA, Grotevendt A,
Gislason GK, Harris TB, Launer LJ, McArdle P, Shuldiner AR, Boerwinkle E, Coresh J,
Schmidt H, Schallert M, Martin NG, Montgomery GW, Kubo M, Nakamura Y, Tanaka
T, Munroe PB, Samani NJ, Jacobs DR Jr, Liu K, D'Adamo P, Ulivi S, Rotter JI, Psaty
BM, Vollenweider P, Waeber G, Campbell S, Devuyst O, Navarro P, Kolcic I, Hastie N,
Balkau B, Froguel P, Esko T, Salumets A, Khaw KT, Langenberg C, Wareham NJ, Isaacs
A, Kraja A, Zhang Q, Wild PS, Scott RJ, Holliday EG, Org E, Viigimaa M, Bandinelli
S, Metter JE, Lupo A, Trabetti E, Sorice R, Döring A, Lattka E, Strauch K, Theis F,
Waldenberger M, Wichmann HE, Davies G, Gow AJ, Bruinenberg M; LifeLines Cohort
Study, Stolk RP, Kooner JS, Zhang W, Winkelmann BR, Boehm BO, Lucae S, Penninx
BW, Smit JH, Curhan G, Mudgal P, Plenge RM, Portas L, Persico I, Kirin M, Wilson JF,
Leach IM, van Gilst WH, Goel A, Ongen H, Hofman A, Rivadeneira F, Uitterlinden AG,
Imboden M, von Eckardstein A, Cucca F, Nagaraja R, Piras MG, Nauck M, Schurmann
C, Budde K, Ernst F, Farrington SM, Theodoratou E, Prokopenko I, Stumvoll M, Jula
A, Perola M, Salomaa V, Shin SY, Spector TD, Sala C, Ridker PM, Kähönen M, Viikari
J, Hengstenberg C, Nelson CP; CARDIoGRAM Consortium; DIAGRAM Consortium;
ICBP Consortium; MAGIC Consortium, Meschia JF, Nalls MA, Sharma P, Singleton
AB, Kamatani N, Zeller T, Burnier M, Attia J, Laan M, Klopp N, Hillege HL, Kloiber
S, Choi H, Pirastu M, Tore S, Probst-Hensch NM, Völzke H, Gudnason V, Parsa A,
Schmidt R, Whit�eld JB, Fornage M, Gasparini P, Siscovick DS, Pola²ek O, Campbell
H, Rudan I, Bouatia-Naji N, Metspalu A, Loos RJ, van Duijn CM, Borecki IB, Ferrucci
L, Gambaro G, Deary IJ, Wol�enbuttel BH, Chambers JC, März W, Pramstaller PP,
Snieder H, Gyllensten U, Wright AF, Navis G, Watkins H, Witteman JC, Sanna S, Schipf
S, Dunlop MG, Tönjes A, Ripatti S, Soranzo N, Toniolo D, Chasman DI, Raitakari O, Kao
WH, Ciullo M, Fox CS, Caul�eld M, Bochud M, Gieger C. Genome-wide association
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In this publication, the �rst authorship is shared between Anna Köttgen, myself, Alexan-
der Teumer, Veronique Vitart, and Jan Krumsiek. My detailed contribution in this
project was as follows:

Anna Köttgen, Christian Gieger, and I designed the analysis plan of this GWAS and
organized the participation of all discovery and replication studies. I was part of the
analysis group which discussed all aspects of the analysis in weekly telephone conferences.

At the study level, I performed the GWAS on serum urate and gout (not shown here)
within KORA F3 and KORA F4, as well as the X chromosome analysis, the conditional
analysis, and the risk score analysis (KORA F4, not shown here). Furthermore I per-
formed the GWAS on serum urate and the conditional analysis in the LURIC discovery
sample and the replication analysis in KORA S2.
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Within the analysis team we shared the work of quality control and plausibility checks
of all genome-wide scans. Afterwards I performed the meta-analysis for all overall and
sex-strati�ed serum urate GWAS in parallel with Anna Köttgen, including �ltering and
sensitivity analyses.

In the replication step, I designed the iPlexes for de novo genotyping together with
Norman Klopp and performed the quality control for all genotyped SNPs within the
studies genotyped at Helmholtz Zentrum München (Ogliastra Genetic Park and KORA
S2). In parallel with Anna Köttgen I performed the meta-analysis of all replication
studies, as well as the meta-analysis of discovery and replication step.

I planned and organized the X chromosome analysis within all studies, made the quality
control of all study speci�c result �les, and conducted the meta-analysis in parallel with
Claudia Hundertmark.

I had a major share in the development of the strategy in the systematic network ap-
proach. The network itself was created by Jan Krumsiek.

Furthermore, I looked up the associations with other traits, and the association between
detected SNPs and metabolites.

Last but not least, I contributed to the interpretation of the results and the paper writing
within the writing group.

In this thesis, I focus on my own contributions to all performed analyses within this huge
collaboration.
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5 Serum urate genetics in di�erent ancestries

Both GWAS, performed in ENGAGE and GUGC, as described in chapter 3 and chapter
4, included samples of European ancestry only. As the genetic structure varies between
di�erent ancestries, it is not possible to draw direct conclusions from �ndings in Eu-
ropeans to their impact in non-European ancestries. Within GUGC several data sets
of non-European studies were available and we compared the estimates of all detected
loci in Europeans to those of non-European ancestries (section 5.1). Furthermore, other
consortia performed serum urate GWAS within studies of other ancestries. An overview
is given in section 5.2 together with a comparison to the GUGC �ndings.

5.1 Comparison of di�erent ancestries within GUGC

Materials and Methods

Within GUGC, seven studies of non-European ancestry were available as listed in Table 9.
Detailed information about study design and genotyping is provided in supplementary
Tables S2 and S3.

Table 9: List of GUGC studies of non-European ancestry. Serum urate
levels are given in mg/dl.

Sample Females Age Serum urate
Study size % mean (sd) mean (sd)
LOLIPOP-IA317 Indian 2,139 0 48.3 (10.5) 5.6 (1.3)
LOLIPOP-IA610 Indian 5,589 18.4 56.9 (10.0) 5.6 (1.5)
LOLIPOP-IA-P Indian 612 0 51.1 (8.3) 5.5 (1.3)
ARIC African American 2,749 62.9 53.0 (5.8) 6.3 (1.7)
CARDIA African American 937 60.9 24.0 (3.8) 5.1 (1.3)
JHS African American 2,134 60.8 50.0 (12.1) 5.5 (1.7)
BioBank Japan 15,288 43.6 63.0 (11.7) 5.4 (1.5)

GWAS on serum urate levels were performed at the study level as described for the
European studies in section 4.1.2, and meta-analysed between three datasets of Indian
ancestry (LOLIPOP), totalling 8,340 individuals, and the three studies of African Amer-
ican ancestry (ARIC, CARDIA, and JHS), totalling 5,820 individuals. Furthermore,
15,288 individuals of the BioBank Japan were available. The index SNPs of all repli-
cated loci of the GUGC overall analysis in the European sample were looked up in the
Indian, African American, and Japanese association results. Some SNPs were not avail-
able in all ancestry panels due to low MAF or quality issues. Therefore the number of
performed tests was 74, leading to a Bonferroni corrected signi�cance level of 6.7×10−4.

Results and Discussion

Table 10 shows e�ect estimates together with p-values and allele frequencies in the sam-
ples of African American, Indian, and Japanese ancestry. Among 5,820 African Ameri-
cans, SLC2A9 (p=8.6×10−29) as well as SLC22A11 (p=2.2×10−4) showed a signi�cant
association, which had already been shown before9,73. Among 8,340 individuals of Indian
ancestry eight of the loci, namely, SLC2A9 (p=4.3×10−21), ABCG2 (p=2.1×10−16),
SLC22A11 (p=1.3×10−15), GCKR (p=1.7×10−10), SLC17A1 (p=5.0×10−8), RREB1

36



5 Serum urate genetics in di�erent ancestries

T
ab
le

10
:
A
ss
o
ci
a
ti
o
n
re
su
lt
s
b
e
tw
e
e
n
d
i�
e
re
n
t
a
n
ce
st
ri
e
s.

T
h
e
�
rs
t
al
le
le

is
th
e
e�
ec
t
al
le
le
.
T
h
e
gi
ve
n
ge
n
e
is
th
e
cl
os
es
t

ge
n
e
to

th
e
in
d
ex

S
N
P
.

A
fr
ic
a
n
A
m
e
r
ic
a
n

In
d
ia
n

J
a
p
a
n
e
s
e

S
N
P

C
h
r

P
o
s
it
io
n

G
e
n
e

A
ll
e
le
s

E
A
F

B
e
ta

p
-v
a
lu
e

E
A
F

B
e
ta

p
-v
a
lu
e

E
A
F

B
e
ta

p
-v
a
lu
e

rs
1
4
7
1
6
3
3

1
1
4
4
4
3
5
0
9
6

P
D
Z
K
1

A
/
C

0
.7
1

0
.0
4
1

1.
7×

1
0
−
1

0
.6
2

0
.0
7
6

3.
4
×
1
0−

4
0
.9
1

0
.0
5
4

5
.2
×
1
0
−
2

rs
1
1
2
6
4
3
4
1

1
1
5
3
4
1
8
1
1
7

T
R
IM

4
6

T
/
C

0
.2
5

-0
.0
3
7

3.
0×

1
0
−
1

0
.4
7

-0
.0
6
9

7.
4
×
1
0−

4
0
.7
6

-0
.0
7
4

9
.5
×
1
0
−
4

rs
1
2
6
0
3
2
6

2
2
7
5
8
4
4
4
4

G
C
K
R

T
/
C

0
.1
6

0
.0
1
4

7.
2×

1
0
−
1

0
.2
6

0
.1
4
0

1.
7
×
1
0−

1
0

0
.5
6

0
.0
4
3

6
.9
×
1
0
−
3

rs
1
7
0
5
0
2
7
2

2
1
2
1
0
2
2
9
1
0

IN
H
B
B

A
/
G

0
.1
0

0
.0
2
5

6
.4
×
1
0
−
1

0
.3
1

0
.0
6
3

6.
9×

1
0−

3
0
.4
9

0
.0
3
3

4
.4
×
1
0
−
2

rs
6
7
7
0
1
5
2

3
5
3
0
7
5
2
5
4

S
F
M
B
T
1

T
/
G

0
.7
0

-0
.0
4
7

1
.1
×
1
0
−
1

0
.5
6

-0
.0
3
9

4.
7×

1
0−

2
0
.4
6

-0
.0
1
6

3
.1
×
1
0
−
1

rs
1
2
4
9
8
7
4
2

4
9
5
5
3
1
5
0

S
L
C
2
A
9

A
/
G

0
.4
8

0
.2
9
8

8
.6
×
1
0
−
2
9

0
.7
3

0
.1
9
9

4.
3×

1
0−

2
1

0
.9
9

0
.2
3
0

7
.2
×
1
0
−
3

rs
2
2
3
1
1
4
2

4
8
9
2
7
1
3
4
7

A
B
C
G
2

T
/
G

N
A

N
A

N
A

0
.0
8

0
.3
9
1

2.
1×

1
0−

1
6

0
.3
0

0
.1
6
4

2.
8
×
1
0
−
2
1

rs
1
7
6
3
2
1
5
9

5
7
2
4
6
7
2
3
8

T
M
E
M
1
7
1

C
/
G

0
.1
9

-0
.0
1
8

6
.0
×
1
0
−
1

0
.3
4

-0
.0
7
8

3.
6×

1
0−

4
0
.2
8

-0
.0
4
5

1.
1
×
1
0
−
2

rs
6
7
5
2
0
9

6
7
0
4
7
0
8
3

R
R
E
B
1

T
/
C

0
.4
8

0
.0
5
7

4
.9
×
1
0
−
2

0
.5
4

0
.0
8
1

2.
5×

1
0−

5
0
.9
3

0
.0
1
8

5.
7
×
1
0
−
1

rs
1
1
6
5
1
5
1

6
2
5
9
2
9
5
9
5

S
L
C
1
7
A
1

T
/
G

0
.1
3

-0
.0
7
4

7
.0
×
1
0
−
2

0
.4
9

-0
.1
0
4

5.
0×

1
0−

8
0
.1
7

-0
.0
6
7

1.
5
×
1
0
−
3

rs
7
2
9
7
6
1

6
4
3
9
1
2
5
4
9

V
E
G
F
A

T
/
G

0
.1
2

-0
.0
2
9

4
.8
×
1
0
−
1

0
.2
3

0
.0
1
0

6.
8×

1
0−

1
0
.0
7

0
.0
0
2

9.
7
×
1
0
−
1

rs
1
1
7
8
9
7
7

7
7
2
4
9
4
9
8
5

B
A
Z
1
B

A
/
G

0
.7
3

-0
.0
0
4

9
.1
×
1
0
−
1

0
.8
7

0
.0
2
5

4.
0×

1
0−

1
0
.8
9

0
.0
5
8

2.
5
×
1
0
−
2

rs
1
0
4
8
0
3
0
0

7
1
5
1
0
3
6
9
3
8

P
R
K
A
G
2

T
/
C

0
.2
3

0
.0
3
0

4
.0
×
1
0
−
1

N
A

N
A

N
A

N
A

N
A

N
A

rs
1
7
7
8
6
7
4
4

8
2
3
8
3
2
9
5
1

S
T
C
1

A
/
G

0
.6
7

-0
.0
0
2

9
.6
×
1
0
−
1

0
.8
4

-0
.0
3
9

1.
4×

1
0−

1
0
.7
5

-0
.0
1
8

3
.2
×
1
0
−
1

rs
2
9
4
1
4
8
4

8
7
6
6
4
1
3
2
3

H
N
F
4
G

T
/
C

0
.7
1

0
.0
3
8

2
.2
×
1
0
−
1

0
.3
8

0
.0
2
9

1.
5×

1
0−

1
0
.4
3

0
.0
5
0

1.
8
×
1
0
−
3

rs
1
0
8
2
1
9
0
5

1
0

5
2
3
1
6
0
9
9

A
1
C
F

A
/
G

0
.2
8

0
.0
2
6

4
.2
×
1
0
−
1

0
.2
3

-0
.0
1
7

4.
8×

1
0−

1
0
.0
5

0
.0
7
5

4.
2
×
1
0
−
2

rs
1
1
7
1
6
1
4

1
0

6
1
1
3
9
5
4
4

S
L
C
1
6
A
9

T
/
C

0
.2
6

-0
.0
5
4

1
.5
×
1
0
−
1

0
.1
6

-0
.0
8
5

1.
7×

1
0−

3
0
.0
1

-0
.0
6
2

7.
2
×
1
0
−
1

rs
2
0
7
8
2
6
7

1
1

6
4
0
9
0
6
9
0

S
L
C
2
2
A
1
1

T
/
C

0
.1
5

-0
.1
5
0

2
.2
×
1
0
−
4

0
.4
1

-0
.1
5
3

1.
3×

1
0−

1
5

0
.0
1

0
.0
4
3

6.
4
×
1
0
−
1

rs
4
7
8
6
0
7

1
1

6
4
2
3
4
6
3
9

N
R
X
N
2

A
/
G

0
.4
5

-0
.0
8
9

1
.5
×
1
0
−
3

0
.8
7

-0
.0
1
2

6.
7×

1
0−

1
0
.7
8

-0
.1
1
2

4.
6
×
1
0
−
9

rs
3
7
4
1
4
1
4

1
2

5
6
1
3
0
3
1
6

IN
H
B
C

T
/
C

0
.1
0

-0
.1
5
9

1
.1
×
1
0
−
3

0
.1
0

-0
.1
0
7

1.
6×

1
0−

3
0
.0
8

-0
.0
2
0

4.
9
×
1
0
−
1

rs
6
5
3
1
7
8

1
2

1
1
0
4
9
2
1
3
9

A
T
X
N
2

T
/
C

0
.9
2

-0
.0
6
1

2
.6
×
1
0
−
1

N
A

N
A

N
A

1
.0
0

0
.7
6
0

2.
7
×
1
0
−
1

rs
1
3
9
4
1
2
5

1
5

7
3
9
4
6
0
3
8

U
B
E
2
Q
2

A
/
G

0
.3
5

-0
.0
1
2

7
.0
×
1
0
−
1

0
.2
6

0
.0
1
4

5.
3×

1
0−

1
0
.0
8

0
.0
2
1

4.
8
×
1
0
−
1

rs
6
5
9
8
5
4
1

1
5

9
7
0
8
8
6
5
8

IG
F
1
R

A
/
G

0
.5
2

0
.0
6
9

1
.4
×
1
0
−
2

0
.4
8

-0
.0
0
3

9.
0×

1
0−

1
0
.5
0

0
.0
3
3

3.
8
×
1
0
−
2

rs
7
1
9
3
7
7
8

1
6

6
8
1
2
1
3
9
1

N
F
A
T
5

T
/
C

0
.9
8

0
.0
4
9

5
.7
×
1
0
−
1

0
.8
8

-0
.0
6
9

8.
9×

1
0−

2
0
.9
0

-0
.0
5
3

4.
8
×
1
0
−
2

rs
7
1
8
8
4
4
5

1
6

7
8
2
9
2
4
8
8

M
A
F

A
/
G

0
.2
7

-0
.0
6
5

3
.4
×
1
0
−
2

0
.1
4

0
.0
5
1

8.
5×

1
0−

2
0
.3
1

-0
.0
6
0

4.
5
×
1
0
−
4

rs
7
2
2
4
6
1
0

1
7

5
0
7
1
9
7
8
7

H
L
F

A
/
C

0
.9
0

0
.0
5
6

2
.4
×
1
0
−
1

0
.6
9

-0
.0
0
6

7.
8×

1
0−

1
0
.8
2

-0
.0
0
4

8.
3
×
1
0
−
1

37



5 Serum urate genetics in di�erent ancestries

(p=2.5×10−5), PDZK1 (p=3.4×10−4), and TMEM171 (p=3.6×10−4), were signif-
icantly associated with serum urate. Among 15,288 samples of the BioBank Japan,
ABCG2 (p=2.8×10−21), NRXN2 (p=4.6×10−9), and MAF (p=4.5×10−4) showed a
signi�cant association. In the region of NRXN2/SLC22A12 the W258X mutation is
known to cause hypouricemia in Japanese42 and was seen genome-wide signi�cantly as-
sociated with serum urate in a Japanese GWAS before40. Also, ABCG2 and SLC2A9
were reported to be associated with serum urate in Japanese40. However, the index SNP
in SLC2A9 found in the European sample, rs12498742, showed a p-value of 7.2×10−3

in the analysed Japanese sample and did therefore not meet the signi�cance level of
6.7×10−4.

Although only few SNPs show a signi�cant association after correcting for multiple test-
ing, most e�ects are consistent in their direction with the estimates in the European
sample. A comparison between the e�ect estimates of all investigated SNPs between
all four ancestries, together with corresponding allele frequencies, is shown in Figure 12.
The �gure indicates that respective allele frequencies vary considerably between ances-
tries; nevertheless, the e�ect estimates in all four ancestries are of identical direction and
comparable in their e�ect size for the majority of SNPs. This might indicate that the
genetic loci identi�ed in Europeans do also play a role in other ancestries. Bigger sample
sizes will be needed to con�rm their impact in individuals of non-European ancestry.
One must also consider the possibility that other variants in the same region might show
stronger e�ects than the index SNPs discovered in Europeans.

38



5 Serum urate genetics in di�erent ancestries

-.4 -.2 0 .2 .4 0 .2 .4 .6 .8 1

SLC2A9, rs12498742

SLC17A1, rs1165151

SLC16A9, rs1171614

INHBC, rs3741414

TRIM46, rs11264341

BAZ1B, rs1178977

VEGFA, rs729761

TMEM171, rs17632159

MAF, rs7188445

STC1, rs17786744

PRKAG2, rs10480300

INHBB, rs17050272

ATXN2, rs653178

HLF, rs7224610

UBE2Q2, rs1394125

SFMBT1, rs6770152

NFAT5, rs7193778

IGF1R, rs6598541

HNF4G, rs2941484

NRXN2, rs478607

A1CF, rs10821905

PDZK1, rs1471633

RREB1, rs675209

GCKR, rs1260326

SLC22A11, rs2078267

ABCG2, rs2231142
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Figure 12: Serum urate SNP e�ects between ancestries comparing e�ect
sizes and allele frequencies between individuals of European ancestry (EA), African
American ancestry (AA), Indian ancestry (IA), and Japanese ancestry (JP) or-
dered by the e�ect size in Europeans. E�ects and frequencies are shown for the
minor allele in Europeans.
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5.2 Serum urate GWAS performed in non-Europeans

In 2012, the Asian Genetic Epidemiology Network (AGEN) consortium performed a
GWAS on serum urate levels as published by Okada et al.60 With a total sample
size of 33,074 individuals of Asian ancestry, they report variants in or near SLC2A9
(rs3775948, p=1.6×10−65), SLC22A12 (rs504915, p=3.3×10−63), ABCG2 (rs504915,
p=4.2×10−30), and MAF (rs889472, p=1.1×10−9) to be genome-wide signi�cantly as-
sociated with serum urate levels. As our work within GUGC was not published by
then, the MAF locus was a novel �nding. We performed a lookup of those four SNPs
in the GWAS results of the European GUGC analysis (see Supplementary Table 5 of
Okada et al.60) Not surprisingly, in the European sample, the index SNPs of the Asian
analysis also showed strong associations at SLC2A9 (rs3775948, p< 1×10−600), ABCG2
(rs2725220, p=7.6×10−3), and SLC22A11 (rs504915, p=1.6×10−23). However, despite
both scans showing a signal in the region of MAF, the index SNP in the Asian scan,
rs889472, is not signi�cantly associated in Europeans (p=0.23). Figure 13 shows the re-
sults of both consortia in the region. The association signal observed in the Asian sample
is about 100 kb closer to MAF than the signal observed in the European sample. The
two regions showing the signal in Europeans or Asians are separated by a recombination
hotspot.

A comparable situation is seen in the LRP2 region. In 2010, Kamatani et al.40 reported
rs2544390 in LRP2 to be genome-wide signi�cantly associated with serum urate in 8,868
Japanese individuals. Within the GUGC results, rs2544390 is not associated with serum
urate (p=0.218). Nevertheless, one other SNP within LRP2, rs3815574, shows an asso-
ciation at p=1.3×10−5 (β=0.0245 for the A allele with EAF= 50.3%). According to
the HapMap II CEU sample, rs2544390 and rs3815574 are not in LD (r2=0.002). The
association results for the whole LRP2 region within the analysis of Kamatani et al. as
well as within GUGC are shown in Figure 14. In the AGEN analysis, which also mainly
includes individuals of Japanese ancestry, the region does not reach genome-wide signi�-
cance though the sample size is much higher. The best SNP in this region within AGEN
is rs2673172 with p=8.1×10−5.

Furthermore, in 2011 Tin et al.73 performed a GWAS on serum urate levels in 5,820
African Americans. This is the same African American dataset as available in GUGC
and which was analysed in section 5.1. In their publication, they report rs9321453 close
to SGK1/SLC2A12 to be genome-wide signi�cantly associated with serum urate. A
lookup of the region in the GUGC results showed no evidence of a signal in Europeans
(see Figure 15).

The examples show that results of an association analysis conducted in one ancestry may
not directly be transferred to other ancestries as the genetic architecture varies between
ancestries. Nevertheless, association results are frequently found in the same genetic
region, even if the associated variants may not be the same but localized several base
pairs apart.
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Figure 13: MAF locus in Asians (top) and Europeans (bottom). The
regional association plot showing the results in Asians is taken from Okada et al.60

The regional association plot showing the results in Europeans is the result of the
GUGC analysis.
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D. Regional plots of loci associated with UA, ALP, AST, and CK.
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Figure 14: LRP2 locus in Asians (top) and Europeans (bottom). The
regional association plot showing the results in Asians is taken from Kamatani
et al.40 The regional association plot showing the results in Europeans is the result
of the GUGC analysis.
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Figure 15: SGK1/SLC2A12 locus in African Americans (top) and Eu-
ropeans (bottom). The regional association plot showing the results in African
Americans is taken from Tin et al.73 The regional association plot showing the
results in Europeans is the result of the GUGC analysis.
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6 Serum urate GGM

In chapter 3 to chapter 5 genetic components in the regulation of serum urate are in-
vestigated. Therefore, data of many studies organized in large consortia was combined.
In the present chapter, metabolic components in the regulation of serum urate shall be
investigated. Although the pathways in purine metabolism are well known (see Figure
1) not all underlying biological processes in the regulation of serum urate levels are com-
pletely understood. Therefore, we analysed the metabolic vicinity of serum urate within
a metabolite network. In contrast to the consortia e�ort of the GWAS analyses, this
analysis was conducted in one single study: the KORA F4 study.

6.1 Materials and methods

Study population

The KORA studies are a series of population-based studies from the South of Germany35

which started as part of the MONICA (monitoring trends and determinants in cardio-
vascular disease) project. The �rst KORA survey (KORA S1) was conducted in 1984/85
including 4,022 participants from the general population living in the region of Augs-
burg, followed by KORA S2 in 1989/90 (n=4,940), KORA S3 in 1994/95 (n=4,856),
and KORA S4 in 1999/2001 (n=4,261). Participants of KORA S3 were invited to the
follow-up examination KORA F3 in 2004/2005 (n=3,184), and KORA S4 was followed
up in 2006/08 by KORA F4 (n=3,080). Written informed consent has been given by
all participants and the study has been approved by the local ethics committee. Data of
KORA S2, KORA F3, KORA S4, and KORA F4 contributed to the analysis in chap-
ter 3 and/or chapter 4. Here, data of KORA F4 underlies the analysis, comprising 1,764
individuals (908 females and 856 males) in an age range of 32�81 years (mean: 60.86
years).

Metabolomics measurements

Metabolites were measured in serum by Metabolon Inc., as described in detail else-
where21,70. The panel includes 517 metabolites, spanning several metabolic classes
(amino acids, acylcarnitines, sphingomyelins, glycerophospholipids, carbohydrates, vi-
tamins, lipids, nucleotides, peptides, xenobiotics, and steroids). The quanti�ed metabo-
lites can be distinguished into chemically identi�ed metabolites, and unidenti�ed, or �un-
known� metabolites. Nine of those unknown metabolites have recently been identi�ed
by Krumsiek et al.43 Urate is one of the measured metabolites on the panel. Metabolite
levels are given as normalised ion counts.

Medication ascertainment

All KORA F4 participants were asked to bring their medications taken in the 7 days pre-
ceding the examination to the interview. Medication data was obtained online using the
IDOM program (online drug-database led medication assessment). The medications were
categorized according to the Anatomical Therapeutical Chemical (ATC) classi�cation in-
dex. Of the 1,764 individuals in this study 83 were treated by urate lowering medication.
All 83 were treated by allopurinol (uricostatic drug) and four of them additionally by
benzbromaron (uricosuric drug).
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Statistical analysis

After excluding metabolites with more than 20% missing values and samples with more
than 10% missing values, the metabolite data matrix contained 1,764 samples and 355
metabolites (245 known and 110 unknown). Missing values were imputed using the `mice'
R package75. All normalized ion counts were transformed by natural logarithm. For each
metabolite pair, partial correlations were calculated conditioning on age, sex, all other
metabolites, and 473 SNPs which showed a signi�cant association with at least one of
the 355 known or unknown metabolites44. Partial correlations between two metabolites
were considered to be signi�cant with a p-value below 4.61×10−5, which corresponds to
a signi�cance level of 0.05 and a correction for multiple testing by the false discovery rate
(FDR)4,5. The resulting network is referred to as a GGM (see section 1.4). Within the
GGM each node presents a metabolite and nodes are connected by an edge if their partial
correlation is signi�cant. The network was visualized in a 3-neighbourhood around urate,
which means that metabolites were assigned to the network graph if they were connected
to urate by a maximum of three edges. All metabolites within the 3-neighbourhood
were further tested for associations with sex and urate lowering medication by means of
a linear model which was additionally adjusted for age. E�ects were considered to be
signi�cant below a threshold of 6.9×10−4, which corresponds to a Bonferroni correction
for 72 independent tests at a signi�cance level of 0.05.

6.2 Results

By creating a 3-neighbourhood GGM around serum urate based on partial correlations,
36 metabolites were assigned to a network, containing 22 known as well as 14 unknown
metabolites. The network is visualized in Figure 16. Table 11 shows the corresponding
partial correlation coe�cients and p-values for each of the edges within the network.

Table 11: Partial correlation coe�cients in serum urate GGM for all sig-
ni�cant associations within a 3-neighbourhood of serum urate.

Metabolite 1 - Metabolite 2

Partial
correlation
coe�cient p-value

urate - histidine -0.228 1.90×10−12

urate - methionine 0.181 2.70×10−8

urate - N-[3-(2-oxopyrrolidin-1-yl)propyl]acetamide 0.142 1.30×10−5

urate - androstene disulfate 0.154 2.40×10−6

urate - X-11422 (xanthine) -0.220 1.10×10−11

histidine - methionine 0.189 6.10×10−9

methionine - tyrosine 0.140 1.70×10−5

androstene disulfate - dehydroepiandrosterone sulfate 0.352 1.30×10−28

androstene disulfate - epiandrosterone sulfate -0.173 1.00×10−7

androstene disulfate - X-18601 0.145 8.80×10−6

androstene disulfate - X-11440 0.350 2.60×10−28

androstene disulfate - X-11443 0.510 4.40×10−63

androstene disulfate - X-11450 0.156 1.60×10−6

X-11422 (xanthine) - hypoxanthine 0.164 4.30×10−7

X-11422 (xanthine) - xanthine 0.478 1.80×10−54

tyrosine - 2-hydroxybutyrate -0.138 2.40×10−5

tyrosine - 3-(4-hydroxyphenyl)lactate 0.322 5.50×10−24
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Metabolite 1 - Metabolite 2

Partial
correlation
coe�cient p-value

tyrosine - ca�eine 0.133 4.30×10−5

tyrosine - citrate -0.138 2.20×10−5

tyrosine - gamma-glutamyltyrosine 0.464 4.90×10−51

tyrosine - phenylalanine 0.199 9.20×10−10

tyrosine - tryptophan 0.271 3.30×10−17

dehydroepiandrosterone sulfate - epiandrosterone sulfate 0.294 4.40×10−20

dehydroepiandrosterone sulfate - X-18601 0.575 3.10×10−83

dehydroepiandrosterone sulfate - X-11315 0.140 1.80×10−5

dehydroepiandrosterone sulfate - X-11443 -0.469 2.50×10−52

dehydroepiandrosterone sulfate - X-11450 0.391 1.60×10−35

dehydroepiandrosterone sulfate - X-12063 -0.194 2.20×10−9

dehydroepiandrosterone sulfate - X-12844 0.138 2.10×10−5

epiandrosterone sulfate - androsterone sulfate 0.755 1.90×10−173

epiandrosterone sulfate - X-09789 0.133 4.50×10−5

epiandrosterone sulfate - X-11440 -0.173 1.10×10−7

epiandrosterone sulfate - X-11443 0.408 6.70×10−39

epiandrosterone sulfate - X-12844 0.156 1.60×10−6

X-18601 - taurolithocholate 3-sulfate -0.133 4.60×10−5

X-18601 - X-12063 0.209 1.20×10−10

X-18601 - X-12844 -0.162 6.90×10−7

X-11440 - X-11445 0.313 9.50×10−23

X-11440 - X-11450 0.150 3.80×10−6

X-11440 - X-11470 0.140 1.60×10−5

X-11440 - X-12844 0.193 2.60×10−9

X-11443 - X-11450 0.212 5.30×10−11

X-11443 - X-12844 -0.155 2.00×10−6

hypoxanthine - arginine 0.136 2.90×10−5

hypoxanthine - inosine 0.254 3.50×10−15

hypoxanthine - lactate 0.134 4.20×10−5

hypoxanthine - uridine 0.151 3.70×10−6

hypoxanthine - X-10810 0.164 4.70×10−7

hypoxanthine - X-12442 -0.136 3.10×10−5

2-hydroxybutyrate - lactate 0.160 9.50×10−7

3-(4-hydroxyphenyl)lactate - citrate 0.143 1.20×10−5

The general structure of the serum urate network clusters into three parts of connected
metabolites. The �rst cluster contains mainly nucleotides, namely xanthine, hypoxan-
thine, inosine, and uridine, as well as arginine, lactate, and three unknown metabolites.
It includes the well-known pathway from inosine via hypoxanthine and xanthine to urate
(see Figure 1), though xanthine is not directly connected to urate and hypoxanthine but
via the unknown metabolite X-11422. The central position of X-11422 in this well-known
pathway induces speculations about its chemical identity.

Following the ideas for unknown identi�cation in Krumsiek et al.43, we de�ned possible
candidates for X-11422 by considering its direct neighbours in the GGM, its mass, and
its fragmentation spectrum: alloxanthine, which is the active agent of allopurinol, or
xanthine itself displaying altered chromatographic characteristics. A co-elution spiking
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Figure 16: Serum urate GGM representing all signi�cant associations within
a 3-neighbourhood of serum urate. The thickness of each edge corresponds to
the strength of partial correlation. Positive associations are marked as black
lines whereas negative correlations are represented by red lines. Metabolites are
coloured according to their biological pathways.

experiment demonstrated that xanthine, not alloxanthine, co-eluted perfectly in this ma-
trix with the peak identi�ed as X-11422, and therefore X-11422 represented an alternate
measurement of xanthine.

A second cluster, in which several amino acids, namely histidine, methionine, tyrosine,
tryptophan, phenylalanine, 3-(4-hydroxyphenyl)lactate, and 2-hydroxybutyrate group to-
gether with citrate, ca�eine, and gamma-glutamyltyrosine, is connected via tyrosine and
methionine to urate. In a third cluster, the steroids androsterone sulfate, epiandrosterone
sulfate, and dehydroepiandrosterone sulfate are grouped with a number of unknown
metabolites and are connected to urate via androstene disulfate. Furthermore, N-[3-(2-
oxopyrrolidin-1-yl)propyl]acetamide is connected to urate without further connections to
other metabolites within our panel.
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Within our sample of 1,764 subjects, 83 were treated with urate lowering medication.
For all metabolites within the network we tested the in�uence of sex and urate lowering
medication within a linear model. Table 12 shows the corresponding e�ect estimates.
25 of the 36 metabolites show strong di�erences between men and women (7.5×10−5

≥ p ≥ 8.1×10−196). Nine of the metabolites show a signi�cant in�uence of urate lower-
ing medication. According to our data, the medication shows the strongest in�uence on
the alternate measurement of xanthine X-11422 (p=7.1×10−157) and the original mea-
surement of xanthine (p=1.1×10−85). Furthermore, the medication shows a signi�cant
in�uence on N-[3-(2-oxopyrrolidin-1-yl)propyl]acetamide (p= 3.5×10−12), phenylalanine
(p=1.9×10−7), ca�eine (p=2.2×10−7), 3-(4-hydroxyphenyl)lactate (p=4.1×10−6), lac-
tate (p=1.2×10−4), 2-hydroxybutyrate (p = 1.7×10−4), and the unknown metabolite
X-09789 (p=1.4×10−5). Urate levels themselves do not show di�erences between medi-
cated and medication-free individuals (p=0.18) and also for hypoxanthine the in�uence
of medication is much weaker than on xanthine and not signi�cant after correcting for
multiple testing (p=2.7×10−3). Figure 17 visualizes the medication and sex e�ects for
urate, both xanthine measurements, and hypoxanthine.
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Figure 17: Medication and sex e�ects on urate, xanthine, and hypoxan-
thine: Levels of urate, xanthine, and hypoxanthine strati�ed by sex and med-
ication; F=medication-free females (n=891), FM=medicated females (n=17),
M=medication-free males (n=790), and MM=medicated males (n=66).
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Table 12: Medication and sex e�ects in serum urate GGM. In�uence
of sex and urate lowering medication on levels of all metabolites within the 3-
neighbourhood of serum urate. The linear model was additionally adjusted for
age (e�ects not shown). For the sex e�ect, men were coded �0�, whereas women
were coded �1�. Medication intake was coded with �1� compared to no medication
intake �0�.

Sex Medication
Metabolite Beta p-value Beta p-value
2-hydroxybutyrate -0.108 1.20×10−8 0.169 1.70×10−4

3-(4-hydroxyphenyl)lactate -0.340 1.80×10−90 0.175 4.10×10−6

androstene disulfate -0.817 8.80×10−103 0.226 7.40×10−3

androsterone sulfate -0.360 7.90×10−23 -0.092 2.80×10−1

arginine 0.019 1.00×10−1 -0.056 4.00×10−2

ca�eine -0.074 1.30×10−1 0.605 2.20×10−7

citrate 0.029 2.10×10−2 0.055 7.30×10−2

dehydroepiandrosterone sulfate -0.436 1.90×10−49 -0.195 4.10×10−3

epiandrosterone sulfate -0.518 6.30×10−59 -0.141 5.40×10−2

gamma-glutamyltyrosine -0.091 2.70×10−16 0.076 3.50×10−3

histidine 0.032 5.30×10−7 -0.006 6.80×10−1

hypoxanthine 0.056 7.50×10−5 0.100 2.70×10−3

inosine 0.226 4.70×10−9 -0.034 7.10×10−1

lactate -0.072 4.80×10−10 0.105 1.20×10−4

methionine -0.110 3.90×10−52 -0.054 1.40×10−3

N-[3-(2-oxopyrrolidin-1-yl)
propyl]acetamide -0.026 1.10×10−1 0.275 3.50×10−12

phenylalanine -0.056 1.70×10−19 0.076 1.90×10−7

taurolithocholate 3-sulfate -0.002 9.60×10−1 0.249 2.90×10−3

tryptophan -0.080 3.00×10−32 0.036 2.20×10−2

tyrosine -0.060 3.40×10−12 0.041 4.10×10−2

urate -0.206 1.20×10−112 -0.027 1.80×10−1

uridine 0.009 3.40×10−1 -0.054 2.00×10−2

xanthine 0.010 4.20×10−1 0.635 1.10×10−85

X-09789 -0.089 4.90×10−3 0.328 1.40×10−5

X-10810 -0.061 3.60×10−3 -0.058 2.40×10−1

X-11315 0.151 1.40×10−13 -0.048 3.20×10−1

X-11422 (xanthine) 0.059 3.70×10−6 0.896 7.10×10−157

X-11440 -0.600 3.00×10−90 0.069 3.00×10−1

X-11443 -1.247 8.10×10−196 0.166 5.60×10−2

X-11445 -0.081 1.30×10−2 -0.019 8.10×10−1

X-11450 -0.512 1.60×10−88 0.049 4.00×10−1

X-11470 -0.158 1.30×10−17 -0.102 1.90×10−2

X-12063 -0.207 1.10×10−12 0.207 2.70×10−3

X-12442 0.126 8.00×10−8 0.093 9.20×10−2

X-12844 0.030 1.00×10−1 -0.087 4.40×10−2

X-18601 -0.550 2.10×10−71 -0.134 5.60×10−2
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6.3 Discussion

The underlying functional biological processes in the regulation of serum urate are still
not completely understood. They are assumed to result from a complex interplay between
genetic, environmental, and lifestyle factors. The detection and functional characteriza-
tion of such pathways is crucial to improve the management and treatment of patients
with hyperuricemia and gout. In previous studies, GGMs have been demonstrated to
reconstruct metabolic pathways from large-scale metabolomics data43,44. In order to
describe the metabolic vicinity of serum urate, we analysed 355 metabolites in 1,764
individuals of the KORA F4 study and constructed a data-driven metabolite network
around serum urate using GGMs. This hypothesis-free approach highlights pathways
that may be important in the regulation of serum urate concentrations.

Not surprisingly, serum urate was linked to purine metabolism. The conversion of hypox-
anthine to xanthine and xanthine to urate (see Figure 1) is catalysed by the rate-limiting
enzyme xanthine oxidase, the only enzyme capable of catalysing the formation of urate
in human62. The complex mechanism by which xanthine oxidase catalyses hypoxanthine
and xanthine conversion has been described previously6,33. Xanthine oxidase is signi�-
cantly elevated in a variety of cardiovascular conditions such as coronary artery disease
and heart failure27. There is a large variability in human xanthine oxidase expression,
which can be up to three-fold and on average 20% higher in men than in women29.
Although basal expression of xanthine oxidase is low in humans, hypoxias, IL-1, IL-6,
TNF-α, lipo-polysaccharides as well as steroid treatment have been shown to up-regulate
transcription6.

The second cluster correlated with serum urate is composed of several essential amino
acids. Interestingly, histidine, tryptophan, and tyrosine are amino acids which are es-
pecially sensitive to hydroxyl radical exposure13. The amino acid cluster is connected
via methionine and histidine to serum urate in our network. Methionine enriched diet is
known to decrease urate levels in chickens and ducks, whereas only a few small studies
have analysed the e�ect in humans82,86. Furthermore, methionine can be demethylated
to homocysteine. Elevated homocysteine levels, as well as elevated urate levels, have
been shown to be a risk factor for atherosclerosis, coronary heart disease, and chronic
kidney disease24,37,50. Signi�cant associations between serum urate and homocysteine
have been shown in plasma and serum51,52.

The third cluster correlated with serum urate is composed of steroids and several un-
knowns. The di�erent concentrations of serum urate in both sexes and the higher inci-
dence of gout in men compared to women, suggest a hormonal in�uence on the patho-
genesis of gout28. Excretion of urinary dehydroepiandrosterone and androsterone has
been reported to be signi�cantly lower in subjects with gout68. A small study inves-
tigating the hormonal urinary excretion reported that patients previously treated with
allopurinol showed slightly higher values of androsterone and dehydroepiandrosterone,
and slightly lower values of 11-hydroxyandrosterone in comparison to normal subjects,
suggesting di�erent hormonal patterns between individuals with and without gout28.

Furthermore urate is connected to N-[3-(2-oxopyrrolidin-1-yl)propyl]acetamide (acisoga),
a metabolite of spermidine. Our metabolite network does not provide the �rst link be-
tween urate and spermidine. Spermidine and spermine were previously found to bind the
organic anion transporter OAT1 in mice, and to be putative novel endogenous substrates
of OAT11 which is also known to be a urate transporter38.

Within our analysed dataset, not only serum urate shows di�erences between men and
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women, but 25 out of 36 metabolites, which underlines the important sex e�ect on
metabolite pro�les reported before56.

Allopurinol intake inhibits the enzyme xanthine oxidase which is responsible for the suc-
cessive oxidation of hypoxanthine to xanthine and xanthine to urate. While hypoxanthine
is not signi�cantly elevated by allopurinol intake in our data, xanthine displays di�erential
concentration levels between medicated and medication-free individuals. As expected,
urate levels of medicated individuals lie in a normal range compared to untreated indi-
viduals (see Figure 17). Furthermore, our data showed an e�ect of allopurinol intake on
ca�eine levels. Several epidemiological studies found that co�ee consumption is inversely
associated with serum urate levels11 and an in�uence of allopurinol medication on caf-
feine has been described7,25. The strongest in�uence of allopurinol intake was observed
on the unknown metabolite X-11422, which we could identify to be xanthine in spiking ex-
periments. While the association between allopurinol intake and xanthine was expected,
we additionally observed in�uence on phenylalanine, 3-(4-hydroxyphenyl)lactate, lactate,
and 2-hydroxybutyrate.

In the present study, data-driven GGMs on metabolomics pro�les were used to re-
construct pathways of biochemically related metabolites in a hypothesis-free approach.
Three main clusters were grouped around urate, including purines, amino acids, and
steroids and strong sex-speci�c di�erences were observed for 25 out of 36 metabolites.
Furthermore, we observed an e�ect of allopurinol intake not only on purine metabolism
but on metabolites in each of the three clusters.
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7 Conclusion and outlook

The present thesis includes two large GWAS on serum urate levels in order to detect
genes that are involved in the regulation of serum urate levels as well as a metabolite
network approach to describe the metabolic vicinity of serum urate. Both ideas are
hypothesis-free, thus all results are data driven only. Both the GWAS approach and
the metabolite network approach provide new insight into additional pathways that are
involved in the regulation of serum urate levels. Those may point towards novel potential
targets for pharmacological intervention for the treatment or prevention of hyperuricemia
and related diseases as gout, cardiovascular disease, and type 2 diabetes.

In the �eld of GWAS, the detection of genes gets the more successful, the more the
sample size and therefore power can be increased. Before the meta-analysis performed
within ENGAGE, only the three genes SLC2A9, ABCG2, and SLC17A3 were known
to be associated with serum urate. By combining the data of many European studies
within the ENGAGE and GUGC consortia, we could identify a total of 28 genes playing
a role in the regulation of serum urate levels. Table 13 and Figure 18 illustrate how
the increasing sample size increases the number of �ndings. Table 13 compares sample
sizes, p-values for SLC2A9, and number of detected loci within the published serum urate
GWAS conducted in individuals of European ancestry. Figure 18 shows Manhattan plots
of serum urate GWAS in KORA F3, KORA F3 and KORA F4 combined, the combination
of all ENGAGE studies, as well as the combination of all GUGC studies.

Table 13: Comparison of sample sizes and �ndings between serum urate
GWAS in samples of European ancestry indicating how the number of �ndings
increases with increasing sample size.

Number of
Sample p-value genome-wide

Study Publication size SLC2A9 signi�cant loci
KORA F3 Döring et al. (2008)18 1,644 1.6×10−12 1
ENGAGE Kolz et al. (2009)41 28,141 5.2×10−201 11
CHARGE Yang et al. (2010)85 28,283 1.5×10−242 8
GUGC Köttgen et al. (2012)45 110,347 < 1×10−700 26

Figure 18 as well as Table 13 prove that �sample size matters�. Although the combination
of multiple studies requires an extended quality control and is accompanied by increas-
ing heterogeneity, the increased sample size increases power and a the-bigger-the-better
practice in the �eld of GWAS is justi�ed.

There is a lot of discussion going on about the �missing heritability�, as most GWAS
only explain a small proportion of the estimated heritability of the respective phenotype.
In the present case we only explain about 7.0% of the variance of serum urate levels,
whereas the heritability of serum urate levels is estimated to be about 40�70%58,78,84.
Further increasing the sample size could be one strategy to detect additional variants
playing a role. Lately, several consortia started to combine data of di�erent ancestries in
trans-ethnic GWAS to increase sample sizes. Even though one extremely increases the
heterogeneity in this approach, the increase in power may still lead to additional �ndings.

On the other hand, the GWAS approach focuses on the analysis of common variants as
most rare variants are not tagged by GWAS chips. However, common variants are only
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Figure 18: Manhattan plots with increasing power showing serum urate
GWAS in A) KORA F3, B) the meta-analysis of KORA F3 and KORA F4, C)
the meta-analysis of all ENGAGE studies as presented in chapter 3, and D) the
meta-analysis of all GUGC discovery studies as presented in chapter 4. For A) a
MAF �lter of 5% was applied. C) and D) are truncated at 1x10−30.

�the peak of an iceberg� in the diversity of the human genome and rare variants might
have a major impact and might rather be functional. In the case of serum urate, the
whole-genome sequencing analysis conducted by Sulem et al.71 demonstrates how the
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GWAS approach fails to detect regions where rare variants are of in�uence (see Figure
10).

Imputation with the lately available 1000g reference panel (http://www.1000genomes.
org) will possibly be able to cover a larger number of rare variants. Within GUGC a meta-
analysis of 1000g imputed GWAS is planned, as well as a meta-analysis of Exomechip
based GWAS.

Future investigations planned within GUGC include an additional characterisation of the
genetic loci by Mendelian randomisation projects and the translation of the �ndings in
terms of direct impact on gout. Furthermore, gene-gene or gene-environment interaction
analysis, for example with urate lowering medication, might provide additional insights.

In the quickly developing �omics� �eld systems epidemiology approaches provide possi-
bilities to incorporate information at multiple levels: genomics, epigenomics, transcrip-
tomics, proteomics, metabolomics, microbiomics. This thesis focused on genomics and
metabolomics of serum urate. The KORA sudies provide a broad data basis for fu-
ture projects, especially concerning epigenomics and transcriptomics. The incorporation
of multiple levels will further improve our understanding of the biological mechanisms
underlying the regulation of serum urate levels in humans.
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Table S2: Study descriptions of GUGC studies.
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Figure S1: Regional association plots of 44 GUGC loci showing −log10
p-values for all SNPs ordered by their chromosomal position within all regions
reaching p-values < 1×10−6 in the discovery screen of the overall or sex-strati�ed
serum urate GWAS as well as the candidate urate transporter gene region. For
sex-speci�c loci, −log10 p-value correspond to the respective sex-strati�ed urate
GWAS. Each SNP is coloured according to its correlation with the index SNP
within the region as speci�ed in the colour scheme. Correlation structures corre-
spond to HapMap II CEU r28. Gray colour indicates unknown correlation. Data
point symbols correspond to nonsense, non-synonymous, coding, UTR, splice vari-
ants, transcription factor binding sites and multi-species conservation according to
dbSNP or the 1000 Genomes Project (August 2009 release). Positions are given
for NCBI build 36. Plots are taken from Köttgen et al.45.
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