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I.  EINLEITUNG 

Der Hund mit Dyspnoe oder Husten stellt in der täglichen Praxis oft eine große 

Herausforderung dar. Häufig ist nicht klar, ob die Symptomatik kardial oder 

respiratorisch bedingt ist. Bislang sind bei unklaren Fällen die Echokardiographie 

und das Röntgen des Thorax der diagnostische Standard zur Abklärung. Jedoch 

sind die Patienten mit Atemnot oft sehr instabil und die Lagerung zur 

Untersuchung kann schon lebensbedrohend sein. Außerdem ist es wichtig bei 

solchen Patienten eine schnelle Diagnose zu bekommen, um frühzeitig 

Entscheidungen bezüglich der weiteren Diagnostik und Therapie treffen zu 

können. N-terminales B-Typ Natriuretisches Peptid (NT-proBNP) ist bei 

Patienten mit Herzkrankheiten erhöht. Es entsteht bei der Bildung von BNP, ist 

biologisch inaktiv, deshalb stabiler als BNP und somit leichter zu messen. In der 

Humanmedizin wird die Messung dieses Peptides schon seit längerer Zeit 

standardmäßig zur Abklärung von Patienten mit Atemnot verwendet (MAISEL et 

al., 2002; McCULLOUGH et al., 2002; JANUZZI et al., 2006a).   

Ziel dieser prospektiven Studie war es herauszufinden, wie hoch die NT-proBNP-

Konzentration bei Hunden mit respiratorischen Ursachen für Dyspnoe oder 

Husten ist und ob NT-proBNP zur Unterscheidung von kardialen und 

respiratorischen Ursachen von Dyspnoe oder Husten verwendet werden kann. 

Mittels eines ELISA (VETSIGN Canine CardioSCREEN NT-proBNP, Guildhay 

Ltd, UK) wurde die NT-proBNP-Konzentration bei Hunden mit Dyspnoe oder 

Husten gemessen. Es wurde außerdem ein Cut-off-Wert zur Unterscheidung 

respiratorischer und kardialer Ursachen für Atemnot beim Hund ermittelt.  

 



II. Literaturübersicht     2 

II.  LITERATURÜBERSICHT 

1. Natriuretische Peptide 

Bei den Natriuretischen Peptiden handelt es sich um eine Gruppe phylogenetisch, 

funktionell und strukturell ähnlicher Peptide, deren wichtigste Funktion die 

Regulierung des  Flüssigkeitshaushaltes des Körpers bei Säugetieren ist. Alle 

Peptide dieser Gruppe besitzen einen Ring aus 17 Aminosäuren mit einer 

intramolekularen Disulfidbrücke zwischen zwei Cysteinresten (NAKAO et al., 

1992a). Die Ringstruktur weist zwischen den verschiedenen Natriuretischen 

Peptiden eine hohe Homologie auf und ist essentiell für deren Bindung an 

Rezeptoren und für die biologische Wirkung (HIRATA et al., 1988; FURUYA et 

al., 1992). Alle Natriuretischen Peptide haben ein unterschiedlich langes 

aminoterminales Ende. Ausser den Isoformen von C-Typ Natriuretischem Peptid 

(CNP) besitzen sie außerdem einen carboxyteminalen Rest, welcher ebenfalls in 

der Länge variiert (TAKEI et al., 2007). Alle Peptide kommen auch als 

Prohormone mit einem höheren Molekulargewicht vor. Die Gene für diese 

Vorläufer-Peptide von Atrialem Natriuretischem Peptid (ANP) und B-Typ 

Natriuretischem Peptid (BNP) liegen beim Menschen in Tandemformation auf 

dem distalen kurzen Arm des Chromosom 1, für CNP auf Chromosom 2 

(TAMURA et al., 1996). Die Transkription dieser Gene wird durch 

herzspezifische Genregulatoren gesteuert. (CHARRON et al., 1999).  

1.1. Die Peptide 

Inzwischen ist es allgemein anerkannt, dass das Herz nicht nur als mechanische 

Pumpe arbeitet, sondern auch eine Funktion als endokrines Organ hat. Vor etwa 

50 Jahren wurde dies bereits vermutet, nachdem festgestellt wurde, dass bei einer 

experimentellen Dilatation des Atriums des Herzens von Hunden eine vermehrte 

Urinausscheidung auftrat (HENRY & PEARCE, 1956a, HENRY et al., 1956b). 

Bereits in der Anfangszeit der Elektronenmikroskopie wurden „spezifische atriale 

Granula“ in den Myozyten der Atrien entdeckt, welche Merkmale von endokrinen 

Zellen aufweisen (KISCH, 1956a, 1956b; JAMIESON & PALADE, 1964).  
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1.1.1. Atriales Natriuretisches Peptid 

1981 stellten DE BOLD und Mitarbeiter fest, dass die Injektion von Extrakten aus 

den Myozyten des Atriums bei Ratten zu einer signifikanten Diurese und 

Natriurese führt. Diese Beobachtung war eine Demonstration der endokrinen 

Aktivität der Atrien und bewies die Existenz eines hormonellen „atrial natriuretic 

factor“ (ANF) (DE BOLD et al., 1981). Es folgte die Isolierung und 

Sequenzierung dieses Polypeptidhormons, welches heute als Atriales 

Natriuretisches Peptid (ANP) bekannt ist (FLYNN et al., 1983; CURRIE et al., 

1984; KANGAWA et al., 1984; MISONO et al., 1984).  

ANP wird bei gesunden Säugetieren hauptsächlich von den Myozyten der Atrien 

produziert und freigesetzt. Die Ventrikel des gesunden Herzens produzieren nur 

geringe Mengen ANP. Bei Volumenüberlastung, Hypertrophie der Ventrikel und 

im ventrikulären Gewebe von Feten und Neugeborenen  ist die Produktion stark 

erhöht (DE BOLD et al., 1981; SAITO et al., 1989; LEVIN et al., 1998).  

Physiologischerweise ist die Plasmakonzentration von zirkulierendem ANP 

relativ niedrig (10 fmol/ml). Bei Menschen mit kongestivem Herzversagen ist die 

Konzentration jedoch um das zehn- bis dreißigfache erhöht (BURNETT et al., 

1986; CODY et al., 1986). Stimuliert wird die vermehrte Freisetzung durch eine 

Volumenüberlastung und die daraus resultierende erhöhte Wandspannung (LANG 

et al., 1985; BILDER et al., 1986, EDWARDS et al., 1988; RUSKOAHO, 1992).  

Das Gen für ANP wird als Natriuretic Peptid Precursor A (NPPA) bezeichnet. Es 

besteht aus drei Exons sowie zwei Introns, und die Sequenz ist unter den Spezies 

hoch konserviert. ANP unterscheidet sich bei Mensch und Ratte nur durch eine 

Aminosäure an Position zwölf. Die zirkulierende Form von ANP ist bei Mensch, 

Schimpanse, Hund, Schwein, Pferd und Schaf identisch (NCBI Homologene 

Database).  

Die Plasmahalbwertszeit von ANP beim Menschen wird mit ungefähr zwei 

Minuten (NAKAO et al., 1986; YANDLE et al., 1986), bzw. ein bis drei Minuten 

angegeben (RUSKOAHO, 1992; ESPINER et al., 1995). 

1.1.2. Urodilatin 

1988 wurde aus humanem Urin ein dem ANP strukturell sehr ähnliches Peptid 

extrahiert und als Urodilatin bezeichnet (SCHULZ-KNAPPE et al., 1988).  

Urodilatin entsteht durch alternative Spaltung von proANP in den Zellen der 

distalen Tubuli der Nieren und besitzt ein um vier Aminosäuren längeres 
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aminoterminales Ende als ANP (SCHULZ-KNAPPE et al., 1988, RITTER et al., 

1992). Urodilatin wirkt lokal in der Niere auf die Regulation der Natrium- und 

Wasserreabsorption (FORSSMANN, 1986; FORSSMANN et al., 1998; ZEIDEL, 

1995).  

1.1.3. B-Typ Natriuretisches Peptid 

Ebenfalls im Jahr 1988 isolierten SUDOH und Mitarbeiter ein dem ANP in der 

Struktur homologes Polypeptid aus dem Gehirn von Schweinen, welches 

entsprechend dem Fundort als „Brain Natriuretic Peptide“ (BNP) bezeichnet 

wurde (SUDOH et al., 1988). Auch dieses Peptid wies natriuretische und 

diuretische Eigenschaften auf. Es konnte bald nachgewiesen werden, dass auch in 

den Atrien der Herzen von Schweinen BNP exprimiert wird (MINAMINO et al., 

1988a, 1988b). Desweiteren wurde festgestellt, dass die kardialen Ventrikel bei 

Säugetieren den Hauptursprungsort von zirkulierendem BNP darstellen (SUDOH 

et al., 1988; MUKOYAMA et al., 1990, 1991).  

Das Gen, welches humanes BNP kodiert, wird als Natriuretic Peptid Precursor B 

(NPPB) bezeichnet und ist wie NPPA auf Chromosom 1 lokalisiert. Es besteht 

wie das NPPA aus drei Exons und zwei Introns (OGAWA et al., 1994). BNP 

entsteht aus dem Vorläufer präproBNP, welches beim Menschen aus 134 

Aminosäuren (AS) besteht. Im Gegensatz zu präproANP, welches eine starke 

Homologie innerhalb der Spezies aufweist, zeigt die Sequenz von präproBNP bei 

Säugetieren nur am amino- und carboxyterminalen Ende eine starke Homologie. 

So beträgt zum Beispiel die Homologie von kaninem und humanem präproBNP 

nur 53 %, im Gegensatz zu 85 % bei präproANP. Durch diese geringe Homologie 

kommt es zu unterschiedlichen Längen des aktiven BNP bei den verschieden 

Spezies (Mensch und Schwein: 32 AS, Ratten und Mäuse: 45 AS) (POTTER et 

al., 2009).  

Im Kreislauf zirkulieren das biologisch aktive BNP (Mensch 32 AS) und der 

N-terminale inaktive Anteil, das N-terminale-proBNP (NT-proBNP) (Mensch 76 

AS) (HUNT et al., 1995). Die Konzentrationen von NT-proBNP und BNP können 

durch Immunoassays gemessen werden. Die Messung der Konzentration von NT-

proBNP wurde erstmals 1995 von  HUNT und Mitarbeitern durchgeführt. Auch 

andere Arbeitsgruppen entwickelten verschiedene Messmethoden (SCHULZ et 

al., 2001; GOETZE et al., 2002; HUGHES et al., 1999).  

Nur geringe Mengen von intaktem proBNP und dessen Spaltungsprodukte sind 
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mit ANP in den sekretorischen Granula der Atrien gespeichert. Die Myozyten der 

Ventrikel bilden unter physiologischen Bedingungen keine Granula und enthalten 

somit auch kein BNP (HASEGAWA et al., 1993; CHRISTOFFERSEN et al., 

2002). Bei Herzkrankheiten können jedoch auch in den Ventrikeln sekretorische 

Granula und BNP nachgewiesen werden (HASEGAWA et al., 1993; NICOLAU 

et al., 1997; TAKEMURA et al., 1998). Dies bedeutet, dass BNP unter 

pathologischen Bedingungen vor allem in den Ventrikeln gebildet wird. Die 

Regulierung von Synthese und Freisetzung von BNP erfolgt auf Ebene der 

Genexpression. Die Konzentration von BNP reagiert somit nicht auf akute Stimuli 

(YOSHIMURA et al., 1993; LEVIN et al., 1998). Erst in Reaktion auf dauerhafte 

Belastungen des Herzens, wie zum Beispiel eine chronische Volumenüberlastung 

kommt es zu einer vermehrten Transkription. Auch kardiale Fibroblasten können 

BNP produzieren und freisetzen (TSURUDA et al., 2002). Die Endothelzellen der 

koronaren Gefäße exprimieren ebenfalls das BNP-Gen, vor allem bei koronarer 

Atherosklerose (CASCO et al., 2002). Bei gesunden Menschen ist die 

Konzentration von BNP im Plasma sehr niedrig (1 fmol/l), bei kongestivem 

Herzversagen kommt es jedoch zu einer starken Erhöhung der Konzentration 

(MUKOYAMA et al., 1990, 1991). Auch die Konzentration von NT-proBNP 

steigt bei Herzversagen signifikant an, sogar in stärkerem Ausmaß als BNP 

(HUNT et al., 1995). 

Im Vergleich zu ANP hat BNP beim Menschen eine längere Halbwertszeit von 20 

Minuten (MUKOYAMA et al., 1990, 1991). NT-proBNP hat eine Halbwertszeit 

von 60  ̶  120 Minuten (HUNT et al., 1997; DOWNIE et al., 1999).  

1.1.4. C-Typ Natriuretisches Peptid 

CNP wurde wie BNP zunächst  im Gehirn von Schweinen entdeckt und daraufhin 

sequenziert (SUDOH et al., 1990). Es zeigte sich, dass CNP nicht nur im 

zentralen Nervensystem, sondern unter anderem auch in den Zellen des 

Gefäßendotheliums synthetisiert wird (KOMATSU et al., 1991; SUGA et al., 

1992; BARR et al., 1996). Die Plasmakonzentration bei gesunden Individuen ist 

niedrig, steigt aber bei kongestivem Herzversagen an, jedoch zu einem geringeren 

Grad als ANP und BNP (KALRA et al., 2003; DEL RY et al., 2005; CHARLES et al., 

2006).   

Das humane Gen für präproCNP liegt auf Chromosom 2 und besteht aus zwei 

Exons und einem Intron (OGAWA et al., 1994). PräproCNP zeigt eine 
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bemerkenswerte Homologie innerhalb der Spezies, sogar stärker als die von 

präproANP.  

CNP spielt vor allem eine Rolle in der Regulierung der Gefäßspannung, es wirkt 

stark vasorelaxierend und hemmt die Proliferation der Gefäßmuskulatur sowie die 

Migration der Endothelzellen. Es wird außerdem eine Funktion als parakriner 

Neurotransmitter im ZNS vermutet. CNP hemmt die Aktivierung von 

Fibroblasten in einem größeren Ausmaß  als ANP und BNP, aber ihm fehlen 

spezielle natriuretische oder diuretische Eigenschaften. Es spielt außerdem eine 

Rolle bei der endochondralen Ossifikation, der endokrinen Funktion der Hoden, 

der Spermatogenese und bei plazentalen Funktionen während der 

Schwangerschaft (CARVAJAL et al., 2001; EL-GEHANI et al., 2001; 

WALTHER & STEPAN, 2004).  

Die Plasmahalbwertszeit von CNP beträgt 2,6 Minuten (HUNT et al., 1994). 

1.1.5. D-Typ Natriuretisches Peptid 

SCHWEITZ und Mitarbeiter isolierten 1992 D-Typ Natriuretisches Peptid (DNP) 

aus dem Gift der Grünen Mamba (Dendroaspis agusticeps) und sequenzierten das 

Peptid. DNP besteht aus 38 Aminosäuren, ähnelt den humanen natriuretischen 

Peptiden ANP und BNP, unterscheidet sich aber von diesen in der Struktur der 

carboxy- und aminoterminalen Regionen (SCHWEITZ et al., 1992). Obwohl 

seine Funktion bisher nicht bekannt ist, scheint sein vasorelaxierender Effekt zu 

einer schnelleren Aufnahme des neurotoxischen Gifts der Grünen Mamba zu 

führen. Manche Autoren vermuten, dass DNP ein primitives, ursprüngliches 

Natriuretisches Peptid ist und es somit eine evolutionäre Vorstufe von ANP und 

BNP darstellt (RICHARDS et al., 2002). Es wurde ein „DNP-ähnliches“ Peptid 

aus humanem Plasma und den Atrien isoliert. Spezifische Antiseren gegen DNP 

lösen eine messbare Immunoreaktivität im menschlichen Herzen aus, wobei 

gezeigt wurde, dass die zirkulierenden Mengen des DNP-ähnlichen Peptides mit 

der Schwere eines Herzversagens beim Menschen korrelieren. Ein Einsatz in der 

Therapie wird derzeit untersucht (SCHIRGER et al., 1999; LISY et al., 2001; 

SINGH et al., 2006).   

1.1.6. Ventrikuläres Natriuretisches Peptid 

Ventrikuläres Natriuretische Peptid (VNP) wurde aus den kardialen Ventrikeln 

von Aalen isoliert entspricht am ehesten dem BNP bei Vertebraten (TAKEI et al., 
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1991, TAKEI, 2000). Es spielt eine wichtige Rolle im Flüssigkeitshaushalt von 

primitiven Knochenfischen wie Aalen oder Lachsen und wird in deren Herzen in 

großen Mengen produziert. Es wird bei diesen Spezies in großen Mengen 

benötigt, da die Aufrechterhaltung des Salz- und Flüssigkeitshaushaltes bei 

Fischen schwieriger ist als bei den meisten landlebenden Lebewesen. VNP 

existiert gemeinsam mit BNP, ANP und/oder CNP und hat ein carboxyterminales 

Ende aus 14 Aminosäuren und eine hohe Affinität für den Natriuretischen 

Peptidrezeptor A (NPR-A) und NPR-C (TAKEI et al., 2007). 

1.1.7.  Guanylin, Uroguanylin 

In der Mukosa des Gastrointestinaltrakts von Säugetieren werden außerdem die 

beiden intestinalen Natriuretischen Peptide Guanylin und Uroguanylin gebildet. 

Dabei  handelt es sich um Peptide aus 15 bzw. 16 Aminosäuren, die den Salz-  

und Wassertransport über die intestinale Mukosa regulieren und die intestinale 

Absorption sowie die anschließende renale Exkretion von Natrium koordinieren 

können (GREENBERG et al., 1997). Die Plasmakonzentrationen der 

Präkursorproteine Proguanylin und Prouroguanylin sind bei Menschen mit 

Herzversagen erhöht (NARAYAN et al., 2010).  

 

1.2. Bildung und Sekretion von BNP und NT-proBNP 

Alle Natriuretischen Peptide werden als hochmolekulare Präkursor-Proteine 

synthetisiert, die anschließend intrazellulär modifiziert werden.  

Es gibt klare Unterschiede zwischen ANP und BNP in Bezug auf deren 

intrazelluläre Speicherung und Sekretionsmechanismen. ANP wird in atrialen 

Granula gespeichert. Bei einer erhöhten atrialen Wandspannung kommt es zu 

einer sofortigen Freisetzung von ANP-verwandten Peptiden. Das ANP-Gen kann 

nur sehr langsam aktiviert werden, es dauert also einige Zeit, bis es zu einer de 

novo Synthese des Peptides kommt. Im Gegensatz hierzu wird (NT-pro)BNP nur 

in kleinen Mengen in Granula gespeichert und eine vermehrte Sekretion hängt 

von einer Stimulation des BNP-Gens ab, welche jedoch im Vergleich zum ANP-

Gen sehr schnell geschieht (MÄNTYMAA et al., 1993).  

Unter physiologischen Bedingungen sind die Atrien der Hauptbildungsort von 

ANP und BNP (HASEGAWA et al., 1993). Bei chronischer Dehnung der 

Myozyten, wie z. B. bei chronischem Herzversagen, wird jedoch die ventrikuläre 
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Produktion hochreguliert, insbesondere für BNP (MUKOYAMA et al.,1991; 

LUCHNER et al., 1998; HYSTAD et al., 2001).  

Die Translation des BNP-Gens wird durch mehrere Stimuli ausgelöst. Am 

wichtigsten hierbei ist eine mechanische Dehnung der Kardiomyozyten durch eine 

Volumen- oder Drucküberladung (MAGGA et al., 1994; LAPOINTE, 2005). 

Desweiteren bewirken auch ischämische Schäden, eine Hypoxie, Endothelin-I, 

Angiotensin-II, Interleukine und adrenerge Agonisten eine vermehrte 

Transkription des BNP-Gens (LAPOINTE, 2005).  

Nach Translation des BNP-Gens kommt es zur Produktion von PräproBNP1-134 

(beim Menschen bestehend aus 134 AS, bei der Katze aus 132 AS) (MARTINEZ-

RUMAYOR et al., 2008), welches am aminoterminalen (N-terminalen) Ende ein 

26 Aminosäuren langes Signalpeptid trägt. Durch schnelle Abspaltung dieses 

Signalpeptides im sarkoplasmatischen Retikulum entsteht der Präkursor proBNP1-

108 (beim Menschen 108 AS, bei der Katze 106 AS) (SUDOH et al., 1988).   

Durch das proteolytische Enzym Corin, welches im Myokardium exprimiert 

(HOOPER et al., 2000; YAN et al., 2000), oder durch Furin (HUNT et al., 1997; 

SAWADA et al., 1997), welches ubiquitär in verschiedenen Geweben und im 

Serum ausgeschüttet wird, wird proBNP1-108 anschließend in zwei Teile gespalten, 

den biologisch inaktiven 76 Aminosäuren langen aminoterminalen Teil NT-

proBNP1-76 und das biologisch aktive 32 Aminosäuren lange Molekül BNP1-32. 

Befindet sich das BNP1-32-Molekül im Blutkreislauf wird es höchstwahrscheinlich 

schnell in Fragmente degradiert, die in Relation zu BNP1-32 in höherer Anzahl 

vorhanden sind, aber auch durch die kommerziellen BNP-Tests gemessen werden. 

Unter den zirkulierenden Fragmenten von BNP findet sich BNP3-32, welches aus 

der Spaltung von BNP1-32 durch Dipeptidyl-Peptidase-IV (DPP-IV) entsteht. 

Zusätzlich zeigte eine Studie, dass die Peptidase Meprin A, welche in hoher 

Konzentration in der Niere exprimiert wird, BNP1-32 in BNP7-32 spaltet. Dies stellt 

einen notwendigen Schritt für die Degradation durch die Neutrale Endopeptidase 

(NEP) dar. Es ist jedoch nicht bekannt, ob dieser Schritt auch an der Degradation 

von BNP3-32 beteiligt ist. Teilweise gelangt auch schon proBNP1-108 in den 

Kreislauf. Es wird dann möglicherweise von Furin gespalten oder zu einem 

gewissen Grad glykosyliert (SCHELLENBERGER et al., 2006). 
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1.3. Natriuretische Peptid-Rezeptoren und Neutrale Endopeptidase 

Die Natriuretischen Peptide wirken über eine Interaktion mit hochaffinen 

Rezeptoren auf der Oberfläche der Zielzellen. Es wurden bisher vier 

Natriuretische Peptid-Rezeptoren beschrieben. Alle besitzen eine einzelne 

transmembrale Domäne und eine extrazelluläre Bindungsdomäne. 

NPR-A und NPR-B sind strukturell ähnlich, mit einer Homologie von 44 % in der 

ligandenbindenden extrazellulären Domäne (KOLLER & GOEDDEL, 1992). 

Beide Rezeptoren sind an eine zyklisches Guanosinmonophosphat (cGMP) 

abhängige Signalkaskade gebunden, über die die biologische Wirkung ausgelöst 

wird (KONE, 2001).  

1.3.1. Natriuretischer Peptid-Rezeptor-A  

NPR-A wird in Lunge, Herz, Gehirn, Nebennieren, Nieren und im terminalen 

Ileum exprimiert (POTTER et al., 2006). Durch Stimulation der Liganden-

bindenden Domäne kommt es zur Produktion des intrazellulären second- 

messengers cGMP. Dieses ist notwendig für eine weitere Signalweiterleitung. Die 

Stimulation des NPR-A führt zu Natriurese, Inhibition von Renin und Aldosteron 

sowie zu vasorelaxierenden, antifibrotischen, antihypertrophen und lusitropen 

Effekten (LEE & BURNETT, 2007). NPR-A knock-out-Mäuse entwickeln eine 

Hypertension, eine linksventrikuläre Hypertrophie sowie Fibrosen (LOPEZ et al., 

1995; POTTER et al., 2006). Am besten binden DNP, ANP und BNP an diesen 

Rezeptor (INOUE et al., 2006; SINGH et al., 2006). 

 

1.3.2. Natriuretischer Peptid-Rezeptor-B  

NPR-B wird in Lunge, Gehirn, Haut, Nebennieren, Nieren, Uterus und den 

Ovarien exprimiert. Die Struktur des Rezeptors ist ähnlich dem NPR-A, und eine 

Stimulation löst ebenfalls die Produktion von cGMP aus (POTTER et al., 2006). 

NPR-B kommt allerdings in großen Mengen in Venen vor, im Gegensatz zu NPR-

A, welcher in Venen und Arterien in etwa gleicher Menge vorkommt (WEI et al., 

1993). Deshalb führt eine Aktivierung von NPR-B (vorwiegend durch CNP) zu 

einer Erhöhung von cGMP in Zellen der glatten Gefäßmuskulatur und dadurch zu 

einer Vasorelaxation. Dieser hypotensive Effekt ist stärker als der durch eine 

NPR-A-Aktivierung, da bei letztgenanntem auch eine Vasokonstriktion der 

Arterien erfolgt (WENNBERG et al., 1999). NPR-B knock-out Mäuse entwickeln 
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Zwergwuchs und Unfruchtbarkeit der Weibchen (TAMURA et al., 2004). Obwohl 

die Stimulation des NPR-B keine Natriurese und Diurese auslöst, zeigten neuere 

Studien, dass NPR-B eine größere kardioprotektive Rolle spielt, als bisher 

angenommen (DICKEY et al., 2007). Mit der höchsten Sensitivität bindet CNP an 

den Rezeptor, VNP und ANP schlechter und BNP am schlechtesten (LEVIN et 

al., 1998; PIAO et al., 2004; INOUE et al., 2005).  

 

1.3.3. Natriuretischer Peptid-Rezeptor-C  

NPR-C kommt in mehreren Organen vor, unter anderem in Lunge, Gehirn, Herz, 

Nebennieren, Nieren, Mesenterium, Fettgewebe, Plazenta, Venen und der Aorta. 

Im Gegensatz zu NPR-A und NPR-B besitzt es keine Kinasehomologie und keine 

Guanylyl-Cyclase-Domäne, welche für die Produktion von cGMP nötig wäre. Es 

wird als Dimer exprimiert. Im Modell mit transgenen Mäusen, bei welchen 

NPR-C genetisch entfernt wurde, konnte gezeigt werden, dass bei homozygoten 

Mäusen die Halbwertszeit von radioaktiv markiertem ANP im Kreislauf um 66 % 

länger war als bei Mäusen des Wildtyps. Dies führte zu der Schlussfolgerung, 

dass NPR-C hauptsächlich als Modulator der Verfügbarkeit der Natriuretischen 

Peptide in den Zielorganen wirkt (JAUBERT et al., 1999; MATSUKAWA et al. 

1999). Wie auch in anderen nutrient-type transmembranen Rezeptoren, wird der 

Ligand an NPR-C lysosomal hydrolysiert. Anschließend findet ein 

Rezeptorrecycling zur Zelloberfläche statt (POTTER et al., 2006). Es gibt 

außerdem Studien, die darauf hinweisen, dass NPR-C antiproliferative Effekte 

von BNP und CNP auf Fibroblasten auslösen kann (ROSE & GILES, 2008). Die 

stärkste Sensitivität hat NPR-C für VNP und ANP, gefolgt von CNP, BNP und 

DNP (LEVIN et al., 1998; INOUE et al., 2006; POTTER et al., 2006; JOHNS et 

al., 2007; ROSE & GILES, 2008).  

 

1.3.4. Natriuretischer Peptid-Rezeptor-D 

NPR-D konnte bisher nur beim Aal isoliert werden (KASHIWAGI et al., 1995). 

Es wird vermutet, dass NPR-D aus NPR-C entstanden ist und ihm ebenfalls die 

Guanylyl-Cyclase-Katalytische Domäne fehlt. Allerdings liegt es, im Gegensatz 

zu NPR-C, wie NPR-A und NPR-B als Tetramer vor und wird nur in einzelnen 

Organen (vor allem in Gehirn) exprimiert. Das Wissen über die Funktion von 
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NPR-D ist zum jetzigen Zeitpunkt noch begrenzt. Am sensitivsten bindet NPR-D 

beim Aal an ANP, gefolgt von VNP und CNP (INOUE et al., 2006). 

  

1.3.5. Neutrale Endopeptidase  

Die NEP 24.11 ist eine membrangebundene Metalloprotease. Eine Expression 

ihrer Messenger Ribonukleinsäure (mRNA) kann durch Adenlylatcyclase, 

Glucokortikoide, Thrombin, Calcitonin und Zytokine aktiviert werden (ROQUES, 

1992). Zunächst wurde sie vor allem in der Niere gefunden, doch sie wird auch in 

diversen anderen Geweben exprimiert, wie zum Beispiel im Gehirn und in der 

Lunge (KERR & KENNY, 1974; TURNER et al., 2001).  

Gemeinsam mit dem Clearance-Rezeptor NPR-C ist die NEP 24.11 beteiligt an 

der aktiven Elimination der Natriuretischen Peptide aus dem Kreislauf durch 

Hydrolyse. Wie auch bei den Rezeptoren ist die Aktivität der NEP je nach 

Natriuretischem Peptid unterschiedlich. Wahrscheinlich sind die Natriuretischen 

Peptiden mit einem längeren C-terminalen Rest resistenter gegen die 

Degradierung. Am besten wird CNP durch die NEP hydrolysiert, gefolgt von 

ANP und BNP. DNP ist das Peptid, welches am resistentesten gegen einen Abbau 

ist (DUSSAULE et al., 1993; CHEN et al., 2002).  

Die NEP ist neben der Degradierung der Natriuretischen Peptide, welche am 

besten untersucht ist, auch verantwortlich für die Inaktivierung von Enkephalinen, 

Neuropeptiden, wie z. B. die Substanz P und möglicherweise auch dem 

β-Amyloid-Peptid, welches bei Alzheimer im Gehirn in Plaques abgelagert wird 

(TURNER et al., 2001).  

 

1.4.  Abbau von BNP und NT-proBNP 

Der Abbau der Natriuretischen Peptide erfolgt über zwei Hauptmechanismen: die 

enzymatische Degradierung durch NEP und die rezeptormediierte Endozytose mit 

nachfolgender lysosomaler Degradierung durch NPR-C (NAKAO et al., 1992b). 

 

BNP und NT-proBNP werden durch unterschiedliche Mechanismen abgebaut. 

BNP wird entweder über passive Clearance-Mechanismen, z. B. Ausscheidung 

über die Niere oder aktiv über Degradierung durch NPR-C aus der Zirkulation 

entfernt. NT-proBNP wird hauptsächlich passiv über Organe mit hoher 

Blutflussrate aus der Zirkulation entfernt (z. B. Muskel, Leber, Niere). Studien 
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beim Menschen haben gezeigt, dass die Ausscheidungsraten über die Niere bei 

BNP und NT-proBNP vergleichbar sind und sowohl  bei gesunden, als auch bei 

kranken Menschen nur etwa 15   ̶ 20 % beträgt (SCHOU et al., 2005; GOETZE et 

al., 2006).  

Die Halbwertszeit von BNP wird mit 13 ̶ 20 Minuten angegeben. In der 

Zirkulation, wird BNP über Bindung an NPR-C abgebaut und zu einem 

geringeren Teil über Hydrolyse durch Proteasen, z. B. durch NEP. Im Gegensatz 

zu ANP scheint BNP relativ resistent gegenüber einer Degradierung durch NEP 

zu sein (SMITH et al., 2000). Es werden weitere Studien zur genauen Klärung des 

BNP-Metabolismus beim Menschen benötigt.  

Es scheint keine aktiven Clearance-Mechanismen für NT-proBNP zu geben. 

Anscheinend wird es im Plasma an beiden Enden schnell degradiert. Eine Studie 

an Schafen zeigte eine längere Halbwertszeit von NT-proBNP (ca. 70 Minuten) in 

der Zirkulation (PEMBERTON et al., 2000). Die Halbwertszeit beim Menschen 

wird mit 25 Minuten kalkuliert (KROLL et al., 2007).  

1.5.   Physiologie 

ANP und BNP wirken über den gleichen Rezeptor NPR-A und besitzen deshalb 

ähnliche physiologische Wirkungen. Sie scheinen ein duales System zu bilden, 

mit ANP als sehr schnell reagierendes Hormon und BNP als "back-up-Hormon", 

welches erst bei länger andauernder Volumenüberlastung aktiviert wird (MAIR, 

2008).  

ANP und BNP regulieren den Blutdruck und den Flüssigkeitshaushalt. Sie wirken 

hypotensiv, indem sie die Druck- und Volumenüberlastung reduzieren, vor allem 

durch eine Verminderung des intravasalen Volumens (LEVIN et al., 1998; 

POTTER et al., 2006).  Durch eine erhöhte endotheliale Permeabilität in den 

Gefäßen gelangt intravaskuläre Flüssigkeit in den extravaskulären Raum, 

wodurch der venöse Widerstand sinkt. Es kommt zu einer Erniedrigung des 

intravasalen Volumens und damit zu einer Senkung der Vorlast (WIJEYARATNE 

& MOULT, 1993). ANP und BNP reduzieren außerdem den atrialen und 

ventrikulären enddiastolischen Druck. Dadurch erhöht sich der kardiale Auswurf 

und die diastolische Funktion verbessert sich.  

ANP und BNP bewirken auch eine Vasodilatation. Sie unterdrücken den 

vasokonstriktiven Effekt von Endothelin-1, was zu einer arteriellen und venösen 

Vasodilatation führt (ABRAHAM et al., 1998).  
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In der Niere bewirken ANP und BNP vor allem eine verstärkte Natriurese und 

Diurese und dadurch eine Reduktion des extrazellulären Flüssigkeitsvolumens. 

Sie wirken direkt an den Glomeruli und an den Sammelrohren. In den Glomeruli 

kommt es zu einer Dilatation der afferenten Arteriolen und einer Konstriktion der 

efferenten Arteriolen, dadurch steigt der intraglomeruläre Druck an und die 

glomeruläre Filtrationsrate (GFR) wird erhöht (MARIN-GREZ et al., 1986; 

WEIDMANN et al., 1986). In den Sammelrohren wird die Reabsorption von 

Natrium gehemmt und die Ausscheidung von Natrium und Wasser gesteigert 

(ZEIDEL et al., 1988). Die Effekte an den Sammelrohren werden durch das renale 

Peptid Urodilatin weiter verstärkt (SCHULZ-KNAPPE et al., 1988). ANP und 

BNP hemmen außerdem die Wirkung des Renin-Angiotensin-Aldosteron-Systems 

(RAAS) durch Hemmung der Ausschüttung von Renin, Angiotensin II und 

Aldosteron (RICHARDS et al., 1988). Der renale Blutfluss wird erhöht, was zu 

einer erhöhten Urinausscheidung führt (DILLINGHAM & ANDERSON, 1986).  

Die peripheren Wirkungen von ANP und BNP werden über direkte Aktionen im 

Zentralen Nervensystem (ZNS) noch verstärkt. So werden zentral der Appetit auf 

Salz und der Durst herabgesetzt (BURRELL et al., 1991; BLACKBURN et al., 

1995).  

ANP und BNP setzen den Sympatikotonus in den peripheren Gefäßen herab. Dies 

wird wahrscheinlich durch eine verminderte Ausschüttung von Katecholaminen 

ausgelöst, die zur Dämpfung des Sollwerts der Barorezeptoren in den Gefäßen 

führt. ANP verringert außerdem den Schwellenwert zur Aktivierung vagaler 

Effekte, dadurch wird die Reflextachykardie und Vasokonstriktion vermindert 

und so die Vorlast zusätzlich gesenkt und der Blutdruck weiter erniedrigt 

(SCHULTZ et al., 1988; YANG et al., 1992). 

ANP und BNP besitzen eine antimitogene und antiproliferative Wirkung im 

kardiovaskulären System. Sie wirken antimitogen auf die Zellen des Endothels 

der glatten Gefäßmuskulatur (APPEL, 1990). Außerdem modulieren sie das 

Zellwachstum, die Proliferation und die Hypertrophie von Kardiomyozyten 

(HORIO et al., 2000). BNP wirkt außerdem antifibrotisch auf den Herzmuskel. 

Bei Mäusen mit fehlendem BNP wurden multifokale fibrotische Läsionen 

beobachtet, weshalb vermutet wird, dass es sich bei BNP um einen 

antifibrotischen Faktor aus den Kardiomyozyten handelt (CAO & GARDNER, 

1995; TAMURA et al., 2000).  

Es wurde außerdem beschrieben, dass Natriuretische Peptide auch eine 
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Bronchodilatation und eine Lipolyse in Fettgewebe auslösen (CHANEZ et al., 

1990; SENGENÈS et al., 2000). 

 

2. Natriuretische Peptide in der Humanmedizin 

In der Humanmedizin haben sich die Natriuretischen Peptide schon seit einigen 

Jahren als nützliche Marker zur Diagnostik, Prognostik und Therapieentscheidung 

bei Herzkrankheiten etabliert. Am besten untersucht ist der diagnostische Nutzen 

von BNP und NT-proBNP bei Patienten mit Herzversagen. In zahlreichen Studien 

wurde immer wieder nachgewiesen, dass BNP und NT-proBNP bei Patienten mit 

Herzversagen erhöht sind, und dass die Werte mit dem Schweregrad der 

Krankheit korrelieren, der durch die Klassen der New York Heart Association 

(NYHA) festgelegt wird.  

 

Die Konzentrationen von BNP und NT-proBNP sind beim Menschen abhängig 

von Alter, Geschlecht und Körpergewicht (VAN KIMMENADE & JANUZZI 

2009). Mit dem Alter nimmt die Konzentration der Peptide zu, wahrscheinlich 

weil strukturelle und funktionelle Schäden am Myokard vorliegen, die aber 

klinisch und diagnostisch noch nicht in Erscheinung treten. Hinzu kommt häufig 

eine mit zunehmendem Alter eingeschränkte Nierenfunktion. Es wird auch 

vermutet, dass bei älteren Patienten, die Konzentration an Clearance-Rezeptoren 

abnimmt (KAWAI et al., 2004). 

Frauen haben höhere Werte als Männer, was wahrscheinlich an einem  

unterschiedlichen Metabolismus liegt. Nachdem bei einer 

Hormonsubstitutionstherapie höhere BNP-Werte festgestellt wurden, wird ein 

möglicher Zusammenhang zwischen dem Östrogenstatus und BNP vermutet 

(REDFIELD et al., 2002).  

Bei Patienten mit erhöhtem Body Mass Index (BMI) sind die Werte niedriger als 

bei normalgewichtigen Personen (HORWICH et al., 2006), obwohl bei adipösen 

Patienten häufig ein erhöhter linksventrikulärer enddiastolischer Druck vorliegt 

(TAYLOR et al., 2006). Es wird vermutet, dass Substanzen, möglicherweise 

Androgene, die Synthese und Freisetzung der Vorstufen von BNP in den 

Myozyten adipöser Patienten hemmen (DAS et al., 2005).  

Bei Patienten mit eingeschränkter Nierenfunktion sind die Konzentrationen von 

BNP und NT-proBNP erhöht, beide korrelieren negativ mit der Kreatinin-
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Clearance. Da NT-proBNP hauptsächlich über die Niere metabolisiert wird, wird 

vor allem dieser Marker durch Nierenfunktionsstörungen beeinflusst 

(ANWARUDDIN et al., 2006).  

Die Konzentrationen von NT-proBNP und BNP werden außerdem durch die 

Schilddrüsenfunktion beeinflusst, bei einer Hyperthyreose treten erhöhte Werte 

auf (OZMEN et al., 2007). 

Tabelle 1 zeigt die verschiedenen physiologischen und pathologischen Faktoren, 

die beim Menschen zu einer Erhöhung der NT-proBNP- und BNP-Konzentration 

führen können.  

 

Tabelle 1: Einflussfaktoren auf die (NT-pro)BNP-Konzentration (LVH = 
linksventrikuläre Hypertrophie, LV = linksventrikuläre) (VAN KIMMENADE & 
JANUZZI, 2009) 
 

Physiologische 

Faktoren 

Kardiale 

Faktoren 

Nicht-kardiale 

Faktoren 

Alter Herzversagen Niereninsuffizienz  

Geschlecht Ischämie Cor pulmonale 

Gewicht Arrhythmien Sepsis 

 Klappenerkrankungen Pulmonäre Hypertension 

 Hypertension mit LVH Lungenembolie 

 LV-Dysfunktion Lungentumoren 

 Kardiogener Schock Intrazerebrale Blutungen 

  Hgr. Lebererkrankungen 

  Hyperthyreoidismus 

  Anämie 

  Apnoe Syndrom 

  Hgr. erhöhtes Kortisol 

 

 

2.1.  BNP und NT-proBNP in der Diagnostik 

In den Europäischen Leitlinien für die Diagnose und Behandlung von akutem und 

chronischen Herzversagen wurde die Rolle der Natriuretischen Peptide als Marker 

für Herzversagen hervorgehoben (DICKSTEIN et al., 2008). Mit einer Prävalenz 

von 0,8 – 2 % ist Herzversagen eine der häufigsten Krankheiten in der Population 

(KANNEL, 2000). Eine frühe Diagnose ist bei dieser Krankheit sehr wichtig, um 
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möglichst früh mit einer effektiven Therapie beginnen zu können und dadurch die 

Prognose zu verbessern. BNP und NT-proBNP haben eine hohe Sensitivität für 

die Diagnose oder den Ausschluss von akutem oder chronischem Herzversagen. 

Es konnte gezeigt werden, dass die Plasmawerte der Natriuretischen Peptide bei 

Patienten mit Herzversagen signifikant erhöht sind und eine enge Korrelation mit 

dem NYHA-Status vorliegt (MAISEL et al., 2002).  

Zahlreiche Studien zeigen einen optimalen Nutzen der Messung der 

Konzentrationen von BNP und NT-proBNP im Plasma, gemeinsam mit 

Anamnese, klinischer Untersuchung und Röntgen des Thorax zur Diagnose von 

Herzversagen bei Patienten, die mit Dyspnoe in eine Notfallambulanz eingeliefert 

wurden (MAISEL et al., 2002; McCULLOUGH et al., 2002; JANUZZI et al., 

2006).  

Die Konzentrationen der Natriuretischen Peptide sind bei Patienten mit akutem 

myokardialem Infarkt und linksventrikulärer Dysfunktion erhöht. Diese Erhöhung 

bleibt bis über späte Phasen des kardialen Remodelling hinaus bestehen 

(HIRAYAMA et al., 2005). Erhöhte Werte korrelieren direkt mit der Prognose, 

der NYHA-Klasse, dem intraventrikulären Druck und dem Pulmonalvenendruck 

und verhalten sich umgekehrt proportional zur kardialen Auswurfleistung 

(SILVER et al., 2004). Eine Erhöhung der Konzentration von BNP wurde 

außerdem bei hypertropher Kardiomyopathie, diastolischer Dysfunktion und 

linksventrikulärer Hypertrophie beobachtet. Unter diesen Umständen scheint BNP 

mit dem myokardialen Massenindex und der Wanddicke in Beziehung zu stehen 

(DE LEMOS et al., 2009). 

 

In mehreren Studien konnte eine hohe Aussagekraft der BNP- und NT-proBNP-

Messung bei akuter Dyspnoe aufgrund von Herzversagen nachgewiesen werden.  

So stellten DAO und Mitarbeiter bei 250 Patienten in einer Notfallambulanz fest, 

dass die BNP-Werte bei Patienten mit kardial bedingter Dyspnoe signifikant 

höher waren, als bei Patienten mit nichtkardialer Dyspnoe (DAO et al., 2001). 

Dies wurde bestätigt in einer Studie von MORRISON und Mitarbeitern. Die BNP-

Werte der Patienten mit kardialer Dyspnoe waren in dieser Studie höher als bei 

den Patienten, die Dyspnoe aufgrund respiratorischer Krankheiten zeigten 

(MORRISON et al., 2002). In der ersten multizentrischen Studie, der "Breathing 

Not Properly" (BNP) Studie mit 1586 Patienten, welche mit akuter Dyspnoe an 

eine Notfallambulanz überwiesen wurden, war das Hauptergebnis, dass die 
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Messung von BNP in Kombination mit der klinischen Untersuchung sehr gut zur 

Diagnose von Herzversagen geeignet ist. Bei einem BNP-Wert unter 100 pg/ml 

kann die Diagnose Herzversagen mit einer Sensitivität von 90 % ausgeschlossen 

werden (MAISEL et al., 2002).  

Ähnliche Ergebnisse zeigten sich für NT-proBNP in der International 

Collaborative of NT-proBNP Study "ICON", sowie in der Investigation of 

Dyspnoe in the Emergency department "PRIDE" Studie. Es wurde ein Cut-off von 

300 pg/ml für NT-proBNP im Plasma festgelegt (JANUZZI et al., 2005, 2006a). 

Die erhöhten Werte beider Peptide korrelieren mit einer verminderten 

linksventrikulären Auswurfleistung (GUSTAFSSON et al., 2005) und können 

auch zur Erkennung einer asymptomatischen linksventrikulären systolischen 

Dysfunktion verwendet werden. NT-proBNP scheint hierbei sensitiver zu sein als 

BNP (COSTELLO-BOERRIGTER et al., 2006). 

Eine diastolische Dysfunktion ist eine häufige Ursache für Herzversagen bei 

älteren Patienten und ist ebenfalls mit erhöhten BNP-Plasma-Werten verbunden. 

Die Werte sind jedoch nicht in dem Ausmaß erhöht wie bei einer systolischen 

Dysfunktion. Gemeinsam mit den diastolischen Veränderungen in der 

Echokardiographie kann BNP helfen, die Diagnose eines diastolischen 

Herzversagens zu bestätigen (LUBIEN et al., 2002).   

 

In einer prospektiven Studie mit 100 Patienten, die mit Brustschmerz vorstellig 

wurden, waren die BNP-Werte bei den Patienten mit kardial bedingtem 

Brustschmerz signifikant höher, als bei Patienten mit nicht-kardialem 

Brustschmerz (BROWN et al., 2007).  

NT-proBNP ist ebenso ein sensitiver Marker für eine myokardiale Ischämie. Es 

steigt in der frühen Phase deutlicher an als andere konventionelle Marker für 

myokardiale Schäden, insbesondere bei Patienten mit Myokardinfarkt ohne 

ST-Strecken-Hebung (OGAWA et al. 2006). Auch in einer Studie von HAAF und 

Mitarbeitern (2011) konnte eine signifikante Erhöhung der NT-proBNP-

Plasmawerte bei Patienten mit Myokardinfarkt nachgewiesen werden. 

NT-proBNP ist somit gut geeignet zur frühen Diagnose und Risikoeinschätzung 

bei Patienten mit Verdacht auf Myokardinfarkt (HAAF et al., 2011). 

Die NT-proBNP-Konzentration ist signifikant erhöht bei Patienten mit schwerer 

Mitralstenose im Vergleich zu Patienten mit moderater Stenose. Es gab einen 

signifikanten Zusammenhang zwischen dem Grad der Mitralstenose und der 
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NT-proBNP-Konzentration (ILTUMUR et al., 2005). Die Serumwerte von 

NT-proBNP korrelieren außerdem mit den Befunden in der Echokardiographie 

und der NYHA-Klasse bei Patienten mit Mitralstenose (ARAT-OZKAN et al., 

2005).  

 

2.2. BNP und NT-proBNP in der Prognostik 

BNP und NT-proBNP haben sich als hervorragende Marker zur Abschätzung der 

Kurzzeit- und Langzeitprognose etabliert, nicht nur bei Patienten mit akutem oder 

chronischem Herzversagen, sondern im kompletten Spektrum der 

kardiovaskulären Krankheiten. So konnte in einer Studie von JANUZZI und 

Mitarbeitern (2006) bei 599 Patienten mit Dyspnoe gezeigt werden, dass die 

Patienten, die innerhalb eines Jahres starben, signifikant höhere NT-proBNP-

Werte bei der Erstvorstellung aufwiesen als die Überlebenden (JANUZZI et al., 

2006b). In der International Collaborative of NT-proBNP "ICON" Studie mit 

1256 Patienten mit Dyspnoe wurde nachgewiesen, dass die NT-proBNP-Werte 

mit der Schwere der Symptome korrelieren und die Kurzzeitprognose umso 

schlechter war, je höher die Werte bei der Eingangsuntersuchung waren 

(JANUZZI et al., 2006a).  

 

Bei Patienten mit chronischer Herzinsuffizienz ist die Messung von BNP gut 

geeignet, um das damit verbundene Risiko einzuschätzen. Hohe Werte sind 

verbunden mit wiederholten stationären Aufenthalten und einem erhöhten Risiko 

des plötzlichen Herztods (HARRISON et al., 2002). In mehreren Studien 

erwiesen sich die Konzentrationen von NT-proBNP und BNP als stärkste 

Vorhersagewerte für die Mortalität und eine Krankenhauseinweisung innerhalb 

von  sechs Monaten (BETTENCOURT et al., 2004; ASPROMONTE et al., 2008). 

Bei Patienten mit koronarer Herzkrankheit ohne ventrikulärer Dysfunktion liefert 

eine frühe Messung von BNP zusätzliche Information zu anderen Markern und 

scheint der stärkste unabhängige Marker für die Prognose zu sein  

(PALAZZUOLI et al., 2006). Daten aus einer großen Studie zu NT-proBNP 

kamen von der Australia-New Zealand Heart Failure Group. Bei 300 Patienten 

mit chronischer Herzinsuffizienz ischämischer Ätiologie zeigte sich bei Werten 

von NT-proBNP über dem Median ein erhöhtes Risiko für dekompensierte 

Herzinsuffizienz und eine erhöhte Gesamtmortalität im Verlauf von 18 Monaten, 

unabhängig von Alter, NYHA-Klasse, linksventrikuläre Auswurffraktion (LVEF), 
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vorhergehendem Myokardinfarkt oder früherer Einweisung aufgrund von 

Herzversagen (RICHARDS et al., 2006).  

 

2.3.  BNP und NT-proBNP in der Therapie  

In der Humanmedizin werden die Natriuretischen Peptide BNP und NT-proBNP 

schon seit längerem zum Therapiemonitoring bei Herzkrankheiten eingesetzt. 

Anhand der Konzentrationen der Peptide wird die Therapie angepasst und der 

Therapieerfolg wird überprüft. Es werden außerdem künstlich hergestellte Peptide 

als Therapeutika verwendet.  

 

2.3.1.  Einstellen der Therapie anhand von BNP- und NT-proBNP-Werten 

In mehreren Studien konnte ein positiver Effekt einer Herzinsuffizienz-Therapie 

mit dem Ziel einer Senkung der Plasma-Konzentrationen der Natriuretischen 

Peptide gezeigt werden, z. B. für Angiotensin-Converting Enzym Inhibitoren 

(ACE-Hemmer), Angiotensin-Rezeptor-Agonisten, Spironolacton und andere 

Diuretika (MURDOCH et al., 1999; TROUGHTON et al., 2000; TSUTAMOTO 

et al., 2001; ANAND et al., 2003). Die Wirkung von Betablockern auf den 

Plasmaspiegel von BNP und NT-proBNP ist komplexer. So kommt es bei 

Einleitung der Therapie zu einer leichten Erhöhung der Natriuretischen Peptide 

durch die Hemmung der adrenergen Stimulation (SANDERSON et al., 1995). Bei 

einer Langzeit-Therapie mit Betablockern kommt es jedoch zu einer Senkung des 

Plasmaspiegels der Natriuretischen Peptide, parallel zur Besserung der LVEF. 

Dies wird insbesondere bei der Applikation von vasodilatierenden Betablockern 

beobachtet (SANDERSON et al., 1995; RICHARDS et al., 1999).  

Die Korrelation von Senkung der BNP-Levels und einer Besserung der Symptome 

der Patienten im Verlauf eines stationären Aufenthalts gibt Grund zu Annahme, 

dass eine Herzinsuffizienz-Therapie, geleitet durch Serien-Messungen der 

Natriuretischen Peptide in Zusammenhang mit anderen Daten aus Anamnese und 

klinischer Untersuchung, zu besseren Ergebnissen führt (SILVER et al., 2004).  

In der "STARS-BNP-Studie" wurden 220 Patienten mit chronischer 

Herzinsuffizienz (NYHA-Klasse II – III) und einer LVEF < 45 %  medikamentell 

behandelt, entweder nach den aktuellen Richtlinien oder zusätzlich mit dem Ziel, 

die BNP-Konzentration unter einen Plasmawert von 100 pg/ml zu senken (BNP-

Gruppe). Nach 15-monatiger Behandlung war in der BNP-Gruppe die Inzidenz 

für Tod durch Herzversagen oder Krankenhauseinweisung aufgrund von 
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Herzinsuffizienz um 50 % geringer als bei den Patienten, welche eine 

Standardtherapie erhielten (JOURDAIN et al., 2007).  

In der "BATTLESCARRED-Studie" wurden 364 Patienten, welche mit 

Herzinsuffizienz stationär aufgenommen wurden untersucht. Hier wurden drei 

Therapiewege untersucht: die herkömmliche Behandlung, intensives klinisches 

Management und eine an NT-proBNP orientierte Therapie. Nach 12 Monaten war 

die Gesamtsterblichkeit bei den Patienten mit Intensivtherapie und NT-proBNP-

Therapie um 50 % reduziert im Vergleich zur herkömmlichen Therapie. Nach 

zwei bis drei Jahren waren diese beiden Therapien jedoch der herkömmlichen 

Therapie in Bezug auf die Mortalität nicht mehr signifikant überlegen. Es konnte 

eine signifikante Verbindung zwischen dem Alter der Patienten und dem Nutzen 

der an NT-proBNP-Werten orientierten Therapie beobachtet werden. Bei 

Patienten unter 75 Jahren konnte im Vergleich zur herkömmlichen Therapie eine 

geringere Mortalität nach ein bis drei Jahren nachgewiesen werden, jedoch nicht 

bei Patienten im Alter von 75 Jahren oder älter. Die Mortalität bei den unter 

75-jährigen war sogar im Vergleich zur Gruppe mit Intensivtherapie geringer als 

bei den Patienten mit NT-proBNP-Therapie (LAINCHBURY et al., 2009).  

 

2.3.2.  Verabreichung von BNP als Therapie 

Bei Infusion von humanem BNP bei gesunden Freiwilligen kommt es zu einer 

erhöhten Natriurese und einer erhöhten Ausscheidung von cGMP im Urin 

(YOSHIMURA et al., 1991).  

Nesiritide oder rekombinantes humanes BNP ist ein Molekül, welches eine 

identische Struktur wie endogenes humanes BNP1-32 hat. Die Wirkungen einer 24-

Stunden-Infusion von Nesiritide bei Patienten mit kongestivem Herzversagen 

wurden in einer multizentrischen placebokontrollierten Studie untersucht. Es 

zeigte sich eine deutliche Reduktion von Vor- und Nachlast und dadurch eine 

Erhöhung des Schlagvolumens und des kardialen Auswurfs (MILLS et al., 1999). 

O'CONNOR und Mitarbeiter (2011) empfehlen Nesiritide nicht zur 

Standardtherapie bei Herzversagen, da in einer groß angelegten Studie mit über 

7000 Patienten nur eine kleine nichtsignifikante Verbesserung der Dyspnoe 

auftrat. Es konnte außerdem kein Einfluss auf die Mortalität oder die Häufigkeit 

einer Rehospitalisierung nachgewiesen werden. Es kam zu keiner 

Verschlechterung der Nierenfunktion, aber zu einer Häufung von hypotensiven 

Phasen (O'CONNOR et al., 2011). 
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Ein neues synthetisches Natriuretisches Peptid ist das chimeric designed 

natriuretic peptide (CD-NP) (LISY et al., 2008) Es ist das erste Natriuretische 

Peptid, welches zwei Rezeptoren, nämlich NPR-A und NPR-B aktivieren kann. 

Es zeigt die physiologischen Wirkungen eines Natriuretischen Peptides, hat aber 

eine geringere hypotensive Wirkung als BNP. Besonders vielversprechend ist die 

antifibrotische Wirkung von CD-NP (MARTIN et al., 2012).  

 

3. Natriuretische Peptide in der Veterinärmedizin 

Auch in der Tiermedizin wurde die Messung von Natriuretischen Peptiden 

Gegenstand zahlreicher Studien. Wie in der Humanmedizin wurden die ersten 

Erfahrungen mit Messungen von ANP gemacht. So wurden bei Hunden mit 

Mitralinsuffizienz, Herzwurmerkrankung und Herzversagen eine höhere 

Konzentration festgestellt als bei herzgesunden Patienten (TAKEMURA et al., 

1991; VOLLMAR et al., 1991; HÄGGSTRÖM et al., 1994). BOSWOOD und 

Mitarbeiter (2003) validierten einen ELISA für proANP31-67 zur Diagnostik von 

Herzversagen beim Hund (BOSWOOD et al., 2003).  

Wie auch in der Humanmedizin zeigte sich bald, dass BNP und NT-proBNP  

besser als Marker für Herzkrankheiten geeignet sind. Bald kam ein 

Radioimmunoassay für kanines BNP zum Einsatz. So wurden von ASANO und 

Mitarbeitern 1999 perioperative Änderungen in der Plasmakonzentration von 

ANP und BNP bei Hunden mit persistierendem Ductus arteriosus (PDA) 

gemessen. Dabei wurde kein Zusammenhang zwischen ANP und dem 

Schweregrad des PDA festgestellt, wobei die postoperativen Werte bei beiden 

Peptiden signifikant niedriger waren als vor der Operation. Die BNP-Werte 

sanken langsamer als die ANP-Werte, stiegen nach zehn Tagen sogar wieder auf 

präoperative Werte an und sanken dann erneut ab. So wurde vermutet, dass BNP 

eine andere pathophysiologische Bedeutung als ANP widerspiegelt (ASANO et 

al., 1999a). 

 

3.1. Messung von BNP und NT-proBNP beim Hund 

Beim Hund gibt es inzwischen zahlreiche Studien zur Anwendung von 

Natriuretischen Peptiden als Marker für Diagnostik, Prognostik und 

Therapiemonitoring bei Herzkrankheiten. In früheren Studien wurde zunächst die 
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ANP-Konzentration gemessen (TAKEMURA et al., 1991; COLBATZKY et al., 

1993; VOLLMAR et al., 1994), doch BNP hat sich schnell als besserer Marker 

etabliert.  

3.1.1. BNP 

Im Gegensatz zu den Erkenntnissen beim Menschen konnten beim herzgesunden 

Hund keine Zusammenhänge zwischen der BNP-Konzentration und Alter, 

Gewicht oder Geschlecht festgestellt werden (ERIKSSON et al., 2001; 

CHETBOUL et al., 2004; TIETGEN, 2004). Bei herzkranken Hunden steigt die 

BNP-Konzentration mit dem Alter an, was aber wahrscheinlich an einem 

Fortschreiten der Herzkrankheit liegt (CHETBOUL et al., 2004).   

 

Wie in der Humanmedizin sind die Plasmawerte von BNP bei Hunden mit 

kongestivem Herzversagen erhöht und korrelieren mit der Schwere der 

vorliegenden Herzkrankheit. Innerhalb der verschiedenen ISAHCH-Klassen 

werden bei Hunden in höheren Klassen signifikant höhere BNP-Plasmawerte 

gemessen. Außerdem zeigen Hunde im dekompensierten Herzversagen signifikant 

höhere Werte als Hunde im kompensierten Herzversagen. (ASANO et al., 1999b; 

MACDONALD et al., 2003, HÄUSSLER, 2004).  

Auch bei moderater bis schwerer Mitralinsuffizienz ohne Herzversagen korreliert 

BNP mit der Schwere der Krankheit und gibt zusätzlich Informationen über die 

Prognose. Je höher der Plasmawert, umso höher ist die Mortalität und mit jedem 

Anstieg um 10 pg/ml steigt die Mortalität innerhalb einer Zeitspanne von vier 

Monaten um ungefähr 44 % an (MACDONALD et al., 2003).  

 

Bei asymptomatischen Patienten wurde BNP als Biomarker zur Früherkennung 

einer subklinischen Herzkrankheit getestet. CHETBOUL und Mitarbeiter (2004) 

stellten fest, dass BNP sich als nützlicher Marker für asymptomatische 

Kardiomyopathie eignet. Sie bestimmten BNP bei Golden Retrievern, die sich in 

der okkulten Phase einer Kardiomyopathie befanden. Bei einem Cut-off-Wert von 

65 pg/ml ergab sich eine Sensitivität von 78 % und eine Spezifität von 86 % zur 

Erkennung des okkulten Stadiums einer Kardiomyopathie bei Hunden, die älter 

als ein Jahr waren (CHETBOUL et al., 2004). Bei Boxern mit arrhythmogener 

rechtsventrikulärer Kardiomyopathie (ARVC) konnte jedoch kein signifikanter 

Unterschied der BNP-Konzentrationen bei gesunden Hunden und jenen mit 
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ARVC nachgewiesen werden. Die Veränderungen am Herzen sind bei den 

betroffenen Hunden anscheinend nicht ausgeprägt genug, um eine signifikante 

Erhöhung der BNP-Konzentration zu bewirken (BAUMWART & MEURS, 

2005).  

In einer Studie mit Hunden der Rassen Boxer und Dobermann wurde unter 

anderem BNP zum Screening auf okkulte Kardiomyopathie benutzt. Bei Hunden 

mit okkulter Dilatativer Kardiomyopathie (DCM) war BNP signifikant erhöht. Bei 

einem Cut-off-Wert von 6,2 pg/ml ergaben sich eine Sensitivität von 95,2 % und 

eine Spezifität von 61,9 % für die Erkennung einer okkulten Kardiomyopathie. Im 

Gegensatz dazu hatten ANP und kardiales Troponin I (cTnI) relativ niedrige 

prädiktive Werte (OYAMA et al., 2007).  

Auch bei subklinischer Mitralinsuffizienz zeigte sich, dass BNP zur 

Früherkennung nützlich sein könnte. Die BNP-Plasmawerte stiegen bereits in 

moderaten bis schweren asymptomatischen Stadien der Krankheit an 

(MOESGAARD et al., 2011). 

 

BNP wurde schon bald als Biomarker zur Unterscheidung zwischen kardialen und 

nicht-kardialen Ursachen für Dyspnoe bei Hunden verwendet. In einer Studie mit 

48 Hunden waren bei kardialer Dyspnoe die Plasmawerte von BNP signifikant 

höher als bei Patienten mit nicht-kardialen Ursachen. Bei einem Cut-off-Wert von 

17,4 pg/ml für BNP im Plasma ergaben sich eine Sensitivität von 86,4 % und eine 

Spezifität von 80,8 % für die Diagnose von herzbedingter Dyspnoe (PROSEK et 

al., 2007). 

Die Entwicklung eines speziellen ELISA für kanines BNP vereinfachte die 

Diagnostik beim Hund erheblich. DEFRANCESCO und Mitarbeiter (2007) 

zeigten bei 330 Hunden, welche mit Husten oder Dyspnoe vorgestellt wurden, 

dass mithilfe von BNP eine Unterscheidung zwischen kardialen und nicht-

kardialen Ursachen für die Symptomatik möglich ist. Mit einem Cut-off-Wert von 

6 pg/ml wurden eine Sensitivität von 90 % und eine Spezifität von 78 % erreicht. 

Die BNP-Plasmawerte stiegen außerdem mit dem Schweregrad der Herzkrankheit 

signifikant an, und es gab einen signifikanten Unterschied der Werte zwischen 

den verschiedenen Herzkrankheiten. Besonders hohe Werte wurden bei Hunden 

mit DCM gemessen (Median: 36,9 pg/ml). Zur Differenzierung zwischen 

herzgesunden und subklinisch herzkranken Patienten war der Test jedoch nicht 

geeignet. Bei einem Cut-off-Wert von 1,95 pg/ml für BNP im Plasma war die 



II. Literaturübersicht     24 

Sensitivität nur 68 % und die Spezifität 79 %, was für eine klinische Anwendung 

nicht ausreichend ist (DEFRANCESCO et al., 2007).  

 

 

3.1.2.   NT-proBNP  

NT-proBNP erwies sich inzwischen in zahlreichen Studien als exzellenter 

kardiovaskulärer Biomarker bei Hunden.  

In einigen Studien konnte für die NT-proBNP-Konzentration kein signifikanter 

Zusammenhang mit Alter, Geschlecht oder Gewicht bei gesunden Hunden gezeigt 

werden (BOSWOOD et al., 2008; OYAMA et al., 2008; KELLIHAN et al., 

2009). Im Gegensatz dazu konnten andere Autoren jedoch Zusammenhänge 

zwischen der NT-proBNP-Konzentration und diesen Faktoren nachweisen. In 

einer Studie von OYAMA und Mitarbeitern (2008) wiesen gesunde Rassehunde 

signifikant höhere NT-proBNP-Medianwerte auf als gesunde Mischlinge 

(OYAMA et al., 2008). In einer Studie zur Dilatativen Kardiomyopathie bei 

Hunden der Rasse Dobermann zeigten gesunde Hunde, die älter als acht Jahre 

waren, signifikant höherer NT-proBNP-Plasmakonzentrationen als die jüngeren 

Kontrollhunde (WESS et al., 2011). In einer Studie von ETTINGER und 

Mitarbeitern (2012) zeigte sich eine positive Korrelation der NT-proBNP-

Konzentration mit dem Alter bezogen auf alle herzgesunden und herzkranken 

Gruppen. Es zeigte sich außerdem ein schwacher Zusammenhang mit dem 

Reproduktionsstatus der Hunde. Keine Korrelation konnte mit dem Gewicht oder 

Geschlecht nachgewiesen werden (ETTINGER et al., 2012). 

Die NT-proBNP-Konzentration zeigt relativ starke individuelle zeitliche 

Schwankungen bei gesunden Hunden. KELLIHAN und Mitarbeiter (2009) 

führten über drei Wochen drei NT-proBNP-Messungen aus Plasma und Serum 

durch. Sie konnten zeigen, dass die Konzentrationen von NT-proBNP aus dem 

Serum signifikant höher waren, als jene aus dem Plasma. Ausserdem zeigten mehr 

als die Hälfte der Hunde mindestens einmal eine NT-proBNP-Konzentration im 

Serum von über 500 pmol/l und fast ein Drittel der Hunde hatte mindestens 

einmal einen Wert über 500 pmol/l im Plasma. Bei 20 % der Hunde schwankten 

Minimal- und Maximalwert von NT-proBNP um 200 pmol/l im Verlauf der 

Messungen (KELLIHAN et al., 2009). 

Wie beim Menschen ist auch bei Hunden mit renaler Dysfunktion die 

NT-proBNP-Konzentration signifikant erhöht. In einer Pilotstudie von SCHMIDT 
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und Mitarbeitern (2009) zeigten acht herzgesunde Hunde mit Niereninsuffizienz 

signifikant höhere NT-proBNP-Konzentrationen im Vergleich zur gesunden 

Kontrollgruppe (SCHMIDT et al., 2009). Diese Ergebnisse wurden in den 

Untersuchungen von RAFFAN und Mitarbeitern (2009) bestätigt. Hunde mit 

Azotämie zeigten NT-proBNP-Konzentrationen, die in dieser Höhe 

normalerweise Hinweis auf eine Herzkrankheit geben (RAFFAN et al., 2009). 

Die NT-proBNP-Konzentration korrelierte positiv mit dem LA:Ao (OYAMA et 

al., 2008; CHETBOUL et al., 2009; TAKEMURA et al., 2009; ETTINGER et al., 

2012). Es gab außerdem eine positive Korrelation mit dem LVIDD (FINE et al., 

2008; ETTINGER et al., 2012).  

 

Die NT-proBNP-Konzentration wurde in mehreren Studien zur Unterscheidung 

zwischen herzkranken und gesunden Hunden verwendet. So zeigten Hunde mit 

Mitralinsuffizienz oder DCM eine signifikant höhere Konzentration von 

NT-proBNP im Vergleich zur gesunden Kontrollgruppe. Bei einem Cut-off-Wert 

von 445 pmol/l konnten herzkranke Hunde mit einer Sensitivität von 83,2 % und 

einer Spezifität von 90 % von gesunden Hunden unterschieden werden (OYAMA 

et al., 2008). 

Bei Beaglen mit induzierter Aortenstenose war die Konzentration von 

NT-proBNP sowohl drei als auch sechs Monate nach dem Eingriff signifikant 

erhöht. Es ist somit ein guter Marker zur Diagnostik von frühem ventrikulärem 

Remodelling aufgrund einer Aortenstenose (HORI et al., 2008).  

In einer Studie von TARNOW und Mitarbeitern (2009) wurden Cavalier King 

Charles Spaniels mithilfe der NT-proBNP-Konzentration auf Mitralinsuffizienz 

untersucht. Es wurde ein Cut-off-Wert von 299 pmol/l zur Differenzierung 

zwischen gesunden Hunden und solchen mit moderater bis schwerer 

Mitralinsuffizienz angegeben. Die Sensitivität betrug 82 % die Spezifität 50 %. 

(TARNOW et al., 2009). Hunde der Rasse Dobermann mit DCM zeigten 

ebenfalls signifikant höhere NT-proBNP-Werte im Vergleich zur gesunden 

Kontrollgruppe (WESS et al., 2011). 

Bei Hunden mit experimentell ausgelöster pulmonärer Hypertension war in 

schweren Fällen die Konzentration von NT-proBNP erhöht. Leichte Formen 

konnten mithilfe von NT-proBNP nicht diagnostiziert werden (HORI et al., 2012).  

Die Plasma-NT-proBNP-Konzentration könnte sich auch bei akuten oder 

subakuten myokardialen Schäden als diagnostischer Marker eignen. So war die 
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Plasma-NT-proBNP-Konzentration bei Hunden mit experimentell ausgelöster 

asymptomatischer myokardialer Ischämie kurz nach der Schädigung signifikant 

erhöht und diese Erhöhung blieb über mehrere Tage bestehen. Innerhalb von 

sechs Monaten sanken die Werte durch ventrikuläres Remodelling wieder auf die 

Ausgangswerte ab (HORI et al., 2012). 

In einer groß angelegten Studie mit 1134 Hunden mit unterschiedlichen 

Herzkrankheiten ergab sich ein Cut-off-Wert von 847 pmol/l zur Feststellung, ob 

es sich bei den Symptomen der Patienten um eine Herzkrankheit oder um eine 

andere Erkrankung handelt. Die Sensitivität lag bei 68,2 % und die Spezifität bei 

83 %. Bei einem Wert von über 900 pmol/l wird von den Autoren eine weitere 

kardiale Abklärung empfohlen. Es zeigte sich außerdem, dass die NT-proBNP-

Konzentration bei Rechtsherzversagen niedriger ist als bei Linksherzversagen. Die 

höchsten NT-proBNP-Werte wurden bei bilateralem Herzversagen gemessen 

(ETTINGER et al., 2012). 

HASSDENTEUFEL und Mitarbeiter (2012) ermittelten in ihrer Studie folgende 

Richtwerte: Liegt die NT-proBNP-Konzentration unter 500 pmol/l, so liegt 

wahrscheinlich keine Herzkrankheit oder eine Herzkrankheit ohne erhöhte 

Wandspannung vor. Liegt die NT-proBNP-Konzentration im Bereich 500 - 900 

pmol/l, so liegt möglicherweise eine asymptomatische erworbene Herzkrankheit 

ohne erhöhte Wandspannung oder eine respiratorische Krankheit mit leichter 

pulmonaler Hypertonie vor. Liegt die NT-proBNP-Konzentration über 

900 pmol/l, so handelt es sich wahrscheinlich um ein kongestives Herzversagen, 

eine asymptomatische angeborene Herzkrankheit mit erhöhter Wandspannung, 

eine schwere pulmonale Hypertonie oder eine Sepsis (HASSDENTEUFEL et al., 

2012).  

 

Die NT-proBNP-Konzentration wurde inzwischen in mehreren Studien zur 

Unterscheidung zwischen kardialen und nichtkardialen Ursachen für Dyspnoe 

verwendet.  

In einer Studie mit 77 Hunden konnte gezeigt werden, dass Hunde mit 

respiratorischen Ursachen für Husten oder Dyspnoe signifikant niedrigere Werte 

von NT-proBNP aufwiesen als Hunde mit kardialen Ursachen. Im Rahmen dieser 

Studie wurde der Testkit VETSIGN™ Canine CardioSCREEN NT-proBNP der 

Firma Guildhay Limited England validiert. Die Autoren gaben einen Cut-off-Wert 

von 210 pmol/l an, mit einer Sensitivität von 85 % und einer Spezifität von 
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82,4 %. Dieser Cut-off-Wert wurde vom Hersteller übernommen (BOSWOOD et 

al., 2008).  FINE und Mitarbeiter (2008) untersuchten 46 Hunde mit Dyspnoe 

oder Husten und stellten fest, dass die Konzentration von NT-proBNP im Plasma 

bei Hunden mit Herzkrankheiten signifikant höher war (Median: 2544 pmol/l) als 

bei Hunden mit respiratorischen Krankheiten (Median: 357 pmol/l). Bei allen 21 

Hunden mit respiratorischer Dyspnoe lag die NT-proBNP-Konzentration unter 

800 pmol/l, bei 23 der 25 herzkranken Hunde (96 %) war die NT-proBNP-

Konzentration höher als 1400 pmol/l (FINE et al., 2008). In einer weiteren Studie 

konnten bei einem NT-proBNP-Wert über 1158 pmol/l Hunde mit kardialen von 

Hunden mit respiratorischen Ursachen für Husten oder Dyspnoe mit einer 

Sensitivität von 85,5 % und eine Spezifität von 81,3 % unterschieden werden. In 

diese Studie wurden auch Hunde aufgenommen, die neben einer primären 

respiratorischen Ursache für Dyspnoe zusätzlich eine asymptomatische 

Mitralinsuffizienz hatten (OYAMA et al., 2009). Ein Cut-off-Wert von 

713,5 pmol/l wurde zur Unterscheidung nichtkardialen Hustens von Husten 

aufgrund von Mitralinsuffizienz mit Herzversagen angegeben.  Es ergab sich eine 

Sensitivität von 91,3 % und eine Spezifität von 85,7 % (TAKEMURA et al., 

2009). In der Studie von ETTINGER und Mitarbeitern (2012) mit 1134 Hunden 

war die durschnittliche NT-proBNP-Konzentration bei Hunden mit 

nichtkardialem Husten oder Dyspnoe ebenfalls signifikant niedriger (448 pmol/l), 

als bei Hunden mit kardialem Husten oder Dyspnoe (1446 pmol/l) (ETTINGER et 

al., 2012).  

In der Gruppe der Hunde mit nichtkardialer Dyspnoe in der Studie von 

HASSDENTEUFEL und Mitarbeitern (2012) lag die mediane 

NT-proBNP-Konzentration bei 876 pmol/l, wobei die Hunde dieser Gruppe nicht 

alle herzgesund waren, jedoch wurde eine respiratorische Ursache für die 

Dyspnoe diagnostiziert. Die Gruppe der Hunde mit kardialer Dyspnoe zeigte eine 

mediane NT-proBNP-Konzentration von 2000 pmol/l (HASSDENTEUFEL et al., 

2012).  

 

Eine weitere vielversprechende Anwendung von NT-proBNP bei Hunden ist die 

Diagnose einer asymptomatischen oder okkulten Phase einer Herzkrankheit. In 

diesem Stadium ist eine frühe Diagnose notwendig, um das Fortschreiten zu 

beobachten und, falls möglich, therapeutisch einzugreifen, bevor klinische 

Symptome auftreten.  
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So zeigten sich bei Hunden mit asymptomatischer Mitralinsuffizienz signifikant 

höhere NT-proBNP-Konzentrationen als bei herzgesunden Hunden (CHETBOUL 

et al., 2009). Vor allem aber bei der dilatativen Kardiomyopathie des Dobermanns 

wurde NT-proBNP inzwischen schon mehrfach als Marker zur frühen Erkennung 

der Krankheit verwendet. In einer Studie mit 100 Hunden der Rasse Dobermann 

wurde die Kombination von 24-Stunden-EKG (Holter) und Messung von 

NT-proBNP untersucht. Es ergab sich eine Sensitivität von 100 % und eine 

Spezifität von 93,2 % zur Erkennung der von DCM betroffenen Hunde. Die 

Hunde im okkulten Stadium der DCM wiesen bereits signifikant höhere Werte auf 

als die nichtbetroffenen Hunde (MORRIS et al., 2009). WESS und Mitarbeiter 

(2011) untersuchten 328 Hunde der Rasse Dobermann in verschiedenen 

Krankheitsstadien der DCM. In allen Stadien war die NT-proBNP-Konzentration 

signifikant erhöht. Sehr vielversprechend erwies sich die Messung der NT-

proBNP-Konzentration im Screening von Hunden der Rasse Dobermann auf 

Vorliegen einer okkulten DCM. Die Hunde der "last-normal"-Gruppe, also Hunde 

mit normalen Befunden in Echokardiographie und 24-Stunden-EKG, zeigten 

bereits eine signifikante Erhöhung der NT-proBNP-Konzentration im Vergleich 

zur gesunden Kontrollgruppe. Vermutlich führen bereits Veränderungen auf 

zellulärer Ebene zu einer vermehrten Ausschüttung von NT-proBNP, noch bevor 

morphologische Veränderungen am Herz durch konventionelle Diagnostik 

festgestellt werden können. Auch bei Hunden mit mehr als 100 ventrikulären 

Extrasystolen (VES) ohne echokardiographische Hinweise auf eine 

Volumenüberladung oder systolische Dysfunktion war die Konzentration von 

NT-proBNP erhöht. Bei einem Cut-off-Wert von 400 pmol/l konnten 

Echoveränderungen mit einer Sensitivität von 90 % und einer Spezifität von 75 % 

vorhergesagt werden. Bei Werten von NT-proBNP über 550 pmol/l waren 

Echoveränderungen sehr wahrscheinlich. Liegt NT-proBNP über dem 

Cut-off-Wert von 400 pmol/l empfehlen die Autoren engmaschigere Kontrollen 

(WESS et al., 2011). 

 

Auch zur Einschätzung des Schweregrads von Herzkrankheiten hat sich 

NT-proBNP in der Veterinärmedizin bereits als sehr hilfreich erwiesen. So 

korreliert die NT-proBNP-Konzentration mit dem Schweregrad der 

Herzkrankheit. Bei Patienten der ISACHC-Klassen II und III und einem 

Herzgeräusch von Grad 5 zeigten sich signifikant höhere Werte als bei Patienten 
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der Klasse I. Werte über 1725 pmol/l bei herzkranken Hunden gaben Hinweis auf 

das Vorliegen eines Herzversagens, wohingegen bei Werten unter 820 pmol/l ein 

Herzversagen unwahrscheinlich war. Die NT-proBNP-Konzentration korrelierte 

außerdem mit dem Vertebral Heart Score (VHS) und die Autoren gaben einen 

Cut-off-Wert von 680 pmol/l zur Unterscheidung von herzkranken Hunden ohne 

Kardiomegalie und solchen mit Kardiomegalie an. Bei diesem Cut-off-Wert ergab 

sich eine Sensitivität von 92,7 % und eine Spezifität von 67 % (OYAMA et al., 

2008). Es konnte bestätigt werden, dass die NT-proBNP-Konzentration bei 

Hunden mit Mitralinsuffizienz mit dem Schweregrad der Herzkrankheit korreliert 

(PIANTEDOSI et al., 2009; SERRES et al., 2009; TAKEMURA et al., 2009; 

TARNOW et al., 2009). 

Bei Cavalier King Charles Spaniels in unterschiedlichen Krankheitsstadien kam 

es zu einer signifikanten Erhöhung der NT-proBNP-Konzentration bei schwerer 

Mitralinsuffizienz mit und ohne Herzversagen. Bei leichter Mitralinsuffizienz 

konnte kein Unterschied zu den Werten bei gesunden Hunden festgestellt werden. 

Anhand der NT-proBNP-Konzentration konnte das Fortschreiten der 

Mitralinsuffizienz abgeschätzt werden (TARNOW et al., 2009).  

SERRES und Mitarbeiter (2009) untersuchten 75 Hunde mit symptomatischer 

Mitralinsuffizienz. Bei Hunden die der ISACHC Klasse III zugeteilt wurden, 

waren die Werte von NT-proBNP signifikant höher als bei Hunden der Klasse II. 

Es wurde außerdem überprüft, ob sich die NT-proBNP-Konzentration als 

Vorhersagewert für die Mortalität in einer Zeitspanne von sechs Monaten eignet. 

Die Werte bei den Hunden, die innerhalb dieses Zeitraumes starben, waren 

signifikant höher als bei den Überlebenden. Die höchste Sensitivität (80 %) und 

Spezifität (73 %) zur Vorhersage der Gesamtmortalität innerhalb von sechs 

Monaten wurde bei einem Cut-off-Wert von 1500 pmol/l erreicht (SERRES et al., 

2009). Bei 72 Hunden mit asymptomatischer Mitralinsuffizienz (ISACHC Klasse 

I) war die NT-proBNP Konzentration eine von acht Variablen, welche als 

Vorhersagewerte für Tod oder Herzversagen innerhalb von zwölf Monaten 

bestimmt wurden. Es konnte gezeigt werden, dass bei den Hunden, die innerhalb 

von zwölf Monaten starben oder eine dekompensierte Herzinsuffizienz 

entwickelten, die initiale NT-proBNP-Konzentration bei Einlieferung signifikant 

höher war, als bei den Hunden, die über den Zeitraum stabil blieben.  Ein 

Cut-off-Wert von 466 pmol/l ergab eine Sensitivität von 80 % und eine Spezifität 

von 76 % für die Vorhersage einer Progression der Herzkrankheit innerhalb von 



II. Literaturübersicht     30 

zwölf Monaten (CHETBOUL et al., 2009).  

NT-proBNP und LVEDDN waren die einzigen beiden Variablen, die unabhängig 

mit einer erhöhten Gesamtmortalität innerhalb eines Jahres korrelieren. Es wurden 

100 Hunde mit symptomatischer (16 %) und asymptomatischer (84 %) 

Mitralinsuffizienz untersucht. Bei Hunden, welche bei der Erstuntersuchung einen 

NT-proBNP-Wert über 740 pmol/l zeigten, war die Gefahr eines kardial-

bedingten Todes innerhalb von einem Jahr signifikant höher als bei Hunden mit 

Werten unter 740 pmol/l. Für jede Erhöhung um 100 pmol/l stieg die 

Gesamtmortalität um 7 % an (MOONARMART et al., 2010).  

Es wurde außerdem die Überlebenszeit von Hunden untersucht, die mit einer 

respiratorischen Symptomatik aufgrund von Herzversagen aufgrund von MMVD 

vorgestellt wurden. Die Hunde hatten vorberichtlich keine Episoden eines 

früheren Herzversagens und waren noch nicht vorbehandelt. Es wurde bei der 

Erstvorstellung die NT-proBNP-Konzentration bestimmt und eine 

Standardbehandlung mit Furosemid und Pimobendan eingeleitet. Nach sieben bis 

30 Tagen wurden die Hunde erneut untersucht und die NT-proBNP-Konzentration 

gemessen. Die beste Vorhersage der Überlebenszeit war anhand der Messung von 

NT-proBNP nach sieben bis 30 Tagen und dem klinischen Status bei der 

Erstvorstellung möglich. Hunde mit NT-proBNP-Werten unter 965 pmol/l bei der 

Folgeuntersuchung überlebten signifikant länger als Hunde mit Werten über 965 

pmol/l (WOLF et al., 2012). 

In der Studie von ETTINGER und Mitarbeitern (2012) wurden die NT-proBNP-

Konzentrationen von 1134 Hunden mit Herzkrankheiten unterschiedlicher 

Schwere bestimmt. Es ergab sich eine signifikante Korrelation der 

NT-proBNP-Konzentration und dem Stadium der Herzkrankheit, außerdem stieg 

die Konzentration signifikant an, wenn es zu einem Herzversagen kam 

(ETTINGER et al., 2012).  

Die Kombination verschiedener Biomarker erscheint sehr vielversprechend und 

könnte eine höhere Aussagekraft als die Messung eines einzelnen Markers 

besitzen. Bei Hunden mit MMVD wurden NT-proBNP und cTnI gemeinsam 

gemessen, um die Prognose einzuschätzen. Die Kombination dieser beiden 

Marker war zur Identifikation von Hunden mit kürzeren Überlebenszeiten besser 

geeignet als die Messung des jeweiligen Einzelmarkers. Der zeitliche Verlauf der 

Konzentrationen beider Marker ließ außerdem Rückschlüsse auf die Todesursache 

(kardial versus nicht-kardial) zu. Bei beiden Markern stieg die Konzentration bei 
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kardialen Todesursachen signifikant schneller an (HEZZELL et al., 2012). 

 

Eine Therapie, die sich an der NT-proBNP-Konzentration orientiert ist eine 

weitere wichtige Indikation zur Messung dieses Biomarkers. In einer Pilotstudie 

wurden Serienmessungen bei Hunden mit Mitralinsuffizienz unter Behandlung 

mit dem Diuretikum Furosemid durchgeführt. Neben der herkömmlichen 

Vorgehensweise mit klinischer Untersuchung, Laborwerten, Herzultraschall und 

Thoraxröntgen wurden Serienmessungen der NT-proBNP-Konzentration 

durchgeführt. Die Dosierung der Diuretika wurde anhand der Ergebnisse der 

konventionellen Diagnostik ohne Kenntnis des Resultats der 

NT-proBNP-Messung festgelegt. Bei Hunden, bei denen es im Verlauf der 

Therapie zu einem Abfall der NT-proBNP-Werte kam, war es signifikant 

wahrscheinlicher, dass sich der behandelnde Tierarzt für eine Reduktion der 

Furosemiddosis entschied, und dass röntgenologische Hinweise auf ein 

Herzversagen fehlten. Kam es jedoch zu einem Anstieg der NT-proBNP-Werte im 

Verlauf der Behandlung, waren eine Entscheidung zur Erhöhung der 

Furosemiddosis und röntgenologische Hinweise auf das Vorliegen eines 

Herzversagens signifikant wahrscheinlicher. Diese Ergebnisse zeigen, dass die 

NT-proBNP-Konzentration im Plasma Veränderungen im klinischen Status 

anzeigen und dem Kliniker helfen kann, über die Notwendigkeit und Intensität 

einer Therapie zu entscheiden (ACHEN et al., 2009).  

 

3.2.  Messung von NT-proBNP bei der Katze 

Auch bei der Katze wird die Konzentration von NT-proBNP durch verschiedene 

Faktoren beeinflusst. Bei Katzen mit Hypertension und gleichzeitiger 

Niereninsuffizienz werden signifikant höher Werte gemessen als bei gesunden 

Katzen oder bei Katzen mit einer Niereninsuffizienz ohne Hypertension (LALOR 

et al., 2009). Auch die Schilddrüsenfunktion hat einen Einfluss auf die NT-

proBNP-Konzentration, die bei Katzen mit Hyperthyreose signifikant höher ist als 

bei Katzen mit normaler Schilddrüsenfunktion (MENAUT et al., 2012). 

Es wurden mehrere Untersuchungen zur Nutzung von BNP und NT-proBNP zur 

Diagnostik von Herzkrankheiten bei der Katze durchgeführt. CONNOLLY und 

Mitarbeiter (2008) bestimmten die Konzentrationen von NT-proANP und 

NT-proBNP bei 78 Katzen. Es konnte gezeigt werden, dass vor allem NT-proBNP 

dazu geeignet ist, Katzen mit asymptomatischer Herzkrankheit von gesunden 
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Katzen und Katzen mit chronischem Herzversagen (CHF) zu unterscheiden 

(CONNOLLY et al., 2008). Auch in anderen Studien konnte gezeigt werden, dass 

bei Katzen mit CHF die Natriuretischen Peptide signifikant höher waren als bei 

gesunden (FOX et al., 2009; HSU et al., 2009; ZIMMERING et al., 2009).  

Auch bei Katzen wurde untersucht, ob anhand der NT-proBNP-Konzentration 

eine Unterscheidung zwischen respiratorischen und kardialen Ursachen für 

Dyspnoe möglich ist. In mehreren Studien wurde nachgewiesen, dass anhand der 

NT-proBNP-Konzentration bei Katzen mit Dyspnoe zwischen CHF, verursacht 

durch verschiedene Kardiomyopathien, und primär respiratorischen Krankheiten 

unterschieden werden kann (WESS et al., 2008; CONNOLLY et al., 2009; FOX 

et al., 2009).  

Die NT-proBNP-Konzentrationen waren bei Katzen mit hypertropher 

Kardiomyopathie (HCM) jedes Stadiums signifikant höher als in den gesunden 

Kontrollgruppen. Es konnte außerdem gezeigt werden, dass bei milder und 

moderater HCM kein signifikanter Unterschied in den NT-proBNP-Werten 

vorliegt, jedoch Katzen beider Stadien signifikant niedrigere Werte hatten als 

Katzen mit schwerer HCM (CONNOLLY et al., 2008; FOX et al., 2009; WESS et 

al., 2011). WESS und Mitarbeiter (2011) gaben einen Cut-off-Wert von 100 

pmol/l an, ab dem eine kardiologische Abklärung mittels Echokardiographie 

durchgeführt werden sollte. Werte im Bereich von 100 bis 150 pmol/l gelten als 

verdächtig für eine Herzkrankheit, Werte über 150 pmol/l sind sehr verdächtig für 

eine Herzkrankheit (WESS et al., 2011). Auch Katzen mit okkulter 

Kardiomyopathie sowie Katzen mit asymptomatischer Herzvergrößerung können 

anhand der Messung der NT-proBNP-Konzentration identifiziert werden (FOX et 

al., 2011; TOMINAGA et al., 2011).  
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III. MATERIAL UND METHODEN 

1. Patientengut 

Insgesamt wurden 124 Hunde im Rahmen dieser Studie untersucht. Dabei 

handelte es sich um Patienten, die in der kardiologischen oder internistischen 

Sprechstunde der Medizinischen Kleintierklinik der Ludwig-Maximilians-

Universität München vorgestellt wurden oder sich im Privatbesitz von 

Studierenden und Mitarbeitern befanden. 73 Hunde waren männlich, und 51 

Hunde waren weiblich, 14 der männlichen und 26 der weiblichen Hunde waren 

kastriert.  

Von den 124 Hunden waren 48 klinisch gesund (Kontrollgruppe) und 76 zeigten 

chronisch oder akut Dyspnoe oder Husten.  

 

Die Hunde wurden anhand der Ergebnisse der Röntgenuntersuchung des Thorax 

und der Echokardiographie in drei Gruppen eingeteilt: 

Gruppe 1: Klinisch gesunde Hunde (n = 48) 

Gruppe 2: Hunde mit respiratorischen Ursachen für Husten oder Dyspnoe (n = 57) 

Gruppe 3: Hunde mit kardialen Ursachen für Husten oder Dyspnoe (n = 19) 

2. Einschlusskriterien 

Um in die Studie aufgenommen zu werden, mussten die Hunde akut oder 

chronisch Husten und/oder Dyspnoe zeigen.  

Die Hunde in der Kontrollgruppe mussten in der klinischen Untersuchung, in den 

Laborwerten, im Herzultraschall und im Thorax-Röntgen unaufällig sein.  

3. Ausschlusskriterien 

Hunde, bei denen eine Azotämie vorlag, wurden nicht in die Studie 

aufgenommen. Die im klinikeigenen Labor gültigen Obergrenzen der 

Referenzwerte betrugen 10,78 mmol/l für Harnstoff und 125 µmol/l für Kreatinin. 

4. Untersuchungen 

Es wurden eine Anamnese erhoben, eine allgemeine klinische und 

kardiovaskuläre Untersuchung, eine Röntgenuntersuchung des Thorax in zwei 
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Ebenen, eine Echokardiographie, sowie eine venöse Blutprobenentnahme zur 

Bestimmung der Laborparameter durchgeführt.  

4.1. Anamnese 

Vor Beginn der klinischen Untersuchung wurden Rasse, Geschlecht, sowie Alter 

und Gewicht der Hunde ermittelt, und es wurde der Vorbericht aufgenommen. 

Hierbei wurde insbesondere erfragt, ob kardiologische oder respiratorische 

Symptome, wie Husten, Atemnot oder Leistungsinsuffizienz vorlagen. 

4.2.  Klinische Untersuchung 

Es wurde eine ausführliche Allgemeinuntersuchung, sowie eine kardiovaskuläre 

Untersuchung durchgeführt. Es erfolgten eine palpatorische Beurteilung des 

Pulses an der Arteria femoralis, eine Beurteilung der Schleimhäute sowie ein 

sorgfältige Auskultation von Herz und Lunge.  

4.3.  Laborparameter 

Ein Blutbild mit Differenzialblutbild wurde angefertigt; die Serumparameter 

Harnstoff, Kreatinin, Alkalische Phosphatase, Alaninaminotransferase, Bilirubin, 

Gesamteiweiß, Albumin und Glucose sowie die Konzentration der Elektrolyte 

(Kalium, Phosphat, Natrium und Chlorid) wurde bestimmt.  

4.4.  Röntgen des Thorax in zwei Ebenen 

Röntgenbilder des Thorax wurden in zwei Ebenen (latero-lateraler und ventro-

dorsaler Strahlengang) angefertigt. Die Aufnahmen wurden sofern möglich immer 

in vollständiger Inspiration gemacht. Bei der Auswertung wurde besonderes 

Augenmerk auf das Herz, die großen Gefäße, sowie Lunge und Trachea gelegt. 

Um die Herzgröße objektiv beurteilen zu können wurde der VHS gemessen.  

4.5.  Echokardiographie 

Eine echokardiographische Untersuchung zur Beurteilung von Kammergrößen, 

Wanddicke, Wandbewegungen, Klappenformen und –bewegungen, der großen, 

vom Herz abgehenden Blutgefäße, der anatomischen Verhältnisse und der 

kardialen Funktion wurde durchgeführt.  

4.5.1.  Allgemeines 

Die Hunde wurden mit dem Ultraschallgerät Vivid® 7 (Firma General Electric 

Medical Systems, Horten, Norwegen) in der Abteilung für Tierkardiologie der 

Medizinischen Kleintierklinik der LMU untersucht. Für die Patienten wurden in 
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Abhängigkeit vom Gewicht zwei verschiedene Schallköpfe mit einer Frequenz 

von 3,5/8 MHz sowie einer Frequenz von 2,0/3,5 MHz eingesetzt. Die Harmonic-

Einstellungen wurden zwischen 3,5/6,9 und 2,0/4,3 MHz gewählt.  

Alle Hunde wurden ohne Sedation in rechter und linker Seitenlage auf einem 

speziellen kardiologischen Untersuchungstisch mit einer Aussparung auf Höhe 

des Herzens, durch den der Schallkopf aufgesetzt werden kann, untersucht. Die zu 

untersuchenden Stellen wurden mit ausreichend 70-prozentigem Alkohol und 

Ultraschallkontaktgel vorbereitet, um eine bessere Ankopplung des Schallkopfes 

zu ermöglichen. Während der gesamten Ultraschalluntersuchung wurde ein 

mitlaufendes Ein-Kanal-EKG aufgezeichnet.  

Es wurden zweidimensionale Standard-, sowie M-Mode- (Motion Mode), 

Blutfluss- und Gewebedoppleraufnahmen angefertigt. Die dabei verwendete 

Terminologie und Orientierung entsprach den Standards des Komitees für 

Echokardiographie des American Colleges of Veterinary Internal Medicine 

(ACVIM) (THOMAS et al., 1993).  

 

4.5.2.  2D-Ultraschall 

Die Hunde wurden zunächst von der rechten Seite untersucht. Im rechtsseitigen 

parasternalen Längsachsenschnitt wurden zunächst subjektiv die myokardiale 

Kontraktilität sowie die Dimensionen der Vorhöfe und Ventrikel beurteilt. 

Außerdem wurden Morphologie und Motilität der Atrioventrikularklappen und 

deren Aufhängeapparat dargestellt und beurteilt. Anschließend wurde der 

linksventrikuläre Ausflusstrakt dargestellt und hinsichtlich morphologischer 

Veränderungen untersucht. Danach wurde die rechtsparasternale Kurzachse in 

zwei Ebenen beurteilt. Auf Höhe der Papillarmuskeln wurden die Dimensionen 

von linkem und rechtem Ventrikel, sowie die systolische Funktion beurteilt. Basal 

wurden nach der „Schwedischen Methode“ die Querschnitte von linkem Vorhof 

(LA) und der Aorta (Ao) ausgemessen und das Verhältnis der beiden zueinander 

bestimmt. Zusätzlich wurde der rechtsventrikuläre Ausflusstrakt auf mögliche 

Veränderungen hin untersucht.   

Es folgte die Untersuchung in linker Seitenlage. Im linksapikalen Vier- und 

Fünfkammerblick wurden erneut Kammerdimensionen und Globalfunktion 

beurteilt. Es wurden außerdem der links- und in einer weiteren Schnittebene der 

rechtsventrikuläre Ausflusstrakt subjektiv untersucht.  
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4.5.3.  M-Mode-Echokardiographie 

Es wurden M-Mode-Aufnahmen des linken Ventrikels angefertigt, um eine 

objektive Beurteilung der linksventrikulären Dimensionen zur ermöglichen. 

Zunächst wurde von rechts in der parasternalen Längsachse die Messung apikal 

der maximalen Mitralklappenöffnung senkrecht zur langen Achse der linken 

Kammer durchgeführt. Dann wurde eine weiter M-Mode-Messung in der 

rechtsparasternalen Kurzachse auf Höhe der Papillarmuskeln direkt unterhalb der 

Mitralklappe durchgeführt.  

Dabei wurde der Durchmesser des interventrikulären Septums, des linken 

Ventrikels und der freien Wand des linken Ventrikels in Systole und Diastole 

gemessen. Aus den ermittelten Messwerten wurde die Verkürzungsfraktion 

berechnet.  

 

4.5.4.  Dopplerechokardiographie 

Mit dem Blutflussdoppler wurden alle vier Herzklappen auf Turbulenzen, 

Insuffizienzen und Stenosen untersucht. Desweiteren wurden das atrio- und 

interventikuläre Septum auf mögliche Defekte hin kontrolliert. Aorten- und 

Pulmonalflussgeschwindigkeit wurden zusätzlich zur Farbdoppleruntersuchung 

mit einem Spektraldoppler (PW- und CW-Doppler) gemessen.  

 

5. Messung von NT-proBNP 

Bei allen Hunden wurde die NT-proBNP-Konzentration mittels eines ELISA im 

Plasma bestimmt. Für die Messungen wurde der Test VC4010 VETSIGN™ 

Canine CardioSCREEN NT-proBNP der Firma Guildhay Limited England 

verwendet. 

5.1.  Blutprobenentnahme 

Die Blutprobenentnahme mit einer sterilen Einmalkanüle erfolgte entweder aus 

der Vena cephalica antebrachii oder aus der Vena jugularis nach Rasur und 

Desinfektion der Entnahmestelle. Das Blut wurde in  auf -20°C vorgekühlte 

Kalium-beschichtete Ethylendiamintetraacetat (EDTA) Röhrchen mit 5 ml 

Volumen (K-EDTA 5 ml, Sarstedt, Aktiengesellschaft & Co, Nürnbrecht, 

Deutschland) entnommen. Vor und nach der Blutentnahme wurden die Röhrchen 

auf Eis gelagert.  
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. 

5.2.  Blutprobenverarbeitung 

Das Blut wurde direkt nach der Abnahme bei 4º C und 3600 Umdrehungen für 

zehn Minuten zentrifugiert. Jeweils 1 ml Plasma wurde in Polystyrenröhrchen 

abpipettiert und bei -70º C bis zur Durchführung des ELISA gelagert.  

 

5.3.  Testprinzip 

Bei dem verwendeten Test handelt es sich um einen Sandwich-ELISA, welcher 

dazu dient, die Immunoreaktivität von NT-proBNP in kaninen Serum- oder 

Plasmaproben zu messen. Für eine möglichst hohe Spezifität enthält der Testkit 

zwei gereinigte immunoaffine Antikörper, welche aus Schafseren gewonnen 

werden und spezifisch an kanines NT-proBNP Antigen binden. In der 

Mikrotiterplatte ist der Capture-Antikörper Anti-NT-proBNP (25 – 41) enthalten, 

welcher in jedem Well aufgetragen ist. Der Tracer besteht aus dem mit 

Meerrettich konjugierten Erkennungs-Antikörper Anti-NT-proBNP (1 – 22). In 

der Inkubationsphase werden die Standards bzw. Plasmaproben gemeinsam mit 

dem Tracer in die Wells gegeben. Vorhandenes NT-proBNP bindet an den in den 

Wells vorhandenen Capture-Antikörper und es entsteht ein Sandwich-Komplex 

mit dem Erkennungs-Antikörper. Die Mikrotiterplatte wird gewaschen und damit 

unspezifisch gebundenes Material entfernt. Daraufhin wird das Substrat 

Tetramethylbenzidin (TMB) hinzugefügt, und das gebundene NT-proBNP kann 

durch einen enzymkatalysierten Farbumschlag in einen Mikrotiterplattenleser 

quantifiziert werden. Die Farbintensität ist dabei direkt proportional zur Menge an 

NT-proBNP in der jeweiligen Probe. Aus den gemessenen Werten wird eine 

Standardkurve erstellt; anhand dieser Kurve werden die NT-proBNP-

Konzentrationen der einzelnen Proben errechnet.   

Der Hersteller gibt nach Evaluierung des Tests folgende Werte vor: zur 

Unterscheidung von gesunden Hunden und Hunden mit respiratorischen Ursachen 

für Dyspnoe versus Hunde mit kardialen Krankheiten ergaben sich eine Area 

Under the Curve (AUC) von 95,2. Bei einem Cut-off-Wert von 210 pmol/l liegt 

die Sensitivität bei 85 %, die Spezifität bei 90 %, der positive prädiktive Wert 

(PPV) bei 94 %, der negative prädiktive Wert (NPV) bei 77 % und die 

Genauigkeit bei 87 %. Das Erkennungslimit liegt bei 42 pmol/l, die Intra-Assay-

Präzision ergibt 6,4 % für niedrige Konzentrationen, 8,4 % für mittlere 

Konzentrationen und 7,1 % für hohe Konzentrationen. Die Werte für die Inter-
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Assay-Präzision liegen bei 7,1 % für niedrige, 8,6 % für mittlere und 8,2 % für 

hohe Konzentrationen (BOSWOOD et al., 2008). 

 

5.4.  Testdurchführung 

Der Test wurde nach Herstellerangaben durchgeführt. Alle Plasmaproben und 

Reagenzien wurden in einem Wasserbad auf Raumtemperatur temperiert. Zuerst 

wurde der Waschpuffer hergestellt. Hierzu wurden die im Testkit enthaltenen 100 

ml Pufferkonzentrat mit destilliertem Wasser 1:10 verdünnt. Anschließend 

wurden die mitgelieferten, gefriergetrockneten Standards in 0,3 ml destilliertem 

Wasser aufgelöst, bei Raumtemperatur für 30 Minuten inkubiert und mit dem 

Rüttelgerät REAX 2000 der Firma Heidolph, Deutschland gut gemischt. In die 

ersten beiden Reihen der 96-Loch Mikrotiterplatten wurden jeweils 20 µl der 

mitgelieferten Standards im Doppelansatz pipettiert. Darunter, ebenfalls im 

Doppelansatz, wurden jeweils 20 µl der Plasmaproben pipettiert. Daraufhin 

wurden mit einer Mehrkanalpipette  in alle Wells jeweils 200 µl Tracer zugegeben 

und die Platte auf dem Rüttelgerät TPM 2 der Firma Sarstedt, Deutschland für 

eine Minute durchmischt. Die Platte wurde danach mit einem selbstklebenden 

Plastikfilm abgedeckt, und es folgte eine Inkubationsphase im Dunkeln bei 

Raumtemperatur für 20 Stunden.  

Nach der Inkubationsphase wurde der Inhalt der Wells verworfen und die Platte 

wurde fünfmal mit jeweils 350 µl Waschpuffer pro Well ausgewaschen. Nach 

dem letzten Waschgang wurde die Platte dreimal auf eine Einmalhandtuch 

geklopft, um alle Flüssigkeitsrückstände zu entfernen. Anschließend wurden 

jeweils 200 µl des Substrats mit der Mehrkanalpipette in alle Wells gegeben, die 

Platte wieder auf dem Rüttelgerät für eine Minute durchmischt, mit Plastikfolie 

abgeklebt und es erfolgte eine erneute Inkubation im Dunkeln bei 

Raumtemperatur für 30 Minuten. Abbildung 1 zeigt eine Mikrotiterplatte vor 

Zugabe der Stoplösung. 

Anschließend wurde in jedes Well 50 µl Stoplösung pipettiert, und die Platte 

erneut auf dem Rüttler gut durchmischt. Direkt im Anschluss wurde die 

Absorptionsrate in einem ELISA-Reader (Spectra Rainbow Thermo, Firma 

TECAN, Österreich) mit 450 nm gemessen. Dargestellt wurden die Daten mit 

dem Softwareprogramm easyWIN kinetics Software Version 6.0a der Firma 

TECAN Deuschland GMbH.  
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Abbildung 1: Mikrotiterplatte nach Farbumschlag 

 
5.5.  Berechnung der NT-proBNP-Konzentration 

Zur Bestimmung der NT-proBNP-Werte anhand der optischen Dichte wurden die 

gemessenen Werte an die Firma GUILDHAY Limited, England geschickt. Die 

Umrechnung in die jeweiligen Konzentrationen erfolgte dort nach der 4-

Parameter-log-Formel: 

y = (a-d)/(1+(x/c)ᵇ) + d 
 

Die Variable x bezeichnet hierbei die optische Dichte, y die zugehörige NT-

proBNP-Konzentration. Die Parameter a, b, c und d wurden für jede Platte anhand 

der gemessenen optischen Dichten der Standardkonzentrationen durch ein 

Parameterschätzverfahren nach dem Prinzip der kleinsten Fehlerquadrate 

berechnet. Die Schätzung der optimalen Parameter erfolgte nach dem Verfahren 

von LEVENBERG und MARQUARDT in der Implementierung des Numerik-

Softwarepakets SKILAB, Version 4.1.2 (www.scilab.org, 2008) (LEVENBERG, 

1944; MARQUARDT, 1963).  

 
 

6. Statistische Auswertung 

Die statistische Auswertung der Daten wurde mit den Programmen MedCalc® 

http://www.scilab.org/
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Statistical Software und SPSS® (Statistical Package for the Social Science) 13.0 

für Windows durchgeführt. Das Signifikanzniveau wurde mit p < 0,05 festgelegt. 

Die allgemein üblichen Analysen wurden mit deskriptiver und explorativer 

Statistik durchgeführt. Die Normalverteilung wurde mit dem Kolmogorov-

Smirnov-Test überprüft. Die Normal- bzw. Gleichverteilung der Daten wurden 

anhand von Histogrammen, Q-Q-Plots sowie des Kolmogorov-Smirnov-Tests 

beurteilt. Mittels deskriptiver und explorativer Statistik wurden die allgemein 

üblichen Analysen durchgeführt. 

6.1. Einflussfaktoren 

Der Einfluss von Alter, Geschlecht und Gewicht auf die 

NT-proBNP-Konzentration in der herzgesunden Kontrollgruppe wurde 

untersucht. Es wurde jeweils ein Scatterplot mit Regressionsgerade, sowie 

Boxplots angefertigt. Verglichen wurden die Gruppen mit dem unabhängigen t-

Test. 

6.2. Vergleich der verschiedenen Gruppen 

Die verschiedenen Gruppen wurden mittels Univariatanalyse und 

Student-Newman-Keuls-Test auf statistische Signifikanzen untersucht.  

6.3. Berechnung von Cut-off-Werten  

Zur Beurteilung des Potentials von NT-proBNP als Marker zur Differenzierung 

von kardialer und nicht-kardialer Dyspnoe wurden Receiver-Operator-Curves 

(ROC) erstellt und die Flächen unter den Kurven (area under the curve = AUC) 

berechnet. Es wurden außerdem verschiedene Cut-off-Werte auf ihre Sensitivität 

und Spezifität untersucht.  
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IV. ERGEBNISSE 

1. Patientencharakterisierung 

Die am häufigsten vorkommenden Hunderassen in der Gesamtpopulation der 

Studie waren Dobermann (n = 16), Schäferhund und Australian Shepherd (n = 6), 

Dackel und Cocker Spaniel (n = 5), Golden Retriever, Yorkshire Terrier, Berner 

Sennenhund (n = 4), Jack Russel Terrier, Beagle und West-Highland-White-

Terrier (n = 3). Hunderassen, die weniger als drei Mal vertreten waren sowie 

Mischlingshunde wurden zur weiteren Auswertung nach Gewichtsgruppen 

eingeteilt: klein: < 10 kg (n = 12), mittel: 10 - 25 kg (n = 30), groß: > 25 kg (n = 

23).    

In Tabelle 2 wird die Verteilung der physiologischen Parameter (Alter, Gewicht 

und Geschlecht) in den einzelnen Gruppen dargestellt.  

 

Tabelle 2: Darstellung der Verteilung von Alter (in Jahren), Gewicht (in 
Kilogramm) und Geschlecht bezogen auf die gesamte Studienpopulation in den 
einzelnen Gruppen (MW = Mittelwert, Min = Minimum, Max = Maximum)  
 

 Gesund Respiratorisch Kardial 

Hunde insgesamt 48 57 19 

Alter (Jahre) MW 3,9 7,5 10,2 
Median 3 9 11 

Min 0,2 0,2 2 
Max 11 15 15 

Gewicht (kg) MW 24,3 19,9 22,4 
Median 25 17 17 

Min 2,7 2,5 9,4 
Max 46 59 62 

Geschlecht weiblich  26 21 4 
männlich 22 36 15 

 

Das Alter war in allen Gruppen normal verteilt. Das mittlere Alter der Hunde mit 

kardialen Ursachen für Dyspnoe war signifikant höher (p = 0,05) als in der 

herzgesunden Gruppe. Zwischen den Hunden der gesunden Gruppe und den 

Hunden der respiratorischen Gruppe bestand kein signifikanter Unterschied in 

Bezug auf das mittlere Alter (p = 0,05).  
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Das Gewicht war in allen Gruppen normalverteilt. Es bestand kein signifikanter 

Unterschied in bezug auf das mittlere Gewicht zwischen den einzelnen Gruppen 

(p = 0,05).  

Die Geschlechtsverteilung war in der gesunden Kontrollgruppe mit 45,8 % 

männlichen und 54,2 % weiblichen Tieren homogen. In der Gruppe der Hunde 

mit respiratorisch bedingter Dyspnoe waren 63,2 % männlich und 36,8 % 

weiblich, in der Gruppe mit kardiologischen Ursachen für die Symptomatik waren 

79 % männlich und 21 % weiblich.  

Die respiratorischen Krankheiten umfassten Pneumonie (n =16), Neoplasie (n = 

6), Trachealkollaps (n = 4), Larynxparalyse (n = 3), Zwingerhusten (n = 3) und 

sonstige Krankheiten (n = 25). Die Diagnosen der kardialen Gruppe umfassten 

Endokardiose (n = 12), Kardiomyopathie (n = 6), Trikuspidalklappendysplasie (n 

= 1).  
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2. NT-proBNP 

2.1. Einflussfaktoren 

In der gesunden Kontrollgruppe wurde der Einfluss von Alter, Geschlecht und 

Gewicht auf die NT-proBNP-Konzentration untersucht. Hierbei fanden sich keine 

statistisch signifikanten Zusammenhänge.  

In Abbildung 2 sind die NT-proBNP-Konzentrationen in Bezug auf das 

Geschlecht dargestellt. 

 

 

 
Abbildung 2: Darstellung der mittleren NT-proBNP-Konzentrationen in Bezug 
auf das Geschlecht (m = männlich, w = weiblich) 
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2.2. Vergleich kardiale versus respiratorische Dyspnoe 

Die NT-proBNP-Konzentrationen wurden zwischen gesunden Hunden der 

Kontrollgruppe, Hunden mit kardial bedingter Dyspnoe und Hunden mit Dyspnoe 

aufgrund respiratorischer Erkrankungen verglichen. Tabelle 3 zeigt den 

Mittelwert, den Median, die Standardabweichung, sowie den Minimal- bzw. 

Maximalwert für die einzelnen Gruppen in pmol/l. 

 
Tabelle 3: Darstellung der NT-proBNP-Konzentrationen in pmol/l in den 
verschiedenen Gruppen (n = Anzahl der Hunde, MW = Mittelwert, SA = 
Standardabweichung, Min = Minimum, Max = Maximum) 
 
 Gesund Respiratorisch Kardial 

n 48 57 19 

MW 246 240 1859 

Median 224 187 1410 

SA 135 186 1638 

Min 49 42 130 

Max 588 1330 7440 

 

Der Mittelwert und der Median der NT-proBNP-Konzentration lagen bei Hunden 

mit kardial bedingter Dyspnoe mit 1859 pmol/l bzw. 1410 pmol/l höher als bei 

Hunden mit respiratorischen Erkrankungen (240 pmol/l bzw. 187 pmol/l) und bei 

gesunden Hunden (247 pmol/l bzw. 224 pmol/l), diese Unterschiede waren 

statistisch signifikant (p = 0,001). Zwischen der gesunden Kontrollgruppe und den 

Hunden mit Dyspnoe aufgrund von respiratorischen Erkrankungen bestand kein 

signifikanter Unterschied in der NT-proBNP-Konzentration. Abbildung 3 zeigt 

die mittleren NT-proBNP-Konzentrationen in den einzelnen Gruppen. 
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Abbildung 3: Darstellung der mittleren NT-proBNP-Konzentrationen in den 
einzelnen Gruppen 
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2.3. Cut-off  

Es wurde der optimale Cut-off Wert berechnet, um zwischen kardial und 

respiratorisch bedingter Dyspnoe zu unterscheiden. Für einen Cut-off-Wert von 

520 pmol/l ergab sich eine Sensitivität von 94,7 % und eine Spezifität von 96,2 %. 

Abbildung 4 zeigt die ROC-Kurve und Abbildung 5 das Dot-Diagramm für die 

Differenzierung zwischen kardial und respiratorisch bedingter Dyspnoe.  

 

 

Abbildung 4: ROC-Kurve zur Unterscheidung von kardialen und nicht-kardialen 
(respiratorischen) Ursachen von Dyspnoe oder Husten. AUC = 0,95 
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Abbildung 5: Dot-Diagramm zur Darstellung von Sensitivität und Spezifität zur 
Differenzierung der Hunde mit kardialer und nicht-kardialer Dyspnoe bei einem 
Cut-off-Wert von 520 pmol/l 
 
 
 

 

 

520 pmol/l 
Sens.: 94,7 % 
Spez.: 96,2 % 
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V. DISKUSSION 

Die Ergebnisse der vorliegenden Arbeit zeigen, dass sich die Konzentration von 

NT-proBNP  gut als Biomarker zur Unterscheidung von respiratorischen und 

kardialen Ursachen von Dyspnoe oder Husten beim Hund eignet. Die 

NT-proBNP-Konzentrationen waren bei Hunden mit Herzversagen signifikant 

höher, als bei herzgesunden Hunden mit respiratorischen Krankheiten. Zur 

Unterscheidung zwischen kardialen und  respiratorischen Ursachen für Dyspnoe 

oder Husten wurde ein Cut-off-Wert von 520 pmol/l ermittelt. Dieser Cut-off-

Wert weist eine gute Sensitivität von 94,7 % und eine gute Spezifität von 96,2 % 

auf.  

Der verwendete ELISA-Testkit (VETSIGN Canine CardioSCREEN Nt-proBNP, 

Guildhay Ltd, UK) wurde in dieser Studie nicht neu validiert. Eine Validierung 

wurde in der Studie von BOSWOOD und Mitarbeitern 2008 durchgeführt, und die 

Ergebnisse wurden vom Hersteller übernommen. Die ermittelten 

Variationskoeffizienten für die Intra- und Inter-Assay-Präzisionen lagen stets 

unter 10 %. Die Nachweisgrenze für NT-proBNP lag bei 42 pmol/l (BOSWOOD 

et al., 2008).   

Die Einteilung der Patienten in die einzelnen Gruppen wurde in der Abteilung für 

Kardiologie  der Medizinischen Kleintierklinik der LMU München mittels 

Herzultraschall und Röntgen des Thorax vorgenommen. Trotz der umfangreichen 

durchgeführten Untersuchungen kann nicht mit Sicherheit ausgeschlossen werden, 

dass Patienten mit extrakardialen Ursachen für eine Erhöhung von NT-proBNP 

fälschlicherweise als herzgesund klassifiziert wurden. Möglicherweise lagen bei 

einzelnen Patienten myokardiale Schäden auf zellulärer Ebene vor, die mittels 

Ultraschall nicht diagnostiziert werden konnten. Patienten mit Niereninsuffizienz, 

die bekanntermaßen erhöhte NT-proBNP-Werte aufweisen (RAFFAN et al., 

2009; SCHMIDT et al., 2009) wurden ausgeschlossen. 

Es wurde der Einfluss von Alter, Geschlecht und Gewicht auf die NT-proBNP-

Konzentration innerhalb der gesunden Kontrollgruppe untersucht. In der 

vorliegenden Studie konnte kein Einfluss auf die NT-proBNP-Konzentration 

durch einen dieser Faktoren nachgewiesen werden. Dies entspricht den 

Ergebnissen aus anderen Studien (BOSWOOD et al., 2008; OYAMA et al., 2008; 
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KELLIHAN et al., 2009; ETTINGER et al., 2012). WESS und Mitarbeiter (2011) 

konnten jedoch nachweisen, dass Hunde der Rasse Dobermann, die älter als acht 

Jahre waren signifikant höhere Werte aufweisen (WESS et al., 2011). Beim 

Menschen steigt NT-proBNP ebenfalls mit dem Alter an. (KAWAI et al., 2004; 

VAN KIMMENADE & JANUZZI, 2009). Es wird vermutet, dass der Anstieg im 

Alter mit einer verminderten Clearance des Peptides über die Niere 

zusammenhängt (KAWAI et al., 2004; WESS et al., 2011). Im Gegensatz zu den 

bisherigen Ergebnissen beim Hund, sinkt die Konzentration von NT-proBNP 

beim Menschen mit steigendem BMI signifikant ab (DAS et al., 2005; 

HORWICH et al., 2006). Frauen haben ausserdem höhere Werte als Männer 

(REDFIELD et al., 2002; VAN KIMMENADE & JANUZZI, 2009). 

Zwei Hunde aus der Gruppe mit respiratorischer Dyspnoe hatten 

NT-proBNP-Konzentrationen, die über dem ermittelten Cut-off-Wert von 

520 pmol/l lagen. Bei einem dieser Patienten handelte es sich um einen 

schwerkranken Jagdterrier mit Thrombozytopenie, geringgradiger Anämie und 

unklaren Verschattungen der Lunge auf dem Röntgenbild des Thorax in beiden 

Ebenen. Die NT-proBNP-Konzentration lag bei 692 pmol/l. In der 

Echokardiographie war der Patient als herzgesund eingestuft worden. 

Möglicherweise lagen bei diesem Patienten wie bereits oben erwähnt, Schäden 

des Myokards auf zellulärer Ebene vor, die in der Echokardiographie nicht 

erkennbar waren. Die Veränderungen in der Lunge könnten auch zu einer 

beginnenden pulmonären Hypertonie geführt haben, die auch in der 

Echokardiographie noch nicht sichtbar war und zu den erhöhten NT-proBNP-

Werten geführt haben könnte. Eine Erhöhung der NT-proBNP-Konzentration bei 

Hunden mit pulmonärer Hypertonie wurde bereits in anderen Studien 

nachgewiesen (FINE et al., 2008; OYAMA et al., 2008; ATKINSON et al., 2009; 

TARNOW et al., 2009). Der andere Patient war ein Westhighland-White-Terrier, 

der eine Lungenfibrose und aufgrund dessen eine hochgradige pulmonäre 

Hypertonie aufwies. Dies erklärt die hohe NT-proBNP-Konzentration von 1330 

pmol/l. Die Dyspnoe bei diesem Patienten war primär respiratorisch bedingt, die 

Veränderungen am Herzen waren sekundär und nicht Ursache für die 

Symptomatik, weswegen der Hund in die Gruppe der Hunde mit respiratorischer 

Dyspnoe eingeteilt wurde.  

Ein Patient aus der Gruppe mit kardialer Dyspnoe zeigte eine auffällig niedrige 
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NT-proBNP-Konzentration von 130 pmol/l, obwohl eine hochgradige 

Mitralinsuffizienz mit sekundärem Myokardschaden vorlag. Dieser Patient war 

bei Vorstellung in der Klinik in einem sehr kritischen Allgemeinzustand und es ist 

anzunehmen, dass die Probenentnahme erst nach Therapiebeginn und 

Stabilisierung des Patienten erfolgte. Unter Therapie sinkt die NT-proBNP-

Konzentration signifikant ab (ACHEN et al., 2009; ATKINSON et al., 2009). Die 

niedrige NT-proBNP-Konzentration bei diesem Patienten lässt sich sicherlich 

nicht nur dadurch erklären. Man würde bei einem solchen Patienten eine sehr 

hohe NT-proBNP-Konzentration erwarten, da eine so starke Abnahme der 

Konzentration in so kurzer Zeit kaum möglich ist. Dass Patienten mit einer 

hochgradigen Mitralinsuffizienz stark erhöhte NT-proBNP-Werte aufweisen, 

wurde bereits von anderen Autoren gezeigt (TAKEMURA et al., 2009; 

TARNOW et al., 2009). Wahrscheinlicher ist, dass zusätzlich beim 

Probenhandling ein Fehler unterlaufen ist, eventuell die Kühlkette kurzfristig 

unterbrochen war und es dabei zu einem vermehrten Abbau von NT-proBNP 

gekommen ist.  

Eine Limitation dieser Studie ist, dass alle Patienen in der Gruppe mit 

kardiologischen Ursachen für Dyspnoe oder Husten im Herzversagen waren. Dies 

könnte möglicherweise zu einem höheren Cut-off-Wert geführt haben. Hier muss 

berücksichtigt werden, dass Hunde mit Herzkrankheiten häufig erst in späten 

Stadien der Krankheit Symptome wie Dyspnoe oder Husten zeigen. Außerdem 

kommt es in Überweisungskliniken sehr häufig zu einer Präselektion der 

Patientenpopulation, was zu einer Häufung von Patienten mit schwereren 

Herzkrankheiten geführt haben könnte. Hinzu kommt auch, dass die Patientenzahl 

in der Gruppe mit kardiologischen Erkrankungen mit 19 Patienten relativ klein 

war. Hier sollten auf jeden Fall weitere Untersuchungen mit größeren 

Patientenzahlen und Patienten in unterschiedlichen Stadien einer Herzkrankheit 

durchgeführt werden.  

Eine weitere Limitation ist, dass kein Proteaseinhibitor in den Probenröhrchen 

verwendet wurde. Studien zur Stabilität kardialer natriuretischer Peptide bei Hund 

und Mensch zeigten, dass eine Zugabe von Aprotinin als Proteaseinhibitor nicht 

sinnvoll ist, da der Abbau der Peptide nicht wesentlich vermindert wird 

(BUCKLEY et al., 1999; GOBINET-GEORGES et al., 2000; MOLZAHN 2012). 

Der Testkit für canines NT-proBNP wurde inzwischen von der Firma IDEXX 
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übernommen und wird als Cardiopet® proBNP (IDEXX Laboratories, USA) 

vermarktet. Die Firma IDEXX bietet Röhrchen mit Proteaseinhibitor an. In einer 

Studie zur Messung von NT-proBNP bei Katzen wurde der Abbau von NT-

proBNP durch den Proteaseinhibitor zwar signifikant gehemmt, jedoch nicht 

verhindert (CONNOLLY et al., 2011). Im Gegensatz dazu ergab eine andere 

Studie,  dass der Abbau von NT-proBNP bei Katzen durch Proteaseinhibitoren 

nicht signifikant verhindert wird (GÜNTHER et al., 2010). Hierzu sind weitere 

Untersuchungen notwendig.  

In der vorliegenden Arbeit wurden keine Mehrfachmessungen oder 

Serienmessungen der NT-proBNP-Konzentration über einen längeren Zeitraum 

durchgeführt. Es ist inzwischen bekannt, dass die NT-proBNP-Konzentrationen 

auch beim Hund individuellen zeitlichen Schwankungen unterliegt (KELLIHAN 

et al., 2009).  Da es in dieser Studie aber in erster Linie um die Fragestellung ging, 

ob bei einem Notfallpatienten mit Dyspnoe oder Husten anhand von NT-proBNP 

zwischen kardialen und respiratorischen Ursachen unterschieden werden kann, 

waren Serienmessungen nicht sinnvoll. Es konnte gezeigt werden, dass trotz 

dieser Schwankungen mit einer einmaligen Messung eine Unterscheidung der 

Ursache für die Symptomatik möglich ist.  

Die Vorbehandlung der Patienten war in dieser Studie nicht standardisiert. Beim 

Menschen sinkt NT-proBNP unter Therapie der zugrundeliegenden Herzkrankheit 

signifikant ab (MURDOCH et al., 1999; TROUGHTON et al., 2000; 

TSUTAMOTO et al., 2001; ANAND et al., 2003), auch beim Hund wurde dies 

bereits nachgewiesen (ACHEN et al., 2009; ATKINSON et al., 2009). In der 

Regel wurde versucht, die Blutprobe für die Messung von NT-proBNP direkt bei 

Einlieferung des Patienten in die Klinik zu gewinnen. Bei Patienten, die in einem 

sehr kritischen Allgemeinzustand vorgestellt wurden, der eine sofortige 

Notfallbehandlung erforderlich machte, war es nicht in allen Fällen möglich, vor 

Therapiebeginn eine Blutprobe zu entnehmen. Auch konnte eine Vorbehandlung 

der Patienten vor Einlieferung in die Klinik durch einen niedergelassenen Tierarzt 

nicht immer mit Sicherheit ausgeschlossen werden. Da jedoch die in dieser Studie 

ermittelten Werte für herzkranke Hunde nicht auffallend niedrig waren und die 

Unterschiede zu den gesunden Hunden und jenen mit respiratorischer Dyspnoe 

signifikant waren, ist davon auszugehen, dass eine mögliche Vorbehandlung 

keinen wesentlichen Einfluss auf die NT-proBNP Messungen gehabt haben 

dürfte. 
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Die Tatsache, dass Hunde mit kardial bedingter Dypnoe oder Husten höhere 

NT-proBNP-Werte aufweisen als Hunde mit primär respiratorisch bedingten 

Symptomen wurde in mehreren Studien bestätigt (BOSWOOD et al., 2008; FINE 

et al., 2008; OYAMA et al., 2009; ETTINGER et al., 2012). Bei den 

Medianwerten der NT-proBNP-Konzentrationen ergaben sich aber teilweise 

erheblich Unterschiede zur vorliegenden Studie. Die Medianwerte der 

vorliegenden Studie lagen für Hunde mit kardial bedingter Dyspnoe oder Husten 

bei 1410 pmol/l, bei Hunden mit respiratorischer Dyspnoe oder Husten bei 187 

pmol/l. In den Studien von FINE und Mitarbeitern (2008) und OYAMA und 

Mitarbeitern (2009) lagen die Werte deutlich über den Medianwerten der 

vorliegenden Arbeit. Bei Hunden mit kardial bedingter Dyspnoe lagen sie bei 

2544 pmol/l bzw. 2445 pmol/l, bei Hunden mit respiratorischer Dyspnoe bei 357 

pmol/l bzw. 413 pmol/l (FINE et al., 2008; OYAMA et al., 2009). In einer 

aktuellen Studie lag lediglich der Medianwert der  Hunde mit respiratorisch 

bedingter Dyspnoe mit 448 pmol/l über dem Wert der vorliegenden Studie 

(ETTINGER et al., 2012). Die ermittelten NT-proBNP-Konzentrationen in der 

Studie von OYAMA und Mitarbeitern (2009) lassen sich nicht direkt mit den 

Werten der vorliegenden Studie vergleichen, da ein anderer Testkit (Canine 

CardioCare NT-proBNP, Veterinary Diagnostics Institute, Calif) verwendet 

wurde. Außerdem wurden die Werte aus dem Serum bestimmt, was 

möglicherweise höhere Werte ergibt, als eine Messung aus dem Plasma 

(KELLIHAN et al., 2009). Dies konnte aber bisher in keiner anderen Studie 

bestätigt werden. Bei den Testkits der anderen Studien (FINE et al., 2008; 

ETTINGER et al., 2012) handelte es sich höchstwahrscheinlich um eine andere 

Charge, als die in der vorliegenden Studie verwendete, was zu Unterschieden in 

den Messergebnissen geführt haben könnte. Es kann auch nicht ausgeschlossen 

werden, dass Testkits, die in verschiedenen Firmen in Europa oder den USA 

hergestellt wurden, unterschiedliche Messergebnisse hervorbringen (FINE et al., 

2008; ETTINGER et al., 2012). In einer Studie wurden lyophilisierte 

Proteaseinhibitoren in die Probenröhrchen zugegeben, was einen Abbau von NT-

proBNP weitgehend verhindert haben könnte (ETTINGER et al., 2012). Da 

jedoch nur der Medianwert der Hunde mit respiratorisch bedingter Dyspnoe höher 

ist als in der vorliegenden Arbeit, ist es unwahrscheinlich, dass die Ursache für 

die höheren Werte bei den Proteaseinhibitoren liegt. Wahrscheinlicher sind 
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rassespezifische Unterschiede, oder myokardiale Schäden auf zellulärer Ebene, 

die in der Echokardiographie nicht nachweisbar waren, aber eine vermehrte 

Ausschüttung von NT-proBNP ausgelöst haben könnten. Die Charakteristika der 

jeweiligen Studienpopulationen sowie die Anzahl der untersuchten Hunde ist bei 

der Interpretation der Ergebnisse der einzelnen Studien ebenfalls zu 

berücksichtigen. Bei FINE und Mitarbeitern (2008) und OYAMA und 

Mitarbeitern (2009) betrug beispielsweise die Anzahl der Hunde mit kardial 

bedingter Dyspnoe 25 bzw. 62 Hunde und lag damit über der Patientenanzahl der 

vorliegenden Studie. In diesen beiden Studien wurde bei den meisten Hunden mit 

kardial bedingter Dyspnoe ein Linksherzversagen aufgrund einer 

Mitralinsuffizienz oder eine Dilatative Kardiomyopathie diagnostiziert. Dass diese 

beiden Herzerkrankungen im fortgeschrittenen Stadium bei Hunden häufig 

besonders hohe NT-proBNP-Konzentrationen hervorrufen haben auch andere 

Autoren bestätigt (TAKEMURA et al., 2009; TARNOW et al., 2009; WESS et 

al., 2011; ETTINGER et al., 2012). Es wurden außerdem in keiner der genannten 

Studien Mehrfachmessungen durchgeführt, so dass wöchentliche, individuelle 

Schwankungen nicht beachtet werden konnten (KELLIHAN et al., 2009).  

Die Diskrepanz in den Konzentrationen von NT-proBNP zeigt sich auch in den 

unterschiedlichen ermittelten Cut-off-Werten verschiedener Studien. Das Problem 

mit großen Unterschieden der ermittelten Cut-off-Werte für natriuretische Peptide 

bestand anfangs auch in der Humanmedizin (WORSTER et al., 2007). In der 

vorliegenden Studie wurde ein Cut-off-Wert von 520 pmol/l für die NT-proBNP-

Konzentration ermittelt. Einen deutlich niedrigen Cut-off-Wert ergab die Studie 

von BOSWOOD und Mitarbeitern (2008), er lag bei 210 pmol/l und wurde, wie 

bereits oben erwähnt, vom Hersteller des Testkits übernommen. Folgende 

Faktoren könnten beim Zustandekommen des niedrigen Cut-off-Wertes bei 

BOSWOOD und Mitarbeitern (2008) eine Rolle gespielt haben: Eine 

Echokardiographie wurde nur bei fünf der 17 Hunde mit respiratorischen 

Erkrankungen durchgeführt, was dazu geführt haben könnte, dass gleichzeitig 

vorliegende kardiale Erkrankungen nicht erkannt wurden. Es gab kein 

einheitliches Probenhandling, manche Proben wurden gefroren an das Fremdlabor 

verschickt, manche wurden vor dem Versand nicht eingefroren. Bei den nicht-

gefrorenen Proben könnte es zu einem erheblichen Abbau von NT-proBNP 

gekommen sein. Keiner der Hunde in der Gruppe der kardial bedingten Dyspnoe 
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befand sich zum Zeitpunkt der NT-proBNP-Messung im Herzversagen, was 

ebenfalls die insgesamt niedrigeren NT-proBNP-Werte und somit den niedrigeren 

Cut-off-Wert erklärt (BOSWOOD et al., 2008). 

In anderen Studien waren die Cut-off-Werte höher als in der vorliegenden Arbeit. 

Die höchsten Cut-off-Werte wurden in einer Studie von OYAMA und 

Mitarbeitern (2009) mit 1158 pmol/l ermittelt. TAKEMURA und Mitarbeiter 

(2009) ermittelten einen Wert von 713,5 pmol/l (OYAMA et al., 2009; 

TAKEMURA et al., 2009). In der erstgenannten Studie wurden die Werte aus 

dem Serum bestimmt. KELLIHAN und Mitarbeiter (2009) zeigten, dass im Serum 

höhere NT-proBNP-Konzentrationen vorliegen als im Plasma (KELLIHAN et al., 

2009). Bei OYAMA und Mitarbeitern (2009) wurden außerdem in die Gruppe der 

respiratorisch bedingten Dyspnoe auch Hunde miteinbezogen, die zusätzlich zur 

respiratorischen Erkrankung eine Herzerkrankung unterschiedlichen 

Schweregrades aufwiesen, was ebenfalls zu höheren NT-proBNP-Werten geführt 

haben könnte. In der vorliegenden Arbeit hatte nur ein Hund in der Gruppe mit 

respiratorisch bedingter Dyspnoe Veränderungen am Herz.  Es lag bei diesem 

Patienten eine pulmonäre Hypertonie vor und deswegen ergab sich eine erhöhte 

NT-proBNP-Konzentration von 1330 pmol/l. In der Studie von OYAMA und 

Mitarbeitern (2009) waren die Hunde mit kardialer Dyspnoe wie in der 

vorliegenden Studie alle im Herzversagen, was zu einem höheren Cut-off-Wert 

geführt haben kann. Bei allen Hunden mit kardialer Dyspnoe, die in die Studie 

von TAKEMURA und Mitarbeiter (2009) aufgenommen wurden, lag eine 

Mitralinsuffizienz unterschiedlichen Schweregrades vor. Somit lässt diese Studie 

Aussagen über die NT-proBNP-Konzentration bei Hunden mit unterschiedlichen 

Schweregraden einer Mitralinsuffizienz, nicht aber bei anderen Herzkrankheiten 

zu. Dies macht einen direkten Vergleich mit anderen Studien, in die Hunde mit 

unterschiedlichen Herzkrankheiten aufgenommen wurden, schwierig. In der 

Studie von TAKEMURA und Mitarbeitern (2009), sowie von OYAMA und 

Mitarbeitern (2009) wurde das Vorliegen einer Niereninsuffizienz bei den 

eingeschlossenen Hunden nicht ausgeschlossen. Da in anderen Studien bei 

Hunden mit Niereninsuffizienz erhöhte NT-proBNP-Werte gemessen wurden 

(RAFFAN et al., 2009; SCHMIDT et al., 2009), kann nicht ausgeschlossen 

werden, dass in die Studie von TAKEMURA und Mitarbeitern (2009), sowie 

OYAMA und Mitarbeitern (2009) Hunde eingeschlossen wurden, deren NT-

proBNP-Konzentration aufgrund einer unerkannten Niereninsuffizienz erhöht 
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war. Dies könnte zu einer Verfälschung der ermittelten Cut-off-Werte geführt 

haben.   

Die Firma IDEXX, die den Testkit für canines NT-proBNP inzwischen 

vermarktet gibt inzwischen nach oben korrigierte Werte als Cut-off-Werte an: 

Liegt die NT-proBNP-Konzentration unter 900 pmol/l, so ist die 

Wahrscheinlichkeit, dass klinische Symptome, wie Husten, Dyspnoe oder 

Leistungsinsuffizienz durch eine Herzkrankheit verursacht werden, gering.  

Im Bereich 900 - 1800 pmol/l ist keine Unterscheidung der klinischen Symptome 

in kardiale und nichtkardiale Ursachen möglich. Der Hersteller empfiehlt in 

diesem Fall weitere diagnostische Schritte. Bei einer NT-proBNP-Konzentration 

über 1800 pmol/l ist eine kardiale Ursache für die Symptomatik sehr 

wahrscheinlich.  

 

Der klinische Einsatz von NT-proBNP als Biomarker ist grundsätzlich limitiert. 

Bei der Interpretation der gemessenen NT-proBNP-Konzentrationen müssen 

individuelle zeitliche Schwankungen berücksichtigt werden (KELLIHAN et al., 

2009). Bei unklaren Ergebnissen kann es notwendig sein, die NT-proBNP-

Messung zu einem späteren Zeitpunkt zu wiederholen oder zusätzliche 

Untersuchungen wie eine Echokardiographie durchzuführen.  

Eine Erhöhung NT-proBNP-Konzentration bei Hunden mit Niereninsuffizienz 

(RAFFAN et al., 2009; Schmidt et al., 2009) muss bei der Interpretation der 

Messwerte ebenfalls berücksichtigt werden. Diese lässt sich durch die verminderte 

Exkretion von NT-proBNP über die Nieren, aufgrund einer verminderten 

glomerulären Filtrationsrate erklären (HALL, 2005). Außerdem kommt es durch 

die renale Dysfunktion zu einem erhöhten Plasmavolumen, was wiederum zu 

einer Dilatation des linken Ventrikels und damit zu einer Erhöhung der NT-

proBNP-Konzentration führt (ANWARUDDIN et al., 2006). Viele, vor allem 

ältere Hunde mit chronischen Herzkankheiten weisen zusätzlich eine 

Niereninsuffizienz auf (cardiorenales Syndrom). Dies muss bei der Interpretation 

der ermittelten NT-proBNP-Werte berücksichtigt werden. Da bei diesen Patienten 

die NT-proBNP-Konzentration auch durch die Azotämie erhöht sein kann, besteht 

die Gefahr, einen Patienten eventuell fälschlicherweise als "herzkrank" 

einzustufen. In diesem Fall wird möglicherweise weitere Diagnostik, wie zum 

Beispiel eine Echokardiographie durchgeführt, was zu vermeidbaren Kosten 

führen kann, für den Patienten selbst jedoch keine nachteiligen Folgen hat. 
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Trotzdem sollten in weiteren Studien spezielle Cut-off-Werte für die NT-proBNP-

Konzentration bei Patienten mit Niereninsuffizienz ermittelt werden, vor allem, da 

bei älteren Patienten häufig Herz- und Nierenkrankheiten gleichzeitig auftreten. 

Mit zunehmenden Erfahrungswerten beim Einsatz von NT-proBNP in der 

Veterinärmedizin könnte ein nächster Schritt sein, für verschiedene 

Fragestellungen unterschiedliche Cut-off-Werte zu etablieren.  

Bei klinischem Einsatz von NT-proBNP-Messungen ist zu berücksichtigen, dass 

es sich hierbei um einen zusätzlichen Test handelt, der die konventionelle 

Diagnostik nicht vollständig ersetzen soll. Wie jeder andere diagnostische Test, 

sollte eine NT-proBNP-Messung nur bei Patienten durchgeführt werden, bei 

denen eine Indikation gegeben ist.  

 

In Zukunft sollte die Entwicklung eines Schnelltests für NT-proBNP entsprechend 

des "bedside"-Tests aus der Humanmedizin forciert werden, damit gerade in der 

täglichen Praxis und in der Notfallpraxis schnell ein Ergebnis vorliegt und das 

weitere Vorgehen entschieden werden kann.  

Wichtig ist die weitere Durchführung großer kontrollierter Studien, um feste 

Referenzwerte und klare Cut-off-Werte zu etablieren, damit Unsicherheiten für 

praktische Tierärzte möglichst ausgeräumt werden und eindeutige Entscheidungen 

getroffen werden können. Auch sollte weiter untersucht werden, welche 

sekundären Erkrankungen beim Hund die Werte von NT-proBNP verändern (z.B. 

Sepsis, Schilddrüsenkrankheiten) und gegebenenfalls für Begleiterkrankungen, 

die einen Einfluss auf die NT-proBNP-Konzentration haben können, eigene Cut-

off-Werte ermittelt werden. Sinnvoll wäre auch, eine größere Anzahl an Hunden 

mit primären respiratorischen Krankheiten und zusätzlichen Herzkrankheiten zu 

untersuchen, um zu evaluieren, ob dür diese Patientengruppe eventuell höhere 

Referenzwerte nötig sind.  

 

Vielversprechend ist auch die Kombination mehrerer Biomarker, wie bereits in 

der Studie von HEZZELL und Mitarbeitern (2012) die Kombination von hscTnI 

und NT-proBNP. Weitere mögliche Einsatzgebiete die Anwendung im Screening,  

vor allem auf okkulte Stadien von Herzkrankheiten bei Hund und Katze (z.B. 

DCM, HCM), sowie die Anwendung zum Therapiemonitoring, zur 

Verlaufskontrolle und zur Prognosestellung (HEZZELL et al., 2012). Hier sollten 

weitere Studien  mit großen Patientenzahlen durchgeführt werden.   
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VI. ZUSAMMENFASSUNG 

 

Im klinischen Alltag ist es oft notwendig, zwischen kardialen und respiratorischen 

Ursachen für Dyspnoe oder Husten bei Hunden zu unterscheiden. Für weitere 

diagnostische und therapeutische Schritte ist es unerlässlich, die Grundkrankheit, 

welche die Dyspnoe verursacht, frühzeitig zu diagnostizieren. Dies war bisher nur 

durch Echokardiographie und durch Röntgenuntersuchungen des Thorax möglich. 

Die Durchführbarkeit dieser Untersuchungen ist bei instabilen, schwer 

dyspnöischen Hunden oft erheblich eingeschränkt. In der Humanmedizin hat sich 

die Messung der Konzentration von Natriuretischen Peptiden wie B-Typ 

Natriuretischem Peptid (BNP) und dessen Prohormon N-terminales proBNP (NT-

proBNP) bereits bewährt, um zwischen kardialen und respiratorischen Ursachen 

für Dyspnoe zu unterscheiden. BNP wird als Prohormon proBNP synthetisiert, ins 

Blut freigesetzt und in NT-proBNP und BNP gespaltet. NT-proBNP selbst hat 

keine physiologische Aktivität, ist aber stabiler als BNP und deshalb einfacher zu 

bestimmen. In anderen Studien wurde bereits gezeigt, dass Hunde im kongestiven 

Herzversagen erhöhte BNP- und NT-proBNP-Konzentrationen aufweisen.   

Das Ziel dieser Studie war, die Eignung von NT-proBNP zur Unterscheidung 

zwischen kardialen und respiratorischen Ursachen für Dyspnoe oder Husten zu 

evaluieren. Hierfür wurde zwischen 2004 und 2006 die NT-proBNP-

Konzentration in Plasmaproben von 124 Hunden mittels eines ELISA (VETSIGN 

Canine CardioSCREEN NT-proBNP, Guildhay Ltd, UK) gemessen. Anhand von 

Echokardiographie und Röntgenuntersuchungen des Thorax wurden die Hunde in 

drei Gruppen eingeteilt: klinisch gesunde Hunde (Kontrollgruppe, n = 48), Hunde 

mit Dyspnoe oder Husten aufgrund von respiratorischen Ursachen (n = 57) und 

Hunde mit Dyspnoe oder Husten aufgrund von kardialen Ursachen (n = 19).  

Zwischen der durchschnittlichen NT-proBNP-Konzentration bei klinisch 

gesunden Hunden und Hunden mit respiratorisch bedingter Dyspnoe fand sich 

kein statistisch signifikanter Unterschied (246 versus 240 pmol/l). Die 

durchschnittliche NT-proBNP-Konzentration war bei Hunden mit kardial 

bedingter Dyspnoe oder Husten mit 1859 pmol/l signifikant höher als bei Hunden 

der beiden anderen Gruppen (p < 0,001). Es wurde ein Cut-off-Wert von 520 
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pmol/l ermittelt. Die Sensitivität und Spezifität zur Unterscheidung zwischen 

kardialen und respiratorischen Ursachen für Dyspnoe oder Husten bei Hunden lag 

bei 94,7 % und 96,2 %, die AUC betrug 0,95. Zwischen Alter, Geschlecht oder 

Körpergewicht und der NT-proBNP-Konzentration bestand in dieser Studie kein 

Zusammenhang. Die Ergebnisse dieser Studie zeigen, dass die Messung der 

NT-proBNP-Konzentration gut geeignet ist, um kardiale von respiratorischen 

Ursachen für Dyspnoe oder Husten beim Hund zu unterscheiden.  
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VII. SUMMARY 

In clinical practice it is important to be able to differentiate cardiac and respiratory 

causes of dyspnea or coughing in dogs. This differentiation is important for 

further decisions on diagnostic methods and treatment. Echocardiography and 

thoracic x-rays have been the standard diagnostic methods in dyspneic dogs. 

These methods however are often not easy to perform in a severely dyspneic dog. 

Measurement of Natriuretic Peptide concentrations, such as B-type Natriuretic 

Peptide (BNP) and its prohormone N-terminal proBNP (NT-proBNP) is helpful in 

distinguishing cardiac from non-cardiac causes of dysnpea in humans. BNP is 

synthesized as a prohormone proBNP, secreted into the blood stream, and cleaved 

into NT-proBNP and BNP. NT-proBNP has no physiologic activity but is more 

stable than BNP and therefore easier to measure. Previous canine studies have 

shown elevated BNP and NT-proBNP concentrations in dogs with congestive 

heart failure.  

The aim of this study was to evaluate the utility of NT-proBNP to differentiate 

between cardiac and respiratory causes of coughing or dyspnea in dogs. 

Therefore, NT-proBNP concentration was measured in plasma samples from 124 

dogs between 2004 and 2006 using an ELISA antibody assay (VETSIGN Canine 

CardioSCREEN NT-proBNP, Guildhay Ltd, UK). The dogs were classified 

according to echocardiography and thoracic x-rays into one of the following 

groups: clinical healthy (control) group (n = 48), dogs with dyspnea or coughing 

due to respiratory causes (n = 57), and dogs with dyspnea or coughing due to 

cardiac causes (n = 19).  

There was no significant difference in the NT-proBNP concentrations between the 

control group (mean 246 pmol/l) and the respiratory group (mean 240 pmol/l). 

NT-proBNP concentrations in dogs with dyspnea or coughing due to cardiac 

causes were significantly higher (p < 0.001) than in the other two groups (mean 

1859 pmol/l). Using a cut-off value of 520 pmol/l, NT-proBNP had a sensitivity 

of 94.7 % and a specifity of 96.2 % for the differentiation between cardiac and 

respiratory causes for dyspnea or coughing in dogs; the AUC was 0.95. There was 

no correlation between age, gender, or weight and the NT-proBNP concentrations. 

The results of this study showed that NT-proBNP is a good marker for 
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differentiation between cardiac and respiratory causes for dyspnea or coughing in 

dogs. 
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