
Measurement of the Branching Fraction
of the DecayB0→ ψ(2S)π0 and

Studies of the Luminosity-dependent
Background

for the Belle II Experiment at the Future
Accelerator SuperKEKB

Dissertation
an der Fakultät für Physik

der Ludwigs Maximilians Universität
München

vorgelegt von
Elena Nedelkovska

November 8, 2013



Measurement of the Branching Fraction
of the DecayB0→ ψ(2S)π0 and

Studies of the Luminosity-dependent
Background

for the Belle II Experiment at the Future
Accelerator SuperKEKB

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der Fakultät für Physik
der Ludwigs Maximilians Universität

München

genehmigte

Dissertation

von

ELENA NEDELKOVSKA

Tag der mündlichen Prüfung: 24.01.2014



Erstgutachter: Prof. Dr. Christian Kiesling

Zweitgutachter: Prof. Dr. Otmar Biebel

Datum der mündlichen Prüfung: 24.01.2014



Zusammenfassung

Diese Doktorarbeit umfasst zwei getrennte Analysen: zum einen die Messung des
VerzweigungsverhältnissesB0 → Ψ(2S)π0 aus den Daten des Belle Experimentes,
zum anderen die Abschätzung der Rate von QED Untergrundereignissen bei kleinen
Impulsen für das Detektorupgrade Belle II und deren Einflussauf das Leistungsver-
halten des neuen Pixeldetektors.
In der ersten Analyse wurde der ZerfallskanalB0 → Ψ(2S)π0 untersucht und zum
ersten Mal das zugehörige Verzweigungsverhältnis bestimmt. Die Analyse beruht
auf Daten des asymmetrischene+e− KEKB Beschleunigers, die mit dem Belle
Detektor aufgezeichnet wurden. Verwendet werden die gesamten Belle Daten, die
772 Millionen BB̄ Paare enthalten. Die Analyse liefert folgendes Ergebnis für das
Verzweigungsverhältnis:

B(B0→Ψ(2S)π0) = (1.07±0.23±0.08)×10−5.

Die zweite Studie beschäftigt sich mit dem Leistungsverhalten des Belle II Detektors.
Viele Detektorkomponenten des Belle Experimentes werden im Ramen des Upgrades
ersetzt oder verbessert. Wichtigste Veränderung dabei istder neue Pixeldetektor zur
Messung des Wechselwirkungspunktes der kollidierenden Teilchen, der in unmittelba-
rer Nähe zum Strahlrohr eingebaut wird. Aufgrund seines geringen Radius wird er am
stärksten von Untergrundereignissen beeinflusst. Es wird erwartet, dass zwei Photon
QED Prozessee+e−→ e+e−e+e− dabei die wichtigste Rolle spielen. Da die Lumino-
sität des neuen SuperKEKB Collider voraussichtlich 40-malhöher als die von KEKB
sein wird, wird erwartet, dass die Rate von Untergrundereignissen entsprechend steigt.
Um zwei Photon QED Prozesse zu analysieren, wurden Ereignisse verwendet, die nach
dem Zufallsprinzip selektiert wurden (random trigger). Die bei diesen Ereignissen ent-
stehenden Elektronen und Positronen haben eine sehr niedrige Energie und erreichen
daher nur die innerste Lage des Pixeldetektors, die dadurchbesonders belastet wird.
Die Messungen zeigt, dass die Okkupanz der innersten Lage durch zwei Photon QED
Ereignisse 0.7% ist, was unterhalb der maximalen Okkupanz von 3% liegt, bei der der
Detektor noch fehlerfrei funktioniert.



Abstract

This thesis encloses two separate studies: measurement of the branching fraction
of B0 → ψ(2S)π0 using Belle data and estimation of the low momentum QED
background at the future experiment Belle II.
The first study refers to the analysis of the decay channelB0 → ψ(2S)π0 and the
measurement of its branching fraction. It is noteworthy to mention that this is the first
measurement of theB0→ ψ(2S)π0 branching fraction.
For this measurement, the complete data set of 772 millionBB̄ pairs, collected by the
Belle detector at the asymmetrice+e− KEKB collider was used. The value obtained
for the branching ratio is

B(B0→ ψ(2S)π0) = (1.07±0.23±0.08)×10−5.

The second study regards the quality performance of the upgraded Belle detector,
named Belle II. Many sub-components of the detector will be replaced or upgraded,
but the major change will be the new pixel vertex detector, placed at extreme proximity
to the beam-pipe. Due to its small radius it will be the most affected by background.
In particular it is expected to suffer mostly from the low energy electrons and positrons
coming from the QED processe+e−→ e+e−e+e− . Since the luminosity delivered by
the new SuperKEKB collider is expected to be 40 times higher than the one delivered
by KEKB, the background level of Belle II is expected to increase accordingly.
We particularly studied this QED process with a special random trigger, where the
emitted very low energy secondary electrons and positrons reach only the innermost
layers of the pixel detector. So far the cross section in thisphase space was never mea-
sured and there may be therefore large uncertainties in the theoretical predictions.
The obtained measurements gave an occupancy in the innermost layer of 0.7 %, which
is below the maximal occupancy of 3% that the pixel detector can handle to work
properly.
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Introduction

The main task of elementary particle physics is to answer thequestions: what is the
matter made of and what kind of interactions occur between its constituents.
In our present knowledge the most fundamental building blocks of matter are the two
types of spin 1/2 fermions, namely leptons and quarks. Thereare three families of
leptons and three families of quarks.
These particles interact with each other by the exchange of force carriers with integer
spin. In Nature, four fundamental forces govern the interactions between particles:
gravitational, electromagnetic, weak and strong. Gravitation is much too weak to
have an influence on the interactions between elementary particles, and therefore
has no significance in subatomic physics. The electromagnetic force is responsible
for all atomic properties and is mediated by the exchange of avirtual photon. The
weak force is the source of quark and lepton transformationsand is mediated by the
W± . Electromagnetic and weak force are unified to a common description known as
electroweak force entailing a neutral weak bosonZ0 . The lepton and quark families
as well as the fundamental forces that govern the interactions between the particles
are shown in Figure 1.
The unified theory of the electroweak force and strong interactions constitutes the
Standard Model of elementary particles. This model emergedfrom experimental
discoveries and theoretical calculations in the 1960s and 1970s, being enormously
successful in describing empirical foundations of particle interactions for many years.
Until today, the Standard Model has been confirmed by many precise experimental
data and all predictions made by this model turned out to be correct within the
experimental uncertainties.
Nevertheless, there are several reasons why the Standard Model is not a completely
satisfying theory. One of the reasons is the existence of toomany parameters, namely
the masses and mixing of the quarks and leptons, all of which are a priori unknown.
The hierarchy of the quark and lepton masses and the quark mixing matrices suggest
that some hidden mechanism occurring at higher energy scalegoverns their pattern.
Furthermore in 1964, the world of particle physics was struck by an exciting
discovery: the violation of a symmetry between the matter and anti-matter, the
so-called charge-parity violation (CP) in the decay of neutral K mesons [1]. CP
violation is incorporated in the Standard Model as an irreducible complex phase in the
Cabbibo-Kobayashi-Maskawa (CKM) [2] quark-mixing matrix. The CP violation is
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very important, especially from the cosmological point of view, for the explanation
of the excess of matter over anti-matter in the Universe [3].But the Standard Model
turned out to be imperfect, as the amount of CP violation predicted by the model is
insufficient to account for the observed asymmetry.

Three generations Gauge bosons

Quarks

u
up

c
charm

t
top

γ
photon

d
down

s
strange

b
bottom

g
gluon

Leptons

νe
electron

neutrino

νµ
muon

neutrino

ντ
tau

neutrino

Z0

Z-boson

e
electron

µ
muon

τ
tau

W±
W-boson

Figure 1: The three generations of quarks and leptons and thethree fundamental forces
in nature (excluding gravity).

The prediction of the Standard Model of large CP violating effects in certain B me-
son decays, led to a development of the B factories PEP II [4] and KEKB [5], where
the BaBar [6] and Belle [7] detectors are located, respectively. These machines be-
gan operating in 1999, and have accumulated huge amounts ofBB̄ data at theϒ(4S)
resonance. Before its shutdown in 2010, Belle had accumulated world record of data,
exceeding 1040fb−1 that corresponds to 772×106 B meson pairs, while the BaBar
detector had accumulated 557fb−1 of data. These samples provided sufficient data to
test the Standard Model predictions.
Both Belle [8][9][10][11] and BaBar [12][13] measured CP violation in the neutral
B meson system. CP violation was established through measurements of the time-
dependent asymmetry inB0→ J/ψK0

S andB̄0→ J/ψK0
S decays, which areb→ cc̄s

transitions.
The Belle experiment provided the ability to measure a largenumber of B meson de-
cay modes and to extract CKM matrix elements and other observables. It thus enabled
measurement of the three angles of the unitarity triangle,φ1 , φ2 andφ3 .
Apart from the decayB0→ J/ψK0

S the angleφ1 of the unitarity triangle is also acces-
sible viab→ ccd transitions. Such a decay is e.g. the channel that will be discussed
in detail in this thesis,B0→ ψ(2S)π0 .
In fact, B0→ ψ(2S)π0 decay channel has never been measured before. Although
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from the experimental point of view,B0→ ψ(2S)π0 is relatively easy to access, due
to its clean signal signature, yet we are limited in statistics. An additional motivation
to study this particular channel is the possibility to estimate the penguin pollution in
B0→ ψ(2S)K0

S . The possible penguin contribution fromb→ cc̄d interactions, which
contain different CKM phases, can bias the measured quantity of sin2φ1 . Any dis-
crepancy that can be observed would emerge either as a consequence of the penguin
contribution effect or due to new physics. Therefore, measurements of CP asymme-
tries inb→ cc̄d interactions have huge importance in identifying whether or not the
Standard Model provides a complete description of the CP violation in the B meson
system. With this observation, but also by collecting many such observations from
other decay modes, there is a chance to probe new physics and once it is established
we can determine its properties. The possibility to probe new physics lies in the up-
grade of the luminosity of KEKB by a substantial amount. A factor of 40 improvement
will greatly emphasize the prospect to discover new physics.
Currently, the Belle detector and the KEKB accelerator are being upgraded. In the
forthcoming KEKB upgrade, SuperKEKB [14], the instantaneous luminosity will
reach a design value of 0.8×1036cm−2s−1 . The upgraded detector Belle II [14] in-
volves change of most of the existent sub-detectors, but themain change in the design
is the completely new pixel vertex detector (PXD).
The reason for having a pixel detector in the region closest to the beam-pipe instead
of a silicon strip vertex detector (SVD) close to the beam-pipe is the increased amount
of background at Belle II. At large luminosities, experiments are faced with extremely
high background, thus the innermost layer of the silicon detector can no longer be
realized with strips due to large occupancy that makes the reconstruction of B decay
vertices impossible. The silicon vertex detector cannot handle the hostile background
environment at Belle II so close to the beam-pipe, because ithas much smaller number
of channels. The background in fact increases roughly with the inverse square of the
distance to the interaction point, which means the closer tothe interaction point, the
higher the background and therefore the higher the occupancy.
The precise knowledge of the expected background is then an important condition for
the successful operation of the silicon pixel vertex detector. A realistic estimation of
the expected background level is important for the new detector design. By estimating
occupancy, radiation damage and dead time for each sub-detector, the impact of the
background on physics analyses can be evaluated.
Generally, the background can be divided into two classes: background from the ma-
chine, such as beam-gas and beam-wall interactions and background from high cross
section QED processes, such as the production of low momentum e+e− pairs from the
processe+e− → e+e−e+e−. The emitted low energy electrons and positrons, being
of the order ofO(5MeV) , influence the pixel detector the most. These particles only
reach the innermost layers of the PXD. So far the cross section of this process (“no-
tag” with low momentum secondary leptons) was never measured and there may be
therefore large uncertainties in the theoretical predictions.
In order to determine the size of this contribution, we performed a set of dedicated
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experiments at KEK just before it was closed down. We compared the measurements
to several Monte-Carlo simulations which turn out to agree with the measurements.
Based on these favorable findings, we were able to reliably determine the two-photon
QED background and therefore the expected occupancy in the two PXD layers.



Chapter 1

Physics Motivation

1.1 The Standard Model

Our current knowledge and understanding of the interactions between the elemen-
tary particles and the forces they are governed by, are covered in one fundamental
chapter of the particle physics, namely the Standard Model.Although the Standard
Model has survived for many years it certainly is not the end of the story. There are
many important issues that are not accounted for, the massesof the neutrinos and the
matter-antimatter asymmetry in the Universe. The physics of B-mesons provides a
rich ground for studying CP violation and therefore leadingeither to the confirmation
of the Standard Model or setting the scene for an extension ofthe well-known the-
ory and possibly look towards the New Physics. Regarding theB meson system, the
Standard Model makes precise predictions of CP violation. If experimentally obtained
results compared to the CP violation predictions of the Standard Model diverge, then
this might be a hint for New Physics.

1.2 C, P and T-Symmetry

Symmetries play an important role in elementary particle physics, first because they
are related to conservation laws (Noether’s theorem). In the following several discrete
symmetries will be described: Charge ConjugationC, ParityP, Time reversalT and
combinations likeCP or CPT.

1.2.1 Charge Conjugation

Charge Conjugation (C) transforms the particle into its antiparticle, by changing all
internal quantum numbers like charge, baryon number, lepton number, strangeness,
charm, beauty and truth, but leaving mass, energy, momentumand spin invariant.

C|p>= |p̄> (1.1)

5
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If |p> is an eigenstate ofC, the application ofC-symmetry gives

C|p>=±|p>= |p̄> (1.2)

thus|p> and|p̄> differ only by a phase, which means that they represent the same
physical state. Therefore only particles that are their ownantiparticles such as e.g. the
photon,π0 , η , η, , J/ψ , φ , ρ0 andω and so on, can be eigenstates ofC.

1.2.2 Parity

P transformation (P) can be represented as a system viewed in a mirror. Indeed
Parity transformation inverts the coordinate system, thustransforming a right-handed
coordinate system into a left-handed one. If the mirror reflection has the same physical
properties as the original, then the system is invariant under parity transformation.
Accordingly, the space coordinate−→x , the momentum−→p and the angular momentum−→
l ≡−→x ×−→p under parity are transformed as follows

−→x P→−−→x , −→p P→−−→p ,
−→
l

P→−→l (1.3)

Equation (1.3) shows that one can distinguish two differenttypes of vectors: polar

vectors that change their sign under parity transformation,
−→
V

P→−−→V and axial vectors

that remain unchanged under parity transformation,
−→
A

P→−→A . Likewise, for scalarsS-

like −→p1 ·−→p2 and pseudo-scalarsP - like −→p ·−→l parity transformation yieldsS
P→ S and

P
P→−P, respectively.

1.2.3 Time reversal

Time reversalT reflectst into -t, while leaving the space coordinate−→x unchanged,
thus having

−→p T→−−→p ,
−→
l

T→−−→l (1.4)

ThereforeT symmetry represents a reversal of motion.

1.2.4 CPT

All experimental data point to the fact that C, P and T are conserved separately in
strong and electromagnetic interactions and the present theories of these interactions,
namely QED and QCD are constructed such that these symmetries are preserved.
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But, on the other hand, both C and P parities were found to be violated in weak inter-
actions. Essentially, no left-handed neutrinos have been observed, while P invariance
violation was first observed inβ decay [15] and other nuclear decays. Furthermore,
Kaon decays violate conservation of CP, thus weak interactions also violate the sym-
metry under the combination of C and P transformations (CP parity).
However, any given theory incorporating Lorentz invariance may violate C, P and T
separately, but the combined CPT operation must stay conserved. Based only on the
most general assumptions: Lorentz invariance, quantum mechanics and the idea that
the interactions are represented by fields, the CPT theorem [16] states that the com-
bined operation of the time reversal, charge conjugation and parity (in any order) is an
exact symmetry of any interaction.

1.3 Basics of CP-Violation

The CP transformation is a combination of the two separate symmetries: Charge Con-
jugation C and parity P. If CP was an exact symmetry of Nature matter and antimatter
would behave the same. However, it has been observed that C and P are conserved in
two of the three fundamental forces: strong and electromagnetic, but in weak interac-
tions there is maximal violation of C and P. On the other hand CP seemed conserved in
weak processes. The charged W boson couples to left-handed electrons,e−L or to the
CP conjugate right-handed positron,e+R , but it would never couple to a C conjugate
left-handed positron,e+L nor to a P conjugate right-handed electron,e−R . Still in rare
weak processes such as neutral K meson decays and neutral andcharged B meson de-
cays CP is violated. CP violation was observed first inK0→ ππ decays [17] and later
in various neutral B meson decays. Also, evidence of CP violation has been measured
in neutral decays ofD [18][19] andBs [20].

1.4 The origin of CP violation in the Standard Model

The Standard Model describes the fundamental components ofmatter, quarks and
leptons and their interactions under the strong, electromagnetic and weak forces. The
governing symmetry of the Standard Model is theSU(3)color×SU(2)L×U(1)Y gauge
symmetry, incorporating the quantum chromodynamics (QCD)and the electroweak
theories. TheSU(3)color symmetry determines the interactions governed by the strong
force, whileSU(2)L×U(1)Y controls the electroweak interactions. The Lagrangian
of the Standard Model is given by

LSM= LEW+LQCD. (1.5)

The electroweak part of the Standard Model is modeled as a spontaneously broken
Yang-Mills theory based onSU(2)L×U(1)Y [21], [22]. The electroweak Lagrangian
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is composed of four components: the Lagrangian of the fermion fields, the Lagrangian
of the gauge fields, which gives rise to the bosons in the electroweak theory, the
Lagrangian of the spontaneously broken symmetry (SSB) describing the Higgs sector,
and the gauge invariant Yukawa couplings, which generate the masses to the fermions:

LEW = L
f ermion
EW +L

gauge
EW +LSSB

EW +LYukawa
EW . (1.6)

The left-handed and right-handed particles behave differently underSU(2)L transfor-
mations. Namely, the quarks and leptons form doublets of left-handed and singlets of
right-handed fields,

ΨL =
1
2
(1− γ5)Ψ and ΨR =

1
2
(1+ γ5)Ψ. (1.7)

The Lagrangian invariant under gauge transformations involves dynamical terms for
the quark fields and kinetic terms for the gauge fields,

L = ΨLiγµDµΨL+ΨRiγµDµΨR−
1
4

BµνBµν− 1
4
Wi

µνW
µν
i (1.8)

where the covariant derivativeDµ introduces couplings of the gauge fieldsBµ andWi
µ

(i = 1,2,3 for the three generations) to the quark fields that canbe expressed as

Dµ = ∂− 1
2

ig′YBµ− igTaWa
µ (1.9)

where g′ and g are the electroweak coupling constants, whileTa and Y are the
generators of theSU(2)L and theU(1)Y symmetry groups that introduce the weak
isospin and hypercharge, respectively.
In U(1)Y the field strength tensorBµν is related to the gauge field by

Bµν = ∂µBν−∂νBµ (1.10)

whereas inSU(2)L , the field strength tensorsWi
µν are related to the gauge fields by

Wi
µν = ∂µW

i
ν−∂νW

i
µ−gεi jkW j

µWk
ν , for i ∈ 1,2,3. (1.11)

The electric charge is related to the weak isospin and the weak hypercharge by

Q= T3+
Y
2
. (1.12)

Since, the left-handed and right-handed fermion components have different properties
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under the gauge group, behaving as doublets and singlets respectively, in the sym-
metric limit the two chiral components cannot interact witheach other. Thereby, the
mass term for fermions is forbidden. To give mass to fermionsand gauge bosons, the
electroweak theory is supplemented by the Higgs mechanism [22],[21] that provides
masses by spontaneously breaking theSU(2)L×U(1)Y symmetry (SSB). Therefore,
a complex scalar doublet ofSU(2)L with hyperchargeY = 1

2 is introduced

φ =




φ+

φ0



 . (1.13)

The Lagrangian for a scalar particle interaction is defined as follows:

LSSB
EW = (Dµφ)†Dµφ−µ2φ†φ−λ(φ†φ)2. (1.14)

It is invariant under localSU(2)L×U(1)Y transformations. The covariant derivative
Dµ has the same form as in Equation (1.9) and introduces the scalar hypercharge in a
way that theφ0 does not couple to a photon.
If the scalar field acquires a non-vanishing vacuum expectation value, according to
[22], in order to spontaneously break theSU(2)L×U(1)Y symmetry, the following is
chosen

< 0|φ|0>=
1√
2




0

ν



 , (1.15)

where

φ = eiτθ(x)/ν




0

ν+h(x)√
2



 and ν =

√

−µ2

λ
, (1.16)

with θ and h(x) (Higgs field), being the four real fields. Consequently, the
SU(2)L×U(1)Y gets spontaneously broken down toU(1)em sub-group that remains
symmetric with respect to the vacuum.
To eliminate the massless scalar expectations, identified as Goldstone bosons, we
make the Lagrangian from Equation (1.14),SU(2)L invariant and therefore remove
the dependence onθi by rotations. Hence, the kinetic term of the Lagrangian in
Equation (1.14) adopts the form

(Dµφ)†Dµφ =
1
2
(∂µh)(∂µh)+

1
8
[(g′Bµ−gW3

µ )
2+g2(W1

µ )
2+g2(W2

µ )
2](h+ν)2.

(1.17)
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From the Lagrangian that describes the Higgs mechanism, we obtain the following
fields of the three massive vector bosons, constructed as combinations of the gauge
fieldsBµ andWi

µ :

W+
µ =

1√
2
(W1

µ − iW2
µ ),

W−µ =
1√
2
(W1

µ + iW2
µ ),

Zµ =
1

√

g2+g′2
(gW3

µ −g′Bµ),

Aµ =
1

√

g2+g′2
(g′W3

µ +gBµ).

(1.18)

The fieldsW±µ andZµ are identified as the heavy vector bosonsW± andZ0 mediating
the weak interactions. The Lagrangian of the weak interaction can be written in two
terms: one containing the charged current term and the otherone the neutral current
part,Lweak= LCC+LNC , with W±µ being the mediators of the charged currents and
Zµ the mediator of the neutral currents. The fieldAµ accounts for the massless photon.
The fundamental coupling constants in Equation 1.18 can be represented in terms of
the so-called Weinberg angle yielding the relations [16]

tanθW = g′/g,

cosθW = g/
√

(g2+g′2),

sinθW = g′/
√

(g2+g′2).

(1.19)

Using these definitions the relation between theW andZ mass is obtained to be

MZ =
1
2

ν
√

(g2+g′2) = Mw/cosθW. (1.20)

In the Glashow-Weinberg-Salam theory [23], weak neutral current processes are
mediated byZ0 exchange. The associated weak current transition amplitudes,
describing the coupling of leptons and quarks toZ0 , can be deduced from the field
Zµ , while the weak charged current part and the electromagnetic part can be extracted
from theW±µ andAµ fields. Correspondingly, the fermionic currents are given by

J0
µ = Ψ(i)γµ(

1
2

T3
1− γ5

2
−Qsin2 θW)Ψ(i) (1.21)

J±µ = Ψ̄(i)γµ
1− γ5

2
Ψ(i) (1.22)

JEM = Ψ̄(i)γµQΨ(i) (1.23)
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whereΨ(i) represents the isospin doublet for the fermion fields, withi acting as a
family index, 1− γ5 is the left-handed chiral projector,T± are the isospin generators
associated to theW±µ fields. The charged current describes interactions by whichthe
electric charge is changed, while the remaining two producetransitions that are charge
conserving.
Now, the Lagrangian from Equation (1.8) will be written containing two terms: one
including interactions between the neutral current and theAµ andZµ vector bosons,
and another describing the interactions between theW±µ bosons with the charged
current

LEW = eJEMAµ+
g

cosθW
(J0

µ−sin2 θWJEM)Zµ

︸ ︷︷ ︸

neutral current interaction (NC)

− 1√
2

g(Jµ
+W−µ +Jµ

−W+
µ )

︸ ︷︷ ︸

charged current interaction (CC)

(1.24)

wheree is defined ase= gsinθW .
The quark masses arise from their Yukawa interactions with the Higgs field. The
Lagrangian of the Yukawa interaction involves the couplingof the right-handed quark
singlets via the scalar fieldφ to left-handed quark field doublets and can be written as

LYukawa
EW =−Ψ̄LΓµΨRφ− Ψ̄RΓµΨLφ̄+h.c. where φ = iσ2φ†. (1.25)

In order to obtain fermion mass terms that are invariant under SU(2)L transformations,
the Higgs field is required to have isospin equal to 1/2. TheΓµ matrices contain the
Yukawa constants, which determine the strength of the fermion couplings to the Higgs
fields.
Upon symmetry breaking, the fermion masses are extracted from the mass matrix

M =
Γµν√

2
(1.26)

with its diagonalization, using unitary transformationsUL andUR according to

Ψ′L =ULΨL, Ψ′R =URΨR (1.27)

and consequently

M →M ′ = (UL)
†MUR. (1.28)

The matricesUu
L , Uu

R, Ud
L andUd

R transform the left-handed and right-handed quark
fields from the weak eigenstate basis, denoted byu and d , to the mass eigenstate
basis, denoted byum anddm. Therefore, the Lagrangian describing the interactions
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of quarks with the gauge fields in Equation (1.24), can be written in terms of the
quark mass eigenstates. The expressions for the neutral currents retain their form
when applying the above transformations. This invariance of the neutral currents with
respect to the transformations from the weak to mass eigenstates is the reason that
no flavor changing neutral currents occur at the tree level. This aspect of the neutral
currents is described by the Glashow-Iliopolus-Maiani (GIM) mechanism [21].
The charged current component in the Equation (1.24), in terms of mass eigenstates,
takes the form

LCC =
g√
2

ūL[(UL)
†UR]γµdL+h.c. (1.29)

where the charged currentsJ+µ andJ−µ are described by

J+µ = ūLγµdL = ūm
L γµUu

LUd†
L dm

L = ūm
L γµVCKMdµ

L

J−µ = d̄LγµuL = d̄m
L γµUd

LUu†
L um

L = d̄m
L γµV†

CKMuµ
L.

(1.30)

TheVCKM =Uu
LUd†

L is the 3×3 unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix.
The CKM matrix defines the couplings of theW± bosons to the quarks with definite
masses in charged current interactions.

1.4.1 CKM Mechanism

In the Standard Model the (Cabibbo-Kobayashi-Maskawa) CKMmatrix plays an
essential role in understanding of the CP violation. The matrix introduces three
generations of quarks, hence becoming an extension of the GIM mechanism [24],
[21], which incorporates only two quark generations. The CKM mechanism is given
by








d′

s′

b′








f lavor

= VCKM








d

s

b








mass

, (1.31)

thus transforming the mass eigenstates into flavor eigenstates. In Equation (1.31)
VCKM is the CKM matrix which is explicitly written as

VCKM =








Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb








(1.32)

where theVi j are the quark mixing transitions from an up-type quarki = u,c, t to
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a down-type quarkj = d,s,b. The CKM matrix is a generalization of the Cabibbo
matrix depicted with the highlighted entries in the Equation (1.31).
In general, an arbitraryn×n matrix of complex elements contains 2n2 real parame-
ters. Since, in the Standard Model the CKM matrix is unitary by construction

∑
i
(VCKM)i j (VCKM)

∗
ik = δ jk and ∑

j
(VCKM)i j (VCKM)

∗
k j = δik, (1.33)

the number of the independent parameters is reduced ton2 .
Additional 2n− 1 parameters may be removed by redefinition of the relative quark
phases, that can be arbitrarily rotated according to the transformations, e.g:

u→ eiφu, d→ eiφd. (1.34)

When these transformations are applied to the CKM matrix elements, we are left with
(n−1)2 independent quantities in case ofn families. In principle ann×n unitary
matrix consists ofn(n− 1)/2 real rotation angles and(n− 1)(n− 2)/2 complex
phases. Consequently, the CKM matrix can be build of

1
2

n(n−1)
︸ ︷︷ ︸

angles

+
1
2
(n−1)(n−2)

︸ ︷︷ ︸

phases

= (n−1)2

︸ ︷︷ ︸
parameters

. (1.35)

Forn= 2, the matrix is real. In this case, CP violation cannot occur, since no complex
phase is present. But, for three families of quarks,n = 3, the matrix contains three
rotation angles and one complex phase. A non-vanishing complex phase is the unique
evidence of CP violation in the Standard Model.
Indeed the CKM matrix has nine entries, but not all of them areindependent.
Therefore, the matrix can be reduced to a certain ”canonical” form which is one of
the conventions to represent the 3× 3 CKM matrix imposing unitarity. This matrix
configuration contains 4 free parameters (θ12, θ23, θ13 andδ ) and its parametrization
is given by [25]

VCKM =










c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13










(1.36)

where si j = sinθi j , ci j = cosθi j , while δ is the CP violating KM phase that is
responsible for all the CP violating phenomena in flavor changing processes in the
SM. The anglesθi j can be chosen to belong in the first quadrant, so thatsi j and
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ci j are taken to be positive. Ifθ23 = θ13 = 0, no mixing occurs between the third
generation with the other two and the original Cabibbo-GIM picture is revealed where
sinθ12 = λ≡ sinθC , andθC is the Cabibbo angle.
Experimentally it is obtained thats13≪ s23≪ s12≪ 1, hence it is very convenient
to use the Wolfenstein parametrization [26] of the matrix. For this the following
definitions are used

s12 = λ =
|Vus|

√

|Vud|2+ |Vus|2
,

s23 = Aλ2 = λ|Vcb

Vus
|,

s13eiδ =V∗ub = Aλ3(ρ+ iη) =
Aλ3(ρ̄+ iη̄)

√
1−A2λ4

√
1−λ2[1−A2λ4(ρ̄+ iη̄)]

,

(1.37)

where

ρ̄≡ (1− λ2

2
)ρ, η̄≡ (1− λ2

2
)η. (1.38)

The diagonal CKM matrix elements are close to unity, while the off-diagonal
elements are very small, with the hierarchyVud≫Vus≫Vub. In terms of Wolfenstein
parametrization taking the above definitions from Equation(1.37) the matrix is
explicitly written as

VCKM ≈








1−λ2/2 λ Aλ3(ρ̄− iη̄)

−λ 1−λ2/2 Aλ2

Aλ3(1− ρ̄− iη̄) −Aλ2 1








+O(λ5) (1.39)

which can be understood as an expansion inλ = |Vus| up to the order ofλ3 . In Equa-
tion (1.39)λ ≈ 0.23, the sine of the Cabibbo angle plays the role of an expansion
parameter. The parametersA, ρ and η turn out to be of the order one. From the
Equation (1.39) it is obvious that matrix elementsVub andVtd contain an irreducible
complex phase which is responsible for the CP violation.

1.4.2 Unitarity Triangle

The unitarity relations of the CKM matrix lead to six independent relations that can
be drawn as triangles in the complex plane and are given by
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V∗udVus
︸ ︷︷ ︸

λ

+V∗cdVcs
︸ ︷︷ ︸

λ

+V∗tdVts
︸ ︷︷ ︸

λ5

= 0

V∗udVub
︸ ︷︷ ︸

λ3

+V∗cdVcb
︸ ︷︷ ︸

λ3

+V∗tdVtb
︸ ︷︷ ︸

λ3

= 0

V∗usVub
︸ ︷︷ ︸

λ4

+V∗csVcb
︸ ︷︷ ︸

λ2

+V∗tsVtb
︸ ︷︷ ︸

λ2

= 0

VudV
∗
cd

︸ ︷︷ ︸

λ

+VusV
∗
cs

︸ ︷︷ ︸

λ

+VubV
∗
cb

︸ ︷︷ ︸

λ5

= 0

VudV
∗
td

︸ ︷︷ ︸

λ3

+VusV
∗
ts

︸ ︷︷ ︸

λ3

+VubV
∗
tb

︸ ︷︷ ︸

λ3

= 0

VcdV
∗
td

︸ ︷︷ ︸

λ4

+VcsV
∗
ts

︸ ︷︷ ︸

λ2

+VcbV
∗
tb

︸ ︷︷ ︸

λ2

= 0.

(1.40)

Four of these six triangles are almost degenerate, meaning that one side of the triangle
is much shorter than the remaining two. Only two of these relations are triangles
which sides are of similar length, which means that they are of the same order in terms
of Wolfenstein parameterλ . These relations are

VudV
∗
ub

︸ ︷︷ ︸

λ3

+VcdV
∗
cb

︸ ︷︷ ︸

λ3

+VtdV∗tb
︸ ︷︷ ︸

λ3

= 0 (1.41)

and

VudV
∗
td

︸ ︷︷ ︸

λ3

+VusV
∗
ts

︸ ︷︷ ︸

λ3

+VubV
∗
tb

︸ ︷︷ ︸

λ3

= 0. (1.42)

These two non-degenerate triangles almost coincide. From the CKM matrix one can
obtainVud ≈ Vtb = 1, which is why the sides of these triangles have about equal
lengths. Also, this is the reason of coinciding and the same size of the third side
V∗cdVcb = VusV∗ts . Since, Vus and −Vcd are of the orderλ according to the CKM
matrix, the following is obtained

V∗ts =−Vcb. (1.43)

Therefore, only one non-degenerate unitarity triangle is derived and described as a
complex conjugate of the corresponding relation in Equation 1.40

VudV
∗
ub+VcdV

∗
cb+VtdV∗tb = 0. (1.44)

It is very convenient to normalize this triangle byVcdV∗cb that in the standard
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parametrization is almost real, which results in this side being exactly from (0, 0) to
(1, 0) in the complex plane. The apex of the triangle has coordinates(ρ̄, η̄) given by
Equation (1.38). This triangle is shown in Figure 1.1.

(0,0) (1,0)

)η,ρ(

)α ( 
2

φ

)β (
1

φ)γ ( 
3

φ
*
cbVcdV

*
ubVudV

*
cbVcdV

*
tbVtdV

Figure 1.1: Graphical representation of the unitarity constraint VudV∗ub+VcdV∗cb+
VtdV∗tb = 0 as a triangle in a complex plane.

Due to the sizable angles, a large CP asymmetry in B decays in the SM are expected.
Therefore, the B meson system is perfect for testing the CKM formalism and thus the
SM itself.
The unitarity triangle angles for the B meson system are defined as

φ1 = β≡ arg[−VcdV
∗
cb/VtdV∗tb] (1.45)

φ2 = α≡ arg[−VtdV
∗
tb/VudV

∗
ub] (1.46)

φ3 = γ≡ arg[−VudV
∗
ub/VcdV

∗
cb]. (1.47)

Equations (1.45), (1.46) and (1.47) show that the phase of the matrix elementVtd

plays a fundamental role in generating a CP violation, thus enabling measurements of
the anglesφ1 , φ2 andφ3 . There are two notations of the angles, one according to the
BaBar collaboration (β,α,γ ) and the second notation coming from Belle experiment
(φ1,φ2,φ3 ).
The Standard Model allows to construct the unitarity triangle using the sides, the an-
gles or the combination of both. Any discrepancy that appears between the observed
and the predicted value indicates a certain dynamics beyondthe Standard Model. If
any of the unitarity triangles does not close exactly, the unitarity of the CKM matrix
would be broken, thus leading to incompleteness of the SM andtherefore new physics
beyond the SM. The current results of these measurements areshown in Figure 1.2.
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γ
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α
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Figure 1.2: Current constraints on the unitarity CKM triangle in theρ̄, η̄ plane.

Up to now, the obtained measurements [27] are in agreement with the CKM SM predic-
tions, yet discrepancies may appear once the constraints are tightened up furthermore
[28]. To achieve these high precision measurements very high statistics are needed. In
addition it is also necessary to have good control of both, experimental and theoretical
uncertainties in CP sensitive as in the insensitive rates.

1.5 CP-Violation in the B meson system

Two kinds of B mesons exist in Nature: neutral and charged. Neutral B mesons
are composed of bottom anti-quark and either down quark (B0 = (b̄d) ) or strange
quark (B0

S = (b̄s) ). Charged B mesons contain bottom anti-quark and an up quark
(B+ = (b̄u) ). B mesons are produced by the strong interactions but they decay
weakly. Their massmB∼ 5.279GeV/c2 [29] is large due to the largeb mass which is
mb≈ 4.3GeV/c2 .
B mesons provide a very rich field for investigating CP violation, mainly due to two
reasons. CP violation expected in the B meson system is quitelarge due to the large
angles in the unitarity triangle (see Equation 1.41). The second plus that goes in favor
of studying CP violation in B mesons is the lifetime of these particles. Namely, B
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mesons are also characterized by a relatively long lifetime

τB0 = (1.519±0.007)×10−12, (1.48)

due to the small value of the coupling constant|Vcb| = λ2 (see Equa-
tions (1.32), (1.37)), which defines the strength of the dominant decay of theb quark,
b→ c.
This situation offers very good conditions for study ofB0− B̄0 oscillation and the B
meson lifetime itself. The dominant decays occur throughb→ c transitions, whereas
those that undergo viab→ u,d,s (such asB0→ψ(2S)π0 ) are considered rare because
they are smaller, compared to the dominant one. In the CKM matrix this is described
by their small corresponding matrix elements.

1.5.1 B meson mixing

The neutral B mesons,B0 andB0
S can oscillate between their particle and antiparticle

states due to the flavor-changing weak interactions. This oscillation from matter to
anti-matter can be used to measure fundamental parameters of the standard model and
in addition to have even more striking effects, such as breaking the matter-antimatter
symmetry in the Universe.
The only hadrons that can undergo these oscillations are thefollowing mesons:K0 ,
D0 , B0 and B0

S. The π0 is its own antiparticle, the top quark is extremely heavy thus
decays before forming stable hadrons, whereas exited mesonstates decay strongly or
electromagnetically before any mixing can occur.
Regarding the B meson system, an arbitrary linear combination of the two neutral B
meson flavor eigenstates is given by

Ψ(t) = Ψ1(t)|B0 >+Ψ2(t)|B̄0 >≡




Ψ1(t)

Ψ2(t)



 . (1.49)

Applying the free Schrödinger equation for theΨ(t) it is obtained

i~
∂
∂t

Ψ = HΨ≡ (M− i
2

Γ)Ψ, (1.50)

where H is the Hamiltonian operator, consisting of mass and decay 2×2 Hermitian
matrices, M andΓ [30],[31]. Since, the off-diagonal elements of the Hamiltonian
H are associated with flavor changing transitionsB0 ↔ B̄0 , in order for CP to be
conserved, the termH12 = H∗21 must be satisfied. IfB0 couples to itself the same way
as theB̄0 , the diagonal elements of the Hamiltonian H must be equal,H11 = H22,
assuming the invariance of CPT symmetry.
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By diagonalizing the Hamiltonian we obtain two eigenvalues:

µ1,2 = M− i
2

Γ±
√

(M12−
i
2

Γ12)(M∗12−
i
2

Γ∗12) . (1.51)

Their corresponding mass eigenstates are given as

|BL >= p|B0 >+q|B̄0 >), for µ1, (1.52)

|BH >= p|B0 >−q|B̄0 >), for µ2 . (1.53)

The ratio betweenp andq is defined as

p
q
=

√

M∗12− i
2Γ∗12

M12− i
2Γ12

≡ 1− ε
1+ ε

, (1.54)

with

p=
1+ ε

√

2(1+ |ε|2)
and q=

1− ε
√

2(1+ |ε|2)
, (1.55)

where the complex coefficients,p and q satisfy the normalization condition√

p2+q2 = 1.
In case of CP invariance, the probability of one flavor being transformed into the
opposite flavor is the same for both, the neutral mesonB0 and its antiparticleB̄0 .
This means thatM12 = M∗12 andΓ12 = Γ∗12 and thereforeε = 0 andp = q. Those
eigenstates, which represent the mass eigenstates, are also CP eigenstates.
The masses and lifetime values that correspond to these mass-eigenstates can be
extracted from the eigenvalues

m1,2 = R e(µ1,2) Γ1,2 =−2ℑ(µ1,2). (1.56)

The B mesons show some basic differences when compared to theneutral K meson
system [32], [1]. Similarly as for the Kaon case, in additionto the two states with
definite masses and lifetimes, the heavyBH and light BL state also exist. However,
unlike the two kaon CP eigenstatesK0

S andK0
L , the eigenstates of the B mesonBH and

BL have almost identical lifetimesΓH ∼ ΓL ≡ Γ(∆Γ = ΓH −ΓL, ∆Γ/Γ ∼ O(10−3)) .
Additional important difference between the B and the K meson system is that the box
diagram in Figure 1.3 showingB0− B̄0 oscillations, is dominated by virtualt -quark
exchange because according to the CKM matrixVtb ∼ 1 is a dominant element. The
decay rate contributing terms(mq/mb)

2 are much smaller for light quarks than for the
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Figure 1.3: Example of leading order contribution to neutral meson mixing.

heavyt quark.
Furthermore, the mass eigenstates statesBH andBL can be considered as pure CP
states, sinceq

p ∼ 1 is a good approximation. By using Equation (1.54) and the
corresponding CKM matrix elements this approximation is obtained

q
p
=

√

M∗12

M12
+O(

Γ12

M12
)≃ V∗tbVtd

VtbV∗td

|q
p
| ∼1.

(1.57)

The term depending onΓ12
M12
∼ (mb

mt
)2≈ 10−2 can be neglected.

BH andBL are very convenient for describing the evolution of particles in time. In the
SM the interaction shown in Figure 1.3 results in a transition B0↔ B̄0 and hence the
mass eigenstates are not flavor eigenstates.

1.5.2 Time Evolution of Neutral B Mesons

The time evolution of neutral B mesons is given by

|B0(t)>= g+(t)|B0 >+
q
p

g−(t)|B0
>, (1.58)

|B0
(t)>= g+(t)|B0

>+
p
q

g−(t)|B0 >, (1.59)

where
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g±(t)≡
1
2
(e−imHt− 1

2ΓHt ±e−imLt− 1
2ΓLt). (1.60)

With the average massm= (mH +mL)/2 and average decay widthΓ = (ΓH +ΓL)/2
Equation (1.60) can be written as

g± =
1
2

e−im̄te−
1
2Γ̄t(ei∆mt/2e−∆Γt/4±e−i∆mt/2e∆Γt/4). (1.61)

Since, for neutral B mesons the lifetime difference betweenthe two mass eigenstates
can be ignored,∆Γ = 0, the Equation (1.61) becomes

g± = e−Γt/2ei∆mt/2±e−i∆mt/2

2
(1.62)

wheree−im̄t is removed by convention.
By inserting Equation (1.62) in Equations (1.58) and (1.59), the time evolution of
neutral B mesons takes the form

|B0(t)>=
1
2

e−Γt/2[(1+e−i∆mt)|B0 >+
q
p
(1−e−i∆mt)|B̄0 >]

|B̄0(t)>=
1
2

e−Γt/2[
p
q
(1−e−i∆mt)|B0 >+(1+e−i∆mt)|B̄0 >],

(1.63)

or the form

|B0(t)>= e−Γt/2[cos(
∆mt

2
)|B0 >+i

q
p

sin(
∆mt

2
)|B̄0 >]

|B̄0(t)>= e−Γt/2[i
p
q

sin(
∆mt

2
)|B0 >+cos(

∆mt
2

)|B̄0 >].

(1.64)

The probability ratio of mixing through box diagrams as given in Figure 1.3 is
∆m/Γ = 0.770±0.008 [29] for the B meson system. Therefore, the matrix element
for the decay is more prominent than that for the mixing, which means that most B
mesons decay before changing flavor.

1.5.3 Time-dependent CP-Violation

Because bothB0 andB̄0 can decay into the same final state, with definite CP parity,
the corresponding decay amplitudes are defined by

ACP=< fCP|B0 >, ĀCP =< fCP|B̄0 > . (1.65)

Using the time evolution from Equation (1.64), the time-dependent decay amplitudes
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are given by

|ACP(t)>= ACPe−Γt/2(cos(
∆mt

2
)|B0 >+iλCPsin(

∆mt
2

)|B̄0 >)

|ĀCP(t)>= ĀCPe−Γt/2(
i

λCP
sin(

∆mt
2

)|B0 >+cos(
∆mt

2
)|B̄0 >)

(1.66)

whereλCP is defined as

λCP=
q
p

ĀCP

ACP
. (1.67)

The time-dependent decay rates are given by the squares of the decay amplitudes

Γ(B0→ fCP) = |< fCP|B0(t)> |2,
Γ(B̄0→ fCP) = |< fCP|B̄0(t)> |2.

(1.68)

The time dependent CP asymmetry rate is defined as

aCP(t)≡
Γ(B̄0→ fCP)−Γ(B0→ fCP)

Γ(B̄0→ fCP)+Γ(B0→ fCP)

=
(|λCP|2−1)cos(∆mt)+2ℑ(λCP)sin(∆mt)

1+ |λCP|2
= ACPcos(∆mt)+SCPsin(∆mt),

(1.69)

where

ACP≡
|λCP|2−1
|λCP|2+1

, SCP≡
2ℑ(λCP)

|λCP|2+1
. (1.70)

ACP is a parameter that measures the direct CP violation, whileSCP is responsible for
the mixing-induced CP violation.
In order to access these parameters, one needs to measure thetime-dependent decay
rates ofB0 andB̄0 decaying into a common CP final state. When rare decays are in
question then this measurement is experimentally challenging.

1.5.4 Types of CP Violation

The decay amplitudesAf , A f̄ , Āf and Ā f̄ of a given meson and its antiparticle,
decaying respectively into a final statef or f̄ are denoted by
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Af =< f |H|M >,

A f̄ =< f̄ |H|M >,

Āf =< f |H|M̄ >,

Ā f̄ =< f̄ |H|M̄ >,

(1.71)

where H is the Hamiltonian.
The CP violation parameter then is represented as a combination of the ratio between
the decay amplitudesAf andĀf and the ratio of the two mixing coefficientsp andq
as given in Equation 1.67.
Depending on theλCP, three types of CP violation can be distinguished: CP violation
in decay, CP violation in mixing and CP violation that arisesfrom the interference
between decay and mixing.
Furthermore, CP violation in charged meson decays can depend only on the combina-
tion |Af /Af | . In the case of neutral mesons the situation is more complicated, since

the violation of CP depends on meson oscillations,|q/p| and on( q
p)(

Af
A f
) .

1.5.5 CP-Violation in Decay

In the case when CP violation in decay occurs, the decay amplitudes for a particle and
its antiparticle in a certain final state or conjugated final state differ from one another.
An example of this type of CP violation, also known as direct CP violation, is shown
in Figure 1.4 and is defined by

b u

d d

0B
-π

+K

+W u

s 2

b u

dd

0
B

+π

-K

-W u

s 2

Figure 1.4: CP violation in decay in the B meson system.

|Af /Af | 6= 1 (1.72)
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This means that the two CP conjugate states have different absolute values for their
decay amplitudes. This kind of process is possible for charged and for neutral mesons.
In charged meson decays where no mixing effects are involved, this type of CP
violation is the only possible source of CP asymmetries and is defined as:

A f ≡
Γ(M−→ f̄ )−Γ(M+→ f )

Γ(M−→ f̄ )+Γ(M+→ f )
=
|Ā f̄ /Af |2−1

|Ā f̄ /Af |2+1
. (1.73)

1.5.6 CP-Violation in Mixing

In the case of neutral mesons, flavor specific final states can reveal CP violation via
M0− M̄0 oscillations. Flavor specific decays are those that can comeeither from the
neutral meson or from its antiparticle, but not from both:

M0→ f 8 M̄0 or M0
9 f ← M̄0 (1.74)

The violation of CP inB0− B̄0 mixing is depicted in Figure 1.5 and is described by

d
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2
b d

t,c,u
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0
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0B

d b

2
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db
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0
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u,c,t

Figure 1.5: CP violation inB0− B̄0 mixing.

|q/p| 6= 1 (1.75)

This kind of CP violation is only observable for neutral mesons. It originates from
the fact that no such choice of phase convention exist in order to make the mass
eigenstates identical to the CP eigenstates. Regarding thecharged mesons, mixing
between charged particles is not allowed due to charge conservation.
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A typical example of a CP violation in mixing is seen in the decays of K mesons. In
particular, prominent flavor specific channels for neutral mesons likeK0 , D0 or B0 are
provided by semileptonic decays. When charged current semileptonic neutral meson
decays (M0,M̄0→ l±X ) are considered, then the CP violation in mixing is the only
possible source of CP asymmetry. In such case|Al+X|= |Āl−X| andAl−X = Al+X = 0,
thus the asymmetry is given by

ASL≡
dΓ/dt[M

0
(t)→ l+X]−dΓ/dt[M0→ l−X]

dΓ/dt[M
0
(t)→ l+X]+dΓ/dt[M0→ l− X]

=
1−|q/p|4
1+ |q/p|4 . (1.76)

1.5.7 CP-Violation in Interference between Decay and Mixing

CP violation can also appear when the particle and the antiparticle decay into a
common final state,M0→ f andM̄0→ f . In order for this to happen the final state
must be a CP eigenstate,f = fCP. Hence, the CP violation in interference between
decay (M0→ fCP) and mixing (M0→ M

0→ fCP) where different states decay to a
common final CP eigenstate is defined by

ℑ(λ f ) 6= 0, (1.77)

whereλ f is given by the Equation 1.67.
This type of CP violation obviously depends on the neutral meson mixing and
therefore is time-dependent. This is the reason why it sometimes bears the name
time-dependent CP asymmetry.
The effect of CP violation that occurs due to the interference between the decays to
a common final state with and without mixing is proportional to the imaginary part
of λ f as shown in Equation (1.77) and thus can be non-zero even whenthe absolute
value of|Af/Āf |= |q/p|= 1. Decays where this condition is fulfilled are particularly
interesting. If this is the case then the observed asymmetrycan be interpreted as a
direct measurement of certain differences of phases of the CKM matrix elements,
with no theoretical uncertainties.
CP violation as a result of interference between decay and mixing is observed for
example in the decays of neutral mesons such as

K0→ ππ← K̄0 (1.78)

D0→ KK̄, ππ, Kπ, K̄π← D̄0 (1.79)

B0→ ψKS, DD̄, ππ← B̄0. (1.80)

The situation of CP violation in interference considered inthe B meson system is
shown in Figure 1.6.
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Figure 1.6: CP violation via mixing and decay regarding the Bmeson system.

Considering decays of neutral mesons into common CP eigenstate, the CP violation is
described by the following time-dependent asymmetry:

ACP(t)≡
dΓ/dt[M

0
(t)→ fCP]−dΓ/dt[M0→ fCP]

dΓ/dt[M
0
(t)→ fCP]+dΓ/dt[M0→ fCP]

. (1.81)

The asymmetry calculated by the time-dependent decay ratesfrom Equation (1.68)
can be given as

ACP(t) =
SCPsin(∆mt)−ACPcos(∆mt)

cosh(∆Γt/2)−A∆Γ sinh(∆Γt/2)
, (1.82)

whereSCP andACP are described by Equation 1.70, whileA∆Γ is given by

A∆Γ =
2R e(λCP)

1+ |λCP|2
(1.83)

The Equation representing the relation between the CP parameters is given by

|SCP|2+ |ACP|2+ |A∆Γ|2 = 1. (1.84)

It shows explicitly that the observed CP asymmetry in this case consists of two sources,
which can be clearly separated by the time dependence. The corresponding parame-
tersSCP andACP measure mixing-induced and direct CP violation, respectively. The
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parameterA∆Γ provides additional observable in neutral meson decays with sizable
decay width difference∆Γ .

1.5.8 Measurement of CP-Violation

Since, B mesons are so heavy a high variety of decay modes are available and
the branching fractions for the modes usable for CP violation are generally small.
Therefore, huge amount of B meson of the order ofO(108) is necessary to obtain
significant measurements of CP violation. Such high precision measurements are
provided by machines like PEP II at SLAC [4] and the KEKB accelerator at KEK.
These machines enable the required conditions for performing an experimental
determination of the angles and sides of the unitarity triangle using B meson decays.
These B factories produceBB̄ pairs at theϒ(4S) resonance, at 10.579GeV, being the
lowest energy at which B mesons can be produced in ane+e− collider. Furthermore,
the produced B mesons at theϒ(4S) resonance are essentially at rest in the center-of-
mass system (CMS).ϒ(4S) decays to more than 95 % intoBB̄ pairs. The fractions of
produced charged and neutral pairs is almost identical, namely B+B− (51.3±0.6)%
andB0B̄0(48.7±0.6)%, respectively [29].
The ϒ(4S) has the quantum numbersJPC = 1−− . Since, C and P are conserved in
strong interactions, their values must be the same for theBB̄ pair. The B mesons are
pseudo-scalars (JP = 0−), produced in a coherent stateB0B̄0 , with the relative orbital
momentuml = 1. The two pseudo scalar B mesons must be produced in p-wave state
to conserve angular momentum. The parity of the system isP = (−1)l = −1 and
requires the spatial part of the wave function of theB0B̄0 state to be anti-symmetric.
Therefore, the only possibility to achieve this is that theB0B̄0 pair oscillates coher-
ently. The quantum mechanically entangled state is given by

|Ψ(t1, t2)>=
1√
2
(|B0

1(t1)> |B̄0
2(t2)>−|B̄0

1(t1)> |B0
2(t2)> . (1.85)

The coherence ofB0B̄0 pair is preserved until one in the particle pair decays. After
the decay of one of the B mesons, the flavor of the remaining meson is tagged and
continues evolving in time. Because of theB0B̄0 mixing effect one can observe events
with both particles decaying asB0 or B̄0 , but only if these decays occur at different
times.
Substituting the quantum mechanical state in Equation 1.64, the following time
evolution is obtained

|Ψ(t1, t2)>=
1√
2

e−Γ(t1+t2)/2[cos
∆md∆t

2
|B0

1 > |B̄0
2 >+i

q
p

sin
∆md∆t

2
|B̄0

1 > |B0
2 >],

(1.86)

where∆t = t2− t1 . If we can determine∆t and the flavor of one B meson, then the
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flavor and the time evolution of the other B meson is known.
For the time-dependent CP violation measurements, one of the B mesons is recon-
structed in a CP eigenstate, e.g.B0→ J/ψK0

S . From the remaining particles in the
event, the vertex of the other B meson is reconstructed and depending on its daughter
particles its flavor is identified. The procedure of flavor identification of the other B
meson is called tagging. For example, the tag side reveals its flavor by the sign of
the produced lepton: If the produced lepton on the tag side carries negative charge
(signaling aB̄0 ) then the B meson reconstructed from a CP eigenstate isB0 . If the tag
side has a positively charged lepton, then the reconstructed B meson on the CP side is
B̄0 .
Despite the fact that B mesons have a long lifetime, yet it is very difficult to measure
its value as precise as needed for the study of CP violation. Experimentally, a lifetime
measurement in order of a pico second is impossible with current technology. This
is why B-factories are constructed with asymmetric beam energies: B mesons at a
B-factory are produced with a Lorentz boost along the electron beam,z-direction
making it possible to measure the distance∆z between the two decay vertices of the B
mesons. Since, the producedB0 andB̄0 are approximately at rest in theϒ(4S) center-
of-mass system, the measurements of the displaced decay vertices of the produced
B mesons allow to translate the flight length difference∆z into a proper decay time
difference∆t : ∆t ≃ ∆z/(βγc) . The vertex position of thefCP decay is reconstructed
using charged tracks (for example, lepton tracks fromJ/ψ in B0→ J/ψK0

S decays),
while that of theftag decay is reconstructed using well-reconstructed tracks that are
not assigned tofCP. In Figure 1.7 the production of the two coherent B meson pairs
and their corresponding decays is explicitly depicted.

-e +e

Y(4S)

tag
0B

rec
0B

-l -K

0
SK

-µ

+µ

-π

+π

 z∆

Figure 1.7: The decay ofB0B̄0 into the golden modeJ/ψK0
S.



Physics Motivation 29

Therefore, the combination of the flavor obtained from the second B meson and
the time difference measurement, provides convenient conditions to measure the
time-dependent CP violating asymmetry.
Considering the decay chainϒ(4S)→ B0B̄0→ fCP ftag, where one B meson decays at
time tCP into CP final statefCP, while the other B meson at timettag decays to a final
state ftag that distinguishes between theB0 andB̄0 , the decay rate is time-dependent
and is given by

P (∆t) =
e−|∆t|/τB0

4τB0
(1+q[SCPsin(∆md∆t)+ACPcos(∆md∆t)]). (1.87)

Here SCP and ACP are the CP violating parameters already introduced in Equa-
tion 1.70,τB0 is the life time of theB0 , ∆md is the mass difference between the two
neutral B mass eigenstates,∆t = tCP− ttag andq±1 is theb flavor charge, depending
whether the B meson is aB0 or aB̄0 .

1.5.9 B0→ ψ(2S)π0 and the decay angleφ1

Depending on the chosen CP eigenstate, any of the three angles φ1 , φ2 or φ3 of the B
triangle can be measured. These over-constraint measurements are used to improve
the determination of the elements of the CKM matrix or to discover new physics
beyond the SM.
One angle of this triangleφ1 (β ) is measured via the first asymmetry observation in
B meson decays using the decayJ/ψK0

S and related decay channels. In absence of
direct CP violation the time dependent CP asymmetry is givenby

N(B̄→ X)−N(B→ X)

N(B̄→ X)+N(B→ X)
|t = sin2φ1sin∆m∆t (1.88)

where∆t is the difference between the decay times of the two neutral Bmesons com-
ing from theϒ(4S) decay.
CP violation in the neutral B meson system has been established by performing mea-
surements of the CP violating parameter sin2φ1 , whereφ1 is arg[−VcdV∗cb/VtdV∗tb] and
Vi j are the CKM parameters, involvingb→ cc̄s transitions e.g.B0→ J/ψK0

S . These
measurements have been performed by Belle [33] and BaBar [34] collaborations. The
SM in this case predictsS fCP = −ξ f sin2φ1 , whereξ f = ±1, corresponding to a CP
even or CP odd final state, respectively andA fCP = 0.
In the Standard Model the decayB0→ ψ(2S)π0 occurs either through a tree diagram
with internal W emission (b→ d ), or a penguin which includes an intermediate loop
diagram (b→ d ). The amplitudes of both diagrams are of the same order, but the pen-
guin diagram is highly color suppressed due to the three gluons introduced to conserve
color. The corresponding Feynman diagrams are shown in Figure 1.8.
For fCP = ψ(2S)π0 final state, which is a CP-even final state, the mixing -induced CP
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Figure 1.8: Feynman diagrams of theB0 → ψ(2s)π0 decay that can occur either
through a tree diagram (left) or a penguin diagram (right).

parameterSψ(2s)π0 becomes−sin2φ1 if the tree diagram dominates.
However, if there is significant penguin contribution or other substantial contributions,
precision measurements of time-dependent CP asymmetry inb→ cc̄d transitions e.g
B0→ ψ(2S)π0 or B0→ J/ψπ0 may reveal values for the CP violating parameters
S fCP andA fCP that are different from the SM predictions−sin2φ1 and 0, respectively.
Thus, the possible penguin contribution of theb→ cc̄d transitions, which contain a
different CKM phase, can alter the measured sin2φ1 value. Any discrepancy that can
be observed would appear either as a consequence of the penguin contribution effect
or due to new physics. Therefore, measurements of CP asymmetries in theb→ cc̄d
transition B meson decays, play an important role in identifying whether or not the
CKM model provides a complete description of the CP violation in the B meson sys-
tem.
Additional motivation for this study involves a possibility to provide model-
independent constraint on the penguin pollution withinB0→ ψ(2S)K0

S .



Chapter 2

The Belle experiment

The aim of the Belle Experiment [35], [7] is to study and measure with high precision
the CKM matrix parameters using B meson decays. The KEKB accelerator [35], [5]
is located at the High Energy Accelerator Research Center (KEK) in Tsukuba, Japan.
This particle collider exceeded its design luminosity of 1×1034cm−2s−1 , achieving
the world’s largest luminosity of 2.11×1034cm−2s−1 (Figure 2.1). Until its shutdown
in 2010 the machine has accumulated integrated luminosity of about 1040fb−1 . Most
of the data was taken at the center-of-mass of theϒ(4S) resonance and contains 772
million BB pairs.

2.1 KEKB Accelerator

The KEKB accelerator (Figure 2.2 (left)) is an asymmetric two ring e+e− collider
operating atϒ(4S) resonance, designed to produce large numbers ofBB̄ pairs. The
electrons circulate in the so-called high energy ring at 8GeV, while the positrons are
filled in the low energy ring at 3.5GeV. Both rings are placed in a tunnel of about
3km circumference. The beams are provided from a linear injection accelerator. They
cross at two points but collide at only one. Figure 2.2 (right) shows the layout of the
two rings. The different energies of thee+ ande− beam give theϒ(4S) a Lorentz
boost ofβγ = 0.425. Therefore, the produced B mesons are also boosted, which al-
lows measurement of the decay flight length in the order of 100µm. This enables the
study of B meson decay time (see Section 1.5.8).
The total beam currents areI− = 1.35A for the electron beam andI+ = 2.0A for the
positron beam. About 1600 bunches are stored in each beam.
In order to minimize the coupled bunch instabilities that occur due to the electromag-
netic field induced by the beams, two different radio frequency acceleration systems
were installed at Belle. One type are the normal conducting Accelerator Resonantly-
coupled with Energy Storage (ARES) cavities, placed in the positron beam in order
to handle the higher beam currents. Another type are the super-conducting cavities
located in the electron beam to achieve higher voltage [36].

31
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Figure 2.1: Total integrated luminosity at Belle.

In December 2006, two super-conducting crab cavities [37] were installed, one in the
low energy ring and another in the high energy ring. These crab cavities tilt the bunches
before colliding providing an increase in luminosity.
One of the most important features of the KEK B-factory accelerator is the crossing
angle between the positron and the electron beam that is set to ±11mrad in order to
avoid parasitic collisions. In this way there is no need for abending magnet in order
to separate the beams. As a result, the background due to synchrotron radiation is sig-
nificantly reduced and a circular beam-pipe could be used.
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Figure 2.2: Schematic view of the KEKB accelerator system.

2.2 Belle Detector

The Belle detector was designed and constructed to carry outquantitative studies of
B meson decays and especially rare B-decay modes with very small branching frac-
tions. It is a large solid-angle magnetic spectrometer, constructed around 1.5T super-
conducting solenoid and iron structure surrounding the KEKB beams at the interaction
region. Its purpose was to detect visible final state particles that occur in the decays
of B mesons. The detector was designed such that the angular acceptance for both
charged and neutral particles is 17◦ < Θ < 150◦ . Belle detector was designed such
that it could provide good vertex and momentum resolution, as well as particle iden-
tification for separatingπ , K and e in order to satisfy the requirement of an efficient
B-flavor tagging. High efficiency and good resolution in particular, especially for low
energy photons (20MeV−500MeV), were also properties of the detector. For the
detection ofKL and angular measurements, high detection efficiency and good resolu-
tion, as well as high detection efficiency and low fake rate for muons with momentum
as low as 0.6GeV, were also necessary for precise operation of the Belledetector.
These criteria were satisfied in the separate sub-systems that constitute the Belle de-
tector. The layout of the Belle detector with all its components is shown in Figure 2.3.
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Figure 2.3: Belle detector.

2.2.1 Beam-pipe

The beam-pipe is the first piece of material surrounding the interaction point. Since,
the interaction point is in a vacuum inside the beam-pipe, the beam-pipe itself has to
withstand the pressure from the atmosphere in order to keep the vacuum.
On the other hand, the beam-pipe has constraints on the building material. One of
the most important features of the Belle detector is the precise determination of decay
vertices. However,z-vertex position resolution is limited by multiple Coulombscatter-
ing in the beam-pipe wall and the first layer of the silicon vertex detector. Therefore,
to reduce the impact of the beam-pipe on the trajectories of the particles a very thin
beam-pipe material is chosen.
For the construction of the double-wall cylinder which is infact the central part of the
beam-pipe beryllium is used. The two beryllium cylinders are separated by a 0.5mm
gap filled with paraffine for cooling. The total material thickness of the central beryl-
lium section is 0.3% [7] of a radiation length. The outer surface of the beam-pipe is
covered by 20µm thick gold foil to reduce the low energy X-ray background from the
high energy ring. The total thickness of the outer coverage corresponds to 0.6% of
radiation length [7].
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2.2.2 Silicon Vertex Detector

The first detector sub-system just outside the beryllium beam-pipe is the silicon vertex
detector (SVD), which provides vertex information of B meson decays. This is crucial
for the observation of time-dependent CP asymmetries, which was one of the primary
goals of the Belle experiment. Since, the vertex resolutionis dominated by Coulomb
scattering, the design of the detector has strict constraints. In particular, the innermost
layer of the vertex detector must be placed as close as possible to the interaction
region.
In the initial design the silicon vertex detector (SVD1) [38] was build out of three
concentric cylindric layers with radii of 30mm, 45.5mm and 60.5mm respectively
and covers a solid angle 23◦ < θ < 139◦ , with θ being the angle from the beam
axis. This corresponds to 86% of the full solid angle. However, due to the smaller
acceptance and the insufficient radiation hardness, the SVD1 detector was replaced.
The later design (SVD2) [39] included four detector layers instead of three, standing
at radii of 20mm for the innermost layer and 43.5mm, 70mm and 88.8mm for
the remaining three layers, respectively. In addition, in the upgraded silicon vertex
detector design the geometry acceptance was increased to 17◦ < θ < 150◦ . Schematic
view of the SVD2 along with the central drift chamber inner wires is shown in
Figure 2.4. The distance between the first layer and the interaction point should be as
short as possible, but since radiative background increases inversely with the distance,
the layout of the inner layer is determined by the radiation tolerance of the electronics
used and vertex precision needed.

Figure 2.4: View of the SVD2 sub-detector structure along with the CDC inner wires.

On the other hand the distance of the layer most out is constrained by the radius of the
next coming sub-detector.
On each layer, ladders consisting of double-sided silicon strip detectors (DSSD) are
mounted. Each ladder is constructed of two half-ladders that are joined by support
structure. The DSSD’s have thickness of 300µm and provide depletedpn-junctions.
On the n-side of the pn-junction a 75V voltage is applied, while thep-side is
grounded. The DSSD is designed such that the large diode areais divided into
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strips, each of which is read out by a separate electronic circuit. The n-strips are
interleaved withp-implants to provide better separation. When a charged particle
traverses through then-bulk silicon electron-hole pairs are produced. These produced
electrons and holes then drift towards the correspondingn or p strips on the surface
of the DSSD. Thep strips are along the beam axis and allow measurement of the
rφ coordinate of a traversing charged particle, while then strips are perpendicular
to the beam axis and measure thez position. A charged particle will travel in the
electrical bias field, producing a 2D signal indicating the position of the charged
particle. The best way to estimate the performance of the SVDis through the
impact parameter resolution. The impact parameter is defined as the point of closest
approach to the interaction point. The resolution is determined from the distribution
of two track parametersσz and σrφ . The resolution inz and rφ depends on the
momentum of a traversing particlep and the polar angleθ and can be expressed as [7]:

SVD1:σz = (42.2⊕ 44.3

pβsin5/2 θ
)µm, σrφ = (19.2⊕ 54.0

pβsin3/2 θ
)µm

SVD2:σz = (27.8⊕ 31.9

pβsin5/2 θ
)µm, σrφ = (21.9⊕ 35.5

pβsin3/2 θ
)µm.

(2.1)

The term in the denominator is denoted as pseudo-momentum, while ⊕ denotes a
quadratic sum. The momentum and angular dependence of the impact parameter res-
olution are shown in Figure 2.5.

2.2.3 Central Drift Chamber

The precise determination of particles’ momentum and the efficient reconstruction of
charged particle tracks are essential features of the measurements performed at the
Belle experiment. These measurements are obtained using the Central Drift Chamber
(CDC) as primary device for particle tracking. The CDC also plays an important role
in measurements of charged particle energy loss in the chamber gas (dE/dx) used for
particle identification and provides fast trigger signals [40].
The Central Drift Chamber of the Belle detector is located ina 1.5T magnetic field
provided by a super-conducting solenoid. The chamber structure is shown in Fig-
ure 2.6. The CDC is asymmetric in thez-direction in order to provide an angular
coverage within the detector acceptance and to accommodatethe fact that the particles
from ϒ(4S) are boosted due to the asymmetric nature of the collider itself.
Belle’s CDC is a cylindrical wire drift chamber. It is composed of axial drift cells,
stereo drift cells and cathode image read-out. The CDC has intotal 8400 drift cells
distributed amongst the 3 layers of cathode strips and 50 anode layers that are orga-
nized in 11 super-layers. Each anode layer contains betweenthree and six either axial
or small-angle-stereo layers as indicated in Table 2.1. Theindividual cells of the cham-
ber are almost square. Except for the inner three layers, thedrift cells have maximum
drift distance between 8mm and 10mm, whereas the radial thickness ranges between



The Belle experiment 37

z Impact Parameter Resolution

0

25

50

75

100

125

150

175

200

225

250

0 1 2 3 4 5 6 7 8
pβ*sin(θ)

5/2 
(GeV/c)

R
es

o
lu

ti
o
n

 (
µ

m
)

- cosmic ray
- γγ → 4π

36 ⊕ 42/pβ*sin(θ)
5/2

 (µm)

xy Impact Parameter Resolution

0

25

50

75

100

125

150

175

200

225

250

0 1 2 3 4 5 6 7 8
pβ*sin(θ)

3/2 
(GeV/c)

R
es

o
lu

ti
o
n

 (
µ

m
)

- cosmic ray
- e

+
e

-
 → µ

+
µ

-

- γγ → e
+
e

-

19 ⊕ 50/pβ*sin(θ)
3/2

 (µm)

Figure 2.5: Impact parameter resolution inz andrφ dependent on the pseudo momen-
tum p̄ for muons from cosmic ray data [7]. The pseudo-momentum ¯p is defined as
p̄= pβsinθ5/2 in z (left) and p̄= pβsinθ3/2 in rφ (right), respectively.

Figure 2.6: Schematic view of the Belle CDC structure.

15.5mm and 17mm. The cells of the inner three layers have smallersize, while their
signal is read by the cathode strips on the cylinder walls. A 30µm diameter gold-plated
tungsten is used for the axial wires in order to maximize the drift electric field. On the
other hand for the stereo wires aluminum is used with diameter of 126µm providing
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reduction of the material used in the tracking chamber volume. This diameter of the
field wires was chosen in order to keep the electric field on thesurface of the wires
below 20KV/cm, which is the limit for avoiding the radiation damage. Thelength of
the longest wires is 2400mm. The inner radius is set to 103.5mm to achieve good
tracking efficiency for lowpt -tracks, whereas the outer radius is 874mm.

Super layer type

and no.

No. of

layers

Signal channels

per layer
Radius(mm)

Stereo angle (mrad) and

strip pitch (mm)

Cathode 1 64(z)×8(φ) 83.0 (8.2)

Axial 1 2 64 88.0-98.0 0

Cathode 1 80(z)×8(φ) 103.0 (8.2)

Cathode 1 80(z)×8(φ) 103.5 (8.2)

Axial 1 4 64 108.5-159.5 0

Stereo 2 3 80 178.5-209.5 71.46∼ 73.75

Axial 3 6 96 224.5-304.0 0

Stereo 4 3 128 322.5-353.5 −42.28∼−45.80

Axial 5 5 144 368.5-431.5 0

Stereo 6 4 160 450.5-497.5 45.11∼ 49.36

Axial 7 5 192 512.5-575.5 0

Stereo 8 4 208 594.5-641.5 −52.68∼−57.01

Axial 9 5 240 656.5-719.5 0

Stereo 10 4 256 738.5-785.5 62.10∼ 67.09

Axial 11 5 288 800.5-863.0 0

Table 2.1: The configurations of the CDC sense wires and cathode strips.

The total amount of wire tension was supported by aluminum end-plates and carbon-
fiber-reinforced-plate cylinder structures that extend between the end-plates. The end-
plates contain cathode, inner and main part. The propertiesof each of these parts are
described elsewhere [41]. They are connected to each other by a stainless-steel bolts
and are gas sealed with a silicon glue.
For the operation of the CDC in order to obtain a good momentumresolution, even
for less than 1GeV, multiple Coulomb scattering should be reduced. For this pur-
pose a low-Z gas was used because it has smaller photo-electric cross section than
argon-based gases and in addition, it provides reduction ofthe background caused by
synchrotron radiation and spent particles. For the CDC a gasmixture of 50% helium
and 50% ethane was used. The mixture has a long radiation length of 640m and
drift velocity that saturates at 4cm/µs at low electric field, which allows for simpler
calibration and reliable and stable performance of the CDC.The ethane component
provides gooddE/dx resolution [42].
Important feature of the Belle’s drift chamber was the ability of performing particle
identification. By using thedE/dx measurements from the chamber it is possible to
distinguish between kaons and pions in the momentum region below 0.7GeV/c. The
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separation between different particle species according to the different energy loss ob-
tained from the CDC is shown Figure 2.7.
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Figure 2.7: Energy depositions in the CDC for different particles as a function of
momentum observed in collision data [7].

2.2.4 AerogelČerenkov Counter

Particle identification, in particular the identification of charged pions and kaons,
plays an important role in two aspects of CP violation studies. One of these aspects is
the flavor determination of the parent B mesons decaying intospecific CP eigenstates,
which can be obtained from the charge of the final state kaon incascade decays. The
other aspect is the reconstruction of exclusive B meson decays, such as two body
decays.
The momentum distribution of the final state kaons from the cascade decays is in the
range up to 1.5GeV/c, which is already covered by thedE/dx measurements in
the CDC and time-of-flight (TOF) measurements. However, theπ/K separation up
to ∼ 4GeV/c momentum range is important for unambiguous reconstruction of the
two-body decays and therefore the Belle detector is equipped with a device based on
Čerenkov techniques.
When a charged particle moves through a material medium faster than the speed of
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light in that same medium, it radiatešCerenkov radiation. The speed of light in a
mediumcmedium is related with the refractive indexn of the medium as

cmedium=
cvacuum

n
. (2.2)

Consequently, a charged particle with velocityβ , massm and momentump, radiates
Čerenkov light, if

n>
1
β
=

√

1+(
m
p
)2. (2.3)

Due to the different masses the aerogelČerenkov counter (ACC) [7], [43] is able to
distinguish between pions and kaons. By selecting materialwith appropriate refractive
indexn pions with momenta larger than 1 GeV/c will emit Čerenkov radiation, while
kaons with the same momenta are below the threshold velocityand therefore will not
generatěCerenkov radiation. Thus, the ACC operates as a threshold counter system,
used in the Belle experiment to extend the momentum range coverage for theπ/K
separation up to 3.5GeV/c.
The ACC is divided into two segments: a barrel ACC and forwardend-cap ACC. The
barrel component consists of 960 counter modules, arrangedinto 60 cells inφ direc-
tion. The end-cap part is composed of 228 counter modules, arranged in five concentric
layers. The configuration of the ACC in the central part is shown in Figure 2.8.
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Figure 2.8: Arrangement of the ACC modules in the central region of the Belle detec-
tor.

The barrel ACC module, whose typical size is 12×12×12cm3 is made of 0.2mm
thick aluminum. Five aerogel tiles are installed in each module and one or two fine-
mesh photo multiplier tubes (FM-PMT) are attached directlyto the aerogels at its sides.
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The end-cap module has rather complicated shape and consists of five aerogel tiles.
The inner surface of the module counter is coated with diffusive reflector sheets for
better efficiency and uniformity of the light collection. The Čerenkov light is detected
by the fine-mesh photo multipliers connected with the aluminum boxes.
The refractive index (n) of silica aerogels in the barrel part of the sub-detector device
ranges between 1.010 and 1.028, depending on the polar angular regions to cover the
momentum range from 1.2GeV/c to 3.5GeV/c. On the other hand, areogels with
n= 1.030 are used so that the device is suitable for flavor tagging.
Silica aerogels with low refractive indices are developed and produced in a two step
fabrication method. The first step concerns the preparationof the alcogels and the
second is related to the hydrophobic surface, which ensureslong-term stability of the
device. Details of the production method are described elsewhere [44], [45]. The
maximal radiation damage on aerogels is set up to∼ 10Mrad equivalent dose [46],
which corresponds to more than 10 years of running at the KEK B-factory.

2.2.5 Time of Flight Counter

In order to establish precise event timing and to enhance discrimination between dif-
ferent particle types, e.g. pions and kaons, in the momentumregion below 1.2GeV/c,
a Time-of-Flight counter (TOF) [47] is used at Belle. The time-of-flight sub-detector
system is used to measure the time particles travel from the interaction point to the
TOF module. Since TOF is sensitive in a track momentum regionbelow 1.2GeV/c,
it is complementary to the ACC. Combined with momentum measurements Belle’s
TOF system providesK/π separation and an effective B-flavor tagging. The TOF
technique using plastic scintillators is very powerful, although conventional method
for particle identification. The time resolution of the TOF system in order to provide
cleanK/π separation for particle momentum below 1.2GeV is 100ps.
The basic principle of the TOF measurement provides determination of the massm of
the particle. The particle massm is related to the measured time of flightT by

m= p

√

1
β2 −1= p

√

(
cT
L
)2−1, (2.4)

wherep denotes the particle momentum measured by the CDC and SVD andL de-
notes the helical distance traveled by the particle from theinteraction point to the TOF
module.
To achieve the design time resolution goal, a few considerations were taken into ac-
count. For this a fast scintillator was used. The light guides were eliminated to min-
imize the time dispersion of scintillation photons propagating in the counter. And in
addition, photo-tubes with large area photo-cathodes wereused, to obtain maximal
photon collection. These strategies led to a module configuration consisting of two
plastic scintillators with a fine mesh photo-multiplier tube (FM-PMT) [47] mounted
directly to the each end of the TOF module. The two scintillators are accompanied
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with thin Trigger Scintillation Counter (TSC) and are located inside the 1.5T mag-
netic field.
Each TOF module consists of two TOF counters with readout at both ends and one
thin TSC with backward readout only. In total there are 64 TOFmodules placed in the
barrel region of the detector. The radial distance to the interaction point is 1.2m. The
TOF covers a polar angle of 34◦ < θ < 121◦.
The photo multiplier tubes are attached to the ends of the TOFwith an air gap of
∼ 0.1mm which provides earlier arrival photons to pass selectively, thus reducing the
gain saturation effect of the tubes due to large pulses at high rate. On the other hand,
the tubes are glued to the light guides at the backward ends ofthe TSC. Each PMT
signal is split into two. One is used for charged measurementand the other is provid-
ing two output signals depending on the threshold level applied. The low level signal
is providing time measurement, while the high level component provides a gate to
the charge-to-time converter (QCT) [47]. The layout of the TOF counter is shown in
Figure 2.9.
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Figure 2.9: Layout of the time-of-flight counter.

2.2.6 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECL) [7] measures the energy and the position of
electromagnetic showers caused by photons and electrons. Since about one third
of the hadron decay products are neutral pions, the ECL has toprovide efficientπ0

reconstruction. It has to provide high energy resolution over a wide range of energies,
from 20MeV/c2 up to 8GeV/c2 . Because most of the photons that appear as end
products of cascade decays have very low energies, the ECL needs to ensure good
performance in the energy region below 500MeV. Moreover, the ECL should be
also suitable for detection of high energy photons originating directly from B meson
decays, for instance e.g.B0 → K∗

0γ and B0 → π0π0 . The high resolution [7] is
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therefore needed in order to reduce backgrounds for these modes. In addition, the
electron identification in Belle relies primarily on a comparison of the charged particle
momentum and the energy deposited in the ECL.
The ECL (Figure 2.10) is composed of segmented array of counters, containing 8736
thallium doped cesium iodide CsI(Tl) crystals and pairs of silicon photo-diodes with
a cross-section of 1×2cm2 used for readout. The barrel component consists of 6624
crystal counters, while the forward and backward end-caps contain 1152 and 960
counters, respectively.
Each CsI(Tl) crystal has a tower structure shape, pointing towards the vicinity of the
interaction point. The length of each crystal is 30cm, corresponding to 16.2 radiation
lengths (X0 ). This length is chosen to prevent deterioration of the energy resolution
from the shower leakage at high energy. The crystals have different transverse
dimensions depending on the polar angle positions. Typicaldimension of a barrel
crystal is 55mm× 55mm for the front face and 65mm× 65mm for the rear face.
The end-cap crystals have larger variations in dimension, ranging from 44.5mm to
70.8mm for the front surface and from 54mm up to 82mm for the rear area.

Figure 2.10: The ECL configuration.

The ECL covers 91% of the solid angle. 3% of the total angular acceptance is
inefficient due to the gap between the barrel and the calorimeter end-caps. The energy
resolution of the electromagnetic calorimeter is given by [7]
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σE

E
= (1.34⊕ 0.066

E
⊕ 0.81

E1/4
)%, (2.5)

where E is the energy measured in units ofGeV. The energy resolution is limited by
the electronic noise, contributing to the first term and by shower leakage fluctuations,
contributing to the second and third term.
The position resolution is given as [7]

σposition= (0.27+
3.4

E1/2
+

1.8

E1/4
)mm. (2.6)

Furthermore, the ECL plays an important role in the identification of electrons.
Charged particles, such as pions and kaons, deposit less energy in the calorimeter
than the electrons. These particles can be distinguished bythe differences in the
shower shapes. Electromagnetic shower and hadronic showerhave different shape
in both transverse and longitudinal direction, thus one candistinguish electrons from
hadrons. The shower shape in transverse direction can be evaluated quantitatively by
a ”E9/E25” measurement, defined as the ratio between the energy summed in 3×3
crystals and the energy accumulated in the 5×5 crystals of the ECL. An additional
feature that is used for electron identification isE/p, denoting the ratio of the energy
measured by the calorimeter to the three momentum measured by the CDC [48].

2.2.7 Extreme Forward Calorimeter

The Extreme Forward Calorimeter (EFC) [7] is a multi-purpose device. One of its
tasks is to provide online luminosity information using Bhabha scattering and tag in-
formation of the two-photon processes. It is also used as a beam mask to reduce the
backgrounds for the central drift chamber. And in addition,in order to improve the
experimental sensitivity to some physics processes, the EFC is utilized to extend the
angular coverage beyond 17◦ < θ < 150◦ .
The extreme forward calorimeter is constructed of two parts, forward and backward,
which are mounted on the front surfaces of the cryostats of the compensating solenoids
of the KEK B-factory. The calorimeter covers from 6.4◦ to 11.5◦ in polar angle in the
forward direction, while the angular coverage for the backward region ranges from
163.3◦ to 171.2◦ .
It is located near the interaction point in a very high radiation level area. Because
the radiation hardness is an important issue for the calorimeter, for its construction
radiation-hard bismuth germanium oxideBi4Ge3O12 (BGO) [49] crystals are used.
The layout of the crystals is shown in Figure 2.11. Each of thetwo calorimeter parts
consists of 160 such crystals, with 5 segments inθ and 32 segments inφ . Space limi-
tation in the detector led to crystal sizes of 12 and 11 radiation lengths for the forward
and backward part, respectively.
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Figure 2.11: Arrangement of the BGO crystals in the forward and backward EFC
detectors.

2.2.8 Solenoid

The super-conducting solenoid provides a magnetic field of 1.5T parallel to thez-
direction. Its cylinder volume is 3.4m in diameter and 4.4m in length. The coil
consists of a single layer of niobium-titanium-copper alloy, embedded in a high pu-
rity aluminum stabilizer. Liquid helium circulates through a tube placed on the inner
surface of the aluminum support cylinder and is used for cooling. The main coil pa-
rameters are presented elsewhere [50].

2.2.9 KL and Muon Detector

The super-conducting coils is surrounded by a multi-layer structure consisting of iron
plates and calorimeters, which is integrated into the magnetic return yoke: TheKL and
µ detector (KLM) [7] is designed to identify long lived, highly penetrative particles,
such asKL and µ± , for instance from the semileptonic decays ofB andD mesons or
from J/ψ→ µ+µ− . For a particle to reach the KLM detector a momentum greater
than 600MeV/c is needed, therefore this device should ensure high efficiency over a
broad momentum range, that exceeds this threshold.
The KLM sub-system consists of 15 alternating super-layersof charged particle detec-
tors and 14 iron plates with thickness of 4.7cm in the octagonal barrel region. There
are also 14 detector super-layers in each of the two end-caps. Each super-layer con-
tains resistive plate counters. The detection of charged particles is provided by these
glass electrode resistive plate counters (RPCs) [51], [52], which have two parallel plate
electrodes with high bulk resistivity, separated by a gap filled with gas (Figure 2.12).
An ionizing particle traversing the gap initiates a streamer in the gas, thus resulting
in a local discharge of the plates which is limited by the highresistivity of the plates
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Figure 2.12: Cross-section of a KLM super-layer.

and the quenching characteristics of the gas between the plates. The location of the
discharge is recorded electronically. In addition, the gasused to fill the gap between
the plates is non-combustible mixture [53] of 62 % HFC-134a,30 % argon and 8 %
butane-silver in order to provide high detection efficiencyand stable operation of the
RPCs.
The iron plates provide a total of 3.9 interaction lengths ofmaterial for a particle trav-
eling in the direction which is orthogonal to the detector planes.
The barrel-shaped region around the interaction point covers a range of 45◦ < θ <
125◦ in polar angle, while in the forward and backward end-caps this coverage is ex-
tended to 22◦ and 155◦ , respectively.
The KL particles which interact in the iron produce a shower of ionizing particles.
Measuring the direction of these showers one can reconstruct decays such as, e.g.
B0→ J/ψKL using the kinematic constrains of energy and momentum conservation.
The discrimination between muons and charged hadrons is based on the distance they
travel and the amount of scattering that occurs. In comparison with the strongly inter-
acting hadrons, electromagnetically interacting muons onaverage travel significantly
farther and with smaller deflections. The KLM is able to detect muons whose momen-
tum is above 1.5Gev/c, with an efficiency greater than 90 % and a fake rate of about
3 %.
The detection ofKL is based upon the obtained cluster information in the KLM. The
cluster information is fundamentally different forKL and charged muons. Muons gen-
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erate thin clusters which penetrate deep, while clusters produced byKL are broader
and will stop within the KLM.

2.2.10 Trigger and Data Acquisition

The trigger system at Belle is used to record physics events or discard background,
using information from several sub-detectors. Since, at high luminosity the production
of BB̄ events occurs at very high rate, this is accompanied by high beam background
due to the high beam currents. Therefore, the trigger systemplays an essential role
in the selection of useful events from the pool of many unwanted events. Another
important feature regarding the operation of the trigger system is the data acquisition
system (DAQ). The data acquisition system reads out and records the data selected by
the trigger. Therefore, the trigger must be flexible, it has to keep the rate of accepted
events at tolerable level for the data acquisition which stores the data, and it must be
efficient by using information from many sub-detectors to keep the efficiency for the
physics events high.
The trigger system at Belle is configured such that the data isselected in three steps.
The first two triggers, the hardware trigger Level-1 and software trigger Level-3 op-
erate in real time. The event reconstruction and classification is done off-line by the
Level-4 trigger.
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Figure 2.13: The Level-1 trigger system of the Belle detector.

The Level-1 trigger is consisting of a sub-trigger system and a central trigger system
named Global Decision Logic (GDL). The trigger system of thesub-detectors can be
divided into two categories: triggers based on selected tracks and triggers based on en-
ergy deposition measurements. CDC and TOF provide trigger signals for the charged
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particles, while the energy deposition in the ECL provides signals from charged and
neutral particles. The KLM trigger system gives additionalinformation on muons and
the EFC triggers are used for tagging two-photon events as well as Bhabha events.
The GDL processes in parallel all information received fromthe separate sub-triggers
and obtains an information about the decision whether an event is selected as signal
or discarded as background. The processing of the information is done within 1.85µs
after the collision and the trigger decision is provided 2.2µs after the event occurance.
Figure 2.13 shows the schematic view of the Level-1 trigger system at Belle.
The purpose of the Level-3 trigger is to further reduce the number of triggered events
to be stored. It reduces the event rate by about 50% by selecting events with at least
one track, withz impact parameter less than 5cm and at least 3GeV energy deposited
in the ECL.
The Level-4 trigger works by the same principle as the Level-3 trigger but it has
stricter track requirements: the distance from the interaction point inz direction should
be less than 4cm, the radial distance from the interaction point around thez axis
should be less than 1cm and the transverse momentum should satisfy the condition
pt > 300MeV/c.
The Data Acquisition (DAQ) system collects information forevents that passed the
Level-1 trigger requirements. For these events, the DAQ system processes the data
taken from the separate sub-detectors. Data from each sub-system are combined into
a single event recorded by an event builder. The output of theevent builder is then
transferred to an online computer farm, the Level-3 trigger. The DAQ is designed
for operation up to 500Hz trigger rate, with dead time fraction less than 10%. An
overview of the DAQ system is shown in Figure 2.14.
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Chapter 3

Analysis of the decay channel
B0→ ψ(2s)π0

In this chapter we present tools and eventually measure the branching fraction ofB0→
ψ(2S)π0 , which would yield the first measurement of this value. The analysis itself is
performed using the so-called ”Blind Analysis” technique.

3.1 The Concept of ”Blind Analysis”

According to this technique, in the development of the analysis it is important not to
optimize the analysis procedure on the data that will be usedfor the measurement,
known also as ”tuning of the data”. Instead, the measurementis performed without
looking at the real data until almost all or eventually all analysis criteria are finalized.
This means that we verify that the developed analysis procedure is properly working
on Monte Carlo (MC) data samples. After these criteria are established we can look
at the data. The purpose of this step is to avoid the possibility of biasing the result in
a particular direction. After that the analysis may not be changed furthermore in order
not to introduce a bias in our result.

3.2 Analysis procedure

At the KEKB collider positron and electron beam collide at the center-of-mass energy
of the ϒ(4S) . At this energy, theqq̄ cross section (see Figure 3.1) is consisting of
three quarters ofqq̄ pairs (events called ”continuum”), whereq = u,d,s,c, while in
the remaining quarter theϒ(4S) is produced. Theϒ(4S) decays almost exclusively in
BB̄ pairs. From the total of 772×106 BB̄ pairs collected with the Belle detector, we
extract a lot less signal events compared to background. Thefirst step to reduce the
amount of background is to apply the event selection (see Section 3.5). We reconstruct
one B meson by combining the four-momentum of final state daughter particles in or-

49
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der to compose the parent B meson. The B meson in this analysiscan be reconstructed
in four modes, two leptonic and two hadronic modes:B0→ψ(2S)(→e+e−)π0(→ γγ) ,
B0 → ψ(2S)(→ µ+µ−)π0(→ γγ) , B0 → ψ(2S)(→ J/ψ(→ e+e−)π+π−)π0(→ γγ)
and B0 → ψ(2S)(→ J/ψ(→ µ+µ−)π+π−)π0(→ γγ) , respectively. We start the
reconstruction from the ”final” reconstructed particles, e.g. we combine two pho-
tons in order to obtain a neutral pion and we combine the four-momentum of two
leptons, electrons or muons to reconstruct theψ(2S) meson or theJ/ψ meson.
Then, in the particular case whereB0 → ψ(2S)π0 , ψ(2S) → l+l− , we combine
the four-momentum of theψ(2S) meson, accompanied by a neutral pion in order
to form a B meson. In the case when theψ(2S) meson decays hadronically,
then we combine the four-momentum of theJ/ψ meson reconstructed from two
leptons and the four-momenta of the two charged pions in order to reconstruct the
parent B meson. Many selection criteria are applied to every event that is being
recorded. Detailed description of the applied selection criteria are given in Section 3.5.
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Figure 3.1: Hadronic cross sections around the center-of-mass energies of theϒ reso-
nances [54].

After the reconstruction of the particles and the application of the selection criteria,
the analysis continues by obtaining the probability density functions (PDFs) for signal
and background events. We discriminate signal against various backgrounds using
two kinematic variables: the mass of the reconstructed B meson, MBC , and the energy
difference between the reconstructed B energy and the beam energy in the center-of-
mass system,∆E (Section 3.5.6).
The signal component isB0→ψ(2S)π0 . The different background contributions come
from genericBB̄ and continuum (qq̄) events, misreconstructedB meson decays, which
happen to occur in the same kinematic region andB→ cc̄X decays (”generic” decays).
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We treat the genericBB̄ decays that are not charmonium decays together with the
continuum as one background component, named ”combinatorial” background. The
reason for this is that these generic B decays do not produce apeak in the signal region
as it is the case for theB→ cc̄X decays. For all these four components we have to find
the probability density functions through a fitting procedure.
Modeling of the separate components is done using a maximum likelihood approach.
The branching fraction value is extracted with an extended maximum likelihood fit,
later also referred as ”final” fit described in Section 3.6.6.
The pure Monte Carlo sample, which is needed for obtaining the PDFs, is taken from
full detector simulation for the signal component and the B decay backgrounds. The
combinatorial background component is extracted directlyfrom the data set.
To account for possible differences between data and MC, we use an additional decay
mode (control sample), that is similar to theB0→ ψ(2S)π0 decay. The correction
factors (see Section 3.7.1) for the model parameters can be determined from the control
sample and then applied toB0→ψ(2S)π0 real data. In this way we prevent biasing of
the result.

3.3 Data Set

The measurement of the branching fraction ofB0→ ψ(2S)π0 is based on a data sam-
ple of 772×106BB̄ pairs collected with the Belle detector at the KEKB asymmetric-
energye+e− (8 on 3.5GeV) collider. This corresponds to a sample for a total of
∼ 1040fb−1 .

3.4 Event Generation

For the Monte Carlo study, the Monte Carlo generator EvtGen [55] is used. Events
generated by EvtGen are made to pass through the full detector simulation, performed
using the GEANT [56] package. The GEANT package accommodates the geometry
of each sub-detector device. Background coming from beam and electronic noise in
each of the detector components is also added to the generated (simulated) events.

3.5 Event Selection

The event selection is the first step in the analysis chain. The aim of the event selection
is to reduce the number of events that are going to be analyzed, from the total of
772× 106BB̄ pairs to a much smaller data set. The event selection is done in two
steps: since, analyzing of the whole data set of Belle by one individual is inefficient
and requires much time, smaller data subsets are prepared. These subsets of data in
which a specific physics mode is enhanced are called ”skims”.The selection of this
subset of events is based on loose criteria in the selection.The main purpose of this
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is to keep all the interesting events, but at the same time notnecessarily reject all the
background events. In other words we do not want to obtain a very pure sample, but
we want to keep the reconstruction efficiency high to avoid bias.
For the analysis ofB0→ ψ(2S)π0 decay, we use an official skim, that contains all
B→ J/ψ(ψ(2S))X candidates. The official skims are not optimized to a particular
signal mode, but rather include other decay modes which can be removed safely by
applying additional selection criteria.

3.5.1 Track selection

The quality of the reconstructed tracks is determined by theimpact parameters,
which denote the distance of closest approach to the interaction point along the beam
direction,|dz| and in the transverse (r − φ ) plane,|dr| . For all selected tracks used
to reconstructψ(2S) andJ/ψ mesons these impact parameters fulfill the following
criteria:

• The impact parameter in ther−φ plane should satisfy:|dr|< 1.5cm.

• The impact parameter in beam direction should satisfy:|dz|< 5cm.

3.5.2 Continuum discrimination

One way to distinguish between a signal and a background is touse event shape
variables. Signal events have spherical and uniform topology, while the continuum
events are jet-like. Inqq̄ events the energy is distributed among the quark and the
anti-quark. In the center-of-mass system the momentum of the quark and anti-quark
is basically oriented in opposite direction from one another. Therefore,qq̄ events
emerge as jets collimated back to back. On the other hand, if theϒ(4S) resonance is
created, the energy is distributed between the two producedB mesons, thus causing
BB̄ events to retain a spherical shape. Therefore, in order to distinguish between these
two different event topologies we use so-called event-shape variables, which are the
measures of sphericity or jet-likeness of a certain event.
In e+e− annihilation processes event shapes are usually characterized using Fox-
Wolfram moments [57]. In our analysis the ratio of the secondto zeroth Fox-Wolfram
moment is used. It ranges between 0 and 1 and is expressed by [57]

R2 =
H2

H0
, where Hk =

∑
i j
|~pi ||~p j |Pk(cosθi j )

(∑
i

Ei)2 . (3.1)
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Here, Pk is the Legendre polynomial,θi j is the opening angle between the mo-
mentump of the i -th and j -th particle, while∑

i
Ei represents the visible energy of the

particles in the event.
This quantity is indicative, meaning that values ofR2 closer to zero indicate a more
spherical event, while the jet-likeness is described byR2 value closer to 1. In order to
suppress continuum we use the condition ofR2 being less than 0.5. Figure 3.2 shows
this quantity for signal Monte Carlo (red) and continuum (blue). As one can see from
this Figure, with the condition we apply we remove almost no signal, but we reduce
the continuum by half.
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Figure 3.2: The second to zeroth Fox-Wolfram moment for signal MC (red) and con-
tinuum (blue).

3.5.3 Reconstruction of particles

TheB0 meson is reconstructed by selecting aψ(2S) meson, that decays either in two
electrons or two muons, or it decays into aJ/ψ (J/ψ→ e+e−,µ+µ− ) accompanied
by two charged pions. As a second daughter particle in the reconstruction chain of the
B0 , theπ0 meson is selected, that decays into two photons.

3.5.4 Reconstruction ofψ(2S) and J/ψ mesons

Theψ(2S) candidates are obtained by combining either two oppositelycharged lep-
tons,e± or µ± , or J/ψ in addition with two charged pions,π+ andπ− . TheJ/ψ is
reconstructed using either its decay into two electrons or into two muons.
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3.5.4.1 Theψ(2S)(J/ψ)→ e+e− (”leptonic”) decay mode

Electrons are identified on a basis of the electron likelihood Le distributed on the
interval [0,1]. For electron identification, the likelihood is calculated using the light
yield in the aerogeľCerenkov information, the time-of-flight in the TOF counterand
the ionization lossdE/dx in the central drift chamber. We reconstructψ(2S)(J/ψ)
candidates requiring that either both of the tracks are identified as electrons, satisfying
the conditionLe > 0.01 or one of the tracks fulfills the electron likelihood condition
and for the other track we require eitherE/p > 0.5, whereE/p is the ratio between
the energy measured by the electromagnetic calorimeter andthe momentum measured
by the drift chamber, ordE/dx> 0.5KeV/cm, wheredE/dx is the energy deposition
measured by the drift chamber.
Electrons fromψ(2S) or J/ψ decays intoe+e− may radiate photons, therefore lose
part of their energy. Consequently, the four-momenta of thephotons within 50mrad
of thee+e− tracks direction is added in the calculation of the invariant mass window
to account for the energy loss due to the emission of bremstrahlung photons. Further-
more, because of the radiative tail in theψ(2S)(J/ψ)→ e+e− signal shape, an asym-
metric invariant mass window of−150MeV/c2≤Me+e−−MJ/ψ(ψ(2S)) ≤ 36MeV/c2

is chosen in order to selectψ(2S) andJ/ψ candidates. TheMJ/ψ(ψ(2S)) mass is the
PDG value. Figure 3.3 shows the mass distribution of theψ(2S)→ e+e− (left) and
J/ψ→ e+e− (right).
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Figure 3.3: The invariant mass ofψ(2S)→ e+e− (left) andJ/ψ→ e+e− (right) can-
didates. The red-dashed vertical lines indicate the invariant mass window selected
in the case when the decays ofψ(2S) and J/ψ(2S) mesons into two electrons are
considered.

3.5.4.2 Theψ(2S)(J/ψ)→ µ+µ− (”leptonic”) decay mode

Muons are identified on the basis of a track penetration depthand hit scatter pattern
in the KL -muon detector. Besides theKL -muon detector information, the muon
identification uses also the information from the inner tracking chambers, the central



Analysis of the decay channelB0→ ψ(2s)π0 55

drift chamber and the silicon vertex detector. The track is identified as a muon
when it satisfies the muon identification conditionLµ > 0.1, whereLµ is the muon
likelihood, with distribution between 0 and 1. The cutLµ > 0.1 is chosen in order
to obtain higher muon detection efficiencies. We reconstruct ψ(2S) andJ/ψ mesons
by requiring that both tracks are identified as muons according to the likelihood
probability or one track is identified as muon using theLµ information and the other
track is identified using the energy measured by the calorimeter, that ranges between
0.1GeV and 0.3GeV. In addition, for theµ+µ− decay mode we select the following
mass window:−60MeV/c2 ≤Mµ+µ− −MJ/ψ(ψ(2S)) ≤ 36MeV/c2 . In Figure 3.4 the
mass distribution of theψ(2S)→ µ+µ− (left) andJ/ψ→ µ+µ− (right) is showed.
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Figure 3.4: The invariant mass ofψ(2S)→ µ+µ− (left) andJ/ψ→ µ+µ− (right) can-
didates. The red-dashed vertical lines indicate the invariant mass window selected
in the case when the decays of theψ(2S) and J/ψ(2S) mesons into two muons are
considered.

3.5.4.3 Theψ(2S)→ J/ψπ+π− (”hadronic”) decay mode

For ψ(2S)→ J/ψπ+π− decay, the reconstruction is done by combining two oppo-
sitely charged pions with the reconstructedJ/ψ . For particle identification of the
pion candidates we use three measurements: the number of photons fromČerenkov
counter, time-of-flight from the TOF counter and the energy deposition dE/dx
from the drift chamber. These three information are combined allowing particle
identification in physics analyses over a range of momenta and polar angles. The
pion/kaon identification is based upon the likelihood ratio, distributed on the interval
[0,1] and is defined as:

Prob(K : π) =
LK

LK +Lπ
(3.2)

In our analysis,B0 → ψ(2S)π0 , in case ofψ(2S) → J/ψπ+π− , charged tracks
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with Prob(K : π)< 0.9 are identified as pions. In this case we consider the following
mass window: 0.58GeV/c2≤ ∆M ≡ (MJ/ψ(l+l−)π+π−−MJ/ψ(l+ l−))≤ 0.60GeV/c2 .

3.5.5 Reconstruction ofπ0 from two photons

π0 candidates are reconstructed using their decay into two photons. The photons from
a B decay have a wide energy distribution from very low energies of a few tens of MeV
to very high energies of a few GeV, most of which are low energies of about a few
hundreds MeV. The detection of those photons is very important for the reconstruction
of the B mesons. In the Belle detector the identification of photons is based on their
electromagnetic interactions in the calorimeter. Photon candidates are selected from
clusters in the electromagnetic calorimeter that are not matched to any charged particle
track. Also the transverse cluster shape should be consistent with an electromagnetic
shower. Each of the photon candidates should have an energy measured in the barrel of
the calorimeter,Eγ > 0.05GeV, whereas in the end-cap the photon candidate should
exceed energy ofEγ > 0.10GeV in order to suppress combinatorial background.

3.5.6 Reconstruction of the neutral B mesons

The reconstruction of B meson is done by combining aψ(2S) candidate and a neutral
pion. After we reconstruct B mesons we select events for which good discrimination
between signal and background can be obtained. This is done by using two kinematic
variables that describe the reconstructed B mesons: the beam constrained massMBC

and the energy difference∆E .
The reconstructed B meson mass,MBC , is calculated using the momentum of the
reconstructed B meson candidate and the beam energy in the center-of-mass system:

MBC =

√

E2
beam− p∗

2

B . (3.3)

A very similar, but orthogonal observable used in this analysis is ∆E , given as
the difference between the reconstructed B energy and the beam energy in the
center-of-mass system:

∆E = E∗B−Ebeam (3.4)

Here,E∗B and p∗B are the energy and the momentum of the reconstructed B candidate
evaluated in the center-of-mass system, whereasEbeam is the beam energy also in
the center-of-mass system. To obtain these quantities we use information from the
precise particle tracking detectors. In this analysis, B candidates are reconstructed in
the following analysis window: 5.22GeV/c2≤MBC≤ 5.30GeV/c2 and−0.2GeV≤
∆E ≤ 0.1GeV.



Analysis of the decay channelB0→ ψ(2s)π0 57

3.5.6.1 BestB0 selection

On average, 1.18B0 candidates are reconstructed per event from MC data, as shown
in Figure 3.5. Because it is possible to have events with morethan one reconstructed
B meson, for those events the best candidate with smallestχ2 is selected, where
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Figure 3.5: Multiplicity distribution of reconstructedB0→ ψ(2S)π0 from MC data.

χ2 = (
ml+l− − mψ(2S)

σl+l−
)2+(

mγγ − mπ

σγγ
)2, (3.5)

when theψ(2S) decays leptonicaly, or

χ2 = (
mπ+π− − (mψ(2S) −mJ/ψ)

σπ+π−
)2+(

ml+l− −mJ/ψ

σl+l−
)2+(

mγγ − mπ

σγγ
)2, (3.6)

when the ψ(2S) undergo the decay toJ/ψπ+π− (”hadronic” decay). Here,
l+l− is either electron,e, or a muon,µ, while σ is obtained from the corresponding
Gaussian fitted mass distributions from Figures 3.3 and 3.4,as listed in Table 3.1.
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Decay Modes

Resolution [MeV/c2 ]

SVD1 SVD2

mψ(2S) mJ/ψ mψ(2S) mJ/ψ

ψ(2S)→ e+e− 9.2 - 9.8 -

ψ(2S)→ µ+µ− 6.6 - 6.0 -

ψ(2S)→ J/ψ(→ e+e−)π+π− - 6.5 - 6.8

ψ(2S)→ J/ψ(→ µ+µ−)π+π− - 6.7 - 6.0

Table 3.1: Typical resolution of mass distributions from signal Monte Carlo in both
SVD1 and SVD2 forB0→ ψ(2S)π0 .

The obtainedmγγ resolution is 3.8MeV/c2 and 3.7MeV/c2 for SVD1 and SVD2,
respectively.

3.5.7 Detection efficiencies

After the applied selection criteria, the detection efficiencies for the leptonic and
hadronic mode correspondingly, are found to be as listed below.
Here the detection efficiencies are defined as a product between the raw efficiency and
the PDG branching fraction value, where the raw efficiency isthe ratio between the
number of reconstructed and generated events calculated for each of the considered
decay modes. The calculation is done for the two detector configurations SVD1 and
SVD2, respectively.

SVD1 :

ε(B0→ ψ(2S)(→ e+e−)π0) = 0.00151±0.00005

ε(B0→ ψ(2S)(→ µ+µ−)π0) = 0.00254±0.00026

ε(B0→ ψ(2S)(J/ψ(→ e+e−)π+π−)π0) = 0.00187±0.00002

ε(B0→ ψ(2S)(J/ψ(→ µ+µ−)π+π−)π0) = 0.00281±0.00004

SVD2 :

ε(B0→ ψ(2S)(→ e+e−)π0) = 0.00175±0.00004

ε(B0→ ψ(2S)(→ µ+µ−)π0) = 0.00279±0.00029

ε(B0→ ψ(2S)(J/ψ(→ e+e−)π+π−)π0) = 0.00249±0.00003

ε(B0→ ψ(2S)(J/ψ(→ µ+µ−)π+π−)π0) = 0.00356±0.00004

(3.7)
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3.6 Data Models

The aim of this analysis is to obtain a measurement of the branching fraction for the
signal channelB0→ ψ(2S)π0 . For this purpose we model the signal and background
components, looking into two variables,MBC and∆E . We are describing the shape of
each individual distribution for every component. Parameterizations used for modeling
the shapes, the probability density functions (PDF), implying that they are normalized
in the fit region. The determination of the yields of each individual component is per-
formed using an extended unbinned maximum likelihood fit. Using the reconstruction
efficiencies we can determine the branching fraction value from the yield measure-
ment.
The fit is performed in two dimensions using as fitting variables theMBC and ∆E . In
the fitting procedure we fit simultaneously the leptonic and the hadronic mode in the
two SVD configurations: During the lifetime of the Belle detector, the configuration
of the silicon vertex detector (SVD) was changed, from a three layer vertex detector
SVD1 to a four layer vertex detector SVD2. The complete Belledata set was recorded
in two run periods with different tracking sub-systems. Therun period from experi-
ment 7 to 29 is recorded using the SVD1 configuration of the vertex detector, while
from experiment 31 to 65, the SVD2. With the SVD1 configuration Belle collected
152 Million BB̄ pairs, while with the SVD2 configuration the amount of collected
data was 620 MillionBB̄ pairs. The PDFs for the signal and background are modeled
as separate components. The description of how each PDF is built is given below.

3.6.1 Signal Model

The signal model shape is determined from correctly reconstructed signal MC events
and is expressed as

P (MBC,∆E) = P (MBC|∆E) ·P (∆E). (3.8)

TheMBC distribution is modeled using two Bifurcated Gaussians (PDF with different
widths on left and right side of the maximum value) and an ARGUS function [58].
The model is given by

PSig(MBC|∆E) = f1(∆E)G1(MBC;µ1(∆E),σR1(∆E),σL1(∆E))

+ f2(∆E)G2(MBC;µ2(∆E),σR2(∆E),σL2(∆E))

+(1− f1(∆E)− f2(∆E))ARGUS(MBC;a,Ebeam).

(3.9)

As seen from Equation 3.9 the PDF is built such thatMBC depends on∆E .
We consider the following slices of∆E :
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• −0.2GeV≤ ∆E <−0.15GeV,

• −0.15GeV≤ ∆E <−0.1GeV,

• −0.1GeV≤ ∆E <−0.05GeV,

• −0.05GeV≤ ∆E < 0.GeV,

• 0.GeV≤ ∆E < 0.05GeV and

• 0.05GeV≤ ∆E ≤ 0.1GeV.

The MBC fit projections in these intervals of∆E are shown in the Appendix C in
Figures C.1 and C.2.
With the exception of the ARGUS parametera, all MBC model parameters depend on
∆E . The dependence of each parameter is given in the Appendix B,while the signal
model of theMBC distribution fitted in the entire range of∆E is shown in Figure 3.6.
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Figure 3.6: MBC fit projections of correctly reconstructed signal MC forB0 →
ψ(2S)π0 for leptonic mode (left) and hadronic mode (right) for the two detector con-
figurations SVD1 (top) and SVD2 (bottom).
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The model used to fit the∆E distribution contains triple a Gaussian and Bernstein
Polynomial function of the second order (see Appendix A.3).It is given by

PSig(∆E) = f1G1(∆E;µ1,σ1)+ f2G1(∆E;µ2,σ2)

+ f3G3(∆E;µ3,σ3)+(1− f1− f2− f3)BP(∆E;c1,c2).
(3.10)

Figure 3.7 shows the fit projection of the signal model for∆E distribution.
The sub-plot of the normalized residuals in Figures 3.6 and 3.7 shows the difference
between the data bin and the PDF, divided by the error of the data bin. Even though it
seems that the signal model in some regions does not describethe data perfectly, we
have estimated a systematic uncertainty coming from the imperfections of the signal
model of 2.8% (see Section 3.10.9).
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Figure 3.7:∆E fit projections of correctly reconstructed signal MC forB0→ψ(2S)π0

for leptonic mode (left) and hadronic mode (right) for the two detector configurations
SVD1 (top) and SVD2 (bottom).
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3.6.2 Misreconstructed Model

The shape of the misreconstructed fraction of events forB0→ ψ(2S)π0 is determined
from incorrectly reconstructed MC events, identified usingthe MC truth information.
As PDF modelP (MBC,∆E) for this component we use histogram PDFs in two
dimensions. Projections of the two fit observables are shownin Figures 3.8 and 3.9.
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Figure 3.8:MBC fit projections of misreconstructedB0→ ψ(2S)π0 signal MC for the
leptonic mode (left) and the hadronic mode (right) for the two detector configurations
SVD1 (top) and SVD2 (bottom).

The extracted misreconstructed fractions corresponding to the leptonic or hadronic
mode for both SVD1 and SVD2 are listed in the Table 3.2.
As it can be seen from the Table 3.2, the fraction of misreconstructed signal in the
leptonic decays is of the order of 0.3% for SVD1 and 0.6% for SVD2, which is
very small compared to the signal. Therefore, we do not include these components
coming from the leptonic modes in the final fit elaborated in Section 3.6.6. Whereas
the misreconctructed fraction in the case of hadronic decayof ψ(2S) is 11% for SVD1
and 10% for SVD2, thus the misreconstructed hadronic components are included in
the final fit.
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Figure 3.9:∆E fit projections of misreconstructedB0→ ψ(2S)π0 signal MC for the
leptonic mode (left) and the hadronic mode (right) for the two detector configurations
SVD1 (top) and SVD2 (bottom).

Decay Modes
Misreconstructed signal fraction

SVD1 SVD2

B0→ ψ(2S)(→ l+l−)π0 0.003 0.006

B0→ ψ(2S)(→ J/ψπ+π−)π0 0.11 0.10

Table 3.2: Fraction of the misreconstructed signal events in SVD1 and SVD2 for both
decay modes, leptonic and hadronic.

3.6.3 B0→ cc̄X background model

The backgrounds having the same final state as the signal decay, peak in theMBC−∆E
signal box, hence are named ”peaking backgrounds”. Therefore, these contributions
cannot be discriminated from the signal decay. The possibility of having a peaking
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background coming only fromB0 → ψ(2S)KS decay, whereKS→ π0π0 and a
B0→ ψ(2S)KL decay has been considered. This would lead to a separation ofthe
peaking and non-peaking background.
However, the investigation of the leptonic and the hadroniccontribution in the distri-
butions ofMBC and∆E showed that while the majority of the peaking background
comes fromB0→ ψ(2S)KS and B0→ ψ(2S)KL decays, which is about 2/3 of the
total, an additional peaking background contribution appears in the charged B meson
(ψ(2S),J/ψ) decays to charmonium. The charged B meson decays from theB→ cc̄X
MC data also include theB+ → ψ(2S)K∗

+
decay, which is our control sample and

will be discussed later in Section 3.7. The plots showing these effects are depicted in
Figures 3.10 and 3.11.
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Figure 3.10: MBC distribution of charged B meson decays,B+(B−) → ψ(2S)X ,
ψ(2S)→ l+l− for SVD1 (left) and SVD2 (right).
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Figure 3.11:MBC distribution of charged B meson decays,B+(B−)→ J/ψX , J/ψ→
l+l− (which includesψ(2S)→ J/ψπ+π− decay) for SVD1 (left) and SVD2 (right).

In the neutral B meson decays to charmonium this peaking background is also visible
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and is much more pronounced than in the charged charmonium modes. TheMBC

distribution in the neutral B meson charm decays can be seen in Figures 3.12 and 3.13.
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Figure 3.12: MBC distribution of neutral B meson decays,B0(B̄0) → ψ(2S)X ,
ψ(2S)→ l+l− for SVD1 (left) and SVD2 (right).
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Figure 3.13:MBC distribution of neutral B meson decays,B0(B̄0)→ J/ψX , J/ψ→
l+l− (which includesψ(2S)→ J/ψπ+π− decay) for SVD1 (left) and SVD2 (right).

The ∆E distribution on the other hand, does not give a peaking background neither in
the charged B meson decays into charmonium as shown in Figures 3.14 and 3.15, nor
in the neutral B meson charmonium decays, as seen from Figures 3.16 and 3.17.
Therefore, we treat both leptonic and hadronic contributions for the charged and
neutral B meson decays together using only one shape to modelthe B0 → cc̄X
background component.
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Figure 3.14: ∆E distribution of charged B meson decays,B+(B−) → ψ(2S)X ,
ψ(2S)→ l+l− for SVD1 (left) and SVD2 (right).
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Figure 3.15:∆E distribution of charged B meson decays,B+(B−)→ J/ψX , J/ψ→
l+l− (which includesψ(2S)→ J/ψπ+π− decay) for SVD1 (left) and SVD2 (right).
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Figure 3.16:∆E distribution of neutral B meson decays,B0(B̄0)→ψ(2S)X , ψ(2S)→
l+l− for SVD1 (left) and SVD2 (right).
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Figure 3.17:∆E distribution of neutral B meson decays,B0(B̄0)→ J/ψX , J/ψ→
l+l− (which includesψ(2S)→ J/ψπ+π− decay) for SVD1 (left) and SVD2 (right).

For the shape of theB0→ cc̄X background component a 2D histogram PDF is used.
The fit projections ofMBC and ∆E distributions are shown in Figures 3.18 and 3.19,
respectively.
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Figure 3.18:MBC fit projections ofB→ cc̄X MC for leptonic mode (left) and hadronic
mode (right) for the two detector configurations SVD1 (top) and SVD2 (bottom).
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Figure 3.19:∆E fit projections ofB→ cc̄X MC for leptonic mode (left) and hadronic
mode (right) for the two detector configurations SVD1 (top) and SVD2 (bottom).

3.6.4 Sideband Studies

We also considered the possibility of having peaking backgrounds coming from
other B decays that are not B decays to charmonium states. In this particular case
of estimating the peaking background coming fromBB̄ decays we look at real
B0→ ψ(2S)π0 data, which is different with respect toB→ cc̄X decays where MC
was used.
The amount of peaking background is estimated looking at thesidebands from
mass (Mψ(2S)(J/ψ) ) and mass difference (Mψ(2S) −MJ/ψ ). Depending on that in
which of these three distributions we looked, we separated the data in three different
subsets. This separation was done applying different mass selection criteria for the
reconstructedψ(2S) andJ/ψ mesons in theB0→ ψ(2S)π0 decay.
For ψ(2S) → l+l− only events for which 3.45GeV/c2 < mll < 3.53GeV/c2

(below the ψ(2S) ) and 3.8GeV/c2 < mll < 3.9GeV/c2 (above theψ(2S) ) are
considered. ForJ/ψ→ l+l− the applied mass cuts are following: 2.6GeV/c2 <
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mll < 2.8GeV/c2 (below the J/ψ ) and 3.2GeV/c2 < mll < 3.4GeV/c2 (above
the J/ψ ). As for the third data subset the mass difference betweenψ(2S) and
J/ψ is used and the following mass selection criteria are taken into account,
0.49GeV/c2 < mll < 0.53GeV/c2 and 0.64GeV/c2 < mll < 0.68GeV/c2 . Ac-
cording to these three different mass cuts, theB0 → ψ(2s)π0 sideband data was
discriminated in three subsets with each of the data subset being checked separately.
The investigation showed that in all three separate data subsets, no peaking back-
ground appeared. The plots showing this result are depictedin Figure 3.20. The
sub-plot of the normalized residuals in Figure 3.20 shows the difference between the
data bin and the PDF, divided by the error of the data bin.
The extracted SVD1 and SVD2 peaking background yields corresponding to the
different decay modes are presented in Table 3.3. As it can beseen from this table,
the amount of peaking background estimated using the sideband data is completely
negligible.
Since, this kind of background is non-peaking cannot be separated from continuum
and therefore we treat them as one, ”combinatorial” background component.

Mass

selection

3.45< mψ(2S) < 3.53 2.6< mJψ < 2.8 0.49< mψ(2S)−mJψ < 0.53

3.8< mψ(2S) < 3.9 3.2< mJψ < 3.4 0.64< mψ(2S)−mJψ < 0.68

SVD1 0.0± 4.4 1.3± 2.8 0.0± 4.3

SVD2 0.0± 21.7 6.7± 13.7 0.0± 0.0

Table 3.3: Peaking background yields from SVD1 and SVD2 using different sideband
data set according to the separate decay modes ofB0 .
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Figure 3.20: SeparateB0→ ψ(2S)π0 sideband data subsets. TheMBC (left) and∆E
(right) distributions usingMψ(2S) data sidebands (top), for cuts valid for the mass spec-
trum of the reconstructedJ/ψ mesons (middle) and for the sideband data, chosen
according to the applied cut on the mass difference betweenψ(2S) andJ/ψ . Blue
(dashed) line for the misreconstructed component, green (dotted dashed) line for the
B→ cc̄X , red (dashed) line for the PDF composed from all the background compo-
nents and the black solid line for the total PDF.
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3.6.5 BB̄ and continuum Background Model

As explained in Section 3.5.2, continuum background is suppressed using the ratio
of second to zeroth Fox-Wolfram moment,R2 < 0.5 criteria. For the shape of the
generic BB̄ and continuum (qq̄) background, an ARGUS function forMBC and
Chebyshev polynomials for∆E are used. The corresponding PDFs are given by

PBB̄,qq̄(MBC) = ARGUS(MBC;a,Ebeam) (3.11)

and

PBB̄,qq̄(∆E) = c1C(∆E) (3.12)

The correspondingBB̄ and qq̄ model parameters ofMBC and ∆E are freed in
the final fit. The values of the free parameters (the yields of the combinatorial
background for SVD1 and SVD2 and its shape) are determined, minimizing the
−logLB0→ψ(2S)π0 , whereLB0→ψ(2S)π0 is the total likelihood for theB0→ ψ(2S)π0 ,
described explicitly in Section 3.6.6.

3.6.6 Complete parameterization containing all the components

The total likelihood forB0→ ψ(2S)π0 is built incorporating the signal PDF, mis-
reconstruction,B→ cc̄X and the common genericBB̄-continuum (qq̄) PDF. For
the misreconstruction andB→ cc̄X component, 2D histogram PDFs are used. The
PDFs for the signal andB→ cc̄X are obtained from Monte Carlo. The combinatorial
background PDF is obtained from data. We determine the yields of each individual
component using an extended unbinned maximum likelihood fit. The extended
likelihood function is constructed from the probability density functions for the
signal and background components and Poisson factors to estimate the signal and
background yields. A minimization of the extended likelihood of a composite model
with a signal and background term gives directly the estimates for the signal and
background event yields. In the final fit the yields fromB→ cc̄X are fixed to the
values determined from MC (see Table 3.4). The combinatorial (generic BB̄ and
continuum) yieldNBB̄−qq̄ and its shape are treated as a free parameters.
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B0→ ψ(2S)(→ l+l−)π0 B0→ ψ(2S)(→ J/ψ(→ l+l−)π+π−))π0

SVD1 22.68 99.79

SVD2 108.89 482.85

Table 3.4: B→ cc̄X yields for the leptonic and hadronic mode in SVD1 and SVD2
extracted from MC.

The total likelihood forB0→ ψ(2S)π0 is given by

LB0→ψ(2S)π0 =
e−(NSig+Nmis+Ncc̄X+NBB̄,qq̄)

N!

N

∏
i=1

(NSigPSig(MBC,∆E)

+NmisPmis(MBC,∆E)

+Ncc̄XPcc̄X(MBC,∆E)

+NBB̄,qq̄PBB̄,qq̄(MBC,∆E)).

(3.13)

The final fit is performed in two dimensions, fitting simultaneously the SVD1
and SVD2 detector configurations for two separate decay modes: leptonic and
hadronic. In the final fit, the signal yields forB0→ ψ(2S)π0 are replaced by the
branching fraction which is then chosen as a free parameter.The Ni

Sig,B0→ψ(2S)π0

(yields of the simultaneous fit) and the branching fraction are related as

Ni
Sig,B0→ψ(2S)π0 = B(B0→ ψ(2s)π0) ·NBB̄ · εi

Sig,B0→ψ(2S)π0

(i = leptonic,hadronic,SVD1,SVD2)
(3.14)

where εi
Sig,B0→ψ(2S)π0 is the detection efficiency (see Section 3.5.7) andNBB̄ is

the number ofBB̄ pairs.

3.7 Control sample

For estimating the systematic uncertainty due to the difference between the data
and MC, we use the control sampleB+ → ψ(2S)K∗(+), K∗(+) → K+π0 , which is
well established and has a similar event topology asB0→ ψ(2S)π0 . The reason of
choosing this particular channel as a control sample is due to the fact that in order
to test the model on real data it is necessary to have a sample which is as close as
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possible to the decay in question.
The reconstruction ofψ(2S) candidates follows the same procedure described in
Section 3.5. TheK∗(+) candidates in the considered case disintegrate intoK+ andπ0 .
For the kaons particle ID criteria are applied, according tothe kaon/pion separation
method (see Section 3.5.4.3), thus requiring

Prob(K : π) =
LK

LK +Lπ
> 0.4 . (3.15)

In addition, the π0 helicity angle, which is the angle between theπ0 momen-
tum in K∗(+) rest frame andK∗(+) momentum vector in the laboratory frame,
is requested to be less than 1.5rad. This requirement is introduced in order to
select high momentumπ0 ’s that travel forward with respect toK∗(+) momentum.
The invariant mass window used for the selection ofK∗(+) → K+π0 candidates is
0.793Gev/c2 < MK+π0 < 0.990GeV/c2 .

3.7.1 Difference between Data and MC

Before applying the MC derived signal shape parameters forMBC and ∆E to real
data, we make some adjustments of the MC results by comparingto real data of the
control sample. These adjustments are the so-called ”offsets” and ”fudge factors”.
The difference between data and MC defined as ”offset” given by

O f f setmean= (meandata−meanMC)±ErrO f f setmean (3.16)

holds for the mean of the distribution. While the ”fudge factor” described as

FudgeFactorwidth=
widthdata

widthMC
±ErrFudgeFactorwidth (3.17)

is valid for the width of the distribution.
These values are extracted from a simultaneous fit of the leptonic and the hadronic
mode in both SVD1 and SVD2 detector configurations of the control sample data,
obtained by fixing all the parameters of the fit according to the MC model described
in Section 3.6.1, but leaving the offset which is the global mean and the fudge factor
which is the ratio of all Gaussians as free parameters. The fitted distributions of the
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control sample of bothMBC and ∆E are given in Figure 3.21 and in Figure 3.22,
respectively.
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Figure 3.21:MBC distribution of the data from the control sample fitted simultaneously
for the leptonic mode (left), hadronic mode (right), SVD1 (top) and SVD2 (bottom).
The red solid line shows the signal PDF, green solid line misreconstruction PDF, ma-
genta solid line the PDF ofB→ cc̄X component, the black solid line is theBB̄,qq̄
PDF and the blue solid line represents the total PDF.

The extracted corresponding differences between data and MC are shown in Table 3.5.
As can be seen from the Table 3.5, obtained values of the global mean and the width
from the fit of the control sample are consistent with 0 and 1, respectively. However,
the error in∆E distribution is found to be quite large, of the order of∼ 40%.
Unfortunately due to the limited statistics that is on disposal in this control sample
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these values cannot be reduced anymore.
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Figure 3.22:∆E distribution of the data from the control sample fitted simultaneously
for the leptonic mode (left), hadronic mode (right), SVD1 (top) and SVD2 (bottom).
The red solid line shows the signal PDF, green solid line misreconstruction PDF, ma-
genta solid line the PDF ofB→ cc̄X component, the black solid line is theBB̄,qq̄
PDF and the blue solid line represents the total PDF.
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Offset (MeV) Fudge Factor

MBC (0.0±0.7)×10−4 0.96±0.06

∆E (−0.52±1.52)×10−3 0.80±0.40

Table 3.5: Offset and width for both distributionsMBC and ∆E obtained from the
control sampleB+→ ψ(2S)K∗(+), K∗(+)→ K+π0 .

Since,∆E resolution depends strongly onπ0 , instead ofB+→ ψ(2S)K∗(+), K∗(+)→
K+π0 it is better to useB+→ J/ψK∗(+), K∗(+)→ K+π0 as a control sample.
Therefore, we extract these values from the already performed analysis ofB0→ J/ψπ0

[59] whereB+→ J/ψK∗(+) is used as a control sample. The corresponding extracted
values are summarized in Table 3.6.

Parameter SVD1 SVD2 (Experiment 31-43)

MBC
offset (MeV) 0.1±0.1 0.3±0.1

fudge factor 0.92±0.04 0.97±0.03

∆E
offset (MeV) −4.1±1.7 −7.1±1.3

fudge factor 1.03±0.06 1.01±0.04

Table 3.6: The obtained offset and fudge factor values from the fit result in the control
sampleB±→ J/ψK∗(±), K∗(±)→ K±π0 (for more details see [59]).

Figure 3.22, also shows that in the∆E distribution of the control sampleB+ →
ψ(2S)K∗(+), K∗(+)→ K+π0 in the hadronic modeψ(2S)→ J/ψπ+π− , the B→ cc̄X
background component dominates theBB̄,qq̄, which is not the case in the lep-
tonic modeψ(2S)→ l+l− . In order to check if the same effect is present in real
B0→ ψ(2S)π0 data, a so-called blind fit is performed.

3.8 Blind Fit

A blind fit is actually a fit applied on the realB0→ ψ(2S)π0 data, but masking the
signal region of theMBC and ∆E distributions. In this way the analysis of the data
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is pointed only in the direction of the sideband regions of both distributions, without
extracting the value of the branching fraction as an outcomeof the fit. The signal
yield in this fit is a random number. In Figures 3.23, 3.24, thelikelihood projections
of MBC and ∆E distribution, respectively, are shown.
These plots indicate that the tension in the hadronic decay of ψ(2S) at higher∆E that
has been seen in the control sample,B+ → ψ(2S)K∗

+
(see Figure 3.22), where the

B→ cc̄X background component dominates the combinatorial background and over
shoots the total PDF curve is now resolved. Thus, in the real data the fit describes all
the components quite well, and no further adjustments are needed.
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Figure 3.23: Blind fit performed on realB0→ ψ(2S)π0 data, showing theMBC fit
projections, left: the leptonic decay and right: the hadronic decay in SVD1 and SVD2.
Solid green line -B→ cc̄X component, solid magenta line - combinatorial back-
ground, and solid blue line - total PDF.
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Figure 3.24: Blind fit performed on realB0→ ψ(2S)π0 data, showing the∆E fit
projections: left: the leptonic and right: the hadronic decay of theψ(2S) in SVD1 and
SVD2. Solid green line -B→ cc̄X component, solid magenta line - combinatorial
background, and solid blue line - total PDF.

3.8.1 Fit Validation

Before looking at the signal region in data, the methodologyused for the signal yield
extraction must be verified. This is done by performing so-called toy MC ensemble
tests. In this way we want to check if there are biases in the result as a consequence
of the fit procedure. Therefore, we generate a number of pseudo-experiments and use
the complete parameterization to extract the physics parameters.



Analysis of the decay channelB0→ ψ(2s)π0 79

3.8.1.1 Pseudo-experiment setup

For every pseudo-experiment we determine the number of events per component,
which means the yield, with the following procedure. The expected event yields are
determined assuming a certain branching fraction, lookingat the number of events
in the MBC, ∆E sidebands and using the reconstruction efficiencies described in
Section 3.5.7. The resulting yields are then distributed around their values according
to Poisson statistics.
Essentially, there are two approaches of how to generate theevents: We can either
pick random events from a big set of events using the full detector simulation, or we
can generate these events from the PDF. Here, fully simulated events are used, except
for the combinatorial (BB̄-qq̄) background component which are generated only from
PDFs.
For 11 branching fraction hypotheses a set of 250 pseudo-experiments is generated
for both simulated and PDF events.
The results are shown as distributions of the pull quantity which is defined as

pull =
Xf it −Xgenerated

σ f it
(3.18)

whereσ f it is the error of the fit result.

3.8.1.2 Pull distributions using different branching fraction hypothesis

Since, the branching fraction of the decayB0→ ψ(2S)π0 is unknown, the pseudo-
experiments are performed using various assumed values of the branching fraction
in the range between 10−6 and 10−4 . Figure 3.25 shows the pull distributions for
simulated events, using different branching fraction hypothesis. The mean and the
sigma of each pull distribution are indicated on each plot. In our toy Monte Carlo
tests, as shown in Figure 3.25 we obtain the value we expect (σ = 1) for the width
of the distribution within its errors. Concerning the mean which expectation value
is zero, we obtain a result that gives us a bias in the range between 3 and 13%
depending on the assumed value of the branching fraction.
In order to obtain more precise results we performed toy Monte Carlo tests with more
statistics (16 000 pseudo experiments using the measured branching fraction). From
these tests we obtained a systematic uncertainty due to the imperfections of the model
in the order of 2.8% (see Section 3.10.4). We therefore treat this bias as tolerable
and consider that our model is validated.
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Figure 3.25: Pull distributions using different branchingfraction hypothesis.
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3.9 Measurement of the branching fraction using real
B0→ ψ(2s)π0 data

After the validation of the fitting procedure, we can look at real B0→ ψ(2S)π0 data.
The fit used to describe the data was elaborated in Section 3.6.6. Due to the differences
between data and Monte Carlo coming from particle identification efficiencies, we
need to account for these differences. This step is done by applying correction factors
on the detection efficiencies extracted from Monte Carlo (see Section 3.5.7). The
correction factors are obtained using PID information and by considering two tacks in
the leptonic mode and four in the hadronic mode. They are indicated in Table 3.7.

Decay mode SVD1 SVD2

B0→ ψ(2S)(→ e+e−)π0 1.025±0.149 1.023±0.163

B0→ ψ(2S)(→ µ+µ−)π0 0.976±0.152 0.954±0.135

B0→ ψ(2S)(J/ψ(→ e+e−)π+π−)π0 1.024±0.152 1.025±0.173

B0→ ψ(2S)(J/ψ(→ µ+µ−)π+π−)π0 0.975±0.154 0.955±0.148

Table 3.7: Particle identification correction factors.

The corrected efficiencies for the leptonic and hadronic mode are found to be:

SVD1 :

ε(B0→ ψ(2S)(→ l+l−)π0) = 0.00402±0.00052

ε(B0→ ψ(2S)(J/ψ(→ l+l−)π+π−)π0) = 0.00465±0.00052

SVD2 :

ε(B0→ ψ(2S)(→ l+l−)π0) = 0.00445±0.00055

ε(B0→ ψ(2S)(J/ψ(→ l+l−)π+π−)π0) = 0.00595±0.00068

(3.19)
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These corrected efficiencies are consequently included in our fit. The fit projections
of MBC distribution for the leptonic and hadronic are shown in Figures 3.26 and 3.27,
respectively. These Figures compare the complete distribution on the left with the
signal enhanced on the right. The signal enhancement for theMBC is done in the
following region of∆E : −0.04GeV< ∆E < 0.04GeV.
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Figure 3.26: Fit projections ofMBC distribution for the leptonic decay mode for SVD1
(top) and SVD2 (bottom).
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Figure 3.27: Fit projections ofMBC distribution for the hadronic decay mode for SVD1
(top) and SVD2 (bottom).

The fit projections of the∆E distribution for the leptonic and hadronic decay of
the ψ(2S) meson are shown in Figures 3.28 and 3.29, respectively. These Figures
also compare the complete distribution on the left with the signal enhanced on the
right. The signal enhancement for the∆E is done in the following region ofMBC :
27GeV/c2 < MBC < 29GeV/c2 .
The corresponding signal yields, extracted for each of the relevant decay modes are
presented in Table 3.8.
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Figure 3.28: Fit projections of∆E distribution for the leptonic decay mode for SVD1
(top) and SVD2 (bottom).

Decay mode SVD1 SVD2

B0→ ψ(2S)(→ l+l−)π0 6.5 29.5

B0→ ψ(2S)(J/ψ(→ l+l−)π+π−)π0 7.6 39.5

Table 3.8: Signal yields extracted from realB0→ ψ(2S)π0 data.
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Figure 3.29: Fit projections of∆E distribution for the hadronic decay mode for SVD1
(top) and SVD2 (bottom).

The fit projections combining the four decay modes, leptonicand hadronic in SVD1
and SVD2 are shown in Figure 3.30. In this Figure again the comparison between the
full projections (left) and the signal enhanced ones (right) is shown.
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Figure 3.30: Fit results on data, top:MBC ; bottom: ∆E , combining the leptonic decay
and hadronic decay ofψ(2S) in SVD1 and SVD2.

From the fit we extracted the following value for the branching fraction of the decay
B0→ ψ(2S)π0 :

B(B0→ ψ(2S)π0) = (1.07±0.23)×10−5
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3.10 Estimation of the Systematic Uncertainties

For a careful estimation of the systematic errors, we followa well established proce-
dures in the Belle collaboration. Many of these procedures are standard procedures
performed within the Belle experiment.
This section explains the contributions coming from various sources to the systematic
error of the branching fraction. Such sources are, for example, the number ofBB̄
pairs in the data sample, and contributions to the uncertainty in the selection efficiency
due to particle identification. Systematic uncertainties coming from tracking, andπ0

reconstruction are calculated by independent studies at Belle.

3.10.1 Number ofBB̄ pairs

The determination of the number ofBB̄ pairs is done directly with the Belle detector.
The procedure is described elsewhere [60]. The estimated systematic uncertainty for
the whole Belle data set is 1.37%.

3.10.2 π0 reconstruction efficiency

As a systematic uncertainty due to the reconstruction ofπ0 mesons, we assign a value
of 4%. This estimation was determined in an internal study bythe Belle Collaboration
of the systematic uncertainties ofπ0 mesons [61].

3.10.3 ψ(2S) efficiency

Tracking systematics address the uncertainty of the track reconstruction. Depending
on a momentum of a particle track, there is an uncertainty of atrack being found or not.
This uncertainty is 0.35% for a particle track with a momentum higher than 200MeV.
This value has been determined in an internal study by the Belle Collaboration of the
track finding efficiency using partially reconstructedD∗ decays [62]. Since, we con-
sider four different decay modes, which have either two or four charged tracks, the
resulting track efficiency uncertainty is 0.7% and 1.4%, respectively. Accordingly,
these systematic uncertainties are included in the estimation of the totalψ(2S) effi-
ciency.
Additional corrections to theψ(2S) efficiency are coming from the uncertainty on
particle identification efficiency. We are considering lepton identification andK/π
identification corrections.
The systematic uncertainty regarding the possible efficiency differences in the particle
identification between Monte Carlo simulations and data with respect to the applied
K/π selection is determined using information from [63].
Leptons are identified on the basis of likelihood cuts, whichneed to be corrected. For
this corrections, the official lepton identification study [64], [65] is used for muon
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identification. For the electron identification we use a different cut, than the cuts in-
vestigated by the official lepton identification group. Therefore, in order to determine
the electron identification correction we use information from [66]. The corrections
taking into account the tracking efficiency and the particleidentification efficiency are
weighted according to the number of signal events, thus resulting in estimated uncer-
tainty of 4.3%.

3.10.4 Fit bias

In order to determine the fit bias of our model, we performed Toy Monte Carlo
ensemble tests. The outcome of these test is shown in Figure 3.31.
Biases are expected due to some imperfections in the parameterization of the Monte
Carlo data. These biases can in principle be determined witharbitrary precision.
However, one cannot tell if the bias present in Monte Carlo will be the same in data.
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Figure 3.31: The result from the Toy MC tests.

Therefore, the following method is used to determine the systematic error of this fitting
bias. We are confident in the fact that the small bias is due to the imperfect parametric
description of the PDF and the neglection of some correlations. We do not correct the
fit bias and assign the full fit bias as systematic uncertainty. We obtained systematic
uncertainty resulting in 2.8%.
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3.10.5 Parameters of the signal distribution

The systematic error for the signal component is determineddue to the imperfections
of the signal model. In our simultaneous fit we consider four different decay modes.
This results in having many parameters, which are strongly correlated. In order to
account for these correlations, we perform fits to the data, where the parameters are
generated according to their correlations. The width obtained from the distribution
shown in Figure 3.32 is taken as the systematic uncertainty,which is found to be
0.042%.
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Figure 3.32: Signal distribution generated according to the parameters correlations.

3.10.6 Difference between data and Monte Carlo

In order to determine the systematic uncertainty due to the differences between
data and Monte Carlo, we perform Monte Carlo ensemble tests.The Toy Monte
Carlo experiments are generated according to the data corrected PDF, while the fit
is performed according to our PDF parameterization. The shift from the resulting
distribution shown in Figure 3.33 is taken as a systematic uncertainty. The estimated
systematic uncertainty coming from this source is found to be 1.9%.
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Figure 3.33: Toy MC distribution of the difference between data and Monte Carlo.

3.10.7 Fraction of the misreconstructed signal andB→ cc̄X back-
ground

Another source of systematic uncertainty comes from the wayof treating the misrecon-
structed signal and theB→ cc̄X background component. The systematic uncertainty
due to this is estimated by performing Monte Carlo pseudo experiments. These Monte
Carlo experiments were done generating the fractions, within ±50% and±10% for
the misreconstructed andB→ cc̄ component, respectively. This method was cross-
checked by performing a fit where the fraction of the misreconstructed events and
the B→ cc̄ yield are Gaussian constrained. The resulting systematic uncertainties
are 1.2 % coming from the misreconstructed fraction and 2.6 % coming from the
B→ cc̄X background fraction.

3.10.8 Varying the binning of the histogram PDF

We used histogram PDFs to parameterize some background components, e.g. theB→
cc̄X and the misreconstructed component. These histograms are created by a Monte
Carlo data set. As a result of the statistical Poissonian distribution of the events in our
simulated Monte Carlo experiments, an uncertainty to everybin of the histogram can
be assigned. The systematic uncertainty due to the change ofthe binning is included in
the estimation of the total systematic error. The uncertainty as a result of this change
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is estimated to be 2.6%.

3.10.9 Total systematic error on the branching ratio

Systematic errors calculated from different sources are summarized in Table 3.9. As
one can see from this Table, the largest contribution to the systematic error is caused
by the uncertainties on the efficiencies.

Source of Systematic Error B(B0→ ψ(2S)π0)[%]

π0 efficiency 4.0

ψ(2S) efficiency 4.3

Misreconstruction fraction 1.2

B→ cc̄X fraction 2.6

Fit bias 2.8

Parameters of the signal distribution 0.04

Histogram PDF binning 2.6

Difference between data and MC 1.9

NBB̄ 1.37

Total 7.9

Table 3.9: Estimated systematic errors and the total systematic uncertainty of the
branching fraction measurement for the decayB0→ ψ(2S)π0 (in %).

The total systematic uncertainty on the branching fractionis calculated by the
quadratic sum of the individual contributions. The branching fraction for theB0→
ψ(2S)π0 decay therefore is:

B(B0→ ψ(2S)π0) = (1.07±0.23±0.08)×10−5,

where the first is the statistical error extracted from the fit(see Section 3.9), while the
second is the systematic uncertainty.
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3.10.10 Statistical significance

To obtain the statistical significance we performed a likelihood scan for the branching
fraction (see Figure 3.34). The significance can be defined as

#σ =
√

2(L0−L f it ), (3.20)

whereL0 andL f it are the−log likelihoods of the fits with branching fraction fixed
to zero and from the fit, respectively.
In order to determine the significance we considered the uncertainties coming from
the yields determination (misreconstructed fraction,B→ cc̄X , fit bias and difference
between data and MC ). We neglected the parameters of the signal distribution (see
Table 3.9). And we did not include the uncertainties coming from the efficiencies (π0

and ψ(2S) ) nor from the number ofBB̄ pairs, since they are multiplicative numbers
(see Equation (3.14)) and they have no impact on the fact if weare going to see some-
thing or not.
We included the misreconstructed fraction and theB→ cc̄X fraction floating their
yields according to a Gaussian constraint center to their mean value and we obtained
statistical significance of 5.3σ .
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Figure 3.34: Likelihood scan ofB(B0→ ψ(2S)π0) .

Since, the fit bias and the difference between data and MC are not distributed, we
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considered their effect as a shift of the likelihood. This isequivalent to considering a
”flat” region around the minimum of the−logL .
Taking into account all these contributions we obtained a significance of 5.06σ .



Chapter 4

The Belle II experiment

The tremendous success that was achieved by the two B-factories, KEKB and PEP II,
led to the confirmation of the Standard Model in the quark-flavor sector. In a decade
of running, the data accumulated by the KEKB collider enabled measurements of in-
valuable importance for the flavor structure of elementary particles and especially the
violation of CP symmetry in the quark sector.
With the planned upgrade of the KEKB collider and Belle detector, much larger data
sample will become available, providing a new view in the heavy flavor physics re-
search.

4.1 SuperKEKB Accelerator and Belle II Detector

The main goal of the SuperKEKB project is to increase the integrated luminosity
for about a factor of 40 compared to KEKB. The design luminosity of SuperKEKB
is 8× 1035cm−2s−1 . This will allow to accumulate 50ab−1 around 2021-2022,
corresponding to approximately 50 billionBB̄ pairs. The luminosity depends on
several parameters as defined in [67]

L =
γ±

2ere
(1+

σ∗y
σ∗x

)(
I±ξ±y

β∗y
)(

RL

Ry
), (4.1)

whereγ± is the Lorentz factor,re is the classical electron radius,e is the electric
charge,σ∗x,y are the beam sizes at the interaction point inx andy direction,I± denote
the beam currents,ξ±y are the beam-beam parameters inx andy direction andβ∗y is
beta function at the interaction point inx or y direction.
To achieve the design luminosity, the ”nano-beam” scheme was chosen. In order to
meet the criteria of this scheme major upgrades of the KEKB collider and the Belle
detector are needed. For the upgraded machine the same tunnel KEKB will be used.
In order to reach the target luminosity, beam energies from 3.5 GeV and 8.0GeV
will be changed to 4.0GeV and 7.0GeV, respectively. The half crossing angleφ
is 41.5mrad which is about 4 times larger than that at the KEKB. Accordingly, the
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Lorentz boost factor of the center of mass system isβγ = 0.28, which is about 2/3 of
that in the KEK B-factory. Additional change in the beam parameters is the increase
by a factor of 2 in the beam currents. Thus the beam currents atSuperKEKB will be
3.60A for the low energy ring and 2.62A for the high energy ring. The machine
parameters of the upgraded SuperKEKB machine compared withthe previous KEKB
machine are shown in Table 4.1.

Parameters KEKB achieved SuperKEKB

Energy (GeV) (LER/HER) 3.5/8.0 4.0/7.0

ξy 0.129/0.090 0.090/0.088

β∗y (mm) 5.9/5.9 0.27/0.41

I (A ) 1.64/1.19 3.60/2.62

Luminosity (1034cm−2s−1 ) 2.11 80

Table 4.1: Fundamental parameters of SuperKEKB and KEKB [68].

The magnet system will also be subjected to several replacements. The main dipole
magnets in the low and high energy ring will be changed with dipole magnets that
are longer for the LER and shorter for the HER. Also, in order to achieve the design
luminosity, the number of dipole, quadruple and sextuple magnets needed for the
operation of the SuperKEKB will be increased with respect toKEKB.
As a result of focussing the beam-pipe radius will be decreased from 15.0mm radius
to a 10mm radius.
The upgraded Belle detector will be called Belle II. The layout of the upgraded Belle II
detector (above) in comparison with the Belle detector (below) is shown in Figure 4.1.
One huge change in the upgrade of the Belle detector is introducing a completely
new pixel detector that has to handle very harsh background environment due to the
increase of background as a result of 40 times higher luminosity. The Pixel Vertex
Detector (PXD) will be mounted directly on the beam-pipe, tobe as close as possible
to the interaction point. It is based on a Depleted Field-Effect Transistor (DEPFET)
technology [69]. This technology allows for very thin (50µm) sensors. The PXD
consists of two layers of pixel sensors, standing at radii of14mm and 22mm for
the inner and outer layer, respectively. Figure 4.2 shows the layout of the two PXD
layers. The inner layer consists of 8 planar sensors (”ladders”) each with a width of
15mm and a sensitive length of 90mm. The outer layer consistsof 12 modules with
a width of 15mm and a length of 123mm [14]. The angular acceptance of the pixel
detector is 17◦ < θ < 150◦ in polar angle. Outside this acceptance region the readout
electronics which need an active cooling are located. The pixel sensors will consume
very little power and therefore the air cooling is sufficient.
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Figure 4.1: Belle II detector layout compared to Belle.

Figure 4.2: Schematic view of geometrical arrangement of the sensors for the PXD.
The light gray surface are the sensitive DEPFET pixels, which are entirely covering
the acceptance of the tracker system.
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The SVD for the Belle II detector as a tracking device inherits the physics capability
of the Belle SVD2 system, such as low mass, high precision, background resistivity,
tolerance to radiation and long-term stability. In order toincrease both robustness and
precision of vertexing, the future silicon vertex detectorwill be composed of 4 lay-
ers as its predecessor (SVD2), but at increased radii to provide enough space for the
PXD. The inner radius is 35mm and the most distant layer will be placed at radius
of 140mm. The future SVD will be slanted in the forward regionto reduce multiple
scattering and give better precision in the forward direction. The main parameters of
the Belle II SVD and the former SVD detector of Belle are presented in Table 4.2.

Parameters Belle (SVD2) Belle II

Layers 4 2 DEPFET; 4 DSSD

Radius of layer (mm) 20/43.5/70/88.8 14/22; 38/80/115/140

Ladders/layer 6/12/12/18 8/12; 8/10/14/17

Modules/ladder 2/3/5/6 1/1; 2/3/4/5

Modules 246 20; 187

Module width (mm) 25.6(33.28 layer 4) 12.5; 57.6(38.4 layer1)

Module length (mm) 76.8(74.75 layer 4) 38.2/58.7; 115.2

Module thickness (µm) 300 50; 300

Pitch, Pixelsizerφ (µm) 50 (65 layer 4) 50/50; 75 (50 layer 1)

Pitch, Pixelsizez (µm) 75 (73 layer 4) 76/117; 113 (75 layer 1)

Angular coverage 17◦ < θ < 150◦ 17◦ < θ < 150◦

Table 4.2: Parameters of the former SVD configuration and thecurrent combined de-
sign of PXD and SVD [14].

In order to satisfy the requirements of the PXD and SVD in terms of space, the CDC
will be moved farther away from the interaction region. The radius of the CDC will be
increased to improve the momentum resolution, as well as thesense wire density, re-
sulting in about 15000 sense wires. The main parameters of the future CDC are listed
in Table 4.3 and are compared with the former chamber parameters.
The upgrade of the detector involves replacement of the TOF and ACC with a new par-
ticle identification system, consisting of a Time of Propagation Counter (TOP) in the
barrel region and Aerogel Ring-ImaginǧCerenkov (ARICH) detector device for the
end-caps [70], [71]. TOP measures the time of propagation oftheČerenkov photons
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Parameters Belle Belle II

Radius of inner cylinder (mm) 77 160

Radius of outer cylinder (mm) 880 1130

Radius of innermost sense wire (mm) 88 168

Radius of outermost sense wire (mm) 863 1111.4

Number of layers 50 56

Number of sense wires 8400 14336

Gas He−C2H6 He−C2H6

Diameter of sense wire (µm) 30 30

Table 4.3: Main parameters of the Belle CDC and the future chamber of Belle II [14].

that are reflected internally inside a quartz radiator. TheČerenkov image is recon-
structed from a 3 dimensional information provided by 2 coordinates (x, y) and pre-
cise timing. The time component is determined by micro-channel plate (MCP) photo
multiplier tubes, located at the end surfaces of the quartz bar. An array of such quartz
bars surrounds the outer wall of the CDC. The second component of the particle iden-
tification device, the ARICH consists of an aerogel radiatorwhereČerenkov photons
are produced by charged particles, an expansion volume to allow Čerenkov photons to
form rings on the photon detector surface, an array of position sensitive detectors that
can detect single photons in a high magnetic field with high efficiency and with good
resolution in two dimensions and a readout system for the photon detector.
Concerning the next following sub-detector, the ECL will have almost the same design
as its former, except the end-cap parts which will be replaced with pure CsI crystals to
improve the time resolution.
The solenoid and the barrel part of the KLM will remain unchanged. The Belle KLM
was based on glass-electrode resistive plate counters, which had a long dead time dur-
ing the recovery of the electric field after a discharge. The long dead time reduces
significantly the detection efficiency under high background fluxes. Even though the
estimated occupancy in the barrel region of the KLM at SuperKEKB will be increased
with respect to KEKB, implying much higher background, the barrel resistive plate
counters can still be operated successfully. However, in the end-caps the background
will be much worse due to the limited shielding of the neutrons and other particles
that are generated externally along the beam lines. Thus, for the forward region of the
KLM the resistive plate counters will be replaced by siliconphoto multipliers, because
of the suffered radiation damage.



Chapter 5

Luminosity-dependent Background

One of the biggest challenges in high energy accelerators isto understand the back-
grounds. If these effects are not carefully studied and controlled, they may create
dangerous situations. Even if they are well studied and understood, they may signifi-
cantly reduce the lifetime of the detector.
The Belle detector was dealing with several sources of background. These sources are
divided in two main categories: machine background which depends on the particular
beam settings and luminosity-related background induced by the increase in luminos-
ity.
The machine background includes several background sources. One of this sources is
the background due to beam-gas scattering [72][73][74]. Ine+e− colliders, ideal vac-
uum conditions are never achieved, resulting in interactions between the charged par-
ticles with the residual gas molecules. This prompts deviation of the traveling charged
particles from their original path. Ine+e− storage ring such particles are called beam-
scattered or spent electrons or positrons. The beam particles interact with the residual
gas molecules via two kinds of interaction: Bremsstrahlungand Coulomb scattering.
A considerable amount of these particles deviate quite a lotfrom their initial direction
and finally hit the detector, thus causing background events.
Belle detector was also affected by synchrotron radiation [75], as background source
that also depends on the machine parameters: the beam current, magnet position, bend-
ing radii and beam orbits. This type of background occurs when a charged particle is
accelerated, therefore losing its energy and in addition isinvolved in circular motion.
This severely limits the efficiency of storage rings for energetic electrons and positrons.
Another beam-induced background is the Touschek effect [76], which is in principle an
intra-bunch scattering. Elastic scattering between two particles in a same beam bunch
changes their energy, resulting in having one particle withtoo much energy, while the
other is left with too little energy. The scattering rate of the Touschek effect depends
proportionally on the bunch current and number of bunches, but it is inversely propor-
tional to the beam size. Tosuchek scattered particles are lost by hitting the inner wall
of the beam-pipe while they propagate around the ring. If their loss position is close to
the detector, generated shower might reach the detector, producing fake detector hits.
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This results in deterioration of the detector’s physics resolution.
On the other hand, Belle also was coping with backgrounds that depend on luminosity:
radiative Bhabha scattering and thee+e−→ e+e−e+e− process.
The rate of the radiative Bhabha events is proportional to the luminosity. In the radia-
tive Bhabha scattering process, the produced photons travel along the beam axis di-
rection, during which they interact with the iron of the magnets. In these interactions,
neutrons are copiously produced, which are the main source of background affecting
the outer detector,KL andµ detector.
The luminosity dependent background caused by the low momentum QED e+e− →
e+e−e+e− process (see Figure 5.2 (d)), will be discussed in detail in this chapter. It
will also be referred as a two-photon QED process.
The Belle experiment is now being upgraded to the Belle II experiment, designed to
record instantaneous luminosity 40 times higher than the one recorded by the Belle ex-
periment. Such a high luminosity will be realized by the SuperKEKB collider, where
background rates due either to machine or to luminosity settings are expected to be
much higher than those of KEKB. This means that the understanding of the back-
grounds in the Belle detector is necessary in order to determine the expected back-
ground rates at Belle II.
At Belle II, the new pixel vertex detector will be placed veryclose to the interac-
tion point, where the background levels are highest. Due to its small radius, the pixel
detector will be affected from low energetic electrons and positrons emitted in the two-
photon process. These secondary electrons and positrons are not able to penetrate too
far into the detector.
Therefore, the estimation of the two-photon QED backgroundis of great importance
for the safe operation of the pixel detector.

5.1 Theory prediction for two-photon QED back-
ground

The forthcoming upgrade of the KEKB accelerator to SuperKEKB will bring a
large increase of luminosity. This brings up the question ofthe behavior of the
luminosity-dependent background. This background is generated mainly from QED
processes.
In principle, there are two background processes that we need to consider. These are:
Bhabha scattering, shown in Figure 5.1 ande+e− → e+e−e+e− process shown in
Figure 5.2 (d).
Within the acceptance of the Belle II detector (17◦ < θ < 150◦ ), the estimated cross
section for the t-channel Bhabha scattering is about 120nb,whereas for theγγ
process it isσ ∼ O(107)nb. Therefore, the concentration is put on theγγ process,
because its cross section is so much larger compared to the other process.
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Figure 5.1: Bhabha scattering.

5.1.1 Standard γγ Monte Carlo generators

In order to predict theγγ background situation at Belle II, Monte Carlo simulation
is needed. However, the cross section in the phase-space expected for the low energy
secondarye+e− pairs was never studied experimentally. We therefore analyzed three
different Monte Carlo (MC) generators that are being used tosimulate this process.
Those were BDK [77], KoralW [78] and Grace [79].
The BDK generator only simulates the principle interactionof e+e− → 4 f . In
leading order there are 36 diagrams where 4 fermions are produced ine+e− collision.
These are classified into bremsstrahlung (Figure 5.2 (a)), conversion (Figure 5.2 (b)),
annihilation (Figure 5.2 (c)) and the multi-peripheral process (Figure 5.2 (d)), The
latter process is the dominant two-photon process that is being investigated in these
studies. In BDK it is simulated by its own sub-generator.
KoralW is a more recent generator. In addition to the main interaction it also simulates
initial and final state radiation and takes into account the interferences. It is therefore
the most advanced generator so we expect that it gives us the best possible prediction
for the γγ -background in Belle II.
To estimate the systematic uncertainty of the background estimation coming from
this choice of the generator, the two generators BDK and KoralW were compared. In
principle, we expect less particles in the simulation from BDK since the initial and
final state radiation are not simulated by this particular Monte Carlo. This effect of
initial and final state radiation, the largest systematic uncertainty of the prediction, can
then be seen in the difference between the BDK and the KoralW prediction.
In addition, we looked as well at Grace, which is a generator that simulates also initial
state radiation together with the multi-peripheral graph.The resulting simulation
showed that Monte Carlo prediction extracted from Grace is consistent with the one
obtained from BDK.



Luminosity-dependent Background 102

-e -e

γ

+e +e
γ

(a) Bremsstrahlung

-e

+e
γ

γ

(b) Conversion

-e

+e

γ

-e

+e

γ

(c) Annihilation

-e -e

γ

γ

f

f

+e +e

(d) Multiperipheral

Figure 5.2: QED processes.

The energy spectrum of the electron simulated using the KoralW simulation is shown
in Figure 5.3 (a). After the Lorentz boost in the laboratory system, the electron
spectrum is different, as shown in Figure 5.3 (b).
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Figure 5.3: Energy spectrum of the electron in the CMS (left)and after the Lorentz
boost (right) extracted using the KoralW Monte Carlo generator.
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These spectra simulated using the BDK generator show the similar trend (see
Figure D.1 in Appendix D.0.1).
Comparing the event kinematics of the two generators, it canbe seen, as shown in
Figure 5.4, that the generated energy spectra using the two separate Monte Carlo
generators are in a good agreement. One can also see that particles produced in this
process have an extremely soft spectrum. Due to the magneticfield of the Belle
II, only very small amount ofγγ QED background particles will reach the inner
detectors. To reach the pixel detector a minimum transversemomentum of 3.5MeV
is needed. Thus, only a small fraction of the tracks has enough energy to produce a hit
in the pixel detector. This is also taken into account in these studies. In addition, only
a few hits are expected in the larger tracking detectors, e.g. central drift chamber.
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Figure 5.4: KoralW (dashed blue) and BDK (solid red) simulation.

For a first estimation of the occupancy, we looked at the produced particles at the
generator level. To these particles we applied the acceptance cut, satisfying the
17◦ < θ < 150◦ condition and the requirement of minimum transverse momentum
for a charged particle to reach the inner layer of the pixel detector. We obtained
about 2500 tracks using the KoralW simulation and roughly 2600 tracks using the
BDK. From the number of tracks obtained in the acceptance of the pixel detector, the
expected occupancy coming from theγγ -process is calculated. For this we assumed
that each track produces at most three hits in the PXD, which is a reasonable upper
limit. The occupancy is calculated as the ratio between the number of fired pixels
(number of hits) and the total amount of pixels in the innermost layer, which is
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3.2×106 . The results of this estimation are shown in Table 5.1.

MC generator KoralW BDK SuperB(BDK)

Tracks 2500 2600 13800

Occupancy 0.25% 0.26% 1.3%

Table 5.1: First estimation of the occupancy in the PXD usinga simple assumption of
3 hits per track.

As one can see both, KoralW and BDK predict a similar amount oftracks. This
good agreement makes us confident that the systematic uncertainty of our estimation
is small. The deduced occupancies are in the order of 0.3%, which is far below the
operational limit of the pixel detector which is 3%.
This investigation was triggered by a statement from the SuperB [80] collaboration,
saying that they expect a rate for the 2γ-process of 10MHz/cm2 in their vertex
detector. They obtained their prediction using the BDK generator. In the following we
will refer to it as the SuperB (BDK) prediction. Already at first sight, this prediction
was far bigger than the numbers we have extracted. For a more detailed comparison,
we translated this predicted rate into an occupancy in the first layer of the Belle II
PXD detector.
For this we took into account the 20µs read-out frame of the PXD and the active area
of the first layer (8 ladders with dimensions given in Section4). Since the prediction
for SuperB was made for their vertex detector, which has a radius of 1.3cm, we
corrected the rate to account for the larger radius (1.4cm) of the PXD at Belle II. The
rate under these conditions then yields about

NSuperB
tracks = Rate× tPXD× rcorr×Area=

= 107× (2×10−5)× (1.3)2

(1.4)2×80= 13800 tracks.
(5.1)

Here, Rate is the rate for the two-photon process obtained from SuperB BDK
simulation,tPXD is the memory time of the pixel detector,rcorr is the radial correction
to account for the different location of the vertex detectors at Belle II and Super B
from the interaction point and the last term,Area, is the active area of the eight
ladders in the fist PXD layer.
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The result of this translation is also shown in Table 5.1. The10MHz/cm2 corre-
sponds to about 13800 tracks per read-out frame in the PXD, which would lead to
an occupancy of 1.3% in the first layer of the pixel detector consisting of about 3
Million pixels, under the assumption of 3 pixels per track. Such a high occupancy
would be harmful for the PXD. This would mean that the pixel detector will be full
of background hits, and hence it will be useless. Therefore,we decided to perform
a measurement which would allow us to better constrain the cross section of the
γγ -process.

5.2 Method of measurement

The investigated three MC generators give rather consistent predictions concerning the
amount of particles seen in the Belle/Belle II detector. Still, the γγ -process has never
been tested experimentally in this phase-space.
The γγ -process produces charged particles with extremely small momenta. This
makes a measurement of the contribution of this process to the total cross section
rather difficult. It is not possible to trigger on these events nor is it likely that many
tracks from charged particles produced in theγγ -process are reconstructed.
Most particles reaching the tracking detectors have a momentum around 10MeV.
Thus, they only produce one or two hits in the first couple of tracking layers. A track
reconstruction is not possible for these tracks. Instead, we used a method that is based
on the amount of activity seen in the relevant detectors. Forthis purpose we used Belle
data collected during the dedicated QED experiments performed for this study. The
three important ingredients to this method are discussed inthe following.

5.2.1 Triggering on QED processes

Due to the soft energy spectrum of theγγ -process it is not possible to setup a track or
calorimeter trigger on the particles produced in the QED-interactions. It was therefore
decided to use a random trigger, since it has the highest probability to be a ”back-
ground only” trigger.
Because theγγ -process has such a large cross section it constitutes a large fraction of
background processes in Belle. Particles from this background are present in any event
recorded by the Belle detector. However, due to the steep drop-off with increasing mo-
mentum, only very little detector hits are expected from this process. By choosing a
random trigger for the QED studies, the probability of observing a physics event or
another background event with higher energetic particles is greatly reduced compared
to other triggers available in Belle. Thus, the relative contribution of QED events to
the detector hits is most advantageous for a random trigger.
Nevertheless, with random triggers during the read-out time of 2µs of the silicon ver-
tex detector (SVD), only 1.2 tracks are expected to hit the first layer of the SVD based
on the estimation from the KoralW Monte Carlo generator.
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5.2.2 Hit multiplicities in the SVD

Since the particle spectrum of theγγ -process is very soft, it is unlikely to find
reconstructed particle tracks coming from this process. However, many particles are
expected to travel to the silicon vertex detector and produce hits in particular in its
first layer. Therefore a study of the hit multiplicities in the vertex detector gives us a
possibility to determine the background contribution fromthe γγ -process.
Before starting the measurements of the QED experiment the correlation between
tracks, hit-multiplicities and cluster-multiplicities in the SVD was studied.
For events from a random trigger sample, a preselected Bhabha sample (containing
Bhabha scattering events) and from a preselected multi-hadron physics sample the
number of outgoing tracks is compared to the hit and cluster multiplicities in the first
layer of the vertex detector.
In the random trigger sample, no reconstructed tracks were found in the events. The
observed number of hits and clusters per event for one of the innermost layers of the
SVD are shown in Figure 5.5. On average there are in each event61 background hits
in about 20 clusters. Since no particles are present in the event, these constitutes the
constant background noise. Thus, they are background hits.
We have also taken data without beams to prove that the 61 hitscome from luminosity.
The hit distribution is given in Figure D.2 in Appendix D.0.2.
In the preselected Bhabha sample, slightly more hits are seen. In this sample exactly
two reconstructed tracks are required. The hit and cluster distributions for the Bhabha
sample are shown in Figure 5.6.

Entries  61848
Mean    60.65
RMS     71.16

Hits
0 200 400 600

E
nt

rie
s

0

2

4

6

310×

Entries  61848
Mean    60.65
RMS     71.16

Entries  61848
Mean    19.61
RMS      20.9

Clusters
0 50 100 150 200

E
nt

rie
s

0

2

4

6

310×

Entries  61848
Mean    19.61
RMS      20.9

Figure 5.5: Hit (left) and cluster (right) multiplicity in the rz-plane in the first SVD
layer for preselected zero track events of the random trigger sample.

For the Bhabha events we observed on average 65 hits and 22 clusters. These are 2
clusters with 2-3 hits more than for random events. Since there are exactly 2 tracks in
these events, we conclude that each track produces a clusterwith up to 3 hits.
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Figure 5.6: Hit (left) and cluster (right) multiplicity in the rz-plane in the first SVD
layer from the Bhabha sample.

To confirm this assumption we looked at the multi-hadron sample. In the multi-hadron
sample many more particles are present. On average about 10-12 reconstructed tracks
are found, as seen in Figure 5.7. Accordingly, many more hitsand clusters are seen
in the first layer of the SVD, which is shown in Figure 5.8. A total of 92 hits and 29
clusters is observed.
The average number of tracks, hits and clusters per event forthe three samples are
summarized in Table 5.2. As can be seen, for the multi-hadronsample the simple
assumption, that each track in the acceptance produces a cluster of up to 3 hits is also
valid. This rough estimation was used in Section 5.1.1 to estimate occupancies related
to the γγ -process.
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Figure 5.7: Reconstructed track multiplicity from the multi-hadron sample with∫
Ldt = 6.3(fb)−1 .

The numbers in Table 5.2 also show us, that it is possible to determine the average
number of tracks crossing the detector only from the observed hits multiplicities. Due
to the large number of background hits, this is not possible on the event by event
basis. But by looking at large data samples, the average number of tracks crossing the
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detector can be deduced from the average hit multiplicities.
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Figure 5.8: Hit (left) and cluster (right) multiplicity in the rz-plane in the first SVD
layer from the multi-hadron sample.

Since a track reconstruction is not possible for the particles produced in theγγ -
process, we used these hit multiplicities to determine how many particles were seen
in the first layer of the silicon vertex detector. To reduce the statistical uncertainty,
large event samples of 500 000 events per measured point wereused (in the following
referred as runs).

Data Sample Hits Clusters Tracks Associated Hits/Track

Random Trigger 60.6 19.6 0

Bhabha sample 64.9 21.3 2 2.1

Multi-hadron sample 92.1 29.1 11.5 2.7

Table 5.2: Correlation between hits and tracks in three different data samples.

Table 5.3 shows the expected number of tracks and hits in the SVD coming only
from the γγ -process. The estimated values for the expected number of tracks in the
PXD from the KoralW Monte Carlo are corrected for the luminosity change between
KEKB and SuperKEKB, the radius difference between the PXD and the SVD and
their read-out time difference. Thus, the number of tracks and hits in the SVD are
extracted. The same applies for the SuperB Monte Carlo.
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Detector Expected tracks Expected tracks Expected hits Expected hits

at Belle/Belle II at SuperB at Belle/Belle II at SuperB

PXD 2500 13800 7500 41400

SVD 1.2 6.7 3.7 20.3

Table 5.3: Expected number of tracks and hits per SVD frame.

If we take the estimation of the KoralW Monte Carlo generator, we would expect 3-
4 hits in the SVD coming from theγγ -background. It is clear, that this number is
so small, compared to the average hit multiplicities from Table 5.2. Thus, additional
means are needed to extract the background contribution from QED processes.
On the other hand, if the SuperB prediction is correct, we would see about 20 additional
hits. This would be clearly visible in the data.

5.2.3 Luminosity variation

To extract a cross section for theγγ -process or at least produce an upper limit which
can be used for the occupancy estimation in Belle II, it was decided to vary the lumi-
nosity during the time of the measurement and observe the dependence of the detector
activity.
This approach assumes that low-energetic QED processes arethe main source of back-
ground in Belle and that in particular no other background source depends directly
on the luminosity. Naturally, there is also machine background in Belle, such as the
Touschek effect or beam-gas scattering. Therefore, it was decided to perform three
different experiments, where the luminosity is varied in different ways, to be able to
distinguish between background from the machine and luminosity dependent back-
ground. Since machine background mainly depends on the amount of particles in the
beam, i.e. the beam currents, it was decided to change the luminosity also by varying
other parameters.
The luminosity not only depends on the beam currents, but also on the two fractions
of the bunch that actually intersect. This fraction can be changed by introducing a
slight offset in one of the beams, thus reducing the area of intersection. Alternatively,
a widening of one of the beams reduces the luminosity since the number of particles
in the area of intersection is reduced for this beam. Both methods result in a reduced
luminosity without reducing the machine background.
So to extract the background contribution of theγγ -process the following method will
be used: The luminosity of the beams will be varied using the three different methods
described above. Starting from the maximal luminosity it will be decreased in several
steps. For each step random trigger events are recorded. Then the hit multiplicity in
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the SVD and in particular in the first layer of the SVD is studied as a function of the
luminosity. This hit multiplicity should decrease with decreasing luminosity. Since
no other background source is expected to depend directly onthe luminosity, the de-
crease should be most pronounced in the first layer of the SVD,where it should be
around 2 hits when going from a luminosity of 0(nbs)−1 to the maximum luminosity
of 10(nbs)−1 .
Since the particles fromγγ -process are not expected to hit the central drift chamber
(CDC), the hit multiplicities of the CDC are not expected to show any dependence on
the luminosity. This expectation should also be verified to confirm the absence of other
luminosity dependent background sources.

5.3 Measurement setup

The measurement of the QED fraction to the cross section at Belle is based on an
extraction of the hit multiplicities in the four layers of the silicon detector. From the
dependence of the hit multiplicities on the instantaneous luminosity, the QED back-
ground can be extracted.

5.3.1 SVD hits

Since no tracking can be used, the analysis of the QED contribution is based on vertex
detector hits. The four layers of the SVD have the following radii: 2.0cm for the
innermost layer and 4.35cm, 7.0cm and 8.88cm for the other three layers, respec-
tively. QED background is mainly expected in the first layer.
The SVD modules [81] have two orientations:rφ and rz. The rφ -planes measure the
φ coordinate of the outgoing track and therz-planes measure thez coordinate. We
look at the hits in therφ and rz-planes of each layer independently. To obtain the
hit multiplicities, the sum of all hits in one plane is used. For our measurements we
averaged the hit multiplicities for all events taken at the same luminosity. Thus, for
each layer we have two multiplicity values per luminosity setting, one fromrφ and
one fromrz-plane.

5.3.2 Random trigger setup

In order to measure the QED fraction at Belle true random triggers are needed. The
reason for this is that QED processes do not produce signal for triggering, but in true
random triggers a contribution from QED is present.
The random triggers at Belle were studied for several data sets taken from different
running periods of the detector.
The combined random trigger at Belle is setup from three signals: the ”Luminosity ”
trigger and the ”Physics” trigger which have a delayed signal on real triggers by a
100µs and the ”Bunch0” trigger that triggers at the same transition time of every first
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bunch crossing.
To check the quality of the random trigger setup, the hit distributions in the different
layers of the silicon vertex detector were plotted.
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Figure 5.9: Hit distribution in the inner two layers of the SVD in the rz-plane.

Figure 5.9 shows the hit distribution for therz-plane of the first and second SVD
layer. One can see that the histograms not only consist of thetypical falling spectrum
of background hits, but show a distinct ”bump” for a higher number of hits. This
”bump” was observed in all layers of the vertex detector, inrz-planes andrφ -planes
alike and in all the data samples that were studied.
The comparison with physics data showed that the ”bump” doesnot have its origin
in physics. Figure 5.10 shows hit multiplicity in the silicon detector for the inner two
layers extracted by using the multi-hadron sample. No ”bump” structure can be seen,
neither in the two histograms nor in the other layers of the SVD that we studied.
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Figure 5.10: Hit distributions in the first two SVD layers (rz-planes) from the multi-
hadron event sample.
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Further investigation showed that the ”bump” is coming fromthe delayed ”Physics”
and ”Luminosity ” triggers. This is shown in Figure 5.11.
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Figure 5.11: SVD hit multiplicities inrz-planes of the first (left) and second (right)
layer for ”Bunch0” selection (top) and ”Luminosity ” and ”Physics” selection (bot-
tom) of the random trigger sample.

It shows the hit multiplicities in the first two layers of the SVD. The upper two plots
are taken from the ”Bunch0” selection of a random trigger sample. Whereas the two
plots below show the ”Luminosity ” and ”Physics” selection from a random trigger
sample. The ”bump” can only be seen in the lower two plots. From this strange
observation about the random trigger events we concluded that there was a problem
with the random triggered events in Belle. So, we looked for an alternative.

5.3.2.1 Real random triggers at Belle

Due to the fact that with the standard random trigger a problem was observed, we
asked for and were provided with a pure random trigger. This was setup by the beam
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crew at KEK and it was generated by a gate generator. Figure 5.12 shows that the SVD
hit multiplicity in the first layer of the silicon detector does not have an additional
component. The investigation of the outer three layers shows the same.
This proves that the new introduced trigger behaves as expected. Its trigger rate was
400Hz. Using this trigger setup the experiments for the QED background extraction
were done.
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Figure 5.12: Hit multiplicity in the first SVD layer from one of the test runs with the
random trigger used during the QED experiments.

5.3.2.2 Background levels for different experiments

In Figure 5.13 are shown the hit distributions in the first layer of the SVD for different
data sets taken with the standard random trigger setup. These hit multiplicities are
taken from the ”Bunch0” selection from the random trigger sample. As it can be seen
from these plots, the background levels change between datasets.
However, within the data set taken with the provided real random trigger the back-
ground remains unchanged. Figure 5.14 shows the hit distributions in the first layer of
the vertex detector. These distributions are taken from a different running periods of
the same data set.



Luminosity-dependent Background 114

Entries  162665

Mean    178.2

RMS     120.1

Hits
0 200 400 600

E
nt

rie
s

0

2

4

310×

Entries  162665

Mean    178.2

RMS     120.1

Entries  707854

Mean    99.41

RMS     87.72

Hits
0 200 400 600

E
nt

rie
s

0

10

20

30

40

310×

Entries  707854

Mean    99.41

RMS     87.72

Entries  12862
Mean    94.91
RMS      82.4

Hits
0 200 400 600

E
nt

rie
s

0

200

400

600

800 Entries  12862
Mean    94.91
RMS      82.4

Entries  105015

Mean    136.5

RMS     94.92

Hits
0 200 400 600

E
nt

rie
s

0

1

2

3

4

310×

Entries  105015

Mean    136.5

RMS     94.92

Figure 5.13: Hit distributions in the first SVD layer (rz-plane) obtained from different
running periods of data taking with the pre-existing randomtriggers.
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Figure 5.14: Hit distributions in the first SVD layer (rz-plane) obtained from a differ-
ent running periods of data taking with the real random triggers.
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5.3.3 Machine experiments for different luminosities

The basic idea for the QED experiments was to change luminosity and not too many
beam parameters during data taking and extract the fractionof γγ QED background
events. The luminosity was changed in three ways: widening the beam, introducing
vertical a offset and reducing the current in one beam. Each method corresponds to
one Belle experiment number (A, B or C), which is summarised in Table 5.4.
The data taking for all three experiments took aproximatelly 24 hours. More details
concerning the QED background runs, such as beam currents, beam sizes, injection,
etc. can be found under [82].
To compare the measurements from each of the three experiments, four luminosity-
steps were chosen: 10, 8, 6, 4/nbs. It was not possible to go lower in luminosity,
because the beams were lost. The highest luminosity of∼ 10/nbs is the standard
Belle luminosity. At each luminosity step, one measurementpoint (run), with 500
000 random trigger events was taken. Afterwards, the observed hits per event were
analysed and then averaged over the 500 000 events. This large number of events was
essential for negligibly small statistical uncertainties.

Experiment Run L( /nbs) t(s)

(A)

414 9.62 1025
416 7.86 1081
417 5.75 1091
418 4.20 1141
419 0.0 746
420 0.0 233

(B)

401 9.71 1058
403 7.59 1091
408 6.08 1097
409 3.71 1024
411 5.97 1131

(C)

421 9.49 903
422 9.39 900
424 8.09 900
425 7.04 900
426 6.01 900
427 4.81 430

Table 5.4: Overview of the runs taken in experiment 73. In this experiment the QED
studies were done and the luminosity of the beam was changed.The luminosity was
changed in three ways: In experiment (A) the beams were separated vertically, in
experiment (B) there was a vertical increase of the beam size in the High Energy Ring
and in experiment (C) the current in the beam was changed by stopping the injection.



Luminosity-dependent Background 116

5.4 Data analysis

The analysis presented in the following is based on the extracted hit multiplicities in
the silicon vertex detctor. For the extraction of the two-photon QED background hits
in the silicon detector we look in both orientations,rz andrφ -plane independently, for
each of the four vertex detector layers.

5.4.1 Hit multiplicities in the SVD

The analysis of the data collected during the QED experiments started by checking
the hit spectra of the SVD layers. Two examples of these spectra are shown in
Figure 5.15. The left histogram shows the hit multiplicities seen in the rz-plane of the
first SVD layer during a high luminosity run of experiment A. The right histogram
shows the hit multiplicity in the same plane for a lower luminosity run of experiment C.
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Figure 5.15: Hit multiplicities in therz-plane in the first layer of the SVD for experi-
ment (A) (left) and experiment (C) (right) for different luminosities.

As expected both spectra show the typical shape for random trigger events without
any additional components. We also checked the hit multiplicity distributions in
the rφ-planes and of the outer layers of the silicon vertex detector (see Figures in
Appendix D.0.2). Also in the other SVD layers the hit distribution spectrum has the
expected shape. Looking at all the data collected with the real random trigger we
observed similar spectrum for the different runs, taken at different luminosity setting.
Therefore, we are confident that the measurement setup, in particular the trigger and
the noise levels in the vertex detector were stable during the time of the data taking.
During the whole data taking we monitored the background levels not only of
the silicon vertex detector, but also the background behavior of the central drift
chamber. In contrary to our initial assumption, we observeda strong dependence of
the background levels in the SVD and the CDC on the beam luminosity. This was
quite unexpected since particles from QED background processes do not reach the
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central drift chamber, while other background sources apparent in the drift chamber
were not expected to depend on the luminosity. Looking at thestatistic boxes of
the two histograms in Figure 5.15 one can see, that there is a significant difference
between the mean hit multiplicity in the left histogram (L = 10(nbs)−1 ) and the right
histogram (L = 6(nbs)−1 ). This strong dependence on the luminosity is even more
apparent when looking at the mean values from all runs and luminosities of the QED
experiment which are given in Table 5.5. Similarly large differences were also seen
when looking at the other layers of the silicon vertex detector, which are also shown
in the Table 5.5.
In addition, strong changes of the background activity in the central drift chamber,
with the changes in luminosity were also seen. In Figure 5.16(a), the drift chamber
current activity as a function of luminosity is shown. One can clearly see the strong
variations of the current which depends on the luminosity. Figure 5.16 (b) shows how
the mean hit multiplicity in the central drift chamber changes as a function of the
luminosity. Table 5.6 summarizes the results from these observations.
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Figure 5.16: The activity of the Central Drift Chamber. The CDC current as a function
of luminosity (left) for the three QED experiments (A(greentriangles), B(red circles)
and C (blue squares)). The CDC hit multiplicity as a functionof luminosity (right)
for the three QED experiments (A (light blue squares), B (redcircles) and C (purple
triangles)).

It is clear from these observations, that this background could not be related to QED
processes. Particles from the QED background are too soft toproduce hits in the drift
chamber. This had to be a so-far unknown background component which also strongly
depends on the luminosity changes. Since we observed different trends during the
three different machine tunings (experiments A, B, C), thisbackground component is
directly related to the machine operation itself.
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(a) Experiment A

rz-plane

SVD 9.62 /nbs 7.86 /nbs 5.75 /nbs 4.30 /nbs 0.0 /nbs 0.0 /nbs

1 108.3±0.15 92.03±0.13 81.98±0.12 76.61±0.12 123.5±0.23 71.03±0.27

2 48.48±0.07 42.92±0.06 39.76±0.06 38.14±0.06 59.82±0.11 37.43±0.13

3 44.22±0.06 39.00±0.06 36.21±0.05 35.13±0.05 54.15±0.09 35.10±0.11

4 38.95±0.06 34.08±0.05 31.58±0.04 30.63±0.04 48.28±0.08 31.20±0.10

rφ -plane

1 103.7±0.14 87.44±0.13 77.03±0.12 71.5±0.11 115.7±0.21 64.59±0.26

2 49.05±0.09 42.37±0.08 38.64±0.07 36.78±0.07 60.98±0.13 36.16±0.15

3 37.97±0.06 33.54±0.05 31.74±0.05 30.72±0.04 47.58±0.08 30.61±0.10

4 38.01±0.05 33.14±0.04 30.83±0.04 29.83±0.04 47.51±0.08 30.24±0.09

(b) Experiment B

rz-plane

SVD 9.71 /nbs 7.59 /nbs 6.08 /nbs 3.71 /nbs 5.97 /nbs

1 108.4±0.15 103.2±0.14 98.69±0.14 86.22±0.14 99.75±0.14

2 48.68±0.07 47.06±0.07 46.00±0.07 41.91±0.06 46.53±0.07

3 44.53±0.06 43.69±0.06 42.98±0.07 38.91±0.06 42.95±0.06

4 39.18±0.06 38.30±0.05 37.58±0.05 33.79±0.05 38.24±0.05

rφ-plane

1 103.7±0.14 98.01±0.14 92.98±0.13 79.83±0.13 93.82±0.13

2 49.22±0.08 47.54±0.08 46.11±0.08 41.16±0.08 46.55±0.08

3 38.29±0.06 38.65±0.05 37.96±0.05 34.04±0.05 36.68±0.05

4 38.23±0.05 37.54±0.05 36.98±0.05 33.19±0.04 37.14±0.05

(c) Experiment C

rz-plane

SVD 9.49 /nbs 9.39 /nbs 8.09 /nbs 7.04 /nbs 6.01 /nbs 4.80 /nbs

1 107.5±0.16 100.5±0.15 89.01±0.14 79.87±0.13 73.18±0.12 67.19±0.18

2 48.24±0.08 45.11±0.07 40.77±0.07 37.25±0.06 34.89±0.06 32.94±0.08

3 43.35±0.07 40.12±0.06 36.54±0.06 33.55±0.05 31.42±0.05 30.24±0.07

4 38.30±0.06 35.37±0.05 31.86±0.05 29.11±0.04 27.40±0.04 26.15±0.06

rφ-plane

1 102.9±0.15 96.15±0.14 84.96±0.13 75.91±0.13 69.25±0.12 63.12±0.17

2 48.92±0.09 45.62±0.09 40.60±0.08 36.72±0.07 33.92±0.07 31.76±0.10

3 37.32±0.06 35.31±0.05 32.28±0.05 29.59±0.05 27.80±0.04 26.72±0.07

4 37.49±0.06 34.82±0.05 31.41±0.04 28.63±0.04 26.85±0.04 25.54±0.06

Table 5.5: SVD hit multiplicity as a function of luminosity in the four layers of the
silicon detector in both,rz andrφ -planes.
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Experiment L(/nbs) I(µA) Hits

(A)

9.62 13 280.190
7.86 10 242.790
5.75 9 220.930
4.20 9 210.430

(B)

9.71 13 279.680
7.59 13 273.150
6.08 12 264.750
3.71 11 231.020
5.97 13 264.670

(C)

9.49 13 274.320
9.39 10 254.950
8.09 9 227.860
7.04 8 206.590
6.01 7 192.770
4.81 6 181.770

Table 5.6: The corresponding luminosity, CDC current and the total CDC hit multiplic-
ity of the runs taken in experiment 73. In this experiment theQED studies were done
and the luminosity of the beam was changed. The luminosity was changed in three
ways: In experiment (A) the beams were separated vertically, in experiment (B) there
was a vertical increase of the beam size in the High Energy Ring and in experiment
(C) the current in the beam was changed by stopping the injection.

For the measurement of the QED background contribution, we needed to correct for
the effect of this additional background component. It was our plan to extract the con-
tribution from QED background from the different mean hit multiplicities observed
for two runs with different luminosity. However, due to the additional background not
only the QED was responsible for the observed change. Therefore, we corrected for
the additional background component using the informationabout the change of back-
ground level in the drift chamber.
After the correction we could compare the corrected mean hitmultiplicities measured
in runs with less than nominal luminosity, to the measurements of runs of the same
series (A, B or C) with the nominal luminosity of 10(nbs)−1 . The observed decrease
of the corrected mean hit multiplicity in the central drift chamber could then be ex-
trapolated to zero luminosity. The difference between the extrapolated value for zero
luminosity and the corrected hits at maximum luminosity wasthen taken to be the
contribution from the QED background.

5.4.2 Correcting for the change in background activity in the CDC

To correct for the additional luminosity-dependent background the luminosity depen-
dence of the drift chamber activity is used. For this, measurements of the currents from
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the drift chamber and the hit multiplicities were studied.

5.4.3 A CDC background measurement using the measured CDC
currents

To extract the detector activity during data taking, the online monitoring of the
currents of the central drift chamber were used. However we observed on these
monitors that the drift chamber current was quite unstable and showed large variation
over time. These fluctuations of the current in the drift chamber appear in all three
experiments.

(a) All experiments (b) exp.A

(c) exp.B (d) exp.C

Figure 5.17: CDC current during data taking of the three QED experiments.

In Figure 5.17 one can see the CDC current behavior during thedata taking time of the
QED experiments. The time is represented in hours. The subsections with ICDC = 0
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correspond to the time needed to setup the beams between two runs.
To improve the reliability of this approach using the drift chamber current information,
we tried to remove the data taking periods which had large fluctuations in the CDC
current. However, it was discovered, that these fluctuations occur every 25− 30s,
as seen in Figure 5.18. According to the machine experts theycould be related to
the beam injection. This made a removal of the time periods with large fluctuations
impossible. As a consequence, we decided not to use the central drift chamber current
information in our analysis.
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Figure 5.18: CDC current during different running periods of the three QED experi-
ments.

5.4.4 Measuring the CDC background with the observed hit mul-
tiplicities

As it was seen in Section 5.4.3, Figure 5.16 (b) shows that thehit multiplicities seen in
the central drift chamber depend on the luminosity. Since this luminosity-dependence
is not due to QED processes we need to correct for it.
The central drift chamber at Belle consists of 50 layers [83]. Figure 5.19, shows
the hit multiplicity in each of the 50 CDC layers, for the three QED experiments at
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standard luminosity,L ∼ 10/nbs. As one can see, the three plots are in a very nice
agreement. The total hit multiplicity of the drift chamber,shown in Figure 5.16 (b),
which in the following will be used to correct the measurements obtained from the
vertex detector, is the sum of the 50 multiplicities.
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(c) exp.(C)-run421, L = 9.49 /nbs

Figure 5.19: Average number of hits per event in each of the 50layers of the central
drift chamber (CDC).

For the correction a reference luminosityLmax is chosen. The hit multiplicities
obtained from the layers of the silicon vertex detector are then corrected for the
additional luminosity-dependence using

NSVD
hits_corr(Li) = NSVD(Li)×

NCDC(Lmax)

NCDC(Li)
, (5.2)

where NSVD
hits_corr(Li) is the corrected SVD hit multiplicity,NSVD(Li) is the SVD hit

multiplicity measured for luminosityLi , NCDC(Lmax) is the CDC hit multiplicity at
reference luminosity andNCDC(Li) is the CDC hit multiplicity at luminosityLi .
The reference luminosity is the highest luminosity value inexperiments (A) and (B),
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but in experiment (C) a lower luminosity is chosen as a reference point, because a
huge drop was observed when going from maximum luminosity tothe luminosity of
9.39/nbs.
The effect of the correction using the CDC hit multiplicity can be seen in Figure 5.20
(b), where the corrected vertex detector hit multiplicities as a function of luminosity
are shown. Compared to Figure 5.20 (a), the SVD hit multiplicities show a much
smaller dependence on the luminosity.
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Figure 5.20: Comparison between hit multiplicities in the first SVD layer inrz-plane
as a function of luminosity before (left) and after (right) applied correction using the
CDC activity in experiment B.

From the extrapolation of the fitted line in Figure 5.20 (b), we can estimate that
in the first layer of the vertex detector, 10-15 hits are due tobackground processes
that are only seen in the SVD. According to our initial assumption this is the QED
background. At the same time the outer three layers of the SVDshow weaker trends
compared to the first one (see Figure D.5 in the Appendix D.0.3). This confirms our
expectation that at larger radii the presence of the QED background is smaller.
Histograms in Figure 5.21 show the extracted QED contribution corrected by using
the CDC activity. Each entry in these histograms corresponds to the hit increase for
maximum luminosity, extrapolated from two corrected SVD measurements. Since the
highest luminosity is taken as a reference there are 6 (8) measurements per layer in
experiments A (B, C). As you can see, the extrapolated valuesare distributed either
around 0 hits or around 15 hits. At first it was not clear to us where the component
with large contribution is coming from.
We investigated all four layers of the silicon vertex detector and discovered that the
larger component comes from the first SVD layer only. This is shown in Figure 5.22.
The peak for 0 hits contribution is coming from the outer three layers, as shown in
Figure 5.23.
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Figure 5.21: The extracted QED contribution from all four layers of the SVD in the
three QED experiments investigated separately and together.
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Figure 5.22: The extracted QED contribution in the 1st SVD layer from experiments
A, B and C and from the three QED experiments in total.
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Figure 5.23: The extracted QED contribution in the outer three SVD layers from ex-
periment A , B and C and the extracted QED contribution in the 2nd-4th layer of the
SVD in total from the three QED experiments.

5.4.5 Systematics taken using different subsets of CDC layers

The correction on the drift chamber activity represents oneof the larger systematic
uncertainties of the measurement. Therefore, we investigated how the result depends
on the exact choice of the correction factor. For this we recalculated the correction
factors using different subsets of the layers from the driftchamber.
In a first step we divided the 50 layers of the central drift chamber in five subsets of
10 drift chamber layers and recalculated the correction factors. Table 5.7 shows the
resulting values for the QED hit contribution in the first layer of the silicon vertex
detector in both,rz andrφ -planes, calculated using the five different subsets of CDC
layers for the correction. Whereas, the QED background contribution in the separate
three outer layers of the SVD and the total contribution fromQED in the three outer
layers taken together, using the same five different subsetsof CDC layers for the
correction is shown in Table 5.8.
As a next step, we reduced the number of drift chamber layers used in the correction
factor by 10 in each step. Again, the resulting QED hit contributions in the SVD are
shown in Tables 5.9 and 5.10 for the first layer of the silicon vertex detector and its
remaining three layers taken together, respectively. As itcan be seen, the results in
the four tables are consistent with each other and prove the reliability of the CDC hit
correction method.
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(a) 1st SVD layerrz-plane

CDC layers exp.(A) exp.(B) exp.(C) All exp.

1 - 50 15.66±0.47 13.65±1.89 13.86±2.20 14.27±1.96

1 - 10 20.96±1.90 16.41±2.08 25.76±0.71 21.05±4.32

10 - 20 6.85±2.89 13.97±2.56 1.73±5.96 7.58±6.71

20 - 30 13.83±0.52 11.56±1.36 6.08±3.24 10.19±3.87

30 - 40 16.07±1.15 10.21±1.31 7.96±1.29 10.99±3.49

40 - 50 14.57±0.63 9.90±1.55 7.89±0.96 10.45±2.90

(b) 1st SVD layerrφ-plane

CDC layers exp.(A) exp.(B) exp.(C) All exp.

1 - 50 12.27±0.73 9.32±2.66 12.04±1.88 11.11±2.42

1 - 10 17.95±2.31 12.30±2.84 24.72±0.61 18.35±5.71

10 - 20 2.84±2.71 9.67±3.40 -0.87±5.82 3.97±6.26

20 - 30 10.31±0.35 7.08±2 3.75±2.96 6.75±3.38

30 - 40 12.71±1.51 5.63±2.02 5.74±0.92 7.60±3.49

40 - 50 11.10±0.95 5.30±2.33 5.67±0.55 7.02±2.94

Table 5.7: QED background contribution in the 1st SVD layer in therz-plane (a) and
in the rφ-plane (b), determined using the subset of CDC layers indicated in the first
column as correction factors.
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(a) 2nd SVD layer

CDC layers exp.(A) exp.(B) exp.(C) All exp.

1 - 50 -2.07±2.66 0.38±1.74 -0.32±2.45 -0.54±2.48

1 - 10 0.54±2.65 1.72±1.79 5.44±2.35 2.75±3.07

10 - 20 -6.39±3.18 0.52±2.06 -6.17±3.30 -3.80±4.35

20 - 30 -2.96±2.72 -0.64±1.47 -4.09±2.63 -2.52±2.75

30 - 40 -1.87±2.65 -1.29±1.49 -3.20±2.45 -2.14±2.36

40 - 50 -2.61±2.66 -1.44±1.64 -3.23±2.44 -2.41±2.38

(b) 3rd SVD layer

CDC layers exp.(A) exp.(B) exp.(C) All exp.

1 - 50 -4.55±0.55 -3.13±1.75 -4.48±0.53 -4.01±1.32

1 - 10 -2.31±1.03 -1.01±1.16 0.45±0.54 1.18±1.76

10 - 20 -8.27±1.01 -3.00±1.83 -9.48±1.84 -6.79±3.34

20 - 30 -5.32±0.45 -4.00±1.64 -7.71±0.81 -5.71±1.96

30 - 40 -4.39±0.76 -4.58±1.69 -6.96±0.49 -5.39±1.64

40 - 50 -5.02±0.60 -4.71±1.74 -6.99±0.52 -5.62±1.54

(c) 4th SVD layer

CDC layers exp.(A) exp.(B) exp.(C) All exp.

1 - 50 -2.48±0.63 -1.96±1.00 -2.09±0.25 -2.15±0.73

1 - 10 -0.55±1.15 -0.88±1.02 2.41±0.66 0.44±1.77

10 - 20 -5.89±0.56 -1.84±1.25 -6.65±1.23 -4.70±2.44

20 - 30 -3.19±0.40 -2.77±0.86 -5.04±0.41 -3.71±1.19

30 - 40 -2.32±0.91 -3.30±0.82 -4.35±0.60 -3.42±1.12

40 - 50 -2.91±0.73 -3.42±0.91 -4.38±0.71 -3.63±0.99

(d) 2nd-4th SVD layer

CDC layers exp.(A) exp.(B) exp.(C) All exp.

1 - 50 -3.03±1.94 -1.57±2.12 -2.30±2.24 -2.23±2.19

1 - 10 -0.73±2.13 -0.37±2.21 2.77±2.51 0.67±2.79

10 - 20 -6.85±2.20 -1.44±2.28 -7.43±2.72 -5.19±3.69

20 - 30 -3.82±1.93 -2.45±1.95 -5.61±2.22 -3.98±2.45

30 - 40 -2.86±2.00 -3.06±1.93 -4.83±2.16 -3.65±2.23

40 - 50 -3.51±1.95 -3.19±2.00 -4.87±2.17 -3.89±2.18

Table 5.8: QED background contribution in the 2nd (a), 3rd (b) and in the 4th SVD
layer (c), as well as the total QED background contribution in the outer three layers of
the SVD (d), determined using the subset of CDC layers indicated in the first column
as correction factors.
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(a) 1st SVD layer,rz-plane

CDC layers exp.(A) exp.(B) exp.(C) All exp.

1 - 50 15.66±0.47 13.65±1.89 13.86±2.20 14.27±1.96

10 - 50 12.02±0.86 11.82±1.78 5.36±3.28 9.52±3.90

20 - 50 14.78±0.51 10.62±1.37 7.25±1.88 10.53±3.30

30 - 50 15.34±0.89 10.06±1.42 7.93±1.11 10.72±3.19

40 - 50 14.57±0.63 9.91±1.55 7.89±0.96 10.45±2.90

(b) 1st SVD layerrφ-plane

CDC layers exp.(A) exp.(B) exp.(C) All exp.

1 - 50 12.27±0.73 9.32±2.66 12.04±1.88 11.11±2.42

10 - 50 8.38±0.63 7.35±2.55 2.98±2.98 6.04±3.35

20 - 50 11.33±0.80 6.07±2.09 4.99±1.50 7.11±3.08

30 - 50 11.92±1.24 5.47±2.17 5.71±0.71 7.31±3.21

40 - 50 11.10±0.95 5.3±2.33 5.67±0.55 7.02±2.94

Table 5.9: QED background contribution in the 1st SVD layer in therz-plane (a) and
in the rφ-plane (b), determined using the subset of CDC layers indicated in the first
column as correction factors.
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(a) 2nd SVD layer

CDC layers exp.(A) exp.(B) exp.(C) All exp.

1 - 50 -2.07±2.66 0.38±1.74 -0.32±2.45 -0.54±2.48

10 - 50 -6.47±1.21 -0.52±1.71 -4.44±2.62 -2.85±2.97

20 - 50 -2.50±2.66 -1.09±1.52 -3.53±2.46 -2.37±2.46

30 - 50 -2.23±2.65 -1.37±1.56 -3.22±2.44 -2.28±2.36

40 - 50 -2.60±2.65 -1.44±1.64 -3.23±2.44 -2.41±2.38

(b) 3rd SVD layer

CDC layers exp.(A) exp.(B) exp.(C) All exp.

1 - 50 -4.55±0.55 -3.13±1.75 -4.48±0.53 -4.01±1.32

10 - 50 -6.09±0.45 -3.90±1.72 -8.01±0.83 -5.99±2.11

20 - 50 -4.93±0.56 -4.40±1.68 -7.24±0.45 -5.58±1.68

30 - 50 -4.70±0.68 -4.64±1.71 -6.98±0.49 -5.51±1.59

40 - 50 -5.02±0.60 -4.71±1.74 -6.99±0.52 -5.62±1.54

(c) 4th SVD layer

CDC layers exp.(A) exp.(B) exp.(C) All exp.

1 - 50 -2.48±0.63 -1.96±1.00 -2.09±0.25 -2.15±0.73

10 - 50 -3.89±0.32 -2.68±0.99 -5.31±0.35 -3.97±1.30

20 - 50 -2.82±0.66 -3.14±0.86 -4.61±0.41 -3.59±1.03

30 - 50 -2.61±0.82 -3.36±0.86 -4.36±0.65 -3.52±1.05

40 - 50 -2.91±0.73 -3.42±0.91 -4.38±0.71 -3.63±0.99

(d) 2nd-4th SVD layer

CDC layers exp.(A) exp.(B) exp.(C) All exp.

1 - 50 -3.03±1.94 -1.57±2.12 -2.30±2.24 -2.23±2.19

10 - 50 -4.61±1.93 -2.37±2.06 -5.92±2.21 4.27±2.58

20 - 50 -3.42±1.94 -2.88±1.95 -5.13±2.14 -3.84±2.25

30 - 50 -3.18±1.97 -3.12±1.96 -4.85±2.16 -3.77±2.19

40 - 50 -3.51±1.95 -3.19±2.00 -4.87±2.17 -3.89±2.18

Table 5.10: QED background contribution in the 2nd (a), 3rd (b) and in the 4th SVD
layer (c), as well as the total QED background contribution in the outer three layers of
the SVD (d), determined using the subset of CDC layers indicated in the first column
as correction factors.
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5.5 Full detector simulation of KoralW events and
comparison with the data

So far, the simple estimation of the expected background rate in the silicon vertex de-
tector was based on the number of generated tracks and the assumption that each track
produces up to three hits in the SVD. To improve the knowledgeof the expectation,
we decided to do a full Monte Carlo simulation.

5.5.1 The full detector simulation

For this we simulated KoralW events merging in one detector event all interactions
corresponding to one read-out frame atL = 10/nbs. These merged events are then
fed into the standard Belle analysis software framework-BASF.
Figures 5.24 and 5.25 show the hit distribution per read-outframe.
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Figure 5.24: SVD hit multiplicities in therz-plane of the four SVD layers from the
full KoralW simulation.

Since, here only the QED process is considered, the observedhit multiplicities are
significantly smaller than what is shown in Figure 5.15 and Table 5.5. As one can see,
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there is a clear difference in the multiplicities of the fourlayers. The number of hits
in the first layer of the silicon vertex detector is significantly larger then in the outer
three layers.
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Figure 5.25: SVD hit multiplicities in therφ -plane of the four SVD layers from the
full KoralW simulation.

This seems to be an explanation why also in the data we see morehits coming from
QED events in the innermost layer compared to the other threelayers. To understand
the origin of this difference in hits we use the event display.

5.5.2 Event display of KoralW events

Using the event display we discovered that in many QED events, so-called low mo-
mentum ”curlers” appear. These low-momentum tracks are only able to reach the
first layer of the silicon vertex detector and have too littlePt to reach the second one.
Instead, they go back and produce multiple hits in the innermost layer of the vertex
detector. That is the reason why a larger amount of hits is measured in the first SVD
layer.
An example is shown in Figure 5.26. The event shows one outgoing track that is curl-
ing around SVD layer 1 producing multiple hits. The hits in the strip-detector modules
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are shown by the black lines. The trajectory of the outgoing electron is shown in blue,
while the dashed purple line indicates a photon. Additionalevents with ”curlers” are
also shown in Figure 5.27.

Figure 5.26: Event display of the two-photon KoralW events in the SVD.

5.5.3 Comparison between Monte Carlo and data

After doing the full simulation, we confirmed that the observed QED hit rates in the
four silicon vertex detector layers are in a good agreement with the expectation from
Monte Carlo simulations. From the Monte Carlo simulations we expect on average
10 hits from QED in the innermost layer of the SVD, and 0-3 hitsin the more distant
layers. This is also seen in the data (see Figures 5.22 and 5.23).
From the event display we learned that our naive assumption of 3 hits per track has to
be scaled up significantly.
Table 5.11 compares the measured hit multiplicities in the silicon vertex detector in
all four layers, with the Monte Carlo expectations. In this table for KoralW we used
the results for the hit multiplicities from the full simulation. For the purpose of this
comparison we scaled up the SuperB prediction to account forthe larger number
of hits per track, using the 5.5 factor difference between the KoralW and SuperB
BDK Monte Carlo generator estimations (see Section 5.1.1).Comparing the Monte
Carlo prediction and the measurement in Table 5.11, we can clearly see that the
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Figure 5.27: Event displays of two-photon events simulatedusing the full KoralW
simulation.

measurements exclude the predictions made by the SuperB collaboration.

Experiment SVD layers Hits QED hits KoralW SuperB(BDK)

Belle
1 ∼ 100 13.3± 2.6 11.31 62.2

2 - 4 ∼ 45 -2.9± 2.1 2.38 13.1

Belle II Occupancy (1st PXD) (0.8±0.2)% 0.7% 4.0%

Table 5.11: Comparison between data and Monte Carlo.

Thus, we can use the KoralW prediction to estimate the QED background occupancy
in the pixel detector for Belle II. Taking into account the difference in the radial
distance between the silicon vertex detector at Belle and the pixel detector at Belle
II, the difference in the read-out time, the difference in the instantaneous luminosity
and the different geometry of the new pixel detector itself [84][14], as indicated in
Table 5.12, we get an expected occupancy of
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Experiment r[cm] t[µs] L [1/nbs]

Belle 2 2 10

Belle II 1.4 20 1000

Table 5.12: Radius of the first layer of the inner detector andits read-out time.

occupancy[1stPXDlayer] =
N1st

hits× rcorr× tcorr×Lcorr

N1st
pixels

=

=
11.31× (2.0

1.4)
2× 20

2 × 1000
10

3×106 = 0.7%

(5.3)

from the full KoralW simulation and an occupancy of(0.8± 0.2)% from the QED
measurements. Here,Nhits is the average hit multiplicity obtained in the first SVD
layer, rcorr accounts for the radial difference between the two detectors, tcorr and
Lcorr account for the difference in the read-out time and in luminosity, respectively,
while N1st

pixels is the overall amount of pixels in the first layer of the pixel detector. As
one can see these results are in agreement and the value obtained for the occupancy
in the innermost layer of the pixel detector is clearly belowthe limiting occupancy
of 2-3%. Thus, we conclude that the low-momentum QED background will not be a
danger for the operation of the pixel detector.



Chapter 6

Conclusion

In this thesis, two separate studies are presented: the firstmeasurement of the branch-
ing fraction of the decayB0→ ψ(2S)π0 with the Belle detector and the estimation of
the QED background for the pixel detector of the planned Belle II experiment.
For the measurement of theB0→ ψ(2S)π0 branching fraction the complete data set
of 772 million BB̄ pairs was used. We extracted the branching fraction using an
extended unbinned maximum likelihood fit and obtained a value of

B(B0→ ψ(2S)π0) = (1.07±0.23±0.08)×10−5,

where the first is the statistical error and the second is the systematic uncertainty. Ac-
cording to this result the extracted signal yield is about 80events, which is unfortu-
nately insufficient to perform the time-dependent analysisto extract the CP violating
parameters. The systematic error on the branching fractionis mostly due to uncer-
tainties on efficiencies, which are not important for the CP violation measurements.
For the time-dependent measurements the systematic uncertainty due to the vertexing
is the most prominent contribution. Therefore, with increased statistics and improved
vertex reconstruction, we would be able to obtain precise measurement of the mixing-
induced and direct CP violation parameters. The decayB0→ ψ(2S)π0 is a b→ cc̄d
transition that occurs either through a tree or through a penguin diagram. For a tree
dominating diagram, we expect the mixing-induced and direct CP violation param-
eters to be consistent with the measurement fromB→ J/ψKS, which is ab→ cc̄s
transition. However, if there is a significant penguin contribution or other substan-
tial contributions, precision measurements of time-dependent CP asymmetry of this
channel, may reveal values of the CP parameters that differ from the Standard Model
expectations. Therefore, measurements of CP asymmetries in theb→ cc̄d transitions
such asB0→ψ(2S)π0 are important in identifying whether or not the Standard Model
provides a complete description of the CP violation phenomena in the B meson sys-
tem.
In order to increase massively the statistics, the KEKB accelerator is being upgraded
to SuperKEKB whose target luminosity will be 8×1035cm−2s−1 , which is a factor of
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40 improvement compared to KEKB. However, the increase of luminosity means also
an increase of the background levels.
This fact is the subject of the second study of this thesis: the estimation of the low
momentum QED background from the reactione+e−→ e+e−e+e− . These low mo-
mentum secondary electrons and positrons mostly affect thenew pixel vertex detector,
which is the innermost part of the upgraded Belle detector. It can work properly with
a maximal occupancy of 3 %.
The contribution from the low momentum QED background was estimated by per-
forming dedicated experiments at KEK, shortly before KEKB was closed. From the
data we took we estimated an occupancy in the innermost layerof the pixel detector
of (0.8± 0.2)%, which is far below the operational limit of 3%. The experiments
showed higher occupancy in the innermost layer of the vertexdetector compared to
the more distant layers. This was due to the low momentum curling tracks which may
cross a few times the planes of the silicon vertex detector. This observation was cross-
checked with a full detector simulation that confirmed our experiments results. The
estimated occupancy for the innermost layer of the pixel detector using MC simulation
was found to be 0.7%, which is consistent with the measurements obtained fromthe
data. These results imply a safe operation of the PXD, since the contribution from the
other background sources is expected to be below 1%.



Appendix A

Parameterization Functions

A.1 Polynomials

Polynomials are very useful mathematical tools and becauseof their simple definition,
they can be calculated on computer systems and represent various functions. They also
can be differentiated and integrated quite easily. For the fitting purposes two kinds of
polynomials were used.

A.2 Chebyshev Polynomials

The Chebyshev polynomials are set of orthogonal polynomials which are defined over
the interval [-1,1]. The recursive formulation of these polynomials that enables simple
calculation of their higher orders is given by

Ci+1(x) = 2xCi(x)−Ci−1(x). (A.1)

The first few Chebyshev polynomials of a first kind are given as

C0(x) = 1

C1(x) = x

C2(x) = 2x2−1

C3(x) = 4x3−3x

C4(x) = 8x4−8x2+1

C5(x) = 16x5−20x3+5x

C6(x) = 32x6−48x4+18x2−1

C7(x) = 64x7−112x5+56x3−7x

C6(x) = 128x8−256x6+160x4−32x2+1

C7(x) = 256x9−576x7+432x5−120x3+9x

(A.2)
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A.3 Bernstein Polynomials

The Bernstein polynomials of degree n are defined as

Bi,n(x) =




n

i



xi(1−x)n−i (A.3)

for i = 0,1, ...........,n, where



n

i



=
n!

i!(n− i)!
(A.4)

The Bernstein polynomials of degree 1 are given by

B0,1(x) = 1−x

B1,1(x) = x
(A.5)

The Bernstein polynomials of degree 2 are given by

B0,2(x) = (1−x)2

B1,2(x) = 2x(1−x)

B2,2(x) = x2

(A.6)

The Bernstein polynomials of degree 3 are given by

B0,3(x) = (1−x)3

B1,3(x) = 3x(1−x)2

B2,3(x) = 3x2(1−x)

B3,3(x) = x3

(A.7)

The advantage of the Bernstein polynomials is that they all are defined positive,
namely, Bernstein polynomials of degree n, are non-negative over the interval [0,1].
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Appendix B

Signal MC Model Dependent
Parameters ofMBC
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Figure B.1: The plot above shows the mean value of the 1st Bifurcated Gaussian for
SVD1 (left) and SVD2 (right) in slices of∆E , while the plot below shows the mean
value of the 2nd Bifurcated Gaussian for SVD1 (left) and SVD2(right) in slices of
∆E .
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Figure B.2: The plots above show the width on the left side of the maximum value of
the 1st Bifurcated Gaussian for SVD1 (left) and SVD2 (right)in slices of∆E . The
plots below show the same but for the the width on the left sideof the maximum value
of the Bifurcated Gaussian.
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Figure B.3: The plots above show the width on the left side of the maximum value of
the 2nd Bifurcated Gaussian for SVD1 (left) and SVD2 (right)in slices of∆E . The
plots below show the same but for the the width on the left sideof the maximum value
of the Bifurcated Gaussian.
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Figure B.4: The two fractions for each of the Bifurcated Gaussians are shown from
top to bottom and for SVD1 and SVD2 from left to right.
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Appendix C

MBC in slices of ∆E
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Figure C.1: FittedMBC distributions in slices of∆E for SVD1.
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Figure C.2: FittedMBC distributions in slices of∆E for SVD2.
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Appendix D

QED study

D.0.1 Monte Carlo Generators
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Figure D.1: Energy spectrum of the electron in the center-of-mass system (top) and
after the Lorentz boost (bottom) extracted using the BDK Monte Carlo generator.
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D.0.2 Hit Multiplicities in the SVD
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Figure D.2: Hit multiplicities in therz-plane in the first layer of the Silicon Vertex
Detector (SVD) for data taken when the beams were turned off.
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Figure D.3: Hit multiplicities in therz-plane in the first layer of the Silicon Vertex
Detector (SVD) of experiment (A)-(top), experiment (B)-(middle), experiment (C)-
(bottom) for different luminosities.
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Figure D.4: Hit multiplicities in therφ-plane in the first layer of the Silicon Vertex
Detector (SVD) of experiment (A)-(top), experiment (B)-(middle), experiment (C)-
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D.0.3 Correcting for the Background Change using the CDC ac-
tivity
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Figure D.5: Hit multiplicities as a function of luminosity before (left) and after (right)
applied correction using the CDC activity in therφ plane. The plots show the hit
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three QED experiments (A), (B) and (C) from top to bottom, respectively.
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