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1. Einleitung 
 

1.1. Das humane Immunsystem 

Der menschliche Körper ist kontinuierlich einer Vielzahl von Angriffen durch 

Krankheitserreger und andere exogene Noxen ausgesetzt. Aber nicht nur externe Faktoren 

sind eine Bedrohung für die Integrität des menschlichen Körpers, sondern auch interne 

Faktoren, wie z.B. durch Transformationen veränderte Körperzellen, können eine Gefahr für 

das Wohl der eigenen Gesundheit darstellen. Deshalb haben schon 

entwicklungsgeschichtlich „einfache“ Organismen, wie z.B. Einzeller, ein Immunsystem  

entwickelt (vom lateinischen immunis für „unversehrt“, „unberührt“), das durch das 

Zusammenspiel eines komplexen Netzwerkes in der Lage ist, bedrohende Einflüsse für die 

Integrität einer Zelle oder eines gesamten Organismus zu erkennen und zu neutralisieren. 

Eine zentrale Rolle kommt hierbei der Fähigkeit des Immunsystems zu, zwischen 

körpereigenen Stoffen und Bestandteilen von körperfremden Organismen wie  Bakterien, 

Parasiten, Pilzen, Viren, aber auch Tumorzellen zu unterscheiden. Einzeller und einfache 

Organismen verfügen hierbei über relativ rudimentäre Abwehrmechanismen, die 

unspezifisch gegen fremde Organismen vorgehen. Diese Mechanismen entsprechen in etwa 

der angeborenen Immunabwehr und sind auch heute noch in höheren Lebewesen 

vorzufinden. Zusätzlich entwickelte sich jedoch bei den Wirbeltieren eine äußerst komplexe 

und anpassungsfähige adaptive Immunabwehr. 

 

1.1.1. Komponenten des humanen Immunsystems 

Wie bereits oben aufgeführt, lässt sich das Immunsystem grob in zwei große Teile splitten, 

die sich durch ihre Effektormechanismen, den Zeitpunkt ihres Eingreifens bei einer Infektion, 

ihre Systeme der Fremderkennung wie auch ihren genetischen Bauplan klar unterscheiden 

lassen. Die erworbene oder auch adaptive Immunabwehr zeichnet sich hierbei durch eine 

wesentlich höhere Spezifität gegenüber dem Erreger aus. Von zentraler Rolle sind hierbei die 

beiden Klassen von Lymhozyten (B- und T-Lymphozyten), die auf ihrer Oberfläche eine 

Vielzahl von hochspezifischen Antigen-erkennenden Molekülen – ihre Rezeptoren - tragen. 

Das Besondere ist, dass jeder Lymphozyt nur in der Lage ist, ein für sich spezifisches 

Antigen-erkennendes Molekül zu synthetisieren. Um ein möglichst großes Spektrum 

möglicher Pathogene abdecken zu können, bedienen sich sowohl B- als auch T-

Lymphozyten bei der Synthese des für sich spezifischen Antigen-erkennenden Moleküls der 
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sogenannten somatischen Rekombination. Hierbei werden die Antigen-erkennende, Molekül  

kodierenden Gensegmente umgelagert, und somit eine größere Vielfalt an möglichen 

Zielstrukturen erreicht. Durch diese Genumlagerung erhöht sich die Anzahl erkennbarer 

Pathogene um ein Vielfaches im Vergleich zu einer einfachen „ein Gen ein Protein“ 

Kodierung.  Somit erhöht sich die Wahrscheinlichkeit, dass es zu einem körperfremden 

Antigen einen „passenden“ Lymphozyten gibt. Es ergibt sich hieraus ein extrem großes 

Repertoire an spezifischen Rezeptoren, die auf einzelnen B- und T-Zellen exprimiert werden. 

Erkennt nun einer dieser hoch spezifischen Lymphozyten ein für sich passendes Antigen, so 

kann es zu einer Aktivierung kommen, die sich unter anderem auch in einer Proliferation, 

Synthese und Sekretion von für die Zelle spezifischen Stoffen zeigt. Durch diese sogenannte 

klonale Expansion ist im Anschluss eine hoch spezifische Abwehr eines Pathogens möglich. 

Eine derartige klonale Vermehrung und Ausdifferenzierung eines spezifischen Lymphozyten 

benötigt in der Regel jedoch eine Zeitspanne von mehr als 96 Stunden, so dass vom 

eigentlichen Eindringen eines Pathogens bis zu dessen effektiven Bekämpfung eine Lücke 

entsteht. Diese Lücke zu „überbrücken“ ist neben der Steuerung der adaptiven Immunität 

eine wichtige Aufgabe der angeborenen Immunabwehr. Diese erfüllt hierbei mehrere Rollen. 

Auf der einen Seite ist sie in der Lage, bereits zu einem frühen Zeitpunkt, etwaige 

eindringende „externe Angreifer“ zu erkennen und durch Ausschüttung von 

Entzündungsmediatoren in „Schach zu halten“. Andererseits ist es Aufgabe des 

angeborenen Immunsystems, Antigene zu prozessieren und zu präsentieren, damit die 

adaptive Immunabwehr eine spezifische Abwehrreaktion generieren kann. Das angeborene, 

wie auch das adaptive Immunsystem stellen somit zwei Komponenten eines  verzahnten 

Systems dar, dass die Aufgabe erfüllt, den menschlichen Körper vor externen 

Gefahrenquellen zu beschützen. 

 

1.1.2. Erkennungsmechanismen des angeborenen und des adaptiven Immunsystems 

Der Hauptunterschied zwischen angeborenem und adaptivem Immunssystem sind die 

Mechanismen, die zur Generierung der Antigen-erkennenden Strukturen der jeweiligen 

Immunsystemkomponenten führen.  

Die Ausbildung des  angeborenen Immunsystems ist ein gutes Beispiel für das darwinsche 

Evolutionsprinzip. Es ist in einer rudimentären Form bereits bei Einzellern nachweisbar (z.B. 

Amöben) und bietet dort bereits einen einfachen Schutz gegenüber externen Angriffen. Die 

genaue Struktur der hierfür verwendeten Rezeptoren ist Keimbahn-kodiert. Die Spezifität 

eines Rezeptors ist somit genetisch determiniert und wird vererbt. Dieses System besitzt 
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sowohl Vor- als auch Nachteile. Auf der einen Seite werden so Rezeptoren, die sich im Laufe 

der Evolution als besonders nützlich im Kampf gegen mikrobielle Erreger gezeigt haben, von 

einer Generation an die nächste weiter gegeben. Auf der anderen Seite ist jedoch das 

Genom von seiner Größe her limitiert. Man vermutet, dass nur ca. 0,1 bis 1 Prozent der 

20.000 kodierenden Gene des menschlichen Genoms mit dem Immunsystem in Verbindung 

gebracht werden können. Jedoch muss hierbei beachtet werden, dass das Projekt zur 

Entschlüsselung des menschlichen Genoms noch nicht vollendet ist.  

Dem gegenüber bedient sich das adaptive Immunsystem der T- und B-Zell-Rezeptoren, die 

während der Lymphozytenreifung durch Rekombination der Rezeptor-kodierenden Gene 

somatisch gebildet werden. Jeder Lymphozyt besitzt somit nur einen einzigen, strukturell 

spezifischen Rezeptor. Die eigentliche Struktur des Rezeptors ist damit nicht genau in der 

Keimbahn festgelegt und so nicht auf ein spezifisches Antigen festgelegt. Aus diesem zufällig 

generierten Pool an Lymphozyten werden nun im Laufe des Lebens, durch positive wie auch 

negative Selektionsmechanismen, diejenigen ausgewählt, die auf ein für sie spezifisches 

Antigen treffen und in der Folge klonal expandieren. Man geht davon aus, dass auf diesem 

Wege im Laufe des Lebens durch die somatische Rekombination ca. 1014 bis 1019 

unterschiedliche T-Zellrezeptoren (TZR) und Immunglobuline (Ig) gebildet werden. Der 

Nachteil liegt bei dieser hoch spezifischen Generierung der Rezeptoren jedoch darin, dass 

die Generierung rein zufällig geschieht, und dass diese hohe Diversifizität nicht durch die 

Keimbahn weiter gegeben werden kann. Somit müssen diese von   Generation zu 

Generation neu entwickelt werden. 

Die Zahl der Erkennungsmechanismen ist dennoch im Vergleich zu der großen Anzahl der 

heterogenen und einem ständigen Selektionsdruck unterliegenden Mikroorganismen stark 

begrenzt. Deshalb haben sich die sogenannten pattern-recognition-Rezeptoren (PRRs) 

herausgebildet. Hierbei handelt es sich um Rezeptoren, die einige hoch-konservative 

Strukturen, die sogenannten pathogen-associated molecular patterns (PAMPs), erkennen, 

die den meisten Mikroorganismen gemeinsam sind. Obwohl diese Strukturen eine äußerst 

heterogene Gruppe darstellen, zeichnen sie sich jedoch durch zahlreiche gemeinsame 

Eigenschaften aus: 

(1) PAMPs kommen im Wirtsorganismus nicht vor und sind spezifisch für mikrobielle Erreger. 

(2) Die durch das angeborene Immunsystem erkannten Strukturen sind essenziell für das 

Überleben des Mikroorganismus und können daher, trotz Selektionsdruck des Wirts, nicht 

mutieren.  

(3) Bei den erkannten Strukturen handelt es sich in der Regel um invariante Strukturen, die 

von einer großen Zahl von pathogenen Erregern geteilt werden. 
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Die PRRs bilden somit eine zentrale Rolle in der Erkennung pathogener Keime durch das 

angeborene Immunsystem. Im Gegensatz zum adaptiven Immunsystem werden diese 

Rezeptoren nicht nur auf einer spezifischen Zelle exprimiert, sondern finden sich auf einer 

Vielzahl von unterschiedlichen Effektorzellen, insbesondere auf Antigen-präsentierenden 

Zellen (APC) wie Makrophagen, Monozyten, dendritischen Zellen (DC), sowie auf B-Zellen. 

Hierbei exprimieren alle Zellen einer bestimmten Subpopulation Rezeptoren einer 

identischen Spezifität. Wie man heute weiß, erfüllen unter anderem Mitglieder der Familie der 

Lektin-Rezeptoren [Banchereau, 2000], der Scavenger-Rezeptoren [Peiser, 2002], der Toll-

like-Rezeptoren (TLR) [Barton, 2002a], der NOD-Rezeptoren [Inohara, 2003] und der RIG-I 

like Helikases [Yoneyama, 2004] die Kriterien oben beschriebener PRRs. 

 

1.1.3. Die Familie der Toll-Like-Rezeptoren 

Bereits 1992 postulierte Charles Janeway die Existenz bestimmter PRRs. Neben der 

eigentlichen Aufgabe dieser Rezeptoren, nämlich der Initiation der raschen Komponente der 

angeborenen Immunantwort, sah er eine weitere wichtige Aufgabe in der Einleitung und 

Modulation der adaptiven Immunantwort [Janeway et al. 1992]. 

Die ersten experimentellen Bestätigungen dieser These über derartige Erkennungs-

mechanismen gelangen durch die Aufdeckung der Struktur, wie auch der Rolle des Toll-

Rezeptors für die angeborene Immunität der Drosophila [Lemaitre, 1996; Williams, 1997]. 

Kurz darauf gelang die Entdeckung eines murinen Toll-Rezeptor-Homologs, das als 

verantwortliches Gen für eine Immunantwort nach Präsentation von Lipopolysacharid (LPS), 

einem Bestandteil der Membran gramnegativer Bakterien, in zwei natürlichen Maus-

Mutanten identifiziert werden konnte [Poltorak, 1998; Hoshino, 1999; Qureshi, 1999]. 

1996 konnten Lemaitre et al. die Bedeutung des Toll-Rezeptors in der Abwehr von 

Pilzinfektionen bei Drosophila zeigen [Lemaitre, 1996]. Des weiteren erkannte man ein Jahr 

später, dass ein Toll-vewandtes Protein namens 18-wheeler eine zentrale Rolle in der 

Abwehr bakterieller Angriffe bei Drosophila einnimmt [Williams, 1997]. Ein Abgleich mit der 

humanen Gendatenbank enthüllte eine dem Drosophila-Toll-Gen verwandte Sequenz im 

menschlichen Genom, die später TLR-1 benannt wurde [Nomura, 1994; Taguchi, 1996]. 

Weiterhin fanden Janeway et al. auf der Suche nach Erkennungsstrukturen für das 

angeborene Immunsystem des Menschen, einige Strukturen, die den Proteinen des Toll-

Rezeptors der Drosophila sehr ähnelten - hTLR4 [Medzhitov, 1997b]. Die ersten funktionellen 

Untersuchungen bekräftigten ein weiteres Mal die These, die Charles Janeway bereits 1992 
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aufgestellt hatte. Sie zeigten die Wichtigkeit für die Aktivierung des angeborenen, sowie des 

adaptiven Immunsystems. 

Als Poltorak et al. 1998 zeigen konnten, dass Mäuse mit einer Mutation des TLR4-Gens nicht 

auf LPS-Stimulation reagierten, war der eindeutige Beweis erbracht, dass TLR4 einer der 

PRRs schlechthin darstellte [Poltorak, 1998]. Ähnliche Beobachtungen machten auch andere 

Arbeitsgruppen [Hoshino, 1999; Qureshi, 1999]. 

Bis heute sind in der Maus und im Menschen 12 bzw. 10 Toll-Like-Rezeptoren (TLR) 

bekannt, wobei TLR 1-10 sowohl bei der Maus, als auch beim Menschen zu finden sind. Der 

genetische Code für TLR 11 findet sich ebenfalls im murinen und humanen Genom, jedoch 

findet sich im menschlichen Genom ein Stop-Codon [Zang, 2004], so dass dieser beim 

Menschen nicht exprimiert wird. Für alle diese TLRs wurden bisher Agonisten gefunden, 

wobei die meisten eines mikrobiellen Ursprungs sind. Außerdem lässt sich das Spektrum der 

erkannten Strukturen durch Rezeptoren-Heterodimerisierung unter einander um ein 

vielfaches erhöhen [Ozinsky, 2000]. So verfügt z.B. TLR 2 über ein sehr breites Spektrum an 

unterschiedlichen mikrobiellen Zielstrukturen. Dies wird dadurch erreicht, dass sich TLR 2 mit 

TLR 1 oder TLR 6 zusammenlagern kann. 

Im Jahr 2000 konnte jedoch gezeigt werden, dass TLRs nicht nur auf exogene mikrobielle 

Proteine reagieren, sondern auch auf endogene Stoffe, die beispielsweise aus Zellen bei 

deren Zerstörung frei gesetzt werden. Hierunter findet man Hitzeschockproteine [Ohashi, 

2000], Bestandteile der extrazellulären Matrix wie z.B. Fibronektin [Okamura, 2001], aber 

auch Bestandteile des Zellkerns [Leadbetter, 2002]. Ein Begriff der sich für diese endogenen 

Liganden der PRRs konstituiert hat ist DAMPs, was in Analogie zu PAMPs für danger 

associated molecular patterns steht. 

Tabelle 1 gibt einen aktuellen Überblick über die verschiedenen Liganden, die bis heute 

bekannt sind [Kiyoshi und Shizuo, 2005] 

 

TLR Adapterprotein PAMP Herkunft Referenz 

TLR1 MyD88 kooperiert mit TLR2   

TLR2 

 

MyD88 und evtl. 

Mal 

Lipoproteine 

 

Gram-positive 

Bakterien 

[Takeuchi, 1999a] 

Zyomosan Hefen [Ozinsky, 2000] 

Macrophage-activating 

lipopeptide 2 (MALP-2) 

Mykoplasmen [Takeuchi, 2000] 

Lipoarabinomannan Mykobakterien [Underhill, 1999] 



6 
 

(LAM) 

TLR3 TRIF Doppelsträngige 

Ribonukleinsäure (RNA) 

Viren [Alexopoulou, 2001] 

TLR4 Mal mit MyD88 / 

TRAM mit TRIF 

LPS Gram-negative 

Bakterien 

[Poltorak, 1998; 

Hoshino, 1999] 

Protein F RSV [Kurt-Jones, 2000] 

Hsp 60 Wirt [Ohashi, 2000] 

Hyaluronan Wirt [Termeer, 2002] 

Fibronektin Wirt [Okamura, 2001] 

TLR5 MyD88 Flagellin Bakterien [Hayashi, 2001] 

TLR6 MyD88 kooperiert mit TLR2   

TLR7 MyD88 Guanosin-Analoga nicht bekannt [Hemmi, 2002] 

  Einzelsträngige und 

doppelsträngige 

Ribonukleinsäure (RNA) 

Viren [Heil, 2004] 

TLR8 MyD88 Guanosin-Analoga nicht bekannt [Jurk, 2002] 

  Einzelsträngige 

Ribonukleinsäure (RNA) 

Viren [Heil, 2004] 

TLR9 MyD88 CpG-Motive Bakterien, Viren [Hemmi, 2000] 

TLR10 MyD88 nicht bekannt nicht bekannt  

TLR11 MyD88 TgPRF Bakterien [Yarovinsky, 2005] 

TLR12 MyD88 TgPRF Bakterien  

Tabelle 1 Humane Toll-like-Rezeptoren und ihre Liganden 

 

Die Aktivierung von TLRs durch mikrobielle Stimulation initiiert die Expression von 

verschiedenen Genen, die an einer immunologischen Antwort beteiligt sind [Akira, 2004]. 

Einige TLRs bilden hierfür Heterodimere aus wie z.B. TLR 2 mit TLR1 und TLR 6, während 

andere Homodimere ausbilden. Diese Ausbildung eines Dimers führt zur Aktivierung einer 

Signaltransduktion. Es zeigte sich, dass allen TLRs die Verwendung des myeloid 

differentiation factor 88 (MyD88) als Adapterprotein zur Induktion von pro-inflammatorischen 

Zytokinen gemeinsam war [Hayashi, 2001 und Hemmi, 2002]. Obwohl sich alle TLRs dieses 

Signaltransduktionsweges bedienen, induzieren unterschiedliche TLRs durch Ihre 

Aktivierung unterschiedliche Zytokine. Dies ist unter anderem dadurch bedingt, dass TLRs 

auf unterschiedlichen Zellpopulationen exprimiert werden, die unterschiedliche Zytokinmuster 
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a priori produzieren. Andererseits rekrutieren die unterschiedlichen TLRs unterschiedliche 

Adapterproteine und schlagen somit spezifische Signaltransduktionswege ein. So zeigte sich 

früh nach der Entdeckung von MyD88, dass es auch einen weiteren, MyD88-unabhängigen 

Aktivierungsweg gibt. In MyD88-defizienten Mäusen ist zwar die MyD88-assoziierte 

Zytokinproduktion Produktion aufgehoben, dennoch gelang der Nachweis von 

Interferon-induzierbaren Genen und der Entstehung von DCs nach einer Stimulation von 

TLR4 [Kawai, 1999; Kaisho, 2001; Kawai, 2001]. Es stellte sich heraus, dass für diese 

MyD88-unabhängige Aktivierung das Molekül TRIF (TIR domain-containing adapter inducing 

IFN-β) verantwortlich war [Yamamoto, 2002b; Oshiumi, 2003]. Während alle TLRs MyD88 

aktivieren, initiiert TLR3 seine Signaltransduktionskaskade ausschließlich über TRIF. TLR4 

löst eine sehr komplexe Signaltransduktionskaskade aus, wobei einerseits über das 

Adapterprotein Mal MyD88 aktiviert wird und andererseits über TRAM TRIF aktiviert wird 

(siehe Abb. 1). 
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1.2. Mechanismen der angeborenen Immunantwort 

1.2.1. Natürliche Killerzellen 

Den natürlichen Killerzellen (NK-Zellen) kommt in der angeborenen Immunabwehr eine 

zentrale Rolle zu, da diese in der Lage sind infizierte oder auch Tumorzellen zu eliminieren, 

ohne zuvor mit einem Krankheitserreger selbst in Kontakt gestanden zu haben. Diese 

Eigenschaft brachte ihnen 1975 bei ihrer Entdeckung auch ihren Namen ein und blieb lange 

Zeit auch das einzige Klassifikationskriterium. 

1991 konnte von Mingari gezeigt werden, dass NK- und T-Zellen gemeinsame 

Vorläuferzellen im Knochenmark haben. Morphologisch unterscheiden sich jedoch natürliche 

Killerzellen deutlich von T-Lymphozyten. So tragen diese nicht den für T-Zellen typischen 

CD3-Komplex, zeigen aber eine Expression der Oberflächenmarker CD56 und CD16, womit 

eine Unterscheidung zu den übrigen Lymphozyten möglich ist. 

Ähnlich den zytotoxischen T-Zellen liegt ihr Wirkspektrum in der Produktion von Zytokinen, 

sowie einer direkten, gegen eine Zielzelle gerichteten Zytotoxizität. Da diese Zelle jedoch 

keinen CD3-Komplex besitzt, erfolgt die eigentliche Aktivierung über einen der T-Zelle 

ähnlichen und einen komplett unterschiedlichen Weg. 

Trifft eine NK-Zelle auf eine mit Antikörper-markierte Zielzelle, so kann sie den konstanten 

Abschnitt des IgG-Antikörpers über die auf ihr vorkommenden Fcγ-Rezeptoren erkennen und 

binden. Hierdurch kommt es zu einer, vom T-Lymphozyten bekannten, 

Antikörper-vermittelten zellgebundenen Zytotoxizität (ADCC = antibody dependent cellular 

cytotoxicity). 

Einen vollkommen anderen Weg beschreibt der, in den 1980er Jahren von dem 

schwedischen Immunologen Klas Kärre entdeckte, Mechanismus des "Fehlenden Selbst" 

oder auch „missing self“. Hierbei bindet die NK-Zelle mittels einer Vielzahl von 

killer-activating receptors und killer-inhibitory receptors (KIRs) potentielle Zielzellen. Bindet 

nun eine NK-Zelle mittels eines killer-activating receptors an eine Zelle, kommt es zur 

Aktivierung der zytotoxischen Mechanismen der natürlichen Killerzelle. Im Normalfall wird 

diese Aktivierung jedoch durch eine Interaktion der killer-inhibitory receptors (KIRs) mit 

MHC-I-Molekülen der potentiellen Zielzelle unterbunden. Kommt es also nicht zu dieser 

Interaktion des killer-inhibitory receptors (KIR) mit dem MHC-I-Molekül, so wird die Zielzelle 

lysiert. Dieser Aktivierungmechanismus spielt insbesondere bei viral infizierten und tumorös 

veränderten Zellen eine wichtige Rolle, da es bei diesen häufig zu einem Verlust oder einer 

verminderten Expression des MHC-I-Komplexes kommt. 
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1.2.2. Interferone – lösliche Stoffe der angeborenen Immunabwehr 

Das Interferon (IFN) erhielt seinen Namen, als man entdeckte, dass es bei Zugabe dieses 

Proteins zu viral infizierten Zellen zu einer Hemmung der viralen Replikation (lat.: interferre) 

kam. Seit der Entdeckung 1957 durch Isaacs fanden sich immer neue Vertreter, so dass man 

mittlerweile von einer Protein-Familie spricht. Diese große Familie, die aus IFN-α, -β, IFN-γ 

und IFN-ω besteht, wird im Hinblick auf die Ziel-Rezeptoren, in zwei weitere Subgruppen, das 

IFN Typ I und das IFN Typ II, unterteilt. IFN-γ ist bisher als einziger Vertreter des IFN Typ II 

bekannt. Es unterscheidet sich sowohl in seiner Form, als auch in seiner Funktion 

grundsätzlich vom IFN-Typ I. Dieses hat seine Hauptaufgabe vor allem bei der Immunantwort 

im Rahmen viralen Infektionen und aktiviert eine Vielzahl von Effektorzellen der 

angeborenen-, wie auch adaptiven Immunität.  

 

1.3. Mechanismen der adaptiven Immunantwort 

1.3.1. Die αβ T-Zellen 

Ungefähr 20 Prozent der im Blut vorkommenden Leukozyten werden durch die inhomogene 

Gruppe der Lymphozyten gebildet. Innerhalb dieser Gruppe stellen den größten Anteil von 

ca. 70% die αβ T-Zellen. Die T-Zellen haben ihren Namen durch die, nach ihrer Entstehung 

im Knochenmark, im Thymus ablaufende Ausreifung. Charakteristisch für diese Zellart ist 

das Vorkommen eines T-Zell-Rezeptors (TCR) mit dem jede Zelle in der Lage ist ein 

spezifisches Antigen nach dem Schloss-Schlüssel Prinzip zu erkennen. Anders als zum 

Beispiel der B-Lymphozyt ist der T-Lymphozyt jedoch nicht in der Lage freie Antigene zu 

erkennen. Die Antigene müssen hierfür in Form kurzkettiger Peptide in einem Komplex mit 

den sogenannten Haupthistokompatibilitätskomplexen (major histokompatibility complex, 

MHC) präsentiert werden. Je nachdem durch welches MHC Molekül das Antigen präsentiert 

wird, unterscheidet man zwei große Hauptgruppen der T-Lymphozyten. CD4+ T-

Lymphozyten erkennen Antigene im Komplex mit dem MHC-II-Molekülen, während CD8+  T-

Lymphozyten dies im Komplex mit MHC-I-Molekülen tun. 

Dieser Stimulus alleine reicht jedoch noch nicht zur vollständigen Aktivierung eines  

T-Lymphozyten aus. Zusätzlich zu der Aktivierung über den TCR benötigen die Zellen 

weitere Stimulation durch ko-stimulatorische Signale. Fehlen diese, kommt es bei den CD4+ 

Helferzellen nur zu einer unvollständigen Aktivierung oder sogar dem Stadium einer T-Zell-

Anergie. 
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Die zusätzlichen ko-stimulatorischen Signale werden normalerweise durch Antigen-

präsentierende Zellen (APCs) über Moleküle der B7-Familie (unter anderem CD80 und 

CD86) bereitgestellt. Im Anschluss an diese erste Aktivierung kommt es unter dem Einfluss 

des Zytokins IL-2 zu einer Proliferation und Differenzierung des aktivierten T-Lymphozyten. 

Diese "geprimten" αβ T-Lymphozyten sind von nun an in der Lage bei Antigenkontakt leichter 

aktiviert zu werden. Je nachdem über welchen Rezeptor der T-Lymphozyt das für sich 

spezifische Antigen erkennt, kommt es zu unterschiedlichen Reaktionen. CD8+ T-

Lymphozyten produzieren in der Folge einer Aktivierung bestimmte Zytokine oder lysieren 

die Antigen-tragenden Zellen. CD4+ Lymphozyten führen eher zu einer Aktivierung von B-

Lymphozyten. 

 

1.4. Dendritische Zellen 

Eine für die T-Lymphozyten-Aktivierung äußerst wichtige Zelle sind die dendritischen Zellen 

(DCs). Es handelt sich hierbei um eine heterogene Gruppe von Zellen, die aufgrund ihrer 

Zellform, wie auch ihrer funktionellen Charakteristika zu dieser Gruppe zusammengefasst 

werden.  

Erst die Präsentation eines Antigens über das MHC-Molekül, in Verbindung mit den durch die 

DC zusätzlich exprimierten ko-stimulatorischen Molekülen, macht eine effektive T-Zell-

Aktivierung möglich. Somit spielt die DC in der adaptierten Immunantwort eine zentrale Rolle. 

Um diese Aufgabe erfüllen zu können, residieren DCs in der Peripherie, wie z.B. in den 

oberen Hautschichten. In diesem Zustand phagozytieren und prozessieren DCs Antigene 

aus ihrer Umgebung. Kommt es gleichzeitig zu einer Aktivierung ihrer PRRs, wandern DCs in 

ihre drainierenden Lymphknoten und präsentieren das prozessierte Antigen an T-Zellen, die 

durch den Lymphknoten zirkulieren. Auf ihrem Weg in die sekundär-lymphatischen Organe 

reifen die dendritischen Zellen unter dem Einfluss verschiedener koordinierter Aktionen von 

Chemokinen und ihren Rezeptoren aus. Kommt es zu dem Kontakt mit einer Antigen-

spezifischen T-Zelle kann diese nun geprimt werden, sich klonal expandieren und in eine 

Effektorzelle umwandeln.  

Obwohl bis heute ein morphologisches Kriterium zur Einteilung einer Zelle in die Gruppe der 

DCs fehlt, lassen sich phänotypisch im peripheren Blut des Menschen doch zwei 

Subpopulationen – die myeloide unreife CD11c-positive DC (MDC) und die CD11c-negative 

plasmazytoide DC (PDC) - unterscheiden [O'Doherty, 1994]. 
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1.4.1. Die myeloide dendritische Zelle 

 Bei den myeloiden unreifen CD11c-positiven DCs (MDCs) handelt es sich um, aus 

Knochenmark stammenden, Leukozyten, die praktisch in allen menschlichen Organen 

vorkommen. Ihre Hauptaufgabe liegt in der Antigenaufnahme, der Prozessierung und der 

anschließenden Präsentation gegenüber T-Lymphozyten.  

Im Anschluss an die oben beschriebene Wanderung   in die sekundär-lymphatischen Organe 

zeigen die DCs alle nötigen ko-stimulatorischen Signale, die sie, u.a. über Moleküle der B7-

Familie (u. a. CD80 und CD86), zur vollständigen T-Zell-Aktivierung befähigen. Da jede 

Aufnahme eines Fremd-Antigens auch mit der Aufnahme von Eigenantigenen verbunden ist, 

müssen diese DCs jedoch auch in der Lage sein Toleranz zu induzieren. Steinmann et al. 

konnten 2003 zeigen, dass diese Fähigkeit zur Induktion einer Immunität oder einer Toleranz 

vom Aktivierungsgrad einer DC abhängt. Während voll aktivierte DCs eine hohe Menge an 

MHC-II- und ko-stimulatorischen Molekülen aufweisen, zeigen die ebenfalls reifen, aber 

inaktiven DCs (quiescent DC) nur kleine Mengen an MHC-II-Molekülen und erzeugen 

hierdurch eine Toleranz. 

Wie bereits oben beschrieben, präsentieren DCs exogene Antigene als prozessierte Proteine 

in einem Komplex mit dem MHC-II-Protein. Körpereigene, also endogene Antigene oder aber 

auch Virusbestandteile werden normalerweise im Komplex mit MHC-I präsentiert. Kurts und 

Bels konnten 2001 und 2002 zeigen, dass es der DC jedoch teilweise möglich ist, diese 

strenge Aufteilung zu umgehen, und endogene Antigene ebenfalls in einem Komplex mit 

MHC-II präsentiert werden können. Hierdurch ist es einer DC möglich eine zytotoxische 

Antwort auf z.B. eine Virusinfektion zu induzieren ohne, dass die eigentlich DC hierfür durch 

den Virus befallen sein muss. 

Außerdem sind DCs in der Lage verschiedene „Gefahrensignale“ wie mikrobielle Stimuli wie 

z.B. CpG-Oligonukleotide (CpG-ODN), doppelsträngige virale Ribonukleinsäure (RNA), LPS 

oder Hitze-Schock-Proteine mittels PRR zu erkennen. 

Durch die Möglichkeit einer MHC-Komplex-gebundenen T-Zell-Aktivierung, wie auch einer 

Erkennung der oben beschriebenen Gefahrensignale, stellt die DC somit eine Schnittstelle 

zwischen dem angeborenen und dem erworbenen Immunsystem da. 

 

1.4.2. Die plasmazytoide dendritische Zelle 

Erst vor einigen Jahren wurde die Zelle charakterisiert, die im Immunsystem auf die 

Erkennung von Viren spezialisiert ist. Lange hatte man angenommen, dass die meisten 
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humanen Blutzellen in der Lage sind, bei einer viralen Infektion IFN-Typ I zu produzieren. Es 

wurde jedoch bereits in den siebziger Jahre postuliert, dass es einen Hauptzelltyp geben 

muss, der auf die Produktion von IFN-Typ I spezialisiert ist. 1996 wurde schließlich eine 

ausführliche Phänotypisierung dieser Interferon-produzierenden Zelle (IPC) veröffentlicht. 

Siegal und Liu konnten 1999 zeigen, dass die IPC identisch war mit der 1997 von Olweus et 

al. beschriebenen „plasmazytoiden dendritischen Zelle“ (PDC). Die Arbeitsgruppe von 

Olweus et al. hatte zuvor gezeigt, dass diese plasmazytoiden Zellen durch die Expression 

der IL-3-Rezeptorkette-alpha (CD123) identifiziert werden können und somit den Begriff des 

„plasmazytoiden Monozyten“ ablösen. 

1999 konnten Cella und Colonna diese Beobachtung bestätigen und zusätzlich zeigen, dass 

die PDC in der Lage war in den Lymphknoten in-situ Typ-I Interferon zu bilden. 

Die PDC unterscheidet sich grundlegend von myeloiden dendritischen Zellen, denn im 

Gegensatz zu diesen, ist sie nur begrenzt in der Lage, Phagozytose zu betreiben und somit 

Antigen zu präsentieren. Bislang ist nur eine einzige Situation beschrieben, in der die PDC 

exogene Antigene in einem MHC-Molekül-Komplex präsentiert. Diese Situation tritt dann ein, 

wenn die PDC selbst durch einen Virus infiziert ist [Fonteneau, 2003]. 

  

1.5. CpG-Oligodesoxynukleotide – eine Gefahrensignal für das 

Immunsystem 

1.5.1. Vom bakteriellen Lysat zum CpG-Oligodesoxynukleotide 

Gegen Ende des 19. Jahrhunderts machte der New Yorker Chirurg Dr. William Coley bei 

einem Vergleich der Erfolgsraten seiner Operationen mit den Operationen in den Jahren 

zuvor die erstaunliche Entdeckung, dass der Erfolg bei der Behandlung von Tumoren nach 

Einführung von Desinfektionsmitteln und dem damit verbundenen Rückgang von 

postoperativen Wundinfektionen deutlich zurückgegangen war. Coley entwickelte daher die 

Theorie, dass es durch die Infektion zu einer Aktivierung des Immunsystems kam, die den 

Tumor bekämpft. Deshalb entwickelte er ein Lysat aus Streptococcus pyogenes und Serratia 

marcescens, das er peri- und intratumoral spritzte. Mit dieser Art der Therapie konnte er 

erstaunliche Heilungsraten von über 10 % erreichen. 1901 geriet dieser Therapieansatz mit 

der Entwicklung der Strahlentherapie und den damit verbundenen Therapieerfolgen ins 

Hintertreffen. Außerdem war es anderen Ärzten nicht gelungen Coleys Beobachtungen zu 

reproduzieren. 
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Beinahe 100 Jahre später konnte Tokunaga anhand verschiedener Fraktionen eines 

bakteriellen Lysates von Bacillus Calmette-Guerin (BCG), das seit 1976 erfolgreich bei der 

Therapie des Blasenkarzinoms eingesetzt wird [Morales, 1976], zeigen, dass die 

mykobakterielle Desoxyribonukleinsäure (DNA) für die immunstimulatorische Wirkung 

verantwortlich ist [Tokunaga, 1984; Tokunaga, 1999]. 1992 publizierte die Arbeitsgruppe um 

Yamamoto, dass dieser Effekt nicht nur, wie zuerst vermutet, durch bakterielle DNA erzeugt 

wurde, sondern auch durch einzelsträngige DNA-Moleküle, die bestimmte Sequenzen 

enthalten, hervorgerufen werden kann [Yamamoto, 1992]. 

1995 konnten Arthur Krieg und seine Arbeitsgruppe diese immunstimulatorische Wirkung der 

bakteriellen DNA auf ein bestimmtes Motiv der Basen Cytidin und Guanosin, das sog. CpG-

Motiv (p steht hierbei für eine Phosphat-Bindung), zurückführen [Krieg, 1995]. Diese Motive 

bestehen dabei mindestens aus einer Folge von sechs Basen. Die darauf von Krieg et al. 

durchgeführten Experimente zur genaueren Charakterisierung dieser Oligodesoxynukleotide 

(ODN) zeigten, dass sowohl die Länge - die optimale Länge für einen immunstimulatorischen 

Effekt liegt bei zwanzig Basen – als auch die, das CpG-Motiv flankierenden, Basen einen 

Einfluss auf ihre immunstimulierende Wirkung hatten [Krieg, 1995]. 

Gerade diese, das CpG-Motiv flankierende Basen sind ein grundlegender Unterschied 

zwischen bakterieller und vertebraler DNA. Versuche ergaben, dass die, das CpG-Motiv in 

Vertebraten-DNA flankierenden Basen, eine wesentlich geringere immunstimulatorische 

Wirkung aufwiesen. Zusätzlich zeigte sich, dass in circa 80% der Fälle die Vertebraten-DNA 

in ihren CpG-Motiven eine Methylierung am Cytosin besitzt. Zudem sind CpG-Motive 

allgemein circa zwanzigfach seltener in vertebraler DNA als in bakterieller DNA. Diese 

Beobachtungen blieben jedoch nicht nur auf bakterielle DNA beschränkt. Sun konnte 1996 

zeigen, dass derartige Unterschiede beispielsweise auch bei Insekten-DNA oder 

Nematoden-DNA zu finden sind [Sun, 1996; Sun, 1997].  

Somit entwickelte sich die Hypothese, dass es sich bei der Erkennung von CpG-Motiven, die 

die oben genannten Charakteristika aufwiesen, um einen hoch spezifischen 

Abwehrmechanismus handelt, der es Vertebraten erlaubt, zwischen eigener von fremder 

DNA zu unterscheiden. 

Auf dieser Hypothese aufbauend gelang es, synthetische Oligonukleotide für klinische  

Studien und zur Forschung zu entwickeln, deren Halbwertszeit jedoch aufgrund des raschen 

Abbaus durch Nukleasen sehr gering war. Deshalb wurde mittels Phosphorothioat-

Modifikation des DNA-Gerüsts ein Weg gefunden, der dies verhinderte. Hierbei wird das 

nicht an der Bindung beteiligte Sauerstoffatom der Phosphatgruppe durch ein Schwefelatom 
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ersetzt. Als weiterer positiver Effekt zeigte sich eine zusätzliche Steigerung der 

immunmodulatorischen Potenz des CpG-ODNs [Krieg, 1996]. 

 

1.5.2. Die immunstimulatorische Wirkung der unterschiedlichen CpG-ODNs 

Bisher sind drei unterschiedliche Typen von CpG-ODNs bekannt, die sich, aufgrund der das 

CpG-Motiv flankierenden Basen, in der Wirkung bezüglich der Zielzellen unterscheiden. 

1. Das CpG-Typ-A-ODN zeichnet sich durch Poly-Guanosin-Enden sowie eine 

Palindromsequenz aus, die sich um ein zentrales CpG-Motiv gruppiert und ihrerseits 

weitere CpG-Motive enthält. Dieses CpG-Typ-A-ODN ist in der Lage in PDCs große 

Mengen an IFN-Typ I zu induzieren, während die Wirkung auf B-Zellen nur gering 

ausgeprägt ist. Hartman et al. vermuteten, dass es durch die Poly-Guanosin-Enden, 

wie auch die Palindromsequenz, zu einer Anlagerung der ODNs kommt, so dass 

diese von den PDCs als virusartig erkannt werden. Ein Prototyp für dieses CpG-ODN 

ist das CpG-ODN 2216. 

2. Das CpG-Typ-B-ODN ist ebenfalls in der Lage die PDC zu einer Aktivierung und 

Ausreifung zu bringen, jedoch kommt es trotz des „optimalen“ humanen CpG-Motivs 

„GTCGTT“ nur zu einer geringen IFN-α Induktion. Die eigentliche Zielzelle für das 

CpG-Typ-B-ODN ist die B-Zelle, bei der es eine Proliferation sowie eine Sekretion 

hoher Mengen an Interleukin-10 (IL-10) und IL-6 bewirkt, welches für den späteren 

Übergang in die IgM produzierende B-Zelle benötigt wird. Zusätzlich zeigte sich ein 

deutlicher Anstieg der für die Lymphozyten-Aktivierung notwendigen ko-

stimulatorischen Rezeptoren. Außerdem kommt es in Verbindung mit CD40-Ligand 

zu einer vermehrten Bildung von IL-12 und damit zu einer IL-12-abhängigen TH1 

Antwort. Der klassische Prototyp für diese CpG-ODN Klasse ist das CpG-ODN 2006. 

3. Das relativ neue CpG-Typ-C-ODN vereint die Eigenschaften der beiden zuvor 

beschriebenen CpG-ODNs. Charakterisiert werden sie durch ein „TCGTCG“-Motiv 

am 5’-Ende, sowie eine zentrale Palindrom-Sequenz, wie sie bei einem CpG-Typ A-

ODN vorkommt. Aufgrund dieses Aufbaus kann die CpG-ODN-Klasse sowohl eine 

IFN-α Sekretion in PDCs induzieren, wie auch B-Zellen aktivieren. 

 

1.5.3. Die Erkennung des CpG-Motivs über einen Toll-like Rezeptor 

Lange Zeit herrschte über den Mechanismus, der für die Erkennung der CpG-Motive 

verantwortlich ist, Unklarheit. Bereits 1994 konnte Zhao et al. zeigen, dass fast alle Zellen in 
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der Lage sind CpG-ODNs sequenzunspezifisch an ihrer Oberfläche zu binden. 1998 wurde 

von mehreren Arbeitsgruppen gezeigt, dass für die Erkennung eines CpG-ODNs eine 

Aufnahme in ein endosomales Kompartiment sowie eine Azidifizierung erforderlich ist [Yi, 

1998]. Außerdem konnte der Effekt z.B. durch Chloroquin, das ein Inhibitor für die 

endosomale Azidifizierung darstellt, blockiert werden [Macfarlane, 1998]. Dennoch gelang es 

nicht den eigentlichen Mechanismus der CpG-ODN Erkennung zu indentifizieren.  

Der Durchbruch gelang, als 2000 die Beteiligung von MyD88 und TRAF6 bei der 

Signaltransduktion der CpG-ODNs nachgewiesen wurde [Hacker, 2000]. Hemmi et al. 

konnten dann mittels TLR-Knock-out-Mäusen nachweisen, dass TLR9 der eigentliche 

Rezeptor für CpG-ODNs ist, da die Gabe von CpG-DNA in TLR9-defizienten Mäusen keine 

inflammatorische Reaktion mehr auslöste [Hemni, 2000]. Die so im murinen System 

gewonnenen Ergebnisse konnten in den folgenden Monaten auch im humanen System 

bestätigt werden. Es zeigte sich jedoch, dass im Gegensatz zum murinen System, bei dem 

auch Monozyten und Makrophagen TLR9 tragen, im humanen System einzig B-Zellen und 

PDCs durch CpG-ODNs stimulierbar sind [Krug, 2001; Hornung, 2002] . 

Außerdem weisen die bei der Maus verwendeten CpG-ODNs, beim Menschen eine 

schwächere stimulatorische Wirkung auf. Im Jahr 2000 gelang Hartmann et al. mit dem 

Hexamer 5’ GTCGTT 3’ die Identifizierung des optimalen humanen CpG-Motivs [Hartmann, 

2000]. 

Lange Zeit wurde auch über eine direkte Stimulation anderer Zellen durch CpG-ODNs 

kontrovers diskutiert. Bendigs et al. postulierten 1999 einen ko-stimulatorische Effekt von 

CpG-ODNs bei T-Zellen, deren TZR zuvor durch ein spezifisches Antigen stimuliert wurde 

[Bendigs, 1999]. Auch andere Arbeitsgruppen beschrieben eine direkte Stimulation der T-

Zelle durch ODN [Iho, 1999]. Die Messung der Expression von TLR 1-10 über Real-Time-

PCR zeigte jedoch fast keine Expression von TLR9 auf Monozyten, NK-Zellen und T-

Lymphozyten [Hornung, 2002]. 

Ferner passte gut zu den am Anfang beschriebenen Beobachtungen, dass Ahmad-Nejad et 

al. 2002 zeigen konnte, dass TLR9 in den endosomalen Kompartimenten lokalisiert ist 

[Ahmad-Nejad, 2002] 

 

1.5.4. CpG ODNs als mögliche Adjuvans in der Medizin 

 

CpG ODNs stellen aus den oben genannten Gründen eine interessante Immunstimulanz für 

den klinischen Einsatz da. 



16 
 

1) Da CpG-ODNs eine natürlich bakterielle oder virale Infektion imitieren und 

dadurch eine Sekretion von IFN-α und IL-12 induzieren, kommt es zu einer 

physiologischeren Immunantwort als bei einer exogenen Gabe von 

rekombinanten Zytokinen, wie z.B. IFN-α. 

2) In Studien mit Primaten konnte gezeigt werden, dass sich CpG-ODNs auch 

bei einer prophylaktischen oder einer therapeutischen Impfung hervorragend 

als Adjuvans eignen. Bereits nach einmaliger Applikation werden rascher 

höhere protektive Antikörpertiter erreicht [Sarris, 2005]. 

3) PDCs reagieren auf CpG-ODNs in Kombination mit CD40-Ligand mit der 

Bildung von IL-12. Hierdurch wird eine IL-12-abhängige TH1 Antwort induziert, 

die mit der Produktion von IFN-γ einhergeht. So werden Infektionen mit 

intrazellulären Erregern (z.B. Viren) abgewehrt, zusätzlich unterstützt sie den 

Körper bei der Abwehr von Tumorzellen, die viral infizierten Zellen ähneln. 

4) Aufgrund der Fähigkeit der CpG-ODNs die Immunitätslage von einer TH2 

gerichteten Antwort in Richtung einer TH1-Antwort zu verschieben, wirkt sie 

allergischen Reaktionen entgegen. 

 

 

1.5.5 Einsatz von CpG-ODNs in der Therapie von Tumoren  

 

Wie oben beschrieben, hatte Dr. William Coley bereits Ende des 19. Jahrhunderts die 

Entdeckung gemacht, dass es unter einer peri- und intratumoralen Injektion von Lysaten von 

Bakterien zu einem Rückgang der Tumormasse kam. Beinahe 100 Jahre später zeigte sich, 

dass der Einsatz von BCG eine erfolgreiche Therapiestrategie bei der Therapie des 

Blasenkarzinoms darstellte. All diese Beobachtungen sind deutliche Hinweise darauf, dass 

die Aktivierung des Immunsystems zur Bekämpfung von Pathogenen eine wichtige Rolle in 

der Therapie von Tumorzellen darstellt. Shankaran et al. berichtete 2001, dass insbesondere 

Lymphozyten und die damit verbundene Sekretion von IFN-γ das Wachstum eines Tumors 

verhindern können. Da CpG-ODNs genau an diesem Punkt ansetzen und über die 

Aktivierung von PDCs in der Lage sind Lymphozyten in Richtung einer TH1-gerichteten 

Immunantwort zu beeinflussen, stellen sie einen wichtigen Mechanismus zur 

Immunüberwachung dar. Zahlreiche Studien mit einer Monotherapie, wie auch einer 

Kombinationstherapie mit für Tumorzellen-spezifischen Antikörpern, bestätigten diese 

Hypothese sowohl im murinen, wie auch im humanen System. 1999 konnten Carpentier und 
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Dow zeigen, dass es unter einer Monotherapie mit CpG-ODNs bei Mäusen, unabhängig vom 

Tumorstadium, zu einer deutlichen Regression, wenn nicht sogar zu einer komplette 

Remission kam.  

2002 konnten Heckelsmiller wie auch Brunner zeigen, dass CpG-ODNs in Kombination mit 

unterschiedlichen Formen eines Tumor-Antigens (einzelne Peptide, Proteine oder ganze 

Tumorzellen) in der Lage waren, DCs so zu beeinflussen, dass diese in den sekundären 

lymphatischen Organen eine starke TH1-gerichtete Immunantwort auslösten, die ihrerseits 

eine optimale Bedingung für eine Induktion spezifischer IFN-γ-produzierender zytotoxischer 

T-Zellen war. 
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1.6. Fragestellung 

 

Zum Zeitpunkt des Beginns dieser Arbeit war bekannt, dass CpG-ODNs in der Lage sind 

PDCs so zu aktivieren, dass diese die T-Lymphozyten in die Richtung einer TH1-gerichteten 

Immunantwort beeinflussen können. Über den Mechanismus, der für die Beeinflussung der 

T-Lymphozyten verantwortlich ist, war jedoch relativ wenig bekannt. Marschner et al. konnten 

in vorangegangenen Untersuchungen zeigen, dass die PDCs in der Lage sind, in NKT-Zellen 

eine starke IFN-γ Produktion zu induzieren [Marschner, 2005]. Weiterhin konnten sie zeigen, 

dass dieser Effekt nicht durch Überstände der zuvor aktivierten PDCs, also von löslichen 

Produkten der PDCs hervorgerufen wurde. 

Da diese immunstimulatorische Aktivität der PDCs und deren Beeinflussung durch CpG-

ODNs einen möglichen Ansatz als Adjuvans in einer therapeutischen Vakzine bei der 

Bekämpfung von Tumoren und Virusinfektionen darstellt, war es Aufgabe dieser Arbeit, die 

eigentliche Beeinflussung der CD8+ T-Lymphozyten durch PDCs zu untersuchen. Aus 

Voruntersuchungen war bekannt, dass analog zu den NKT-Zellen bei CD8+ Zellen eine TH1-

gerichtete Immunantwort nicht durch Überstände der aktivierten PDC zu induzieren war.  

Im Einzelnen sollten im Rahmen dieser Arbeit folgende Fragen beantwortet werden: 

1) Gibt es analog zur NKT-Zelle eine Antigen-unabhängige Modulation der 

Immunantwort bei CD8+ T-Lymphozyten? 

2) Lässt sich diese, durch PDCs induzierte Immunantwort durch CpG-ODNs 

beeinflussen? 

3) Besteht ein Unterschied in der Modulation der Immunantwort bei CD8+ T-

Lymphozyten, die durch PDCs oder MDCs hervorgerufen wird? 

4) Durch welche Mechanismen wird ein möglicher immunmodulatorischer Effekt der 

PDC auf CD8+ T-Lymphozyten auf zellulärer Ebene vermittelt? 

5) Gibt es funktionelle Unterschiede bezüglich der verschiedenen CpG-ODNs bei ihrer 

immunstimulatorischen Fähigkeit? 
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2. Material und Methoden 
 

2.1. Reagenzien, Chemikalien und Geräte 

2.1.1. Geräte 

Begasungsbrutschrank   Fa. Heraeus (Hanau, D) 

Eismaschine     Fa. Ziegra (Isernhagen, D) 

ELISA-Reader    Fa. Dynatech-Laboratories (Guernsey, GB)  

FACSCalibur     Fa. Becton Dickinson (San Jose, CA, USA) 

FACStarplus     Fa. Becton Dickinson (San Jose, CA, USA) 

Hamilton Spritze    Fa. Hamilton Co. (Reno, Nevada, USA)  

Lamin Air (HB 244 8)    Fa. Heraeus (Hanau, D) 

Mikroskop (Axiovert 25)   Fa. Zeiss (Jena, D) 

MiniMACS     Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

Omnifuge 2 ORS    Fa. Heraeus (Hanau, D) 

pH-Meter     Fa. WTW (Weilheim, D) 

QuadroMACS     Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

Vortex VF2     Fa. Bender & Hobein AG (Zürich, CH) 

VarioMACS     Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

Vortexer     Fa. Janke & Kunkel (Staufen, D) 

Waage (LP 6209)    Fa. Sartorius (Göttingen, D) 

Waage (SBC 21)    Fa. Scaltec Instruments (Heiligenstadt, D) 

Wasser-Deionisierungmaschine  Fa. SG Reinstwasser-Sys. (Hamburg, D) 

Zentrifuge (5417 R)    Fa. Eppendorf (Hamburg, D) 

 

2.1.2. Chemikalien 

Brefeldin A     Fa. Sigma-Aldrich (Steinheim,D) 

Dimethylsulfoxid (DMSO)   Fa. Sigma-Aldrich (Steinheim, D) 

Ethylen-Diamin-Tetraessigsäure (EDTA) Fa. Sigma-Aldrich (Steinheim, D) 

FACSFlow     Fa. Becton Dickinson (Heidelberg, D) 

FACSSafe     Fa. Becton Dickinson (Heidelberg, D) 

Heparin-Natrium    Fa. Ratiopharm (Ulm, D) 

Ortho-mune Lyse-Reagenz  Fa. Ortho-Clinical Diagnostics (Neckarsgmünd,D) 

Trypan-Blau     Fa Sigma-Aldrich (Steinheim, D) 
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2.1.3. Radioaktive Chemikalien 

51Chrom      Fa. Amersham Biosciences (Freiburg, D) 

 

2.1.4. Reagenziensätze 

Zellisolation mittels der MACS-Methode: 

B Cell Isolation Kit    Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

BDCA-1 Cell Isolation Kit   Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

BDCA-4 Cell Isolation Kit   Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

CD4+ T Cell Isolation Kit   Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

CD8+ T Cell Isolation Kit   Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

CD45RO MicroBeads    Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

CD8 MicroBeads    Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

IFNγ Secretion Assay    Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

Monocyte Isolation Kit   Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

NK Cell Isolation Kit    Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

Pan T Cell Isolation Kit   Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

 

 

Bestimmung von Zytokinen mittels ELISA: 

GranzymeB ELISA    Fa. Diaclone (Besancon codex, F) 

GranzymeB ELISA Antibody pair  Fa. Hölzel Diagnostika (Köln, D) 

human IFN-γ ELISA    Fa. Endogen (Boston, USA) 

human IFN-γ ELISA    Fa. Bender Med Systems (Wien, A) 

human IFN-α ELISA  Fa. PBL Biomedical Laboratories  

(New Brunswick, USA) 

human IL-8 ELISA    Fa. Bender Med Systems (Wien, A) 

 

2.1.6. Materialien für die Zellkultur 

Biocoll Separationsmedium   Fa. Biochrom (Berlin, D) 

Bovines Serum Albumin (BSA)  Fa. GibcoBRL (Paisley, GB) 

Fötales Kälberserum (FCS)   Fa. GibcoBRL (Paisley, GB) 
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Humanes AB-Serum    Fa. BioWhittaker (Wakersville, USA) 

Humanes Serum-Albumin (HSA)  Fa. Pharmacia & Upjohn (Erlangen, D) 

Iscove's modified Dulbecco's medium 

(IMDM)     Fa. PAA (Linz, A) 

L-Glutamin     Fa. PAA (Linz, A) 

Phosphate-buffered saline (PBS)  Fa. PAA (Linz, A) 

Penicillin     Fa. PAA (Linz, A) 

Roswell Park Memorial Institute (RPMI) 

Streptomycin     Fa. PAA (Linz, A) 

Plastikmaterialien für die Zellkultur wurden von den Firmen Greiner (Frickenhausen, D), 

Falcon (Heidelberg, D), Becton Dickinson (Le Pont de Claix, F), Bibby Sterrilin (Stone, 

Staffordshire, GB) und Corning (Corning, USA) bezogen. 

 

2.1.7. Zytokine, Wachstumsstimulatoren und Stimulanzien 

Calcium-Ionomycin    Fa. Sigma-Aldrich (Steinheim, D) 

Dynabeads CD3/CD28   Dynal Biotech (Oslo, Nor) 

Dynabeads CD3    Dynal Biotech (Oslo, Nor) 

Granulocyte-macrophage 

colony-stimulating factor (GMCSF)  Fa. R&D Systems (Wiesbaden, D) 

Interferon-β  Fa. PBL Biomedical Laboratories  

(New Brunswick, USA) 

Interferon-α2a  Fa. PBL Biomedical Laboratories  

(New Brunswick, USA) 

Interleukin-2     Fa. R&D Systems (Wiesbaden, D) 

Interleukin-4     Fa. R&D Systems (Wiesbaden, D) 

Interleukin-12     Fa. R&D Systems (Wiesbaden, D) 

Interleukin-15     Fa. R&D Systems (Wiesbaden, D) 

Lipopolysaccharid (LPS) 

(Herkunft: Salmonella typhimurium)  Fa. Sigma-Aldrich (Steinheim, D) 

Phorbol-12-Myristat-13-Acetat (PMA) Fa. Sigma-Aldrich (Steinheim, D) 

Phytohämaglutinin (PHA)   Fa. Sigma-Aldrich (Steinheim, D) 
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2.1.8. Zellkulturmedien, Puffer und Lösungen 

Medien und Puffer, die in dieser Arbeit verwendet wurden: 

RPMI-Vollmedium 1: 

100 IU/ ml Penicillin 

100 µg/ ml Streptomycin 

1,5 mM L-Glutamin 

2 Vol % humanes A/ B-Serum 

in RPMI 1640-Medium 

 

RPMI-Vollmedium 2: 

100 IU/ ml Penicillin 

100 µg/ ml Streptomycin 

1,5 mM L-Glutamin 

10 Vol % FCS 

in RPMI 1640-Medium 

 

 

Erythrozyten-Lysepuffer: 

Ortho-mune Lysereagenz 

in PBS 

 

Kryo-Medium: 

50 Vol % IMDM-Vollmedium 

40 Vol % Humanes AB-Serum 

10 Vol % DMSO 

 

MACS-Puffer: 

2 mM EDTA 

0,5 Vol % BSA 

pH 7,2 

in PBS 

 

 

2.1.9. Antikörper  

Zusammenstellung der Antikörper, die in dieser Arbeit verwendet wurden: 

Bezeichnung Spezifität Klon Herkunft 

Anti BDCA-2 BDCA-2 AC144 Miltenyi Biotec 

Anti BDCA-4 

Anti Granzyme B 

BDCA-4 

Granzyme B 

AD5-17F6 

GB 11 

Miltenyi Biotec 

BD/ Pharmingen 

Anti CD3 CD3 UCHT19 BD/ Pharmingen 

Anti CD4 CD4 RPA-T8 BD/ Pharmingen 

Anti CD8 CD8 G42-8 BD/ Pharmingen 

Anti CD11c CD11c B-ly6 BD/ Pharmingen 

Anti CD14 CD14 3E2 BD/ Pharmingen 

Anti CD19 CD19 HIB19 BD/ Pharmingen 

Anti CD40 CD40 5C3 BD/ Pharmingen 

Anti CD45RA CD45RA HI100 BD/ Pharmingen 
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Anti CD45RO CD45RO UCHL1 BD/ Pharmingen 

Anti CD56 CD56 B159 BD/ Pharmingen 

Anti CD69 CD69 FN50 BD/ Pharmingen 

Anti CD80 CD80 L307.4 BD/ Pharmingen 

Anti CD83 CD83 HB15e BD/ Pharmingen 

Anti CD86 

Anti CD 107a 

Anti CD 107b 

CD86 

CD107a 

CD107b 

IT2.2 

H4A3 

H4B3 

BD/ Pharmingen 

BD/ Pharmingen 

BD/ Pharmingen 

Anti CD123 CDw123 7G3 BD/ Pharmingen 

Anti HLA-A2 HLA-A0201 Poly P. Fisch 

Anti HLA-DR HLA-DR L243 BD/ Pharmingen 

Anti IFN-γ IFN-γ 25723.11 BD/ Pharmingen 

Anti IFN-α IFN-α Poly PBL 

Anti IFN-β IFN-β Poly PBL 

Anti IFNR IFN-Rezeptor Poly PBL 

Anti IL-4 IL-4 8D4-8 BD/ Pharmingen 

Anti IL-12 

Anti-IL-12 

IL-12 p40+p70 

IL-12 p40-p70 

C8.6 

AB-219-NA 

BD/ Pharmingen 

R&D Systems 

Anti IL-15 IL-15 247 NA R&D Systems 

Anti IL-18 IL-18 136007 R&D Systems 

Anti OX40L OX40 Ligand 159403 R&D Systems 

Anti Perforin Perforin δG9 BD/ Pharmingen 

Anti SLAM SLAM A12 L. Lanier 

Anti TNF-α TNF-α mAb11 Endogen 

Anti Vγ9 Vγ9 Immu360 Immunotech 

 

 

2.1.10. Oligodesoxynukleotide 

Die in dieser Arbeit verwendeten komplett oder teilweise Phosphorothioat-modifizierten 

ODNs wurden freundlicherweise von Coley Pharmaceutical Group (Wellesley, USA) zur 

Verfügung gestellt. Bei den fett gedruckten Strukturen handelt es sich um die jeweiligen CpG 

Dinukleotide, wobei kleine Buchstaben für Verknüpfungen durch Phosphorothioate und 

große Buchstaben für Verknüpfungen durch Phosphodiester am 3´-Ende der Base stehen: 



24 
 

 

Bezeichnung Nukleotid-Sequenz (5' ! 3') Referenz 

ODN 2006 Tcgtcgttttgtcgttttgtcgtt  [Hartmann, 2000a] 

ODN 2216 GgGGGACGATCGTCgggggG  [Krug, 2001a] 

 

2.1.11. Zelllinien 

Die aufgelisteten Zelllinien wurden in dieser Arbeit verwendet: 

Zelllinie Zellart Herkunft Referenz 

K562 Humane 

Erythroblasten-Leukämie-Zelllinie, 

negativ für MHC-I 

ATCC  [Lozzio, 1975] 

Daudi 

 

Humane Burkitt-Lymphom-

Zelllinie, negativ für MHC-I 

Fisch, P (Freiburg, D)  [Ohsugi, 1980] 

 

 

2.2. Zellulär-immunologische Methoden 

2.2.1. Zellkultur 

2.2.1.1. Allgemeine Kulturbedingungen 

Alle Experimente an und mit Zellen wurden ausschließlich unter sterilen Bedingungen in 

einem Laminar-Air-Flow durchgeführt. Die Zellkultur erfolgte in einem Begasungsbrutschrank 

bei einer konstanten Temperatur von 37 °C, 95 % Luftfeuchtigkeit und in einer 5 %-igen 

CO2/Luftgemisch Atmosphäre.  

 

2.2.1.2. Kultivierung der Tumorzelllinien 

Die Tumorzelllinien wurden in 75 ml Kulturflaschen in RPMI Medium mit FCS kultiviert. 

Hierbei wurde regelmäßig die Kultur unter dem Lichtmikroskop auf Anzahl der lebenden 

Zellen, wie auch auf mikrobielle Verunreinigung kontrolliert. Das Medium wurde dem 

Wachstum der Zellen entsprechend alle zwei bis drei Tage dekantiert und durch frisches 

RPMI Medium mit FCS ersetzt. In sämtlichen Zelllinien wurde eine Kontamination mit 

Mykoplasmen ausgeschlossen. 
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2.2.1.3. Bestrahlung der Tumorzelllinien 

Um eine Zellproliferation in Stimulationspopulationen zu verhindern, wurden die Tumorzellen 

alternativ durch Röntgen- oder UV-Strahlung deaktiviert. Für die Röntgenbestrahlung wurden 

die jeweiligen Zellen in 2 – 3 ml Medium suspendiert und mit 30 Gray in einer 

Röntgenbestrahlungsanlage (Institut für Immunologie der Ludwig-Maximilians-Universität 

München) bestrahlt. Alternativ wurden für die UV-Bestrahlung die jeweiligen Zellen in einer 

Konzentration von 5–10 Mio./ml in Medium aufgenommen und mit UV-Licht einer Energie 

von 0,25 J/cm2 bestrahlt. 

 

2.2.1.4. Kultivierung der mononukleären Zellen des peripheren Blutes 

Die aufgereinigten Zellpopulationen wurden in 96-Well Rundbodenplatten in RPMI mit 

2 Vol % A/B-Serum kultiviert. Für einige Versuche wurden die Zellpopulationen so kultiviert, 

dass ein Zell-Zellkontakt ausgeschlossen werden konnte. Hierfür wurden die 

Zellpopulationen durch Transwell-Membranen, die aufgrund ihrer Porengröße ausschließlich 

den Austausch von löslichen Faktoren zulassen, getrennt in 96-Well Rundbodenplatten oder 

24-Well Flachboden-Platten kultiviert. 

 

2.2.1.5. Bestrahlung der mononukleären Zellen des peripheren Blutes 

Um Zellinteraktionen untersuchen zu können, wurden in einigen Versuchen für die Zellkultur 

aufgereinigte Zellpopulationen in einer Konzentration von 1–5 Mio./ml in Medium 

aufgenommen und mit einer Energie von 0,75 J/cm2 bestrahlt. 

 

2.2.1.6. Bestimmung der Vitalität und der Zellzahl 

Zur Feststellung der Vitalität, wie auch der Zellzahl, wurde der Trypanblau-Ausschlusstest 

angewendet. Während lebende Zellen den Farbstoff ausschließen, reichern tote Zellen 

diesen an. Zur Bestimmung der Zellzahl wurde die Anzahl in einer geeigneten Verdünnung in 

einer Neubauer-Zählkammer ausgezählt. 
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2.2.2. Durchflusszytometrie 

2.2.2.1. Allgemeines Funktionsprinzip 

Das eigentliche Funktionsprinzip der Durchflusszytometrie mittels eines 

Fluorescence-activated cell sorters (FACS) beruht darauf, dass verschiedene 

mikrospkopisch kleine Partikel anhand ihrer Größe, Struktur, Oberflächenstrukturen und ihrer 

intrazellulären Zusammensetzung charakterisiert werden können. Hierbei werden Streulicht 

und Fluoreszenz-Signale einzelner Zellen analysiert, während diese in einem laminaren 

Flüssigkeitsstrom einzeln durch das Licht eines Laserstahls geführt werden. Durch die in 

diesem Flüssigkeitsstrom enthaltenen Zellen wird das Laserlicht gestreut, so dass es von 

zwei im 90° Winkel zueinander angeordneten Photozellen detektiert werden kann. Das in 

Laserstrahlrichtung eingefangene Licht, man spricht auch von Vorwärtsstreulicht oder 

Forwardscatter (FSC), ist hierbei ein Maß für die Größe der gemessenen Zellen, während 

das in einem 90° Winkel abgestrahlte und dort eingefangene Licht, also Seitwärtsstreulicht 

oder Sidescatter (SSC), als ein Maß für die Zellgranularität dient. Sind die Zellen, oder 

besser ihre Oberflächenproteine, mit spezifischen Fluoreszenz-gekoppelten Antikörpern 

markiert, lassen sich auch über den Phänotypen der zu untersuchenden Zelle Aussagen 

machen. Hierbei wird ein Teil der Lichtenergie durch das Fluorochrom absorbiert und durch 

ein für den Farbstoff spezifisches Fluoreszenzlicht wieder abgegeben. Das so abgestrahlte 

Licht wird dann von einer Linse gebündelt und mittels diverser Spiegel und Filter in die 

einzelnen Wellenlängen aufgespaltet, so dass das Licht eines bestimmten Fluorochroms 

weitergeleitet wird, während das Fluoreszenzlicht der anderen Fluorochrome weitestgehend 

herausgefiltert werden kann. Das so entsprechend seiner Wellenlänge aufgeteilte Licht kann 

dann von Detektoren erfasst werden. Da sich jedoch das Spektrum an ausgesendeten 

Wellenlängen der Fluorochrome überlappt und die Bandpassfilter des FACS nur in der Lage 

sind einen bestimmten Wellenlängenbereich, nicht jedoch eine spezifische Wellenlänge 

heraus zu filtern (ein Bandpassfilter 530/30 lässt z.B. Licht mit einem Mittelwert von 530nm in 

einem Bereich von 515nm bis 545nm passieren) muss vor Beginn einer Messung eine 

Kompensation durchgeführt werden. Hierfür wird je Fluorochrom eine Kontrollprobe 

aufgenommen, die es ermöglicht den überlappenden Anteil von dem eigentlichen zu 

detektierenden Fluoreszenzsignal abzuziehen. 

Für die eigentliche Färbung der Oberflächenmoleküle stehen zwei verschiedene Methoden 

zur Auswahl. Bei der ersten, der direkten Fluoreszenz wird das zu untersuchende 

Oberflächenmolekül direkt mit einem an das Fluorochrom gekoppelten Antikörper markiert. 

Bei der anderen, der indirekten Fluoreszenz erfolgt diese Färbung in zwei Schritten. Im 
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ersten wird das Oberflächenmolekül, das von Interesse ist, durch einen nicht an ein 

Fluorochrom gekoppelten Antikörper gebunden. Dieser wird dann später in einem zweiten 

Schritt durch einen an ein Fluorochrom gebundenen Antikörper, der gegen den FC-Teil des 

ersten Antikörpers gerichtet ist, „eingefärbt“. 

 

Eine Übersicht über die in dieser Arbeit verwendeten Fluoreszenzfarbstoffe und die 

dazugehörigen maximalen Emissions- und Exzitations-Wellenlängen: 

Fluoreszenzfarbstoff Exzitation Emission 

Fluorescein-Isocyanat (FITC) 

Phycoerithrin (PE) 

Propidiumiodid (PI) 

Allophycocyanin (APC) 

TOPRO-3 

Peridinin-Chlorophyll-A-Protein (PerCP) 

494 nm 

565 nm 

536 nm 

650 nm 

642 nm 

488 nm 

518 nm 

575 nm 

617 nm 

660 nm 

661 nm 

675 nm 

 

2.2.2.2. Bestimmung der Oberflächeneigenschaften einer Zelle 

Für die Analyse von Oberflächenmolekülen wurden je nach Anzahl der zur Verfügung 

stehenden Zellen (5 x 105 - 3 x 106 Zellen) in einem FACS Probe Röhrchen bei 400g für 7 

Minuten und bei 4° C abzentrifugiert. Anschließend wurde der Überstand abgenommen, und 

in der verbliebenen Flüssigkeit die Zellen resuspendiert. In Dunkelheit erfolgte dann für 15 

Minuten bei 4° C die Färbung der Oberflächenmoleküle der Zelle durch mit APC-, FITC-, PE-, 

PerCP-gekoppelten Antikörpern (direkte Fluoreszenz) oder mit einem ungekoppelten 

Antikörper (indirekte Fluoreszenz). Anschließend wurde die Zell-Antiköpersuspension mit 

PBS einmal gewaschen. Bei der indirekten Fluoreszenz wurde dann der Inkubationsschritt 

wiederholt, gemäß obiger Beschreibung dieses Mal jedoch mit einem gegen den FC-Teil des 

ersten Antikörpers gerichteten an APC, FITC, PE oder PerCP gekoppelten Antikörper. Je 

nach der Überlebensrate der zu messenden Zellen wurde dann zur Anfärbung etwaiger toter 

Zellen PI oder TOPRO-3 kurz vor der eigentlichen FACS-Analyse hinzugegeben. Die 

Strahlungsintensität wurde dann mit Hilfe eines FACSCalibur gemessen und anschließend 

mit Cell Quest Software analysiert und ausgewertet. 
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2.2.2.3. Bestimmung von intrazellulären Molekülen mittels FACS Technologie 

Nach der Färbung der Zellen gemäß Punkt. 2.2.2.2. wurden die Zellen mit 100 µl 

Paraformaldehyd (Lösung A, Fix & Perm-Reagenz) für 15 Minuten bei Raumtemperatur in 

Dunkelheit fixiert, um ein Ausbleichen der bereits markierten Oberflächenmoleküle zu 

verhindern, und danach mit PBS gewaschen. Anschließend wurden die so fixierten und 

gereinigten Zellen mit 100 µl saponinhaltiger Lösung (Lösung B, Fix & Perm-Reagenz) für 

weitere 15 Minuten bei Raumtemperatur in Dunkelheit permeabilisiert, und der für die 

Untersuchung benötigte Fluoreszenz-Antikörper z.B. GranzymeB (2µg/ml) hinzu gegeben. 

Nach einer weiteren Inkubation von 15 Minuten in Dunkelheit wurden die Zellen dann einmal 

mit PBS gewaschen, um anschließend entsprechend dem oben beschriebenen Procedere 

die Messung und Analyse durchzuführen. 

 

2.2.2.4. Messung der Zytotoxizität mittels Durchflusszytometrie 

Zur Messung der Zytotoxizität wurden die frisch isolierten Zellsorten miteinander für 24 

Stunden inkubiert. Im Anschluss daran wurde zu der Zellkultur ein gegen CD107a (LAMP1) 

gerichteter Antikörper gegeben (4µg/ml) und für eine weitere Stunde in Anwesenheit dieses 

Antikörpers inkubiert. CD107a ist ein Marker für die Zytotoxizität einer Zelle. Normal befindet 

sich CD107a im Lysosom zytotoxischer T- und NK-Zellen, jedoch kommt es nach Aktivierung 

und der damit verbundenen Freisetzung lysosomaler Granula zur Expression von CD107a an 

der Zelloberfläche.  Um eine stärkere Anreicherung des Antikörpers zu erreichen, wurde 

nach dieser Stunde für weitere 5 Stunden der Sekretionshemmer Brefeldin A hinzu gegeben. 

Direkt danach wurden die Zellen ein weiteres Mal mit PBS gewaschen und die 

Oberflächenmoleküle entsprechend Punkt 2.2.2.2. gefärbt. Im Anschluss wurde dann die 

Messung mit einem FACSCalibur durchgeführt.  

 

2.2.2.5. Messung der Zellproliferation mittels FACS Technologie 

Die Analyse einer Proliferation mittels Durchflusszytometrie ist aufgrund der prozentualen 

Angabe einer Zellpopulation bei der Auswertung relativ schwierig, da ein relativ vermehrter 

Anteil einer Zellpopulation auf der einen Seite durch Proliferation, auf der anderen Seite 

jedoch durch einen erhöhten Verlust der anderen Zellpopulationen auftreten kann. Im 

zweiten Fall käme es hierdurch zu einer vorgetäuschten Vermehrung dieser Zellpopulation. 

Um dennoch eine Proliferationsmessung mittels Durchflusszytometrie bewerkstelligen zu 

können, bedient man sich des Farbstoffes 5-(6-)-Carboxyfluorescein-Diacetat-Succinimidyl-
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Ester (CFSE). CFSE besitzt die besondere Eigenschaft irreversibel an zellulären Proteinen 

zu binden. Bei der Zellteilung wird nun der gebundene Farbstoff jeweils zur Hälfte an die 

beiden Tochterzellen weiter gegeben. Da die Intensität der ausgesendeten Strahlung mit der 

Menge, des an ihr gebundenen bzw. in ihr enthaltenem Farbstoffes korreliert, strahlt somit 

eine Tochterzelle nur halb so stark wie ihre Mutterzelle.  

Um eine homogene Zellfärbung zu erreichen, wurden deshalb 10 Mio. Zellen in 400 µl PBS 

aufgenommen und mit 1 µM CFSE Konzentrat zusammen gegeben. Anschließend wurde die 

Suspension durchmischt, in ein neues Gefäß überführt, um auszuschließen, dass ungefärbte 

Zellen, die während des Färbeprozesses an der Wand hafteten, mit in die Kultur gelangen. 

Es folgte eine weitere Inkubation für 10 Minuten auf Eis. Zur Beendigung der Färbereaktion 

und zu einer Blockierung des extrazellulären CFSE wurde dann zu der Suspension 2 ml 

RPMI-Vollmedium gegeben und anschließend zweimal mit 130 mM NaCl (physiologische 

Kochsalzlösung) gewaschen. 

 

2.2.3. Aufreinigung der einzelnen Zellpopulationen und Kultur der Zellpopulationen 

2.2.3.1. Aufreinigung der mononukleären Zellen des peripheren Blutes 

Gesunden Spendern wurde, sofern nicht anders angegeben, 200 ml Blut abgenommen, das 

pro 10 ml Blut mit 100 µl Heparin versetzt wurde. Im Anschluss wurde mit einer maximalen 

Verzögerung von 60 Minuten aus diesem Blut die peripheren mononukleären Zellen 

(PBMCs) isoliert. 

Hierfür wurden jeweils 50 ml Blut auf 2 Röhrchen à 50 ml verteilt, die zuvor mit jeweils 15 ml 

Ficoll-Hypaque Lösung gefüllt worden waren, und anschließend mit sterilem NaCl (s.o.) auf 

50 ml Gesamtvolumen aufgefüllt, wobei darauf geachtet wurde, dass sich die verschiedenen 

Phasen nicht vermischten. Durch den, durch die Ficoll-Hypaque Lösung aufgebauten, 

Dichtegradienten zeigte sich nach einer Zentrifugation (1000 g, 20 °C, 20 min, 

Beschleunigung 1, Bremsung 1) folgende Schichtung im 50 ml-Röhrchen: Öffnungsnah 

Plasma, dann eine Schicht aus mononukleären Zellen, mittig das Ficoll-Hypaque und an dem 

Spitzen Ende des Röhrchens eine Schicht aus Erythrozyten. Nachdem zunächst das Plasma 

abpipetiert wurde, wurde dann die Schicht der mononukleären Zellen vorsichtig 

abgenommen und in ein neues 50 ml-Röhrchen überführt. Dieses wurde ein weiteres Mal mit 

sterilem NaCl (s.o.) auf ein Gesamtvolumen von 50 ml aufgefüllt und anschließend erneut 

zentrifugiert (520 g, 20 °C, 15 min, Beschleunigung 9, Bremsung 4). Direkt danach wurde der 

Überstand verworfen, das Zellpellet in 10 ml NaCl resuspendiert, jeweils zwei 50 ml- 

Röhrchen in eines zusammengeführt und erneut mit sterilem NaCl auf ein Gesamtvolumen 
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von 50 ml aufgefüllt. Am Anschluss an die Zentrifugation (400 g, 4 °C, 10 min, 

Beschleunigung 9, Bremsung 4) wurde nach dem Dekantieren des Überstandes das 

Zellpellet in 5 ml Erythrozyten-Lysepuffer resuspendiert und für 5 Minuten bei 

Raumtemperatur inkubiert, um etwaige, verbliebene Erythrozyten aus der Suspension zu 

entfernen. Nach einem weiteren Waschvorgang wurden die mononukleären Zellen dann in 

das jeweils gewünschte Nährmedium aufgenommen und in einer Neubauer-Kammer unter 

Zugabe von Trypanblaufärbung gezählt. Anschließend wurden die Zellen auf die gewünschte 

Konzentration eingestellt, wobei darauf geachtet wurde, dass nur mononukleäre 

Zellfraktionen weiterverwendet wurden, bei denen weniger als 5% der Gesamtzellzahl den 

Farbstoff Trypanblau aufnahmen. 

 

2.2.3.2. Aufreinigung mittels magnetischer Zellsortierung 

Das allgemeine Funktionsprinzip der Magnetic Activated Cell Sorting 

(MACS)-Isolationstechnik beruht darauf, dass an bestimmte Oberflächenproteine der 

gesuchten Zellen, mit paramagnetischen Mikropartikeln (sogenannten Microbeads) von 

einem Durchmesser von ca. 50 nm gekoppelte, Antikörper gebunden werden, die dann in 

einem späteren Schritt mittels eines Magneten aussortiert werden können. Hierfür wurden 

die Zellen zuerst für 15 Minuten in einem speziellen MACS Puffer bei 4°C mit den 

Microbeads inkubiert, so dass diese an die Oberflächenmoleküle binden konnten. 

Anschließend erfolgte ein Waschschritt, um nicht gebundene Microbeads wieder entfernen 

zu können. Nach dem Abnehmen des Überstandes wurden die Zellen wieder in MACS Puffer 

resuspendiert Anschließend wurde die so gewonnene Zellsuspension auf eine Trennsäule 

gegeben, die eine paramagnetische Matrix enthält. Im Einflussfeld eines starken 

Permanentmagnetes werden somit die mit den Microbeads beladenen Zellen 

zurückgehalten. Um zufällig in der Matrix verbliebene, nicht markierte Zellen aus dieser zu 

entfernen, wurde die Trennsäule drei Mal mit 3 ml MACS Puffer nachgespült. Danach 

wurden die in der Säule verbliebenen, mit Microbeads gebundenen Zellen mittels 3 ml MACS 

Puffer, sowie einem Stempel (zur Erhöhung des Durchflussdrucks) außerhalb des 

Magnetfeldes aus der Trennsäule eluiert (z.B. CD8+ T-Lymphozyte), wobei eine Reinheit 

zwischen 80-97% erreicht werden konnte (CD8 T-Cell Isolation Kit, Miltenyi Biotec). Um die 

Reinheit bestimmter Zellpopulationen zu erhöhen, wurde der Trennsäulenschritt mit einer 

kleineren Säule und 0,5 ml MACS Puffer für die Spülschritte wiederholt. Bei dieser Art der 

Aufreinigung handelt es sich um eine positive Selektion.  

Alternativ zu oben beschriebener Methode wurden aus PBMCs (Zellen des peripheren 

Bluts), die von dem selben Spender 48h zuvor gewonnen wurden, durch Makierung der Non-
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PDCs und Non-MDCs in mehreren Schritten PDCs (BDCA-4 Isaloation Kit, Miltonyi Biotec) 

und MDCs (BDCA-1 DC Isolation Kit, Miltonyi Biotec) isoliert, so dass im Überstand nach 

Durchfluss mehrerer Sepertionssäulen im Überstand die gewünschten Zellpopulationen übrig 

blieben. Hierbei konnte eine Reinheit zwischen 70-95% bei den PDCs und eine etwas höhere 

Reinheit von circa 95% bei den MDCs erreicht werden. 

 

2.2.3.3 Kultivierung der Zellpopulationen 

Die frisch isolierten PDCs (100.000 Zellen pro ml) wurden nach Zugabe von IL-3 (10 ng/ml) 

und in den Bedingungen in denen diese benötigt wurde mit CpG-ODN 2006 (3µg/ml) für 48h 

im Begasungsbrutschrank bei 37°C und 95% Luftfeuchtigkeit bei einem Anteil von 5% CO2  

inkubiert. Analog zu den PDCs wurden die frisch gewonnenen MDCs mit IL-4 (10 ng/ml), 

GMCSF (30 ng/ml) und in den Bedingungen, in denen dies erforderlich war mit LPS (100 

ng/ml) inkubiert. Nach 48h wurde sowohl bei den PDCs wie auch bei den MDC der 

Überstand abgenommen, die Zellpopulationen zweimal geschwaschen und in neues Medium 

überführt und gezählt.  

Im Anschluss wurden die, wie oben beschrieben, vorinkubierten PDCs und MDCs mit frisch 

isolierten CD8+ T-Lymphozyten im Verhältnis 1:20 (5.000 PDCs/MDCs und 100.000 CD8+ T-

Lymphozyten) in round-bottom 96-Well-Mikrotiterplatten für 48h im Begasungsbrutschrank 

bei 37°C und 95% Luftfeuchtigkeit bei einem Anteil von 5% CO2  inkubiert. Die Stimulation in 

den Ansätzen in denen die CD8+ T-Lymphozyten mittel CD3-Beads aktiviert werden sollten, 

erfolgte durch Zugabe von 200µl/100 Mio. Zellen Dynabeads CD3 

In den Ansätzen in denen eine Blockierung löslicher Faktoren oder spezieller 

Oberflächenproteinen durchgeführt wurde, erfolgte zusätzlich die Zugabe von blockierenden 

Antikörpern (Anti-IL-12 2 µg/ml, Anti-IL-15 2 µg/ml, Anti-IL-18 2µg/ml, Anti-OX40L 1µg/ml, 

Anti-IFN-α 0,1 µg und 1 µg/ml, Anti-CD28 2 µg/ml) sowie eines nicht blockierenden Kontroll-

Antikörpers (IgG1, Sigma) in der selben Konzentration 30 Minuten vor Zugabe der T-

Lymphozyten.  

Im Anschluss wurden die Überstände der einzelnene Bedingungen abgenommen und bei -20 

Grad Celsius bis zur Analyse aufbewart. 
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2.2.4. Enzyme-linked Immunosorbent Assay (ELISA) 

2.2.4.1. Allgemeines Funktionsprinzip 

Die Anfänge des ELISAs reichen in das Jahr 1971 zurück, als zwei Arbeitsgruppen 

[Avrameas, Guilbert, 1971 und Engvall, Perlman,1971] zeitgleich diese Methode 

beschrieben. Hierbei wird die Menge eines zu bestimmenden Proteins mittels des 

Substratumsatzes durch ein Enzym, das als Marker verwendet wird, bestimmt. Je nach 

verwendeter Methode ist dabei entweder das Antigen oder aber der Antikörper an eine feste 

Phase adsorbiert. In dieser Arbeit wurde das sogenannte Sandwich-Verfahren verwendet. 

Hierfür wird in einem ersten Schritt ein Antikörper an die feste Phase gebunden. Nach 

mehreren Block- und Waschschritten werden dann die Proben aufgetragen, die an die für sie 

spezifischen Antikörper, die an der festen Phase gekoppelt sind, binden können. Um das 

nicht gebundene Antigen zu entfernen, wird danach die Platte mehrfach mit Waschpuffer 

gereinigt und dann mit einem spezifischen, gegen das Antigen gerichteten 

Detektionsantikörper inkubiert, der mit dem Enzym Meerrettich-Peroxidase (HRP) gekoppelt 

ist. Für die eigentliche Auswertung wird nach mehreren Waschschritten, die den nicht 

gebundenen Detektionsantikörper entfernen sollen, das Substrat 3,3’, 5,5’-Tetramethyl-

benzidin (TMB) auf die so vorbereitete Platte aufgetragen. Durch die Einwirkung des Enzyms 

kommt es bei dem Substrat zu einem Farbumschlag, der umso stärker ist, je mehr 

Detektionsantikörper und somit Enzym an das Antigen gebunden ist. Der Farbumschlag 

korreliert somit also direkt mit der Menge des gebundenen und somit in der Probe 

vorhandenen Antigens. Um eine spätere Auswertung des Tests am Computer zu 

ermöglichen, wird zeitgleich neben den eigentlichen Proben eine Standardreihe mit 

bekannter Proteinmenge auf die Platte pipettiert, die eine genaue Berechnung der in den 

Proben enthaltenen Menge eines Proteins zulässt. 

 

2.2.4.2. Bestimmung der Proteinmenge mittels eines ELISAs 

Zur Vorbereitung der Platte für den ELISA wurde in jedes Well der 96-Well-Mikrotiterplatte 

jeweils 100 µl Coating Buffer mit einem für das Protein spezifischen Antikörper pipettiert und 

für ca. 12 Stunden bei 4°C inkubiert, so dass dieser an das Polystyrol binden konnte. Um 

unspezifische Proteinbindungsstellen zu blocken, wurde anschließend, nach dreimaligem 

Waschen, jedes Well mit 200 µl proteinhaltiger Verdünnungslösung für eine Stunde bei 

Raumtemperatur befüllt. Nach drei-maligem Waschen wurden dann die eigentlichen Proben 

auf die so vorbereitete Platte gegeben. Um den maximalen Messwert des Systems, der 

durch den höchsten Proteinwert in den Standardreihen vorgegeben wurde, nicht zu 
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überschreiten, wurden die Überstände der verschiedenen Versuchsansätze, in denen 

besonders hohe Werte des zu bestimmenden Proteins erwartet wurden, mit 

Verdünnungslösung verdünnt. Die so befüllte Platte wurde dann für weitere zwei Stunden bei 

Raumtemperatur inkubiert, so dass die zu bestimmenden Proteine an den auf der Well-

Oberfläche befindlichen Antikörper binden konnten. Im Anschluss wurde der Überstand mit 

den nicht gebundenen Proteinen entfernt und durch fünfmaliges Waschen sichergestellt, 

dass sich keine nicht-gebundenen Proteine mehr auf der Platte befanden. Danach wurde in 

jedes Well 100 µl eines Gemisches aus einem Protein-spezifischem und biotinyliertem 

Antikörper und einem Streptavidin-Peroxidase-Konjugat gegeben. Über die Ausbildung von 

mehreren Biotin-Streptavidin-Brücken pro Antikörper kommt es dabei zu einer weiteren 

Signalverstärkung. Im Anschluss an die einstündige Inkubation wurde dann nach erneutem 

siebenmaligem Waschen jeweils 100 µl des eigentlichen Substrats auf die Platte gegeben 

und für 30 Minuten bei Raumtemperatur in Dunkelheit inkubiert. Um den chemischen 

Prozess und damit den Farbumschlag, durch eine Deaktivierung des Enzyms zu stoppen, 

wurden jeweils 50 µl einer 1 molaren Schwefelsäure (H2SO4) in die Wells pipettiert. Die 

photometrische Auswertung erfolgte dann in einem ELISA Reader. 

 

2.3. Statistische Analyse 

Bei mehreren Versuchen, die nach demselben Protokoll durchgeführt wurden und dieselben 

Sachverhalte untersuchen sollte, ist das arithmetische Mittel angegeben, wobei die 

Abweichung der Messwerte von dem ermittelten Mittelwert als Standardfehler des 

Mittelwertes (standard error of mean, SEM) angegeben ist. Für eine Berechnung der 

Signifikanz der Unterschiede zweier Ergebnisse wurde der zweiseitige Student-t-Test für 

paarige Stichproben parametrischer Verteilungen angewendet. Eine statistische Signifikanz 

wurde bei p-Werten < 0,05 b.z.w. p < 0,01 angenommen und ist in den Graphen und 

Grafiken durch * bzw. ** angegeben. Für die statistischen Berechnungen wurde das 

Programm StatView D-4.5 (Abacus Concepts, CA, USA) herangezogen. Die rechnerische 

Auswertung, sowie die graphische Darstellung erfolgte mit den Microsoft Programmen Excel 

X und PowerPoint X für Mac (Microsoft Cooperation, CA, USA). 
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3. Ergebnisse 
 

3.1. Die plasmazytoide dendritische Zelle induziert eine Antigen-

unabhängige IFN-Induktion in (anti-CD3-stimulierten) CD8+ T –

Lymphozyten 

Im Jahr 2005 konnten Marschner et al. zeigen, dass die plasmazytoide dendritische Zelle 

über die Synthese von IFN-α hinaus auch über direkten Zellkontakt die Effektorfunktion von 

natürlichen Killer T (NKT) – Zellen steuern kann. Es konnte weiterhin am Beispiel der NKT 

Zelle gezeigt werden, dass ein direkter Zellkontakt mit aktivierten plasmazytoiden 

dendritischen Zellen zu einer Amplifikation der IFN-γ Produktion der NKT Zelle führt. Eine 

Beteiligung des NKG2D Rezeptors wurde postuliert. Die Aktivierung erfolgte durch CpG-

Oligonukleotide, die zu einer ähnlichen Stimulation der plasmazytoiden dendritischen Zelle 

führen wie bei einer Virusinfektion. Da plasmazytoide dendritische Zellen im Gegensatz zu 

den myeloiden dendritischen Zellen nicht die Fähigkeit zur Phagozytose besitzen und auch 

kein CD1d exprimieren, konnte gezeigt werden, dass die plasmazytoide dendritische Zelle 

nicht in der Lage ist, das NKT-Zell-spezifische Antigen (αGalCer) zu präsentieren (Kadowaki 

et al. 2001). Somit konnten Marschner et al. zeigen, dass ist in diesem Fall die Regulation 

der Effektorfunktion unabhängig von der eigentlichen Antigenpräsentation ist. Um eine 

ähnliche Konstellation mit der plasmazytoiden dendritischen Zelle und der CD8+ T-Zelle 

nachzustellen und die von Lorza et al. 2002 beschriebene große Ähnlichkeit der 

Differenzierungsstadien der NKT-Zelle und der CD8+ T-Zellen auch hinsichtlich dieses 

Verhaltens zu überprüfen, wurden aus PBMCs desselben Spenders sowohl die 

plasmazytoiden dendritischen Zellen als auch die CD8+ T-Zellen mittels MACS Technologie 

isoliert. Diese Zellpopulationen wurden dann für 48 Stunden miteinander inkubiert. An Stelle 

des für die NKT-Zellen spezifiischen Antigens (αGalCer) wurde ein, für den CD3 T-Zell 

Rezeptor, spezifisches Antigen (anti-CD3 Beads) gewählt (siehe Abb. 2). 
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3.1.2. Die (CpG-) TLR9-vermittelte Aktivierung von PDCs führt zu einer deutlichen 

Steigerung der Antigen-unabhängigen Kostimulation von CD8+ T-Zellen  

In einem ersten Versuch sollte der optimale Zeitpunkt für die Stimulation der PDCs mit dem 

CpG-Oligonukleotid, sowie der optimale Zeitpunkt für die Inkubation mit der CD8+ T-Zelle 

gefunden werden. Hierfür wurde von Spendern im Abstand von 48 Stunden zweimal Blut 

entnommen. Am ersten Tag wurden ausschließlich plasmazytoide dendritische Zellen, und 

nach weiteren 48 Stunden aus frischen Blut desselben Spenders sowohl plasmazytoide 

dendritische Zellen wie auch CD8+ T-Zellen isoliert. Die bereits seit 48 Stunden mit IL-3 und 

CpG Oligonukleotiden vorinkubierten plasmazytoiden dendritischen Zellen wurden dann nach 

mehrfacher Waschung mit den frisch gewonnenen plasmazytoiden dendritischen Zellen 

hinsichtlich ihrer Fähigkeit zur Induktion einer IFN-γ Produktion in CD8+ T-Zellen nach einer 

Inkubationszeit von 48 Stunden verglichen. Hierbei zeigte sich eine deutliche Überlegenheit 

der bereits seit 48 Stunden mit IL-3 und CpG Oligonukleotid vorinkubierten plasmazytoiden 

dendritischen Zellen gegenüber den frisch isolierten PDCs (siehe Abb. 3), n=8, p<0.001.
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In einem weiteren Versuch konnte gezeigt werden, dass bereits die Anwesenheit einer nicht 

mit CpG-Oligonukleotid 2006 vorinkubierten plasmazytoiden dendritischen Zelle zu einem 

leichten Anstieg der INF-γ Sekretion durch die CD8+ T-Zelle führte, sobald diese einen 

Stimulus, in diesem Fall das für den T-Zell Rezeptor spezifische Antigen (anti-CD3 bead) 

erhält (siehe Abb. 4), n=21. Eine Signifikanz konnte für diesen Effekt jedoch nicht 

nachgewiesen werden.  



37 
 

 

Wie bereits die Ergebnisse von Marschner et al. vermuten ließen, ist dieser Effekt jedoch um 

ein vielfaches steigerbar, sobald die plasmazytoide dendritische Zelle zusätzlich durch das 

für sie spezifische Antigen (CpG-Oligonukleotid) über ihren TLR9 Rezeptor aktiviert wird. 

Sowohl dieser, wie auch der letzte Befund zeigen, dass die Anwesenheit eines für den CD3 

T-Zell Rezeptor spezifischen Stimulus, wie auch eine Aktivierung des TLR9 Rezeptors auf 

der plasmazytoiden dendritischen Zelle, gemeinsam Vorraussetzungen für die Steigerung 

der IFN-γ Produktion in CD8+ T-Zellen sind. In den Kontrollbedingungen, in denen nur einer 

der Stimuli, sei es nun das CD3 spezifische Antigen, oder aber auch das CpG-Oligonukleotid 

alleine auf den T-Lymphozyten einwirkt, lassen sich keine signifikant erhöhten IFN-γ Spiegel 

in den Überständen nachweisen (siehe Abb. 5), n=21, p<0.05. 
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3.1.3. Der Vergleich von MDCs und PDCs zeigt eine deutliche Überlegenheit von PDCs in 

der Antigen-unabhängigen Kostimulation von CD8+ T-Zellen  

Von zahlreichen Abeitsgruppen wurde in der Vergangenheit die plasmazytoide dendritische 

Zelle bezüglich ihrer Rolle im Immunsystem mit der Rolle der myeloiden dendritischen Zelle 

verglichen. Hierbei wurde stets diskutiert, dass PDCs eine wesentlich schwächere bzw. keine 

TH1-gerichtete Immunantwort induzieren können als MDCs. Insofern sollte in folgenden 

Versuchen Unterschiede hinsichtlich der Potenz einer möglichen Kostimulation von CD8+ T-

Zellen im Vergleich zu myeloiden dendritischen Zellen gesucht werden. Hierfür wurden aus 

den PBMCs sowohl PDCs als auch MDCs desselben Spenders isoliert, und diese jeweils 

naiv oder für 48 Stunden mit den für sie spezifischen Antigenen (für die PDC der TLR9-

Stimulus CpG-Oligonukleotid 2006, bei MDCs der TLR4-Rezeptor Stimulus 

Lipopolysaccharid) vorinkubiert, danach gewaschen und mit, von demselben Spender, frisch 

isolierten CD8+ T-Zellen inkubiert. Nach 48 Stunden wurde dann die Aktivierung der CD8+ T-

Zellen anhand ihrer Zytokinsekretion mittels ELISA gemessen. 
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Vergleich PDC vs. MDC bei INF-y Induktion 

Es zeigte sich, dass nach einer 48-stündigen Vorinkubation der dendritischen Zellen die 

PDCs im Vergleich mit den MDCs in der Lage waren, in den CD8+ T-Zellen bei gleichen 

Bedingungen ein Vielfaches der INF-γ Produktion zu induzieren (siehe Abb. 6), n=15, 

p<0.001.  

 

3.2. PDCs steigern die Zytotoxizität von aktivierten CD8+ T-Zellen 

Da IFN-γ selbst keine zytotoxische Wirkung aufweist, sollte in weiteren Versuchen eine 

mögliche Auswirkung der Anwesenheit von PDCs oder MDCs in Abhängigkeit ihres 

Aktivierungzustandes auf die Zytotoxizität CD8+ T-Zellen untersucht werden. CD8+ T-Zellen 

haben die Möglichkeit, die zelluläre Immunabwehr auf der einen Seite über die Sekretion von 

Perforinen und Granzymen und auf der anderen Seite über direkten Zellkontakt mittels Fas-

FasL zu vermitteln. 
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3.2.1 CpG-aktivierte PDCs führen zu einer deutlichen Steigerung der Granzyme B 

Produktion in aktivierten CD8+ T-Zellen 

Ausgehend von dieser Überlegung sollte in einem ersten Versuch geklärt werden, ob PDCs 

die  Mechanismen der direkten Zytotoxizität in CD8+ T-Zellen induzieren können. Hierfür 

wurden wiederum aus PBMCs die unterschiedlichen Subpopulationen, also PDCs und CD8+ 

T-Zellen isoliert und nach 48-stündiger Vorinkubation mit CpG-ODN und anschließender 

Waschung in Kultur gegeben. Nach weiteren 48 Stunden wurde dann in den Überständen 

mittels ELISA der GranzymeB-Spiegel bestimmt. 

Ähnlich den Ergebnissen zur Induktion von IFN-γ durch PDCs zeigte sich auch in diesen 

Versuchen, dass die alleinige Anwesenheit von PDCs zu einem deutlichen Anstieg der 

GranzymeB Sekretion in aktivierten CD8+ T-Zellen führt. Wie auch bei den IFN-γ 

Messergebnissen zeigte sich jedoch eine deutliche intraindividuelle Streuung der Messwerte, 

so dass das Kriterium der Signifikanz nicht erreicht wurde. Analog zu den IFN-γ Messwerten 

zeigte sich auch in diesem Versuch ein deutlicher Anstieg der GranzymeB-Sekretion, sobald 

die plasmazytoide dendritische Zelle zusätzlich mit dem für ihren TLR9 Rezeptor 

spezifischen CpG-Oligonukleotid stimuliert wurde (siehe Abb. 7), n=8, p<0,04. 
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3.2.2. Nur die aktivierte PDC ist in der Lage Granzyme B in CD8+ T-Zellen zu induzieren 

Da dieses Ergebnis gerade im Hinblick auf eine spätere klinische Nutzung im Rahmen einer 

Zell-basierten Therapie mit dendritischen Zellen von Bedeutung ist, sollten in einem 

anschließenden Versuch mögliche Unterschiede der zwei DC Subtypen herausgearbeitet 

werden. Hierfür wurden wie im vorherigen Versuch aus PBMCs die jeweiligen 

Zellpopulationen isoliert, entsprechend des vorherigen Versuches inkubiert und nach 48 

Stunden in den Überständen der GranzymeB-Spiegel mittels ELISA gemessen. 

Überraschenderweise zeigte sich, dass weder nicht aktivierte, noch die aktivierten MDCs in 

dem gewählten Versuchsaufbau in der Lage waren, in den aktivierten CD8+ T-Zellen 

GranzymeB zu induzieren (siehe Abb. 8). Somit war in diesem Versuchsaufbau die PDC der 

MDC in der Induktion der zytotoxischen Markers GranzymeB deutlich überlegen (n=15), 

p<0.001. 

 

3.2.3. Die lytische Aktivität von aktivierten CD8+ T-Zellen wird durch CpG-stimulierte PDCs 

gesteigert 

Ausgehend von diesen Befunden sollte in einem weiteren Versuch untersucht werden, ob 

PDCs in der Lage sind, in aktiviertem Zustand, Einfluss auf die lytische Aktivität einer 

aktivierten CD8+ T-Zelle zu nehmen. Da in dem Versuchsaufbau polyklonale CD8+ T-Zellen 
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eingesetzt wurden, um möglichst physiologische Konditionen zu erreichen, konnte ein 

klassischer Antigen-abhängiger Lyseversuch nicht durchgeführt werden. Stattdessen wurde 

der etablierte und mehrfach validierte CD107 Degranulationsassay angewandt. Betts et al. 

konnten 2002 zeigen, dass die lytische Aktivität einer Effektorzelle direkt mit ihrer Expression 

des CD107a und CD107b Rezeptors korreliert. Dieser Rezeptor kann in fast allen granulären 

Membranen gefunden werden und wird beim Vorgang der Degranulation aus dem Inneren 

der Zelle und der Vesikel an die Oberfläche der Effektorzelle gebracht. Seine Funktion für die 

Degranulation ist bisher nicht einwandfrei geklärt. Es wird jedoch eine protektive Funktion 

gegenüber den zu sezernierenden Stoffen postuliert [Petes, 1991]. 

Es wurden aus PBMCs sowohl MDCs, wie auch PDCs isoliert und entsprechend der 

vorherigen Versuche mit den für ihre PRRs spezifischen Stimuli für 48 Stunden inkubiert. 

Abweichend von den anderen Versuchen wurden diese vorinkubierten Zellen dann mit frisch 

isolierten CD8+ T-Zellen desselben Spenders in Anwesenheit eines Antikörpers gegen 

CD107 für weitere 24 Stunden inkubiert. Im Anschluss daran wurde dann zu einer 

Kumulierung des Antikörpers für weitere 5 Stunden ein Sekretionshemmer hinzu gegeben 

und nach mehrmaliger Waschung die Zellen durch eine Fixation auf den intrazellulären 

FACS Vorgang vorbereitet. Der von den 48 Stunden abweichende Inkubationszeitraum von 

24 Stunden wurde deshalb so gewählt, da Vorversuche gezeigt hatten, dass sowohl der 

Sekretionsprozess des IFN-γ, wie auch des Granzyme B erst im Zeitraum zwischen der 24. 

und der 48. Stunde statt finden (siehe Abb. 9 und Abb. 10), jeweils n=6, p<0.001. 
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Hierbei zeigte sich, dass je nach Aktvierungszustand der CD8+ T-Zellen das Niveau 

zwischen 1% bis 15% CD107 positiven CD8+ T-Zellen lag, wobei es bei der aktivierten PDC 

zu einem deutlichen Anstieg des Prozentsatzes der CD 107 positiven CD8+ T-Zellen auf das 

Doppelte kam (siehe Abb. 11). Somit konnte gezeigt werden, dass sich die zytotoxische 

Aktivität der CD8+ T-Lymphozyten nach 24 Stunden Ko-Kultur mit durch CpG ODN 

aktivierten PDCs signifikant erhöhte (n=8) 

 

 

3.2.4. PDCs steigern die Zytptoxizität in aktivierten CD8+ T-Lymphozyten deutlicher als MDS  

Des Weiteren zeigte sich, dass MDCs entsprechend den Ergebnissen bei den Granzyme B-, 

wie auch bei IFN-γ-Spiegeln, eine deutlich geringere Steigerung des Prozentsatzes an CD 

107a/b positiven Zellen bewirkten (siehe Abb. 12), n=15, p<0.001. 
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Um dieses Ergebnis zu verifizieren und mögliche Unterschiede in der Kinetik der 

Zellaktivierung zwischen MDCs und PDCs auszuschließen, wurde entsprechend den obigen 

Versuchsansätzen der Spiegel von GranzymeB nach 5-stündiger Inkubation zusätzlich mit 

dem Sekretionshemmer Brefeldin A intrazellulär mittels FACS Technologie gemessen. Auch 

hier zeigte sich, dass myeloide dendritische Zellen im Vergleich zu plasmazytoiden 

dendritischen Zellen nicht, oder nur in geringem Maße in der Lage sind, in aktivierten CD8+ 

T-Zellen GranzymeB zu induzieren (siehe Abb. 13). 
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3.3. Die PDC-vermittelte, Antigen-unabhängige Aktivierung von 

CD8+ T-Zellen wird durch direkten Zellkontakt vermittelt 

Zahlreiche Arbeitsgruppen konnten in der Vergangenheit zeigen, dass bei der Stimulation der 

PDC mit CpG-Oligonukleotiden eine große Gruppe an pro-inflammatorischen Genen reguliert 

wird. So wurde unter anderem eine Aufregulation der Expression von MHC Klasse II 

Molekülen, ICAM-1 und den kostimulatorischen Molekülen CD40, CD54, CD80, CD83 und 

CD86, sowie eine verstärkte Sekretion von IL-6, TNF-α, IFN-α und IL-8 berichtet [Hartmann 

et al. 1999, Kadowaki et al. 2001, Krug et al. 2001]. Basierend auf diesen Befunden, ist die 

Induktion der oben beschriebenen Effekte durch die aktivierten PDCs über zwei 

verschiedene Mechanismen, auf der einen Seite über lösliche Stoffe und auf der anderen 

Seite über einen direkten Zell-Zell-Kontakt, möglich. Es sollte deswegen untersucht werden, 

welcher der beiden Wege für das Auftreten dieser Effekte verantwortlich ist, und welche 

löslichen Stoffe oder Oberflächenmarker daran beteiligt sind. 

Hierfür wurden entsprechend den obigen Ansätzen aus PBMCs PDCs isoliert, für 48 Stunden 

mit ihren spezifischen Stimuli vorinkubiert und dann mit frisch isolierten CD8+  



47 
 

T-Zellen desselben Spenders inkubiert. Je nachdem welcher Übertragungsweg untersucht 

werden sollte, wurden dabei entweder PDCs und CD8+ T-Zellen mittels Transwells, die eine 

freie Zirkulation der löslichen Stoffe zwischen den verschiedenen Zellpopulationen zuließen, 

getrennt, oder aber es wurden während der gemeinsamen Inkubation beider 

Zellpopulationen mittels Antikörpern einzelne löslichex Zytokine (IL-12, IL-15, IL-18 und IFN-

α), die einen entsprechenden Effekt hätten vermitteln können, spezifisch geblockt. 

 

 

3.3.1. Die Inhibierung von IL-12, IL-15, IL-18 und IFN zeigt keine Hemmung der PDC-

vermittelten Ko-Stimulation von Aktivierung CD8+ T-Zellen 

In der Literatur werden IL-12, IL-15 und IL-18 häufig als potente, wenn nicht sogar die 

potentesten Induktoren der IFN-γ Produktion in T-Zellen diskutiert. Überraschenderweise 

zeigte sich, dass es bei einer Blockierung sowohl der Zytokine IL-12, IL-15 und IL-18 auf 

aktivierten T-Zellen in Anwesenheit aktivierter PDCs zu keiner signifikanten Verminderung 

der INF-γ Spiegel in den Überständen kam (jeweils n=6). Es zeigte sich sogar, dass es in 

den Versuchsbedingungen, in denen IL-15 und IL-18 mit Antikörpern neutralisiert waren zu 

einem signifikanten Anstieg des IFN-γ Spiegels kam (siehe Abb. 14-16), ohne, dass in den 

PDC-freien Kontrollbedingungen IFN-γ messbar war. Somit konnte eine Beteiligung dieser 

TH1-Schlüsselzytokine in der indirekten PDC-abhängigen Aktivierung von CD3-stimulierten 

CD8+ T-Zellen ausgeschlossen werden. 
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Da IFN-α nicht direkt, jedoch indirekt über IL-12 auf die IFN-γ Produktion Einfluss nehmen 

kann, sollte in einem weiteren Schritt der Einfluss von IFN-α auf die IFN-γ Sekretion 

untersucht werden. Hierfür wurde analog der obigen Blockierungsansätze in den 

Überständen nach 48-stündiger Inkubation der Zellpopulationen, unter Anwesenheit von 

blockierenden IFN-α Antikörpern sowie Fusionsproteinen, die IFN-y Spiegel gemessen.  

Hierbei zeigt sich, dass auch die Blockierung von IFN-α keinen Einfluss auf die Produktion 

von IFN-γ durch die T-Lymphozyten hat (siehe Abb. 17), n=4. 
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3.3.2. Die Induktion von INF-γ in CD8+ T-Zellen durch PDCs wird über Zell-zu-Zell Kontakt 

vermittelt 

Aus den obigen Ergebnissen, wie auch den Ergebnissen, die Marschner et al. anhand der 

NKT-Zelle zeigen konnten, sollte nun untersucht werden, ob die oben beschriebenen Effekte 

auch bei der CD8+ T-Zelle über einen direkten Zell-zu-Zell Kontakt hervorgerufen werden. In 

einem ersten Schritt wurden deshalb die, bei den vorherigen Versuchen entsprechend 

isolierten Zellen, durch ein Transwell voneinander getrennt (siehe Abb. 18), und nach 48 

Stunden der IFN-γ Spiegel im Überstand mittels ELISA gemessen.  
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Es zeigte sich, dass, durch die Trennung der plasmazytoiden dendritischen Zellen und der 

CD8+ T-Lymphozyten, sich der Effekt  einer IFN-γ-Sekretion, der bei einer Ko-Koltur 

stimulierter PDCs mit über ihren TZR stimulierten CD8+-T-Lmyphozyten bebachtet werden 

konnte, vollkommen eliminieren ließ (siehe Abb. 19), n=8, p<0.001.  
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Um zu zeigen, dass es für die beobachteten Effekte tatsächlich eines Zellkontaktes zwischen 

PDCs und CD8+ T-Lymphozyten bedarf, und dieser nicht von etwaigen löslichen Stoffen mit 

einer kurzen Reichweite verursacht wird, sollte in einem Folgeversuch gezeigt werden, dass 

es durch eine räumliche Trennung der plasmazytoiden dendritischen Zelle und der CD8+ T-

Zelle tatsächlich nicht zu einer Sekretion von lytischen Stoffen wie GranzymeB kommt. 

Hierzu wurden in zwei Ansätzen einmal die plasmazytoide dendritische Zelle getrennt von 

der CD8+ T-Zelle und einmal zusammen mit dieser für 24 Stunden inkubiert. Nach einer 

anschließenden weiteren Inkubation mit dem Sekretionshemmer Brefeldin A für zusätzliche 5 

Stunden wurde mittels FACS Technologie intrazellulär das Vorhandensein von GranzymeB 

untersucht. Hierbei zeigte sich, dass ein Zell-zu-Zell-Kontakt für die Induktion von 

GranzymeB in CD8+ T-Zellen eine notwendige Bedingung darstellte (siehe Abb. 20). Die 

Expressionsstärke des GranzymeB entsprach in den Transwellversuchen des Signals der 

Kontrollbedingungen, wie dies bei einem Kontakt der plasmazytoiden dendritischen Zelle mit 

der T-Zelle der Fall war.  
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3.3.3 Die Inhibition von CD28 und OX40L führen zu einer deutlichen Reduktion der Antigen-

unabhängigen Aktivierung von CD8+ T-Zellen durch die PDC 

Da die vorausgegangenen Ergebnisse einen Zell-zu-Zell-Kontakt als notwendige Bedingung 

sehr wahrscheinlich machten, sollte im weiteren Verlauf dieser Arbeit ein möglicher Rezeptor 

gefunden werden, der für diesen CpG-abhängigen Effekt verantwortlich ist. Marschner et al. 

konnten 2005 zeigen, dass unter anderem bei einer Stimulation einer NKT-Zelle durch 

aktivierte plasmazytoide dendritische Zellen eine Interaktion zwischen OX40 und OX40 

Ligand eine notwendige Bedingung darstellte. Da in der Literatur von zahlreichen 

Arbeitsgruppen die Rolle der OX40 Interaktion mit ihrem Rezeptor für die Produktion von 

IFN-γ beschrieben wurde, und bekannt ist, dass es unter der Stimulation der plasmazytoiden 

dendritischen Zelle zu einer Hochregulation von OX40L kommt, sollte nun untersucht 

werden, ob dieser Rezeptor auch bei den oben beschriebenen Effekten eine Rolle spielt. 

Hierfür wurden analog der Zytokin-Blockierungs-Ansätzen die vorinkubierten plasmazytoiden 

dendritischen Zellen mit den frisch isolierten CD8+ T-Lymphozyten dessleben Spenders in 

Anwesenheit von blockierenden OX40 Rezeptor Antikörpern für 48 Stunden inkubiert, und 
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anschließend in den Überständen der IFN-γ-Spiegel mittels ELISA gemessen. Während sich 

in den Bedingungen mit einem Kontrollantikörper der bekannte kostimulatorische Effekt 

zeigte, konnte in den Bedingungen, in denen OX40 geblockt wurde, eine Verminderung des 

Effekts auf ca. 29% des „Normalwertes“ beobachtet werden (siehe Abb. 21), n=6, p<0.001. 

Es war dennoch immer noch ein Rest des durch CpG-Oligonukleotid induzierten Effekts 

erkennbar, so dass von einer Beteiligung weiterer Oberflächenproteine ausgegangen werden 

musste, die im Folgenden untersucht werden sollten. 

Hartmann et al beschrieben 1999, dass es unter der Stimulation von plasmazytoiden 

dendritischen Zellen zu einer Aufregulation von CD80, wie auch CD86 auf der Oberfläche der 

plasmazytoiden dendritischen Zelle kommt. Aus zahlreicher Literatur ist bekannt, dass es 

sich bei CD80, wie auch CD86, um einen essentiellen kostimulatorischen Faktor bei der 

Aktivierung von T-Zellen handelt. CD80, wie auch CD86 sind hierbei mit dem auf CD4+ T-

Lymphozyten zu ca. 80% und auf CD8+ T-Lymphozyten zu ca. 40% exprimierten 

Oberflächenmarker CD28 an der Bildung der immunologischen Synapse beteiligt. Deshalb 

sollte in einem weiteren Schritt dieser Arbeit untersucht werden, ob dieser Mechanismus 

auch an der Induktion des oben beschriebenen CpG-induzierten Effekts beteiligt ist. Hierfür 

wurde ein gegen CD28 gerichteter, blockierender Antikörper, der selbst keine aktivierende 

Aktivität zeigte, verwendet, um sowohl die Wirkung von CD80, wie auch CD86 bei einer 
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möglichen Aktivierung CD8+ T-Lymphozyten zu unterdrücken. Hierbei konnte ein deutlicher 

Rückgang des INF-γ Spiegels in den Überständen beobachtet werden. Dennoch war 

weiterhin eine gegenüber der Kontrollbedingung gesteigerte IFN-γ Produktion in CD8+ T-

Lymphozyten nach zu weisen (siehe Abb. 22), n=6, p<0.001. 

 

 

4. Diskussion 
 
4.1. Übersicht über die experimentellen Befunde 

Die Stimulation naiver CD8+ T-Lymphozyten durch CpG Oligonukleotide 

CD8+ T-Lymphozyten stellen einen wichtigen Bestandteil der zellulären Immunantwort dar. 

Eine direkte Stimulation des naiven T-Lymphozyten durch CpG-Oligonukleotide ist nicht 

möglich, da Analysen der TLR 1-10 Expression in PBMCs gezeigt haben, dass naive CD8+ 

T-Lymphozyten nur eine geringe bis fehlende Expression von TLR9 aufweisen. Zudem wird 

generell in Frage gestellt, ob TLRs auf T-Lymphozyten eine funktionelle Relevanz besitzen. 

Dementsprechend zeigen aufgereinigte naive- wie auch über ihren CD3-Rezeptor stimulierte 

CD8+ T-Lymphozyten ebenfalls keine Sensitivität gegenüber CpG-ODNs [Hornung, 2002]. 
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Aus Vorarbeiten ist bekannt, dass es in PBMCs bei Peptid-spezifischen- und memory CD8+ 

Zellen sowie bei NKT-Zellen zu einem deutlichen Anstieg der IFN-γ Produktion kommt, 

sobald die gesamte PBMC-Kultur mit CpG-ODNs stimuliert wird. Hierbei zeigte sich, dass 

ODN-Typ CpG A, welches sich durch eine Induktion höherer Spiegel von Typ-I-IFN 

auszeichnet, einen stärkeren aktivierenden Effekt als ODN-Typ CpG B, das eher eine 

ausreifende Wirkung auf PDCs hat. Eine zusätzliche Kostimulation der Kultur mit dem für die 

jeweilige Zelle spezifischem Antigen konnte den beobachteten Effekt steigern [Marschner, 

2002]. 

Der den Effekt verursachende Mechanismus wird durch eine Interaktion des Peptid-

spezifischen- oder des Memory-CD8 T-Lymphozyten sowie der NKT-Zelle mit der PDC 

erklärt, denn es zeigte sich, dass eine Depletion der PDC innerhalb der PBMCs zu einem 

kompletten Verlust dieses Effekts führte. Eine alleinige Depletion der MDC zeigte nur eine 

geringe bis gar keine Verminderung der IFN-γ Produktion. 

Ein CD8+ T-Lymphozyt, wie auch die oben beschriebenen Zellen, können ein Antigen nur 

dann erkennen, wenn es von einer APC im Kontext mit CD1a-c oder CD1d präsentiert wird. 

Bereits früher wurde vermutet, dass die Zielzellen des CpG Motivs (B-Zellen und PDCs) in 

der Lage sind über CD1a-c oder bei der NKT-Zelle über CD1d der Effektorzelle ein Antigen 

zu präsentieren und gleichzeitig nach Aktivierung durch CpG-ODNs über TLR9 eine 

Kostimulation auszuüben. Genom-weite Transkription Analysen der naiven, wie auch der 

aktivierten PDC haben jedoch gezeigt, dass diese nicht in der Lage sind Antigen mittels 

CD1a-c oder CD1d zu präsentieren, da diese nicht exprimiert werden. Die Antigen-

präsentierende Zelle und die, das CpG-ODN erkennende, Zelle, die PDC, sind somit nicht 

identisch. Deshalb ist es erforderlich zur Untersuchung einer ko-stimulatorischen Aktivität der 

PDC und deren Wirkung auf den CD8+ T-Lymphozyten diesen vorab über einen zusätzlichen 

Stimulus zu aktivieren. In dieser Arbeit wurden hierfür CD3-besetzte Mikrobeads verwendet, 

die ihrerseits jedoch nicht oder nur in geringem Maße in der Lage sind in T-Lymphozyten 

eine INF-γ zu induzieren (siehe Ergebnisteil). Dieses System mag auf den ersten Blick 

unphysiologisch erscheinen, jedoch ermöglicht es eine Antigen-unabhängige, TZR-

abhängige Stimulation von CD8+ T-Zellen. 

Bisherige Arbeiten und Veröffentlichungen, die sich mit der Kostimulation und Aktivierung 

von Immunzellen durch mit CpG-ODN stimulierten PDCs auseinander setzten, legten die 

Vermutung nahe, dass lösliche Faktoren alleine oder aber in Kombination mit einem direkten 

Zellkontakt für die gesteigerte Sekretion von IFN-γ verantwortlich sind. Insbesondere das 

IFN-α wurde als wichtiger löslicher Faktor diskutiert. 
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Hierin unterscheidet sich die vorliegende Arbeit jedoch von den vorausgegangenen, denn 

anders als in den vorangegangenen Arbeiten erwies sich das CpG-ODN Typ A dem CpG-

ODN-Typ B in der Induktion von IFN-γ nicht nur nicht gleichwertig, sondern sogar deutlich 

unterlegen. Diese auf den ersten Blick etwas verwunderliche Beobachtung lässt sich jedoch 

durch die verschiedenen Wirkungen der beiden CpG-ODNs auf die PDC gut erklären. CpG-

ODN Typ A ist in der Lage sehr hohe Werte an IFN-α in der PDC zu induzieren. Die 

aktivierende Wirkung von IFN-α auf peptidspezifische- und memory T-Lymphozyten ist gut 

bekannt. Auf der anderen Seite zeigte sich eine stark hemmende Wirkung auf naive T-

Lymphozyten. CpG-ODN-Typ B führt hingegen zu einer phänotypischen und funktionellen 

Ausreifung der PDC. Diese „ausgereiften“ PDCs exprimieren Antigen-präsentierende und 

kostimulatorische Moleküle (CD80, CD86 und CD40) sowie den Reifemarker CD83. 

Außerdem erzeugt CpG-ODN-Typ B ein anderes Zytokinprofil als CpG-ODN-Typ A. 

Transwell-Experimente wie auch Experimente mit blockierenden Antikörpern gegenüber 

diversen Zytokinen zeigten, dass lösliche Faktoren bei der Kostimulation naiver CD8+ T-

Zellen durch aktivierte PDCs nur eine untergeordnete, oder sogar fast keine Rolle, spielten. 

Außerdem zeigten sowohl die Transwell-Experimente, wie auch die Experimente mit 

blockierenden Antikörpern, dass für die Induktion von IFN-γ ein direkter Zellkontakt zwischen 

PDCs und CD8+T-Lymphozyten erforderlich ist, da es nach Separierung der T-Lymphozyten 

von den PDCs zu einem fast vollständigen Verschwinden des beobachteten Effekts kam. 

Außerdem konnte mit Überständen von aktivierten PDCs bei isolierten naiven CD8+ T-

Lymphozyten ohne, wie auch mit einer Aktivierung über ihren TCR, kein IFN-γ induziert 

werden (Daten nicht gezeigt). 

Somit zeigen die Ergebnisse dieser Arbeit, dass PDCs, obwohl sie nicht über CD1d für die 

Antigenpräsentation verfügen, in der Lage sind über einen direkten Zellkontakt Antigen-

unabhängige CD8+ T-Lymphozyten immunologisch zu beeinflussen.  

 

4.2. Diskussion der Ergebnisse im Vergleich mit der Literatur 

4.2.1. Die Stimulation des CD8-positiven T-Lymphozyten durch die mit CpG-ODNs 

aktivierten PDC. 

Aus früheren Arbeiten und Publikationen war bereits bekannt, dass die PDC nach ihrer 

Aktivierung durch CpG-ODN in der Lage ist bei peptidspezifischen- oder auch memory  

T-Zellen [Hornung et al. 2002] sowie bei NKT-Zellen [Marschner et al. 2005] eine INF-γ 

Sekretion zu induzieren. Eine direkte Umsetzung, der in diesen Veröffentlichungen 
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verwendeten Versuchsansätze war nicht möglich. Erstens zeigte sich das in den 

Publikationen verwendete CpG-ODN Typ A dem CpG-ODN Typ B deutlich unterlegen. 

Zweitens musste für den naiven CD8+  T-Lymphozyten ein Möglichkeit gefunden werden, 

diesen zu aktivieren, ohne jedoch dabei eine direkte IFN-γ Sekretion zu induzieren. 

Zusätzlich zeigte sich In der Arbeit von Hornung et al. wie auch in der vorliegenden Arbeit 

(Daten nicht gezeigt), dass es zu einer Verminderung der Proliferation sowie der INF-γ 

Sekretion nach Stimulation der PDC mit einem CpG-ODN, bei naiven T-Zellen kam. Bereits 

1999 zeigte Erickson et al., dass IFN-α auf naive T-Lymphozyten eine stark antiproliferative 

Wirkung hat, indem es einen Übergang der Zelle aus der G1-Phase in die S-Phase nach 

Stimulation des TCR unterbindet. Im Gegensatz hierzu führt IFN-α bei voraktivierten-, CD8+ 

T-Lymphozyten und NK-Zellen zu einer Steigerung der Zytotoxizität sowie bei memory CD8-

T-Lymphozyten zu einer selektiven Expansion [Biron et al. 1999], was sich auch mit den 

Beobachtungen von Marschner et al. und Hornung et al. deckt.  

Um etwaige Wechselwirkung des INF-α mit den isolierten naiven CD8+ T-Lymphozyten zu 

vermindern, wurde in der vorliegenden Arbeit CpG-ODN Typ B verwendet. Im Gegensatz zu 

CpG-ODN Typ A induziert CpG-ODN Typ B in PDCs nur eine geringe Menge an IFN-α [Krug 

et al. 2001]. Es führt stattdessen neben einer starken B-Zellaktivierung zu einer phänotypisch 

und funktionellen Ausreifung, die sich durch eine bessere Apoptose-Resistenz und die 

Expression von kostimulatorischen Molekülen und Reifemarkern (CD80, CD83 sowie CD86 

und CD40) sowie dem Chemokinrezeptor CCR7 auszeichnet [Rothenfusser et al. 2003].  

Die unterschiedliche Wirkung der verschiedenen CpG-ODNs ist bisher noch nicht endgültig 

geklärt. Die größte Differenz in ihrer Wirkung zeigen CpG-ODN Typ A und Typ B, wie bereits 

oben beschrieben, in ihrer unterschiedlichen Fähigkeit INF-α zu induzieren. Kerkmann et al. 

beschrieb 2003, das CpG-ODN Typ A und Typ B verschiedene Signalkaskaden aktivieren. 

Es wird vermutet, dass Unterschiede in der Erkennung und der Aufnahme der CpG-ODN für 

die unterschiedliche Wirkung der CpG-ODNs verantwortlich sind. Struktur-Untersuchungen 

haben gezeigt, dass CpG-ODN Typ B nur in Form von Monomeren vorliegt, wohingegen 

CpG-ODN Typ A partikuläre, höhermolekulare Strukturen ausbildet. Ein Grund für die 

Ausbildung dieser höhermolekularen Strukturen sind die bei CpG-ODN Typ A 

vorkommenden Poly-G-Enden, sowie das im Zentrum vorkommende Palindrom. Über 

Wasserstoffbrückenbindungen können sich hierdurch intra- und intermolekulare 

Verbindungen ausbilden, die dazu führen, dass sich mehrere CpG-ODN Typ A zu komplexen 

Strukturen zusammenschließen. In der Literatur werden diese höhermolekularen Strukturen 

für die Fähigkeit, große IFN-α Mengen zu induzieren, verantwortlich gemacht. Verändert man 
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die Sequenz der Poly-G-Enden oder des zentralen Palindroms, so kommt es zu einem 

deutlichen Abfall der INF-α Sekretion. 

Messungen in Überständen von, durch CpG-ODNs stimulierten, PDCs zeigten jedoch auch, 

dass, wie bereits von Rothenfusser et al. 2002 beschrieben, auch CpG-ODN Typ B in der 

Lage ist IFN-α zu induzieren. Die erreichten Spiegel sind deutlich geringer als bei, durch 

CpG-ODN Typ A stimulierten, PDCs [Krug et al. 2001]. Diese Spiegel dürften aber, wie von 

Erickson et al. 1999 beschrieben, ausreichen, um eine antiproliferative Wirkung auf naive 

CD8+ T-Lymphozyten auszuüben.  

Eigene Untersuchungen zeigten, dass die durch CpG-ODN Typ B induzierte IFN-α 

Produktion in den ersten 48 Stunden nach Stimulation der PDC durch das CpG-ODN erfolgt, 

wobei im Anschluss keine IFN-α Sekretion mehr zu beobachten ist. Um etwaige sekundären 

Einflüsse [Erickson et al. 1999], von IFN-α auf naive CD8+ T-Lymphozyten zu vermeiden, 

wurden daher die PDC mit CpG-ODN Typ B für 48 Stunden vorinkubiert und anschließend 

ein Medium-Wechsel vollzogen. In weiteren Messungen von IFN-α in den Überständen der 

Ko-Kulturen von PDCs und CD8+ T-Lymphozyten konnten keine erhöhten IFN-α Spiegel 

nachgewiesen werden (Daten nicht gezeigt). 

CD8+ T-Lymphozyten benötigen für ihre Aktivierung ein köperfremdes Antigen, welches über 

den TCR erkannt wird. Liegt kein derartiger mikrobieller- oder viraler Stimulus vor, induzieren 

PDC regulatorische CD8+ T-Lymphozyten [Gilliet und Liu 2002]. Da die PDC im Gegensatz 

zur MDC kaum zur Phagozytose befähigt ist, kann sie auch keine exogenen Antigene 

präsentieren. Der einzige Fall, in dem eine Präsentation eines exogenen Antigens durch eine 

PDC beschrieben wurde, war die direkte Infektion der PDC durch einen Virus [Fonteneau et 

al. 2003]. Um dennoch eine mögliche Kostimulation der PDC zu überprüfen, wurde deshalb 

in dieser Arbeit ein, gegen den TCR gerichteter, Anti-CD3-Antikörper verwendet. Dieser ware 

alleine nicht in der Lage in CD8+ T-Lymphozyten eine IFN-γ Sekretion zu induzieren. Somit 

muss die zu messende IFN-γ Sekretion durch CD8+ T-Lymphozyten entweder durch lösliche 

Faktoren, oder aber durch einen direkten Zell-zu-Zellkontakt mit der PDC hervorgerufen 

werden.  

Überraschenderweise zeigte sich bereits, dass die alleinige Anwesenheit der PDC bei, mit 

CD3 Beads aktivierten, CD8+ T-Lymphozyten ausreichend ist, um eine leichte IFN-γ 

Sekretion auszulösen. Eine genauere Analyse der auf der PDC exprimierten 

Oberflächenproteine mittels eines Gen-Chips zeigte, dass bereits die unstimulierte PDC, 

wenn auch in deutlich geringerem Maße als die aktivierte PDC, kostimulatorische Moleküle 

z.B. der B-7 Familie trägt und somit für diese geringe Stimulation des CD8+ T-Lymphozyten 
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sorgen könnte. Aus der Literatur ist bekannt, dass eine gemeinsame Stimulation des CD3 

und des CD28 Rezeptors in naiven CD8+ T-Lymphozyten eine IFN-γ Sekretion auslöst 

[zusammengefasst in Janeway et al. 2002]. 

In der nun vorliegenden Arbeit konnte somit erstmals gezeigt werden, dass eine, durch CpG-

ODN Typ B stimulierte, PDC in der Lage ist in, durch ihren TCR voraktivierten, CD8+  

T-Lymphozyten hohe Spiegel an IFN-γ zu induzieren.  

Neben der Sekretion des IFN-γ sollte in einem weiteren Schritt überprüft werden, ob eine 

Kostimulation CD8+ T-Lymphozyten durch die zuvor mittels CpG-ODN stimulierten PDCs zu 

einer weiteren Steigerung der zytotoxischen Aktivität der CD8+ T-Lymphozyten führt.  

Betts et al. konnte 2003 zeigen, dass es bei der Degranulation, einer notwendigen 

Grundvoraussetzung für die Zytotoxizität einer T- Zelle, zu einer Steigerung der Expression 

des Oberflächenmoleküls CD107a (LAMP-1) und CD107b (LAMP-2) auf der Effektorzelle 

kommt. Die Lysosome Associated Membran Proteins (LAMP), deren genaue Funktion 

innerhalb der Vakuolen bisher ungeklärt ist, werden vor allem in den Lumen von Vakuolen 

und lysosomalen Strukturen gefunden [Carlsson et al. 1993]. Betts et al. konnten des 

Weiteren zeigen, dass eine Steigerung der Expression der Oberflächenmolekühle CD107a/b 

an der Oberfläche von antigen-spezifischen CD8+ T-Lymphozyten direkt in Korrelation mit 

einer intrazellulären Abnahme der Spiegel von Porferinen und Granzymen, beides wichtige 

Bestandteile der zellulären Abwehr, steht. Somit ist eine Messung der Expression von 

CD107a/b an der Zelloberfläche direkt korreliert mit der zytotoxischen Aktivität der Zelle. In 

der nun vorliegenden Arbeit wird somit das erste Mal gezeigt, dass mittels CpG-ODN 

aktivierte PDCs in der Lage sind bei, über den TCR voraktivierten, naiven CD8+  

T-Lymphozyten eine Antigen-unabhängige Steigerung der Zytotoxizität hervor zu rufen. Es 

sei hier vermerkt, dass ein klassischer Zytotoxizitäts-Assay aus technischen Gründen nicht 

möglich war. Da die Antigen-Spezifität der über CD3 stimulierten T-Zellen nicht bekannt ist, 

kann man in diesem Versuchsaufbau auch keine spezifischen Lyse-Tests durchführen. Da 

jedoch der CD107 Degranulationsassay in der Literatur weithin als hervorragendes Korrelat 

der Zytotoxizität einer T-Zelle angesehen wird, erschien uns dieses Verfahren hier als idealer 

Ersatz. 

Ein weiterer Beweis für eine Steigerung der Zytotoxizität CD8+ T-Lymphozyten durch 

aktivierte PDCs sind die in dieser Arbeit durchgeführten Messungen der Konzentration von 

Granzyme B in den Überständen von Ko-Kulturen beider Zellen (Abb. 7). Granzyme B gehört 

zu den Serin-Proteasen in zytolytischen Granula von zytotoxischen T-Lymphozyten sowie 

von NK- und NKT Zellen [Lobe et al. 1986] und stellt neben Perforinen einen der wichtigsten 
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Bestandteile der zellulären Abwehr dar [Russel und Ley. 2002]. Der Mechanismus beruht 

darauf, dass nach dem Binden an die Zielzelle die zytolytischen Granula in den 

Intrazellularraum sezerniert werden. Anders als früher angenommen, bindet das Granzyme B 

dort an hoch-affine Rezeptoren und wird in die Zelle durch Endozytose aufgenommen 

[Pinkoski et al. 1998]. In Kombination mit Perforinen kommt es dann zu einer Apoptose der 

Zielzelle.  

Überraschender Weise zeigte sich bei einer intrazellulären Messung von Granzyme B zur 

genaueren Charakterisierung der Sekretion in den Zellen der Ko-Kultur, dass neben des 

CD8+ T-Lymphozyten auch die PDC in der Lage ist Granzyme B zu produzieren (Daten nicht 

gezeigt). Diese nun erstmals in-vitro bestätigte Beobachtung korreliert gut mit einem in der 

Literatur beschriebenen, mittels subtraktiver Hybridisierung gemachten, Fund von 

Transkripten für Granzyme B in der PDC, die nach einer entsprechenden Aktivierung der 

PDC aufreguliert wurden [Rissoan et al. 2002]. Des Weiteren wird in der Literatur 

beschrieben, dass in den Tumorzellen einer PDC-assoziierten Leukämie Granzyme B 

nachgewiesen werden kann [Chaperot et al. 2002, Gopcsa et al. 2005]. Somit könnten die in 

dieser Arbeit gemessenen Spiegel von Granzyme B in den Überständen auch durch eine 

zusätzliche Sekretion des Granzyme B durch die PDC mitbedingt sein. Eine Messung einer 

möglichen Zytotoxizität mittels der Expression von CD107a/b war sowohl aufgrund der 

kurzen Überlebenszeit, als auch der geringen Absolutzahl der PDCs, die von einem Spender 

isoliert werden konnten, im Rahmen dieser Arbeit nicht möglich. Der Befund zeigt aber 

deutlich die Notwendigkeit einer weiteren Charakterisierung sowie die Aufklärung der 

Herkunft der PDC. 

 

4.2.2. Mechanismen der Aktivierung von CD8+ T-Lymphozyten durch die PDC 

a) Lösliche Faktoren 

Aus diversen Arbeiten wie auch den in dieser Arbeit gemachten Beobachtungen ist bekannt, 

dass eine alleinige Stimulation CD8+ T-Lymphozyten über den TCR nicht ausreicht um eine 

IFN-γ Sekretion zu bewirken oder aber die Zytotoxizität (Expression von CD 107a/b) zu 

steigern (zusammengefasst in Janeway et al. 2002). Die Steigerung der Zytotoxizität, wie 

auch die INF-γ muss somit durch die PDC bedingt sein. Aus Vorarbeiten ist bekannt, dass 

eine Aktivierung von NKT-Zellen und peptidspezifischen CD8+ memory T-Lymphozyten  

sowohl durch lösliche Faktoren, wie auch einen direkten Zellkontakt der Effektorzelle mit der 

aktivierten PDC ausgelöst wird [Hornung et al. 2002, Marschner et al. 2005]. Die Blockierung 
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verschiedener für die T-Zell-Aktivierung in Frage kommender Zytokine mittels spezifischer 

Antikörper zeigt, dass in der vorliegenden Arbeit die Aktivierung des naiven CD8+  

T-Lymphozyten nicht durch IL-12, IL-15, IL-18 und INF-α ausgelöst wird. Wie in Abschnitt 

4.2.1. beschrieben, ist eine Vorinkubation der PDC notwendig, um eine Aktivierung des 

CD8+ T-Lymphozyten zu ermöglichen. Hierfür ist wahrscheinlich in erster Linie die 

antiproliferative Wirkung des IFN-α verantwortlich [Erickson et al. 1999], und evtl. auch eine 

maximale Ausreifung der PDC, wie sie erst nach prolongierter Inkubationszeit gesehen wird. 

Bei der Aktivierung einer PDC durch ein CpG-ODN kommt es ja nach verwendetem  

CpG-ODN zur Expression bestimmter Oberflächenmoleküle. CpG-ODN-Typ B ist in der Lage 

eine PDC zu einer phänotypischen und funktionellen Ausreifung zu bringen 

[zusammengefasst in Rothefusser et al. 2002]. Zu den daraufhin an der Oberfläche 

exprimierten Molekülen gehört auch das kostimulatorische Molekül CD40. Krug et al. konnten 

2001 zeigen, dass es bei einer Aktivierung der PDC durch ein CpG-ODN in Gegenwart von 

CD40L zu einer Sekretion von IL-12 kommen, und somit die PDC eine IL-12 vermittelte TH1-

Antwort auslösen kann. CD40 Ligand (CD40L) ist ein Mitglied der TNF-Rezeptorfamilie und 

wird insbesondere an der Oberfläche von aktivierten T-Lymphozyten gefunden 

[zusammengefasst in Xu und Song 2004]. In der Literatur ist bekannt, dass IL-12 in der Lage 

ist in T-Lymphozyten hohe Mengen an IFN-γ zu induzieren [Manetti et al. 1994, Gerosa et al 

1994]. Somit könnte diese von Krug et al. beschriebene IL-12 Sekretion eine IFN-γ Sekretion 

auslösen. Die Blockierung von IL-12 mittels eines spezifischen Antikörpers zeigt jedoch, dass 

der in dieser Arbeit beobachtete Effekt nicht durch IL-12 vermittelt wird.  

Für IL-15 wird in der Literatur ein verstärkender Effekt einer IL-12-vermittelten IFN-γ Induktion 

beschrieben [Avice et al. 1998]. Da IL-15 des Weiteren in der Lage ist, auf die Expression 

des ko-stimulatorischen Moleküls CD40 auf einer APC und der Expression von CD40L auf 

Effektorzellen Einfluss zu nehmen, wäre ein zusätzlich verstärkender Effekt auf die IL-12 

Sekretion denkbar. Da sich aber bereits im Vorfeld zeigte, dass der in dieser Arbeit 

beobachtete Effekt nicht durch IL-12 vermittelt ist, verwundert es nicht, dass auch die 

Blockierung von IL-15 mittels eines spezifischen Antikörpers keine Auswirkung auf die IFN-γ 

bewirkt. 

In der Literatur wird die Wirkung von IL-18 bevorzugt in Kombination mit der Wirkung von IL-

12 beschrieben. In diesem Zusammenhang wurde IL-18 auch als IFN-γ induzierender Faktor 

(IGIF) bezeichnet. IL-18 ist in der Lage eine Sekretion von IFN-γ in TH1-Zellen, naiven  

T-Zellen und NK-Zellen zu vermitteln, wobei IL-12 eine synergistische Rolle einnimmt 

[Yoshimoto, Okamura et al. 1997, Okamura et al 1998, Yashimoto, Takeda et al. 1998]. 
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Entgegen der normalerweise notwendigen Aktivierung über den TCR ist jedoch bei dem, in 

der Literatur beschriebenen, synergistischen Effekt von IL-12 und IL-18 zur Induktion von 

IFN-γ eine TCR-vermittelte Aktivierung des T-Lymphozyten nicht erforderlich [Ahn, Maruo et 

al. 1997, Yoshimoto, Okamura et al 1997, Yashimoto, Takeda et al. 1998, Tominaga, 

Yoshimoto et al 2000].  Dieser Effekt wird dadurch erklärt, dass IL-12 in der Lage ist bei z.B. 

naiven T-Lymphozyten aber auch bei NK-Zellen die Expression des IL-18 Rezeptors zu 

steigern. Die anschließende Ligation des IL-18 Rezeptors führt zu einer vermehrten 

Sekretion von IFN-γ [Kinikata, Torigoe et al. 1998, Tominaga, Yoshimoto et al 2000]. 

Außerdem wird in der Literatur beschrieben, dass IL-18 in der Lage ist die Expression des IL-

12 Rezeptors zu steigern [Tomura, Maruo et al. 1998, Yashimoto, Takeda et al. 1998, Chang 

et al. 2000]. In der Literatur ist eine IL-18 abhängige IFN-γ Sekretion durch NK-Zellen nach 

einer Virusinfektion beschrieben, die jedoch nicht notwendigerweise IL-12 als synergistische 

Ko-Stimulation benötigte [Barr et al 2007]. In diesem Kontext könnte der in dieser Arbeit 

beobachtete Effekt auf demselben Weg funktionieren. Die Blockierung von IL-18 mittels 

eines spezifischen Antikörpers zeigte jedoch auch hier, dass der beobachtete Effekt nicht 

von IL-18 abhängig ist, oder aber einen synergistischen Effekt auf eine mögliche IL-12-

vermittelte IFN-γ Sekretion hat. 

Es zeigt sich somit in der vorliegenden Arbeit, dass lösliche Faktoren zwar bei der Induktion 

einer IFN-γ Sekretion von peptidspezifischen- und memory-T-Lymphozyten sowie NKT Zellen 

eine Rolle spielen, jedoch bei einer Aktivierung naiver CD8+ T-Lymphozyten keine oder aber 

höchstens eine untergeordnete Rolle. 

 

b) Zellkontakt-abhängige Faktoren 

Die Beobachtungen aus den vorangegangenen Versuchen dieser Arbeit sowie aus der 

Literatur [Marschner et al 2004] weisen darauf hin, dass lösliche Faktoren eine eher 

untergeordnete Rolle bei der Aktivierung naiver CD8+ T-Lymphozyten spielen. Überstände 

aktivierter PDC enthalten hohe Mengen an IFN-α, so dass dieses eine antiproliferative 

Wirkung auf den naiven T-Lymphozyten ausübt [Erickson et al 1999, Hornung et al. 2002]. 

Außerdem zeigte sich für die Induktion einer IFN-γ Sekretion CpG-ODN Typ B, dass für eine 

Ausreifung (Expression der Oberflächenmoleküle CD80, CD83 und CD86, sowie CD40) 

[Krug et al. 2001] der PDCs sorgt, dem CpG-ODN Typ A deutlich überlegen. Zusätzlich ist für 

den, in dieser Arbeit beobachteten, Effekt eine Vorinkubation der PDC erforderlich (siehe 

Abschnitt 4.2.1), was zusätzlich eine Zytokin-vermittelte IFN-γ Sekretion eher 

unwahrscheinlich erscheinen läßt. 
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Die CpG-vermittelte Steigerung der IFN-γ Sekretion ist demnach von einem anderen nicht 

löslichen von der PDC ausgehenden Aktivierungssignal abhängig.  

Weiterhin zeigen die in dieser Arbeit durchgeführten Transwell-Untersuchungen, dass es zu 

einer fast vollständigen Aufhebung der IFN-γ Sekretion kommt, sobald die mittels CpG-ODN 

aktivierten PDCs von den CD8+ T-Lymphozyten räumlich getrennt werden (siehe Abb. 19). 

In der Literatur sind einige Oberflächenmoleküle beschrieben, die an einer Zellkontakt-

vermittelten Interaktion zwischen normalen DCs und CD8+ T-Lymphozyten beteiligt sind oder 

beteiligt sein könnten. Insbesondere die B7 Rezeptorfamilie spielt für die IFN-γ Sekretion eine 

entscheidende Rolle. In Gegenwart von Gefahren-Signalen (wie z.B. LPS) kommt es zu einer 

Aktivierung „normaler“ DCs. Hierdurch kommt es zu einer funktionellen und phänotypischen 

Ausreifung der DCs (CD80, CD83, CD86 sowie CD40) sowie zur Sekretion bestimmter 

Zytokine wie z.B. IL-12. Diese Faktoren bewirken eine Stimulation von T-Lymphhozyten, die 

ihrerseits hohe Mengen an IFN-γ sezernieren [zusammengefasst in Janeway et al. 1999]. 

Ähnlich einer myeloiden dendritischen Zelle kommt es auch bei einer PDC nach einer 

Aktivierung durch CpG-ODN Typ B zu einer funktionellen, wie auch phänotypischen 

Ausreifung der Zelle. Außerdem kommt es ebenfalls wie bei den myeloiden dendritischen 

Zellen zu einer verstärkten Expression der Oberflächenmoleküle CD80, CD83, CD86 und 

CD40 sowie von OX40L [zusammengefasst in Rothefusser et al. 2002].  

Der Einsatz eines blockierenden CD28 Antikörpers, der eine Interaktion über B7/CD28 

unterbindet, zeigt in der vorliegenden Arbeit erstmals, dass es der, über CpG-ODN Typ B 

aktivierten, PDC möglich ist, über die ko-stimulatorischen Moleküle in naiven CD8+  

T-Lymphozyten eine IFN-γ Sekretion zu induzieren. Es zeigte sich jedoch auch, dass diese 

Interaktion zwischen B7/CD28 nicht der alleinige Auslöser einer IFN-γ Sekretion darstellt 

(siehe Abb. 22).  

Neben dem B7/CD28-Signalweg wird des Weiteren einer Wechselwirkung zwischen OX40 

und seinem Liganden bei DCs und T-Lymphozyten wichtige regulatorische Funktionen 

zugeschrieben [Chen et al. 1999, Maxwell et all. 2000]. Ito et al konnten 2004 zeigen, dass 

es nach der Stimulation mit einem Virus zu einer Aufregulation des OX40 Liganden auf einer 

PDC kommt [Ito et al. 2004]. Somit könnte hierdurch ein weiterer ko-stimulatorischer Effekt 

bei einer Interaktion von PDCs mit CD8+ T-Lymphozyten erklärt werden. Die vorliegende 

Arbeit zeigt, dass eine Blockade mit Anti-OX40 Antikörper in der Lage ist eine Reduktion des 

sezernierten IFN-γ zu bewirken. Diese Beobachtung einer ko-stimulatorischen Wirkung der 

Interaktion von OX40/OX40L auf aktivierten PDCs und CD8+ T-Lymphozyten deckt sich mit 

einer bei Mäusen gemachten Beobachtung einer OX40/OX40L abhängigen Induktion von 

IFN-γ in einem Tumormodell [Liu et al. 2008]. Allerdings ist es nicht möglich aus dem 
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murinen System direkt Rückschlüsse auf das humane System zu ziehen, da im murinen 

System auch myeloide dendritische Zellen in der Lage sind CpG-ODNs zu erkennen. 

Dennoch zeigen die Ergebnisse dieser Arbeit, dass zumindest ein zusätzlicher ko-

stimulatorischer Effekt durch PDCs über eine Interaktion zwischen OX40 und OX40L bei 

naiven CD8+ T-Lymphozyten vermittelt wird. 

Somit kann aus den in dieser Arbeit gemachten Beobachtungen gefolgert werden, dass es 

bei der Aktivierung von PDCs mittels CpG-ODN Typ B zu einer phänotypischen Ausreifung 

kommt, die konsekutiv unter Mitbeteiligung der B7 Rezeptorfamilie, wie auch einer Interaktion 

von OX40/OX40L, eine INF-γ Sekretion in CD8+ T-Lymphozyten mitinduzieren kann. Auf der 

anderen Seite zeigen die Ergebnissen dieser Arbeit jedoch auch, dass es in der Interaktion 

von PDCs mit naiven CD8+ T-Lymphozyten mindestens einen weiteren Mechanismus geben 

muss, der für die Induktion einer IFN-γ Sekretion verantwortlich ist, da sich bei einer 

synchronen Blockade der B7 Rezeptorfamilie, sowie von OX40/OX40L, immer noch, 

wenngleich auch vermindert, eine IFN-γ Sekretion nachweisen lässt (siehe Abb. 21) 

Für T-Lymphozyten ist beschrieben, dass diese, sobald sie ihr spezifisches Antigen in 

Assoziation mit MHC Molekülen präsentiert bekommen, den Rezeptor CD40L aufregulieren. 

Die Interaktion von T-Lymphozyten mit DCs mittels CD40/CD40L ist relativ gut untersucht. 

Die Ligation von CD40 auf der Antigen-präsentierenden DC ist in der Lage hohe Spiegel von 

IL-12 zu induzieren, die Proliferation von CD8+ T-Lymphozyten zu verstärken und NK-Zellen 

zu aktivieren [zusammengefasst in O´Sullivan und Thomas 2003].  

Somit leisten die aktivierten T-Lymphozyten eine „T-Zell-Hilfe“ indem sie die Ausreifung von 

MDCs und deren Fähigkeit zum „Priming“ verstärken.  

Krug et al. konnten 2001 zeigen, dass es bei PDCs nach deren Aktivierung, insbesondere 

durch CpG-ODN Typ B, zu einer verstärkten Expression von CD40 auf der Zelloberfläche der 

PDC und es zusätzlich durch eine Ligation von CD40L zu einer Stimulation der Sekretion von 

IFN-α sowie IL-12 kommt [Krug, 2001]. Eine Interaktion von T-Lymphozyten könnte somit 

nicht nur zwischen MDCs und T-Lymphozyten erfolgen, sondern auch zwischen  

T-Lymphozyten und PDCs. Außerdem könnte es über lösliche Faktoren zu einer Ko-

Stimulation von PDCs und MDCs kommen. 

In der Literatur wird weiterhin beschrieben, dass aktivierte CD8+ T-Lymphozyten, nach ihrer 

Aktivierung die Expression von CD28 an ihrer Oberfläche herunterregulieren. Die Abnahme 

von CD28 in der T-Zelle ist jedoch negativ korreliert mit der Aufregulierung von NK 

Rezeptoren [Bauer et al. 1999, Speiser et al. 1999, Groh et al. 2001, Kambayashi et al. 

2000]. Ein Teil der Ko-Stimulation über CD28 scheint daher bei aktivierten CD8+  
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T-Lymphozyten durch NK-Rezeptoren übernommen zu werden [Speider et al. 1999]. 

Besondere Bedeutung wird hierbei dem NK-Rezeptor NKG2D zugeschrieben. Dieser wirkt 

als aktivierender Rezeptor für das MHC class I like Molecule MICA (MHC class I chain 

related A). Vivier et all beschrieben 2002 weitere Rezeptoren für NKG2D (MICB und ULBP 1-

4). [Bauer et al. 1999, Wu et al. 1999, Cosman et al. 2001, Groh et al 2001]. Die Expression 

dieser MHC-kodierten MIC-Moleküle wird durch Zellstress oder auch genotoxischem Stress 

sowie viralen und bakteriellen Infektionen induziert und ist mit einer malignen Transformation 

assoziiert [Groh et al 1998, Groh et al. 2001, Raulet 2003, Gasser et al. 2005, Burgess et al. 

2008]. Für NK Zellen ist beschrieben, das eine Ligation von NKG2D insbesondere deren 

zytotoxische Aktivität, aber auch die Zytokin-Produktion verstärkt [Wu et al. 2000, Pende et al 

2001, Ho et al. 2002] Ähnliche Beobachtungen lassen sich jedoch auch für den CD8+ T-

Lymphozyten machen [Bauer et al. 1999, Speiser et al. 1999, Groh et al. 2001, Kambayashi 

et al. 2000]. 

Interessanter Weise ist die PDC in der Lage durch die Produktion von IFN-α die Expression 

von MICA und MICB auf dendritischen Zellen zu steigern [Jinushi et al. 2003]. Durch die IFN-

α Sekretion der PDCs könnte es also sowohl zu einer zusätzlichen Ko-Stimuation der 

Antigen-präsentierenden DCs, wie auch einer Ko-Stimulation CD8+ T-Lymphozyten über NK 

Zell-Rezeptoren kommen, die, die in dieser Arbeit gemachten, Beobachtungen erklären 

könnten. 

Die in dieser Arbeit durchgeführten Transwell-Versuche haben jedoch das Problem, dass Sie 

nur in begrenztem Maße in der Lage sind in-vivo Bedingungen nachzustellen. Aus den 

Ergebnissen dieser Arbeit lassen sich somit zwei Schlüsse ziehen:  

I.) Die aktivierenden oder ko-stimulatorischen Einflüsse werden über einen direkten 

Zellkontakt über bestimmte Oberflächenmoleküle wie z.B. die B7 Rezeptorfamilie und eine 

OX40/OX40L Interaktion vermittelt. 

II.) Für die Effektorzell-Aktivierung sind extrem hohe Zytokinkonzentrationen verantwortlich, 

die nur in unmittelbarer Nähe der sekretierenden Zelle erreicht werden. Außerdem ist z.B. für 

bestimmte Zytokine wie das TNF-α eine Bindung an die Zelloberfläche denkbar.  

Die in dieser Arbeit durchgeführte spezifische Blockierung von Oberflächenmolekülen mittels 

bestimmter, hoch-spezifischer Antikörper zeigt jedoch eine funktionelle Bestätigung der 

Transwell-Experimente. 
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4.2.3. Der Unterschied in der Aktivierung CD8+ T-Lymphozyten im Hinblick auf die 

aktivierende Zelle. 

Aus der Literatur ist bekannt, dass myeloide dendritische Zellen (MDC) in der Lage sind in  

T-Lymphozyten sowohl Zytokine zu induzieren, wie auch deren Zytotoxizität zu erhöhen 

[zusammengefasst in Janeway et al. 2002]. Hierzu ist neben einer Antigen-Präsentation über 

MHC-Moleküle eine zusätzliche Ko-Stimulation z.B. über die B7-Rezeptorfamilie erforderlich. 

Ohne eine zusätzliche Ko-Stimulation des T-Lymphozyten kommt es nach dessen 

Aktivierung über den TCR entweder zu einer Apoptose oder aber einer Anergie.  

Bei MDCs kommt es nach deren Aktivierung durch das für sie spezifische Antigen LPS zu 

einer funktionellen, wie auch phänotypischen Ausreifung (Aufregulierung von CD80, CD83 

und CD86 sowie CD40).  

In der nun vorliegenden Arbeit konnte erstmals gezeigt werden, dass eine, mittels CpG-ODN 

Typ B aktivierte, PDC in der Lage ist, in einem über den TCR aktivierten CD8+  

T-Lymphozyten Granzyme B zu induzieren. Bei Granzyme B handelt es sich um einen für die 

zytotoxische Aktivität von T-Lymphozyten essentiellen Faktor. Die eigentlich zytotoxische 

Wirkung der Granzyme ist aktuell im Fokus der wissenschaftlichen Forschung, über die 

eigentliche Induktion von z.B. Granzyme B ist aber noch relativ wenig bekannt.  

Außerdem zeigt die vorliegende Arbeit, dass aktivierte PDCs in der Lage sind in, über TCR 

aktivierten, CD8+ T-Lymphozyten höhere Mengen an IFN-γ zu induzieren als dies, über LPS 

aktivierte, MDCs vermögen. In Zusammenschau mit den in dieser Arbeit mittels 

blockierender Antikörper gemachten Beobachtungen, die eine CD28-Abhängigkeit sowie 

eine OX40/OXL der Ko-Stimulation von T-Lymphozyten durch die aktivierte PDC zeigten, 

ergibt sich somit die Notwendigkeit eines zusätzlichen kontaktabhängigen Faktors bei der 

Aktivierung von CD8+ T-Lmhozyten durch PDCs. Sowohl OX40 als auch die Liganden von 

CD28 werden auf MDCs nach deren Aktivierung exprimiert. Somit wäre eine ähnliche 

Aktivierung CD8+ T-Lymphozyten wie durch PDCs über dieselben Mechanismen auch bei 

MDCs denkbar. Ein Unterschied in der Sekretion des IFN-γ wie auch des Granzyme B und 

die Steigerung der Zytotoxizität lässt sich jedoch hierdurch nicht erklären. 

Die gemachten Beobachtungen zeigen also die Notwendigkeit einer weiteren 

Charakterisierung der PDC sowie einer weiteren Untersuchung möglicher Zellkontakt-

abhängiger Faktoren. 
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4.2.4. Modell einer Kostimulation CD8+ T-Lymphozyten durch über CpG-ODN aktivierte 

PDCs 

Fasst man die in dieser Arbeit gemachten Beobachtungen zusammen, könnte sich eine 

Stimulation naiver CD8+ T-Lymphozyten folgendermaßen abspielen. Nach einer Aktivierung 

der PDCs durch virale oder mikrobielle Stimuli kommt es am Ort der Aktivierung zur Induktion 

und Sekretion von hohen Mengen IFN-α. Außerdem kommt es zu einer phänotypischen 

Ausreifung der PDC. Diese exprimieren daraufhin neben den Oberflächenmolekülen CD80, 

CD86 und CD83, die als Liganden der B7 Rezeptorfamilie auf Lymphozyten wirken, auch 

CD40. In Assoziation mit den am Ort der Aktivierung bereits vorhandenen voraktivierten- und 

peptidspezifischen T-Lymphozyten, die CD40L exprimieren, kommt es zu einer potenten 

Induktion von IL-12 und damit zu einer Sekretion von IFN-γ. Die PDC aktiviert somit am Ort 

der Aktivierung durch einen viralen oder bakteriellen Stimulus die vorhandenen, 

voraktivierten und peptidspezifischen T-Lymphozyten, NK- sowie NKT-Zellen [Rothefusser et 

al. 2002, Marschner et al. 2005] und ist dort in der Lage eine starke TH1-Antwort zu 

erzeugen.  

Des Weiteren fördert das von der PDC sezernierte IFN-α die Aktivität und die Ausreifung von 

MDCs. Während der oben beschriebenen phänotypischen Ausreifung der PDC kommt es 

außerdem zur Expression des Chemokin-Rezeptors CCR7, der eine Wanderung der PDC in 

die T-Zone des Lymphknotens steuert. Im Lymphknoten treffen dann zeitgleich aktivierte 

MDCs, die vom Ort der Aktivierung ebenfalls in den Lymphknoten gewandert sind, auf naive 

T-Lymphozyten. Diese erkennen die ihnen präsentierten Antigene und expandieren daraufhin 

selektiv (Priming). Die mittels DNA, die ein CpG-Motiv enthält, aktivierten PDCs verstärken 

oder induzieren daraufhin über einen Zell-zu-Zell Kontakt Antigen-unabhängig die 

Proliferation und die Zytotoxizität der naiven oder der, gerade durch die MDC frisch 

aktivierten, CD8+ T-Lymphozyten. 

In diesem Modell kommt der PDC also die Rolle zu, die Antigen-spezifische Immunantwort 

von antigen-spezifischen oder Memory T-Lymphozyten, aber auch naiven oder gerade 

geprimten T-Lymphozyten zu verstärken, oder Ihre Differenzierung in Richtung einer TH-1 

Effektorzelle zu lenken. Somit legen die Ergebnisse der vorliegenden Arbeit nahe, dass die 

im Immunsystem vorkommenden DCs je nach dem zeitlichen Abstand ihrer Aktivierung, 

bestimmte Aufgaben bei der Differenzierung und dem Priming naiver-, wie auch 

peptidspezifischer- oder memory T-Lymphozyten übernehmen können. 
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4.3. Ausblick 

PDCs spielen bei der Entstehung autoimmunologischer Erkrankungen eine wichtige Rolle. 

Hier steht besonders ihre Bedeutung als Hauptproduzent von IFN-α im Fokus aktueller 

Untersuchungen. Es wurde gezeigt, dass bei Patienten mit einem Lupus erythematodes (LE) 

Komplexe aus anti-DNA Antikörpern und DNA in der Lage sind, diese zu aktivieren und somit 

große Mengen von INF-α in PDCs zu induzieren. Hierbei schützt die Bindung an die 

Antikörper im Plasma die DNA offensichtlich vor ihrem Abbau durch Nukleasen, so dass bei 

diesen Patienten ein konstant erhöhter IFN-α Spiegel im Blut nachgewiesen werden kann. 

Interessant ist jedoch auch, dass während sich im peripheren Blut bei LE Patienten eine 

verringerte Anzahl von PDCs zeigt [Blanco et al., 2001] diese massiv die, durch den LE 

betroffenen, Hautareale infiltrieren [Farkas et al. 2001]. Hierbei zeigt sich bei den in der 

Junktionszohne der Epidermis vorkommenden PDCs eine starke Assoziation mit 

zytotoxischen T-Lymphozyten, die dort durch IFN-α-induzierbare Chemokine rekrutiert 

werden [Blomberg et al. 2001; Farkas et al. 2001; Wenzel et al. 2005]. Diese zytotoxischen 

T-Lymphozyten werden durch die Sekretion von Perforinen und Granzyme B als 

Hauptverursacher für die Hautläsionen, die beim Lupus erythematodes beobachtet werden 

können, angesehen [Blanko et al. 2005]. Aktuell werden erste Phase 2 Studien mit einem 

IFN-α blockierenden Antikörper (MEDI-545) durchgeführt. Die Ergebnisse der Phase 1 

Studien hatten gezeigt, dass es durch eine Blockierung von IFN-α zu einer Besserung des 

Lupus erythematodes gekommen war. Die Ergbnisse dieser Arbeit legen jedoch nahe, dass 

es neben dem Einfluss einer IFN-α Sekretion durch PDCs auch noch einen direkten Zell-

vermittelten weiteren Effektweg geben könnte, der für die Entsteung des Lupus 

erythematodes verantwortlich sein könnte. Über eine Zellkontakt-vermittelte Pathogenese bei 

einem Lupus erythematodes, im Hinblick auf PDCs und zytotoxische T-Zellen, ist jedoch 

aktuell relativ wenig bekannt, so dass sich hier aktuell die Notwendigkeit weiterer 

Untersuchungen zeigt  

Dies ist insbesondere interessant, da neben dem  LE ähnliche Beobachtungen auch bei 

anderen Hauterkrankungen wie der Psoriasis, dem allergischen Kontaktekzem oder auch der 

Dermatomyositis gemacht werden konnten [Wollenberg et al. 2002, Nestle et al. 2005; 

Greenberg et al. 2005, Santoro et al. 2005; Parolini et al. 2007; Albanesi et al. 2009; 

Skrzeczynska-Moncznik et al. 2009]. Es konnte sich auch hier eine PDC-Zellkontakt-

vermittelte Pathogenese zeigen, so dass hier z.B. TLR9 blockierende Antikörper in der 

Zukunft eine wichtige Rolle in den Behandlungskonzepten dieser Krankheiten spielen 

könnte.  
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Eine weitere Aufklärung der Mechanismen zur Aktivierung der PDCs und deren Interaktion 

mit anderen Zellen des Immunsystems könnte daher zu einem besseren Verständnis der 

Pathomechanismen dieser, wie auch anderer Autoimmunerkrankungen führen.  

 

Des Weiteren sind CpG-ODNs, durch ihre Fähigkeit direkt eine Immunantwort zu initiieren 

oder zu modulieren, ein attraktives Adjuvans bei einem möglichen therapeutischen Ansatz 

bei Tumorerkrankungen. Auf der einen Seite besitzen viele, der durch die PDC-induzierten, 

Zytokine, wie TNF-α, IL-12 oder IFN-α, eine direkte antitumorale Aktivität [Heaton et al. 1993, 

Kirkwood 2002]. Auf der anderen Seite sind viele der, durch die PDC aktivierten, 

Immunzellen wie NK-Zellen, peptidspezifische und memory T-Lymphozyten bei der 

zellulären Abwehr von entscheidender Bedeutung [Rotenfusser et al 2003, Marschner et. 

2004]. 

Mayordomo et al. konnten 1995 zeigen, dass mit Tumor-Lysat gepulste DCs in der Lage 

waren eine Regression von Melanom-Metastasen im Menschen zu erzielen. Es zeigte sich 

jedoch, dass nur eine geringe Menge der Probanden auf diesen Therapieansatz ansprachen, 

wohingegen dieser im murinen System ein kuratives Potential besaß. Durch eine 

Kombination von CpG-ODNs und Tumor-Antigenen konnte die Ansprechrate jedoch auch im 

murinen System deutlich gebessert werden [Shirota et al. 2000, Cho et al. 2000]. Ähnliche 

Beobachtungen konnten auch bei der Kombination von CpG-ODNs mit bestimmten 

therapeutischen Antikörpern (Rituximab beim follikulären Lymphom oder die Anwendung von 

17-1A bei der Therapie des kolorektalen Karzinoms) gemacht werden. Als Ursache hierfür 

wurde die zusätzlich Stimulation von Effektorzellen durch PDCs vermutet. 

Kürzlich konnte im murinen System gezeigt werden, dass die peritumorale Behandlung eines 

Melanoms mit CpG-ODN 2006 (in der Literatur auch beschrieben als PF-3512676 und CPG 

7909 sowie unter dem Handelsnamen ProMune oder VaxImmune) sowohl das Wachstum 

des Primärtumors eindämmen und somit die untersuchten Tiere vor der Bildung pulmonaler 

Metastasen schützte konnte [Kunikata et al. 2004, Kim et al. 2009]. Diese Beobachtungen 

sind jedoch aufgrund der unterschiedlichen Expression des TLR9 im murinen- und im 

humanen System nicht direkt auf den Menschen übertragbar, so dass im Moment erste 

Phase I und II Versuche beim Menschen bezüglich diverser Tumoren durchgeführt werden. 

In diesen ersten klinischen Tests mit CpG-ODN als alleiniges Agents zeigen sich jedoch 

aktuell weniger beeindruckende Ergebnisse als die vorklinischen Versuche zu hoffen 

veranlasst hatten. Dennoch zeigten sich bei anderen Tumoren Anzeichen für eine 

antitumorale Wirkung in Patienten mit einem Glioblastom [Carpentier et al. 2006] sowie 

vorbehandelten Non-Hodgkin Lymphom [Link et al. 2006]. 



71 
 

Präklinische Tierversuche legen daher die Vermutung nahe, dass sich CpG-ODNs besser als 

weitere Komponente in einer multimodalen Therapie von Tumoren eignen könnten, als 

alleinige Agents in einer Monotherapie. CpG-ODN konnte, wie im Tiermodel bereits erfolgt, 

kombiniert werden mit  

i) monoklonalen Antikörpern  

ii) einer Chemotherapie  

iii) einer Radiatio  

iv) anderen immunstimulatorischen Substanzen wie Zytokinen 

oder  

v) zusammen mit Antigen in Form einer Vakzinierung. 

In allen diesen Bereichen laufen im Moment erste klinische Studien, es ist jedoch zum 

aktuellen Zeitpunkt noch zu früh über deren Ausgang Aussagen zu machen. 

Die Ergebnisse dieser Arbeit machen jedoch noch einen weiteren therapeutischen Ansatz 

möglich. Durch eine ex vivo Stimulation mit CpG-ODNs könnten PDCs so stimuliert werden, 

dass sie nach z.b. peri- oder intraläsional Einbringen dort eine unspezifische zytotoxische T-

Zell Antwort auslösen und damit eine antitumorale Antwort auslösen könnten.  
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5. Zusammenfassung 
 
1999 wurde erstmals die plasmazytoide dendritische Zelle (PDC) charakterisiert, die im 

Immunsystem auf die Erkennung von Viren spezialisiert ist. Die PDC ist verantwortlich für 

einen großen Teil der Typ-I Interferonproduktion bei einer Virusinfektion. Sie unterscheidet 

sich jedoch grundlegend von anderen im Immunsystem vorkommenden DCs, da sie kaum 

zur Phagozytose befähigt, und somit, im Gegensatz zu anderen DCs, nicht in der Lage ist 

Fremd-Antigen zu präsentieren. Die PDC ist, anders als im murinen System, neben der B-

Zelle im humanen System die einzige Zelle, die über TLR9 stimuliert werden kann. TLR9 

erkennt hierbei spezfische Motive in mikrobieller DNA (bakteriell oder viral). Diese Motive 

mikrobieller DNA zeichnen sich durch eine spezifische Wiederholung der Aminosäuren 

Cytosin und Guanosin, sogenannte CpG-Motive, aus. Bisher wurden im humanen System 

drei CpG-Motive enthaltende Oligonukleotid-Klassen beschrieben (CpG-ODN-Typ A-C). 

CpG-ODN Typ A zeichnet sich durch eine starke Induktion von Typ-I-Interferon aus, während 

CpG-ODN Typ B geringere Mengen IFN-α induziert, jedoch zu einer funktionellen Ausreifung 

der PDC führt. Diese CpG-Motive werden über den TLR9 Rezeptor erkannt, der, anders als 

im murinen System, im humanen System einzig von PDCs exprimiert wird. Aktivierte PDCs 

sind in der Lage in peptidspezifischen- oder memory T-Lymphozyten, wie auch NK- und 

NKT-Zellen mittels löslicher und zellkontaktabhängiger Faktoren eine TH1-Antwort 

auszulösen beziehungsweise zu verstärken. In der Literatur zeigte sich jedoch bisher ein 

hemmender Einfluss auf naive T-Lymphozyten. Dies warf die Frage auf, ob aktivierte PDCs 

auch in der Lage sind bei naiven T-Lymphozyten eine Immunantwort zu induzieren oder 

diese zu modulieren. In einem zweiten Teil sollten dann die zugrunde liegenden 

Mechanismen untersucht werden. 

Im ersten Teil dieser Arbeit wurde daher versucht eine mögliche Ko-Stimulation naiver CD8+ 

T-Lymphozyten durch PDCs in Abhängigkeit ihrer Aktivierung zu untersuchen. Es zeigte sich, 

dass sowohl naive, wenngleich auch in deutlich geringerem Maße, als auch mittels CpG-

ODN aktivierte PDCs in der Lage sind in naiven CD8+ T-Lymphoyzten eine starke  

IFN-γ Induktion auszulösen, sowie deren Zytotoxizität zu steigern. Da die PDC in diesem 

System keine Antigene präsentieren kann, muss diese Ko-Stimulation Antigen-unabhängig 

erfolgen. Außerdem zeigte sich, dass das, für eine funktionelle und phänotypische 

Ausreifung der PDC verantwortliche, CpG-ODN Typ B dem, stark IFN-α induzierenden, CpG-

ODN Typ A deutlich überlegen ist. Als mögliche Ursache wurde ein bereits bekannter und in 

der Literatur mehrfach beschriebener antiproliferativer Effekt von IFN-α auf naive  
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T-Lymphozyten vermutet. Da jedoch auch CpG-ODN Typ B in der Lage ist, wenn auch in 

deutlich geringerem Maße als Typ A, in PDCs IFN-α zu induzieren, zeigte sich die 

Notwendigkeit einer Vorinkubation der PDC.  

Versuche mit spezifischen blockierenden Antikörpern, die gegen IL-12, IL-15, IL-18 und IFN-

α gerichtet sind, sowie Transwell-Experimente zeigten, dass die beobachteten Effekte, 

anders als bei peptidspezifischen- und memory T-Lymphozyten sowie NK- und NKT-Zellen, 

nicht durch lösliche Faktoren ausgelöst werden, sondern ein Zell-zu-Zell-Kontakt eine 

notwendige Voraussetzung für die Aktivierung naiver CD8+ T-Lymphozyten darstellt. Weitere 

Untersuchungen mit Antikörpern, die spezifisch eine kontaktabhängige Interaktion der B7 

Rezeptorfamilie mit ihrem Ligand CD28 und eine Wechselwirkung von OX40/OX40L 

verhinderten zeigten, dass diese Oberflächenmoleküle an der Ko-Stimulation CD8+  

T-Lymphozyten beteiligt sind, es jedoch zusätzlich mindestens einen weiteren Zellkontakt-

abhängigen Mechanismus geben muss. 

Es zeigte sich somit, dass wie bereits in früheren Arbeiten postuliert, die Bezeichnung der 

PDC als TH2-induzierender DC2 (im Gegensatz zu der TH1-induzierenden myeloiden 

dendritischen Zelle, DC1) nicht länger aufrecht erhalten werden kann. 

Im zweiten Teil der vorliegenden Arbeit folgte daraufhin ein funktioneller Vergleich der 

myeloiden dendritischen Zelle (MDC) mit der plasmazytoiden dendritischen Zelle (PDC). 

Hierbei zeigte sich, dass die PDC der MDC in der Induktion einer TH1-Antwort und einer 

Steigerung der Zytotoxizität nicht nur ebenbürtig, sondern dieser sogar überlegen ist. So sind 

aktivierte PDCs in der Lage in, über den TCR, voraktivierten CD8+ T-Lymphozyten 

Granzyme B, einen für die Zytotoxizität essentiellen Stoff, zu induzieren, während aktivierte 

MDCs hierzu nicht oder nur in sehr geringem Maße in der Lage waren. Da jedoch auch 

MDCs auf ihren spezifischen Stimulus (LPS) mit einer Aufregulation der Rezeptoren CD80, 

CD83, CD86, CD40 sowie OX40 reagiert, muss auch dieser Effekt über einen zusätzlichen, 

bisher unentdeckten Mechanismus vermittelt werden. 

Somit lässt sich ein Modell entwerfen, in dem die PDC an ihrem Aktivierungsort in Peptid-

spezifischen- und memory-T-Lymphozyten sowie NK- und NKT-Zellen eine sofortige, starke 

Immunantwort über die Ko-Stimulation und Sekretion von Zytokinen hervorruft und 

konsekutiv in die T-Zell-Region des loko-regionären Lymphknoten wandert. Dort sind PDCs 

dann in der Lage eine, durch APCs eingeleitete, Immunantwort mittels Zell-zu-Zell Kontakt zu 

modulieren. 

Die vorliegende Arbeit zeigte somit, dass die PDC eine zentrale, positiv regulatorische Rolle 

während einer Immunantwort einnimmt. Auf der anderen Seite offenbart sie jedoch auch das 
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bisher eingeschränkte Wissen über die Interaktion der PDC mit anderen Zellen des 

Immunsystems, so dass vor etwaigen klinischen oder therapeutischen Einsätzen die 

Notwendigkeit einer weiteren Charakterisierung besteht. 
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Verzeichnis der Abkürzungen und Akronyme 
 
ADCC    Antikörper-vermittelte zellgebundene Zytotoxizität 
APC    Allophycocyanin 
APC    Antigen-präsentierende Zelle 
ATCC    American Type Culture Collection 
BCG    Bacille Calmette-Guérin 
BSA    Bovines Serum Albumin 
cDNA    copy-Desoxyribonukleinsäure 
CFSE    5-(6-)-Carboxyfluorescein-Diacetat-Succinimidyl-Ester 
CG    Cytosin-Guanin 
CpG    Cytosin-(phosphat)-Guanin-Dinukleotid 
cpm    Counts per minute 
DC    Dendritische Zelle 
DMSO    Dimethylsulfoxid 
DNA    Desoxyribonukleinsäure 
EDTA    Ethylen-Diamin-Tetraessigsäure 
ELISA    Enzyme-linked immunosorbent assay 
ERK 1/ 2   Extra-cellular signal-regulated kinase 1/ 2 
FACS    Fluorescence-activated cell sorter 
FCS    Fötales Kälberserum 
FITC    Fluorescein-Isocyanat 
GMCSF   Granulocyte-macrophage colony-stimulating factor 
HEV    Hohe endotheliale Venolen 
HSA    Humanes Serum-Albumin 
IκBα    Inhibitor of NF-κBα 
IFN    Interferon 
Ig    Immunglobulin 
IL    Interleukin 
IL-1R    Interleukin-1-Rezeptor 
IMDM    Iscove's modified Dulbecco's medium 
IPC    Interferon-produzierende Zelle 
IPP    Isopentenyl-Pyrophosphat 
IRAK 1/ 4   IL-1R-assoziierte Kinase 1/ 4  
IRF3    IFN regulatory factor 3 
JNK    c-Jun-N-terminale Kinase 
KIR    Killer-inhibitory receptor 
LAM    Lipoarabinomannan 
LPS    Lipopolysaccharid 
MACS    Magnetic Activated Cell Sorting 
MALP-2   Macrophage-activating lipopeptide 2 
MDC    Macrophage-derived chemokine 
MDC    Myeloide dendritische Zelle 
MFI    Mittlere Fluoreszenzintensität 
MHC    Major histocompatibility complex 
Min    Minute(n) 
Mio    Million(en) 
MIP-1β    Macrophage inflammatory protein 1β 
MIP-1α   Macrophage inflammatory protein 1α 
mRNA    Messenger RNA 
MyD88    Myeloid differentiation factor 88 
NF-κB    Nuclear factor kappa B 
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NK-Zellen   Natürliche Killerzelle 
ODN    Oligodesoxynukleotid 
PAMP    Pathogen-associated molecular pattern 
PBMC    Mononukleäre Zellen der peripheren Blutes 
PBS    Phosphate-buffered saline 
PCR    Polymerase-Kettenreaktion 
PDC    Plasmazytoide dendritische Zelle 
PE    Phycoerithrin 
PerCP    Peridinin-Chlorophyll-A-Protein 
PHA    Phytohämagglutinin 
PI    Propidiumiodid 
PMA    Phorbol-12-Myristat-13-Acetat 
PRR    Pattern-recognition-Rezeptor 
PTZ    Plasmazytoide T-Zelle 
RNA    Ribonukleinsäure 
RPMI    Roswell Park Memorial Institute 
RT    Raumtemperatur 
SEM    Standard error of mean 
SLAM    Signaling lymphocytic activation molecule 
SR-A    Scavenger-Rezeptor des Typs A 
TARC    Thymus- and activation-regulated chemokine 
TBE    Tris-Borat-EDTA 
Tetramere   Tetramere MHC-I-Komplexe 
TH    T-Helfer 
TIR    Toll/ IL-1R-Domäne 
TIRAP    TIR domain containing adapter protein 
TLR    Toll-like-Rezeptor 
TNF-α    Tumor-Nekrose-Faktor α  
TOPRO-3   To-Pro-3-Iodid 
TRAF 6   TNFR-assoziierter Faktor 6 
TRIF    TIR domain-containing adapter inducing IFN-β 
TZR    T-Zellrezeptor 
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