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1. Introduction 

1.1 Genome Compaction 

Chromatin is a highly condensed form of DNA in the eukaryotic nucleus held in place by various proteins, 

such as histones and structural maintenance of chromosomes (SMC) proteins and enables packaging of 

a large amount of nucleic acids into single cell nuclei. Moreover, the structure of chromatin is inherently 

stable, which is a prerequisite to maintain genomic integrity. 

However, since accessibility of the genomic material is a necessity for the elementary processes of life, 

such as replication or transcription, the cell must arrange for a dynamic and regulated access to its DNA.  

The temporary and spatial control of gene activity is largely accommodated by epigenetic mechanisms 

that influence the development of an organism and are independent from its DNA sequence [1].  

 

 

 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 1: Organization of DNA in the eucaryotic nucleus 
DNA is wrapped around histone octamers to form nucleosomes, which are packaged into higher order structures 
to eventually form the chromosomes.  
Epigenetic writers, readers and erasers modify nucleosomes and hence the accessibility of chromatin. 
Figure adapted from Arrowsmith et al., 2012 [2]. 
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1.2 Epigenetic readouts  

So far, four main regulatory mechanisms have been discovered to inter-dependently modulate the state 

of chromatin, namely DNA methylation, post-translational modification or exchange of histones and 

histone variants, ATP-dependent chromatin remodeling and large intervening non-coding RNAs 

(ncRNAs) [3]. Please find a short discussion of these concepts in the attachment of this thesis (see 

chapter 7). These mechanisms are responsible for the degree of chromatin compaction, which can differ 

from six nucleosomes per 11 nm in euchromatin opposed to 12-15 nucleosomes per 11 nm in 

heterochromatin, largely accounting for the accessibility of the genetic material [4]. Epigenetic 

alterations can be dynamically modified as distinct enzymatic machineries not only implant or 

specifically interact with these marks, but are also capable of removing them. Hence according to their 

mode of action, these protein complexes are referred to as epigenetic writers, readers or erasers  [5], 

which play pivotal roles in the regulation of gene expression. Chromatin remodelers are part of this 

epigenetic machinery and could be classified to be readers and writers as they appear to recognize 

distinct chromatin states and are able to eventually alter these to orchestrate DNA accessibility.   

 

1.3 Chromatin remodelers 

Remodelers are sophisticated and diverse molecular machines that disrupt or remodel protein : nucleic 

acid interactions at nucleosomes but also transcription factors or polymerases using ATP hydrolysis as 

energy source. Hence, the engine of these remodelers is a swi2/snf2 ATPase, which generally is the 

catalytic domain of a scaffold protein that harbors several domains to couple the ATPase with auxiliary 

domains or additional subunits (Figure 2). This ensures a highly precise and tightly regulated mechanism 

for each remodeler and its specific substrates [6].  

According to recent structural models, the remodeler moves along the minor groove of DNA. When the 

remodeler binds to its nucleosomal substrate and the ATPase domain is anchored at a fixed position, the   

torque required for the remodeling process may be generated [7, 8]. The ATPase dependent DNA 

translocation creates a DNA loop, which loosens the interaction between DNA and the histone octamer. 

This in turn gives leeway for a plethora of different subsequent events, depending on additional 

domains of the remodeler or accompanying subunits.  Possible outcomes of the remodeling reaction are 

a positional shift or complete eviction of the nucleosome or the exchange of histone variants. [9, 10] 
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Figure 2: Overview of the modular composition of chromatin remodelers 
A) Domain architecture of several chromatin remodeling enzymes. The CHD and ISWI families are suggested to be 
one structural family. B) The core Swi/Snf ATPase consists of a DEXX and a HELICc domain. C) Several adjacent 
domains of the SF2 (superfamily 2) ATPase have been structurally elucidated. D) Summary of adjacent domains 
with annotated function.  
Figure adapted from Hopfner et al. 2012 [6]. 
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Classification based on the similarity in sequence over the helicase-like region results in six different 

families [11], but generally remodelers are classified into four main families: SWI/SNF, INO80, ISWI and 

CHD [9]. One could argue, that the latter two comprise just one structural family due to the similarity of 

their SANT-SLIDE nucleosomal spacing module [6] and their helicase domain [11]. 

Remodelers of the SWI/SNF family are composed of 8 to 14 subunits, including a pair of actin related 

proteins (Arps), which bind to the adjacent HSA (helicase-SANT) domain of the ATPase [12]. Their unique 

characteristic feature is a C-terminal bromodomain (Figure 2A)[13]. The most prominent family 

members SWI/SNF (Switch/sucrose-non-fermenting) and RSC (Remodeling the state of chromatin) 

disrupt nucleosomes either through repositioning or dissociation. Thereby these complexes execute a 

broad spectrum of sophisticated catalytic reactions in modifying the state of chromatin, which play 

important roles in several cellular processes like replication or transcription [14, 15]. 

Chd1 (chromodomain-helicase-DNA-binding protein 1) and ISWI (imitation switch) catalyze nucleosome 

spacing. While ISWI family remodelers contain 2 to 4 subunits, CHD remodelers are composed of 1 to 10 

subunits. Characteristic domains include a SANT domain (ySWI3, yADA2, hNCoR, hTFIIIB) adjacent to a 

SLIDE domain (SANT-like ISWI) at the C terminus of the ATPase and are important for nucleosomal 

spacing [16, 17]. More recently, the structural equivalent of SANT-SLIDE has been recognized in Chd1, 

which has previously escaped notice due to little sequence homology [18].  

Chd1 additionally harbors a double chromodomain unit that blocks the DNA binding site of the ATPase 

and functions like an internal repressor, which adds another level of regulation complexity [19, 20]. This 

regulatory domain could be involved in augmented functional versatility, as the CHD family seems to 

have roles in activating as well as repressing transcription [21-23]. INO80 and SWR1 on the other hand 

are involved in exchanging histone variants amongst other tasks and will be discussed in more detail 

below.  

The variability of processes catalyzed by these molecular machines that all share the same motor are 

most likely explained by a unique domain structure accompanying the conserved swi2/snf2 ATPase 

across and even within families, which serves as chromatin binding and complex assembling scaffold 

protein (Figure 2A). Hence, specific substrate recognition of the swi2/snf2 ATPase can be facilitated 

either by a combination of accessory domains that bind to specifically modified nucleosomes or by the 

unique compilation of the resulting complex in which specific subunits also bind to histones (Figure 2D).  

Considerable progress has been made over the past few years in structurally elucidating the interplay 

between the swi2/snf2 ATPase with adjunct domains or subunits and their interactions with the 

epigenetic code of nucleosomes. For instance, in the human ISWI homologue NURF (nucleosome 
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remodeling factor), subunit BPTF (bromodomain PHD finger transcription factor) contains a PHD finger 

with an adjacent bromodomain. This combination specifically recognizes nucleosomes that are 

trimethylated at H3K4 and also bear an acetyllysine in their H4 histone tail [24] and it can be easily 

envisaged that the complex structures of multisubunit remodelers generally provide various 

combinations of nucleosome binding platforms. Hence, accessory domains of remodeling enzymes 

recruit additional subunits, recognize the chromatin substrate partially with help of these subunits and 

also regulate the activity of the swi2/snf2 ATPase. For example, a newly identified SnAC domain 

influences the catalytic activity of ATP hydrolysis in swi2/snf2 ATPases [25]. 

Overall, chromatin remodeling complexes are capable of reading epigenetic marks and remodel the 

state of chromatin according to the epigenetic code in a highly regulated manner. 

 

1.3.1 The INO80 family of remodelers 

Recently, it has become clear that the INO80 family of chromatin remodelers (SWR1 and INO80) is 

responsible for the incorporation and eviction of histone variant H2A.Z. While SWR1 deposits H2A.Z into 

chromatin, preferentially into euchromatin at regions flanking silent heterochromatin [26-28], INO80 

antagonistically removes H2A.Z in case it remains unacetylated [29].  

Both remodeling complexes contain more than 10 subunits and have been originally purified and 

characterized from Saccharomyces cerevisiae [26, 30] but have counterparts in higher eukaryotes that 

all have a conserved basic framework of a core remodeler and species specific subunits (table 1) [31-33].  

 
Table 1: conserved and species specific INO80 subunits.  
Table adapted from Conaway and Conaway 2012 [31]. 

 



1. Introduction  10 

 

Unlike other swi2/snf2 ATPases, Ino80p and Swr1p have a large insertion to their HELICc domain, which 

is the characteristic feature of the INO80 family of remodelers [34].  

SWR1-C and INO80 share a conserved set of subunits, namely the AAA+ (ATPases associated with a 

variety of cellular activities) ATPases RvB1/RvB2, and the actin-related protein Arp4 as well as actin. 

Interestingly, the ATPase insertion recruits RvB1/2 to the remodelers [35], which in turn recruit Arp5 to 

INO80 and putatively Arp6 to SWR1 [35, 36].  

A few more interactions between proteins within INO80 or SWR1 are known [37, 38] but the overall 

architecture and topology still need to be elucidated. It has become clear, however, that both 

remodelers consist of functional modules as the loss of one subunit often results in the loss of other 

accompanying subunits as well [36, 39].  

 
Figure 3: The INO80 complex of Saccharomyces cerevisiae  
The yeast INO80 complex consists of 15 subunits and the knowledge on the overall architecture is limited. The 
subcomplex I consisting of Arp8, Arp4 and actin bound to the HSA domain was identified in 2008 [12]. Image 
adapted from [40]. 
 

1.3.2 INO80 functions largely depend on Actin-related proteins 

One important module of INO80 is the Arp8-Arp4-actin subcomplex that assembles at the HSA domain 

of the swi2/snf2 ATPase (Figure 3) [12]. Actin related proteins (Arps) all share the basic actin fold and 

there are 10 different Arps in Saccharomyces cerevisiae, which are conserved from yeast to man with 

the exception of Arp7 and Arp9. Their classification is based on the sequence similarity to actin with 

Arp1 being the most akin and Arp10 the least [41]. The rigid partitioning of Arp1 to 3 and 10 to be 

cytoplasmic while Arp4 to 9 are present in the nucleus [42] has recently been extenuated as for instance 
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the Arp2/3 complex also affects transcription by RNA polymerase II [43, 44]. Nuclear ARPs4-9 associate 

with the multi-subunit chromatin remodeling complexes INO80 [30], SWR1 [28], SWI/SNF [45], RSC [46] 

and the histone actetyl transferase HAT [47] in yeast and their accordant homologues [48].  

 

Table 2: Arp-containing chromatin modifiers in budding yeast and human.  
The table is adapted from Dion et al. 2010 [48]. 

 

Notably, whenever Arp4 is a member of the complex, actin is also recruited to the HSA domain, which is 

the conserved binding platform for most Arps and actin in chromatin modifying complexes [12]. INO80 

comprises actin and the three different actin-related proteins Arp4, Arp5 and Arp8, being the only 

complex harboring as many as four members of the actin family.  

Arp5 and Arp8 are the largest nuclear Arps with usually 600-900 amino acids, due to very large 

insertions emanating from the actin fold [49] and they are indispensable for INO80 complex function as 

arp5Δ and arp8Δ mutants mimic the ino80Δ phenotype [39]. Especially Arp8 has been shown to play a 

plethora of structural and functional roles as an arp8Δ INO80 also lacks Arp4 plus actin and the complex, 

now deprived of this submodule, loses DNA binding capacity as well as ATPase activity [39]. Therefore, it 

is not surprising that Arp8-defective mutants are intensely hampered in DNA repair and cell cycle 

progression [50], since INO80 is involved in these processes [30]. More specifically, yeasts with mutant 

Arp8 are defective in end-processing of gamma radiation induced DNA double-strand breaks (DSBs) [51] 

as well as in sister chromatid and also heteroallelic interchromosomal recombination induced by DNA 

damage [52]. Moreover, Arp8 significantly contributes to the recruitment or retention of Mre11, Ku80 

and Mec1 at a DSB [51]. 

While INO80 in Saccharomyces cerevisiae is recruited to DNA damage sites via Arp4 and Nhp10 in a H2A 

P-Ser129 dependent manner [53, 54], mammalian INO80 seems to be targeted to γ-H2AX foci by its 

Arp8 subunit and not by Arp4, suggesting that the recognition of DNA damage marker by INO80 might 

differ across species [55].  
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The INO80 complex contributes to genome stability via the removal of unacetylated H2A.Z from 

chromatin. Here, the Arp4-Arp8-actin-HSA submodule plays an important role in this regulatory process, 

as the collapsed replication fork phenotype in an arp8 mutant is extenuated via expression of the H2A.Z 

panacetyl mimic H2A.Z-K3, 8, 10, 14Q under conditions that promote replication stress [29]. 

Furthermore, Arp8 binds all four core histones preferring H3 and H4 over H2A and H2B, possibly acting 

as a chaperone for the (H3/H4)2 tetramer [39]. This is strongly corroborated by the finding that the 

arp8Δ phenotype in stress gene induction resembles loss-of-function mutations of the histone 

chaperones Asf1 and Spt6 phenotypes under hyperosmotic stress [56]. 

It was previously thought that Arps only play functional roles within their respective complexes [57], but 

human Arp8 was shown to be enriched on mitotic chromatin and its silencing caused misalignment of 

metaphase chromosomes, while knock down of Arp5 or Ino80 homologs did not [58]. Moreover, yeast 

Arp8 concomitantly supports Arp4’s inhibitory effect on actin filaments in vitro [59] and might therefore 

aid in regulating the state nuclear actin, which can be monomeric or also polymeric [60]. These data 

suggest novel functions for Arps independent of their remodeling complex hosts. 

The Arp submodule assembled at remodelers’ HSA domain together with the post-HSA domain also 

appears to play an intrinsic regulatory role. In Sth1, the ATPase of RSC, several mra (modify the 

requirement for Arps) mutations are able to suppress Δarp phenotypes [12]. Interestingly, these 

mutations cluster in the PTH (post-HSA) domain, located next to the actin-related protein recruiting HSA 

domain, and in protrusion1, a short insertion in the swi2/snf2 ATPase sequence between motif III and IV. 

Therefore, Arps appear to be regulators of the swi2/snf2 ATPase via the antagonistic interplay with 

adjacent domains. 

Before completion of this thesis, only one structure of a nuclear Arp was available [59] and insights on 

the exact nature of their histone binding properties remained to be elucidated just like the enigmatic 

role of nuclear monomeric actin accompanying Arp4 in SWR1, INO80 and NuA4. 

 

1.4 Actin biochemistry 

In order to comprehend the function of actin within chromatin remodelers it is important to understand 

the basic properties of actin, which have been assessed since its first biochemical description in the 

1940s [61]. 

Actin is a versatile protein building block of the cytoskeleton and implicated in intracellular motility, cell 

adhesion and locomotion and also signaling on the cellular level [62, 63] but also important for the 
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function of muscles in multi-cellular organisms [64]. It is structurally and functionally highly conserved 

[65, 66] and one of the most abundant proteins in the cell of eukaryotes, yet still not completely 

understood [67].  

The X-ray structure of actin has been solved in 1990 and comprises a characteristic fold, where four 

subdomains encircle a single nucleotide [68]. A nucleotide binding cleft separates subdomain 2 from 4 at 

the “pointed end” of the molecule, while a target-binding cleft is situated at the “barbed end” between 

subdomains 1 and 3 (Figure 4A). 

 

Figure 4: actin structure and also the filament. 
A) The actin monomer comprises the actin fold with 4 subdomains engulfing the nucleotide. Distinct ends termed 
pointed and barbed end are important for filament contacts. B) Structural model of the actin filament according to 
Oda et al. C) The smallest repetitive unit of the filament is the actin trimer. D) Pointed to barbed end binding of 
adjacent actin building blocks reveal the importance of the DNase binding loop and the target binding cleft. 
Figure adapted from Oda et al. [69]. 
 

Both ends are important for filament contacts as one pointed end interacts with an adjacent actin’s 

barbed end (Figure 4D). A third actin molecule binds to these two actins with its hydrophobic plug at 

their interface to form an actin trimer, which is the smallest repetitive unit of the actin filament (Figure 

4B,D). Basically, all actins in the filament have the same pointed to barbed end configuration and 

therefore the actin filament also possesses these two distinct ends. In the early filament however, 

appearance of a lower dimer of anti-parallel configuration has been reported [70, 71]. 
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Figure 5: actin (de-) polymerization cycle 
The transition between G-actin and F-actin is called actin dynamics. Actin filaments grow by incorporation of ATP-
actin to the barbed end. Within the filament, ATP is hydrolyzed and subsequently the inorganic phosphate is 
released. The ADP-actin filament eventually depolymerizes into ADP-G-actin and nucleotide exchange occurs to 
poise ATP-G-actin for polymerization.  
 

The transition between monomeric G-actin (globular-actin) and polymeric F-actin (filamentous actin) is 

the major property of actin and the basis of actin dynamics, which gives rise to its multitude of 

functions. A plethora of actin-binding proteins influence and fine-tune the properties of actin and hence 

regulate actin dynamics [72]. One key factor in actin dynamics is actin’s nucleotide state. A bound 

nucleotide appears to be essential for the structural integrity of the actin molecule [73], nonetheless 

actin is a filament stimulated ATPase [74]. ADP containing F-actin is less stable and will eventually 

depolymerize. The resulting G-actin can exchange ADP by ATP and reenter the polymerization cycle 

(Figure 5). Physiological actin filament growth occurs at the barbed end side of actin filaments, which 

has a lower critical concentration for polymerization (0.1 µM) compared to the pointed end (0.7 µM) 

[75]. Yet, actin polymerization is no spontaneous reaction as filament nucleation requires stable actin 

dimers or trimers, which are kinetically unfavorable [76]. In this respect, it is interesting to note that 

actin is always accompanied by Arp4 to form heterodimers within chromatin modifying complexes [77]. 
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1.5 The relationship of nuclear Arps and nuclear actin 

It is indeed a puzzling fact that several multi-subunit remodeling complexes have Arps (actin-related 

proteins) and sometimes even actin among their entourage. Actin and Arps have long been known as 

critical components of the cell’s dynamic cytoskeleton, but only for the last two decades a growing body 

of evidence indicates that actin together with Arps is implicated in many nuclear processes as well.  

Polymeric actin has important functions in transcription of polymerases I-III [78-80], which might be 

assisted by the Arp2/3 complex or other actin binding factors [43, 81]. In a recent study, nuclear actin 

filaments (F-actin) are important for pluripotency gene Oct4 (octamer-binding transcription factor 4) 

transcription and hence appear to play a role in reprogramming after nuclear transfer [82].  

Moreover, actin together with nuclear myosin I seems to be implicated in long-range chromatin 

movement [83] and reposition of chromatin loci are linked to altered transcription rates [84]. DNA 

double strand breaks also undergo putatively active transportation as they are redirected to the nuclear 

lamina, if they remain unrepaired [85].  

Interestingly, lamins, which sit at the inner nuclear membrane, have actin binding sites and are capable 

of polymerizing actin filaments in vitro [86]. These lamins interact via nesprins with nuclear envelope 

lamina spanning complexes (NELSCs) and emerin [87]. As NELSCs such as the LINC (linker of 

nucleoskeleton with cytoskeleton) complex are putatively capable of transducing mechanical force via 

the nuclear envelope [88, 89] and emerin binds pointed ends of actin filaments [90], it is quite 

conceivable that actin on both sides of the nuclear envelope plays an important role to transmit stimuli 

to the nucleus to affect transcription via the nucleoskeletal network [91].  

Despite considerable and mounting evidence, that actin is an important factor in transcription it still 

remains enigmatic how actin directly interacts with chromatin. As the primordial nuclear Arp, Arp4 is 

accompanied by monomeric actin in these molecular machines and capable of binding histones, it is 

interesting to probe for the chromatin binding properties and participation in actin dynamics of actin 

and Arps in a remodeler associated subcomplex.  

 

1.6 Aims of the project 

The understanding of the versatile cellular functions of INO80 increases constantly, even though not 

every subunit of INO80 could be assigned to distinct roles yet. The understanding of detailed 
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mechanistic functions goes hand in hand with the availability of structural information on the complex, 

which up to date remains scarce within the literature.  

In order to understand the versatile functions of INO80 mechanistically on a molecular level, it is 

therefore indispensable to acquire more structural information on all parts of this chromatin remodeler.  

Of special interest within INO80 but also other chromatin remodeling complexes are the Actin-related 

proteins and actin itself. Working together as a functional module in case of Arp8-Arp4-actin or possibly 

independent from other Arps like Arp5, they represent a very important group of proteins within INO80. 

Arp4 and of course actin are essential, while Δarp8 and Δarp5 mutants show similar phenotypes as a 

Δino80 mutant, which is viable in some yeast strains but hypersensitive to genotoxic agents. 

Especially the role of actin within the remodeler remains enigmatic. Whether it is a structural switch 

dependent on ATPase activity that fine-tunes Arp properties or if it is involved in processes that require 

actin’s capability to polymerize has not been elucidated. This is at least in part due to the complicated 

handling of chromatin remodeler per se on the one hand and actin itself on the other hand.  The nature 

of nuclear actin within chromatin remodeling complexes however will be important to assess in order to 

understand the function of Arp and actin containing remodelers. 

Therefore this thesis deals with the determination of structural and biochemical features of actin-

related proteins as well as actin in chromatin remodeling and actin dynamics.  
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2.  Materials and Methods 

2.1 Chemicals, Oligos, Enzymes 

Common chemicals were obtained from either Merck (Darmstadt, Germany), Sigma (Deisenhofen, 

Germany) or Roth (Karlsruhe, Germany) unless otherwise stated. Oligonucleotides for cloning were 

bought in HPLC purified grade from Thermo Electron Corporation (Ulm, Germany), Eurofins MWG 

(Ebersberg, Germany) or Metabion (Martinsried, Germany). Enzymes and nucleotides for molecular 

biology were purchased from Fermentas (St- Leon-Rot, Germany), or New England Bioscience (Frankfurt, 

Germany). Chromatographic media and columns that were used for purification were acquired from GE 

Healthcare (Freiburg, Germany). 

Crystallization screens and crystallization tools were obtained from Jena Bioscience (Jena, Germany), 

Hampton Research (Aliso Viejo, USA) or Nextal Biotechnologies (QIAGEN, Hilden, Germany).  

2.2 Molecular Biology 

Within this project a lot of constructs of protein encoding genes have been cloned into different vectors. 

Genes were amplified from genomic DNA or cDNA libraries from various organisms with suitable primers 

(table 3) in a polymerase chain reaction (PCR). For PCR reactions the Phusion Mastermix was used 

(Finnzymes/Thermo, Ulm) and reactions were performed according to the user’s manual. For several 

constructs, overlap-PCRs were required to yield the nucleotide sequence of interest. Hereby, primers 

were designed that amplify fragments of the gene of interest and also partially hybridize with one 

another at the desired gene junctions. A suitable melting temperature of primers for efficient PCRs is 

around 60-70°C, which is achieved with roughly 20 complementary DNA bases. The PCR reaction then 

yields two oligonucleotide fragments that can be tethered together in a subsequent PCR reaction with 

the flanking primers. The primers are added in approximately 0.5 µM concentrations, after the first 

three cycles of the PCR in which the two fragments first serve as mutual primers to yield the tethered 

oligonucleotide that is amplified afterwards. Overlap PCR is a powerful tool to insert point mutations 

into a gene, a cleavable affinity tag or to generate nucleotide sequences that code for fusion proteins. 

For every construct to be cloned, the final 5’ and 3’ primers contained a suitable restriction enzyme 

recognition site and a polyA overhang to facilitate restriction. 

The accordant PCR products were separated from primers and unspecific PCR products on a 1% agarose 

TAE (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) gel via gel electrophoresis in TAE buffer. 6x loading 
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dye x6 (0.15 g/l bromphenol blue, 0.15 g/l xylene cyanol and 50% v/v glycerol) was added to load the 

PCR product on the gel and indicated the running length. PCR products were purified from agarose gels 

using gel extraction kits (Metabion, Martinsried or Macherey-Nagel, Düren/Germany). DNA digestion 

with the accordant restriction enzymes in suitable buffers were performed as recommended by the 

manufacturer and subsequently purified via agarose gels. The plasmids that serve as vectors for the 

transfection of the cloned genes were treated with the same restriction enzymes and additionally with 

alkaline phosphatase to dephosphorylate the restricted plasmid, which prevents re-ligation. Two- or 

three-fold molar excess of the digested PCR product was incubated with the linearized vector in 

presence of T4 DNA ligase and the accordant supplied buffer (Fermentas, St. Leon-Rot, Germany). 

Table 3: Oligonucleotides used for cloning 

primer name 5' - 3' sequence purpose 
Fw_HisPreSci_Nhe_Nco_Nde AAA AAA GCTAGCCATGGCGCAT ATG CAT CAT CAT CAT CAT CAT CAT CAT CTG GAA 

GTT CTG TTC CAG GGG 
Overlap PCR to include cleavable His-Tag 

Fw_HisPreSci_Sal AAA AAA GTCGAC ATG CAT CAT CAT CAT CAT CAT CAT CAT CTG GAA GTT CTG TTC 
CAG GGG 

Overlap PCR to include cleavable His-Tag 

Fw_HisPreSci_Xho AAA AAA CTCGAG  ATG CAT CAT CAT CAT CAT CAT CAT CAT CTG GAA GTT CTG TTC 
CAG GGG 

Overlap PCR to include cleavable His-Tag 

hArp8_SalI_for AAAAAA GTCGAC  ATG ACC CAG GCT GAG AAG GG Rv primer full-length human Arp8 for pFBDM  

hArp8_NotI_rev AAAA GCGGCCGC TCA CCA CAC AAA CGC AGC Rv primer full-length human Arp8 for pFBDM  

hArp8His_SalI_for AAAAAA GTCGAC  ATG CAT CAT CAT CAT CAT CAT ATG ACC CAG GCT GAG AAG GG Fw primer for full length human Arp8 and N-
terminal His-Tag 

Fw_PrSc_hA8_L33 GAAGTTCTGTTCCAGGGGCCC CTG GTG CCG GAG TCG CTG CAA Fw primer N-terminally truncated human Arp8 
for hybridization with cleavable His-tag 

Rv_hArp8_NheI AAAAA GCTAGC TCA CCA CAC AAA CGC AGC Rv primer full length human Arp8 for pET  

Arp8_SalI_His6_TAGzyme_for AAAAA GTCGAC ATG AAA CAT CAT CAT CAT CAT CAT AAA ATG TCG CAA GAA GAA 
GCA GAA TCC AGT ATT ATT 

Fw primer N-terminal His tag – TAGzyme 
cleavage of full-length yeast Arp8 for pFBDM 

Arp8_NotI_Stop_bac AAAAA GCGGCCGC CTA GTA CGT GAA AAT ACA TTT ATA TTG TAA GAT TCT Rv primer full-length yeast Arp8 for pFBDM 

Arp4_SalI_His6_TAGzyme_for AAAAAGTCGACATGAAACATCATCATCATCATCATAAA ATGTCCAATGCTGCTTTGCAAGTT Fw primer N-terminal His tag – TAGzyme 
cleavage of full length yeast Arp4 for pFBDM 

Fw_Arp4_SalI AAAAAGTCGACATGATGTCCAATGCTGCTTTGCAAGTT Fw primer full length yeast Arp4 for pFBDM 

Arp4_NotI_Stop_bac AAAAAGCGGCCGCCTATCTAAACCTATCGTTAAGCAATCT Rv primer full length yeast Arp4 for pFBDM 

yArp4QC-BstZ_for CCAGTCATGGCTTGGCGGTAGCATACTTACAAGTCTGGGAACATTTCACC Elimination of BstZI resriction site in yeast Arp4 
for pFBDM cloning 

yArp4QC-BstZ_rev GGTGAAATGTTCCCAGACTTGTAAGTATGCTACCGCCAAGCCATGACTGG Elimination of BstZI resriction site in yeast Arp4 
for pFBDM cloning 

Fw_act1_SmaI AAAAACCCGGGATGGATTCTGAGGTTGCTGCTTTGG Fw primer to eliminate actin intron and full 
length yeast actin cloning in pFBDM 

Rv_act1_Nco AAAAACCATGGTTAGAAACACTTGTGGTGAACG Rv primer full length yeast actin for pFBDM 

Fw_yHSA_NdeI AAAAAACATATG GCC CGT GCT ATC CAG AGG Fw primer HSA domain (INO80 A462) 

Rv_yHSA_XhoI AAAAAACTCGAG TTA CCT TCC AAT GAA ATG CG Rv primer HSA domain (INO80 K598) 

Rv_HSAX_NheI AAAAAAGCTAGCTTAGAAGTTCAACTCATCTTCCTCCTC Rv primer HSA/postHSA (INO80 F685) 

Fw QC yA4 3xmut GGTAGTATACTTACAAGTGAGGGAACATATCACCAAGAGTGGGTTGGGAAAAAGG L462E; F465Y; L468E mutations for Arp4 

Rv QC yA4 3xmut CCTTTTTCCCAACCCACTCTTGGTGATATGTTCCCTCACTTGTAAGTATACTACC L462E; F465Y; L468E mutations for Arp4 

yArp4_3xQC_E_f GGTAGTATACTTACAAGTGAGGGAACAGAGCACCAAGAGTGGGTTGGGAAAAAGG L462E; F465E; L468E mutations for Arp4 

yArp4_3xQC_E_r CCTTTTTCCCAACCCACTCTTGGTGCTCTGTTCCCTCACTTGTAAGTATACTACC L462E; F465E; L468E mutations for Arp4 

yArp4_L462R_f GGTAGTATACTTACAAGTCGTGGAACATTTCACCAACTGTGG L462R mutation for Arp4 

yArp4_L462R_r CCACAGTTGGTGAAATGTTCCACGACTTGTAAGTATACTACC L462R mutation for Arp4 

yArp4_F465R_f CTT ACA AGT CTG GGA ACA CGT CAC CAA CTG TGG GTT GGG F465R mutation for Arp4 

yArp4_F465R_r CCCAACCCACAGTTGGTGACGTGTTCCCAGACTTGTAAG F465R mutation for Arp4 

yArp4_L468R_f GGA ACA TTT CAC CAA CGT TGG GTT GGG AAA AAG G L468R mutation for Arp4 

yArp4_L468R_r CCTTTTTCCCAACCCAACGTTGGTGAAATGTTCC L468R mutation for Arp4 

Fw_QC_Act G13R GGT TAT TGA TAA CCG TTC TGG TAT GTG TAA AGC polymerization defective actin 

Rv_QC_Act G13R GCT TTA CAC ATA CCA GAA CGG TTA TCA ATA ACC polymerization defective actin 

Fw_QC_Act S14C GGT TAT TGA TAA CGG TTG TGG TAT GTG TAA AGC polymerization enhanced actin  

Rv_QC_Act S14C GCT TTA CAC ATA CCA CAA CCG TTA TCA ATA ACC polymerization enhanced actin 
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Primer Name 5' - 3' sequence purpose 
   

Rv_Act_A4-300 CAACAACGTTTTCTATTC TTA GAA ACA CTT GTG GTG AAC G Reverse primer to hybridize actin sequence 
with downstream genomic sequence of Arp4 

Rv yA4 Strep PreSci TGGACCTTGGAATAAGACTTCCAATTTTTCGAATTAGGATGTGACCATTAAACCTATCGTTAA
GC 

Rv primer Arp4 no stop codon Strep, hybridizes 
with PreSci sequence 

Fw_Actin_GSA GGCTCTGCGGGTTCCGCAGGCAGCGCG ATGGATTCTGAGGTTGCTGC Fw primer actin for fusion protein with N-
terminal linker,  actin C-terminal of Arp4 

Rv_Actin_GSA TGCGGAACCCGCAGAGCCGGCGCTACC GAAACACTTGTGGTGAACG Rv primer actin no stop codon and C-terminal 
linker 

up 500 yA4 Bam AAA AAG GAT CCG CCA AGG CAC CAT CTG CTA CAT ATG C Fw primer amplifies genomic sequence 
upstream of Arp4 

dn 300 YA4 Not AAA AAG CGG CCG CGC TAG CAG TTA TTA CAA CCA TCA TTT TTT CG Rv primer amplifies genomic sequence 
downstream of Arp4 

 

Cloning of multiple genes into one pFBDM vector for insect cell expression was achieved via the 

multiplication module according to a published protocol [92]. Here it is important to note that an 

additional SpeI recognition site is present in the multiple cloning site of the polyhedrin promotor, which 

needs to be eliminated for the multiplication module to work. Additionally, Bst17I digestion of the 

vector is recommended prior to SpeI digestion, since the recognition sequences partially overlap.  

Plasmid transformation into 80 µl competent E. coli XL1 blue cells [93] (table 5) was performed via heat-

shock at 42°C for 60 seconds. Addition of 500 µl of LB medium and incubation at 37°C for 45 minutes 

granted antibiotic resistance of cells that internalized the accordant plasmid and these cells were 

selected on LB agar plates with the appropriate antibiotics (table 4). 

 
Table 4: Antibiotics 

antibiotic concentration (1000x) solvent 

Ampicilin  100 mg/ml water 

Kanamycin 50 mg/ml water 

Chloramphenicol 35 mg/ml ethanol 

Tetraycline 12.5 mg/ml ethanol 

Gentamycin 7.5 mg/ml water 

 

Plasmid DNA from these clones was isolated with a plasmid extraction kit (metabion, Martinsried) from 

5 ml overnight cultures and test-digestions, with the same restriction enzymes that were used for 

cloning, were performed to probe for the successful incorporation of the gene of interest.    
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2.2 Protein Expression 

Protein expression with yields required for crystallization can be a challenging task, especially for 

proteins that are eukaryotic and members of multi-subunit complexes. Therefore, next to the standard 

expression system in E. coli, expression in High Five Insect cells (Invitrogen, Karlsruhe) was necessary for 

some protein constructs. Protein expression in Saccharomyces cerevisiae was only qualitative and not 

preparative during this PhD project and was used to probe for the in vivo effects of mutant protein. 

Yeast strains were obtained from Euroscarf (EUROpean Saccharomyces Cerevisiae ARchive for 

Functional Analysis, Frankfurt, Germany). 

2.2.1 Media and supplements 

Standard protocols were used to prepare standard media LB (Luria Bertani), TB (Terrific broth), YPD 

(yeast extract peptone dextrose) and 1% (w/v) agar was added for the accordant plates [94]. The media 

were supplemented with the respective antibiotics using stock solutions in 1:1000 dilutions prior to use. 

Insect cell media Express Five for High Five insect cell expression was purchased in powder form from 

Invitrogen (Karlsruhe, Germany). 321.9g powder was solved in 10l of water and 3.815g of NaHCO3 was 

added prior to adjustment to pH 6.2. Subsequently, the medium was sterile filtered and stored at 4°C. 

Before use, the medium was supplemented with 50 ml of 200 mM L-glutamine (GIBCO/Invitrogen, 

Karlsruhe) as nitrogen source per liter of medium. In order to prevent bacterial contamination of the 

medium 200 µl of 10 mg/ml gentamycin were also added to the medium. 

For yeast experiments, YPD (1% /w/v) yeast extract, 2% (w/v) peptone, 2% (w/v) dextrose) medium was 

generally used and supplemented with accordant reagents, if necessary (chapter 2.8). For the 

sporulation procedure, GNA (Glucose nutrient broth agar) plates (5% (w/v) glucose, 3% (w/v) Difco 

nutrient broth, 1% (w/v) yeast extract, 2% (w/v) agar) were used as presporulation plates and 

sporulation occurred in 0.005% (w/v) zinc acetate and 1% (w/v) potassium acetate liquid media. Plasmid 

shuffling occurs on plates containing 1% (w/v) FOA (5-fluoroorotic acid).  

  

2.2.2 Protein expression in Escherichia coli 

Protein expression in E. coli was performed according to standard methods [95]. Generally, bacterial 

expression of N-terminally truncated actin-related protein 8 originating from different species coded on 
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pET28 plasmids (Novagen/Merck, Darmstadt) could be expressed soluble in E. coli.  Expression in strains 

Rosetta 2 (DE3) and BL21 (DE3) (table 5) resulted in reasonable yields of purifyable protein.  

 

 
Table 5: E. coli strains used in this research project 

E.coli strain Genotype Source 

XL1 Blue 

recA1 endA1 gyrA96 thi-1 hsdR17 

supE44 relA1 lac [F´proAB lacIqZΔM15 

Tn10 (Tetr)] 

Stratagene, 

Heidelberg 

 

Rosetta 2 (DE3) 
F– ompT hsdSB (rB– mB-) gal dcm 

(DE3) pRARE2 (CamR) 

Novagen/Merck, 

Darmstadt 

 

BL21 (DE3) 

BL21CodonPlus(DE3)-RILB F- ompT 

hsdS (rB- mB-) dcm+ Tetr gal_(DE3) 

endA Hte [argU ileY leuW Camr], extra 

Copies of argU, ileY und leuW tRNA 

genes on ColE1-compatible plasmid 

(CmR) 

Novagen/Merck, 

Darmstadt 

 

DH10MultiBac 

F– mcrA Δ(mrr-hsdRMS-mcrBC) 

Φ80lacZΔ 

M15 lacX74 recA1 endA1 araD139 

(ara, leu)7697 galU galK Δ– rpsL nupG 

/pMON14272 / pMON7124 

Imre Berger 

Redbiotech, 

Schlieren/ 

Switzerland 

 

Several liters of LB medium were inoculated 1:100 (v/v) with overnight cultures of E. coli cells containing 

the gene of interest regulated by a lac operon controlled T7 promotor inducible by IPTG (isopropyl-β-D-

thiogalactopyranosid). Cells were grown at 37°C, 200 rpm (INNOVA 44R Shaker) to an optical density 

OD600nm of approximately 0.7, then chilled on ice and subsequently expression was induced by the 

addition of 0.5 mM IPTG. Cells were then kept on 18°C, 200 rpm overnight and harvested by 

centrifugation at 2000 x g for 15 min and the resulting cell pellet was flash frozen in liquid nitrogen and  

stored at -20°C until required. 
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2.2.3 Protein expression in insect cells 

Expression in High Five insect cells depends on efficient infection with the baculovirus based vector. The 

yield of protein complexes decreases with increasing amount of different viruses. Therefore, the 

incorporation of all genes of interest into one single baculovirus vector is preferred. This is achieved via 

the multiplication module on the pFBDM vector, which theoretically is able to integrate an arbitrary 

amount of genes into one single vector. Via its Tn7 recombination sequence, the vector is then partially 

merged with bacmid DNA through transformation into E. coli DH10MultiBac (table 5). Bacmid DNA is 

propagated in E. coli DH10Bac like a large plasmid that confers resistance to kanamycin and tetracycline. 

The bacmid complements a genomic lacZ deletion, which results in blue colonies (Lac-) in the presence 

of IPTG and 100µg/ml chromogenic substrate X-gal (X-α-galactose). Transposition of the gene(s) of 

interest from the pFBDM donor plasmid into the bacmid disrupts the lacZ sequence enabling blue-white 

screening for recombination events in bacmids. Isolation of recombinant bacmid DNA was achieved with 

Midi Prep kits (Macherey-Nagel, Düren or Quiagen, Hilden). Subsequent transfection of approx. 2 µg 

bacmid DNA with 3 µl transfection agent FuGene (Promega, Mannheim) and 200 µl Sf-900 III serum-free 

medium (Gibco/Invitrogen, Karlsruhe) into 2ml of 0,4x106 mio/ml Sf21 or Sf9 insect cells (table 6) in 6-

well culture dishes led to the first generation of recombinant baculovirus particles (P0) that are 

amplified in successive rounds of infection.  

 

Table 6: Insect cell lines used for virus generation and amplification as well as protein expression 

cell line origin source 

High Five insect cells 
clonal isolate, derived from 

Trichopulsia ni 
Invitrogen, Karlsruhe 

Sf9 insect cells 
clonal isolate, derived from 

Spodoptera frugiperda 
Invitrogen, Karlsruhe 

Sf21 insect cells 
clonal isolate, derived from 

Spodoptera frugiperda 
Invitrogen, Karlsruhe 

 

After four days at 27.5°C, the supernatant of the suspension with the transfected cells is given to 10 ml 

of SF21 cells with a density of 1.0x106
 cells/ml. After another four days of shaking (85 rpm INNOVA 44R 

Shaker) at 27.5°C, cell density and viability was measured in a Vi-Cell counter (Beckmann-Coulter, 

http://de-de.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Cell-Culture/Insect-Cell-Culture/Insect_Cell_Culture-Misc/Sf-900-III-SFM-the-reliable-choice-for-insect-cells.html
http://de-de.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Cell-Culture/Insect-Cell-Culture/Insect_Cell_Culture-Misc/Sf-900-III-SFM-the-reliable-choice-for-insect-cells.html
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Sinsheim). If the density was below 3.0x106 cells/ml, cells were centrifuged 10 min 3000 rpm in a Rotana 

centrifuge (Hettich, Tuttlingen) and the supernatant was sterile-filtered yielding the P1 baculovirus 

generation in suspension, which was kept at 4°C. A first test-expression was performed by infecting 50 

ml High Five cells (1.0x106/ml) with 2ml of P1 virus. If the protein(s) of interest were detected on an SDS-

PAGE gel (see below) after a short purification procedure, 200 ml of Sf21 cells (0.4x106/ml) were 

infected with 2 ml of P1 virus for a second amplification step and incubated for four days at 27.5°C and 

85 rpm in an INNOVA 44R Shaker. After centrifugation, the supernatant containing the new P2 virus was 

filtered through a Stericup filter (Milipore/Merck, Darmstadt) and kept at 4°C in the dark until further 

usage.  

Large scale expression in High Five insect cells was performed by incubating 1-3 l of freshly resuspended 

cells (1.0 x 106 cells/ml) with 1:50 (v/v) of P II virus. Cells were cultured in 5 l flasks at 27.5°C and 85rpm 

for 48-72hrs. Then, cells were harvested by centrifugation (15 min, 3500 rpm, 4°C), flash frozen in liquid 

nitrogen and stored at -20°C until further use. 

 

2.3 Protein purification 

2.3.1 Buffers and solutions 

Generally, all proteins were purified and stored in buffer containing 20 mM Tris-HCl pH 7.8, 100 mM 

NaCl, 5 mM β-mercaptoethanol, 5% (v/v( glycerol. For purification on Ni-NTA resin different amounts of 

imidazole were added to yield washing buffer (20 mM or 35 mM imidazole) or elution buffer (200 mM 

imidazole). Elution buffer for gradient anion exchange chromatography contained 1 M of salt instead of 

100 mM. 

Purification of proteins subjected to lysine-specific cross-linking and also actin dynamics were performed 

in buffers containing EPPS-KOH pH 7.8 instead of Tris-HCl and KCl instead of NaCl. 

Purity of protein samples were analysed via SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel 

electrophoresis).  Samples were denatured in 4x SDS loading dye (50% v/v glycerol, 250 mM Tris-HCl    

pH 6.8, 7.5% w/v SDS, 5 mM EDTA, 10 mM DTT, 0.5% w/v bromphenol blue) at 90°C for 2 minutes and 

separated according to their size on 15% acrylamide gels. 
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2.3.2 Purification of Homo sapiens Arp8 (Δ1-33) 

Truncated human Arp8 amplified from human macrophage cDNA and cloned into pET28 was expressed 

in E. coli BL21 (DE3) cells. The cell pellet from 18l expression culture was resuspended in 100 ml Tris-HCl 

buffer supplemented with protease inhibitors (Roche, Penzberg/Germany). Cells were lysed by 

sonication and cell debris was removed by centrifugation (40 000 x g, 45 min, 4°C).  The supernatant was 

incubated for 1 h with Ni-NTA resin (Qiagen, Hilden) at 8°C and subsequently purified using gravity flow 

with three wash steps of 3 column volumes of standard buffer containing 0, 20 and 35 mM imidazole. 

Bound protein was eluted with buffer containing 200 mM imidazole. The eluate was applied to a Q 

sepharose column (GE Healthcare, Heidelberg) and the flow-through containing the histidine-tagged 

protein was supplemented with PreScission Protease (GE Healthcare, Freiburg) to cleave off the N-

terminal affinity tag and dialysed against Tris-HCl buffer overnight at 4°C. The protein solution was 

centrifuged (40 000 x g, 20 min., 4°C) and the supernatant was incubated with GSH sepharose (GE 

Healthcare) to remove GST-fused PreScission protease. 

The flow-through was again applied to a Ni-NTA resin and the obtained flow-through was further 

purified via size exclusion chromatography with a Hiload Superdex-200 26/60 (GE Healthcare, Freiburg). 

The protein was concentrated up to 14 mg/ml in Amicon ultra centrifugal filters (Millipore/Merck, 

Darmstadt), flash-frozen in liquid nitrogen and stored at -80°C until required.  

 

2.3.3 Purification of Homo sapiens full-length Arp8  

The Arp8 coding gene was amplified from human macrophage cDNA with primers containing SalI and 

NotI restriction enzymes and coding for an N-terminal hexahistidine tag and cloned into the pFBDM 

vector (Redbiotech, Schlieren/Switzerland). Protein expression was achieved according to a published 

protocol [96]. The purification protocol was similar to that for the N-terminally truncated hArp8 

construct but without PreScission protease cleavage and subsequent GSH- and second Ni-NTA 

purification. 

 

2.3.3 Purification of Saccharomyces cerevisiae Arp8 and Arp4 

Cloning, expression and purification were performed as described previously [59, 97]. 
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2.3.4 Purification of Saccharomyces cerevisiae INO80 subcomplex I 

S. cerevisiae Arp4, Arp8, actin and a prolonged Ino80 HSA domain (A462-F685) were cloned into the 

pFBDM vector. A sequence coding for a PreScission protease cleavable N-terminal octahistidine tag was 

added to the coding sequence of Ino80 (A462-F685). Two plasmids were merged to a single pFBDM 

vector carrying all four genes of interest and protein expression in High Five cells (Invitrogen, Karlsruhe) 

was accomplished according to a published protocol [96]. The protein subcomplex I was purified 

similarly to full-length human Arp8 with the exception that a linear gradient with high salt buffer          

(20 mM Tris-HCl pH 8.0, 1 M NaCl, 5 mM β-mercaptoethanol and 5 % (v/v) glycerol) was applied to elute 

the subcomplex from the Q sepharose column (GE Healthcare, Freiburg) prior to size exclusion 

chromatography.   

2.3 Analytical size exclusion chromatography and static light scattering  

Preparative size exclusion chromatography (SEC) is a final step in most protein purification procedures 

to yield monodispersed samples. Since the elution behavior of proteins or protein complexes depends 

on their size or rather hydrodynamic radius, analytical gel filtration can also be used to estimate the 

molecular mass of a sample and hence the state of oligomerization. A standard protein mixture with 

globular proteins of known molecular masses gives rise to elution peaks that elute linearly according to 

the logarithm of their mass. The used standard sample contains thyroglobulin (670 kDa), bovine gamma-

globulin (158 kDa), chicken ovalbumin (44 kDa), equine myoglobin (17 kDa) and vitamin B12 (1.35 kDa) 

(Bio-Rad, Munich, Germany). A resulting trend line allows estimating the molecular mass of a new 

sample. 

The elution volumes from a Superdex 200 15/150 GL column, or alternatively Superose 6 PC 3.2/30 

column connected to an Ettan LC System (GE Healthcare, Freiburg, Germany) were used to estimate the 

molecular weight of a sample by SEC. It must be noted, that alterations to a globular fold dramatically 

change the hydrodynamic radius and make an accurate molecular mass determination difficult. To 

overcome this problem, static light scattering (SLS) can be employed after size exclusion 

chromatography. The protein sample scatters monochromatic light according to its molecular weight. If 

the laser intensity, the quantum efficiency of the detector, the full scattering volume and solid angle of 

the detector are known, SLS allows calculating the molecular mass of the protein sample from its light 

scattering intensity.  
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Here, molecular weight determination by SEC/SLS was performed using an ÄKTAmicro system with a 

Superdex 200 15/150 GL column (GE Healthcare), which is connected to a static light scattering / 

refractive index measurement device (Viscotek TDA270). For measurements, the supernatant after 

centrifugation (15 min., 16100 rpm, 4°C) was used. The system was calibrated with a sample of BSA 

(66.5 kDa) prior to the measurements of the samples and an independent BSA run at the end confirmed 

calibration and stability of the system. Data evaluation was performed using the OmniSEC software 

package.  

2.4 X-ray crystallography  

For detailed theoretical explanations of protein crystallography and X-ray diffraction based structure 

determination refer to several excellent text books on these topics [98-100]. A brief description of the 

technique is described in this chapter. 

2.4.1 Protein crystallization 

Proteins precipitate in supersaturated solutions driven by the thermodynamics of protein-protein 

interactions. In order to obtain protein crystals, this “precipitation” must occur in an ordered manner so 

that distinct protein interfaces regularly contact each other giving rise to crystal contacts and eventually 

crystal growth. This is dependent on a plethora of different parameters such as protein concentration, 

temperature, pH and the characteristics of one or more precipitants, which amongst others can be salt, 

certain polymers or organic acids.  Crystal growth is the bottleneck for X-ray diffraction based structure 

determination and an empirical process for every protein. Hence, screening of many different conditions 

is usually a prerequisite to find suitable parameters that result in protein crystals, which then have to be 

optimized to yield crystals that give rise to sufficient diffraction for structure determination. Generally, 

vapor diffusion methods are used for screening and optimizing.  Here, the concentrated protein solution 

is mixed with precipitant in solution in one drop that could hang (hanging drop technique) or sit (sitting 

drop) above a reservoir of the precipitant solution in a hermetic chamber. Due to the higher 

concentration of precipitant in the reservoir water evaporates from the protein drop, which increases 

the concentration of the precipitant within this drop slowly until equilibrium is reached. The correct 

parameters yield crystals that generally need to be optimized in order to sufficiently diffract X-rays to 

solve the atomic structure of the protein. 

After initial hits in the Magic1 screen (AG Conti, MPI Martinsried), crystals of human Arp8 (Δ1-33) were 

refined to grow at 16°C in 3.9 M NaCl, 0.5 % (v/v) methanol, 50 mM Mes pH 6.1, mixed 1:1 (v/v) with  
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4.5 mg/ml protein solution in hanging drop vapor diffusion. Seeding with the obtained small but regular 

crystals yielded rod shaped crystals of up to 500 µm length after 4-5 weeks at 10°C. Crystals were 

cryoprotected for data collection in a buffer containing 50 mM Mes pH 6.1, 3.5 M NaCl and 25 % (v/v) 

glycerol. 

 

2.4.2  X-ray diffraction 

Within the wide spectrum of electromagnetic waves, X-rays have wavelengths between 0.1 and 10Å 

(1Å=10-10m). According to the Abbé limit, two points are only recognized as individuals, if the 

wavelength of the electromagnetic radiation used for observation approximates their distance. For 

atomic bonds with a typical length of 1.497Å for a Cα-Cβ bond [101], X-rays have the required 

wavelengths. Diffraction or rather elastic scattering occurs upon interaction of X-rays with electrons of 

the proteins. Due to the repetitive order of proteins within a crystal, some diffracting X-rays do not 

cancel each other out but interfere constructively with respect to the crystal lattice, which leads to a 

distinct diffraction pattern of several spots that can be recorded on a detector. The scattered waves only 

positively interfere, if distance d and angle θ between incident beam and imaginary lattice planes fulfill 

Bragg’s law with n being an integer and λ the wavelength.  

                     

The spots on the detector then can be envisaged as the result of reflections at these parallel lattice 

planes, whose spacing and orientation are classified by the Miller indices h, k and l.  

 

2.4.3 Solving the phase problem for the electron density calculation 

The diffracting entity of the protein crystals are the delocalized electrons and can be described by the 

electron density distribution ρ, which is a periodic function due to the regular repetition of  proteins 

within the crystal. Hence for each point (x,y,z), a Fourier transformation can be applied to calculate the 

electron density ρ, which represents the summation of each structure factor F (h,k,l) in a normalized unit 

cell. 
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Every atom j at (x,y,z) has a distinct scattering power, which depends on the atom type giving rise to an 

atomic scattering factor fj. Since all atoms contribute to the scattering, the sum over all atomic 

scattering factors yields the structure factor F (h,k,l).   

 

 (     )  ∑         (           )   
         

   
 

   
 

 

The last term of the equation,  
         

   
, is the B- or Debye-Waller factor and takes the thermal 

disorder into account. Hence, the structure factor F describes the scattering of the incident X-ray beam 

by the protein crystal and the intensity of a given reflection (hkl) is proportional to the square of the 

structure amplitude |Fhkl|, which is the measured entity in a diffraction experiment. 

Since the electron density ρ of the protein must be determined to yield a molecular model and ρ is 

related to F (h,k,l) by a direct Fourier transformation (Fourierintegral) an inverse FT must be applied to 

the structure factors.   

 (     )    ∫ ∫ ∫  (     )      (        )        

 

   

 

   

 

   

 

 

Even though the structure factor F (h,k,l) can be readily deduced from a known atomic structure, de 

novo structure determination faces the inverse problem, since F (h,k,l) is a complex number that is 

composed of the structure amplitude |Fhkl| as well as  phase information α (h,k,l) and the latter is lost 

during the experiment.    

 (     )  | (     )|       (     )  

 

This is the so called “phase problem” of crystallography, which needs to be solved in order to be able to 

determine the electron density distribution ρ of the protein based on the diffraction data. 

 

 (     )  
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Several approaches have been developed to solve X-ray structures de novo including isomorphous 

replacement and anomalous scattering techniques, or a combination thereof. Here, anomalous 

scatterers that diffract stronger compared to the relevant atoms within proteins are added.  
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Due to the availability of many high resolution structures and the modular composition of many proteins 

with structurally conserved domains, molecular replacement is often a suitable method.  

Hereby, phases can easily be derived from known structures and used as a starting point for the 

interpretation of new diffraction data. In this thesis, molecular replacement was applied to solve the 

structure of Arp8 using the known structure of Arp4 (pdb entry: 3QB0) as search model. 

The available structural model can be rotated and translated to fit into the electron density of the 

unknown structure, which renders the replacement to be a 6-dimensional search problem (or two 3 

dimensional searches). The Patterson function is a Fourier transformation of the measured intensities at 

phase angle 0° and an important equation to obtain phase angles in molecular replacement as it results 

in the Patterson map, which depicts interatomic distance vectors. 

 

 (     )  
 

 
∑| (     )|       (        ) 

   

 

 

The Patterson unit cell (u,v,w) and the real unit cell (x,y,z) have the same dimensions and therefore 

translation and rotation of the model structure’s Patterson map can be compared with the crystal 

diffraction data. Newly derived coordinates of the molecules in the unit cell give rise to structure factor 

amplitudes |Fcalc| and the respective phase angles αcalc, which then iteratively are approximated onto 

the experimentally derived structure factor amplitudes|Fobs|.  

 

 ( )  (|    |  |     ( )|)          ( )  

 

One major problem in this approach is the danger of introducing substantial bias from the model 

structure onto the new structure. An Fo-Fc difference electron density map helps to minimize the bias 

and marks regions of model bias within the density, when compared to the 2Fo-Fc map used for model 

building. 

 ( )  ( |    |  |     ( )|)          ( )  

 

One important measure for minimization of model bias is the Rfree, which relates measured reflections 

that were not used for structure refinement, to validate how well the model fits to the data. 
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2.4.4 Data collection and structure determination of Homo sapiens Arp8 (Δ1-33) 

Diffraction data to a resolution of 2.6 Å were collected on a single crystal of human Arp8 (Δ1-33) at 100K 

and a wavelength of 1.0 Å at beamline X06SA (Swiss Light Source, Villingen, Switzerland). Subsequently, 

the experimental reflection spots were processed and scaled with XDS and XSCALE [102] in space group 

20 (C2221). As Arp8 was predicted to have a basal actin fold as core structure, actin and Arp4 structures 

were plausible models for molecular replacement approaches. The structure of Arp8 has eventually 

been solved with a model derived from  yeast Arp4 (pdb: 3QB0) with all non-identical residues cut at the 

β-carbon atom using CHAINSAW [103]. Molecular replacement was automatically carried out with 

PHASER [104] with one molecule of human Arp8 per asymmetric unit. 

An initial model of high quality was obtained using cycles of automated model building with ARP/wARP 

[105] and BUCCANEER [106] in the CCP4 Suite [107] and completed by manual building with COOT [108]. 

Refinement with PHENIX [109] finally resulted in a 2.6 Å structure with good stereochemistry and 

reasonable R factors of Rwork/Rfree  of 16.0/20.4 %. Coordinates have been deposited in the Protein Data 

Bank (accession code 4FO0). 

The simulated annealing 2FoFc omit map for a bound ATP molecule was calculated using CNS [110, 111] 

and the images for this thesis were generated using PyMol [112] and Chimera [113]. 

 

2.5 Small angle X-ray scattering (SAXS) 

Via small angle X-ray scattering, structural information can be deduced from concentrated proteins in 

solution, albeit with low resolution. Sample preparation is easy, when compared to protein X-ray 

crystallography and electron microscopy and SAXS poses no size restriction onto the measurable sample 

like nuclear magnetic resonance (NMR). Even though SAXS is not quite suitable as stand-alone structural 

technique, it can provide valuable information on the behavior of macromolecules in solution and thus, 

for example, help to identify crystal artifacts.  

Hence, the technique complements the interpretation of high resolution structural data as the 

combination of SAXS and X-ray crystallography can provide interactions and assemblies of proteins 

within complexes or annotate crystallized domains within protein envelopes. SAXS is also suitable to 

monitor conformational changes upon substrate binding etc. that would otherwise disrupt crystal 

lattices [114].  
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Especially for protein complexes that are too flexible to be studied by X-ray crystallography, SAXS is a 

valuable complementary method, which is described in detail in reviews [114, 115] and only briefly 

explained here.  

Just like in X-ray crystallography, a SAXS experiment measures the scattering of the incident X-rays by 

the electrons of the sample. But instead of an orderly arrangement along lattice points, the scattering 

molecules are randomly distributed in solution. It is important to note that the buffer majorly 

contributes to the scattering and accurate blank measurements for normalization are important.  

The scattering curve is a cross-section via the radially symmetric (isotropic) pattern and describes the 

scattering intensity I(s) as a function of the momentum transfer   
      

 
  with 2θ being the scattering 

angle. 

At low resolution the scattering is dominated by the contribution of the radius of gyration (RG), which 

describes the average distance of each single scatterer from the center of the particle that diffracts X-

rays. Therefore, with help of the Guinier approximation at low resolution, where log(I(s)) is plotted 

against s2 should yield a straight line,  one can determine the size and hence the RG of the scatterer. 

 ( )       
 
 
  

   

 

 

The Guinier plot also assists in extrapolating I0, which can be used for molecular weight determination as 

it is unaffected by particle shape and displays merely the square number of electrons within the 

scattering particle. Higher s values bear information about the molecular shape of the particle.  

In order to obtain spatial information of the scattering particle, it is important to extract direct 

information about the distances between its electrons. This is achieved using the pair-distribution 

function p(r), which is an autocorrelation function calculated via a Fourier transform of the scattering 

curve, similar to the Patterson function in crystallography. 

 ( )  
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The pair distribution function is a real space representation function that directly provides information 

about the molecule’s shape, as theoretically the p(r) function is zero at r = 0 and at r ≥ Dmax, with Dmax 

corresponding to the maximum diameter of the scattering particle.  Since Dmax can only be estimated 

and not calculated from the experimental data, reasonable Dmax values are chosen and then it is analyzed 

how well the corresponding p(r) distribution fits the scattering data. 
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The determination of the solution structure is then performed via a computational ab initio approach. 

According to the chosen maximal diameter of the structure the program GASBOR fills the accordant 

space with dummy beads that represent amino acids. The algorithm follows a trial and error approach in 

which for every possible state the theoretical scattering curve is computed and subsequently compared 

with the experimental data. These curves should align in iterative steps, leading to a dummy bead model 

which represents the scattering particle. For this minimization problem, additional restraints like a 

constant density within the molecule help to give rise to reasonable models. The quality of the resulting 

model can be tested upon the comparison of several GASBOR runs that yield individual models, which 

are subsequently aligned and averaged. All computed structures should be relatively uniform within the 

resolution range and the NSD (nominal spatial discrepancy) values of the averaged structures should be 

as close to 1 as possible.  

All protein samples for SAXS measurements were purified as stated above (chapter 3). Flow-through of 

the concentration step was used as buffer reference for the measurements. All SAXS data were collected 

at beamlines X33, EMBL/DESY (Hamburg, Germany) or ID14-3, ESRF (Grenoble, France) at a cell 

temperature of 20°C. The molecular weight of protein samples in solution was estimated according to 

Porod volume analysis [116].  

Human Arp8 was measured at a protein concentration of 6.15 mg/ml (full-length) or 1.5 mg/ml 

(truncated hArp8 Δ1-33). Data were processed with the ATSAS package [117]. Guinier analysis yielded a 

radius of gyration Rg= 3.1 nm and showed no obvious signs of aggregation. The Kratky plot shows a bell 

shaped curve indicating that hArp8 is folded in solution [116]. A set of 16 independent ab initio 

structures was calculated using GASBOR without any symmetry information given. One representative 

GASBOR model was chosen for representation (chapter 3.3.1) as all ab initio models are highly similar 

(nominal spatial discrepancy (NSD) values of approx. 1.0 [118]) and the bead model was transformed to 

an electron density using the SITUS package [119]. The theoretical scattering data of the atomic model 

were calculated with CRYSOL [120] and compared to the experimental scattering data. 

 

 2.6 Methods in actin biochemistry 

The properties of Arp4 and truncated Arp8 in actin dynamics have been published together with the 

structure of Arp4 [59]. This work was performed in close collaboration with Dr. Breitsprecher (AG Faix, 

Hannover) who also prompted the work on the subcomplex I (Arp8-Arp4-actin-HSA), which was 

continued in our laboratory. 
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2.6.1 Pyrene actin assays 

Actin for assays was purified from rabbit muscle. The batch was divided and partially labeled with 

pyrene according to standard protocols [121]. Prior to the actin dynamics experiments, actin and pyrene 

actin were mixed in appropriate ratios (5-20% pyrene-actin) and then Ca2+-ATP-actin was transformed 

into Mg2+-ATP-actin with 10x Mg exchange buffer (20 mM Tris-HCl, pH 8.0, 2 mM ATP, 1 mM MgCl2, and 

0.5 mM DTT). For the actin assembly assays, proteins of interest were diluted in a storage buffer (20 mM 

EPPS-KOH, pH 8.0, 100 mM KCl, 5 mM ß-ME, 2% (v/v) glycerol,) and 10x KMEI buffer (500 mM KCl,        

10 mM MgCl2, 10 mM EGTA, and 100 mM imidazole, pH 7.3) was added. 10% pyrene labeled Mg2+-ATP-

G-actin (in 2 mM Tris/HCl, pH 8.0, 0.2 mM ATP, 0.1 mM CaCl2, and 0.5 mM DTT) in a final concentration 

of 4 µM were pipetted into a 96-well plate (Greiner, Frickenhausen). The assembly reaction was started 

by transferring the KMEI protein solution containing the Arps and the Arp subcomplex in different 

concentrations to the pyrene labeled actin. The polymerization of actin was monitored by measuring the 

fluorescence increase of pyrene actin (excitation at 364 nm and emission at 407 nm) in a Tecan Infinity-

1000 plate reader (Tecan) for at least 1500 seconds. For polymerization experiments with Mg2+-ADP-

actin monomers, all buffers contained ADP instead of ATP. The relative polymerization rate was derived 

from the slopes of the fluorescence increase of, where 10–50% of the actin polymerized, while F-actin 

amounts at steady state was determined by measuring pyrene fluorescence 16 h after star 4°C of the 

reaction. 

To analyze the effects of the subcomplex I on F-actin polymerization, 40 µM (20% pyrene labeled) Mg2+-

ATP-actin was polymerized overnight in KMEI-buffer. The assays were performed by rapidly mixing 10 µl 

of the subcomplex in KMEI buffer with 90 µl of a solution of 2 µM F-actin. For spontaneous 

depolymerization, the actin/pyrene-actin mix was diluted to 100 nM and decrease in fluorescence was 

measured at 407nm. 

The polymerization in G-buffer (2 mM Tris/HCl, pH 8.0, 0.2 mM ATP, 0.1 mM CaCl2, and 0.5 mM DTT) of 

actin was performed in presence of different concentrations of the subcomplex. Generally, actin cannot 

polymerize on its own under the low salt condition in G-buffer. Change of pyrene fluorescence was 

measured in a Tecan Infinity-1000 plate reader (Tecan, Männedorf/Switzerland) at 407nm in presence of 

subcomplex I in G-buffer. 
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2.6.2 Actin polymerization measured by light scattering 

Light scattering as complementary assay was used to monitor actin filament growth. Here, a 1 ml quartz 

cuvette was filled with a final concentration of 4 µM G-actin in G-buffer. Polymerization was rapidly 

started by addition of KMEI buffer containing high concentrations of subcomplex I. Since scattering 

intensity is dependent on the size of the scattering particle, the polymerization of actin can be 

monitored by measuring the absorption at 232 nm in a Jasco V-630 Photometer (Jasco, Easton/USA). 

 

2.6.3 In vitro TIRF microscopy  

Total internal reflection fluorescence microscopy (TIRFM) is a microscopic technique that monitors 

fluorescence and concomitantly largely reduces background. The incident angle of the exciting laser is 

chosen to create an evanescent wave at the interface between a special immersion oil and the aqueous 

protein solution, which excites the fluorophores that are close to the interface. Fluorescently labeled 

actin allows for the study of nucleation and growth of single actin filaments [122]. All TIRF experiments 

were performed by Dr. Breitsprecher according to previous work [123]. 

 

2.6.4 Pointed end elongation assay 

F-actin (20% pyrene-labeled) was used at diluted assay concentration of 20 nM capped by 3 nM CapZ, 

which enables seeding of pointed end elongation. Then, monomeric actin (also 20% pyrene labeled) was 

added to polymerize to the CapZ covered seeds at the pointed end. Fluorescence was monitored as a 

signal of polymerization. The Arp8-Arp4-actin HSA subcomplex was complemented in different final 

concentrations in independent assays and its direct impact on pointed end elongation was measured at 

407 nm.  

 

2.7 Protein cross-linking and mass spectrometry analysis 

The crystallization of protein complexes is inherently difficult and only a small fraction of the many 

identified protein complexes have been structurally characterized [124]. Challenging multi-subunit 

protein complexes such as INO80 are very unlikely to crystallize as a whole and only a divide and 

conquer strategy with hybrid methods seems feasible to elucidate their macromolecular assembly. One 
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elegant approach is the lysine specific cross-linking of protein complexes with subsequent trypsin 

digestion and mass spectrometry analysis, which has recently been established as an integral part of 

hybrid structural studies of protein complexes [125, 126]. 

In order to elucidate the relative arrangement of the Arps and actin, an equimolar mixture of isotopically 

light and heavy labeled DSS (disuccinimidyl suberate; Creative Molecules, creativemolecules.com) was 

solved in DMF (Dimethylformamide, Sigma-Aldrich) to yield a stock solution with a final concentration of 

50 mM. DSS was mixed with the aqueous protein solution containing the Arp8-Arp4-actin-HSA module 

to yield approximately 1 DSS molecule per lysine in the protein subcomplex. The cross-linking reaction 

was then incubated at 900 rpm and 30°C in a tabletop shaker (Eppendorf, Hamburg) for 30 min and 

quenched by addition of ammonium bicarbonate to a final concentration of 50 mM and further 

incubation at 37°C, 900 rpm for 10 min. The cross-linked protein complex was further purified by a 

Superose 6 PC 3.2/30 gel filtration column (GE Healthcare, Freiburg) on an Äkta Micro System (GE 

Healthcare). The cross-linked protein fraction that eluted at the same volume as the corresponding 

uncross-linked protein complex was pooled and flash frozen in liquid nitrogen prior to preparation for 

mass spectrometric analysis.  

The protein digestion, tandem mass-spectrometry and evaluation of the inter-protein cross-links were 

performed by Dr. Franz Herzog at the ETH Zürich according to an established protocol [126]. 
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2.8 Yeast genetics 

2.8.1 Replacment of Arp4 by accordant mutants in a BY yeast strain 

A heterozygous S. cerevisiae Arp4 (YJL081c) deletion strain was purchased from Euroscarf (Frankfurt, 

accession number Y21342). A pRS316 vector carrying the wild-type gene of Arp4 with the flanking 

genomic sequence (500 basepairs upstream and 300 bp downstream of the open reading frame) was 

transformed into the BY yeast cells prior to sporulation. 

 

Table 7: Yeast strain used for in vivo assays 

S. cerevisiae strain genotype source 

BY4743 

Mat a/; his31/his31; leu20/leu20; 

lys20/LYS2; MET15/met150; 

ura30/ura30; YJL081c::kanMX4/YJL081c 

Euroscarf, Frankfurt 

 

 

 Sporulation was achieved according to a standard protocol with previous growth on nutrient rich GNA 

(glucose, nutrient broth, agar) plates and subsequent sporulation for seven days at 25°C and gentle 

shaking in minimal medium with 1% (w/v) potassium actetate and 0.005% (w/v) zinc acetate. 

Sporulation efficiency was below 10% but sufficient tetrads could be dissected. Tetrads were separated 

after zymolyase (G-Biosciences) lysis of the cell wall. Complete tetrads were grown on YPD and 5-FOA 

agar plates and selected for the Arp4 knock out cells that were complemented with the pRS316 +500 

Arp4 -300 vector harboring the URA3 gene. Expression of the URA3 marker on pRS316 is lethal in 

presence of 5-fluorooretic acid and Arp4 is an essential gene. Hence, when all 4 tetrads give rise to 

viable colonies on YPD but only two of these colonies survive on 5-FOA, the other two colonies on YPD 

are Arp4 knock-out strains harboring the pRS316 +500 Arp4 -300 plasmid.  

Additional transformation of pRS315 containing a mutant Arp4 gene with the genomic flanking regions 

(+500/-300) was required prior to plasmid shuffling. Selection occurred on -Leu plates, as pRS315 also 

codes for the LEU2 marker gene. 

Plasmid shuffling enables to substitute the essential Arp4 gene with Arp4 mutants, which were cloned 

onto a pRS315 vector. Subsequent colony growth on two subsequent 1% (w/v) FOA (5-fluorooretic acid) 

YPD or -LEU agar plates selected for yeast colonies harboring only the pRS315 plasmid. 
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A gene coding for a fusion protein of Arp4 and actin connected by a Strep II, PreScission site and FLAG 

linker between Arp4’s C- and actin’s N-terminus, with the flanking genomic sequence of Arp4 was also 

cloned onto the pRS315. Plasmid shuffling on 5-FOA plates with Δarp4 strains bearing pRS316 +500 Arp4 

-300 replaced Arp4 with the accordant fusion protein.  

 

2.8.2 DNA damage hypersensitivity of Arp4 mutants 

Different Arp4 mutants as well as Arp4-actin fusion constructs with actin or Arp4 mutations were 

compared with the wild-type complemented yeast strain with respect to their generation time and also 

with respect to their resistance to genotoxic agents such as 20 mM HU (hydroxyurea), 0.005% MMS 

(methyl methanesulfonate), 5 µl/ml CPT (camptothecin)  or 0.19 µg/ml 4-NQO (nitroquinoline-1-oxide). 

HU is an inhibitor of ribonucleotide reductase and therefore leads to DNA double strand breaks due to 

stalled replication forks [127]. MMS induces heat-labile damage that is repaired by the base excision 

repair, not by homologous recombination (HR) in both S. cerevisiae and mammalian cells. The reason 

that recombination-deficient cells are sensitive to MMS is due to the role of HR in repair of MMS-

induced stalled replication forks [128]. CPT binds to a topoisomerase I - DNA complex and impairs 

transcription and DNA replication, resulting in fork stalling and in subsequent formation of DNA double-

strand breaks [129]. 4NQO has often been referred to as a UV mimetic agent. DNA damage caused by 

4NQO is therefore repaired by nucleotide excision repair, but 4NQO might also lead to chromosomal 

breaks [130]. 

 

2.9 Electron microscopy 

Electron microscopy uses highly accelerated electrons to push the Abbé limit towards nanometer 

resolution. In case of highly symmetric structures, such as icosahedral viruses, cryo-electron microscopy 

can reach near atomic resolution [131]. The major limitation of electron microscopy in structural biology 

is the required size of the protein specimen, which is roughly supposed to be larger than 200 kDa. 

Biological samples do not provide high contrast as they are not electron-dense and interact weakly with 

electron radiation. Therefore, heavy atom staining with i.e. uranylacetate is a common method to 

produce phase contrast. Compared to cryo-EM, uranylacetate stained probes are less affected by 

radiation damage and sample preparation is relatively easy.  The drawbacks of heavy atom staining are 
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limited resolution and possible artifacts due to unevenly distributed stain and the granular or 

microcrystalline nature of desiccated uranyl-acetate [132].  

In order to assess a possible interaction of the subcomplex I (Arp8-Arp4-actin-HSA) or Arp4 and Arp8 

alone with actin filaments, the proteins were incubated with 5 nm Ni-NTA nanogold, which targets His-

tagged proteins [133]. This was performed by Dr. Kristina Lakomek (AG Hopfner). Arp4 and Arp8 used 

for this experiment contained an N-terminal hexa histidine-tag, while the HSA domain within 

subcomplex I was conjugated with an N-terminal octo His-tag. Prior to use, the nanogold-labeled 

proteins were purified by size exclusion chromatography on an S200 5/150 GL column from possible 

aggregates and excess of nanogold to obtain monodisperse samples. 

Actin was polymerized in KMEI buffer (according to chapter 2.6.1) for 30 min to yield a stock of 5 µM 

actin filaments. F-actin with a final concentration of 2 µM was incubated with 0.02 µM of gold-labeled 

and SEC purified Arp4, Arp8 or subcomplex I for 30 minutes at 4°C. Subsequently staining was 

performed with 2% uranyl-acetate and the samples were subjected to carbon coated copper grids 

(kindly provided by Charlotte Ungewickell, AG Beckmann), air-dried and kept at room temperature until 

further use. 

Electron microscopy images with different magnifications were taken with a Morgagni 100kV electron 

microscope (FEI, Eindhoven/Netherlands) and captured by a side-mounted SIS Megaview 1K CCD 

camera. 

 

2.10 Protein biochemistry 

2.10.1 ATPase assay 

Actin-related proteins bear an ATP binding site and are therefore potential ATPases. Actin itself is a very 

weak ATPase as a monomer but is activated in the filaments or upon factor binding to its target binding 

cleft. All Arps as well as the Arp8-Arp4-actin-HSA subcomplex I showed no significant activity in a 

BIOMOL green assay (Enzo Life Sciences) under standard conditions and therefore we probed for ATPase 

activity using a more sensitive ATPase activity assay with radioactively labelled ATP. 

All reactions were performed in 50mM Tris-HCl pH 7.9, 100mM NaCl, 2mM MgCl2, 2mM DTT with        

100 µM ATP including 5nM radioactively labeled [γ-32P]ATP (Hartmann Analytic, Braunschweig). 

Increasing concentrations of protein (yeast Arp4, yeast Arp8, yeast subcomplex I, human Arp8) were 

incubated in presence or absence of nucleosomes or constituents thereof at 30°C for 30 min or 4 h. Free 
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phosphate, indicative of ATP hydrolysis and also nucleotide exchange, was separated by thin-layer 

chromatography on TLC PEI cellulose F (Merck, Darmstadt) with 1 M formic acid containing 0.5 M LiCl, 

then incubated on storage phosphor screens (GE Healthcare, Heidelberg) for at least 3 hours. 

Phosporescence was scanned on a STORM 860 scanner (Molecular Dynamics, Sunnyvale USA) and 

images were analysed using ImageJ.   

 

2.10.2 Nucleosome affinity assays 

The qualitative binding of Arps to chromatin and especially histones has been reported in the literature 

[39, 134] but the quantitative description of binding affinities has not been performed previously. It also 

remained unclear to what extend actin-related proteins contribute to nucleosome binding in their 

chromatin remodeler environment. Therefore, fluorescence based affinity assays were performed in 

collaboration with Duane Winkler, PhD in Prof. Karolin Luger’s group. 

The microplates were prepared by sequential washing with 1 M HCl, 1% Hellmanex, and Sigmacote.  

Each wash step was incubated for 30 min and followed by extensive rinsing with distilled water. The 

plates were then air-dried under an exhaust hood for 8 hours to overnight. The individual binding 

experiments were derived from titration of highly concentrated stocks of the recombinant Arp 

constructs and complexes (assay concentrations ranging from 1-5000 nM) into the fluorescently labeled 

histone complexes or nucleosomes. The H2A-H2B and H3-H4 complexes were labeled through Alexa 488 

maleimide conjugation to H2B T112C or H4 E63C, respectively. The 30 base-pair ‘601’ sequence linker 

DNA was first modified with a 5’ C6 amine then conjugated with a succinimidyl ester derivative of the 

Atto 647N dye. The fluorescently labeled DNA was then agarose gel purified to remove excess free dye. 

The two-step labeling procedure has previously been described elsewhere [135]. 

The labeled histones, nucleosomes, etc. were kept at a constant concentration between 0.5-1 nM with a 

final volume of 40 µL. The reaction conditions were maintained at: 20 mM Tris-HCl pH 7.5, 150 mM KCl, 

5% glycerol, 1 mM TCEP, 0.01% CHAPS, and 0.01% octylglucoside. The titrations were then allowed to 

equilibrate at room temperature for 20-30 minutes (in the dark) and then scanned in-plate using a 

Typhoon 8600 variable mode fluorimager. Specific binding events were considered as a function of the 

fluorescence change (whether positive or negative) across the titration series. Interactions with affinities 

above 5000 nM are considered to be non-specific. The fluorescence change upon binding had to be 

higher than 10% of the total fluorescence signal to be evaluated.  The actual fluorescence signal change 

was quantified using the program ImageQuant TL. Data analysis and non-linear fitting of the data was 
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done with Graphpad Prism. All experiments were performed in replicative quadruplicates. For a more 

detailed explanation of the equations and reactions schemes refer to previous works from the Luger 

laboratory [136, 137].  
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3. Results 

3.1 Expression and purification of Arps and their respective complexes 

One prerequisite for the biochemical characterization of proteins and in particular for their 

crystallization is the generation of abundant and highly pure protein. Proteins that are associated within 

complexes often possess intrinsic unfolded domains, which aggravate their soluble expression. Actin-

related proteins (Arps) directly bind to chromatin substrates and are generally members of large multi-

subunit protein machineries. Therefore, expression and purification of Arps pose several challenges, 

some of which have been solved previously [97]. 

Full-length Arps have exclusively been expressed in baculovirus based insect cell expression system, 

while N-terminally truncated constructs of Arp8 could also be expressed in E. coli BL21 (chapter 2.2).  

All proteins had an N-terminal histidine-tag that enabled an initial purification step via Ni-NTA resin. This 

was particularly important for heterologous proteins expressed in insect cells, because it was generally 

necessary to perform a one-step purification and SDS-PAGE analysis of the fraction after expression 

tests in order to know, whether the protein of interest was made. Whole cell extracts of insect cells 

commonly obscured heterologously overexpressed proteins on SDS-PAGE gels. 

Large-scale purifications of proteins or protein complexes were subjected to anion exchange 

chromatography after the Ni-NTA purification step (chapter 2.3). Yeast Arp8, in particular the full-length 

protein, interacts very tightly with Q-sepharose and elutes roughly around 400 mM NaCl or KCl. 

Therefore, monomeric yeast Arp8 and protein complexes containing yeast Arp8 can be very efficiently 

purified via anion exchange chromatography. As Arp8 and especially subcomplex I are nucleosome 

binding proteins (see below), nucleic acids are co-purified on the Ni-NTA resin.  DNA and putatively RNA 

however can also be separated from these proteins on Q-sepharose columns, since nucleic acids have an 

even tighter affinity and elute around 700-900 mM salt. Human Arp8 does not bind to either anion or 

cation exchange columns in a pH range between 6 and 8. Nonetheless, since the bulk of endogenous T. 

ni insect cell proteins and nucleic acids bind to Q-sepharose, anion exchange chromatography is a 

suitable second purification step also for human Arp8. For crystallization set-ups, the histidine-tag of 

human Arp8 was cleaved by PreScission protease and the flow-through of a subsequent second Ni-NTA 

purification was collected, prior to anion exchange chromatography (figure 6C).  The final purification 

step was a size exclusion chromatography that separates the homogeneous, monodisperse protein 
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sample from potential aggregates (figure 6A-C). Subsequently, the purified protein or protein complex 

was concentrated up to 25 mg/ml without signs of aggregation.  

Interestingly, after heterologous expression of Arp8 and Arp4 together with the HSA domain (INO80 

A462-F685) from T.ni H5 insect cells, purification leads to an assembled subcomplex I with actin that was 

retained from the expression host. Mass spectrometric analysis of peptides derived from trypsin 

digestion revealed an actin isoform that is related to the actin 5C isoform of D. melanogaster (figure 6B). 

  

Figure 6: Purification of INO80 subcomplex I and human Arp8  
A) SDS-PAGE analysis of subcomplex I (Arp8-Arp4-actin-HSA) after the individual purification steps yielding a 
monodisperse and very pure tetrameric complex. B) SDS-PAGE analysis of subcomplex I that retained actin (blue 
encircled) from the expression host. Mass spectrometry analysis after tryptic digest revealed peptide sequences 
(red) that largely align with the D. melanogaster sequence of actin 5C. C) SDS-PAGE analysis of human Arp8 after 
each purification step.  
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3.2 The crystal structure of human Arp8 

In order to contribute to the explanation how Arp8 is able to fulfill the broad range of different functions 

(chapter 1.3.2), a truncated version of human Arp8, lacking the first N-terminal 33 amino acids (hArp8 

(Δ1-33)) was crystallized in 3.9 M NaCl, 0.5 % (v/v) methanol, 50 mM Mes pH 6.1, mixed 1:1 with 4.5 

mg/ml of protein solution at 16°C. This gave rise to small crystals that were used as seeds within the 

same condition at 10°C. Crystals grew for several weeks until they had suitable sizes for X-ray diffraction 

measurements (Figure 7).   

 

 

Figure 7: Crystallization of human Arp8 (Δ1-33) and the diffraction pattern of hArp8 crystals. 
A) Initial hits in the high NaCl conditions of the Magic 1 screen that were further refined to yield crystals that 
diffracted to 2.6 Å. (B) Diffraction pattern of hArp8 (Δ1-33) crystals at beamline X06SA (PX-I) at the SLS (Swiss Light 
Source), Villigen / Switzerland. 

 

Subsequently, the crystal structure of hArp8 (Δ1-33) with one molecule in the asymmetric unit was 

determined in space group C2221 and 2.6 Å resolution (Table 8). Phases were derived from molecular 

replacement using PHASER with a structural model based on yeast Arp4 (3QB0) that has been 

crystallized previously in the laboratory [97].  Automatic model building with ARP/wARP yielded a very 

good initial model that was improved manually using COOT and refined with PHENIX (chapter 2.4.4). 

Despite the relatively low sequence homology to actin, human Arp8 harbors the predicted actin fold 

[41] as its core structure. 
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Table 8: Data collection and refinement statistics 

Data collection   

Space group C2221  

Cell dimensions   

a, b, c (Å) 80.88  151.26  173.35  

 () 90, 90, 90  

Resolution (Å) 86.68-2.59 (2.75-2.59)*  

Robs (%) 7.9 (67.0)  

I / I) 14.16 (2.17)  

Completeness (%) 99.2 (98.8)  

Redundancy 3.6 (3.5) 

 

 

Refinement   

Resolution (Å) 44.90-2.60 (2.68-2.60)  

No. of reflections 32837  

Rwork / Rfree (%) 16.34 / 20.95  

No. of atoms   

Protein 4051  

Ligands/ions 93  

Water molecules 146  

B factors (Å
2
)   

Protein 50.04  

Ligands/ions 55.38  

Water 44.84  

R.m.s. deviations   

Bond lengths (Å) 0.008  

Bond angles () 

Ramachandran plot (%) 

Favored 

Allowed 

Outliers 

PDB Accession code 

1.185 

 

97.4 

2.6 

0.0 

 

*Values in parentheses are for highest-resolution shells. 

 

A structure based sequence alignment of human Arp8 with actin (figure 8) reveals that hArp8 contains 

five notable insertions in addition to an elongated N-terminal part at the hot spots for Arp mutations 

[49] as well as a few additional amino acids and also one deletion compared to canonical actin.  

Monomeric and filamentous actin have been concisely reviewed recently [138] and serve as basis to 

discuss the structure of human Arp8.  
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Figure 8: Structure based alignment of the amino acid sequence of human Arp8 in comparison with yeast actin. 
Human Arp8 possesses five distinct insertions to the actin fold next to the N-terminal tail. Moreover, a charged 
knob (K577-M579) and three hydrophobic amino acids (F622-W624) at the C-terminus are additional insertions to 
the actin fold. 
  

Except for 91 amino acids (R411 – I501), which are part of one insertion to the actin fold, interpretable 

electron density for the rest of the protein construct used for crystallization was obtained.  

Similar to actin, the structure of human Arp8 has a central nucleotide-binding cleft between subdomains 

1 and 2 at the so called pointed end side and a target binding cleft between subdomains 3 and 4 at the 

barbed end (figure 9).  

Engulfed by subdomains 1-4 in the center of the molecule, electron density was visible that could clearly 

be assigned to bound Mg2+ - ATP (chapter 3.4).   

The N-terminal tail of human Arp8 (M1 − N46) is rather small in comparison to other Arp8 homologues, 

but still comprises 46 mostly charged residues and is situated towards the barbed end of the molecule. 

The Saccharomyces cerevisiae Arp8 N-terminus for example consists of 250 mostly charged residues, 

which might have implications in nucleosomal substrate binding (chapter 3.9). 
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Figure 9: Crystal structure of human Arp8 (Δ1-33) 
A) Classical view of the structure of Arp8 in the cartoon illustration with a bound ATP nucleotide in spheres and 
sticks representation. Arp8 has the core actin fold (green) comprising subdomains 1-4 engulfing the bound 
nucleotide.  Five insertions and the elongated N-terminal region (brown) emanate from the actin fold. B) On the 
backside of the Arp8 molecule insertion IV originates from the hydrophobic plug region of the actin fold. However, 
insertion IV is largely not part of the structural model due to the lack of electron density in this region. 
 
 

3.2.1 Insertions I-III rigidify the pointed end of Arp8 

The first very large insertion I (K80 – H162) of human Arp8 emanates from the DNaseI binding loop (D-

loop) of the actin fold and reaches over the filament facing side of the actin and forms a long helix next 

to subdomains 3 and 4 of the actin fold (E101 – S119), which stands out in an angle of almost 60° with 

respect to the center axis of the actin fold. This long helix is the most evident addition to the basal actin 

structure seen in the electron density and very likely to contribute to the specific functions of Arp8. 

Furthermore, insertion I takes a turn and progresses parallel to subdomain 4 forming a second helix 

(P133 – Q142) and subsequently participates in the formation of an antiparallel β-sheet (A146 – D149) 

with subdomain 4. Finally, it reaches back to the D-loop, covering the pointed end and hence the ATP 

binding cleft like a lid.  
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This insert is clearly a main factor that contributes to the inhibition of polymerization capability (chapter 

3.3). It strongly alters the configuration of actin’s D-loop, which in the actin filament reaches into the 

target-binding region at the barbed end of the adjacent intra-strand actin molecule [69].  

The subsequent insertion II (N192 – A203) forms a loop that protrudes from the actin core between 

subdomains 1 and 2 resembling a second hydrophobic plug. This insert also adds an additional turn to 

the α-helix that is located at the transition from subdomain 2 to 1. Since the sequence of insertion II is 

rather hydrophobic, its physiological function is likely to involve protein-protein interactions. It is also 

located in proximity to the ATP binding site of Arp8, which hints towards a possible role of this insertion 

in the putative ATPase activity of Arp8. 

The third insertion comprises only seven amino acids (R368 – A374). Nevertheless, it is a characteristic 

feature that aids the lid of insertion I to cover the ATP binding cleft.  Insertion III expands an antiparallel 

β-sheet connected via a short loop by approximately 10 Å and thereby it contributes to the significantly 

altered surface structure of Arp8’s pointed end.  

Overall one can state, that insertions I-III interact with one another to wrap around both halves of the 

actin fold and to cover most of the pointed end of the actin fold. This rigidifies the conformation of Arp8 

in contrast to actin, where subdomains 2 and 4 do not interact with one another and ATP hydrolysis and 

Pi release lead to a moderate swivel motion of the two principal domains. Moreover, several surface 

exposed hydrophobic residues as well as bound glycerol from the crystallization solution suggest, that 

insertion I-III also participate in protein-protein interactions. 

 

3.2.2 Insertion IV is the second major insertion to Arp8’s actin fold 

The second major insertion (insertion IV) (V401 – K507) emanates from what comprises actin’s 

hydrophobic plug and is situated on that side of actin that participates in filament formation. This 

insertion did not give rise to interpretable electron density after refinement except for a few residues 

and therefore structural information of this part remains scarce.  

The fact that this insertion did not yield interpretable electron density suggests that it is highly flexible 

and less structured, which is in line with algorithms that propose this particular sequence to be 

disordered with only minor secondary structure motifs (figure 10) [139, 140]. This renders insertion IV to 

be a perfect candidate for various protein-protein interactions and it appears to contribute to the 

formation of subcomplex I (chapter 3.6).  
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Figure 10: Secondary structure and disorder prediction of insertion IV. 
The part of insertion IV that did not give rise to electron density likely possesses very little secondary structure 
(calculated by JNet) and is mostly disordered (calculated by DISOPRED2). Programs are available on the Gene 
Center Bioinformatics Toolkit page (http://toolkit.lmb.uni-muenchen.de). 
 
 

3.2.3 Subtle alteration at Arp8’s barbed end by insertion V 

The subsequent insertion V (R565 – N569) is a relatively small insertion in human Arp8 that introduces a 

short α-helix into the actin structure at the outer end of the barbed end of subdomain 3 (figure 9). 

Despite being a rather subtle alteration, this helix is the most evident structural change at the barbed 

end of the actin fold followed by the slight elongation of the C-terminus by three bulky residues. 

Whether these differences alter the barbed end side of Arp8 significantly enough to prevent actin or 

other proteins from binding is not clear. This seems unlikely since most of the predominantly 

hydrophobic amino acids within the target-binding cleft are conserved and share great sequence 

identity with actin even in comparison to other aligning regions of Arp8’s actin fold.  

 

3.2.4 Structure based conservation analysis 

Arp8 is conserved from yeast to man with the exception of algae, Apicomplexa and the two Metazoan 

phyla Caenorhabditis elegans and C. intestinalis [49]. As expected, the actin fold amino acid sequence of 

Arp8 in different species is highly conserved. In a sequence alignment of Arp8 from Homo sapiens, Mus 

musculus, Xenopus laevis, Danio rerio, Drosophila melanogaster and the acon worm Saccoglossus 

kowalevskii, it becomes clear that also the insertions to the actin fold show considerable sequence 

homology (figure 11). Insertion IV (V401-K507) shows the least conservation among the insertions, while 

insertion II (N192-A203) is the most highly conserved. Insertion III also depicts high sequence identity. 

Interestingly, insertion V (R565-569) is absent in Drosophila melanogaster but otherwise shares high 

sequence homology among species. Insertion I (K80-H160) is partially conserved. Especially, the 

prominent secondary structural features also possess high sequence identity, while the long stretches 

that wrap around the actin fold are less conserved.  

http://toolkit.lmb.uni-muenchen.de/
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The three hydrophobic C-terminal residues show almost 100% sequence identity and also the lysine of 

the charged knob (K577-M579) is present in all species. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Multiple amino acid sequence alignment of Arp8 orthologues. 
Amino acid sequences corresponding to orthologues of human Arp8 were obtained from the NCBI protein 
database (http://ncbi.nlm.nih.gov). Abbreviations are defined as follows: Hs, Homo sapiens; Mm, Mus musculus; 
Xl, Xenopus laevis; Dr, Danio rerio; Dm, Drosophila melanogaster; Sk, Saccoglossus kowalevskii. The multiple 
sequence alignment was generated using ClustalW (http://www.ebi.ac.uk/Tools/msa/clustalw2/) and formatted 
for presentation with EsPript (http://espript.ibcp.fr/ESPript/ESPript). The amino acid sequence numeration 
corresponds to the human protein.   
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Figure 12: Sequence conservation in a surface representation of human Arp8.  
Molecular surface representations of human Arp8 colored according to amino acid conservation scores calculated 
from multiple sequence alignments of human Arp8 by the ConSurf web server (http://consurf.tau.ac.il): from red 
(absolutely conserved) to white (not conserved). Human Arp8 in the classical view of the actin fold (A) and rotated 
by 180° (B). (C) Side view on subdomains (sd) 3 and 4 (inner domain) show that they are more conserved than the 
side of subdomains 1 and 2 (F). (D) The accessible ATP binding site is highly conserved. (E) The barbed end and 
especially the target-binding cleft of Arp8 are more conserved than the pointed end. (F) Side view on subdomains 
1 and 2 (outer domain) show less conservation compared to the inner domain (C). 
 

An according conservation surface representation of human Arp8 (figure 12) visualizes that especially 

the barbed end of Arp8 is highly conserved. This is particularly noteworthy as the barbed end shows 

little structural changes to the barbed end of actin except for the subtle alterations of insertion V (R565-

N569) and the three C-terminal hydrophobic residues F622-V623-W624. 
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3.2.5 Insertions to the actin fold explain Arp8’s lack of polymerization capability 

All in all, major changes to the pointed end and the filament facing side of the actin fold (figure 13) serve 

as explanation why Arp8 itself cannot form filaments. However, as only two out of three interfaces 

involved in polymerizing comprise large structural differences, the structure also gives leeway for 

possible interactions of Arp8 with canonical actin’s pointed end or actin-binding proteins (ABPs) that 

bind to Arp8’s accessible target-binding cleft. Also, it must be noted that Arp8 is still capable to form a 

complex with Arp4 and actin at the HSA domain of the INO80 complex [12, 39].  

Figure 13: Surface representations of human Arp8. 
The Surface presentations highlight the insertions of Arp8 (brown) compared to the basal actin fold (green). (A) 
The classical view on the actin fold depicts the closure of the pointed end of human Arp8, but otherwise only 
minor changes to the surface of the actin fold. (B) View onto the inner domain of the actin fold. Here, insertion I 
markedly alters the surface at the pointed end side of the inner domain. (C) Rear view of the actin fold. Insertion I 
reaches over this “filament-facing” side of actin and insertion IV, which mostly lacks in the density, emanates from 
the hydrophobic plug of the basal actin fold, (D) The view onto the outer domain of the actin fold shows only 
minor changes compared to the actin core. 
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3.2.6 Arp8 crystal contacts 

Symmetric crystal contacts between N-terminal and C-terminal residues of two adjacent Arp8 (Δ1-33) 

molecules formed in the crystal lattice might shed light on a possible interaction between two human 

Arp8 proteins that could also have physiological relevance. 

The crystal structure of hArp8 was submitted to the PDBe server PISA (Protein Interfaces, Surfaces and 

Assemblies) [141] and the complex formation significance score (CSS) was calculated to be 0.186 for one 

dimer generated by symmetry operation, which indicates that the interface could play an auxiliary role 

in complex formation. The interface area comprises an area of 1126 Å2 and involves 38 amino acids of 

each truncated monomer. Six hydrogen bonds (distances < 3.25 Å) are involved and contribute to a 

calculated interface ΔiG of -15.6 kcal/mol. The missing N-terminal amino acids (M1-A33) in the 

crystallized construct comprise a characteristic sequence motif of alternating lysine and glutamate 

residues, which might add several more contacts for a possible human Arp8 dimerization. 

 

 

Figure 14: Dimer of human Arp8 formed in the crystal.  
Two human Arp8 (Δ1-33) molecules (green and red) contact each other at the truncated N-terminus and C-
terminal residues. The mostly hydrophobic surface area comprises 1126 Å

2
 and could serve as an auxiliary 

interaction surface in dimer formation. 
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3.3 Arp8 is monomeric in solution 

3.3.1 SAXS envelope structure of Arp8  

The solution structure of human Arp8 was determined by SAXS (small angle X-ray scattering) and the 

oligomerization state was examined by SLS (static light scattering) measurements to endorse possible 

Arp8 polymerization or dimerization. The SAXS analysis of S. cerevisiae Arp8 already determined Arp8 to 

be monomeric in solution [59] and this was  also confirmed for full-length and truncated (Δ1-33) human 

Arp8 (figure 15). The Kratky plot (figure 15B) indicates that the protein sample was properly folded and 

the P(r) distribution already suggests that human Arp8 consists of a large globular domain with a smaller 

protrusion (figure 15C). 

 

 

Figure 15 : Small angle X-ray scattering (SAXS) structure of human Arp8. 
(A) Comparison of SAXS ab initio structure envelopes for full-length (grey) and the N-terminally truncated human 
Arp8 (yellow) with the crystal structure of human Arp8 Δ1-33 (green) docked into the SAXS density. The protrusion 
at the top is slightly elongated in the full-length protein, but otherwise the SAXS structures are virtually identical. 
(B) The Kratky plot (I*s² vs. s) of the truncated hArp8 shows a bell-shaped curve typical of a folded protein.  
(C) The Pr distribution function shows a slight tailing to higher radii indicating a potential elongated protrusion as 
also seen in the ab initio models (A). 
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The final ab initio bead model agreeably provides space for the X-ray structure of Arp8 to fit in. Two 

major differences when compared to the actin envelope arise even at this low resolution: Full length 

hArp8 obviously possesses a protrusion that corresponds to the elongated N-terminus of Arp8, which is 

not present in actin. Furthermore, the solution structure of Arp8 does not show the typical flatness of 

actin but appears bulgy. This can be explained by parts of insertion I and the large Insertion IV covering 

the back side of Arp8. According to the SAXS envelope, the unresolved 92 amino acids of insertion IV 

(H410 – I501) are most likely packed onto the side of Arp8, from which insertion IV emanates (figure 

16B). Since this side of the actin fold gives rise to important contacts for actin filament formation, 

insertion IV also seems to stabilize the monomeric state of Arp8 in solution. 

Overall, the X-ray structure can be convincingly docked into the SAXS envelope and insertion IV that is 

mostly missing in the electron density can be allocated to the part of the bulge that spans over 

subdomains 1 and 3 on the back side. The molecular weight in solution calculated from Porod volume 

[116] were 78 kDa for full length Arp8 and 70 kDa for the crystallized construct (hArp8 Δ1-33)), which 

both indicate that human Arp8 like its yeast homologue is a monomer in solution (human Arp8 chain 

mass = 70.5 kDa, truncated construct = 66.9 kDa). This is also supported by the fact, that the theoretical 

scattering curve of monomeric hArp8 calculcated with CRYSOL from the crystal structure is clearly 

supporting the measured data, whereas the theoretical scattering curve of the potential hArp8 dimer 

(chapter 3.2.6) is deviating from the measured curves (figure 16A). 

 

Figure 16. Solution structure of human Arp8. 
(A) Theoretical SAXS scattering curves calculated with CRYSOL for monomeric and dimeric human Arp8 show that 
Arp8 is a monomer in solution. (B) X-ray structure of human Arp8 Δ1-33 docked into the ab initio SAXS model of 
full-length hArp8. The solution structure of human Arp8 provides extra density for insertion IV.  
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3.3.2 Static light scattering experiments with Arps 

Additionally, size exclusion chromatography (SEC) was performed with subsequent static light scattering 

(SLS) measurements for a more accurate determination of the molecular weight compared to SEC alone. 

The molecular weights obtained by static light-scattering confirm the monomeric state of yeast and 

human Arp8 as well as of yeast Arp4 and the INO80 subcomplex I, consisting of Arp8, Arp4, actin and the 

HSA domain (table 9).  

The results for every protein illustrate that all samples are monodispersely monomeric in solution and 

do not contain oligomerized species. Moreover, SLS with the purified subcomplex I clearly indicates, that 

it comprises only one of each Arps and monomeric actin.  

Hence, there was no observation of any dimerization in solution for purified full-length yeast or human 

Arp8 nor for Arp4 or the subcomplex I. Therefore, the contacts made in the crystal lattice of truncated 

human Arp8 do at least not suffice for Arp8 dimerization in solution but might play a role in a putative 

Arp8 dimerization triggered by auxiliary factors, for instance upon binding to the nucleosome (chapter 

3.9). It cannot be ruled out that the pseudo-symmetric nucleosomal substrate binds to more than one 

Arp8 molecule simultaneously triggering dimerization.  

 

Table 9: Molecular weights of Arps and INO80 subcomplex I derived from SLS and SAXS data 

Sample 

Calculated 
monomeric 
molecular 

weight [kDa] 

Molecular weight 
determined by 
SEC/SLS [kDa] 

Polydispersity 
[MW/MN] 

Molecular weight 
derived from 

Porod-volume 
(SAXS) [kDa] 

human Arp8 (full-length) 70.5 70 1.001 78 

human Arp8 (Δ1-33) 66.9 69 1.006 70 

yeast Arp8 100.2 101 1.001 105 

yeast Arp4 54.8 56 1.004 51 

yeast subcomplex I 
(Arp8-Arp4-actin-HSA) 

223.2 220 1.003 n.d. 

BSA (calibration control) 66.5 68 1.003 n.d. 
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3.4 ATP is tightly bound to human Arp8 

Electron density in the nucleotide-binding cleft of Arp8 (figure 17) clearly indicated the presence of a 

bound ATP molecule and a metal ion that coordinates the β and γ phosphates of the nucleotide in 

distances that would argue for a Mg2+ ion(approx. 2 Å). As neither ATP nor magnesium were added into 

purification buffers or crystallization setups, this observation strongly suggests the absence of significant 

ATPase activity for the human Arp8 monomer aloof from its remodeler host INO80 or other binding 

partners. 

 

Figure 17: Electron density for ATP bound to human Arp8. 
The blue mesh corresponds to the electron density of a simulated annealing 2FoFc omit map contoured at 5.0 σ. 
The bound ATP molecule is shown in stick representation and Mg

2+
 as sphere (light green). Surrounding regions of 

Arp8 harboring the nucleotide coordinating residues are represented in cartoon mode.  

 

Arp4 crystals showed the same phenomenon, which indicates that Arp4 also strongly binds to ATP but 

lacks noteworthy ATPase activity. Actin itself is a very weak ATPase in its monomeric state and becomes 

stimulated > 40.000 fold in the filament [74]. Therefore it would be conceivable that Arps also show 

inducible ATPase activity, if the ATP binding site is similar to actin’s. The nucleotide-binding site in Arp4, 

however, is significantly altered compared to actin. This argues for an exclusively structural role of ATP 

in Arp4 [59]. On the contrary, structural differences between actin and Arp8 are less pronounced, which 

is surprising since Arp4 is more closely related to actin than Arp8.   
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The most obvious structural difference between the ATP binding sites of Arp4 and actin is the shielding 

of ATP from the solvent within the nucleotide binding cleft. In Arp4, the -helix covering the nucleotide 

(α9) of subdomain 4 is elongated by one and a half turns compared to actin, which causes a strong 

positional shift of this helix and protects the bound nucleotide [59]. The very same helix (α9) in Arp8 

(K337Arp8 – F350Arp8) is not prolonged compared to actin (T203act – L216act) [142] and shows only a very 

slight positional shift towards the nucleotide (figure 18).  

 

 

Figure 18: Comparison of the nucleotide binding cleft. 
The alpha helix (α9) that covers the nucleotide binding cleft in Arp4 (yellow) is prolonged compared to actin (blue) 
and Arp8 (green). This results in a stronger shielding of the bound nucleotide. Additionally, electron density 
corresponding to the bound metal cation has a larger distance to the nucleotide in Arp4. Bond lengths argue for a 
Ca

2+
 in Arp4 instead of Mg

2+
, which appears to be present in the structures of actin and Arp8. Overall, the 

nucleotide binding cleft of Arp8 resembles actin more compared to Arp4.  
 

It must be noted that α9 of Arp8 has bulkier residues at the exit site of the nucleotide-binding cleft 

(K337Arp8, M338Arp8) compared to actin (T203act, A204act) and the lid of insertion I and the elongated β-

strands of insertion III of Arp8 also cover the pointed end closing the cleft more tightly compared to 

actin. Therefore, it seems possible that these slight differences contribute to a putative stronger 

retainment of ATP in Arp8 compared to actin. 

The catalytic cycle of ATP hydrolysis in actin has recently been reviewed [138]. In short, Mg2+- ATP is 

engulfed by the P1 and P2 loops in actin at the bottom of the nucleotide binding cleft. The γ phosphate 

is coordinated by S14act inter alia. Activation of ATPase activity in the filament or via certain actin binding 
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factors occurs upon a slight conformational change that pushes Q137act towards the γ-phosphate. Upon 

ATP hydrolysis and phosphate release, S14act rotates to contact the β phosphate of the remaining ADP, 

allowing a methylated histidine meH73act, located in the sensor loop, to penetrate into the space that 

was previously occupied by the γ phosphate (figure 19 C,F) [143]. This movement propagates along 

subdomain 2 to the D-loop influencing the width of the nucleotide-binding cleft as well as the 

conformation of the D-loop [144]. The rearrangements weaken the interaction with the adjacent intra-

strand actin molecule, reducing the stability of the filament.  

 

 

 
Figure 19. Close up of human Arp8’s active site in comparison to Arp4 and actin.  
(A,D) Human Arp8 coordinates ATP similar to actin. (B,E) ATP in yeast Arp4 (pdb: 3BQ0) is more shielded compared 
to actin or Arp8. (C,F) ATP in actin (pdb: 1YAG) is bound by residues in the P1 and P2 loops. 

 

The “active” center of Arp4 appears to be an ATP binding site with degenerated ATPase activity. 

Alteration of active site residues in the P1 and P2 loops of Arp4, namely G15act to Y24Arp4 and D157act to 

H162Arp4, further stack the ribose of the nucleotide and the substitution of catalytically active H161act 

and especially Q137act by S166Arp4 and T142Arp4 suggests, that the ATP in Arp4 does not hydrolyze 

enzymatically (figure 19 B,E) [59]. 
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On the contrary, Arp8’s nucleotide-binding site depicts only minor changes to the residues involved in 

the catalytic cycle of actin’s ATPase. G15act of the P1 loop is replaced by T56Arp8, which could in principle 

aid S55Arp8 in complexing the β phospate, once hydrolysis and phosphate release is completed. The main 

residues involved in metal ion coordination and nucleotide-binding of the P2 loop remain the same in 

Arp8 compared to actin as D154act, G156act and D157act structurally align with D283Arp8, G285Arp8 and 

D286Arp8. 

Filament-activated Q137act seems to play a critical role in ATP hydrolysis [145], as Q137act is in closer 

proximity to the γ-phosphate in polymerized actin [69, 146] and stimulates the ATPase more than 

40,000 fold [74]. In Arp8 this residue is altered to E266Arp8, which could basically fulfill similar tasks, if an 

interdomain rotation similar to the one happening in the filament can occur.  

The histidine H73act of the sensor loop is substituted by R187Arp8 in Arp8. Basically, it is conceivable that 

this arginine takes over the sensor part in Arp8 and mediates a similar conformational change along 

subdomain 2. However, the acceptor of this movement would be insertion I instead of the D-loop and 

the putative repositioning of residues would then spread along the lid that covers Arp8’s pointed end. 

An alternative acceptor of this putative conformational movement could also be insertion II, which is in 

close proximity to the sensor loop (compare figure 9B, chapter 3.2). 

In summary, the nucleotide-binding site suggests, that Arp8, like actin, is an extremely weak ATPase in 

its monomeric state. However, a binding partner could induce the subtle changes necessary to stimulate 

the ATPase and hence trigger conformational changes at Arp8’s pointed end via insertion I, which then 

might contribute to Arp8 manifold roles (further discussed in chapter 4.2.1). 

 

3.5 ATPase activity of Arp4, Arp8 and the INO80 subcomplex I  

The structure based hypothesis that Arp8 but not Arp4 might have inducible ATPase activity was tested 

first with a standard BIOMOL Green assay (Enzo life sciences, Lörrach) that did not detect to any 

measurable ATPase activity above background for Arp4, Arp8 and also the Arp8-Arp4-actin-HSA 

containing subcomplex I. The more sensitive 32P ATP (Hartmann Analytics, Braunschweig) hydrolysis 

assay, however, indicated that Arp8 as well as subcomplex I have very low basal ATPase activity, while 

Arp4 did not hydrolyze ATP above background. A quantitative analysis of the results is rather difficult as 

either the hydrolysis or nucleotide exchange rate or both are rather low and the error of the 

measurement is relatively high. The overall turnover of ATP per Arp8 or subcomplex I is clearly below 

one nucleoside triphosphate per protein molecule and minute, as 1 µM of protein or protein complex 
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hydrolyze less than 30 µM of ATP in 30 minutes (figure 20). The hydrolysis rate of the yeast subcomplex I 

is slightly elevated compared to monomeric Arp8, the turnover rate is roughly twofold compared to 

yeast Arp8, which can most likely be explained by the presence of actin in the subcomplex, as it 

putatively also contributes to the low basal ATPase activity. Human Arp8 on the other hand appears to 

be slightly more active than yeast Arp8 but less active than the yeast subcomplex I. 

 

 

 
Figure 20:  ATPase activity of actin-related proteins Arp4 and Arp8 and the subcomplex I. 
Low basal ATPase activity was found for yeast and human Arp8 but not for yeast Arp4. The Arp8-Arp4-actin-HSA 
subcomplex I of INO80 has a slightly higher activity than Arp8 but does not show any sign of efficient stimulation of 
the ATPase of either Arp8 or actin within this subcomplex. Arp4, H2A-H2B dimers, (H3-H4)2 tetramers, DNA and 
nucleosomes have no measurable ATPase activity in comparison with the control reaction without proteins. No 
significant stimulation of the ATPase activity of Arp8 or subcomplex I was triggered by canonical nucleosomes and 
its constituents (compare figure 21). 

 

The very low but measurable ATPase activity of Arp8 as opposed to the lack of detectable ATP hydrolysis 

in presence of Arp4 also indicates that Arp8, but not Arp4, might indeed be an inducible ATPase. 

Therefore, potential binding partners for Arp8 have been tested with respect to stimulation of Arp 

ATPase activity (figure 21), but neither canonical H2A-H2B dimers, (H3-H4)2 tetramers nor nucleosomes 

or naked DNA have been found to significantly stimulate the ATPase activity of either yeast or human 

Arp8 or subcomplex I. Arp4’s lack of ATPase activity does not change in presence of nucleosomes, DNA 

or histone complexes. 
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Since the subcomplex I does not show any significant increase in activity compared to Arp8, this 

suggests that neither the ATPase of actin nor Arp8 are activated in this tetrameric module of INO80 

giving rise to the question how the subunits arrange in this module. 

Figure 21: Basal [γ-
32

P] ATP hydrolysis by Arps and lack of ATPase stimulation by nucleosomes.  
Chromatography of the ATPase reaction sample (incubated for 4 hours at 30°C) separates [γ-

32
P] ATP from 

hydrolyzed [γ-
32

P] phosphate. No significant stimulation of the ATPase activity could be observed in presence of 
H2A-H2B, (H3-H4)2, 146 bp “601” sequence DNA or 207 bp nucleosomes. 
 

 

3.6 Cross-link based structural constraints in the INO80 subcomplex I 

Since crystallization experiments of the subcomplex I did not give rise to reasonably diffracting crystals 

yet, cross-linking experiments with the S. cerevisiae INO80 submodule consisting of Arp8, Arp4, actin 

and the HSA domain were performed in order to gain insights into the overall architecture of the 

subcomplex. Given that the smallest repetitive unit of the actin filament is an actin trimer and the 

subcomplex I contains two Arps and actin and hence three actin fold proteins, it would be conceivable 

that the arrangement of the Arps and actin are filament like (chapter 1.4, figure 4). 

In F-actin, the DNase binding loop of one actin molecule binds to the target binding cleft of a 

neighboring one. The hydrophobic plug of the third actin also interacts with the interface of the two 

adjacent actin molecules [69]. Hence, F-actin appears to be made of two chains that gradually turn 

around each other to form a slowly turning right-handed helix, because the twist per molecule (–166.6°) 

is close to 180°. But the actual symmetry is a single left-handed helix with approximately 2.2 molecules 

per turn.  

In assumption that the subcomplex resembles the filament structure, two actins of an actin trimer 

would have to be replaced by Arp8 and Arp4, respectively. This however seems unlikely, since the region 
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of the hydrophobic plug, which is essential for filament formation, is covered by a major insertion in 

both Arp8 and Arp4. The large insertion IV of Arp8 and insertion II of Arp4 likely impair F-actin like 

contacts within subcomplex I. 

 

 

Figure 22: Cross-linking experiments of the subcomplex I 
A) Silver-stain SDS-PAGE gel of an initial titration assay with increasing concentration of the cross-linker 
disuccinimidyl suberate (DSS). A molar ratio of DSS/lysine of approximately 0.5 appears to be optimal. B) Silver-
stain SDS-PAGE gel of cross-linked subcomplex I (2.5 mg/ml) further purified by size exclusion chromatography.    
C) Two distinct peaks are visible in the chromatogram and higher molecular weight fractions of peak 2 have been 
analysed by mass spectrometry.  

 

The amount of validated cross-links between Arp8, Arp4 and actin is relatively low (table 10), so that a 

reliable molecular model of how the three proteins interact with one another could not be generated so 

far. Additionally, cross-link data is derived from the yeast proteins and only the crystal structures of 

yeast actin and Arp4 are known within the subcomplex. The structure of human Arp8 serves as a basis to 
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allocate the accordant sequence aligned lysine residues of yeast Arp8 (chapter 8.3). The exact relative 

localization of the proteins within the subcomplex is further aggravated by the fact that the cross-linking 

lysines of yeast Arp8 are located within the elongated N-terminus and insertion IV and therefore possess 

additional structural flexibility (figure 23).  

Nonetheless, the information provided by cross-linking suffices to rule out a filament-like arrangement 

and to deduce some basic concepts on the architecture of subcomplex I.  

 

Table 10: Arp4, Arp8 and actin inter-protein cross-links 
 

Arp8 N-terminus 

ARP8 K132 

Arp4 subdomain 4 

ARP4 K267 

Arp8 N-terminus 

ARP8 K165 

Arp4 subdomain 3 

ARP4 K436 

Arp8 insertion IV 

ARP8 K688 

actin subdomain 3 

Actin K328 

Arp4 insertion I 

ARP4 K218 

actin subdomain 3 

Actin K326 

 

Actin’s filament opposing side of subdomain 3 (K328act and K326act) cross-links to insertion IV of Arp8 

(K688Arp8) and insertion I of Arp4 (K218Arp4). Additionally, Arp4 cross-links with its subdomains 3 and 4 to 

the N-terminus of Arp8 (figure 23, table 10). 

Hence, the barbed end and the concave side of actin are coordinated by Arp4 and 8, which corroborates 

the results of the actin critical concentration assays that suggested Arp4 to bind to the barbed end of 

actin and Arp8 to bind actin distinct from either barbed or pointed end [59]. The combination of the 

biochemical and the cross-link data suggests that actin in the subcomplex I is exposed at its pointed end 

and also at its hydrophobic plug. The HSA domain crosslinks to insertion II of Arp4 and extensively to the 

N-terminus of Arp8 (for a list of cross-links refer to chapter 8.2), but no cross-link between actin and the 

HSA domain met the threshold requirements. This further indicates that actin is relatively accessible in 

the subcomplex. 

One has to note, that the exact arrangement of Arp4 and Arp8 to one another cannot be deduced, since 

the N-terminal tail of yeast Arp8 is putatively very flexible and cross-linking data involving this tail does 

not give rise to any positional information of the actin fold core of Arp8.  
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Figure 23: inter-protein cross-links between Arps and actin in subcomplex I 
A) Location of the inter-protein cross-linked lysines in Arp4, Arp8 and actin. Cross-link partner in parentheses. The 
locations of cross-linking lysines in yeast Arp8 are derived from the crystal structure of human Arp8 and 
subsequent sequence alignment to yeast Arp8. B) One possible arrangement of Arps and actin of subcomplex I that 
would agree with the cross-link constraints as well as the actin critical concentration assays with Arp4 and Arp8 
[59]. C) The resulting working model of the subcomplex I arrangement harbors an actin with exposed pointed end 
and hydrophobic plug. 
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3.7 Actin dynamics of subcomplex I 

Arp8 and Arp4 reinforce their individual effects to sequester actin from filaments. Biochemical assays 

suggest that Arp8 is capable of binding to filaments and subsequently depolymerizes these with slow 

kinetics, while Arp4 appears to bind to free ADP-actin [59]. Together, they maintain actin in a 

monomeric state and putatively incorporate it into the INO80 remodeler. 

An Arp8-Arp4-actin complex could not be stably purified and it remains to be shown whether this 

heterotrimer is a transient intermediate before remodeler incorporation or whether the order of 

protein assembly onto INO80 is different. 

Once the HSA domain is present, the subcomplex is stable and actin and Arps are tightly bound. In case 

only Arp8, Arp4 and the HSA domain are expressed in T. ni cells, actin is retained from the expression 

host suggesting a very tight binding of actin to the complex (chapter 3.1). This is further corroborated by 

the observation that exchange of complexed actin with pyrene-actin in G-buffer does not occur. 

Notably, when assembled into the subcomplex, the properties of Arp8 and Arp4 in actin dynamics 

change dramatically, as described as follows. 

 

3.7.1 TIRF microscopy reveals enhanced filament nucleation 

Using TIRF microscopy on oregon-green (OG) labeled actin filaments, the inhibitory effect of Arp4 on 

filament growth and also on nucleation could be visualized [59].  

The same TIRF assay (performed by Dr. Dennis Breitsprecher, AG Faix, Medizinische Hochschule 

Hannover) using the subcomplex I instead of Arp4 yielded a very different result. In presence of Arp8-

Arp4-actin-HSA OG labled actin nucleated more easily giving rise to an elevated number of filaments 

albeit slower filament growth. 6 µM of subcomplex increased the number of filaments approximately 

2.5 fold in this in vitro assay and concomitantly slowed down the growth of each filament significantly. 

While roughly 11 actin subunits per second assemble in this assay with only actin present, 6 µM of 

subcomplex I diminished the filament growth rate to about 6 subunits per second (figure 24).   
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Figure 24: Actin polymerization in presence of subcomplex I. 
TIRF microscopy studies of actin polymerization reveal more but shorter filaments in presence of subcomplex I. 
Within the first 100 seconds of the actin in vitro polymerization, more nucleation events occur with subcomplex I 
compared to the actin only control. Lengths of filaments are significantly decreased, indicating slower growth 
when subcomplex I is added to the assay.  

 

3.7.2 Pyrene-actin polymerization assay in presence of the subcomplex I 

A standard method to monitor actin (de-) polymerization is the pyrene based assay [147]. Here, 

fluorescence of pyrene that is linked to C374act is monitored as a result of actin dynamics. The 

fluorescence of pyrene is approximately 20-fold stronger in the filament at appropriate excitation and 

emission wavelengths compared to monomeric actin. The increase in quantum yield is due to a more 

dense packing of pyrene within F-actin.  

Interestingly, results of the pyrene assay in presence of the subcomplex I suggested a negative effect of 

the subcomplex on actin polymerization. Increasing amounts of subcomplex I did not alter the initial 

burst of actin polymerization compared to the actin only control but lead to lower overall fluorescence 

in a subcomplex I concentration dependent manner (figure 25A). This is in stark contrast to the results of 

TIRF microscopy studies with actin and subcomplex I. 
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3.7.3 Actin polymerization monitored by light scattering 

Due to the results in the pyrene based actin polymerization assay (chapter 3.7.2), we probed for the 

change in light scattering at 232nm, a more direct method to monitor actin polymerization. However, it 

is rarely used due to its insensitivity [148].  

 

Figure 25: Comparison between pyrene based and light scattering based polymerization assays. 
The results of the standard pyrene based polymerization assay oppose the observation by TIRF microscopy.  
A) Addition of subcomplex I appears to decrease the polymerization rate and to lower actin filaments at steady 
state. B) The polymerization assay in presence of subcomplex I measured by light scattering suggests that 
subcomplex I increases the polymerization rate and eventually leads to more filaments. 
 

Actin polymerization visualized by light scattering showed a clear dosage dependent increase upon 

addition of the subcomplex. At concentrations of 7 µM actin and 7 µM subcomplex, the increase in 

scattering signal after 8 minutes was approximately 2,5-fold more in presence of the subcomplex than 

without (figure 25B), corroborating previous TIRF microscopy results. 

 

3.7.3 Subcomplex I triggers pointed end growth 

Even though the pyrene assay shows a smaller signal than anticipated for polymerization assays, it can 

be used to monitor significant positive changes in polymerization. Although the results cannot be 

evaluated in a quantitative manner, increase in fluorescence can be interpreted as increased 

polymerization also in the presence of subcomplex I. Indeed, the actual effect is likely to be more 

significant than the signal suggests, as polymerization signals with subcomplex need to overcome the 

enigmatic quenching effect of Arp8-Arp4-actin-HSA. 

A) B) 
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Figure 26: Pointed end elongation assay in presence of subcomplex I. 
Diluted F-actin in presence of CapZ can be used as pointed end polymerization seed. Subcomplex I promotes 
pointed end growth of actin filaments in this pyrene based assay. 

 

Interestingly, the subcomplex I enhances the pyrene fluorescence in a pointed end elongation assay 

(figure 26). Here, barbed ends of actin filaments are capped by the capping enzyme CapZ allowing only 

for pointed end filament growth. Arp4 alone interacts with the barbed end of free actin and therefore 

inhibits pointed end filament polymerization. The subcomplex on the other hand, seems to significantly 

increase pointed end elongation in a concentration dependent manner. This could be explained by 

providing additional nucleation points and is in concert with the observation in TIRF microscopy, where 

more but slower growing filaments appear, which is indicative of pointed end growth. 

 

3.7.4  Subcomplex I stabilizes actin filaments  

F-actin spontaneously depolymerizes when diluted below the critical concentration of 100 nM. At this 

concentration, actin filaments depolymerize from the pointed as well as from the barbed end and 

monomers are released. The subcomplex I decreases the transition from F-actin to G-actin significantly 

(figure 27A). Hence, subcomplex I appears to stabilize actin filaments by either providing anchor points 

for filaments or by decorating F-actin. 

Interestingly, the Arp8-Arp4-actin-HSA module does not reverse the spontaneous depolymerization 

assay even at concentration as high as 15 µM of subcomplex, which also means that 15 µM of actin is 

added to the reaction. This is in line with the finding that the subcomplex is inherently stable and does 

not lose its actin component. However, it cannot be ruled out completely that the subcomplex partially 



RESULTS  69 

 

disassembles and effects of additional monomeric actin as well as effects of free Arp4 and Arp8 add up 

to yield the present results in an unknown mechanism. 

 

Figure 27: Stabilization of actin filaments by subcomplexI 
A) Spontaneous depolymerisation assay in presence of subcomplex I. F-actin dilution to 100 nM concentration 
leads to spontaneous depolymerisation. Subcomplex I appears to stabilize existing filaments and to oppose the 
depolymerisation process. B) Spontaneous polymerization in G-buffer. In presence of subcomplex I, actin filaments 
seem to assemble in G-buffer, which does not occur in the actin control due to low salt conditions. 
 

Moreover, subcomplex I triggers pyrene fluorescence, indicative of actin filaments, in G-buffer. Under 

these low salt conditions, concentrations of actin as high as 8 µM do not polymerize, but addition of 

subcomplex I appears to nucleate and to stabilize polymeric actin in G-buffer (figure 27B). 

Due to the quenching phenomenon of the subcomplex I on pyrene fluorescence in actin polymerization 

assays (compare 3.7.2 with 3.7.3), one can state that the observed effect of F-actin stabilization is 

putatively even more apparent. 

All in all, it is apparent that the subcomplex I does influence actin dynamics dramatically, but the nature 

of this interaction remains enigmatic, especially since pyrene based fluorescence is weakened by Arp8-

Arp4-actin-HSA in a standard polymerization assay (chapter 3.2.7). 
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3.7.5 Electron microscopy of Arps and actin filaments 

Given that cross-link experiments suggest a partially exposed actin within subcomplex I (chapter 3.6) 

and actin dynamics experiments corroborate a participation of complexed actin via its pointed end 

(chapter 3.7), it is apparent to probe for the association of the subcomplex to actin filaments. 

In order to visualize binding of the Arp8 module to existing filaments, 5nm Ni-NTA nanogold 

(Nanoprobes, Yaphank/USA) was fused to the respective histidine tags to visualize Arp4, Arp8 and 

subcomplex I by negative stain electron microscopy. Prior to incubation with F-actin on the grid, the 

nanogold bound proteins were further purified by size exclusion chromatography omitting unlabeled 

subcomplex I, aggregates and excess of nanogold label. Interestingly, subcomplex I seems to 

preferentially associate with actin filaments (figure 28D) compared to nanogold Arp4 (figure 28B) and 

appears to be slightly enriched at filament branchpoints. These experiments have been performed by 

Dr. Kristina Lakomek (AG Hopfner). 

Incubation of actin filaments in presence of Arp8 (figure 28C) seems to disrupt of F-actin, which is in line 

with prior biochemical experiments [59]. This effect has only been observed with Arp8 but needs to be 

reproduced for further validation. 

 

Figure 28: Nanogold labeled Arps and subcomplex I and their interaction with F-actin 
A) Uranylacetate stained actin filaments in different magnifications. B) Nanogold labeled Arp4 does not seem to 
interact with actin filaments. C) Nanogold labelled Arp8 appears to sever actin filaments. D) Actin filaments seem 
to interact with subcomplex I as the majority of nanogold labels are observed in the vicinity of actin filaments. 
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3.8 Effect of actin within chromatin remodelers 

It is inherently difficult to study the effect of actin in the context of chromatin remodeling in vivo, since 

mutations of actin show strong phenotypes that are usually due to altered functions within the 

cytoskeleton. The in vitro results for subcomplex I (chapter 3.7) indicate that actin also in the context of 

chromatin remodeling indeed plays a role in actin dynamics. Therefore, the question arises to what 

extend mutations within members of the subcomplex affect actin dynamics and which phenotypes can 

be observed for the accordant mutants in vivo.   

 

3.8.1 Arp4 mutations 

The packing of Arp4 crystals comprised two Arp4 “dimers” per asymmetric unit that interacted via their 

barbed end with one another [97]. One hydrophobic helix of yeast Arp4 (L462-L468), reminiscent of the 

WH2 domain of the protein ciboulot, intimately interacts with the very same helix of the adjacent Arp4 

molecules in the crystal dimer. Superpositioning of actin onto one of the Arp4 molecules suggested a 

potential barbed to barbed interaction, which could be envisaged to also occur for actin and Arp4 [97]. 

Heterologously expressed yeast Arp4 harboring mutations within this hydrophobic helix strongly impairs 

the negative effect of wild-type Arp4 on actin polymerization in vitro (figure 29B).  

 

Figure 29: Impact of Arp4 mutations on actin dynamics 
A) Purification of yeast Arp4 EYE (L462E/F465Y/L468E) as example for purity of Arp4 mutants. M: marker, conc.: 
concentrated sample after size exclusion chromatography. B) Polymerization assay in presence of wild-type yeast 
Arp4 and yeast Arp4 mutants. Mutations in the hydrophobic helix L462-L468 strongly impair the capability of Arp4 
to hamper actin polymerization. 
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However, no difference between the mutations could be observed. Arp4 L462R, Arp4 L468R and Arp4 

EYE all lose the capability of wild-type Arp4 to efficiently impair actin polymerization (figure 29).  

For the accordant in vivo experiments mutated Arp4 was cloned into pRS315 vectors, which have been 

transformed into S. cerevisiae BY arp4Δ (pRS316 +500 Arp4 -300) cells. Subsequent plasmid shuffling on 

FOA plates yielded yeast strains in which Arp4 is replaced by the accordant mutant protein (chapter 2.8). 

Mutations within the barbed end helix (L463-L468) show strong phenotypic effects. The more 

hydrophilic the originally hydrophobic WH2-like helix, the stronger the growth phenotype becomes, 

which is in contrast to the in vitro polymerization assays, where all mutations approximately have the 

same effect in the concentration range tested. In dot spot assays on YPD and YPD with genotoxic agents 

(chapter 2.8), Arp4 EEE (L462E/P465E/L468E) shows a stronger growth deficiency compared to Arp4 EYE 

(L462E/P465Y/L468E), which in turn displays a stronger phenotype than either L462R or L468R mutated 

Arp4.   

 

Figure 30: In vivo effects of Arp4 mutations. 
48h growth of wild-type Arp4 and different mutants on YPD and YPD containing genotoxic agents at 30°C (A) or 
37°C (B).  
Arp4-EYE: L462E, F465Y, L468E; Arp4-EEE: L462E, F465E, L468E mutations. 
The growth phenotype correlates with the hydrophobicity of the helix L462-L468 of Arp4. The more hydrophilic 
Arp4’s helix L462-L468 is, the stronger the growth impairment. DNA damage hypersensitivity can clearly be 
assigned to both triple mutants and to a much weaker extent to both single mutants. 
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Growth on agents such as hydroxyurea (HU), methyl methanesulphonate (MMS), 4-nitro-quinoline (4-

NQO) or camptothecin (CPT) induces genotoxic stress onto the yeast colonies. Wild-type yeast can 

overcome low doses of these agents due to efficient DNA repair mechanisms and hence, mutations 

impairing DNA repair can be revealed (chapter 2.8.2). 

For the interpretation of the actual impact of the Arp4 mutations within the helix L462-L468 it has to be 

taken into account that growth phenotypes already occur under optimal conditions on YPD at 30°C. 

Nonetheless, a quite dramatic phenotype for the triple mutant Arp4 variants (EYE and EEE) can be 

observed on all genotoxic agents especially during growth on 4-NQO (figure 30A), suggesting that this 

mutation has an impact on proficient DNA damage repair.  

Growth at 37°C, which already poses stress on yeast cells, strongly increases the growth phenotypes of 

the yeast Arp4 mutant strains. Here, cells harboring the Arp4 EEE mutant are barely viable even on YPD 

medium and the deficiency in DNA repair becomes more evident for the Arp4 EYE mutants at 37°C. Also 

the strains with the single point mutants show mild DNA damage hypersensitivity and L468R appears to 

be the slightly more harmful mutation compared to L462R (figure 30B). 

 

3.8.2 Mutating actin in the context of chromatin remodeling 

Within chromatin modifying complexes actin is always accompanied by Arp4 and both proteins form a 

transient heterodimer [77]. Therefore, fusion proteins of Arp4 and actin have been cloned into pRS315 

vectors and the genes encoding for these fusion proteins with or without mutations have been shuffled 

into yeast strains in order to replace wild-type Arp4 by the accordant fusion protein. This should in 

principle enable the introduction of actin mutants solely in the context of chromatin remodeling without 

affecting the cytoskeleton. 

The N-terminus of actin fused to the C-terminus of Arp4 via a Strep II–PreScission site-FLAG linker yields 

a fusion protein (chapter 2.8), which shows no apparent phenotype compared to the wild-type BY strain 

under normal growth conditions or also under genotoxic stress (figure 31). Different actin mutants such 

as polymerization incompetent actin G13R [149] were introduced to probe for the effect of mutant 

actin. Generally, one can state that cells expressing mutant actin within the fusion protein grow slower 

than strains harboring the unmutated fusion protein on YPD and also have weak additional growth 

defects on agar plates with genotoxic agents. The most significant phenotype however was caused by 

the Arp4 EYE mutation within the fusion protein. Here, a dominant negative effect was clearly visible 

already under optimal growth conditions since the EYE mutation (L462E/P465Y/L468E) within the fusion 
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protein had a much more severe growth defect than the EYE mutation on Arp4 alone (compare figures 

30 and 31). Under low doses of HU, MMS, CPT or 4-NQO cells containing the fusion protein harboring 

the EYE mutation in the Arp4 component are barely viable. 

 

Figure 31: In vivo effects of actin mutations in chromatin modifiers. 
48h growth of wild-type Arp4, the Arp4-actin fusion protein and different fusion protein mutants on YPD and YPD 
containing genotoxic agents at 30°C (A) and 37°C (B). 
The fusion protein shows no obvious growth defects compared to wild-type Arp4. 
Arp4-EYE-actin: fusion protein with L462E, F465Y, L468E mutations in the Arp4 part; Arp4-actin-G13R/S14C: G13R 
or S14C mutation in the actin part of the fusion protein. The EYE mutation in the Arp4 part of the fusion protein 
shows strong growth defects and additionally also DNA damage hypersensitivity. Actin mutations in the fusion 
protein have milder growth defects but also confer hypersensitivity to genotoxic agents. 

 

The in vivo experiments indicate that the hydrophobicity of the L462-L468 helix at the barbed end of 

Arp4 is important for Arp4 function and impaired growth might in part be caused by altered properties 

of Arp4 in in vitro actin dynamics experiments (chapter 3.8.1). Interestingly, the Arp4 EYE mutation 

shows a more severe growth phenotype, when actin is fused to the Arp4 mutant. Possible implications 

are discussed in detail (chapter 4.4.1). Moreover, actin mutations within the fusion protein show growth 
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phenotypes, indicating that actin within the fusion protein is functional and actin dynamics mediated by 

actin within chromatin modifying complexes is important for cell growth and DNA damage repair. 

However, control experiments showing that the actin within the fusion protein fully replaces monomeric 

actin in the chromatin modifiers INO80, SWR1 and NuA4 still have to be performed. 
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3.9 Dissecting the role of Arps in nucleosome binding 

The chromatin binding properties of Arps have been discovered roughly a decade ago [39, 134] and 

based upon these findings, Arps have been discovered to play important roles in the recognition of 

certain chromatin states. However, the initial binding experiments were limited to incubation of GST-

fused Arps with membrane spotted histones and subsequent salt washes or yeast two hybrid screens, 

which provide qualitative but no quantitative results.  

In collaboration with Prof. Karolin Luger’s laboratory, Duane Winkler, PhD, performed fluorescence 

titration based affinity assays of Arp8, Arp4 and the subcomplex I with histone complexes and 207 bp 

DNA nucleosomes and 30 bp DNA. Alexa 488 maleimide conjugated H2B (T112C) within H2A-H2B dimers 

and H4 (E63C) in (H3-H4)2 tetramers or nucleosomes as well as Atto 647N labeled DNA gave rise to 

change in fluorescence upon binding to actin-related proteins and the subcomplex I. This enables to 

determine quantitative dissociation constants to dissect the contributions of Arp8 and Arp4 in binding of 

subcomplex I to DNA, histone complexes and nucleosomes (chapter 2.10.2). 

 

Table 11: Dissociation constants and Hill coefficients for human Arp8   

Hs Arp8 (Δ1-33) Kd
app 

(x10
-9

M) Hill Coefficient Overall Fit (R
2
) 

30 bp DNA 6329 ± 2727 2.4 ± 1.1 0.97 

H2A-H2B 367 ± 131 0.76 ± 0.3 0.85 

(H3-H4)2 65.1 ± 6.4 1.37 ± 0.2 0.97 

207bp nucleosome 62.6 ± 16 2.11 ± 0.4 0.91 

Hs Arp8 Kd
app 

(x10
-9

M) Hill Coefficient Overall Fit (R
2
) 

30 bp DNA 6938 ± 3448 2.6 ± 0.6 0.95 

H2A-H2B 555 ± 158 0.91 ± 0.2 0.92 

(H3-H4)2 110 ± 40.4 1.11 ± 0.3 0.96 

207bp nucleosome 51.0 ± 9.6 1.31 ± 0.4 0.96 

 

3.9.1 Arp8 binding to histone complexes, DNA and nucleosomes 

All Arp8 variants tested bind (H3-H4)2 tetramers and nucleosomes with roughly comparable affinity, 

while the interaction with H2A–H2B dimers is about 4- to 6-fold weaker. The values obtained for the 

truncated human Arp8 (Δ1-33) are similar to those for full-length human Arp8 (table 11). Both 

polypeptides bind weakly to DNA (Kd approximately 6-7 µM) and with medium affinity to H2A-H2B 

dimers (367 ± 131 nM for the truncated construct and 555 ± 158 nM for full-length human Arp8). 
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Tetramers and also nucleosomes are bound with 4-6 fold higher affinity by human Arp8 compared to 

H2A-H2B dimer binding (table 11). However, Hill coefficients slightly but significantly diverge between 

full-length human Arp8 and the construct lacking most of the N-terminal protrusion. The Hill coefficient 

is a measure for cooperative binding. A Hill coefficient > 1 indicates that first binding events increase the 

affinity for subsequent ones. The hArp8 (Δ1-33) construct displayed a higher cooperativity in 

nucleosome binding (Hill-coefficient 2.11 ± 0.4), compared to wild-type hArp8 (Hill-coefficient 1.31 ±0.4) 

(table 11). 

Yeast Arp8 follows a similar binding trend compared to the human orthologue and displays weak 

binding to DNA (1919 ± 182 nM) and H2A-H2B (1951 ± 796 nM) and approximately 4-6 fold higher 

affinity to tetramers (485 ± 196 nM) and nucleosomes (314 ± 35 nM). The overall affinity is lower for the 

yeast protein, which may be caused by differences in chromatin targeting [53-55] or due to the inter-

species protein set-up as the Xenopus laevis histones used in these experiments could be more 

compatible with human Arp8 (table 11) compared to yeast Arp8 (table 12). The Hill coefficient of full-

length yeast Arp8, which has a very long N-terminus (approx. 250 amino acids) was determined to be 

2.13 ± 0.3, again indicative of cooperative binding to nucleosomes. Interestingly, binding to (H3-H4)2 

tetramers gave rise to Hill coefficients of roughly 1 for all Arp8 variants tested and therefore suggest no 

cooperativity in Arp8 to tetramer binding (table 12). 

 

Table 12: dissociation constants and Hill coefficients of yeast Arp4, Arp8 and subcomplex I    

Sc Arp4 Kd
app 

(x10
-9

M) Hill Coefficient Overall Fit (R
2
) 

30 bp DNA NB - - 

H2A-H2B NB - - 

(H3-H4)2 74.3 ± 10 2.41 ± 0.6 0.89 

207bp nucleosome 204 ± 67 2.06 ± 0.7 0.85 

Sc Arp8 Kd
app 

(x10
-9

M) Hill Coefficient Overall Fit (R
2
) 

30 bp DNA 1919 ± 182 1.7 ± 0.2 0.99 

H2A-H2B 1951 ± 796 0.85 ± 0.2 0.95 

(H3-H4)2 485 ± 196 0.87 ± 0.2 0.92 

207bp nucleosome 314 ± 35 2.13 ± 0.3 0.98 

Sc Arp8-Arp4-actin-HSA Kd
app 

(x10
-9

M) Hill Coefficient Overall Fit (R
2
) 

30 bp DNA 366 ± 23 2.1 ± 0.3 0.99 

H2A-H2B 853 ± 358 1.91 ± 0.8 0.81 

(H3-H4)2 182 ± 66.4 1.01 ± 0.2 0.95 

207bp nucleosome 63.6 ± 6.2 3.13 ± 0.7 0.94 
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Figure 32: Contribution of Arps to histone and nucleosome binding.  
Fluorescence based affinity measurements of H. sapiens full-length Arp8 (A), human Arp8 Δ1-33 (B), S. cerevisiae 
Arp8 (C), yeast Arp4 (D), S. cerevisiae INO80 subcomplex I (Arp8-Arp4-actin-HSA) (E) to H2A-H2B dimers (blue data 
points), (H3-H4)2 (green) and nucleosomes (red). Binding affinities and Hill coefficients are determined by titration 
of Arps or complex to fluorescently labeled histones or nucleosomes, and monitoring of fluorescence change over 
the titration series. Change of fluorescence (increase or decrease) upon substrate binding depends on alterations 
to the microenvironment of the attached fluorophore upon specific binding events. 

 

3.9.2 Arp4 binding to histone complexes, DNA and nucleosomes 

In this assay yeast Arp4 did not bind to either DNA or H2A-H2B dimers, even though interaction with 

H2B and especially H2A was determined for Arp4 insertion II in yeast two hybrid experiments [134]. At 

this point, it must be noted, that the fluorescence titration assay only monitors binding, if the binding 

event alters the microenvironment of the Alexa 488 dye. As the chromophore is attached to the histone 

fold, binding to e.g. the histone tails could remain unnoticed in these experiments. 
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Nonetheless, Arp4 binds to tetramers and nucleosomes and interestingly prefers (H3-H4)2 tetramers 

(74.3 ± 10 nM) over nucleosomes (204 ± 67 nM). Thereby, Arp4 binds both substrates with a Hill 

coefficient above 2 (table 12) pointing towards cooperativity. 

Together, these data show that Arp4 and Arp8 have unique properties in histone and nucleosome 

binding and concomitantly suggest that Arp4 interacts with tetramer surfaces that are at least partially 

masked in the nucleosome.  

 

3.9.3 Subcomplex I binding to histone complexes, DNA and nucleosomes 

Assessing the histone and nucleosome binding properties of the yeast INO80 subcomplex Arp8–Arp4–

actin-HSA showed that the complex exhibits a roughly 3-fold higher nucleosome affinity (63.6 ± 6.2 nM) 

compared to tetramers (182 ± 66.4 nM). H2A-H2B dimers are more tightly bound by the subcomplex 

(853 ± 358 nM) than by yeast Arp8 alone but still with about 4-5 fold less affinity as compared to 

subcomplex I tetramer binding (table 12). Intriguingly, the subcomplex binds nucleosomes with a very 

high Hill coefficient of 3.13 ± 0.7, while its interaction with (H3–H4)2 displays no signs of cooperativity. 

For example, oxygen binding of hemoglobin, which is one of the standard examples of cooperativity, 

exhibits a Hill coefficient of 2.8. 

The data give rise to the conclusion that the contribution of Arp8 to the nucleosome binding ability of 

INO80 is significant but enhanced by further subunits. Notably, Arp4 binds to the histone (H3–H4)2 

complex with a Kd of 74.3 ± 10 nM, which is more tightly than the affinity of the subcomplex I for this 

substrate (182 ± 66.4 nM). Therefore, Arp4 most likely also contributes to the tetramer affinity of the 

Arp8 module, however potent (H3–H4)2 binding by Arp4 appears to be compromised in the sub-

complex. This finding is corroborated by the fact that monomeric Arp4 shows strong cooperativity in 

binding to the tetramer (Hill coefficient = 2.41 ± 0.6), while the subcomplex does not (Hill coefficient = 

1.01 ± 0.2). 

In contrast to monomeric Arp8 or Arp4, the subcomplex exhibits significant DNA binding to 30 bp linker 

DNA (366 ± 23 nM), which is most likely mediated by the HSA domain of INO80, which was identified to 

be a DNA binding domain [150].  

Taken together, Arp8 and Arp4 as well as the HSA domain contribute to nucleosome binding, while a 

possible involvement of actin still has not been assessed in more detail. As wild-type actin polymerizes 

under physiological conditions, it seems unsuitable for usage in this assay. 
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Despite a clear involvement in subcomplex to nucleosome binding, Arp4 seems to be mostly hampered 

in exhibiting its preferred binding mode to histones within the Arp8 module.  

These results shed light on the interplay of INO80 complexed actin-related proteins Arp4 and Arp8 in 

nucleosome binding and will be discussed in this thesis (chapter 4.5). 
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4. Discussion 

Despite a growing body of evidence that nuclear actin-related proteins (Arps) have important roles in 

the recognition of certain chromatin states, the functional and mechanisistical understanding of nuclear 

Arps is still limited. As nuclear Arp4 always associates with monomeric actin in chromatin modifying 

complexes, research on nuclear Arps should take the presence of nuclear actin into account.  

The roles of nuclear actin as well as its polymerization state are still under controversial debate, as 

phalloidin stainable actin filaments have not been observed in the nucleus. Nevertheless, FRAP 

experiments with GFP-fused actin point towards a rapid equilibrium between monomeric and polymeric 

actin in the nucleus [60]. Also more and more evidence accumulates that actin and the regulation of 

actin dynamics is important for several nuclear processes. For example, the Arp2/3 complex is a seven 

subunit protein complex, which enables actin filament branching and nucleation [151, 152], when 

activated by WASP [153]. Despite identified as a key regulator of actin dynamics in the cytoplasm, the 

Arp2/3 complex is also localized in the nucleus. Here, the complex associates with RNA Polymerase II 

and is important for transcriptional regulation [44].  

It has also been shown that nuclear polymeric actin appears to be required for proper transcriptional 

activity of all three RNA polymerases [78, 154, 155]. More specifically, the actin depolymerizing agent 

latrunculin inhibits transcription and RNA polymerase I can be repressed by an antibody versus actin and 

rescued by providing polymerization competent actin [79].  The capability of nuclear Arps 4 and 8 to 

participate in actin dynamics is another significant finding that contributes to the hypothesis that actin is 

a very important factor in several nuclear processes [59].  

Furthermore, long-range chromatin movement, triggered by gene activation, is also dependent on actin 

[83, 156]. In a different line of evidence, INO80 has been shown to facilitate subnuclear chromatin 

motion, which depends on its Arp8 module [157].  Now, it would be interesting to probe for a possible 

connection of INO80 dependent local chromatin mobility with larger chromatin movements and 

whether the Arp and actin subunits of INO80 are involved in both processes. As a prerequisite for the 

putative participation of the INO80 complex in actin dependent chromatin movement the chromatin 

remodeler should directly or indirectly interact with actin. A direct interaction mediated by its own actin 

subunit appears to be the most obvious possibility. Even though it appears obvious to examine nuclear 

Arps complexed to their host remodelers with respect to their impact on actin dynamics, this has not 

been done before, probably due to the limited knowledge and controversial debate on nuclear actin. 
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4.1 Subcomplex I of INO80 interacts with actin 

The question that specifically needs to be answered is whether the remodeler associated Arps actively 

participate in nuclear actin homeostasis and if that is the case, how they achieve this. The in vitro 

experiments revealing effects of INO80 subcomplex I (Arp8-Arp4-actin-HSA) on actin dynamics in this 

PhD thesis strongly suggest that also the chromatin remodeler INO80 as a whole is capable of 

interacting with actin.  

The HSA domain of Ino80 plays a vital part first in recruiting actin and second in orchestrating the 

properties in actin dynamics. Heterologously co-expressed Arp8, Arp4 and actin in T. ni H5 insect cells 

could not be purified as a complex, but additional expression of the HSA domain yields the very stable 

tetrameric subcomplex I that can be purified to homogeneity. Interestingly, if only Arp8, Arp4 together 

with the HSA domain are expressed in T. ni cells, an actin isoform close to D. melanogaster actin 5C is 

retained from the expression host to form the stable tetrameric Arp8 module (subcomplex I). This also 

gives rise to the problem that it cannot be ruled out that the subcomplex contains a mixture of 

interspecies actin, if yeast actin is expressed. This needs to be validated by tagging actin in a way that 

formation of the tetrameric complex remains uncompromised but discrimination between S. cerevisiae 

actin and T. ni actin can be easily visualized.  

As opposed to monomeric Arp4 and Arp8, which together impair actin polymerization and promote 

depolymerization, the tetrameric subcomplex appears to nucleate actin filaments in vitro albeit it also 

slows down filament growth. An obvious explanation for slower F-actin formation would be preferred 

pointed end over barbed end growth and indeed in a pointed end growth assay, subcomplex I stimulates 

the assembly of filaments via the pointed end. Therefore, it apparently does not meet the requirements 

to be a bona fide actin nucleator, which promotes barbed end filament growth [158]. On the other hand, 

when compared to the F-actin nucleation factor Spire, a few common properties come into focus. Spire 

possesses four WASp-homology 2 (WH2) domains that each bind to actin and are separated by short 

linkers. Hence, Spire is able to form a prenucleation complex that resembles a single-stranded segment 

of a nascent filament consisting of four actin monomers. Spire remains associated with the filament 

after nucleation, but it is not clear, whether it allows free barbed end elongation [159] or if Spire 

associates with the barbed end and blocks further barbed end elongation [160]. In fact, fluorescence 

microscopy shows that actin filament growth after addition of low concentrations of Spire resembles F-

actin formation in presence of subcomplex I (compare figure 33 with 24).  
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Figure 33: Comparison of fluorescence microscopic images of 1µM rhodamin-actin filaments with and without 
addition of 0.25 µM Spire after 30 seconds. Adapted from Bosch et al. [160]  

 

Especially the actin polymerization assay in G-buffer could be interpreted in a way that subcomplex I is 

capable of arranging a few actin monomers poised for elongation, which corresponds to the increase in 

pyrene fluorescence, but the actual filament cannot form due to salt conditions of the G-buffer. Further 

comparisons between Spire and the Arp8 module of INO80 with respect to their actin dynamics 

properties might help to understand how INO80 interacts with actin. 

The fact that pyrene based actin assays are suboptimal for analyzing the effects of subcomplex I on actin 

dynamics significantly aggravates these experiments and more direct methods such as light scattering 

consume very large amounts of protein. As C374act conjugated pyrene has an enhanced quantum yield in 

the filament, probably due to constricted degrees of freedom in F-actin compared to G-actin, it is 

interesting to note that this effect is greatly reduced in filaments, when subcomplex I is present. This is 

not only another indirect hint, that this Arp8 module indeed interacts with actin but could also 

contribute to the solution of the riddle why nuclear actin can be of polymeric nature [60] yet still 

unstainable by phalloidin [161]. Immunoblots with actin antibody 2G2 suggest distinct conformations 

between cytoskeletal and nuclear actin (figure 34) [162]. Whether these differences are due to a 

different decoration of actin filaments within the different compartments or to an intrinsic structural 

difference of actin filaments remains to be analyzed. The pyrene assay based results in presence of 

subcomplex I indicate the latter, which opens up the intriguing possibility that nuclear Arps within 

chromatin modifying complexes might contribute to a nuclear polymeric actin conformation that 

appears to be distinct from cytoplasmatic actin filaments.  
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Figure 34: Surface structure of actin. Nonsequential epitopes (aa131-139, aa155-169, and aa176-187, colored in 
blue) are recognized by actin antibody 2G2, which was raised against the lower dimer. These epitopes are either 
located at the barbed end or right in the vicinity of the hydrophobic plug region of actin, which is colored pink.  
Both epitopes are masked in cytoplasmatic F-actin according to the Oda actin filament model. 

 

4.2 Structure of Arp8 

In order to comprehend how INO80 could interact with actin, it is necessary to elucidate the structure of 

the Arp8 module, in particular how the actin subunit is incorporated into the chromatin remodeler 

together with Arp4 and Arp8. While high resolution structures of the actin polypeptide [68, 142] are 

available for more than a decade, structural information on monomeric Arp4 and Arp8 have recently 

been published [59, 163].  

Arp8 like all other structurally characterized Arps contains the basal actin fold extended by several 

insertions that very likely account for loss and gain of functions. The 2.6 Å high resolution structure now 

provides the framework to study Arp8 function on a mechanistic level.    

 

4.2.1 Is Arp8 a physiological ATPase? 

Despite a more distant relationship to actin compared to Arp4, the ATP binding site of Arp8 is much 

more akin to actin’s active site, suggesting that Arp8 could also function as an inducible ATPase in vivo. 



4. Discussion  85 

 

In line with this assumption, very low basal ATPase activity could be monitored for yeast and human 

Arp8, while Arp4 was found to be inactive in these assays (chapter 3.5).  

It has been reported that binding of ATP to Arp4 causes Arp4 to dissociate from complexes whereas a 

lack of ATP increases the amount of Arp4 that is incorporated in high molecular species [164]. As ATP 

seems to be essential for the structural integrity of Arp4, these results could also be interpreted in a way 

that Arp4 deprived of ATP is prone to aggregation.  

Whether the low ATPase activity detected in Arp8 could be stimulated by other factors remains to be 

shown. Actin itself is an inducible ATPase that needs to be activated from the barbed end side and the 

barbed end of Arp8 appears to be accessible for binding partners and not obscured by large insertions to 

the actin fold. Moreover, the barbed end is highly conserved within Arp8 orthologues and also in 

comparison with actin (chapter 3.2.4).  

In case that ATPase activity is important for Arp8’s function, it would be interesting to assess possible 

conformational changes that are triggered by ATP hydrolysis and phosphate release. In actin, the sensor 

loop translates the conformational movement towards the DNase binding loop, where the free energy 

barrier for folding is reduced in the ATP bound state, which leads to a filament with lower persistence 

[144]. The DNase binding loop does not exist in Arp8. Insertion I that covers Arp8 like a lid would be a 

possible acceptor of the conformational change that goes along with phosphate release. As insertion I 

has some exposed hydrophobic residues and also bound several glycerol molecules in the crystallization 

condition, it is conceivable that this particular insertion does not only play a major role in impairing Arp8 

polymerization but also in mediating protein-protein interactions. The nucleotide state could therefore 

be important for regulating the affinity to potential binding partners. This could alternatively or 

additionally occur at the shorter insertion II, which is in very close proximity to the sensor loop and 

comprises mostly hydrophobic residues that are highly conserved (chapter 3.2.4). 

As the ATPase of actin is stimulated > 40,000 fold in the filament [74], it would be conceivable that the 

arrangement of the three actin-fold proteins in subcomplex I trigger activity. However, the ATPase 

within subcomplex I is not significantly enhanced, which indicates that neither the ATPase of actin nor 

Arp8 are efficiently activated within the subcomplex. This argues for a different conformation of Arp8, 

Arp4 and actin compared to the trimeric actin building block in F-actin [69].   

Optionally, the nucleotide exchange could be impaired and it would be interesting to probe for the 

nucleotide state of Arp8 and actin within the subcomplex. UV crosslinking of the Arp8 module and 

subsequent mass spectroscopy analysis did not give rise to results to answer this question yet.  
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Putative activating factors for the Arp8 ATPase remain to be found, since known binding partners like 

nucleosomes, (H3-H4)2 histone tetramers, H2A-H2B dimers or DNA did not trigger ATPase activity of 

Arp8 alone or of the subcomplex I significantly. Post-translationally modified histones or histone variants 

like H2A.Z are potential candidates to have an impact on the activity. Also other possibly modified 

subunits of INO80, such as the INO80 specific subunit 4 [165], could play a role in enzymatic activation.  

Since the subcomplex is involved in actin dynamics, actin filament association is also a potential 

scenario, in which ATPase activity of subcomplex I could have physiological relevance. 

 

4.2.2 Putative grappling hook and crow lever of Arp8 

Arp8 has no impact on actin polymerization on its own but it slowly depolymerizes actin filaments with a 

preference for ADP-bound actin [59]. On the contrary, Arp4 is able to inhibit actin polymerization and 

rapidly depolymerizes actin filaments. One possible explanation is that Arp4 binds to monomeric G-

actin, changing the equilibrium of the polymerization reaction and that Arp8 can bind to actin filaments 

and sever these once they reach the less stable ADP state. Preliminary data from electron micrographs 

support this hypothesis, showing shredded actin filaments after incubation with Arp8 (chapter 3.7.5). 

The observed activities are consistent with a possible function of Arp4 and Arp8 to integrate actin as a 

stochiometric component into the INO80 complex. 

In case Arp8 is indeed capable of severing actin filaments to sequester monomeric actin, one could 

envision that Arp8 utilizes parts of its actin fold core to compete for actin filament contacts. Given that 

insertion I of Arp8 possesses conformational flexibility that may be nucleotide dependent, insertion III at 

Arp8’s pointed end could get exposed. This is noteworthy, because insertion III elongates a loop of the 

actin fold that is implicated in regular filament contacts by approximately 10 Å and the amino acids at 

the tip of the loop are highly conserved and match those of actin that are responsible for the binding to 

the adjacent actin’s barbed end. This gives rise to the speculation that insertion III could function as a 

grappling hook, which can intrude into ADP-actin filaments to displace adjacent molecules. 
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Figure 35: Structure based hypothesis of F-actin severing by Arp8. (A) Arp8 (dark green) attaches to the actin 
filament (light green) and competes with actin filament contacts using the tip of insertion III as a grappling hook 
and disrupts ADP F-actin by utilizing helix E101-S119 as a crow bar to disrupt further filament contacts. (B) Close up 
of insertion III in an overlay of Arp8 onto an actin building block of the filament.  The conserved proline-aspartate 
motif at the tip of the loop might compete for actin filament contacts. 

 

In order to disrupt the filament, a second striking feature of Arp8 might come into play. A very large 

helix within insertion I is situated at the interface of the inner domain of Arp8’s actin fold (subdomains 3 

and 4). Compared to the relatively flat actin structure, this is the most prominent orthogonal secondary 

structure element and would be suitable to function as a crowbar that pushes towards the interface of 

the two neighboring actin molecules of the filament. This opens up the possibility that Arp8 indeed is 

capable to bind to F-actin and compete with actin for intra-strand interaction. Subsequently, Arp8 might 

disrupt F-actin and thereby slowly sequester actin from filaments.    

The fact that Arp8 alone does not impair pyrene monitored actin polymerization [59] is not controversial 

with this grappling hook and crowbar hypothesis, because the F-actin severing activity might depend on 

ADP filaments, which need to be formed in the time course of the assay. Also, fragments of actin 

filaments will not necessarily alter the pyrene based fluorescence signal significantly, if the majority of 

actin building blocks remain filament associated.  

Mutating the tip of insertion III (H369 – P373) or the crowbar helix of insertion I (E101 – S119) could put 

this hypothesis to the test. 
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4.3 Architecture of subcomplex I 

With the structures of yeast actin (1YAG), yeast Arp4 (3QB0) and human Arp8 (4FO0) and inter-protein 

cross-links of the yeast subcomplex I (Arp8-Arp4-actin-HSA) available, models of the overall architecture 

of the tetrameric subcomplex can be deduced. 

However, only very few cross-links between actin, Arp4 and Arp8 could be evaluated (chapter 3.6), 

which might be indicative of tight interaction interfaces that cannot be accessed by the cross-linker DSS 

or lack of lysines that are in the vicinity of protein-protein contacts. Additionally, many of the few 

available inter-protein cross-links are located within insertions that are not resolved in the electron 

density of Arp4 and Arp8 crystalstructures. Moreover, it is conceivable that these regions undergo major 

conformational changes during complex assembly.  

This, together with the relatively wide distance constraint of up to 30 Å for Cαs of cross-linked lysine 

residues and possible differences between the human and yeast Arp8 structures, make it impossible to 

deduce a solid and detailed molecular arrangement from the cross-link data and rigid-body fitting of the 

X-ray structures. Nevertheless, some important findings can be extracted from the cross-link data. 

 

4.3.1. Arp4 and Arp8 with actin assemble in a non-filament structure   

Comprising three proteins with a central actin fold, subcomplex I could easily be envisioned to have an 

actin filament-like set up [69], in which two molecules interact barbed to pointed end and the third 

molecule is located adjacent to their interface. Thereby, the regions of the hydrophobic plugs are facing 

inwards. 

The hydrophobic plug is a hot spot for Arp insertions to the actin fold and in both Arp4 and Arp8 the 

largest insertion emanates from this point, which makes a filament-like structure between actin and 

these two Arps improbable if not impossible. Indeed, the validated cross-link K688Arp8 – K328actin clearly 

shows that Arp8 interacts with the outer side of actin’s subdomain 3 with respect to the filament 

(chapter 3.6). This also corroborates the hypothesis that Arp8 is able to attach to and subsequently 

sever existing filaments.  

K328actin also interacts with insertion I of Arp4, which emanates from the pointed side of Arp4. Since 

K328act is located towards actin’s barbed end, this cross-link is in line with the biochemical data that 

argued for a binding of Arp4 to actin’s barbed end [59, 123]. However, this cross-link opposes the 

hypothesis that actin and Arp4 interact in a barbed to barbed orientation [166] reminiscent of the lower 
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dimer [70]. Further cross-links between Arp4 and insertion V of Arp8 (K332Arp4 – K775Arp8) as well as Arp4 

and the N-terminus of Arp8 (K122Arp4
 – K176Arp8) suggest that Arp4 could sit at the barbed end of actin, 

while Arp8 might be located on top of the actin-Arp4 heterodimer and all three proteins are aligned 

with respect to their barbed to pointed end configuration. Arp8’s actin fold however would have to be 

turned around by 180° compared to the filament arrangement. 

As stated before, this hetreotrimeric assembly of Arp8, Arp4 and actin appears to be rather transient 

and the HSA domain, which is essential to trap the Arp8-Arp4-actin complex in a stable conformation, 

cross-links to various lysines of Arp8’s large N-terminus (K158Arp8, K163Arp8, K211Arp8, etc.) and also to 

insertion V (K775Arp8 – K526INO80) as well as to K326 of Arp4 but not with actin. 

 

4.3.2 Accessibility of actin within subcomplex I 

The exact arrangement of the subcomplex remains enigmatic and should be subjected to further 

crystallization trials, in order to determine the atomic model. 

Nonetheless, the available structures and cross-link data strongly suggest, that the pointed end as well 

as the filament facing side of actin are at least partially exposed in the subcomplex. This is very intriguing 

since it renders actin within INO80 and possibly other chromatin remodelers poised to interact with 

other actin molecules. As its barbed end appears to be blocked by Arp4, actin is unlikely to function as 

nucleation seed, but in vitro pointed end elongation clearly indicates the capability of actin within the 

INO80 environment to participate in actin dynamics (chapter 3.7).  

The complex could thus stimulate the formation of new actin filaments from the pointed end, or bind to 

existing filaments and stabilize them. In support of this, the BAF complex, a chromatin remodeler that 

also contains Arp4 and actin can interact with cofilin and profilin as well as with DNase I, which strongly 

indicates that this complex participates in actin dynamics [167]. However, it must be noted, that cofilin 

and profilin bind to the barbed end of actin, while DNase I binds the DNase binding loop at the pointed 

end. This points towards both an accessible barbed and pointed end of actin in the BAF complex. It 

would have to be tested, however, if cofilin and profilin could also alternatively interact with Arp4 

despite its partially obstructed barbed end due to insertion II.  Moreover, the BAF complex also binds to 

pointed ends of actin filaments and stabilizes them in the presence of phosphatidylinositol-4,5-

bisphosphate [168].  

We propose that also INO80 comprises an at least partially accessible actin molecule within the 

remodeler as INO80 appears to exclusively expose the pointed end of its actin component. Accessible 
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actin seems to widen the task portfolio of chromatin remodelers as a possible joint connector between 

chromatin and nuclear polymeric actin. 

 

4.3.3 Comparison with the Arp2/3 complex 

The Arp 2/3 complex was first identified in 1994 [169] and is the best studied complex in which actin-

related proteins are present up to date. The complex consists of seven proteins that are capable to 

adhere to existing actin filaments and nucleate new actin filaments to form Y-shaped branches, which 

are implicated in regulating the actin cytoskeleton [170]. The Arp2/3 complex on its own is a very 

inefficient actin nucleator and requires activation by nucleation promoting factors and a mother actin-

filament [171, 172]. A wealth of factors that influence the Arp2/3 complex highly regulate its function in 

various processes such as cell migration, adhesion [173, 174] but also transcription [44]. 

The structure of the seven membered Arp2/3 complex (1K8K) has been solved by X-ray crystallography 

[152]. Actin-related proteins 2 and 3 are engulfed by the other subunits ARPC1-5 (Arp2/3 complex 

subunits 1-5). Interestingly, electron density is weak for Arp2, suggesting conformational flexibility of 

Arp2 in the inactivated complex. Subdomains 1 and 2 are missing in the atomic model of Arp2, while 

electron density sufficed to locate subdomains 3 and 4.  

An overlay of the actin structure (1YAG) on subdomains 3 and 4 of Arp2 clarifies why the Arp2/3 

complex is a weak nucleator on its own. The orientation of the two Arps does neither resemble a short 

pitch actin nucleation seed (Figure 36 A), where two adjacent actin molecules face each other, nor a 

long pitch nucleation seed, where two actins are oriented barbed to pointed and expose their 

hydrophobic plug towards the same side (Figure 36 B). Instead, the hydrophobic plugs of the Arp2 and 

Arp3 molecules are in opposite directions. In order to efficiently nucleate actin filaments, Arp2 must 

either rotate by approximately 180° to yield a long pitch nucleation seed or it must shift towards the 

pointed end by the length of half an actin molecule to form a short pitch nucleation seed with Arp3. The 

latter has been discovered to be the physiological relevant seed and the conformational change towards 

the short pitch elongation template serves as structural basis for filament formation and explains how 

the Arp2/3 complex can be regulated. In comparison, the subcomplex I of INO80 exhibits an orientation 

of Arp8 and Arp4 together with actin that seems to be distinct at least from a short pitch arrangement, 

since both Arp4 and Arp8 cross-link to actin’s subdomain 3 at the filament opposing side. As Arp8 cross-

links there with its insertion IV, which emanates fromArp8’s hydrophobic plug, it seems to locate in a 
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position towards actin that is completely distinct from the filament architecture and also from the 

Arp2/3 complex.  

 

Figure 36: Conformation of potential short-pitch (A) or long-pitch (B) nucleation seeds of actin molecules (blue) 
that could facilitate actin filament formation. (C) Arp2/3 location within the complex, without illustration of the 
accompanying subunits ARPC1-5. The actin fold (blue) superposed onto Arp2 (light orange) highlights Arp2’s 
location within the complex. Arp3 (green) and Arp2 are oriented in a barbed to pointed end orientation but 
distinct from a long pitched arrangement as their hydrophobic plugs are facing towards opposite sites. Hence, a 
conformational shift must occur for Arp2/3 to be an efficient F-actin nucleator.  

 

Insertion I of Arp4, which is situated at the pointed end, links, like Arp8, to subdomain 3 of actin at the 

outer barbed end and together with the notion that Arp4 binds to the barbed end of actin one could 

envision that Arp4 together with actin could possibly take on a long-pitch orientation that is stabilized by 

Arp8 and the HSA domain. Since the barbed end and the hydrophobic plug of Arp4 are altered by its 

histone binding insertion II [134], this putative long-pitch orientation of Arp4 and actin would only 

facilitate pointed end elongation in vitro, which is consistent with the observation in TIRF microscopy 

(chapter 3.7.1). 
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One has to note that due to the limited amount of inter-protein cross-links and the wide distance 

constraint for each cross-link, the exact arrangement of the subcomplex I of INO80 remains mostly 

enigmatic and speculative. Nonetheless, it appears that the Arp8-Arp4-actin-HSA module represents a 

new conformational arrangement of actin fold proteins that is distinct from the actin filament or the 

Arp2/3 complex. This is further corroborated by the observation of different biochemical properties of 

subcomplex I compared to either F-actin or the Arp2/3 complex in actin dynamics. 

 

4.4 Actin mutations in the context of chromatin remodeling 

Actin mutants incorporated only in chromatin modifiers would be a very elegant way to probe whether 

the loss of polymerization capability has an impact on the overall function of actin containing complexes 

like INO80, SWR1 and NuA4 in yeast. Hence, in living yeast the essential Arp4 was replaced by an Arp4-

actin fusion protein, which showed no evident phenotypes other than the wild-type in the performed 

experiments (chapter 3.8). This could either mean that fused actin was functionally incorporated into 

the complexes or that monomeric actin is assembled into the complexes nonetheless, while the actin 

part of the fusion protein is attached as non-functional entity. 

A suitable control would be the heterologous expression of subcomplex I with an accordant Arp4-actin 

fusion protein. Since the subcomplex lacking actin sequesters an actin isoform from the expression host, 

an SDS-PAGE analysis after purification would shed light on the integration of the fusion protein into the 

remodeling complex. Another possibility is the purification of these complexes directly from the 

accordant yeast strain. After purification, Western blots against actin should reveal a single band shifted 

by 55 kDa due to the fused Arp4, if correct fusion protein incorporation does occur. Both controls have 

not been successfully achieved so far and therefore, all results derived from the fusion protein 

complementation have to be considered preliminary at this point.  

Based on our initial hypothesis of a barbed to barbed end interaction between Arp4 and actin, actin’s N-

terminus was fused to the C-terminus of Arp4, which should in principle allow the formation of a barbed 

to barbed interface. The relatively long linker (Strep tag II / PreScission Protease Cleavage Site / FLAG 

tag) grants conformational freedom for the positioning of actin with respect to Arp4, but is probably still 

too short for an Arp4 pointed end to actin barbed end interaction, which now seems more plausible 

according to available cross-links (chapter 3.6). 

Nonetheless, actin mutants seem to show an effect. Mutated actin in the fusion protein displays mild 

growth phenotypes and DNA damage hypersensitivity (chapter 3.8.2). This is not expected, if actin of the 
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fusion protein was deprived of a physiological relevance. It cannot be ruled out however that these actin 

mutants alter the solubility or half-life of the fusion protein or have additional effects on Arp4, as for 

example the actin mutant G150P binds irreversibly to the actin chaperone CCT [149]. Therefore, it would 

be beneficial, if mutation studies of a fusion protein were be accompanied by i.e. fluorescence 

microscopic studies.  

 

4.4.1 Mutating Arp4 

The helix L462 - L468 of Arp4 was proposed to play a role in actin binding due to its similarity to a WH2 

like helix and the barbed to barbed interaction of Arp4 molecules in the crystal lattice [97]. Therefore, 

different mutations changing the hydrophobicity of the helix were generated. In vivo experiments 

showed a growth phenotype dependent on the severity of mutations. Arp4 L462R or Arp4 L468R 

mutations displayed moderate growth phenotypes while triple mutants L462E / F465Y / L468E (EYE) and 

in particular L462E / F465E / L468E (EEE) were extremely hampered in their growth. Additional DNA 

hypersensitivity could also be assessed for these mutants. The accordant heterologously expressed and 

purified Arp4 mutants all lost the capability of efficiently inhibiting actin polymerization in pyrene-actin 

assays, but no evident correlation between type of mutation and strength of the effect was observed. 

Effects due to aggregation can be largely excluded, because all mutant Arp4 proteins eluted similarly to 

wild-type Arp4 from a size exclusion chromatography column.  

It seems that helix L462-L468 plays a role in establishing the properties of Arp4 with respect to actin 

dynamics. Whether the behavior of mutant Arp4 in actin polymerization assays implicates a direct 

binding of actin to this helix, which is in contrast the Arp4-actin cross-link in the subcomplex, or is the 

result of a different effect remains to be shown.  

In yeast in vivo experiments, the Arp4-actin fusion protein with the Arp4 EYE mutation has a much 

stronger phenotypic effect compared to the EYE mutation in monomeric Arp4. This finding gives rise to 

speculations on the role of helix L462-L468 of Arp4 in actin dynamics, especially in the context of 

subcomplex I or INO80, as fusion of actin does not rescue but aggravates the Arp4 EYE mutation.  

Based on the cross-link between Arp4 and actin (chapter 3.6) as well as the in vitro polymerization 

assays of the mutants (chapter 3.8.1), one could speculate that Arp4 could use both pointed and also 

the barbed end to interact with actin. It would be conceivable that Arp4 is capable of binding actin with 

its pointed end  to form subcomplex I, but the exposed barbed end might still be able to interact barbed 

end to barbed end with other actin molecules reminiscent of the lower dimer as suggested based on the 
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Arp4 interactions in the crystal lattice [97]. Since, actin barbed end binding proteins cofilin and profilin 

as well as pointed end binding DNase I can interact with the Arp4 and actin containing BAF complex 

[167] (chapter 4.3.2), it would be conceivable that the pointed end of actin actin and the barbed end of 

Arp4 in remodeling complexes are capable of binding actin binding proteins. This could be tested by pull 

down experiments of Arp4 with actin-binding proteins, such as the mentioned cofilin and profilin or also 

DNaseI. The binding properties, however, could also depend on other Arp4 interaction partners (e.g. 

INO80 subunits or histones), as the localization of the flexible insertion II might be crucial for the 

accessibility of Arp4’s barbed end.  

 

 4.5 Interactions of Arps with chromatin 

Nuclear Arps 4 and 8 have been found to interact with core histones [39, 134] and both Arps contribute 

to the recognition of chromatin marks in DNA repair [175].  

In collaboration with Duane Winkler, PhD of Prof. Luger’s laboratory, we assessed the interaction of Arps 

4 and 8 individually and within subcomplex I with nucleosomes and core histone complexes as well as 

DNA in a quantitative manner.  

The previously published qualitative results for Arp4 and Arp8 could be validated, as both proteins 

prefer (H3-H4)2 tetramers over H2A-H2B dimers and further quantified. Consistent with previous results, 

no DNA binding could be detected for Arp4 [176]. Interestingly, weak DNA binding of Arp8 could be 

measured but is in the micromolar range and should only provide minor contributions to INO80’s 

chromatin affinity. Nonetheless, INO80 lacking Arp8, Arp4 and actin appears to be significantly 

hampered in DNA binding [39]. This finding is difficult to explain, as the DNA-binding region of INO80 

(DBINO) indeed coincides with the Arp binding HSA domain [12], but also confers DNA binding as 

isolated GST fusion domain without Arps present [150].  

It would be possible, that in the INO80 context, the DBINO/HSA region can be obscured by other 

subunits of the complex and the Arps and actin are necessary to expose this particular region to contact 

DNA. Alternatively, an INO80 complex deprived of Arp8, Arp4 and actin could lose its structural integrity 

and therefore its deficiency in DNA binding and ATPase activity could possibly be explained by 

aggregation. 

At first view, it was surprising that in the fluorescence titration assay no interaction with H2A-H2B was 

measured for Arp4 (chapter 3.9.2) as Arp4 was reported to be essential for the recognition of 

phosphorylated serine 129 H2A in yeast [53]. However, fluorescence change occurs only, if the binding 
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partner interacts with the fluorophore. Hence, it is possible that Arp4 binds to H2A-H2B without 

influencing the fluorescence of the Alexa 488 dye conjugated to H2B at the T112C mutation.  

In general, the lack of significant affinity to H2A-H2B dimers for Arp4, Arp8 and subcomplex I in this 

assay, opens up the possibility to discriminate between canonical histones and histone modifications or 

variants, if they are recognized with higher affinity. Therefore, measuring binding affinities of Arps 4 and 

8 and the subcomplex I to various physiological H2A-H2B dimers containing variants and/or post-

translational modifications would greatly enhance our understanding on how INO80 is able to 

discriminate between distinct epigenetic forms of nucleosomes. 

4.5.1 Arp4 binds tighter to histone tetramers than to nucleosomes 

Nucleosomes are not the rigid structures as assumed previously. Single-molecule approaches led to new 

insights into the highly dynamic nature of nucleosomes that were not apparent from crystal structures 

[177]. Various crystal structures represent just one snapshot of the nucleosome and PTMs and histone 

variant incorporation can shift the equilibrium between different structural states. This affects the 

interaction of nucleosomes with non-histone proteins and hence the level of chromatin fiber 

compaction [178]. 

 

 

Figure 37: Nucleosome dynamics between different states.  
Nucleosome assembly has several intermediate states that eventually lead to a fully assembled nucleosome. The 
first step appears to be always the formation of a tetrasome. Adapted from Luger et al. 2012 [178] 
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The important finding that Arp4 prefers (H3-H4)2 tetramers over nucleosomes points towards a role of 

Arp4 in binding to assembly or disassembly intermediates of nucleosomes (chapter 3.9.2). As Arp4 plays 

a vital role in the cycle of H2A.Z incorporation and eviction [179], sustaining (H3-H4)2 tetrasomes in an 

open state for remodeling activities during nucleosome dynamics (figure 37) could be one important 

function for Arp4. Due to the very stable interaction with tetramers, co-crystallization of Arp4 with (H3-

H4)2 might yield crystal structures that clarify how Arp4 and in particular insertion II interact with 

tetramers or tetrasomes and will help to understand how Arp4 functions mechanistically in chromatin 

modifying enzymes. 

4.5.2 Nucleosome binding of subcomplex I 

The subcomplex I binds weakly to H2A-H2B dimers, with reasonable physiological affinity to (H3-H4)2 

tetramers and relative tight affinity to nucleosomes (chapter 3.9.3). Arp8 contributes to all affinities but 

is supported by other subunits of the subcomplex, as all Kd values to the accordant substrate are lower 

for the subcomplex compared to Arp8. Within the Arp8 module, the HSA domain must be largely 

responsible for DNA binding, since neither Arp4 nor Arp8 have significant affinity to DNA and no DNA 

binding is reported for actin.     

The subcomplex binds weaker to tetramers than Arp4 alone. This gives rise to the assumption that the 

binding interface between Arp4 and the tetramer is partially blocked in the context of INO80. Arp4 is 

supposed to bind to its histone substrate via insertion II [134], which also cross-links to regions of Arp8. 

Therefore, it seems likely that Arp8 compromises the tetramer binding capability of Arp4. In contrast, 

the H2A.Z incorporation machinery SWR1 or chromatin modifier NuA4 that lack Arp8 could make use of 

Arp4’s putative high affinity to tetrasomes.   

Another intriguing finding is that subcomplex binding to nucleosomes displays a very high Hill coefficient 

of 3.13 ± 0.7, which is a measure for high cooperativity. In case, two subcomplexes bind to one 

nucleosome this would argue for additional contacts between two Arp8-Arp4-actin-HSA modules. Since 

the nucleosome has a pseudosymmetric structure with two copies of each of the core histones, it would 

be quite conceivable that it provides a second binding site for the subcomplex. However, since H3 and 

H4 seem to contribute strongly to Arp binding to nucleosomes and the tetramer should in principle also 

provide a second binding interface, it is also important to compare the Hill coefficients of the Arps to 

tetramer interactions. Here, Arp4 shows signs of cooperativity, while Arp8 or the subcomplex do not. 

Therefore the high affinity of Arp4 might at least partially be due to cooperative binding of two Arp4 
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proteins to the tetramer. Whether the subsequent binding event is hampered in SWR1 or NuA4 remains 

to be shown, but it appears to be impaired in INO80, where Arp8 is present. 

Therefore, it seems more plausible that the high Hill coefficient of the subcomplex-nucleosome binding 

is due to binding of two nucleosomes to one subcomplex I. This could be explained for example by 

opposite arrangement of Arp8 and Arp4 histone interaction sites within subcomplex I. This hypothesis 

can be tested by using single labeled dinucleosomes as substrates, which should confer high affinity 

binding to the subcomplex by simultaneous decrease of the Hill-coefficient. Alternatively, nucleosome 

and histone binding stoichiometry assays could shed light on the number of binding interfaces that are 

provided by histone complexes or nucleosomes for the subcomplex and vice versa [180]. In line with this 

hypothesis, INO80 was shown to act as a precise nucleosome spacing factor that positions nucleosomes 

leaving a 30bp linker DNA [181], which argues for two distinct nucleosome binding sites at the vicinity of 

INO80’s DBINO/HSA domain. 

 

4.5.3 Arp8 crystal dimer as physiological relevant nucleosome binder? 

The crystal contacts of Arp8 indicated that Arp8 might form a dimer, involving symmetric interactions of 

the truncated N- and C-termini. In solution, however, Arp8 was always found to be a monomer by SAXS 

and SLS experiments (chapter 3.3). Therefore, the question arises, whether Arp8 could dimerize upon 

nucleosomal substrate binding. Indeed, for S. cerevisiae Arp8 nucleosome binding, a Hill coefficient of 

roughly 2 was measured, while truncated H. sapiens Arp8 (Δ1-33) also showed cooperativity in the same 

range. Interestingly, wild-type H. sapiens Arp8 lost most of this cooperativity, indicating that the N-

terminus could hamper binding of a second Arp8 molecule, even though the Kd values are comparable. 

This would mean that human and yeast Arp8 could indeed bind to nucleosomes with different 

stoichiometries, which would be in line with findings that Arp8 does have species specific properties [55, 

58]. Also, it must be noted, that yeast Arp8 possesses a very long N-terminal domain of approximately 

250 amino acids opposed to human Arp8 with an N-terminus of only 45 amino acids prior to the actin 

fold. As a next step in clarifying the binding mode of Arps on histones and nucleosomes, specific 

stoichiometry binding assays with nucleosomes [180] should be performed.  
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4.6 Interdependence of chromatin remodeling and actin dynamics? 

As Arps are clearly involved in nucleosome recognition and binding as well as in actin dynamics even 

within the context of the chromatin remodeler, it would be interesting to probe for interdependence 

between these two tasks. For this purpose, the research areas of actin dynamics and chromatin 

remodeling have to be combined to yield suitable experimental setups.  

As stated before, subcomplex I appears to alter the structure of F-actin and herewith the quantum yield 

of pyrene in the filament (chapter 3.7.2), so for unambiguous results more direct methods than pyrene 

based actin assays, such as TIRF microscopy, must be used.  

Nuclear actin filaments and nucleosomes can be visualized in nuclei that are placed into germinal 

vesicles (GV) of Xenopus laevis expressing GFP-UtrCH (green fluorescent protein – Utrophin Calponin 

Homology), which binds to actin and cherry labeled H2B. Interestingly, in this set up actin filaments play 

an important role in reprogramming these differentiated nuclei back to the pluripotent state [82]. 

Incubation of nuclei with nuclear Arp proteins and complexes fused to other fluorescent proteins prior 

to implanting into GVs could visualize whether a co-localization occurs. Subsequently, mutations in 

nucleosome binding sites or putative actin interaction surfaces of the fluorescent fusion constructs 

could be introduced to monitor alterations. Another possible readout would be the expression profile of 

pluripotency genes such as Oct4 (octamer-binding transcription factor 4) assessed via real time PCR in 

presence of wild-type or mutated Arps. Despite the difficult setups for accordant experiments, it would 

be an exciting finding if the INO80 complex connects chromatin remodeling on the one hand with the 

regulation of nuclear actin dynamics on the other hand via its Arp8-Arp4-actin-HSA subcomplex. 

 

4.7 A possible role of Arps in regulation and maintenance of nuclear structure 

A possible connection between actin dynamics and chromatin remodeling via Arps could link external 

stimuli to altered transcription profiles in the nucleus. There is mounting evidence that nuclear envelope 

lamina spanning complexes (NELSCs), such as the LINC complex are potential transmitters of tensional 

force from the actin cytoskeleton to the nucleoplasm [89, 161]. NELSCs can stabilize nesprin 1α dimers, 

which have tight affinity to emerin and lamin A [87]. Lamins, in particular lamin A, are integral parts of 

the inner nuclear membrane that have actin binding domains and could regulate the concentration of 

nuclear actin. Thereby lamins potentially influence pathways important for transcription, nuclear export, 
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chromatin remodeling and movement as well as nuclear assembly that require nuclear myosin 1c and 

polymerizable actin [86].  

Emerin directly binds to the pointed end of F-actin and strongly stimulates filament elongation in vitro 

[90] and it also interacts with barrier-to-autointegration factor (BAF), via its LEM domain (LAP2, emerin, 

MAN1). BAF is a conserved chromatin binding protein that is vital for cell division, which recruits emerin 

to chromatin and regulates higher-order chromatin structure during nuclear assembly [182]. As NELSCs 

interact with actin on both sides of the nuclear envelope, they would be suitable candidates to link the 

actin cytoskeleton with nuclear actin associated structures [161]. 

The results of this thesis suggest an exposed pointed end of actin within INO80 and possibly in other 

actin containing chromatin remodelers. Therefore, it seems most interesting to perform binding studies 

with subcomplex I and emerin, which could provide first insights into a possible connection of chromatin 

remodeling and nuclear architecture.  

The compartimentalization of the nucleus plays roles in the regulation of transcription [183] and active 

genes are non-randomly positioned near the surface of chromosome territories [184].  Alteration of the 

transcription profile often involves relocalization of the specific gene, as shown for HXK1 encoding 

hexokinase 1 [84]. Also, unrepairable double strand breaks (due to the lack of homologous sequences) 

are directed to the nuclear periphery [85]. Therefore, long-range chromatin movement occurs upon 

distinct events that alter chromatin structure and depends on nuclear actin [83]. The anchor point on 

chromatin necessary for directed movement remains enigmatic to this date.  

Interestingly, Arp6 plays a role in the spatial arrangement of chromatin and this function is partially 

independent of its host remodeler complex SWR1. In particular, Arp6 seems to be involved in long-range 

interactions between nuclear pores and different families of growth-regulated genes [185] as well as in 

the overall spatial organization of chromatin [186]. Arp5 also seems to contribute to the maintenance of 

nuclear architecture [187], giving rise to the speculation that Arps, whether complex-associated or not, 

have important functions in nuclear compartmentalization.  

In light of a possible direct interaction of chromatin remodelers with polymeric actin [168], which in turn 

associates with the nuclear lamina, Arps would be suitable candidates to couple the chemomechanic 

force of chromatin associated machineries to scaffolds that maintain nuclear architecture. 
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5. Summary 

The INO80 complex is involved in multiple important cellular tasks, such as transcriptional regulation, 

replication fork progression, checkpoint regulation and DNA double strand break repair, but knowledge 

on how INO80 acts within these processes is very limited. Generally, mechanistic insight into chromatin 

remodeling is scarce due to the lack of structural knowledge on whole chromatin modifiers as well as on 

many of their subunits. Indeed, several subunits for example of the INO80 remodeling complex have no 

annotated function up to date. 

Actin-related proteins (Arps) as well as monomeric actin are conserved subunits of the chromatin 

remodeler and interestingly, Arps have been found to recognize and bind nucleosomes and appear to 

distinguish between epigenetic marks. 

Arps within their remodeler environment played a central part in this study and different structural 

techniques such as X-ray crystallography or small angle X-ray scattering (SAXS) were combined with 

functional assays to study their biochemical properties and interaction with actin and chromatin. 

One major part of this thesis was the structural elucidation of ATP-bound human Arp8 by X-ray 

crystallography with a resolution of 2.6 Å. Several insertions to the core actin fold give rise to gain and 

loss of functions compared to actin. The pointed end half of Arp8 is remarkably altered by insertions I-III, 

which play crucial roles in hampering Arp8 polymerization. The Arp8 structure also points towards 

inducible Arp8 ATPase activity, akin to actin.   

In order to structurally analyze Arp8 in the complex-bound form, lysine-specific cross-linking and 

subsequent mass spectrometry analysis have been performed. The accordant distance constraints 

between Arp8, Arp4 actin and the HSA domain suggest strong interaction of Arp4 and in particular Arp8 

to the HSA domain. Moreover, the arrangement points towards an exposed pointed end of actin within 

INO80 that could participate in actin dynamics. Indeed, the whole subcomplex stabilizes filaments and 

promotes pointed end elongation in vitro, corroborating the cross-link results.  

Next, actin mutations in the context of chromatin remodeling were introduced into S. cerevisiae Δarp4 

strains making use of a mutated fusion protein consisting of Arp4 and actin to reveal specific effects of 

non-polymerizable actin in chromatin remodelers. Slight growth defects and mild DNA damage 

hypersensitivity could be observed for mutated actin and strong effects were monitored for mutated 

Arp4 in the fusion protein. 

Probing the Arps’ interaction with nucleosomes and histone complexes in a quantitative manner by 

fluorescence titration assays dissected the contribution of single subunits of Arp8-Arp4-actin-HSA to 
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nucleosome binding. H2A-H2B dimers were only weakly bound and the main interface of Arps 4 and 8 to 

nucleosome binding appears to be at the (H3-H4)2 tetramer, while the HSA domain obviously 

contributes to nucleosome binding via its DNA affinity. Strong binding of Arp4 to histone tetramers is 

obscured in the INO80 context, suggesting a different mode of action for Arp4 in other chromatin 

modifiers. 

The structure of human Arp8 together with these biochemical and cell biological data provides a great 

advance in “Arp research” and will help to understand the various tasks, Arps are involved in. 

Most excitingly, these results point towards a possible dual role of Arps connecting chromatin 

remodeling complexes with nuclear actin dynamics and indicate a putative involvement of Arps in the 

actin-mediated large scale movement of chromatin. 
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7. Attachment 

7.1 Overview of the current literature of epigenetics 

7.1.1 Epigenetic readouts  

Three of the four main regulatory mechanisms that inter-dependently modulate the state of chromatin 

are discussed here. Please find a brief summary of the current literature on DNA methylation, post-

translational modification of histones and large intervening non-coding RNAs (ncRNAs) attached to this 

thesis, while , ATP-dependent chromatin remodeling is described in the introductory chapter. 

7.1.1.1 non-coding RNAs 

Non-coding RNAs have recently been described to appoint conserved signatures to chromatin [188] and 

it has been proposed that these long intergenic non coding RNAs (lincRNAs) are suitable candidates to 

bridge DNA and chromatin modifying complexes due to their ability to form secondary structures that 

can be recognized by proteins as well as their aptitude to base pair with complementary DNA sequences 

[189]. Indeed, it has been shown that transcription of intergenic DNA occurs [190], and the 

corresponding lincRNAs can act as modular scaffolds for chromatin modifying complexes [191]. 

Moreover, many lincRNAs are tightly associated with chromatin modifying complexes and alter gene 

expression [192]. A putatively uniform mechanism could then be an allosterical modulation of RNA-

binding co-regulators by signal-induced ncRNAs that are localized to regulatory regions of transcription 

as it has been shown for TLS (for translocated in liposarcoma) that specifically binds and inhibits CBP 

(CREB-binding protein) and p300 histone acetyltransferase activities on cyclin D1 (CCND1) upon RNA 

binding [193]. 

Other non-coding RNA such as small interfering RNA (siRNA) or microRNA silence genes associated with 

DNA methylation of the targeted sequence [194] and in a more recent study PIWI-interacting RNA 

(piRNA) pathway has been found to be required for de novo methylation leading to a model in which 

piRNAs and a target RNA orchestrate the sequence-specific methylation of DNA [195]. 

 

7.1.1.2 DNA methylation and hydroxymethylation 

DNA methylation is the most extensively studied epigenetic mark. First described in 1948 [196] it 

became clear that this DNA modification plays a role in differential gene expression in the 1970s [197]. 
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DNA methylation primarily takes place at position 5 of cytosine within CpG dimers that are prevalently 

organized in so called CpG island which are located in regions of large repetitive DNA sequences or gene 

promotor regions [198]. DNA methylation is the most extensively studied epigenetic modification and is 

implicated in gene silencing by either promoting or preventing the binding of regulatory proteins [199]. 

For instance, binding of transcription factors such as c-myc or MLTF (major late transcription factor) is 

impaired by methylated DNA [200, 201], while regulatory proteins such as MeCP2 (methyl CpG binding 

protein 2) are recruited to methylated CpG islands and subsequently target Histone Deacetylases to 

their chromatin substrate [202, 203]. Recently however, it has been shown that CpG islands seldom 

display tissue-specific methylation patterns, which would have been expected for the control of 

differential gene expression [204, 205]. Instead, so called CpG island shores, situated up to 2 kb away 

from CpG islands, show conserved and tissue-specific methylation patterns that reduce gene expression 

[206]. It appears that transcription factor binding to CpG islands prevents DNA methylation at these loci 

[207]. Interestingly, methylation in intra-genic regions can stimulate as well as repress expression. While 

methylation in the first exon of the gene results in gene silencing [208], methylation of the remainder of 

the gene sequence stimulates expression in fast dividing cells [209] but not in slowly dividing cells [210]. 

This phenomenon coined the term gene body, which is the open reading frame except the first exon. 

The responsible enzymes for methylating DNA were identified to be the DNA (cytosine-5)-

methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 preferentially methylates hemimethylated 

DNA [211] and coherently associates with the replication machinery [212]. On the contrary, Dnmt3a and 

Dnmt3b are de novo DNA methyltransfersases, which show no preference for hemimethylated DNA 

strands [213].  

So far, three different protein families have been found to recognize methylated DNA: MBD (methyl-

CpG-binding domain) proteins, UHRF (human ubiquitin-like containing PHD and RING finger) proteins 

and zinc-finger proteins. Binding of these protein families to methylated DNA usually aids in the 

inhibition of transcription factor recruitment and hence in the repression of expression [214]. UHRF1 

however, guides Dnmt1 to hemimethylated DNA during replication and therefore plays a role in the 

maintenance of genomic methylation patterns during cell division [215, 216].  

Enzymes that directly demethylate 5-methyl cytosine remain elusive. Instead, a series of enzymatic 

reactions involving deamination and potentially oxidation transform 5-methyl cytosine into products 

that are then repaired by the BER (base excision repair) pathway.   

One possible intermediate within the removal of methylation marks is 5-hydroxymethyl cytosine 

(5hmC), which is the product of 5m-cytosine oxidation by the TET (ten-eleven translocation) family of 
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proteins [217]. Interestingly, 5hmC has been shown to be a distinct epigenetic marker on its own, which 

is enriched at poised promoters that bear the dual histone modification histone 3 lysine 27 

trimethylation (H3K27me3) and histone 3 lysine 4 trimethylation (H3K4me3) [218], suggesting crosstalk 

between epigenetic marks on DNA as well as on histones.  

Indeed, it has been shown that enzymes involved in DNA methylation are tightly connected to histone 

modifications and to enzymes that govern this additional important epigenetic mark. Dnmts work 

together with histone modifying enzymes to maintain or enforce transcriptional repression on specific 

gene loci. For instance, Dnmt1 and Dnmt3 bind to SUV39H1 (suppressor of variegation 3-9 homolog), 

which is a histone methyltransferase that methylates H3K9 to also repress gene transcription [219]. 

 

7.1.1.3 Histone modifications 

The packaging of DNA is mostly accomplished by nucleosomes, in which approximately 146 base pairs of 

DNA are wrapped around a histone octamer [220]. These nucleosomes resemble a beads (histones) on a 

string (DNA) model [221] that assembles into higher ordered structures, whose exact conformations are 

still under debate [178].  

Nonetheless it is now clear, that post-translational modifications of the core histones or the exchange of 

canonical histones with certain variants have a stark impact on the structure of chromatin and hence the 

accessibility of its DNA content.  

Defined residues of the flexible N-terminal tail of histones as well as some amino acids of the globular 

domain can be subjected to modifications such as acetylation, phosphorylation, ubiquitination, 

methylation, sumoylation as well as ADP-ribosylation [222]. A rather newly identified modification is the 

crotonylation of histones [223]. In the following section all modifications will be briefly described. 

 

Acetylation 

All four canonical histones can undergo acetylation, where HATs (histone acetyltransferases) use acetyl-

coenzyme A to transfer the acetyl moiety to the ε-amine of lysines, which neutralizes the positive charge 

and thereby usually weakens histone-DNA interactions.  As a consequence, acetylated chromatin adopts 

a relaxed conformation, which is more accessible to transcription. Consistently, transcriptional 

activators, such as p300/CBP (CREB binding protein), frequently have intrinsic HAT activity [224]. In 

contrast to DNA methylation, histone acetylation can be enzymatically removed in a single step reaction 
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by HDACs (histone deacetylases), which often are subunits of transcriptional co-repressors like 

NURD/Mi-2 [225]. 

Therefore the interplay between HATs and HDACs governs the cellular acetylation levels of histones and 

majorly contributes to the accessibility of DNA within chromatin. 

Very recently histone lysine crotonylation (Kcr) has been discovered, which is mechanistically and 

functionally different from lysine acetylation (Kac). Nonetheless, Kcr putatively affects chromatin 

structure to facilitate histone replacement and thus transcription similar to Kac. The distinct chemical 

properties of the crotonyl moiety however might orchestrate the reorganization of chromatin after 

histone exchange in a manner distinct from Kac marks [223]. 

 

Phosphorylation 

Even though histone phosphorylation can also influence transcription via cross-talk to other histone 

modifications [226], it is generally involved in signaling pathways important for mitosis [227] or DNA 

damage repair [228]. While the Kinases responsible for histone phosphorylation of all canonical histones 

and the histone variant H2A.X are mostly identified, many proteins that recognize phosphorylated 

histones have yet to be discovered [229]. The MRN (Mre11 Rad50 Nbs1) and INO80 (inositol requiring 

80) complexes are notable exceptions, since it has been shown that these protein complexes read the 

phosphorylated histone code in context of DNA damage repair.  

 

Ubiquitination 

Ubiquitination has been discovered to take place at all canonical histones [230-232]. H3 and H4 become 

polyubiquitinated upon UV irradiation but the consequences of these modifications are not well 

understood. On the other hand, H2A and H2B are two of the most abundantly monoubiquitinated 

proteins within the nucleus. The according E2 and E3 ligases and DUBs (deubiquitinating enzymes) have 

recently been reviewed [233]. For example, BRCA1 (breast cancer susceptibility gene 1) is a potential E3 

ubiquitin ligase for H2A and H2A.X that covalently attaches ubiquitin to lysine 119 of the histones in 

vertebrates [234].  

Interestingly, H2Aub and H2Bub seem to have opposing effects in transcriptional regulation. 

Ubiquitinated H2A is implicated in gene silencing since it prevents the establishment of H3K4me2 and 

H3K4me3 that mark actively transcribed chromatin [235] and H2Aub DUBs are necessary for gene 

activation [236]. 
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In contrast, H2ABub was found to be enriched in highly transcribed genes [237] and monoubiquitinated 

H2B unidirectionally leads to the methylation of H3K4 [238]. Moreover, H2Bub stimulates PolII (RNA 

Polymerase II) elongation via the enhanced replacement of H2A-H2B dimers [239] and mutations in the 

H2B ubiquitination pathway result in transcriptional elongation defects [240]. 

Interestingly, H2Bub DUBs are found in co-activator complexes with histone acetyltransferase activity 

such as SAGA (Spt–Ada–Gcn5–acetyltransferase) or TFTC/STAGA (TBP-free TAFII complex/Spt3-TAFII31-

Gcn5-L-acetyltransferase) suggesting that also the deubiquitination of H2B seems to be important for 

gene transcription [241, 242]. 

In fact, the full ubiquitination and deubiquitination cycle of H2B is necessary for the activation of PolII 

RNA transcription [243], possibly via the enhanced mobilization of H2A-H2B dimers. 

Like H2Aub, H2Bub also undergoes cross-talk with accompanying histone modifications as it interacts 

with acetylated H4 to disrupt chromatin structures for increased accessibility [244] and it reciprocally 

influences H3K4 methylation compared to H2Aub as it specifically promotes H3K4 trimethylation [243]. 

 

Methylation 

Histone methylation like ubiquitination is linked to transcriptional activation as well as repression 

depending on the context of the modification. All canonical histones including H1 can be methylated but 

so far only methylation marks at H3 and H4 have been further characterized in detail with respect to 

their biological function. Even though histone methylation was long thought to be an irreversible 

enzymatic reaction similar to DNA methylation, the identification of the first histone demethylase 

proved that histone methylation is a changeable modification within the epigenetic code [245]. Today, 

many histone methyltransferases and demethylases are known that specifically alter the histone code 

and thus the transcriptional landscape [246]. Three distinct families of methyltransferases use SAM (S-

adenosylmethionine) to specifically transfer the methyl group onto histones. SET-domain containing 

proteins (Su(var)3-9, Enhancer of zeste and trithorax) and DOT1-like proteins (disruptor of telomeric 

silencing 1) modify lysines, while PMRTs (protein arginine N-methyltransferases) methylate arginines. In 

lysines, the ε-amine group can be mono- (me1), di- (me2) or trimethylated (me3) and arginine 

guanidinyl groups are either monomethylated (me1) or dimethylated, which can be either symmetrical 

(me2s) or asymmetrical (me2a). 

Also monomethylated histidines have been reported but have not been further described [247]. 
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Histone demethylases belong to either the family of amine oxidases or jumonji C domain containing, 

iron-dependent dioxygenases. Despite presence of these demethylases, histone methylation, especially 

trimethylation is considered to be a more persistent mark compared to other modifications [248] and an 

enzyme that demethylates trimethylated lysines has only recently been discovered [249]. The turnover 

of trimethylated lysines however seems to be important as mutations of the specific demethylase 

triggers p53-dependent germline apoptosis. 

Remarkably, the methylation pattern of histones can result in transcriptional activation or repression 

according to the modification of specific residues. Both, the gene activating TrxG (trithorax group) and 

silencing PcG (Polycomb group) families of proteins contain a histone methyltransferase SET domain 

[250]. 

PcG proteins mediate the methylation of H3K9, which is recognized by of HP1 (heterochromatin protein 

1) via its chromodomain [251]. HP1 in turn propagates heterochromatin spreading by recruiting further 

HP1 molecules as well as additional H3K9 methyltransferases and prevents H3K4 methylation, which is a 

mark of transcriptional activation [252].  

This transcription inducing methylation mark is implemented into chromatin by COMPASS (complex 

proteins associated with SET1), which belongs to TrxG proteins [253]. COMPASS associates with RNA 

PolII in the early phase of gene transcription. Likewise, methylation mark H3K36 mediated by SET2 [254] 

also promotes active gene transcription. 

 

SUMOylation 

SUMOylation covalently links the small SUMO protein (small ubiquitin-like modifier) of 12 kDa onto 

other proteins similar to ubiquitination.  In 2003 the SUMOylation of histones has been described [255]. 

All four core histones can be SUMOylated and multi-site SUMOylation or poly-SUMO chain formation 

has been suggested. The abundance of SUMO-histones is relatively low and even decreased for the 

histone variant H2A.Z. Since most of the SUMO target lysines can also be acetylated, SUMOylation 

seems to antagonize histone acetylation and represses gene transcription [256]. 

 

 

ADP-ribosylation 

ADP-ribosylation is the transfer of an ADP-ribose moiety onto a substrate protein using NAD+ as a donor. 

The range of potential acceptor amino acids is wide and comprises lysine, arginine, phospho-serine, 
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aspartate, asparagine, glutamate and cysteine residues. Furthermore, ATP-ribosylated proteins can 

accept further moieties to yield a protein linked to PAR (poly ADP-ribose) [257]. 

All histones and linker histone H1 can be subjected to mono or poly ADP-ribosylation by ARTDs (ADP-

ribosyltransferases diphtheria toxin-like) and possibly to deribosylation by ARHs (ADP-ribosylation 

hydrolases) or by PARGs (poly ADP-ribosylation glycohydrolases) [258]. ARTDs are also known as PARPs 

(poly ADP-ribosyl polymerases) in the literature. 

In general, poly ADP-ribosylated histones account only for a few percent of the total histones and H2A, 

H3 and H4 are only marginally modified. H1 on the other hand appears to be the best PAR acceptor 

followed by H2B [259].  

Poly ADP-ribosylated histones are more accessible to antibodies and also nucleases than in native 

chromatin, suggesting a more open chromatin structure [260]. Poly-ADP ribosylated H1 promotes 

chromatin unwinding since gradual loss of H1 affinity to DNA upon the addition of several ADP-ribosyl 

moieties putatively prevents the formation of higher-order heterochromatin structures [261]. 

In line with this, the finding that histone ADP-ribosylation via chromatin-associated poly(ADP-ribose) 

polymerase1 (PARP-1) enables gene transcription through elevated promoter accessibility [262]  

corroborates the assumption that PAR modifications exert chromatin relaxation. 

 

7.1.2 Epigenetic Cross-talk 

Distinct histone and DNA modifications alter the structure of chromatin and hence transcription levels, 

significantly. Herby, the same mark at different residues of histones might result in distinct 

transcriptional regulations. For example, H3K4 methylation marks an increased transcription rate, while 

H3K27 is implicated in gene silencing.  

The interplay between these modifications adds additional layers of complexity to epigenetics and the 

riddle of the so called histone code is far from being solved.  

A synergistic effect can also be monitored in the interplay between the transcription activating marks 

H2B ubiquitination and H4K16 acetylation that together severely hamper  the formation of higher-

ordered chromatin [244]. 

In some cases however, distinct epigenetic marks with similar outcomes compete with one another. 

Poly(ADP-ribosyl)ation generally relaxes the structure of chromatin but ADP-ribosylated H4K16 prevents 

this residue from being acetylated, which also confers transcriptional activation [263]. 
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It has also been observed, that specific histone marks preserve other modifications but alter their 

effects. For instance H3S10 and H3S28 phosphorylation are both detected in strongly condensed 

chromosomes in mitosis and H3S10 phosphorylation maintains the silencing mark H3K9 trimethylation 

during cell division, while di- and monomethylation are significantly reduced [264]. The HP1 binding of 

trimethylated H3K9 however, is hampered by the phosphorylation mark of the neighboring serine until 

dephosphorylation occurs [265]. 

It is also possible that distinct modifications that mark the formation of heterochromatin are mutually 

exclusive. Ubiquitination of H2A, which is implicated in transcriptional silencing, needs to be removed in 

order to enable H3S10 and H3S28 phosphorylation by the Aurora B kinase. Otherwise no proper 

chromosomal condensation and M-phase progression occurs [236]. This intricate network of 

interdependency is also referred to as the histone code, which is additionally extended by the 

incorporation of certain histone variants with altered chemical properties that also influence chromatin 

structure. 
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7.1.3 Histone variants 

Besides via post-translational modifications to histones, the structure of chromatin can be altered by the 

incorporation of H3 and H2A histone variants, which show distinct differences in the primary amino acid 

sequence compared to canonical histones H3 and H2A.  

 

Figure 38: Overview of different histone variants 
Adapted from Sarma et al. [266] 

 

H2A.Z for example (Htz1 in yeast), has an approximate 60% sequence identity as compared to H2A 

[267], but Histone H3.3 differs from H3.1 at only four amino acid positions [268]. 

Interestingly, the two H2A like the H3 molecules in the nucleosome interact with one another, whereas 

invariant H2B and H4 do not. 

The 'canonical' histones of animals are encoded in genes that cluster in repeat arrays and their 

expression is intertwined with DNA replication. In contrast, histone variants are usually encoded once in 

the genome and constitutively expressed [269]. While canonical histones principally function in genome 
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packaging as well as gene regulation, the portfolio of variants includes additional roles in DNA repair, 

meiotic recombination, chromosome segregation, transcription initiation and termination, sex 

chromosome condensation as well as sperm chromatin packaging [270]. 

Several eukaryotic histone variants like centromeric histone variant H3 (CenH3; chromosome 

segregation protein 4 (Cse4) in Saccharomyces cerevisiae), H3.3, H2A.Z and H2A.X are found in most 

eukaryotic organisms, suggesting that they were present in a common ancestor [271]. The universal and 

replication independent variants CenH3, H3.3, H2A.Z and H2A.X might have even preceded the 

replication dependent canonical histones [270], as for example H2A.X but not canonical H2A is present 

in fungi. 

 

7.1.3.1 H3 variants 

CenH3 

CenH3s have only approximately 50–60% identity with canonical H3s in their HFD (histone fold domain) 

and the N-terminal tails are not conserved at all. 

Also, a considerable sequence divergence is found among CenH3 paralogues from different species. 

Nonetheless, Cse4 from S. cerevisiae can substitute for human CENP-A [272], suggesting structural 

conservation. 

The nucleosome core structure undergoes profound structural changes that are different compared to 

the octamer, if CenH3 is present. It seems that CenH3 promotes the formation of hemisomes containing 

only one histone copy of CenH3, H4, H2A and H2B [273]. These differences then induce right-handed 

DNA supercoils, whereas canonical nucleosomes are wrapped by DNA left-handedly [274]. 

These positively supercoiled CenH3 containing tetrameric structures seem to withstand mitotic 

chromatin condensation and herby they provide an assymetric surface recognized by kinetochore 

proteins that assemble at the centromer. This is corroborated by the findings that centromere specific 

histone variants are indispensable for kinetochore assembly [275]. 

 

H3.3 

As stated above, H3.3 differs only marginally from H3 in humans. In yeast and some other unicellular 

organisms no such histone variant exists and the functional overlap of H3 and H3.3 has been shown in 

the ciliate Tetrahymena  thermophila, where H3s are dispensable if H3.3s are overexpressed [276]. 

http://www.uniprot.org/uniprot/P36012
http://www.uniprot.org/uniprot/P84243
http://www.uniprot.org/uniprot/P0C0S5
http://www.uniprot.org/uniprot/P16104
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Moreover, H3.3 mutants in other organisms are also not always lethal, but result in infertility due to 

meiotic defects in chromosome condensation and segregation in D. melanogaster spermatocytes, 

arguing for a role of H3.3. in germline-specific chromatin remodeling [277]. 

In somatic cells, H3.3 is deposited into transcribed genes upon induction of transcription and seems to 

facilitate transcriptional elongation due to a more rapid turnover as compared to canonical H3 

nucleosomes [278]. Hence, H3.3 contributes to chromatin accessibility. Moreover, H3.3 but not H3 plays 

a role in maintaining the epigenetically activated transcription state of a gene that depends on H3.3K4 

methylation during several rounds of cell division, which implies a role in epigenetic memory [279]. 

 

7.1.3.2 H2A variants 

The histone H2A family involves the greatest diversity of variants among core histones which can 

substitute canonical H2A [266, 271, 280]. The variety is putatively based on the more labile interface of 

the H2A–H2B dimer with the tetramer and DNA within the core particle [220]. 

 

H2A.Bbd 

H2A Barr body-deficient (H2A.Bbd) is a mammalian specific, fast evolving variant that shares only 48% 

sequence identity with canonical H2A. 

This variant is according to its name deficient on inactivated X-chromosomes and coincides with 

acetylated H4 but seems to alter nucleosome structures independent of acetylation [281, 282]. 

H2A.Bbd lacks the lysines involved in H2A PTMs and hence must be regulated differently. A shorter C-

terminus and a truncated docking domain lead to H2A.Bbd nucleosomes that organize only 118 base 

pairs of DNA. Nonetheless, this DNA is a prerequisite for nucleosome formation as the interface 

between H2A.Bbd-H2B and the (H3-H4)2 tetramer is destabilized [283]. H2A.Bbd also lacks the acidic 

patch due to mutations and nucleosomes containing this variant are incapable of forming the 30nm 

chromatin fiber [284, 285]. In line with the destabilizing properties, H2A.Bbd is exchanged more quickly 

than H2A in the nucleosome [286] and therefore makes chromatin more accessible and transcriptionally 

active. 

Moreover, H2A.Bbd nucleosomes cannot be mobilized by either SWI/SNF (Switch Imitating / sucrose 

non fermenting) or ACF (ATP-utilising chromatin remodeling and assembly Factor) enzymes, which can 
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be attributed to the altered docking domain of the variant [287, 288]. A specific function for H2A.Bbd 

beyond the formation of accessible chromatin remains enigmatic.  

 

macroH2A 

In contrast to H2A.Bbd variants, the MacroH2As (mH2As) paralogues are highly conserved. In addition to 

the HFD, which has a 64% sequence identity to canonical H2A, macroH2As harbor a long C-terminal non-

histone domain with a basic region and as well as a 'macrodomain'. So far, two genes that encode for 

MacroH2A are known in vertebrates and the corresponding proteins (mH2A1 and mH2A2) share 80% 

sequence identity.  Both macroH2A variants act are enriched on the inactivated X-chromosome of 

female mammals, hinting towards a role in transcriptional silencing [289]. 

Indeed, hybrid nucleosomes with one macroH2a and one canonical H2A, which are preferentially 

formed, show increased salt stability and are resistant to H2A-H2B dimer exchange [290]. Additionally, 

mH2A interferes with histone acetylation and blocks SWI/SNF and ACF remodeling of nucleosomes 

thereby repressing gene transcription [291]. 

The exact mechanisms that underlie this silencing effect are still under debate. It has been shown that 

mH2A and H1 act mutually exclusive and show functional redundancy in silencing. Also, the 

macrodomain may become ADP-ribosylated [292], even though the non-histone domain (NHD) of mH2A 

interacts with PARP-1 and inhibits its ADP-ribosylation activity [293] ADP-ribosylation, however, seems 

to play a dual role in transcriptional regulation, as PARP-1 can also participate in the maintenance of 

gene silencing. Upon PARP-activation during DNA damage, mH2A is recruited to the sites of DNA 

damage and transiently compacts DNA around the lesions. This effect is only mediated by mH2A1.1 but 

not by its alternatively spliced variant mH2A1.2 even though both variants like mH2A2 are able to bind 

and inhibit PARP-1 activity in vitro [294]. The presence of three different mH2A variants with apparently 

distinct functions complicates research on macroH2A significantly.     

The complex interplay between macroH2A and PARP-1 in transcriptional regulation also gives leeway for 

a fast response to external stimuli. MacroH2A variants silence inducible genes such as Hsp70.1 and 

Hsp70.2 (heat shock protein 70) due to chromatin compaction, but also recruit PARP-1 to these sites. 

Upon heat-shock PARP-1 is released and poly ADP-ribosylates adjacent targets, leading to HSP70 

expression [295]. 

The conditional silencing and activation of genes is a prerequisite in development and indeed  mH2A1 

and mH2A2 are enriched in promoters of developmental genes coinciding with H3K27 trimethylation , 
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which is a repression mark mediated by the Polycomb repressive complex 2. The role in directing 

developmental transcription is further corroborated by developmental defects of mH2A2 deficient 

zebrafish [296]. 

 

H2A.X 

H2A.X is very similar to canonical H2A in the histone fold domain (HFD) except for the C-terminal motif 

Ser-Gln-(Glu/Asp)-Φ, in which Φ represents a hydrophobic residue [271]. It is a relatively abundant 

variant as it constitutes up to 25% of mammalian H2A and in contrast to H2A.Bbd and macroH2A it can 

be found in almost all eukaryotic species.  

Due to its similarity to canonical H2A, H2A.X putatively gets incorporated into chromatin after 

replication and therefore is evenly distributed throughout the genome. Its most prominent role is the 

function in DNA repair, where the serine of the C- terminal motif becomes phosphorylated to yield γ-

H2A.X at the site of DNA double-strand breaks [297]. The kinases involved in this process are 

phosphoinositide 3-kinase-like kinases, ataxia telangiectasia mutated (ATM), ataxia telangiectasia and 

RAD3-related (ATR) and DNA-dependent protein kinase (DNA-PK) [298, 299].  

Upon phosphorylation γ-H2A.X triggers the additional deposition of H2A.X variants to the site of DNA 

damage, which subsequently become phosphorylated in order to spread a phosphorylation mark that 

stretches approximately 40 kbp around the lesion in yeast [300] and up to several mega base pairs in 

humans [301]. 

Interestingly, γ-H2A.X does not seem to be essential for the recruitment for important DNA repair 

factors, including Nbs1 (Nijmegen breakage syndrome 1), 53BP1 (p53 binding protein) and Brca1 (breast 

cancer 1), but the phosphorylated histone variant retains these proteins at the site of damage and 

therefore enriches the repair machinery at double strand breaks [302].  

Moreover, γH2A.X plays undefined roles distinct from double strand break repair. Putatively, γH2A.X 

might poise specific regions for chromatin remodeling, which include the Barr body Xi [303]. 

Despite its important functions, especially in the repair of DNA lesions, H2A.X is not essential as C. 

elegans has no gene for H2A.X and mice are viable without the variant. However, mice lacking H2AX 

show strong phenotypes including radiation sensitivity, growth retardation, immune deficiency and 

infertility [304].  Drosophila melanogaster has a specific Histone variant H2Av that combines H2A.X and 

another important and universal variant H2A.Z [280]. 

 

http://www.uniprot.org/uniprot/Q13315
http://www.uniprot.org/uniprot/Q13535
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H2A.Z 

H2A.Z differs from H2A and H2A.X in the C-terminal 'docking domain' that contacts H3 [271]. The 

sequence identity to H2A is approximately 60% but 90% between H2A.Z paralogues. This omnipresent 

eukaryotic histone variant is essential in many species [305].  

Homotypic nucleosomes contain two H2A.Z histones and seem to be more stable than hybrid 

nucleosomes harboring one H2A.Z, which in turn show slightly more salt stability than canonical 

nucleosomes, if H2A.Z is acetylated. Unmodified homotypic and hybrid nucleosomes on the other hand 

appear to be equally more salt-stable than H2A only nucleosomes [306], even though the structure of 

the H2A.Z nucleosome suggests a subtle destabilization in the H2A.Z/H3 interaction due to loss of three 

hydrogen bonds [305]. In fact, divergent experimental data in the literature report destabilizing 

properties [307] of H2A.Z or support the finding of more stable H2A.Z nucleosome [308].   

H2A.Z/H2B dimers provide an extension of the acidic patch on the nucleosomal surface, which 

potentially could interact with the H4 N-terminal tail of a neighboring nucleosome.  This might aid in 

chromatin compaction and in line with this structural feature, it has been shown that H2A.Z colocalizes 

with Hp1 (heterochromatin protein 1) in mammals [309] and both protein cooperate in 

heterochromatin formation [310]. 

In yeast, Htz1 is enriched at the boundaries between hetero- and euchromatin and antagonizes Sir 

dependent silencing and thus heterochromatin formation, which seems to be in stark contrast to 

mammalian H2A.Z [311].  

In the same line of evidence, yeast H2A.Z (Htz1) is mobilized more easily from purified chromatin in 

vitro, which suggests that H2A.Z might facilitate transcriptional induction of repressed genes [312].  

More recent work suggests, that mammalian H2A.Z is associated with euchromatin as well and that 

monoubiqitination is required for H2A.Z to be a specific marker for heterochromatin as for example on 

the inactivated X-chromosome [313]. More specifically, H2A.Z seems to be randomly and actively placed 

into the genome and active transcription first mobilizes H2A.Z nucleosomes and then hampers the 

reincorporation of H2A.Z, thus enriching this variant in heterochromatic regions [314]. 

The apparent contradictory roles of H2A.Z has apparently contradictory roles in transcription, 

nucleosome stability and turnover as well as DNA repair [305, 315] could at least be in part explained by 

PTMs or additional (splicing) variants of H2A.Z [316]. Moreover, nucleosomes, especially H2A.Z 

containing ones are inextricably linked to chromatin remodeling [317].  
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7.2 List of the inter-protein cross-links in subcomplex I 

7.2.1 Cross-links sorted according to the ID score 

Lysine protein 1 Lysine protein 2 Id score 
Arp8 210 HSA (Ino80 462-685) 62 37,64 
Arp8 144 HSA (Ino80 462-685) 44 36,95 
Arp8 211 HSA (Ino80 462-685) 65 36,57 
Arp8 172 HSA (Ino80 462-685) 44 35,94 

HSA (Ino80 462-685) 17 ARP4 323 35,2 
Arp8 132 HSA (Ino80 462-685) 44 35,17 
Arp8 165 HSA (Ino80 462-685) 44 34,12 
Arp8 211 HSA (Ino80 462-685) 62 33,84 

HSA (Ino80 462-685) 44 Arp8 176 33,13 
Arp8 158 HSA (Ino80 462-685) 44 32,03 
Arp8 149 HSA (Ino80 462-685) 44 31,63 
Arp8 688 actin 328 31,59 
Arp8 284 HSA (Ino80 462-685) 84 31,38 
Arp8 165 HSA (Ino80 462-685) 26 30,37 
Arp8 158 HSA (Ino80 462-685) 44 30,28 
Arp8 165 ARP4 436 29,81 
Arp8 150 HSA (Ino80 462-685) 65 29,78 
Arp8 158 HSA (Ino80 462-685) 22 29,57 
Arp8 150 HSA (Ino80 462-685) 44 29,36 
Arp8 211 HSA (Ino80 462-685) 62 29,25 
Arp8 284 HSA (Ino80 462-685) 95 29,12 
Arp8 284 HSA (Ino80 462-685) 84 28,76 
Arp8 688 actin 328 28,68 
Arp8 775 HSA (Ino80 462-685) 44 28,21 
Arp8 132 HSA (Ino80 462-685) 65 28,2 
Arp8 136 HSA (Ino80 462-685) 44 27,72 
Arp8 144 HSA (Ino80 462-685) 44 27,38 
Arp8 158 HSA (Ino80 462-685) 65 27,11 
Arp8 158 HSA (Ino80 462-685) 44 26,84 
Arp8 158 HSA (Ino80 462-685) 26 26,52 
Arp8 172 HSA (Ino80 462-685) 44 26,37 
Arp8 202 HSA (Ino80 462-685) 44 24,37 
Arp4 267 Arp8 132 24,33 
Arp8 787 HSA (Ino80 462-685) 62 24,15 
Arp8 139 HSA (Ino80 462-685) 44 23,11 
Arp8 787 HSA (Ino80 462-685) 44 21,99 

HSA (Ino80 462-685) 114 Arp4 213 20,15 
Arp8 210 HSA (Ino80 462-685) 44 19,31 
Arp4 259 HSA (Ino80 462-685) 111 18,7 
actin 326 Arp4 218 18,6 
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7.2.1 Cross-links lysines sorted according to their locations within the proteins 

Lysine N-terminus Arp8 Lysine HSA domain 
 

Id score 

Arp8 132 HSA (Ino80 462-685) 44 35,17 

Arp8 132 HSA (Ino80 462-685) 65 28,2 

Arp8 136 HSA (Ino80 462-685) 44 27,72 

Arp8 139 HSA (Ino80 462-685) 44 23,11 

Arp8 144 HSA (Ino80 462-685) 44 36,95 

Arp8 149 HSA (Ino80 462-685) 44 31,63 

Arp8 150 HSA (Ino80 462-685) 65 29,78 

Arp8 150 HSA (Ino80 462-685) 44 29,36 

Arp8 158 HSA (Ino80 462-685) 44 32,03 

Arp8 158 HSA (Ino80 462-685) 22 29,57 

Arp8 158 HSA (Ino80 462-685) 65 27,11 

Arp8 158 HSA (Ino80 462-685) 44 26,84 

Arp8 158 HSA (Ino80 462-685) 26 26,52 

Arp8 165 HSA (Ino80 462-685) 44 34,12 

Arp8 165 HSA (Ino80 462-685) 26 30,37 

Arp8 172 HSA (Ino80 462-685) 44 35,94 

Arp8 202 HSA (Ino80 462-685) 44 24,37 

Arp8 210 HSA (Ino80 462-685) 62 37,64 

Arp8 210 HSA (Ino80 462-685) 44 19,31 

Arp8 211 HSA (Ino80 462-685) 65 36,57 

Arp8 211 HSA (Ino80 462-685) 62 33,84 

          
Lysines subdomain 1 of 
Arp8 Lysines HSA domain 

  Arp8 284 HSA (Ino80 462-685) 95 29,12 

Arp8 284 HSA (Ino80 462-685) 84 28,76 

     Lysines subdomain 3 of 
Arp 8  Lysines HSA domain 

  Arp8 775 HSA (Ino80 462-685) 44 28,21 

Arp8 787 HSA (Ino80 462-685) 62 24,15 

Arp8 787 HSA (Ino80 462-685) 44 21,99 

     Lysine Arp8  
N-terminus 

 
Lysine subdomain 4 Arp4 

  Arp8 132 Arp4 267 24,33 

     
Lysine Arp8 
N-terminus  Lysine subdomain 3 Arp4    

Arp8 165 Arp4 436 29,81 
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Arp8 insertion IV 

 
 
 
actin subdomain 3 

 
Id score 

Arp8 688 actin 328 28,68 

     

      
subdomain 4 of Arp4  

 
HSA domain 

  Arp4 259 HSA (Ino80 462-685) 111 18,7 

     Arp4 insertion I  
pointed end 

  Arp4 213 HSA (Ino80 462-685) 114 20,15 

     Arp4 insertion II  
barbed end 

  Arp4 323 HSA (Ino80 462-685) 17 35,2 

     Arp4 insertion I 
 

actin subdomain 3 
  Arp4 218 actin 326 18,6 
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7.3 Sequence alignment of S. cerevisiae and H. sapiens Arp8 

 

 

ScArp8 MSQEEAESSIIYEEPIDIPLEDDDDEDELEEENSVPLSSQADQENAENESDDSVDNVVGS 60 

HsArp8 ------------------------------------------------------------ 

                                                                             

 

ScArp8 ETPRSVTGLSVDPRDVADEEDEDEEGEDEDEDEDDNDVDNEDENDNDNANENENELGSSR 120 

HsArp8 -------------------MTQAEKGDTE--------------NGKEKGGEKEKEQRGVK 27 

                            : *:*: *              *.:::..*:*:*  . : 

 

ScArp8 DKRAPPAVQTSKRYKKYPKLDPAKAPPGKKVPLHLLEKRRLGRIKAAEEFAKTLKKIGIE 180 

HsArp8 RPIVPALVPES------------------------------------------------- 38 

          .*. *  *                                                  

 

ScArp8 KVETTTLPATGLFQPLMLINQKNYSSDYLKKDDQIFALRDRKFLRNNNTSQISSTNTPDV 240 

HsArp8 ------------------------------------------------------------ 

                                                                             

 

ScArp8 IDLKSLPHSEASAAPLNDEIDLNDPTATIVIHPGSNSIKIGFPKDDHPVVVPNCVAVPKK 300 

HsArp8 ---------------LQEQIQSN---FIIVIHPGSTTLRIGRATDTLPASIPHVIARRHK 80 

                      *:::*: *     *******.:::** ..*  *. :*: :*  :* 

 

ScArp8 WLD--LENSEHVENVCLQREQSEE--FNNIKSEMEKNFRERMRYYKRKVPGNAHEQVVSF 356 

HsArp8 QQGQPLYKDSWLLREGLNKPESNEQRQNGLKMVDQAIWSKKMSNGTRRIP-VSPEQARSY 139 

         .  * :.. : .  *:: :*:*   *.:*   :  : ::*   .*::*  : **. *: 

 

ScArp8 NENSKPEIISEKNDPSPIEWIFDDSKLYYGSDALRCVDEKFVIRKPFRGGSFNVKSPYYK 416 

HsArp8 NKQMRPAILDHCSGNKWTNTSHHPEYLVGEEALYVNPLDCYNIHWPIRRGQLNIHPGPGG 199 

       *:: :* *:.. .. .  :  .. . *   .       : : *: *:* *.:*::.     

 

ScArp8 SLAELISDVTKLLEHALNSETLNVKPTKFNQYKVVLVIPDIFKKSHVETFIRVLLTELQF 476 

HsArp8 SLTAVLADIEVIWSHAIQ-KYLEIPLKDLKYYRCILLIPDIYNKQHVKELVNMILMKMGF 258 

       **: :::*:  : .**:: : *::  ..:: *: :*:****::*.**: ::.::* :: * 

 

ScArp8 QAVAIIQESLATCYGAGISTSTCVVNIGAAETRIACVDEGTVLEHSAITLDYGGDDITRL 536 

HsArp8 SGIVVHQESVCATYGSGLSS-TCIVDVGDQKTSVCCVEDGVSHRNTRLCLAYGGSDVSRC 317 

       ..:.: ***:.: **:*:*: **:*::*  :* :.**::*.  .:: : * ***.*::*  

 

ScArp8 FALFLLQSDFPLQDWKIDSKHGWLLAERLKKNFTTFQDADVAVQLYNFMNRSPNQPTEKY 596 

HsArp8 FYWLMQRAGFPYRECQLTNKMDCLLLQHLKETFCHLDQDISGLQDHEFQIRHPDSPALLY 377 

       *  :: ::.** :: :: .* . ** ::**:.*  :::   .:* ::*  * *:.*:  * 

 

ScArp8 EFKLFDEVMLAPLALFFPQIFKLIRTSSHKNSSLEFQLPESRDLFTNELNDWNSLSQFES 656 

HsArp8 QFRLGDEKLQAPMALFYPATFGIVG---QKMTTLQHRSQGD----PEDPHDEHYLLATQS 430 

       :*:* ** : **:***:*  * ::    :* ::*:.:   .    .:: :* : *   :* 

 

ScArp8 KEGNLYCDLNDDLKILNRILDAHNIIDQLQDKPENYGNTLKENFAPLEKAIVQSIANASI 716 

HsArp8 KQEQSAKATAD---------------RKSASKPIGFEGDLRGQSSDLPERLHSQEVDLGS 475 

       *: :      *                :  .** .: . *: : : * : : .. .: .  

 

ScArp8 TADVTRMNSFYSNILIVGGSSKIPALDFILTDRINIWRPSLLSSASFPQFYKKLTKEIKD 776 

HsArp8 AQGDGLMAGNDSEEALTALMSRKTAISLFEGKALGLDKAILHS----IDCCSSDDTKKKM 531 

       : .   * .  *:  :..  *: .*:.::  . :.: :. * *     :  ..  .: *  
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ScArp8 LEGHYVNAPDKTEDENKQILQAQIKEKIVEELEEQHQNIEHQNGNEHIFPVSIIPPPRDM 836 

HsArp8 YSSILVVGGGLMFHKAQEFLQHRILNKMPPSFRRIIENVD------------VITRPKDM 579 

        ..  * . .   .: :::** :* :*:  .:..  :*::            :*. *:** 

 

ScArp8 NPALIIWKGASVLAQIKLVEELFITNSDWDVHGSRILQYKCIFTY 881 

HsArp8 DPRLIAWKGGAVLACLDTTQELWIYQREWQRFGVRMLRERAAFVW 624 

       :* ** ***.:*** :. .:**:* : :*: .* *:*: :. *.: 
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