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I. EINLEITUNG 

Die tiefe Venenthrombose (TVT) und ihr Komplikation, die Lungenembolie, 

werden zusammen als venöse Thromboembolie (VTE) bezeichnet und sind eine 

der häufigsten Ursachen für Todesfälle infolge kardiovaskulärer Erkrankungen1. 

Die Inzidenz für VTE steigt ab einem Alter von 45 Jahren dramatisch an und 

bewegt sich zwischen 300.000 und mehr als 2 Millionen pro Jahr in den USA2-4. 

Angesichts steigender Lebenserwartung werden Strategien zur Vorbeugung und 

Behandlung von VTE weltweit daher immer wichtiger5.  

Die Thrombose ist eng verbunden mit der Hämostase. Dies ist der biologische 

Mechanismus, der einen starken Blutverlust nach Verletzung der Gefäßintegrität 

unterbindet. Auch bei der TVT kommt es zur Blutgerinnung und 

Plättchenaktivierung, die jedoch Konsequenzen für den Patienten hat, wenn es zur 

Thrombose kommt6. Das Komplementsystem ist mit der Blutgerinnung eng 

verbunden. Eine Aktivierung der prokoagulatorischen Kaskade wurde bereits im 

Zusammenhang mit dem Komplementsystem nachgewiesen7. Ziel dieser Arbeit 

ist die erstmalige systematische Untersuchung der Rolle des Komplementsystems 

und spezifischer Komplementfaktoren bei der Stase-induzierten TVT. Mit Hilfe 

eines neu entwickelten TVT-Modells, anhand dessen eine Flussreduktion in der 

Vena cava caudalis zur Thrombose führt, könnte die spezifische Rolle des 

Komplementsystems bei der Thromboseentstehung infolge einer Flussreduktion, 

ohne begleitende Endothelverletzung, untersucht werden. Damit wird 

beispielsweise die Situation bei immobilisierten Patienten simuliert. Das 

Zusammenspiel zwischen Komplementsystem und Koagulation zu verstehen hat 

grundlegende klinische Bedeutung7, auch im Hinblick auf die Entwicklung neuer 

Therapie- und Präventionsmöglichkeiten der Thrombose.  
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II. LITERATURÜBERSICHT 

 

1. Venöse Thrombose 

1.1. Definition 

 

Thrombose ist die pathologische Bildung eines Blutpfropfes bzw. Gerinnsels innerhalb eines 

intakten Blutgefäßes. Dabei kommt es zu einem vollständigen oder teilweisen Verschluss von 

Arterien oder Venen durch lokale, intravasale und intravitale Blutgerinnung mit Bildung von 

Blutkoageln aus Thrombozytenaggregaten und Fibrin8. Dadurch unterscheidet sich die 

Thrombose von der postmortalen, intravasalen, generalisierten Bildung von 

Leichengerinnseln und der intravitalen, aber extravasalen Blutgerinnung9, wie z.B. bei der 

physiologischen Blutgerinnung infolge einer blutenden Wunde. 

 

1.2. Funktion und Aufbau der Vene 

 

Das Herz-Kreislaufsystem, bestehend aus Herz, Arterien, Kapillaren und Venen, 

gewährleistet den Stoff- und Sauerstoffaustausch zwischen Geweben und Blut. Venen 

gehören zum Niederdrucksystem des Kreislaufs, dieses beginnt in den venösen Abschnitten 

der Kapillaren und reicht bis in den rechten Vorhof. Das System hat vielfältige Aufgaben, wie 

z.B. die Rückführung des Blutes zum Herzen, die Fähigkeit zirkulierendes Blut in größeren 

Mengen zu speichern, den Austausch von Blutgasen, Nährstoffen, Wärme und den Transport 

von Stoffen. Der Wandaufbau der Venen ist diesen Aufgaben entsprechend angepasst. Die 

Venenwand ist äußerst dehnungsfähig und übersteigt damit die Dehnungsfähigkeit der 

Arterien um das 200fache10. Die Gefäßwand (Abb. 1) von Venen ist in drei Hauptabschnitte 

unterteilt. Die innere Schicht ist die Tunica intima, die mittlere Schicht die Tunica media, 

ganz außen schließt sich die Tunica externa (adventitia) an. Die Tunica intima besteht aus 

dem Endothel, dem Stratum subendotheliale und einer dünnen Bindegewebsschicht. Sie kann 

auch eine Längsmuskelschicht enthalten. Die Tunica media ist im Gegensatz zu Arterien nur 

schwach ausgeprägt und unterteilt sich in die Membrana elastica interna, welche oft fehlt oder 
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nur schwach vorhanden ist, elastische Fasernetze und Membrana elastica externa. Sie besteht 

meist aus glatten Muskelzellen, kollagenen Fibrillen Typ I und II und elastischen Fasern. Die 

Tunica externa ist aus kollagenen Fibrillen und elastischen Fasern aufgebaut. 

 

Abbildung 1: Aufbau einer Vene 

 

Der Wandbau der Venen ist im Gegensatz zu entsprechenden Arterien dünner und stärker mit 

Bindegewebe durchsetzt. Die Tunica externa ist nicht klar nach außen abgegrenzt. Die großen 

Körpervenen, wie z.B. die Vena cava caudalis besitzen eine relativ gut ausgeprägte Tunica 

intima, eine schmale Tunica media, welche wenige glatte Muskelzellen, aber viel 

Bindegewebe enthält, und eine sehr stark ausgeprägte Tunica externa, die durch viele Bündel 

glatter Muskelzellen, welche in Längsrichtung verlaufen, verstärkt ist. Die mittleren Venen 

besitzen Taschenklappen um den Rückstrom des Blutes in die Peripherie zu verhindern. Diese 

werden von der Tunica intima gebildet. Im Gefäßinneren liegen sich zwei 

Bindegewebstaschen, von Endothel überzogen, gegenüber und geben dem bei der 

Ausströmungsphase der Systole entstehenden Unterdruck nach. Sie klappen zur Wand weg 

und lassen das Blut passieren. Mit Beginn der Diastole ist der Unterdruck nicht mehr 

vorhanden, dadurch klappen die Taschenklappen wieder ins Lumen zurück, das rückfließende 

Blut füllt die Taschen, diese verschließen das Lumen und der Blutrückfluss wird verhindert. 
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1.3. Der venöse Thrombus 

 

Venöse Thromben haben eine charakteristische laminare Struktur. Sie sind reich an Fibrin 

und Erythrozyten und durchsetzt mit einer großen Anzahl von Leukozyten11. Durch ein 

Modell der Stase-induzierten venösen Thrombose konnte nachgewiesen werden, dass 

Leukozyten schon nach sechs Stunden in großer Anzahl rekrutiert werden. Diese werden am 

intakten, venösen Endothel adhärent. Die Thrombozytenadhäsion beginnt schon zwei Stunden 

nach der Stase-Induktion und steigt mit der Zeit an. Nach sechs Stunden lagern sich die 

meisten Thrombozyten entweder direkt an das intakte Endothel oder an den schon adhärenten 

Leukozyten an. Thrombozyten und Leukozyten bilden Aggregate12. 

 

1.4. Entstehung der venösen Thrombose 

 

Das Risiko an einer Thrombose zu erkranken ist erhöht bei Personen mit einer erblichen 

Veranlagung, Verletzten und frisch operierten. Ein weiterer Risikofaktor ist Immobilisierung, 

wie z.B. bei Langstreckenflügen oder postoperativ. Außerdem sind ältere Menschen häufiger 

betroffen als junge, was zum Teil durch das erhöhte Thromboserisiko bei Krebserkrankungen 

erklärbar ist. Auch eine Schwangerschaft begünstigt die Entstehung einer Venenthrombose13-

17. Die Thrombose des tiefen Venensystems ist meistens ein akutes Ereignis, welches bei 

rechtzeitiger Diagnose therapiert und dessen Folgen weitgehend verhindert oder 

abgeschwächt werden können. 

Der bekannte Berliner Pathologe Rudolf Virchow hat erstmals die zur Thrombosebildung 

prädisponierenden Faktoren definiert: Veränderungen an der Venenwand 

(Endothelverletzung), Verlangsamung der Stömungsgeschwindigkeit des Blutes (Stasis) oder 

Veränderungen der Blutzusammensetzung (Hyperkoagulabilität)18,19. Diese drei Faktoren 

werden als Virchowsches Trias bezeichnet, nachfolgend wird auf jeden dieser Faktoren 

genauer eingegangen. 

 

 

 



II. Literaturübersicht            5 

1.4.1. Endothelverletzung 

 

Eine Beschädigung des Gefäßendothels ist ein besonders wichtiger Faktor bei der Entstehung 

der venösen Thrombose etwa nach Hüft- oder Knieoperationen20,21. Durch die Exposition der 

adhäsiven subendothelialen Matrix findet eine rasche Akkumulation der Thrombozyten statt, 

welche hierauf aktiviert werden und den Defekt der Gefäßwand verschließen22. Zudem 

kommt es zur Freisetzung von Tissue Factor aus dem Gewebe, welcher den extrinsischen 

Gerinnungsweg aktiviert und somit die stabile Bildung eines Blutgerinnsels gewährleistet. 

 

1.4.2. Stase 

 

Venöse Stase stellt einen wichtigen pathologischen Faktor in der Entstehung venöser 

Thrombosen dar. Studien zeigten, dass die Mehrheit venöser Thromben in Regionen mit 

verlangsamtem Blutfluss entstehen, wie z.B. im großen Venensinus der Waden oder in 

Taschenklappen und Bifurcationen des Venensystems. Das wird besonders deutlich in 

Situationen physischer Inaktivität, wie im Fall von Bettruhe oder während 

Langstreckenflügen. Dabei bewirkt eine fehlende Pumptätigkeit der großen Muskeln einen 

verminderten Blutfluss oder sogar Stase22. 

 

1.4.3. Hyperkoagulabilität 

 

Das Thromboserisiko ist erhöht, wenn die hämostatische Balance zwischen pro- und 

antikoagulatrischen Kräften zugunsten der Koagulation verschoben ist. Wenn diese Imbalance 

auf einen angeborenen Defekt zurückzuführen ist und die entstandene Hyperkoagulabilität 

andauert, besteht ein lebenslanges Thromboserisiko22. Anderseits gibt es auch die erworbene 

Hyperkoagulabilität, welche etwa bei Krebserkrankungen oder Sepsis zu beobachten ist. 
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1.5.  Pathophysiologie der venösen Thrombose 

 

1.5.1. Hämostase und Gerinnungskaskade 

Die Hämostase ist ein Prozess der ein geschlossenes Hochdruckzirkulationssystem nach einer 

Gefäßbeschädigung aufrechterhält. Eine Gefäßwandverletzung und der Austritt von Blut aus 

der Zirkulation führen rasch zu Prozessen, die zur Abdichtung der Verletzung führen. 

Zirkulierende Thrombozyten werden an den Ort der Verletzung rekrutiert, dort werden sie zu 

einer Hauptkomponente des entstehenden Thrombus. Die Blutgerinnung, aktiviert durch 

Tissue Factor (TF), führt zur Bildung von Thrombin und Fibrin. Diese Abläufe entstehen 

unter normalen Bedingungen und bei funktionierenden Regulationsmechanismen. 

Wenn pathologische Prozesse die Regulationsmechanismen der Hämostase übernehmen, führt 

übermäßig gebildetes Thrombin zur Thrombusbildung in Arterien oder Venen23.  

Die Blutgerinnungskaskade wird lokal am Ort der Verletzung des Blutgefäßes aktiviert oder 

generalisiert, etwa bei disseminierter intravaskulärer Gerinnung23. Sie setzt sich zusammen 

aus der intrinsischen und extrinsischen Gerinnung. Beide haben bei der Aktivierung von 

Faktor X eine gemeinsame Endstrecke, was die Umwandlung von Prothrombin in Thrombin 

zur Folge hat. Am Ende wandelt Thrombin Fibrinogen von einem löslichen Plasmaprotein in 

ein nichtlösliches Fibringerinnsel um22.  

Während die Thrombozytenaggregation einen provisorischen Wundverschluss bildet, sichert 

die Blutgerinnung, dass dieser mechanisch stabil bleibt, indem der Defekt mithilfe von Fibrin 

abgedichtet wird. Die Fibrinbildung setzt die fortlaufende Aktivierung von Serinproteasen 

und ihren Kofaktoren aus dem Blut voraus. Die Fibrinbildung wird vorwiegend von einem 

Zell-Membran-Protein, welches als Tissue Factor bezeichnet wird, eingeleitet. Dieser wird 

exprimiert von Gefäßwand-Zellen, die nicht dem Blutstrom ausgesetzt sind, und in inaktiver 

Form auf Monozyten (Abb. 2)24. 



II. Literaturübersicht            7 

 

Abbildung 2: Ablauf der Hämostase bei Verletzung eines Gefäßes 

Durch Verletzung der Gefäßwand wird die Hämostase aktiviert. Die Blutgerinnungsfaktoren kommen mit dem 

subendothelialen Tissue Factor in Kontakt. Dies führt im weiteren Verlauf der Gerinnung zur Bildung von 

Fibrin. Durch den von-Willebrand-Faktor wird die Adhäsion der Thrombozyten am Endothel vermittelt. 

Dadurch werden die Thrombozyten aktiviert und weitere Thrombozyten rekrutiert. Dies führ zur 

Thrombozytenaggregation. Durch Fibrin wird das gebildete Blutgerinnsel stabilisiert.  

 

Die Endothelbarriere stellt eine räumliche Trennung zwischen Gerinnungsfaktoren im Blut 

und dem Tissue Factor im intakten Gewebe dar. Dies stellt sicher, dass die 

Gerinnungskaskade nur aktiviert wird, wenn die Gefäßwand zerstört und Tissue Factor dem 

Blut ausgesetzt ist. Dadurch wird die Interaktion von Tissue Factor mit dem 

Blutgerinnungsfaktor, genannt Faktor VII, ermöglicht. Diese Interaktion löst letztlich die 

Aktivierung von Gerinnungsfaktor X aus, was zur Bildung von aktiviertem Faktor X (Faktor 

Xa) führt. Faktor Xa wiederum induziert die Produktion von Thrombin, dem zentralen 

Mediator der Hämostase. Thrombin führt zu weiterer Faktor X Aktivierung über eine positive 

Rückkopplung und wandelt das Fibrinogen im Blut zu Fibrin um (Abb. 2). Um 
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unkontrollierte oder disseminierte Gerinnung zu vermeiden muss der Gerinnungsprozess 

straff durch Antikoagulationsproteine reguliert werden, wie z.B. von Tissue Factor Pathway 

Inhibitor (TFPI), Protein C und Antithrombin25. 

 

1.5.2. Thrombozytenrekrutierung- und aktivierung 

 

Thrombozyten sind kleine, scheibenförmige, kernlose Zellen mit einem Durchmesser von 1-3 

µm, die im Knochenmark von Megakaryozyten gebildet und freigesetzt werden26,27. Jeden 

Tag werden Millionen von Thrombozyten produziert, diese zirkulieren im Blut und dienen als 

Wächter über die Intaktheit des Gefäßsystems. Wenn es zu einer Gefäßverletzung kommt, 

sammeln sich die Thrombozyten am Ort der Verletzung. Dies erfolgt hoch effizient, in einem 

mehrstufigen Prozess, durch die Interaktion von speziellen 

Thrombozytenoberflächenrezeptoren mit subendothelialen Matrixproteinen, eingeschlossen 

Kollagen und Von-Willebrand-Faktor (vWF), die in Folge einer Verletzung lokal in 

erheblichen Menge freigesetzt werden23,28-32. Nach der Adhäsion werden die Thrombozyten 

aktiviert und heften sich fest an die Gefäßwand an. Adhärente Thrombozyten setzen wirksame 

Thrombozytenagonisten, wie z.B. ADP, aus ihren intrazellulären Granula frei. Diese führen 

zu einer parakrinen Thrombozytenaktivierung und zur rezeptorvermittelten Bindung von 

zirkulierenden Thrombozyten. Dieser Prozess wird als Thrombozytenaggregation bezeichnet. 

Die andauernde Adhäsion, Aktivierung und Aggregation führt zu einem schnellen Wachstum 

des Thrombus und kann den Verschluss eines Blutgefäßes zur Folge haben6.  

 

1.5.3. Zusammenspiel von Thrombozyten und Koagulation während der Hämostase 

 

Der Prozess der Thrombozytenakkumulation und die Blutgerinnung begünstigen sich 

gegenseitig während der hämostatischen Gerinnselbildung am Ort der vaskulären Verletzung. 

Thrombozyten zeigen wirksame gerinnungsfördernde Funktionen, etwa durch Exposition von 

Phospholipiden auf der Zelloberfläche, wie z.B. Phosphatidylserine33. Die Koagulation 

wiederum unterstützt die Thrombozytenaktivierung und –akkumulation, hauptsächlich durch 

die Protease Thrombin, welche zur Thrombozytenaktivierung über die Spaltung und 

Aktivierung vom Proteinase-aktivierten-Rezeptor 1 (PAR1) und PAR4 auf humanen 
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Thrombozyten führt34. Demzufolge kommunizieren und unterstützen sich die Thrombozyten 

und die Gerinnungskaskade durchgehend während der Thrombusbildung6. 

Tissue Factor, welcher den extrinsischen Weg der Gerinnung initiiert, ist ein Protein, welches 

in verschiedenen Geweben, wie z.B. im Gehirn, der Lunge, den Nieren und der Plazenta in 

hohen Mengen exprimiert wird35. Es ist ein transmembranäres Glykoprotein, bestehend aus 

263 Aminosäuren, mit einem Molekulargewicht von 47 kDa. Es fungiert als ein Rezeptor für 

FVII/VIIa im Plasma. Der TF-FVIIa-Komplex ist der direkte Initiator der Blutgerinnung in 

vivo36. Dieser Komplex aktiviert die Gerinnungsfaktoren, FX und FIX, was in der 

Thrombinentstehung, Fibrinablagerung und, zusammen mit den Thrombozyten, in der 

Entstehung eines hämostatischen Gerinnsels resultiert37. 

Der Tissue Factor ist eine Hauptkomponente um die Integrität des Hochdruck-

Zirkulationsystems aufrecht zu erhalten. Es hat sich gezeigt, dass dieses Protein in drei 

Bereichen existiert: 1. in der Adventitia und den glatten Muskelzellen der Gefäßwand; 2. 

induzierbar in den Zellen des endovaskulären Kompartiments, inklusive Monozyten, 

Granulozyten und Endothelzellen38,39; 3. Ein Teil der Mikropartikel, die im Blut zirkulieren, 

enthalten Tissue Factor40. Jedes dieser Tissue-Factor-Kompartimente spielt eine 

unterschiedliche Rolle in der Hämostase und Thrombose, abhängig von Lokalisation und 

Auslösemechanismus des pathologischen Ereignisses41.  

 

1.5.4. Leukozytenrekrutierung und Rolle des angeborenen Immunsystems 

 

An der Thrombusbildung sind nicht nur die Blutgerinnung und Thrombozyten beteiligt, 

sondern auch Leukozyten. Diese haben einen großen Anteil an den rekrutierten Zellen bei der 

Entstehung eines Thrombus nach Flussreduktion. Leukozyten lagern sich in Schichten oder 

Haufen an das intakte Endothel an. Durch elektronenmikroskopische und histologische 

Untersuchungen wurde gezeigt, dass Leukozyten bereits schon sechs Stunden nach 

Flussreduktion in großen Mengen rekrutiert werden. Um die Dynamik der 

Leukozytenrekrutierung weiter zu untersuchen, wurden Versuche mit einem intravitalen 

Immunfluoreszenzmikroskop und einem zwei-Photonen-Mikroskop gemacht. Dadurch wurde 

gezeigt, dass Leukozyten schon eine Stunde nach Flussreduktion damit beginnen, an der 

Gefäßwand entlang zu rollen und am Endothel adhärent zu werden. Die Anhäufung der 

Leukozyten nimmt mit der Zeit zu, nach fünf bis sechs Stunden ist praktisch die gesamte 
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Endotheloberfläche bedeckt. Dies legt nah, dass die deutliche Leukozytenakkumulation die 

Entwicklung der venösen Thrombose einleitet12.  

An der Gerinnselbildung sind auch Zellen des angeborenen Immunsystems beteiligt6. 

Monozyten und neutrophile Granulozyten werden bei venöser Thrombose beide schnell an 

die Gefäßwand rekrutiert und/oder während der Thrombusentstehung in das wachsende, 

intravasale Gerinnsel integriert. Die molekularen und zellulären Kaskaden, welche die 

Leukozytenakkumulation während der Gerinnselbildung initiieren sind abhängig vom 

Auslöser der Thrombusentstehung23,42. Bei Gefäßverletzung werden Thrombozyten als erste 

an den Ort der exponierten subendothelialen Matrix rekrutiert. Sind sie aktiviert, exprimieren 

sie Adhäsionsrezeptoren und setzen Chemokine frei, wodurch Zellen des angeborenen 

Immunsystems angelockt werden23,42,43. Im Gegensatz dazu bleiben Endothelzellen während 

der Entstehung der TVT in den meisten Fällen morphologisch intakt. Bei der Stase-

induzierten TVT bekommen sie durch Aktivierung eine pro-inflammatorische Oberfläche, 

durch die die Zellen des angeborenen Immunsystems rekrutiert werden12. Die TVT entsteht 

hierbei also durch eine inflammatorische Reaktion auf die Stase.    

 

1.6. Thromboseinduktion in Tiermodellen 

 

Um die Entstehung der venösen Thrombose und deren Mechanismen genauer zu untersuchen 

werden Mausmodelle herangezogen. Es gibt verschiedene Thrombosemodelle, die auf 

unterschiedliche Auslöser für venöse Thrombose eingehen. 

 

1.6.1. Eisen-Chlorid Modell 

Bei diesem Modell wird die Thrombose durch die Anwendung von 10%igem FeCl3 an der V. 

jugularis induziert44,45. Die daraus resultierende Gefäßwandverletzung führt zur Bildung von 

okklusiven Thromben46. Dieses Modell produziert zuverlässig Thromben innerhalb von 

Minuten nach der Verletzung. Die Größe und Geschwindigkeit der Thrombusbildung ist von 

der Konzentration des FeCl3 und der Expositionszeit abhängig. Im Allgemeinen sind die 

resultierenden Thromben kleiner als die durch Stase erzeugten. Ein Nachteil dieses Modells 

ist die Produktion von transmuralen Venenwandverletzung, die nur eine Minderheit von 

klinischen Fällen der venösen Thrombose imitiert47. 
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1.6.2.  Vena cava caudalis-Ligatur Modell 

Bei diesem Modell wird die Thrombose durch kompletten Stillstand des Blutflusses initiiert. 

Dabei kommt es allerdings zu einer schweren Verletzung der Venenwand48-51. Um in der 

Vena cava caudalis die komplette Stase zu erzeugen wird diese kaudal der linken Nierenvene 

ligiert48-50,52. Dieses Modell bietet reproduzierbare Thrombusgewichte, außerdem hat es sich 

als sehr wertvoll erwiesen bei der Untersuchung von Wechselwirkungen zwischen der 

Venenwand und dem Thrombus während der Entwicklung einer akuten zu einer chronischen 

Entzündung. Nachteil dieses Modells ist der fehlende Blutfluss47.  

 

1.6.3  Vena cava caudalis-Stenose Modell 

Dieses Modell wird verwendet, um akute und chronische venöse Thrombosen zu 

untersuchen53,54. Es verbindet eine externe Kompression der Vene mit einer Reduktion des 

Blutflusses. Dadurch werden laminare Thromben zu einem frühen Zeitpunkt produziert. 

Außerdem wurde dieses Modell zur Erforschung der Kinetik der Thrombogenese genutzt und 

um die Wirksamkeit von therapeutischen Wirkstoffen zu studieren55,56. Die Reduktion des 

Blutflusses wird durch die Ligatur der Vena cava caudalis herbeigeführt, bei der ein 

Platzhalter den kompletten Verschluss der Vene verhindert57. Ein wesentlicher Nachteil 

dieses Modells sind die großen Unterschiede in der Größe der Thromben und die 

Abwesenheit von Thromben in einigen Mäusen. Dieses Modell ist allerdings am besten zur 

Analyse der Initiierung der venösen Thrombose geeignet47, weshalb es in dieser Arbeit 

verwendet wurde.  

 

2. Das Komplementsystem 

2.1. Bestandteile und Aufgaben 

 

In den letzten Jahren ist das Interesse am Komplementsystem als Mediator für entzündliche 

Prozesse im Zusammenhang mit kardiovaskulären Erkrankungen gewachsen58. Das 

Komplementsystem ist Teil der angeborenen Immunität und erlaubt eine effektive Erkennung 

und Ausschaltung von Pathogenen59. 

Die ersten Beobachtungen über das Komplementsystem wurden zwischen 1884 und 1894 
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beschrieben. 1888 demonstrierte Nuttal, dass frisches Plasma eine bakterizide Wirkung 

besitzt, die durch Erhitzung auf 55° C ausgeschaltet werden kann60. Später zeigte Bordet, dass 

die bakterizide Wirkung des hitzebehandelten und dadurch unwirksam gewordenen 

Immunserums wiederhergestellt werden kann durch Zugabe von frischem nichtimmunem 

Serum61. Ehrlich und Morgenroth zeigten, dass es zwei Komponenten im Blut gibt die 

hauptsächlich bakterizid wirken. Die erste war eine hitze-stabile Komponente, die 

„amboreceptors“ (Antikörper) genannt wurde. Die zweite war eine hitze-labile Komponente, 

die „Komplement“ genannt wurde61,62.  

Das Komplementsystem enthält mehr als 30 plasma- und zellgebundene Proteine. Diese 

arbeiten wenn nötig zusammen, um eine Entzündung zu fördern und Eindringlinge zu 

schädigen, wie z.B. Mikroben oder körperfremde Zellen58,63,64. Die meisten Proteine werden 

in der Leber synthetisiert, aber sie können auch von Endothel- und Epithelzellen, Fibroblasten 

sowie hauptsächlich von Makrophagen am Ort der Entzündung gebildet werden59.  

 

2.2. Aktivierung des Komplementsystems 

 

Lösliche Komplementproteine zirkulieren normalerweise als Protease-Zymogene oder in 

inaktiver aber aktivierbarer Form im Blut. Nach der Aktivierung können die Proteasen 

spezifische nachgeschaltete Ziele spalten, interagieren mit anderen Proteinen, initiieren 

Verstärkungskaskaden oder setzen Anaphylatoxine frei. Es können nur ein Signalweg oder 

alle drei parallel aktiviert werden65.  

Die drei Signalwege zur Aktivierung des Komplementsystem sind (Abb. 3): der „Klassische 

Weg“, der die Proteine C1, C4, C2 und C3 einschließt; der „Alternative Weg“, unter der 

Beteiligung von C3 und den Proteinfaktoren B, D, P; und der „Lektin Signalweg“, unter der 

Beteiligung vom Mannose-binding Lektin (MBL und MBL-assoziierte Proteasen)66. Alle drei 

Wege enden mit der Umwandlung von C3, dem wichtigsten Komplementprotein, und danach 

in der Aktivierung des terminalen Signalwegs und der Entstehung des Membran-Attack-

Complex (MAC). Die Komplementaktivierung resultiert auch in der Ablagerung von 

Proteinfragmenten auf die Zelloberfläche von Zielzellen, um diese für die Phagozytose durch 

Makrophagen zu markieren65. 
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Abbildung 3: Aktivierung des Komplementsystems 

                                          

2.2.1. Der Klassische Aktivierungsweg 

 

Der Klassische Signalweg wird aktiviert über den C1-Komplex, der sich aus dem 

Erkennungsmolekül C1q und den beiden Serin-Protease Proenzymen C1r und C1s 

zusammensetzt. Der Komplex bildet sich unter der Anwesenheit von Kalzium-Ionen67. C1q 

kann an antigengebundene-IgG und IgM Antikörper binden, genauso wie an eine Vielfalt von 
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nicht-immunglobulin Aktivatoren68. Nachdem C1q an die Zieloberfläche gebunden hat, 

erfährt es eine Konformationsumwandlung, die das C1r Zymogen autoaktiviert. Anschließend 

spaltet und aktiviert das C1r Molekül die zwei C1s Moleküle, um die aktive C1s Serin-

Protease zu bilden69,70. Das aktivierte C1s spaltet C4 und C2, um die C3-Konvertase, C4b2a, 

zu generieren. Wenn C3 aktiviert ist, kann das Hauptfragment C3b kovalent an die 

Zieloberfläche binden oder an C4b im C4b2a-Komplex. Die letztere Reaktion bildet die C5-

Konvertase, C4b3b2a, und den terminalen Signalweg65.  

 

2.2.1.1. C1q 

 

Humanes C1q ist ein 460 kDa schweres Multimer, welches aus 6 Untereinheiten besteht 

(Abb. 4). Jede Untereinheit setzt sich aus drei homologen Polypeptidketten (A, B und C) 

zusammen. Die A, B und C Ketten haben alle eine kollagenähnliche Region am N-Terminus 

und einen kugelförmigen Bereich (gHA, gHB, gHC) am C-Terminus. Die A und B Ketten 

innerhalb der Untereinheit, sind über eine Disulfidbrücke am N-Terminus verbunden. Die C 

Kette hält die Untereinheit durch eine Disulfidverbindung zu einer C Kette einer anderen 

ABC Untereinheit zusammen. So wird eine dimere Untereinheit gebildet, an der die 

kollagenähnlichen Regionen der sechs Ketten diese zu einer Tripelhelix-Struktur 

verbinden71,72. 
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Abbildung 4: Aufbau des C1q-Moleküls 

 

In Abbildung 4 ist der Aufbau des C1q-Moleküls zu sehen. In (a) sind die A, B und C Ketten 

dargestellt, mit dem N-Terminal auf der einen, dem C-Terminal auf der anderen Seite und der 

dazwischen befindlichen kollagenähnlichen Region. In (b) werden die durch Sulfidbrücken 

entstandenen A-B und C-C Dimere gezeigt. Zwei A-B und ein C-C Dimer zusammen (ABC-

CBA) bilden die Tulpenstruktur (c) des C1q73. (d) zeigt die heterotrimere Struktur. Die drei 

gC1q Module zeigen klare Unterschiede in ihren elektrostatischen Oberflächenpotentialen, 

was teilweise die Unterschiede in der Ligandenerkennung erklärt74.  

Die Plasmakonzentration von humanem C1q beträgt im Mittelwert 115 µg/ml75. Es zirkuliert 

im gesamten Plasma als kalziumionen-abhängiger Komplex mit dem C1r2-C1s2 Tetramer. 

C1q bindet an den Aktivator über seine C-Terminus Kopfregion (gC1q). Wenn zwei oder 

mehr gC1q gebunden wurden, wird dadurch eine Konformationsänderung an den 

kollagenähnlichen Regionen induziert, was in einer Autoaktivierung von C1r resultiert. C1q 

bindet an geladene Gruppen und hydrophobe Regionen und hat eine breite Palette von 

Aktivatoren. Es bindet spezifisch an die Fc Regionen von IgG und IgM in Immunkomplexen. 

Die Bindung von C1q, mit mehreren Köpfen, an ein antigengebundenes pentametrisches oder 
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hexametrisches IgM kann in der C1 Aktivierung resultieren. Es kann nur ein Kopf an ein IgG 

binden, darum sind zwei oder mehr antigengebundene IgG nötig für die Aktivierung. Die 

Bindung des C1q an ein IgG Monomer ist labil, aber die Bindung mehrerer gC1q an mehrere, 

nah beieinanderliegende, antigengebundene IgG hat eine hohe Affinität76. C1q kann auch an 

Aktivatoren binden, die keine Immunglobuline sind, wie z.B. an Nukleinsäuren, Chromatin, 

zytoplasmatische Intermediärfilamente, mitochondriale Membranen, mitochondriale Proteine, 

Kardilipin, ligandengebundene C-reaktive Proteine (CRP) und Amyloide68,77. C1q bindet 

auch an viele synthetische Partikel, z.B. an Kohlenstoffnanoröhrchen und an verschiedene 

Polymere78,79.  

 

2.2.2. Der Alternative Aktivierungsweg 

 

Der „Alternative Signalweg“ wird direkt aktiviert durch Kontakt mit verschiedenen Typen 

von komplexen Kohlehydrat-Strukturen, die an der Oberfläche von Bakterien, Hefen und 

vielzelligen Parasiten präsentiert werden. Auch wird dieser Signalweg durch Antikörper-

Antigen-Komplexe, die IgG oder polymere IgA enthalten, und von vielen synthetischen 

Materialien aktiviert68. Im „Alternativen Signalweg“ gibt es kein Hauptmolekül, wie z.B. das 

C1q im Klassischen Signalweg. Stattdessen wird der „Alternative Signalweg“ aktiviert durch 

die spontane niedrig-Level Hydrolyse von C3 im Plasma um C3(H2O) zu bilden. Dieser 

Prozess tritt auf, wenn kleine nukleophile Moleküle, wie z.B. Wasser oder Ammoniak, den 

Thioester des unaktivierten C3 im Plasma attackieren. Das resultierende C3(H2O) Molekül ist 

ähnlich in Konformation und Funktion dem C3b. Es kann einen Mg2+-abhängigen Komplex 

mit Faktor B bilden, welcher später von Faktor D gespalten wird. Dadurch wird Ba 

freigesetzt. Bb, eine aktive Serinprotease, bleibt an C3(H2O) gebunden zurück. Dieser flüssig-

Phase Komplex, C3(H2O)Bb, funktioniert als C3-Konvertase des „Alternativen Signalwegs“ 

und spaltet C3 in C3b, welches dann kovalent und zufällig auf benachbarte Zelloberflächen 

angeheftet wird. Faktor B kann dann Mg²+-abhängig oberflächengebundenes C3b binden, um 

C3bB zu bilden. Das wiederum von Faktor D gespalten werden kann um die oberflächen-

gebundene C3-Konvertase, C3bBb, des „Alternativen Signalwegs“ zu bilden. Die Konvertase 

kann mehr C3 spalten, um die positive Rückkopplung für C3 im „Alternativen Signalweg“ zu 

komplettieren. C3bBb ist homolog zur Konvertase des klassischen Aktivierungswegs, C4b2a, 

da C4 homolog zu C3 ist und C2 Faktor B entspricht65.  

C3bBb ist sehr instabil, das Bb spaltet sich von C3b ab mit einer Halbwertszeit von 2-3 
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Minuten. Properdin jedoch verlangsamt diese Spaltung des Komplexes80,81 und verstärkt 

damit die Aktivierung des Komplementsystems. Properdin bindet zuerst an 

oberflächengebundenes C3b und beschleunigt die Bindung des Faktor B an C3b um den 

C3bB-Komplex zu bilden. Faktor B kann dann durch Faktor D gespalten werden um C3bBb 

zu bilden, die stabilisierte C3-Konvertase82. Weiter Studien haben gezeigt, dass Properdin ein 

Initiatormolekül für den „Alternativen Aktivierungsweg“ sein könnte, in dem Properdin direkt 

an Oberflächen der Zielzelle binden kann und die Bindung zu C3b und danach zu Faktor B 

ermöglicht, um die C3-Konvertase zu bilden83. Die kovalente Bindung eines weiteren C3b-

Moleküls zum C3bBb-Komplex, der C3-Konvertase, führt zur Bildung des C3bBb3b-

Komplexes, der C5-Konvertase des „Alternativen Aktivierungsweges“. Obwohl Properdin in 

seiner Struktur dem C1q nicht ähnelt, ist es multimerisch und hat funktionelle Ähnlichkeit, da 

es mehrere Bindungsstellen besitzt, die Pathogene und andere schädigende Einflüsse 

erkennen können65.  

 

2.2.3. Der Lektin Aktivierungsweg 

 

Der „Lektin Signalweg“ wird initiiert durch die Bindung von Mannose-binding-lectin (MBL) 

an Kohlehydrat-Gruppen an der Oberfläche von Bakterienzellen84. MBL hat eine ähnliche 

Struktur wie C1q, mit einem zentralen Kernstück und mehreren darum angeordneten Armen 

die aus einer flexiblen Tripelhelix bestehen. Jedes Ende ist mit einer Bindungsstelle versehen. 

Im Unterschied zur C1q Helix, enthält die Helix des MBL drei Kopien einer Einzelkette. 

MBL zirkuliert als eine Reihe von Multimeren die entweder zwei, vier oder sechs Arme 

besitzen. MBL ist ein typisches Mustererkennungsmolekül, das dazu dient die MBL-

assoziierten Serin Proteasen (MASP) 1, 2 und 3 anzuheften, um so ihre Serin-Esterase-

Aktivität anzuregen. MASP-2 ist die wichtigste Serinprotease bei der Aktivierung der 

Komplementkaskade. Sobald sie aktiviert sind, spalten und aktivieren die MASPs C4 und C2, 

die wiederum die C3-Konvertase, C4bC2a, bilden85,86. MASP-2 ist die Enzymkomponente, 

welche wie C1q im „Klassischen Aktivierungsweg“, die Komponenten C4 und C2 spaltet um 

die C3-Konvertase zu bilden, der gemeinsame Schritt in der Aktivierung des „Lektin“ und 

„Klassischen Aktivierungsweges“. Alternativ kann die MASP-1 C3 direkt spalten86-88, um 

dadurch den „Alternativen Aktivierungsweg“ zu initiieren87.  
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2.2.4. Der terminale Komplement-Komplex 

 

Der Aufbau des C5b-9-Komplexes in einer Membran mit Lipiddoppelschicht beginnt mit der 

Spaltung einer Arg-Leu Bindung in die C5α-Kette um C5a und C5b zu erzeugen. Obwohl 

auch eine Verbindung zwischen nativem C5 und C6 besteht, werden C5b6 Komplexe erst 

gebildet wenn das Fragment C5b sich mit C6 verbindet. Der C5b6 Komplex kann dann 

reversibel durch ionische und auch hydrophobe Einflüsse an die Membranen binden. Die 

folgenden Interaktionen von C7, C8 und C9 mit C5b6 und der Membran resultieren in der 

Bildung von heteropolymeren Transmembranporen. Diese Poren Konstruktion erfolgt über 

verschiedene Phasen, in denen C5b-7, C5b-8 und C5b-9 gebildet werden. Diese Komplexe 

zusammen werden als terminaler Komplement-Komplex bezeichnet (TCC), während C5b-9, 

der finale und effektivste Komplex bei der Induzierung des Zelltodes, als Membrane-Attack-

Complex (MAC) bezeichnet wird89-92. 

 

2.3. Funktionen des Komplementsystems 

2.3.1. Zelllyse 

 

Verschiedene Moleküle und Komplexe, welche aus der Aktivierung des Komplementsystems 

hervorgehen, entfalten die für das Komplementsystem charakteristischen Wirkungen. Die 

Porenbildung durch C5b-9 kann durch Wasser- und Ioneneinstrom zur Zelllyse führen. Ist die 

Anzahl der C5b-9 Komplexe limitiert auf kernhaltigen, körpereigenen Zellen, welche 

geschützt sind vor der Lyse durch Regulatoren, können diese aktiviert und 

Signaltransduktionswege induziert werden93.  

 

2.3.2. Opsonisierung 

 

Der Prozess, bei dem Oberflächen von Zellen mit Molekülen wie Immunglobulinen oder 

Komplementkomponenten markiert werden und somit für Phagozyten erkennbar gemacht 

werden, wird als Opsonisierung bezeichnet. C3b, das stärkste Opsonin des Körpers, bindet im 

Rahmen der Komplementaktivierung an die Oberfläche einer Zielzelle. Die 
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Komplementrezeptoren auf Phagozyten erkennen die durch C3b markierte Zelle. Es folgt die 

Phagozytose der opsonisierten Zellen94.  

 

2.3.3. Anaphylatoxine 

 

C3a und C5a sind Anaphylatoxine, sie locken Makrophagen, Monozyten und Leukozyten an, 

und erhöhen über eine vermehrte Expression von Adhäsionsmolekülen und Zytokinen in 

Endothelzellen die Gefäßpermeabilität95. Durch sie werden auch die Vasodilatation und die 

Kontraktion glatter Muskelzellen reguliert. Über die Anaphylatoxinrezeptoren C3aR, C5aR 

und C5L2 (C5a receptor-like-2) auf Eosinophilen, Basophilen, Monozyten, Makrophagen, 

Mastzellen, dendritischen Zellen, Endothelzellen, glatten Muskelzellen, sowie aktivierten B- 

und T-Lymphozyten wird ihre proinflammatorische Wirkung vermittelt96. 

 

2.3.4. Beseitigung von Immunkomplexen 

 

Das Komplementsystem ist auch an der Beseitigung von apoptotischen Zellen und 

Immunkomplexen beteiligt96. C1q bindet an die veränderte Oberfläche von apoptotischen 

Zellen, entweder direkt oder indirekt über CRP oder IgM. Die veränderten Zellen weisen 

bestimmte  Regulatoren nicht mehr auf, dadurch wird, anders als in gesunden Zellen, eine 

Komplementaktivierung und Opsonisierung mit C3b und C4b an ihrer Oberfläche möglich94. 

Zur Phagozytose kommt es über die Interaktion mit Komplementrezeptoren auf 

Makrophagen. Auf apoptotischen Zellen werden aber auch noch einige Regulatoren 

exprimiert und limitieren mit Faktor H eine weitere Komplementaktivierung. Dadurch kommt 

es nicht zur C5-Konvertasenbildung und einer weiteren Komplementwirkung96. 

 

2.3.5. Interaktion mit dem erworbenen Immunsystem  

 

Mittels Komplement kann die angeborene Immunabwehr die erworbene Immunabwehr gegen 

ein bestimmtes Antigen induzieren und stimulieren. Der Komplementrezeptor CR2, welcher 
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C3d, ein Abbauprodukt von C3 erkennt, wird auf B-Lymphozyten exprimiert. CR3 wirkt als 

Korezeptor, indem er C3d gleichzeitig mit der spezifischen Bindung zwischen Ig-Rezeptor 

der B-Zelle und dem Antigen bindet. Durch die Zweifachbindung der B-Zelle an das Antigen 

kommt es zu deren Aktivierung, zur Antikörperproduktion und somit zur Stimulation der 

humoralen Immunantwort. In follikulären Keimzentren kommt es auch zur 

komplementvermittelten Aktivierung von B-Zellen. Immunkomplexe, die durch das 

Komplementsystem markiert wurden, werden von dendritischen Zellen in Keimzentren 

erkannt und das entsprechende Antigen an B-Lymphozyten präsentiert97.  

 

2.4. Regulierung des Komplementsystems 

 

Gelöste und zellgebundene Komplement-Regulatoren helfen die Angriffe des 

Komplementsystems zu kontrollieren. Außerdem passen sie die Intensität, die Ausbreitung 

und das Ende des Angriffs an die Zielzelle an98. Zusätzlich zum C1-Esterase-Inhibitor gibt es 

ein Glykoprotein aus der Serpin-Familie, welches verschiedene Proteasen des „Klassischen“ 

und des „Lektin Wegs“ inhibiert. Es wurden noch zwei andere Modulatoren des „Lektin 

Wegs“ identifiziert: sMAP und MAP-1 sind nicht-proteolytische Spaltprodukte der MASP2 

und MASP1/3 Gene, die offenbar mit den MASPs um die Bindung an MBL konkurrieren. 

Der C2-Rezeptor-Inhibitor-Trispanning bindet auch an C2 und hemmt seine Aktivierung 

durch C1s99. Im „Alternativen Weg“ wird die Aktivierung hauptsächlich vom reichlich 

vorhandenen Faktor H und seinem Homolog, dem Faktor-H-like-Protein gesteuert. Faktor H 

wirkt auf die C3-Konvertase des „Alternativen Wegs“, entweder entfernt es kompetitiv Bb 

aus dem C3bBb-Komplex, was zu einer Zerfallbeschleunigung führt, oder es wirkt als 

Kofaktor für den Faktor I vermittelten Abbau von C3b. Ein anderer Flüssige-Phase-Regulator, 

das C4b-binding-Protein, hat ähnliche Effekte auf die Konvertasen des „Klassischen“ und 

„Lektin-Wegs“. Faktor H, das Faktor-H-like-Protein und das C4b-binding-Protein 

unterstützen die Komplementregulationen auch auf humanen Zellen. Sie erkennen spezifische 

Oberflächenstrukturen der Wirtszellen, dadurch kommt es zur Verhinderung von 

Autoimmunschädigungen94. Die meisten humanen Zellen setzen Konvertase-Regulatoren frei, 

die als Zerfalls-Beschleuniger wirken, wie z.B. CR1 oder der decay-accelerating Faktor, oder 

als Kofaktor für Faktor I, wie CR1 oder das Membran-Kofaktor-Protein98,100. Es wurden nur 

wenige C5-spezifische Regulatoren beschrieben. Während das Faktor-H-related-Protein 1 

direkt an C5 bindet und die C5-Konvertasenaktivierung inhibiert, reguliert der 
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Komplementrezeptor der Immungobulin-Superfamilie die C3b-haltigen C3- und C5-

Konvertasen, obwohl die physiologischen Auswirkungen unbekannt sind. Der zellbasierte 

Regulator, CD59 wirkt auf den TCC durch die Verhinderung der Bildung der sublytischen 

und lytischen Komplexe. Zusätzlich wird der TCC kontrolliert durch lösliche Regulatoren, 

wie z.B. Vitronectin und Clusterin. Abschließend wandelt die Carboxypeptidas-N die 

Anaphylatoxine in ihre dearginierte Form um. Obwohl diese Spaltung durch die primären 

Rezeptoren C3aR und C5aR übermittelt wird, verschiebt sich das Signalmuster101,102.  

 

3. Interaktion von Komplement- und Gerinnungssystem 

 

Unser schnell wachsendes Verständnis der Biologie des Komplementsystems und der 

Hämostase weist darauf hin, dass mehrere interessante Interaktionen zwischen den beiden 

Systemen bestehen. Dank neuerster Studien können beide Systeme als Beteiligte bei der 

Entstehung von Entzündungen gesehen werden, deren Ziel es ist ein lebendes System zu 

stabilisieren, welches verschiedenen Störungen in seiner Hämostase ausgesetzt ist. Die 

Komplementkaskade wird durch die gleichen Stimuli aktiviert, die auch zu einer Entzündung 

führen, z.B. wenn die Gefahr einer Infektion erkannt wird, oder Gewebe beschädigt wird103. 

Diese Situationen gehen im Allgemeinen auch mit einer erhöhten Neigung zur Blutgerinnung 

einher104. Gerinnung und Komplementsystem weisen zahlreiche Ähnlichkeiten auf, auch ist 

eine stetig steigende Zahl von Wechselwirkung zwischen beiden Systemen bekannt. Es 

kommt zu einer kaskadenartigen Aktivierung von Serinproteasen bei beiden Systemen, mit 

teilweise gemeinsamen Aktivatoren und Inhibitoren. In-vitro-Versuche zeigten, dass 

Thrombin, Plasmin, FXa und FXIa sowohl C3, als auch C5 spalten können94,105. In 

Tiermodellen mit C3-knockout Mäusen konnte gezeigt werden, dass trotz fehlendem C3 eine 

physiologisch aktive C5-Konvertase generiert werden kann. Außerdem konnte in humanem 

Plasma, nach Inkubation von C5 mit Thrombin, biologisch aktives C5a nachgewiesen 

werden106. Über die Aktivierung von C1q kann FXIIa den „Klassischen Weg“ einleiten105. 

Neben den bisherigen drei Wegen, könnte die direkte Aktivierung von 

Komplementkomponenten durch Gerinnungsfaktoren, einen zusätzlichen Aktivierungswegs 

des Komplementsystems darstellen106.  

Umgekehrt kann auch das Gerinnungssystem durch Komplementfaktoren beeinflusst werden. 

C5a induziert die Expression von Tissue-Factor in Leukozyten und Endothelzellen und wirkt 
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damit prothrombotisch7. Gleichzeitig stimuliert C5a die Bildung von PAI-1 in Makrophagen, 

Mastzellen und glatten Muskelzellen96. C3a wiederum induziert die 

Thrombozytenaktivierung- und aggregation7. Ebenfalls werden Thrombozyten aktiviert durch 

die Einlagerung des C5b-9-Komplexes in Zellmembranen, ihre Granulafreisetzung wird 

stimuliert und es kommt zu Veränderungen der Zellmembranen mit Exposition von 

gerinnungsfördernden Lipiden7. MASP-2 ist in der Lage, Prothrombin zu aktivem Thrombin 

zu spalten, MASP-1 beeinflusst die Fibrinstruktur und aktiviert Prothrombin, FXIII und 

TAFI107-109. Auch sind Wechselwirkungen zwischen regulierenden Faktoren von Gerinnung 

und Komplement bekannt. Die Inaktivierung von Protein S und somit die Hemmung dieses 

wichtigen antikoagulatorischen Pfades löst die Bindung von Protein S an C4b-bindendes 

Protein aus. Faktor XII und Kallikrein werden direkt durch den C1-Inhibitor gehemmt95. Das 

Ziel der direkten Interaktion zwischen und simultanen Aktivierung von Komplementsystem 

und Gerinnung könnte der Schutz des Körpers vor Blutverlust bei einer Verletzung sowie 

Schutz vor Infektionen durch Verhinderung der hämatogenen Mikrobenstreuung mittels 

lokaler Thrombenbildung sein94,105.  
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III. ZIELSETZUNG 

Es ist das Ziel dieser Arbeit, erste Erkenntnisse über die Rolle einzelner 

Komplementkomponenten bei der Entstehung der tiefen Venenthrombose zu 

gewinnen. Diese erfolgt insbesondere im Hinblick auf die Entwicklung neuer 

Therapieoptionen für die Prophylaxe und Therapie der tiefen Venenthrombose. 

Hierfür wurden spezielle knock-out Mauslinien verwendet, denen bestimmte 

Komplementkomponenten fehlen, und diese wurden mittels des Fluss-

Reduktions-Modells an der Vena cava caudalis untersucht. Als Parameter für die 

Thrombusentstehung wurde das Thrombusgewicht ermittelt. Darüber hinaus 

dienten verschiedenen Blutanalysen, Schwanzblutungszeiten, IVM und 

immunhistologische Untersuchungen einer Analyse der koagulatorischen 

Eigenschaften der verschiedenen knock-out Mauslinien, sowie einer 

weitergehenden Beurteilung der Rolle des Komplementsystems bei der durch 

Stase ausgelösten TVT. 

Untersuchung der Rolle von Komplementfaktoren bei der venösen 

Thrombose 

Um den prinzipiellen Einfluss des Komplementsystems auf die Entstehung der 

venösen Thrombose zu analysiere, sollen im Stenosemodell vergleichend die 

Inzidenz der Thrombusbildung und die Gewichte der nach 48 h entstandenen 

Thromben untersucht werden.  

Mechanismen der komplementvermittelten Zellrekrutierung bei der venösen 

Thrombose 

Hierzu sollen Versuche mit dem IVM durchgeführt werden, um die Mechanismen 

der komplementvermittelten Zellrekrutierung in den ersten sechs Stunden der 

venösen Thrombose zu untersuchen.  

Interaktion des Komplementsystems mit der Blutgerinnung bei venöser 

Thrombose 

Um den Einfluss des Komplementsystems auf die koagulatorischen Eigenschaften 

des Blutes bei venöser Thrombose darzustellen, sollen verschiedene 

Gerinnungsanalysen und Blutbilder analysiert werden. 
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Einfluss des Komplementsystems auf die Thrombusmorphologie 

Um Erkenntnisse über den Einfluss des Komplementsystems auf die 

Thrombusmorphologie, die zelluläre Zusammensetzung (Leukozyten, 

Thrombozyten) und über die Menge an Fibrinogen zu erhalten, sollen die 48 h 

nach Stenosierung der Vena cava caudalis entstandenen Thromben histologisch 

aufgearbeitet und fluoreszenmikroskopisch untersucht werden. 
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IV. MATERIAL UND METHODEN 

1. Versuchstiere 

Für diese Arbeit wurden Mäuse als Versuchstiere verwendet, da sich Mäuse durch 

kostengünstige Haltung, schnelle Generationszeiten und problemlose Aufzucht 

auszeichnen. Außerdem waren die nötigen Komplement-knockout-Mauslinien, für 

die Erforschung des Einflusses des Komplementsystems auf die Entstehung der 

venösen Thrombose, leicht erhältlich und gut zu züchten.  

Das vorliegende Tierversuchsvorhaben wurde von der Regierung von Oberbayern 

gemäß §10 (AZ 55.2-1-54-2532.3-38-10) und § 7 (AZ 55.2-1-54-2532-30-13) des 

Deutschen Tierschutzgesetzes (TierSchg. in der Fassung vom 25.05.1998) 

genehmigt.  

 

1.1. Haltungsbedingungen 

 

Die Versuchstiere stammen aus eigener Zucht und wurden in einer spezifisch 

pathogenfreien Haltung betreut. Dabei wurden die Tiere getrennt nach Stämmen 

in leicht zu reinigenden, sterilisierbaren, durchsichtigen und einzelbelüfteten 

Makrolonkäfigen gehalten, wobei sich bis zu fünf Mäuse einen Käfig vom Typ III 

erhöht (Tecniplast, Hohenpreißenberg, Deutschland) teilten. Als Einstreu für die 

Käfige wurden extra gewaschene und staubbefreite Holzschnitzel (ABEDD, 

LAV&VET Service GmbH, Wien, Österreich) in der Größe 5x5x1 cm verwendet, 

welche einmal wöchentlich gewechselt wurden. Als Nestbaumaterial diente 

Holzwolle aus entrindeter Espe (ABEDD, LAV&VET Service GmbH, Wien, 

Österreich). Zusätzlich waren die Käfige noch mit kleinen, dreieckigen Häuschen 

ausgestattet um das natürliche Verhalten der Mäuse zu unterstützen (Mouse 

House, Tecniplast, Hohenpreißenberg, Deutschland). Alle Tiere erhielten Wasser 

und Versuchstier R/M-Haltungsfutter, bestehend aus Pellets mit einem 

Durchmesser von 10 mm und einer Länge von 2 cm, zur freien Verfügung (Ssniff-

Spezialdiäten GmbH, Soest, Deutschland). 
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1.2. Hygienemanagement 

 

Um den Gesundheitsstatus der gehaltenen Versuchstiere zu überwachen, werden 

vierteljährlich Sentinel-Tiere eingeschickt. Dabei handelt es sich um Mäuse des 

Stammes Balb/c. Diese Tiere werden als spezifiziert pathogenfrei im Alter von 

vier Wochen bestellt. Um die Pathogenfreiheit zu dokumentieren, wird ein 

Gesundheitsbericht der Mäuse mitgeschickt. Aus diesem ist ersichtlich, dass die 

Tiere serologisch, bakteriologisch, parasitologisch und auf Läsionen untersucht 

und als spezifiziert pathogenfrei beurteilt wurden. Pro Rack werden immer zwei 

Sentinel-Tiere dazugesetzt, falls eines verstirbt. Pro Woche bekommen die 

Sentinels aus jedem Käfig der zu überprüfenden Tiere eine esslöffelgroße Portion 

dreckiger Einstreu in ihre Käfige zugegeben. Bei der Durchführung dieser 

Prozedur desinfizierten die Tierpfleger die Hände und wechseln die Handschuhe 

nach jedem Rack, damit keine Keime verschleppt werden. Nach drei Monaten 

wird ein Sentinel-Tier eingeschickt und nach dem erweiterten Programm der 

FELASA (Federation of European Laboratory Animal Science Associations) und 

auf Trichomonaden untersucht. Das Gesundheitszeugnis wird der Tierhausleitung 

zugschickt.  

 

1.3. Mäuse 

 

Da die verwendeten Stämme alle auf einem C57BL/6J Hintergrund beruhen, 

wurden C57BL/6J Tiere als Kontrollgruppe verwendet. Bei den einzelnen knock-

out Stämmen wurden verschiedene Proteine des Komplementsystems 

ausgeschaltet. Dadurch lässt sich der Einfluss der einzelnen Komplementproteine 

auf die Entstehung der venösen Thrombose erforschen. Dies lässt Rückschlüsse 

zu auf ihre Wirkung, besonders im Hinblick auf die Entwicklung neuer 

Medikamente, um Thrombose vorzubeugen oder zu behandeln. 
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1.3.1. C57BL/6J-Wildtyptiere 

 

Der am häufigsten verwendete Inzuchtstamm ist der C57BL/6J Stamm. Diese 

Mäuse werden in einer Vielzahl von Forschungsgebieten verwendet, wie z.B. in 

der kardiovaskulären Biologie. C57BL/6J Tiere wurden in dieser Arbeit als native 

Kontrolltiere verwendet110. 

 

1.3.2. Knock-out Tiere 

1.3.2.1. C1q-/- Tiere 

 

Diese Tiere weisen einen Mangel des C1q Proteins, welches die erste 

Komponente des „Klassischen Aktivierungswegs“ ist, auf. C1q hat mehrere 

Aufgaben, es löst die Aktivierung von C2 aus, wodurch C3 und C4 freigesetzt 

werden. Außerdem spielt C1q beim Abbau von Zelltrümmern und apoptotischen 

Zellen eine Rolle und hat auch eine direkte opsonisierende Funktion. Menschen 

mit einer C1q-Defizienz sind für die Autoimmunkrankheit Systemischer Lupus 

Erythematodes prädisponiert. Bei Mäusen hingegen, denen das C1q Protein fehlt, 

lassen sich erhöhte Menge an apoptotischen Zellkörpern nachweisen, die Mäuse 

sind allerdings klinisch gesund111. 

 

1.3.2.2. CR2-/- Tiere 

 

Bei diesen Mäusen fehlt das CR2-Gen, dies führt zu einem Mangel der 

Komplementrezeptoren CR1 und CR2. Diese beiden Rezeptoren werden 

hauptsächlich auf B-Zellen und follikulären dentritischen Zellen exprimiert. Sie 

vermitteln Antigen-Bindung und Rückhaltung auf follikulären dentritischen 

Zellen, außerdem wirken sie als Korezeptoren des B-Zell-Rezeptors112. Die 

Mäuse sind klinisch gesund. 
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1.3.2.3. C3-/- Tiere 

 

Bei diesen Mäusen wurde durch einen gezielten Bruch des C3-Gens, die häufigste 

und wichtigste Komplementkomponente, vollständig ausgeschaltet. Hierdurch 

kann die zentrale Komponente der drei Aktivierungswege, die C3-Konvertase, 

nicht mehr gebildet werden113. Die Mäuse sind klinisch gesund und züchten 

normal.  

1.2.2.4. C4-/- 

 

Diese Mäuse weisen einen gezielten Bruch des C4-Gens auf. Dadurch fehlt die 

Komplement Komponente C4 vollständig, was dazu führt, dass der „Klassische 

Aktivierungsweg“ des Komplementsystems nicht aktiviert werden kann. C4 ist 

neben C3 das zweite kovalente Opsonin des Komplementsystems. Ein Fehlen von 

C4 beeinträchtigt außerdem die Fähigkeit der C4-Aktivierungsprodukte Antigene 

an follikulär dendritische Zellen zu binden, um sie für die B-Zell-Aktivierung zu 

binden. Damit wird die B-Zell- und Antikörperantwort gestört. Es wurde auch 

nachgewiesen, dass sich eine C4-Defiziens prädisponierend auf Formen der 

Autoimmunität (z.B. Systemischer Lupus erythematodes) auswirkt114,115. Die 

Mäuse züchten normal und sind klinisch gesund.  

 

1.3.2.5. C3-/-C4-/- 

 

Bei diesen Mäusen weisen das C3- und das C4-Gen einen gezielten Bruch auf. 

Dadurch werden die Komplement Komponenten C3 und C4 gleichzeitig 

ausgeschaltet. C3 ist die zentrale Komponente der drei Aktivierungswege und das 

Fehlen von C4 verhindert die Aktivierung des Klassischen Weges. Die Mäuse 

sind klinisch gesund und züchten normal. 
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2. Operationsdurchführung 

2.1. Wahl und Durchführung der Narkose 

 

Es wurde bei den Tieren, die in dieser Arbeit verwendet wurden, explizit darauf 

geachtet, dass sie während und nach einem Versuch komplett analgetisch 

abgedeckt und somit keinem unnötigen Leid ausgesetzt waren. 

Zur Einleitung der Narkose wurde eine Inhalationsnarkose mit Isofluran (Forene 

100%, Abbott GmbH & co.Kg, Wiesbaden) verwendet. Dafür wurde die zu 

narkotisierende Maus in eine durchsichtige Röhre gesetzt, in die Isofluran 

zugeführt werden kann. Mit einem Isofluranverdampfer (Völker GmbH, 

Kaltenkirchen) wurde ein dreiprozentiges Isofluran-Sauerstoff-Gemisch in die 

Röhre geleitet, bis die Stellreflexe des Tieres erloschen waren (Abb. 5). Danach 

wurde intraperitoneal eine antagonisierbare Injektionsnarkose verabreicht. Eine 

Monoanästhesie mit Isofluran wirkt zwar sedierend, hypnotisch und in hohen 

Dosen auch unterdrückend auf die Schmerzreize, allerdings ist schnell die 

Toxizitätsgrenze erreicht116. 

Da die drei Kriterien einer Allgemeinanästhesie, Bewusstlosigkeit (Hypnose), 

Muskelerschlaffung (Relaxation) und Aufhebung der Schmerzempfindung 

(Analgesie), bei therapeutischer Dosierung nicht von einem 

Injektionsanästhetikum allein erfüllt werden können, wurden drei verschiedene 

Substanzen miteinander kombiniert116. 

Um die Analgesie zu gewährleisten wurde das Opioid Fentanyl eingesetzt. 

Midazolam ist ein Benzodiazepin und wurde wegen seiner relaxierenden und 

krampfhemmenden Wirkung verwendet. Dazu wurde Medetomidin, welches ein 

spezifischer α2-Adrenozeptoragonist ist,  mit seiner sedativ-hypnotischen 

Wirkung kombiniert. 

Es wurde eine Mischung aus 0,05 mg/kg Fentanyl (Rotexmedica, Trittau), 5,0 

mg/kg Midazolam (Hameln Pharmaceuticals GmbH, Hameln) und 0,5mg/kg 

Medetomidin (Dorbene, Pfizer GmbH, Berlin) intraperitoneal appliziert und 

dadurch eine leicht steuerbare, risikoarme Narkose eingeleitet. Nach Injektion 

wurden die Tiere in eine dunkle Box zum Einschlafen verbracht. Das chirurgische 

Toleranzstadium III2 wurde nach ca. 20 min erreicht. Zur Aufrechterhaltung der 
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Narkose wurde bei Bedarf subkutan nachdosiert, zusätzlich wurde die 

Oxygenierung des Tieres sichergestellt über eine Kopfkammer, durch die auch 

Isofluran eingeleitet werden kann. Über die Kopfkammer erfolgte das 

gleichzeitige Absaugen des Narkosegases. Die Narkosetiefe des Tieres wurde 

ständig durch Überprüfung des Zwischenzehenreflexes, der Atemfrequenz und 

des Atemtyps kontrolliert. Bei länger dauernden Versuchen, wie z.B. der sechs 

Stunden IVM, wurde auf jeden Fall nach 60 min nachdosiert, um die komplette 

Analgesie zu gewährleisten. Um einer Hypothermie des Tieres vorzubeugen 

wurde ein Tierbewärmungssystem (Heizplatte, DeMeTec GmbH, Langgöns) 

verwendet. 

 

Abbildung 5: Röhre für die Isoflurannarkose 

 

2.2. Narkoseantagonisierung 

 

Die verwendete Injektionsnarkose ist vollständig antagonisierbar. Dies wurde bei 

den Versuchen über 48 Stunden zur Entstehung der venösen Thrombose genutzt, 

da die Tiere nach der Operation wieder aufwachen sollten. Dem Tier wurde nach 

Ende der Operation und einer Mindestdauer von 60 min nach Verabreichung der 

Injektionsnarkose ein Gemisch mehrerer Wirkstoffe subkutan injiziert. Es wurde 

eine Kombination aus Atipamezol (Antisedan, Janssen-Cilag GmbH, Neuss), 

Naloxon (Hameln Pharma Plus GmbH, Hameln) und Flumazenil (Insera 

Arzneimittel GmbH, Freiburg) verwendet. Nach ca. 10 min waren die Tiere aus 

der Narkose erwacht.  
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2.3. Schmerzmanagement  

 

Während den unter Vollnarkose durchgeführten Operationen und auch bei der 

intrakardialen Blutabnahme, waren die Tiere durch Fentanyl komplett analgetisch 

abgedeckt. Zur Schmerzbekämpfung nach dem Erwachen aus der Narkose, wurde 

den Tieren subkutan 0,1 mg/kg Buprenorphin (Temgesic, Reckitt Benckiser 

Healthcare, Hull, UK) verabreicht. Da Buprenorphin eine Anflutungszeit von ca. 

30 min besitzt, wurde immer darauf geachtet, die Injektion mindestens 30 min vor 

der Antagonisierung zu verabreichen. Nach 8-12 Stunden wurde die 

Buprenorphingabe wiederholt. Am ersten Tag nach der Operation wurde drei Mal 

Buprenorphin appliziert. Am zweiten Tag, also dem Entnahmetag, wurde noch 

zwei Mal Buprenorphin verabreicht.  

 

2.4. Operationsvorbereitung 

 

Nach der Narkoseeinleitung wurde damit begonnen das Tier an der zu 

operierenden Stelle zu enthaaren. Dies geschah zuerst mit einer Schermaschine 

(Ermila Magnum Handy, Wahl GmbH, Unterkirnach) und anschließend mit einer 

Enthaarungscreme (Veet Haarentfernungscreme, Reckitt Benckiser Deutschland 

GmbH, Mannheim). Zuletzt wurde die Haut mit Alkohol desinfiziert (Octeniderm 

Hautantiseptikum, Schülke & Mayr GmbH, Norderstedt). Um die Hornhaut zu 

schützen wurden die Augen des Tieres mit Augencreme versehen (Bepanthen 

Augen und Nasensalbe, Bayer Vital GmbH, Leverkusen). Das Tier wurde in 

Rückenlage mittels Klebeband (3M Transpore, 3M Deutschland GmbH, Neuss) 

auf dem Tierbewärmungssystem mit der Schnauze in der Kopfkammer fixiert 

(Abb. 6).  
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Abbildung 6: Vorbereitung des Tieres auf die Operation 

 

Die Operation erfolgte unter einem Stereomikroskop (Stemi-2000-C, Zeiss, Jena). 

Das Operationsfeld wurde durch eine Schwanenhalslampe (Schott-Kaltlichtquelle 

Kl200, Zeiss, Jena) beleuchtet. Das Operationsbesteck bestand aus einem 

Mikrochirurgischem Instrumentarium (Abb. 7). 

 

Abbildung 7: Mikrochirurgisches Operationsbesteck 
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2.5. Operationstechnik für die Stenosierung der Vena cava caudalis 

 

Nach Überprüfung, ob der Zwischenzehenreflex ausgeschaltet war, wurde die 

Bauchhöhle in der Linea alba eröffnet. Das Darmkonvolut wurde neben die Maus 

auf ein zuvor vorbereitetes erhöhtes Bett aus angefeuchteter Gaze (Gazin 

Mullkompresse, Lohmann & Rauscher International GmbH & Co.KG, 

Regensdorf) aus der Bauchhöhle hervor gelagert und sofort mit befeuchteter Gaze 

abgedeckt. Um eine bessere Übersicht der Bauchhöhle zu erlangen, wurde ein 

Haltefaden (7-0 Prolene, monofil, nicht resorbierbar, ETHICON Products, 

Norderstedt) am Peritoneum befestigt und gespannt. Nun wurde damit begonnen, 

die V. cava caudalis zu lokalisieren und stumpf von umliegendem Gewebe 

freizupräparieren. Das Hauptaugenmerk wurde darauf gelegt, direkt kaudal der 

Vena renalis sinistra die Vena cava caudalis zu untertunneln und in diesem 

Bereich von der direkt anliegenden Aorta abdominalis zu trennen, um mittels 

einer gebogenen Klemme einen Faden (8-0 Premilene, monofil, nicht 

resorbierbar, B. Braun Melsungen AG, Melsungen) durchzuführen. Mit diesem 

Faden wurde eine doppelte Ligatur vorgelegt, darunter ein Platzhalter (Drahtstück 

eines humanen Herzkatheters) genau in der Mitte der Vene platziert. Durch den 

Platzhalter wurde ein vollständiger Verschluss der Vene verhindert und das 

Lumen auf ca. 30% eingeengt. Die Ligatur wurde zugezogen und mit einem 

einzelnen Knoten gesichert, danach wurde der Platzhalter entfernt und die Enden 

des Fadens gekürzt. Durch diesen Eingriff wurde die V. cava caudalis stenosiert 

und der Blutfluss somit verlangsamt, was die Entstehung einer Thrombose 

begünstigt. Tiere, bei denen Blutungen auftraten, wurden aus den 

Versuchsgruppen ausgeschlossen, da nur die Flussverlangsamung ohne 

Endothelverletzung die TVT herbeiführen sollte. Nach Durchführung der 

Operation wurde das feuchtgehaltene Darmkonvolut vorsichtig in den Bauchraum 

zurück verlagert. Das Peritoneum und die Muskulatur wurden mit einer 

fortlaufenden Naht (7-0 Prolene, monofil, nicht resorbierbar, ETHICON Products, 

Norderstedt) und die Haut mit einer Einzelknopfnaht wieder verschlossen. Auf die 

Naht wurde Jodlösung aufgetupft (Abb. 8).  

 



IV. Material und Methoden     34 

 

Abbildung 8: Durchführung der Stenosierung der V. cava caudalis 

1: Eröffnen der Bauchhöhle in der Linea alba (Pfeil) 2: Hervorverlagern des Darmkonvoluts (Pfeil) 

3: Gute Sicht auf die V. cava caudalis (Pfeil) durch Haltefaden 4: Vorlegen der doppelten Ligatur 

(Pfeil) 5: Platzieren des Platzhalters auf der V. cava caudalis (Pfeil) 6: Schließen der Ligatur und 

sichern durch einen einfachen Knoten (Pfeil) 7: Entfernen des Platzhalters und Kürzen der 

Fadenenden (Pfeil) 8: Zurückverlagern des Darmkonvoluts in die Bauchhöhle 9: Verschluss des 

Peritoneums und der Bauchmuskulatur mit einer fortlaufenden Naht 10: Verschluss der Haut mit 

Einzelknopfnähten und betupfen der Naht mit Jodlösung. 

  

Die Tiere wurden nach dem Erwachen in einen Käfig verbracht, der mit Tüchern 

(Kimtech, Kimberley-Clark, Koblenz) ausgelegt wurde, Futter und Wasser 

standen ihnen zur freien Verfügung. Zur Befriedigung des Nestbautriebes 

herhielten die Tiere weiche Kosmetiktücher (Kleenex, Kimberly-Clark, Koblenz). 

Der Käfig wurde zur ständigen Beobachtung in einem Tierhaltungsschrank 

(Ventilated Cabinet, Tecniplast Deutschland GmbH, Hohenpreißenberg) 

untergebracht, welches klimatisiert und mit durchsichtigen roten Türen 

ausgestattet war, damit die Tier jederzeit überwacht werden konnten, dies aber 

nicht sahen und nicht gestresst wurden. 
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2.6. Operationstechnik zur Entnahme der Thromben nach 48 Stunden 

 

Nach erneuter Narkoseeinleitung wie unter 2.1. beschrieben wurde die 

Bauchhöhle lateral der Naht eröffnet und das Darmkonvolut heraus verlagert. Jetzt 

war es möglich, makroskopisch zu bestimmen, ob sich ein Thrombus gebildet hat. 

Die V. cava caudalis wurde kranial der Ligatur eröffnet und das Blutgefäßsystem 

durch intrakardiale Punktion mit 5 ml isotonischer Natriumchlorid-Lösung 

durchgespült. Dies führt zum Tod des Tieres durch Entbluten und verhinderte, 

dass sich post mortem Blutgerinnsel bilden konnten. Die V. cava caudalis wurde 

mit dem enthaltenen Thrombus freipräpariert und von Fettgewebe und 

Bindegewebe befreit. Auf Höhe des Zuflusses der Venae iliacae communes wurde 

die V. cava caudalis mit einer weiteren Ligatur verschlossen und somit verhindert, 

dass der Thrombus abgeschwemmt werden konnte. Kaudal und kranial der 

Ligaturen wurde die V. cava caudalis abgetrennt und mit dem darin enthaltene 

Thrombus und der anheftenden Aorta aus der Bauchhöhle entfernt. So wurde 

sichergestellt, dass immer das gleiche Stück entnommen wurde. Die Vene wurde 

auf ein Filterpapier gelegt (Abb. 9) und damit gewogen. Auch wenn sich kein 

Thrombus gebildet hatte, wurde genauso verfahren.  

Damit das reine Thrombusgewicht ermittelt werden konnte wurde vorab das 

Leergewicht der V. cava caudalis, inklusive der beiden Ligaturen und der 

angehefteten Aorta ermittelt. Dafür wurde bei mehreren Tieren die Operation 

durchgeführt aber nicht 48 Stunden gewartet, bis sich ein Thrombus gebildet hat, 

sondern die Vene sofort entnommen, gewogen und der Mittelwert ermittelt. 

Dieser Mittelwert des Leergewichts wurde vom jeweiligen Gewicht der Vene 

nach 48 Stunden abgezogen, um das reine Thrombusgewicht zu erhalten. Nach 

dem Wiegen wurde der Thrombus vom Filterpapier genommen, in Tissue Tek 

(Sakura Finetek Europe B.V., Alphen aan den Rijn, Niederlande) eingebettet und 

in flüssigem Stickstoff eingefroren. Die Aufbewahrung für die 

immunhistologische Aufarbeitung erfolgte bei -80° C. 
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Abbildung 9: Entnommener Thrombus auf Filterpapier 

 

2.7. Dokumentation 

Die Operation selbst und auch ob ein Thrombus gebildet wurde und das 

entsprechende Gewicht wurden auf einem Protokoll vermerkt und anschließend 

noch in eine Exceltabelle eingetragen.  

Auf dem Protokoll wurde die Projektbezeichnung angegeben und für jedes 

einzelne Tier das Datum des Eingriffs, der Stamm, das Geschlecht, die Herkunft 

des Tieres, das Geburtsdatum, das Gewicht, welches nach Narkoseeinleitung 

bestimmt wurde, die Tiernummer, das Alter des Tieres und die Menge der 

Injektionsnarkosen vermerkt. Außerdem wurde vermerkt ob bei der Präparation 

der V. cava caudalis eine Blutung aufgetreten war, diese Tiere wurden dann aus 

der Auswertung genommen, oder ob ein Jugulariskatheter gelegt wurde. 

Besondere Auffälligkeiten wurden eingetragen. Es wurde protokolliert ob ein 

Thrombus makroskopisch sichtbar war und sein Gewicht.  

Die Tiere, die wieder aufwachten, wurden anhand eines Score Systems überwacht. 

Es wurden Abweichungen des Allgemeinbefindens, der Nahrungsaufnahme, der 

Bewegungsaktivität, des Verhaltens, des Kotabsatzes und des Harnabsatzes 

dokumentiert. Abbruchkriterien für den Versuch wurden genau definiert. Tiere, 

die aufgrund des Score Systems eine zu hohe Belastung aufwiesen, wurden 

frühzeitig euthanasiert und aus der Versuchsgruppe ausgeschlossen.  

 

2.8. Operationstechnik Jugulariskatheter 

Um dem Tier bei Eingriffen mit einer längeren Dauer, relativ einfach über einen 
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venösen Zugang Fluoreszensfarbstoffe oder gefärbte Zellen verabreichen zu 

können, wurde ein Jugulariskatheter gelegt. Das schon in Narkose liegende Tier 

wurde vorbereitet indem die Fläche vom Kieferwinkel bis zum Sternum 

geschoren und mit Enthaarungscreme enthaart wurde, zum Schluss wurde mit 

Alkohol desinfiziert. Danach wurde die Maus mit dem Kopf in Richtung des 

Operateurs gelagert. Die Haut wurde rechts paramedian vom rechten Kieferwinkel 

bis zum Sternum eröffnet. Als nächstes wurde die rechte Glandula mandibularis 

lokalisiert, stumpf freipräpariert und kranial herausgeklappt. Die Glandula 

mandibularis wurde auf befeuchtete Gaze gelagert und damit abgedeckt. Die V. 

jugularis dextra wurde daraufhin lokalisiert und ein Haltefaden (Prolene 7-0, 

monofil, nicht resorbierbar, ETHICON Products, Norderstedt) daran befestigt, 

dieser diente auch dazu, den Blutfluss aus seitlichen Zuflüssen zu unterbinden. 

Der Haltefaden wurde unter Spannung gesetzt, so dass sich die Vene aufspannte 

und damit leichter zu präparieren war. Die Vene wurde, bis sie kaudal unter der 

Muskulatur verschwand, freipräpariert. Es wurden drei Ligaturen (Prolene 7-0, 

monofil, nicht resorbierbar, ETHICON Products, Norderstedt) vorgelegt, alle mit 

einem doppelten Knoten. Eine weiter kranial, um das Loch in der Vene zu 

verkleinern, die beiden anderen weiter kaudal, um den Katheter in der Vene zu 

befestigen und die Vene abzudichten, damit keine Luft in den Blutkreislauf 

gelangen kann. Der Katheter wurde vorbereitet indem der Katheterschlauch 

(Portex Polythene Tubing, 0,28mm ID 0,61mm OD, Smiths Medical 

International, Hythe, UK) mit einer Kanüle (30 G, Becton Dickinson GmbH, 

Heidelberg) versehen und auf einen Drei-Wege-Hahn (Discofix C, B.Braun, 

Melsungen) aufgesetzt wurde. Der Katheter wurde mit isotonischer 

Natriumchloridlösung gespült, bis keine Luftblasen mehr im System waren. 

Danach wurde der Drei-Wege-Hahn geschlossen um zu verhindern, dass sich neue 

Luftblasen bildeten. Der komplette Katheter wurde neben der Maus platziert. Die 

Spannung im Haltefaden der Vene wurde gelöst und mit einer Federschere eine 

kleine Inzisur in die Vene geschnitten, direkt zwischen der kranialen und den 

beiden kaudalen Ligaturen. Mit einer Pinzette wurde das angeschrägte Ende des 

Katheterschlauches in die Öffnung der V. jugularis eingeführt und sofort mit den 

beiden kaudalen Ligaturen fixiert. Danach wurde die entstandene Öffnung in der 

Vene mit der kranialen Ligatur verschlossen (Abb. 10). Die korrekte Lage des 

Katheters wurde kontrolliert indem der Drei-Wege-Hahn geöffnet und eine 

Probeinjektion mit isotonischer Natriumchloridlösung erfolgte. Der 
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Katheterschlauch wurde noch mittels Klebeband an der Kopfkammer fixiert, um 

ein Verrutschen zu verhindern. Der gesamte eröffnete Halsbereich wurde mit 

befeuchteter Gaze bedeckt und mit Parafilm (Laboratory Film, Bemis Company, 

Inc, Neenah, Wisconsin, USA) abgedeckt.  

 

 

Abbildung 10: Legen eines Jugulariskatheters 

1: Vorbereitete Operationsstelle 2: Eröffnen der Haut vom rechten Kieferwinkel bis zum Sternum 

(Pfeil) 3: Glandula Mandibularis (Pfeil) gelagert auf feuchter Gaze 4: Sicht auf die V. jugularis 

(Pfeil) 5: Gespannter Haltefaden (Pfeil) an der V. jugularis 6: Vorgelegte Ligaturen (Pfeil) 7: In 

die V. jugularis eingeführter Katheter (Pfeil) 

 

3. Blutanalysen 

3.1. Blutabnahmetechniken 

3.1.1. Punktion der Vena facialis 

 

Für diesen Eingriff wurde entweder eine schon für die Operation narkotisierte 

Maus verwendet, oder dem Tier 30 min vor dem Eingriff 0,1 mg/kg Buprenorphin 

subkutan verabreicht und danach mit Inhalationsnarkose mittels Isofluran betäubt. 

Für die Abnahme wurde eine sterile Lanzette (FEATHER BLOOD LANCET, 

pfm, Köln), ein EDTA-Röhrchen (Microvette, Sarstedt, Nümbrecht) und 
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Wattestäbchen benötigt. Die Maus wurde mit zwei Fingern im Nacken fest fixiert, 

die Gesichtshaut dadurch zurückgezogen und somit die Vena facialis gestaut. Mit 

der sterilen Lanzette wurde die Vene angestochen, in einem Punkt der sich in der 

Mitte eines Dreiecks, gebildet von Ohr, Auge und dem Kieferwinkel des Tieres, 

befand. Das austretende Blut wurde mit dem EDTA-Röhrchen aufgefangen. Um 

den Blutfluss zu stoppen wurde der Stau gelöst und die Einstichstelle mit einem 

Wattestäbchen komprimiert, um eine Hämatombildung zu vermeiden. Der Maus 

wurde pro Abnahme ca. 100 µl Blut entzogen.  

 

3.1.2. Intrakardiale Blutabnahme 

 

Für diese Blutabnahmetechnik wurden die Mäuse mit Isofluran und Fentanyl in 

Narkose versetzt. Die Maus wurde in Rückenlage fixiert und die Haut über dem 

Sternum eröffnet, so dass der Blick auf die Rippen frei war. Die Punktion des 

Herzens erfolgt links paramedian, zwischen der zweiten und dritten Rippe. Die 

Kanüle (26 G, BD Microlance, Becton Dickinson, Heidelberg), mit aufgesetzter 

Spritze in der sich 170 µl Citrat (Tri-Natriumcitrat-Lösung, Sarstedt AG & Co, 

Nümbrecht) als Gerinnungshemmer befand, wurde senkrecht eingeführt und dabei 

leicht aspiriert. Mit dieser Methode konnte eine Menge von ca. 1 bis 2 ml Blut 

gewonnen werden. Das Tier verstarb meist schon durch den massiven Blutentzug, 

trotzdem wurde am Ende noch ein Genickbruch durchgeführt, um den sicheren 

Tod herbei zu führen.  

 

3.2. Großes Blutbild 

Zur Erstellung der großen Blutbilder war eine Menge von 100 µl EDTA-Blut 

nötig. Hierfür wurde das Blut, welches aus der Punktion der V. facialis gewonnen 

wurde, verwendet. Die Blutbilder wurden vom Zentrallabor des Deutschen 

Herzzentrums München mit einem Sysmex-Gerät (Sysmex XS800i, Sysmex 

Deutschland GmbH, Norderstedt) erstellt. Das Blut für die basalen großen 

Blutbilder wurden jeweils vor der Stenosierung der V. cava caudalis und das Blut 

für die 48 h post Blutbilder direkt vor der Entnahme des Thrombus gewonnen.  
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3.3. Partielle Thromboplastinzeit 

 

Die Messung der partiellen Thromboplastinzeit ist ein sensitives Verfahren, um 

einen Mangel oder einen Überschuss an Gerinnungsfaktoren, die für die Bildung 

eines Thrombus erforderlich sind, nachzuweisen. Speziell werden Faktor VIII und 

Faktor IX beachtet117. 

Für die Analyse wurde eine Menge von ca. 1 ml mit Citrat ungerinnbar gemachten 

Blutes benötigt. Hierzu wurde das Blut aus der intrakardialen Blutabnahme 

verwendet. Die Analyse erfolgte durch das Zentrallabor des Deutschen 

Herzzentrums München mit dem BCS-System (BCS-System, Siemens Healthcare 

Diagnostics GmbH, Eschborn). Das Blut wurde direkt vor der Entnahme des 

Thrombus gewonnen.  

 

3.4. Thromboelastometrie 

Unter Thromboelastometrie versteht man ein diagnostisches Verfahren mit 

welchem man die Gerinnungseigenschaften von Vollblut untersuchen kann. Dabei 

wird die Interaktion von Gerinnungsfaktoren, Inhibitoren und Zellkomponenten 

gemessen, während sich ein Gerinnsel bildet und wieder lysiert wird118. Mit dieser 

Analyse können Erkenntnisse über die gesamte Kinetik der Hämostase 

(Gerinnungszeit, Gerinnselbildung, Gerinnselstabilität und Lysis) gewonnen 

werden119.  

Für die Analyse wurde eine Menge von mindestens 600 µl mit Citrat ungerinnbar 

gemachten Blutes benötigt. Hierzu wurde das Blut aus der intrakardialen 

Blutabnahme verwendet. Die Analyse erfolgte durch das Zentrallabor des 

Deutschen Herzzentrums München (Rotem, Tem Internatinal GmbH, München).  
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Abbildung 11: Thromboelastometrie 

CT: Gerinnungszeit, CFT: Gerinnselbildungszeit, alpha: alpha-Winkel, A20: Amplitude 20 min 

nach CT, MCF: Maximale Gerinnselfestigkeit, LI 40: Lyseindex 40 min nach CT, ML: Maximale 

Lyse 

 

3.4.1.    EXTEM 

Bei der EXTEM-Analyse werden über den extrinsischen Weg die 

Gerinnselbildung, Fibrinpolymerisation und die Fibrinolyse ermittelt. Dies erfolgt 

durch eine TF-Aktivierung120.  

 

3.4.2.   FIBTEM 

Bei der FIBTEM-Analyse wird der Fibrinogen-Status ohne Plättchenbeteiligung 

qualitativ ermittelt. Dies geschieht durch TF-Aktivierung und Zugabe eines 

Plättcheninhibitors (Cytochalasin, fibtem-Reagenzien, Tem Internatinal GmbH, 

München)120. 
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4.  Intravitale Videofluoreszenzmikroskopie (IVM) 

 

Um die Reduktion der Flussgeschwindigkeit zu standardisieren, wurde der 

Blutfluss vor und nach Setzen der Ligatur bestimmt. Weiter wurde in sechs 

Stunden Versuchen die Leukozyten- und Thrombozytenrekrutierung analysiert. 

  

4.1.  Prinzip der IVM 

 

Mit Hilfe der intravitalen Videofluoreszenzmikroskopie war es möglich, die 

zellulären Vorgänge in vivo während der Entstehung eines Thrombus in Echtzeit 

darzustellen. Dazu wurden verschiedene Zellen mit Hilfe von gut verträglichen 

Fluoreszenzfarbstoffen in oder ex vivo markiert.  

Es wurde dafür ein Fluoreszenz-Auflicht-Mikroskop (BX51WI, Olympus, 

Hamburg), in Verbindung mit einem komplexen-Beleuchtungssystem MT 20 

(Olympus, Hamburg) (Abb. 12) verwendet. Weiter wurde eine Xenonlampe als 

Lichtquelle genutzt, welche kurzwelliges Anregungslicht emittieren konnte, 

wodurch dann die mit Fluoreszenzfarbstoffen markierten Zellen in vivo sichtbar 

gemacht wurden. Über eine CCD-Kamera (ORCA-ER, Hamamatsu, Japan) wurde 

das Emissionssignal an einen Computer gesendet. Die gesamte Erfassung, 

Dokumentation und Auswertung erfolgte mit der Software Cell^R (Olympus, 

Hamburg).  
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Abbildung 12: Fluoreszenz-Auflicht-Mikroskop 

 

4.2. Durchführung der IVM 

Um die zellulären Vorgänge in der initialen Phase der Entstehung eines venösen 

Thrombus erfassen zu können, erfolgte die intravitalmikroskopische 

Untersuchung bis sechs Stunden nach Setzen der Ligatur. Hierfür wurde der 

Abschnitte der V. cava caudalis zwischen der Ligatur und den Zuflüssen der 

Venae iliacae in vier Fenster unterteilt und diese aufgenommen. Es wurde ein 

Wasserimmersionsobjektiv (UMPland Fl 20x/0,50Na, 3,3 mm, Water dipping 

Lens, Olympus, Hamburg) mit einer 20-fachen Vergrößerung verwendet. Um 

sicherzustellen, dass sich ständig genug Wasser über der V. cava caudalis befand 

wurde über eine Infusionsflasche Natriumchlorid-Lösung in die Bauchhöhle 

getropft. Je nach Belichtungszeit entstand ein Film von ca. 10 Sekunden, welcher 

aus 100 Einzelaufnahmen bestand.  
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4.2.1.    Verwendete Farbstoffe  

Um den Farbstoff bzw. die gefärbten Thrombozyten intravenös verabreichen zu 

können wurde wie unter 2.8. beschrieben ein Jugulariskatheter gelegt.  

 

4.2.1.1.   Acridin-Orange 

Um Leukozyten intravitalmikroskopisch darstellen zu können, wurde Acridin-

Orange (Sigma-Aldrich, Taufkirchen) verwendet. Es besitzt die Fähigkeit, sich an 

DNA und RNA anzulagern, indem es durch Zellmembranen diffundiert121. Sobald 

Acridin-Orange an DNA gebunden hat emittiert es im grünen Bereich, nach 

Anregung mit einer Wellenlänge von 495 nm122. Die Mäuse bekamen 0,05 ml 

dieses Farbstoffs, mit einer Konzentration von 0,05 % intravenös über den 

Jugulariskatheter appliziert.  

 

4.2.1.2.   Rhodamin B 

Rhodamin B Isothiocyanat (Sigma-Aldrich, Taufkirchen)123 wurde zur ex vivo 

Färbung von isolierten Plättchen, in einer Konzentration von 20 µg/ml verwendet. 

Es kann sich in den Mitochondrien oder Zellkernen lebender Zellen anreichern. 

Rhodamin B emittiert im grünen Bereich, wenn es bei 514 nm angeregt wird.  

 

4.2.2.    Isolation muriner Thrombozyten 

Dem Spendertier wurde wie unter 3.1.2. beschrieben mittels kardialer Punktion 

ca. 1,5 ml Blut abgenommen. Um möglichst physiologische Verhältnisse zu 

gewährleisten wurde ein Tyrode´s-Puffer angesetzt. Um 100 ml Puffer 

herzustellen wurde jeweils 0,1 g D(+)-Glukose und bovines Serumalbumin 

benötigt. Dieses wurde mit Hilfe einer geeichten Waage abgewogen. Dazu 

wurden 90 ml Aqua dest., 1 ml HEPES (Invitrogen, Darmstadt) und 10 ml eines 

bereits vorbereiteten 10-fach–Tyrode´s–Puffer (10,15 g NaHCO3 (VWR 

Interantional, Darmstadt), 1,95 g KCL ( VWR International, Darmstadt) und 80 g 

NaCl (VWR International, Darmstadt) in 1000 ml Aqua dest. gelöst und steril 

filtriert) hinzugefügt. Der fertige Puffer wurde auf die pH-Werte 6,5 und 7,4 durch 

Zugabe von 2 mM HCL und NaOH eingestellt.  
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Um die Thrombozyten zu isolieren wurde das entnommene Blut mit Tyrode´s-

Puffer pH 6,5 auf ein Volumen von 2 ml aufgefüllt und dann bei 68x g ohne 

Bremse für 20 Minuten (Haereus, Megafuge, Hanau) zentrifugiert. Der Überstand, 

welcher das plättchenreiche Plasma enthält, wurde vorsichtig mit der Pipette 

abgenommen und auf ein Volumen von 4 ml mit dem Tyrode´s-Puffer pH 6,5 

aufgefüllt. Das Gemisch wurde dann für 10 Minuten bei 1277x g mit Bremse 

zentrifugiert. Der Überstand wurde abgeschüttet und das entstandene 

Thrombozytenpellet resuspendiert, durch Zugabe von jeweils 250 µl Tyrode´s-

Puffer pH 6,5 und pH 7,4. Danach wurde mittels eines hämatologischen 

Analysegeräts (Sysmex XE-2100, Sysmex, Nordstedt) die Thrombozytenzahl 

bestimmt. Dadurch konnte die Thrombozytenzahl durch Zugabe des Tyrode´s-

Puffer pH 6,5 auf eine Konzentration von 150000 Thrombozyten pro µl 

Flüssigkeit eingestellt werden. Zum Schluss wurden die Thrombozyten noch mit 

dem unter 4.2.1.2. beschriebenen Farbstoff Rhodamin B angefärbt. Dem 

jeweiligen Empfängertier wurde kurz vor Versuchsbeginn eine Menge von 250 µl 

dieser Suspension intravenös über den Jugulariskatheter verabreicht. Dadurch 

konnte gewährleistet werden, dass jedem Versuchstier die gleiche 

Flüssigkeitsmenge mit der genau gleichen Zellkonzentration verabreicht wurde. 

Die Verwendeten, aber nicht extra gekennzeichneten Reagenzien stammen alle 

von Sigma-Aldrich (Taufkirchen). 

 

4.2.3.    Bestimmung der Flussreduktion  

Um die Verlangsamung des Blutflusses nach Setzen der Ligatur exakt bestimmen 

zu können wurden im vierten Fenster, also dem kaudalsten nach der Ligatur bzw. 

nach Abzweigung der Vena renalis sinistra, Aufnahmen angefertigt. Die ersten 

noch bevor die Vene stenosiert wurde, um die physiologische 

Blutflussgeschwindigkeit bestimmen zu können. Danach wurde ligiert und 

weitere Aufnahmen im vierten Fenster mit reduzierter Blutflussgeschwindigkeit 

angefertigt. Um die Leukozyten sichtbar zu machen wurde der unter 4.2.1.1. 

beschriebene Farbstoff Acridin-Orange verwendet. Die Aufnahmen wurden mit 

der Software ImageJ (ImageJ 1.45s) mithilfe eines Zelltrackingverfahrens 

ausgewertet. Dabei wird eine Zelle über mehrere Bilder (Frame-to-Frame 

Methode) verfolgt und so kann die Flussgeschwindigkeit dieser Zelle ermittelt 

werden. Dies wurde bei jeweils sechs Zellen durchgeführt und am Ende ein 
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Mittelwert gebildet. Dieses Verfahren wurde für die Aufnahmen prä und post 

Stenose angewendet und dadurch ließ sich die Reduktion der Geschwindigkeit 

bzw. die Geschwindigkeit des Restflusses errechnen. Dies war nötig, um die 

Ligatur bzw. die Flussreduktion zu standardisieren, damit bei jedem Tier ungefähr 

die gleiche Geschwindigkeit des Restflusses entsteht.  

 

4.3. Auswertung der IVM 

 

Für die Auswertung wurden die Aufnahmen, die drei, vier, fünf und sechs 

Stunden post Ligatur angefertigt wurden verwendet. Pro Aufnahme wurden drei 

Bilder ausgewählt und diese mit Hilfe der ImageJ 1.45 Softwaren als 

schwarz/weiß Bilder abgespeichert. Dies geschah sowohl für die Leukozyten- als 

auch für die Thrombozytenaufnahmen.  

Die weitere Auswertung erfolgte mit Hilfe der CapImage 8.6.3 Software. Es 

wurde die Fläche der aggregierten Leukozyten bzw. Thrombozyten ermittelt und 

diese auf eine Gesamtfläche von einem mm² hochgerechnet.  

 

5. Schwanzblutungszeiten 

Zur Bestimmung der Schwanzblutungszeit wurde dem Tier 30 min vor dem 

Eingriff 0,1 mg/kg Buprenorphin subkutan verabreicht. Danach wurde das Tier 

mittels Isoflurannarkose in Narkose gelegt und auf der Heizplatte des 

Tierbewärmungsystems in Rückenlage fixiert. Mit einem Skalpell wurde ein ca. 5 

mm langes Stück der Schwanzspitze abgetrennt und das Blutende Schwanzende 

auf einem Löschpapier platziert. Danach wurde sofort eine Stoppuhr zur 

Zeitmessung eingeschaltet. Die sich bildenden Bluttropfen wurden durch das 

Löschpapier weggesaugt, so dass es gut möglich war, den Zeitpunkt zu 

bestimmen als der Blutfluss komplett stoppte. Zu diesem Zeitpunkt wurde die 

Stoppuhr angehalten und das Schwanzende mit einem Ätzstift (Höllenstein-

Ätzstift, RYMA PHARM, Körle) versorgt. Die Maus wurde zur Überwachung der 

Aufwachphase in einen Käfig gesetzt, dieser war mit Tüchern (Kimtech, 

Kimberley-Clark, Koblenz) ausgelegt um eventuelle Nachblutungen besser zu 
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sehen. Danach wurde die Stoppuhr abgelesen und die Zeit auf dem Protokoll 

vermerkt. 

 

6. Immunhistologie 

Die Thromben, die 48 Stunden nach Durchführung der Stenose der Vena cava 

caudalis entstanden, sollten mittels immunhistologischer Untersuchung auf ihre 

genaue Zusammensetzung und die beteiligten Zelltypen hin analysiert werden.  

 

6.1. Präparation 

 

Wie schon unter 2.6. dargestellt wurden die entnommenen Thromben in Tissue 

Tek (Sakura Finetek Europe B.V., Alphen aan den Rijn, Niederlande) eingebettet 

und bei -80°C tiefgefroren. Die Einbettung erfolgte in einem aufgeschnittenen 

Schlauchstück, bei dem das kaudale Ende des Thrombus gekennzeichnet wurde. 

Das Schlauchstück mit dem eingebetteten Thrombus wurde in ein beschriftetes 

1,5 ml Eppendorftube (Safe-Lock Tubes 1,5 ml, Eppendorf AG, Hamburg) 

verbracht und war so leichter aufzufinden zur Weiterverarbeitung.                            

Um die Thromben schneiden zu können, wurde der Thrombus mit Tissue Tek auf 

einem Stempel befestigt und dieser im Kryostat (MICROM HM 560, THERMO 

FISHER, SCIENTIFIC, Dreieich) so positioniert, dass vom kranialen zum 

kaudalen Ende Querschnitte geschnitten wurde. Die Temperatur des Gerätes war 

auf -25°C eingestellt, damit das Auftauen des Präparates während dem Schneiden 

verhindert werden konnte. Die entstandenen Schnitte, die eine Dicke von 5 µm 

besaßen, wurden einzeln mit einem beschrifteten, beschichteten Objektträger 

(Thermo Scientific, Superfrost Plus, Gerhard Menzel GmbH, Braunschweig) 

abgenommen. Die Objektträger wurden bis zum Färben bei -20°C gelagert.  

 

6.2. Färbeprotokoll 

Für die Färbung der Objektträger wurden diese in eine lichtundurchlässige 

Färbekammer verbracht. Diese war mit Wasser gefüllt, um ein Austrocknen der 
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Schnitte zu vermeiden. Damit die aufgetragenen Lösungen sich auf den 

Präparaten halten und nicht einfach runtertropfen konnten, wurden diese vorab 

mit einem Fettstift (Dako Pen, Dako, Hamburg) umfahren.  

Die verwendeten Färbungen wurden alle nach einem Standardfärbeprotokoll 

durchgeführt124:  

Zur Fixierung bei Raumtemperatur wurden die Präparate für drei Minuten mit 4% 

Formalin (Thermo Scientific, Rockford, Illinois, USA) und mit Aqua dest. 

behandelt. Danach wurden die Schnitte drei Mal mit PBS (Invitrogen, Damstadt) 

+ 0,1% Tween (Tween 20, Sigma-Aldrich, Taufkirchen) gewaschen. Um die 

unspezifischen Bindungen am Fc-Rezeptor zu blockieren, wurde ein anti-mouse 

CD16/32 Antikörper (affinity purified rat anti-mouse CD 16/32, Clone 93, BD 

Pharming, San Diego, Kalifornien, USA) in einer Verdünnung von 1:200 

zusammen mit 3% BSA (Bovines Serum Albumin, PAA Laboratories, Pasching, 

Österreich) in PBS verwendet. Wobei bei der CD45 Färbung nur mit Fc-Block 

und bei der Fibrinogen-Färbung mit Fc-Block und 2% Glycin geblockt wurde. 

Diese Gemische wurden auf die Präparate gegeben und nach 30 Minuten 

abgeklopft. Danach wurde der Primärantikörper (Tab. 1) aufgetragen und bei 

Raumtemperatur eine Stunde inkubiert. Als Isotypkontrolle diente ein Antikörper 

der gleichen IgG-Klasse, der gegen ein irrelevantes Antigen gerichtet war. Nach 

der Inkubation mit den jeweiligen Antikörpern wurden die Präparate wieder 

gewaschen und danach die Sekundärantikörper aufgetragen. Hierfür wurden 

Antikörper aus verschiedenen Spezies, die in Alexa 488 (grün) und Alexa 594 

(rot) fluoreszieren für eine Stunde auf die Präparate gegeben (Tab. 2). Zur 

Darstellung der Zellkerne wurde danach DAPI (4´,6-Diamidino-2-phenylidole, 

Dihydrochloride, Invitrogen, Damstadt) in einer Verdünnung von 1:3000 

verwendet. Dieses musste 30 Sekunden einwirken und weist ein 

Emissionsmaximum von 461 nm mit blauer Fluoreszenz auf. Danach musste 

erneut gewaschen werden. Zum Schluss wurden ein oder zwei Tropfen 

Eindeckmedium (Mounting Medium, DAKO, Hamburg) auf die Objektträger 

aufgebracht und mit einem Deckglas abgedeckt. Dadurch konnte sich das Medium 

gleichmäßig über die gesamte Probe verteilen. Bis zur Auswertung wurden die 

Schnitte im Kühlschrank aufbewahrt.    

Bei der CD41 Färbung war ein Zwischenschritt mehr notwendig, um die 

Permeabilität der Zellen zu erhöhen. Dafür wurden vor dem Blocken noch Triton 
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X-100 (Sigma-Aldrich, Taufkirchen) aufgetragen und nach 30 Minuten 

abgewaschen.                          

Die Präparate wurden am Mikroskop (Leica DMRB, Firma Leica, Bensheim) mit 

einer Digitalkamera (AcioCam, Firma Zeiss, Göttingen) abfotografiert. 

Tabelle 1: Verwendete Primärantikörper 

Antigen Konzentration verwendete 

Verdünnung 

Primär- 

Antikörper 
Klon Hersteller 

CD 41 

CD 45 

Fibrinogen 

0,2 mg/ml 
 

0,2 mg/ml 
 

6 mg/ml 

1:25 
 

1:100 
 

1:300 

rat 
 

rat 
 

rabbit 

MWReg30 
 

30-F11 
 

A0080 

BD Pharming 
 

BD Pharming 
 

DAKO 

 

Tabelle 2: Verwendete Sekundärantikörper 

Antigen   Konzentration  verwendete     Sekundär-Antikörper      Hersteller   

                                   Verdünnung 
 CD 41        2 mg/ml       1:200      donkey anti-rat Alexa 594      Invitrogen 

 CD 45        2 mg/ml       1:200      donkey anti-rat Alexa 594      Invitrogen 

Fibrinogen  2 mg/ml       1:200     donkey anti-rabbit Alexa 594  Invitrogen 

 
 

6.3. Auswertung der Immunhistologie 

Für diese Arbeit wurden die Schnitte auf Thrombozyten (CD41), Leukozyten 

(CD45) und Fibrinogen gefärbt.  

Die Fotos der Schnitte wurden auf Leukozyten ausgezählt. Außerdem wurden die 

Flächen von Fibrinogen und Thrombozyten quantifiziert. Dies erfolgte mit Hilfe 

der ImageJ 1.45 Software, mit deren Hilfe die Farbfotos in schwarz/weiß Bilder 

umgewandelt wurden. Mit der CapImage 8.6.3 Software wurde jeweils die 

Fibrinogen- bzw. Thrombozytenfläche ermittelt und nach Ermittlung der 

Gesamtfläche des Thrombusquerschnittes der prozentuale Anteil berechnet.  
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7. Versuchsplanung und Statistik 

7.1. Tierzahlen 

 

In den Versuch eingegangen sind insgesamt 87 Tiere. Diese Tiere waren im Alter 

von mindestens 10 Wochen. Vom Versuch ausgeschlossen wurden Tiere die 

während der Operation mindestens eine Blutung hatten oder im Verlauf des 

Versuches verstorben sind. Da bisher kaum Erkenntnisse zum Einfluss der 

zahlreichen Komponenten des Komplementsystems bei Bildung einer venösen 

Thrombose bestehen, erfolgte die Versuchsplanung im Sinne einer 

Orientierungsstudie. Das heißt die verwendeten Tierzahlen waren nicht darauf 

ausgelegt, in den zahlreichen Einzeluntersuchungen immer sicher signifikante 

Ergebnisse zu erhalten, sondern ein wesentliches Ziel war es, über die statistische 

Bestimmung der Effektgrößen die Faktoren zu ermitteln, welche wahrscheinlich 

einen besonders deutlichen/bedeutsamen Einfluss auf das Blutgerinnungssystem 

nehmen und damit für weiterführende hypothesenbasierende Untersuchungen 

speziell in Frage kommen,  

 

7.2. Versuchsgruppen 

 

7.2.1.  Rolle des Komplementsystems bei der Entstehung der venösen 

Thrombose       

Bei dieser Gruppe wurde bei den Wildtyp- und den knock-out Tieren vor der 

Operation zur Flussverlangsamung die Schwanzblutungszeit ermittelt. Sowohl 

basal als auch 48 Stunden nach Flussverlangsamung, wurde den Tieren Blut 

abgenommen um daraus Blutbilder und Gerinnungsanalysen (partielle 

Thromboplastinzeit, EXTEM/FIBTEM 48 nach Flussverlangsamung) zu erstellen. 

Nach Entnahme wurde das Thrombusgewicht bestimmt und die entstandenen 

Thromben immunhistologisch weiter untersucht und ausgewertet. 
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Tabelle 3: Versuchsgruppe für die Rolle des Komplementsystems 

Stamm 
 
Anzahl 

 

 
Alter 

 

 
Gewicht 

 

WT C57Bl/6J  
 

9 
 

 
13-20 Wo 

 
23,03-27,75g 

Knockout C1q-/- 
 

8 
 

 
11-13 Wo 

 

 
24,99-31,89g 

 

WT C57Bl/6J 7 
 

 
13-31 Wo 

 
22,40-31,65g 

Knockout CR2-/- 7 
 

 
11-15 Wo 

 

20,74-31,30g 
 

WT C57Bl/6J 
 

11 
 

 
15-47 Wo 

 
21,61-31,65g 

Knockout C3-/- 
 

10 
 

 
12-21 Wo 

 

 
20,79-31,10g 

 

Knockout C4-/- 
 

9 
 

 
10-23 Wo 

 

 
21,96-27,60g 

 

Knockout C3-/-C4-/- 8 13-15 Wo 22,44-31,24g 

 

 

7.2.2.  Leukozyten- und Thrombozytenrekrutierung  

 

Diese Gruppe dient zur Darstellung des Einflusses des Komplementsystems auf 

die Leukozyten- und Thrombozytenrekrutierung nach Flussverlangsamung mittels 

Intravitalmikroskopie. In diese Gruppe zählen die Spendertiere für die 

Thrombozyten und die Empfängertiere an denen die Intravitalmikroskopie 

durchgeführt wurde. 
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Tabelle 4: Bestimmung der Leukozyten- und Thrombozytenrekrutierung 

Stamm Anzahl 
 

Alter 
 

Gewicht 
 

 

WT 

 

C57Bl/6J 

 

6 

 

13-21 Wo 

 

26,09-33,10g 

 

Knockout 

 

C4-/- 

 
 

6 

 
 

13-37 Wo 

 

28,84-31,7g 

 

 

7.2.3.  EXTEM Werte basal  

Bei dieser Gruppe wurde bei den Wildtyp- und den knock-out Tieren basal Blut 

abgenommen, um daraus die Gerinnungsanalyse EXTEM (basal) zu erstellen. 

 

Tabelle 5: Bestimmung der Extem Werte basal 

Stamm Anzahl 
 

Alter 
 

 

WT 

 

C57Bl/6J 

 

3 

 

9-18 Wo 

 

Knockout 

 

C4-/- 

 
 

3 

 
 

9-29 Wo 
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7.3. Statistik 

Die statistische Auswertung der Daten erfolgte mit Hilfe des Programms Sigma 

Plot 11.0 (Systat, Erkrath). Wobei die statistische Signifikanz für einen                

p-Wert < 0,05 angenommen wurde. Es wurden die Gewichte der Thromben durch 

Einzelwerte (dot plots) der verwendeten Tiere und dem Median-Wert dargestellt. 

Der Vergleich der Thrombusgewichte erfolgte mittels Mann-Whitney-U-Test. 

Daraufhin wurde eine Bonferroni – Holm Adjustierung mit n=3 durchgeführt, 

sodass für den kleinsten p-Wert < 0.0166, für den mittleren p-Wert < 0.025 und 

den größten p-Wert < 0.05 eine statistische Signifikanz angenommen wurde. Um 

den Unterschied der Inzidenz der Thrombusbildung zu bestimmen wurde der 

Binomialtest verwendet. Hierbei wurde die Inzidenz für die Thrombusentstehung 

der Wildtyptiere mit der Inzidenz der C4-/- Tiere verglichen und die Signifikanz 

berechnet. Die Auswertung der Daten der Blutbilder, Gerinnungsanalysen und der 

Immunhistologie wurden durch Säulendiagramme dargestellt. Wobei auch hier 

die statistische Signifikanz für einen p-Wert < 0,05 angenommen wurde. Zum 

Vergleich der Daten wurde der t-Test verwendet. Weiter wurden die Effektgröße 

und der relative Unterschied für alle Parameter berechnet. Die Effektgröße wurde 

mit dem Programm G*Power 3.1.5125 berechnet. Werte von 0,2 gelten als 

schwacher Effekt, Effekte mittlerer Stärke liegen bei Werten um 0,5 und deutlich 

und damit besonders bedeutsame Effekte liegen bei Werten über 0,8 vor126. Der 

relative Unterschied wurde für ≥ 30% als groß angenommen.  
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V. ERGEBNISSE 

 

1. Einfluss des Komplementsystems auf die venöse 

Thrombose 

1.1. Thrombusgewichte 

 

Bei der Entnahme der Thromben wurde makroskopisch ermittelt, ob ein 

Thrombus vorhanden war. Dadurch konnte eine prozentuale Angabe zur 

Thrombusinzidenz gemacht werden. Jeder Thrombus wurde nach Entnahme 

gewogen, um die Thrombusgewichte der knock-out Tiere mit denen der 

Kontrolltiere zu vergleichen.  

 

1.1.1. C1q-/- 

Die Analyse der Thrombusgewichte der C1q-/- Tiere im Vergleich zu den 

C57Bl/6J-Kontrolltieren (Abb. 13) ergab zwar eine mittlere relative Verringerung 

von 37,14%, die Effektgröße war allerdings wegen der großen individuellen 

Variabilität der Thrombusgewichte mit 0,39 relativ niedrig. Dieser relativ geringe 

Effekt der Ausschaltung von C1 auf die Thrombusbildung konnte mit der 

verwendeten Tierzahl damit auch nicht als statistisch signifikant (p=0,470) 

nachgewiesen werden. Die Verringerung der Inzidenz der Thrombusbildung mit 6 

von 9 Tieren in der Kontrollgruppe im Vergleich zu 3 von 8 Tieren in der C1q-/-

Gruppe (Abb. 13) war ebenfalls relativ gering und statistisch nicht signifikant 

(p=0,085) (Tab. 6). 
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Abbildung 13: Thrombusgewicht und Thrombusinzidenz von C57Bl/6J Mäusen im 

Vergleich zu C1q-/- Mäusen 

a) Thrombusgewicht 48h nach Flussverlangsamung in Wildtypkontrollmäusen (C57Bl/6J) (n=9) 

und C1q-/- Mäusen (n=8). Querbalken ≙ Median-Wert. 

b) Illustration der Thrombusinzidenz in Prozent in Wildtypkontrollmäusen (C57Bl/6J) und C1q-/- 

Mäusen  

 

Tabelle 6: Effektgröße, relativer Unterschied und Binomialtest für C1q-/- 

Effektgröße 0,39 
rel. Unterschied 37,14% 

Binomialtest Inzidenz p= 0,085 
 

 

1.1.2. CR2-/- 

Die Analyse der Thrombusgewichte der CR2-/- Tiere im Vergleich zu den 

C57Bl/6J-Kontrolltieren (Abb. 14) ergab zwar eine relative Verringerung von 

53,10%, die Effektgröße war allerdings wegen der großen individuellen 

Variabilität der Thrombusgewichte mit 0,32 relativ niedrig. Dieser relativ geringe 

Effekt der Ausschaltung von CR2 auf die Thrombusbildung konnte mit der 

verwendeten Tierzahl damit auch nicht als statistisch signifikant (p=0,281) 

nachgewiesen werden. Die Verringerung der Inzidenz der Thrombusbildung mit 4 

von 6 Tieren in der Kontrollgruppe im Vergleich zu 2 von 7 Tieren in der CR2-/- 

Gruppe (Abb. 14) war ebenfalls relativ gering und statistisch nicht signifikant 

(p=0,799) (Tab. 7). 
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Abbildung 14: Thrombusgewicht und Thrombusinzidenz von C57Bl/6J Mäusen im 

Vergleich zu CR2-/- Mäusen 

a) Thrombusgewicht 48h nach Flussverlangsamung in Wildtypkontrollmäusen (C57Bl/6J) (n=7) 

und CR2-/- Mäusen (n=7). Querbalken ≙ Median-Wert. 

b) Illustration der Thrombusinzidenz in Prozent in Wildtypkontrollmäusen (C57Bl/6J) und CR2-/- 

Mäusen  

 

Tabelle 7: Effektgröße, relativer Unterschied und Binomialtest für CR2-/- 

Effektgröße 0,32 

rel. Unterschied 53,10% 

Binomialtest Inzidenz p= 0,799 
 

 

1.1.3. C3-/-, C4-/- und C3-/-C4-/- 

Die Analyse der Thrombusgewichte der C3-/-, C4-/- und C3-/-C4-/- Tiere im 

Vergleich zu den C57Bl/6J-Kontrolltieren (Abb. 15) ergab für C3-/- zwar eine 

relative Verringerung von 51,28%, die Effektgröße war allerdings wegen der 

großen individuellen Variabilität der Thrombusgewichte mit 0,27 relativ niedrig. 

Dieser relativ geringe Effekt der Ausschaltung von C3 auf die Thrombusbildung 

konnte mit der verwendeten Tierzahl damit auch nicht als statistisch signifikant 

(p=0,084) nachgewiesen werden. Die Verringerung der Inzidenz der 

Thrombusbildung mit 7 von 11 Tieren in der Kontrollgruppe im Vergleich zu 4 

von 10 Tieren in der C3-/- Gruppe (Abb. 15) war ebenfalls relativ gering und 

statistisch nicht signifikant (p=0,524) (Tab. 8). Bei C4-/- zeigte sich eine relativ 

große Verringerung von 64,75%, die Effektgröße war allerdings wegen der 
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großen individuellen Variabilität der Thrombusgewichte mit 0,16 relativ niedrig. 

Dieser relativ geringe Effekt der Ausschaltung von C4 auf die Thrombusbildung 

konnte mit der verwendeten Tierzahl allerdings als statistisch signifikant 

(p=0,012) nachgewiesen werden. Die Verringerung der Inzidenz der 

Thrombusbildung mit 7 von 11 Tieren in der Kontrollgruppe im Vergleich zu 4 

von 9 Tieren in der C4-/- Gruppe (Abb. 15) war ebenfalls relativ gering und 

statistisch nicht signifikant (p=0,426) (Tab. 8). Für C3-/-C4-/- ergab sich zwar eine 

relative Verringerung von 63,46%, die Effektgröße war allerdings wegen der 

großen individuellen Variabilität der Thrombusgewichte mit 0,17 relativ niedrig. 

Dieser relativ geringe Effekt der Ausschaltung von C3C4 auf die 

Thrombusbildung konnte mit der verwendeten Tierzahl allerdings auch als 

statistisch signifikant (p=0,018) nachgewiesen werden. Die Verringerung der 

Inzidenz der Thrombusbildung mit 7 von 11 Tieren in der Kontrollgruppe im 

Vergleich zu 2 von 8 Tieren in der C3-/-C4-/- Gruppe (Abb. 15) war ebenfalls 

relativ gering und statistisch nicht signifikant (p=0,851) (Tab. 8). 

 

 

Abbildung 15: Thrombusgewicht und Thrombusinzidenz von C57Bl/6J Mäusen im 

Vergleich zu C3-/-, C4-/- und C3-/-C4-/- Mäusen 

a) Thrombusgewicht 48h nach Flussverlangsamung in Wildtypkontrollmäusen (C57Bl/6J) (n=11) 

und C3-/- (n=10), C4-/- (n=9) und C3-/-C4-/- (n=8)Mäusen. Querbalken ≙ Median-Wert. 

b) Illustration der Thrombusinzidenz in Prozent in Wildtypkontrollmäusen (C57Bl/6J), C3-/-, C4-/- 

und C3-/-C4-/- Mäusen. 
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Tabelle 8: Effektgröße, relativer Unterschied und Binomialtest für C3-/-, C4-/- und 

C3-/-C4-/- 

 C3-/- C4-/- C3-/-C4-/- 

Effektgröße 0,27 0,16 0,17 

rel. Unterschied 51,28% 64,75% 63,46% 

Binomialtest Inzidenz p=  0,524 0,426 0,851 

 

 

2. Einfluss des Komplementsystems auf die Blutgerinnung 

 

Da bei den C4-/- Tieren das Thrombusgewicht am deutlichsten reduziert war 

wurden diese knock-out Tiere in Bezug auf ihre Gerinnungseigenschaften genauer 

analysiert. 

 

2.1. Partielle Thromboplastinzeit 

 

Um die partielle Thromboplastinzeit zu bestimmen wurde 48 Stunden nach 

Flussverlangsamung, wie unter IV 3.1.2. beschrieben, intrakardial Blut 

abgenommen. 

Beim Vergleich der partiellen Thromboplastinzeit der C4-/- Tiere und der 

C57Bl/6J-Kontrolltiere (Abb. 16) ergab sich eine große relative Verkürzung von 

44,00%, die Effektgröße war mit 1,68 sehr groß (Tab. 9). Dieser relativ große 

Effekt der Ausschaltung von C4 auf die partielle Thromboplastinzeit konnte mit 

der verwendeten Tierzahl nicht als statistisch signifikant (p=0,203) nachgewiesen 

werden (Abb. 16).  
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Abbildung 16: Partielle Thromboplastinzeit der C57Bl/6J Mäuse im Vergleich zu 

C4-/- Mäusen 

Partielle Thromboplastinzeit aus Blut durch intrakardiale Blutabnahme 48h nach 

Flussverlangsamung von Wildtypkontrollmäusen (C57Bl/6J) (n=3) und C4-/- (n=2) Mäusen. 

Fehlerbalken ≙ SEM. 

 

Tabelle 9: Effektgröße und relativer Unterschied für die partielle 

Thromboplastinzeit 

Effektgröße 1,68 
rel. Unterschied 44,00% 

 

 

2.2. Schwanzblutungszeit 

Beim Vergleich der Schwanzblutungszeit der C4-/- Tiere und der C57Bl/6J-

Kontrolltiere (Abb. 17) ergab sich eine mittlere relative Verlängerung von 

21,89%, hinzu kam ein mittlerer Effekt mit einer Effektgröße von 0,42 (Tab. 10). 

Dieser mittlere relative Effekt der Ausschaltung von C4 auf die 

Schwanzblutungszeit konnte mit der verwendeten Tierzahl nicht als statistisch 

signifikant (p=0,529) nachgewiesen werden (Abb. 17).  
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Abbildung 17: Schwanzblutungszeit der C57Bl/6J Mäuse im Vergleich zu C4-/- 

Mäusen 

Schwanzblutungszeit von Wildtypkontrollmäusen (C57Bl/6J) (n=5) und C4-/- (n=5) Mäusen. 

Fehlerbalken ≙ SEM. 

 

Tabelle 10: Effektgröße und relativer Unterschied für die Schwanzblutungszeit 

Effektgröße 0,42 
rel. Unterschied 21,89% 

 

 

2.3. Thromboelastometrie 

Das Blut für die basalen EXTEM-Analysen wurde mittels intrakardialer 

Blutabnahme gewonnen.  

Beim Vergleich der Werte der basalen EXTEM-Analyse für die C4-/- Tiere und 

die Kontrolltiere ergibt sich für die Gerinnungszeit (CT) eine deutlicher relativer 

Unterschied mit 30,93%, bei einer gleichzeitig sehr hohen Effektgröße von 2,15 

(Tab. 11). Mit der verwendeten Tierzahl konnte dieser sehr große Effekt auf die 

Verkürzung der Gerinnungszeit auch als statistisch signifikant (p=0,009) 

nachgewiesen werden (Abb. 18). Für die Verlängerung der Gerinnselbildungszeit 

(CFT) ergibt sich ein deutlicher relativer Unterschied von 42,57%, bei einer 

gleichzeitig mittleren Effektgröße von 0,55 (Tab. 11). Mit der verwendeten 

Tierzahl konnte dieser mittlere Effekt allerdings nicht als statistisch signifikant 

(p=0,407) nachgewiesen werden (Abb. 18). Für die maximale Gerinnselfestigkeit 

(MCF) ergibt sich ein geringer relativer Unterschied mit 15,83%, bei einer 
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gleichzeitig großen Effektgröße von 0,92 (Tab. 11). Mit der verwendeten Tierzahl 

konnte dieser große Effekt auf die Verminderung der maximale 

Gerinnselfestigkeit allerdings nicht als statistisch signifikant (p=0,185) 

nachgewiesen werden (Abb. 18). Für die Amplitude 20 min nach CT (A20) ergibt 

sich eine mittlerer relativer Unterschied von 27,08% und eine sehr hohe 

Effektgröße von 1,16 (Tab. 11). Mit der verwendeten Tierzahl konnte dieser große 

Effekt auf die Verkleinerung der Amplitude allerdings nicht als statistisch 

signifikant (p=0,105) nachgewiesen werden (Abb. 18). 

Die anderen Werte zeigten keine deutlichen Effekte (Tab. 11), es konnten auch 

keine signifikanten Veränderungen nachgewiesen werden: α (p=0.643), LI60 

(p=0.374), ML (p=0.333). 

 

 

Abbildung 18: basale EXTEM-Analyse des Blutes von C57Bl/6J Mäusen im 

Vergleich zu C4-/- Mäusen 

Basale EXTEM-Analyse des Blutes von Wildtypkontrollmäusen (C57Bl/6J) (n=3) und C4-/- (n=3) 

Mäusen. Fehlerbalken ≙ SEM. 

 

Tabelle 11: Effektgröße und relativer Unterschied für die basale EXTEM-Analyse 

 CT CFT MCF LI60 ML A20 alpha 
Effektgröße 2,15 0,55 0,92 n.b. n.b. 1,16 0,41 

rel. Unterschied 30,93% 42,57% 15,83% 8% n.b. 27,08% 4,61% 
        

n.b. = nicht berechenbar 
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Bei der basale EXTEM-Analyse mit rekombinanter TF Quelle zeigte sich im 

Vergleich der C4-/- Tiere zu den Kontrolltieren für die Gerinnungszeit (CT) ein 

deutlicher relativer Unterschied mit 28,91% und eine sehr hohe Effektgröße von 

3,19 (Tab. 12). Mit der verwendeten Tierzahl konnte dieser große Effekt auf die 

Verkürzung der Gerinnungszeit auch als statistisch signifikant (p=0,017) 

nachgewiesen werden (Abb. 19). Für die Verlängerung der Gerinnselbildungszeit 

(CFT) ergibt sich ein deutlicher relativer Unterschied von 42,57%, bei einer 

gleichzeitigen mittleren Effektgröße von 0,55 (Tab. 12). Mit der verwendeten 

Tierzahl konnte dieser mittlere Effekt allerdings nicht als statistisch signifikant 

(p=0,407) nachgewiesen werden (Abb. 19). Für die maximale Gerinnselfestigkeit 

(MCF) ergibt sich ein geringer relativer Unterschied von 15,87%, bei einer großen 

Effektgröße von 0,89 (Tab. 12). Mit der verwendeten Tierzahl konnte dieser große 

Effekt auf die Verringerung der maximale Gerinnselfestigkeit allerdings nicht als 

statistisch signifikant (p=0,337) nachgewiesen werden (Abb. 19). Für die 

Amplitude 20 min nach CT (A20) ergibt sich ein mittlerer relativer Unterschied 

mit 21,63%, bei einer sehr hohe Effektgröße von 0,99 (Tab. 12). Mit der 

verwendeten Tierzahl konnte dieser relativ hohe Effekt auf die Verkleinerung der 

Amplitude allerdings nicht als statistisch signifikant (p=0,366) nachgewiesen 

werden (Abb. 19). 

Die anderen Werte zeigten keine deutlichen Effekte (Tab. 12) und es konnte auch 

keine signifikanten Veränderungen nachgewiesen werden: α (p=0.544), LI60 

(p=0.423), ML (p=0.374). 

 

 

Abbildung 19: basale EXTEM-Analyse (mit rekombinanter TF Quelle) des Blutes 

von C57Bl/6J Mäusen im Vergleich zu C4-/- Mäusen 

Basale EXTEM-Analyse (mit rekombinanter TF Quelle) des Blutes von Wildtypkontrollmäusen 

(C57Bl/6J) (n=3) und C4-/- (n=3) Mäusen. Fehlerbalken ≙ SEM. 
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Tabelle 12: Effektgröße und relativer Unterschied für die basale EXTEM-Analyse 

mit rekombinanter TF Quelle 

 CT CFT MCF LI60 ML A20 alpha 

Effektgröße 3,19 0,77 0,89 n.b. n.b. 0,99 0,72 

rel. Unterschied 28,91% 31,48% 15,87% 0,50% n.b. 21,63% 5,59% 
n.b. = nicht berechenbar 

 

Das Blut für die EXTEM- und FIBTEM-Analyse post 48h wurde 48 Stunden nach 

Flussverlangsamung durch intrakardiale Blutabnahme gewonnen.  

Bei der EXTEM-Analyse 48 h nach Flussverlangsamung zeigte sich im Vergleich 

der C4-/- Tiere zu den Kontrolltieren für die Gerinnungszeit (CT) ein hoher 

relativer Unterschied mit 51,50% und eine sehr große Effektgröße von 1,36 (Tab. 

13). Mit der verwendeten Tierzahl konnte dieser große Effekt auf die 

Verlängerung der Gerinnungszeit allerdings nicht als statistisch signifikant 

(p=0,175) nachgewiesen werden (Abb. 20). Für die Verlängerung der 

Gerinnselbildungszeit (CFT) ergibt sich ein großer relativer Unterschied von 

88,23% und eine große Effektgröße von 1,75 (Tab. 13). Mit der verwendeten 

Tierzahl konnte dieser große Effekt allerdings nicht als statistisch signifikant 

(p=0,099) nachgewiesen werden (Abb. 20). Für den Alpha-Winkel (α) ergab sich 

ein sehr geringer relativer Unterschied von 5,04% und eine sehr große 

Effektgröße von 1,19 (Tab. 13). Mit der verwendeten Tierzahl konnte dieser 

Effekt nicht als statistisch signifikant (p=0,080) nachgewiesen werden (Abb. 20). 

Für die maximale Gerinnselfestigkeit (MCF) ergibt sich ein sehr geringer relativer 

Unterschied von 6,33% und eine große Effektgröße von 1,25 (Tab. 13). Mit der 

verwendeten Tierzahl konnte dieser große Effekt auf die Verringerung der 

maximale Gerinnselfestigkeit allerdings nicht als statistisch signifikant (p=0,201) 

nachgewiesen werden (Abb. 20). Für die Amplitude 10 min nach CT (A10) ergibt 

sich ein sehr geringer relativer Unterschied von 9,05% und eine sehr große 

Effektgröße von 1,3 (Tab. 13). Mit der verwendeten Tierzahl konnte dieser Effekt 

auf die Verkleinerung der Amplitude 10 min nach CT nicht als statistisch 

signifikant (p=0,186) nachgewiesen werden (Abb. 20). Für die Amplitude 20 min 

nach CT (A20) ergibt sich ein sehr geringer relativer Unterschied von 8,19% und 

eine sehr große Effektgröße von 1,39 (Tab. 13). Mit der verwendeten Tierzahl 

konnte dieser Effekt auf die Verkleinerung der Amplitude 20 min nach CT nicht 
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als statistisch signifikant (p=0,147) nachgewiesen werden (Abb. 20). Für die 

Amplitude 30 min nach CT (A30) ergibt sich ein sehr geringer relativer 

Unterschied von 6,81% und eine sehr große Effektgröße von 1,23 (Tab. 13). Mit 

der verwendeten Tierzahl konnte dieser Effekt auf die Verkleinerung der 

Amplitude 30 min nach CT nicht als statistisch signifikant (p=0,205) 

nachgewiesen werden (Abb. 20). 

 

 

Abbildung 20: EXTEM-Analyse des Blutes von C57Bl/6J Mäusen im Vergleich zu 

C4-/- Mäusen 48 Stunden nach Flussverlangsamung 

EXTEM-Analyse des Blutes von Wildtypkontrollmäusen (C57Bl/6J) (n=3) und C4-/- (n=3) 

Mäusen 48 Stunden nach Flussverlangsamung. Fehlerbalken ≙ SEM. 

 

Tabelle 13: Effektgröße und relativer Unterschied für die post 48h EXTEM-Analyse 

 CT CFT alpha MCF A10 A20 A30 
Effektgröße 1,36 1,75 1,91 1,25 1,3 1,39 1,23 

rel. Unterschied 51,50% 88,23% 5,04% 6,33% 9,05% 8,19% 6,81% 
n.b. = nicht berechenbar 

 

Bei der FIBTEM-Analyse des Blutes der C4-/- Tiere im Vergleich zu den 

Kontrolltieren ergab sich für die Gerinnselbildungszeit (CFT) ein sehr großer 

relativer Unterschied von 72,48% und eine sehr große Effektgröße von 1,06 (Tab. 

14). Mit der verwendeten Tierzahl konnte dieser große Effekt auf die Verkürzung 

der Gerinnselbildungszeit allerdings nicht als statistisch signifikant (p=0,264) 

nachgewiesen werden (Abb. 21). Für die Vergrößerung des Alpha-Winkels (α) 

ergibt sich ein geringer relativer Unterschied von 2,36% und eine sehr große 

Effektgröße von 1,73 (Tab. 14). Mit der verwendeten Tierzahl konnte dieser 
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Effekt nicht als statistisch signifikant (p=0,101) nachgewiesen werden (Abb. 21). 

Für die maximale Gerinnselfestigkeit (MCF) ergibt sich ein geringer relativer 

Unterschied von 13,27% und eine mittlere Effektgröße von 0,6 (Tab. 14). Mit der 

verwendeten Tierzahl konnte dieser Effekt auf die Erhöhung der maximale 

Gerinnselfestigkeit allerdings nicht als statistisch signifikant (p=0,504) 

nachgewiesen werden (Abb. 21). Für die Amplitude 10 min nach CT (A10) ergibt 

sich ein mittlerer relativer Unterschied von 22,58% und eine sehr große 

Effektgröße von 1,24 (Tab. 14). Mit der verwendeten Tierzahl konnte dieser 

Effekt auf die Vergrößerung der Amplitude 10 min nach CT nicht als statistisch 

signifikant (p=0,204) nachgewiesen werden (Abb. 21). Für die Amplitude 20 min 

nach CT (A20) ergibt sich ein mittlerer relativer Unterschied von 21% und eine 

sehr große Effektgröße von 1,23 (Tab. 14). Mit der verwendeten Tierzahl konnte 

dieser Effekt auf die Vergrößerung der Amplitude 20 min nach CT nicht als 

statistisch signifikant (p=0,206) nachgewiesen werden (Abb. 21). Für die 

Amplitude 30 min nach CT (A30) ergibt sich ein mittlerer relativer Unterschied 

von 21,36% und eine sehr große Effektgröße von 1,27 (Tab. 14). Mit der 

verwendeten Tierzahl konnte dieser Effekt auf die Vergrößerung der Amplitude 

30 min nach CT nicht als statistisch signifikant (p=0,195) nachgewiesen werden 

(Abb. 21).  

Bei der Gerinnungszeit (CT) konnte die Effektgröße nicht berechnet werden, der 

relative Unterschied war mit 3,30% gering (Tab. 14). Mit der verwendeten 

Tierzahl konnte kein signifikante (p=0,158) Veränderung nachgewiesen werden 

(Abb. 21).  
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Abbildung 21: FIBTEM-Analyse des Blutes von C57Bl/6J Mäusen im Vergleich zu 

C4-/- Mäusen 48 Stunden nach Flussverlangsamung 

FIBTEM-Analyse des Blutes von Wildtypkontrollmäusen (C57Bl/6J) (n=3) und C4-/- (n=3) 

Mäusen 48 Stunden nach Flussverlangsamung. Fehlerbalken ≙ SEM. 

 

Tabelle 14: Effektgröße und relativer Unterschied für die post 48h FIBTEM-

Analyse 

 CT CFT alpha MCF A10 A20 A30 
Effektgröße n.b. 1,06 1,73 0,6 1,24 1,23 1,27 

rel. Unterschied 3,30% 72,48% 2,36% 13,27% 22,58% 21% 21,36% 
n.b. = nicht berechenbar 

 

3. Einfluss des Komplementsystems auf die Blutbilder 

 

Um festzustellen, ob es zelluläre Unterschiede im Blut von C4-/- Mäuse im 

Gegensatz zu den Wildtyptieren gibt und diese die unterschiedliche 

Thromboseneigung erklären, wurden basal und 48 Stunden nach 

Flussverlangsamung je ein großes und ein weißes Blutbild erstellt.  

 

3.1. Großes Blutbild basal 

 

Für dieses Blutbild wurden den Tieren basal vor der Operation zur 

Flussverlangsamung durch Punktion der V. facialis Blut abgenommen.  
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Bei der Analyse der basalen Blutwerte der C4-/- Tiere im Vergleich zu den 

Kontrolltieren ergab sich für die Leukozyten (WBC) ein mittlerer relativer 

Unterschied von 17,34% und eine geringe Effektgröße von 0,31 (Tab. 15). Mit der 

verwendeten Tierzahl konnte dieser Effekt auf die Leukozyten nicht als statistisch 

signifikant (p=0.727) nachgewiesen werden (Abb. 22). Für die Erythrozyten 

(RBC) ergibt sich ein sehr geringer relativer Unterschied von 1,15% und eine 

geringe Effektgröße von 0,33 (Tab. 15). Mit der verwendeten Tierzahl konnte 

dieser Effekt nicht als statistisch signifikant (p=0,702) nachgewiesen werden 

(Abb. 22). Für das Hämoglobin (HGB) ergibt sich ein sehr geringer relativer 

Unterschied von 0,47% und eine geringe Effektgröße von 0,18 (Tab. 15). Mit der 

verwendeten Tierzahl konnte dieser Effekt auf das Hämoglobin nicht statistisch 

signifikant (p=0,836) nachgewiesen werden (Abb. 22). Für den Hämatokrit (HCT) 

ergibt sich ein sehr geringer relativer Unterschied von 1,34% und eine mittlere 

Effektgröße von 0,46 (Tab. 15). Mit der verwendeten Tierzahl konnte dieser 

Effekt auf den Hämatokrit nicht als statistisch signifikant (p=0,622) nachgewiesen 

werden (Abb. 22). Für das Mittlere Erythrozyteneinzelvolumen (MCV) ergibt sich 

ein sehr geringer relativer Unterschied von 2,49% und eine sehr große 

Effektgröße von 2,02 (Tab. 15). Mit der verwendeten Tierzahl konnte dieser 

Effekt auf das mittlere Erythrozyteneinzelvolumen nicht als statistisch signifikant 

(p=0,068) nachgewiesen werden (Abb. 22). Für das Mittlere Korpuskuläre 

Hämoglobin (MCH) ergibt sich ein sehr geringer relativer Unterschied von 0,69% 

und eine geringe Effektgröße von 0,25 (Tab. 15). Mit der verwendeten Tierzahl 

konnte dieser Effekt auf das Mittlere Korpuskuläre Hämoglobin nicht als 

statistisch signifikant (p=0,775) nachgewiesen werden (Abb. 22). Für die Mittlere 

Korpuskuläre Hämoglobinkonzentration (MCHC) ergibt sich ein sehr geringer 

relativer Unterschied von 1,47% und eine mittlere Effektgröße von 0,65 (Tab. 15). 

Mit der verwendeten Tierzahl konnte dieser Effekt auf die Mittlere Korpuskuläre 

Hämoglobinkonzentration nicht als statistisch signifikant (p=0,775) nachgewiesen 

werden (Abb. 22).  
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Abbildung 22: Großes Blutbild basal von C57Bl/6J Mäusen im Vergleich zu C4-/- 

Mäusen 

Großes Blutbild basal von Wildtypkontrollmäusen (C57Bl/6J) (n=3) und C4-/- (n=3) Mäusen. 

Fehlerbalken ≙ SEM. 

 

Tabelle 15: Effektgröße und relativer Unterschied für basales Blutbild 

 WBC RBC HGB HCT MCV MCH MCHC 
Effektgröße 0,31 0,33 0,18 0,46 2,02 0,25 0,65 

rel. Unterschied 17,34% 1,15% 0,47% 1,34% 2,49% 0,69% 1,47% 
 

 

3.2. Großes Blutbild 48 Stunden nach Flussverlangsamung 

 

Das Blut für diese Blutbilder wurde den Tieren 48 Stunden nach 

Flussverlangsamung direkt vor der Entnahme des Thrombus durch Punktion der 

V. facialis abgenommen. 

 

Bei der Analyse der Blutwerte 48 Stunden nach Flussverlangsamung der C4-/- 

Tiere im Vergleich zu den Kontrolltieren ergab sich für die Leukozyten (WBC) 

ein geringer relativer Unterschied von 12,66% und eine geringe Effektgröße von 

0,25 (Tab. 16). Mit der verwendeten Tierzahl konnte dieser geringe Effekt auf die 

Leukozyten auch nicht als statistisch signifikant (p=0.773) nachgewiesen werden 

(Abb. 23). Für die Erythrozyten (RBC) ergibt sich ein sehr geringer relativer 

Unterschied von 2,38% und eine geringe Effektgröße von 0,16 (Tab. 16). Mit der 
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verwendeten Tierzahl konnte dieser Effekt nicht als statistisch signifikant 

(p=0,858) nachgewiesen werden (Abb. 23). Für das Hämoglobin (HGB) ergibt 

sich ein sehr geringer relativer Unterschied von 0,27% und eine sehr geringe 

Effektgröße von 0,02 (Tab. 16). Mit der verwendeten Tierzahl konnte dieser 

geringe Effekt auf das Hämoglobin nicht statistisch signifikant (p=0,985) 

nachgewiesen werden (Abb. 23). Für den Hämatokrit (HCT) ergibt sich ein sehr 

geringer relativer Unterschied von 1,86% und eine geringe Effektgröße von 0,12 

(Tab. 16). Mit der verwendeten Tierzahl konnte dieser geringe Effekt auf den 

Hämatokrit nicht als statistisch signifikant (p=0,883) nachgewiesen werden (Abb. 

23). Für das Mittlere Erythrozyteneinzelvolumen (MCV) ergibt sich ein sehr 

geringer relativer Unterschied von 0,56% und eine geringe Effektgröße von 0,25 

(Tab. 16). Mit der verwendeten Tierzahl konnte dieser geringe Effekt auf das 

mittlere Erythrozyteneinzelvolumen nicht als statistisch signifikant (p=0,771) 

nachgewiesen werden (Abb. 23). Für das Mittlere Korpuskuläre Hämoglobin 

(MCH) ergibt sich ein sehr geringer relativer Unterschied von 2,10% und eine 

sehr große Effektgröße von 5,2 (Tab. 16). Mit der verwendeten Tierzahl konnte 

dieser Effekt auf das Mittlere Korpuskuläre Hämoglobin als statistisch signifikant 

(p=0,003) nachgewiesen werden (Abb. 23). Für die Mittlere Korpuskuläre 

Hämoglobinkonzentration (MCHC) ergibt sich ein sehr geringer relativer 

Unterschied von 1,68% und eine mittlere Effektgröße von 0,75 (Tab. 16). Mit der 

verwendeten Tierzahl konnte dieser Effekt auf die Mittlere Korpuskuläre 

Hämoglobinkonzentration nicht als statistisch signifikant (p=0,410) nachgewiesen 

werden (Abb. 23).  
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Abbildung 23: Großes Blutbild 48 Stunden nach Flussverlangsamung von C57Bl/6J 

Mäusen im Vergleich zu C4-/- Mäusen 

Großes Blutbild 48 Stunden nach Flussverlangsamung von Wildtypkontrollmäusen (C57Bl/6J) 

(n=3) und C4-/- (n=3) Mäusen. Fehlerbalken ≙ SEM. 

 

Tabelle 16: Effektgröße und relativer Unterschied für Blutbild 48h post 

 WBC RBC HGB HCT MCV MCH MCHC 

Effektgröße 0,25 0,16 0,02 0,12 0,25 5,2 0,75 

rel. Unterschied 12,66% 2,38% 0,27% 1,86% 0,56% 2,10% 1,68% 
 

 

3.3. Thrombozyten 

Bei der Analyse der basalen Thrombozyten der C4-/- Tiere im Vergleich zu den 

Kontrolltieren ergab sich für die Thrombozyten eine geringe Effektgröße von 0,33 

bei einem gleichzeitigen sehr geringen relativen Unterschied von 8,26% (Tab. 

17). Mit der verwendeten Tierzahl konnte dieser geringe Effekt auf die 

Thrombozyten auch nicht als statistisch signifikant (p=0.709) nachgewiesen 

werden (Abb. 24).  

Für die Thrombozyten 48 Stunden nach Flussverlangsamung ergibt sich ein 

geringer relativer Unterschied von 19,19% und eine geringe Effektgröße von 0,4 

(Tab. 18). Mit der verwendeten Tierzahl konnte dieser geringe Effekt nicht als 

statistisch signifikant (p=0,649) nachgewiesen werden (Abb. 24). 
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Abbildung 24: Vergleich der Menge an Blutplättchen von C57Bl/6J Mäusen und  

C4-/- Mäusen basal und 48 Stunden nach Flussverlangsamung 

Vergleich der Menge an Blutplättchen von Wildtypkontrollmäusen (C57Bl/6J) (n=3) und C4-/- 

(n=3) Mäusen basal und 48 Stunden nach Flussverlangsamung. Fehlerbalken ≙ SEM. 

 

Tabelle 17: Effektgröße und relativer Unterschied für Plättchen basal 

 

 

 

Tabelle 18: Effektgröße und relativer Unterschied für Plättchen 48h post 

Effektgröße 0,4 
rel. Unterschied 19,19% 

 

 

3.4. Weißes Blutbild basal 

Bei der Analyse des basalen weißen Blutbildes der C4-/- Tiere im Vergleich zu den 

Kontrolltieren ergab sich für die neutrophilen Granulozyten (Neut) ein geringer 

relativer Unterschied von 16,67% und eine geringe Effektgröße von 0,15 (Tab. 

19). Mit der verwendeten Tierzahl konnte dieser geringe Effekt auf die 

neutrophilen Granulozyten auch nicht als statistisch signifikant (p=0.867) 

nachgewiesen werden (Abb. 25). Für die Lymphozyten (Lymph) ergab sich ein 

geringer relativer Unterschied von 20,51% und eine geringe Effektgröße von 0,37 

(Tab. 19). Mit der verwendeten Tierzahl konnte dieser geringe Effekt auf die 

Effektgröße 0,33 
rel. Unterschied 8,26% 
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Lymphozyten auch nicht als statistisch signifikant (p=0.676) nachgewiesen 

werden (Abb. 25). Für die Monozyten (Mono) ergab sich ein sehr großer relativer 

Unterschied von 400,00% und eine sehr große Effektgröße von 1,79 (Tab. 19). 

Mit der verwendeten Tierzahl konnte dieser große Effekt auf die Monozyten 

allerdings nicht als statistisch signifikant (p=0.137) nachgewiesen werden (Abb. 

25).  

 

 

Abbildung 25: Weißes Blutbild basal von C57Bl/6J Mäusen und C4-/- Mäusen 

Vergleich der weißen Blutbilder basal von Wildtypkontrollmäusen (C57Bl/6J) (n=3) und C4-/- 

(n=3). Fehlerbalken ≙ SEM. 

 

Tabelle 19: Effektgröße und relativer Unterschied für weißes Blutbild basal 

 Neut Lymph Mono 

Effektgröße 0,15 0,37 1,79 

rel. Unterschied 16,67% 20,51% 400,00% 
 

 

 

3.5. Weißes Blutbild 48 Stunden nach Flussverlangsamung 

Bei der Analyse des weißen Blutbildes 48 Stunden nach Flussverlangsamung der 

C4-/- Tiere im Vergleich zu den Kontrolltieren ergab sich für die neutrophilen 

Granulozyten (Neut) ein geringer relativer Unterschied von 21,40% und eine 

geringe Effektgröße von 0,34 (Tab. 20). Mit der verwendeten Tierzahl konnte 
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dieser geringe Effekt auf die neutrophilen Granulozyten auch nicht als statistisch 

signifikant (p=0.694) nachgewiesen werden (Abb. 26). Für die Lymphozyten 

(Lymph) ergab sich ein sehr geringer relativer Unterschied von 0,11% und eine  

Effektgröße von 0,00 (Tab. 20). Mit der verwendeten Tierzahl konnte dieser 

geringe Effekt auf die Lymphozyten auch nicht als statistisch signifikant 

(p=0.999) nachgewiesen werden (Abb. 26). Für die Monozyten (Mono) ergab sich 

ein mittlerer relativer Unterschied von 27,24% und eine geringe Effektgröße von 

0,23 (Tab. 20). Mit der verwendeten Tierzahl konnte dieser Effekt auf die 

Monozyten allerdings nicht als statistisch signifikant (p=0.793) nachgewiesen 

werden (Abb. 26).  

 

 

Abbildung 26: Weißes Blutbild 48 Stunden nach Flussverlangsamung von C57Bl/6J 

Mäusen und C4-/- Mäusen 

Vergleich der weißen Blutbilder 48 Stunden nach Flussverlangsamung von 

Wildtypkontrollmäusen (C57Bl/6J) (n=3) und C4-/- (n=3). Fehlerbalken ≙ SEM. 

 

Tabelle 20: Effektgröße und relativer Unterschied für weißes Blutbild 48h post 

 

 

 

 

 

 Neut Lymph Mono 
Effektgröße 0,34 0,00 0,23 

rel. Unterschied 21,40% 0,11% 27,24% 
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4. Die initiale Leukozytenrektrutierung ist unabhängig von 

C4  

 

Um festzustellen, ob es einen Unterschied in der Leukozyten- und 

Thrombozytenaggregation in den ersten sechs Stunden nach Flussverlangsamung 

gibt wurden Aufnahmen mit dem Intravitalmikroskop angefertigt. Dabei wurde 

speziell auf die drei, vier, fünf und sechs Stunden nach Flussverlangsamung 

geachtet. 

 

4.1. Leukozytenaggregation 

 

Es wurde aus den IVM-Aufnahmen die µm² Fläche an Leukozyten pro einem 

mm² Endothelfläche ermittelt. Bei der Auswertung ergab sich zwischen den C4-/- 

und den Kontrolltieren für die Anzahl der Leukozyten nach drei Stunden ein 

mittlerer relativer Unterschied von 25,17% und eine geringe Effektgröße von 0,29 

(Tab. 21). Mit der verwendeten Tierzahl konnte dieser geringe Effekt auf die 

Verringerung der Anzahl der Leukozyten nach drei Stunden nicht als statistisch 

signifikant (p=0,739) nachgewiesen werden (Abb. 27). Für die Anzahl der 

Leukozyten nach vier Stunden ergab sich ein geringer relativer Unterschied von 

14,65% und eine geringe Effektgröße von 0,14 (Tab. 21). Mit der verwendeten 

Tierzahl konnte dieser geringe Effekt auf die Erhöhung der Anzahl der 

Leukozyten nach vier Stunden nicht als statistisch signifikant (p=0,871) 

nachgewiesen werden (Abb. 27). Für die Anzahl der Leukozyten nach fünf 

Stunden ergab sich ein großer relativer Unterschied von 44,22% und eine mittlere 

Effektgröße von 0,63 (Tab. 21). Mit der verwendeten Tierzahl konnte dieser 

Effekt auf die Verringerung der Anzahl der Leukozyten nach fünf Stunden nicht 

als statistisch signifikant (p=0,444) nachgewiesen werden (Abb. 27). Für die 

Anzahl der Leukozyten nach sechs Stunden ergab sich ein mittlerer relativer 

Unterschied von 19,38% und eine geringe Effektgröße von 0,29 (Tab. 21). Mit der 

verwendeten Tierzahl konnte dieser Effekt auf die Verringerung der Anzahl der 

Leukozyten nach sechs Stunden nicht als statistisch signifikant (p=0,724) 

nachgewiesen werden (Abb. 27).  
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Abbildung 27: Leukozytenaggregation in µm² pro mm² von C57Bl/6J Mäusen im 

Vergleich zu C4-/- Mäusen 

Leukozytenaggregation in µm² pro mm² Endothelfläche nach drei, vier, fünf und sechs Stunden 

nach Flussverlangsamung, aufgenommen mit dem Intravitalmikroskop. Vergleich von 

Wildtypkontrollmäusen (C57Bl/6J) (3h,4h n=3; 5h, 6h n=4) und C4-/- (n=3). Fehlerbalken ≙ SEM     

 

Tabelle 21: Effektgröße und relativer Unterschied für Leukozytenaggregation 

 3h 4h 5h 6h 

Effektgröße 0,29 0,14 0,63 0,29 

rel. Unterschied 25,17% 14,65% 44,22% 19,38% 
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Abbildung 28: Leukozytenaggregation von C57Bl/6J Mäusen im Vergleich zu C4-/- 

Mäusen 3-4 Stunden und 5-6 Stunden nach Flussreduktion 

IVM-Aufnahmen der Leukozytenaggregation von C57Bl/6J Mäusen im Vergleich zu C4-/- Mäusen 

3-4 Stunden und 5-6 Stunden nach Flussreduktion. Maßstab =100 µm  

 

4.2. Thrombozytenaggregation 

 

Wie bei den Leukozyten wurde auch bei den Thrombozyten aus den IVM-

Aufnahmen die µm² Fläche an Thrombozyten pro einem mm² Endothelfläche 

ermittelt. Bei der Auswertung ergab sich zwischen den C4-/- und den 

Kontrolltieren für die Anzahl der Thrombozyten nach drei Stunden ein sehr 

großer relativen Unterschied von 147,36% und eine sehr große Effektgröße von 

4,67 (Tab. 22). Mit der verwendeten Tierzahl konnte dieser große Effekt auf die 

Erhöhung der Anzahl der Thrombozyten nach drei Stunden auch als statistisch 

signifikant (p=0,005) nachgewiesen werden (Abb. 29). Für die Anzahl der 

Thrombozyten nach vier Stunden ergab sich ein sehr großer relativer Unterschied 

von 313,06% und eine große Effektgröße von 0,96 (Tab. 22). Mit der 

verwendeten Tierzahl konnte dieser große Effekt auf die Erhöhung der Anzahl der 

Thrombozyten nach vier Stunden allerdings nicht als statistisch signifikant 
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(p=0,306) nachgewiesen werden (Abb. 29). Für die Anzahl der Thrombozyten 

nach fünf Stunden ergab sich ein sehr großer relativer Unterschied von 165,80 

und eine mittlere Effektgröße von 0,76 (Tab. 22). Mit der verwendeten Tierzahl 

konnte dieser Effekt auf die Erhöhung der Anzahl der Thrombozyten nach fünf 

Stunden nicht als statistisch signifikant (p=0,444) nachgewiesen werden (Abb. 

27). Für die Anzahl der Thrombozyten nach sechs Stunden ergab sich ein großer 

relativer Unterschied von 42,18% und eine mittlere Effektgröße von 0,50 (Tab. 

22). Mit der verwendeten Tierzahl konnte dieser Effekt auf die Erhöhung der 

Anzahl der Thrombozyten nach sechs Stunden nicht als statistisch signifikant 

(p=0,509) nachgewiesen werden (Abb. 29).  

 

 

Abbildung 29: Thrombozytenaggregation in µm² pro mm² von C57Bl/6J Mäusen im 

Vergleich zu C4-/- Mäusen 

Thrombozytenaggregation in µm² pro mm² Endothelfläche nach drei, vier, fünf und sechs Stunden 

nach Flussverlangsamung, aufgenommen mit dem Intravitalmikroskop. Vergleich von 

Wildtypkontrollmäusen (C57Bl/6J) (3h,4h n=3; 5h, 6h n=4) und C4-/- (n=3). Fehlerbalken ≙ SEM 

                                                                                                                                                    

 

Tabelle 22: Effektgröße und relativer Unterschied für Thrombozytenaggregation 

 3h 4h 5h 6h 
Effektgröße 4,67 0,96 0,76 0,50 

rel. Unterschied 147,36% 313,06% 165,80% 42,18% 
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Abbildung 30: Thrombozytenaggregation von C57Bl/6J Mäusen im Vergleich zu  

C4-/- Mäusen 3-4 Stunden und 5-6 Stunden nach Flussreduktion 

IVM-Aufnahmen der Thrombozytenaggregation von C57Bl/6J Mäusen im Vergleich zu 

C4-/- Mäusen 3-4 Stunden und 5-6 Stunden nach Flussreduktion. Maßstab = 100 µm  
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5. Die Leukozytenakkumulation bei der TVT ist C4 

abhängig 

Die 48 Stunden nach Flussverlangsamung gebildeten Thromben wurden 

entnommen und immunhistologisch genauer analysiert. Da sich im 

Thrombusgewicht der C4-/- Tiere im Vergleich zu den Kontrolltieren ein 

signifikanter Unterschied gezeigt hat, wurde hier untersucht, ob auch 

immunhistologische Unterschiede festzustellen sind.  

 

5.1. Fibrinogenfläche 

 

Die entnommenen Thromben wurden geschnitten und die entstandenen 

Querschnitte auf fibrinogenspezifischem Marker gefärbt. Dadurch konnte der 

prozentuale Anteil der Fibrinogenfläche an der Gesamtfläche ermittelt werden.  

Bei der Auswertung ergab sich zwischen den C4-/- und den Kontrolltieren für den 

prozentuale Anteil der Fibrinogenfläche an der Gesamtfläche ein geringer 

relativer Unterschied von 8,52% und eine geringe Effektgröße von 0,18 (Tab. 23). 

Mit der verwendeten Tierzahl konnte dieser Effekt auf die Vergrößerung des 

prozentuale Anteils der Fibrinogenfläche an der Gesamtfläche nicht als statistisch 

signifikant (p=0,837) nachgewiesen werden (Abb. 31). Jedoch war das 

entstandene Fibrin der C4-/- Thromben im Gegensatz zu den Wildtypthromben 

lockerer angeordnet. 
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Abbildung 31: Fibrinogenfläche von C57Bl/6J Mäusen und C4-/- Mäusen 

a) Immunhistologische Färbung für Fibrinogen in einem WT und C4-/- Thrombus. Zellkerne stellen 

sich durch eine DAPI Färbung blau dar. Links Übersicht eines Thrombusquerschnittes. Maßstab = 

200 µm. Rechts Vergrößerung, für die Darstellung der Fibrinogenstruktur. Maßstab = 50 µm.                                                            

b) Vergleich des prozentualen Anteils der Fibrinogenfläche an der Gesamtfläche in 

Thrombusquerschnitten von Wildtypkontrollmäusen (C57Bl/6J) (n=3) und C4-/- (n=3). 

Fehlerbalken ≙ SEM. 
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Tabelle 23: Effektgröße und relativer Unterschied für die Fibrinogenfläche 

 

 

 

 

5.2. Thrombozytenfläche 

 

Um den prozentuale Anteil der Plättchenfläche an der Gesamtfläche darzustellen 

wurden die Querschnitte der entnommenen Thromben mit CD41 gefärbt.  

Bei der Auswertung ergab sich zwischen den C4-/- und den Kontrolltieren für den 

prozentuale Anteil der Plättchenfläche an der Gesamtfläche ein großer relativer 

Unterschied von 35,22% und eine sehr große Effektgröße von 1,67 (Tab. 24). Mit 

der verwendeten Tierzahl konnte dieser große Effekt auf die Vergrößerung des 

prozentuale Anteils der Plättchenfläche an der Gesamtfläche nicht als statistisch 

signifikant (p=0,111) nachgewiesen werden (Abb. 32). 

 

Effektgröße 0,18 
rel. Unterschiede 8,52% 
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Abbildung 32: Plättchenfläche von C57Bl/6J Mäusen und C4-/- Mäusen 

a) Immunhistologische Färbung mit CD41 um die Blutplättchen darzustellen in einem WT und  

C4-/- Thrombus. Zellkerne stellen sich durch eine DAPI Färbung blau dar. Links Übersicht eines 

Thrombusquerschnittes. Maßstab = 200 µm. Rechts Vergrößerung, für die Darstellung der 

Plättchenfläche. Maßstab = 50 µm.                                                           

 b) Vergleich des prozentualen Anteils der Plättchenfläche an der Gesamtfläche in 

Thrombusquerschnitten von Wildtypkontrollmäusen (C57Bl/6J) (n=3) und C4-/- (n=3). 

Fehlerbalken ≙ SEM. 
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Tabelle 24: Effektgröße und relativer Unterschied für die Plättchenfläche 

Effektgröße 1,67 
rel. Unterschiede 35,22% 

 

 

 

 

5.3. Leukozyten 

Die Querschnitte der entnommen Thromben wurden mit CD45 gefärbt, um die 

Leukozyten darzustellen. Diese wurden dann ausgezählt und deren Anzahl auf 

eine Fläche von einem mm² hochgerechnet. 

Bei der Auswertung ergab sich zwischen den C4-/- und den Kontrolltieren für die 

Anzahl der Leukozyten ein großer relativer Unterschied von 64,87% und eine sehr 

große Effektgröße von 4,290 (Tab. 25). Mit der verwendeten Tierzahl konnte 

dieser große Effekt auf die Verringerung der Anzahl der Leukozyten auch als 

statistisch signifikant (p=0,006) nachgewiesen werden (Abb. 33). 
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Abbildung 33: Anzahl der Leukozyten pro mm² von C57Bl/6J Mäusen und C4-/- 

Mäusen 

a) Immunhistologische Färbung mit CD45 um die Leukozyten darzustellen in einem WT und C4-/- 

Thrombus. Zellkerne stellen sich durch eine DAPI Färbung blau dar. Maßstab = 50 µm.                                                           

b) Vergleich der Leukozytenzahl pro mm² in Thrombusquerschnitten von Wildtypkontrollmäusen 

(C57Bl/6J) (n=3) und C4-/- (n=3). Fehlerbalken ≙ SEM 

 

Tabelle 25: Effektgröße und relativer Unterschied für die Anzahl der Leukozyten 

 

 
Effektgröße 4,29 

rel. Unterschiede 64,87% 
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VI. DISKUSSION 

 

1. Wahl der Mauslinien 

 

Bei den Vorteilen der Maus als Versuchstier ist die relativ einfache und 

kostengünstige Haltung, auch in größerer Anzahl, zu nennen. Ein weiterer 

bedeutender Vorteil ist die schnelle Reproduktionszeit der Maus, damit ist eine 

schnelle und weitgehend problemlose Nachzucht sicher gestellt. Darüber hinaus 

ist es relativ einfach das Genom der Mäuse zu manipulieren.  

Im Vorfeld dieser Arbeit wurden mehrere Komplementknockoutlinien operiert um 

zu analysieren beim Knockout welchen Komplementfaktors sich eine 

Verminderung des Thrombusgewichtes darstellt. Dies war bei der C1q-/-, CR2-/-, 

C3-/-, C4-/- und der C3-/-C4-/- Linie der Fall. Am deutlichsten war die 

Verminderung des Thrombusgewichtes bei den C4-Knockouttieren zu sehen, 

deshalb wurde diese Linie noch im Detail mittels Blutbildern, 

Gerinnungsanalysen, Immunhistologie und Intravitalmikroskopie untersucht, um 

einen genauen Überblick über den Mechanismus zu bekommen mit dem sich 

dieser Komplementfaktor auf die Entstehung der venösen Thrombose auswirkt. 

Als Kontrollstamm wurde der C57Bl/6J-Stamm verwendet. Dieser Inzuchtstamm 

wird am häufigsten verwendet und zeichnet sich durch eine problemlose Zucht 

aus, wobei eine Genotypisierung der Nachzucht nicht erforderlich ist.  

 

2. C4-Defizienz ist protektiv gegen venöse Thrombose 

 

Das Tiermodell zur Flussreduktion wurde in dieser Arbeitsgruppe entwickelt und 

weiter untersucht12. Dieses Modell zeichnet sich durch eine weiterhin bestehende, 

aber um 75 % verlangsamte Flussgeschwindigkeit des Blutes aus, wobei das 

Endothel unversehrt bleib. Dadurch lässt es sich mit klinischen Situationen 

vergleichen, die durch reine Flussreduktion ausgelöst werden. Diese manifestiert 
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sich z.B. bei Langstreckenflügen oder längerfristigen Immobilisation von 

Patienten127. Das Thrombusgewicht wurde als Maß für die Thrombusbildung 

eingeführt. Dieses Modell wurde für die Kontrolltiere, sowie für die 

Knockoutgruppen angewendet um danach den Einfluss der verschiedenen 

Komplementfaktoren auf das Thrombusgewicht vergleichen zu können. Hier 

zeigte sich, dass die C4-Knockoutlinie und die C3/C4 Knockoutlinie eine 

signifikante Verminderung des Thrombusgewichtes zeigten. Bei C3-/- war das 

Thrombusgewicht nicht signifikant vermindert, woraufhin angenommen wurde, 

dass bei dem Doppelknockout, das C4-/- die größere Rolle spielt. Deshalb wurde 

die C4-/-Linie weiter untersucht.  

 

3. C4 hat einen geringen Einfluss auf die Blutgerinnung 

 

Verschiedene Studien haben gezeigt, dass es eine Interaktion zwischen 

Komplementsystem und Blutgerinnung gibt104,128-130 wobei der genaue 

Mechanismus noch unbekannt ist. Beim Vergleich der Schwanzblutungszeiten der 

C4-Knockouttiere mit den Kontrolltieren zeigte sich kein signifikanter 

Unterschied. Allerdings gibt die Effektgrößenanalyse einen klaren Hinweis auf 

einen mittleren Einfluss von C4 auf die Schwanzblutungszeit. Die weitere 

Analyse von Einzelfaktoren zeigt auf welche Einzelfaktoren C4 Einfluss nimmt 

und damit insgesamt die Blutgerinnungszeit beeinflusst.   

Bei der basalen EXTEM-Analyse der Thromboelastometrie zeigte sich eine 

signifikante Verlängerung der Gerinnungszeit. Jedoch legt die 

Effektgrößenanalyse nahe, dass noch einige weitere Parameter (partielle 

Thromboplastinzeit, Gerinnselbildungszeit bei der basalen EXTEM-Analyse mit 

rekombinanter TF Quelle, Gerinnungszeit und Gerinnselbildungszeit bei der 

EXTEM-Analyse 48 Stunden post, Gerinnselbildungszeit bei der FIBTEM-

Analyse 48 Stunden post) stark beeinflusst werden und damit wert sind weiter 

untersucht zu werden. 

Um zu überprüfen welchen Einfluss ein Knockout des Komplementfaktors C4 auf 

die Blutwerte hat wurden verschiedene Blutbilder, basal und 48 Stunden nach 

Flussverlangsamung angefertigt. Dabei zeigte sich im großen Blutbild 48 Stunden 
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nach Flussverlangsamung eine signifikante Veränderung beim MCH-Wert. 

Veränderungen dieses Wertes haben allerdings keinDurch diesen Wert wird der 

durchschnittliche Hämoglobingehalt eines Erythrozyten definiert. en Einfluss auf 

die Entstehung einer venösen Thrombose. Weiter gab es keine signifikanten 

Veränderungen in den Blutbildern, auch nicht bei der Thrombozyten- oder 

Leukozytenzahl. Daher beruht die verminderte Thrombusbildung bei C4-

Knockouttieren nicht auf einer Thrombo- oder Leukopenie, welche einen großen 

Einfluss auf die Thrombusbildung haben12.  

 

4. C4 ist von zentraler Bedeutung für die 

Leukozytenakkumulation bei venöser Thrombose 

  

Bei der immunhistologischen Auswertung der Thrombusquerschnitte wurde 

speziell auf die Fibrinogen- und die Plättchenfläche im Verhältnis zur gesamten 

Thrombusfläche geachtet. Beim Vergleich der C4-/- Tiere mit den Kontrolltieren 

zeigte sich kein signifikanter Unterschied. Weiter wurde die Anzahl der 

Leukozyten pro mm² Thrombus ermittelt. Dort zeigte sich, dass die Anzahl der 

Leukozyten bei den C4-/- Thromben signifikant vermindert war im Gegensatz zu 

den Kontrolltieren. Dies könnte der Grund für das reduzierte Thrombusgewicht 

sein. Allerdings war die Leukozytenzahl in den Blutbildern nicht vermindert, was 

auf einen Beeinträchtigung der Leukozytenrekrutierung hinweist. Daher wurde die 

Intravitalmikroskopie durchgeführt um die frühen zellulären Vorgänge bei 

venöser Thrombose zu analysieren. 

Um die Verminderung der Leukozytenzahl in den Thromben näher zu 

untersuchen, wurden intravitalmikroskopische Aufnahmen angefertigt. Nach 

Auswertung dieser Aufnahmen zeigte sich allerdings keine signifikante 

Verminderung in der Leukozytenrekrutierung. Bei den Thrombozyten wiederum 

war eine signifikant erhöhte Rekrutierung drei Stunden nach Flussverlangsamung 

zu erkennen. Diese Ergebnisse geben keinen Hinweis auf die Ursache in der 

Reduktion des Thrombusgewichtes. Da allerdings nach 48 Stunden eine 

signifikant verminderte Leukozytenzahl detektierbar ist, weisen diese Ergebnisse 

darauf hin, dass C4 nicht für die initiale Leukozytenrekrutierung, sondern für die 
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Akkumulation von zentraler Bedeutung ist. Um eine konkrete Aussage dazu 

treffen zu können, sollten allerdings noch mehr Tiere untersucht werden.  

 

5. Ausblick 

 

Durch diese Arbeit konnte der Einfluss des Komplementfaktors C4 auf die 

Entstehung der venösen Thrombose aufgezeigt werden. Allerdings konnte der 

Mechanismus, mit dem Komplement- und Gerinnungssystem kooperieren nicht 

weiter aufgeklärt werden. Es bleibt das Ziel weiterführender Untersuchungen auf 

Basis dieser Ergebnisse im Detail die Rolle des Komplementsystems bei der 

Entstehung der venösen Thrombose zu klären. Zudem muss der Einfluss von C4 

auf die Thrombozytenfunktion weitergehend analysiert werden. 
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VII. ZUSAMMENFASSUNG 

 

Die vorliegende Arbeit untersucht die Rolle des Komplementsystems bei der 

Entstehung der venösen Thrombose. Bisher ist der Mechanismus mit dem das 

Komplementsystem in die Thrombusentstehung eingreift noch ungeklärt.  

In dieser Arbeit konnte gezeigt werden, dass ein Knockout des 

Komplementfaktors C4 und ein Doppelknockout der Faktoren C3 und C4 zu einer 

Reduzierung des Thrombusgewichtes führen. Da bei einem Knockout des Faktors 

C4 die Reduktion des Thrombusgewichtes am deutlichsten war, wurde diese 

Mauslinie genauer analysiert. Auf die Blutgerinnung und die Zusammensetzung 

der Blutbilder konnte allerdings kein Einfluss des Komplementsystems festgestellt 

werden. Bei der immunhistologischen Auswertung der Thrombusquerschnitte 

konnte gezeigt werden, dass die Anzahl der Leukozyten bei Thromben von C4-

Knockouttieren signifikant reduziert war. Bei der Leukozyten- und 

Thrombozytenrekrutierung, die mittels Intravitalmikroskopie untersucht wurde, 

konnte kein signifikanter Unterschied gezeigt werden.  

Allerdings gibt die Effektgrößenanalyse bei einigen Parametern Hinweise darauf, 

dass eine Beeinflussung durch das Komplementsystem besteht. Diese sollten 

weitergehend untersucht werden.  

Demnach leistet diese Arbeit einen wichtigen Beitrag zum Verständnis des 

Einflusses von Komplementfaktor C4 auf die Entstehung der venösen Thrombose. 

Die Inhibition bestimmter Faktoren des Komplementsystems könnte eine 

zukünftige Präventionsoption der Thrombusbildung darstellen und so zu neuen 

therapeutischen Ansätzen in der Behandlung der tiefen Venenthrombose führen, 

welche nicht primär die Blutgerinnung beeinträchtigen. 
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VIII. SUMMARY 

 

The role of the complement system in venous thrombosis 

 

This dissertation examines the role of the complement system in the pathogenesis 

of venous thrombosis. The exact mechanism is still unknown. 

It has been shown that the knockout of C4 and a double knockout of C4 and C3 

lead to a reduction in the thrombus weight in a mouse model of venous 

thrombosis. As the reduction of the weight was most pronounced in C4 knockout 

mice, this mousline was examined in more detail. An influence of the complement 

system on the bloodcoagulation and the composition of the blood could not be 

determined. The immunohistochemical analysis of the cross-sections of the 

thrombi showed, that the number of leukocytes in the C4-thrombi was 

significantly reduced. The recruitment of leukocytes and platelets, which was 

investigated by intravital microscopy, showed no significant difference.  

However, the effect size analysis of some parameters shows that there are 

indications of an influence by the complement system. This should be investigated 

further. 

In conclusion, this work makes an important contribution to the understanding of 

the influence of the complement factor C4 on the development of venous 

thrombosis. The inhibition of certain complement factors could be a future 

prevention of thrombus formation, and thus might lead to new approaches in the 

prophylaxis of deep vein thrombosis, which do not primarily impair coagulation. 
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IX.  ABKÜRZUNGSVERZEICHNIS 

 

AX    Amplitude X min nach CT 

Abb.    Abbildung 

ADP    Adenosintriphosphat 

AZ    Aktenzeichen 

αIIß3    Glykoprotein auf der Thrombozytenoberfläche 

B, D, P   Proteinfaktoren 

bzw.    Beziehungsweise 

ca.    zirka 

CD59    zellbasierter Regulator 

CFT    Gerinnselbildungszeit 

cm    Zentimeter   

CRP    C-reaktive Proteine 

C1q    Erkennungsmolekül des Komplementsystems 

C1r, C1s   Serin-Protease Proenzymen 

CR2    Komplementrezeptor 

CT    Gerinnungszeit 

C1-9    Komplementfaktoren 

C5b-9-Komplex  MAC 

C3aR, C5aR   Anaphylatoxinrezeptoren 

C3d    Abbauprodukt von C3 

C3(H2O)Bb   C3-Konvertase des Alternativen Signalwegs 

C4b2a    C3-Konvertase 

C5L2     C5a receptor-like-2 
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F    Faktor 

Faktor H   Bestanteil des Komplementsystems 

Faktor VII   Gerinnungsfaktor 

Faktor VIIa   aktivierter Gerinnungsfaktor 

Faktor IX   Serinprotease 

Faktor X   Serinprotease 

Faktor Xa   aktivierte Serinprotease 

FXIa    aktivierter Gerinnungsfaktor 

FXII    Serinprotease 

FXIIa    aktivierte Serinprotease 

FeCl3    Eisen(III)-Chlorid 

g    Gramm 

GPIb-V-IX   Thrombozytenkomplex 

HCL    Chlorwasserstoff 

HCT    Hämatokrit 

HGB    Hämoglobin 

H2O    chemische Summenformel von Wasser 

ID    innerer Durchmesser 

IgA    Immunglobulin 

IgG    Immunglobulin 

IgM    Immunglobulin 

i.p.    intraperitoneal 

i.v.    intravenös 

IVM    Intravital Videofluoreszenzmikroskopie 

kDa    Kilo Dalton 
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kg    Kilogramm 

Lymph    Lymphozyten 

µm    Mikrometer 

MAC    Membran-Attack-Complex 

MAP    Spaltprodukt der MASP Gene 

MASP    MBL-assoziierten Serin Protease 

MBL    Mannose-binding-lectin 

MCH    mittlerer Hämoglobingehalt eines einzelnen 

Erythrozyten 

MCHC   mittlere Hämoglobinkonzentration eines einzelnen 

Erythrozyten 

MCF    maximale Gerinnselfestigkeit 

MCV    mittleres Zellvolumen eines einzelnen Erythrozyten 

mg    Milligramm 

min    Minute 

mm    Millimeter 

mM    millimolar 

Mono    Monozyten 

n    Anzahl 

NaOH    Natriumhydroxid 

Neut    neutrophile Granulozyten 

OD    äusserer Durchmesser 

PAR    Proteinase-aktivierter-Rezeptor 

PAI-1    plasminogen activator inhibitor 1 

PSGL-1   P-Selektin Glykoprotein Ligand-1 
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RBC    Erythrozyten 

s    Sekunde 

s.c.    subkutan 

SEM    Standardfehler 

TAFI    Thrombin-aktivierbarer Fibrinolyse-Inhibitor 

TCC    Terminaler Komplement Komplex 

TF    Tissue Faktor 

TFPI    Tissue Faktor Pathway Inhibitor 

TVT    tiefe Venenthrombose 

VTE    venöse Thromboembolie 

vWF    von Willebrand Faktor 

WT    Wildtyp 

V    Vena (lat.) 

VI    Glykoprotein 

WBC    Leukozyten 

Wo    Woche 

WT    Wildtyp 

z.B.    zum Beispiel 

α    alpha-Winkel 

°C    Grad Celsius 
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