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Summary

Sequence alignment and database searching are essential tools in biology: This is because
a protein’s function can often be inferred from homologous proteins. Standard sequence
comparison methods use substitution matrices to find the alignment with the best sum of
similarity scores between aligned residues. These similarity scores do not take into account
the local sequence context. In chapter 2 of this thesis, we present an approach that derives
context-specific amino acid similarities from short windows centered on each query sequence
residue. Our results demonstrate that the sequence context contains much more information
about the expected mutations than just the residue itself: By employing our context-specific
similarities (CS-BLAST) in combination with NCBI BLAST, we increase the sensitivity by
up to two-fold on a difficult benchmark set, without loss of speed. Alignment quality is
likewise improved significantly. Furthermore, we demonstrate considerable improvements
when applying this paradigm to sequence profiles: Two iterations of CSI-BLAST, our context-
specific version of PSI-BLAST, are more sensitive than five iterations of PSI-BLAST.
The concept of context-specificity for biological sequence comparison is very general. In

chapter 3, we use sequence context to define column states, i.e. states for contexts with
length l = 1, that describe profile columns optimally. In that way, we can encode a sequence
profile as a sequence over an extended alphabet of column states while preserving most
of the evolutionary information in the profile. We present a novel approach that uses
such sequences of column states to derive a profile-to-profile score that can be efficiently
computed at the same speed as standard sequence-to-sequence scores. By employing our
fast profile-to-profile score in combination with the iterative HMM-HMM search tool HHBLITS,
we significantly increase HHBLITS’s sensitivity for detecting remote homologs, at no loss of
speed.
Finally, we transfer the context-specific paradigm to the case of multiple alignment of

noncoding DNA. This application is of particular interest because the low information con-
tent of noncoding sequences and the often weak overall conservation in these regions render
alignments between related species difficult, while reliable alignments offer great promise
to identify functional regions (such as cis-regulatory elements) through their inter-species
conservation. In chapter 5, we show how to combine context-specific pseudocounts together
with partial order graphs and profile HMMs to obtain a novel progressive alignment method
CS-ALIGN. In a multiple alignment benchmark based on simulated promoter sequences,
CS-ALIGN achieves considerable improvements with respect to binding site alignment, as
well as overall alignment quality compared to the best current alignment programs.
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1. Introduction to homology searching and
alignment

Protein sequences evolve from pre-existing ancestral sequences rather than being invented
ab initio. By recognizing similarities between the sequence of an uncharacterized protein
and sequences of proteins that are already characterized, it is therefore often possible to infer
the structure or function of the new sequence from related proteins. Two sequences that are
related through a common ancestor are said to be homologous. In computational sequence
analysis the concept of homology has become a central theme because of the manifold
applications of homology detection in areas such as protein function prediction, protein
structure prediction, and protein evolution. The detection of homologous relationships
between proteins has therefore become a routine procedure in investigating the function
of new proteins. Likewise, biologists use inference from homology to explore fundamental
molecular, cellular and developmental processes based on the study of simple and well
studied model systems.
In sequence analysis, the alignment of two protein sequences is a way to identify regions

of similarity that may be a consequence of evolutionary relationships between the sequences,
which usually implies structural and often also functional similarity. The computation of
alignments involves the insertion of gaps between residues such that residues thought to be
homologous are placed in the same column. A common feature of virtually all alignment
methods is the use of a scoring scheme which ideally assigns the highest score to the bio-
logically most likely alignment. Since the accuracy of an alignment method often depends
largely on the underlying scoring scheme, the development of more sensitive scoring schemes
is of great importance in protein sequence analysis. The next sections introduce the issue
of how to score alignments.

1.1. Scoring models and gap penalties

The objective of comparing sequences is to look for evidence that they have diverged from
a common ancestor by mutation and selection. In the course of evolution, nature selects
for favorable mutations, so that some sorts of changes may be seen more than others. The
general approach for measuring how biologically meaningful an alignment is, is to compute
a sum of terms for each aligned pair of residues in the alignment plus penalties for each
gap. The intrinsic assumption of such an additive scoring theme is that mutations at
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different sites in sequence have occurred independently. At least for protein sequences
this assumption appears to be justified. Furthermore, it is reasonable to assume that
conservative substitutions will contribute with a positive score whereas non-conservative
substitutions will contribute with a negative score because non-conservative substitutions
are expected to occur less frequently in real alignments. In bioinformatics such substitution
scores s(a,b) are commonly arranged in substitution matrices of dimension 20 × 20. In
terms of statistics, one can describe each alignment term by the logarithm of the relative
likelihood that the aligned residues are being related, as compared to being unrelated. In
computational sequence analysis the former is often referred to as Match-model M and the
latter as null- or Random-model R. In the Random model R each amino acid a occurs
independently with frequency f(a) and the Null model probability of an alignment of two
residues a and b is simply the product of their background frequencies: f(a)f(b). In the
Match model M , two aligned residues a and b occur with the joint probability p(a,b). Here,
p(a,b) is usually derived from the observed number of amino acid substitutions in a large
set of reliable training alignments. An additive scoring scheme can then be described by a
log-odds-ratio

s(a,b) = log
(
P (a,b|M)
P (a,b|R)

)
= log

(
p(a,b)
f(a)f(b)

)
. (1.1)

One of the first amino acid substitution matrices was the PAM (Point Accepted Mutation)
matrix (Dayhoff et al., 1978). This substitution matrix estimates the substitution frequen-
cies for 1% accepted mutations (PAM1) and extrapolates these to derive matrices as high as
PAM250. However, it turned out that changes over evolutionarily long time scales are not
very well approximated by this extrapolation method. This problem has been addressed
by the BLOSUM matrix family (BLOck SUbstitution Matrix) developed by Henikoff and
Henikoff (1992). Henikoff & Henikoff’s approach is based on counting substitutions in un-
gapped regions in alignments of sequences (BLOCKS database) with a predefined maximal
sequence similarity. For example, the widely used BLOSUM62 matrix, which is the matrix
used by default in many alignment applications, is constructed from sequences with 62% or
less sequence identity.
There are two approaches for penalizing gaps: first, a linear gap penalty for a gap of

length g
γ(g) = −gd (1.2)

or second, an affine score
γ(g) = −d− (g − 1)e (1.3)

with gap-open penalty d and gap-extension penalty e. Usually, e is set to something smaller
than d to penalize long insertions or deletions less than in the simple linear model. This
corresponds to the expectation that gaps should occur preferably in consecutive stretches
as opposed to being dispersed.
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1.2. Pairwise sequence alignment

Given a scoring scheme we now want to find an algorithm that efficiently computes an
optimal alignment for a pair of sequences x and y with length n and m. For the case of
global alignment, where sequences need to be aligned end to end, Needleman & Wunsch
proposed a dynamic programming algorithm (Needleman andWunsch, 1970) which was later
revised by Gotoh to a more efficient version (Gotoh, 1982). The algorithm is guaranteed to
find the optimal solution and proceeds by building an alignment using previous solutions
for optimal alignments of smaller subsequences. To do so, it computes a n ×m matrix S,
where value S(i,j) denotes the score of the best alignment between subsequences x1...i and
y1...j . Since in a pairwise alignment each column can either contain two aligned residues or
a gap in the first sequence aligned to a residue in the second or vice versa, there are three
ways in which an alignment can be extended up to positions (i,j) (see figure 1.1). This
allows the recursive calculation of the best score up to positions (i,j):

S(i,j) = max


S(i− 1,j − 1) + s(xi,yj),
S(i− 1,j)− d,
S(i,j − 1)− d.

(1.4)

Starting at the upper left corner of the matrix, the algorithm repeatedly applies the above
formula to calculate each S(i,j) value from the above-left, left, or above cell as depicted in
the following figure.

S(i− 1,j − 1) + s(xi,yj) S(i,j − 1)− d
↘ ↓

S(i− 1,j)− d → S(i,j)

After the matrix has been filled out in this way, the score of the best alignment is by defini-
tion the final value of S(n,m). To find the alignment itself, one has to perform a traceback
through the matrix and identify for each cell (i,j) which of the three choices contributed to
its value. Since the traceback starts at S(n,m), the alignment is actually built in reverse. In
the global alignment case one assumes that there exists a biologically meaningful alignment
between the entire sequences x and y. This assumption, however, is not always justified: for
example when two proteins share a common domain but are unrelated in their remaining
parts. Local alignment algorithms address this problem by looking for the best alignment
between subsequences of x and y. Furthermore, local alignment is usually the most sensitive

I G A xi A I G A xi G A xi - -
L G V yj G V yj - - S L G V yj

Figure 1.1.: Three ways of how an alignment can be extended up to positions (i,j)
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method for comparing highly diverged sequences, even if they may possibly share a com-
mon evolutionary origin over their entire length. The algorithm that computes the optimal
local alignment for a pair of sequences, the so called Smith-Waterman algorithm (Smith
and Waterman, 1981), is closely related to the Needleman-Wunsch algorithm for global
alignments. With the difference that there is an additional possibility in the maximization
equation which corresponds to the start of a new alignment. It allows S(i,j) to become 0 if
all other options have a value less than 0:

S(i,j) = max


0,
S(i− 1,j) + s(xi,yj),
S(i− 1,j)− d,
S(i,j − 1)− d.

(1.5)

The second change is that a local alignment does not have to end in the bottom right
corner. Therefore the traceback procedure is started from the cell with the highest value
S(i,j) instead of S(n,m).
The Needleman-Wunsch and Smith-Waterman implementations, as described above, use

the linear gap cost structure as in equation (1.2). In order to assume the affine gap cost
as in equation (1.3), one has to keep track of three instead of only one value per pair
of residue coefficients (i,j). However, the general concept of dynamic programming and
runtime complexity of the algorithm stay the same. Further details regarding alignment
with affine gap costs are discussed in (Durbin et al., 1998).

Pairwise alignments are used to detect homologs between different proteins sequences
either as global or local alignments. From the above definitions it is easy to see that
using the Needleman-Wunsch or Smith-Waterman algorithms this can be solved in time
proportional to the product of the length of the two sequences being compared: O(nm).
However, this is too slow for searching current databases, and in practice algorithms are used
that are much faster. This gain in speed comes at the cost of possibly missing significant
alignments due to the heuristics employed.

1.3. Profile-sequence comparison

In many fields of bioinformatics such as 3D protein structure prediction, protein function
prediction, and protein evolution, the identification of very strongly diverged homologs
can be of great help. Frequently, however, sequence-sequence comparison methods are not
sensitive enough to identify such remote homologies. Extending the limits of sensitivity is
therefore of great practical importance.
The development of profile-sequence comparison methods such as PSI-BLAST (Altschul

et al., 1997) led to a great improvement in sensitivity over the sequence-sequence comparison
methods. The idea is to better exploit evolutionary information about the sequence family
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of the query by building an alignment of homologous sequences. From the alignment one
can then deduce a sequence profile which is simply a 20×n matrix recording the amino acid
frequencies for each position in the alignment (including pseudocounts). A profile draws
its power from the ability to distinguish between conserved residues that are important for
defining members of the family, and residues that vary among the members of the family.
More than that, it holds precise information of the boundaries of important motifs in the
family. The alignment of a profile with a multiple sequence alignment embodied by a profile
is almost completely analogous to the alignment of two simple sequences. The only real
difference is that the substitution score of two positions i, j is now given by the profile itself,
rather than with reference to a substitution matrix.

1.4. BLAST and PSI-BLAST

The first release of BLAST (Basic Local Alignment Search Tool) (Altschul et al., 1990) em-
ployed a seed and extend heuristic in which first small exact matches are found which are
then extended to obtain longer inexact ones possibly containing gaps. The algorithm pro-
ceeds by first generating a list of all k-mers (usually k = 3 for proteins) that have similarity
≥ T to some k-mer in the query. Then, it scans the database for all occurrences of these
k-mers in the database and extends each such seed until its score drops a certain distance
below the best score computed so far for the seed. Finally, all hits with a score greater
than a certain minimum match score are reported. However, with respect to sensitivity and
speed, this approach involves a dilemma: short k-mers are required to be sensitive, but at
the same time increase the likelihood of chance matches, which in turn triggers numerous
unneeded extensions. To mitigate this problem, BLAST 2.0 and PSI-BLAST (Altschul et al.,
1997) use a 2-hit strategy with a remarkably improved specificity. The 2-hit approach trig-
gers extensions for consecutive matches of two similar short words on the same diagonal
within a window of 40 residues. By lowering the k-mer word similarity threshold, this
is more sensitive than the 1-hit approach. At the same time, it significantly reduces the
number of extensions for chance matches. The extension method is based on the Smith-
Waterman algorithm (Smith and Waterman, 1981) but is restricted to a proximate region
by a maximum score drop-off value.

PSI-BLAST is the most popular tool for profile-based detection of distant protein relation-
ships. It performs consecutive BLAST searches to iteratively build up a profile of homologous
sequences. The search strategy of PSI-BLAST is illustrated in Figure 1.2. In the first iter-
ation, the profile is derived from the mutation probabilities in the BLOSUM substitution
matrix. At the beginning of the second and following iterations, the profile is refined with
hits from the previous round whose E-values are better than a predefined inclusion thresh-
old. The resulting profile is often much more sensitive to detect remote homologies than
standard substitution matrix mutation probabilities.
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Figure 1.2.: Iterative homology search strategy performed by PSI-BLAST. In the first search iteration,
the profile is derived from the mutation probabilities in the BLOSUM substitution matrix. At the
beginning of the second and following iterations, the profile is refined with hits from the previous
round. The resulting profile is often much more sensitive and more likely to detect remote homologies
than standard substitution matrix mutation probabilities.

1.5. HMM-HMM alignment

HMM-HMM comparison as described by Söding (2005) has proven to be the most powerful
method for remote homology detection in proteins. Profile HMMs are similar to the above
described simple sequence profiles, but in addition to the amino acid frequencies in the
columns of a multiple sequence alignment they contain the position-specific probabilities
for inserts and deletions along the alignment. Thus, profile HMMs penalize chance hits
much more than true positives which tend to contain insertions and deletions at the same
positions as the sequence from which the HMM was build. In the following, we show how to
generalize the log-odds score to the case of pairwise comparison of two HMMs and explain
the method used to efficiently compute a pairwise alignment between two profile HMMs.

1.5.1. Log-sum-of-odds score

The log-odds score for sequence-HMM comparison measures how more probable it is that a
sequence is emitted by an HMM rather than by a random Null model. More specifically, it
can be written as

SLO = log P (x1, . . . ,xL|emission on path)
P (x1, . . . ,xL|Null)

. (1.6)

We would like to to generalize this log-odds score to the case of HMM-HMM comparison,
where an alignment between two profile HMMs corresponds to a certain path through the
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two HMMs. The so called log-sum-of-odds score can be seen as such a generalization:

SLSO = log
∑

x1,...,xL

P (x1, . . . ,xL|co-emission on path)
P (x1, . . . ,xL|Null)

. (1.7)

Here, the sum over x1, . . . ,xL runs over all sequences with L residues. It is easy to see that
the log-sum-of-odds score is in fact a generalization of the log-odds score because in the case
of one of the HMMs representing only one sequence, only one term in the sum can contribute
and equation (1.7) can be reduced to equation (1.6). In order to apply standard dynamic
programming algorithms (e.g. the Viterbi algorithm) to find the HMM-HMM alignment with
the maximum log-sum-of-odds score, we need some kind of similarity measure that allows
us to compare the amino acid distributions of columns i and j in the two HMMs. Rewriting
the log-sum-of-odds score in terms of HMM probabilities yields

SSLO =
∑

k:XkYk=MM

Saa(qi(k),pj(k)) + logPtr (1.8)

where Ptr is the product of all transition probabilities for the path through q and p.
Saa(qi,pj) is the column score given by

Saa(qi,pj) = log
20∑
a=1

qi(a)pj(a)
f(a) , (1.9)

in which qi(a), pj(a) denote the emission probability of amino acid a in columns i and j

of the HMMs and f(a) is the fixed amino acid background frequency. In this respect, the
division by f(a) can be seen as a weighting factor that increases the weighting of the rare
amino acids compared to the more common ones. Furthermore, the column score is positive
when the two amino acid distributions are similar, and negative otherwise. This property
is important for local alignment.

1.5.2. Pairwise alignment of HMMs

Figure 1.3A shows a profile HMM with each column containing a match state M , a delete
state D and an insert state I. In contrast to delete states, only match states and insert
states emit amino acids. This implies that a match state can only be aligned with a match
state (MM) or an insert state (MI) in the other HMM. A delete state, on the other hand,
can only be aligned to a gap (DG). Thus, there are five possible pair states MM , MI, IM ,
DG, and GD. The interpretation of gaps in an alignment of HMMs is completely analogous
to the case of sequence-sequence alignment. It denotes that for the column of the HMM

that is aligned to the gap, there exists no column in the other alignment/HMM that evolved
from the same residue in the ancestral alignment. In order to calculate the path with the
maximal log-sum-of-odds score according to equation (1.7), one can apply a variant of the
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Figure 1.3: (A) The alignment of a sequence
to a profile HMM can be represented by a path
through the HMM (bold arrows). (B) Align-
ment of two HMMs by maximization of log-
sum-of-odds score. The path through the two
HMMs corresponds to a sequence that is co-
emitted by both HMMs. (C) Allowed transi-
tions between pairs states. (figure taken from
Söding (2005))

Viterbi algorithm that maintains five dynamical programming matrices SXY , one for each
pair state XY ∈ {MM, MI, IM, DG, GD}. Similar to the Needleman-Wunsch algorithm,
these matrices can be calculated recursively by

SMM (i,j) = Saa(qi,pj) + max



SMM (i−1,j−1) + log (qi−1(M,M) pj−1(M,M))
SMI(i−1,j−1) + log (qi−1(M,M) pj−1(I,M))
SIM (i−1,j−1) + log (qi−1(I,M) pj−1(M,M))
SDG(i−1,j−1) + log (qi−1(D,M) pj−1(M,M))
SGD(i−1,j−1) + log (qi−1(M,M) pj−1(D,M))

(1.10)

SMI(i,j) = max
{
SMM (i−1,j) + log (qi−1(M,M) pj(M,I))
SMI(i−1,j) + log (qi−1(M,M) pj(I,I))

(1.11)

SDG(i,j) = max
{
SMM (i−1,j) + log (qi−1(M,D))
SDG(i−1,j) + log (qi−1(D,D))

(1.12)

where qi(X,X ′) and pj(Y,Y ′) denote the transition probabilities to go from state X or
Y ∈ {M,I,D} in column i or j to a state X ′ or Y ′ ∈ {M,I,D}. Equation (1.10) shows
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the maximization required for global alignment. For local alignment a zero needs to be
added as sixth case of the maximization. The optimal alignment is constructed as usual by
backtracking from the cell with maximum score.



Part I.

Homology searching



2. Sequence context-specific profiles for
homology searching

2.1. Introduction

Substitution matrices quantify the similarity between amino acids or nucleotides (Dayhoff
et al., 1978; Gonnet et al., 1992; Henikoff and Henikoff, 1992). As a mainstay of biological
sequence comparison, they are at the heart of standard alignment methods such as the
Needleman-Wunsch and Smith-Waterman algorithms (Needleman andWunsch, 1970; Smith
and Waterman, 1981), which find the alignment with the maximum sum of similarity scores
between aligned residues or bases. Sequence-search programs such as BLAST and FASTA

(Altschul et al., 1990; Pearson, 1991) use substitution matrices to score short seeds and
final alignments, multiple alignment programs such as CLUSTALW (Thompson et al., 1994)
employ them in sum-of-pairs scoring to quantify the similarity between aligned sequence-
profile columns, and in sequence profile-based methods such as PSI-BLAST (Altschul et al.,
1997) or HHSEARCH (Söding, 2005) they are used for calculating pseudocounts (Henikoff
and Henikoff, 1996; Tatusov et al., 1994).
For proteins, the importance of substitution matrices to identify homologs and calculate

accurate alignments has stimulated various advances: Yu et al. have developed a ratio-
nale for compositional adjustment of amino acid substitution matrices by transforming
the background frequencies implicit in a substitution matrix to frequencies appropriate for
the comparison of protein sequences with nonstandard global amino acid composition (Yu
et al., 2003). Others have derived specialized transmembrane substitution matrices from
alignments of experimentally verified or predicted transmembrane segments to improve align-
ments of sequences with transmembrane regions (Jones et al., 1994; Mueller et al., 2001; Ng
et al., 2000). The logic is that the structural environment of an amino acid residue partly
influences into what amino acids it is likely to mutate.
Taking this idea a step further, so-called structure-dependent substitution matrices (see

Figure 2.1) have been trained for a number of environments, defined by a combination of
secondary structure state, solvent accessibility class, environmental polarity class and/or
hydrogen bonding (Goonesekere and Lee, 2008; Overington et al., 1992; Rice and Eisenberg,
1997; Shi et al., 2001). EVDTREE (Gelly et al., 2005) also computes structure-dependent
substitution scores, but the selected structural descriptors depend on residue types. All
these structural environment-dependent matrices allow for the detection of more remotely
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homologous proteins than standard substitution matrices. However, their application is
limited by the need to know the structure of one of the proteins to be compared.
In contrast, sequence context-dependent methods do not rely on 3D structure information

to define local environments. They describe the environment of a residue by the sequence
surrounding it. Jung and Lee (2000) trained 400 × 400 substitution matrices for contexts
consisting of pairs of residues up to four positions apart and obtained a 30% increase in
sensitivity on a set of 107 proteins, although this result could not be confirmed in a large-
scale study (Crooks et al., 2005). Gambin et al. derived 400 amino acid substitution
matrices, one for each context consisting of the two residues neighboring the central residue
(Gambin et al., 2002; Gambin and Otto, 2005). PHYBAL (Baussand et al., 2007) models
the selective pressure inside and outside of hydrophobic blocks by two different substitution
matrices and two different sets of gap penalties.
Huang et al. took a decisive step forward, employing 281 substitution matrices for 281

states of a hidden Markov model trained on sequences of known structure. Each HMM

state represents a single profile column. Context information is encoded essentially in the
transition probabilities between the states. By mixing mutation probabilities from the sub-
stitution matrices weighted by posterior probabilities, HMMSUM achieved considerable im-
provements in alignment quality when compared to standard substitution matrices (Huang

Figure 2.1.: Structure-dependent substitution matrices. For each combination of secondary struc-
ture state and solvent accessibility class, a separate substitution matrix is trained. The structural
environment-dependent matrices allow for the detection of more remotely homologous proteins than
standard substitution matrices.
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and Bystroff, 2006). We expect such sequence contexts to predict mutation probabilities
better than structural environments, since very different sequences with very specific amino
acid preferences can adopt similar local structures (Han and Baker, 1996). When all these
different sequences are pooled into the same structural environment, the specific amino acid
preferences are lost.
In this work, we present a method that derives sequence context-specific amino acid

similarities from 13-residue windows centered on each residue. We predict the expected
mutation probabilities for each position by comparing its sequence window to a library
with thousands of context profiles, generated by clustering a large, representative set of
sequence-profile windows. The mutation probabilities are obtained by weighted mixing
of the central columns of the most similar context profiles (see Figure 2.3B). Whereas
iterative profile search tools such as PSI-BLAST align homologous, long sequence matches to
the query with weights independent of the match quality, our method aligns mostly non-
homologous, ungapped, short profiles, giving higher weights to better matching profiles. In
contrast to HMMSUM, no substitution matrices are needed. Also, the context information
is encoded explicitly in the context profiles with no need for transition probabilities. This
leads to a simpler computation and to a much better runtime that scales linearly instead of
quadratically with the number of states/contexts (see section 2.4). The context library can
therefore be many times larger and hence finer-grained than in HMMSUM, enabling us to
describe contexts such as “a large aliphatic residue with preference for leucine or isoleucine
on the hydrophobic face of an amphipathic helix”, zinc-finger, transmembrane helix, coiled
coil, exposed β-sheet, GD-box, disordered region, and collagen, for example (see Figure
2.2).
A crucial insight for achieving speeds comparable to substitution matrix-based methods

such as BLAST is this: Sequence-to-sequence comparison using a substitution matrix is
exactly equivalent to profile-to-sequence comparison, if the sequence-profile is calculated
from one of the sequences using full substitution matrix pseudocounts. Hence we can employ
profile-based methods, which have similar speeds as their sequence-based counterparts, to
implement sequence context-specific amino acid similarities.

CS-BLAST, our context-specific version of BLAST, works in the following way: We generate
a sequence profile for the query sequence using context-specific pseudocounts and then jump-
start NCBI’s profile-to-sequence search method PSI-BLAST with this profile. We demonstrate
that, on a difficult benchmark set, sequence searches with our new context-specific amino
acid similarities are more than twice as sensitive as BLAST with the standard BLOSUM62

substitution matrix, produce higher quality alignments, and generate reliable E-values, all
without loss of speed.

Finally, we apply the new paradigm to profile-to-sequence comparison by calculating
context-specific pseudocounts for sequence profiles. The only difference to the previously
described sequence-based scheme is that we now compare sequence-profile windows to our
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Figure 2.2.: Selected context profiles commonly found in proteins. Among many others, the context
library is able to describe contexts such as “a large aliphatic residue with preference for leucine
or isoleucine on the hydrophobic face of an amphipathic helix”, zinc-finger, transmembrane helix,
coiled coil, exposed β-sheet, GD-box, disordered region, and collagen. (left to right, top to bottom).

library of context profiles. In contrast to substitution matrix and Dirichlet pseudocounts
(Durbin et al., 1998; Henikoff and Henikoff, 1996; Sjoelander et al., 1996; Tatusov et al.,
1994), these pseudocounts do not depend only on the single profile column but on the
entire sequence context of the profile column. We report considerable improvements of this
context-specific scheme (CSI-BLAST) over PSI-BLAST.

2.2. Material and Methods

2.2.1. Context-specific mutation probabilities

We first show that amino acid substitution scores are directly related to pairwise amino acid
mutation probabilities and sequence-profile pseudocounts. We can therefore derive sequence
context-specific amino acid similarity scores from context-specific mutation probabilities.
These mutation probabilities can be predicted with a probabilistic model using a large
library of sequence profile windows representing very specific local sequence contexts.
Any matrix of substitution scores S(x,y) describing the similarity between amino acids x

and y can be written in the form (Altschul, 1991) S(x,y) = const × log[P (x,y)/P (x)P (y)],
where P (x,y) is the probability that x and y occur aligned to each other in an alignment
of homologous sequences, and P (x) and P (y) are the background probabilities of x and
y to occur in representative sequences (whether aligned or unaligned). This can also be
written as a log odds score, S(x,y) = log[P (y|x)/P (y)], where P (y|x) = P (x,y)/P (x) is the
conditional probability of y given x, i.e. the probability for amino acid x to mutate into y.
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If y occurs more often in positions aligned with an x (described by P (y|x)) than what would
be expected by chance (described by P (y)), then the score is positive, otherwise negative.
We next explore the connection of mutation probabilities P (y|x) with sequence-profile

pseudocounts. A sequence profile is a matrix p(i,y) that succinctly represents a multiple
alignment of homologous sequences. p(i,y) is the frequency of amino acid y in column i of
the multiple alignment. The profile describes what amino acids are likely to occur in related
sequences at each position, or, in other words, the probability of a residue at position i to
mutate into amino acid y. A single sequence (xi) can be turned into a sequence profile
by adding artificial mutations (i.e., pseudocounts) with the method of substitution matrix
pseudocounts (Henikoff and Henikoff, 1996; Tatusov et al., 1994): p(i,y) = P (y|xi). Here,
P (y|xi) are the conditional probabilities giving rise to substitution matrix S(x,y). The
profile-to-sequence score of column i of this single-sequence profile p with residue yj of a
second sequence (yj) is

S (p(i,·),yj) := log p(i,yj)
P (yj)

= log P (yj |xi)
P (yj)

= S(xi,yj). (2.1)

Hence, substitution matrix scores can be seen as a special case of profile-to-sequence scores,
where the profile is generated from one of the sequences using substitution matrix pseudo-
counts.
Figure 2.3A illustrates the equivalence of sequence-to-sequence and profile-to-sequences

scoring with the alignment matrix of two zinc-finger sequences (xi) and (yj). The query
profile resulting from the artificial mutations is illustrated as a histogram, in which the bar
heights are proportional to the corresponding amino acid probabilities p(i,y). The score of
each matrix cell (i,j) can be interpreted in two ways: either as sequence-to-sequence score
S(xi,yj) between residues xi and yj , or as profile-to-sequence score S(p(i,·),yj) between
profile column p(i,·) and residue yj .
In the above schemes, the expected mutation probabilities P (y|xi) at position i depend

only on the single amino acid xi. However, the sequence context Xi, defined below, contains
much more information than just residue xi itself about what amino acids to expect in
related sequences. If we were able to calculate a context-specific mutation probability
P (y|Xi), we could define a score in a way analogous to equation (2.1), but using a context-
specific profile pcs(i,y) = P (y|Xi) instead of P (y|xi).
The contextXi is defined as the window of l residues surrounding xi, i.e.Xi = (xi−d, . . . ,xi+d)

with l = 2d + 1. To predict the mutation probabilities for each position i, we compare its
sequence window Xi to a precomputed library of K context profiles, p1, . . . ,pK , each of
length l. The context-specific mutation probability P (y|Xi), i.e. the probability of ob-
serving amino acid y in a homologous sequence given context Xi, will be calculated by
a weighted mixing of the amino acids in the central columns of the most similar context
profiles (Figure 2.3B). To derive the weight of each profile pk, we first need the probabil-
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Figure 2.3: Method of context-
specific sequence comparison. (A)
Sequence search/alignment algo-
rithms find the path that maximizes
the sum of similarity scores (color-
coded blue to red). Substitution
matrix scores are equivalent to
profile scores if the sequence profile
(colored histogram) is generated
from the query sequence by adding
artificial mutations with the substi-
tution matrix pseudocount scheme.
Histogram bar heights represent the
fraction of amino acids in profile
columns. (B) Computation of
context-specific pseudocounts: The
expected mutations (i.e., pseudo-
counts) for a residue (highlighted
in yellow) are calculated based on
the sequence context around it (red
box). Library profiles contribute to
the context-specific sequence profile
with weights determined by their
similarity to the sequence context
(see percentages). The resulting
profile can be used to jump-start
PSI-BLAST, which will then perform
a sequence-to-sequence search with
context-specific amino acid similari-
ties. (C) Positional window weights
decrease exponentially with the
distance to the center position to
model the decreasing information
value of farther positions for the
central profile column.
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ity P (Xi|pk) that the sequence window Xi is emitted by profile pk, which is equal to the
product of probabilities of xi+j (j ∈ {−d, . . . ,d}) being emitted by profile column pk(j,·):
P (Xi|pk) =

∏d
j=−d pk(j,xi+j). Since the inner positions in the window will be the most

informative to predict the amino acid distribution for the central residue, we can refine the
above formula by defining coefficients wj which weight the contribution of each window posi-
tion to the probability: P (Xi|pk) ∝

∏d
j=−d pk(j,xi+j)wj . The values of wj are parametrized

by wcenter and β (see Figure 2.3C). In the calculation of P (Xi|pk) for positions i within d
residues of either end of the query sequence, overhanging context profile columns are simply
ignored.
Next, we need to know the probability P (pk|Xi) that profile pk was the one that emitted

Xi. Using Bayes’ theorem, we find

P (pk|Xi) = P (Xi|pk)P (pk)
P (Xi)

∝ P (pk)
d∏

j=−d
pk(j,xi+j)wj . (2.2)

P (pk) is the Bayesian prior probability for profile pk, determined in the process of computing
the profile library. It quantifies the probability that a sequence window is emitted by profile
pk prior to knowing that sequence window. P (Xi) =

∑
k P (Xi|pk)P (pk) is a normalization

constant.
We can now calculate the context-specific mutation probabilities P (y|Xi) by mixing the

amino acid distributions pk(0,y) from the central columns of all K profiles with weights
P (pk|Xi):

P (y|Xi) ∝
K∑
k=1

pk(0,y)P (pk|Xi). (2.3)

Normalizing over all 20 amino acids yields the final expected mutation probability P (y|Xi).
To have more flexibility in adjusting the diversity of the context-specific profile pcs(i,·), we
mutate only a fraction τ ∈ [0,1] of (xi) while leaving a fraction 1− τ unchanged:

pcs(i,y) = (1− τ)δxi,y + τP (y|Xi). (2.4)

Here, δxi,y = 1 if xi = y and 0 otherwise. In principle, τ needs to be optimized depending
on the evolutionary distance over which homologous sequences are to be found, in a similar
way as the substitution matrix with optimum diversity might be chosen. In practice we
have found that, as in substitution matrices, a single diversity works well for the entire
range of evolutionary distances.
Figure 2.3B illustrates the calculation of expected mutation probabilities P (y|Xi) for a

cysteine residue (highlighted in yellow) at position i belonging to a zinc-finger motif. Three
profiles similar to the sequence window Xi (red box) are shown, whose central columns con-
tribute to the context-specific sequence profile p(i,y) = P (y|Xi) at position i with weights
P (pk|Xi) of 7%, 60%, and 3%, respectively. With the resulting profile (bottom), a profile-to-
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sequence search can be performed, e.g. using PSI-BLAST, which is equivalent to a sequence
search with context-specific amino acid similarity scores (equation 2.1). In this example,
the context-specific scheme recognizes the sequence context of the cysteine and correctly
assigns a zinc-finger profile a high weight, resulting in a highly conserved cysteine.
The context-specificity paradigm is not restricted to sequences but applies equally well

to sequence profiles or profile hidden Markov models (HMMs). It can therefore be used in
profile-to-sequence (Altschul et al., 1997; Eddy, 1998; Gribskov et al., 1987) and profile-
profile (Madera, 2008; Rychlewski et al., 2000; Sadreyev and Grishin, 2003; Söding, 2005;
Thompson et al., 1994; Yona and Levitt, 2002) comparison, for example.

Our method CS-BLAST for context-specific protein sequence searching is a simple extension
of BLAST: First, a context-specific sequence profile is generated for the query sequence using
a library of context profiles. This step is very fast. Then PSI-BLAST is jump-started with this
profile. PSI-BLAST is extended to the context-specific case in an analogous way (CSI-BLAST).

2.2.2. Generalization to sequence profiles

To apply the paradigm to sequence profiles and profile HMMs, we show how to generalize the
calculation of pseudocounts from the single sequence case in equation (2.3) to the case of
sequence alignments, from which the profile is derived. In analogy to the sequence context
Xi, we define the context of the query alignment at position i asQi = (cq(i−d,·), . . . ,cq(i+d,·)),
where cq(j,x) are the counts of amino acid x at position j of the query alignment. These
counts are obtained from the sequence profile q(j,x) by multiplying with the effective number
of sequences Nq(j) at position j in the query alignment: cq(j,x) = Nq(j)q(j,x) (see section
2.2.3 for details). We now merely need to show how to generalize P (Xi|pk) to P (Qi|pk),
since all other transformations leading to equation (2.3) remain essentially unchanged. To
derive P (Qi|pk), we model the amino acid counts cq(i) with multinomial distributions. Since
Nq(j) can be real-valued, however, we replace the factorials in the multinomial distribution
by Gamma functions (n! = Γ(n+ 1))

P (Qi|pk) =
d∏

j=−d

(
Γ(Nq(i+j)+1)∏20

x=1 Γ(cq(i+j,x)+1)

20∏
x=1

pk(j,x)cq(i+j,x)
)wj

. (2.5)

Note that, since the factor containing the Gamma functions does not depend on k, it will
cancel out during the normalization of P (pk|Qi) (cf. equation (2)). Similar to PSI-BLAST

(Altschul et al., 1997), we choose the pseudocount admixture τ in equation (2.4) depending
on the diversity of the query alignment, τ = a(b+1)/(b+Nq(i)), where a = 0.9 and b = 12.0
have been determined on the training set as described in section 2.3.3.
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2.2.3. Generation of context profile library

The quality of the predicted amino acid similarities depends to a large extent on the context
profile library. The clustering procedure to derive this library is summarized in Figure
2.4. We start with all sequences from the NR (non redundant) database, clustered into
groups with maximum inter-group sequence identity of 30% (NR30) (Mayer and Söding et
al., to be published). In contrast to other approaches, in which only sequences with solved
structure in the protein data bank (PDB) were used (Gelly et al., 2005; Goonesekere and
Lee, 2008; Huang and Bystroff, 2006; Overington et al., 1992; Rice and Eisenberg, 1997),
this guarantees an appropriate representation of all classes of local sequence contexts, such
as membrane helices, natively unfolded regions, or highly repetitive sequences. From the
1.5 million cluster alignments in this NR30 database, we discard those with an effective
number of sequences below 2.5 and jump-start a PSI-BLAST search against the full NR

database with each of the remaining alignments (E-value threshold 0.001). This ensures an
alignment diversity that is sufficient to produce mutation probabilities in the same range
as the BLOSUM62 matrix. After converting the alignments to profiles, we randomly sample
1 million training profile windows of length l from the full-length profile database. For a
fixed number of context profiles (K = 500, 1000, 2000, 4000) we determine the profile amino
acid probabilities as well as the profile prior probabilities P (pk) by maximizing the total

Figure 2.4.: Computation of the library of context profiles representing local sequence contexts.
From a database (NR30) of 1.5M groups of aligned sequences covering the NR database, we select
the 50 000 most diverse alignments and enrich these with homologs from a BLAST search. The
alignments are converted to sequence profiles and 1 Mio. profile windows are randomly sampled
and used to train K context profiles (K = 500,1000,2000,4000) with the expectation maximization
algorithm.
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likelihood that the training profile windows can be emitted by the context profiles. The
maximization is done with the expectation maximization (EM) algorithm (Dempster et al.,
1977).

Expectation maximization clustering

N = 1 million training profiles of length l = 2d + 1 were generated as described in Figure
2.4. Each training profile is represented by a count profile cn(j,x), which specifies the
counts of amino acid x ∈ {1, . . . ,20} at position j ∈ {−d, . . . ,d}. These counts are obtained
by multiplying the sequence profile tn(j,x) by the effective number of sequences Nn(j) at
position j in the alignment from which training profile tn(j,x) was calculated: cn(j,x) =
Nn(j)tn(j,x) (see section 2.2.3 for details).
Here, we describe how these N profiles are clustered in order to obtain a set of K context

profiles which recur frequently among the training profiles and which together can describe
all training profiles. More precisely, we seek to determine context profiles p = (p1, . . . , pK)
and their prior probabilities α = (α1, . . . , αK) that maximize the likelihood P (c|p,α) that
the training profile counts c = (c1, . . . ,cN ) were generated by the context profiles. We model
the distribution of counts cn(j,x) in each column j by a multinomial distribution. Since
cn(j,x) can be real-valued, however, we replace the factorials in the multinomial distribution
by Gamma functions (n! = Γ(n+1)). The probability for context profile pk to have emitted
counts cn(j,x) (j ∈ {−d, . . . ,d}, x ∈ {1, . . . ,20}) is

P (cn|pk) =
d∏

j=−d

(
Γ(Nn(j) + 1)∏20

x=1 Γ(cn(j,x) + 1)

20∏
x=1

pk(j,x)cn(j,x)
)wj

, (2.6)

were the wj are weights on the window positions as discussed in section 2 of the main text.
We use the Expectation Maximization (EM) algorithm to find (p∗,α∗) which optimize the

likelihood P (c|p,α). In order to make this problem tractable, we introduce hidden variables
z = (z1, . . . ,zN ). Hidden variable zn ∈ {1, . . . ,K} indicates which context profile pk has
emitted training counts cn. With this definition, we can solve the following optimization
problem:

(p∗,α∗) = argmax
p,α

P (c|p,α) = argmax
p,α

∑
z

P (c,z|p,α) (2.7)

Suppose we have obtained values p̃ and α̃k in a previous iteration of the EM algorithm.
Then the new values are obtained by (M-step)

(p, α) = argmax
p,α

Q(p,α) . (2.8)

where Q(p,α) is the expectation value of the log likelihood of the data over all possible
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z ∈ {1, . . . ,K}N :

Q(p,α) =
∑
z

P (z|c,p̃, α̃) logP (c,z|p,α) (2.9)

= Ez[logP (c,z|p,α)] (2.10)

Note that the probability of z is conditioned on the values (p̃, α̃) from the previous iteration
and does not depend on (p,α). In order to maximize Q(p,α), we first apply Bayes’ Theorem
to calculate the probability distribution over z:

P (z|c,p̃,α̃) = P (c|z,p̃)P (z|α̃)∑
z′ P (c|z′,p̃)P (z′|α̃) ∝ P (c|z,p̃)P (z|α̃) . (2.11)

The first term on the right is obtained by applying equation (2.6) to P (cn|p̃zn) for all n,

P (c|z,p̃) =
N∏
n=1

d∏
j=−d

(
Γ(Nn(j) + 1)∏20

x=1 Γ(cn(j,x) + 1)

20∏
x=1

p̃zn(j,x)cn(j,x)
)wj

, (2.12)

while the second term on the right side is simply

P (z|α̃) =
N∏
n=1

α̃zn . (2.13)

Therefore, we can calculate the probability that training counts cn were emitted by context
profile pk (E-step):

P (zn = k|c,p̃,α̃)

=
α̃k
∏d
j=−d

(
Γ(Nn(j)+1)∏20

x=1 Γ(cn(j,x)+1)

∏20
x=1 p̃k(j,x)cn(j,x)

)wj

∑K
k′=1 α̃k′

∏d
j=−d

(
Γ(Nn(j)+1)∏20

x=1 Γ(cn(j,x)+1)

∏20
x=1 p̃k′(j,x)cn(j,x)

)wj

=
α̃k
∏d
j=−d

(∏20
x=1 p̃k(j,x)cn(j,x)

)wj

∑K
k′=1 α̃k′

∏d
j=−d

(∏20
x=1 p̃k′(j,x)cn(j,x)

)wj
. (2.14)

Let us now take a closer look at Q(p,α):

Q(p,α) = Ez[logP (c,z|p,α)]

= Ez[log(P (z|z,p,α)P (z|α))]

=
N∑
n=1

d∑
j=−d

wj

 log Γ(Nn(j) + 1)−
20∑
x=1

log Γ(cn(j,x) + 1)

+
20∑
x=1

cn(j,x)Ez[log pzn(j,x)]
)

+
N∑
n=1

Ez[logαzn ] . (2.15)
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Here,

Ez[log pzn(j,x)] =
K∑
k=1

P (zn = k|c,p̃, α̃) log pk(j,x) (2.16)

and

Ez[logαzn ] =
K∑
k=1

P (zn = k|c,p̃, α̃) logαk . (2.17)

To maximize Q(p,α) under the constraints

K∑
k=1

αk = 1 and
20∑
x=1

pk(j,x) = 1 ∀k,j (2.18)

we define Lagrange multipliers λ, µkj ∈ R for these constraints:

∂Q

∂αk
=

N∑
n=1

P (zk|c,p̃,α̃)
αk

= λ · ∂

∂αk

(
K∑
k=1

αk − 1
)

︸ ︷︷ ︸
1

, (2.19)

∂Q

∂pk(j,x) =
N∑
n=1

wjcn(j,x)P (zn = k|c,p̃,α̃)
pk(j,x)

= µkj ·
∂

∂pk(j,x)

( 20∑
x=1

pk(j,x)− 1
)

︸ ︷︷ ︸
1

. (2.20)

Solving for αk and pk(j,x) and using the normalization constraints in equation (2.18) to
eliminate λ and the µkj yields

α(k) =
∑N
n=1 P (zn = k|c,p̃,α̃)∑K

k′=1
∑N
n=1 P (zn = k′|c,p̃,α̃)

(2.21)

pk(j,x) =
∑N
n=1 P (zn = k|c,p̃,α̃)cn(j,x)∑20

y=1
∑N
n=1 P (zn = k|c,p̃,α̃)cn(j,y)

(2.22)

These two equations give the recipe for updating model parameters p and α to new values
in the M-step of the EM algorithm. In the E-step we use equation (2.14) to estimate hidden
variables z.

Note that our clustering approach corresponds to a soft clustering of training profiles.
Each training profile can be generated by any of the context profiles (see equation 2.7),
and hence each context profile has contributions from all training profiles, as can be seen
in equation (2.22). This kind of clustering is adapted to the intended use of our context
profile library, in which we mix context profiles according to their posterior probabilities in
order to generate pseudocounts, instead of deriving the pseudocounts from the most similar
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context profile.
In practice, we have found that the EM algorithm converges reliably after 25 iterations

for K = 4000, running about 100h on a single core of a 2.2 GHz 64-bit Quad-Core AMD
Opteron processor. Several independent EM runs yield context profiles whose CS-BLAST

sensitivity was within less than 2% of each other.

Effective number of sequences

The effective number of sequences at column i of a multiple alignment is calculated on the
subalignment Mi formed by all sequences with a residue in column i and by all columns
with at most 10% terminal gaps in these sequences. A terminal gap is a gap that lies either
to the left or to the right of the entire sequence. For each column j ofMi we calculate amino
acid frequencies p(j,x), using the Henikoff sequence weighting scheme. Then the number of
effective sequences is

Nn(i) = exp

− 1
Li

∑
j∈Mi

20∑
x=1

p(j,x) log p(j,x)

 . (2.23)

Here, Li is the number of columns in Mi.

2.3. Results

2.3.1. Benchmark

The homology detection performance of our context-specific method CS-BLAST and stan-
dard NCBI BLAST is evaluated on a benchmark data set derived from SCOP version 1.73
(Murzin et al., 1995), filtered to a maximum pairwise sequence identity of 20% (SCOP20,
6616 domains). SCOP is a database of protein domains with known structure, hierarchically
ordered by class, fold, superfamily, and family (see Figure 2.5). Following a standard proce-
dure, we consider all domains from the same superfamily to be homologous (true positives)
and all pairs from different SCOP folds to be non-homologous (false positives). Domain pairs
from the same fold but different superfamilies are ignored.
We randomly assign members of every fifth fold in SCOP20 to the optimization set (1329

domains), the others to the test set (5287 domains). Using the optimization set, we deter-
mined the best values for the pseudocount admixture (τ = 0.9) and the window weights
(wcenter = 1.6, β = 0.85). The values for the window length (l = 13) and the context library
size (K = 4000) are a trade-off between sensitivity and time efficiency (see section 2.3.3).
We perform an all-against-all comparison of the test-set domains and count the true and

false positive hits at various E-value thresholds (Figure 2.6A). To avoid a few large families
from dominating the benchmark, we weight each true and false positive pair with 1 / (size
of SCOP family of first domain). Compared with NCBI BLAST (version 2.2.19, BLOSUM62,
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Figure 2.5.: Hierarchical organization of SCOP database consisting of protein domains with known
structure. Each protein domain is characterized by class, fold, superfamily, and family. All domains
from the same superfamily can be considered as homologous (true positives) and all pairs from
different SCOP folds as non-homologous.

default parameters), CS-BLAST detects 139% more homologs at a cumulative error rate
of 20%, 138% more at 10%, and, for the easiest cases at 1% error rate, still 96% more.
To get an idea of the upside potential when parameters are trained on a larger set, we
optimized wcenter, β, and τ directly on the test set (red broken trace). These parameters
(wcenter = 1.3, β = 0.9, and τ = 0.95) are used in the official version of CS-BLAST.

To assess the alignment quality, we compare predicted sequence alignments to gold-
standard structural alignments generated by TM-ALIGN (Zhang and Skolnick, 2005). We
start by randomly picking up to ten domain pairs from each family in SCOP 1.73, requir-
ing a maximum sequence identity of 30%, and aligning each pair with TM-ALIGN. Those
domains that are not well superposable (TM-ALIGN score < 0.6) are discarded. This re-
sults in 11 457 domain pairs from 5747 different domains. With each of the 5747 domains
we perform a CS-BLAST and NCBI BLAST (version 2.2.19 with BLOSUM62) search against
a database consisting of all domains belonging to the same family as the query domain
and evaluate the quality of the predicted alignments for those pairs with a structural ref-
erence alignment. The alignment quality is assessed by two standard performance mea-
sures: Alignment sensitivity is the fraction of structurally aligned residue pairs that are
correctly predicted, i.e. pairs correctly aligned/pairs struct. alignable. Alignment precision
is defined as the fraction of aligned residue pairs in the predicted alignment that are correct,
i.e. pairs correctly aligned/pairs aligned. Figure 2.6B plots alignment sensitivity and preci-
sion for various sequence identity bins. CS-BLAST is able to improve the BLAST results over
the entire range of sequence identities, especially for the difficult alignments. Very similar
results are obtained when reference alignments are generated with DALI (Holm and Sander,
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1996) (data not shown).
Another critical aspect for database search tools is the reliability of the reported E-values.

The E-value of a match is an estimate of the number of chance hits to be expected with a
score better than that of the database match. We check the reliability of CS-BLAST E-values
using the all-against-all searches of Figure 2.6A. We count the number of false positives at
a given E-value threshold, which, together with the size of the benchmark database, allows
us to derive the actual E-value. Figure 2.6C plots the actual against the reported E-value.
NCBI BLAST’s reported E-values are nearly identical to the observed ones. CS-BLAST E-
values are too optimistic by a factor of about three to five, i.e. a reported E-value of 10−3

corresponds to an E-value of 5 × 10−3. Considering that this deviation is quite small and
that it changes little with E-value, it should be easy to accommodate in practice.
Finally, we evaluate the homology detection performance of CSI-BLAST, the context-

Figure 2.6.: (A) Homology detection benchmark on SCOP20 data set: true positives (pairs from the
same SCOP superfamily) versus false positives (pairs from different folds). CS-BLAST detects 138%
more true positives than BLAST at an error rate of 10 %. (B) CS-BLAST has better average alignment
sensitivity and precision than BLAST over the entire range of sequence identities of the aligned pairs.
(C) Actual versus reported E-values on the SCOP20 data set show that CS-BLAST E-values are too
optimistic by a factor of 3 to 5. (D) Same benchmark as A (note different y-scales), but comparing
CSI-BLAST with PSI-BLAST for one to five iterations. Two CSI-BLAST iterations are more sensitive
than five PSI-BLAST iterations.
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specific version of PSI-BLAST, on the benchmark of Figure 2.6A. Since, typically, PSI-BLAST

searches are done with a large sequence database such as the non-redundant protein database
(NR) at NCBI (Benson et al., 2008) in order to build diverse profiles, only the last search is
performed against our benchmark database; all previous iterations use the full NR database
(E-value inclusion thresholds set to 1 × 10−3 for PSI-BLASTand 2 × 10−4 for CSI-BLAST).
Figure 2.6D plots true positives versus false positives detected by PSI-BLAST and CSI-BLAST

after up to five search iterations. (The trace for CSI-BLAST with five iterations has been omit-
ted since it does not significantly improve over three iterations anymore. The traces for one
iteration are the same as in Figure 2.6A.) Remarkably, two iterations of CSI-BLAST are more
sensitive than five rounds of standard PSI-BLAST (≈ 15% more homologs detected). This
result surprised us. We had expected that context-specific profiles would only marginally im-
prove sensitivity over standard sequence profiles, since profiles already contain family- and
position-specific mutation rates. But the lead of CS-BLAST over BLAST is even extended
in absolute terms after the second iteration, demonstrating that the context profiles con-
tain local information from analogous sequences (i.e. with similar sequence context) that is
partially independent of information from the homologous sequences in the profile.

2.3.2. Example: Activation domain of SOX-9

Figure 2.3B gave an example in which the context-specific method led to above-average
conservation of Zinc-finger cysteines. In practice, it will be equally important to be able
to guess which residues are conserved below average. As an example, Figure 2.7 presents
profiles of a region from the activation domain of human SOX-9 transcription factor, gener-
ated with substitution matrix pseudocounts (left) and context-specific pseudocounts (right).
Since this region is natively disordered, its sequence is only very weakly conserved. The
substitution matrix method assigns the same amino acid distribution to the prolines as
it would to a proline in a globular domain. The context-specific method, however, mixes
the pseudocounts mainly from contexts which are also disordered, weakly conserved, and
have a similar, biased amino acid distribution. Therefore, its profile exhibits below-average
conservation of prolines, alanines, and glutamines while having higher overall probabilities
for these residues.

2.3.3. Parameter optimization

Our context-specific search tools CS-BLAST and the EM clustering procedure for generating
the library of context profiles (see section 2.2.3 about generation of context profiles) contain
several adjustable parameters: The number of context profiles K, the profile window length
l, the positional weight parameters wcenter and β, and the pseudocount admixture τ . We
optimize these parameters using a homology detection benchmark that is similar to the
benchmark utilized to compare CS-BLAST with BLAST (see section 2.3.1 for details). The
optimization runs, however, are performed on a small optimization set (1329 domains) that
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Figure 2.7.: Proline-rich region in human transcription factor SOX-9. The mutation profile computed
with substitution matrix pseudocounts (left) overestimates the conservation in this region. The
context-specific profile (right) shows weaker conservation of prolines, alanines, and glutamines, and
increased presence of these residues in neighboring columns.

is distinct from the comprehensive test set (5287 domains) with no optimization set member
sharing a common fold with any test set member. For a given parameter configuration
(K, l, wcenter, β, and τ) we first generate a library of K context profiles by EM clustering,
then we perform an all-against-all comparison of the training-set domains and count the
true positive (TP) and false positive (FP) hits at various E-value thresholds. From this
we can infer a ROC5 score (∈ [0,1]) for each query. The ROC5 score is defined as the
area under the TP-versus-FP ROC curve (receiver operating statistic) up to the fifth false
positive hit, divided by the area under the optimal ROC curve. To assess the overall
homology detection performance, one can plot the fraction of queries with ROC5 scores
above a variable ROC threshold (∈ [0,1]). The area under such a curve, the mean ROC5
score, conveniently captures the homology detection performance in a single value and is
therefore used as performance index in the parameter optimization. Optimization results
by mean ROC5 score proved to be more robust and less noisy than results obtained by
optimizing the overall sensitivity at a given error rate.
Ideally, we would like to compute mean ROC5 scores for a wide range of different parame-

ter configurations. However, due to the considerable runtime of the EM clustering algorithm
we have to restrict our optimization runs to a selected set of reasonable parameter settings.
Parameter values for window size l and library size K result from a compromise between
sensitivity and time efficiency in CS-BLAST. To limit the runtime of the profile generation
in CS-BLAST for a typical protein to about 1s, we choose K = 4000 and l = 13 (see Fig-
ure 2.8). With K and l fixed, we benchmark all 60 possible parameter combinations for
wcenter ∈ {1.3, 1.6, 2.0, 2.5}, β ∈ {0.8, 0.85, 0.9}, and τ ∈ {0.8, 0.85, 0.9, 0.95, 1.0}. The opti-
mization runs reveal that parameter setting wcenter = 1.6, β = 0.85, and τ = 0.9 gives the
best mean ROC5 score of 0.2374. Around this optimal configuration we test the effect of dif-
ferent values for cluster size (K = 500,1000,2000,4000) and window length (l = 9,11,13,15).
The results suggest that the homology detection performance improves not only with the
number of context profiles K, as expected, but also with the length of the context window l.
However, a subsequent evaluation of window lengths parameters l = 13 and l = 15 on the



2.4 Discussion 28

Figure 2.8.: Time required for generating the context-specific profile in CS-BLASTdepending on query
length L and size of context library K = 1000,2000, 4000 (window length l = 13). The plot verifies
that the runtime T scales roughly with T ∝ KlL. To limit the runtime of the profile generation in
CS-BLAST for a typical protein with 200 residues to ∼ 1s, we choose K = 4000.

benchmark set revealed almost identical performance for both settings. We therefore chose
l = 13 for the benefit of faster runtime. Figure 2.9A-E illustrates the effect of varying one
parameter at a time while keeping the others fixed at the optimum configuration (K = 4000,
l = 13, wcenter = 1.6, β = 0.85, τ = 0.9).
In addition to CS-BLAST parameters (K, l, wcenter, β, τ), we also need to optimize pseudo-

count admixture parameters a and b for CSI-BLAST (see section 2.2.2). We employ the same
benchmark procedure as described above, but perform three rounds of CSI-BLAST instead of
CS-BLAST. The last search is performed against our training database; all previous iterations
use the full NR database. Since we already know the optimal pseudocount admixture for
the one-sequence case from the optimization of τ in CS-BLAST, we set a to 0.9. Benchmark
runs for b = 6, 8, 10, 12, 16, 20 reveal that b = 12 gives the best results and is therefore the
default setting in CSI-BLAST (Figure 2.9F).

2.4. Discussion

Sequence context is much more powerful than a single residue in predicting which amino
acids that particular residue is likely to mutate into (Figure 2.6A,B). Since this context
information is as easy to get as the sequence itself, it is surprising that sequence context is
practically never exploited. The main reason seems to be the focus of past research on struc-
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Figure 2.9.: Optimization of parameters K, l, wcenter, β, τ and CSI-BLAST parameter b. The plots
illustrate the effect of varying one parameter at a time while keeping the others fixed at the optimal
configuration K = 4000, l = 13, wcenter = 1.6, β = 0.85, and τ = 0.9. Red circles indicate the optimal
parameter value that is chosen as default in CS-BLAST/CSI-BLAST. (A) Number of context profiles
K. (B) Window length l. (C) Weight of central profile column wcenter. (D) Weight decay parameter
β. (E) Pseudocount admixture τ . (F) Pseudocount extinction parameter b in CSI-BLAST (a = 0.9).
Three iterations of CSI-BLAST were performed for this optimization. Note the different y-scale.
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tural context, with its limitation to proteins of known structures (Gelly et al., 2005; Goone-
sekere and Lee, 2008; Huang and Bystroff, 2006; Overington et al., 1992; Rice and Eisenberg,
1997). Another reason may be the challenge to develop sequence context-specific methods
that can compete with traditional context-free methods such as BLAST and PSI-BLAST in
speed and usability (Baussand et al., 2007; Huang and Bystroff, 2006). We have shown
how context-specific pseudocounts can be employed in combination with existing profile-
based methods to extend residue-centered sequence comparison to the context-specific case,
without loss of speed or usability.

As examples, we have built context-specific versions of BLAST and PSI-BLAST which con-
siderably improve their performance at very little runtime overhead. For a typical protein
of length L = 250 and a library size of K = 4000, the computation of the context-specific
profile requires about one second. Also, runtime scales favorably, T ∝ KlL. (Note that
HMMSUM’s runtime scales as T ∝ K2L, which places a strict practical limit on the num-
ber K of states/contexts in HMMSUM.) Since the output of CS-BLAST and CSI-BLAST is
generated by the BLAST and PSI-BLAST programs themselves, users do not have to get ac-
customed to different command line options or output formats, and updates to the BLAST

package will directly benefit the context-specific versions. The only caveat is that E-values
need to be corrected by a factor of three to five (Figure 2.6C). We expect CS-BLAST to
be particularly useful to find homologs for singleton sequences, since for these the lack of
homologs precludes the use of profile-to-sequence search methods such as PSI-BLAST.
A pleasant surprise is the extent of improvements of sequence profiles through context-

specific pseudocounts (Figure 2.6D), even though profiles already contain evolutionary in-
formation on position- and family-specific mutation probabilities. Hence, the information
from locally similar, analogous sequences that are contained in the context profiles is at
least partly orthogonal to the evolutionary information in the homologous sequences that
contribute to the sequence profiles. Consequently, we can expect improvements when ap-
plying the new paradigm to the pairwise comparison of sequence profiles (Rychlewski et al.,
2000; Sadreyev and Grishin, 2003; Yona and Levitt, 2002) and profile HMMs (Madera, 2008;
Söding, 2005), or to hierarchical multiple sequence alignment programs (Notredame, 2007;
Thompson et al., 1994).

It is possible to extend Dirichlet mixture pseudocounts (Durbin et al., 1998; Sjoelander
et al., 1996) to the context-specific case. This would yield an alternative formulation of
context-specific sequence comparison that is worth exploring. In that scheme, the context
library would haveK meta-profiles, i.e., multicolumn pseudocount priors. Each meta-profile
would consists of l Dirichlet distributions and would be able to emit a profile with l columns.
An advantage over the presented scheme might be that the diversity of each column in the
meta-profiles is encoded by one additional parameter per column (the sum of all pseudo-
counts in a column), which might lead to better modeling of the profile contexts.
The paradigm presented here should be easily transferable to nucleotide sequences. The
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application to non-coding regions such as promoter regions and regions harboring putative
non-coding RNAs (ncRNAs) is of particular interest: The low information content of nu-
cleotide sequences and the often weak overall conservation in these regions render alignments
between related species difficult, while reliable alignments offer great promise to identify
functional regions (such as cis-regulatory elements or ncRNAs) through their inter-species
conservation (see, e.g., Stark et al. (2007)).
In summary, the paradigm of sequence context specificity offers greatly improved sensi-

tivity and alignment quality in protein sequence comparison and is likely to hold similar
advantages for nucleotide sequences. We believe that these advantages are sufficient to war-
rant a paradigm shift in biological sequence comparison, alignment, and molecular evolution
from amino acid- and nucleotide-centric to context-specific methods.



3. Column states alphabet for sequence
profile encoding

3.1. Introduction

We can also use sequence contexts to define column states, i.e. states with contexts of
length l = 1, that describe profile columns optimally. In this way, we can encode a sequence
profile as a sequence over an extended alphabet of column states while preserving most of
the evolutionary information in the profile. In this chapter we present a novel approach that
uses sequences of column states to derive a profile-to-profile score that can be efficiently
computed at the same speed as standard sequence-to-sequence scores. Finally, we show
how to employ fast profile-to-profile scoring in combination with the iterative HMM-HMM

search tool HHBLITS to improve homology detection performance with no runtime overhead.
To understand why fast profile-to-profile scoring is of particular interest in HHBLITS, let us
take a closer look at the search strategy which it uses to detect remote homologs.

3.1.1. Iterative HMM-HMM search with HHBLITS

Protein homology detection and sequence alignment are powerful techniques in computa-
tional biology because often a proteins function or three dimensional structure can be pre-
dicted by inference from known homologs. The workhorse of protein homology detection is
PSI-BLAST, with over 5000 citations (Altschul et al., 1997). PSI-BLAST owes its sensitivity
to its iterative search scheme, in which significant sequence hits are aligned to the query
sequence to construct the profile for the next search iteration (see Figure 1.2).
To improve the sensitivity of picking up distant evolutionary relationships, our group has

developed a new method, HHBLITS, that is based on iterative profile HMM-HMM comparison
(Remmert and Söding et al., to be published). HMM-HMM comparison has been shown to
be much more sensitive than PSI-BLAST (Söding, 2005). However, the use of HMM-HMM

comparison in an iterative search scheme would require a database of profiles (or, more
precisely, profile HMMs) covering all known sequences. Also, profile HMM-HMM compari-
son is prohibitively slow (more than 2000× slower than PSI-BLAST). HHBLITS solves both
problems as follows: firstly it uses a previously constructed database (NR30) of HMMs and
sequence alignments which covers the entire sequence database, and secondly, it employs a
fast implementation of the Smith-Waterman algorithm (Farrar, 2007; Smith and Waterman,
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1981) for pre-filtering the NR30 database. The pre-filtered HMMs in the database are then
compared against the evolving query HMM using HMM-HMM comparison. All significant
hits are aligned to the query alignment and the new alignment is used as input for the next
iteration of Smith-Waterman pre-filtering and HMM-HMM search, as illustrated in Figure
3.1.
The pre-filter step is the crucial step to achieve speeds comparable to PSI-BLAST without

losing much sensitivity compared to standard HMM-HMM comparison methods. It is not
only the time limiting step but also the one determining the sensitivity in the HHBLITS

workflow. The pre-filter needs to be as fast and efficient as possible because the search is
performed against the whole NR30 database with over a million alignments, but at the same
time it has to be sensitive enough to separate the non-homologous HMMs in the database
from the true homologs, such that most of the latter ones can be compared with the time-
consuming HMM-HMM alignment. In the following section we will demonstrate that we can
significantly increase the homology detection performance of the pre-filter step by encoding
the NR30 database not in the form of standard amino acid consensus sequences but in an
alphabet of 62 profile columns, that has been generated by clustering a large representative
set of training profile columns.

Figure 3.1.: Schematic workflow of HHBLITS. During the fast pre-filter step HHBLITS searches with
the query sequence against all alignments in the NR30 database (large blue cylinder). All those
HMMs in the NR30 database that were found with an E-value better than 100 are extracted into
a temporary database (small blue cylinder). This much smaller temporary database can then be
efficiently searched using very sensitive, but slow, HMM-HMM comparison. All significant hits are
likely to be homologous and are aligned to the query profile HMM. This new profile HMM is then used
as input for the next iteration of pre-filtering and HMM-HMM comparison. The search procedure is
repeated until no new HMMs are found or the maximum number of iterations is reached.
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3.2. Material and methods

3.2.1. Fast profile-to-profile match score

The central idea behind the pre-filter step in HHBLITS is as follows: to be able to make use of
fast sequence comparison, we have to encode the database profiles as sequences. To balance
speed and sensitivity to pick up even very distant evolutionary relationships, HHBLITS uti-
lizes a fast implementation of the Smith-Waterman algorithm. Unlike BLAST and PSI-BLAST,
the Smith-Waterman algorithm is guaranteed to find the optimal local alignment between
the query sequence profile and a database sequence. As already explained in section 2.2.1,
substitution matrix scores can be seen as a special case of profile-to-sequence scores, where
the profile is generated from one of the query sequence by using substitution matrix pseu-
docounts. Therefore, the substitution score S(xi,yj) used within the Smith-Waterman al-
gorithm can be expressed as standard profile-to-sequence score of profile column i of the
query sequence profile q with residue yj of the database sequence (yj):

S(q(i,·),yj) := log q(i,yj)
P (yj)

= log P (yj |xi)
P (yj)

= S(xi,yj). (3.1)

Note that, while this profile-to-sequence score can easily take into account additional
evolutionary information on the query side through the query-side profile representation, the
same is not true for the database side. On the database-side, we have to resort to encoding
all evolutionary information into a single sequence. Therefore, the initial implementation
of HHBLITS used consensus sequences instead of full NR30 alignments for the pre-filter step.
Since in the translation of an alignment into a consensus sequence there is always a loss of
information incurred, it is desirable to replace the profile-to-sequence score of the pre-filter
by a profile-to-profile score that would make better use of evolutionary information on the
database side.
However, simply replacing the profile-to-sequence score with a standard profile-to-profile

score is not a viable option. The evaluation of the profile-profile co-emission score between
two sequence profiles q and p

S(q(i,·),p(j,·)) := log
20∑
a=1

q(i,a)p(j,a)
P (a) (3.2)

requires iteration over all 20 amino acids and is therefore at least 20 times slower than the
profile-to-sequence score introduced in equation (3.1).
In the following, we present a novel approach that derives a profile-to-profile score which

can be efficiently computed at the same speed as the score in equation (3.1). Our approach is
based on encoding each database-side alignment column as one letter from a pre-computed
specialized alphabet, that consists of 62 column states. Each column state k ∈ {1, . . . ,62} of
this CS62 alphabet is characterized by a specific amino acid profile vector sk(·) and individual
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character sk ∈ {0-9, A-Z, a-z}. We chose to use 62 column states as this is the number of all
digits, uppercase and lowercase characters in the ASCII character-encoding scheme. Figure
3.2 illustrates each of the 62 columns states with their one letter codes and characteristic
profile vectors. The CS62 alphabet itself was generated by clustering a large representative
set of training profile columns (see section 3.2.2 for details). Through encoding each profile
column qj in the NR30 database with one of the 62 column states such that yj ∈ {1, . . . ,62},
we can now formulate a new profile-to-column-state score that uses profile information on
the database side but is fast to evaluate at the same time

S(q(i,·),yj) := log
20∑
a=1

q(i,a)syj (a)
P (a) . (3.3)

Note that although equation (3.3) still contains a sum over all amino acids, we can easily
pre-calculate all scores S(q(i,·),k) for i ∈ {1, . . . ,L}, k ∈ {1, . . . ,62}. Thus, we do not have
to recalculate alignment match scores repeatedly during dynamic programming but simply
perform a look-up of the pre-calculated scores S(q(i,·),k) for the query profile in a way
completely analogous to profile-to-sequence comparison, except that the alphabet over 20
amino acids is replaced by an alphabet over 62 column states.
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Figure 3.2.: Overview of all 62 column states in the CS62 alphabet. Each column state is characterized
by a specific amino acid profile vector (histograms) and a one-letter code (colored boxes with rounded
corners). Column states with similar amino acid profile vectors possess identical background colors
in their one letter code. Note that the first 20 column states are more or less pure and encode for the
20 amino acids. Other non-pure column states contain groups of amino acids that readily substitute
for each other, e.g. aliphatic amino acids or lysine and arginine. Column states at the very end
(x,y,z) represent highly diverged alignment columns with slightly biased background distributions.
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3.2.2. Generation of CS62 column state alphabet

The improvement of the profile-to-column-state score (equation 3.3) over the consensus
based profile-to-sequence score as in equation (3.1) depends to a large extent on the column
state alphabet. The clustering procedure to derive the 62 column states is almost equivalent
to expectation maximization clustering (described in section 2.2.3) that we used to generate
the context profile library for CS-BLAST. However, we make two important changes: First,
instead of clustering the training profiles into a set of K = 4000 context profiles of length
l = 13 we want to obtain K = 62 context profiles of length l = 1. Of course, the resulting 62
context profiles of length one are really nothing other than 62 profile vectors. As a training
set we use N = 10 million training profile vectors randomly sampled from NR30 database
alignments. Second, we utilize a window weight of w = 1000 instead of w = 1.6. This is
motivated by the fact that one column state instead of a mixture of states will be used for
encoding an alignment column. Thus, the CS62 alphabet should be optimized such that the
observed counts in an alignment column are described as well as possible by a single column
state, rather than through a mixture of column states. The high value of w = 1000 ensures
that the expectation maximization algorithm effectively performs a hard clustering where
each training profile column is generated by one column state only.

3.2.3. Translation of alignments into CS62 sequences

In order to use the profile-to-column-state score (equation 3.3) in the pre-filter step, HHBLITS

needs as input the CS62 column state sequences of the NR30 database. To obtain the CS62

column state sequences we need to translate each NR30 alignment into the CS62 column
states alphabet. This process is illustrated in Figure 3.3. First, the input alignment is
converted into a sequence profile (colored histogram below alignment) to which a small
amount of context-specific pseudocounts are added. In the following translation step each
profile column is translated into the one CS62 alphabet letter (colored boxes with rounded
corners) that best describes the observed counts. More precisely, profile column i is replaced
with the alphabet letter sk for which the probability to generate the observed amino acid
counts c(i,x) is maximum:

k = argmax
k

P (sk)
( 20∑
x=1

sk(x)c(i,x)
)w

. (3.4)

P (sk) is the Bayesian prior probability for column state sk, determined in the process of
computing the column states alphabet (section 3.2.2). It quantifies the probability that an
alignment column is emitted by profile vector sk(·) prior to knowing that alignment column.
The counts c(i,x) of amino acids x at position i of the input alignment are modeled with a
multinomial distribution. In order to make the translation of alignments readily available
to HHBLITS users, we have implemented the translation procedure in a small executable
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called CS-TRANSLATE. The executable takes an alignment and the column state library as
input, translates the alignment, and finally writes the CS62 column state sequence in FASTA

format to an output file.

3.3. Results

The homology detection performance of HHBLITS with sequences over the CS62 alphabet
and HHBLITS with standard amino acid consensus sequences is evaluated on a benchmark
data set derived from SCOP version 1.73 (Murzin et al., 1995), filtered to a maximum
pairwise sequence identity of 20% (SCOP20, 6616 domains). SCOP is a database of protein
domains with known structure, hierarchically ordered by class, fold, superfamily, and family.
Following a standard procedure, we consider all domains from the same superfamily to be
homologous (true positives) and all pairs from different SCOP folds to be non-homologous
(false positives). Domain pairs from the same fold but different superfamilies are ignored.

We randomly assign members of every fifth fold in SCOP20 to the optimization set (1329
domains), the others to the test set (5287 domains). Using the optimization set, we deter-
mined the best values for the admixture of the context-specific pseudocounts to be added
to database alignment side as well as the P -value threshold of the HHBLITS pre-filter, which
adjusts how many HMMs are included in the temporary database for HMM-HMM comparison.
We perform an all-against-all comparison of the test-set domains and count the true

and false positive hits at various P -value thresholds (Figure 3.4A). To avoid a few largeQKPFQCRICMRNFSRSDHLTTHIRTHTGEKPFA
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Figure 3.3: Translation of an alignment into a
sequence over an extended alphabet of column
states. First, the input alignment is converted
into a sequence profile (colored histogram below
alignment) to which a small amount of context-
specific pseudocounts has been added. In the
following translation step, each profile column
is translated into the one CS62 alphabet letter
that best describes the observed counts (colored
boxes with rounded corners). Below each CS62
alphabet letter its characteristic profile column
is shown in order to facilitate the comparison
between original and translated profile columns.
The sequence at the bottom is the consensus
of the input alignment. Clearly, the consen-
sus sequence fails to faithfully encode the ob-
served profile counts in all but the most highly
conserved columns consisting almost entirely of
Cysteines and Histidines. The CS62 sequence on
the other hand is able to represent all observed
counts very well, regardless of whether they oc-
cur in a highly conserved or less conserved pro-
file column.
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families from dominating the benchmark, we weight each true and false positive pair with
1 / (size of SCOP superfamily of first domain). After one and two iterations, HHBLITS

with CS62 column state sequences detects 9% and 8% more true positives than HHBLITS

with standard amino acid consensus sequences at an error rate of 10%. To get an idea
of the upside potential when we use a column state library of more than 62 states, we
also generated a CS219 alphabet that consists of 219 column states and makes use of all
ASCII characters as one-letter codes. Compared with the CS62 alphabet, the extended CS219

alphabet does not improve the homology detection performance after one iteration and the
improvements after two iterations are only marginal (1% more homologs detected, data not
shown).
In the homology detection benchmark illustrated in Figure 3.4A we pool the hits of all

queries before counting the number of true and false positive hits at various P -values. Thus,
not every query is guaranteed to contribute equally to the ROC curves shown in Figure 3.4A.
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Figure 3.4: CS62 column
states alphabet improves
homology search perfor-
mance of HHBLITS after
one (solid lines) and two
rounds (dashed lines).
(A) Homology detection
benchmark on SCOP20
data set: true positives
(pairs from the same
SCOP superfamily) versus
false positives (pairs from
different folds). After one
and two iterations HH-
BLITS with CS62 column
states alphabet detects
9% and 8% more true
positives than HHBLITS
with standard amino acid
consensus sequences at an
error rate of 10%. (B)
Same benchmark set as in
(A) but fraction of queries
with ROC5 scores above a
variable ROC5 threshold
shown. Again, HHBLITS
with column states alpha-
bet is able to detect more
homologs than HHBLITS
with standard amino acid
consensus sequences (10%
and 7% improvements af-
ter one and two iterations
respectively).
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For example, the very first high scoring false positives might be caused by erroneous hits in
the search results of only one query. To get an idea of the homology detection performance
when each query search contributes equally, we have devised a second benchmark. For this
benchmark we again perform an all-against-all comparison of the test-set domains but we
count the true positive (TP) and false positive (FP) hits at various P -value thresholds for
each query separately. From this we can infer a ROC5 score (∈ [0,1]) for each query. The
ROC5 score is defined as the area under the TP-versus-FP ROC curve (receiver operating
statistic) up to the fifth false positive hit, divided by the area under the optimal ROC curve.
To assess the overall homology detection performance, we plot the fraction of queries with
ROC5 scores above a variable ROC5 threshold (∈ [0,1], see Figure 3.4B.). The area under
the curve, the mean ROC5 score, conveniently captures the homology detection performance
in a single value and is also used as performance index in the parameter optimization. The
ROC5 benchmark results illustrated in Figure 3.4B, confirm our earlier results. After one
and two iterations, HHBLITS with CS62 column state sequences detects 10% and 7% more
homologs than HHBLITS with standard amino acid consensus sequences.

3.4. Discussion

When representing a diverse sequence profile as a standard consensus sequence of amino
acids, a loss of information is unavoidable. This is because diverse profile columns cannot
adequately be modeled by one single amino acid. Here, we present an approach that en-
codes a profile as a sequence over an extended alphabet of column states, each of which
is associated with a characteristic profile vector. This new approach preserves most of the
evolutionary information in the profile because diverse profile columns can be represented
by a column state with similar amino acid distribution. Since the column state sequence is
made up of printable letters, it is easy to read both by humans and computer programs.
We have shown how sequences of column states can be employed in combination with

the existing HMM-HMM search tool HHBLITS to improve its homology detection performance
with no runtime overhead. Also, the translation of a sequence profile into a column state
sequence is extremely fast (runtime less than 100 milliseconds for an average profile) which
makes the translation of a profile databases with millions of profiles possible. The new
approach to describe profile columns by CS62 columns states should be easily transferable to
all search and alignment tools that use standard amino acids based consensus sequences. To
utilize sequences over the CS62 column state alphabet in their programs, developers merely
need to download the pre-computed CS62 column state alphabet and the CS-TRANSLATE

executable to translate sequence profiles or alignments into column state sequences.
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Multiple alignment



4. Multiple alignment of regulatory DNA

4.1. Overview

With the rapid sequencing of many closely related genomes, comparative genomics has
become a very promising area in computational biology (Cliften et al., 2003; Consortium,
2007a; Kellis et al., 2003). Comparative genomics methods use alignments of intergenic
DNA sequences of related species to identify functional elements by their conservation sig-
nature. The basic assumption is that regulatory motifs underlie evolutionary constraints
which cause them to evolve more slowly than the “background” surrounding DNA, that is
free of any functional constraints. Therefore, it is standard practice to search for regulatory
elements by scanning alignments of regulatory regions to identify short stretches that are
well conserved across species (Woolfe et al., 2005). Besides the computational prediction of
already characterized functional elements (Berman et al., 2004; Sinha et al., 2003; Wasser-
man et al., 2000), comparative sequence analysis can also help to discover novel sequence
motifs (Li and Wong, 2005; Siddharthan et al., 2005) and to explore the principles of regula-
tory sequence evolution (Ludwig et al., 1998). Other important applications that make use
of cross-species multiple alignments include the inference of phylogeny (Wong et al., 2008)
and the estimation of substitution rates (Siepel and Haussler, 2004).
All these downstream analysis methods critically depend on the correctness of the un-

derlying multiple alignment. For instance, in regions where sequences are misaligned,
conservation-based motif detection methods may fail to identify conserved transcription
factor binding sites (see Figure 4.1). The dependence of comparative genomics methods on
the underlying multiple alignments also becomes evident in a study of Stark et al. (2007)
who analyzed 12 Drosophila genomes for de novo discovery of functional elements. When
investigating the effect of alignment accuracy on their predictions, they found only 59%
agreement between different alignment strategies for regulatory motif instances.
Because misaligned sequences could easily produce false signals of evolutionary change,

methods used to build up phylogenetic trees are at high risk of a loss of accuracy when
sequences are misaligned. Wong et al. (2008) have shown that different alignment methods
may seriously affect the results of comparative genomic analysis such as reconstruction of
phylogenetic trees and inference of positive selection. In addition, a simulation study by
Pollard et al. (2006) found that variation in alignment accuracy could result in significant
errors in evolutionary studies, and that there is a need for phylogenetic tools that can
control for alignment errors.
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Context-specific Multiple Alignment of Promoter Regions
Andreas Biegert and Johannes Söding

Protein Bioinformatics & Computational Biology, Gene Center, LMU Munich

Motivation
Comparative genomics methods use alignments of promoter
regions of related species with each other to identify func-
tional elements by their conservation signature. These meth-
ods therefore critically depend on the correctness of the align-

ments in promoter regions. Promoter alignments are often
very challenging, since functional elements can drift away while
being functionally substituted by analogous motifs in nearby
locations. Any improvement in the alignments will directly im-

pact on comparative genomics and thereby on the identification
of transcription factor binding sites, core promoter elements,
microRNAs and their target binding sites, as well as other reg-
ulatory RNAs and their targets.

Challenges
1 Alignment algorithms may incorrectly insert gaps in orthologous motif
occurrences because they do not recognize the motif signature. The following
example shows conserved TF binding sites (pink boxes) in aligned orthologous
yeast sequences that are likely to be misaligned.

CGATATTTTTGCTCACCTTTTTTTTTTGCTCATCG-AAAATT
CGATATTTTTGCTCACCTTTTTTTT--GCTCATCG-AAAATT
CGATATTTTTGCTCATCTTTTTTTTTTGCTCATTGAAAAATT
TGAAATTTTTGCTCATCGAATTTTT--GCTCATCG---AAGT

correctly aligned misaligned

2 If errors are made in standard progressive alignment, these errors are
propagated through to the final result and cannot be corrected at later stages.
This is illustrated in the following example where the guide tree indicates the
order in which four hypothetical sequences are aligned.

GARFIELDTHELASTFATCAT

GARFIELDTHEFASTCAT

GARFIELDTHEVERYFASTCAT

THEFATCAT

Seq1

Seq2

Seq3

Seq4

☇

GARFIELDTHELASTFA-TCAT
GARFIELDTHEFASTCA-T---
GARFIELDTHEVERYFASTCAT
--------THE----FA-TCAT

Resulting alignment with the
word CAT misaligned due to an
error made in the pairwise align-
ment between sequence 1 and 2.

Context-Aware Sequence Profiles
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TATA-Box Initiator
Standard multiple alignment methods
use evolutionary models such as Jukes-
Cantor to score DNA substitutions.
These similarity scores do not take the
local sequence context into account. We
propose a new DNA scoring scheme
in which substitution scores depend on
13-residue windows around each DNA
residue. For each position we precal-
culate a profile column (colored his-
togramm above) by comparing its se-
quence window to a library with hun-
dreds of context profiles (on the right),
generated by clustering a large, represen-
tative set of sequence-profile windows.
Each profile column contains the like-
lihood of each context profile at that
specific position. The similarity between
two profile columns is used as substitu-
tion score in progressive alignment.
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1 Determine the best
pairwise alignment by
finding the path that
maximizes the sum of
match, insert, and dele-
tion probabilities.

2 Calculate another
suboptimal alignment
with different gap place-
ment at the insert. This
alternative alignment
may later turn to be
correct.

3 Both previous align-
ments are combined into
a hidden Markov model
(HMM). Aligning this
HMM to a third se-
quence reveals that the
alignment from step 2
is actually correct.

ambiguous gap placement alternative gap placement

Alignment of Orthologous Promoters in Drosophila

AATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGAACATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGATATAATTACAGTGAAA
AATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGACCATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGATATAAATACAGTG-AA
AATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGACCATTAGTCGCGATCGGGCATCGAAATCGTCAAGTTCAGTGGATATAAATACAGTG-AA
GATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGACCATTAGTCGCGATCGCGCATCGAAATCGTCAAATTCAGTGGATATAAATAAAGTG-AA
GATCGGGCCTATAAAAGGGGCTGCCCATTCATGGGAACCATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTAAATATAAACAAAGTG-AA
AATGGAAGCTATAAAA--GCCACCTCGTTCATCGTTTTATCCAGTTGTGTTTTCGCAGTGAAATCGTCAATTGTCGCAAATACTAGTA----G-AA
CATCGGGACTATAAAAGGCGCTCCCGAGCCACTGGCATCATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGAAATCTGCAAAAGC-GA
CATCGGGACTATAAAAGGCGCTCCCGAGCCACTGGCATCATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGAAATCTGCAAAAGC-GA
AACCGAGACTATAAAAGGAGCTCCACGTATCCAG----CTTTAATTGCGTTCGCGCGGTTTGATTGTTTTTTTCTGTGGATCGAAGGAAAAGT-GA
CGCCTGGCCTATAAAAGCCGCTGGGGATGGACAG-CGCCATTAGTTGCGTTCGCGCGGTTCGACCTACGGATTTTGTGAATATGTTCCAAGTG-CA

AATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAA---CATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGA--------TATAATTAC------AGTG-AAA
AATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAC---CATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGA--------TATAAATAC------AGTG-AA-
AATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAC---CATTAGTCGCGATCGGGCATCGAAATCGTCAAGTTCAGTGGA--------TATAAATAC------AGTG-AA-
GATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAC---CATTAGTCGCGATCGCGCATCGAAATCGTCAAATTCAGTGGA--------TATAAATAA------AGTG-AA-
GATCGGGCCTATAAAAGGGGCTGCC----C--ATTCATGGGAAC---CATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTAAA--------TATAAACAA------AGTG-AA-
AATGGAAGCTATAAAAGC--CACCT----C--GTTCATCGTTTT---ATCCAGTTGTGTTTTCGCAGTGAAATCGTCAA------TTGT--------CGCAAATAC-----TAGTAGAA-
CATCGGGACTATAAAAGGCGCTCCCGAGCC--ACT----GGCAT---CATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGA----AATCTGCAAA---------AGCG-A--
CATCGGGACTATAAAAGGCGCTCCCGAGCC--ACT----GGCAT---CATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGA----AATCTGCAAA---------AGCG-A--
AACCGAGACTATAAAAGGAGCTCCA----CGTATC------CAG---CTTTAATTGCGTTCGCGCGGTTTGATTGTTTTTTTCTGTGGATCGA----AGGAAA---------AGTG-A--
CGCCTGGCCTATAAAAGCCGCTGGG----G------ATGGACAGCGCCATTAGTTGCGTTCGCGCGG---TTCGACCTA------CGGA-----TTTTGTGAATATGTTCCAAGTGCA--

newOverly aggressive alignment from USCS Genome Browser: Context-specific alignment of the same sequences:

Figure 4.1.: Example of conserved transcription factor binding sites in orthologous yeast sequences
that have been misaligned. The alignment algorithm has incorrectly inserted gaps in orthologous
motif occurrences because it did not recognize the motif signature.

Unfortunately, alignments of noncoding DNA are often very challenging, since noncoding
sequences are much less structured than coding sequences and functional elements can drift
away while being functionally substituted by analogous motifs in nearby locations (Moses
et al., 2006). Even in the case of sequence pairs for which homology can be established
over a larger stretch of a few hundred base pairs, the actual alignment of these orthologous
noncoding sequences can often be ambiguous. These technical challenges have triggered the
development of probabilistic alignment methods that can quantify the alignment uncertainty
(Bradley et al., 2009; Lunter et al., 2008; Paten et al., 2008; Satija et al., 2008).

4.1.1. Alignment of regulatory motifs

Most alignment tools are not customized to regulatory sequences, and thus cannot take ad-
vantage of their specific structural and evolutionary properties. These alignment algorithms
may incorrectly insert gaps in orthologous motif occurrences because they do not take into
account sequence signature of binding sites. For instance, Figure 4.1 shows conserved tran-
scription factor binding sites (boxes) in orthologous yeast sequences that are likely to be
misaligned. While there are indeed two successful programs, EMMA and MORPH, that ex-
plicitly model transcription factor binding sites (TFBS) affinity matrices in the alignment
algorithm (He et al., 2009; Sinha and He, 2007), their application is limited to the case of
pairwise alignment. MORPH detects and aligns instances of known motifs by a probabilistic
alignment algorithm. Although this approach has the additional requirement that binding
site motifs have to be known a priori, the authors report that binding-site predictions are
robust to alignment ambiguities. EMMA, the successor of MORPH, possesses the additional
ability to model the gain and loss of TFBSs in its alignment process. The development of this
feature has been stimulated by accumulating evidence that functional noncoding sequence
in general and TFBSs in particular, are not always conserved in an alignable sequence even
in relatively close species (Consortium, 2007b; Moses et al., 2006). Another recent work, the
program SAPF (Satija et al., 2008), aims to combine probabilistic model-based alignment
with phylogenetic footprinting, which refers to the identification of evolutionarily constrained
sequences based on their lower substitution rates. However, TFBSs are not explicitly rep-
resented in the SAPF model, and the program is not designed to predict targets of specific
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transcription factors.

4.1.2. General approaches to multiple sequence alignment

Even the classical problem of finding the optimal multiple sequence alignment under the
assumption that the sequences have changed only by mutations that insert, delete and
substitute residues, without the added complexity of accounting for functional binding
sites, is a challenge by itself (Durbin et al., 1998). The computational challenges present
in this problem can generally be related to the number and length of the sequences being
aligned. The former increases the dimensionality of the problem, the latter increases the
basic search space that needs to be considered. The combination of both means that naive
implementations of even the most standard objective functions, such as the sum-of-pairs
function, are simply unfeasible (Elias, 2006; Wang and Jiang, 1994). In practice, heuristic
methods are therefore used for all but the smallest data sets.
The most commonly used heuristic methods are based on the progressive-alignment strat-

egy (Feng and Doolittle, 1987; Hogeweg and Hesper, 1984; Taylor, 1988) with CLUSTALW

(Thompson et al., 1994) being the most widely used implementation. The idea is to take
an initial, approximate, phylogenetic tree between the sequences and to gradually build up
the alignment, following the order in the tree. Therefore, the initial tree is also often called
the guide tree. Although successful in a wide variety of cases, this method suffers from
its greediness. Errors made in the first alignment stages are propagated through to the
final result and cannot be corrected later as the rest of the sequences are added in. This
is illustrated in Figure 4.2A in which four hypothetical sequences are progressively aligned.
In the resulting alignment the word CAT is misaligned due to an error made in the very first
pairwise alignment between sequence 1 and 2. The problem of erroneous sub-alignments
being fixed before more distant sequences are added in occurs often when there are many
nearly equivalent possibilities for a gap placement, a phenomenon described as edge wander
(Holmes and Durbin, 1998). One possible approach to remedy this problem is iterative re-
finement (Gotoh, 1996), which improves on progressive alignment by iteratively realigning
subsets of sequences, but this still often fails to correct complex alignment errors involving
multiple sequences.

4.1.3. Consistency

Another approach to mitigate the problems of progressive alignment are so called consistency-
based methods, which incorporate information from more diverged sequences in the align-
ment of sub-trees. Thus, these methods have a flavor of global optimization while still
inherently working in the pairwise fashion known from progressive alignment. The text-
book consistency-based approach, however, leads to algorithms with impractical runtimes
that scale with O(N3L3) for the alignment of N sequences of average length L. The first
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Context-specific Multiple Alignment of Promoter Regions
Andreas Biegert and Johannes Söding

Protein Bioinformatics & Computational Biology, Gene Center, LMU Munich

Motivation
Comparative genomics methods use alignments of promoter
regions of related species with each other to identify func-
tional elements by their conservation signature. These meth-
ods therefore critically depend on the correctness of the align-

ments in promoter regions. Promoter alignments are often
very challenging, since functional elements can drift away while
being functionally substituted by analogous motifs in nearby
locations. Any improvement in the alignments will directly im-

pact on comparative genomics and thereby on the identification
of transcription factor binding sites, core promoter elements,
microRNAs and their target binding sites, as well as other reg-
ulatory RNAs and their targets.

Challenges
1 Alignment algorithms may incorrectly insert gaps in orthologous motif
occurrences because they do not recognize the motif signature. The following
example shows conserved TF binding sites (pink boxes) in aligned orthologous
yeast sequences that are likely to be misaligned.

CGATATTTTTGCTCACCTTTTTTTTTTGCTCATCG-AAAATT
CGATATTTTTGCTCACCTTTTTTTT--GCTCATCG-AAAATT
CGATATTTTTGCTCATCTTTTTTTTTTGCTCATTGAAAAATT
TGAAATTTTTGCTCATCGAATTTTT--GCTCATCG---AAGT

correctly aligned misaligned

2 If errors are made in standard progressive alignment, these errors are
propagated through to the final result and cannot be corrected at later stages.
This is illustrated in the following example where the guide tree indicates the
order in which four hypothetical sequences are aligned.

GARFIELDTHELASTFATCAT

GARFIELDTHEFASTCAT

GARFIELDTHEVERYFASTCAT

THEFATCAT

Seq1

Seq2

Seq3

Seq4

☇

GARFIELDTHELASTFA-TCAT
GARFIELDTHEFASTCA-T---
GARFIELDTHEVERYFASTCAT
--------THE----FA-TCAT

Resulting alignment with the
word CAT misaligned due to an
error made in the pairwise align-
ment between sequence 1 and 2.
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GAAACGTATAAAAGGAGTAGCACGTTGGTATTTTCTTCAGTTTTATA

TATA-Box Initiator
Standard multiple alignment methods
use evolutionary models such as Jukes-
Cantor to score DNA substitutions.
These similarity scores do not take the
local sequence context into account. We
propose a new DNA scoring scheme
in which substitution scores depend on
13-residue windows around each DNA
residue. For each position we precal-
culate a profile column (colored his-
togramm above) by comparing its se-
quence window to a library with hun-
dreds of context profiles (on the right),
generated by clustering a large, represen-
tative set of sequence-profile windows.
Each profile column contains the like-
lihood of each context profile at that
specific position. The similarity between
two profile columns is used as substitu-
tion score in progressive alignment.
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1 Determine the best
pairwise alignment by
finding the path that
maximizes the sum of
match, insert, and dele-
tion probabilities.

2 Calculate another
suboptimal alignment
with different gap place-
ment at the insert. This
alternative alignment
may later turn to be
correct.

3 Both previous align-
ments are combined into
a hidden Markov model
(HMM). Aligning this
HMM to a third se-
quence reveals that the
alignment from step 2
is actually correct.

ambiguous gap placement alternative gap placement

Alignment of Orthologous Promoters in Drosophila

AATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGAACATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGATATAATTACAGTGAAA
AATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGACCATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGATATAAATACAGTG-AA
AATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGACCATTAGTCGCGATCGGGCATCGAAATCGTCAAGTTCAGTGGATATAAATACAGTG-AA
GATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGACCATTAGTCGCGATCGCGCATCGAAATCGTCAAATTCAGTGGATATAAATAAAGTG-AA
GATCGGGCCTATAAAAGGGGCTGCCCATTCATGGGAACCATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTAAATATAAACAAAGTG-AA
AATGGAAGCTATAAAA--GCCACCTCGTTCATCGTTTTATCCAGTTGTGTTTTCGCAGTGAAATCGTCAATTGTCGCAAATACTAGTA----G-AA
CATCGGGACTATAAAAGGCGCTCCCGAGCCACTGGCATCATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGAAATCTGCAAAAGC-GA
CATCGGGACTATAAAAGGCGCTCCCGAGCCACTGGCATCATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGAAATCTGCAAAAGC-GA
AACCGAGACTATAAAAGGAGCTCCACGTATCCAG----CTTTAATTGCGTTCGCGCGGTTTGATTGTTTTTTTCTGTGGATCGAAGGAAAAGT-GA
CGCCTGGCCTATAAAAGCCGCTGGGGATGGACAG-CGCCATTAGTTGCGTTCGCGCGGTTCGACCTACGGATTTTGTGAATATGTTCCAAGTG-CA

AATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAA---CATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGA--------TATAATTAC------AGTG-AAA
AATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAC---CATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGA--------TATAAATAC------AGTG-AA-
AATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAC---CATTAGTCGCGATCGGGCATCGAAATCGTCAAGTTCAGTGGA--------TATAAATAC------AGTG-AA-
GATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAC---CATTAGTCGCGATCGCGCATCGAAATCGTCAAATTCAGTGGA--------TATAAATAA------AGTG-AA-
GATCGGGCCTATAAAAGGGGCTGCC----C--ATTCATGGGAAC---CATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTAAA--------TATAAACAA------AGTG-AA-
AATGGAAGCTATAAAAGC--CACCT----C--GTTCATCGTTTT---ATCCAGTTGTGTTTTCGCAGTGAAATCGTCAA------TTGT--------CGCAAATAC-----TAGTAGAA-
CATCGGGACTATAAAAGGCGCTCCCGAGCC--ACT----GGCAT---CATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGA----AATCTGCAAA---------AGCG-A--
CATCGGGACTATAAAAGGCGCTCCCGAGCC--ACT----GGCAT---CATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGA----AATCTGCAAA---------AGCG-A--
AACCGAGACTATAAAAGGAGCTCCA----CGTATC------CAG---CTTTAATTGCGTTCGCGCGGTTTGATTGTTTTTTTCTGTGGATCGA----AGGAAA---------AGTG-A--
CGCCTGGCCTATAAAAGCCGCTGGG----G------ATGGACAGCGCCATTAGTTGCGTTCGCGCGG---TTCGACCTA------CGGA-----TTTTGTGAATATGTTCCAAGTGCA--
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Motivation
Comparative genomics methods use alignments of promoter
regions of related species with each other to identify func-
tional elements by their conservation signature. These meth-
ods therefore critically depend on the correctness of the align-

ments in promoter regions. Promoter alignments are often
very challenging, since functional elements can drift away while
being functionally substituted by analogous motifs in nearby
locations. Any improvement in the alignments will directly im-

pact on comparative genomics and thereby on the identification
of transcription factor binding sites, core promoter elements,
microRNAs and their target binding sites, as well as other reg-
ulatory RNAs and their targets.

Challenges
1 Alignment algorithms may incorrectly insert gaps in orthologous motif
occurrences because they do not recognize the motif signature. The following
example shows conserved TF binding sites (pink boxes) in aligned orthologous
yeast sequences that are likely to be misaligned.

CGATATTTTTGCTCACCTTTTTTTTTTGCTCATCG-AAAATT
CGATATTTTTGCTCACCTTTTTTTT--GCTCATCG-AAAATT
CGATATTTTTGCTCATCTTTTTTTTTTGCTCATTGAAAAATT
TGAAATTTTTGCTCATCGAATTTTT--GCTCATCG---AAGT

correctly aligned misaligned

2 If errors are made in standard progressive alignment, these errors are
propagated through to the final result and cannot be corrected at later stages.
This is illustrated in the following example where the guide tree indicates the
order in which four hypothetical sequences are aligned.

GARFIELDTHELASTFATCAT

GARFIELDTHEFASTCAT

GARFIELDTHEVERYFASTCAT

THEFATCAT

Seq1

Seq2

Seq3

Seq4

☇

GARFIELDTHELASTFA-TCAT
GARFIELDTHEFASTCA-T---
GARFIELDTHEVERYFASTCAT
--------THE----FA-TCAT

Resulting alignment with the
word CAT misaligned due to an
error made in the pairwise align-
ment between sequence 1 and 2.
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GAAACGTATAAAAGGAGTAGCACGTTGGTATTTTCTTCAGTTTTATA

TATA-Box Initiator
Standard multiple alignment methods
use evolutionary models such as Jukes-
Cantor to score DNA substitutions.
These similarity scores do not take the
local sequence context into account. We
propose a new DNA scoring scheme
in which substitution scores depend on
13-residue windows around each DNA
residue. For each position we precal-
culate a profile column (colored his-
togramm above) by comparing its se-
quence window to a library with hun-
dreds of context profiles (on the right),
generated by clustering a large, represen-
tative set of sequence-profile windows.
Each profile column contains the like-
lihood of each context profile at that
specific position. The similarity between
two profile columns is used as substitu-
tion score in progressive alignment.
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Error-Resistant Progressive Alignment
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1 Determine the best
pairwise alignment by
finding the path that
maximizes the sum of
match, insert, and dele-
tion probabilities.

2 Calculate another
suboptimal alignment
with different gap place-
ment at the insert. This
alternative alignment
may later turn to be
correct.

3 Both previous align-
ments are combined into
a hidden Markov model
(HMM). Aligning this
HMM to a third se-
quence reveals that the
alignment from step 2
is actually correct.

ambiguous gap placement alternative gap placement

Alignment of Orthologous Promoters in Drosophila

AATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGAACATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGATATAATTACAGTGAAA
AATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGACCATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGATATAAATACAGTG-AA
AATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGACCATTAGTCGCGATCGGGCATCGAAATCGTCAAGTTCAGTGGATATAAATACAGTG-AA
GATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGACCATTAGTCGCGATCGCGCATCGAAATCGTCAAATTCAGTGGATATAAATAAAGTG-AA
GATCGGGCCTATAAAAGGGGCTGCCCATTCATGGGAACCATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTAAATATAAACAAAGTG-AA
AATGGAAGCTATAAAA--GCCACCTCGTTCATCGTTTTATCCAGTTGTGTTTTCGCAGTGAAATCGTCAATTGTCGCAAATACTAGTA----G-AA
CATCGGGACTATAAAAGGCGCTCCCGAGCCACTGGCATCATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGAAATCTGCAAAAGC-GA
CATCGGGACTATAAAAGGCGCTCCCGAGCCACTGGCATCATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGAAATCTGCAAAAGC-GA
AACCGAGACTATAAAAGGAGCTCCACGTATCCAG----CTTTAATTGCGTTCGCGCGGTTTGATTGTTTTTTTCTGTGGATCGAAGGAAAAGT-GA
CGCCTGGCCTATAAAAGCCGCTGGGGATGGACAG-CGCCATTAGTTGCGTTCGCGCGGTTCGACCTACGGATTTTGTGAATATGTTCCAAGTG-CA

AATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAA---CATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGA--------TATAATTAC------AGTG-AAA
AATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAC---CATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGA--------TATAAATAC------AGTG-AA-
AATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAC---CATTAGTCGCGATCGGGCATCGAAATCGTCAAGTTCAGTGGA--------TATAAATAC------AGTG-AA-
GATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAC---CATTAGTCGCGATCGCGCATCGAAATCGTCAAATTCAGTGGA--------TATAAATAA------AGTG-AA-
GATCGGGCCTATAAAAGGGGCTGCC----C--ATTCATGGGAAC---CATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTAAA--------TATAAACAA------AGTG-AA-
AATGGAAGCTATAAAAGC--CACCT----C--GTTCATCGTTTT---ATCCAGTTGTGTTTTCGCAGTGAAATCGTCAA------TTGT--------CGCAAATAC-----TAGTAGAA-
CATCGGGACTATAAAAGGCGCTCCCGAGCC--ACT----GGCAT---CATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGA----AATCTGCAAA---------AGCG-A--
CATCGGGACTATAAAAGGCGCTCCCGAGCC--ACT----GGCAT---CATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGA----AATCTGCAAA---------AGCG-A--
AACCGAGACTATAAAAGGAGCTCCA----CGTATC------CAG---CTTTAATTGCGTTCGCGCGGTTTGATTGTTTTTTTCTGTGGATCGA----AGGAAA---------AGTG-A--
CGCCTGGCCTATAAAAGCCGCTGGG----G------ATGGACAGCGCCATTAGTTGCGTTCGCGCGG---TTCGACCTA------CGGA-----TTTTGTGAATATGTTCCAAGTGCA--

newOverly aggressive alignment from USCS Genome Browser: Context-specific alignment of the same sequences:

A

B
Seq1 GARFIELDTHELASTFATCAT
Seq2 GARFIELDTHEFASTCAT---

Seq1 GARFIELDTHELASTFA-TCAT
Seq3 GARFIELDTHEVERYFASTCAT

Seq3 GARFIELDTHEVERYFASTCAT
Seq2 GARFIELDTHE----FASTCAT

Seq1 GARFIELDTHELASTFATCAT
Seq4 --------THE----FATCAT

Seq4 --------THEFA-TCAT
Seq2 GARFIELDTHEFASTCAT

Seq1 GARFIELDTHELASTFA-TCAT
Seq2 GARFIELDTHE----FASTCAT

Figure 4.2.: Progressive sequence alignment. (A) If errors are made in standard progressive align-
ment, these errors are propagated through to the final result and cannot be corrected at later stages.
The guide tree indicates the order in which four hypothetical sequences are aligned. In the resulting
alignment on the right the word CAT (red box) is misaligned due to an error made in the very first
pairwise alignment between sequence 1 and 2 (red lightning). (B) Consistency-based approach to
progressive alignment. The basic idea is to incorporate information from more diverged sequences in
the alignment of sequences 1 and 2 in order to prevent alignment errors (red boxes). The transitive
pairwise alignments of sequences 1 with sequence 2 over sequences 3/4 suggest that that the words
CAT in sequences 1 and 2 should be aligned to each other (magenta boxes). This information is
then used in the first progressive alignment step between sequence 1 and 2 resulting in a correct
alignment between sequences 1 and 2 (green box).

widely used multiple alignment algorithm that used consistency information was the pro-
gram T-COFFEE (Notredame et al., 2000). It first computes a collection of global and local
alignment for every pair of input sequences. A consistency transformation is then applied
that incorporates scores created transitively by triangular projection of scores between the
different constituent pairwise alignments (Figure 4.2B). Later, Do et al. have formulated the
idea of using consistency information in a probabilistic framework (Do et al., 2005). Their
program PROBCONS employs a probabilistic consistency transformation, based upon pos-
terior match probabilities computed using the Forward and Backward algorithms (Durbin
et al., 1998). While PROBCONS is limited to the alignment of protein sequences, its cousin
PECANwas the first program to make posterior decoding and consistency-based alignment
practical for very large multiple alignments of DNA (Paten et al., 2008).
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4.2. Multiple alignment tools

In the following sections, we will explain the unique characteristics and principles behind
the alignment algorithms of three current multiple alignment programs: PECAN FSA, and
PRANK. All three methods have also been evaluated in the multiple alignment benchmark
described in section 5.3.

4.2.1. PECAN

The alignment method of PECAN has a close relation to the consistency methodology first
introduced in PROBCONS and T-COFFEE (Do et al., 2005; Notredame et al., 2000). By com-
bining the methods of probabilistic consistency alignment with multi-sequence alignment
with constraints (Myers et al., 1996), PECAN has made probabilistic consistency alignment
practical for the alignment of large genomic sequences. Therefore, PECAN is now one of the
default alignment programs that is being used by a number of whole-genome comparative
genomic projects.
In brief, PECAN introduces two major technical advances. First, it utilizes a banded

form of the standard forward–backward algorithm (Durbin et al., 1998) for pair-HMMs, to
allow posterior probabilities of pairwise alignment to be generated with heuristics on large
sequences. Second, the authors conceived a novel technique to handle the computation of
multiple pairwise posterior probability calculations during the generation of a single consis-
tency alignment across very large genomic sequences, which they call sequence progressive
alignment. At its core, PECAN utilizes a pair-HMM to calculate match posterior probabilities
P (xi�yj | x,y), which quantify how probable it is that residue i in a sequence x is aligned
to residue j in a sequence y, followed by re-estimating these posterior probabilities by ap-
plying a probabilistic consistency transformation introduced by Do et al.. The consistency
transformation incorporates similarities of x and y to other sequences z into the comparison
of x to y:

P (xi�yj |x,y) = const×
∑
z

∑
k

P (xi�zk |x,z)P (zk�yj |z,y). (4.1)

The idea behind the above consistency transformation is to make use of the transitive nature
of homology. It refers to the fact that if residue i is aligned to k and k to j then residue i
must be aligned to j.

4.2.2. FSA

FSA is a multiple sequence alignment program for aligning proteins, RNA or long genomic
DNA sequences (Bradley et al., 2009). FSA’s approach to alignment seeks to maximize the
expected accuracy of the calculated alignment, which allows it to more reliably identify
non-homologous sequences than most other multiple alignment programs, although this in-
creased accuracy comes at the cost of decreased speed. The alignment algorithm of FSA is



4.2 Multiple alignment tools 46

based on a pair-HMM which describes an insertion, deletion, and mutation process on a tree.
FSA also uses a sequence annealing algorithm to combine the posterior match probabilities
estimated from the pair-HMM into a multiple alignment. The sequence annealing algorithm,
an improved version of the original algorithm in the multiple alignment program AMAP

(Schwartz, 2007), begins with the null alignment, in which all sequences are unaligned,
and merges single columns by aligning residues according to the corresponding increase
in expected alignment accuracy (see Figure 4.3). Whereas standard progressive alignment
methods such as CLUSTALW are forced to take rather large steps in alignment space by align-
ing entire sequences, the sequence annealing approach in FSA takes the smallest-possible
steps of aligning single residues. This approach makes FSA much less prone to incorporat-
ing alignment errors at early alignment stages, even though it does not explicitly utilize
consistency information.

---------------------------------------AGCTACAGTCCGC

--------------------------AGCTAAGTAAGCG-------------

-------------GGATAAGTCGACG--------------------------

GGCTAAATCGGCG---------------------------------------

--------------------------------------AGCTACAGTCCGC

---------------AGCTAAGTAAGCG-----------------------

--GGATAAGTCGACG------------------------------------

GG---------------C----------TAAATCGGCG-------------

-------------------------------------AGCTACAGTCCGC

---------------AGCT---------AAGTAAGCG-------------

--GGATAAGTCGACG-----------------------------------

GG---------------CTAAATCGGCG----------------------

...

AGCTACA-GTCCGC-

AGCTA--AGTAAGCG

GGATA--AGTCGACG

GGCTA--AATCGGCG

AGCTACAGTCCGC-

AGCTA-AGTAAGCG

GGATA-AGTCGACG

GGCTA-AATCGGCG

Figure 4.3: Multiple
alignment by sequence
annealing as utilized
in the program FSA.
The sequence annealing
algorithm begins with
the null alignment, in
which all sequences are
unaligned, and merges
single columns by align-
ing residues according
to the corresponding
increase in expected
alignment accuracy. At
each step, the most re-
cently merged column
is highlighted (magenta
box).
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4.2.3. PRANK

PRANK is a probabilistic multiple alignment program for DNA and protein sequences (Löy-
tynoja and Goldman, 2005, 2008). Unlike traditional multiple alignment methods that
usually disregard the phylogenetic implications of predicted gap patterns, PRANK’s align-
ment algorithm recognizes insertions and deletions as distinct evolutionary events and tries
to find an alignment that corresponds to plausible insertion- and deletion-events. Thereby
it avoids the over-estimation of the number of deletion and substitution events that often oc-
cur when using traditional progressive alignment methods (see Figure 4.4A). More precisely,
the problem that PRANK tries to address is that in progressive sequence alignment inser-
tions and deletions are treated differently. A gap for a deletion, with its associated penalty,
is created only once, but a gap for an insertion has to be opened up multiple times (Figure
4.4). Simple iteration of pairwise alignment associates a full penalty with each of these
gap-opening events, which leads to excessive penalization of single insertion events. This
asymmetric handling of insertions and deletions has also been confirmed in an evaluation
of alignment tools by Kim and Sinha (2010), who found that the performance of most tools
degrades more rapidly when there are more insertions than deletions in the data set. In
the example illustrated in Figure 4.4A, the phylogeny-aware alignment algorithm in PRANK

uses evolutionary information from the third sequence to confirm the evolutionary event
as insertion, which allows the site to be skipped in subsequent pairwise alignment steps
without penalization (green arrows). Besides its phylogeny-aware progressive alignment al-
gorithm, PRANK borrows ideas from maximum likelihood methods used in phylogenetics
and to model the evolutionary distances between sequences.
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Figure 4.4.: Insertions (green star) and deletions (blue star) are treated differently in progressive se-
quence alignment. (A) Progressive alignment algorithms build a multiple alignment from sequential
pairwise alignments, and an insertion requires a new gap to be opened in each of them. Naive itera-
tion of pairwise alignment penalizes this single evolutionary event multiple times (red circles), giving
an inappropriately high cost for the correct alignment. The phylogeny-aware alignment algorithm in
PRANK uses evolutionary information from the third sequence to confirm the evolutionary event as
insertion, which allows that site to be skipped over in subsequent pairwise alignment steps without
penalization (green arrows). (B) A deletion is penalized only once in both progressive alignment
schemes. (red circle).



5. Context-specific multiple alignment with
partial-order HMMs

5.1. Introduction

Progressive multiple alignment methods depend on reducing a multiple sequence alignment
(MSA) to a linear profile at each alignment step along the guide tree. However, this can
lead to loss of information and gap scoring artifacts (Lee et al., 2002). Grasso and Lee
(2004) proposed an elegant approach to this problem, which utilizes a partial order graph
(POG) representation of an alignment at each progressive alignment step. In this chapter,
we present a new approach to alignment representation that generalizes classical partial
order graphs to a full probabilistic graph by combining profile HMMs and partial order
graphs. Such a “partial order HMM” (PO-HMM) does not only prevent loss of information
and gap scoring artifacts but has the added advantage that it can store several alternative
alignments, including their probabilities. The ability to represent whole sets of alignments
as a PO-HMM is particularly helpful because it prevents freezing of alignment errors at early
stages of hierarchical alignment. In contrast to PO-HMMs, the POG s introduced by Grasso
and Lee (2004) are not probabilistic and not able to be combined with HMMs.
Let us take a closer look at progressive alignment to understand why the graph based

approach by Lee et al. is beneficial. Traditional progressive alignment methods, e.g.
CLUSTALW, build a multiple sequence alignment through a series of pairwise alignments
in the order dictated by the evolutionary guide tree. This requires aligning pairs of multiple
alignments, to build up larger alignments. In practice, however, pairwise dynamic program-
ming is not applied directly to align two multiple alignments. Instead, commonly each

A B

-----ACATGTCGAT-----AGGTG
TGCAC-----TTGGTACATAAGATG
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Figure 5.1: Profile representation
of a multiple sequence alignment
consisting of two hypothetical se-
quences (Lee et al., 2002). While
alignment blocks A and B could
be swapped without changing the
meaning of the alignment, this
would change the order of the first
ten columns of the sequence profile,
which indeed could make a drastic
difference when other sequences are
aligned to the profile.
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alignment is reduced to a sequence profile which can be aligned to each other in pairwise
dynamic programming alignment. Unfortunately, the reduction of an multiple alignment to
a sequence profile inevitably involves loss of information. That is because while the multiple
alignment contains all the information needed to produce the profile, the profile does not
contain all the information to recover the original multiple alignment. For example, one
might choose to exclude all alignment columns that correspond to insertions from the se-
quence profile. However, even if we assume that all columns of the alignment are represented
in the profile there is a loss of information incurred because the profile may keep residue
and gap frequencies for each column, but it has no information on which sequence a given
residue comes from. This makes scoring of gaps problematic, for reasons that are illustrated
in Figure 5.1. While the profile contains all columns from all sequences in the alignment,
it is likely that no sequence in the alignment actually has a residue in all these columns.
As a result, any sequence not containing all these columns, will be charged artificial gap
penalties even if its gaps are exactly the same as in one or more sequences in the alignment.
Even worse, the only sequence that will not be penalized when aligned to the profile is the
consensus sequence of the multiple alignment. Another problem becomes apparent if we
consider the two unaligned blocks A,B in Figure 5.1 with subsequences TGCAC and ACATG

at the beginning of the alignment. As far as the meaning of the multiple alignment is con-
cerned, the order of these blocks, AB or BA, does not matter. This is because the blocks do
not share any sequences with each other. However, changing the order from AB to BA does
indeed drastically change the structure of the sequence profile. If the blocks were in BA
order, aligning the sequence TGCACTTGGTACAT· · · would no longer be charged a five residue
gap penalty because now TGCACTTGGTACAT· · · matches without gaps. There is tremendous
degeneracy in the representation of a multiple alignment because through rearrangement of
blocks such as A an B in Figure 5.1 many equivalent alignments exist but each of these will
give rise to a different sequence profile. The real problem here is that the one dimensional
sequence profile is unable to properly represent the fact that there is no ordering relation
between blocks A and B because no sequence in block A is aligned to any sequence in block
B and vice-versa.
In this chapter, we present a new approach to MSA representation that generalizes classical

partial order graphs to a full probabilistic graph by combining profile HMMs and partial order
graphs. Such a “partial order HMM” (PO-HMM), is ideal for representing not only one but
possibly a set of potentially correct, probable multiple alignments in a way that is ideal
from a statistical as well as an algorithmic perspective. Furthermore, it is alignable by
pairwise PO-HMM-to-PO-HMM (PO-PO) alignment, similarly to sequence-sequence or profile-
profile alignment. The PO-HMM also adequately models the degeneracy inherent to multiple
sequence alignments.
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5.2. Materials and Methods

5.2.1. Representing multiple alignments by PO-HMMs

To explain the structure of a PO-HMM let us consider the multiple alignment of nine se-
quences depicted in Figure 5.2A. We can represent the alignment as a partially ordered
graph of nodes such that each graph node corresponds to an alignment column (Figure
5.2B). In addition, we introduce special BEGIN and END nodes in order to adequately model
leading and trailing gaps in the multiple alignment. Each node, with exception of BEGIN

and END nodes, stores information about sequence IDs and sequence positions of all aligned
residues in the column corresponding to that node. The residue counts at each alignment
column are needed for the calculation of nucleotide emission probabilities of PO-HMM match
states (see section 5.2.4). In the partial order graph, directed edges are drawn between two
nodes if, and only if, they contain at least one pair of residues that occur consecutively in
a sequence. For instance, there is an edge connecting nodes 6 and 7 because the residues
in alignment columns 6 and 7 are consecutive in all sequences. The fact that all sequences
contribute to this edge gives the edge a probability of 1.0 (black edge color). The edge
between nodes 7 and 14, on the other hand, is a result of the consecutive pair of nucleotides
AT in sequence 6. However, the edge probability of this edge is 1

9 (assuming equal sequence
weights). Thus, gaps in the alignment appear in the partial order graph as edges that jump
one or more nodes. Edge probabilities indicate the fraction of sequences in the alignment
that contribute to the edge. Therefore, a node may have any number of incoming and
outgoing edges because edges simply indicate the preceding and subsequent letters of ev-
ery sequence that has a letter in the alignment column of this particular node. Thus, it
is possible to trace the path of each individual sequence through the partial order graph.
Therefore, it becomes evident that there is a one-to-one relationship between an alignment
and a POG. Each multiple alignment maps to a PO-HMM and vice-versa. Even the arbitrary
placement of gaps is elegantly described by the partial order graph. For instance, columns
22-25 and 18-21 in Figure 5.2A could be swapped without changing the meaning of the
alignment. The POG representation accounts for this degeneracy by not imposing a strict
ordering relation to branch 22-25 with respect to branch 18-21 since there exists no path of
directed edges connecting the two branches.
Although up to now we have treated each node in the POG as a single entity, a PO-HMM

is actually a POG that contains a pair of match and insert states at each of its nodes and
that has transition probabilities (and hence penalties) associated with each of its transitions.
The PO-HMM transition structure around nodes 7 and 34 is shown in Figure 5.2. Readers
who are familiar with profile HMMs will immediately recognize that the PO-HMM structure
resembles the form of standard profile HMMs, as they were first introduced by Haussler et
al. and Krogh et al. (Krogh et al., 1994). However, a PO-HMM has allowed transitions
between match states Mi and Ii and match state Mj not only for i = j − 1 as profile



5.2 Materials and Methods 52

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

2
2

2
3

2
4

2
5

1
8

1
9

2
0

2
1

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

TCGTCAAGTTCAGTGGA--------TATAATTAC-AGTGAAA
TCGTCAAGTTCAGTGGA--------TATAAATAC-AGTGA-A
TCGTCAAGTTCAGTGGA--------TATAAATAC-AGTGA-A
TCGTCAAATTCAGTGGA--------TATAAATAA-AGTGA-A
TCGTCAAGTTCAGTAAA--------TATAAACAA-AGTGA-A
TCGTCAA------TTGT--------CGCAAATACTAGTAGAA
TCTTCAAGTTTCGTGGAAATC----TGCAA---A-AGCGA--
TCTTCAAGTTTCGTGGAAATC----TGCAA---A-AGCGA--
TTGTTTTTTTCTGTGGA----TCGAAGGAA---A-AGTGA--

Match state
Insert state

8

14

76

30

33

34

36

35

A

B

C

Figure 5.2.: Multiple sequence alignment in PO-HMM representation. (A) Multiple sequence align-
ment of nine sequences. Note that columns 17-25 and columns 18-21 could be swapped without
changing the meaning of the multiple alignment. (B) Partial order graph (POG) representing the
multiple alignment in (A). Each node in the POG corresponds to one alignment column. Nodes are
connected by directed edges from left to right where indicated. Edges are shaded to indicate the
fraction of sequences in the alignment that contribute to the edge. Note that nodes 22-25 have
no ordering relation to nodes 18-21 since there exists no path of directed edges between the two
branches. (C) PO-HMM transition structure around nodes 7 and 34. Each node in the POG in (B)
consists of a a match state (blue square) and an insert state (red diamond).

HMMs have but generally for i < j. A second difference to standard HMMs is the absence
of delete states to make pairwise alignment of PO-HMMs more easily made. The Mi carry
emission probabilities derived from the residues aligned in node i of the PO-HMM. Emission
distributions of insert states are set to the background distribution, just as in pairwise
sequence alignment.

5.2.2. Representing several alternative alignments by a PO-HMM

So far we have learned how the PO-HMM structure can store a multiple alignment in a
very condensed fashion. However, a PO-HMM is able to represent not only one but also
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a set of probable multiple alignments in a way that is ideal from a statistical as well as
an algorithmic perspective. Let us have a look at a short example. Figures 5.3A and B
depict two alternative pairwise alignments of two sequences x and y. The two alignments
have slightly differently placed gaps: while the first alignment aligns residues y3y4y5 to
gaps, the second alignment places the gaps at residues y5y6y7. We would like to represent
both alignments in one PO-HMM in order to preserve the information about alternative
alignment paths until the later progressive alignment stages. The POG structure given
in 5.3B illustrates how we can encode both alignments as PO-HMM in a condensed fashion.
While alignment columns that differ between the two alternative paths are stored separately,
the PO-HMM represents two identical alignment columns only once, in the form of a single
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Figure 5.3.: Partial order graph representation of two alternative alignments between sequences
x and y. The numbers within matrix cells give the posterior probability that two residues are
aligned with each other (blue cells) or that one residue is aligned with a gap (red cells). (A) The
best alignment with probability 0.6 uses the “upper” path through the matrix and aligns residues
y3y4y5 to gaps. The POG representation of this pairwise alignment is given on the right. Weights
of outgoing edges at node i are both 0.5 because of equal sequence weights. (B) The alternative
alignment with probability 0.4 uses the “lower” path through the matrix and aligns residues y5y6y7
to gaps. The POG on the right represents both alternative alignments in a condensed fashion. Note
that the weights of the outgoing edges at node i model the probabilities for branching off into the
two alternative alignment segments (0.3 + 0.3 = 0.6 versus 0.4).
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node. Furthermore, the probability of branching off into alternatively aligned segments can
be conveniently expressed through edge probabilities. For instance, the outgoing edges at
node i in Figure 5.3B mirror the probabilities of the two alternative paths (0.3 + 0.3 = 0.6
versus 0.4). The advantage of the condensed encoding is that the number of nodes in the
PO-HMM merely grows with the number of alternative aligned multiplets of residues, not
the sum of all alignment columns. The ability to encode whole sets of alignments into a
PO-HMM is especially helpful when aligning sequences and PO-HMMs progressively from the
leaves to the root node because one incurs much less risk of choosing a wrong alignment
early on that will then be frozen.

5.2.3. Pairwise PO-HMM alignment

To calculate pairwise PO-HMM alignments needed at each step of the progressive PO-HMM

alignment procedure, we use global PO-HMM-to-PO-HMM (PO-PO) comparison that computes
posterior probabilities. The concept of posterior probabilities for alignments was first intro-
duced by Miyazawa et al. (Miyazawa, 1995): given two sequences x and y, the posterior
probability P (xi�yj |x,y) quantifies how probable it is that residue i in sequence x is aligned
to residue j in sequence y. This approach was later extended to the case of local HMM-HMM

alignment (Biegert and Söding, 2008). Here, we generalize the concept of probabilistic align-
ment based on posterior probabilities to the case of global PO-PO comparison. The details
about the derivation of posterior probabilities for global PO-PO comparison are given in the
following section.

Posterior probabilities for PO-PO alignment

To quantify the local reliability of an alignment, we would like to calculate posterior proba-
bilities for global PO-PO comparison. Assume we align two PO-HMMs q and p of length Lq,
Lp. We adopt the thermodynamic interpretation of PO-PO alignment that was developed for
sequence-sequence alignment by Kschischo and Lässig (2000); Miyazawa (1995); Mückstein
et al. (2002). The probability for an alignment A between q and p is given by

P (A) = eβS(A)

Z
, (5.1)

where S(A) is the score for alignment A and β = 1/kT ( T = temperature, k = Boltzmann
constant) can be assumed to be 1 in the following. Z is the partition function:

Z =
∑
A
eβS(A). (5.2)
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PO-HMM q

PO-HMM p

Pair state MM MM MI MM MM IM MM
Co-emitted

sequence x1 x2 x3 x4 x5 x6 x7

Figure 5.4.: Alignment of two PO-HMMs by maximization of log-sum-of-odds score. The path through
the two PO-HMMs corresponds to a sequence that is co-emitted by both PO-HMMs. The alignment
pair state MI signifies that the node of the first PO-HMM does not have a homologous partner.

The sum runs over all alignments such that Z is effectively a normalization constant in
equation (5.1). The score S(A) is defined as in Söding (2005), equation (2):

S(A) = log
∑

x1,...,xL

P (x1, . . . ,xL|co-emitted on A)
P (x1, . . . ,xL|Null) . (5.3)

The sum runs over all sequences x1, . . . ,xL co-emitted along the alignment A of q and p

(e.g. L = 7 in Figure 5.4). The numerator is the probability that x1, . . . ,xL is co-emitted
by both PO-HMMs along the alignment path and the denominator is the probability of
the standardly used null model P (x1, . . . ,xL|Null) =

∏L
l=1 f(xl), where f(a) are the fixed

nucleotide background frequencies.
In order to apply dynamic programming in the Forward and Backward algorithm, we need

to be more explicit about what equation (5.3) means in terms of PO-HMM probabilities. Let
the two PO-HMMs q and p have probabilities qi(a) and pj(a) to emit nucleotide a in match
state i or j and transition probabilities qi(X,X ′) and pj(Y,Y ′) to go from state X or Y ∈
{M,I} in column i or j to a state X ′ or Y ′ ∈ {M,I}. Furthermore, let q(i,i′) and p(j,j′) be
edge probabilities to go from node i or j to a node i′ and j′, irrespective of source and target
state. Thus, the probability of going from Xi to X ′i′ is just qi(Xi,X

′
i′) = qi(X,X ′) × q(i,i′)

for (X,X ′) ∈ {(M,M), (I,M)}, as illustrated in Figure 5.5. Insert states emit nucleotides
according to the fixed nucleotide background frequencies f(a). Suppose we are given an
alignment of q and p, or rather the path A through the two PO-HMMs (Figure 5.4). We
define K as the number of columns of the alignment of q with p. Let Xk, Yk ∈ {M,I} be
the states in q and p in the kth column of the pairwise alignment of q and p and let i(k)
and j(k) be the respective nodes from q and p. For the residues xl(l = 1, . . . ,L) emitted
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along the path, we define qAk(l)(a) and pAk(l)(a) as the emission probabilities from q and p.
More explicitly, qAk (a) = qi(k)(a) for Xk = M and qAk (a) = f(a) for Xk = I. Finally, we
define Ptr(A) as the product of all transition and edge probabilities for the path through
p and q. In an analogous manner to Söding (2005), equation (3), we can show that the
log-sum-of-odds score in equation (5.3) simplifies to

S(A) =
∑

k:XkYk=MM
Scol(qi(k),pj(k)) + logPtr(A) . (5.4)

The sum runs over all alignment columns k with aligned Match-Match states XkYk = MM .
We have used the column score

Scol(qi,pj) = log
4∑

a=1

qi(a),pj(a)
f(a) (5.5)

that measures the similarity of match state i of q and match state j of p. It is a weighted
version of the co-emission probability, with weights being equal to 1/f(a). The background
frequencies f(a) have entered through the random sequence model probability for the
co-emitted sequence, P (x1, . . . ,xL|Null) =

∏
l f(xl). Their effect is to up-weight rare nu-

cleotides in the column score. This makes sense since rare nucleotides are less likely to be
co-emitted by chance.
We now define the Forward and Backward partition functions in analogy to the Forward

and Backward probabilities for the case of global HMM-sequence alignment (Durbin et al.,
1998):

FXY (i,j) =
∑
A∈Fi,j

eβS(A) (5.6)

and similarly
BXY (i,j) =

∑
A∈Bi,j

eβS(A). (5.7)

Here, Fi,j is the set of all global alignments between q1...i and p1...j ending in the aligned
pair state (Xq

i ,Y
p
j ) for a given pair state XY ∈ {MM, MI, IM}. Similarly, Bi,j is the set

Match state

Insert state

i

qi(M,I)

qi(I,I)

i′

qi′(I,I)

qi′(M,I)
qi(I,M)× q(i,i ′)

qi(M,M)× q(i,i′)

Figure 5.5.: Description of PO-HMM transition probabilities. The probability of going from state Xi

to state X ′
i′ for (X,X ′) ∈ {(M,M), (I,M)} is the product of the state transition probability qi(X,X ′)

and the edge probability q(i,i′).



5.2 Materials and Methods 57

of all global alignments between qi+1...Lq and pj+1...Lp starting after the aligned pair state
(Xq

i ,Y
p
j ). From these definitions and equation (5.1), the posterior probability for pair state

(Xq
i ,Y

p
j ) to be part of an alignment between q and p is

P (Xq
i � Y

p
j |q,p) = FXY (i,j)×BXY (i,j)

Z
. (5.8)

The match posterior probability P (M q
i �M

p
j | q,p) quantifies how probable it is that match

state i in PO-HMM q is aligned to match state j in PO-HMM p, while the gap posterior
probability P (M q

i �I
p
j | q,p) assigns a probability to the event that match state i in q is

aligned to a gap. Furthermore, Z can be expressed in terms of the Forward partition
function at the cell corresponding to the END nodes of PO-HMMs q and p:

Z = FMM (Lq + 1,Lp + 1). (5.9)

To compute the Forward partition functions FXY , we need three dynamic programming
matrices FXY , one for each pair state XY ∈ {MM, MI, IM}. We begin the algorithm by
initializing the top row and left column of the FMM (i,j) matrix to 0. Only cell FMM (0,0)
corresponding to the START nodes in both PO-HMMs is set to 1. Then we proceed to fill the
matrix recursively from top left to bottom right using the recursion relations given below.
Note that although a PO-HMM is not a linear chain of nodes, such as a sequence or profile
for example, it is still possible to fill the dynamic programming matrices recursively from
top to left if we sort the nodes in topological order. A topological sort is simply a linear
ordering of the PO-HMM nodes in which each node comes before all nodes to which it has
outgoing edges (see Figure 5.6A).

FMM (i,j) = Scol(qi, pj)
∑
i′,j′

[
q(i′,i)p(j′,j)

[
FMM (i′, j′)qi′(M,M)pj′(M,M)

+FMI(i′,j′)qi′(M,M)pj′(I,M)

+FIM (i′,j′)qi′(I,M)pj′(M,M)
] ]

(5.10)

FMI(i,j) =
∑
i′

[
q(i′,i)

[
FMM (i′, j)qi′(M,M)pj(M,I)

+FMI(i′,j)qi′(M,M)pj(I,I)
] ]

(5.11)
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Figure 5.6.: Pairwise alignment of two PO-HMMs q and p using dynamic programming. (A) Dynamic
programming matrix of Forward algorithm with PO-HMM q on the left and p at the top. The matrix
entries are filled from top left to bottom right in topological order of the nodes in q and p. For
instance, the value of the green cell is recursively calculated based on the values of the gray cells,
which have already been filled in. (B) Possible state transitions at node 8 and its predecessors in
PO-HMM p.

FIM (i,j) =
∑
j′

[
p(j′,j)

[
FMM (i, j′)qi(M,I)pj′(M,M)

+FIM (i,j′)qi(I,I)pj(M,M)
] ]

(5.12)

The sum
∑
i′,j′ runs over all pairs of nodes i′ or j′ that have outgoing edges leading into nodes

i or j. Figure 5.6A illustrates the recursive calculation of the Forward matrix FMM (i,j).
Node 8 (green) in PO-HMM p has three predecessor nodes (gray). Thus, the value of cell
FMM (3,8) (green cells) is recursively calculated from three matrix cells (gray cells). The
mathematical notation for transition probabilities in equations (5.10), (5.11) and (5.12)
follows the labels in Figure 5.6B, which shows all possible transitions between states at node
8 and its predecessors. In an analogous manner to the Forward algorithm, our Backward
algorithm recursively computes each BXY (i,j) starting from the bottom right of the matrix.

BMM (i,j) =
∑
i′,j′

BMM (i′, j′)Scol(qi′ , pj′)qi(M,M)pj(M,M)q(i,i′)p(j,j′)

+
∑
i′

BMI(i′,j)qi(M,M)pj(M,I)q(i,i′)

+
∑
j′

BIM (i,j′)qi(M,I)pj(M,M)p(j,j′) (5.13)
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BMI(i,j) =
∑
i′j′

BMM (i′, j′)Scol(qi′ , pj′)qi(M,M)pj(I,M)q(i,i′)p(j,j′)

+
∑
i′

BMI(i′,j)qi(M,M)pj(I,I)q(i,i′) (5.14)

BIM (i,j) =
∑
i′j′

BMM (i′, j′)Scol(qi′ , pj′)qi(I,M)pj(M,M)q(i,i′)p(j,j′)

+
∑
j′

BIM (i,j′)qi(I,I)pj(M,M)p(j,j′) (5.15)

Here the sum
∑
i′,j′ runs over all pairs of nodes i′ or j′ that have incoming edges from nodes

i or j. Once Forward and Backward functions are calculated, the posterior probabilities
can be found according to equations (5.8) and (5.9).

Maximum accuracy alignment

To derive an alignment from a posterior probability matrix, Holmes and Durbin (1998)
proposed a maximum accuracy (MAC) algorithm, which maximizes the expected number of
correctly aligned pairs of residues. Later, Schwartz et al. showed that approaches based on
the expected accuracy alignment tend to maximize sensitivity at the expense of specificity
(Schwartz et al., 2007). Thus, programs that are considered to be very sensitive may
actually produce greedy alignments that do not distinguish between related (homologous)
and unrelated sequence-regions. To solve this problem Schwartz et al. introduced a new
accuracy measure for global multiple sequence alignment named alignment metric accuracy
(AMA), which is based on a metric for multiple alignments. AMA is defined as the fraction
of residues that are aligned correctly to another residue or to a gap.
Here, we adapt the AMA score to the case of pairwise alignment of PO-HMMs. A maximum

AMA (MAMA) alignment of PO-HMMs q and p maximizes the expected number of correctly
aligned resides (correctly aligned to insert states I or match states M):

fGf (A) =
∑

k:XkYk=MM

P (M q
i(k) �M

p
j(k) |q,p) [nq(i(k)) + np(j(k))]

+Gf
∑

k:XkYk=MI

P (M q
i(k) � I

p
j(k) |q,p)nq(i(k))

+Gf
∑

k:XkYk=IM
P (Iqi(k) �M

p
j(k) |q,p)np(j(k))→ max . (5.16)

Here, P (Xq
i�Y

p
j |q,p) denotes the posterior probability of stateXi in PO-HMM q to be aligned

to state Yj in PO-HMM p (see section 5.2.3 for details about posterior probabilities). nq(i(k))
gives the number of residues at node i(k) of q. Because posterior probabilities P (Xq

i�Y
p
j |q,p)

are always positive, MAMA alignments maximizing fGf (A) are always global. The objective
function in equation (5.16) can be used to obtain a wide range of alignments, from the most
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specific to the most sensitive. When the gap-factor parameter Gf is set to 0, f0(A) evaluates
to the expected accuracy alignment score by Holmes and Durbin (1998), f0.5(A) evaluates
to the expected AMA score. In general, setting Gf to higher values results in alignments
with higher specificity, while reducing the value of Gf results in higher sensitivity.

The method to derive our global MAMA alignment is a modified version of the method pro-
posed by (Holmes and Durbin, 1998), which uses the posterior probabilities as substitution
scores:

S(i,j) = max


maxi′,j′ S(i′,j′) + P (M q

i �M
p
j |q,p) [nq(i) + np(j)]

maxi′ S(i′,j) +GfP (M q
i � I

p
j |q,p)nq(i)

maxj′ S(i,j′) +GfP (Iqi �M
p
j |q,p)np(j)

(5.17)

Similar to the recursion relations of the Forward algorithm given in equation (5.10), the
maximization maxi′,j′ runs over all pairs of nodes i′ or j′ that have outgoing edges leading
into nodes i or j. After matrix S has been filled, a standard traceback procedure will
produce the best alignment. Figure 5.7 depicts two MAMA alignments (black squares) that
have been computed from the three probability matrices with Match-Match (red), Match-
Insert (green) and Insert-Match (blue) posterior probabilities. For the alignment shown in
figure 5.7A, the gap factor parameter Gf was set to 0.5, which causes only positions with
high confidence to be aligned. Consequently, the best alignment follows the “lower” path
and aligns long regions of both PO-HMMs to gaps. The alignment in Figure 5.7B is based
on the same posterior matrices but with gap-factor parameter Gf set to 0.01 This gives rise
to a very greedy alignment, which follows the “upper” path through the matrix avoiding
the placement of many gaps.

Generation of suboptimal alignments

Given that there are frequently alternative alignments with nearly the same probability as
the best alignment, it is naturally of interest to compute all alternative alignment paths
instead of choosing only the optimal alignment. Such alternative alignments are known
as suboptimal alignments. In the setting of progressive multiple alignment, suboptimal
alignments are particularly interesting. This is because a suboptimal alignment computed
at an early stage in the guide tree may later be confirmed by more diverged sequences.

Figure 5.7. (following page): Probabilistic pairwise alignment of two PO-HMMs. The best pairwise
alignment (black squares) has the maximum sum of posterior probabilities along its path. Cells are
shaded from white to full saturation according to posterior probabilities for Match-Match, Match-
Insert and Insert-Match alignment at this cell. Histograms above the partial order graphs illustrate
the nucleotide emission probabilities of match states. (A) Optimal pairwise alignment with gap-
factor parameter Gf set to 0.5 (eq. 5.16), which causes only positions with high posterior probability
to be aligned. Consequently, the best alignment follows the “lower” path and aligns long regions of
both PO-HMMs to gaps. (B) The same posterior probability matrix as in (A) but with gap-factor
parameter Gf set to 0.01. This parameter setting results in a very aggressive alignment which follows
the “upper” path through the matrix, avoiding the placement of many gaps.
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However, to our knowledge, there is to date no progressive alignment method that preserves
information about suboptimal alignment paths as sequences are progressively aligned in the
order dictated by the guide tree. This may lead to alignment errors at early stages in the
guide tree if the best pairwise alignment is arbitrary and many alternative alignments exist
with almost equal probability. In the following, we will present a method that employs
probabilistic alignment to generate all probable suboptimal alignments and represent them
as a PO-HMM. This should prevent early alignment errors and allow more diverged sequences
that are subsequently aligned to the PO-HMM to select which of the alignment alternatives
was actually correct. First let us examine the characteristics of suboptimal alignments.

One class of suboptimal alignments with probabilities close to the probability of the opti-
mal alignment will be those that only differ in a few positions from the optimal alignment.
Because minor variations at different places in the alignment can be combined independently,
the number of these “local” variants grows exponentially as the difference in probability from
the optimal probability increases. Therefore, naive enumeration of all such variants is im-
practical. However, the flexibility in varying the alignment can differ substantially with
position along the alignment. Posterior probabilities quantify for each cell in the dynamic
programming matrix how “close” it is to being in the alignment. For instance, a cell in the
dynamic programming matrix with a match posterior probability of 1.0 is certainly part
of the alignment, whereas a match posterior probability of 0.1 suggests that the alignment
path at that position is rather flexible. Another class of suboptimal alignment is the one
that differs substantially from the optimal alignment (e.g. Figure 5.7). This is often the
case when there are repeats in one or both of the sequences.
A number of different methods have been developed for searching suboptimal alignments.

The most commonly used algorithm was first introduced by Waterman and Eggert (1987).
Their algorithm is able to find the next best alignment that has no aligned pair of residues
in common with any previously determined alignment. Once a top alignment has been
obtained, the standard dynamic programming matrix is recalculated, ensuring that cells
corresponding to residue pairs in already obtained alignments are set to zero (crossed out),
which effectively prevents them from contributing to the next alignment. This procedure can
be repeated until no more significant suboptimal alignments can be found. This amounts
to approximating the posterior probability matrix by a sum of paths (alignments) with
constant weights (probabilities). Although the Waterman & Eggert algorithm is widely
used, it is not well suited to our case of pairwise PO-HMM alignment because it cannot deal
with suboptimal alignments that are merely variants of the optimal alignment. Alignments
inferred by the Waterman & Eggert algorithm are always distinct in all residue pairs.
Our method for generating suboptimal alignments - similar to the Waterman & Eggert al-

gorithm - successively extracts suboptimal alignments but allows for shared pairs of aligned
residues between the alignment paths. Thus, it is possible that the first and second sub-
optimal alignment may differ in the placement of one gap only. Furthermore, through the
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Algorithm 1 : GenerateSuboptimalAlignments(q, p,Nmax, Pmin)
Generate suboptimal, pairwise alignments of PO-HMMs q and p. The algorithm suc-
cessively extracts up to Nmax suboptimal alignments, each with a minimum posterior
probability of at least Pmin along its path.
Input: q,p PO-HMMs to be aligned

Nmax maximal number of suboptimal alignments to be extracted
Pmin minimal posterior probability along each alignment

Output: merged PO-HMM r representing all alignments between q and p
r ← ∅
calculate P (Xq

i � Y
p
j ),∀i ∈ {1, . . . ,Lq}, j ∈ {1, . . . ,Lp}, XY ∈ {MM,MI,IM} with

Forward-Backward algorithm
Pi,j ← P (M q

i �M
p
j )

for n← 1 to Nmax do
determine next best alignment An on Pi,j using eq. (5.17)
Pn ← minimum Pi,j of all MM pair states along path of An
if Pn < Pmin then break
add aligned nodes in An to PO-HMM r
subtract Pn from all cells Pi,j with MM pair states in An

fully probabilistic treatment of alignments, our approach is able to represent the inferred
alignment paths within a single PO-HMM in a way that is ideal from a statistical as well
as an algorithmic perspective. The pseudocode of the procedure for generating suboptimal
alignments is given in Algorithm 1.
Figure 5.8 illustrates the calculation of one optimal and three suboptimal alignments be-

tween two PO-HMMs. After the posterior probability matrices for Match-Match (red), Match-
Insert (green) and Insert-Match (blue) have been calculated with the Forward-Backward
algorithm, the optimal alignment (Figure 5.8A) is retrieved by dynamic programming as
in equation (5.17). As an approximation for the true probability of the optimal alignment,
we use the minimum posterior probability P1 of all MM cells in the alignment path. To
account for the fact that the best alignment has already been retrieved, we then subtract
this minimum probability P1 from all cells in the match posterior matrix, for which the
optimal alignment had a MM pair state. Dynamic programming on the altered probabil-
ity matrices will then generate the next best alignment as illustrated in Figure 5.8A. This
procedure is repeated until no more significant suboptimal alignments can be found.

5.2.4. PO-HMM construction

Given the path of a pairwise alignment between two PO-HMMs q and p, we would like to
represent this alignment in the form of a new PO-HMM r. If nodes i in q and j in p were
aligned with each other, they should be “merged” together and represented as one node in
r. First, let us consider how to construct the node and edge set of r given the pairwise
alignment illustrated in Figure 5.9A. The construction algorithm for PO-HMM r proceeds
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Figure 5.9.: Construction of a new PO-HMM based on the pairwise alignment of PO-HMMs q and p.
(A) Alignment path through dynamic programming matrix with aligned Match-Match states indi-
cated in blue and Insert-Match states in red. Note that PO-HMM p contains two alternative segments
(nodes 3-7 and 10-14). (B) Procedure of PO-HMM construction. At the beginning, PO-HMMs q and
p are stored as one, combined PO-HMM with q and p representing alternative branches. For each
Match-Match alignment step, a new node (green) is added to the combined PO-HMM by merging
the two aligned nodes from q and p. Also, all incoming and outgoing edges of the aligned pair of
nodes are copied to the new node (green edges). (C) To obtain the final PO-HMM, all old nodes of
PO-HMMs q and p are discarded and only the newly added nodes representing Match-Match (blue)
and Insert-Match pair states (red) remain. Note that nodes 3-7 in p have not been merged into the
final PO-HMM because these nodes were not part of the pairwise alignment.
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in two parts. At the beginning, all nodes and edges in PO-HMMs q and p are temporarily
added to the empty PO-HMM r (see Figure 5.9B top). In the main construction stage, we
create a new node (green) in r for each pair state in the alignment path and update the
edge set of r accordingly. More precisely, for a Match-Match pair state with aligned nodes
i and j, we create a new node k by merging nodes i and j followed by copying all incoming
and outgoing edges of nodes i and j to node k (green edges). In case of a Match-Insert
or Insert-Match pair state, we copy the matched node into a new node k along with its
incoming and outgoing edges. To obtain the final PO-HMM r, all temporary nodes and
edges of PO-HMMs q and p are discarded. Only the newly created nodes and edges between
them remain (see Figure 5.9C).
In the example of Figure 5.9, only a single alignment between PO-HMMs q and p was

encoded in r. The above construction scheme can be easily extended to the case of multi-
ple, alternative pairwise alignments. Here, we would like to obtain a condensed PO-HMM

representation, in which only those aligned states in the dynamic programming matrix that
differ between the alternative alignment paths are stored separately, while identical aligned
states are represented only once. We can do so by keeping track of all aligned states that
have already been stored in PO-HMM r and creating new nodes k only if the corresponding
aligned states are not already part of r. In addition, we also keep track of which nodes
belong to which suboptimal alignments (see Figure 5.8E) as this information is needed for
the calculation of edge probabilities.

Calculation of edge-weights

After we have constructed the node and edge set of the new PO-HMM r, we need to calculate
edge probabilities for all edges in r. For the calculation of an edge probability r(i,i′) between
nodes i and i′, we need to take into account two factors: first, the fraction of sequences that
contribute to the edge, i.e. what proportion of sequences with an aligned residue at node
i also have an aligned residue at node i′, and second, the probability of branching off into
alternatively aligned segments.
Let us assume that we have already calculated sequence weights wk for each sequence k

that is part of r, using the sequence weighting scheme of Henikoff and Henikoff (1994). For
each node i, we first sort all out-edges eii′ of i by ascending topological index of the target
node i′ (the position of node v in the topologically sorted PO-HMM). Furthermore, we define
Sj as the set of all sequences that have an aligned residue at node j and initialize the set
of all “active” sequences Ω = Si. We iterate over the sorted out-edges eii′ of i and set

r(i,i′) =
∑
k∈Si′∩Ωwk∑
l∈Si

wl
× f(i,i′). (5.18)

After each assignment of r(i,i′), we remove all sequences with a residue at node i′ from the
active set: Ω = Ω− {k ∈ Si′}. The factor f(i,i′) accounts for the probability of going from
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Figure 5.10.: Assignment of edge probabilities for a hypothetical PO-HMM consisting of three se-
quences x,y,z with sequence weights wx = 1, wy = 2, wz = 3.

node i to node i′ based on the probabilities of alternative alignments. We can calculate
f(i,i′) from the probability Pn of each alternative alignment n represented in the PO-HMM

and the set of all alignment paths Aj going through a node j:

f(i,i′) =
∑
n∈Ai∩Ai′

Pn∑
m∈Ai

Pn
. (5.19)

Figure 5.10 illustrates the assignment of edge probabilities for a hypothetical PO-HMM con-
sisting of three sequences x,y,z with sequence weights wx = 1, wy = 2, wz = 3. In Figure
5.3B, the upper two outgoing edges at node i belong to alternative alignment 1, the lower
outgoing edge to alternative alignment 2. In this example, f(i,i′) = 0.6 and f(i,i′′) = 0.4.

Match state emission probabilities

To make use of the column score (see equation 5.5) in pairwise PO-HMM alignment, we need
to assign nucleotide emission probabilities to each PO-HMM match state. Following a stan-
dard procedure, we use maximum-likelihood estimation to calculate qi(a), the probability
that nucleotide a is emitted by match state i in PO-HMM q:

qi(a) = ni(a)∑
b ni(b)

. (5.20)

Here, ni(a) is the sum of sequence weights wk over all sequences k that have an aligned nu-
cleotide a at node i. As always, maximum likelihood estimators are vulnerable to overfitting
if there are insufficient data. Indeed, if the nucleotide a was never aligned in state i, then
the emission probability qi(a) would be zero. To avoid such problems, we add pseudocounts
to PO-HMM emission probabilities with a substitution matrix method similar to PSI-BLAST

using the Tamura & Nei substitution matrix (Tamura and Nei, 1993).
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5.2.5. Multiple alignment of genomic sequences with PO-HMMs

Having presented algorithms for pairwise PO-HMM comparison and computation of sub-
optimal alignments, we now turn to the overall algorithm for generating multiple align-
ments, which has been implemented in the program CS-ALIGN. The basic strategy used
by CS-ALIGN is similar to that used by MUSCLE (Edgar, 2004) and MAFFT (Katoh et al.,
2002). CS-ALIGN progressively builds up a multiple alignment along a guide tree, but unlike
MUSCLE and MAFFT it does not apply horizontal refinement afterwards. Another difference
is that CS-ALIGN has been designed to take advantage of the structural and evolutionary
properties of regulatory sequences. It takes as input not only one but multiple sets of orthol-
ogous sequences as this procedure allows CS-ALIGN to make use of the sequence signature
of conserved regulatory motifs in the alignment process.
In the following we give an overview of the basic steps used in the CS-ALIGN algorithm,

followed by a more detailed discussion of specific parts of the method. CS-ALIGN proceeds
in three main stages. The first stage builds up a draft progressive alignment for each set
of orthologous sequences. This stage emphasizes speed over accuracy. Therefore, CS-ALIGN

uses fast k-mer distances for the calculation of the initial guide tree. The goal of the
second stage is to learn the sequence signature of regulatory motifs that are present in
the draft alignments. More precisely, CS-ALIGN learns a library with hundreds of context
profiles, generated by clustering all sequence profile windows in the draft alignments. The
third stage builds improved progressive alignments but tries to prevent some of the errors
made in the draft progressive stage, using more sensitive Kimura distances instead of k-mer
distances to build the guide tree, and using context-context alignment match scores and
context-specific pseudocounts calculated from the library of context profiles.

Distance measures and guide tree construction

Similar to MUSCLE, CS-ALIGN uses two kinds of distance measures to construct the matrix
of pairwise distances needed for the construction of the evolutionary guide tree: k-mer dis-
tances and Kimura distances. The former are obtained by k-mer counting in two unaligned
sequences while the latter requires a global alignment between two sequences. A k-mer is
a contiguous subsequence of length k and related sequences tend to have more k-mers in
common than to be expected by chance. The primary motivation for k-mer counting is
improved speed compared to distance measures that require an alignment. CS-ALIGN uses
the following similarity measure as a proxy for the fractional identity between to sequences
x and y:

F = 1
min(Lx,Ly)− k + 1

∑
τ

min (Nx(τ), Ny(τ)) . (5.21)

Here, τ is a k-mer, Lx, Ly are the sequence lengths, and Nx(τ), Ny(τ) are the number of
times τ occurs in x and y respectively. The k-mer-based distance estimate for sequences x
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and y is set to
dkmer(x,y) = 1− F. (5.22)

Alternatively, given an alignment of sequences x and y, we can determine their fractional
identity D directly from the alignment. For closely related sequences 1 − D is a good
approximation to the mutation distance, i.e. the number of mutations that occurred on
the evolutionary path between the two sequences. To correct for the increasing probability
of multiple mutations at a single site as sequences diverge, we use the following distance
estimate of Kimura (1991):

dKimura(x,y) = − loge(1−D −D2/5). (5.23)

Given a matrix of pairwise distances, a binary tree is constructed by hierarchical clustering
with UPGMA. There are three variants of UPGMA that differ in their assignment of distances
to new clusters. We have implemented the “standard version” in which the distance between
any two clusters A and B is taken to be the average of all distances between pairs of
sequences x in A and y in B and equation (5.22) or (5.23) is used for the distances:

d(A,B) = 1
|A||B|

∑
x∈A

∑
y∈B

d(x,y). (5.24)

Progressive PO-HMM alignment

The progressive PO-HMM alignment algorithm takes as input both a set of sequences and
their estimated evolutionary tree. The application of progressive PO-HMM alignment to a
set of four hypothetical sequences is shown in Figure 5.11. The construction of the multiple
sequence alignment follows the order indicated by the guide tree, where sequences that are
most similar to each other will be aligned first. The progressive PO-HMM alignment differs
from existing progressive alignment methods by the fact that alignments at the branch
points are not reduced to linear sequence profiles. Instead, they are stored as PO-HMMs,
which are aligned to each other using the pairwise PO-PO alignment algorithm explained
in section 5.2.3. Another important difference is that at each branch point, CS-ALIGN

computes not only the optimal alignment but all suboptimal alignments with a probability
greater than Pmin. The suboptimal alignment paths are stored as PO-HMM with probabilities
of the suboptimal alignments being modeled by edge probabilities of nodes leading into
alternatively aligned segments in the PO-HMM. For sequences with many equally probable
alignments, a suboptimal alignment may turn out to be actually correct as more diverged
sequences are aligned to the growing PO-HMM. For instance, Figure 5.11D illustrates how the
alignment of sequence 3 actually confirms that the suboptimal alignment between sequences
1 and 2 shown in Figure 5.11B is actually correct. Thus, we would have made an alignment
error if we had stored only the optimal alignment between sequences 1 and 2.
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Context-specific pseudocounts for PO-HMMs

Before the pairwise alignment of two PO-HMMs q and p in the draft progressive stage,
CS-ALIGN adds nucleotide pseudocounts to both PO-HMMs with a substitution matrix method
similar to PSI-BLAST, employing the Tamura & Nei matrix (Tamura and Nei, 1993) in place
of the BLOSUM matrix. In this scheme, the resulting emission probabilities qi(a) and pj(a)
depend only on the nucleotides aligned in columns i and j of PO-HMMs q and p respectively.
However, the context of the partial order alignment at position i may contain much more
information than just the aligned residues at column i themselves about which nucleotides
to expect in related sequences. This applies particularly to positions that are part of a reg-
ulatory motif, whose expected mutations generally deviate markedly from the background
mutation rates in the Tamura & Nei matrix.
We have already demonstrated that we are able to significantly improve alignment qual-

ity in protein sequence comparison by employing context-specific similarities in CS-BLAST.
The context-specific paradigm is likely to hold similar advantages for multiple alignment
of nucleotide sequences with PO-HMMs. In the following, we show how to generalize the
calculation of context-specific pseudocounts from the single sequence case in equation (2.3)
to the case of PO-HMMs. In analogy to the sequence context Xi, we define the context
at PO-HMM node i as the set of nodes Qi such that the length l(i,j) of the shortest path
between any node j ∈ Qi and i is at most d = (l−1)/2. Due to branches and jumping edges
in the partial order graph there may be multiple nodes at distance d to any side of node
i. cq(j,x) are the counts of aligned nucleotides at node j of the PO-HMM. These counts are
obtained from the observed nucleotide frequencies p(j,x) by multiplying with the effective
number of sequences Nq in PO-HMM q: cq(j,x) = Nqp(j,x), where

Nq = 1
Lq

Lq∑
i

(
1 +N −N

4∑
x=1

p(j,x)2
)

(5.25)

and N is the total number of sequences in q. We now merely need to show how to calcu-
late the probability P (Qi|pk) for generating context Qi given context profile pk. All other

1
3

1
3

2
3

2
3

i

1 1 12
3 , 1 1, 2

3

1
3 ,

1
3

Figure 5.12.: Context window of length l = 5 in a PO-HMM with a jumping edge. The central node i
is shown in green, nodes within the context window in red. Red labels above context nodes indicate
context weights πj . Edges are labeled with their forward and reverse probability (black numbers)
where different from 1.0,1.0.
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transformations leading to equation (2.3) remain essentially unchanged. As in the gener-
alization of context-specific pseudocounts to sequence profiles, we model P (Qi|pk) using a
multinomial distribution and replace the factorials by Gamma functions (n! = Γ(n+ 1))

P (Qi|pk) =
∏
j∈Qi

(
Γ(Nq+1)∏4

x=1 Γ(cq(l(i,j),x)+1)

4∏
x=1

pk(j,x)cq(j,x)
)wjπj

. (5.26)

Note that, since the factor containing the Gamma functions does not depend on k, it
will cancel out during the normalization of P (pk|Qi). Furthermore, we have introduced a
factor πj to account for the probabilities of branching off into alternative context paths.
For instance, Figure 5.12 illustrates the context nodes (red) within a context window of
length l = 5 around node i (green). Each edge is assigned a forward as well as a backward
probability and the weight factors πj are indicated in red above each context node j. Note
that for each node, the forward probabilities of all out-edges sum to 1 as do the backward
probabilities of all in-edges. The algorithm that calculates P (Qi|pk) recursively explores
the context neighborhood around node i to the right and to the left. To explore the context
to the right of node i, it starts with πi = 1 and follows the direction of graph edges. At
each step from a current node j to a new node j′, we set πj′ = πj × qfwd(j,j′), where
qfwd(j,j′) is the forward probability of the edge connecting j and j′. Similarly, the context
neighborhood to the left of node i is explored by following graph edges in backward direction
setting πj′ = πj × qbwd(j,j′) at each step.
Let us assume that we have already generated a library of K context profiles in the second

stage of CS-ALIGN. In the third, improved progressive stage, we can now calculate context-
specific mutation probabilities P (y|Qi) by mixing the amino acid distributions pk(0,y) from
the central columns of all K profiles with weights P (pk|Qi):

P (pk|Qi) = P (Qi|pk)P (pk)
P (Qi)

∝ P (pk)P (Qi|pk). (5.27)

P (y|Qi) ∝
K∑
k=1

pk(0,y)P (pk|Qi). (5.28)

Normalizing over all four nucleotides yields the final expected mutation probability P (y|Qi).
To have more flexibility in adjusting the diversity of the context-specific emission probabil-
ities qcs

i (·) in PO-HMM q, we mutate only a fraction τ ∈ [0,1] of the observed nucleotides
p(i,x) while leaving a fraction 1− τ unchanged:

qcs
i (y) = (1− τ)p(i,y) + τP (y|Qi). (5.29)

The pseudocount admixture τ needs to be optimized depending on the evolutionary distance
of the two PO-HMMs to be aligned, in a similar way as the substitution matrix with optimum
diversity might be chosen. We choose the pseudocount admixture depending on the diversity
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of the alignment underlying the PO-HMM, τ = a(b+1)/(b+Nq(i)), where a = 0.6 and b = 5.0
have been determined on a small optimization set (see section 5.3.1).

Context-context alignment match scores

In addition to context-specific pseudocounts for PO-HMM emission probabilities, we have
implemented a second approach for taking context information into account in PO-HMM

alignment. The idea is to calculate the similarity of two PO-HMM nodes not only based on the
column score given in equation (5.5), but also by comparing posterior context probabilities
P (pk|Qi) and P (pk|Pj) of PO-HMMs q and p directly.
To understand the reasoning behind this context-context scoring, let us consider a short

example. The canonical promoter illustrated in Figure 5.13A contains a TATA-Box and
an Initiator motif, both containing a conserved adenine. Assuming both motifs are repre-
sented in our library of context profiles (Figure 5.13B), context-specific pseudocounts would
correctly predict high adenine emission probabilities for both conserved positions, which in
turn would give a high column score if the two motif positions were aligned. Of course,
the high column score is not justified since both positions belong to different motifs and
are not homologous. The actual problem is that the column score is unable to discern
between columns with equal nucleotide emissions within different sequence contexts since it
only considers the nucleotide emission probabilities. We therefore propose a context-context
match score by which we compare posterior context probabilities P (pk|Qi) and P (pk|Pj) in
the alignment of PO-HMMs q and p

Mctx(qi,pj) = log
(

K∑
k=1

P (pk|Qi)P (pk|Pj)
P (pk)

× cons(pk)
)

(5.30)

where cons(pk) ∈ [0,1] is the median FRcons conservation score (Fischer et al., 2008) over
all columns j in context profile pk

cons(pk,j) = log
∑4
x=1 pk(j,x)2/P (x)

log
∑4
x=1 pk(j,x)/P (x)

. (5.31)

If we omitted the factor cons(k)/P (pk) in equation (5.30), we would obtain the logarithm
of the co-emission probability over all contexts k. In this respect, cons(pk)/P (pk) can be
interpreted as weighting factors to the co-emission probability. They increase the weight of
rare and conserved contexts. This makes sense since co-emission of rare contexts is harder
to produce by chance and regulatory motifs are often highly conserved. The context-context
match score for qi and pj utilized during dynamic programming is obtained by multiplying
Mctx with a weight wctx,

Sctx(qi,pj) = wctxMctx(qi,pj). (5.32)

This score is added to the nucleotide column score in equation (5.5). The weight coeffi-
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Context-specific Multiple Alignment of Promoter Regions
Andreas Biegert and Johannes Söding

Protein Bioinformatics & Computational Biology, Gene Center, LMU Munich

Motivation
Comparative genomics methods use alignments of promoter
regions of related species with each other to identify func-
tional elements by their conservation signature. These meth-
ods therefore critically depend on the correctness of the align-

ments in promoter regions. Promoter alignments are often
very challenging, since functional elements can drift away while
being functionally substituted by analogous motifs in nearby
locations. Any improvement in the alignments will directly im-

pact on comparative genomics and thereby on the identification
of transcription factor binding sites, core promoter elements,
microRNAs and their target binding sites, as well as other reg-
ulatory RNAs and their targets.

Challenges
1 Alignment algorithms may incorrectly insert gaps in orthologous motif
occurrences because they do not recognize the motif signature. The following
example shows conserved TF binding sites (pink boxes) in aligned orthologous
yeast sequences that are likely to be misaligned.

CGATATTTTTGCTCACCTTTTTTTTTTGCTCATCG-AAAATT
CGATATTTTTGCTCACCTTTTTTTT--GCTCATCG-AAAATT
CGATATTTTTGCTCATCTTTTTTTTTTGCTCATTGAAAAATT
TGAAATTTTTGCTCATCGAATTTTT--GCTCATCG---AAGT

correctly aligned misaligned

2 If errors are made in standard progressive alignment, these errors are
propagated through to the final result and cannot be corrected at later stages.
This is illustrated in the following example where the guide tree indicates the
order in which four hypothetical sequences are aligned.

GARFIELDTHELASTFATCAT

GARFIELDTHEFASTCAT

GARFIELDTHEVERYFASTCAT

THEFATCAT

Seq1

Seq2

Seq3

Seq4

☇

GARFIELDTHELASTFA-TCAT
GARFIELDTHEFASTCA-T---
GARFIELDTHEVERYFASTCAT
--------THE----FA-TCAT

Resulting alignment with the
word CAT misaligned due to an
error made in the pairwise align-
ment between sequence 1 and 2.

Context-Aware Sequence Profiles
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GAAACGTATAAAAGGAGTAGCACGTTGGTATTTTCTTCAGTTTTATA

TATA-Box Initiator
Standard multiple alignment methods
use evolutionary models such as Jukes-
Cantor to score DNA substitutions.
These similarity scores do not take the
local sequence context into account. We
propose a new DNA scoring scheme
in which substitution scores depend on
13-residue windows around each DNA
residue. For each position we precal-
culate a profile column (colored his-
togramm above) by comparing its se-
quence window to a library with hun-
dreds of context profiles (on the right),
generated by clustering a large, represen-
tative set of sequence-profile windows.
Each profile column contains the like-
lihood of each context profile at that
specific position. The similarity between
two profile columns is used as substitu-
tion score in progressive alignment.

TATA-Box

6

A

C

G

T

5

A

C

G

T

4

A

C

G

T

3

A

C

T

2

A

G

1

T

0

A

1

A

T

2

A

3

A

C
G

T

4

A

C

G

T

5

A

C

G

T

6

A

C

G

T

Inr1

6

A

C

G

T

5

A

C

G

T

4

A

C

G

T

3

A

C

G

T

2

C

G

T

1

C

T

0

A

1

G

2

T

3

A

C

G

T

4

A

C

G

T

5

A

C

G

T

6

A

C

G

T

Inr2

6

A

C

G

T

5

C

T

4

A

G

3

G

2

C

T

1

C

0

A

1

C

T

2

A

T

3

C

T

4

C

T

5

A

C

G

T

6

A

C

G

T

DRE

6

A

C

G

T

5

A

C

G

T

4

A

C

T

3

A

G
T

2

C

T

1

C

T

0

A

G

1

A

G

2

A
C

T

3

A

G

T

4

A

C

G

T

5

A

C

G

T

6

A

C

G

T

CACGTG

6

A

C

G

T

5

A

C

G

T

4

A

C

G

T

3

A

C

G

T

2

C

T

1

A

G

0

C

1

A

G

2

A

C

T

3

A

C

G

T

4

A

C

G

T

5

A

C

G

T

6

A

C

G

T

GC-Box

6

A

C

G

T

5

A

C

G

T

4

A

C

G

T

3

A

C

G

T

2

A

C

G

T

1

A

G

0

A

G

1

C

T

2

A

G

3

A

C

G

T

4

A

C

G

T

5

A

C

G

T

6

A

C

G

T

GAGA

6

A

C

G

T

5

A

C

G

T

4

A

C

G

3

A

C

G

T

2

A

G

1

A

C

G
T

0

A

G

1

A

C

G
T

2

A

G

3

A

C

G
T

4

A

C

G

5

A

C

G

T

6

A

C

G

T

A-rich

6

A

C

G

T

5

A

C

G

T

4

A

C

G

T

3

A

C

G

T

2

A

C

G

T

1

A

C

G

T

0

A

C

G

T

1

A

C

G

T

2

A

C

G

T

3

A

C

G

T

4

A

C

G

T

5

A

C

G

T

6

A

C

G

T

Background

6

A

C

G

T

5

A

C

G

T

4

A

C

G

T

3

A

C

G

T

2

A

C

G

T

1

A

C

G

T

0

A

C

G

T

1

A

C

G

T

2

A

C

G

T

3

A

C

G

T

4

A

C

G

T

5

A

C

G

T

6

A

C

G

T

Error-Resistant Progressive Alignment

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15A

A
C
G
C
C
T
G
A
C
A
T
C
G
A

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

AGCTAAGTAAGCGCAA

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15A

A
C
G
C
C
T
G
A
C
A
T
C
G
A

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

AGCTAAGTAAGCGCAA

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16A

A
C
G
C
A
G
C
T
G
A
A
T
A
G
G

1 2 3 4 5 6 7 8 9 1
8

1
9

2
0

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

AGCTACAGT
AGCTA-AGT

C--
AAG

--C
AAG
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1 Determine the best
pairwise alignment by
finding the path that
maximizes the sum of
match, insert, and dele-
tion probabilities.

2 Calculate another
suboptimal alignment
with different gap place-
ment at the insert. This
alternative alignment
may later turn to be
correct.

3 Both previous align-
ments are combined into
a hidden Markov model
(HMM). Aligning this
HMM to a third se-
quence reveals that the
alignment from step 2
is actually correct.

ambiguous gap placement alternative gap placement

Alignment of Orthologous Promoters in Drosophila

AATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGAACATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGATATAATTACAGTGAAA
AATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGACCATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGATATAAATACAGTG-AA
AATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGACCATTAGTCGCGATCGGGCATCGAAATCGTCAAGTTCAGTGGATATAAATACAGTG-AA
GATCGGGCCTATAAAAGGGGCTCCCCATTCATGGGGACCATTAGTCGCGATCGCGCATCGAAATCGTCAAATTCAGTGGATATAAATAAAGTG-AA
GATCGGGCCTATAAAAGGGGCTGCCCATTCATGGGAACCATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTAAATATAAACAAAGTG-AA
AATGGAAGCTATAAAA--GCCACCTCGTTCATCGTTTTATCCAGTTGTGTTTTCGCAGTGAAATCGTCAATTGTCGCAAATACTAGTA----G-AA
CATCGGGACTATAAAAGGCGCTCCCGAGCCACTGGCATCATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGAAATCTGCAAAAGC-GA
CATCGGGACTATAAAAGGCGCTCCCGAGCCACTGGCATCATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGAAATCTGCAAAAGC-GA
AACCGAGACTATAAAAGGAGCTCCACGTATCCAG----CTTTAATTGCGTTCGCGCGGTTTGATTGTTTTTTTCTGTGGATCGAAGGAAAAGT-GA
CGCCTGGCCTATAAAAGCCGCTGGGGATGGACAG-CGCCATTAGTTGCGTTCGCGCGGTTCGACCTACGGATTTTGTGAATATGTTCCAAGTG-CA

AATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAA---CATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGA--------TATAATTAC------AGTG-AAA
AATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAC---CATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTGGA--------TATAAATAC------AGTG-AA-
AATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAC---CATTAGTCGCGATCGGGCATCGAAATCGTCAAGTTCAGTGGA--------TATAAATAC------AGTG-AA-
GATCGGGCCTATAAAAGGGGCTCCC----C--ATTCATGGGGAC---CATTAGTCGCGATCGCGCATCGAAATCGTCAAATTCAGTGGA--------TATAAATAA------AGTG-AA-
GATCGGGCCTATAAAAGGGGCTGCC----C--ATTCATGGGAAC---CATTAGTCGCGATCGCGCATCGAAATCGTCAAGTTCAGTAAA--------TATAAACAA------AGTG-AA-
AATGGAAGCTATAAAAGC--CACCT----C--GTTCATCGTTTT---ATCCAGTTGTGTTTTCGCAGTGAAATCGTCAA------TTGT--------CGCAAATAC-----TAGTAGAA-
CATCGGGACTATAAAAGGCGCTCCCGAGCC--ACT----GGCAT---CATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGA----AATCTGCAAA---------AGCG-A--
CATCGGGACTATAAAAGGCGCTCCCGAGCC--ACT----GGCAT---CATTAGTCGCGATCGCGGAGTGAAGTCTTCAAGTTTCGTGGA----AATCTGCAAA---------AGCG-A--
AACCGAGACTATAAAAGGAGCTCCA----CGTATC------CAG---CTTTAATTGCGTTCGCGCGGTTTGATTGTTTTTTTCTGTGGATCGA----AGGAAA---------AGTG-A--
CGCCTGGCCTATAAAAGCCGCTGGG----G------ATGGACAGCGCCATTAGTTGCGTTCGCGCGG---TTCGACCTA------CGGA-----TTTTGTGAATATGTTCCAAGTGCA--

newOverly aggressive alignment from USCS Genome Browser: Context-specific alignment of the same sequences:
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Figure 5.13.: CS-ALIGN uses context-aware alignment match scores that depend on context windows
around each DNA residue. (A) For each sequence position we calculate a profile column (colored
histogram) by comparing its sequence window to a library with hundreds of context profiles shown
in (B), generated by clustering a large, representative set of sequence-profile windows. Each profile
column contains the likelihood of each context profile at that specific position. The histogram colors
correspond to the background colors of context names in the profile library. The similarity between
two profile columns is utilized as context-context score in pairwise PO-HMM alignment.

cient wctx accounts for the fact that the context probabilities are not independent of their
neighbors. Note that for the efficient evaluation of context-context profile match scores, it
is necessary to pre-calculate the posterior context probabilities before the pairwise align-
ment of two PO-HMMs q and p. In addition, we take advantage of the sparse distribution
of context probabilities by storing only those P (pk|Qi) with probability greater than 0.01.
Let us again have a look at Figure 5.13A to understand how our context-context score
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evaluates the alignment of the two conserved adenine positions in the TATA-Box and an
initiator motifs. The posterior probability vectors P (·|Qi), depicted as histogram above the
sequence, show a markedly different posterior probability distribution at the two adenine
positions (magenta and blue box) reflecting their different sequence context. This in turn
results in a low context-context match score which effectively penalizes the alignment of
the two positions.

5.3. Results

To assess the alignment performance of the CS-ALIGN algorithm in comparison to other
published multiple programs, we have devised a multiple alignment benchmark based on
simulated promoter sequences, since alignments of regulatory regions are particularly inter-
esting with regard to comparative genomics. For protein-coding sequences, often additional
information is available in the form of the three dimensional structure of the protein se-
quences that can be used to generate gold-standard alignments to assess the quality of
predicted alignments. This approach is not possible for noncoding DNA because here no
gold-standard alignments are available to evaluate alignment quality. Therefore, we follow
a widely adopted simulation-based benchmark approach (Lunter et al., 2008; Pollard et al.,
2004, 2006; Rosenberg, 2005). The idea is to simulate sequence divergence in silico to ob-
tain sequences that are related by a known reference alignment. It has to be kept in mind,
however, that the validity of simulation-based alignment benchmarks is highly dependent
on “realistic” models and parameters that reflect the underlying evolutionary processes.

5.3.1. Benchmark sets

For the generation of gold-standard reference alignments, we use the simulation program
CIS-EVOLVER (Pollard et al., 2006), that incorporates a key characteristic of noncoding
regulatory DNA: it can evolve a mixture of background genomic DNA sequences and tran-
scription factor binding sites. CIS-EVOLVER takes as input a mutation guide tree and an
ancestral sequence along with the sequence positions and PWMs of all transcription factor
binding sites (TFBS) within that sequence. The ancestral sequence is evolved from the root
down the branches of the tree using at each sequence site either a background or a binding-
site mutation model. Non-binding site regions mutate according to the Hasegawa-Kashina-
Yano (Hasegawa et al., 1985) substitution model whereas binding sites evolve according
to the Halpern-Bruno model of position specific substitution rates (Halpern and Bruno,
1998), which requires conserved positions in a binding site to evolve more slowly and more
specifically according to the PWM of the binding site. The result is an alignment of the
leaf sequences generated by the simulation. For instance, Figure 5.14A shows the PWMs of
transcription factors INO2, GLN3, DAL80, PHD1 and HAP1 in histogram representation. A
hypothetical ancestral sequence with a DAL80 binding site is evolved along a 3-taxa muta-
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tion guide undergoing three substitutions and one insertion (Figure 5.14B). The multiple
alignment of the leaf sequences generated by the simulation is shown in Figure 5.14C.
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Figure 5.14.: Multiple alignment benchmark based on simulated sequences that are a mixture of
background genomic DNA and transcription factor binding sites. (A) Histogram representation of
binding affinity matrices for transcription factors INO2, GLN3, DAL80, PHD1 and HAP1 (from left to
right). (B) A hypothetical ancestral sequence with a DAL80 binding site (magenta boxes) is evolved
along a mutation guide tree. The labels indicate substitutions (→) and insertions (+) along tree
edges. (C) Multiple alignment of the leaf sequences generated by the simulation.

In order to obtain alignments that closely mirror the sequence properties of noncoding
DNA, we use as ancestral sequences yeast intergenic regions from a genomic location analysis
of transcriptional regulators by Harbison et al. (2004). The Harbison dataset also provides
us with sequence affinity matrices of 102 transcription factors and their genomic locations,
both of which we use as input for the evolution of binding sites in CIS-EVOLVER. Out of
a total of 6723 intergenic regions with a binding site proportion of 7%, we select all those
sequences with at least one mapped binding site. Of the selected 3253 intergenic regions, we
assign those from chromosome xvi to the optimization set (258 sequences), the others to the
test set (5287 sequences). By using the optimization set, we determined the best values for
the pseudocount admixture (τ = 0.6), the context window length (l = 7), and the window
weights (wcenter = 1.6, β = 0.80). The context library size (K = 4000) is a tradeoff between
sensitivity and time efficiency. If not stated otherwise, all reported benchmark results have
been evaluated on the test set.
For each ancestral sequence we simulate synthetic DNA sequence data according to 8-

and 16-taxon trees with symmetric and leftist branching topologies, using realistic evolu-
tionary parameters for the evolution of genomic noncoding DNA. For each combination
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of taxon number and topology, we simulate three datasets representing close, intermediate
and distant evolutionary relationships, with a maximum pairwise distance of 0.8, 1.2 and
1.6 substitutions per site, respectively. These divergence estimates are in good agreement
with values estimated based on mutations at silent positions in codons, and have also been
used in previous multiple alignment simulation studies (Jayaraman and Siddharthan, 2010;
Pollard et al., 2004). Figure 5.15 depicts the scale and branching order of the 6 mutation
guide trees with leftist tree topology used in our sequence simulations.

5.3.2. Alignment quality measures

To assess the alignment quality, we compare predicted sequence alignments to gold-standard
alignments generated with CIS-EVOLVER. The alignment quality is assessed by four sum-of-
pairs performance measures: Alignment sensitivity is the fraction of aligned residue pairs
in the gold-standard alignment that are correctly predicted, i.e., number of pairs correctly
predicted/number of pairs in the reference alignment. Alignment precision is defined as
the fraction of aligned residue pairs in the predicted alignment that are correct, i.e., num-
ber of pairs correctly aligned/number of pairs in the predicted alignment. Motif sensi-
tivity is the fraction of aligned binding site residue pairs in the gold-standard alignment
that are correctly predicted, i.e., number of pairs within binding sites that are correctly
predicted/number of pairs within binding sites in the reference alignment. The motif sen-

close intermediate distant

8
ta

xa
16

ta
xa

Figure 5.15.: Panel of 8- and 16-taxon leftist trees used for sequence simulation. All trees are drawn
to the same scale representing close, intermediate, and distant evolutionary relationships (from left
to right).
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sitivity, therefore, quantifies to what extent residues that are part of a binding site are
correctly aligned to each other. Usually, different alignment tools strike a different bal-
ance with respect to alignment sensitivity and alignment accuracy, i.e. some tools tend to
align quite aggressively, producing alignments with higher sensitivity but lower precision,
while others align very conservatively resulting in more precise but rather insensitive align-
ments. As an overall performance measure of alignment quality we therefore calculate a
balanced score that is the geometric mean of alignment sensitivity and alignment precision
Sbal =

√
SsensSprec. For each of the four performance measures, we calculate the weighted

average over all predicted alignments in a set, with weights chosen proportional to the size
of the reference alignment. Thereby, we adequately account for any lengths differences in
the ancestral intergenic sequences.

5.3.3. Benchmark results

Figure 5.1 shows the benchmark results of CS-ALIGN and other current multiple alignment
programs, including FSA (Bradley et al., 2009), PECAN (Paten et al., 2008), PRANK (Löy-
tynoja and Goldman, 2008), and MUSCLE (Edgar, 2004), on all 8-taxon datasets, all pro-
grams being run with their default parameter settings. The figure shows separate histogram
plots for average balanced score, motif sensitivity, alignment sensitivity, and alignment
precision (top to bottom) on symmetric and leftist trees (left and right column, respec-
tively). CS-ALIGN consistently shows higher balanced scores, motif sensitivities, and overall
alignment sensitivities than any other program in all datasets but the leftist, distant. As ex-
pected, the performance differences between tools become more pronounced with increasing
sequence divergence. This is particularly the case for the datasets with evolutionary distant
sequences, in which CS-ALIGN is the only tool that aligns more than 80% of all binding site
residue pairs correctly, despite the high sequence divergence.
The benchmark results also reveal that FSA produces by far the most precise alignments,

although at the cost of attaining the lowest alignment and motif sensitivity values of of
all tools. Moreover, on the symmetric, distant dataset the amount of missed binding site
residues in FSA’s alignments is disproportionately high, as can be deduced from the rather
low ratio of motif sensitivity to overall alignment sensitivity. The profile-based aligners
CS-ALIGN and especially MUSCLE miss fewer binding site residues, even taking into account
their overall higher alignment sensitivity.
Table 5.1 summarizes the benchmark results for all 12 datasets including the sequence

sets simulated on 16-taxon trees. As expected, the alignment quality not only improves
with increasingly similar sequences (distant to close) but also with denser sequence sam-
pling (8- to 16-taxon trees). The consistency-based algorithm utilized by PECAN seems
to profit most from the denser sequence sampling with a balanced score improvement of
11% on the symmetric, distant dataset. This is likely due to the fact that the increased
number of sequences allows for better transitive alignment, which in turn results in more
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Figure 5.16.: Alignment benchmark results for sequence sets simulated on 8-taxon trees. The fig-
ure shows separate histogram plots for average balanced score, motif sensitivity, overall alignment
sensitivity, and overall alignment precision (top to bottom), on symmetric (left column) and leftist
(right column) trees. CS-ALIGN has higher (or equal) balanced scores, motif sensitivities, and overall
sensitivities than any other program, except for the balanced score in the leftist, distant dataset.
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Table 5.1.: Comparison of benchmark results on all datasets. For each alignment tool and pa-
rameter combination of 8/16 taxa, symmetric/leftist tree topology, and close/intermediate/distant
evolutionary relationship, two values are given: the average balanced score Sb, and the average
motif sensitivity Sm. In 9 out of 12 datasets CS-ALIGN has higher (or equal) balanced scores than
any other program. CS-ALIGN consistently produces the most sensitive alignments with respect to
binding site alignment, giving the highest motif sensitivity values with all datasets. The best value
in each column-wise quintet is highlighted by gray background.

symmetric leftist

close interm. distant close interm. distant

Tool Sb Sm Sb Sm Sb Sm Sb Sm Sb Sm Sb Sm

8 CS-ALIGN 0.81 0.99 0.55 0.94 0.36 0.83 0.82 0.98 0.60 0.92 0.42 0.81
FSA 0.74 0.92 0.50 0.59 0.36 0.35 0.79 0.93 0.57 0.68 0.43 0.46
PECAN 0.77 0.98 0.47 0.78 0.32 0.49 0.79 0.97 0.55 0.76 0.40 0.52
PRANK 0.80 0.98 0.50 0.91 0.29 0.71 0.79 0.97 0.52 0.84 0.34 0.64
MUSCLE 0.73 0.98 0.39 0.87 0.21 0.64 0.76 0.97 0.51 0.88 0.33 0.72

16 CS-ALIGN 0.85 0.99 0.60 0.97 0.37 0.85 0.85 0.98 0.65 0.95 0.47 0.83
FSA 0.76 0.95 0.51 0.61 0.36 0.34 0.82 0.95 0.61 0.71 0.48 0.49
PECAN 0.83 0.99 0.51 0.87 0.33 0.59 0.82 0.98 0.59 0.81 0.44 0.59
PRANK 0.86 0.99 0.58 0.95 0.33 0.76 0.80 0.97 0.54 0.84 0.37 0.64
MUSCLE 0.74 0.99 0.39 0.92 0.20 0.71 0.78 0.98 0.54 0.90 0.37 0.77

reliable alignments with fewer errors. The overall trend observed in the 8-taxon datasets
also remains true for the 16-taxon sets: in 9 out of all 12 datasets tested, CS-ALIGN has
higher (or equal) balanced scores than any other program and it consistently produces the
most sensitive alignments with respect to binding site alignment, giving the highest motif
sensitivity values of all programs on all datasets.

5.3.4. Analysis of CS-ALIGN components

We conduct an ablation analysis of the novel components in CS-ALIGN’s alignment algorithm,
namely context-specific pseudocounts, context-context match scoring, and enumeration of
suboptimal alignments in PO-HMMs to test the effectiveness of each and to elucidate how they
contribute to the overall alignment quality. For our first survey, we enable the enumeration
of suboptimal alignments, but differentiate between four possible scoring regimes:

1. Basic: Pseudocounts for match state emission probabilities are calculated using a
standard substitution matrix method employing the Tamura & Nei matrix. Context-
context match scoring as given in equation (5.30) is disabled, i.e., wctx in equation
(5.32) is set to zero.

2. Context-context scoring: Pseudocounts for match state emission probabilities are
calculated using the standard substitution matrix method as in the basic regime.
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Context-context match scoring as given in equation (5.30) is enabled with wctx = 0.1
(see equation 5.32).

3. Context-specific pseudocounts: Pseudocounts for match state emission probabili-
ties are calculated using a library ofK = 4000 context-profiles, generated by clustering
all sequence profile windows from the draft progressive stage. Context-context match
scoring is disabled as in the basic.

4. Context-context scoring with context-specific pseudocounts: The combina-
tion of context-context scoring and context-specific pseudocounts, i.e. both enabled.

Table 5.2 summarizes the ablation analysis of CS-ALIGN on the leftist, distant 8-taxon
tree optimization set. The comparison of balanced scores Sb and motif sensitivities Sm

for different scoring regimes reveals that context-context scoring as well as context-specific
pseudocounts help to correctly align binding sites, while having only minor beneficial effects
on overall alignment quality as indicated by the minor improvements in balanced score over
the basic scoring regime. The best performing scoring regime is the one that uses context-
specific pseudocounts but goes without context-context scoring. We therefore use it as
default scoring regime in CS-ALIGN.
To quantify the contribution of suboptimal alignments on alignment quality, we run

CS-ALIGN with and without enumeration of suboptimal alignments in progressive PO-PO

alignment. The results given in Table 5.3 indicate that suboptimal alignments seem to
have only marginal effect on alignment quality. This result surprised us. We had expected
that the enumeration of suboptimal alignments would improve alignment quality to a larger
extent, due to the prevention of alignment errors that get frozen at early stages of progressive
alignment. To understand the reasons for the observed results, we inspected individual
alignments in more detail. We found that even if the enumeration of suboptimal alignments
is turned on, for the majority of all sequence sets (232 out of 258 in the optimization
set) there is never a suboptimal alignment stored because their probabilities lie below the

Table 5.2.: Ablation analysis of CS-ALIGN on optimization set simulated on left, distant 8-taxon tree.
Comparison of balanced scores Sb and motif sensitivities Sm for different scoring regimes reveals
that context-context scoring as well as context-specific pseudocounts help to correctly align binding
sites, while having only minor beneficial effects on overall alignment quality as indicated by the
minor improvements in balanced score over the basic regime. CS-ALIGN’s default scoring regime is
highlighted by gray background.

Scoring regime Sb Sm

Basic 0.41 0.74
Context-context scoring 0.41 0.78
Context-specific pseudocounts 0.42 0.79
Context-context scoring with context-specific pseudocounts 0.41 0.78
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Table 5.3.: Alignment quality measures for PO-HMM and HMM alignment for basic scoring. Partial
order HMMs, which keep track of significant suboptimal alignments in progressive PO-PO alignment,
seem to have only a marginal effect on alignment quality in comparison to simple HMMs. Sb and
Sm as in table 5.2.

Suboptimal alignments Sb Sm

Off 0.40 0.72
On 0.41 0.74

inclusion threshold Pmin = 0.01. Moreover, for the 26 cases in which at least one suboptimal
alignment is actually stored in the PO-HMM, the suboptimal paths often differ in only a
few positions from the optimal alignment. Of course, these local variants have a smaller
upside potential with respect to the balanced score than a suboptimal alignment that differs
substantially from the optimal alignment. We speculate that the absence of substantially
different suboptimal alignments in the posterior probability matrices could be a result of
the utilized sequence simulation process. CIS-EVOLVER does not model the duplication of
DNA segments nor does it allow for binding site turnover, both of which would lead to
simulated sequence sets with more ambiguous alignment alternatives.

5.4. Discussion

The diversity of mammalian promoter sequences is comparable to the distant dataset in
our multiple alignment benchmark. Despite the conserved sequence signature of regulatory
motifs, the number of correctly aligned TFBSs falls well below 50% for some of the tested
multiple alignment programs. To improve the alignment quality of regulatory sequences, we
have combined partial order graphs, profile HMMs, and the concept of context-specific pseu-
docounts into a novel progressive alignment method. Our multiple alignment tool CS-ALIGN

achieves considerable improvements with respect to correct binding site alignment as well
as overall alignment quality compared to the best current multiple alignment programs (see,
e.g. Jayaraman and Siddharthan (2010)). However, for sequence diversities comparable to
mammalian promoter sequences, even CS-ALIGN can only align about 80% of all TFBS cor-
rectly. This result confirms that the alignment of noncoding regulatory DNA at mammalian
level diversity remains a very challenging task.
The alignment problem becomes even more challenging when we account for the gain

and loss of TFBS, as it often occurs in regulatory sequences (Moses et al., 2006). Because
the CIS-EVOLVER software assumes that a TFBS is conserved across all taxa in the mutation
guide tree, we were unfortunately unable to test the effect of TFBS change in our alignment
benchmark. Thus, to compute multiple alignments of mammalian regulatory sequences
with close to 100% correctly aligned TFBS, further efforts will be necessary.

CS-ALIGN offers still room for improvements, especially with regard to the treatment
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of TFBSs during alignment. With a share of about 7% of all residues in yeast, TFBS are
relatively infrequent, which in turn requires a large number K of context profiles for them to
be represented in the context library. As a possible solution one could provide the context-
profiles of functional sites a priori to CS-ALIGN. Motif finding tools such as MEME (Bailey
and Elkan, 1994), PRIORITY (Gordân et al., 2010), or MADONA (Hartmann and Söding et
al., to be published) should be better suited to detect the sequence signature of regulatory
sites than the expectation-maximization clustering that aims to obtain a set of K context
profiles which recur frequently among all training profiles, not necessarily only among TFBS.
As an added benefit, the motif finding tool MADONA would be able to detect lineage specific
TFBS as resulting from binding site gain and loss
Another area for improvement in the CS-ALIGN algorithm is the estimation of gap penal-

ties, i.e., M → I and I → I transition probabilities. Currently, CS-ALIGN utilizes the same
gap penalties at each PO-HMM node, but we could easily learn M → I and I → I transition
probabilities dependent on tree branch lengths.
Finally, our method still contains several heuristic, non-probabilistic elements, such as the

column match score, the context-context score, or the generation of suboptimal alignments.
For an ideal alignment algorithm, however “the study of biological sequence data should
not be divorced from the process that created it”, as aptly expressed by Thorne et al.
(1991). As a future objective, we would like to combine the concept of progressive partial
order alignment with an explicit and completely probabilistic model of regulatory sequence
evolution. With our method CS-ALIGN for context-specific multiple alignment of regulatory
sequences using partial order HMMs, we have laid the foundation for the development of
such an alignment program that can perform the multiple alignment and TFBS annotation
of regulatory noncoding sequences in one integrated framework.
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