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Zusammenfassung

Methoden der statistischen Datenanalyse setzen in der Regel voraus, dass
die vorhandenen Daten prézise und korrekte Beobachtungen der unter-
suchten Grofien sind. Héufig konnen aber bei praktischen Studien die in-
teressierenden Werte nur unvollstdndig oder unscharf beobachtet werden.
Die vorliegende Arbeit beschéftigt sich mit der Fragestellung, wie Regres-
sionsanalysen bei unscharfen Daten sinnvoll durchgefiihrt werden kénnen.

Zunichst werden verschiedene Anséitze zum Umgang mit unscharf be-
obachteten Variablen diskutiert, bevor eine neue Likelihood-basierte Me-
thodologie fiir Regression mit unscharfen Daten eingefiihrt wird. Als Er-
gebnis der Regressionsanalyse wird bei diesem Ansatz keine einzelne Re-
gressionsfunktion angestrebt, sondern die gesamte Menge aller anhand der
Daten plausiblen Regressionsfunktionen betrachtet, welche als Konfidenz-
bereich fiir den untersuchten Zusammenhang interpretiert werden kann.
Im darauffolgenden Kapitel wird im Rahmen dieser Methodologie eine Re-
gressionsmethode entwickelt, die sehr allgemein beziiglich der Form der
unscharfen Beobachtungen, der méglichen Verteilungen der Zufallsgréfien
sowie der Form des funktionalen Zusammenhangs zwischen den untersuch-
ten Variablen ist. Zudem werden ein exakter Algorithmus fiir den Spezial-
fall der linearen Einfachregression mit Intervalldaten entwickelt und einige
statistische Eigenschaften der Methode néher untersucht. Dabei stellt sich
heraus, dass die entwickelte Regressionsmethode sowohl robust im Sinne ei-
nes hohen Bruchpunktes ist, als auch sehr verlassliche Erkenntnisse hervor-
bringt, was sich in einer hohen Uberdeckungswahrscheinlichkeit der Ergeb-
nismenge duflert. Dariiber hinaus wird in einem weiteren Kapitel ein in der
Literatur vorgeschlagener Alternativansatz ausfiihrlich diskutiert, der auf
Support Vector Regression aufbaut. Dieser wird durch Einbettung in den
methodologischen Rahmen des vorher eingefiihrten Likelihood-basierten
Ansatzes weiter verallgemeinert. Abschliefflend werden die behandelten Re-

gressionsmethoden auf zwei praktische Probleme angewandst.






Regression analysis with

imprecise data

Andrea Wiencierz

Dissertation submitted to

the Faculty of Mathematics, Informatics, and Statistics
of the LMU Munich

for the academic degree of

Doctor rerum naturalium (Dr. rer. nat.)

October 30, 2013



First referee: Prof. Dr. Thomas Augustin (LMU Munich)
Second referee: Prof. Dr. Lev V. Utkin (FTU St. Petersburg)
Defense: December 13, 2013



For my parents

Susanne and Paul Wiencierz






Abstract

Statistical methods usually require that the analyzed data are correct and
precise observations of the variables of interest. In practice, however, often
only incomplete or uncertain information about the quantities of interest
is available. The question studied in the present thesis is, how a regres-
sion analysis can reasonably be performed when the variables are only
imprecisely observed.

At first, different approaches to analyzing imprecisely observed vari-
ables that were proposed in the Statistics literature are discussed. Then,
a new likelihood-based methodology for regression analysis with impre-
cise data called Likelihood-based Imprecise Regression is introduced. The
corresponding methodological framework is very broad and permits ac-
counting for coarsening errors, in contrast to most alternative approaches
to analyzing imprecise data. The methodology suggests considering as
the result of a regression analysis the entire set of all regression functions
that cannot be excluded in the light of the data, which can be interpreted
as a confidence set. In the subsequent chapter, a very general regression
method is derived from the likelihood-based methodology. This regression
method does not impose restrictive assumptions about the form of the
imprecise observations, about the underlying probability distribution, and
about the shape of the relationship between the variables. Moreover, an
exact algorithm is developed for the special case of simple linear regres-
sion with interval data and selected statistical properties of this regression
method are studied. The proposed regression method turns out to be
robust in terms of a high breakdown point and to provide very reliable
insights in the sense of a set-valued result with a high coverage probabil-
ity. In addition, an alternative approach proposed in the literature based
on Support Vector Regression is studied in detail and generalized by em-
bedding it into the framework of the formerly introduced likelihood-based
methodology. In the end, the discussed regression methods are applied to

two practical questions.
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Chapter 1

Introduction

The present thesis deals with the statistical problem of analyzing the rela-
tionship between two or more real-valued variables when these quantities

are only imprecisely observed.

1.1 Motivation

The term regression refers to the most popular and commonly employed
methods of statistical data analysis. The goal of a regression analysis is to
obtain a quantitative description of the relationship between one or more
explanatory variables and a response variable. For example, regression
methods can be used to analyze the relationship between the income, the
age and further sociodemographic characteristics of an individual and the
overall life satisfaction (Wunder et al., 2013) or to investigate how the num-
ber of earthquakes per day in a seismically active region can be explained
by the amount of preceding rainfall together with the air temperature and
further quantities describing the impact of the earth tide (Svejdar et al.,
2011). There is a large variety of regression methods for many different sit-
uations, which is regularly complemented by new suggestions. Overviews
of numerous established regression methods with many references for inter-
ested readers can be found, for example, in the textbooks Fahrmeir et al.
(2013) and Hastie et al. (2009).



Like most statistical tools, regression methods are usually based on the
assumption that the analyzed data are precise and correct observations of
the variables of interest. In statistical practice, however, often only in-
complete or uncertain information about the data values is available. For
example, consider the personal income, which is a key variable for many
socioeconomic questions. Data on personal income are usually collected by
surveys, because privacy laws prevent other ways. Faced with the question
about the exact figure of the total or net income received during the last
month or year, a respondent is very likely to give a value that is rounded
to a multiple of hundreds or thousands. Hence, the recorded value often
contains only the information that the exact figure lies in some interval
around the given value. Moreover, as it is a very delicate question, many
respondents are not willing answer at all. For those cases, the data set
contains missing values, providing only the information that the income
figures are numbers in the observation space of this variable. A common
practice to obtain more informative answers is to ask those who refuse to
give a precise value in a second step to indicate in which of the categories of
a partitioned income range their income lies. As revealing a coarse income
category is less informative than revealing the exact value, people are more
likely to give this information. For those answering only this categorized
question, the data provide the information that the income belongs to one
of the intervals that constitute the partition of the income range. In all
these cases, there is uncertainty about the exact data values. In fact, con-
tinuous variables are always observed only with limited precision, because
the recorded number of digits is always finite. Further common examples
of imperfect observations include censored survival times, variables that
are observed on different aggregation levels, or missing values.

In all of these cases, the incomplete or uncertain information about the
precise values of interest can be expressed by subsets of the observation
space. For example, interval-censored and rounded data can be represented
by intervals. Furthermore, if a value is precisely observed the observed
set is a singleton and if a value is missing it is represented by the entire

observation space of the corresponding variable. As the representation by



subsets allows considering many different forms of uncertainty about data
within the same framework, this representation is adopted in this thesis.
In the following, set-valued observations of real-valued variables are simply
called imprecise data.

It is important to note that the notion imprecise data is sometimes used
with a different meaning, for example, in the context of Fuzzy Statistics.
In this and other frameworks, the quantities of interest are supposed to be
inherently imprecise and therefore modeled as (fuzzy) sets. Consequently,
in this context, the (fuzzy) set-valued data constitute exact observations
of imprecise variables, and in a regression analysis, the relationship be-
tween imprecise quantities is investigated. How to approach this statisti-
cal problem, was studied, for example, in Blanco-Ferndndez et al. (2011);
Domingues et al. (2010); Ferraro et al. (2010); Lima Neto and de Carvalho
(2008); Coppi et al. (2006); Korner and Néther (1998); Diamond (1990).
By contrast, this thesis is about analyzing the relationship between some
precise variables in the situation in which only set-valued data on these
quantities are available, because this problem appears to be more rele-
vant for statistical practice, given the many different examples mentioned
above. So far, there is no standard methodology for analyzing data that
are imprecise in this sense.

The aim of the present thesis is to find a regression method that pro-
vides reliable insights about the relationship of interest, even if the vari-
ables are only imprecisely observed. Furthermore, the regression method
should be general in the sense that it does not impose restrictive assump-
tions about the form of the imprecise observations, about the underlying
probability distribution, and about the shape of the relationship between
the variables.

1.2 Outline of the thesis

The core of this thesis starts with a review of different approaches to ana-
lyzing imprecise data that were proposed in the literature. Then, in Chap-

ter 3, the formal framework of a new general likelihood-based approach to



regression with imprecisely observed variables is presented. Chapter 4 is
devoted to a robust regression method derived from this general frame-
work, and in Chapter 5, an alternative regression method for imprecisely
observed responses is studied. Finally, two applications are presented in
Chapter 6, before some general comments and a short outlook in Chapter 7
conclude this thesis.

A certain part of the ideas and results presented in this thesis were al-
ready published in a total of four publications. The following list indicates
what sections of the present thesis are concerned and in which way the

four publications contribute to these sections.

e Chapter 3 is based on Cattaneo and Wiencierz (2012, Sections 2 and

3) and contains many additional remarks and explanations.

e Section 4.1 is based on Wiencierz and Cattaneo (2012, Section 2),
on Cattaneo and Wiencierz (2012, Section 3), and on Cattaneo and
Wiencierz (2011, Sections 2 and 3) and contains many additional

remarks and explanations.

e Section 4.2 is in part taken from Cattaneo and Wiencierz (2011,

Section 4) together with additional exemplifications and remarks.

e Section 4.3 is based on Cattaneo and Wiencierz (2013, Section 3)
and on Wiencierz and Cattaneo (2012, Section 3) and contains many

additional remarks and explanations.

e Section 6.1 is for the most part taken from Cattaneo and Wiencierz
(2013, Section 4).



Chapter 2

Analyzing imprecise data

In this chapter, different approaches to analyzing imprecise data are dis-
cussed with a focus on regression. As explained in Chapter 1, the term
imprecise data stands for set-valued observations of precise variables, which
covers amongst others actually precise observations and completely miss-

ing values as special cases.

2.1 Approaches aiming at a precise result

A simple ad hoc approach to dealing with imprecise data could be to re-
duce the observed sets each to a single value and to apply a standard
method to the thus obtained precise data set. For example, if we want
to perform a regression analysis and some of the analyzed variables are
observed as intervals representing rounded values, the intervals could be
replaced by their midpoints and a standard regression method could be
applied to the midpoint data set, which yields a single estimated regres-
sion function. However, proceeding in this way in general does not provide
correct estimates, as it was discussed already more than a century ago by
Sheppard (1898) and for the example of linear regression with rounded
data, e.g., by Dempster and Rubin (1983) and Beaton et al. (1976). Nev-
ertheless, by imposing assumptions about the (random) behavior of the

rounding error, the estimates may be corrected for the error in several sit-



uations. Many correction methods were developed for various statistical
methods and different kinds of measurement errors. An extensive overview
of modern measurement error models is given, for instance, in Carroll et al.
(2006).

In the literature, further approaches explicitly modeling the mechanism
that leads to the imprecise observations were suggested for various special
cases of imprecise data and particular statistical methods. For example, in
the case of completely missing values, the missingness mechanism can be
described by a random quantity indicating whether the value is observed
or not. Using this description of the uncertainty in the data set, Ru-
bin (1976) defined the condition of Missing At Random (MAR), requiring
that the fact that a value is missing must not depend on the unobserved
value itself. Provided the missingness mechanism is uninformative in this
sense, Rubin (1976) showed that valid likelihood-based inferences may be
obtained ignoring the mechanism. Based on this result, many other sug-
gestions to dealing with missing data were made, including sophisticated
imputation methods. For more details on these methods, see, for instance,
Little and Rubin (2002). Another common type of imprecise data con-
stitute censored event or life times. These occur, for example, in data
on incidence times of patients suffering from a certain disease or on the
age at failure of technical devices, for which only lower or upper bounds
(or both) are known, because some patients were sick for a certain time
before the disease was diagnosed or because some devices were replaced
before they failed. Here, the censoring mechanism can be modeled by a
quantity indicating for each observation whether the actual time of interest
was observed or whether a censoring time was observed as upper or lower
bound to the actual time. Different statistical methods for analyzing data
sets containing censored data were proposed, e.g., by Salibian-Barrera and
Yohai (2008); Gémez et al. (2003); Lindsey (1998); Heitjan and Rubin
(1990). Since there are many other practical settings where uncertain or
partial information about some data values is available, Heitjan and Ru-
bin (1991) generalize the MAR concept to other kinds of imprecise data
and deduce a similar ignorability result. As Heitjan and Rubin (1991)



refer to imprecise observations like rounded values, censored life times, or
general subsets of the observation space as coarse data, the corresponding
condition is called Coarsening At Random (CAR). Generalizing the MAR
condition, CAR requires that the coarsening mechanism is independent of
the underlying precise value. Moreover, Heitjan and Rubin (1991) showed
that likelihood-based inferences can be obtained from coarse data without
explicitly accounting for the coarsening mechanism, if the latter respects
the CAR condition. In practice, however, it is generally impossible to check
whether this condition (or its special case MAR) is fulfilled or not. For
a detailed discussion about the CAR condition, see, for example, Potter
(2008, Chapter 2).

All approaches to analyzing imprecise data discussed so far follow the
idea that the mechanism leading to the imperfect observations is explic-
itly considered in the probability model underlying the statistical analysis
and assumptions about the (random) behavior of this mechanism ensure
to obtain a precise result. Yet, these assumptions are in some cases very
restrictive and can never be verified in a practical setting. Another draw-
back of these approaches is that usually only one special type of uncertain
information in the data can be considered at a time. As many different
kinds of imprecision in data can be expressed by subsets of the observa-
tion space, a general methodology for the analysis of imprecise data should
directly start with the observed sets.

A different methodology for regression analysis with interval data was
proposed in Utkin and Coolen (2011). The proposed methodology yields
a precise results by adopting either a minimin or a minimax strategy. It

is extensively discussed in Chapter 5.

2.2 Approaches admitting an imprecise result

A simple approach could be not to aim at a precise result but to consider as
the imprecise result of the statistical analysis the whole set of all precise
estimates resulting from precise data sets that are compatible with the

imprecise data. This approach can be generally applied to set-valued data,



no matter what the source of the imprecision is, and implies no assumption
like CAR. It was proposed, for example, by Ferson et al. (2007); Gioia and
Lauro (2005); Marino and Palumbo (2002). The set-valued result collects
all precise estimates that would be obtained if the data were precisely
observed at locations within the observed sets. However, it is not clear
what inferences can be deduced from the imprecise result of this ad hoc
approach, because it is not based on a statistical model for inference with
imprecise data.

Another approach that allows an imprecise result and that can provide
a foundation for the ad hoc approach is known as Partial Identification.
This approach emerged during the past 25 years mainly in Econometrics
and Biostatistics. Partial Identification is based on the idea that, if the
analyzed variables are only imprecisely observed, only partial knowledge
about the characteristics of interest can be obtained, avoiding strong as-
sumptions about the coarsening mechanism like CAR. Hence, bounds for
the value of a characteristic of interest are derived, in considering all prob-
ability measures with support on the imprecise data as possible probability
distributions of the precise values given the imprecise observations. The
resulting set is called identification or ignorance region for the characteris-
tic and can be reliably estimated from the imprecise data. However, care
has to be taken when evaluating a characteristic as partially identified in
some setting. Without specifying in detail what imprecise data can be
observed, this only means that the quantity of interest is in general not
completely identified, but in some special cases the estimated identifica-
tion region may actually be a singleton, e.g., if the variables are precisely
observed with probability one, or may become a point as more and more
data are observed. A thorough presentation of the main concepts of Partial
Identification together with an overview of applications of this approach
is provided by Manski (2003), while Manski and Tamer (2002) study the
special case of regression with interval data in detail, and Horowitz and
Manski (1995) discuss the distinction of the Partial Identification approach
from Robust Statistics. In a practical analysis, it was initially suggested to

estimate the probability distribution of the imprecise data by their empir-



ical distribution and to determine the identification region associated with
this probability distribution, which corresponds, in fact, to the result of
the ad hoc approach mentioned above. Once the estimate of the identifi-
cation region is determined, the power of additional assumptions to reduce
the size of the set-valued result can be investigated. Hence, Partial Iden-
tification methods are generally not intended to completely refrain from
further assumptions about the unobserved data like CAR, but to become
aware of their strength when imposing them in a particular analysis. In
recent years, many other statistical methods were developed in the frame-
work of Partial Identification, in particular, methods that allow taking also
the estimation uncertainty into account. Different confidence regions for
real-valued distribution characteristics or for regression parameters were
proposed, for example, by Schollmeyer and Augustin (2013); Beresteanu
et al. (2012); Beresteanu and Molinari (2008); Vansteelandt et al. (2006).

Apart from the Partial Identification approach, likelihood inference
provides a very general and flexible framework for analyzing imprecise
data. It directly allows accounting for the imprecision of the data as well
as for the statistical uncertainty associated with the estimation on the
basis of a finite number of observations. Considering a joint probability
model for the precise variables and the imprecise observables, the impre-
cise data induce a (nonparametric or parametric) likelihood function on
the set of considered probability measures, from which a profile likelihood
function for some characteristic of the probability distribution of the vari-
ables of interest can be derived. Based on this profile likelihood function,
confidence regions for the characteristic can be easily obtained by cut-
ting the graph of the likelihood function at a chosen height determining
the coverage level. This methodology is very general, because it can be
applied to data sets containing at the same time precise and set-valued ob-
servations representing different kinds of data imprecision. Furthermore,
no assumptions like CAR are necessary, however, additional assumptions
about the coarsening mechanism can be considered by choosing a corre-
sponding set of joint probability models of the analyzed situation. As the

likelihood framework is very flexible, we used this inference framework in



combination with results about likelihood-based decisions from Cattaneo
(2007) to develop a regression methodology for imprecise data in Cattaneo
and Wiencierz (2012). The general methodology for likelihood inference
with imprecise data was also proposed by Zhang (2010, 2009), but not
yet considered in the context of regression analysis. How we employ this
framework to develop a general methodology for regression analysis with

imprecise data, is described in detail in the following chapter.
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Chapter 3

Likelihood-based Imprecise

Regression

In this chapter, the methodology for regression with imprecise data de-
veloped in Cattaneo and Wiencierz (2012) is presented in detail. As the
approach is based on likelihood inference and usually yields a set-valued
result, it is called Likelihood-based Imprecise Regression (LIR). The LIR
approach is based on a general methodology for likelihood inference with
imprecise data and is derived within the framework for likelihood-based
decisions developed in Cattaneo (2013, 2007). The regression problem is
thus formalized as a decision problem about which regression function best
describes the relationship of interest in the light of the (possibly) imprecise
observations. In the considered data situation, it is difficult to obtain a
precise evaluation of each of the considered functions without imposing
strong assumptions about the coarsening mechanism. To avoid such re-
strictions and to additionally take the statistical uncertainty into account,
confidence regions for the loss associated with each regression function are
considered, which can reliably be learned from the imprecise data. Thus,
the aim of a LIR analysis is not to obtain a single estimated regression func-
tion at any price, but rather to describe the whole uncertainty involved in

the regression problem with imprecise data.
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3.1 The LIR methodology for precise data

In regression analysis, the relationship between some explanatory variables
X € X C R?, with d € N, and a response variable Y € J) C R is inves-
tigated. Typically, it is supposed that X x ) is the Cartesian product of
d + 1 possibly unbounded intervals. The relationship of interest can be

formalized by a function
f: X =R

The quantities X and Y are regarded as random variables, the joint ran-
dom object is denoted by V = (X,Y’) with observation space V = X x ).

Usually a sample of possible realizations Vi, ..., V,, with n € N, is con-
sidered, from which it shall be inferred which of the functions in a certain
predefined set F best describes the relationship between the variables of
interest, X and Y. As commonly done, we assume that V7, ...V, are inde-
pendent and identically distributed (i.i.d.) according to some probability
measure Py on V.

The task of identifying the function f € F that best describes the
relationship of interest can be formulated as a decision problem with F
being the set of possible decisions, Py the set of probability distributions
for V that are considered as possible models of the analyzed situation, and
L the associated loss function on F X Py. The closer L(f, Py) is to zero
for some Py, € Py, the better the function f describes the relationship
between X and Y, provided that Py is the true model.

Most of the common loss functions in the regression context are ex-

pressed by means of the (absolute) residual, defined for each f € F by
Ry =Y - f(X).

If we consider a sample Vi,...,V,, with V; ~ Py, for all i € {1,...,n},

the corresponding residuals Ry 1, ..., Ry, are also i.i.d. random quantities
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with probability distribution Pg, given by

Pr,(Ry<7)= /Vﬂ{mzy/):v'ev:|y’ff<z/>\3r}(v)dPV<v)a

for all r € R>q, where Is denotes the indicator function of a set S, defined
on a suitable space. To avoid notational overload, we write throughout
this thesis Py (Ry < r) = Py(V € {(2/,y/)=v eV : |y — f(a")] <r})
instead of Pr,(R; < 7). As loss function, usually, some characteristic
of the residuals’ distribution is considered, for instance, a moment or a
quantile. A famous example is the loss function given by L(f, Py) =
E(R?), that is, by the second moment of the distribution of the residuals
(under Py ), whose minimization corresponds to the regression method of
Least Squares (LS). The LS solution is given by the regression function
satisfying f(z) = E(Y|z) for all z € X, where E(Y|z) is the conditional
expectation (under Py) of Y given X = x.

Given the true probability measure Py, the best description of the
relationship between X and Y is the function minimizing L(-, Py). How-
ever, usually Py is unknown. Many regression methods overcome this
problem by substituting Py with the empirical distribution, after having
obtained the data Vi = vy,...,V,, = v,. The empirical distribution de-
noted by PV is the discrete distribution over V with probability mass 1/n
at each observed point vq,...,v,. In the fully nonparametric case where
Py corresponds to the set of all probability measures on V, the empir-
ical distribution is the maximum likelihood (ML) estimate of Py. As
pointed out in Cattaneo (2007, Section 1.3), the minimization of L(-, Py)
leads to the ML estimate of f, if some weak regularity conditions are ful-
filled. Therefore, it is reasonable to proceed in this way if one aims at
a precise evaluation ignoring the involved uncertainties. Yet, we follow a
more general approach to likelihood inference, where we make use of the
information of the entire likelihood function instead of focusing only on
its maximum. Moreover, we define the likelihood function generally as a
function of the probability distribution, which allows considering also non-

parametric models. This general approach to likelihood inference was also
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adopted in Cattaneo (2007) and had formerly been suggested, for example,
by Owen (1988).
Given the observations Vi = vq,...,V, = v,, we define the induced

(normalized) likelihood function liky : Py — [0,1] by

Pv(Vlz’Uh...,Vn:’Un)

liky (Py) = .
ikv (Pv) SUPp; cp, P,(Vi=wv1,...,V, =)

If Py is a continuous probability measure, vy,...,v, can be replaced by
small intervals around the observed values to ensure that liky (Py) is well
defined. This is justified because continuous quantities can always be
measured only with finite precision. Alternatively, in case that all Py €
Py are continuous, liky (Py) can be approximated by the ratio of the
corresponding densities, as it is commonly done in Statistics.

Hence, the (normalized) likelihood function is given by the probabilities
with which each Py € Py would have predicted the observations relative to
the probability assigned by the best-predicting probability model. There-
fore, liky provides detailed information about which probability models in
Py are more plausible than others in the light of the available data. For
any 8 € (0,1), Py can be reduced to the set

Pv,sg = {Pv € Py : liky(Py) > B}

of all probability distributions whose (normalized) likelihood exceeds the
threshold 3, i.e., which assign at least a certain probability to the observed
values.

The set Py~ allows deriving likelihood-based confidence regions for
some characteristic of the probability models considered. Define the char-
acteristic ¢ as a (possibly) set-valued function from Py to a set G C R,
that is, formally g : Py — 29\{@}, where 25 denotes the power set of a
set §. For instance, g can be the function assigning to each probability
measure Py the corresponding value (or interval) g(Py ) of a certain quan-
tile of the distribution of the residuals associated with some f € F. For

each p € (0, 1), this p-quantile can be defined as any value ¢ € R such that
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Py(Ry < q) < p < Py(R; < q), which is only unique if the correspond-
ing cumulative distribution function is strictly increasing, i.e., if Py is a
continuous probability measure. As the LIR methodology is not restricted
to this case, g is generally defined as a multi-valued mapping, where in
case of the p-quantile g(Py) ={¢€R : Py(R;y <q) <p<Py(R; <q)}.
Then, for each § € (0,1), the set

Gop = U 9(Pv)

Py ePv, >z

defines a likelihood-based confidence region with cutoff point S for the
characteristic g. This set can alternatively be represented as

Gop={r €9 : liky(v) > B},

where lik, : G — [0,1] is the (normalized) profile likelihood function for
g defined by

liky(y) = sup liky (Py)
Py ePy :veg(Py)

(see also Cattaneo and Wiencierz, 2012, Lemma 1).

When Py is a family of parametric probability distributions and g
a corresponding parameter, the confidence region G- corresponds to all
values y of the characteristic of interest that would not be rejected in a like-
lihood ratio test of the simple hypothesis Hy : g = -y versus the alternative
H; : g # ~. Under suitable regularity conditions, the likelihood ratio test
statistic —2log(lik,(7y)) has an asymptotic x2-distribution with one degree
of freedom, as shown by Wilks (1938). For the nonparametric case, where
Py is the set of all probability measures on V and g is some characteristic
of these distributions, Owen (1988) derived the same asymptotic distribu-
tion of this test statistic, provided some regularity conditions are fulfilled.
Hence, the asymptotic confidence level of G~ is directly determined by
B. For any 5 € (0,1), the asymptotic level of the likelihood-based confi-

dence region G- g is given by Fxf(—Z log(8)), where Fz is the cumulative
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distribution function of the x2-distribution with one degree of freedom.
The lower the cutoff point 5 is chosen, the higher the confidence level of
G-, for example, the choice of § = 0.15 corresponds to an asymptotic
confidence level of approximately 95%, while 8 = 0.5 implies a level of
about 76%.

In the context of the regression problem, the characteristic of interest
is the loss associated with each regression function f € F. Hence, as g
we consider the function-specific loss function Ly defined for all f € F by
L¢(Py) = L(f,Pv). That is, L is also considered to be a possibly multi-
valued mapping here. Given some 5 € (0,1), we obtain for each function
f € F a confidence region Cy g for the associated loss. In the example
case of the loss function assigning to each pair (f, Py) the p-quantile of
the residuals’ distribution, we have that Cy -z is always an interval, but
this is not necessarily true for other loss functions (see Owen, 1988). In
the LIR methodology, we use the confidence region C¢ 3 as the decision
criterion for the regression problem. Since the cutoff point is the same
for all f € F in the same LIR analysis, we suppress 8 in the notation
of the confidence regions in the following. Being a set-valued decision
criterion, the confidence region for the loss induces only a partial order on
F, and therefore, cannot simply be minimized. Yet, it is possible to apply
generalized decision rules or weak decision principles to obtain a (possibly
set-valued) solution. For example, all regression functions that are not
strictly dominated by another function can be considered as the imprecise
result of the regression analysis. A function f strictly dominates another

function f’ if

sup Ly(Py)< inf Lp(Py) <= supC;<infCyp.
Py ePv,>p PyvePv,>p
The obtained set of functions can be interpreted as a confidence set for
the true function describing the relationship between X and Y, thus, its
extent reflects the amount of statistical uncertainty regarded in the analysis

according to the choice of 5.
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3.2 The LIR methodology for imprecise data

Now, let us consider the situation in which it is impossible to observe
the variables precisely, instead only partial information about Vi,...,V,
is available. The corresponding imprecise data are represented by the
random sets Vi*,...,V* taking values in the set V* C 2Y. The set-
valued observations can be arbitrary subsets of V, including as extreme
cases actually precise observations (when V* = {V;}) and completely
missing data (when V* = V). We assume that the joint random ob-
jects (V1, V%), ..., (V,, V,¥) are i.i.d. according to some probability mea-
sure P € P, where P is a subset of the set P. of all probability models
satisfying

PVeV)>1-¢, (3.1)

for some € € [0,1/2). This is a very general model for the considered data
situation, according to which for each realization of the random variables
of interest, X and Y, there is an unobservable precise version V; = v; € V
and an observable imprecise version V;* = A; € V*. In Figure 3.1, this idea
is illustrated by means of an artificial data example. How the two versions
are related is mainly determined by the model parameter € corresponding
to the upper bound to the probability of a wrong coarsening. The event
V; ¢ V* might occur due to, for example, data processing errors or bad
memory of respondents in a survey. Requiring € = 0 in (3.1), as other ap-
proaches to the analysis of imprecise observations usually do, corresponds
to assuming that the (imprecise) data were perfectly recorded. However, in
many practical settings, such an assumption is not reasonable, hence, the
general model for the imprecise data of the LIR approach is more flexible
and allows accounting for measurement errors. In the fully nonparametric
setting where P = P., Assumption (3.1) does not even exclude informative
coarsening. Stronger assumptions about the coarsening mechanism may
also be included by the choice of an appropriate set P.

On the basis of the model for the (unobserved) precise and (observed)

imprecise data, we can, completely analogously to the case above, derive
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Figure 3.1: Precise (left) and imprecise (right) versions of a two-dimensional
synthetic data set with n = 17. The imprecise data have varying amounts
of imprecision: there is one actually precisely observed data point with V;* =
[1,1] x [1,1] = {(1,1)}, there are two line segments (one of which is unbounded
towards +o0 in the X-dimension), and finally, there are 14 rectangles of different
sizes and shapes (one of which is unbounded towards —oco in the Y-dimension).

likelihood-based confidence regions for the characteristic of the marginal
distribution of the precise data Py that is regarded as loss function of the
regression problem. Note that the aim of the regression analysis remains
unchanged, that is, we still want to analyze the relationship between the
(precise) quantities X and Y, only the quality of the available data is
different now.

Consider that some imprecise observations Vi* = A;,..., V) = A,
were made. The (normalized) likelihood function lik on P induced by

these observations is defined by

P(Vy=A4y,...,Vi=A,)
Supp/efp Pl(‘/l* = A17 e ,V,,:F = A’VL)
_ H?:l PV*(Vi* = Ai)

Supprep H?:l Py (Vi = Ay)

lik(P) =

(3.2)

where Py - denotes the marginal distribution of the imprecise data asso-
ciated with a probability model P € P. As the value of the likelihood
function for each P is given (up to a multiplicative constant) by the prob-
ability with which this probability model had predicted the data at hand

and since we only observed the imprecise data, the value of lik(P) only
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depends on the marginal distribution Py «. As in the precise data case, lik

can be used to reduce P to the set
Pspg={P €P :lik(P) > g}

of all plausible probability models given the data, for some 5 € (0, 1).

Furthermore, likelihood-based confidence regions G- g for some charac-
teristic g of the probability distributions P € P can be determined analo-
gously to the precise data case, i.e., as Gs3 = {y € G : liky(y) > f}. How-
ever, it is more complicated to derive the (normalized) profile likelihood
function for g here. This is because the characteristics considered as loss
functions in the regression problem are usually characteristics of the dis-
tribution of the (unobservable precise) residuals Ry ;, with i € {1,...,n},
and thus, only depend on the marginal distribution Py of the precise data,
while the likelihood function is entirely determined by the marginal dis-
tribution Py« of the imprecise data. Hence, the uncertainty about the
probability distribution Py, of the quantities of interest is more complex
here. It is composed of two parts: on the one hand, there is the statistical
uncertainty about the correct distribution Py« of the imprecise data, and
on the other hand, there is the indetermination regarding which marginal
probability distribution Py of the precise data that is compatible with
Py« is the correct one, which is due to the fact that the data are only
imprecisely obtained. In general, the statistical uncertainty decreases as
more data are observed, while the indetermination remains.

To deduce an expression for lik,, we denote g(P) by ¢'(Py) for all
P € P and we define an imprecise version g* on Py« of the multi-valued
mapping describing the characteristic of interest for all Py« € Py« by

P = |J gd@v), (3.3)
Py €[Py+]

where [Py -] is the set of all probability distributions Py, of the precise data
corresponding to models P’ € P with marginal distribution P{,. = Py« for

the imprecise data. If we consider, for instance, the fully nonparametric
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assumption P = P, with ¢ = 0, for a fixed Py«, the set [Py+] is com-
posed of all marginal distributions Py of the precise data satisfying for all

measurable events A C YV

Py(VeA)> / Iiarev-: arcay(A) dPy-(A) and
v*
(3.4)
Py(VeA)< / T arev- :A’mA;éz}(A) dPy-(A).
V)K

The expressions on the right-hand side of these inequalities are often re-
ferred to as lower and upper probabilities or as belief and plausibility func-
tion, respectively. For a closer look at these concepts, see, for example,
Destercke et al. (2008); Nguyen and Wu (2006); Smets (2005); Dempster
(1968).

As the likelihood function lik only depends on Py «, we furthermore
define by lik*(Py+) = lik(P) the (normalized) likelihood function lik* on
the set Py« of all marginal distributions of the imprecise data associated
with the considered probability measures P € P. This definition permits

expressing G~ g as

Gop = U 9" (Py-),

Py« €Py+ : lik* (Pyx*)>p

and deriving the (normalized) profile likelihood function lik}. on G asso-

ciated with g* as

liky. (v) = sup lik™ (Py~). (3.5)
Py« €Pyx :y€g* (Py+)

Now, it is straightforward to conclude that for all v € G
liky(7y) = liky. (7) (3.6)

(see also Cattaneo and Wiencierz, 2012, Lemma 2).
Hence, as in the precise data case, each possible regression function

f € F is evaluated by a set-valued decision criterion Cy, corresponding

20



to a confidence region for some characteristic of the residuals’ distribu-
tion associated with f. The underlying general methodology for likelihood
inference with imprecise data via likelihood-based confidence regions was
also proposed by Zhang (2010, 2009). As with the imprecision of the obser-
vations the confidence regions get larger, the asymptotic confidence level
F (—21log(3)) provides the lower bound to the actual asymptotic coverage
probability of C; here. With g = 0.15, for example, Cy is asymptotically
a conservative 95% confidence set.

To solve the decision problem of the regression analysis, generalized
decision rules or weak decision principles can be applied. Although deci-
sions rules like, for example, the Likelihood-based Region Minimax (LRM)
developed in Cattaneo (2007, Section 1.3) may allow singling out one opti-
mal function on the basis of the confidence regions, we find that a precise
solution is not appropriate in the context of the statistical analysis of im-
precise data. On the contrary, the aim should be to describe the whole
uncertainty about which regression function best describes the relation-
ship of interest in the light of the (possibly) imprecisely observed data.
Therefore, we suggest applying the dominance principle. Thus, we con-
sider all regression functions that are not strictly dominated by another
function as the imprecise result of the regression analysis. The resulting
set of regression functions consists of all functions that are plausible de-
scriptions of the relationship between X and Y, i.e., of all functions that
cannot be excluded by the likelihood inference. As the width of the sets
Cy is determined by the choice of the confidence level through 3 as well as
by the degree of imprecision of the observations, also the extent of the set
of plausible regression functions reflects not only the amount of statistical
uncertainty according to the choice of 5 but also the indetermination due
to the fact that the variables are only imprecisely observed.

To summarize, the LIR approach provides a very general framework for
regression analysis with imprecise data. The imprecise data can be any
subsets of the observation space of the variables of interest, including as
special cases actually precise data and completely missing data. The LIR

methodology consists in using likelihood-based confidence regions for some
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characteristic of the residuals’ distribution as set-valued decision criterion
in the regression problem and in applying the dominance principle to these
in order to extract all regression functions that are plausible in the light
of the data. The confidence regions can be derived on the basis of a very
general model connecting the precise data with the (possibly) imprecise
observations. In the framework of LIR, the result of the regression analy-
sis is in general set-valued, even in the special case where the data are in
fact precisely observed. It consists of all descriptions of the relationship of
interest that are not eliminated by the likelihood inference, and thus, the
obtained result can be regarded as a confidence set for the true regression
function. Thus, the idea is to directly obtain a result representing the un-
certainties involved in the regression problem with imprecise data, instead
of a single regression function one cannot be certain about.

However, if it is actually possible to obtain informative confidence re-
gions, of course, depends on the concrete choices of P and Ly. In the
following chapter, a regression method within the LIR framework is pro-
posed, which is based on the fully nonparametric probability assumption
and where a quantile of the distribution of the residuals is considered as

loss function.
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Chapter 4

A robust regression method within
the LIR framework

In this chapter, the mathematical framework of a robust regression method
derived from the general LIR approach is presented in detail. Then, some
features of the robust LIR method are discussed with the help of an il-
lustrative example, before its statistical properties are thoroughly inves-
tigated. Furthermore, the implementation of the robust LIR method is
extensively discussed and its realization as a package for the statistical

software environment R (R Core Team, 2013) is presented.

4.1 The robust LIR method

On the basis of the general LIR methodology described in the previous
chapter, we developed in Cattaneo and Wiencierz (2012, Section 3) a ro-
bust regression method for imprecise data. In the robust LIR method, the
p-quantile, for some p € (0, 1), of the residuals’ distribution is considered
as evaluation Ly of each regression function f € F and the nonparametric
distributional assumption P = P, for some ¢ € [0, 1/2), is adopted.

With this general nonparametric assumption, where the data can be
generated by any distribution satisfying Condition (3.1), it is generally

impossible to obtain informative confidence regions for moments of the
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residuals’ distribution, because in this case the profile likelihood function
is constant, and therefore, for each 8 € (0,1), the confidence region is the
entire set of possible values. This is due to the fact that moments are
very sensitive to small contaminations. For example, if we consider for
simplicity the situation in which only precise data are observed and where
the loss Ly is given by the residual’s expectation, it is easy to see that the
profile likelihood function is constant equal one over the entire domain of
Ry. Every value on the domain can be obtained as the expected value
of a mixture distribution between the empirical distribution of the data
and another distribution. As the latter can be an arbitrary distribution
with very large or even infinite expected value, also the expectation of
the mixture distribution may be arbitrarily high because it is given by
the convex combination of the expectations of both involved probability
measures. Furthermore, the mixture distribution can be arbitrarily similar
to the empirical distribution when the weight of the contamination is small
enough, and thus, assign practically the same probability to the observed
data. Therefore, all possible values of the expectation are equally plausible
and the profile likelihood function takes the value one for all of them.

In contrast to moments, quantiles are robust distribution characteris-
tics, which are resistant to small changes in the probability distribution.
For instance, the median being the !/2-quantile is the robust counterpart
to the expectation being the first moment. Thus, informative confidence
regions for quantiles can also be obtained in the fully nonparametric set-
ting and these likelihood-based confidence regions are generally intervals
(see, e.g., Owen, 2001, Section 3.6). That is why the robust LIR method
combines the general nonparametric probability model with the loss func-
tion assigning to each pair (f, P) the p-quantile of the distribution under
P of the residuals associated with the function f. In the same way the
minimization of IE(R?C) is associated with the LS regression method, the
idea of minimizing the p-quantile is the rationale behind the Least Quan-
tile of Squares (LQS, Rousseeuw and Leroy, 1987, Section 3.4) regression
method, which is known to be very robust. Hence, the proposed LIR

method can be regarded as a twofold generalization of LQS regression, on
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the one hand, to imprecise data, and on the other hand, to directly ac-
counting for statistical uncertainty in the result of the regression analysis.

Given the particular choices of P and Ly corresponding to the robust
LIR method, we deduce an explicit formula for the profile likelihood func-
tion for the p-quantile, before we derive a simpler expression that permits
determining directly the confidence regions C;, which are finally used to

obtain the imprecise result of the regression analysis.

4.1.1 Profile likelihood for the p-quantile of the residuals’ dis-

tribution

For each function f € F, let Q; denote the function-specific loss function
assigning to each probability measure P € P the p-quantile, with p € (0, 1),
of the distribution of Ry under P and let Q; C R be the (possibly
unbounded) interval of all possible values of this p-quantile. To derive
the corresponding profile likelihood function likg, : Qf — [0,1] induced
by some imprecise observations Vi* = A;,..., V) = A,, we consider the

vertical bands around f defined for each g € R>g by

Big={(z,y) €V :|y— f(z)| <q} and

Brg={(z,y) €V : |y— f(z)| <q}.

A graphical illustration of the defined bands is given in Figure 4.1. To
show why these bands provide a good starting point for finding likg,, we
consider the case p = 1/2. For simplicity, we furthermore assume that the
observations are actually precise, i.e., A; = {v;} for all i € {1,...,n},
where n is an odd number, and € = 0. Then, for any f € F, the non-
parametric ML estimator of ()¢ is the median of the empirical distribution
of the observed residuals rf1,...,7y,, which is given by 7 (n+1/,), where
r¢,(s) denotes the i-th smallest residual. Hence, for ¢ = 7 (n+1/5), we know
that like, (q) = 1, and moreover, the band By,q around f can be character-
ized by the fact that it contains at least n+1/2 data. This characterization

will be also useful later. Furthermore, recall the general definition of the
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p-quantile of the residuals’ distribution, which is any value ¢ € R> such
that Py(Ry < q) < p < Py(Ry < q), where Py is the marginal dis-
tribution of the precise data, which is also the marginal distribution of
the imprecise data in the special case considered here. With the above
definitions of the vertical bands, we can write this defining property as
Py(V € Bs,) <p < Py(V € By,). Then, in the simple situation we
consider here, determining likqg,(q) for a fixed ¢ € Qf becomes simply
counting the data inside the band By, and those outside, because the
probability measure attaining the highest likelihood value, is always the
discrete probability measure distributing in equal parts probability mass
p among the observations inside Ef,q and probability mass 1 — p among
those outside the band. By a similar reasoning, it is possible to derive the
entire profile likelihood function for ()¢, also in the general case of impre-
cise observations. But before we put down a formal expression for likg,,
we introduce some further definitions.

For each f € F, the corresponding functions kf and k; are defined,

whose values are for all ¢ € R>( given by
ki(g)=1|{ie{l,....,n} : A,nBy,# 2} and
kp(q) =Hie{l,....n} : A C Byrg}l,

where |S| is the number of elements of a set S. Hence, k(g) is the num-
ber of imprecise data intersecting the closed band By, of vertical band-
width 2¢ around the function f, while k(g) corresponds to the num-
ber of imprecise data completely included in the open band By ,. From
the definition follows that Ef and k; are monotonically increasing func-
tions of ¢, and ks(q) < ks(q) for all ¢ € Rso. Finally, the function
h :[0,1] x (0,1) — (0,1] is defined with

1—t if s=0,
£\ (1—t\"""

h(s,t) = (s) (1—5) if 0<s<1,
t if s=1,
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for all s € [0,1] and all ¢ € (0,1). Before restating Theorem 1 of Cattaneo
and Wiencierz (2012), which provides a precise expression for likg,, we

recapitulate the setting considered in the robust LIR method.

e The aim is to find those of the functions f € F that are plausible

formalizations of the relationship between the variables X and Y.

e The random vector V' = (X,Y’) summarizes the (precise) variables
of interest, while V* is the random set representing the imprecise

observation of V.

o We assume that (V,V*) ~ P € P = P., where P is the set of all
probability measures on V x V* satisfying (3.1), for some ¢ € [0, 1/2).

e Then, there is a sample of n i.i.d. realizations of these random ob-
jects, with V; = v; and V;* = A; for all ¢ € {1,...,n}, but only

Ay, ..., A, are observed.

e Asloss function of the regression problem we consider the p-quantile,
with p € (0, 1), of the residuals’ distribution. That is, for each func-
tion f € F and some P € P, the loss associated with f is given by
the p-quantile Q¢ of the distribution (under P) of the (unobservable

precise) residuals Ry 1,...,Rfy.

s

e According to the general LIR methodology explained in Chapter 3,
likelihood-based confidence regions C; for @y can be obtained from
the imprecise data Aq,..., A, and those are used as decision crite-
rion of the regression problem, i.e., to finally identify the set of all

plausible regression functions.

To obtain these confidence regions, the profile likelihood function likq, has
to be determined, which only depends on the marginal distributions Py«

of the imprecise data corresponding to the probability measures P € P.

Theorem 1. For each f € F, the profile likelihood function likg, for

the p-quantile of the distribution of the residuals Ry; can be expressed as
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follows, for all g € Q¢:

h<k’;§q),p—s>n if kp(q) <(p—e)n,
likg,(q) =4 1 if [kr(q), ks(@IN[(p—e)n, (p+)n] # 2,

h (ICJ;Eq), p—l—a)n if kf(qg)>(@+e)n.

Proof. Here, we only give the idea how this expression can be deduced,
the complete and detailed proof can be found in Cattaneo and Wiencierz
(2012, Section 3).

By Equations (3.2), (3.3), (3.5), and (3.6), we know that for each ¢ €
Qs the value of likg,(q) is given by

likg, (q) = sup iz, Pr- (V7 = 4)
! Py« €Pyx : Supp\,/* EPy* Hi:l P\//* (‘/z* = Al)
a€Upy crpy, . Qs (PV)

that is, by the supremum of the likelihoods lik*(Py~) of all marginal dis-
tributions of the imprecise data such that there is a compatible marginal
distribution Py of the precise data whose p-quantile of the corresponding
distribution of the residuals covers the value q. Therefore, we at first look
for the Py« assigning the highest possible probability to the observations
at hand. This distribution is usually a discrete distribution with probabil-
ity masses larger than zero only at the observed imprecise data. However,
note that all other probability measures in P can be thought of as points
(or line segments) under the curve of likq,, thus, the confidence regions
Cy based on likg, cover the p-quantiles corresponding to all P € P with
lik(P) > B. For a fixed g € Qy, the distribution attaining the highest like-
lihood can be obtained by looking for the allocation of probability mass
on the observations at hand implying the highest possible likelihood, while
respecting the restrictions imposed by the definition of the p-quantile of

the residuals’ distributions and the additional flexibility given by e.
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For all ¢ € Q; such that [k (q), k7(q)]N[(p — &) n, (p+¢)n] # S, there
is a precise data distribution compatible with the empirical distribution
Py of the imprecise data and covering ¢ in its p-quantile, thus, for these
q we get likg, (q) = lik*(Py+) = L.

In the case of all ¢ € Qf such that kf(q) < (p — €)n, the probability
distribution for the imprecise data attaining the highest likelihood value is
the distribution that is as similar to the empirical distribution Py as pos-
sible, given the restrictions imposed by the definition of the p-quantile of
the residuals’ distributions. To obtain this probability measure, the mass
p—e¢ is equally distributed among the Ef (¢) imprecise data intersecting the
closed band B t,q and the remaining probability mass 1 — p + ¢ is assigned
to the n — k(q) imprecise data not intersecting By ,. Then, computing
the corresponding probability of the observed sample and dividing it by
the highest possible value (1/»)" leads to the above expression.

In the case of all ¢ € Q such that k;(q) > (p+¢)n, the expression for

likg,(q) can be derived by analogous reasoning. O

These explanations suggest that, if, for some interval [¢,q] C Qy, the
borders of all bands Eﬁq with ¢ € [g,g] do not intersect any observation,
then likg,(q) is the same for all quantile values in this interval. This
intuition can be formalized, leading to a simpler expression for the profile
likelihood function of a p-quantile of the distribution of R¢. Figure 4.1
shows an example of the profile likelihood function on the basis of the
imprecise data set introduced in Section 3.2.

For each function f € F, we consider lower and upper residuals de-
noted by ry; and 7;;, respectively, which are defined for all imprecise
observations A;, with i € {1,...,n}, by

rei= inf |y— f(z)] and Tp;= sup |y— f(z)].
(z,y)€A; (w,y)€A;
The intervals [ry;,7¢;] correspond to the imprecise observations of the
residuals Ry, for all 4 € {1,...,n}. When we consider the ordered lower
residuals 7y (1) < ... < ry(n) and the ordered upper residuals 7y 1) <

... < Ty n) and we define ry oy and 7y ) as inf Qy and similarly 7 ,41)
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Figure 4.1: Linear regression function given by f(z) = 2 —z for all z € R
(solid line) with band By, (dashed lines) for ¢ = 1 (left) and corresponding
function likg, for the median with ¢ = 0 (right). For ¢ = 1, By, intersects
ky(1) = 14 imprecise data, while B, contains k,(1) = 6 imprecise data. As
we have [(p—e)n, (p+¢&)n] = [8.5,8.5] and [6,14] N [8.5,8.5] # &, we obtain
likg, (1) = 1 (right, dashed line). If the graph of likq, is cut at 0.5 (right, dotted
line), the coordinates of the intersection points on the g-axis give the endpoints
of the confidence interval C; for § = 0.5.

and Tt (n+41) @S SUP Qy, we obtain Tr0) <o STF () and Tro) < ... <
Tf (nt1)- Finally, we define the integers i and i as i = max ([(p —¢)n], 0)
and i = min (|(p +¢)n], n) + 1, respectively, where i € {0,...,n} and
ie{l,....,n+1} with i <i.

These definitions allow us to express the points of discontinuity of the
functions k; and ks (restricted to the set Q) as the ordered upper and
lower residuals, respectively. Moreover, it is easy to see that for all ¢ ¢
{Tf.0)s - Tf,(ns1)} the function ky is given by kf(q) =4 if 754y < ¢ <
Tr 1) with @ € {0,...,n + 1}, while for all ¢ ¢ {rf ), 7fm+1)}
the function kg is given by kp(q) = i if rp ) < q < rg41) with i €
{0,...,n 4+ 1} (see also Cattaneo and Wiencierz, 2012, Lemma 3). Now,
we can restate Corollary 1 of Cattaneo and Wiencierz (2012), providing

the simpler expression for likq,.

Corollary 1. For each f € F, the profile likelihood function likg, for the
p-quantile of the distribution of the residuals Ry ; is a piecewise constant

function, which can take at most n + 2 different values.
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The points of discontinuity of likg,, including the endpoints of Qy, are

(in ascending order, with possible repetitions)

TF0) < s TR TH@)s -+ Th(nt1)s

and for all other values of ¢ € Qy,

lik:Qf(q) =

h (’I’L, pE) if Tea) <q<Tfe) with @€ {0,...,2—1}
(when i > 1),

1 i rrw <a<Tia);

h(zyp-ﬂ'?) if Tr@) < q4<Tf(it1) and i € {E,,TL}
n

(when i < n).

Proof. The above expression can easily be proved employing the formerly
introduced definitions and Theorem 1. The complete and detailed proof
can be found in Cattaneo and Wiencierz (2012, Section 3). O

4.1.2 Likelihood-based confidence regions for the p-quantile of
the residuals’ distribution

Furthermore, the following result can be derived, which was formulated as
Corollary 2 in Cattaneo and Wiencierz (2012). It provides a method to
determine for each cutoff point 5 € (0, 1) the likelihood-based confidence
regions Cy for the quantiles of the residuals’ distribution used to evaluate

the considered regression functions f € F.

Corollary 2. If € is sufficiently small and n is sufficiently large so that

(max{p,1 —p}+e)" <p (4.1)
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holds, then the integers

k:max{ke{o,...,i—l} : h(i,p—a) < T\L/B} and
k:min{ke{i,...,n} : h(];p-i-&) < {‘/B}

are well-defined and satisfy

0<k<(p-e)n<pn<(pt+e)n<k<mn,
and for each f € F, the likelihood-based confidence region with cutoff point
B for the p-quantile of the distribution of the residuals Ry ; is the nonempty

interval

Cr={q€Rxo : [kf(a), ky(@)] N (&, k) # 2},
whose lower and upper endpoints are vy (x41) and Ty %), respectively.

Proof. Again, we here explain only the idea how this result can be ob-
tained, the complete and detailed proof can be found in Cattaneo and
Wiencierz (2012, Section 3).

For a given proportion p € (0,1), a fixed £ € [0,1/2), and a chosen cutoff
point 5 € [(max{p, l—p}-+€)™, 1), we can use the first case of the expression
of likg, in Theorem 1 to identify k, the maximum number smaller than
(p — €) n of observations that may intersect the closed band By, when
likg,(q) < B holds. Then, according to the corresponding expression in
Corollary 1, the index of the lower residual at which the profile-likelihood
function at first exceeds the threshold 3 is k + 1. Likewise, we use the
third case of the two expressions for likg, to obtain k, the minimum
number larger than (p + €) n of observations that must be included in the
open band By , when likq,(q) < 8 holds, and thereby, we obtain also the
index of the upper residual after which the function likg, jumps down
below the threshold $ again, which is k. Thus, T (k+1) and T ) are the

lower and upper endpoints of the interval of quantile values ¢ € R>¢ with
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likg,(q) > B, which is the likelihood-based confidence region C; for the

p-quantile of the residuals’ distribution. O

The thus obtained intervals Cy, for all functions f € F, contain all
values ¢ € R>( for which the open band By, contains at most k—11im-
precise data, while the closed band By, intersects at least k + 1 data.
The width of the confidence intervals is determined on the one hand by
the statistical uncertainty accounted for, which is reflected by the dif-
ference between k + 1 and k, and on the other hand by the degree of
coarseness of the data, which is represented by the distinction between
containing and intersecting imprecise data. If § is sufficiently close to
one such that £k = i — 1 = max([(p—¢)n],0) — 1 (when ¢ > 1) and
k=4=min((p+e)n|,n)+1 (when i < n), the intervals C; consist
of all ¢ € R>¢ that are ML estimates of the p-quantile of the distribution
of the residuals Ry;. Even in this case and even if the data are in fact
precisely observed when supposing that ¢ = 0 in Assumption (3.1), the
confidence regions are usually proper intervals, because quantiles are in
general not unique.

As mentioned already in the previous section, the intervals C; are
likelihood-based confidence regions whose asymptotic confidence level is
bounded from below by F,2(—2log(f3)). Whether the endpoints 7 (1)
and Ty %) are included in the confidence regions or not, depends on the
observations at hand. For example, if all Ay,..., A, are closed intervals,

the confidence intervals C are closed, too.

4.1.3 Imprecise result of the robust LIR method

Given the confidence regions as interval-valued evaluations of each consid-
ered regression function, the final result of the regression problem can be
determined. As explained in Chapter 3, the aim of the LIR analysis is
not to obtain one single regression estimate, but to obtain a result that
reflects the whole uncertainty about which of the considered functions best
describes the relationship between the variables of interest. Therefore, the

LIR result consists of all regression functions that are not strictly domi-
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nated by another regression function with respect to their likelihood-based
confidence intervals for some quantile of the residuals’ distribution. Ac-
cording to the definition at the end of Section 3.2, a function f € F is
undominated if infCy < infpcrsupCy. The functions f € F such that
sup Cs = inf p/c 7 sup C4/ are optimal according to the LRM rule mentioned
in the previous subsection, and therefore, called LRM functions. If there

is a unique LRM function, it is denoted by frras. Furthermore, we define
q = inf supCy, 4.2
qury = ff supCy (4.2)

which corresponds to the upper endpoint of the confidence intervals of the
LRM functions. If there is a unique LRM function and the correspond-
ing confidence interval Cy, .,, is right-closed, that is, if Grra € Crppuss
then the function frras is characterized by the fact that the closed band
By, nar Gona is the thinnest band of the form By, that contains at least
k imprecise data. This characterization can be extended to all LRM func-
tions for which the corresponding confidence intervals are right-closed.
Moreover, if all data are in fact precisely observed, we assume ¢ = 0
in (3.1), and there is a unique LRM function, then frras corresponds to
the LQS regression function for the k/n-quantile.

Finally, provided Condition (4.1) holds, the set & C F of all undomi-

nated regression functions can be defined as

U= {f e F info < qLRM} = {f e F Tf,(k+1) < ELRM}. (4.3)

The whole set U constitutes the result of the robust LIR analysis. The
undominated functions f € U are geometrically characterized by the fact
that the corresponding closed bands Bjg, ,,, of width 2 ras intersect
at least k + 1 imprecise data. Furthermore, the set U always contains the
set T of all LQS regression functions for the */n-quantile obtained from
precise data sets that are compatible with the imprecise data A4, ..., A,.
To explain this, we take a closer look at the set 7, which can be defined
as T ={feF :3v,...,v, with v; € A; Vi € {1,...,n} and 7y F) =
infpcrry %} For each f € T, there is a compatible precise data set
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implying the residuals ry1,...,7¢, with vy ) = infperry x). Obvi-
ously, for all ¢ € {1,...,n} we have r¢; < ry; and ry; < Ty;, hence,
rem S Te® < Tr%)- Moreover, by the definitions of k and k we know
that rr 41y < 15 ®). Altogether we obtain that ry 1) < 7p®) =
infperprp @ < infperTp ), and thus, f € U. Note that the extent
of the set T is only determined by the imprecision of the data. The result
of the robust LIR method is usually larger than this, because the LIR anal-
ysis also accounts for the statistical uncertainty according to the chosen
B (and because the LIR method does not use an interpolation scheme to

obtain precise ML estimates for the quantiles, when these are not unique).

4.2 Tllustration of the robust LIR method

In this section, some features of the robust LIR method are studied and
illustrated. For this purpose, we consider again the artificial data set
introduced in Chapter 3, consisting of 17 imprecise observations V;* =
Ay,..., V5 = Air of two variables (X,Y) = V with V € ¥V = R%. In
this example, both variables are available as (possibly unbounded) inter-
vals, that is, the imprecise data are of the type V* = [X, X| x [Y, Y] with
X,X,Y,Y € RU{—00,+oo}. This kind of imprecise data represents the
most relevant special case for statistical practice. It is sometimes referred
to as interval-censored data, but we call it simply interval data. The non-
parametric probability model underlying the robust LIR method implies
that P(X < X < X and Y <Y <Y) > 1—¢, for some ¢ € [0,1/2).
As the majority of the data indicate a (decreasing) linear relationship,
we here consider as possible regression functions all functions in the set
F = {fas : (a,b) € R?} of linear functions f,, : R — R, defined by
fap(x) = a+ bx for all z € X. However, note that the robust LIR
method is not restricted to linear regression, on the contrary, the theo-
retical framework allows considering arbitrary functions to describe the
relationship between the analyzed variables. Furthermore, we here focus
on the regression method with p = 1/2, where the median of the probability

distribution of Ry is minimized.
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With the particular configuration of the robust LIR method and the in-
terval data considered here, given a fixed e € [0, 1/2) and a chosen j € (0, 1)
that satisfies Condition (4.1), the likelihood-based confidence regions Cy,
for all f € F, are given by the closed intervals [ 41),7¢,®%)] (see Corol-
lary 2). According to Equation (4.3), the set U of undominated functions
is the set of all functions f satisfying ry 41y < Grra- As the consid-
ered regression functions in the set F are linear functions indexed by two
parameters (a,b) € R?, the set U can be alternatively represented by the
corresponding subset of the parameter space R?. Hence, we furthermore
define the set

U ={(a,b) eR® : f,, €U}, (4.4)

which contains all parameter combinations associated with the undomi-
nated functions. This set can be described as the union of finitely many
(possibly unbounded) polygons as it is explained in Section 4.3 (see also
Cattaneo and Wiencierz, 2013, Section 3).

For the case of simple linear regression with interval data that is con-
sidered here, the robust LIR method is implemented in the package 1inLIR
(Wiencierz, 2013) for the statistical software environment R (R Core Team,
2013) and it is presented in detail in Section 4.3. Hence, all results and
graphs in this section are obtained by using the 1inLIR package. Fig-
ure 4.2 shows the result of the regression analysis of the example data
set for the choice f = 0.5 and under the assumption € = 0. Most of the
500 undominated regression lines plotted in the left graph are decreasing
functions, but slightly increasing lines are also present, which is confirmed
by the corresponding subset of parameter combinations in the right graph.
Furthermore, we find a unique function f € F such that 7; %) = qrrum,
which is indicated by a black line or point. Next, we examine how dif-
ferent choices of 8 and different assumptions about € in (3.1) affect the
regression’s result.

Different choices of 8 € [(1/2 +¢)'7,1), i.e., satisfying Condition (4.1),

imply different confidence levels of the interval estimates Cy. For example,
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Figure 4.2: Draft of the set of undominated regression functions (left, 500
randomly chosen functions) and set of corresponding parameter combinations
(right), for 8 = 0.5 and ¢ = 0. The black line or point indicates the LRM

function.

under the assumption € = 0, a likelihood-based confidence interval with
cutoff point 5 = 0.5 would be a conservative 76% confidence interval for
the median of the residuals’ distribution. A high confidence level of the
interval estimates of the median of the absolute residuals requires a small
choice of 8 and vice versa. Thus, the higher [, the lower the confidence
level and consequently the narrower the set of undominated regression
functions. In a practical setting, confidence in and inferential strength
of the result have to be balanced in light of the analyzed question and
the purpose of the analysis in order to choose an appropriate value for .
In Figure 4.3, different results of LIR analyses with other choices of 3 are
displayed. For a low cutoff point such as 8 = 0.15, the regression’s result is
very imprecise, admitting different directions of the relationship between
the analyzed variables. In contrast to that, a high cutoff point such as
B = 0.8 leads to a less imprecise result containing no increasing lines.

In fact, the sets of undominated regression functions for different values
of the cutoff point 3 are nested. To explain this, we consider 8; > 2 and
the corresponding resulting sets U, and Ug,. For B > B2, we have that
k1 > ko and k1 < ko. The latter implies that grra1 < Grra,2, which
means that for each f € F we have Byg, n10 2 Brgiaw.- As for each

[ € Up, the closed band By, . w1 intersects at least k1 + 1 imprecise data
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Figure 4.3: Drafts of the sets of undominated regression functions (500 randomly
chosen functions) for ¢ = 0 and two different choices of 3, namely 8 = 0.15
(left) and 8 = 0.8 (right), corresponding to the confidence levels 95% and 50%,
respectively.

and ki > ko, the band Ef@uwp also intersects at least ko + 1 imprecise
data, and therefore, f € Ug,.

In addition to the choice of the cutoff point of the likelihood, also
e € [0,1/2) has to be set a priori. According to (3.1), € is the upper
bound to the probability that an imprecise observation does not contain the
correct precise value in the (nonparametric) probability model underlying
the presented LIR method. In most approaches to analyzing imprecise
data, € is assumed to be zero, but there may be situations in which the
analyst has concerns about the correctness of the imprecise data. For
example, in the case of survey data, there are many different sources for
biases that should be accounted for in the analysis of such data, at least
with a small probability. Hence, the consideration of an € > 0 means
to account for some more uncertainty about the data in addition to the
indetermination issuing from the coarseness of the data.

It follows directly from definitions of k and k in Corollary 2 that in-
creasing € has the same effect on the width of the confidence intervals
as decreasing S, since in both cases, k decreases and k increases. Thus,
the worse the assumed data quality, the more imprecise the result. If we
choose 8 = 0.5 in our example and assume € = 1/10, we obtain the same

result as for § = 0.15 assuming ¢ = 0, shown in Figure 4.3, because in
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both cases k = 4 and k = 13. However, the interpretation is different.
While in the case of increasing 8 for a fixed £ the amount of statistical
uncertainty reflected by the result is reduced, in the case of increasing e
for a fixed 8 the assumptions of the underlying nonparametric probability
model are weakened.

We showed how different choices of the confidence level and different
assumptions about the correctness of the (imprecise) data are reflected
in the regression’s result. In order to illustrate how varying degrees of
imprecision of the data are represented in the result of a LIR analysis, we
compare the above results with those obtained from an actually precise
data set compatible with the imprecise data of the example data set and
from a compatible data set where only Y is imprecisely observed. Both
data sets are displayed in Figure 4.4, where the left data set is the same
as in Figure 3.1 and the right one is obtained by combining the precise

values for X of this data set with the imprecise values for Y.
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Figure 4.4: Precise data set compatible with the example data (left) and com-
patible data set where only Y is imprecisely observed (right).

For the LIR analyses of these less imprecise data sets, we assume that
e = 0 and we choose 5 = 0.15 to obtain a reliable result. The resulting
sets of undominated functions are shown in Figure 4.5. Under the here
adopted assumption that all observations are correct, the analysis of the
actually precise data set leads to the most determined result, admitting
only decreasing lines. In the case where Y is imprecisely observed, the set

of undominated functions admits different directions of the relationship,
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although the extent of U is visibly smaller than in the case where also X
is observed as intervals, which was displayed in Figure 4.3 (left). If 8 was
chosen close to one in order to obtain the ML estimate, the extent of the
set U would only reflect the imprecision of the observations. However, even
in the case of the actually precise data set together with the assumption
e = 0, we obtain in general an imprecise result in the present situation.
That is because, given p = 1/2 and n = 17, for 5 close to one we have k =
[pn]—1=8and k= |pn|+1=9, implying that C; = [r} s+1),Tf,(9)] for
all f € F. Furthermore, when the variables are in fact precisely observed,
Ti) = Tp6) =T foralli e {1,...,n}, and thus, Cy = {ry, )} for all
J € F. Hence, U consists of all functions f with 7y gy = infperrs g) =

Gr.rM > and in general, there can be more than one function attaining gr,gas-
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Figure 4.5: Sets of undominated regression functions (500 randomly chosen func-
tions) for the compatible data sets where X and Y are in fact precisely observed
(left) and where only X is precisely observed (right), for § = 0.15 and € = 0.

In this section, we investigated the impact of different assumptions
about the data generating process, amounts of statistical uncertainty se-
lected, and degrees of coarseness of the data on the result of the robust
LIR analysis. Both aspects of the uncertainty of a statistical analysis of
imprecise data, statistical uncertainty and indetermination, are crucial and
should be reflected in the result. Within the LIR framework both parts
of the uncertainty are expressed in the same way, that is, they determine
the extent of the generally imprecise result of the LIR analysis. Further
properties of the robust LIR method are investigated in Section 4.4.
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4.3 Implementation of the robust LIR method for lin-

ear regression with interval data

This section deals with the implementation of the robust LIR method. To
determine the set-valued result of the robust LIR analysis, is a demanding
problem. Even in the very particular case in which the robust LIR method
reduces to the standard LQS regression method with quantile %/n, it is a
challenging task, as the objective function of the minimization problem is
neither differentiable nor convex (see, e.g., Watson, 1998). Thus, common
optimization techniques cannot be applied. However, for the LQS regres-
sion method, an exact algorithm was developed (Rousseeuw and Leroy,
1987, Chapter 5), which was further studied and improved, for example,
in Watson (1998); Stromberg (1993); Steele and Steiger (1986).

For the robust LIR method, the implementation task is even more
challenging, because the objective function and the solution are in gen-
eral set-valued. Therefore, we suggested a first implementation based on a
grid search over the space of parameters identifying the considered regres-
sion functions in Cattaneo and Wiencierz (2012) and we applied a random
search to determine the result of the robust LIR analysis in Cattaneo and
Wiencierz (2011). Then, for the special case of simple linear regression with
interval data, we derived an exact algorithm in Cattaneo and Wiencierz
(2013), based on the ideas set out in Wiencierz and Cattaneo (2012). This
algorithm consists of two parts: at first, the smallest upper endpoint Gr, g
of all confidence regions for the p-quantile of the residuals’ distribution is
determined, and then, it is used in the second part to identify the set of all
undominated regression functions. The first part of the algorithm general-
izes the initial algorithm for LQS regression and the entire algorithm has
the same computational complexity of O(n® logn) (see, e.g., Steele and
Steiger, 1986). Moreover, as it was done with the initial LQS algorithm, it
is possible to adapt the algorithm for robust simple linear LIR to multiple
linear regression and also to other kinds of imprecise data than intervals.
In the following subsections, the exact algorithm is deduced in detail and

its realization in the R package 1inLIR (Wiencierz, 2013) is presented.
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4.3.1 An exact algorithm for simple linear regression

Here, we consider a similar setting as in Section 4.2, where the presumably
linear relationship between two real-valued variables, X and Y, is analyzed
on the basis of imprecise observations, which are of the form of (possibly
unbounded) intervals for each of the variables. To determine the set-
valued result of the robust LIR analysis in this situation, we developed an
exact algorithm by exploiting the geometrical characterizations of the LRM
functions and of the undominated functions. Before we derive the exact
algorithm, we recapitulate the core elements of the robust LIR method in

this special case.

e The relationship between the variables X e X =R and Y €¢ Y =R

is investigated.

e As possible descriptions of the relationship between X and Y we
consider the set J consisting of all linear functions f,, : & — R,
with f,p(x) = a + bz, for all z € X, where (a,b) € R?.

e In the present case, the random set V* representing the imprecise
observation of V' = (X,Y") can take as values only rectangles formed

by closed (possibly unbounded) intervals, i.e., V* = [X, X| x [V, Y],
with X, X,Y,Y € RU {—o00, +00}.

e We assume that (V,V*) ~ P € P = P., where P. is the set of
all probability measures satisfying (3.1), that is, all distributions P’
with P( X <X <X and Y <Y <Y) > 1—¢, for some ¢ € [0,1/2).

e Then, there is a sample of n i.i.d. realizations of the random objects V'
and V*, with V; = v; and V;* = [z;, %] x [y;, 73] for all i € {1,...,n},

but only the imprecise realizations [z1,Z1] X [y1,71], ..., [Zn, Tn] X

[¢n,Tn] are observed.

e As stated in Section 4.1, in the robust LIR method, we consider as
the loss associated with a possible regression function f € F the p-
quantile @, with p € (0, 1), of the distribution of the (unobservable
precise) residuals Ry 1,...,Rfy.
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e On the basis of the imprecise data, likelihood-based confidence re-
gions C; for () can be obtained as described in Section 4.1, applying
the general LIR methodology explained in Chapter 3.

e In the present case of interval data, given some choice of 3 satisfying
Condition (4.1), for each f € F, the confidence region Cy is the
interval [r (k41),7f (%)), where the integers k and k depend on p, n,
g, and 8 (see Corollary 2).

e Finally, according to (4.3), the imprecise result of the robust LIR
analysis is given by the set U = {f € F : 1 4+1) < GrrMm }, where
GrLrym = inf e 7Ty () by its definition in (4.2).

Hence, to determine the set of all undominated functions, we have to
find the smallest upper endpoint Gz, ras of all confidence intervals C¢, with

f € F, before all functions f’ with Ty (k+1) < rrm can be identified.

Part 1: Determining g; 5,

According to the explanations in Subsection 4.1.3, the LRM functions are
characterized by the fact that the closed bands Bz, .,, around them have
the thinnest bandwidth of all bands By 4, with f' € F and q¢ = T4/ ),
that is, containing at least k imprecise data. Thus, in order to obtain
Grry, we need to find the linear functions minimizing this bandwidth.
For a given slope b € R, the corresponding intercept value a € R such that
Tf, 4, (k) becomes minimal can easily be found. Moreover, similar to the
results obtained by Stromberg (1993) and by Steele and Steiger (1986) for
the LQS method, it can be deduced that, for an LRM function f, some
of the k imprecise data included in Byg, ,,, touch the boundaries of the
closed band in at least two different points. As the boundaries of the bands
are parallel to the central lines, the slopes of the LRM functions are either
zero or determined by the corresponding vertices of two bounded imprecise
observations included in the band. Hence, to identify G ras, it suffices to
consider as possible LRM functions all functions with slopes given by the
four slopes between the corresponding vertices of each pair of (noniden-

tical) bounded imprecise observations or zero and corresponding optimal
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intercepts. In this way, the general minimization problem is reduced to a
discrete problem with at most 4(’5) + 1 possible solutions.

Of course, the result also depends on the degree of coarseness of the
data. If there are less than k imprecise data that are bounded with respect
to Y, we obtain 7y %) = +oo for all f € F. Therefore, in this case
Grrym = +oo and U = F. If all observations are bounded with respect
to Y, but there are less than k imprecise data that are bounded with
respect to X, the only candidate slope is zero, because in this situation
only bands around a horizontal line can include at least k& imprecise data.
More generally, if there are less than k imprecise observations such that
the rectangle [z, T;] X [y;,7s] is bounded, either the only possible slope is
zero or we obtain Grry = +00.

To formalize this, let D C {1,...,n} be the set of indices of those
imprecise observations for which [z;,Z;] x [y;,¥s] is bounded. If |D| < &,
the set B of all possible slopes of the LRM functions is the singleton {0},
else (i.e., if |D| > k) the set B is given by

e

Yi —

i

Yi—Y; .. 2 = _
U 7__7'.(173)67) and T; > 7; and y; < T,

(i,7) € D? and z; > z; and yi>yj}

% (4, 9) e D? and z; > z; and yi<yj}

47, (i,j) € D* and T; > T; and y; > y;

Furthermore, we define for each b € R and each ¢ € {1,...,n} the trans-

formed data [2p,;,Zs.;] whose endpoints are given by

yi—bgi if b<0, y;—bx; if b<0,
Zbi = gl if b= 0, and Ebﬂl = yi if b=0
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As usual, 2 (1),.--,2p,n) and Zp (1), ., 2p,n) denote the ordered lower
and upper endpoints, respectively. Furthermore, for each b € R and each
j€{l,...,n—k+ 1}, we denote by Z,[5) the k-th smallest value among
those zp; for which zp; > 2, (j). By means of these definitions, the above

explanations can be summarized in the following theorem, which consti-
tutes Theorem 1 of Cattaneo and Wiencierz (2013).

Theorem 2. If there are less than k imprecise observations [z;, T;] X [y;, U]

such that the interval [y;,y;] is bounded, then

qLrM = 100,

{feF Trm =drm}y = F.

Otherwise (i.e., when there are at least k imprecise observations [x;,T;] x

lyi, i) such that the interval [y;, 7] is bounded),

min (Zb,15] — 2,())>

_ 1
qLrm =5 (b,))EBX{1,....n—F+1}

{feF :Tr® =qLrm} 2

{fa',b’ (V.5 € argmin _ (Zp,[j] — 2b,(5))
(b,7)EBX{1,....n—F+1}

1
and a = 5 (éb',(j') +zb’,[j’])}’

where the set on the left-hand side is infinite when the inclusion is strict.
Howewver, the inclusion is certainly an equality when the following con-
dition is satisfied: if there is a pair (i,j) € D? such that z; = T; and
max{y;,y;} — min{ys,y;} = 2qLrm, then i # j and the two intervals
lyi, U] and [y;,7;] are nested (i.c., either [y;, ;] C [y;,9;], or [y;,7;] C
i, 7i))-

Proof. The first part of this theorem can easily be proved by the argumen-
tation above, while the proof of the second part requires further arguments,

some of which are briefly sketched here. The complete and detailed proof
can be found in Cattaneo and Wiencierz (2013, Subsection A.1).
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The second part of Theorem 2 regards the situation in which there are
at least k imprecise observations [z;, ;] x [yi,¥i] such that the interval
[yi,7s] is bounded. In this case, Grry < +00, because Tf 7)) < +00
at least for the constant functions in F. To obtain Grgras, we have to
minimize 7, , %) over all linear functions fq 4 € F with (a,b) € R?, which
corresponds to finding the thinnest bands of parallel lines containing at
least k& imprecise data. With the above definitions, for a fixed b € R,
finding the thinnest band including k or more imprecise data is equivalent
to identifying the shortest interval containing at least k transformed data
(2615 Zb.1)5 - - - s [2bm> Zon). For each b € R, the intervals including at least k
transformed data can be written as [z, (5), Zp,[;)] with j € {1,... ,n—k+1},
where an interval [c,¢] is empty if ¢ > ¢ Thus, we obtain a general
expression for Gp gy like the one in the theorem, but where we have R
instead of B. Moreover, as for each b € R the corresponding intercept
a minimizing the bandwidth of the closed band around the function f,
including at least k imprecise data is given by the center of the shortest
of the intervals [zp, (jy, Zp,[;1] with j € {1,...,n — k + 1}, we also get the
analogous expression for the set of the LRM functions.

Finally, some effort is needed to prove that the slopes of all functions
associated with Gz gy are indeed elements of B when the condition at the
end of the theorem is satisfied. Following Stromberg (1993), this can be
achieved by formulating part of the optimization problem as a so-called
Chebyshev approximation problem and applying general results about the
solutions of these problems from Cheney (1982, Chapters 1 and 2). The
condition at the end of Theorem 2 provides a sufficient but not necessary
condition for the set of LRM functions to be the finite set given by the
expression on the right side of the equation above. The condition excludes
situations in which the set of LRM functions can be an infinite proper sub-
set of F. However, in principle, it is possible to give the precise expression
for the set of LRM functions also if this condition is not satisfied, which
requires many case distinctions. As our main interest lies in determining

qGr.ry here, these details about the set of LRM functions are neglected. [
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Hence, Theorem 2 constitutes the basis for the first part of the exact
algorithm. It provides a way to determine Gpry as the solution of a
discrete optimization problem and to identify all of them, if there are
finitely many associated LRM functions. At first, the set B is determined,
then, for each b € B, the shortest interval containing k of the transformed
data [2p1,Zb.1],-- - [Zbns Zbn] is identified, providing the corresponding
optimal intercept a € R by its center and the associated Ty, , (%) by half
of its length. Finally, g ra is obtained as the minimum of these 7y, , )
over all f, with b € B and optimal intercept a, and the LRM functions

are given by the functions corresponding to this minimal upper endpoint.

Part 2: Identifying the set U

On the basis of G ras, the set U of all undominated regression functions is
to be determined. For each f € U, we know that the closed band Bz, ..,
of width 2qrrys intersects at least k + 1 imprecise data. The second
part of the algorithm is derived by exploiting this geometrical character-
ization of the undominated functions. For some fixed b € B, to identify
the undominated functions with slope b, we have to find all intercept val-
ues a € R for which the corresponding bands Efa,bﬁL ru iDtersect at least
k + 1 imprecise data. This is equivalent to finding the centers a € R of all
intervals [a — Grrm,a + Grram] that intersect at least k + 1 of the trans-
formed imprecise data [zp.1,Zp1]s-- -, [2Zbm, Zo,n]- For each subset of the
transformed data {[zp4,%p:] : ¢ € Z C{1,...,n}} of size |Z| = £+ 1, the
interval [a —Grrar, @+ G R intersects all of these k+ 1 transformed data
if a € [maxser 2b; — LrM,MiNeT Zp; + Grrm|. Thus, for each b € R,
the (possibly empty) set A4, of all intercept values a € R for which the

corresponding bands By, , 7., intersect k4 1 or more imprecise data is

Ay = U {maxéb,i —qJLRM, Hg}}zb,i +4LRrRM }
1
TC{1,.0n) ¢ [T|=kt1

With this definition, the set of all undominated functions can be formu-

lated as the set of all linear functions with slopes b € R and corresponding
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intercepts a € Ay, that is,
U={fap :DER and a € A}.

Thanks to Theorem 2 of Cattaneo and Wiencierz (2013) restated in the
following, we obtain a simpler expression for the sets A; for all b € R, and
thus, also for U.

Theorem 3.
n—k
U= {fa,b :beER and a € U [éb,(g+j) —qLRM > Zb,(j) +qLRM} }
j=1

Proof. The expression for U can be proved with the above explanations
and by means of the technical result stated as Lemma 1 in Cattaneo and
Wiencierz (2013, Section A). The complete and detailed proof can be found
in Cattaneo and Wiencierz (2013, Subsection A.2). O

Theorem 3 makes it possible to determine in a simple way for each
b € R the corresponding set A,, containing the intercept values of all
undominated functions with slope b. For each b € R, this set is can be
obtained as the union of the n—k intervals [gbf(ﬁﬂ-) —qLRM > Zb,(j) +qLRrM]-
For most purposes, this would already be sufficient, as it is always possible
to use a fine grid over a suitable range of slope values to obtain an accept-
able approximation of the set U. Yet, the result of Theorem 3 additionally
implies a precise description of the set U’ C R? of parameter values as-
sociated with the undominated functions, namely as the union of finitely

many (possibly unbounded) polygons.

Precise description of U/’

According to (4.4), the set U’ of parameter combinations corresponding to
the undominated functions is given by U’ = {(a,b) : b€ R and a € Ap}.
For each b € R, the set A, can be determined as the union of the n—k (pos-
sibly empty or unbounded) intervals [zy, (x+1) — GLRM; Zb,(1) + QLRM]; - - -
[26,(n) — QLRM  Zb,(n—k) +qLRrM). If we consider for each j € {1,...,n—k}
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the interval endpoints Zb,(k+5) — QLRM and Zb,(j) + LRM s functions of
b € R, we find that these functions are either piecewise linear or con-
stant equal +o0o (with a possible discontinuity at b = 0). As a polygon
can be defined as a subset of R? bounded by finitely many line segments
and half-lines (see, e.g., Alexandrov, 2005, Subsection 1.1.1), for each
je{l,...,n—k}, the functions b — 2y (4;) —qrrym and b — Z (jy +qLrM
determine a polygon. Hence, U’ can be represented as the union of these
n — k (possibly unbounded) polygons. However, in general, U’ is neither
closed nor convex nor connected. An illustration of the complex shape of
U’ was given in Figure 4.2 (right).

More precisely, when we consider the case in which all imprecise data
are bounded, i.e., when |D| = n, the definitions of 2, ; and %, ; imply that,
for all 4 € {1,...,n}, the functions b — 2p; — Grrm and b — Zp; + LM
are continuous and piecewise linear, each consisting of two half-lines joined
at b = 0. Therefore, for each j € {1,...,n — k}, the functions b —
Zb,(k+5) — QLRM and b — Zb,(j) T qLRM consist of segments of some of the
functions b — zp; — Grras and b — Zp ; + Gr.ras, connecting the points at
which the indices of the (k + j)-th smallest z;; and the j-th smallest Zy ;,
respectively, change, that is, where the corresponding functions cross each
other. Hence, the functions b — 2y 14y — Grrym and b — Zy, (jy + GLrRM
are also continuous and piecewise linear for all j € {1,...,n — k}. If these
functions moreover intersect on R and on Ry for all j € {1,...,n—k},
the set U’ is a closed and bounded subset of R?, since it is the union of
the polygons determined by these functions. In case that the functions
b 2p (k+5) — qLrM and b= Zy ;) +qrry do not intersect twice on R
and on R+ for some j € {1,...,n —k}, the set &’ is unbounded, but still
closed in R2?.

When we consider more general data situations, two cases have to be
distinguished. At first, we consider the situation in which there is no
imprecise observation [z, T;] X [y;,7s] such that the interval [z;,7;] is un-
bounded and [y;, 7;] # [—o0, +00o]. In this case, for all i € {1,...,n}, the
function b — zp; — Grr is either continuous and piecewise linear (when

2p,i > —0o0) like in the situation where all data are bounded or it is constant
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equal —oo. Analogously, the function b — Zp ; +qrra is either continuous
and piecewise linear or constant equal +o0c. Therefore, also the functions
b 2p (k+5) —qLrm and b — Zy, ;) +qrru are each either continuous and
piecewise linear or constant equal £oo. Hence, the polygons determined
by these functions are not necessarily bounded, and thus, also in this data
situation U’ is a closed but possibly unbounded subset of R2.

Finally, we consider the situation in which there is an imprecise ob-
servation [z, Z;] X [y;,7s] such that the interval [z;,Z;] is unbounded and
[yi, 7i] # [—00,+0o0]. Here, at least one of the functions b +— 24 — GrLrMm
and b — % ;+qr,rMm associated with this observation has a discontinuity at
b = 0. Therefore, the functions b — zy (x45) —qLrMm and b — Zy () +qLRM
can be discontinuous at b = 0. By consequence, the resulting set U’ is not
necessarily closed in this situation. However, if U’ is not closed in RZ,
the two parts U’ N (R x {0}) and U’ N (R x Ryo) are still closed in their
corresponding subspaces R x {0} and R x Ry, respectively.

When the exact shape of U’ is to be determined, for example, in order
to visualize the set of undominated parameters, it suffices to consider the
finite set of all slopes at which any two of the 2n functions b — 24 ; —GrrM
and b — Zp; + qrra cross each other together with the slope zero, be-
cause these values constitute all possible locations of the vertices of U’. In
addition, two values closely above and below zero as well as one very small
and one very large value should be considered to capture the limits. Over
the interval defined by the smallest and the largest of the thus determined
slopes ', for each j € {1,...,n—k}, the functions b — 2 (x4 —GrrM and
b Z,(;) + qrrum correspond to the paths connecting the points at these
slope values. Hence, if the set of undominated parameters is bounded, it
can be precisely drawn in a graph by connecting, for each j € {1,...,n—k},
the points (b', 2y (k45) —GrrM) and (0, Zy () +GLRr0 ), respectively, located
at those of the relevant slopes where 2 (k+5) — ALRM < Zv,(j) + QLRM-
Otherwise the exact shape of U’ can be depicted over a predefined range
of slopes.

To identify the set of all relevant slopes, we at first define the set B
of all b € R at which either two functions b — 24, — Grrm and b —
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zbj — qrrm intersect, for some (i,j5) € {1,...,n}? with i # j, or two
functions b — Zp; +qrry and b — Zy j +qrra cross each other, for some
(i,7) € {1,...,n}? with i # j. With the definition +°/4cc = 0, this set

can be written as

B= ({zZ Z] : (i,5) € {1,...,n}? and z; > z; and J; > 7;
Y

{ = (i,7) € {1,...,n}? and z; >z; and y; <yj}

T, — T - -

U{y : (i,7) € {1,...,n}* and T, >7; and y¢<yj}
T;

U{‘z : (4,5) €{1,...,n}* and 7; > 7; and y; >yj}>

In fact, the set B is very similar to the set B considered in the first part of
the algorithm, which consists of the slopes determined by the vertices of
all bounded data [z;,Z;] x [y, 7] with ¢ € D and zero. Since two functions
b 2y — Grry and b= 2, ; — Grrym or two functions b +— Zp; + GrrM
and b — Z; + qrrm intersect when b is the slope determined by the
corresponding vertices of the imprecise data A; and A;, we have that
(BU{0}) is a superset of B. Furthermore, we define the set B of all slopes
b € R at which the functions b — zp; — Grra and b — Zp ; + GrrM CTOSS
each other, for all (i,7) € {1,...,n}2. The set B is given by

B= ({ (@i +2Grrm) — Y : (i,5) € {1,...,n}? and

T; — T
z; >7; and (¥ +2GLrMm) > yy}

i — (U + 27 .
U{y (5 7QLRM) : (i,5) € {1,...,n}* and
Li — Ty

z; >T; and y; < (y; + 2QLRM)}
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yi+2q —Yi .
U{(y +7qLRM) Yi (i,7) € {1,...,n}? and
T, —x;

x>z and (yz + ZGLRM) < y]}

U {yi — (¥ +2GLrM)

:(i,5) € {1,...,n}? and
DR G e {1 n)? an

Z; > x; and y; > (¥; + QQLRM)} >
N R.

Then, the union set BUBU {0} contains all possible locations b € R of the

vertices of U’. The set By of all relevant slopes can thus be written as
By =BUB U{O, —n,n,min(BUBU{0}) — w, max(BU B U {0}) + w} ,

where 7 is a small value between zero and min{|b| : b€ BUB and b # 0}
and w is an arbitrary positive number. In examining the points of the
n — k functions b — Zb,(k+j) — qLrM and b — Zy (;jy +qrry at all b € By
the exact shape of U’ can be determined.

The precise description of the set U’ can furthermore be exploited to
identify a suitable range [b,b] C R of slope values when the set U shall
be approximated. Considering the values b € By ordered by their size
and starting from min 5/, one can find b as the first b € By for which
the corresponding set A, # &. Analogously, starting from max B and
descending in By, the upper endpoint b is the first b € By such that the
corresponding set A, # @. If we have b = min By or b = max By or both,

then, the set of undominated functions is unbounded with respect to b.

Computational complexity

In this section, the first exact algorithm to determine the result of the
robust LIR method in the case of simple linear regression with interval
data was presented. The algorithm is composed of two parts, the first of
which is devoted to finding G, gras, which is needed in the second part for

identifying all undominated functions, either in the form of the set U of all
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undominated linear functions or in representing it by the corresponding
set U’ of parameter values. Finally, the worst-case time complexity of the
algorithm has to be investigated.

The first part of the algorithm serves to identify Grgras, which is ob-
tained by determining the shortest of the intervals [z (;),%s ;7] With j €
{1,...,n—k~+1} for each b € B. This can be done in time O(nlogn). The
set B contains at most 2 (72’) + 1 elements, because each pair of data fulfills
at most two of the four conditions given in the definition of . Therefore,
the first part of the algorithm has the complexity O(n?logn).

In the second part of the algorithm, if we want to describe U’ pre-
cisely, we have to determine Zb,(k+5) — LRM and Zb,(j) t QLRM for all
je{l,...,n—k} and all b € By. For each slope b this can be done in
time O(nlogn), because we only need to compute and sort the two lists
Zb1y--s2bn and Zp1,...,Zpn. As each pair of data fulfills at most two of
the four possibilities given in their definitions, the sets B and B have each
at most 2 (g) elements. Hence, ;4 consists of at most 4(72’) +5 slope values,
and the second part of the algorithm has the complexity O(n?logn).

As both independent parts of the algorithm have the worst-case time
complexity O(n3logn), also the computational complexity of the entire
algorithm is O(n? logn), that is, it is of the same order as the complexity of
the initial algorithm for LQS regression (see, e.g., Steele and Steiger, 1986).
The latter algorithm was further optimized to reach a better computational
efficiency and it was generalized to multiple linear regression. Likewise,
the exact algorithm for robust simple linear LIR with interval data can be
adapted to the case of multiple linear regression, and moreover, to more

general types of imprecise data.

4.3.2 R package 1inLIR

We implemented the presented algorithm in the statistical software en-
vironment R (R Core Team, 2013). It is part of the package 1inLIR
(Wiencierz, 2013), designed for the implementation of LIR methods for
the case of linear regression with interval data. The available version of

the 1inLIR package includes a function to create a particular data object
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for interval-valued observations (idf.create), the function s.linlir to
perform the robust LIR analysis for two variables out of the data object,
as well as associated methods for the generic functions print, summary,
and plot.

Both parts of the exact algorithm are incorporated in the s.linlir
function. In the current version of the 1inLIR package, the first step of
the s.1linlir function consists in finding g, ras and the corresponding
parameter combinations of the LRM functions. Then, the range of slope
values for which there are undominated functions is identified in the way
described at the end of the previous subsection. Finally, U’ is approxi-
mated by determining the corresponding sets of intercept values over a
fine grid across this range of slope values and retrieving a fixed number of
parameter combinations (a,b) € A, x {b}. In case that U’ is unbounded,
the set of undominated functions is approximated only over a coarse grid of
slope values ranging at most from —10? to 10, if unbounded on both sides.
The s.1linlir function then returns an object of the class “s.1inlir” con-
sisting of a list whose elements include the ranges of slope and intercept
values in U’, a data frame containing the intercept-slope combinations that
represent the approximation of the set U’, the bound Gp gy, the analyzed
data set, the used LIR settings, k and k, etc. The 1inLIR package provides
a print method and a summary method for these s.linlir-objects.

Furthermore, there is a plot method associated with the s.linlir
function providing tools to visualize the LIR results. There are three op-
tions: 1) to plot only the LRM regression functions (typ="1rm"), 2) to plot
a draft of the set of undominated functions ¢ (typ="func"), or 3) to plot
the entire set U’ (typ="para"). When the first option is chosen together
with the option pl.dat=TRUE, the LRM functions are drawn into the data
plot. To visualize the set & of undominated functions, a random selection
of a chosen number of these functions is drawn. The selection of functions
is obtained by randomly choosing parameter combinations (a,b) from the
discrete approximation of «’. The default option para.typ="polygon" for
the plot of the set of parameter values associated with the undominated

functions is based on the precise description of U’ as the union of n—k poly-
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gons, which was derived in the previous subsection. As described there,
the plot is obtained in drawing the polygons determined by the functions
b 2y (ktj) — qrrm and b = Zy, jy + Grry for each j € {1,...,n — k}
using the R function polygon(). To be able to choose a particular section
of the set U’ to be displayed, the functions are evaluated at many equally
spaced points within a range of slope values that has to be handed over to
the plot function.

The 1inLIR package provides a ready-to-use first implementation of
the robust LIR method for simple linear regression with interval data.
However, the current version of the s.linlir function is not optimized

for computational speed yet.

4.4 Statistical properties of the robust LIR method

In this section, some properties of the robust LIR method are discussed.
In particular, we deal with the confidence level of the imprecise result of

this regression method and examine its robustness in more detail.

4.4.1 Confidence level of the set of undominated functions

As the imprecise result of the robust LIR method consists of all functions
f € F that are plausible in the light of the imprecise data, it can be
interpreted as a confidence set for the function that best describes the re-
lationship of interest. In Subsection 4.1.3, we furthermore showed that the
result U of a robust LIR analysis always covers the set 7 of corresponding
standard LQS regression functions resulting from precise data sets that are
compatible with the imprecise data. This is a desirable property, because
it is intuitive to require that the imprecise result should not contradict
the results that would be obtained, if the data were precisely observed
at locations within the observed sets. However, the set T is not based
on a statistical model for inference with imprecise data and its extent nei-
ther reflects statistical uncertainty nor does it account for the possibility of
wrong coarsening. Yet, it seems reasonable to generally require that regres-

sion methods for imprecise data generalizing standard regression methods
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should yield a result that is compatible with the imprecise data in this
sense. Moreover, we showed in Section 4.2 that the sets of undominated
functions for different levels of the confidence regions C; are nested. The
confidence regions Cy for a certain p-quantile, with p € (0, 1), of the distri-
bution of the residuals associated with the functions f € F constitute the
set-valued decision criteria of the decision problem corresponding to the
robust LIR method. Following the general LIR methodology, these confi-
dence regions are obtained by cutting the graphs of the corresponding nor-
malized profile likelihood functions at a chosen cutoff point 5 € (0,1). As
discussed in Chapter 3, the thus obtained confidence regions have asymp-
totically at least a coverage probability of FX§(72 log(8)), where Feis
the cumulative distribution function of the y2-distribution with one de-
gree of freedom. The lower the cutoff point 3, the higher the confidence
level. According to Corollary 1, for each function f € F, the profile like-
lihood function likg, is a unimodal step function that is monotonically
increasing until the quantile value(s) with maximal likelihood are reached
and monotonically decreasing afterwards. Therefore, the confidence re-
gions Cy for different levels are nested intervals, which implies that also
the corresponding sets of undominated functions are nested. This means
that the confidence level of the set-valued result of the robust LIR method
is related to the coverage probability of the set-valued decision criteria of
the regression problem. However, it cannot be easily derived how these
confidence levels are related to each other.

To gain some insights regarding the coverage probability of the overall
result U, we perform several simulations. For simplicity, we consider the
case of simple linear regression here, and without loss of generality, the
function describing the relationship between X €¢ X CRand Y € Y CR
is chosen to be the constant function at zero. As for all functions f € F,
the confidence regions C; only get wider as the variables are imprecisely
observed, we focus on the special case of actually precisely observed vari-
ables to estimate the largest lower bound to the coverage probability of
U under two different assumptions about the distribution of the analyzed

random variables, namely a standard normal distribution in the first con-
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sidered scenario and a standard Cauchy distribution in the second. To
generate the data, we furthermore adopt the assumption of a strictly uni-
modal and symmetrical error distribution like in the standard regression
model. If the underlying probability measure Py satisfies this assumption,
the optimal regression function of the robust LIR method coincides with
the optimal regression function of standard LS regression, which is the
function describing the conditional expectation of Y given X = z, for all
x € X. This is because the regression function minimizing a p-quantile of
the residuals’ distribution corresponds to the center of the shortest interval
that covers at least probability p of the conditional distribution of Y given
X. In general, the mode of a univariate distribution can be defined as
the limit for p — 0 of the center of the shortest interval covering at least
probability p. Therefore, the optimal function of the robust LIR method
can be interpreted as describing a generalized mode of the conditional dis-
tribution of Y given X = z, for all z € X. If the conditional distribution
is strictly unimodal and symmetrical, for each p € (0,1), the generalized
mode is identical with the mode of this probability distribution. As more-
over expected value and mode of the conditional distribution coincide in
this case, both regression methods aim at the same optimal function.
Thanks to this, we can base the simulations on data generated by the
standard regression model Y =0+ 0X + W, where W is a random error
that is independent of X and identically distributed as X. Since also the
random variable Y has the same distribution, it suffices to simulate pairs
of i.i.d. random variables for X and Y and to test if the (k+ 1)-th smallest
of the simulated realizations of the response variable is not larger than the
k-th smallest of the residuals corresponding to the LQS line estimated from
the simulated data. Furthermore, we choose p = 1/2 and we consider two
different assumptions about the possibility of wrong observations, namely
e € {0,0.1}, in addition to the two distributional scenarios mentioned
above. For each of the resulting four scenarios, we estimate the lower
coverage probability of U for three different values of 8 € {0.15,0.5,0.75},
each on the basis of 10000 simulation runs. All computations are realized

in the statistical software environment R (R Core Team, 2013).
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Asymptotic Estimated coverage
P level of Cg " probability of U

20 0.3895

0.75 0.5519 100 0.6107
1000 0.9106

20 0.8284

0.50 0.7610 100 0.9359
1000 0.9979

20 0.9986

0.15 0.9486 100 0.9995
1000 1.0000

Table 4.1: Results of the simulations based on normally distributed variables
with expectation zero and variance one, with € = 0.

First, we investigate the case where there is no doubt about the cor-
rectness of the observations, and therefore, it is assumed that ¢ = 0. The
corresponding simulation-based estimates of the lower coverage probabil-
ity of U for each distributional scenario are displayed in Tables 4.1 and

4.2, respectively. As expected, we observe that the sharp lower bound to

3 Asymptotic n Estimated coverage
level of Cg probability of U

20 0.7205

0.75 0.5519 100 0.9222
1000 0.9981

20 0.9697

0.50 0.7610 100 0.9967
1000 1.0000

20 0.9998

0.15 0.9486 100 1.0000
1000 1.0000

Table 4.2: Results of the simulations based on variables following each a Cauchy
distribution with location parameter zero and scale parameter one, with € = 0.
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the coverage probability of U increases as 8 decreases and as more data
are observed. Moreover, most of the estimated coverage probabilities are
close to one, regardless of 8 and often already for n = 100. Comparing
the two different distributional scenarios, we find that the lower coverage
probability is considerably higher when the variables are generated by a
standard Cauchy distribution. As in this case the data are more dispersed,
more diverse functions can be undominated than in the case of the nor-
mally distributed variables. Therefore, the sets of undominated functions
resulting from the data generated by the standard Cauchy distribution
are less informative, which implies that they have a higher probability of
including the true regression function.

Now, we consider the situation in which it is assumed that the obser-
vations may not cover the true values with probability at most 0.1. The
corresponding percentages of simulation runs in which the set of undomi-
nated regression functions covered the true regression function are shown

in Tables 4.3 and 4.4. Again, we observe that the estimated lower cover-

3 Asymptotic n Estimated coverage
level of Cg probability of U

20 0.9767

0.75 0.5519 100 1.0000
1000 1.0000

20 0.9986

0.50 0.7610 100 1.0000
1000 1.0000

20 1.0000

0.15 0.9486 100 1.0000
1000 1.0000

Table 4.3: Results of the simulations based on normally distributed variables
with expectation zero and variance one, with ¢ = 0.1.

age probability of U increases as n increases and as  decreases. Compared
to the situation considered before, the coverage is even higher and there is

no considerable difference between the distributional scenarios anymore.
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3 Asymptotic n Estimated coverage
level of Cy probability of U

20 0.9979

0.75 0.5519 100 1.0000
1000 1.0000

20 0.9998

0.50 0.7610 100 1.0000
1000 1.0000

20 1.0000

0.15 0.9486 100 1.0000
1000 1.0000

Table 4.4: Results of the simulations based on variables following each a Cauchy
distribution with location parameter zero and scale parameter one, with € = 0.1.

The simulations’ results indicate that the confidence level of the set U of
undominated functions is generally rather high, even if the observations are
precise and correct. Therefore, we conclude that the robust LIR method

provides very cautious inferences about the relationship of interest.

4.4.2 Breakdown point

In the present subsection, we discuss the robustness of the LIR method
presented in Section 4.1. According to Huber (1981, page 1), robustness
of a statistical method means, “insensitivity to small deviations from the
assumptions.” The assumptions mainly referred to in this definition of
robustness are different choices of the set of probability measures that are
considered as possible models of the analyzed situation. The main moti-
vation for the development of robust statistical methods was that, in most
practical settings, the assumption of normally distributed random quan-
tities underlying many standard methods is too idealistic and deviations
from this assumption may lead to very unreliable results (see, e.g., Stigler,
2010). As observations that are much different from the majority of the
data, so-called outliers, can be the result of a deviation from the nor-

mality assumption, for example, in the form of a long-tailed distribution
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or of a mixture between a normal distribution and another distribution,
statistical methods were proposed whose result is not much influenced by
such outlying observations. Hence, the goal of a robust regression method
is to describe the relationship between the variables of interest as it is
revealed by the majority of the data. To evaluate how insensitive a regres-
sion method is to outliers, several robustness measures were proposed. We
here focus on the so-called breakdown point for the assessment of the ro-
bustness of the robust LIR method. For more details on robust regression
methods and on general concepts of Robust Statistics, see, for example,
Maronna et al. (2006); Rousseeuw and Leroy (1987); Huber (1981).

In the beginning of Section 4.1, we pointed out that the robust LIR
method generalizes LQS regression in several ways. LQS regression is a
very robust regression method in terms of a high breakdown point. The
breakdown point is a robustness measure for statistical methods indicating
which fraction of outliers in the data a statistical method can support
without yielding a meaningless result (see, e.g., Rousseeuw and Leroy,
1987, Section 1.2). For example, in the particular case of linear regression
with precise data, following Rousseeuw and Leroy (1987, Section 1.2), the
breakdown point can be formally expressed as follows. Let fy be the
linear function modeling the relationship between X and Y, where fy is
defined for all x; € X by fo(x;) =60+ 01231+ ... + 0424, withd € N
and (0,61,...,0,)T = 0 € R¥1. The vector § € R is the estimate
of 6 resulting from the investigated regression method on the basis of
a precise data set containing n € N observations that comply with the
distributional assumptions. Furthermore, we denote by O(m) C R+ the
set of all possible results of the regression method when m € {0,...,n}
observations in the data set are replaced by arbitrary values. Then, the
finite-sample breakdown point of the linear regression estimator 6 for any

possible data set of size n can be defined as the number

max{m :me{0,...,n} and sup ||6—0| < Jroo}. (4.5)
n dedm

To have a robustness evaluation that is independent of the sample size
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n, we focus on the asymptotic definition of the breakdown point, which
corresponds to the limit of (4.5) for n — +o0. For any statistical method,
the highest possible breakdown point is 1/2, because by definition there
cannot be more than 50% outliers in a data set. As shown by Rousseeuw
and Leroy (1987, Section 3.4) for the case of linear regression, the LQS
regression method yields a breakdown point of min{p,1 — p}, given the
chosen proportion p € (0,1). This is also true for more general regression
problems, as discussed below. Hence, the highest possible breakdown point
1/2 is achieved by the LQS method for p = 1/2.

Now, to evaluate the robustness of the LIR method presented in Sec-
tion 4.1 in terms of its breakdown point, we first have to discuss the notion
of outlier in the context of regression analysis with imprecise data and the
meaning of breakdown for a regression method that generally yields an
imprecise result. Recall that the robust LIR method is based on the as-
sumption (V,V*) ~ P € P., where P. contains all probability measures
P’ with P/(V € V*) > 1 — ¢, for some ¢ € [0,1/2). One could argue that
the nonparametric probability model implies that every kind of distribu-
tion of the data is allowed, and therefore, robustness is not necessary and
even inconsistent with the underlying assumption. Yet, basing the anal-
ysis on a nonparametric assumption essentially means that the possible
probability models are not restricted to, for example, a parametric family
of probability distributions for the precise data together with a (proba-
bilistic) coarsening scheme relating the imprecise data to them. Since we
are concerned with regression analysis, of course, we presume that there
is a relationship between the explanatory variables X and the response
variable Y, which means that we expect the joint distribution of X and Y
to be concentrated around some function f € F. Therefore, it is sensible
to require that the result of the regression method should not be too much
affected by observations that are far away from the majority of the data.
In particular, when analyzing (partially) unbounded imprecise data, the
precise values of interest can be arbitrarily far away from the bounded
observations. Thus, in this situation, robustness is a necessary property

to have a chance to obtain informative results. Finally, we restrict the
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investigation to the type of imprecise data that is the most relevant for
statistical practice, namely interval data, where each imprecise observation
is the Cartesian product of d + 1 (possibly unbounded) intervals.

By direct generalization of the meaning of outlier given above to the
situation in which the data are only imprecisely observed, we consider each
imprecise observation that allows the corresponding precise value to be far
away from the majority of the (unobserved) precise data as an outlier. If
there is no doubt about the correctness of the imprecise data, an impre-
cise observation that is far away from the majority of the imprecise data
implies that the contained precise value is also far away from the majority
of the precise data, and therefore, it is regarded as an outlier. Moreover,
an imprecise observation that is (partially) unbounded or corresponds to
the entire observation space can allow the precise value to be much differ-
ent from the majority of the precise data. Hence, (partially) unbounded
or completely uninformative imprecise data are also considered as outliers
according to this definition. If we allow the possibility of wrong observa-
tions with probability at most € > 0 in the probability model underlying
the robust LIR method, asymptotically up to € 100% of the imprecise data
do not cover the corresponding precise values. As we make no further
assumptions about the coarsening mechanism, the corresponding precise
values can be far away from the majority of the precise data. Therefore,
the robust LIR method inherently accounts for the possibility of & 100%
of the data to be outliers, without revealing which ones. Hence, in this
situation, the breakdown point measures only the supplementary fraction
of tolerated outliers in addition to e.

To define the notion of breakdown for a regression method that yields
a set-valued result, we consider again the hypothetical setting in which
the fraction m/n of a given data set of size n is replaced by arbitrary
imprecise data or is already uninformative in a certain sense. We qualify
as breakdown of an imprecise regression method the situation in which the
union set U™ C F of all corresponding results is a superset of the set
U C F of all functions f € F that intersect the observation space, that is,
U={feF:GnV + 2}, where G; = {(z,9) € X xR : y = f(z)}
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denotes the graph of a function f € F. Hence, breakdown means that the
set of undominated functions obtained by analyzing a data set of size n
with m outliers can contain any function that intersects the observation
space, and thus, the result can be completely meaningless. Recall that the
set of undominated functions is composed of all functions f € F whose
associated closed bands By g, ,,, of width 2 ras intersect at least k + 1
imprecise data. If the response variable is such that ) = R, we have that
U = F, otherwise, U is a proper subset of R.

For the investigation of the finite-sample breakdown point of the ro-
bust LIR method, we consider separately the two parts of the determina-
tion of the LIR result that were distinguished in Section 4.3.1, which are
the determination of Gy ras and the identification of the set I/ of all un-
dominated regression functions on the basis of gy zps. Furthermore, three
cases depending on the observation space ) of the response variable are
distinguished.

At first, the case ) = R is investigated. We consider again hypothetical
data sets V* = Ay,...,V.* = A, where a certain number m € {0,...,n}
of imprecise data is replaced by arbitrary observations or corresponds to
uninformative interval data and all possible resulting sets of undominated
regression functions. Then, the maximal m such that the union set ¢/(™
of all possible results is a proper subset of F is identified. The set ¢/(™)
equals F due to the first part of the determination of the LIR result, if
on the basis of the hypothetical data sets, it can happen that Grry =
+00, because in this case, the vertical bands B3, ,,, around all functions
f € F intersect all data. As Grgas is given by the k-th smallest upper
residual associated with some function f € F, this occurs if there are less
than k imprecise data that are bounded in the Y-dimension or cannot
take arbitrary values, i.e., that are no outliers in the sense defined above.
Therefore, there can be at most n— k outliers. In addition, when k < n—k
and there are n — k imprecise observations that can take arbitrary values,
all k& data that determine Grras can be such outliers. As the outliers can
be located anywhere in V and k + 1 < k, every function f € F can be

undominated for some of the hypothetical data sets, which implies that
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U® = r. Therefore, there have to be less than k outliers. Hence, the
number of outliers that can be supported in the first part when ) = R is
min{k—1,n—k}. As to the second part, we investigate what the largest m
is for which the union set of all possible results is not F, provided that there
is no breakdown in the first part. Since the graph of every function f € F
can intersect each arbitrary observation and each completely uninformative
observation, i.e., A; = V, there must be less than k + 1 such outliers to
prevent breakdown. However, if n—k < k and there are k outliers, some of
the outliers are used to determine the set of undominated functions, which
makes the result somewhat arbitrary. Yet, there is no breakdown in the
above defined sense, because the graphs of the functions in the resulting
sets are each close to at least one of the fixed and bounded observations.
Hence, in the case where ) = R, the maximum number of supported
outliers in the second part is k. Taking the minimum over both parts, the
number of outliers that are tolerated is min{k,n — k}.

Now, consider the situation in which Y is a bounded subset of R. Again,
the investigation is based on a hypothetical data set of size n where m
imprecise data are replaced by arbitrary interval data or correspond to the
entire observation space, i.e., A; =V, and the aim is to identify the largest
m such that the union set /(™ of all possible results is a proper subset of
the set U of all functions that intersect the observation space V. In the first
part of the determination of the LIR result, if there are at least k outliers,
Jrrm can be completely determined by those arbitrary observations. As
furthermore k + 1 < k, every function f € U can be undominated for
some of the hypothetical data sets. Therefore, there cannot be more than
k — 1 outliers. If the number of outliers is larger than n — k, the upper
endpoint of the confidence regions is always determined by an outlier, and
therefore, it can take arbitrary values within a certain range depending on
F and Y. For example, if F contains all constant functions, the highest
possible value for Grras is /2 (max )y — min}), which corresponds to the
cases in which each outlier is either such that [y;,7;] = ) or completely
uninformative. However, there is not necessarily breakdown in the above

defined sense. This can only occur if the number of outliers is at the same

65



time at least k + 1, which is excluded by the restrictions for the second
part. Hence, to prevent breakdown in the first part when ) is a bounded
subset of R, there can be at most k— 1 outliers. Regarding the second part,
we can repeat the arguments of the previous case for all f € Y. Hence,
also in the case where ) is a bounded subset of R, the maximum number
of supported outliers in the second part is k. As k < k — 1, we here obtain
k/n as the maximal fraction of supported outliers.

Finally, for the case where ) is bounded in one direction and un-
bounded in the other direction, the first part is analogous to the first
case, while the second part is the same as in the second case. This leads
again to the maximal number of min{k,n — k} outliers.

Putting the results together over all three cases, the determination of
the LIR result is insensitive to at most min{k,n — k} outliers. Hence,
we obtain as the overall finite-sample breakdown point of the robust LIR
method 1/n min{k,n—k}. As to the asymptotic breakdown point, consider
again the definitions of k£ and k given in Corollary 2. It is easy to derive
from these definitions that, for n — +oo, we have k/n — (p — ¢) and
k/n — (p+e¢). Thus, for a given configuration of p € (0,1) and ¢ € [0,1/2),
the breakdown point of the robust LIR method is given by

lim min{k,n — k}

n——+00 n

= min{p,1 — p} —e.

For the choice of p = /2 and if wrong observations are not accounted for
in the probability model, i.e., ¢ = 0, the robust LIR method yields the
highest possible breakdown point of 1/2. If we consider & > 0, the robust
LIR method inherently accounts for the possibility that € 100% of the data
are outliers. Therefore, in this case, the breakdown point measures only
the fraction of outliers that can be supported in addition to €. That is,
for p = 1/2 and ¢ > 0, the breakdown point is 1/2 — &, but altogether
the robust LIR method tolerates 50% outliers, which again is the highest
possible fraction. Hence, the LIR method presented in Section 4.1 is very
robust in the sense that it takes a large fraction of outliers to cause the

regression method to yield a meaningless result.
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Chapter 5

Support Vector Regression with

interval data

This chapter is devoted to a thorough examination of the regression meth-
odology for interval data proposed in Utkin and Coolen (2011). This
regression methodology consists in a modification of standard Support
Vector Regression (SVR), which is a specific class of regularized kernel-
based methods for data analysis. These methods originated in the field
of Machine Learning and were a popular research topic in diverse areas
during the past 20 years. In particular, in the context of Computer Sci-
ence and Engineering, various kernel-based methods were developed (see,
e.g., Scholkopf and Smola, 2002; Suykens et al., 2002; Miiller et al., 2001),
which are mainly based on the framework introduced by Vapnik (1998,
1995). In recent years, there is also a growing interest in kernel-based
methods in the field of Statistics (see, e.g., Hable, 2012; Christmann and
Hable, 2012; Christmann et al., 2009; Hofmann et al., 2008). Steinwart
and Christmann (2008) provide a comprehensive overview of regularized
kernel-based methods for the statistical problems of classification and re-
gression in a unified formulation and deduce important results regarding
their statistical properties in mathematical detail.

Standard SVR is based on a fully nonparametric probability model and

permits analyzing many different kinds of relationships, including, for ex-
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ample, linear regression and the estimation of a general smooth regression
function. The corresponding estimators are under suitable regularity con-
ditions consistent and they can be robust if an appropriate loss function is
chosen. A generalization of SVR to imprecise data preserving these charac-
teristics would be a desirable achievement and could provide a competitive
alternative to the robust LIR method presented in Section 4.1, since we
aim at such a universal and ideally robust regression method for imprecise
data. Moreover, the solution of a standard SVR analysis can be efficiently
computed also in the case of a general relationship, which appears to be
very difficult to realize for the robust LIR method.

Whether the regression methodology proposed by Utkin and Coolen
(2011) achieves these goals is investigated in Section 5.2, after a review of

the core elements of the standard SVR framework in the following section.

5.1 Standard SVR

In this section, the standard SVR methodology for precise data is pre-
sented. We present the core elements of the theoretical framework of SVR
by employing the same notions that were used to describe the LIR method-
ology in Chapter 3 and the robust LIR method in Section 4.1. Hence, the
regression problem is formalized as a decision problem with loss function L
assigning to each pair (f, Py) € F x Py an evaluation of the error resulting
from describing the relationship of interest by f if the quantities of interest
(X,Y)=V €V, with V = X x Y, are distributed according to Py. For
simplicity, we here assume that X C R?, with d € N, is compact and that
Y C R is closed, although many of the following definitions and statements
apply also to more general cases. As Py, the set of all probability mea-
sures on V is considered. Thus, like the robust LIR method, SVR is based
on a nonparametric probability model. However, in contrast to the robust
LIR method, the loss L(f, Py ) assigned to a possible regression function f
and a distribution Py is not given by a quantile of the distribution of the
associated residual Ry (under Py ), but by the so-called risk functional,

that is, by the corresponding expectation of a function of the residual.
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5.1.1 Theoretical framework of SVR methods

Presupposing measurability, the risk functional can be defined for each
Py € Py as

Ep, + F— RsgU{+oo}, with f > Ep, (f) = E@(Ry)),  (5.1)

where 1 is a convex mapping from R>o to R>¢ satisfying ¢(0) = 0. For
example, if ¢ is defined by ¢ (r) = r? for all r € R>(, the loss associated
with a pair (f, Py) is given by L(f, Py) = Ep,(f) = E(R?) Thus, we
obtain the loss function corresponding to LS regression. Another famous
example is the function defined by ¥ (r) = max{0,r — v}, for all r € Rx
and some v > 0, which was introduced in Vapnik (1995, Section 6.1) and
represents the so-called v-insensitive loss. The convexity of the mapping
1 implies convexity of the risk functional Ep, , that is, the risk functional

satisfies for each p € [0,1]

Ep, (pf+ 1 —=p)f)<pEp,(f)+(1—-p)Ep,(f),

for all f, f’ € F (see also Steinwart and Christmann, 2008, Lemma 2.13).
As discussed later, this property amongst others guarantees that there
exists a unique optimal regression function, as long as the true probability
distribution Py is not such that Ep, (f) = +oo for all f € F.

In the SVR framework, the set F of considered regression functions is
supposed to be a particular kind of Hilbert space, a so-called Reproducing
Kernel Hilbert Space (RKHS). A Hilbert space over R is a normed vector
space over R with a scalar product that is furthermore complete with
respect to the norm induced by the scalar product. For example, the space
R? with the standard scalar product (-,-) : R? = R, with (w,w’) = w™w’
for all w,w’ € R?, is a Hilbert space, because R? is complete with respect
to the Euclidean norm given by |w|| = /(w,w) for each w € R2. In
the context of regression analysis, we consider Hilbert spaces of functions
from X to R. We denote by H such a function Hilbert space over X and
by (-,-)% : H — R the associated scalar product. To explain the special
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case of an RKHS, we furthermore need to clarify the notion of a kernel
function and the particular reproducing property characterizing an RKHS.
A kernel function « is a positive semi-definite function on X' x X, that is,
> Z?Zl oo k(i) >0, forall g, ..., €R, 21,...,2, € X, and
n € N. If k is the reproducing kernel function of an RKHS #, for each
x € X we have that x(-,z) € H and

f(@) = (f, k()

for all f € H. From this property called reproducing property follows that
k(z,2") = (k(-,2),k(-,2"))y, for all ;2" € X. Applying general results
from Functional Analysis, it can be shown that, for a given RKHS, there
exists a unique kernel function satisfying the reproducing property and vice
versa. Hence, there is a one-to-one correspondence between reproducing
kernel function and RKHS. For example, the RKHS of the linear kernel
defined by k(z,z') = (z,2’) + 1, for all z,2’ € X, is the Hilbert space of
all (affine) linear functions from X to R. Another common kernel function
is the so-called Gaussian kernel, which is defined for all z,2’ € X by
k(z,x') = exp{—l/o2 |z — x’HQ}, with ¢ > 0. The associated RKHS is
a very large function space that is dense in the space of all continuous
(real-valued) functions on X'. For more details on kernels and RKHSs, see,
for example, Steinwart and Christmann (2008, Chapter 4).

Besides an RKHS considered as F, the decision problem of the regres-
sion analysis in the SVR framework involves as Py the set of all probability
measures on V. Given the true probability distribution of the quantities of
interest, Py, the best description of the relationship between X and Y is
the function minimizing the expected error Ep, (under Py ). Yet, to avoid
too wiggly functions as descriptions of the relationship of interest when
the regression analysis is based on a finite sample of observations, also
a modified decision problem is considered, in which an additive penalty
term for the complexity of the functions f € F is included in the loss

function. In the modified decision problem, instead of Ep, the regularized
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risk functional Ep, » is minimized, which is defined for all f € F by

Epy A(f) = Ep, (f) + X | fII%

where A > 0 is a fixed parameter regulating the penalization and ||-||  is
the norm induced by the scalar product in F. The regularization can be
interpreted as minimizing Ep, under the restriction || fHZF < ¢, for some
c € R, but instead of choosing the bound ¢ explicitly, we fix the value of
the corresponding Lagrange multiplier A in the constrained optimization
problem. As the functional f +— X || f Hi- is strictly convex by general prop-
erties of norms in Hilbert spaces and Ep, is convex because of ¢, we have
that Ep,  is also a strictly convex functional on F. Exploiting the strict
convexity of Ep, », it can be shown that such an optimal function always
exists and is unique, provided that some regularity conditions are fulfilled
(see, e.g., Steinwart and Christmann, 2008, Lemma 5.1 and Theorem 5.2).

Of course, usually, the true distribution Py is unknown, but an i.i.d.
sample of observations Vi = v1,...,V,, = v, is available. In contrast to
the robust LIR method where the inference is based on all probability
measures that are plausible in the light of the data, in the SVR methodol-
ogy, Py is estimated by the empirical distribution Py of the observations,
before the best regression function va, , for this probability distribution
is identified by minimizing Ep, \ for some A\ > 0. Hence, SVR uses only
the information associated with the maximum of the likelihood function
liky induced by the observations on the set of considered probability dis-
tributions. Like in the general case before, there always exists a unique
minimizer of the regularized risk for Py. Moreover, the so-called Represen-
ter Theorem states that the unique function f Py AN be represented as
the linear combination of the corresponding functions (-, 1), ..., k(:, Zn),

that is, there exist weights aq, ..., a, € R such that
fooa(@) = a;r(x,x;), (5.2)
j=1
for all z € X (see, e.g., Steinwart and Christmann, 2008, Theorem 5.5).
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Equation (5.2) is sometimes called support vector expansion of f Pya
and the optimal function fﬁ’v, y is often referred to as a Support Vector
Machine (SVM). This term has historical reasons, because Vapnik (1998,
1995) proposed to use functions for ¢ that have the property that some
of the resulting a1, ..., ®, are zero. The vectors z; for which a; # 0 are
called support vectors, whence the notion SVM. One example for such a
representing function 1 is the function associated with the v-insensitive
loss mentioned before. Nevertheless, in general, SVMs are not sparse in
this sense (see, e.g., Steinwart and Christmann, 2008, Section 11.1).

If F is a large RKHS of arbitrary smooth regression functions, for
example, if F is the RKHS corresponding to the Gaussian kernel, it can
be shown that under suitable regularity conditions f Py 1S risk consistent.
That is, provided that the conditions are fulfilled, for n — +o00, we have
that Ep, (fp, xon) = infrer Ep, (f) in probability, where A en is a
sequence of penalty parameters with A(™) — 0 (not too fast) and Py € Py
is the unknown distribution underlying the observations V3 = vq,...,V,, =
vy, (see, e.g., Steinwart and Christmann, 2008, Theorem 9.1). If less general
regression functions are considered, often, other consistency results can be
derived. For example, if a linear kernel function is considered together
with ¥(r) = r?, for all r € R>o, SVR is equivalent to penalized linear
LS regression, which is also called Ridge regression (see, e.g., Hoerl and
Kennard, 1970). This special case of SVR is discussed in detail in the next
subsection. To this configuration of SVR the theorem about risk consis-
tency does not apply, but consistency statements can be derived in some
different ways, as shown in the following. Moreover, if the loss function is
chosen to be such that v is Lipschitz continuous, i.e., 3¢ > 0 such that
|P(r) — ¢ (r")] << |r—7'], for all 7,7’ € R>¢, the SVR estimator is robust
in a certain sense (see, e.g., Steinwart and Christmann, 2008, Section 10.4).
For example, the representing function of the v-insensitive loss is Lipschitz
continuous, but the one of LS regression is not, thus, the corresponding
SVR method is not robust, while SVR with the v-insensitive loss is.

Finally, the determination of the optimal regression function for a given
data set V3 = vy,...,V,, = v, and a fixed A\ > 0 is straightforward. Thanks
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to the Representer Theorem expressed in (5.2), we know that f P, 1S anel-
ement of the set F,, C F, with F,, = {Z?:1 aj k(i) t Qg € R}.
For all functions f, € F,, with a = (o, ..., a,)" € R™, the squared norm
is given by ||[fal%> = S0, > j—1 @i ajk(xg,a;). Hence, the regularized

risk associated with ]5V can be written for each f, € F, as

Pv, (foc) =
E Zw(‘yz - Z;'lzl a5 K (:Cumj +A ZZOZZ ;R !L'Z,!L']) (53)
i=1

=1 j=1

As Ep  is convex, the SVM fp | can be obtained by solving a convex
Vs Vs

optimization problem over a € R", for which there are numerous efficient
algorithms (see, e.g., Reinhardt et al., 2013). For the selection of an appro-
priate regularization parameter A > 0 and of other hyper-parameters like
the parameter o of the Gaussian kernel, different strategies can be applied,
for instance, cross-validation (see, e.g., Steinwart and Christmann, 2008,
Section 11.3).

5.1.2 Ridge regression as a special case of SVR

Ridge regression was introduced in Hoerl and Kennard (1970) as a regu-
larization of standard linear LS regression for the situation in which some
of the explanatory variables in X are strongly correlated. In standard lin-
ear regression, we suppose that the relationship between the variables of
interest, X and Y, can be described by a linear function fy defined for all
x; € X by fo(x;) =6y + 60121 + ... + 0424, with unknown coefficients
6 € R4, Furthermore, it is usually assumed that for each possible real-
ization x of X the deviation of Y from fy(z) can be described by means
of an uncorrelated random quantity with expectation zero and finite vari-
ance 72 < +oo. That is, fp models the conditional expectation of Y given
X = z, from which Y deviates with the same variance 72 for all z € X.
This constitutes a strong assumption about the probability distribution
Py of the analyzed variables, and consequently, the set Py of probability

measures that are considered as possible models of the data situation is
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much smaller in standard linear regression than in SVR and in the robust
LIR method.

The loss function of the decision problem corresponding to LS regres-
sion is given by the expectation IE(R?C) of the squared residual. If Py is
known, the best description of the linear relationship of interest is the func-
tion fy. As already mentioned in Section 3.1, this is due to the fact that
the function f minimizing the expectation of the squared residual (under
Py) is the one that fulfills f(x) = E(Y|z) for all z € X and according to
the model assumptions fp(z) = E(Y|z) for all z € X. Recall that E(R?)
corresponds to the risk functional Ep, defined in (5.1), where v is defined
by ¥(r) = r? for all r € R>q. To estimate the LS regression function on
the basis of a data set Vi = vy,...,V,, = v,, the risk Ep, with respect
to the empirical distribution Py is minimized. Let D denote the design
matrix of the linear regression model, that is, D is an n X (d + 1) matrix
that comprises as rows the observed vectors of the explanatory variables,
Z1,...,Ty, each supplemented by the value one in the first column to model
the intercept 6y, and let y = (y1,...,yn). The best regression function is
the linear function féLs associated with the vector 6 s that minimizes the
expression !/n (y — D )" (y — D 0), which corresponds to Ep_(fg). Equiva-
lently, the residual sum of squares, given by n Ep (fs), can be considered
as the criterion to be minimized. The corresponding minimization problem

can be solved analytically and the unique minimizer is given by
Or.s = (D™D)~' D™y.

Thus, A1 is the LS estimator of the vector of regression coefficients and
féLs is the corresponding LS regression function.

It can easily be seen that, under the assumptions of the standard lin-
ear regression model, 015 is unbiased, that is, E(éLS) = 6, and has the
variance matrix 72 (DTD)~!. According to the Gauss-Markov Theorem,
the variances of the components of fLs are the smallest among all possi-
ble unbiased estimators that are linear functions of y. Hence, 9LS is the

best linear unbiased estimator for 6 (see, e.g., Casella and Berger, 2002,
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Section 11.3). Moreover, the LS estimator of the regression coefficients is
consistent. Roughly speaking, a consistent estimator g for a parameter
(vector) 6 is a function of the sample variables Vi,...,V,, that converges
to 0 as the sample size n € N increases. This property can be expressed
by different mathematical definitions, considering different types of con-
vergence for random variables. A possible definition of consistency is the
definition based on convergence in probability, which is usually called weak
consistency. The sequence of estimators (8(), ey, where 8 is the esti-
mator 6 for a sample of size n, is said to converge to 6 in probability if for
each § > 0, lim,,_, o0 Py (|0 — || > &) = 0. The estimator 6 is weakly
consistent, if it converges to 6 in probability. Another definition of con-
sistency involves convergence in terms of the Mean Squared Error (MSE)
of the estimator. The MSE of an estimator @ for an unknown parameter
0 € R is defined by

d+1 d+1
MSE(6) = E((6 — 6))%) = > _(E(0, — 6,))* + E((6, — E(6,))?),
=1 =1

where (E(f; — 6;))? is the squared bias of the I-th component of 6 and
E((0; — E(6;))?) is its variance. With respect to the MSE, the sequence
of estimators (é(”))neN converges to 0 if its MSE converges to zero, that
is, if limy, 400 MSE(é(")) = 0. Hence, the estimator 0 is in this sense
consistent, if its MSE converges to zero. This notion of consistency states
a stronger property than weak consistency, because convergence in terms
of the MSE implies convergence in probability (see, e.g., Schervish, 1995,
Section 7.1). Hence, to investigate the consistency of the LS estimator,
we consider the asymptotic behavior of its MSE. As 015 is unbiased, we
have that MSE(0rs) = 7 E((0ps) — E(0rsy))?) = 72 tr((D™D)™Y),
where ¢r(M) denotes the trace of a square matrix M. Under the rather
uncritical assumption that the sequence of matrices (D™ TD()=1) -y
converges to the (d+ 1) x (d+ 1) zero matrix as n increases, where D™ is
the design matrix of the linear regression model for a sample of size n, we
obtain that MSE(QA(LT;)) — 0 as n — 400 (see, e.g., Fahrmeir et al., 2013,
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Section 3.2). Hence, the LS estimator is consistent for 6 with respect to
the MSE, which implies its weak consistency.

For a given data set, the expression for s is only well-defined if the
matrix DT D is invertible, which requires that the columns of D have to be
linearly independent. In the presence of multicollinearity, that is, if two or
more explanatory variables in X are strongly correlated, D™D is usually
still invertible but the inverse matrix (DTD)~! can have large diagonal
elements, due to the fact that the determinant of D™D is relatively small
when some of its columns are strongly correlated. Hence, in this situation,
the LS estimators éLg’l of the regression coefficients 6;, with I € {0,...,d},
can have very large variances. This means that the obtained estimates of
the LS regression can differ a lot from the true coefficients of interest.
Therefore, Hoerl and Kennard (1970) proposed to add a small number
A > 0 on the diagonal of D™D alleviating the multicollinearity, in order
to reduce the variance of the regression estimator in this situation. The

resulting Ridge estimator, for a fixed A > 0, is given by
Orxr = (D™D + M411) "t DTy,

where I;41 is the (d + 1)-dimensional identity matrix. Since for each fixed
A > 0, we have E(0g ») = (D"D+A1441) "' D™D 0, the Ridge estimator is
biased. However, 0 R, is a consistent estimator for the vector of regression
coefficients in the standard linear regression model. To see this, assume
again that ((D™ TDM)=1), cy converges to the zero matrix, which im-
plies that the diagonal elements of the matrix D™ TD(") given by n? and
by Yoy @7, foralll € {1,...,d}, increase as n gets larger. Therefore, the
effect of the regularization parameter A added to each of these diagonal
elements vanishes in the limit and HAR, A behaves asymptotically like the
LS estimator. Thus, for the sequence (égﬁz\)neN associated with a fixed
A > 0, we have that MSE(égL))\) — 0 as n — +oo. In a practical analysis,
however, to fix the regularization parameter at an appropriate value is a
crucial problem. Hoerl and Kennard (1970, Theorem 4.3) showed that
there always exists a A > 0 such that the MSE of the Ridge estimator is
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smaller than the MSE of the LS estimator. Hence, despite the bias intro-
duced by A, if A is appropriately chosen, the reduction of the estimator’s
variance is so large that HAR,A is more efficient than éLs. In fact, there is
a trade-off between a small bias if A is small and a small variance of the
estimator for large values of A. Yet, which A > 0 corresponds to an efficient
Ridge estimator, is usually unknown in a practical setting, nevertheless,
A has to be fixed a priori. A common technique to select the regulariza-
tion parameter is to apply a cross-validation scheme, but there are many
other approaches (see, e.g., Hastie et al., 2009, Chapter 7; Draper and van
Nostrand, 1979). As the variances of the components of the Ridge estima-
tor are in general smaller than those of the LS estimator, the coefficients
are effectively shrunk in their size. Since its introduction by Hoerl and
Kennard (1970), Ridge regression was generalized in many ways by using
different shrinkage methods for the regression coefficients. Moreover, the
general idea of regularized estimation can be applied to various statistical
problems and numerous statistical methods employing this idea emerged
during the past few years. For more details on Ridge regression methods
and modern regularization techniques, see, e.g., Fahrmeir et al. (2013);
Hastie et al. (2009); Draper and van Nostrand (1979).

The Ridge estimator 0 R, can be derived as the minimizer of the mod-
ified LS criterion (y — D6)"(y — D 0) + X676, which is composed of the
residual sum of squares and a penalty for the length of the vector of re-
gression coefficients, for a fixed A\ > 0. Equivalently, the corresponding
penalized risk Ep (fg) +*/n 076 can be considered as the criterion to be
minimized. The latter expression looks very similar to the regularized risk
of (5.3) that is minimized in SVR. In fact, the Ridge estimator can alter-
natively be derived as the solution of an SVR based on the LS loss and
on the linear kernel. More precisely, the SVR formulation of the linear
regression problem corresponds to the dual problem of the minimization
problem associated with the penalized LS criterion leading to the Ridge
estimator, as shown in the following. However, the interpretation of the
results is not the same in both contexts due to the different underlying

probability models.

7



Consider the minimization problem of the penalized LS criterion in the

following form

1 A
in —(y—DO)"(y—D6O)+ =670,
,in o (y )"y )+ 35
where the criterion is divided by 2 to make the computations more con-
venient. Directly solving this problem leads to the Ridge estimator éR’ A

Alternatively, the minimization problem can be reformulated as

(5,9)6%9;]1{#1 % ETE+ %HTF), subject to £ =y — D6, (5.4)
where ¢ € R™. That is, the unconstrained minimization problem is trans-
formed to a minimization problem with n equality constraints. The con-
strained minimization problem can be solved by applying the Lagrange
multiplier rule (see, e.g., Reinhardt et al., 2013, Sections 2.2 and 4.1).
The corresponding Lagrangian function A : R™ x R4 x R® — R with
Lagrange multipliers o € R™ for the constraints is given by

1 1
A§,0,0) = 55 €76+ 3070 +a"(y— DO — ),

for all (¢,0,a) € R? xR xR™. As the minimum under the restrictions is
attained at the saddle point of A, a possible solution (£, 0, &) must satisfy
VA(£,0,6) = 0 € R" x R4 x R™. The partial derivatives of A with
respect to the primal variables, 6 and &, imply the following conditions for

the critical point of the Lagrangian
E=Xa and 6=D"a.

We can use these conditions to express € and 6 as functions of the dual
variables o and to replace the primal variables in A by these expressions.
Then, we only need to maximize Ag ; defined by Ag 5(a) = A(€, 6, a) for

all a« € R™. This corresponds to the dual problem of the minimization
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problem in (5.4). The dual solution ¢ is given by
a=(DD"+\I,) 'y.

Finally, we get HAR, » by substituting ¢& for « in the primal condition of
Opr=D"a=D"(DD" +\I,) 'y,

which is a slightly different (but equivalent) expression for the Ridge es-
timator than the one introduced by Hoerl and Kennard (1970). The esti-

mated function féR , can then be written for all z; € X as

Jop (@) = (Lzin, .. mi0) D0 = Z aj(1+ 27:1 TigTj0)-
j=1

This expression, in fact, corresponds to a support vector expansion of the
linear function fé}“. To see this, consider (5.2) with x replaced by z; and
& by the linear kernel, given by k(z;,z;) = 1+ (z;, ;) = 1+ Zld:l Tl Tl
for all z;,z; € X. To verify the equivalence of fém with the solution
of an SVR with linear kernel and LS loss, we consider the corresponding
optimization problem in the following.

In an SVR with linear kernel, the corresponding RKHS F of considered
regression functions contains all (affine) linear functions on X'. The loss
function of the regression problem is the risk functional Ep, with v defined
by 9 (r) = r?, for all r € R>o. Given some observations Vi = vy,...,V, =
Up, the optimal regression function fp% 5 is the function that minimizes
the regularized risk associated with the empirical distribution of the data,
defined in (5.3), for some X > 0. According to the Representer Theorem,
the set F,, C F of candidates for the SVM contains functions of the form
fa() = Z?Zl a; (1 + (-,x;)), with @ € R". Hence, the corresponding
minimization problem can be written as

1 A
in —— (y— DD")"(y — DD")+ 5 a"DD"
min o (y a)"(y a)+5a a,
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which is again divided by 2 for convenience. This minimization problem
can also be transformed to a constrained minimization problem, whose
Lagrangian A with multipliers € R™ is defined by

1

1
55§t o DDt "y~ D Do —0),

A&, a,p) =
for all (&,a,pu) € R3™. The partial derivatives of A with respect to the

primal variables, £ and «, imply the conditions
525\71” and o = p.
Inserting these in 1~X, we obtain the corresponding dual problem, given as

max )\Tn aTa+ % a*DDa+a"(y— DD — Ana),
whose objective function equals the function Ag 4, if we set A= A/n. Hence,
for A = X/n, the optimization problems of SVR and Ridge regression are
equivalent and consequently have the same solution fp% 5= féR,A' Thus,
Ridge regression can be considered as a special case of SVR.

The interpretations of the estimates, however, are different. In the
case of Ridge regression, the model assumptions imply that the linear
regression function models the conditional expectation of ¥V given X =z
for all z € X, from which Y deviates for all z € X with the same variance
72. In this setting, the best regression function minimizes this conditional
variance 72. In the SVR framework, the consideration of the LS loss implies
that the optimal regression function describes the conditional expectation
E(Y|z) for all x € X, yet, without further assumptions about the random
behavior of Y. Here, the optimal line minimizes the mean conditional
variance of Y given X = x over X, that is, the marginal variance of
R¢. Therefore, fﬁv,f\ has a more general interpretation than f(;RA. Of
course, this only applies, if the model is correctly specified, that is, if the
conditional expectation of Y given X = z is a linear function according

to the true probability measure Py . If the conditional expectation is not

80



given by a linear function, we can still define as function of interest the
line minimizing the second moment of the distribution of the residuals,
which is asymptotically given by f@Ls’ and thus, can also be consistently
estimated by f p, %~ However, the meaning of this function is less clear. In
addition, in most practical settings, the assumption of a linear conditional
expectation appears too idealistic. Therefore, LS regression would be more
interesting if no particular form of the possible regression functions has to
be imposed. In the SVR framework, this can easily be done by considering
kernel functions with very large RKHSs like, for instance, the Gaussian
kernel. Nevertheless, the representing function ¢ of the LS loss is not
Lipschitz continuous, which prevents the corresponding SVR methods from
being robust. A better configuration of SVR in this regard would be,
for example, the one employing the Gaussian kernel and the representing
function of the v-insensitive loss.

Regarding the asymptotic behavior of the SVM in the setting of linear
regression with LS loss, we consider again the notion of risk consistency
discussed in the context of more general SVR methods in the previous sub-
section. Risk consistency of an SVM fp | means that Ep, (fp, o) —
inf ;e 7 Ep, (f) in probability as n — +oc and A" — 0. In the case of the
LS loss, we know that the infimal risk of the limit is attained by the func-
tion that minimizes E(R?) By definition, the linear function fj; _ that is
associated with the LS estimator for the regression coefficients minimizes
the risk functional Ep, associated with the empirical distribution of a
finite sample of observations V| = vq,...,V,, = v,. As more and more
data are observed, Py converges to the unknown probability distribution
Py, which implies that the sequence (Ep, ( fé(Lns)))neN converges in prob-
ability to infrer Ep, (f). Furthermore, when we consider a sequence of
penalty parameters, ()\(”))neN with lim, 4o A = 0, in the limit, the
corresponding sequence of SVMs ( fpv’ \(m JneN behaves like the sequence
of functions associated with the LS estimator. Thus, it can be shown that
Ep, (fp, ao) — infrer Ep, (f) in probability as n — +oo and A 0,
that is, the SVR estimator based on the linear kernel together with the LS

loss is risk consistent.
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5.2 Adaptation of SVR to interval data

Utkin and Coolen (2011) proposed a generalization of the SVR method-
ology to the situation in which the response variable Y is observed as
bounded intervals. That is, Utkin and Coolen (2011) consider the pre-
cise variables (X,Y) = V € V, where ¥V = X x ) is a compact subset
of R¥! with d € N. Instead of V, only the random set V* C V can be
observed, whose possible realizations are of the form V* = {X} x [V,Y],
with X e ¥ CR? and Y,Y € Y C R such that Y < Y. Moreover, it is
assumed that (V,V*) ~ P € P, where P entails all probability measures
P’ satisfying P'(V € V*) = 1, which corresponds to the probability model
underlying the robust LIR method with ¢ = 0 in (3.1). Hence, like it is
done in most approaches to analyzing imprecise data, Utkin and Coolen
(2011) assume that the imprecise data always contain the precise values
of interest.

Since the precise variables are not observable, it is impossible to eval-
uate the considered regression functions f € F, where F is an RKHS,
by the associated empirical risk Ep (f). However, the marginal distribu-
tion of the imprecise data can be estimated on the basis of data. When
the probability distribution Py« of the imprecise data is known, the only
available information about the unknown probability distribution Py of
the precise data is that Py € [Py+|, where [Py«] C Py is the set of
all marginal distributions Py, of the precise data corresponding to models
P’ € P with P{,. = Py~. As explained in Section 3.2, since we assume here
that P(V € V*) =1, the set [Py+] consists of all probability measures on
V that satisfy the inequalities in (3.4). Hence, the unknown probabilities
Py (V € A) of all measurable events A C V are bounded by

Py(VeA)>Pp(Vie{d eV : A/ CA}) and
(5.5)
Py(VeA) <Py (V' e{d eV : AnA+a}).

By consequence, for all f € F, the unknown risk Ep, (f) lies in the interval
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Ep,.(f) = P‘,/Ig[ilglv*]EP'V(f) and Ep,.(f) = P,Vrgﬁgi*]EP‘/,(f)
Hence, in contrast to standard SVR, the regression functions f € F cannot
be directly evaluated by a precise value here, even if the probability distri-
bution of the observable data is known. Therefore, in the decision problem
corresponding to SVR with imprecise response, the set [Ep,. (f), Ep,. (f)]
of all possible evaluations is considered for each f € F. Of course, it is in
general impossible to directly determine an SVM with respect to this im-
precise optimization criterion. The central idea of the regression method-
ology proposed by Utkin and Coolen (2011) is to use the minimin or the
minimax rule to solve the decision problem, that is, to minimize either
the lower risk E£p,. or the upper risk Epv* in order to identify a single
optimal regression function.

To derive expressions of the lower and upper risk, Utkin and Coolen
(2011) describe, for each regression function f € F, the set of compati-
ble probability distributions of the residual R, given Py~ by a so-called
p-box and apply results from Utkin and Destercke (2009). Introduced by
Ferson et al. (2003, Section 2), the notion p-box designates a convex set
of probability measures for a univariate random quantity that is bounded
by a lower and an upper cumulative distribution function. In the situ-
ation considered here, given Py «, also the marginal distribution of the
y— f(2)| and
Ry = max(g ey [y — f()], is known for each f € F. According to (5.5),

interval-valued residual [Ry, Ry], where Ry = min g, ,)ev

the marginal distribution of the imprecise residual implies lower and upper
bounds to the probabilities of all measurable events associated with the
marginal distribution of the precise residual R¢. If we consider these lower
and upper bounds for all events of the form [—oo, 7], with r € R>¢, we
obtain a lower and an upper cumulative distribution function that consti-
tute a p-box. As the p-box covers all probability distributions of Ry that
comply with the bounds at least for the intervals [—oo, 7], with r € R>o,

some of the probability measures included in the p-box may not satisfy
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(5.5) for all measurable events, and thus, may be incompatible with the
marginal distribution of the imprecise residual. However, the p-box ob-
tained in the described way from the random set [Rs, Ry], with f € F, is
the tightest outer approximation by a p-box of the set of probability distri-
butions of R, implied by this random set (see, e.g., Destercke et al., 2008).
In fact, in the present situation, for each f € F, the upper bound of the
associated p-box corresponds to the cumulative distribution function of
the lower endpoint of the interval-valued residual [Ry, Ry], while the lower
bound of the p-box corresponds to the cumulative distribution function of
the upper endpoint. This can be seen by considering the corresponding
bounds to the probabilities of the events [—oo, 7], with r € R>¢, used to
derive the p-box for all f € F, that is,

Py(Ry <7) = Py-([By, Ry] € {[,;7] CRxg : [r,7] € [-00,7]})
=Py-(Ry <r) and

Py(Ry <7) < Py-([Ry, Rf] € {[r,7] CRxp : [1,7] N [—00,7] # &})
=Py (R <r).

It can easily be checked that the probability distributions corresponding
to the bounds of the p-box comply with (5.5) for arbitrary measurable
events, and thus, are elements of [Py«]. Since, according to (5.1), the risk
functional Ep, is the expectation of a convex function in Ry with minimum
at zero, it is straightforward to conclude that Ep, . and Epv* coincide with
the expected errors associated with the marginal distributions of the lower
and of the upper residual, that is, of Ry and of Ry, respectively (see also
Utkin and Destercke, 2009, Proposition 3).

As the true probability distribution Py« is typically unknown, it is
usually estimated on the basis of an i.i.d. sample of imprecise observations
Vif=A,,...,V; = A,. By analogy with standard SVR, Py~ is estimated
by the empirical distribution Py of the imprecise data, i.e., by the ML
estimate, and furthermore, the complexity of the estimated functions is

restricted by an additive penalty term. Hence, the optimization criteria
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considered in the modified decision problems corresponding to the minimin
and the minimax rule are the regularized lower and upper risk, respectively.
For a fixed A > 0, the regularized lower and upper risks associated with

the empirical distribution Py are for each f € F given by

n

1 .
Bpya(f) =0 32 min i(lys — f(e)) + A If]5 and
=1 ’
_ 1 &
oy alf) =5 30 max (i — () + 3 1713
= (i) €A

where as before, 1 is the convex mapping from R>g to R representing
the chosen loss. Following the same steps as in standard SVR, Utkin and
Coolen (2011) deduce from these expressions solvable formulations of the
optimization problems corresponding to both strategies in the special case
of linear regression for different choices of the loss function. We do not
restrict the approach to this special case here and continue to consider
more general RKHSs of regression functions. However, before deriving
formulations of the optimization problems based on the support vector
expansion of the possible solution, it has to be verified that the Representer
Theorem applies to or that its statements can be transferred to the setting
considered here. Only in this case, the simple expression (5.2) can be used
for the optimal regression function in (5.3), which provides a favorable
starting point for solving the corresponding optimization problems.

As mentioned in Subsection 5.1.1, the Representer Theorem implies
that if an SVR analysis of a data set V; = vy,...,V,, = v, with empirical
distribution Py is based on a convex representing function ), then, for
all A > 0, there exists a unique function minimizing Efgw y» Which can
be represented as (5.2) (see, e.g., Steinwart and Christmann, 2008, Theo-
rem 5.5). In the proof of this theorem as it is presented in Steinwart and
Christmann (2008, Theorem 5.5), the first steps are to show strict con-
vexity and continuity of E By which provide existence and uniqueness
of the minimizing function fﬁ,‘“ \ € F, by the corresponding arguments of

the proofs of Theorem 5.2 and Lemma 5.1 of Steinwart and Christmann
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(2008), respectively. Then, the representation of f Py 88 the kernel ex-
pansion of (5.2) is derived by exploiting properties of the function spaces
Fn and F in addition to the existence and the uniqueness of the func-
tion f Py n- The generalized SVR methods discussed in this section differ
from the standard SVR methods only in the expressions of their risks. In
case that the summands of F Py and Eﬁ’v* are convex functions, those
are also continuous, and thus, the continuity of E Pye A and F Py CAN
be derived by slightly adapting the first argument of the existence part of
the proof of the Representer Theorem. Therefore, the critical aspect of
transferring the arguments of the proof of the Representer Theorem to the
present situation appears to be the convexity of E Pyw A and Epv*7 5 and
their components.

In the standard SVR methodology as set out in Subsection 5.1.1, the
strict convexity of F Prd follows from the convexity of 1, because a weight-
ed sum of convex functions is convex, and from the fact that the mapping
f=XAIf ||3T is strictly convex by general properties of F. In the situation
considered here, E Poe A is the sum of maxima over sets of convex functions
and the strictly convex penalty term. As, in general, a function defined
as the maximum of convex functions is convex, we can derive that E B A
is strictly convex. To show that Egp,. s also strictly convex, however
requires some more effort.

Since the sum of convex functions is convex and the penalty term is
strictly convex, the regularized lower risk associated with Py is convex
if, for each possible A € V*, the mapping f +— min, ,yeca ¥ (ly — f(2)]) is
convex. Hence, it has to be verified that for every {z} x [y,7] = A € V*
the inequality

min _(ly = (pf+ (1= p) f)(@)]) <
(.)€ {a}x[y7]
? e Uy = f(@)]) + (*p)(m)er?z}x[w Uy = f(@)))
(5.6)

holds for all f, f/ € F and all p € [0,1]. As ¢ is a nonnegative convex
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mapping with ¢(0) = 0, the minimum of ¢(|y — f(z)|) over some interval
[y, 7] C Y, for a given x € X’ and some f € F, is attained either at y = y,
at y = 7, or at y = f(x) if f(z) € [y,7]. Hence, for each f € F and
{z} x [y, 7] € V* we have that

Y(ly = f(@)]) if f(z) <y,
(wyy)gg?x[mw(ly —f@)h=4 0 it f(z)€lyyl, (5.7)
B (g —f@)) it flx)>7

Now, starting from the expression on the left-hand side of (5.6), the con-

vexity of the mapping 1 implies that

(ly = (pf+ 1 =p) f)@)]) <
U(ly = f@)) + (A= p)d(ly — f(2)))-

min
(z,y)e{z}x[y,Y]
min
(zy)e{z}x[y,Y]

Obviously, the right-hand side of this inequality is in general larger or equal
the right-hand side of (5.6). Therefore, we cannot derive Inequality (5.6)
directly from the convexity of 1. One possibility for Inequality (5.6) to
hold is that both sides are equal. In fact, it can be shown that the equality
generally holds, by considering all 3% different cases resulting from the
distinctions in (5.7) for both functions, f and f’, for the expression on
the right-hand side and verifying that the left-hand side yields the same
value. For example, consider the situation in which f(z) € [y,7] and
f'(z) € [y,y], and thus, the right-hand side is zero. In this case, also the
convex combination p f(z) + (1 — p) f'(x) is for all p € [0, 1] contained in
[y, 7], and thus, the left-hand side is always zero, too. Hence, for this case,
the equality in (5.6) is verified. Finally, the remaining 32 — 1 cases have
to be checked, which can easily be done.

Thus, the regularized lower and upper risks associated with the empiri-
cal distribution of the imprecise data are indeed strictly convex. Therefore,
the statements of the Representer Theorem can be transferred to the SVR
methods proposed by Utkin and Coolen (2011) and f(z;) can be replaced
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by Z;L:1 a; k(z;, x;), where aq, ..., a, € R and & is the reproducing ker-
nel function of F, in the expressions of Eﬁ’v* . and E;,V* A On the basis of
the simplified expressions, solvable formulations of the corresponding op-
timization problems can be derived for different configurations of loss and
kernel function, which provide the basis for an implementation of the asso-
ciated generalized SVR methods. For example, Utkin and Coolen (2011)
deduce the optimization problems associated with the minimin and the
minimax rule for different loss functions combined with the linear kernel

function.

5.3 Discussion

In the adaptation of the standard SVR methodology to interval-valued ob-
servations of the response variable suggested in Utkin and Coolen (2011),
each regression function is evaluated by the interval of the risk values asso-
ciated with all probability measures that are compatible with the probabil-
ity distribution of the imprecise data. To solve the decision problem, the
minimin or the minimax decision rule is applied, yielding a single estimated
regression function. The proposed regression methodology can be seen as
a generalization of standard SVR, because the suggested methods reduce
to standard SVR methods if the data are in fact precisely observed. How-
ever, it is not clear if the obtained functions constitute meaningful results
for the regression problem with imprecise data.

As discussed in Section 4.4, we consider as a basic requirement for a
precise SVR estimator based on imprecise data that it should yield a result
that could be obtained by the corresponding standard SVR method with a
precise data set that is compatible with the observed imprecise data. Since
the estimated function resulting from the minimin method has the smallest
regularized lower risk associated with Py over all f € F, the configuration
of precise data (21,91),...,(%n,Yn), With (2;,9:) € {x:} x [y;, 7] for all
i € {1,...,n}, corresponding to the minimal risk for this function yields
a higher regularized risk for any other function f € F. Therefore, the

regression function obtained from the minimin method corresponds to the
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standard SVM for this particular precise data set. Hence, the generalized
SVR method employing the minimin decision rule yields a result that is
meaningful in the sense mentioned above. If the same holds for the SVM
obtained by the minimax method, however, remains an open question.
Nevertheless, the generalized SVR method based on the minimax decision
rule yields a result that is plausible in another sense, as we discuss in the
following section.

Furthermore, compared with the robust LIR method, the considered
data situation is more restricted, because it is assumed that X x) = Vis a
compact subset of R4, The assumption that X is compact is transferred
from standard SVR. The compactness assumption for ) is necessary be-
cause a single unbounded observation would imply that E Po, W(f) = +o0
for all f € F, and thus, would cause the minimax method to break down.
This is due to the fact that the SVR methodology is based on the ex-
pected error, which is not a robust centrality measure for the distribution
of ¥(Ry). However, in most practical settings, the range of possible values
of the response variable is not naturally bounded and there is typically
not enough information to justify a particular choice of the lower and
upper bounds, which have a strong effect on the obtained result. More-
over, a generalization of the approach to imprecisely observed explanatory
variables X appears to be very challenging, because in this situation the
regression functions cannot be represented as the linear combination of
kernel functions as implied by the Representer Theorem, since the impre-
cise observations cannot each be identified with a single function (-, z;),
for all j € {1,...,n}. These aspects clearly limit the applicability of SVR
methods based on the approach proposed by Utkin and Coolen (2011).

Finally, in the context of the statistical analysis of imprecise data,
methods yielding precise results are in general problematic, because a rea-
sonable statistical method should reflect the imprecision of the data in its
result. In addition, a responsible statistical analysis should always take
the involved statistical uncertainty into account. The LIR methodology
allows expressing both types of uncertainty by the extent of the set-valued

result of the regression analysis. In fact, it can easily be shown that, for
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each f € F, the interval [Ep (f)aEPV* (f)] is the ML estimate of Ep,, (f)
in the situation considered by Utkin and Coolen (2011). Therefore, for
this particular kind of imprecise data, we can alternatively derive a gener-
alization of SVR within the LIR framework.

5.4 A LIR method for SVR with interval data

In this section, we propose an alternative adaptation of SVR based on
the LIR methodology described in Chapter 3 for the particular setting
considered in Utkin and Coolen (2011). Hence, we suppose that V is a
compact subset of R4 with d € N, and that the response variable is
observed as a bounded interval, i.e., V* is of the form {X} x [Y,Y], with
XeX cRand Y, Y € Y C R such that Y < Y. Furthermore, we
consider the fully nonparametric probability model P = P, with € =0 in
Assumption (3.1).

Following the LIR methodology, we regard the regression problem with
imprecise data as a decision problem on F x P. Since the aim of a LIR
analysis is to identify those functions in the RKHS F that well describe
the relationship between the precise variables, the loss function of the de-
cision problem is a characteristic that depends only on the probability
distribution of the precise data. On the other hand, as the variables are
only imprecisely observed, the likelihood function used to derive a set-
valued decision criterion for the regression problem depends only on the
marginal distribution of the imprecise data. Like in standard SVR, we
consider as loss function the risk functional Ep, (f), assigning to each
pair (f,P) € F x P the expected error implied by f under the corre-
sponding marginal distribution Py of the precise variables. Adopting the
terminology of Section 3.2, we define a function-specific loss function E
for each f € F by E;(P) = Ep,(f), for all P € P. We can express
Ey also as a function on Py by writing E’%(Py) instead of Ef(P), for
all P € P. Furthermore, we define an imprecise version E} of Ey as-
signing to each marginal distribution Py« of the imprecise data the set

E;Z(PV*) = UPvE[Pv*] E}(PV) of all compatible risk values. Obviously,
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for every function f, we have that E}(Py«) = [Ep,.(f),Ep,.(f)], for
all Py« € Py«. The (normalized) likelihood function lik induced by an
ii.d. sample of imprecise data V¥ = A;,..., V) = A, assigns to each
probability measure P € P the probability with which P had predicted
the observations relative to the highest possible one, see also (3.2). As
only the imprecise data are available, lik is entirely determined by their
marginal distribution Py-, hence, we write lik(P) = lik*(Py+), for all
PeP.

Within the LIR framework, the information provided by the likelihood
function is used to determine likelihood-based confidence regions for the
loss E; associated with a function f € F, which constitute the imprecise
decision criterion of the regression problem. The confidence regions £
can be expressed by means of the (normalized) profile likelihood function
likg, and the threshold 3 € (0,1) as

gf’>5 = {6 € RZO : likEf (6) > ﬂ},
where likg, is for all e € R>¢ given by

likg,(e) = sup lik* (Py~),
Py« €Pyx : EEE;(PV*)

see also (3.3), (3.5), and (3.6). As V is compact here, the support of
the distribution of ¥(Ry) is also a closed and bounded subset of Rxg, for
each f € F. In this case, informative confidence regions for the expected
value of a random quantity can be obtained under the fully nonparamet-
ric probability assumption, which are moreover intervals (see, e.g., Owen,
2001, Section 2.5).

For each function f € F, the confidence region £ -3 contains all risk
values associated with f that are plausible to certain degree, which is
determined by the choice of 8 € (0,1). If the cutoff point 3 is chosen close
enough to one such that only the empirical distribution P, exceeds the
likelihood threshold, we have that £ -5 = EJ’Z(PV ). Thus, the interval

[Ep,.(f),Ep,. (f)] corresponds to the ML estimate of the risk Ep, (f)
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in the considered regression problem. According to the standard SVR
methodology, we furthermore replace the risk Ep, by the regularized risk
Ep, , for some A > 0, and consider the corresponding modified decision
problem for the estimation. For some A > 0 and 8 € (0,1), we obtain as

confidence intervals for the regularized risk
Erass ={e+ A |fll5 : e € Rxo and likp, (e) > B},

for all f € F. The confidence regions £y~ then constitute the decision
criterion of the LIR method for SVR with interval data. If the cutoff point
B is chosen close enough to one such that £¢ 5~ is the ML estimate of the
regularized risk Ep, x(f), for all f € F, the minimax method proposed by
Utkin and Coolen (2011) corresponds to applying the LRM rule discussed
in Section 3.2, which aims at a single optimal regression function. In
contrast to this approach, in the LIR methodology, we apply the dominance
principle to the imprecise decision criterion in order to identify the set of
all regression functions that are plausible in the light of the observations.

Hence, all functions f € F for which
inf £ < inf sup&sy
fLA>8 = fleF PCfx>p

is satisfied are considered as the set-valued result of the regression anal-
ysis. This set consists of all regression functions that are plausible given
the imprecise data. In Subsection 4.1.3, we discussed that the result of
the robust LIR method always contains all compatible precise LQS re-
gression functions. Likewise, the set of undominated regression functions
obtained here is always a superset of the set of all accordingly configurated
SVMs obtained from precise data sets that are compatible with the im-
precise data. To see this, consider a precise data set (z1,%1),..., (Tn, Yn)
with (z4,9:) € {2} X [y;, %), for all i € {1,...,n}, and the correspond-
ing SVM f = fp | = arginfyr E};V))\(f’). For all regression functions
f' € F, the regularized risk Eﬁ,v)\(f’) associated with the empirical distri-
bution of this compatible data set is larger or equal EPw \(f). Therefore,

for each f’ € F, the upper endpoint sup & » >p of the confidence in-
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terval is also larger or equal EPV7/\(f), which implies that EPV,,\(f) <
infpersupEp a>p. As furthermore Ep (f) > inf&f i >p, we obtain
that inf £; x> < infpersupEp x >3, and thus, f is an undominated re-
gression function. Finally, as the LRM function is always included in the
set of undominated functions and since the sets of undominated functions
are nested for different levels of 3 because the confidence intervals 7 x >3
are nested for each f € F, we can conclude that the result of the minimax
method by Utkin and Coolen (2011) is meaningful in the sense that the
obtained regression function is always an undominated regression function.

How to obtain the set of all undominated regression functions in a
practical analysis, however, is a difficult question, because it appears to be
difficult to derive an analytical expression of likg,. Maybe it is possible
to adapt some computation method proposed by Owen (2001, Section 2.9)
to compute the confidence regions in the situation considered here. In the
special case where £y ~g is the ML estimate of the risk for all f € F, an
implementation of the LIR method for SVR can be based on the minimax
method by Utkin and Coolen (2011). The minimax method allows deter-
mining the smallest regularized upper risk, which is necessary to identify
the functions whose lower risk does not exceed this value. Thus, given
the smallest upper bound, a random search over JF,, can be performed to

approximately determine the set of all undominated regression functions.
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Chapter 6

Applications

In this chapter, the regression methods discussed in the previous chap-
ters are applied to study two interesting questions in the contexts of social
sciences and winemaking, respectively. At first, we investigate the relation-
ship between the income and the perceived overall well-being of a person
by means of the robust LIR method presented in Section 4.1. After this,
the determination of the sensory quality of a particular variety of Por-
tuguese red wine by its alcohol level is analyzed in employing the SVR
methods discussed in Chapter 5, whose results are finally compared with
those obtained by the robust LIR method.

6.1 Analysis of subjective well-being with the robust
LIR method

In recent years, there has been a lively interest in analyzing subjective well-
being in various disciplines of the social and behavioral sciences. In this
context, one important question is how an increase in income translates
to subjective well-being (see, e.g., Deaton, 2012; Clark et al., 2008; Diener
and Biswas-Diener, 2002). Empirical studies in this field often use global
measures of subjective well-being, which are obtained from a single survey
question about the overall satisfaction with life. These global measures

are indicators of the state of an individual’s well-being, and therefore, it is
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sensible to use them to analyze subjective well-being (Deaton, 2008), al-
though, of course, they do not capture the entire complexity of the concept
of well-being (Huppert et al., 2009). As single-item measures are usually
measured on a discrete scale, they can be considered as coarse observations
of the latent, continuous variable of interest degree of subjective well-being.
The coarseness of the discrete values can be represented by intervals, thus,
the LIR approach is suitable to analyze this kind of data. Moreover, when
investigating the relationship between income and subjective well-being,
sometimes also the income data are only available as classes, which repre-
sent, in fact, intervals that form a partition of the associated observation
space R>g. Finally, as the relationship between income and subjective
well-being is usually assumed to be log-linear (see, e.g., Deaton, 2012;
Diener and Biswas-Diener, 2002), we can conduct a linear LIR analysis
with the logarithm of income as independent variable X and subjective
well-being as dependent variable Y to analyze the relationship of interest,
accounting for the imprecision of the data.

To this end, we use the robust LIR method presented in detail in Sec-
tion 4.1, which is implemented for the analysis of interval data in the
1inLIR package (Wiencierz, 2013) for the statistical software environment
R (R Core Team, 2013). Thus, all computations and graphs in this sec-
tion are made with the 1inLIR package. We analyze data from the fifth
round of the European Social Survey (ESS, Norwegian Social Science Data
Services, 2010). The ESS is a biennial multi-country survey established
to monitor changing attitudes and behavior of people in Europe. The
data collected for the ESS are available free of charge on the website
WWW.europeansocialsurvey.org.

Previous empirical studies indicated that the relationship between in-
come and subjective well-being on the individual level is not the same in
rich countries as in poor countries, and furthermore, that there may be dif-
ferent relationships for men than for women (see, e.g., Clark et al., 2005;
Diener and Biswas-Diener, 2002). For these reasons, we choose Finland
and Bulgaria as representatives for the groups of rich and poor European

countries, respectively, and we analyze only the corresponding subsets of
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the ESS data set. Furthermore, for each country, we perform separate
LIR analyses for the subpopulations of women and men. From the vari-
ables included in the ESS data set, we retrieve the following ones: house-
hold income (net per month, in categories corresponding to the decile
classes of the income distribution in each country) and overall satisfac-
tion with life (on a discrete scale from 0 — extremely dissatisfied to 10 —
extremely satisfied). In a data preprocessing step, the income classes are
replaced by the corresponding intervals, then the interval endpoints are di-
vided by the household size, and finally, the logarithmic transformation is
made. The data on subjective well-being are changed from discrete values
0,1,...,9,10 to intervals [0,0.5],[0.5,1.5],...,[8.5,9.5],[9.5,10]. Hence,
the independent and dependent precise quantities whose relationship is
investigated by the linear LIR analysis are the logarithmic monthly net
household income per capita in euros and the subjective well-being on a
latent, continuous scale from 0 to 10, respectively.

The resulting four data frames contain each four columns: two for each
of the analyzed variables, one column for the lower interval endpoint and
one for the upper endpoint, which is the required data format for the
1inLIR package. Applying the function idf.create to these data frames,
we create so-called interval data frame (idf) objects, which consist of a list
of data frames, each containing the corresponding two columns of inter-
val endpoints of one variable. For these idf-objects, the 1inLIR package
provides a summary method as well as a plot method with two options.
Figures 6.1 and 6.2 show the data plots of the four data sets we analyze.
As the data sets consist of roughly 1000 observations each, we used the
two-dimensional histogram plot by choosing the option typ="hist" in the
plot function. As expected, we notice that the marginal distribution of
subjective well-being is concentrated at a higher level in Finland compared
to Bulgaria, but there appear to be no big differences between men and
women within the countries. Moreover, we can see that there are many ob-
servations that are unbounded with respect to X. This is partly caused by
the high number of observations in the lowest and highest income classes.

In addition to this, there is a significant percentage of completely missing
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Figure 6.1: Histogram plots of the Finnish data sets: women on the top
(n = 967), men on the bottom (n = 911). The darker a rectangle the more
observations overlap this rectangle.

income values (Finland 5-10%, Bulgaria 15-20%), which are represented
in the data set as intervals [z;,%;] = [—00,+00]. Given the high degree
of data imprecision, we can expect to obtain rather uninformative results
from the LIR analyses, reflecting the high uncertainty induced by the in-
terval data. It can be argued that using —oo as lower endpoint of the range
of the logarithmic income (instead of using, e.g., zero) entails too much
unnecessary data uncertainty. However, the results of the LIR analyses are
affected only a little by this, because the used LIR method is very robust.

Before conducting the linear LIR analyses, we have to set up the prob-
ability model by selecting the only model parameter € characterizing the
considered probability measures in terms of Assumption (3.1). Further-
more, we need to choose the quantile to be considered as loss function in

the robust LIR method and the cutoff point 5. For simplicity, we here

98



T
2 4 6 8 10

Figure 6.2: Histogram plots of the Bulgarian data sets: women on the top
(n = 1370), men on the bottom (n = 1064). The darker a rectangle the more
observations overlap this rectangle.

assume that the imprecise data are correct in the sense that the observed
rectangles contain the correct precise values with probability one, i.e., we
consider € = 0. If we had concerns about the data quality or if we wanted to
account for possibly wrong coarsening, a positive € could be considered in
the nonparametric probability model characterized by (3.1). As shown in
Section 4.2, this would lead to more imprecise results of the LIR analyses,
reflecting the fact that there is additional uncertainty. As the residual’s
quantile to be minimized we consider the median, that is, p = 1/2, which
is the most robust choice of p. Finally, we choose g = 0.8 as cutoff point
for the likelihood-based confidence regions Cy with f € F. This choice of
B satisfies Condition (4.1) and corresponds to an asymptotic confidence

level of at least approximately 50% for each Cy.



The model parameter e, the LIR settings p and (3, as well as the idf-
object to be analyzed are handed over to the s.linlir function of the R
package 1inLIR, which determines the set U’ by the exact algorithm. As
we already mentioned at the end of Subsection 4.3.2, the current version
of the function s.linlir is not optimized for computational speed. The
computations for the present analysis took about two to ten minutes on
a standard desktop computer. Most of the time is needed for the first
part of the algorithm, where Gy rps is determined. To display the results
of the conducted linear LIR analyses, we use the type typ="para" of the
associated plot method with the default option para.typ="polygon" and
obtain Figures 6.3 and 6.4, where the black points indicate the LRM re-
gression functions.

The sets U’ resulting from the LIR analyses of the data sets of women
and men in Finland are displayed in Figure 6.3. Both sets of parameter
values are bounded and have a similar shape, admitting both lines with

positive and negative slopes ranging approximately from —9.5 to 12.
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Figure 6.3: Sets U’ for Finland: women on the left (n = 967), men on the right
(n = 911).

For the sample of Bulgarian women, the shape of the obtained set U’
is much different, as shown in the left part of Figure 6.4. In this particular
data set, there are 687 observations [x;, T;] X [y;, 7s] such that z; = —oo and
[yi,7s) # R. Aline with an arbitrarily high slope always goes through these
observations at the lower end of the income range as long as the intercept

is not too low, and conversely, a line with a negative slope always intersects
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Figure 6.4: Sets U’ for Bulgaria: women on the left (n = 1370), men on the
right (n = 1064).

these observations if the intercept is not too high. As here k& + 1 = 673,
all lines intersecting these 687 observations are undominated. Therefore,
the obtained set of undominated functions is unbounded, reflecting the
high degree of imprecision inherent in this data set. Furthermore, we here
observe the particular data situation in which the set U’ is not closed,
that is, the borders at b = 0 are not included (see Section 4.3.1). In the
LIR results for the sample of men in Bulgaria, U’ is not unbounded, but
large, which is to some extent due to the almost 20% of missing income
values. In the right part of Figure 6.4, we displayed only the middle section
of U'. Interestingly, in this LIR analysis, we find three LRM regression
lines. These lines can be characterized geometrically by the fact that the
closed bands of width 2Grry = 4 around them completely include at
least k = 543 observations. In the present data set, there are only 500
observations bounded with respect to X, therefore, only the band around
a horizontal line can contain at least 543 observations. Hence, each of the
three LRM functions has slope 0.

The results of the LIR analyses do not give a clear answer to the ques-
tion of how an increase in income translates to subjective well-being. How-
ever, the obtained results are more or less in line with current research in
this field, as there is no clear evidence about the direct relationship be-
tween these two variables. Some empirical studies in rich countries found

only very weak positive effects of income on subjective well-being, while
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others even suggested a negative effect at the upper end of the income
distribution (Diener and Biswas-Diener, 2002). These two possibilities are
also admitted by the LIR results for the Finnish data sets, containing
increasing and decreasing functions. In poorer countries, several studies
found a strong positive effect, reflecting the fact that in these countries an
increase in income is more often used to fulfill basic material needs that
are clearly improving the individual living standard (Diener and Biswas-
Diener, 2002). The LIR result for the sample of Bulgarian men admits
more extreme slope and intercept values, while the data of the sample of

Bulgarian women are too imprecise to obtain informative results.

6.2 Analysis of wine quality with generalized SVR
methods

In this section, we analyze a data set collected to study the quality of
Vinho Verde wines from Portugal. The data were obtained from wine
samples that were tested by the official certification entity of the system of
protected designation of origin of the Vinho Verde wines from May 2004 to
February 2007. For each of the included 1599 red and 4 898 white wines,
11 physicochemical characteristics and an evaluation of the sensory quality
are available. The data set was initially analyzed by Cortez et al. (2009)
and is freely available from the UC Irvine Machine Learning Repository
(Bache and Lichman, 2013). Here, we concentrate on the subsample of red
wines. An important determinant of the taste of red wine is its alcohol
level. Therefore, in this section, we investigate the relationship between
the alcohol content and the taste of red Vinho Verde wine by means of the
generalized SVR methods introduced in Chapter 5 and we compare the
results with those obtained by the robust LIR method.

The sensory quality of the wine is measured by the median evalua-
tion of the wine over at least three test persons assessing the taste of
the wine on a discrete scale ranging from 0 — very bad to 10 — excellent.
Similar to the data on subjective well-being in the previous section, the

discrete quality measurements can be considered as coarse observations of
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an underlying continuous variable taking values in [0, 10]. Therefore, we
base the regression analysis on the imprecise quality data where the dis-
crete values 0, 1, ..., 9, 10 are replaced by the intervals [0, 0.5],[0.5,1.5],. . .,
[8.5,9.5],[9.5,10]. As explanatory variable of the regression analysis, we
here consider the alcohol content of the wine. In the given data set, this
quantity is given by measurements of the volume percent of alcohol in
the wine that we assume to be sufficiently accurate. Hence, we analyze
the relationship between the precisely observed alcohol content and the
imprecisely observed sensory quality of the red Vinho Verde wine, which
corresponds to the data situation required for the generalized SVR meth-
ods. The analyzed data set is displayed in the left graph of Figure 6.5,
where X is the alcohol level in percent by volume and Y corresponds to the
sensory quality. Again, all graphs and computations are realized in the sta-
tistical software environment R (R Core Team, 2013), resorting amongst
others to functions provided by the packages kernlab (Karatzoglou et al.,
2004) and quadprog (Turlach and Weingessel, 2013).
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Figure 6.5: Histogram plot of the red wine data set (left, n = 1599) and minimax
function (black line) together with draft of the set of compatible precise SVMs
(right, 1000 randomly chosen functions). The darker a line segment the more
observations overlap this line segment.

Since the data suggest a positive linear relationship, the linear kernel
function is chosen for the SVR methods. Furthermore, the identity map is
considered as function 1, which corresponds to considering the expected

value of the (absolute) residual as risk. Finally, the regularization param-
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eter A is set to 0.0001. The black line in the right graph of Figure 6.5
indicates the regression line obtained by the generalized SVR method of
Utkin and Coolen (2011) when adopting the minimax rule. Moreover, we
consider the set of all standard SVMs (with the same configuration of k, 1,
and \) based on precise data sets that are compatible with the imprecise
data. This set is sketched by the gray lines in the same graph and gives
a first impression of the uncertainty about the relationship of interest as-
sociated with the imprecision of the data. The minimax function and the
compatible SVMs include no decreasing lines. Hence, these results confirm
the surmise of a positive linear relationship between alcohol content and
taste of red Vinho Verde wines.

Now, we consider the LIR method for SVR described in Section 5.4
with the choice of 5 for which the confidence intervals cover only the max-
imum likelihood estimate of the regularized risk. The associated set of
undominated regression functions is approximated in the way outlined at
the end of Section 5.4. The left graph of Figure 6.6 shows the obtained
results, including increasing and decreasing lines with slopes ranging ap-
proximately from —1.2 to 2. By definition, the LRM function of this LIR
method with the here chosen cutoff point corresponds to the minimax func-
tion displayed above. However, the result obtained by the LIR method for
SVR comprises also decreasing functions. As explained in Section 5.4, the
set of undominated regression functions is in general a superset of the set of
compatible SVMs. Hence, although we here consider only the most plau-
sible regression functions, a decreasing relationship cannot be excluded on
the basis of the likelihood inference underlying the LIR method for SVR.

For comparison, we analyzed the wine quality data set also by applying
the robust LIR method presented in Section 4.1 with p = /2. This can
easily be done by means of the 1inLIR package (Wiencierz, 2013), because
we, in fact, consider a simple linear regression problem here. To make
the results comparable, we furthermore assume € = 0 and choose 8 =
0.9999, which implies that the confidence intervals constituting the decision
criterion of the regression problem encompass only the maximum likelihood

estimate of the median of the residuals’ distribution. The results obtained
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Figure 6.6: Drafts of the sets of undominated regression functions resulting from
applying the LIR method for SVR (left, 1000 randomly chosen functions) and
the robust LIR method (right, 1 000 randomly chosen functions). The black lines
indicate the corresponding LRM functions.

from the robust LIR analysis are displayed in the right graph of Figure 6.6.
The extent of the associated set of undominated regression functions is
visibly larger than the set corresponding to the LIR method for SVR, that
is, steeper functions in both directions are allowed. This might be due
to the penalization involved in SVR and to the fact that the robust LIR

method always leads to very cautious inferences.
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Chapter 7

Conclusion and outlook

In this thesis, the statistical problem of analyzing the relationship between
a response variable and one or more explanatory variables when these
quantities are only imprecisely observed was studied. The goal was to find
a regression method for imprecise data that is general in the sense that it
does not impose restrictive assumptions about the form of the imprecise
observations, about the underlying probability distribution, and about the
shape of the relationship between the variables of interest.

After a review of different approaches proposed in the literature con-
stituting Chapter 2, a new likelihood-based approach to regression with
imprecisely observed variables named LIR was introduced in Chapter 3.
The LIR methodology consists in determining likelihood-based confidence
regions for the loss of the regression problem on the basis of imprecise data
and in regarding the set of all regression functions that are not strictly
dominated as the imprecise result of the regression analysis. Hence, a LIR
analysis usually yields an imprecise result, which can be interpreted as a
confidence set for the unknown regression function. In Chapter 4, a robust
regression method was derived from the general LIR methodology, where
quantiles of the residuals’ distribution are considered as loss. At first,
the formal framework of the robust LIR method was presented in math-
ematical detail and further explained by means of illustrative examples.

Moreover, an exact algorithm to implement this regression method for the
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special case of simple linear regression with interval data was developed
and implemented in an R package. Finally, selected statistical properties
of the robust LIR method were thoroughly investigated. Chapter 5 dealt
with an alternative regression methodology proposed by Utkin and Coolen
(2011) for situations where only the response variable is imprecisely ob-
served. This approach is based on SVR and was discussed in detail, before
an alternative adaptation of SVR was developed by following the LIR ap-
proach, which further generalizes the methods suggested by Utkin and
Coolen (2011). Finally, the discussed regression methods were applied to
investigate two practical questions in the contexts of social sciences and
winemaking, respectively, in Chapter 6. In both cases, the LIR analyses
provided very cautious inferences.

The robust LIR method introduced in Chapter 4 meets all the targets
outlined in the beginning of this thesis. The formal framework of this
regression method encompasses all kinds of imprecise data and of possi-
ble regression functions and it imposes no considerable constraints on the
set of probability measures considered as possible models of the analyzed
situation. The only restriction is the assumption that the imprecise data
contain the unobserved precise values with probability at least 1 — ¢, for
some ¢ € [0,1/2). Hence, in contrast to most alternative approaches to
analyzing imprecise data, the LIR methodology permits accounting for
coarsening errors and even allows informative coarsening in the nonpara-
metric setting underlying the robust LIR method. Moreover, as found
in Section 4.4, this LIR method is robust in terms of a high breakdown
point and it yields highly reliable results in the sense that the coverage
probability of the resulting set of regression functions seems to be gener-
ally rather high. Despite all these desirable features, the implementation
of the robust LIR method poses a big challenge. The exact algorithm
developed in Section 4.3.1 for the special case of simple linear regression
with interval data, in principle, can be generalized to multiple linear re-
gression. In more general regression problems, however, it is yet to be
investigated whether there is a better implementation of the robust LIR

method than an inner approximation of the set of undominated functions
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by a random search over the set of considered regression functions, which
can be computationally very demanding.

The regression methods discussed in Chapter 5 generalize standard
SVR methods, whose results can be efficiently computed, even when a
very large space of regression functions is considered as the set of possible
descriptions of the relationship of interest. However, the applicability of
the generalized SVR methods is much more limited compared to the ro-
bust LIR method, because only data situations with imprecisely observed
responses but precisely observed explanatory variables can be considered.
To adapt the generalized SVR methods to imprecisely observed explana-
tory variables appears to be very challenging, because in this case, the
imprecise observations cannot each be identified with a single kernel func-
tion. A possible solution to this problem could be to consider fixed kernel
functions similar to the basis functions at fixed knots considered in spline-
based regression methods. However, such a modification would require a
thorough investigation of its impact on the properties of the SVR estima-
tors. Another possibility to obtain a feasible regression method when the
shape of the analyzed relationship is not restricted could be to develop a
LIR method that directly generalizes a standard regression method based
on splines.

According to the general LIR methodology, the imprecise result of a
LIR analysis consists of all regression functions that are plausible in the
light of the imprecise data and its extent reflects the whole uncertainty
about the relationship of interest. In practice, also prediction is an impor-
tant goal of a regression analysis. Usually, (a region for) the value of the
dependent variable given a future observation of the explanatory variables
is predicted on the basis of a single estimated regression function. Yet, in
the situation considered here, the additional observation of the explanatory
variables is in general set-valued, while the set of undominated functions
contains all plausible descriptions of the relationship between the precise
quantities of interest. How to adapt the standard idea of prediction to this
situation, is one of the fundamental questions that have to be answered,

before it is possible to develop prediction techniques for LIR methods. In
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Cattaneo and Wiencierz (2012), a joint prediction region for a complete
future observation (including response and explanatory variables) was de-
rived in the context of the robust LIR method. The topic of predicting
(a region for) the response variable given an imprecise observation of the
vector of explanatory variables will be addressed in the future.
Furthermore, the second application in Chapter 6 suggested that not
only the robust LIR method but also the LIR method for SVR yields very
reliable results. This is partly due to the fact that in both cases the set of
possible probability distributions is not much restricted. Yet, for statistical
practice, the obtained inferences may be too cautious and there may be
more information about the behavior of the analyzed random quantities
that should be taken into account. Therefore, the impact of stronger
distributional assumptions on the robust LIR method will be investigated
in future research. In addition to this, the possibility of deriving other LIR
methods based on more restrictive probability models will be addressed.
Finally, the LIR methodology permits considering the possibility of
wrong coarsening, even if the variables are in fact precisely observed. As
the only necessary specification of this possible error is an upper bound
to the probability of an observation not containing the correct value, the
LIR methodology could provide a framework for very general measure-
ment error methods. This potential of the LIR methodology is yet to be

investigated.
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Notation

Miscellaneous

|S] cardinality of a set S

28 power set of a set S

S1 C Sy, S is a proper subset of the set S, while Sy is a proper

S D8 superset of the set Sp

S €8y, &7 is a general subset of the set Sy, while Ss is a general

S D8 superset of the set Sy

S1\S2 set difference, i.e., S7 excluding S N S,

Is indicator function of a set S

[c, ] closed and possibly unbounded interval, with ¢ < ¢ and
¢,c € RU{—o0, o0}

(¢,©) open bounded interval, with ¢ < ¢ and ¢,¢ € R

[¢,€), (¢,¢] bounded intervals whose lower and upper endpoint, re-
spectively, belongs to the interval while the other does
not, with ¢ < ¢ and ¢,¢ € R

log natural logarithm

v gradient of a function

I, u-dimensional identity matrix, with v € N

tr trace of a square matrix

w®, M™  transpose of a vector w and of a matrix M

E expectation operator
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Spaces and

< <

V*

F
g

g>ﬁ

Cr, Cr>p

number of explanatory variables in X, with d € N
number of observations in a sample, with n € N
proportion associated with the p 100% quantile of a prob-
ability distribution, with p € (0,1)

cutoff point of the (normalized profile) likelihood function,
with 8 € (0,1)

upper bound to the probability P(V ¢ V*) for the con-
sidered probability models, with ¢ € [0, 1/2)

sets

empty set

set of positive integers

set of real numbers

sets of positive and nonnegative real numbers, respec-
tively

set of real numbers excluding zero

set of negative real numbers

observation space of the vector X of explanatory vari-
ables, with X C Rd, for some d € N

observation space of the response variable Y, with Y C R
observation space of the joint random vector V = (X,Y)
observation space of the random set V* describing the
imprecise observation of V', with V* C id

(considered) set of regression functions f : X — R
domain of some characteristic g of the considered proba-
bility measures, with G C R

likelihood-based confidence region for the characteristic g,
with Gog = {vy € G : liky(y) > B}, for some 8 € (0,1)
likelihood-based confidence region for L, for some 8 €
(0,1) and f e F
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Random variables and realizations

X vector of d explanatory variables, with X € X C R¢, for
some d € N

Y response variable, with Y € Y C R

v vector of regression variables V = (X,Y)

% random set describing the imprecise observation of V'

Ry (absolute) residual for some regression function f € F,
with Ry = |Y — f(X)]

v; (unobserved) realization of V, with i € {1,...,n}

A; realization of V*, with i € {1,...,n}

Tr (unobserved) realization of Ry, with ¢ € {1,...,n} and
for some f € F

rri, Tgi  infimal and supremal residuals related to an imprecise ob-
servation V;* = A;, withi € {1,...,n} and for some f € F

Probabilities

P probability distribution of the joint random object (V, V*)

Py marginal probability distribution of V'

Py« marginal probability distribution of V*

Py empirical distribution of an observed sample V* = Ay,
..., V¥ = A,; when only precise observations are con-
sidered, we denote by Py the empirical distribution of
Vi=wv,...,.V, =0,

P (considered) set of probability measures P on V x V*

Pe set of all probability measures on V x V* that satisfy
P(VeV*)>1—eg, for some ¢ € [0, /2)

Py (considered) set of marginal probability measures Py on
V (corresponding to probability measures P € P)

Py = (considered) set of marginal probability measures Py« on
V* (corresponding to probability measures P € P)

[Py+] set of all probability distributions Pj, of the precise

data corresponding to probability measures P’ € P with

marginal distribution P}.. = Py~ for the imprecise data
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7)>B

Functions

lik

lik,

lik}.

set of plausible probability measures after the observation
of data, with P~g = {P € P : lik(P) > B}, for some 3 €
(0,1); when only precise observations are considered, we
have ’PV7>[3 = {PV € Py : likv(Pv) > ,3}

regression function f : & - R

loss function considered in the regression problem, with
L : F x P — 28>0 (possibly multi-valued mapping); de-
fined on F X Py when only precise observations are con-
sidered

function-specific loss function for some f € F, with
Ly(P) = L(f,P) for all P € P; defined on Py when
only precise observations are considered

(normalized) likelihood function, with lik : P — [0,1];
when only precise observations are considered, we have
liky : Py —[0,1]

characteristic of the probability distributions in P, with
g : P — 29 (possibly multi-valued mapping); defined on
Py when only precise observations are considered
(normalized) profile likelihood function for the character-
istic g, with lik, : G — [0, 1]

characteristic g only depending on the marginal distribu-
tion of the precise variables expressed as a function on
Py, with ¢'(Py) = g(P) for all Py € Py

(normalized) likelihood function on Py-, defined by
lik*(Py~) = lik(P) for all Py+ € Py-

characteristic g only depending on the marginal distribu-
tion of the precise variables expressed as a function on
Py, with g*(Pv+) = Up, e(p,.) 9 (Pv) for all Py € Py-

(normalized) profile likelihood function associated with g*
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Technicalities of the robust LIR method

Qf

k, &

qLRM

fLRM

u/

p-quantile of the residual’s distribution considered as loss,
for some p € (0,1) and f € F

domain of the p-quantile of the residual, for some p €
(0,1) and f € F, with Qf C R>q

profile likelihood function for the p-quantile of the resid-
ual’s distribution, with likg, : Q; — [0,1], for some
pe(0,1)and f € F

closed band of vertical bandwidth 2¢ around a function
f, for some ¢ € R>p and f € F

open band of vertical bandwidth 2¢ around a function f,
for some ¢ € R>p and f € F

number of imprecise data intersecting Ef’q, for some g €
R>p and f e F

number of imprecise data completely included in B¢ g4, for
some g € R>p and f € F

function introduced to express likg, in a simpler way,
with A : [0,1] x (0,1) — (0,1]

integers introduced to express the points of discontinuity
of likg,, for some f € F

integers introduced to express Cy¢, for some f € F
smallest upper endpoint of the confidence regions Cy over
all feF

regression function providing Grras, if it is unique

set of all undominated regression functions, with &/ C F
set of all LQS functions for the k/n-quantile based on pre-
cise data sets that are compatible with the imprecise data
set of parameters associated with the undominated func-

tions in the case of simple linear regression, with ¢/’ C R?
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Technicalities of the exact algorithm for LIR

D
B

Zb,iy Zb,i

Zb,[5]

o\

set of indices of the bounded data, with D C {1,...,n}
set of candidate slopes for the LRM functions, with B C R

interval endpoints of the slope-adjusted imprecise data

[zbi, Zbi) C R, for some i € {1,...,n}

the k-th smallest value among those Zp,; for which the
corresponding 2y ; > 2y,(5), for some j € {1,... ;n—k+1}
and b e R

set of indices introduced to define A, with Z C {1,...,n}
set of intercept values of undominated functions with
slope b, for some b € R

set of all b € R at which two functions b — 24 ; — GrLrMm
and b — zp j —GrrMm Or two functions b — Zp ;+Grrm and
b~ Zpj + qrrm intersect, for some (i,7) € {1,...,n}?
with ¢ # j

set of all b € R at which the functions b — 2z ; —qrram and
b Zpj + qrrM intersect, for some (4,5) € {1,...,n}>
set of all relevant slopes for the precise description of U’
small number between zero and min{|b| : b € BUB and
b # 0} used in the definition of By, with n > 0
arbitrary positive number used in the definition of By,
with w >0

Technicalities of the investigation of the statistical properties

0

INg!

coefficients vector in standard linear regression, with 6 €
RdJrl

graph of a function f € F, with Gy = {(z,y) € X xR :
y=f(x)}

set of all functions f € F whose graphs intersect V, with
U={feF :GnNV+a}
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Technicalities of SVR

(4

Ep

v

Ors

Or

function introduced to express different loss functions of
the regression problem, with ¢ : R>g = R>g

risk functional considered as loss function, assigning to
each f € F the expectation E(¢)(Ry)) under Py, with
Ep, : F = Ry, for some Py € Py and

kernel function, with £ : & x X = R>g

scalar product in an RKHS X, with (f, x(-, z))x = f(x),
for all f € H, where & is the reproducing kernel of ‘H
norm in an RKHS 7 induced by its scalar product, with
1F113, = (f, )3, for all f € H

regularization parameter, with A > 0

regularized risk functional considered as loss function in
the estimation problem, with Ep, » : F — R>q, f —
Epy (f) + A || f|I%, for some Py € Py and A > 0

SVM minimizing Ep, \ given a sample of precise obser-
vations Vi = vy,...,V, = v,, for some A > 0

vector of weights in the linear combination of kernel func-
tions constituting fpv,)\, with a € R™

subset of the considered RKHS of functions, containing
all linear combinations of kernel functions associated with
the observed X = x¢,..., X, = x,, with F,, C F
design matrix of the standard linear regression model for
an observed sample Vi = vy, ..., V,, = v,, with i-th row
given by (1,z;1,...,xi4), for all i € {1,...,n}

error variance in the standard linear regression model,
with 72 € R>g

LS estimator for the coefficients vector in standard linear
regression, with ;g € R4*!

Ridge estimator for the coefficients vector in standard lin-

ear regression, with 0 , € R4*!

117



Technicalities of generalized SVR

Ep,., Ep,.Jower and upper risk functional, assigning to each f € F

Ry, Ry

Eﬁv*,,v

EPV*,)\

the minimal and maximal risk, respectively, over all Py, €
[Py+], for some Py« € Py«

random quantities describing the lower and upper end-
point, respectively, of the interval-valued residual associ-
ated with V*, for some f € F

lower and upper regularized risk functional associated
with the empirical distribution Py of the imprecise data,

for some A > 0

Technicalities of the LIR method for SVR

Ey

risk functional considered as function-specific loss func-
tion, for each f € F defined by E¢(P) = Ep, (f), for all
PecP

Ey expressed as a function on Py, with £ (Py) = E¢(P),
for all Py € Py and some f € F

imprecise version of E; on Py~, for each f € F defined
by E3(Py+) =Up, ep,.] E5(Pv), for all Py« € Py~
(normalized) profile likelihood function for E, for some
fer

likelihood-based confidence region for Fy, for some f € F
and 8 € (0,1)

likelihood-based confidence region for the regularized risk,
for some f € F, A>0,and 8 € (0,1)
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