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I. EINLEITUNG 
 

Das West-Nil-Virus (WNV) ist ein zur Familie der Flaviviren gehörendes Arbovirus und 

Erreger einer fiebrigen Erkankung, dem West-Nil-Fieber. Seit der Erstbeschreibung der 

Infektion in der Westnil-Provinz Ugandas im Jahr 1937 breitet sich das Virus zunehmend aus 

und gilt als das Flavivirus mit dem größten Verbreitungsgebiet. WNV zählt zu den 

sogenannten „emerging vector-borne viruses“, neu auftretenden, von Vektoren übertragenen 

Viren, wobei im Falle des WNV Stechmücken als Vektoren dienen. Die Einschleppung des 

Virus in die USA im Jahr 1999, seine Ausbreitung innerhalb weniger Jahre über den 

gesamten nordamerikanischen Kontinent und die damit einhergegangenen Krankheits- und 

Todesfälle bei Pferden und Menschen zeigen eindrucksvoll, wie rasch WNV als neuer 

Zoonoseerreger in einer Region an Bedeutung gewinnen kann. Durch Auftreten neuer 

Stämme des WNV, zunehmenden Luftverkehr, klimatische Veränderungen und der Fähigkeit 

wichtiger Stechmücken der Gattungen Culex und Aedes sich an neue ökologische 

Bedingungen anzupassen, besteht die Gefahr, dass sich die Infektion auch in Europa weiter 

ausbreitet. WNV-Infektionen sind im südlichen Europa schon seit mehr als 50 Jahren 

bekannt, jedoch hat sich das Krankheitsgeschehen seit Mitte der 1990er Jahre scheinbar 

verändert. So konnten in den letzten Jahren in Gebieten Europas, wie etwa Rumänien, 

Israel, Italien und Griechenland vermehrt Krankheitsausbrüche bei Menschen und Pferden, 

sowie eine Zunahme von neuroinvasiven Erkrankungen bei Menschen in Zusammenhang 

mit WNV-Infektionen beobachtet werden. Im Moment gibt es gegen das West-Nil-Fieber nur 

sehr begrenzte Therapiemöglichkeiten und keinen für die Verwendung beim Menschen 

zugelassenen Impfstoff. Die Präventionsstrategien der Infektion des Menschen beruhen 

insbesondere auf der Bekämpfung von Stechmückenpopulationen durch Pestizideinsatz und 

der Vermeidung von Mückenstichen. Vor diesem Hintergrund ist die Untersuchung von 

neuen Impfstoffkandidaten für Mensch und Tier ein wichtiges Ziel für die Verbesserung der 

Bekämpfung des WNV. 

 

Diese Arbeit soll durch die Herstellung und Charakterisierung rekombinanter Impfstoffe auf 

Basis des Modifizierten Vacciniavirus Ankara (MVA) einen Beitrag zur Impfstoffforschung 

und WNV-spezifischen Immunprophylaxe leisten. 
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II. LITERATURÜBERSICHT 
 

 

1. DAS WEST-NIL-VIRUS 

 

1.1 Herkunft, Taxonomie und molekulare Klassifikation 

 

Das West-Nil-Virus ist seit 1937 bekannt. Es wurde zum ersten Mal aus dem Blut einer 

Patientin mit fiebriger Erkrankung isoliert und aufgrund dieses Erstnachweises in der 

Westnil-Provinz Ugandas als West-Nil-Virus (WNV) bezeichnet (Schmithburn et al. 1940). 

Taxonomisch wird das Virus in die Familie der Flaviviridae eingeordnet. Diese beinhaltet 

zurzeit drei Genera und zusätzliche Virusspezies (Tabelle 1), die sogenannten Hepatitis-G-

Viren, welche noch keiner Gattung zugeordnet sind (Heinz et al. 2000). Neben den Genera 

Hepacivirus und Pestivirus gibt es die Gattung Flavivirus, zu der auch das WNV und über 70 

weitere Viren gehören (Kuno et al. 1998). Namensgebend für diese Gattung und die 

gesamte Virusfamilie war das Gelbfiebervirus (YFV), das beim Menschen eine mit Gelbsucht 

einhergehende Infektion auslösen kann (flavus, lat.: gelb) und von dem amerikanischen 

Militärarzt Walter Reed Anfang des 20. Jahrhunderts entdeckt wurde (Sfakianos und Hecht 

2009). Innerhalb des Genus Flavivirus werden zwölf verschiedene Serokomplexe 

unterschieden. Das WNV ist aufgrund von Kreuzreaktionen im Neutralisationstest dem 

Japanische-Enzephalitis-Serokomplex zugeordnet (Poidinger et al. 1996). 

 

Wie in Tabelle 1 ersichtlich werden Viren der Gattung Flavivirus überwiegend durch 

Arthropoden (Stechmücken und Zecken) übertragen und zählen daher zu den sogenannten 

Arboviren (arthropod-borne viruses). Dazu gehören zum Beispiel auch Vertreter so 

unterschiedlicher Familien, wie Togaviridae, Bunyaviridae oder Flaviviridae. Die Viren 

werden meist von einem Arthropoden über den Biss oder Stich aufgenommen und 

vermehren sich im Vektor, um bei erneuten Stichen auf andere Organismen übertragen zu 

werden (Modrow et al. 2010). Arboviren werden üblicherweise in einem kontinuierlichen 

Zyklus zwischen den blutsaugenden Insekten oder Zecken und Wirbeltierwirten übertragen 

(Nathanson 2007). Bei WNV handelt es sich überwiegend um einen enzootischen Zyklus 

zwischen Vögeln und Stechmücken (Hayes et al. 2005, Komar et al. 2003), jedoch sind auch 

Epizootien möglich. 
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Genus Serogruppen bzw. Virusspezies 

Flavivirus (76) 

          Arboviren (Stechmücken) 

 

 

 

 

 

 

 

          Arboviren (Zecken) 

 

 

          kein bekannter Vektor 

 

Dengue-Virus-Serokomplex 

Gelbfieber-Virus-Serokomplex 

Japanische-Enzephalitis-Serokomplex 

Aroa-Virus-Serokomplex 

Kokobera-Virus-Serokomplex 

Spondwena-Virus-Serokomplex 

Ntaya-Virus-Serokomplex 

 

Mammalian tick-borne Serogruppe 

Seabird tick-borne Serogruppe 

 

Entebbe-Feldermausvirus-Gruppe 

Rio Bravo-Virus-Gruppe 

Modoc-Virus-Gruppe 

Pestivirus (13) Klassisches Schweinepestvirus 

Border Disease Virus 

Bovine Viral Diarrhea Virus 1 

Bovine Viral Diarrhea Virus 2 

Hepacivirus (6 Genotypen) Hepatitis-C-Virus 

noch nicht zugeordnet GB-A-Virus 

GB-B-Virus 

GB-C-Virus/Hepatitis-G-Virus 

 

 

Tabelle 1: Familie Flaviviridae: Genera und Serogruppen bzw. Virusspezies. ( ) Anzahl der Viren 

je Gattung. Modifiziert nach Lindenbach et al. 2007. 

 

 

Basierend auf Sequenzanalysen und phylogenetischen Studien werden zwei Haupt-

genotypen von WNV (Linie 1 und 2) unterschieden (Berthet et al. 1997), die eine genetische 

Übereinstimmung von rund 75% aufweisen (Lanciotti et al. 2002). WNV-Stämme der Linie 1 

haben eine große globale Verbreitung und konnten seit Mitte der 1990er Jahre mit 

vermehrtem Auftreten von schwereren neurologischen Krankheitsfällen in Verbindung 

gebracht werden, wohingegen Linie 2-Stämme hauptsächlich in Afrika zu finden sind 

(Berthet et al. 1997). Untersuchungen des 1999 in die USA eingeführten WNV-Isolats 

zeigten eine sehr enge Verwandtschaft (≥ 99,8% Nukleotidübereinstimmung) mit einem Linie 

1 Isolat aus Israel, das mit einem Ausbruch 1998 in Verbindung gebracht wurde (Jia et al. 

1999, Lanciotti et al. 1999). Aus dieser engen Verwandtschaft wurde geschlossen, dass das 

WNV über den Mittleren Osten, vermutlich Israel, nach Nordamerika eingeführt wurde 

(Charrel et al. 2003, Lanciotti et al. 1999). Bisher wurde daher angenommen, dass das 

amerikanische WNV höchstwahrscheinlich eine Abstammung des Israel-Isolats 1998 sei. 

Alternative Hypothesen aufgrund neuerer phylogenetischer Analysen gehen hingegen davon 
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aus, dass die amerikanischen WNV-Isolate nicht direkt von dem 1998 erhaltenen Isolat aus 

Israel abstammen, sondern beide einen gemeinsamen, noch unbekannten, Ursprung 

besitzen (May et al. 2011). 

 

Die WNV Linie 1 kann in drei Subklassen (1a, 1b und 1c) unterteilt werden. Isolate des 

Subtyps 1a sind sowohl in Afrika, dem Mittleren Osten und Europa sowie Amerika zu finden 

und sind genetisch eng miteinander verwandt (Beasley et al. 2002, Peterson et al. 2003). Als 

Subklasse 1b wird das in Australien vorkommende Kunjin-Virus (KUNV) eingestuft, welches 

bisher keine bzw. weniger schwere Symptome nach Infektionen verursacht hat (Scherret et 

al. 2001, Hall et al. 2002). Jedoch ist in letzter Zeit, nach einem schwereren Ausbruch bei 

Pferden, in Australien eine zwar eng mit KUNV verwandte aber neuroinvasivere Variante 

isoliert worden (Frost et al. 2012). Zur Subklasse 1c gehören WNV-Isolate aus Indien 

(Lanciotti et al. 2002, Beasley et al. 2002). Auf Basis der Ergebnisse einer umfassenden 

phylogenetischen Studie mit indischen WNV-Isolaten wurde vorgeschlagen, aus der 

Subklasse 1c eine eigene Linie der indischen Viren (Linie 5) zu bilden (Bondre et al. 2007). 

Die Viren der Linie 2 sind fast ausschließlich auf dem afrikanischen Kontinent südlich der 

Sahara und auf Madagaskar präsent, jedoch konnten in den letzten Jahren Vertreter dieser 

Genotyplinie auch in Europa (Ungarn 2004, Griechenland 2010) nachgewiesen werden 

(Bakonyi et al. 2006, Papa et al. 2011). Diesen zwei Hauptlinien wurden mittlerweile noch 

zwei weitere genetisch unterschiedliche Linien hinzugefügt (Abbildung 1). Dazu gehören zum 

einen das Rabensburg-Virus (Linie 3), welches 1997 in Tschechien zum ersten Mal isoliert 

wurde (Bakonyi et al. 2005) und ein Isolat aus Russland (Linie 4) dessen Nucleotidsequenz 

sich um ca. 30% von den anderen drei Linien unterscheidet (Lvov et al. 2004). 
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Abbildung 1: Phylogenetischer Stammbaum von representativen WNV-Stämmen. Erstellt mit 

Hilfe der Neighbour-joining-Methode. Modifiziert nach Bondre et al. 2007. 

Subklasse 

1a 

(Subklasse 1c) 

Subklasse 1b 
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1.2 Epidemiologie 

 

 

1.2.1 Verbreitung des WNV in Europa, Afrika, Asien und Australien 

 

Nach der erstmaligen Isolierung des WNV 1937 in Uganda wurden in den darauffolgenden 

Jahren und Jahrzehnten WNV-Infektionen auch in anderen Ländern und vor allem auf 

anderen Kontinenten registriert. Dadurch ist es das Flavivirus mit dem größten 

Verbreitungsgebiet (De Filette et al. 2012, Hubálek und Halouzka 1999). 

In den 1950er und 1960er Jahren wurde es vermehrt in Afrika (Ägypten, Tunesien, Kenia) 

und Israel nachgewiesen. So konnten beispielsweise durch eine in den 1950er Jahren in 

Ägypten durchgeführte Studie bei über 60% der menschlichen Population WNV-Antikörper 

nachgewiesen werden (Hurlbut et al. 1956). Auch in Studien an Pferden konnten Antikörper 

bei der Hälfte der untersuchten Tiere gefunden werden. Schwere Krankheitsausbrüche 

waren und sind in Afrika sowohl beim Menschen als auch bei Pferden eher selten zu 

beobachten (Murgue et al. 2002, Schmidt und Elmansoury 1963). In Zentralafrika ist 

hauptsächlich die Genotyplinie 2 zu finden, deren Pathogenität geringer zu sein scheint, als 

jene der Linie 1. Venter et al. 2009 konnten jedoch zeigen, dass in Südafrika WNV-Stämme 

der Linie 2 zirkulieren, die die Fähigkeit besitzen schwere klinische Symptome bei Pferden 

und Menschen hervorzurufen. Die erste beim Menschen dokumentierte Epidemie wurde 

1951-1952 in Israel beobachtet (Bernkopf et al. 1953). Mittlerweile konnten in vielen anderen 

Ländern, wie Spanien, Portugal, Frankreich, Italien, Rumänien, der Tschechischen Republik, 

Österreich, der Slowakei, Ungarn, Polen, Marokko, Bulgarien, Tunesien und Russland, 

WNV-Isolate aus Mücken, Vögeln und Säugetieren gewonnen werden. Der bisher größte 

WNV-Ausbruch in Europa ereignete sich 1996 in Rumänien mit 393 bestätigten WNV-Fällen 

mit neuroinvasivem Krankheitsverlauf (Tsai et al. 1998). In diesen europäischen Ländern 

sowie dem Mittleren Osten und nördlichen Afrika handelt es sich bei den isolierten Stämmen 

meist um Subtypen der Klasse 1a. In Asien findet man das WNV überwiegend in Indien und 

in Australien zirkuliert der WNV-Subtyp Kunjin-Virus (KUNV). 

Da WNV-Epidemien an eine hohe Stechmückenaktivität in den jeweiligen Regionen 

gebunden sind, finden sie in Europa sowie anderen gemäßigten Zonen überwiegend in den 

Monaten Juli bis September statt, oft in Zusammenhang mit Überschwemmungen gefolgt 

von warmem und trockenem Wetter (Han et al. 1999, Hubálek 2000). WNV-Ausbrüche treten 

in Europa räumlich und zeitlich begrenzt auf (Dauphin et al. 2004). 
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1.2.2 Verbreitung des WNV auf dem amerikanischen Kontinent 

 

In den USA wurde das WNV erstmals 1999 in New York City nachgewiesen, was auch als 

Zeitpunkt der Einschleppung des Virus in die Westliche Hemisphäre gilt (Nash et al. 2001). 

Durch dieses plötzliche Auftreten in einer neuen Region gewann die Infektion mit WNV vor 

allem in Amerika als Zoonose sehr schnell an Bedeutung. Die rasche transkontinentale 

Ausbreitung (Abbildung 2) führte zu einem massiven Vogelsterben mit Infektionen bei mehr 

als 300 verschiedenen Vogelspezies (CDC 2010, LaDeau et al. 2007), sowie einer Vielzahl 

von Krankheits- und Todesfällen bei Pferden und Menschen. 

 

 

 

 

 

 

Abbildung 2: Ausbreitung des WNV über die gesamte USA innerhalb weniger Jahre. Modifiziert 

nach Hayes et al. 2005. 

 

 

Die schwerste Epidemie, mit insgesamt über 20.000 Infektionen bei Pferden (United States 

Department of Agriculture 2012) und über 14.000 Fällen beim Menschen, wovon 548 tödlich 

verliefen, wurde 2002 – 2003 registriert (Tabelle 2). In den darauffolgenden Jahren ging die 

Anzahl der symptomatischen Infektionen zurück und stabilisierte sich auf niedrigem Niveau. 

(CDC 2013a). Es ist aber jederzeit wieder mit größeren Epidemien zu rechnen, wie sich im 

Jahr 2012 zeigte. Im August und September wurde vor allem in Texas, dem am stärksten 

betroffenen Bundesstaat, eine starke Zunahme von WNV-Infektionen beim Menschen 

registriert (Roehr 2012a und b) und insgesamt stieg die Zahl der Fälle auf über 5600 mit 286 

Todesfällen (CDC 2013b). 

 

 



Literaturübersicht .................................................................................................................. 15 

Jahr 

Meningitis/ 

Enzephalitisfälle Gesamtfälle Todesfälle 

1999 59 62 7 

2000 19 21 2 

2001 64 66 10 

2002 2946 4156 284 

2003 2866 9862 264 

2004 1142 2539 100 

2005 1294 3000 119 

2006 1459 4269 177 

2007 1217 3630 124 

2008 687 1356 44 

2009 373 720 32 

2010 629 1021 57 

2011 486 712 43 

2012 2873 5674 286 

Gesamt 16196 37088 1549 

 

Tabelle 2: Anzahl der registrierten humanen WNV-Fälle in den USA von 1999 bis 2012. CDC 

(2013a). 

 

 

Neben den Vereinigten Staaten konnte sich das Virus erfolgreich in den Norden und Süden 

des amerikanischen Kontinents ausbreiten. In Kanada wurden bereits 2001 die ersten WNV 

infizierten Stechmücken und Vögel nachgewiesen (Drebot et al. 2003) und 2002 wurde der 

Erreger erstmals bei Pferden in Mexiko gefunden (Estrada-Franco et al. 2003). Serologisch 

konnte das WNV zeitgleich oder in den folgenden Jahren auch in den meisten anderen 

latein- und südamerikanischen Ländern nachgewiesen werden. 

 

 

1.3 Transmission und Vektorbiologie 

 

Das WNV wird als Arbovirus durch Arthropoden-Vektoren, hauptsächlich Stechmücken, 

übertragen. Der Erreger konnte auch in Zecken nachgewiesen werden (Lawrie et al. 2004, 

Mumcuoglu et al. 2005). Epidemiologisch kommt der Zecke jedoch bislang keine Bedeutung 

zu, sie könnte allerdings als Reservoir fungieren (Lawrie et al. 2004). 

Das natürliche Vertebraten-Reservoir von WNV sind Vögel. Das Virus zirkuliert innerhalb der 

Vogelpopulation im sogenannten ruralen Transmissionszyklus durch ornithophile 

Stechmückenarten als Vektoren (Vogel-Stechmücke-Vogel Zyklus) (Abbildung 3). Wird das 

Virus durch Brückenvektoren, Arthropoden die ihre Blutnahrung nicht nur von Vögeln 

sondern auch anderen Vertebraten beziehen, übertragen, spricht man vom urbanen 

Transmissionszyklus (Hubálek und Halouzka 1999). Brückenvektoren sind für die Infektion 
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von Menschen und anderen Wirbeltieren notwendig, da deren Infektion üblicherweise nicht 

wie bei Vögeln zu einer ausreichend hochtitrigen Virämie führt, um damit wiederum eine 

Stechmücke zu infizieren (Bowen und Nemeth 2007, Hayes 2001). Somit sind Säugetiere 

und vor allem Pferd und Mensch sogenannte Zufalls- oder Endwirte, auch „incidental hosts“ 

oder „dead-end hosts“ genannt (McLean et al. 2001). 

 

 

 

 

 

 

Abbildung 3: Transmissionszyklus des WNV. 

 

 

Obwohl das WNV ein breites Spektrum an Vektoren besitzt und in über 60 verschiedenen 

Stechmückenarten nachgewiesen werden konnte, gelten Arten der Gattung Culex, vor allem 

C. tarsalis und C. pipiens als Hauptübertäger (Turell et al. 2001, Hamer et al. 2008). Beide 

Mückenarten nehmen sowohl an einer Vielzahl von Vogelspezies, als auch Vertebraten Blut 

auf und führen so zu einer Übertragung (Reisen et al. 2005). 

Bei den Vogelarten zeigen vor allem Sperlingsvögel (Ordnung Passeriformes) wie der 

Hausspatz (Passer domesticus) und Krähen (Familie der Rabenvögel, Corvidae) hohe 

Empfänglichkeit gegenüber WNV-Infektionen (Komar et al. 2003, Murray et al. 2010). 

Besonders Vögel, die eine hochtitirige Virämie entwickeln, wie der Blauhäher (Cyanocitta 

cristata), der Hausspatz (Passer domesticus) und die Amerikanerkrähe (Corvus 

brachyrhynchos), werden als wichtige Reservoir-Wirte angesehen (Weingartl et al. 2004, 

Langevin et al. 2005). 

Obwohl WNV-Infektionen bereits auch bei anderen Säugetieren, wie z.B. Hunden, Katzen, 

Kaninchen u.a. detektiert wurden und offenbar nicht selten vorkommen, sind es vor allem 

Pferde und Menschen, die mit Erkrankungen auf eine Infektion reagieren können. 
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1.4 Molekularbiologie 

 

1.4.1 Morphologie des WNV 

 

Virionen des WNV sind sphärische, umhüllte Partikel mit einer pseudo-ikosaedrischen 

Symmetrie und einem Durchmesser von ca. 50 nm. Den Partikeln fehlen Oberflächen-

Projektionen oder Spikes (Abbildung 4), die bei anderen umhüllten Viren, wie HIV, Influenza- 

oder Masernviren, als typisch beobachtet werden (Mukhopadhyay et al. 2003). Das RNA-

Genom des WNV wird vom Nukleokapsid umschlossen, das sich aus multiplen Kopien des 

viralen C-Proteins (Kapsidprotein) zusammensetzt und seinerseits von einer 

Lipidmembranhülle umgeben ist. Cryo-EM-Untersuchungen zeigen, dass das Kapsid eine 

ikosaedrische Symmetrie aufweist (Heinz et al. 2000). 

 

 

 

 

 

Abbildung 4: WNV-Partikel. Links: Struktur eines WNV-Virions, ermittelt durch Cryo-EM. Quelle: 

Mukhopadhyay et al. 2003. Rechts: Nachweis der Präsenz von WNV-Partikeln im Gewebe durch TEM 

(Transmissions-EM). Quelle: Cynthia Goldsmith (CDC), CDC Newsroom Image Library. 

 

 

In der Lipidmembranhülle des Virus sind zwei virale Strukturproteine eingelagert, das E-

Protein (Envelope-, Hüllprotein) und das M-Protein (Membranprotein). Das E-Protein stellt 

das Hauptantigen des Viruspartikels dar und ist sowohl für das Attachment, sowie die Fusion 

der Membranen während der Penetration in die Wirtszelle notwendig. Das M-Protein entsteht 

durch proteolytische Spaltung eines Vorläuferproteins, dem sogenannten prM (precursor 

Membrane)-Protein. Im reifen Virion liegen die E-Proteine flach auf dem Lipid-Bilayer und 

bilden Homodimere, die mit den M-Proteinen assoziiert sind (Abbildung 5). 
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Abbildung 5: Schematischer Aufbau eines WNV-Virions. Die C-Proteine bilden das Kapsid, 

welches die RNA umhüllt. Die Hüllproteine E und M sind in der Lipidmembran verankert. Modifiziert 

aus Flavivirus, ViralZone, Swiss Institute of Bioinformatics 2011 

(http://viralzone.expasy.org/all_by_protein/24.html). 

 

 

1.4.2 Genomorganisation 

 

Als Flavivirus besteht das Genom von WNV aus einer einzelsträngigen RNA mit positiver 

Polarität, (+)ssRNA, und einer Größe von ~11 kb (Lanciotti et al. 1999, Rice et al. 1985). Das 

3’-Ende schließt mit einem konservierten CUOH ab und ist nicht polyadenyliert. An das 5’-

Ende wird im Zytoplasma von infizierten Zellen eine Typ 1 Cap-Struktur (m7GpppA) angefügt 

(Castle und Wengler 1987, Wengler und Wengler 1981). An beiden Enden befinden sich 

nicht kodierende Regionen (noncoding regions, NCR), mit einer Länge von 96 Nukleotiden 

(5’-NCR) und 631 Nukleotiden (3’-NCR). Dazwischen liegt der einzige offene Leserahmen 

(open reading frame, ORF) des Genoms, der in zwei Bereiche, Strukturproteine und 

Nichtstrukturproteine, unterteilt wird (Castle et al. 1986). Der ORF kodiert für ein großes 

Polyprotein, welches ko- und posttranslational durch virale und verschiedene Zellproteasen 

in die einzelnen viralen Proteine gespalten wird (Nowak et al. 1989). Die drei 

Strukturproteine E (Envelope), prM/M (Membran) und C (Kapsid) sind am 5’-Ende lokalisiert, 

wohingegen die sieben Nichstrukturproteine (NS1, NS2a, NS2b, NS3, NS4a, NS4b und 

NS5) 3’-terminal liegen (Abbildung 6; Castle et al. 1986, Rice et al. 1985). 
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Abbildung 6: Schematische Darstellung des Genomaufbaus von WNV. Der offene Leserahmen 

wird in die Bereiche Strukturgene bzw -proteine und Nichtstrukturgene bzw. -proteine unterteilt und 

das Polyprotein wird während und nach der Translation in die 10 viralen Proteine prozessiert. NCR: 

Noncoding Region, C: Kapsid, prM/M: preMembran/Membran, E: Envelope, NS1-5: 

Nichtstrukturproteine1-5. 

 

 

1.4.3 Replikationszyklus 

 

Die Übertragung des WNV erfolgt durch subkutane Injektion über einen Mückenstich. 

Zielzellen der primären Replikation sind Keratinozyten und dermale Dendritische Zellen, 

sowie Langerhans-Zellen (Johnston et al. 2000, Lim et al. 2011, Wu et al. 2000). 

Die Aufnahme von WNV in die Wirtszelle erfolgt über Clathrin-abhängige Endozytose (Chu 

und Ng 2004, Chu et al. 2006). Welche Zelloberflächenproteine als Rezeptoren für das 

Attachment fungieren, ist bisher noch nicht letztendlich geklärt. Für Dendritische Zellen 

konnte gezeigt werden, dass die Lektine DC-SIGN und DC-SIGNR auf der Plasmamembran 

entsprechende Funktionen übernehmen können (Davis et al. 2006, Martina et al. 2008a). 

Nachdem aber viele Zelltypen von WNV infiziert werden können und nicht alle Zellen DC-

SIGN und DC-SIGNR exprimieren, ist es sehr wahrscheinlich, dass noch andere Proteine 

am Attachment des WNV beteiligt sind. Nach der Endozytose erfolgt eine pH-induzierte 

Fusion (pH 6,6) der Virionhülle mit der Membran des Endosoms, um das Kapsid 

freizusetzen. Hierfür ist das E-Protein von besonderer Bedeutung. Durch den niedrigen 

(sauren) pH-Wert im Inneren des Endosoms kommt es zu einer irreversiblen 

Konformationsänderung der viralen E-Hüllproteine von Homodimeren zu Trimeren, durch die 

die Fusion der beiden Membranen vorangetrieben wird (Allison et al. 1995a, Heinz et al. 

1994). Nachdem die (+)ssRNA aus dem Kapsid ins Zytoplasma freigesetzt wurde, wird sie 

als mRNA translatiert und das Polyprotein ko- und posttranslational an multiplen Stellen 

durch zelluläre und virale Proteasen gespalten, um die reifen viralen Proteine zu erzeugen. 

Außerdem dient die RNA als Template für die im Translationsschritt erzeugte virale RNA-

abhängige RNA-Polymerase NS5, die Matrizen negativer Polarität generiert, die wiederum 

als Templates für neue positiv-orientierte RNA-Moleküle dienen. Diese werden dann beim 

Zusammenbau in die neuen Virionen verpackt (Abbildung 7) oder zur Translation weiterer 
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Virusproteine herangezogen. Die virale RNA-Synthese bei Flaviviren verläuft asymmetrisch, 

was bedeutet, dass die Synthese genomischer RNA-Synthese mindestens 10-fach effizienter 

ist, als die des negativ-orientierten Stranges (Chu und Westaway 1985, Cleaves et al. 1981). 

In mehreren Studien konnte nachgewiesen werden, dass Flavivirus-RNA-

Replikationskomplexe mit dem Endoplasmatischen Retikulum (ER) assoziiert sind (Chu und 

Westaway 1992, Grun und Brinton 1987, Westaway et al. 1999).  

 

 

 

 

Abbildung 7: Replikationszyklus von WNV. TGN: Trans-Golgi-Netzwerk, ER: Endoplasmatisches 
Retikulum. Modifiziert nach Heinz und Stiasny 2012. 
 

 

Die Virion-Morphogenese erfolgt daher hauptsächlich an der ER-Membran, in die sich die 

translatierten Strukturproteine E und prM einlagern. C-Protein-Dimere interagieren mit der 

genomischen RNA und prM-E-Heterodimeren, wodurch es zur Bildung des Nukleokapsids 

kommt. Durch anschließende Einstülpung und Abschnürung der ER-Membran in das Lumen 

(Budding) werden unreife Viruspartikel geformt. Auf der Virusoberfläche befinden sich nun 

180 E- (Kuhn et al. 2002) und genauso viele prM-Proteine in Form von 60 Trimeren aus 

Heterodimeren (Zhang Y et al. 2003). Die intrazellulären unreifen Virionen akkumulieren in 

Vesikeln und die Strukturproteine E und prM werden während des Transports durch den 

Trans-Golgi-Apparat glykosyliert. Bevor die Viruspartikel über Exozytose freigesetzt werden, 



Literaturübersicht .................................................................................................................. 21 

unterläuft das prM-Protein einer proteolytischen Spaltung durch eine zelluläre Furin-ähnliche 

Peptidase (Stadler et al. 1997, Yu et al. 2008). Dabei wird mehr als die Hälfte des N-

terminalen Teils des prM-Proteins entfernt, wodurch das reife M-Protein entsteht. Dies führt 

zur Dissoziation der prM-E-Heterodimere (Allison et al. 1995a, Wengler und Wengler 1989) 

und zur Bildung der flach an der Virionoberfläche liegenden, E-Homodimere. Die Freisetzung 

neuer reifer Viren aus infizierten Zellen beginnt 10 bis 12 Stunden nach der Infektion und 

nach 24 bis 36 Stunden findet man die höchste Konzentration an  extrazellulären Viren. 

 

 

1.4.4 Virale Proteine 

 

Das Genom von WNV enthält in seinem einzigen ORF die Information für 10 virale Proteine, 

die zunächst als ein großes Vorläuferpolypeptid translatiert werden und von denen drei 

Strukturproteine und sieben Nichstrukturproteine darstellen. 

 

Strukturproteine (E, prM/M und C): 

Das Hüllprotein E (Envelope) der Flaviviren übernimmt wichtige Funktionen für den Eintritt 

eines Virions in die Zelle, wie Rezeptorbindung (Crill und Roehrig 2001, Lee et al. 2004) und 

die pH-induzierte Fusion mit der Endosomenmembran zur Freisetzung des Nukleokapsids 

ins Zytoplasma. Außerdem induziert es eine schützende Immunantwort und ist das primäre 

Ziel neutralisierender Antikörper (Colombage et al. 1998, Throsby et al. 2006). Das E-

Monomer besteht aus drei Domänen (DI, DII und DIII), die mit flexiblen Gelenken verbunden 

sind (Kanai et al. 2006, Modis et al. 2003, Mukhopadhyay et al. 2003, Rey et al. 1995). DI ist 

die zentrale Domäne und wird auf einer Seite von der Dimerisations-Domäne DII, welche das 

Fusionspeptid beherbergt, flankiert. Auf der anderen Seite befindet sich die 

immunglobulinähnliche (IgG-like) Domäne DIII, die wahrscheinlich die Rezeptorbindungs-

stelle enthält (Crill und Roehrig 2001, Mandl et al. 2000). 

Auf reifen Flaviviren liegen die E-Proteine als 90 antiparallele Dimere flach gegen die 

Virionoberfläche und in T=3 pseudo-ikosaedrischer Symmetrie arrangiert vor (Kuhn et al. 

2002, Mukhopadhyay et al. 2003). 

 

Das kleinere Hüllprotein M entsteht aus einem Vorläuferprotein prM (precursor Membrane). 

Kurz vor der Freisetzung des Viruspartikels aus einer infizierten Zelle wird das prM-Protein 

durch eine zelluläre Protease gespalten, der N-terminale Bereich des Proteins, der pr-Teil, 

geht verloren und es bleibt ein kleiner C-terminaler Teil (M-Protein) in der Membran 

verankert zurück. Auf unreifen Viruspartikeln verdeckt das prM-Protein den Fusionsbereich 

am distalen Ende jedes E-Proteins. Daher wird angenommen, dass eine Aufgabe des prM-

Proteins in unreifen Virionen darin liegt, die pH-induzierte Konformationsänderung von E 
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während des Transports im Trans-Golgi-Netzwerk zu verhindern, da es sonst schon zur 

Fusion des Viruspartikels mit der Vesikelmembran bei der Exozytose kommen würde (Heinz 

et al. 1994, Stadler et al. 1997). Des Weiteren dient es wahrscheinlich auch als Chaperon bei 

der Faltung des E-Proteins (Lorenz et al. 2002) und seine Kosynthese mit E ist ebenso 

notwendig für dessen Membranassoziation und Assembly (Konishi und Mason 1993). 

 

Das C-Protein ist der einzige Bestandteil des flaviviralen Nukleokapsids. Die strukturelle 

Basiseinheit zur Bildung eines Kapsids ist ein C-Dimer, dessen Monomere sich aus vier α–

Helices zusammensetzen und beim Assembly mit der RNA interagieren (Dokland et al. 2004, 

Jones et al. 2003, Kiermayr et al. 2004). Die Annahme besteht, dass C-Proteine auch als 

RNA-Chaperone während des Replikationszyklus fungieren (Ivanyi-Nagy et al. 2008). 

 

Nichstrukturproteine (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5) 

Es wird angenommen, dass alle Nichtstrukturproteine vor allem aber NS1, NS2a, NS3, NS5 

und NS4a bei der Replikation der viralen RNA als Teil des sogenannten 

Replikationskomplexes involviert sind. 

NS2a, NS2b, NS4a und NS4b sind kleine, hydrophobe Proteine deren Struktur und Funktion 

bisher noch nicht gut charakterisiert sind. Es konnte aber gezeigt werden, dass NS2a und 

NS4a mit dem Replikationskomplex assoziiert sind (Mackenzie et al. 1998). 

NS2b formt einen Komplex mit der viralen Serinprotease NS3 und fungiert hier als Protease-

Kofaktor, indem seine zentrale Domäne in die NS3 Serinprotease-Domäne interkaliert (Erbel 

et al. 2006). NS4b ist im Zytosol membranassoziiert, eine Rolle bei der RNA-Replikation 

konnte noch nicht direkt nachgewiesen werden (Westaway et al. 1997a), es fungiert aber wie 

NS2a als Interferon-Antagonist (Liu et al. 2006, Munoz-Jordán et al. 2003). 

 

NS3 und NS5 sind die am höchsten konservierten Flavivirusproteine und die bisher am 

besten charakterisierten Nichtstrukturproteine. Sie fügen sich, wie bereits erwähnt, mit 

anderen viralen und auch Zellproteinen zum Replikationskomplex zusammen. 

NS3 ist ein multifunktionales Protein und kombiniert die Aktivitäten einer Helikase/NTPase, 

Serinprotease und RNA-Triphosphatase (Assenberg et al. 2009, Borowski et al. 2001). 

NS5 ist das größte Nichtstrukturprotein und übernimmt die Funktion der RNA-abhängigen 

RNA-Polymerase, sowie einer Methyltransferase (Grun und Brinton 1987, Koonin 1993). 

 

NS1 ist ein Glykoprotein und obwohl es hauptsächlich im Zytosol infizierter Zellen zu finden 

ist, konnte es ebenso auf der Zelloberfläche und im Überstand infizierter Säugerzellen 

nachgewiesen werden (Smith und Wright 1985). Es wird daher von Zellen sezerniert, jedoch 

beginnt die Freisetzung von NS1 bei infizierten Vero-Zellen später (16 bis 24 Stunden nach 
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Infektion) als die Sekretion der ersten reifen Viruspartikel (8 bis 16 Stunden nach Infektion) 

(Macdonald et al. 2005). Funktionell spielt NS1 durch seine Beteiligung an den viralen 

Replikationskomplexen bei der WNV-Replikation in infizierten Zellen eine Rolle (Mackenzie 

et al. 1996, Westaway et al. 1997b). 

 

 

1.5 WNV-Infektionen bei verschiedenen Wirtsgruppen 

 

1.5.1 Vögel 

 

Vögel sind wichtige Amplifikationswirte und stellen das natürliche Reservoir des Virus dar. 

Vor allem Sperlingsvögel (Ordnung Passeriformes) sind besonders empfänglich für WNV-

Infektionen (Komar et al. 2003). In dieser Tierordnung wiesen insbesondere Rabenvögel 

(Familie Corvidae) nach der Einschleppung von WNV in die USA hohe Mortalitätsraten auf 

(Eidson et al. 2005, Murray et al. 2010). Experimentelle Infektionen von diversen 

Vogelordnungen konnten zeigen, dass auch Eulen (Ordnung Strigiformes), Greifvögel 

(Ordnung Falconiformes) und Regenpfeiferartige (Ordnung Charadriiformes) sehr hohe 

Virämielevel über mehrere Tage erreichen können. Bei Taubenvögeln (Ordnung 

Columbiformes), Gänsevögeln (Ordnung Anseriformes) und Spechtvögeln (Ordnung 

Piciformes) ist die Höhe der Titer sehr viel niedriger und bei Hühnervögeln (Ordnung 

Galliformes) eindeutig zu gering, um auf blutsaugende Stechmücken übertragen zu werden 

(Komar et al. 2003). Bis zum heutigen Zeitpunkt hat das CDC über 320 Vogelarten gelistet, 

die letal mit WNV infiziert werden können (CDC 2013c). 

Im Körper eines infizierten Vogels breitet sich das Virus über eine Vielzahl an Organen 

(Niere, Leber, Haut, Auge, Lungengewebe) und das Nervensystem aus. Dies geht bei 

besonders empfänglichen Vögeln mit sehr hohen Virämien von bis zu 1010 PFU/ml einher 

(Clark et al. 2006, Komar et al. 2003, Weingartl et al. 2004). Außerdem scheiden infizierte 

Vögel auch eine nicht unerhebliche Menge an Virus mit ihren Fäkalien aus und könnten so 

auch zur Übertragung von Vogel zu Vogel beitragen (Kipp et al. 2006, Nemeth et al. 2006). 

Die virämische Phase ist bei Vögeln von Art zu Art unterschiedlich lang. Sie umfasst aber 

meist einen Zeitraum von 5 bis 7 Tagen. Die Zeitspanne von Infektion zu Krankheit ist 

generell eher kurz und in experimentellen Studien starben die meisten Vögel innerhalb einer 

Woche, oft sogar schon 24 Stunden nach Infektion (Komar et al. 2003). Die Mortalitätsraten 

sind jedoch von der Anfälligkeit der Vogelarten und der Pathogenität der Virusisolate 

abhängig (Langevin et al. 2004, Nemeth et al. 2006). 

 

 

 



Literaturübersicht .................................................................................................................. 24 

 

1.5.2 Pferde 

 

Pferde gehören zu den Zufalls- oder Endwirten von WNV, da sie keine ausreichend hohen 

Virustiter (ca. 101 – 103 PFU/ml) im Blut entwickeln, um das Virus bei einem Stich effizient 

auf eine Stechmücke zu übertragen. Auch ist die Zeitspanne der Virämie im Allgemeinen 

sehr kurz (Deubel et al. 2001, Bunning et al. 2002). Dennoch sind Pferde im Zusammenhang 

mit WNV-Infektionen besonders gefährdet. Obwohl die Mehrzahl der Infektionen 

asymptomatisch oder mit leichter Klinik einhergeht, zeigen einige Tiere klinisch manifeste 

Erkrankungen. Neben Fieber sind sichtbare Krankheitssymptome einer Enzephalomyelitis, 

wie Ataxie, Parese, Gliedmaßenschwäche, abnormaler Gang, faszikuläre Zuckungen und 

Schwierigkeiten beim Aufstehen/Hinlegen, häufig zu beobachten (Ostlund et al. 2001, Ward 

et al. 2006). WNV-Ausbrüche in Pferdepopulationen gehen mit einer hohen Mortalitätsrate 

erkrankter Tiere von bis zu 30% - 40% einher (Porter et al. 2003, Ward et al. 2008). Studien 

mit experimentellen Infektionen von Pferden führten bei 10% - 12% zu Erkrankungen des 

ZNS, wobei auch hier, wie bei anderen Spezies, diverse Faktoren wie Alter, Impfstatus, 

Geschlecht eine Rolle bei ernsten oder tödlichen Verläufen spielten (Bunning et al. 2002, 

Salazar et al. 2004). 

Für die gesicherte Diagnose einer WNV-Infektion bei Pferden kommen neben den sichtbaren 

Symptomen serologische und molekularbiologische Methoden zum Einsatz (Kleiboeker et al. 

2004). 

 

 

1.5.3 Mensch 

 

Menschen sind wie Pferde „Fehlwirte“ des WNV und Hauptinfektionsweg ist der Stich durch 

blutsaugende, infizierte Stechmücken. Es sind jedoch auch Fälle bekannt, in denen das 

Virus nachweislich von Mensch zu Mensch übertragen wurde. Hierzu zählen die 

Transmission des Erregers durch Plasma und Thrombozyten bei Bluttransfusionen 

(Harrington et al. 2003, Pealer et al. 2003), die Übertragung von der Mutter auf das Kind in 

der Schwangerschaft über die Plazenta (CDC 2002a, Paisley et al. 2006) und wahrscheinlich 

die Muttermilch (CDC 2002b, Hayes und O’Leary 2004), sowie bei Organtransplantationen 

von Spender auf Empfänger (Iwamoto et al. 2003). 

Eine WNV-Infektion verläuft in den meisten Fällen (~80%) asymptomatisch. Bei einer von 

fünf Personen kommt es jedoch zu einer Erkrankung, dem sogenannten West-Nil-Fieber. 

Diese leichteste Form der Krankheit tritt mit Grippe-ähnlichen Symptomen wie Fieber, 

allgemeine Schwäche, Kopfschmerzen, Muskelschmerzen, Erythemen, Übelkeit und 

Erbrechen, in Erscheinung (Watson et al. 2004). Nach der Infektion mit WNV beträgt die 
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Inkubationszeit bis zum Auftreten der ersten Symptome 2 bis 14 Tage und bei leichteren 

Verlaufsformen kann die Erkrankung 3 bis 6 Tage andauern (Kramer et al. 2007, Petersen 

und Marfin 2002). 

 

 

 

 

Abbildung 8: Verlauf einer WNV-Enzephalitis beim Menschen. Virämie und Entwicklung von IgM-

Antikörpern. CSF: Cerebrospinalflüssigkeit. Modifiziert nach Solomon et al. 2003. 

 

 

Bei etwa 0,5-1% der Infektionen kommt es zur Entwicklung von schweren neurologischen 

Erkrankungen (Mostashari et al. 2001, Tsai et al. 1998, Weaver und Barrett 2004), die 

insbesondere bei Risikopatienten tödlich verlaufen können (Sejvar et al. 2011). Diese 

schweren Verlaufsformen äußern sich als Enzephalitis (~60%) (Abbildung 8), Meningitis 

(~40%), seltener AFP (acute flaccid paralysis – schlaffe Lähmung) zusammen mit 

Symptomen wie Bewusstseinstrübungen, Koordinationsstörungen (Ataxien), Schwindel, 

Lähmungserscheinungen des Augenmuskels u.a. (Burton et al. 2004, Sejvar et al. 2005, 

Weiss et al. 2001). Besonders anfällig für schwere, fatale Krankheitsverläufe sind ältere 

Personen, Menschen mit geschwächtem Immunsystem, Diabetespatienten und 

Alkoholabhängige (Berner et al. 2002, Bode et al. 2006, Sejvar et al. 2011). Etwa 10% der 

schweren neuroinvasiven Krankheitsfälle enden tödlich und Genesene sind häufig von 

länger anhaltenden oder persistierenden Folgeschäden betroffen (Hollidge et al. 2010, Klee 

et al. 2004). 
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1.6 WNV und die Immunantwort 

 

1.6.1 Angeborenes Immunsystem 

 

Das schnelle Erkennen eines eingedrungenen Erregers ist ein wesentlicher Bestandteil des 

gesamten Immunsystems. Die erste Detektion von Viren durch spezielle zelluläre 

Rezeptoren erfolgt durch das angeborene Immunsystem und ist essentiell für die Einleitung 

und das Abrufen einer effektiven antiviralen Immunantwort. Diese Rezeptoren sind die 

sogenannten pattern recognition receptors (PRRs). PRRs erkennen konservierte molekulare 

Pathogenmerkmale, sogenannte pathogen-associated molecular patterns (PAMPs), welche 

fremde Organismen (Viren, Bakterien, Pilze und Parasiten) von körpereigenen Zellen 

unterscheiden. Zu den viralen PAMPs zählen virale Nukleinsäuren, wie einzelsträngige RNA, 

doppelsträngige RNA und doppelsträngige DNA. Außerdem gibt es Hinweise darauf, dass 

virale Glykoproteine als PAMPs fungieren können (Boehme et al. 2004). Nachdem PRRs 

virale Komponenten erkannt haben, initiieren sie eine sofortige Immunantwort, die eine 

Ausbreitung des Virus im Organismus verhindern und gleichzeitig die Erreger-spezifische 

adaptive Immunantwort induzieren soll. Besonders wichtige Zytokine hierfür sind die Typ-1-

Interferone IFN–α und IFN-β, die eine wichtige Rolle, bei der Restriktion der WNV-

Ausbreitung auf zellulärer und Gewebeebene einnehmen (Samuel und Diamond 2005). Sie 

induzieren die Expression multipler Effektormoleküle, eine Reihe anderer Zytokine und 

interagieren auch mit dem Jak-STAT-Signalweg (Karaghiosoff et al. 2000, Shimoda et al. 

2000), Integrinen und dem p53-assoziierten Apoptoseweg (Takaoka et al. 2003). Zwei 

Beispiele für wichtige PRRs im Zusammenhang mit einer WNV-Infektion sind RIG-I-like 

Rezeptoren (RLRs) und Toll-like Rezeptoren (TLRs). Die drei zytoplasmatischen RLRs RIG-I 

(retinoic acid-inducible gene I protein), MDA-5 (melanoma-differentiation-associated protein 

5) und LGP2 werden in den meisten Zelltypen des Körpers exprimiert und vor allem RIG-I 

und MDA-5 sind für eine Immunantwort gegen WNV essentiell, indem sie die Typ-1-

Interferonproduktion induzieren (Daffis et al. 2008b, Fredericksen et al. 2004, Fredericksen 

et al. 2008). RIG-I ist dabei sehr früh während einer Infektion von Bedeutung, während MDA-

5 für die Aufrechterhaltung und Verstärkung der angeborenen Immunabwehr benötigt wird 

(Fredericksen et al. 2008). 

Für die Erfassung viraler Strukturen sind von den über 10 vorhandenen TLRs drei (TLR3, 

TLR7 und TLR8) bei einer WNV-Infektion von Bedeutung (Daffis et al. 2008a, Town et al. 

2009). Sie sind in der Lage Nukleinsäuren zu erkennen und überwiegend in den Endosomen 

lokalisiert (Matsumoto et al. 2003). TLR3 erkennt doppelsträngige RNA (Alexopoulou et al. 

2001), wohingegen TLR7 und TLR8 für die Erkennung U- oder GU-reicher einzelsträngiger 

RNA benötigt werden (Diebold et al. 2004, Heil et al. 2004, Hemmi et al. 2002). 
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Das Komplementsystem, ein weiterer Teil des angeborenen Immunsystems und bestehend 

aus einer Reihe von Oberflächenrezeptoren und Serumproteinen, trägt zur Abwehr von WNV 

bei, indem es eine Neutralisierung und Lyse von Virionen hervorruft und die humorale 

Immunreaktion verstärkt (Mehlhop et al. 2005, Mehlhop und Diamond 2006). 

Weitere Bestandteile des angeborenen Immunsystems wie NK-Zellen (Hershkovitz et al. 

2009, Zhang et al. 2010), Neutrophile Leukozyten (Bai et al. 2010, Cantile et al. 2001, 

Crichlow et al. 2004) und γδ T-Zellen (Wang et al. 2003, Welte et al. 2008) sind an der 

Reaktion auf eine WNV-Infektion beteiligt. 

 

 

1.6.2 Adaptives Immunsystem 

 

Die Aktivierung der humoralen und zellulären Immunantwort ist für die weitere effektive 

Kontrolle der viralen Infektion, die Virusbeseitigung und den Schutz vor erneuter Infektion 

essentiell. 

 

Im Zuge der humoralen Immunität sind die WNV neutralisierenden Antikörper von 

besonderer Wichtigkeit. Das E-Protein der Virushülle ist hierbei das Hauptzielantigen 

(Colombage et al. 1998, Throsby et al. 2006). Es wurden zwar auch Antikörper gegen prM 

(Vázquez et al. 2002) und das Nichtstrukturprotein NS1 nachgewiesen, jedoch handelte es 

sich hierbei nicht um neutralisierende Antikörper (Chung et al. 2007). 

Die besondere Bedeutung der B-Zell-Effektorantwort im Zusammenhang mit einer WNV-

Infektion konnte bereits in mehreren Infektionsstudien nachgewiesen werden. So wurde etwa 

in B-Zell-defizienten Mäusen oder solchen, die nicht in der Lage waren IgM zu bilden, eine 

erhöhte Mortalitätsrate ermittelt (Chambers et al. 2008, Diamond et al. 2003a und b). 

Speziell Immunglobulin M ist für eine frühe Kontrolle einer WNV-Infektion wichtig. Bereits vier 

Tage nach einer Infektion kann im Serum infizierter Mäuse ein hoher Anteil an 

neutralisierendem WNV-spezifischem IgM gefunden werden (Diamond et al. 2003b). IgM-

spezifische Neutralisierung in einer frühen Phase der Infektion könnte in vielen Fällen 

beitragen, ein weiteres Ausbreiten des Virus ins ZNS zu verhindern bzw. einzuschränken. 

Die IgG-Antwort auf eine WNV-Infektion wird erst zu einem späteren Zeitpunkt wirksam, da 

neutralisierende IgG gegen WNV in der Regel erst 8 bis 15 Tage nach einer Infektion 

detektiert werden können. Zu diesem Zeitpunkt hat sich das Virus oft bereits aus der 

Peripherie ins ZNS ausgebreitet (Diamond et al. 2003a, Oliphant et al. 2007). Das E-Protein 

stellt das primäre Ziel für die Mehrheit der neutralisierenden Antikörper dar. Epitope-

Mapping-Studien haben insgesamt über 12 Epitope, verteilt über alle drei strukturellen 

Domänen des E-Proteins, ermittelt. Die an diese Domänen bindenden Antikörper weisen 

unterschiedliches Neutralisationspotential auf. Am wirksamsten sind monoklonale Antikörper, 
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welche an Epitope der Domäne III binden können (Beasley und Barrett 2002, Oliphant et al. 

2005, Sánchez et al. 2005). 

 

Die T-Zell-Immunantwort ist ein weiterer wichtiger Bestandteil der adaptiven Immunantwort 

auf virale Infektionen. CD8+ T-Zellen, auch zytotoxische T-Lymphozyten (CTL) genannt, sind 

für den Schutz gegen eine WNV-Infektion essentiell (Purtha et al. 2007, Shrestha und 

Diamond 2004). Ihre Effektorfunktion beruht auf zwei unterschiedlichen Strategien. Zum 

einen sezernieren sie Zytokine und zum anderen wirken sie zytotoxisch, wodurch es zur 

Eliminierung einer virusbefallenen Zelle kommt. Die Zytokine schließen Interferon-γ (IFN-γ) 

und Tumornekrosefaktor (TNF) ein (Brien et al. 2007, Shrestha et al. 2006). Die 

ausgeschütteten zytotoxischen Proteine sind Granzym B und Perforin (Ramos et al. 2012, 

Shrestha und Diamond 2006). Es wird angenommen, dass CTL die erfolgreiche Replikation 

von WNV zusätzlich unterdrücken, indem sie infizierte Zellen durch die Sekretion von 

Perforin direkt abtöten. Außerdem erfolgt die Zelloberflächenexpression von TRAIL (TNF-

related apoptosis-inducing ligand) und eine Interaktion des FasL mit dem Fas-Rezeptor 

(Shrestha et al. 2012, Shrestha und Diamond 2007). Auch CD4+ T-Zellen werden bei der 

Virusabwehr benötigt. So zeigen Mäuse ohne CD4+ T-Zellen oder ohne MHC-II-Moleküle 

eine höhere Anfälligkeit für experimentelle Infektionen mit WNV (Sitati und Diamond 2006). 

CD4+ T-Zellen helfen B-Zellen bei der Ausbildung der humoralen Immunantwort (Bishop und 

Hostager 2001), unterstützen die CD8+ T-Zell-Antwort, segregieren Zytokine (Sitati und 

Diamond 2006) und sind auch in der Lage infizierte Zellen direkt zu töten (Heller et al. 2006). 

Bei der Immunabwehr von WNV-Infektionen ist eine Beteiligung von regulatorischen T-Zellen 

wahrscheinlich. In einer Studie an Mäusen konnte nach Depletion regulatorischer T-Zellen 

ein erhöhtes Risiko der Entwicklung von WNV-induzierten Krankheitssymptomen, sowie eine 

höhere Rate an letalen WNV-Infektionen und eine verstärkte Expansion von CTL beobachtet 

werden (Lanteri et al. 2009). 

 

 

1.7 Diagnostik und Behandlung 

 

Der Nachweis einer WNV-Infektion ist mittels verschiedener Methoden möglich. 

Serologische Tests stellen aber die Hauptmethode zur WNV-Diagnose dar. Diese beruhen 

auf der Detektion von anti-E Antikörpern (Martin et al. 2002). Hierbei ist allerdings zu 

beachten, dass bei Antikörpern Kreuzreaktionen mit anderen Flaviviren auftreten können 

(Calisher et al. 1989, Hirota et al. 2010, Niedrig et al. 2007). Es ist daher notwendig, 

serologisch positive Ergebnisse mit einem Neutralisationstest zu bestätigen. Als 

Standardtest wird hierfür meistens der Plaque-Neutralisationstest (Plaque Reduction 
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Neutralization Test, PRNT90), als Bestätigungstest oder zur Titration, angewendet. Weitere 

Nachweismöglichkeiten sind der Immunfluoreszenzassay (IFA) (Malan et al. 2003), ELISA 

oder Westernblot. Zum Nachweis von IgM und IgG sind verschiedene ELISA verfügbar. Für 

den IgM-Antikörpernachweis im Liquor (Cerebrospinalflüssigkeit) und/oder in Serumproben 

gibt es sogenannte MAC-ELISA (IgM antibody-capture ELISA). Diese Methode erlaubt die 

Detektion einer akuten WNV-Infektion, da IgM bereits früh nach der Infektion gebildet 

werden. Bei schwereren Krankheitsverläufen (Enzephalitis) war es jedoch sogar möglich 

IgM-Antikörper mehr als ein Jahr nach der Erkrankung zu detektieren (Roehrig et al. 2003). 

MAC-ELISA sind für Menschen und Pferde validiert (Long et al. 2006, Martin et al. 2000). 

Auch der indirekte IgG-ELISA ist für die Verwendung von menschlichen Serumproben 

etabliert und für die Anwendung bei Pferden adaptiert worden (Davis et al. 2001, Johnson et 

al. 2000). 

Ein direkter Nachweis von WNV kann durch die Detektion viraler RNA aus Blut-, Liquor- und 

Gewebeproben erfolgen. Da die virämische Phase meist ein paar Tage nach einer WNV-

Infektion beginnt, nur von kurzer Dauer ist und den sichtbaren Krankheitssymptomen oft 

vorausgeht (Johnson et al. 2000) gestaltet sich die Virus- oder RNA-Detektion schwieriger je 

später der Zeitpunkt der Untersuchung. Somit sind direkte Nachweismethoden üblicherweise 

auf eine frühe Infektionsphase, in der genügend Virusmaterial in den Proben vorhanden ist 

(Lanciotti et al. 2000), beschränkt (Pkt. 1.5.3, Abbildung 8). Auch die 

elektronenmikroskopische Darstellung von Viruspartikeln gelingt nur bei ausreichend hohem 

Virustiter im Untersuchungsmaterial. Möglichkeiten zur direkten WNV-Detektion sind 

Virusisolierung in der Zellkultur und Plaque-Titration, konventionelle RT-PCR, real-time RT-

PCR (Lanciotti et al. 2000, Papin et al. 2004), Antigendetektion (Padgett et al. 2006) und 

Immunhistochemie (Cantile et al. 2001, Jozan et al. 2003). 

 

Zurzeit gibt es keine effektiven Therapiemöglichkeiten und somit sind nur unterstützend 

wirkende Behandlungen bei einer Erkrankung möglich. Bei der Suche nach WNV-Inhibitoren 

sind bisher die vielversprechendsten Ergebnisse mit einer auf Antikörper basierenden 

Therapie erzielt worden (Ben-Nathan et al. 2003, Ben-Nathan et al. 2009, Engle und 

Diamond 2003, Julander et al. 2005, Oliphant et al. 2005). Andere Ansätze zur Therapie von 

WNV-Infektionen sind die Gabe von IFN-α (Samuel und Diamond 2005, Sayao et al. 2004), 

Nukleinsäure-Inhibitoren (Deas et al. 2007), siRNA (Bai et al. 2005, Kumar et al. 2006) und 

Small-Molecules-Inhibitoren (Puig-Basagoiti et al. 2005). 
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1.8 Impfstoffe und Vorbeugung 

 

Im Moment ist noch kein Impfstoff für den Einsatz im Menschen verfügbar. Mehrere 

Impfstoff-Kandidaten befinden sich gerade in der Entwicklung und werden in klinischen 

Studien getestet. Davon ist der attenuierte rekombinante Lebendimpfstoff Chimerivax-WN02 

von Acambis auf Basis des Gelbfiebervirusimpfstammes YFV-17D am weitesten entwickelt 

(Biedenbender et al. 2011, Monath et al. 2006). Weitere Ansätze sind rekombinante Subunit-

Impfstoffe (Lieberman et al. 2007, Watts et al. 2007), DNA-Vakzine (Ledgerwood et al. 2011, 

Martin et al. 2007) und ein pseudoinfektiöses WNV, genannt RepliVAX WN. Eingeführte 

Mutationen und/oder Deletionen im viralen C-Strukturprotein sollen dieses Virus daran 

hindern, nach erfolgreichem Eindringen in eine Zelle, den Replikationszyklus vollständig zu 

durchlaufen (Nelson et al. 2011, Widman et al. 2009, 2010). Des Weiteren werden virale 

Vektoren untersucht, wie rekombinantes Kanarienpockenvirus (Minke et al. 2004), 

Masernvirus-Vektoren (Desprès et al. 2005) und Lentivirus-Vektoren (Iglesias et al. 2006). 

Neben dem bereits erwähnten Chimerivax-WN02 werden noch andere Varianten von 

Chimären mit Denguevirus WNV/DEN4 (Plentev et al. 2002, 2006) und DEN2/WNV (Huang 

et al. 2005) getestet. Auch inaktiviertes Virus und attenuierte WNV-Isolate, wie das KUNV 

(Hall et al. 2003) werden untersucht. An der Entwicklung von rekombinanten 

Proteinimpfstoffen wird ebenfalls gearbeitet. Protektive Eigenschaften konnten im Tiermodell 

für die Ektodomäne und die Domäne DIII des E-Strukturproteins nachgewiesen werden (Chu 

et al. 2007, Martina et al. 2008b, Wang et al. 2001). 

In der Veterinärmedizin sind bereits Vakzinen gegen das WNV zugelassen und kommerziell 

erhältlich. Ein in Fort Dodge Animal Health (Princeton, USA) entwickelter und durch die 

European Medicines Agency zugelassener Impfstoff Equip WNV® (früher Duvaxyn WNV®) 

besteht aus Formalin-inaktiviertem WNV (Ng et al. 2003). Auf dem Markt befindet sich ein 

zweiter Impfstoff mit inaktiviertem Virus (Stamm VM-2, West Nile Innovator®), dem ein 

spezielles Adjuvantsystem MetaStim® (SP-Öl) zugefügt wurde. Das Adjuvantsystem soll eine 

Verbesserung der Stimulation des Immunsystems bewirken. Ein weiterer lizensierter 

Impfstoff für den Gebrauch im Pferd ist ein Produkt aus WNV und dem Gelbfieberimpfstamm 

YFV-17D, der sich zurzeit auch in klinischen Studien für die Anwendung beim Menschen 

befindet und mit der ChimeriVAX-Technologie hergestellt wurde (Guy et al. 2010). Eine auf 

dem Canarypox-Vektor-Modell basierende Vakzine ist der kommerziell erhältliche Impfstoff 

ALVAC®-WNV (El Garch et al. 2008, Minke et al. 2004). Außerdem ist in den USA eine DNA-

Vakzine zugelassen, deren Transfektion in Wirtszellen zur Bildung von VLPs (virus-like 

particles) führt. Immunisierte Pferde entwickelten WNV-spezifische zelluläre und humorale 

Immunität (Davis et al. 2001). Diese Zulassung ist jedoch nicht mit den europäischen 

Standards vergleichbar, da in den Vereinigten Staaten Zulassungen im Veterinärbereich 
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aufgrund anderer Anforderungen bzw. Beurteilungskriterien, insbesondere bei der 

Wirksamkeitsprüfung der Impfstoffe, schneller erteilt werden. 

 

Im Moment ist die Hauptstrategie zur Vorbeugung von WNV-Infektionen die Kontrolle von 

Stechmücken. In den USA haben viele Gesundheitsbehörden Programme ins Leben 

gerufen, die proaktive und reaktive Strategien verfolgen. Proaktive Programme konzentrieren 

sich auf die Verhinderung von menschlichen Infektionen durch die Kontrolle und 

Eindämmung der Mückenpolulationen in Risikogebieten. Haben jedoch bereits Infektionen in 

größerem Umfang stattgefunden, wird „reaktiv“ versucht, zusätzliche Infektionen zu 

verhindern (Reisen und Brault 2007). In beiden Fällen kommen Insektizide zum Einsatz. 

Außerdem wird von Behörden empfohlen sich beim Aufenthalt im Freien durch lange 

Bekleidung und/oder dem Auftragen von Repellentien zu schützen. 

 

 

2. MODIFIZIERTES VACCINIAVIRUS ANKARA ALS VEKTORIMPFSTOFF 

 

Der Einsatz von Impfstoffen ist eine wichtige medizinische Errungenschaft. Immunisierte 

Personen können einen präventiven Schutz gegen den jeweiligen Erreger aufbauen und sind 

so, bei Kontakt mit dem Pathogen, vor dem Ausbruch einer Erkrankung geschützt. Es gibt 

diverse Arten von Impfstoffen, wie Totimpfstoffe, Lebendimpfstoffe oder DNA-Impfstoffe. 

Eine in der letzten Zeit immer mehr in den Fokus der Impfstoffentwicklung geratene Variante 

sind rekombinante Virusvektoren. Diese Vektorimpfstoffe entstehen dadurch, dass in das 

Erbgut eines infektionsfähigen Virus fremde Erbinformation, z.B. die eines anderen Virus, 

Bakteriums oder Einzellers eingebaut wird. Dies bewirkt nach Infektion mit dem Vektorvirus 

die Expression des Fremd-Gens und ermöglicht im Wirt eine Immunantwort gegen das 

Fremdantigen. Im Idealfall kann der so hergestellte Impfstoff einen Schutz gegen den 

Erreger induzieren, dessen Erbgut dem Vektorvirus hinzugefügt wurde, ohne dabei starke 

Nebenwirkungen auszulösen. Ein wichtiger Vertreter von viralen Vektoren in der 

Impfstoffentwicklung ist das Modifizierte Vacciniavirus Ankara (MVA) (Kreijtz et al. 2013, Volz 

und Sutter 2013). 

 

MVA ist ein hoch attenuiertes, zur Familie der Pockenviren gehörendes, Vacciniavirus. Die 

Poxviridae werden in zwei Unterfamilien aufgeteilt, die Chordopoxvirinae 

(Wirbeltierpockenviren) und die Entomopoxvirinae (Insektenpockenviren). Neben den 

Tierpockenspezies (Kuhpocken-, Kaninchenpocken-, Pferdepocken-, Mäusepocken-, 

Affenpocken- und Kamelpockenvirus) und dem heute ausgerotteten Erreger der 

menschlichen Pockenerkrankung, dem Variolavirus, werden Vacciniaviren den 
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Chordopoxvirinae und darin dem Genus der Orthopoxviren zugeordnet (Mayr et al. 1975,  

Moss 2007). Vacciniaviren (VACV) sind die bisher am intensivsten erforschten Pockenviren. 

Sie wurden im Rahmen der Pockeneradikationskampagne der Weltgesundheitsorganisation 

(WHO) als Impfstoff eingesetzt (Fenner 1982, Hochstein-Mintzel et al. 1975, Stickl et al. 

1974). Pockenviren gehören zu den größten bekannten Viren und haben eine 

ziegelsteinähnliche Form. Im Inneren befindet sich ein hantelförmiges Core (Abbildung 9) mit 

zwei Lateralkörperchen und das Genom ist ein doppelsträngiges DNA-Molekül. Abhängig 

vom Reifestatus besitzen sie ein oder zwei Lipidhüllen. 

 

 

 

 

Abbildung 9: Cryo-EM Aufnahmen von Vacciniaviruspartikeln. Maßstabsbalken: 200 nm. Quelle: 

Cyrklaff et al. 2005. 

 

 

Das MVA entstand durch über 570 serielle Passagen des Ausgangsvirus CVA 

(Chorioallantois Vacciniavirus Ankara) auf primären Hühnerembryofibroblasten (CEF, 

chicken embryo fibroblasts) (Mayr et al. 1975). Während dieser Zeit verlor das Virus etwa 

15% (31 Kilobasenpaare; kb) seiner ursprünglichen genetischen Information und sein 

Genom schrumpfte von 208 kb des Wildtyp CVA auf ~177 kb des heutigen MVA. Die 

dadurch entstandenen sechs großen Deletionen (Del I – Del VI) im MVA-Genom befinden 

sich hauptsächlich in den beiden terminalen Regionen des Genoms, der Right und der Left 

Terminal Region (Abbildung 10) und betreffen überwiegend Gene, die für die Regulation der 

Virus/Wirt-Interaktion zuständig sind (Meyer et al. 1991, Wyatt et al. 1998). Durch diesen 

Verlust an genetischer Information entwickelte das MVA einen stark attenuierten Phänotyp 

(Meyer et al. 1991). Dieser äußert sich darin, dass das Virus nicht mehr oder nur zu einem 

sehr geringen Ausmaß in der Lage ist, in Säugetierzellen zu replizieren. Das eingeschränkte 

Wirtsspektrum beschränkt sich fast ausschließlich auf Hühnerembryofibroblasten und die 
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Hamsterzelllinie BHK-21 (Carroll und Moss 1997, Drexler et al. 1998). Das Virus erwies sich 

auch in vivo bei immunsupprimierten Tieren als nicht-pathogen bzw. avirulent (Mayr et al 

1978, Stittelaar et al. 2001, Werner et al. 1980). Außerdem erfolgte während der 1970er 

Jahre die Anwendung in großen Feldstudien als Impfstoff gegen das Variolavirus an über 

120.000 Impflingen (Mayr et al. 1975, Mayr et al. 1978, Stickl et al. 1974). MVA ist zwar nach 

wie vor in der Lage Säugerzellen zu infizieren, der Replikationszyklus verläuft aber in nicht-

permissiven Zellen abortiv, mit einem Block während der Morphogenese und somit ohne die 

Generierung neuer Viruspartikel. Wichtig für die Verwendung von MVA als Vektorimpfstoff ist 

hierbei, dass die virale Genexpression und Proteinsynthese vollständig ablaufen. 

 

 

 

 

Abbildung 10: Schematische Darstellung des MVA-Genoms. LTR: left terminal region; RTR: right 

terminal region. 

 

 

Die Verwendung von MVA als Expressionsvektor und Vektorimpfstoff wurde durch die 

Attenuierung und besondere biologische Sicherheit des Virus unterstützt. Der Verlust 

genetischer Information in sehr gut charakterisierten Bereichen des MVA-Genoms 

ermöglichte es, ausgewählte Deletionsorte zur präzisen Insertion fremder DNA zu 

verwenden (Drexler et al. 2004, Sutter und Moss 1992). 

Aufgrund besonderer Charakteristika, wie biologischer Sicherheit, effizienter Genexpression 

und Proteinsynthese, Fähigkeit zur Anregung antigenspezifischer Immunantworten, der 

Möglichkeit fremde Gene stabil zu inserieren und Vektorviren im industriellen Maßstab zu 

produzieren, erscheint MVA bestens zur Erforschung und Entwicklung neuer rekombinanter 

Impfstoffe geeignet. Ergebnisse aus zahlreichen Studien in verschiedenen Tiermodellen 

unterstützen diese Entwicklungen (Amara et al. 2001, Bender et al. 1996, Gherardi et al. 

2004, Sutter et al. 1994) und es befinden sich bereits mehrere MVA-Impfstoffe in den 

klinischen Erprobungsphasen I-III. 
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3. ZIELSETZUNG DER ARBEIT 

 

Das WNV hat sich durch seine rasche, weltweite Verbreitung und vor allem durch das 

mittlerweile auch in Europa erhöhte Risiko von WNV-Infektionen mit schweren 

Verlaufsformen, sowie einer Zunahme von registrierten Fällen als ein ernstzunehmender 

Zoonose-Erreger etabliert. Da bisher keine effizienten Therapiemöglichkeiten bzw. für den 

Einsatz im Menschen zugelassene Impfstoffe verfügbar sind, bleibt die Entwicklung von 

neuen Impfstoffen ein wichtiges Ziel der infektionsmedizinischen Forschung, um einen 

bestmöglichen Schutz vor WNV-Infektionen so rasch wie möglich zu gewährleisten. 

Im Rahmen dieser Arbeit sollten rekombinante Vektorimpfstoffe gegen das WNV auf Basis 

des Modifizierten Vacciniavirus Ankara (MVA) entwickelt und vergleichend charakterisiert 

werden. Daraus sollte sich die Möglichkeit ergeben, für die weitere Impfstoffentwicklung 

geeignete Kandidaten auszuwählen. Hierfür galt es zunächst die Zielantigene des WNV zu 

ermitteln und verschiedene Antigen-Varianten als Genkonstrukte anzufertigen. Diese sollten 

zur Herstellung rekombinanter MVA verwendet werden. Nach der Konstruktion, klonaler 

Isolierung und Amplifikation ausgewählter rekombinanter Virusvektoren sollten diese einer 

eingehenden in vitro Charakterisierung unterzogen werden und danach eine Analyse der 

Immunogenität der Impfstoffe im Mausmodell erfolgen. 
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III. MATERIAL UND METHODEN 
 

 

1. CHEMIKALIEN UND REAGENZIEN 

 

Bezeichnung Hersteller/Bezugsquelle 

Aceton Carl Roth (Karlsruhe) 

Acrylamid/Bisacrylamid Carl Roth (Karlsruhe) 

Agarose peqGOLD PeqLab (Erlangen) 

Ammoniumperoxodisulfat (APS) Sigma-Aldrich (Schnelldorf) 

Ampicillin Sigma-Aldrich (Schnelldorf) 

β-Mercaptoethanol Sigma-Aldrich (Schnelldorf) 

Bromphenolblau Merck (Darmstadt) 

BSA Sigma-Aldrich (Schnelldorf) 

DMSO Carl Roth (Karlsruhe) 

EDTA Roche (Mannheim) 

Ethanol Carl Roth (Karlsruhe) 

Fluorescent Mounting Medium Dako North America Inc. (Carpinteria, USA) 

Gel Red Biotrend (Köln) 

Glycerin Merck (Darmstadt) 

Glycin AppliChem (Darmstadt) 

Ionomycin Merck Biosciences (Schwalbach) 

Isopropanol Carl Roth (Karlsruhe) 

Magermilchpulver AppliChem (Darmstadt) 

Methanol Carl Roth (Karlsruhe) 

Natriumacetat Sigma-Aldrich (Schnelldorf) 

Natriumchlorid Merck (Darmstadt) 

Natriumdodecylsulfat (SDS) Sigma-Aldrich (Schnelldorf) 

PMA (Phorbol-12-myristad-13-acetat) Merck Biosciences (Schwalbach) 

Proteaseinhibitor Roche Diagnostics (Penzberg) 

Proteinase K Merck (Darmstadt) 

Red Blood Cell Lysis Buffer Sigma-Aldrich (Schnelldorf) 

Roti-Load1 Protein-Probenauftragspuffer Carl Roth (Karlsruhe) 

TEMED Sigma-Aldrich (Schnelldorf) 

TMB-Substrat (Tetramethylbenzidin) Sigma-Aldrich (Schnelldorf) 

Tris Appli Chem (Darmstadt) 

TrueBlue Peroxidase Reagent KPL (Gaithersburg, USA) 

Tween-20 Sigma-Aldrich (Schnelldorf) 

Stop Reagent für TMB-Substrat (450 nm) Sigma-Aldrich (Schnelldorf) 

1 kb DNA Ladder New England Biolabs (Schwalbach) 

 

 

Tabelle 3: Liste der verwendeten Chemikalien und Reagenzien sowie deren Bezugsquelle 
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2. PUFFER UND LÖSUNGEN 

 
 
 

Bezeichnung Zusammensetzung 

36% (v/v) Sucrose 208 g Sucrose auf 

500 ml mit 10mM Tris pH 9 sterilfiltriert 

Blockinglösung Westernblot  100 ml PBS 

5% (w/v) Magermilchpulver 

0,05% (v/v) Tween-20 

Blockingpuffer ELISA 150 ml PBS 

7,5 g Sucrose 

1,5 g BSA 

Blottingpuffer (= Transferpuffer) 

Westernblot 

  80 ml Towbin-Puffer 

200 ml Methanol 

auf 1 L mit Reinstwasser aufgefüllt 

Impfstoffpuffer 140 mM NaCl auf 

500 ml mit 10 mM Tris autoklaviert 

pH 7,4 

LB-Medium 1% Trypton 

1% NaCl 

0,5% Hefeextrakt in Aqua dest. autoklaviert 

PBS 1,5 mM KH2PO4 

0,8 mM Na2HPO4 

137 mM NaCl 

3 mM KCl 

pH 7,4 

PBS-T 1 L PBS 

0,05% Tween-20 

Proteinase K 1 mg/ml in 1,5 M Kalziumchlorid 

SDS-Lysepuffer (1-fach) 62,5 mM Tris-HCl 

0,01% (w/v) Bromphenolblau 

2% (w/v) SDS 

3,2% (v/v) β-Mercaptoethanol 

10% (v/v) Glycerin 

pH 6,8 

SDS-PAGE-Laufpuffer (5-fach) 72,5 g Glycin 

15,2 g Tris 

25 ml SDS (20%) 

auf 1 L mit Reinstwasser aufgefüllt 

TAE-Puffer (20-fach) 0,32 M Tris 

2,3% (v/v) Essigsäure 

25 mM EDTA pH 8,0  

TEN-Puffer (10-fach) 1 mM NaCl 

10 mM EDTA 

100 mM Tris pH 7,5 
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Towbin-Puffer    24 g Tris 

112,6 g Glycin  

auf 1 L mit Reinstwasser aufgefüllt 

Tris 10 mM bis 2 M, diverse pH-Werte 

 

 

Tabelle 4: Liste der verwendeten Puffer und Lösungen sowie deren Zusammensetzung 

 

 

3. KOMMERZIELLE KITS 

 

Bezeichnung Hersteller/Bezugsquelle 

mIFN-γ ELISpot Mabtech (Nacka Strand, Schweden) 

NucleoBond Xtra Midi Plus Macherey-Nagel (Düren) 

NucleoSpin BloodQuickPure DNA-Extraktion Macherey-Nagel (Düren) 

NucleoSpin Plasmid Macherey-Nagel (Düren) 

SuperSignal West Dura Chemiluminescent 

Substrate 

Thermo Scientific (Rockford, USA) 

X-tremeGene HP DNA Transfection Reagent Roche (Mannheim) 

PNGase F Deglykosylierungskit New England Biolabs (Schwalbach) 

 

 

Tabelle 5: Liste der verwendeten kommerziell erhältlichen Kits 

 

 

4. NÄHRMEDIEN UND ZUSÄTZE 

 

Bezeichnung Hersteller/Bezugsquelle 

DMEM (Dulbecco’s Modified Eagle’s 

Medium) inkl. L-Glutamin 

Sigma-Aldrich (Schnelldorf) 

FCS (fötales Kälberserumalbumin) Sigma-Aldrich (Schnelldorf) 

HEPES PAA Laboratoires (Cölbe) 

MEM (Minimum Essential Medium) inkl. L-

Glutamin 

Sigma-Aldrich (Schnelldorf) 

NEAA (Nicht Essentielle Aminosäuren) Sigma-Aldrich (Schnelldorf) 

Penizillin/Streptomyzin (100x) Sigma-Aldrich (Schnelldorf) 

RPMI-1640 Sigma-Aldrich (Schnelldorf) 

Trypsin-EDTA Sigma-Aldrich (Schnelldorf) 

 

 

Tabelle 6: Liste der verwendeten Nährmedien, der Zusätze und deren Hersteller 
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5. ZELLLINIEN 

 

Bezeichnung Beschreibung Medium 

CEF Primäre Hühnerembryo-

fibroblasten aus bebrüteten 

SPF-Hühnereiern 

MEM (+ L-Glutamin) 

10% FCS Kulturmedium / 

2% FCS Infektionsmedium 

1% Pen/Strep 

1% NEAA 

DF-1 Hühnerembryofibroblasten-

zelllinie 

DMEM (+ L-Glutamin) 

10% FCS Kulturmedium / 

2% FCS Infektionsmedium 

1% Pen/Strep 

1% NEAA 

1% HEPES 

Equine Fibroblasten Primäre Pferdefibroblasten 

aus Cornea 

DMEM (+ L-Glutamin) 

10% FCS Kulturmedium / 

2 % FCS Infektionsmedium 

1% Pen/Strep 

1% NEAA 

1% HEPES 

HaCaT Humane 

Keratinozytenzelllinie 

DMEM (+ L-Glutamin) 

10% FCS Kulturmedium / 

2% FCS Infektionsmedium 

1% Pen/Strep 

1% NEAA 

1% HEPES 

HeLa Humane Epithelzelllinie MEM (+ L-Glutamin) 

10% FCS Kulturmedium / 

2% FCS Infektionsmedium 

1% Pen/Strep 

1% NEAA 

 

 

Tabelle 7: Liste der verwendeten Zelllinien und deren Kultivierungsmedium 

 

 

6. BAKTERIEN 

 

Die in dieser Dissertation durchgeführten Arbeiten mit Bakterien wurden alle mit dem 

chemisch kompetenten Escherichia Coli-Stamm TOP10 NEB 10 beta competent high 

efficiency der Firma New England Biolabs ausgeführt. 
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7. PLASMIDE 

 

Bezeichnung Konstruktion Herkunft 

pIIIH5RedK1L Ausgangsvektor mit dem 

Selektionsmarker mCherry 

zwischen MVA-DelIII-Flank1 und 

Flank1-repeat 

Prof. Dr. Gerd Sutter 

pIIIH5RedK1L-WNVEsol Ausgangsvektor mit der 

Gensequenz des WNV E-Proteins 

ohne dessen TM* zwischen MVA-

DelIII-Flank2 und Flank1-repeat  

GeneArt (Regensburg) 

pIIIH5RedK1L-

WNVETMC 

Ausgangsvektor mit der 

Gensequenz des WNV E-Proteins, 

dessen TM* durch jene des E2-

Proteins aus CHIKV ersetzt wurde, 

zwischen MVA-DelIII-Flank2 und 

Flank1-repeat  

GeneArt (Regensburg) 

pIIIH5RedK1L-

WNVETMV 

Ausgangsvektor mit der 

Gensequenz des WNV E-Proteins, 

dessen TM* durch jene des A56-

Proteins aus VACV ersetzt wurde, 

zwischen MVA-DelIII-Flank2 und 

Flank1-repeat 

GeneArt (Regensburg) 

pIIIH5RedK1L-

WNVprME1 

Ausgangsvektor mit den 

Gensequenzen der WNV Proteine 

prM und E zwischen MVA-DelIII-

Flank2 und Flank1-repeat, die 

Codon Usage wurde auf VACV 

optimiert 

GeneArt (Regensburg) 

pIIIH5RedK1L-

WNVprME2 

Ausgangsvektor mit den 

Gensequenzen der WNV Proteine 

prM und E zwischen MVA-DelIII-

Flank2 und Flank1-repeat, ohne 

Optimierung der Codon Usage 

GeneArt (Regensburg) 

*Transmembrandomäne 

 

 

Tabelle 8: Liste der verwendeten Plasmide, deren Zusammensetzung und deren Herkunft 
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8. ENZYME 

 

Bezeichnung Hersteller/Bezugsquelle 

Restriktionsendonukleasen New England Biolabs (Schwalbach) 

PNGase F New England Biolabs (Schwalbach) 

Taq DNA Polymerase Life Technologies (Darmstadt) 

 

 

Tabelle 9: Liste der verwendeten Enzyme sowie deren Bezugsquelle 

 

 

9. VIREN 

 

Bezeichnung Charakteristik Herkunft 

MVA-F6 Wildtypvirus, Isolat F6 Prof. Dr. Gerd Sutter 

MVA-WNVprME1 Rekombinantes MVA-F6 mit den (auf 

VACV codon-optimierten) prME-

Sequenzen von WNV-NY99 in Del III 

integriert; unter der Kontrolle des 

Promotors PmH5 

hergestellt in dieser Arbeit 

MVA-WNVprME2 Rekombinantes MVA-F6 mit den 

prME-Sequenzen von WNV-NY99 in 

Del III integriert; unter der Kontrolle 

des Promotors PmH5 

hergestellt in dieser Arbeit 

MVA-WNVEsol Rekombinantes MVA-F6 mit der 

Sequenz des E-Proteins von WNV-

NY99 ohne dessen TM* in Del III 

integriert; unter der Kontrolle des 

Promotors PmH5 

hergestellt in dieser Arbeit 

MVA-WNVETMC Rekombinantes MVA-F6 mit der 

Sequenz des E-Proteins von WNV-

NY99, dessen TM* durch jene des 

E2-Proteins aus CHIKV ersetzt 

wurde, in Del III integriert; unter der 

Kontrolle des Promotors PmH5 

hergestellt in dieser Arbeit 

MVA-WNVETMV Rekombinantes MVA-F6 mit der 

Sequenz des E-Proteins von WNV-

NY99, dessen TM* durch jene des 

A56-Proteins aus VACV ersetzt 

wurde, in Del III integriert; unter der 

Kontrolle des Promotors PmH5 

hergestellt in dieser Arbeit 

*Transmembrandomäne 

 

 

Tabelle 10: Liste der verwendeten Viren und ihrer Charakteristika 
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10. ANTIKÖRPER 

 

 

10.1 Nicht-konjugierte Antikörper 

 

Bezeichnung Spezifität Herkunft Arbeitsverdünnung Bezugsquelle 

Anti-Actin Maus 

Actin 

Kaninchen 

monoklonal 

1:2000 Sigma-Aldrich (St. Louis) 

Anti-VACV 

Lister 

VACV 

Virionen 

Kaninchen 

polyklonal 

1:2000 Acris Antibodies (Herford) 

Anti-WNV 

Clone 7H2 

West-Nil-

Virus 

Protein E 

Maus 

monoklonal 

1:10000 BioReliance (Rockville, 

USA) 

 

 

Tabelle 11: Liste der verwendeten nicht-konjugierten Antikörper 

 

 

10.2 Konjugierte Antikörper 

 

Bezeichnung Spezifität Herkunft Markierung Verdünnung Bezugsquelle 

Anti-Mouse 

IgG 

Maus IgG Ziege 

polyklonal 

POD 1:10000 Sigma-Aldrich (St. 

Louis) 

POD-

conjugated 

AffiniPure  

Kaninchen 

IgG 

Ziege 

polyklonal 

POD 1:5000 Dianova (Hamburg) 

Alexa Fluor 

488 F(ab)2 

fragment 

Maus IgG Ziege 

polyklonal 

Alexa Fluor 

488 

1:1000 Life Technolgies 

(Darmstadt) 

 

 

Tabelle 12: Liste der verwendeten konjugierten Antikörper 

 

 

11. SYNTHETISCHE OLIGONUCLEOTIDE (PRIMER) 

 

Alle verwendeten Primer wurden von der Firma Eurofins MWG Operon (Ebersberg) nach 

Auftrag synthetisiert und geliefert. 
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Bezeichnung Sequenz 5’ → 3’ Verwendung 

III-3’ 

III-5’ 

GTACCGGCATCTCTAGCAGT 

TGACGAGCTTCCGAGTTCC 

Primerpaar für die Flank-PCR der 

Del III in MVA 

prMME-31 

prMME-32 

CACTTCTCGGTTCACAATCTACTG 

GACAGTAAACGCGACAGATGTAAC 

Primerpaar für die Kontroll-PCR 

zur Insertion von prME1 in Del III 

prMME-for 

prMME-rev 

TGTGTGATCCAAGACATTCCTC 

TGAGAAACCCTGGATATGCTCT 

Primerpaar für die Kontroll-PCR 

zur Insertion von prME2 in Del III 

WNVE-for 

WNVE-rev 

CATGTCCTGTATCAGCTGGTGT 

CTTGGAGTCATCCACAATTTGA 

Primerpaar für die Kontroll-PCR 

zur Insertion von E in Del III 

C7L-for 

C7L-rev 

CATGGACTCATAATCTCTATAC 

ATGGGTATACAGCACGAATTC 

Primerpaar für die C7L-Kontroll-

PCR 

 

 

Tabelle 13: Liste der verwendeten Primerpaare, deren Sequenz und Verwendungszweck 

 

 

12. SYNTHETISCHE OLIGOPEPTIDE 

 

Die verwendeten Oligopeptide wurden von der Firma Thermo Fisher Scientific bezogen. 

 

Bezeichnung Aminosäureposition Aminosäuresequenz Herkunft 

SVG9 430 - 438 SVGGVFTSV WNV E-Protein 

 

 

Tabelle 14: Liste der verwendeten Oligopeptide, deren Sequenz und Ursprung 

 

 

13. MÄUSE 

 

Bezeichnung/Mausstamm Charakteristika Bezugsquelle 

BALB/c Wildtyp-Stamm 

ingezüchtet; MHC-Haplotyp: 

H-2Kd 

Charles River (Sulzfeld) 

HLA-A2.1/HLA-DR1-transgen Die Tiere präsentieren 

Antigene nur über die 

humanen MHC Klasse I: 

HLA-A*0201 und  

MHC Klasse II: HLA-DR1 

Moleküle. 

Charles River (Sulzfeld) / 

Institut Pasteur (Paris) 

 

 

Tabelle 15: Liste der verwendeten Mausstämme sowie deren Bezugsquelle 
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14. VERBRAUCHSMATERIAL 

 

Bezeichnung Hersteller/Bezugsquelle 

Filterpapier Whatman (Maidstone, USA) 

Einwegpipetten (1 – 25 ml) Sarstedt (Nümbrecht) 

Entsorgungsbeutel Carl Roth (Karlsruhe) 

Falcon-Röhrchen (15 ml, 50 ml) Sarstedt (Nümbrecht) 

Filterspitzen (10 – 1000 µl) Sarstedt (Nümbrecht) 

Flächendesinfektionsmittel SafeSept Henry Schein (Melville, USA) 

MaxiSorp flat-bottom ELISA-Platten Nunc GmbH (Langenselbold) 

PVDF-Transfermembran VWR (Darmstadt) 

PCR-Reagiergefäße Multiply (0,2 ml) Sarstedt (Nümbrecht) 

Reagiergefäße SafeSeal (1,5 ml, 2 ml) Sarstedt (Nümbrecht) 

Sterilfilter Millipore Corp. (Bedford, USA) 

Zellkulturplatten (6-,12-,96-Loch) Sarstedt (Nümbrecht) 

Zellkulturflaschen (75 cm2, 175 cm2) Sarstedt (Nümbrecht) 

Zellsiebe 70 µm BD Biosciences (Heidelberg) 

Zellstofftücher Henry Schein (Melville, USA) 

 

 

Tabelle 16: Liste des verwendeten Verbrauchsmaterials sowie dessen Bezugsquelle 

 

 

15. SOFTWARE 

 

Bezeichnung Anbieter 

Adobe Reader 9 Adobe Systems (San Jose, USA) 

A-EL-VIS ELISpot-Software A.EL.VIS GmbH (Hannover) 

DNASTAR Lasergene 7 DNASTAR Inc. (Madison, USA) 

GraphPad Prism 5.04 GraphPad Software (La Jolla, USA) 

Magellan ELISA-Data Analysis Software Tecan GmbH (Crailsheim) 

Microsoft Office 2010 Microsoft Corp. (Redmond, USA) 

 

 

Tabelle 17: Liste der verwendeten Software und deren Anbieter 

 

 

16. GERÄTELISTE 

 

Bezeichnung Modell/Typ Hersteller/Bezugsquelle 

Blotting-Kammern Mini Trans Blot Bio-Rad (München) 

Brutschränke Galaxy 170S New Brunswick (Enfield, USA) 

Chemilumineszensimager MicroChemi DNR Bio-Imaging Systems 

(Jerusalem, Israel) 

Eierbrutschrank BSS 300 Grumbach Brutgeräte (Asslar) 
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ELISA-Reader Tecan Sunrise Tecan GmbH (Crailsheim) 

Flockeneisbereiter KF75 Migel (Mailand, Italien) 

Gefrierschrank (-20 °C) Comfort Liebherr (Ochsenhausen) 

Gefrierschrank (-80 °C) U101 innova New Brunswick Scientific (Enfield, 

USA) 

Gelkammern Mighty Small II GE Healthcare (Richmond, USA) 

Kühlschrank (4 °C) Economic 

ProfiLine 

Bosch (München) 

Liebherr (Ochsenhausen) 

Mehrkanalpipette Research Eppendorf (Hamburg) 

Mikropipetten (10 – 1000) Research plus Eppendorf (Hamburg) 

Mikroskope MBL 3200 

Axiovert 25 

Axio CSM 700  

A.Krüss Optronic (Hamburg) 

Carl Zeiss (Oberkochen) 

Carl Zeiss (Oberkochen) 

Mikrowellenherd 800 W Panasonic (Japan) 

Netzgeräte PowerPac 300 

PowerPac Basic 

Bio-Rad (München) 

Bio-Rad (München) 

PCR-Cycler PTC-200 MJ Research (Quebec, Kanada) 

pH-Meter pH Checker HANNA instruments 

(Woonsocket, USA) 

Pipettierhilfe Pipetboy acu Integra Biosciences (Fernwald) 

Scanner Elispot-Reader Perfection V700 Epson (Nagano) 

Schierlampe Blohm Bruja (Hammelburg) 

Schüttler/Roller Platform Rocker STR6 

 

Rocker Platform comp 

Roller RS-TR05 

Bibby Scientific (Staffordshire, 

UK) 

Bellco Glass (Vineland, USA) 

Phoenix Instrument (Garbsen) 

Sterilbänke HERAsafe 

UVF 

Heraeus (Hanau) 

BDK (Sonnenbühl-Genkingen) 

Thermoschüttler comfort 

5436 

Eppendorf (Hamburg) 

Eppendorf (Hamburg) 

Ultraschallgerät Sonopuls HD2200 Bandelin (Berlin) 

Vortex-Schüttler G560 Scientific Industries (NY, USA) 

Waage Mprove Sartorius (Göttingen) 

Zellzählkammer Neubauer imroved Assistent (Sondheim/Röhn) 

Zentrifugen 3-16PK 

Centrifuge 5417R 

Centrifuge 5415D 

Anvanti J-26 XP 

Optima LE-80K ZU 

Sigma (Osterode am Harz) 

Eppendorf (Hamburg) 

Eppendorf (Hamburg) 

Beckman (München) 

Beckman (München) 

 

 

Tabelle 18: Liste der verwendeten Geräte und deren Hersteller 
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17. ZELLKULTUR 

 

17.1 Präparation von CEF-Zellen (primäre Hühnerembryofibroblasten, Chicken 

 Embryo Fibroblasts) 

 

 

Die Präparation der Hühnerembryofibroblasten erfolgte aus 11 Tage bebrüteten spezifisch-

Pathogen-freien (SPF) Eiern. Die Inkubation erfolgte bei 37°C und 50% relativer 

Luftfeuchtigkeit, die Eier wurden regelmäßig gedreht. Nach dem Schieren wurden die 

Embryonen steril aus dem Ei entnommen und der Kopf sowie die Beine abgetrennt. Nach 

zweimaligem Waschen mit PBS erfolgte die mechanische Zerkleinerung der Embryonen 

mittels einer kleinen Schere. Die daraus entstandene Masse wurde in einen 

Erlenmeyerkolben überführt, je Embryo 5 ml Trypsin-EDTA zugegeben und 20 Minuten bei 

Raumtemperatur auf dem Magnetrührer bei ca. 250 rpm inkubiert. Nach dem Absetzen der 

unverdauten Gewebeteile wurde der Überstand über sterile Gaze filtriert, in 50 ml Falcons 

überführt und bei 1500 rpm für 7 Minuten bei Raumtemperatur zentrifugiert. Die so 

entstandenen Pellets wurden zusammengeführt, in frischem Medium (2,5 ml pro Embryo) 

resuspendiert und die je nach gewünschter Zelldichte (¼ bis 1 Embryo/Flasche) in 175 cm2 

Zellkulturflaschen ausgesät. 

 

 

17.2 Präparation von Milzzellen 

 

Zur Gewinnung der Milzzellen wurden die Mäuse zuerst mit Isofluran narkotisiert und danach 

durch zervikale Dislokation getötet. Nach steriler Entnahme der Milzen wurden diese in eine 

Petrischale mit 5 ml Medium (RPMI-1640) überführt, jede Milz mittels eines separaten 

Zellsiebs mit der Porengröße 70 µm durch Reibung homogenisiert und die Zellsuspension in 

ein 15 ml Falcon-Röhrchen überführt. Nach der Zentrifugation der Zellsuspension für 5 

Minuten bei 1200 rpm wurde der Überstand verworfen, das Pellet in 5 ml „Red blood cell 

lysis buffer“ resuspendiert und 5 Minuten bei Raumtemperatur inkubiert. Dieser Schritt diente 

der Lyse vorhandener Erythrozyten im Zellpellet. Anschließend wurden 5 ml Medium zum 

Stoppen der Reaktion zugegeben und ein weiterer Zentrifugationsschritt von 5 Minuten bei 

1200 rpm durchgeführt. Das so erhaltene Pellet wurde nach zweimaligem Waschen in 5 ml 

Medium aufgenommen und die Zellzahl bestimmt (Pkt. 17.5). Zur Verwendung für eine 

ELISpot-Analyse wurden 2x104 Zellen pro Vertiefung einer 96-well-ELISpot-Platte ausgesät. 
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17.3 Einfrieren und Auftauen von Zellen 

 

Die Kryokonservierung von Zellen erfolgte in Einfriermedium, das aus 90% v/v FCS und 10% 

v/v DMSO bestand. Die Zellen einer 175 cm2 Zellkulturflasche wurden mit PBS gewaschen, 

abgelöst und für 5 Minuten bei 1200 rpm zentrifugiert. Das so erhaltene Pellet wurde in 1 ml 

des Einfriermediums resuspendiert und in ein Kryoröhrchen überführt. Anschließend erfolgte 

ein rasches Abkühlen durch eine mindestens zweistündige Aufbewahrung des Röhrchens 

bei -80°C und nachfolgende Lagerung im Stickstoff-Lagertank bei -180°C in der Gasphase. 

Das Auftauen der Zellen erfolgte durch Erwärmen bei Raumtemperatur und Zugabe von 

Kulturmedium mit anschließender Zentrifugation für 5 Minuten bei 1200 rpm. Nach 

Aufnahme des erhaltenen Zellpellets in Medium wurde die Zellsuspension in 75 oder 175 

cm2 Zellkulturflaschen überführt. 

 

 

17.4 Kultivierung und Passagierung permanenter Zelllinien 

 

Die Kultivierung permanenter eukaryotischer Zelllinien erfolgte in Zellkulturflaschen 

gewünschter Größe (meist 175 cm2) in Brutschränken mit einer 5%igen CO2 Atmosphäre, 

einer relativen Luftfeuchtigkeit von 90% und einer Temperatur von 37°C. 

Für das Passagieren der Zelllinien wurde das Medium entfernt und der Zellmonolayer mit auf 

37°C vorgewärmtem Trypsin-EDTA (ca. 10 ml Trypsin pro 175 cm2 Zellkulturflasche) 5 

Minuten inkubiert. Die so abgelösten Zellen wurden resuspendiert und je nach gewünschtem 

Teilungsverhältnis in neue Zellkulturflaschen mit frischem Medium überführt. Das 

Passagieren der Zellen erfolgte alle 3 – 5 Tage. 

 

 

17.5 Bestimmung der Zellzahl 

 

Die Zellzahl wurde mit Hilfe einer Zählkammer des Typs „Neubauer improved“ bestimmt. Es 

wurden 4 große Quadrate der Zählkammer ausgezählt und die Berechnung der Zellzahl 

erfolgte folgendermaßen: 

 

∑ der gezählten Zellen aller Quadrate / 4 = Mittelwert der Zellzahl pro Quadrat 

Mittelwert der Zellzahl pro Quadrat x Verdünnungsfaktor x 104 (Kammerfaktor) = Zellzahl/ml 

Zellzahl/ml x Volumen der Zellsuspension = Gesamtzellzahl 
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18. MOLEKULAR- UND MIKROBIOLOGISCHE METHODEN 

 

18.1 Amplifikation von Plasmid-DNA 

 

18.1.1 Transformation von E. coli 

 

Um die Plasmide zu amplifizieren, wurden diese mittels Hitzeschock-Methode in kompetente 

E. coli-Stämme eingeschleust. Hierfür wurden zunächst 50 µl der Bakterien auf Eis aufgetaut 

und 1 – 10 ng Plasmid-DNA hinzugefügt. Nach einer Inkubationszeit von 30 Minuten auf Eis 

erfolgte die Hitzeschockbehandlung für 50 Sekunden bei 42°C, wodurch sich kleine, 

kurzzeitige Öffnungen der Zellwand ergeben, die das Eindringen der Plasmid-DNA in das 

Bakterium ermöglichen. Danach wurde das Reaktionsgemisch für 2 Minuten auf Eis inkubiert 

und anschließend das 10-fache Volumen SOC-Medium hinzugegeben. Um die Expression 

der plasmidkodierten Antibiotikaresistenz zu gewährleisten, wurde die Bakteriensuspension 

für eine Stunde bei 37°C unter leichtem Schütteln vorkultiviert. Nach Einengung des 

Transformationsansatzes auf ein geringeres Volumen durch Zentrifugation erfolgte das 

Ausplattieren auf antibiotikahaltigen LB-Agarplatten und deren Inkubation über Nacht bei 

37°C. 

 

 

18.1.2 Animpfen von Flüssigkulturen zur Präparation von Plasmid-DNA 

 

Um größere Mengen an Plasmid-DNA zu generieren, wurden ein oder mehrere der über 

Nacht auf den Agarplatten gewachsenen Klone mittels steriler Pipettenspitzen gepickt, 

jeweils in 3 ml LB-Medium mit Ampicillin überführt und über Nacht bei 37°C in einem 

Schüttelinkubator kultiviert. Nach Zentrifugation für 5 Minuten bei 11000 rpm erfolgte die 

Isolation der Plasmid-DNA (siehe 18.2.1) oder eine weitere Vermehrung durch Überimpfen 

von 100 µl dieser ersten Flüssigkultur in einen neuen Glaskolben mit 300 ml frischem 

antibiotikahaltigem LB-Medium und erneuter Schüttelinkubation über Nacht bei 37°C. Die so 

erhaltene Bakteriensuspension wurde mittels Zentrifugation für 15 min bei 4500 rpm geerntet 

und die Plasmid-DNA, wie unter 18.2.1 beschrieben, isoliert.  

 

 

18.2 DNA-Methoden 

 

18.2.1 Präparation von Plasmid-DNA 

 

Um Plasmid-DNA aus Flüssigkulturen zu isolieren, wurden die Bakterienzellen mittels 

alkalischer Lyse aufgebrochen und die DNA anschließend über Silica-Säulen gereinigt. Dies 
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erfolgte unter der Verwendung hierfür kommerziell erhältlicher Kits (MN NucleoSpin® Plasmid 

und MN NucleoBond® Xtra Midi Plus) laut Herstellerangaben. 

 

 

18.2.2 Präparation viraler DNA 

 

Die Extraktion viraler DNA erfolgte mittels des kommerziell erhältlichen Kits MN NucleoSpin® 

BloodQuickPure. Zunächst wurden hierfür Zellen eines Lochs einer 6-well-Platte mit einer 

MOI von 10 infiziert und für 48 Stunden bei 37°C inkubiert. Danach wurden die Zellen mit 

einem Zellschaber gelöst und zusammen mit dem Kulturmedium in ein 2 ml Reaktionsgefäß 

überführt. Nach Zentrifugation für 1 Minute bei 13000 rpm wurde das Volumen des 

Überstandes auf 200 µl reduziert und die Zellen darin resuspendiert. Anschließend wurde die 

DNA wie vom Hersteller angegeben isoliert. Die Elution der DNA erfolgte in 50 µl 

Reinstwasser. 

 

 

18.2.3 Restriktionsanalyse 

 

Der Gebrauch von Restriktionsendonukleasen erfolgte im Rahmen der Qualitätskontrolle von 

Plasmiden. Zur Durchführung der Restriktionsanalyse wurden Enzyme der Firma NEB nach 

Herstellerangaben verwendet. Dazu wurde 1 µg DNA in einem Gesamtvolumen von 20 µl für 

1 Stunde bei 37°C verdaut. Die hierbei entstandenen Fragmente wurden mittels 

Agarosegelelektrophorese aufgetrennt und analysiert (siehe 18.2.4). 

 

 

18.2.4 Auftrennung von DNA-Fragmenten durch Agarosegelelektrophorese 

 

In dieser Arbeit wurden 1%ige Agarosegele verwendet. Zunächst wurde die Agarose in 1 x 

TAE-Puffer durch Aufkochen in der Mikrowelle gelöst, mit 1,5 µl „Gel Red“ pro 100 ml 

versehen und in die dafür vorgesehenen Kammern gegossen. Der im „Gel Red“ enthaltene 

Farbstoff interkaliert in die DNA und fluoresziert durch Anregung mit UV-Licht, wodurch DNA-

Banden sichtbar werden. Die zu analysierenden DNA-Proben wurden mit 1/5 Volumen 

Ladepuffer versehen und nach dem Abkühlen der Gele bei Raumtemperatur in die 

Geltaschen pipettiert. Für die Interpretation des Ergebnisses wurden zu den Proben noch 

kommerziell erhältliche Größenstandards auf die Gele aufgetragen. In den meisten Fällen 

war dies eine 1 kb DNA Leiter der Firma NEB. 

Die Auftrennung erfolgte bei 90 – 110V. Die DNA-Banden wurden durch Anregung mit UV-

Licht der Wellenlänge 254 nm sichtbar gemacht und durch Fotografieren mittels 

Digitalkamera dokumentiert. 
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18.3 PCR (Polymerasekettenreaktion) 

 

Zur Überprüfung von Virus-Klonen während der Generierung der rekombinanten MVA und 

zur finalen Überprüfung des sucrosegereinigten Virusstocks wurden PCRs mit Taq-

Polymerase durchgeführt. Verwendung hierfür fanden PCR-Thermocycler des Typs PTC-

200. Das Standardreaktionsvolumen betrug 25 µl pro Reaktion. Für eine Standard-PCR zur 

Untersuchung viraler DNA wurden folgende Protokolle angewendet: 

 

Einfacher Reaktionsansatz: 

 

 Komponente Menge je Reaktionsgefäß 

 

 Aqua dest. 16,20 µl 

 Taq Puffer   2,50 µl 

 3’-Primer (10pmol/µl)   1,30 µl 

 5’-Primer (10pmol/µl)   1,30 µl 

 50 mM MgCl2   0,75 µl 

 10 mM dNTPs   1,00 µl 

 Taq Polymerase   0,25 µl 

 ∑ 25 µl 

 

 

Temperaturprotokoll: 

 

Das Temperaturprofil wurde mit Ausnahme des Annealings, das den jeweiligen Primer-

Schmelztemperaturen angepasst wurde, bei allen PCR-Läufen unverändert durchgeführt. 

Außerdem wurde die Elongationszeit-Zeit auf die Länge des zu amplifizierenden DNA-

Abschnitts abgestimmt (ca. 1 min/1000 bp). 

 

  Zeit Temperatur 

Step 1 

1 x 

 

Initiale Denaturierung 

 

5 min 94 °C 

Step 2 

35 x 

Denaturierung 

Annealing 

Elongation 

30 sec 

30 sec 

X sec 

94 °C 

X  °C 

72 °C 

Step 3 

1 x 

 

Finale Elongation 

 

10 min 72 °C 

 

Step 4 

 

 
∞ 4 °C 
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Die so erhaltenen DNA-Fragmente wurden mittels Agarosegelelektrophorese analysiert 

(siehe 18.2.4). 

 

 

 

19. VIROLOGISCHE METHODEN 

 

 

19.1 Infektion von Zellen 

 

Für die Infektion von Zellen mit MVA-Viren wurde Medium mit reduziertem FCS-Gehalt von 

2% verwendet. Idealerweise waren die Zellen zum Zeitpunkt der Infektion nicht älter als 48 

Stunden und der Monolayer war zu 90% konfluent. Vor jeder Infektion wurden die 

eingefrorenen Virussuspensionen oder –stocks aufgetaut und dreimal für je 1 Minute im 

Eiswasserbad sonifiziert. Zwischen diesen einzelnen Ultraschallbehandlungen wurden die 

Proben für 15 Sekunden kräftig mit einem Vortex-Gerät durchmischt und nach der 

Sonifikation mit Infektionsmedium auf die gewünschte Konzentration verdünnt. Danach 

wurde von den Zellen das Kulturmedium abgenommen und durch etwa die Hälfte der 

urpsrünglichen Menge mit Virussuspension ersetzt. Die Adsorption der Viruspartikel an die 

Zellen erfolgte für 60 – 120 Minuten bei 37°C im Inkubator. Zuletzt wurde entweder mit 

weiterem Medium auf das ursprüngliche Volumen aufgefüllt oder das virushaltige Medium 

abgenommen und durch Erhaltungsmedium ersetzt. Unter täglicher lichtmikroskopischer 

Beobachtung wurden die Zellen bis zur Erreichung des gewünschten CPEs (Zytopathischer 

Effekt) weiter im Brutschrank bei 37°C kultiviert. 

 

 

19.2 Herstellung rekombinanter MVA mittels RFP-Selektion 

 

Die Generierung rekombinanter MVA erfolgte nach Transfektion/Infektion (siehe 19.3) durch 

homologe Rekombination des gewünschten Gens von einem Vektorplasmid in die 

Deletionsstelle III des MVA-Genoms (Abbildung 11). Als Ausgangsvirus diente das 

Wildtypvirus MVA-F6. Das Transferplasmid enthielt neben den zu integrierenden Genen 

flankierende Sequenzen (Flank1 und Flank2) des gewählten Insertionsortes. Durch die 

Kointegration unseres gewünschten Gens („Gene of Interest“) mit einem Markerprotein 

(RFP) war es möglich eine klonale Isolierung rekombinanter MVA durch Passagierung auf 

CEF-Zellen (siehe 19.4) durchzuführen. Die Selektion der rekombinanten Viren erfolgte 

durch Screenen der infizierten Zellkulturen nach rot-fluoriszierenden Plaques. Das hierfür 

verwendete Protein ist das RFP (Red Fluorescent Protein) mCherry, welches bei Anregung 
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durch Licht der Wellenlänge von 610 nm rot leuchtet. Um nach erfolgreicher Selektion die 

Eliminierung des Markers zu gewährleisten, wurde in den Konstrukten ein kurzer repetitiver 

Abschnitt des Flank1 (Fl1-rpt) zwischen gewünschtem Gen und dem RFP eingefügt. 

Dadurch sollte nach ausreichend langer Passagierung auf CEF-Zellen das mCherry durch 

homologe Rekombination wieder entfernt werden. 

 

 

 
 

 

 

Abbildung 11: Schematische Darstellung der homologen Rekombination. Lage der Deletion III 

auf der HindIII-Restriktionskarte des MVA-Genoms. Die homologe Rekombination findet zwischen den 

Flank1- und Flank2-Bereichen des Vektorplasmids und den homologen Sequenzen im MVA-Genom 

statt. mCherry: rot-fluoreszierendes Selektionsmarkerprotein, Fl1-rpt: repetitive Sequenz aus dem 

Flank1. 

 

 

19.3 Transfektion und Infektion 

 

Die in 6-Loch-Zellkulturplatten bis zu rund 80% Konfluenz kultivierten CEF-Zellen wurden 

zunächst mit dem Ausgangsvirus MVA-F6 und einer MOI von 0,05 infiziert. Anschließend 

wurde für 1 Stunde bei 37°C im Brutschrank inkubiert. 1 µg Plasmid-DNA wurde mit 3 µl 

Transfektionsreagenz pro Ansatz gemischt und für 15 Minuten bei Raumtemperatur 

inkubiert, um danach tröpfchenweise in das Medium der infizierten Zellen gegeben zu 

werden. Die so behandelten Zellen wurden für 48 Stunden bei 37°C im Brutschrank 

belassen, anschließend abgeschabt und inklusive Medium bei -20°C aufbewahrt. 
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19.4 Klonale Isolierung rekombinanter Viren durch Passagierung auf CEF- 

        Zellen 

 

Nach dreimaligem Gefriertauen und nachfolgender Sonifikation des Materials aus der 

Transfektion/Infektion (siehe 19.3) wurden damit frische CEF-Zellen in 6-Loch-

Zellkulturplatten infiziert. Hierfür wurden zunächst Verdünnungen der Virussuspensionen in 

log10-Stufen (10-1 – 10-3) angelegt, die dann auf die Zellmonolayer ausgebracht wurden. 

Nach 48 Stunden Inkubation im Brutschrank bei 37°C erfolgte das Screenen der Zellkulturen 

nach rot-leuchtenden Plaques mittels Fluoreszenzmikroskop. Gut erkennbare Plaques 

wurden an der Unterseite der Zellkulturplatte markiert, anschließend mit Hilfe einer 

Eppendorfpipette in einem Volumen von 10 – 20 µl Medium gepickt und in ein 

Reaktionsgefäß mit 300 µl Medium übertragen. Die nachfolgende Behandlung bestand aus 

dreimaligem Gefriertauen und dreimaliger Sonifikation im Eiswasserbad für je 1 Minute, 

serieller Verdünnung (10-1 - 10-4), Ausbringen auf Zellrasen in 6- oder 96-Loch-Platten und 

Inkubation für 48 Stunden bei 37°C im Brutschrank. Wiederholungen dieses Verfahrens, der 

sogenannten Plaquepassage, erfolgten bis zum Erhalt genetisch identischer rekombinanter 

Virusklone und Eliminierung des Wildtyp-Ausgangsvirus. Zur Kontrolle der gepickten Plaques 

erfolgte ab der fünften, danach alle zwei Passagen eine Analyse der Virus-DNA mittels PCR 

(siehe 18.3). Für jedes Konstrukt wurden mindestens zwei reine Virusklone ausgewählt und 

amplifiziert (siehe 19.5). 

 

 

19.5 Virusamplifikation und –aufreinigung für in vitro und in vivo Experimente 

 

Zunächst wurden die, wie unter 19.4 beschrieben, erhaltenen reinen Virusklone zur Infektion 

einer Vertiefung einer 6-Loch-Zellkulturplatte mit CEF-Zellen herangezogen. Nach einer 

Inkubationszeit von 48 Stunden bei 37°C wurden die infizierten Zellen abgeschabt und zur 

Infektion einer 75 cm² Zellkulturflasche verwendet, deren Inhalt nach weiteren 48 Stunden im 

Brutschrank bei 37°C abgeschabt und zur Infektion einer 175 cm² Zellkulturflasche benutzt 

wurde. Mit dem gesamten Inhalt dieser Flasche erfolgte nach 48 Stunden Inkubation bei 

37°C die Infektion von fünf 175 cm² Zellkulturflaschen. Diese wurden nach 

lichtmikroskopischer Analyse des Infektionsstatus (vollständige Infektion des Zellmonolayers) 

bei -20°C eingefroren, wodurch das spätere Ablösen des Zellrasens erleichtert werden sollte. 

Zum Auftauen wurden die Zellkulturflaschen langsam auf Raumtemperatur gebracht, indem 

sie dem Gefrierschrank entnommen und auf die Arbeitsbank im Labor gelegt wurden. Nach 

Antauen des Mediums wurden die Flaschen geschüttelt, sodass das vorhandene Eis darin 

zerbrach und die so entstandenen Eisstücke den infizierten Zellrasen vollständig vom Boden 

ablösten. Nach dem Auftauen wurde der gesamte Inhalt in 50 ml Falcon-Röhrchen überführt, 
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dreimal gefriergetaut und als sogenannter Crude Stock bei -80°C gelagert. Vor einer 

weiteren Verwendung und Amplifikation wurde die DNA des so erhaltenen Virus ein weiteres 

Mal mittels PCR überprüft, der Virustiter (siehe 19.6) bestimmt, sowie die Expression des 

inserierten Gens kontrolliert. 

Für die Herstellung von Virusmaterial zum weiteren Gebrauch für in vitro und in vivo 

Experimente diente der Crude Stock als Ausgangsmaterial. Hierfür wurden 30  175 cm² 

Zellkulturflaschen mit einer MOI von 1 (1x107 PFU/Flasche) infiziert und nach vollständiger 

Infektion des Zellrasens bei -20°C eingefroren. Beim späteren Auftauten wurden die 

Flaschen zur besseren Ablösung der infizierten Zellen geschüttelt. Nachdem der Inhalt der 

Zellkulturflaschen komplett aufgetaut war, wurde dieser in Zentrifugenbecher überführt und 

bei 38180 g und 4°C für 1,5 Stunden zentrifugiert, um die Zellen, Zelltrümmer und 

Viruspartikel aufzukonzentrieren. Der Überstand wurde verworfen und das Pellet in 10 mM 

Tris pH 9,0 aufgenommen. Um die Zellen so gut wie möglich zu zerstören und somit Virionen 

freizusetzen wurde diese Virussuspension dreimal gefriergetaut und mit einem Vortex-Gerät 

durchmischt. Danach erfolgte eine Sucrose-Aufreinigung. Dafür wurde die Virussuspension 

dreimal 15 Sekunden lang mit einer Ultraschallnadel auf Eis geschallt und in 

Zentrifugenröhrchen vorgelegt, danach mit 10 ml 36%iger Sucroselösung unterschichtet und 

für 1,5 Stunden bei 4 °C und 30600 g zentrifugiert. Das dadurch gewonnene Pellet wurde in 

2 – 3 ml 10 mM Tris pH 9,0 resuspendiert, der Virustiter bestimmt, aliquotiert und bei –80°C 

aufbewahrt. 

 

 

19.6 Bestimmung des Virustiters 

 

Die Bestimmung des Virustiters erfolgte durch Titration. Zunächst wurden serielle 

Verdünnungen über 9 log-Stufen (10-1 – 10-9) der zu bestimmenden Virussuspension 

angefertigt. Diese wurden im Doppelansatz mit 1 ml Volumen je Vertiefung auf CEF-Zellen in 

6-Loch-Zellkulturplatten ausgebracht und für 2 Stunden bei 37°C im Brutschrank inkubiert. 

Nach der Adsorption wurde dieses Infektionsmedium abgenommen, durch 2 ml frisches 

Medium ersetzt und die Platten für 48 Stunden bei 37°C inkubiert. 

Für die Fixierung der Zellen wurde das Medium abgenommen, durch ein eiskaltes 

Aceton/Methanol-Gemisch (1:1) ersetzt und für 5 Minuten bei Raumtemperatur inkubiert. Um 

unspezifisches Binden der nachfolgend verwendeten Antikörper zu verhindern, wurde nach 

Lufttrocknung der Platten mit PBS-3% (PBS mit 3% FCS) und einem Volumen von 2 ml je 

Well für 1 Stunde bei Raumtemperatur geblockt. Danach erfolgte die erste 

Antikörperinkubation mit einem polyklonalen Antikörper, der spezifisch gegen Vacciniavirus-

Proteine (VACV Lister) gerichtet war. Hierfür wurde der Antikörper 1:2000 in PBS-3% 

verdünnt, 1 ml je Vertiefung aufgetragen und für 1 Stunde bei Raumtemperatur unter 



Material und Methoden ......................................................................................................... 54 

leichtem Schwenken inkubiert. Danach erfolgte ein dreimaliges Waschen mit PBS und 

anschließendes Ausbringen des mit Peroxidase gekoppelten Sekundärantikörpers. Dieser 

wurde 1:5000 in PBS-3% verdünnt und mit 1 ml je Vertiefung, für 1 Stunde bei 

Raumtemperatur und unter leichtem Schwenken inkubiert. Nach dreimaligem Waschen mit 

PBS erfolgte die Zugabe von TrueBlue-Substrat und nach 5 – 10 Minuten wurde eine 

deutliche Blaufärbung der infizierten Plaques erkennbar. Die Anzahl der Plaques wurde am 

Lichtmikroskop gezählt, der Mittelwert von den im Doppelansatz vorhandenen 

Verdünnungsstufen gebildet und dieser mit der Verdünnungsstufe verrechnet. Die Angabe 

des Titers erfolgte in PFU (plaque forming units)/ml. 

 

 

19.7 Wachstumskinetik - Mehrstufenwachstumsanalyse 

 

Die Mehrstufenwachstumsanalyse wird herangezogen, um die Fähigkeit eines Virus zu 

testen sich in einem Zellrasen auszubreiten. Hierdurch konnte die Permissivität 

verschiedener Zellkulturen für die rekombinanten Viren untersucht und verglichen werden. 

Zunächst wurden verschiedene Zellen in 6-Loch-Zellkulturplatten mit einer MOI von 0,05 

infiziert und für 1 Stunde bei 4°C aufbewahrt (Cold-Start-Methode). Nach der Adsorption 

wurde einmal mit PBS gewaschen und 2 ml frisches auf 37°C vorgewärmtes Infektions-

medium hinzugefügt. 0, 2, 8, 24, 48 und 72 Stunden p.i. wurden die Zellen mitsamt der 

Zellkulturplatte bei -20°C eingefroren. Nach dem Auftauen wurden die Zellen abgeschabt, mit 

Überstand in ein 2 ml Reaktionsgefäß überführt und bei -80°C bis zur Bestimmung des 

Virusgehaltes durch Titration (siehe 19.6) aufbewahrt. 

 

 

 

20. PROTEINBIOCHEMISCHE UND IMMUNOLOGISCHE METHODEN 

 

 

20.1 Erzeugung von Proteinextrakten aus kultivierten Zellen 

 

Für die Herstellung von Proteinlysaten aus infizierten Zellen wurde zunächst das Medium 

abgenommen und danach mit 4°C kaltem PBS einmal gewaschen, indem die Zellen in 500 µl 

PBS geschabt, in ein 1,5 ml Reaktionsgefäß überführt und bei 13000 rpm für 30 Sekunden 

zentrifugiert wurden. Danach wurde der PBS-Überstand abgenommen, das Pellet in 100 µl 

Lysispuffer resuspendiert und für 30 Minuten auf Eis inkubiert. Anschließend erfolgte ein 

weiterer Zentrifugationsschritt bei 13000 rpm und 4°C für 30 Minuten. Nach Überführung des 

Überstandes in ein neues Reaktionsgefäß erfolgte die Lagerung der Proben bei -80°C. 
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20.2 Gelelektrophoretische Auftrennung von Proteinen mittels SDS-PAGE 

 

Die Natriumdodecylsulfat-Polyacrylamid-Gelelektrophorese (SDS-PAGE) dient der Auf-

trennung von Proteinen nach deren Molekülmasse im elektrischen Feld. 

 

20.2.1 Herstellung von SDS-PAGE-Gelen 

 

Bei der SDS-PAGE wird zwischen einem Trenngel und einem niedriger prozentigen 

Sammelgel mit anderem pH-Wert unterschieden, in das die Proben eingebracht und dort zu 

einer scharfen Bande „gesammelt“ werden, bevor sie ins Trenngel wandern. Die Herstellung 

der Gele erfolgte entsprechend der Angaben in Tabelle 17, in der benötigen Dichte des 

Trenngels (10, 12 oder 14%) und des 5%igen Sammelgels. Nach Aushärtung der Trenngele 

wurden die Sammelgele in die Gelapparatur gegossen.  

 

 

                                   Trenngel Sammelgel 

Komponente  Menge für  Menge für 

 10 % 12 % 14 % 5 % 

Acrylamid Bio-Rad 9,9 ml 12 ml 13,8 ml                                 2,6 ml 

1,5 M Tris-HCL pH 8,8 7,5 ml 7,5 ml 7,5 ml 2 M Tris pH 6,8       1,25 ml 

SDS 10 % 300 µl 300 µl 300 µl                                 800 µl 

H2O 12 ml 9,9 ml 8,1 ml                                15,7 ml 

TEMED 15 µl 15 µl 15 µl                                  20 µl 

10 % APS 150µl 150 µl 150 µl                                 100 µl 

 

 

Tabelle 19: Mischungsverhältnisse der Komponenten zur Herstellung von SDS-PAGE-Gelen 

 

 

20.2.2 SDS-PAGE 

 

Zunächst wurden 15 µl der Proben mit 5 µl Roti-Load1 reduzierendem Probenauftragspuffer 

versetzt und bei 95°C für 5 Minuten inkubiert. Dieser enthielt bereits SDS und β-

Mercaptoethanol. Das Gel wurde in die Elektrophoresekammer eingespannt und diese 

danach mit 1 x Laufpuffer befüllt. Nach Laden der Geltaschen mit den 20 µl der Proben und 

einem zusätzlichen Proteingrößenstandard zur Interpretation der Ergebnisse erfolgte die 

Elektrophorese für etwa 120 Minuten bei einer Spannung von 100 – 120V und einer 

Stromstärke von maximal 400 mA. 
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20.3 Westernblot (Tank-Blot-Verfahren) 

 

Die mittels SDS-PAGE aufgetrennten Proteine (Pkt. 20.2.2) wurden als nächstes auf eine 

PVDF (Polyvinylidenfluorid)-Membran übertragen, wo sie anschließend durch Immun-

detektion nachgewiesen werden konnten. 

 

20.3.1 Membrantransfer 

 

Das Tank-Blot-Verfahren ist ein sogenanntes nasses Verfahren, bei dem zuerst die 

Filterpapiere, die Gewebeschwämme und die Membran mit Blottingpuffer sehr gut 

durchtränkt wurden. Danach wurden die Komponenten, wie in Abbildung 12 dargestellt, in 

die dafür vorgesehene Halterung gelegt. Auf einen Gewebeschwamm folgte ein Filterpapier 

und darauf wurden die PVDF-Membran und das SDS-PAGE-Gel gelegt, sowie abschließend 

ein weiteres Filterpapier und ein Gewebeschwamm. Die Halterung wurde so in die 

Blottingapparatur eingehängt, dass die Membranseite in Anodenrichtung zeigte. Nach 

Befüllen der Blottingkammer mit Transferpuffer und zusätzlichem Einhängen eines 

Kühlakkus, erfolgte der Transfer für 70 Minuten bei 100V und 4°C. 

 

 

 
 

 

Abbildung 12: Membrantransfer 

 

 

20.3.2 Proteinnachweis 

 

Um unspezifische Bindungen der Antikörper zu vermeiden, wurde die Membran nach dem 

Transfer der Proteine (Pkt. 20.3.1) für 1 Stunde in Blockinglösung (PBS-T mit 5% 

Magermilchpulver) bei Raumtemperatur unter Schwenken inkubiert. Danach erfolgte der 

Proteinnachweis durch indirekte Antikörperfärbung. Der antigenspezifische Antikörper wurde 

1:10000 in PBS-T 2,5% (PBS-T mit 2,5% Magermilchpulver) verdünnt, mit der Membran in 

ein 50 ml Falcon überführt und auf einem Roller über Nacht bei 4°C inkubiert. Anschließend 



Material und Methoden ......................................................................................................... 57 

erfolgte ein dreimaliges Waschen für je 15 Minuten mit PBS-T. Nach der 1:5000 Verdünnung 

(in PBS-T 2,5%) des peroxidase-marktierten Antikörpers erfolgte damit der nächste 

Inkubationsschritt der Membran für 1 Stunde unter Schwenken bei Raumtemperatur. Die 

Membran wurde danach nochmals dreimal für je 15 Minuten mit PBS gewaschen. Zur 

Detektion wurde das Entwicklersubstrat SuperSignal West Dura Chemiluminescent 

Substrate laut Herstellerangaben gemischt, 1 ml auf die Membran aufgetragen, für 2 Minuten 

inkubiert, die Membran anschließend in Frischhaltefolie verpackt und mit dem 

Chemilumineszenzimager MicroChemi dokumentiert. 

 

 

20.4 ELISA zum Nachweis WNV E-spezifischer Antikörper 

 

Zum Nachweis WNV E-spezifischer Antikörper in Serumproben von immunisierten Mäusen 

wurden 6 - 8 Wochen alte weibliche Balb/c-Mäuse (Charles River, Sulzfeld) mit den 

rekombinanten MVA einer „Prime-Boost“ Immunisierung unterzogen. Die Einzeldosis je 

Immunisierung und Maus bestand aus 1x108 PFU. Insgesamt wurden zwei Injektionen (Tag 

0/Erstimmunisierung und Tag 21/zweite Immunisierung) durchgeführt und an den Tagen 18 

und 31 Blutproben entnommen (1. und 2. Bluten). Eine Impfgruppe bestand aus 5 Mäusen 

und es wurden zwei Negativkontrollgruppen verwendet, die aus nicht-geimpften Mäusen und 

mit MVA-F6 geimpften Mäusen bestanden. 

Für die ELISA wurden MaxiSorp-Platten mit Zelllysaten (freundlicherweise erhalten von Dr. 

Gorben Pijlman, Universität Wageningen) über Nacht bei 4°C beschichtet. Die Zelllysate 

enthielten eine hohe Konzentration an rekombinantem WNV E-Protein. Nach dreimaligem 

Waschen der Platten mit PBS-T wurden sie mit 100 µl/Vertiefung für 1 Stunde bei 37°C mit 

Blockingpuffer inkubiert, um danach wieder dreimal mit PBS-T gewaschen zu werden. Die 

Serumverdünnungen wurden mit je 100 µl pro Vertiefung in die Platte gegeben und für eine 1 

Stunde bei 37°C inkubiert. Nach anschließendem dreimaligem Waschen mit PBS-T erfolgte 

die Zugabe von 1:2000 verdünntem, HRP-konjugiertem anti-Maus IgG-Antikörper 

(100µl/Well) und eine weitere Inkubation von 1 Stunde bei 37°C. Nach dreimaligem Waschen 

der Platten mit PBS-T erfolgte die Zugabe von 100 µl TMB-Substrat pro Vertiefung. Die 

Entwicklungsdauer betrug 20 Minuten und nach ausreichend starker Blaufärbung wurde die 

Reaktion mittels ELISA-Stopplösung (100µl/well; Stop Reagent, Sigma) gestoppt und die 

Absorption bei 450 nm im ELISA-Reader gemessen. 
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20.5 Interferon-γ ELISpot 

 

Zum Nachweis der Zytokinreaktionen von T-Zellen wurde ein ELISpot verwendet. Die nach 

Peptidstimulation sezernierten Zytokine, in dieser Arbeit Interferon-γ, wurden auf einer 

Membran immobilisiert und danach mittels einer Farbreaktion detektiert. Hierfür wurden 

Milzzellen von transgenen HLA-A2.1 Mäusen verwendet, welche vorher mit den in dieser 

Arbeit hergestellten, rekombinanten Viren geimpft worden waren. Die Splenozyten wurden 

mit dem HLA-A2.1-restringierten Peptidepitop SVG9 des WNV E-Proteins für 48 Stunden 

stimuliert und anschließend das sezernierte IFN-γ detektiert und gemessen. Die Impfdosis je 

Maus betrug 1x108 PFU und die Entnahme der Milzen erfolgte an Tag 8 nach der 

Immunisierung. Eine Impfgruppe bestand aus 3 Mäusen. 

Die Durchführung des ELISpots erfolgte mit Hilfe eines kommerziell erhältlichen Kits (mIFN-γ 

ELISpot; Mabtech) nach Herstellerangaben. Zunächst wurden die im Kit enthaltenen 

Mikrotiterplatten mit 70%igem Ethanol (50µl/Vertiefung) für 5 Minuten aktiviert und 

nachfolgend fünfmal mit 100 µl/Well Aqua dest. gewaschen. Als nächstes wurde der 

Erstantikörper mit sterilem PBS verdünnt, 100 µl/Vertiefung davon aufgetragen und über 

Nacht bei 4°C inkubiert. Nach fünfmaligem Waschen mit sterilem PBS erfolgte ein 

Blockschritt durch Zugabe von Medium (200µl/Well) und Inkubation von 30 Minuten bei 

Raumtemperatur. Danach wurde das Medium abgenommen und durch 150 µl/Well Milzzell-

Peptidmischung ersetzt. Diese bestand aus 2x104 Milzzellen (Pkt. 17.2) und der 

Peptidverdünnung (1 µg/ml Endkonzentration) pro Vertiefung. Die Positivkontrolle beinhaltete 

PMA (Endkonzentration 1 µg/ml) und Ionomycin (Endkonzentration 25 ng/ml). Die Platten 

wurden anschließend mit Alufolie lichtdicht umwickelt und für 48 Stunden im Brutschrank bei 

37°C inkubiert. Nach fünfmaligem Waschen mit sterilem PBS erfolgte die Zugabe (100 

µl/Vertiefung) des in PBS mit 0,5% FCS verdünnten Sekundärantikörpers, dessen Inkubation 

für 2 Stunden bei Raumtemperatur erfolgte. Nach erneutem fünfmaligem Waschen wurde mit 

100 µl/Well Streptavidin-konjugierter ALP (alkalischer Phosphatase) für 1 Stunde inkubiert 

und wiederum fünfmal gewaschen. Durch die Zugabe des vorher sterilfiltrierten NBT/BCIP-

Substrats (100 µl/Well) erfolgte die Färbung der Spots, die nach etwa 20 – 30 Minuten 

Einwirkzeit deutlich sichtbar wurde. Danach wurde die Reaktion mit Leitungswasser gestoppt 

und die Platten über Nacht im Dunklen getrocknet. Anschließend erfolgte der Transfer der 

Membranen (Unterseite der ELISpot-Platte) mit Hilfe eines Ausstanzgerätes auf eine Folie, 

die dann gescannt und die Spots mittels A-EL-VIS Software ausgezählt, sowie analysiert 

werden konnten. 
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20.6 Deglykosylierung 

 

Die Deglykosylierung von Proteinen erfolgte mit dem PNGase F-Deglykosylierungskit der 

Firma NEB. Hierzu wurden zuerst Überstände und Zelllysate von, mit den rekombinanten 

MVA infizierten, Zellen geerntet bzw. generiert und danach laut Herstellerangaben mit dem 

Kit behandelt. Die so erhaltenen Proben wurden mittels Westernblot (Pkt. 20.3) analysiert. 

 

 

20.7 Immunfluoreszenz 

 

Für die Lokalisation der, von den Konstrukten exprimierten, E-Proteine wurden HeLa-Zellen 

mit den rekombinanten MVA infiziert (MOI 0,05) und 12 Stunden später mit 4%igem 

Paraformaldehyd für 10 Minuten auf Eis inkubiert. Nach zweimaligem Waschen mit PBS 

erfolgte die Inkubation der Zellen mit dem antigenspezifischen Antikörper für 30 Minuten 

(1:5000 in PBS verdünnt). Der markierte Sekundärantikörper (Alexa Fluor 488) wurde 1:1000 

in PBS verdünnt. Nach weiterem zweimaligem Waschen der Zellen mit PBS erfolgte die 

Zugabe des zweiten Antikörpers und eine Inkubation für eine Stunde. Nach einem 

letztmaligen Waschschritt wurden die Zellen auf einem Objektträger mit Mounting Medium 

fixiert und nach 24-stündiger Trocknung unter dem Konfokalmikroskop analysiert. 
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IV. ERGEBNISSE 

 
 

1. Konstruktion rekombinanter MVA zur Expression von WNV-Hüll-

 proteinen 

 
Für die Generierung rekombinanter MVA wurden die beiden Hüllproteine prM/M 

(precursorMembrane/Membrane) und E (Envelope) verwendet. Insgesamt wurden fünf 

verschiedene Konstrukte entwickelt und hergestellt: MVA-WNVprME1, MVA-WNVprME2, 

MVA-WNVESOL, MVA-WNVETMC und MVA-WNVETMV. 

MVA-WNVprME1 und 2 kodierten für die prM- und E-Proteine (Abbildung 15A). Die beiden 

Konstrukte unterschieden sich lediglich in der Codon-Usage bezüglich der 

Originalsequenzen von Stamm WNV-NY99. MVA-WNVESOL enthielt die Sequenz eines 

verkürzten E-Proteins. (Abbildung 15A). MVA-WNVETMC und TMV kodierten beide für das E-

Protein. Die Originalsequenz des Proteins wurde jedoch dahingehend verändert, dass die 

ursprüngliche Transmembrandomäne entfernt und durch jene des E2-Proteins aus 

Chikungunyavirus bzw. jene des A56-Proteins aus Vacciniaviurs ersetzt wurde (Abbildung 

15A). 

 
 

1.1 Wahl der Insertionsstelle im MVA-Genom 

 

Als Insertionsort für die WNV-Gensequenzen wurde die Stelle der Deletion III im MVA-

Genom gewählt (Abbildung 13). Sie wurde bereits bei einer Vielzahl rekombinanter MVA 

erfolgreich als Insertionsstelle verwendet und hier zur Generierung aller rekombinanten MVA 

herangezogen. 

 

 

 
Abbildung 13: Schematische Darstellung des MVA-Genoms als HindIII-Restriktionskarte und 
Lage der Deletion III. 
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1.2 Konstruktion der Vektorplasmide 

 

Zur Insertion der Zielgene in die Deletion III des MVA-Genoms diente das Vektorplasmid 

pIIIH5RedK1L (Abbildung 14). Dieses enthielt bereits die zur homologen Rekombination 

benötigten MVA-Gensequenzen (Flank-Regionen: Flank1, Flank2 und Flank1-repeat), den 

Vacciniavirus-spezifischen Promotor PmH5, zwei Restriktionsenzymschnittstellen (NotI und 

PmeI) zwischen PmH5 und dem Flank1-repeat, sowie die Sequenz des Selektionsmarkers 

mCherry mit Promotor P11. 

 

 

 

 

 

Abbildung 14: Ausgangsvektor pIIIH5RedK1L. Die Restriktionsenzymschnittstellen NotI und PmeI 
dienten der Integration der Zielgene. AmpR: Ampicillin-Resistenzgen; Fl1-rpt: Flank1-repeat; P11 und 
PmH5: Vaccinia-Promotoren. 
 

 

Die verschiedenen Zielsequenzen für die Konstrukte (Abbildung 15A) wurden mit Hilfe des 

Programms SeqBuilder (DNASTAR Inc.) in silico geplant und die im Anhang dargestellten 

Sequenzen zur Synthese und nachfolgenden Klonierung in das Ausgangsplasmid an die 

Firma GeneArt® übermittelt. Die finalen fünf Vektorplasmide unterschieden sich lediglich in 

der eingefügten Zielsequenz, in Abbildung 15B als „Gene of Interest“ bezeichnet. 
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A 

 

B 

 

 

 

Abbildung 15: Schematische Darstellungen der geplanten Konstrukte. A) WNV-Genkonstrukte 
zur Integration in die Del III des MVA-Genoms. E: E-Protein aus WNV; TM: Transmembrandomäne; 
CHIKV: Chikungunyavirus; VACV: Vacciniavirus; PmH5: Vaccinia-Promotor, schwarz-graue Kästchen: 
Flank-Regionen. B) Transferplasmid mit „Gene of Interest“ (Zielgen) zur Generierung rekombinanter 
MVA. Alle fünf Plasmide sind gleichartig aufgebaut und unterscheiden sich lediglich in der eingefügten 
Zielgensequenz, „Gene of Interest“ genannt. Die Schnittstellen der Restriktionsendonukleasen PmeI 
und NotI, sowie die Bindestellen der Oligonukleotide (III-5‘/III-3‘) für die PCR-Analyse zur 
Insertionskontrolle in die Del III sind eingezeichnet. 
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1.3 Charakterisierung der Plasmide mittels Restriktionsanalyse und Nachweis 

 der Synthese der rekombinanten Proteine 

 

Die Kontrolle der erhaltenen Vektorplasmide erfolgte durch Behandlung mit den 

Restriktionsendonukleasen PflMI und EcoRV-HF, sowie nachfolgender Analyse der 

erhaltenen DNA-Fragmente im Agarosegel. Abbildung 16 zeigt das Bandenmuster der 

aufgetrennten Plasmid-DNA, das den für jedes Konstrukt erwarteten Molekulargewichten 

entsprach. 

 

 

 

 

Abbildung 16: Charakterisierung der Vektorplasmide mittels Restriktionsanalyse. Verwendete 
Restriktionsenzyme: PflMI und EcoRV-HF. Die Auftrennung der DNA erfolgte im 1% Agarosegel. 1kb: 
DNA-Größenstandard zur Bestimmung des Molekulargewichts. 
 

 

Bevor die Plasmide für die Generierung rekombinanter Viren eingesetzt werden konnten, war 

eine Überprüfung der Expression der rekombinanten Gene erforderlich. Hierfür wurden CEF-

Zellen mit MVA Wildtypvirus (MOI 5) infiziert und mit je 1 µg der Transferplasmid-DNA 

transfiziert. Die Western-Blot-Analyse mit einem Anti-WNV-E-Antikörper erlaubte in den 48 

Stunden p.i. hergestellten Zelllysaten den spezifischen Nachweis eines Proteins mit der 

Größe von ~45 kDa (Abbildung 17), dem erwarteten Molekulargewicht des E-Proteins von 

WNV. 
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Abbildung 17: Nachweis der transienten Expression von WNV E-Protein durch Western-Blot-
Analyse. MVA: MVA-Wildtyp infizierte Zellen; ZK: Zellkontrolle; *: Transfektion des jeweiligen 
Plasmids und Koinfektion mit MVA. 
 

 

1.4 Generierung rekombinanter Viren mittels homologer Rekombination und 

 klonale Isolierung der rekombinanten Viren in Plaquepassagen 

 

Nach erfolgreicher Konstruktion, sowie genetischer und funktioneller Charakterisierung der 

Transferplasmide, konnte mit der Generierung rekombinanter MVA begonnen werden. Jedes 

Vektorplasmid wurde zur Transfektion von, vorher mit MVA-Wildtyp infizierten, CEF-Zellen 

verwendet. Die Integration der Zielgene und des rot fluoreszierenden Markers mCherry in die 

Del III des MVA-Genoms erfolgte durch homologe Rekombination der im Plasmid 

vorhandenen Flank1 und Flank2 MVA-Sequenzen mit den homologen Sequenzen im MVA-

Genom (Abbildung 18). 

 

 

 

Abbildung 18: Konstruktionsschema der rekombinanten MVA durch homologe Rekombination. 
Die im Vektorplasmid zwischen Flank1 und Flank2 liegenden Sequenzen, werden stabil in die Deletion 
III inseriert. Das so entstandene Virus enthält auch das Gen des rot-fluoreszierenden Markerproteins 
mCherry. 



Ergebnisse ........................................................................................................................... 65 

Zwei Tage nach der Transfektion/Infektion konnten unter dem Fluoreszenzmikroskop erste 

rot leuchtende Zellen beobachtet werden. In diesen Zellen konnte die Insertion der 

gewünschten Zielgene in das MVA-Genom erfolgen. Die Expression des mCherry-Gens und 

die Sichtung rot fluoreszierender Zellen ermöglichte eine einfache Identifizierung und klonale 

Isolierung rekombinanter Viren. Die ersten Herde mit "roten" Zellen wurden geerntet und für 

weitere Passagen der Viren auf CEF-Zellen verwendet. Im Laufe der klonalen 

Passagierungen erhöhte sich der Anteil der "roten" Plaques und ihre Größe nahm zu, wie 

Abbildung 19 stellvertretend für alle Konstrukte zeigt, während sich die Menge des 

Wildtypvirus verringerte. 

 

 

A B 

 

 

 

Abbildung 19: Fluoreszenzmikroskopische Aufnahmen infizierter CEF-Zellen. A) CEF-Zellen 48 
Stunden nach Transfektion/Infektion mit MVA-Wildtypvirus (MOI 0,05) und Transferplasmid 
pIIIH5RedK1L-WNVprME1. Einzelne rote Zellen sind sichtbar. Vergrößerung: 40x. B) MVA-
WNVprME1 infizierte CEF-Zellen in der 7. Plaquepassage nach Transfektion/Infektion. Große Plaques 
mit vielen rot-fluoreszierenden Zellen sind sichtbar. Vergrößerung: 4x. 
 

 

Zur Überprüfung der genetischen Reinheit der isolierten Virusklone, wurden ab der 5. 

Passage PCR-Analysen der genomischen Virus-DNA durchgeführt. Dies erfolgte mit den 

Oligonukleotiden III-5‘ und III-3‘ für die Kontrolle der Fremdgen-Insertion in Del III. Abbildung 

20 zeigt als Beispiel eine Kontroll-PCR von drei klonalen Isolaten des rekombinanten Virus 

MVA-WNVprME1. Hierbei ist auch die bereits größtenteils erfolgte Deletion des Markergens 

mCherry erkennbar. Es wurden immer nur jene Klone weiterpassagiert und amplifiziert, 

deren PCR-Analyse möglichst kein oder geringes Wildtypsignal zeigte und die vollständige 

Integration der Zielgene vermuten ließ. 
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Abbildung 20: PCR-Analyse viraler DNA einzelner Virusplaques von MVA-WNVprME1. Die 
Integration des Zielgens wurde mit den spezifischen Del III Primern (III-5‘/III-3‘) überprüft. Die 
Auftrennung der PCR-Produkte erfolgte in einem 1% Agarosegel. 

 
 
Nach der erfolgreichen Selektion klonaler rekombinanter Viren wurden diese noch drei 

zusätzlichen Passagen auf CEF-Zellen unterzogen. Da die Funktion des rot-fluoreszierenden 

Proteins mCherry nicht mehr benötigt wurde, konnte dessen Gensequenz, wiederum durch 

homologe Rekombination gleichartiger DNA-Sequenzen, effektiv entfernt werden. Hierfür 

enthielten die Vektorplasmide die Sequenz Flank1-repeat (Fl1-rpt, Abbildung 18), welche 

homolog zu einer Teilsequenz der Flank1 ist. Der Nachweis für die Entfernung des 

Markergens mCherry im Genom rekombinanter Viren erfolgte visuell durch den Verlust roter 

Fluoreszenz in Foci virusinfizierter Zellen und mittels PCR-Analyse genomischer Virus-DNA. 

Nachdem die Überprüfungen der fünf Konstrukte erfolgreich verlaufen waren, erfolgten mit je 

einem ausgewählten Klon Amplifizierungschritte zur Generierung primärer und finaler 

sucrosegereinigter Virusstocks. 

 

2. Charakterisierung der rekombinanten Viren 

 

2.1 Molekulare Charakterisierung der finalen Konstrukte 

 

Die fertigen sucrosegereinigten Virusstocks wurden einer nochmaligen PCR-Analyse zur 

Konfirmation der genetischen Reinheit und Stabilität unterzogen. Zunächst erfolgte die 

Analyse der viralen DNA zur Kontrolle der stabilen Insertion der Zielgene in die Deletion III 

(Abbildung 21A) und zur zusätzlichen Absicherung eine Insert-PCR (Abbildung 21B). Die 
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Ergebnisse bestätigten die korrekte Insertion der Zielsequenzen bei allen fünf rekombinanten 

Viren. 

A 

 

B 

 

 

Abbildung 21: PCR-Analysen sucrosegereinigter Viruspräparationen der finalen rekombinanten 
MVA. Die Auftrennung der DNA-Fragmente erfolgte im 1% Agarosegel. A) Überprüfung der Insertion 
der Zielsequenzen in die Del III des MVA-Genoms mit den spezifischen Oligonukleotiden III-5‘/III-3‘. B) 
Überprüfung mittels Insert-PCR mit den Zielsequenz-spezifischen Primern: prMME-31/prMME-32 für 
MVA-WNVprME1, prMME-for/prMME-rev für MVA-WNVprME2 und WNVE-for/WNVE-rev für die 
anderen drei Konstrukte. 
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Zur Kontrolle der genomischen Stabilität der generierten Viren wurde das C7L-Gen von MVA 

amplifiziert. Seine Präsenz im Genom der rekombinanten Viren, dient als Referenz für die 

genomische Stabilität. Aus Abbildung 22 geht hervor, dass in allen Konstrukten C7L 

erfolgreich amplifiziert wurde und somit keine Instabilität detektiert werden konnte. 

 

 

 

 

Abbildung 22: Amplifikation des C7L-Gens der finalen rekombinanten MVA. Die PCR-Analyse 
wurde mit den für das Gen spezifischen Oligonukleotiden C7L-for/C7L-rev durchgeführt und im 1% 
Agarosegel dargestellt. 
 

 

2.2 Wachstumsanalysen auf verschiedenen Zelllinien 

 

Zur Charakterisierung der Viren hinsichtlich ihrer Effizienz sich in bestimmten Zellen zu 

vermehren, wurden Wachstumsanalysen durchgeführt. Dies erfolgte zur Verifizierung des 

Erhalts der MVA-typischen Replikationsdefizienz der rekombinanten Viren auf ausgewählten 

Zellen und Zelllinien. Außerdem sollte festgestellt werden, ob einzelne Konstrukte besonders 

gut oder schlecht auf permissiven Zellen (CEF oder DF-1) wachsen und somit für die 
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biotechnologische Produktion eines potentiellen Impfstoffes geeignet wären oder nicht. Für 

die in dieser Arbeit durchgeführten Mehrstufen-Wachstumsanalysen wurden die Zielzellen 

CEF, DF-1, HeLa, HaCaT und primäre Pferdefibroblasten (EqF, freundlicherweise erhalten 

von Frau Prof. Dr. Cornelia Deeg, Physiologie, Tierärztliche Fakultät LMU) mit einer MOI von 

0,05 infiziert, zu verschiedenen Zeitpunkten geerntet und die Virusmenge der erhaltenen 

Suspensionen durch Rücktitration bestimmt.  
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Abbildung 23: Mehrstufen-Wachstumsanalysen der rekombinanten MVA und MVA-Wildtyp auf 
fünf verschiedenen Zelllinien. Die Infektionen erfolgten mit einer MOI von 0,05. A) CEF und HaCaT, 
B) DF-1 und EqF, C) HeLa. 

 

 

Die durchgeführten Wachstumsanalysen zeigen für die fünf rekombinanten Viren und das 

Wildtyp-MVA ein sehr ähnliches Replikationsverhalten auf allen untersuchten Zelllinien. 

Auf den permissiven CEF und DF-1 Zellen (Abbildungen 23A und 23B) konnte gezeigt 

werden, dass es allen rekombinanten Viren möglich war, eine Steigerung des Virustiters 

gegenüber der eingesetzten Menge um bis zu vier Zehnerpotenzen zu erreichen. Beginnend 

mit einem Ausgangstiter von 1x102 bis 1x103 PFU/ml erhöhte sich die Virusmenge innerhalb 

der nächsten 48 Stunden auf bis knapp 1x106 oder 1x107 PFU/ml. Auf permissiven 

Zellkulturen (CEF, DF-1) wiesen die rekombinanten MVA daher ein gutes Vermehrungs-

potential auf. Außerdem war zu erkennen, dass nach 48 Stunden der Titerhöchststand der 

rekombinanten MVA erreicht wurde und danach bis zum Ende des Experiments nach 72 

Stunden stabil blieb oder wieder leicht abfiel. Im Gegensatz hierzu erfolgte in HaCaT und 

EqF (Abbildungen 23A und 23B) keine Replikation und in HeLa-Zellen (Abbildung 21C) 

höchstens in sehr geringem Ausmaß, mit einer maximalen Steigerung von einer halben 

Zehnerpotenz bei MVA-WNVprME2 72 Stunden nach der Infektion. 
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3. Analyse der rekombinanten Proteine 

 

3.1 Rekombinante Proteinexpression in verschiedenen Zelllinien 

 

Zur detaillierten Untersuchung und vor allem zum Vergleich der generierten MVA hinsichtlich 

ihrer Fähigkeit zur Produktion der rekombinanten Proteine während des viralen 

Lebenszyklus wurden die Zielzellen CEF, DF-1, HaCaT, HeLa und EqF mit den Viren 

infiziert, zu verschiedenen Zeitpunkten Proteinlysate hergestellt und mittels Immunoblot und 

WNV E-spezifischer, monoklonaler Antikörper analysiert. 

 
3.1.1 CEF 

 

 

 

Abbildung 24: WNV E-Proteinexpression nach Infektion von CEF-Zellen. Die Probenentnahme 
erfolgte 8, 24 und 48 Stunden nach Infektion. Als Ladekontrolle diente β–Actin. MVA-WNVx: 
rekombinante Viren, MVA: Wildttyp-MVA-Kontrolle, ZK: Zellkontrolle, h: Stunden. 
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3.1.2 DF-1 

 

 

 

 
 
Abbildung 25: WNV E-Proteinexpression nach Infektion von DF-1-Zellen. Die Probenentnahme 
erfolgte 8, 24 und 48 Stunden nach Infektion. Als Ladekontrolle diente β–Actin. MVA-WNVx: 
rekombinante Viren, MVA: Wildttyp-MVA-Kontrolle, ZK: Zellkontrolle, h: Stunden. 

 

 

Die Westernblot-Analysen von Lysaten bzw. Überständen infizierter primärer 

Hühnerfibroblasten (Abbildung 24) und DF-1-Zellen (Abbildung 25) bestätigen die stabile 

Produktion rekombinanter WNV E-Proteine nach Infektion mit allen fünf Vektorviren. In den 

Zelllysaten waren grundsätzlich größere Mengen an E-Protein zu finden und bei einigen 

Viren, wie MVA-WNVETMC und auch den beiden MVA-WNVprMEs, konnte eine Zunahme der 

Proteinmenge in den Proben im Zeitverlauf beobachtet werden. Es war möglich in den 

Überständen von, mit MVA-WNVprME1 und 2, sowie MVA-WNVESOL, infizierten Zellen Banden 
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zunehmender Intensität zu detektieren. Dies wies auf eine Sekretion der Proteine aus den 

Zellen hin. Hingegen waren kaum bis gar keine E-Proteine in den Überständen von MVA-

WNVETMC und MVA-WNVETMV nachzuweisen. Dies sprach für die erfolgreiche Verankerung 

der Proteine in den Zellmembranen infizierter Zellen. 

 

 

3.1.3 HaCaT 

 

 

 

 

 

Abbildung 26: WNV E-Proteinexpression nach Infektion von HaCaT-Zellen. Die Probenentnahme 
erfolgte 8, 24 und 48 Stunden nach Infektion. Als Ladekontrolle diente β–Actin. MVA-WNVx: 
rekombinante Viren, MVA: Wildttyp-MVA-Kontrolle, ZK: Zellkontrolle, h: Stunden. 
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3.1.4 HeLa 

 

 

 

 

 

Abbildung 27: WNV - Proteinexpression nach Infektion von HeLa-Zellen. Die Probenentnahme 
erfolgte 8, 24 und 48 Stunden nach Infektion. Als Ladekontrolle diente β–Actin. MVA-WNVx: 
rekombinante Viren, MVA: Wildttyp-MVA-Kontrolle, ZK: Zellkontrolle, h: Stunden. 
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3.1.5 EqF 

 

 

 

 

 

Abbildung 28: WNV E-Proteinexpression nach Infektion von Pferdefibroblasten. Die 
Probenentnahme erfolgte 8, 24 und 48 Stunden nach Infektion. Als Ladekontrolle diente β–Actin. 
MVA-WNVx: rekombinante Viren, MVA: Wildttyp-MVA-Kontrolle, ZK: Zellkontrolle, h: Stunden. 

 

 

Auch nach Infektion von nicht-permissiven humanen und equinen Zellen war eine 

Proteinexpression nachzuweisen. Die Abbildungen 26, 27 und 28 veranschaulichen dies für 

HaCaT-, HeLa- und Pferdezellen. In den Zelllysaten waren ansteigende Mengen an E-
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Protein zu finden. Die Zunahme der Konzentration an E-Protein in den Überständen konnte 

bei MVA-WNVprME1 und 2, sowie MVA-WNVESOL gezeigt werden, wohingegen MVA-

WNVETMC und MVA-WNVETMV keine detektierbaren Mengen an E-Protein im Überstand 

aufwiesen. In der Darstellung der Ergebnisse bei den Pferdefibroblasten (Abbildung 28) war 

zum 48-Stunden-Zeitpunkt bei MVA-WNVESOL keine Bande erkennbar. Dieser Befund ergab 

sich daraus, dass hier weniger Protein aufgetragen wurde. Dies wurde durch den Nachweis 

einer verringerten Menge an β–Actin, welches als Ladekontrolle für die gesamte 

Proteinmenge verwendet wurde, bestätigt. 

 

Insgesamt konnte eine produktive und stabile Proteinexpression aller rekombinanten Viren in 

den untersuchten Zelllinien nachgewiesen werden. 

 

 

3.2 Glykosylierung 

 

Fast alle bekannten WNV besitzen im E-Protein eine einzige N-glykosidische Bindungsstelle 

für Zuckerreste. Diese liegt in der bei dieser Arbeit verwendeten Sequenz des Stammes 

WNV-NY99 an der Aminosäureposition 154. Die Glykosylierung des WNV E-Proteins wird 

häufig mit verstärkter Virulenz und Neuroinvasivität des Virus in Verbindung gebracht 

(Beasley et al. 2005) und scheint auch das Assembly und die Infektiosität zu beeinflussen 

(Hanna et al. 2005, Whiteman et al. 2010). Die rekombinanten Proteine wurden auf die 

Funktion der Glykosylierungsstelle untersucht. Hierfür wurden CEF-Zellen mit den 

rekombinanten MVA infiziert, nach 48 Stunden Infektion Überstände und Zelllysate 

gewonnen und die darin enthaltenen Proteine mit PNGase F (NEB, Schwalbach) laut 

Herstellerangaben behandelt. Die Westernblot-Analyse mit E-spezifischen Antikörpern 

bestätigte die Glykosylierung der WNV E-Proteine nach Infektion mit allen fünf 

rekombinanten Viren. Die Behandlung mit PNGase F erlaubte den Nachweis eines im 

Vergleich zu dem unbehandelten WNV E um etwa 2 kDa kleineren Proteins (Abbildung 29). 

Diese Größe entspricht dem erwarteten Molekulargewicht des an einer einzelnen Stelle 

deglykosylierten WNV E. 
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Abbildung 29: Deglykosylierung der rekombinanten E-Proteine. Westernblot-Untersuchung von 
Proteinlysaten mit E-spezifischen Antikörpern. Die Proben wurden 48h nach Infektion von CEF-Zellen 
mit dem jeweiligen Virus gewonnen und mit PNGase F (P) oder mock (U) behandelt.  
 

 

 

3.3 Lokalisation der rekombinanten WNV-Proteine in infizierten HeLa-Zellen

 mittels Immunfluoreszenz und Konfokalmikroskopie 

 

 

Mit den fünf konstruierten rekombinanten Viren wurde die Produktion verschiedener Formen 

von WNV E-Antigen beabsichtigt. Drei der generierten Viren sollten ein Ausschleusen der 

produzierten E-Proteine aus der infizierten Zelle ermöglichen. Durch die Expression der 

WNV-spezifischen cDNA in MVA-WNVprME1 bzw. 2 sollten sich Virus-ähnliche Partikel (VLP - 

virus-like-particles) bilden, welche dann aus der Zelle transportiert werden. MVA-WNVETMC 

und MVA-WNVETMV hingegen sollten zur Verankerung des E-Proteins an der 

Plasmamembran infizierter Zellen führen. Zur Untersuchung der Expression und Lokalisation 

der rekombinanten Zielproteine wurden HeLa-Zellen mit den verschiedenen Vektorviren 
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infiziert und 24 Stunden nach Infektion mittels Immunfluoreszenz und Konfokalmikroskopie 

analysiert.  

 

 

3.3.1 MVA-WNVprME1 

 

Das Ziel der Konstruktion der rekombinanten MVA-WNVprME-Viren war es, durch die 

simultane Expression beider Hüllproteine des WNV (prM/M und E) VLPs zu erzeugen, die 

aus den Zellen über den natürlichen Sekretionsweg des Golgi-Apparates ausgeschleust 

werden sollten. 

 

 

 

 

 

Abbildung 30: Konfokalmikroskopische Aufnahme einer mit MVA-WNVprME1 infizierten HeLa-
Zelle. Die Detektion der E-Proteine erfolgte mittels monoklonalem WNV-E-Antikörper und des grün 

fluoreszierenden Sekundärantikörpers Alexa Fluor 488 F(ab)2. → Pfeil: grün-fluoriszierendes Partikel.  
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Wie aus Abbildung 30 hervorgeht, konnten im Konfokalmikroskop infizierte HeLa-Zellen 

detektiert werden, die im Gegensatz zu nicht-infizierten Zellen, eine deutliche Anfärbung der 

Zellmembranen und deren Randbereiche aufwiesen. Dieses Ergebnis bestätigte zunächst 

die Synthese von E-Proteinen in infizierten Zellen. Außerdem erschien die spezifische 

Fluoreszenz vor allem kleinere Partikel (Pfeil) zu betreffen, welche rund um die Zellen oder in 

der Nähe zu finden waren. Da dies häufig zu beobachten war und infizierte Zellen nur so 

aussahen, wurden diese Partikel als mögliche VLPs oder aufgrund ihrer Größe als VLP-

Aggregate interpretiert, welche gerade aus der Zelle ausgeschleust wurden oder schon 

waren. 

 

 

3.3.2 MVA-WNVESOL 

 

Die Entfernung der Transmembrandomäne des WNV E-Proteins sollte, die Synthese eines 

nicht in zellulären Membranen verankerten E-Proteins ermöglichen, welches in Virus 

infizierten Zellen als ein lösliches (soluble) Protein aus der Zelle sezerniert werden sollte. Der 

Nachweis eines löslichen E-Proteins mittels Immunfluoreszenzfärbung ist jedoch schwierig. 

 

 

 

 

 

Abbildung 31: Konfokalmikroskopische Aufnahme von MVA-WNVESOL infizierten HeLa-Zellen. 
Die Detektion der E-Proteine erfolgte mittels monoklonalem WNV-E-Antikörper und des grün 
fluoreszierenden Sekundärantikörpers Alexa Fluor 488 F(ab)2. 
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Wie in Abbildung 31 zu sehen, konnte in infizierten Zellkulturen eine spezifische grüne 

Fluoreszenz detektiert werden. Es handelt sich hierbei wahrscheinlich um die Anfärbung 

intrazellulär lokalisierter E-Proteine. Eine Einordnung der vorhandenen Fluoreszenz war 

jedoch nicht möglich. 

 

 

3.3.3 MVA-WNVETMC und MVA-WNVETMV 

 

Hinter der Konstruktion dieser beiden rekombinanten Viren stand die Idee das E-Protein auf 

der Zelloberfläche zu exponieren. Hierfür wurde angenommen, dass der Austausch der 

ursprünglichen Transmembrandomäne des WNV E mit der des E2-Proteins (Hüllprotein) von 

Chikungunyavirus oder der des A56-Proteins (Hämaggluttinin) von Vacciniavirus zur 

Verankerung von E an der Plasmamembran führen könnte. 

 

 

MVA-WNVETMC 

 

 

 

 

Abbildung 32: Konfokalmikroskopische Aufnahmen einer mit MVA-WNVETMC infizierten HeLa-

Zelle. A) Fluoreszenzaufnahme, B) Phasenkontrastaufnahme mit Überlagerung des grünen 
Fluoreszenzkanals, C) Phasenkontrastaufnahme und zusätzlichem roten, mCherry-Fluoreszenzkanal. 
Die Detektion der E-Proteine erfolgte mittels monoklonalem WNV-E-Antikörper und des grün 
fluoreszierenden Sekundärantikörpers Alexa Fluor 488 F(ab)2. Die Ko-Expression von mCherry 
erlaubte die Darstellung Virus-infizierter Zellen durch Sichtung auf rote Fluoreszenz. 

 

 

Das E-Protein mit der Transmembrandomäne aus Chikungunyavirus konnte nach Infektion 

mit MVA-WNVETMC an der Plasmamembran infizierter Zellen mittels grüner Fluoreszenz 

detektiert werden (Abbildung 32). Zur Überprüfung, ob es sich bei den grün geränderten 

Gebilden tatsächlich um Zellen handelte, wurden Phasenkontrastaufnahmen erzeugt 
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(Abbildung 32B und 32C). In diesen war die Struktur einer Zelle erkennbar und in Abbildung 

32C wies die zusätzliche Detektion des rot fluoreszierenden mCherry darauf hin, dass die 

Struktur als Zelle identifiziert werden konnte. Für die Infektion wurde ein noch mCherry-

enthaltendes Stockvirus verwendet.  

 

 

MVA-WNVETMV 

 

 

 

 

Abbildung 33: Konfokalmikroskopische Aufnahmen einer mit MVA-WNVETMV infizierten HeLa-

Zelle. A) Fluoreszenzaufnahme, B) Phasenkontrastaufnahme mit Überlagerung des grünen 
Fluoreszenzkanals, C) Aufnahme mit zusätzlichem roten, mCherry-Fluoreszenzkanal. Die Detektion 
der E-Proteine erfolgte mittels monoklonalem WNV-E-Antikörper und des grün fluoreszierenden 
Sekundärantikörpers Alexa Fluor 488 F(ab)2. Die Ko-Expression von mCherry erlaubte die Darstellung 
Virus-infizierter Zellen durch Sichtung auf rote Fluoreszenz. 
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Das rekombinante MVA-WNVETMV mit der Transmembrandomäne von Vacciniavirus lieferte 

das gleiche Ergebnis wie MVA-WNVETMC. Auch hier waren im Phasenkontrast und mit roter 

Fluoreszenz die Zellen und deren E-Proteinexpression auf den Plasmamebranen deutlich zu 

erkennen (Abbildung 33). 

 

 

 

4. Immunogenität im Mausmodell 

 

4.1 Antikörperantwort (Antigen-ELISA) 

 

 

Die Überprüfung der Immunogenität der rekombinanten MVA erfolgte nach Impfung im 

Mausmodell. Hierfür wurden 6 - 8 Wochen alte weibliche Balb/c-Mäuse (Charles River, 

Sulzfeld) mit jeweils 1x108 PFU der rekombinanten Viren im Abstand von 21 Tagen zweimal 

immunisiert. Die Induktion einer WNV-spezifischen humoralen Immunantwort und somit die 

Bildung von WNV E-spezifischen Antikörpern wurde im ELISA getestet. Als Antigen für den 

ELISA diente, im Baculovirus-Expressionssystem hergestelltes, WNV E-Protein 

(freundlicherweise erhalten von Dr. Gorben Pijlman, Universität Wageningen). 

 

Die Abbildung 34 zeigt eine Zusammenfassung der Ergebnisse und den Vergleich der 

Antikörperimmunantwort nach Erstimmunisierung und Auffrischungsimpfung (Abbildung 34A 

und 34B). Die Immunisierungen mit allen rekombinanten Viren induzierten eine WNV-

Antikörperantwort. Interessanterweise zeigten sich jedoch Unterschiede zwischen den 

Konstrukten. Nach der ersten Immunisierung von Mäusen mit MVA-WNVESOL konnte die 

größte Menge an WNV-spezifischen Antkörpern detektiert werden, gefolgt von MVA-

WNVETMV. Die zweite Immunisierung führte grundsätzlich bei allen Impfstoffen zur Detektion 

WNV E-spezifischer Antikörper. MVA-WNVTMC erziehlte nach der ersten Immunisierung 

annähernd gleiche Werte wie MVA-WNVTMV, nach der Auffrischungsimpfung fiel die 

Antikörperreaktion jedoch ab. Gleichbleibende Antikörpermengen im Serum nach erster und 

zweiter Immunisierung konnten bei MVA-WNVprME1 infizierten Mäusen beobachtet werden. 

Insgesamt glichen sich die Antikörpertiter aller rekombinanten MVA nach beiden erfolgten 

Immunisierungen an. In den negativen Kontrollmäusen konnten keine WNV-spezifischen 

Antikörper nachgewiesen werden. 
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Abbildung 34: Detektion WNV-spezifischer Antikörper mittels ELISA. A) nach der 
Erstimmunisierung (Tag 18 p.i.), B) nach der zweiten Immunisierung (Tag 31 p.i.). Die Verdünnungen 
der Seren erfolgte von 1:100 bis 1:12800. Zelllysate mit hoher Konzentration an WNV E-Protein 
dienten als Antigen. Die Seren der Mäuse jeder Impfgruppe wurden zusammengesfasst. Mittelwerte 
aus Duplikaten ± SEM. 
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4.2 T-Zell-Antwort (IFN-γ-ELISpot) 

 

Eine Nachweismöglichkeit induzierter zellulärer Immunreaktionen ist die Messung der 

Interferon-γ-Produktion der CD8+ T-Zellen nach Stimulation mit einem entsprechenden 

Antigen. Dies erfolgte mittels ELISpot-Analyse. Hierfür wurden Milzzellen geimpfter 

transgener HLA-A2.1 Mäuse verwendet. Als Positivkontrolle wurde PMA/Ionomycin und als 

Negativkontrolle nur das Zellkulturmedium angewendet. 

 

Die Abbildung 35A zeigt die expemplarische Darstellung einer ELISpot-Analyse des 

Konstrukts MVA-WNVESOL. Es ist visuell ein Unterschied in der Spot-Anzahl zwischen den 

Peptid (SVG9), den Zellkulturmedium und den PMA/Ionomycin stimulierten Splenozyten 

erkennbar. Dieses Ergebnis ließ sich auch quantitativ bestätigen (Abbildung 35B). Insgesamt 

induzierten alle Konstrukte eine deutliche WNV-spezifische IFN-γ-Aktivität (Abbildung 35B). 

Mit rund 400 gezähIten Spots konnte MVA-WNVETMC die beste IFN-γ-Antwort induzieren, 

jedoch dicht gefolgt von MVA-WNVprME1 und MVA-WNVETMV mit auch jeweils über 300 

gezählten Farbpunkten. Im Vergleich hierzu konnte kein IFN-γ durch die Inkubation der 

Zellen mit Zellkulturmedium, jedoch aber eine gute Stimulation durch PMA/Ionomycin als 

Positivkontrolle nachgewiesen werden. Auffällig war jedoch der Unterschied zwischen MVA-

WNVESOL und den anderen drei rekominanten Viren, der sich als signifikant herausstellte. Im 

direkten Vergleich zeigte sich die INF-γ-Aktivität dieses Konstrukts mehr als um die Hälfte 

niedriger, als jene von MVA-WNVETMC. 
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Abbildung 35: Darstellung des INF-γ-ELISpots nach Immunsierung mit den rekombinanten 
MVA. A) Exemplarische Darstellung der Spot-Anzahl einer ELISpot-Analyse des MVA-WNVESOL-
Virus. B) Graphische Auswertung des INF-γ-ELISpots der Konstrukte. Splenozyten geimpfter Mäuse 
wurden 48 Stunden mit SVG9, PMA/Ionomycin und reinem Zellkulturmedium stimuliert und danach die 
INF-γ-Aktivität gemessen. PMA/Ionomycin diente als Positiv- und das Medium als Negativkontrolle. 
Darstellung der Mittelwerte aus Quadruplikaten ± SEM. 
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V. DISKUSSION 
 

Pockenviren werden bereits seit längerem als anerkannte Werkzeuge zur Expression von 

Fremd-DNA und in der Impfstoffforschung verwendet. Vor allem das Modifizierte 

Vacciniavirus Ankara (MVA) gilt als besonders geeignet für die präklinische und klinische 

Forschung auf diesem Gebiet. Eine Vielzahl von Untersuchungen, Tierstudien und auch 

Patientendaten bestätigen die effiziente Expression verschiedener rekombinanter Antigene, 

sowie die erfolgreiche Induktion von Immunantworten durch MVA (Amara et al. 2001, Bender 

et al. 1996, Gherardi et al. 2004, Hanke et al. 1999, Sutter et al. 1994, Wyatt et al. 1996). Ziel 

dieser Arbeit war (1) die Generierung fünf verschiedener rekombinanter MVA zur Produktion 

rekombinanter WNV-Antigene, (2) deren Charakterisierung, (3) deren Untersuchung 

hinsichtlich ihrer Immunogenität, sowie (4) die Bewertung auf ihre Eignung als potentielle 

Vakzinkandidaten. Nachfolgend werden diese vier Arbeitsbereiche näher diskutiert: 

 

1. Generierung rekombinanter MVA zur Produktion von WNV-Antigenen 

 

Die Gensequenzen des nordamerikanischen WNV-Stammes NY99 wurden für diese Arbeit 

als Ausgangsbasis gewählt, da dieser Stamm in der WNV-Impfstoffforschung zu den am 

häufigsten verwendeten Stämmen zählt (Davis et al. 2001, Lieberman et al. 2007, Martin et 

al. 2007, Martina et al. 2008b). Als Antigene wurden die beiden Hüllproteine des WNV, 

prM/M (precursor Membrane/Membrane) und E (Envelope), verwendet. Insgesamt wurden 

fünf verschiedene rekombinante Viren hergestellt, die die Produktion unterschiedlicher 

Formen des E-Proteins erlauben sollten. Das E-Antigen ist von besonderer Bedeutung, da 

es nach einer Infektion das Hauptzielantigen der humoralen und zellulären Immunantwort 

darstellt und eine Vielzahl an immunogenen und protektiven Epitopen aufweist (Colombage 

et al. 1998, Oliphant et al. 2007, Throsby et al. 2006). 

Zur Generierung aller fünf Transferplasmide wurde der Ausgangsvektor pIIIH5RedK1L 

herangezogen (Kremer et al. 2012). Die WNV-Zielgensequenzen wurden in die Deletion III 

des MVA-Genoms inseriert. Die Del III ist eine von sechs natürlich vorkommenden 

Deletionen und wird bereits seit langem erfolgreich als Insertionsstelle eingesetzt. Sie eignet 

sich hervorragend für den stabilen Einbau und die Expression von Fremd-DNA (Drexler et al. 

2004, Sutter und Moss 1992). Homologe Sequenzen zu den Flank-Regionen dieses 

Insertionsortes befanden sich im Vektorplasmid, da die Generierung der rekombinanten MVA 

mittels homologer Rekombination erfolgen sollte. Diese Methode gilt als sehr effizient, um 

Fremd-DNA in das MVA-Genom zu inserieren (Mackett et al. 1982, 1984). Die Anwesenheit 

des rot-fluoreszierenden mCherry als Selektionsmarker ermöglichte es, die erfolgreich 
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verlaufenen, Rekombinationsevents einfach und schnell mittels Fluoreszenzmikroskopie zu 

detektieren. Durch die kontinuierliche Weiterpassagierung, der von den rekombinanten Viren 

verursachten, rot-fluoreszierenden Plaques war es schnell und effektiv möglich, auf 

rekombinante MVA zu selektieren. Die Verwendung eines fluoreszierenden 

Selektionsmarkers war die Methode der Wahl, da die hergestellten Vektorviren als potentielle 

Vakzinkandidaten für klinische Studien geeignet sein sollten. Andere Selektions-Methoden, 

wie etwa die „host-range“-Selektion mittels RK-13 Zellen, sind dafür nicht zugelassen 

(Kremer et al. 2012). 

Bei dem im Transferplasmid bereits vorhandenen synthetischen Vaccinia-Promotor PmH5 

handelt sich um einen früh/spät-Promotor, der hauptsächlich für die Verwendung in 

Vakzinkandidaten entwickelt wurde. Er soll eine potente, während des Replikationszyklus 

andauernde, Genexpression induzieren und enthält einen besonders starken frühen Anteil. 

Es ist bekannt, dass dies für die Initiation einer zellulären Immunantwort von Vorteil ist 

(Wyatt et al. 1996). Die fertigen Vektorplasmide unterschieden sich nur in der integrierten 

Zielgensequenz („Gene of Interest“). Dies bedeutete, dass alle rekombinanten MVA, bis auf 

die inserierten Gene, identisch waren. Damit sollte die Vergleichbarkeit der rekombinanten 

Vakzinkandidaten gewährleisten werden. 

 

Im Zuge der Viruspassagen bei der Herstellung rekombinanter MVA kann es zu 

genomischen Rearragements kommen. Das Gen C7L ist durch seine Lage in den terminalen 

Sequenzwiederholungen des MVA-Genoms anfällig für solche genomischen 

Rearrangements und kann daher als Referenz für die genomische Stabilität herangezogen 

werden. Die Überprüfung der Anwesenheit und der korrekten Göße des C7L-Gens im 

Genom der hergestellten Vektorviren war notwendig, da die Konstrukte für die potentielle 

spätere Anwendung in klinischen Studien entwickelt wurden und hierfür die Stabilität der 

Virusgenome besonders wichtig ist. Außerdem ist bekannt, dass eine späte Genexpression 

von MVA in nicht-permissiven humanen Zellen von der C7L-Genfunktion abhängig ist 

(Backes et al. 2010). Da der Promotor PmH5 auch späte Anteile besitzt, ist eine optimale 

Proteinausbeute nur möglich, wenn eine späte Genexpression nicht gestört ist. 

 

2. Charakterisierung der rekombinanten MVA 

 

Bei der Herstellung neuer rekombinanter Viren für die Impfstoffproduktion ist es wichtig 

nachzuweisen, dass diese die gleichen Sicherheitsmerkmale wie das Wildttyp-MVA, 

aufweisen. Es ist belegt, dass MVA ein sehr enges Wirtsspektrum besitzt und sich in vom 

Menschen stammenden und den meisten Säugerzellen, außer Baby Hamster Kidney-Zellen 

(BHK-21), nicht produktiv replizieren kann (Drexler et al. 1998). Diese Replikationsdefizienz 
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sollten auch die rekombinanten Viren aufweisen und somit ihre biologische Sicherheit belegt 

werden. In permissiven Zellen (CEF, DF-1) hingegen war es wichtig, dass sich die in das 

MVA-Genom integrierten DNA-Sequenzen nicht negativ auf den Replikationszyklus 

auswirkten, um bei der Amplifikation für die Virusstock-Erzeugung hohe Titer zu 

gewährleisten. Die Analyse des Wachstumsverhaltens ist daher ein wichtiger Schritt zur 

Charakterisierung von MVA-Vektorvakzinen. Für die Bewertung der Vermehrungsfähigkeit 

der Viren ist die Mehrstufen-Wachstumsanalyse eine geeignete Methode. Sie zeigt die 

Fähigkeit von Virionen sich auf einem Zellrasen auszubreiten und lässt die quantitative 

Bestimmung neu gebildeter infektiöser Viruspartikel zu (Staib et al. 2004). Hierfür wurden in 

dieser Arbeit, neben den permissiven CEF und DF-1, die beiden humanen Zelllinien HeLa 

und HaCaT, sowie primäre Pferdefibroblasten (EqF) als Zielzellen für die Untersuchungen 

verwendet. Der Vergleich zwischen CEF- und DF-1-Zellen war deshalb interessant, da die 

Möglichkeit zur Produktion von rekombinantem MVA in größerem Maßstab durch die 

Verwendung einer permanenten Zelllinie, wie den DF-1, wesentlich erleichtert würde. 

Obwohl in der Vergangenheit auch andere Zelllinien als potentielle Wirtszellen zur MVA-

Produktion untersucht wurden (Drexler et al. 1998), finden CEF-Zellen am häufigsten 

Anwendung. Als primäre Zellen sind sie jedoch für die biotechnologische Produktion in 

größerem Maßstab in einigen Belangen von Nachteil. So erfordert die Produktion und die 

Kultur von CEF-Zellen Erfahrung in der Präparation von primären Zellen und ist von der 

Qualität und Verfügbarkeit von SPF-Eiern abhängig. Außerdem ist die Lebensdauer dieser 

Zellen auf einige, wenige Passagen begrenzt und erfordert eine wöchentliche 

Neupräparation (Drexler et al. 1998). Die Ergebnisse der DF1-Zellen sind mit denen der 

CEF-Zellen vergleichbar, wobei ein deutlicher Titerabfall bei den rekombinanten Viren 72 

Stunden nach Infektion in den DF-1-Zellen erkennbar war (siehe Abbildung 23B). Bei einem 

Erntezeitpunkt von 48 Stunden p.i. waren jedoch keine Unterschiede in der Höhe der 

erzielten Virustiter in CEF- und DF-1-Zellen beobachtbar. Es wäre daher auch möglich die 

Amplifikation zur Herstellung von hochtitrigen Virusstocks in der permanenten Zelllinie DF-1 

durchzuführen. 

Die Replikationsdefizienz der rekombinanten Viren in den Zielzellen konnte in den beiden 

humanen Zelllinien, sowie den Pferdefibroblasten eindeutig nachgewiesen werden. In 

HaCaT und den EqF blieb die Quantität der ermittelten PFU über die gesamte Dauer des 

Experiments auf dem gleichen Niveau der eingesetzten Menge (siehe Abbildungen 23A und 

23B) und zeigt somit, dass keine Vermehrung der Viren stattfinden konnte. In den HeLa-

Zellen zeigte sich zwar eine Replikation, aber in äußerst geringem Ausmaß (siehe Abbildung 

23C). Dass dies bei diesem Zelltyp möglich ist, wurde bereits in der Vergangenheit 

beschrieben (Caroll und Moss 1997, Drexler et al. 1998, Meyer et al. 1991, Wyatt et al. 

1998).  



Diskussion ............................................................................................................................ 89 

Die Fähigkeit zur rekombinanten Proteinsynthese in den Zielzellen ist eine wichtige 

Eigenschaft von MVA-Vektorvakzinen. Die Untersuchung der fünf Konstrukte hierzu erfolgte 

mittels Westernblot-Analysen, in denen auch eine Zeitkinetik (8, 24 und 48 Stunden) des 

Infektionsverlaufs dargestellt wurde. Außerdem wurde die Lokalisation der von den 

Vektorviren exprimierten rekombinanten E-Proteine ermittelt. Hierfür fanden die Methoden 

der Konfokalmikroskopie und Immunfluoreszenzfärbung Anwendung. HeLa-Zellen wurden, 

stellvertretend für nicht-permissive Zielzellen, mit den Viren infiziert. Die low-MOI-Infektion 

von 0,05 bewirkte, dass einzelne infizierte Zellen sich deutlich von den, um sie herum 

liegenden, nicht-infizierten Zellen unterscheiden ließen. 

 

Nachfolgend werden die Ergebnisse der Proteinsynthese- und Lokalisationsanalysen für die 

Konstrukte im Einzelnen besprochen: 

 

MVA-WNVprME1 und MVA-WNVprME2 

Die Infektion von Zellen mit diesen Vektorviren sollte die Produktion von VLPs (virus-like 

particles) erlauben, die nachfolgend von den infizierten Zellen freigesetzt werden sollten. Die 

Bildung von kleinen, kapsidlosen und nicht-infektiösen VLPs oder RSPs (recombinant 

subviral particles) durch eine Ko-Expression der prM- und E-Gene des WNV, wurde bereits 

mehrfach beschrieben (Ohtaki et al. 2010, Wang et al. 2009, Qiao et al. 2004). Außerdem 

sind VLPs allgemein für die Impfstoffentwicklung von Interesse, da sie den Vorteil bieten die 

Struktur von Viruspartikeln zu imitieren, ohne dabei infektiöses, genetisches Material zu 

beinhalten (Roy und Noad 2008). Sie präsentieren so virale Antigene in nahezu 

authentischer Konformation (Grgacic und Anderson 2006, Noad und Roy 2003), werden 

binnen kurzer Zeit vom Immunsystem erkannt und sind in der Lage zelluläre und humorale 

Immunantworten effektiv zu induzieren. MVA-WNVprME1 und MVA-WNVprME2 

unterschieden sich in ihrer Codon-Usage bezüglich der Originalsequenz von WNV-NY99, die 

bei MVA-WNVprME1 entsprechend zu Vacciniavirus optimiert wurde (siehe Sequenzen 

Anhang 2.1 und 2.2). Ziel hiervon war die Untersuchung eines eventuellen Einflusses der 

Codon-Usage auf die Proteinexpression, was jedoch nicht bestätigt werden konnte. 

MVA-WNVprME1 und 2 zeigten eine deutliche Proteinexpression in den Westernblot-Analysen. 

Die Proteinmenge nahm vor allem in den Überstandproben im Zeitverlauf zu (siehe 

Abbildungen 24 bis 28). Dadurch ließ sich die Funktionalität der Viren in permissiven, als 

auch humanen und equinen Zellen belegen. Die beiden MVA-WNVprME-Viren wiesen 

zudem eine meist kontinuierliche Zunahme der Proteinmenge auch in den Zellysaten auf. 

Diese Anhäufung im Zellinneren ließe sich dadurch erklären, dass VLPs über den 

natürlichen Transportweg von WNV-Virionen aus der Zelle geschleust werden (Wang et al. 

2009). Dies beinhaltet das Assembly am Endoplasmatischen Retikulum, die Akkumulation in 
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Vesikeln sowie die nachfolgende Glykosylierung während des Transports im Trans-Golgi-

Netzwerk (Lindenbach et al. 2007, Wang et al. 2009). Dieser Vorgang nimmt längere Zeit in 

Anspruch und es wäre möglich, dass sich, vor allem durch die Konzentration in Vesikeln, 

mehr rekombinantes Protein in den Zellen akkumuliert, als fertige VLPs innerhalb eines 

bestimmten Zeitraumes sezerniert werden können. 

Die Abbildung 30 zeigt eine mit MVA-WNVprME1 infizierte HeLa-Zelle, die sich von den 

anderen Zellen durch eine stark grün-fluoreszierende Zellmembran und deren Randbereiche 

unterschied. Die Fluoreszenz schien vor allem kleinere Partikel zu betreffen, welche um die 

Zelle herum verstreut lagen. Durch weiteres Screening mit dem Mikroskop konnten noch 

mehr dieser grün leuchtenden Partikel um die Zelle herum gefunden und in vielen anderen 

detektierten Zellen beobachtet werden. Es wäre denkbar, dass diese Partikel VLPs 

darstellen. Dass die Produktion von VLPs durch virale Expressionsvektoren realisierbar ist, 

konnte bereits mehrfach bestätigt werden. Mittels rekombinanter Baculo-, aber auch 

rekombinanter Vacciniaviren wurden erfolgreich Vogelgrippe- (H9N2), Influenza- (H5N1), 

Hantaan- und auch West-Nil-VLPs hergestellt (Betenbaugh et al. 1995, Pushko et al. 2005, 

Qiao et al. 2004, Schmeisser et al. 2012). 

 

 

MVA-WNVESOL 

Dieses Virus wurde zur Produktion eines löslichen (soluble) E-Proteins, das von infizierten 

Zellen sezerniert werden sollte, generiert. Hierfür wurde die Transmembrandomäne von E, 

die für die Verankerung des Proteins in die Membran des Endoplasmatischen Retikulums 

(Lindenbach et al. 2007, Zhang W et al. 2003) und somit für die Präsentation des Proteins an 

der Virusoberfläche verantwortlich ist, entfernt. Dass dies ein möglicher Weg zur Herstellung 

von löslichem WNV E-Protein ist, wurde durch die Entfernung des carboxy-terminalen Endes 

von E nachgewiesen (Allison et al. 1995b, Men et al. 1991). 

In der Zeitkinetik der Westernblot-Analyse war bei MVA-WNVESOL im Gegensatz zu den 

anderen Konstrukten in den Zelllysat-Proben eine Abnahme der Proteinmenge 48 Stunden 

nach Infektion messbar (siehe Abbildungen 24, 25 und 26). Dies ließe sich dadurch erklären, 

dass sich durch den schnellen Transport in das Zellkulturmedium, keine großen Mengen des 

Proteins in den Zellen akkumulieren können. Dass lösliches E-Protein schneller als 

membranständiges E durch Zellen transportiert wird, wurde bei der Untersuchung des 

Masernvirus als WNV-Vakzine gezeigt (Deprès et al. 2005). Somit wäre es möglich, dass die 

Konzentration an E-Protein in den Zellen im Zeitverlauf ab- und im Überstand zunimmt. 
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MVA-WNVETMC und MVA-WNVETMV 

Mit MVA-WNVETMC und MVA-WNVETMV wurde eine Verankerung des E-Proteins auf den 

Plasmamembranen infizierter Zellen beabsichtigt. Hierfür wurde die ursprüngliche 

Transmembrandomäne von E entfernt und durch die Transmembrandomäne des E2-

Proteins aus Chikungunyavirus oder des A56-Proteins aus Vacciniavirus ersetzt (siehe 

Abbildung 15A). Diese beiden Proteine sind an der Oberfläche infizierter Zellen verankert 

(DeHaven et al. 2011, Ichihashi und Dales 1971, Kuhn 2007, Mukhopadhyay et al. 2006, 

Shida 1986).  

Die Immunoblot-Daten von MVA-WNVETMC und MVA-WNVETMV zeigten in allen Zelllinien 

eine Zunahme der Proteinmenge in den Zelllysaten während des Experiments von 8 bis 48 

Stunden. In den Überständen hingegen waren keine oder äußerst geringe detektierbare 

Mengen an E-Protein vorhanden. Dies lieferte den Nachweis, dass die rekombinanten E-

Proteine nicht von den Zellen sezerniert wurden. Die dennoch detektierten hellen Banden im 

Überstand in den Abbildungen 24, 25, 26 und 28 lassen sich durch die experimentellen 

Bedingungen erklären. Beim Abnehmen des Überstandes infizierter Monolayer kann es 

häufiger vorkommen, dass vor allem nach 48 Stunden bereits einige Zellen abgestorben 

sind, im Überstand schwimmen und ihre Zellmembran sich bereits in der Auflösung befindet. 

Zwar erfolgte ein Zentrifugationsschritt des Überstandes, um möglichst viel Verunreinigung 

durch totes Zellmaterial und Detritus zu entfernen, jedoch bleiben immer vereinzelte Reste 

übrig. Die mittels Konfokalmikroskopie detektierte grüne Fluoreszenz an den 

Plasmamembranen infizierter Zellen, belegte die Verankerung der rekombinanten E-Proteine 

an den Zellmembranen. Dies geht aus den Abbildungen 32 und 33 deutlich hervor. 

 

 

In natürlichen Viruspartikeln des in dieser Arbeit verwendeten Stammes WNV-NY99 befindet 

sich im E-Protein eine N-glykosidische Bindungsstelle. Diese beeinflusst unter anderem die 

Infektiosität und das Assembly (Hanna et al. 2005, Whiteman et al. 2010), was vor allem in 

dieser Arbeit für den Zusammenbau der VLPs von Bedeutung sein könnte. Für das 

durchgeführte Experiment zur Deglykoslyierung wurden die Zellkulturüberstände von, mit 

MVA-WNVprME1/2 und MVA-WNVESOL infizierten, Monolayern verwendet. Da bei MVA-

WNVETMC/V keine Sekretion der synthetisierten Proteine stattfand, wurden die Zelllysate für 

die Untersuchung herangezogen. Abbildung 29 lässt eine potentielle Deglykosylierung aller 

Konstrukte durch die Behandlung mit PNGase F erkennen. Dies bedeutet, dass eine 

Glykosylierung bei allen rekombinanten E-Proteinen wahrscheinlich war. Für MVA-

WNVprME1 und 2 stimmt dieses Ergebnis auch mit den von Othaki et al. gefundenen 

Erkenntnissen überein, dass WNV E-Proteine auf VLPs einen positiven 

Glykolysierungsstatus aufweisen (Othaki et al. 2010). Da in dieser Arbeit jedoch gezeigt 
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werden konnte, dass nicht nur sezernierte, sondern auch auf der Zelloberfläche verankerte 

E-Proteine glykosyliert waren, ist anzunehmen, dass auch jene während des Transports an 

die Plasmamembran einem Glykosylierungsschritt unterzogen werden.  

 

3. Immunogenität 

 

Die Maus ist für Untersuchungen der Pathogenese von WNV-Infektionen, sowie der 

Immunogenität von potentiellen Vakzinkandidaten im Moment der beste Modellorganismus. 

Sie hat sich deshalb als nützliches Modell erwiesen, da das klinische Erscheinungsbild 

neurologischer, WNV-induzierter Erkrankung in vielen Punkten dem von schweren Fällen 

beim Menschen ähnelt. Außerdem ist das Mausmodell bisher extensiv für die Erforschung 

von WNV-Tropismus (Kramer und Bernard 2001), Neuroinvasivität (Chambers et al. 2008, 

Hunsperger und Roehrig 2006), der Immunantwort auf WNV-Infektionen, sowie zur 

Untersuchung potentieller antiviraler Therapien und Vakzinkandidaten herangezogen worden 

(Diamond et al. 2003b, Shrestha und Diamond 2004, Wang et al. 2003). Es ist allgemein 

akzeptiert, dass spezielle neutralisierende Antikörper für die Beendigung der Virämie in der 

Maus verantwortlich sind und CD8+ T-Zellen eine wichtige Funktion bei der Beseitigung von 

WNV besitzen (Engle und Diamond 2003, Shrestha und Diamond 2006, Shrestha et al. 

2006). Im fortschreitenden Verlauf einer Impfstoffentwicklung sind klinische Studien am 

Mensch und Pferd jedoch unumgänglich. 

Zur Einschätzung der humoralen Immunantwort auf eine Impfung mit den potentiellen 

Vakzinkandidaten wurden Balb/c-Mäuse immunisiert. Mittels Antigen-ELISA konnte gezeigt 

werden, dass alle rekombinanten Viren WNV-spezifische Antikörper induzieren. Es waren 

jedoch Unterschiede, vor allem zwischen erster und zweiter Immunisierung, zu erkennen 

(siehe Abbildungen 34A und 34B). Nach der Erstimpfung zeigte MVA-WNVESOL die stärkste 

Antikörperantwort. Dies lässt darauf schließen, dass gerade in der ersten Phase der 

Immunisierung das Immunsystem auf das lösliche E-Protein besonders stark reagiert. Nach 

der zweiten Impfung näherten sich die Antikörpertiter der Konstrukte einander an, MVA-

WNVESOL erwies sich jedoch weiterhin als effizient. Dies bestätigt die Ergebnisse anderer 

Untersuchungen, in denen hohe Antikörperlevel nach Immunisierung mit einem 

rekombinanten Masernvirus, welches lösliches E-Protein exprimiert, nachgewiesen werden 

konnten (Desprès et al. 2005). Auch andere Vakzine, welche E oder die Domäne III des 

WNV E-Proteins als lösliches Peptid verwenden, induzieren hohe Antikörpertiter (Chu et al. 

2007, Martina et al. 2008b, Wang et al. 2001). Ein Grund dafür könnte sein, dass das E-

Antigen durch die Sekretion aus den Zellen zusätzlich von weiteren APCs aufgenommen und 

über MHC Klasse II-Moleküle dem Immunsystem präsentiert wird, was wiederum die 

Produktion WNV E-spezifischer Antikörper induziert. 
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Bei der Untersuchung der Ko-Expression von prM und E in verschiedenen Systemen, wie 

dem Canarypox-Vektor, Vaccinia-Vektoren oder Eukaryonten-Zelllinien, wurden ebenso 

hohe Antikörpermengen nachgewiesen (El Garch 2008, Fonseca et al. 1994, Konishi et al. 

1992, Othaki et al. 2010). Das MVA-WNVprME1-Virus hingegen konnte nach der 

Erstimmunisierung keine so starke Antikörperantwort auslösen. Dies widerspricht der 

Annahme, dass auch dieses Virus durch seine Ko-Expression von prM und E in der Lage 

sein würde von Beginn an hohe Antikörpertiter zu induzieren. Nach der Zweitimmunisierung 

zeigten fast alle rekombinanten Viren vergleichbar hohe Titer. Die von MVA-WNVETMC 

induzierte Antikörperantwort erwies sich jedoch als deutlich schwächer im Vergleich zu jener 

von MVA-WNVETMV. Dies ist in der Hinsicht erstaunlich, als dass MVA-WNVETMV eine starke 

Antikörperreaktion induziert und diese beiden Konstrukte sehr ähnlich sind. Bei beiden wird 

das rekombinante E-Antigen an der Plasmamembran infizierter Zellen verankert. Eine 

mögliche Erklärung für diesen Unterschied ist, dass bei MVA-WNVETMV die E-Proteine, wie 

Hämaggluttinin bei Vacciniavirus, auf der gesamten Zelloberfläche präsentiert werden 

(Blackman und Bubel 1972, DeHaven et al. 2011, Payne und Norrby 1976). Alphaviren 

hingegen exprimieren ihre E2-Proteine nur an bestimmten Arealen der Zelloberfläche, dort 

wo später das Budding der fertigen Viruspartikel stattfindet (Birdwell et al. 1973, Garoff et al. 

2004, Pavan et al. 1992). Somit wäre es plausibel, dass mit MVA-WNVETMV infizierte Zellen 

mehr E-Protein und damit mehr Antigen auf ihrer Zellmembran präsentieren und es so zu 

einer stärkeren Induzierung der Immunantwort kommt. Inwieweit diese Antikörperantwort 

neutralisierende Wirkung zeigt, wird in weiterführenden Arbeiten ermittelt werden müssen. 

 

Die zelluläre Immunreaktion wurde durch Analyse der Ausbildung WNV-Antigen-spezifischer 

CD8+ T-Zellantworten untersucht. Die Ermittlung der T-Zellreaktion ist ein wesentlicher 

Bestandteil der Vakzinentwicklung, da bekannt ist, dass nicht nur die humorale sondern auch 

die zelluläre Immunantwort einen wichtigen Teil der Immunreaktion nach einer WNV-

Infektion darstellt (Shresta und Diamond 2004, 2006). Die Analyse der CD8+ T-Zellantwort 

wurde mittels Messung der Interferon-γ-Produktion von, mit dem Antigen SVG9 stimulierten, 

Splenozyten erreicht. Studien zur Untersuchung der T-Zellantworten bei Patienten war es 

gelungen einige HLA-A2.1-restringierte WNV-Epitope zu identifizieren, die sich als effizient in 

der Interaktion mit WNV herausstellten. Das WNV E-Epitop SVG9 (SVGGVFTSV) ist hiervon 

das einzige auf dem E-Protein und zugleich eines der effektivsten Epitope (McMurtrey et al. 

2008, Kaabinejadian et al. 2013). In der ELISpot-Analyse ist erkennbar, dass alle 

rekombinanten MVA eine WNV-spezifische zelluläre Immunantwort induzieren, da IFN-γ-

Spots nachgewiesen werden konnten (siehe Abbildung 35B). Dies steht im Einklang mit 

anderen Studien, die mit ihren Vakzinkandidaten WNV-spezifische INF-γ-Antworten 

induzieren konnten (Chu et al. 2007, El Garch 2008, Monath et al. 2006, Nelson et al. 2011). 
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Auffällig war jedoch, dass MVA-WNVESOL eine wesentlich geringere Spot-Zahl und somit 

Aktivierung von T-Zellen im Vergleich zu den anderen rekombinanten Viren aufwies. Die 

Ursache hierfür ist nicht bekannt und es wird in zukünftigen Arbeiten zu klären sein, 

inwieweit dieses Ergebnis reproduzierbar ist. 

 

4. Bewertung der Eignung als mögliche Vektorvakzine 

 

Die Ergebnisse bestätigen, dass alle rekombinanten MVA WNV-Antigene sowohl in vitro als 

auch im Mausmodell effizient exprimieren können und liefern erste positive Daten zur 

Immunogenität. 

Zwar sind in der Veterinärmedizin bereits zugelassene WNV-Vakzine auf dem Markt, diese 

wie etwa Equip WNV® (Fort Dodge Animal Health) weisen aber meist erhebliche Nachteile 

auf. So sind bei Verwendung dieses Impfstoffes mindestens zwei initiale Immunisierungen 

notwendig und es müssen zusätzlich häufige Auffrischungsimpfungen für einen optimalen 

Schutz durchgeführt werden. Hierbei wäre eine MVA-Vakzine klar im Vorteil, da bereits 

mehrfach gezeigt werden konnte, dass weniger Impfereignisse (meistens nur eines oder 

zwei) für eine gute Immunantwort benötigt werden (Earl et al. 2004, Frey et al. 2007, Kreijtz 

et al. 2009). Ein anderer auf dem Markt befindlicher Impfstoff (West Nile Innovator®) benutzt 

ein spezielles Adjuvantsystem (MetaStim®), welches eine zusätzliche Stimulation des 

Immunsystems bewirken soll. Auf rekombinantem MVA-basierende Vakzine benötigen keine 

zusätzlichen Adjuvantien, da das Virus starke immunstimulatorische Fähigkeiten besitzt und 

somit selbst als Adjuvant dient (Kreijtz et al. 2013). Allgemein bietet MVA als Vektorvakzin 

eine vielversprechende Alternative zu herkömmlichen Methoden in der Impfstoffherstellung, 

nicht nur gegen Infektionskrankheiten, wie HIV, Tuberkulose, RSV und Malaria. Auch gegen 

die neu in Europa aufkommenden „emerging viruses“ wie WNV und zur prophylaktischen 

und therapeutischen Behandlung von Krebs (Kaufman et al. 2009, Ramlau et al. 2008) kann 

es eingesetzt werden. Vor allem durch sein stark eingeschränktes Wirtsspektrum und somit 

seine Replikationsdefizienz bei gleichzeitiger effektiver Genexpression in den meisten 

Säugerzellen ist MVA einer der vielversprechendsten Impfvektoren geworden. So befinden 

sich derzeit diverse MVA-basierte Impfstoffe in klinischen Studien der Phasen II und III 

(Amato et al. 2010, Bejon et al. 2007, Tameris et al. 2013). 

Die in dieser Arbeit hergestellten Vektorviren und ermittelten Daten leisten einen wichtigen 

Erkenntnisbeitrag zur weiteren WNV-Impfstoffforschung. Sie sollen als Grundlage für 

weiterführende Untersuchungen, wie Neutralisationstests, Challenge-Experimente und 

klinische Versuche dienen, wobei als übergeordnetes Ziel die Entwicklung und nachfolgende 

Zulassung eines potenten WNV-Impfstoffes für Mensch und Pferd steht. 

 



Zusammenfassung ............................................................................................................... 95 

VI. ZUSAMMENFASSUNG 
 

 

Das West-Nil-Virus (WNV) ist ein zur Familie der Flaviviren gehörendes Arbovirus, das 

weltweit zunehmende Verbreitung findet. Das natürliche Reservoir des Virus sind Vögel. 

Nach Übertragung durch Stechmücken kann es zu Infektionen von „Fehlwirten“, 

insbesondere Pferden und Menschen, kommen. Die meisten Infektionen verlaufen 

asymptomatisch oder mit der Entwicklung des West-Nil-Fiebers, einer relativ milden, Grippe-

ähnlichen Erkrankung. In einigen Fällen, vor allem bei immungeschwächten und älteren 

Individuen, können aber auch lebensbedrohliche Infektionen mit schwerer neurologischer 

Symptomatik (z.B. Enzephalitiden) die Folge sein. WNV-Impfstoffe sind bisher nur für die 

Veterinärmedizin zugelassen und diese benötigen für einen effektiven Schutz häufige 

Auffrischungen. Außerdem gibt es keine effizienten Therapiemöglichkeiten. Aus diesem 

Grund ist die Entwicklung weiterer wirksamer WNV-Impstoffe wünschenswert. Ziel dieser 

Arbeit war es, verschiedene rekombinante Vakzinkandidaten auf Basis des Modifizierten 

Vacciniavirus Ankara (MVA) zu entwickeln, zu analysieren und bezüglich ihrer Eignung als 

Vektorvakzin zu bewerten. Das in seiner Replikationsfähigkeit extrem limitierte und hoch 

attenuierte MVA gehört bei der Entwicklung neuartiger rekombinanter Virusvakzine zu den 

viel versprechendsten Kandidaten. Potentielle WNV-Vektorvakzine beruhen überwiegend auf 

der Expression der beiden viralen Hüllproteine prM/M und E oder Teilen davon. Gerade das 

E-Protein stellt nach einer Infektion das Hauptzielantigen der adaptiven Immunantwort dar, 

indem es eine Vielzahl an immunogenen und protektiven Epitopen aufweist. Die fünf in 

dieser Arbeit hergestellten rekombinanten Viren exprimierten zum Teil das E-Protein in 

unterschiedlicher Ausführung oder prM/M und E simultan. Damit wurden verschiedene 

Ansätze zur Induktion einer Immunantwort generiert und untersucht: 

 

 MVA-WNVprME1 und MVA-WNVprME2 wurden entwickelt, um durch eine Ko-

Expression der beiden Oberflächenproteine VLPs (virus-like particles) zu erzeugen. 

 Mit MVA-WNVESOL wurde, durch Entfernung der Transmembrandomäne des E-

Proteins, die Produktion eines löslichen Proteins beabsichtigt. 

 MVA-WNVETMC und MVA-WNVETMV waren zur Verankerung der E-Proteine auf den 

Zellmembranen infizierter Zellen hergestellt worden. 

 

Alle rekombinanten MVA-Vektorviren waren bis auf die inserierten Zielsequenzen identisch 

und erwiesen sich als genetisch stabil. Die Replikationsdefizienz der Viren in den humanen 

und equinen Zielzellen konnte eindeutig nachgewiesen und somit ihre biologische Sicherheit 
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belegt werden. Für die Erzeugung hochtitriger Virusstocks und zur Impfstoffproduktion in 

größerem Umfang war es notwendig zu zeigen, dass sich die ins MVA-Genom inserierten 

Sequenzen nicht negativ auf das Vermehrungspotential der Viren in permissiven Zellen 

auswirkten. Es konnte belegt werden, dass alle Konstrukte dem Wildtypvirus ähnliche, und 

somit zur Produktion ausreichende, Wachstumsfähigkeiten besaßen. Als weitere wichtige 

Voraussetzung für die potentielle Verwendung der rekombinanten Viren als Kandidaten-

Vakzine galt eine effiziente rekombinante Proteinexpression. Durch die Analyse der 

Proteinsynthese mittels Westernblot konnte nachgewiesen werden, dass diese bei allen 

Konstrukten stabil und produktiv verlief. Auch die Lokalisierung der rekombinanten E-

Proteine durch Immunfluoreszenzfärbung und nachfolgender Konfokalmikroskopie infizierter 

Zellen brachte das erwartete Ergebnis. Besonders bei MVA-WNVETMC und MVA-WNVETMV 

zeigte sich deutlich, dass die E-Proteine, wie beabsichtigt, auf den Plasmamembranen der 

infizierten Zellen zu finden waren. 

Abschließend wurden zur ersten Einschätzung der Immunogenität der rekombinanten Viren 

WNV-spezifische Antikörper- und T-Zellantworten im Mausmodell untersucht. Alle 

Vektorviren waren in der Lage humorale und zelluläre Immunantworten zu induzieren. 

Hierbei erwies sich MVA-WNVESOL, was die, mittels Antigen-ELISA ermittelte, 

Antikörperantwort anbelangt als viel versprechendster Kandidat. Bezüglich der CD8+-T-

Zellantwort konnte sich dies jedoch nicht bestätigen. Es ist anzumerken, dass weiterführende 

Untersuchungen der Testimpfstoffe in anderen präklinischen Modellen in Zukunft noch 

durchzuführen sein werden. 

 

Die in dieser Arbeit hergestellten rekombinanten Viren und gewonnenen Erkenntnisse 

belegen die Fähigkeit von MVA als viel versprechenden Vektorvakzin-Kandidaten gegen 

WNV. Die nachgewiesene Sicherheit und zugleich gute Vermehrungsfähigkeit in permissiven 

Zellen, die effiziente WNV-Antigen-Expression und die ersten positiven Daten zur 

Immunogenität aller Konstrukte sprechen für eine zukünftige, weitere Nutzung und 

Untersuchung dieser Vektorviren, um als langfristiges Ziel einen potenten WNV-Impfstoff zu 

erhalten. 
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VII. SUMMARY 
 

 

West-Nile-Virus (WNV) is a mosquito-borne flavivirus which has disseminated broadly and 

now is endemic in many parts of the world. It is transmitted primarly between avain hosts and 

mosquito vectors in an enzootic cycle, but can also infect and cause disease in “incidental-

hosts” like humans and horses. Most of the infections with WNV are subclinical, but 

especially for the elder or immunocompromised individuals there is a risk of establishing 

disease. Symptomatic infections can range from a mild flu-like illness called West-Nile-Fever 

to severe neurological manifestations. Currently no efficient treatment is available and no 

WNV vaccine for human use is approved. There are first vaccines for veterinary use, which 

still have disadvantages including the requirement of numerous immunisations for effective 

protection. On this account the development of a potent WNV vaccine is eligible. Objective of 

this work was to generate, characterise and evaluate different recombinant vector vaccines 

based on the Modified Vacciniavirus Ankara (MVA). MVA is a highly attenuated and 

replication deficient Vacciniavirus-strain and is deemed to be one of the most promising 

candidates for the development of new recombinant vector vaccines. Prospective WNV 

vaccines are predominantly based on the expression of the viral envelope proteins prM/M 

and E. Especially the E-protein represents the major target antigen after infection with its 

high number of immunogenic and protective epitopes. In this work the generated 

recombinant MVA encoded for the prM/M and E proteins in five different constitutions: 

 

 MVA-WNVprME1 und MVA-WNVprME2 led to a co-expression of the prM/M and E 

genes in order to produce VLPs (virus-like particles). 

 The infection of cells with MVA-WNVESOL resulted in the release of soluble E. 

 MVA-WNVETMC und MVA-WNVETMV were designed to present the E-proteins on the 

plasma membrane of infected cells. 

 

Genetic identity, homogeneity and stability of all five recombinant viruses could be confirmed. 

Analysing virus growth in primary and established cell culture could demonstrate their 

replication deficiency in human and equine target cells, which proved their biological safety. 

In permissive cell lines the recombinant viruses replicated to levels equivalent to those for 

wildtype MVA. Immunoblot-analyses confirmed that all vector viruses permitted efficient 

production of recombinant WNV antigens in infected target cells and therefore were qualified 

for in vivo testing in mouse models. 
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Tested in first vaccination experiments all five recombinant MVA were able to induce humoral 

and cellular immune responses and thus seem to be suitable for further investigations in 

other preclinical models. This work shows that the five recombinant MVA delivering WNV 

antigens are promising candidate vector viruses and can be used as basis for future work in 

developing a potent WNV vector vaccine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Literaturverzeichnis .............................................................................................................. 99 

VIII. LITERATURVERZEICHNIS 
 

 

Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001). Recognition of doublestranded 

 RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413 (6857): 732-

 738. 

 

Allison SL, Schalich J, Stiasny K, Mandl CW, Kunz C, Heinz FX (1995a). Oligomeric 

 Rearrangement of Tick-Borne Encephalitis Virus Envelope Proteins Induced by an 

 Acidic pH. J Virol 69 (2): 695-700. 

 

Allison SL, Stadler K, Mandl CW, Kunz C, Heinz FX (1995b). Synthesis and Secretion of 

 Recombinant Tick-Borne Encephalitis Virus Protein E in Soluble and Particulate 

 Form. J Virol 69 (9): 5816-5820. 

 

Amara RR, Villinger F, Altman JD, Lydy SL, O’Neil SP, Staprans SI, Montefiori DC, Xu 

Y, Herndon JG, Wyatt LS, Candido MA, Kozyr NL, Earl PL, Smith JM, Ma H-L, Grimm 

BD, Hulsey ML, Miller J, McClure HM, McNicholl JM, Moss B, Robinson HL (2001). 

 Control of a Mucosal Challenge and Prevention of AIDS by a Multiprotein DNA/MVA 

 Vaccine. Science 292 (5514): 69-74. 

 

Amato RJ, Hawkins RE, Kaufman HL, Thompson JA, Tomczak P, Szczylik C, McDonald 

M, Eastty S, Shingler WH, de Belin J, Goonewardena M, Naylor S, Harrop R (2010). 

 Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-

 blind, placebo-controlles phase III study. Clin Cancer Res 16 (22): 5539-5547. 

 

Assenberg R, Mastrangelo E, Walter TS, Verma A, Milani M, Owens RJ, Stuart DI, 

Grimes JM, Mancini EJ (2009). Crystal structure of a novel conformational state of the 

 flavivirus NS3 protein: implications for polyprotein processing and viral replication. J 

 Virol 83 (24): 12895-12906. 

 

Backes S, Sperling KM, Zwilling J, Gasteiger G, Ludwig H, Kremmer E, Schwantes A, 

Staib C, Sutter G (2010). Viral host-range factor C7 or K1 is essential for modified vaccinia 

 virus Ankara late gene expression in human and murine cells, irrespective of their 

 capacity to inhibit protein kinase R-mediated phosphorylation of eukaryotic translation 

 initiation factor 2α. J Gen Virol 91 (Pt2): 470-482. 

 

Bai F, Kong K-F, Dai J, Quian F, Zhang L, Brown CR, Fikrig E, Montgomery R (2010). A 

 Paradoxical Role for Neutrophils in the Pathogenesis of West Nile Virus. J Infect Dis 

 202 (12): 1804-1812. 

 

Bai F, Wang T, Pal U, Bao F, Gould LH, Fikrig E (2005). Use of RNA interference to 

 prevent lethal murine West Nile virus infection. J Infect Dis 19 (7): 1148-1154. 

 

Bakonyi T, Ivanics E, Erdélyi K, Ursu K, Ferenczi E, Weissenböck H, Nowotny N (2006). 

 Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe. Emerg Infect 

 Dis 12 (4): 618-623. 



Literaturverzeichnis ............................................................................................................ 100 

Bakonyi T, Hubálek Z, Rudolf I, Nowotny N (2005). Novel flavivirus or new lineage of West 

 Nile virus, central Europe. Emerg Infect Dis 11 (2): 225-231. 

 

Beasley DWC, Li L, Suderman MT, Barrett ADT (2002). Mouse Neuroinvasive Phenotype 

 of West Nile Virus Strains Varies Depending upon Virus Genotype. Virology 296 (1): 

 17-23. 

 

Beasley DWC und Barrett ADT (2002). Identification of Neutralizing Epitopes within 

 Structural Domain III of the West Nile Virus Envelope Protein. J Virol 76 (24): 13097- 

 13100. 

 

Beasley DWC, Whiteman MC, Zhang S, Huang CY-H, Schneider BS, Smith DR, 

Gromowski GD, Higgs S, Kinney RM, Barrett ADT (2005). Envelope Protein Glycosylation 

 Status Influences Mouse Neuroinvasion Phenotype of Genetic Lineage 1 West Nile 

 Virus Strains. J Virol 79 (13): 8339-8347. 

 

Bejon P, Ogada E, Mwangi T, Milligan P, Lang T, Fegan G, Gilbert SC, Peshu N, Marsh 

K, Hill AVS (2007). Extended Follow-Up Following a Phase 2b Randomized Trial of the 

 Candidate Malaria Vaccines FP9 ME-TRAP and MVA ME-TRAP among Children in 

 Kenya. PLOS ONE 2 (8): e707. 

 

Bender BS, Rowe CA, Taylor SF, Wyatt LS, Moss B, Small Pa Jr (1996). Oral 

 immunization with a replication-deficient recombinant vaccinia virus protects mice 

 against influenza. J Virol 70 (9): 6418-6424. 

 

Ben-Nathan D, Gershoni-Yahalom O, Samina I, Khinich Y, Nur I, Laub O, Gottreich A, 

Simanov M, Porgador A, Rager-Zisman B, Orr N (2009). Using hight titer West Nile 

 intravenous immunoglobulin from selected Isaraeli donors for treatment of West Nile 

 virus infection. BMC Infect Dis 9:18 doi: 10.1186/1471-2334-9-18. 

 

Ben-Nathan D, Lustig S, Tam G, Robinzon S, Segal S, Rager-Zisman B (2003). 

 Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in 

 treating West Nile virus infection in mice. J Infect Dis 188 (1): 5-12. 

 

Berner YN, Lang R, Chowers MY (2002). Outcome of West Nile fever in older Adults. J Am 

 Geriatr Soc 50 (11): 1844-1846. 

 

Bernkopf H, Levine S, Nerson R (1953). Isolation of West Nile Virus in Israel. J Infect Dis 

 93 (3): 207-218. 

 

Berthet FX, Zeller HG, Drouet MT, Rauzier J, Digoutte JP, Deubel V (1997). Extensive 

 nucleotide changes and deletions within the envelope glycoprotein Gene of Euro-

 African West Nile viruses. J Gen Virol 78 (9): 2293-2297. 

 

Betenbaugh M, Yu M, Kuehl K, White J, Pennock D, Spik K, Schmaljohn C (1995). 

 Nucleocapsid- and virus-like particles assemble in cells infected with recombinant 

 baculoviruses or vaccinia viruses expressing the M and the S segments of Hantaan 

 virus. Virus Res 38 (2-3): 111-124. 

 



Literaturverzeichnis ............................................................................................................ 101 

Biedenbender R, Bevilacqua J, Gregg AM, Watson M, Dayan G (2011). Phase II, 

 randomized, double-blind, placebo-controlled, multicenter study to investigate the 

 immunogenicity and safety of a West Nile Virus vaccine in healthy adults. J Infect Dis 

 203 (1): 75-84. 

 

Birdwell CR, Strauss EG, Strauss JH (1973). Replication of Sindbis virus. III. An electron 

 microscopic study of virus maturation using the surface replica technique. Virology 56 

 (2): 429-438. 

 

Bishop GA und Hostager BS (2001). B lymphocyte activation by contact-mediated 

 interaction with T lymphocytes. Curr Opin Immunol 13 (3): 278-285. 

 

Blackman KE und Bubel HC (1972). Origin of the Vaccinia Virus Hemagglutinin. J Virol 9 

 (2): 290-296. 

 

Bode AV, Sejvar JJ, Pape WJ, Campbell GL, Marfin AA (2006). West Nile virus disease a 

 descriptive study of 228 patients hospitalized in a 4-county region of Colorado in 

 2003. Clin Infect Dis 42 (9): 1234-1240. 

 

Boehme KW, Singh J, Perry ST, Compton T (2004). Human cytomegalovirus elicits a 

 coordinated antiviral response via envelope glycoprotein B. J Virol 78 (3): 1202-1211. 

 

Bondre VP, Jadi RS, Mishra AC, Yergolkar PN, Arankalle VA (2007). West Nile virus 

 isolates from India: evidence for a distinct genetic lineage. J Gen Virol 88 (3): 875-

 884. 

 

Borowski P, Niebuhr A, Mueller O, Bretner M, Felczak K, Kulikowski T, Schmitz H 

 (2001). Purification and characterization of West Nile virus nucleoside triphosphatase 

 (NTPase)/helicase: evidence for dissociation of the NTPase and helicase activities of 

 the enzyme. J Virol 75 (7): 3220-3229. 

 

Bowen RA und Nemeth NM (2007). Experimental infections with West Nile virus. Curr Opin 

 Infect Dis 20 (3): 293-297. 

 

Brien JD, Uhrlaub JL, Nikolich-Zugich J (2007). Protective capacity and epitope specificity 

 of CD8(+) T cells responding to lethal West Nile virus infection. Eur J Immunol 37 (7): 

 1855-1863. 

 

Bunning ML, Bowen RA, Cropp CB, Sullivan KG, Davis BS, Komar N, Godsey MS, 

Baker D, Hettler DL, Holmes DA, Biggerstaff BJ, Mitchell CJ (2002). Experimental 

 infection of horses with West Nile virus. Emerg Infect Dis 8 (4): 380-386. 

 

Burton JM, Kern RZ, Halliday W, Mikulis D, Brunton J, Fearon M, Pepperell C, Jaigobin 

C (2004). Neurological manifestations of West Nile virus infection. Can J Neurol Sci 31: 185- 

 193. 

 

Calisher CH, Karabatsos N, Dalrymple JM, Shope RE, Porterfield JS, Westaway EG, 

Brandt WE (1989). Antigenic relationships between flaviviruses as determined by cross-

 neutralization tests with polyclonal antisera. J Gen Virol 70 (Pt 1): 37-43. 



Literaturverzeichnis ............................................................................................................ 102 

Cantile C, Del Piero F, Di Guardo G, Arispici M (2001). Pathologic and immunohistological 

 findings in naturally occuring West Nile virus infection in horses. Vet Pathol 38 (4): 

 414-421. 

 

Carroll MW und Moss B (1997). Host range and cytopathogenicity of the highly attenuated 

 MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a 

 nonhuman mammalian cell line. Virology 238 (2): 198-211. 

 

Castle E, Leidner U, Nowak T, Wengler G, Wengler G (1986). Primary structure of the 

 West Nile flavivirus genome region coding for all nonstructural proteins. Virology 149 

 (1): 10-26. 

 

Castle E und Wengler G (1987). Nucleotide sequence of the 5’-terminal untranslated part of 

 the genome of the flavivirus West Nile virus. Arch Virol 92 (3-4): 309-313. 

 

Centers for Disease Control and Prevention (CDC) (2002a). Intrauterine West Nile virus 

 infection – New York, 2002. MMWR Morb Mortal Wkly Rep 51 (50): 1135-1136. 

 

Centers for Disease Control and Prevention (CDC) (2002b). Possible West Nile Virus 

 Transmission to an Infant Through Breast-Feeding – Michigan, 2002. MMWR Morb 

 Mortal Wkly Rep 51 (39): 877-878. 

 

Centers for Disease Control and Prevention (CDC) (2010). West Nile virus activity - 

 United States, 2009. MMWR Morb Mortal Wkly Rep 59 (25): 769-772. 

 

Centers for Disease Control and Prevention (CDC) (2013a). West Nile Virus Statistics, 

 Surveillance, and Control Archive. Stand Mai 2013 

 http://www.cdc.gov/ncidod/dvbid/westnile/surv&control.htm 

 

Centers for Disease Control and Prevention (CDC) (2013b). West Nile Virus Data and 

 Maps 2012. Stand Mai 2013 

 http://www.cdc.gov/ncidod/dvbid/westnile/index.htm 

 

Centers for Disease Control and Prevention (CDC) (2013c). West Nile Virus Vertebrate 

 Ecology. Stand Mai 2013 

 http://www.cdc.gov/ncidod/dvbid/westnile/birdspecies.htm 

 

Chambers TJ, Droll DA, Walton AH, Schwartz J, Wold WSM, Nickells J (2008). West Nile 

 25A virus infection of B-cell-deficient (µMT) mice: characterization of 

 neuroinvasiveness and pseudoreversion of the viral envelope protein. J Gen Virol 89 

 (3): 627-635. 

 

Charrel RN, Brault AC, Gallian P, Lemasson JJ, Murgue B, Murri S, Pastorino B, Zeller 

H, de Chesse R, de Micco P, de Lamballerie X (2003). Evolutionary Relationship between 

 Old World West Nile virus strains. Evidence for viral gene flow between Africa, the 

 Middle East, and Europe. Virology 315 (2): 381-388. 

 



Literaturverzeichnis ............................................................................................................ 103 

Chu JH, Chiang CC, Ng ML (2007). Immunization of flavivirus West Nile recombinant 

 envelope domain III protein induced specific immune response and protection against 

 West Nile virus infection. J Immunol 178 (5): 2699-2705. 

 

Chu JJ, Leong PW, Ng ML (2006). Analysis of the endocytotic pathway mediating the 

 infectious entry of mosquito-borne flavivirus West Nile into Aedes albopictus mosquito  

 (C6/36) cells. Virology 349 (2): 463-475. 

 

Chu JJ und Ng ML (2004). Infectious entry of West Nile virus occurs through a clathrin-

 mediated endocytic pathway. J Virol 78 (19): 10543-110555. 

 

Chu PWG und Westaway EG (1985). Replication strategy of Kunjin virus: evidence for 

 recycling role of replicative form RNA as template in semiconservative and 

 asymmetric replication. Virology 140 (1): 68-79. 

 

Chu PWG und Westaway EG (1992). Molecular and ultrastructural analysis of heavy 

 membrane fractions associated with the replication of Kunjin virus RNA. Arch Virol 

 125 (1-4): 177-191. 

 

Chung KM, Thompson BS, Fremont DH, Diamond MS (2007). Antibody recognition of cell 

 surface-associated NS1 triggers Fc-gamma receptor-mediated phagocytosis and 

 clearance of West Nile Virus-infected cells. J Virol 81 (17): 9551-9555. 

 

Clark L, Hall J, McLean R, Dunbar M, Bowen R, Smeraski CA (2006). Susceptibility of 

 greater sage-grouse to experimental infection with West Nile virus. J Wildl Dis 42 (1): 

 14-22. 

 

Cleaves GR, Ryan TE, Schlesinger RW (1981). Identification and characterization of type 2 

 dengue virus replicative intermediate and replicative form RNAs. Virology 111 (1): 73-

 83. 

 

Colombage G, Hall R, Pavy M, Lobigs M (1998). DNA-based and alphavirus-vectored 

 immunisation with prM and E proteins elicits long-lived and protective immunity 

 against the flavivirus, Murray Valley encephalitis virus. Virology 250 (1): 151-163. 

 

Crichlow R, Bailey J, Gardner C (2004). Cerebrospinal fluid neutrophilic pleocytosis in 

 hospitalized West Nile virus patients. J Am Board Fam Pract 17 (6): 470- 472. 

 

Crill WD und Roehrig JT (2001). Monoclonal antibodies that bind to domain III of dengue 

 virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J 

 Virol 75 (16): 7769-7773. 

 

Cyrklaff M, Risco C, Fernández JJ, Jiménez MV, Estéban M, Baumeister W, Carrascosa 

JL (2005). Cryo-electron tomography of vaccinia virus. PNAS USA 102 (8): 2772-2777. 

 

Daffis S, Samuel MA, Suthar MS, Gale M Jr, Diamond MS (2008a). Toll-like Receptor 3 

 has a protective role against West Nile Virus infection. J Virol 82 (21): 10349-10358. 

 



Literaturverzeichnis ............................................................................................................ 104 

Daffis S, Samuel MA, Suthar MS, Keller BC, Gale M Jr, Diamond MS (2008b). Interferon 

 regulatory factor IRF-7 induces the antiviral alpha interferon response and protects 

 against lethal West Nile virus infection. J Virol 82 (17): 8465-8475. 

 

Dauphin G, Zientara S, Zeller H, Murgue B (2004). West Nile: worldwide current situation 

 in animals and humans. Comp Immunol Microbiol Infect Dis 27 (5): 343-355. 

 

Davis BS, Chang GJ, Cropp B, Roehrig JT, Martin DA, Mitchell CJ, Bowen R, Bunning 

ML (2001). West Nile virus recombinant DNA vaccine protects mouse and horse from virus 

 challenge and expresses in vitro a noninfectious recombinant antigen that can be 

 used in enzyme-linked immunosorbent assays. J Virol 75 (9): 4040-4047. 

 

Davis CW, Nguyen H-Y, Hanna SL, Sánchez MD, Doms RW, Pierson TC (2006). West 

 Nile Virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment 

 and infection. J Virol 80 (3): 1290-1301. 

 

De Filette M, Ulbert S, Diamond M, Sanders NN (2012). Recent progress in West Nile virus 

 diagnosis and vaccination. Vet Res 43 (1): 16. 

 

Deas TS, Bennett CJ, Jones SA, Tilgner M, Ren P, Behr MJ, Stein DA, Iversen PL, 

Kramer LD, Bernard KA, Shi PY (2007). In vitro resistance selection and in vivo efficacy of 

 morpholino oligomers against West Nile virus. Antimicrob Agents Chemother 51 (7): 

 2470-2482. 

 

DeHaven BC, Gupta K, Isaacs SN (2011). The vaccinia virus A56 protein: a multifunctional 

 transmembrane glycoprotein that anchors two secreted viral proteins. J Gen Virol 92 

 (Pt 9): 1971-1980. 

 

Desprès P, Combredet C, Frenkiel MP, Lorin C, Brahic M, Tangy F (2005). Live measles 

 vaccine expressing the secreted form of the West Nile virus envelope glycoprotein 

 protects against West Nile virus encephalitis. J Infect Dis 191 (2): 207-214. 

 

Deubel V, Fiette L, Gounon P, Drouet MT, Khun H, Huerre M, Banet C, Malkinson M, 

Desprès P (2001). Variations in biological features of West Nile Viruses. Ann N Y Acad Sci 

 951: 195-206. 

 

Diamond MS, Shrestha B, Marri A, Mahan D, Engle M (2003a). B cells and antibody play 

 critical roles in the immediate defense of disseminated infection by West Nile 

 encephalitis virus. J Virol 77 (4): 2578-2586. 

 

Diamond MS, Sitati EM, Friend LD, Higgs S, Shrestha B, Engle M (2003b). A critical role 

 for induced IgM in the protection against West Nile virus infection. J Exp Med 198 

 (12): 1853-1862. 

 

Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004). Innate antiviral 

 responses by means of TLR7-mediated recognition of single-stranded RNA. Science 

 303 (5663): 1529-1531. 

 



Literaturverzeichnis ............................................................................................................ 105 

Dokland T, Walsh M, Mackenzie JM, Khronykh AA, Ee KH, Wang S (2004). West Nile 

 virus core protein; tetramer structure and ribbon formation. Structure 12 (7): 1157-

 1163. 

 

Drebot MA, Lindsay R, Barker IK, Buck PA, Fearon M, Hunter F, Sockett P, Artsob H 

 (2003). West Nile virus surveillance and diagnostics: A Canadian  perspective. Can J 

 Infect Dis 14 (2): 105-114. 

 

Drexler I, Heller K, Wahren B, Erfle V, Sutter G (1998). Highly modified vaccinia virus 

 Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, 

 but not in various human transformed and primary cells. J Gen Virol 79 (Pt 2): 347-

 352. 

 

Drexler I, Staib C, Sutter G (2004). Modified vaccinia virus Ankara as antigen delivery 

 system: how can we best use its potential? Curr Opin Biotechnol 15 (6): 506-512. 

 

Earl PL. Americo JL, Wyatt LS, Eller LA, Whitbeck JC, Cohen GH, Eisenberg RJ, 

Hartmann CJ, Jackson DL, Kulesh DA, Martinez MJ, Miller DM, Mucker EM, Shamblin 

JD, Zwiers SH, Huggins JW, Jahrling PB, Moss B (2004). Immunogenicity of a highly 

 attenuated MVA smallpox vaccine and protection against monkeypox. Nature 428 

  (6979): 182-185. 

 

Eidson M, Schmit K, Hagiwara Y, Anand M, Backenson PB, Gotham I, Kramer L (2005). 

 Dead Crow Density and West Nile Virus Monitoring, New York. Emerg Infect Dis 11 

 (9): 1370-1375. 

 

El Garch H, Minke JM, Rehder J, Richard S, Edlund Toulemonde C, Dinic S, Andreoni 

C, Audonnet JC, Nordgren R, Juillard V (2008). A West Nile virus (WNV) recombinant 

 canarypox virus vaccine elicits WNV-specific neutralizing antibodies and cell-

 mediated immune responses in the horse. Vet Immunol Immunopathol 123 (3-4): 

 230-239. 

 

Engle MJ und Diamond MS (2003). Antibody prophylaxis and therapy against West Nile 

 Virus infection in wild-type and immunodeficient mice. J Virol 77 (24): 12941-12949. 

 

Erbel P, Schiering N, D’Arcy A, Renatus M, Kroemer M, Lim SP, Yin Z, Keller TH, 

Vasudevan SG, Hommel U (2006). Structural basis for the activation of flaviviral NS3 

 proteases from dengue and West Nile virus. Nat Struct Mol Biol 13 (4): 372-373. 

 

Estrada-Franco JG, Navarro-Lopez R, Beasley DW, Coffey L, Carrara AS, Travassos da 

Rosa A, Clements T, Wang E, Ludwig GV, Cortes AC, Ramirez PP, Tesh RB, Barrett 

AD, Weaver SC (2003). West Nile virus in Mexico: Evidence of widespread circulation since 

 July 2002. Emerg Infect Dis 9 (12): 1604-1607. 

 

Fenner F (1982). A successful eradication campaign. Global eradication of smallpox. Rev 

 Infect Dis 4 (5): 916-930. 

 



Literaturverzeichnis ............................................................................................................ 106 

Fonseca BAL, Pincus S, Shope RE, Paoletti E, Mason PW (1994). Recombinant vaccinia 

 viruses co-expressing dengue-1 glycoproteins prM and E induce neutralizing 

 antibodies in mice. Vaccine 12 (3): 279-285. 

 

Fredericksen BL, Keller BC, Fornek J, Katze MG, Gale M Jr (2008). Establishment and 

 maintenance of the innate antiviral response to West Nile Virus involves both RIG-I 

 and MDA-5 signaling through IPS-1. J Virol 82 (2): 609-616. 

 

Fredericksen BL, Smith M, Katze MG, Shi PY, Gale M Jr (2004). The host response to 

 West Nile Virus infection limits viral spread through the activation of the interferon 

 regulatory factor 3 pahtway. J Virol 78 (14): 7737-7747. 

 

Frey SE, Newman FK, Kennedy JS, Sobek V, Ennis FA, Hill H, Yan LK, Chaplin P, 

Vollmar J, Chaitman BR, Belshe RB (2007). Clinical and immunologic responses to 

 multiple doses of IMVAMUNE (Modified Vaccinia Ankara) followed by Dryvax 

 challenge. Vaccine 25 (51): 8562-8573. 

 

Frost MJ, Zhang J, Edmonds JH, Prow NA, Gu X, Davis R, Hornitzky C, Arzey KE, 

Finlaison D, Hick P, Read A, Hobson-Peters J, May FJ, Doggett SL, Haniotis J, Russell 

RC, Hall RA, Khromykh AA, Kirkland PD (2012). Characterization of virulent West Nile 

virus  Kunjin strain, Australia, 2011. Emerg Infect Dis 18 (5):792-800. 

 

Garoff H, Sjöberg M, Cheng RH (2004). Budding of alphaviruses. Virus Res 106 (2): 103-

 116. 

 

Gherardi MM, Pérez-Jiménez E, Nájera JL, Esteban M (2004). Induction of HIV immunity 

 in the genital tract after intranasal delivery of a MVA vector: enhanced 

 immunogenicity after DNA prime-modified vaccinia virus Ankara boost immunization 

 schedule. J Immunol 172 (10): 6209-6220. 

 

Grgacic EV und Anderson DA (2006). Virus-like particles: passport to immune recognition. 

 Methods 40 (1): 60-65. 

 

Grun JB und Brinton MA (1987). Dissociation of NS5 from Cell Fractions containing West 

 Nile Virus-Specific Polymerase Activity. J Virol 61 (11): 3641-3644. 

 

Guy B, Guirakhoo F, Barban V, Higgs S, Monath TP, Lang J (2010). Preclinical and 

 clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile 

 and Japanese encephalitis viruses. Vaccine 28 (3): 632-649. 

 

Hall RA, Broom AK,Smith DW, Mackenzie JS (2002). The ecology and epidemilogy of 

 Kunjin virus. Curr Top Microbiol Immunol 267: 253-269. 

 

Hall RA, Nisbeet DJ, Pham KB, Pyke AT, Smith GA, Khromykh AA (2003). DNA vaccine 

 coding for the full-length infectious Kunjin virus RNA protects mice against the New 

 York strain of West Nile virus. PNAS 100 (18): 10460-10464. 

 



Literaturverzeichnis ............................................................................................................ 107 

Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Walker ED (2008). 

 Culex pipiens (Diptera: Culicidae): A bridge vector of West Nile virus to humans. J 

 Med Entomol 45 (1): 125-128. 

 

Han LL, Popovici F, Alexander jr. JP, Laurentia V, Tengelsen LA, Cernescu C, Gary jr. 

HE, Ion-Nedelcu N, Campbell GL, Tsai TF (1999). Risk Factors for West Nile Virus 

 Infection and Meningoencephalitis, Romania, 1996. J Infect Dis 179 (1): 230-233. 

 

Hanke T, Samuel RV, Blanchard TJ, Neumann VC, Allen TM, Boyson JE, Sharpe SA, 

Cook N, Smith GL, Watkins DI, Cranage MP, McMichael AJ (1999). Effective induction of 

 simian immunodeficiency virus-specific cytotoxic T lymphocytes in macaques by 

 using a multiepitope gene and DNA prime-modified vaccinia virus Ankara boost 

 vaccination regimen. J Virol 73 (9): 7524-7532. 

 

Hanna SL, Pierson TC, Sanchez MD, Ahmed AA, Murtadha MM, Doms RW (2005). N-

 Linked Glycosylation of West Nile Virus Envelope Proteins Influences Particle 

 Assembly and Infectivity. J Virol 79 (21): 13262-13274. 

 

Harrington T, Kuehnert MJ, Kamel H, Lanciotti RS, Hand S, Currier M, Chamberland 

ME, Petersen LR, Marfin AA (2003). West Nile virus infection transmitted by blood 

 transfusion. Transfusion 43 (8): 1018-1022. 

 

Hayes CG (2001). West Nile virus: Uganda, 1937, to New York City, 1999. Ann N Y Acad 

 Sci 951: 25-37. 

 

Hayes EB, Komar N, Nasci RS, Montgomery SP, O’Leary DR, Campbell GL (2005). 

 Epidmiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis 

 11 (8): 1167-1173. 

 

Hayes EB und O’Leary DR (2004). West Nile virus infection: a pediatric perspective. 

 Pediatrics 113 (5): 1375-1381. 

 

Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschnig C, Akira S, Lipford G, Wagner 

H, Bauer S (2004). Species-specific recognition of single-stranded RNA via Toll-like receptor 

 7 and 8. Science 303 (5663): 1526-1529. 

 

Heinz FX, Collett MS, Purcell RH, Gould EA, Howard CR, Houghton M, Moormann RJM, 

Rice CM, Thiel HJ (2000). Family Flaviviridae. In: Virus Taxonomy. Seventh Report of the 

 International Committee on Taxonomy of Viruses. Eds. van Regenmortel MHV, 

 Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, 

 McGeoch DJ, Pringle CR, Wickner RB. San Diego: Academic Press: 860-878. 

 

Heinz FX, Stiasny K, Püschner-Auer G, Holzmann H, Allison SL, Mandl CW, Kunz C 

 (1994). Structural changes and functional control of the tick-borne encephalitis virus y

 glycoprotein E by the heterodimeric association with protein prM. Virology 198 (1): 

 109-117. 

 

Heinz FX und Stiasny K (2012). Flaviviruses and flavivirus vaccines. Vaccine 30 (29): 4301-

 4306. 



Literaturverzeichnis ............................................................................................................ 108 

Heller KN, Gurer C, Münz C (2006). Virus-specific CD4+ T cells: ready for direct attack. J 

 Exp Med 203 (4): 805-808. 

 

Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, 

Takeda K, Akira S (2002). Small anti-viral compounds activate immune cells via the TLR7 

 MyD88-dependent signaling pathway. Nat Immunol 3 (2): 196-200. 

 

Hershkovitz O, Rosental B, Rosenberg LA, Navarro-Sanchez ME, Jivov S, Zilka A, 

Gershoni-Yahalom O, Brient-Litzler E, Bedouelle H, Ho JW, Campbell KS, Rager-

Zisman B, Despres P, Porgador A (2009). NKp44 receptor mediates interaction of the 

 envelope glycoproteins from the West Nile and dengue viruses with NK cells. J 

 Immunol 183 (4): 2610-2621. 

 

Hirota J, Nishi H, Matsuda H, Tsunemitsu H, Shimiz S (2010). Cross-reactivity of 

 Japanese encephalitis virus-vaccinated horse sera in serodiagnosis of West Nile 

 virus. J Vet Med Sci 72 (3): 369-372. 

 

Hochstein-Mintzel V, Hanichen T, Huber HC, Stickl H (1975). [An attenuated strain of 

 vaccinia virus (MVA). Successful intramuscular immunization against vaccinia and 

 variola (author’s transl)]. Zentralbl. Bakteriol. Orig. A 230: 283-297. 

 

Hollidge BS, González-Scarano F, Soldan SS (2010). Arboviral encephalitides: 

 mission, emergence, and pathogenesis. J Neuroimmune Pharmacol 5 (3): 428-448. 

 

Huang CY, Silengo SJ, Whiteman MC, Kinney RM (2005). Chimeric dengue 2 PDK-

 53/West Nile NY99 viruses retain the phenotypic attenuation markers of the 

 candidate PDK-53 vaccine virus and protect mice against lethal challenge with West 

 Nile virus. J Virol 79 (12): 7300-7310. 

 

Hubálek Z (2000). European experience with the West Nile virus ecology and epidemiology: 

 Could it be Relevant for the New World? Viral Immunol 13 (4): 415-426. 

 

Hubálek Z und Halouzka J (1999). West Nile Fever – a Reemerging Mosquito-Borne Viral 

 Disease in Europe. Emerg Infect Dis 5 (5): 643-650. 

 

Hunsperger EA und Roehrig JT (2006). Temporal analyses of the neuropathogenesis of a 

 West Nile virus infection in mice. J Neurovirol 12 (2): 129-139. 

 

Hurlbut HS, Rizk F, Taylor RM, Work TH (1956). A study of the ecology of West Nile virus 

 in Egypt. Am J Trop Med Hyg 5 (4): 579-620. 

 

Iglesias MC, Frenkiel MP, Mollier K, Sougue P, Desprès P, Charneau P (2006). A single 

 immunization with a minute dose of a lentiviral vector-based vaccine is highly 

 effective at eliciting protective humoral immunity against West Nile virus. J Gene Med 

 8 (3): 265-274. 

 

Ichihashi Y und Dales S (1971). Biogenesis of poxviruses: interrelationship between 

 hemagglutinin production and polykaryocytosis. Virology 46 (3): 533-543. 

 



Literaturverzeichnis ............................................................................................................ 109 

Ivanyi-Nagy R, Lavergne J-P, Gabus C, Ficheux D, Darlix J-L (2008). RNA chaperoning 

 and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Res 36 (3): 

 712-725. 

 

Iwamoto M, Jernigan DB, Guasch A, Trepka MJ, Blackmore CG, Hellinger WC, Pham 

SM, Zaki S, Lanciotti RS, Lance-Parker SE, DiazGranados CA, Winquist AG, Perlino 

CA, Wiersma S, Hillyer KL, Goodman JL, Marfin AA, Chamberland ME, Petersen LR 

 (2003). Transmission of West Nile virus from an organ donor to four transplant 

 recipients. N Engl J Med 348 (22): 2196-2203. 

 

Jia XY, Briese T, Jordan I, Rambaut A, Chi HC, Mackenzie JS, Hall RA, Scherret J, 

Lipkin WI (1999). Genetic analysis of West Nile New York 1999 encephalitis virus. The 

 Lancet 354 (9194): 1971-1972. 

 

Johnston LJ, Halliday GM, King NJ (2000). Langerhans cells migrate to local lymph nodes 

 following cutaneous infection with an arbovirus. J Invest Dermatol 114 (3): 560-568. 

 

Johnson AJ, Martin DA, Karabatsos N, Roehrig JT (2000). Detection of anti-arboviral 

 immunoglobulin G by using a monoclonal antibody-based capture enzyme-linked 

 immunosorbent assay. J Clin Microbiol 38 (5): 1827-1831. 

 

Jones CT, Ma L, Burgner JW, Groesch TD, Post CB, Kuhn RJ (2003). Flavivirus capsid is 

 a dimeric alpha-helical protein. J Virol 77 (12): 7143-7149. 

 

Jozan M, Evans R, McLean R, Hall R, Tangredi B, Reed L, Scott J (2003). Detection of 

 West Nile Virus infection in birds in the United States by blocking ELISA and 

 immunohistochemistry. Vector Borne Zoonotic Dis 3 (3): 99-100. 

 

Julander JG, Winger QA, Olsen AL, Day CW, Sidwell RW, Morrey JD (2005). Treatment 

 of West Nile virus-infected mice with reactive immunoglobulin reduces fetal titers and 

 increases dam survival. Antiviral Res 65 (2): 79-85. 

 

Kaabinejadian S, Piazza PA, McMurtrey CP, Vernon SR, Cate SJ, Bardet W, Schafer FB, 

Jackson KW, Campbell DM, Buchli R, Rinaldo CR, Hildebrand WH (2013). Identification 

 of Class I HLA T Cell Control Epitopes for West Nile Virus. PLOS ONE 8 (6): e66298. 

 

Kanai R, Kar K, Anthony K, Gould LH, Ledizet M, Fikrig E, Marasco WA, Koski RA, 

Modis Y (2006). Crystal structure of west nile virus envelope glycoprotein reveals viral 

 surface epitopes. J Virol 80 (22): 11000-11008. 

 

Karaghiosoff M, Neubauer H, Lassnig C, Kovarik P, Schindler H, Pircher H, McCoy B, 

Bogdan C, Decker T, Brem G, Pfeffer K, Müller M (2000). Partial impairment of cytokine 

 responses in Tyk2-deficient mice. Immunity 13 (4): 549-560. 

 

Kaufman HL, Taback B, Sherman W, Kim DW, Shingler WH, Moroziewicz D, DeRaffele 

G, Mitcham J, Carroll MW, Harrop R, Naylor S, Kim-Schulze S (2009). Phase II trial of 

 Modified Vaccinia Ankara (MVA) virus expressing 5T4 and high dose Interleukin-2 

 (IL-2) in patients with metastatic renal cell carcinoma. J Transl Med 7: 2. 

 



Literaturverzeichnis ............................................................................................................ 110 

Kiermayr S, Kofler RM, Mandl CW, Messner P, Heinz FX (2004). Isolation of capsid 

 protein dimers from the tick-borne encephalitis falvivirus and in vitro assembly of 

 capsid-like particles. J Virol 78 (15): 8078-8084. 

 

Kipp AM, Lehman JA, Bowen RA, Fox PE, Stephens MR, Klenk K, Komar N, Bunning 

ML (2006). West Nile viurs quantification in feces of experimentally infected American and 

 Fish crows. Am J Trop Med Hyg 75 (4): 688-690. 

 

Klee AL, Maldin B, Edwin B, Poshni I, Mostashari F, Fine A, Layton M, Nash D (2004). 

 Long-Term Prognosis for Clinical West Nile Virus Infection. Emerg Infect Dis 10 (8): 

 1405-1411. 

 

Kleiboeker SB, Loiacono CM, Rottinghaus A, Pue HL, Johnson GC (2004). Diagnosis of 

 West Nile virus infection in horses. J Vet Diagn Invest 16 (1): 2-10. 

 

Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, 

Bunning M (2003). Experimental Infection of North American Birds with the New York 1999 

 strain of West Nile Virus. Emerg Infect Dis 9 (3): 311-322. 

 

Konishi E und Mason PW (1993). Proper maturation of the Japanese encephalitis virus 

 envelope glycoprotein requires cosynthesis with the premembrane protein. J Virol 67 

 (3): 1672-1675. 

 

Konishi E, Pincus S, Paoletti E, Shope RE, Burrage T, Mason PW (1992). Mice 

 immunized with a subviral particle containing the Japanese encephalitis virus prM/M 

 and E proteins are protected form lethal JEV infection. Virology 188 (2): 714-720. 

 

Koonin EV (1993). Computer-assisted identification of a putative methyltransferase domain 

 in NS5 protein of flaviviruses and lambda 2 protein of reovirus. J Gen Virol 74 (4): 

 733-740. 

 

Kramer LD, Li J, Shi P-J (2007). West Nile virus. Lancet Neurol 6 (2): 171-181. 

 

Kramer LD und Bernard KA (2001). West Nile virus infection in birds and mammals. Ann 

 NY Acad Sci 951: 84-93. 

 

Kreijtz JH, Gilbert SC, Sutter G (2013). Poxvirus vectors. Vaccine 31 (39): 4219-4219. 

 

Kreijtz JH, Suezer Y, de Mutsert G, van Amerogen G, Schwantes A, van den Brand 

JMA, Fouchier RAM, Löwer J, Oserhaus ADME, Sutter G, Rimmelzwaan GF (2009). 

 MVA-Based H5N1 Vaccine Affords Cross-Clade Protection in Mice against Influenza 

 A/H5N1 Viruses at Low Doses and after Single Immunization. PLOS ONE 4 (11): 

 e7790. 

 

Kremer M, Volz A, Kreijtz JH, Fux R, Lehmann MH, Sutter G (2012). Easy and efficient 

 protocols for working with recombinant vaccinia virus MVA. Methods Mol Biol 890: 59-

 92. 

 

 



Literaturverzeichnis ............................................................................................................ 111 

Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, 

Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH (2002). Structure of 

 Dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108 

 (5): 717-725. 

 

Kuhn RJ (2007). Togaviridae: The Viruses and Their Replication. In: Fields Virology. 5th 

 Edition. Eds. Knipe DM, Howley PM. Philadelphia: Lippincott Williams & Wilkins: 

 1001-1023. 

 

Kumar P, Lee SK, Shankar P, Manjunath N (2006). A single siRNA supresses fatal 

 encephalitis induced by two different flaviviruses. PLoS Med 3 (4): e96. 

 

Kuno G, Chang GJ, Tsuchiya KR, Karabastos N, Cropp CB (1998). Phylogeny of the 

 genus Flavivirus. Journal of Virology 72 (1): 73-83. 

 

LaDeau SL, Kilpatrick AM, Marra PP (2007). West Nile virus emergence and large-scale 

 declines of North American bird populations. Nature 447: 710-713. 

 

Lanciotti RS, Ebel G, Deubel V, Kerst AJ, Murri S, Meyer R, Bowen M, McKinney N, 

Morrill WE, Crabtree MB, Kramer LD, Roehrig JT (2002). Complete genome sequences 

 and phylogenetic analysis of West Nile virus strains isolated from the United States, 

 Europe, and the Middle East. Virology 298 (1): 96-105. 

 

Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, Komar N, 

Panella NA, Allen BC, Volpe KE, Davis BS, Roehrig JT (2000). Rapid detection of west 

 nile virus from human clinical specimens, field-collected mosquitoes, and avian 

 samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 38 (11): 

 4066-4071. 

 

Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, 

Crabtree MB, Scherret JH, Hall RA, Mackenzie JS, Cropp CB, Panigraphy B, Ostlund E, 

Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage HM, Stone W, 

McNamara T, Gubler DJ (1999). Origion of the West Nile virus responsible for an outbreak 

 of encephalitis in the northeastern United States. Science 286 (5448): 2333-2337. 

 

Langevin SA, Brault AC, Panella NA, Bowen RA, Komar N (2005). Variation in virulence 

 of West Nile virus strains for house sparrows (Passer domesticus). Am J Trop Med 

 Hyg 72 (1): 99-102. 

 

Lanteri MC, O’Brien KM, Purtha WE, Cameron MJ, Lund JM, Owen RE, Heitman JW, 

Custer B, Hischkorn DF, Tobler LH, Kiely N, Prince HE, Ndhlovu LC; Nixon DF, Kamel 

HT, Kelvin DJ, Busch MP, Rudensky AY, Diamond MS, Norris PJ (2009). Tregs control 

 the development of symptomatic West Nile virus infection in humans and mice. J Clin 

 Invest 119 (11): 3266-3277. 

 

Lawrie CH, Uzcátegui NY, Gould EA, Nuttall PA (2004). Ixodid and Argasid Tick Species 

 and West Nile Virus. Emerg Infect Dis 10 (4): 653-657. 

 



Literaturverzeichnis ............................................................................................................ 112 

Ledgerwood JE, Pierson TC, Hubka SA, Desai N, Rucker S, Gordon IJ, Enama ME, 

Nelson M, Gu W, Bundrant N, Koup RA, Bailer RT, Mascola JR, Nabel GJ, Graham BS  

 (2011). A West Nile virus DNA vaccine utilizing a modified promoter induces 

 neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J 

 Infect Dis 203 (10): 1396-1404. 

 

Lee E, Hall RA, Lobigs M (2004). Common E Protein Determinants for Attenuation of 

 Glycosaminoglycan-Binding Variants of Japanese Encephalitis and West Nile Virus. J 

 Virol 78 (15): 8271-8280. 

 

Lieberman MM, Clements DE, Ogata S, Wang G, Corpuz G, Wong T, Martyak T, Gilson 

L, Coller B-A, Leung J, Watts DM, Tesh RB, Siirin M, Travassos da Rosa A, Humphreys 

T, Weeks-Levy C (2007). Preparation and immunogenic properties of a recombinant West 

 Nile subunit vaccine. Vaccine 25 (3): 414-423. 

 

Lim PY, Behr MJ, Chadwick CM, Shi PY, Bernard KA (2011). Keratinocytes are cell 

 targets of West Nile virus in vivo. J Virol 85 (10): 5197-5201. 

 

Lindenbach BD, Thiel H-J, Rice CM (2007). Flaviviridae: The Viruses and Their 

 Replication. In: Fields Virology. 5th Edition. Eds. Knipe DM, Howley PM. Philadelphia: 

 Lippincott Williams & Wilkins: 1101-1152. 

 

Liu WJ, Wang XJ, Clark DC, Lobigs M, Hall RA, Khromykh AA (2006). A singel amino 

 acid substitution in the West Nile virus nonstructural protein NS2a disables its ability 

 to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol 

 80 (5): 2396-2404. 

 

Long MT, Jeter W, Hernandez J, Sellon DC, Gosche D, Gillis K, Bille E, Gibbs EP 

 (2006). Diagnostic performance of the equine IgM caputre ELISA for serodiagnosis of 

 West Nile virus infection. J Vet Intern Med 20 (3): 608-613. 

 

Lorenz IC, Allison SL, Heinz FX, Helenius A (2002). Folding and dimerization of tick-borne 

 encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol 

 76 (11): 5480-5491. 

 

Lvov DK, Butenko AM, Gromashevsky VL, Kovtunov AI, Prilipov AG, Kinney R, 

Aristova VA, Dzharkenov AF, Samokhvalov EI, Savage HM, Shchelkanov MY, Galkina 

IV, Deryabin PG, Gubler DJ, Kulikova LN, Alkhovsky SK, Moskvina TM, Zlobina LV, 

Sadykova GK, Shatalov AG, Lvov DN, Usachev VE, Voronina AG (2004). West Nile virus 

 and other zoonotic viruses in Russia: examples of emerging-reemerging situations. 

 Arch Virol Suppl 18: 85-96. 

 

Macdonald J, Tonry J, Hall RA, Williams B, Palacios G, Ashok MS, Jabado O, Clark D, 

Tesh RB, Briese T, Lipkin WI (2005). NS1 Protein Secretion during the Acute Phase of 

 West Nile Virus Infection. J Virol 79 (22): 13924-13933. 

 

Mackenzie JM, Jones MK, Young PR (1996). Immunolocalization of the dengue virus 

 Nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220 

 (1): 232-240. 



Literaturverzeichnis ............................................................................................................ 113 

Mackenzie JM, Khromykh AA, Jones MK, Westaway EG (1998). Subcellular localization 

 and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2a 

 and NS4a. Virology 245 (2): 203-215. 

 

Mackett M, Smith GL, Moss B (1984). General Method for Production and Selection of 

 Infectious Vaccinia Virus Recombinants Expressing Foreign Genes. J Virol 49 (3): 

 857-864. 

 

Mackett M, Smith GL, Moss B (1982). Vaccinia virus: a selectable eukaryotic cloning and 

 expression vector. Proc Natl Acad Sci USA 79 (23): 7415-7419. 

 

Malan AK, Stipanovich PJ, Martins TB, Hill HR, Litwin CM (2003). Detection of IgG and 

 IgM to West Nile virus. Development of an immunofluorescence assay. Am J Clin 

 Pathol 119 (4): 508-515. 

 

Mandl CW, Allison SL, Holzmann H, Meixner T, Heinz FX (2000). Attenuation of Tick-

 Borne Encephalitis Virus by Structure-Based Site-Specific Mutagenesis of a Putative 

 Flavivirus Receptor Binding Site. J Virol 74 (20): 9601-9609. 

 

Martin DA, Biggerstaff BJ, Allen B, Johnson AJ, Lanciotti RS, Roehrig JT (2002). Use of 

 immunoglobulin m cross-reactions in differential diagnosis of human flaviviral 

 encephalitis infections in the United States. Clin Diagn Lab Immunol 9 (3): 544-549. 

 

Martin DA, Muth DA, Brown T, Johnson AJ, Karabatsos N, Roehrig JT (2000). 

 Standardization of Immunoglobulin M Capture Enzyme-Linked Immunosorbent 

 Assays for Routine Diagnosis of Arboviral Infections. J Clin Microbiol 38 (5): 1823-

 1826. 

 

Martin JE, Pierson TC, Hubka S, Rucker S, Gordon IJ, Enama ME, Andrews CA, Xu Q, 

Davis BS, Nason MC, Fay MP, Koup RA, Roederer M, Bailer RT, Gomez PL, Mascola 

JR, Chang G-JJ, Nabel GJ, Graham BS (2007). A West Nile virus DNA vaccine induces 

 neutralizing antibody in healthy adults during a phase 1 clinical trial. J Infect Dis 196 

 (12): 1732-1740. 

 

Martina BEE, Koraka P, van den Doel P, Rimmelzwaan GF, Haagmans BL, Oserhaus 

ADME (2008a). DC-SIGN enhances infection of cells with glycosylated West Nile virus in 

 virtroand virus replication in human dendritic cells induces production of IFN-alpha 

 and TNF-alpha. Virus Res 135 (1): 64-71. 

 

Martina BEE, Koraka P, van den Doel P, van Amerongen G, Rimmelzwaan GF, 

Osterhaus ADME (2008b). Immunization with West Nile virus envelope domain III protects 

 mice against lethal infection with homologous and heterologous virus. Vaccine 26 (2): 

 153-157. 

 

Matsumoto M, Funami K Tanabe M, Oshiumi H, Shingai M, Seto Y, Yamamoto A, Seya 

T (2003). Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 

 171 (6): 3154-3162. 

 



Literaturverzeichnis ............................................................................................................ 114 

May FJ, Davis CT, Tesh RB, Barrett ADT (2011). Phylogeography of West Nile Virus: from 

 the Cradle of Evolution in Africa to Eurasia, Australia, and the Americas. Journal of 

 Virology 85 (6): 2964-2974. 

 

Mayr A, Hochstein-Mintzel V, Stickl H (1975). Abstammung, Eigenschaften und 

 Verwendung des attenuierten Vaccinia-Stammes MVA. Infection 3 (1): 6-14. 

 

Mayr A, Stickl H, Müller HK, Danner K, Singer H (1978). [The smallpox vaccination strain 

 MVA: marker, genetic structure, experience gained with the parenteral vaccination 

 and behavior in organisms with a debilitated defence mechanism (author’s transl)]. 

 Zentralbl Bakteriol B 167 (5-6): 375-390. 

 

McLean RG, Ubico SR, Docherty DE, Hansen WR, Silea L, McNamara TS (2001). West 

 Nile virus transmission and ecology in birds. Ann N Y Acad Sci 951 (1): 54-57. 

 

McMurtrey CP, Lelic A, Piazza P, Chakrabarti AK, Yablonsky EJ, Wahl A, Bardet W, 

Eckerd A, Cook RL, Hess R, Buchli R, Loeb M, Rinaldo CR, Bramson J, Hildebrand WH 

 (2008). Epitope discovery in West Nile virus infection: Identification and immune 

 recognition of viral epitopes. PNAS 105 (8): 2981-2986. 

 

Mehlhop E, Whitby K, Oliphant T, Marri A, Engle M, Diamond MS (2005). Complement 

 activation is required for induction of a protective antibody response against West 

 Nile virus infection. J Virol 79 (12): 7466-7477. 

 

Mehlhop E und Diamond MS (2006). Protective immune responses against West Nile virus 

 are primed by distinct complement activation pathways. J Exp Med 203 (5): 1371-

 1381. 

 

Men RH, Bray M, Lai CJ (1991). Carbox-terminally truncated dengue virus envelope 

 glycoproteins expressed on the cell surface and secreted extracellularly exhibit 

 increased immunogenicity in mice. J Virol 65 (3): 1400-1407. 

 

Meyer H, Sutter G, Mayr A (1991). Mapping of deletions in the genome of the highly 

 attenuated vaccinia virus MVA and their influence on virulence. J Gen Virol 72 (Pt 5): 

 1031-1038. 

 

Minke JM, Siger L, Karaca K, Austgen L, Gordy P, Bowen R, Renshaw RW, Loosmore 

S, Audonnet JC, Nordgren B (2004). Recombinant canarypoxvirus vaccine carrying the 

 prM/E genes of West Nile virus protects horses against a West Nile virus-mosquito 

 challenge. Arch Virol Suppl 18: 221-230. 

 

Modis Y, Ogata S, Clements D, Harrison SC (2003). A lingand-binding pocket in the 

 dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 100 (12): 6986-6991. 

 

Modrow S, Falke D, Tuyen U, Schätzl H (2010). Molekulare Virologie. 3. Auflage. 

 Heidelberg: Spektrum Akademischer Verlag. 

 

 



Literaturverzeichnis ............................................................................................................ 115 

Monath TP, Liu J, Kanesa-Thasan N, Myers GA, Nichols R, Deary A, McCarthy K, 

Johnson C, Ermak T, Shin S, Arroyo J, Guirakhoo F, Kennedy JS, Ennis FA, Green S, 

Bedford P (2006). A live, attenuated recombinant West Nile virus vaccine. PNAS 103 (17): 

 6694-6699. 

 

Moss B (2007). Poxviridae: The Viruses and their Replication. In: Fields Virology. 5th Edition. 

 Eds. Knipe DM, Howley PM. Philadelphia: Lippincott Williams & Wilkins: 2905-2946. 

 

 

Mostashari F, Bunning ML, Kitsutani PT, Singer DA, Nash D, Cooper MJ, Katz N, 

Liljebjelke KA, Biggerstaff BJ, Fine AD, Layton MC, Mullin SM, Johnson AJ, Martin DA, 

Hayes EB, Campbell GL (2001). Epidemic West Nile encephalitis, New York, 1999: results 

 of a household-based seroepidemiological survey. The Lancet 358 (9287): 261-264. 

 

Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG, Kuhn RJ (2003). Structure of 

 West Nile virus. Science 302: 248. 

 

Mukhopadhyay S, Zhang W, Gabler S, Chipman PR, Strauss EG, Strauss JH, Baker TS, 

Kuhn RJ, Rossmann MG (2006). Mapping the structure and function of the E1 and E2 

 glycoproteins in alphaviruses. Structure 12 (1): 63-73. 

 

Mumcuoglu KY, Banet-Noach C, Malkinson M, Shalom U, Galun R (2005). Argasid ticks 

 as possible vectors of West Nile virus in Israel. Vector Borne Zoonotic Dis 5 (1): 65-

 71. 

 

Munoz-Jordán JL, Sánchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A (2003). 

 Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 100 (24): 

 14333-14338. 

 

Murgue B, Zeller H, Deubel V (2002). The ecology and epidemiology of West Nile virus in 

 Africa, Europe and Asia. Curr Top Microbiol Immunol 267: 195-221. 

 

Murray KO, Mertens E, Despres P (2010). West Nile virus and its emergence in the United 

 States of America. Vet Res 41 (6): 67. 

 

Nash D, Mostashari F, Fine A, Miller J, O’leary D, Murray K, Huang A, Rosenberg A, 

Greenberg A, Sherman M, Wong S, Layton M (2001). The outbreak of West Nile Virus 

 Infection in the New York City area in 1999. N Engl J Med 344 (24): 1807-1814. 

 

Nathanson N (2007). Epidemiology. In: Fields Virology. 5th Edition. Eds. Knipe DM, Howley 

 PM. Philadelphia: Lippincott Williams & Wilkins: 423-446. 

 

Nelson MH, Winkelmann E, Ma Y, Xia J, Mason PW, Bourne N, Milligan GN (2011). 

 Immunogenicity of RepliVAX WN, a novel single-cycle West Nile virus vaccine. 

 Vaccine 29 (2): 174-182. 

 

Nemeth N, Gould D, Bowen R, Komar N (2006). Natural and experimental West Nile virus 

 infection in five raptor species. J Wildl Dis 42 (1): 1-13. 

 



Literaturverzeichnis ............................................................................................................ 116 

Ng T, Hathaway D, Jennings N, Champ D, Chiang YW, Chu HJ (2003). Equine vaccine for 

 West Nile virus. Dev Biol 114: 221-227. 

 

Niedrig M, Sonnenberg K, Steinhagen K, Paweska JT (2007). Comparison of ELISA and 

 immunoassays for measurement of IgG and IgM antibody to West Nile virus in human  

 sera against virus neutralisation. J Virol Methods 139 (1): 103-105. 

 

Noad R und Roy P (2003). Virus-like particles as immunogens. Trends Microbiol 11 (9): 

 438-444. 

 

Nowak T, Färber PM, Wengler G, Wengler G (1989). Analyses of the terminal sequences 

 of West Nile virus structural proteins and of the in vitro translation of these proteins 

 allow the proposal of a complete scheme of the proteolytic cleavages involved in their 

 synthesis. Virology 169 (2): 365-376. 

 

Ohtaki N, Takahashi H, Kaneko K, Gomi Y, Ishikawa T, Higashi Y, Kurata T, Sata T, 

Kojima A (2010). Immunogenicity and efficacy of two types of West Nile virus-like particles 

 different in size and maturation as a second-generation vaccine candidate. Vaccine 

 28 (40): 6588-6596. 

 

Oliphant T, Engle M, Nybakken GE, Doane C, Johnson S, Huang L, Gorlatov S, 

Mehlhop E, Marri A, Chung KM, Ebel GD, Kramer LD, Fremont DH, Diamond MS (2005). 

 Development of a humanized monoclonal antibody with therapeutic potential against 

 West Nile virus. Nat Med 11: 522-530. 

 

Oliphant T, Nybakken GE, Austin SK, Xu Q, Bramson J, Loeb M, Throsby M, Fremont 

DH, Pierson TC, Diamond MS (2007). Induction of Epitope-Specific Neutralizing Antibodies 

 against West Nile Virus. J Virol 81 (21): 11828-11839. 

 

Ostlund EN, Crom RL, Pedersen DD, Johnson DJ, Williams WO, Schmitt BJ (2001). 

 Equine West Nile Encephalitis, United States. Emerg Infect Dis 7 (4): 665-669. 

 

Padgett KA, Cahoon-Young B, Carney R, Woods L, Read D, Husted S, Kramer V (2006). 

 Field and laboratory evaluation of diagnostic assays for detecting West Nile virus in 

 oropharyngeal swabs from California wild birds. Vector Borne Zoonotic Dis 6 (2): 183- 

 191. 

 

Paisley JE, Hinckley AF, O’Leary DR, Kramer WC, Lanciotti RS, Campell GL, Hayes BB  

 (2006). West Nile virus infection among pregnant women in a northern Colorado 

 Community, 2003 to 2004. Pediatrics 117 (3): 514-520. 

 

Papa A, Xanthopoulou K, Gewehr S, Mourelatos S (2011). Detection of West Nile virus 

 Lineage 2 in mosquitoes during a human outbreak in Greece. Clin Microbiol Infect 

 17 (8): 1176-1180. 

 

Papin JF, Vahrson W, Dittmer DP (2004). SYBR green-based real-time quantitative PCR 

 assay for detection of West Nile Virus circumvents false-negative results due to strain 

 variability. J Clin Microbiol 42 (4): 1511-1518. 

 



Literaturverzeichnis ............................................................................................................ 117 

Pavan A, Covelli E, Pascale MC, Lucania G, Bonatti S, Pinto da Silva P, Torrisi MR 

 (1992). Dynamics of transmembrane proteins during Sindbis virus budding. J Cell Sci 

 102 (Pt 1): 149-155. 

 

Payne LG und Norrby E (1976). Presence of haemagglutinin in the envelope of extracellular 

 vaccinia virus particles. J Gen Virol 32 (1): 63-72. 

 

Pealer LN, Marfin AA, Petersen LR, Lanciotti RS, Page PL, Stramer SL, Stobierski MG, 

Signs K, Newman B, Kapoor H, Goodman JL, Chamberland ME (2003). Transmission of 

 West Nile virus through blood transfusion in the United States 2002. N Engl J Med 

 349 (13): 1236-1245. 

 

Petersen LR und Marfin AA (2002). West Nile Virus: A Primer for the Clinician. Ann Intern 

 Med 137 (3): 173-179. 

 

Peterson AT, Vieglais DA, Andreasen JK (2003). Migratory birds modeled as critical 

 Transport agents for West Nile Virus in North America. Vecotor-Borne and Zoonotic 

 Diseases 3 (1): 27-37. 

 

Pletnev AG, Putnak R, Speicher J, Wagar EJ, Vaughn DW (2002). West Nile virus/dengue 

 type 4 virus chimeras that are reduced in neurovirulence and peripheral virulence 

 without loss of immunogenicity or protective efficacy. PNAS 99 (5): 3036-3041. 

 

Pletnev AG, Swayne DE, Speicher J, Rumyantsev AA, Murphy BR (2006). Chimeric West  

 Nile/dengue virus vaccine candidate: preclinical evaluation in mice, geese and 

 monkeys for safety and immunogenicity. Vaccine 24 (40-41): 6392-6404. 

 

Poidinger M, Hall RA, Mackanzie JS (1996). Molecular characterization of the Japanese 

 encephalitis serocomplex of the flavivirus genus. Virology 218 (2): 417-421. 

 

Porter MB, Long MT, Getman LM, Giguère S, MacKay RJ, Lester GD, Alleman AR, 

Wamsley HL, Franklin RP, Jacks S, Buergelt CD, Detrisac CJ (2003). West Nile virus 

 Encephalomyelitis in horses: 46 cases (2001). J Am Vet Med Assoc 222 (9): 1241-

 1247. 

 

Puig-Basagoiti F, Deas TS, Ren P, Tilgner M, Ferguson DM, Shi PY (2005). High through- 

 put assays using a luciferase-expressing replicon, virus-like particles, and full-length 

 virus for West Nile virus drug discovery. Antimicrob Agents Chemother 49 (12): 4980-

 4988. 

 

Purtha WE, Myers N, Mitaksov V, Sitati E, Connolly J, Fremont DH, Hansen TH, 

Diamond MS (2007). Antigen-specific cytotoxic T lymphocytes protect against lethal West 

 Nile virus encephalitis. Eur J Immunol 37 (7): 1845-1854. 

 

Pushko P, Tumpey TM, Bu F, Knell J, Robinson R, Smith G (2005). Influenza virus-like 

 particles comprised of the HA, NA and M1 proteins of H9N2 influenza virus induce 

 protective immune responses in BALB/c mice. Vaccine 23 (50): 5751-5759. 

 



Literaturverzeichnis ............................................................................................................ 118 

Qiao M, Ashok M, Bernard KA, Palacios G, Zhou ZH, Lipkin WI, Liang TJ (2004). 

 Induction of sterilizing immunity against West Nile Virus (WNV), by immunization

 with WNV-like particles produced in insect cells. J Infect Dis 190 (12): 2104-2108. 

 

Ramlau R, Quoix E, Rolski J, Pless M, Lena H, Lévy E, Krzakowski M, Hess D, Tartour 

E, Chenard MP, Limacher JM, Bizouarne N, Acres B, Halluard C, Velu T (2008). A phase 

 II study of Tg4010 (Mva-Muc1-II2) in association with chemotherapy in patients with 

 stage III/IV Non-small cell lung cancer. J Thorac Oncol 3 (7): 735-744. 

 

Ramos HJ, Lanteri MC, Blahnik G, Negash A, Suthar MS, Brassil MM, Sodhi K, Treuting 

PM, Busch MP, Norris PJ, Gale M Jr. (2012). IL-1 signaling promotes CNS-intrinsic 

 immune control of West Nile virus infection. PLoS Pathog 8 (11): e1003039. 

 

Reisen W, und Brault AC (2007). West Nile virus in North America: perspectives on 

 epidemiology and intervention. Pest Manag Sci 63 (7): 641-646. 

 

Reisen WK, Fang Y, Martinez VM (2005). Avian Host and Mosquito (Diptera: Culicidae) 

 Vector Competence Determine the Efficiency of West Nile and St. Louis Encephalitis 

 Virus Transmission. J Med Entomol. 42 (3): 367-375. 

 

Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC (1995). The envelope glycoprotein from 

 tick-borne encephalitis virus at 2 A resolution. Nature 375 (6529): 291-298. 

 

Rice CM, Lenches EM, Eddy SR, Shin SJ, Sheets RL, Strauss JH (1985). Nucleotide 

 sequence of yellow fever virus: implications for flavivirus gene expression and 

 evolution. Science 229 (4715): 726-733. 

 

Roehr B (2012a). US hit by massive West Nile virus outbreak centred around Texas. British 

 Medical Journal 2012; 345:e5633. 

 

Roehr B (2012b). Texas records worst outbreak of West Nile virus on record. BMJ 2012; 

 345:e6019. 

 

Roehrig JT, Nash D, Maldin B, Labowitz A, Martin DA, Lanciotti RS, Campbell GL 

 (2003). Persistence of virus-reactive serum immunoglobulin m antibody in confirmed 

 west nile virus encephalitis cases. Emerg Infect Dis 9 (3): 376-379. 

 

Roy P und Noad R (2008). Virus-like particles as a vaccine delivery system: myths and 

 facts. Hum Vaccin 4 (1): 5-12. 

 

Salazar P, Traub-Dargatz JL, Morley PS, Wilmot DD, Steffen DJ, Cunningham WE, 

Salman MD (2004). Outcome of equids with clinical signs of West Nile virus infection and 

 factors associated with death. J Am Vet Med Assoc 225 (2): 267-274. 

 

Samuel MA und Diamond MS (2005). Alpha/beta interferon protects against lethal West 

 Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J 

 Virol 79 (21): 13350-13361. 

 



Literaturverzeichnis ............................................................................................................ 119 

Sánchez MD, Pierson TC, McAllister D, Hanna SL, Puffer BA, Valentine LE, Murtadha 

MM, Hoxie JA, Doms RW (2005). Characterization of neutralizing antibodies to West Nile 

 virus. Virology 336 (1): 70-82. 

 

Sayao AL, Suchowersky O, Al-Khathaami A, Klassen B, Katz NR, Sevick R, Tilley P, 

Fox J, Patry D (2004). Calgary experience with West Nile virus neurological syndrome 

 during the late summer of 2003. Can J Neurol Sci 31 (2): 194-203. 

 

Scherret JH, Poidinger M, Mackenzie JS, Broom AK, Deubel V, Lipkin WI, Briese T, 

Gould EA, Hall RA (2001). The Relationships between West Nile and Kunjin viruses. Emerg 

 Infect Dis 7 (4): 697-705. 

 

Schmeisser F, Adamo JE, Blumberg B, Friedman R, Muller J, Soto J, Weir JP (2012). 

 Production and characterization of mammalian virus-like particles from modified 

 vaccinia virus Ankara vectors expressing influenza H5N1 hemagglutinin and 

 neuraminidase. Vaccine 30 (23): 3413-3422. 

 

Schmidt JR und Elmansoury HK (1963). Natural and experimental infection of Egyptian 

 equines with West Nile virus. Ann Trop Med Parasitol 57: 415-427. 

 

Sejvar JJ, Bode AV, Marfin AA, Campbell GL, Ewing D, Mazowiecki M, Pavot PV, 

Schmitt J, Pape J, Biggerstaff BJ, Petersen LR (2005). West Nile Virus – associated 

 Flaccid Paralysis. Emerg Infect Dis 11 (7): 1021-1027. 

 

Sejvar JJ, Lindsey NP, Campbell GL (2011). Primary causes of death in reported cases of 

 fatal West Nile Fever, United States, 2002-2006. Vector Borne Zoonotic Dis 11 (2): 

 161-164. 

 

Sfakianos JN und Hecht A (2009). West Nile Virus. 2nd Edition. New York: Chelsea House 

 Books. 

 

Shida H (1986). Nucleotide Sequence of the Vaccinia Virus Hemagglutinin Gene. Virology 

 150 (2): 451-462. 

 

Shimoda K, Kato K, Aoki K, Matsuda T, Miyamoto A, Shibamori M, Yamashita M, 

Numata A, Takase K, Kobayashi S, Shibata S, Asano Y, Gondo H, Sekiquchi K, 

Nakayama K, Nakayama T, Okamura T, Okamura S, Niho Y, Nakayama K (2000). Tyk2 

 Plays a restricted role in IFN alpha signaling, although it is required for IL-12-

 mediated T cell function. Immunity 13 (4): 561-571. 

 

Shrestha B und Diamond MS (2004). Role of CD8+ T cells in control of West Nile virus 

 infection. J Virol 78 (15): 8312-8321. 

 

Shrestha B und Diamond MS (2006). CD8+ T cells require perforin to clear West Nile Virus 

 from infected neurons. J Virol 80 (1): 119-129. 

 

Shrestha B und Diamond MS (2007). Fas Ligand Interactions Contribute to CD8+ T-Cell-

 Mediated Control of West Nile Virus Infection in the Central Nervous System. J Virol 

 81 (21): 11749-11757. 



Literaturverzeichnis ............................................................................................................ 120 

Shrestha B, Pinto AK, Green S, Bosch I, Diamond MS (2012). CD8+ T cells use TRAIL to 

 restrict West Nile virus pathogenesis by controlling infection in neurons. J Virol 86 

 (17): 8937-8948. 

 

Shrestha B, Wang T, Samuel MA, Whitby K, Craft J, Fikrig E, Diamond MS (2006). 

 Gamma Inferferon plays a crucial early antiviral role in protection against West Nile 

 Virus infection. J Virol 80 (11): 5338-5348. 

 

Sitati EM und Diamond MS (2006). CD4+ T-Cell responses are required for clearance of 

 West Nile Virus from the Central Nervous System. J Virol 80 (24): 12060-12069. 

 

Smith GW und Wright PJ (1985). Synthesis of proteins and glycoproteins in dengue type 2 

 virus-infected vero and Aedes albopictus cells. J Gen Virol 66 (3): 559-571. 

 

Smithburn KC; Hughes TP, Burke AW, Paul JH (1940). A neurotropic virus isolated from 

 the blood of a native of Uganda. Am J Trop Med Hyg 20: 471-492. 

 

Solomon T, Ooi MH, Beasley DWC, Mallewa M (2003). West Nile encephalitis. British 

 Medical Journal 326 (7394): 865-869. 

 

Stadler K, Allison SL, Schalich J, Heinz FX (1997). Proteolytic activation of tick-borne 

 encephalitis virus by furin. J Virol 71 (11): 8475-8481. 

 

Staib C, Drexler I, Sutter G (2004). Construction and isolation of recombinant MVA. 

 Methods Mol Biol 269: 77-100. 

 

Stickl H, Hochstein-Mintzel V, Mayr A, Huber HC, Schäfer H, Holzner A (1974). MVA-

 Stufenimpfung gegen Pocken. Klinische Erprobung des attenuierten Pocken-

 Lebendimpfstoffes, Stamm MVA. Dtsch Med Wochenschr 99 (74): 2386-2396. 

 

Stittelaar KJ, Kuiken T, de Swart RL, van Amerongen G, Vos HW, Niesers HG, van 

Schalkwijk P, van der Kwast T, Wyatt LS, Moss B, Osterhaus AD (2001). Safety of 

 modified vaccinia virus Ankara (MVA) in immune-suppressed macaques. Vaccine 19 

 (27): 3700-3709. 

 

Sutter G und Moss B (1992). Nonreplicating vaccinia vector efficiently expresses 

 recombinant genes. PNAS 89 (22): 10847-10851. 

 

Sutter G, Wyatt LS, Foley PL, Bennink JR, Moss B (1994). A recombinant vector derived 

 from the host range-restricted and highly attenuated MVA strain of vaccinia virus 

 stimulates protective immunity in mice to influenza virus. Vaccine 12 (11): 1032-1040. 

 

Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H, Sasaki S, Imai K, 

Shibue T, Honda K, Taniguchi T (2003). Integration of interferon-α/β signalling to p53 

 responses in tumour suppression and antiviral defence. Nature 424 (6948): 516-523. 

 

Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, Shea JE, 

McClain JB, Hussey GD, Hanekom WA, Mahomed H, McShane H (2013). Safety and 

 efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with 



Literaturverzeichnis ............................................................................................................ 121 

 BCG: a randomised, placebo-controlled phase 2b trial. The Lancet 381 (9871): 1021-

 1028. 

 

Throsby M, Geuijen C, Goudsmit J, Bakker AQ, Korimbocus J, Kramer RA, Clijsters-

van der Horst M, de Jong M, Jongeneelen M, Thijsse S, Smit R, Visser TJ, Bijl N, 

Marissen WE, Loeb M, Kelvin DJ, Preiser W, ter Meulen J, de Kruif J (2006). Isolation 

 and characterization of human monoclonal antibodies from individuals infected with 

 West Nile Virus. J Virol 80 (14): 6982-6992. 

 

Town T, Bai F, Wang T, Kaplan AT, Qian F, Montgomery RR, Anderson JF, Flavell RA, 

Fikrig E (2009). Toll-like receptor 7 mitigates lethal West Nile encephalitis via interleukin 23-

 dependent immune cell infiltration and homing. Immunity 30 (2): 242-253. 

 

Tsai TF, Popovici F, Cernescu C, Campell GL, Nedelcu NI (1998). West Nile encephalitis 

 epidemic in southeastern Romania. The Lancet 352 (9130): 767-771. 

 

Turell MJ, Sardelis MR, Dohm DJ, O’Guinn ML (2001). Potential North American vectors 

 of West Nile viurs. Ann N Y Acad Sci 951 (1): 317-324. 

 

United States Department of Agriculture (USDA) (2013). Animal Health Monitoring & 

 Surveillance. 2012 Summary of Equine West Nile Virus Cases in the United States. 

 http://www.aphis.usda.gov/vs/nahss/equine/wnv/index.htm 

 

Vázquez S, Guzmán MG, Guillen G, Chinea G, Pérez AB, Pupo M, Rodriguez R, Reyes 

O, Gaaray HE, Delgado I, Garcia G, Alvarez M (2002). Immune response to synthetic 

 peptides of dengue prM protein. Vaccine 20 (13-14): 1823-1830. 

 

Venter M, Human S, Zaayman D, Gerdes GH, Williams J, Steyl J, Leman PA, Paweska 

JT, Setzkorn H, Rous G, Murray S, Parker R, Donnellan C, Swanepoel R (2009). Lineage 

 2 West Nile Virus as Cause of Fatal Neurologic Disease in Horses, South Africa. 

 Emerg Infect Dis 15 (6): 877-884. 

 

Volz A und Sutter G (2013). Protective efficacy of Modified Vaccinia virus Ankara in 

 preclinical studies. Vaccine 31 (39): 4235-4240. 

 

Wang P-G, Kudelko M, Lo J, Siu LYL, Kwok KTH, Sachse M, Nicholls JM, Bruzzone R, 

Altmeyer RM, Nal B (2009). Efficient Assembly and Secretion of Recombinant Subviral 

 Particles of the Four Dengue Serotypes Using Native prM and E Proteins. PloS ONE 

 4 (12): e8325. 

 

Wang T, Anderson JF, Magnarelli LA, Wong SJ, Koski RA, Fikrig E (2001). Immunization 

 of mice against West Nile virus with recombinant envelope protein. J Immunol 167 

 (9): 5273-5277. 

 

Wang T, Scully E, Yin Z, Kim JH, Wang S, Yan J, Mamula M, Anderson JF, Craft J, 

Fikrig E (2003). IFN-γ-Producing γδ T Cells Help Control Murine West Nile Virus Infection. J 

 Immunol 171 (5): 2524-2531. 

 



Literaturverzeichnis ............................................................................................................ 122 

Ward MP, Scheurmann JA, Highfield LD, Murray KO (2006). Characteristics of an out-

 break of West Nile virus encephalomyelitis in a previously uninfected population of 

 horses. Veterinary Microbiology 118 (3-4): 255-259. 

 

Ward MP, Scheurmann JA (2008). The relationship between equine and human West Nile 

 Virus disease occurrence. Veterinary Microbiology 129 (3-4): 378-383. 

 

Watson JT, Pertel PE, Jones RC, Siston AM, Paul WS, Austin CC, Gerber SI (2004). 

 Clinical characteristics and functional outcomes of West Nile Fever. Ann Intern Med 

 141 (5): 360-365. 

 

Watts DM, Tesh RB, Siirin M, Travassos da Rosa A, Newman PC, Clements DE, Ogata 

S, Coller B-A, Weeks-Levy C, Lierman MM (2007). Efficacy and durability of a recombinant 

 subunit West Nile vaccine candidate in protecting hamsters from West Nile 

 encephalitis. Vaccine 25 (15): 2913-2918. 

 

Weaver SC und Barrett AD (2004). Transmission cycles, host range, evolution and 

 emergence of arboviral disease. Nat Rev Microbiol 2 (10): 789-801. 

 

Weingartl HM, Neufeld JL, Copps J, Marszal P (2004). Experimental West Nile virus 

 infection in blue jays (Cyanocitta cristata) and crows (Corvus brachyrhynchos). Vet 

 Pathol 41 (4): 362-370. 

 

Weiss D, Carr D, Kellachan J, Tan C, Phillips M, Bresnitz E, Layton M (2001). Clinical 

 findings of West Nile virus infection in hospitalized patients, New York and New 

 Jersey, 2000. Emerg Infect Dis 7 (4): 654-658. 

 

Welte T, Lamb J, Anderson JF, Born WK, O'Brien RL, Wang T (2008). The Role of two 

 distinct γδ T cell Subsets during West Nile virus Infection. FEMS Immunol Med 

 Microbiol 53 (2): 275-283. 

 

Wengler G und Wengler G (1981). Terminal sequences of the genome and replicative-from 

 RNA of the flavivirus West Nile virus: absence of poly(A) and possible role in RNA 

 replication. Virology 113 (2): 544-555. 

 

Wengler G und Wengler G (1989). Cell-associated West Nile flavivirus is covered with E+ 

 pre-M protein heterodimers which are destroyed and recognized by proteolytic 

 cleavage during virus release. J Virol 63 (6): 2521-2526. 

 

Werner GT, Jentzsch U, Metzger E, Simon J (1980). Studies on poxvirus infections in 

 irradiated animals. Arch Virol 64 (3): 247-256. 

 

Westaway EG, Khromykh AA, Kenney MT, Mackenzie JM, Jones MK (1997a). Proteins C 

 and NS4b of the flavivirus Kunjin translocate independently into the nucleus. Virology 

 234 (1): 31-41. 

 

 

 



Literaturverzeichnis ............................................................................................................ 123 

Westaway EG, Mackenzie JM, Kenney MT, Jones MK, Khromykh AA (1997b). Ultra-

 structure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-

 stranded RNA, and of NS2b with NS3, in virus-induced membrane structures. J Virol 

 71 (9): 6650-6661. 

 

Westaway EG, Khromykh AA, Mackenzie JM (1999). Nascent flavivirus RNA colocalized 

 in situ with double-stranded RNA in stable replication complexes. Virology 258 (1): 

 108-117. 

 

Whiteman MC, Li L, Wicker JA, Kinney RM, Huang C, Beasley DWC, Chung KM, 

Diamond MS, Solomon T, Barrett ADT (2010). Development and characterization of non-

 glycosylated E and NS1 mutant viruses as a potential candidate vaccine for West Nile 

 virus. Vaccine 28 (4): 1075-1083. 

 

Widman DG, Ishikawa T, Giavedoni LD, Hodara VL, Garza Mde L, Montalbo JA, 

Travassos da Rosa AP, Tesh RB, Patterson JL, Carrion R Jr, Bourne N, Mason PW 

 (2010). Evaluation of RepliVAX WN, a single-cycle flavivirus vaccine, in a non-human 

 primate model of West Nile virus infection. Am J Trop Med Hyg 82 (6): 1160-1167. 

 

Widman DG, Ishikawa T, Winkelmann ER, Infante E, Bourne N, Mason PW (2009). 

 RepliVAX WN, a single-cycle flavivirus vaccine to prevent West Nile disease, elicits 

 durable protective immunity in hamsters. Vaccine 27 (41): 5550-5553. 

 

Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, Louder MK, 

Filgueira L, Marovich MA, Wong HK, Blauvelt A, Murphy GS, Robb ML, Innes BL, Birx 

DB, Hayes CG, Schlesinger-Frankel S (2000). Human skin Langerhans cells are targets of 

 Dengue virus infection. Nat Med. 6: 816-820. 

 

Wyatt LS, Carroll MW, Czerny CP, Merchlinsky M, Sisler JR, Moss B (1998). Marker 

 rescue of the host range restriction defects of Modified Vaccinia Virus Ankara. 

 Virology 251 (2): 334-342. 

 

Wyatt LS, Shors ST, Murphy BR, Moss B (1996). Development of a replication-deficient 

 recombinant vaccinia virus vaccine effective against parainfluenza virus 3 infection in 

 an animal model. Vaccine 14 (15): 1451-1458. 

 

Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, 

Rossmann MG, Chen J (2008). Structure of the immature dengue virus at low pH primes 

 proteolytic maturation. Science 319 (5871): 1834-1837. 

 

Zhang M, Daniel S, Huang Y, Chancey C, Huang Q, Lei YF, Grinev A, Mostowski H, 

Rios M, Dayton A (2010). Anti-West Nile virus activity of in vitro expanded human primary 

 natural killer cells. BMC Immunol 11: 3. 

 

Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, Baker TS, 

Strauss JH, Rossmann MG, Kuhn RJ (2003). Visulaization of membrane protein domains 

 by cryo-electron microscopy of dengue virus. Nat Struct Biol 10 (11): 907-912. 

 



Literaturverzeichnis ............................................................................................................ 124 

Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV. Sedlak D, Baker TS, Strauss 

JH, Kuhn RJ, Rossmann MG (2003). Structures of immature flavivirus particles. EMBO J 22  

 (11): 2604-0613. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Anhang ............................................................................................................................... 125 

IX. ANHANG 
 

 

1. Abkürzungen 

 

APC Antigen-präsentierende-Zelle 

APS Ammoniumperoxodisulfat 

ALP Alkalische Phosphatase 

BCIP 5-Brom-4-chlor-3'-indoxylphosphat 

bp Basenpaare 

BSA Bovines Serum Albumin 

°C Grad Celsius 

CEF Chicken embryo fibroblast (primäre Hühnerfibroblasten) 

CDC Centers for Disease Control and Prevention 

CPE Zytopathischer Effekt 

Cryo-EM Cryo-Elektronenmikroskopie 

CTL zytotoxischer T-Lymphozyt 

DC-SIGN Dendritic Cell-Specific Intercellular adhesion molecule-3-

 Grabbing Non-integrin 

DC-SIGNR DC-SIGN-related 

DMSO Dimethyl-Sulfoxid 

DNA Desoxyribonukleinsäure 

dNTP Desoxyribonukleosidtriphosphat 

E Envelope-Protein von WNV 

EDTA Ethylendiamintetraacetat 

ELISA Enzyme-linked immunosorbent assay 

ELISpot Enzyme-linked immunosorbent spot assay 

ER Endoplasmatisches Retikulum 

EqF Equine Fibroblasten (primäre Pferdefibroblasten) 

FCS Fetal calf serum 

h Stunde (Hour) 

HR Homologe Rekombination 

HRP Horseradish Peroxidase 

IFN Interferon 

IgG Immunglobulin G 

IgM Immunglobulin M 
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ITR Inverted terminal repeats 

kb Kilobasen 

kDa Kilodalton 

KUNV Kunjin-Virus 

LB Luria-Broth 

LTR Left terminal region 

mA Milliampere 

MDA-5 Melanoma-differentiation-associated protein 5 

min Minuten 

ml Milliliter 

mM Millimolar 

MOI Multiplicity of infection 

MVA Modifiziertes Vacciniavirus Ankara 

NBT Nitro-blue tetrazolium 

NEAA Non-essential amino acids 

ng Nanogramm 

nm Nanometer 

ORF Open reading frame 

PAGE Polyacrylamid-Gelelektrophorese 

PAMP Pathogen-associated molecular pattern 

PBS Phosphate buffered saline 

PCR Polymerase Chain reaction 

PFU Plaque forming units 

p.i. post infection 

PMA Phorbol-12-myristad-13-acetat 

POD Peroxidase 

PRR Pattern recoginition receptor 

PVDF Polyvinylidenfluorid 

RFP Red fluorescent protein 

RIG-I Retinoic acid-inducible gene I 

RNA Ribonukleinsäure 

rpm Revolutions per minute (Umdrehungen pro Minute) 

RT Raumtemperatur 

RTR Right terminal region 

SDS Sodium (Natrium) dodecyl-sulfate  

ssRNA einzelsträngige Ribonukleinsäure 

TAE Tris-Acetat-EDTA 



Anhang ............................................................................................................................... 127 

TEM Transmissionselektronenmikroskopie 

TEMED N,N,N’,N’-Tetramethylethylendiamin 

TEN Tris-EDTA-NaCl 

TLR Toll-like-Rezeptor 

TM Transmembrandomäne 

TMB 3,3′,5,5′-Tetramethylbenzidin 

TGN Trans-Golgi-Netzwerk 

UV Ultraviolett 

V Volt 

VACV Vaccinia Virus 

VLP Virus-like particle 

v/v volume to volume 

w/v weight to volume 

WB Westernblot 

WHO World Health Organization 

WNV West-Nil-Virus 

ZNS Zentralnervensystem 

µg Mikrogramm 

µl Mikroliter 
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2. Sequenzen der WNV-Genkonstrukte 

 

 

2.1 Sequenz von prME1 

 

 

 

 

 

 



Anhang ............................................................................................................................... 129 

2.2 Sequenz von prME2 
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2.3 Sequenz von ESOL 
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