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Abstract   V

ABSTRACT 
 

Among the large family of terpenoid natural products, sesterterpenoids form a small subclass. 

Nevertheless, due to the diversity of cyclization modes and oxidation processes in biosynthesis, a 

broad range of unique structures has been isolated within the last 50 years. Not surprisingly, these 

structurally intriguing frameworks have captured the attention of synthetic chemists, resulting is 

several elegant approaches (Chapter 1). One small family of sesterterpenoids represented by 

astellatol (I), YW 3548 (II), and retigeranic acid B (III, Scheme A) comprises a trans-hydrindane 

portion that is substituted with an angular methyl group and an iso-propyl residue. Although the 

daunting carbon backbones of the 15 members of this subclass and their interesting biological 

properties render these natural products attractive targets for total synthesis, only few reports have 

been reported in the literature. In total, only four successful total syntheses of retigeranic acid A, the 

C-18 epimer of retigeranic acid B (III), and six approaches toward this family of sesterterpenoids have 

been published. 
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Scheme A Divergent synthesis of three building blocks suitable for trans-hydrindane iso-propyl sesterterpenoids. 

 
In the course of this Ph.D. thesis, we envisioned accessing the structurally unique architectures of 

trans-hydrindane iso-propyl sesterterpenoids in order to evaluate their biological properties, gain 

insight into their biogenesis and confirm their relative and absolute configuration. Moreover, we 

aimed to access a total of eight natural products by a divergent approach utilizing the two versatile 

building blocks IV and VI. Chapter 2 describes our successful efforts in developing a practical and 

scalable route to the trans-hydrindanes IV and VI, starting from enantiopure diketone V. In these 

investigations, the focus was laid on the diastereoselective installation of the sterically congested 

trans-hydrindane portion. Moreover, we disclose the surprising outcome of a seemingly straight-

forward hydrogenation. This result culminated in an efficient synthesis of a third versatile building 

block VII, which was an important intermediate in Corey’s and Hudlicky’s total syntheses of 

retigeranic acid A. 
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Scheme B Retrosynthetic analysis of astellatol (I): key intermediates and model system X. 
 
In chapter 3, our current progress toward the total synthesis of the unique pentacarbocyclic backbone 

of astellatol (I) is described. We envisaged constructing this unique pentacarbocyclic architecture I by 

a biomimetic cationic cascade from tricycle VIII (Scheme B). The first part of this chapter details our 

strategy for installing the C-9 and C-10 stereogenic centers in alkene IX starting from building 

block IV. In addition, we also report our progress toward the synthesis of the strained 11-membered 

ring following three different routes, carried out on a model system X. Ultimately, preliminary results 

of a strategy to prepare the carbon framework of astellatol (I) via a [2+2]-cycloaddition are presented. 
 

 
Scheme C Retrosynthetic analysis of 18-epi-nitiol (XI).  
 
Chapter 4 features the synthetic program directed toward a synthesis of nitiol and its C-18 epimer XI. 

We envisaged accessing tricycle XI via a dienyne metathesis, the precursor of which should be 

merged from two building blocks XII and XIII by a Myers alkylation (Scheme C). This chapter 

describes a successful preparation of western portion XII and our progress toward the eastern 

fragment XIII, starting from trans-hydrindane building block VII. 
 

 
Scheme D Progress toward YW 3548 (II): efficient enantioselective synthesis of enol triflate XXI. 
 
Finally, chapter 5 outlines our progress en route to the potent GPI anchor inhibitor YW 3548 (II). 

Thereby, an asymmetric synthesis of a suitable western fragment enol triflate XIV was focused on, 

starting from simple building blocks XV, XVI and XVII (Scheme D). In addition, the ability of enol 

triflate XIV to engage in Pd-catalyzed cross coupling reactions is disclosed. 
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1 INTRODUCTION 
 

1.1 Terpenoids: Biosynthetic Origin and Inspiration for Chemists 
 

With over 35.000 members,[1] terpenoids* constitute the largest class of natural products and their 

physical and biological properties have been exploited by mankind throughout history. In the modern 

world, these small molecules have found a variety of applications ranging from odors for perfumery 

and cosmetic products to therapeutic agents.[2] While low-molecular weight molecules like 

citronellol (2) or menthol (3) are utilized in industry as fragrances,[3] several terpenoid natural products 

are used for the treatment of human diseases,[4] exemplified by the antimalarial compound 

artemisinin (4)[5] and the anticancer drug paclitaxel (5, Figure 1.1).[6] 
 

 
Figure 1.1 Molecular structures of isoprene (1), terpenoid odorants and terpenoid therapeutics for treating human diseases. 
 
Not surprisingly, the importance of these natural products has evoked a myriad of studies to gain 

insight into their biosynthesis, biological properties and function in Nature.[7] Early examples of these 

investigations were described in the pioneering works of Wallach[8] and Ruzicka,[9] who formulated 

the ‘isoprene rule’ stating that all terpenoids arise from a varying number of a fundamental C5 building 

block, isoprene (1). Upon further investigations propelled by the impressive contributions of Bloch[10] 

and Lynen,[11] it was established that isoprene (1) itself is not involved in the biogenesis of terpenoids. 

Instead, Nature employs two activated forms of isoprene (1) as key building blocks, namely 

isopentenyl pyrophosphate (IPP, 13) and dimethylallyl pyrophosphate (DMAPP, 14). Both 

compounds 13 and 14 in turn arise from two different pathways.[12] In the mevalonate pathway,[13] 

mevalonic acid (MVA, 11) is the key intermediate for the production of IPP (13) and DMAPP (14). In 

the process, a Claisen condensation of the enolate of acetyl-SCoA (6) with an enzyme-bound acetyl 

group (7) initially forms diketone 8 (Scheme 1.1) that in turn undergoes a stereospecific aldol reaction 

of the enolate derived from an enzyme-bound acetyl group (7). After hydrolysis of the attached 

enzyme, the thioester functionality of the thus generated acid 3-hydroxy-3-methylglutaryl-CoA (9) 

gets reduced to an aldehyde in mevaldic acid (10) by NADPH.  

                                                 
*  According to IUPAC, the term ‘terpenes’ comprises all pure hydrocarbons in this class of natural products, whereas 

‘terpenoids’ refers to further functionalized molecules, which are e.g. oxygenated. However, both terms are often used as 
synonyms. In this Ph.D. thesis only the term terpenoid(s) will be employed. 
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Scheme 1.1 Formation of IPP (13) and DMAPP (14) via the mevalonate pathway. 
 
Another NADPH mediated reduction leads to the formation of MVA (11), which is then transformed 

into IPP (13) commencing with the sequential phosphorylation of the primary alcohol to generate 

pyrophosphate 12. In the following enzyme mediated transformation, an adenosine triphosphate (ATP) 

assisted decarboxylation/elimination reaction ultimately furnishes IPP (13) that is transformed into 

DMAPP (14) by IPP isomerase via a stereospecific allylic isomerisation reaction removing the pro-R 

proton.  

The second, non-mevalonate pathway, also known as methylerythritol phosphate (MEP) pathway, 

involves intermediates from the glycolytic biosynthesis.[14] Reaction of pyruvic acid (15) with thiamin 

pyrophosphate (TPP) provides enamine 16 with loss of CO2. Subsequently, the latter intermediate 16 

nucleophilically attacks glyceraldehyde 3-phosphate (17) leading to the deoxy-xylulose 

derivative 18 (Scheme 1.2). 
 

 
Scheme 1.2 Biosynthetic formation of IPP (13) and DMAPP (14) via the MEP pathway.  
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This β-hydroxy ketone 18 undergoes a retro-aldol/aldol cascade in the presence of a reductoisomerase 

to form aldehyde 19, which is reduced to MEP (20) by NADPH in the same sequence. In the following 

transformations, the C-1 alcohol of the C5 compound 20 reacts with cytidine triphosphate (CTP) to 

form cytidine diphosphate (CDP) derivative 21. After phosphorylation of the tertiary alcohol, the 

resulting intermediate 22 produces cyclic phosphate 23 via an intramolecular hydrolysis that 

concomitantly releases cytidine monophosphate (CMP). Whereas these steps are well understood, the 

following processes still require investigations to clarify the mechanisms. However, it has been shown 

that the cyclic phosphate 23 is enzymatically transformed to primary alcohol 24, which is converted 

into both IPP (13) and DMAPP (14) by reductive processes, with a 5:1 to 4:1 preference for 

IPP (13).[12] 

 
Scheme 1.3 (a) Biosynthetic formation of geranyl pyrophosphate (27), the biosynthetic origin for all monoterpenoids. 
(b) Molecular structures of the mono- and bicarbocyclic monoterpenoids. 
 
In the course of the biogenesis of complex molecules, DMAPP (14) forms allylic cation 25, which is 

nucleophilically attacked by IPP (13, Scheme 1.3).[12] Subsequent stereospecific loss of the pro-R 

proton from the intermediate tertiary carbocation 26 generates geranyl pyrophosphate (27). This C10 

building block 27 is the basis of the formation of monoterpenoids via cationic cascades in the presence 

of terpenecyclases and subsequent oxidations, forming e.g. monocarbocyclic compounds like 

limonene (28) and carvone (29) or bicycles like camphor (30) and α-pinene (31).[15] 

 

 
Scheme 1.4 Biosynthetic production of farnesyl pyrophosphate (32), geranylgeranyl pyrophosphate (33) and geranylfarnesyl 
pyrophosphate (34), the precursors for sesquiterpenoids, diterpenoids and sesterterpenoids, respectively. 
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Following the same mechanism, another C5 chain elongation of geranyl pyrophosphate (27) with 

IPP (13) produces farnesyl pyrophosphate (32), while two elongations give rise to geranylgeranyl 

pyrophosphate (33, Scheme 1.4). Analogously to the biosynthesis of monoterpenoids, these two 

building blocks provide the basis of the generation of sesquiterpenoids and diterpenoids,[16] 

respectively. A fourth chain elongation with IPP (13) results in the formation of the C25 building block 

geranylfarnesyl pyrophosphate (34) that is the biosynthetic precursor for all members of the 

sesterterpenoid subclass (cf. Chapter 1.2). 

In contrast to the previously discussed C10−C25 terpenoids, the precursor for triterpenoids is not formed 

via an IPP (13) homologation, but by a complex dimerization process of two molecules of farnesyl 

pyrophosphate (32) leading to squalene (35, Scheme 1.5).[12] Further transformations, e.g. a selective 

epoxidation to 2,3-oxidosqualene (not shown), then set the stage for cationic epoxide opening 

cascades, resulting in the formation of penta- and tetracarbocyclic triterpenoids such as lanosterol (36). 

The latter compound 36 and other structurally related triterpenoids serve as precursors for steroids, i.e. 

cholesterol (39), through biosynthetic degradation under the loss of carbon atoms. Thus, from a more 

general perspective, steroids are classified as nor-triterpenoids. 
 

 
Scheme 1.5 Molecular structures of squalene (35) and (Z)-phytoene (37): biosynthetic precursors for tri- and tetraterpenoids 
like lanosterol (36), cholesterol (39) and β-carotene (38). 
 
Analogously to triterpenoids, tetraterpenoids are usually generated from C2 symmetric compounds like 

(Z)-phytoene (37), which in turn are formed through dimerization processes from geranylgeranyl 

pyrophosphate (34). The structural diversity of this subclass of terpenoids is mainly limited to the 

carotenoids[17] such as β-carotene (38) that play an important role in photosynthesis and in the vision 

process, and show anti-oxidant properties. Apart from these ‘classical’ subgroups, higher terpenoids 

and meroterpenoids are produced in Nature.[12] While the first subclass is rather rare, meroterpenoids 

are abundant and comprise, in addition to terpenoidal parts, structural elements in the carbon skeleton, 

which are derived from other sources, e.g. the acetate or the shikimate pathways.  
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From a synthetic point of view, the structural diversity of terpenoids, exhibiting a plethora of unique 

and intriguing architectures, combined with their broad range of biological activities has attracted 

synthetic chemists since the inception of organic chemistry.[18] Whereas a major goal of these efforts 

was certainly the production of substantial amounts of material for the evaluation of biological and/or 

therapeutic properties due to the small quantities being isolated, these programs have expanded the 

knowledge of chemical synthesis in the broadest sense. This is based on the fact that the pursued 

avenues often went hand in hand with the discovery of unknown reactivity (e.g. the Wagner-Meerwein 

rearrangement),[19] the development of new synthetic methodologies, their application in complex 

settings and mechanistic studies. In addition, important chemical principles such as retrosynthetic[20] 

and conformational[21] analysis were applied in early studies toward terpenoids.  

 
Figure 1.2 Molecular structures of selected bioactive terpenoids, recently accessed by total synthesis. 
 
Historically, the total synthesis of terpenoids dates back to the early 1900’s, at which time Komppa 

succeeded in the first industrial preparation of camphor (30).[22] In the further evolution of synthesis, 

the bioactivity of steroids and their application as drugs initiated extensive explorations towards an 

artificial production, accompanied by the discovery and application of synthetic transformations. For 

instance, these investigations involved an early example of a Diels-Alder reaction in a total synthesis 

by Woodward[23] and pioneering reports on (enantioselective) organocatalysis in the synthesis of 

Wieland-Miescher-ketone[24] and the Eder-Sauer-Wiechert-Hajos-Parrish ketone (cf. Chapter 2).[25] 

With the advent of modern analytical methods and a continuously expanding repertoire of synthetic 

tools, terpenoids of increasingly complexity were accessed over the last decades,[26] exemplified by the 

total syntheses of maoecrystal V (40, Yang, 2010),[27] yuanhuapin analog 41 (Wender, 2011),[28] and 

solanoeclepin A (42, Tanino, 2011).[29] Whereas the molecules depicted in Figure 1.2 are formed via 

diterpenoid or triterpenoid pathways, the subclass of sesterterpenoids with its C25 backbone also 

provides a high diversity of unique structures and determined biological profiles, rendering them 

attractive targets for total synthesis. Further information on this beautiful class of natural products will 

be provided in the next subchapter, thereby focusing on synthetic strategies and interesting key steps 

en route to complex molecules. 
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1.2 Sesterterpenoids: Challenging Targets for Total Synthesis 
 

Among the terpenoid family, sesterterpenoids form a small subclass with 965 isolated members[30a] 

that have been isolated from a variety of organisms, including fungi, lichens, plants, and marine 

sources such as sponges.[30−33] Their name is derived from the Latin word sester, meaning ‘two and a 

half’, which was also incorporated into sestertius, an ancient Roman coin. Sester is thus referring to 

the old nomenclature that terpenoids are assembled from C10 units. As discussed, the biosynthetic 

origin is based on IPP (13) and DMAPP (14) which generate the pentaprenyl C25 building block 

farnesylgeranyl pyrophosphate (34).[12] Subsequent cyclization via cationic intermediates, hydride- and 

methyl-shifts, late-stage oxidations and eventually loss of carbon atoms lead to a variety of structural 

architectures. This process will be discussed for the biosynthesis of astellatol (103, Chapter 3.1) in 

detail. Due to the broad range of structural features, a further classification into linear, mono-, di-, tri-, 

tetra- and pentacarbocyclic sesterterpenoids is common. In addition, three major subclasses have been 

found within the diversity of carbon backbones that were named as ophiobolins, cheilantanes and 

scalaranes, respectively (Figure 1.3). 
 

 

Figure 1.3 (a) Carbon scaffolds of the sesterterpenoid families named ophiobolins, cheilanthanes and scalaranes. 
(b) Molecular and X-ray structure of (+)-ophiobolin A (43, hydrogen atoms omitted for clarity). 
 

One member of the ophiobolins called (+)-ophiobolin A (43) was the first sesterterpenoid to be 

isolated in 1958 as a toxic agent to rice seedlings[34] and its structure was deduced from NMR studies 

and a X-ray structure analysis of a bromo-methoxy derivative (not shown).[35] Quite recently, the X-

ray structure of the ‘free’ (+)-ophiobolin A (43) was reported too.[36] In the following decades, more 

than 20 members of the tricarbocyclic ophiobolin family have been isolated, most of them exhibiting 

biological activities as inhibitors against fungi and bacteria as well as cytotoxins against cancer 

cells.[37] Another subclass of tricarbocyclic sesterterpenoids, the cheilanthanes, comprises about 

50 members that have been mostly isolated during the 1990’s from marine sources. Their occurrence, 

their broad range of biological activities and successful syntheses have been reviewed recently.[38] A 
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structurally related sesterterpenoid subclass is called the scalaranes. In contrast to the cheilathanes, 

these natural products bear an additional ring and thus contain a tetracarbocyclic carbon backbone. 

Similarly however, most scalarane compounds have been found in marine sources like sponges and 

reveal a promising spectrum of potential applications due to observed anti-feedant properties or strong 

cytotoxicity.[39] 

Despite the beautiful and often intriguing architectures of sesterterpenoids, the number of total 

syntheses remains in the dozens, many of those accessing cheilanthanes and scalaranes by semi-

synthetic approaches (cf. Scheme 1.14).[40] In the following text, a few examples of successfully 

prepared sesterterpenoids will be given, focusing on key steps to access complex molecules. This 

summary will be ordered by the numbering of carbocycles, while total syntheses of and approaches 

toward trans-hydrindane iso-propyl sesterterpenoid will be discussed in Chapter 1.3 in more detail. 

In 2009, the monocarbocyclic sesterterpenoid (−)-alotaketal (47)[41] was found to be a potent activator 

of the cAMP cell signaling, which is essential for a diverse range of cellular processes. Thus, new 

modulators such as (−)-alotaketal (47) or its derivatives might be used in treating heart failure, cancer, 

and neurodegenerative diseases.[42] In 2012, Yang and co-workers disclosed the first enantioselective 

route to (−)-alotaketal (47) (Scheme 1.6).[43] 

  

 
Scheme 1.6 Yang’s enantioselective synthesis of the cAMP signaling agonist (−)-alotaketal (47) via a SmI2 mediated 
intramolecular Barbier-type ketalization. 
 
Their strategy hinged on a SmI2-mediated coupling between two fragments 44 and 45, whereby the 

former compound 44 was accessed ex-chiral pool starting from (R)-carvone (29). Contrarily, the sole 

stereogenic center within allyl iodide 45 originated from a Nagao-Fujita aldol reaction, which is based 

on an Evans-type auxiliary. With both fragments in hand, the envisaged coupling efficiently delivered 

intermediate 46 as mixture of hemiacetal epimers. This key compound was then transformed to 

(−)-alotaketal (47) via desilylation, spiroketalization, oxidation and PMB deprotection. Later that year, 

the group of Dalby reported a second synthesis of (−)-alotaketal (47).[44] Their strategy was based on 

the same disconnection and similar building blocks, but preparing the fragment analogous to 

bicycle 44 by an alternative route. Both reports paved the way for further evaluation of biological 

properties of (−)-alotaketal A (47) and for the preparation of synthetic congeners. 
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In contrast to (−)-alotaketal A (47), the sesterterpenoid (−)-dysidiolide (53, Scheme 1.7) exhibits an 

additional carbocycle and this bicarbocyclic sesterterpenoid 53 has been a popular target at the turn of 

the millennium.[45] On the one hand, this was due to the fact that its octahydronaphthaline structure 

comprises two quaternary stereocenters and a bicyclic system, the large substituents of which 

interestingly adopt sterically disfavored pseudo-axial positions as proven by X-ray crystallography. On 

the other hand, (−)-dysidiolide (53) has been shown to inhibit growth of A-549 human lung carcinoma 

and P388 leukemia cell lines, thus making it a potential anti-cancer agent.[46] The resulting synthetic 

endeavors culminated in numerous approaches and successful total syntheses.[40] The key step of the 

routes of Corey[47] and Danishefsky[48] are presented in Scheme 1.7. 
 

Scheme 1.7 (a) Corey’s divergent enantioselective route to (−)-dysidiolide (53) featuring a bioinspired 1,2-Me shift. 
(b) Danishefsky’s convergent racemic synthesis of dysidiolide (53) demonstrating the power of the Diels-Alder reaction. 
 
In his enantioselective synthesis, Corey utilized a bioinspired key step to install the quaternary 

stereogenic center at C-15.[47] To this end, bicycle 49 was prepared in a lengthy sequence, starting 

from Wieland-Miescher ketone analog 48. Noteworthy, they introduced the correct relative 

configuration at C-6 via an enone reduction under Birch conditions with subsequent trapping of the 

formed enolate with allyl bromide. The intermediate 49 was then treated with gaseous BF3, resulting in 

the formation of a tertiary carbocation and triggering a 1,2-methyl shift (not shown). The newly 

generated tertiary carbocation, stabilized by a β-silyl effect underwent an ensuing regioselective 

elimination to afford intermediate 52. With the cyclic framework installed, (−)-dysidiolide (53) was 

finally prepared by a series of standard transformation, including a Rose-Bengal mediated oxidation of 

a furan to the butenolide moiety. Contrarily to this linear approach, Danishefsky and co-workers 

envisaged a more convergent, yet racemic synthesis.[48] Thereby, they impressively demonstrated the 

synthetic power of the Diels-Alder reaction to install quaternary stereogenic centers.[49] At first, the 

team quickly built up two reaction partners, dienophile 51 and diene 50, the quaternary center of 
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which was installed by an alkylation. Upon exposure to TMSOTf at low temperatures, the reaction 

partners smoothly underwent a Gassmann Diels-Alder reaction, furnishing the bicarbocyclic system 54 

after acetal cleavage with all stereogenic centers set. This compound was then easily transformed to 

the desired target 53. 

At around the same time, several research groups embarked on the total synthesis of another 

bicarbocyclic sesterterpenoid named (−)-terpestacin (56), an inhibitor of the formation of multinuclear 

cell bodies, which are part of the pathology of an HIV infection.[50] In contrast to both previously 

discussed natural products, almost all 25 carbon atoms are embedded in the two carbocycles, one of 

which is 15-membered. Attracted by those features, six research groups reported successful 

approaches toward terpestacin (56) and four key intermediates with the respective strategic 

disconnections on closing the 15-membered ring and installing the quaternary stereogenic center at 

C-1 are depicted in Scheme 1.8.  

The first asymmetric synthesis of (−)-terpestacin (56) has been accomplished by the group of Tatsuta 

in 1998.[51] In their strategy, they utilized the conformational bias of a tricyclic system, directing an 

allylation with a farnesly derived allylic chloride to install the requisite relative configuration at C-1 

(not shown). Further transformations set the stage for the key intramolecular HWE reaction, which 

formed macrocycle 55. Additional functional group manipulations finally gave rise to 

(−)-terpestacin (56). 
 

 
Scheme 1.8 Intermediates in the total syntheses of terpestacin (56) by the groups of Matsuda, Myers, Jamison and Trost, 
including comparison of key C−C bond forming reactions. 
 
In 2002, the group of Myers at Harvard University reported a more concise synthesis of 

(−)-terpestacin (56)[52] that was based on three diastereoselective allylation reactions. Initially, the 

group diastereoselectively prepared a cyclopentanone moiety via an alkylation protocol developed in 

the same laboratories (not shown). The conformational bias of the cyclic system then allowed for both 
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the stereocontrolled installation of the C-1 stereocenter as well as ring-closure in the presence of 

Masamune’s base LiN(SiMe2Ph)2 to form bicycle 57 in an efficient manner. 

Similarly, in 2003 the group of Jamison constructed the macrocycle of (−)-terpestacin (56) via an 

allylation, but setting the quaternary stereogenic center in terpestacin (56) last.[53] Previously they had 

chosen to prepare the precursor 58 by a Ni-catalyzed intramolecular coupling of an alkyne and a 

farnesyl derived aldehyde. In the following, an allylation closed the 15-membered ring and ketone 58 

underwent a regio- and diastereoselective methylation with NaH to generate the requisite 

configuration at C-1. Interestingly, this transformation only occurred in the presence of H2O, which 

prompted the authors to attribute this in situ effect to the production of finely dispersed NaOH. 

Yet another possibility to close the 15-membered macrocycle was presented by Trost and co-workers 

in 2007.[54] At first, a sequence consisting of a Pd-catalyzed asymmetric alkylation and a subsequent 

Claisen rearrangement installed the stereogenic quaternary center at C-1 (not shown). Thereafter, a 

series of transformation gave rise to a pentaene, setting the stage for the envisaged key step: a ring-

closing metathesis (RCM). In the event, subjection of the substrate to Grubbs 2nd generation 

metathesis catalyst closed the macrocycle 59 in moderate yield, but high (E)-selectivity. Further 

reaction conditions, including another AAA/Claisen sequence then furnished (−)-terpestacin (56). 

Since this report, the groups of Tius[55] and Qui[56] also disclosed a racemic and an enantioselective 

total synthesis, in 2007 and 2012 respectively. Similarly to the approach of Matsuda, both groups 

constructed the macrocycle via an intramolecular HWE reaction, whereas the C-1 quaternary 

stereogenic center was installed by enolate allylation chemistry (not shown). 

From 2010 on, a new family of sesterterpenoids called leucosceptroids has been isolated from the 

small tree Leucosceptrum canum, representing a rare example of sesterterpenoids from higher plant 

origin.[57] The 15 members of this subclass, represented by (+)-leucosceptroid B (64), have been found 

to possess anti-feedant and anti-fungal properties, prompting the authors to name this family ‘harbor 

defense sesterterpenoids’. 
 

 
Scheme 1.9 Liu’s asymmetric total synthesis of (+)-leucosceptroid B (64) via a Michael addition/aldol sequence and a 
tandem Lewis acid mediated deprotection/dihydrofuran formation. 
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Already one year later, in 2011, Horne and co-workers published a Diels-Alder approach to furnish the 

tricyclic skeleton of the leucosceptroids (not shown),[58] and in 2013, the group of Liu succeeded in the 

first enantioselective synthesis of (+)-leucosceptroid B (64, Scheme 1.9).[59] Utilizing a seven-step 

sequence consisting of a Michael addition, ozonolysis, aldol condensation and diastereoselective 

hydrogenation, they quickly built up bicyclic lactone 60, which was further elaborated to enyne 61 by 

standard transformations. Thereafter, the authors beautifully orchestrated two consecutive key steps to 

construct the tricarbocyclic backbone. First, a Michael-addition/aldol sequence with a methyl cuprate 

derived from MeMgBr and CuCN preferentially gave rise to (Z)-configured alkene (62, d.r. = 3.6:1). 

This was followed by a MOM deprotection in the presence of BF3·Et2O with concomitant formation of 

the dihydrofuran moiety and desilylation, furnishing tricycle 63. Finally, a nine-step sequence afforded 

(+)-leucosceptroid B (64). It is worth noting that the authors installed the stereochemistry at C-11 in 

the last step via epimerization leading to an approximately 1:1 mixture of (+)-leucosceptroid B (64) 

and its β-epimer (not shown). 
 

 
Scheme 1.10 Boeckman’s racemic synthesis of gascardic acid (68) featuring a highly diastereoselective Claisen 
rearrangement to install the second adjacent quaternary stereocenter.  
 
Around 30 years earlier, in 1979, the group of Boeckman published the first synthesis of a structurally 

complex sesterterpenoid[60] named gascardic acid (68). This tricarbocyclic compound 68 had been 

isolated already in 1960[61a] and despite further careful investigations,[61b] the relative stereochemistry 

was not clarified. Boeckman et al. commenced their synthesis with cyclopentenone 65, which was 

transformed to vinyl allyl ether 66 (obtained as a mixture of diastereomers at C-18), featuring a three-

component coupling (cuprate addition, enolate Michael addition, aldol condensation) as the key 

element (Scheme 1.10). Subjecting this compound 66 to elevated temperatures triggered a Claisen 

rearrangement to diastereoselectively set the quaternary stereoecenter in aldehyde 67. This example 

impressively demonstrated the power of intramolecular sigmatropic reactions to install stereocenters in 

sterically encumbered settings.[62] Further transformations including the separation of the 

diastereomers at C-18 provided Boeckman et al. with gascardic acid (68), which could now be 

assigned based on comparison of NMR spectroscopic data.[60a,63] 

As pointed out earlier, the family of the ophiobolins constitutes a larger subfamily of sesterterpenoid 

natural products. Not surprisingly, several research groups were attracted by their structural and 

biological profiles and these studies culminated in numerous publications.[64] As most of this work was 

carried out in the pre-metathesis era, the ophiobolins and related terpenoids provided an inspiration to 

study the synthesis of eight-membered rings.[65,66] Despite the enormous synthetic efforts undertaken, 



14  THEORETICAL SECTION 

only the groups of Kishi in 1989[67] and Nakada in 2011[68] succeeded in total syntheses of 

(+)-ophiobolin C (74)[69] and (+)-ophiobolin A (43),[35] respectively. 
 

 
Scheme 1.11 Kishi’s enantioselective route to (+)-ophiobolin C (74) constructing the central eight-membered ring via a 
Nozaki-Hiyama-Kishi reaction. 
 
As depicted in Scheme 1.11, Kishi addressed the problem of establishing the central eight-membered 

ring by a Nozaki-Hiyama-Kishi (NHK) reaction, a CrCl2 and NiCl2 mediated coupling between an 

aldehyde and a vinyl iodide.[67] Starting from camphor derivative 69, they therefore prepared 

aldehyde 70, which in turn was reacted with vinyl lithium 71. After reinstallation of the pivaloate, the 

resulting alcohol 72 was successfully carried on to the desired [5-8-5]-tricarbocyclic ring system found 

in allylic alcohol 73, constructing the allylic C−C bond via the aforementioned methodology. 

Ultimately, standard functional group interconversion provided access to (+)-ophiobolin C (74). 
 

 
Scheme 1.12 Nakada’s enantioselective synthesis of (+)-ophiobolin A (43) closing the central eight-membered ring by a 
ring-closing metathesis reaction. 
 
In contrast to Kishi’s synthesis, the group of Nakada exploited a more recent synthetic tool in 

constructing the eight-membered ring of (+)-ophiobolin A (43), namely a RCM reaction.[68] In order to 

prepare a feasible precursor, they converted acid 75 in a 16-step sequence to hemiacetal 76, which 

underwent an intramolecular Sakurai type allylation to effectively form the two adjacent stereocenters 
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in spiro compound 77 (Scheme 1.12). This intermediate 77 was further elaborated to diene 78 over a 

series of transformations, involving several protecting group manipulations as the RCM reaction 

proved to be sensitive to the steric environment at the reacting sites.[68b] Subjecting diene 78 to the 2nd 

generation Hoveyda-Grubbs catalyst (HGII) in refluxing toluene closed the macrocycle in diol 79, and 

an additional six-step protocol provided, at long last, (+)-ophiobolin A (43), more than 50 years after 

its isolation. 

The structurally related natural products (+)-ceroplastol I (86),[70] (+)-ceroplastol II (90)[71] and albolic 

acid (91)[72] have also been accessed by the groups of Boeckman,[73] Paquette[74] and Kato.[75] 

Analogously to the ophiobolins, the central feature of these total syntheses was the construction of the 

eight-membered ring (Scheme 1.13). The synthesis of Boeckman and co-workers commenced with 

racemic bicycle 80, which was further functionalized to ketone 81 bearing the requisite relative 

stereochemistry for a key Grob fragmentation.[73] As envisaged, subjection of tricycle 81 to NaOMe in 

refluxing MeOH triggered the formation of the eight-membered ring in diester 82 and subsequent 

manipulations afforded ceroplastol I (86).  
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Scheme 1.13 Successful approaches toward the ceroplastins: (a) Boeckman’s racemic synthesis of ceroplastol I (86). 
(b) Paquette’s asymmetric synthesis of (+)-ceroplastol I (86). (c) Kato’s enantioselective synthesis of (+)-ceroplastol II (90) 
and (+)-albolic acid (91). 
 
In an alternative line of investigations, Paquette’s group utilized a Claisen rearrangement to conduct a 

ring-expansion en route to the eight-membered ring.[74] To this end, they elaborated the enantiopure 

Eder-Sauer-Wiechert-Hajos-Parrish analog 83 to lactone 84, the carbonyl functionality of which was 

methylenated by treatment with Tebbe’s reagent. The resulting allyl vinyl ether rearranged at elevated 

temperatures and a following epimerization furnished the essential trans-ring junction in ketone 85. 
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Ultimately, further transformations including a 1,3-carbonyl transposition and a Michael 

addition/annulation protocol afforded the optically active natural product (+)-ceroplastol I (86).  

Another methodology to construct the [5-8-5]-tricarbocyclic architecture of the ceroplastins was 

presented by Kato and co-workers, which culminated in total syntheses of (+)-ceroplastol II (90) and 

(+)-albolic acid (91).[75] In the course of their synthetic studies, Kato et al. synthesized enantiopure 

enal 87 via an optical resolution. It should be noted that the authors employed the other enantiomer in 

the preparation of intermediate 88, thus making the resolution process not wasteful. In the ensuing key 

step, bisaldehyde 88 was exposed to a lower valent Ti species (prepared in situ from TiCl4 and Zn) 

resulting in a pinacol coupling and closing the eight-membered ring. With the carbon backbone in 

hand, the remaining protocol produced both sesterterpenoids via a diversification in the last step: 

saponification of an ethyl ester with NaOH gave rise to (+)-albolic acid (91), whereas reduction with 

LiAlH4 furnished (+)-ceroplastol II (90). 
 

 
Scheme 1.14 Molecular structures of the scalarane sesterterpenoids (−)-sesterstatin 4 (92) and (+)-scalarolide (94), both being 
semi-synthetically prepared starting from (−)-sclareol (93) in the 2010’s. 
 
The last subclass concerning the synthesis of sesterterpenoids being discussed in this section are the 

tetracarbocyclic members. Whereas such compounds in general are rare, one big family are the 

scalaranes (vide supra). Showing interesting biological properties, several of these members including 

(−)-sesterstatin 4 (92)[76] and (+)-scalarolide (94)[77] have been synthesized over the last years, often 

via a semi-synthetic route starting from the inexpensive chiral building bock (−)-sclareol (93, 

Scheme 1.14).[78,79]  

 
Scheme 1.15 Paquette’s asymmetric route to (−)-cerorubenic acid-III methyl ester (100) featuring an anionic oxy-Cope 
rearrangement and a free-radical cyclization to construct the tetracarbocyclic core. 
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In contrast to the scalaranes, cerorubenic acid-III methyl ester (100),[80] another tetracarbocyclic 

sesterterpenoid addressed by the group of Paquette, consists of an unique [8.4.1.0.0]pentadecane 

skeleton. After extensive efforts spanning over one decade,[81] the group finally disclosed the 

successful preparation of this daunting structure in 1998.[82] In these studies, they took advantage of 

two key steps: an anionic oxy-Cope rearrangement and a diastereoselective free-radical cyclization. 

Starting from enone 95, Paquette and co-workers prepared allylic alcohol 96 in several steps, three 

being an optical resolution and thus rendering their approach enantioselective (Scheme 1.15). In the 

following, the aforementioned anionic oxy-Cope rearrangement took place when heating diene 96 

with KHMDS in THF to reflux. The resulting ketone 97 already contained the bridgehead double bond 

and the cyclopropyl moiety found within the natural product 100. Notably, these moieties stayed intact 

throughout the whole synthesis, which eventually provided homo allylic iodide 98. This precursor for 

the second key step was then subjected to reductive radical conditions (Bu3SnH, AIBN), resulting in a 

6-exo-trig-cyclization to give tetracycle 99 with a good diastereoselectivity (d.r. = 4.9:1) at the side 

chain’s stereogenic center. With all stereogenic centers correctly set and the carbon backbone 

installed, simple chain elongation finally provided (−)-cerorubenic acid III methyl ester (100), 

constituting its first and sole preparation.[82] 

The total syntheses discussed in this chapter showcase how sesterterpenoid natural products have 

inspired organic chemists. Based on structurally unique architectures, a broad array of chemical tools, 

ranging from classical rearrangements to modern transition metal catalysis, has been employed to 

access the target molecules and provide the foundation for biological evaluation and derivatization.[40] 

Whereas this chapter detailed the properties of sesterterpenoids in general and gave a brief overview 

on synthetic progress toward this group of natural products, the next chapter will focus on a specific 

subclass, possessing a trans-hydrindane iso-propyl moiety.  
 

 

1.3 trans-Hydrindane iso-Propyl Sesterterpenoids: Introduction to the 

Subclass and Previous Synthetic Efforts 
 

Within the class of sesterterpenoids,[30] a limited number of compounds has been isolated that 

comprise a trans-hydrindane moiety with an angular methyl group. Moreover, these natural products 

feature an iso-propyl or an isopropenyl group at C-3 (IUPAC numbering), a substituent which either 

resides in a trans-relationship to the angular methyl group or in a cis-fashion (Figure 1.4). 

Additionally, differences have been found concerning the skeletal order, namely the connectivity to 

further carbon atoms on the six-membered ring. Whilst the trans-hydrindane portion in type B is fused 

at the C-4 and C-5 (IUPAC numbering) position often generating a third carbocycle, the carbon 

backbone of type A is connected to further carbon atoms at C-5 and C-6. 
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Figure 1.4 Classification of the carbon skeleton of trans-hydrindane iso-propyl sesterterpenoids into type A and type B, 
depending on their connectivity at the six-membered ring. 
 
In the following text, the 15 known members of this subclass will be introduced. It should be noted 

that some members are drawn as their unnatural enantiomers to facilitate comparison with the 

enantiomeric series in which the synthetic work of these Ph.D. studies was carried out (cf. 

Chapters 2−5). Furthermore, if no sign (dextrorotary or levorotary) of the optical rotation is given, the 

absolute configuration of the natural product has not been assigned to the best of our knowledge.  

The oldest member of the trans-hydrindane iso-propyl sesterterpenoids is named (−)-retigeranic 

acid A (101), which was isolated for the first time in 1965 and bears a triquinane motif in addition to 

the trans-hydrindane portion (Figure 1.5, depicted as its unnatural isomer).[83] It took seven years until, 

in 1972, its structure was finally elucidated[84] and in 1974 confirmed by X-ray crystallography as its 

p-bromophenyl amide derivative (Figure 1.5b).[85] During efforts to synthesize this intriguing structure, 

it was found by HPLC analysis that the crystallized structure refers only to the minor component of 

the isolated material.  
 

 
Figure 1.5 (a) Molecular structures of the type A trans-hydrindane iso-propyl sesterterpenoids (+)-retigeranic acid A (101), 
(+)-retigeranic acid B (102) and astellatol (103). (b) X-ray structures of the p-bromophenyl amide derivative of retigeranic 
acid A (101) and the dimer of retigeranic acid B (102, hydrogen atoms omitted for clarity).  
 

The obtained spectroscopic data suggested the major compound being epimeric to (−)-retigeranic 

acid A (101) and the synthetic endeavors by the groups of Corey,[86] Paquette,[87] Wender[88] and 

Hudlicky[89] (vide infra) excluded some potential diastereomers.[90,91] Subsequent X-ray analysis 
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unraveled the structure of (−)-retigeranic acid B (102) as the α-epimer at the iso-propyl 

residue (Figure 1.5a, depicted as its unnatural enantiomer).[92] In addition, it is noteworthy that 

retigeranic acid A (101) is unique amongst type A trans-hydrindane iso-propyl sesterterpenoids, as it 

is the only member featuring a trans-relationship between the iso-propyl residue and the angular 

methyl group in the hydrindane portion. Similarly to the retigeranic acids, the unparalleled 

pentacarbocyclic structure of astellatol (103), established by extensive NMR studies in the late 1980’s, 

exhibits only one oxygenated site, namely an alcohol functionality at the five-membered ring of the 

trans-hydrindane portion (Figure 1.5a).[93] As astellatol (103) has been one major target within our 

synthetic efforts, its isolation and structural features as well as the proposed biosynthesis will be 

detailed in Chapter 3.1.  
 

 

Figure 1.6 Molecular structures of type B trans-hydrindane iso-propyl sesterterpenoids (+)-variecolin (104), 
(−)-variecolol (105), (−)-variecolactone (106), (−)-variecoacetal A (107) and (−)-variecoacetal B (108) and X-ray structure of 
(+)-variecolin (104, hydrogen atoms omitted for clarity). 
 

Contrarily to astellatol’s (103) type A skeleton, the natural product (−)-variecolin (104, depicted as its 

unnatural enantiomer), isolated in 1991 from aspergillus variecolor, is a type B trans-hydrindane 

iso-propyl sesterterpenoid and (−)-variecolin (104) has been evaluated as an angiotensin II receptor 

binding inhibitor (Figure 1.6).[94,95] Its isolation has been accompanied by the congeners 

(−)-variecolol (105),[96] (−)-variecolactone (106),[96] (−)-variecoacetal A (107)[97] and 

(−)-variecoacetal B (108),[97] all possessing immunsuppresive activities and stemming from the same 

cyclization mode as (−)-variecolin (104), but from different oxidations mechanisms in biosynthesis. 
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Figure 1.7 Molecular structures of the type A trans-hydrindane iso-propyl sesterterpenoids variculanol (109) and 
nitiol (110), lacking the C5−C6 bond formation (IUPAC numbering for hydrindanes) during biosynthesis. 
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In 1991, the Merck laboratories in Basel isolated a different type of carbon backbone from the same 

cultures of apergillus variecolor and named the compound based after its origin (−)-variculanol (109, 

Figure 1.7).[98] However, this sesterterpenoid differed from the rest of the variecolin family in two 

aspects. Firstly, its skeleton rather resembles a type A trans-hydrindane iso-propyl sesterterpenoid, 

and, secondly, the six-membered ring of the trans-hydrindane has not been closed during biogenesis of 

variculanol (109) and thus no trans-hydrindane portion is present. Due to the structural similarity 

however, we still classify variculanol (109) as a type A trans-hydrindane iso-propyl sesterterpenoid. 

The only other member within this whole subclass lacking such a C−C bond formation is the 

tricarbocyclic compound nitiol (110), which has been isolated by the group of Kawahara in 1999.[99] 

Further details on this natural product 110 will be provided in Chapter 4.1. 

 
Figure 1.8 (a) Molecular and X-ray structure (hydrogen atoms omitted for clarity) of nitidasin (111). (b) Molecular structures 
of the GPI anchor inhibitors YW 3548 (112) and YW 3699 (113). 
 
Already two years before, in 1997, Kawahara and co-workers had identified another trans-hydrindane 

iso-propyl sesterterpenoid, nitidasin (111), and verified its structure by NMR studies and X-ray 

crystallography (Figure 1.8a).[100] Although nitidasin (111) was isolated from plants used in Peruvian 

folk medicine (‘Hercampuri’), the authors did not evaluate its biological activities. At around the same 

time, Wang and co-workers reported the intriguing structure of YW 3548 (112, Figure 1.8b). In the 

course of these studies, the authors elucidated the relative configuration of the tetracyclic backbone, 

while the relative stereochemistry at the heptanoate side chain could not be assigned.[101] Yang et al. 

additionally investigated the biological properties and found that YW 3548 (112) is a selective 

inhibitor of GPI anchoring biosynthesis in mammalian cells. These properties have also been 

evaluated for YW 3699 (113).[102] Further discussion on the biological background combined with a 

structural analysis can be found in Chapter 5.1.  

In the last decade, the structures of two more sesterterpenoids with the trans-hydrindane iso-propyl 

motif have been disclosed, one being the tricarbocyclic compound alborosin (114), which has been 

isolated by Kawahara and co-workers from gentinella alborosin in 2000 (Figure 1.9).[103] Although the 
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relative configuration of four stereogenic centers could not be assigned based on 2D NMR studies, it is 

reasonable to suggest that alborosin (114) is a degradation product of nitidasin (111) by an oxidative 

cleavage, and thus the missing stereoinformation might match those of the tetracarbocyclic natural 

product 111. 
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Figure 1.9 Molecular structure of the sesterterpenoids alborosin (114) and (+)-asperterpenoid A (115) and the X-ray structure 
of asperterpenoid A (co-crystallized with MeOH, hydrogen atoms omitted for clarity). 
 
Very recently, in February 2013, She et al. discovered a new type B skeleton while establishing the 

pentacarbocyclic structure of asperterpenoid A (115) by NMR techniques and X-ray 

crystallography (Figure 1.9).[104] The backbone of asperterpenoid A (115), isolated from aspergillus 

sp. 16-5c, is closely related to the one found in variecolin (104), comprising a [7.1.0]cyclooctane 

moiety instead of a regular cyclooctene ring and a different oxidation pattern. In addition to its 

daunting structural features, the authors determined a strong inhibitory activity against mycobacterium 

tuberculosis protein tyrosine phosphatase B. This enzyme facilitates host infections and thus inhibitors 

as asperterpenoid A (115) might emerge as potential drugs for the treatment of pulmonary 

tuberculosis. 

From a chemist’s perspective, the above presented natural products represent highly attractive targets 

for synthetic programs due to their structurally intriguing ring systems and their associated biological 

properties. Although most isolations date back more than one decade, a literature survey surprisingly 

revealed that only retigeranic acid A (101) has been successfully accessed by total synthesis. In 

addition, very few approaches toward the variecolin family, nitiol (110) and YW 3699 (113) have 

been described over the years.[40]  
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Scheme 1.16 The challenge in installing a trans-hydrindane moiety exemplified on reductions of the diketone 116 and its 
monoketal derivative 119. 
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The small number of endeavors might be explained by three major challenges associated with 

trans-hydrindane iso-propyl sesterterpenoids. On the one hand, it is a well-known problem to install a 

trans-ring junction in a hydrindane portion.[105] This is due to thermodynamic reasons, which usually 

favor the less strained cis-ring junction, exemplified by the hydrogenation of the Hajos-Parrish-Eder-

Sauer-Wiechert ketone (116, Scheme 1.16). Based on simple steric factors, one would assume that the 

angular methyl group shields the top face of the bicycle and thus directs the hydrogenation to occur 

from the bottom face to yield trans-fused ring system 118. However, only the cis-isomer 117 is 

formed under standard hydrogenation conditions.[106] Under classical thermodynamic conditions e.g. 

dissolving metal reduction, the same results were obtained when employing ketal protected 

derivative 119 to form exclusively cis-isomer 120.[106] The second problem, in particular related to the 

type A trans-hydrindane iso-propyl sesterterpenoids, is the sterically encumbered situation at the five-

membered ring, resulting in disfavored steric interactions between the angular methyl group and the 

iso-propyl substituent. If one solves these two problems, the last remaining hurdle is the appropriate 

construction of the fully substituted ring systems with several stereogenic centers and challenging 

oxidation patterns. Some groups have surmounted these challenges and their findings will be presented 

in the following text ordered by the time of appearance in the literature.[40] 

In 1985, the group of Corey at Harvard University succeeded in the first total synthesis of a trans-

hydrindane iso-propyl sesterterpenoid, namely retigeranic acid A (101, Scheme 1.17).[86] The approach 

initiated with the preparation of the trans-hydrindane portion starting from racemic melonal (121), 

which underwent a Robinson annulation with MVK (122) providing a cyclohexenone (not shown). 
 

 
Scheme 1.17 Corey’s racemic synthesis of retigeranic acid A (101) installing the trans-hydrindane iso-propyl portion by a 
Lewis acid-mediated conjugate addition of an electron-rich alkene and a substrate-directed hydrogenation. 
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Upon exposure to Et2AlCl, the Lewis acid triggered a Prins-type cyclization followed by two 

stereospecific 1,2-hydride shifts to generate indenone 123 that comprised the correct trans-relationship 

between the angular methyl group and the iso-propyl moiety. The next task to be solved was the 

installation of the trans-ring junction. As pointed out earlier, a direct hydrogenation of the double 

bond would rather produce the undesired cis-isomer (not shown). Thus, Corey and co-workers 

resorted to a substrate directed hydrogenation employing cationic Rh-catalyst 125.[86b] In order to 

execute this transformation, the ketone functionality within enone 123 was stereoselectively reduced 

and a subsequent Mitsunobu inversion/saponification protocol furnished the requisite alcohol 124, 

setting the stage for the envisaged hydrogenation. The desired transformation took place in the 

presence of catalyst 125 and elevated pressure of H2 (66 bar) to furnish trans-hydrindane 126. 

Thereafter, a series of transformations, including a Diels-Alder reaction to diastereoselectively install 

the C-2 and C-3 stereogenic centers, provided acid 127. Sequential treatment of intermediate 127 with 

(COCl)2 and Et3N generated an alkene-ketene intermediate, which cleanly underwent an 

intermolecular [2+2]-cycloaddition to install the third quaternary stereogenic center at C-10 in 

cyclobutanone 128. A ring expansion of the four-membered ring via a thio-pinacol rearrangement 

then yielded cyclopentanone 129, the α-methyl group of which was epimerized to the desired relative 

configuration. After a chemoselective hydrogenation of the less substituted double bond and 

deoxygenation of the carbonyl moiety, dihydroxylation of the remaining alkene was followed by 

Criegee-oxidation with Pb(OAc)4, aldol condensation in the presence of Al2O3 and Pinnick oxidation 

to finally furnish retigeranic acid A (101). 

At around the same time, Paquette and co-workers embarked on an enantioselective synthesis of 

(−)-retigeranic acid A (101) and they published their convergent approach in 1987.[87] The triquinane 

portion present in retigeranic acid A (101) was prepared starting from (+)-pulegone (130), which was 

transformed to diquinane 131 in a multistep sequence, including a Favorskii rearrangement to induce a 

ring contraction (Scheme 1.18). This was followed by a diastereoselective cuprate addition/aldol 

reaction protocol, and the thus installed alcohol was dehydrated via a Chugaev elimination generating 

the alkene in triquinane 132. After further functional group manipulations (Wolff-Kishner reduction, 

allylic oxidation), the group accessed enone 133, having a Michael-acceptor for the envisioned 

fragment union.[87c] For the preparation of the second building block, Paquette et al. once more turned 

to the chiral pool, starting from (−)-limonene (28), which was elaborated to allylic alcohol 134 

following a known protocol. An ensuing Wittig-Still rearrangement installed a cis-relationship 

between the angular methyl group and the iso-propyl substituent in alkene 135. Since the relative 

configuration of retigeranic acid B (102) was unknown at that time, Paquette unmasked the ketone 

functionality by ozonolysis and erased the stereoinformation at the iso-propyl moiety while installing a 

double bond that facilitated an allylic oxidation, giving rise to enone 136. Next, the authors prepared 

alkyl bromide 137 via a diastereoselective Michael addition with vinyl cuprate, Wolff-Kishner 
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reduction with concomitant silyl ether cleavage and subsequent bromination, only being effective 

under Mitsunobu-type reaction conditions. 
  

 
Scheme 1.18 Paquette’s enantioselective ex-chiral pool synthesis of (−)-retigeranic acid A (101) featuring a late-stage aldol-
condensation to install the trans-hydrindane moiety. 

 
The intermediate 137 incorporated the correct stereochemistry of all stereogenic centers at the five-

membered ring of the trans-hydrindane moiety and underwent exclusive 1,4-addition to the sterically 

congested enone 133 upon generation of the corresponding Grignard species. However, a drawback of 

this convergent approach was the poor selectivity observed in this step, providing the desired 

product 138 as the minor diastereomer (d.r. = 1:3) after ozonolysis. Unfortunately, the subsequent 

installation of the trans-hydrindane moiety by an intramolecular aldol condensation did not add to the 

overall efficiency of the synthesis as it required forcing conditions (piperidine, HOAc, 100 °C, not 

shown) and resulted in an epimerization at C-15, providing the trans-ring junction as minor 

diastereomer (d.r. = 1:4). This result once more emphasized the challenges associated with the 

preparation of trans-hydrindanes. At last, a five-step sequence gave rise to (−)-retigeranic 

acid A (101), constituting its first enantioselective synthesis. 

Only one year later, in 1988, the group of Hudlicky published a very elegant convergent and 

enantioselective route toward (−)-retigeranic acid A (101).[88] They converted (+)-menthene (139) to 

triene 140 in several steps, which then underwent an intramolecular inverse electron demand Diels-

Alder reaction (Scheme 1.19). After enol ether cleavage and Krapcho decarboxylation, trans-

hydrindanone 141 was obtained that has already been an intermediate in Corey’s synthesis, albeit in 

racemic form.[86] Thereafter, a straight-forward homologation/dibromination/monodebromination 

sequence furnished vinyl bromide 142, the corresponding vinylogous enolate of which underwent a 

clean fragment coupling with diquinane 131 prepared in analogy to Paquette’s approach.[87]  
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Scheme 1.19 Hudlicky’s convergent synthesis of (−)-retigeranic acid A (101) installing the trans-hydrindane iso-propyl 
moiety via an intramolecular Diels-Alder reaction. 
 
With the resulting intermediate 143 in hand, the stage was set for the key step of their synthesis: a 

vinylcyclopropane rearrangement. Thus, subjecting intermediate 143 to flash vacuum pyrolysis 

conditions (FVP, 585 °C, 10−6 mm Hg) triggered the desired rearrangement and formed the 

pentacarbocyclic compound 144 in high yield and moderate diastereoselectivity (4:1 to 2:1 depending 

on the isomer used). With all stereogenic centers set and the complete carbon skeleton in place, 

Hudlicky et al. readily accessed (−)-retigeranic acid A (101) by sequential reduction, Barton-

McCombie deoxygenation and saponification in a longest linear sequence of 19 steps. 

In 1990, Wender and co-workers at Stanford University described another approach to (−)-retigeranic 

acid A (101),[89] taking advantage of a photochemical arene-alkene meta cycloaddition. For this 

purpose, six steps were required to convert compound 145 (prepared enantioselectively by enzymatic 

resolution) to alkene 146 (Scheme 1.20). The envisaged photoreaction proceeded efficiently to furnish 

the desired tetracycle 147, albeit as the minor isomer (1:2). However, it should be noted that this 

transformation rapidly built up structural complexity and the unwanted isomer could be recycled, thus 

raising the overall yield and providing grams of material.  
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Scheme 1.20 Wender’s enantioselective synthesis of (−)-retigeranic acid A (101) via a photochemical arene-alkene 
cycloaddition and a late-stage intramolecular Diels-Alder reaction to generate the trans-hydrindane portion. 
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Exposure of intermediate 147 to an acyl radical prepared photochemically from formamide (148) 

resulted in opening of the cyclopropane moiety and the installation of a triquinane system with 

appropriate functional groups, leading to alkene 149 after N-methylation. A three-step sequence 

including an allylic oxidation gave rise to a triene (not shown), which underwent a thermal Diels-

Alder reaction (250 °C, 22 h). This protocol installed the trans-hydrindane portion as the major 

isomer 150 along with two isomers (8.6:3:1, cis-hydrindane, one double bond regioisomer with cis-

hydrindane formed) in a moderate overall yield of 64%. As direct double-bond isomerization attempts 

remained unfruitful, Wender’s group had to utilize an indirect methodology to install a diene 

moiety (not shown), which was subsequently hydrogenated under high pressure to yield amide 151. 

Unfortunately, this transformation remained unselective despite enormous efforts and provided the 

desired diastereomer in a poor yield of 25%, thus being detrimental for the overall efficiency of the 

synthesis. Ultimately, a stepwise adjustment of the oxidation state furnished (−)-retigeranic acid (101), 

constituting its fourth and thus far last preparation. Since then, no reports on progress toward the 

retigeranic acids have been published. In addition, Wender’s synthesis constituted the last successful 

total synthesis of any member of the trans-hydrindane iso-propyl sesterterpenoids. However, some 

synthetic studies toward this subclass of sesterterpenoids appeared in literature and these synthetic 

strategies will be detailed in the following. 
 

 
Scheme 1.21 Pier’s racemic synthesis of 5-deoxyvariecolol (160) and 5-deoxyvariecolactone (161) via sequential ring 
annulation protocols, a late-stage C−H activation and an interesting epimerization to install the trans-hydrindane portion. 
 
In 1997, Piers and co-workers reported their synthetic efforts toward a racemic synthesis of 

variecolin (104)[107] and more advanced studies were provided by the Ph.D. thesis of S. D. Walker in 

2002. This work was also carried in the Piers laboratories and resulted in the preparation of 
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5-deoxyvariecolol (160) and 5-deoxyvariecolactone (161, Scheme 1.21).[108] Utilizing a cuprate 

addition/aldol condensation annulation protocol, they prepared bicycle (152) that in turn was exposed 

to an isopropylene cuprate in the presence of TMSCl, diastereoselectively affording 

cis-hydrindane 153 in high yield. Interestingly, a NaOMe promoted epimerization provided the 

corresponding trans-fused bicycle in good selectivity (d.r. = 11:1, not shown), which was further 

elaborated to vinyl stannane 154 by a sequential double alkylation, installing a second quaternary 

stereogenic center. In the following, iododestannylation gave rise to a vinyl iodide that upon exposure 

to n-BuLi underwent a ring closure under Barbier conditions to yield tricycle 155. A subsequent 

Dauben oxidation set the stage for a Birch SET reduction, favoring the requisite trans-junction within 

ketone 156 in moderate selectivity (d.r. = 2.2:1). Unfortunately, several steps were required to effect a 

1,2-oxygen transposition, an oxidative ring-expansion and an unsaturation to prepare the eight-

membered ring within enone 157, providing the substrate for a final annulation to yield tetracycle 158. 

All tasks remaining were to complete the preparation of the variecolin family’s common carbon 

skeleton by a one-carbon homologation and an ensuing adjustment of oxidation states. To this end, 

ketone 158 was converted to the corresponding enol triflate (not shown), which cleanly allowed for a 

Pd-catalyzed methoxy-carbonylation. Following reduction and a chemo- and diastereoselective 

hydrogenation of the exomethylene group in the presence of Pt/Al2O3, the group accessed allylic 

alcohol 159. The authors utilized this functional handle to effect a Pb(OAc)4 mediated C−H activation, 

resulting in the formation of 5-deoxyvariecolol (160) that was further oxidized to 

5-deoxyvariecolactone (161). Unluckily, material constraints prevented further investigations on the 

C-5 oxidation to access the corresponding natural products within Walker’s Ph.D. thesis, and no 

additional progress by the group of Piers has been published since then. 

At around the same time, in 2001, the laboratories of Molander disclosed an alternative approach 

toward the tetracyclic architecture of the variecolin family.[109] Initially, Molander and co-workers 

developed a route to the central eight-membered ring, hinging on a SmI2 promoted intramolecular 

cyclization of a primary chloride to a lactone. The group demonstrated the feasibility of the envisaged 

key step by subjecting chloride 162 to SmI2 and NiCl2 under photochemical reaction conditions and 

isolating tetracycle 163, hemiacetal moiety of which might be further elaborated (Scheme 1.22). In 

light of the obtained results, the authors were poised to explore this chemistry on a real system. To this 

end, they prepared enantiopure lactone 165 in a lengthy sequence, starting from commercially 

available racemic anhydride 164 and benefiting from an enzyme catalyzed desymmetrization. 

However, the following conversion to coupling partner 166 has not yet been accomplished. The 

synthesis of the second coupling partner commenced from enantiopure diketone 116, which was 

transformed into enone 167, being the substrate for the installation of the crucial trans-hydrindane 

pattern. In the event, exposure of bicycle 167 to NaBH4 in the presence of NiCl2 allowed for the 

preparation of the desired trans-ring junction, furnishing tricycle 168 in a modest yield of 52% after 

hydrogenolysis of the benzyl ether and concomitant ketal formation. 
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Scheme 1.22 Molander’s progress toward an enantioselective synthesis of (+)-variecolin (104): (a) Demonstration of the 
envisaged key step in a model system. (b) Prepared intermediate 165 en route to the alkyl iodide fragment 166. 
(c) Asymmetric preparation of trans-hydrindane 172 installing the trans-junction by a NiCl2-mediated reduction. 
 

Thereafter, protecting group- and redox-manipulations delivered the α,β-unsaturated ketone 169, 

which in turn was exposed to isopropenyl cuprate. This protocol gave rise to a single diastereomer 170 

that exhibits a cis-relationship between the angular methyl group and the newly installed substituent. 

After a Wolff-Kishner reduction, the undesired outcome of this reaction was easily corrected by an 

ozonolysis/epimerization/Wittig olefination sequence furnishing the thermodynamically more stable 

β-isomer 171. Finally, Molander et al. completed the synthesis of the second coupling partner 172 by 

two more steps, namely a Pd-catalyzed cleavage of the acetal and an ensuing Appel reaction to install 

the alkyl chloride. Although the authors refer to further investigations in their outlook, no reports 

toward a synthesis of alkyl iodide 166 and results on the fragment coupling have been published to 

date. 

Also in 2001, a first report of Dake et al. toward a total synthesis of nitiol (110) appeared in literature, 

followed by a full paper five years later.[110] The authors stated that “it is well established that reactions 

generating trans-hydrindanes bearing pendant methyl and iso-propyl groups almost exclusively result 

in a trans-relationship between the methyl and the iso-propyl groups”. Thus, Dake opted to use the 

conformational bias of a [3.3.0]cyclooctane system to diastereoselectively install this stereochemical 

setting. To this end, they enantioselectively prepared enyne 174 starting from geraniol-derived 

alcohol 173 via a Sharpless enantioselective epoxidation, TBS protection, a Lewis acid promoted 

silyloxy-epoxide rearrangement and standard Wittig olefination (Scheme 1.23). Subsequently, a 

Pauson-Khand reaction furnished a bicycle as the major diastereomer (d.r. = 6:1, not shown), the 

enone system of which was in turn reduced with L-Selectride®. The resulting lithium enolate was then 

intercepted with MeI giving rise to ketone 175, the precursor for the key Norrish fragmentation.[110a] 
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Scheme 1.23 Dake’s enantioselective approach toward nitiol (112) preparing two 1,22-dihydroxynitianes and installing the 
cis-relationship between the methyl and the iso-propyl group on the five-membered ring by a Norrish fragmentation. 
 
As envisaged, exposure of ketone 175 to photochemical reaction conditions installed the desired 

cis-relationship between the methyl and the iso-propyl group in cyclopentane 176 and the ester 

functionality was further manipulated to access vinyl stannane 177. The preparation of a second 

fragment, enol triflate 179, commenced with allylic ester 178 that was subsequently transformed to a 

cyclopentenone by a highly diastereoselective Ireland-Claisen rearrangement and a RCM (not shown). 

The authors noted that the steps of this sequence needed careful optimization to avoid epimerization of 

the carbonyl’s α-stereocenter, as the cis-relationship of the two adjacent substituents is 

thermodynamically disfavored due to steric reasons. At last, a 1,4-reduction affected by L-Selectride® 

and trapping of the generated enolate with PhNTf2 provided access to vinyl triflate 179. Next, both 

coupling partners 177 and 179 were merged by a Stille cross-coupling furnishing diene 180. This 

compound 180 served as a common intermediate for the exploration of several routes in order to close 

the macrocycle, the only effective one being a NHK reaction. Thereby, Dake et al. transformed 

diene 180 to aldehyde 181 that upon exposure to standard NHK conditions yielded allylic alcohol 182 

as a 1:1 mixture of diastereomers at C-1 (nitiol numbering). Unfortunately, all attempts to deoxygenate 

the obtained products 182 failed and thus no total synthesis of nitiol (110) has been accomplished so 

far.[110b] 

Apart from the previously discussed examples, only one more report dealing with an approach to a 

trans-hydrindane iso-propyl sesterterpenoids has been published. More precisely, Tori and co-workers 

pursued a RCM strategy to close the central eight-membered ring of YW 3699 (113) in 2009.[111] 

Along these lines, enone 183 was converted to aldehyde 184 in a six-step sequence, bearing the correct 

trans-substitution of the six-membered ring (Scheme 1.24).  
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Scheme 1.24 Tori’s racemic approach to YW 3699 (113) closing the central eight-membered ring via a RCM. 
 
The latter compound 184 was then reacted with racemic vinyl lithium species 185 that has been 

prepared by a Shapiro reaction from the corresponding trisylhydrazone and t-BuLi. A subsequent 

Dess-Martin periodinane (DMP) oxidation furnished both epimers of ketone 186, which served as a 

substrate for a nucleophilic epoxidation under Scheffer-Weitz conditions leading to a set of four 

diastereomers 187 in total (only one shown). Subjecting all obtained isomers independently to RCM 

reaction conditions (Grubbs II in refluxing CH2Cl2), Tori et al. found that only the depicted 

isomer 187 participated in an efficient ring closure in high yield to construct the trisubstituted alkene 

in ketone 188. Fortunately, this isomer 188 comprised the desired relative stereochemistry of all 

methines at the ring junctures and subsequent exposure to the Tebbe reagent cleanly afforded 

tricycle 189. However, these model studies have not yet addressed the installation of the 

trans-hydrindane system found within YW 3699 (113). As discussed, this portion represents a 

significant challenge for synthetic chemists due to the cis-relationship between the methyl group and 

the iso-propyl residue and the unusual oxidation pattern. Since this publication and despite their 

inspiring beautiful structures and interesting biological properties, no further reports on the class of 

trans-hydrindane iso-propyl sesterterpenoids have appeared in the literature.  

 

 

1.4 Project Objectives 
 

As discussed in the previous section, little synthetic endeavors on trans-hydrindane iso-propyl 

sesterterpenoids have been published over the last decades.[40] This is especially true for those 

members, the iso-propyl substituent of which resides in a cis-relationship to the angular methyl group 

in the trans-hydrindane moiety providing a challenging task to synthetic chemists: solely the reports 

by Dake toward a synthesis of nitiol (110) included such an achievement. However, one has to 

mention that this target 110 did not require the installation of a full trans-hydrindane motif due to the 

missing C5−C6 bond formation in biogenesis.[110] Inspired by the beauty and complexity of the 

structural architectures presented in Chapter 1.3 and attracted by the fascinating biological profile of 
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the type A trans-hydrindane iso-propyl sesterterpenoids, this Ph.D. thesis was aimed at exploring a 

divergent[112] and concise synthetic route to this subclass of terpenoid natural products. 
 

 
Scheme 1.25 The first major goal of this Ph.D. project: an enantioselective synthesis of two intermediates 190 and 191 en 
route to type A trans-hydrindane iso-propyl sesterterpenoids. 
 
More precisely, we aimed in the first place for the development of an enantioselective route to two 

versatile trans-hydrindane building blocks 190 and 191, resembling precursors for synthetic programs 

directed toward syntheses of type A trans-hydrindane iso-propyl sesterterpenoids (Scheme 1.25). In 

spite of the complexity of the target natural products, we further sought to access these building 

blocks 190 and 191 by a robust route applicable on multigram scale from a common intermediate, 

hence taking advantage of a diverse approach. Ideally, we opted for a reaction sequence starting from 

diketone 116[25] that is readily available in either enantiomeric series on large scale and has been 

employed previously in total syntheses.[113] As the conversion of diketone 116 into a trans-hydrindane 

system has been explored by a few research groups,[105] one formidable challenge in the preparation of 

building blocks 190 and 191 relies on a diastereoselective installation of the iso-propyl substituent, 

residing in a cis-relationship to the angular methyl group. If such an introduction was accomplished, it 

would essentially constitute the first entry for a total synthesis of any type A trans-hydrindane 

sesterterpenoid with this relative configuration. A second significant task concerning 

trans-hydrindane 191 is the selective installation of the alcohol functionality at the five-membered 

ring, formally going along with a 1,2-oxygen transposition. 

Having successfully established a practical synthesis of the two intermediates 190 and 191, we would 

aim in second place at launching a total synthesis program, allowing a collective preparation of several 

type A trans-hydrindane iso-propyl sesterterpenoids (Scheme 1.26). On the one hand, we became 

particularly fascinated by the unique pentacarbocyclic architecture found within astellatol (103),[93] 

comprising four-, five, six- and seven-membered rings and a total of ten stereogenic centers. Thereby, 

a total synthesis would allow for the elucidation of the absolute configuration and for a verification of 

the reported structure, which has been only assigned based on extensive NMR studies to date. In 

addition, the biological properties of this beautiful structure 103 have not been explored yet. Thus, a 
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viable route would pave the way for investigations concerning the function of astellatol (103) in 

Nature. 
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Scheme 1.26 Molecular structures of the sesterterpenoids astellatol (103) and YW 3548 (112), potentially accessible by total 
synthesis from the bisoxygenated trans-hydrindane building block 191. 
 
On the other hand, we were interested in the GPI anchor inhibitors YW 3548 (112) and 

YW 3699 (113) due to their fascinating biological profile (cf. Chapter 5.1) and their intriguing 

structural features.[101,102] Analogously to astellatol (101), the absolute configuration as well as the 

relative stereochemistry at the heptanoate side chain has not been determined and thus their structures 

remain unconfirmed. In addition, synthetic intermediates could provide a valuable starting point for 

testing their biological activities and further derivatization of the natural products could initiate SAR 

studies.  
 

 
Scheme 1.27 Molecular structures of the sesterterpenoids nitiol (110) and (+)-retigeranic acid B (102), potentially accessible 
by total synthesis from the monooxygenated trans-hydrindane building block 190. 
 
As we were aware of the fact that the installation of the correct oxygenation pattern at the five-

membered ring within bicycle 191 might be plagued by selectivity problems, preventing a practical 

preparation on large scale, we aimed additionally for synthetic studies toward nitiol (110, 

Scheme 1.27).[99] Even more, a successful route toward the monooxygenated bicycle 190 would also 

allow to revisit the retigeranic acids, particularly in order to develop a first route toward retigeranic 

acid B (102).[92] 

From a general synthetic perspective, efforts toward this class of natural products would stand as an 

excellent framework upon which to develop and apply state-of-the-art synthetic methods and examine 

their feasibility in a congested steric environment. Moreover, we envisaged implementing a 

bioinspired key step,[114] i.e. a cascade reaction[115] which rapidly builds up structural complexity in 

order to access the unique architectures presented above. Such a strategy has become a signature of the 

Trauner laboratories as evidenced by recently published reports,[116] and would allow to gain 

information on the potential biogenesis of the target molecules.  
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2 A UNIFIED APPROACH TOWARD TRANS-HYDRINDANE 

ISO-PROPYL SESTERTERPENOIDS 
 

2.1 Retrosynthetic Analysis 
 

As described in the previous chapter, the first major aim of this Ph.D. thesis consisted in the 

establishment of a robust route to two building blocks 190 and 191 which could be employed for the 

synthesis of type A trans-hydrindane iso-propyl sesterterpenoids. In our initial retrosynthetic proposal, 

we envisioned accessing building block 190 from alcohol 192 by a deoxygenation, e.g. following the 

Barton-McCombie protocol,[117] and subsequent liberation of the ketone functionality (Scheme 2.1). 

Alcohol 192 could also be seen as a retrosynthetic precursor for the bisoxgenated building block 191 

by a two-step protection/deprotection sequence. The order of these transformations could easily be 

inverted in case the envisaged TBS protecting group would not resist the acidic conditions required for 

an acetal cleavage. Thus, alcohol 192 would represent the branching point toward both building 

blocks 190 and 191. 
 

 
Scheme 2.1 Initial retrosynthetic analysis of the two trans-hydrindane iso-propyl building blocks 190 and 191. 
 
The key intermediate 192 could arise from an electronically controlled regioselective 

hydroboration/oxidation protocol leading to alkene 193 as a logical precursor In addition, we assumed 

that the angular methyl group in bicycle 193 would prevent the initial hydroboration to occur from the 

top face, thus efficiently setting two stereogenic centers in one single reaction. The latter 

compound 193 could be traced back to enone 194 by a Michael addition, Saegusa-Ito oxidation[118] and 

deoxygenation.[119] In analogy to the discussed hydroboration, the 1,4-addition was thought to proceed 

preferentially from the bottom face due to the shielding effect of the methyl group, thus providing the 

undesired stereochemistry and requiring a subsequent reoxidation to invert the stereochemistry (vide 



34  THEORETICAL SECTION 

infra). A direct trapping of the Cu enolate resulting from the Michael addition, with TMSCl was 

envisaged, which would directly provide the silyl enol ether necessary for a Saegusa-Ito oxidation.[120] 

Further retrosynthetic simplification would give ketone 195, which should be readily available from 

ESWHP ketone (116)[25] according to literature precedence.  
 

 

2.2 Preparation of the ESWHP-Ketone and Installation of the trans-Ring 

Junction† 
 

With the envisaged retrosynthesis in mind (cf. Chapter 2.1), we first set out to prepare ESWHP 

ketone (116) on large scale following the procedure described by Hajos and Parrish.[121] To this end, 

commercially available diketone 196 was submitted to acidic reaction conditions (catalytic amount of 

AcOH) in the presence of MVK (122) on a 100 g scale, triggering a Michael-addition to yield 

triketone 197, which was used in the next step without further purification (Scheme 2.2). 

Subsequently, an aldol cyclization catalyzed by L-proline (198) discriminated the two enantiotopic 

carbonyl functionalities on the six-membered ring within triketone 197 and provided bicycle 200 in 

approximately 90% ee.[121]  
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Scheme 2.2 Large scale preparation of diketone 116 utilizing an enantioselective organocatalytic protocol. 
 
As pointed out before (cf. Chapter 1.1), this reaction is an early example of enantioselective 

organocatalysis that involves the formation of an enamine. More precisely, the reaction presumably 

proceeds via the Houk-List transition state 199[122], in which an intramolecular activation by the 

carboxylic acid differentiates the two carbonyl functionalities. Having successfully introduced 

asymmetry, enantioenriched bicycle 200 was then dehydrated in the same reaction vessel by treatment 

with H2SO4 at elevated temperature to furnish the desired diketone 116. The obtained crude 

                                                 
†  Part of the experimental work on large scale was carried out in collaboration with Sebastian Rappenglück, Thomas M. 

Wildenhof, Martin Rossa and Florian Weinzierl as part of their Bachelor’s Theses (S. R., M. R.) and undergraduate 
research stays (T. M. W., F. W.) in the Trauner laboratories. 
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product 116 was purified by sequential extraction, flash column chromatography and finally 

recrystallization to increase the enantiomeric excess. The procedure allowed the preparation of 80 g of 

the desired diketone 116 in a single batch and provided hydrindenone 116 in 96% ee and with an 

overall yield of 55% over three steps. Moreover, the X-ray crystal structure of diketone 116 was 

elucidated for the first time.[123] It should be noted that both enantiomers of diketone 116 are readily 

available following this strategy, depending solely on the chiral information of the catalyst 198 

employed. Since the absolute configuration of the major targets astellatol (103), nitiol (110) and 

YW 3548 (112) has not been established, we used the less expensive L-proline (198) for our synthetic 

studies.  

Next, our attention was shifted to the installation of the trans-ring junction. As discussed 

previously (cf. Chapter 1.3), such a transformation presents a significant challenge and only a handful 

of protocols have been explored. This is especially true for enone precursors like diketone 116 lacking 

a substituent at the 4-position (IUPAC numbering) and bearing an angular substituent.[105] Initially, we 

envisioned to follow a report by Daniewski and co-workers,[124] who developed a direct installation of 

the trans-junction by exposure of diketone 116 to a bulky CuH species formed in situ from a mixture 

of CuI, t-BuMgCl and DIBAL-H. In addition, the use of HMPA as a highly polar solvent to break 

metal clusters is required to provide trans-hydrindane 118 in good yield and high 

diastereoselectivity (d.r. = 27:1). 
 

 
Scheme 2.3 Irreproducible diastereoselective reduction of diketone 116 following Daniewski’s protocol.  
 
Although this protocol has been utilized a few times in the literature on scaled up to 1 g,[125] the 

procedure was barely reproducible in our hands and led to the desired trans-hydrindane 118 in 40% 

yield and 10:1 d.r. despite several attempts (Scheme 2.3). In the other cases, the reaction furnished the 

cis-fused bicycle and alcohol side-products. Facing these selectivity issues and being aware that the 

opening steps of the envisioned total synthesis had to be applicable on large scale,[126] we focused on a 

five-step protocol to install the trans-ring junction. This procedure was originally reported on multi-

gram scale by an industry research group headed by Hajos and Parrish in 1975[127] and has been 

adapted by the groups of Danishefsky,[128] Nicolaou,[129] Sörensen[130] and recently by Myers[131] during 

their synthetic programs on the total syntheses of paclitaxel (5) and the cortistatin family, respectively.  

The protocol commenced with a chemoselective reduction of the less electron-rich carbonyl in 

diketone 116 via the slow addition of NaBH4 (0.30 eq.) to a solution of diketone 116 in EtOH at 

−18 °C (Scheme 2.4).[132] Noteworthy, the steric shielding of the angular methyl group induced a 

substrate controlled diastereoselectivity providing exclusively bicycle 201 in quantitative yield. The 

alcohol functionality in enone 201 was then protected as its t-Bu ether by exposure to 
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isobutylene (202) in the presence of H3PO4 and BF3·OEt2 to obtain indenone 203. In their seminal 

work,[133] Hajos and Parrish observed that the choice of a sterically demanding protecting group such 

as t-Bu is crucial to increase the trans-selectivity in the hydrogenation step (vide supra). Even more 

important is the installation of a substituent at the 4-position for the successful construction of the 

trans-ring junction, although the reasons for that observation are not completely understood. As no 

substituent at this position is required in our synthesis, the introduced residue has to be easily 

removable after the desired hydrogenation. Again, it was the industry research group headed by Hajos 

and Parrish, who found a solution for this problem.[126,133] More precisely, they developed an efficient 

protocol for the installation of an acid functionality. In these studies, they observed that the use of 

methoxymagnesium methyl carboxylate (MMC, 204), essentially a magnesium methoxide with a 

built-in source of CO2, resulted in a superior regioselectivity (C-4 vs. C-6) compared to other reagent 

combinations (e.g. NaH/CO2).[126] The authors attributed this finding to “the enhanced stability of the 

resultant magnesium chelates produced (relative to the analogous sodium chelates[…])”, which 

reduces the reversibility of the carboxylation process. 
 

 
Scheme 2.4 Large scale installation of the trans-hydrindane pattern in ketone 207 following a known five-step protocol and 
X-ray structure of acid 205. 
 
In practice, exposure of indenone 203 to MMC (204) in DMF at 130 °C provided the desired acid 205 

in 66% yield along with its C-6 regioisomer (not shown), which spontaneously decarboxylated during 

acidic work up (Scheme 2.4). After separation, the thus reisolated starting material 203 was again 

subjected to the carboxylation conditions furnishing acid 205 in an overall yield of 82% after a second 

cycle on a 57 g scale. In addition, the structure of acid 205 was determined by X-ray 

crystallography.[123] It exhibits an intramolecular hydrogen bonding of the acidic proton with the 

adjacent carbonyl functionality. More interestingly, no situation is visible, which might explain the 

higher selectivity for the installation of the trans-ring junction compared to diketone 116 based on a 
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preferred reaction face. With large amounts of acid 205 prepared, the crucial hydrogenation was 

carried out in the presence of catalytic amounts of Pd/BaSO4 under elevated pressure of 

H2 (3.5 bar),[134] affording β-keto acid 206. This intermediate 206 was immediately subjected to a heat- 

and vacuo-mediated decarboxylation[126] to furnish trans-hydrindane 207 in 59% yield over the two 

steps. On the largest scale, 27 g of building block 207 were prepared that was contaminated with 

approximately 6% of its cis-isomer. In addition to the investigations presented in this chapter, 

ketone 207 served as starting point for model studies toward a total synthesis of astellatol (103, 

cf. Chapter 3). Having successfully completed the installation of the trans-hydrindane backbone, the 

focus was now turned to the incorporation of the iso-propyl moiety. 
 

 

2.3 Diastereoselective Installation of the iso-Propyl Moiety 
 

Considering the retrosynthetic analysis, we opted to install the iso-propyl moiety at C-3 (IUPAC 

numbering) of the trans-hydrindane portion via a cuprate 1,4-addition. For this purpose, we had to 

adjust the oxidation states and manipulate protecting groups, commencing with the cleavage of the 

t-Bu ether by exposure of trans-hydrindane 207 to 6N aqueous HCl in refluxing EtOH (Scheme 

2.5).[135] Notably, these harsh reaction conditions cleanly led to the formation of alcohol 208 in almost 

quantitative yield and did not provoke any rearrangement by the formation of carbocationic 

intermediates.  
 

 
Scheme 2.5 Synthesis of trans-hydrindanone 195 via redox and protecting-group manipulations and verification of the 
trans-hydrindane pattern by X-ray crystal analysis of ketone 195. 
 
Subsequently, the free carbonyl within ketone 208 was protected as its 1,3-dioxalane by treatment with 

ethylene glycol (209) in the presence of catalytic amounts of pTsOH and utilizing a Dean-Stark 

apparatus. The obtained alcohol 210 was next oxidized to the corresponding ketone 195 using PCC 

under buffered reaction conditions. It turned out that the latter compound 195 was highly crystalline 
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and a final recrystallization from hexanes not only allowed for the removal of any traces of the 

undesired cis-isomer (vide supra), but also for a verification of the desired trans-hydrindane pattern by 

X-ray crystallography.[123] Overall, this reaction sequence was six steps longer compared to the direct 

reduction following Daniewski’s protocol (cf. Chapter 2.2) and an ensuing regioselective 

protection.[136] However, the developed route is very robust, scalable and provided on the largest batch 

19 g of ketone 195 in an overall yield of 29% for eight steps starting from diketone 116. 
 

 
Scheme 2.6 Preparation of enone 194 via Saegusa-Ito oxidation on 1 g scale. 
 
With a significant amounts of bicycle 195 prepared, the attention was now turned to the installation of 

a α,β-unsaturated ketone in order to prepare a substrate for the envisaged Michael addition. A 

literature survey revealed that a Saegusa-Ito oxidation[118] is the method of choice for such 

transformations in trans-hydrindane systems. We thus decided to investigate this reaction first. Hence, 

ketone 195 was converted to the corresponding TMS silyl enol ether 211 by sequential exposure to 

LDA and TMSCl/Et3N. This intermediate 211 was carefully isolated by aqueous work up and used 

without chromatographic purification for the next step. Thereby, treatment with 1.1 equivalents of 

Pd(OAc)2 at 40 °C resulted in the formation of metallic palladium, indicating the successful oxidation 

of ketone 195. Indeed, after careful flash column chromatography, the desired product 194 was 

obtained in 79% yield along with recovered starting material 195 on a 1 g scale (Scheme 2.6). 
 

 
Scheme 2.7 Mechanism of the (catalytic) Saegusa-Ito oxidation. 
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Mechanistically,[137] treatment of intermediate 211 with stoichiometric amounts of Pd(OAc)2 results in 

the cleavage of the Si−O bond and the formation of a PdII enolate, which can be either described as its 

η3-complex 212 or as η1-complex 213 (Scheme 2.7). The latter intermediate 213 then undergoes a 

β-hydride elimination to liberate the desired product 194 and an H−PdII species that collapses 

immediately to form Pd0, usually observed as a palladium mirror on the flask. Over the years, several 

methods have been developed in order to reoxidize Pd0 to PdII utilizing terminal oxidants as e.g. O2, 

benzoquinone or allyl methyl carbonate and thus rendering the process catalytic in PdII.[138] However, 

one has to state that these protocols still show room for improvement, as in most cases a stoichiometric 

use of Pd(OAc)2 is favored due to superior yields.[139] Since ‘classical’ Saegusa-Ito oxidation show 

high costs on large scale, we explored other procedures including catalytic protocols of the Saegusa-

Ito oxidation to install the requisite enone 194 prior to up-scale.  

These investigations‡ commenced with attempts to effect an α-bromination on ketone 195 giving rise 

to compound 214. This intermediate 214 could be later elaborated to the enone system in tricycle 194 

by exposure to basic conditions,[140] constituting a cheap alternative on large scale. In order to avoid 

cleavage of the dioxolane moiety by strongly acidic reaction conditions utilizing Br2, we employed 

PhMe3NBr3 (PTAB) as a substitute. 
 

Table 2.1 Studies toward the synthesis of α-bromo ketone 214: variation of reaction conditions.a 

 

 

Entry Source of Br+ Promoter Solvent T [°C] t [h] Observation 

1 PhNMe3Br3 HOAc THF 0 to rt 4 decomposition 

2 NBS NH4OAc Et2O rt 10 s.m. 

3 NBS Amberlyst-15 EtOAc rt 4 monobromination/ 
acetal cleavage 

4 NBS KMMDS THF −78 to rt 20 little conversion/ 
mainly s.m. 

(a) All reactions were carried out on 200 μmol scale of ketone 195. rt = room temperature, s.m. = starting material. 
 
However, reaction of ketone 195 with this source of Br+

 in the presence of catalytic amounts HOAc[141] 

resulted in decomposition (Table 2.1, Entry 1). We next examined NBS as a potential other mild 

source of Br+. While subjecting ketone 195 to acidic conditions with NH4OAc as reported by 

Tanemura and co-workers[142] did not lead to conversion (TLC analysis, Entry 2), the use of 

Amberlyst-15[143] resulted in full conversion and the isolation of a new compound (Entry 3). 

Subsequent 1H NMR analysis showed a successful monobromination as indicated by the specific 
                                                 
‡  These investigations were carried out in collaboration with Florian Weinzierl as part of his undergraduate research stay in 

the Trauner laboratories. 
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signals around 4.7 ppm (two diastereomers). However, these reaction conditions also caused the 

cleavage of the dioxolane moiety in ketone 195. Therefore, the nature of the isolated diastereomeric 

mixture as well as the bromination site-selectivity was not further investigated and anionic conditions 

were tested. To this end, ketone 195 was converted to the corresponding potassium enolate by 

treatment with KHMDS at low temperature and then reacted with NBS while allowing the reaction 

mixture to warm to room temperature (Entry 4). Although this procedure has been described in 

literature on a related system by Rawal and co-workers,[144] no conversion was observed. 
 

 
Scheme 2.8 Unsuccessful attempts to synthesize enone 194 by the Nicolaou-Baran method utilizing IBX (215). 
 
Since attempts toward selective α-bromination proved unsuccessful, the attention was next turned to 

the Nicolaou-Baran method for unsaturation of ketones.[145] Thus, ketone 195 was treated with 

IBX (215) in DMSO, a highly polar solvent which is necessary due to the poor solubility of 

oxidant 215 in most common organic solvents. Unfortunately, neither reaction at 60 °C for three days 

nor with catalytic amounts of TFA[146] at 100 °C for 18 h resulted in any conversion (Scheme 2.8). It 

should be noted that in further efforts the IBX·MPO complex could be explored, which has been 

reported to show superior reactivity compared to IBX (215) in the oxidation of silyl enol ethers to the 

corresponding enones.[147] 

Another frequently used method to oxidize a cyclic ketone to the corresponding enone involves an 

α-selenylation followed by oxidation to the selenoxide, triggering an intramolecular syn-elimination to 

furnish the alkene moiety. To this end, ketone 195 was initially deprotonated with LiHMDS and the 

thus generated Li-enolate was reacted with PhSeBr to form ketone 216 as an undetermined mixture of 

diastereomers (Scheme 2.9). 
 

 
Scheme 2.9 Unexpected Baeyer-Villiger oxidation generating bicyclic lactone 217 during attempts to install a 
cyclopentenone pattern via a selenoxide elimination. 
 
Without further purification, the oxidation/elimination step was next examined. Whereas the use of 

NaIO4 as oxidant did not result in any conversion, utilizing excess H2O2 according to a procedure by 

Shair and co-workers[148] prompted the formation of a new UV-active product as indicated by TLC 

analysis. Following purification, examination of NMR spectroscopic and mass spectrometric data of 

the new compound 217 revealed that the desired unsaturated system was successfully installed in a 
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poor yield of 18%. Unfortunately, the reaction conditions concomitantly led to a Baeyer-Villiger 

oxidation forming bicyclic lactone 217, presumably due to the release of ring strain.[149] Further 

attempts to avoid this side reaction employing exactly one equivalent of H2O2 resulted in poor 

conversion and the detection of traces of the desired enone 194 as indicated by TLC analysis. 
 

 
Scheme 2.10 Toward unsaturation of ketone 195: exploration of a protocol developed by Corey and co-workers. 
 
The focus was then centered on Pd-mediated enone formations. Thereby, a publication by Corey and 

co-workers captured our attention. They reported the formation of cyclic enones from the 

corresponding TIPS enol ethers in the presence of Pearlman’s catalyst (Pd(OH)2/C) and Na2HPO4 and 

utilizing excess t-BuOOH under O2 atmosphere as terminal oxidants.[150] Thus, TIPS enol ether 218 

was prepared by treatment of ketone 195 with TIPSOTf and Et3N at 0 °C as indicated by 1H NMR 

spectroscopy (Scheme 2.10). Subsequently, the crude silyl enol ether 218 was submitted to the 

reaction conditions developed by Corey. Although the reaction was performed for a prolonged time of 

four days and with a excess of reagents, no formation of the desired product 194 could be detected.  
 

Table 2.2 Toward a catalytic Saegusa-Ito oxidation: variation of reaction conditions.a 

 

Entry R 
Pd(OAc)2 

[mol-%] 

Equivalents of 

allyl methyl carbonate 
t [h] Observation 

1 TIPS 40 9.45 144 13% 194 isolated 

2b TMS 10 1.35 1 195:194 = 2:1 

3b TMS 40 1.35 1 195:194 = 3:1 
(a) All reactions were carried out on 0.2 mmol scale in MeCN (2 mL), preparing the corresponding silyl enol ether immediately prior to use. 
(b) The ratio was determined by 1H NMR spectroscopy after filtering the reaction mixture over silica (eluting with hexanes:EtOAc = 1:1). 
 

Finally, we returned to Saegusa-Ito conditions and investigated catalytic protocols employing 

commercially available allyl methyl carbonate as a stoichiometric oxidant. As the reactivity and the 

stability of the employed silyl enol ether plays a crucial role, we first tested the TIPS enol ether 218 

due to its previously observed enhanced stability compared to TMS enol ether 211. However, a 

prolonged reaction time and a final total amount of 40 mol-% Pd(OAc)2 resulted in a low yield of 13% 

(Table 2.2, Entry 1). Changing the silyl group for a less sterically demanding TMS enol ether 211, and 

using 10 mol-% Pd(OAc)2 resulted in a 2:1 ratio of ketone 195 and 194 as indicated by 1H NMR 
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spectroscopy of baseline separated signals for the angular methyl groups (Entry 2). Unexpectedly, this 

first promising ratio dropped to 3:1 while employing 40 mol-% catalyst loading (Entry 3).  
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Scheme 2.11 Preparation of enone 194 via Saegusa-Ito oxidation on large scale and its X-ray structure. 
 
Due to the unsuccessful results, we abandoned these investigations at this stage in order to further 

explore the retrosynthetic proposal. In future experiments, however, additional protocols for the 

synthesis of enone 194 should be examined.[138,147,151] Thus, we finally returned to ‘classical’ Saegusa-

Ito conditions for the preparation of enone 194 on larger scale. While increasing the amount of 

employed substrate 195 to 6 g, the yield decreased form 79% to 69%. However, resubjection of the 

isolated starting material to the reaction conditions raised the overall conversion from ketone 195 to 

Michael acceptor 194, providing 15.2 g of enone 194 in 82% yield on the largest scale after the 

combination of different reaction batches (Scheme 2.11). In addition to the previously employed 

standard analytical methods such as NMR spectroscopy and mass spectrometry, the structure of 

bicycle 194 was now also resolved by X-ray diffraction of a single crystal.[123] 

The next task ahead was the investigation of a cuprate addition in order to install the desired 

iso-propyl substituent. Based on a literature precedent by Molander and co-workers[109] and due to the 

enhanced reactivity of vinyl cuprates, we decided to explore the Michael addition of an isopropenyl 

residue first. To this end, a higher order cyano cuprate was prepared by slow addition of 

4.5 equivalents of isopropenylmagnesium bromide (219) to 2.25 equivalents CuCN at 0 °C. After an 

additional 30 min, the mixture was cooled to −78 °C and enone 194 was added resulting in the 

formation of alkene 220 as a single diastereomer in a good yield of 81% (Scheme 2.12). 
 

 
Scheme 2.12 Diastereoselective installation of an isopropylene substituent via a cuprate addition. 
 
Surprisingly, 2D NOE NMR spectroscopy indicated that this addition occurred from the top face, i.e. 

syn to the angular methyl group, which was assumed to shield this side. This stereochemical outcome 
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was unexpected based on inspecting molecular models and the X-ray structure of enone 194 and was 

later on unambiguously confirmed by X-ray crystallography.[123] To our delight, this result matched the 

iso-propyl’s relative stereochemistry found in our major synthetic targets astellatol (103), nitiol (110) 

and YW 3548 (112). As experiments with an iso-propyl cuprate gave only unsatisfactory results in our 

hands (not shown), we scaled up the installation of the isopropylene unit. Due to the experienced 

sensitivity of this cuprate addition, the reaction was conducted on not more than 1.5 g of ketone 194 in 

a single reaction vessel. A combined flash column chromatography of several reaction batches 

provided around 11.5 g of ketone 220 on the largest scale. To the best of our knowledge, only two 

examples with similar diastereoselective outcome in trans-hydrindenones have been reported by the 

groups of Molander[109] and Bull[152] in their efforts toward (+)-variecolin (104, cf. Chapter 1.3) and on 

an estrone derivative (not shown), respectively. Since our results rendered a second unsaturation in 

order to install the desired stereochemistry of the iso-propyl substituent redundant (cf. Chapter 2.1), 

we revisited our retrosynthetic analysis and shifted the attention directly to the syntheses of building 

blocks 190 and 191.  
 

 

2.4 En Route to Building Blocks for trans-Hydrindane iso-Propyl 

Sesterterpenoids 
 

Given the successful and unexpected diastereoselective installation of an isopropylene residue, the 

retrosynthetic analysis was revised. We now envisioned accessing bisoxgenated building block 191 

via a three-step sequence featuring a diastereo- and regioselective hydroboration as a key element and 

thus tracing ketone 191 back to alkene 221 (Scheme 2.13). 
 

 
Scheme 2.13 Revised retrosynthetic analysis of the trans-hydrindane iso-propyl building blocks 190 and 191. 
 
Whereas the diastereoselective outcome of the crucial hydroboration was not considered a problem 

based on the steric bias induced by both the angular methyl and the iso-propyl moiety, the 

regioselectivity could be problematic since both alkene carbons atoms in compound 221 are 

monosubstituted. However, the different steric environment at C-1 (being neopentylic) and 

C-2 (possessing an adjacent trisubstituted carbon atom) could suffice to discriminate the rates of 



44  THEORETICAL SECTION 

hydroboration in favor of the desired regioisomeric outcome. In addition, a careful choice of the 

hydroboration agent might enhance the regioselectivity to provide a practical entry into this series of 

type A trans-hydrindane iso-propyl sesterterpenoids. On the other hand, monooxygenated building 

block 190 could as well arise from alkene 221 via a hydrogenation/deprotection protocol, thus 

rendering the latter compound 221 the new branching point. Dioxolane 221 could in turn be prepared 

from ketone 220 by sequential hydrogenation and alkene installation, e.g. via an E2 elimination of the 

corresponding mesylate or a Shapiro reaction.[153]  
 

 
Scheme 2.14 Reduction of alkene 220 under standard hydrogenation conditions.  
 
Following this retrosynthesic plan, the first step was readily accomplished by submitting alkene 220 to 

standard hydrogenation conditions (Pd/C, H2) furnishing ketone 222 in 91% yield after purification by 

recrystallization (Scheme 2.14). It should be noted that we verified the unexpected epimerization at 

C-3 observed in this reaction by X-ray crystallography later on (cf. Chapter 2.5). Within the 

experiments discussed in this section, no assignment of the relative stereochemistry at C-3 was 

possible based on 2D NOE NMR spectroscopy due to overlaying signals in the 1H NMR spectra. 

Moreover, we were not aware at this stage of any literature example describing an almost complete 

epimerization or racemization of an adjacent stereogenic center under hydrogenation conditions. It 

was thus assumed that the relative stereochemistry in ketone 222 matched the one established in 

alkene 220 (vide infra). It should be emphasized, however, that the transformations tested on this 

system provided helpful information for the further synthesis with the desired stereochemistry 

at C-3 (cf. Chapter 2.6). 
 

 
Scheme 2.15 Attempts to convert ketone 222 to tosylhydrazone 223. 

 
Having prepared substantial amount of ketone 222, the installation of an alkene moiety following 

different strategies was next explored. Initially, we aimed for a two-step Shapiro protocol and we thus 

subjected ketone 222 to hydrazone formation conditions with pTsNHNH2.[154] However, neither 

reaction in refluxing EtOH with a pTsOH/NaOAc buffer nor in boiling THF in the presence of pTsOH 

and MgSO4 effected the desired formation of hydrazone 223 (Scheme 2.15). These findings were 

attributed to the neopentylic nature and steric encumbrance of the carbonyl functionality. In addition, 
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the use of strong aqueous acids such as H2SO4 or HCl known to accelerate the desired reaction was 

avoided due to the acid sensitivity of the dioxolane moiety within ketone 220. 

In an alternative approach, ketone 222 was cleanly reduced to alcohol 224 by treatment with NaBH4 

and the relative configuration of the newly installed stereogenic center was established by NOESY 

experiments (Scheme 2.16). Subsequently, dehydration attempts utilizing either Martin’s sulfurane[155] 

or sequential mesylation and E2 elimination in the presence of DBU were explored. These protocols 

remained unfruitful since no formation of alkene 225 was observed.  
 

 
Scheme 2.16 En route to alkene 221: dehydration attempts and first successful synthesis via Chugaev elimination. 
 
Next, we resorted to a syn-elimination protocol involving a protocol pioneered by Chugaev.[156] For 

this purpose, reaction of alcohol 224 with chlorothionocarbonate 226 in the presence of pyridine[157] 

afforded tricycle 227 in 90% yield (Scheme 2.16). Initial experiments in a melting point 

apparatus (neat in a tubule, 230 °C) resulted in conversion of intermediate 227 to a new compound as 

indicated by TLC analysis. We thus explored this reaction on a larger scale heating neat 

compound 227 to 275 °C in a Kugelrohr apparatus according to a literature precedent by Trost and 

co-workers.[158] Fortunately, the desired product 225 was directly distilled out of the reaction mixture 

in poor yield and its structure was subsequently verified by NMR spectroscopy and mass analysis. A 

further optimization of the reaction conditions conducting the transformation in a high boiling point 

solvent such as Ph2O or in 1,2-dichlorobenzene under microwave-conditions[159] was not investigated 

since a more convenient synthesis of alkene 225 was accomplished via another 

strategy (Scheme 2.17).  
 

 
Scheme 2.17 Efficient two-step protocol for the synthesis of alkene 221. 
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Therein, exposure of ketone 220 to KHMDS at low temperature generated the corresponding 

potassium enolate, which in turn was trapped with PhNTf2 furnishing enol triflate 228. This latter 

compound 228 was directly subjected to reductive coupling conditions employing n-Bu3N, formic acid 

and catalytic amounts of Pd(PPh3)2Cl2.[160] This protocol led to the clean formation of alkene 225 in a 

high yield of 87% over the two steps. Notably, the use of volatile solvents such as Et2O and n-pentane 

was necessary during the work up and purification process presumably due to the apolar nature and the 

previously observed low boiling point of alkene 225.  
 

 
Scheme 2.18 Catalytic cycle of the Pd-catalyzed reductive detriflation. 
 
Mechanistically,[161] this reaction proceeds via a standard Pd-catalyzed cross-coupling mechanism. The 

catalytic cycle commences with an oxidative addition of the in situ formed Pd0 species into the alkenyl 

triflate bond of tricycle 228 forming PdII complex 230, which in turn undergoes a ligand exchange 

with the in situ formed ammonium formate (Scheme 2.18). This intermediate 231 presumably falls 

apart instantly under extrusion of CO2 generating H−PdII complex 229 by a process which formally 

constitutes a β-hydride elimination. The catalytic cycle is terminated by a reductive elimination, 

liberating the desired product 225 and regenerating the catalytically active Pd0 species.  

Having established an efficient access to alkene 225, the attention was next focused on the envisioned 

hydroboration.[162] To this end, alkene 225 was subjected to different hydroboration agents (Table 2.3), 

followed by oxidative work up and determination of the regioisomeric ratio between alcohols 232 

and 233 in the 1H NMR spectra of the crude reaction mixture. The ratio was determined by integration 

of the characteristic signals at the newly formed stereogenic center (d at δ = 3.69 ppm for alcohol 232, 

ddd at δ = 4.40 ppm for alcohol 233). These investigation commenced with the exposure of alkene 225 

to excess BH3·THF complex at 0 °C. Upon slowly warming the reaction temperature to room 

temperature and performing an oxidative work up, decomposition of the starting alkene 225 was 
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observed (Table 2.3, Entry 1). Next, the amount of BH3·THF complex was reduced to equimolar 

stoichiometry, which surprisingly cleaved the acetal moiety instead of performing the desired 

hydroboration as observed by 1H NMR spectroscopy (Entry 2). This observation was attributed to the 

Lewis acidity of the hydroboration agent and similar findings have been reported previously.[163]  
 

Table 2.3 Toward a regioselective hydroboration of alkene 225: variation of reaction conditions.a 

 

Entry Borane (equiv.) T [°C] t [h] 
Ratio 232:233b 

(yield) 
Observation 

1 BH3·THF (5.0) 0 to rt 0.5 - decomposition 

2 BH3·THF (1.0) 0 to rt 0.5 - acetal cleaved 

3 BH3·SMe2 (1.1) 0 to rt 1 2:1 (90%) - 

4 BH3·SMe2 (1.2) 0 4 1.7:1 incomplete 
conversion 

5 BACH-EI (234, 1.2) 0 5 1.7:1 incomplete 
conversion 

6 ThxBH2 (235, 2.0)c 0 to rt 2 1.7:1 - 

7 (sia)2BH (236, 2.0)c 0 to 66 16 - s.m. 

8 9-BBN (237, 2.0)d 66 16 - s.m. 

9e 9-BBN (237, 3.0)d 180 6 - decomposition 

10 
Rh(PPh)3Cl (0.05) 

catBH (238, 2.0) 
0 to 66 16 - s.m. 

11f BH3·SMe2 (1.25) 0 to rt  1:1 (76%) - 
(a) All reactions were carried out on 10 mg scale in THF (20mM), unless otherwise stated. (b) The ratio was determined by 1H NMR 
spectroscopy of the crude reaction mixture. (c) The hydroboration agent was prepared immediately prior to use from the corresponding 
alkene and BH3·SMe2 complex. (d) A solution of 9-BBN (237) in the appropriate solvent was freshly prepared from 9-BBN dimer. (e) The 
reaction was conducted in toluene in a pressure tube. (f) The reaction was carried out on 200 mg scale. s.m. = starting material. 
 
Thus, we resorted to the BH3·SMe2 complex, featuring enhanced stability and therefore less Lewis 

acidic properties. Indeed, the reaction proceeded smoothly and furnished a 2:1 mixture of 

regioisomeric alcohols 232 and 233 in a combined yield of 90% (Entry 3). Unexpectedly, this ratio 

was in favor of the undesired isomer 232. Upon separation by flash column chromatography, both 

isomers 232 and 233 were characterized. By comparison with its epimer 224 obtained by reduction 

with NaBH4, alcohol 232 revealed different physical properties (NMR data, Rf value). In addition a 

NOESY correlation between the proton at C-1 and the angular methyl group confirmed that the 

hydroboration occurred from the bottom face. Further variation of the reaction temperature and 

utilizing the BACH-EI complex (234, Figure 2.1) did not alter the regioisomeric ratio dramatically, 
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enhancing it slightly to 1.7:1 with incomplete conversion (Table 2.3, Entries 4, 5). Thus, more bulky 

hydroboration agents such as ThxBH2 (235), (sia)2BH (236) or 9-BBN (237) were examined. 

However, these reagents either did not influence the selectivity (Entry 6), resulted in no 

conversion (Entries 7, 8) or led to decomposition (Entry 9). Besides, a Rh-catalyzed hydroboration 

utilizing Wilkinson’s catalyst and catecholborane (238), which has been reported to invert the 

regioselectivity obtained under standard hydroboration conditions in some cases,[164,165] was explored. 

This protocol was unsuccessful since again only starting material was observed (Entry 10).  
 

 
Figure 2.1 Molecular structures of the employed hydroboration agents BACH-EITM (234), thexylborane (235), 
disiamylborane (236), 9-BBN (237) and catecholborane (238). 
 
Ultimately, the most convenient procedure with BH3·SMe2 complex was scaled to 200 mg of 

alkene 225 and, interestingly, both alcohols 232 and 233 were obtained in an approximate 1:1 mixture 

in a combined yield of 76% (Table 2.3, Entry 11). As pointed out previously, separation of the isomers 

by flash column chromatography was facile and would potentially allow to increase the overall 

efficiency of this process by recycling the undesired isomer 232 via an oxidation/alkene installation 

sequence. Nevertheless, a higher yielding and more straight-forward route to compound 233 would be 

beneficial to provide multi-gram quantities for our total synthesis program. We therefore examined 

alternative protocols in that regard. To this end, alkene 225 was initially reacted with mCPBA to yield 

epoxide 239 as a single diastereomer (Scheme 2.19). This intermediate 239 was subsequently 

subjected to different hydride reagents in order to effect a regioselective epoxide opening. 

Unfortunately, treatment with LiAlH4 (THF, reflux) or Super-Hydride® (THF, 0 °C to rt) resulted in a 

clean reaction generating selectively the undesired regioisomeric alcohol 232, the spectroscopic data 

of which matched the ones obtained previously via hydroboration. 
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Scheme 2.19 Further attempts to install the desired oxidation pattern at the cyclopentane moiety via hydride epoxide opening 
or a radical-mediated regioselective reduction. 
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In another attempt to install the desired oxidation pattern at the cyclopentene moiety, alkene 225 

smoothly underwent dihydroxylation in the presence of OsO4 and K3Fe(CN)6 as terminal oxidant 

yielding diol 240 (Scheme 2.18). This compound 240 was in turn exposed to 

thiocarbonyldiimidazole 241 at elevated temperature to yield thiocarbonate 242. When submitting the 

intermediate 242 to reductive radical conditions (Bu3SnH, AIBN) to initiate a regioselective 

reduction,[166] no reaction took place in our hands. 

Having all these results in mind, we decided to focus on the preparation of the deoxygenated bicyclic 

building block 190, applicable for studies toward nitiol (110) or retigeranic acid B (102). Hence, 

submission of alkene 225 to hydrogenation conditions (Pd/C, H2) eventually furnished saturated trans-

hydrindane 243 (Scheme 2.20). The use of n-pentane as a rather unusual solvent was owed to the 

observed volatility of substrate 225 and the thus assumed similar physical properties of bicycle 243. 
 

 
Scheme 2.20 Two protocols for the synthesis of the trans-hydrindane building block ent-141. 
 
Subsequently, the carbonyl functionality was unmasked by treatment with catalytic amounts of iodine 

in acetone[167] to furnish ketone ent-141. It should be noted that the overall reaction step count could be 

reduced by one step when converting ketone 220 to diene 245 via enol triflate 244 following the 

protocol established previously. Again, hydrogenation of diene 245 employing Pd/C as catalyst 

smoothly afforded the fully saturated bicycle 245, which in turn was elaborated to ketone ent-141 on a 

1.0 g scale, albeit in a lower yield compared to the first route. Having successfully established a robust 

route toward the monooxygenated trans-hydrindane building block ent-141, we were still confident at 

this time that the iso-propyl residue at C-3 was α-configured. Since the enantiomer of ketone ent-141 

had been previously prepared,[168] we were now interested in comparing our analytical data with the 

one reported in the literature. Particularly, we were curious to explore how the relative configuration at 

C-3 would change the spectroscopic properties of the two diastereomers. These investigations and the 

surprising outcome of an X-ray single crystal analysis will be described in the next subchapter. 
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2.5 Evolution of Hydrogenation Catalysts as a Diversification Tool 
 

As pointed out before, the successful enantioselective synthesis of ketone ent-141 enabled a 

comparison to the analytical data of trans-hydrindane 141. Surprisingly, a literature survey revealed 

that only the optical rotation of this compound 141 had been published.[168] This was in contrast to the 

fact that ketone 141 has been prepared several times and was an important intermediate in the 

synthesis of retigeranic acid A (101) by Hudlicky[86] and Corey.[88] The former research group reported 

the optical rotation of enantiopure ketone 141 prepared from menthene (139) (cf. Chapter 1.3) with a 

levorotary value of −10.0 (c 0.07, CDCl3, Figure 2.2).  
 

 
Figure 2.2 Comparison of specific optical rotation for enantiomeric ketones 141 and ent-141 and X-ray structure of ketone 
ent-141. 
 
Having this data in mind, we initially set out to measure the optical rotation of the prepared bicycle 

ent-141 that was still assumed to be its diastereomer 190 (Figure 2.2). Since our synthetic studies were 

conducted in the enantiomeric series relative to Hudlicky’s report,[88] we unsurprisingly determined a 

dextrorotary specific rotation with a value of +101.3 (c 1.00, CDCl3). Based on the discrepancy of the 

absolute values, we were confident to have prepared ketone 190. On the other hand, we realized that 

our value differed from the one reported by Hudlicky solely by a factor of 10, which could easily arise 

from mistyping or miscalculating. Due to this observation, we opted to prove our assumed 

structure 190 unambiguously by growing crystals suitable for X-ray diffraction. To our surprise, the 

X-ray analysis of our prepared compound revealed that the iso-propyl moiety within ketone ent-141 

resided in a trans-relationship to the angular methyl group,[123] thus matching the structure reported by 

Hudlicky.[88] It remained unclear however at which stage of the reaction sequence the observed 

epimerization occurred. 

In light of this unexpected stereochemistry, several previously observed results could now be 

rationalized based on steric arguments. With respect to the hydroboration of alkene 225, the relative 

configuration at C-3 created a sterically more demanding situation at C-2. Moreover, the steric setting 

induced a preference to locate the boron atom at the less crowded C-1 carbon (Figure 2.3), ultimately 

leading to alcohol 232 as the major regioisomer (cf. Table 2.3). 
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Figure 2.3 Retrospective rationalization of previously observed selectivity with reactions of alkene 225 and epoxide 239 
based on the now established steric environment.  
 
Despite the relative stereochemistry of the iso-propyl moiety, this addition as well as the epoxidation 

and the dihydroxylation (cf. Scheme 2.19) were notably still highly diastereoselective and only 

controlled by the angular methyl group shielding the top face. Additionally, the outcome of the 

regioselective opening of epoxide 239 could be explained as this reaction occurs via a SN2 mechanism, 

i.e. a back-side attack at C-2 that is more easily accessible from the top face than C-1. 

Overall, the surprising X-ray structure of ketone ent-141 prompted us to thoroughly check the 

proceeded route in order to discover the reaction conditions that led to this unexpected and undesired 

epimerization. Starting from the unambiguously assigned structure of ketone 220, we reexamined our 

synthetic procedures and meticulously analyzed the spectroscopic data.  

 

 

 
Scheme 2.21 (a) Hydrogenation of ketone 220 in the presence of Pd/C required a recrystallization to obtain pure ketone 222. 
(b) Observation of small amounts of a second diastereomer in the 13C NMR spectrum prior to purification. 
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Thereby, it was possible to identify the hydrogenation step as a potential origin for this isomerization 

since a second set of signals observed in the 13C NMR spectra captured our attention (Scheme 2.21). 

This impurity or, seen from the retrospect, potential diastereomer was conveniently removed in the 

original procedure by recrystallization yielding ketone 222 in 91% yield. A thorough literature survey 

revealed that transition metal catalyzed hydrogenations sometimes lead to double bond isomerization 

prior to reduction.[169] Although often unnoticed in substrates where the isomerized product is 

subsequently reduced without any consequences, this process holds the potential to result in 

epimerization or racemization. Consequently, the choice of the hydrogenation catalyst was revisited 

and Pd/C was replaced with Adam’s catalyst (PtO2), which has been used for the hydrogenation of 

isopropylene residues in complex environments.[170] Notably, conducting the reaction in MeOH 

resulted in partial reduction of the carbonyl functionality in ketone 220. This undesired side reaction 

was bypassed when submitting ketone 220 to Adam’s catalyst in EtOH under an atmosphere of 

hydrogen. Following this protocol, the reaction resulted in a clean conversion to a product identical to 

the one observed with Pd/C as catalyst by TLC analysis.  

 
Scheme 2.22 (a) Changing the catalyst from Pd/C to PtO2 resulted in the formation of a new compound. (b) Comparison of 
1H NMR spectra for the hydrogenation of ketone 220 in the presence of Pd/C (top) and PtO2 (bottom). 
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The compound was isolated in 93% yield and an ensuing NMR analysis revealed the formation of a 

diastereomer 246 comprising distinctly different NMR properties compared to ketone 222. This is 

exemplified with protons at C-2 and C-3a (IUPAC numbering). For ketone 222, a signal for 2-HA at 

δ = 2.40 ppm is visible and the diastereotopic proton 2-HB was part of a multiplet at 

δ = 1.98−1.87 ppm. In contrast, the corresponding protons for ketone 246 are centered at δ = 2.48 ppm 

for 2-HA and at δ = 2.37 ppm for 2-HB, respectively (Scheme 2.22). This significant downfield shift 

was also observed for the methine at C-3a. Its signal was determined as part of a multiplet at 

δ = 1.86−1.76 ppm for ketone 222, while a clean ddd at δ = 2.28 ppm was observed in the case of 

diastereomer 246. Moreover, the analysis of the 13C NMR spectra revealed the carbon signals for 

ketone 246 match those of the ‘impurity’ observed during the preparation of hydrogenation 

product 222. While these observations already indicated the successful synthesis of the desired 

ketone 246, an unambiguous proof of these assumptions was worth striving for.  

 
Scheme 2.23 (a) X-ray structures of hydrogenation products 222 and 246. (b) Proposed mechanism for the observed 
epimerization during hydrogenation of ketone 220 with Pd/C. 
 
To this end, attempts to crystallize both epimers 222 and 246 finally culminated in the elucidation of 

their structures by X-ray crystallography as depicted in Scheme 2.23.[123] Mechanistically, it is 

assumed that the use of Pd/C results in a double bond isomerization furnishing either tetrasubstituted 

alkene 247 or enone 248, which might both be instantly reduced with H2 (Scheme 2.23). It was shown 

that the presence of H2 played a crucial role since a blank experiment employing solely the catalyst 

Pd/C under N2 atmosphere did not result in any conversion. Interestingly, the hydrogenation of the 

isomerized alkene then occurred syn to the angular methyl group in analogy to the previously observed 

Michael reaction (cf. Chapter 2.3). One might argue that this reaction pathway is favorable as it 

provides the presumably more thermodynamically stable ketone 222, avoiding unfavored interactions 

between the angular methyl group and the iso-propyl substituent. Ultimately, it should be stated that 

this outcome can be exploited in a useful way for synthetic studies to both retigeranic acids A (102) 

and B (103, Scheme 2.24). While the preparation of ketone ent-141 was already accomplished (cf. 
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Chapter 2.4), a successful synthesis of its epimeric congener 190 would provide the basis to construct 

the pentacyclic architecture 103.  
 

 
Scheme 2.24 Hydrogenation catalysts as a diversification tool for synthetic programs toward retigeranic acids A (101) 
and B (102). 
 
Thus, these observations represent a handle for diversification in these total syntheses since simply 

changing the catalyst can provide both products 222 and 246 in high yield and selectivity. This is 

underlined by the fact that the hydrogenation with PtO2 was easily scalable, furnishing a total of 9.9 g 

of ketone 246 in 93% yield on the largest scale. With substantial amount of ketone 246 prepared, 

further transformations en route to the key building blocks 190 and 191 were then tackled. 
 

 

2.6 Synthesis of Two Versatile Building Blocks for Type A trans-

Hydrindane iso-Propyl Sesterterpenoids 
 

Having unambiguously assigned the point of epimerization, we embarked on the synthesis of building 

blocks 191 and 190. At first, ketone 246 was converted to the corresponding enol triflate 249 by 

sequential exposure to KHMDS and PhNTf2 (Scheme 2.25). This intermediate 249 then smoothly 

underwent the Pd-catalyzed reductive detriflation,[160] yielding alkene 221 in an excellent yield of 92% 

over the two steps. The reaction was conducted on up to 3 g of ketone 221 and on the largest scale, 

8.5 g of alkene 221 have been prepared. In analogy to the hydrogenation products 222 and 246, 

alkenes 225 and 221 showed remarkably different properties in NMR spectroscopy, indicating the 

successful preparation of alkene 221 without any unexpected epimerization at C-3 (IUPAC 

numbering). Alkene 221 was then treated with mCPBA to yield epoxide 250 with a fully substituted 

cyclopentane moiety. The structure of tetracycle 250 was established by X-ray crystallography,[123] 

confirming once more the correct relative stereochemistry at C-3. Interestingly, subjecting 

epoxide 250 to a hydride donor such as Super-Hydride® did not result in any conversion, even when 

conducting the reaction at 140 °C in boiling Bu2O. These observations clearly underlined that the 

trajectory for an SN2 displacement was now blocked at both C-1 and C-2 by geometric constraints. 
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Scheme 2.25 Successful large scale preparation of alkene 221 and verification of the C-3 relative stereochemistry by X-ray 
diffraction of epoxide 250. 
 
Next, a screening of alkene hydroboration conditions was carried out. Initially, a slight excess of 

BH3·SMe2 complex was employed and the reaction was allowed to warm from 0 °C to room 

temperature (Table 2.4 Entry 1).  
 

Table 2.4 Hydroboration of alkene 221: variation of reaction conditions.a 

 

 

Entry  
Borane 

(equiv.) 
T [°C] t [h] Ratio 192:251b Observation/ 

Remarks 

1 BH3·SMe2 (1.3) 0 to rt 0.5 2.7:1 - 

2 BH3·SMe2 (1.3) rt 0.5 2.6:1 - 

3 BH3·SMe2 (1.3) rt 2 2.0:1 slow addition of 
BH3 in 2 h at 0 °C 

4 BH3·SMe2 (1.3) 0 to rt 0.5 2.7:1 0.2M in alkene 
221 

5 BH3·SMe2 (1.6) 0 to rt 1 2.1:1 - 

6 BH3·SMe2 (0.7) 0 to rt 1 2.9:1 - 

7 9-BBN (237, 5.0) 0 to 66 15 - s.m. 

8 ThxBH2 (235, 1.6)c 0 to rt 1 - acetal cleavedd  

9 (sia)2BH (236, 2.5)c 0 to rt 1 - acetal cleavedd 

(a) All reactions were carried out on 10 mg scale in THF (c 0.03M) unless otherwise stated. (b) The ratio was determined by 1H NMR 
spectroscopy of the crude reaction mixture. (c) The hydroboration agent was prepared immediately prior to use. (d) Observed by 1H NMR 
spectroscopy of the crude reaction mixture. rt = room temperature, s.m. = starting material. 
 

After oxidative work up, this procedure delivered a 2.7:1 mixture of regioisomeric alcohols 192 

and 251 as assigned by 1H NMR spectroscopy (ddd at δ = 4.32 ppm for alcohol 192, d at δ = 3.74 ppm 
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for regioisomer 251, cf. Figure 2.4) in favor of the desired product 192. Thereafter, parameters such as 

temperature (Table 2.4, Entries 2, 3), addition rate (Entry 3), concentration (Entry 4) and equivalents 

of hydroboration agent (Entries 5, 6) were varied, but did not result in a significant improvement of 

the regioselectivity. Thus, the more bulky boron reagents ThxBH2 (235), (sia)2BH (236) and 

9-BBN (237) were tested. Unfortunately, they all remained unsuccessful and either led to acetal 

cleavage (Entries 8, 9) or no conversion of the starting material (Entry 7). It is worth noting that the 

amount of equivalents of hydroboration agent exceeds a profound effect on the regioselectivity of the 

reaction. Whereas the best result was obtained by quick addition of a substoichiometric amount (0.7 

equivalents) of BH3·SMe2, the ratio dropped to 2.1:1 by employing 1.6 equivalents. Potentially, this 

observation could be rationalized by the in situ formation of a chiral hydroboration agent RBH2.  
 

 
Scheme 2.26 Preparation of the chiral hydroboration agent IpcBH2 (253). 
 
Consequently, a pinene-derived chiral hydroboration agent developed by Brown and co-workers[171] 

was examined. Hence, commercially available (S)-Alpine-BoramineTM (252) was treated with 

BF3·OEt2 to liberate the free chiral compound 253 along with the precipitated BF3·TMEDA 

complex (254), which was conveniently removed by filtration (Scheme 2.26).[171] The resulting 

solution of enantiopure borane 253 was immediately used in the subsequent hydroboration with 

alkene 221. To our delight, 1H NMR spectroscopy of the crude reaction mixture after oxidative work 

up revealed an improved regiomeric ratio of 3.7:1 (Scheme 2.27).  

 
Scheme 2.27 1H NMR of the crude reaction mixture from the hydroboration of alkene 221 with IpcBH2 (253). 
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In contrast to the hydroboration of alkene 225, alcohols 192 and 251 were hardly separable, but careful 

flash column chromatography allowed for an enhancement of the ratio to 5.5:1 with a 84% yield on a 

550 mg scale (Table 2.5, Entry 1).  
 

Table 2.5 Hydroboration of alkene 221 with the chiral borane 253.a 

 

 

Entry Scale [g] Equiv. 253 
Yield after  

FCC [%] 

Ratio 192:251 

After FCCb 

1 0.55 1.5 84 5.5:1 

2 3.20 1.2 73 6.6:1 

3 3.80 1.2 67 12.4:1 
(a) The initial ratio of hydroboration remained unchanged. For further details on the reaction conditions see the experimental section. (b) The 
ratio was determined by 1H NMR spectroscopy. FCC = flash column chromatography. 
 
During scale-up with 16.1 and 13.6 mmol of alkene 221, this result was even further improved and 

delivered alcohol 192 in a ratio of 12.4:1 and 6.6:1, respectively (Table 2.5, Entries 2, 3) yielding a 

total amount of 5.20 g on the largest scale. Besides, the reaction with the enantiomeric borane ent-253, 

generated from (R)-Alpine BoramineTM, was tested and gave an approximately 1:1 mixture of 

regioisomers 192 and 251 (not shown). Therefore, the reaction of alkene 225 with borane 253 

constituted a matched case of double diastereoselection. 
 

Table 2.6 Conversion of dioxolanes 192 and 251 to ketones 255 and 256. 
 

 

Entry Scale [mg] Ratio 192:251 Yield after FCC [%] Ratio 255:256a 

1 495 5.5:1 75 12:1 

2 2660 12.4:1 82 ˃95:5 
(a) The ratio was determined by 1H NMR spectroscopy. For details on reaction conditions see the experimental section. FCC = flash column 
chromatography. 
 
Having synthesized substantial amounts of dioxolane 192, the next task was a deprotection/protection 

sequence. Hence, the diastereomeric mixture of alcohols 192 and 251 was subjected to acidic 

conditions employing PPTS in an acetone/water mixture[172] to liberate the carbonyl functionality 

within ketones 255 and 256. Gratifyingly, a slightly easier separation by flash column chromatography 
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was feasible at this stage, allowing for an improvement of the regioisomeric ratio from 5.5:1 to 12:1 

with a yield of 75% on a 495 mg scale (Table 2.6, Entry 1). On a 2.66 g scale, an initial 12.4:1 mixture 

was converted to pure alcohol 255 (˃95:5) in 82% yield (Entry 2). The major amount of material has 

not been employed for further studies and has been stored in case another protecting group would 

prove necessary. 

 
Scheme 2.28 Synthesis and X-ray structure of trans-hydrindane iso-propyl building block 191. 
 
With ketone 255 in hand, a suitable protecting group needed to be installed in order to further 

transform the cylcohexanone core. For this purpose, a TBS silyl ether was chosen and alcohol 255 was 

submitted to standard silylation conditions. This protocol furnished the pure ketone 191 in 91% yield 

(Scheme 2.28) and, overall, approximately 900 mg of this bicycle 191 have been prepared to date. The 

structure of this versatile trans-hydrindane building block 191 was unambiguously proven by X-ray 

diffraction.[123] It should be noted that an inverted order of the protecting group manipulations was 

inconvenient as the secondary TBS ether did not resist the acidic conditions required for the 

deprotection of the dioxolane moiety (not shown). 
 

 
Scheme 2.29 Successful preparation of building block 190 exploiting a diimide reduction of alkene 221. 
 
Having successfully accomplished the synthesis of the first envisaged building block 191, the attention 

was now focused on the deoxygenated analog 190. Thus, alkene 221 was subjected to hydrogenation 

conditions and, in analogy to the hydrogenation of ketone 220 (cf. Chapter 2.5), the use of Pd/C as a 

catalyst resulted in epimerization. The outcome was less pronounced in this case and gave rise to a 1:2 

ratio of the two diastereomers 243 and 257 as indicated by 1H NMR spectroscopy. More interestingly, 

the hydrogenation in the presence of PtO2 also occurred with partial epimerization in the same ratio as 

with Pd/C. This contrasts the previous experiences on the transformation of alkene 220 to ketone 246. 

We thus resorted to a non-metal mediated reduction protocol. Hence, alkene 221 was treated with 

pTsNHNH2 and NaOAc at 80 °C,[173] generating diimide in situ and resulting in a clean reaction to 

afford dioxolane 257 (Scheme 2.29). Ultimately, the carbonyl functionality was unmasked by 

treatment with PPTS to yield building block 190, which exhibited distinctly different properties in 
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comparison with its diastereomeric counterpart ent-141 regarding NMR spectroscopy and optical 

rotation. 
 

 

2.7 Conclusion 
 

In conclusion, this chapter detailed the evolution of the synthesis of three building 

blocks (ent-141, 190 and 191) starting from enantiomerically pure diketone 116. The developed route 

featured several highly diastereoselective transformations and showcased the diversification of two 

building blocks 220 and 221, thus constituting a unified approach. Moreover, the observed 

epimerization during hydrogenation of ketone 220 emphasized the importance of meticulous analysis 

of intermediates, even with seemingly straightforward reactions. Ultimately, it should be noted that the 

strategy was, as envisaged, robust and easily scalable to multigram quantities. These findings provided 

the basement for synthetic studies toward all type A trans-hydrindane iso-propyl sesterterpenoids, for 

which little progress has been reported previously. The details concerning our efforts toward the 

enantioselective syntheses of astellatol (103), nitiol (110) and YW3548 (112) will be presented in the 

next chapters of this Ph.D. thesis. 
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3 SYNTHETIC STUDIES TOWARD ASTELLATOL 
 

3.1 Astellatol: Isolation and Background 
 

The sesterterpenoid astellatol (103) was isolated in 1989 by Simpson and Sadler from aspergillus 

variecolor (syn A. stellatus).[93] Its unique architecture was elucidated by extensive applications of a 

variety of NMR techniques,[174] establishing astellatol (103) as a member of the rare class of 

pentacarbocyclic sesterterpenoids. More precisely, the carbon backbone comprises four-, five-, six- 

and seven-membered rings and features a total of ten stereogenic centers, three of which are all-carbon 

substituted. In addition to the previously introduced sterically encumbered trans-hydrindane portion, 

astellatol (103) possesses an exocyclic methylene moiety attached to a four-membered ring. 

Remarkably, only a single oxygenated site was established, thus rendering astellatol (103) a 

challenging target for total synthesis. Although astellatol (103) has been found by Simpson during the 

course of structural and biosynthetic studies on xanthone pigments, the authors did not examine the 

biological properties of this daunting natural product. Thus, a total synthesis of astellatol (103) would 

not only allow one to unambiguously confirm its relative and absolute configuration, but would also 

provide the basis to investigate its biological function in Nature. 
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Scheme 3.1 Proposed biosynthesis of astellatol (103) from pyrophosphate 34 put forward by Simpson.[175] 

 
Beside elucidating the structural features of astellatol (103), Simpson also put forth a biosynthetic 

proposal some years later.[175] Within this report, he supported his hypothesis by 13C labeled acetate 

feeding experiments, which indicates an origin along the lines of classical terpenoid biogenesis, thus 

commencing from an initial folding of geranylfarnesyl pyrophosphate (34, Scheme 3.1).[12] In the 

presence of the terpenecyclase, pentaene 34 undergoes the first C−C bond formation with generation 

of a carbocation to form bicycle 258, setting the cis-relationship between angular methyl group and the 
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iso-propyl residue. In the following, a 1,5-hydride shift is accompanied by the generation of the trans-

hydrindane portion, eventually leading to tertiary carbocation 259. This intermediate 259 is now prone 

to undergo a series of two stereospecific 1,2-hydride shifts, the result of which is the relative 

configuration of the two stereogenic centers at C-9 and C-10 (astellatol numbering). The thus 

constructed homoallylic carbocation 260 is further driven to the thermodynamic minimum by a 

homoallyl-cyclopropylcarbinyl-cyclobutyl rearrangement, generating the intriguing ring system in 

pentacarbocyclic intermediate 261 via a ring-expansion of cyclopropane 262. Ultimately, a site-

selective enzymatic oxidation furnishes the natural product 103.  
 

 

3.2 Retrosynthetic Analysis 
 

Retrosynthetically, we envisaged to access astellatol (103) via a bioinspired cationic cascade from 

allylic alcohol 263 according to the biosynthetic proposal of Simpson (Scheme 3.2).[175] In the forward 

sense, treatment of alcohol 263 with a Lewis or a Brønsted acid would form the stabilized tertiary 

carbocation 266, which could then trigger a ring closure to form tetracycle 265. In order to access the 

natural product by a stereospecific 1,2-hydride shift to form homoallylic cation 264, this cyclization 

should result in the diastereomer 265. Finally, carbocation 264 could next engage in the 

aforementioned homoallyl-cyclopropylcarbinyl-cyclobutyl rearrangement[176] to furnish the natural 

product 103 after subsequent deprotection.  
 

 
Scheme 3.2 Proposed retrosynthesis of astellatol (103) via a biomimetic cationic cascade. 
 
Domino transformations of this kind are highly challenging to realize in the laboratory without the 

help of an enzymatic environment, given the number of possible reaction pathways and side products. 

However, we assumed that the conformational bias associated with the already installed trans-

hydrindane portion might influence the outcome of the cascade in favor of the formation of 

astellatol (101). It should be stressed that this novel cationic cascade would explore the boundaries of 

biomimetic synthesis,[114] rapidly build up complexity and provide insight into the biogenesis of 

astellatol (103). 
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One major challenge concerning this envisaged route was the construction of the highly strained 

11-membered ring in tricycle 263 comprising two (E)-configured trisubstituted alkenes. Although 

these moieties have been found in natural products such as the dolabellane terpenoids, only a few 

successful routes toward their synthesis have been described in literature.[177,178] In this first 

retrosynthetic proposal, we aimed at closing the macrocycle by a ring-closing metathesis (RCM) from 

allylic alcohol 267, a moiety which is known to engage in RCM reactions (Scheme 3.3).[179,180] The 

latter intermediate 267 in turn could arise from alkene 268 by a sequential B-alkyl Suzuki 

coupling[181,182] and a vinyl lithium addition. 
 

 
Scheme 3.3 Retrosynthetic analysis of tricycle 263 by a RCM. 
 
Further retrosynthetic dissection via a lactol-Wittig reaction would give lactone 269, which already 

features the desired cis-relationship between the C-9 methine and the C-10 methyl group (astellatol 

numbering). The installation of this relative stereochemistry might be otherwise difficult to address at 

a later stage of the synthesis. We further envisaged installing the C-10 stereogenic center by the 

conformational bias (‘open-book effect’) of a tricyclic compound. To this end, tricycle 269 should be 

formed by a series of diastereo- and regioselective transformations, finally tracing astellatol (103) back 

to our previously synthesized building block 191. Although we had prepared larger amounts of trans-

hydrindane building block 191 and the associated route was practical, we decided to base our 

investigations on the more easily accessible model system 207. This ketone 207 differs from 

bicycle 191 only in the substitution pattern at the five-membered ring and we thus reasoned that both 

compounds would behave similarly in reactions at the cyclohexanone moiety. Moreover, reports on 

the mild and functional group tolerant cleavage of the t-butyl ether have been published,[183] which 

might allow for the installation of the required portion of astellatol (103) at a later stage of the 

synthesis following the chemistry established previously (cf. Chapter 2). 
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Scheme 3.4 Alternative strategies to construct tricycle 263, the precursor for the envisaged biomimetic cascade. 
 
In addition to this RCM strategy, we also envisioned closing the 11-membered rings by means of other 

methodologies. In particular, we thought that we could construct the macrocycle by an intramolecular 

B-alkyl Suzuki coupling from vinyl iodide 270 (Scheme 3.4). Alternatively, we aimed at examining an 

intramolecular allylation of allylic sulfone 271, the sulfur moiety of which could be later reductively 

cleaved. Notably, both cyclization precursors 270 and 271 should also be accessible from alkene 268, 

thus rendering this compound 268 a key intermediate in our efforts toward astellatol (103). A more 

detailed retrosynthetic analysis of these approaches will be given at the relevant sections (cf. Chapters 

3.5, 3.6). 
 

 

3.3 Installation of the Stereogenic Centers at C-9 and C-10 
 

In light of the retrosynthesis presented above, we embarked on a total synthesis program toward 

astellatol (103). Thereby, the installation of the two adjacent stereogenic centers at C-9 and C-10 was 

initially center stage. As pointed out before, these investigations were conducted utilizing 

enantiomerically pure ketone 207 as a model substrate.  
 

 
Scheme 3.5 Proof of site-selective reactivity of ketone 207: preparation of enone 273 and bicycle 276. 
 
In order to establish the desired regioselectivity in reactions involving the carbonyl functionality in 

ketone 207, we initially carried out two simple transformations (Scheme 3.5). On the one hand, 

ketone 207 was treated with phenyltrimethylammonium tribromide (PTAB) in the presence of 

catalytic amounts of HOAc[141] to generate a diastereomeric mixture of α-bromo carbonyl 

compound 272. This compound was further elaborated to enone 273 by exposure to LiBr and 



64  THEORETICAL SECTION 

Li2CO3
[140] at 120 °C in 49% yield over the two steps as the sole product. Notably, 

trans-hydrindenone 273 might at some point serve as an intermediate for synthetic studies toward the 

structurally related sesquiterpenoid 8,10-dihydroseiricardine A (274).[184] On the other hand, we 

conducted a regioselective methoxy-carbonylation by sequential treatment with LDA and Mander’s 

reagent (275)[185] and the structure of the single product, β-keto ester 276, was elucidated by 2D NMR 

analysis. Furthermore, we investigated the conversion of compound 276 to vinyl allyl ether 277 

following a protocol reported by Jacobsen and co-workers.[186] However, a brief screen of reaction 

conditions employing 1,1’-(azodicarbonyl)dipiperidine (ADDP) did not result in any conversion. We 

were particularly interested in this transformation since the latter intermediate 277 could serve as a 

precursor for a Claisen rearrangement.[62] Potentially, such a process could install the C-9 and C-10 

stereogenic centers in intermediate 278 by a stereospecific reaction via a chair-like six-membered 

transition state.  
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Scheme 3.6 Attempts to functionalize hydrindanone 207 via alkylation or allylation: diastereo- and regioselective synthesis 
of ketone 280 by Pd-catalysis and two proposed catalytic cycles. 
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Since a proof for the desired regioselectivity in transformations of ketone 207 had been achieved, we 

next focused on alkylation/allylation protocols utilizing different electrophiles such as allyl iodide or 

α-halo acetic acid derivatives (Scheme 3.6). Unfortunately, ketone 207 was resistant to all the attempts 

to form product 279 resulting in no or very poor conversion. These observations were in accordance 

with previous reports by Collins[187] as well as by Covey and co-workers[134,188] in their efforts to 

construct rearranged steroid ring systems. Fortunately, Covey found in these investigations that 

indenone 207 can be “alkylated regio- and diastereoselectively at C-6 (IUPAC numbering) with allylic 

electrophiles via potassium enoxyborates in the presence of catalytic amounts of a palladium 

complex”.[187] This methodology had been developed earlier by Negishi and co-workers and was 

shown to be general for a broad range of ketones.[189] Encouraged by this report, we set out to 

reproduce these results in our hands. Eventually, generation of the potassium enolate of ketone 207 by 

exposure to KHMDS at room temperature was followed by sequential addition of Et3B and a mixture 

of allyl bromide and catalytic amounts of Pd(PPh3)4 at −78 °C. Upon warming to room temperature for 

3 h and subsequent aqueous work up, the desired product 280 was isolated in 75% yield on a 5 g scale. 

The relative configuration of the newly installed stereogenic center was verified by 2D NOESY 

experiments. Noteworthy, it turned out that the success of this reaction was highly dependent on the 

quality of the Et3B solution employed since reliable results were only obtained by preparing a solution 

of Et3B immediately prior to use from neat Et3B and thoroughly degassed THF. While the mechanism 

of this reaction has been not illuminated thus far, a plausible catalytic cycle commences by the 

formation of PdII π-allyl complex 282 from allyl bromide and the active Pd0 species. In the following, 

this intermediate 282 might undergo a transmetallation with potassium enoxyborate 285 generated 

previously. The resulting Pd-enolate could be described as η1,η3-complex 283 or the 

bis-η1-complex 284. The latter intermediate 284 was recently proposed by Morken and co-workers in 

a Pd-catalyzed allyl-allyl cross coupling of allylic boronates[190] and was proven in silico to be the 

active species for the enantioselective decarboxylative Tsuji allylation by Stoltz and Goodard.[191] 

Intermediate 284 could undergo a reductive 3,3’-elimination to furnish the desired product 280 and 

regenerate Pd0. Alternatively, one could formulate a direct SN2-type substitution of the enoxy 

boronate 285 on the η1-bound complex 281. Such a mechanism would presumably rather involve an 

outer-sphere nucleophilic attack as found for Pd-catalyzed allylations with stabilized enolates in the 

pioneering work of Helmchen.[192]  

Having prepared substantial amounts of allylated hydrindane 280, we examined a reduction of the 

ketone moiety. In the event, we found a reversal of diastereoselectivity depending on the reducing 

reagent employed (Scheme 3.7). Whereas exposure of ketone 280 to NaBH4 at 0 °C delivered 

alcohol 286 in 79% yield, treatment of intermediate 280 with the bulky hydride donor 

K-Selectride® (287)[193] exclusively led to an equatorial attack to furnish α-diastereomer 288 in high 

yield. The structure of alcohol 286 was elucidated based on 2D NOESY experiments and careful 

analysis of coupling constants. 
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Scheme 3.7 Reagent controlled reduction of ketone 280 and preparation of lactone 290. 
 

In order to install the envisioned γ-lactone moiety, we subsequently sought to covert alkene 288 to the 

corresponding aldehyde by ozonolysis in a CH2Cl2/ROH solvent mixture. Unfortunately, under these 

reaction conditions, the intermediately generated lactol 289 was quantitatively converted to the 

corresponding acetals by reaction with the protic co-solvents EtOH or MeOH (not shown). As 

carrying out an ozonolysis in CH2Cl2 resulted with multiple unidentified side products, we next 

submitted alkene 288 to a Lemieux-Johnson oxidation employing a catalytic amount of OsO4 in the 

presence of NaIO4 and 2,6-lutidine and using 1,4-dioxane and H2O as a solvent mixture.[194] These 

reaction conditions, essentially a dihydroxylation followed by diol cleavage in one pot, efficiently 

provided a diastereomeric mixture of lactol 289, which was oxidized to the corresponding lactone 290 

by treatment with PCC. Overall, this two-step protocol gave tricycle 290 in an excellent yield of 90% 

on a 3.6 g scale and the three-dimensional architecture was verified by key NOE correlations as shown 

in Scheme 3.7. 
 

 
Scheme 3.8 (a) Diastereoselective synthesis of lactone 291 benefiting from the conformational bias of substrate 290. 
(b) Structure elucidation of tricycle 291 by coupling constant analysis and X-ray diffraction. 
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Next, the installation of the C-10 methyl residue was explored. For this purpose, deprotonation of 

lactone 290 with LiHMDS generated the lithium enolate, which in turn was intercepted with excess 

MeI.[195] As expected from the cyclic conformational bias of the substrate 290, tricycle 291 was 

obtained as a single diastereomer in good yield. The desired stereochemical outcome of this reaction 

was initially elucidated by careful analysis of coupling constants. As shown in Scheme 3.8, the C-10 

methine proton was observed as a quartet, originating from coupling with the three protons of the 

newly installed methyl residue. This observation indicated a dihedral angle H10−C10−C9−H9 of around 

90°, resulting in a small coupling constant close to 0 Hz according to the Karplus curve.[196] DFT 

calculations performed by Dr. R. Webster in the Trauner Group revealed an dihedral angle of 87° for 

lactone 291, which was in agreement with the observed spectroscopic data. Later on, we additionally 

established the structure of tricycle 291 unambiguously by X-ray crystallography.  
 

 
Scheme 3.9 Attempts to effect a Wittig reaction on lactol 292: synthesis of unsaturated ester 295. 
 
As outlined in our retrosynthetic analysis (cf. Chapter 3.2), the focus was now turned to the installation 

of an alkene moiety. To this end, we initially reduced lactone 291 to the corresponding lactol 292 by 

treatment with DIBAL-H at low temperature (Scheme 3.9). Thereafter, we envisioned to transform 

this intermediate 292 into secondary alcohol 293 by exposure to standard Wittig methylenation 

conditions, a process well precedent in literature.[197] In our hands however, this reaction proceeded 

only at elevated temperatures and provided alcohol 293 in traces as a mixture of diastereomers as 

indicated by 1H NMR spectroscopy. In contrast, reaction with ylene 294 yielded a single 

diastereomer 295, albeit in moderate yield even at prolonged reaction times (40 h) and 110 °C. Its 

relative stereochemistry at C-10 could not be assigned unambiguously. 

With these results in mind, we decided to pursue another strategy and synthesized diol 296 by 

treatment with LiAlH4 in excellent yield (Scheme 3.10). In order to avoid an orthogonal protecting 

group strategy to distinguish the two free alcohol functionalities present in bicycle 296, we exploited 

the potential of Swern oxidation conditions to convert primary TES ethers directly to aldehydes.[198] To 

this end, we accessed intermediate 297 by double silylation of diol 296 with Et3SiOTf and investigated 

the subsequent Swern oxidation. 
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Scheme 3.10 Synthesis of building block 299 via deprotective Swern oxidation. 
 

We found that a careful control of the external temperature not exceeding −60 °C and prolonged 

reaction times (7−8 h) were crucial for a success of the reaction since otherwise lower yields and/or 

the bisoxidized carbonyl compound were observed (not shown). Under the optimized reaction 

conditions, aldehyde 298 was obtained in 88% yield on a 1.48 g scale as a single diastereomer, not 

indicating any epimerization at the α-stereogenic center by NMR spectroscopy. While scaling to 

5.31 g of bissilyl ether 297, the yield decreased (75%) and remaining starting material 297 was 

recovered (8%). Therefore, the reaction times should be further extended in future experiments on this 

or any larger scale. Ultimately, a Wittig methylenation converted aldehyde 298 to alkene 299 in a high 

yield of 93%. On the largest scale, 2.86 g of this valuable intermediate 299 have been prepared, which 

served as the branching point for several routes toward constructing the strained 11-membered 

ring (cf. Chapters 3.4−3.7).  
 

 
Scheme 3.11 Conversion of alkene 299 to tricyclic lactone 301. 
 
In order to provide additional proof for the relative stereochemistry at C-10, the alkene moiety present 

in trans-hydrindane 299 was subjected to hydroboration conditions with 9-BBN (237) and subsequent 

oxidative work up gave rise to primary alcohol 300 (Scheme 3.11). Upon CSA mediated silyl ether 

cleavage, the resulting diol (not shown) was further elaborated to lactone 301 by a TEMPO/BAIB 

oxidation.[199] Unfortunately, the proton signals at C-9 and C-10 (astellatol numbering) possess the 

same shifts in the 1H NMR spectrum in CDCl3, but a NOE correlation between the C-10 methyl group 

and the C-1 methine indicated that no epimerization took place during LiAlH4 reduction, Swern 

oxidation and Wittig olefination. 

Having established an efficient and scalable route to alkene 299, we set out to adapt the reaction 

conditions to trans-hydrindane building block 191 with the correct substitution pattern on the five-

membered ring in place. Thus, we submitted ketone 191 to the allylation conditions established 
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previously and isolated the desired product 302 in 82% yield as a single diastereomer (Scheme 3.12). 

Subsequently, exposure of ketone 302 to K-Selectride® (287) gave rise to secondary alcohol 303, 

which in turn set the stage for the Lemieux-Johnson oxidation. After some optimization, this reaction 

proceeded smoothly and we accomplished the synthesis of tricycle 304 after PCC oxidation in 

86% yield over the two steps. 
  

 
Scheme 3.12 Application of reaction conditions from the model studies: synthesis of building block 268. 
 
Compared to the model system, the subsequent diastereoselective methylation required a slightly 

higher reaction temperature of −40 °C in order to achieve full conversion, leading cleanly to the 

formation of lactone 269 in 83% yield (Scheme 3.12). In analogy to the preparation of alkene 299, this 

intermediate 269 was next reduced with LiAlH4 and the generated corresponding diol (not shown) was 

immediately used in the following reaction. This was due to the acid sensitivity of the diol that became 

apparent by partial cleavage of the secondary TBS ether e.g. in the NMR solvent CDCl3 despite 

previous neutralization by filtering over basic alumina. Nevertheless, subsequent silylation with 

Et3SiCl gave access to bicycle 305 in 88% yield over the two steps. At last, deprotective Swern 

oxidation and Wittig methylenation completed the preparation of alkene 268 on a largest scale of 

80 mg. In initial experiments, we already found that a selective cleavage of the TES ether in 

bicycle 268 under acidic conditions (e.g. CSA or PPTS in CH2Cl2/MeOH) will require careful control 

of the reaction times to avoid a concomitant cleavage of the sterically more demanding TBS ether (not 

shown). In future experiments, a thorough screening of reagents and reaction conditions should be 

investigated since both secondary alcohols need to be distinguished by orthogonal protecting groups in 

the further course of the synthetic studies toward astellatol (103). Alternatively, a more robust 

protecting group such as TBDPS, TIPS, SEM or MOM at the C-5 hydroxyl group (astellatol 

numbering) should be introduced before conducting the reaction sequence presented in this chapter. 

With the correct relative stereochemistry at C-9 and C-10 installed, the preparation of the strained 

11-membered ring for the envisioned biomimetic cationic cascade was now focused on.  
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3.4 Toward Constructing the Macrocycle: The Metathesis Approach 
 

As pointed out earlier, our studies toward the construction of the 11-membered macrocycle were 

carried out on a model system (cf. Chapter 3.2). Since we had prepared substantial quantities of 

alkene 299, our route toward the precursor for a RCM macrocyclization commenced with the 

synthesis of an appropriate vinyl iodide for a Pd-catalyzed B-alkyl Suzuki coupling.[181] To this end, 

commercially available alkyne 306 was subjected to Negishi carboalumination conditions following a 

protocol by Floreancig and co-workers (Scheme 3.12).[200] Thereby, alkyne 306 was reacted with 

AlMe3 in the presence of catalytic amounts of Cp2ZrCl2 and 1.0 equivalent of H2O, both being known 

to facilitate the desired transformation.[201,202] Following syn-selective carboalumination, the 

intermediate organoaluminum species (not shown) was next intercepted with I2 to yield vinyl 

iodide 307 under retention of the alkene geometry. Subsequently, silylation of the free alcohol under 

standard reaction conditions gave rise to coupling partner 308, the (E)-configuration of which was 

verified by NOE spectroscopy. 
 

 
Scheme 3.13 (a) Two-step synthesis of vinyl iodide 308 by a Negishi carbalumination strategy. (b) Fragment coupling of 
alkene 299 and vinyl iodide 308 via a B-alkyl Suzuki coupling and synthesis of aldehyde 312. 
 
With both reaction partners in hand, efforts toward the fragment coupling were 

undertaken (Scheme 3.13). As a guide we considered the previous studies on the hydroboration of 

alkene 299 with 9-BBN (237). It was established that this reaction occurs best while heating the 

unsaturated intermediate 299 with hydroboration agent 237 to 40 °C for 3 h (cf. Chapter 3.3). Using 

these conditions, we generated the corresponding alkyl-boron species 309, which was subsequently 

treated with aqueous Cs2CO3 solution to form the corresponding boronate 310. This intermediate was 

then combined with vinyl iodide 308 in the presence of catalytic amounts of Pd(dppf)Cl2 and AsPh3 as 



3 Synthetic Studies toward Astellatol  71 
 

an additional ligand in a THF/DMF/H2O mixture.[203] The desired coupling occurred smoothly and 

provided trisubstituted alkene 311, which could not be entirely purified at this stage. Nevertheless, 

bissilyl ether 311 was submitted to the previously established deprotective Swern oxidation 

conditions (cf. Chapter 3.3) furnishing aldehyde 312 in a good yield of 69% over the two steps. This 

sequence demonstrated the robustness and generality of B-alkyl Suzuki couplings, which has led to 

widespread applications in organic synthesis,[181] e.g. evidenced by the large scale synthesis of 

discodermolide performed at Novartis.[204] 
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Scheme 3.14 Catalytic cycle of for the Pd-catalyzed B-alkyl Suzuki coupling. 
 
Mechanistically,[181] this reaction proceeds via a standard catalytic cycle of a Pd-mediated cross 

coupling and commences with the oxidative addition of Pd0 into the C−I bond of alkene 308 to furnish 

PdII-complex 314 (Scheme 3.14). An ensuing transmetallation with the previously generated 

boronate 310 delivers intermediate 313 and sets the stage for a final reductive elimination to afford the 

coupled product 311 under regeneration of the catalytically active Pd0 species. The ligand dppf was 

employed in this process due to its large bite angle since this ligand scaffold has previously been 

shown to suppress β-hydride eliminations in cross coupling reactions.[205] Additionally, ligands with 

larger bite angles have proven to accelerate reductive eliminations. The choice of the ligand thus 

allows for the Pd-catalyzed coupling of aliphatic organometallic reagents, which is usually 

complicated by competing hydride elimination processes. This mechanistic route would first result in 

the formation of alkene 299 and H−PdII species 315 that in turn would instantly regenerate 

catalytically active Pd0 and the protodeiodinated coupling partner 316. Moreover, the use of AsPh3 as 



72  THEORETICAL SECTION 

an additive has been shown to provide cleaner reactions at higher turnover rates by Johnson[206] and is 

since then frequently used in B-alkyl Suzuki couplings. 
 

 
Scheme 3.15 Efficient preparation of RCM precursor 320. 
 
In order to complete the synthesis of the model RCM precursor 320, the aldehyde functionality in 

bicycle 312 was converted to an alkene via a Wittig reaction giving rise to diene 317 in high 

yield (Scheme 3.15). Next, the silyl ether within trans-hydrindane 317 was cleaved and the resulting 

secondary alcohol 318 was oxidized with Dess-Martin periodinane (DMP)[207,208] under buffered 

reaction conditions. By this two-step sequence, ketone 319 was efficiently accessed in 85% yield. All 

remaining was the installation of an isopropylene moiety that was realized by addition of a vinyl 

lithium species generated in situ from 2-bromopropene and t-BuLi at −78 °C. The desired 

transformation was surprisingly high yielding (92%) given the steric encumbrance at the carbonyl 

functionality, and furnished tertiary alcohol 320 as single diastereomer. The relative configuration at 

the newly formed stereogenic center could not be assigned unambiguously at this stage, but we 

assumed an equatorial attack due to the shielding effect of the adjacent substituent, blocking an axial 

attack from the si-face. It should be noted that the relative configuration was inconsequential for the 

further synthesis as the tertiary alcohol would serve as the precursor for the generation of a 

carbocation to trigger the envisaged cationic cascade (cf. Chapter 3.2).  

Next, we embarked on the investigation of the key RCM metathesis. Although, the power of this 

synthetic tool has been increasing over the years, there is only little precedence reported for the 

preparation of 11-membered rings.[209] This fact is especially true for the synthesis of trisubstituted 

alkenes, thus underlining the challenges associated with the envisaged ring closure. Following a report 

by Fujii and co-workers,[210] we initially tested the use of Grubbs 2nd generation catalyst (323) in 

refluxing CH2Cl2 (Table 3.1, Entry 1). This and the following reactions were performed at high 

dilution (0.004M) to disfavor intermolecular reactions. These conditions led to the formation of a new 

product, which was not the desired tricycle 321, but rather the homocoupled dimer 322 as an 

undetermined mixture of the (E)- and (Z)-isomers. 
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Table 3.1 Toward a RCM macrocyclization: variation of reaction conditions.a 

 

 

Entry 
Catalyst 

[mol-%] 
Solvent T [°C] t [h] Observation 

1 323 (20) CH2Cl2 40 6 Dimer 322 

2b 323 (30) benzene 81 16 Dimer 322 

3b 324 (10) DCE 83 19 Dimer 322 

4b,c 323 (20) PhMe 110 24 s.m. 

5b 323 (30) PhMe 110 72 Dimer 322 

6b 325 (40) benzene 81 40 Dimer 322 
(a) All reactions were carried out on 5 mg scale in degassed solvents (3 x freeze-pump-thaw). (b) The substrate was added to a refluxing 
solution of the employed catalyst (0.2 mM) within 2−4 h using a syringe-pump. (c) The reaction was carried out with para-benzoquinone 
(30 mol-%) as additive. s.m. = starting material. 
 

This product 322 was indentified by ESI mass spectrometry and 1H NMR and HSQC spectroscopy. 

The 1H NMR spectrum clearly showed the consumption of the terminal alkene by the disappearance of 

the respective 1H NMR signals (ddt at δ = 5.81 ppm and centrosymmetric multiplets at δ = 5.01 and 

4.94 ppm). At the same time, a new signal at δ = 5.39 and 5.34 ppm for the (E)- and (Z)-isomer 

appeared. In addition, the characteristic signals for the isopropylene moiety at δ = 5.09 and 4.88 ppm 

remained unchanged. (Figure 3.1). We assumed that this outcome might be attributed to a high 

activation barrier for the formation of the strained macrocycle and thus changed the solvent to the 

higher boiling benzene (Table 3.1, Entry 2). Furthermore, the dilution was increased by slowly adding 

a solution of substrate 320 to catalyst 323. However, this procedure did not provide any new reaction 

product as indicated by 1H NMR spectroscopy.  
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Figure 3.1 Comparison of 1H NMR spectra (both recorded at 600 MHz in CDCl3) of substrate 320 and obtained 
homocoupled dimer 322. 
 
We next examined the use of the Grubbs-Hoveyda 2nd generation catalyst (324) in refluxing 

1,2-dichloroethane (DCE), a solvent that has been shown to avoid decomposition of the catalyst at 

elevated temperatures (Table 3.1, Entry 3).[211] While following this protocol, we could again only 

observe the homocoupled dimer 322 and we therefore resorted to toluene as an ever higher boiling 

solvent. In this experiment, we used catalyst 323 and added p-benzoquinone to the reaction mixture, 

which has been shown to suppress Ru-catalyzed alkene isomerisation processes.[212] Interestingly, 

these reaction conditions resulted mainly in the reisolation of starting material 320, even when using 

20 mol-% catalyst loading and prolonged reaction times (Entry 4). Next, we repeated the experiment 

without the additive and after 72 h, only the formation of dimer 322 was observed (Entry 5). In an 

additional experiment, we examined the reactivity of the Stewart-Grubbs catalyst 325. This 

Ru-complex 325 was developed for sterically demanding substrates and has been efficiently utilized 

for the cross metathesis of hindered allylic alcohols[213] and the construction of tri- and even 

tetrasubstituted alkenes by RCM.[214] Unfortunately, exposure of substrate 320 to catalyst 325 again 

resulted in the formation of dimer 322 (Entry 6) and we thus focused on other strategies to assemble 

the strained 11-membered ring in the following.  
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Figure 3.2 Potential substrates for future RCM strategies. 
 
Ultimately, it should be stated that is worth revisiting the RCM strategy and examine other catalysts 

such as the Mo-based ones reported by Schrock and co-workers.[215] In addition, one reason for the so 

far unsuccessful attempts could be the encumbered reaction site at the isopropylene residue since 

metathesis reaction are often highly sensitive to the steric environment. Thus, one possibility for 

further investigations following this strategy could involve a relay metathesis, first introduced by 

Hoye[216] and recently applied several times for the construction of ring systems in natural product 

synthesis.[217] Such a process would involve the synthesis of tetraene 326 (Figure 3.2). Alternatively, 

one could envisage relocating the reaction sites for the RCM with triene 327, in which the terminal 

alkene and the isopropylene moiety are embedded in a sterically less demanding setting.  
 

 

3.5 Toward Constructing the Macrocycle: The B-Alkyl Suzuki Approach 
 

In addition to the RCM approach described in the previous chapter, three further strategies toward the 

total synthesis of astellatol (103) were investigated in the course of this Ph.D. thesis, all starting from 

the versatile building block 299. One of these routes involved an intramolecular B-alkyl Suzuki 

coupling of alkene 328 to close the 11-membered macrocycle in tricycle 321 for the envisioned 

bioinspired cationic cascade (Scheme 3.16). As discussed, the B-alkyl Suzuki reaction is frequently 

employed in organic synthesis[181] and it has been utilized by several research groups to access strained 

medium-sized rings.[218]  

 
Scheme 3.16 (a) Envisaged route toward tricycle 321 via a B-alkyl Suzuki macrocyclization. (b) Three-step synthesis of 
vinyl iodide 330. 
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From a retrosynthetic point of view, we envisaged to accomplish the synthesis of cyclization 

precursor 328 via addition of a vinyl lithium species to a ketone and a subsequent elaboration of a 

primary alcohol functionality to vinyl iodide 328 by a Negishi carboalumination. Thus, this strategy 

would allow for the stereospecific installation of the double bond geometries found in triene 328. In 

order to access the desired substrate 328, we initially prepared a C6-building block following a 

procedure by Zakarian and co-workers as outlined in Scheme 3.16.[219] The sequence commenced with 

the protection of the alcohol functionality in alkyne 306 as its PMB ether (not shown). Generation of 

the resulting alkynyl lithium species by exposure to n-BuLi was followed by reaction with excess MeI 

to afford alkyne 329. Notably, this reaction required the addition of HMPA to proceed in completion. 

Otherwise, a mixture of starting material and the desired product 329 was obtained, which was 

inseparable by flash column chromatography. Next, alkyne 329 was subjected to hydrozirconation 

conditions, which are known to result in good regioselectivity for methyl substituted internal alkynes. 

To this end, treatment of intermediate 329 with Schwartz’s reagent Cp2Zr(Cl)H[220] generated in situ 

from Cp2ZrCl2 and DIBAL-H and subsequent stereospecific iododezirconation afforded vinyl 

iodide 330 as an approximately 10:1 mixture of regioisomers as determined by 1H NMR spectroscopy. 

Careful flash column chromatography allowed for the isolation of pure fragment 330, albeit in a 

modest yield of 43%. 
 

 
Scheme 3.17 Synthesis of tertiary alcohol 333 and its preferred conformation based on NOE spectroscopy and coupling 
constant analysis. 
 
With vinyl iodide 330 in hand, we next deprotected the silylated secondary alcohol functionality in 

bicycle 299 under acidic conditions and the resulting alcohol 331 was oxidized by DMP[207] to provide 

ketone 332 in 90% yield over the two steps (Scheme 3.17). Thereafter, both fragments were coupled. 

To this end, a halogen-lithium exchange of vinyl iodide 330 with t-BuLi provided the corresponding 

organo lithium species, which cleanly reacted with ketone 332 at −78 °C to afford allylic alcohol 333 

as a single diastereomer. The outcome of this reaction was verified by key NOE correlations as shown 

in Scheme 3.17. Moreover, careful analysis of the spectroscopic data revealed the preferred 

conformation of the stereogenic center at C-10. Based on the lacking NOE signal between 10-H and 

9−H, both groups could potentially point into opposite directions. This assumption was further 
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supported by the scalar coupling of the C-9 methine (ddd at δ = 1.86 ppm with J = 12.7, 3.7 and 

2.3 Hz). While the first two values could be identified to an axial-axial coupling and an axial-

equatorial coupling within the six-membered ring (to 8-H), the remaining coupling constant of 

J = 2.3 Hz accounts for the coupling of 10-H. Thus, this value indicates a dihedral angle of around 67° 

according to the Karplus curve.[221] Consequently, this observation suggested that a rotation around the 

C9−C10 bond would be required for an efficient ring closure, thus constituting an important factor for 

the activation barrier. 

Having combined the two fragments, we next focused on the transformation of the PMB ether in 

trans-hydrindane 333 to an alkyne moiety, the precursor for the installation of the required vinyl 

iodide. For this purpose, the PMB ether was cleaved under oxidative reaction conditions using DDQ 

and the resulting diol 334 was smoothly oxidized under Swern conditions[222] to furnish 

aldehyde 335 (Scheme 3.18). In contrast to this protocol, the latter transformation occurred only at 

elevated temperature and in the presence of a large excess of oxidation agent when using DMP. 
 

 
Scheme 3.18 Three-step sequence from PMB ether 333 to alkyne 337 and attempted Negishi carbalumination. 
 
Next, the crude intermediate 335 was homologated using the Ohira-Bestmann reagent (336)[223] that 

generates the Gilbert-Seyferth reagent[224] in situ by a retro aldol reaction of β-keto phosphonate 335 

with KOMe. This three-step sequence efficiently provided access to alkyne 337, which in turn was 

subjected to Negishi carboalumination conditions. Unfortunately, consecutive exposure of alkyne 337 

to Cp2ZrCl2/AlMe3 and I2 led to decomposition of the starting material, although there has been 

literature precedence for the exploitation of this methodology in complex settings.[225] Due to this 

observation, we resorted to an alternative four-step protocol for the preparation of the requisite vinyl 

iodide 328, which involved a regioselective Pd-catalyzed silylstannylation of the terminal alkyne 

moiety present in tertiary alcohol 337. This methodology was first reported by Chenard at DuPont[226] 

and has been successfully applied in natural product synthesis.[227] In addition, the research group of 

RajanBabu has expanded the scope of this catalytic procedure,[228] thereby demonstrating that free 

alcohol functionalities poison the catalyst and thus lower the efficiency of the process. Therefore, we 

initially set out to silylate alcohol 337. As we were aware of the fact that the alkyne moiety is prone to 
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be deprotonated, we avoided the use of strong bases such as KHMDS, LDA or n-BuLi and examined 

other protocols as presented in Table 3.2. 
 

Table 3.2 Attempted silylation of alcohol 337: variation of reaction conditions.a 

 

 

Entry 
Silylation 

Agent 
Base/additive Solvent T [°C] t [h] Observation 

1 TMSOTf 2,6-lutidine CH2Cl2 0 to 40 5 s.m. 

2 Et3SiCl DMAP pyridine 90 20 s.m. 

3 339 - DMF rt 16 s.m. 

(a) All reactions were carried out on 5 mg scale with excess silylation agent (3−10 eq.). s.m. = starting material, rt = room temperature. 

 
However, neither using TMSOTf/2,6-lutidine in boiling CH2Cl2 (Table 3.2, Entry 1)[229] nor 

Et3SiCl/DMAP in pyridine[230] at 90 °C (Entry 2) effected the desired transformation to a silyl 

ether 338. As even subjection of alcohol 337 to the highly reactive silylation agent BSTFA (339) in 

DMF[231] resulted in reisolation of starting material (Entry 3), we reasoned that the alcohol 

functionality in alkyne 337 might be sterically so inaccessible that it would not thwart the Pd-catalysis.  

Thus, we exposed alkyne 337 to a catalytic amount of Pd(PPh3)4 and excess Me3SiSnBu3 in refluxing 

THF following a procedure by Williams (Scheme 3.19).[232] Gratifyingly, these conditions resulted in 

the formation of vinyl stannane 340 as a single regioisomer in 75% yield and we verified the 

diastereoselective outcome by HMBC and NOE spectroscopy. It should be mentioned that the reasons 

for this selectivity have not been clarified in the literature to date to the best of our knowledge. 
 

 
Scheme 3.19 Toward the installation of a vinyl iodide: synthesis of vinyl silane 343 via regioselective silylstannylation.  
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With the addition product 340 in hand, we embarked on the installation of the trisubstituted alkene 

moiety. To this end, intermediate 340 engaged in a chemoselective iododestannylation by treatment 

with 1.0 equivalent of I2 at −40 °C in the presence of the bulky pyridine derivative 341[232] to furnish 

vinyl iodide 342 in high yield. A subsequent cuprate coupling afforded vinyl silane 343, at which point 

we established the (E)-double bond geometry by NOESY experiments once more. Notably, triene 343 

contained all carbon atoms required for the construction of the pentacyclic backbone of 

astellatol (103), only missing the correct substitution pattern at the cyclopentane portion. The 

iododesilylation of vinyl silane 343 remained to be studied in order to access macrocyclization 

precursor 328. Hence, we treated vinyl silane 343 with excess NIS (≈ 2.5 equivalents) in MeCN[232] 

and observed the formation of a new product. Upon isolation, 1H NMR spectroscopy revealed that the 

iododesilylation took place as indicated by a downfield shift of the vinyl proton from δ = 5.20 ppm to 

δ = 5.89 ppm. Unfortunately, the reaction conditions presumably also caused an iodoetherification as 

proton signals at δ = 4.53 and 3.61 ppm were observed, which could belong to protons attached to a 

heteroatom. In addition, the characteristic protons signals for a terminal vinyl group disappeared and 

we thus tentatively assigned the structure of the new compound as tricycle 344. While the use of 

excess NIS in MeCN is usually required for the iododesilylation to secure retention of the double bond 

geometry,[233] Zakarian has shown that the use of 1,1,1,3,3,3-hexafluoro-2-pronanol (HFIP) as solvent 

allows to lower the amount of NIS to stoichiometric quantities.[234] Unfortunately, this protocol 

resulted in decomposition of vinyl silane 343 in our hands. In light of the observation of side 

product 344, we rationalized that a protection of the alcohol functionality might avoid the 

intramolecular cyclization, but the examined conditions (KHMDS, Et3SiCl or Ac2O, py, 90 °C) did not 

meet with success. Due to material constraints, no further investigations could be undertaken at this 

stage. Thus, this strategy should be reexamined with larger quantities of vinyl silane 343 in order to 

perform at thorough screening for the protection of the alcohol functionality and to test other 

iododesilylation conditions. 
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Scheme 3.20 Revised strategy to vinyl iodide 328 involving a late-stage alkene installation. 
 
An alternative solution for the above presented problem of the undesired etherification could be a late-

stage installation of the terminal alkene in cyclization precursor 328. This aim could be achieved by a 

Grieco elimination[235] from the corresponding primary alcohol 345 (Scheme 3.20) since protocols for 

this transformation in the presence of a sensitive vinyl iodide moiety are known.[236] Bicycle 345 in 

turn should be accessible from previously prepared alcohol 300 based on our earlier explorations (vide 

supra). 
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Scheme 3.21 Progress toward the preparation of vinyl iodide 351: a seven-step synthesis of alkyne 350. 
 
In order to examine this route, alcohol 300 (cf. Chapter 3.3) was converted to its TBDPS ether (not 

shown) and a chemoselective desilylation under acidic conditions provided secondary alcohol 346 in 

87% yield (Scheme 3.21). Following Swern oxidation[222] to afford ketone 347, the two fragments 347 

and 330 were coupled as previously established. Thus, exposure of trans-hydrindane 347 to an organo 

lithium species generated from vinyl iodide 330 furnished allylic alcohol 348 in a moderate yield of 

60%. Next, cleavage of the PMB ether with DDQ provided access to diol 349, which in turn was 

elaborated to alkyne 350 by sequential Swern oxidation[222] and Ohira-Bestmann homologation.[223] 

The following steps toward vinyl iodide 351 and cyclization precursor 328 have not yet been explored 

and should be addressed in future efforts.  
 

 

3.6 Toward Constructing the Macrocycle: The Allylation Approach 
 

In parallel to the two approaches detailed in the previous subchapters, we explored a third strategy to 

close the strained 11-membered macrocycle in alcohol 321. This route hinged on an intramolecular 

allylation of sulfone 352 and a subsequent desulfurization based on a report by Yamada,[237] who 

successfully accessed dolabellane marine diterpenoids[177] with this strategy (Scheme 3.22). Allyl 

sulfone 352 should again arise from alkene 299 by sequential B-alkyl Suzuki coupling, vinyl lithium 

addition to a cyclohexanone moiety and selective manipulation of functional groups. For this purpose, 

we first prepared an appropriate vinyl iodide fragment 357 suitable for the installation of a 

trisubstituted alkene by B-alkyl Suzuki coupling. The synthesis started from malonate 353, which was 

alkylated with iodoform to yield diester 354 on multigram scale according to a procedure by Menche 

and co-workers (Scheme 3.22).[238] 
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Scheme 3.22 (a) Envisaged strategy to close the strained 11-membered ring via an intramolecular allylation. (b) Synthesis of 
vinyl iodide 357 starting from malonate 353.  
 
This intermediate 354 underwent then saponification with concomitant decarboxylative elimination in 

the presence of KOH in a refluxing 3:1 mixture of EtOH and H2O. An ensuing reduction of the 

resulting carboxylic acid 355 with LiAlH4 gave rise to vinyl iodide 356 with (E)-alkene geometry, 

which was verified by NOE spectroscopy and matched the data reported by Menche.[238] Ultimately, a 

silylation provided a convenient access to silyl ether 357 in four steps.  
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Scheme 3.23 Fragment union of alkene 299 and vinyl iodide 357 and synthesis of ketone 361. 
 
Having prepared substantial quantities of vinyl iodide 357, the Pd-catalyzed coupling with the boron 

species derived from alkene 299 and 9-BBN (237) was explored. This reaction occurred smoothly and 

delivered trans-hydrindane 358 that in turn was globally desilylated to provide diol 359 in 63% overall 

yield (Scheme 3.23). A protection of the primary alcohol as its pivalate 360 differentiated between the 

two alcohol functionalities and the remaining secondary alcohol was next oxidized with DMP[207] 

accomplishing the synthesis of ketone 361.  

In the following investigations, the preparation of a second vinyl iodide building block was center 

stage. For this purpose, we took advantage of a protocol originally developed by Sato[239] and recently 

applied by Paterson and co-workers.[240] Therein, alkyne 362 was exposed to i-BuMgCl in the presence 
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of Cp2TiCl2 to trigger a hydrotitanation. After complete conversion, the resulting organometallic 

species was reacted with I2 to give the desired vinyl iodide 363, albeit in a poor yield of 15% 

(literature:[240] 49%, Scheme 3.24). 
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Scheme 3.24 Two-step synthesis of vinyl iodide 364. 
 
This disappointing outcome was attributed to the addition of solid I2, which was barely soluble in the 

reaction mixture. In future experiments, one should thus resort to the addition of I2 in solution and 

conceivably add HMPA as reported by Gibbs.[241] Nevertheless, we obtained sufficient amounts of 

alcohol 363 and a final silylation completed the synthesis of vinyl iodide 364, the structure of which 

was verified by 2D NOE experiments. 

Next, the two fragments 361 and 364 were combined in analogy to the previous approaches. Hence, 

treatment of vinyl iodide 364 with t-BuLi generated an organo lithium species in situ, which in turn 

was slowly added to ketone 361 to form tertiary alcohol 365 in high yield and as a single 

diastereomer (Scheme 3.25). The relative configuration of the new introduced stereogenic center was 

assigned based on the previous results (cf. Chapter 3.5). Noteworthy, the pivalate remained intact 

despite using excess of the vinyl lithium species. Furthermore, product 365 already contained all 

carbon atoms necessary for the model studies toward astellatol (103). Having successfully installed the 

second side chain, we cleaved the pivaloyl ester in alcohol 365 with excess DIBAL-H at −78 °C, 

which furnished diol 366 in good yield. While we pursued a step-wise procedure in these initial 

experiments, a direct cleavage of the protecting group could be accomplished by adding excess MeLi 

or EtMgBr to the reaction mixture after complete conversion. Such a protocol has been utilized 

recently by Carreira and co-workers[242] and would reduce the overall step count. 
 

 
Scheme 3.25 Progress toward the synthesis of cyclization precursor 352. 
 
The latest transformation examined to date was the conversion of allylic alcohol 366 to a 

toluenesulfone species. Thereby, treatment of intermediate 366 with I2 in the presence of PPh3 and 
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imidazole yielded an allylic iodide (not shown) which was substituted with NaSO2p-tol in DMF.[232] 

The desired compound 367 was obtained in 46% yield and characterized by NMR spectroscopy and 

mass spectrometry. However, the reaction was accompanied by the formation of an inseparable 

unidentified side product (d.r. ≈ 4:1). We reasoned that this observation might be attributed to the 

ability of I2 to isomerize double bonds. Thus, further protocols for the installation should be 

investigated in future, including a consecutive tosylation/iodination/substitution procedure. 

Alternatively, the use of PBu3/PhSSPh in pyridine should be examined since this reagent combination 

has been shown to convert allylic alcohols into the corresponding sulfides,[237] the oxidation state of 

which could then be adjusted by selective oxidation to the sulfone. If this transformation is 

successfully optimized, the desilylation and conversion to an allylic chloride 352 are yet to be 

investigated in order to set the stage for the investigation of the envisaged ring closure.  
 

 

3.7 An Alternative Approach: Toward a Ketene-Alkene Cycloaddition 
 

While the strategies discussed in the earlier chapters toward a total synthesis of astellatol (103) 

focused on assembling the pentacarbocyclic architecture by a bioinspired cationic cascade, we also 

developed an additional route hinging on an intramolecular [2+2]-cycloaddition to construct the 

cyclobutane moiety (Scheme 3.26).[243,244] 

 

 
Scheme 3.26 Retrosynthetic strategy toward construction of the pentacyclic architecture 368 via an intramolecular 
cycloaddition and potential isomer 372 arising from this approach. 
 
From a retrosynthetic point of view, the pentacyclic structure 368 was traced back to 

cyclobutanone 369 by the sequential interconversion of two carbonyl functionalities including a 

substrate controlled diastereoselective hydrogenation. This intermediate 369 in turn should arise from 

ketene 370 via the aforementioned cycloaddition strategy. We were aware of the fact that this reaction 

might be accompanied by the formation of another pentacyclic backbone 372, which also is a highly 

strained ring system. Independently of which isomer might arise, this transformation would build up 

structural complexity, set two all-carbon stereogenic centers in one single operation and was thus 
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worth being examined in our eyes. Beside the potential exploitation of Lewis acid catalysis,[245] we 

were interested how the relative confirmation of the allylic stereogenic center at C-14 (astellatol 

numbering) and a variation of the associated alcohol protecting group could influence the selectivity of 

this reaction. As starting point, we envisioned utilizing the α-epimer at C-14 to direct an approach of 

the ketene moiety from the top. The precursor 370 should be generated in situ from the corresponding 

acid chloride (not shown) that should arise from carboxylic acid 371. Following a one carbon 

homologation, further retrosynthetic simplification would dissect intermediate 371 to alkene 299 and 

an appropriate vinyl iodide via a B-alkyl Suzuki coupling.[181] 

In practice, we commenced with the synthesis of a suitable coupling partner by transferring 

cyclopentenone 373 to the corresponding α-iodo enone 374 under standard reaction conditions (I2, 

K2CO3, DMAP, Scheme 3.27),[246] setting the stage for an enantioselective Corey-Itsuno 

reduction.[247,248] For this purpose, ketone 374 was exposed to the oxazaborolidine catalyst 375 and 

BH3·THF complex following a procedure developed by Uskokovic[249] to furnish allylic alcohol 377 in 

82% yield and 96% ee on multigram scale.[250] 

 

 
Scheme 3.27 Enantioselective synthesis of vinyl iodide 377 via a Corey-Itsuno reduction. 
 
Mechanistically, this reaction proceeds via the boat like transition state 376, in which the larger 

substituent of the prochiral ketone, i.e. the iodoalkene fragment, adopts a position to minimize the 

disfavored steric interactions with the catalyst as depicted. Such a conformation results in a 

preferential intramolecular delivery of the hydride form the re-face and forms the desired product 377. 

Moreover, it has been shown that the catalyst 375 differentiates the two substituents with 

extraordinary selectivity in cyclic α-halo enones.[248]  

In subsequent experiments, the alcohol functionality of vinyl iodide 377 was protected as its PMB 

ether under basic conditions (NaH, PMBCl, Scheme 3.28). Interestingly, the obtained optical rotation 

of alkene 378 (+2.2, c 1.00, CHCl3) differed dramatically from the one reported by Paquette and 

co-workers for ent-378 (+37.0, c 1.08 CHCl3),[251] but an alternative preparation under acidic 

conditions (PMBTCA, CSA) gave the exact same value. Thus, we were confident that no 

epimerization occurred and submitted cyclopentenol 378 to the B-alkyl Suzuki reaction conditions 

employed previously. To our delight, a sole product 379 was obtained in 88% yield, indicating that 

enantiomerically pure vinyl iodide 378 had been employed. Next, the silyl ether in trans-

hydrindane 379 was cleaved under acidic conditions (CSA, CH2Cl2/MeOH) that we had frequently 

used before (vide supra). These conditions were chosen since the ‘real’ system would necessitate a 

differentiation between a secondary TES ether and a secondary TBS ether (cf. Chapter 3.3). 
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Scheme 3.28 Synthesis of ketone 382 via B-alkyl Suzuki coupling and observation of a transetherification. 
 
While this reaction occurred smoothly on a 20 mg scale, we observed two products 380 and 381 in an 

approximately 1:1 ratio when utilizing 710 mg of substrate 379 (Scheme 3.28). Thereby, the more 

polar product 381 was identified as the desired secondary alcohol. Interestingly, the reaction 

conditions also effected a concomitant conversion of the PMB protecting group to a methyl ether 380 

as established by NMR spectroscopy and mass spectrometry. The latter product 380 was obtained as a 

single diastereomer, but its relative configuration at C-14 (astellatol numbering) was not assignable 

based on 2D NMR experiments. Therefore, no hints on the mechanistic nature of this unexpected 

transetherification, presumably involving a SN2-substitution, were gained. In the future, one should 

examine other desilylation agents such as TBAF or HF·pyridine. Due to these not unexpected 

difficulties, ketone 382 was isolated after oxidation of alcohol 381 with DMP[207] in a disappointingly 

low yield of 34% over the two steps.  

In addition, we converted side product 380 to cyclohexanone 385 under Swern conditions[222] and 

utilized this intermediate for initial experiments toward a homologation (Scheme 3.29). For this 

purpose, two reaction conditions have been examined so far. Whereas exposure of ketone 385 to the 

Kluge-Wittig ylide derived from phosphonium chloride 383 did not result in any conversion to enol 

ether 384,[252] the more nucleophilic lithium salt of phosphine oxide 386[253] reacted with ketone 385 to 

some extent. Due to incomplete conversion, the temperature was raised to 66 °C triggering an 

elimination of the addition product 387 to enol ether 384 in the same reaction pot. Usually, this 

transformation is accomplished in a separate reaction by exposure to a strong base such as NaH.[254] 

However, no complete conversion of ketone 385 was observed. The intermediate approximate 1:1 

mixture of enol isomers 384 could not be characterized properly to date due to the fact that the sample 

decomposed during the recording of NMR spectra. Presumably, aldehyde 388 was formed by traces of 

acid present in CDCl3 as indicated by characteristic signals observed in the 1H and the 13C NMR 

spectra at δ = 9.48 (d, 3J = 4.6 Hz) ppm and δ = 205.7 ppm, respectively. 
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Scheme 3.29 Efforts toward a homologation: reaction of ketone 385 with the lithium salt of phosphine oxide 386. 
 
With these observations in mind, we are optimistic that the desired homologation of ketone 385 to 

aldehyde 388 can be optimized in near future. Moreover, the developed protocols could be adopted for 

ketone 380 to provide sufficient quantities of the corresponding homologated aldehyde (not shown). If 

this reaction sequence proves successful, a subsequent Pinnick oxidation[255] should then give rise to 

acid 371 and provide the basis to investigate the key intramolecular [2+2]-cycloaddition. Due to the 

observed acid sensitivity of the PMB ether however, it might be necessary to install a more robust 

protecting group such as MOM, SEM, TIPS or TBDPS. 
 

 

3.8 Conclusion and Future Directions 
 

In summary, this chapter detailed our current progress toward a total synthesis of the pentacarbocyclic 

sesterterpenoid astellatol (103). Therein, we succeeded in the synthesis of the bicyclic building 

block 268, which comprises the correct relative configuration of astellatol (103) at six stereogenic 

centers. The preparation of alkene 268 was accomplished by a series of diastereoselective operations, 

mainly originating from substrate control. In the course of these ventures, we established the 

installation of the C-9 and C-10 stereogenic centers in model studies and accessed 

trans-hydrindane 299 on multigram scale. This intermediate 299 in turn provided the basis for the 

examination of four different strategies to assemble the carbon backbone assigned for the natural 

product 103. Whereas the major portion of experiments was dedicated to the installation of a strained 

11-membered macrocycle in order to pursue a bioinspired route via a cationic cascade (cf. Chapter 

3.4−3.6), the last strategy focused on a more ‘traditional’ route, namely a [2+2]-cycloaddition to 

construct the cyclobutane moiety within astellatol (103, cf. Chapter 3.7). Despite enormous efforts 

however, these approaches did not yet meet with success or the precursors for the key cyclizations 
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have not been accessed to date. Therefore, these strategies will be further investigated in our on-going 

synthetic program en route to the total synthesis of type A trans-hydrindane iso-propyl 

sesterterpenoids.  
 

 
Scheme 3.30 Alternative strategy to access the precursor for a biomimetic cationic cascade under Barbier conditions. 
 
In our studies toward the macrocycle, we encountered problems concerning the tertiary allylic alcohol 

at C-1. Thus, an alternative route toward the 11-membered ring in tricycle 321 could involve the late-

stage installation of this moiety. To this end, one could prepare vinyl iodide 389 along the lines of the 

previously explorations, involving a B-alkyl Suzuki coupling of alkene 299 (Scheme 3.30). This 

intermediate 389 could then be transformed the macrocycle in tricycle 321 under Barbier conditions 

employing e.g. Zn.[256] Moreover, one could think of a plethora of methodologies, e.g. a Nozaki-

Hiyama-Kishi coupling,[257] to construct this strained ring by other retrosynthetic disconnections, thus 

proving an array of opportunities for future experiments.  
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4 SYNTHETIC STUDIES TOWARD NITIOL 
 

4.1 Nitiol: Isolation and Background 
 

In 1999, the group of Kawahara reported the novel structure of a sesterterpenoid named nitiol (110, 

Figure 4.1). This natural product 110 was extracted from ‘Hercampuri’ (Gentianella nitida),[99] which 

is used in Peruvian folk medicine as a remedy for hepatitis and in the treatment of obesity. Based on 

extensive NMR spectroscopic investigations, the authors assigned the tricarbocyclic architecture 

comprising two five-membered rings and a central 12-membered macrocycle. Moreover, careful 

analysis of NOE spectra allowed for the elucidation of the relative configuration of all fives 

stereogenic centers and the double bond geometry of the three alkenes present in nitiol (110). In 

analogy to astellatol (103) and the retigeranic acids, nitiol (110) only contains one oxygenated site, 

thus requiring careful retrosynthetic planning of functional group interconversions. 
 

 
Figure 4.1 Molecular structures of the sesterterpenoids nitiol (110) and nitidasin (111), both isolated from ‘Hercampuri’, a 
Peruvian folk medicine 
 
Nitiol (110) was found during efforts to identify new low-molecular lipophilic probes in order to study 

intracellular signal transduction mechanisms in human cells. Thus, Kawahara et al. determined the 

effect of nitiol (110) on the gene expression of interleukin-2 (IL-2).[258] This polypeptide regulates the 

activity of white blood cells and is necessary for the growth and proliferation of T-cells, which are 

produced during an immune response. Additionally, the application of synthetic IL-2 has been 

approved as an immunotherapy for the treatment of renal cell cancer and malignant melanoma. Within 

their tests, Kawahara and co-workers found that nitiol (110) enhanced the IL-2 mRNA level in Jurkat 

cells by a factor of three, whereas its structural analog nitidasin (111),[100] isolated as well from 

Gentianella nitida, remained ineffective. In conclusion, the authors stated that the structure of 

nitiol (112), distinctly differing from other known IL-2 gene expression modulators, might serve as a 

new tool to gain further insights into signal transduction pathways, ultimately leading to the 

transcriptional control of the IL-2 gene.  
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4.2 Retrosynthetic Analysis 
 

From a retrosynthetic perspective, we envisioned to access nitiol (110) via a dienyne metathesis and a 

subsequent reduction from precursor 390 (Scheme 4.1). On the one hand, this strategy would avoid the 

difficulty to carry out a late-stage deoxygenation of a carbonyl or an alcohol functionality, which 

might be very problematic as experienced by Dake and co-workers (cf. Chapter 1.3).[110b] On the other 

hand, this route would also elegantly construct two rings in one single operation and constitute a rare 

example of macrocycle formation via dienyne metathesis.[259,260] Dienyne 390 could arise from 

aldehyde 391 by sequential standard functional group manipulation. This intermediate 391 could in 

turn stem from homoallylic iodide 393 and ephedrine derivative 392 via a Myers alkylation followed 

by reductive removal of the auxiliary.[261] Myers’ protocol is widely used in organic synthesis and 

allows for the diastereoselective installation of various alkyl substituents, even on sterically hindered 

substrates. Within the proposed synthesis, this transformation would thus generate the desired 

cis-relationship between the two substituents at C-6 and C-7 (nitiol numbering). 
  

 
Scheme 4.1 Retrosynthetic analysis of nitiol (110) featuring a dienyne metathesis as key step. 
 
Whereas the western fragment 392 should be accessible from the corresponding acid, the eastern 

portion 393 could be prepared starting from dicarbonyl compound 394. This pathway could be 

realized by a multistep sequence involving a vinyl Grignard addition and a subsequent 

[3,3]-sigmatropic rearrangement according to the Johnson-Claisen protocol to selectively install the 

trisubstituted alkene present in cyclopentane 393. It should be noted that such an approach would 

require the dissection of one carbon atom. Alternatively, other classical olefination strategies such as a 

Horner-Wadsworth-Emmons reaction might also be considered. Further retrosynthetic simplification, 

in particular ozonolysis of a silyl enol ether, should ultimately trace nitiol (110) back to building 

block 190, the synthesis of which has already been accomplished previously (cf. Chapter 2). 
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4.3 Synthesis of the Western Fragment§  
 

Our studies toward nitiol (110) commenced with the synthesis of the western fragment 392. The first 

task at hand was to install the requisite absolute configuration of the stereogenic center at C-3 (IUPAC 

numbering) in a selective fashion. A literature survey revealed that the corresponding acid has been 

synthesized in its enantiomeric form via a ketene-aldehyde cycloaddition approach (not shown).[262] 

Since this strategy required the multistep synthesis of a chiral ligand, we resorted to a classical route 

employing a diastereoselective cuprate addition to crotyl amide derivative 399 as described by 

Williams and co-workers.[263] Therein, the chiral auxiliary (readily prepared from cheap commercially 

available starting materials) induces a high degree of diastereoselectivity in order to install the desired 

absolute configuration at C-3. 
 

 
Scheme 4.2 Diastereoselective installation of the stereogenic center at C-3. 
 
Along these lines, we prepared oxazolidinone 397 from amino acid 395 in a two-step 

protocol (Scheme 4.2).[264] Subsequently, treatment of auxiliary 397 with n-BuLi followed by addition 

of crotyl chloride (398) furnished α,β-unsaturated compound 399, the substrate for the aforementioned 

1,4-addition.[265] Eventually, exposure of the intermediate 399 to a Yamamoto organocopper(I) species 

generated in situ from equimolar amounts of allylmagnesium bromide, BF3·Et2O and CuBr·SMe2 

yielded the addition product 400 in 79% yield on a 100 mg scale. Moreover, the chiral auxiliary 

induced a high diastereoselectivity of >95:5 as determined by 1H NMR spectroscopy. Unfortunately, 

the yield of this reaction dropped dramatically upon scale up (400 mg – 3.0 g). Apart from recovered 

starting material, one side product 401, arising from two consecutive Michael additions, was isolated. 

This product was characterized by mass spectrometry and NMR spectroscopy albeit without 

establishing the relative configuration of the newly installed stereogenic centers. Mechanistically, the 

                                                 
§  The experimental part of this subchapter was conducted in collaboration with Thomas M. Wildenhof as part of his 

undergraduate research stay in the Trauner laboratories. 
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diastereoselective outcome of the initial allyl cuprate addition is not completely understood and 

Williams and co-workers concluded: “stereocontrol […] is complicated by the availability of several 

activated conformers, by the nature of the Lewis acid, and by the structure and mechanism associated 

with the organocopper species itself”.[263] Unfortunately, we were not able to obtain crystals suitable 

for X-ray diffraction and we thus converted 400 (obtained from the cuprate addition) to the 

corresponding Weinreb amide 402 (>95% ee). This compound 402 was literature known (90% ee, 

obtained via Sakurai reaction conditions, vide infra) and our analytical data including optical rotation 

agreed in all respects to the ones previously reported.[266]  
 

 
Scheme 4.3 (a) Preparation of the western fragment 392 via Sakurai allylation. (b) 1H NMR spectra (both in CDCl3 at 
400 MHz) of the diasterotopic protons at C-2: proof of inverse outcome by changing cuprate for Sakurai conditions.[267]  
 
Since the cuprate route was impractical on larger scale, we resorted to a different approach. This was 

based on the fact that Williams and co-workers had discovered a counterintuitive reversal in selectivity 

of the 1,4-addition by simply changing from an organocopper addition to a Sakurai allylation.[267] 
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Eventually, treatment of the optical antipode ent-399 (obtained in analogy to the previously described 

protocol) with TiCl4 and allyltrimethylsilane smoothly delivered adduct 403 in 91% yield on a 700 mg 

scale following a modified procedure from Takayama (Scheme 4.3).[266] The reversed 

diastereoselectivity could be easily observed by comparison of the chemical shifts of the diasterotopic 

protons at C-2 as depicted in Scheme 4.3b. Whereas the signals of diastereotopic protons at C-2 for the 

(3R,9R)-diastereomer 400 were centered at δ = 2.98 ppm and δ = 2.69 ppm, the corresponding signals 

for (3R,9S)-diastereomer 403 were observed at δ = 2.89 ppm and δ = 2.82 ppm, respectively. One 

small drawback of this more convenient procedure was the lower diastereoselectivity, which provided 

alkene 403 in a d.r. of 8.3:1. Nevertheless, the Evans auxiliary in amide 403 was readily cleaved upon 

exposure to LiOOH generated in situ[268] to furnish acid (404). The determined optical rotation of 

acid 404 (+1.6, c 0.53, CHCl3),matched the absolute values of −0.71 (c 1.13, CHCl3) and −2.8 (c 1.00, 

CHCl3) for its antipode ent-404 reported by Chang[269] and Nevado,[262] respectively. Once more, this 

finding confirmed the desired (R)-configuration at C-3. In order to finish the synthesis of western 

fragment 392, the incorporation of the pseudoephedrine auxiliary 405 was then attempted. This task 

was readily accomplished by treatment of acid 404 with EDCI and DMAP in the presence of Et3N 

affording amide 392 in 89% yield.[270] With the first substrate 392 for the fragment coupling in hand, 

we next focused on the synthesis of alkyl iodide 393.  
 

 

4.4 Progress toward the Eastern Fragment 
 

According to our retrosynthetic analysis, (cf. Chapter 4.2), we opted to access alkyl iodide 393 starting 

from ketone 190. Since we had prepared larger quantities of its diastereomeric counterpart ent-141, we 

carried out our preliminary investigations with the α-series, which would ultimately provide access to 

the C-18 epimer of nitiol (110). Based on our previous experiences with the regioselective 

deprotonation of ketone 207 (cf. Chapter 3.3), trans-hydrindane building block ent-141 was exposed to 

KHMDS at −78 °C and the resulting potassium enolate was intercepted with Et3SiCl to furnish silyl 

enol ether 406 (Scheme 4.4). Following aqueous work up, this intermediate 406 was instantly 

subjected to ozonolysis reaction conditions.[271] Upon treatment with Me2S, labile keto acid 407 was 

obtained and was used immediately for the next transformation. Thus, aldehyde 407 was reacted with 

excess isopropenylmagnesium bromide (219)[272] to provide allylic alcohol 409 as an inconsequential 

1:1 mixture of diastereomers in 42% yield over three steps. The isolation of the desired product 409 

was accompanied by the formation of ε-lactone 408, presumably generated upon acidic work up with 

2N HCl. Notably, bicycle 408 was obtained as a single diastereomer in 12% yield, but its relative 

configuration could not be assigned. In future experiments, the formation of side product 408 could be 

bypassed by carrying out the work up under less acidic conditions using aqueous NH4Cl. As seco 
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acid 409 proved to be somewhat unstable, it was instantly reduced to the corresponding diol (not 

shown) by treatment with LiAlH4. 
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Scheme 4.4 Toward the synthesis of an appropriate eastern fragment.  
 
Next, a monosilylation of the primary alcohol was accomplished with TBDPSCl to furnish allylic 

alcohol 410,[273] setting the stage for the Johnson variant of the Claisen rearrangement (Scheme 4.4).[62] 

To this end, alcohol 410 was dissolved in orthoester 411 and the mixture was heated to 130 °C in the 

presence of catalytic amounts of propionic acid.[274] This procedure resulted in the formation of 

ester 412 in an excellent yield of 86% over three steps. Moreover, a single alken isomer was obtained, 

the desired (E)-configuration of which was verified by 2D NOE NMR experiments. With ester 412 in 

hand, the next task was to shorten the chain by one carbon atom that we initially envisaged to prepare 

the alcohol 414 via a diol cleavage and NaBH4 reduction. For this purpose, we aimed at preparing 

alcohol 413 by an α-oxygenation of the ester functionality, which would provide the requisite diol 

upon LiAlH4 reduction. Unfortunately, variation of bases (LDA, KHMDS), oxygenation agents 

(MoOPh,[275] chiral and achiral Davis’ oxaziridine[276]) and reaction temperatures resulted in poor 

conversion and isolation of only small quantities of the desired product 413 as indicated by mass 

spectrometry and 1H NMR spectroscopy.  

With this in mind, we decided to alter our retrosynthesis and install the oxygenation pattern necessary 

for a diol cleavage at the stage of the [3,3]-sigmatropic rearrangement. To this end, we opted for a 

variant of the Claisen rearrangement introduced by Kallmerten and Burke[277] and thus treated 

lactone 408 with LiAlH4 to obtain diol 415, now as a single diastereomer (Scheme 4.5). 
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Scheme 4.5 Potential access to alcohol 419 via a Kallmerten-Burke rearrangement. 
 
Since we had encountered difficulties in purifying the regioselective silylation product when using 

TBDPSCl due to hardly separable silanol byproducts, diol 415 was monosilylated with TBSCl.[278] 

Next, the resulting allylic alcohol 416 was acetylated with acetic acid derivative 417[279] to access 

ester 418, the precursor for the aforementioned rearrangement, in a yield of 51% over the three steps. 

In an initial experiment on small scale, the corresponding TMS silyl enol ether generated by sequential 

treatment with LiHMDS and TMSCl triggered the desired [3,3]-sigmatropic rearrangement upon 

warming to room temperature.[280] A subsequent LiAlH4 reduction formed alcohol 419 as indicated by 
1H NMR analysis. 
 

 

4.5 Conclusion and Future Directions 
 

In summary, first attempts toward the envisaged total synthesis of nitiol (110) have been investigated. 

Thereby, we accomplished the synthesis of western fragment 392 based on literature precedence 

starting from oxazolidinones 397 and ent-397 (cf. Chapter 4.3). It turned out that an approach 

involving a cuprate addition resulted in almost complete diastereoselective control, whereas Sakurai 

conditions utilizing the enantiomeric chiral auxiliary were more convenient for a preparation on larger 

scale. We also explored the synthesis of eastern fragment 422 commencing with ketone ent-141 (cf. 

Chapter 4.4). This route featured a regioselective cleavage of the cyclohexanone moiety by sequential 

enol ether formation and ozonolysis. Despite the unstable nature of some intermediates, we installed 

the trisubstituted alkene in 412 via a Johnson-Claisen rearrangement. As our attempts to shorten the 

side chain in ester 412 were met with little success so far, we embarked on another strategy starting 

from lactone 408 (a side product from the previous investigations) that involved a Kallmerten-Burke 

rearrangement. A first promising result indicating the formation of primary alcohol 419 was obtained 

on small scale. In the future, this experiment should be repeated on a larger scale and the subsequent 

transformations toward the alkyl iodide 422 should be examined. Alternatively, one could examine a 

Hunsdiecker reaction[281] to convert the corresponding acid of ester 418 directly to alkyl iodide 393. 
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Scheme 4.6 Proposed alternative strategy to generate alkyl iodide 421 involving a Wittig olefination. 
 
Additionally, a second strategy toward alternative fragment 421 could be tested as outlined in 

Scheme 4.6. Thereby, an initial esterification of acid 407 would be followed by a Wittig olefination to 

access keto ester 420, which in turn could be elaborated to the corresponding allyl iodide (not shown) 

by a chemoselective reduction and an Appel reaction. Finally, a one carbon extension developed by 

Knochel and co-workers[282] would furnish iodide 421. 
 

 
Scheme 4.7 Proposed fragment combination and the key dienyne metathesis toward 18-epi-nitiol (424). 

 

With both portions 392 and 422 (or 421) in hand, a Myers alkyation combining these two fragments 

should be feasible. Additional reactions, including the key dienyne metathesis of intermediate 423, 

along the lines of the presented retrosynthetic analysis (cf. Chapter 4.2) could furnish 

18-epi-nitiol (424, Scheme 4.7). If this protocol proves to be efficient, it should be readily 

transferrable to building block 190 and allow for a synthesis of the naturally occurring nitiol (110). 
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5 SYNTHETIC STUDIES TOWARD YW 3548 
 

5.1 YW 3548: Isolation and Background 
 

The sesterterpenoid YW 3548 (112) was isolated from the fungal strain Paecilomyces inflatus by 

Wang et al. in 1998 and its relative configuration was established by thorough analysis of NMR 

spectroscopic data, including 1H, 13C, DQ-COSY, ROESY, HSQC and HMBC experiments (Figure 

5.1a).[101] Structurally, YW 3548 (112) exhibits a unique tricarbocyclic sesterterpenoid δ-lactone 

architecture featuring a total of ten stereogenic centers, one of which is all-carbon substituted. 

Moreover, this type A trans-hydrindane iso-propyl sesterterpenoid 112 comprises the sterically 

enbumbered trans-hydrindane portion fused to an eight-membered ring bearing both an exomethylene 

group and an embedded trisubstituted alkene moiety. Furthermore, this intriguing carbon backbone, 

YW 3548 (112) is regioselectively acylated by a heptanoate side chain with two further stereogenic 

centers. The relative configuration at this site as well as the absolute configuration of YW 3548 (112) 

was not evaluated and its structure remains thus unconfirmed. 
 

 
Figure 5.1 (a) Molecular structures of the GPI anchor inhibitors YW 3548 (112) and YW 3699 (113). (b) Conserved GPI 
core structure and possible modifications, adapted from reference [288]. 
 
The research team at Novartis Pharma Inc. discovered YW 3548 (112) while seeking for novel 

inhibitors of gycosylphosphatidylinositiol (GPI) anchoring, a biological process which has been 

discovered almost three decades ago.[283,284] From a biological point of view, the authors determined 

YW 3548 (112) and its analog YW 3699 (113)[102] to selectively inhibit GPI-anchor synthesis in vitro 

by yeast mircosomes with a minimal inhibiton concentration (MIC) of 3.4 nM and 3.5 mM, 
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respectively.[285] Among eukaryotes, GPI-anchoring covalently binds proteins to the extracellular 

space of the cell membrane.[286] More specifically, the C-terminus of the protein is connected via 

ethanolamine to a glycan, which in turn is linked to the 6-position of the myo-inositol ring of 

phosphatidylinositol (PI, Figure 5.1b). Ultimately, two fatty acid units on the PI moiety anchor the 

protein to the cell membrane. Once the protein is attached to the extracellular surface of the 

membrane, it often plays a crucial role as receptor or co-receptor for ligands that modulate signal 

transduction.[286] Although the process of GPI anchoring is common to mammals and protozoa, 

sharing an identical glycan core, different biosynthetic pathways have been reported over the years.[286] 

In addition, it was established that protozoa tend to express a significantly higher density of GPI-

anchored protein than eukaryotes, playing an important role in determining survival and infectiveness 

of the parasite. This is exemplified on Trypanosoma Brunei, the parasite causing the African sleeping 

sickness: it expresses a cell-surface coat of a GPI-anchored glycoprotein, which acts on the one hand 

as a barrier against macromolecules from the host immune system and on the other hand enables the 

evasion of specific immune attacks through antigenetic variation.[287] Thus, selective inhibitors of GPI-

anchoring in protozoa could act as potential drugs against these parasites.  
 

 
Figure 5.2 Artificial analogues of YW 3548 (112) exhibiting less activity in inhibition of GPI anchor biosynthesis. 
 

Based on initial SAR studies, Wang and co-workers revealed that the δ-lactone moiety and the double 

bonds within YW 3548 (112) were necessary for its activity. Indeed, chemically prepared 

analogues 425, 426 and 427 (Figure 5.2) caused a loss of activity, represented by MIC of 3.2, 1.7 and 

17 μM, respectively.[101,285] The authors further speculated on the mode of inhibition and finally stated 

that YW 3548 (112) blocks the addition of the third mannose unit to the GPI backbone. Additionally, 

it eventually prevents the incorporation of [3H]myo-inositol into proteins and thus the transport of GPI-

anchored proteins to the Golgi, resulting in toxicity. These effects have been proven for mammalian 

cells as well as for yeast, whereas YW 3548 (112) remained ineffective for protozoa. Nevertheless, the 

novel structure of YW 3548 (112), synthetic precursors and related analogues could provide a basis to 

gain further insights into the mechanism of inhibition and might provide hints toward lead structures 

for selective inhibition of the protozoa pathway. In addition, the synthetic efforts could contribute to 

expand the knowledge about the function of the GPIs, which is, as opposed to the biological 

significance, still hardly explored and a current topic of interest in chemical biology.[288] These 

interesting biological activity and the unique tetracyclic backbone of YW 3548 (112) prompted us to 

develop a convergent retrosynthetic analysis. 
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5.2 Retrosynthetic Analysis 
 

From a retrosynthetic point of view, we envisioned installing the heptanoate side chain of 

YW 3548 (112) by means of a late-stage acylation (Scheme 5.1). The diol moiety in the lactone 

portion could arise from a Lewis or Brønsted acid-mediated epoxide opening,[289] providing 

tetracycle 428 as a synthetic precursor that in turn could be prepared from ketone 429 by sequential 

nucleophilic epoxidation and a chemoselective Lombardo olefination.[290] Further dissection by an 

acyl-Stille coupling[291] and a challenging RCM[180] to close the central eight-membered ring with a 

trisubstituted double bond would lead back to western fragment 430 and eastern portion 431 as key 

building blocks. Notably, such a RCM strategy has been explored by the group of Tori in their model 

studies toward YW 3699 (113) (cf. Chapter 1.3).[111]  
 

 
Scheme 5.1 Convergent retrosynthetic analysis for YW 3548 (112) via an acyl-Stille coupling and a RCM to close the central 
eight-membered ring. 
 
Further retrosynthetic simplification would trace western fragment 430 back to three simple building 

blocks: acetaldehyde (432), acetic anhydride (433) and a 5-pentenoic acid derivative 434 containing an 

Evans-auxiliary. The envisaged route would proceed via a Heathcock anti-aldol reaction[292] followed 

by acetylation and Dieckmann condensation.[293] A final Pd-catalyzed stannylation would then furnish 

vinyl stannane 430. On the other hand, eastern fragment 431 should be accessible starting from the 

previously synthesized building block 191 via a Pd-catalyzed carbonylation[294] or a Shapiro 
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reaction[153] and an ensuing diastereoselective cuprate addition. Alternatively, the installation of the 

isopropylene moiety might be achieved following Koga’s protocol utilizing a tert-leucine derived 

directing group (not shown), which allows for the selective 1,4-addition of Grignard reagents.[295] 

Concerning the configuration of the aldehyde functionality, we assumed that this residue would adapt 

the desired thermodynamically more favored feasible by a base-promoted epimerization. A final 

Pinnick oxidation[255]/acid chloride formation protocol would then provide access to the envisaged key 

fragment 431. Along these lines, we embarked on the total synthesis of YW 3548 (112), thereby 

mainly focusing on developing a convenient access to western fragment 430. 
 

 

5.3 Progress toward the Western Fragment** 
 

Based on the retrosynthetic analysis, our synthesis commenced with the large scale preparation of 

L-valine (435) derived Evans-auxiliary 436 by sequential LiAlH4 reduction and carbamate formation 

with diethyl carbonate (396) following literature procedures (Scheme 5.2).[296]  
 

 
Scheme 5.2 (a) Synthesis of alcohol 439 via the Heathcock modification of the Evans-aldol reaction proceeding through an 
open transition state 438. (b) The logic of the syn-Evans aldol chemistry, which would lead to alcohol 441. 
 

                                                 
** The experimental work of this subchapter was performed together with Sebastian Rappenglück as part of his Bachelor’s 

Thesis in the Trauner laboratories. 
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The lithium species generated by treatment of carbamate 436 with n-BuLi was then reacted with 

commercially available acid chloride 437 to furnish oxazolidinone 434,[297] the precursor for a 

Heathcock anti-aldol reaction.[292] To this end, compound 434 was treated with two equivalents of 

Bu2BOTf[298] in the presence of DIPEA to give rise to the corresponding (Z)-enolate (not shown). This 

intermediate was in turn further reacted with acetaldehyde (432) at −78 °C and careful work 

up (quenching with tartaric acid at −78 °C) afforded the desired anti-aldol product 439 in good 

yield (85%) and high diastereoselectivity (d.r. = 94:6) on a reasonable 1.5 g scale. However, the 

resulting alcohols 439 and 441 were inseparable by flash column chromatography at this stage. 

Mechanistically, this reaction proceeds via an open transition state 438. Therein, the stereoselectivity 

solely originates from the minimization of the steric interactions between the alkyl residue of the 

aldehyde (i.e. a methyl group) and the auxiliary (Scheme 5.2a).[292] Thus, a reaction with 

acetaldehyde (432) is extremely challenging as the transition state 438 has to discriminate between a 

proton and a methyl group, which itself is not highly sterically demanding. Furthermore, the absolute 

configuration of the chiral auxiliary enforces an exclusive si-face attack, thus conferring a high level 

of induced diastereoselectivity. In contrast, a standard Evans-aldol reaction employing one equivalent 

of Bu2BOTf involves a closed Zimmermann-Traxler transition state 440 that results in the selective 

formation of the syn-isomer 441 (Scheme 5.2b). This is due to four factors: (a) selective formation of 

the (Z)-enolate, (b) the aldehyde residue R adopts a pseudo-equatorial position, (c) the iso-propyl 

moiety induces diastereoselectivity by residing in a position which minimizes steric interactions with 

the chair transition state, (d) the overall dipole moment of the transition state is minimized.[299] 

Considering these arguments, it is remarkable that the simple use of one additional equivalent 

Bu2BOTf allows for a reversal of the diastereoselectivity in Heathcock’s modification. 
 

 
Scheme 5.3 Synthesis of vinyl triflate 446 via a Dieckmann-type cyclization and verification of the desired outcome of the 
anti-aldol reaction by X-ray crystallography of carbamate 443. 
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Since a verification of the outcome of the Heathcock anti-aldol reaction was worth striving for, a 

sample of the mixture was reacted with p-bromophenyl isocyanate 442 using Steglich’s catalyst 

DMAP (Scheme 5.3).[300] Gratifyingly, the resulting carbamates could be separated by flash column 

chromatography and the major isomer 443 was isolated in 86% yield (minor isomer was not 

characterized). Moreover, the structure and the absolute configuration of the desired anti-aldol 

derivative 443 were unambiguously verified by X-ray crystallography. With this result in mind, we 

turned our attention to the envisaged acetylation, which occurred smoothly by treatment of 

alcohols 439 and 441 with acetic anhydride (433) in the presence of DMAP. Fortunately, the 

generated acetates 444 and 445 were also easily separated by flash column chromatography, 

furnishing the desired isomer 445 in 85% yield. Next, acetate 445 was exposed to excess KHMDS at 

−78 °C to trigger an Dieckmann condensation while liberating the free auxiliary 436 (not shown).[293b] 

As the purification of this intermediate was surprisingly difficult, the crude reaction mixture was 

subsequently reacted with triflic anhydride in the presence of Et3N[301] to furnish enol triflate 446 in a 

good yield of 75% over the two steps. With enol triflate 446 in hand, the stage was set for the 

investigation of a Pd-catalyzed triflate-Sn exchange. To this end, different reaction conditions were 

examined (Table 5.1), among which was a catalytic system that was recently successfully applied in 

the Trauner laboratories.[302] 
 

Table 5.1 Toward a triflate-Sn exchange: variation of the reaction conditions.a 

 

O

OTf

O

Me

446

condit ions

O

SnMe3

O

Me

430

O

Me

O

O

O

Me

447  

Entry Catalyst (eq.) 
eq. of 

Me6Sn2  

Additive 

(eq.) 
Solvent T [°C] t [h] Observation 

1 Pd(PPh3)4 (0.1) 1.5 LiCl (6.0) THF 60 16 decomp. 

2 Pd(PPh3)4 (0.2) 2.0 CuI (0.4) DMF rt 1.2 decomp. 

3 Pd(PPh3)4 (0.2) 1.5 - DMF rt 2.5 decomp. 

4 Pd(PPh3)4 (0.1) 1.5 - benzene 80  decomp. 

5 Pd2dba3 (0.17) 1.5 CuI (0.3) DMF rt 1 447 (72%) 

(a) All reactions were carried out on 10−30 mg scale. eq. = equivalents, decomp. = decomposition, rt = room temperature. 

 
Unfortunately, submitting enol triflate 446 to coupling conditions with Me6Sn2 in the presence of 

catalytic amounts of Pd(PPh3)4 and excess LiCl resulted only in decomposition, and no desired product 

formation was observed by 1H NMR spectroscopy (Table 5.1, Entry 1). Similarly, when exchanging 

LiCl with CuI (Entry 2) or using no additive (Entry 3) and switching to DMF as a solvent, only 

decomposition was detected. The same observation was made when utilizing benzene as a solvent at 
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elevated temperature (Entry 4). As these results were not fruitful, we opted for an alternative source of 

Pd0. Therefore, we exchanged Pd(PPh3)4 with Pd2dba3. When reacting enol triflate 446 with Me6Sn2 in 

the presence of this catalyst and CuI at room temperature,[302] a new product was detected, the 

structure of which was subsequently elucidated by NMR spectroscopy and mass 

spectrometry (Entry 5). Interestingly, these investigations revealed the new compound to be the 

homocoupled dimer 447 instead of the desired stannane 430. It is assumed that the initially formed 

vinyl stannane 430 instantly reacts with remaining triflate 430 to form the observed product 447.  
 

 
Scheme 5.4 Proof for the capability of triflate 446 to undergo Pd-catalyzed couplings: synthesis of lactone 448. 
 
In light of this finding, we decided to explore a direct coupling of enol triflate 446 with organometallic 

reagents rather than converting triflate 446 to stannane 430. In order to provide a proof of principle, 

we conducted an initial Suzuki-coupling with phenylboronic acid in the presence of Pd(PPh3)4 and CuI 

in benzene/EtOH.[303] The expected reaction occurred smoothly and furnished the coupled product 448 

in a high yield of 88% (Scheme 5.4).  
 

Table 5.2 Toward a Pd-catalyzed cross coupling: variation of the reaction conditions 

 

O

OTf

O

Me

446

condit ions

O

O

Me

449

452

Cy

M

MeH

HH

OTBS

CypinB

CyMe3Sn

451

450

 

Entry 
Coupling 

Partner 
Pdb Additive Basec Solvent 

T 

[°C] 
t [h] Observation 

1 450 Pd(PPh3)4 TBABd Na2CO3 benzene 80 16 decomp. 

2 450 Pd(dppf)Cl2 TBABd K3PO4 MeCN 81 1.2 decomp. 

3 450 Pd(PPh3)4 TBABe K3PO4 Dioxane/H2O reflux 2.5 decomp. 

4 451 Pd(PPh3)4 CuI, CsFf - DMF 50 1.3 decomp. 

5 451 Pd2dba3 CuIf - DMF 50 3.3 decomp. 

(a) All reactions were carried out on 10−25 mg scale. (b) 0.1 eq. for entries 1−3, 0.15 eq. for entries 4, 5. (c) 6.9 eq. for entry 1, 3.0 eq. for 
entries 2, 3. (d) 0.14 eq. (e) 0.28 eq. (f) 0.25 eq. CuI, 2.0 eq. CsF. eq. = equivalents, decomp. = decomposition, rt = room temperature. 
 

Encouraged by the capability of enol triflate 346 to engage in Pd-catalyzed cross coupling reactions, 

we prepared literature known boron-pinacol ester 450[304] and vinyl stannane 451[305] (syntheses not 

shown), both representing an alternative eastern fragment 452. Next, their reactivity in a Suzuki or a 

Stille coupling with enol triflate 446 was explored to obtain intermediate 449. For this purpose, we 
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initially altered the solvents as well as the source of Pd0 using boron species 450 as coupling 

partner (Table 5.2, Entries 1−3).[306] However, solely decomposition of the starting material was 

observed. Unfortunately, submission of enol triflate 446 to reaction conditions for a Stille coupling 

with stannane 451 also resulted in decomposition of the substrate (Entries 4, 5).[307] 

 

 

5.4 Conclusion and Future Directions 
 

This chapter detailed our preliminary studies directed toward the synthesis of the potent GPI anchor 

inhibitor YW 3548 (112), focusing on the preparation of a suitable western fragment. Within these 

endeavors, we enantioselectively constructed enol triflate 446 in a concise five-step sequence starting 

from Evans auxiliary 436 (cf. Chapter 5.3). In addition, we conducted initial experiments on the ability 

of enol triflate 446 to undergo Pd-catalyzed coupling reactions. Although the preparation of the 

corresponding vinyl stannane 430 has not been accomplished yet, we were pleased to find that enol 

triflate 446 engaged smoothly in a Suzuki coupling with phenylboronic acid.  

Since initial investigations to install an exomethylene moiety with organometallic reagents via Suzuki 

or Stille coupling remained unsuccessful,[308] a thorough screening with variation of temperature, 

solvent, base, Pd-sources and ligands should be performed in future to accomplish a synthesis of 

intermediate 453 (Scheme 5.5). In addition, other reaction partners such as boronic acids,[309] BF3K[310] 

salts or organozinc species[311] should be explored. It should be noted that side reactions such as an 

intramolecular Heck reaction might occur when using ‘real’ coupling partner 452. In this case, an 

alternative strategy could be investigated that involves a direct addition of a cuprate species[312] or an 

organotitanium reagent[313] to enol triflate 446. However, such a protocol could be accompanied by a 

C−C bond fragmentation/ring opening of cyclic vinylogous acyl triflate 446 as described by Dudley 

for the addition of Grignard and organolithium nucleophiles.[301,314] 

 
Scheme 5.5 Potential strategies for the combination of fragments en route to the tetracyclic backbone 457 of YW 3548 (112).  
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Alternatively, one could explore a NHK coupling[257] of vinyl triflate 446 with aldehyde 455 to form 

secondary alcohol 456. However, the synthesis of this or the related eastern fragment 452 has not been 

examined to date. Along the lines of the NHK reaction, it might be worth to investigate the 

transformation of vinyl triflate 446 into the corresponding vinyl bromide 454 following a recently 

published procedure.[315,316] Such strategy would not only represent the preparation of another coupling 

partner for Pd-catalysis, but would also pave the way for a strategy hinging on a nucleophilic attack of 

the corresponding lithium species on aldehyde 455. Overall, enol triflate 446 seems to be a valuable 

and readily accessible intermediate offering multiple possibilities for further investigations. If the task 

of fragment combination can be solved, the next challenge would be the closure of the central eight-

membered ring by RCM. Ultimately, the endgame proposed in the retrosynthetic analysis should 

culminate in the first preparation of the tetracyclic backbone 457 of YW 3548 (112). 
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6 SUMMARY 

 

In summary, this Ph.D. thesis detailed our progress toward the total synthesis of the type A 

trans-hydrindane iso-propyl sesterterpenoids astellatol (103), nitiol (110) and YW 3548 (112). Our 

program commenced with the evolution of an enantioselective route to three versatile building blocks 

suitable for synthetic studies toward these and structurally related natural products. Starting form 

enantiomerically pure diketone 116, we prepared enone 194 in a multistep sequence on decagram 

scale, which in turn underwent a counterintuitive, but diastereoselective cuprate addition to furnish 

alkene 220 as the sole diastereomer (Scheme 6.1). Interestingly, the relative configuration at the newly 

introduced stereogenic center matched the one found in our target molecules. This result constituted a 

major achievement since it allowed for the selective installation of a cis-relationship between the 

angular methyl group and the isopropylene residue on a trans-hydrindane portion, a configuration 

which is otherwise difficult to address. 
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Scheme 6.1 Divergent asymmetric synthesis of versatile building blocks ent-141, 190 and 191 suitable for type A trans-
hydrindane iso-propyl sesterterpenoids, and X-ray structures of important intermediates. 
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In the following investigations, we serendipitously discovered a highly selective diversification of 

ketone 220 utilizing hydrogenation conditions (Scheme 6.1). Whereas the use of Pd/C as a catalyst 

resulted in an almost complete inversion of the stereochemistry at the former allylic stereogenic center 

furnishing bicycle 222 in 91% yield, subjection of alkene 220 to PtO2 under an atmosphere of 

hydrogen exclusively afforded the desired β-isomer 246 in 93% yield. Notably, we exploited this rare 

observation of an alkene isomerization under hydrogenation conditions in useful ways. On the one 

hand, we prepared ketone ent-141 in a four-step reaction sequence starting from a-epimer 222. On the 

other hand, ketone 246 was converted to alkene 221 via a highly efficient Pd-catalyzed 

hydrodetriflation. A subsequent straight-forward two-step protocol then provided building block 190. 

Whereas ketone ent-141 has been an intermediate in Corey’s and Hudlicky’s total syntheses of the 

pentacarbocyclic architecture of retigeranic acid A (101), its diastereomeric counterpart 190 could 

serve as the starting point for the first preparation of retigeranic acid B (102). Efforts toward this 

synthesis are currently under investigation by Florian M. E. Huber, a graduate student in the Trauner 

laboratories. Furthermore, these studies enabled us to access a third trans-hydrindane building 

block 191, which contains an oxidized site in the cyclopentane moiety by diversification of 

alkene 221. An extensive screening of hydroboration conditions revealed that the use of the chiral 

borane 253 gave the best results in respect to the regioselectivity. With this protocol, alcohols 192 

and 251 were obtained in a synthetically useful ratio of 3.7:1 in favor of the desired product 192. The 

reaction as well constituted a matched case of double diastereoselection. Upon careful flash column 

chromatography in the subsequent steps, we succeeded in the isolation of pure ketone 191. Overall, 

this developed first-generation route was as envisaged robust and scalable and allowed for the 

preparation of multigram quantities of versatile intermediates 190 and 191 albeit requiring a total of 19 

and 20 steps, respectively. Since 1H and 2D NMR analysis was often thwarted by overlaying signals, 

our studies heavily relied on X-ray crystal structure analysis for unambiguous structure elucidation. 

Moreover, the observed stereochemical surprises emphasize a meticulous analysis of products, even 

with seemingly straight-forward reactions. 
 

 
Scheme 6.2 Progress toward astellatol (103): installation of the stereogenic centers at C-9 and C-10 in alkene 268 by a series 
of diastereoselective operations starting from building block 191. 
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After the successful preparation of building blocks ent-141, 190 and 191, we launched further studies 

toward type A trans-hydrindane iso-propyl sesterterpenoids. The major portion of these investigations 

was focused on intermediates en route to the unique pentacarbocyclic structure of astellatol (103). To 

this end, we initially opted to secure a reliable route for the installation of two adjacent stereogenic 

centers at C-9 and C-10 (astellatol numbering) and decided to take advantage of the conformational 

bias of a tricyclic system. As ketone 191 proved to be complicated to alkylate at C-9 under standard 

conditions, we resorted to a Pd-catalyzed allylation of the corresponding boron enolate to yield 

ketone 302 (Scheme 6.2). Further reactions including two highly diastereoselective transformations, a 

reagent-controlled reduction and a substrate controlled methylation, gave lactone 269 as single 

diastereomer that in turn was elaborated to alkene 268 in several steps. The key feature of this protocol 

was a chemoselective deprotective Swern oxidation, requiring a careful optimization of reaction 

conditions regarding temperature and time. Notably, at this stage the final fragment 268 incorporated 

the correct relative configuration at six out of ten stereogenic centers found in astellatol (103).  
 

 
Scheme 6.3 First generation approach en route to tricycle 328: attempted RCM of triene 320. 
 
As this reaction sequence had been previously established on a more easily accessible model 

system 207, we performed further studies toward the synthesis of astellatol (103) utilizing alkene 299 

as the branching point. This intermediate 299 was synthesized on multigram scale and four strategies 

to assemble the pentacyclic carbon skeleton of astellatol (103) were examined in the course of this 

Ph.D. thesis. Three of these routes hinged on the preparation of a strained 11-membered 

macrocycle 321, the precursor for an envisaged biomimetic cationic cascade to prepare 

pentacycle 368 (Scheme 6.3). In our first approach, we elaborated alkene 299 in several synthetic 

operations to triene 320 featuring a B-alkyl Suzuki coupling and a second deprotective Swern 

oxidation as key elements. Unfortunately, the investigated RCM reaction conditions have not yet 

effected a ring closure to macrocycle 321 but rather furnished the homodimer, arising from cross 

metathesis at the more easily accessible terminal vinyl moiety (cf. Chapter 3.4). 

In a second route, alkene 299 was converted to vinyl silane 342 in a multistep sequence involving a 

regioselective Pd-catalyzed silylstannylation and a diastereoselective vinyl lithium addition as key 

transformations (Scheme 6.4). While investigating the required iododesilylation to prepare vinyl 

iodide 328, the precursor for a B-alkyl Suzuki macrocyclization, an undesired iodoetherification took 
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place (cf. Chapter 3.5). Initial experiments to circumvent this side reaction have failed so far, and this 

strategy thus will be studied more thoroughly in future experiments. In addition, we designed an 

approach involving a late-stage alkene installation and already prepared alkyne 350, which needs to be 

elaborated to vinyl iodide 328. 
 

 
Scheme 6.4 Progress toward constructing the macrocycle in key substrate 321: successful synthesis of advanced 
intermediates and future milestones for the B-alkyl Suzuki and the allylation approach, respectively. 
 
In contrast to the two earlier routes which rely on modern transition metal catalysis to close the 

11-membered ring, a third strategy was based on an intramolecular allylation of sulfone 352. To this 

end, alkene 299 was elaborated to alcohol 367 by sequential B-alkyl Suzuki coupling, vinyl lithium 

addition and selective functional group manipulations (Scheme 6.4). The remaining two steps for the 

synthesis of allyl chloride 352 have not been examined in the course of this Ph.D. thesis and will be 

explored in near future. Notably, the prepared intermediates 320, 342 and 352 and contain all 

22 carbon atoms necessary for the construction of tricycle 321. 
 

 
Scheme 6.5 Progress toward the assembly of pentacycle 369 via a thermal [2+2]-cycloaddition: synthesis of ketone 382. 
 
As an alternative to the highly challenging preparation of astellatol (103) via a bioinspired cationic 

cascade starting from tricycle 321, we embarked on efforts toward the installation of the carbon 

backbone by an intramolecular [2+2]-cycloadditon. In these studies, alkene 299 served again as the 

starting point and was elaborated to ketone 382 utilizing a B-alkyl Suzuki coupling (Scheme 6.5). In 
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initial experiments on an analog bearing a methyl instead of the PMB ether, we partially succeeded in 

homologating the ketone functionality to an aldehyde (cf. Chapter 3.7). Thus, we are optimistic that 

the reaction conditions can be optimized soon. If this task is realized, the developed protocols need to 

be tested on ketone 382 in order to prepare the substrate for the envisaged key ketene-alkene 

cycloaddition to construct pentacycle 369.  
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Scheme 6.6 En route to 18-epi-nitiol (424): successful synthesis of western fragment 392 and progress toward the 
preparation of alkyl iodides 393 and 422. 
 
Beside these extensive studies toward astellatol (103), we investigated the total synthesis of the 

tricyclic sesterterpenoid nitiol (110). Since the surprising stereochemical outcome of the 

hydrogenation of ketone 220 in the presence of Pd/C was only established at a later stage, substantial 

amounts of ketone ent-141 were still left. This material was employed for model studies toward the 

C-18 epimer 424 of nitiol (110). In our initial approach toward a suitable eastern fragment 393 or 422, 

we accomplished the synthesis of ester 412 starting from ketone ent-141 in several steps that included 

an ozonolysis of a regioselectively generated silyl enol ether and a Claisen-Johnson rearrangement to 

install the trisubstituted alkene (Scheme 6.6). As attempts to shorten the side chain by one carbon atom 

met with little success, we prepared ester 418 in a second-generation route. This compound 418 

constitutes a precursor for a Kallmerten-Burke rearrangement and has the additional oxygen 

functionality already in place to later conduct a diol cleavage. In preliminary studies, we already 

observed the desired product originating from the desired sigmatropic rearrangement. Thus future 

explorations should address experiments along the lines of this promising result. In addition, we 

succeeded in the synthesis of the western fragment 392, comprising a pseudoephedrine auxiliary for 

the envisaged fragment union by a Myers alkylation. The preparation of amide 392 commenced with 

diastereoselective 1,4-additions under cuprate or Sakurai conditions, which interestingly required the 

use of enantiomeric Evans-auxiliaries 397 (cf. Chapter 4.3). In the course of these studies, the Sakurai 
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reaction turned out to be more convenient on larger scale albeit less diastereoselective. Ultimately, 

simple saponification of the chiral auxiliary and an EDCI mediated coupling with pseudoephedrine 

gave the desired fragment 392. 
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Scheme 6.7 En route to YW 3548 (112): enantioselective five-step synthesis of enol triflate 446, obtained coupling 
product 448 and key disconnections for the construction of the central eight-membered ring. 
 

The last part of this Ph.D. thesis discussed the studies toward a δ-lactone 446, which might serve as a 

valuable intermediate for the total synthesis of the structurally intriguing GPI anchor inhibitor 

YW 3548 (112). We exploited the Heathcock anti-aldol protocol to establish two adjacent 

stereocenters with high diastereoselectivity. In this reaction, the syn-selectivity of a standard Evans 

aldol reaction is inverted by adding a second equivalent of Bu2BOTf. Further synthetic operations 

including a Dieckmann condensation to close the six-membered ring with concomitant cleavage of the 

amide auxiliary 436 furnished enol triflate 446 (Scheme 6.7). While attempts to convert this 

compound 446 to the corresponding vinyl stannane have not been successful yet, we demonstrated the 

ability of enol triflate 446 to engage in Pd-catalyzed cross coupling reactions by preparing alkene 448. 

In future directions, a thorough screening of reaction conditions such as ligands, solvents, 

temperatures and the careful choice of a suitable coupling partner will be required in order to construct 

the tetracyclic architecture of YW 3548 (112). 

Overall, the pursued strategies presented in this Ph.D. thesis constituted significant progress toward 

the first total synthesis of any type A trans-hydrindane iso-propyl sesterterpenoid, exhibiting a 

sterically encumbered trans-hydrindane portion with an iso-propyl moiety residing in a cis-

relationship with the angular methyl group. The developed robust and scalable route to various 

versatile building blocks provided a basis for further efforts toward these structurally intriguing natural 

products that are currently under investigation in the Trauner laboratories. Thus, these challenging 

architectures will certainly continue to inspire and train a new generation of synthetic chemists, which 

will hopefully access one of these sesterterpenoids in the near future. 
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1 GENERAL WORKING METHODS 
 

All reactions were magnetically stirred and carried out under a positive pressure of inert-gas (N2 or 

argon) utilizing standard Schlenk-techniques. Glassware was dried in an oven at 120 °C and 

repeatedly at 650 °C in vacuo prior to use. Liquid reagents and solvents were added by syringes or 

oven-dried stainless steel cannulas through rubber septa. Solids were added under inert gas counter 

flow or were dissolved in appropriate solvents. Low temperature reactions were carried out in a Dewar 

vessel using a cryo cooler or filled with a cooling agent: acetone/dry ice (−78 °C), acetonitrile/liquid 

N2 (−40 °C), NaCl/ice (−20 °C) or ice/water (0 °C). Reaction temperatures above room temperature 

were conducted in a heated oil bath. High pressure reactions were conducted in a miniclave steel 

apparatus from BÜCHI AG. Drying of organic extracts over MgSO4 or Na2SO4 implicates a 

subsequent removal of the drying agent by filtration and rinsing of the filter cake with an appropriate 

solvent. Yields refer to isolated homogeneous and spectroscopically pure materials. 

 

Solvents and reagents 

 

Tetrahydrofurane (THF) and diethyl ether (Et2O) were distilled under N2 atmosphere from 

Na/benzophenone as drying agent prior to use. Triethylamine (Et3N), diisopropylamine (DIPA) and 

Hünig’s base (DIPEA) were distilled under N2 atmosphere from CaH2 as drying agent prior to use. 

Further dry solvents such as dichloromethane (CH2Cl2), N,N-dimethylformamide (DMF), 

acetonitrile (MeCN), acetone, methanol (MeOH), benzene and toluene were purchased as ‘Extra Dry 

over Molecular Sieves’ from Acros Organics and were used as received. 

Hexamethylphosphoramide (HMPA) was distilled from CaH2 in vacuo and stored over molecular 

sieves under an atmosphere of N2. Solvents for extraction, crystallization and flash column 

chromatography were purchased in technical grade and distilled under reduced pressure prior to use. 

(S)-Alpine-BoramineTM, (R)-Alpine-BoramineTM, 9-BBN dimmer and CBS catalyst 375 were 

purchased from Sigma-Aldrich and stored in a UNIlab glove-box from MBRAUN. Methyl vinyl 

ketone (MVK, 122) was purchased in technical grade (90%) and distilled immediately prior to use. 

Allyl bromide was distilled prior to use and stored under an atmosphere of N2. Et3B was purchased 

neat and appropriate solutions in degassed THF (freeze-pump-thaw method) were freshly prepared 

immediately prior to use. The following reagents were prepared according to literature procedures: 

Evans auxiliaries 397,[264] ent-397[264] and 436,[296] oxazolidinone 403,[266] vinyl iodide 307,[200] 

PMB ether 329,[219] Ohira-Bestmann reagent (336),[317] vinyl iodide 356,[238] vinyl iodide 363,[240] 

vinyl iodide 377,[249] pinacol borate 450,[304] vinyl stannane 451,[305] DMP,[208] Bu2BOTf,[298] 

MoOPH.[275] All other reagents and solvents were purchased from chemical suppliers (Sigma-Aldrich, 

Acros Organics, Alfa Aesar, Merck, Strem, ABCR, TCI Europe) and were used as received. 
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Chromatography 
 

Reactions and chromatography fractions were monitored by qualitative thin-layer chromatography 

(TLC) on silica gel F254 TLC plates from Merck KGaA. Analytes on the glass plates were visualized by 

irradiation with UV-light and/or by immersion of the TLC plate in an appropriate staining solution 

followed by heating with a hot-air gun (350 °C). The following staining solutions were applied: 

• p-anisaldehyde staining solution (3.7 mL p-anisaldehyde, 5.0 mL concentrated aqueous 

H2SO4, 1.5 mL glacial AcOH, 135 mL EtOH). 

• CAM staining solution (5.0 g, Ce(SO4)2, 25 g (NH4)6Mo7O24·4H2O, 50 mL concentrated 

aqueous H2SO4, 450 mL H2O). 

• KMnO4 staining solution (3.0 g KMnO4, 20 g K2CO3, 5.0 mL aqueous 5% NaOH, 300 mL 

H2O). 

• DNP staining solution (12 g 2,4-dinitrophenylhydrazine, 60 mL concentrated aqueous H2SO4, 

200 mL EtOH, 80 mL H2O). 

Flash column chromatography was performed on Geduran® Si60 (40−63 μm) silica gel from Merck 

KGaA. All fractions containing a desired substrate were combined and solvents were removed under 

reduced pressure followed by drying in high vacuo (10−2 mbar). 
 

NMR spectroscopy 
 

NMR spectra were recorded by the analytic section of the Department of Chemistry of the Ludwig-

Maximilians-Universität München using Bruker AXR300, Varian VXR400 S and Bruker AMX600 

spectrometers operating at 300 MHz, 400 MHz and 600 MHz for proton nuclei (75 MHz, 100 MHz, 

150 MHz for carbon nuclei). CDCl3, CD2Cl2 and C6D6 were purchased from Sigma-Aldrich and 

Euriso-top. The 1H NMR shifts are reported in ppm related to the chemical shift of TMS. 1H NMR 

shifts were calibrated to residual solvent resonances: CDCl3 (7.26 ppm), CD2Cl2 (5.32 ppm) 

C6D6 (7.16 ppm). 13C NMR shifts were calibrated to the center of the multiplet signal of the residual 

solvent resonance: CDCl3 (77.16 ppm), CD2Cl2 (54.00 ppm), C6D6 (128.37 ppm). 

1H NMR spectroscopic data are reported as follows: Chemical shift in ppm (multiplicity, coupling 

constants J, integration intensity). The multiplicities are abbreviated with s (singlet), br s (broad 

singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and mC (centrosymmetric multiplet). In case 

of combined multiplicities, the multiplicity with the larger coupling constant is stated first. Except for 

multiplets, the chemical shift of all signals, as well for centrosymmetric multiplets, is reported as the 

center of the resonance range. Additionally to recording 1H and 13C NMR spectra, 2D NMR 

techniques such as homonuclear correlation spectroscopy (COSY), heteronuclear single quantum 

coherence (HSQC), heteronuclear multiple bond coherence (HMBC), nuclear Overhauser 

enhancement correlation spectroscopy (NOESY) were used to assign signals. Thereby, the numbering 

of the carbon skeleton does not correspond to the IUPAC nomenclature. If two signals could not be 
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assigned unambiguously by these methods, the assigned carbon atoms are marked as ‘*’, ‘**’, etc. and 

the assignment is interchangeable. Coupling constants nJA/B between protons A and B across n bonds 

are reported in Hz, if an assignment of the two coupling partners was possible. Otherwise, coupling 

constants are given as J in Hz. Diastereotopic protons were named as HA and HB with HA 

corresponding to the more downfield-shifted signal. All NMR spectra were analyzed using the 

program MestRe NOVA 5.2.0 from Mestrelab Research S. L. 
 

Mass spectrometry 
 

All mass spectra were measured by the analytic section of the Department of Chemistry of the 

Ludwig-Maximilians-Universität München. Mass spectra were recorded on the following 

spectrometers (ionization mode in brackets): MAT 95 (EI) and MAT 90 (ESI) from Thermo Finnigan 

GmbH or JMS-700 (FAB) from Jeol Ltd. Mass spectra were recorded in high-resolution and the only 

characteristic molecule fragments or molecule ion peaks are indicated for each analyte. The method 

used is reported at the relevant section of the experimental part. 
 

IR spectroscopy 
 

IR spectra were recorded on a PerkinElmer Spectrum BX II FT-IR system. All substances were 

dissolved in CH2Cl2 and directly applied on the ATR unit. The measured wave numbers are reported 

in cm−1 and the band intensities are described with br (broad), s (strong), m (medium) and w (weak). 
 

Melting points 
 

Melting points were measured on a B-540 melting point apparatus from BÜCHI Labortechnik AG and 

are uncorrected. 
 

Optical rotation 
 

Optical rotation values were recorded on a polarimeter P8000-T from A. Krüss Optronic GmbH or on 

a PerkinElmer 241 polarimeter. The specific rotation is calculated as follows: 
 

[ ] [ ]
dc ⋅

⋅
=

100αα ϑ
λ

 

 

The wave length λ is reported in nm and the measuring temperature ϑ in °C. α resembles the recorded 

optical rotation at the apparatus, c the concentration of the analyte in 10 mg/mL and d the length of the 

cuvette in dm. Thus, the specific rotation is given in 10−1·deg·cm2·g−1. Usage of the sodium D 

line (λ = 589 nm) is indicated by D instead of the wavelength in nm. The respective concentration as 

well as the solvent is denoted in the analytical part of the experimental description. 
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2 EXPERIMENTAL PROCEDURES 
 

2.1 Experimental Procedures for Chapter 2: ‘A Unified Approach 

toward trans-Hydrindane iso-Propyl Sesterterpenoids’ 
 

Synthesis of the ESWHP Ketone (116) 

 

 
To a suspension of diketone 196 (100 g, 890 mmol, 1.0 eq.) in H2O (220 mL) was added 

methylvinylketone (122, 130 mL, 1.59 mol, 1.8 eq.) followed by AcOH (2.70 mL, 47.0 mmol, 

5.3 mol-%). The reaction apparatus was shielded from light and the mixture was heated to 75 °C for 

4 h. The reaction was allowed to cool to room temperature and the product was extracted with 

CH2Cl2 (1 x 500 mL, 2 x 100 mL). The combined organic layers were washed with saturated aqueous 

NaCl (1 x 300 mL, 1 x 200 mL) and the combined aqueous layers were re-extracted with CH2Cl2 (2 x 

150 mL). The combined organic layers were dried over MgSO4 and the solvent was removed under 

reduced pressure to afford crude triketone 197 (147 g, 808 mmol, 91%) as a light-orange oil, which 

was used without further purification. 

A light-protected suspension of (S)-proline (198, 2.80 g, 24.3 mmol, 3.0 mol-%) in DMF (607 mL) 

was degassed four times (evacuated and backfilled with N2) and stirred at 16 °C for 1 h. Then, a 

solution of crude triketone 197 (147 g, 808 mmol, 1.0 eq.) in DMF (200 mL + 2 x 25 mL rinse) was 

added and the mixture was degassed four times. After slowly warming to room temperature and 

stirring for an additional four days at ambient temperature, the reaction was judged to be complete by 

TLC and the mixture, containing crude bicycle 200, was used in the next step without further 

purification. 

Initially, a solution of H2SO4 in DMF was prepared by dropwise addition of concentrated 

H2SO4 (6.36 mL) to DMF (116 mL) at −21 °C. 

The above prepared mixture of crude bicycle 200 in DMF was heated to 95 °C. When the external 

temperature reached 75 to 80 °C, an aliquot of the H2SO4 solution (58 mL) was added. After stirring 

for 1 h at 95 °C, another aliquot of the H2SO4 solution (23 mL) was added and the mixture was stirred 
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for an additional 3.5 h at this temperature, before being allowed to cool to room temperature. The 

solvent was removed under reduced pressure and the resulting residual dark brown oil was dissolved 

in CH2Cl2 (1.1 L). The organic layer was washed with NaCl-saturated H2SO4 (1M, 2 x 500 mL), NaCl-

saturated aqueous saturated NaHCO3 (2 x 500 mL) and with saturated aqueous NaCl (500 mL). Each 

aqueous layer was extracted with the same fraction of CH2Cl2 (2 x 500 mL). The combined organic 

layers were dried over MgSO4 and the solvent was removed under reduced pressure. The residual 

brown oil was dissolved in EtOAc and the solution was filtered over dry silica. The product containing 

fractions were combined and the solvent was removed under reduced pressure to obtain a brownish 

solid. Such material was subjected to bulb-to-bulb distillation (210 °C, 0.4 mbar) giving a pale yellow 

solid. Finally, recrystallization (Et2O/hexanes) afforded diketone 116 (80 g, 488 mmol, 55% over three 

steps, 96% ee) as colorless crystals, which were suitable for X-ray analysis. 

 

Rf = 0.30 (hexanes:EtOAc = 1:1). 

 

Melting point = 63.0−64.0 °C (Et2O/hexanes). 

 
1H NMR (300 MHz, CDCl3): δ = 5.93 (mC, 1H, 5-H), 2.93 (mC, 1H, 3-HA), 2.82−2.67 (m, 2H, 2-HA, 

3-HB), 2.56−2.33 (m, 3H, 2-HB, 7-H), 2.07 (ddd, 2J8A/8B = 13.5 Hz, 3J8A/7 = 5.1, 2.2 Hz, 1H, 8-HA), 

1.82 (ddd, 2J8B/8A = 3J8B/7 = 13.7 Hz, 3J8B/7 = 5.6 Hz, 1H, 8-HB), 1.29 (s, 3H, 10-H) ppm. 

 
13C NMR (75 MHz, CDCl3): δ = 216.6 (C-1), 198.2 (C-6), 169.8 (C-4), 123.9 (C-5), 48.8 (C-9), 

36.0 (C-2), 33.0 (C-7), 29.3 (C-8), 26.9 (C-3), 20.7 (C-10) ppm.  

 

EI-MS for C10H12O2
+ [M+]: calcd. 164.0832 

 found 164.0831. 

 

IR (ATR): ῦ/cm−1 = 2932 (w), 2871 (w), 1745 (s), 1667 (s), 1448 (w), 1348 (w), 1232 (w), 1148 (w), 

1060 (w), 866 (w). 

 

[ ]20
Dα  = +332.0 (c 1.00, toluene). 

 

The analytical data matched those reported previously.[121] 
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Synthesis of Alcohol 201 
 

 
Due to the limited capacities of Dewar vessels, two experiments were set up in parallel: To a solution 

of diketone 116 (25.4 g, 155 mmol, 1.0 eq.) in EtOH (400 mL) at −18 °C was added dropwise a 

solution of NaBH4 (1.76 g, 46.6 mmol, 0.30 eq.) in EtOH (275 mL) within 3.5 h (dropping funnel) and 

the mixture was stirred for an additional 1 h at this temperature. Then, the reaction was quenched by 

slow addition of aqueous HCl (2M) until the pH was adjusted to approximately 6. Both 

experiments (50.5 g of diketone 116 in total) were combined and the solvent was evaporated under 

reduced pressure. The resulting residue was partitioned between EtOAc (500 mL) and saturated 

aqueous NaCl (125 mL) and the aqueous layer was extracted with EtOAc (3 x 125 mL). The combined 

organic layers were dried over MgSO4 and the solvents were evaporated under reduced pressure. The 

thus obtained crude product was purified by flash column chromatography (silica, CH2Cl2:MeOH = 

93:7) to yield title compound 201 (51.2 g, 308 mmol, quant.) as a pale yellow wax. 

 

Rf = 0.23 (CH2Cl2:MeOH = 93:7). 

 
1H NMR (300 MHz, CDCl3): δ = 5.76 (mC, 1H, 5-H), 3.83 (dd, 3J1/2 = 10.3, 7.6 Hz, 1H, 1-H), 

2.69 (mC, 1H, 3-HA), 2.57−2.31 (m, 4H, 3-HB, 7-H, OH), 2.18−2.05 (m, 2H, 2-HA, 8-HA), 

1.88−1.70 (m, 2H, 2-HB, 8-HB), 1.13 (s, 3H, 10-H) ppm. 

 
13C NMR (75 MHz, CDCl3): δ = 199.5 (C-6), 175.5 (C-4), 123.5 (C-5), 80.7 (C-1), 45.3 (C-9), 

34.2 (C-8), 33.4 (C-7), 29.2 (C-2), 26.6 (C-3), 15.2 (C-10) ppm.  

 

EI-MS for C10H14O2
+ [M+]: calcd. 166.0988 

 found 166.0980. 

 

IR (ATR): ῦ/cm−1 = 3400 (br s), 2967 (m), 2867 (w), 1643 (s), 1417 (w), 1349 (m), 1322 (w), 

1201 (m), 1086 (m), 1074 (m), 1034 (w), 956 (w). 

 

[ ]20
Dα  = +78.6 (c 1.00, CH2Cl2). 

 

The analytical data matched those reported previously.[127,132] 
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Synthesis of Enone 203 
 

 
To a solution of alcohol 201 (40.7 g, 245 mmol, 1.0 eq.) in CH2Cl2 (400 mL) at −78 °C was added 

isobutylene (202, approximately 200 mL, 2.23 mol, 9.0 eq.) and H3PO4 (100%, 4.50 mL, 0.34 eq.) 

followed by BF3·OEt2 (10.3 mL, 83.5 mmol, 0.34 eq.). The reaction was stirred for 2 h at −78 °C and 

was then allowed to warm to room temperature. After stirring for an additional 18 h at room 

temperature, the reaction was quenched by addition of aqueous NH4OH (2M, 400 mL). The layers 

were separated and the aqueous layer was extracted with CH2Cl2 (3 x 350 mL). The combined organic 

layers were dried over MgSO4 and the solvents were evaporated under reduced pressure. The crude 

product was purified by flash column chromatography (silica, hexanes:EtOAc = 3:1 to 2:1) to yield 

enone 203 (47.8 g, 215 mmol, 88%) as a colorless solid.  

 

Rf = 0.51 (hexanes:EtOAc = 3:1). 

 
1H NMR (300 MHz, CDCl3): δ = 5.74 (mC, 1H, 5-H), 3.55 (dd, 3J1/2 = 9.8, 7.3 Hz, 1H, 1-H), 2.67 (mC, 

1H, 3-HA), 2.49 (ddd, J = 17.7, 14.3, 5.2 Hz, 1H, 7-HA), 2.41−2.28 (m, 2H, 3-HB, 7-HB), 2.05−1.90 (m, 

2H, 2-HA, 8-HA), 1.85−1.64 (m, 2H, 2-HB, 8-HB), 1.16 (s, 9H, 12-H), 1.09 (s, 3H, 10-H) ppm. 

 
13C NMR (75 MHz, CDCl3): δ = 199.5 (C-6), 175.6 (C-4), 123.0 (C-5), 79.8 (C-1), 73.2 (C-11), 

44.9 (C-9), 34.5 (C-8), 33.6 (C-7), 29.7 (C-2), 28.8 (C-12), 27.0 (C-3), 15.8 (C-10) ppm.  

 

EI-MS for C14H23O2
+ [(M+H)+]: calcd. 223.1685 

 found 223.1693. 

 

IR (ATR): ῦ/cm−1 = 2973 (m), 2936 (w), 1671 (s), 1464 (w), 1419 (w), 1390 (w), 1364 (w), 1218 (m), 

1199 (m), 1092 (m), 1028 (w), 1005 (w), 956 (w), 891 (w). 

 

[ ]20
Dα  = +49.9 (c 1.00, CHCl3). 

 

The analytical data matched those reported previously.[127] 
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Synthesis of Carboxylic Acid 205 
 

 
To a solution of indenone 203 (56.9 g, 256 mmol, 1.0 eq.) in DMF (560 mL) was added MMC (204, 

450 mL of a 2M solution in DMF, 900 mmol, 3.5 eq.) and the mixture was degassed (N2 bubbling) for 

30 min. Then, the reaction vessel was placed in an oil bath (pre-heated to 130 °C) and the mixture was 

stirred for 4 h at 130 °C (Caution: initially vigorous gas evolution). The mixture was allowed to cool 

to room temperature and then further cooled to 0 °C before slowly adding aqueous HCl (2N) until the 

solution solidified. Thereafter, Et2O (500 mL) was added followed by concentrated aqueous HCl until 

the pH was adjusted to 2−3 and two homogenous layers were formed (Caution: slow addition of HCl 

is necessary due to gas evolution). The phases were separated and the aqueous layer was extracted 

with Et2O (4 x 600 mL, 1 x 400 mL). The combined organic layers were splitted into two 

equivolumetric parts and each aliquot was washed with 10% aqueous NaCl (300 mL acidified with 

HCl to pH = 2−3). The aqueous layers were re-extracted with Et2O (2 x 300 mL) and the combined 

organic layers were dried over MgSO4. Having evaporated the solvents under reduced pressure, the 

crude product was recrystallized from hexanes at −78 °C to yield acid 205 (35.4 g, 133 mmol, 52%). 

The mother liquor was concentrated and subjected to flash column chromatography (silica, 

hexanes:EtOAC:HOAc = 8:1:0.045 to 8:1:0.09 to 4:1:0.09 to yield additional acid 205 (9.27 g, 

34.8 mmol, 14%) along with recovered starting material 203 (16.6 g, 74.8 mmol, 29%), which was 

subjected to another cycle as described above.  

Overall, indenone 203 (56.9 g, 256 mmol) was converted to acid 205 (55.7 g, 209 mmol) in 82% yield.  

 

Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of acid 205 in 

hexanes. 

 

Rf = 0.18 (hexanes:EtOAc = 4:1, 1% HOAc). 

 
1H NMR (300 MHz, CDCl3): δ = 3.65 (dd, 3J1/2 = 10.3, 7.1 Hz, 1H, 1-H), 3.34−3.08 (m, 2H, 3-H), 

2.77 (ddd, 2J7A/7B = 18.8 Hz, 3J7A/8 = 14.1, 5.7 Hz, 1H, 7-HA), 2.62 (ddd, 2J7B/7A = 18.9 Hz, 3J7B/8 = 5.6, 

2.0 Hz, 1H, 7-HB), 2.11−1.98 (m, 2H, 2-HA, 8-HA), 1.93−1.73 (m, 2H, 2-HB, 8-HB), 1.17 (s, 12H, 

10-H, 12-H) ppm. 
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13C NMR (75 MHz, CDCl3): δ = 202.9 (C-6), 196.3 (C-13), 164.3 (C-4), 120.5 (C-5), 78.9 (C-1), 

73.6 (C-11), 48.4 (C-9), 33.6 (C-7), 32.0 (C-8), 31.5 (C-3), 30.1 (C-2), 28.7 (C-12), 16.4 (C-10) ppm.  

 

ESI-MS for C15H21O4
− [(M−H)−]: calcd. 265.1445 

 found 265.1441. 

 

IR (ATR): ῦ/cm−1 = 2979 (m), 2943 (w), 1737 (s), 1630 (s), 1390 (m), 1352 (m), 1284 (w), 1264 (w), 

1193 (m), 1103 (m), 1031 (w), 1020 (w), 941 (w). 

 

[ ]20
Dα  = +30.2 (c 1.00, CH2Cl2). 

 

The analytical data matched those reported previously.[127,134] 

 

 

Synthesis of Ketone 207 
 

 
To a solution of carboxylic acid 205 (25.3 g, 94.8 mmol, 1.0 eq.) in MeOH (200 mL) was added 

Pd/BaSO4 (5% Pd, 5.10 g, 2.41 mmol, 2.5 mol-%) and the mixture was purged with H2 (50 psi) for 3 h 

in a pressure reactor. The H2 pressure was released and the mixture was filtered over a pad of Celite® 

(washings with MeOH). The solvent was removed under reduced pressure to yield β-keto acid 206 as 

colorless foam which was used without further purification. 

The flask containing crude β-keto acid 206 was evacuated under high pressure and was subsequently 

heated to 90 °C (pre-heated oil bath) with stirring, resulting in gas evolution. The mixture was stirred 

for 1 h and was then cooled to room temperature. The crude product was purified by flash column 

chromatography (silica, hexanes:EtOAc = 16:1) to give trans-hydrindane 207 as a colorless solid, 

which was contaminated by ca. 6% of the cis-product. 

Purification by flash column chromatography was carried out on the crude product of several reaction 

batches. Overall, keto-acid 205 (54.1 g, 203 mmol) was converted to trans-hydrindane 207 (26.8 g, 

120 mmol) in 59% yield. 

 

Rf = 0.21 (hexanes:EtOAc = 16:1). 

 

Melting point = 37.3−38.3 °C (hexanes/EtOAc). 
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1H NMR (400 MHz, CDCl3): δ = 3.45 (dd, 3J1/2 = 9.1, 7.7 Hz, 1H, 1-H), 2.40 (ddd, J = 16.3, 12.8. 

7.0 Hz, 1H, 7-HA), 2.34−2.25 (m, 3H, 5-H, 7-HB), 2.04−1.90 (m, 2H, 2-HA, 8-HA), 1.77−1.66 (m, 1H, 

4-H),1.64−1.53 (m, 2H, 2-HB, 3-HA), 1.46−1.34 (m, 2H, 3-HB, 8-HB), 1.13 (s, 9H, 12-H), 0.96 (s, 3H, 

10-H) ppm. 

 
13C NMR (100 MHz, CDCl3): δ  = 212.3 (C-6), 79.5 (C-1), 72.7 (C-11), 44.8 (C-4), 43.1 (C-5), 

42.2 (C-9), 37.5 (C-7), 35.4 (C-8), 31.9 (C-2), 28.8 (C-12), 25.9 (C-3), 10.3 (C-10) ppm.  

 

EI-MS for C14H25O2
+ [(M+H)+]: calcd. 225.1850 

 found 225.1845. 

 

IR (ATR): ῦ/cm−1 = 2971 (s), 2874 (m), 1711 (s), 1464 (w), 1418 (w), 1362 (m), 1252 (w), 1193 (s), 

1123 (m), 1104 (w), 1060 (s), 901 (w). 

 

[ ]20
Dα  = +79.0 (c 1.00, CH2Cl2). 

 

The analytical data matched those reported previously.[127,134] 

 

 

Synthesis of Alcohol 208 
 

 
To a solution of trans-hydrindane 207 (30.4 g, 136 mmol, 1.0 eq.) in EtOH (310 mL) was added 

aqueous HCl (6N, 44 mL) and the reaction mixture was heated to reflux for 4 h. After cooling to 0 °C, 

the pH was adjusted to 7 by adding solid Na2CO3 and the solvent was evaporated under reduced 

pressure. The residue was diluted with CH2Cl2 (800 mL) and H2O (200 mL) was added. The organic 

layer was separated, washed with saturated aqueous NaCl (200 mL) and dried over Na2SO4. The 

solvents were removed under reduced pressure and the crude product was purified by flash column 

chromatography (silica, hexanes:EtOAc = 1:1) to yield the title compound 208 (22.6 g, 134 mmol, 

99%) as a colorless oil. 

 

Rf = 0.16 (hexanes:EtOAc = 2:1). 
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1H NMR (CDCl3, 300 MHz): δ = 3.74 (dd, 3J1/2 = 9.1, 8.2 Hz, 1H, 1-H), 2.74−2.19 (m, 4H, 5-H, 7-H), 

2.19−2.09 (m, 1H, 2-HA), 2.00 (mC, 1H, 8-HA), 1.86 (br s, 1H, OH), 1.76 (mC, 1H, 4-H), 1.69−1.34 (m, 

4H, 2-HB, 3-H, 8-HB), 0.98 (s, 3H, 10-H) ppm. 

 
13C NMR (CDCl3, 75 MHz): δ = 211.7 (C-6), 80.4 (C-1), 44.8 (C-4), 43.0 (C-5), 42.5 (C-9), 

37.3 (C-7), 34.8 (C-8), 31.2 (C-2), 25.4 (C-3), 9.9 (C-10) ppm. 

 

EI-MS for C10H16O2
+ [M+]: calcd. 168.1150 

 found 168.1147. 

 

IR (ATR): ῦ/cm−1 = 3420 (br m), 2951 (m), 2872 (m), 1702 (s), 1466 (w), 1417 (w), 1317 (m), 

1200 (w), 1124 (m), 1044 (s), 998 (w). 

 

[ ]20
Dα  = +75.6 (c 1.00, CH2Cl2). 

 

 

Synthesis of Dioxolane 210 
 

 
To a solution of alcohol 208 (22.6 g, 135 mmol, 1.0 eq.) and ethylene glycol (209, 63.0 mL, 1.13 mol, 

8.4 eq.) in benzene (500 mL) was added p-toluenesulfonic acid (2.50 g, 14.5 mmol, 11 mol-%) and the 

suspension was heated to reflux for 2 h using a Dean-Stark trap to remove the liberated water. The 

mixture was allowed to cool to room temperature and the reaction was quenched by adding saturated 

aqueous NaHCO3 (400 mL). After phase separation, the aqueous layer was extracted with EtOAc (3 x 

400 mL) and the combined organic layers were washed with saturated aqueous NaCl (300 mL), dried 

over Na2SO4 and the solvents were removed under reduced pressure. The obtained crude product was 

purified by flash column chromatography (silica, hexanes:EtOAc = 3:2) to yield alcohol 210 (27.5 g, 

130 mmol, 96%) as a pale yellow oil. 

 

Rf = 0.45 (hexanes:EtOAc = 1:1). 

 
1H NMR (CDCl3, 400 MHz): δ = 4.00−3.84 (m, 4H, 11-H, 12-H), 3.71 (dd, 3J1/2 = 8.8, 7.9 Hz, 1H, 

1-H), 2.18−2.06 (m, 1H, 2-HA), 1.79−1.42 (m, 9H, 2-HB, 3-HA, 4-H, 5-H, 7-H, 8-HA, OH), 

1.39−1.22 (m, 2H, 3-HB, 8-HB), 0.81 (s, 3H, 10-H) ppm. 
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13C NMR (CDCl3, 100 MHz): δ = 110.1 (C-6), 81.1 (C-1), 64.4 (C-11)*, 64.3 (C-12)*, 42.6 (C-9), 

42.5 (C-4), 35.8 (C-5)**, 33.7 (C-8), 31.2 (C-7)**, 31.1 (C-2), 25.1 (C-3), 9.7 (C-10) ppm. 

 

EI-MS for C12H20O3
+ [M+]: calcd. 212.1412 

 found 212.1405. 

 

IR (ATR): ῦ/cm−1 = 3420 (br m), 2949 (s), 2874 (s), 1469 (w), 1446 (w), 1349 (m), 1192 (m), 

1117 (s), 1074 (s), 1043 (s), 944 (s), 894 (s), 858 (s). 

 

[ ]20
Dα  = +18.8 (c 1.00, CH2Cl2). 

 

 

Synthesis of Ketone 195 
  

 
To a suspension of pyridinium chlorochromate (68.0 g, 320 mmol, 2.5 eq.) and NaOAc (52.0 g, 

640 mmol, 5.0 eq.) in CH2Cl2 (700 mL) at 0 °C was added dropwise a solution of alcohol 210 (27.2 g, 

128 mmol, 1.0 eq.) in CH2Cl2 (150 mL). The mixture was allowed to warm to room temperature and 

stirred for an additional 4 h. After filtering over a plug of silica (eluted with hexanes:EtOAc = 1:2) and 

evaporation of the solvents under reduced pressure, the crude product was purified by flash column 

chromatography (silica, hexanes:EtOAc = 5:1) to yield ketone 195 (22.1 g, 106 mmol, 80%) as a 

colorless solid, being contaminated by the cis-isomer from the previous reactions. Further purification 

by recrystallization from hexanes yielded pure trans-hydrindane 195 (19.0 g, 90.4 mmol, 71%) as a 

colorless crystalline solid.  

 

Crystals suitable for X-ray analysis were obtained by recrystallization from n-pentane. 

 

Rf = 0.61 (hexanes:EtOAc = 1:1). 

 

Melting point = 76.0−77.0 °C (hexanes). 

 
1H NMR (CDCl3, 600 MHz): δ = 3.94 (mC, 4H, 11-H, 12-H), 2.45 (ddd, 2J2A/2B = 19.3 Hz, 3J2A/3B = 

8.8 Hz, 3J2A/3A = 1.1 Hz, 1H, 2-HA), 2.14 (ddd, 2J2B/2A = 19.2 Hz, 3J2B/3A = 3J2B/3B = 9.2 Hz, 1H, 2-HB), 

2.01 (dddd, 3J4/5 = 18.9 Hz, 3J4/3B = 13.0 Hz, 3J4/3A = 5.8 Hz, 3J4/5 = 3.8 Hz, 1H, 4-H), 1.86 (dddd, 
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2J3A/3B = 12.4 Hz, 3J3A/2B = 8.9 Hz, 3J3A/4 = 5.8 Hz, 3J3A/2A = 1.1 Hz, 1H, 3-HA), 1.79−1.69 (m, 5H, 5-H, 

7-H, 8-HA), 1.62 (dddd, 2J3B/3A = 3J3B/4 = 12.7 Hz, 3J3B/2A = 3J3/2B = 9.0 Hz, 1H, 3-HB), 1.49 (mC, 1H, 

8-HB), 0.93 (s, 3H) ppm. 

 
13C NMR (CDCl3, 150 MHz): δ = 219.7 (C-1), 109.6 (C-6), 64.6 (C-11)*, 64.4 (C-12)*, 47.1 (C-9), 

42.8 (C-4), 36.2 (C-2), 35.6 (C-5), 30.9 (C-7), 28.7 (C-8), 23.7 (C-3), 12.3 (C-10) ppm. 

 

EI-MS for C12H18O3
+ [M+]: calcd. 210.1256 

 found 212.1249. 

 

IR (ATR): ῦ/cm−1 = 2924 (w), 1730 (s), 1412 (w), 1350 (w), 1118 (s), 1066 (s), 1036 (s), 938 (s). 

 

[ ]20
Dα  = +83.6 (c 1.00, CH2Cl2). 

 

This compound has been prepared by an alternative route, having identical physical properties.[125c,d] 

 

 

Synthesis of Enone 194 
 

 
To a solution of diisopropylamine (12.0 mL, 86.0 mmol, 3.0 eq.) in THF (120 mL) at −78 °C was 

added n-BuLi (34.0 mL of a 2.5M solution in hexanes, 86.0 mmol, 3.0 eq.). The yellowish solution 

was stirred for 10 min at −78 °C and an additional 15 min at 0 °C before being cooled to −78 °C. 

Then, a solution of ketone 195 (6.00 g, 28.6 mmol, 1.0 eq.) in THF (30 mL) was added within 15 min. 

After stirring for 45 min at −78 °C, Et3N (18.0 mL, 129 mmol, 4.5 eq.) was added followed by TMSCl 

(14.6 mL, 114 mmol, 4.0 eq.). The solution was stirred for 30 min at −78 °C and was then allowed to 

warm to 0 °C. The reaction was quenched by addition of saturated aqueous NaHCO3 (50 mL) and the 

mixture was diluted with n-pentane (100 mL). The phases were separated and the aqueous layer was 

extracted with n-pentane (3 x 50 mL). The combined organic layers were washed with saturated 

aqueous NaCl (50 mL) and dried over Na2SO4. Evaporation of the solvent under reduced pressure 

(water bath temperature: 35 °C) yielded crude silyl enol ether 211 which was used without further 

purification. 

To a solution of crude silyl enol ether 211 in CH2Cl2 (100 mL) and MeCN (34 mL) was added 

Pd(OAc)2 (7.67 g, 31.5 mmol, 1.1 eq.) in one portion and the solution was stirred at 37 °C for 4 h. The 
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mixture was filtered over a plug of silica (eluted with hexanes:EtOAc = 1:1) and the solvents were 

evaporated under reduced pressure. The crude product was purified by flash column 

chromatography (silica, hexanes:EtOAc = 7:1 to 5:1 to 4:1 to 2:1) to yield α,β-unsaturated 

ketone 194 (4.10 g, 19.7 mmol, 69%) as a colorless crystalline solid along with recovered starting 

material 195 (1.30 g, 6.20 mmol, 22%). 

A second cycle of the above described reaction and additional reaction batches resulted in an overall 

transformation from ketone 195 (18.8 g, 89.5 mmol) to enone 194 (15.2 g, 73.1 mmol) in 82% yield.  

 

Crystals suitable for X-ray analysis were obtained by recrystallization from hexanes. 

 

Rf = 0.50 (hexanes:EtOAc = 1:1). 

 

Melting point = 127.5−129.5 °C (hexanes/EtOAc). 

 
1H NMR (CDCl3, 600 MHz): δ = 7.38 (dd, 3J3/2 = 5.9 Hz, 3J3/4 = 1.8 Hz, 1H, 3-H), 6.03 (dd, 3J2/3 = 

5.9 Hz, 4J2/4 = 3.2 Hz, 1H, 2-H), 4.00−3.92 (m, 4H, 11-H, 12-H), 3.04 (mC, 1H, 4-H), 1.96−1.86 (m, 

3H, 5-H, 7-HA), 1.82−1.74 (m, 2H, 7-HB, 8-HA), 1.69 (ddd, 2J8B/8A = 13.2 Hz, 3J8B/7A = 3J8B/7B = 4.8 Hz, 

1H, 8-HB), 1.13 (s, 3H, 10-H) ppm. 

 
13C NMR (CDCl3, 150 MHz): δ = 211.7 (C-1), 160.6 (C-3), 132.0 (C-2), 109.7 (C-6), 64.8 (C-11)*, 

64.3 (C-12)*, 50.7 (C-9), 48.1 (C-4), 33.6 (C-5), 31.7 (C-7), 26.8 (C-8), 19.4 (C-10) ppm. 

 

EI-MS for C12H16O3
+ [M+]: calcd. 208.1099 

 found 208.1097. 

 

IR (ATR): ῦ/cm−1 = 2963 (w), 2934 (w), 1699 (s), 1466 (w), 1237 (w), 1180 (w), 1134 (w), 1092 (s), 

1066 (w), 949 (w). 

 

[ ]20
Dα  = −67.2 (c 1.00, CH2Cl2). 
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Synthesis of Lactone 217 
 

 
To a solution of ketone 195 (43.0 mg, 200 μmol, 1.0 eq.) in THF (2 mL) at −78 °C was slowly added 

LiHMDS (300 μL of a 1.0M solution in THF, 300 μmol, 1.5 eq.) and the mixture was stirred for 1 h at 

this temperature. Then, a solution of PhSeBr (80.0 mg, 340 μmol, 1.7 eq.) in THF (1 mL) was added 

dropwise and the mixture was stirred for an additional 1 h at −78 °C prior to be quenched by addition 

of saturated aqueous NH4Cl (4 mL). The layers were separated and the aqueous layer was extracted 

with CH2Cl2 (3 x 10 mL). The combined organic layers were washed with saturated aqueous NaCl (10 

mL) and dried over MgSO4. Evaporation of the solvents under reduced pressure yielded ketone 216 as 

a mixture of diastereomers, which was used without further purification. 

To a solution of ketone 216 (assumed 200 μmol) in THF/CH2Cl2 (1:1, 2 mL) at 0 °C was slowly added 

H2O2 (900 μL of a 30 wt% solution in H2O, 800 μmol, 4.0 eq.) and the mixture was stirred at this 

temperature for 30 min. The reaction was quenched by addition of saturated aqueous Na2S2O3 (2 mL) 

and the biphasic mixture was extracted with EtOAc (3 x 5 mL). The combined organic layers were 

dried over MgSO4 and the solvents were evaporated under reduced pressure. The crude product was 

purified by flash column chromatography (silica, hexanes:EtOAc = 2:1 to 1:1) to yield 

lactone 217 (8.0 mg, 36 μmol, 18%) as a colorless solid.  

 

Rf = 0.16 (hexanes:EtOAc = 2:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 6.51 (dd, 3J3/2 = 9.7 Hz, 3J3/4 = 2.1 Hz, 1H, 3-H), 6.02 (dd, 3J2/3 = 

9.6 Hz, 4J2/4 = 3.2 Hz, 1H, 2-H), 4.02−3.93 (m, 4H, 11-H, 12-H), 3.04 (mC, 1H, 4-H), 2.05 (mC, 1H, 

8-HA), 1.93−1.86 (m, 2H, 5-HA, 7-HA), 1.83 (mC, 1H, 7-HB), 1.70 (ddd, J = 14.2, 14.2, 4.8 Hz, 1H, 

8-HB), 1.64 (dd, J = 14.0, 13.4 Hz, 1H, 5-HB), 1.39 (s, 3H, 10-H) ppm. 

 
13C NMR (CDCl3, 150 MHz): δ = 164.1 (C-1), 148.1 (C-3), 121.7 (C-2), 108.0 (C-6), 82.6 (C-9), 

64.9 (C-11)*, 64.6 (C-12)*, 39.9 (C-4), 36.4 (C-5), 35.7 (C-8), 32.1 (C-7), 17.0 (C-10) ppm. 

 

EI-MS for C12H16O4
+ [M+]: calcd. 224.1043 

 found 224.1051. 
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IR (ATR): ῦ/cm−1 = 2954 (br w), 1718 (s), 1381 (w), 1259 (w), 1159 (w), 1117 (s), 1090 (m), 

1057 (m), 1004 (w), 982 (w), 817 (w). 

 

[ ]20
Dα  = +15.0 (c 0.17, CH2Cl2). 

 

 

Synthesis of Ketone 220 
 

 
To a suspension of CuCN (1.45 g, 16.2 mmol, 2.25 eq.) in Et2O (48 mL) at 0 °C was added 

isopropylenemagnesium bromide (219, 65.0 mL of a 0.5M solution in THF, 32.4 mmol, 4.5 eq.) within 

15 min. The resulting mixture was stirred for 30 min at this temperature and subsequently cooled to 

−78 °C. Then, a solution of enone 194 (1.50 g, 7.20 mmol, 1.0 eq.) in THF (15 mL) was added slowly 

and, after stirring for an additional 2 h at −78 °C, the reaction was quenched by addition of saturated 

aqueous NH4Cl (40 mL). The mixture was allowed to warm to room temperature, diluted with Et2O 

(100 mL) and filtered over a pad of Celite® (washings with Et2O). The phases were separated and the 

aqueous layer was extracted with Et2O (3 x 40 mL). The combined organic layers were washed with 

saturated aqueous NaCl (50 mL), dried over MgSO4 and the solvents were evaporated under reduced 

pressure. The crude product was purified by flash column chromatography (silica, hexanes:EtOAc = 

7:1 to 5:1) to yield alkene 220 as a colorless solid. 

Flash column chromatography was carried out to purify the combined crude products of several 

reactions which were carried out as described above. In overall, use of substrate 194 (11.9 g, 

57.2 mmol) resulted in the formation of the desired product 220 (11.5 g, 46.0 mmol) in 81% yield. 

 

Crystals suitable for X-ray analysis were grown by slow evaporation of a solution of ketone 220 in 

n-pentane at −25 °C. 

 

Rf = 0.43 (hexanes:EtOAc = 3:1). 

 

Melting point = 69.0−70.5 °C (hexanes/EtOAc). 

 
1H NMR (CDCl3, 600 MHz): δ = 4.97 (s, 1H, 14-HA), 4.83 (s, 1H, 14-HB), 4.03−3.89 (m, 4H, 11-H, 

12-H), 2.86 (mC, 1H, 3-H), 2.77 (dd, 2J2A/2B = 19.7 Hz, 3J2A/3 = 1.8 Hz, 1H, 2-HA), 2.49 (dd, 2J2B/2A = 
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19.5 Hz, 3J2B/3 = 9.2 Hz, 1H, 2-HB), 2.41−2.34 (m, 1H, 4-H), 1.99−1.91 (m, 2H, 5-H), 1.81 (s, 3H, 

15-H), 1.75 (ddd, 2J7A/7B = 3J7A/8B = 13.8 Hz, 3J7A/8A = 4.8 Hz, 1H, 7-HA), 1.68 (mC, 1H, 7-HB), 

1.63 (ddd, 2J8A/8B = 13.1 Hz, 3J8A/7A = 4.6 Hz, 3J8A/7B = 2.6 Hz, 1H, 8-HA), 1.43 (ddd, 2J8B/8A = 3J8B/7A = 

13.5 Hz, 3J8B/7B = 3.9 Hz, 1H, 8-HB), 1.04 (s, 3H, 10-H) ppm. 

 
13C NMR (CDCl3, 150 MHz): δ = 220.6 (C-1), 146.1 (C-13), 112.3 (C-14), 109.8 (C-6), 64.7 (C-11),* 

64.4 (C-12)*, 47.1 (C-9), 45.8 (C-4), 42.2 (C-2), 41.9 (C-3), 35.7 (C-5), 30.9 (2C, C-7, C-8), 

24.9 (C-15), 15.3 (C-10) ppm. 

 

EI-MS for C15H22O3
+ [M+]: calcd. 250.1569 

 found 250.1565. 

 

IR (ATR): ῦ/cm−1 = 2954 (m), 2879 (m), 1737 (s), 1440 (w), 1350 (w), 1291 (w), 1135 (m), 1095 (s), 

1053 (s), 942 (w), 894 (w). 

 

[ ]20
Dα  = +30.6 (c 1.00, CH2Cl2). 

 

 

Synthesis of Ketone 222 
 

 
To a solution of alkene 220 (250 mg, 1.00 mmol, 1.0 eq.) in MeOH (10 mL) was added Pd/C (10% Pd, 

20 mg, 19 μmol, 1.9 mol-%) and the solution was stirred under an atmosphere of H2 (double layer 

balloon, 1 atm) for 16 h. The reaction mixture was filtered over a pad of Celite® (washings with 

EtOAc) and the solvents were evaporated under reduced pressure. The resulting crude product was 

purified by flash column chromatography (silica, hexanes:EtOAc = 4:1) to yield the title 

compound 222 (240 mg, 952 μmol) as a colorless solid, which was contaminated by a small 

impurity (<5% by NMR). Recrystallization from n-pentane provided pure ketone 222 (230 mg, 

913 μmol, 91%). 

 

Crystals suitable for X-ray analysis were grown by slow evaporation of a solution of ketone 222 in 

Et2O/n-pentane. 

 

Rf = 0.54 (hexanes:EtOAc = 3:1). 
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Melting point = 88−90 °C (hexanes/EtOAc). 

 
1H NMR (CDCl3, 600 MHz): δ = 3.94 (mC, 4H, 11-H, 12-H), 2.40 (mC, 1H, 2-HA), 1.98−1.87 (m, 2H, 

2-HB, 3-H), 1.86−1.76 (m, 3H, 4-H, 5-HA, 13-H), 1.75−1.66 (m, 3H, 7-H, 8-HA), 1.62 (mC, 1H, 5-HB), 

1.54−1.45 (m, 1H, 8-HB), 0.97 (s, 3H, 10-H), 0.94 (d, 3J15/13 = 6.8 Hz, 3H, 15-H)*, 0.84 (d, 3J14/13 = 

6.9 Hz, 3H, 14-H)* ppm.  

  
13C NMR (CDCl3, 150 MHz): δ = 219.0 (C-1), 109.6 (C-6), 64.6 (C-11)*, 64.4 (C-12)*, 48.8 (C-9), 

45.4 (C-4), 42.0 (C-3), 38.1 (C-2), 33.9 (C-5), 30.8 (C-7), 29.0 (C-8), 28.0 (C-13), 22.0 (C-14)**, 

17.4 (C-15)**, 13.5 (C-10) ppm. 

 

FAB-MS for C15H25O3
+ [(M+H)+]: calcd. 253.1798 

 found 253.1793. 

 

IR (ATR): ῦ/cm−1 = 2960 (m), 2875 (m), 1737 (s), 1466 (w), 1389 (w), 1351 (w), 1231 (w), 1141 (m), 

1122 (m), 1046 (m), 975 (w), 938 (m), 902 (w), 858 (w). 

 

[ ]20
Dα  = +65.0 (c 1.00, CH2Cl2). 

 

 

Synthesis of Alcohol 224 
 

 
To a solution of ketone 222 (100 mg, 398 μmol, 1.0 eq.) in EtOH (10 mL) at −20 °C was added a 

solution of NaBH4 (30 mg, 0.80 mmol, 2.0 eq.) in EtOH (3 mL) within 1 h. The solution was stirred 

for an additional 2 h at this temperature and was then allowed to warm to room temperature. The 

reaction was quenched by addition of saturated aqueous NH4Cl (5 mL) and the solvent was evaporated 

under reduced pressure. The residue was dissolved in EtOAc (30 mL) and the organic layer was 

sequentially washed with H2O (5 mL) and saturated aqueous NaCl (5 mL). The organic layer was 

dried over Na2SO4 and the solvent was removed under reduced pressure. The crude product was 

purified by flash column chromatography (silica, hexanes:EtOAc = 4:1 to 2:1) to yield 

alcohol 224 (93 mg, 0.37 mmol, 93%) as a colorless solid. 
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The stereochemistry at C-1 was established by 2D NOESY spectroscopy, indicating no correlation 

between the signals at C-1 (δ = 3.66−3.59 ppm) and at C-10 (δ = 0.85 ppm). This is in contrast to the 

observation for its C-1 diastereomeric counterpart (vide infra). 

 

Rf = 0.20 (hexanes:EtOAc = 3:1). 

  

Melting point = 117.0−118.5 °C (hexanes/EtOAc). 

 
1H NMR (CDCl3, 600 MHz): δ = 3.96−3.89 (m, 4H), 3.66−3.59 (m, 1H), 1.89−1.81 (m, 1H), 

1.76−1.66 (m, 3H), 1.66−1.57 (m, 3H), 1.55−1.46 (m, 3H), 1.40 (br s, 1H, OH), 1.35−1.28 (m, 1H), 

0.87 (d, J = 6.7 Hz, 3H), 0.85 (s, 3H), 0.81 (d, J = 6.8 Hz, 3H) ppm.  

  
13C NMR (CDCl3, 150 MHz): δ = 110.1 (Cq), 80.2 (CH), 64.4 (CH2), 64.3 (CH2), 45.1 (CH), 

43.9 (CH), 43.8 (Cq), 34.8 (CH2), 34.2 (CH2), 34.0 (CH2), 31.2 (CH2), 29.4 (CH), 22.0 (CH3), 

18.2 (CH3), 10.9 (CH3) ppm. 

 

FAB-MS for C15H27O3
+ [(M+H)+]: calcd. 255.1955 

 found 255.1954. 

 

IR (ATR): ῦ/cm−1 = 3260 (br m), 2950 (s), 2872 (m), 1466 (w), 1387 (w), 1301 (w), 1196 (w), 

1122 (m), 1091 (m), 1076 (m), 1050 (m), 942 (m).  
 

 

Synthesis of Thionocarbonate 227 
 

 
To a solution of alcohol 224 (25 mg, 0.10 mmol, 1.0 eq.) in CH2Cl2 (2 mL) at 0 °C was sequentially 

added pyridine (20 μL, 0.11 mmol, 1.1 eq.) and phenyl chlorothionocarbonate (226, 21 μL, 

0.27 mmol, 2.7 eq.). The resulting yellow solution was allowed to warm up to room temperature and 

was stirred for 3 h. The reaction was quenched by addition of saturated aqueous NH4Cl (5 mL) and the 

aqueous phase was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed 

with H2O (5 mL), saturated aqueous NaHCO3 (5 mL) and saturated aqueous NaCl (5 mL), and were 

dried over Na2SO4. After removal of the solvents under reduced pressure, the crude product was 
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purified by flash column chromatography (silica, hexanes:EtOAc = 19:1) to yield 

thionocarbonate 227 (35 mg, 90 μmol, 90%) as a pale yellow solid.  

 

Rf = 0.13 (hexanes:EtOAc = 16:1). 

 

Melting point = 116.0−118.0 °C (hexanes/EtOAc). 

 
1H NMR (CDCl3, 600 MHz): δ = 7.40 (mC, 2H), 7.28 (mC, 1H), 7.10 (mC, 2H), 5.09 (dd, J = 9.3, 

7.0 Hz, 1H), 4.00−3.87 (m, 4H), 2.27−2.17 (m, 1H) 1.79−1.60 (m, 8H), 1.56−1.51 (m, 2H), 0.97 (s, 

3H), 0.90 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.7 Hz, 3H) ppm.  

  
13C NMR (CDCl3, 150 MHz): δ = 195.1 (Cq), 153.6 (Cq), 129.6 (CH), 126.6 (CH), 122.1 (CH), 

109.7 (Cq), 91.0 (CH), 64.5 (CH2), 64.3 (CH2), 44.6 (CH), 44.0 (CH), 43.9 (Cq), 34.4 (CH2), 

34.2 (CH2), 31.0 (CH2), 30.4 (CH2), 29.2 (CH), 21.9 (CH3), 18.0 (CH3), 12.3 (CH3) ppm. 

 

FAB-MS for C22H31O4S+ [(M+H)+]: calcd. 391.1938 

 found 391.1935. 

 

IR (ATR): ῦ/cm−1 = 2955 (m), 2927 (m), 1491 (w), 1308 (m), 1296 (m), 1276 (m), 1201 (s), 1093 (w), 

1018 (w), 945 (w), 884 (w), 770 (w), 689 (w).  

 

[ ]20
Dα  = +42.2 (c 0.50, CH2Cl2). 

 

 

Synthesis of Alkene 225 
 

 
To a solution of ketone 222 (380 mg, 1.51 mmol 1.0 eq.) in THF (25 mL) at −78 °C was added 

dropwise KHMDS (4.83 mL of a 0.5M solution in toluene, 2.41 mmol, 1.6 eq.) and the resulting 

slightly yellow solution was stirred for 15 min. After adding PhNTf2 (755 mg, 2.11 mmol, 1.4 eq.) in 

one portion, the reaction mixture was stirred for an additional 30 min at this temperature. The reaction 

was quenched by addition of saturated aqueous NH4Cl (10 mL) and the mixture was allowed to warm 

to room temperature. The layers were separated and the aqueous phase was extracted with 
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Et2O (3 x 10 mL). The combined organic layers were dried over Na2SO4 and the solvents were 

removed under reduced pressure to yield crude enol triflate 228.  

The obtained crude enol triflate 228 (assumed 1.51 mmol) was dissolved in DMF (10 mL) and 

n-Bu3N (1.07 mL, 838 mg, 4.53 mmol, 3.0 eq.), HCOOH (140 μL, 173 mg, 3.78 mmol, 2.5 eq.) and 

Pd(PPh3)2Cl2 (53 mg, 80 μmol, 5.0 mol-%) were sequentially added. The yellow suspension was 

placed in an oil-bath (pre-heated to 75 °C) forming a clear solution which turned dark red. After 

stirring for an additional 2 h at 75 °C, the mixture was allowed to cool to room temperature and the 

reaction was quenched by adding H2O (10 mL). Following extraction with Et2O (5 x 15 mL), the 

combined organic layers were washed with 10% aqueous NaCl (3 x 15 mL) and dried over Na2SO4. 

The solvents were evaporated under reduced pressure (600 mbar) and the crude product was purified 

by flash column chromatography (silica, n-pentane:Et2O = 49:1 to 19:1) to yield alkene 225 (310 mg, 

1.31 mmol, 87%) as a colorless oil. 

 

Rf = 0.52 (hexanes:EtOAc = 7:1). 

 

1H NMR (CD2Cl2, 400 MHz): δ = 5.85 (dd, 3J1/2
 = 5.8 Hz, 4J1/3 = 2.5 Hz, 1H, 1-H), 5.66 (dd, 3J2/1 = 

5.8 Hz, 3J2/3 = 1.5 Hz, 1H, 2-H), 3.96−3.86 (m, 4H, 11-H, 12-H), 2.20 (mC, 1H, 3-H), 1.83−1.59 (m, 

7H, 4-H, 5-H, 7-H, 8-HA, 13-H), 1.56−1.47 (m, 1H, 8-HB), 0.98 (d, 3J14/13 = 6.9 Hz, 3H, 14-H)*, 

0.86 (d, J = 0.5 Hz, 3H, 10-H), 0.84 (d, 3J15/13 = 6.8 Hz, 3H, 15-H)* ppm.  

  
13C NMR (CD2Cl2, 100 MHz): δ = 142.7 (C-1), 132.9 (C-2), 110.7 (C-6), 64.8 (C-11)*, 64.6 (C-12)*, 

52.2 (C-3), 49.4 (C-4), 46.5 (C-9), 34.1 (2C, C-5, C-8), 32.2 (C-7), 28.8 (C-13), 22.3 (C-14)**, 

19.4 (C-15)**, 16.8 (C-10) ppm. 

 

EI-MS for C15H24O2
+ [M+]: calcd. 236.1771 

 found 236.1778. 

 

IR (ATR): ῦ/cm−1 = 3043 (w), 2945 (s), 2872 (s), 1465 (w), 1432 (w), 1350 (w), 1294 (w), 1255 (w), 

1167 (w), 1119 (m), 1082 (s), 1054 (m), 954 (m), 883 (w), 730 (w).  

 

[ ]20
Dα  = +85.8 (c 1.00, CH2Cl2). 
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Synthesis of Alcohols 232 and 233 
 

 
To a solution of alkene 225 (200 mg, 850 μmol, 1.0 eq.) in THF (20 mL) at 0 °C was added dropwise 

BH3·SMe2 complex (530 μL of a 2.0M solution in THF, 1.06 mmol, 1.25 eq.) and the mixture was 

stirred for an additional 30 min at room temperature before being cooled to 0 °C. Subsequently, 

aqueous NaOH (3N, 7.5 mL) and H2O2 (30 wt%, 7.5 mL) were added and the biphasic mixture was 

heated to 45 °C for 30 min. The mixture was cooled to room temperature and the reaction was 

quenched by addition of saturated aqueous NH4Cl (15 mL). The aqueous phase was extracted with 

EtOAc (3 x 30 mL) and the combined organic layers were dried over Na2SO4. After evaporation of the 

solvents under reduced pressure, the crude product was purified by flash column 

chromatography (silica, hexanes:EtOAc = 7:1 to 4:1) to yield alcohol 232 (85 mg, 0.33 mmol, 39%) as 

a colorless solid along with its regioisomer 233 (80 mg, 0.31 mmol, 37%) as a colorless oil.  

 

Analytical data for regioisomer 233: 

 

Rf = 0.50 (hexanes:EtOAc = 2:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 4.40 (ddd, 3J2/1A = 3J2/3 = 7.4 Hz, 3J2/1B = 5.5 Hz, 1H, 2-H), 

3.99−3.88 (m, 4H, 11-H, 12-H), 2.11 (dd, 2J1A/1B = 12.9 Hz, 3J1A/2 = 7.3 Hz, 1H, 1-HA), 1.90 (mC, 1H, 

13-H), 1.86−1.80 (m, 2H, 4-H, 7-HA) 1.76−1.69 (m, 1H, 5-HA), 1.64−1.59 (m, 2H, 5-HB, 8-HA) 

1.51−1.43 (m, 3H, 3-H, 7-HB, 8-HB), 1.32 (br s, 1H, OH), 1.14 (dd, 2J1B/1A = 13.0 Hz, 3J1B/2 = 5.6 Hz, 

1H, 1-HB), 1.04−0.93 (m, 6H, 14-H, 15-H), 0.81 (s, 3H, 10-H) ppm.  

 
13C NMR (CDCl3, 150 MHz): δ = 110.1 (C-6), 74.1 (C-2), 64.4 (C-11)*, 64.3 (C-12)*, 51.0 (C-1), 

50.6 (C-3), 46.0 (C-4), 38.8 (C-9), 36.4 (C-8), 35.8 (C-7), 31.3 (C-5), 27.0 (C-13), 23.0 (C-14)**, 

21.5 (C-15)**, 18.7 (C-10) ppm. 

 

FAB-MS for C15H27O3
+ [(M+H)+]: calcd. 255.1960 

 found 255.1969. 

 

IR (ATR): ῦ/cm−1 = 3484 (m), 2954 (s), 2974 (s), 1465 (w), 1441 (w), 1386 (w), 1367 (w), 1354 (w), 

1306 (w), 1267 (w), 1244 (w), 1136 (w), 1082 (m), 1040 (w), 893 (w), 819 (w). 
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[ ]20
Dα  = +42.6 (c 0.65, CH2Cl2). 

 

Analytical data for regioisomer 232: 

 

Rf = 0.40 (hexanes:EtOAc = 2:1). 

 

Melting point = 76.4−77.4 °C (hexanes/EtOAc). 

 
1H NMR (CDCl3, 600 MHz): δ = 4.01−3.86 (m, 4H, 11-H, 12-H), 3.69 (mC, 1H, 1-H), 2.23 (ddd, 
3J2A/2B = 15.1 Hz, 3J2A/3 = 10.1 Hz, 3J2A/1 = 5.9 Hz, 1H, 2-HA), 1.86 (ddd, J = 13.3, 11.6 Hz, 3.5 Hz, 1H, 

4-H), 1.83−1.73 (m, 3H, 5-HA, 7-HA, 8-HA), 1.72−1.64 (m, 2H, 5-HB, 13-H), 1.53 (dddd, 3J3/13 = 

16.8 Hz, 3J3/2A = 10.1 Hz, 3J3/2B = 6.7 Hz, 3J3/4 = 5.2 Hz, 1H, 3-H), 1.47 (dd, 2J7B/7A = 3J7B/6A = 13.0 Hz, 

1H, 7-HB), 1.38−1.34 (m, 1H, 8-HB), 1.27 (dd, 2J2B/2A = 15.3 Hz, 3J2B/3 = 6.8 Hz, 1H, 2-HB), 1.23 (br s, 

1H, OH), 0.90 (d, 3J14/13 = 6.9 Hz, 3H, 14-H)*, 0.85 (d, 3J15/13 = 6.7 Hz, 3H, 15-H)*, 0.77 (s, 3H, 10-H) 

ppm.  

 
13C NMR (CDCl3, 150 MHz): δ = 110.0 (C-6), 78.0 (C-1), 64.4 (C-11)*, 64.3 (C-12)*, 45.8 (C-9), 

45.5 (C-3), 42.6 (C-4), 36.2 (C-2), 34.9 (C-7), 30.9 (C-5), 29.5 (C-13), 28.7 (C-8), 22.1 (C-14)**, 

18.4 (C-15)**, 17.0 (C-10) ppm. 

 

FAB-MS for C15H27O3
+ [(M+H)+]: calcd. 255.1960 

 found 255.1963. 

 

IR (ATR): ῦ/cm−1 = 3490 (br m), 2952 (s), 2871 (s), 1464 (w), 1440 (w), 1387 (w), 1353 (w), 

1301 (w), 1265 (w), 1189 (w), 1129 (m), 1136 (m) 1081 (s), 1039 (m), 1018 (w), 973 (m), 894 (w), 

820 (w). 

 

[ ]20
Dα  = +17.4 (c 0.65, CH2Cl2). 

 

 

Synthesis of Epoxide 239 
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To a solution of alkene 225 (18 mg, 76 μmol, 1.0 eq.) in CH2Cl2 (2 mL) at 0 °C was added 

mCPBA (20 mg, 0.11 mmol, 1.5 eq.) in one portion and the resulting colorless solution was stirred in 

the melting ice bath for 16 h. After diluting with CH2Cl2 (5 mL), washing with saturated aqueous 

K2CO3 (3 mL) and phase separation, the aqueous phase was extracted with CH2Cl2 (3 x 5 mL). The 

combined organic layers were dried over Na2SO4 and the solvents were evaporated under reduced 

pressure. The thus obtained crude product was purified by flash column chromatography (silica, 

n-pentane:Et2O = 16:1 to 9:1) to yield epoxide 239 (15 mg, 59 μmol, 78%) as a colorless solid. 

 

Rf = 0.25 (hexanes:EtOAc = 7:1). 

 

Melting point = 60.0−61.0 °C (pentane/Et2O). 

 

1H NMR (CD2Cl2, 400 MHz): δ = 3.97−3.80 (m, 4H, 11-H, 12-H), 3.29 (dd, 3J2/1 = 3.0 Hz, 3J2/3 = 

1.1 Hz, 1H, 2-H), 3.00 (dd, 3J1/2 = 3.1 Hz, 4J = 0.8 Hz, 1H, 1-H), 1.81−1.70 (m, 2H, 7-HA, 13-H), 

1.68−1.58 (m, 3H, 5-HA, 7-HB, 8-HA), 1.53−1.41 (m, 3H, 4-H, 5-HB, 8-HB), 1.36 (mC, 1H, 3-H), 

1.05 (d, 3J14/13 = 7.0 Hz, 3H, 14-H)*, 0.98 (d, 3J15/13 = 6.9 Hz, 3H, 15-H)*, 0.82 (s, 3H, 10-H) ppm.  

 
13C NMR (CD2Cl2, 100 MHz): δ = 110.2 (C-6), 64.9 (C-11)*, 64.7 (C-12)*, 59.8 (C-1), 55.6 (C-2), 

47.0 (C-3), 41.6 (C-9), 38.4 (C-4), 33.6 (C-5), 31.8 (C-7), 30.6 (C-8), 27.9 (C-13), 22.8 (C-14)**, 

20.1 (C-15)**, 15.4 (C-10) ppm. 

 

FAB-MS for C15H25O3
+ [(M+H)+]: calcd. 253.1804 

 found 253.1824. 

 

IR (ATR): ῦ/cm−1 = 2953 (s), 2932 (m), 2879 (m), 1464 (m), 1385 (m), 1342 (w), 1299 (w), 1255 (w), 

1172 (m), 1125 (m), 1087 (s), 1075 (s), 1034 (w), 994 (w), 943 (m), 869 (s), 805 (w), 676 (w). 
 

 

Synthesis of Alcohol 232 by Reductive Epoxide Opening 
 

 
To a solution of epoxide 239 (5.0 mg, 20 μmol, 1.0 eq.) in THF (2 mL) at 0 °C was added 

LiHBEt3 (200 μL of a 1.0M solution in THF, 200 μmol, 10 eq.). The resulting colorless solution was 

allowed to warm to room temperature and stirred for 4 h before the reaction was quenched by slow 
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addition of saturated aqueous NH4Cl (2 mL) at 0 °C. After phase separation the aqueous layer was 

extracted with EtOAc (3 x 3 mL) and the combined organic layers were washed with brine (2 mL) and 

dried over MgSO4. Having evaporated the solvent under reduced pressure, the crude product was 

purified by flash column chromatography (silica, hexanes:EtOAc = 3:1) to yield the title 

compound 232 (4.0 mg, 16 μmol, 79%) as a colorless solid. 

 

The analytical data matched those obtained previously. 
 

 

Synthesis of Diol 240 
 

 
To a stirred biphasic mixture of alkene 225 (10 mg, 42 μmol, 1.0 eq.) in t-BuOH/H2O (1:1, 2.5 mL) 

was sequentially added K3Fe(CN)6 (138 mg, 420 μmol, 10 eq.), K2CO3 (58 mg, 420 μmol, 10.0 eq.), 

DABCO (5.2 mg, 42 μmol, 1.0 eq.) and OsO4 (30 μL of a 2.5 wt% solution in t-BuOH, 2.1 μmol, 

5.0 mol-%). The resulting yellow reaction mixture was stirred for 2 h before being quenched by 

addition of solid Na2SO3 (40 mg). The mixture was stirred for an additional 45 min, filtered over a 

plug of Celite® and diluted with H2O (3 mL). After extraction with EtOAc (3 x 5 mL), the combined 

organic layers were dried over Na2SO4 and the solvent was removed under reduced pressure. The 

crude product was purified by flash column chromatography (silica, hexanes:EtOAc = 2:1) to yield 

diol 240 (10 mg, 37 μmol, 88%) as a colorless solid. 

 

Rf = 0.26 (hexanes:EtOAc = 2:1). 

 

Melting point = 91.0−92.5 °C (hexanes/EtOAc). 

 
1H NMR (CDCl3, 400 MHz): δ = 4.42 (ddd, 3J2/3 = 8.6 Hz, 3J2/OH = 8.0 Hz, 3J2/1 = 5.3 Hz, 1H, 2-H), 

3.99−3.89 (m, 4H, 11-H, 12-H), 3.64 (dd, 3J1/2 = 5.4 Hz, 3J1/OH = 4.0 Hz, 1H, 1-H), 2.51 (d, 3JOH/2 = 

7.9 Hz, 1H, OH), 2.46 (d, 3JOH/1 = 4.0 Hz, 1H, OH), 2.04 (ddd, 3J4/3 = 3J4/5B = 12.8 Hz, 3J4/5A = 3.3 Hz, 

1H, 4-H), 1.92−1.84 (m, 3H, 5-HA, 8-HA, 13-H), 1.76 (ddd, J = 13.4, 13.4, 4.4 Hz, 1H, 7-HA), 

1.68 (mC, 1H, 7-HB), 1.52 (ddd, 3J3/4 = 12.3 Hz, 3J3/2 = 8.6 Hz, 3J3/13 = 6.4 Hz, 1H, 3-H), 1.48 (dd, 
2J5B/5A = 3J5B/4 = 13.1 Hz, 1H, 5-HB), 1.41 (mC, 1H, 8-HB), 1.00 (d, 3J14/13 = 6.9 Hz, 3H, 14-H)*, 

0.98 (d, 3J15/13 = 6.9 Hz, 3H, 15-H)*, 0.79 (s, 3H, 10-H) ppm.  
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13C NMR (CDCl3, 100 MHz): δ = 109.8 (C-6), 77.8 (C-1), 73.5 (C-2), 64.4 (C-11)*, 64.3 (C-12)*, 

49.2 (C-3), 42.9 (C-9), 41.9 (C-4), 35.8 (C-5), 30.6 (C-7), 29.3 (C-8), 27.3 (C-13), 23.3 (C-14)**, 

21.4 (C-15)**, 16.9 (C-10) ppm. 

 

ESI-MS for C15H25O4
− [(M−H)−]: calcd. 269.1758 

 found 269.1758. 

 

IR (ATR): ῦ/cm−1 = 3412 (br s), 2951 (s), 2872 (s), 1464 (w), 1434 (w), 1382 (w), 1356 (w), 1306 (w), 

1269 (w), 1184 (w), 1118 (m), 1081 (s), 1045 (m), 970 (w). 

 

[ ]20
Dα  = +24.4 (c 0.50, CH2Cl2). 

 

 

Synthesis of Thionocarbonate 242 
 

 
To a solution of diol 240 (14 mg, 56 μmol, 1.0 eq.) in toluene (5 mL) was added 

1,1’-thiocarbonyldiimidazole (241, 98 mg, 0.54 mmol, 10 eq.) and the resulting yellow solution was 

heated to reflux for 20 h. After cooling to room temperature, the solvent was evaporated under reduced 

pressure and the crude product was purified by flash column chromatography (silica, hexanes:EtOAc 

= 4:1) to yield thiocarbonate 242 (16 mg, 51 μmol, 92%) as an off-white solid. 

 

Rf = 0.42 (hexanes:EtOAc = 2:1). 

 

Melting point = 174.0−175.5 °C (hexanes/EtOAc). 

 
1H NMR (C6D6, 400 MHz): δ = 4.35 (dd, 3J2/1 = 3J2/3 = 6.1 Hz, 1H, 2-H), 3.81 (d, 3J1/2 = 6.2 Hz, 1H, 

1-H), 3.57−3.35 (m, 4H, 11-H, 12-H), 2.07−1.93 (m, 2H, 4-H, 8-HA), 1.79 (dd, 2J5A/5B = 13.1 Hz, 
3J5A/4 = 3.2 Hz, 1H, 5-HA), 1.70 (mC, 1H, 13-H), 1.62−1.52 (m, 2H, 7-H), 1.37 (dd, 2J5B/5A = 3J5B/4 = 

13.0 Hz, 1H, 5-HB) 1.19 (mC, 1H, 8-HB), 1.03 (ddd, 3J = 13.1, 7.1, 6.0 Hz, 1H, 3-H), 0.94 (d, 3J14/13 = 

6.9 Hz, 3H, 14-H)*, 0.89 (d, 3J15/13 = 7.0 Hz, 3H, 15-H)*, 0.19 (s, 3H, 10-H) ppm.  
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13C NMR (C6D6, 100 MHz): δ = 191.7 (C-16), 108.7 (C-6), 90.2 (C-1), 87.8 (C-2), 64.5 (C-11)*, 

64.3 (C-12)*, 50.7 (C-3), 33.0 (C-9), 41.9 (C-4), 35.1 (C-5), 30.5 (C-7), 29.3 (C-8), 27.1 (C-13), 

21.2 (C-14)**, 21.1 (C-15)**, 15.9 (C-10) ppm. 

 

ESI-MS for C15H24O4ClS− [(M+Cl)−]: calcd. 347.1089 

 found 347.1088. 

 

IR (ATR): ῦ/cm−1 = 2959 (w), 2876 (w), 1465 (w), 1435 (w), 1349 (m), 1280 (s), 1173 (m), 1137 (w), 

1117 (w), 1085 (m), 1009 (m), 976 (m), 913 (w), 889 (w), 829 (w). 

 

[ ]20
Dα  = +63.4 (c 0.50, CH2Cl2). 

 

 

Synthesis of Ketone ent-141 
 

 
To a solution of alkene 225 (300 mg, 1.27 mmol, 1.0 eq.) in n-pentane (15 mL) was added Pd/C (10% 

Pd, 33 mg, 25 μmol, 2.0 mol-%) and the resulting suspension was stirred under an atmosphere of 

H2 (balloon, 1 atm) for 16 h. The reaction mixture was filtered over a pad of Celite® (washings with 

Et2O) and the solvents were carefully removed under reduced pressure. The thus obtained colorless 

oil, ketal 243, was used without further purification. 

To a solution of crude ketal 243 (assumed 1.27 mmol) in acetone (15 mL) was added I2 (86 mg, 

0.34 mmol, 26 mol-%) in one portion. The solution was stirred for 10 min at room temperature and the 

reaction was quenched by addition of aqueous Na2S2O3 (5 wt%, 10 mL). The mixture was extracted 

with CH2Cl2 (3 x 20 mL) and the combined organic layers were dried over MgSO4. After evaporation 

of the solvents under reduced pressure, the crude product was purified by flash column 

chromatography (silica, n-pentane:Et2O = 24:1 to 19:1) to yield ketone ent-141 (234 mg, 1.21 mmol, 

95%) as a colorless solid. 

 

Crystals suitable for X-ray analysis were grown from a solution of ketone 141 in n-pentane at −25 °C. 

 

Rf = 0.55 (hexanes:EtOAc = 7:1). 

 

Melting point = 64.5−66.0 °C (CH2Cl2). 
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1H NMR (CDCl3, 600 MHz): δ = 2.44−2.36 (m, 2H, 5-HA, 7-HA), 2.31 (dddd, J = 16.5, 5.7, 1.8, 

1.8 Hz, 1H, 7-HB), 2.15 (mC, 1H, 5-HB), 1.90−1.79 (m, 2H, 2-HA, 8-HA), 1.67−1.58 (m, 2H, 3-H, 

11-H), 1.57−1.44 (m, 4H, 1-HA, 2-HB, 4-H, 8-HB), 1.21−1.14 (m, 1H, 1-HB), 0.99 (s, 3H, 10-H), 

0.87 (d, 3J12/11 = 6.6 Hz, 3H, 12-H)*, 0.79 (d, 3J13/11 = 6.7 Hz, 3H, 13-H)* ppm.  

 
13C NMR (CDCl3, 150 MHz): δ = 212.2 (C-6), 50.2 (C-4), 47.2 (C-3), 42.8 (C-5), 41.3 (C-9), 

38.3 (C-1), 37.9 (C-7), 37.2 (C-8), 29.4 (C-11), 25.1 (C-2), 21.9 (C-12)*, 18.1 (C-13)*, 

17.3 (C-10) ppm. 

 

EI-MS for C13H22O+ [M+]: calcd. 199.1665 

 found 199.1661. 

 

IR (ATR): ῦ/cm−1 = 2950 (s), 2870 (s), 1703 (s), 1465 (w), 1412 (w), 1387 (w), 1278 (w), 1240 (w), 

1228 (w), 1214 (w), 1140 (w), 1079 (w), 738 (w). 

 

[ ]20
Dα  = +92.8 (c 0.50, CH2Cl2), [ ]20

Dα  = +101.3 (c 1.00, CDCl3). 

 

 

Synthesis of Diene 245 
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To a solution of ketone 220 (1.36 g, 5.44 mmol, 1.0 eq.) in THF (75 mL) at −78 °C was added 

dropwise KHMDS (17.4 mL of a 0.5M solution in toluene, 8.70 mmol, 1.6 eq.). After 10 min 

PhNTf2 (2.72 g, 7.62 mmol, 1.4 eq.) was added in one portion and the mixture was stirred for 30 min 

at −78 °C. The reaction was quenched by addition of saturated aqueous NH4Cl (20 mL) and the 

organic layer was separated. The aqueous layer was extracted with Et2O (3 x 30 mL) and the 

combined organic layers were dried over Na2SO4. The solvents were removed under reduced 

pressure (water bath temperature: 35 °C) to give enol triflate 244 as a yellowish oil which was used 

without further purification. 

To a solution of crude enol triflate 244 (assumed 5.44 mmol) in DMF (30 mL) was added 

n-Bu3N (3.87 mL, 16.3 mmol, 3.0 eq.), HCOOH (513 μL, 13.6 mmol, 2.5 eq.) and 

Pd(PPh3)2Cl2 (190 mg, 270 μmol, 5.0 mol-%) and the reaction mixture was heated to 75 °C for 9 h. 

The reaction was quenched by addition of H2O (20 mL) and the mixture was extracted with 
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Et2O (4 x 50 mL). The combined organic layers were washed with 10% aqueous NaCl (3 x 40 mL), 

dried over Na2SO4 and the solvents were removed under reduced pressure. The crude product was 

purified by flash column chromatography (silica, n-pentane:Et2O = 99:1 to 19:1) to yield 

diene 245 (980 mg, 4.15 mmol, 76% over two steps) as a colorless liquid. 

 

Rf = 0.66 (hexanes:EtOAc = 7:1). 

 
1H NMR (CD2Cl2, 400 MHz): δ  = 5.95 (mC, 1H, 1-H), 5.77 (dd, 3J2/1 = 5.8 Hz, 3J2/3 = 2.8 Hz, 1H, 

2-H), 4.81−4.78 (m, 1H, 15-HA), 4.70−4.65 (m, 1H, 15-HB), 3.99−3.85 (m, 4H, 11-H, 12-H), 3.01 (mC, 

1H, 3-H), 2.23 (ddd, 3J = 14.4, 8.5, 2.8 Hz, 1H, 4-H), 1.92 (mC, 1H, 5-HA), 1.81 (ddd, 2J7A/7B = 3J7A/8B 

= 13.8 Hz, 3J7A/8A = 5.3 Hz, 1H, 7-HA), 1.80−1.73 (m, 4H, 5-HB, 14-H), 1.64 (mC, 1H, 7-HB), 

1.56 (ddd, 2J8A/8B = 12.6 Hz, 3J8A/7A = 5.3 Hz, 3J8A/7B = 2.3 Hz, 1H, 8-HA), 1.44 (mC 1H, 8-HB), 0.93 (d, 
4J = 0.6 Hz, 3H, 10-H) ppm.  

 
13C NMR (CD2Cl2, 100 MHz): δ  =147.5 (C-13), 142.8 (C-1), 132.9 (C-2), 112.3 (C-15), 110.7 (C-6), 

65.0 (C-11)*, 64.7 (C-12)*, 53.1 (C-3), 48.8 (C-4), 46.8 (C-9), 34.5 (C-5), 35.1 (C-8), 32.5 (C-7), 

24.4 (C-14), 18.9 (C-10) ppm. 

 

FAB-MS for C15H23O2
+ [(M+H)+]: calcd. 235.1693 

 found 235.1692. 

 

IR (ATR): ῦ/cm−1 = 3041 (w), 2951 (s), 2877 (s), 1440 (w), 1348 (m), 1287 (w), 1247 (w), 1184 (m), 

1102 (m), 1054 (m), 974 (w), 946 (w), 892 (w), 749 (w). 
 

 

Synthesis of Ketone 246 
 

 
To a solution of ketone 220 (3.98 g, 15.9 mmol, 1.0 eq.) in EtOH (300 mL) was added PtO2 (181 mg, 

800 μmol, 5.0 mol-%) and the resulting suspension was purged with H2 (balloon, 1 atm) for 60 min. 

The mixture was filtered over a pad of Celite® (washings with Et2O) and the solvent was evaporated 

under reduced pressure. The crude product was purified by flash column chromatography (silica, 

hexanes:EtOAc = 5:1) to yield ketone 246 as colorless solid. 
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Flash column chromatography was carried out to purify the combined crude of several reactions which 

were carried out as described above. Thus, use of substrate (10.7 g, 42.3 mmol) resulted in the 

formation of the desired product 246 (9.90 g, 39.3 mmol) in 93% yield. 

 

Crystals suitable for X-ray analysis were grown by slow evaporation of a solution of ketone 246 in 

Et2O/n-pentane. 

 

Rf = 0.46 (hexanes:EtOAc = 3:1). 

 

Melting point = 65.5−67.0 °C (CH2Cl2). 

 
1H NMR (CDCl3, 600 MHz): δ = 4.00−3.87 (m, 4H, 11-H, 12-H), 2.48 (dd, 2J2A/2B = 19.7 Hz, 3J2A/3 = 

2.4 Hz, 1H, 2-HA), 2.37 (dd, 2J2B/2A = 19.7 Hz, 3J2B/3 = 8.9 Hz, 1H, 2-HB), 2.28 (ddd, 3J4/5A = 13.8 Hz, 
3J4/3 = 7.2 Hz, 3J4/5B = 3.2 Hz, 1H, 4-H), 2.00 (dd, 3J5A/4 = 13.7 Hz, 2J5A/5B = 12.8 Hz, 1H, 5-HA), 

1.91 (ddd, 2J5B/5A = 12.7 Hz, 3J5B/4 = 3.2 Hz, 4J5B/7 = 2.2 Hz, 1H, 5-HB), 1.89−1.79 (m, 2H, 3-H, 13-H), 

1.74−1.62 (m, 3H, 7-H, 8-HA), 1.44 (ddd, J = 13.3, 13.3, 4.8 Hz, 1H, 8-HB), 1.04 (s, 3H, 10-H), 

0.96 (d, 3J14/13 = 6.0 Hz, 3H, 14-H)*, 0.87 (d, 3J15/13 = 6.1 Hz, 3H, 15-H)* ppm. 

   
13C NMR (CDCl3, 150 MHz): δ = 220.7 (C-1), 109.9 (C-6), 64.6 (C-11)*, 64.4 (C-12)*, 46.5 (C-9), 

45.5 (C-4), 43.5 (C-3), 41.9 (C-2), 35.8 (C-5), 30.7 (C-7), 30.6 (C-8), 29.9 (C-13), 23.7 (C-14)*, 

23.2 (C-15)*, 15.9 (C-10) ppm. 

 

EI-MS for C15H24O3
+ [M+]: calcd. 252.1720 

 found 252.1722. 

 

IR (ATR): ῦ/cm−1 = 2954 (s), 2879 (s), 1740 (s), 1472 (w), 1406 (w), 1382 (w), 1346 (w), 1306 (w), 

1290 (w), 1263 (w), 1231 (w), 1172 (w), 1139 (m), 1113 (m), 1102 (m), 1086 (s), 1045 (s), 1010 (w), 

970 (w), 942 (m), 921 (w), 885 (w), 861 (w).  

 

[ ]20
Dα  = +56.6 (c 1.00, CH2Cl2). 
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Synthesis of Alkene 221 
 

 
To a solution of ketone 246 (3.00 g, 11.9 mmol 1.0 eq.) in THF (120 mL) at −78 °C was added 

dropwise KHMDS (33.4 mL of a 0.5M solution in toluene, 16.7 mmol, 1.4 eq.) and the resulting 

slightly yellow solution was stirred for 15 min. After adding PhNTf2 (6.37 g, 17.9 mmol, 1.5 eq.) in 

one portion the reaction mixture was stirred an additional 10 min at −78 °C. The reaction was allowed 

to warm to 0 °C and stirred for an additional 30 min at this temperature before being quenched by 

addition of saturated aqueous NH4Cl (40 mL). The aqueous phase was extracted with Et2O (3 x 

40 mL) and the combined organic layers were washed with saturated aqueous NaCl (30 mL). The 

organic layer was dried over MgSO4 and the solvents were removed under reduced pressure to obtain 

crude enol triflate 249.  

The crude enol triflate 249 (assumed 11.9 mmol) was dissolved in DMF (30 mL) and n-

Bu3N (8.47 mL, 6.60 g, 35.7 mmol, 3.0 eq.), HCOOH (1.12 mL, 1.37 g, 29.8 mmol, 2.5 eq.) and 

Pd(PPh3)2Cl2 (334 mg, 476 μmol, 4.0 mol-%) were sequentially added. The yellow suspension was 

placed in a pre-heated oil bath at 75 °C and stirred for 1 h forming a clear solution which turned dark 

red. After cooling to room temperature, the reaction was quenched by adding H2O (30 mL). The 

mixture was filtered over a plug of Celite® (washings with Et2O) and the aqueous layer was extracted 

with Et2O (5 x 40 mL). The combined organic layers were washed with 10% aqueous NaCl (3 x 

75 mL) and dried over MgSO4. Having evaporated the volatiles under reduced pressure (600 mbar) the 

crude product was purified by flash column chromatography (silica, n-pentane:Et2O = 49:1 to 19:1) to 

yield alkene 221 (2.57 g, 10.9 mmol, 92% over two steps) as a colorless oil. Due to volatility of title 

compound 221, evaporation of the solvents was carried out at min. 600 mbar. 

 

Rf = 0.68 (hexanes:EtOAc = 7:1). 

 

1H NMR (CD2Cl2, 400 MHz): δ = 5.86 (mC, 1H, 1-H), 5.81 (dd, 3J2/1 = 5.9 Hz, 3J2/3 = 2.8 Hz, 1H, 

2-H), 3.94−3.88 (m, 4H, 11-H, 12-H), 2.15 (ddd, 3J = 12.6, 7.6, 4.4 Hz, 1H, 4-H), 2.06 (dddd, 3J3/13 = 

9.9 Hz, 3J3/4 = 7.6 Hz, 3J3/2 = 2.8 Hz, 4J3/1 = 1.4 Hz, 1H, 3-H), 1.90−1.84 (m, 2H, 5-HA, 5-HB), 

1.79 (dd, 2J7A/7B = 13.8 Hz, 3J7A/8A = 5.1 Hz, 1H, 7-HA), 1.72 (dtt, 3J13/3 = 9.8 Hz, 3J13/14 = 3J13/15 = 

6.6 Hz, 1H, 13-H), 1.64 (mC, 1H, 7-HB), 1.56 (ddd, 2J8A/8B = 12.5 Hz, 3J8A/7A = 5.2 Hz, 3J8A/7B = 2.4 Hz, 

1H, 8-HA), 1.45 (mC, 1H, 8-HB), 1.00 (d, J = 0.6 Hz, 3H, 10-H), 0.91 (d, 3J14/13 = 6.5 Hz, 3H, 14-H)*, 

0.85 (d, 3J15/13 = 6.7 Hz, 3H, 15-H)* ppm. 
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13C NMR (CD2Cl2, 100 MHz): δ = 142.2 (C-1), 134.5 (C-2), 110.8 (C-6), 64.9 (C-11)*, 64.7 (C-12)*, 

54.8 (C-3), 48.8 (C-4), 46.2 (C-9), 35.4 (2C, C-5, C-8), 32.6 (C-7), 30.3 (C-13), 23.9 (C-14)**, 

22.6 (C-15)**, 21.5 (C-10) ppm. 

 

EI-MS for C15H24O2
+ [M+]: calcd. 236.1771 

 found 236.1758. 

 

IR (ATR): ῦ/cm−1 = 3045 (w), 2952 (s), 2932 (s), 2868 (s), 1465 (w), 1348 (w), 1291 (w), 1249 (w), 

1185 (w), 1108 (w), 1085 (m), 1052 (w), 973 (w), 942 (w), 879 (w), 818 (w), 741 (w).  

 

[ ]20
Dα  = −75.8 (c 1.00, CH2Cl2). 

 

 

Synthesis of Epoxide 250 
 

 
To solution of alkene 221 (30 mg, 0.13 mmol, 1.0 eq.) in CH2Cl2 (4 mL) at 0 °C was added 

mCPBA (33 mg, 0.19 mmol, 1.5 eq.) in one portion and the solution was stirred in the melting ice bath 

for 16 h. The reaction was quenched by addition of saturated aqueous K2CO3 (3 mL) and the mixture 

was extracted with CH2Cl2 (3 x 5 mL). The combined organic layers were dried over MgSO4 and the 

solvents were removed under reduced pressure. The crude product was purified by flash column 

chromatography (silica, n-pentane:Et2O = 19:1 to 7:1) to yield epoxide 250 (29 mg, 0.12 mmol, 91%) 

as a colorless solid. 

 

Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of 250 in Et2O/n-

pentane. 

 

Rf = 0.35 (hexanes:EtOAc = 7:1). 

 

Melting point = 69.0−71.0 °C (CH2Cl2). 

 
1H NMR (CDCl3, 600 MHz): δ = 3.97−3.88 (m, 4H, 11-H, 12-H), 3.40 (mC, 1H, 2-H), 3.16 (mC, 1H, 

1-H), 1.94 (ddd, J = 14.2, 7.3, 3.4 Hz, 1H, 4-H), 1.81 (mC, 1H, 5-HA), 1.80−1.71 (m, 3H, 3-H, 5-HB, 
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7-HA), 1.71−1.61 (m, 3H, 7-HB, 8-HA, 13-H), 1.49 (ddd, 2J8B/8A = 11.9 Hz, 3J8B/7 = 4.5, 2.0 Hz, 1H, 

8-HB), 0.98 (d, 3J15/13 = 6.6 Hz, 3H, 15-H)*, 0.97 (s, 3H, 10-H), 0.90 (d, 3J14/13 = 6.4 Hz, 3H, 

14-H)* ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 110.1 (C-1), 64.6 (C-11)*, 64.3 (C-12)*, 62.7 (C-1), 57.7 (C-2), 

47.6 (C-3), 40-7 (C-9), 40.1 (C-4), 33.9 (C-5), 31.7 (C-8), 31.5 (C-7), 27.2 (C-13), 24.2 (C-14)**, 

21.8 (C-15)**, 17.4 (C-10) ppm. 
 

EI-MS for C15H25O3
+ [(M+H)+]: calcd. 253.1798 

 found 253.1787. 

 

IR (ATR): ῦ/ cm−1 = 2956 (s), 2873 (s), 1468 (w), 1388 (w), 1354 (w), 1293 (w), 1252 (w), 1179 (w), 

1115 (w), 1087 (m), 1060 (w), 949 (w), 848 (w). 

 

[ ]20
Dα  = −33.5 (c 0.20, CH2Cl2). 

 

 

Synthesis of Alcohols 192 and 251 
 

 
To a solution of (S)-Alpine-BoramineTM (252, 1.26 g, 3.02 mmol, 1.3 eq.) in THF (4.8 mL) was added 

BF3·OEt2 (744 μL, 6.04 mmol, 2.6 eq.) and the mixture was stirred at room temperature for 2 h 

forming a white precipitate. The mixture was filtered using a syringe filter and the resulting solution of 

enantiopure IpcBH2 (253) was used directly. The concentration was considered to be ca. 1M.[171] 

To a solution of alkene 221 (550 mg, 2.33 mmol, 1.0 eq.) in THF (60 mL) at 0 °C was added dropwise 

(+)-IpcBH2 (253, 3.5 mL of a ca. 1M solution in THF, 3.5 mmol, 1.5 eq.). The mixture was allowed to 

warm to room temperature and stirred an additional 30 min, at which time thin layer chromatography 

indicated complete consumption of the starting material. The mixture was cooled to 0 °C and 

MeOH (500 μL) was added followed by aqueous NaOH (3N, 10 mL) and aqueous H2O2 (30%, 

10 mL). After heating the biphasic mixture to 55 °C for 40 min, the mixture was allowed to cool to 

room temperature and saturated aqueous NH4Cl (20 mL) was added. The phases were separated and 

the aqueous layer was extracted with Et2O (3 x 30 mL). The combined organic layers were washed 
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with saturated aqueous NaCl (2 x 40 mL), which in turn were re-extracted with Et2O (2 x 20 mL). The 

combined organic layers were dried over MgSO4 and the solvents were evaporated under reduced 

pressure. The crude product was purified by flash column chromatography (silica, hexanes:EtOAc = 

2:1) to yield the regioisomers 192 and 251 (3.7:1, 549 mg, 2.16 mmol, 92%) as a colorless oil. Further 

purification by flash column chromatography (silica, hexanes:EtOAc = 4:1) yielded alcohols 17 

and 18 (502 mg, 1.98 mmol, 84%) in an enhanced ratio of 5.5:1. 

On larger scale, 3.8 g (16.1 mmol) and 3.2 g (13.6 mmol) of alkene 221, respectively, the initial ratio 

of hydroboration remained unchanged. Careful flash column chromatography, however, gave 

alcohols 192 and 251 (2.70 g, 10.6 mmol, 67% and 2.50 g, 9.84 mmol, 73%) in lower yield but in 

enhanced ratios of 12.4:1 and 6.6:1, respectively. 

 

An analytical sample of regioisomer 192 was obtained by repeated flash column chromatography. The 

analytical data of alcohol 251 was obtained from a sample which was contaminated by ca. 14% of 

alcohol 192 as assigned by 1H NMR spectroscopy. 

 

Analytical data for alcohol 192: 

 

Rf = 0.34 (hexanes:EtOAc = 2:1, stains green with anisaldehyde). 

 

1H NMR (CDCl3, 600 MHz): δ = 4.32 (ddd, 3J2/1B = 8.6 Hz, 3J2/1A = 7.2 Hz, 3J2/3 = 4.4 Hz, 1H, 2-H), 

3.98−3.90 (m, 4H, 11-H, 12-H), 2.25 (ddd, 3J = 14.1, 10.5, 3.3 Hz, 1H, 4-H), 2.01 (dd, 2J1A/1B = 

11.6 Hz, 3J1A/2 = 7.1 Hz, 1H, 1-HA), 1.85 (mC, 1H, 5-HA), 1.73−1.62 (m, 3H, 5-HB, 7-HA, 13-H), 

1.58 (mC, 1H, 7-HB), 1.54 (ddd, J = 12.8, 4.7, 2.5 Hz, 1H, 8-HA), 1.48 (ddd, 3J3/4 = 3J3/13 = 10.4 Hz, 
3J3/2 = 4.3 Hz, 1H, 3-H), 1.42 (mC, 1H, 8-HB), 1.37 (br s, 1H, OH), 1.22 (mC, 1H, 1-HB), 1.00 (d, 3J14/13 

= 6.6 Hz, 3H, 14-H)*, 0.94 (d, 3J15/13 = 6.6 Hz, 3H, 15-H)*, 0.87 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 110.4 (C-6), 77.9 (C-2), 64.5 (C-11)*, 64.4 (C-12)*, 57.2 (C-3), 

50.1 (C-1), 46.9 (C-4), 41.2 (C-9), 36.9 (C-8), 34.8 (C-5), 30.8 (C-7), 29.9 (C-13), 24.1 (C-15)**, 

22.0 (C-14)**, 19.1 (C-10) ppm. 

 

EI-MS for C15H26O3
+ [M+]: calcd. 254.1876 

 found 254.1879. 

 

IR (ATR): ῦ/cm−1 = 3418 (br s), 2950 (s), 2876 (s), 1457 (w), 1388 (w), 1354 (w), 1289 (w), 1255 (w), 

1193 (w), 1111 (m), 1095 (m), 1035 (m), 994 (w), 946 (w), 874 (w).  

 

[ ]20
Dα  = −1.3 (c 1.00, CH2Cl2). 
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Analytical data for alcohol 251: 

 

Rf = 0.31 (hexanes:EtOAc = 2:1, stains violet with anisaldehyde). 

 

1H NMR (CDCl3, 600 MHz): δ  = 3.99−3.92 (m, 4H, 11-H, 12-H), 3.74 (d, 3J1/2A = 5.1 Hz, 1H, 1-H), 

2.37 (ddd, 3J = 14.3, 9.8, 3.5 Hz, 1H, 4-H), 2.00 (mC, 1H, 2-HA), 1.93 (mC, 1H, 5-HA), 1.85 (mC, 1H, 

3-H), 1.82−1.71 (m, 4H, 2-HB, 5-HB, 7-HA, 8-HA), 1.69−1.64 (m, 1H, 7-HB), 1.63−1.58 (m, 1H, 13-H), 

1.36−1.27 (m, 2H, 8-HA, OH), 0.90 (d, 3J14/13 = 6.4 Hz, 3H, 14-H)*, 0.84 (s, 3H, 10-H), 0.82 (d, 
3J15/13 = 6.6 Hz, 3H, 15-H)* ppm. 
  
13C NMR (CDCl3, 150 MHz): δ = 110.4 (C-6), 79.0 (C-1), 64.5 (C-11)*, 64.4 (C-12)*, 45.6 (C-9), 

44.9 (C-3), 42.4 (C-4), 38.5 (C-2), 34.9 (C-5), 30.8 (C-7), 30.7 (C-13), 29.6 (C-8), 24.1 (C-14)**, 

22.3 (C-15)**, 18.3 (C-10) ppm. 

 

EI-MS for C15H26O3
+ [M+]: calcd. 236.1876 

 found 236.1869. 

 

IR (ATR): ῦ/cm−1 = 3446 (br s), 2954 (s), 2872 (s), 1461 (w), 1386 (w), 1353 (w), 1291 (w), 1257 (w), 

1190 (w), 1112 (w), 1086 (m), 1057 (w), 1036 (w), 976 (w), 948 (w), 884 (w).  

 

[ ]20
Dα  = −46.0 (c 0.50, CH2Cl2). 

 

 

Synthesis of Ketones 255 and 256 
 

 
To a solution of alcohols 192 and 251 (5.5:1, 495 mg, 1.95 mmol, 1.0 eq.) in acetone/H2O (10:1, 

44 mL) was added PPTS (635 mg, 2.53 mmol, 1.3 eq.) and the mixture was heated to reflux for 3 h. 

The reaction was allowed to cool to room temperature and the pH was adjusted to 7−8 by adding solid 

NaHCO3. The mixture was subsequently freed of acetone and the residue was diluted with 

Et2O (80 mL). The organic layer was consecutively washed with saturated aqueous NaHCO3 (2 x 

20 mL), aqueous HCl (1N, 2 x 20 mL) and saturated aqueous NaHCO3 (20 mL). The combined 



148  EXPERIMENTAL SECTION 

NaHCO3 layers and the combined HCl layers were separately re-extracted with Et2O (2 x 20 mL) and 

the combined organic layers were dried over MgSO4. The solvents were removed under reduced 

pressure and the crude product was purified by flash column chromatography (silica, hexanes:EtOAc 

= 4:1 to 2:1) to yield ketones 255 and 256 (12:1, 307 mg, 1.46 mmol, 75%) as a colorless solid.  

On a larger scale, reaction of a 12.4:1 mixture of alcohols 192 and 251 (2.66 g, 10.5 mmol) provided 

pure ketone 255 (1.81 g, 8.62 mmol) in 82% yield. 

 

Analytical samples of both regioisomers 255 and 256 were obtained by repeated flash column 

chromatography. Ketone 256 was obtained as viscous colorless oil. 

 

Analytical data for ketone 255: 

 

Rf = 0.22 (hexanes:EtOAc = 2:1, stains yellow-green with anisaldehyde). 

 

Melting point = 52.5−54.5 °C (hexanes/EtOAc). 

 

1H NMR (CDCl3, 600 MHz): δ = 4.42 (ddd, 3J2/1A = 9.4 Hz, 3J2/1B = 7.0 Hz, 3J2/3 = 4.9 Hz, 1H, 2-H), 

2.58 (ddd, J = 14.3, 3.4, 1.7 Hz, 1H, 5-HA), 2.44−2.30 (m, 4H, 4-H, 5-HB, 7-H), 2.10 (dd, 2J1A/1B = 

11.7 Hz, 3J1A/2 = 7.0 Hz, 1H, 1-HA), 1.84 (ddd, J = 13.0, 7.1, 2.1 Hz, 1H, 8-HA), 1.73−1.67 (m, 1H, 

11-H), 1.62−1.55 (m, 3H, 3-H, 8-HB, OH), 1.31 (dd, 2J1B/1A = 11.7 Hz, 3J = 9.3 Hz, 1H, 1-HB), 1.04 (d, 
3J13/11 = 6.6 Hz, 3H, 13-H)*, 1.04 (s, 3H, 10-H), 0.94 (d, 3J12/11 = 6.4 Hz, 3H, 12-H)* ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 212.0 (C-6), 77.7 (C-2), 56.6 (C-3), 49.4 (C-1), 48.6 (C-4), 

41.6 (C-5), 40.9 (C-9), 37.7 (C-8), 37.2 (C-7), 29.2 (C-11), 24.2 (C-12)*, 21.7 (C-13)*, 

19.1 (C-10) ppm. 

 

EI-MS for C13H22O2
+ [M+]: calcd. 210.1614 

 found 210.1613. 

 

IR (ATR): ῦ/cm−1 = 3406 (br s), 2955 (s), 2932 (s), 2871 (m), 1703 (s), 1462 (w), 1420 (w), 1388 (w), 

1228 (w), 1170 (w), 1149 (w), 1129 (w), 1101 (w), 1034 (m), 999 (w), 973 (w), 818 (w), 741 (w).  

 

[ ]20
Dα  = +72.0 (c 0.125, CH2Cl2). 
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Analytical data for ketone 256:  

 

Rf = 0.28 (hexanes:EtOAc = 2:1, stains violet with anisaldehyde). 

 

1H NMR (CDCl3, 600 MHz): δ = 3.84 (d, 3J1/2A = 4.8 Hz, 1H, 1-H), 2.63 (mC, 1H, 5-HA), 

2.54−2.36 (m, 4H, 4-H, 5-HB, 7-H), 2.06 (ddd, 2J2A/2B = 14.7 Hz, 3J2A/3 = 7.3 Hz, 3J2A/1 = 4.7 Hz, 1H, 

2-HA), 2.04−1.98 (m, 1H, 8-HA), 1.98−1.92 (m, 1H, 3-H), 1.83 (dd, 2J2B/2A = 14.8 Hz, 3J2B/3 = 8.9 Hz, 

1H, 2-HB), 1.64 (mC, 1H, 11-H), 1.59 (ddd, J = 12.7, 7.1, 2.4 Hz, 1H, 8-HB), 1.41 (br s, 1H, OH), 

1.00 (d, J = 0.6 Hz, 3H, 10-H), 0.90 (d, 3J = 6.6 Hz, 3H, 12-H)*, 0.86 (d, 3J = 6.6 Hz, 3H, 

13-H)* ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 212.6 (C-6), 78.4 (C-1), 45.5 (C-9), 44.6 (C-3), 44.2 (C-4), 

41.5 (C-5), 38.8 (C-2), 37.1 (C-7), 30.1 (C-11), 30.0 (C-8), 24.1 (C-12)*, 22.0 (C-13)*, 

18.4 (C-10) ppm. 

 

EI-MS for C13H22O2
+ [M+]: calcd. 210.1614 

 found 210.1614. 

 

IR (ATR): ῦ/cm−1 = 3434 (br s), 2957 (s), 2894 (s), 2874 (s), 1698 (s), 1466 (w), 1424 (w), 1386 (w), 

1368 (w), 1343 (w), 1309 (w), 1266 (w), 1234 (w), 1171 (w), 1144 (w), 1127 (w), 1031 (m), 954 (w). 

 

[ ]20
Dα  = −9.2 (c 0.50, CH2Cl2). 

 

 

Synthesis of trans-Hydrindane Building Block 191 
 

 
To a solution of alcohols 255 and 256 (12:1, 100 mg, 480 μmol, 1.0 eq.) in DMF (6 mL) at 0 °C was 

sequentially added imidazole (122 mg, 1.80 mmol, 3.8 eq.), DMAP (23 mg, 0.19 mmol, 40 mol-%) 

and TBSCl (181 mg, 1.20 mmol, 2.5 eq.). The mixture was allowed to warm to room temperature and 

stirred for 16 h. The reaction was quenched by addition of H2O (15 mL) and the biphasic mixture was 

extracted with Et2O (3 x 25 mL). The combined organic layers were washed with 10% aqueous 

NaCl (3 x 15 mL) and the combined aqueous layers were re-extracted with Et2O (2 x 15 mL). The 
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combined organic layers were dried over MgSO4 and the solvents were evaporated under reduced 

pressure. The crude product was purified by flash column chromatography (silica, hexanes: EtOAc = 

70:1 to 50:1 to 30:1) to yield ketone 191 (141 mg, 434 μmol, 91%) as a colorless solid and as single 

isomer. 

 

Crystals suitable for X-ray analysis were obtained by recrystallization from MeOH. 

 

Rf = 0.15 (hexanes:EtOAc = 30:1). 

 

Melting point = 49.5−51.0 °C (hexanes/EtOAc). 

 
1H NMR (CDCl3, 600 MHz): δ = 4.36 (ddd, 3J2/1B = 8.8 Hz, 3J2/1A = 6.9 Hz, 3J2/3 = 4.2 Hz, 1H, 2-H), 

2.56 (ddd, 2J5A/5B = 14.7 Hz, J = 3.6, 1.7 Hz, 1H, 5-HA), 2.43−2.36 (m, 2H, 5-HB, 7-HA), 2.35−2.28 (m, 

2H, 4-H, 7-HB), 1.98 (dd, 2J1A/1B = 11.8 Hz, 3J1A/2 = 6.9 Hz, 1H, 1-HA), 1.81 (ddd, 2J8A/8B = 12.9 Hz, 
3J8A/7B = 7.1 Hz, 3J8A/7A = 2.0 Hz, 1H, 8-HA), 1.71−1.63 (m, 2H, 3-H, 11-H), 1.58 (mC, 1H, 8-HB), 

1.27 (dd, 2J1B/1A = 11.7 Hz, 3J1B/2 = 8.8 Hz, 1H, 1-HB), 1.03 (s, 3H, 10-H), 0.98 (d, 3J13/11 = 6.2 Hz, 3H, 

13-H)*, 0.91 (d, 3J12/11 = 6.0 Hz, 3H, 12-H)*, 0.87 (s, 9H, 15-H), 0.06 (s, 3H, 16-H)**, 0.04 (s, 3H, 

17-H)** ppm. 

  
13C NMR (CDCl3, 150 MHz): δ  = 212.3 (C-6), 77.8 (C-2), 56.5 (C-3), 50.2 (C-1), 48.1 (C-4), 

41.6 (C-5), 40.9 (C-9), 38.0 (C-8), 37.3 (C-7), 29.2 (C-11), 26.0 (C-15), 24.4 (C-12)*, 21.9 (C-13)*, 

19.2 (C-10), 18.0 (C-14), −3.5 (C-16)**, −4.7 (C-17)** ppm. 
 

EI-MS for C18H33O2Si+ [(M−Me)+]: calcd. 309.2244 

 found 309.2226. 

 

IR (ATR): ῦ/cm−1 = 2956 (s), 2929 (s), 2899 (s), 2857 (s), 1711 (s), 1472 (w), 1462 (w), 1420 (w), 

1388 (w), 1254 (m), 1106 (m), 1073 (m), 1006 (w), 941 (w), 887 (w), 851 (w), 836 (m), 774 (m).  

 

[ ]20
Dα  = +59.7 (c 0.33, CH2Cl2). 
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Synthesis of Dioxolane 257 
 

 
To a solution of alkene 221 (140 mg, 590 μmol, 1.0 eq.) and NaOAc (556 mg, 6.80 mmol, 11.5 eq.) in 

THF/H2O (1:1, 18 mL) was added p-toluenesulfonyl hydrazide (631 mg, 3.39 mmol, 5.8 eq.) in one 

portion. The mixture was heated to 80 °C for 4 h and was then allowed to cool to room temperature. 

The reaction was quenched by addition of saturated aqueous K2CO3 (2 mL), the organic layer was 

separated and the aqueous layer was extracted with Et2O (3 x 15 mL). The combined organic layers 

were dried over MgSO4 and the solvents were evaporated under reduced pressure. The resulting 

residue was suspended in n-pentane/Et2O (1:1, 5 mL) and purified by flash column 

chromatography (silica, n-pentane:Et2O = 19:1 to 9:1) to yield saturated compound 257 (130 mg, 

546 μmol, 93%) as a colorless oil. 

 

Rf = 0.37 (hexanes:EtOAc = 16:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 4.02−3.88 (m, 4H), 1.91−1.78 (m, 3H), 1.77−1.67 (m, 3H), 

1.64−1.53 (m, 4H), 1.47 (dd, J = 11.8, 7.6 Hz, 1H), 1.32 (mC, 1H), 1.13 (mC, 1H), 0.89 (d, J = 6.3 Hz, 

3H), 0.86 (br s, 3H), 0.82 (d, J = 6.6 Hz, 3H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 110.9, 64.4, 64.3, 48.4, 46.7, 41.0, 40.3, 37.2, 35.4, 31.3 (2C), 28.7, 

24.1, 22.4, 17.9 ppm. 
 

EI-MS for C15H26O2
+ [M+]: calcd. 238.1927 

 found 238.1927. 

 

IR (ATR): ῦ/cm−1 = 2950 (s), 2873 (s), 1464 (w), 1386 (w), 1356 (w), 1289 (w), 1256 (w), 1190 (m), 

1115 (m), 1096 (s), 1057 (w), 947 (m), 882 (w), 718 (w), 668 (w).  

 

[ ]20
Dα  = −24.8 (c 0.25, CH2Cl2). 
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Synthesis of Building Block 190 
 

 
To a solution of dioxolane 257 (100 mg, 0.420 mmol, 1.0 eq.) in acetone/H2O (9:1, 10 mL) was added 

PPTS (137 mg, 0.546 mmol, 1.3 eq.) and the reaction mixture was heated to reflux for 3 h. The 

mixture was allowed to cool to room temperature and the pH value was adjusted to 7−8 by the 

addition of solid NaHCO3. Having freed the mixture of acetone, the residue was diluted with 

Et2O (10 mL). The organic layer was separated and sequentially washed with saturated aqueous 

NaHCO3 (3 mL), HCl (2N, 2 x 3 mL) and saturated aqueous NaHCO3 (2 x 3 mL). The organic layer 

was dried over MgSO4 and the solvents were removed under reduced pressure. The crude product was 

purified by flash column chromatography (silica, n-pentane:Et2O = 20:1 to 9:1) to yield 

ketone 190 (80 mg, 0.41 mmol, 99%) as a colorless oil. 

 

Rf = 0.29 (hexanes:EtOAc = 16:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 2.58 (ddd, 2J5A/5B = 15.0 Hz, 3J5A/4 = 4.1 Hz, 4J5A/7B = 1.8 Hz, 1H, 

5-HA), 2.47−2.40 (m, 2H, 5-HB, 7-HA), 2.31 (dddd, 2J7B/7A = 16.3 Hz, 3J7B/8B = 5.7 Hz, 3J7B/8A = 
4J7B/5A = 1.8 Hz, 1H, 7-HB), 1.97−1.88 (m, 2H, 2-HA, 4-H), 1.86 (ddd, 2J8A/8B = 12.9 Hz, 3J8A/7A = 

7.3 Hz, 3J8A/7B = 1.9 Hz, 1H, 8-HA), 1.81−1.68 (m, 2H, 2-HB, 3-H) 1.65−1.57 (m, 2H, 1-HA, 11-H), 

1.49 (ddd, 2J8B/8A = 3J8B/7A = 13.0 Hz, 3J8B/7B = 5.8 Hz, 1H, 8-HB), 1.19 (ddd, 2J1B/1A = 3J1B/2 = 11.8 Hz, 
3J1B/2 = 8.4 Hz, 1H, 1-HB), 1.04 (s, 3H, 10-H), 0.88 (d, 3J12/11 = 6.4 Hz, 3H, 12-H)*, 0.86 (d, 3J13/11 = 

6.4 Hz, 3H, 13-H)* ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 213.2 (C-6), 50.2 (C-4), 46.5 (C-3), 42.3 (C-5), 41.1 (C-9), 

39.9 (C-1), 37.8 (C-8), 37.6 (C-7), 30.6 (C-11), 29.3 (C-2), 24.1 (C-12)*, 22.1 (C-13)*, 

17.8 (C-10) ppm. 
 

EI-MS for C13H22O+ [M+]: calcd. 194.1665 

 found 194.1674. 

 

IR (ATR): ῦ/cm−1 = 2954 (s), 2868 (s), 1711 (s), 1464 (w), 1420 (w), 1386 (w), 1289 (w), 1214 (w), 

1146 (w), 1045 (w), 921 (w), 816 (w).  
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[ ]20
Dα  = +11.2 (c 0.25, CH2Cl2). 

 

 

2.2 Experimental Procedures for Chapter 3: ‘Synthetic Studies 

toward Astellatol’ 
 

Synthesis of Enone 273 
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O
H

Li2CO3 (2.5 eq.)
LiBr (2.0 eq.)

DMF, 120 °C, 5 h

(49% over two
steps)207 272 273

C14H22O2
M = 222.32 g/mol

PTAB (1.3 eq.)
HOAc (0.1 mol-%)

THF, 0 °C, 15 min

 
To a solution of ketone 207 (200 mg, 893 μmol, 1.0 eq.) in THF (44 mL) at 0 °C was added 

PTAB (441 mg, 1.16 mmol, 1.3 eq.) in one portion followed by HOAc (0.66 mL of a 1 vol-% solution 

in THF, 0.12 nmol, 0.13 mol-%) and the mixture was stirred for 15 min at this temperature. The 

reaction was quenched by addition of saturated aqueous Na2S2O3 (15 mL), the phases were separated 

and the aqueous layer was extracted with Et2O (3 x 15 mL). The combined organic layers were 

washed with saturated aqueous NaCl (20 mL) and were dried over MgSO4. Having evaporated the 

solvents under reduced pressure, the crude product was purified by flash column 

chromatography (silica, hexanes:EtOAc = 16:1 to 14:1 to 9:1) to yield brominated 

compound 272 (223 mg, 738 μmol, 78%, Rf = 0.67, hexanes:EtOAc = 3:1) as a mixture of 

diastereomers. 

To a solution of α-bromo ketone 272 (150 mg, 500 μmol, 1.0 eq.) in DMF (6 mL) was added LiBr (87 

mg, 1.0 mmol, 2.0 eq.) and Li2CO3 (109 mg, 1.50 mmol, 2.5 eq.) and the resulting suspension was 

heated to 120 °C for 5 h. The mixture was allowed to cool to room temperature and the reaction was 

quenched by addition of saturated aqueous NH4Cl (10 mL). The mixture was extracted with Et2O (4 x 

10 mL) and the combined organic layers were washed with 10% aqueous NaCl (3 x 10 mL). Having 

dried the combined organic layers over MgSO4, the solvent was evaporated under reduced pressure 

and the crude product was purified by flash column chromatography (silica, hexanes:EtOAc = 20:1 to 

16:1) to yield enone 273 (70 mg, 315 μmol, 63%, 49% over two steps) as a colorless oil. 

 

Rf = 0.15 (hexanes:EtOAc = 16:1). 

 
1H NMR (CDCl3, 400 MHz): δ = 7.12 (dd, 3J8/7 = 9.8 Hz, J = 0.7 Hz, 1H, 8-H), 5.84 (dd, 3J7/8 = 

9.7 Hz, 4J7/5A = 0.6 Hz, 1H, 7-H), 3.70−3.64 (m, 1H, 1-H), 2.44 (ddd, 2J5A/5B = 17.4 Hz, 3J5A/4 = 5.2 Hz, 
4J5A/7 = 0.7 Hz, 1H, 5-HA), 2.36 (dd, 2J5B/5A = 17.4 Hz, 3J5B/4 = 13.4 Hz, 1H, 5-HB), 2.07−1.93 (m, 2H, 
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2-HA, 4-H), 1.70−1.61 (m, 1H, 3-HA), 1.60−1.46 (m, 2H, 2-HB, 3-HB), 1.17 (s, 9H, 12-H), 0.93 (s, 3H, 

10-H). 

  
13C NMR (CDCl3, 100 MHz): δ = 200.9 (C-6), 157.3 (C-8), 128.6 (C-7), 75.6 (C-1), 72.9 (C-11), 

45.4 (C-9), 41.8 (C-4), 39.4 (C-5), 30.9 (C-2), 28.8 (C-12), 25.5 (C-3), 12.7 (C-10) ppm. 
 

EI-MS for C10H14O2
+ [(M−C3H8)+]: calcd. 166.0988 

 found 166.0984. 

 

IR (ATR): ῦ/cm−1 = 2973 (s), 2906 (m), 2878 (m), 1676 (s), 1474 (w), 1364 (w), 1239 (w), 1194 (m), 

1122 (w), 1105 (w), 1070 (m), 902 (w), 780 (w). 

 

[ ]20
Dα  = +30.4 (c 0.50, CH2Cl2). 

 

 

Synthesis of β-Keto Ester 276 
 

 
To a solution of ketone 207 (100 mg, 450 μmol, 1.0 eq.) in THF (4.5 mL) at −78 °C was added 

dropwise LiHMDS (0.54 mL of a 1.0M solution in THF, 0.54 mmol, 1.2 eq.). The mixture was 

allowed to warm to room temperature and was stirred for an additional 45 min before being cooled to 

−78 °C. Then, Mander’s reagent (275, 43 μL, 0.43 mmol, 1.2 eq.) was added dropwise and the mixture 

was stirred an additional 1 h at −78 °C. The reaction was diluted with Et2O (5 mL) and poured onto 

H2O (5 mL). The organic layer was separated and the aqueous layer was extracted with Et2O (2 x 

10 mL). The combined organic layers were washed with saturated aqueous NaCl (5 mL), dried over 

Na2SO4 and the solvents were evaporated under reduced pressure. The crude product was purified by 

flash column chromatography (silica, hexanes:EtOAc = 40:1) to yield β-keto ester 276 (88 mg, 

0.31 mmol, 69%) as a colorless oil. 

 

Rf = 0.55 (hexanes:EtOAc = 16:1). 
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1H NMR (CDCl3, 600 MHz): δ = 12.30 (s, 1H, OH), 3.75 (s, 3H, 14-H), 3.53 (mC, 1H, 1-H), 

2.35−2.29 (m, 2H, 5-HA, 8-HA), 2.11 (mC, 1H, 5-HB), 1.94 (mC, 1H, 2-HA), 1.88 (mC, 1H, 8-HB), 

1.69−1.48 (m, 3H, 2-HB, 3-HA, 4-H), 1.36 (mC, 1H, 3-HB), 1.17 (s, 9H, 12-H), 0.72 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 173.8 (C-13), 172.3 (C-6), 97.0 (C-7), 80.2 (C-1), 72.6 (C-11), 

51.6 (C-14), 41.7 (C-9), 40.0 (C-4), 35.1 (C-8), 32.3 (C-5), 31.6 (C-2), 28.9 (C-12), 25.8 (C-2), 

10.7 (C-10) ppm. 
 

EI-MS for C16H26O4
+ [M+]: calcd. 282.1826 

 found 282.1836. 

 

IR (ATR): ῦ/cm−1 = 2972 (s), 1654 (s), 1608 (m), 1442 (m), 1383 (w), 1362 (m), 1269 (s), 1232 (w), 

1210 (s), 1117 (w), 1092 (w), 1062 (w).  

 

[ ]20
Dα  = +103.6 (c 0.50, CH2Cl2). 

 

This compound has been prepared by an alternative procedure having identical physical properties.[134] 

 

 

Synthesis of Ketone 280 
 

 
To a solution of ketone 207 (5.00 g, 22.3 mmol, 1.0 eq.) in THF (200 mL) at room temperature was 

added dropwise KHMDS (50 mL of a 0.5M solution in toluene, 25.0 mmol, 1.1 eq.) and the resulting 

solution was stirred for 30 min. Then, the mixture was cooled to −78 °C and Et3B (25.0 mL of a 

freshly prepared 1.0M solution in THF, 25.0 mmol, 1.1 eq.) was added dropwise. After stirring an 

additional 10 min, a solution of Pd(PPh3)4 (1.28 g, 1.15 mmol, 5.0 mol-%) and allyl 

bromide (2.20 mL, 25.0 mmol, 1.1 eq.) in THF (20 mL) was slowly added. The cold bath was 

removed and the mixture was allowed to warm to room temperature, and was stirred for 3 h. The 

reaction was quenched by careful addition of 2N HCl (30 mL) and the layers were separated. The 

aqueous layer was extracted with Et2O (3 x 30 mL) and the combined organic layers were washed with 

saturated aqueous NaHCO3 (50 mL) and dried over NaSO4. The solvents were removed under reduced 
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pressure and the crude product was purified by flash column chromatography (silica, hexanes:EtOAc 

= 40:1 to 30:1) to yield ketone 280 (4.40 g, 16.7 mmol, 75%) as a colorless oil. 

 

Rf = 0.73 (hexanes:EtOAc = 7:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 5.76 (mC, 1H, 14-H), 5.04−4.96 (m, 2H, 15-H), 3.44 (dd, 3J1/2 = 8.9, 

7.6 Hz, 1H, 1-H), 2.56 (mC, 1H, 13-HA), 2.41 (mC, 1H, 7-H), 2.37−2.28 (m, 2H, 5-H), 2.06 (dd, 2J8A/8B 

= 12.8 Hz, 3J8A/7 = 6.3 Hz, 1H, 8-HA), 2.02−1.94 (m, 2H, 2-HA, 13-HB), 1.69−1.62 (m, 1H, 4-H), 

1.62−1.53 (m, 2H, 2-HB, 3-HA), 1.46−1.38 (m, 1H, 3-HB), 1.13 (s, 9H, 12-H), 1.08 (dd, 2J8B/8A = 3J8B/7 

= 12.8 Hz, 1H, 8-HB), 1.01 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 212.1 (C-6), 136.8 (C-14), 116.3 (C-15), 79.5 (C-1), 72.7 (C-11), 

45.8 (C-4), 45.3 (C-7), 43.1 (C-5), 42.8 (C-9), 42.3 (C-8), 34.1 (C-13), 32.0 (C-2), 28.8 (C-12), 

25.9 (C-3), 11.3 (C-10) ppm. 
 

EI-MS for C17H28O2
+ [M+]: calcd. 264.2084 

 found 264.2082. 

 

IR (ATR): ῦ/cm−1 = 3076 (w), 2973 (s), 2876 (m), 1708 (s), 1463 (w), 1390 (w), 1361 (m), 1252 (w), 

1192 (m), 1114 (m), 1061 (m), 1027 (w), 999 (w), 903 (w).  

 

[ ]20
Dα  = +56.3 (c 1.00, CH2Cl2). 

 

The analytical data matched those reported previously.[188] 

 

 

Synthesis of Alcohol 286 
 

 
To a solution of ketone 280 (26 mg, 0.10 mmol, 1.0 eq.) in EtOH (2 mL) at 0 °C was added 

NaBH4 (7.7 mg, 0.20 mmol, 2.0 eq.) in one portion and the mixture was stirred for an additional 2 h. 

The reaction was quenched by careful addition of HCl (2N, few drops) and the pH was adjusted to 7−8 

by addition of solid NaHCO3. The solvent was evaporated under reduced pressure and the residue was 

dissolved in EtOAc (10 mL). The organic layer was washed with saturated aqueous NH4Cl (5 mL) and 
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the aqueous layer was re-extracted with EtOAc (2 x 10 mL). The combined organic layers were 

washed with saturated aqueous NaCl (2 x 5 mL), dried over MgSO4 and the solvents were evaporated 

under reduced pressure. The residue was purified by flash column chromatography (silica, 

hexanes:EtOAc = 20:1 to 10:1) to yield alcohol 286 (21 mg, 79 μmol, 79%) as a colorless wax. 

  

The stereochemistry of the newly formed stereogenic center was assigned by 

2D NOESY experiments showing the proximity of protons as depicted beside. 

 

Rf = 0.43 (hexanes:EtOAc = 4:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 5.86 (dddd, 3J14/15A =17.3 Hz, 3J14/15B = 10.2 Hz, 3J14/13A = 

3J14/13B = 

7.2 Hz, 1H, 14-H), 5.06 (mC, 1H, 15-HA), 5.01 (mC, 1H, 15-HB), 3.35 (dd, 3J1/2 = 8.9, 7.4 Hz, 1H, 1-H), 

3.27 (ddd, 3J6/7 = 3J6/5B = 10.3 Hz, 3J6/5A = 5.0 Hz, 1H, 6-H), 2.41 (mC, 1H, 13-HA), 2.01−1.95 (m, 1H, 

13-HB), 1.94−1.86 (m, 1H, 2-HA), 1.80 (ddd, J = 12.0, 5.0, 3.0 Hz, 1H, 5-HA), 1.75 (dd, 2J8A/8B = 

13.0 Hz, 3J8A/7 = 4.3 Hz, 1H, 8-HA), 1.72−1.59 (m, 2H, 7-H, OH), 1.59−1.41 (m, 2H, 2-HB, 3-HA), 

1.40−1.29 (m, 2H, 3-HB, 5-HB), 1.29−1.22 (m, 1H, 4-H), 1.12 (s, 9H, 12-H), 0.77 (s, 3H, 10-H), 

0.73 (dd, 2J8B/8A = 3J8B/7 = 12.9 Hz, 1H, 8-HB) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 137.8 (C-14), 116.3 (C-15), 80.5 (C-1), 76.2 (C-6), 72.5 (C-11), 

43.4 (C-4), 43.0 (C-9), 41.5 (C-8), 40.4 (C-7), 38.5 (C-13), 35.0 (C-5), 31.8 (C-2), 29.0 (C-12), 

25.5 (C-3), 11.9 (C-10) ppm. 
 

EI-MS for C17H30O2
+ [M+]: calcd. 266.2240 

 found 266.2237. 

 

IR (ATR): ῦ/cm−1 = 3218 (br m), 3078 (w), 2973 (s), 2927 (s), 2910 (s), 2874 (m), 1465 (w), 1393 (w), 

1361 (w), 1256 (w), 1198 (w), 1126 (w), 1070 (w), 1038 (w), 907 (w).  

 

[ ]20
Dα  = +0.4 (c 0.50, CH2Cl2). 
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Synthesis of Alcohol 288 
 

 
To a solution of ketone 280 (2.70 g, 10.2 mmol, 1.0 eq.) in THF (100 mL) at −78 °C was added 

dropwise K-Selectride® (287, 15.4 mL of a 1.0M solution in THF, 15.4 mmol, 1.5 eq.). Upon complete 

addition, the cold bath was removed and the solution was stirred an additional 1.5 h at room 

temperature. The mixture was cooled to 0 °C, and MeOH (18 mL) was carefully added to quench 

excess hydride source. Subsequently, aqueous NaOH (3N, 36 mL) and H2O2 (30% in H2O, 27 mL) 

were added and the biphasic mixture was stirred an additional 3 h at room temperature. The mixture 

was diluted with saturated aqueous NH4Cl (30 mL) and the aqueous layer was extracted with Et2O (3 x 

50 mL). The combined organic layers were washed with saturated aqueous NaCl (2 x 50 mL), dried 

over MgSO4 and the solvents were removed under reduced pressure. The crude product was purified 

by flash column chromatography (silica, hexanes:EtOAc = 20:1 to 15:1) to yield alcohol 288 (2.61 g, 

9.81 mmol, 95%) as a colorless oil. 

 

The stereochemistry was assigned as depicted above since this compound was the minor product in the 

reduction with NaBH4. In addition, the small coupling constants (ca. 2.5 Hz) for the newly formed 

methine proton indicated no axial-axial coupling.  

 

Rf = 0.18 (hexanes:EtOAc = 10:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 5.84 (mC, 1H, 14-H), 5.06 (mC, 1H, 15-HA), 5.01 (mC, 1H, 15-HB), 

3.92 (mC, 1H, 6-H), 3.45 (dd, 3J1/2 = 8.8, 7.5 Hz, 1H, 1-H), 2.20−2.13 (m, 1H, 13-HA), 2.06−2.00 (m, 

1H, 13-HB), 1.95−1.87 (m, 1H, 2-HA), 1.74−1.63 (m, 3H, 4-H, 5-HA, 7-H), 1.56−1.40 (m, 4H, 2-HB, 

3-HA, 5-HB, 8-HA), 1.34−1.22 (m, 2H, 3-HB, OH), 1.13 (s, 9H, 12-H), 1.09 (dd, 2J8B/8A = 3J8B/7 = 

12.6 Hz, 1H, 8-HB), 0.73 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 137.7 (C-14), 115.9 (C-15), 80.6 (C-1), 72.4 (C-11), 69.0 (C-6), 

43.0 (C-9), 38.6 (C-8), 37.7 (C-13)*, 37.5 (C-7)*, 37.4 (C-4)*, 33.6 (C-5), 31.4 (C-2), 28.9 (C-12), 

25.6 (C-3), 10.9 (C-10) ppm. 
 

EI-MS for C17H30O2
+ [M+]: calcd. 266.2240 

 found 266.2234. 
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IR (ATR): ῦ/cm−1 = 3408 (br m), 2973 (s), 2929 (s), 1462 (w), 1389 (w), 1361 (m), 1256 (m), 

1196 (s), 1128 (m), 1066 (s), 1029 (m), 1006 (m), 908 (m), 864 (w), 803 (w).  

 

[ ]20
Dα  = +46.4 (c 0.25, CH2Cl2). 

 

 

Synthesis of Lactone 290 
 

 
To a solution of alkene 288 (3.59 g, 13.5 mmol, 1.0 eq.) in 1,4-dioxane/H2O (3:1, 200 mL) at 0 °C was 

sequentially added 2,6-lutidine (3.14 mL, 27.0 mmol, 2.0 eq.) and OsO4 (838 μL of a 4 wt% solution 

in H2O, 135 μmol, 1.0 mol-%). Then, NaIO4 (11.6 g, 54.0 mmol, 4.0 eq.) was added in portions and 

the mixture was allowed to warm to room temperature. After stirring for an additional 17 h, the 

reaction was diluted with H2O (150 mL) and the mixture was extracted with CH2Cl2 (4 x 200 mL). 

The combined organic layers were washed with saturated aqueous NaCl (100 mL) and dried over 

Na2SO4. The solvents were removed under reduced pressure to yield crude intermediate lactol 289 as a 

mixture of epimers (Rf = 0.2, hexanes:EtOAc = 4:1), which was used without further purification. 

To a suspension of PCC (7.30 g, 33.8 mmol, 2.5 eq.) in CH2Cl2 (200 mL) at 0 °C was added dropwise 

a solution of crude lactol 289 (assumed 13.5 mmol, 1.0 eq.) in CH2Cl2 (40 mL + 5 mL rinse). The 

resulting mixture was allowed to warm to room temperature and was stirred for an additional 1 h 

before being directly applied to flash column chromatography (silica, hexanes:EtOAc = 3:1). The 

solvent of the product containing fractions was evaporated under reduced pressure and the residue was 

purified by flash column chromatography (silica, hexanes:EtOAc = 8:1) to yield lactone 290 (3.23 g, 

12.1 mmol, 90% over two steps) as a colorless solid.  

 

The stereochemistry of the tricyclic system was assigned according to the key 

NOESY correlations as indicated beside. 

 

Rf = 0.38 (hexanes:EtOAc = 4:1). 

 

Melting point = 118.5−121.0 °C (CH2Cl2). 

 
1H NMR (CDCl3, 600 MHz): δ = 4.56 (mC, 1H, 6-H), 3.39 (dd, 3J1/2 = 8.8, 8.0 Hz, 1H, 1-H), 2.73 (dd, 
2J13A/13B = 16.8 Hz, 3J13A/7 = 7.0 Hz, 1H, 13-HA), 2.51 (mC, 1H, 7-H), 2.20 (d, 2J13B/13A = 16.9 Hz, 1H, 
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13-HB), 2.12 (mC, 1H, 5-HA), 1.92 (mC, 1H, 2-HA), 1.81 (dd, 2J8A/8B = 13.1 Hz, 3J8A/7 = 6.4 Hz, 1H, 

8-HA), 1.63−1.43 (m, 4H, 2-HB, 3-HA, 4-H, 5-HB), 1.31 (mC, 1H, 3-HB), 1.12 (s, 9H, 12-H), 0.91 (mC, 

1H, 8-HB), 0.73 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 177.4 (C-14), 80.2 (C-6), 80.1 (C-1), 72.6 (C-11), 41.1 (C-9), 

39.6 (C-8), 38.4 (C-13), 37.0 (C-4), 33.1 (C-7), 30.8 (C-2), 28.9 (C-12), 28.5 (C-5), 25.3 (C-3), 

10.4 (C-10) ppm. 

 

EI-MS for C16H26O3
+ [M+]: calcd. 266.1876 

 found 266.1881. 

 

IR (ATR): ῦ/cm−1 = 2971 (s), 2932 (m), 2874 (m), 1779 (s), 1462 (w), 1389 (w), 1361 (w), 1215 (w), 

1196 (m), 1179 (m), 1155 (m), 1124 (w), 1062 (m), 1043 (w), 1028 (w), 1000 (w), 968 (w), 911 (w). 

 

[ ]20
Dα  = +12.4 (c 1.00, CH2Cl2). 

 

 

Synthesis of Lactone 291 
 

 
To a solution of lactone 290 (3.23 g, 12.1 mmol, 1.0 eq.) in THF (180 mL) at −78 °C was added 

dropwise LiHMDS (18.2 mL of a 1.0M solution in THF, 18.2 mmol, 1.5 eq.) and the resulting mixture 

was stirred for 45 min at this temperature before adding MeI (3.80 mL, 60.5 mmol, 5.0 eq.) dropwise. 

After stirring the mixture for an additional 90 min, the reaction was quenched by addition of HCl (2N, 

40 mL). The mixture was allowed to warm to room temperature and was diluted with half-saturated 

aqueous NH4Cl (100 mL). The phases were separated and the aqueous layer was extracted with 

Et2O (3 x 100 mL). The combined organic layers were sequentially washed with saturated aqueous 

NaHCO3 (70 mL) and saturated aqueous NaCl (70 mL), and dried over Na2SO4. The solvents were 

evaporated under reduced pressure and the crude product was purified by flash column 

chromatography (short plug of silica, hexanes:EtOAc = 8:1). Further purification by flash column 

chromatography (silica, hexanes:EtOAc = 14:1 to 10:1 to 7:1) yielded lactone 291 (3.06 g, 10.9 mmol, 

90%) as a colorless solid and as single diastereomer. 
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Crystals suitable for X-ray analysis were obtained by cooling a saturated solution of lactone 291 in 

hexanes/EtOAc to −25 °C. 

 

Rf = 0.62 (hexanes:EtOAc = 4:1). 

 

Melting point = 152.0−154.0 °C (CH2Cl2). 

 
1H NMR (CDCl3, 600 MHz): δ = 4.72−4.69 (m, 1H, 6-H), 3.37 (dd, 3J1/2 = 8.7, 8.0 Hz, 1H, 1-H), 

2.34 (q, 3J13/15 = 7.6 Hz, 1H, 13-H), 2.17−2.09 (m, 2H, 5-HA, 7-H), 1.91 (mC, 1H, 2-HA), 1.84 (dd, 
2J8A/8B = 13.1 Hz, 2J8A/7 = 6.5 Hz, 1H, 8-HA), 1.61−1.41 (m, 4H, 2-HB, 3-HA, 4-H, 5-HB), 1.33−1.25 (m, 

1H, 3-HB), 1.30 (d, 3J15/13 = 7.7 Hz, 3H, 15-H), 1.11 (s, 9H, 12-H), 0.88 (mC, 1H, 8-HB), 0.70 (s, 3H, 

10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 180.5 (C-14), 80.1 (C-1), 77.9 (C-6), 72.5 (C-11), 45.0 (C-13), 

42.0 (C-9), 40.0 (C-7)*, 39.9 (C-8)*, 37.1 (C-4), 30.8 (C-2), 28.9 (C-12), 28.5 (C-5), 25.3 (C-3), 

15.0 (C-15), 10.3 (C-10) ppm.  

 

EI-MS for C13H20O3
+ [(M−C3H8)+]: calcd. 224.1407 

 found 224.1413. 

 

IR (ATR): ῦ/cm−1 = 2973 (s), 2938 (s), 2904 (m), 2874 (m), 1757 (s), 1464 (w), 1362 (w), 1213 (m), 

1200 (m), 1183 (m), 1132 (w), 1111 (w), 1083 (w), 1064 (w), 1023 (w), 974 (w), 941 (w). 

 

[ ]20
Dα  = −2.6 (c 1.00, CH2Cl2). 

 

 

Synthesis of Alcohol 295 
 

 
To a solution of lactone 291 (82 mg, 0.29 mmol, 1.0 eq.) in CH2Cl2 (6 mL) at −78 °C was added 

dropwise DIBAL-H (0.58 mL of a 1.0M solution in CH2Cl2, 0.58 mmol, 2.0 eq.) and the mixture was 

stirred for 30 min at this temperature. Then, EtOAc (1 mL) was added to quench excess hydride 

source followed by half-saturated aqueous Rochelle salt (10 mL). The mixture was allowed to warm to 
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room temperature and was stirred vigorously for an additional 1 h. The organic layer was separated 

and the aqueous layer was extracted with CH2Cl2 (4 x 10 mL). The combined organic layers were 

dried over MgSO4 and the solvent was removed under reduced pressure. The crude product was 

filtered over a pad of silica (hexanes:EtOAc = 6:1) to yield lactol 292 as a mixture of epimers, which 

was used without further purification. 

To a solution of lactol 292 (20 mg, 71 μmol, 1.0 eq.) in benzene (6 mL) was added ylid 294 (148 mg, 

0.43 mmol, 6.0 eq.) and the mixture was heated to reflux for 24 h. As TLC indicated remaining 

starting material, more reagent 294 (49 mg, 0.14 mmol, 2.0 eq.) was added and the mixture was heated 

to reflux for an additional 16 h. The mixture was allowed to cool to room temperature and the reaction 

was quenched by addition of saturated aqueous NH4Cl (5 mL). After phase separation, the aqueous 

layer was extracted with EtOAc (3 x 5 mL) and the combined organic layers were dried over MgSO4. 

The solvents were removed under reduced pressure and the crude product was purified by flash 

column chromatography (silica, hexanes:EtOAc = 10:1 to 7:1) to yield ester 295 (14 mg, 37 μmol, 

52% over two steps) as a highly viscous colorless oil. 

 

Rf = 0.47 (hexanes:EtOAc = 4:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 6.94 (dd, 3J14/15 = 15.6 Hz, 3J14/13 = 9.5 Hz, 1H, 14-H), 5.87 (dd, 
3J15/14 = 15.6 Hz, 4J15/13 = 0.8 Hz, 1H, 15-H), 4.19 (q, 3J18/19 = 7.2 Hz, 2H, 18-H), 3.90 (mC, 1H, 6-H), 

3.46 (dd, 3J1/2 = 8.9, 7.7 Hz, 1H, 1-H), 2.39 (mC, 1H, 13-H), 1.95−1.88 (m, 1H, 2-HA), 1.74−1.65 (m, 

2H, 4-H, 8-HA), 1.60 (mC, 1H, 5-HA), 1.53−1.40 (m, 4H, 2-HB, 3-HA, 5-HB, 7-H), 1.34−1.23 (m, 1H, 

3-HB), 1.29 (t, 3J19/18 = 7.1 Hz, 3H, 19-H), 1.14 (s, 9H, 12-H), 1.10−1.02 (m, 1H, 8-HB), 1.05 (d, 
3J17/13 = 6.8 Hz, 3H, 17-H), 0.71 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 167.0 (C-16), 154.2 (C-14), 120.4 (C-15), 80.7 (C-1), 72.4 (C-11), 

68.1 (C-6), 60.4 (C-18), 42.8 (C-9), 42.7 (C-7), 38.7 (C-13), 37.4 (C-4), 35.9 (C-8), 34.0 (C-5), 

31.3 (C-2), 28.9 (C-12), 25.6 (C-3), 18.2 (C-17), 14.4 (C-19), 11.0 (C-11) ppm. 
 

EI-MS for C21H36O4
+ [M+]: calcd. 352.2608 

 found 352.2624. 

 

IR (ATR): ῦ/cm−1 = 3480 (br w), 2973 (s), 2935 (s), 2874 (m), 1718 (m), 1463 (w), 1362 (w), 

1262 (w), 1225 (w), 1195 (w), 1125 (w), 1063 (w). 

 

[ ]20
Dα  = +51.2 (c 0.25, CH2Cl2). 
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Synthesis of Diol 296 
 

 
To a suspension of LiAlH4 (806 mg, 21.2 mmol, 2.0 eq.) in THF (60 mL) at 0 °C was added a solution 

of lactone 291 (3.06 g, 10.9 mmol, 1.0 eq.) in THF (30 mL + 10 mL rinse) via cannula within 20 min 

and the mixture was stirred for an additional 15 min at this temperature. Then, half-saturated aqueous 

Rochelle salt (100 mL) was added and the biphasic mixture was vigorously stirred for 1 h at room 

temperature. The layers were separated and the aqueous layer was extracted with Et2O (3 x 100 mL). 

The combined organic layers were washed with saturated aqueous NaCl (80 mL) and dried over 

MgSO4. The crude product was purified by flash column chromatography (silica, CH2Cl2:MeOH = 

100:2.5) to yield diol 296 (2.99 g, 10.6 mmol, 97%) as a colorless solid. 

 

Rf = 0.24 (CH2Cl2:MeOH = 100:5). 

 

Melting point = 128.5−130.0 °C (CH2Cl2). 

 
1H NMR (CDCl3, 600 MHz): δ = 4.11 (mC, 1H, 6-H), 3.68 (dd, 2J14A/14B = 10.7 Hz, 3J14A/13 = 2.8 Hz, 

1H, 14-HA), 3.58 (dd, 2J14B/14A = 10.8 Hz, 3J14B/13 = 6.1 Hz, 1H, 14-HB), 3.47 (dd, 3J1/2 = 8.8, 7.4 Hz, 

1H, 1-H), 3.08 (br s, 2H, OH), 1.94−1.87 (m, 1H, 2-HA), 1.76−1.63 (m, 3H, 4-H, 5-HA, 13-H), 

1.56−1.39 (m, 5H, 2-HB, 3-HA, 5-HB, 7-H, 8-HA), 1.32−1.22 (m, 2H, 3-HB, 8-HB), 1.13 (s, 9H, 12-H), 

1.00 (d, 3J15/13 = 7.2 Hz, 3H, 15-H), 0.72 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 80.8 (C-1), 72.4 (C-11), 66.9 (C-6), 65.8 (C-14), 43.1 (C-9), 

42.2 (C-7), 38.2 (C-13), 37.6 (C-4), 37.5 (C-8), 33.6 (C-5), 31.4 (C-2), 28.9 (C-12), 25.6 (C-3), 

16.3 (C-15), 11.0 (C-10) ppm.  

 

EI-MS for C17H32O3
+ [M+]: calcd. 284.2346 

 found 284.2342. 

 

IR (ATR): ῦ/cm−1 = 3298 (br s), 2971 (s), 2929 (s), 2874 (s), 1462 (w), 1387 (w), 1360 (m), 1253 (w), 

1196 (m), 1114 (w), 1062 (m), 1009 (m), 972 (w), 937 (w), 902 (w). 

 

[ ]20
Dα  = +38.0 (c 0.50, CH2Cl2). 
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Synthesis of trans-Hydrindane 297 
 

 
To a solution of diol 296 (2.97 g, 10.5 mmol, 1.0 eq.) and 2,6-lutidine (4.90 mL, 42.1 mmol, 4.0 eq.) 

in CH2Cl2 (100 mL) at 0 °C was added dropwise Et3SiOTf (6.20 mL, 27.4 mmol, 2.6 eq.) and the 

mixture was stirred for 1 h at this temperature. The reaction was quenched by addition of saturated 

aqueous NaHCO3 (60 mL), the phases were separated and the aqueous layer was extracted with 

CH2Cl2 (3 x 50 mL). The combined organic layers were washed with saturated aqueous NaCl (50 mL) 

and dried over MgSO4. The crude product was purified by flash column chromatography (silica, 

hexanes:EtOAc = 100:1 to 60:1 to 40:1) to yield the title compound 297 (5.34 g, 10.4 mmol, 99%) as a 

colorless oil. 

 

Rf = 0.23 (hexanes:EtOAc = 30:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 4.00 (mC, 1H, 6-H), 3.52 (dd, 2J14A/14B = 9.5 Hz, 3J14A/13 = 5.0 Hz, 1H, 

14-HA), 3.45 (dd, 2J14B/14A = 9.6 Hz, 3J14B/13 = 6.1 Hz, 1H, 14-HB), 3.42 (dd, 3J1/2 = 8.9, 7.4 Hz, 1H, 

1-H), 1.95−1.84 (m, 1H, 2-HA), 1.77−1.65 (m, 2H, 4-H, 13-H), 1.56−1.51 (m, 2H, 5-HA, 7-H), 

1.50−1.32 (m, 4H, 2-HB, 3-HA, 5-HB, 8-HA), 1.25 (mC, 1H, 3-HB), 1.14 (s, 9H, 12-H), 1.12 (mC, 1H, 

8-HB), 0.99−0.94 (m, 18H, 17-H, 19-H), 0.89 (d, 3J15/13 = 6.9 Hz, 3H, 15-H), 0.70 (s, 3H, 10-H), 

0.63−0.54 (m, 12H, 16-H, 18-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 81.0 (C-1), 72.3 (C-11), 70.5 (C-6), 66.5 (C-14), 42.7 (C-9), 

38.7 (C-7), 37.4 (2C, C-4, C-13), 35.0 (C-8), 34.7 (C-5), 31.5 (C-2), 29.0 (C-12), 25.6 (C-3), 

15.1 (C-15), 11.1 (C-10), 7.2 (C-17)*, 7.0 (C-19)*, 5.5 (C-16)**, 4.6 (C-18)** ppm.  

 

EI-MS for C29H60O3Si2
+ [M+]: calcd. 512.4076 

 found 512.4076. 

 

IR (ATR): ῦ/cm−1 = 2954 (s), 2911 (s), 2987 (s), 1459 (w), 1414 (w), 1387 (w), 1361 (w), 1238 (w), 

1196 (w), 1062 (m), 1015 (m), 976 (w), 725 (m). 

 

[ ]20
Dα  = +24.2 (c 1.00, CH2Cl2). 
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Synthesis of Aldehyde 298 
 

 
To a solution of DMSO (1.02 mL, 14.5 mmol, 5.0 eq.) in CH2Cl2 (30 mL) at −78 °C was slowly added 

(COCl)2 (3.61 mL of a 2.0M solution in CH2Cl2, 7.22 mmol, 2.5 eq.) and the mixture was stirred for 

15 min at this temperature. Then, a solution of bissilyl ether 297 (1.48 g, 2.89 mmol, 1.0 eq.) in 

CH2Cl2 (7 mL) was added within 30 min using a syringe pump. The reaction was allowed to warm to 

−60 °C and was stirred for 7 h at −65 to −60 °C (cryocooler). The mixture was cooled to −78 °C and 

Et3N (3.95 mL, 28.4 mmol, 9.8 eq.) was added dropwise. The mixture was stirred for an additional 

10 min at this temperature and was allowed to warm slowly to 0 °C forming a white precipitate. After 

stirring an additional 15 min at 0 °C, the reaction was quenched by adding H2O (20 mL) and the 

biphasic mixture was extracted with CH2Cl2 (3 x 40 mL). The combined organic layers were washed 

with saturated aqueous NaCl (30 mL), dried over MgSO4 and the solvents were removed under 

reduced pressure. Purification by flash column chromatography (silica, hexanes:EtOAc = 60:1 to 30:1) 

yielded aldehyde 298 (992 mg, 2.53 mmol, 88%) as a colorless oil. 

On a larger scale (5.31 g, 10.4 mmol of bissilyl ether 297), aldehyde 298 (3.10 g, 7.82 mmol) was 

isolated in 75% yield along with recovered starting material 297 (430 mg, 840 μmol, 8%). 

 

Rf = 0.31 (hexanes:EtOAc = 30:1). 

 
1H NMR (CDCl3, 600 MHz): δ  = 9.74 (d, 3J14/13 = 1.7 Hz, 1H, 14-H), 4.04 (mC, 1H, 6-H), 3.44 (dd, 
3J1/2 = 9.0, 7.4 Hz, 1H, 1-H), 2.40 (qdd, 3J13/7 = 3J13/15 = 7.2 Hz, 3J13/14 = 1.7 Hz, 1H, 13-H), 

1.96−1.86 (m, 2H, 2-HA, 7-H), 1.73 (dddd, 3J = 13.0, 13.0, 7.0, 3.3 Hz, 1H, 4-H), 1.60 (ddd, 2J5A/5B = 

13.7 Hz, 3J5A/4 = 3J5A/6 = 3.2 Hz, 1H, 5-HA), 1.53−1.40 (m, 4H, 2-HA, 3-HA, 5-HB, 8-HA), 1.35 (dd, 
2J8B/8A = 3J8B/7 = 12.6 Hz, 1H, 8-HB), 1.31−1.23 (m, 1H, 3-HB), 1.14 (s, 9H, 12-H), 1.07 (d, 3J15/13 = 

7.1 Hz, 3H, 15-H), 0.94 (t, 3J17/16 = 8.0 Hz, 9H, 17-H), 0.74 (s, 3H, 10-H), 0.58 (q, 3J16/17 = 8.0 Hz, 6H, 

16-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 205.2 (C-14), 80.8 (C-1), 72.4 (C-11), 68.7 (C-6), 48.3 (C-13), 

42.9 (C-9), 40.3 (C-7), 37.2 (C-4), 36.2 (C-8), 33.9 (C-5), 31.4 (C-2), 29.0 (C-12), 25.5 (C-3), 

12.2 (C-15), 10.9 (C-10), 7.1 (C-17), 5.3 (C-16) ppm.  
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EI-MS for C23H44O3Si+ [M+]: calcd. 396.3054 

 found 396.3065. 

 

IR (ATR): ῦ/cm−1 = 2955 (s), 2876 (s), 1722 (s), 1461 (w), 1414 (w), 1389 (w), 1362 (w), 1238 (w), 

1195 (m), 1126 (w), 1086 (s), 1045 (s), 1005 (m), 973 (w), 945 (w), 919 (w), 726 (m). 

 

[ ]20
Dα  = +63.6 (c 0.50, CH2Cl2). 

  

 

Synthesis of Alkene 299 
 

 
To a suspension of methyltriphenylphosphonium bromide (8.33 g, 23.3 mmol, 3.0 eq.) in 

THF (120 mL) at 0 °C was slowly added n-BuLi (6.20 mL of a 2.5M solution in hexanes, 15.6 mmol, 

2.0 eq.). The mixture was allowed to warm to room temperature, stirred for an additional 1 h and was 

subsequently cooled to −78 °C. Then, a solution of aldehyde 298 (3.08 g, 7.78 mmol, 1.0 eq.) in 

THF (12 mL + 5 mL rinse) was added within 15 min (syringe pump). The cold bath was removed and 

replaced by an ice/water bath. The mixture was stirred for 60 min at 0 °C and the reaction was 

quenched by addition of saturated aqueous NH4Cl (50 mL). The layers were separated and the aqueous 

layer was extracted with Et2O (3 x 70 mL). The combined organic layers were washed with saturated 

aqueous NaCl (50 mL) and dried over MgSO4. Having evaporated the solvents under reduced 

pressure, the crude product was purified by flash column chromatography (silica, hexanes:EtOAc = 

100:1 to 60:1) to afford alkene 299 (2.86 g, 7.26 mmol, 93%) as a colorless oil. 

 

Rf = 0.21 (hexanes:EtOAc = 60:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 5.77 (ddd, 3J14/15A = 17.3 Hz, 3J14/15B = 10.3 Hz, 3J14/13 = 8.2 Hz, 1H, 

14-H), 4.97 (ddd, 3J15A/14 = 17.3 Hz, 2J15A/15B = 2.1 Hz, 4J15A/13 = 1.0 Hz, 1H, 15-HA), 4.93 (ddd, 3J15B/14 

= 10.4 Hz, 2J15B/14A = 2.1 Hz, 4J15B/13 = 0.5 Hz, 1H, 15-HB), 4.00 (mC, 1H, 6-H), 3.43 (dd, 3J1/2 = 8.9, 

7.4 Hz, 1H, 1-H), 2.22 (mC, 1H, 13-H), 1.91 (mC, 1H, 2-HA), 1.74 (dddd, J = 12.9, 12.9, 7.0, 3.4 Hz, 

1H, 4-H), 1.58−1.52 (m, 2H, 5-HA, 8-HA), 1.48−1.34 (m, 3H, 2-HB, 3-HA, 5-HB), 1.29−1.21 (m, 2H, 

3-HB, 7-H), 1.15 (s, 9H, 12-H), 1.07 (dd, 2J8B/8A = 3J8B/7 = 12.4 Hz, 1H, 8-HB), 0.96 (t, 3J18/17 = 7.9 Hz, 

9H, 18-H), 0.95 (d, 3J16/13 = 6.9 Hz, 3H, 16-H), 0.70 (s, 3H, 10-H), 0.62−0.54 (m, 6H, 17-H) ppm. 
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13C NMR (CDCl3, 150 MHz): δ = 145.1 (C-14), 113.0 (C-13), 80.9 (C-1), 72.3 (C-11), 69.4 (C-6), 

43.6 (C-7), 42.8 (C-9), 39.0 (C-13), 37.3 (C-4), 35.6 (C-8), 34.4 (C-5), 31.6 (C-2), 29.0 (C-12), 

25.5 (C-3), 18.7 (C-16), 11.2 (C-10), 7.3 (C-18), 5.6 (C-17) ppm.  

 

EI-MS for C24H46O2Si+ [M+]: calcd. 394.3262 

 found 394.3262. 

 

IR (ATR): ῦ/cm−1 = 3087 (w), 2972 (s), 2955 (s), 2911 (s), 2876 (s), 1460 (m), 1415 (w), 1361 (w), 

1237 (w), 1196 (m), 1128 (w), 1060 (m), 1045 (m), 1106 (m), 974 (w), 909 (m), 796 (w), 724 (m). 

 

[ ]20
Dα  = +37.6 (c 0.50, CH2Cl2). 

 

 

Synthesis of Alcohol 300 
 

 
To a solution of alkene 299 (394 mg, 1.00 mol, 1.0 eq.) in THF (12 mL) was added 9-BBN (237, 

4.00 mL of a 0.5M solution in THF, 2.00 mmol, 2.0 eq.) and the mixture was heated to 40 °C for 3.5 h. 

The mixture was cooled to 0 °C and MeOH (2 mL), aqueous NaOH (3N, 4 mL) and aqueous 

H2O2 (30 wt%, 4 mL) were consecutively added. The mixture was stirred at 40 °C for 1 h and for an 

additional 1 h at room temperature, and H2O (10 mL) was added. The mixture was extracted with 

Et2O (3 x 25 mL) and the combined organic layers were washed with saturated aqueous NaCl (2 x 

20 mL). The NaCl layers were re-extracted with Et2O (2 x 10 mL) and the combined organic layers 

were dried over MgSO4. The solvents were evaporated under reduced pressure and the crude product 

was purified by flash column chromatography (silica, hexanes:EtOAc = 9:1) to yield 

alcohol 300 (357 mg, 867 μmol, 87%) as a colorless oil.  

 

Rf = 0.17 (hexanes:EtOAc = 7:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 4.07 (mC, 1H, 6-H), 3.71 (ddd, 2J15A/15B = 10.4 Hz, 3J15A/14 = 8.5, 

5.5 Hz, 1H, 15-HA), 3.64 (ddd, 2J15B/15A = 10.3 Hz, 3J15B/14 = 8.2, 6.8 Hz, 1H, 15-HB), 3.42 (dd, 3J1/2 = 

8.8, 7.5 Hz, 1H, 1-H), 1.94−1.87 (m, 1H, 2-HA), 1.80−1.70 (m, 2H, 4-H, 14-HA), 1.67−1.61 (m, 1H, 

13-H), 1.59−1.54 (m, 1H, 5-HA), 1.49 (dd, 2J8A/8B = 12.3 Hz, 3J8A/7 = 3.5 Hz, 1H, 8-HA), 1.47−1.35 (m, 

4H, 2-HB, 3-HA, 5-HB, 13-H), 1.30−1.23 (m, 2H, 3-HB, 7-H), 1.16−1.08 (m, 1H, 8-HB), 1.14 (s, 9H, 



168  EXPERIMENTAL SECTION 

12-H), 0.96 (t, 3J18/17 = 8.0 Hz, 9H, 18-H), 0.88 (d, 3J16/15 = 6.8 Hz, 3H, 16-H), 0.69 (s, 3H, 10-H), 

0.64−0.55 (m, 6H, 17-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 81.0 (C-1). 72.3 (C-11), 70.0 (C-6), 61.7 (C-15), 42.7 (2C, C-7, 

C-9), 38.3 (C-14), 37.4 (C-4), 35.2 (C-8), 34.6 (C-5), 31.6 (C-2), 31.4 (C-13), 29.0 (C-12), 25.5 (C-3), 

17.4 (C-16), 11.1 (C-10), 7.2 (C-18), 5.5 (C-17) ppm.  

 

EI-MS for C24H48O3Si+ [M+]: calcd. 412.3367 

 found 412.3359. 

 

IR (ATR): ῦ/cm−1 = 3355 (br m), 2955 (s), 2876 (s), 1461 (w), 1379 (w), 1362 (w), 1196 (w), 

1130 (w), 1062 (m), 1009 (w), 977 (w), 797 (w), 741 (w). 

 

[ ]20
Dα  = +20.0 (c 0.33, CH2Cl2). 

 

 

Synthesis of Diol 458 
 

 
To a solution of silyl ether 300 (14 mg, 39 μmol, 1.0 eq.) in CH2Cl2/MeOH (7:1, 1.6 mL) at 0 °C was 

added (1R)-(−)-camphorsulfonic acid (spatula tip). The mixture was allowed to warm to room 

temperature and was stirred for 1 h before being diluted with CH2Cl2 (5 mL) and quenched by addition 

of saturated aqueous NaHCO3 (5 mL). The aqueous layer was separated and extracted with 

CH2Cl2 (3 x 5 mL). The combined organic layers were dried over MgSO4 and the solvents were 

evaporated under reduced pressure. The obtained crude product was purified by flash column 

chromatography (silica, CH2Cl2:MeOH = 100:2.5) to yield diol 458 (9 mg, 32 μmol, 83%) as a viscous 

colorless oil.  

 

Rf = 0.24 (CH2Cl2:MeOH = 100:5). 

 
1H NMR (CDCl3, 600 MHz): δ = 4.15 (mC, 1H, 6-H), 3.76 (ddd, 2J15A/15B = 10.2 Hz, 3J15A/14 = 6.4, 

4.3 Hz, 1H, 15-HA), 3.64 (ddd, 2J15B/15A = 10.1 Hz, 3J15B/14 = 9.2, 5.4 Hz, 1H, 15-HB), 3.44 (dd, 3J1/2 = 

8.8, 7.5 Hz, 1H, 1-H), 2.06−1.82 (m, 4H, 2-HA, 14-HA, OH), 1.70−1.57 (m, 4H, 4-H, 5-HA, 8-HA, 

13-H), 1.55−1.41 (m, 3H, 2-HB, 3-HA, 5-HB), 1.34−1.23 (m, 3H, 3-HB, 7-H, 14-HB), 1.13 (s, 9H, 
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12-H), 1.02 (dd, 2J8B/8A = 3J8B/7 = 12.9 Hz, 1H, 8-HB), 0.94 (d, 3J16/13 = 6.8 Hz, 3H, 16-H), 0.70 (s, 3H, 

10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 80.8 (C-1), 72.4 (C-11), 67.6 (C-6), 61.6 (C-15), 42.8 (C-9), 

42.5 (C-7), 37.5 (C-4), 37.1 (C-14), 36.4 (C-8), 33.8 (C-5), 31.4 (C-2), 31.2 (C-13), 28.9 (C-12), 

25.6 (C-3), 18.6 (C-16), 11.0 (C-10) ppm.  

 

EI-MS for C18H34O3
+ [M+]: calcd. 298.2502 

 found 298.2509. 

 

IR (ATR): ῦ/cm−1 = 3350 (br s), 2972 (s), 2931 (s), 2873 (s), 1462 (w), 1388 (w), 1361 (m), 1197 (m), 

1130 (w), 1062 (m), 1028 (w), 1008 (w), 976 (w), 903 (w). 

 

[ ]20
Dα  = +40.8 (c 0.33, CH2Cl2). 

 

 

Synthesis of Lactone 301 
 

OMe

H
O

H
MeOt-BuMe

H
HO

H
Me TEMPO (2.0 eq.)

BAIB (5.0 eq.)

CH2Cl2
0 °C to rt, 16 h

(85%)

HO

O
H

458 301
C18H30O3

M = 294.43 g/mol

1
2

34
5

6
7

8
9

10
11

12
13

14

15

16

 
To a solution of diol 458 (6.0 mg, 20 μmol, 1.0 eq.) and BAIB (32 mg, 0.10 mmol, 5.0 eq.) in 

CH2Cl2 (1.5 mL) at 0 °C was added TEMPO (1 mg, 4 μmol, 0.2 eq.). The mixture was allowed to 

warm to room temperature and stirred for 2 h. Then, additional TEMPO (9.0 mg, 36 μmol, 1.8 eq.) 

was added and the mixture was stirred for 14 h. The reaction was diluted with CH2Cl2 (10 mL) and 

was quenched by addition of saturated aqueous Na2SO3 (3 mL). After phase separation, the aqueous 

layer was extracted with CH2Cl2 (3 x 5 mL). The combined organic layers were washed with saturated 

aqueous NaHCO3 (5 mL) and saturated aqueous NaCl (5 mL), and were dried over MgSO4. The 

solvent was removed under reduced pressure and the crude product was purified by flash column 

chromatography (silica, hexanes:EtOAc = 7:1) to yield lactone 301 (5.0 mg, 17 μmol, 85%) as a 

colorless solid. 

 

Rf = 0.18 (Hexanes:EtOAc = 7:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 4.50 (ddd, 3J6/5A = 3J6/5B = 3J6/7 = 3.0 Hz, 1H, 6-H), 3.42 (dd, 3J1/2A = 

8.8 Hz, 3J1/2B = 7.7 Hz, 1H, 1-H), 2.53 (dd, 2J14A/14B = 15.8 Hz, 3J14A/13 = 6.2 Hz, 1H, 14-HA) 2.18 (dd, 
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2J14B/14A = 15.8 Hz, 3J14B/13 = 9.6 Hz, 1H, 14-HB), 1.95 (ddd, 2J5A/5B = 14.1 Hz, 3J5A/4 = 3J5A/6 = 3.0 Hz, 

1H, 5-HA), 1.91 (dddd, J = 13.5, 9.2, 9.2, 6.3 Hz, 1H, 2-HA), 1.72−1.63 (m, 3H, 4-H, 7-H, 13-H), 

1.62 (dd, 2J8A/8B = 12.8 Hz, 3J8A/7 = 4.8 Hz, 1H, 8-HA), 1.58 (mC, 1H, 5-HB), 1.55−1.49 (m, 1H, 3-HA), 

1.47−1.40 (m, 1H, 2-HB), 1.28 (mC, 1H, 3-HB) 1.14 (d, 3J16/13 = 6.9 Hz, 3H, 16-H), 1.12 (s, 9H, 12-H), 

1.08 (dd, 2J8B/8A = 3J8B/7 = 12.8 Hz, 1H, 8-HB), 0.75 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 173.7 (C-15), 80.3 (C-1), 75.4 (C-6), 72.5 (C-11), 42.7 (C-9), 

40.2 (C-8), 37.7 (C-7)*, 37.5 (C-4), 35.8 (C-14), 32.0 (C-13)*, 31.1 (C-2), 30.3 (C-5), 28.9 (C-12), 

25.3 (C-3), 22.1 (C-16), 10.7 (C-10) ppm.  

 

EI-MS for C18H30O3
+ [M+]: calcd. 294.2189 

 found 294.2177. 

 

IR (ATR): ῦ/cm−1 = 2971 (s), 2931 (s), 2873 (m), 1745 (s), 1461 (w), 1362 (w), 1308 (w), 1280 (w), 

1251 (m), 1196 (m), 1165 (w), 1123 (w), 1064 (m), 1004 (w), 902 (w). 

 

[ ]20
Dα  = −7.2 (c 0.25, CH2Cl2). 

 

 

Synthesis of Ketone 302 
 

 
To a solution of ketone 191 (380 mg, 1.17 mmol, 1.0 eq.) in degassed THF (12 mL) at room 

temperature was added KHMDS (3.5 mL of a 0.5M solution in toluene, 1.75 mmol, 1.5 eq.) and the 

resulting yellow solution was stirred for 30 min before being cooled to −78 °C. Then, Et3B (3.50 mL 

of a freshly prepared 0.5M solution in THF, 1.75 mmol, 1.5 eq.) was added dropwise and the mixture 

was stirred for 5 min. After slowly adding a solution of Pd(PPh3)4 (135 mg, 117 μmol, 10 mol-%) and 

allyl bromide (151 μL, 1.75 mmol, 1.5 eq.) in degassed THF (4 mL), the cold bath was removed and 

the mixture was stirred for 2.5 h at room temperature. The reaction was quenched by addition of 

saturated aqueous NH4Cl (20 mL) and diluted with Et2O (20 mL). The phases were separated and the 

aqueous layer was extracted with Et2O (3 x 20 mL). The combined organic layers were washed with 

saturated aqueous NaCl (30 mL) and dried over MgSO4. The solvents were evaporated under reduced 
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pressure and the crude product was purified by flash column chromatography (silica, hexanes:EtOAc 

= 60:1) to yield ketone 302 (350 mg, 961 μmol, 82%) as a colorless oil.  

 

Rf = 0.38 (hexanes:EtOAc = 16:1) 
 

1H NMR (CDCl3, 600 MHz): δ = 5.73 (mC, 1H, 15-H), 5.03−4.97 (m, 2H, 16-H), 4.36 (ddd, 3J2/1B = 

8.6 Hz, 3J2/1A = 7.0 Hz, 3J2/3 = 4.2 Hz, 1H, 2-H), 2.58 (dd, 2J5A/5B = 13.8 Hz, 3J5A/4 = 3.8 Hz, 1H, 5-HA), 

2.57−2.53 (m, 1H, 14-HA), 2.45−2.36 (m, 2H, 5-HB, 7-H), 2.23 (ddd, 3J4/5B = 15.2 Hz, 3J4/3 = 9.9 Hz, 
3J4/5A = 3.8 Hz, 1H, 4-H), 2.04−1.96 (m, 1H, 14-HB), 1.97 (dd, 2J1A/1B = 11.5 Hz, 3J1A/2 = 7.0 Hz, 1H, 

1-HA), 1.93 (dd, 2J8A/8B = 12.8 Hz, 3J8A/7 = 6.3 Hz, 1H, 8-HA), 1.71−1.64 (m, 1H, 13-H), 1.62 (ddd, 
3J3/4 = 3J3/11 = 9.9 Hz, 3J3/2 = 4.2 Hz, 1H, 3-H), 1.28−1.21 (m, 2H, 1-HB, 8-HB), 1.07 (s, 3H, 10-H), 

0.97 (d, 3J13/11 = 6.4 Hz, 3H, 13-H)*, 0.90 (d, 3J12/11 = 6.2 Hz, 3H, 12-H)*, 0.86 (s, 9H, 18-H), 0.05 (s, 

3H, 20-H)**, 0.03 (s, 3H, 19-H)** ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 212.1 (C-6), 136.7 (C-15), 116.5 (C-16), 77.9 (C-2), 56.9 (C-3), 

50.3 (C-1), 49.3 (C-4), 45.2 (C-7), 45.0 (C-8), 42.0 (C-5)*, 41.7 (C-9)*, 34.0 (C-14), 29.3 (C-11), 

26.0 (C-18), 24.3 (C-12)**, 22.0 (C-13)**, 20.1 (C-10), 17.9 (C-17), −3.5 (C-19)***, 

−4.7 (C-20)*** ppm.  

 

EI-MS for C22H40O2Si+ [M+]: calcd. 364.2792 

 found 364.2808. 

 

IR (ATR): ῦ/cm−1 = 3077 (w), 2956 (s), 2928 (s), 2856 (s), 1708 (s), 1471 (w), 1462 (w), 1388 (w), 

1255 (w), 1108 (w), 1072 (m), 836 (m), 774 (w). 

 

[ ]20
Dα  = +30.4 (c 0.50, CH2Cl2). 

 

 

Synthesis of Alcohol 303 
 

 
To a solution of ketone 302 (326 mg, 896 μmol, 1.0 eq.) in THF (12 mL) at −78 °C was added 

dropwise K-Selectride® (287, 1.35 mL of a 1.0M solution in THF, 1.35 mmol, 1.5 eq.). The mixture 
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was stirred for 10 min at this temperature and an additional 30 min at room temperature. The mixture 

was cooled to 0 °C and MeOH (1.6 mL) was added followed by NaOH (3N, 3.2 mL) and H2O2 (30% 

in H2O, 2.4 mL). The mixture was stirred at room temperature for 1 h and the reaction was diluted 

with saturated aqueous NH4Cl (10 mL). The phases were separated and the aqueous layer was 

extracted with Et2O (3 x 20 mL). The combined organic layers were washed with saturated aqueous 

NaCl (2 x 15 mL) and dried over MgSO4. The solvents were evaporated under reduced pressure and 

the crude product was purified by flash column chromatography (silica, n-pentane:Et2O = 12:1 to 9:1) 

to yield alcohol 303 (323 mg, 883 μmol, 98%) as a highly viscous colorless oil. 

 

Rf = 0.13 (hexanes:EtOAc = 16:1) 
 

1H NMR (CDCl3, 600 MHz): δ = 5.81 (ddt, 3J15/16A = 17.1 Hz, 3J15/16B = 10.3 Hz, 3J15/14 = 7.3 Hz, 1H, 

15-H), 5.05 (mC, 1H, 16-HA), 5.00 (mC, 1H, 16-HB), 4.26 (ddd, 3J2/1B = 8.3 Hz, 3J2/1A = 7.1 Hz, 3J2/3 = 

3.9 Hz, 1H, 2-H), 3.96 (ddd, 3J6/5A = 3J6/5B = 3J6/7 = 2.9 Hz, 1H, 6-H), 2.30 (ddd, 3J4/5B = 14.0 Hz, 3J4/3 = 

10.0 Hz, 3J4/5A = 3.1 Hz, 1H, 4-H), 2.16 (mC, 1H, 14-HA), 1.99 (mC, 1H, 1-HB), 1.92 (ddd, 2J5A/5B = 

13.5 Hz, 3J5A/4 = 3J5A/6 = 3.2 Hz, 1H, 5-HA), 1.87 (dd, 2J1A/1B = 11.5 Hz, 3J1A/2 = 7.0 Hz, 1H, 1-HA), 

1.69−1.58 (m, 3H, 5-HB, 7-H, 11-H), 1.56 (ddd, 3J3/4 = 3J3/11 = 10.1 Hz, 3J3/2 = 3.8 Hz, 1H, 3-H), 

1.42 (br s, 1H, OH), 1.36 (dd, 2J8A/8B = 12.8 Hz, 3J8A/7 = 3.9 Hz, 1H, 8-HA) 1.28 (dd, 2J8B/8A = 3J8B/7 = 

12.8 Hz, 1H, 8-HB), 1.22 (dd, 2J1B/1A = 11.6 Hz, 3J1B/2 = 8.4 Hz, 1H, 1-HB), 0.94 (d, 3J13/11 = 6.5 Hz, 

3H, 13-H)*, 0.92 (d, 3J12/11 = 6.2 Hz, 3H, 12-H)*, 0.86 (s, 9H, 18-H), 0.81 (s, 3H, 10-H), 0.04 (s, 3H, 

19-H)**, 0.02 (s, 3H, 20-H)** ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 137.6 (C-15), 116.0 (C-16), 77.5 (C-2), 69.4 (C-6), 56.9 (C-3), 

51.6 (C-1), 42.2 (C-9), 41.8 (C-4), 41.5 (C-8), 37.4 (C-14), 36.7 (C-7), 32.5 (C-5), 30.0 (C-11), 

26.0 (C-18), 24.4 (C-12)*, 22.2 (C-13)*, 20.0 (C-10), 18.0 (C-17), −3.5 (C-20)**, −4.7 (C-19)** ppm. 

 

EI-MS for C22H42O2Si+ [M+]: calcd. 366.2949 

 found 366.2947. 

 

IR (ATR): ῦ/cm−1 = 3387 (br w), 3076 (w), 2955 (s), 2928 (s), 2856 (s), 1471 (w), 1462 (w), 1387 (w), 

1367 (w), 1254 (m), 1108 (w), 1070 (m), 1016 (w), 911 (w), 889 (w), 859 (w), 835 (m), 773 (w). 

 

[ ]20
Dα  = +34.5 (c 0.33, CH2Cl2). 
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Synthesis of Lactone 304 
 

 
To a solution of alkene 303 (155 mg, 420 μmol, 1.0 eq.) and 2,6-lutidine (100 μL, 0.85 mmol, 2.0 eq.) 

in 1,4-dioxane/H2O (3:1, 12 mL) at 0 °C was sequentially added OsO4 (27 μL of a 4 wt% solution in 

H2O, 4.2 μmol, 1.0 mol-%) and NaIO4 (364 mg, 1.70 mmol, 4.0 eq.). The mixture was allowed to 

warm to room temperature and was stirred for 16 h forming a white suspension. The mixture was 

partitioned between H2O (15 mL) and CH2Cl2 (30 mL) and the phases were separated. The aqueous 

layer was extracted with CH2Cl2 (3 x 20 mL) and the combined organic layers were washed with 

saturated aqueous NaCl (20 mL), and dried over MgSO4. The solvents were evaporated under reduced 

pressure to yield crude lactol 459 which was used in the next step without further purification. 

To a suspension of PCC (316 mg, 1.47 mmol, 3.5 eq.) and NaOAc (244 mg, 2.94 mmol, 7.0 eq.) in 

CH2Cl2 (10 mL) at 0 °C was added a solution of crude lactol 459 (assumed 0.42 mmol, 1.0 eq.) in 

CH2Cl2 (3 mL). The mixture was allowed to warm to room temperature and stirred for 3 h before 

being directly applied to flash column chromatography (silica, hexanes:EtOAc = 3:1). The title 

compound 304 (133 mg, 363 μmol, 86% over two steps) was obtained as a highly viscous colorless 

oil. 

Note: intermediate lactol 459 and lactone 304 are co-polar on TLC. 

 

Rf = 0.30 (hexanes:EtOAc = 4:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 4.60 (mC, 1H, 6-H), 4.24 (ddd, 3J2/1B = 8.8 Hz, 3J2/1A = 7.0 Hz, 3J2/3 = 

4.2 Hz, 1H, 2-H), 2.70 (dd, 2J14A/14B = 16.8 Hz, 3J14A/7 = 7.1 Hz, 1H, 14-HA), 2.47 (mC, 1H, 7-H), 

2.32 (m, 1H, 5-HA), 2.16 (d, 2J14B/14A = 16.9 Hz, 1H, 14-HB), 2.15−2.10 (m, 1H, 4-H), 1.85 (dd, 2J1A/1B 

= 11.6 Hz, 3J1A/2 = 7.0 Hz, 1H, 1-HA), 1.74 (ddd, 2J5B/5A = 3J5B/4 = 14.5 Hz, 3J5B/6 = 3.8 Hz, 1H, 5-HB), 

1.67 (dd, 2J8A/8B =13.2 Hz, 3J8A/7 = 6.4 Hz, 1H, 8-HA), 1.65−1.59 (m, 2H, 3-H, 13-H), 1.21 (dd, 
2J1B/1A = 11.6 Hz, 3J1B/2 = 8.8 Hz, 1H, 1-HB), 1.11 (dd, 2J8B/8A = 3J8B/7 = 12.6 Hz, 1H, 8-HB), 0.96 (d, 
3J12/11 = 6.4 Hz, 3H, 12-H)*, 0.95 (d, 3J13/11 = 6.0 Hz, 3H, 13-H)*, 0.86 (s, 9H, 17-H), 0.81 (s, 3H, 

10-H), 0.04 (s, 3H, 18-H)**, 0.02 (s, 3H, 19-H)** ppm. 
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13C NMR (CDCl3, 150 MHz): δ = 177.1 (C-15), 80.1 (C-6), 76.7 (C-2), 55.8 (C-3), 50.6 (C-1), 

42.4 (C-8), 41.1 (C-4), 40.5 (C-9), 38.3 (C-14), 32.3 (C-7), 29.4 (C-11), 26.5 (C-5), 26.0 (C-17), 

24.5 (C-13)*, 22.0 (C-12)*. 19.3 (C-10), 17.9 (C-16), −3.5 (C-19)**, −4.7 (C-18)** ppm.  

 

EI-MS for C21H37O3Si+ [(M−H)+]: calcd. 365.2506 

 found 365.2502. 

 

IR (ATR): ῦ/cm−1 = 2954 (s), 2938 (s), 2898 (s), 2855 (s), 1775 (s), 1389 (w), 1285 (w), 1253 (w), 

1191 (m), 1154 (m), 1096 (m), 1070 (m), 976 (w), 940 (m), 905 (w), 882 (w), 835 (m), 773 (m).  

 

[ ]20
Dα  = −8.8 (c 0.50, CH2Cl2). 

 

 

Synthesis of Lactone 269 
 

 
To a solution of lactone 304 (100 mg, 273 μmol, 1.0 eq.) in THF (11 mL) at −78 °C was added 

dropwise LiHMDS (600 μL of a 1.0M solution in THF, 600 mmol, 2.2 eq.) and the resulting mixture 

was stirred for 30 min. Then, MeI (84 mL, 1.35 mmol, 5.0 eq.) was added and the mixture was 

allowed to warm to −40 °C (MeCN/liquid N2 bath). After stirring an additional 30 min at this 

temperature, the reaction was quenched by addition of half-saturated aqueous NH4Cl (10 mL). The 

biphasic mixture was allowed to warm to room temperature, the phases were separated and the 

aqueous layer was extracted with Et2O (3 x 15 mL). The combined organic layers were washed with 

saturated aqueous NaCl (10 mL) and dried over MgSO4. The solvents were evaporated under reduced 

pressure and the crude product was purified by flash column chromatography (silica, hexanes:EtOAc 

= 12:1) to yield lactone 269 (86 mg, 0.23 mmol, 83%) as a highly viscous colorless oil.  

 

Rf = 0.20 (hexanes:EtOAc = 10:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 4.73 (mC, 1H, 6-H), 4.22 (ddd, 3J2/1B = 8.9 Hz, 3J2/1A = 7.0 Hz, 3J2/3 = 

4.2 Hz, 1H, 2-H), 2.32 (mC, 1H, 5-HA), 2.29 (q, 3J14/16 = 7.6 Hz, 1H, 14-H), 2.14−2.06 (m, 2H, 4-H, 

7-H), 1.83 (dd, 2J1A/1B = 11.6 Hz, 3J1A/2 = 6.9 Hz, 1H, 1-HA), 1.74−1.67 (m, 2H, 5-HB, 8-HA), 

1.65−1.58 (m, 2H, 3-H, 11-H), 1.28 (d, 3J16/14 = 7.7 Hz, 3H, 16-H), 1.19 (dd, 2J1B/1A = 11.6 Hz, 3J1B/2 = 
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9.0 Hz, 1H, 1-HB), 1.08 (dd, 2J8B/8A = 3J8B/7 = 12.9 Hz, 1H, 8-HB), 0.94 (mC, 6H, 12-H, 13-H), 0.84 (s, 

9H, 18-H), 0.78 (s, 3H, 10-H), 0.03 (s, 3H, 20-H)*, 0.01 (s, 3H, 19-H)* ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 180.2 (C-15), 77.9 (C-6), 76.7 (C-2), 55.8 (C-3), 50.6 (C-1), 

44.9 (C-14), 42.8 (C-8), 41.1 (C-4), 40.5 (C-9), 39.2 (C-7), 29.4 (C-11), 26.4 (C-5), 26.0 (C-18), 

24.5 (C-12)*, 22.0 (C-13)*, 19.2 (C-10), 17.9 (C-17), 14.9 (C-16), −3.4 (C-19)**, −4.7 (C-20)** ppm.  

 

EI-MS for C22H39O3Si+ [(M−H)+]: calcd. 379.2663 

 found 379.2673. 

 

IR (ATR): ῦ/cm−1 = 2955 (s), 2931 (s), 2900 (s), 2855 (s), 1772 (s), 1389 (w), 1255 (w), 1190 (m), 

1109 (w), 1076 (m), 1008 (w), 941 (w), 836 (m), 773 (m). 

 

[ ]20
Dα  = −13.8 (c 0.33, CH2Cl2). 

 

 

Synthesis of trans-Hydrindane 305 
 

 
To a suspension of LiAlH4 (15 mg, 0.40 mmol, 2.5 eq.) in THF (5 mL) at 0 °C was added dropwise a 

solution of lactone 269 (60 mg, 0.16 mmol, 1.0 eq.) in THF (3 mL) and the mixture was stirred for 

20 min. The reaction was quenched by careful addition of half-saturated aqueous Rochelle 

salt (10 mL) and the biphasic mixture was stirred vigorously at room temperature for 30 min. The 

mixture was diluted with Et2O (10 mL) and the phases were separated. The aqueous layer was 

extracted with Et2O (3 x 10 mL) and the combined organic layers were washed with saturated aqueous 

NaCl (10 mL), and dried over Na2SO4. Having evaporated the solvents under reduced pressure, the 

crude product was purified by short flash column chromatography (silica, CH2Cl2:MeOH = 100:2.5) to 

yield diol 460 (Rf = 0.17, CH2Cl2:MeOH = 95:5), which was immediately used in the next reaction. 



176  EXPERIMENTAL SECTION 

To a solution of diol 460 (assumed 0.16 mmol, 1.0 eq.) in CH2Cl2 (8 mL) at 0 °C was sequentially 

added imidazole (64.5 mg, 0.95 mmol, 6.0 eq.), DMAP (7 mg, 63 μmol, 20 mol-%) and 

Et3SiCl (106 μL, 632 μmol, 4.0 eq.). The mixture was allowed to warm to room temperature and 

stirred for 4 h at which point the reaction was quenched by addition of saturated aqueous 

NaHCO3 (7 mL). The mixture was diluted with CH2Cl2 (10 mL) and the phases were separated. The 

aqueous layer was extracted with CH2Cl2 (3 x 7 mL) and the combined organic layers were washed 

with saturated aqueous NaCl (10 mL), and dried over Na2SO4. Having evaporated the solvent under 

reduced pressure, the crude product was purified by flash column chromatography (silica, 

hexanes:EtOAc = 100:1) to yield the title compound 305 (85 mg, 0.14 mmol, 88% over two steps) as a 

colorless oil. 

 

Rf = 0.31 (hexanes:EtOAc = 60:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 4.25 (ddd, 3J2/1B = 8.6 Hz, 3J2/1A = 7.0 Hz, 3J2/3 = 4.3 Hz, 1H, 2-H), 

4.06 (mC, 1H, 6-H), 3.48 (dd, 2J15A/15B = 9.7 Hz, 3J15A/14 = 5.2 Hz, 1H, 15-HA), 3.44 (dd, 2J15B/15A = 

9.7 Hz, 3J15/14 = 6.0 Hz, 1H, 15-HB), 2.38 (ddd, 3J4/5B = 13.6 Hz, 3J4/3 = 10.6 Hz, 3J4/5A = 3.0 Hz, 1H, 

4-H), 1.84 (dd, 2J1A/1B = 11.4 Hz, 3J1A/2 = 7.0 Hz, 1H, 1-HA), 1.81 (ddd, 2J5A/5B = 13.5 Hz, 3J5A/4 = 3J5A/6 

= 3.2 Hz, 1H, 5-HA), 1.67 (mC, 1H, 14-H), 1.63−1.56 (m, 1H, 11-H), 1.56−1.50 (m, 2H, 5-HB, 7-H), 

1.48 (ddd, 3J3/4 = 3J3/11 = 10.3 Hz, 3J3/2 = 4.2 Hz, 1H, 3-H), 1.34 (dd, 2J8A/8B = 3J8A/7 = 12.5 Hz, 1H, 

8-HA), 1.27 (dd, 2J8B/8A= 12.3 Hz, 3J8B/7 = 4.0 Hz, 1H, 8-HB), 1.23 (dd, 2J1B/1A = 11.4 Hz, 3J1B/2 = 

8.7 Hz, 1H, 1-HB), 0.99−0.92 (m, 18H, 22-H, 24-H), 0.93 (d, 3J12/11 = 6.8 Hz, 3H, 12-H)*, 0.91 (d, 
3J13/11 = 6.4 Hz, 3H, 13-H)*, 0.87 (s, 9H, 18-H), 0.86 (d, 3J16/14 = 6.9 Hz, 3H, 16-H), 0.78 (s, 3H, 

10-H), 0.64−0.54 (m, 12H, 21-H, 23-H), 0.05 (s, 3H, 19-H)**, 0.04 (s, 3H, 20-H)** ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 77.8 (C-2), 70.8 (C-6), 66.3 (C15), 56.8 (C-3), 51.8 (C-1), 

41.9 (C-9), 41.4 (C-4), 38.0 (C-8), 37.9 (C-7), 37.3 (C-14), 33.4 (C-5), 30.1 (C-11), 26.1 (C-18), 

24.3 (C-13)*, 22.3 (C-12)*, 20.2 (C-10), 18.0 (C-17), 15.0 (C-16), 7.2 (C-22)**, 7.0 (C-24)**, 

5.5 (C-21)***, 4.6 (C-23)***, −3.4 (C-20)****,  −4.6 (C-19)**** ppm.  

 

EI-MS for C34H72O3Si3
+ [M+]: calcd. 612.4784 

 found 612.4770. 

 

IR (ATR): ῦ/cm−1 = 2954 (s), 2935 (s), 2909 (s), 2875 (s), 1461 (w), 1414 (w), 1386 (w), 1367 (w), 

1255 (w), 1070 (m), 1046 (w), 1006 (w), 887 (w), 836 (w), 741 (w).  

 

[ ]20
Dα  = +22.4 (c 0.33, CH2Cl2). 
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Synthesis of Alkene 268 
 

 
To a solution of DMSO (73 μL, 1.0 mmol, 8.0 eq.) in CH2Cl2 (5 mL) at −78 °C was added dropwise 

(COCl)2 (260 μL of a 2.0M solution in CH2Cl2, 520 μmol, 4.0 eq.) and the mixture was stirred for 

15 min at this temperature. Then, a solution of silyl ether 305 (80 mg, 0.13 mmol, 1.0 eq.) in 

CH2Cl2 (1.5 mL) was added over 30 min (syringe pump). The mixture was allowed to warm to −60 °C 

and was stirred for 7 h at −65 to −60 °C (cryo cooler). The reaction was then cooled to −78 °C and 

Et3N (0.29 mL, 2.1 mmol, 16.0 eq.) was added dropwise. The cold bath was replaced by an ice/water 

bath and the mixture was stirred for 30 min at 0 °C before the reaction was quenched by addition of 

H2O (5 mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 (3 x 10 mL). 

The combined organic layers were washed with saturated aqueous NaCl (10 mL) and dried over 

MgSO4. Having evaporated the solvents under reduced pressure, the crude product was purified by 

flash column chromatography (silica, hexanes:EtOAc = 80:1 to 60:1) to yield aldehyde 461 (57 mg, 

Rf = 0.16, hexanes:EtOAc = 30:1) as a pale yellow oil, which was immediately used in the next step. 

To a suspension of Ph3PMeBr (184 mg, 517 μmol, 4.0 eq.) in THF (5 mL) at 0 °C was added dropwise 

n-BuLi (138 μL of a 2.5M solution in hexanes, 345 μmol, 3.0 eq.) and the mixture was allowed to 

warm to room temperature. The mixture was stirred for 1 h and was subsequently cooled to −78 °C. 

Then, a solution of aldehyde 461 (57 mg, 0.15 mmol, 1.0 eq.) in THF (1.5 mL) was added slowly. The 

cold bath was replaced by an ice/water bath and the mixture was stirred for 1 h at 0 °C. The reaction 

was quenched by addition of saturated aqueous NH4Cl/H2O (1:1, 5 mL) and the biphasic mixture was 

extracted with Et2O (3 x 8 mL). The combined organic layers were washed with saturated aqueous 

NaCl (5 mL) and were dried over MgSO4. Having evaporated the solvents under reduced pressure, the 

crude product was purified by flash column chromatography (silica, hexanes:EtOAc = 1:0 to 100:1) to 

yield alkene 268 (45 mg, 91 μmol, 71% over two steps) as a colorless oil. 

 

Rf = 0.63 (hexanes:EtOAc = 60:1). 
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1H NMR (CDCl3, 600 MHz): δ = 5.75 (ddd, 3J15/16A = 17.1 Hz, 3J15/16B = 10.3 Hz, 3J15/14 = 8.2 Hz, 1H, 

15-H), 4.97 (ddd, 3J16A/15 = 17.2 Hz, 2J16A/16B = 2.1 Hz, 4J16A/14 = 1.0 Hz, 1H, 16-HA), 4.92 (ddd, 3J16B/15 

= 10.3 Hz, 2J16B/16A = 2.0 Hz, 4J16B/14 = 0.6 Hz, 1H, 16-HB), 4.24 (ddd, 3J2/1B = 8.4 Hz, 3J2/1A = 7.0 Hz, 
3J2/3 = 4.1 Hz, 1H, 2-H), 4.06 (mC, 1H, 6-H), 2.39 (ddd, 3J4/5B = 13.6 Hz, 3J4/3 = 10.6 Hz, 3J4/5A = 

3.0 Hz, 1H, 4-H), 2.20 (mC, 1H, 14-H), 1.85 (dd, 2J1A/1B = 11.1 Hz, 3J1A/2 = 7.0 Hz, 1H, 1-HA), 

1.83 (mC, 1H, 5-HA), 1.62−1.55 (m, 1H, 11-H), 1.53−1.44 (m, 2H, 3-H, 5-HB), 1.37 (dd, 2J8A/8B = 

11.9 Hz, 3J8A/7 = 3.5 Hz, 1H, 8-HA), 1.30 (dd, 2J8B/8A = 2J8B/7 = 12.1 Hz, 1H, 8-HB), 1.27−1.20 (m, 2H, 

1-HB, 7-H), 0.97 (t, 3J23/22 = 7.9 Hz, 9H, 23-H), 0.94 (d, 3J12/11 = 6.6 Hz, 3H, 12-H)*, 0.91 (d, 3J17/14 = 

6.8 Hz, 3H, 17-H), 0.90 (d, 3J13/11 = 6.3 Hz, 3H, 13-H)*, 0.87 (s, 9H, 19-H), 0.78 (s, 3H, 10-H), 

0.65−0.55 (m, 6H, 22-H), 0.05 (s, 3H, 20-H)**, 0.04 (s, 3H, 21-H)* ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 144.9 (C-15), 113.0 (C-14), 77.8 (C-2), 69.9 (C-6), 56.8 (C-3), 

51.7 (C-1), 42.9 (C-7), 42.0 (C-9), 41.3 (C-4), 38.9 (C-14), 38.7 (C-8), 33.2 (C-5), 30.1 (C-11), 

26.1 (C-19), 24.3 (C-13)*, 22.3 (C-12)*, 20.3 (C-10), 18.5 (C-17), 18.0 (C-18), 7.3 (C-23), 5.6 (C-22), 

−3.4 (C-21)**, −4.6 (C-20)** ppm.  

 

EI-MS for C25H49O2Si2
+ [(M−t-Bu)+]: calcd. 437.3266 

 found 437.3277. 

 

IR (ATR): ῦ/cm−1 = 3077 (w), 2955 (s), 2932 (s), 2875 (s), 1461 (w), 1414 (w), 1387 (w), 1368 (w), 

1255 (w), 1070 (m), 1044 (m), 1005 (w), 911 (w), 835 (m), 773 (w).  

 

[ ]20
Dα  = +27.3 (c 0.33, CH2Cl2). 

 

 

Synthesis of Vinyl Iodide 308 
 

 
To a solution of alcohol 307[200] (910 mg, 4.02 mmol, 1.0 eq.) in DMF (9 mL) at 0 °C was sequentially 

added imidazole (765 mg, 11.2 mmol, 2.8 eq.) and Et3SiCl (944 μL, 5.64 mmol, 1.4 eq.). The mixture 

was allowed to warm to room temperature and was stirred for 3 h. The reaction was diluted with n-

pentane (25 mL) and was then quenched by addition of H2O (10 mL). The organic layer was separated 

and the aqueous layer was extracted with n-pentane (3 x 15 mL). The combined organic layers were 

washed with 10% aqueous NaCl (2 x 10 mL) and dried over MgSO4. The solvents were evaporated 
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under reduced pressure and the crude product was purified by flash column chromatography (silica, 

hexanes:Et2O = 50:1) to yield vinyl iodide 308 (1.27 g, 3.74 mmol, 93%) as a colorless liquid. 

 

Rf = 0.33 (hexanes:Et2O = 50:1). 

 
1H NMR (CDCl3, 300 MHz): δ = 5.86 (dq, 4J1/3 = 4J1/6 = 1.1 Hz, 1H, 1-H), 3.59 (t, 3J5/4 = 6.4 Hz, 2H, 

5-H), 2.27 (mC, 2H, 3-H), 1.84 (d, 4J6/1 = 1.1 Hz, 3H, 6-H), 1.71−1.62 (m, 2H, 4-H), 1.00−0.92 (m, 9H, 

8-H), 0.65−0.54 (m, 6H, 7-H) ppm. 

  
13C NMR (CDCl3, 75 MHz): δ = 147.9 (C-2), 74.8 (C-1), 62.1 (C-5), 36.0 (C-3), 31.0 (C-4), 

24.1 (C-6), 6.9 (C-8), 4.6 (C-7) ppm.  

 

EI-MS for C12H25OISi+
 [M+]: calcd. 340.0714 

 found 340.0716. 

 

IR (ATR): ῦ/cm−1 = 2953 (s), 2912 (s), 2876 (s), 1458 (w), 1414 (w), 1378 (w), 1268 (w), 1239 (w), 

1142 (w), 1103 (s), 1007 (m), 959 (w), 770 (w), 743 (m). 
 

 

Synthesis of Aldehyde 312 
 

 
To a solution of alkene 299 (394 mg, 1.00 mmol, 1.0 eq.) in THF (6 mL) was added 9-BBN (237, 

4.00 mL of a 0.5M solution in THF, 2.00 mmol, 2.0 eq.) and the reaction was heated to 40 °C for 3 h. 

The reaction was allowed to cool to room temperature and degassed aqueous Cs2CO3 (3N, 1.16 mL, 

3.48 mmol, 3.5 eq.) was added. The mixture was vigorously stirred for 40 min and then degassed (N2 

bubbling for 5 min). Next, a solution of vinyl iodide 308 (510 mg, 1.50 mmol, 1.5 eq.) and AsPh3 (122 

mg, 400 μmol, 40 mol-%) in degassed DMF (10 mL) was added followed by addition of 
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Pd(dppf)Cl2 (complex with CH2Cl2, 81 mg, 0.10 mmol, 10 mol-%). The mixture was stirred for 16 h at 

room temperature, diluted with Et2O (20 mL), and was subsequently quenched by addition of 

H2O (10 mL). The phases were separated and the aqueous layer was extracted with Et2O (4 x 20 mL). 

The combined organic layers were washed with 10% aqueous NaCl (3 x 15 mL), which in turn were 

re-extracted with Et2O (2 x 20 mL). The combined organic layers were dried over MgSO4 and the 

solvents were evaporated under reduced pressure. The obtained crude product was purified by flash 

column chromatography (silica, hexanes:EtOAc = 1:0 to 100:1) to yield the desired coupling 

product 311 (564 mg, 930 μmol, 93%), which was immediately used in the next step. 

To a solution of DMSO (390 μL, 5.54 mmol, 6.0 eq.) in CH2Cl2 (10 mL) at −78 °C was added 

dropwise (COCl)2 (1.39 mL of a 2.0M solution in CH2Cl2, 2.77 mmol, 3.0 eq.) and the mixture was 

stirred for 15 min at this temperature. Then, a solution of bissilyl ether 311 (564 mg, ~930 μmol, 

1.0 eq.) in CH2Cl2 (3 mL + 1 mL rinse) was added within 30 min (syringe pump). The mixture was 

allowed to warm to −65 °C and was stirred between −65 and −60 °C (cryo cooler) for 6 h. The 

reaction was cooled to −78 °C and Et3N (1.50 mL, 11.1 mmol, 12 eq.) was added. The mixture was 

stirred for an additional 10 min at this temperature, was allowed to warm to 0 °C and stirred for an 

additional 15 min. The reaction was quenched by addition of H2O (10 mL) and the biphasic mixture 

was diluted with CH2Cl2 (20 mL). After phase separation, the aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL) and the combined organic layers were washed with saturated aqueous NaCl 

(20 mL). The organic layer was dried over MgSO4 and the solvents were removed under reduced 

pressure. The crude product was purified by flash column chromatography (silica, hexanes:EtOAc = 

40:1 to 30:1) to yield aldehyde 312 (340 mg, 691 μmol, 69% over two steps) as a colorless oil. 

 

Analytical data for bissilyl ether 311: 

 

Rf = 0.23 (hexanes:EtOAc = 30:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 5.13 (br t, 3J16/15 = 7.1 Hz, 1H, 16-H), 4.05 (mC, 1H, 6-H), 3.58 (t, 
3J20/19 = 6.9 Hz, 2H, 20-H), 3.42 (dd, 3J1/2 = 8.6, 7.7 Hz, 1H, 1-H), 2.08−1.95 (mC, 1H, 15-HA), 

2.00 (mC, 2H, 18-H), 1.94−1.84 (m, 2H, 2-HA, 15-HB), 1.77−1.70 (m, 1H, 4-H), 1.66−1.61 (m, 2H, 

19-H), 1.60 (s, 3H, 22-H), 1.56−1.36 (m, 7H, 2-HB, 3-HA, 5-H, 8-HA, 13-H, 14-HA), 1.28−1.21 (m, 2H, 

3-HB, 7-H), 1.16−1.05 (m, 1H, 14-HB), 1.14 (s, 9H, 12-H), 1.08 (dd, 2J8B/8A = 3J8B/7 = 12.3 Hz, 1H, 

8-HB), 1.00−0.91 (m, 18H, 24-H, 26-H), 0.86 (d, 3J21/13 = 6.8 Hz, 3H, 21-H), 0.69 (s, 3H, 10-H), 

0.64−0.54 (m, 12H, 23-H, 25-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 134.2 (C-17), 125.2 (C-16), 81.0 (C-1), 72.3 (C-11), 70.0 (C-6), 

62.8 (C-20), 42.7 (C-9), 42.6 (C-7), 37.4 (C-4), 36.0 (C-18), 35.4 (C-8), 35.3 (C-14), 34.7 (C-5), 
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34.0 (C-13), 31.6 (C-2), 31.4 (C-19), 29.0 (C-12), 25.6 (C-3)*, 25.5 (C-15)*, 17.2 (C-21), 16.1 (C-22), 

11.1 (C-10), 7.2 (C-24)**, 7.0 (C-26)**, 5.5 (C-23)***, 4.6 (C-25)*** ppm.  

 

EI-MS for C36H72O3Si2
+

 [M+]: calcd. 608.5015 

 found 608.5014. 

 

Analytical data for aldehyde 312: 

 

Rf = 0.10 (hexanes:EtOAc = 30:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 9.76 (t, 3J20/19 = 2.0 Hz, 1H, 20-H), 5.16 (mC, 1H, 16-H), 4.04 (mC, 

1H, 6-H), 3.42 (dd, 3J1/2 = 8.8, 7.5 Hz, 1H, 1-H), 2.53−2.49 (m, 2H, 19-H), 2.31 (mC, 2H, 18-H), 

2.07−1.99 (m, 1H, 15-HA), 1.94−1.83 (m, 2H, 2-HA, 15-HB), 1.73 (dddd, J = 13.0, 13.0, 7.0, 3.3 Hz, 

1H, 4-H), 1.62 (s, 3H, 22-H), 1.57−1.34 (m, 7H, 2-HB, 3-HA, 5-H, 8-HA, 13-H, 14-HA), 1.29−1.21 (m, 

2H, 3-HB, 7-H), 1.18−1.03 (m, 2H, 8-HB, 14-HB), 1.14 (s, 9H, 12-H), 0.99−0.91 (m, 9H, 24-H), 

0.85 (d, 3J21/13 = 6.7 Hz, 3H, 21-H), 0.69 (s, 3H, 10-H), 0.62−0.55 (m, 6H, 23-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 202.8 (C-20), 132.5 (C-17), 126.4 (C-16), 81.0 (C-1), 72.3 (C-11), 

69.9 (C-6), 42.7 (C-9), 42.6 (C-7), 42.4 (C-14), 37.4 (C-4), 35.4 (C-8), 35.2 (C-14), 34.7 (C-5), 

34.0 (C-13), 32.1 (C-18), 31.6 (C-2), 29.0 (C-12), 25.6 (C-15), 25.5 (C-3), 17.2 (C-21), 16.2 (C-22), 

11.1 (C-10), 7.2 (C-24), 5.5 (C-23) ppm.  

 

EI-MS for C30H56O3Si+ [M+]: calcd. 492.3993 

 found 492.3992. 

 

IR (ATR): ῦ/cm−1 = 2954 (s), 2912 (s), 2987 (s), 2712 (w), 1729 (m), 1460 (w), 1288 (w), 1362 (w), 

1237 (w), 1196 (w), 1129 (w), 1063 (m), 1009 (w), 797 (w), 741 (w). 

 

[ ]20
Dα  = +42.8 (c 0.25, CH2Cl2). 

 

 

Synthesis of Diene 317 
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To a suspension of Ph3PMeBr (717 mg, 2.01 mmol, 3.0 eq.) in THF (12 mL) at 0 °C was added 

n-BuLi (540 μL of a 2.5M solution in hexanes, 1.34 mmol, 2.0 eq.). The resulting mixture was allowed 

to warm to room temperature and was stirred for 1 h at this temperature before being cooled to −78 °C. 

Then, a solution of aldehyde 312 (330 mg, 670 μmol, 1.0 eq.) in THF (2 mL) was added dropwise. 

The cold bath was replaced by an ice/water bath and the mixture was stirred for 30 min at 0 °C. The 

reaction mixture was diluted with Et2O (10 mL) and quenched by addition of saturated aqueous 

NH4Cl (10 mL). The phases were separated and the aqueous layer was extracted with Et2O (3 x 

15 mL). The combined organic layers were washed with saturated aqueous NaCl (20 mL), dried over 

MgSO4 and the solvents were removed under reduced pressure. Purification of the crude product by 

flash column chromatography (silica, hexanes:EtOAc = 100:1 to 60:1) yielded diene 317 (313 mg, 

639 μmol, 95%) as a colorless oil.  

 

Rf = 0.48 (Hexanes:EtOAc = 30:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 5.81 (ddt, 3J20/21A = 17.1 Hz, 3J20/21B = 10.2 Hz, 3J20/19 = 6.5 Hz, 1H, 

20-H), 5.14 (mC, 1H, 16-H), 5.01 (mC, 1H, 21-HA), 4.93 (mC, 1H, 21-HB), 4.05 (mC, 1H, 6-H), 

3.42 (mC, 1H, 1-H), 2.18−2.12 (m, 2H, 19-H), 2.09−1.99 (m, 3H, 15-HA, 18-H), 1.94−1.85 (m, 2H, 

2-HA, 15-HB), 1.73 (dddd, J = 13.0, 13.0, 7.1, 3.3 Hz, 1H, 4-H), 1.61 (s, 3H, 23-H), 1.57−1.36 (m, 7H, 

2-HB, 3-HA, 5-H, 8-HA, 13-H, 14-HA), 1.29−1.21 (m, 2H, 3-HB, 7-H), 1.17−1.05 (m, 2H, 8-HB, 14-HB), 

1.15 (s, 9H, 12-H), 0.99−0.93 (m, 9H, 25-H), 0.86 (d, 3J22/13 = 6.8 Hz, 3H, 22-H), 0.69 (s, 3H, 10-H), 

0.63−0.53 (m, 6H, 24-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 139.0 (C-20), 134.0 (C-17), 125.5 (C-16), 114.3 (C-21), 81.0 (C-1), 

72.3 (C-11), 69.9 (C-6), 42.7 (C-9), 42.5 (C-7), 39.3 (C-18), 37.4 (C-4), 35.4 (2C, C-8, C-14), 

34.7 (C-5), 34.0 (C-13), 32.6 (C-19), 31.6 (C-2), 29.0 (C-12), 25.5 (2C, C-3, C-15), 17.2 (C-22), 

16.1 (C-23), 11.1 (C-10), 7.2 (C-25), 5.5 (C-24) ppm.  

 

EI-MS for C31H58O2Si+ [M+]: calcd. 490.4201 

 found 490.4199. 

 

IR (ATR): ῦ/cm−1 = 3078 (w), 2954 (s), 2932 (s), 2913 (s), 2876 (s), 1460 (w), 1414 (w), 1379 (w), 

1361 (w), 1237 (w), 1063 (m), 1046 (m), 1007 (w), 977 (w), 910 (w), 797 (w), 741 (w). 

 

[ ]20
Dα  = +32.4 (c 0.50, CH2Cl2). 
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Synthesis of Ketone 319 
 

 
To a solution of silyl ether 317 (313 mg, 638 μmol, 1.0 eq.) in CH2Cl2/MeOH (7:1, 4.8 mL) was added 

(1R)-(−)-camphorsulfonic acid (30 mg, 0.13 mmol, 20 mol-%) and the mixture was stirred for 5 h at 

room temperature. The reaction was quenched by addition of saturated aqueous NaHCO3 (10 mL) and 

the biphasic mixture was extracted with CH2Cl2 (3 x 15 mL). The combined organic layers were 

washed with saturated aqueous NaCl (10 mL) and dried over MgSO4. The solvents were removed 

under reduced pressure to yield crude alcohol 318 as pale yellow oil which was used without further 

purification in the next step. 

To a suspension of crude alcohol 318 (assumed 638 μmol, 1.0 eq.) and NaHCO3 (161 mg, 1.92 mmol, 

3.0 eq.) in CH2Cl2 (6 mL) was added DMP (407 mg, 960 μmol, 1.5 eq.) and the mixture was stirred 

for 1.5 h at room temperature. The reaction was quenched by addition of saturated aqueous 

NaHCO3/saturated aqueous Na2S2O3/H2O (1:1:1, 10 mL) and the aqueous layer was extracted with 

CH2Cl2 (3 x 15 mL). The combined organic layers were washed with saturated aqueous NaCl (10 mL) 

and dried over MgSO4. After evaporation of the solvents under reduced pressure, the crude product 

was purified by flash column chromatography (silica, hexanes:EtOAc = 40:1 to 30:1) to yield 

ketone 319 (202 mg, 540 μmol, 85% over two steps) as a colorless oil. 

 

Rf = 0.39 (Hexanes:EtOAc = 10:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 5.80 (ddt, 3J20/21A = 17.1 Hz, 3J20/21B = 10.2 Hz, 3J20/19 = 6.6 Hz, 1H, 

20-H), 5.14 (mC, 1H, 16-H), 5.00 (mC, 1H, 21-HA), 4.93 (mC, 1H, 21-HB), 3.47 (dd, 3J1/2 = 8.9, 7.7 Hz, 

1H, 1-H), 2.36−2.29 (m, 2H, 5-HA, 7-H), 2.29−2.21 (m, 2H, 5-HB, 13-H), 2.18−2.10 (m, 2H, 19-H), 

2.07−2.03 (m, 2H, 18-H), 2.02−1.91 (m, 3H, 2-HA, 15-H), 1.87 (dd, 2J8A/8B = 12.6 Hz, 3J8A/7 = 6.4 Hz, 

1H, 8-HA), 1.68−1.54 (m, 3H, 2-HB, 3-HA, 4-H), 1.59 (s, 3H, 23-H), 1.43−1.35 (m, 1H, 3-HB), 

1.27−1.13 (m, 3H, 8-HB, 14-H), 1.15 (s, 9H, 12-H), 0.97 (s, 3H, 10-H), 0.76 (d, 3J22/13 = 6.7 Hz, 3H, 

22-H) ppm. 
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13C NMR (CDCl3, 150 MHz): δ = 212.5 (C-6), 138.9 (C-20), 134.7 (C-17), 124.8 (C-16), 

114.4 (C-21), 80.0 (C-1), 72.7 (C-11), 49.3 (C-7), 44.6 (C-4), 43.3 (C-5), 42.2 (C-9), 39.2 (C-18), 

35.5 (C-8), 34.9 (C-14), 32.5 (C-19), 31.9 (C-2), 30.7 (C-13), 28.9 (C-12), 26.1 (C-15), 25.9 (C-3), 

16.1 (C-22)*, 16.0 (C-23)*, 11.2 (C-10) ppm.  

 

EI-MS for C25H42O2
+ [M+]: calcd. 374.3179 

 found 374.3178. 

 

IR (ATR): ῦ/cm−1 = 3076 (w), 2972 (s), 2931 (s), 2876 (s), 1706 (s), 1461 (w), 1388 (w), 1362 (w), 

1252 (w), 1192 (m), 1120 (w), 1062 (m), 903 (w). 

 

[ ]20
Dα  = +7.8 (c 0.50, CH2Cl2). 

 

An analytical sample of alcohol 318 was obtained by flash column chromatography (silica, 

hexanes:EtOAc = 16:1) as a colorless oil: 

 

Rf = 0.16 (Hexanes:EtOAc = 16:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 5.80 (ddt, 3J20/21A = 16.9 Hz, 3J20/21B = 10.3 Hz, 3J20/19 = 6.6 Hz, 1H, 

20-H), 5.14 (mC, 1H, 16-H), 5.00 (mC, 1H, 21-HA), 4.93 (mC, 1H, 21-HB), 4.10 (mC, 1H, 6-H), 

3.44 (dd, 3J1/2 = 8.9, 7.4 Hz, 1H, 1-H), 2.18−2.12 (m, 2H, 19-H), 2.09−2.01 (m, 3H, 15-HA, 18-H), 

1.98−1.88 (m, 2H, 2-HA, 15-HB), 1.70−1.62 (m, 3H, 4-H, 5-HA, 8-HA), 1.60 (br s, 3H, 23-H), 

1.59−1.55 (m, 1H, 14-HA), 1.52−1.41 (m, 4H, 2-HB, 3-HA, 5-HB, 13-H), 1.37−1.31 (m, 1H, 7-H), 

1.30−1.24 (m, 1H, 3-HB), 1.23−1.15 (m, 2H, 14-HB, OH), 1.14 (s, 9H, 12-H), 1.02 (dd, 2J8B/8A = 3J8B/7 

= 12.9 Hz, 1H, 8-HB), 0.92 (d, 3J22/13 = 6.6 Hz, 3H, 22-H), 0.71 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 138.9 (C-20), 134.7 (C-17), 125.2 (C-16), 114.4 (C-21), 80.8 (C-1), 

72.4 (C-11), 68.4 (C-6), 42.8 (C-9), 42.0 (C-7), 39.2 (C-18), 37.6 (C-4), 36.0 (C-8), 35.6 (C-14), 

34.0 (C-5), 33.8 (C-13), 32.5 (C-19), 31.4 (C-2), 28.9 (C-12), 25.6 (C-3), 25.3 (C-15), 17.7 (C-22), 

16.2 (C-23), 11.0 (C-10) ppm.  

 

EI-MS for C25H44O2
+ [M+]: calcd. 376.3336 

 found 376.3328. 

 

IR (ATR): ῦ/cm−1 = 3432 (br s), 3078 (w), 2973 (s), 2929 (s), 2913 (s), 2873 (s), 1461 (w), 1378 (w), 

1361 (m), 1254 (w), 1197 (m), 1063 (m), 1046 (m), 1004 (w), 907 (w), 880 (w), 861 (w). 
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[ ]20
Dα  = +27.6 (c 0.50, CH2Cl2). 

 

 

Synthesis of Alcohol 320 
 

 
In a Schlenk-tube was added t-BuLi (1.86 mL of a 1.7M solution in pentane, 3.16 mmol, 11.8 eq.) to 

Et2O (8 mL) at −78 °C followed by dropwise addition of 2-bromopropene (142 μL, 1.60 mmol, 

6.0 eq.). The resulting mixture was allowed to warm to 0 °C and was stirred for 30 min before being 

cooled to −78 °C. Then, a solution of ketone 319 (100 mg, 267 μmol, 1.0 eq.) in Et2O (2 mL) was 

added dropwise and the mixture was stirred for an additional 15 min. The reaction was quenched by 

addition of saturated aqueous NH4Cl (10 mL) at −78 °C and the mixture was allowed to warm to room 

temperature. The phases were separated and the aqueous layer was extracted with Et2O (3 x 20 mL). 

The combined organic layers were washed with saturated aqueous NaCl (15 mL) and dried over 

MgSO4. The solvents were evaporated under reduced pressure and the crude product was purified by 

flash column chromatography (silica, hexanes:EtOAc = 50:1) to yield alcohol 320 (102 mg, 245 μmol, 

92%) as a colorless oil and single diastereomer. 

 

Rf = 0.13 (Hexanes:EtOAc = 30:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 5.81 (ddt, 3J20/21A = 17.0 Hz, 3J20/21B = 10.1 Hz, 3J20/19 = 6.7 Hz, 1H, 

20-H), 5.14 (mC, 1H, 16-H), 5.09 (mC, 1H, 25-HA), 5.01 (mC, 1H, 21-HA), 4.94 (mC, 1H, 21-HB), 

4.88 (mC, 1H, 25-HB), 3.51 (dd, 3J1/2 = 9.0, 7.3 Hz, 1H, 1-H), 2.17−2.13 (m, 2H, 19-H), 2.07−2.03 (m, 

2H, 18-H), 1.96−1.89 (m, 3H, 2-HA, 15-H), 1.80−1.72 (m, 2H, 4-H, 7-H), 1.76 (br s, 3H, 26-H), 

1.65 (mC, 1H, 13-H), 1.59 (s, 3H, 23-H), 1.55 (br s, 1H, OH), 1.50−1.42 (m, 3H, 2-HB, 3-HA, 8-HA), 

1.31−1.17 (m, 6H, 3-HB, 5-H, 8-HB, 14-H), 1.15 (s, 9H, 12-H), 0.86 (d, 3J22/13 = 6.8 Hz, 3H, 22-H), 

0.76 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 151.7 (C-24), 138.9 (C-20), 134.7 (C-17), 125.0 (C-16), 

114.4 (C-21), 109.9 (C-25), 80.9 (C-1), 80.1 (C-6), 72.4 (C-11), 42.6 (C-9), 40.7 (C-7), 39.3 (C-4)*, 

39.2 (C-18)*, 39.1 (C-5)*, 38.0 (C-14), 32.9 (C-8), 32.6 (C-19), 31.5 (C-2), 31.2 (C-13), 29.0 (C-12), 

26.1 (C-15), 25.8 (C-3), 19.8 (C-26), 16.6 (C-22), 16.1 (C-23), 11.1 (C-10) ppm.  
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EI-MS for C28H48O2
+ [M+]: calcd. 416.3649 

 found 416.3642. 

 

IR (ATR): ῦ/cm−1 = 3598 (br w), 3077 (w), 2973 (s), 2954 (s), 2932 (s), 2875 (s), 1401 (w), 1388 (w), 

1362 (w), 1254 (w), 1198 (m), 1125 (w), 1095 (w), 1063 (m), 991 (w), 903 (w). 

 

[ ]20
Dα  = +26.4 (c 0.25, CH2Cl2). 

 

 

Synthesis of Vinyl Iodide 330 
 

 
To a solution of Cp2ZrCl2 (5.85 g, 20.0 mmol, 2.0 eq.) in THF (50 mL) at 0 °C was added 

DIBAL-H (20.0 mL of a 1.0M solution in toluene, 20.0 mmol, 2.0 eq.) within 1 h forming a white 

suspension. After stirring an additional 1.5 h at this temperature, a solution of alkyne 329[219] (2.19 g, 

10.0 mmol, 1.0 eq.) in THF (10 + 2 mL rinse) was added and the resulting mixture was heated to 

50 °C for 1.5 h at which point TLC analysis showed complete consumption of the starting material. 

The mixture was cooled to −78 °C and a solution of I2 (3.81 g, 15.0 mmol, 1.5 eq.) in THF (20 mL) 

was slowly added. The cold bath was exchanged with an ice/water bath and the solution was stirred for 

an additional 30 min at 0 °C. The reaction was quenched by addition of saturated aqueous 

Na2S2O3 (30 mL) and the mixture was diluted with half-saturated aqueous Rochelle salt (100 mL). 

After stirring vigorously at room temperature for 2.5 h, the layers were separated and the aqueous 

layer was extracted with Et2O (3 x 100 mL). The combined organic layers were washed with saturated 

aqueous NaCl (100 mL) and dried over MgSO4. Having evaporated the solvents under reduced 

pressure, the crude product was purified by flash column chromatography (silica, hexanes:EtOAc = 

30:1) to yield vinyl iodide 330 (2.08 g, 6.01 mmol, 60%) as a pale yellow liquid and as a 10:1 mixture 

of regioisomers as determined by 1H NMR spectroscopy. Further careful flash column 

chromatography (silica, hexanes:EtOAc = 60:1) yielded vinyl iodide 330 (1.48 g, 4.28 mmol, 43%) as 

a light yellow oil. 

 

Rf = 0.47 (Hexanes:EtOAc = 7:1). 
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1H NMR (CDCl3, 400 MHz): δ = 7.29−7.22 (m, 2H, 9-H), 6.91−6.84 (m, 2H, 10-H), 6.14 (tq, 3J2/3 = 

7.6 Hz, 4J2/6 = 1.6 Hz, 1H, 2-H), 4.42 (s, 2H, 7-H), 3.81 (s, 3H, 12-H), 3.42 (t, 3J 
5/4 = 6.2 Hz, 2H, 5-H), 

2.37−2.35 (m, 3H, 6-H), 2.12 (mC, 2H, 3-H), 1.70−1.62 (m, 2H, 4-H) ppm. 

  
13C NMR (CDCl3, 100 MHz): δ = 159.3 (C-8), 140.7 (C-2), 130.7 (C-11), 129.4 (C-9), 113.9 (C-10), 

94.2 (C-1), 72.8 (C-7), 69.0 (C-5), 55.4 (C-12), 29.0 (C-4), 27.6 (C-6), 27.4 (C-3) ppm.  

 

EI-MS for C14H19IO2
+ [M+]: calcd. 346.0424 

 found 346.0427. 

 

IR (ATR): ῦ/cm–1 = 2934 (m), 2854 (m), 1586 (w), 1512 (s), 1463 (w), 1363 (w), 1302 (w), 1245 (s), 

1098 (s), 1036 (m), 820 (w). 

 

The analytical data matched those reported previously.[219] 
 

 

Synthesis of Ketone 332 
 

 
To a solution of silyl ether 299 (300 mg, 761 μmol, 1.0 eq.) in CH2Cl2/MeOH (7:1, 8 mL) was added 

(1R)-(−)-camphorsulfonic acid (35 mg, 0.15 mmol, 20 mol-%) and the mixture was stirred for 4 h at 

room temperature. The reaction was diluted with CH2Cl2 (5 mL) and quenched by addition of 

saturated aqueous NaHCO3 (5 mL). The phases were separated and the aqueous layer was extracted 

with CH2Cl2 (3 x 5 mL). The combined organic layers were washed with saturated aqueous 

NaCl (5 mL) and dried over MgSO4. The solvents were evaporated under reduced pressure to yield 

crude alcohol 331 which was used without further purification. 

To a suspension of crude alcohol 331 (assumed 761 μmol, 1.0 eq.) and NaHCO3 (192 mg, 2.28 mmol, 

3.0 eq.) in CH2Cl2 at room temperature was added DMP (483 mg, 1.14 mmol, 1.5 eq.). The mixture 

was stirred for 2 h and the reaction was quenched by addition of saturated aqueous NaHCO3/saturated 

aqueous Na2S2O3/H2O (1:1:1, 8 mL). After extracting the mixture with CH2Cl2 (3 x 15 mL), the 

combined organic layers were washed with saturated aqueous NaCl (10 mL) and dried over MgSO4. 

The solvent was evaporated under reduced pressure and the crude product was purified by flash 

column chromatography (silica, hexanes:EtOAc = 40:1) to yield ketone 332 (191 mg, 687 μmol, 90% 

over two steps) as a colorless oil. 
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Rf = 0.47 (Hexanes:EtOAc = 10:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 5.82 (mC, 1H, 14-H), 5.02−4.96 (m, 2H, 15-H), 3.46 (dd, 3J1/2 = 8.9, 

7.8 Hz, 1H, 1-H), 2.87 (mC, 1H, 13-H), 2.42 (ddd, 3J7/8B = 12.9 Hz, 3J7/8A = 6.3 Hz, 3J7/13 = 3.5 Hz, 1H, 

7-H), 2.34−2.25 (m, 2H, 5-H), 2.02−1.94 (m, 1H, 2-HA), 1.88 (dd, 2J8A/8B = 12.8 Hz, 3J8A/7 = 6.3 Hz, 

1H, 8-HA), 1.65 (mC, 1H, 4-H), 1.61−1.54 (m, 2H, 2-HB, 3-HA), 1.43−1.36 (m, 1H, 3-HB), 1.21 (dd, 
2J8B/8A = 3J8B/7 = 12.8 Hz, 1H, 8-HB), 1.14 (s, 9H, 12-H), 0.97 (s, 3H, 10-H), 0.95 (d, 3J16/13 = 6.9 Hz, 

3H, 16-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 211.6 (C-6), 142.7 (C-14), 113.8 (C-15), 79.9 (C-1), 72.7 (C-11), 

49.9 (C-7), 45.0 (C-4), 43.4 (C-5), 42.4 (C-9), 36.8 (C-8), 35.7 (C-13), 31.9 (C-2), 28.8 (C-12), 

25.9 (C-3), 15.2 (C-16), 11.2 (C-10) ppm.  

 

EI-MS for C18H30O2
+ [M+]: calcd. 278.2240 

 found 278.2241. 

 

IR (ATR): ῦ/cm−1 = 3073 (w), 2972 (s), 2874 (m), 1706 (s), 1461 (w), 1389 (w), 1362 (m), 1251 (w), 

1192 (m), 1122 (w), 1061 (m), 1001 (w), 901 (w). 

 

[ ]20
Dα  = +43.1 (c 1.00, CH2Cl2). 

 

An analytical sample of alcohol 331 was obtained by flash column chromatography (silica, 

hexanes:EtOAc = 30:1) as a colorless wax:  

 

Rf = 0.31 (Hexanes:EtOAc = 10:1). 

 
1H NMR (CDCl3, 300 MHz): δ = 5.82 (ddd, 3J14/15A = 17.1 Hz, 3J14/15B = 10.2 Hz, 3J14/13 = 9.1 Hz, 1H, 

14-H), 5.07 (ddd, 3J15A/14 = 17.1 Hz, 2J15A/15B = 2.0 Hz, 4J15A/13 = 0.8 Hz, 1H, 15-HA), 4.98 (dd, 3J15B/14 = 

10.2 Hz, 2J15B/15A = 1.9 Hz, 1H, 15-HB), 3.98 (br s, 1H, 6-H), 3.45 (dd, 3J1/2 = 8.9, 7.7 Hz, 1H, 1-H), 

2.12 (mC, 1H, 13-H), 1.98−1.84 (m, 1H, 2-HA), 1.76−1.59 (m, 3H, 4-H, 5-HA, 8-HA), 1.55−1.23 (m, 

5H, 2-HB, 3-H, 5-HB, 7-H), 1.14 (s, 9H, 12-H), 1.07 (mC, 1H, 8-HB), 1.02 (d, 3J16/13 = 6.6 Hz, 3H, 

16-H), 0.71 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 75 MHz): δ = 144.5 (C-14), 113.5 (C-15), 80.7 (C-1), 72.4 (C-11), 68.0 (C-6), 

42.8 (2C, C-7, C-9), 40.8 (C-13), 37.6 (C-4), 36.3 (C-8), 33.3 (C-5), 31.4 (C-2), 28.9 (C-12), 

25.6 (C-3), 19.1 (C-16), 11.0 (C-10) ppm.  
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EI-MS for C18H32O2
+ [M+]: calcd. 280.2397 

 found 280.2389. 

 

IR (ATR): ῦ/cm−1 = 3428 (br s), 3312 (br s), 3073 (w), 2973 (s), 2934 (s), 2902 (s), 1460 (w), 1389 

(w), 1361 (w), 1198 (w), 1168 (w), 1127 (w), 1071 (w), 1002 (w), 906 (w). 

 

[ ]20
Dα  = +50.4 (c 0.5, CH2Cl2). 

 

 

Synthesis of Alcohol 333 
 

 
To a solution of vinyl iodide 330 (546 mg, 1.57 mmol, 3.0 eq.) in Et2O (15 mL) at −78 °C was added 

dropwise t-BuLi (1.79 mL of a 1.7M solution in pentane, 3.04 mmol, 5.8 eq.) and the mixture was 

stirred for 30 min at this temperature. Then, a solution of ketone 332 (145 mg, 520 μmol, 1.0 eq.) in 

Et2O (3 mL + 1 mL rinse) was added dropwise. After 15 min, the reaction was quenched by addition 

of saturated aqueous NH4Cl (10 mL). The mixture was allowed to warm to room temperature and was 

diluted with H2O (10 mL) and Et2O (20 mL). The phases were separated and the aqueous layer was 

extracted with Et2O (3 x 20 mL). The combined organic layers were washed with saturated aqueous 

NaCl (30 mL) and dried over MgSO4. Having evaporated the solvents under reduced pressure, the 

crude product was purified by flash column chromatography (silica, hexanes:EtOAc = 24:1) to yield 

title compound 333 (226 mg, 453 μmol, 87%) as a highly viscous colorless oil. 

 

The relative stereochemistry at C-6 was established by key NOE 

correlations as depicted aside.  
 

Rf = 0.15 (hexanes:EtOAc = 10:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 7.27−7.24 (m, 2H, 25-H), 6.87 (mC, 2H, 26-H), 5.78 (ddd, 3J14/15A = 

16.7 Hz, 3J14/15B = 10.9 Hz, 3J14/13 = 6.9 Hz, 1H, 14-H), 5.57 (mC, 1H, 18-H), 4.91−4.84 (m, 2H, 15-H), 

4.42 (mC, 2H, 23-H), 3.80 (s, 3H, 28-H), 3.50 (dd, 3J1/2 = 9.1, 7.4 Hz, 1H, 1-H), 3.44 (t, 3J21/20 = 

6.5 Hz, 2H, 21-H), 2.28 (mC, 1H, 13-H), 2.14 (mC, 2H, 19-H), 1.95−1.89 (m, 1H, 2-HA), 1.86 (ddd, 
3J7/8B = 12.7 Hz, 3J7/8A = 3.7 Hz, 3J7/13 = 2.3 Hz, 1H, 7-H), 1.78−1.64 (m, 4H, 4-H, 5-HA, 20-H), 

1.61 (s, 3H, 22-H), 1.49 (dd, 2J8A/8B = 12.4 Hz, 3J8A/7 = 3.7 Hz, 1H, 8-HA), 1.48−1.42 (m, 2H, 2-HB, 

H

MeH

OH

Ot-Bu

HH

OPMB

Me

H H
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3-HA), 1.30−1.22 (m, 2H, 3-HB, 8-HB), 1.17−1.09 (m, 1H, 5-HB), 1.15 (s, 9H, 12-H), 0.95 (d, 3J16/13 = 

6.8 Hz, 3H, 16-H), 0.74 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 159.3 (C-27), 145.5 (C-14), 141.4 (C-17), 130.9 (C-24), 

129.4 (C-25), 122.9 (C-18), 113.9 (C-26), 112.0 (C-15), 80.9 (C-1), 79.7 (C-6), 72.8 (C-23), 

72.4 (C-11), 69.7 (C-21), 55.4 (C-28), 42.6 (C-9), 40.2 (C-7), 39.3 (C-4), 39.2 (C-5), 36.5 (C-13), 

33.9 (C-8), 31.5 (C-2), 29.9 (C-20), 28.9 (C-12), 25.7 (C-3), 24.7 (C-19), 15.0 (C-16), 13.7 (C-22), 

10.9 (C-10) ppm.  

 

ESI-MS for C32H49O4
− [(M−H)−]: calcd. 497.3636 

 found 497.3633. 

 

IR (ATR): ῦ/cm−1 = 3484 (br w), 3074 (w), 2971 (s), 2954 (s), 2869 (m), 1634 (w), 1587 (w), 

1513 (m), 1388 (w), 1362 (m), 1248 (m), 1196 (w), 1097 (m), 1061 (m), 1048 (m), 905 (w), 821 (w). 

 

[ ]20
Dα  = +23.4 (c 0.50, CH2Cl2). 

 

 

Synthesis of Diol 334 
 

 
To a solution of PMB ether 333 (175 mg, 351 μmol, 1.0 eq.) in CH2Cl2/H2O (10:1, 22 mL) at 0 °C was 

added DDQ (159 mg, 708 μmol, 2.0 eq.) in one portion and the biphasic mixture was stirred 

vigorously for 2 h. The mixture was filtered over a pad of Celite® (washings with CH2Cl2) and the 

resulting solution was sequentially washed with saturated aqueous NaHCO3 (3 x 25 mL), H2O 

(20 mL) and saturated aqueous NaCl (20 mL), and dried over MgSO4. The solvents were evaporated 

under reduced pressure and the crude product was purified by flash column chromatography (silica, 

CH2Cl2:MeOH = 100:1) to yield diol 334 (99 mg, 262 μmol, 75%) as a pale yellow oil. 

 

Rf = 0.19 (hexanes:EtOAc = 4:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 5.79 (ddd, 3J14/15A = 16.7 Hz, 3J14/15B = 10.7 Hz, 3J14/13 = 7.0 Hz, 1H, 

14-H), 5.61 (mC, 1H, 18-H), 4.91−4.85 (m, 2H, 15-H), 3.67 (t, 3J21/20 = 6.5 Hz, 2H, 21-H), 3.50 (dd, 
3J1/2 = 9.1, 7.4 Hz, 1H, 1-H), 2.28 (mC, 1H, 13-H), 2.15 (mC, 2H, 19-H), 1.95−1.89 (m, 1H, 2-HA), 
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1.87 (ddd, 3J = 12.8, 3.7, 2.3 Hz, 1H, 7-H), 1.78−1.70 (m, 2H, 4-H, 5-HA), 1.70−1.64 (m, 2H, 20-H), 

1.63 (s, 3H, 22-H), 1.52−1.39 (m, 5H, 2-HB, 3-HA, 8-HA, OH), 1.30−1.22 (m, 2H, 3-HB, 8-HB), 

1.17−1.10 (m, 1H, 5-HB), 1.15 (s, 9H, 12-H), 0.96 (d, 3J16/13 = 7.0 Hz, 3H, 16-H), 0.74 (s, 3H, 

10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 145.4 (C-14), 141.6 (C-17), 122.7 (C-18), 112.1 (C-15), 80.9 (C-1), 

79.7 (C-6), 72.4 (C-11), 62.9 (C-21), 42.6 (C-9), 40.2 (C-7), 39.3 (C-4), 39.2 (C-5), 36.6 (C-13), 

34.0 (C-8), 32.8 (C-20), 31.5 (C-2), 28.9 (C-12), 25.7 (C-3), 24.4 (C-19), 15.1 (C-16), 13.7 (C-22), 

10.9 (C-10) ppm.  

 

ESI-MS for C24H42O3
+ [M+]: calcd. 378.3128 

 found 378.3121. 

 

IR (ATR): ῦ/cm−1 = 3416 (br m), 3074 (w), 2972 (s), 2954 (s), 2946 (s), 2872 (s), 1461 (w), 1388 (w), 

1362 (m), 1254 (w), 1196 (m), 1129 (w), 1096 (w), 1061 (m), 905 (w). 

 

[ ]20
Dα  = +34.7 (c 0.15, CH2Cl2). 

 

 

Synthesis of Alkyne 337 
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MeOH, 0 °C
to rt, 1 h

(78% over two
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O
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M = 372.58 g/mol
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336

 
To a solution of DMSO (55 μL, 0.78 mmol, 3.0 eq.) in CH2Cl2 (5 mL) at −78 °C was added dropwise 

(COCl)2 (195 μL of a 2.0M solution in CH2Cl2, 390 μmol, 1.5 eq.) and the mixture was stirred for 

30 min. Then, a solution of diol 334 (99 mg, 0.26 mmol, 1.0 eq.) in CH2Cl2 (2 mL) was added slowly 

and the reaction was stirred for an additional 30 min at −78 °C. After addition of Et3N (220 μL, 

1.56 mmol, 6.0 eq.), the cold bath was replaced by an ice/water bath and the mixture was stirred for 

30 min. The reaction was partitioned between H2O (10 mL) and CH2Cl2 (10 mL), and the aqueous 

layer was extracted with CH2Cl2 (3 x 10 mL). The combined organic layers were washed with 
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saturated aqueous NaCl (15 mL) and dried over MgSO4. The solvents were removed under reduced 

pressure and the crude product was purified by flash column chromatography (silica, hexanes:EtOAc 

= 7:1) to yield aldehyde 335, which was immediately used in the next step. 

To a solution of aldehyde 335 (assumed 0.26 mmol, 1.0 eq.) in MeOH (7 mL) at 0 °C was 

consecutively added K2CO3 (259 mg, 1.88 mmol, 7.5 eq.) and a solution of Ohira-Bestmann 

reagent (336, 243 mg, 1.25 mmol, 5.0 eq.) in MeOH (2 mL). The mixture was allowed to warm to 

room temperature and stirred for 1 h. The reaction was diluted with H2O (15 mL) and the mixture was 

extracted with Et2O (5 x 10 mL). The combined organic layers were washed with saturated aqueous 

NaCl (10 mL) and dried over MgSO4. The solvents were removed under reduced pressure and the 

crude product was purified by flash column chromatography (silica, hexanes:EtOAc = 40:1) to yield 

alkyne 337 (75 mg, 0.20 mmol, 78% over two steps) as a colorless oil. 

 

Rf = 0.13 (hexanes:EtOAc = 30:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 5.79 (ddd, 3J14/15A = 17.6 Hz, 3J14/15B = 9.8 Hz, 3J14/13 = 7.0 Hz, 1H, 

14-H), 5.63 (mC, 1H, 18-H), 4.91−4.85 (m, 2H, 15-H), 3.50 (dd, 3J1/2 = 9.2, 7.4 Hz, 1H, 1-H), 

2.36−2.22 (m, 5H, 13-H, 19-H, 20-H), 1.95−1.84 (m, 1H, 2-HA), 1.93 (t, 4J22/20 = 2.5 Hz, 1H, 22-H), 

1.87 (ddd, 3J = 12.7, 3.8, 2.3 Hz, 1H, 7-H), 1.78−1.70 (m, 2H, 4-H, 5-HA), 1.65 (s, 3H, 23-H), 

1.56 (br s, 1H, OH), 1.50 (dd, 2J8A/8B = 12.6 Hz, 3J8A/7 = 3.9 Hz, 1H, 8-HA), 1.48−1.41 (m, 2H, 2-HB, 

3-HA), 1.32−1.19 (m, 2H, 3-HB, 8-HB), 1.18−1.10 (m, 1H, 5-HB), 1.15 (s, 9H, 12-H), 0.96 (d, 3J16/13 = 

7.1 Hz, 3H, 16-H), 0.74 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 145.5 (C-14), 142.6 (C-17), 121.6 (C-18), 112.1 (C-15), 

84.5 (C-21), 80.9 (C-1), 79.8 (C-6), 72.4 (C-11), 68.4 (C-22), 42.6 (C-9), 40.2 (C-7), 39.3 (C-4), 

39.1 (C-5), 36.5 (C-13), 34.0 (C-8), 31.5 (C-2), 28.9 (C-12), 27.3 (C-19), 25.7 (C-3), 18.9 (C-20), 

16.1 (C-16), 13.8 (C-23), 10.9 (C-10) ppm. 

 

EI-MS for C25H39O2
+ [(M−H)+]: calcd. 371.2945 

 found 371.2943. 

 

IR (ATR): ῦ/cm−1 = 3545 (br w), 3309 (m), 3076 (w), 2971 (s), 2871 (s), 1462 (w), 1388 (w), 

1361 (m), 1253 (w), 1196 (m), 1127 (w), 1095 (w), 1061 (m), 995 (w), 904 (w). 

 

[ ]20
Dα  = +41.7 (c 0.33, CH2Cl2). 
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Synthesis of Vinyl Stannane 340 
 

 
To a solution of alkyne 337 (52 mg, 0.14 mmol, 1.0 eq.) in THF (5 mL) was added trimethyl(tri-n-

butylstannyl)silane (244 μL, 700 μmol, 5.0 eq.) and Pd(PPh3)4 (32 mg, 28 μmol, 20 mol-%). The 

yellow solution was heated to reflux for 5 h changing its color to dark brown. The reaction mixture 

was allowed to cool to room temperature and was diluted with hexanes (15 mL). The mixture was 

filtered over a pad of silica (washings with Et2O) and the solvents were removed under reduced 

pressure. The thus obtained orange crude oil was purified by flash column chromatography (silica, 

hexanes:EtOAc = 1:0 to 80:1) to yield stannane 340 (77 mg, 105 μmol, 75%) as a colorless oil. 

 

Rf = 0.18 (hexanes:EtOAc = 30:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 6.37 (br s, 1H, 22-H), 5.79 (mC, 1H, 14-H), 5.55 (mC, 1H, 18-H), 

4.91−4.85 (m, 2H, 15-H), 3.50 (dd, 3J1/2 = 9.0, 7.3 Hz, 1H, 1-H), 2.38−2.24 (m 3H, 13-H, 20-H), 

2.11−2.02 (m, 2H, 19-H), 1.95−1.89 (m, 1H, 2-HA), 1.87 (mC, 1H, 7-H), 1.79−1.69 (m, 2H, 4-H, 

5-HA), 1.63 (s, 3H, 23-H), 1.54−1.41 (m, 9H, 2-HB, 3-HA, 8-HA, 26-H), 1.32 (mC, 6H, 27-H), 

1.28−1.22, (m, 2H, 3-HB, 8-HB), 1.18−1.12 (m, 1H, 5-HB), 1.15 (s, 9H, 12-H), 1.01−0.83 (m, 18H, 

16-H, 25-H, 28-H), 0.74 (s, 3H, 10-H), 0.09 (s, 9H, 24-H) ppm. 
  
13C NMR (CDCl3, 150 MHz): δ = 165.2 (C-21), 145.6 (C-14), 143.7 (C-22), 141.0 (C-17), 

122.8 (C-18), 112.0 (C-15), 80.9 (C-1), 79.7 (C-6), 72.4 (C-11), 47.2 (C-20), 42.6 (C-9), 40.3 (C-7), 

39.3 (2C, C-4, C-5), 36.6 (C-13), 34.1 (C-8), 31.5 (C-2), 29.4 (C-26), 28.9 (C-12), 28.6 (C-19), 

27.7 (C-27), 25.7 (C-3), 16.1 (C-16), 13.8 (2C, C-23, C-28), 11.4 (C-25), 10.9 (C-10), 0.4 (C-24) ppm. 

 

ESI-MS for C40H76O2SiSnCl− [(M+Cl)−]: calcd. 771.4331 

 found 771.4325. 

 

IR (ATR): ῦ/cm−1 = 3599 (br w), 3071 (w), 2953 (s), 2929 (s), 2871 (s), 2855 (m), 1463 (w), 1375 (w), 

1361 (w), 1246 (w), 1196 (w), 1128 (w), 1063 (w), 905 (w), 861 (w), 835 (w). 

 

[ ]20
Dα  = +11.4 (c 0.33, CH2Cl2). 

 



194  EXPERIMENTAL SECTION 

Synthesis of Vinyl Iodide 342 
 

 

 
To a solution of stannane 340 (74 mg, 0.10 mmol, 1.0 eq.) in CH2Cl2 (6 mL) at −40 °C was added 2,6-

di-tert-butyl-4-methylpyridine (341, 62 mg, 0.30 mmol, 3.0 eq.) followed by I2 (26 mg, 0.10 mmol, 

1.0 eq.). The yellow mixture was stirred at this temperature for 1.5 h and the reaction was then 

quenched by addition of saturated aqueous Na2S2O3 (7 mL). The mixture was diluted with H2O (7 mL) 

and CH2Cl2 (10 mL), and the phases were separated. The aqueous layer was extracted with 

CH2Cl2 (3 x 10 mL) and the combined organic layers were dried over Na2SO4. The solvents were 

evaporated under reduced pressure and the crude product was purified by flash column 

chromatography (silica, hexanes:EtOAc = 80:1 to 60:1) to yield vinyl iodide 342 (55 mg, 95 μmol, 

95%) as a colorless oil. 

 

Rf = 0.09 (hexanes:EtOAc = 30:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 6.33 (t, 4J22/20 = 1.0 Hz, 1H, 22-H), 5.79 (mC, 1H, 14-H), 5.55 (mC, 

1H, 18-H), 4.91−4.86 (m, 2H, 15-H), 3.50 (dd, 3J1/2= 8.9, 7.4 Hz, 1H, 1-H), 2.61 (mC, 2H, 20-H), 

2.33−2.23 (m, 3H, 13-H, 19-H), 1.95−1.90 (m, 1H, 2-HA), 1.87 (mC, 1H, 7-H), 1.76−1.70 (m, 2H, 4-H, 

5-HA), 1.66 (s, 3H, 23-H), 1.50 (dd, 2J8A/8B = 12.7 Hz, 3J8A/7 = 3.7 Hz, 1H, 8-HA), 1.48−1.41 (m, 2H, 

2-HB, 3-HA), 1.32−1.21 (m, 2H, 3-HB, 8-HB), 1.17−1.11 (m, 1H, 5-HB), 1.15 (s, 9H, 12-H), 0.96 (d, 
3J16/13 = 6.9 Hz, 3H, 16-H), 0.74 (s, 3H, 10-H), 0.18 (s, 9H, 24-H) ppm. 
  
13C NMR (CDCl3, 150 MHz): δ = 145.4 (C-14), 142.4 (C-17), 137.4 (C-22), 122.8 (C-21), 

121.2 (C-18), 112.1 (C-15), 80.9 (C-1), 79.8 (C-6), 72.4 (C-11), 50.9 (C-20), 42.6 (C-9), 40.3 (C-7), 

39.4 (C-4)*, 39.3 (C-5)*, 36.5 (C-13), 34.0 (C-8), 31.4 (C-2), 28.9 (C-12), 28.0 (C-19), 25.7 (C-3), 

16.1 (C-16), 13.9 (C-23), 10.9 (C-10), −1.0 (C-24) ppm. 

 

ESI-MS for C28H48IOSi+ [(M−OH)+]: calcd. 555.2514 

 found 555.2510. 

 

IR (ATR): ῦ/cm−1 = 3560 (br w), 3072 (w), 2972 (s), 2955 (s), 2873 (m), 1595 (m), 1461 (w), 

1388 (w), 1361 (w), 1248 (m), 1196 (m), 1127(w), 1062 (w), 905 (w), 863 (w), 841 (m). 
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[ ]20
Dα  = +32.0 (c 0.25, CH2Cl2). 

 

 

Synthesis of Vinyl Silane 343 
 

 
To a suspension of CuI (87 mg, 0.45 mmol, 5.0 eq.) in Et2O (5 mL) at −20 °C was added dropwise 

MeLi (0.57 mL of a 1.6M solution in Et2O, 0.91 mmol, 10 eq.) and the resulting pale yellow solution 

was stirred for an additional 15 min. Then, a solution of vinyl iodide 342 (52 mg, 91 μmol, 1.0 eq.) in 

Et2O (1.5 mL) was added dropwise and the reaction mixture was allowed to slowly warm to 0 °C. 

After stirring for an additional 60 min at 0 °C, the reaction was quenched by addition of saturated 

aqueous NH4Cl (5 mL) and the biphasic mixture was filtered over a pad of Celite® (washings with 

Et2O). The phases were separated and the aqueous layer was extracted with Et2O (3 x 10 mL). The 

combined organic layers were washed with saturated aqueous NaCl (10 mL) and dried over MgSO4. 

The solvents were evaporated under reduced pressure and the crude product was purified by flash 

column chromatography (silica, hexanes:EtOAc = 70:1 to 60:1) to yield vinyl silane 343 (36 mg, 

78 μmol, 86%) as a colorless oil. 

 

The C-21/C-22 double bond geometry has been verified to be (E) by 2D NOESY experiments, 

indicating a proximity between 24-H and 25-H. 

 

Rf = 0.18 (hexanes:EtOAc = 30:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 5.79 (mC, 1H, 14-H), 5.55 (mC, 1H, 18-H), 5.20 (mC, 1H, 22-H), 

4.91−4.84 (m, 2H, 15-H), 3.50 (dd, 3J1/2 = 9.0, 7.4 Hz, 1H, 1-H), 2.31−2.26 (m, 1H, 13-H), 

2.26−2.09 (m, 4H, 19-H, 20-H), 1.95−1.85 (m, 1H, 2-HA), 1.87 (ddd, 3J7/8B = 12.8 Hz, 3J7/8A = 3.6 Hz, 
3J7/13 = 2.3 Hz, 1H, 7-H), 1.78 (d, 4J24/22 = 0.8 Hz, 3H, 24-H), 1.77−1.69 (m, 2H, 4-H, 5-HA), 1.63 (s, 

3H, 23-H), 1.49 (dd, 2J8A/8B = 12.6 Hz, 3J8A/7 = 3.8 Hz, 1H, 8-HA), 1.48−1.41 (m, 2H, 2-HB, 3-HA), 

1.30−1.22 (m, 1H, 3-HB), 1.24 (dd, 2J8B/8A = 3J8B/7 = 12.7 Hz, 1H, 8-HB), 1.18−1.11 (m, 1H, 5-HB), 

1.15 (s, 9H, 12-H), 0.96 (d, 3J16/13 = 6.9 Hz, 3H, 16-H), 0.74 (s, 3H, 10-H), 0.09 (s, 9H, 25-H) ppm. 
 
13C NMR (CDCl3, 150 MHz): δ = 154.9 (C-21), 145.4 (C-14), 140.9 (C-17), 123.1 (C-22), 

122.8 (C-18), 111.8 (C-15), 80.7 (C-1), 79.5 (C-6), 72.3 (C-11), 42.4 (C-9), 42.2 (C-20), 40.1 (C-7), 
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39.1 (2C, C-4, C-5), 36.3 (C-13), 33.8 (C-8), 31.3 (C-2), 28.7 (C-12), 26.4 (C-19), 25.5 (C-3), 

21.6 (C-24), 15.9 (C-16), 13.5 (C-23), 10-7 (C-10), 0.1 (C-25) ppm. 

 

ESI-MS for C30H53O4Si− [(M+HCOO)−]: calcd. 505.3719 

 found 505.3719. 

 

IR (ATR): ῦ/cm−1 = 3598 (br w), 3073 (w), 2972 (s), 2955 (s), 2876 (m), 1618 (w), 1461 (w), 

1376 (w), 1362 (w), 1248 (m), 1197 (m), 1128 (w), 1062 (w), 906 (w), 866 (w), 838 (m). 

 

[ ]20
Dα  = +28.4 (c 0.25, CH2Cl2). 

 

 

Synthesis of Alcohol 346 
 

 
To a solution of alcohol 300 (330 mg, 801 μmol, 1.0 eq.) in DMF (8 mL) was sequentially added 

imidazole (163 mg, 2.40 mmol, 3.0 eq.) and TBDPSCl (239 μL, 921 μmol, 1.1 eq.), and the mixture 

was stirred for 2 h at room temperature. The reaction was quenched by addition of H2O (8 mL) and the 

mixture was extracted with Et2O (4 x 15 mL). The combined organic layers were washed with 10% 

aqueous NaCl (3 x 8 mL) and subsequently dried over MgSO4. Having evaporated the solvents under 

reduced pressure, the crude product was subjected to a short flash column chromatography (silica, 

hexanes:EtOAc = 60:1) to yield bissilyl ether 462 (Rf = 0.37, hexanes:EtOAc = 16:1) as a colorless oil, 

which was directly used in the next step. 

To a solution of crude bissilyl ether 462 (assumed 801 μmol, 1.0 eq.) in CH2Cl2/MeOH (7:1, 12 mL) 

was added (1R)-(−)-camphorsulfonic acid (35 mg, 0.15 mmol, 20 mol-%) and the mixture was stirred 

for 3.5 h at room temperature. The reaction was quenched by addition of saturated aqueous 

NaHCO3 (8 mL) and the mixture was extracted with CH2Cl2 (3 x 15 mL). The combined organic 

layers were washed with saturated aqueous NaCl (10 mL) and dried over MgSO4. Having evaporated 

the solvents under reduced pressure, the crude product was purified by flash column 

chromatography (silica, n-pentane:Et2O = 8:1) to yield silyl ether 346 (345 mg, 644 μmol, 87% over 

two steps) as a colorless honey.  
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Rf = 0.30 (hexanes:EtOAc = 7:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 7.69−7.65 (m, 4H, 20-H)*, 7.44−7.40 (m, 2H, 22-H), 7.40−7.37 (m, 

4H, 21-H)*, 4.05 (mC, 1H, 6-H), 3.76−3.70 (m, 1H, 15-HA), 3.69−3.64 (m, 1H, 15-HB), 3.45 (mC, 1H, 

1-H), 1.93−1.84 (m, 2H, 2-HA, 14-HA), 1.73−1.58 (m, 4H, 4-H, 5-HA, 8-HA, 13-H), 1.51−1.40 (m, 4H, 

2-HB, 3-HA, 5-HB, OH), 1.34−1.23 (m, 3H, 3-HB, 7-H, 14-HB), 1.14 (s, 9H, 12-H), 1.05 (s, 9H, 18-H), 

1.04−0.99 (m, 1H, 8-HB), 0.85 (d, 3J16/13 = 6.8 Hz, 3H, 16-H), 0.68 (s, 3H, 10-H) ppm. 
  
13C NMR (CDCl3, 150 MHz): δ = 135.8 (C-20)*, 134.0 (C-19), 129.7 (C-22), 127.8 (C-21)*, 

80.8 (C-1), 72.4 (C-11), 67.9 (C-6), 62.5 (C-15), 42.8 (C-9), 42.1 (C-7), 37.5 (C-4), 37.1 (C-14), 

36.2 (C-8), 33.7 (C-5), 31.5 (C-2), 3.1 (C-13), 28.9 (C-12), 27.1 (C-18), 25.6 (C-3), 19.3 (C-17), 

18.2 (C-16), 11.0 (C-10) ppm. 

 

ESI-MS for C34H53O3Si+ [(M+H)+]: calcd. 537.3758 

 found 537.3761. 

 

IR (ATR): ῦ/cm−1 = 3480 (br w), 3071 (w), 2981 (s), 2932 (s), 1472 (w), 1428 (w), 1389 (w), 

1361 (w), 1197 (w), 1112 (m), 1086 (m), 1063 (m), 702 (m). 

 

[ ]20
Dα  = +22.8 (c 0.50, CH2Cl2). 

 

 

Synthesis of Ketone 347 
 

 
To a solution of DMSO (120 μL, 1.68 mmol, 3.0 eq.) in CH2Cl2 (15 mL) at −78 °C was added 

(COCl)2 (420 μL of a 2.0M solution in CH2Cl2, 840 μmol, 1.5 eq.) within 5 min and the mixture was 

stirred for 15 min. Then, a solution of alcohol 346 (300 mg, 560 μmol, 1.0 eq.) in CH2Cl2 (3 mL) was 

added slowly and the mixture was stirred for an additional 45 min prior to adding Et3N (470 μL, 3.36 

mmol, 6.0 eq.). The cold bath was replaced with an ice/water bath and the mixture was stirred at 0 °C 

for 30 min. The reaction was quenched by addition of H2O (20 mL) and the phases were separated. 

The aqueous layer was extracted with CH2Cl2 (3 x 20 mL) and the combined organic layers were 

washed with saturated aqueous NaCl (15 mL), and were dried over MgSO4. Having evaporated the 
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solvents under reduced pressure, the crude product was purified by flash column 

chromatography (silica, hexanes:EtOAc = 16:1) to yield ketone 347 as a colorless oil.  

Purification was carried out combined with a smaller reaction batch. Overall, alcohol 346 (320 mg, 

596 μmol) was converted to ketone 347 (305 mg, 571 μmol) in 96% yield. 

 

Rf = 0.47 (hexanes:EtOAc = 7:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 7.69−7.63 (m, 4H, 20-H)*, 7.43−7.40 (m, 2H, 22-H), 7.40−7.35 (m, 

4H, 21-H)*, 3.69−3.62 (m, 2H, 15-H), 3.45 (mC, 1H, 1-H), 2.40 (mC, 1H, 13-H), 2.01−1.95 (m, 3H, 

5-H, 7-H), 2.01−1.95 (m, 1H, 2-HA), 1.82 (dd, 2J8A/8B = 12.4 Hz, 3J8A/7 = 6.4 Hz, 1H, 8-HA), 

1.67−1.52 (m, 3H, 2-HB, 3-HA, 4-H), 1.51−1.47 (m, 2H, 14-H), 1.40−1.36 (m, 1H, 3-HB), 

1.20−1.14 (m, 1H, 8-HB), 1.15 (s, 9H, 12-H), 1.04 (s, 9H, 18-H), 0.89 (s, 3H, 10-H), 0.76 (d, 3J16/13 = 

6.8 Hz, 3H, 16-H) ppm. 
  
13C NMR (CDCl3, 150 MHz): δ = 212.1 (C-6), 135.7 (C-20)*, 134.1 (C-19), 129.7 (C-22), 

127.7 (C-21)*, 80.0 (C-1), 72.7 (C-11), 62.5 (C-15), 49.2 (C-7), 44.7 (C-4), 43.2 (C-5), 42.3 (C-9), 

37.2 (C-14), 35.8 (C-8), 31.8 (C-2), 28.9 (C-12), 27.8 (C-13), 27.1 (C-18), 25.9 (C-3), 19.3 (C-17), 

16.4 (C-16), 11.2 (C-10) ppm. 

 

EI-MS for C33H47O3Si+ [(M−Me)+]: calcd. 519.3289 

 found 519.3283. 

 

IR (ATR): ῦ/cm–1 = 3072 (w), 2960 (s), 2931 (s), 2859 (s), 1705 (s), 1472 (m), 1428 (m), 1389 (w), 

1362 (m), 1253 (w), 1192 (m), 1109 (s), 1061 (s), 899 (w), 738 (w), 701 (s). 

 

[ ]20
Dα  = +14.4 (c 1.00, CH2Cl2). 

 

 

Synthesis of Alcohol 348 
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(60%)347 348
C48H70O5Si

M = 755.15 g/mol  
To a solution of vinyl iodide 330 (494 mg, 2.74 mmol, 2.5 eq.) in Et2O (15 mL) at −78 °C was added 

t-BuLi (1.61 mL of a 1.7M solution in pentane, 1.43 mmol, 4.8 eq.) and the resulting solution was 
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stirred for 30 min at this temperature. Then, a solution of ketone 347 (305 mg, 571 μmol, 1.0 eq.) in 

Et2O (4 mL) was added dropwise and the mixture was stirred for 60 min prior to quenching the 

reaction by addition of saturated aqueous NH4Cl (10 mL). The mixture was allowed to warm to room 

temperature and was diluted with H2O (10 mL) and Et2O (15 mL). The phases were separated and the 

aqueous layer was extracted with Et2O (3 x 20 mL). The combined organic layers were dried over 

MgSO4 and the solvents were evaporated under reduced pressure. The crude product was purified by 

flash column chromatography (silica, hexanes:EtOAc = 12:1 to 7:1) to yield alcohol 348 (260 mg, 

345 μmol, 60%) as a colorless oil and single isomer. 

 

Rf = 0.29 (hexanes:EtOAc = 7:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 7.67−7.63 (m, 4H, 32-H)*, 7.42−7.38 (m, 2H, 34-H), 7.38−7.34 (m, 

4H, 33-H)*, 7.24 (mC, 2H, 25-H), 6.86 (mC, 2H, 26-H), 5.54 (mC, 1H, 18-H), 4.40 (mC, 2H, 23-H), 

3.79 (s, 3H, 28-H), 3.65−3.58 (m, 2H, 15-H), 3.49 (dd, 3J1/2 = 9.0, 7.4 Hz, 1H, 1-H), 3.40 (t, 3J21/20 = 

6.5 Hz, 2H, 21-H), 2.14−2.02 (m, 2H, 19-H), 1.95−1.88 (m, 1H, 2-HA), 1.83−1.77 (m, 1H, 13-H), 

1.76−1.59 (m, 5H, 4-H, 5-HA, 7-H, 20-H), 1.55 (s, 3H, 22-H), 1.51−1.36 (m, 5H, 2-HB, 3-HA, 8-HA, 

14-H), 1.30−1.20 (m, 2H, 3-HB, 8-HB), 1.15 (s, 9H, 12-H), 1.09−1.01 (m, 1H, 5-HB), 1.03 (s, 9H, 

30-H), 0.77 (d, 3J16/13 = 6.9 Hz, 3H, 16-H), 0.71 (s, 3H, 10-H) ppm. 
  
13C NMR (CDCl3, 150 MHz): δ = 159.2 (C-27), 141.3 (C-17), 135.7 (C-32)*, 134.2 (C-31), 

130.9 (C-24), 129.7 (C-34), 129.4 (C-25), 127.7 (C-33)*, 122.6 (C-18), 113.9 (C-26), 80.9 (C-1), 

80.1 (C-6), 72.7 (C-23), 72.4 (C-11), 69.8 (C-21), 62.4 (C-15), 55.4 (C-28), 42.6 (C-9), 40.6 (C-14), 

40.4 (C-7), 39.3 (C-4), 39.1 (C-5), 33.0 (C-8), 31.5 (C-2), 29.9 (C-20), 28.9 (C-12), 27.8 (C-13), 

27.0 (C-30), 25.8 (C-3), 24.7 (C-19), 19.3 (C-29), 16.4 (C-16), 13.6 (C-22), 11.0 (C-10) ppm. 

 

ESI-MS for C48H74O5NSi+ [(M+NH4)+]: calcd. 772.5331 

 found 772.5330. 

 

IR (ATR): ῦ/cm−1 = 3481 (br w), 3071 (w), 2933 (s), 2858 (s), 1513 (w), 1302 (w), 1248 (m), 

1196 (w), 1111 (m), 1093 (m), 1063 (w), 823 (w), 703 (w).  

 

[ ]20
Dα  = +16.8 (c 0.33, CH2Cl2). 
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Synthesis of Diol 349 
 

 
To a solution of PMB ether 348 (260 mg, 345 μmol, 1.0 eq.) in CH2Cl2 (24 mL) and aqueous pH 7 

buffer (3 mL) at 0 °C was added DDQ (157 mg, 690 μmol, 2.0 eq.) in one portion. The biphasic 

mixture was allowed to warm to room temperature and was stirred for an additional 5 h prior to 

filtering over a pad of Celite® (washings with CH2Cl2, ca. 50 mL). The organic layer was washed with 

saturated aqueous NaHCO3 (3 x 20 mL) and the combined aqueous layers were re-extracted with 

CH2Cl2 (2 x 20 mL). The combined organic layers were washed with H2O (20 mL) and saturated 

aqueous NaCl (20 mL), and were dried over MgSO4. Having evaporated the solvents under reduced 

pressure, the crude product was purified by flash column chromatography (silica, CH2Cl2:MeOH = 

50:1) to yield diol 349 (204 mg, 321 μmol, 93%) as a colorless foam. 

 

Rf = 0.39 (hexanes:EtOAc = 7:3). 
 

1H NMR (CDCl3, 600 MHz): δ = 7.66−7.62 (m, 4H, 26-H)*, 7.43−7.38 (m, 2H, 28-H), 7.38−7.34 (m, 

4H, 27-H)*, 5.56 (mC, 1H, 18-H), 3.65−3.55 (m, 4H, 15-H, 21-H), 3.48 (dd, 3J1/2 = 9.0, 7.3 Hz, 1H, 

1-H), 2.12−2.00 (m, 2H, 19-H), 1.93−1.87 (m, 1H, 2-HA), 1.83−1.77 (m, 1H, 13-H), 1.76−1.69 (m, 

2H, 4-H, 5-HA) 1.66 (mC, 1H, 7-H) 1.59 (mC, 2H, 20-H), 1.56 (s, 3H, 22-H), 1.51−1.35 (m, 5H, 2-HB, 

3-HA, 8-HA, 14-H), 1.29−1.19 (m, 3H, 3-HB, 8-HB, OH), 1.14 (s, 9H, 12-H), 1.10−1.07 (m, 1H, 5-HB), 

1.03 (s, 9H, 30-H), 0.77 (d, 3J16/13 = 6.9 Hz, 3H, 16-H), 0.71 (s, 3H, 10-H) ppm. 
  
13C NMR (CDCl3, 150 MHz): δ = 141.5 (C-17), 136.7 (C-26)*, 134.2 (C-25), 129.7 (C-28), 

122.7 (C-27)*, 122.4 (C-18), 80.9 (C-1), 80.1 (C-6), 72.4 (C-11), 62.8 (C-21), 62.4 (C-15), 42.6 (C-9), 

40.6 (C-14), 40.5 (C-7), 39.3 (C-4), 39.1 (C-5), 33.0 (C-8), 32.8 (C-20), 31.5 (C-2), 28.9 (C-12), 

27.8 (C-13), 27.0 (C-24), 25.8 (C-3), 24.3 (C-19), 19.3 (C-23), 16.4 (C-16), 13.6 (C-22), 

11.0 (C-10) ppm. 

 

ESI-MS for C40H62O4NaSi+ [(M+Na)+]: calcd. 657.4310 

 found 657.4307. 

 

IR (ATR): ῦ/cm−1 = 3433 (br m), 3071 (w), 2932 (s), 2859 (s), 1472 (w), 1428 (w), 1389 (w), 

1362 (w), 1196 (w), 1112 (m), 1092 (m), 1062 (w), 901 (w), 824 (w).  
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[ ]20
Dα  = +9.2 (c 0.50, CH2Cl2). 

 

 

Synthesis of Alkyne 350 
 

 
To a solution of DMSO (87 μL, 1.2 mmol, 4.0 eq.) in CH2Cl2 (7 mL) at −78 °C was added dropwise 

(COCl)2 (310 μL of a 2.0M solution in CH2Cl2, 620 μmol, 2.0 eq.) and the mixture was stirred for 

20 min. Then, a solution of diol 349 (195 mg, 308 μmol, 1.0 eq.) in CH2Cl2 (3 mL) was added within 

5 min and the reaction was stirred for an additional 2 h at −78 °C. After addition of Et3N (343 μL, 

2.46 mmol, 8.0 eq.), the cold bath was replaced by an ice/water bath and the mixture was stirred for 

60 min. The reaction mixture was partitioned between H2O (10 mL) and CH2Cl2 (15 mL), and the 

aqueous layer was extracted with CH2Cl2 (3 x 15 mL). The combined organic layers were washed with 

saturated aqueous NaCl (20 mL) and dried over MgSO4. The solvents were removed under reduced 

pressure and the crude product was purified by flash column chromatography (silica, hexanes:EtOAc 

= 5:1) to yield aldehyde 463 (176 mg, 278 μmol, 91%, Rf = 0.48, hexanes:EtOAc = 4:1) as a light 

yellow oil, which was immediately used in the next step. 

To a solution of aldehyde 463 (176 mg, 278 μmol, 1.0 eq.) in MeOH (7 mL) at 0 °C was sequentially 

added K2CO3 (345 mg, 2.50 mmol, 9.0 eq.) and a solution of Ohira-Bestmann reagent (336, 320 mg, 

1.67 mmol, 6.0 eq.) in MeOH (3 mL). The mixture was allowed to warm to room temperature and was 

stirred for 4 h prior to being diluted with H2O (10 mL). The biphasic mixture was extracted with 

Et2O (5 x 20 mL) and the combined organic layers were washed with saturated aqueous 

NaCl (15 mL), and dried over MgSO4. The solvents were removed under reduced pressure and the 

crude product was purified by flash column chromatography (silica, n-pentane:Et2O = 16:1 to 12:1) to 

yield alkyne 350 (141 mg, 230 μmol, 75% over two steps) as a colorless oil. 

 

Rf = 0.53 (hexanes:EtOAc = 7:1). 
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1H NMR (CDCl3, 600 MHz): δ = 7.67−7.63 (m, 4H, 26-H)*, 7.44−7.40 (m, 2H, 27-H), 7.40−7.35 (m, 

4H, 25-H)*, 5.60 (mC, 1H, 18-H), 3.65−3.56 (m, 2H, 15-H), 3.49 (mC, 1H, 1-H), 2.29−2.15 (m, 4H, 

19-H, 20-H), 1.95−1.89 (m, 1H, 2-HA), 1.87 (t, 4J22/20 = 2.4 Hz, 1H, 22-H), 1.82 (mC, 1H, 13-H), 

1.77−1.69 (m, 2H, 4-H, 5-HA), 1.67 (mC, 1H, 7-H), 1.58 (s, 3H, 23-H), 1.50−1.38 (m, 5H, 2-HB, 3-HA, 

8-HA, 14-H), 1.33−1.19 (m, 2H, 3-HB, 8-HB), 1.15 (s, 9H, 12-H), 1.11 (mC, 1H, 5-HB), 1.04 (s, 9H, 

29-H), 0.78 (d, 3J16/13 = 7.0 Hz, 3H, 16-H), 0.72 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 142.5 (C-17), 135.7 (C-25)*, 134.2 (C-24), 129.7 (C-27), 

127.7 (C-26)*, 121.3 (C-18), 84.5 (C-21), 80.9 (C-1), 80.1 (C-6), 72.4 (C-11), 68.4 (C-22), 

62.4 (C-15), 42.6 (C-9), 40.6 (C-14), 40.4 (C-7), 39.3 (C-4), 39.1 (C-5), 33.0 (C-8), 31.5 (C-2), 

28.9 (C-12), 27.8 (C-13), 27.3 (C-19), 27.0 (C-29), 25.8 (C-3), 19.3 (C-28), 19.0 (C-20), 16.4 (C-16), 

13.7 (C-23), 11.0 (C-10) ppm. 

 

ESI-MS for C42H61O5Si− [(M+HCOO)−]: calcd. 673.4294 

 found 673.4304. 

 

IR (ATR): ῦ/cm−1 = 3311 (w), 3072 (w), 2957 (s), 2931 (s), 2857 (m), 1472 (w), 1428 (w), 1389 (w), 

1362 (w), 1259 (w), 1196 (w), 1111 (m), 1063 (w), 738 (w), 702 (w). 

 

[ ]20
Dα  = +7.0 (c 0.25, CH2Cl2). 

 

 

Synthesis of Vinyl Iodide 357 
 

 
To a solution of vinyl iodide 356[238] (700 mg, 3.53 mmol, 1.0 eq.) in DMF (7 mL) was added 

imidazole (626 mg, 9.20 mmol, 2.6 eq.) and Et3SiCl (770 μL, 4.60 mmol, 1.3 eq.). The mixture was 

stirred for 2 h at room temperature before the reaction was quenched by addition of H2O (7 mL). The 

mixture was diluted with n-pentane (15 mL), the phases were separated and the aqueous layer was 

extracted with n-pentane (3 x 15 mL). The combined organic layers were washed with 10% aqueous 

NaCl (2 x 10 mL) and dried over MgSO4. Having evaporated the solvents under reduced pressure, the 

crude product was purified by flash column chromatography (silica, n-pentane:Et2O = 1:0 to 30:1) to 

yield vinyl iodide 357 (1.04 g, 3.33 mmol, 94%) as a colorless liquid. 

 



2 Experimental Procedures  203 

Rf = 0.47 (hexanes:EtOAc = 30:1). 

 
1H NMR (CDCl3, 300 MHz): δ = 6.24−6.21 (m, 1H, 1-H), 4.11 (mC, 2H, 3-H), 1.79 (mC, 3H, 4-H), 

1.00−0.93 (m, 9H, 6-H), 0.66−0.56 (m, 6H, 5-H) ppm. 
  
13C NMR (CDCl3, 75 MHz): δ = 146.9 (C-2), 76.2 (C-1), 66.9 (C-3), 21.3 (C-4), 6.9 (C-6), 

4.6 (C-5) ppm. 

 

EI-MS for C10H21IOSi+ [M+]: calcd. 312.0401 

 found 312.0406. 

 

IR (ATR): ῦ/cm−1 = 2955 (s), 2910 (s), 2876 (s), 1458 (w), 1413 (w), 1377 (w), 1280 (w), 1250 (w), 

1143 (w), 1106 (m), 1007 (w), 815 (w), 744 (w). 
 

 

Synthesis of Diol 359 
 

 
To a solution of alkene 299 (624 mg, 1.58 mmol, 1.0 eq.) in THF (9.5 mL) was added 9-BBN (237, 

6.35 mL of a 0.5M solution in THF, 3.16 mmol, 2.0 eq.) and the resulting mixture was stirred at 40 °C 

for 3 h. The solution was cooled to 0 °C and degassed aqueous Cs2CO3 (3N, 1.9 mL, 5.53 mmol, 

3.5 eq.) was added. The mixture was stirred vigorously for 45 min at room temperature and a solution 

of vinyl iodide 357 (740 mg, 2.37 mmol, 1.5 eq.) and AsPh3 (193 mg, 632 μmol, 40 mol-%) in 

degassed DMF (15.8 mL) was added. The mixture was degassed (N2 bubbling for 5 min) and 

Pd(dppf)Cl2 (complex with CH2Cl2, 128 mg, 158 μmol, 10 mol-%) was added. The reaction mixture 

was stirred for 20 h at room temperature and was then diluted with H2O (20 mL) and Et2O (20 mL). 

The layers were separated and the aqueous layer was extracted with Et2O (4 x 20 mL). The combined 

organic layers were washed with 10% aqueous NaCl (3 x 20 mL) and the aqueous layers were re-

extracted with Et2O (2 x 20 mL). The combined organic layers were dried over MgSO4 and the 

solvents were evaporated under reduced pressure. The crude product was purified by flash column 

chromatography (silica, hexanes:EtOAc = 100:1 to 60:1) to yield bissilyl ether 358 (Rf = 0.2, 
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hexanes:EtOAc = 30:1, 700 mg, ~1.21 mmol, ~77%) as a yellow liquid, which was contaminated by 

some impurities and used without further purification in the next step. 

To a solution of crude bissilyl ether 358 (700 mg, 1.21 mmol, 1.0 eq.) in CH2Cl2/MeOH (5:1, 24 mL) 

was added (1R)-(−)-camphorsulfonic acid (112 mg, 480 μmol, 40 mol-%) and the solution was stirred 

for 6 h at room temperature. The reaction was quenched by addition of saturated aqueous 

NaHCO3 (15 mL) and the aqueous layer was extracted with CH2Cl2 (4 x 15 mL). The combined 

organic layers were washed with saturated aqueous NaCl (20 mL) and dried over MgSO4. Having 

evaporated the solvents under reduced pressure, the crude product was purified by flash column 

chromatography (silica, CH2Cl2:MeOH = 100:1 to 50:1) to yield diol 359 (350 mg, 994 μmol, 63% 

over two steps) as a pale yellow highly viscous oil. 

 

Rf = 0.19 (hexanes:EtOAc = 7:3). 
 

1H NMR (CDCl3, 600 MHz): δ = 5.42 (mC, 1H, 16-H), 4.09 (mC, 1H, 6-H), 3.99 (s, 2H, 18-H), 

3.44 (dd, 3J1/2 = 8.8, 7.5 Hz, 1H, 1-H), 2.15−2.05 (m, 1H, 15-HA), 2.04−1.96 (m, 1H, 15-HB), 

1.95−1.85 (m, 1H, 2-HA), 1.70−1.56 (m, 4H, 4-H, 5-HA, 8-HA, 14-HA), 1.67 (s, 3H, 20-H), 

1.54−1.30 (m, 7H, 2-HB, 3-HA, 7-H, 13-H, 14-HB, OH), 1.30−1.18 (m, 2H, 3-HB, 5-HB), 1.13 (s, 9H, 

12-H), 1.02 (dd, 2J8A/8B = 3J8A/7 = 12.7 Hz, 1H, 8-HA), 0.92 (d, 3J19/13 = 6.7 Hz, 3H, 19-H), 0.71 (s, 3H, 

10-H) ppm. 
  
13C NMR (CDCl3, 150 MHz): δ = 134.9 (C-17), 126.8 (C-16), 80.8 (C-1), 72.4 (C-11), 69.2 (C-18), 

68.3 (C-6), 42.8 (C-9), 42.0 (C-7), 37.6 (C-4), 36.0 (C-8), 34.3 (C-5), 34.1 (C-14), 33.7 (C-13), 

31.4 (C-2), 28.9 (C-12), 25.6 (C-3), 25.1 (C-15), 17.6 (C-19), 13.9 (C-20), 11.0 (C-10) ppm. 

 

EI-MS for C22H38O2
+ [(M−H2O)+]: calcd. 334.2866 

 found 334.2875. 

 

IR (ATR): ῦ/cm−1 = 3360 (br s), 2973 (s), 2930 (s), 2871 (s), 1461 (w), 1388 (w), 1361 (w), 1197 (w), 

1128 (w), 1063 (w), 1007 (w). 

 

[ ]20
Dα  = +33.9 (c 0.50, CH2Cl2). 
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Synthesis of Alcohol 360 
 

 
To a solution of diol 359 (358 mg, 1.02 mmol, 1.0 eq.) in pyridine (10 mL) at 0 °C was added 

PivCl (213 μL, 1.73 mmol, 1.7 eq.). The mixture was allowed to warm to room temperature and was 

stirred for 4 h prior to being diluted with CH2Cl2 (60 mL). The solution was washed with HCl (2N, 

2 x 25 mL) and the combined aqueous layers were re-extracted with CH2Cl2 (3 x 25 mL). The 

combined organic layers were washed with saturated aqueous NaCl (20 mL) and dried over MgSO4. 

After evaporation of the solvents under reduced pressure, purification of the crude product by flash 

column chromatography (silica, hexanes:EtOAc = 10:1) afforded alcohol 360 (394 mg, 904 μmol, 

89%) as a colorless oil. 

 

Rf = 0.19 (hexanes:EtOAc = 10:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 5.44 (mC, 1H, 16-H), 4.44 (s, 2H, 18-H), 4.08 (mC, 1H, 6-H), 

3.44 (mC, 1H, 1-H), 2.15−2.07 (m, 1H, 15-HA), 2.04−1.96 (m, 1H, 15-HB), 1.95−1.87 (m, 1H, 2-HA), 

1.72−1.56 (m, 4H, 4-H, 5-HA, 8-HA, 14-HA), 1.64 (s, 3H, 20-H), 1.55−1.36 (m, 4H, 2-HB, 3-HA, 13-H, 

14-HB*), 1.36−1.32 (m, 1H, 7-H), 1.32−1.18 (m, 2H, 3-HB, 5-HB*), 1.21 (s, 9H, 23-H), 1.14 (s, 9H, 

12-H), 1.03 (dd, 2J8A/8B = 3J8A/7 = 12.7 Hz, 1H, 8-HA), 0.92 (d, 3J19/13 = 6.7 Hz, 3H, 19-H), 0.71 (s, 3H, 

10-H) ppm. 
  
13C NMR (CDCl3, 150 MHz): δ = 178.6 (C-21), 130.3 (C-17), 129.5 (C-16), 80.8 (C-1), 72.4 (C-11), 

70.2 (C-18), 68.3 (C-6), 42.9 (C-9), 42.0 (C-7), 39.0 (C-22), 37.5 (C-4), 35.9 (C-8), 34.2 (C-5)*, 

34.1 (C-14)*, 33.8 (C-13), 31.4 (C-2), 28.9 (C-12), 27.4 (C-23), 25.6 (C-3), 25.2 (C-15), 17.6 (C-19), 

14.0 (C-20), 11.0 (C-10) ppm. 

 

ESI-MS for C27H48O4Na+ [(M+Na)+]: calcd. 459.3445 

 found 459.3444. 

 

IR (ATR): ῦ/cm−1 = 3520 (br w), 2972 (s), 2933 (s), 2873 (m), 1730 (m), 1480 (w), 1461 (w), 

1388 (w), 1362 (w), 1284 (w), 1197 (w), 1156 (m), 1063 (w).  

 

[ ]20
Dα  = +27.0 (c 1.00, CH2Cl2). 
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Synthesis of Ketone 361 
 

 
To a suspension of alcohol 360 (390 mg, 894 μmol, 1.0 eq.) and NaHCO3 (225 mg, 2.68 mmol, 

3.0 eq.) in CH2Cl2 (15 mL) was added DMP (568 mg, 1.34 mmol, 1.5 eq.) in one portion. The 

resulting mixture was stirred for 3 h at room temperature prior to quenching the reaction by addition of 

saturated aqueous NaHCO3/saturated aqueous Na2S2O3/H2O (1:1:1, 10 mL). The biphasic mixture was 

stirred vigorously at room temperature until two clear layers were obtained. The mixture was then 

diluted with CH2Cl2 (10 mL) and the aqueous layer was extracted with CH2Cl2 (3 x 15 mL). The 

combined organic layers were washed with saturated aqueous NaCl (20 mL) and were dried over 

MgSO4. Having evaporated the solvents under reduced pressure, the crude product was purified by 

flash column chromatography (silica, n-pentane:Et2O = 8:1 to 4:1) to yield ketone 361 (326 mg, 

751 μmol, 84%) as a colorless oil.  

 

Rf = 0.19 (hexanes:EtOAc = 10:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 5.44 (mC, 1H, 16-H), 4.44 (s, 2H, 18-H), 3.47 (dd, 3J1/2 = 9.0, 7.7 Hz, 

1H, 1-H), 2.37−2.19 (m, 4H, 5-H, 7-H, 13-H), 2.08−1.94 (m, 3H, 2-HA, 15-H), 1.87 (dd, 2J8A/8B = 

12.6 Hz, 3J8A/7 = 6.5 Hz, 1H, 8-HA), 1.68−1.50 (m, 3H, 2-HB, 3-HA, 4-H), 1.63 (s, 3H, 20-H), 

1.43−1.35 (m, 1H, 3-HB), 1.26 (mC, 2H, 14-H), 1.22−1.16 (m, 1H, 8-HB), 1.21 (s, 9H, 23-H), 1.15 (s, 

9H, 12-H), 0.97 (s, 3H, 10-H), 0.79 (d, 3J19/13 = 6.8 Hz, 3H, 19-H) ppm. 
  
13C NMR (CDCl3, 150 MHz): δ = 212.4 (C-6), 178.5 (C-21), 130.5 (C-17), 129.0 (C-16), 80.0 (C-1), 

72.7 (C-11), 70.1 (C-18), 49.4 (C-7), 44.6 (C-4), 43.2 (C-5), 42.3 (C-9), 39.0 (C-22), 35.7 (C-8), 

34.4 (C-14), 31.9 (C-2), 30.8 (C-13), 28.9 (C-12), 27.5 (C-23), 26.0 (C-15)*, 25.9 (C-3)*, 16.0 (C-14), 

13.9 (C-20), 11.2 (C-10) ppm. 

 

ESI-MS for C27H46O4Na+ [(M+Na)+]: calcd. 457.3288 

 found 457.3287. 

 

IR (ATR): ῦ/cm−1 = 2970 (s), 2933 (s), 2872 (s), 1727 (s), 1705 (s), 1479 (w), 1460 (w), 1389 (w), 

1362 (m), 1282 (m), 1192 (m), 1151 (s), 1061 (m), 1031 (w), 901 (w).  
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[ ]20
Dα  = +6.0 (c 0.50, CH2Cl2). 

 

 

Synthesis of Vinyl Iodide 364 
 

 
To a solution of alcohol 363[240] (297 mg, 1.50 mmol, 1.0 eq.) in DMF (3 mL) was consecutively 

added imidazole (265 mg, 3.90 mmol, 2.6 eq.) and TBSCl (271 mg, 1.80 mmol, 1.2 eq.), and the 

mixture was stirred for 2.5 h at room temperature. The reaction was quenched by addition of 

H2O (7 mL) and the mixture was diluted with n-pentane (15 mL). The phases were separated and the 

aqueous layer was extracted with n-pentane (3 x 10 mL). The combined organic layers were washed 

with 10% aqueous NaCl (2 x 7 mL) and dried over MgSO4. Having evaporated the solvents under 

reduced pressure, the crude product was purified by flash column chromatography (silica, 

n-pentane:Et2O = 1:0 to 30:1) to yield vinyl iodide 364 (413 mg, 1.32 mmol, 88%) as a pale yellow 

liquid. 

The double bond configuration was verified to be (E) by 2D NOESY experiments indicating a 

proximity between 3-H and 4-H. 

 

Rf = 0.43 (hexanes:EtOAc = 30:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 6.29 (tq, 3J2/3 = 6.5 Hz, 4J2/4 = 1.4 Hz, 1H, 2-H), 4.12 (d, 3J3/2 = 

6.4 Hz, 2H, 3-H), 2.41 (br s, 3H, 4-H), 0.90 (s, 9H, 6-H), 0.07 (s, 6H, 7-H) ppm. 
  
13C NMR (CDCl3, 150 MHz): δ = 140.8 (C-2), 96.1 (C-1), 60.8 (C-3), 28.2 (C-4), 26.0 (C-6), 

18.5 (C-5), −5.1 (C-7) ppm. 

 

EI-MS for C10H21IOSi+ [M+]: calcd. 312.0401 

 found 312.0382. 

 

IR (ATR): ῦ/cm−1 = 2954 (s), 2929 (s), 2885 (m), 2857 (s), 1472 (w), 1463 (w), 1380 (w), 1256 (m), 

1089 (s), 1042 (m), 836 (s), 776 (m). 

 

The analytical data matched those reported previously.[241] 
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Synthesis of Alcohol 365 
 

 
To a solution of vinyl iodide 364 (350 mg, 1.12 mmol, 1.6 eq.) in Et2O (7 mL) at −78 °C was slowly 

added t-BuLi (1.27 mL of a 1.7M solution in pentane, 2.16 mmol, 3.1 eq.) and the mixture was stirred 

for 30 min at this temperature. The thus obtained solution of the corresponding vinyl lithium species 

was added dropwise via cannula to a solution of ketone 361 (318 mg, 696 μmol, 1.0 eq.) in 

Et2O (14 mL) at −78 °C. The mixture was stirred for an additional 2 h and the reaction was quenched 

by addition of half-saturated aqueous NH4Cl (25 mL). The phases were separated and the aqueous 

layer was extracted with Et2O (3 x 25 mL). The combined organic layers were washed with saturated 

aqueous NaCl (15 mL) and dried over MgSO4. Having evaporated the solvents under reduced 

pressure, the crude product was purified by flash column chromatography (silica, hexanes:EtOAc = 

30:1) to yield tertiary alcohol 365 (330 mg, 539 μmol, 77%) as a colorless oil and single isomer. 

 

Rf = 0.14 (hexanes:EtOAc = 16:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 5.73 (mC, 1H, 22-H), 5.41 (mC, 1H, 16-H), 4.43 (s, 2H, 18-H), 

4.27 (mC, 2H, 23-H), 3.50 (dd, 3J1/2 = 9.0, 7.5 Hz, 1H, 1-H), 1.99−1.88 (m, 3H, 2-HA, 15-H), 

1.79−1.71 (m, 3H, 4-H, 5-HA, 7-H), 1.68−1.53 (m, 1H, 13-H), 1.62 (s, 3H, 20-H), 1.60 (s, 3H, 24-H), 

1.50−1.41 (m, 3H, 2-HB, 3-HB, 8-HA), 1.31−1.18 (m, 4H, 3-HB, 8-HB, 14-H), 1.21 (s, 9H, 30-H), 

1.18−1.10 (m, 1H, 5-HB), 1.15 (s, 9H, 12-H), 1.09 (br s, 1H OH), 0.91 (s, 9H, 27-H), 0.85 (d, 3J19/13 = 

6.9 Hz, 3H, 19-H), 0.75 (s, 3H, 10-H), 0.08 (s, 6H, 25-H) ppm. 
  
13C NMR (CDCl3, 150 MHz): δ = 178.5 (C-28), 141.6 (C-21), 130.3 (C-17), 129.4 (C-16), 

124.1 (C-22), 80.9 (C-1), 79.9 (C-6), 72.4 (C-11), 70.2 (C-18), 60.9 (C-23), 42.6 (C-9), 39.8 (C-7), 

39.2 (C-29)*, 39.0 (C-4)*, 38.8 (C-5), 37.4, (C-14), 32.9 (C-8), 31.5 (2C, C-2, C-13), 28.9 (C-12), 

27.4 (C-30), 26.2 (C-27), 26.1 (C-15), 25.8 (C-3), 18.5 (C-26), 16.7, (C-19), 13.9 (C-20), 13.8 (C-24), 

11.1 (C-10), −4.9 (C-25) ppm. 

 

ESI-MS for C37H72O5NSi+ [(M+NH4)+]: calcd. 638.5174 

 found 638.5173. 
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IR (ATR): ῦ/cm−1 = 3529 (br w), 2956 (s), 2932 (s), 2878 (m), 1730 (m), 1462 (w), 1388 (w), 

1283 (w), 1254 (w), 1196 (w), 1155 (m), 1062 (m), 836 (w).  

 

[ ]20
Dα  = +19.8 (c 0.50, CH2Cl2). 

 

 

Synthesis of Diol 366 
 

 
To a solution of pivalate 365 (330 mg, 531 μmol, 1.0 eq.) in CH2Cl2 (25 mL) at −78 °C was slowly 

added DIBAL-H (1.86 mL of a 1.0M solution in toluene, 1.86 mmol, 3.5 eq.) and the resulting mixture 

was stirred for 30 min. Due to incomplete conversion, another aliquot of DIBAL-H (400 μL of a 1.0M 

solution in toluene, 400 μmol, 0.75 eq.) was added and the mixture was stirred for an additional 

15 min. The reaction was quenched by addition of half-saturated aqueous Rochelle salt (25 mL) and 

the biphasic mixture was vigorously stirred at room temperature for 2 h. The layers were separated and 

the aqueous layer was extracted with CH2Cl2 (4 x 20 mL). The combined organic layers were washed 

with saturated aqueous NaCl (20 mL) and were dried over MgSO4, Having evaporated the solvents 

under reduced pressure, the crude product was purified by flash column chromatography (silica, 

n-pentane:Et2O = 4:1) to yield diol 366 (241 mg, 449 μmol, 85%) as a colorless oil. 

 

Rf = 0.42 (hexanes:EtOAc = 4:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 5.72 (mC, 1H, 22-H), 5.37 (mC, 1H, 16-H), 4.27 (mC, 2H, 23-H), 

3.98 (mC, 2H, 18-H), 3.50 (dd, 3J1/2 = 9.0, 7.4 Hz, 1H, 1-H), 1.98−1.89 (m, 3H, 2-HA, 15-H), 

1.79−1.70 (m, 3H, 4-H, 5-HA, 7-H), 1.65 (s, 3H, 20-H), 1.64−1.59 (m, 1H, 13-H), 1.60 (s, 3H, 24-H), 

1.50−1.41 (m, 4H, 2-HB, 3-HB, 8-HA OH), 1.32−1.17 (m, 5H, 3-HB, 8-HB, 14-H, OH), 1.17−1.10 (m, 

1H, 5-HB), 1.15 (s, 9H, 12-H), 0.91 (s, 9H, 28-H), 0.85 (d, 3J19/13 = 6.8 Hz, 3H, 19-H), 0.75 (s, 3H, 

10-H), 0.08(2) (s, 3H, 25-H)*, 0.08(0) (s, 3H, 26-H)* ppm. 
  
13C NMR (CDCl3, 150 MHz): δ = 141.7 (C-21), 134.8 (C-17), 126.5 (C-16), 124.0 (C-22), 80.9 (C-1), 

79.9 (C-6), 72.4 (C-11), 69.1 (C-18), 61.0 (C-23), 42.6 (C-9), 39.8 (C-7), 39.2 (C-4), 38.8 (C-5), 

37.6 (C-14), 32.9 (C-8), 31.5 (C-2), 31.2 (C-13), 28.9 (C-12), 26.2 (C-28), 25.8 (2C, C-3, C-15), 

18.6 (C-27), 16.7 (C-19), 13.8 (2C, C-20, C-24), 11.0 (C-10), −4.8 (C-25)*, −4.9 (C-26)* ppm. 
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ESI-MS for C32H60O4NaSi+ [(M+Na)+]: calcd. 559.4153 

 found 559.4152. 

 

IR (ATR): ῦ/cm−1 = 3410 (br m), 2954 (s), 2931 (s), 2858 (s), 1472 (w), 1463 (w), 1388 (w), 1362 (w), 

1255 (w), 1196 (w), 1062 (m), 836 (w) 776 (w). 

  

[ ]20
Dα  = +18.4 (c 0.50, CH2Cl2). 

 

 

Synthesis of Sulfone 367 
 

 
To a solution of diol 366 (14 mg, 26 μmol, 1.0 eq.) in CH2Cl2 at 0 °C was sequentially added 

imidazole (4.6 mg, 68 μmol, 2.6 eq.), PPh3 (14 mg, 52 μmol, 2.0 eq.) and I2 (13 mg, 52 μmol, 2.0 eq.) 

and the reaction was stirred for 30 min. The mixture was diluted with n-pentane (10 mL) and filtered 

over a short plug of silica (eluted with n-pentane:Et2O = 4:1). The product containing fractions were 

carefully evaporated under reduced pressure (water bath temperature: 30 °C) to yield an intermediate 

allylic iodide (Rf = 0.68, hexanes:EtOAc = 7:1) which was used without further purification. 

To a solution of crude allylic iodide (assumed 26 μmol, 1.0 eq.) in DMF (2 mL) was added 

NaSO2p-tol (14 mg, 78 μmol, 3.0 eq.) in one portion and the mixture was stirred for 2.5 h in the dark. 

The reaction was quenched by addition of H2O (3 mL) and the biphasic mixture was extracted with 

Et2O (4 x 5 mL). The combined organic layers were washed with 10% aqueous NaCl (3 x 3 mL) and 

dried over MgSO4. The solvents were removed under reduced pressure and the crude product was 

purified by flash column chromatography (silica, n-pentane:Et2O = 7:1 to 5:1) to yield allylic 

sulfone 367 (8 mg, 12 μmol, 46% over two steps) as a colorless oil.  

 

The product was contaminated by ca. 25% of an unknown impurity. Based on the 13C NMR spectrum, 

this compound is presumably a diastereomer, the structure of which needs to be elucidated in future 

experiments. 

 

Rf = 0.53 (hexanes:EtOAc = 4:1). 
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1H NMR (CDCl3, 600 MHz, major isomer quoted): δ = 7.72 (mC, 2H), 7.33 (mC, 2H), 5.71 (mC, 1H) 

5.09 (mC, 1H), 4.26 (mC, 2H), 3.76 (s, 2H), 3.50 (dd, J = 9.0, 7.4 Hz, 1H), 2.45 (s, 3H), 1.99−1.80 (m, 

3H), 1.78−1.64 (m, 6H), 1.63−1.33 (m, 7H), 1.29−1.22 (m, 2H), 1.18−1.08 (m, 1H), 1.16 (s, 9H), 

1.06 (br s, 1H), 1.03−0.97 (m, 2H), 0.90 (s, 9H), 0.80 (d, J = 6.8 Hz, 3H), 0.75 (s, 3H), 

0.07 (s, 6H) ppm. 
  
13C NMR (CDCl3, 150 MHz, major isomer quoted): δ = 144.5 (Cq), 141.5 (Cq), 136.5 (CH), 

135.7 (Cq), 129.6 (CH), 128.7 (CH), 124.1 (CH), 123.3 (Cq), 80.9 (CH), 79.8 (Cq), 72.5 (Cq), 

66.5 (CH2), 60.9 (CH2), 42.6 (Cq), 39.8 (CH), 39.1 (CH), 38.8 (CH2), 37.0 (CH2), 32.9 (CH2), 

31.6 (CH2)*, 31.5 (CH)*, 29.0 (CH3), 26.9 (CH2), 26.2 (CH3), 25.8 (CH2), 21.8 (CH3), 18.5 (Cq), 

16.8 (CH3), 16.6 (CH3), 13.8 (CH3), 11.1 (CH3), −4.8(5) (CH3), −4.9(0) (CH3) ppm. 

 

ESI-MS for C39H70O5NSSi+ [(M+NH4)+]: calcd. 692.4738 

 found 692.4733. 

 

IR (ATR): ῦ/cm−1 = 3518 (br w), 2951 (s), 2857 (m), 1463 (w), 1361 (w), 1315 (w), 1256 (w), 

1197 (w), 1132 (w), 1088 (w), 1062 (w), 835 (w).  

 

Since the product had been obtained as a mixture of isomers, the specific optical rotation was not 

determined. 
 

 

Synthesis of Vinyl Iodide 378 
 

 
To a solution of vinyl iodide 377[249] (630 mg, 3.00 mmol, 1.0 eq.) in THF/DMF (2:1, 12 mL) at 0 °C 

was added NaH (60% in mineral oil, 228 mg, 5.70 mmol, 1.9 eq.) in one portion and the resulting 

suspension was stirred for 20 min at this temperature. Then, PMBCl (560 μL, 4.13 mmol, 1.4 eq.) was 

slowly added and the mixture was allowed to warm to room temperature. After stirring for an 

additional 3 h, the reaction was carefully quenched with saturated aqueous NH4Cl (15 mL) and the 

biphasic mixture was stirred for 30 min prior to diluting with H2O (10 mL). The layers were separated 

and the aqueous layer was extracted with Et2O (3 x 30 mL). The combined organic layers were 

sequentially washed with saturated aqueous CuSO4 (10 mL), saturated aqueous NaHCO3 (10 mL) and 

saturated aqueous NaCl (10 mL), and dried over MgSO4. After evaporation of the solvents under 
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reduced pressure, the crude product was purified by flash column chromatography (silica, 

hexanes:EtOAc = 20:1) to yield vinyl iodide 378 (810 mg, 2.46 mmol, 82%) as a colorless oil. 

 

Rf = 0.58 (hexanes:EtOAc = 4:1). 

 
1H NMR (CDCl3, 300 MHz): δ = 7.34 (mC, 2H, 8-H), 6.89 (mC, 2H, 9-H), 6.35 (mC, 1H, 2-H), 

4.58−4.49 (m, 3H, 5-H, 6-H), 3.81 (s, 3H, 11-H), 2.54−2.43 (m, 1H, 3-HA), 2.34−2.10 (m, 2H, 3-HB, 

4-HA), 2.00−1.89 (m, 1H, 4-HB) ppm. 

 
13C NMR (CDCl3, 75 MHz): δ = 159.4 (C-10), 143.7 (C-2), 130.6 (C-7), 129.6 (C-8), 113.8 (C-9), 

96.7 (C-1), 88.2 (C-5), 70.5 (C-6), 55.4 (C-11), 33.1 (C-3), 29.1 (C-4) ppm. 
 

EI-MS for C13H15IO2
+ [M+]: calcd. 330.0111 

 found 330.0113. 

 

IR (ATR): ῦ/cm–1 = 2998 (w), 2934 (m), 2848 (m), 1612 (m), 1586 (w), 1512 (s), 1463 (w), 1339 (w), 

1302 (w), 1245 (s), 1172 (m), 1158 (w), 1075 (m), 1034 (s), 922 (w), 889 (w), 821 (m). 

 

[ ]20
Dα  = +2.2 (c 1.00, CHCl3). 

 

The analytical data matched those reported previously.[251] 

 

 

Synthesis of PMB Ether 379 
 

9-BBN (237, 2.0 eq.)
THF, 40 °C, 3 h;
Cs2CO3 (3.5 eq.)

THF/H2O, rt, 40 min;

378 (1.3 eq.)
AsPh3 (40 mol-%)

Pd(dppf)Cl2 (10 mol-%)
DMF, rt, 24 h

H
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To a solution of alkene 299 (600 mg, 1.50 mmol, 1.0 eq.) in THF (9 mL) was added 9-BBN (237, 

6.00 mL of 0.5M solution in THF, 3.00 mmol, 2.0 eq.) and the resulting solution was heated to 40 °C 

for 3 h. The mixture was cooled to 0 °C and degassed aqueous Cs2CO3 (3N, 1.75 mL, 5.25 mmol, 

3.5 eq.) was added. The reaction was stirred vigorously at room temperature for 40 min prior to adding 

a solution of vinyl iodide 378 (643 mg, 1.95 mmol, 1.3 eq.) and AsPh3 (184 mg, 600 μmol, 40 mol-%) 

in degassed DMF (15 mL). The reaction mixture was degassed (N2 bubbling) and Pd(dppf)Cl2 
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(complex with CH2Cl2, 122 mg, 150 μmol, 10 mol-%) was added in one portion. The mixture was 

stirred for 24 h, at which time the reaction was partitioned between H2O (20 mL) and Et2O (30 mL). 

The aqueous layer was extracted with Et2O (3 x 30 mL), the combined organic layers were washed 

with 10% aqueous NaCl (2 x 30 mL) and saturated aqueous NaCl (30 mL), and dried over MgSO4. 

Having evaporated the solvents under reduced pressure, the crude product was purified by flash 

column chromatography (silica, hexanes:EtOAc = 50:1) to yield silyl ether 379 (793 mg, 1.32 mmol, 

88%) as a colorless oil.  

 

Rf = 0.34 (hexanes:EtOAc = 16:1). 
 

1H NMR (CDCl3, 600 MHz): δ = 7.28 (mC, 2H, 24-H), 6.87 (mC, 2H, 25-H), 5.56 (mC, 1H, 17-H), 

4.50 (d, 2J22A/22B = 11.3 Hz, 1H, 22-HA), 4.48 (mC, 1H, 20-H), 4.38 (d, 2J22B/22A = 11.3 Hz, 1H, 22-HB), 

4.02 (mC, 1H, 6-H), 3.80 (s, 3H, 27-H), 3.42 (dd, 3J1/2 = 8.9, 7.5 Hz, 1H, 1-H), 2.45−2.39 (m, 1H, 

18-HA), 2.23−2.17 (m, 1H, 18-HB), 2.17−2.04 (m, 3H, 15-H, 19-HA), 1.94−1.83 (m, 2H, 2-HA, 19-HB), 

1.73 (mC, 1H, 4-H), 1.60−1.47 (m, 4H, 5-HA, 8-HA, 13-H, 14-HA), 1.47−1.35 (m, 3H, 2-HB, 3-HA, 

5-HB), 1.32−1.21 (m, 3H, 3-HB, 7-H, 14-HB), 1.15 (s, 9H, 12-H), 1.10 (dd, 2J8B/8A = 3J8B/7 = 12.5 Hz, 

1H, 8-HB), 0.95 (t, 3J29/28 = 8.0 Hz, 9H, 29-H), 0.87 (d, 3J21/13 = 6.8 Hz, 3H, 21-H), 0.69 (s, 3H, 10-H), 

0.62−0.52 (m, 6H, 28-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ  = 159.2 (C-26), 145.4 (C-16), 131.4 (C-23), 129.3 (C-24), 

127.4 (C-17), 113.8 (C-25), 85.0 (C-20), 81.0 (C-1), 72.3 (C-11), 70.0 (2C, C-6, C-22), 55.4 (C-27), 

42.7 (C-9), 42.5 (C-7), 37.4 (C-4), 35.4 (C-8), 34.7 (C-5), 34.2 (C-13), 33.3 (C-14), 31.6 (C-2), 

30.3 (C-18), 30.0 (C-19), 29.0 (C-12), 25.9 (C-15), 25.5 (C-3), 17.2 (C-21), 11.1 (C-10), 7.2 (C-29), 

5.5 (C-28) ppm. 

 

ESI-MS for C37H62O4NaSi+ [(M+Na)+]: calcd. 621.4310 

 found 621.4314. 

 

IR (ATR): ῦ/cm–1 = 2952 (s), 2933 (s), 2911 (s), 2874 (s), 1612 (w), 1513 (m), 1462 (w), 1361 (w), 

1247 (m), 1195 (w), 1062 (m), 1042 (m), 976 (w), 798 (w), 741 (w)  

 

[ ]20
Dα  = +36.6 (c 0.50, CH2Cl2). 
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Synthesis of Ketone 382 and Methyl Ether 380 
 

 
To a solution of silyl ether 378 (710 mg, 1.18 mmol, 1.0 eq.) in CH2Cl2/MeOH (3:1, 20 mL) was 

added (1R)-(−)-camphorsulfonic acid (110 mg, 470 μmol, 40 mol-%) in one portion and the mixture 

was stirred for 1 h prior to being partitioned between saturated aqueous NaHCO3 (20 mL) and 

CH2Cl2 (20 mL). The phases were separated and the aqueous layer was extracted with CH2Cl2 (3 x 

20 mL). The combined organic layers were washed with saturated aqueous NaCl (20 mL) and were 

dried over MgSO4. Having evaporated the solvents under reduced pressure, the crude product was 

purified by flash column chromatography (silica, hexanes:EtOAc = 8:1) to yield methyl 

ether 380 (172 mg, 454 μmol, 38%) along with PMB ether 381 (Rf = 0.43, hexanes:EtOAc = 4:1, 

264 mg, 540 μmol, 46%), which was immediately used in the next step. 

To a suspension of crude alcohol 381 (264 mg, 540 μmol, 1.0 eq.) and NaHCO3 (136 mg, 1.62 mmol, 

3.0 eq.) in CH2Cl2 (10 mL) was added DMP (343 mg, 810 μmol, 1.5 eq.) in one portion and the 

mixture was stirred for 2 h at room temperature. The reaction was quenched by addition of saturated 

aqueous Na2S2O3/saturated aqueous NaHCO3/H2O (1:1:1, 10 mL) and the biphasic mixture was stirred 

vigorously for 30 min. The phases were separated and the aqueous layer was extracted with 

CH2Cl2 (3 x 15 mL). The combined organic layers were washed with saturated aqueous NaCl (10 mL), 

dried over MgSO4 and the solvents were evaporated under reduced pressure. Purification by flash 

column chromatography (silica, pentane:Et2O = 5:1) yielded ketone 382 (195 mg, 405 μmol, 34% over 

two steps) as a colorless oil. 

 

Rf = 0.59 (hexanes:EtOAc = 4:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 7.26 (mC, 2H, 24-H), 6.87 (mC, 2H, 25-H), 5.58 (mC, 1H, 17-H), 

4.51 (d, 2J22A/22B = 11.3 Hz, 1H, 22-HA), 4.46 (mC, 1H, 20-H), 4.36 (d, 2J22B/22A = 11.5 Hz, 1H, 22-HB), 

3.80 (s, 3H, 27-H), 3.45 (dd, 3J1/2 = 8.9, 7.8 Hz, 1H, 1-H), 2.42 (mC, 1H, 18-HA), 2.34−2.28 (m, 2H, 
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5-HA, 7-H), 2.28−2.05 (m, 6H, 5-HB, 13-H, 15-H, 18-HB, 19-HA), 2.02−1.95 (m, 1H, 2-HA), 

1.89−1.81 (m, 2H, 8-HA, 19-HB), 1.67−1.53 (m, 3H, 2-HB, 3-HA, 4-H), 1.44−1.32 (m, 3H, 3-HB, 14-H), 

1.22−1.12 (m, 1H, 8-HB), 1.15 (s, 9H, 12-H), 0.96 (s, 3H, 10-H), 0.79 (d, 3J21/13 = 6.8 Hz, 3H, 

21-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ  = 212.5 (C-6), 159.2 (C-26), 144.6 (C-16), 131.3 (C-23), 

129.3 (C-24), 127.9 (C-17), 113.9 (C-25), 85.1 (C-20), 80.0 (C-1), 72.7 (C-11), 70.2 (C-22), 

55.4 (C-27), 49.6 (C-7), 44.7 (C-4), 43.3 (C-5), 42.3 (C-9), 35.8 (C-8), 32.6 (C-14), 31.9 (C-2), 

31.0 (C-13), 30.3 (C-18), 30.0 (C-19), 28.9 (C-12), 26.6 (C-15), 25.9 (C-3), 16.0 (C-21), 

11.2 (C-10) ppm. 

 

ESI-MS for C31H46O4Na+ [(M+Na)+]: calcd. 505.3288 

 found 505.3287. 

 

IR (ATR): ῦ/cm–1 = 2970 (s), 2931 (s), 2854 (m), 1704 (m), 1612 (s), 1513 (m), 1462 (w), 1361 (w), 

1301 (w), 1248 (m), 1192 (w), 1062 (m), 1038 (w), 820 (w).  

 

[ ]20
Dα  = +15.6 (c 0.50, CH2Cl2). 

 

Methyl ether 380 was obtained as colorless oil and as a single diastereomer. The relative configuration 

at C-20 could not be assigned by 2D NMR spectroscopy. 

 

Rf = 0.48 (hexanes:EtOAc = 4:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 5.59 (mC, 1H, 17-H), 4.27 (mC, 1H, 20-H), 4.08 (ddd, 3J6/5A = 3J6/5B = 
3J6/7 = 2.8 Hz, 1H, 6-H), 3.45 (dd, 3J1/2 = 8.8, 7.4 Hz, 1H, 1-H), 3.30 (s, 3H, 22-H), 2.44−2.37 (m, 1H, 

18-HA), 2.28−2.14 (m, 3H, 15-H, 18-HB), 2.13−2.07 (m, 1H, 19-HA), 1.97−1.85 (m, 2H, 2-HA, 14-HA), 

1.80 (mC, 1H, 19-HB), 1.73−1.60 (m, 3H, 4-H, 5-HA, 8-HA), 1.53−1.38 (m, 4H, 2-HB, 3-HA, 5-HB, 

13-H), 1.32−1.21 (m, 2H, 3-HB, 7-H), 1.19−1.07 (m, 1H, 14-HB), 1.13 (s, 9H, 12-H), 1.00 (mC, 1H, 

8-HB), 0.89 (d, 3J21/13 = 6.7 Hz, 3H, 21-H), 0.70 (s, 3H, 10-H) ppm. 

  
13C NMR (CDCl3, 150 MHz): δ  = 143.4 (C-16), 129.9 (C-17), 89.1 (C-20), 80.9 (C-1), 72.3 (C-11), 

67.2 (C-6), 56.3 (C-22), 42.8 (C-9), 42.4 (C-7), 37.5 (C-4), 36.4 (C-8), 33.5 (C-5), 32.4 (C-13), 

31.7 (C-14), 31.5 (C-2), 30.1 (C-18), 29.7 (C-19), 28.9 (C-12), 26.8 (C-15), 25.6 (C-3), 17.2 (C-21), 

11.0 (C-10) ppm. 
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EI-MS for C24H42O3
+

 [M+]: calcd. 378.3128 

 found 378.3120. 

 

IR (ATR): ῦ/cm–1 = 3462 (br m), 2971 (s), 2929 (s), 2870 (s), 1461 (w), 1387 (w), 1361 (m), 1253 (w), 

1196 (m), 1127 (w), 1062 (m), 1025 (w), 1008 (w).  

 

[ ]20
Dα  = +32.6 (c 0.50, CH2Cl2). 

 

 

Synthesis of Ketone 385 
 

 
To a solution of DMSO (97.0 μL, 1.38 mmol, 4.0 eq.) in CH2Cl2 (5 mL) at −78 °C was added 

dropwise (COCl)2 (344 μL of a 2.0M solution in CH2Cl2, 688 μmol, 2.0 eq.) and the mixture was 

stirred for 30 min prior to adding slowly a solution of alcohol 380 (130 mg, 344 μmol, 1.0 eq.) in 

CH2Cl2 (1 mL). The reaction was stirred for an additional 1 h at −78 °C and Et3N (380 μL, 2.75 mmol, 

8.0 eq.) was added in one portion. The cold bath was replaced by an ice/water bath and the mixture 

was stirred for 1 h at 0 °C. The reaction was partitioned between H2O (5 mL) and CH2Cl2 (5 mL) and 

the layers were separated. The aqueous layer was extracted with CH2Cl2 (3 x 5 mL), and the combined 

organic layers were washed with saturated aqueous NaCl (5 mL) and dried over MgSO4. Having 

evaporated the solvents under reduced pressure, the crude product was purified by flash column 

chromatography (silica, hexanes:EtOAc = 8:1) to yield ketone 385 (106 mg, 281 μmol, 82%) as a 

colorless oil. 

 

Rf = 0.59 (hexanes:EtOAc = 4:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 5.56 (mC, 1H, 17-H), 4.30 (mC, 1H, 20-H), 3.47 (mC, 1H, 1-H), 

3.30 (s, 3H, 22-H), 2.43−2.34 (m, 2H, 7-H 18-HA), 2.31 (dd, 2J5A/5B = 14.9 Hz, 3J5A/4 = 4.9 Hz, 1H, 

5-HA), 2.29−2.07 (m, 5H, 5-HB, 13-H, 15-HA, 18-HB, 19-HA), 2.04−1.95 (m, 2H, 2-HA, 15-HB), 

1.88 (dd, 2J8A/8B = 12.8 Hz, 3J8A/7 = 6.3 Hz, 1H, 8-HA), 1.78 (mC, 1H, 19-HB), 1.68−1.54 (m, 3H, 2-HB, 

3-HA, 4-H), 1.45−1.32 (m, 3H, 3-HB, 14-H), 1.19 (mC, 1H, 8-HB), 1.15 (s, 9H, 12-H), 0.97 (s, 3H, 

10-H), 0.89 (d, 3J21/13 = 6.6 Hz, 3H, 21-H) ppm. 
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13C NMR (CDCl3, 150 MHz): δ  = 212.5 (C-6), 144.5 (C-16), 127.7 (C-17), 87.3 (C-20), 80.0 (C-1), 

72.7 (C-11), 55.9 (C-22), 49.0 (C-7), 44.6 (C-4), 43.3 (C-5), 42.2 (C-9), 35.4 (C-8), 32.6 (C-14), 

31.9 (C-2), 30.9 (C-13), 30.2 (C-18), 29.3 (C-19), 28.9 (C-12), 26.5 (C-15), 25.9 (C-3), 16.2 (C-21), 

11.2 (C-10) ppm. 

 

EI-MS for C24H40O3
+

 [M+]: calcd. 376.2972 

 found 376.2971. 

 

IR (ATR): ῦ/cm–1 = 3376 (br w), 2969 (s), 2931 (s), 2873 (m), 1704 (s), 1461 (w), 1388 (w), 1361 (m), 

1251 (w), 1192 (m), 1103 (w), 1061 (m), 1026 (w).  

 

[ ]20
Dα  = +1.6 (c 0.50, CH2Cl2). 

 

 

2.3 Experimental Procedures for Chapter 4: ‘Synthetic Studies 

toward Nitiol’ 
 

Synthesis of Oxazolidinone 399  
 

 
To a solution of Evans auxiliary 397[264] (4.71 g, 28.9 mmol, 1.0 eq.) in THF (120 mL) at −78 °C was 

added dropwise n-BuLi (12.7 mL of a 2.5M solution in hexanes, 31.8 mmol, 1.1 eq.) and the mixture 

was stirred for 30 min at this temperature before adding dropwise a solution of crotonyl chloride (398, 

3.04 mL, 31.8 mmol, 1.1 eq.) in THF (10 mL). The mixture was stirred for an additional 60 min at 

−78 °C and was allowed to warm to 0 °C. The reaction was quenched by addition of saturated aqueous 

NH4Cl (15 mL) and the mixture was freed of THF under reduced pressure. The resulting suspension 

was partitioned between Et2O (100 mL) and H2O (30 mL) and the layers were separated. The aqueous 

phase was extracted with Et2O (30 mL) and the combined organic layers were washed with saturated 

aqueous NaHCO3 (2 x 30 mL) and saturated aqueous NaCl (30 mL). Having dried the organic layer 

over Na2SO4 and evaporated the solvents under reduced pressure, the crude product was purified by 

flash column chromatography (hexanes:EtOAc = 5:1 to 1:1) to yield oxazolidinone 399 (5.16 g, 

22.3 mmol, 78%) as a pale yellow solid.  
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Rf = 0.50 (hexanes:EtOAc = 7:3). 

 
1H NMR (CDCl3, 400 MHz): δ = 7.41−7.24 (m, 6H, 2-H, 9-H, 10-H, 11-H), 7.09 (dq, 3J2/3 = 15.3 Hz, 
3J3/4 = 6.8 Hz, 1H, 3-H), 5.48 (dd, 3J7/6A = 8.7 Hz, 3J7/6B = 3.8 Hz, 1H, 7-H), 4.69 (dd, 2J6A/6B = 3J6A/6B = 

8.8 Hz, 1H, 6-HA), 4.27 (dd, 2J6B/6A = 8.9 Hz, 3J6B/7 = 3.9 Hz, 1H, 6-HB), 1.93 (dd, 3J4/3 = 6.9 Hz, 4J4/2 = 

1.6 Hz, 3H, 4-H) ppm. 

   
13C NMR (CDCl3, 100 MHz): δ = 164.4 (C-1), 153.8 (C-5), 147.4 (C-3), 139.2 (C-8), 129.3 (C-10), 

128.7 (C-11), 126.1 (C-9), 121.8 (C-2), 70.1 (C-7), 57.8 (C-6), 18.6 (C-4) ppm. 

 

ESI-MS for C13H13NNaO3
+ [(M+Na)+]: calcd. 254.0788 

 found 254.0788. 

 

IR (ATR): ῦ/cm−1 = 3034 (w), 2977 (w), 1774 (s), 1618 (w), 1495 (w), 1338 (m), 1234 (m), 1197 (m), 

1126 (w), 1024 (w), 968 (w), 924 (w), 830 (w), 762 (w).  

 

[ ]20
Dα  = −113.6 (c 1.00, CHCl3). 

 

The analytical data matched those reported previously.[265] 

 

 

Synthesis of Michael Adduct 400  
 

 
To a slurry of CuBr·SMe2 (115 mg, 560 μmol, 1.3 eq.) in THF (5 mL) at −40 °C was added 

allylmagnesium bromide (560 μL mL of a 1.0M solution in Et2O, 560 μmol, 1.3 eq.) within 10 min. 

The solution was stirred for an additional 30 min at this temperature before being cooled to −78 °C. To 

the resulting black reaction mixture was sequentially added BF3·OEt2 (70 μL, mmol, 1.3 eq.) and a 

solution of oxazolidinone 399 (100 mg, 430 μmol, 1.0 eq.) in THF (2 mL). The mixture was stirred for 

an additional 90 min and the reaction was quenched by addition of saturated aqueous NH4Cl (5 mL). 

The biphasic mixture was diluted with Et2O (5 mL), filtered over a pad of Celite® and the layers were 

separated. The aqueous layer was extracted with Et2O (4 x 5 mL) and the combined organic layers 

were dried over MgSO4. The solvents were removed under reduced pressure and the crude product 
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was purified by flash column chromatography (hexanes:EtOAc = 5:1) to yield 

oxazolidinone 400 (93 mg, 0.34 mmol, 79%, d.r. > 95:5) as a colorless solid. 

 

Rf = 0.29 (hexanes:EtOAc = 4:1). 

 
1H NMR (CDCl3, 400 MHz): δ = 7.43−7.26 (m, 5H, 12-H, 13-H, 14-H), 5.72 (mC, 1H, 5-H), 5.43 (dd, 
3J10/9A = 8.8 Hz, 3J10/9B = 3.8 Hz, 1H, 10-H), 5.01−4.93 (m, 2H, 6-H), 4.68 (dd, 2J9A/9B = 3J9A/10 = 

8.8 Hz, 1H, 9-HA), 4.27 (dd, 2J9B/9A = 8.9 Hz, 3J9B/10 = 3.8 Hz, 1H, 10-HB), 2.99 (dd, 2J2A/2B = 16.5 Hz, 
3J2A/3 = 5.9 Hz, 1H, 2-HA), 2.71 (dd, 2J2B/2A = 16.4 Hz, 3J2B/3 = 8.2 Hz, 1H, 2-HB), 2.16−1.93 (m, 3H, 

3-H, 4-H), 0.88 (d, 3J7/3 = 6.6 Hz, 3H, 7-H) ppm. 

   
13C NMR (CDCl3, 100 MHz): δ = 172.3 (C-1), 153.8 (C-8), 139.3 (C-11), 136.6 (C-5), 129.3 (C-13), 

128.8 (C-14), 126.1 (C-12), 116.7 (C-6), 70.0 (C-10), 57.7 (C-9), 42.0 (C-2), 41.1 (C-4), 29.4 (C-3), 

19.6 (C-7) ppm. 

 

ESI-MS for C16H19NNaO3
+ [(M+Na)+]: calcd. 296.1257 

 found 296.1255. 

 

IR (ATR): ῦ/cm−1 = 2962 (w), 2917 (w), 1778 (s), 1703 (m), 1495 (w), 1458 (w), 1384 (m), 1322 (m), 

1196 (m), 1044 (w), 1001 (w), 916 (w), 762 (w), 710 (w).  

 

[ ]20
Dα  = −59.6 (c 0.50, CHCl3), lit. for ent-400, [ ]20

Dα  = +53.8 (c 2.12, CHCl3).[263] 

 

On a larger scale, the yield dropped dramatically. Beside recovered starting 

material, side product 401 was isolated in 10% yield as colorless foam, which 

was contaminated by some minor impurities. The relative stereochemistry of this 

single diastereomer could not be determined.  

 

Rf = 0.09 (hexanes:EtOAc = 4:1). 

 
1H NMR (CDCl3, 400 MHz): δ = 7.40−7.27 (m, 8H), 7.25−7.20 (m, 2H), 5.75 (mC, 1H), 5.43 (dd, 

J = 8.6, 3.3 Hz, 1H), 5.32 (dd, J = 8.7, 3.8 Hz, 1H), 5.05−4.96 (m, 2H), 4.61 (mC, 2H), 4.22 (dd, J = 

8.9, 3.2 Hz, 1H), 4.20 (dd, J = 8.9, 3.9 Hz, 1H), 4.09 (t, J = 7.5 Hz, 1H), 2.81 (dd, J = 17.7, 10.3 Hz, 

1H), 2.71 (dd, J = 17.8, 3.0 Hz, 1H), 2.49−2.41 (m, 1H), 2.33−2.25 (m, 1H), 2.01−1.94 (m, 1H), 

1.91−1.83 (m, 1H), 0.92 (d, J = 6.3 Hz, 3H), 0.75 (d, J = 6.4 Hz, 3H) ppm. 
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13C NMR (CDCl3, 100 MHz): δ = 174.7 (Cq), 171.8 (Cq) 153.7 (Cq), 153.5 (Cq), 139.5 (Cq), 139.2 (Cq), 

136.5 (CH), 129.2 (2C, CH), 128.7 (2C, CH), 126.3 (CH), 125.9 (CH), 116.6 (CH2), 69.9 (CH2), 

69.5 (CH2), 58.0 (CH), 57.7 (CH), 50.1 (CH), 38.9 (CH2), 38.6 (CH2), 33.1 (CH), 29.8 (CH), 

17.8 (CH3), 15.6 (CH3) ppm. 

 

ESI-MS for C29H33N2O6
+ [(M+H)+]: calcd. 505.2339 

 found 505.2334. 
 

 

Synthesis of Weinreb Amide 402 
 

 
To a suspension of (MeO)NHMe·HCl (92 mg, 0.94 mmol, 3.6 eq.) in THF (2.5 mL) at 0 °C was 

slowly added AlMe3 (245 μL of a 2.0M solution in toluene, 490 μmol, 1.9 eq.) and the mixture was 

stirred for 1 h at room temperature. After cooling to 0 °C, a solution of oxazolidinone 400 (72 mg, 

0.26 mmol, 1.0 eq.) in THF (2 mL) was added and the mixture was stirred for 30 min at 0 °C and an 

additional 16 h at room temperature. The reaction was quenched by addition of saturated aqueous 

Rochelle salt (4 mL) and the mixture was diluted with H2O (2 mL) and CH2Cl2 (4 mL). The layers 

were separated and the aqueous phase was extracted with CH2Cl2 (2 x 5 mL). The combined organic 

layers were dried over MgSO4 and the solvents were evaporated under reduced pressure. Purification 

of the obtained crude product by flash column chromatography (silica, hexanes:EtOAc = 4:1) yielded 

the desired Weinreb amide 402 (12 mg, 70 mmol, 26%) as a volatile colorless liquid. 

 

Rf = 0.19 (hexanes:EtOAc = 4:1). 

 
1H NMR (CDCl3, 400 MHz): δ = 5.78 (mC, 1H, 5-H), 5.05−4.99 (m, 2H, 6-H), 3.67 (s, 3H, 9-H), 

3.18 (s, 3H, 8-H), 2.42 (dd, 2J2A/2B = 15.0 Hz, 3J2/3 = 5.4 Hz, 1H, 2-HA), 2.28−2.05 (m, 3H, 2-HB, 3-H, 

4-HA), 2.04−1.95 (m, 1H, 4-HB), 0.95 (d, 3J7/3 = 6.4 Hz, 3H, 7-H) ppm. 

   
13C NMR (CDCl3, 100 MHz): δ = 137.0 (C-5), 116.4 (C-6), 61.3 (C-9), 41.4 (C-4), 38.5 (C-2), 

32.3 (br, C-8), 29.7 (C-3), 20.0 (C-7) ppm (C1 obscured). 
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FAB-MS for C9H18NO2
+ [(M+H)+]: calcd. 172.1338 

 found 172.1333. 

 

IR (ATR): ῦ/cm−1 = 3093 (w), 2928 (w), 2873 (w), 1524 (s), 1481 (w), 1349 (s), 1266 (m), 1202 (w), 

1041 (m), 919 (w), 893 (w).  

 

[ ]20
Dα  = −18.0 (c 0.30, CHCl3), Lit.: [ ]20

Dα  = −13.1 (c 0.23, CHCl3).[266] 

 

 

Synthesis of Carboxylic Acid 404 
 

 
To a solution of oxazolidinone 403[266] (400 mg, 1.46 mmol, 1.0 eq.) in THF/H2O (4:1, 8 mL) at 0 °C 

was consecutively added H2O2 (30% in H2O, 660 μL, 5.84 mmol, 4.0 eq.) and a solution of 

LiOH (56.0 mg, 2.34 mmol, 1.6 eq.) in H2O (4 mL). The mixture was stirred for an additional 90 min 

at 0 °C before quenching the reaction by adding a solution of Na2SO3 (736 mg, 5.84 mmol, 4.0 eq.) in 

H2O (6 mL). Most of the THF was removed under reduced pressure (water bath temperature: 30 °C) 

and the resulting basic phase was extracted with CH2Cl2 (3 x 10 mL). The combined organic layers 

were dried over MgSO4 and the solvents were removed under reduced pressure to yield recovered 

Evans auxiliary. 

The pH of the aqueous phase was adjusted at 0 °C to pH = 1 by addition of HCl (2N). The aqueous 

phase was extracted with CH2Cl2 (4 x 10 mL), the combined organic layers were dried over MgSO4 

and the solvent was carefully removed under reduced pressure (water bath temperature: 30 °C) to yield 

acid 404 (159 mg, 1.24 mmol, 85%) as a colorless liquid judged to be pure by 1H NMR spectroscopy. 

 

Rf = 0.23 (hexanes:EtOAc = 10:1, 1% AcOH). 

 
1H NMR (CD2Cl2, 400 MHz): δ = 5.79 (mC, 1H, 5-H), 5.06−5.00 (m, 2H, 6-H), 2.39 (dd, 2J2A/2B = 

15.1 Hz, 3J2A/3 = 5.3 Hz, 1H, 2-HA), 2.18−2.00 (m, 4H, 2-HB, 3-H, 4-H), 0.98 (d, 3J7/3 = 6.6 Hz, 3H, 

7-H) ppm. 

   
13C NMR (CD2Cl2, 100 MHz): δ = 179.8 (C-1), 137.0 (C-5), 117.0 (C-6), 41.4 (C-4), 41.2 (C-2), 

30.5 (C-3), 19.8 (C-7) ppm. 
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ESI-MS for C14H23O4
− [(2M−H)−]: calcd. 255.1602 

 found 255.1610. 

 

IR (ATR): ῦ/cm−1 = 3079 (w), 2962 (w), 1703 (s), 1642 (m), 1541 (w), 1411 (m), 1380 (w), 1284 (w), 

1196 (m), 1032 (w), 995 (w), 913 (w).  

 

[ ]20
Dα  = +1.6 (c 0.53, CHCl3), lit. for ent-404: [ ]20

Dα  = −0.71 (c 1.13, CHCl3),[269] −2.8 (c 1.00, 

CHCl3).[262] 

 

 

Synthesis of Western Fragment 392* 
 

 
To a solution of acid 404 (100 mg, 780 μmol, 1.0 eq.), EDCI (180 mg, 940 μmol, 1.2 eq.), 

Et3N (390 μL, 2.81 mmol, 4.2 eq.) and DMAP (20 mg, 0.160 mmol, 30 mol-%) in CH2Cl2 (7 mL) was 

added (1R,2R)-pseudoephedrine (405, 135 mg, 820 μmol, 1.05 eq.) and the mixture was stirred for 15 

h at room temperature. The mixture was quenched by addition of saturated aqueous NH4Cl (5 mL) and 

the aqueous phase was extracted with CH2Cl2 (2 x 5 mL). The combined organic layers were washed 

with saturated aqueous NaCl (5 mL), dried over Na2SO4 and the solvents were removed under reduced 

pressure. The crude product was purified by flash column chromatography (silica, CH2Cl2:MeOH = 

97:3) to yield amide 392 (190 mg, 691 μmol, 89%) as a highly viscous colorless oil. 

 

Rf = 0.23 (hexanes:EtOAc = 1:1). 

 
1H NMR (CDCl3, 300 MHz, 3.6:1 mixture of rotamers, asterix denotes minor rotamer): δ = 

7.41−7.22 (m, 5H, 11-H, 12-H, 13-H), 5.86−5.69 (m, 1H, 5-H), 5.10−4.93 (m, 2H, 6-H), 

4.64−4.52 (m, 1H, 8-H), 4.51−4.38 (m, 1H, 9-H), 4.07−3.96 (m, 1H, 9-H)*, 2.91 (s, 3H, 14-H)*, 

2.81 (s, 3H, 14-H), 2.49−1.87 (m, 5H, 2-H, 3-H, 4-H), 1.11 (d, 3J15/8 = 7.1 Hz, 3H, 15-H), 0.98 (d, 
3J15/8 = 6.8 Hz, 3H, 15-H)*, 0.95 (d, 3J7/3 = 5.8 Hz, 3H, 7-H)*, 0.94 (d, 3J7/3 = 6.0 Hz, 3H, 7-H) ppm. 

   

                                                 
* The analytical data was obtained from a sample assumed to be >90% ee pure. This assumption is based on the 
fact that acid 404 had been prepared utilizing highly diastereomerically enriched oxazolidinone 400. 
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13C NMR (CDCl3, 75 MHz, asterix denotes minor rotamer): δ = 175.0 (C-1), 173.7 (C-1)*, 

142.7 (C-10), 141.3 (C-10)*, 137.2 (C-5)*, 136.9 (C-5), 128.9 (C-11)*, 128.6 (C-13)*, 128.5 (C-11), 

127.8 (C-13), 127.1 (C-12)*, 126.5 (C-12), 116.5 (C-6), 116.3 (C-6)*, 76.7 (C-9), 75.7 (C-9)*, 

58.5 (C-8), 58.1 (C-8)*, 41.5 (C-4)*, 41.3 (C-4), 40.8 (C-2), 40.3 (C-2)*, 33.4 (C-14), 30.2 (C-3)*, 

30.1 (C-3), 26.9 (C-14)*, 20.1 (C-7)*, 19.9 (C-7), 15.5 (C-15)*, 14.7 (C-15) ppm. 

 

ESI-MS for C17H26NO2
+ [(M+H)+]: calcd. 276.1958 

 found 276.1956. 

 

IR (ATR): ῦ/cm−1 = 3376 (br m), 3065 (w), 2972 (m), 2930 (m), 1617 (s), 1454 (m), 1405 (m), 

1377 (w), 1260 (w), 1200 (w), 1111 (w), 1052 (w), 912 (w), 701 (w). 

 

[ ]20
Dα  = −96.8 (c 0.50, CHCl3). 

 

 

Synthesis of Acid 409 and Lactone 408 
 

 
To a solution of ketone ent-141 (500 mg, 2.57 mmol, 1.0 eq.) in THF (25 mL) at −78 °C was added 

dropwise KHMDS (7.20 mL of a 0.5M solution in toluene, 3.60 mmol, 1.4 eq.) and the mixture was 

stirred for 30 min at this temperature. Then Et3N (1.79 mL, 12.9 mmol, 4.0 eq.) and Et3SiCl (1.94 mL, 

11.6 mmol, 4.5 eq.) were added dropwise and the reaction was stirred for an additional 30 min. The 

reaction was quenched by addition of saturated aqueous NH4Cl (10 mL) and the mixture was diluted 

with n-pentane (50 mL). The mixture was allowed to warm to room temperature and the phases were 

separated. The aqueous layer was extracted with n-pentane (2 x 20 mL) and the combined organic 

layers were dried over Na2SO4. The solvents were removed under reduced pressure (water bath 

temperature: 30 °C) to yield silylenol ether 406 as a colorless oil, which was used without further 

purification. 
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Through a solution of crude enol ether 406 in MeOH (15 mL) and CH2Cl2 (15 mL) at −78 °C was 

bubbled O3 until the solution turned blue. After bubbling N2 through the solution for 10 min, 

Me2S (5.6 mL, 77.1 mmol, 30 eq.) was added and the mixture was allowed to warm to room 

temperature within 1 h. The solution was stirred for an additional 1 h at this temperature before the 

solvents were removed under reduced pressure. The residue was purified by flash column 

chromatography (silica, CH2Cl2:MeOH = 10:1) to yield labile acid 407 (594 mg, quantitative) as a pale 

yellow oil, which was immediately used in the next step. 

To a solution of aldehyde 407 (assumed 2.57 mmol, 1.0 eq.) in THF (30 mL) at 0 °C was slowly added 

isopropenylmagnesium bromide (219, 15.0 mL of a 0.5M in THF, 7.50 mmol, 3.0 eq.). The mixture 

was stirred an additional 10 min at this temperature and then for 1 h at room temperature. The mixture 

was quenched by addition of saturated aqueous NH4Cl (15 mL) and the aqueous phase was acidified 

with HCl (2N). The biphasic mixture was extracted with Et2O (3 x 30 mL) and the combined organic 

layers were dried over MgSO4. Evaporation of the solvents under reduced pressure and purification of 

the crude product by flash column chromatography (hexanes:EtOAc = 5:1, 1% AcOH) yielded labile 

seco acid 409 (290 mg, 1.08 mmol, 42% over three steps) as an inseparable, approximately 1:1 

mixture of diastereomers, which was immediately used in the next step.  

Additionally, lactone 408 (80 mg, 0.32 mmol, 12% over three steps) was isolated as a single 

diastereoisomer, the relative configuration of which was not be determined. This compound was 

contaminated by Et3SiOH and was characterized by 1H NMR, 13C NMR and low resolution mass 

spectrometry. 

 

Analytical data for acid 407: 

 

Rf = 0.39 (CH2Cl2:MeOH = 10:1). 

 
1H NMR (CDCl3, 400 MHz): δ = 9.81 (dd, 3J9/8A = 3.2 Hz, 3J9/8B = 2.6 Hz, 1H, 9-H), 2.46 (dd, 2J8A/8B = 

14.9 Hz, 3J8A/9 = 3.2 Hz, 1H, 8-HA), 2.39−2.25 (m, 3H, 2-H, 8-HB), 1.94 (mC, 1H, 3-H) 1.74−1.54 (m, 

5H, 4-H, 5-HA, 6-H, 11-H), 1.49−1.41 (m, 1H, 5-HB), 0.98 (s, 3H, 10-H), 0.91 (d, 3J12/11 = 6.8 Hz, 3H, 

12-H)*, 0.82 (d, 3J13/11 = 6.6 Hz, 3H, 13-H)* ppm.  

 
13C NMR (CDCl3, 100 MHz): δ = 203.3 (C-9), 179.4 (C-1), 54.8 (C-8), 49.6 (C-4), 47.6 (C-3), 

43.6 (C-7), 38.4 (C-6), 35.1 (C-2), 29.3 (C-11), 23.2 (C-5), 22.5 (C-12)*, 21.0 (C-10), 

16.8 (C-13)* ppm. 

 

ESI-MS for C26H43O6
− [(2M−H)−]: calcd. 451.3065 

 found 451.3064. 
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IR (ATR): ῦ/cm−1 = 2951 (s), 2870 (m), 1703 (s), 1467 (w), 1412 (w), 1387 (w), 1367 (w), 1301 (w), 

1278 (w), 1240 (w), 1141 (w), 1079 (w).  

 

Analytical data for allylic alcohol 409: 

 

Rf = 0.49 (CH2Cl2:MeOH = 10:1). 

 
1H NMR (CDCl3, 600 MHz, both diastereomers quoted): δ = 4.95 (mC, 0.5H, 11-HA), 4.94 (mC, 0.5H, 

11-HA), 4.78 (mC, 0.5H, 11-HB), 4.77 (mC, 0.5H, 11-H)B, 4.23 (d, J = 8.5 Hz, 0.5H, 9-H), 4.22 (d, J = 

4.22 Hz, 0.5H, 9-H), 2.42 (dd, 2J2A/2B = 15.5 Hz, 3J2A/3 = 6.3 Hz, 0.5H, 2-HA), 2.40 (dd, 2J2A/2B = 

15.3 Hz, 3J2A/3 = 5.7 Hz, 0.5H, 2-HA), 2.18 (dd, 2J2B/2A = 15.2 Hz, 3J2B/3 = 7.0 Hz, 0.5H, 2-HB), 

2.17 (dd, 2J2B/2A = 15.4 Hz, 3J2B/3 = 6.8 Hz, 0.5H, 2-HB), 1.97 (mC, 0.5H, 3-H), 1.90 (mC, 0.5H, 3-H), 

1.73 (s, 3H, 12-H), 1.72−1.55 (m, 5H, 4-H, 5-HA, 6-HA, 8-HA, 14-H), 1.54−1.33 (m, 4H, 5-HB, 6-HB, 

8-HB, OH), 0.94 (s, 1.5H, 13-H), 0.96 (d, 3J15/14 = 6.7 Hz, 3H, 15-H)*, 0.86 (s, 1.5H, 13-H), 0.82 (d, 
3J16/14 = 6.4 Hz, 1.5H, 16-H)*, 0.81 (d, 3J16/14 = 6.5 Hz, 1.5H, 16-H)* ppm.  

 
13C NMR (CDCl3, 150 MHz, both diastereomers quoted): δ = 179.6 (C-1), 179.3 (C-1), 149.2 (C-10), 

149.1 (C-10), 110.5 (C-11), 110.3 (C-11), 74.2 (C-9), 73.4 (C-9), 50.8 (C-4), 50.1 (C-4), 47.3 (C-3), 

47.1 (C-8), 46.4 (C-3), 45.9 (C-8), 44.3 (C-7), 44.2 (C-7), 39.0 (C-6), 38.2 (C-6), 35.8 (C-2), 

35.6 (C-2), 29.5 (C-14), 29.2 (C-14), 23.1 (C-5), 22.9 (C-5), 22.6 (2C, C-15)*, 21.3 (C-13), 

20.9 (C-13), 18.0 (C-12), 17.8 (C-12), 16.8 (C-16)*, 16.5 (C-16)* ppm. 

 

ESI-MS for C16H27O3
− [(M−H)−]: calcd. 267.1966 

 found 267.1970. 

 

IR (ATR): ῦ/ cm−1 = 3401 (br w), 2957 (s), 2929 (s), 2876 (m), 1708 (s), 1454 (w), 1438 (w), 

1388 (w), 1235 (w), 1015 (w). 

 

Since this compound had been obtained as a mixture of diastereomers, the specific optical rotation was 

not determined. 

 

Analytical data for lactone 408: 

 

Rf = 0.14 (hexanes:EtOAc = 16:1). 
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1H NMR (CDCl3, 600 MHz): δ  = 5.01 (mC, 1H), 4.86 (mC, 1H), 4.27 (d, J = 10.3 Hz, 1H), 

2.57−2.47 (m, 2H), 1.83−1.59 (m, 5H), 1.79 (s, 3H), 1.58−1.54 (m, 1H), 1.49−1.40 (m, 2H), 

1.27−1.20 (m, 1H), 0.99 (s, 3H), 0.92 (d, J = 6.8 Hz, 3H), 0.81 (d, J = 7.2 Hz, 3H) ppm.  

 
13C NMR (CDCl3, 150 MHz): δ = 174.8, 144.0, 112.6, 79.5, 46.8, 46.7, 46.0, 42.9, 40.0, 33.2, 28.5, 

22.3, 22.1, 18.2, 18.1, 16.8 ppm. 

 

LRESI-MS for C16H27O2
+ [(M+H)+]: calcd. 251.4 

 found 251.3. 
 

 

Synthesis of Ester 412 
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To solution of seco acid 409 (220 mg, 820 μmol, 1.0 eq.) in THF (10 mL) at 0 °C was added 

LiAlH4 (3.30 mL of a 1.0M solution in THF, 3.30 mmol, 4.0 eq.) dropwise. The mixture was allowed 

to warm to room temperature and stirred for 4 h before being quenched by addition of NaOH (3M, 

2 mL). The mixture was diluted with Et2O (20 mL) and water (5 mL) and filtered over a pad of 

Celite® (washings with Et2O). The aqueous phase was extracted with Et2O (2 x 10 mL) and the 

combined organic layers were dried over MgSO4. The solvents were evaporated under reduced 

pressure and the crude product was purified by flash column chromatography (hexanes:EtOAc = 2:1) 

to yield diol 415 (195 mg, 768 μmol, 96%) as a mixture of diastereomers, which was immediately 

used in the next step. 

To a solution of diol 415 (165 mg, 650 μmol, 1.0 eq.) in CH2Cl2 (10 mL) at 0 °C was added 

subsequently Et3N (498 μL, 3.58 mmol, 5.0 eq.), TBDPSCl (850 μL, 3.25 mmol, 5.0 eq.) and 

DMAP (4.3 mg, 30 μmol, 5.0 mol-%). The mixture was allowed to warm to room temperature and 

stirred for an additional 5 h. The mixture was diluted with CH2Cl2 (10 mL) and the reaction was 

quenched by addition of saturated aqueous NH4Cl (10 mL). The aqueous layer was extracted with 
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CH2Cl2 (3 x 15 mL) and the combined organic layers were washed with saturated aqueous 

NaCl (20 mL) and dried over MgSO4. The solvents were evaporated under reduced pressure and the 

crude product was purified by flash column chromatography (hexanes:EtOAc = 24:1) to yield 

alcohol 410 as mixture of diastereomers. Due to silanol impurities, this material was directly used in 

the next step. 

The crude alcohol 410 (assumed 650 μmol, 1.0 eq.) was dissolved in triethyl orthoacetate (411, 5 mL, 

27.3 mmol, 42 eq.) and one drop of propionic acid was added. The mixture was heated to 130 °C for 

1 h, distilling off generated EtOH. The reaction was allowed to cool to room temperature and excess 

orthoacetate 411 was removed under reduced pressure. The residue was dissolved in Et2O (50 mL) and 

was sequentially washed with saturated aqueous NaHCO3 (2 x 10 mL) and saturated aqueous 

NaCl (10 mL). The organic layer was dried over MgSO4, the solvent was removed under reduced 

pressure and the crude product was purified by flash column chromatography (hexanes:EtOAc = 39:1) 

to yield ester 412 (330 mg, 587 μmol, 86% over three steps) as a highly viscous colorless oil. 

 

The configuration of the double bond was determined to be (E) by 2D NOESY NMR spectroscopy 

showing the proximity of 3-H and 5-H. 

 

Rf = 0.48 (hexanes:EtOAc = 7:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 7.69−7.65 (m, 4H, 25-H)*, 7.43−7.35 (m, 6H, 24-H*, 26-H), 

5.19 (mC, 1H, 5-H), 4.11 (q, 3J19/20 = 7.1 Hz, 2H, 19-H), 3.66 (dd, 3J13/12A = 3J13/12B = 7.3 Hz, 2H, 

13-H), 2.40−2.33 (m, 2H, 2-H), 2.32−2.26 (m, 2H, 3-H), 2.02 (dd, 2J6A/6B = 14.3 Hz, 3J6A/5 = 8.2 Hz, 

1H, 6-HA), 1.76 (dd, 2J6B/6A = 14.2 Hz, 3J6B/5 = 7.0 Hz, 1H, 6-HB), 1.70−1.63 (m, 1H, 12-HA), 

1.61−1.56 (m, 1H, 16-H), 1.54 (s, 3H, 14-H), 1.53−1.40 (m, 3H, 9-HA, 10-H, 12-HB), 1.36−1.22 (m, 

4H, 8-H, 9-HB, 11-H), 1.24 (t, 3J20/19 = 7.1 Hz, 3H, 20-H), 1.05 (s, 9H, 22-H), 0.82 (d, 3J17/16 = 7.0 Hz, 

3H, 18-H)**, 0.72 (d, 3J18/16 = 6.8 Hz, 3H, 16-H)**, 0.69 (s, 3H, 15-H) ppm.  

 
13C NMR (CDCl3, 150 MHz): δ = 173.7 (C-1), 135.7 (C-25)*, 134.4 (C-4), 132.2 (C-23), 

129.6 (C-26), 127.7 (C-24)*, 122.8 (C-5), 64.8 (C-13), 60.4 (C-19), 50.8 (C-10), 46.5 (C-11), 

45.5 (C-7), 39.9 (C-6), 38.6 (C-8), 35.2 (C-3), 34.3 (C-12), 33.6 (C-2), 29.8 (C-16), 27.1 (C-22), 

22.9 (C-17)**, 22.8 (C-9), 20.7 (C-15), 19.3 (C-21), 16.4 (C-18)**, 16.3 (C-14), 14.4 (C-20) ppm. 

  

ESI-MS for C36H58O3NSi+ [(M+NH4)+]: calcd. 580.4180 

 found 580.4179. 
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IR (ATR): ῦ/cm−1 = 3072 (w), 3051 (w), 2957 (s), 2932 (s), 2860 (s), 1737 (s), 1472 (w), 1464 (w), 

1428 (w), 1386 (w), 1368 (w), 1300 (w), 1254 (w), 1177 (w), 1560 (w), 1112 (m), 1093 (m), 941 (w) 

823 (w), 702 (m), 614 (w).  

 

[ ]20
Dα  = −0.8 (c 0.50, CH2Cl2). 

 

 

Synthesis of Carboxylic Acid 417 
 

O
HO

O
O

1

87

6

5
4

32

417
C10H12O4
M = 169.20

NaH (2.5 eq.);
PMBOH (1.05 eq.);
TBABr (5.2 mol-%)

THF, rt, 30 min;
0 °C to rt, 1 h; , 4 h

(72%)

HO

O
Br

464

 
To a suspension of NaH (60 wt% in mineral oil, 5.73 g, 144 mmol, 2.5 eq.) in THF (75 mL) was 

carefully added bromoacetic acid (464, 7.90 g, 57.4 mmol, 1.0 eq.) and the mixture was stirred at room 

temperature until H2 evolution had ceased. After cooling to 0 °C, a solution of PMBOH (7.10 mL, 

58.0 mmol, 1.05 eq.) in THF (150 mL) was carefully added via cannula. The mixture was allowed to 

warm to room temperature and stirred for an additional 1 h at this temperature before adding 

Bu4NBr (1.00 g, 3.00 mmol, 5.2 mol-%) and heating the suspension to reflux for 4 h. The reaction was 

cooled to 0 °C and EtOH (20 mL) was carefully added. The white precipitate was filtered off and 

dissolved in H2O (50 mL). This solution was acidified with aqueous HCl (2N, 20 mL) to pH = 1 

precipitating a colorless solid. The aqueous phase was extracted with Et2O (3 x 50 mL) and the 

combined organic layers were dried over MgSO4. Evaporation of the solvent under reduced pressure 

yielded carboxylic acid 417 (8.10 g, 41.3 mmol, 72%) as a colorless solid. 

 

Rf = 0.31 (hexanes:EtOAc = 1:1, 1% AcOH). 

 

Melting point = 53.5−55.0 °C (Et2O). 

 
1H NMR (CDCl3, 300 MHz): δ = 10.86 (brs, 1H, OH), 7.29 (mC, 2H, 5-H), 6.89 (mC, 2H, 6-H), 

4.58 (s, 2H, 3-H), 4.11 (s, 2H, 2-H), 3.81 (s, 3H, 8-H) ppm. 

   
13C NMR (CDCl3, 75 MHz): δ = 175.5 (C-1), 159.8 (C-7), 130.0 (C-5), 128.8 (C-4), 114.1 (C-6), 

73.2 (C-3), 66.4 (C-2), 55.4 (C-8) ppm. 

 

ESI-MS for C10H11O4
− [(M−H)−]: calcd. 195.0663 

 found 195.0669. 
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IR (ATR): ῦ/cm−1 = 3125 (br m), 2960 (m), 2840 (w), 1756 (s), 1724 (s), 1611 (m), 1583 (w), 1511 

(s), 1461 (m), 1429 (m), 1374 (w), 1301 (w), 1249 (s), 1214 (m), 1174 (s), 1094 (m), 1026 (m), 

999 (m), 952 (m), 933 (w), 903 (w), 816 (s), 758 (w).  

 

The analytical data matched those reported previously.[279] 

 

 

Synthesis of Ester 418 
 

 
To a solution of lactone 408 (50 mg, 0.20 mmol, 1.0 eq.) in Et2O (4 mL) at 0 °C was added 

LiAlH4 (23 mg, 0.60 mmol, 3.0 eq.) in one portion and the mixture was stirred at room temperature for 

4 h. The reaction was quenched at 0 °C by carefully adding half-saturated aqueous Rochelle 

salt (4 mL) and the biphasic mixture was stirred vigorously for 1 h at room temperature. The phases 

were separated and the aqueous layer was extracted with Et2O (3 x 10 mL). The combined organic 

layers were dried over MgSO4 and the solvents were evaporated under reduced pressure. The crude 

product was purified by a short flash column chromatography (silica, hexanes:EtOAc = 2:1 to 1:1) to 

yield diol 415 (37 mg, 0.15 mmol, 73%, Rf = 0.18, CH2Cl2:MeOH = 100:5) as a colorless solid, which 

was used without further characterization. 

To a solution of diol 415 (30 mg, 0.12 mmol, 1.0 eq.) in CH2Cl2 (2 mL) at 0 °C was added 

Et3N (18 μL, 0.13 mmol, 1.1 eq.), TBSCl (20 mg, 0.13 mmol, 1.1 eq.) and DMAP (spatula tip). The 

mixture was allowed to warm to room temperature and was stirred an additional 16 h prior to being 

diluted with CH2Cl2 (10 mL). The reaction was quenched by addition of saturated aqueous 

NH4Cl (5 mL) and the phases were separated. The aqueous layer was extracted with CH2Cl2 (3 x 

5 mL) and the combined organic layers were dried over Na2SO4. The solvents were evaporated under 

reduced pressure and the crude product was purified by flash column chromatography (silica, 

hexanes:EtOAc = 16:1) to yield allylic alcohol 416 (34 mg, 92 μmol, 78%, Rf = 0.12, hexanes:EtOAc 

= 30:1) as a highly viscous colorless oil, which was used in the next step without further 

characterization.  
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To a solution of allylic alcohol 416 (30 mg, 82 μmol, 1.0 eq.), carboxylic acid 417 (80 mg, 0.41 mmol, 

5.0 eq.) and DMAP (55 mg, 0.45 mmol, 5.50 eq.) in CH2Cl2 (5 mL) at 0 °C was added 1-(3-

dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (78 mg, 0.41 mmol, 5.0 eq.). The mixture 

was allowed to warm to room temperature and stirred for an additional 30 min before being stirred at 

35 °C for 16 h. The reaction was cooled to room temperature, diluted with CH2Cl2 (5 mL) and 

quenched by addition of H2O (5 mL). The organic phase was extracted with CH2Cl2 (3 x 5 mL) and 

the combined organic layers were sequentially washed with saturated aqueous NaHCO3 (4 mL) and 

saturated aqueous NH4Cl (4 mL), and dried over MgSO4. Having evaporated the solvents under 

reduced pressure, the crude product was purified by flash column chromatography (silica, 

hexanes:EtOAc = 20:1) to yield ester 418 (40 mg, 73 μmol, 90%) as a colorless oil. 

Note: the intermediate allylic alcohol 416 and ester 418 are co-polar on TLC. 

 

Rf = 0.12 (hexanes:EtOAc = 30:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 7.29 (mC, 2H, 24-H), 6.88 (mC, 2H, 25-H), 5.37 (dd, 3J3/4A = 8.4 Hz, 
3J3/4B = 3.0 Hz, 1H, 3-H), 4.95 (br s, 1H, 1-HA), 4.83 (mC, 1H, 1-HB), 4.56 (s, 2H, 22-H), 4.03 (s, 2H, 

21-H), 3.80 (s, 3H, 27-H), 3.64 (ddd,2J11A/11B = 9.8 Hz, 3J11A/10B = 8.4 Hz, 3J11A/10A = 5.4 Hz, 1H, 

11-HA), 3.58 (ddd, 2J11B/11A = 9.9 Hz, 3J11B/10A = 8.1 Hz, 3J11B/10B = 6.9 Hz, 1H, 11-HB), 1.89 (dd, 2J4A/4B 

= 14.9 Hz, 3J4A/3 = 8.5 Hz, 1H, 4-HA), 1.72 (s, 3H, 12-H), 1.70 (mC, 1H, 14-H), 1.64−1.59 (m, 2H, 8-H, 

10-HA), 1.57−1.48 (m, 2H, 6-HA, 7-HA), 1.45−1.40 (m, 2H, 4-HB, 10-HB), 1.48−1.33 (m, 1H, 7-HB), 

1.31−1.26 (m, 2H, 6-HB, 9-H), 0.91−0.87 (m, 3H, 15-H)*, 0.89 (s, 9H, 19-H), 0.81 (s, 3H, 13-H), 

0.77 (d, 3J16/15 = 6.9 Hz, 3H, 16-H)*, 0.04 (s, 6H, 17-H) ppm.  

 
13C NMR (CDCl3, 150 MHz): δ = 169.8 (C-20), 159.6 (C-26), 144.6 (C-2), 129.9 (C-24), 

129.5 (C-23), 114.0 (C-25), 112.4 (C-1), 76.6 (C-3), 73.0 (C-22), 67.2 (C-21), 62.9 (C-11), 

55.4 (C-27), 50.1 (C-8), 48.0 (C-9), 45.0 (C-4), 44.3 (C-5), 38.8 (C-6), 34.2 (C-10), 29.7 (C-14), 

26.1 (C-19), 22.8 (2C, C-7, C-15*), 20.4 (C-13), 18.5 (C-18), 18.3 (C-12), 16.3 (C-16)*, 

−5.1 (C-17) ppm. 

 

ESI-MS for C32H58NO5Si+ [(M+NH4)+]: calcd. 564.4079 

 found 564.4078. 

 

IR (ATR): ῦ/cm−1 = 2954 (s), 2959 (m), 1755 (m), 1613 (w), 1514 (m), 1463 (w), 1386 (w), 1250 (m), 

1197 (w), 1108 (m), 1039 (w), 940 (w), 835 (w), 775 (w). 

 

[ ]20
Dα  = +4.0 (c 0.50, CH2Cl2). 
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2.4 Experimental Procedures for Chapter 5: ‘Synthetic Studies 

toward YW 3548’ 
 

Synthesis of Oxazolidinone 434 
 

 
To a solution of Evans auxiliary 436[296] (1.58 g, 12.2 mmol, 1.0 eq.) in THF (30 mL) at −78 °C was 

added n-BuLi (5.60 mL of a 2.4M solution in hexanes, 13.4 mmol, 1.0 eq.) and the mixture was stirred 

for 30 min. Then, a solution of 4-pentenoyl chloride (437, 1.50 mL, 13.6 mmol, 1.1 eq.) in 

THF (1.5 mL) was added dropwise and the reaction mixture was stirred for 30 min at −78 °C prior to 

removing the cold bath. After stirring for an additional 30 min at room temperature, the reaction was 

quenched by addition of saturated aqueous NH4Cl (15 mL) and the aqueous phase was extracted with 

EtOAc (3 x 30 mL). The combined organic layers were dried over MgSO4 and the solvents were 

removed under reduced pressure. The crude product was purified by flash column 

chromatography (silica, hexanes:EtOAc = 7:1) to yield oxazolidinone 434 (1.87 g, 8.83 mmol, 72%) 

as a colorless oil. 

 

Rf = 0.34 (hexanes:EtOAc = 4:1). 

 
1H NMR (CDCl3, 300 MHz): δ = 5.85 (ddt, 3J4/5A = 16.9 Hz, 3J4/5B = 10.2 Hz, 3J4/3 = 6.6 Hz, 1H, 4-H), 

5.07 (ddt, 3J5A/4 = 17.1 Hz, 2J5A/5B = 4J5A/3 = 1.6 Hz, 1H, 5-HA), 5.00 (ddt, 3J5B/4 = 10.3 Hz, 2J5B/5A = 
4J5B/3 = 1.4 Hz, 1H, 5-HB), 4.43 (mC, 1H, 8-H), 4.26 (dd, 2J7A/7B = 9.2 Hz, 3J7A/8 = 8.1 Hz, 1H, 7-HA), 

4.19 (dd, 2J7B/7A = 9.2 Hz, 3J7B/8 = 3.4 Hz, 1H, 7-HB), 3.10 (ddd, 2J2A/2B = 17.0 Hz, 3J2A/3 = 7.8 Hz, 
3J2A/3 = 7.0 Hz, 1H, 2-HA), 2.97 (ddd, 2J2B/2A = 17.1 Hz, 3J2B/3 = 7.5, 7.5 Hz, 1H, 2-HB), 2.49−2.28 (m, 

3H, 3-H, 11-H), 0.90 (d, 3J10/9 = 7.0 Hz, 3H, 10-H)*, 0.86 (d, 3J11/9 = 6.9 Hz, 3H, 11-H)* ppm.  

  
13C NMR (CDCl3, 75 MHz): δ = 172.6 (C-1), 154.2 (C-6), 136.8 (C-4), 115.8 (C-5), 63.5 (C-7), 

58.5 (C-8), 34.9 (C-2), 28.5 (2C, C-3, C-9), 18.1 (C-10)*, 14.8 (C-11)* ppm. 

 

EI-MS for C11H17NO3
+ [M+]: calcd. 211.1203 

 found 211.1201. 
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IR (ATR): ῦ/cm−1 = 3079 (w), 2965 (w), 2877 (w), 1776 (s), 1706 (s), 1641 (w), 1487 (w), 1439 (w), 

1389 (s), 1302 (m), 1204 (s), 1061 (m), 916 (w).  

 

[ ]20
Dα  = +50.2 (c 1.00, CHCl3). 

 

The analytical data matched those reported previously.[297] 
 

 

Synthesis of Aldol Product 439 
 

 
To a solution of oxazolidinone 434 (1.45 g, 6.85 mmol, 1.0 eq.) in Et2O (20 mL) at 0 °C was 

consecutively added Bu2BOTf (3.32 mL, 13.7 mmol, 2.0 eq.) and DIPEA (1.40 mL, 8.09 mmol, 

1.2 eq.). The resulting suspension was stirred for an additional 30 min at 0 °C and then cooled to 

−78 °C before adding a solution of acetaldehyde (432, 482 μL, 8.56 mmol, 1.25 eq.) in Et2O (6.8 mL) 

within 10 min. The reaction mixture was stirred for an additional 1 h at −78 °C and was then quenched 

by addition of tartaric acid (5.13 g, 34.0 mmol, 5.0 eq.). The mixture was allowed to warm to room 

temperature and stirred for 2 h at this temperature, forming a dark brown solution. The acid was 

filtered off, the filter cake was rinsed with Et2O (30 mL) and the organic layer was washed with 

H2O (30 mL). The aqueous phase was extracted with Et2O (2 x 40 mL) and the combined organic 

layers were washed with saturated aqueous NaHCO3 (2 x 80 mL). The aqueous phases were re-

extracted with Et2O (3 x 80 mL) and the combined organic layers were washed with saturated aqueous 

NaCl (100 mL). The volume of the Et2O phase was reduced to ca. 180 mL, before the solution was 

cooled to 0 °C and a mixture of MeOH/H2O2 (3:1, 35 mL) was added dropwise. The biphasic mixture 

was stirred for 1 h at room temperature changing its color from orange to yellow. The mixture was 

diluted with Et2O (100 mL) and the organic phase was washed with saturated aqueous 

NaHCO3 (75 mL) and saturated aqueous NaCl (75 mL). Having dried the organic layer over Na2SO4 

and having evaporated the solvent under reduced pressure, the crude product was purified by flash 

column chromatography (silica, hexanes:EtOAc = 5:1 to 4:1 to 3:1) to yield alcohol 439 (1.48 g, 

5.8 mmol, 85%, d.r. = 94:6) as an inseparable mixture of diastereomers as a colorless oil. 

The diastereomeric ratio was determined by 1H NMR spectroscopy by integration of the baseline 

separated doublet signals of 4-H at 1.29 ppm (major) and 1.22 ppm (minor). 
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Rf = 0.29 (hexanes:EtOAc = 3:1). 

 
1H NMR (CDCl3, 600 MHz, only major isomer quoted): δ = 5.75 (mC, 1H, 6-H), 5.06 (ddt, 3J7A/6 = 

17.1 Hz, 2J7A/7B = 4J7A/5 = 1.6 Hz, 1H, 7-HA), 5.00 (mC, 1H, 7-HB), 4.42 (ddd, 3J10/9A
 = 7.9 Hz, 3J10/11 = 

3.9 Hz, 3J10/9B
 = 3.0 Hz, 1H, 10-H), 4.23 (dd, 2J9A/9B = 9.0 Hz, 3J9A/10 = 7.8 Hz, 1H, 9-HA), 4.20 (dd, 

2J9B/9A = 9.0 Hz, 3J9B/10 = 3.0 Hz, 1H, 9-HB), 4.02 (ddd, 3J2/3 = 9.0 Hz, 3J2/5A = 6.0 Hz, 3J2/5B = 5.6 Hz, 

1H, 2-H), 3.93 (ddq, 3J3/2 = 3J3/OH = 8.9 Hz, 3J3/4 = 6.3 Hz, 1H, 3-H), 2.60 (d, 3JOH/3 = 9.1 Hz, 1H, OH), 

2.54−2.26 (m, 3H, 5-H, 11-H), 1.27 (d, 3J4/3 = 6.4 Hz, 3H, 4-H), 0.92 (d, 3J12/11 = 7.1 Hz, 3H, 12-H)*, 

0.88 (d, 3J13/11 = 7.0 Hz, 3H, 13-H)* ppm. 

  
13C NMR (CDCl3, 75 MHz, only major isomer quoted): δ = 175.5 (C-1), 154.4 (C-8), 135.1 (C-6), 

117.4 (C-3), 69.4 (C-3), 63.5 (C-9), 59.0 (C-10), 49.5 (C-2), 33.8 (C-5), 28.7 (C-11), 21.8 (C-4), 18.1 

(C-12)*, 14.8 (C-13)* ppm. 

 

EI-MS for C13H21NO4
+ [M+]: calcd. 255.1465 

 found 255.1455. 

 

IR (ATR): ῦ/cm−1 = 3508 (br s), 3078 (w), 2967 (m), 2932 (m), 2876 (w), 1776 (s), 1696 (m), 1641 

(w), 1489 (w), 1439 (w), 1385 (m), 1300 (w), 1202 (m), 1119 (w), 1057 (w).  

 

[ ]20
Dα  = +61.2 (c 1.00, d.r. = 94:6, CH2Cl2). 

 

 

Synthesis of Carbamate 443 
 

 
To a solution of alcohol 439 (d.r. = 94:6, 28 mg, 0.11 mmol, 1.0 eq.) in CH2Cl2 (3 mL) at 0 °C was 

added DMAP (28 mg, 0.35 mmol, 3.4 eq.) and 4-bromophenyl isocyanate (442, 65 mg, 0.33 mmol, 

3.0 eq.). The thus formed yellow solution was allowed to warm to room temperature and stirred for 

1.5 h precipitating a white solid. The reaction was quenched by addition of saturated aqueous 

NaHCO3 (5 mL) and the mixture was extracted with Et2O (2 x 15 mL). The combined organic layers 

were washed with saturated aqueous NaCl (10 mL) and dried over Na2SO4. After evaporation of the 

solvents under reduced pressure, the crude product was purified by flash column 
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chromatography (silica, hexanes:EtOAc = 7:1 to 5:1) to yield carbamate 443 (43 mg, 95 μmol, 86%) 

as a colorless solid. The minor diastereomer was separable by flash column chromatography, but not 

isolated. 

 

Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of carbamate 443 

in Et2O/n-pentane (1:1). 

 

Rf = 0.36 (hexanes:EtOAc = 3:1). 

 

Melting point = 106.0−108.0 °C (hexanes/EtOAc). 

 
1H NMR (CDCl3, 600 MHz): δ = 7.41−7.37 (m, 2H, 17-H), 7.29−7.23 (m, 2H, 16-H), 6.65 (br s, 1H, 

NH), 5.75 (mC, 1H, 6-H), 5.22 (mC, 1H, 3-H), 5.07 (dd, 3J7A/6 = 17.1 Hz, 4J7A/5 = 1.3 Hz, 1H, 7-HA), 

5.03 (d, 3J7B/6 = 10.1 Hz, 1H, 7-HB), 4.44 (mC, 1H, 10-H), 4.37 (mC, 1H, 2-H), 4.23 (dd, 2J9A/9B = 

9.0 Hz, 3J9A/10 = 8.3 Hz, 1H, 9-HA), 4.18 (dd, 2J9B/9A = 9.1 Hz, 3J9B/10 = 3.0 Hz, 1H, 9-HB), 

2.45−2.28 (m, 3H, 5-H, 11-H), 1.29 (d, 3J4/3 = 6.5 Hz, 3H, 4-H), 0.87 (d, 3J12/11 = 7.2 Hz, 3H, 12-H)*, 

0.84 (d, 3J13/11 = 7.0 Hz, 3H, 13-H)* ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 173.2 (C-1), 154.0 (C-8), 152.3 (C-14), 137.1 (C-15) 134.2 (C-6), 

132.1 (C-17), 120.2 (C-16), 118.0 (C-7), 116.0 (C-18), 72.8 (C-3), 63.4 (C-9), 58.9 (C-10), 47.4 (C-2), 

33.5 (C-5), 28.7, (C-11), 18.2 (C-4), 18.1 (C-12)*, 14.8 (C-13)* ppm. 

 

ESI-MS for C20H25BrN2NaO5
+ [(M+Na)+]: calcd. 475.0839 

 found 475.0838. 

 

IR (ATR): ῦ/cm−1 = 3334 (br w), 3077 (w), 2965 (w), 2875 (w), 1775 (s), 1702 (s), 1593 (m), 1527 (s), 

1489 (m), 1396 (s), 1386 (s), 1305 (m), 1219 (s), 1118 (w), 1099 (w), 1073 (m), 1055 (m), 1007 (w), 

977 (w), 922 (w), 825 (w), 767 (w), 707 (w).  

 

[ ]20
Dα  = +38.8 (c 1.00, CH2Cl2). 
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Synthesis of Acetates 444 and 445 
 

 
To a solution of alcohol 439 (d.r. = 94:6, 950 mg, 3.72 mmol, 1.0 eq.) in CH2Cl2 (35 mL) was added 

Et3N (780 μL, 5.62 mmol, 1.5 eq.), DMAP (129 mg, 1.06 mmol, 28 mol-%) and Ac2O (433, 560 μL, 

5.50 mmol, 1.5 eq.). The resulting solution was heated to reflux for 2 h and, after cooling to room 

temperature, the mixture was diluted with CH2Cl2 (35 mL). The organic phase was washed with 1N 

HCl (30 mL), saturated aqueous NaHCO3 (40 mL) and saturated aqueous NaCl (50 mL). Having dried 

the organic layer over Na2SO4 and evaporated the solvent under reduced pressure, the crude product 

was purified by flash column chromatography (silica, hexanes:EtOAc = 5:1) to yield 

acetate 445 (940 mg, 3.16 mmol, 85%) as a colorless solid along with the 

syn-diastereomer 444 (30 mg, 0.10 mmol, 3%) from the previous reaction as a colorless oil. 

 

Analytical data for anti-diastereomer 445: 

 

Rf = 0.30 (hexanes:EtOAc = 3:1). 

 

Melting point = 65.0−67.0 °C (hexanes/EtOAc). 

 
1H NMR (CDCl3, 600 MHz): δ = 5.78−5.70 (m, 1H, 6-H), 5.17 (dq, 3J3/2 = 8.5 Hz, 3J3/4 = 6.3 Hz, 1H, 

3-H), 5.05 (ddt, 3J7A/6 = 17.1 Hz, 2J7A/7B = 4J7A/5 = 1.6 Hz, 1H, 7-HA), 5.01 (mC, 1H, 7-HB), 4.43 (ddd, 
3J10/9A

 = 8.2 Hz, 3J10/11 = 4.0 Hz, 3J10/9B
 = 3.2 Hz, 1H, 10-H), 4.31 (dt, 3J2/3 = 8.5 Hz, 3J2/5 = 5.6 Hz, 1H, 

2-H), 4.22 (dd, 2J9A/9B = 9.1 Hz, 3J9A/10 = 8.2 Hz, 1H, 9-HA), 4.18 (dd, 2J9B/9A = 9.2 Hz, 3J9B/10 = 3.2 Hz, 

1H, 9-HB), 2.40−2.27 (m, 3H, 5-H, 11-H), 1.96 (s, 3H, 15-H), 1.29 (d, 3J4/3 = 6.3 Hz, 3H, 4-H), 

0.90 (d, 3J12/11 = 7.1 Hz, 3H, 12-H)*, 0.88 (d, 3J13/11 = 7.0 Hz, 3H, 13-H)* ppm. 

  
13C NMR (CDCl3, 150 MHz): δ = 173.2 (C-1), 170.0 (C-14), 153.9 (C-8), 134.2 (C-6), 117.9 (C-7), 

71.7 (C-3), 63.3 (C-9), 58.7 (C-10), 47.3 (C-2), 33.4 (C-5), 28.7 (C-11), 21.2 (C-15), 18.1 (C-12)*, 

17.6 (C-4), 14.9 (C-13)* ppm. 

 

FAB-MS for C15H24NO5
+ [(M+H)+]: calcd. 298.1649 

 found 298.1653. 
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IR (ATR): ῦ/cm−1 = 3274 (br w), 2975 (w), 1776 (s), 1733 (s), 1697 (s), 1386 (s), 1372 (s), 1300 (m), 

1231 (s), 1201 (s), 1120 (m), 1098 (m), 1056 (m), 978 (w), 950 (w), 927 (w).  

 

[ ]20
Dα  = +54.0 (c 1.00, CH2Cl2). 

 

Analytical data for syn-diastereomer 444: 

 

Rf = 0.38 (hexanes:EtOAc = 3:1). 

 
1H NMR (CDCl3, 300 MHz): δ = 5.73 (mC, 1H, 6-H), 5.26 (mC, 1H, 3-H), 5.11−4.95 (m, 2H, 7-H), 

4.44 (mC, 1H, 10-H), 4.28−4.14 (m, 3H, 2-H, 9-H), 2.56−2.44 (m, 1H, 5-HA), 2.39−2.24 (m, 2H, 5-HB, 

11-H), 2.00 (s, 3H, 14-H), 1.27 (d, 3J4/3 = 6.3 Hz, 3H, 4-H), 0.91 (d, 3J12/11 = 7.1 Hz, 3H, 12-H)*, 

0.90 (d, 3J13/11 = 7.0 Hz, 3H, 13-H)* ppm. 

  
13C NMR (CDCl3, 75 MHz): δ = 172.7 (C-1), 170.2 (C-14), 154.0 (C-8), 135.2 (C-6), 117.3 (C-7), 

70.6 (C-3), 63.3 (C-9), 58.7 (C-10), 46.8 (C-2), 31.9 (C-5), 28.5 (C-11), 21.2 (C-15), 18.1 (C-12)*, 

17.7 (C-4), 14.6 (C-13)* ppm. 

 

FAB-MS for C15H24NO5
+ [(M+H)+]: calcd. 298.1649 

 found 298.1666. 

 

IR (ATR): ῦ/cm−1 = 3080 (w), 2967 (m), 1777 (s), 1739 (s), 1697 (m), 1387 (m), 1371 (m), 1301 (w), 

1236 (s), 1203 (m), 1122 (w), 1098 (w), 1058 (w), 1020 (w). 

 

[ ]20
Dα  = +41.4 (c 1.00, CH2Cl2). 

 

 

Synthesis of Enol Triflate 446 
 

 
To a solution of acetate 445 (750 mg, 2.52 mmol, 1.0 eq.) in THF (40 mL) at −78 °C was added 

dropwise KHMDS (20.0 mL of a 0.5M solution in toluene, 10.0 mmol, 4.0 eq.) and the pale yellow 

solution was stirred for 2.5 h at −78 °C prior to quenching the reaction by addition of MeOH/saturated 
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aqueous NH4Cl/H2O (1:1:1, 40 mL). After warming to room temperature, the pH was adjusted to 2−3 

by adding 1N HCl and the biphasic mixture was extracted with EtOAc (3 x 50 mL). The combined 

organic layers were dried over MgSO4 and evaporation of the solvents under reduced pressure yielded 

crude ketone 465 as an orange oil, which was used without further purification. 

The crude oil 465 (assumed 2.52 mmol, 1.0 eq.) was redissolved in CH2Cl2 (13 mL) and the solution 

was cooled to −78 °C. Then Et3N (1.10 mL, 7.94 mmol, 3.2 eq.) and Tf2O (6.00 mL of a 1.0M solution 

in CH2Cl2, 6.00 mmol, 2.4 eq.) were sequentially added and the solution was stirred for an additional 

90 min at this temperature. The reaction was quenched by addition of saturated aqueous 

NaHCO3 (25mL) and the mixture was allowed to warm to room temperature before being extracted 

with CH2Cl2 (3 x 50 mL). The combined organic layers were dried over MgSO4 and the solvents were 

removed under reduced pressure. The crude product was purified by flash column 

chromatography (silica, hexanes:EtOAc = 7:1) to yield enol triflate 446 (566 mg, 1.89 mmol, 75% 

over two steps) as a pale yellow oil 

 

Rf = 0.32 (hexanes:EtOAc = 9:1). 

 
1H NMR (CDCl3, 300 MHz): δ = 6.08 (s, 1H, 2-H), 5.72 (dddd, 3J7/8B = 17.1 Hz, 3J7/8A = 10.3 Hz, 
3J7/6

 = 7.5, 6.7 Hz, 1H, 7-H), 5.22 (mC, 1H, 8-HA), 5.19 (ddt, 3J8B/7 = 16.9 Hz, 2J8B/8A = 4J8B/6 = 1.4 Hz, 

1H, 8-HB), 4.65 (qd, 3J4/9
 = 6.7 Hz, 3J4/5 = 3.2 Hz, 1H, 4-H), 2.57 (ddd, 3J5/6A = 7.6 Hz, 3J5/6B = 4.8 Hz, 

3J5/4 = 3.2 Hz, 1H, 5-H), 2.55−2.41 (m, 2H, 6-H), 1.47 (d, 3J9/4
 = 6.6 Hz, 1H, 9-H) ppm. 

  
13C NMR (CDCl3, 75 MHz): δ = 163.6 (C-1), 161.9 (C-3), 131.9 (C-7), 120.4 (C-8), 118.4 (q, 
1J10/F = 321 Hz, C-10), 109.7 (q, 5J2/F = 0.8 Hz, C-2), 75.8 (C-5), 42.8 (C-4), 34.5 (C-6), 

19.8 (C-9) ppm. 

 
19F NMR (CDCl3, 377 MHz): δ = −73.2 ppm. 

 

FAB-MS for C10H12F3O5S+ [(M+H)+]: calcd. 301.0352 

 found 301.0345. 

 

IR (ATR): ῦ/cm−1 = 3085 (w), 2987 (w), 1730 (s), 1659 (w), 1429 (s), 1366 (w), 1305 (m), 1246 (m), 

1213 (s), 1136 (s), 1078 (m), 1042 (w), 980 (w), 916 (w), 884 (m), 797 (w), 762 (w).  

 

[ ]20
Dα  = +95.0 (c 1.00, CH2Cl2). 
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Synthesis of Dimer 447 
 

 
To a degassed solution of enol triflate 446 (30 mg, 0.10 mmol, 1.0 eq.) and Me6Sn2 (47 mg, 

0.15 mmol, 1.5 eq.) in DMF (2.5 mL) was added CuI (6.0 mg, 32 μmol, 32 mol-%) followed by 

Pd2dba3 (16 mg, 17 μmol, 17 mol-%) and the resulting suspension was stirred at 60 °C for 1 h. After 

cooling to room temperature, the reaction was quenched by addition of H2O (3 mL) and the mixture 

was extracted with Et2O (3 x 7 mL). The combined organic layers were washed with 10% aqueous 

NaCl (2 x 10 mL) and dried over MgSO4. The solvent was evaporated under reduced pressure and the 

crude product was purified by flash column chromatography (silica, hexanes:EtOAc = 5:1 to 3:1) to 

yield dimer 447 (11 mg, 36 μmol, 72%) as a colorless amorphous solid. 

 

Rf = 0.12 (hexanes:EtOAc = 3:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 6.24 (s, 2H, 2-H), 5.75 (mC, 2H, 7-H), 5.20 (mC, 2H, 8-HA), 5.16 

(mC, 2H, 8-HB), 4.84 (mC, 2H, 5-H), 2.53 (mC, 2H, 4-H), 2.34−2.24 (m, 4H, 6-H), 1.39 (d, 3J9/5 = 

6.8 Hz, 6H, 9-H) ppm. 

   
13C NMR (CDCl3, 150 MHz): δ = 162.6 (C-1), 151.6 (C-3), 133.5 (C-7), 119.8 (C-2)*, 119.4 (C-8)*, 

75.7 (C-5), 38.8 (C-4), 36.9 (C-6), 20.0 (C-9) ppm. 

 

FAB-MS for C18H23O4
+ [(M+H)+]: calcd. 303.1591 

 found 303.1577. 

 

IR (ATR): ῦ/cm−1 = 3078 (w), 2979 (w), 1704 (s), 1437 (w), 1380 (w), 1350 (w), 1224 (m), 1135 (w), 

1039 (m), 994 (w), 917 (w), 885 (w). 
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Synthesis of Lactone 448 
 

 
To a suspension of enol triflate 446 (24 mg, 80 μmol, 1.0 eq.), Pd(PPh3)4 (12 mg, 10 μmol, 0.13 eq.), 

CuI (8.8 mg, 88 μmol, 1.1 eq.) and Na2CO3 (59 mg, 0.56 mmol, 7.0 eq.) in degassed benzene (5 mL) 

was added a solution of phenylboronic acid (29 mg, 0.24 mmol, 3.0 eq.) in EtOH (1.5 mL) and the 

reaction mixture was heated to reflux for 1 h changing its color from pale yellow to deep red. The 

mixture was allowed to cool to room temperature and quenched by addition of saturated aqueous 

NaHCO3 (4 mL). The mixture was diluted with EtOAc (5 mL) and the organic layer was washed with 

H2O (2 x 10 mL) and saturated aqueous NaHCO3 (3 x 10 mL). The combined aqueous phases were re-

extracted with EtOAc (2 x 10 mL) and the combined organic layers were washed with saturated 

aqueous NaCl (30 mL). After drying the organic layer over MgSO4 and evaporation of the solvent 

under reduced pressure, the crude product was purified by flash column chromatography (silica, 

hexanes:EtOAc = 1:0 to 9:1) to yield lactone 448 (16 mg, 70 μmol, 88%) as a highly viscous colorless 

oil. 

 

Rf = 0.42 (hexanes:EtOAc = 3:1). 

 
1H NMR (CDCl3, 600 MHz): δ = 7.54−7.50 (m, 2H, 11-H), 7.48−7.43 (m, 3H, 12-H, 13-H), 6.31 (s, 

1H, 2-H), 5.74 (mC, 1H, 8-H), 5.14−5.09 (m, 2H, 9-H), 4.83 (qd, 3J5/6 = 6.8 Hz, 3J5/4 = 1.1 Hz, 1H, 

5-H), 2.78 (mC 1H, 4-H), 2.34 (mC, 2H, 7-H), 1.47 (d, 3J6/5 = 6.7 Hz, 3H, 6-H) ppm. 

   
13C NMR (CDCl3, 150 MHz): δ = 164.0 (C-1), 156.9 (C-3), 136.2 (C-10), 134.4 (C-8), 130.7 (C-13), 

129.3 (C-12), 126.5 (C-11), 118.8 (C-9), 114.8 (C-2), 75.5 (C-5), 41.9 (C-4), 36.7 (C-7), 

20.0 (C-6) ppm. 

 

EI-MS for C14H16O+ [(M−CO)+]: calcd. 200.1196 

 found 200.1191. 

 

IR (ATR): ῦ/cm−1 = 3077 (w), 2979 (w), 1707 (s), 1640 (w), 1618 (w), 1446 (w), 1363 (m), 1258 (w), 

1225 (m), 1135 (w), 1043 (m), 996 (w), 961 (w), 920 (w), 874 (m), 771 (m).  

 

[ ]20
Dα  = +241.6 (c 0.25, CH2Cl2). 
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A1 X-RAY CRYSTALLOGRAPHIC DATA 
 

The data collections were performed on an Oxford Diffraction Xcalibur diffractometer or on a Nonius 

KappaCCD diffractometer at 100K or 173 K using MoK -radiation (  = 0.71073 Å, graphite 

monochromator). The CrysAlisPro software (version 1.171.33.41)[318] was applied for the integration, 

scaling and multi-scan absorption correction of the data. The structures were solved by direct methods 

with SIR97[319] and refined by least-squares methods against F2 with SHELXL-97.[320] All non-

hydrogen atoms were refined anisotropically. The hydrogen atoms were placed in ideal geometry 

riding on their parent atoms. More details are provided in tables A1.1 A1.12 at the different sections.  
 

 

A1.1 Diketone 116 

 

CCDC 934941 contains the supplementary crystallographic data for diketone 116. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 
Table A1.1 Crystallographic Data for Diketone 116. 

net formula C10H12O2 
Mr/g mol 1 164.201 
crystal size/mm 0.43 × 0.37 × 0.28 
T/K 100(2) 
radiation MoKα 
diffractometer 'Oxford XCalibur' 
crystal system orthorhombic 
space group P212121 
a/Å 7.3464(3) 
b/Å 10.3828(4) 
c/Å 11.4263(4) 

/° 90 
/° 90 
/° 90 

V/Å3 871.56(5) 
Z 4 
calc. density/g cm 3 1.25139(7) 

/mm 1 0.086 
absorption correction 'multi-scan' 
transmission factor range 0.99380 1.00000 
refls. measured 6290 
Rint 0.0282 
mean σ(I)/I 0.0327 
θ range 4.31 28.28 
observed refls. 1942 
x, y (weighting scheme) 0.0370, 0.1077 
hydrogen refinement constr 
Flack parameter 0.4(13) 
refls in refinement 2149 
parameters 110 
restraints 0 
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R(Fobs) 0.0350 
Rw(F2) 0.0834 
S 1.056 
shift/errormax 0.001 
max electron density/e Å 3 0.184 
min electron density/e Å 3 0.126 
 

Flack test meaningless (Mo radiation, no anomalous scatterer), correct structure derived from synthesis. 
 

 
 

 

A1.2 Acid 205 

 

CCDC 934940 contains the supplementary crystallographic data for acid 205. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 
Table A1.2 Crystallographic data for acid 205. 

net formula C15H22O4 
Mr/g mol 1 266.333 
crystal size/mm 0.25 × 0.17 × 0.12 
T/K 100(2) 
radiation MoKα 
diffractometer 'Oxford XCalibur' 
crystal system orthorhombic 
space group P212121 
a/Å 6.3678(7) 
b/Å 9.2177(8) 
c/Å 24.664(3) 

/° 90 
/° 90 
/° 90 

V/Å3 1447.7(3) 
Z 4 
calc. density/g cm 3 1.2220(3) 

/mm 1 0.087 
absorption correction 'multi-scan' 
transmission factor range 0.98476 1.00000 
refls. measured 7632 



244  APPENDICES 
 

Rint 0.0350 
mean σ(I)/I 0.0423 
θ range 4.23 25.34 
observed refls. 2316 
x, y (weighting scheme) 0.0262, 0.3919 
hydrogen refinement mixed 
Flack parameter 0.0(12) 
refls in refinement 2641 
parameters 180 
restraints 0 
R(Fobs) 0.0389 
Rw(F2) 0.0832 
S 1.022 
shift/errormax 0.001 
max electron density/e Å 3 0.152 
min electron density/e Å 3 −0.159 
 

Flack test meaningless (no anomalous scatterer, Mo radiation), correct structure derived from synthesis. C-bound 
H: constr, O-bound H: refall. 
 

 
 

 

A1.3 Ketone 195 

 

CCDC 865613 contains the supplementary crystallographic data for ketone 195. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 
Table A1.3 Crystallographic data for ketone 195 

net formula C12H18O3 
Mr/g mol 1 210.270 
crystal size/mm 0.31 × 0.28 × 0.12 
T/K 173(2) 
radiation MoKα 
diffractometer 'Oxford XCalibur' 
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crystal system orthorhombic 
space group P212121 
a/Å 9.2588(5) 
b/Å 9.4467(5) 
c/Å 12.5446(7) 

/° 90 
/° 90 
/° 90 

V/Å3 1097.21(10) 
Z 4 
calc. density/g cm 3 1.27292(12) 

/mm 1 0.090 
absorption correction 'multi-scan' 
transmission factor range 0.89301 1.00000 
refls. measured 8113 
Rint 0.0310 
mean σ(I)/I 0.0270 
θ range 4.31 26.33 
observed refls. 1051 
x, y (weighting scheme) 0.0500, 0 
hydrogen refinement Constr 
Flack parameter 3.1(15) 
refls in refinement 1301 
parameters 137 
restraints 0 
R(Fobs) 0.0320 
Rw(F2) 0.0784 
S 0.969 
shift/errormax 0.001 
max electron density/e Å 3 0.166 
min electron density/e Å 3 0.136 
 

Flack parameter meaningless. 933 Friedel pairs merged. 
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A1.4 Enone 194 

 

CCDC 865618 contains the supplementary crystallographic data for enone 194. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 
Table A1.4 Crystallographic data for enone 194 

net formula C12H16O3 
Mr/g mol 1 208.254 
crystal size/mm 0.49 × 0.16 × 0.03 
T/K 173(2) 
Radiation MoKα 
diffractometer 'KappaCCD' 
crystal system monoclinic 
space group P21 
a/Å 6.4233(5) 
b/Å 9.7999(7) 
c/Å 8.5116(7) 

/° 90 
/° 100.147(4) 
/° 90 

V/Å3 527.41(7) 
Z 2 
calc. density/g cm 3 1.31138(17) 

/mm 1 0.093 
absorption correction none 
refls. measured 3526 
Rint 0.0515 
mean σ(I)/I 0.0365 
θ range 3.84–25.32 
observed refls. 874 
x, y (weighting scheme) 0.0496, 0.0788 
hydrogen refinement constr 
Flack parameter 1.7(19) 
refls in refinement 1016 
parameters 137 
restraints 1 
R(Fobs) 0.0379 
Rw(F2) 0.0953 
S 1.081 
shift/errormax 0.001 
max electron density/e Å 3 0.166 
min electron density/e Å 3 0.185 
 

Flack parameter meaningless, absolute structure deduced from synthesis, 845 Friedel pairs merged. 
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A1.5 Ketone 220 

 

CCDC 865615 contains the supplementary crystallographic data for ketone 220. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 
Table A1.5 Crystallographic data for ketone 220. 

net formula C15H22O3 
Mr/g mol 1 250.333 
crystal size/mm 0.29 × 0.17 × 0.07 
T/K 173(2) 
Radiation MoKα 
diffractometer 'Oxford XCalibur' 
crystal system monoclinic 
space group P21 
a/Å 9.6490(5) 
b/Å 5.8746(3) 
c/Å 12.3783(7) 

/° 90 
/° 107.487(6) 
/° 90 

V/Å3 669.22(6) 
Z 2 
calc. density/g cm 3 1.24233(11) 

/mm 1 0.085 
absorption correction 'multi-scan' 
transmission factor range 0.96533 1.00000 
refls. measured 4829 
Rint 0.0299 
mean σ(I)/I 0.0419 
θ range 4.20 26.33 
observed refls. 1167 
x, y (weighting scheme) 0.0412, 0 
hydrogen refinement constr 
Flack parameter 2.5(13) 
refls in refinement 1488 
parameters 165 
restraints 1 
R(Fobs) 0.0344 
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Rw(F2) 0.0732 
S 0.926 
shift/errormax 0.001 
max electron density/e Å 3 0.169 
min electron density/e Å 3 0.118 
 

Flack parameter meaningless. 741 Friedel pairs merged. Absolute structure deduced from synthesis. 
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A1.6 Ketone ent-141 

 

CCDC 865614 contains the supplementary crystallographic data for ketone ent-141. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 
Table A1.6 Crystallographic data for ketone ent-141. 

net formula C13H22O 
Mr/g mol 1 194.313 
crystal size/mm 0.15 × 0.14 × 0.04 
T/K 173(2) 
Radiation MoKα 
Diffractometer 'KappaCCD' 
crystal system monoclinic 
space group P21 
a/Å 7.2906(10) 
b/Å 6.4842(11) 
c/Å 13.310(2) 
α/° 90 
β/° 104.680(10) 
γ/° 90 
V/Å3 608.67(17) 
Z 2 
calc. density/g cm 3 1.0602(3) 

/mm 1 0.064 
absorption correction none 
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refls. Measured 2730 
Rint 0.0901 
mean σ(I)/I 0.0727 
θ range 3.63 23.63 
observed refls. 715 
x, y (weighting scheme) 0.0964, 0.0251 
hydrogen refinement constr 
Flack parameter 1(5) 
refls in refinement 974 
Parameters 130 
Restraints 1 
R(Fobs) 0.0686 
Rw(F2) 0.1868 
S 1.180 
shift/errormax 0.001 
max electron density/e Å3 0.190 
min electron density/e Å3 0.185 
 

Flack parameter meaningless, 589 Friedel pairs merged. Investigated crystal had poor scattering strength leading 
to reduced resolution. 
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A1.7 Ketone 222 

 

CCDC 865619 contains the supplementary crystallographic data for ketone 222. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 
Table A1.7 Crystallographic data for ketone 222. 

net formula C15H24O3 
Mr/g mol 1 252.349 
crystal size/mm 0.23 × 0.20 × 0.11 
T/K 173(2) 
Radiation MoKα 
diffractometer 'Oxford XCalibur' 
crystal system Orthorhombic 
space group P212121 
a/Å 5.8846(4) 
b/Å 9.0415(5) 
c/Å 26.2051(14) 

/° 90 
/° 90 
/° 90 

V/Å3 1394.26(14) 
Z 4 
calc. density/g cm 3 1.20219(12) 

/mm−1 0.082 
absorption correction 'multi-scan' 
transmission factor range 0.98145 1.00000 
refls. Measured 5778 
Rint 0.0359 
mean σ(I)/I 0.0470 
θ range 4.20 26.24 
observed refls. 1215 
x, y (weighting scheme) 0.0388, 0 
hydrogen refinement constr 
Flack parameter 1.5(14) 
refls in refinement 1665 
Parameters 166 
Restraints 0 
R(Fobs) 0.0361 
Rw(F2) 0.0738 
S 0.894 
shift/errormax 0.001 
max electron density/e Å 3 0.177 
min electron density/e Å 3 0.124 
 

Flack Parameter meaningless, 1256 Friedel pairs merged. Absolute structure derived from synthesis. 
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A1.8 Ketone 246 

 

CCDC 865616 contains the supplementary crystallographic data for ketone 246. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 
Table A1.8 Crystallographic data for ketone 246. 

net formula C15H24O3 
Mr/g mol 1 252.349 
crystal size/mm 0.26 × 0.11 × 0.06 
T/K 173(2) 
Radiation MoKα 
Diffractometer 'KappaCCD' 
crystal system monoclinic 
space group P21 
a/Å 10.0211(5) 
b/Å 5.8555(2) 
c/Å 11.9154(6) 

/° 90 
/° 93.215(2) 
/° 90 

V/Å3 698.08(5) 
Z 2 
calc. density/g cm 3 1.20056(9) 

/mm 1 0.082 
absorption correction None 
refls. Measured 4457 
Rint 0.0240 
mean σ(I)/I 0.0351 
θ range 3.89 25.31 
observed refls. 2167 
x, y (weighting scheme) 0.0396, 0.1213 
hydrogen refinement Constr 
Flack parameter 0.7(12) 
refls in refinement 2417 
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Parameters 185 
Restraints 2 
R(Fobs) 0.0392 
Rw(F2) 0.0970 
S 1.148 
shift/errormax 0.001 
max electron density/e Å 3 0.143 
min electron density/e Å 3 0.152 
 

Flack test results meaningless, no anomalous scatterer in structure. C14 and C15 are disordered, split model 
applied, sof ratio 0.58/0.42. Only the main part of the disordered group C14/C15 is shown is the figure: 
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A1.9 Epoxide 250 

 

CCDC 934938 contains the supplementary crystallographic data for epoxide 250. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 
Table A1.9 Crystallographic data for epoxide 250. 

net formula C15H24O3 
Mr/g mol 1 252.349 
crystal size/mm 0.33 × 0.09 × 0.07 
T/K 173(2) 
radiation MoKα 
diffractometer 'KappaCCD' 
crystal system orthorhombic 
space group P212121 
a/Å 5.88880(10) 
b/Å 14.6273(4) 
c/Å 16.5099(4) 

/° 90 
/° 90 
/° 90 

V/Å3 1422.12(6) 
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Z 4 
calc. density/g cm 3 1.17864(5) 

/mm 1 0.080 
absorption correction None 
refls. Measured 9872 
Rint 0.0312 
mean σ(I)/I 0.0265 
θ range 3.72 26.00 
observed refls. 2449 
x, y (weighting scheme) 0.0613, 0.3685 
hydrogen refinement constr 
Flack parameter 0.2(13) 
refls in refinement 2785 
parameters 166 
restraints 0 
R(Fobs) 0.0450 
Rw(F2) 0.1169 
S 1.047 
shift/errormax 0.001 
max electron density/e Å 3 0.368 
min electron density/e Å 3 0.258 
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A1.10 Ketone 191 

 

CCDC 865617 contains the supplementary crystallographic data for ketone 191. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 
Table A1.10 Crystallographic data for ketone 191. 

net formula C19H36O2Si 
Mr/g mol 1 324.573 
crystal size/mm 0.31 × 0.29 × 0.15 
T/K 173(2) 
Radiation MoKα 
Diffractometer 'Oxford XCalibur' 
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crystal system orthorhombic 
space group P212121 
a/Å 6.1373(2) 
b/Å 10.5263(4) 
c/Å 30.6532(13) 

/° 90 
/° 90 
/° 90 

V/Å3 1980.29(13) 
Z 4 
calc. density/g cm 3 1.08868(7) 

 /mm 1 0.124 
absorption correction 'multi-scan' 
transmission factor range 0.93992 1.00000 
refls. Measured 15263 
Rint 0.0421 
mean σ(I)/I 0.0564 
θ range 4.25–26.35 
observed refls. 3138 
x, y (weighting scheme) 0.0376, 0 
hydrogen refinement constr 
Flack parameter 0.00(11) 
refls in refinement 3991 
parameters 207 
restraints 0 
R(Fobs) 0.0344 
Rw(F2) 0.0720 
S 0.920 
shift/errormax 0.001 
max electron density/e Å 3 0.200 
min electron density/e Å 3 0.170 
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A1.11 Lactone 291 

 

CCDC 934939 contains the supplementary crystallographic data for lactone 291. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 
Table A.11 Crystallographic data for lactone 291. 

net formula C17H28O3 
Mr/g mol−1 280.402 
crystal size/mm 0.33 × 0.20 × 0.15 
T/K 173(2) 
radiation MoKα 
diffractometer 'Oxford XCalibur' 
crystal system orthorhombic 
space group P212121 
a/Å 9.1321(9) 
b/Å 11.8589(12) 
c/Å 15.1809(15) 

/° 90 
/° 90 
/° 90 

V/Å3 1644.0(3) 
Z 4 
calc. density/g cm 3 1.1329(2) 

/mm 1 0.076 
absorption correction 'multi-scan' 
transmission factor range 0.75017 1.00000 
refls. Measured 5560 
Rint 0.0337 
mean σ(I)/I 0.0342 
θ range 4.31–26.10 
observed refls. 1655 
x, y (weighting scheme) 0.0545, 0.1445 
hydrogen refinement Constr 
Flack parameter 1.1(15) 
refls in refinement 1869 
Parameters 186 
Restraints 0 
R(Fobs) 0.0400 
Rw(F2) 0.1031 
S 1.060 
shift/errormax 0.001 
max electron density/e Å 3 0.167 
min electron density/e Å 3 0.199 
 

Flack parameter meaningless, 1386 Friedel pairs merged, correct structure deduced from synthesis. 
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A1.12 Carbamate 443 
 

CCDC 934937 contains the supplementary crystallographic data for carbamate 443. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 
Table A1.12 Crystallographic data for carbamte 443. 

net formula C20H25BrN2O5 
Mr/g mol 1 453.327 
crystal size/mm 0.31 × 0.22 × 0.16 
T/K 173(2) 
Radiation MoKα 
diffractometer 'Oxford XCalibur' 
crystal system orthorhombic 
space group P212121 
a/Å 5.9917(2) 
b/Å 9.7824(4) 
c/Å 36.0498(14) 

/° 90 
/° 90 
/° 90 

V/Å3 2112.99(14) 
Z 4 
calc. density/g cm 3 1.42505(9) 

/mm 1 1.978 
absorption correction 'multi-scan' 
transmission factor range 0.93697–1.00000 
refls. Measured 8750 
Rint 0.0340 
mean σ(I)/I 0.0838 
θ range 4.17 26.33 
observed refls. 2799 
x, y (weighting scheme) 0.0131, 0 
hydrogen refinement mixed 
Flack parameter 0.013(6) 
refls in refinement 4003 
parameters 259 



A1  X-Ray Crystallographic Data  257 

restraints 1 
R(Fobs) 0.0300 
Rw(F2) 0.0433 
S 0.800 
shift/errormax 0.001 
max electron density/e Å 3 0.469 
min electron density/e Å 3 0.329 
 

C-bound H: constr., N-bound H: distance fixed to 0.88(1) Å, U(H) = 1.2 U(N). 
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 1H NMR (CDCl3, 300 MHz): 

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 

13C NMR (CDCl3, 75 MHz): 
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1H NMR (CDCl3, 300 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 75 MHz): 
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1H NMR (CDCl3, 300 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 75 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 300 MHz): 

 
 
13C NMR (CDCl3, 75 MHz): 
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1H NMR (CDCl3, 400 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1 (ppm)
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13C NMR (CDCl3, 100 MHz): 
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1H NMR (CDCl3, 300 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1 (ppm)  

 
13C NMR (CDCl3, 75 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 400 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 100 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.5
f1 (ppm)  

 

13C NMR (CDCl3, 150 MHz): 
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f1 (ppm)  

Me

H

O

227
C22H30O4S

M = 390.54 g/mol

O

O

OPh

S



274  APPENDICES 

1H NMR (CD2Cl2, 400 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CD2Cl2, 100 MHz): 
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 

13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 

13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CD2Cl2, 400 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 

13C NMR (CD2Cl2, 100 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)  
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1H NMR (CDCl3, 400 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.513.013.514.0
f1 (ppm)  

 
13C NMR (CDCl3, 100 MHz): 
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1H NMR (C6D6, 400 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (C6D6, 100 MHz): 
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 
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1H NMR (CD2Cl2, 400 MHz): 

0.51.01.52.02.53.03.54.04.55.05.56.06.5
f1 (ppm)  

 

13C NMR (CDCl2, 100 MHz): 
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220
f1 (ppm)
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1H NMR (CD2Cl2, 400 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CD2Cl2, 100 MHz): 

0102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

0102030405060708090100110120130140150160170180190200210220
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

0102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3,150 MHz): 

-100102030405060708090100110120130140150160170180190200210220
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 

13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)

17
.8
0

22
.0
7

24
.0
6

29
.2
5

37
.6
0

37
.8
5

39
.9
2

41
.0
7

42
.2
6

46
.5
0

50
.2
4

21
3.
16

 

Me

190
C13H22O

M = 194.31 g/mol

H
O



292  APPENDICES 

1H NMR (CDCl3, 100 MHz): 

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 75 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz): 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.513.013.514.0
f1 (ppm)  

 

13 C NMR (CDCl3, 100 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

0102030405060708090100110120130140150160170180190200210220
f1 (ppm)
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C17H30O2

M = 266.42 g/mol
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 
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C17H32O3

M = 284.43 g/mol
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

 
 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)  
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 

13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)  
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 

13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220
f1 (ppm)  
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)

-4
.6
5

-3
.4
7

17
.9
5

19
.9
9

22
.2
2

24
.4
4

26
.0
1

29
.9
5

32
.4
8

36
.7
1

41
.8
2

51
.5
6

56
.8
7

69
.3
5

77
.4
6

11
5.
97

13
7.
57

 

HO

Me

H

H

OTBS

303
C22H42O2Si
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

0102030405060708090100110120130140150160170180190200210220
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220
f1 (ppm)

-4
.5
5

-3
.4
4

4.
60

14
.9
9

18
.0
1

20
.2
1

22
.2
9

24
.3
4

26
.0
7

30
.0
7

41
.9
0

51
.7
8

56
.7
6

66
.3
1

70
.8
4

77
.8
3

 

Et3SiO

Me

H

Et3SiO
Me

H

OTBS

305
C34H72O3Si3
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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C29H58O2Si2

M = 494.94 g/mol
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1H NMR (CDCl3, 300 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 

13C NMR (CDCl3, 75 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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IEt3SiO
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C12H25IOSi

M = 340.32 g/mol
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 

13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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C31H58O2Si
M = 490.88 g/mol



A2 1H and 13C NMR Spectra  317 
 
1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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C25H44O2

M = 376.62 g/mol
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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C25H42O2

M = 374.60 g/mol
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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C28H48O2

M = 416.68 g/mol
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1H NMR (CDCl3, 400 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 100 MHz): 

0102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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PMBO I

330
C14H19IO2

M = 346.20 g/mol
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1H NMR (CDCl3, 300 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 75 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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C18H32O2

M = 280.45 g/mol
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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332
C18H30O2

M = 278.43 g/mol
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

0102030405060708090100110120130140150160170180190200210220
f1 (ppm)
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333
C32H50O4

M = 498.74 g/mol
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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C24H42O3

M = 378.59 g/mol
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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337
C25H40O2

M = 372.58 g/mol
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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340
C40H76O2SiSn

M = 735.83 g/mol
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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C28H49IO2Si

M = 572.68 g/mol
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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C29H52O2Si

M = 460.81 g/mol

Ot-BuMe

H

Me
H

TMS
OH



A2 1H and 13C NMR Spectra   329 
 

1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 

13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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M = 534.85 g/mol
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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M = 635.00 g/mol
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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C41H60O3Si

M = 629.00 g/mol
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1H NMR (CDCl3, 300 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 75 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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IEt3SiO
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C10H21IOSi

M = 312.26 g/mol
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 

13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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C22H40O3

M = 352.55 g/mol
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

102030405060708090100110120130140150160170180190
f1 (ppm)
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360
C27H48O4

M = 436.67 g/mol
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1H NMR (CDCl3, 600 MHz):  

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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361
C27H46O4

M = 434.65 g/mol
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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C10H21IOSi

M = 312.26 g/mol
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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365
C37H68O5Si

M = 621.02 g/mol

Me

OTBSPivO

H

OH H

Me Ot-Bu
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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Me

OTBSHO

H

OH H

Me Ot-Bu

366
C32H60O4Si

M = 536.90 g/mol
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1H NMR (CDCl3, 600 MHz): 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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Me

OTBSp-tolO2S

H

OH H

Me Ot-Bu

367
C39H66O5SSi

M = 675.09 g/mol
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1H NMR (CDCl3, 300 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 75 MHz): 

0102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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OPMB

I

378
C13H15IO2

M = 330.16 g/mol
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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H

Me Ot-BuPMBO Me
H

379
C37H62O4Si

M = 598.97 g/mol

Et3SiO
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1H NMR (CDCl3, 600 MHz): 

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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H

Me Ot-BuPMBO Me
H

O

382
C31H46O4

M = 482.69 g/mol
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1H NMR (CDCl3, 600 MHz): 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)
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13C  NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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H

Me Ot-BuMeO Me
H

HO

single diastereomer,
relative configuration

not assignable

380
C24H42O3

M = 378.59 g/mol

*
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1H NMR (CDCl3, 600 MHz): 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)
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13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220
f1 (ppm)
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H

Me Ot-BuMeO Me
H

O

single diastereomer,
relative configuration

not assignable

385
C24H40O3

M = 376.57 g/mol

*
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1H NMR (CDCl3, 400 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 100 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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399
C13H13NO3

M = 231.25 g/mol

O

N

O
O

Ph
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1H NMR (CDCl3, 400 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 100 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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400
C7H19NO3

M = 273.33 g/mol

OMe

N

O
O

Ph
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1H NMR (CDCl3, 400 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 100 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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OMe

N

O
O

Ph

ONO

O

Ph

Me

401
C29H32N2O6

M = 504.57 g/mol
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1H NMR (CDCl3, 400 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 100 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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OMe

402
C9H17NO2

M = 171.24 g/mol

N
O
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1H NMR (CD2Cl2, 400 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CD2Cl2, 100 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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OMe

404
C7H12O2

M = 128.17 g/mol

OH
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1H NMR (CDCl3, 300 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 75 MHz): 

0102030405060708090100110120130140150160170180190200210220
f1 (ppm)
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N

O
Ph

Me

OH

Me

392
C17H25NO2

M = 275.39 g/mol

3.6:1 mixture
of rotamers
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1H NMR (CDCl3, 400 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 

13C NMR (CDCl3, MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)  

HO O

Me

H

407
C13H22O3

M = 226.31 g/mol

O

H
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1H NMR (CDCl3, 600 MHz):  

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

102030405060708090100110120130140150160170180190200210
f1 (ppm)

16
.4
7

16
.7
9

17
.8
3

18
.0
1

20
.8
6

22
.5
9

29
.1
6

35
.5
5

44
.2
2

44
.2
6

45
.8
5

46
.4
1

50
.0
9

73
.4
1

74
.1
5

11
0.
33

11
0.
49

14
9.
05

14
9.
15

17
9.
27

17
9.
60

 

HO O

OH

Me

H

408
C16H28O3

M = 268.39 g/mol

d.r. ≈ 1:1
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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single diasteromer
unknown relative configuration

O

Me

HO

408
C16H26O2

M = 250.38 g/mol

*
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1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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TBDPSO

Me

H

EtOOC

412
C36H54O3Si

M = 562.90 g/mol
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1H NMR (CDCl3, 300 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 75 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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OH

O
PMBO

417
C10H12O4

M = 196.20 g/mol
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1H NMR (CDCl3, 600 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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O

O

Me

H

418
C32H54O5Si

M = 546.85 g/mol

single diasteromer
unknown relative configuration

PMBO
O

TBS

*



A2 1H and 13C NMR Spectra  359 
 

 

1H NMR (CDCl3, 300 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 

13C NMR (CDCl3, 75 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)  

N

O
O

O

434
C11H17NO3

M = 211.26 g/mol



360      APPENDICES 
 

 

1H NMR (CDCl3, 600 MHz):  

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 75 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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N

O
O

O

Me

439
C13H21NO4

M = 255.31 g/mol

OH

d.r. = 94:6
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1H NMR (CDCl3, 600 MHz):  

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0
f1 (ppm)
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13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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N

O
O

O

Me

443
C20H25BrN2O5

M = 453.33 g/mol

O

O

N
H

Br
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1H NMR (CDCl3, 600 MHz): 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 

13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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N

O
O

O

Me

445
C15H23NO5

M = 297.35 g/mol

O

O
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1H NMR (CDCl3, 300 MHz):  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 75 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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C15H23NO5

M = 297.35 g/mol
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1H NMR (CDCl3, 300 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)  

 
13C NMR (CDCl3, 75 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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446
C10H11F3O5S

M = 300.25 g/mol



A2 1H and 13C NMR Spectra  365 
 

 

1H NMR (CDCl3, 600 MHz):  

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)  

 
13C NMR (CDCl3, 150 MHz): 

-100102030405060708090100110120130140150160170180190200210220230
f1 (ppm)
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1H NMR (CDCl3, 600 MHz):  
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13C NMR (CDCl3, 150 MHz): 
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